A Complete Bibliography of Publications in
Canadian Journal of Statistics = Revue canadienne de statistique

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

13 October 2017
Version 1.12

Title word cross-reference

$29.75 [265]. $29.80 [464]. $2m−p [1149]. 2 × 2 [693]. 2 × k [1135]. 305 [411].
$31.50 [238]. $31.95 [368]. $33.95 [306]. $34.20 [149]. $34.50 [150, 466].
$35.00 [185, 369]. $36.95 [267]. $37.00 [201]. $38.95 [459]. $39.00 [461].
3 × 3 [1303]. $4.50 [204, 284]. $40.00 [222]. $40.35 [238]. $41.50 [289].
$49.75 [189]. 5 [33]. $5.70 [290]. $50.00 [222]. $50.95 [267]. $8.00
\$8.50 \ [166]. \ \$8.75 \ [105]. \ \$9.00 \ [104]. \ \$9.95 \ [187, 200, 102]. \\
< \infty \ [264]. \ 2 \ [56]. \ 3 \ [56]. \ A \ [1163]. \ AR(1) \ [1021]. \ AR(p) \ [1104]. \ \bar{E}^2 \ [496]. \ \bar{x} \ [793]. \ C \ [632, 10]. \ D \ [1137, 1616, 1411, 1523, 1163]. \ D((0, \infty)^9, E) \ [192]. \\
D(\text{IR}) \ [529]. \ E \ [905]. \ \epsilon \ [455]. \ F \ [547, 1, 22, 989]. \ \gamma \ [178]. \ H \ [1784, 2]. \ K \ [1473, 95, 452, 1550]. \ L \ [557, 244, 1136, 999, 515]. \ L_0 \ [1596, 1619]. \ L_1 \ [769, 1282, 1136, 999, 515]. \ L_2 \ [769]. \ LR \ [21]. \ M \ [969, 717, 1104, 800, 372, 762, 1201, 835, 464, 931, 32, 1]. \ M/G/1 \ [1447]. \ \mathcal{E} f^c \ [877]. \ n \ [1007]. \ n < p \ [1605]. \ P \ [538, 1426, 753]. \ PA \ [99]. \ Q \ [1589]. \ R \ [935, 399, 575, 757, 727]. \ r \times c \ [751]. \ S \ [1128, 935]. \ s^2 \ [935]. \ \sigma \ [935]. \\
T \ [49, 94, 1067, 426]. \ \tau \ [642]. \ U \ [357]. \ Vec \ [143]. \ vech \ [143]. \\
- \text{confidence} \ [178]. \ -\text{consistency} \ [1282]. \ -\text{contamination} \ [455]. \ -\text{content} \ [727]. \ -\text{day} \ [411]. \ -\text{dependence} \ [32]. \\
-\text{distribution} \ [547, 426]. \ -\text{errors} \ [769]. \ -\text{estimate} \ [244]. \ -\text{estimates} \ [235, 835, 687]. \ -\text{estimateurs} \ [557]. \ -\text{estimation} \ [1169, 929]. \ -\text{estimators} \ [557, 909, 717, 1128, 1104, 800, 372, 762, 399, 999, 1201, 642, 988, 406, 575, 931]. \\
-\text{factor} \ [99]. \ -\text{Function} \ [1784]. \ -\text{learning} \ [1589]. \ -\text{optimal} \ [905, 1137, 1616, 1411, 1163]. \ -\text{sample} \ [95]. \ -\text{sequences} \ [632]. \ -\text{simplex} \ [727]. \ -\text{statistic} \ [1]. \ -\text{statistics} \ [357, 2]. \ -\text{test} \ [94]. \ -\text{tests} \ [989]. \ -\text{Tightness} \ [529]. \ -\text{tuples} \ [452]. \ -\text{values} \ [1426]. \ -\text{variates} \ [22]. \ -\text{vine} \ [1523]. \\

/Commentaries \ [571]. \ /Réplique \ [572].
0-8218-1907-0 [311]. 0-8247-6515-X [105]. 0-8247-6653-9 [265].
0-8247-6774-8 [185]. 0-8247-6800-0 [150]. 0-8247-6836-1 [169].
0-8247-6944-9 [189]. 0-8403-2287-9 [290]. 0-8405-0412-8 [186].
0-8405-0413-6 [184]. 0-8405-0425-X [152]. 0-85226-158-6 [284].
0-85274-330-0 [188]. 0-87872-099-5 [123]. 0-88275-477-7 [147].
0-8884-017-X [307]. 0-88864-074-9 [285]. 0-89116-573-8 [522].
0-904425-03-7 [104]. 0-920788-04-1 [222]. 0076 [334]. 0076-5333 [240].

4 [239, 168, 466].

5 [217, 123, 135, 461, 369]. 511E [200]. 5333 [240].

6 [187, 203, 520, 184]. 65th [1838].

7 [166, 237, 104, 147, 218]. 77 [1768, 148].

8 [186, 185, 522]. 8. [267]. '81 [462]. 8837 [310, 311].

93e [721]. 93g [745]. 97f [897]. 99f [1013].

acidity [268, 492]. Acknowledgement [1258, 1343, 1434, 1477, 1575, 1609, 1656, 1683, 1715, 1748].

