A Complete Bibliography of Publications in *Computer Networks (Amsterdam, Netherlands: 2010–2019)*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
22 January 2019
Version 1.98

Title word cross-reference

1 [1800, 1826]. 10 [38, 756].

2 [1672, 2377], 2.5 [122]. 3
[1204, 1489, 1722, 2377, 2496]. 3.5 [122]. 4
[1000]. 5 [2309]. * [636, 1879]. A³ [1114]. Δ
[1675]. K [143, 428, 669, 833]. m [80, 1568].
M² [305]. N [1156]. p [57, 102, 224]. S [2655].

-box [1879]. -coverage [669]. -cycle
[57, 305]. -cycles [102, 224]. -Dense [833].
-Fault [428]. -frame [1672]. -trail [57].
-trails [1568]. -Tree [143].

.nl [2532]. .nl-domain [2532].

/1609 [436].
ACK [184]. acknowledged [2699].
acknowledging [1540]. ACO [2276].

ACO-inspired [2276]. acoustic [1007, 2564]. across [325, 1409, 1690, 2427].
additive [703]. Address [24, 388, 553, 1205, 2161, 2203, 2537].
Address-free [1205]. addresses [100, 347, 1820]. Addressing [2037].
adjacency [1470]. adjustment [1052, 2417]. Admission [3, 535, 906, 1000, 1064, 1262, 2584].

802.11 [137, 198, 230, 296, 566, 1377, 1480, 1489, 1551, 1573, 1920, 2523, 2615].
802.11a [51]. 802.11ac [1829]. 802.11ah [1898, 1984]. 802.11e [184, 376, 718, 803].
802.11g [128]. 802.11n [738]. 802.11p [522, 1953]. 802.11p/a [522]. 802.11s [1637]. 802.15.4 [1103, 1780, 2696].
802.15.4-based [1780]. 802.16 [164, 372, 515, 517, 518]. 802.16e [456, 513, 523, 793, 930]. 802.16j [516, 529, 992, 1259, 1262]. 802.16m [519, 521].

access/multi [264]. accessing [2398]. accountable [1606]. Accuracy [336, 561, 1032, 2457, 2473].
achieve [36, 186, 2126]. Achieving [479, 761, 1169, 1383, 2078, 2264, 2290, 2487, 2593].
ACK [184]. acknowledged [2699]. acknowledging [1540]. ACO [2276].
analytics [1839, 2364, 2413]. analyze [1049].
analyzer [1780]. analyzers [2455].
Analyzing [930, 964, 2090]. anatomy [809].
anchor [1581]. anchor-based [1581].
anchoring [1318]. Android [1225, 1783, 2084].
Android-based [2084]. ANDSF [1920].
ANDSF-Assisted [1920]. ANFIS [1490].
ANFIS-based [1490]. annealing [725].
annotation [1621]. annulus [2674].
Anomaly [135, 499, 549, 922, 1058, 1148, 1174, 1210, 1347, 1626, 1883, 1938, 2297, 2453, 2478, 2560, 2617].
anomaly-based [549, 922, 1883, 2297].
anonymity [31, 266, 479, 1114, 1260, 1334, 1838].
anonymity-preserving [1838]. Anonymous [145, 498, 1005, 1356, 1511, 1707, 2349, 2362, 2546, 2724].
Ant [220, 606, 701, 1166, 2622]. Ant-based [220].
AntBot [391]. ante [2323]. antenna [990, 1057, 2446, 2741]. antennas [173, 634, 1095].
Anti [145, 391, 953, 968, 2737]. anti-collision [953].
anti-localization [145]. anti-matchability [2757].
anti-patterns [968]. Anti-pollution [391]. any [2537].
any-To-any [2537]. anycast [9, 994, 1475, 2118, 2665].
anycast-based [2118]. AOA [381]. AP [430, 2407]. Aplasia [1012].
appending [1007]. applicability [2270].
Application [22, 200, 252, 283, 379, 483, 489, 561, 726, 761, 875, 913, 923, 1025, 1044, 1045, 1109, 1114, 1274, 1276, 1277, 1371, 1447, 1553, 1580, 1647, 1662, 1890, 1936, 2084, 2183, 2331, 2410, 2459, 2580, 2588].
Application-aware [22, 1114].
application-based [561, 1662].
application-defined [1580].
application-layer [1890].
Application-Level [489].
application-specific [1277, 1371].
approaches [74, 92, 346, 686, 905, 1285, 1332, 1364, 1817, 2076, 2181, 2350, 2390, 2535, 2650, 2702].
approximate [225]. Approximating [2573]. approximation [561, 626, 888, 1024, 1767]. approximations [1537]. AQM [753, 1236]. AQMs [1609].
ARBAT [2689]. arbitrary [1396].
arbitrary [561, 726, 1264].
architectural [1042, 1762, 2646].
Architecture [6, 19, 82, 87, 263, 282, 319, 358, 362, 364, 424, 510, 565, 726, 790, 911, 969, 974, 1080, 1096, 1153, 1176, 1185, 1266, 1281, 1363, 1447, 1483, 1564, 1755, 1756, 1825, 1853, 1874, 1956, 2107, 2208, 2288, 2291, 2299, 2354, 2355, 2394, 2502, 2536, 2672, 2689].
Architectures [315, 408, 507, 1136, 1139, 1286, 1773, 2191, 2464]. archival [2241].
ARP [1086]. ARQ [403, 657].
ARQ-HARQ [657]. arrivals [2395]. art [1098, 1328]. Artificial [258, 1494, 2605].
artworks [1621]. AS-level [183, 833].
AS-paths [972]. aspects [913, 1042].
Assessing [1292, 1877, 1941, 2397, 2409].
Bandwidth

Bandwidth-aware [1832].

bandwidth-based [2188].

bandwidth-delay [449, 1217].

Bandwidth-efficiency-oriented [1543].

Bandwidth-efficient [2687]. BANETs [2432]. bang [2131]. Banking [1263].

bargaining [1332, 1547, 2403]. barrier [302, 1180, 2078, 2410]. barriers [970].

barring [1350, 2562, 2740]. barycentric [1074]. base [540, 558, 926, 1047, 1124, 1450, 1459, 2059, 2240]. base-station [2240].

Based

BasisEvolution [2453]. batch [768].

battery [2087, 2382]. battery-powered [2382]. Bayesian [2231, 2607]. BBS [466].

BBU [2614]. be [316, 347, 1540]. beacons [474]. beam [634, 1997, 2496].

beamforming [2212]. BeaQoS [1925].

bearing [2124]. before [2306, 2677].

