Title word cross-reference

2 [1672,2377]. 2.5 [122]. 3
[1204,1489,1722,2377]. 3.5 [122]. 4 [1000]. 5
[2309]. * [636,1879]. A^3 [1114]. Δ [1675]. K
[143,428,669,833]. m [80,1568]. M^2 [305].
N [1156]. p [57,102,224].

-Box [1879]. -Coverage [669]. -Cycle
[57,305]. -Cycles [102,224]. -Dense [833].
-Fault [428]. -Frame [1672]. -Trail [57].
-Trace [1568]. -Tree [143].

/1609 [436].

1 [1800,1826]. 10 [38,756].

2 [1189,1755]. 2017 [2376]. 2167 [697].
3-ent [2344]. 3G [531,926,1382,1954]. 3G/
4G [1954]. 3GPP
[527,1054,1139,1379,1662].
4G [1397,1484,2079]. 4PR [2045].
56 [697]. 5G [1564,1709,1916,2055,2092,
2119,2175,2251,2264,2318,2353–2357].
5G-IoT [2318].
60 [1113,2019]. 65 [1783].
79 [2127].

802.11 [137,198,230,296,566,1377,1480,
1489,1551,1573,1920]. 802.11-based
application-defined [561, 1662].
application-layer [1890].
Application-Level [489].
application-specific [1277, 1371].

Applications
approaches [74, 92, 346, 686, 905, 1285, 1332, 1364, 1817, 2076, 2181, 2350]. approximate [225].
approximation [561, 626, 888, 1024, 1767]. approximations [1537].
ARP [1086]. ARQ [403, 657]. ARQ-HARQ [657]. art [1098, 1328].
Artificial [258, 1494]. artworks [1621].
AS-level [183, 833]. AS-paths [972]. aspects [913, 1042].
assignment [75, 254, 333, 411, 554, 558, 662, 1048, 1104, 1486, 1758, 2029, 2138, 2274, 2334, 2342].
attenuator [328]. attestation [1511].
Attribute [31]. Attribute-based [31].
Auction [1252, 1496, 1763, 2120].
Authenticated [744, 1102, 1838, 2000].
autoconfiguration [24, 388].
Autonomic [74, 361, 544, 870].
avoidance [720, 904, 1947, 2323]. Awarding

CIG [556]. CA [435]. cable [1647]. CAC [88]. cache [59, 678, 832, 1040, 1121, 1234, 1397, 1422, 1490, 1559, 1581, 1873, 2015, 2159, 2257, 2258].
cache-aware [1422]. caches [1635].
Can [246, 316, 347]. cancellation [460].
candidate [457]. Cap [534]. capability [56, 1248, 1531, 1769, 2284]. capable [394, 420, 1876].
Capacity [23, 73, 110, 164, 353, 366, 404, 411, 494, 515, 643, 800, 824, 872, 931, 1013, 1091, 1111, 1279, 1325, 1375, 1583, 1802, 2138].
care [972]. Carlo [1011]. CARRADS [86].
carrier [11, 796, 1360, 1432, 1689, 1936, 2029].
case [416, 493, 578, 583, 914, 970, 1735, 1825, 2315].
CCIPCA [564]. CCIPCA-OPCSC [564].
CCMAC [49]. CCN [1762].
CCNXTomcat [1392]. CCS [1926]. CDF [967]. CDMA [72, 222, 940].
CDN [765, 1941, 2008, 2095, 2168]. CDN [2118].
CDS [582, 634]. CDS-mode [582, 634]. cell [891, 1064, 1462, 1826, 2212, 2346, 2371].
cells [1484, 1824, 2119].
cellular/WiFi [2327].
CeMon [1680]. Censorship [1554].
Center [408, 714, 865, 902, 911, 938, 1018, 1113, 1232, 1267, 1268, 1337, 1426, 1473, 1483, 1578, 1591, 1600, 1656, 1660, 1842, 1868, 1902, 1909, 1969, 2061, 2080, 2179, 2211, 2252, 2253, 2288, 2306, 2332, 2380].
-centralized [877]. centred [1715]. CEntrality [605, 993, 1765, 1881, 2335].
Centrality-based [2335]. centralization [1690].
Centralized [597, 1364, 2122, 2299, 2310]. centrally [914, 1532].
chaining [1741, 2111]. chains [1233]. Challenges [477, 506, 742, 746, 834, 909, 973, 1312, 1328, 1402, 1416, 1476, 1482, 1599, 1612, 1620, 1688, 1717, 2074, 2337, 2363].
Change [2352].
channel-aware [937]. channels [21, 201, 448, 696, 851, 899, 2000].
Chaotic [1819, 1992]. character [1069].
Characteristic [2093]. characteristics [329, 827, 875, 1125, 2115, 2201].
Characterization [307, 339, 402, 671, 790, 804, 1501, 2046, 2163].
Characterizing [234, 242, 1879, 2104, 2131].
Chargers [1492, 1796]. charging [527, 981, 1379, 1662, 1715, 1836, 2327].
choice [180, 272, 2189].
circuit [1453]. circuit-switched [1453].
circuits [1247]. circulant [1543]. circular [182, 1442]. circular-shaped [182].
Circumventing [1917]. cities [1839, 2178, 2315]. city [1165]. CLAMP [177].
class [177, 275, 518, 958, 1350].
class-based [177, 958]. classes [593, 2062].
classification [82, 331, 351, 371, 389, 499, 531, 555, 661, 747, 748, 956, 1006, 1419, 1553, 1817, 1874, 1943, 2153, 2158, 2164, 2203, 2287, 2339].
classifier [1640, 1669, 2004]. classless [800].
CLONE [673]. Cloning [303].
Closed [1150, 1758, 1835]. Closed-loop [1835].
Closeness [993]. Cloud [332, 831, 873, 959, 1163, 1164, 1171, 1185, 1199, 1228, 1265].
Cloud-assisted [1199, 1842, 1849, 2319, 2365]. Cloud-based [873, 1164, 1445, 2071, 2387].
ClusteR [692, 1636, 1810, 2060].
Clustering [381, 452, 647, 649, 728, 851, 852, 1004, 1027, 1049, 1083, 1119, 1371, 1386, 1787, 1845, 1869, 2146, 2192]. clustering-based [1049]. clusters [155, 2320]. CMT [2081].
Co [418, 1317, 1715, 1913]. co-based [418].
co-exist [1317]. co-operative [1913].
Co-simulation [1715]. coal [1891].
coalition [115, 1340, 2055]. coalitional [1031, 1209, 1444, 1576]. Coalition [1798].
coarse [135]. coarse-grained [135].
Coconut [2051]. CoCoSpot [851]. Cod [1797].
code [977, 1580, 1830, 2153].
cod-based [1830]. Coded [1301, 1782].
codes [447, 544, 748, 1005].
Coding-aware [1911]. coding-based [140, 887, 1646, 1870, 2040].
coding/ARQ [403].
Coercion [1498]. coevolution [1819].
Coexistence [1236, 1415, 1807, 2181].
coexisting [1023].
collaboration [149, 984].
collaborations [2095].
Collaborative [148, 150, 153, 157, 158, 182, 481, 482, 549, 929, 1076, 1086, 1105, 1215, 1391, 1638, 1710, 1796, 1841, 2027, 2161, 2186, 2206, 2355].
collapse [772].
Collateral [2005].
collecting [2273].
collection [912, 1173, 1187, 1301, 1341, 1368, 1649, 1926, 2200, 2298].
Collision [221, 953, 1103, 1984, 2079].
Collusion-Aware [221].
collusions [904, 2165].
colluded [2142].
2085, 2207, 2234, 2290]. datacenters
[1273, 2063]. date [2058]. DBit [1941].
DBridges [1067]. DBStream [1935]. DCF
[128, 198, 566]. DDoS
[138, 1267, 1396, 1443, 1795, 1925, 2306, 2327].
Deadline-aware [1795]. Deadline-based
[138, 1443]. deaggregation [1506]. deal
[735]. Dealing [1865]. Decapitation [260].
decays [1140]. decentralised [151, 209].
Decentralized [1, 67, 152, 213, 1221, 1241,
1401, 1604, 1797, 1857, 2312]. decision
[58, 142, 576, 633, 1064, 1443, 1594, 1631, 1824,
2203, 2323]. decision-making [633].
decision-tree [2203]. decisions [361, 1920].
Declarative [542]. decompositions [1741].
Decoupling [154, 321]. dedicated
defence [530]. defending [234]. Defense
[200, 260, 412, 1998]. deficit [500].
DEFIDNET [1491]. Defined
[1128, 1161, 1183, 1245, 1271, 1276, 1328, 1402,
1433, 1502, 1515, 1548, 1564, 1580, 1680, 1685,
1687, 1695, 1697, 1698, 1700, 1709, 1729, 1789,
1832, 1859, 1862, 1867, 1932, 1950, 1966, 2006,
2033, 2060, 2076, 2096, 2107, 2134, 2172, 2197,
2200, 2243, 2247, 2248, 2333]. Definition
[2017]. degradation [2184]. degree [1767].
degrees [731]. Delay
[25, 120, 145, 226, 253, 311, 379, 418, 449, 494,
619, 888, 904, 925, 943, 949, 1101, 1130, 1134,
1143, 1217, 1260, 1294, 1457, 1552, 1578, 1580,
1624, 1683, 1892, 1950, 2031, 2034, 2045, 2079,
2080, 2201, 2205, 2239, 2384]. Delay-Aware
[925, 1892]. Delay-based [120, 1143].
delay-constrained [1624]. Delay-tolerant
[418, 494, 1294, 1552, 1950, 2239]. Delayed
[611]. delays [83]. delegation [1511].
deletions [632]. delivering [782]. Delivery
[269, 289, 446, 452, 498, 883, 929, 994, 1035,
1055, 1276, 1349, 1395, 1494, 1577, 1659, 1753,
1912, 1927, 2027, 2136, 2192, 2218, 2272].
Demand [31, 63, 281, 1277, 1380, 1478, 1653,
1930, 1974, 2037, 2145, 2270]. demanding
[550]. demands
[252, 453, 663, 1337, 1738, 1803, 1927].
demonstration [1164]. Denial
[328, 783, 1792]. Denial-of-service [783].
DeNoise [124]. DeNoise-and-Forward
[124]. dense
[78, 229, 713, 833, 1541, 1758, 2119, 2175, 2368].
densely [624]. Density
[126, 503, 1180, 1459, 1989, 2060].
density-barrier [1180]. Dependability
[1548, 1589]. dependable [243, 1996].
dependencies [2341]. dependent
[33, 195, 546, 1594, 1903]. deployable [1030].
deployed [624]. Deploying [470].
deployment [75, 250, 258, 482, 903, 1133,
1154, 1361, 1461, 1484, 1584, 1786, 1848, 1889,
1972, 2026, 2141, 2371]. deployments
[1161, 1455, 1826]. depth [950]. Derivation
[176]. derived [273]. description
[887, 2124]. Design [13, 47, 57, 87, 98, 107,
123, 210, 221, 255, 259, 261, 270, 287, 316–318,
320, 321, 332, 348, 349, 369, 400, 404, 415, 446,
449, 478, 510, 587, 670, 674, 707, 720, 727, 751,
755, 756, 779, 849, 857, 888, 931, 1009, 1057,
1114, 1133, 1140, 1146, 1160, 1175, 1219, 1242,
1260, 1272, 1305, 1329, 1359, 1452, 1461, 1531,
1547, 1585, 1641, 1663, 1710, 1767, 1814, 1835,
1838, 1852, 1858, 1859, 1983, 1987, 1996, 2023,
2035, 2073, 2150, 2162, 2189, 2265, 2329, 2372].
Designing [454, 865, 1159, 1192, 1483].
designs [1050]. desktop [1272].
destination [739, 1169, 2285]. Detect
[1178, 1317, 1634, 2142]. Detecting [348, 564,
593, 753, 848, 855, 863, 1083, 2090, 2183].
Detection [86, 99, 135, 174, 305, 340, 370, 371,
485, 496, 549, 583, 737, 752, 774, 778, 845, 853,
854, 864, 874, 878, 983, 999, 1040, 1058, 1069,
1081, 1092, 1105, 1125, 1148, 1174, 1210, 1296,
1308, 1410, 1479, 1491, 1527, 1554, 1573, 1579,
1626, 1641, 1662, 1793, 1821, 1866, 1883, 1944,
2137, 2174, 2185, 2297, 2350, 2361].
detection-resistant [340]. detector [2142].
detectors [1938]. Determination
Determining directories [184]. device-aware [848]. device-to-device [2162, 2178, 2317].
Directional direct-sequence [1645]. DHT [459, 613, 2320]. DHT-paradigm [2320].
difference [917]. differences [1408, 1941]. different [362, 444, 687, 1534, 2210].
Differential [48, 693, 1337]. differentiated [486, 677, 822, 1770]. differentiation [107, 244, 433, 525, 1169, 1763, 2306].
dimensional [1088, 1133, 1592, 1782]. Dimensional-IP [1133]. dimensionality [1626].
direct-sequence [1992]. direction [260].
disaster-resilient [1736]. disciplines [97]. disclosure [777, 1594]. Discontinuous [1333].
discovery [9, 158, 179, 330, 341, 648, 1132, 1173, 1256, 1465, 1530, 1587, 1593, 1820, 1931, 2100, 2369].
disruption-tolerant [1346]. Dissecting [849]. dissemination [47, 125, 261, 623, 694, 723, 1026, 1218, 1366, 1398, 1654, 2143, 2369].
divide-and-conquer-searching [234]. division [763, 1694, 2221]. DMMS [1756].
DNS [539, 589, 1793, 1821, 2008, 2131].
domain-specific [1613]. domains [1027, 1385, 1690]. dominated [1386].
Dominating [303, 2072, 2224]. domination [299]. Don’t [1405]. double [102, 945, 1122, 2154]. double-link [1122].
Double-Ring [102]. double-ruling [2154].
down [1255]. Downlink [372, 866, 929, 930, 932, 1024, 1417, 1603, 1664, 1759, 1770, 2165].
download [672]. downloading [574, 941, 1841, 1947]. DPI [1419, 1676].
driver [473].
DTN [694, 1540, 2336]. DTN-based [2336]. dual [102, 683, 1601, 2039]. Dual-port [683].