Additive [1687, 1487, 953, 930, 677, 1591, 1652, 1369, 1362, 142, 1697].
addivity [1547, 1737]. adequacy [83]. adjusted
[1695, 1584, 1212, 1677, 1415, 1702]. Adjusting [613, 1331, 1721].
Adjustment [1817, 449, 484, 1376, 483, 308, 1469]. Adjustments
[747, 922, 869]. Adler [200]. administrative [1123, 488]. administratives
[488]. addmissibility [686, 625, 120, 180]. admissible [415]. admission [781].
admissions [431]. admitting [277]. Adolf [102]. Advanced [368]. aerosols
[491]. affected [1152, 1268, 1367]. affected-sib-pair [1367]. affecting [296].
affine [1207]. affine-invariant [1207]. Afriat [217]. after [1463]. against
age-period-cohort [786]. agent [1090]. agglomerative [138]. aggregate
[330, 342]. aggregation [50, 1678]. aggressive [1453]. agreement
[964, 813, 941, 1412]. agricoles [477]. agricultural [943, 477]. AIC [1518].
AIDS [626]. Air [781, 784, 609, 613, 782, 610, 780, 783]. Akademia [521].
aléatoires [59, 110, 98]. Alexander [460]. algebra
[1823, 1785, 188, 1802, 460]. algorithm [956, 1010, 1751]. algorithms
[1416, 1635, 138]. aliased [1474, 1629]. aliasing [292, 177]. aligned
[172, 374]. aligned-rank [374]. allocation [700]. Allowance [472]. Allyn
[1396, 711, 1054, 895, 1346, 751, 1472, 496]. always [685]. Alzheimer [1144].
amber [491]. American [168, 310, 311]. Ames [740, 742]. among
[1473, 1041, 63, 917, 673, 1040]. amplitude [1028]. Amsterdam [289].
aerobic [518, 635, 634]. Analyse [582, 1325, 1042, 723, 1028]. Analyses
[1046, 812, 331, 1116, 1539, 1661]. analysing [1440]. Analysis
[1045, 1765, 611, 1812, 1767, 1043, 1152, 782, 1153, 1793, 1389, 103, 1044].
1769, 1390, 1843, 674, 1807, 1815, 314, 955, 846, 1817, 1324, 1809, 1154, 1674,
1256, 237, 238, 258, 1150, 1322, 914, 215, 612, 698, 1470, 1304, 250, 699, 613,
1375, 363, 1223, 1499, 794, 1437, 1124, 1128, 659, 1486, 983, 1386, 723, 1360,
1758, 1569, 1069, 371, 1041, 1151, 417, 1367, 1408, 708, 626, 313, 1521, 1387,
883, 524, 874, 1554, 1659, 1572, 285, 1082, 423, 1570, 1533, 72, 919, 1548,
1148, 1594, 1167, 1233, 1028, 289, 334, 1200, 1386, 1763, 55, 982]. analysis
[1352, 918, 801, 81, 889, 789, 1626, 469, 1657, 783, 1727, 284, 619, 709, 1593,
1528, 748, 67, 936, 493, 1281, 1040, 908, 1381, 173, 1311, 1096, 467, 181, 496,
1700, 1011, 990, 1252, 1571, 1271, 1688, 1583, 954, 468, 582, 1325, 1326, 1042,
122, 147, 240, 308]. analytic [831]. Analyzing [137, 350, 1215, 1607, 1009].
Anatole [150]. ancillarity [349, 754]. Anderson [147]. André [1446, 1445].
annotated [832]. announcements [1686]. annual [165]. ANOVA [1237].
antifiducial [326]. any [118, 33]. Apercu [450]. Application
[54, 482, 1747, 879, 257, 1558, 987, 844, 1486, 1143, 1752, 477, 1098, 229, 1484,
556, 1346, 251, 356, 1731, 1537, 1100, 1655, 11, 431, 1640, 1727, 586, 510, 1593,
483, 1323, 472, 1196, 16, 1465, 1475, 1549, 1629, 54, 547, 471, 626, 792, 483, 80].
Applications [1764, 1269, 692, 1798, 1784, 1800, 1801, 1809, 907, 732, 134,

approche [1261].

