A Complete Bibliography of Publications in Computer Networks (Amsterdam, Netherlands: 2020–2029)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

18 September 2023
Version 1.26

Title word cross-reference

* [771]. *-flow [771].

-learning [1793]. -learning-enabled [1780]. -SHARP [597].

/1/M [340]. /Hyper [340].

channel-aware [1748]. channeled [1420]. channels [279, 401, 612, 644, 720, 869, 1352, 1761].

charger [100]. Charging [888, 1103, 1211].

chemical [730].

China [85].

chip [934].

choices [113]. Choose [301, 700]. CI GRU [1788]. Cipher [292]. circles [558].

circuit [771].

circular [1369].

circulation [927].

class [70, 625, 1179]. classes [918, 1116].

Classification [36, 120, 159, 192, 264, 345, 346, 375, 447, 537, 591, 716, 727, 839, 846, 877, 919, 962, 1116, 1142, 1273, 1286, 1374, 1377, 1413, 1439, 1489, 1507, 1547, 1549, 1602, 1781, 1788].

classifier [176, 969, 1142, 1207, 1299]. classify [163].

Classifying [1334]. clean [1380].

clean-slate [1380]. client [12, 327, 1073, 1124]. client-based [12].

client-server [327]. clients [581, 1751].

closed [1455].

Cloud [17, 61, 96, 118, 144, 175, 198, 207, 210, 233, 234, 237, 266, 281, 283, 300, 320, 335, 344, 360, 368, 374, 428, 448, 449, 490, 512, 517, 557, 704–

706, 730, 783, 798, 816, 870, 885, 887, 891, 892, 952, 984, 1007, 1120, 1128, 1157, 1169, 1207, 1245, 1304, 1308, 1335, 1367, 1430, 1475, 1492, 1503, 1519, 1528, 1531, 1592, 1594, 1666, 1670, 1729, 1732, 1752, 1757, 1777]. cloud-assisted [1492].

Cloud-Based [517, 1335].

cloud-edge [1128, 1475, 1594, 1732, 1757].

cloud-edge-end [1752].

Cloud-RANs [144]. cloud-to-things [783].

cloud-to-user [428]. Cloudlets [1039].

CloudPilot [1519].

Cluster [337, 936, 1214, 1536, 1708].

Clustered [11, 105, 465, 490, 523, 739, 959, 1409, 1632].

Clustering [367, 553, 717, 1329, 1385, 1706].

cloud-assisted [1492].

Cloud-Based [517, 1335].

Cloud-RANs [144]. cloud-to-things [783].

cloud-to-user [428]. Cloudlets [1039].

CloudPilot [1519].

Cluster [337, 936, 1214, 1536, 1708].

Clustered [11, 105, 465, 490, 523, 739, 959, 1409, 1632].

Clustering [367, 553, 717, 1329, 1385, 1706].

Cloud-Based [517, 1335].

Cloud-RANs [144]. cloud-to-things [783].

cloud-to-user [428]. Cloudlets [1039].

CloudPilot [1519].

Cluster [337, 936, 1214, 1536, 1708].

Clustered [11, 105, 465, 490, 523, 739, 959, 1409, 1632].

Clustering [367, 553, 717, 1329, 1385, 1706].

Cloud-Based [517, 1335].

Cloud-RANs [144]. cloud-to-things [783].

cloud-to-user [428]. Cloudlets [1039].

CloudPilot [1519].
Event [436, 528, 580, 604, 627, 672, 686, 697, 767, 836].

Evaluating Europe [336].

ESRAS Error estimating [1716].

Ensembles [102x192].

ensuring [351]. enterprise [772, 1334, 1363, 1704].

entity [1770]. Entropy [988]. entry [501].

Environment [219, 260, 270, 490, 512, 530, 570, 710, 802, 928, 996, 1030, 1087, 1132, 1169, 1198, 1207, 1240, 1327, 1497, 1572, 1597, 1772, 1778].

environments [20, 58, 68, 312, 612, 757, 767, 805, 870, 1091, 1096, 1204, 1308, 1343, 1374, 1419, 1477, 1684, 1777]. envisioned [1799].