Behavior

[120, 598, 770, 1514, 1632, 1894, 2076, 2266, 2465, 2495, 2715]. Controlled
[914, 981, 1532, 1792, 1937, 2092, 2688].
Controller
[1108, 1285, 1693, 2060, 2189, 2468, 2498, 2729]. controllers [449, 558, 1787, 2186, 2556].
cooperation [396, 802, 1348, 1498, 1537, 2190, 2231, 2317, 2587]. Cooperative
[49, 84, 134, 169, 280, 423, 526, 616, 719, 774, 826, 941, 951, 1096, 1104, 1115, 1167, 1339, 1434, 1350, 1393, 1442, 1444, 1672, 1547, 1550, 1596, 1639, 1779, 1795, 1804, 1830, 1894, 1947, 2019, 2064, 2088, 2119, 2219, 2262, 2313, 2485, 2565, 2588, 2596, 2624]. Coordinated
[49, 212, 1340, 1915, 2035, 2216, 2696]. coordinates [381, 1074]. Coordination
Definition [2017]. degradation [2184].
degree [1767]. degrees [731]. Delay
[25, 120, 145, 226, 253, 311, 379, 418, 449, 494,
619, 888, 904, 925, 943, 949, 1101, 1130, 1134,
1143, 1217, 1260, 1294, 1457, 1552, 1578, 1580,
1624, 1683, 1892, 1950, 2031, 2034, 2045, 2079,
2080, 2201, 2205, 2239, 2384, 2436, 2450, 2460,
2568, 2611, 2640, 2711]. Delay-Aware
[925, 1892, 2611]. Delay-based [120, 1143].
Delay-constrained [1624, 2450, 2460, 2568].
Delay-tolerant
[418, 494, 1294, 1552, 1950, 2239]. Delayed
[611]. delays [83]. delegation [1511].
deletions [632]. delivering [782]. Delivery
[260, 289, 446, 452, 498, 883, 929, 994, 1035,
1055, 1276, 1349, 1395, 1494, 1577, 1659, 1753,
1912, 1927, 2027, 2136, 2192, 2218, 2272, 2547,
2624, 2626, 2644]. Demand
[31, 63, 281, 1277, 1380, 1478, 1653, 1930, 1974,
2037, 2145, 2270, 2439, 2450, 2465, 2558].
Demand-oblivious [2558]. demanding
[550]. demands
[252, 453, 663, 1337, 1738, 1803, 1927].
demonstration [1164]. Denial
[328, 783, 1792, 2492, 2696].
Denial-of-service [783]. Denial-of-sleep
[78, 229, 713, 833, 1541, 1758, 2119, 2175, 2368,
2441]. densely [624]. Density
[126, 503, 1180, 1459, 1989, 2060, 2455].
density-barrier [1180]. Dependability
[1548, 1589]. dependable [243, 1996].
dependencies [2341]. dependent
[33, 195, 546, 1594, 1903, 2395, 2521].
deployable [1030]. deployed [624].
Deploying [470]. deployment
[75, 250, 258, 482, 903, 1133, 1154, 1361, 1461,
1484, 1584, 1786, 1848, 1889, 1972, 2026, 2141,
2371, 2410, 2619, 2638]. deployments
[1161, 1455, 1826]. depth [950]. Derivation
[176]. derived [273]. description
[887, 2124]. Design
[13, 47, 57, 87, 98, 107, 123, 210, 221, 255, 259,
261, 270, 287, 316–318, 320, 321, 332, 348, 349,
369, 400, 404, 415, 446, 449, 478, 510, 587, 670,
674, 707, 720, 727, 751, 755, 756, 779, 849, 857,
888, 931, 1009, 1057, 1114, 1133, 1140, 1146,
1160, 1175, 1219, 1242, 1260, 1272, 1305, 1329,
1359, 1425, 1461, 1531, 1547, 1585, 1641, 1663,
1710, 1767, 1814, 1835, 1838, 1852, 1858, 1859,
1983, 1987, 1996, 2023, 2035, 2073, 2150, 2162,
2189, 2265, 2329, 2372, 2413, 2571, 2618, 2625].
Designing [454, 865, 1159, 1192, 1483, 2553].
designs [1050, 2635]. desktop [1272].
destination [739, 1169, 2285]. destructing
[2553]. Detect [1178, 1317, 1634, 2142].
Detecting [348, 564, 593, 753, 848, 855, 863,
1083, 2090, 2183, 2475, 2498, 2671].
Detection [86, 99, 135, 174, 305, 340, 370, 371,
485, 496, 549, 583, 737, 752, 774, 778, 845, 853,
854, 864, 874, 878, 983, 999, 1040, 1058, 1069,
1081, 1092, 1105, 1125, 1148, 1174, 1210, 1296,
1308, 1410, 1479, 1491, 1527, 1554, 1573, 1579,
1626, 1641, 1662, 1793, 1821, 1866, 1883, 1944,
2137, 2174, 2185, 2297, 2350, 2361, 2453, 2478,
2481, 2482, 2499, 2542, 2617, 2668, 2705].
detection-resistant [340]. detector [2142].
detectors [1938]. Determination
[897, 1725, 1847]. Determining [2305].
Deterministic [466, 696, 1911, 2173].
Development [472, 1196, 1305]. Deviation
[1239]. Device
[1480, 1552, 1593, 1931, 1984, 2162, 2178, 2317,
2318, 2326, 2394, 2411, 2552, 2715, 2738, 2739].
device-aware [1984]. Device-to-Device
[2162, 2178, 2317, 2394, 2411, 2552, 2739].
devices [398, 575, 668, 1005, 1131, 1280, 1393,
1684, 2000, 2084, 2104, 2187, 2326, 2520, 2575,
2716, 2724]. dew [2738]. DHT
[459, 613, 2320]. DHT-paradigm [2320].
DHTs [155]. diagnosis [1347, 1525, 2432].
difference [917]. differences [1408, 1941].
different [362, 444, 687, 1534, 2210].
Differential [48, 693, 1337]. Differentially
[2598]. Differentially-private [2598].
differentiated [486, 677, 822, 1770].
differentiation
[107, 244, 433, 525, 1169, 1763, 2306].
difficulty [479]. Diffusion
[213, 353, 1014, 2116, 2298]. diffusion-based
[802]. dimensional
[1088, 1133, 1592, 1782, 2564].
Dimensional-IP [1133]. Dimensionality
[1626, 2705]. dimensioning [1264, 2010].
DIMR [1133]. Dimensionality
[1626, 2705]. dimensioning [1264, 2010].
DIMR [183]. direct
[454, 1511, 1992, 2369, 2439].
direct-sequence [1992]. direction
[260, 2559]. Directional
[173, 1474, 1535, 1727, 1972, 2344, 2417].
directions [2337]. directories [59].
disaggregation [2144]. disaster
[773, 1628, 1736, 2236, 2439, 2698].
disaster-affected [2698]. disaster-resilient
[1736]. disciplines [97]. disclosure
[777, 1594]. Discontinuous [1333].
discovery [9, 158, 179, 330, 341, 648, 1132, 1173, 1256, 1465, 1530, 1587, 1593, 1820, 1931, 2100, 2369, 2485, 2706, 2719]. discrete
[188, 329, 2246]. discrete-time
[188, 329, 2246]. Discriminating
[497]. Discriminatory [116]. disjoint
[585, 732, 1645, 2121]. disk [1442, 1749, 1918].
disorder [1947]. disorder-avoidance
[1947]. dispatching [1079]. dispersion
[329]. disruption [1346, 1580].
disruption-tolerant [1346]. disruptive
[2653]. Dissecting [849]. dissemination
[47, 125, 261, 623, 694, 723, 1026, 1218, 1366, 1398, 1654, 2143, 2369, 2390, 2539]. Distance
[724, 798, 2270, 2611]. Distance-vector
[2270]. distinctive [2390]. distort [104].
Distributing [1409]. Distribution
Distribution-based [1058]. distributions
[2433]. distrust [737]. diurnal [1148].
diverse [186, 1072, 2272]. diversified [2647].
diversity [187, 334, 375, 514, 1522, 2105].
divide [234, 1089]. divide-and-conquer
[1089]. divide-conquer-scanning [234].
division [763, 1694, 2221]. DMM [2416].
DMMS [1756]. DNS
[539, 589, 1793, 1821, 2008, 2131]. DNStamp
[1211]. do [784]. DOCSIS [1755].
documents [387]. Domain [127, 246, 322, 443, 827, 841, 884, 886, 996, 1109, 1128, 1207, 1481, 1488, 1511, 1527, 1613, 1798, 1869, 1938, 2020, 2283, 2337, 2349, 2532, 2540, 2604].
domain-based [2604]. domain-specific
[1613]. domains [1027, 1385, 1690].
dominated [1386]. Dominating
[303, 2072, 2224]. domination [299]. Don’t
[1405]. Double [102, 945, 1122, 2154, 2697].
double-link [1122]. Double-Ring [102].
double-ruling [2154]. down [6, 1255, 2567].
Downlink [372, 866, 929, 930, 1024, 1417, 1603, 1664, 1759, 1770, 2165, 2543, 2654, 2658].
download [672]. downloading
[574, 941, 1841, 1947, 2650]. DPI [1419, 1676].
DPillar [683]. drive [941, 1398]. drive-thru
[941]. driven [10, 212, 425, 528, 1062, 1496, 1503, 1712, 2092, 2372, 2530]. driver
[473, 2605]. driving [2641]. drone [2639].
drone-enabled [2639]. drop [915].
dropping [1169, 1579, 1800, 2185]. DRUID
[318]. DRX [1333, 1440]. DSR [173]. DT
[2272]. DT-RPL [2272]. DTN
[694, 1540, 2336]. DTN-based [2336]. dual
[102, 683, 1601, 2039]. Dual-port [683].
dual-reinforcement-learning [1601].

energy [217, 261, 268, 290, 413, 620, 670, 692, 701, 706, 708, 752, 860, 934, 939, 1004, 1022, 1103, 1244, 1290, 1293, 1367, 1382, 1396, 1420, 1451, 1456, 1457, 1464, 1504, 1650, 1677, 1754, 1765, 1796, 1892, 2026, 2031, 2086, 2096, 2125, 2144, 2187, 2212, 2213, 2251, 2252, 2262, 2265, 2355, 2368, 2370, 2393, 2408, 2446, 2471, 2487, 2494, 2495, 2564, 2565, 2571, 2587, 2606, 2620, 2664, 2674, 2741]. Energy-Aware [484, 668, 706, 919, 939, 954, 995, 1029, 1295, 1368, 1456, 1739, 1764, 2084, 2155].

H.264 [505]. H.264/SVC [505]. habits
handheld [2104]. handling [2261]. handoff [58, 376, 662, 1106, 1287, 1344, 1387, 1474, 2038]. handoff-aware [662]. handoffs [442].

Handover [142, 239, 262, 360, 361, 520, 682, 1080, 1170, 1262, 1416, 1421, 1544, 1603, 1773, 1824, 1895, 1920, 1957, 2084, 2319, 2321, 2356, 2578].

handovers [362, 560, 1065]. HAPs [461]. hard [576, 2284, 2679]. Hardware [324, 751, 1242, 1859, 2101, 2477, 2613].

hardware-amenable [324]. HARQ [223, 657, 2219]. harvest [2494]. harvesting [217, 1004, 1599, 1894, 2471, 2495, 2565, 2571, 2587, 2606, 2620]. Hash [632, 1112, 1869].

health [1849, 2372, 2408]. healthcare [199, 1359, 1592, 2365, 2366, 2466, 2731, 2738].

heat [2298]. heat-diffusion [2298]. heavy [646, 1641, 2475]. HEER [1892]. held [1622].

Heterogeneous [58, 98, 139, 142, 167, 172, 190, 332, 361, 363, 484, 545, 633, 672, 804, 920, 1048, 1186, 1191, 1207, 1283, 1315, 1358, 1382, 1385, 1433, 1461, 1464, 1484, 1495, 1498, 1505, 1627, 1658, 1684, 1807, 1844, 1948, 1962, 2068, 2219, 2291, 2310, 2318, 2370, 2371, 2378, 2385, 2395, 2407, 2410, 2442, 2476, 2514, 2641, 2658, 2711, 2727, 2741].

HetNet [1826, 2536]. HetNets [1481, 1764, 2315, 2368]. Heuristic [126, 837, 1876, 2702]. heuristics [444, 939].

hidden [198, 216, 580, 599, 767, 856, 1094, 1898, 1984, 2420, 2425, 2426]. hide [2173].

Hierarchical [6, 112, 131, 171, 178, 377, 380, 592, 747, 866, 1234, 1288, 1429, 1489, 1759, 1796, 1874, 2164, 2210, 2256, 2258, 2468, 2540].

homes [2135, 2699]. homing [1967]. homogenous [672]. homomorphic [2329].

hopping [1167, 2323]. hormone [1494].

Hose [884, 1009, 1285]. hose-based [884]. Host [386, 854, 970, 999, 1441, 2593, 2693].

induced [2115, 2566, 2640]. Induction [1508].
Industrial
[319, 1037, 1041, 1045, 1077, 1121, 1247, 1513, 1530, 1559, 1644, 1696, 1869, 1912, 1950, 1951, 2015, 2023, 2025, 2058, 2093, 2124, 2126, 2137, 2147, 2224, 2233, 2242, 2254, 2255, 2268, 2276, 2304, 2348, 2368, 2390, 2501, 2505, 2539, 2541, 2547, 2557, 2569, 2723]. Infrastructure
[139, 162, 545, 558, 803]. Integer-multiple-spacing-based [803]. Integrated [29, 149, 362, 364, 452, 665, 756, 1159, 1266, 1291, 1438, 1463, 1543, 2291, 2536]. Integrating [376]. Integration
[64, 130, 1188, 1212, 1640, 2278, 2393, 2486, 2530, 2566, 2616, 2622, 2648, 2663, 2688, 2734]. intensive [1655]. Inter
[127, 246, 322, 386, 582, 739, 805, 886, 1064, 1087, 1109, 1128, 1179, 1470, 1488, 1527, 1668, 1798, 2020, 2176, 2283, 2631, 2683]. inter-AS [1179]. inter-cluster [2683]. Inter-Destination [739]. inter-domain
[58, 171, 276, 460, 720, 819, 1017, 1087, 1359, 1420, 1595, 1660, 1776, 1816, 1918, 2030, 2176, 2423, 2432, 2446, 2480, 2621, 2675, 2683, 2684]. Intereference-Aware
[1359, 2030, 2480]. interleaving [646]. interleaved [642]. interleaving [793]. intermittently [1201]. Internet
[12, 59, 205, 236, 280, 285, 311, 313, 315–318, 324, 326, 336, 339, 389, 428, 531, 549, 654, 658, 691, 700–702, 733, 746, 751, 790, 820, 833, 862, 956, 969, 973, 974, 977, 1049, 1059, 1151, 1158, 1182, 1185, 1187, 1190, 1207, 1215, 1254, 1286, 1292, 1300, 1338, 1339, 1347, 1402, 1423,

multi-resolution [1606]. multi-round [1675]. multi-sensor [1044, 2694].