8

1543, 1241, 1617, 297, 44, 440, 1657, 1507, 1392, 959, 697]. case-cohort
1543, 1241]. case-control [1239, 1742, 1617, 1657]. Case-study [697]. cases
[1139, 471]. Cassel [121]. Catalogue [200]. Categorical
[103, 174, 1769, 1809, 240, 1459, 1398, 1437, 875, 1263, 990]. categories
Censored [1352, 669, 1625, 757, 1251, 1613, 404, 1176, 354, 645, 1235, 1535,
333, 1493, 1580, 899, 231, 1253, 1755, 1712, 303, 1252, 1415, 1611]. Censoring
[425, 1653, 1202, 1276, 661, 615, 1235, 505, 1234, 1657, 1487, 1691, 1406].
censorship [690, 537, 959]. Census [489]. central [552, 430, 1622].
centrality [433]. centre [1760]. century [1835]. Certain
[92, 12, 497, 57, 979, 447, 448, 254]. Chaînes [1782, 186]. chain
[1668, 342, 1209, 910]. Chains
[1824, 1826, 1841, 257, 715, 1408, 111, 920, 520, 520]. challenges [1014].
Chambers [122]. Champs [110]. Change
[1471, 86, 115, 1130, 976, 1244, 1670, 1719, 824, 1601, 1056, 857, 1727].
Change-over [86]. change-point [1130, 976, 1719, 1601, 857]. changepoint
[1456, 718, 513]. changing [1074]. characteristic
[588, 692, 816, 81, 426, 1469]. characteristics [612, 1325, 972].
Characterization [841, 6, 28, 705, 725, 114, 38, 377, 304, 144].
Characterizations [1772, 1235, 1234, 142, 280, 166]. charts [793, 935, 738].
Chaubey [462]. Chebyshev [1671]. checking [1420, 1406]. chef
[1181, 1248, 1292]. chemicals [741, 739]. chemistry [583, 581]. Chen [1245].
chi [1668, 830, 577, 641, 1135, 751, 397]. chi-bar-square [641].
chi-bar-squared [577]. chi-square [1668, 830, 751, 397]. child
[1441, 905, 553, 562]. choix [723]. chromosome [1153]. chronologiques
[482, 348]. cigarettes [194]. circle [1009, 207]. circles [618, 1597]. circular
[577, 640, 983, 1735, 1178, 1472, 44]. circular-cone [640]. CJS [1531, 1587].
Claes [121]. Claes-Magnus [121]. class
[653, 721, 277, 978, 949, 454, 552, 1305, 1603, 873, 1082, 71, 132, 1298, 792,
966, 988, 1580, 751, 336, 563, 109, 1190, 1444, 209, 379, 199, 1544, 172, 1609].
Classement [488]. Classes [276, 788, 657, 1233, 1]. classical [421, 1348].
Classification
[1339, 59, 984, 657, 92, 10, 37, 1605, 31, 694, 1527, 1321, 1684, 191, 1433, 1044].
Classifications [1796, 1412, 221]. Classified [103, 1769, 1545]. classifier
[322]. clear [1149]. climate [1670]. clinical
[655, 1240, 73, 157, 700, 1371, 1760, 1583, 1628]. Closed [1494, 1391].
Closed-form [1494]. closeness [805, 576]. cluster
[1344, 1567, 1025, 1207, 310, 1704, 1808, 834, 1606, 1729, 1482].
cluster-randomized [1482]. cluster-sample [1606]. clustered
[1098, 1538, 1356, 1658, 1033, 954]. Clustering
[62, 1747, 138, 1372, 1476, 1684, 1509]. clusters [1057, 1105, 875, 1513]. Co
Consistency [1187, 1603, 691, 1113, 1130, 1282, 645, 17, 802]. Consistent [550, 1719, 439, 1218, 1353, 1525, 1355, 118, 568, 756, 648, 746, 389, 515, 648, 746].
Contre-exemple [633]. Contribution [50]. control [1239, 1742, 793, 935, 1744, 1617, 362, 1657, 1507, 774, 738]. controlled [559].
copula-based [1678]. copula-graphic [1276]. copulas [1642, 405, 926, 1500, 1551, 1431, 1634, 1601, 1734, 1614, 1273]. Copules [405, 926]. cores [944].
Corner [612, 518, 662, 611, 609, 613, 635, 610, 634, 673, 622]. Corner/Le [612, 662, 611, 609, 613, 610, 673]. Corners [580]. Cornwall [311].
Correlated [619, 1567, 1267, 246, 1082, 824, 1514, 47, 1207, 1148, 834, 1377].
Correlation [1079, 1311, 1729, 653, 721, 814, 411, 879, 1561, 547, 1355, 1184, 131, 228, 112, 378, 447, 1413, 974, 548, 1626, 1303, 1353, 1728, 325, 69, 62, 540, 102].
correlations [141, 619, 394, 856, 1246, 1247]. corresponding [868].
Corrigenda [1140, 1105, 1497]. corrigenda/corrections [1497].
counterexample [695, 633]. Counting [1800, 239, 628, 1537, 564].
Course [1818, 220, 30]. courses [248]. covariance [921, 449, 18, 259, 766, 1630, 82, 726, 1186, 1566, 448, 591, 693, 1728, 1641].
covariances [600]. Covariate [1702, 1757, 1584, 1081, 795, 1062, 1507, 1491, 1721, 1698, 1469, 1582, 1700].
Covariate-adjusted [1702, 1584]. Covariates [1130, 1230, 1124, 1664, 1430, 1652, 873, 1488, 1145, 1111, 789, 1422, 1404, 1515, 1214, 1464, 1638, 1702].
difficult [951]. difficulties [195]. Diffusion [1825, 1160, 563, 520].
equivalence [1429, 1505]. Equivariant [449, 591, 373]. Erdos [388, 1175].

Ergodic [1057]. Ergodicity [1074]. Erik [121]. Errata [542, 623, 543, 1247].

Erratum [1597, 1497, 1444, 1553]. error [646]. Error
[1008, 1336, 630, 778, 1428, 949, 516, 906, 1360, 1335, 1090, 246, 646, 1585,
1605, 835, 356, 1718, 816, 1243, 594, 1421, 512, 1051, 1539, 774, 128, 834,
1502, 1689, 161, 804, 1357, 1753, 1698, 670, 1582, 1700, 1236, 1089].