2315, 2335, 2370, 2371]. Greener [955, 1458].
Greening [1018, 1349, 1452]. GreenMap [2080].
grey [1944]. grid
[252, 256, 409, 507, 687, 705, 729, 875, 901, 909, 1129, 1146, 1222, 1253, 1309, 1312, 1432, 1482,
1571, 1624, 1836, 1865, 1983, 2032, 2142, 2143].
grid-based [1432, 1836]. GRiDA [764].
grids [243, 1183, 1248, 2328, 2387].
grooming [309, 704, 1288, 1572]. ground
[336].
Group
Group-based [1813]. group-key [306].
grouping [555, 1510, 1984]. groups
[127, 1438, 2289]. GROUPS-NET [2289].
growing [1724]. growth [1828]. GSA [123].
guarantee [1367, 1396].
guaranteed [1018, 1283, 1600, 1956].
guaranteeing [2079]. guarantees
[60, 928, 1355, 2284, 2290]. guard [1262, 1955].
Guest
[148, 509, 1151, 1182, 1946]. guidance
[661]. guidelines [1146]. Guifi.net
[1622, 1723, 1730].

handling [2261]. handoff [58, 376, 662, 1106,
1287, 1344, 1387, 1474, 2038]. handoff-aware
[602]. handoffs [442]. Handover
[142, 239, 262, 360, 361, 520, 682, 1080, 1170, 1262, 1416, 1421, 1544, 1603, 1773, 1824, 1895,
1920, 1957, 2084, 2319, 2321, 2356].
handovers [302, 560, 1065]. HAPs [461].
hard [576, 2284]. Hardware
[324, 751, 1242, 1859, 2101].
hardware-amenable [324]. HARQ
[223, 657, 2219]. harvesting
[217, 1004, 1599, 1894]. Hash
[632, 1112, 1869]. Hash-routing [1869].
hashing [241]. HCCA [803]. healing
[544, 1144, 1866, 2309]. health [1849, 2372].
healthcare [199, 1359, 1592, 2365, 2366].
heat [2298]. heat-diffusion [2298]. heavy
[646, 1641]. HEER [1892]. held [1622].

helicoidal [1608]. Helix [1608]. Helm
[2352]. help [246, 279]. HeNB [682]. herd
[379]. heterogeneity [1198].
Heterogeneous [58, 98, 139, 142, 167, 172,
190, 332, 361, 363, 484, 545, 633, 672, 804, 920,
1048, 1186, 1191, 1207, 1283, 1315, 1358, 1382,
1385, 1433, 1461, 1464, 1484, 1495, 1498, 1505,
1627, 1658, 1684, 1807, 1844, 1948, 1963, 2068,
2219, 2291, 2310, 2318, 2370, 2371, 2378, 2385].
HetNet [1826]. HetNets
[1481, 1764, 2315, 2368]. Heuristic
[126, 837, 1876]. heuristics [444, 939].
hidden
[198, 216, 580, 599, 767, 856, 1094, 1898, 1984].
hide [2173]. Hierarchical
[6, 112, 131, 171, 178, 377, 380, 592, 747, 886, 1234, 1288, 1429,
1489, 1579, 1796, 1874, 2164, 2210, 2256, 2258].
Hierarchically [779]. hierarchies
[681, 964]. hierarchy [865, 2021]. HiFIND
[99]. High
[10, 38, 82, 99, 237, 241, 348, 385,
746, 751, 872, 884, 1072, 1088, 1217, 1270, 1455,
1483, 1507, 1592, 1671, 1874, 1989, 2003, 2061,
2083, 2256, 2264]. high-availability [1270].
high-capacity [872]. high-dimensional
[1088, 1592]. High-performance
[746, 884, 2061, 2083]. High-speed
[10, 38, 99, 237, 751, 2256]. high-throughput
[872]. higher [404]. highly [1027]. highway
[941, 1398]. HIP [364, 1625]. HIP-based
[1625]. HIP/PMIP [364]. historical [462].
history [233, 586, 815]. hit [678]. HLLS
[586]. HMAC [695]. HMAC-based [695].
HMM [661]. Hoc
[8, 46, 64, 78, 92, 112, 113, 130, 143, 146, 271,
306, 388, 416, 423, 425, 464, 467, 477, 484, 496,
572, 588, 598, 601, 628, 653, 720, 784, 789, 805,
838, 942, 990, 1001, 1071, 1096, 1177, 1284,
1343, 1386, 1398, 1399, 1432, 1495, 1500, 1501,
1526, 1550, 1595, 1639, 1652, 1831, 1905, 1951,
1964, 1980, 1997, 2028, 2077, 2102, 2150, 2154,
2185, 2193, 2204, 2220, 2270, 2379].
holding [2243]. hole
[1343, 1866, 2026, 2108, 2343].
hole-bypassing [2343]. holes [250, 2113].

