
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

11 March 2017
Version 1.77

Title word cross-reference

(2, 2) [LTC+15]. \((C_s, P_i)\) [HJP15]. 1
[Dow15, TRY16]. 2 [DDG+15, KSA12, LL14, MBRM15, PG11, WWW16, ZX16].
\(2^{2n+1} - 1\) [BG15]. \(2^{2n+2} - 1\) [BG15]. \(2^q\)
[AJ15]. \(2^n\) [BG15]. \(2^q \pm 1\) [AJ15]. \(2^q \pm 3\)
N [NHC13]. + [YB16]. 2 [Cha10b, Hua14].
[Cha10b, SC10]. c [NHC13]. cyclical [YLLS16].
C [KRDH13]. \(C_3P\) [EFV15]. \(\ell\) [ZTL15]. K
[LWPZ13, ABM12, APW11, DLV10, Fan10, Fan11, GYDX12, KV12, Kuo10, LLF17, WCL15].
\(L(2, 1)\) [Cal11a]. \(L(h, k)\) [Cal11b].
\(L(p, q)\) [ZQ13]. \(L_p\) [KV16]. m [Fan10]. \(\mu\)
[Jia14]. n [Fan10, Fan11, LLF17]. \(O(k)\)
[DLV10]. p [BPK10, DD10b]. \(\pi\)
[Cao10, HY11]. \(\pm 1\) [HZW+14]. QR
[ACG+11]. S [LJ15]. t [Kor11, WCCL13].

-Adic [BPK10, DD10b]. -Ary
[LLF17, Fan10, Fan11, Kor11, WCCL13].
-bit [KVX12]. -boxes [LJ15]. -calculus
[Cao10, HY11]. -Clustering [DLV10].
-Coteries [Kuo10]. -Cover [LWPZ13].
-Cubes [LLF17]. -D [DB13]. -Dimensional
[Dow15]. -Diversity [ZTL15]. -Extra
[Cal11a, ZQ13]. -Labelling [Cal11b].
-Layer [DDG+15]. -Means [KRDH13].
-Metric [TRY16]. -Moduli [AJ15].
-Multiple [LTC+15]. -Nearest
[GYDX12, WCL15]. -Neighborhood
[KSA12]. -Pancycle-Connectivity [Fan10].
LYC11, MSH+11, OR12, SC11, SLL15, WS10, XTHH13, XYL+11, ZWJ+14, ZSJ10. Algorithmic [Mur10b]. Algorithms
LSCG10, PL16, SAKOK11, SJS12, YZJH12.
Area-Feature [BKPS10]. Area-Thickness [DDL17]. Argumentation [JHHC15]. Argumentation-Driven [JHHC15].
Arithmetic [LSTC11, Par15].
Ary [LLF17, Fan10, Fan11, Kor11, WCCL13]. Ascending [Mer13]. ASICs [Jas10, Nur07].
Association [HK13]. Associate [ZSI10]. assortative [Meg16].
Asymmetric [OBA16, XLM12, XGLM14, XZLW15].
Asynchronous [DGFGHZ13, Hei13, KW11, LAP11, ZLX15]. Atmospheric [LWKB15].
Attacking [YZJH12]. Attacks [BS16, BKK14, Che15a, CMA14, L10, SY15, SP15, SH15, SGH15, TV12].
Attribute [CD16, GSW16, HSMY12, HSMY14, LW16, WLH15b, WHL16]. Attribute-Based [CD16, GSW16, HSMY12, HSMY14, LW16, WLH15b, WHL16].
Authenticated [XLM12, XGLM14, XZLW15].
Authentication [OKG12].
Automatic [AFK12, FAFD15, IDV13, LhmnXJ11, MT11, PWY13, TA16a, YLLS16].
Automatically [NC16].
Autonomous [DB15, HH17, WYL13]. Availability [LHF14].
Average [KMNA16]. Avoidance [CRM14, SM16].
AVX [GK16]. Aware [ACG11, AGP10, BZS16, Cha10a, CLL13, CP16, CK10, CL16, Cor11, DJA15, DST12, Do11, GM11, HZ15, JG15, KHC15, KSP15, LR14, LSW14, MSH11, NSRP15, RAK17, RR16, RRCC15, SSY15, VO16, WCKH10, XZY10, YDE11, YGLW15, AV16, HMZ15, WS10].
Awareness [RL11]. Axes [Whi12a]. Axial [VBVP14].
B [KOA15, RT12]. B-spline [RT12].
Baccelli [Kon10, Pen10]. Back [Har10b].
Backbone [DE10]. Background [KS16].
Bandit [PANH10]. Bandwidth [CLL17, LHF14, SKK12, WCK10].
Bandwidth-Availability-Based [LHF14]. Bandwidth-Based [WCK10]. Bank [KV16]. Barrier [KSH14]. Based
[AOS+15, AFGG11, AV16, AZHASD14, AJ17, ABS12, ACPD11, ASS15, BL11, BWLA16, BBMB17, BG15, BDC11, BU11, BGM+13, BACD13, Cai12, CL14, CCUA14, CZLC14, CL17, CCC+10, Chi12, CD16, CSS16, DE10, DH12a, DJA15, DB13, ED09, ED10, Erg11, FEDH16, FNP12, GWW+13, GWWC15, GSW+16, GLBS13, GDCC16, GYDX12, GY13, GJJ15, HSMY12, HSMY14, HLJ+15, HPG+15, HHL10, HXZ15, HLC10a, HuRH+15, HHHC16, HH14, ISH13, IDVGM+13, JDA12, JD12, JHHC15, KH15, KAS13, KTRJ10, KZY16, KVX12, LHYW12, LP14, LLD15, LTH+15, LD16, LTZY16, LPL15, LSL15, LS14, LY10, LX11b, LCL12, LW13, LP13, LHFH14, LGHD15, LW16, LCX16, LLV10, LGPRH14, LNBFA13, LDB+15, LLF17, ML13, MBC15, MKN13, MGBD15, NSRP15, Ni16, Nic11, ÖKA11, PABD10, PB12, PIHC11, PR11, PYM+15, PDNH15, Pop11, RH12, RDZ+16, RSW14, RAJ15, RRCC+15].

Based
[RJV13, SV15, SAKOK11, SM16, SL10a, SH15, SZL15, SGH15, STBB14, TLRE11, Tan11, TPG+15, TA16a, TA16b, TNWT14, TT12, TTH15, TV12, TKB11, VBVP14, VGA15, Wan14, WS15, WLH15b, WCKH10, WT10, WMS+12, WCW+14, WSW15, XLM+14, XXW11, XGL14, YC11, YGFL15, YWR+14, YYO15, YMWS11, YHS+17, ZTBW11, ZWJ+14, ZDM+15, ZZX+11, ZCL+12, ZCL13, ZMW16, ZCX+16, ZVH11, ZVG16, ZSW10, ZZT14, ZHL15, ZDZ+15b, BWR12, FM11, GH17, HY11, Hsu12, IA15, KJ11, LSW10, MS14, NS16, RLVGÅ15, WILH16, WS10, WZ+12].

Basis
[BBP13, Bro10, Mel13].

Bayesian
[Cha11, GOR+10], BCPL [Ric13]. BE [VRD10]. Bees [RLVRGÅ15, XYL+11].

Before
[SWLZ12]. Behavior [TKB11].

Behavioral
[Cao10, Cao14, GIP+12a, GIP+12b].

Behavior [GAF+15, VB16]. Behaviour [WDW12]. Behaviours [RiCH10].

Benchmarking
[Jar12, MSW12].

Benchmarks
[LPV10, WT12].

Bending
[Xic11].

Better
[HM16, JG15].

Between
[JLS11, RSW14, ZC10, LCX14].

Betweenness
[Che14].

Beyond
[Roc12].

Béziers
[GT+11].

BFT
[CV13].

BFT-TO
[CV13].

Bibliography
[Cal11b].

Bidders
[FX13, Vel10].

Bidirectional
[HC15].

Big
[NPT16, NP16].

Big-Data
[NPT16].

Bilinear
[ASS15, IL15].

Binary
[ACPD11, LYC11, Mer13, RCS16, SSS16, YTV16].

Binding
[ARR+16, CK10].

Bio
[ABG+12].

Bio-Inspired
[ABG+12].

BioInspiration
[XYL+11].

Biological
[Mit12].

Biomedical
[AJ17].

Biometric
[NGA+H16].

BIP
[ACP11].

Bipancycle
[Fan10].

Bipancycle-Connectivity
[Fan10].

Bipancyclicity
[Fan11].

Bipartite
[WHS+16].

Birthmark
[PLCH11].

Biswapped
[CL17, LC14, XS11].

Bit
[CHL14, GGZC11, OLL15, YLL+12, KVX12].

Bit-Parallel
[CHL14].

Bit-Vectors
[OLL15].

Bits
[Sin12].

BlackjackBench
[DLM+14].

Blind
[BCPV11, LGPRH14, Tan11, YMWS11].

Block
[ZX16].

Blogs
[HY15].

Board
[EÇGK16].

Body
[BY14, KL14, KSPR15].

Body-Worn
[BY14].

Book
[Gaz10, Jas10, Joh10, Lar10, Lav12, Lev10a, Lev11a, Maj10, Mar10, Uli11].

Boolean
[AGR15, SZ15].

Boosted
[ÖKA11].

Boosting
[FNP12].

both
[SDN15].

Botnet
[NSA15].

Bottom
[BGM+13].

Bottom-Up
[BGM+13].

Bound
[RRM+15a].

Boundary
[BKPS10].

Bounded
[KLA+15, PDNH15, ZYT13].

Bounding
[CTIA12, MPL13].

Bounds
[ASCTFP16, LJ15, PB14].

Box
[BW16, RMP10].

boxes
[LJ15].

BPEL
[MARK15, aSPW+17].

Brain
[VBVP14].

Branches
[YLC15].

Branching
[GF13, WC10].

Breaking
[CLS15].

Bribery
[CO12a].

British
[GG10].

Broker

Capacity [CP16, HZW15]. Capsule [Kam10, Kap11a, Kam11b, Kam11c, Kam11d, Kam11e, Kam11f, Kam11g, Kam11h, Kam11i, Kam11j, Kam12a, Kam12b, Kam12c, Kam12d, Kam12e, Kam12f, Kam12g, Kam12h, Kam12i, Kam12j, Kam12k, Kam13]. Capture [BP10, ZD15]. Capturing [CXH14].

