Title word cross-reference

[KLR+17a, LL17b]. $1.2M$ [McM13, $10P$ [Pop17a], [LL17b].

100 \times [CEN14]. $1m$ [Sou13]. 2 [Goo18].

28.5 [Gre13], 37 [Lee13], 400 [Nak18].

$400M$ [Gal18]. 530

[YWW+18, YWS+18]. $62m$ [Nic17]. 735

[Osb18b]. δ [LL17c]. N [ZGR17].

-Bitcoin- [BS17a]. -privacy [LL17b, LL17c].

1 [BH15], 150 [Woo14]. 16th [Ker12]. '17

[ACM17c]. 17th [Sad13]. 18-Month [De18].

2.0 [AMLH18, SI16, Six17b, SALY17, Uli16].

'83 [CRS83]. 8th [Jue04].

Ability [SGF+17]. Abstract

[BLMR14, DNSY14, Hill14, Hull17]. Abu

[ACM17a, ACM17b, ACM17d]. Abuse

[VBC+17]. Academic [LHZ17, NC17b].

Accelerating [GADO17, SZ13]. acceleration [Dev14]. Access [DMR17b, ISM17, OEO16, OEO17, DSN17, SI16].

Account [ZWQ+16]. Accountability [GP17a, HM16, KAR+15, NSNF17].

Accountable

[BNM+14, VR15, vdHEM+17]. Accounts

[Dre17k]. Accumulator [SALY17].

Accumulator-Based [SALY17]. acéphale

[TFG17]. ACIDRain [WB17]. ACM
[ACM17a, ACM17b, ACM17d]. **ACNS**

[IKY05]. **Acquire** [RS14]. **Across**

[BGPW16, GCL16]. **act** [Pec15]. **active**

[Goo18]. **Activities** [ME17]. **Activity**

[BLMR14, RRM18, YNS16]. **Activity-Based** [YNS16]. **Ad**

[CGFH16, LMX16]. **Adaptable** [LX17]. **Added**

[DGKH17, Dre17z]. **Address** [EPY17, FPKH17, HM16, NH17, WLY17, Goo18]. **Address** [Cha81, GCL16]. **Addressing** [DNP17]. **Adhocracies** [Uli16]. **Adjusting**

[KJ17, KJ18]. **administration** [AR15]. **Adoption** [BBBB15, Boh13, SVL17, Str18, WCX16]. **Advances** [CRS83, OF15]. **Advancing** [BLBS17].

[CR16, LMX16]. **Ad-hoc** [CGFH16, LMH16]. **Adaptable** [LX17]. **Added** [WLSZ17]. **Adding** [DGHK17, Dre17z]. **Address** [EPY17, FPKH17, HM16, NH17, WLY17, Goo18]. **Address** [Cha81, GCL16]. **Addressing** [DNP17]. **Adhocracies** [Uli16]. **Adjusting**

[KJ17, KJ18]. **administration** [AR15]. **Adoption** [BBBB15, Boh13, SVL17, Str18, WCX16]. **Advances** [CRS83, OF15]. **Advancing** [BLBS17].

[CR16, LMX16]. **Ad-hoc** [CGFH16, LMH16]. **Adaptable** [LX17]. **Added** [WLSZ17]. **Adding** [DGHK17, Dre17z]. **Address** [EPY17, FPKH17, HM16, NH17, WLY17, Goo18]. **Address** [Cha81, GCL16]. **Addressing** [DNP17]. **Adhocracies** [Uli16]. **Adjusting**

[KJ17, KJ18]. **administration** [AR15]. **Adoption** [BBBB15, Boh13, SVL17, Str18, WCX16]. **Advances** [CRS83, OF15]. **Advancing** [BLBS17].
Beginners
[Ale18, KRL17]. Behavior [HLC+17b].
behaviours [DMR17a]. Behind
[LTDA16, Gei16, TT16, TTC16]. Behold
[DMH18a], being [Far15a, Lew15]. Belief
[Abr16]. Bell [BW17]. Beneath [ZWW+17].
Benefit [FS16, HB14]. benefits [Uni14].
Bespoke [Tay13]. bet [Ito18]. Betfunding
[JCHSR16]. Better
[BBSU12, Spo17, WM18, Lew15]. Between
[LJG15, Nis16b, KCS+14]. Beware [MC13].
Beyond [Bec18, GCD16, HS16b, HS16a, Øln16, Tro15a, TS16, Uli16, BGPW16, BT18, CV18, Und16]. BFT [MXC+16, Vuk16].
BGP [XWW17]. BGPCoin [XWW17]. Big
[Dre17q, Ito18, Liu16, Pav18, Wol18, Cha85, Kel15, Lee15, LP17b, LP17c, LP18b, Tun18].
billions [Gei16]. Binary [KJ17, KJ18].
Biomedical [MGDEK17, MGDEK18]. Biometrics
[KFN+17]. BIPS [Sou13]. Birthday
[BK17b, Lar13]. bis [MG16]. Bit
[Sza08]. BitBeat [Vig15]. BITCOIN
[BCJ15, CSN14, CMR+16, JRB+17, BS17a, BBMS14, Dus14, MG16, Six17f, Hol18, Aro12, CSG+18, CRdK16, ALP15, ACM15, Ali15, AMLH15, AMLH18, AS14, AF16, ALMLS16, ALPBT17, And14, AKR+13, AK14, ADM14a, ADM14b, ADM14, ADMM15, ADMM16, AM15, Ano13b, Ano14a, Ano14b, Ano17b, Ano17a, Ano17c, Ano17d, Ano18a, Ano18f, Ant13, Ant15, AZV17, Ast16, AMVA17, ACC+17, BDOZ11, BDOZ12, BMTZ17, BS16, BRS17, BDWW14, BHMW16, BBSU12, Bar17, BHI+14, BH15, Bar14, BP17a, BZ17, BLP17, BS16, BDP+15, BBBBB15, Bec18, BBH+13, Bce16, BS15, BSCG+14, BK14, BLMR14, Ber15, Ber13, Bik16, BKP14, BP15, BOLL14, BMS17, Bla18, BP14, Böh13, BCEM15, BB14, BR16, Bon16a, Bon14a, BNM+14, Bon14b, BMC+15, BC16a, Bra15a, Bra13, Bra15b, Bra17, BOS15].
Bitcoin
[BC16b, BDW17, BW17, BT18, Cae15, CV18, CC16, Cap12, Cap15, CKWN16, Car15, Cas12, CK16, CF15, CJW17, CSLD17, Chi13, CP17a, Chu15, CE12, CM14, CP17b, CEN14, CGN14, CEW15, Cou16, CSC16, Cou13, CS15, Cus14a, Cus14b, DBB+15, DSM+17, DNP17, De18, DW13, DW14, DW15, DGSW15, DSW16, DVRM16, Dev14, DMH18i, DMR17a, DMR18, DS17b, Dim17, Dix17, DSN17, DSYJ14, DNY17, DPSHJ14, DS15, Duc13, EDS15, Edel14, Edw15, EBHBL16, EPY17, EBS15, ECHL16, Eva14, ES14a, ES14b, FOA16, FOA17, Fai17, Far18a, Far18b, FN17, FSW14, FPKH17, Fin17a, Fox17, Fra14, FBR17, FMR+16, Fri14, FS16, G.17, GHMO17, GCL16, GKL15, GKL17, GS15a, Gei16, GGN16, GMS17, Ger16, GKC14, GCKG14, GRC15, Gvi16, GK14, Gia15, GCR16, Gm16].
Bitcoin
[GAK17, GZH+14, GK17, God15, GG+14, Gon16, GDTP17, Gri11, GS15b, HQ15, HS16b, HS16a, HWDD17, HLC+17a, HC12, Hea13, HBG16, HG15, HJB14, HJ15, HJP16, Hil14, Hil15, Hob13, HM18, Hou14a, Hou14b, Hou16, HCW+18, HB14, Hurl16, IM16, JL17, JKXX16, JMM14, JZLL17, JLG+14, JSK+17, K.13, KAC12, KAR+15, KA16, Kar16, Kat17, KBS17, KK17a, Kay17, KRL17, Kel15, Ker14, KCD17, KSCD16, Kh15, KH17, KT15, KKS4, KH16, KCS+14, KMK14, KKS+17a, KD16, KL17, KDF13, KJGW17, Kru13, KB14, KMB15, Kün16, KK17b, KKS+17b, KKS+17e, LB18, LMLA17, LJG15, Lee13, Lee15, LW16, LD17, LBS+15, Li14, LZDA16, LKL+14, LT17, LZC+17, LLZ+17, LSH13, LN15, lut17, LSP+15, CFvdPS15, MMM16, MG16, ML15, ML17, Mat13, Mat14, MLM15, MLM16, MHH+16].
Bitcoin
[MSCH15, MMSH16, MS17, MO15, Mic16, Mic14, MGGR13, ML14, MKK14, MJ+14, MKKS15, Mil15, MB17, MM17, MK15, Mö13, MMT16b, MMT16a, MC13, MBB13b, MBB14, MB15, MES16, MBB13a, Mul14a, Mul14c, Mul14b, Mul14d, Mul14f, Mul14g, Mul14h, NC17a, Nak08a, Nak08b,
NBF+16, NC17b, NHM16, NAH15, NAH16, NH17, Nic17, Nis16a, Nis16b, OM14, OKH13, Oln16, Ort16, Peo13, Pav18, Pec13, Pec15, Pec16, P16, PS16, PR16, Pla13, Pop15, Pop16b, Pop17a, Pop17b, Pop18a, Pop18b, PHD+17, Pro13, Pro14, RAH+15, RJK+17, Ras13, RH11, RH13, RRM18, Riz16, Ro13, RS13, Ros11, Rot17, RMS14, RMS17, SCY17, SOA17, SI16, San14b, San14a, SSZ17, SK14, SK15, SK17, SGC+14, SMD14, Sch13, SBBR17, SBR16, SZ14, Sha17, SGF+17, Shi16, Sid14].

Bitcoin [SCAA13, Sir16a, Sir16b, Six17a, Six17b, Six17d, Six17e, Six17f, Six17i, Six17j, SLY15, SPB17, SZ13, SZ15, SZ17, Sz18, Son14, SKG12, SKG13, Sou13, SMZ14, Ste17, Swa15a, TFG17, TT16, TTC16, Tay13, Tay17, TD17b, TOM18, TS16, Uni14, Und16, UI16, Ur17, Urq17, VR15, VG17, Van14a, VCLK17, Van14b, VG15, VTM14, VM15, VBC+17, Vel16, VTL17, VFV17a, VFV17b, VC15a, Vig15, VC15b, VDK16, VD17, VX17, Vra17, WL15, WLY17, WHJ17, WQHX17, WLS+16, Wij16, WA15, Wvb14, Wör16, WZQ+17, YK15, Yeo15, YV17, YSLH17, ZW15, ZP17a, ZP17b, ZG15, ZC16, ZWQ+16, ZGTT16, ZDL17a, ZMH+17, ZMH+18, Zoh15, ZGR17, dBHC17, dre14, Ano16b, SM-16].