Peer-assisted [675, 957, 2136].

People [2581, 2646], per-bit [1286].

Per-flow [517]. per-link [2528].

personal [2019]. Personalized
precise [490, 599], precise [2445, 2479].

[359, 1144, 1421, 1601, 1801].
Reinforcement-learning-based [1801].
Relay-based [1912]. relay-enabled [685]. relaying [1000, 1670]. relays [1303].
selective
self-checking
self-configuration
self-configuring
self-destructing
self-energy
self-optimization
self-organized
self-organizing
Self-Reliant [1527]. Self-tuned [1214]. selfish
selfishness [488]. self-managed [1013].
self-optimization [1915]. self-optimizing
self-organization [1714].
Self-organized [1001, 1233, 1846].
Self-organizing [157, 283, 1713].
Self-Organized [2366]. Self-reliant
[1527]. Self-tuned [1214]. selfish
[598, 677, 1394, 1800]. selfishness [488].
sellers [2577]. semantic [649, 1188].
semantics [850]. Semi [427, 1064].
semi-Markov [1064]. Semi-supervised
[427]. Sender [127]. seniors [2408].
sensible [2212]. Sensing
[222, 253, 893, 1897, 2212, 2395, 2400].
sensor [261, 1326, 1894, 2456, 2586, 2607, 2643].
Sensitizing [1831]. Sensors [1004, 1843, 2353, 2362, 2424, 2456, 2530, 2553, 2564, 2646].
sentiment [1406]. separate [1339].
Separation [246, 294, 320, 974, 2409].
sequence [1992]. sequences [72].
Sequential [241, 1106]. serial [1472]. series
[1728, 2484, 2700, 2709]. served [866].
Server [117, 158, 262, 300, 683, 1261, 1392, 1483, 1711, 1736, 1771, 1929, 2252, 2381, 2398].
server-based [1771]. server-centric [1483].
servers [152, 200, 203, 735, 860, 1120, 1246, 1679, 1718, 2183]. Service
[9, 44, 58, 116, 227, 228, 244, 264, 266, 301, 328, 330, 486, 495, 525, 574, 586, 628, 648, 677, 700, 751, 765, 782, 783, 853, 858, 873, 951, 971, 1031, 1091, 1193, 1246, 1266, 1283, 1292, 1335, 1369, 1370, 1373, 1393, 1433, 1577, 1587, 1603, 1630, 1702, 1703, 1712, 1741, 1763, 1770, 1953, 1956.
1963, 2027, 2038, 2086, 2207, 2215, 2233, 2284, 2292, 2384, 2415, 2427, 2492, 2500, 2533, 2601, 2633, 2647, 2654, 2679, 2681, 2706, 2738, service-aware [2038]. service-chaining [2415]. Service-differentiated [486, 1770].

shapers [1583]. shaping [340, 1302].

Shapley [1823, 1864, 2086]. Shapley-value [1864]. share [532]. Shared [165, 493, 534, 564, 758, 1108, 1302, 1736, 2138, 2271].

Shared-per-wavelength [165].

SHMO [2408]. Short [353, 858, 1211, 1545].

Short-lived [1211]. short-range [353].

Short-term [1545]. shorter [594]. Shortest [8, 80, 180, 235, 919, 1316, 1881, 2637].

similarity [595]. Simple [57, 296, 386, 618, 682, 889, 1217, 1343, 1572, 2465].

Simplification [422]. Simplifying [2676]. SimplyRep [889]. simulated [725, 1552].

SIP [141, 364, 376, 735, 2486]. SIP-based [141]. SIS [1877]. site [2544]. Situation [1766, 2048].

Size [244, 456, 555, 895, 1847, 2205, 2332].

Skye [292]. SLA [873, 981, 1748].

Small [98, 553, 1093, 1383, 1441, 1824, 1844, 1919, 2119, 2212, 2371, 2536].

Smartphone-based [2132]. smartphones [2125, 2549]. SmartSantander [1165]. smoothing [194, 2490, 2660]. SNEAK [174].

snooze [2212]. SNR [1675]. SNVC [2054]. Social
SWISH [367]. Switch [186, 343, 772, 1578, 1600, 1787, 1902, 1925, 2266, 2288].
switch-based [772]. switch-over [186]. Switched [32, 634, 1453]. switching [772].
Synchronization [466, 739, 917, 1271, 1424, 1794, 1913, 2178, 2284, 2294, 2366].
SYNFLOOD [1679]. syntactic [661]. Systematic [311, 1083, 2524, 2623, 2710].
systems [141, 154, 462, 885, 931, 941, 1588, 2059, 2512, 2619].
table [297, 1206, 1678, 1695, 2171, 2197, 2247, 2477]. Tables [632, 1752, 1919].
take [1405]. Taking [1815]. Talent [604].
targeting [2206]. targets [352, 2005]. task [1187, 1338, 2125, 2271].
tasks [2279, 2400, 2566, 2692]. tat [600, 2526].
Taxonomy [71, 1136, 1717, 1785, 2379].
TCAM [748, 2134, 2153, 2248].
TCAM-based [748, 2153]. TCAM-limited [2134].
TCPs [176]. TDM [925]. TDM-PON [925].
TDMA [976, 1168, 1887, 2661].
TDMA-based [1168, 1887]. technical [538, 1619, 2142]. technical-skill [1619].
technique [489, 633, 766, 953, 1053, 1111, 1238, 1544, 1851, 1992, 2378, 2673].
Techniques [32, 200, 496, 573, 907, 1025, 1117, 1230, 1598, 1626, 1684, 1869, 1967, 2036, 2154, 2406].
Techno [196]. Techno-economic [196].
technological [1723]. technologies [7, 84, 362, 1188, 1312, 1591, 1834, 1916, 2359, 2383, 2387, 2629, 2706].
technology [286, 471, 511, 1627, 2648]. technostress [2115].
TEFIS [1191]. telecom [1701].
telecommunications [1722]. telecoms [700].
teleconference [1618]. telephone [12].
telephony [11, 12]. temperature [1842].
Temporal [345, 1588, 1974, 1987, 2046, 2070, 2336, 2490, 2624, 2660].
temporal-spectrum [345]. tenant [1268, 1851, 2120, 2469].
term [313, 1481, 1545, 1770].
terminal [577, 599, 767, 1094]. terminals [866].
termination [161, 2299]. Terrestrial [559].
tessellations [911]. test [1058, 1107, 1191, 1676].
testbed [458, 742, 1042, 1110, 1152, 1154–1156, 1160, 1164, 1165, 1190, 1195, 1197, 1467, 2163].
testbeds [1151, 1159, 1182, 1186, 1188, 1192, 1194, 2449].
Testing
Tethering [1505]. TGBA [2726]. Thank [1413, 1746]. Thanks [2352, 2472]. their [339, 402, 1261, 1893, 2588].

Theoretical [526, 913, 1590, 1776, 2367, 2518].

Three-dimensional [197, 842, 1102, 1664, 1838, 2467, 2564].

Three-layered [2564].

Three-party [1634].

Thinking [2021].

Thick [2003, 2433].

Threatening [1849, 1856, 2074, 2295, 2361, 2363, 2364, 2444, 2492, 2524, 2567, 2594, 2621, 2629, 2646, 2666, 2710, 2713, 2714, 2738].

Things-based [2361, 2738].

Thinking [2021].

Third [849, 1634, 2445].

Third-party [1634].

Third-order [2445].

Three-sided [842].

Three-dimensional [2564].

Three-layered [2467]. Three-party [197, 1102]. Three-sided [842].

Threshold [387, 1260, 1299, 1674, 1877].

Thresholds [520, 2697].

Throughput-guaranteed [1018].

Throughput-optimal [1095].

Throughput-overhead [46].

Throwboxes [1629].

TICK [1344, 2356].

Ticket-based [1344, 2356].

Tiered [1091, 1185].

Tight [1661].

Tightly [2303].

Time-activity [1939].

Time-aware [1600]. Time-based [1598].

Time-driven [528]. Time-efficient [2064].

Time-frequency [502]. Time-limited [2642].

Time-optimized [1510].

Time-related [2627]. Time-sensitive [893, 2395].

Time-validity-constrained [2624].

Time-varying [629, 899].

Timely [2286].

Timeout [298].

Times [116, 672, 1118, 1771, 2515]. Timescale [1652].

Timestamping [1211, 1248].

Timestamps [1597].

Timing [340, 448].

Tit [600, 2526].

Tit-for-Tat [600].

Tilt-for-tat-based [2526].

Titan [848]. TMA [994].

TOD-MAC [1352].

TOD [994].

TOD-MAC [1352].

Token [1583, 2519].

Token-buckets [2519].

Tolerance [428, 1570, 2134].

Tolerant [145, 379, 418, 498, 867, 888, 1130, 1134, 1294, 1346, 1524, 1552, 1580, 1950, 2030, 2045, 2078, 2083, 2239, 2316, 2384].

Tolerating [1117, 1198].

Tomography [2528].

Tool [76, 478, 786, 987, 1193, 1445, 1471].

Tool-supported [987].

Tools [477, 596, 603, 1194, 1419, 1616, 1676].

Top [106, 1255, 2567, 2580].

Top-down [1255, 2567].

Topic [1767].

Topic-based [1767].

Topological [158].

Topologies [77, 102, 125, 413, 618, 1508].

Topology [21, 91, 111, 238, 598, 660, 833, 890, 934, 978, 1117, 1300, 1324, 1439, 1462, 1464, 1465, 1493, 1521, 1543, 1585, 1806, 1828, 1921, 2030, 2073, 2198, 2232, 2314, 2377, 2404, 2540, 2573, 2603].

Topology-aware [238].

Topology-Preserving [2540].

Topology-transparent [2198].

TOPSIS [1958].

TOPSIS-based [1958].

Tor [879, 2554].

TorrentGuard [1123].

Total [1180, 1549].

Tours [1100].

TP/PWE3 [756].

TPD [1716].

Traceability [1005, 2143].

Traceback [1324, 2538, 2608].

Traceband [76].

Traces [336, 578, 1471].

Tracing [650, 1331].

Trackability [1422].

typosquatting [465].

wearable [2187,2362,2646,2724]. Weaver [1616].

Where [286]. while [1534]. White [1505].

Whom [1410]. Wi [454,738,1465,1630,1643,2145,2303,2441,2442,2503,2584].

Wi-Fi [454,738,1465,1630,1643,2145,2303,2441,2442,2503,2584]. Wi-Fi/cellular [2442].

Wide [122,149,201,311,344,2063]. wide-area [149,201,2063]. WiFi [367,643,742,1081,1598,1609,1908,2327].