Casting [CW2a]. Categorization [CZ10, PWY13]. Caterpillars [CFS14].

CBR [KAS13]. CBR-Based [KAS13].

Chains [VM14]. Challenges [Fra15, WRSV12, ZL16]. Chan [MPP15].

Chance [SA11]. Change [BP10, CDY11, TSC+17].

Change-points [GOR10]. Channel [CL14, KH10, TTT12, WH12a, ZYY13]. ZH15]. Channel-Recommendation [CL14].

Classification [KAS13].
Components [EFY16, YEFVJ15].
Composing [TLRE11]. Composite [Elg15].
Composition [BZS+16, NRZQ15, WXP+10, ZSX10].
Compositional [HS11]. Compositional [Elg15].
Compositions [MK15, Mer13, YEFVJ15]. Comprehensive [RDB+14a]. Compression [BMG12, DB13, FNP12, KXS+10, MNB13, Pop11, PH15, SY13, WGZW14].
Computable [Bla13]. Computation [Abd15, Aho12, Bac12, Baj12, BBDF11, BE12, Buz12, Che14, Con12, Den12a, DW12, Den12b, Den12c, Fra12, FGS15, Fre12, Gel12, LLZY15, LHM+15, Mit12, NSMS14, RR16, Ros12a, Ros12b, SH10, SCO15, WHH15a, We12].
Computational [Aho12, KV15a, NBN14, Nil10, Tra12].
Computer [Bra11, CZC10, GG10, Gra12, Ham12, HS11, KHC14, LL15, NLDH11, SM12, Trc10, BTTH12, GG10, M110, Mil10, Pen10].
Computers [FGG13, LPD13, Lav12].
Computing [ACW13, AJA16, BFCRH14, BGD+10, BGM+11, BD16, CFM17, CL15, CCGS11, DB15, DN16, EFV15, ETR+16, Gur15, HSMY14, HHCL10, HuRH+15, IJY+14, IJM14, Jar12, Jas10, JSP13, KMS15, KHC14, KCH14, LTH15, M1515, MH10, M11, NP16, Nar07, OS16, PB12, PC14, RMM15, RA15, Ros12a, Ros12b, SMLM14, XTH11, XZA14, YCL15, ZSX10].
Concentrations [LWK15a, Concept [DBHC15, DSZZ15, MS14, TMC15]. Concepts [PTP10]. Conceptual [SSS12a].
Congestion-Aware [LR14]. Congruence [HIJ10]. Conjunctive [Ch14].
Constellation [OJS14]. Constrained [CLSV15, JMG+16, KÖ14, KO15, LW15, ZLYX10].
Contagion-Based [TNWT14]. Contained [ZLL+14]. Container [HHV17].
Content-Based [VB14, XLM+14].
Content-Boosted [OKA11].
Content-Centric [GRV15].
Content-Modelling [AAZ13]. Contention [WCW14, P11, ZTW11].
Contention-Based [PR11, ZTW11].
Continuity [PSS10]. Continuous [Dow15, EV16, Par15, Tra12].
Contracting [JZ13]. Contracts [vdALM+10]. Contrast [JDAS12].
Contrasting [LPF+13]. Contribution [Mal10]. Control [ATS15, CCA14, Cha10b, Che15b, HSMY12, HHS+15, HLC10a, HCL15, JCSZ13, KHC15, LWW13, LKG10, SCI10, WN11, XTH11, YDE11, ZTBW11, ZLYX10, ZVH11, ZLG15].
Controllability [Cha10b, DH12a].
Controlled [GTS+11]. Controllers [MT11]. Convergence [BE12, CLM16].
Conversion [GJ16]. Converter [BG15].
Cooperation-Oriented [NdMCdMM16].
CORDIC [AK12, KJ11]. Core [CFX+15, GMS+12, PHM+12, RGE+13, XZY+10, YGH+14, YS15, CLL10].
Corps [RMB11]. Correcting [ABS14].
Correlation [XTH11]. Correspondence [Mur10a]. Correspondences [WDW12].
Corrigendum [ED10, GIP+12a, KO15]. Cost [HZWT15, LWS+14, LGHD15].
Cost-Aware [HZWT15, LWS+14].
Cost-Efficient [LGHD15]. Costs [HJMJ12, MSW+12]. Coteries [Kuu10].
Cross-Network [CCF11].
Cryptanalysis [DG12, DJG+15, LJJF16, LJJ6, YMWS11].
Cryptographic [RMP10, YS15].
Cryptography [LWL16].
Cubic [BK12a, BK14, RT12]. Curve [ABS12]. Curves [BWR12, GTS+11, LL11a].
Cushion [XYL+11]. Customer [HY15].
Customization [PCC+16]. Cut [DA14].
D [DB13, GB10, Hua14, KV16, LJJ5, MRRM15, PG11, ZX16]. D-like [LJJ5].
Daily [BY14]. Data [AJ17, ABCG11, Cao14, CCF11, CCC+10, CPSK07, Dow15, EV16, ETR+16, FYMY15, FPY15, GSK13, GAFP+14, HSMY14, HZHC11, JDAZ16, JYP+15, JRC+10, JWCZ13, KRDH13, Kha11, KSPR15, KLT+15, Kot11, LJAA13, LLZY15, LCMC11, L}]
LHFF13, LM17, MDY15, MP17, MDSF12, Mur10a, NTSA16, NPTZ16, NP16, NC16, ÖKA11, PB12, PSP14, PG11, PCC+16, PZL12, RR16, RATB+13, RM08, SSS+12b, SWLZ12, Tan15, WLH15a, WBS15, YB16, ZEH11, ZH14, ZTL15, Gaz10, Lev10a, Data-Driven [GRK13]. Data-Intensive [EV16, ETR+16, RR16]. Database [Cha10a, SC11]. Databases [AJ17].

Deriving [Mel13, YEFVJ15]. Description [YT16a]. Design [AK12, BGM+11, CvdT10, Cro10, DAOG14, DPZ11, EFV15, FWC13, Fra11, HLC10b, Jas10, JC10, LJA13, Lop12, MGBD15, Nur07, RTE+13, SKKM15, YAQ12].

BBMW13, Gel10, HXZ12, Jar12, JK12, NP16, SS10a, ST17, WGS17, ZNQR15.

EDSAC [Bar11, Har11, Swa11].

Educational [AJ17].

Effective [BH10, CLS15, KRDH13, LLTY13, MS12, WGZW14].

Efficiency [Chi16, GTM15, JWCZ13, LZZZ13, MSWI12, SGG13, ZYY13].

Efficient [AS11, AGM16, BWLA16, BGD10, BACD13, CLS15, Cha10b, Che14, CCC10, CFJ10, DA14, GWW13, GLL13, GJJ15, HHL10, HZX15, HIDFGPC15, HL15, HLC10a, HWXD14, IJY14, JDAZN16, KLT15, LAP11, LJA13, LSLJ15, LSLW15, LWPZ13, LLN15, LGHD15, LSY16, LZZ17, LBIC14, MH11, MDSF12, NdMCdMM16, NHC13, OVGG14, PSP14, PCC16, SJ14, SZS14, SHL15, TT12, WL13, WHL15a, WSR11, YC14a, YDE11, YLA13, YS15, ZTBW11, ZYR13, ZX16, vDBvEW10, TCL15].

Efficiently [SLY16, WCL15].

EigenBots [ECGK16].

Elderly [PRG10].

Electric [LSY16, WYL13].

Electricity [JG15].

Electronic [Tan11, YMWS11].

Electrostatic [NYT11].

Elliptic [ABS12].

Embedded [CLL10, EFY16, HGZ10, JMB12, MSH11, MK11, PHB15, RH17, YGH14, YS15].

Embedding [DDL15, GY13, HLZ15, RMR15a].

Embeddings [LLF17, RSW14].

Emergency [DPG10, FGG13, HLKL15].

Emergent [Cro10].

Emerging [OS16].

Emissions [MSW12, RABT13].

Empirical [DCLN11, JWCZ13, aSPW17].

EMS [ZTBW11].

EMS-MAC [ZTBW11].

Enabling [KJR15].

Encoded [LWC15].

Encoding [FNP12, TJJF12, VBVP14].

Encrypted [Lop12, ZVG16].

Encryption [BVS13, BWLA16, BWR12, Che15a, Chi12, CD16, GWWC15, GSW16, GDCC16, HTC15, Jia14, LLSW16, LTZY16, LSLW15, LW16, MZHY15, NMS14, PDNH15, RDZ16, SZS14, SGH15, TCL15, TMC15, TT12, WMS12, ZYT13, ZWTM15, ZMW16, Wan14].

Encryptions [SLY16].

End [MK11, MHMSGH16].

End-to-End [MK11, MHMSGH16].

Enduring [For12].

Energy [ACG11, AG12, AV16, AGM16, ARVR15, BGD10, CLLH13, DA14, DSC12, Do11, GM11, GLL13, GTM15, GZC11, JG15, JLS11, JWCZ13, K15a, LZZZ13, LDLJ15, LWPZ13, LLN15, LZZ17, LBIC14, LSCG10, MSH11, MSW12, PHB15, PSP14, RABT13, SDN15, SHL15, WYL13, WS10, Xie11, YDE11, ZTBW11, ZYY13, ZYR13, ZLYX10, ZNQR15].

Energy-Aware [ACG11, Do11, GM11, MSH11, AV16, WS10].

Energy-Constrained [ZLYX10].

Energy-Efficient [BGD10, DA14, GLL13, LWPZ13, LLN15, LBIC14, SHL15, YDE11, ZYR13].

Enforce [QS15].

Enforcement [Tan15].

Enforcing [WWHL12, ZVH11].

Engine [EB12].

Engineering [Awa13, BS10a, Bro10, Ham12, Jar11, JK12, LMA15, RLJ15, RMR15b, SL10a, TB10, dLGCL14].

Engineers [Har10a].

Engines [HWXD14, Lev11a, CMS10].

Enhance [CLL17, RL11].

Enhanced [DLL13, GHXW16, LQZ10, RHF15, SHL15, TV15].