EON [178]. EONs [1436]. ephemeral [277].

epidemic [1486]. epidemiological [304].

Equalizing [1523]. Equilibrium [381, 1441].

equipped [1088]. equivalence [60]. era [71, 204, 274, 1134, 1414, 1534]. erasure [959].

erasure-coded [959]. ERRANT [213].

Error [762, 1244, 1384]. ESN [1664].

ESRAS [1296]. estimate [265, 898].

estimating [1666, 1807]. Estimation [430, 729, 812, 887, 902, 1073, 1349, 1364].

Ethernet [235, 1715, 1716].

Ethernet-based [1716]. ETSI [1721].

evaluations [740]. Event [411, 656, 1247, 1694].

event-participant [411]. events [808, 1289].

execution [490, 539, 574, 707, 1477].

exemplar [1489]. exfiltration [695, 1063].

existing [904]. Expediting [1192].

experience [221, 224, 1806]. experiment [575]. Experimental [34, 388, 436, 665, 758, 804, 947, 1056, 1119, 1539, 1804].

experimentation [68, 440, 991, 1742, 1791].

Explainable [1378]. explaining [1252].

exploit [182]. exploitation [131].

Exploiting [91, 99, 600, 886, 1105, 1129].

extracting [1203]. extraction [785, 910, 1250, 1526]. extremely [279, 1470].

F2DC [1286]. F4Tele [483]. fabric [792].

face [1547]. Facilitating [507]. facilities [1716]. factor [240, 383, 829, 1476, 1534].

factories [1752]. factorization [729, 887].

fading [134, 1761]. Failure [445, 623, 784, 1052, 1246, 1298, 1378, 1458, 1665].

Failure-resilient [784]. failures [232, 431, 624, 676, 1177, 1422].

Fair [691, 720, 1048, 1505, 1553, 1558]. Fairness [11, 125, 486, 622, 924, 1006, 1360, 1468, 1498, 1785].

Fast [60, 157, 199, 265, 269, 647, 794, 797, 902, 1054, 1064, 1246, 1361, 1517, 1720, 1781].

GramMatch [910]. Grano [432]. Grano-GT [432]. Grant [1448, 1624]. Grant-free [1448, 1624].

Granular [432, 1142]. Graph [388, 406, 472, 537, 797, 917, 940, 1007, 1185, 1270, 1292, 1312, 1329, 1342, 1396, 1507, 1568, 1593, 1777, 1797].

Graph-aware [406]. graph-based [1007, 1777]. graph-theoretic [940].

Graphical [1280]. graphlet [79].

GraphNEI [1770]. grasshopper [205].

GRE [1400]. Greedy [1400, 1441]. Green [371, 513, 822, 837, 1174, 1305, 1500, 1601, 1718].

Green-PoW [1174]. greenhouses [49]. Grid [82, 332, 584, 590, 656, 1071, 1801]. grids [618, 1624]. grooming [77, 489].

