A Bibliography of Publications in *Computer Languages*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
16 April 2018
Version 2.36

Title word cross-reference

\[8_{1/2} \text{[Mic96].} + \text{[NL95].} C \text{[MVT+16].} k \text{[AG17].} \mu \text{[CCRS18].} O(n) \text{[BS92].}
\]

-DSU \text{[CCRS18].} -inductive \text{[AG17].}

\]

\[1 \text{[Sul75].} \text{14 [HM18].} \text{16th [DL17].}
\]

\[2 \text{[DNR90, Sal92].} \text{2-offset [CAS08].} \text{2001 [Ano01b].} \text{2011/12 [LP16].} \text{2013 [HM18].} \text{2013/14 [HM18].} \text{2013/2014 [HB16].} \text{2015 [GAS17].} \text{25 [Ano99].} \text{26 [Ano00].}
\]

\[27 \text{[MB13].} \text{28th [MB14].} \text{29th [Bry15].}
\]

\[3 \text{[Led99b, Led99c, Led99e].} \text{3-Tier [Led99a].}
\]

\[30th [Bry16]. \text{370 [FF75].} \text{3rd [HB16].}
\]

\[4 \text{[Led99d].} \text{4th [HB16].}
\]

\[6.0) \text{[Led99c].} \text{67 [Sch78].} \text{6th [CPPV15].}
\]

\[7th [CPPV15].
\]

\[8 \text{[Led99a].} \text{80 [GL95].}
\]

\['92 [CB93b]. \text{95 [GSX99].}
\]

ABC [AC18]. abductive [CLMT01].

Abstract\[Bai87, DL17, GZ87, HC12, BZ88, CZ11, CCF15, FW87, Jal92, Liu93, Log09, McL77, Noo85, PC15, RK93, UM17].

Abstracting\[HF87]. abstraction
Abstractions [Coo81, SS79, BEL77, Ber77, DMVY17, DNR90].
Access [SC94, AMF13, KK18, DOZ06].
accessibility [CY02]. accumulative
[Mor16]. ACM
[Bry15, Bry16, HB16, MB13, MB14]. Action
[DS93]. Active [YF98]. Activity
[Sal92, ABS17]. actor [CHS16, DMVD16].
actors [HB16, Ric16]. allocators [BCR11, ace].
acyclic [V893]. Ada [BJS93, CMM85, EL87, EHM091, GSX99, Geh82, MZGT85, SC94].
Ada-95 [GSX99]. ADABTPL [SS92].
Adaptable [RS83]. Adapting [RDT08].
adaptive [PPK11, RBY+05]. adding
[MZC10]. address [FAHC17]. advanced
[GSX99]. affine [AG17]. affix [HSS88].
Agent [BIMP17, ACZ05, ABL17, KGS17, WHKK17]. Agent-oriented
[BIMP17, ACZ05]. agents
[CLMT01, HB16, Ric16]. AGERE [HB16].
aggregates [BCR11]. agile [WHKK17].
ahread [JPB+08]. ahead-of-time [JPB+08].
aid [ZP04]. algebra [BLM93, MH07].
Algebraic [RH94, GPS17, Rus87]. ALGOL
[SB79, CHH02, NK90]. Algol-like
[NK90, CHH02]. Algorithm
[Man78, AC18, CAS08, Dha90, FNR16, Nao85, Pa16, Yan00]. Algorithms
[P884, Sal83, War78, Ban17, PS10, Sik09].
Allocation
[CAC+81, BM95, LCC07, jLtcxH90, Zob93].
allocators [UA15, UA16]. allocators [HC05].
Altering [Cov93]. alternatives [GG09].
Alua [URL02]. Amake [Bul17]. Ambient
[AKPG02]. ambients
[BCF02, BCF+04, BC02]. AmbientTalk
[VBS+14]. Among [Pet78, CLMT01].
analyzes [BGH13, KO14]. Analysis
[Liu88, MM82, Reo84, Sha80, T58+87, Wad80, ABL17, BC93, Ban17, BCF+04, BC10, CCB15, GDD12, Hor17, HY93, KDM03, LDC09, LR17, MCC17, MT05, Ozt11, RId79b, RD78, SF99, YTC02].
analyzability [HC93]. analyzer [ZGE85].
analyzers [Yan96]. Anatomy [Ree84].
AND- [HC96]. AND-parallel [PGT+96].
Android [CC15, CC16]. annotation
[Bay76]. Ann [CSL16]. annotation
[CV14]. annotations
[BC10, CSL16, SNP16]. Announcement
[Anon6a]. anomaly [MW96]. answer
[PLS10]. Answering [KP78]. APL
[GF81, SW77]. Apple [KN85].
applicability [YTC02]. Application
[BKG+08, CJ80, KJTA17, Ornl83, Sch78, GAGDL17, KS90, PLLD15].
Application-specific [BKG+08, PLLD15].
Applications
[CMM85, Ken78, Led99b, Led99c, AA09, BDL+12, CS16, CJ17, KKG92, Man10, MZC10, MGLFPC12, MP92, PLLD15, P91, RGP89, RDT08, VBS+14, Zak88].
Applicative [GS86, Sal83]. Applied
[Bry15, Bry16, MB13, MB14, Zav86].
Applying [DQ09, Cov93]. Approach
[CRC18, CJ80, RId79a, Sha80, Zav86, ABS17, ABL17, Bas75, CJ17, CC15, CC16, CO89, DTXP13, DCA+15, DCA+16, Guo16, Hoa75, Ier93, Lee05, LB06, MZC10, PFH16, Rid79b, RK18, SM94]. Approaches
[BBT15, BBT16]. Approximate [Spr79].
apps [CC15, CC16, RK18]. Arabic
[AA89, AHA95, ZA87]. ARABLAN
[AAH95]. architectural [SBM15, SMB16].
Architecture [Ano07a, KKG15, SK14].
architectures [C95, PC15, V85, VLC98, WMP+08, vOKF01]. Argos [MR01].
arithmetic [PS94a]. Arity [Bre18]. Array
[CPD93, JG93, LR17]. arrays
[DK92, DLP07, Lus02]. artificial [AC18].
ascent [Hor93]. ascent-descent [Hor93].
Ash [Led99c]. asm.js [VSN+17]. Aspect
[PCB+18]. Aspects
[HH06, Was79, Al16, DGU91]. Assembling
[Tay96]. assertions [Jay92]. assessment
[IS18]. Assignment
[Sm79, Dha88, Dha90, Sik09]. assistance
[AdLNW18]. assistants [AA09].
Associated [Fe84], Associative [CRP00], atomic [DLP15, YF98], Atomistic [NN17], attaching [AA09], attribute
[CY02, DPP10, Geh77, MS89, Yan00], attribute-grammar [CY02], Attributes
[Tai79, SH15], augmenting [Li96], Author
[Ano05a, Ano05g, Ano06c], automata
[KG17, KB75, PTJ16], automata-based
[KG17], Automated [AdLNW18, CBTR17,
GAGdL17, Guo16, KK92], Automatic
[AG17, CYS+15, HL08, IS18, MT82, Man01,
BM95, CM11, DPP10, SSB94, Wet77].
Automatically [BCS9, Ear75],
automating [yCH92], automaton [MR01],
automaton-based [MR01], autonomous
[DMT10], AVX [HMHS18], aware
[BDL+12, SSS17], Axiomatic
[BEH86, Hao75].