Enhancement [DSZZ15, IK17].

Entailment [QS15].

Enterprise [HMZ15, WRSV12, YHS17].

Enterprise-Ready [WRSV12].

Enterprises [KJR15].

Entities [CWKK14].

Entity [PWY13].

Entropy [GIP12a, GIP12b, YGFL15, ZDZ15b].

Entropy-Based [YGFL15].

Environment [CC14, CDYC11, CLL17, CL15, FT11, LMJ14, KLT15, KZY16, LDLC15, LJYL13].
NNN+14, PZL12, TV15, XTH11, YHS+17, ZSX10.
Environments [ARVR15, BY14, DSTC12, GB15, HLZ15, HLLK15, JSP13, LHHeXJL11, RAJ15, RiCH10, SZB15].
Ephemerizer [Tan15]. Epsilon [GJ16].
Equivalence [Chi14, HJL10, Bll14].
Equivalence [Chi14, HJL10, Bll14].
Equivalences [Cao10]. Ergodic [Ana10].
Error [FLCT10, LJA13, Ni16, PB14].
Error-Diusion [FLCT10]. Errors [Cro10, LJA13].
Essay [CXH14].
Evacuation [DFG10].
Evading [RCS16]. Evaluating [SZL15, ZLL+15].
Evaluation [AD11, BUB13, Bra11, ETR+16, HBDJ13, ISH13, JMB12, KV16, LHZS14, MKN13, MDS15, MK13, SHR+11, XXW11, ZDZ+15b].
Evaluations [ZM16].
Even [Fan11]. Event [BL11, HL15, KW11, LHFF13, PBH+13, RSW14, WGS17, KOA15].
Evolution [AD11, BUB13, Bra11, ETR+16, HBDJ13, ISH13, JMB12, KV16, LHZS14, MKN13, MDS15, MK13, SHR+11, XXW11, ZDZ+15b].
Evaluations [ZM16].
Even [Fan11]. Event [BL11, HL15, KW11, LHFF13, PBH+13, RSW14, WGS17, KOA15].
Evolution [AD11, BUB13, Bra11, ETR+16, HBDJ13, ISH13, JMB12, KV16, LHZS14, MKN13, MDS15, MK13, SHR+11, XXW11, ZDZ+15b].
Evolution-Driven [LHFF13].
Eventually [GAS12].
Evolution [MT11, PC12, WEG12].
Evolutionary [BE12, KNHK12, SC11]. Evolved [Ric13].
Evolving [BJY11, SDW13, ZCL13].
Evolution [MT11, PC12, WEG12].
Evolutionary [BE12, KNHK12, SC11]. Evolved [Ric13].
Evolving [BJY11, SDW13, ZCL13].
Exact [CHL14, HLZ15]. Example [ED09, ED10].
Exchange [DG15b, WSA15, WT10, vDBvEW10].
Excited [Erg11].
Execution [CWW+10, LHC16, NHC13, Q515, Tim11, YYW10, YS15].
Examples [SLZ14].
Expanding [BLS16].
Evolution [LTC+15].
Experience [LCH16].
Experience [LCH16].
Experimental [WGS17].
Experiments [RDB14b, RHG+11, SLP11, SLZ15].
Explorator [KKBF12]. Explore [FT11].
Exploring [GIP+12, GIP+12b], YWDW12.
Exponential [AAHTH10]. Exposing [YSC+15]. Exposure [BVS+13].
Exposes [CZC10]. Expressing [ZV15]. Expression [GJ16, HBDJ13]. Expressions [AGR15, KV15b, PB14].
Expressiveness [BE12, WVGP11]. Extend [TM15].
Extended [BCK+11, BMG12, HZW+14, KV15b, SH15].
Extending [dLGCM14]. Extension [OJSO14, SVS15]. Extensions [LWL10].
Extractable [CZLC14]. Extracting [CWWK14].
Extinctions [AFKT12, AHM15, BWLA16, CC11, GLBS12, NLDH11, PA15, PWY+13].
Fast [LLY+12].
Face [CC11, CW12b, GB10].
Facilitating [KLA+15, WSR11]. Factor [CLH+14, CL17]. Factorization [YAM+15].
Factors [RMGT11]. Failure [CRGM14, GAS12].
Failures [Cro10, WLI+14, YAQ12].
Fair [DG15b, PR11, SKK+12, WAS15].
Fair-Exchange [DG15b].
Families [HHL10, HLL11].
Farms [Do11, Mit10].
Fast [CLL14, GTN10, GK16, Kor11, KVX12, LH13, LIK14, NYT+11, VM14, XHC+15, YTV16, YB16].
FastSpMM [OVGG14].
Fault [CSS16, Fan11, HZHC11, SP10, Sin12, SLZ15, YWR+14, ZMSM13, ZX16].
Fault-Based [SLZ15]. Fault-Tolerant [YWR+14, ZX16].
Faults [GOR+10, HWCZ16, LLF17].
Faulty [LLY+16]. Feature [AHM15, ARR+16, BPKS10, CC11, HPG+15, JD12, JS15, MBBA16, NS16, NLDH11, PA15, ZYWW13].
MKK15, PBH+13, SP10, WCW10, ZZX16].
Genetic [BZS+16, DP13, DD10b, HM16, SC11, SKKM15, ZH14]. Genome [DD10b].
Genuine [WCW+14]. Geographic [SJS12].
Generic [BWLA16, BBP13, Ch16, GWWC15, KCC10, SY15, TLRE11].
High

High-Dimension

High-Priority

High-Speed

Highly

Highway

Hill

Hill-Area-Restricted

Hillston

HISS

Histogram

Historical

Hit

Homogeneous

Honeyston

HPC

Huang

Hull

Humans

Hybrid

Hyper

Hyper-heuristics

Hyper-Stars

Hyperbolic

I/O

I/Os

IaaS

IB

Iceberg

ID

ID-Based

Ideas

Identity

Identity-Based

Idioms

IEEE

IEEE-754

IGM

ILP

ILP-based

Images

Imbalanced

Immune

Improvement

Implementations

Implementation

Implementing

Important

Impossible

Imprecision-Tolerant

Improve

In-Kernel

In-Memory

Including

Inconsistencies

Increasing

Incremental

Independent

Index

Indexed

Indexes
Journal [BTHS12, GG10, Mal10, Mil10, Pen10]. Jungle [Roc12].
Key [BN14, BV513, Che15a, Chi16, CMA14, ELS11, GSW+16, HWY11, HTC+15, Jia14, LLSW16, LDZ16, LTO10, LCLL12, MZHY15, PDNH15, SGH15, SLV+16, TMC15, TPH11, TPH12, WT10, XLM12, XGLM14, XZW15, YNN11, ZCL13].
Keystroke [XTH11]. Keyword [Che15a].
KNN [ZDM+15]. Knowledge [DP13, Gaz10, JK12, KKB12, LYY+16, M613, ST17, SSS12a, WXZ+12, YNP15, CPSK07].
KRAMER [STBB14]. Krzysztof [Gaz10].
Kurgan [Gaz10]. Kurtosis [YJO15].
KVM [LZL+15].

Leakage-Resilient [LTZ16, ZYT13]. Leaping [GAVRRL16]. Learn [TA16a].
Learning [BY14, CAO14, CUA14, CLR14, ISD15, LKG10, RG14]. lecture [Kon10, BTHS12, GG10, Mal10, Mil10, Pen10].
Linear-Time [HJK13]. Lines [PS17].
Liveness [LJC11]. Load [MK15, YWR+14].
Local [BGM+11, GYDX12, IAG+14, LSCG10].
Mechanisms
[KL14, LJ1A13, NSRP15, WBS15]. Media
[HY15, KYHC15, SVG+15, TY14, XLM+14, YIUH14, YNP15]. Medical [AJ17].
Models [BCK13, CLM16, DH12b, GAVRRL16, RMS13, KMSM15, LR10, LH11, LNBFPAA13, MBBBA16, OS16, Pek12, PGF14, SRD12, TKB11, VN16, WDW12, XXW11, ZLCW14, Tz11].

MPI [CRGM14, WT12]. MPI/OpenMP [WT12]. MPSoc [CK10]. MRC [BG15].

Multiparty [CCL13, vdALM10]. Multipath [BAAFI11, HLC10b, WS10, XS11, HCL15].

Multiple [ABC11, DTFT11, DTSF12, DSB15, HHL10, JDAZN16, LCN15, OR12, PSS10, SVG15, TB11, VRD10, WVR11, WBB17].