Learning-Leakage-Resilient [1346, 1367, 1375, 1388, 1399, 1401, 1408, 1414, 1570, 1745, 1806].
Latency-aware [278, 933, 1056].
latency-critical [1169].
Latency-energy [353].
Latency-Guaranteed [551].
latency-sensitive [1265].
lattice [1173, 1283].
lattice-based [1173].
Layer [16, 99, 110, 368, 458, 600, 601, 617, 670, 781, 883, 1031, 1066, 1120, 1388, 1455, 1540].
layered [283, 795, 1420, 1748].
layers [904].
LDA [1476].
LDA-2IoT [1476].
Leaderless [1356, 1451].
leak [1099].
Leakage [158, 726, 1234].
Leakage-Resilient [726].
learned [809, 918].
Learning-aided [209, 1033, 1135, 1622].
Learning-based [357, 368, 387, 609, 636, 661, 790, 1341, 1375, 1388, 1471, 1527, 1548, 1627–1629, 1751, 1789, 1796].
learning-driven [8, 207, 491].
leasing [237].
least [45].
least-squares [45].
LEDBAT [1119, 1365].
ledger [659].
length [34].
LENS [1317].
LEO [151, 1110, 1186, 1533].
less [94, 302, 1365, 1699].
less-than-best-effort [1699].
lessons [809].
Level [191, 348, 350, 419, 421, 466, 590, 612, 791, 878, 929, 1270, 1309, 1377, 1428, 1465, 1476, 1575, 1618, 1689, 1777].
Leveraging [486, 522, 956].
Licensed [301].
LiDAR [1440].
Life [219, 1064, 1459].
lifetime [180, 1071].
Light [834, 1055, 1406, 1447, 1618, 1690, 1764].
light-weight [834, 1447].
lighting [449].
LightLog [944].
lighting [765].
lightpaths [1136].
LightPoW [1394].
like [277].
LiM-AHP-G-C [219].
Limitations [58, 1801].
limited [91, 726].
limits [508, 1617].
line [1609].
linear [46, 556, 1240, 1403, 1528].
linguistics [435].
linguistics-based [435].
link-Configuration [329].
link-state [1350].
links [445, 961, 1621].
Linux [437, 612].
LIO [625].
LIO-IDS [625].
lion [761].
list [150].
literature [112, 983, 1204, 1411].
Live [255, 772, 867, 1074, 1415, 1626, 1806].
livestock [68].
Load-aware [427, 1180, 1732].
Load-balanced [559, 1700].
Load-balancing [1039, 1526].
LOADER [436].
loads [1403, 1777].
Local [122, 308, 436, 664, 750, 1549].
localisation
Lyapunov [526, 532, 540, 569, 609, 628, 688, 715, 730, 772, 1027].

LTE-U [292, 378].

LPWAN [285, 321].

LoRaWAN [766, 1249, 1445, 1806].

Low-latency [1106, 1249, 1296, 1302, 1445, 1470, 1518, 1540, 1613, 1645, 1692, 1745, 1806].

Low-cost [716, 1296, 1613].

LoRaWAN-based [1681].

Losslessly [1351].

Low-delay [759, 1008, 1518].

Low-infrastructure [879].

Low-latency [766, 1249, 1445, 1806].

Low-power [285, 321].

LPWANs [493].

LR [137, 674].

LR-PON [674].

LSA [46].

LSTM [386, 625, 1157, 1777].

LSTM-based [1157, 1777].

LTE [47, 87, 155, 243, 296, 407, 559, 787, 904, 1058, 1606].

LTE-A [87].

LTE-U [787].

LTE-WiFi [47].

LTE/5G [1606].

LTE/WLAN [407].

IWSBF [1356].

Lyapunov [975].

M [340].

M3F [1576].

MA [598].

MA-ABE [598].

MAC [110, 125, 780, 903, 994, 1086, 1324, 1351, 1683].

MAC-layer [110].

Machine-Learning [1335, 1598].

Machine-type [179].

macro [580].

macro-femto [580].

made [282].

MAESP [392].

Magnetic [153, 358, 1273].

Maintaining [622, 624].

major [380].

Making [552, 598, 1561, 1597].

MalCon [1710].

Malicious [277, 751, 896, 929, 967, 1242, 1349, 1751, 1762, 1771].

malware [39, 74, 120, 570, 798, 968, 1012, 1286, 1576, 1710, 1798].

Management [9, 16, 18, 41, 88, 94, 118, 167, 220, 258, 290, 310, 318, 355, 361, 373, 378, 483, 510, 567, 591, 598, 630, 635, 640, 655, 656, 669, 731, 765, 808, 824, 832, 856, 862, 872, 873, 905, 945, 1046, 1113, 1144, 1186, 1236, 1302, 1357, 1363, 1411, 1530, 1546, 1638, 1746, 1776].

manager [61].

Managers [1302].

Managing [670].

manifolds [1266].

manipulators [1568].

MANO [500].

manufacturing [588, 589].

Many [189, 345, 1211].

many-field [345].

many-objective [1211].

Many-to-many [189].

map [1148, 1208].

map-aware [1148].

Mapping [917, 1209, 1261].

March [72, 502, 973, 1466].