Internet-based [442]. Internet-scale [1769, 2257]. Internet-wide [311].

InterNetworking [87]. interoperability [1263]. interoperable [1263].

Interplanetary [2336]. interplay [1118]. intersection [475]. intersession [1537].

Intertwined [1395]. Interval [85, 625, 650, 748]. Interval-based [650].

interworking [170, 657]. intra [827, 930, 2176]. intra-domain [827].

last [1667].

low-rate [200, 778]. low-resource [200].
LTE-Advanced [1095, 1287, 1336, 1420, 1920].
LTE-based [1127, 1416, 2324]. LTE-Unlicensed [2346].
Lyapunov [1478].
MAC-layer [17]. MAC-routing [1251].
mac80211 [1514]. Machine [831, 1257, 1379, 1612, 1634, 1655, 1737, 1813, 1840, 1934, 2349, 2357].
machine-to-machine [2349]. machines [1705, 1740]. macro [1017, 1462, 2059].
MAFM [1073]. MAGMA [2004].
Maintaining [1854]. maintenance [455, 688, 1160]. major [1253]. make [1458].
malware-analysis [2345]. Man [1086].
Man-in-the-Middle [1086].
management [45, 166, 244, 449, 1117, 1326, 1895].
Managing [54, 208, 750, 1744, 2080].
MANET [90, 1786, 1870]. MANETS [86, 213, 586, 1204, 1233, 1366, 1579, 2286, 2320].
Mantis [1445].
Many [185, 295, 1094, 1720, 1980, 2227, 2278].
Many-to-many [295, 1720, 1980, 2227, 2278].
many-to-one [185]. map [91, 2292].
mapping [321, 513, 687, 930, 1073, 1446, 1924, 2080, 2377]. mappings [881, 1635].
MapReduce [1570, 2071, 2080].
MapReduce-based [2080]. maps [926].
market [54, 534, 538, 1304, 1558].
market-based [54, 534]. markets [365, 1619].
MAS-based [821]. mashments [1766].
mashups [1202, 1766]. Massive [1076, 1298, 1435, 2122, 2347].
massive-scale [1076]. matching [492, 842, 1069, 2179].
MaxCD [941].
Maximization [267, 440, 627, 893, 1345, 1372, 1672, 1881, 1993, 2019, 2188, 2217, 2240, 2263].
maximize [2162]. maximized [289].
Maximizing [1000, 1004, 1303, 1391, 1718, 1904, 2119, 2266].
maximum [195, 1058, 1767, 1902, 2340, 2377].
MBMS [301]. MBS [719]. MC [1082].
MC-MLAS [1082]. MDP [1627].
MDP-based [1627]. Mean [923, 1351].
Mean-variance [923]. means [481, 1059].
measure [1070]. measured [161, 1073].
Models [566, 712, 957, 2315]. Models
[2336]. modulation [380, 1475, 1906]. module [658, 862, 2294]. Molecular
[353, 1805]. monitor [613, 1780, 1791]. Monitoring
[76, 121, 177, 271, 335, 344, 350, 426, 959, 1076, 1100, 1111, 1202, 1214, 1227, 1284, 1308, 1359, 1504, 1588, 1680, 1835, 1849, 1891, 1934–
1936, 1942, 2181, 2237, 2354, 2372]. monitors
[756]. MPLS-TP/PWE3 [756]. MPTCP [1657]. MU [1675]. Multi
[1339]. Multi-Binomial [1707]. multi-carrier [1360]. multi-channel
[110, 154, 405, 407, 468, 500, 671, 1048, 1082, 1214, 1222, 1806, 2030]. multi-cloud
[2265]. multi-core [1120, 1229, 1280]. Multi-criteria
[579, 2053]. multi-destination [2285]. Multi-domain
[443, 841, 854, 2337, 2349]. multi-flow
[941, 1911]. multi-follower [797]. Multi-Gbps
[2101]. multi-grade [376]. Multi-granularity
[300, 309, 704, 1720].
multi-homed [333, 1156, 1684].

Multi-hour [299]. multi-interface [110].

multiadaptive [1053]. MultiCache [319].

multicast-based [295]. multicast-capable [394, 1876]. multicasting [685, 719, 918, 1585, 2285]. multichannel [27, 1632, 2302]. multicoloring [1816].

Multiple [21, 84, 143, 163, 220, 239, 325, 633, 782, 796, 803, 866, 887, 896, 933, 1019, 1047, 1070, 1106, 1273, 1274, 1326, 1355, 1409, 1492, 1537, 1576, 1655, 1691, 1720, 1775, 1796, 1827, 1855, 1918, 2062, 2064, 2077, 2147, 2207, 2265, 2275, 2326].

Nash [1013, 1547]. NAT [158, 1131, 1936].

[15, 70, 71, 74, 319, 349, 363, 612, 671, 726, 786, 834, 842, 955, 989, 1034–1038, 1040, 1042, 1043, 1045, 1161, 1163, 1183, 1192, 1245, 1247, 1265, 1276, 1280, 1323, 1328, 1363, 1392, 1402, 1490, 1502, 1515, 1530, 1548, 1564, 1580, 1601, 1644, 1654, 1656, 1685, 1696, 1698, 1718, 1734, 1801, 1867, 2025, 2033, 2035, 2043, 2050, 2051, 2058, 2069, 2076, 2119, 2126, 2254, 2276]. networks
Optimising [2342]. optimistic [541, 921].
Optimization-based [1240]. optimize [1376].
Optimized [1240]. optimize [1376].
Optimum [139, 1031]. OQ [2288].
orthogonal [763]. OSPF [1135, 1809].
OSPF-based [1809]. other [176]. OTTs [2027]. outage [1860]. outage-based [1860].
outreach [547]. Outsourcing [1592].
overhearing [341, 1905]. overlaid [2162].
overlapped [2367]. overlapping [1536].
P2P-based [642, 1150]. P2P-like [1659].
packet-switched [1453]. packets [781, 1239, 1247, 1301, 2009]. packing [915].
PANs [48]. paradigm [2320]. Paradigms [69, 2203]. Parallel [136, 917, 1944].
Partial [56, 659, 822, 1544, 1875, 2066, 2200, 2338]. partially [2122]. participant [1837].
partitioning [238, 828, 1017, 1091, 1110, 1407, 2340].
partners [1250]. party [197, 1102, 1634].
PASCCC [1371]. passive [556, 1025, 1049, 2202]. Passpoint [1562].

paths [35, 235, 564, 585, 594, 972, 1791, 2039, 2121].

35

1544, 1705, 1712, 1755, 1764, 1770, 1772, 1789, 1809, 1840, 1855, 1860, 1943, 1956, 2028, 2066, 2172, 2278. QoS-Aware [393, 761, 838, 932, 940, 1105, 1764, 1772, 1789, 1809, 2172].

QoS-sensitive [58].

QoT [2090, 2123].

Quantifying [336, 465, 589, 2090, 2123].

quantitative [1076].

quantization [422].

quantized [896, 2380].

Quantum [2141].

Quantum-inspired [2141].

Quorum-based [146, 689].

Rabin [1005].

Radiation-constrained [2230].

radio-based [345].

Radii [581].

RANGE [591].

RAM [1748].

RAN [1710].

Random [46, 61, 125, 303, 348, 559, 1129, 1381, 1596, 1632, 1803, 1875, 1971, 2000, 2046, 2079, 2367].

randomized [528, 1119].

Randomized [2332].

Ranking [993].

ransomware [2363].

Rapid [591, 596, 618, 1639].

RAT [633, 1064, 1319, 2092].

rate-based [1089].

rate-sensitive [2212].

rate [289, 823, 1058].

RDSR-V. [8].

real-device [1552].

real-life [1725].

real-device [1552].

real-life [1725].

Realisation [1045].

realistic [429, 786, 1930].

reality [610, 814].

Realization [952].

really [972].

Reasoning [722, 1235, 2231].

re-balancing [136].

rebuffering [194].

recapture [59, 1610].

receive [375, 1198].

received [1643].

Receiver [13, 510, 530, 1418, 1858].

Receiver-initiated [1418].

Receiver-oriented [13].

Reception [110, 1333, 1540, 1597].

Rechargeable [50, 1454, 1836].

Recipient [498].

Recipient-anonymous [498].

reciprocity [638].

RECODAN [2040].

recognition [1088, 2147].

recognizing [851].

recommendation [1212].

recommendations [477].

reconciliation [1999].

reconfigurable [915, 2031].

reconfiguration [438, 548, 937, 1429, 1430, 1578, 1739, 1740, 2172, 2345].

reconnection [445].

reconstruction [77].