WiMax/LTE [1080]. Windfall [1181].

wireless [16–18,25,42,45,52,64,126,142,143,171,182,223,249,310,335,344,362,378,393,403,406,437,442,455,484,486,503,515,540,598,620,646,647,653,671,728,740,743,789,821,837,878,893,988,934,1044,1028,1046,1062,1090,1094,1104,1113,1117,1124,1214,1317,1326,1334,1344,1357,1387,1388,1512,1531,1574,1581,1585,1632,1646,1668,1722,1780,1785,1802,1803,1816,1892,1894,
References

REFERENCES

Jiang:2010:EDI

Ibanez:2010:HHZ

Huynh:2010:RTE

Munoz:2010:RVR

Stevens:2010:AAB

Kumar:2010:LED

Eklund:2010:TSF

Leung:2010:STG

REFERENCES

Ortiz:2010:NIP

Yu:2010:ABD

Rahbar:2010:ABM

Golen:2010:USA

Crespo:2010:PFI

Onur:2010:SWS

Yang:2010:IXA

Chand:2010:ESS

Wu:2010:MPI

Misic:2010:MBL

Hu:2010:CCC

Pryyma:2010:ATS

Lee:2010:IMI

Rusak:2010:PBM

Anonymous:2010:EBd

Androutsellis-Theotokis:2010:MBA

Ou:2010:PEK

Shan:2010:BRO

Wu:2010:IFN

Ceken:2010:IAV

Anagnostopoulos:2010:EEF

Gupta:2010:PSS

Rodero-Merino:2010:PRW

Dalalah:2010:RTO

Lei:2010:SDD

Torkestani:2010:IBF

REFERENCES

REFERENCES

Argibay-Losada:2010:NDE

Domenech:2010:UCW

Kim:2010:TCS

Guo:2010:CMP

Chandra:2010:HET

Yu:2010:RSS

Ahmed:2010:EAM

Laki:2010:MBA

Peris-Lopez:2010:VAR

Altman:2010:DPS

Wu:2010:EUA

Anonymous:2010:EBi

Pinto:2010:SMI

Zhang:2010:QDS

Qazi:2010:IRM

Ahmed:2010:IUW

Zubow:2010:GSA

Sorensen:2010:SDF

Oikonomou:2010:PFE

Sitanayah:2010:HAF

Islam:2010:SAD

Kritzinger:2010:CRV

Booker:2010:ETL

Khoukhi:2010:IQM

REFERENCES

Anonymous:2010:EBj

Lee:2010:DMM

Tran:2010:ECB

Casas:2010:OVA

Feng:2010:PPI

Papadopoulos:2010:SIF

Fawaz:2010:DBC

Guney:2010:EIP

REFERENCES

REFERENCES

REFERENCES

Zhou:2010:EAN

Secci:2010:LSR

Lee:2010:PAB

Zhang:2010:EMO

Pelsser:2010:PSN

Mühlbauer:2010:IRP

Gelabert:2010:SSC

Wang:2010:GTC

Zhang:2010:AAB
Anonymous:2010:EBn

Bejerano:2010:NFP

Simplicio:2010:SKM

Yang:2010:SAS

Conti:2010:BML

Ghazisaidi:2010:TEA

Marin-Lopez:2010:STP

Hung:2010:PAI

REFERENCES

Alemdar:2010:WSN

Macia-Fernandez:2010:DTL

Wu:2010:STD

Lin:2010:RRB

Sun:2010:PDA

Wang:2010:TBP

Atzori:2010:ITS

Anonymous:2010:EBo

Feridun:2010:E

[216] Hélène Le Cadre and Mustapha Bouhtou. An interconnection game between

REFERENCES

Feng:2010:TLF

Garroppo:2010:SMC

Zhang:2010:GBA

Belzarena:2010:EEQ

Serral-Gracia:2010:ELM

Hua:2010:LLS

Lv:2010:RAI

Rao:2010:ABL

Anonymous:2010:EBq

REFERENCES

REFERENCES

REFERENCES

Mello:2011:IAE

Zhou:2011:PSA

AlDaoud:2011:RPR

Kim:2011:EAM

Cho:2011:SST

Guo:2011:DIK

Hadjichristofi:2011:RSR

Serbu:2011:HSO

REFERENCES

Ko:2011:DRA

How:2011:RQP

Zhao:2011:QOP

Antonopoulos:2011:BBC

Anonymous:2011:EBa

Altman:2011:P

Gaito:2011:SHF

Marsan:2011:EEW

Psaras:2011:DCS
REFERENCES

P. Pavon-Marino, B. Garcia-Manrubia, and R. Aparicio-Pardo. Multi-hour network planning based on domination be-

[301] Christophorou:2011:ERR

[302] Li:2011:SWB

[303] Leu:2011:RSU

[304] Cai:2011:ATC

[305] Wu:2011:COL

Maria Gregori, Ignacio Llatser, Albert Cabellos-Aparicio, and Eduard Alarcón. Physical channel characterization for medium-range nanonet-

Chrysos:2011:DWS

Wang:2011:NMG

Theoleyre:2011:RAM

Lee:2011:SSI

Peng:2011:EEG

Khosla:2011:PML

Anonymous:2011:EBc

Eggert:2011:SIA

Sanchez-Loro:2011:CFI

[316] Xavier Sanchez-Loro, José Luis Ferrer, Carles Gomez, Jordi Casademont, and Josep Paradells. Can Future Internet...

REFERENCES

REFERENCES

Kudo:2011:DSW

Rothenberg:2011:PBF

Lam:2011:EDT

Bermolen:2011:AAB

Zorbas:2011:CCW

Arifler:2011:CAD

REFERENCES

REFERENCES

Detti:2011:PST

A. Detti, N. Blefari-Melazzi, I. Habib, and A. Ordine. Per-station through-
put fairness in a WLAN hot-spot with TCP traffic. Computer Networks
(Amsterdam, Netherlands: 1999), 55(8):1820–1833, June 1, 2011. CO-
DEN ???. ISSN 1389-1286 (print), 1872-7069 (electronic). URL http:

Macedo:2011:FBL

Daniel F. Macedo, Aldri L. dos Santos, José M. Nogueira, and Guy Pujolle.
Fuzzy-based load self-configuration in mobile P2P services. Computer Networks
(Amsterdam, Netherlands: 1999), 55(8):1834–1848, June 1, 2011. CO-
DEN ???. ISSN 1389-1286 (print), 1872-7069 (electronic). URL http:

Fanian:2011:HP1

Ali Fanian, Mehdi Berenjkoub, Hossein Saidi, and T. Aaron Gulliver. A high
performance and intrinsically secure key establishment protocol for wireless
sensor networks. Computer Networks (Amsterdam, Netherlands: 1999), 55
(8):1849–1863, June 1, 2011. CODEN ???. ISSN 1389-1286 (print),
article/pii/S1389128611000387.

Wen:2011:DLT

Zhihua Wen and Michael Rabinovich. Dynamic landmark triangles: a simple
and efficient mechanism for inter-host latency estimation. Computer Networks
(Amsterdam, Netherlands: 1999), 55(8):1864–1879, June 1, 2011. CO-
DEN ???. ISSN 1389-1286 (print), 1872-7069 (electronic). URL http:

Avrachenkov:2011:OTC

Konstantin Avrachenkov, Alexander Dudin, Valentina Klimenok, Philippe
Naïn, and Olga Semenova. Optimal threshold control by the robots of Web
search engines with obsolescence of documents. Computer Networks
(Amsterdam, Netherlands: 1999), 55(8):1880–1893, June 1, 2011. CO-
DEN ???. ISSN 1389-1286 (print), 1872-7069 (electronic). URL http:

Al-Mistarihi:2011:TBD

Mamoun F. Al-Mistarihi, Mohammad Al-Shurman, and Ahmad Qudaimat.
Tree based dynamic address auto-
configuration in mobile ad hoc net-
works. Computer Networks
(Amsterdam, Netherlands: 1999), 55
(8):1894–1908, June 1, 2011. CO-
DEN ???. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128611000417.

Iliofotou:2011:GGB

Marios Iliofotou, Hyun chul Kim,
Michalis Faloutsos, Michael Mitzen-
macher, Prashanth Pappu, and George

Scharf:2011:CEE

Yan:2011:AAP

Viswanathan:2011:ECP

Anonymous:2011:EBg

Chan:2011:UUN

Anonymous:2011:BNO

Lee:2011:BNO

Alessandria:2011:IAN

Herreria-Alonso:2011:OPS

Thouin:2011:LSP

Iqbal:2011:DNC

Ha:2011:TEN

Garcia-Dorado:2011:CBH

REFERENCES

Ahmadinejad:2011:HMC

Ramamurthi:2011:CCF

Chen:2011:FJJ

Kist:2011:DTS

Belzarena:2011:ORB

Estepa:2011:POM

Paillassa:2011:NAD

Yuksel:2011:CLF

Boc:2011:PHG

Anonymous:2011:EBh

Carl:2011:MPC

Diana:2011:EVM

Dwekat:2011:PFQ

Lee:2011:CMR

Zeng:2011:SRK

Shu:2011:NAM

Xing:2011:TRM

REFERENCES

REFERENCES

Seibert:2011:DSD

Oh:2011:EMP

Zi:2011:ETR

deSanti:2011:DOA

Toril:2011:NPM

Anonymous:2011:EBk

REFERENCES

[458] Martin Jacobsson, Cheng Guo, and Ig­nas Niemegeers. An experimental in-

REFERENCES

Incel:2011:SMC

Gotzhein:2011:BBS

Anonymous:2011:EBl

Herrtwich:2011:ESI

Weiss:2011:VCE

REFERENCES

REFERENCES

REFERENCES

[492] Liu Yang, Rezvana Karim, Vinod Ganapathy, and Randy Smith. Fast, memory-efficient regular expression

Note: The above text contains references to scientific publications, including authors, titles, and publication details. It is formatted to comply with citation standards. Each reference is a contribution to the field of computer networks or related areas, providing insights into various aspects such as communication schemes, energy efficient operations, and multicast techniques. These works are pivotal in advancing the state of the art in wireless sensor networks and peer-to-peer networks. The text exemplifies the interplay between theoretical approaches and practical implementations, reflecting a rich tapestry of research and development in this domain.