Babbage [Frie92], Babel [Frie92], back
[SIK09], back-translation [SIK09],
backtrack [Sar94], backtracking [KPP93],
backward [LCFA10], BaLinda
[FY96, YF98], ball [Vai04], banker
[McK75], base [McL77], Based
[BKL18, CCES18, CLM83, GS86, AD07,
ACZ05, AC17, ALR15, Ban17, BLM93,
BSW15, Bou04, B10, CDW09, CBTR17,
CJD17, CCJ93, CG96, FBDH12, FL92,
Gan89a, HB16, HSS88, HGC+09, KG17,
KPN17, LR17, MA17, MR01, MCC17,
PSW95, RR99, SRRB10, SRT17, SLS18,
VMD18, Wan92, WPR06, WBG10, Zak88,
FAHC17, KS90], Bases [BCS4], Basic
[LED99c], basis [GJ89, Zoh93], bee [AC18],
beginners [Hug87, Mor16], Behavior
[Rid79a, Sar93, SWJ94], behavioral
[KPP+15, RDT08, Zdu06], Behavioural
[BC02], benchmarks [EvdSV+15].
Bergeon [LED99d], best [HC05], best-fit
[HC05], BETA [OK00], better
[KY75, Yan96], between
[FBDH12, SSM10, VMD09], beyond [Frie92],
Bidirectional [KDM03], Binary
[HT13, CYS+15, MLW05], Binding
[Sam79, VF82], bio [ABS17], bio-inspired
[ABS17], biomedical [Zak88], Black
[Ber91b], Black-box [Ber91b], blend
[GBZ09], Blocks [Pag79], Board
[Ano02a, Ano02b, Ano02c, Ano03a, Ano03b,
Ano03c, Ano04a, Ano04b, Ano05b, Ano05c,
Ano05d, Ano09a, Ano10a, Ano18a, Ano18b],
bottom [BDB90], bottom-up [BDB90],
bound [KJ12], boundaries [BCF92],
Bounded [KKNS14, KLIN15], bounds
[BJ14], box [Ber91b], BPEL [KJ12],
Branching [RGP98], Branching-time
[RGP98], bridge [FBDH12], Bridging
[YD77], brief [Frie92], Bringing [CV14],
Broadcasting [Bro88, PS94b], browser
[SB04], Buffering [Bro88], build [CJD17],
Building [Led99b, Led99c, Li96], builds
[Buf17], bulk [MH07], bulk-synchronous
[MH07], business
[LLvD01, PLD15, R18], bytecode
[DDT06, JPB+08], bytecode-to-C
[JPB+08].

C [Ano88, Bod82, CHS16, CL89, EP89,
ECB12, JPB+08, KS90, LC02, MP92, Pen05,
PE88, ZT17], C# [Fru10], C-Flavours
[KS90], cached [Buf17], Cactus [RGP98],
Calculus [GS86, Abd75a, Abd75b, AMF13,
BL92, DLP07, AKPG02], Calendar
[WPR06], Call
[Ano07a, Ano07b, Bre18, Kır02],
call-tracking [Kır02], candidates
[FT15, FT16], capabilities [CGG+09], card
[SK14], Carla [CC96], Case [Zav86, Alj16,
B194, BJ14, MKPW06, NPS17, RT18],
CASL [WMP+08], CCS [NN09], CDL
[LS90, LS94], cellular [VLC98], centric
[LDG09], chaining [HGC+09, VS93],
Chains [Ken78], challenges [PBDF12],
change [Ban17], changing [Pun01],
channel [Fis88], Characterization [DK83],
Checking [Bai86, D17, CCT08, DQ99,
GSP17, Ier93, JK+16, J196, KKP+15,
MS93, MVT+16, MP17, MP92, Pen05, Pen14, PRR12, Si04, ZP04. Chinese [TC81]. Choosing [MT82]. CHR [BKL18]. CHR-Based [BKL18], circular [SH15]. CL-ARRAY [ZT17]. Class [Log09, BDNW05], classes [Ban17, VBDPM16], classical [Har97], classification [BKSW09, WD04], clause [KG17]. Client [Led99a, CJD17]. client-side [CJD17]. Client/Server [Led99a]. clone [FT15, FT16], cloning [CHK93], cloning [FT15, FT16]. clone [FT15, FT16], cloning [CHK93]. Closer [FF86]. Closure [FL92]. Closures [FL87], clustering [AC18]. Co [MKPW06, LCC07], co-allocation [LCC07]. Co-evolving [MKPW06]. COBOL [Tha77, Pet78]. Cocke [Man78]. Cocke-Younger-Kasami [Man78]. Code [Ano88, BT86, CJ80, DK83, DH86, FL87, JRSB85, RS82, BDB90, BBR12, BC13, BM95, CAS08, CBTR17, CCJ93, Dha88, Gan89a, GDD12, Hat91, HV93, IS18, Kha10, Kha11, MT05, MKPW06, SNP16, SLS18], collaboration [MGLFCP12], colony [AC18]. Coloring [CAC+81], COM [Led99c, Led99b], Combination [FW78]. Combinator [JRSB85]. Combinators [MO83]. Combining [SA16, BM95]. Commands [Bai86], comments [AA89], common [RW09], Communicating [DH86, DMV16]. Communication [Bro88, AKPG02], communications [CC95], compact [HS03], comparing [EvdSV+15]. Comparison [Flo84, SIK09, Tha77]. Compilation [Sch78, BRB07, VMD18], compile [FL92]. Compiler [Ano07a, Ano07b, MB85, HSS88, Hat91, JPB+08, KMLS15, MB75]. Compiler-Architecture [Ano07a]. Compilers [Sha80, ZT17]. Compiling [PMS15, PMS16, WF78], complete [GL95], completely [RH18], Complex [Spr79], complexity [BZ88, IFP82, Ste84], compliant [MZC10], Component [WBGM10, CC15, CC16, FDH08, FBDH12, PSW95]. Component-based [WBGM10, FBDH12, PSW95]. component-level [CC15, CC16]. component-oriented [FDH08], components [CV16, PSW+13, Ta96, Zdu06]. composable [LMR93], composed [MW82]. composing [RDB15], composition [BBT15, BBT16, Bou04, BRT99, DSW05, PPK11, PCB+18, RBP09, Zdu06]. Compositional [GSX99], comprehensible [FT15, FT16], Computation [CIF84, Nag79, AJ93, CAS08, MST14, PT09], computational [HT13, LCC07, jLtCxH09]. Computationally [RS87], computations [DLP07, PRD02]. Computer [BS78, CF02, HR91, Rin91, Jos78, Nym95, Zak88]. computer-based [Zak88], computers [BZ88, PS94b]. Computing [Ano07b, Bry15, Bry16, MB13, MB14]. Concept [GR91], concept [MT05]. Concepts [DCA+15, DCA+16, GAS17], conceptual [GWDD06, Rod15], concerns [SNP16]. Concur [SBF80], Concurrency [Geh82, KPP93, FO02, KH12]. Concurrent [MMC15, MMC16, SBF80, Sal83, CS03, CGG+09, CO98, Dre96, GR91, GMMMP89, LfL00, MP17, MW96, Rom97, Tal93a, Tal93b], concurrent-write [CS03]. condition [SSM10], conditions [SSM10]. Conference [DL17, GAS17], Conferences [CPPV15], configuration [Zdu06], connected [PS94b], connects [Kor15, Kor16], connectors [PPK11]. Considered [Sym85], consistency [KKP+15], Constant [Tai79], constrained [KJTA17], Constraint [YG93, ZCM+17, HHLv89, LfL00, LfL00, Zim86]. Constraint-driven [YG93], constraints [Luq93]. Construct [ECB12]. Constructors [MW82], Constructs [BGMT82, Abd75a, MP00], consuming [BER00], consumption [Ozt11], container

G [Ba87, Pl9a1]. Galois [NN17]. GALS [MSRG10]. Gap [YD78, FBDH12]. general [BM95]. Generalized [Car78, LS84, PC85]. Generated [Pet78]. Generating [KR95, BC89, Noo85]. Generation [BKL18, FL87, Wad90, BM95, CAS08, CNGW09, DPP10, FL92, Gan89a, GAGdL17, Guo16, Hat91, Hor90, SLS18].

Generative [GAS17, Mor16, SSS17]. generators [Bud82, Gan89b]. Generic [Bai87, CGG90, Geh80, Bai90, Bou08, FC18, ZT17]. generics [EHMO91, TKH99]. genetic [FNRR16]. genuinely [BJS93]. genuinely-lazy [BJS93]. geometry [RH18].