Recoverable
scale-free [192, 1970]. Scaling
[137, 503, 938, 1456, 1743]. scam [1123].
Scheduling
Scheme [3, 5, 33, 37, 45, 90, 112, 158, 184, 202, 234, 403, 426, 431, 486, 535, 556, 582, 636, 655, 657, 678, 681, 716, 797, 827, 996, 1017, 1022, 1069, 1087, 1103, 1121, 1215, 1219, 1287, 1293, 1327, 1331, 1367, 1381, 1382, 1451, 1464, 1511, 1558, 1573, 1581, 1588, 1603, 1608, 1636, 1646, 1659, 1667, 1675, 1720, 1802, 1812, 1813, 1823, 1840, 1841, 1974, 2040, 2061, 2066, 2099, 2143, 2154, 2162, 2164, 2174, 2218, 2249, 2287, 2292, 2296, 2322, 2328, 2329, 2349, 2358, 2362].
[104, 387, 581, 773, 809, 1225, 1250, 1431, 1475, 1494, 1574, 1783, 1848, 2135, 2159, 2202, 2222]. searching [156, 303]. second [186].
Security
sel-determination [1725]. Self-healing
Trading traditional Traffic [847].

References

REFERENCES

REFERENCES

Ye:2010:UMJ

Boldrini:2010:DPE

Misic:2010:MBL

Hu:2010:CCC

Pryyma:2010:ATS

Lee:2010:IMI

Rusak:2010:PBM

Anonymous:2010:EBd

Androutsellis-Theotokis:2010:MBA

Ou:2010:PEK

Shan:2010:BRO

Wu:2010:IFN

Ceken:2010:IAV

Anagnostopoulos:2010:EEF

Gupta:2010:PSS

Rodero-Merino:2010:PRW

REFERENCES

Heegaard:2010:ORD

Wang:2010:SNU

Anonymous:2010:EBf

Keralapura:2010:NSL

Wang:2010:BEP

Ong:2010:CRR

Hwang:2010:TPF

Joseph:2010:CCL

Schutz:2010:DIN

[87] Simon Schütz, Henrik Abrahamsson, Bengt Ahlgren, and Marcus Brunner. Design and implementation of
REFERENCES

Lu:2010:CLE

Yan:2010:CAI

Biradar:2010:LSB

Vilhar:2010:INT

Garbinato:2010:CAB

Xu:2010:PCP

Targon:2010:EJG

Anonymous:2010:EBg

REFERENCES

REFERENCES

CODEN ???? ISSN 1389-1286 (print), 1872-7069 (electronic).

[120] Yueping Zhang, Yong Xiong, Steve Liu, and Dmitri Loguinov. Queuing dynamics and single-link stability of delay-based window congestion control. Computer Networks (Amsterdam,

[128] P. S. Kritzinger, Henry Msiska, Tino Mundangepfupfu, Paolo Pileggi, and Andrew Symington. Comparing the results from various performance models of IEEE 802.11g DCF. *Com-

[153] Krzysztof Rzadca, Jackson Tan Teck Yong, and Anwitaman Datta. Multi-objective optimization of multicast overlays for collaborative applications. *Computer Networks (Amster-

Pirmez:2010:SNS

Mao:2010:EES

Ge:2010:DEE

Akar:2010:SPW

Yue:2010:AHC

Cano:2010:TEP

Stavrou:2010:SSM

Antoniou:2010:CUN

Ahmadian:2010:SEA

Zahra Ahmadian, Somayeh Salimi, and Ahmad Salahi. Security enhancements

REFERENCES

Doss:2010:IDM

Duraes:2010:CBA

Esnaashari:2010:LAB

Zhou:2010:EAN

Secchi:2010:LSR

Lee:2010:PAB

Zhang:2010:EMO

Pelsser:2010:PSN

REFERENCES

REFERENCES

Kim:2010:CAR

Alyfantis:2010:DQS

Tsai:2010:DCB

Feng:2010:TLF

Garroppo:2010:SMC

Zhang:2010:GBA

Belzarena:2010:EEQ

Serral-Gracia:2010:ELM

2010. CODEN ???? ISSN 1389-1286 (print), 1872-7069 (electronic).

Jakab:2010:CHC

Alouf:2010:FGA

Charilas:2010:SGT

Tao:2010:GFR

Donmez:2010:AAD

Akyildiz:2011:E

Batista:2011:RSG

Li:2011:CCS

REFERENCES

Gaito:2011:SHF

Marsan:2011:EEW

Psaras:2011:DCS

So-In:2011:VAU

Dirani:2011:SON

Biczok:2011:IGW

Gerla:2011:VNF

Wong:2011:IAW

Chen:2011:CLD

[287] Lijun Chen, Steven H. Low, and John C. Doyle. Cross-layer design

REFERENCES

Kosek-Szott:2011:SAT

Cheng:2011:IBR

Kwon:2011:DTD

Pavon-Marino:2011:MHN

Wang:2011:ESC

Christophorou:2011:ERR

Li:2011:SWB

Leu:2011:RSU

[320] Luigi Iannone, Damien Saucez, and Olivier Bonaventure. Implementing the Locator/ID Separation Protocol: Design and experience. *Computer Networks (Amsterdam, Netherlands:

[337] Igor Bilogrevic, Mohammad Hossein Manshaei, Maxim Raya, and Jean-Pierre Hubaux. OREN: Optimal revo-

Akar:2011:MAB

Hossfeld:2011:CBS

Walls:2011:LDR

Hariharan:2011:SND

Zhang:2011:LLA

Shpiner:2011:MIC

Talebi:2011:CAM

REFERENCES

Djamal-Eddine Meddour, Tinku Rasheed, and Yvon Gourhant. On the role of infrastructure sharing for mobile network operators in emerging mar-

Ishibashi:2011:QCV

Leroy:2011:SSW

Anonymous:2011:EBf

Benyamina:2011:DRW

Weng:2011:DPP

Govindarajan:2011:IDU

Caretti:2011:EDS

[386] Zhihua Wen and Michael Rabinovich. Dynamic landmark triangles: a simple and efficient mechanism for inter-host latency estimation. Computer
REFERENCES

Avrachenkov:2011:OTC

Al-Mistarihi:2011:TBD

Iliofotou:2011:GGB

Scharf:2011:CEE

Yan:2011:AAP

Viswanathan:2011:ECP

Yigitel:2011:QAM

Chan:2011:UUN

Anonymous:2011:EBg

Lee:2011:BNO

Alessandria:2011:IAN

Herreria-Alonso:2011:OPS

Thouin:2011:LSP

Iqbal:2011:DNC

[400] Hammad Iqbal and Taieb Znati. On the design of network control and management plane. *Computer Networks*

REFERENCES

[427] Jiming Chen, Chengqun Wang, Yuxian Sun, and Xuemin (Sherman) Shen. Semi-supervised Laplacian regularized least squares algorithm for

Deng:2011:FTI

Amoroso:2011:GRO

Jin:2011:FSS

ODonovan:2011:SAF

Min:2011:MAT

Zeng:2011:SRK

Shu:2011:NAM

Wang:2011:PFM

Xing:2011:TRM

Wu:2011:SWN

Murawski:2011:UDS

Ferragut:2011:RAM

Anonymous:2011:EBj

[441] Anonymous. Editorial Board. *Computer Networks (Amsterdam, Nether-

[448] Xiaochao Zi, Lihong Yao, Xinghao Jiang, Li Pan, and Jianhua
REFERENCES

Sahoo:2011:LMC

Ciccarese:2011:ACP

Darehshoorzadeh:2011:MCC

Jacobsson:2011:EIO

Nechaev:2011:CCI

Lv:2011:LSW

Korcak:2011:EIH

Wickboldt:2011:FRA

Banerjee:2011:SQM

Ge:2011:PET

Igartua:2011:GTM

Gotzhein:2011:BBS

Boukerche:2011:RPA

REFERENCES

[475] Sebastian Röglinger. A methodology for testing intersection related Vehicle-

Schweiger:2011:ECI

Stanica:2011:SVA

Schunemann:2011:VSR

Troncoso:2011:DAA

Anonymous:2011:EBm

Trujillo-Rasua:2011:EPC

Ruan:2011:WSD

Zhang:2011:AGK

Vazifehdan:2011:EAR

Wang:2011:FPB

Xue:2011:SSD

Esposito:2011:ISS

Li:2011:IUS
REFERENCES

REFERENCES

[502] Dingde Jiang, Zhengzheng Xu, Zhenhua Chen, Yang Han, and Hongwei Xu. Joint time-frequency sparse estimation of large-scale network traf-
Wang:2011:MTS

Aksu:2011:SLM

Migliorini:2011:PEH

Hsu:2011:ORR

Wang:2011:SCA

Anonymous:2011:EBn

Tugcu:2011:GE

REFERENCES

REFERENCES

REFERENCES

Chuang:2011:LMA

Anonymous:2011:EBo

Wang:2011:ESD

Elias:2011:NCS

Sou:2011:SPM

Galmes:2011:RDG

Kao:2011:PER

[529] Chien-Chi Kao, Shun-Ren Yang, and Tung-Lin Tsai. Performance enhancement of repacking and borrowing mechanisms for IEEE 802.16 multihop resource scheduling. *Computer Networks*
REFERENCES

Chan:2011:EDA

Lee:2011:SBC

Yu:2011:TSS

Page:2011:PEP

Londono:2011:TCC

Theodoridis:2011:CRM

Anonymous:2011:EBp

[536] Anonymous. Editorial Board. Computer Networks (Amsterdam, Netherlands: 1999), 55(17):??, December 1,
REFERENCES