Multiprocessors [CCCS11, KW11].
Multiresolution [PABD10].
Multisets [AC14].
Multithreaded [Lop13].
Multivalued [BD14].
Multivariate [ST16, YT16b].
Mum [SR10].
Mutation [aSPW+17].
Mutual [DLL+13, WT10].
mvSERS [HLKL15].
N [KV16].
Named [PWY+13].
Narrow [PRJS11].
Nasional [MSP15].
Natural [Gel12, LHCN11, MMB13, PH15, Sab11, Whi12a].
Nature [Par15].
Navigational [ZV15].
NdRFT [BFCRH14].
Near [AFKT12, GTN10, TY14].
Near-Optimum [GTN10].
Near-Perfect [TY14].
Nearest [GYDX12, JD12, WCL15].
Negotiation [DB15].
Neighbor [GYDX12, HLJ+15, JD12].
Neighborhood [GY13, KSA12, LCLL12].
Neighbors [WCL15].
Neighbourhood [Dan11].
Nelder [CGVP15].
Nests [YHS+17].
Nets [Abd15, BFF+15, HJL16, LJC11].
Network [AS11, BHAC10, BS16, BDL+13, CFM17, CCF11, CGE+14, CCUA14, DJA15, DAOG14, FLZC15, GBBK11, GLL+13, GV16, HMI15, HMI13, HLZ15, HXZ12, HLC10a, JC10, KSRR15, KZY16, LR12, LQZ+10, LTL10, MDN+11, MT11, Meg16, MMB10, NG17, NRZQ15, PBL14, RDB+14a, RH12, Sak10, TST+11, Tim10, VKZ+10, VGA15, VKC15, WN11, WLI+14, WF10, XHHT13, YZLC15, ZH14, ZL15, SKK+12].
Network-Based [RHH12].
Network-on-Chip [AS11, DAOG14].
Network-Select [CCUA14].
Networking [CL13, GRVD+15, HGRV15, ZHL15].
Networks [AG12, ABM12, ABG+12, AFGG11, ADML+13, AHM15, ABH15, AAH10, BN14, BBM10, BL11, BEG+16, BMRS11, BAF11, BPK10, BS10a, BK12a, BK14, CLSV15, CCF11, CLRJ14, CWS+10, CL17, DE10, DA14, DSTC12, DLL+13, ER14, ELS11, FWC13, GPK11, GN10, GM11, GH17, GTS+11, GTB10, GRL13, GGZC11, HJS+13, HLJ+15, HB11, HWCZ16, HLC10b, HZHC11, Hu14, HC15, HH14, IAG+14, Jay12, KSA12, KL14, KNHK12, KAAE11, KXS+10, KCC15, KMNA+16, Ko10, KLT+15, Kon10, LH13, LH11, LHYW12, LL15, LZZZ13, Lev10b, LWPZ13, LHM+15, LC14, LCLL12, LW13, LSCG10, LPV10, MDN+11, Mar10b, MS11, NSRP15, NSA15, NK14, NB12, OKG+12, PB12, PR11, PYM+15, PTP10, RDB+14a, RMP+16, RG14, RL11, RKBV15, Rog11, RLYRGA15, SJ14, SM12, SAKOK11, SLV+11, ST17, SM16, SZL16].
Networks [SVG+15, SYH11, SJS12, SGG+13, TPG+15, THP+11, THP+12, TB11, VRAC11, WOV+10, WHYH12, WCL15, WEFJ15, WWW16, WB16, WCHK10, WSR11, WCV+14, WLY+15, XS11, YC14a, YWS10, YDE11, YT11, YLX+11, YZJH12, YNN11, ZTBW11, ZWJ+14, ZYY+13, ZYR+13, ZLX+15, ZW15, Zha15, ZLYX10, ZHY+14, ZJH+15, dFHP+11, DTFT11, DTFT12].
Networks-On-Chip [ADML+13].
Neumann [GDKP10].
Neural [BHAC10, BMRS11, BPK10, GV16, KNHK12, Ko10, NG17, RHH12, RG14, Tim10, Wh12b, WF10].
NIPSOM [VBMH10].
NMR [ACP11].
No [Analyzing [aSPW+17].
No-Disjoint [ABH15].
Node-Link-Based [ZWJ+14].
Node-Pancyclic [CL17].
Node-to-Set [BK11, BK12a, LC14].
Nodies [AG12, AKA15, Ana10, BACD13, Cao14, ER14, HBD13, PS15, RHH12, SGG+13, WC10, WXP+10, XHC+15].
Non-Archimedean [Ana10].
Non-Cooperation [SGG+13].
Non-Determinism [HBDJ13].
Non-Deterministic [PS15].
Non-Functional [AKA15].
Non-homogeneous [AG12]. Non-IIDness [Cao14]. Non-MDS [XHC15].
Normal [KMZ16, LJC11, KHC15, MHC15, SLY15, WYL13, YC14b, AUB11].
Normalized [YGFL15].
Note [CGVP15, HWCZ16].
Noting [SDN15].
null [BL15a].
Number [AJ15, Erg11].
Numerically [DH12b].
Nurmi [Jas10].
NVM [CP16].
NVR [ACP11].
NVR-BIP [ACP11].

O [AD11, DCLN11, GFPC16, WHP13].
Obfuscated [ZM16]. Obfuscators [PSD15].
Obtaining [PB14]. OCCI [YT16a]. Occurrence [GAVRRL16]. Occurring [LLZ15].
Oceanic [NHMI13].
OCLOptimizer [FADF15]. Oded [Lev10a].
On-line [HHL10]. On-line/Off-line [HHL10]. One [ABH15, XZLW15].
One-Round [XZLW15]. One-to-Many [ABH15]. Online [FXV13, JMG16, LZZ17, YMS15, ZC10, ZHY14, ZHL15].
Online/Offline [JMG16]. OutCAAC [KHC15].
Onto [OJSO14]. Ontologies [AJ17, TA16a].
Oracle [DH14]. Oracles [GSW16, GMS11, YLA13].
Order [vdH15].
Outlier [GKBK11, PCLU12]. Output [SLP11].
Outsourced \cite{RDZ16}. Outsourcing \cite{MK11, MK13, SR10}. Overhead \cite{WCKH10}. Overlapping \cite{CMKJ10, JS15, WWB17}. Overview \cite{YIUH14}. OWL \cite{SVS15}.

P2P \cite{CLL14, EOIH15, ISH13, LY10, LHFF13, LFHF14, YLX11, ZWJ14}. PaaS \cite{YT16a}. Package \cite{LWKB15}. Packages \cite{PiLCH11}. Packet \cite{AG12, FEDHL16, GM11, HCL15, Sak10, TPG15, TY14, VWR11, ZYWW13}. Packet-Level \cite{TY14, ZYWW13}. Packing \cite{PTWB14}. Page \cite{LHCN11, VB16}. Page-Sharing \cite{VB16}. Pairing \cite{HH14, LGPRH14}. Pairings \cite{ASS15, IL15}. Pairs \cite{LLLL+15}. Pairwise \cite{CFS13, CFS14, JS15}. Pancake \cite{SZL16}. Pancycle \cite{Fan10}. Pancyclic \cite{CL17}. PAPR \cite{OJSO14}.

Paradigm \cite{RATB13}. Parallel \cite{ABS12, CHL14, DN16, GLK16, GJ16, yHRT12, KTA12, OLL15, PB12, RLVRG15, SHL15, VBMH10, VMF14, WHP13, WT12, ZHY14}. Parallelism \cite{HK15}. Parallelization \cite{NdMCdMM16, YLLS16}. Parallelized \cite{PBL14}. Parameter \cite{CGVP15}. Parameterized \cite{SLL15}. Parameters \cite{Gur15}. Paraphrase \cite{TA16b}. Paravirtualization \cite{AD11}. Parsing \cite{SLZ14}. Part \cite{KKMG15}. Partial \cite{PS17, SHL15, YWW10}. Particle \cite{NdMCdMM16, OJSO14}. Parties \cite{YCR16}.

Partition \cite{GSRM17}. Partitioned \cite{KTA12, LAP11}. Partitioning \cite{JC10, Kas13, MSH11, QZX15, RR16}.

Party \cite{DGFGHZ13, NSMS14, SCD15, ZM16}. Passage \cite{BBDF11}. Passing \cite{MPH14, VMF14, YGH14}. Password \cite{Lop15a, Lop15b}. Path \cite{ADBPPLV13, BKP11, BK12a, BK12b, DCLN11, FGS15, GTS11, LR14, LKG10, LLF17, MBRM15, SPJA11, WVGP11, Xie11, ZW15, ZFZ12, GGZC11}.

Path-Classification \cite{SPJA11}.

Path-Planning \cite{MBRM15}. Paths \cite{ABM12, ABH15, BK14, LC14}. Patient \cite{ZVG16}. Patient-Centric \cite{ZVG16}.

Pattern \cite{BBM17, Cai12, CFM17, DPZ11, KVX12, LA12, LJA15, NPTZ16, NK14, OR12, OKT16, VWR11, WCW14}.

Pattern-Based \cite{BBM17, WCW14}.

Pattern-Matching \cite{KVX12}. Patterns \cite{GIP12a, GIP12b, HK13, Kha16, WOLP15}. Paula \cite{Maj10}. Payment \cite{DG15b}. PC \cite{SPJA11}. PC-Nash \cite{SPJA11}. PCM \cite{RRCC15}. PCM-Based \cite{RRCC15}. PeakGraph \cite{LCXZ16}.

Pedrycz \cite{Gaz10}. Peer \cite{GIP12a, GIP12b, LY10, YIUH14}.

Peer-to-Peer \cite{GIP12a, GIP12b, YIUH14}. Peering \cite{KSPR15}. Peers \cite{RB11}. Carry-Select \cite{LSTC11}. MLC \cite{JYP15}. Off-line \cite{HHL10}. Offline \cite{JMG16}. OpenMP \cite{WT12}.

or \cite{YLA13}. OS \cite{CLL10}.

Output \cite{Kap11}. Polynomial \cite{ZM16}.

RNA \cite{Mar10b}. Taylor \cite{Joh10}. UK \cite{Ano10}.

People \cite{PRG10}. Pepa \cite{TZ11}.

Perceptions \cite{SR10}.

Perceptual \cite{NS16}.

Perfect \cite{BKP11, BK12b, TY14}.

Performance \cite{ASCTFP16, AD11, Awa13, BBM10, BGM11, BS10a, BCK11, Bra11, CTIAP12, CXF15, DN16, ECL15, ETR16, GH17, GMS12, GFPC16, GB15, Har10b, yHRT12, HJL16, Jar11, Jar12, Jay12, KV16, Kas13, LZZZ13, LJYL13, LGHD15, MK13, Mit10, MGM12, NZ14, Pek12, RMGT11, SPRR17, SWG13, WT12, YZLC15, ZYY13, EB12}.

Performance-impacting \cite{RMGT11}.

Performance-Oriented \cite{GMG12}.

Perimeter \cite{PL16}.

Permission \cite{VN16}.

Permissions \cite{CK15}.

Permutation \cite{LJ16}.

Personal \cite{Wet10}.