Bitcoin-Based [Van14b, HCW+18].

Bitcoin-Exchange [MC13].

Bitcoin-Handbuch [MG16].

Bitcoin-Related [KCD17].

Bitcoin-Systems [Six17i, Six17j].

Bitcoin/USD [HG15].

BitCoin/USD [ZDL17b, AF16, AFMD14, BDE+13, Brü17, Cap15, ES16, Gre13, Hol15, MY11, McL13, McM13, MPJ+13, MPJ+16, RKS15, Six17e, ZGH+15].

BitConeView [BDP+15].

BitIodine [SMZ14].

bitstrings [HS97].

Bitter [BBSU12].

Blackchain [vdHEM+17].

Blind [Cha83, WZQ+17].

Blindcoin [VR15].

Blocked [VR15].

Blindingly [HBG16].

Block [BS16, BRS17, CKWN16, OAB+17, SPB17, TSL+17, ZP17a, GK17, Ler14a, PB17].

block-chains [Ler14a].

Block-Withholding [SPB17].

BLOCKBENCH [DWC+17].

Blockchain [ACM17b, AK17, ABR17, AKP17, AP18, ACW17, ARKB17, Ale18, ABL18, Anol8b, ATD17, AMVA17, ACC+17, AC17, BLPB17, BART17, Bec18, BR17, BD17a, Ber17, BLSD17, BSV17, BK17a, BK18, Bhe17a, Blo18, BCM16, BKM+17, BC16a, BO17, Brü17, BIFS17, BIFS18, BLNN17a, BLNN17b, Cae15, CDD17, CCMN17, CG16, CR17, CBWF17, CJW17, CXS+17, CQXL18, Cobi17, Dan17a, DNP17, DW18, DMH18b, DMH18c, DMH18d, DMH18e, DMH18k, DMR17b, Di 17, Drel17b, Drel17m, Drel17p, Dre17x, DF17b, DXR+17, DF17a, ET17, EZ17, EZ18, Eya17, Fai17, FNP17, Fot17, FRUS17, Gar17, GANAHHJ17, GBP17D, GBSAS17, Ger16, GR17, GCD16, God15, GL16, bAHRAK17, bAHRAK18, HL16, HBG16, HJPS16, HSB17b, HSB17a, HSB17c, HSB17d, HSB18d, HSB18f, HSB18g, HSB18h, HSB18i, HP17].

Blockchain [HP18, HTCW17, HTCW18, HLC17c, Hurl16, Hur16, HRF17, IPS17, IGRS16, JB17a, JB17b, JB18, JMK17, JL17, Kab17, KF17+17, Kar16, KK17a, KG17, KKK17, KJ17, KJ18, KET+17, KUE17, KUE18, KFR18, Ksh17a, Ksh17b, KFTS17, KK17b, Las17, Lau17, LL16, LL17a, LMW17, LMH16, LN17, LMR17, LLW17, LZY+17, LABK17, LST+17, LK17, LSM17, LP17b, LPW17a, LP17c, LP18a, LPW18, LP18b, Liu16, LX17, MMR16, ME17, MHH+16, MSC15, MC17J, MHWK16, MK15, Mor17a, Mor17b, Mor17f, Mor17d, Mor17e, Mor17i, MG17, MGDE17, MGDE18, NSNF17, aNOE17, NGHS17, NCS17, OOF+17, OA17, 0nh16, OJ17, OEO16, OEO17, ÖY17, PSS17, PS17,
C2B [Blo18]. Byzantine
[BSV17, LSP82, ML14].

Caching [SNM17]. Calculus [Kam17].

California [CRS88]. Campaign
[Cim18, Seg18]. Can [BBH+13, Ber17, CRdK16, GP17a, HS17b, HS18f, Ksh17a, Ksh17b, MBC17a, KFR17, Lew15, SYZ16].

Canonical [Ort16]. Capacity [KJ17, KJ18].

Capital [DMH17, Mcl13, PF18].

Capitalism [Bhe17b, Bhe17e, DdFP18].

Capitalizations [Ano16d]. Carbon [CE12].

Care [Chu15, DMH18c, LP18e]. Case
[FRSU17, HS16d, HS18i, LX17, LN15, LSP+15, RRD17, Str18, CSD17]. Cash
[Ano17a, MGGR13, OO91, WvB14, Bac97, Bac01, BB15, Nak08a, Nak08b, Pan96, WLS17]. Casinos [Mat13, Pia16].

Categorization [GDP+17]. Catena
[TD17b]. CBT [GANAHH17, CCS17, ACM17a]. central [Nis16a, Son14].

Centralised [Lei16]. centralization [BS15].

Centralized [WSZN18]. Centrally
[LDH17]. Centric [ACC+17, Hul17]. CEO
[Sid14]. Certificate [XZK+17, CCMN17].

Certificates [Muf16]. Certification
[KLR+17a, KLR+17b]. Certified
[AFMdM14].

Chain
[Con14, HS17b, HS17a, HS17c, HS17d, HS18a, HS18b, HS18f, HS18e, HS18g, HS18h, HS18i, Kra16b, WCL17, Che18, DF17b, PB17]. Chaining [ET17].

Chains [GKL17, JSK+17, Ler14a, SZ13].

Challenges [ACM17c, BMC+15, HJ15, HJP16, Mul14a, PS16, PPMT17, RDDL17, SK17, Van14b, dCDCM14, KS18].

challenging [VC15a, VC15b].

Chancen
[Ker14, San14a].

Change
[FWB15, KRL17, Mor17c, Kel15]. changing [Pal18, TT16, TTT16]. Channel [AGGM16, BDW17, EKK+17, MMSK+17, RLT17].

Channels [ABF+16, DW15, GM17, Kra16b].

Chaos [LB18]. Characteristics [WLXC17].

Characterizing
[GCL16, MPJ+13, MPJ+16]. charging
[KUE17]. Charles [G17]. check [Pal18].

Checks [YWS+18]. China
[CP17a, K.13, Son14, ZZ16]. Chinese
[Son14]. Choice [Kan18]. Choosing
[Dre17d]. Christ
[BBMS14, CSN14, CMR+16, GP17b].

Church
[BBMS14, CSN14, CMR+16, GP17b].

Cisco
[Ker18a]. Cities [IPSP17, SYZ16].

City
[De18]. CitySense [IPSP17]. civilizations
d[S17a].

Class [BWI7].

classification [SKG12].

Clients
[BKP14, GCKG14, VCLK17]. Clinical
[ACV17, BR17]. clipboard [Pal18].

clipboards [Bar18].

closed [LZDA16].

Cloud
[ECD+17, HS16c, LST+17, SV16, SL18, TSL+17, JO13, WLL+13, YCX18].

Cloud-Based [HS16c].

Clouds
[KZVT17, MKGT16a, MKGT16b].

Clustering
[EZ17, EZ18, EPY17, FOA16, NH17, HLC+17b, Urt17].

Coalitions
[MKKS14, MKKS15].

Code
[FB17b, SCA13, DW18, Ger16].

Codes
[LSO+15].

COexist [GP17a].

Coffee
[ECHL16].

cognitive [Che18].

Coin
[Ale18, KJG17, RMSK14, Goo18, DFKP13, THF17].

Coinbase
[KRL17, Far18b, GCM16].

Coincheck
[YWS+18, Gal18, Nak18, WREK18, WSZN18, YW+18].

Coinbase
[Osb18a].

CoinDesk
[Sup16, Vig15].

CoinParty
[ZGH+15].

Coins
[Ros12, RKS15].

CoinShuffle
[RSK14].

CoinTerra
[BB15, BHI+14].

Collaboration
[NOT15].

Collaborative
[RBL+17].

Collapse
[K.13, Sch14b].

Collateral
[KT15, MB17].

collection
[CJW17].

Collective
[IM16].

Collisions
[Lar13].

Colored
[Ros12].

Combat
[OOF+17, RAH+15].

Combatting
[DN93].

ComboJack
[Bar18, Pal18].

come
[Ker18b].