Akyildiz:2012:E

Yoon:2012:ARS

Choi:2012:IBC

Zadeh:2012:DOD

Kupcu:2012:UOF

Mao:2012:MDP

Dong:2012:NMB
Aly:2012:NPC

Lucas-Estan:2012:ILP

Rizk:2012:NAE

Crisostomo:2012:PFS

Razavi:2012:PCT

Gamer:2012:CAB

Cordeschi:2012:TEW

REFERENCES

Toril:2012:EIP

Yun:2012:CLA

Li:2012:ISS

Kilavuz:2012:PAM

Chen:2012:ONF

Avramidis:2012:CPD

REFERENCES

[578] Gabriel Maciá-Fernández, Yong Wang, Rafael A. Rodríguez-Gómez, and Aleksandar Kuzmanovic. Extracting user Web browsing patterns from non-content network traces: The on-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

126

Vendramin:2012:GIB

Shelley:2012:GIS

Feldman:2012:SAP

Mitra:2012:IDN

Varvello:2012:UBR

Cha:2012:DIC

Fu:2012:ECN

REFERENCES

References

[626] Dmitri Moltchanov. A study of TCP performance in wireless environment using fixed-point approxi-
REFERENCES

Falowo:2012:DRS

Lin:2012:PID

Leith:2012:WCS

Wang:2012:GMF

Cho:2012:OHE

Li:2012:ESP

Zhang:2012:CPP

[640] Rahimi:2012:FOM

[Anonymous:2012:EBd]

[Chang:2012:IVF]

[Fitzpatrick:2012:VCC]

[Campolo:2012:MMP]

[Bezahaf:2012:EEC]

[Vieira:2012:SLH]

REFERENCES

136

REFERENCES

136

[Furthmuller:2012:EAR]

[Ammari:2012:PCM]

[Liu:2012:DPI]

[Tamma:2012:TSC]

[Murai:2012:HDT]

[Tran:2012:CSA]

[Ion:2012:DIC]
Michiardi:2012:PAC

Wang:2012:SAN

How:2012:ADS

Akon:2012:BEH

Anonymous:2012:EBg

Reinhard:2012:OCO

Hassen:2012:EKM

[681] Hani Ragab Hassen, Hatem Bettahar, Abdalmadjid Bouabdallah, and Yacine Challal. An efficient key management scheme for content access control for linear hierarchies. Computer
Cao:2012:SRH

Liao:2012:DDP

Joung:2012:BNA

Chin:2012:NAC

Makela:2012:CLB

Bilgin:2012:PEZ

Lee:2012:IAB

Ekbatanifard:2012:QMQ

Anonymous:2012:EBh

Matray:2012:SPI

Fragni:2012:EAE

Lezama:2012:DEO

Pham:2012:DSN

Hu:2012:EHB

REFERENCES

REFERENCES

REFERENCES

[722] Behnam Bahrak, Amol Deshpande, and Jung-Min ‘Jerry’ Park. Spectrum access policy reasoning for policy-based
cognitive radios. Computer Networks
(Amsterdam, Netherlands: 1999), 56
(11):2649–2663, July 31, 2012. CO-
DEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S138912861200148X.

Dong:2012:BDD

[723] Wei Dong, Chun Chen, Xue Liu,
Guodong Teng, Jiajun Bu, and Yun-
hao Liu. Bulk data dissemination
in wireless sensor networks: Model-
ing and analysis. Computer Networks
(Amsterdam, Netherlands: 1999), 56
(11):2664–2676, July 31, 2012. CO-
DEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128612001478.

Tomita:2012:DUT

[724] Nobuyoshi Tomita and Shahrokh
Valaee. Data uploading time esti-
mation for CUBIC TCP in long dis-
tance networks. Computer Networks
(Amsterdam, Netherlands: 1999), 56
(11):2677–2689, July 31, 2012. CO-
DEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128612001478.

Tang:2012:NDS

[725] Meiqin Tang, Chengnian Long, Xin-
ing Guan, and Xinjiang Wei. Non-
convex dynamic spectrum allocation
for cognitive radio networks via par-
ticle swarm optimization and simu-
lated annealing. Computer Networks
(Amsterdam, Netherlands: 1999), 56
(11):2690–2699, July 31, 2012. CO-
DEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128612001521.

Pacheco:2012:IEA

[726] Dino Martin Lopez Pacheco, Tuan Tran
Thai, Emmanuel Lochin, and Fab-
rice Arnal. An IP-ERN architecture
to enable hybrid E2E/ERN proto-
col and application to satellite net-
working. Computer Networks
(Amsterdam, Netherlands: 1999), 56(11):
2700–2713, July 31, 2012. CO-
DEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S138912861200151X.

Fernandez-Lopez:2012:TDE

[727] Helena Fernández-López, José A.
Afonso, J. H. Correia, and Ricardo
Simoes. Towards the design of effi-
cient nonbeacon-enabled ZigBee net-
works. Computer Networks
(Amsterdam, Netherlands: 1999), 56(11):
2714–2725, July 31, 2012. CO-
DEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128612001533.

Schaffer:2012:SRC

[728] Péter Schaffer, Károly Farkas, Ádám
Horváth, Tamás Holczer, and Levente
Buttyán. Secure and reliable clus-
tering in wireless sensor networks: a
critical survey. Computer Networks
(Amsterdam, Netherlands: 1999), 56
(11):2726–2741, July 31, 2012. CO-
DEN ????. ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S138912861200120X.

Castro:2012:DRS

Ortega:2012:PTD

Camps-Mur:2012:LFA

Montagud:2012:EAR

Yoo:2012:BSI

Holzer:2012:AAL

Chieochan:2012:NCU

Vilalta:2012:GEM

Molnar:2012:COS

Lucerna:2012:TAA

Anonymous:2012:EBm

Gaddour:2012:RNS

Zhang:2012:AER

Lee:2012:IMT

REFERENCES

Ahmadi:2012:EAO

Bianzino:2012:GGD

Mondal:2012:PCN

Hu:2012:SMT

Huang:2012:JSH

Figueiredo:2012:OAB

Fei:2012:RFR

REFERENCES

REFERENCES

[790] Luigi Atzori, Antonio Iera, Giacomo Morabito, and Michele Nitti. The Social Internet of Things (SIoT) —

Hsieh:2012:DOM

Palma:2012:LQE

Kao:2012:SMI

Anonymous:2012:EBp

Coen-Porisini:2012:IDQ

Capone:2012:OFE

[819] Christos Papathanasiou, Nikos Dimitriou, and Leandros Tassiulas. Dy-

Long:2013:PMS

Sardouk:2013:CMU

Shan:2013:PSP

Nam:2013:EAB

Angrishi:2013:EES

Jang:2013:ASM

REFERENCES

Gregori:2013:DCI

Mtibaa:2013:FRC

Yao:2013:VFI

Serrano:2013:CTO

Vieira:2013:LHR

Mbarushimana:2013:CLT

Amador:2013:MCV

REFERENCES

Mahmoodi:2013:UTA

Unal:2013:FRB

Cui:2013:CSM

Canberk:2013:AQB

Anonymous:2013:EBa

Salles:2013:ECN

Silva:2013:BS

Khosroshahy:2013:SBL

Huang:2013:EBH

Las-Casas:2013:SDS

Yan:2013:PWH

Boshmaf:2013:DAS

Hua:2013:BCC

Anonymous:2013:EBb

delaOliva:2013:PAE

Tan:2013:JOC

REFERENCES

[868] Vincent Lucas, Jean-Jacques Pansiot, Dominique Grad, and Benoît Hilt. Robust and fair Multicast Congestion Control (M2C). *Computer Networks

[875] Reduan H. Khan and Jamil Y. Khan. A comprehensive review of the appli-

[Anonymous:2013:EBc]

[Liou:2013:MMC]

[Wang:2013:ODE]

[882] Kaikai Chi, Xiaohong Jiang, Yi hua Zhu, Jing Wang, and Yanjun Li. Block-level packet recovery with network coding for wireless reliable mul-
REFERENCES

Diallo:2013:CBP

Chen:2013:HPR

Camacho:2013:BXB

Secci:2013:EID

Miao:2013:MVN

El-Azouzi:2013:EFG
Borges Vieira: 2013: SSE

Luo: 2013: TCB

Kwon: 2013: CIE

Anonymous: 2013: EBd

Shan: 2013: NLM

Bauer: 2013: SCR

Donmez: 2013: CAC

REFERENCES

REFERENCES

Anonymous:2013:EBe

Csernai:2013:IUD

Anagnostopoulos:2013:MCC

Ke:2013:PEM

Hunkeler:2013:CCC

Borraz-Sanchez:2013:OPR

Ahmed:2013:ERT

Fan:2013:NCS

Benfattoum:2013:QRT

Amaldi:2013:EAI

Mahapatra:2013:GFF

Wang:2013:OOA

Chiappetta:2013:ABA

Kawahara:2013:MVR

[923] Ryoichi Kawahara, Tetsuya Takine, Tatsuya Mori, Noriaki Kamiyama, and Keisuke Ishibashi. Mean-variance relationship of the number of flows in traffic