Marconi [1464].

margin [1180].

maritime [564].

mark [760].

market [551].

market-oriented [551].

marketplace [977, 1366].

markets [1462].

marking [364, 760].

Markov [313, 364, 396, 1011].

Markovian [80, 1361].

Mars [1145].

MARVEL [231].

Massive [87, 218, 261, 391, 444, 898, 908, 1121, 1231, 1775].

Massive-Scale [391, 1121].

Matching [54, 189, 407, 1255, 1261, 1312, 1694].

Matchmaker [624].

MATEC [846].

materialized [936].

Mathematical [304, 396, 705].

MATILDA [670].

matrix [887].

max [1609].

Maximization [47, 215, 553, 702, 864, 1029, 1071, 1194, 1284, 1386, 1740].

maximize [1087, 1526, 1792].

Maximizing [74, 219, 587, 1190, 1787].

Maximum [129, 1441].

May [127, 148, 571].

multicasting [1051, 1151]. multicle [1311].

multimetric [1148]. Multimodal [1377, 1549, 1611, 1625, 1712].

Multiple [60, 86, 131, 275, 290, 335, 383, 395, 408, 462, 514, 558, 624, 744, 756, 791, 891, 932, 1036, 1117, 1240, 1395, 1426, 1500, 1506].

MUTAA [1326]. Mutual [726, 834, 1327, 1504, 1646].

nervous [1577]. NESEPRIN [1189].

network [56, 75, 120, 143, 226, 269, 334, 429, 461, 621, 626, 646, 683, 694, 738, 765, 844, 909, 944, 979, 989, 1010, 1014, 1115, 1143, 1157, 1163, 1184, 1197, 1214, 1259, 1265, 1266, 1271, 1281, 1355, 1362, 1363, 1386, 1390, 1431, 1474, 1543, 1564, 1578, 1634, 1738, 1778].

network-accelerated [1346].
30

[239, 285, 739, 1099, 1226]. RouteChain
[1300]. router [192]. Routers
[157, 410, 1389]. routes [884]. Routing

[31, 68, 99, 156, 227, 287, 405, 539, 579, 601, 858, 920, 924, 967, 1007, 1052, 1125, 1140, 1277, 1451, 1482, 1608, 1618, 1639, 1717]. Scale
[785, 1384, 1544, 1731]. scenarios
[178, 1436]. SDM-SON [178]. SDM-SONs [1436]. SDN
[614, 643, 657, 682, 731, 1424, 1723]. SDN-enabled [111, 1089, 1732]. SDN-IoV
[639]. SDN/NFV [283, 857, 979]. SDN/NFV-enabled [979]. SDN/non
[605]. SDN/non-SDN [605]. SDNs
[561, 795]. SDNsandbox [1375]. SDONs
transfers [832, 1785]. transient [433].
transients [1216]. transition [171].
transitions [1151]. Transmission [115, 335, 343, 506, 713, 756, 860, 959, 1090, 1107, 1212, 1441, 1445, 1448, 1555, 1599, 1601, 1741].
traversal [162]. Tree [64, 542, 679, 959, 1152, 1218, 1645, 1687, 1703, 1769].
Tree-structured [959]. Trend [668].
Trend-based [668]. trends [104, 1550, 1725, 1758]. trials [1066].
Truck [474]. true [286]. TruSD [251].
Trust [251, 258, 259, 355, 430, 448, 576, 802, 831, 862, 945, 951, 1133, 1150, 1162, 1293, 1303, 1322, 1394, 1748]. Trust-Aware [430, 831].
Trusted [102, 377, 421, 660, 1343, 1712, 1750].
TrustedBaaS [421]. trustworthy [876].
truth [432]. Truthful [1282, 1548]. TSBFT [1451].
TSCH [773]. TSC [1234].
TSCRNN [501]. TSN [1640]. TSN-based [1640].
TSNMRA [1559]. tune [812, 1537].
tuned [120]. tuning [854]. tunnel [752].
TwinPeaks [188]. twins [777].
Two [134, 217, 240, 291, 470, 701, 829, 1029, 1179, 1252, 1275, 1299, 1316, 1476, 1800].
two-class [1179]. two-dimensional [1251].
UAV-assisted [415, 738, 1035, 1036, 1410, 1523, 1753, 1787].
UAV-based [1088]. UAV-CFMIMOs [1629]. UAV-enabled [1141, 1472, 1631, 1747]. UAV-IoT [928].
UAV-to-UAV [1621]. UAVs [228, 388, 394, 434, 479, 715, 728, 777, 826, 900, 975, 1280, 1327, 1513, 1753]. UAVs-assisted [479, 975]. ubiquitous [1529]. UDNs [900].
UE [562]. UE-VBS [562]. Ukraine [1487].
Ultra [208, 286, 321, 453, 562, 580, 738, 766, 906, 1296, 1323, 1393, 1733].
ultra-broadband [286]. Ultra-Dense [208, 562, 580, 738, 906, 1323, 1733].
unattended [1435, 1765]. Unbalanced [1250].
Unbiased [902]. uncertain [1497, 1665]. uncertainty [764, 806, 1136].
unclonable [418, 1639]. Uncoded [1014].
Understanding [85, 230, 255, 554, 796, 922, 1012].
Understood [1803]. Underwater [83, 124, 153, 775, 1127, 1269, 1400, 1460, 1545, 1690, 1764]. unified [530, 803, 1644, 1705].
unlinkability [328]. Unmanned [321, 488, 518, 739, 998, 1095, 1109, 1492].
Unobtrusive [22]. Unraveled [1586]. unsaturated [780]. unseen [1136].
unstable [293]. unstructured [198].
Unsupervised [305, 633, 1751]. Unveiling [680]. unwittingly [915]. up-offloaded