commerce
[Pan96, XLM+17].
Disincentivize [ES14a]. Disk [GL00].
Disputes [ABL18]. Disruption [BBB15].
Disruptive [FRSU17, GR17]. disruptiver [FRSU17].
Distributed [ALPBT17, AABM17, Brü17, CZJ +17, ECDoI17, EG17, HL16, HLC +17a, Her17, Hull17, JCHSR16, KMO17, LDW17, Lau11b, LS17, LLW17, LSP +15, MGM +17, MGGR13, NST +17, Poe14, RLT17, SD16b, Str18, TD17a, Wat17, ZWQ +16, BS16, CK16, PLSS17].
Distributing [Dre17g]. Distribution [Yeo15].
Diversification [BOS15]. Divide [Bra13]. Divisors [DDX17].
DLoc [ECdO17]. Do [SIDV14]. Docker [XJR +17].
Document [HS91]. Documentation [Ano17b]. Documenting [Dre17h]. Does [HSB17c, HSB18, SGF +17, Ste17, Ano17d, Fai17, RE18].
Domain [JB18, RBS17]. Dominant [AC17]. Don’t [MHH +16, Pal18].
Drones [SYK17]. Drug [Zet13, Gei16]. Dry [LJG15].
DSA/ECDSA [GGN16, GGK +14].
Dubious [Roo18]. Due [Ami16, McL13].
Dumber [Ito18]. dummies [Ant16]. d’une [San14b]. Duplex [DW15].
Duplicated [KKS +17b]. during [OSb18a]. Dutch [PdWWS16]. dwelled [UJ16]. dynamic [Bar17, DB16, KUE17].
E-Cash [MGGR13, BB15, Nak08b].
E-commerce [XLM +17]. E-Democracy [QFLM17].
E-Governance [QFLM17]. E-Voting [OJB17].
Economic [Bon16a, DdFP18, EK +17, Eva14, Pav18, VC15a, VC15b].
Economics [Bhe17b, Bhe17c, CG16, Fra14, HSE14a, KDF13].
Economies [MDAP16, MAP16]. Economy [BDP17a, Bhe17c, LSP +17, Har17, LP18c, Sir16b, Swa15b, TKW15].
Ecosystem [X17a, X17f]. Ecosystems [SW17, Sto17].
Editor [WR16, Wil17]. Education [RRD17, SL17, CXLC18].
Eigentumsrechten [HP17, HP18].
[KUE17, ZW15, ZW17]. electricity [Fai17].
Electronic [ACM17c, Ano17a, Cha81, MY11, OO91, Sub17, Nak08a, Pan96, Sub18].
Electrum [VCLK17].
Elon [Sha17]. emails [Pal18]. Embedded [LMWL17, LL16, LL17a].
Emerging [ACW17, KD16]. Empirical [JL17, MC13, VT14, Vel16, WLXC17, CF15, BBBB15]. Empower [DXR+17]. Enabled [Las17, LN17, SS17b, BK+17, DMH18].
Enabler [CBWF17, SS17a]. Enabling [ABL18, 01n16, XSC+17]. Encrypted [AAG17, DCK17, FYK+17]. Encryption [DDX17, FYK+17, LLW17, Mer88]. End [BMSS17, MBB+15, Rot17]. End-to-end [BMSS17]. Energy [LDWS17, Pop18a, MNB+17, OM14, TKW15].
Enabler [CBWF17, SS17a]. Enabling [ABL18, 01n16, XSC+17]. Encrypted [AAG17, DCK17, FYK+17]. Encryption [DDX17, FYK+17, LLW17, Mer88]. End [BMSS17, MBB+15, Rot17]. End-to-end [BMSS17]. Energy [LDWS17, Pop18a, MNB+17, OM14, TKW15].
Enabler [CBWF17, SS17a]. Enabling [ABL18, 01n16, XSC+17]. Encrypted [AAG17, DCK17, FYK+17]. Encryption [DDX17, FYK+17, LLW17, Mer88]. End [BMSS17, MBB+15, Rot17]. End-to-end [BMSS17]. Energy [LDWS17, Pop18a, MNB+17, OM14, TKW15].
Enabler [CBWF17, SS17a]. Enabling [ABL18, 01n16, XSC+17].
Farming [PTPR17, PTPR18]. Fast
[DW15, KAC12, Lin17, LZC+17, SCA13, SJZ17, SZ13, Uri17, VB08]. faster
[CEN14, Ler14a]. Fault [BSV17], Fault-tolerant [BSV17]. FAW [KKS+17c].
FBI [Gre13]. FC
[BBM14, BCJR15, CSN14, CMR+16, GP17b, JRB+17, Jue04, Ker12, Sad13].
Fears [HM18]. Feasibility [JCG17, SL18].
Features [Bog17, Cou16]. February
[CMR+16, GP17b, Jue04, Ker12]. Federal
[Int14]. Feeds [ZWW15, BH15].
Fees [Lin15]. Fiction [Duc13, Fir18].
Fictionindustrie [BKT17]. Finding [BBB15]. finds [Aro12, Edw15]. FinTech
[WM18]. Fire [RKS15]. firms [K.13].
Firmware [BMWL17, LL16, LL17a]. First
[BH15, BP14, Pav18, PL16, SDT1, Ano17a, BHI+14, EBSC15, Ker18b, SKG12, YV17].
First-Generation [BH15]. Fishes
[ZWW+17]. Fistful [MPJ+13, MPJ+16]. fix
[Lee13]. FL [Jue04]. flance [Cae15]. flash
[MBD+12]. flash-speed [MBD+12]. flaw
[Duc13, Fir18]. flaws [FB17a]. Flow
[BS17a, YK15]. flows [BDP+15].
Fluctuations [EDS15]. Focus [TKW15].
fog [HCW+18]. folly [Sch14b]. footprint
[OM14]. Forecasting [YK15]. Forensics
[NHM16]. Foreseeable [ATD17]. Forging
[Pop16a]. Fork [KLM17, KKS+17c]. Forks
[LP17]. Formal [BDLF+16, Son16].
Formalized [CXS+17, LN17]. Fortune
[Pop17b]. Found [Kee16, Pop17b, YWJ+16].
Foundations [DMH18a, Gom16, HMS17].
Founding [EL14]. FowlerNollVo [VFN91].
FPGA [SNM17]. Fractal [DVRM16].
fractality [LB18]. Fragen [BP17b].
Fragmentation [Bhe17d]. Framework
[BLPB17, DVC+17, HL16, Las17, aNOE17, PTPR17, PTPR18, RS17, SK15, Gis16, VCS03]. Fraud
[CZ16, CBWF17, HRF17, Kru18, MMT16b, RRCL17, Kna15, MMT16a, VD17].
Fraudulent [LW16]. Free
[SPB17, VM15, Six17f]. FreeBSD [Ano18a].
Freedom [TF16]. Frees [Hou14b]. Freicoin
[TF16]. French [Sun14b, TFG17].
Frequency [Via16]. Friends [AMVA17].
FruitChains [PS17]. Fuel [Car15].
Fulfillment [Nis16b]. Full
[Ano18a, HSB17c, HSB18g, MMR16, RS13].
Function [Bac03, Mer88, VFN91].
Functional [OOF+17]. functionality
[Wij16]. Functioning [Ker14]. Functions
[Bac02b, Lel13, SBBR17, Per09]. fund
[Pan96]. fundamental [CF15]. Funding
[BDW17, LH17]. funktioniert [RE18].
Funktionsweise [Ker14, RE18, Six17a].
Further [Dre17u]. Future
[BBBB15, BK17a, BK18, Car15, Her17, JKS16, MADAP16, MAP16, PP16, Son16, Fri14, SKG13]. fuzzy
[Che18, WZQ+17].
Gamble [Roo18]. Gambling
[MCHM17, MHM17]. Game
[Hou14a, Hou16, JLG+14, Kra16b, LJG15, LBS+15, Ort16]. Game-Theoretic
[JLG+14, LJG15]. Games
[KKKT16, LSP+15]. Gaming [Pia16]. Gap
[Dan17a]. GARCH [Kat17]. Gasp [Bue18].
Gateways [YWJ+16]. Give [Pav18].
geautomatisiert [PdWWS16]. Geld
[Mol13, Cap12]. Geldwahrungen [WLS17].
Geleit [LPW17a, LPW18, LPW17b].
General [BLPB17, Int14, SV16, DB16].
OF15, Sad13, BCJR15, IKY05, Jue04.

Internet
[Boh13, CVM17, DGP17, HL16, Ksh17a, Ksh17b, LL16, LL17a, McMi13, Mic14, PP16, QFLM17, Sye17, XAZY17, XAZY18, ZW17].

Investment
[Ano18i, Pop17a, Sup16, TOM17, KH17]. investor [BT18]. investors [Lew15]. Investment [Ano18i, Pop17a, Sup16, TOM17, KH17].inv. [BT18]. invetsors [Lew15].

Junk [DN93]. jurisdictions [Ano14b]. just [Kay17].

Kademlia [MCD15]. KARMA [VCS03, GH05]. Keep [WM18]. Kernel [WRB15]. Kernel-Level [WRB15]. Key [Bon16b, GS15b, Jue04, Kee16, MSCH15, CSC16, EBSC15, MB+15, Mer80, Per09].

Keyless [EN17]. Keynote [HM16, Spo17].

Kindleberger [G.17]. Know [KD16]. Knowledge [CGGN17, Dan17a, GL16, MGDEK17, MGDEK18]. Kodak [Ano18g, Bue18, Roo18]. KodakCoin [Bue18]. können [KFR18, KFR17].

Kralendijk [VCS03]. Kryptökonomie [Six17]. Kryptowährungen [Ale18].

Kudos [SD16b]. kurz [Pla13].

[ACW17, KKS14, Kha15, SI16]. Methods
[DH17]. Metrology [MBC17a]. Micro
[VMA17, YNS16]. Micro-insurance
[VMA17]. Micro-Pricing [YNS16], Microgrids [BLSD17]. MicroMint
[RS96a, RS96b, vS02]. Micropayment
[BDW17, DW15, RS96b, RS96a]. Micropayments
[Pas15, Riv04]. Microsoft
[Cim18, Tun18]. Middleman [MC13].
Might [Hur16]. Miller [Ano16b, SM-16].
Million [Gre13, Nak18, YWW+18, YWS+18, Osb18].
Millionaires [Ras13, Pop15, Pop16b].
Millions [BBM+18, Seg18]. Mind
[Ano14a, MBC+17b]. Minds [GCL16].
Miner [Eyu15, Ler14b, SGF+17, WL15, CSLD17, Tun18]. Miners
[BBM+18, GCD16, Kan18]. mine [CP17a]. minimal [MAQ99]. Mining
[Abr18, BS16, BHI15, CNG14, De18, DMH18i, Dim17, ES14a, ES14b, Hou14a, Hou16, JLG+14, JZS+17, Ker18a, Ker18b, KKKT16, KJ17, KJ18, Kwo14, KKS+17b, LJG15, LBS+15, LL17b, LL17c, LSP+15, Mat14, MKKS14, MKKs15, Mul14e, RJK+17, Ros11, SCYP17, SSZ17, SBBR17, VTL17, ZWW+17, ZP17a, ZP17b, ZGR17, BHI+14, CEW15, Dev14, Goo18, Hol18, KDF13, OM14, Ole18, Tro15a, VDK16, Nic17]. Minority [Ort16]. Misbehavior [KAR+15]. misfits [Pop15, Pop16b]. Mitigation
[BR17, BL+17, RBS17]. Mixcoin
[BM+14]. Mixed [Mic14]. Mixers
[Cou13]. Mixes [BNM+14, VR15]. Mixing
[BOLL14, RMSK14, RMS17, ZGH+15, ZMH+17, ZMH+18]. MNC [IM16]. Mobile
[Abr18, Gev16, SVL17, GIM16, PF18]. Model
[FOA16, FYK+17, HG15, LS17, LT17, ML14, OE016, OEO16, NAH15, WCX16, ZW15, ZW17, ZDL17a, ZDL17b]. Model-based [LT17]. Modeling
[ADM14b, JL17, CFvdPS15]. Modelling
[Kab17]. models
[Kat17, LW16, PR16, RBM17]. Moderately
Momentum [Lar13]. Monero
[SALY17, FF17]. monete [AF16].
Monetised [Zei16]. monetizing [HDM+14]. Money
[BW17, Ber13, Bhe17c, Dre17s, Gia15, Har17, Nak18, Nis16b, Pan96, VwB14, CSG+18, Fri14, G.17, GC08, Mö13, MBB13b, MBB13a, Nis16a, OC16, Pa18, Pop15, Pop16b, Rot17, Sch14b, SZ13, TT16, TTC16, VC15a, VC15b, PP16].
Money-over-IP [Gia15]. Monitoring
[WXR+16]. monnaie [San14b, TFG17].
Month [De18]. Moonwalk [KZVT17].
Moratorium [De18]. Motivates [BS16].
Motivating [JMK17]. Motivations
[KSCD16]. Move [WREK18]. MtGox
[BR16]. MtGox [DW14]. Mlls [De18].
Multi
[ABL18, RBS17, WLL+13, ZGH+15, LB18].
Multi-domain [RBS17]. multi-fractality
[LB18]. Multi-Party [ZG15, ABL18].
Multi-processor [WLL+13]. Multifaceted
[MMT16b]. Multiparty
[ADMM14, BZ17, CGJ+17, ADMM16].
Multiple [GCL16]. multipurpose [Fir18].
multisignature [ES16]. Musk [Sha17]. My
[MBC+17b]. mysteriously [Osb18a]. Myth
[EBHBL16].
Own [Ano18g]. Owner [Gre13]. Ownership [Dre17h, Dre17w, HP17].