REFERENCES

Tellenbach:2011:ANA

Nikolova:2011:BDR

Ciccarelli:2011:CPP

Jiang:2011:JTF

Wang:2011:MTS

Aksu:2011:SLM

Migliorini:2011:PEH

Hsu:2011:ORR

Wang:2011:SCA

Anonymous:2011:EBn

Font-Bach:2011:RTM

Cho:2011:PLS

Kunst:2011:IHE

Kaarthick:2011: SAM

Cicconetti:2011: FEA

Vejarano:2011: SRA

Liang:2011: EEU

Chen:2011: PFS

Jin:2011: PAP

Kim:2011: JPA

[519] Ronny Yongho Kim, Ritesh Kumar Kalle, and Debabrata Das. Joint

Becvar:2011:IHP

Jin:2011:ASM

Fernandez-Carames:2011:MWV

Chuang:2011:LMA

Anonymous:2011:EBo

Wang:2011:ESD

Kupcu:2012:UOF

Mao:2012:MDP

Dong:2012:NMB

Aly:2012:NPC

Lucas-Estan:2012:ILP

Rizk:2012:NAE

Crisostomo:2012:PFS

[547] Sérgio Crisóstomo, Udo Schilcher, Christian Bettstetter, and João Bar-

REFERENCES

REFERENCES

REFERENCES

[595] Benoit Donnet, Bamba Gueye, and Mohamed Ali Kaafar. Path similarity evaluation using Bloom fil-
REFERENCES

REFERENCES

[609] Bivas Mitra, Lionel Tabourier, and Camille Roth. Intrinsically dynamic network communities. *Computer Networks (Amsterdam, Netherlands:

REFERENCES

Ting Wang and Chor Ping Low. The general Message Ferry Route (MFR*) problem and the An-Improved-Route

REFERENCES

Campolo:2012:MMP

Bezahaf:2012:EEC

Vieira:2012:SLH

Wang:2012:CAC

Maenpaa:2012:PER

Rocha:2012:WCB

Pyun:2012:IBF
[650] Young June Pyun, Younghee Park, Douglas S. Reeves, Xinyuan Wang,

[652] Raspall:2012:EPS

[653] Vazifehdan:2012:LNN

[654] Lee:2012:EUP

[655] Liu:2012:SCS

[656] Hu:2012:PCS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Capone:2012:ECN

Bolla:2012:CEB

Kim:2012:ACB

Cuomo:2012:NPE

Avallone:2012:EEO

Hou:2012:MGR

Vizcaino:2012:EEA

Ricciardi:2012:EAD

Rizzelli:2012:EET

Herreria-Alonso:2012:OCE

Wolkerstorfer:2012:ESL

Mancuso:2012:APS

DeTurck:2012:PAS

Gomez:2012:MBM

Elrabiei:2012:RCM

Chen:2012:IAM

Wang:2012:PBD

Bahrak:2012:SAP

Dong:2012:BDD

Tomita:2012:DUT

Tang:2012:NDS

Pacheco:2012:IEA

Fernandez-Lopez:2012:TDE

Schaffer:2012:SRC

Saputro:2012:SRP

Anonymous:2012:EBk

Wang:2012:VIB

Lee:2012:ORN

REFERENCES

Feitosa:2012:OAU

Rashwand:2012:EAP

Liao:2012:DEE

Castro:2012:DRS

Ortega:2012:PTD

Camps-Mur:2012:LFA

Montagud:2012:EAR

Yoo:2012:BSI

Holzer:2012:AAL

Chieochan:2012:NCU

Wang:2012:SWM

Wu:2012:RIB

Anonymous:2012:EB1

Divakaran:2012:SDA

Hermida:2012:ABO

Cuda:2012:DCN

Vilalta:2012:GEM

Molnar:2012:COS

Lucerna:2012:TAA

Anonymous:2012:EBm

Gaddour:2012:RNS

Zhang:2012:AER

Lee:2012:IMT

Ahmadi:2012:EAO

Bianzino:2012:GGD

Mondal:2012:PCN

Hu:2012:SMT

REFERENCES

Huang:2012:JSH

Figueiredo:2012:OAB

Fei:2012:RFR

Khalil:2012:CCT

Jeon:2012:ASS

Shpiner:2012:SBA

REFERENCES

[773] Narayanan:2012:JND

[774] Leon:2012:CDP

[777] Doss:2012:MDA

[778] Zhang:2012:FLD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Vieira:2013:LHR

Mbarushimana:2013:CLT

Amador:2013:MCV

Mahmoodi:2013:UTA

Unal:2013:FRB

Cui:2013:CSM

Canberk:2013:AQB

REFERENCES

REFERENCES

Dietrich:2013:CCR

Perdisci:2013:SFG

Lin:2013:GBR

Huang:2013:EBH

Las-Casas:2013:SDS

Yan:2013:PWH

Boshmaf:2013:DAS

171

Hsiao:2013:HTH

Casalicchio:2013:MSP

Jamdagni:2013:RMT

Khan:2013:CRA

Anonymous:2013:EBc

Liou:2013:MMC

Wang:2013:ODE

REFERENCES

Secci:2013:EID

Miao:2013:MVN

BorgesVieira:2013:SSE

Luo:2013:TCB

Kwon:2013:CIE

Anonymous:2013:EBd

REFERENCES

[899] Ji-Hoon Yun. Performance analysis of IEEE 802.11 WLANs with

Kai-Wei Ke and Chia-Hui Huang. Performance evaluation of multi-source Application Layer Multicast (ALM): Theoretical and simulative

REFERENCES

[941] Shengbo Yang, Chai Kiat Yeo, and Bu Sung Lee. MaxCD: Efficient multi-
REFERENCES

REFERENCES

[955] Juan Felipe Botero and Xavier Hesselbach. Greener networking in a network virtualization environment. *Computer...

[983] Sven Apel, Alexander von Rhein, Thomas Thüm, and Christian Kästner. Feature-interaction detection based on

[990] Chao-Tsun Chang, Chih-Yung Chang, Tzu-Lin Wang, and Yun-Jung Lu. Throughput enhancement by exploiting spatial reuse opportunities with smart antenna systems in wireless ad

Serror:2013:MMP

Lin:2013:EAR

Wehmuth:2013:DDA

Boiardi:2013:RPE

Tuncer:2013:PAV

Acar:2013:SPA

Lee:2013:ORA

Shin:2013:ENH

Chang:2013:DCR

CastroFernandes:2013:SAH

Anonymous:2013:EB1

Bellalta:2013:PAC

[1010] Florian Tschorsch and Björn Schuermann. An algorithm for privacy-

Wang:2013:ELM

Rossini:2013:FAT

Gasior:2013:PON

Malandrino:2013:PLW

Hua:2013:ESA

Anonymous:2013:EBm

Ryoo:2013:LBS

[1017] Sunheui Ryoo, Changhee Joo, and Saewoong Bahk. Location-based spectrum allocation and partitioning scheme for cross-tier interference

REFERENCES

REFERENCES

Eum:2013:PBR

Wang:2013:GAN

Conti:2013:LMD

Wahlisch:2013:BDP

Salsano:2013:ICN

Amadeo:2013:ECC

Bandara:2013:DMU

REFERENCES

REFERENCES

Liu:2013:CEC

Matsui:2013:DPA

Silva:2013:MST

Faigl:2013:SAE

Borgia:2013:EER

Hagelstein:2013:IFI

Chen:2013:MMO

Lei Chen and Di Yuan. Mathematical modeling for optimal design of

Carvalho:2013:SMD

Ha:2013:UCV

Wang:2013:EEM

Varis:2013:DFF

Kim:2013:SAO

Meng:2013:TAC

Manzano:2013:ENR

REFERENCES

Atsan:2013:SSD

Hou:2013:FBB

Zubeldia:2013:OPP

Bolea:2013:MAC

Iacovazzi:2013:ESM

Carofiglio:2013:PBS

[1077] Giovanna Carofiglio, Massimo Gallo, and Luca Muscariello. On the performance of bandwidth and storage

Fras:2013:LMA

REFERENCES

REFERENCES

Perez:2014:TPI

Zhang:2014:SSB

Katkalov:2014:MTC

Dou:2014:MUW

Wu:2014:MBS

Yao:2014:FBP

Kim:2014:EEM

Carrea:2014:OHN

Vardhan:2014:GWL

Sherr:2014:DIA

Lai:2014:EEC

Shawky:2014:NAD

Younis:2014:TMT

REFERENCES

REFERENCES

Ouyang:2014:LSE

Fischer:2014:RUA

Asheralieva:2014:TSR

Coras:2014:LSD

Yaacoub:2014:AMR

Jeong:2014:ERM

Gotta:2014:TIS

Temel:2014:RPD

Anelli:2014:FPA

Mata:2014:ADD

Coimbra:2014:EER

Cui:2014:OMV

Sterbenz:2014:SIFa

[1151] James P. G. Sterbenz, David Hutchison, Paul Müller, and Chip Elliott. Special issue on Future Internet Testbeds — Part I: Guest Ed-

REFERENCES

REFERENCES

[1169] Mete Yılmaz and Nirwan Ansari. Achieving destination differentiation

REFERENCES

[1182] James P. G. Sterbenz, David Hutchinson, Paul Müller, and Chip El-

REFERENCES

Matias:2014:EOO

Ata:2014:SFI

Yannuzzi:2014:TSA

Rakotoarivelo:2014:DOR

Han:2014:ESC

Auge:2014:TFG

REFERENCES

[1195] Igor M. Moraes, Diogo M. F. Mat-
tos, Lyno Henrique G. Ferraz, Miguel
Elias M. Campista, Marcelo G. Rub-
instein, Luís Henrique M. K. Costa,
Marcelo D. de Amorim, Pedro B.
Velloso, Otto Carlos M. B. Duarte,
and Guy Pujolle. FITS: a flex-
ible virtual network testbed archi-
tecture. Computer Networks (Am-
sterdam, Netherlands: 1999), 63(??):
221–237, April 22, 2014. CODEN
???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128614000036.

[1196] Young-Hwan Kim, Alina Quereilhac,
Mohamed Amine Larabi, Julien Trib-
ino, Thierry Parmentelat, Thierry
Turlleti, and Walid Dabbous. En-
abling iterative development and re-
producible evaluation of network pro-
tocols. Computer Networks (Am-
sterdam, Netherlands: 1999), 63(??):
238–250, April 22, 2014. CODEN
???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128614000073.

[1197] Zbigniew Dulinski, Kamil Palkowski,
and Piotr Cholda. A university testbed
for large-scale interconnec-
tion experiments on distributed ap-
lications. Computer Networks (Am-
ssterdam, Netherlands: 1999), 63(??):
251–264, April 22, 2014. CODEN
???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128613004519.

[1198] Ming Li, Andrey Lukyanenko, Sasu
Tarkoma, Yong Cui, and Antti Ylä-
Jääski. Tolerating path heteroge-
neity in multipath TCP with bounded
receive buffers. Computer Networks (Am-
sterdam, Netherlands: 1999), 64
(??):1–14, May 8, 2014. CODEN
???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128614000425.

[1199] Xin Cong, Kai Shuang, Sen Su,
FangChun Yang, and LingLing Zi.
LBAS: an effective pricing mecha-
nism towards video migration in cloud-
assisted VoD system. Computer Networks (Am-
ssterdam, Netherlands: 1999), 64(??):15–25,
May 8, 2014. CODEN
???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128614000413.