Anonymous:2013:EBf

Newaz:2013:ADA

Facchini:2013:DGS

Chu:2013:RTV

Jung:2013:OSF

Lee:2013:ODD

Lagkas:2013:AIF

REFERENCES

REFERENCES

Gyarmati:2013:FSY

Lin:2013:EHE

Bacci:2013:QAG

Yang:2013:MEM

Rondinone:2013:CBF

Carofiglio:2013:RLE

Czirkos:2013:SBK

Iellamo:2013:PDI

Pires:2013:ILN

Anonymous:2013:EBh

Fang:2013:PCL

Ammari:2013:EDT

Ficek:2013:ATM

Militano:2013:FCC

REFERENCES

Aceto:2013:CMS

Anonymous:2013:EBi

Eidenbenz:2013:ECN

Kuhlman:2013:COP

Nguyen:2013:AMC

Wang:2013:ACI

Almasizadeh:2013:SMA

Caskurlu:2013:AMR

Bugra Caskurlu, Ashish Gehani, Cemal Cagatay Bilgin, and K. Subra-

Ben-Porat:2013:ECB

Julisch:2013:UOC

Anonymous:2013:SIS

Leva:2013:ABN

Torroglosa-Garcia:2013:IOW

Xiang:2013:SWY

Roman:2013:FCS

[973] Rodrigo Roman, Jianying Zhou, and Javier Lopez. On the features and challenges of security and privacy in distributed Internet of Things. *Computer
<table>
<thead>
<tr>
<th>Reference Code</th>
<th>Reference Details</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

REFERENCES

Fernandes:2013:SAH

Anonymous:2013:EBI

Bellalta:2013:PAC

Zhang:2013:CAM

Chien:2013:CRC

Camacho:2013:GDF

REFERENCES

Malandrino:2013:PLW

Hua:2013:ESA

Anonymous:2013:EBm

Xu:2013:GDC

Meng:2013:ADT

Chen:2013:MSM

REFERENCES

[1027] Stefania Tosi, Sara Casolari, and Michele Colajanni. Data clus-

Zhou:2013:OAC

Chiaraviglio:2013:MSM

Habak:2013:ODB

Kamiyama:2013:OPA

Sicari:2013:DED

Anonymous:2013:EBn

Detti:2013:ESI

REFERENCES

Carofiglio:2013:CDT

Zhang:2013:CIC

Lee:2013:UAN

Eum:2013:PBR

Wang:2013:GAN

Conti:2013:LMD

Wahlisch:2013:BDP

REFERENCES

7. Nuutti Varis, Jukka Manner, Mikko Särelä, and Timo Kiravuo. DBridges: Flexible floodless frame forward-

Hou:2013:FBB

Bolea:2013:MAC

Iacovazzi:2013:ESM

Carofiglio:2013:PBS

Anadiotis:2013:FIG

Lin:2013:MPA

Akkari:2013:IBI

REFERENCES

Wu:2013:HMW

Accongiagioco:2013:TOR

Gokturk:2013:CLM

Mehmood:2013:OOR

Geravand:2013:BFA

Akyildiz:2014:E

Cho:2014:LLF

[107] Kuzman Katkalov, Nina Moebius, Kurt Stenzel, Marian Borek, and Wolfgang Reif. Modeling test cases for security protocols with SecureMDD. *Computer Networks (Amsterdam, Netherlands: 1999)*, 58(??):
REFERENCES

[114] Micah Sherr, Harjot Gill, Taher Aquil Saeed, Andrew Mao, William R. Marcuzak, Saravana Soundararajan, Wen-chao Zhou, Boon Thau Loo, and Matt...

Lai:2014:EEC

Shawky:2014:NAD

Younis:2014:TMT

Dabirmoghaddam:2014:ORC

Asghari:2014:EES

REFERENCES

[1134] Giorgos Papastergiou, Ioannis Alexiadis, Scott Burleigh, and Vassilis Tsaoussidis. Delay Tolerant Payload Conditioning proto-

[1141] Boris Bellalta, Azadeh Faridi, Jaume Barcelo, Vanesa Daza, and Miquel

Chí:2014:PTA

Testa:2014:DBC

Razo-Zapata:2014:SHT

Gotta:2014:TIS

Temel:2014:RPD

Anelli:2014:FPA

REFERENCES

Medhi:2014:GTN

Schwerdel:2014:FIR

Mambretti:2014:CEI

Kvalbein:2014:NEP

Gran:2014:COM

Sune:2014:DIO

REFERENCES

Dezfouli:2014:IBR

Giotis:2014:COS

Di:2014:DRV

Bianco:2014:MMF

Amin:2014:SDP

Tian:2014:DSI

Keranidis:2014:EEE

Mehani:2014:IFC

Matias:2014:EOO

Tosic:2014:RSI

Yannuzzi:2014:TSA

Zbigniew Duliński, Kamil Palkowski, and Piotr Cholda. A university testbed for large-scale interconnec-

Abid:2014:POM

García:2014:MGH

Kang:2014:AFC

Astorga:2014:ESA

Coiro:2014:RPC

Tan:2014:SPA

Moshtaghi:2014:AEA

[1210] Masud Moshtaghi, Christopher Leckie, Shanika Karunasekera, and Suthar-

Wang:2014:ACC

Guerraoui:2014:TFG

Lin:2014:DAF

Gitzenis:2014:EWN

Fu:2014:CDP

Yigit:2014:IBM

Sousa:2014:MTN

REFERENCES

REFERENCES

[1244] Marco Ajmone Marsan and Michela Meo. Queueing systems to study the energy consumption of a campus WLAN. *Computer Networks* (Amsterdam, Netherlands: 1999), 66(??):82–93, June 19, 2014. CODEN ????. ISSN 1389-1286 (print),

REFERENCES

REFERENCES

REFERENCES

Jin:2014:NAPa

Buh:2014:ANT

Dvorak:2014:EEN

Bober:2014:BLD

Park:2014:QGM

Battat:2014:MMA

Traverso:2014:PCH
REFERENCES

[1306] Sharon Goldberg, Michael Schapira, Pete Hummon, and Jennifer Rexford.

Asheralieva:2014:JPB

Zhang:2014:LOS

Anonymous:2014:EBd

Amadeo:2014:CCW

Jeong:2014:HCB

Zhang:2014:NML

Kang:2014:TBP

Jammal:2014:SDN

Savi:2014:CEM

Lu:2014:PLS

Kim:2014:LBB

Stea:2014:CSA

REFERENCES

237

REFERENCES

Kuperman:2014:NPM

Lv:2014:PPA

Shi:2014:DRA

Ren:2014:OLV

Awad:2014:IAE

Ahmad:2014:RCQ

Ansari:2014:COC

[1361] Junaid Ansari, Elena Meshkova, Wasif Masood, Arham Muslim, Janne Riihijärvi, and Petri Mäihönen. CONFab: Ontology and component based

Anonymous:2014:EBf

Wu:2014:SIM

Matos:2014:CAC

Maguralage:2014:EEN

Vingelmann:2014:AAD

Wang:2014:ECM

REFERENCES

REFERENCES

REFERENCES

Correia:2015:DRM

Gyo:2015:SHM

Acedo-Hernandez:2015:AIP

Fafoutis:2015:RIM

Bujlow:2015:ICP

Xenakis:2015:AMM

Munoz:2015:LBH

Mangili:2015:CAM

Sicari:2015:SPT

Chang:2015:ASM

Wu:2015:CLO

Wang:2015:TAC

Akbas:2015:PAM

REFERENCES

Gharakheili:2015:CEH

Neumayer:2015:GMF

Tashtarian:2015:OOD

Vo:2015:CGA

Kretsis:2015:MCB

Shanbhag:2015:VSS

Lee:2015:FMA

[1447] Myungjin Lee, Mohammad Hajjat, Ramana Rao Kompella, and Sanjay G. Rao. A flow measurement architecture to preserve application...
REFERENCES

[1454] Xiaoli Huan, Bang Wang, Yijun Mo, and Laurence T. Yang. Rechargeable router placement based on efficiency and fairness in green wireless

Lambert:2015:EEA

Ngoc:2015:NPP

Peng:2015:OPM

Polverini:2015:FFF

Rengarajan:2015:EOB

Serrano:2015:SIG

Ilaria Malanchini, Steven Weber, and Matteo Cesana. Stochastic characteri-
Farhady:2015:SDN

Bouten:2015:QDN

Park:2015:LSM

Aldabbagh:2015:QAT

Lutu:2015:AEI

Huang:2015:MDR

Kardes:2015:GBI

Socievole:2015:MSM

Anagnostopoulos:2015:TOU

Yang:2015:DBC

Sarma:2015:OPA

Detti:2015:MPP

Yin:2015:RCM

Wang:2015:DAP

Hossfeld:2015:IQO

Anonymous:2015:EBf

Tavernier:2015:E

Alashaikh:2015:SCI

Sundarrajan:2015:FRS

Gardner:2015:GMT

[1528] Sahel Sahhaf, Wouter Tavernier, Didier Colle, Mario Pickavet, and Piet Demeester. Experimental validation
REFERENCES

Anonymous:2015:EBg

Lee:2015:CDI

Vallati:2015:EDW

Luo:2015:AMP

Dudnikova:2015:MBC

Xu:2015:OCM

Temel:2015:LLO

Sheng Zhang, Jie Wu, Zhuzhong Qian, and Sanglu Lu. MobiCache: Cellular traffic offloading leveraging cooperative caching in mobile social net-

[Wang:2015:BEO]

[Lakshmi:2015:PPP]

[Bianco:2015:STF]

[Longo:2015:DMS]

[1549] Xingkong Ma, Yijie Wang, Xiaoqiang Pei, and Fangliang Xu. Scalable and

Ding:2015:DRA

Deek:2015:PFM

Chen:2015:DTN

Aceto:2015:ICD

Talooki:2015:SCC

REFERENCES

Anonymous:2015:EBh

Jiang:2015:EDS

Hassan:2015:CST

Saha:2015:ECA

Pietro:2015:EES

Ran:2015:CNP

Hoteit:2015:MDT

[1562] Sahar Hoteit, Stefano Secchi, Guy Pujolle, Adam Wolisz, Cezary Ziembicki, and Zbigniew Smoreda. Mobile data traffic offloading over Passpoint hotspots. Computer Networks
Anonymous:2015:EBi