P2P
[ACM15, Ali15, BKP14, Cas12, DPSHJ14, FSW14, HLC+17a, KKM14, Nak08b].
PAMBA [Ler14b]. Paper [AM15, BDLF+16, GvRS17, MCJ17, Sch14b, XJY17, Ano17a, Nak08b, Sad13]. Papers [BBMS14, CSN14, JRB+17, Ker12, BCJR15, CMR+16, GP17b, Jue04]. Paradigm [Mor17c]. Parallel [LSH13, CSLD17]. parliament [Lam89]. Parsing [RDDL17].
Party [ADM14a, FYK+17, HLC17c, ZGH+15, ABL18, Lin17]. Password [IK17, JKKX16]. Password-Protected [J2KX16]. Path [LCL17]. Pattern [RJK+17, TOM17, HLC+17b]. Patterns [EZ17, EZ18].
PAXOS [DLL00, DLL97, GL00, HMS17, Lam01, MBD+12, MPSP17, PLSS17, RST11, Ros03, SS12, SS13, VA15, VB08]. PaxosStore [ZLX+17]. Pay [Ede14, HSBI7d, HSBI8h, ZGR17, BDE+13].
Pay [Dre17e]. Payload [Kan18].
Payment [AH12, CGFH16, DW15, EKK+17, GM17, KG17, Lei16, LZC+17, MMSK+17, MSSH16, MSH17, RLT17, Sch98, Sou13, CJWT17, Kha15].
Payment-Channel [MMSK+17]. Payments [AM15, BSCG+14, Bon16a, CGGN17, Cha83, DNY17, Gev16, Gom16, KAČ12, MPJ+13, SCG+14, Bar18, Gim16, HCW+18, MPJ+16]. PayWord [AH12, RS96a, RS96b]. PCS [KLR+17a, KLR+17b]. Pedigree [NC17b].
Peer [Ano17a, CVM17, CS15, GH05, KN12, NAH16, SOA17, SZJ17, FOA17, Nak08a, NAH15, TF16, VCS03]. Peer-to-Peer [Ano17a, KN12, NAH16, SOA17, CS15, GH05, SZJ17, FOA17, Nak08a, NAH15, TF16, VCS03]. Peers [Dre17g]. Penalizing [RKS15]. Penalties [KB16, KVV16].
Permissioned [EN17, HS16c, Vuk17, ZZJ17]. Personal [LN17]. perspectives [HA15]. Perspective [FSW14, Kir16, LD17, Mor17f, Mor17g, Sr16b, Sve17, CZ16, KFR17]. Perspectives [BMC+15, Dus14, HA15]. pervasive [CJW17]. Petersburg [ACM17c]. Petro [Osb18b]. PGP [WA15]. phenomenal [GC08]. phishing [Pal18]. Picture [Dre17q].
Pieces [Dre17c]. pilfered [Nic17].
Potential [BBBB15, Dre17o, Hil15, HSBI17c, HSBI18g, CXLC18].

Power [Bon14a, DVRM16, LSP15, Cae15, Hol18, Ole18, ÖY17].

Powered [QFLM17]. Powerful [Hil14].

Powering [Bon14a, DVRM16, LSP15, Cae15, Hol18, Ole18, ÖY17].

Presearch [KLL15].

Preserving [ARBK17, ACV17, DCK17, DDX17, KLRI7a, KLRI7b, KMMW17, KUEE17, KUEE18, LS17, LL17b, LL17c, OE016, OEO17, SVL17, WQHX17, DBB15, KUE17].

Pretty [WA15, Ito18, Sha17]. prevent [Lew15]. Preventing [aNOE17].

Prevention [CBWF17, Peo13, SPB17, Kha15]. Price [Bla18, EDS15, GHMO17, Urq17, Edw15, K.13, Lee13, ZDL17a, ZDL17b]. Prices [JL17].

Pricing [DN93, YNS16]. prime [Kin13]. Primecoin [Kin13]. primed [BC16b]. Primitives [GCR16]. Principles [ALP15, Pil16]. Privacy [ACM17d, ARBK17, ADA17, AKR13, ACV17, CBWF17, CVM17, DBB15, DCK17, GANAHH17, GCKG14, Hal17, HJPS16, KLRI7a, KLRI7b, KMMW17, Kat16, KUE17, KUEE17, KUEE18, KJGW17, LDWS17, LST17, MMSK17, M015, NTKS17, OEO16, OEO17, PS16, RMS17, SDT17, SVL17, SSI17b, WBK17, XSC17, YYJ16, A13, Heal13, LL17b, LL17c, Pec16, WQHX17, WLL13, PB17].

Privacy-Enhancing [MO15, Heal13]. Privacy-Preserving [DCK17, KLRI7a, KLRI7b, KMMW17, KUEE17, KUEE18, OE016, OEO17, DBB15, KUE17].

Private [DWC17, ISM17, LSFK17, Ler14b]. Privately [ZC16].

Probabilistic [Pop16a]. probably [Lau11a]. Problem [BK17b, Dre17f, KJ17, KJ18, LSP12, Bra17, Lee13].

Process [CWL17, VCLK17, WXR16, KFR17, KK17b]. Processes [GBPDW17, KL17]. Processing [DN93, Hul17, PP16, SZ15, SZ13].

Processor [BHI15, Sou13, BHI14, WLL13]. Product [LD17, LX17, KFR17]. products [SV16].

Produkt [KFR17, KFR18]. Produkt-Sicht [KFR17, KFR18]. Profit [SCYP17].

Profitable [SVL17]. Profits [VM15].

Programmed [Cou14]. Programming [Cob17]. Programs [TOM17], progress [ÖY17]. Project [DMH18]. Projects [BO17, OOF17]. Promise [Fot17]. Promises [Rou18]. Promising [HRE17]. promptly [Far18b]. Proof [Abr16, Ast16, Bac03, BLP17, BBH13, BLM14, BK17b, Coe08, DFKP13, GKW16, Kam17, KN12, Lar13, LABK17, MHWK16, Poe14, SL15, SK17, Tro15a, Voi11, Vuk16, Dry14, KRD017, Kin13, Shi16, Tro14a, Tro14b, Tro15b, WHJ17, LC04].

Proof-of-Belief [Abr16]. Proof-of-Stake [BPL17, KN12, LABK17, KRD017].

Proof-of-Work [Bac03, BBH13, BK17b, Coe08, Lar13, SL15, Tro15a, Vuk16, Kin13, Shi16, Tro14a, Tro14b, Tro15b, LC04].

Proofs [DBB15, SBRS16]. Propagation [FOA16, OAB17, SOA17, DW13, FOA17]. Properties [Gar17, YK15, DMR18].

Property [Int14, Zei16]. proportion [YV17]. Proposal [GP17a, SI16, HC12].

Proposals [Bra13, EBHBL16, ALMLS16]. Prospect [SCYP17]. Prospects [Hil14].

Protect [JKXX16, RS14]. Protected
Protecting [Dre17k, Dre17n, WLL+13]. Protocol [BP17b, HWDD17].
Protocol [BLP17, Böh13, Coe08, GLK17c, KKS14, LN17, Ler14b, LLW17, LNZ+16, ML15, MSH17, MHWK16, OAB+17, PSS17, SYB14, SALY17, WCL17, ZP17a, BB15, GLK15, Hea13, KRDO17, Ler14a, CFvdPS15, ML17, VG17, ZW15]. Protocols [BK14, LABK17, Mer80, MXC+16, KKS+17a, PLSS17, P’16]. Provably [SDT17].

Greek
Recht [Ano16a] Recognizing [Dre17o]. Reconciliation [OAB+17]. Record [Liu16, SD16b]. recovery [CSC16].
Reinforcing [EN17]. reinvent [Pop15, Pop16b]. Reinventing [Dre17p].
Replication [Vuk16]. Repositories [MGDEK17, MGDEK18]. Representatives [Uni14]. Repudiation [FDT17].
Repurposing [MJS+14]. Reputation [ME17, SD16b]. Requirements [LN17, Lei16, SL18, MAQ99]. Research [BNM17, BART17, BMC+15, GK14, HJ15, LHZ17, NMH16, OZ16, RS17, SDD17, SK15, VEL16, BR17, LMC18, ZFY16, ZFY17, HMS17]. Reshoring [ME17].

[BOLL14, FWB15, HL16, FF17, Voi11].

Resolution [ABL18, NOT15]. Resource [XWW17, vdHEM+17, VCS03].

Resource-constrained [vdHEM+17]. Resources [HRE17, IM16].

Retrieval [MGDEK17, MGDEK18]. Return [Chai81, YK15, BOS15]. returns [Osb18a, VX17]. Revealing [GZH+14]. Reveals [Ker18a]. Reverse [HSB18c, HSB18i]. Review [Ano16b, KS18, OA17, SM–16, SS17a, CSG+18]. Revised [BBMS14, BCJR15, CSN14, GP17b, JRB+17, Ker12, Sar13, CMR+16, Jue04].

Right [FRSU17, Lut17, SK14]. Right-Wing [Lut17]. Rights [KK14].

Ring [KJS16, MPSP17, NMt16, SALLY17].

Ringle [SALY17]. Ringing [BW17].

Ripple [SYB14, Ale18]. rischi [AF16]. Rise [Bec18, Son14, Gei16]. Rises [Vig15].

Risiken [Ker14, san14a]. Rising [Sid14, Pro13, Pro14]. Risk [Kab17, MC13, MBB14, SIV14, YWJ+16, KBS17, San14b].

Risk-rewards [SIDV14]. Risks [AAG17, MHF+16, Peo13, AF16, Ker14, San14a, Un14].

risques [San14b]. Road [FRSU17, PdWWS16, Chr13, Gre13, Zet13]. Roaring [Wol18]. robbery [Gal18].

Roberts [RS14]. robust [MMT16a].

Run [LJG15]. Running [BCM16]. Rush [BBM+18, DMH18i]. Russia [ACM17c].

Satterthwaite [Ano18c]. saved [Bar18]. say [Far18a, G.17]. Says [Ano17e, Gre13, Far18b, Nic17, Sha17].

Scalability [HHPS16, Kar16, PS16, vdHEM+17]. Scalable [BDW17, DW15, LSFK17, Vuk16, RST11].

Scale [Riz16, Far18a, SIV14, SIZ17, WLX17].

Scaling [CDE+16]. scam [Goo18]. Scams [VM15, dre14]. Scan [AGG16]. Scenarios [BBH+13].

Scheme [CGFH16, KLR+17a, KLR+17b, KFN+17, ES16, GGK+14, YCX18]. Schemes [Ano12, GCD16, KT15, RS96b, Lew15, RS96a].

School [BBM+17]. Science [BLBS17, DMH18d, LHJ17, LMC18, Wat17].

Scoring [MBB14]. SCPKI [AB17].

scrambled [Lee13]. Scrapes [Pop17a].

Search [KLL+15, MLM16, MLM15].

Searchable [AAG17]. Seasonality [HQ15].

second [Uni14]. Secret [GP17a, JKKX16]. Sector [HRR17]. Secure [ADMM14, ADMM16, BDWW14, BKT17, DNY17, EL14, FMR+16, FSH+17, FKY+17, HS97, Hal17, HS16d, KFN+17, KMOD17, KB16, KKV16, LNZ+16, PTPR17, PTPR18, SL18, SZ15, SDK+17, Tac17, WLY17.
Secured [LN17]. Securing [GGK+14, LABK17, DS17b].