Error-components [816]. error-in-variables [630, 778]. errors

Espaces [98]. Essén [244, 357]. estimate [1250, 244, 127, 646, 498, 1639, 587, 1562].
estimated [935, 1376, 1147, 1394, 544, 1507]. estimates [530, 396, 83, 1282, 833, 235, 412, 741, 869, 657, 517, 645, 554, 478, 275, 835, 1592,
439, 735, 719, 494, 687, 1391, 481, 829, 798, 1070, 647, 119, 682, 790, 227, 337].
estimateur [768, 932, 646]. estimateurs [557, 595, 544]. Estimating
[479, 1057, 1105, 825, 589, 1725, 637, 1605, 576, 1177, 1233, 1655, 1754, 487,
797, 596, 1482, 360, 20, 1064, 1111, 1076, 1610, 701, 1589, 320, 1560, 1540,
634, 1006, 1215, 1503, 806, 1682]. Estimation
[1001, 502, 1250, 176, 59, 961, 740, 590, 892, 1059, 636, 739, 803, 1136, 1468,
824, 85, 556, 805, 1780, 703, 72, 1262, 245, 734, 1524, 342, 1306, 66, 627, 136,
1388, 297, 1033, 1760, 41, 1811, 638, 1691, 1121, 1168, 834, 161, 1464, 1611,
1183, 669, 921, 1022, 247, 616, 1265, 1668, 1084, 1451, 767, 769, 1144, 1244,
449, 1284, 1300, 822, 1333, 1050, 1083, 817, 1251, 1197, 1296, 1525, 1561, 987,
1238, 1359, 1633, 680, 787, 34, 1348, 1454, 156, 550, 1680, 260, 1504, 927, 773,
307, 1039, 1072, 651, 729, 1176, 477, 945, 615, 1600]. estimation
[1228, 628, 956, 1210, 1193, 815, 1007, 131, 395, 1568, 862, 1735, 179, 366, 873,
1288, 1585, 330, 4, 1283, 1498, 1058, 1106, 539, 992, 1087, 1623, 604, 1548,
1370, 1596, 1630, 1637, 712, 1701, 1204, 1718, 1263, 858, 816, 1023, 1100, 1218,
1489, 155, 1312, 1241, 419, 756, 1163, 928, 1012, 1013, 1566, 25, 1555, 918,
972, 971, 1051, 648, 746, 1745, 1309, 1512, 785, 1644, 1750, 1734, 857, 1008,
1086, 191, 527, 8, 376, 1169, 1450, 868, 317, 570, 115, 128, 1604, 1461, 958,
estimation [1755, 64, 1712, 763, 929, 1196, 1114, 1457, 1736, 1650, 1638,
1753, 1159, 515, 1465, 1171, 1142, 1317, 1433, 1519, 1619, 1271, 1631, 1188,
465, 724, 411, 1001, 504, 892, 902, 204]. estimator
[768, 277, 444, 932, 502, 1187, 1276, 686, 1003, 794, 1319, 820, 1627, 660, 1664,
1410, 120, 986, 505, 568, 666, 503, 691, 376, 706, 525, 679]. Estimators
[302, 300, 497, 976, 939, 1139, 930, 479, 978, 511, 557, 263, 1441, 625, 516, 969,
549, 717, 1128, 1397, 1143, 253, 1104, 800, 372, 762, 1409, 595, 399, 1603,
1652, 867, 283, 1663, 175, 574, 999, 1201, 415, 642, 594, 988, 714, 1679, 160,
693, 70, 159, 373, 544, 1132, 606, 510, 199, 394, 84, 1502, 934, 915, 993, 389,
406, 455, 575, 180, 17, 931, 802, 1113]. estimés [544]. etiological [162].
evaluations [1549]. event [1277, 955, 1535, 1337, 1544, 1582, 1607]. events
[747, 481]. evidence [1546]. Exact

analyses. Natural logarithm transformations are useful when the response variable has a positive skew or when the data are bounded at one end. For example, in a study of blood pressure, the natural logarithm of the systolic blood pressure might be analyzed using a linear model. In this case, the natural logarithm is applied to the response variable to stabilize the variance and to make the distribution of the residuals approximately normal.

