
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
15 October 2019
Version 1.104

Title word cross-reference

/1609 [436].
1 [1800,1826]. 10 [38,756].
2 [1189,1755]. 2017 [2376]. 2167 [697].
2VC [2655].
3-ent [2344]. 3DVS [2885]. 3G
[527,1054,1139,1379,1662].
40 [2798]. 4G [1397,1484,1954,2079]. 4PR
[2045].
56 [697]. 5G [1564,1709,1916,2055,2092,
2119,2175,2251,2264,2318,2353–2357,2459,
2600,2614,2657,2662,2683,2684,2689,2798].
5G-IoT [2318].

-1.5-

1

-1.5-

-1.5-
adjacency [1470]. adjustment [1052, 2417].
Admission
[3, 535, 906, 1000, 1064, 1262, 2584].
admitting [2590]. Adopting [2852].
Adoption [970, 1408, 1854]. ADSL2 [709].
[91, 142, 225, 247, 275, 301, 398, 457, 484, 513, 601, 619, 622, 670, 749, 751, 763, 768, 804, 889, 1004, 1101, 1186, 1332, 1467, 1537, 1681, 1715, 1806, 1824, 1857, 1876, 2049, 2111, 2118, 2203, 2230, 2528, 2405, 2421, 2442, 2521, 275, 2614, 2687, 2783, 2863, 2864, 2969, 2931, 2943, 2964].
aligned [1586]. alignment [2792]. all-optical [32, 305, 394, 721, 1100]. All-Path [1473]. All-to-all [1366].
alternates [100, 1777]. alternative [1389, 2204]. altruistic [677]. always [949]. always-on [949]. Amazon [1735]. ambient
Analysing [1522, 2380, 2418]. Analysis
[1, 9, 115, 131, 165, 167, 176, 178, 184, 196, 198, 259, 304, 329, 331, 353, 379, 412, 433, 518, 568,
beamforming

BeaQoS

BBU

Bayesian

BBU

BCCD [2926]

BCCD [2926]
9

Closed-loop [1835]. Closeness [993].
Cloud [332, 831, 873, 959, 1163, 1164, 1171, 1185, 1199, 1228, 1265–
1267, 1269, 1272, 1275, 1276, 1295, 1309, 1365, 1445, 1507, 1515, 1577, 1592, 1650, 1651, 1655, 1656, 1730, 1734, 1735, 1737, 1740, 1742–
2319, 2329, 2340, 2365, 2387, 2398, 2419, 2425, 2433, 2434, 2464, 2506, 2508, 2543, 2548, 2590, 2647, 2683, 2695, 2741, 2746, 2751, 2768, 2770, 2778, 2780, 2807, 2898, 2907, 2915, 2917, 2930, 2943, 2947]. Cloud-assisted
[1199, 1842, 1849, 2319, 2365, 2506].
Cloud-based
[873, 1164, 1445, 2071, 2387, 2508, 2807].
[692, 1636, 1810, 2060, 2569, 2683, 2781, 2815, 2870].
ClusterR-based [692, 1636, 2569, 2815].
Cluster-level [1810]. Clustered
[77, 779, 1495, 1926]. Clustering
CMIMO [2815]. CMT [2081].
Co [418, 1317, 1715, 1913, 2446, 2625]. co-based
[418]. co-channel [2446]. co-exist [1317].
coalition [1115, 1340, 2055, 2815].
coalitional [1031, 1209, 1444, 1576, 2634].
Coalitionally [1798]. coarse [135].
coarse-grained [135]. Cocoon [2051].
CoCoSpot [851]. Cod [1797]. code
[977, 1580, 1830, 2153]. code-based [1830].
Coded [1301, 1782, 2892]. codes
Coding-aware [1911]. coding-based
[140, 887, 1646, 1870, 2040, 2828].
coding/ARQ [403]. Coercion [1498].
coevolution [1819]. Coexistence
[1236, 1415, 1807, 2181, 2450, 2523].
coexisting [1023, 2774]. coflows [2877].
Cognitive
collaboration [149, 984]. collaborations
[2095]. Collaborative [148, 150, 153, 157, 158, 182, 481, 482, 549, 929, 1076, 1086, 1105, 1215, 1391, 1638, 1710, 1796, 1841, 2027, 2161, 2186, 2206, 2355, 2579, 2695, 2731, 2862].
Collaboratively [2397]. collapse [772].
Collateral [2005]. collecting [2273].
collection [912, 1173, 1187, 1301, 1341, 1368, 1649, 1926, 2200, 2298, 2586, 2718, 2843].
collectors [2843]. Collision
[221, 953, 1103, 1984, 2079].
Collision-Aware [221]. collisions
[904, 2165]. colluded [2142]. Collaboration
Congestion-aware [2250].
Congestion-proportionality [2800].
connectionless [550]. connections [265, 758, 998, 1523, 1743, 2653].
Connectivity [258, 281, 335, 455, 654, 686, 710, 942, 1388, 1628, 1751, 1787, 1960, 2053, 2301, 2302, 2313, 2318, 2382, 2581, 2801, 2926].
Connectivity-converge [234, 921, 1089].
Connectivity-conscious [2233, 2240].
Connectivity-consensus [1338, 1467].
Connectivity-consensus-based [1338]. CONCERT [1752]. conservation [261, 2290].
consideration [2210]. Considerations [1330].
considering [1372].
considerations [73, 258, 289, 369, 561, 592, 703, 1369, 1384, 1425, 1572, 1860, 2072, 2138, 2711, 2768, 2863].
Consistency [656, 1166, 1426, 2841].
consistent [1694, 2699, 2835]. consolidated [1228, 2626]. Consolidation [2252, 2337, 2381]. constant [2343].
constrained [225, 264, 316, 757, 1524, 1624, 1813, 2226, 2230, 2450, 2460, 2463, 2568, 2575, 2624].
Constraint [1011, 1457, 1657, 1677, 1993, 2150].
Constraint-based [1657]. constraints [73, 258, 289, 369, 561, 592, 703, 1369, 1384, 1425, 1572, 1860, 2072, 2138, 2711, 2768, 2863].
Constructing [585, 1752, 2586, 2659].
consumers [933]. consumption [712, 738, 830, 1206, 1244, 1367, 1384, 1388, 1420, 1453, 1750, 2370, 2371, 2664, 2923].
contact [605, 1201, 2047]. contact-based [2047]. Containing [1372]. containment [963, 2345].
Content-Delivery [1753, 2192].
content-dependent [1903].
content-oriented [1444]. content-sharing [951]. content/service [1363].
content/service-oriented [1363].
Contention [599, 624, 895, 942, 1129, 1205, 1637, 1675, 2079]. Contention-based [942].
ContentPlace [47]. Context [92, 208, 360, 716, 912, 1075, 1116, 1318, 1364, 1482, 1616, 1688, 2012, 2092, 2140, 2145, 2207, 2309, 2355, 2373, 2476, 2529, 2727, 2881].
Context-aware [92, 360, 716, 1318, 1364, 2092, 2140, 2145, 2309, 2355, 2476, 2727, 2881].
contract-based [1719]. contracting [627]. contribution [1614, 2472, 2736].

dual-factor [2957]. Dual-port [683]. dual-reinforcement-learning [1601].

duplex [948, 2344, 2904]. duplicates [2160].

durable [1539]. duration [1201, 2584].

during [1521].

duty [289, 895, 1050, 1282, 1810, 2436, 2447, 2525].

duty-cycled [289, 2447, 2525].

DVB [565]. DVB-S2 [565]. DVB-S2/ETSI [565].

dynamic [318, 540, 1493, 1735, 1951, 2316, 2586].

dynamic-alternate [721].

dynamic-cost-reward [1000].

dynamic-identity [5]. Dynamical [223].

dynamics [120, 201, 606, 1178]. DynMAC [1415].

e-assessment [2910]. e-health [2881, 2940].

e-healthcare [2738]. E2E [726].

EasyGo [2603]. EC2 [1735]. ECC [2102, 2328].

ECDS [1841]. ECN [39, 421, 1975].

ecosystem [363, 1123, 2318]. ecosystems [2706].

EDCA [167, 296]. Edge [246, 886, 1157, 1339, 1441, 1988, 2206, 2283, 2360, 2383, 2387, 2695, 2772, 2788, 2810, 2858, 2862, 2870, 2931]. edge-as-a-service [2810].

Infrastructure

infrastructure-based [433, 2311].

infrastructure-less [2090, 2610].

infrastructured [1754].

infrastructures [332, 493, 623, 628, 1295, 1722, 2251, 2679].

ing [2678].

ingress [1169].

inhomogeneity [2123].

inhomogeneous [2588].

initiated [1418].

Initiation [648].

initiative [1153].

Inoculation [1181].

initial [1418].

Initiation [648].

initiative [1523, 1845].

instantiation [702].

instead [2890].

instruction [2490].

instrumentation [237, 1187].

Integer [139, 162, 545, 558, 803].

Integer-multiple-spacing-based [803].

Integrated [29, 149, 362, 364, 452, 665, 756, 1159, 1266, 1291, 1438, 1463, 1543, 2291, 2536].

Integrating [376, 2743].

Integration [271, 461, 971, 1080, 1138, 1164, 1971, 2684].

Integrity [377, 1995, 2365].

intellig-ent [2344].

intellig [2344].

intelligence [658, 2048, 2387].

Intelligent [64, 130, 1188, 1212, 1640, 2278, 2393, 2486, 2530, 2566, 2616, 2622, 2648, 2663, 2688, 2734, 2748, 2877].

intensive [1655].

Inter [127, 246, 322, 386, 582, 739, 805, 886, 1064, 1087, 1109, 1128, 1179, 1470, 1488, 1527, 1668, 1798, 2020, 2176, 2283, 2631, 2683, 2921, 2953].

inter-AS [1179].

inter-cluster [2683].

inter-datacenter [2921].

Inter-Destination [739].

Inter-domain [127, 246, 322, 886, 1109, 1128, 1488, 1527, 1798, 2283, 2953].

Inter-flow [1608, 2176, 2631].

inter-host [386].

inter-RAT [1064].

inter-router [1470].

inter-session [582].

inter-user [1087].

inter-vehicular [805].

interacting [2934].