Personalization \cite{LNBFP13}.
[LLZY15]. Querying [AAH10]. Question [Fre12]. Queue
[ASCTFP16, BBDF11, BV15, Dim13]. Queuing [IAG14]. Queuing [HJM12]. Quicksort [GK16]. Quorums [Kuo10].
Re-Configurable [EFV15]. Re-Encryption [GSW16, LSLW15].
Readiness [HJL10]. Real [WRYS12]. Real [ASCTFP16, AFK12, CDY11, FXV13, FGS15, GJQ14, GIB12, IMS10, KW11, LZN16, MS11, YGH14, WZ15].
Real-Time [CDY11, FXV13, IMS10, KW11, MS11, YGH14, WZ15, FGS15, GJQ14, GIB12].
Real-World [LZN16]. Realistic [CF15, GB14]. Realization [JHJC15].
REALM [PA15]. Realtime [KXS10].
Refinement [BACD13, WJ16, ZWFW15]. Refinements [ML11a]. Reflected [SV15].
Reflections [Den12]. Reflections [FGS15]. Region [H16, Ros14]. Regions [SD13, Register [KL10].
Registers [Z15]. Regular [Ca11a, GJ16, KV15b, WC10].
Regularization [ED09, ED10]. Regulatory [L11]. Rekeying [DT13, LT10].
Relationships [H11, Hie13, T16a]. Relationship [LC14].
Reliability [HXZ16, KSP15]. Reliable [ABC11, Elg15, KSA12, LS14, MK11, MS12].
Replica [TP15]. Replicas [CN13]. Replication [LFHF14, WWB17].
Self-synchronized [HB11]. Semantic
[CW12b, Hsu12, IJM14, JK12, VL13, ZDM+15, vDBvEW10, FLZC15].
Semantically [MKW11]. Semantics
[CW12b, Hsu12, IJM14, JK12, VL13, ZDM+15, vDBvEW10, FLZC15].
Semantically [MKW11]. Semantics
[CW12b, Hsu12, IJM14, JK12, VL13, ZDM+15, vDBvEW10, FLZC15].
Semi-Extended [KV15b]. semi-Markov
[XHTH13]. Semi-Track [XYL+11].
Semi-trusted [XZLW15]. Sensational
[YGFL15]. Sensing
[Ano10, TMOO11]. Sensitive
[KSPR15, SSS16, Tan15]. Sensor
[ACG+11, AFGG11, AHH10, BN14, BL11, BEG+16, BY14, BS10a, CCF11, CLRJ14, CWS+10, CDYC11, Cor11, DE10, DA14, DSTC12, DBHC15, ER14, ELS11, FT11, GPK11, GN10, GTS+11, GTB10, GLL+13, HJS+13, HLJ+15, HB11, HZHC11, KAAE11, KTRJ10, KXS+10, KLT+15, LTL10, LWPZ13, LCLL12, LSGC10, MT11, MGBD15, MS11, OKG+12, PANH10, RL11, Rog11, SJ14, SLV+11, SM16, SYH11, SJS12, TLRE11, TB11, VRAC11, WN11, WOV+10, WBS15, YC14a, YWSH10, YDE11, YNN11, ZTBW11, ZBY+10, ZLX+15, ZLYX10, dFHP+11].
Sensor-Based [MGBD15].
Sensor-Instrumented [FT11].
Sensor-Network [MMPB10]. Sensorset
[TB10]. Sensors [BY16]. Sequence
[SC10, VRD10, WCO10]. Sequences
[Bla13, HT15, HT16, HT17, SV15, SLL15, WWH12].
Sequential
[Cha10b, GOR+10, LR10, OKT+16, Vel10].
Sequentially [CFJ+10]. Series
[KNHK12, NHMI13, SZL15, ZCL+12].
Server [Che15a, Do11, GMSV14, JWCC13, Mtt10, RDB14b]. Server-Aided
[GMSV14].
Server-Designation [Che15a]. Service
[AAZ13, BZS+16, BDC11, BKBK14, CWS+10, CL16, DTFT11, DTFT12, EV16, GVVL12, HMM11, HuRH+15, KZCJ14, LCH16, LP14, LWS+14, LDB+15, LÖ10, MDS15, NRZQ15, PZL12, WXP+10, ZSX10].
Service-Based [LP14, LDB+15].
Service-Oriented [PZL12]. Services
[Ang13, BV15, Elg15, FLZC15, GLBS13, HLC10a, HJM12, IDVGM+13, JSP13, KHC15, LPL14, SBBR12, SVPI13, SSY15, ZHL15]. Session [HLC10a]. Set
[AJ15, BG15, BKP11, BK12a, BK12b, BK14, CLW11, LC14, LHC16, MSH+11, PH15, RCS16, YCL15]. Set-to-Set [BK12b, BK14].
Sets [HJK13, JOSO14]. Setting
[MZHY15, ZHL15]. Setup [HIJM12]. Seven
[CF13]. SFP [HGRV15]. Shape
[CML16, KYU11, NLDH11, SY13]. Share
[LTC+15]. Shared
[CFJ+10, NSRP15, NH13, OKG+12, OBA16, ZC10, wZIG15, PZPS15]. Sharing
[CK10, CCL+13, DD10a, EOIH15, LPL15, LY10, LTC+15, LZZ+17, MK13, VB16, YC11, EFV15]. Shift
[ZH15]. Shih
[Joh10]. Short
[GMS11, PRJ11, XGLM14]. Shot
[BPK10]. Shuffle [GÁVRR16]. Side
[KH10, RDB14b]. Side-Channel
[KH10]. Sign
[IMS10, LL15, ZHY+14]. Sign-On
[LL15]. Signal
[CCUA14]. Signature
[ASS15, AEHS15, GJJ15, GMSV14, HHL10, HZ15, LTH+15, LDZ16, LYY+16, LGPRH14, OBA16, ST16, Tan11, TTH15, WZXL12, WLB15, WYML16, WHL16, XGLM14, YMWS11, YLA+13, ZJ14]. Signatures
[GdM16, GMS11, HMS+12, WLI+14, YT16b]. Signcryption
[CMA14, HWY11, IL15, ZCL13].
Significance
[BPK10]. Significantly
[YZLC15]. Signing
[DGFHZT13, YAM+15].
Signposting
[Thi11]. SIMD
[HWXD14]. Similarity
[Cha10a, DG13, HPG+15, NZ14, ÓKA11, TA16b]. Similarity-Based
[HPG+15]. Simple
[Cha10b, Xie11, ZH15]. SimpleLock
[YY16]. Simplified
[RHF+15]. Simulated
[HGZ10]. Simulation
[GLK+16, GB15, yHRT+12, Jar12, KOA15, LDK11, TKB11, WXP+10]. Simulator
System-on-Chip [Jas10, Nur07]. Systematical [OLL15]. Systems [AC14, Aw13, BL11, BJY11, BL15b, BL16, Bro10, BMG12, CFMR14, Cha10b, Chel5b, CLL10, Cro10, CWCS14, Dim13, DCLN11, DN16, FM11, Fra11, GB14, HGZ10, HS11, Hsu12, HHCL10, Jar12, JRC+10, JK12, JMB12, KAS13, KSH+14, LDK11, LE13, LWD16, LS10, LY10, LSTC11, LFHC14, LBC14, Lio13, Lop13, MSH+11, MK11, MSWI+12, Nil10, PABD10, RTE+13, RSW14, RA14, RRCC+15, RJV13, RLJ15, RMRI15b, SL14, SL10a, TD12, VL13, WYL+13, YGH+14, YIUH14, YHS+17, YGLW15, wZfG15].

Time-Based [IDVGMP+13].
Time-Branching [GF13].
Time-Dependent [DB15]. Time-Related [ZH14]. Time-Series [KNHK12, NHMI13].
Timed [Tan15]. Timed-Ephemerizer [Tan15]. Times [DTFT11, DTFT12].
Timing [CK10, GB14]. Token [ZM16].
Token-Leakage [ZM16]. Tolerance [CNV13, HZHC11, ZMSM13]. Tolerant [Fan11, LTL10, YWR+14, ZM16, ZX16].
Topology [BHAC10, JC10, KNHK12, LW13, YZLC15, YDE11]. Total [ABS13].
TPR [NHC13]. Trace [BMG12, PiLCH11, WJ16]. Traceability [BJY11, WYML16, WHLH16, WSR11].
Traffic [ASCTFP16, CLSV15, FGS15]. GIP+12a, GIP+12b, HM16, KKPBF4, RLVRGA15, XHTTH13, ZYWW13, ZH14].
Training [BMRS11, KNHK12]. Traitor [LW16]. Trajectory [LZHS14].
Transactional [LM17]. Transactions [DG15b, TV15]. Transductive [KLL14].
Transfer [GRK13, HSMY14, HLC10b]. Transform [BCPV11, NS16].
Transformation [Kha16, VM14]. Transformations [RC16]. Transient [CTIAP12, LJA13]. Transit [CCUA14].
Tree [BPBRT16, Kuo10, Tah11, Yil12, NHC13].
Trees [CFJ+13, Kor11, Lev10a, LHC11, LHL16, SSS16, TRY16, WW17, WCW10, WCC13, YC14b, YLC15, YTV16, RM08].
Trench [NHMI13]. Trends [ZYR+13]. Tri [WWHL12]. Tri-view [WWHL12].
Trust [BL16, KMSM15, MDS15, PYM+15, RHH12, TV15, WLY+15, YGLW15, Zha15].
Trust-Aware [YGLW15]. Trusted [FPY15, YCR16, XZLW15]. Tuning [TLRE11, TB10]. Turing [Lav12, For12].
Turkish [KCC10]. Turning [GF13, Har10b].
TWS [OKG+12]. Type [DTFT11, DTFT12, LM17, Ort11, SH15].
Type-Flaw [SH15]. Typo [Ort11].
Typicality [mAYL10].
U [VBBR16]. U-Library [VBBR16].
Ubiquitous [OS16, PSP14, RiCH10, SL10a, VBBR16].
Understand [HY15]. Understanding [Sab11, VKZ+10]. Underwater [LCL12, SM16]. Unicyclic [TRY16].
Universal [LK14, WF10]. Universe [LW16]. University [Maj10]. Unknown [CLR14, GSAS12, Sin12]. Unranking

Web-Orchestrations [GSS14].
Weierstrass [LL11a]. Weight [BS16].
White-Box [BW16]. Wicked [SGH15]. Width [DP16]. Wikipedia [SSS12a, WZX+12]. Window [MDY15].
Wireless [ACG+11, ABG+12, AFGG11, AUB11, BN14, BBM10, BS10a, CLSV15, CCF11, CCC+10, Cor11, DA14, DSTC12, Dim13, ER14, ELS11, GPK11, HJS+13, HLJ+15, HLC10b, HZHC11, Hu14, HC15, HH14, IAG+14, KAAE11, KTTRJ10, Kon10, LTL10, LHM+15, LW13, LSG10, MK13, RDB+14a, RL11, SJ14, SM16, SYH11, THP+11, THP+12, WOV+10, YWSH10, YDE11, ZBY+10, ZLYX10]. within [Ano10]. Without [ASS15, CCL+13, GSW+16, GMS11, LTC+15, YLA+13, LTW10]. Witold [Gaz10]. WLANs [IAG+14, KKP14].
Word [FNP12]. Word-Based [FNP12]. Words [GdM16]. Work [NTSA16].
Workflow [EV16, PB12, WLH15a]. Workflow-as-a-Service [EV16].
Workflows [EV16, VLI+13, WS15]. [AAHTH10]
Workload [RAKJ17]. Workload-Aware [RAKJ17]. Workloads [NTSA16].
Workshop [Jar11]. World [ABG+12, ARVR15, Lav12, Lev10a, LZN+16, YZLC15].
XML [ABS14, KKM+15]. XPath [ZLL+14].