[1200] Giovanni Di Stasi, Jonas Karlsson,
Stefano Avallone, Roberto Canonicco,
Andreas Kassler, and Anna Brun-
strom. Combining multi-path forward-
ing and packet aggregation for im-
proved network performance in wireless
mesh networks. Computer Networks

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1248] Paolo Ferrari, Emiliano Sisinni, Alessandra Flammini, and Alessandro Depari. Adding accurate times-

Hammad:2014:NMV

Romero-Tris:2014:DSP

Mouradian:2014:RLR

Ahmadi:2014:LSA

Kuzlu:2014:CNR

Ray:2014:SRS

Lakshmi:2014:HRB

Benson:2014:BIS

Schmidt:2014:HPE

Boutaba:2014:CNC

Benson:2014:BIS

Schmidt:2014:HPE

Boutaba:2014:CNC

Reaz:2014:CIW

Hwang:2014:DIA

Amamou:2014:TBM

Wickboldt:2014:RMI

Ni:2014:PHA

Guo:2014:IPL

Wang:2014:MBD

Woo:2014:OAA

[1289] Anonymous. Editorial Board. *Computer Networks (Amsterdam, Nether-

[1296] Wei-Cheng Chu and Kuo-Feng Ssu. Location-free boundary detection in
REFERENCES

235

REFERENCES

Wang:2014:GTA

Condeixa:2014:CAA

Munoz:2014:DTS

Asheralieva:2014:JPB

Zhang:2014:LOS

Anonymous:2014:EBd

Amadeo:2014:CCW

REFERENCES 239

Lu:2014:PLS

Kim:2014:LBB

Stea:2014:CSA

Divakaran:2014:BAD

Wang:2014:ATF

Tham:2014:FSW

Jin:2014:NAPb

[1337] Dinil Mon Divakaran, Mohan Gurusamy, and Mathumitha Sellamuthu.

REFERENCES

REFERENCES

Park:2014:RSP

Sou:2014:BCR

Ren:2014:DJO

Noura:2014:ERE

Tuysuz:2014:EEQ

Shen:2014:ADL

Tung:2014:RPC

[1384] Li-Ping Tung, Ying-Dar Lin, Yu-Hsien Kuo, Yuan-Cheng Lai, and Krishna M.

Jia:2014:UMP

Hassan:2014:REC

Zhang:2014:GCS

Wang:2014:CCP

Sergiou:2014:CCW

Addis:2014:ECR

REFERENCES

[1397] Zhongxing Ming, Mingwei Xu, and Dan Wang. InCan: In-network

Villas:2014:DER

Fringinal:2014:SEP

Hlavacek:2014:LAC

Paul:2014:SDO

Hakiri:2014:SDN

Anonymous:2014:EBh

Klier:2014:CPU

Mutter:2014:DTM

Yan:2014:BAC

Tran:2014:PEB

Putzke:2014:CCG

Patsakis:2014:DPP

Zhao:2014:WFE

Behrendt:2014:MMA

Anonymous:2014:EBi

Anonymous:2015:TYR

Anonymous:2015:E

Anonymous:2015:SHM

Anonymous:2015:AIP

Wu:2015:CLO

Wang:2015:TAC

Akbas:2015:PAM

Cavdar:2015:IOF

Ohsita:2015:ATI

Fornasa:2015:BLS

Gonen:2015:ANM

Gao:2015:GBC

Erel:2015:GSG

Anonymous:2015:EBa

Iacovazzi:2015:PTP

Domzal:2015:SMP

Albano:2015:RVE
REFERENCES

[1444] Phuong Luu Vo, Duc Ngoc Minh Dang, Sungwon Lee, Choong Seon Hong,

Kretsis:2015:MCB

Shanbhag:2015:VSS

Lee:2015:FMA

Anonymous:2015:EBb

Anonymous:2015:EBc

Combes:2015:OOC

Fang:2015:EED

[1451] Chao Fang, F. Richard Yu, Tao Huang, Jiang Liu, and Yunjie Liu. An energy-efficient distributed in-network

REFERENCES

[1464] M. Aykut Yigitel, Ozlem Durmaz Incel, and Cem Ersoy. QoS vs. en-

[1477] Fabrício A. Silva, Azzedine Boukerche, Thais R. M. B. Silva, Linnyer B. Ruiz,

REFERENCES

Jin:2015:CBC

Marinho:2015:CHS

Rezende:2015:SUR

Malanchini:2015:SCS

Farhady:2015:SDN

Bouten:2015:QDN

Park:2015:LSM
REFERENCES

[1511] Li Yang, Jianfeng Ma, Wenjing Lou, and Qi Jiang. A delegation based cross trusted domain direct anonymous attestation scheme. *Computer Networks
267

REFERENCES

(Amsterdam, Netherlands: 1999), 81 (??):245–257, April 22, 2015. CO-
DEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic). URL http:

Sarma:2015:OPA

[1512] Siddhartha Sarma and Joy Kuri. Opti-
timal power allocation for protective jamming in wireless networks: a flow based model. Computer Networks (Amsterdam, Netherlands: 1999), 81 (??):258–271, April 22, 2015. CO-
DEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic). URL http:

Detti:2015:MPP

DEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic). URL http:

Yin:2015:RCM

DEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic). URL http:

Wang:2015:DAP

[1515] Bing Wang, Yao Zheng, Wenjing Lou, and Y. Thomas Hou. DDoS at-
tack protection in the era of cloud computing and Software-Defined Net-
working. Computer Networks (Amsterdam, Netherlands: 1999), 81(??):
308–319, April 22, 2015. CODEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic). URL http:

Hossfeld:2015:IQO

[1516] Tobias Hoßfeld, Michael Seufert, Christian Sieber, Thomas Zinner, and Phuoc Tran-Gia. Identifying QoE optimal adaptation of HTTP adaptive streaming based on subjective studies. Computer Networks (Am-

Anonymous:2015:EBf

[1517] Anonymous. Editorial Board. Com-
puter Networks (Amsterdam, Nether-
lands: 1999), 81(??):ifc, April 22, 2015. CODEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic). URL http:

Tavernier:2015:E

[1518] Wouter Tavernier, Deborah Frincke, Achim Autenrieth, and Didier Colle. Editorial. Computer Networks (Am-
sterdam, Netherlands: 1999), 82 (??):1–3, May 8, 2015. CODEN

REFERENCES

REFERENCES

Saha:2015:ECA

Pietro:2015:EES

Ran:2015:CNP

Hoteit:2015:MDT

Anonymous:2015:EBi

Akyildiz:2015:SSD

Yoon:2015:ESF

Otoshi:2015:TPD

He:2015:SRF

Ali:2015:SFL

Anonymous:2015:EBj

Marynowski:2015:MTF

Gunes:2015:BPF

Wu:2015:GTG

Garcia-Villegas:2015:NCJ

[1573] Eduard Garcia-Villegas, Muhammad Shahwaiz Afaqui, and Elena

Yao:2015:DWS

Anonymous:2015:EBk

Liao:2015:CGA

Cerroni:2015:CLR

Fu:2015:SCP

Sanchez-Casado:2015:MDF

Borrego:2015:MCB

Yao:2015:CAB

Anonymous:2015:EBI

Zhang:2015:CTR

Senouci:2015:WDF

Vien:2015:CLT

Vaezi:2015:APM

Dalvandi:2015:PER

Coutinho:2015:DDR

Anonymous:2015:EBm

Kim:2015:AHS

Kos:2015:USS

Rossi:2015:IBS

Fu:2015:MRA

Oliveira:2015:ORE

[1607] Rodrigo R. Oliveira, Daniel S. Marcon, Leonardo R. Bays, Miguel C.

REFERENCES

Oosterman:2015:IKE

Baig:2015:GNC

Anonymous:2015:EBu

Kim:2015:ARD

Sahraoui:2015:EHB

Juvonen:2015:OAD

REFERENCES

Divakaran:2015:SSL

Huang:2015:HLD

Chrysos:2015:LSB

Leu:2015:IIP

Louati:2015:BFT

Yin:2015:DDI

Zhu:2015:SNS

REFERENCES

REFERENCES

Tian:2015:OBA

Xia:2015:DDU

Ilkhechi:2015:NAV

Wang:2015:SDC

Oh:2015:CBP

Goudos:2015:MOA

Zhang:2015:DNC
REFERENCES

Anonymous:2015:EBo

Moscholios:2015:CPE

Nam:2015:SMP

Megyesi:2015:UBB

Lin:2015:BTE

Luo:2015:PFT

Fichera:2015:OOB

REFERENCES

Peresini:2015:STO

Li:2015:SSA

Guo:2015:JRF

Kim:2015:ICM

Hegde:2015:SFF

Owens:2015:VSD

Uzakgider:2015:LBA

REFERENCES

Gonzalez-Horta:2015:MMS

Madani:2015:MBM

Casoni:2015:QQR

Akyildiz:2015:WSD

Ren:2015:DAC

Savi:2015:PEV

Wang:2015:QDS

Hei-Chia Wang, Wei-Pin Chiu, and Suei-Chih Wu. QoS-driven selection of web service considering group preference. *Computer Networks (Amster-
Aguilar-García:2015:LAS

Lakhlef:2015:FRS

Mansour:2015:CSS

Jeong:2015:TTP

Zhu:2015:DRS

Wang:2015:MRT

REFERENCES

Anonymous:2015:EBr

Boutaba:2015:CNC

Persico:2015:MNT

Kavvadia:2015:EVM

Zhang:2015:EAV

REFERENCES

Anonymous:2015:EBt

Anonymous:2016:TYR

Akyildiz:2016:CE

Castro:2016:JCR

Neumayer:2016:NRU

Deruyck:2016:OLW

Sanchez:2016:EAC

Mishra:2016:ELA

Han:2016:DHG

Kolios:2016:EEM

Pecori:2016:KTR

Zhang:2016:CCN

Ding:2016:ABC

Han:2016:EAQ

[1771] Jie Zhang, Dafang Zhang, Kun Huang, and Zheng Qin. Mini-

Liu:2016:QAR

Ferretti:2016:SHM

Anonymous:2016:EBa

Peng:2016:WDC

Meharouech:2016:TSG

Hartmann:2016:ROI

Timoteo:2016:AUS

[1778] Robson D. A. Timoteo, Lizandro N. Silva, Daniel C. Cunha, and Jorge D. C. Cavalcanti. An ap-

[1784] Anonymous. Editorial Board. Computer Networks (Amsterdam, Netherlands: 1999), 95(??): ifc, February 11, 2016. CODEN ???. ISSN 1389-

Baig:2016:CAC

Kwon:2016:PSB

Brandner:2016:FSP

Sui:2016:DAC

Madhja:2016:HCW

Al-Awami:2016:DDS

Bhardwaj:2016:CSP

[1798] Onkar Bhardwaj, Elliot Anshelevich, and Koushik Kar. Coalitionally stable pricing schemes for inter-domain
REFERENCES

Anonymous:2016:EBd

Gai:2016:PDM

Lee:2016:RRL

Yi:2016:PAP

Wang:2016:JRS

Gokturk:2016:PCL

Akbas:2016:MG1

[1805] Mustafa Ilhan Akbas, Gürkan Solmaz, and Damla Turgut. Molecular geometry inspired positioning for
REFERENCES

Avonts:2016:FCT

Amjad:2016:CHS

Anonymous:2016:EBE

Jaron:2016:QAM

Ding:2016:CLB

Einziger:2016:SEK

Xiao:2016:OPS

[1812] Xun Xiao, Rui Zhang, Jianping Qiao, and Kejie Lu. An optimal pricing scheme to improve transmission opportunities for a mobile virtual network operator. *Computer...