Global [BT86, Zol93]. goal [Har97, Ni90, OWG93]. goal-directed [Har97, Ni90, OWG93]. goals [Lee05].

GPCE [GAS17]. GPGPU [KPN17].

Grammars [BF78, Cef81, CF79, Mic86, Pag79, BC89, Den75, HSS88, JGM98, NS93, Seb98, Yan90, BC93]. grammatical [Nym95].

Graph [BF78, BR90, BJ14, SSM10]. graphical [RK18]. graphs [Zak88]. Graphs [LB81, MO83, RS82, BC13, VS93]. GRAS [BM95]. Green [dOG06, dOG09].

HALO [HGC+09]. handle [BL99, PRD02]. Handling [Ba86, GGS2, BKYV80, CM11, CO98, CB03a, CD82, Dai94, DP98, DG94, HO90, JM06, JPB98, LW75, L890, Rom97]. hardware [DPP10]. Harmony [AC17].

Implementation [CMM85, GZ87, Geb80, HMHS18, MT82, PB84, RS83, T81, ZL81, AA89, ABG+05, BAK89, Bud82, CL97, FBDH12, FWY96, FFMB11, FW87, GWDD06, HGC+09, KJTA17, Lia92, MC96, Mic96, OWG93, RM93, VCL98]. Implementations [Sal83, CK83]. Implementing [Al16, BF78, Gri83, KNW94, VSN+17]. implicit [IvdS17]. import [FF86]. imprecise [BL99]. Improved [Man78, CCT08]. Improving [Kha11, PGT+96, Ten83, DT813]. inclusion [Ch75a]. Incremental [Hor90, MZ05, MS89, MPS90, L96, SB04, VS94]. incrementally [NJS12]. Independent [BT86, FM04, IF16, PGT+96, VF82]. Index [An000, An001b, An005a, An005e, An005g, An099, An06c]. Induced [TBKG04].
induction [PC78]. induction-inference [PC78]. inductive [AG17]. Inference [CF79, UM17, PC78, Pun01, SvE16, ZCM'17]. inferencing [KDM03].

Information [CHH02, ÁdLNW18, Ano09a, Ano10a, DCA+15, DCA+16, Hor17, KKG15, LDG09, PR10, ZTM13]. infrastructure [GDD12]. inferencing [KDM03]. information [CHH02, ´AdLNW18, Ano09a, Ano10a, DCA+15, DCA+16, Hor17, KKG15, LDG09, PR10, ZTM13]. infrastructure [GDD12].

Inheritance [SS92, Bou04, MW96, TKH99]. inlining [HWM13, KR98]. input [BER00]. input-consuming [BER00]. insertions [NN17]. inspired [ABS17]. instructions [Dha90]. integrated [KA17, LCF `A10]. Integrate [HHLv89, HHS90, PT09,´AdLNW18]. Integration [Sha81, ACZ05, LP97, MY17, Tal93b, WD04, ZTM13].

Integrity [NN17]. Intel [HMHS18]. intelligence [HLJ76]. intelligent [UA15, UA16]. intentional [MKPW06]. integrating [HHLv89, HHS90, PT09,´AdLNW18]. Integration [Sha81, ACZ05, LP97, MY17, Tal93b, WD04].

issues [CL89, COHW95]. Iteration [MP00]. iterators [Ear75].

Just-in-time [dACSAP14, VMD18].

Kasami [Man78]. kernels [KKG15].

Keyword [Ano05e, Ano05g, Ano06c]. know [Sch76]. knowledge [SNA18].

LAILA [CLMT01]. Lambda [GS86, WF78, Abd75a, Abd75b, FL92]. Lambda-Calculi [GS86, Abd75a, Abd75b].

Lambda-Expressions [WF78]. Landin [Fel87]. Language [Ano07b, BS78, Bai87, BT86, Bar82, BEL77, BGMT82, BC84, CV16, CCRS18, CPPV15, DGU91, FM04, GS86, GO88, Hoo87, Hoo89, Hu87, Joh81, KN85, KP78, MT82, MCMC05, MO83, MM82, Nag79, Nag80, orms83, PBG84, PC85, RBY+05, Rin91, SBF80, ZL81, AL85, AAH95, ALR15, Bas75, BL92, Bay76, BIMP17, BKSW09, BAK89, BON08, BGS4, CIP+00, CGG+09, yCHR92, CLMT01, CFG00, CC95, CL89, CSdL16, CHHP91, DRT97, Dja88, EL87, EvdSV+15, FHD08, KML15].
FBDH12, FFMB11, GR91, GAGdL17, dOG06, dOG09, GWDD06, HDN09, HV94, HHS90, HZ96, Hor17, Hug85, JD94, KKKG92, KA17, KNW94, LM93, LP97, LB89, Liu93, LS94, Luq93, MMRG10, MSRG10, MˇZ05, MB75, Mic96, ND77, NL95, OWW93, OK00, PG84, Pla91, PE88, language [PSW+13, RN09, RCP98, Rm89, RH94, Sf92, Sco91, SS92, Sm1D94, Stc75, Tac75, Tzc12, VC15, Vlc98, Wmp08, Wan92, Wdcl08, Zdu06, Zim86, dLz12, Bao86, yCh92, RS94]. Language-And [BT86]. language-based [Bou08]. Language-independent [FM04]. language-integrated [KA17]. Languages [CIF84, CG84, Cr079, HR91, HR92, MB13, MB14, Was79, Vokf01, Abd75a, Abd75b, Ba90, BC88, BL99, Bel11, Bels77, Bry77, Bry15, Bry16, BW90, Cl97, Cjd17, Co98, CIA92, CHHO2, CG93, CF02, COHW95, CRPP00, Fri92, HC12, Hhl89, HG93, Ier93, IR95, KNW94, LM93, LP97, LfL00, NLJS12, RGP98, Tal93b, KPP93]. Logical [CIF84, TSF+87, IPF82, JG89]. longest [YTC02]. longest-match [YTC02]. look [FF86]. Lookahead [SC87, Ber91a]. loop [KKG15, DMVD16, SF89, VMD09]. Loops [DK83, Bli94, Ric16]. loosely [SRRB10]. Low [MO83]. Low-Level [MO83]. LR [BC89, Ber91a, Cbl94, CB93a, DP98, Dem75, Hor90, Sli17, VS94, Wbgm10]. Lynx [Sco91]. LySa [BC10].

Non-deterministic [Sal83, PGT+96]. Noninterference [AMF13, IF16]. nonterminal [Dem75, SH15]. nor [Tre00]. notation [SRT17, Wil80]. note [Ano06b, Ano11b, Fel87]. notion [BW90]. NP [CIP+00]. NP-SPEC [CIP+00]. number [DK92]. numbers [Run89].

Numerical [DK92]. Numbers [Run89]. Numerical [Nag79].

Object [ACS96, BB91, GVvdP+01, GG82, LP97, PBD12, AC17, BS18, DGU91, FM04, Ier93, IR95, KPN17, KS90, LCFÁ10, LDG09, MW96, NL95, RBY+05, YG93, dLZ12].

Object-centric [LDG09]. object-models [RBY+05]. Object-oriented [GVvdP+01, AC17, DGU91, FM04, Ier93, IR95, KPN17, KS90, LCFÁ10, MW96, NL95, YG93, dLZ12].

objective [AC18]. objects [CLSM96, KJTA17, LR8+11, Lus02, LB06, MW8+2, Rom95, YF98, DOZ06].

observation [FC18]. observer [Alj16].

Obtaining [HFW86]. Occam [AMA97, AMA98, Fis88, Hu87, Tal93a].

OCL [CCB15]. Octave [AMR18]. offset [CAS08]. OmniBrowser [BDPW08].

on-the-fly [RDB15]. onto [FNRR16].

Ontological [PFH16]. ontologies [SNA18].

Open [HH06, Led99e, Ban17, DK92].

OpenCL [ZT17]. Operating [Cro79].