Interaction [964, 982–984, 1188, 2749].

interactions [34, 169, 343, 986, 1576, 2418, 2876].

interactive [650, 656, 927, 1886, 1943, 2443].

interconnected [2434, 2672].

interconnecting [1207, 2063].

interconnection [216, 683, 981, 1197, 2085].

interdependency [1222].

Interdomain [1306, 1645, 1981].

interest [1654].

interest-tree [1654].

interests [2173].

interfaces [30, 2326, 2357].

Interference [58, 171, 276, 460, 720, 819, 1017, 1087, 1359, 1420, 1595, 1600, 1776, 1816, 1918, 2030, 2176, 2423, 2432, 2446, 2480, 2621, 2675, 2683, 2684, 2744, 2774, 2811, 2831].

Interference-Aware [1359, 2030, 2480].

interfering [646].

interleaved [642].

interleaving [793].

intermittently [1201].

Internet [44, 89, 203, 236, 286, 316, 442, 751, 941, 977, 978, 1109, 1158, 1215, 1277, 1423, 1488, 1625, 1834, 1835, 1910, 2038, 2257, 2361, 2363, 2428, 2492, 2524, 2666, 2775, 2793, 2805, 2850, 2934, 2950].

Internet-based [442].

Internet-of-Things [2934].

internet-of-vehicles [2497].

Internet-scale [1769, 2257].

Internet-wide [311].

Internetworking [87].

teroperability [1263].

interoperable [1263].
[145, 182, 312, 342, 378, 381, 427, 504, 789, 921, 1011, 1074, 1081, 1568, 1574, 1843, 1847, 1924, 2036, 2105, 2151, 2170, 2238, 2550, 2564, 2588, 2597, 2826, 2874, 2954, 2957]. Localized
[1251, 2761, 2783]. Localizing [1100]. Location
[126, 139, 240, 294, 450, 519, 608, 716, 741, 877, 1017, 1256, 1296, 1446, 1510, 1594, 1713, 1719, 1758, 1778, 1875, 1915, 2078, 2240, 2253, 2292, 2395, 2400, 2454, 2516, 2535, 2614, 2643, 2661, 2694, 2703, 2854, 2960]. Location-aware [1713]. Location-based
[716, 741, 1017, 1719, 1915]. Location-dependent [1594, 2395]. Location-free [126, 1256, 1296]. location-sensitive [2400]. locator
[282, 320, 321, 881, 974, 1136, 2409]. Locator/ID
[320, 881]. Locator/Identifier
[2409]. LO/DMA
[1535]. log
[1626]. logging
[1606]. logic
[1421, 2510, 2605]. Logical
[2320]. long
[459, 553, 749, 872, 1039, 1071, 1206, 1608, 1811, 2167]. Loop
[100, 631, 1777, 1835, 2074]. Loop-free [100, 1777]. loosely [156]. LoRa/WAN [2717]. LON/NLOS [2175]. loss
[10, 107, 129, 580, 915, 1342, 1674, 2142, 2528, 2571, 2860]. loss-event [10]. losses
[2007]. Lossy
[425, 1301, 1561, 2272, 2335, 2860]. love
[2012]. Low
[2016, 2457]. Lower-than-Best-Effort
[2016]. LPM [2538]. LPWANs [2225]. LRU [2259, 2435]. LSTM [2779]. LTE
[359, 682, 932, 1061, 1080, 1095, 1127, 1287, 1320, 1333, 1336, 1350, 1384, 1397, 1416, 1417, 1420, 1421, 1484, 1505, 1593, 1664, 1710, 1750, 1757, 1772, 1826, 1931, 1963, 2029, 2059, 2066, 2079, 2119, 2165, 2216, 2274, 2303, 2324, 2346, 2369, 2394, 2452, 2523, 2536, 2543, 2545, 2562, 2578, 2641, 2654, 2658, 2728, 2744, 2747, 2854]. LTE-A
[2578]. Lyapunov [1478].

[1350, 2293, 2367, 2562, 2831]. MAC
[1017, 1462, 1899, 2059, 2518, 2916]. macro/femtocell [1017, 2518]. macroscopic
mobile-edge
mobile-sink [2858].

moderating [2115]. Modern [798, 1609].

modes [709, 1021, 1047, 1459]. Modified [2336]. modulation [380, 1475, 1906].

module [658, 862, 2294]. MoHoP [2693].

moisture [2767]. Molecular [353, 1805].

monitor [613, 1780, 1791]. Monitoring [76, 121, 177, 271, 335, 344, 350, 426, 959, 1076, 1100, 1111, 1202, 1214, 1227, 1284, 1308, 1359, 1504, 1588, 1680, 1835, 1849, 1891, 1934–1936, 1942, 2181, 2237, 2354, 2372, 2408, 2473, 2520, 2602, 2646, 2673, 2687, 2756, 2777, 2780, 2852].

movement [1180, 1681, 2967]. MPLS [338, 756]. MPLS-TP [756].

MPLS-TP/PWE3 [756]. MPTCP [1657, 2860]. MQTT [2745]. MRC [2755].

MAID [2811]. MSDG [2582]. MSP [2516]. MU [1675].

multi-access [264].

multi-access/multi-service [264].

multi-agent [1846]. multi-antenna [2446].

Streams [1567, 1641, 2101, 2341, 2719, 2733, 2762].

Strength [1643]. Strengthening [1604].

Stress [1765]. Stress-centrality [1765].

Stretch [2343]. Strip [2603, 2843].

Strip-based [2843]. Stroke [2789].

Structure-Based [1439]. Structured [150, 156, 272, 880, 1786].

Structures [2301, 2426, 2586].

Struggling [1343].

Studies [1516, 1552].

Studying [1138].

Sub [186, 223]. Sub-Packet [223].

Sub-second [186].

Subcarrier [1209, 1667, 2918].

Subcarrier-slot [1667].

Subchannel [254, 513, 1068].

Subjective [1516, 1744].

SublambdA [1291]. S ubscribe [134, 674, 741, 883, 908, 1078, 1549, 1767, 2304, 2373].

Subscription [1116]. Subsidy [2461].

Substrate [325, 1724, 2062].

Substructures [2757].

Successful [2682].

Successive [460, 2423, 2831].

Suitability [1054].

Suitable [584, 1897].

Sum [1375].

Summaries [2097]. Supervised [427, 2864].

Supervisor [2889]. Supplier [2207].

Supplies [484].

Support [58, 88, 130, 249, 376, 557, 656, 694, 751, 1208, 1298, 1544, 1594, 1685, 1692, 1756, 1770, 1778, 2048, 2391, 2521, 2577, 2846].

Supported [390, 987, 2780, 2951].

Supporting [550, 799, 887, 1254, 1741, 2278, 2715, 2868].

Suppression [2621].

Surface [979, 1541].

Surveillance [35, 250, 1258, 2141, 2361, 2448, 2530, 2925].

Survivability [97, 1797, 2308, 2311].

Survivable [96, 1122, 2420, 2614]. survival [2184]. survive [2496]. SURVIVOR [2810].

Suspicious [2006].

Sustainability [1220, 1792]. sustainable [413, 1650, 1889, 2407].

SUT [465]. SUTIL [162].

SVC [505, 2655]. SVC-based [2655].

SVDR [2604]. SVM [2922].

SVPS [2508].

Swapping [2516].

Swarm [204, 672, 725, 1143, 1819, 2574, 2826, 2854, 2910, 2943, 2964].

Swarming [1131, 1321, 2771].

Swarms [339, 1628].

SWIPT [2494].

SWISH [367].

Switch [186, 343, 772, 1578, 1660, 1787, 1902, 1925, 2266, 2288, 2848, 2880, 2933].

Switch-based [772].

Switch-off [2880].

Switch-over [186].

Switched [32, 634, 1453].

Switches [754, 1642, 2477].

Switching [165, 203, 746, 1144, 1238, 1329, 1438, 1462, 1543, 1909, 2626].

Switching-off [1462].

Sybil [717, 1761]. symbol [447, 1992].

Symbolic [1025].

Synchronization [466, 739, 917, 1271, 1424, 1794, 1913, 2178, 2284, 2294, 2366].

Synchronous [2792].

SYNFLOOD [1679]. syntactic [661].

1619, 1634, 1644, 1680, 1791, 1835, 1842, 1846, 2020, 2024, 2189, 2250, 2305, 2358, 2408, 2432, 2456, 2478, 2486, 2508, 2511, 2530, 2532, 2601, 2605, 2618, 2622, 2632, 2635, 2645, 2681, 2684, 2734, 2748, 2753, 2780, 2789, 2809, 2830, 2865, 2917, 2949. Systematic
[311, 1083, 2524, 2623, 2710, 2746].
systems [83, 141, 154, 462, 866, 885, 931, 941, 982, 1426, 1438, 1484, 1543, 1588, 1861, 2059, 2124, 2125, 2454, 2512, 2619, 2771, 2928, 2930].
table [297, 1206, 1678, 1695, 2171, 2197, 2247, 2477].
Tables [632, 1752, 1919]. Tabu [1475].
Taxonomy [71, 1136, 1717, 1785, 2379].
TCAM [748, 2134, 2153, 2248].
technical [538, 1619, 2142].
technical-skill [1619].
technique [489, 633, 766, 953, 1053, 1111, 1238, 1544, 1851, 1992, 2378, 2673, 2756, 2795, 2864, 2870, 2871, 2960].
Techniques [32, 200, 496, 573, 907, 1025, 1117, 1230, 1598, 1626, 1684, 1869, 1967, 2036, 2154, 2406].
Techno [196]. Techno-economic [196].
technological [1723]. technologies [7, 84, 362, 1188, 1312, 1591, 1834, 1916, 2359, 2383, 2387, 2629, 2706, 2817, 2941].
technology [286, 471, 511, 1627, 2648].
technostress [2115].
TEFIS [1191].
telecom [1701]. telecommunications [1722].
telecoms [700].
teleconference [1618].
telephony [11, 12].
temperature [1842].
Temporal [345, 1588, 1974, 1987, 2046, 2070, 2336, 2490, 2624, 2660, 2932].
temporal-difference [2932].
temporal-spectrum [345].
tenant [1268, 1851, 2120, 2469, 2812].
term [313, 1481, 1545, 1770].
terminal [577, 599, 767, 1094].
terminals [866].
termination [161, 2299].
Terrestrial [559].
tessellations [911].
test [1058, 1107, 1191, 1676].
Testbed [458, 742, 1042, 1110, 1152, 1154–1156, 1160, 1164, 1165, 1190, 1195, 1197, 1467, 2163, 2747].
testbeds [1151, 1159, 1182, 1186, 1188, 1192, 1194, 2449].
Testing [85, 471, 475, 1025, 1286, 1570, 1619, 1693].
Tethering [1505].
text [155].
TGBA [2726].
Thank [1413, 1746].
Thanks [2352, 2472].
their [339, 402, 1261, 1893, 2588, 2953].
theoretic [259, 329, 412, 464, 836, 940, 1048, 1317, 2215, 2373].
Theoretical [526, 913, 1590, 1776, 2367, 2518, 2857].
ties [2902, 2927, 2951].