[1819] Meiqin Tang and Yalin Xin. Energy efficient power allocation in cognitive radio network using coevolution chaotic

Jakalan:2016:SRD

Berger:2016:MAD

Chen:2016:EEJ

Kim:2016:ASV

Xenakis:2016:HDS

Haque:2016:ACV

Eguizabal:2016:JDR

[1826] Miguel Eguizábal and Ángela Hernández. Joint dynamic resource allocation and

Anonymous:2016:EBg

Zhang:2016:PPQ

Han:2016:GBJ

Zhang:2016:ITA

Xia:2016:CLD

Han:2016:GBJ

Wang:2016:TSF

Kanaris:2016:SSD

Tsai:2016:EWD

Hossain:2016:CAI

Anonymous:2016:EBh

Yamanaka:2016:TFF

Wang:2016:RPC

[1867] Ming-Chieh Lee and Jang-Ping Shen. An efficient routing algorithm based

Ma:2016:PRF

Sourlas:2016:EHR

Rhaim:2016:NCB

Byun:2016:TST

Wang:2016:EEP

Hoteit:2016:FNC

REFERENCES

Chellappan:2016:CEM

Sun:2016:TCA

Joldzic:2016:TSA

Karaca:2016:EBA

Wang:2016:TSN

Said:2016:MIR

Bhatia:2016:TMT

YOUSAF:2016:OTM

Anonymous:2016:EBk

Yedugundla:2016:MPT

Yoon:2016:RAA

Dinh:2016:MWT

Cao:2016:ROT

Messai:2016:SKM

Michaloliakos:2016:PMN

Cui:2016:DDF

Zhang:2016:TAL

Chen:2016:DGC

Frangoudis:2016:RBM

Hu:2016:PLC

Anonymous:2016:EBl

Aguilar-Garcia:2016:CLB

Akyildiz:2016:RKE

Rebecchi:2016:CPC

Goussevskaia:2016:WSM

Zhang:2016:CIF

Xenakis:2016:AAV

Lu:2016:TLS

Zheng:2016:PUT

[1922] Jun Zheng, Peng Yang, Jingjing Luo, Qiuming Liu, and Li Yu. Per-
user throughput analysis for secondary
users in multi-hop cognitive radio net-
works. *Computer Networks* (Amster-
dam, Netherlands: 1999), 106(?): 122–133, September 4, 2016. CO-
DEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128616301992.

Sehati:2016:NAL

[1923] Ali Sehati and Majid Ghaderi. Net-
work assisted latency reduction for mo-
bile web browsing. *Computer Networks* (Amster-
dam, Netherlands: 1999), 106(?): 134–150, September 4, 2016. CO-
DEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128616300378.

Xu:2016:WSN

[1924] Hao Xu, Huafei Sun, Yongqiang Cheng,
and Hao Liu. Wireless sensor net-
works localization based on graph
embedding with polynomial map-
ing. *Computer Networks* (Amster-
dam, Netherlands: 1999), 106(?):
151–160, September 4, 2016. CO-
DEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128616302067.

Boero:2016:BLB

[1925] L. Boero, M. Cello, C. Garibotto,
M. Marchese, and M. Mongelli.
BeaQoS: Load balancing and deadline
management of queues in an Open-
Flow SDN switch. *Computer Networks*
(Amsterdam, Netherlands: 1999), 106
(?):161–170, September 4, 2016. CO-
DEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128616302092.

Nguyen:2016:CEE

[1926] Minh Tuan Nguyen, Keith A. Teague,
and Nazanin Rahnavard. CCS:
Energy-efficient data collection in clus-
tered wireless sensor networks uti-
zizing block-wise compressive sens-
ing. *Computer Networks* (Amster-
dam, Netherlands: 1999), 106(?):
171–185, September 4, 2016. CO-
DEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128616302158.

Mangili:2016:OPV

[1927] Michele Mangili, Jocelyne Elias, Fabio
Martignon, and Antonio Capone. Opti-
mal planning of virtual content de-
ivery networks under uncertain traffic
demands. *Computer Networks* (Am-
sterdam, Netherlands: 1999), 106(?):
186–195, September 4, 2016. CO-
DEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128616302158.

Wang:2016:PTE

[1928] Ting Wang and Mounir Hamdi. Presto:
Towards efficient online virtual network
embedding in virtualized cloud data
centers. *Computer Networks* (Am-
sterdam, Netherlands: 1999), 106(?):
REFERENCES

Tomanek:2016:MCL

Middleton:2016:SCQ

Zhang:2016:SCD

Anonymous:2016:EBn

Curado:2016:GES

Wen:2016:ADA

Moura:2016:EAM
REFERENCES

REFERENCES

Anonymous:2016:EB0

Asheralieva:2016:ERB

Taherkhani:2016:PSM

Meng:2016:OMB

Gharbaoui:2016:ICT

Pereira:2016:WNC

Sciancalepore:2016:LLS

REFERENCES

REFERENCES

Khalifah:2016:HFM

Anonymous:2016:EBp

Hancke:2016:SIR

Quyen:2016:CDS

Nardelli:2016:TMM

Aliberti:2016:RPS

Tippenhauer:2016:PLI

References

REFERENCES

[2008] Hadrien Hours, Ernst Biersack, Patrick Loiseau, Alessandro Finamore, and Marco Mellia. A study of the impact of DNS resolvers on CDN perfor-
REFERENCES

Wamser:2016:MYS

Bonald:2016:MSM

Kleinrouweler:2016:MES

Metzger:2016:TVS

Anonymous:2016:EBr

Anonymous:2016:EBs

Wang:2016:MCC

[2015] Jin Wang, Jing Ren, Kejie Lu, Jianping Wang, Shucheng Liu, and Cedric Westphal. A minimum cost cache management framework for information-

[2028] V. V. Mandhare, V. R. Thool, and R. R. Manthalkar. QoS rout-
REFERENCES

REFERENCES

REFERENCES

346

Anonymous:2016:EBt

Anonymous:2016:EBt

Socievole:2016:CPS

Machado:2016:PFM

Miao:2016:PPR

Ramiro:2016:CAT

Hernandez-Orallo:2016:AEP

Rolim:2016:SAC

Chen:2016:EMA

Holzer:2016:PES

Turkes:2016:CLO

Killijian:2016:SSO

Ojog:2016:MCO

Oliveira:2016:SSN

Thiago Rodrigues Oliveira, Cristiano M. Silva, Daniel F. Macedo,

Militano:2016:TBS

Anonymous:2016:EBu

Anonymous:2017:ECN

Mauri:2017:DKR

Zhang:2017:MCS

Liao:2017:DCB

Ferraz:2017:HPT

[2061] Lyno Henrique G. Ferraz, Rafael Laufer, Diogo M. F. Mattos, Otto Carlos M. B. Duarte, and Guy Pujolle. A high-performance Two-Phase

Ndashimye:2017:VIC

Yao:2017:PFF

Oliveira:2017:MDT

Xu:2017:OCV

Adasme:2017:MCD

Ren:2017:EEV

Ouaddah:2017:ACI

[2074] Aafaf Ouaddah, Hajar Mousannif, Anas Abou Elkalam, and Abdellah Ait Ouahman. Access control in the Internet of Things: Big challenges and

[2087] Konstantinos Deltouzos and Spyros Denazis. Tackling energy and battery issues in mobile P2P VoD systems. Computer Networks (Amsterdam, Netherlands: 1999), 113(??):

REFERENCES

Araujo:2017:RLM

Lai:2017:USN

Tuysuz:2017:SEE

Stein:2017:MRS

Javed:2017:SMT

Shi:2017:SBR

Forkan:2017:VLM

REFERENCES

Mohemed:2017:EER

Khebbache:2017:VNF

Klier:2017:SIS

Li:2017:PSR

Kang:2017:VEO

Liu:2017:PCD

REFERENCES

Brooks:2017:SMI

Wang:2017:TLS

Anonymous:2017:EBc

Sinha:2017:DLM

Chang:2017:ACC

DOro:2017:ABR

Wang:2017:EAR

[2121] Rui Wang, Suixiang Gao, Wenguo Li, and Zhipeng Jiang. Energy

Sun:2017:COV

Anjum:2017:SPA

Behal:2017:DDA

Koubaa:2017:QAE

Anonymous:2017:EBe

Malekian:2017:CPS

Kuo:2017:QIA

Fontinele:2017:EIR

Yadav:2017:EDE

Das:2017:PAC

Divakaran:2017:RRE

Sun:2017:RRF

Tang:2017:ZKG

Yang:2017:EAP

REFERENCES

[2162] Siba Narayan Swain, Rahul Thakur, and C. Siva Ram Murthy. Design and stochastic geometric analysis of an efficient Q-Learning based physical resource block allocation scheme to maximize the spectral efficiency of Device-to-Device overlaid cellular

Papadopoulos:2017:TIT

Dong:2017:NFS

Acedo-Hernandez:2017:PPA

Anonymous:2017:EBh

Papadopoulos:2017:TIT

Dong:2017:NFS

Acedo-Hernandez:2017:PPA

Anonymous:2017:EBh

Wu:2017:SP1

Ibn-Khedher:2017:OOP

Costantino:2017:PMC

REFERENCES

Guan:2017:RCE

Qiu:2017:GFT

Tajiki:2017:OQA

daSilva:2017:MPD

Bo:2017:TTT

Galiotto:2017:ENP

Houaidia:2017:IFI

[2176] Chiraz Houaidia, Hanen Idoudi, Adrien Van Den Bossche, Leila Azouz Saidane, and Thierry Val. Inter-flow and intra-flow interference mitigation routing in