Operation [Sam79, CG93].

operation/procedure [CG93].

Operational [MB85, LS94, OWG93, OM91]. operations [CGG+09, Dja88, WF99].

operator [Fel87]. Operators [GFK81, Sym85, BLM93, CZ11]. Optimal [RS82, KR95, LR8+11, jLtc,bh90, PRD02].

Optimisation [KA17, Sch75a, Sha75]. Optimization [BT86, DK83, LBR81, Sch75b, KR95, NK90].

Optimizing [SS09, Sha80, Thi93, WF99, Sar94]. oracle [Guo16]. order [CAS08, Fal97, KH12, RW09, SvE16].

Orderly [AKPG02]. ordinary [MZC10].

Orientation [ACS96]. Oriented [BB91, CLM83, Nag80, ACZ05, AC17, BIMP17, CS16, CG93, DGU91, ESG16, FFDH08, FM04, GVvdP+01, GCH09, Ier93, IR95, KPN17, KS90, LCFÁ10, MW96, NL95, RK18, RS94, VC15, YG93, dLZ12].

Orthogonal [CM06, Rot92]. other [Jos78]. outline [PGM84]. Over-exposed [VBDPM16]. Overloading [EL87, Ber11].

Own [Zav86].

Package [Ree84]. packaging [PSW95].

Paisley [Zav86]. Papers [Ano07a, Ano07b].

parses [BC88]. Parsing
[Cel81, GFK81, LN86, BC93, BS92, Ber91a, Hor93, MS93, MPS90, PS94b, SM94, Sha75, Sli17, VS94, WBGM10]. parsing1 [RP98].

Partial [NS93, JD94, Lia92, RDT08].

partially [BCR11]. Partitioning [PS86, KK18, RP98, Yan00]. partitions [LR17]. partly [Fe87]. PASCAL [KY75, CM06, Fle84, Ten83, Was79].

Pascal-Like [Was79]. passing [MR04].

Path [CD81]. Pattern [Gri83, Liu88, BDB90, CF88, ESG16, Nil90].

pattern-matching [CF88]. patterns [Alj16, CS16, FM04, SSS17, Sha75, Wal89].

PC [Ano88]. PEARL [GCH09]. peer [VBS+14]. peer-to-peer [VBS+14].

placement [Bou08, Dha88, Dha90]. platform [ABG+05, AMR18, CBTR17, DPP10]. platforms [FNRR16, PLS10]. pluggable [HDN09]. plus [FL92]. point [WPR06, WF99]. pointcuts [BKG+08, HGC+89]. pointer [BGH13, HG93]. Pointers [BEL77, Ber77, Den05]. points [SSM10].

problem-solving [LL00]. problems [CIP+00]. Procedural [Sym85, OWG03].

procedure [CG93, CHK93]. Procedures [Geh80, Pag79, Abd75b, FF89, MS89].

process [AL85, MH07, PSW+13, RK18, RS94, WHKK17]. process-oriented [RK18]. Processes [DH86, SBF80, YF83, yCH92, KJ12, LLvdW+01, Tal93a].

Product [FAHC17, MAG8+16, KR17, SS17]. Productions [FM80, Dem75]. profiling [BBRR12, Kha11]. Program [BZ88, BS85, CDGM80, DK83, Fal97, PR10, PS86, Sha81, SC87, Tze12, YD78, Zob93, FO02, PR12, PSW95, Rot92, Ste84, SSM10].

programmed [Seb89]. Programmer [DNR90]. Programmer-defined [DNR90]. programmers [Sch76]. Programming [ACS96, Ano07b, BCR11, BKS09, CG94, Coo81, Cro79, CLM83, GAS17, GO88, HM18, Hul87, LP16, MOT84, MMC16, MB14, Ric16, RS87, Sym85, TSF+87, Abd75a, Abd75b, AAM95, AD07, ACZ05, BT91, BDL+12, BMP17, Bry15, Bry16, BW90, CBTR17, CGG+09, CM75, CHS16, CO98, Cia92, CG93, Coo98, CHHP91, CRPP+00, Fa97, Fr92, GR91, HB16, HHS90, HG93, HOA75, Hug85, Ier93, JM96, JD94, KKG92, KN94, LMR93, LP97, Li90, Lin93, Lon07, Mal10, MRO03, MZ05, MW96, MP00, ND77, NL95, NPS17, OK00, OM91,
Programs [Fla86, Gg82, Kn85, Ln91, AG17, Bj90, Ber90, Cy92, CCJ93, CG96, EL07, FC18, FNNR16, FO02, FF99, GG90, HC96, HS93, IFP82, Jos78, LC02, MVT+16, MP17, NJLS12, PMS15, PMS16, PLS10, Rom97, SH77, Sar93, SF89, Thi93].

Prograph [MP85]. projects [GCH90].

Prolog [ACZ05, Anc13, CF88, Gan89a, NH93, SNA18, Tal93b]. prone [Ban17].

Proof [Ric80, GSP17]. proofs [Ber77, Liu93].

properties [BHS15, BFPR04, UM17].

Proposal [Car78, Fle84, Liu88, ACS96, BS93].

Proposals [Ten83, BEL77].

Prosper [LB89].
protected [PC15].
protection [Jos78].

PROTOB [BB91].

protocols [KKN91].

prototyping [CS16, CHHP91, DS93, FL01, HZ96, Hoo89, LB89, Luq93, Pj91, WMP+08].

provability [Har97].

provides [Coo98].

Providing [MGLFCP12].

proving [Fru10, UM17].

pruning [BJ14].

Publication [Ano90a, Aio90a].
Publisher [Ano90b, Ano91b].

Purba [Lec99b].

pure [NPS17].

Purely [MO83].

Purpose [HR92].

pushdown [PTJM16].

QAS [KP78].
QoS [PPK11].

QoS-enabled [PPK11].

quadratic [AG17].

qualitative [LW75].

class [BWS15].

Quantitative [Liu88].

queries [DQ99, KA17].

Query [BC84, CNGW09, MMS2, PC85, BL92, BLM93, BL99, HCI2, KA17].

Query-By-Rule [PC85].

querying [BS90].

Question [KP78].

queue [CAS08].

quicksort [SJW94, SSJ96].

race [CS03].

ranking [UM17].

rapid [CHHP91, FL01, Luq93, WMP+08].

rapid-prototyping [WMP+08].

RASP [Dja88].

Re [GH07].

re-scheduling [GH07].

reactive [PMS15, PMS16, PSW+13].

readable [Jos78].

Real [BMGT82, CMM85, LN91, Luq93, ABL17, BW90, DGT91, GCH90, HL08, LS94].

Real-Time [BMGT82, CMM85, LN91, Luq93, ABL17, BW90, DGT91, GCH90, HL08, LS94].

Reasoning [MR04, CLMT01, KH12].

Rebecca [KKK*16].

recognition [PS94b].

Reconciling [Ber11].

reconfigurable [BDK+09, PS94a].

reconfigurations [SMB15, SMB16].

Recording [SNP16].

recovery [HRS84, LCF010].

recursion [FF90, Mor91, Thi93].

Recursive [Hor93, KK18, MS89, MPS90, SS09].

Reducing [Ozt11].

reduction [DTXP13, Lee05].

reductions [Si84].

Redundant [DH86, Pai16].

reference [CCGC12].

Refinement [BJ14, MP17, KG17].

refinements [EL07].

reflection [GWDD06, RDT08].

Reflections [Fel87].

reflective [KA07].

Regime [LS84].

region [BGH13].

Register [CAG+81, Dha88, BM95, Dha90, Kes98, PS10, Zob93].

registers [VS95].

Regular [Anc93, PC78].

Relating [HC96].

Relational [BC84, BL92, BLM93, BMZM92, HHLv89, McL77].

relational-calculus [BL92].

relations [BRS90].

Relationship [SS99, DCA+15, DCA+16].

relationships [LW75, Sch75a].

relaxed [DMVY17].

reliability [ZP18].