ties [2834]. Tight [1661]. tightly [2303].

time-aware [1600]. time-based [1598].
timestamping [1211, 1248]. timestamps [1597]. timing [340, 448]. tit [600, 2526].
TOD-MAC [1352]. today [1035]. token [1583, 2519], token-buckets [2519].
tomography [2528, 2789]. tool [76, 478, 786, 987, 1193, 1445, 1471].
topological [158]. topologies [77, 102, 125, 413, 618, 1508, 2859, 2964].
Traceband [76]. traces [336, 578, 1471].
tracing [650, 1331]. trackability [1422]. TrackerDetector [1634]. trackers [1634].
Tracking [202, 548, 950, 1218, 1258, 2152, 2424, 2559, 2948]. Trade [534, 548, 713, 949, 1220, 1637, 1715, 1887, 2105, 2416, 2907].

Three-dimensional [2564]. three-factor [1838]. three-layered [2467]. three-party [197, 1102, 2749].

Threshold [387, 1260, 1299, 1674, 1877, 2765].

Throughput-guaranteed [1018].

Throughput-optimal [1095].

Things [205, 790, 862, 973, 1207, 1215, 1254, 1338, 1423, 1625, 1834, 1835, 1839, 1840, 1843, 1844, 1849, 1856, 2074, 2295, 2361, 2363, 2364, 2444, 2492, 2524, 2567, 2594, 2621, 2629, 2646, 2666, 2710, 2713, 2714, 2738, 2753, 2775, 2780, 2791, 2805, 2817, 2823, 2881, 2891, 2909, 2931, 2934, 2950, 2973]. Things/CubeSats [2753].

Thinking [2021]. Third [849, 1634, 2445].

Third-order [2445]. third-party [1634].

Thorough [2163]. threat [2003, 2433].

threats [1041, 1893, 2020, 2746]. three [197, 842, 1102, 1664, 1838, 2467, 2564, 2749].

Time-activity [106, 1258, 1375, 1584, 1855, 202, 548, 950, 1218, 1258, 2152, 2424, 2559, 2948].

TrackerDetector [1634]. trackers [1634].

Tracking [202, 548, 950, 1218, 1258, 2152, 2424, 2559, 2948]. Trade [534, 548, 713, 949, 1220, 1637, 1715, 1887, 2105, 2416, 2907].
two-dimensional [1782]. two-factor [1334].
two-hop [254, 1142, 2224]. two-level [2469].
Two-link [224]. two-phase [235, 2061, 2726]. two-relay [1596].
two-server [2398]. Two-slope [2571].
two-stage [1776]. two-tier [1420, 2210, 2215, 2219, 2311, 2865].
Two-user [2568]. Two-way [378, 463, 2354, 2587]. Tx/Rx [1803].
untraceability [2707]. untrusted [1250, 2173]. unveiling [241].
unupdatable [733]. Up-to-date [2058].
Up/Down [6]. Update [519, 801, 832, 1694, 1919, 2249, 2357, 2477].
update-based [832]. updates [678, 2677, 2835]. updating [410].
upgradable [911]. Upgrading [394].
Uplink [516, 535, 1287, 1603, 1785, 2165, 2225, 2264, 2303, 2423, 2683].
upload [154, 931, 2575]. uploading [724, 2055]. UPS [2626].
Uranus [2800]. Urban [43, 694, 791, 1055, 1398, 1839, 1841, 2048, 2397, 2440, 2577, 2949].
URL [465, 811].
URLLC [2936]. Usable [541, 2830]. usage [493, 1408, 1452, 1695].
USB [2554]. Use [1201, 1500, 1540, 2242, 2440, 2669, 2941].
uncertainty [16, 1084, 1865, 2032, 2918].
uncooperative [2105]. Uncoordinated [2970].
Uncovering [1346]. under-ice [1084].
underground [2767]. underlay [1126, 1872, 2587, 2739]. underlay-aware [1126].
Understanding [408, 610, 849, 968, 986, 1630, 2213].
Underwater [33, 1007, 1084, 2110, 2261, 2564, 2791, 2885, 2897]. unequal [718].
unfairness [192]. unicast [394, 346, 742, 1475, 1523, 1668, 1951, 2665].
unpredictability [867]. unreliable [2874].
Up/Down [6]. Update [519, 801, 832, 1694, 1919, 2249, 2357, 2477].
update-based [832]. updates [678, 2677, 2835]. updating [410].
upgradeable [911]. Upgrading [394].
Uplink [516, 535, 1287, 1603, 1785, 2165, 2225, 2264, 2303, 2423, 2683].
upload [154, 931, 2575]. uploading [724, 2055]. UPS [2626].
user-activity [2497]. User-assisted [1037, 1478]. User-aware [2340].
user-centric [1310, 1364, 1368]. user-driven [2092].
User-level [374]. user-mobility [2497].
user-oriented [210].
user-participatory [2636]. user-perceived [1302]. User-Provided [281].
users [259, 922, 1106, 1481, 1800, 1912, 1922, 1957, 2207, 2411].

References

Kim:2010:ACS

Li:2010:MBS

Jiang:2010:EDI

Ibanez:2010:HHZ

Huynh:2010:RTE

Munoz:2010:RVR

Stevens:2010:AAB

Kumar:2010:LED
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

2010. CODEN ???? ISSN 1389-1286 (print), 1872-7069 (electronic).

Anonymous:2010:EBg

Plattner:2010:RSN

Sterbenz:2010:RSC

Guidoni:2010:DRH

Li:2010:HHS

Menth:2010:LFA

Park:2010:APP

delRio:2010:RAD
REFERENCES

Zhang:2010:QDS

Qazi:2010:IRM

Ahmed:2010:IUW

Zubow:2010:GSA

Sorensen:2010:SDF

Oikonomou:2010:PFE

Sitanayah:2010:HAF

Islam:2010:SAD

[136] Xiang Feng and Francis C. M. Lau. Parallel physics-inspired waterflow particle mechanics algorithm for load re-

Papadopoulos:2010:SIF

Fawaz:2010:DBC

Guney:2010:EIP

Chi:2010:NCB

Zhang:2010:BVS

Yan:2010:SVH

Tamma:2010:TMT

Mai:2010:FFS

REFERENCES

Lu:2010:ALA

[145] Xiaofeng Lu, Pan Hui, Don Towsley, Juahua Pu, and Zhang Xiong. Anti-
localization anonymous routing for Delay Tolerant Network. Computer
Networks (Amsterdam, Netherlands: 1999), 54(11):1899–1910, August 2,
2010. CODEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic).

Kuo:2010:QBP

[146] Yu-Chen Kuo. Quorum-based power-
saving multicast protocols in the asyn-
chronous ad hoc network. Computer
Networks (Amsterdam, Netherlands: 1999), 54(11):1911–1922, August 2,
2010. CODEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic).

Anonymous:2010:EBk

Networks (Amsterdam, Netherlands: 1999), 54(11):??, August 2,
2010. CODEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic).

Garcia-Lopez:2010:GES

[148] Pedro García-López, Michael W.
Sobolewski, and Marc Sánchez-Artigas. Guest editorial for the special issue
collaborative P2P systems. Computer
Networks (Amsterdam, Netherlands: 1999), 54(12):1923–1925, August 26,
2010. CODEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic).

Juste:2010:SEW

[149] Pierre St. Juste, David Wolinsky, P. Oscar
Boykin, Michael J. Covington, and Renato J. Figueiredo. SocialVPN:
Enabling wide-area collaboration with integrated social and overlay net-
works. Computer Networks (Amsterdam, Netherlands: 1999), 54(12):
1926–1938, August 26, 2010. CODEN ????. ISSN 1389-1286 (print), 1872-
7069 (electronic).

Oster:2010:BCP

[150] Gérald Oster, Rubén Mondéjar, Pascal
Molli, and Sergiu Dumitriu. Building a collaborative peer-to-peer wiki sys-
tem on a structured overlay. Computer
Networks (Amsterdam, Netherlands: 1999), 54(12):1939–1952, August 26,
2010. CODEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic).

Kulkarni:2010:BDN

[151] Santosh Kulkarni, Scott Douglas, and
David Churchill. Badumna: a decen-
tralised network engine for virtual en-
vironments. Computer Networks (Am-
dam, Netherlands: 1999), 54(12):
1953–1967, August 26, 2010. CODEN ????. ISSN 1389-1286 (print), 1872-
7069 (electronic).

Sanchez-Artigas:2010:POD

[152] Marc Sánchez-Artigas, Jordi Pujol-
Ahulló, Lluis Pamies-Juarez, and Pe-
dro García-López. p2pWeb: an open,
decentralized infrastructure of Web
servers for sharing ephemeral Web con-
tent. Computer Networks (Amster-
dam, Netherlands: 1999), 54(12):1968–
1985, August 26, 2010. CODEN ????. ISSN 1389-1286 (print), 1872-
7069 (electronic).