Akyildiz:2015:SSD

Yoon:2015:ESF

Otoshi:2015:TPD

He:2015:SRF

Ali:2015:SFL

Anonymous:2015:EBj
Marynowski:2015:MTF

Gunes:2015:BPF

Wu:2015:GTG

Garcia-Villegas:2015:NCJ

Yao:2015:DWS

Anonymous:2015:EBk

Liao:2015:CGA

Cerroni:2015:CLR

Fu:2015:SCP

Sanchez-Casado:2015:MDF

Borrego:2015:MCB

Yao:2015:CAB

Anonymous:2015:EBl

Zhang:2015:CTR
REFERENCES

Facchi:2015:ELR

Makki:2015:SWP

Ahmed:2015:SEH

Dalvandi:2015:PER

Coutinho:2015:DDR

Anonymous:2015:EBm

Kim:2015:AHS

[1603] Ji-Su Kim, Jin-Ki Kim, and Jae-Hyun Kim. Advanced handover scheme considering downlink and uplink service traffic in asymmetric channel. Com-
REFERENCES

Kos:2015:USS

Rossi:2015:IBS

Fu:2015:MRA

Oliveira:2015:ORE

Rojas-Cessa:2015:HIL

Hiland-Jrgensen:2015:GBW

Accettura:2015:CRA
[1610] Nicola Accettura, Giovanni Neglia, and Luigi Alfredo Grieco. The Capture–Recapture approach for population estimation in computer networks. *Computer Networks (Amsterdam, Nether-
Hossfeld:2015:SIC

Demartini:2015:HHM

Scekic:2015:PDS

Goncalves:2015:MPI

Mousa:2015:TMR

Sasao:2015:CWA

REFERENCES

Kim:2015:ARD

Sahraoui:2015:EHB

Juvonen:2015:OAD

Khloussy:2015:IMB

Trotta:2015:CRP

Fan:2015:OSA

Chen:2015:UVE

[1630] Yanjiao Chen, Qihong Chen, Fan Zhang, Qian Zhang, Kaishun Wu, Ruochen Huang, and Liang Zhou.

Zhang:2015:CRG

Yin:2015:AGC

Liu:2015:TSA

Wu:2015:TSD

Coras:2015:SLM

Saleem:2015:SSA

279

[1643] Jenq-Shiou Leu, Min-Chieh Yu, and Hung-Jie Tzeng. Improving indoor po-

Giacobbe:2015:TEM

Vakilinia:2015:MRA

Pham:2015:MTC

Tian:2015:OBA

Xia:2015:DDU

Ilkhechi:2015:NAV

Wang:2015:SDC

Bin Wang, Zhengwei Qi, Ruhui Ma, Haibing Guan, and Athanasios V.
References

Mangili:2015:ODI

Kumar:2015:TLL

Panayiotou:2015:IAM

Ahmadi:2015:NLH

Fadini:2015:SSP

Xie:2015:SIF

Rizzi:2015:LCR

Moety:2015:OMJ

Habak:2015:BAT

daSilva:2015:RSS

Anonymous:2015:EBp

Leon-Garcia:2015:SDN

Contreras:2015:OOB

Rizvi:2015:TCG

Kim:2015:ICM

Hegde:2015:SFF

Owens:2015:VSD

Uzakgider:2015:LBA

Caraguay:2015:FOM

Cerrato:2015:TDV

Cheng:2015:ENF

REFERENCES

Wang:2015:DFC

Anonymous:2015:EBq

Baccarelli:2015:MEB

Gonzalez-Horta:2015:MMS

Madani:2015:MBM

Casoni:2015:QQR

Akyildiz:2015:WSD

[1709] Ian F. Akyildiz, Shih-Chun Lin, and Pu Wang. Wireless software-defined...

Ren:2015:DAC

Savi:2015:PEV

Lakhlef:2015:FRS

Mansour:2015:CSS

[1728] Pere Millan, Carlos Molina, Esunly Medina, Davide Vega, Roc Meseguer,

Abujoda:2015:SDW

Selimi:2015:CSG

Baldesi:2015:IPS

Anonymous:2015:EBr

Anonymous:2015:EBs

Boutaba:2015:CNC

Persico:2015:MNT

Valerio Persico, Pietro Marchetta, Alessio Botta, and Antonio Pescapè. Measuring network throughput in the
REFERENCES

REFERENCES

Bellavista:2015:VNF

Lin:2015:SPC

Marotta:2015:MMC

Anonymous:2015:EBt

Anonymous:2016:TYR

Akyildiz:2016:CE

Castro:2016:JCR

[1761] Riccardo Pecori. S-Kademlia: a trust and reputation method to mitigate a Sybil attack in Kademe-
REFERENCES

Jie Zhang, Dafang Zhang, Kun Huang, and Zheng Qin. Mini-

[1781] Weverton Luis da Costa Cordeiro, Flávio Roberto Santos, Marinho Pilla Barcelos, Luciano Paschoal Gaspery, Hanna Kavalionak, Alessio Guerrieri,
REFERENCES

REFERENCES

Yi:2016:PAP

Wang:2016:JRS

Gokturk:2016:PCL

Akbas:2016:MGI

Avonts:2016:FCT

Amjad:2016:CHS

Anonymous:2016:EBe

Kim:2016:ASV

Xenakis:2016:HDS

Haque:2016:ACV

Eguizabal:2016:JDR

Malanchini:2016:WRS

Gunduz:2016:PBS

Sharon:2016:CIT

Melo:2016:OPD

Kok:2016:SFR

Gomes:2016:BAA

Zhang:2016:ITA

Kok:2016:SFR

Xia:2016:CLD

Han:2016:GBJ

[1836] Guangjie Han, Aihua Qian, Jinfang Jiang, Ning Sun, and Li Liu. A grid-based joint routing and charging algorithm for industrial wireless rechargeable sensor networks. Computer

REFERENCES

Lin:2016:HLB

Qiu:2016:GMS

Kong:2016:IIC

Wang:2016:TSF

Kanaris:2016:SSD

Tsai:2016:EWD

Hossain:2016:CAI
[1849] M. Shamim Hossain and Ghulam Muhammad. Cloud-assisted Industrial Internet of Things (IIoT) —

Jedda:2016:DRC

Li:2016:SRA

Zhao:2016:DIS

Liu:2016:RPC

Wang:2016:IMP

Xiong:2016:PEO

Anonymous:2016:EBi

References

Militano:2016:ENS

LeCadre:2016:DUS

Li:2016:TBC

Lee:2016:ERA

Ma:2016:PRF

Sourlas:2016:EHR

Rhaiem:2016:NCB

REFERENCES

Byun:2016:TST

Wang:2016:EEP

Hoteit:2016:FNC

Erdem:2016:PHA

Millan:2016:RLB

Constantinou:2016:HAE

Socievole:2016:ANR

[1877] A. Socievole, F. De Rango, C. Scoglio, and P. Van Mieghem. Assessing network robustness under SIS epidemics: the relationship between epi-

REFERENCES

[1891] Shipra Kumari and Hari Om. Authentication protocol for wireless sensor networks applications like safety
REFERENCES

Yi:2016:HDA

Wei:2016:DCT

Zhang:2016:EBC

Yousaf:2016:OTM

Anonymous:2016:EBk

Yedugundla:2016:MPT

REFERENCES

318

Frangoudis:2016:RBM

Hu:2016:PLC

Anonymous:2016:EB1

Aguilar-Garcia:2016:CLB

Akyildiz:2016:RKE

Rebecchi:2016:CPC

Goussevskaia:2016:WSM

Olga Goussevskaia, Luiz F. M. Vieira, and Marcos A. M. Vieira. Wireless scheduling with multiple data rates: From physical interference to disk

Nguyen:2016:CEE

Mangili:2016:OPV

Wang:2016:PTE

Tso:2016:NSR

Hwang:2016:JFA

Tsolkas:2016:DDL

REFERENCES

Zhou:2016:PAP

Kora:2016:ARC

Dudin:2016:AOG

Silva:2016:ISD

Zola:2016:MIH

Senouci:2016:TBD

Li:2016:ADW

Sicari:2016:SPE

Tham:2016:STI

Glabowski:2016:MOS

Truong-Huu:2016:DEW

Kalkan:2016:DFM

REFERENCES

Benet:2016:PET

Cem:2016:ESP

Chen:2016:CNC

Plachy:2016:PSE

Khalifah:2016:HFM

Anonymous:2016:EBp

Hancke:2016:SIR

REFERENCES

Huth:2016:IRS

Zenger:2016:AKE

Anonymous:2016:EBq

Meo:2016:TPB

Marchetti:2016:AHV

Bocchi:2016:MNB

Somani:2016:DAC

DDoS attacks in cloud computing: Col-
lar damage to non-targets. *Computer Networks (Amsterdam, Nether-
lands: 1999)*, 109 (part 2)(??):157–
171, November 9, 2016. CODEN
???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128616300901.