Anonymous:2020:EBa

Melodia:2020:ED

Tang:2020:BA

He:2020:DEE

Noferesti:2020:AAS

Huan:2020:PIP

Subramanya:2020:MLD

[21] Everton de Matos, Ram馮 Tiago Tiburski, Carlos Roberto Moratelli, Sergio Johann Filho, Leonardo Albernaz Amaral, Gowri Ramachandran,
REFERENCES

Zhang:2020:URH

Li:2020:EMB

Rodriguez:2020:CSS

Alhowaidi:2020:ESN

Hu:2020:DPC

Anonymous:2020:Fa

Anonymous:2020:EBb

[28] Anonymous. Editorial Board. *Computer Networks (Amsterdam, Nether-
REFERENCES

Cozza:2020:HLD

Xiu-wu:2020:CRA

Jaglarz:2020:ELD

Pan:2020:PML

Yang:2020:FMS

Lattanzi:2020:EEI
Raschella:2020:DAP

Soylu:2020:BVC

Dominicini:2020:KTS

Liu:2020:RDC

Alam:2020:MNF

Liu:2020:SRA

El-mekkawi:2020:SKM

[41] Ahmed El-mekkawi, Xavier Hesselbach, and Jose Ramon Piney. Squatting and kicking model evaluation for prioritized sliced resource man-
REFERENCES

REFERENCES

Angelopoulos:2020:KDE

Anonymous:2020:Fb

Anonymous:2020:EBc

Yao:2020:FA

Gohar:2020:CEM

Sun:2020:ERE

[61] Gustavo B. Heimovski, Rogério C. Turchetti, Juliano A. Wickboldt, Lisandro Z. Granville, and Elias P. Duarte, Jr. FT-Aurora: a highly avail-

Cerda-Alabern:2020:GNC

Zhang:2020:LBJ

Madhja:2020:EAT

Ali:2020:CLA

Jie:2020:CBO

Konstantinidis:2020:MCB

[81] Amrita Ghosal and Mauro Conti. Security issues and challenges in V2X:

Gunduz:2020:CSS

Liu:2020:TOM

BenJaballah:2020:SDR

Zhuang:2020:ULV

Torres:2020:BSR

Swain:2020:NCA

REFERENCES

Akkari:2020:MMS

Anonymous:2020:Aa

Anonymous:2020:EBc

Xie:2020:OVC

Li:2020:ESS

Castillo:2020:IAI

Siris:2020:PAM

Malik:2020:SRT

REFERENCES

[102] Xinli Huang, Peng Shi, Yufei Liu, and Fei Xu. Towards trusted and

Chao:2020:ACH

Wang:2020:UAM

Anonymous:2020:Ab

Ma:2020:GDP

Anonymous:2020:EBf

Anonymous:2020:EBf

Midya:2020:QAD

REFERENCES

REFERENCES

Ayadi:2020:STC

Wang:2020:MSD

Wang:2020:GLA

Vasan:2020:IIB

Sciacca:2020:IRA

Mokryn:2020:OCP

Ahmad:2020:SRP

Junior:2020:CDC

Dragonas:2020:FAT

Kotuls:2020:NTI

Anonymous:2020:Mb

Anonymous:2020:EBg

Yucel:2020:USA

[136] Nadine Abbas, Sanaa Sharafeddine, Ezem Hajj, and Zaher Dawy. Price-

Khammassi:2020:NLW

Hou:2020:CRA

Boz:2020:HAQ

Abbasio:2020:SSW

Barmpounakis:2020:CAU

Abbasian:2020:CNA

Xu:2020:GBN

Hajisami:2020:ERP

Li:2020:SVC

Zhou:2020:DCI

Cicconetti:2020:UAS

Anonymous:2020:Mc

Anonymous:2020:EBh

REFERENCES

Zhao:2020:RSL

Takemasa:2020:DPF

Kondo:2020:NDN

Wu:2020:CMB

Park:2020:AEP

Rastogi:2020:NIT

Barik:2020:UTP

[162] Runa Barik, Michael Welzl, Gorry Fairhurst, Ahmed Elmokashfi, Thomas Dreibholz, and Stein Gjessing. On the usability of transport protocols other than TCP: a home gate-

Pacheco:2020:FCH

Pascoal:2020:SDS

Ma:2020:AFS

Martiradonna:2020:ASO

Huang:2020:ESO

Anonymous:2020:Jb

Anonymous:2020:EBi

REFERENCES

Zhao:2020:IMM

Zhang:2020:SA

Mazzenga:2020:ESG

Zhang:2020:SSA

Zheng:2020:SA

Hassan:2020:NBN

Carrega:2020:CEE

[176] Yuyang Zhou, Guang Cheng, Shanqing Jiang, and Mian Dai. Building an efficient intrusion detection system...

Dimitriou:2020:ECF

Yousefi:2020:FTA

Nouri:2020:MTW

Nguyen:2020:MBN

Galal:2020:PBP

Marche:2020:HES

REFERENCES

REFERENCES

Xia:2020:NOL

Costa:2020:SBH

Favale:2020:CTL

[236] Yahui Li, Zhiliang Wang, Xia Yin, Xingang Shi, Jianping Wu, Fangdan

Sai:2020:EOA

Madureira:2020:SID

Chatterjee:2020:DBR

Fotouhi:2020:LST

Sharma:2020:VAA

Kim:2020:HNS

REFERENCES

Banditwattanawong:2020:FOA

Wang:2020:EED

Kalkan:2020:TTF

Lu:2020:NIE

Huang:2020:CCU

Ashtiani:2020:PAR

Cui:2020:CDA

Karamyshev:2020:FAA

Benil:2020:CBS

Sarieddine:2020:FMR

Lopes:2020:GAP

Wei:2020:AFU

[269] Wei Wei, Qiao Ke, Jakub Nowak, Marcin Korytkowski, Rafał Scherer, and Marcin Woźniak. Accurate

Gupta:2020:CSA

Anonymous:2020:Oa

Anonymous:2020:EBn

Anonymous:2020:ITS

Sicari:2020:ITE

Singh:2020:A

Jeske:2020:DTO

Marlon Jeske, Valério Rosset, and Mariá C. V. Nascimento. Determin-

Krzywiecki:2020:SLI

Palmieri:2020:RLA

Huang:2020:REW

Sun:2020:SIP

Abdelmoneem:2020:MAT

Hussain:2020:APE

Abdulqadder:2020:MLI

Sen:2020:TP1

deOliveira:2020:BRB

Li:2020:ATR

[288] Ding Li, Wenzhong Li, Xiaoliang Wang, Cam-Tu Nguyen, and Sanglu Lu. App trajectory recognition over encrypted Internet traffic based on deep neural network. Computer Networks (Amsterdam, Netherlands: 1999), 179(?): Article 107372, October 9, 2020. CODEN ??? ISSN 1389-1286 (print),
REFERENCES