Rzadca:2010:MOO

[153] Krzysztof Rzadca, Jackson Tan Teck
Yong, and Anwitaman Datta. Multi-

Wu:2010:RMC

Papapetrou:2010:PCD

Beijar:2010:ZIO

Tirado:2010:APS

Cuevas:2010:CPS

Jesi:2010:SPS

Anonymous:2010:EB1

Menth:2010:PBM

Ahmadian:2010:SEA

Thulasiraman:2010:IAR

Maille:2010:PWH

Santosa:2010:EDR

Padhye:2010:ESS

Anonymous:2010:EBm

Marfia:2010:TLD

Saxena:2010:CEC

Berzin:2010:HML
Doss:2010:IDM

Duraes:2010:CBA

Esnaashari:2010:LAB

Zhou:2010:EAN

Secci:2010:LSR

Lee:2010:PAB

Zhang:2010:EMO

Pelsser:2010:PSN
REFERENCES

Mühlbauer:2010:IRP

Gelabert:2010:SSC

Wang:2010:GTC

Zhang:2010:AAB

Anonymous:2010:EBn

Bejerano:2010:NFP

Simplicio:2010:SKM

Yang:2010:SAS

Conti:2010:BML

Wang:2010:TBP

Atzori:2010:ITS

Anonymous:2010:EBo

Feridun:2010:E

Liao:2010:MNT

Feeney:2010:EDM

Guo:2010:EUO

Berl:2010:NVE

Mukherjee:2010:MDC

Kim:2010:CAR

Alyfantis:2010:DQS

Tsai:2010:DCB

Feng:2010:TLF

Garroppo:2010:SMC

Zhang:2010:GBA

Belzarena:2010:EEQ

Serral-Gracia:2010:ELM

REFERENCES

2010. CODEN ????. ISSN 1389-1286 (print), 1872-7069 (electronic).

Hua:2010:LLS

Lv:2010:RAI

Rao:2010:ABL

Anonymous:2010:EBq

Bochmann:2010:SNH

Chen:2010:CDA

Oki:2010:FTP

Shue:2010:IIP

Pezaros:2010:HSB

REFERENCES

Jakab:2010:CHC

Alouf:2010:FGA

Charilas:2010:SGT

Tao:2010:GFR

Donmez:2010:AAD

Akyildiz:2011:E

Batista:2011:RSG

Li:2011:CCS

REFERENCES

89

REFERENCES

[287] Lijun Chen, Steven H. Low, and John C. Doyle. Cross-layer design

References

[320] Luigi Iannone, Damien Saucez, and Olivier Bonaventure. Implementing the Locator/ID Separation Protocol: Design and experience. *Computer Networks (Amsterdam, Netherlands:
REFERENCES

Hwang:2011:DGS

Carela-Espanol:2011:AIS

Pamies-Juarez:2011:TDO

Zafeiris:2011:OTF

Merindol:2011:EAE

Wang:2011:NCW

Dusi:2011:QAG

Bilogrevic:2011:OOR

[337] Igor Bilogrevic, Mohammad Hossein Manshæi, Maxim Raya, and Jean-Pierre Hubaux. OREN: Optimal revo-

Akar:2011:MAB

Hossfeld:2011:CBS

Walls:2011:LDR

Hariharan:2011:SND

Zhang:2011:LLA

Shpiner:2011:MIC

Talebi:2011:CAM

REFERENCES

[351] Paola Bermolen, Marco Mellia, Michela Meo, Dario Rossi, and Silvio Valenti. Abacus: Accurate behavioral classification of P2P-TV traffic. Computer...
Zorbas:2011:CCW

Arifler:2011:CAD

Ramos:2011:ECA

Anonymous:2011:EBe

Rost:2011:RAN

Stankiewicz:2011:SQA

Vidal:2011:TAT

REFERENCES

[365] Djamal-Eddine Meddour, Tinku Rasheed, and Yvon Gourhant. On the role of infrastructure sharing for mobile network operators in emerging mar-

Ishibashi:2011:QCV

Leroy:2011:SSW

Anonymous:2011:EBf

Benyamina:2011:DRW

Weng:2011:DPP

Govindarajan:2011:IDU

Caretti:2011:EDS

REFERENCES

[386] Zhihua Wen and Michael Rabinovich. Dynamic landmark triangles: a simple and efficient mechanism for interhost latency estimation. Computer
REFERENCES

Avrachenkov:2011:OTC

Al-Mistarihi:2011:TBD

Viswanathan:2011:ECP

Yigitel:2011:QAM

M. Aykut Yigitel, Ozlem Durmaz Incel, and Cem Ersoy. QoS-aware...

[400] Hammad Iqbal and Taieb Znati. On the design of network control and management plane. *Computer Networks*

REFERENCES

REFERENCES

[427] Jiming Chen, Chengqun Wang, Youxian Sun, and Xuemin (Sherman) Shen. Semi-supervised Laplacian regularized least squares algorithm for
REFERENCES

REFERENCES

[441] Anonymous. Editorial Board. Computer Networks (Amsterdam, Nether-

Xiaochao Zi, Lihong Yao, Xinghao Jiang, Li Pan, and Jianhua

REFERENCES

REFERENCES

Wickboldt:2011:FRA

Banerjee:2011:SQM

Gotzhein:2011:BBS

Boukerche:2011:RPA

REFERENCES

Misener:2011:DVX

Fukushima:2011:LTV

Vales-Alonso:2011:OCR

Roglinger:2011:MTI

[475] Sebastian Röglinger. A methodology for testing intersection related Vehicle-
REFERENCES

REFERENCES

REFERENCES

Alkubeily:2011:NAL

Cano:2011:LEO

Dong:2011:EMR

Yang:2011:FME

Leon:2011:MRU

Talipov:2011:CCB

Balasubramaniam:2011:BIF

Fay:2011:DGT

Kim:2011:RRA

Tellenbach:2011:ANA

Nikolova:2011:BDR

Ciccarelli:2011:CPP

Jiang:2011:JTF

[502] Dingde Jiang, Zhengzheng Xu, Zhenhua Chen, Yang Han, and Hongwei Xu. Joint time-frequency sparse estimation of large-scale network traf-

REFERENCES

Font-Bach:2011:RTM

Cho:2011:PLS

Kunst:2011:IHE

Kaarthick:2011:SAM

Cicconetti:2011:FEA

Vejarano:2011:SRA
Liang:2011:EEU

Chen:2011:PFS

Jin:2011:PAP

Kim:2011:JPA

Becvar:2011:IHP

Jin:2011:ASM

Fernandez-Carames:2011:MWV

REFERENCES

REFERENCES

REFERENCES

130

Joung:2012:CFR

Joung:2012:MDC

Park:2012:EIA

Mirahmadi:2012:TPA

Lu:2012:SLF

Moessner:2012:SAS

Baccarelli:2012:QST

REFERENCES

REFERENCES

[578] Gabriel Maciá-Fernández, Yong Wang, Rafael A. Rodríguez-Gómez, and Aleksandar Kuzmanovic. Extracting user Web browsing patterns from non-content network traces: The on-
REFERENCES

REFERENCES

REFERENCES

Cheng:2012:NLB

Bayoglu:2012:GBS

Xu:2012:SSA

Donnet:2012:PSE

Ziviani:2012:RPA

Jamshaid:2012:MCF

Zarifzadeh:2012:EET

Cano:2012:WAT

Robert:2012:DRM

Alotaibi:2012:SRA

Anonymous:2012:EBb

Alvarez-Hamelin:2012:CDN

Koenigstein:2012:TSP

Kim:2012:CPD

Memon:2012:MLS

Koenigstein:2012:MVP

Ma:2012:MME

Pussep:2012:CTM

Anonymous:2012:EBc

Marchese:2012:SPE

Larroca:2012:MDL

REFERENCES

[626] Dmitri Moltchanov. A study of TCP performance in wireless environment using fixed-point approxi-
REFERENCES

Muthuswamy:2012:PVC

Familiar:2012:BSO

Kim:2012:SUB

Cohen:2012:VDR

Yousaf:2012:SPR

Kanizo:2012:HTF
Falowo:2012:DRS

Lin:2012:PID

Leith:2012:WCS

Wang:2012:GMF

Cho:2012:OHE

Li:2012:ESP

Zhang:2012:CPP

Rahimi:2012:FOM

Anonymous:2012:EBd

Chang:2012:IVF

Fitzpatrick:2012:VCC

Campolo:2012:MMP

Bezahaf:2012:ECC

Vieira:2012:SLH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cao:2012:SRH

Liao:2012:DDP

Joung:2012:BNA

Chin:2012:NAC

Makela:2012:CLB

Bilgin:2012:PEZ

Lee:2012:IBA

Ekbatanifard:2012:QMQ

Anonymous:2012:EBh

Matray:2012:SPI

Lezama:2012:DEO

Pham:2012:DSN

Hu:2012:EHB

[695] Changhui Hu, Tat Wing Chim, S. M. Yiu, Lucas C. K. Hui, and Victor O. K. Li. Efficient HMAC-based secure communication for VANETs. Computer...

REFERENCES

Wolkerstorfer:2012:ESL

Mancuso:2012:APS

DeTurck:2012:PAS

Gomez:2012:MBM

daSilva:2012:EPT

Nguyen:2012:EAV

Anonymous:2012:EBj
REFERENCES

[722] Behnam Bahrak, Amol Deshpande, and Jung-Min ‘Jerry’ Park. Spectrum access policy reasoning for policy-based

REFERENCES

Castro:2012:DRS

Ortega:2012:PTD

Montagud:2012:EAL

Yoo:2012:BSI

Holzer:2012:AAL

Chieochan:2012:NCU

S. Chieochan and E. Hossain. Network coding for unicast in a WiFi hotspot: Promises, challenges, and testbed implementation. *Computer Networks*

REFERENCES

Ahmadi:2012:EAO

Bianzino:2012:GGD

Mondal:2012:PCN

Hu:2012:SMT

Huang:2012:JSH

Figueiredo:2012:OAB

Fei:2012:RFR

REFERENCES

Khalil:2012:CCT

Jeon:2012:ASS

Shpiner:2012:SBA

Narayanan:2012:JND

Leon:2012:CDP

Anonymous:2012:EBn

Tseng:2012:JCL

Luigi Atzori, Antonio Iera, Giacomo Morabito, and Michele Nitti. The Social Internet of Things (SIoT) —
REFERENCES

Hsieh:2012:DOM

Palma:2012:LQE

Kao:2012:SMI

Anonymous:2012:EBp

Coen-Porisini:2012:IDQ

Capone:2012:OFE

[819] Christos Papathanasiou, Nikos Dimitriou, and Leandros Tassiulas. Dy-

REFERENCES

REFERENCES

REFERENCES

[875] Reduan H. Khan and Jamil Y. Khan. A comprehensive review of the appli-

Anonymous:2013:EBc

Liou:2013:MMC

Wang:2013:ODE

Ling:2013:PLA

Lee:2013:ASB

Kim:2013:CLI

Chi:2013:BLP

[882] Kaikai Chi, Xiaohong Jiang, Yi hua Zhu, Jing Wang, and Yanjun Li. Block-level packet recovery with network coding for wireless reliable mul-
REFERENCES