Securitisation [HSB18c, HSB18i]. Security [ACM17a, ACM17d, A+13, BB15, Bra15b, CC16, Cha85, CSN14, GGN16, Ger16, GKW+16, GCR16, bAHRAK17, bAHRAK18, JRB+17, Kar16, Kat16, Ker12, KJGW17, LDWS17, LKL+14, LDH17, Mor17i, Sadi13, SDT17, Sch98, SIDV14, Son16, Sve17, TSL+17, XWW17, dCdCM14, BBS14, BCJR15, CMR+16, DSM+17, FB17a, GP17b, IKY05, JO13, KA16, KSB17, KS18, Sir16b, Tun18]. Security-critical [dCdCM14]. Seeing [Bog17, Dre17q, Dre17r]. seeking [Far18b]. Sees [Sid14]. Seized [Gre13]. seizures [Ano13b].

Selected [BBMS14, CSN14, JRB+17, Ker12, Sad13, Ano14b, BCJR15, CMR+16, GP17b]. Selection [RLT17]. Self [Cou14, LMH16, MDAP16, MAP16, Nis16b, Pia16]. Self-Contained [Pia16]. Self-Destruction [Cou14]. Self-Fulfillment [Nis16b].

Sensor-Based [ME17]. Sensornetzwerke [TNM17]. September [GANAHHJ17]. sequential [Per09]. server [Ano18f].

Service [BSV17, GvRS17, KET+17, SS17a, SYK17, VTM14, ZZJ17, Bac02a, MAQ99, Bee16].

Service-Oriented [GvRS17]. Services [C GGN17, HRF17, JB17a, Mul14d, d BH C17, SYZ16]. session [Uni14]. Set [OAB+17].

Sets [AC17]. Setting [NTKS17]. Settings [NTKS17]. Seven [Cou16]. SHA [Stel17].

SHA256 [CGN14]. Sharding [GvRS17, LNZ+16]. Share [KKS+17b].

Shared [ALPB17, CWL17, MBD+12]. Shares [ZGR17]. Sharing [BCM16, FHS+17, JKXX16, LSN17, SBH17, XSC+17, SYZ16, VCS03]. Sharks [ZWW+17]. Shipping [JB15]. Shopping [LD17].

Short [BDFL+16, GvRS17, MCJ17, XJY17, Pla13]. Should [Chu15, McM13]. Shows [McM13].

Shuts [Son14]. Sicht [KFR17, KFR18].

Side [ABF+16, AGGM16, BBM+18, KJGW17]. Sidestep [Ano18c]. Signals [RRM18, GS15a].

Signature [EN17, KFN+17, Mer88, SALY17, ZGGT16, GGK+14]. Signatures [Cha83, GGN16, WZQ+17].

Signatures [Cha83, GGN16, WZQ+17]. Signed [HBG16]. Signing [THF17, Lin17]. Silicon [Tay13].

Silk [Chr13, Gre13, Zet13]. Simple [CG16, RAH+15, RS96b, Lam01, RS96a].

Simplicity [O'C17]. Simulating [CCMN17].

Simulation [CSDL17, LW16, NAH15]. Simulations [SZ17]. sincerely [Gal18].

Singing [HLC17c]. Single [IK17]. Sins [Cou16].

Sites [GDP+17]. size [Ano18b, GK17].

Sketching [Vel16]. Sliena [JRB+17].

SmaCC [RDDL17]. Smart [ACW17, AB17, ABB18, ABC17, BMH17, BDFL+16, Blo18, BS17b, BS18, BCM16, But13b, DGHK17, IPSP17, IGRS16, JKS16, Kee16, KUEE17, KUEE18, Qin16, LCO+16, Mor17], NMH16, Oh16, PTPR17, PTPR18, PP16, Pia16, RBL+17, SW17, Swa16, VTL17, XJY17, YW18, ZCC+16, ALP15, Gia15, Lev17, MBN+17, SYZ16].

Smarter [LCO+16]. Smartphone [FMR+16].

Soar [McL13]. Sociable [HBJB14]. Social [CR17, GS15a, HBJB14, KH16, MLM16, OOF+17, RC16, ROH16, Sno18, A+13, LMC18, Lev17, VD17]. Socializing
Kra16a, Six17i, Six17i, Six17j].

DH17, Dre17x, Dre17y, DDX17, GG17, HS16c, KPK17, KMMW17, KRL17, KT15, KKM14, LDWS17, LLW17, LSM17, Liu16, MGDEK17, MGDEK18, àNOE17, Òln16, Ort16, OAB+17, RST11, RM18, RDDL17, SD16a, SYK17, SCAA13, SL17, SDK+17, VM15, WRBI5, WXRI6, WA15, YNS16, YK15, ZW17, ZK16, ZZ17, dKW17, AMLH18, Bee16, Ber13, Cae15, CJW17, Che18, CS15, SI16, SDK+17, VM15, WRBI5, WXRI6, WA15, YNS16, YK15, ZW17, ZK16, ZZ17, dKW17, AMLH18, Bee16, Ber13, Cae15, CJW17, Che18, CS15, SI16, WHJ17, YV17].

usury [TF16]. Utility [KMMW17, Ker18b].

Wonderland [Zet13]. Work
[Ast16, Bac03, BBH+13, BLMR14, BK17b, Coe08, GKW+16, HMS17, Lar13, MJS+14, ÖY17, SLY15, Tro15a, Vuk16, Ano17d, DMH18b, Dry14, Kin13, LC04, RE18, Shi16, Trol4a, Trol4b, Trol5b]. Work-in-progress [ÖY17]. Workings [FNP17, Lev17]. works
[BWZ17, RE18, Six17h]. Workshop
[ACM17b, ACM17d, SDT17, Spo17].
Workshops [BBMS14, CSN14, CMR+16, GANAHHJ17, JRB+17, BCJR15]. World
[Bec18, CGJ+17, Dre17j, ECHL16, Hul17, NCS17, Pav18, Swa15a, Cae15, Fai17, kel15, KH16, TT16, TTC16]. Worlds [Kra16b]. world
[Gal18]. WTSC [JRB+17].

x [vdHEM+17]. XRP [Ale18, Ale18].
XRP-Coin [Ale18].

Yielding [TOM17]. York [IKY05].

Zerocoin [DFKP13, MGGR13]. ZombieCoin [AMLH15, AMLH18]. Zukunft [SKG13]. [AAG17]
Zum [LPW17b, LPW17a, LPW18, FRSU17]. zur [Six17a].

References

Altshuler:2013:SPS

Azouvi:2017:WSI

Abdelraheem:2017:SER

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th></th>
</tr>
</thead>
</table>
Abramo\nwick:2016:APB
Michael Abramowicz. Au\ntonocoin: A proof-of-belief
ISSN 2379-5980. URL http://www.ledgerjournal.org/
ojs/index.php/ledger/article/
view/37.

Achenbach:2017:BIR
Dirk Achenbach, Ingmar
Baumgart, and Jochen Rill.
Die Blockchain im Ram-
penlicht. (German) [The
blockchain in the spot-
light]. Datenschutz und
Datensicherheit — DuD, 41
CODEN ???. ISSN 1614-
0702 (print), 1862-2607 (elec-
springer.com/article/10.
1007/s11623-017-0856-2.

Abrams:2018:OB
Lawrence Abrams. Opera
blocks in-browser Cryp-
tocurrency mining in new
mobile browser versions.
Web blog., January 22,
bleepingcomputer.com/news/
security/opera-blocks-in-
browser-cryptocurrency-
mapping-in-new-mobile-browser-
versions/.

Awan:2017:BTA
Malik Khurram Awan and
Agostino Cortesi. Blockchain
transaction analysis using
dominant sets. In Compu-
ter Information Systems
and Industrial Management,
pages 229–239. Springer-Ver-
lag, Berlin, Germany / Hei-
delberg, Germany / London,
UK / etc., 2017. URL http://
link.springer.com/chapter/1
10.1007/978-3-319-69105-
6_20.

Augot:2017:UC
Daniel Augot, Hervé Cha-
banne, Thomas Chenier,
William George, and Lau-
rent Lambert. A user-
centric system for verified
identities on the Bitcoin
blockchain. In Data Privacy
Management, Cryptocurren-
cies and Blockchain Technol-
y, Lecture Notes in Compu-
ter Science, pages 390–
407. Springer-Verlag, Berlin,
Germany / Heidelberg, Ger-
many / London, UK / etc.,
2017. ISBN 3-319-67816-
7. URL http://link.
springer.com/article/10.
1007/978-3-319-67816-0_
22.

Ali:2015:BPUa
Syed Taha Ali, Dylan Clarke,
and Patrick McCorry. Bit-
coin: Perils of an unregu-
lated global P2P currency.
In Security Protocols XXIII,
pages 283–293. Springer-Ver-

REFERENCES

Amato:2016:PPB

Ateniese:2014:CB

Androulaki:2014:HTA

Abbasi:2017:VVI

REFERENCES

Adams:2017:BGD

Adams:2018:BGD

Androulaki:2013:EUP

Alexander:2018:RXE

Ali:2015:BPUs

Anceaume:2016:SAB

Ateniese:2017:RBX

Andreessen:2014:WBM

Anonymous:2012:VCS

Anonymous:2013:LC

Anonymous:2013:MBT

Anonymous:2014:MYW

Anonymous:2014:RBS

REFERENCES

Anonymous:2018:CMC

Anonymous:2018:GST

Anonymous:2018:IPA

Anonymous:2018:KIO

Anonymous:2018:UUR

Anonymous:2018:VCD

Nijeholt:2017:DFP

Antonopoulos:2015:MB

Andreas M. Antonopoulos. Mastering Bitcoin. O’Reilly & Associates, Inc., 103a Morris Street, Sebastopol, CA 95472, USA, Tel: +1 707 829 0515,
Antonia:2016:BD

[Ant16]

Aro:2012:BSF

[AR12]

Ar:2016:F

[AST16]

AS:2017:BTF

[ATD17]

Norul Suhaliana bt Abd Halim, Md Arafatur Rahman, Saiful...
Azad, and Muhammad No-
man Kabir. Blockchain se-
curity hole: Issues and solu-
tions. In Recent Trends in
Information and Communi-
cation Technology. Springer-
Verlag, Berlin, Germany /
Heidelberg, Germany / Lon-
don, UK / etc., 2018. URL
http://link.springer.com/
chapter/10.1007/978-3-319-
59427-9_76.

Bakker:2009:MHT

Arno Bakker. Merkle hash
torrent extension. Web doc-
ument., August 2009. URL
http://www.bittorrent.org/
beps/bep_0030.html.

Barski:2014:BB

Conrad Barski. Bitcoin for
the befuddled. No Starch
Press, San Francisco, CA,
USA, 2014. ISBN 1-59327-
573-0. ???. pp. LCCN ???.