Reliable [Ano07b, MSL14].

remodularization [AC17].

removal [McC91, ZP18].

Removing [Lia92].

rendezvous [CO89].

reordering [GG09].

repair [HRS84].

Report [MP85].

representation [CPD93, Ear75].

repudiation [BC10].

requirement [ABL17].

requirements [NM17].

Resilient [ABG+05].

resolution [Rom97, Tay96].

Resource [CLM83, JM96, LCC07, jLtC89].

resources [CBTR17].

restrictive [EL87].
Result [Geh80, WG83], results [EvdSV+15], retargetable [BDB90, Gan89a], retrieving [CNGW09], reusability [SvdBV18], reusable [VS95], Reverse [LS84, Man01], review [MAGD+16], Reviewers [Ano08, Ano12, Ano13, Ano15, Ano17, Ano09b, Ano10b, Ano11a], Revised [Led99a]. revisions [FAHC17], Revisiting [CHS16], rewriting [SH15], rich [MLW05], Richard [Led99d], richer [CV14], Ring [GDD12], robust [CC15, CC16, KR17].

Rofail [Led99c], Role [FM80], RPC [GH07], RT [LS90, LS94], RT-CDL [LS94, LS90], RTC [MVT+16], Ruby [RT18], Rule [CG96, PC85, CC95, YTC02], Rule-based [CG96], rules [CD82, FO10, GSP17, SNA18, VF82, Wil80], Run [Joh81, Sar93, MRO03, SJW94], Run-Time [Joh81, Sar93, MRO03, SJW94], Runtime [DDT06, KA07, MVT+16, RDT08].

S [PB84], Safe [Bou04, DCD+17, BC02, DSW05, KMLS15], SafeGPU [KPN17], Safety [GCH09, Dre96, Fru10, PMS15, PMS16], safety-critical [PMS15, PMS16], Sanjiv [Led99b], Sapaty [Led99c], SASL [Sar93], SC-SystemJ [PMS15, PMS16], scalable [MST14], SCAN [BAK89], scenarios [ABS17], scheduled [PS10], scheduler [IF16], scheduler-independent [IF16], Scheduling [Kes98, VS95, GH07, PLS10], Scheme [CMM85], scheme [LIL00, NH93, FF90, FF90, JL96, KS90, VSN+17, Wan92, WF99], Scheme-based [KS90], scientific [PT09], scope [VF82], scoped [FF90], scopeing [FO10, KR17], scripting [Ber11, PT09], SDL [Man01], Seamless [NM17], search [AC17, Ban17, FNR16, Mal17], search-based [Mal17], seas [KLIN15], sections [DLP15], Secure [Ano07b, ZTL13], Security [BRB07, BCF02, BFPR04, CF02, MCC17, MY17, Kuz02], Segment [Wad80], selection [Lus02, MC96, OM92], selector [UA15, UA16], self [PPK11, RR99], self-adaptive [PPK11], self-interpreters [RR99], Semantic [COHW95, Fle84, Gan89b, Pag79, Tai79, BC93, Guo16, KHO14, SB79, Wil80], Semantics [BER00, BEH86, MB85, Pag78, Wil81, AMA97, AMA98, AD07, BJ90, BG84, DLP15, DS93, GL95, JM96, KB75, LS94, LOG09, Lou07, Mar09, OWG93, PC15, RS94], semantics-directed [DS93], semi [GSP17], semi-algebraic [GSP17], semi-structured [CNGW09, DQ99], sensitive [HWM13, NN17, SM94], separation [Fa197], Seque [GO88], SequenceL [Coo98], Sequences [GO88, WG83, Wil90], Sequential [DH86], Server [Led99b, Led99a], service [CS16], service-oriented [CS16], Services [PPK11, GH07, MZC07], servicing [OBGK02], SESPOOL [ND77], set [Dja88, PLS10], sets [GSP17], Shallow [SAM79, SA16], shared [BT91, OBGK02], Sharing [DMVD16, PLS10], shell [GCH09], Shellsort [SJW94], shortcomings [EP89, PES88], shot [AD07], should [Sch76], Side [IR95, CJD17], Side-effect [IR95], SIGPLAN [HB16], Simple [Abd75a, War78, FDH08, Tze12, CDGM80], simplification [Han97], SIMULA [PGM84, Sch78], Simulating [TKH99], Simulation [Hoo87, Hoo89, KS90, Sa192], single [AD07, Dem75, MGLFCP12, SIK09], single-user [MGLFCP12], singleton [Alj16], SIR [FO02], size [SJW94, SS09], Skeleton [Ad07], Skeleton-based [AD07], sketch [RR99], sketch-based [RR99], skipping [KK18], SL5 [Han78], SLE [CPPV15], SLIPS [GS86], SMALLTALK [GL95, ABG+05, DOZ06, DDT06, GDD12, SD06], SMALLTALK-80 [GL95].

CHHP91, DCA+15, DCA+16, dOG09, HSS88, HHS90, KS90, MSLG10, MRO03, McL77, Pen05, Rid79b, SS93, Whi77, FF75]. System/370 [FF75]. Systematic [SLS18, MAGD+16]. SystemJ [MSLRG10, PMS15, PMS16]. Systems [Ano07a, BB91, Bar82, BGMT82, Cro79, Hul87, Omo83, Spe79, AC17, ABL17, BGH13, DGU91, DPP10, Dref96, GMMP89, HZ96, HL08, JPB+08, KG517, MRO03, MR04, ND77, PMS15, PMS16, PG+96, SRRJ10, WHH17, ZTLM13, ZP04].

ubiquitous [HL08]. UML [ABS17, GCH09, PCD16]. Unanticipated [RDT08, WD04]. unbounded [Nii90]. Undecidability [Geh80]. undecidable
REFERENCES

[CS03]. Understander [NB84]. unexpected [DG94]. Unified
Lus02, FHD08, Rod15]. Uniform [DSW05, CL97, PS10]. unifying
Ber91a, GDD12]. unit [SRT17]. Units
Geh77]. UNITY [RM93]. University [NB84]. unnesting [KA17]. untrusted
FO10]. updates HV94]. Updating
CCRS18]. Usability [BAG18, MM82]. usage
Ken78, MO83, AL85, RT18, Thi82, BAG18]. Use-Definition
Ken78]. USE-ME [BAG18]. used [Sti17]. User
WHKK17, MGLFPC12]. User-story
WHKK17]. users [NPS17]. Using
BC84, FL87, Pag79, Wad80, WF78, Al16, ABS17,
BZ88, BDB90, Bou04, BC13, BKG+08,
BC10, CV16, CDGN15, CNGW09, Dha88,
Dha90, GVvdP+01, GMMP89, KMLS15,
PCB+18, RBY+05, SSS17, SNP16, WD04].
usually [Dha90]. Utility [jLtCxH09].
Utility-driven [jLtCxH09]. Utilizing
BS78].

validation [CYS+15, CSdL16]. value
dACSA14, Kha11, Sch75b]. values [Nil90].
variability [FAHC17, SSS17]. variability-aware [SSS17]. Variable
Bai86, DK92]. variables [KJ12]. VDL
MB85]. Vector [HMHS18, CM06, JO11].
verifiable [BKYSV8]. Verification
DL17, Was79, CD82, DMVY17, EHMO91,
HL08, KG17, PCG16, SMB15, SMB16].
Verifying
BGH13, BFPFR04, PMS15, PMS16, vOKF01].
Tuc75, CCJ93, Sch75b, Sch75a]. via
CBTR17, CAC+81]. vice [GGK+11].
Vienna [KPP93]. view
Coo98, LDG09, SB79]. viewing [FL92].
viewpoint [Tuc75]. Views
SS79, MKPW06, TBKG04]. visibility
BDNW05]. visibly [PTJM16]. Visual
FL01, Led99c, MP00, SRT17, AMA97,
AMA98]. Visualising [LLvdW+01].
visualisation [Hor17]. visualization/analysis [Hor17].
visualizing [vOKF01]. VMCAI’03 [Zuc04].
Volume [Ano02d, Ano05f, Ano05g, Ano06c,
Ano09, Ano00, Ano01b].

way [Coo08, FFJ90]. Weak [BKL18]. web
CBTR17, CJD17, MCC17, VSN+17, Mal10,
MZC07, PPK11]. web-based [CBTR17].
well [BER00]. well-moded [BER00]. whole
WDCL08]. whole-image [WDCL08].
Widening [CZ11]. Wiley
Within [Tai79]. work [CDW09, Led99a].
workbenches [EdSV+15]. works [Jos78].
workshops [HB16]. worst [Bli94, BJ14].
worst-case [BJ14]. write [CS03]. writing
HSS88]. Written [MB85]. WS [KJ12].