[Diallo:2013:CBP]

[Chen:2013:HPR]

[Camacho:2013:BXB]

[Secci:2013:EID]

[Miao:2013:MVN]

[El-Azouzi:2013:EFG]
REFERENCES

REFERENCES

Raayatpanah:2013:MCM

Karasabun:2013:AND

Yun:2013:EVN

Yun:2013:PAI

Antoniou:2013:CCW

Kilic:2013:ALP

Detal:2013:RFB

Anonymous:2013:EBe

Csernai:2013:IUD

Anagnostopoulos:2013:MCC

Ke:2013:PEM

Hunkeler:2013:CCC

Borraz-Sanchez:2013:OPR

Ahmed:2013:ERT

Fan:2013:NCS

Benfattoum:2013:QRT

Mahapatra:2013:GFF

Wang:2013:OOA

Amaldi:2013:EAI

Chiappetta:2013:ABA

Kawahara:2013:MVR

[923] Ryoichi Kawahara, Tetsuya Takine, Tatsuya Mori, Noriaki Kamiyama, and Keisuke Ishibashi. Mean-variance relationship of the number of flows in traffic

REFERENCES

Wu:2013:IUC

Lai:2013:QAD

Rottondi:2013:PPS

Torkestani:2013:EET

Vakili:2013:QMV

Anonymous:2013:EBg

Arkoulis:2013:OFC

REFERENCES

Gyarmati:2013:FSY

Lin:2013:EHE

Bacci:2013:QAG

Yang:2013:MEM

Rondinone:2013:CBF

Carofiglio:2013:RLE

Babarczi:2013:RSD

Alsalihi:2013:PCT

Cairo:2013:EAT

Botero:2013:GNN

Fahad:2013:TES

Gramatikov:2013:SMP

Logota:2013:AMC

[966] Bugra Caskurlu, Ashish Gehani, Cemal Cagatay Bilgin, and K. Subra-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Malandrino:2013:PLW

Hua:2013:ESA

Anonymous:2013:EBm

Meng:2013:MSM

Chen:2013:MSM

Ryoo:2013:LBS

Xu:2013:GDC
REFERENCES

[1027] Stefania Tosi, Sara Casolari, and Michele Colajanni. Data clus-

Zhou:2013:OAC

Chiaraviglio:2013:MSM

Habak:2013:ODB

Kamiyama:2013:OPA

Sicari:2013:DED

Anonymous:2013:EBn

Detti:2013:ESI

Matthias Wählisch, Thomas C. Schmidt, and Markus Vahlenkamp.

Salsano:2013:ICN

Amadeo:2013:ECC

Bandara:2013:DMU

Tagger:2013:RAE

Vieira:2013:FLE

Marsan:2013:ESM

REFERENCES

202

Chen:2013:CAH

Liu:2013:CEC

Baralis:2013:NCB

Matsui:2013:DPA

Silva:2013:MST

Carrano:2013:NBD

REFERENCES

[1067] Nuutti Varis, Jukka Manner, Mikko Särelä, and Timo Kiravuo. D Bridges: Flexible floodless frame forward-
REFERENCES

Cai:2013:JRJ

Ghods:2013:MMM

Bou-Harb:2013:SAD

Chen:2013:MPU

Nam:2013:CAM

Sun:2013:LDS

REFERENCES

References

Block:2014:BPA

Yang:2014:PST

Jung:2014:ACR

Uddin:2014:JOA

Perez:2014:TP1

Zhang:2014:SSB

Katkalov:2014:MTC

Dou:2014:MUW

Wu:2014:MBS

Yao:2014:FBP

Kim:2014:EEM

Carrea:2014:OHN

Vardhan:2014:GWL

Sherr:2014:DIA

Lai:2014:EEC

Shawky:2014:NAD

Younis:2014:TMT

Asghari:2014:EES

Dabirmoghaddam:2014:ORC

Asghari:2014:EES
REFERENCES

Coras:2014:LSD

Yaacoub:2014:AMR

Jeong:2014:ERM

Liu:2014:PFB

Mirtaheri:2014:ERD

Xu:2014:ETD

Papastergiou:2014:DTP

Giorgos Papastergiou, Ioannis Alexiadis, Scott Burleigh, and Vassilis Tsoussidis. Delay Tolerant Payload Conditioning proto-
REFERENCES

Boris Bellalta, Azadeh Faridi, Jaume Barcelo, Vanessa Daza, and Miquel

Chi:2014:PTA

Testa:2014:DBC

Razo-Zapata:2014:SHT

Gotta:2014:TIS

Temel:2014:RPD

Anelli:2014:FPA

Mata:2014:ADD

Coimbra:2014:EER

Cui:2014:OMV

Sterbenz:2014:SIFa

Berman:2014:GFT

Bastin:2014:IIA

Kim:2014:KGT

REFERENCES

Kobayashi:2014:MOS

Campanella:2014:FIE

Jofre:2014:FBM

Belter:2014:GOT

Sanchez:2014:SIE

REFERENCES

Gregori:2014:IRI

Cheng:2014:DBC

Meier:2014:WPF

Sterbenz:2014:SIFb

Sydney:2014:UGE

Griffioen:2014:MEG

Nozaki:2014:ETR

Keranidis:2014:EEE

Mehani:2014:IFC

Matias:2014:EOO

Ata:2014:SFI

Yannuzzi:2014:TSA

[Rakotoarivelo:2014:DOR](1192)

[Han:2014:ESC](1193)

[Auge:2014:TFG](1194)

[Moraes:2014:FFV](1195)

[Kim:2014:EID](1196)

[Dulinski:2014:UTL](1197)

Zbigniew Dulinski, Kamil Palkowski, and Piotr Cholda. A university testbed for large-scale interconnec-

[1210] Masud Moshtaghi, Christopher Leckie, Shanika Karunasekera, and Suthar-

[1223] Bruno Sousa, Kostas Pentikousis, and Marilia Curado. MeTHODICAL: Towards the next generation of multihomed applications. Computer Networks (Amsterdam, Netherlands:

[1244] Marco Ajmone Marsan and Michela Meo. Queueing systems to study the energy consumption of a campus WLAN. *Computer Networks (Amsterdam, Netherlands: 1999)*, 66(??):82–93, June 19, 2014. CODEN ???: ISSN 1389-1286 (print),

Ahmadi:2014:LSA

Kuzlu:2014:CNR

Ray:2014:SRS

Chu:2014:SDL

Zou:2014:VOV

Chen:2014:SRV

Liu:2014:MHR

Rebollo-Monedero:2014:ODP

Koutsopoulos:2014:CSG

Benson:2014:BIS

Schmidt:2014:HPE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1306] Sharon Goldberg, Michael Schapira, Pete Hummon, and Jennifer Rexford.
REFERENCES

Kim:2014:DNC

Yigit:2014:PLC

Frangoudis:2014:PSU

Figueiredo:2014:MFM

Yigit:2014:CCS

Anonymous:2014:EBc

Akyildiz:2014:RTE

Mowafi:2014:NAE

Bhattacharya:2014:SPT

Wang:2014:GTA

Condeixa:2014:CAA

Munoz:2014:DTS

REFERENCES

REFERENCES

Kang:2014:TBP

Jammal:2014:SDN

Savi:2014:CEM

Nguyen:2014:CIM

Lu:2014:PLS

Kim:2014:LBB

Stea:2014:CSA
REFERENCES

Wang:2014:ATF

Tham:2014:FSW

Jin:2014:NPb

Divakaran:2014:BAD

Colistra:2014:PTA

Zhang:2014:MC1

Khan:2014:DGC

REFERENCES

Kuperman:2014:NPM

Lv:2014:PPA

Shi:2014:DRA

Ren:2014:OLV

Awad:2014:IAE

Ahmad:2014:RCQ

Ansari:2014:COC

[1361] Junaid Ansari, Elena Meshkova,Wasif Masood, Arham Muslim, Janne Riihijärvi, and Petri Mäihönen. CON-Fab: Ontology and component based

Anonymous:2014:EBf

Wu:2014:SIM

Matos:2014:CAC

Magurawalage:2014:EEN

Vingelmann:2014:AAD

Wang:2014:ECM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wang:2014:CCP

Sergiou:2014:CCW

Addis:2014:ECR

Anglano:2014:MPG

Qiao:2014:CEW

Bianzino:2014:CPO

REFERENCES

Paul:2014:SDO

Hakiri:2014:SDN

Anonymous:2014:EBh

Klier:2014:CPU

Mutter:2014:DTM

Yan:2014:BAC

Tran:2014:PEB

REFERENCES

Putzke:2014:CCG

Patsakis:2014:DPP

Zhao:2014:WFE

Behrendt:2014:MMA

Anonymous:2014:EBi

Anonymous:2015:TYR

Anonymous:2015:E

REFERENCES

Cavdar:2015:IOF

Ohsita:2015:ATI

Fornasa:2015:BLS

Gonen:2015:ANM

Gao:2015:GBC

Erel:2015:GSG

Anonymous:2015:EBb

Anonymous:2015:EBc

Combes:2015:OOC

Fang:2015:EED

Ganji:2015:GCW

Heddeghem:2015:PCS

Huan:2015:RRP

[1454] Xiaoli Huan, Bang Wang, Yijun Mo, and Laurence T. Yang. Rechargeable router placement based on efficiency and fairness in green wireless

Soni:2015:EED

Suarez:2015:EEB

Wang:2015:EEQ

Yigitel:2015:QVE

Frangoudis:2015:RBC

Wang:2015:PAF

Al-Nakhala:2015:DAW

REFERENCES

Pachon:2015:FMT

Donohoe:2015:CAS

Wang:2015:DEH

Wang:2015:EED

Soto:2015:FRS

Ekici:2015:JOR

Siddiqui:2015:SRE

Martorell:2015:NSI

Karami:2015:ABC

Pastrana:2015:DFO

Madhja:2015:DWP

Zhao:2015:JVP

Sobe:2015:SGA

Azari:2015:PAA

Yi:2015:UDR

Anonymous:2015:EBc

Jin:2015:CBC

Marinho:2015:CHS

Rezende:2015:SUR

Malanchini:2015:SCS

[1501] Ilaria Malanchini, Steven Weber, and Matteo Cesana. Stochastic characteri-
REFERENCES

Kardes:2015:GBI

Socievole:2015:MSM

Anagnostopoulos:2015:TOU

Yang:2015:DBC

Sarma:2015:OPA

Detti:2015:MPP

Yin:2015:RCM

Sahel Sahhaf, Wouter Tavernier, Didier Colle, Mario Pickavet, and Piet Demeester. Experimental validation...