References

REFERENCES

REFERENCES

[ACW13]

[ADBPLV13]

[ADBPLV13]

[ADML+13]

[AEHS15]

Nuttapong Attrapadung,

REFERENCES

REFERENCES

Anon:2010:ISI

Ammann:2008:IST

Abid:2015:RDB

Asghar:2011:HSM

Andrade:2016:AIF

Arsuaga-Ríos:2015:MSW
María Arsuaga-Ríos and Miguel A. Vega-Rodríguez.
REFERENCES

Ahmadinia:2011:HAE

Ait-Salaht:2016:PAQ

Ayyildiz:2015:DSD

Sun:2017:ESM

Asaar:2015:IBM

Alam2015:ACF

Akyurek2011:DOL

Akila2016:FBE

Awan2013:EPE

Al-Zubi2014:MBD

Bacon2012:CFP

REFERENCES

REFERENCES

Bessiere:2014:GCD

Bhuyan:2011:SPS

Bajuelos:2014:GOG

Balasundaram:2017:IRT

Bergstra:2013:GE
Bergstra:2013:CMG

Bahi:2012:SCS

Bajuelos:2015:SRO

Bozzano:2011:SDP

Basso:2011:BWC
Babaee:2014:DMC

Binucci:2016:CQU

Bayir:2011:WBP

Both:2013:DMM

Beal:2013:E

Barbuti:2010:AIA

REFERENCES

[Burgin:2012:EAE]

[Bahi:2016:RDS]

[Beccuti:2014:COR]

[Beccuti:2015:SND]

[Blanco:2015:MSO]

[Bankas:2015:NMA]
Edem Kwedzo Bankas and Kazeem Alagbe Gbolagade. New MRC adder-based reverse converter for the moduli set $2^n, 2^{2n+1} - 1, 2^{2n+2} - 1$. *The Computer Journal*,

[BFG15]
REFERENCES

REFERENCES

Bhuyan:2014:DDD

Bossard:2011:NNS

Bekos:2010:AFB

Bade:2011:ABE

Badia:2015:FDN

Bidgoly:2015:MQV

Sebastián Basterrech, Samir Mohammed, Gerardo Rubino, and Mostafa Soliman. Levenberg–Marquardt training algorithms for random neural networks. *The Computer...
REFERENCES

Babamir:2014:AKP

Benois-Pineau:2010:SDR

Bradley:2010:URM

Bradley:2010:MD

Blin:2016:NSS

[BN14]

[BPK10]

[BP10]

[Bra10]

[BPBRT16]
REFERENCES

REFERENCES

Benveniste:2011:CIL

Beal:2013:EST

Buzen:2012:CUR

Balbo:2015:AMM

Baek:2013:SPK

Bai:2016:ALC

the Centenary of Alan Turing.

[Special Focus on the Centenary of Alan Turing.

the Centenary of Alan Turing.]

[BV15]

[BVS+13]

REFERENCES

org/content/55/7/887.full.pdf+html. Special Focus on the Centenary of Alan Turing.

Calamoneri:2011:LPO

Calamoneri:2011:LPU

Cao:2014:NIL

Cakir:2011:MMC

Chang:2014:SDT

REFERENCES

Cheng:2010:EQB

Chiu:2011:UCA

Cardone:2011:CNO

Chou:2013:UGS

Chanloha:2014:CTM

Chen:2010:RAA

Chien-Liang Chen, Shao-Chi Chin, and Hsu-Chun Yen. Reachability analysis of aug-

Cerquides:2014:TOM

Calamoneri:2013:AGM

Calamoneri:2014:PCG

Caubet:2014:CRL

Corominas:2015:TNR

Cha:2010:CAS

Chao:2010:FMM

Chan:2011:ISR

Chehreghani:2014:EAA

Chen:2015:SSS

Chen:2015:CSA

Chien:2012:IAM
REFERENCES

pdf+html. See comment on insecurity [Wan14].

Chirkova:2014:CSE

Chien:2016:GAI

Chen:2014:BPA

Chon:2010:RSP

Ciobanu:2015:PMS

Cirstea:2011:MLC

REFERENCES

[CLS15] Cai, Shaowei; Luo, Chuan; Su, Kaile. Improving

[CLS15] Cai, Shaowei; Luo, Chuan; Su, Kaile. Improving
REFERENCES

[CMSML16] Yung-Ting Chuang, P. M. Melliar-Smith, Louise E. Moser, and Isaii Michel Lombera. Statistical estimation and dynamic adaptation algorithms for the iTrust publication, search and retrieval system. *The
REFERENCES

Correia:2013:BIT [CNV13]

Conery:2012:CSM [Con12]

Corkill:2011:DPA [Cor11]

Choi:2016:DAN [CP16]

Cios:2007:DMK [CPSK07]

Cutting:2010:SIM [CQL10]
Daniel Cutting, Aaron Quigley, and Björn Landfeldt. Special interest messaging: a comparison of IGM approaches.
REFERENCES

Cheng:2013:GFA

Cores:2014:FA

Cutigi:2016:RFB

Castel-Taleb:2012:BAT

Crowcroft:2010:IFE

Caire:2010:CAT

Cavagnino:2011:AAD

Chung:2012:CBI

Conilione:2012:FAS

Cui:2014:MRC

Chen:2010:DSE

REFERENCES

Chasin:2014:EDT

Che:2015:RPC

Chen:2010:CFC

Chen:2014:CSI

Dagdeviren:2014:EED

Orhan Dagdeviren and Vahid Khalilpour Akram. An energy-efficient distributed cut vertex detection algorithm for wireless sensor networks. The
REFERENCES

CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067 (electronic).
URL http://comjnl.oxfordjournals.org/content/57/12/1852.

[Dantchev:2011:DNC]

[Demirbas:2014:ASH]

[Daylight:2011:DRC]

[Dobrucali:2013:NCA]

[Dastjerdi:2015:ATD]

[Derguech:2015:UFC]
URL http://

REFERENCES

DEN CMPTA6. ISSN 0010-4620 (print), 1460-2067 (electronic).

Dagdeviren:2010:GMB

Denning:2012:RSC

Dimakis:2010:DBE

deFreitas:2011:MAS

Edison Pignat de Freitas, Tales Heimfarth, Carlos Eduardo Pereira, Armando Morado Ferreira, Flávio Rech Wagner, and

Ding:2012:CLS

Desruelle:2015:CDP

Djuric:2015:FSF

Dan:2012:CPM

Ding:2012:NRS

Dan:2014:OPW

DiPierro:2010:PAP

Dimitriou:2013:APR

Daneshmand:2015:TAR

Ding:2015:CWF

REFERENCES

Dorronsoro:2016:PSC Bernabe Dorronsoro and Sergio Nesmachnow. Par-

Do:2011:CAS

Dowty:2015:SED

Dias:2013:QIL

Dabrowski:2016:CWG

Dong:2011:IIC

Das:2015:DCS

De:2012:EEA

Du:2015:SDE

Dini:2013:HHS

Dao-Thi:2012:EMC

Dao-Thi:2012:EMC

Dunne:2011:CMF

REFERENCES

Esteves:2015:CPR

EFV15

El-Fakih:2016:TTE

EFY16

Elgedawy:2015:CRF

ELS11

Ergun:2011:IRM

EOIH15

Elgazzar:2015:RPA

Enigo:2014:ESN

Ergun:2011:TRN

Expósito:2016:PED

Esteves:2016:WWS

Fabeiro:2015:AGO

Fang:2010:BCP

REFERENCES

REFERENCES

REFERENCES

pdf+html. Special Focus on the Centenary of Alan Turing.

REFERENCES

REFERENCES

REFERENCES

Gong:2016:ATI

Gierasimczuk:2013:CCU

Giannetsos:2010:ACI

Gelenbe:2010:E

Gelenbe:2012:NC
REFERENCES

Gazda:2013:TGR

Gonzalez-Ferez:2016:IPT

Gelenbe:2010:DCB

Gurcan:2011:BEC

Ghahramani:2017:GBP

Gong:2016:DFS

REFERENCES

[Goel:2012:HSM]

[Gomes:2012:CEB]

[Gomes:2012:EBP]

[Garhwal:2016:PFR]

[Gu:2015:EIB]

Ming Gao, Cheqing Jin, Weining Qian, and Xueqing

REFERENCES

/Gavulas:2011:MWS

Damianos Gavalas, Grammati Pantziou, and Charalampos Konstantopoulos.

/Grassmann:2012:CBR

/Girschick:2013:ATD

Tobias Girschick, Ulrich Rückert, and Stefan Kramer.

/Garcia-Reinoso:2015:AEP

/Greve:2012:ESF

/Grigorious:2017:PDC

REFERENCES

Guo:2015:AAM

Gelenbe:2010:FDN

Ghica:2011:CMP

Gorski:2015:LPF

Gorman:2016:GGO

Gonzalez-Valenzuela:2012:LSD

Harrison:2010:TBT

Hartley:2011:ECY

Hernandez:2011:FAS

Hayes:2013:CDN

Huang:2015:BRR

Huang:2015:PSC

REFERENCES

REFERENCES

REFERENCES

org/content/56/10/1154.
full.pdf+html.

Hong:2013:DMM

Jinpyo Hong and Hwangnam Kim. A dual mobility model
with user profiling: Decoupling user mobile patterns
from association patterns. The Computer Journal, 56
(6):771–784, June 2013. CODEN CMPJA6. ISSN
0010-4620 (print), 1460-2067 (electronic). URL http://
comjnl.oxfordjournals.org/content/56/6/771.full.pdf+html.