XML [CJD17]. XML-based [CJD17].
XQuery [GGK+11]. XSL [Pen14]. XSLT
GGK+11].

Y2K] [Led99d]. Younger [Man78].

Z [PE88]. Zero [GBZ09].

References

CODEN COLADA. ISSN 0096-0551 (print), 1873-6742 (electronic).

Al-AAli:1995:DAP

Abdali:1975:LMPa

Abdali:1975:LMPb

Andersen:2005:DIE

Ashamalla:2017:MDA

Arora:2017:STS

Amarjeet:2017:HSB

Amarjeet:2018:FAF

Ambriola:1996:PMM

Amandi:2005:JFB

Aldinucci:2007:SBP

Angel:2018:AMA

REFERENCES

Adje:2017:ASI

AJ93

Amtoft:2002:OCA

Aljasser:2016:IDP

Arusoaie:2015:SEB

Al-Mulhem:1997:VOS

Al-Mulhem:1998:FSV
Al-Mulhem, Muhammed and Shahid Ali. Formal seman-

[Anonymous:1999:VI]

[Anonymous:2001:EIG]
REFERENCES

Anonymous:2001:IV

[Ano01b] Anonymous:2002:EBa

[Ano02a] Anonymous:2002:EBb

[Ano02b] Anonymous:2002:IFC

[Ano02c] Anonymous:2003:IFCa

[Ano03b] Anonymous:2003:IFCc

Anonymous:2004:IFC

Anonymous:2005:AI

Anonymous:2005:IFCa

Anonymous:2005:IFCb

Anonymous:2005:IFCc

Anonymous:2005:KI

Anonymous:2005:VC

Anonymous:2005:VCA

Anonymous:2006:A

Anonymous:2006:PN
Anonymous:2006:VCA

Anonymous:2007:CPE

Anonymous:2007:CPP

Anonymous:2008:R

Anonymous:2009:EBP

Anonymous:2009:LR

Anonymous:2010:EBP

Anonymous:2010:LR

Anonymous:2011:LR

Anonymous:2011:PN

Anonymous:2012:R

Anonymous:2013:R

Anonymous:2015:R

Anonymous:2017:TYR

Anonymous:2018:EBa

REFERENCES

125–146, ??? 1982. CODEN COLADA. ISSN 0096-0551 (print), 1873-6742 (electronic).

REFERENCES

Barrett R. Bryant, Balanji-nath Edupuganty, and Lee S. Hull. Two-level grammar
as an implementable metalan-
guage for axiomatic semantics.
Computer Languages, 11(3-4):
173–191, ????. 1986. CO-
DEN COLADA. ISSN 0096-
0551 (print), 1873-6742 (elec-
tronic).

Berry:1977:PDAa

BEL77 D. M. Berry, Z. Erlich, and
C. J. Lucena. Pointers and
data abstractions in high level
languages. I. language propos-
als. Computer Languages, 2
(4):135–148, ????. 1977. CO-
DEN COLADA. ISSN 0096-
0551 (print), 1873-6742 (elec-
tronic).

Berry:1977:PDAb

Ber77 D. M. Berry. Pointers and data
abstractions in high level lan-
guages. II. correctness proofs.
Computer Languages, 2
(4):149–170, ????. 1977. CO-
DEN COLADA. ISSN 0096-
0551 (print), 1873-6742 (elec-
tronic).

Bermudez:1991:UML

Ber91a Manuel E. Bermudez. A uni-
fying model for lookahead LR
parsing. Computer Languages,
16(2):167–178, ????. 1991. CO-
DEN COLADA. ISSN 0096-
0551 (print), 1873-6742 (elec-
tronic).

Berzins:1991:BSS

Ber91b Valdis Berzins. Black-box spec-
ification in Spec. Computer
Languages, 16(2):113–127, ????.
1991. CODEN COLADA. ISSN
0096-0551 (print), 1873-6742
(electronic).

Bossi:2000:SWM

Bergel:2011:RMO

[Ber11] Alexandre Bergel. Reconcil-
ing method overloading and dy-
namically typed scripting lan-
guages. Computer Languages,
Systems and Structures, 37(3):
132–150, July 2011. CODEN
???? ISSN 1477-8424 (print),
1873-6866 (electronic). URL
com/science/article/pii/
S1477842411000030.

Barroso:1978:IDD

[BF78] P. B. Barroso and A. L. Fur-
tado. Implementing a data def-
inition facility driven by graph
grammars. Computer Languages,
3(2):65–74, ????. 1978. CO-
DEN COLADA. ISSN 0096-
0551 (print), 1873-6742
(electronic).

Bossi:2004:VPS

BFPR04 Annalisa Bossi, Riccardo For-
cardi, Carla Piazza, and Sabina
Rossi. Verifying persistent se-
curity properties. Computer
REFERENCES

REFERENCES

Brichau:2008:ASM

Blanchard:2018:MCB

Bloom:2009:FPL

Berry:1980:TMV

Bassiouni:1992:RQL

Bassiouni:1999:ETQ

REFERENCES

REFERENCES

[Broy:1988:BBC]

[Biskup:1990:ESQ]

[Brogi:1999:DCP]

[Bryant:2016:SIP]

[Bachmann:1978:SCL]

[Budd:1985:PTS]

[Barnard:1992:CPP]
D. T. Barnard and D. B. Skillicorn. Context-free parsing...
REFERENCES

[BT91] Burton:2018:OMD

[BS18] Besova:2015:GBM

[BT86] Burns:1990:NPR

[Bu17] Budd:1982:IGC

[Buf17] Burns:1990:NPR
REFERENCES

REFERENCES

com/science/article/pii/
S147784241500038.

[CC95] Wayne Citrin and Alistair
Cockburn. Carla: a rule lan-
guage for specifying commu-
nications architectures. Com-
puter Languages, 21(3-4):165–
CODEN COLADA. ISSN
0096-0551 (print), 1873-6742
(electronic).

[CC15] Kwanghoon Choi and Byeong-
Mo Chang. A lightweight ap-
proach to component-level ex-
ception mechanism for robust
Android apps. Computer Lan-
guages, Systems and Struc-
tures, 41(??):42–65, April 2015.
CODEN ????. ISSN 1477-8424 (print),
1873-6866 (electronic). URL
com/science/article/pii/
S1477842415000068.

[CCB15] Juan José Cadavid, Benoit
Combemale, and Benoit Baudry.
An analysis of metamodel-
ing practices for MOF and
OCL. Computer Languages,
Systems and Structures, 41(??):42–65,
April 2015. CODEN ????. ISSN
1477-8424 (print), 1873-6866 (electronic). URL
com/science/article/pii/
S1477842415000068.

[CCF15] Agostino Cortesi, Giulia Costan-
tini, and Pietro Ferrara. The
abstract domain of Trape-
zoid Step Functions. Com-
puter Languages, Systems and
Structures, 43(??):41–68, Oc-
tober 2015. CODEN ????. ISSN
1477-8424 (print), 1873-6866 (electronic). URL
com/science/article/pii/
S147784241500024X.