Bariviera:2017:IBR

Aurelio F. Bariviera. The inef-
ciciency of Bitcoin revis-
ited: a dynamic approach.
Economics Letters, 161:1–4,
2017. CODEN ECLED.
ISSN 0165-1765 (print), 1873-
7374 (electronic).

Barth:2018:CMS

Bradley Barth. ComboJack
malware steals digital pay-
ments, cryptocurrency, by
modifying info saved to clip-
boards. SC Magazine Web
story., March 6, 2018. URL
https://www.scmagazine.
com/combojack-malware-steals-
digital-payments-cryptocurrency-
by-modifying-info-saved-to-clipboards/article/749086/.

Beck:2017:BTB

Prof. Dr. Roman Beck,
Prof. Dr. Michel Avital,
Prof. Dr. Matti Rossi, and
Prof. Dr. Jason Bennett
Thatcher. Blockchain tech-
nology in business and in-
formation systems research.
Business & Information Sys-
tems Engineering, 59(6):381–
384, November 2017. CO-
DEN ???. ISSN 1867-
0202 (print), 2363-7005 (elec-
springer.com/article/10.
1007/s12599-017-0505-1.

Bohr:2014:WUB

J. Bohr and M. Bashir. Who
uses Bitcoin? An exploration
of the Bitcoin community. In
2014 Twelfth Annual Inter-
national Conference on Pri-
cacy, Security and Trust,
pages 94–101. IEEE Computer So-
ciety Press, 1109 Spring Street,
Suite 300, Silver Spring, MD
20910, USA, July 2014.

Barguil:2015:SIS

João M. M. Barguil and
Paulo S. L. M. Barreto. Se-
curity issues in Sarkar’s e-
cash protocol. Information
Processing Letters, 115(11):
CODEN IFPLAT. ISSN

Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. Bitter to better: How to make Bitcoin a better currency. In Keromytis [Ker12], pages 399–414. CODEN LCNSDO. ISBN 3-642-32946-2. ISSN 0302-
Boyd:2016:FCP

Brito:2016:BPP

Bohme:2015:BET

Brenner:2015:FCD

Bogner:2016:DSA

Bamert:2013:SPB

[Tobias Bamert, Christian Decker, Lennart Elsen, Roger Wattenhofer, and Samuel Welten. Have a snack, pay with Bitcoins. In IEEE,
REFERENCES

Bhargavan:2016:FVS

Babaioff:2011:BRB

Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar.

Babaioff:2012:BRB

Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar.

Battista:2015:BVF

Berg:2017:BEB

Chris Berg, Sinclair Davidson, and Jason Potts.

Berg:2017:BIT

Chris Berg, Sinclair Davidson, and Jason Potts.

REFERENCES

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>Title</th>
<th>Author(s)</th>
<th>Venue</th>
<th>Publisher</th>
<th>Pages</th>
<th>ISBN</th>
<th>URL</th>
</tr>
</thead>
</table>

Notes:
- CODEN IEMIDZ.
- ISSN 0272-1732 (print), 1937-4143 (electronic).

[BKP14] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogatov.
REFERENCES

Biryukov:2017:FSD

[BKT17]

[Biryukov, Khovratovich, and Tikhomirov 2017]

[BLNN17a]

Buccafurri:2017:OLB

Buccafurri:2017:TAB

Joseph Bonneau. EthIKS: Using Ethereum to audit a
REFERENCES

REFERENCES

Benchoufi:2017:BTI

Bra13

Bra15a

Bra17

BRS17

Brü17

BS15

A. Beikverdi and J. Song. Trend of centralization in Bitcoin’s distributed network. In *2015 IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, ...
REFERENCES

Intelligence, Networking and Parallel/Distributed Computing (SNPD), pages 1–6. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, June 2015.

Bag:2016:YAN

Bistarelli:2017:GFB

Bocek:2017:SCT

Bocek:2018:SCB

Bashir:2016:WMP

Ben-Sasson:2014:ZDA

REFERENCES

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2014.

[Bessani:2017:BFT]

[Buterin:2013:DMH]

[Buterin:2013:ENG]

[Burniske:2018:CI]

[Buerkle:2018:KLG]

[BW17]

[Bandelj:2017:MTE]
REFERENCES

Cankaya:2016:IBE

Castellanos:2017:CGO

Camenisch:2017:PUS

Croman:2016:SDB

Clark:2012:CCD
REFERENCES

Courtois:2014:CBT

Courtois:2015:DBM

Cheah:2015:SBB

Catalini:2016:SSE

Chatzopoulos:2016:LAH

Campanelli:2017:ZKC
Matteo Campanelli, Rosario...

Choudhuri:2017:FUW

Chaum:1981:UEM

Chaum:1983:BSU

Chaum:1985:SIT

CGN14

Chen:2018:TCA

REFERENCES

Chirgwin:2013:ABB

Christin:2013:TSR

Churchill:2015:WSW

Cimpanu:2018:MSM

Chen:2017:BBP

Chavez:2016:AHA

Carlsten:2016:IBB

[CKWN16] Miles Carlsten, Harry Kalodner, S. Matthew Weinberg,

Combs:2014:BD

Chase:2016:TOA

Clark:2016:FCD

Coblenz:2017:OSB

Coelho:2008:ACE

REFERENCES

ISBN 3-540-68164-7. URL
http://www.hashcash.org/
papers/merkle-proof.pdf;
https://link.springer.
com/chapter/10.1007/978-
3-540-68164-9_6.

[Cou13]
Olivier Coutu. Decentral-
ized mixers in Bitcoin. Web
video., 2013. URL https://
www.youtube.com/watch?v=
6hc8qaR_Fok.

[Cou14]
Nicolas T. Courtois. On the
longest chain rule and pro-
grammed self-destruction of
crypto currencies. arXiv.org,
1405.0534; http://
http://arxiv.org/abs/1405.0534;
http://
dblp.org/rec/bib/journals/
corr/Courtois14.

[Cou16]
Nicolas T. Courtois. Features
or bugs: The seven sins of
current Bitcoin. In Banking
Beyond Banks and Money,
pages 97–120. Springer-Ver-
lag, Berlin, Germany / Hei-
delberg, Germany / London,
UK / etc., 2016. ISBN 3-319-
springer.com/chapter/10.
1007/978-3-319-42448-4.

[CP17a]
S. Chow and M. E. Peck.
The Bitcoin mines of China.
IEEE Spectrum, 54(10):46–
53, October 2017. CO-
DEN IEESAM. ISSN 0018-
9235 (print), 1939-9340 (elec-
tronic).

[CR16]
Mark Coeckelbergh and Wes-
sel Reijers. Cryptocurrencies
as narrative technologies.
ACM SIGCAS Computers
and Society, 45(3):172–
178, January 2016. CO-
DEN CMSCD3. ISSN 0095-
2737 (print), 2167-3055 (elec-
acm.org/10.1145/2874239.
2874264.

Zhongqi Cheng, Tim Schmidt, Guantao Liu, and Rainer Doomer. Thread- and data-level parallel simulation in
REFERENCES

SystemC, a Bitcoin miner case study. In IEEE, editor, 2017 IEEE International High Level Design Validation and Test Workshop (HLDVT), 5-6 October 2017, Santa Cruz, CA, USA, pages 74-81. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, October 2017.

Christin:2014:FCD

Cusumano:2014:BE

Cusumano:2014:TSM

Campbell-Verduyn:2018:BBC

Conoscenti:2017:PPP

Cen:2017:IBP

Yuanyuan Cen, Hui Wang, and Xuefeng Li. Improving business process interop-

REFERENCES

10.1007/978-1-4842-2535-6.

REFERENCES

[Dickerson:2017:ACS] Thomas Dickerson, Paul Gazzillo, Maurice Herlihy,

Durand:2017:DWT

Deck:2015:MBE

Divita:2017:ABM

Dubey:2016:WHP

DiPierro:2017:WB

Dimitri:2017:BMC

Dixon:2017:BMB

Dorri:2017:TOB

DeKruijff:2017:UBU

DePrisco:1997:RP

DePrisco:2000:RPA

Dhillon:2018:BD
Vikram Dhillon, David Metcalf, and Max Hooper. Be-

REFERENCES

DiFrancescoMaesa:2017:BBA

DiFrancescoMaesa:2018:DDA

Dwork:1993:PPC

Daulay:2017:RAA

Dmitrienko:2014:OPB

Dmitrienko:2017:SWA

dree12:2014:LMB

Drescher:2017:AT

Drescher:2017:BB

Drescher:2017:BPT

Drescher:2017:CTH
REFERENCES

REFERENCES

REFERENCES

(Drescher:2017:STD)

(Drescher:2017:SGF)

(Drescher:2017:TLA)

(Drescher:2017:UNO)

(Drescher:2017:UB)

(Drescher:2017:UDS)

(Drescher:2017:VAT)
Daniel Drescher. Verifying and adding transactions. In *Blockchain Basics* [Dre17b], pages 153–164. ISBN 1-4842-2603-8 (print), 1-4842-2604-6 (e-
REFERENCES

Ducklin:2013:ARN
Paul Ducklin. Android random number flaw implicated in Bitcoin thefts. Web news story., August 12, 2013. URL http://nakedsecurity.sophos.com/2013/08/12/android-random-number-flaw-implicated-in-bitcoin-thefts/. From the story: “It looks as though, at least on occasion, the Java-based PRNG on Android will repeat its pseudo-random sequences, thanks to a flaw in Android’s so-called SecureRandom Java class.”.

Duskin:2014:VCB

Delphin-Vidal:2016:FNB
Rafael Delphin-Vidal and Guillermon

Deck:2013:IPB

Deck:2014:BTM

Deck:2015:FSP
Christian Decker and Roger Wattenhofer. A fast and

DeFilippi:2018:BLR

Dinh:2017:BFA

Dubovitskaya:2017:HBC

Dziembowski:2015:IC

Ekblaw:2016:BMD

Eskandari:2015:FLU

Shayan Eskandari, David Barrera, Elizabeth Stobert,

Eskandari:2017:DDA

Easwaran:2015:BDI

Edwards:2015:FBP

ISSN 1750-9637 (print), 1750-9645 (electronic).