Hmood:2015:A

Haider Salim Hmood, Zhiting Li, Hasan Khalaf Abdulwahid, and Yang Zhang.
comjnl.oxfordjournals.org/content/58/4/973.

Huang:2015:SMP

Chun-Chieh Huang and Ren-Song Ko. A study
on maximizing the parallelism of macroscopically
derived routing algorithms for WSNs. The Computer Journal, 58(12):3306–
3324, December 2015. CODEN CMPJA6. ISSN
0010-4620 (print), 1460-2067 (electronic). URL http://
comjnl.oxfordjournals.org/content/58/12/3306.

Hu:2015:EHS

Yanling Hu and Anfeng Liu. An efficient heuristic sub-
traction deployment strategy to guarantee quality of
event detection for WSNs. The Computer Journal, 58
(8):1747–1762, August 2015. CODEN CMPJA6. ISSN
0010-4620 (print), 1460-2067 (electronic). URL http://
comjnl.oxfordjournals.org/cgi/content/abstract/53/7/918; http://comjnl.
oxfordjournals.org/cgi/reprint/53/7/918.

Huang:2010:DHT

Chung-Ming Huang, Jian-Wei Li, and Chun-Ta Chen.
Distributed hash table-based interrogating-call session control function network in the Internet protocol
CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067 (electronic). URL http://
comjnl.oxfordjournals.org/cgi/content/abstract/53/7/918; http://comjnl.
oxfordjournals.org/cgi/reprint/53/7/918.

Han:2015:IDA

Huang:2015:MSE

Hartmann:2011:CFK

Harn:2011:FDM

Houidi:2015:EMO

REFERENCES

REFERENCES

[HT16] Robert M. Hierons and Uraz Cengiz Türker. Dis-
REFERENCES

Hou:2016:NEC

Huang:2014:EUS

Huang:2011:HSK

Hu:2012:ANS

Hao:2016:IR

Honda:2011:UTP

[IK17] Adnan Idris and Asifulallah Khan. Churn predic-
REFERENCES

Islam:2015:LFP

Ipate:2015:MLT

Iqbal:2013:MEM

Jarvis:2011:UPE
REFERENCES

Jayaraman:2012:SIS

Jun:2010:DCC

Janicke:2013:DAC

REFERENCES

REFERENCES

Janicki:2015:CPC

Jang:2015:DCM

Jin:2013:EII

Jung:2012:DCL

REFERENCES

REFERENCES

REFERENCES

Kamareddine:2012:CRi

Kamareddine:2012:CRj

Kamareddine:2012:CRk

Kamareddine:2013:CRa

Kapus:2011:CSD

Khan:2013:RPA

Krishnamoorthy:2012:RMC
Shivsubramani Krishnamoorthy, Preeti Bhargava, Matthew Mah, and Ashok Agrawala. Representing and managing
the context of a situation.

Klein:2010:UFC

Kutlu:2010:GTS

Kim:2015:FFC

Kumar:2014:AQS

Kim:2015:SCA

REFERENCES

Khan:2011:DCP

Khan:2016:TOS

Kim:2014:ACT

Kayes:2015:OOB

Kabir:2015:IUS

Kaivani:2011:DCR

Kallel:2015:ETI
Slim Kallel, Mohamed Jmaiel, and Sumitra Reddy. En-

Kukla:2012:SSL

Klempa:2015:JFX

Kavakli:2015:PIP

Kim:2014:DMT

Kim:2010:FGR

Karaoglan:2014:SDS

Kong:2015:FMB

Kong:2015:RED

Khomenko:2014:DCC

Klavzar:2016:ADI

REFERENCES

Kanwal:2015:TTM

Krivka:2016:PSG

Katagiri:2012:MEO

Kheiri:2014:CCV

Kheiri:2015:CCC

Kara:2015:MRM

Ahmet Kara, Halit Og

Kheiri:2015:CCC

REFERENCES

Klein:2012:SDM

Kushwaha:2016:MOS

Karaata:2012:OIS

Kong:2014:NBC

Khan:2015:QQA
REFERENCES

Kucukyilmaz:2012:PFM

Kays:2011:TAL

Kuo:2010:GTC

Kupcu:2015:OAS

Kaushik:2015:GEM

Achal Kaushik and Deo Prakash Vidyarthi. A green energy
model for resource allocation in computational grid.
CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067
(electronic). URL http://
comjnl.oxfordjournals.
org/content/58/7/1530.

Kumar:2015:IAM

Ajay Kumar and Anil Kumar Verma.
An improved algorithm for the metamorphosis of semi-extended
regular expressions to deterministic finite automata.
CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067
(electronic). URL http://
comjnl.oxfordjournals.
org/content/58/3/448.

Kang:2016:CPE

A. S. Kang and Renu Vig.
Comparative performance evaluation of modified prototype filter bank multi-carrier cognitive radio under constraints of L_p, K, N and D.
CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067
(electronic). URL http://
comjnl.oxfordjournals.
org/content/59/10/1479.

Kulekci:2012:FPM

M. Oğuzhan Küleki, Jefrey Scott Vitter, and Bojian Xu.
Fast pattern-matching via k-bit filtering based text decomposition.
CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067
(electronic). URL http://
comjnl.oxfordjournals.
org/content/55/1/62.full.pdf+html.

Kim:2011:MAE

Minseong Kim and Andy Wellings.
Multiprocessors and asynchronous event handling in the real-time specification for Java.
The Computer Journal, 54(8):
1308–1324, August 2011.
CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067
(electronic). URL http://
comjnl.oxfordjournals.
org/content/54/8/1308.
full.pdf+html.

Kiely:2010:ALF

Aaron Kiely, Mingsen Xu,
Wen-Zhan Song, Renjie Huang, and Behrooz Shirazi.
Adaptive linear filtering compression on real-time sensor networks.
The Computer Journal, 53(10):
CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067
(electronic). URL http://
comjnl.oxfordjournals.
org/content/53/10/1606.
full.pdf+html.
Kebapci:2011:PIR

Kong:2016:ABA

Lin:2012:AAA

Lee:2011:PCA

Laroussinie:2010:BRC

Lavington:2012:SBB

REFERENCES

Llopis:2014:SEE

Ling:2014:NSD

Layek:2016:ADD

Liu:2012:IKD

Liu:2011:CCL
REFERENCES

REFERENCES

REFERENCES

Li:2011:IAA

Liu:2015:MCE

Lopez-Garcia:2014:PBB

Lee:2011:AGP

LeMartelot:2013:FMS

Liu:2011:ESF
REFERENCES

REFERENCES

REFERENCES

Luo:2010:ILP

Le:2011:RMA

Lin:2011:IRS

Lee:2014:SSD

Lee:2015:TSS

Lv:2017:HCP

REFERENCES

135

Cycle-and-Path-Embeddings in-k-Ary-n.

Liu:2015:GEE

Lloyd:2013:SID

Lin:2016:ITR

Lee:2016:CAM

Li:2013:EPD

Locatelli:2010:ASC

[Luo:2012:FSI]

[Li:2015:QDF]

[Lengyel:2015:QAM]

[Liu:2017:TIT]

[Luccio:2016:CBR]

REFERENCES

REFERENCES

Lee:2010:SDC

Lee:2012:ANC

Lim:2014:CAM

Liao:2014:LBA

Lloret:2010:SEW

Liang:2015:EFC

Kaitai Liang, Willy Susilo, Joseph K. Liu, and Duncan S. Wong. Efficient and fully CCA secure conditional proxy re-encryption.

[LR10]
[LS14]
[LSCG10]
[LSLW15]
REFERENCES

Lin:2010:ITL

Lin:2010:MKM

Li:2016:OMA

Jia-Jie Liu, Yue-Li Wang, Xiaoshe Dong, and Zheng-dong Zhu. The optimization of memory access congestion for MapReduce appli-

REFERENCES

Lin:2010:RSP

Liu:2011:OAU

Li:2014:CSR

Liu:2016:FIT

Liu:2015:ITA

Luna:2016:DMO

Liu:2017:OPE

Lei:2013:FLA

Malacaria:2010:PAP

Marecek:2010:BRB

Marshall:2010:MDR

R. Marshall. Modeling

Yeung:2010:FMO

Mefteh:2016:MFM

Mao:2015:PUA

Munoz:2015:SRA

Manzalini:2011:SOC

REFERENCES

Marudhadevi:2015:TEM

Meghanathan:2016:MAM

Melucci:2013:DQI

Merca:2013:BDS
Movahedi:2015:ASB

Munoz-Hernandez:2016:EES

Moore:2010:SCC

Milner:2010:DRB

REFERENCES

Misra:2014:CIF

Mitrani:2010:MSF

Mitchell:2012:BC

Mavromoustakis:2011:ESO

Mavromoustakis:2013:PEO

Maalej:2015:SLW
REFERENCES

[MMPB10] Alessandra Mileo, Davide Merico, Stefano Pinardi, and Roberto Bissani. A logical approach to home healthcare with intelligent

Moller:2013:MKG

Maneth:2017:DS

Mostafa:2014:MPD

Mitrokotsa:2013:SNL

Mewada:2015:NST

Miller:2015:MLA

REFERENCES

[Markham:2011:AED] Andrew Markham and Niki...

Murtagh:2010:CAP

Murtagh:2010:UAI

Min:2016:RSC

Ma:2015:PKE

Nguyen:2012:SGM

REFERENCES

Nagao:2013:TSM

Ni:2016:MEP

Nicholson:2011:DAA

Nilsson:2010:CAM

Nath:2014:MMS

Nixon:2011:UPA
REFERENCES

Arambam Neelima and
REFERENCES

Ozer:2016:PLT

Ou:2015:SPA

Ortín:2011:TIO

Osborn:2016:SSR

Ortega:2014:FEL

Gloria Ortega, Francisco Vázquez, Inmaculada García.