Anonymous:2015:EBg

Lee:2015:CDI

Vallati:2015:EDW

Luo:2015:AMP

Dudnikova:2015:MBC

Xu:2015:OCM

Temel:2015:LLO

[1535] Samil Temel and Ilker Bekmezci. LOD-MAC: Location Oriented Directional MAC protocol for FANETs. *Computer Networks (Amsterdam, Netherlands:
REFERENCES

Sheng Zhang, Jie Wu, Zhuzhong Qian, and Sanlu Lu. MobiCache: Cellular traffic offloading leveraging cooperative caching in mobile social net-

Wang:2015:BEO

Lakshmi:2015:PPP

Bianco:2015:STF

Avrachenkov:2015:CND

Longo:2015:DMS

Ma:2015:SET

[1549] Xingkong Ma, Yijie Wang, Xiaoliang Pei, and Fangliang Xu. Scalable and

REFERENCES

Anonymous:2015:EBh

Jiang:2015:EDS

Hassan:2015:CST

Saha:2015:ECA

Pietro:2015:EES

Ran:2015:CNP

Hoteit:2015:MDT

[1562] Sahar Hoteit, Stefano Secchi, Guy Pujolle, Adam Wolisz, Cezary Ziemlicki, and Zbigniew Smoreda. Mobile data traffic offloading over Passpoint hotspots. Computer Networks
REFERENCES

Marynowski:2015:MTF

Gunes:2015:BPF

Wu:2015:GTG

Garcia-Villegas:2015:NCJ

Yao:2015:DWS

Anonymous:2015:EBk

Liao:2015:CGA

REFERENCES

Cerroni:2015:CLR

Fu:2015:SCP

Sanchez-Casado:2015:MDF

Borrego:2015:MCB

Yao:2015:CAB

Anonymous:2015:EB1

Zhang:2015:CTR

REFERENCES

Senouci:2015:WDF

Girolami:2015:SDM

Yang:2015:NTP

Lira:2015:AAD

REFERENCES

Hou:2015:RMC

Wang:2015:OHD

Tsolkas:2015:EDD

Premarathne:2015:LDD

Adarbah:2015:INI

Papadimitriou:2015:NLP

Facchi:2015:ELR

Dalvandi:2015:PER

Makki:2015:SWP

Coutinho:2015:DDR

Anonymous:2015:EBm

Ahmed:2015:SEH

Kim:2015:AHS

[1603] Ji-Su Kim, Jin-Ki Kim, and Jae-Hyun Kim. Advanced handover scheme considering downlink and uplink service traffic in asymmetric channel. Com-
Kos:2015:USS

Rossi:2015:IBS

Fu:2015:MRA

Oliveira:2015:ORE

Rojas-Cessa:2015:HIL

Hiland-Jørgensen:2015:GBW

Accettura:2015:CRA

REFERENCES

Kim:2015:ARD

Sahraoui:2015:EHB

Juvonen:2015:OAD

Khloussy:2015:IMB

Trotta:2015:CRP

Fan:2015:OSA

Chen:2015:UVE

[1630] Yanjiao Chen, Qihong Chen, Fan Zhang, Qian Zhang, Kaishun Wu, Ruochen Huang, and Liang Zhou.
REFERENCES

[1643] Jenq-Shiou Leu, Min-Chieh Yu, and Hung-Jie Tzeng. Improving indoor po-

Louati:2015:BFT

Yin:2015:DDI

Zhu:2015:SNS

Hong:2015:FAP

Cheng:2015:MSR

Milyeykovski:2015:UCN

[1656] Bin Wang, Zhengwei Qi, Ruhui Ma, Haibing Guan, and Athanasios V.
REFERENCES

Oh:2015:CBP

Goudos:2015:MOA

Zhang:2015:DNC

Chen:2015:AFI

Kawahara:2015:TAP

Sou:2015:MAB

REFERENCES

Mangili:2015:ODI

Kumar:2015:TLL

Panayiotou:2015:IAM

Ahmadi:2015:NHL

Fadini:2015:SSP

Xie:2015:SIF

Rizzi:2015:LCR

REFERENCES

Kim:2015:ICM

Hegde:2015:SFF

Owens:2015:VSD

Uzakgider:2015:LBA

Caraguay:2015:FOM

Cerrato:2015:TDV

Cheng:2015:ENF

[1709] Ian F. Akyildiz, Shih-Chun Lin, and Pu Wang. Wireless software-defined

Ren:2015:DAC

Savi:2015:PEV

Wang:2015:QDS

Aguilar-Garcia:2015:LAS

Lakhlef:2015:FRS

Mansour:2015:CSS

REFERENCES

Jeong:2015:TTP

Zhu:2015:DRS

Wang:2015:MRT

Wang:2015:PPL

Wang:2015:MMM

Braem:2015:CN

[1728] Pere Millan, Carlos Molina, Esunly Medina, Davide Vega, Roc Meseguer,

Abujoda:2015:SDW

Selimi:2015:CSG

Baldesi:2015:IPS

Anonymous:2015:EBr

Anonymous:2015:EBs

Boutaba:2015:CNC

Persico:2015:MNT

[1735] Valerio Persico, Pietro Marchetta, Alessio Botta, and Antonio Pescapec. Measuring network throughput in the
REFERENCES

Couto:2015:SPS

Kavvadia:2015:EVM

Zhang:2015:EAV

Ghazisaeedi:2015:EAN

Jarraya:2015:VFR

Sahhaf:2015:NSC

[1741] Sahel Sahhaf, Wouter Tavernier, Matthias Rost, Stefan Schmid, Didier Colle, Mario Pickavet, and Piet Demeester. Network service chaining with optimized network function embedding supporting service decompositions. Computer Networks (Amsterdam, Netherlands: 1999), 93 (part 3) (??):492–505, December 24, 2015. CO-
REFERENCES

[1761] Riccardo Pecori. S-Kademlia: a trust and reputation method to mitigate a Sybil attack in Kadem-
REFERENCES

Zhang:2016:CCN

Ding:2016:ABC

Han:2016:EAQ

Patota:2016:DDA

Rendon:2016:RDM

Onus:2016:PMA

Wang:2016:BPF

Bou-Harb:2016:NCS

Wang:2016:SDD

Zhang:2016:MDF

Anonymous:2016:EBa

Peng:2016:WDC

Meharouech:2016:TSG

Hartmann:2016:ROI

Timoteo:2016:AUS

Oliveira:2016:PEH

Tennina:2016:ZMP

Cordeiro:2016:MPG

[1781] Weverton Luis da Costa Cordeiro, Flávio Roberto Santos, Marinho Pilla Barcelos, Luciano Paschoal Gaspery, Hanna Kavalionak, Alessio Guerrieri,

Ostovari:2016:RWT

Lombera:2016:CPP

Anonymous:2016:EBb

Tsiropoulou:2016:URA

Mojamed:2016:SPP

Nagano:2016:ESC

Lee:2016:PSM

Baig:2016:CAC

Lin:2016:JOQ

Anonymous:2016:EBc

Raspall:2016:BNS
REFERENCES

Jaron:2016:QAM

Ding:2016:CLB

Einziger:2016:SEK

Xiao:2016:OPS

Lai:2016:GGB

Chang:2016:ODS

Al-Mefleh:2016:TAJ
REFERENCES

Kim:2016:ASV

Xenakis:2016:HDS

Haque:2016:ACV

Eguizabal:2016:JDR

Malanchini:2016:WRS

Gunduz:2016:PBS

Sharon:2016:CIT

319 REFERENCES

[1836] Guangjie Han, Aihua Qian, Jinfang Jiang, Ning Sun, and Li Liu. A grid-based joint routing and charging algorithm for industrial wireless rechargeable sensor networks. *Computer
Zhang:2016:PPQ

Amin:2016:DAP

Rathore:2016:UPB

Luo:2016:LSW

Huang:2016:EEC

Liu:2016:GDC

[1849] M. Shamim Hossain and Ghulam Muhammad. Cloud-assisted Industrial Internet of Things (IIoT) —

Anonymous:2016:EBh

Yamanaka:2016:TFF

Wang:2016:RPC

Qadir:2016:QEA

Nikkhah:2016:MPI

Sankar:2016:QPM

Malina:2016:PSP

REFERENCES

[Militano:2016:ENS]

[LeCadre:2016:DUS]

[Li:2016:TBC]

[Rhaiem:2016:NCB]

[Sourlas:2016:EHR]

[Rhaiem:2016:NCB]
Byun:2016:TST

Wang:2016:EEP

Hoteit:2016:FNC

Erdem:2016:PHA

Millan:2016:RLB

Constantinou:2016:HAE

Socievole:2016:ANR

[1877] A. Socievole, F. De Rango, C. Scoglio, and P. Van Mieghem. Assessing network robustness under SIS epidemics: the relationship between epi-

References

[1891] Shipra Kumari and Hari Om. Authentication protocol for wireless sensor networks applications like safety

Yi:2016:HDA

Wei:2016:DCT

Zhang:2016:EBC

Yousaf:2016:OTM

Anonymous:2016:EBk

Yedugundla:2016:MPT

Yoon:2016:RAA

Sung-Guk Yoon, Jeong-O Seo, and Saewoong Bahk. Regrouping algorithm to alleviate the hidden node problem in 802.11ah networks. *Computer
References