Evans-Greenwood:2017:DLL

Engelmann:2017:TEA

ElDefrawy:2014:FDC

Egelund-Müller:2017:AEF

Emmadi:2017:RIP

Ermilov:2017:ABA
REFERENCES

Eyal:2014:HDL
Ittay Eyal and Emin Gün Sirer. How to disincen-
tivize large Bitcoin mining pools. Web blog, June
18, 2014. URL http://hackingdistributed.com/
2014/06/18/how-to-disincentivize-large-bitcoin-mining-pools/.[Eva14]

Eyal:2014:MEB
Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable.
5_28.[Eya15]

ElBansarkhani:2016:ELB

Eberhardt:2017:BIC

Evans:2014:EAB
David S. Evans. Economic aspects of Bitcoin and other decentralized public-ledger currency platforms. Working Pa-
per 685, Coase-Sandor Institute for Law and Economics, ?????, April 2014.[Eva15]

Eyal:2015:MD

Eyal:2017:BTT
Ittay Eyal. Blockchain technology: Transforming libertarian cryptocurrency dreams to finance and banking real-

[Epishkina:2017:DCH]

[Epishkina:2018:DCH]

[Fairley:2017:BWF]

[Farivar:2018:BTS]

[Farivar:2018:CWW]

[Fraser:2017:SFS]
J. G. Fraser and A. Bouridane. Have the security flaws surrounding Bitcoin affected the currency’s value? In 2017 Seventh International Conference on Emerging Security Technologies (EST), pages 50–55. IEEE Computer Society Press, 1109 Spring Street,

REFERENCES

REFERENCES

Fox:2017:B

Filtz:2017:EBA

Fraisca:2016:DSI

Franco:2014:UBC

Frisby:2014:BFM

Fridgen:2017:EDI
REFERENCES

Fuenfrock:2016:HAS

Feld:2014:ADB

Florian:2015:SRP

Furuta:2017:TES

G:2017:BFM

Gadriwala:2017:APC

Gkaniatsou:2017:LLA

Gallagher:2018:IHR

Garay:2017:BPB

Garcia-Banuelos:2017:OEB

García-Barriocanal:2017:DMB

Guo:2008:VMS

Gervais:2014:PPB

Gao:2016:TMM

Giechaskiel:2016:BSP

[Ilias Giechaskiel, Cas Cremers, and Kasper B. Ras-
REFERENCES

Ghosh:2017:ACO

Grcn:2017:BLD

Geissinger:2016:VBG

Gerstl:2016:LBB

Geva:2016:MPB
Goyal:2017:OCI

Goldfeder:2014:SBW

Gennaro:2016:TOD

Grimm:2017:ARB

Gandal:2017:PMB
Neil Gandal, J. T. Hamrick, Tyler Moore, and Tali Oberman. Price manipulation in the Bitcoin ecosystem. Report, Tel Aviv University and The Univer-
REFERENCES

Giaglis:2015:MIB

Gimigliano:2016:BMP

Gervais:2014:BDC

Garay:2015:BBP

Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone protocol: analysis and applications. In Oswald and Fischlin [OF15],
REFERENCES

Miraje Gentilal, Paulo Mar-
REFERENCES

[0x0]

[GP17b] [Goo18] Dan Goodin. New botnet infects cryptocurrency mining computers, replaces wallet address: Attacker has generated about $2,000 in digital coin so far in a scam that remains active. ArsTechnica Web site.,
REFERENCES

REFERENCES

1007/978-3-319-70972-7_22.

Glaser:2014:BAC

HenriquezHerrera:2015:CNP

Halpin:2017:NDI

Hart:2017:MHE

Hurlburt:2014:BBC

Heilman:2016:BSC

Hernandez:2014:BUL

Hileman:2014:BBP

Hileman:2015:BMP

Hirai:2017:DEV

Herrera-Joancomarti:2015:RCB

Herrera-Joancomarti:2016:PBT

Hari:2016:IBD

REFERENCES

REFERENCES

5980 (print), 1943-586X (electronic).

REFERENCES

REFERENCES

Halaburda:2016:BB

Hardjono:2016:CBC

Heitzenrater:2016:CES

Hofmann:2017:CWC

Hofmann:2017:DHD
Erik Hofmann, Urs Magnus Strewe, and Nicola Bosia. Discussion — how does the full potential of blockchain technology in supply chain finance look like? In Supply Chain Finance and Blockchain Technology: the Case of Re-

Hofmann:2017:IWP

Hofmann:2018:BWBa

Hofmann:2018:BIWb

Hofmann:2018:BIWa

Hofmann:2018:BIWc

Erik Hofmann, Urs Magnus Strewe, and Nicola Bosia. Background III — what is blockchain technology? In Supply Chain Finance and Blockchain Technology: the
REFERENCES

REFERENCES

[Idelberger16] Florian Idelberger, Guido Governatori, Régis Riveret,

REFERENCES

URL http://doi.acm.org/10.1145/3120459.3120472.

Idalino:2017:PVA

Ito:2018:BIS

[Ito18] Joi Ito. The big ICO swindle: Many cryptocurrency speculators are banking on the theory that someone dumber than them will buy their tokens for more than they paid. That’s a pretty good bet ... until it isn’t. Wired, ??(??):??, January 2, 2018. CODEN WREDEN. ISSN 1059-1028 (print), 1078-3148 (electronic). URL https://www.wired.com/story/ico-cryptocurrency-irresponsibility/.

Jaag:2017:BTC

Jabbar:2017:GBI

Jabbar:2018:IGI

Joy:2017:PTA

[JCG17] Joshua Joy, Greg Cusack, and Mario Gerla. Poster: Time analysis of the feasibility of vehicular block-

[JM17] Caroline Jaffe, Cristina Mata, and Sepandar Kamvar. Motivating urban cycling through a blockchain-based financial

[Jayasinghe:2014:OFE]

[JO13]

[Jurb:2020:FCI]

[Judmayer:2017:BCI]

[Juels:2004:FCI]

Judmayer:2016:CCCa

Judmayer:2016:CCCb

Jin:2017:BBB

Judmayer:2017:MMC

K:2013:BCC

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Details</th>
</tr>
</thead>
</table>
REFERENCES

Kate:2016:ICN

Katsiampa:2017:VEB

Kayser:2017:BJW

Kumaresan:2014:HUB

Kumaresan:2016:ASC

Kausdal:2017:EBS

Kethineni:2017:UBD

Sesha Kethineni, Ying Cao, and Cassandra Dodge. Use of Bitcoin in Darknet markets: Examining facilitative factors on Bitcoin-related crimes. American Journal of Criminal Justice, ??(??):265–275, ???. 2017. CODEN ????? ISSN 1066-2316 (print), 1936-1351 (elec-
REFERENCES

Kondor:2014:IBB

Kow:2016:HKW

Kroll:2013:EBM

Keromytis:2012:FCD

Kee16

Kelly:2015:BBB

REFERENCES

F3 2012. URL http://www.springerlink.com/content/978-3-642-32946-3.

Kerscher:2014:BFR

Kerner:2018:CRE

Kerner:2018:WUE

[116]

Klems:2017:TIB

Kaga:2017:SPS

Korschinowski:2017:BTW

Sven Korschinowski, Maximilian Forster, and Luca Reulecke. Blockchain — wie Banken die Technologie aus Prozess- und Produkt-
Korschinowski:2018:BWB

Kleineberg:2016:SBC

Kumar:2017:TAM

Khalil:2017:RRB

Ki:2017:BAI

Khan:2015:BPM

REFERENCES

King:2013:PCP

Kim:2017:BBS

Kim:2018:BBS

Krombholz:2017:OSC

Kawase:2017:TCT

Kuzuno:2017:BEA

REFERENCES

Kiayias:2016:BMG

Koshy:2014:AAB

Kitahara:2014:MDR

Kovalchuk:2017:ASA

Kwon:2017:DBM

REFERENCES

[KLR+17b] Nesrine Kaaniche, Maryline Laurent, Pierre-Olivier Rocher, Christophe Kiennert, and Joaquin Garcia-Alfaro. PCS, a privacy-preserving certification scheme. In
REFERENCES

Kumaresan:2015:HUB

Karvelas:2017:UOR

King:2012:PPP

REFERENCES

Paul Krugman. Bubble, bub-

[Knirsch:2017:PPS] Fabian Knirsch, Andreas Unterweger, Günther Eibl, and Dominik Engel. Privacy-preserving smart grid tar-

Knirsch:2018:PPS

Kunnapas:2016:BSC

Kumaresan:2016:ISC

Kwon:2014:TCM

Khazraee:2017:MNO

Li:2017:SPS

Wenting Li, Sébastien Andrieu, Jens-Matthias Bohli, and Ghassan Karame. Securing proof-of-stake blockchain protocols. In Garcia-Alfaro et al. [GANAHHJ17], pages 297–315. ISBN 3-
REFERENCES

125

Lamport:1989:PTP

Lamport:2001:PMS

Larimer:2013:MMH

Laskowski:2017:BEP

Laurie:2011:DCP

Laurie:2011:EDC

Laurence:2017:B

Lahmiri:2018:CRM

Lewenberg:2015:BMP

Laurie:2004:PWP

Liao:2017:EPS

Luu:2016:MSC

Leung:2017:UBO

Lundbaek:2017:CGB

Leif-Nissen Lundbaek, Andrea Callia D’Iddio, and Michael Huth. Centrally governed blockchains: Op-

REFERENCES

Liu:2016:MRS

Laszka:2015:WBM

Liao:2017:IBF

Lim:2014:ACS

Lee:2016:BBS

Lee:2017:BBS
REFERENCES

[LL17b] Zhizhou Li and Ten H. Lai.

[LL17c] Zhizhou Li and Ten H. Lai.

REFERENCES

[LN17] Benjamin Leiding and Alex Norta. Mapping requirements specifications into a formalized blockchain-enabled authentication protocol for secured personal identity assurance. In Future Data and Security En-
REFERENCES

Luu:2016:SSP

Linnhoff-Popien:2018:B

Linnhoff-Popien:2018:BNB

Lipton:2018:BBN

Linnhoff-Popien:2018:DMU

[LPSZ18] Claudia Linnhoff-Popien, Ralf Schneider, and Michael Zaddach, editors. Digital Marketplaces Unleashed. Spring-
REFERENCES

Jun Lin, Zhiqi Shen, and Chunyan Miao. Using blockchain technology to build trust in sharing LoRaWAN IoT. In Proceedings of the 2Nd International
REFERENCES

- Lerner:2015:AUQ

- Lamp:1982:BGP
 Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals problem. ACM Transactions on Programming Languages and Systems, 4(3):382–401, July 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the crypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any $n \geq t > 0$, where n is the total number of processes and t is the number of faulty processes.

- Luu:2015:PSG

- Litke:2014:CSM

- Liang:2017:PBB
 Xueping Liang, Sachin Shetty, Deepak Tosh, Charles Kanhoua, Kevin Kwiat, and Laurent Njilla. ProvChain: A blockchain-based data provenance architecture in cloud environment with enhanced privacy and availability. In Proceedings of the 17th IEEE/ACM Inter-
REFERENCES

7. Liu, H. Liu, H. Zhao, W. Chen, and X. Cao,

Malte Möser and Rainer Böhme. Trends, tips, tolls: A

Miller:2017:ZCL

Moser:2014:TRS

Moser:2013:IML

REFERENCES

[MCJ17] Dmitry Meshkov, Alexander Chepurnoy, and Marc Jansen. Short paper: Revisiting difficulty control for blockchain systems. In Garcia-Alfaro et al. [GANAHHJ17], pages...
REFERENCES

URL http://link.springer.com/chapter/10.1007/978-3-319-67816-0_25.

REFERENCES

Moser:2016:BC

Mago:2016:BHB

Moura:2017:BVE

Mytis-Gkomet:2017:NKR

Mytis-Gkomet:2018:NKR

Miers:2013:ZAD

Maull:2017:DLT
[Roger Maull, Phil Godsiiff, Catherine Mulligan, Alan Brown, and Beth Kewell.