In summary, the natural logarithm provides a convenient way to transform data that are not normally distributed, allowing for the use of linear models in situations where the data are skewed or bounded. This transformation can help improve the fit of the model and ensure that the assumptions of linearity and normality are met. However, it is important to interpret the results in the original scale, as the natural logarithm changes the units of the response variable.
Nonnormality [997]. Nonparametric
[1376]. Nonrobustness [1020]. nonstandard [1104]. nonstationary
[555, 923, 1236]. norm [1059, 734]. Normal
[1772, 1810, 166, 1747, 449, 261, 1486, 1722, 1069, 189, 57, 595, 10, 18, 578, 807, 539, 992, 26, 415, 242, 236, 991, 1413, 974, 376, 731, 839, 970, 101, 1070, 806, 180, 1424, 931, 1518]. Normalité [939]. normality
[1816, 311]. normals [511]. Norman
[310]. normed [843]. North
[42, 1467, 185, 152, 1448]. NS
[81, 1037, 21, 82, 1, 89, 514, 533]. null-distribution [1037]. Number
[1740, 1723, 1732, 257, 775, 893, 961, 1057, 1105, 1673, 1233, 487, 1182, 1245, 1149, 1629]. numbers [414, 529, 580, 1168]. Numerical
[1785, 699, 188, 1802, 1837]. numerics [874]. nutritional
[1539]. O
[151]. Objective
[1360, 1361, 1570, 1626]. objects [657, 1452]. observables [327]. observation
[1554, 1027, 1536, 1701, 1537, 198, 231, 540, 1607, 390]. observational
[1589, 1754]. observations
[930, 957, 34, 1069, 296, 534, 131, 333, 594, 347, 774, 1311, 1700, 1611]. observed
[1124, 858, 1590]. observer [1615]. Obtaining [83]. occasion
[1838]. occupation [825]. occupation-time [825]. occurred [747]. Occurrence
[519, 1831]. occurrences [257]. occurring [513]. October
[1133]. omitting [1062]. On-line [774, 738]. One
[762, 1637, 362, 607, 1097, 1361, 1027, 228, 435, 38, 882, 1435, 683, 1624, 496, 5]. one-day [1435]. One-sided
[362, 607, 1097, 435, 1624]. One-stage [1637]. One-step
[762]. one-way
[1361, 882, 496]. Online
[1340, 1314, 1329, 1364]. Ontario
[1416, 1504, 424, 1194, 1540, 1217, 1368, 876, 1216, 1456, 321, 319, 905, 1137, 1264, 772, 1058, 1106, 1616, 1411, 1589, 1186, 1163, 915, 990]. Optimality
[1048]. penalty [1596, 1619]. Articles [1259, 1327, 1279, 1363, 1313]. Comments [571]. Comptes
[290]. Le [612, 662, 611, 609, 613, 610, 673]. Lettre [1202, 1245]. Préface
performance [1475]. period [1533, 786]. periodic [351, 1300]. périodiques [1300]. periods [35]. permutation [1426, 1653, 1576, 251, 1463].
[1227, 1804, 200]. Perturbation [794]. Peter [150]. pH [494]. phase
[1083, 1651, 1113]. Philosophy [134]. Phoebeastria [1392]. phoques [1042].
pivots [570]. planar [1574]. Planning [1528, 1629]. Plans
[1810, 189, 528, 738, 1452]. Platek [369]. plural [476]. plus [1269]. Pocket
[1774, 105]. point [1130, 1265, 1344, 976, 137, 760, 1448, 1075, 1581, 1568, 1719, 824, 1000, 1601, 1750, 431, 857, 1401, 352, 1727, 1690]. points
[321, 113, 727, 1061, 310, 1808, 1056]. Poisson
[50]. polls [1261]. pollutants [784, 610]. pollution
[612, 609, 613, 781, 782, 780, 783]. polygon [973]. polykay [33]. polynômes
[1109]. polynomial [321, 1334, 1129, 1317, 1571]. polynomials [1103, 971].
pomme [1325]. pomonelle [1325]. pontueux [1075]. pondérée [830]. Pooling
population-based [1412, 1556]. populations
[1473, 10, 807, 31, 1222, 1233, 236, 1257, 1391, 586, 376, 130, 254, 1661].
positional [1336]. Positive [1500, 1600, 961, 503, 1275]. positive-part [503].
positively [579]. positives [822]. positivity [436]. possible
Post-selection [1750]. post-stratified [1615]. postage [465]. posterior
[618, 1597, 296, 707, 1346, 716, 617, 1289, 1220]. posttest [1694]. potency
[740, 741, 739, 742]. potential [1392]. pour
[714, 1022, 1026, 264, 605, 1325, 1075, 977, 1042]. poverty [1489]. Power
[1821, 49, 28, 1379, 183, 577, 107, 37, 94, 213, 304, 428, 288].
power-divergence [1379]. power-series [304, 428]. powerful [1472].
rates/Frais [1280, 1328, 1290, 1365]. Rathie [202]. ratio
[1389, 1390, 1385, 1391, 1464]. receiver [1469]. recessive [1617].
reciprocity [60]. recognition [401]. Reconstructing [1056, 644].
record-breaking [815]. recovery [1390]. recurrent [955, 1337, 1544, 1582].
recurrent-event [955]. Recursive [156, 517, 530, 1524]. rédacteur
[1181, 1248, 1292]. rédaction [1202, 1245]. rédigées [152]. Reduce
[1530, 1127]. reduced [770]. Reducing [1667]. reduction
[1090, 1622, 1594, 735, 1108, 1413, 1008, 596, 1261, 1261]. Reed [220].
reexamination [326]. Referee
[1683, 1258, 1343, 1434, 1477, 1575, 1609, 1656, 1715, 1748]. Reference [970].
Refining [403]. reflected [731]. reflecting [76]. reflection [1283].
[1035, 1003, 1192, 178, 948, 443, 424, 807, 1621]. registration [1031].
Regression
regression [1190, 1444, 1422, 191, 1541, 1017, 850, 736, 1205, 154, 1169, 1179, 1593, 195, 1487, 1517, 732, 1691, 871, 834, 84, 1720, 678, 1381, 1689, 173, 1134, 1406, 1462, 1516, 1515, 303, 1669, 704, 337, 1743, 1721, 1159, 923, 1249, 1465, 1297, 1377, 1598, 1746, 1191, 1433, 1737, 1415, 1693, 954, 1261, 544, 220].
Regression-spline [669]. regression-type [850]. regressions [705, 1443].
regressors [1051]. regular [1558, 1608, 495]. regularity [365].
regularization [1751]. regulators [809, 811]. Reidel [134]. reinforced
[1751]. Reinhold [308]. reject [1339]. Rejoinder
[1158, 225, 410, 386, 887, 1120, 888, 913]. Rejoinders [1066]. related
[1322, 1375, 823, 1722, 569, 873, 252, 61, 682]. relating [421]. relation
[1438, 558]. Relations [407, 526]. relationship [782, 1129]. relationships
[177]. Relative [324, 1543, 1299, 979, 1493, 1556]. relaxation [1121].
Release [1322, 1326]. relevance [867]. relevant [893]. Reliability
[204, 1811, 874, 498, 281, 972, 158, 553, 1528]. remark [400]. remarks [331].
remedies [1293]. Remerciements
remote [477].

36

surveys, [1459, 1499, 1331, 1592, 864, 199, 162, 1675, 1213, 1315]. Survival
survival/sacrifice [1034]. survivor [1555]. survivors [1124]. switch
[1577]. switching [36, 1618]. Symmetric [1728, 516, 1059, 627, 974, 43].
symmetrical [532, 38, 99]. symmetrically [1311]. symmetry
[1203, 1088, 848, 1178, 1634]. symposium [165]. synthesis [1093]. System
[1814, 266, 965, 148].

T [147, 203]. table [608, 1269, 751, 93, 483]. tableau [483]. Tables
[168, 310, 311, 702, 1774, 1810, 1775, 1135, 100, 105, 189].
tail [976, 1309, 832]. tailed [1440]. taille [1028, 488]. tails [1335].
tightness [529]. Time [1812, 760, 1807,
Volume [1280, 1290, 1328, 1365, 1740, 1723, 1732, 168, 310, 311, 286, 105, 151, 134, 265, 222]. voting [975]. vraisemblance [714].

Volume [1280, 1290, 1328, 1365, 1740, 1723, 1732, 168, 310, 311, 286, 105, 151, 134, 265, 222]. voting [975]. vraisemblance [714].
References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kadiyala:1977:ERE

Sharma:1977:CDC

Becus:1977:RRP

Deo:1977:DAM

Pederzoli:1977:NND

Wani:1977:CCI

Nair:1977:FPG

Govindaraju:1977:CNC

REFERENCES

Janardan:1978:ACW

Srivenkataramana:1978:COS

Kern:1978:BTL

Deo:1978:RSH

Hamilton:1978:CSC

Venables:1978:IEV

Khan:1978:NAH

REFERENCES

Rizvi:1979:NMC

Koziol:1979:CMT

Giri:1979:LMT

Patil:1979:AMD

Henderson:1979:OMS

Weerahandi:1979:CGM

Gupta:1979:GFT

REFERENCES

REFERENCES

Anonymous:1979:BRB

Maag:1980:FHM

Tardif:1980:ADC

VanDerMerwe:1980:MRA

Feuerverger:1980:CIS

Kadiyala:1980:SFS

Chikkagoudar:1980:EME

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[228] Agnes M. Herzberg and S. Huda. A comparison of equally spaced designs with different correlation structures in one and more dimensions.