Dinh:2016:MWT

Cao:2016:ROT

Messai:2016:SKM

Bianco:2016:STM

Shih:2016:FBF

Nguyen:2016:MLD

REFERENCES

Frangoudis:2016:RBM

Hu:2016:PLC

Anonymous:2016:EB1

Aguilar-Garcia:2016:CLB

Akyildiz:2016:RKE

Rebecchi:2016:CPC

Goussevskaia:2016:WSM

Akyildiz:2016:RKE

Rebecchi:2016:CPC

Goussevskaia:2016:WSM

L. Boero, M. Cello, C. Garibotto, M. Marchese, and M. Mongelli.
REFERENCES

Zhou:2016:PAP

Kora:2016:ARC

Dudin:2016:AOG

Silva:2016:ISD

Zola:2016:MIH

Senouci:2016:TBD

REFERENCES

Jooris:2016:TCP

Ometov:2016:NSC

Oliveira:2016:LPL

Anonymous:2016:EBo

Asheralieva:2016:ERB

Taherkhani:2016:PSM

Anonymous:2016:EBo

REFERENCES

Benet:2016:PET

Cem:2016:ESP

Chen:2016:CNC

Plachy:2016:PSE

Khalifah:2016:HFM

Anonymous:2016:EBp

Hancke:2016:SIR

Quyen:2016:CDS

Nardelli:2016:TMM

Aliberti:2016:RPS

Tippenhauer:2016:PLI

Petroulakis:2016:PDS

Bhunia:2016:ABN

Lee:2016:PJW

Ha:2016:STS

Goncalves:2016:WMP

Hours:2016:SID

Wamser:2016:MYS

Bonald:2016:MSM

Kleinrouweler:2016:MES

Carofiglio:2016:JFC

Ramos:2016:DLS

Ahmad:2016:QCS

Mandhare:2016:QRE

Narman:2016:JSP

Maleki:2016:FTI

Valcarenghi:2016:DFR

[2031] Luca Valcarenghi, Koteswararao Kondepu, and Piero Castoldi. Delay fairness in reconfigurable and energy efficient TWDM PON. *Computer Networks (Amsterdam, Netherlands: 1999)*, 110(??):223–231, December 9,
REFERENCES

Misra:2016:EET

Li:2016:ERM

Lee:2016:TWT

Xu:2016:DEC

Chowdhury:2016:ALT

Vasilakos:2016:AND

Xie:2016:PSH

[2038] Kun Xie, Jiannong Cao, Xin Wang, and Jigang Wen. Pre-scheduled hand-

Miao:2016:PPR

Rolin:2016:SAC

Ramiro:2016:CAT

Chen:2016:EMA

Hernandez-Orallo:2016:AEP

Holzer:2016:PES

Mauri:2017:DKR

Zhang:2017:MCS

Liao:2017:DCB

Ferraz:2017:HPT

Ogino:2017:VNE

Persico:2017:PWA

Zheng:2017:TEC

Wang:2017:ALE

Chang:2017:MCC

Ghazisaeedi:2017:GGM

Liu:2017:CSS

Anonymous:2017:EBa

Zuo:2017:FTB

Tuysuz:2017:EAN

[2084] Mehmet Fatih Tuysuz and Murat Ucan. Energy-aware network/

Erickson:2017:STI

Yoro:2017:SOS

Deltouzos:2017:TEB

Yan:2017:ONC

Itani:2017:DSN

Panos:2017:AQD

[2097] Joshua Stein, Han Hee Song, Mario Baldi, and Jun Li. On the most representative summaries of network user activities. *Computer Networks (Amsterdam, Netherlands: 1999)*, 113(??):
REFERENCES

[2104] Xuetao Wei, Nicholas C. Valler, Harsha V. Madhyastha, Iulian Neamtiu, and Michalis Faloutsos. Characterizing the behavior of handheld devices and...

REFERENCES

Anonymous:2017:EBe

Malekian:2017:CPS

Kuo:2017:QIA

Han:2017:NDD

Zhang:2017:PAD

Tang:2017:OAE

Rodriguez-Lozano:2017:CAP

Guilherme Domingues, Edmundo de Souza e Silva, Rosa M. M. Leão, Daniel S. Menasché, and Don Towsley. Enabling opportunistic

[Ruckert:2017:CSP]

[Zander:2017:CPP]

[Swain:2017:DSG]

[Papadopoulos:2017:TIT]

[Dong:2017:NFS]

[Acedo-Hernandez:2017:PPA]

Anonymous: 2017: EBh

Wu: 2017: SPI

Ibn-Khedher: 2017: OOP

Costantino: 2017: PMC

Guan: 2017: RCE

Qiu: 2017: GFT

Tajiki: 2017: OQA

REFERENCES

REFERENCES

REFERENCES

Gazda:2017:DSL

Rifai:2017:MSW

Anonymous:2017:EBj

Leng:2017:FMR

Lutz:2017:VWT

Werner:2017:CIM

Xu:2017:PFS

[207] Li Chunlin, Yan Xin, Zhang Yang, and Luo Youlong. Multiple con-

Pinheiro:2017:EAD

Salehi:2017:NPS

Liu:2017:RPA

Yoon:2017:ADC

Yi:2017:RSC

Meng:2017:MUB

Anonymous:2017:EBk

Roy:2017:OSU

Qamar:2017:CRC

Wu:2017:SIB

Borrego:2017:EWC

Karar:2017:OSA

Xu:2017:PLS

[2227] Sain Saginbekov and Arshad Jhumka. Many-to-many data aggregation scheduling in wireless sensor networks with

[2234] Lei Xu, Ke Xu, Yong Jiang, Fengyuan Ren, and Haiyang Wang. Through-

Zhang:2017:TSE

Li:2017:FIU

Gao:2017:CAM

Marotta:2017:ECR

Nam:2017:JNE

Maswood:2017:EED

Majeed:2017:MSI
[2254] Muhammad Faran Majeed, Syed Has-

Bonald:2017:FTA

Bonald:2017:FTA

Mansilha:2017:EPH

Tortelli:2017:HMP

Josilo:2017:DAC

Hasslinger:2017:PEN

Anonymous:2017:EBn

Coutinho:2017:PMA

Shamma:2017:ETE

Wang:2017:NCB

Ye:2017:MSC

dAmbrosio:2017:PPG

Hajisami:2017:DJP

dAmbrosio:2017:PPG

REFERENCES

Anonymous:2017:EBo

Chenait:2017:EEC

Mukherjee:2017:EEA

Kuo:2017:CBM

Guo:2017:SSP

Hu:2017:TSA

Gomez:2017:ENT
Hassen:2017:SPS

Nunes:2017:GNG

Marcon:2017:AMB

Mansouri:2017:CLA

Yim:2017:VLS

Ghazvini:2017:SHM
REFERENCES

Anonymous:2017:EBp

Kamal:2017:SSE

Asghar:2017:TPC

Rejeb:2017:CSF

Xie:2017:SAT

Al-Awami:2017:RDD

Das:2017:NCC

Lalouani:2017:ORP

Ever:2017:MGH

eddineHammami:2017:FTD

Sharafeddine:2017:FRW

Galinina:2017:LHD

Li:2017:CAH

Tahir:2017:LCD

REFERENCES

[2340] Jianwei Niu, Shihao Wang, Wei Niu, and Mohammed Atiquzzaman. User-aware partitioning algorithm for mobile cloud computing based on maximum graph cuts. Computer Networks (Am-
Scalosub:2017:TOB

Qu:2017:OCA

Nguyen:2017:DHB

Qi:2017:ERE

Ceron:2017:MTC

Thakur:2017:RAC

REFERENCES

[2360] Yang Liu, Changqiao Xu, Yufeng Zhan, Zhixin Liu, Jianfeng Guan, and Hongke Zhang. Incentive mechanism for computation offloading using edge computing: a Stackelberg game ap-
Yang:2017:RDF

Ahmed:2017:RBD

Li:2017:AMA

Chen:2017:PIP

Yaqoob:2017:RRE

Qiu:2017:SSR

[2366] Tie Qiu, Xize Liu, Min Han, Mingchu Li, and Yushuang Zhang. SRTS: a Self-Recoverable Time Synchroniza-

Zhou:2017:EEG

Zhao:2017:HIE

DeBenedetto:2017:PDD

Wang:2017:MEC

Lin:2017:MEP

Harbouche:2017:MDF

[Ghebleh:2018:CCI]

[Wang:2018:EEI]

[Kang:2018:ORO]

[Jia:2018:IPC]

[2393] Xuya Jia, Yong Jiang, Zehua Guo, Gengbiao Shen, and Lei Wang. In-

[Anonymous:2018:EBd]

Borylo:2018:SAH

Ayad:2018:PER

Xu:2018:JCA

Xu:2018:CMU

Wang:2018:EER

Belguith:2018:PSO

Cui:2018:EEC

G. Stergiopoulos, D. Gritzalis, and V. Kouktzoglou. Using formal distributions for threat likelihood estimation in cloud-enabled IT risk as-
REFERENCES

Lopez:2018:ACC

Detti:2018:MLC

Cheng:2018:TMD

Pournaghi:2018:NNE

Malandrino:2018:VBE

[2446] Quanzhong Li and Sai Zhao. Secure transmission for multi-antenna wire-

Guntupalli:2018:PFT

Kunst:2018:INR

Siracusano:2018:FEI

Zhao:2018:ODD

Bennis:2018:EQS

Chaudhuri:2018:NQA

Konstantopoulos:2018:EME

Merwaday:2018:ISS

Piedrahita:2018:VIR

Khallef:2018:IFE

Boukerche:2018:VCC

Zhao:2018:CDS

REFERENCES

[2486] Murat Semerci, Ali Taylan Cemgil, and Bülent Sankur. An intelligent cyber security system against DDoS

[2493] ChunSheng Xin, Sharif Ullah, Min Song, Zhao Wu, Qiong Gu, and Huanqing Cui. Throughput ori-

REFERENCES

REFERENCES

Gao:2018:NNE

Ramos:2018:EPT

REFERENCES

REFERENCES

REFERENCES

Hashemi:2018:AMM

He:2018:LAB

Cai:2018:TIMb

Wang:2018:AJL

Anonymous:2018:EBk

Tan:2018:PMN

Li:2018:DSD

Yang:2018:USC

Yang:2018:DOR

Karimi:2018:PPG

Wang:2018:LBR

Zhu:2018:MTI

Shin:2018:TAP
REFERENCES

Lv:2018:SFB

Tavana:2018:CCA

Tsoumanis:2018:EES

Wang:2018:EEO

Xu:2018:SRA

Shi:2018:MMI

Kouicem:2018:ITS

[2567] Djamel Eddine Kouicem, Abdelmadjid Bouabdallah, and Hicham Lakhlif. Internet of Things security: a top-

[2587] Fanz Zeng, Jisheng Xu, Yongfeng Li, Kang Li, and Lei Jiao. Per-

REFERENCES

[2600] Claudia Campolo, Antonella Moli-naro, and Antonio Iera. A reference framework for social-enhanced

Zhang:2018:BNM

Murugesan:2018:HHP

Salman:2018:ISS

Anonymous:2018:EBn

Karray:2018:CSW

[2613] Fatma Karray, Mohamed W. Jmal, Alberto Garcia-Ortiz, Mohamed Abid,

Khorsandi:2018:BLA

Han:2018:NIE

Wang:2018:IRM

Aldwairi:2018:EPR

Habibzadeh:2018:SCS

Zolotukhin:2018:ODL

AL-Hazemi:2018:DAP

Caicedo-Munoz:2018:QCV

Ye:2018:PPS

Colakovic:2018:ITI

Anonymous:2018:EBo

Hansen:2018:BIF

Angles-Tafalla:2018:SPP

[2632] Carles Anglès-Tafalla, Jordi Castellà-Roca, Macià Mut-Puigserver, M. Magdalena Payeras-Capellà, and Alexandre Viejo. Secure and privacy-preserving lightweight access control system for low emission zones.