Michael Miller. The ultimate
REFERENCES

Miller:2014:ABC

Mann:2015:TFA

Mann:2017:TFA

Matta:2015:PIW
M. Matta, I. Lunesu, and M. Marchesi. The predictor impact of Web search media on Bitcoin trading volumes. In 2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), volume 01, pages 620–626. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, November 2015.

Matta:2016:BMP

Mirzayi:2017:BSA
REFERENCES

Suite 300, Silver Spring, MD 20910, USA, October 2017.

REFERENCES

Meiklejohn:2015:PEO

Mohan:2017:TBD

Molleken:2013:BGB

Morabito:2017:BES

Morabito:2017:BG

Morabito:2017:BPC

Morabito:2017:BP

[Vincenzo Morabito. Blockchain practices. In Business Innovation through Blockchain: the B3 Perspective [Mor17f],
REFERENCES

Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M. Voelker, and...

Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. Refund attacks on Bitcoin’s payment protocol. In Grossklags and Preneel [GP17b], pages 581–599. ISBN 3-662-54970-0. ISSN 0302-9743. LCCN
Muftic:2016:BCC

Mullan:2014:BC

Mullan:2014:BD

Mullan:2014:BMS

Mullan:2014:BM

REFERENCES

REFERENCES

Notheisen:2017:TRW

Nofer:2017:B

Neudecker:2017:CNI

Neilson:2016:BFT

Nichols:2017:NDH

Nishibe:2016:EMG

Makoto Nishibe. *The enigma of money: gold, central ban-

REFERENCES

REFERENCES

Orrell:2016:EM

OConnor:2017:SNL

Ouaddah:2017:TNP

Oswald:2015:ACE

Olnes:2017:BTS

Svein Ølnes and Arild Jansen.

Ober:2013:SAB

Olenick:2018:LCM

Olnes:2016:BBE

ODwyer:2014:BME

Okamoto:1991:UEC

OLeary:2017:EAB

Kevin O’Leary, Philip O’Reilly, Joseph Feller, Rob Glea-

REFERENCES

[PB17] Paulina Pesch and Rainer Böhme. Datenschutz trotz
Pomp:2016:BOW

Pec:2013:BAR

Pec:2015:BNG

Peck:2016:BCB

PBCFAM:2013:PRA

Percival:2009:SKD

Pixley:2018:CJM

Portnoff:2017:BBU

Rebecca S. Portnoff, Danny Yuxiing Huang, Periwinkle Doerfler, Sadia Afroz, and Damon McCoy. Backpage and Bitcoin: Uncovering hu-

REFERENCES

[Gareth W. Peters and Efstathios Panayi. Understanding modern banking ledgers through blockchain technologies: Future of transaction processing and smart contracts on the Internet of
REFERENCES

Porru:2017:BOS

Pinzon:2016:DSA

Province:2013:BRB

Province:2014:BRB

Prinz:2018:B

Perez-Sola:2016:PBT

Pass:2017:FFB

Pirlea:2018:MBC

Pass:2017:ABP

Patil:2017:FBB

Patil:2018:FBB

Pierrot:2017:MBE

Cécile Pierrot and Benjamin Wesolowski. Malleabil-
REFERENCES

Qi:2017:BPI

Rajput:2015:SYE

Raskin:2013:MBM

Rodrigues:2017:BBA

Ruckeshauser:2017:BGD

Rodrigues:2017:MDD

REFERENCES

Ro:2013:BTH

Ro:2013:ABP

Rosenfeld:2011:ABP

Rothstein:2017:EMS

REFERENCES

Roubini:2018:BBP

Rahman:2017:SPR

Raju:2017:CDB

Remy:2018:TBU

Ron:2013:QAF

Ron:2014:HDD

Dorit Ron and Adi Shamir. How did dread pirate Roberts acquire and protect his Bitcoin wealth? In Christin and Safavi-Naini [CSN14], pages
REFERENCES

[Sansonetti:2014:BOR] Riccardo Sansonetti. Le Bit-
REFERENCES

169

coin: opportunités et risques d’une monnaie virtuelle.
(French) [Bitcoin: opportunities and risk of a virtual currency].
La vie économique (Berne), 87(9):44–46, 2014.
ISSN 1011-386X.

Schrijvers:2017:ICB

Shafagh:2017:TBB

Sengupta:2016:RBB

Schoenmakers:1998:SAE

Berry Schoenmakers. Secu-
REFERENCES

Schindbach:2013:BWR

Schatt:2014:VBG

Schlichter:2014:PMC

Salimitari:2017:PMB

Samaniego:2016:UBP

Sharples:2016:BKD
Mike Sharples and John Domingue. The blockchain and kudos: A distributed system for educational record, reputation and reward. In Adaptive and Adaptable Learning, pages 490–496. Spring-
REFERENCES

[Sha17] Simon Sharwood. Elon Musk says he’s not Satoshi Nakamoto and is pretty rubbish at Bitcoin: He had some once, but lost them down the back of the sofa. The Register, 11/29/2017. URL http://www.theregister.co.uk/2017/11/29/elon_musk_says_he_is_not_satoshi_nakamoto/.

[Shi16] Ning Shi. A new proof-

REFERENCES

REFERENCES

Sapuric:2014:BVI

Sas:2015:ETB

Sas:2017:DTE

Sorge:2012:BEE

[SKG12] Christoph Sorge and Artus Krohn-Grimberghe. Bitcoin: Eine erste Einordnung. (German) [Bitcoin: A first classification]. Datenschutz und...
REFERENCES

Sorge:2013:BZZ

Stefansson:2017:SSU

Singh:2018:CRA

Sleiman:2015:BMD

SM-D:2016:BRB

Saxena:2014:IAB

REFERENCES

[Song:2016:FVC] Dawn Song. Formal verification for computer security:

Southurst:2013:BPP

Solat:2017:BAZ

Sadeghi:2017:BT

Sporny:2017:LDW

Sprankel:2013:TBD

Santos:2012:TPH
Nuno Santos and André Schiper. Tuning Paxos for high-throughput with batching and pipelining. Lecture Notes in Computer Science,
REFERENCES

Santos:2013:OPB [SS13]

Seebacher:2017:BTE [SS17a]

Sutton:2017:BEP [SS17b]

Sapirshtein:2017:OSM [SSZ17]

Stevens:2017:WBS [Ste17]

Stommel:2017:BOG [Sto17]

Streng:2018:BCM [Str18]

Marco Streng. Blockchain — the case for market adop-
tion of the distributed ledger.

Subramanian:2017:DBB

Subramanian:2018:DBB

Supra:2016:IHC

Shrestha:2016:TDD

Svetinovic:2017:BEI

Spathoulas:2017:PPP

Sillaber:2017:LCS

Christian Sillaber and Bernhard Waltl. Life cycle of smart contracts in blockchain ecosystems. Datenschutz und
REFERENCES

REFERENCES

Sompolinsky:2013:ABT

Shah:2014:BRB

Sompolinsky:2015:SHR

Sompolinsky:2017:BUI

Sompolinsky:2018:BUI

Szabo:2008:BGU

Stoykov:2017:VFB

REFERENCES

URL http://doi.acm.org/10.1145/3155016.3155020.

[Tackmann:2017:SET]

[Taylor:2013:BAB]

[Taylor:2017:EBH]

[Treleaven:2017:BTF]

[Third:2017:LDI]

[Tomescu:2017:CEN]
REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TTC16]</td>
<td>Don Tapscott, Alex Tapscott, and Jeff Cummings. Blockchain revolution: [how the technology behind Bitcoin is changing money, business, and the world]. Brilliance Audio, Grand Haven, MI, USA, 2016. ISBN 1-5113-5766-5. LCCN RZC 5626. 11 audio discs (14 hr., 17 min.).</td>
</tr>
</tbody>
</table>
| [Tun18] | Liam Tung. Windows security: Microsoft fights mas-
sive cryptocoin miner malware outbreak: Microsoft has blocked a malware outbreak that could have earned big bucks for one criminal group. ZDNet Web story, March 8, 2018. URL http://www.zdnet.com/article/windows-security-microsoft-fights-massive-cryptocoin-miner-malware-outbreak/.

REFERENCES

VanDerHorst:2017:PMI

Vishnumurthy:2003:KSE

Viswam:2017:EBF

vanderHeijden:2017:BSR

Vilim:2016:ABM

Velasco:2016:SBE

[Vel16] Pablo R. Velasco. Sketching
REFERENCES

Vo:1991:FHP

Venkatakrishnan:2017:DRBa

Venkatakrishnan:2017:DRBb

Vallois:2017:BTC

Vandervort:2015:IDB

Viana:2016:TTI

Vigna:2015:BCT

Vasek:2015:TNF

Vo:2017:BBD

Voight:2011:PDR

Valenta:2015:BBA

Vranken:2017:SBB

vanSomeren:2002:PPI

REFERENCES

[WLS+16] Dimaz Ankaa Wijaya, Joseph K. Liu, Ron Steinfeld, Shifeng Sun, and Xinyi Huang.

Qi Wang, Xiangxue Li, and Yu Yu. Anonymity for Bitcoin from secure escrow address. *IEEE Access*, ??(??):1, ???. 2017. ISSN 2169-3536.

Wood:2014:ESD

Wörner:2016:DRT

Wang:2017:PTP

Wilmer:2016:NE

Watkins:2015:UNT

Wilkes:2018:ECH

[Xu:2018:BBS] Quanqing Xu, Khin Mi Mi Aung, Yongqing Zhu, and Khai Leong Yong. A blockchain-based storage system for data analytics in

Xu:2016:BIA

Xing:2017:PBT

Yang:2018:BBP

Yeo:2015:GBN

Yermack:2017:CGB

Yang:2015:BMR

S. Y. Yang and J. Kim. Bitcoin market return and volatility forecasting using
REFERENCES

[Zhu:2017:AIF] Yechen Zhu, David Dickinson, and Jianjun Li. Analy-

Zhu:2017:EAI

Zeilinger:2016:DAM

Zetter:2013:HFT

Zhao:2016:OBI

Zhao:2017:EOB

Zhao:2015:GBI

Chen Zhao and Yong Guan. A graph-based investigation of Bitcoin transactions. In Advances in Digital Forensics XI, pages 79–95. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 2015. ISBN 3-319-24123-
REFERENCES

0. URL http://link.springer.com/chapter/10.1007/978-3-319-24123-4_5.

Zhu:2016:IIS

Ziegeldorf:2015:CSM

Zolotavkin:2017:ICP

Zheng:2017:PHA

Ziegeldorf:2017:SAD

Ziegeldorf:2018:SAD

Zohar:2015:BUH

Zohar:2017:RTD

Zhang:2017:PPB

Zhang:2017:IEB

Zhang:2017:IEB

REFERENCES

Zhou:2016:DBA

Zamyatin:2017:SFS

Zhu:2016:AO

Zupan:2017:HDP