Johnson:1981:SSP

Haff:1981:FIW

Takada:1981:UTL

Forst:1981:MCS

Dufour:1982:NTT

Wilmesmeier:1982:CRS

Cheng:1982:JE

REFERENCES

REFERENCES

REFERENCES

[276] H. S. F. Wong. Classes inférieures de suites gaussiennes asymptotiquement indépendantes. (French) [Subclasses of Gaussian asymptotically-

Allen:1983:APM

Baksalary:1983:EBB

Hudon:1983:TUM

Seshadri:1983:IGD

Padgett:1983:SBL

Solomon:1983:ADS

Johnson:1983:SPE

REFERENCES

REFERENCES

de statistique, 11(2):175–177, June 1983. ISSN 0319-5724 (print), 1708-945X (electronic).

REFERENCES

REFERENCES

Boulanger:1983:UALb

Boulanger:1983:ELB

Whitmore:1983:RMC

Wani:1983:CIP

Bondar:1983:UOE

Young:1983:BRC

Fellegi:1983:BRC

REFERENCES

Watts:1983:BRC

Anonymous:1983:BRCb

MacKay:1983:BRBa

MacKay:1983:BRBb

REFERENCES

Bellhouse:1984:ROD

Mukhopadhyay:1984:EDL

Bellhouse:1984:ESD

Joe:1984:CTL

Tomkins:1984:MGP

Koziol:1984:REG

Srivastava:1984:DCC

Aly:1985:QNP

Liski:1985:PRM

Helmers:1985:BEB

Whitmore:1985:IPC

Moore:1985:MIM

Zwiers:1985:EPC

Whitmore:1985:SAE

Anonymous:1985:SEC

Genest:1985:RGP

Fraser:1985:D

Genest:1985:R

Tardif:1985:LAD

Huse:1985:IER

Weiss:1985:LRC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wasserman:1986:CCL

Sutradhar:1986:CFM

Pukelsheim:1986:ATM

Wani:1986:SPS

Zografos:1986:DAC

Huffer:1986:SIC

Rubin:1987:BBP

REFERENCES

REFERENCES

REFERENCES

Dabrowski:1987:IPP

Wiens:1987:RWC

Imhof:1987:HAS

Latour:1987:SER

Willmot:1987:PLZ

Reinsel:1987:BRB

Styan:1987:BRBa

REFERENCES

[472] Román Viveros and David A. Sprott. Allowance for skewness in maximum-likelihood estimation with application to the location-scale

REFERENCES

statistique, 16(S1):47–55, August 1988. ISSN 0319-5724 (print), 1708-945X (electronic).

REFERENCES

REFERENCES

115

Switzer:1988:AHD

Oehlert:1988:IED

Weerahandi:1988:BNS

Wright:1988:OWA

Baksalary:1988:CEB

Johnson:1988:LDB

Dagum:1988:NLO

REFERENCES

statistique, 16(2):117–131, June 1988. ISSN 0319-5724 (print), 1708-945X (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fang:1989:IPS

Sprott:1990:IEL

Barnard:1990:DSC

Sprott:1990:RDS

Balanda:1990:KS

Ki:1990:MSE

REFERENCES

REFERENCES

[583] Bing Li and A. John Petkau. A regression model with random effects for beer chemistry and Canadians’ beer preferences.

[586] Xiquan Shi, C. F. J. Wu, and Jiahua Chen. Weak and strong representations for quantile processes from finite populations with application to simulation size in resampling inference.

REFERENCES

Sivaganesan:1993:RBA

Solow:1993:MWQ

Cheah:1993:SAE

Lindsay:1993:UEI

Nakamura:1993:UEP

Adjengue:1993:MVP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Joe:1994:MEV

Lesperance:1994:MMM

Oluyede:1994:MCS

Ramsay:1994:VHA

Routledge:1994:PSS

Zhu:1994:IAS

Choulakian:1994:CMS

Wiens:1994:BIR

Victoria-Feser:1994:RMP

Kokonendji:1994:LTN

Iwashita:1994:ADF

Bedrick:1994:MLE

Abdous:1994:CLE

Beirlant:1994:ANE

Bull:1994:ERL

Meloche:1994:BIR

Herzberg:1994:OED

Farrell:1994:PAO

Srivastava:1994:LCP

Chen:1994:GLR

Brunner:1994:NBM

REFERENCES

Anonymous:1994:AAb

Bolfarine:1994:AFP

Krewski:1994:I

McNeney:1994:OPR

Burnett:1994:APE

Corey:1994:ARB

Schwartz:1994:NSA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Albert:1996:BSL

Cabilio:1996:STS

Chen:1996:ETG

Shah:1996:APG

Jorgensen:1996:SSM

Csorgo:1996:WAQ

Fung:1996:CTT

REFERENCES

REFERENCES

REFERENCES

Hines:1997:FGL

Sitter:1997:ODL

Tang:1997:MCS

Yamada:1997:SDI

Benn:1997:IMP

ElHimdi:1997:TNT

Spinelli:1997:CMT

REFERENCES

REFERENCES

Papandonatos:1997:LAC

Akritas:1997:PTG

Fougeres:1997:EDU

Chen:1997:TNC

Hooper:1997:CIF

Gombay:1997:LRU

Anonymous:1997:AA

REFERENCES

Chen:1997:BCT

Dette:1997:ODR

Chen:1997:GLB

Seifu:1997:ABU

Tibshirani:1997:CTM

Genest:1998:E

Roberts:1998:MCM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hampel:1998:STD