Chen, Paul A. Griffin, and Ho-
Yuan Cheng. Cyclic reference
counting by typed reference
fields. Computer Languages,
Systems and Structures, 38(1):
98–107, April 2012. CODEN
???? ISSN 1477-8424 (print),
1873-6866 (electronic). URL
com/science/article/pii/
S1477842411000285.
REFERENCES

Cassou:2009:TWD

Celentano:1981:LPT

Chou:1979:ITN

Casanova:1988:SPP

Cortesi:2002:CLS

Ciancarini:2000:DCL

Colombetti:1984:SCD

Clematis:1993:SCO

[Cadoli:2000:NSE]

[Crawford:1980:NAC]

[Chavarriaga:2017:ABX]

[Childers:2008:P]

[Coon:1983:CCI]

[Choen:1978:SFM]

[Coleman:1989:PIC]

Chakravarty:1997:TUI

Cunha:1983:MOP

Ciampolini:2001:LLC

Ciampolini:1996:DLO

Chandra:1975:PPF

Cockshott:2006:OPP

Cabral:2011:TMA

Cocco:1985:ATS

REFERENCES

REFERENCES

[dACSAP14] Igor Rafael de Assis Costa, Henrique Nazaré Santos, Péricles Rafael Alves, and Fernando Magno Quintão Pereira. Just-in-time value specialization. *Computer Lan-
REFERENCES

47

[DDT06] Marcus Denker, Stéphane Ducasse, and Éric Tanter. Runtime bytecode transforma-
REFERENCES

[Dha90] D. M. Dhamdhere. A usually linear algorithm for register assignment using edge placement of load and store instruc-

Djakovic:1988:RLO

DaRosdeCarvalho:1992:OAV

DSouza:2017:SII

DiCosmo:2007:CPC

Dabrowski:2015:FSN

deLamadrid:2012:CFH

REFERENCES

Computer Languages, 15(3): 141–152, 1990. CODEN COLADA. ISSN 0096-0551 (print), 1873-6742 (electronic).

The Green language.

The Green language type system.

REFERENCES

Ellmenreich:2007:CSR

Edelson:1989:CSC

Ergin:2016:DPO

Font:2017:LVM

Erdweg:2015:ECL

Falkman:1997:PSD

G. Falkman. Program separation and definitional higher order programming. *Computer Languages*, 23(2-4):179–
REFERENCES

Fabresse:2008:FSU

Franco:1990:TFL

Franco:1990:MSS

Flores:1975:LEF

Feeley:1987:UCC

Feeley:1992:CGB

REFERENCES

[FO10] Philip W. L. Fong and Simon Orr. Isolating untrusted

Friedman:1992:BBB

Fruja:2010:TPT

Ford:2015:SCP

Friedman:1978:FC

Ford:1987:PEM

Feng:1996:BLD

REFERENCES

COLADA. ISSN 0096-0551 (print), 1873-6742 (electronic).

Greiner:2009:ZBS

Gumzej:2009:SSS

Gomez:2012:RUM

Verónica Uquillas Gómez, Stéphane Ducasse, and Theo D’Hondt. Ring: a unifying meta-model and infrastructure for Smalltalk source

REFERENCES

60

Gautier:2007:RSI

Golubski:1995:CSS

Ghezzi:1989:SEC

Griswold:1988:SPL

Garg:1991:CLC

Griswold:1983:ISP

Gehlot:1986:ISA

Ghorbal:2017:HPR

Khalil Ghorbal, Andrew Sogokon, and André Platzer. A hierarchy of proof rules for checking positive invariance of algebraic and semi-algebraic sets. *Computer Lan-
REFERENCES

Gedela:1999:CPN

Guo:2016:SAA

Hanson:1978:DSS

Gannon:1987:TIM

Gybels:2006:ILR

Geilen:2001:OOM

Gedela:1999:CPN

Gybels:2006:ILR

Gannon:1987:TIM

Hanson:1978:DSS
REFERENCES

REFERENCES

Herriot:1976:SSD

Haynes:1987:ATP

Haynes:1986:OCC

Hendren:1993:DPL

Hansen:1989:IRD

Hayes:1990:IES
Roger Hayes, Norman C. Hutchinson, and Richard D.

Hansen:1989:IRD

Hirschfeld:2006:OA

Herzeel:2009:FCH

Hsiung:2008:ASV

Huang:1976:DIL

Hage:2018:SIT

Hassan:2018:EIM

Huang:1990:EHM

Hoare:1975:PPA

Hooper:1987:LFD

DEN COLADA. ISSN 0096-0551 (print), 1873-6742 (electronic).

Hooper:1989:LFP

Horspool:1990:IGL

Horspool:1993:RAP

Horry:2017:FID

Hsia:1991:IDC

Hsia:1992:ISP

Hammond:1984:SSE

Hill:2003:LPC

Haripriyan:1988:CWS

H. K. Haripriyan, Y. N. Srikant, and Priti Shankar. A compiler writing system based
REFERENCES

REFERENCES

COLADA. ISSN 0096-0551 (print), 1873-6742 (electronic).

[Jouvelot:2011:DVT] Pierre Jouvelot and Yann Orlarey. Dependent vec-

[Kampen:1975:FDS] G. Kampen and J. L. Baer. The formal definition of semantics by string automata. *Com-
REFERENCES

puter Languages, 1(2):121–138, June 1975. CODEN COLADA.
ISSN 0096-0551 (print), 1873-6742 (electronic).

Khedker:2003:BDF

[KDM03] Uday P. Khedker, Dhananjay M. Dhamdhere, and Alan Mycroft. Bidirectional data
flow analysis for type inferencing. Computer Languages, Systems and Structures, 29(1–2):

Kennedy:1978:UCA

[Ken78] Ken Kennedy. Use-definition chains with applications. Computer Languages, Systems and Structures,

Kessler:1998:SED

[Kes98] Christoph W. Kessler. Scheduling expression DAGs for minimal register need. Computer Languages,

Kafle:2017:HCV

[KG17] Bishoksan Kafle and John P. Gallagher. Horn clause verification with convex polyhedral

Kardas:2017:SIM

[KGS17] Geylani Kardas and Jorge J. Gomez-Sanz. Special issue on model-driven engineering of multi-agent sy-

Koutavas:2012:FOR

Khan:2010:FDS

Khan:2011:IPT

Ko:2014:SET

Kislal:2018:DAS

Ko:2014:SET

Kislal:2018:DAS

Kislal:2018:DAS

Klerer:1992:LAP

Kelefoureas:2015:MSL

Kanovich:2014:BMP

Kaufmann:2015:IIC

Kurs:2015:BS

Karakoidas:2015:TSE

Kieburtz:1985:DAL

Kwon:1994:IPT

Kornilowicz:2015:FCM

Kornilowicz:2016:FCM

Konopasek:1978:QAS

Kolesnichenko:2017:SCL

Kuhn:1993:CBV

Kessler:1995:GOC

REFERENCES

Kaser:1998:EIT

Karimpour:2017:ERO

Kreutzer:1990:CSF

Knobe:1975:SST

Leszczylowski:1989:PLS

Lusth:2006:MAO

Lepage:1981:OHD

REFERENCES

[Li96] W. X. Li. Building efficient incremental LL parsers by augmenting LL tables and thread-

Liao:1992:RPP

Liu:1988:SPM

Liu:1993:APL

Luttighuis:2001:VBP

Lamma:1993:PCM

Lozinskii:1986:PP

Lin:1991:FTF

Logozzo:2009:CIA

REFERENCES

REFERENCES

Malhotra:2017:SIS

Manacher:1978:IVC

Mansurov:2001:ASS

Merwin:1975:DME

Mazaher:1985:DCO

[Shahrzade Mazaher and Daniel M. Berry. Deriving a compiler from an operational semantics written in VDL. Computer Languages, 10(2):147–164, ???. 1985. CODEN COLADA. ISSN 0096-0551 (print), 1873-6742 (electronic).]