Parmar:2015:MRV

Pardón:2010:HRM

Parnidis:2010:PBS

Parhami:2015:DAN

Pandey:2012:SWA

Piso:2014:OAE

Perks:2013:TAM

Park:2014:HPD

Paz:2012:CEG

Piraghaj:2016:VMC

Petric:2012:ODC

Ingrid Petric, Bojan Cestnik, Nada Lavrac, and Tanja Ur-

Pereira:2015:PKE

Pekergin:2012:ISI

Penrose:2010:DRB

Petrou:2011:FTR

Polyvyanyy:2014:MSA

REFERENCES

REFERENCES

Picking:2010:CSU

Pinto:2011:SEM

Petrenko:2015:GDM

Perez:2017:UCP

Perazzo:2015:DRL

REFERENCES

REFERENCES

[QZXR15] Guangjun Qin, Mingfa Zhu, Limin Xiao, and Li Ruan. Lessen interflow interference using virtual channels

Radivojevic:2016:CBP

Radi:2014:NIL

Ramadan:2014:OFV

Ren:2016:IBE

168

REFERENCES

Rivera-Illingworth:2010:DNN

Riguzzi:2014:SIP

Romero:2013:TMB

Roelleke:2015:HAI

Rios:2011:ECA

Rosado:2015:SIS

[RLJ15] David G. Rosado, Nadira Lammari, and Jan Jürjens. Special issue on secure in-
REFERENCES

[Rmgt11] Gabriel Rodríguez, María J. Martín, Patricia González,

REFERENCES

[RSW14] Michel A. Reniers, Rob

Ruijters:2012:GPA

Ramos:2013:DSJ

Soysal:2011:JUA

Sabah:2011:NLU

Sakellari:2010:CPN

Shao:2016:LDC

Sarbazi-Azad:2011:TPG

Serhani:2012:SFB

Shih:2010:SCP

Sevinc:2011:EGA

Sepehri:2015:PPQ

REFERENCES

Simko:2015:FVA

[SHH+15]
Viliam Simko, David Hauzar, Petr Hnetyuka, Tomas Burces, and Frantisek Plasil.

Shih:2008:DWS

[Shi08]

Su:2015:EEE

[SHL+15]

Stedmon:2011:MER

Sharifi:2014:STM

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume (Issue): Page(s)</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

[Simao:2010:FCD] Adenilso Simão and Alexandre Petrenko. Fault coverage-

Shiaeles:2015:FI

Sajeev:2010:MEO

Suksomboon:2011:PNQ

Skandhakumar:2012:AFU

Saez:2017:PDP

[SPRR+17] J. C. Saez, A. Pousa, R. Ro-
Sadri:2010:SIA

Sukthankar:2010:ATD

Seo:2012:ACI

Spanakis:2012:EWK

Starka:2012:ACS

Saikkonen:2016:CSM

Sheng:2015:ACA

Shen:2016:RMM

Shoaran:2017:EZK

Szczerekbak:2014:KNS

Suzuki:2013:SID

Sabri:2015:TRG

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steiner:2015:CMI</td>
</tr>
<tr>
<td>[SVG+15] Thomas Steiner, Ruben Verborgh, Joaquim Gabarro, Erik Mannens,</td>
</tr>
<tr>
<td>and Rik Van de Walle. Clustering media items stemming from multiple</td>
</tr>
<tr>
<td>CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067 (electronic). URL http://</td>
</tr>
<tr>
<td>comjnl.oxfordjournals.org/content/58/9/1861.</td>
</tr>
<tr>
<td>Serral:2013:CAC</td>
</tr>
<tr>
<td>[SVP13] Estefanía Serral, Pedro Valderas, and Vicente Pelechano. Context-</td>
</tr>
<tr>
<td>adaptive coordination of pervasive services by interpreting models dur-</td>
</tr>
<tr>
<td>CMPJA6. ISSN 0010-4620 (print), 1460-2067 (electronic). URL http://</td>
</tr>
<tr>
<td>comjnl.oxfordjournals.org/content/56/1/87.full.pdf+html.</td>
</tr>
<tr>
<td>Stoilos:2015:FEO</td>
</tr>
<tr>
<td>[SVS15] Giorgos Stoilos, Tassos Venetis, and Giorgos Stamou. A fuzzy exten-</td>
</tr>
<tr>
<td>2956–2971, November 2015. CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067</td>
</tr>
<tr>
<td>(electronic).</td>
</tr>
<tr>
<td>Subramani:2014:CIZ</td>
</tr>
<tr>
<td>[SW14] K. Subramani and James Worthington. On certifying instances of</td>
</tr>
<tr>
<td>zero-clairvoyant scheduling. The Computer Journal, 57(1):129–137, Janu-</td>
</tr>
<tr>
<td>ary 2014. CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067 (electronic).</td>
</tr>
<tr>
<td>Swade:2011:IUE</td>
</tr>
<tr>
<td>Journal*, 54(1):143–147, January 2011. CODEN CMPJA6. ISSN 0010-4620 (prin-</td>
</tr>
<tr>
<td>t), 1460-2067 (electronic). URL http://comjnl.oxfordjournals.org/content/</td>
</tr>
<tr>
<td>54/1/143.full.pdf+html.</td>
</tr>
<tr>
<td>Sun:2013:ISP</td>
</tr>
<tr>
<td>[SWG13] Wei Sun, Tao Wen, and Quan Guo. Improving the start-up performance</td>
</tr>
<tr>
<td>ber 2013. CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067 (electronic).</td>
</tr>
<tr>
<td>Sun:2012:SPR</td>
</tr>
<tr>
<td>[SWLZ12] XiaoXun Sun, Hua Wang, Jiuyong Li, and Yanchun Wu.</td>
</tr>
<tr>
<td>Improving the start-up performance of the TFRC protocol. *The Computer</td>
</tr>
<tr>
<td>(print), 1460-2067 (electronic). URL http://comjnl.oxfordjournals.org/con-</td>
</tr>
</tbody>
</table>

Shiah:2013:CCD

Savas:2015:GMA

Suenaga:2011:GMM

Su:2015:DT

Sun:2015:ECF

REFERENCES

[Tang:2015:ETE]

[TCL15]

[Tate:2010:SPT]

[TD12]

[Turgut:2011:HAT]

[TEP+16]

Takahashi:2015:ROC

Turkay:2011:IIT

Taherkhani:2011:RAU

Turkay:2011:IIT

Taherkordi:2011:GCB

Tang:2015:ECP

Tynan:2011:CIP

[Tsai:2014:GTT]

[TPG+15]

[Trcek:2010:SMF]

[Trujillo-Rasua:2016:CMA]

[Traub:2012:WRC]

Taniar:2011:SNR

Tseng:2012:ERI

Tseng:2015:LFI

Tupakula:2012:DSB

Tseng:2015:TES

Tong:2014:ANP

REFERENCES

Thomas:2011:MVA

Ulmer:2011:BRW

Veni:2016:MET

Valmorbida:2016:ULI

Valova:2010:NPA

Varghese:2014:CBI

Abraham Varghese, Kannan Balakrishnan, Reji Rajan Varghese, and Joseph S. Paul. Content-based im-

REFERENCES

Vazquez:2011:MIS

Vu:2015:NAN

Verma:2010:UQM

Vavpetic:2013:SSD

VallejosC:2014:FTM

Vinyals:2014:MPA

REFERENCES

Veloudis:2016:NPH

Vigueras:2016:UGA

Vinyals:2011:SSN

Wang:2014:IJA
Huaqun Wang. Insecurity of ‘Improved Anonymous Multi-Receiver Identity-Based Encryption’. The Com-
REFERENCES

Wang:2016:SDM

Wu:2015:CPM

Wu:2013:RUA

Weng:2010:BBP

Weng:2012:BBP
See [Chi12].

Wang:2016:SDM

Wu:2015:CPM

Wu:2013:RUA

Weng:2010:BBP

Weng:2012:BBP
Wang:2015:EMR

Wu:2010:LGN

Wang:2015:HPD

Wegner:2012:EC

REFERENCES

the Centenary of Alan Turing.

[Wetherfield:2010:PRP]

[Wu:2010:MRS]

[Wei:2014:NEA]

[Weiler:2017:ESE]

[Whittle:2012:NCC]

[Whittle:2012:NMO]

REFERENCES

[199]

REFERENCES

Wu:2012:PCH

Wu:2011:SPF

Wang:2011:MMW

Wiese:2017:RSM

Wang:2011:MMW

YW:2011:MMW

REFERENCES

Wang:2012:NIS

Xu:2014:AHA

Xie:2013:FBA

Xue:2015:NNM

Xie:2012:AHA
REFERENCES

Xie:2014:MLU

Xiang:2011:MAB

Xi:2011:CKV

Xu:2014:SIS

Guandong Xu, Aoying Zhou, and Nitin Agarwal. Spe-

REFERENCES

Yevtushenko:2015:DCD

Yang:2015:SHI

Yang:2014:IMP

Yuan:2015:SSS

Hsieh:2012:SSP

Yu:2017:PNB

Yildiz:2012:UDT

Yang:2015:PLB

Yasin:2014:OMS

Yang:2012:WSI

Yu:2016:DLR

Yu:2011:IRS

Yu:2011:CLE

Yuksel:2011:SKE

Yen:2015:MSM

Yumbul:2015:EEP

Kazim Yumbul and Erkay Savas. Enhancing an embedded processor core for efficient and isolated execution of cryptographic

Yang:2015:EPS

You:2012:ECR

Younes:2011:SMI

YT:2016:VSF

YT:2016:FIS

REFERENCES

Yao:2014:GFT

Yi:2010:CGS

Yesilyurt:2015:RWM

Yu:2012:AAW

Yang:2010:SEP
Xuejun Yang, Ji Wang, and Xiaodong Yi. Slicing execution with partial weakest precondition for model abstraction of C programs.

REFERENCES

Zhan:2015:VSA

Zheng:2015:RAC

Zuo:2015:CRE

Zhu:2012:PPP

Zhao:2016:HFD

Zhou:2014:TDP

REFERENCES

Zhang:2016:LRR

Zhou:2015:DCD

Zeyda:2014:CMS

Zupancic:2015:MAA

Zhou:2014:EIM

Zhang:2015:CSA

Zheng:2010:CLO

Zhang:2016:TLT

Zhao:2013:LLF

Zhao:2013:LIF

Zhou:2011:ERB

Zhang:2015:FAA

Zhu:2015:MLS

Zhai:2014:NLB

Zhang:2015:FER

Zhao:2016:RFB
Hongzhi Zhao and Yuan Xue. RSD fault block model for highly efficient fault-

References

Zhao:2016:CGD

Zh:2014:OML