Anonymous:1998:AAb

Berhane:1998:GAM

Zidek:1998:ISM

Lawless:1998:AIG

Gu:1998:SAA

Chen:1998:PLR

REFERENCES

REFERENCES

REFERENCES

Wegkamp:1999:QUB

Genest:1999:PST

McCullagh:1999:QSS

Mcdermott:1999:GOC

Bedrick:1999:ENN

Li:1999:TLF

Knight:1999:AER

Ng:1999:RIB

Berlinet:1999:EDC

Yang:1999:BCS

Carolan:1999:ABG

Daniels:1999:PVH

Hall:1999:MCA

Small:1999:MRE

REFERENCES

[1013] Ömer Öztürk and Thomas P. Hettmansperger. Addendum to: “Simultaneous robust estimation of location and scale parameters: a

REFERENCES

[1026] Mohammadine Belbachir. Lois limitées pour les statistiques d’ordre dans le cas non identiquement distribué. (French) [Limited laws for order statistics in the nonidentically distributed case]. *Canadian Journal of
REFERENCES

Osvaldo Marrero. L’analyse de la variation saisonnière quand l’amplitude et la taille sont faibles. (French) [The analysis of seasonal variation when the amplitude and the size are low]. Canadian Journal of Statistics = Revue canadienne de statistique, 27(4):875–882, December 1999. ISSN 0319-5724 (print), 1708-945X (electronic).

Andreas I. Sashegyi, K. Stephen Brown, and Patrick J. Farrell. Estimation in an empirical Bayes model for longitudinal and cross-sectionally
REFERENCES

canadienne de statistique, 28(1):183–185, March 2000. ISSN 0319-5724 (print), 1708-945X (electronic).

REPRESENTATIVE REFERENCE

REFERENCES

REFERENCES

Zhong:2000:ELI

Frey:2000:TBE

Hudson:2000:MIE

Anonymous:2001:ERF

Ghosh:2001:BFP

Eno:2001:PMP

Brown:2001:NSU

Viele:2001:EFF

DiCiccio:2001:SAO

Hall:2001:AEQ

Kabaila:2001:ESP

Melfi:2001:ARD

Heo:2001:RMR

Tsao:2001:REL

204

[1130] Masoud Asgharian and David B. Wolfson. Covariates in multipath change-point problems: Modelling and consistency of the MLE. *Canad-
REFERENCES

[Holger Dette, Dale Song, and Weng Kee Wong. Robustness properties of minimally-supported Bayesian D-optimal designs for heteroscedastic

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mukherjee:2003:EOS

Bouezmarni:2003:CBK

Zhou:2003:RED

Malfait:2003:HFL

Sahu:2003:NCM

Zhang:2003:ATR

Claeskens:2003:ELC

REFERENCES

Yuan:2004:ANP

Ghosh:2004:UWL

Liu:2004:TEM

Cantoni:2004:RAL

Butucea:2004:DSD

Perlman:2004:RRO

Cohen:2004:DSI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2005:VSRa

Tardif:2005:NPA

Chacon:2005:CWD

Karunamuni:2005:GRM

Bianco:2005:REL

Gao:2005:NTI

Wang:2005:FND
Yin:2005:CRM

Iliopoulos:2005:BEK

Sun:2005:NNP

Anonymous:2005:VSRb

Wines:2006:ER

Wiens:2006:ERR

Canty:2006:BDR

Leger:2006:BCR
REFERENCES

Tsao:2006:ELI

Cao:2006:ELT

You:2006:BEL

Lu:2006:CPL

Evans:2006:OCR

Bibi:2006:PEP

REFERENCES

Anonymous. 2006: CSD

REFERENCES

Anonymous:2006:VSR

Anonymous:2006:OACb

Dette:2006:SMS

DaSilva:2006:KSM

Arellano-Valle:2006:UVS

Biedermann:2006:SRD

Fang:2006:SRD
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gustafson:2008:ER

Rivest:2008:CRM

Muthukumarana:2008:BAM

Gimenez:2008:DTB

Pradel:2008:ESS

Choquet:2008:AGM

Gauthier:2008:ABR

Chen:2008:RSS

Kedem:2008:FMR

Kokoszka:2008:TLD

Sambucini:2008:LBA

Sanso:2008:BST

Shi:2008:LIM

Sinha:2008:RMG

REFERENCES

[1426] Ehab F. Abd-Elfattah and Ronald W. Butler. Log-rank permutation
tests for trend: saddlepoint p-values and survival rate confidence
37(1):5–16, March 2009. ISSN 0319-5724 (print), 1708-945X (electronic).

[1427] Imad Bou-Hamad, Denis Larocque, Hatem Ben-Ameur, Louise C. Méasse,
Canadian Journal of Statistics = Revue canadienne de statistique, 37

[1428] Jerry Brunner and Peter C. Austin. Inflation of Type I error rate in
multiple regression when independent variables are measured with error.
33–46, March 2009. ISSN 0319-5724 (print), 1708-945X (electronic).

ISSN 0319-5724 (print), 1708-945X (electronic).

[1430] Timothy Hanson, Wesley Johnson, and Purushottam Laud. Semipara-
metric inference for survival models with step process covariates. *Can-
79, March 2009. ISSN 0319-5724 (print), 1708-945X (electronic).