Mernik:2013:SIP

Mernik:2014:SIP

MB85

MB13

MB14

McNamee:1996:ISC

McCrosky:1991:ICR

Martinez:2017:MBA

McKeeman:1975:MBM

McLeod:1977:HLD

Mondejar:2012:TPT

Merlin:2007:BSP

Michaelson:1986:IFG

Michel:1996:DID

Mens:2006:CEC

Miranda:2005:PFF

Marand:2015:DDS

Marand:2016:DDS

Maurer:1983:UCT

REFERENCES

Morazan:2016:GAR

Mano:1984:NPE

Matwin:1985:PPR

Myers:1992:ITC

Mosconi:2000:ICD

Milewicz:2017:RSH

Murching:1990:IRD

Maraninchi:2001:AAB

Meenakshi:2004:RAL

Maris:2003:DRT

Murching:1989:IAE

McCrosky:1993:STP

Malik:2010:SGL

Maier:2014:RSS

Magnenat-Thalmann:1982:CIL

Nadia Magnenat-Thalmann. Choosing an implementation

REFERENCES

Mateos:2010:ANI

Mandrioli:1985:MAT

Nagata:1979:ELN

Nam:1993:CSP

Nilsen:1990:SDT
Kelvin Nilsen. A stream data type that supports goal-directed pattern matching on unbounded sequences of values. Computer Languages, 15 (1):41-54, 1990. CODEN COLADA. ISSN 0096-
REFERENCES

87

Nigam:2012:MDL

Ng:1995:MLO

Naumchev:2017:SR

Nielson:2009:MFC

Nielson:2017:AGI

Nooan:1985:AGA

Nosal:2017:CHI
[Milan Nosál, Jaroslav Porubš, and Matúš Sulí. Customizing host IDE for non-

[Nederhof:1993:PEG]

[Nymeyer:1995:GSH]

[Olsson:1992:ISN]

[Orman:1983:FSL]
REFERENCES

[PBG84] L. M. Patnaik, Prabal Battacharya, and R. Ganesh. DFL:

Pao:1978:SSI

Patnaik:1985:GQH

Patrignani:2015:FAT

Pinto:2018:ACM

Planas:2016:LSV

Pavlatos:2009:ERE

Pohl:1988:ZCL

Penna:2005:TSS

Penna:2014:MCX

Peterson:1978:ESA

Pereira:2016:OAD

Papazoglou:1984:OPL

Pontelli:1996:IEN

Purtilo:1991:EPD

REFERENCES

Placer:1991:MLG

Popovic:2015:DMA

Pontelli:2010:IPE

Park:2016:CVS

Pastrana:2011:QES

Perugini:2010:PTI

Pontelli:2002:ODS

Perin:2012:LSC

Peterssen:1986:PDT

Pradeep:1994:PAE

Pradeep:1994:PRP

Philippidis:2010:MRU

REFERENCES

Purtilo:1995:EPS

Prahofer:2013:MDS

Papadimitriou:2009:JIS

Razavi:2005:LSA

REFERENCES

REFERENCES

Radakovic:2018:TCE

Rich:1980:MPT

Ricci:2016:PEL

Riddle:1979:ASSa

Riddle:1979:ASSb

Rine:1991:ICL

Reddy:1993:PAI

Rieger:2018:POM

REFERENCES

[RPB09] Ana M. Roldan, Ernesto Pimentel, and Antonio Brogi. Software composition with

REFERENCES

Scharli:2004:BIP

Salter:1980:CLC

Strothotte:1987:SPL

Shen:1994:ACP

Schwartz:1975:OVHb

Schwartz:1975:OVHa

Schwartz:1976:WPS

Schwartz:1978:PCD

Scott:1991:LDP
Michael L. Scott. The Lynx distributed programming language: motivation, design and
experience. *Computer Languages*, 16(3-4):209–233. ????.
1991. CODEN COLADA. ISSN 0096-0551 (print), 1873-6742
(electronic).

Stinckwich:2006:ISS

[S06] Serge Stinckwich and Stéphane Ducasse. Introduction to
the Smalltalk special issue. *Computer Languages, Systems
and Structures*, 32(2-3):85–86, July/October 2006. CODEN
???? ISSN 1477-8424 (print), 1873-6866 (electronic). URL
S147784240500045X.

Sebesta:1989:CPG

[Seb89] Robert W. Sebesta. On context-free programmed gram-
DEN COLADA. ISSN 0096-0551 (print), 1873-6742 (elec-
tronic).

Szabo:1989:PAL

[SF89] M. E. Szabo and E. J. Farkas. A probabilistic analysis of loop
1989. CODEN COLADA. ISSN 0096-0551 (print), 1873-6742
(electronic).

Soderberg:2015:DRT

[SH15] Emma Söderberg and Görel Hedin. Declarative rewriter-
through circular nontermi-
nal attributes. *Computer Languages, Systems and Structures*, 44 (part A)(??):3–23,

December 2015. CODEN ????. ISSN 1477-8424 (print),
1873-6866 (electronic). URL
com/science/article/pii/
S1477842415000585.

Sharir:1980:SAN

[Sha75] O. P. Sharma. Syntax optimi-
sation for and parsing of pat-
terns. *Computer Languages*, 1
CODEN COLADA. ISSN 0096-0551 (print), 1873-6742
(electronic).

Sharir:1981:FIP

[Sha80] M. Sharir. Structural analy-
sis: a new approach to flow
analysis in optimizing compil-
ers. *Computer Languages*, 5(3-
4):141–153. ????. 1980. CO-
DEN COLADA. ISSN 0096-
0551 (print), 1873-6742 (elec-
tronic).

Sassa:2009:CEB

[SIK09] Masataka Sassa, Yo Ito, and
Masaki Kohama. Comparison and evaluation of
back-translation algorithms for
static single assignment forms.
*Computer Languages, Sys-
tems and Structures*, 35(2):
REFERENCES

Sistla:2004:ESR

Sarwar:1994:ESR

Sarbo:1989:TI

Sailor:1994:PAT

Syriani:2018:SMS

Slivnik:2017:DLL
REFERENCES

0096-0551 (print), 1873-6742 (electronic).

Sanchez:2015:VAR

Sanchez:2016:VAR

Simao:2009:TLM

Spragins:1979:ATM

Seipel:2018:DSL

Sulir:2016:RCS

REFERENCES

REFERENCES

105

Sukumaran:2010:DCG

Seidl:2017:GSP

Stewart:1975:SES

Stetter:1984:MPC

Sullivan:1975:EPS

Sutii:2018:EMR

Smetsers:2016:DIH

REFERENCES

Tzevelekos:2012:PES

Ulgen:2015:IMA

Ulgen:2016:IMA

Urban:2017:IRF

Vainsencher:2004:MLB

Vidal:2016:ECJ

S. Vidal, A. Bergel, J. A. Diaz-Pace, and C. Marcos. Over-exposed classes in Java: an empirical study. Computer Languages, Systems and Structures, 46(??):1–19, November 2016. CODEN ????? ISSN 1477-8424 (print),
REFERENCES

ISSN 0096-0551 (print), 1873-6742 (electronic).

ISSN 0096-0551 (print), 1873-6742 (electronic).

REFERENCES

vanOmmering:2001:LFV

Venugopal:1993:HCD

Viswanathan:1994:PIL

Venugopal:1995:SET

VanEs:2017:IPS

Wadia:1980:GNL

Walker:1989:FP1

Wang:1992:CBL

Ching-Lin Wang. A continuation-based language embedded in
REFERENCES

REFERENCES

Stephen S. Yau and Jacob V. Gore. Constraint-driven programming in strongly-typed object-oriented lan-
REFERENCES

Yang:2002:ALM

Zaki:1987:FDA

Zaki:1988:DGI

Zave:1986:CSP

ISSN 0096-0551 (print), 1873-6742 (electronic).

Zolotas:2017:CPT

Zdun:2006:TLB

Zima:1986:CLI

Zelkowitz:1981:IIE

Zobel:1993:PSB

Zuck:2004:MCA

Zhu:2018:TPS

Zouaoui:2017:CNG

Zhou:2013:DSD

Zuck:2004:SIV

REFERENCES

ISSN 1477-8424 (print), 1873-6866 (electronic).