[2006] Taejin Ha, Sunghwan Kim, Namwon
An, Jargalsaikhan Narantuya, Chi-
wook Jeong, JongWon Kim, and Hyuk
Lim. Suspicious traffic sampling for
intrusion detection in software-defined
networks. *Computer Networks (Ams-
terdam, Netherlands: 1999)*, 109 (part
2)(??):172–182, November 9, 2016. CO-
DEN ???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128616301645.

[2007] Glauber D. Gonçalves, Idilio Drago,
Alex B. Vieira, Ana Paula Couto
da Silva, Jussara M. Almeida, and
Marco Mellia. Workload models and
performance evaluation of cloud stor-
age services. *Computer Networks (Am-
sterdam, Netherlands: 1999)*, 109 (part
2)(??):183–199, November 9, 2016. CO-
DEN ???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128616300950.

[2008] Hadrien Hours, Ernst Biersack, Patrick
Loiseau, Alessandro Finamore, and
Marco Mellia. A study of the im-
pace using a causal approach. *Computer Networks (Amsterdam, Nether-
lands: 1999)*, 109 (part 2)(??):200–
210, November 9, 2016. CODEN
???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128616302006.

[2009] Florian Wamser, Pedro Casas, Michael
Seufert, Christian Moldovan, Phuoc
Tran-Gia, and Tobias Hossfeld. Model-
ing the YouTube stack: From pack-
ets to quality of experience. *Com-
puter Networks (Amsterdam, Nether-
lands: 1999)*, 109 (part 2)(??):211–
224, November 9, 2016. CODEN
???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128616300925.

[2010] T. Bonald and C. Comte. The multi-
source model for dimensioning data
networks. *Computer Networks (Ams-
terdam, Netherlands: 1999)*, 109 (part
2)(??):225–233, November 9, 2016. CO-
DEN ???? ISSN 1389-1286 (print),
1872-7069 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S1389128616300913.

[2011] Jan Willem Kleinrouweler, Sergio
Cabrero, Rob van der Mei, and
Pablo Cesar. A model for evaluating
sharing policies for network-assisted
HTTP adaptive streaming. *Com-
puter Networks (Amsterdam, Nether-
lands: 1999)*, 109 (part 2)(??):234–
245, November 9, 2016. CODEN
REFERENCES

[2038] Kun Xie, Jiannong Cao, Xin Wang, and Jigang Wen. Pre-scheduled hand-
References

Miao:2016:PPR

Ramil:2016:SAC

Ramiro:2016:CAT

Chen:2016:EMA

Hernandez-Orallo:2016:AEP

Holzer:2016:PES

REFERENCES

Pan:2017:LDG

Salman:2017:PFR

Abdelsalam:2017:TWN

Ndashimye:2017:VIC

Yao:2017:PFF

Oliveira:2017:MDT

Wang:2017:ALE

Chang:2017:MCC

Ghazisaeedi:2017:GGM

Liu:2017:CSS

Anonymous:2017:EBa

Zuo:2017:FTB

Tuysuz:2017:EAN

[2084] Mehmet Fatih Tuysuz and Murat Ucan. Energy-aware network/

Erickson:2017:STI

Yoro:2017:SOS

Deltouzos:2017:TEB

Yan:2017:ONC

Itani:2017:DSN

Panos:2017:AQD

[2097] Joshua Stein, Han Hee Song, Mario Baldi, and Jun Li. On the most representative summaries of network user activities. Computer Networks (Amsterdam, Netherlands: 1999), 113(??):
REFERENCES

[2104] Xuetao Wei, Nicholas C. Valler, Harsha V. Madhyastha, Iulian Neamtiu, and Michalis Faloutsos. Characterizing the behavior of handheld devices and

Sinha:2017:DLM

Chang:2017:ACC

DOro:2017:ABR

Wang:2017:EAR

Park:2017:MMO

Schilcher:2017:QIS

Tsai:2017:NDA

Tsung-Yu Tsai, Yi-Hsueh Tsai, Zsehong Tsai, and Shiam-Tsong Shen. A Novel Description approach based on sorted rectangles for scheduling information bearing in OFDMA systems. Computer Networks (Amsterdam, Netherlands: 1999), 115 (??):82–99, March 14, 2017. CO-

Ciavarrini:2017:SBG

DiPietro:2017:EBC

Mohan:2017:FTT

Sun:2017:COV

Anjum:2017:SPA

Behal:2017:DDA

Koubaa:2017:QAE

Mohamed Koubaa, Maroua Bakri, Ammar Bouallègue, and Maurice Gagnaire. QoT-aware elastic bandwidth allocation and spare capacity assignment

Anonymous:2017:EBe

Malekian:2017:CPS

Kuo:2017:QIA

Han:2017:NDD

Zhang:2017:PAD

Tang:2017:OAE

Rodriguez-Lozano:2017:CAP

Abuarqoub:2017:DCM

Li:2017:RVT

Anonymous:2017:EBf

Fontinele:2017:EIR

Yadav:2017:EDE

Das:2017:PAC

Divakaran:2017:RRE

[2152] Dinil Mon Divakaran, Li Ling Ko, Su, and Vrizlynn L. L. Thing. REX:

Sun:2017:RRF

Tang:2017:ZKG

Yang:2017:EAP

Marques:2017:MRT

Anonymous:2017:EBg

Shi:2017:ERF

Domingues:2017:EOS

[2159] Guilherme Domingues, Edmundo de Souza e Silva, Rosa M. M. Leão, Daniel S. Menasché, and Don Towsley. Enabling opportunistic

REFERENCES

REFERENCES

Gazda:2017:DSL

Rifai:2017:MSW

Anonymous:2017:EBj

Leng:2017:FMR

Lutz:2017:VWT

Werner:2017:CIM

Xu:2017:PFS

Li Chunlin, Yan Xin, Zhang Yang, and Luo Youlong. Multiple con-

Pinheiro:2017:EAD

Salehi:2017:NPS

Liu:2017:RPA

Yoon:2017:ADC

Yi:2017:RSC

Meng:2017:MUB

Anonymous:2017:EBk

Roy:2017:OSU

Qamar:2017:CRC

Wu:2017:SIB

Borrego:2017:EWC

Karar:2017:OSA

Xu:2017:PLS

REFERENCES

Lv:2017:RIR

Meneguette:2017:SES

Donatiello:2017:MPE

Mohanty:2017:DCM

Barrachina-Munoz:2017:MHC

Bonafiglia:2017:EDH

Saginbekov:2017:MMD

[2227] Sain Saginbekov and Arshad Jhumka. Many-to-many data aggregation scheduling in wireless sensor networks with

...

Lei Xu, Ke Xu, Yong Jiang, Fengyuan Ren, and Haiyang Wang. Through-

Yang:2017:ERA

Erdelj:2017:WSN

Manesh:2017:RTS

Boukerche:2017:MTP

Baroutis:2017:LCM

Bonald:2017:FTA

Mansilha:2017:EPH

Tortelli:2017:HMP

Josilo:2017:DAC

Hasslinger:2017:PEN

Anonymous:2017:EBn

Coutinho:2017:PMA

Shamma:2017:ETE

Wang:2017:NCB

Hajisami:2017:DJP

Ekmen:2017:REE

Ye:2017:MSC

dAmbrosio:2017:PPG
[2267] Salvatore d’Ambrosio, Salvatore de Pasquale, Gerardo Iannone, Delfina Malandrino, Alberto Negro, Giovanni Patimo, Vittorio Scarano, Raffaele Spinelli, and Rocco Zaccagnino. Privacy as a proxy for Green Web browsing: Methodology and experimentation. *Computer Networks (Am-

REFERENCES

REFERENCES

Anonymous:2017:EBo

Chenait:2017:EEC

Mukherjee:2017:EEA

Kuo:2017:CBM

Guo:2017:SSP

Hu:2017:TSA

Gomez:2017:ENT

375
REFERENCES

REFERENCES

Anonymous:2017:EBp

Kamal:2017:SSE

Asghar:2017:TPC

Rejeb:2017:CSF

Xie:2017:SAT

Al-Awami:2017:RDD

Das:2017:NCC

He:2017:AHA

Zhao:2017:RAS

Bhavathankar:2017:ODR

Anonymous:2017:EBq

Sharafeddine:2017:ODC

Peng:2017:MMD

[2340] Jianwei Niu, Shihao Wang, Wei Niu, and Mohammed Atiquzzaman. User-aware partitioning algorithm for mobile cloud computing based on maximum graph cuts. Computer Networks (Am-

Lloret:2017:APS

Marin:2017:CAC

You:2017:STB

Fortuna:2017:SIC

Han:2017:FRS

Li:2017:RMF

Liu:2017:IMC
[2360] Yang Liu, Changqiao Xu, Yufeng Zhan, Zhixin Liu, Jianfeng Guan, and Hongke Zhang. Incentive mechanism for computation offloading using edge computing: a Stackelberg game ap-
References

[2366] Tie Qiu, Xize Liu, Min Han, Mingchun Li, and Yushuang Zhang. SRTS: a Self-Recoverable Time Synchroniza
REFERENCES

Zhou:2017:EEG

Wang:2017:MEC

Zhao:2017:HIE

Lin:2017:MEP

DeBenedetto:2017:PDD
REFERENCES

Borah:2017:GTC

Anonymous:2017:EBs

Gunathillake:2018:TMA

Anonymous:2018:EBa

Hafsaoui:2018:FGR

Abdel-Halim:2018:PBP

Bilal:2018:PTP

Roy:2018:QSD

Seetharam:2018:GFH

Ayatollahi:2018:PPN