[1431] Mhamed Mesfioui, Jean-François Quessy, and Marie-Héléne Toupin. On
a new goodness-of-fit process for families of copulas. *Canadian Journal
ISSN 0319-5724 (print), 1708-945X (electronic).

process for degradation data. *Canadian Journal of Statistics = Revue
canadienne de statistique*, 37(1):102–118, March 2009. ISSN 0319-5724
(print), 1708-945X (electronic).
REFERENCES

REFERENCES

REFERENCES

Sutradhar:2010:MWB

Yi:2010:EFE

Martinez:2010:LFP

Kang:2010:UTV

Sutradhar:2010:QLE

Dai:2010:CNM

Song:2010:AHR

[1487] Xinyuan Song, Liuquan Sun, Xiaoyun Mu, and Gregg E. Dinse. Additive hazards regression with censoring indicators missing at random.
REFERENCES

Hu:2010:VEC

Molina:2010:SAE

Chiu:2010:BCR

Wang:2010:DFT

Huang:2010:ELV

Molanes-lopez:2010:SEL

REFERENCES

REFERENCES

Niu:2011:THM

Min:2011:BMS

Marra:2011:ESR

Charnigo:2011:SCE

Park:2011:RPL

Lin:2011:SCB

Steiner:2011:PAM

[1549] Jihnhee Yu, Albert Vexler, Seong-Eun Kim, and Alan D. Hutson. Two-sample empirical likelihood ratio tests for medians in application to

[1556] Binbing Yu and Ram C. Tiwari. A Bayesian approach to mixture cure models with spatial frailties for population-based cancer relative sur-

REFERENCES

Kazianka:2012:OBA

Zhang:2012:NHB

Hirose:2012:VSW

Zhao:2012:SDN

Berrendero:2012:TUC

Anonymous:2012:ARS

Gel:2012:RLM

REFERENCES

REFERENCES

REFERENCES

Chipman:2012:SDC

Lohr:2012:BDE

Skinner:2012:WRA

Lindsay:2012:FIM

Reid:2012:LIC

Li:2012:VSE

Bagchi:2012:ENC
[1597] Parthasarathy Bagchi and Joseph B. Kadane. Erratum: Note of correction: “Laplace approximations to posterior moments and marginal

REFERENCES

REFERENCES

canadienne de statistique, 41(2):237–256, June 2013. ISSN 0319-5724 (print), 1708-945X (electronic).

Zhang:2013:VSE

Owen:2013:SCE

Wang:2013:ELC

Lin:2013:CMB

Lakhal-Chaieb:2013:NEC

Wang:2013:MOS

AlLabadi:2013:BNG

[1632] Yeting Du, Abbas Khalili, Johanna G. Nešlehová, and Russell J. Steele. Simultaneous fixed and random effects selection in finite mixture of lin-

REFERENCES

Tsai:2014:SPR

Bilodeau:2014:GLM

Avery:2014:RBF

Hua:2014:SBS

Xiang:2014:MPH

McIsaac:2014:RDT

Hao:2014:REA

[1652] Meiling Hao, Xinyuan Song, and Liuquan Sun. Reweighting estimators for the additive hazards model with missing covariates. Canadian Jour-
REFERENCES

Abd-Elfattah:2014:SAR

Shi:2014:AMR

Miyawaki:2014:ETE

Anonymous:2014:EAR

Schaubel:2014:SMS

Romdhani:2014:EKT

[1672] Sangbum Choi, Xuelin Huang, Janice N. Cormier, and Kjell A. Doksum. A semiparametric inverse-Gaussian model and inference for survival data

HAziza:2014:DRI

Sinha:2014:AIL

Tan:2015:GPE

Lunardon:2015:PCS

Wang:2015:RCA

Cote:2015:CBR

REFERENCES

REFERENCES

REFERENCES

de statistique, 43(4):600–623, December 2015. CODEN ???. ISSN 0319-5724 (print), 1708-945X (electronic).

Hussami:2015:CL

Anonymous:2016:IIEa

Anonymous:2016:IIM

Thompson:2016:UBS

Jiang:2016:SSP

Kurum:2016:SJM

Wei:2016:SML

[1712] Wenhua Wei and Yong Zhou. Semiparametric maximum likelihood estimation for a two-sample density ratio model with right-censored data.

Chen:2016:SSC

Wang:2016:JEL

Anonymous:2016:ARS

Anonymous:2016:IIEb

Liu:2016:RPC

Long:2016:KDE

Anonymous:2016:IIEd

Rivest:2016:ULS

Hernandez-Stumpfhauser:2016:HBS

Wu:2016:SED

Zhang:2016:TAN

Shepherd:2016:PSR

Pokharel:2016:GPE

Anonymous:2016:CVN

Best:2017:NCC

[1742] Best:2017:NCC

Wu:2017:CRQ

Mitra:2017:BMC

Purutcuoglu:2017:BAG

[1745] Purutcuoglu:2017:BAG

Yu:2017:NMR

[1746] Yu:2017:NMR
REFERENCES

[1753] Yuhang Xu, Jae Kwang Kim, and Yehua Li. Semiparametric estimation for measurement error models with validation data. *Canadian Journal of
Statistics = Revue canadienne de statistique, 45(2):185–201, June 2017. CODEN ???. ISSN 0319-5724 (print), 1708-945X (electronic).

Wang:2017:NSE

Anonymous:2017:IIC

Barcella:2017:RAC

DeOliveira:2017:BAD

Susko:2017:BFB

REFERENCES

[1782] Gérard Letac. *Chaînes de Markov sur les permutations*, volume 63 of *Séminaire de mathématiques supérieures [Seminar on Higher Mathemat-
Malliavin:1978:GDS

Mathai:1978:FAS

Nash:1978:CNM

Neter:1978:AS

Sankoff:1978:LVM

Walpole:1978:PSE

Whitmore:1978:SDA

nance: an Approach to Decision-Making Under Risk*. Lexington Books,
REFERENCES

REFERENCES

REFERENCES

Brillinger:1981:TSD

Freedman:1981:DMM

Grassmann:1981:SSM

Kanasewich:1981:TSA

Meeker:1981:PTN

Mikhail:1981:AAS

Wonnacott:1981:RSC

REFERENCES

REFERENCES

REFERENCES