REFERENCES

REFERENCES

Anonymous:2018:EBp

Vasconcelos:2018:DSA

Abrahao:2018:SAL

Tashtarian:2018:VSB

Ghahfarokhi:2018:ESE

Condoluci:2018:SVM

Liu:2018:JDR

REFERENCES

Luo:2018:NDA

Yamada:2018:TTS

Kirton:2018:TOS

Tang:2018:QAR

Gaber:2018:TBS

Yang:2018:ECE

Lechowicz:2018:GRA

[2665] Piotr Lechowicz, Krzysztof Walkowiak, and Mirosław Klinkowski. Greedy randomized adaptive search proce-
dure for joint optimization of unicast and anycast traffic in spectrally-

Xu:2018:ERR

Bu:2018:FOR

Sun:2018:PMA

Ra:2018:PFB

Anonymous:2018:EBq

Wang:2018:WDM

Thakur:2018:AHT

Huang:2018:ASG

Zhao:2018:FRR

Wang:2018:PSP

Delaet:2018:MBB

Bu:2018:FIM

Dorsch:2018:EHS

Atzori:2018:TIS

Hanczewski:2018:QMM

Jarray:2018:SFT

Hajisami:2018:CBJ

Grassi:2018:MMI

Cohen:2018:QMB

REFERENCES

Huansheng Ning, Feifei Shi, Tao Zhu, Qingjuan Li, and Liming Chen.

[2726] Tong Liu, Yanmin Zhu, and Liqun Huang. TGBA: a two-phase group

[2745] Puneet Kumar and Behnam Dezfooli. Implementation and analysis of QUIC for MQTT. Computer Networks (Amsterdam, Netherlands: 1999), 150(??):28–45, February 26, 2019. CODEN ????. ISSN 1389-1286 (print),
REFERENCES

[2752] Tiphaine Viard and Raphaël Fournier-S’niechotta. Augmenting content-based

Akyildiz:2019:IST

Bai:2019:DWA

Hong:2019:ABB

Abdel-Halim:2019:MPB

Cambiaso:2019:ISA

Li:2019:TTE

Latapy:2019:LSM

eSilva:2019:TPC

Anonymous:2019:EBd

Souissi:2019:MLS

study of information trust models in
WSN-assisted IoT. Computer Networks
(Amsterdam, Netherlands: 1999), 151
(??):12–30, March 14, 2019. CO-
DEN ???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128619300258.

[2767] Abdul Salam, Mehmet C. Vuran, and
Suat Irmak. Di-Sense: In situ real-
time permittivity estimation and soil
moisture sensing using wireless under-
ground communications. Computer
Networks (Amsterdam, Netherlands:
CODEN ???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128618303141.

[2768] Yu He, Lin Ma, Ruiting Zhou, Chuanhe
Huang, and Zongpeng Li. Online task
allocation in mobile cloud computing
with budget constraints. Computer
Networks (Amsterdam, Netherlands:
CODEN ???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128618304018.

[2769] Aljawharah Alnasser, Hongjian Sun,
and Jing Jiang. Cyber security chal-
gen’s and solutions for V2X communi-
cations: a survey. Computer Networks
(Amsterdam, Netherlands: 1999), 151
(??):52–67, March 14, 2019. CO-
DEN ???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128619301008.

Security in hardware assisted virtual-
ization for cloud computing — state of
the art issues and challenges. Computer
Networks (Amsterdam, Netherlands:
CODEN ???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128618302998.

[2771] Edmundo de Souza e Silva, Rosa M. M.
Leão, Daniel S. Menasché, and Don
Towsley. On the scalability of P2P
swarming systems. Computer Networks
(Amsterdam, Netherlands: 1999), 151
(??):93–113, March 14, 2019. CO-
DEN ???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128618307126.

[2772] Xiaocui Li, Zhangbing Zhou, Junqi
Guo, Shangguang Wang, and Jun-
sheng Zhang. Aggregated multi-
attribute query processing in edge
computing for industrial IoT appli-
cations. Computer Networks (Am-
sterdam, Netherlands: 1999), 151
(??):114–123, March 14, 2019. CO-
DEN ???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128619301008.

REFERENCES

Anonymous:2019:EBe

Anonymous:2019:EBf

Younes:2019:SEC

Li:2019:VNF

Dourado:2019:DLI

Barrachina-Munoz:2019:OOE

Lima:2019:WPI

REFERENCES

[Baskar:2019:EPR]

[Dong:2019:UCP]

[Liyanage:2019:CAT]

[Shan:2019:SSC]

[Rodriguez:2019:SHS]

[Zhai:2019:HEC]
REFERENCES

[2811] Yahui Li, Zhiliang Wang, Jiangyuan Yao, Xia Yin, Xingang Shi, Jianping Wu, and Han Zhang. MSAID: Automated detection of interference in multiple SDN applications. *Computer

Yu:2019:NHL

Kumar:2019:EEI

Ali:2019:TES

Anonymous:2019:EBi

Kang:2019:ATE

Casares-Giner:2019:PEF

Liu:2019:EDD

[2832] Zhizhu Liu, Yinqiao Xiong, Xin Liu, Wei Xie, and Peidong Zhu. 6Tree:

Anonymous:2019:EBj

Qi:2019:SBI

Smyth:2019:ADS

Shaverdian:2019:SEN

Vishnuvarthan:2019:EED

Peng:2019:MTO

Sharafeddine:2019:DDM

REFERENCES

[2846] Francisco Renato C. Araújo, Antônio M. de Sousa, and Leobino N. Sam-paio. SCan-Mob: an opportunist-ic caching strategy to support pro-
ducer mobility in named data wire-
less networking. Computer Networks (Amsterdam, Netherlands: 1999), 156
(??):62–74, June 19, 2019. CO-
DEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128618311599.

[2847] Anonymous. Editorial Board. Computer Networks (Amsterdam, Nether-
CODEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S138912861930595X.

[2848] F. AL-Tam and N. Correia. Fractional
switch migration in multi-controller
software-defined networking. Computer
Networks (Amsterdam, Netherlands:
1999), 157(??):1–10, July 5, 2019. CO-
DEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S138912861930475X.

[2849] Ian Vilar Bastos and Igor Monteiro
Moraes. A diversity-based search-and-
routing approach for named-data net-
working. Computer Networks (Am-
sterdam, Netherlands: 1999), 157
(??):11–23, July 5, 2019. CODEN ????
ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128618311952.

[2850] Zhiwei Yan and Jong-Hyouk Lee. Mobility capability negotiation for
IPv6 based ubiquitous mobile Inter-
net. Computer Networks (Am-
sterdam, Netherlands: 1999), 157
(??):24–28, July 5, 2019. CODEN ???
ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128618311496.

[2851] Van-Van Huynh, Hoang-Sy Nguyen,
Ly Tran Thai Hoc, Thanh-Sang
Nguyen, and Miroslav Voznak. Op-
timization issues for data rate in
energy harvesting relay-enabled cog-
nitive sensor networks. Computer
Networks (Amsterdam, Netherlands:
CODEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128618307898.

[2852] Yujun Cheng, Dong Yang, Huachun
Zhou, and Hongchao Wang. Adopting
IEEE 802.11 MAC for industrial delay-
sensitive wireless control and moni-
toring applications: a survey. Computer
Networks (Amsterdam, Netherlands:
CODEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:

REFERENCES

[2873] Klenilmar Lopes Dias, Matheus Almeida Pongelupe, Walmir Matos Caminhas,

REFERENCES

REFERENCES

Anonymous:2019:EBn

Jenkins:2019:CNP

Anonymous:2019:PB

Anonymous:2019:RB

Ghannadrezaii:2019:MNC

Rahman:2019:EEO

Krishnan:2019:ECA

Saxena:2019:AAD

REFERENCES

Kale:2019:SDA

Huang:2019:HTW

Gunleifsen:2019:DSI

Liu:2019:RPC

Cicioglu:2019:HNI

Bahtiyar:2019:MDM

Ha:2019:ABU

[2907] Duc Thang Ha, Lila Boukhatem, Megumi Kaneko, Nhan Nguyen-Thanh,

Ghasemi:2019:ENC

Hajiheidari:2019:IDS

Santhanavijayan:2019:MSO

Anonymous:2019:EBo

Shehaj:2019:LDH

Pfitscher:2019:GPA

482

REFERENCES

Wang:2019:SRS

Wei:2019:QLA

Yang:2019:PDR

Ak:2019:BPC

Huang:2019:RDF

Antonioli:2019:ABS

[2933] Tao Hu, Peng Yi, Julong Lan, Yuxiang Hu, and Penghao Sun. ACST:

Sun:2019:IKS

Al-Salti:2019:ERG

Alfadhli:2019:LPA

Anonymous:2019:EBp

Anonymous:2019:PN

Bagci:2019:SED

Boussada:2019:PPA

[2940] Rihab Boussada, Balkis Hamdane, Mohamed Elhoucine Elhidhili, and

Zafar:2019:IBB