Zhou:2017:FFI

Li:2017:CSU

Zhang:2017:SMB

Anonymous:2017:EBi

Gavrilovska:2017:RSE

Zhang:2017:EFK

Jazi:2017:DHB

Macedo:2017:SSP

Rmayti:2017:SAP

Chen:2017:LLC

Sung:2017:DBE

Besiktas:2017:SVN

Oktian:2017:DSC

Gazit:2017:MOC

[2190] Nir Gazit, Francesco Malandrino, and David Hay. Mobile operators and con-

Leng:2017:FMR

Lutz:2017:VWT

Werner:2017:CIM

Xue:2017:NQL

Sundaresan:2017:SSP

Stimpfling:2017:EDT

REFERENCES

[2210] Zhixin Liu, Shiyi Li, Kai Ma, Xinpeng Guan, and Xinbin Li. Robust power allocation based on hierarchical game with consideration of different user requirements in two-tier femtocell networks. Computer Networks

Yoon:2017:ADC

Yi:2017:RSC

Meng:2017:MUB

Anonymous:2017:EBk

Roy:2017:OSU

Qamar:2017:CRC

Wu:2017:SIB

[2217] Peng Wu and Li Pan. Scalable influence blocking maximization in social networks under competitive independent cascade models. Computer
Borrego:2017:EWC

Karar:2017:OSA

Xu:2017:PLS

Lv:2017:RIR

Meneguette:2017:SES

Donatiello:2017:MPE

Mohanty:2017:DCM

Barrachina-Munoz:2017:MHC

Bonfiglia:2017:EDH

Saginbekov:2017:MMD

Wang:2017:CPU

Anonymous:2017:EBI

Nikoletseas:2017:RCA

Hossfeld:2017:SCN

Zinner:2017:DTM

Guo:2017:SPF

Zhang:2017:TSE

Li:2017:FIU

Gao:2017:CAM

Marotta:2017:ECR

[2264] Abolfazl Hajisami and Dario Pompili. Dynamic joint processing: Achieving...
REFERENCES

Wei:2017:TSA

Kim:2017:DRD

Gregori:2017:IME

Casetti:2017:AFC

Guo:2017:TEH

Lv:2017:AII

Kim:2017:ENF

[2277] Dohyung Kim and Younghoo Kim. Enhancing NDN feasibility via dedicated routing and caching. *Com-
REFERENCES

[2284] Yaw-Wen Kuo and Jane-Hwa Huang. A CSMA-based MAC protocol for

Guo:2017:SSP

Hu:2017:TSA

Gomez:2017:ENT

Hassen:2017:SPS

Nunes:2017:GNG

Marcon:2017:AMB

Mansouri:2017:CLA

Yim:2017:VLS

Ghazvini:2017:SHM

Wang:2017:KMP

Hellaoui:2017:EEM

Lee:2017:TBS

Viegas:2017:TRA

REFERENCES

Ghosh:2017:EEH

Wetzels:2017:FTS

Nemeth:2017:ORP

Neto:2017:CBS

Chouikhi:2017:DCR

Santhappan:2017:NCF

REFERENCES

REFERENCES

REFERENCES

[2337] K. Katsalis, B. Rofoee, G. Landí, J. F. Riera, K. Kousias, M. Anas-

Qi:2017:ERE

Ceron:2017:MTC

Lee:2017:OSA

Wu:2017:EIT

Qiu:2017:AAS

Ayadi:2017:ODA

[2350] Aya Ayadi, Oussama Ghorbel, Abdulkattah M. Obeid, and Mohamed

[Anonymous:2017:EBr]

[Harry Rudin:2017:CHW]

[Rodrigues:2017:SIW]

[Lloret:2017:APS]

[Radu-Corneliu Marin:2017:CAC]

[IlSun You:2017:STB]

[Carolina Fortuna:2017:SIC]

[2357] Carolina Fortuna, Adnan Bekan, Tomaz Javornik, Gregor Cerar, and

Han:2017:FRS

Li:2017:RMF

Liu:2017:IMC

Yang:2017:RDF

Li:2017:AMA

Yaqoob:2017:RRE

Ibrar Yaqoob, Ejaz Ahmed, Muhammad Habib ur Rehman, Abdelmutlib Ibrahim Abdalla Ahmed, Mohammed Ali Al-garadi, Muhammad

Yaqoob:2017:RRE
REFERENCES

Ahmed:2017:RBD

Chen:2017:PIP

Qiu:2017:SSR

[2366] Tie Qiu, Xize Liu, Min Han, Mingchu Li, and Yushuang Zhang. SRTS: a Self-Recoverable Time Synchroniza-

Zhao:2017:EEG

Zhao:2017:HIE

DeBenedetto:2017:PDD

[2369] Jacopo De Benedetto, Paolo Bellavista, and Luca Foschini. Proximity discovery and data dissemination for mobile crowd sensing using LTE direct. *Computer Networks (Amsterdam,
Wang:2017:MEC

Lin:2017:MEP

Harbouche:2017:MDF

Anonymous:2017:EBs

Anonymous:2018:EBa

Akyildiz:2018:EC

Ian F. Akyildiz, Harry Rudin, and Burkhard Stiller. Editorial for COMNET 2017. *Computer Networks (Am-

REFERENCES

REFERENCES

[2396] Xiaonan Wang, Zhengxiong Dou, Dong Wang, and Qi Sun. Mobility management for 6LoWPAN WSN. *Computer Networks (Amster-

[2403] Yufeng Zhan, Yuanqing Xia, and Jinhui Zhang. Incentive mechanism in platform-centric mobile crowdsensing: a one-to-many bargaining ap-
REFERENCES

[2423] Chaonong Xu, Kaichi Ma, and Yongjun Xu. Complexity of minimum uplink scheduling in backbone-assisted successive interference cancellation-based

Wang:2018:EER

Tian:2018:ERT

Belguith:2018:PSO

Cui:2018:EEC

Chen:2018:MMA

Wang:2018:SGP

REFERENCES

Zhao:2018:ODD

Bennis:2018:EQS

Chaudhuri:2018:NQA

Xia:2018:BFN

Wang:2018:TIM

Mozaffari:2018:PDE

REFERENCES

Hadiwardoyo:2018:ECU

Li:2018:MLS

Yang:2018:CCN

Semerci:2018:ICS

Xu:2018:AAB

Anonymous:2018:EBg

Lin:2018:FLT

Shinkuma:2018:UIM

Javed:2018:TBS

Sicari:2018:RRD

Xin:2018:TOL

Zhu:2018:REH

Zareei:2018:EAD

Bhunia:2018:DAB

[R296] Suman Bhunia, Paulo Alexandre Regis, and Shamik Sengupta. Distributed adaptive beam nulling to survive

REFERENCES

[2523] Anand M. Baswade, Touheed Anwar Atif, Bheemarjuna Reddy Tamma, and Antony Franklin. A novel coexistence scheme for IEEE 802.11 for user fairness and efficient spectrum utilization...

Shadroo:2018:SSB

Xu:2018:MTL

Sasabe:2018:AOP

Gao:2018:SCA

Cao:2018:APL

Hassine:2018:APB

Khalid:2018:ADD

[2530] Aaqib Khalid, Tariq Umer, Muhammad Khalil Afzal, Sheraz Anjum, Adnan Sohail, and Hafiz Muhammad Asif. Autonomous data driven surveillance and rectification system using...

Anonymous:2018:EBk

Tan:2018:PMN

Li:2018:DSD

Yang:2018:USC

Karimi:2018:PPG

Wang:2018:LBR

Banerjee:2018:CSR

REFERENCES

[2564] Zhuo Wang, Xiaoning Feng, Guangjie Han, Yancheng Sui, and Hongde Qin. EODL: Energy Optimized Dis-

[Xu:2018:SRA]

[Shi:2018:MMI]

[Detti:2018:CBS]

[Anonymous:2018:EB1]

Sabuj:2018:TSP

Akdogan:2018:SKA

Yadav:2018:ALC

Golchi:2018:EIP

Khatouni:2018:DCC

Gao:2018:OOV

Bhoi:2018:ARP
Sadik:2018:SBH

Mohamed:2018:EEC

Li:2018:QRB

Bradai:2018:RTE

Li:2018:MNG

Rumipamba-Zambrano:2018:SDF

REFERENCES

[2590] Zichuan Xu, Weifa Liang, Alex Galis, Yu Ma, Qiu Feng Xia, and Wenzheng Xu. Throughput optimization for admitting NFV-enabled requests in cloud networks. *Computer Networks*
Anonymous:2018:EBm

Han:2018:QSA

Xie:2018:HBS

Sagirlar:2018:DPE

Wang:2018:NSS

Ferreira:2018:CSI

[2603] Chen Liu, Dingyi Fang, Yue Hu, Shensheng Tang, Dan Xu, Wen Cui, Xiaojiang Chen, Baoying Liu, Guangquan Xu, and Hao Chen. EasyGo: Low-cost and robust geographic opportunistic sensing routing in a strip topology wireless sen-

REFERENCES

[2655] Farzad Tashtarian, Alireza Erfanian, and Amir Varasteh. S2VC: an SDN-based framework for maximizing QoE in SVC-based HTTP adaptive stream-
REFERENCES

Gaber:2018:TBS

Yang:2018:ECE

Lechowicz:2018:GRA

[2665] Piotr Lechowicz, Krzysztof Walkowiak, and Mirosław Klinkowski. Greedy randomized adaptive search proce-

Sun:2018:PMA

Bu:2018:FOR

REFERENCES

Almiani:2018:ERU

Anonymous:2018:EBq

Wang:2018:WDM

Ra:2018:PFB

Thakur:2018:AHT

Huang:2018:ASG

Zhao:2018:FRR

Yu Zhao, Yunhui Liu, Tingting Yu, Tian He, and Chen Qian. FREDI: Robust RSS-based ranging with multipath effect and radio interference. Computer Networks (Amsterdam, Netherlands: 1999), 147(??):

[2682] Chedia Jarray and Anastasios Giovanidis. Successful file transmission in mobile D2D networks with...

Hajisami:2018:CBJ

Grassi:2018:MMI

Cohen:2018:QMB

Attia:2018:QAS

Li:2018:BEN

Khokhar:2018:ISF

Akyildiz:2018:AFN

Anonymous:2019:EBa

Akyildiz:2019:CNC

Huang:2019:MRW

Park:2019:MPP

Yuan:2019:APL

Shao:2019:DRP

REFERENCES

Wang:2019:SLP

Ghermezcheshmeh:2019:APE

Salo:2019:DRI

Marino:2019:ACN

Kompara:2019:REM

Wahid:2019:HAC

Ji:2019:FSS

Asghari:2019:ITA

Petreska:2019:BBP

Schunter:2019:ESI

Noor:2019:CRI

Hou:2019:SIT

Zhou:2019:PRI

[2729] Bala Prakasa Rao Killi and Seela Veerabhadreswara Rao. Towards improving resilience of controller placement with minimum backup capacity in software