[295] Sumit Kumar and Rajeev Tiwari. Optimized content centric networking for future Internet: Dynamic popularity window based caching
REFERENCES

[302] Tushar S. Muratkar, Ankit Bhurane, and Ashwin Kothari. Battery-

Sasabe:2020:MEA

Vergados:2020:LVN

Panigrahy:2020:NCD

Vergados:2020:LVN

Garcia-Aviles:2020:AFF

Alostad:2020:DPR

Rajaguru:2020:HSS

deSouza:2020:HAI

Hu:2020:PAB

Ma:2020:EWD

Chousainov:2020:AFC

[315] Iskanter-Alexandros Chousainov, Ioannis Moscholios, Panagiotis Sarigiannis, Alexandros Kaloxyllos, and Michael Logothetis. An analytical framework of a C-RAN supporting random, quasi-random and bursty traf-

[341] Junaid Anees, Hao-Chun Zhang, Bachirou Guene Lougou, Sobia Baig,

REFERENCES

REFERENCES

Mchergui:2020:BBS

Muller:2020:STI

Daldoul:2020:PEO

Tuysuz:2020:SSG

Dehkordi:2020:ENR

Iqbal:2020:DGK

Taleb:2020:FDA

[374] Hussein Taleb, Kinda Khawam, Samer Lahoud, Melhem El Helou, and Steven Martin. A fully distributed approach for joint user association and RRH clustering in cloud radio access networks. Computer Networks (Ams-
Polverini:2020:IDS

Lalouani:2020:MOR

Tseng:2020:RBT

Ayoub:2020:MIS

Pacheco-Paramo:2020:DAD

Begin:2020:DVD

REFERENCES

[387] Ali Shakarami, Mostafa Ghobaei-Arani, and Ali Shahidinejad. A sur-

[400] Hui Jiang, Min Liu, Bo Yang, Qingxiang Liu, Jizhong Li, and Xiaobing Guo. Customized federated learning for accelerated edge computing with heterogeneous task targets. *Computer Networks (Amster-

[Bernieri:2020:TNA]

[Mashhadi:2020:OAD]

[Liu:2020:PPP]

[Hajian:2020:SSH]

[Sun:2020:EFM]

[413] Xiangwen Dai and Jinsong Gui. Joint access and backhaul resource allocation

Hu:2020:SEA

Ye:2020:OOE

Zhang:2020:TAI

Guidotti:2020:ASP

Shamsoshoara:2020:SPU

Chodak:2020:HLC

REFERENCES

[439] Ning Chen, Sheng Zhang, Jie Wu, Zhuohong Qian, and Sanglu Lu. Learning scheduling bursty requests in Mobile Edge Computing using DeepLoad. Computer Networks (Am-

Yazdinejadna:2021:KBI

Bai:2021:CAF

Qureshi:2021:ADT

Mahbub:2021:CEI

Anonymous:2021:Fa

Anonymous:2021:EBb

Moll:2021:QBS

REFERENCES

112

Geng:2021:FLE

Shehzad:2021:PAC

Noura:2021:ERD

Sheng:2021:CPM

Shadroo:2021:TPS

Khormali:2021:DNS

REFERENCES

REFERENCES

Cao:2021:TIV

Wang:2021:IUB

Anonymous:2021:Fb

Fujita:2021:SBR

Anonymous:2021:EBc

Choudhury:2021:HLS

Triantafyllou:2021:LFL

Anonymous:2021:FFD

Ramirez:2021:ING

Malboubi:2021:PFI

Majumdar:2021:NBS

Li:2021:CLB

Ge:2021:TDL

Rios:2021:DR

REFERENCES

REFERENCES

Wang:2021:NPM

Thomdapu:2021:DCM

Hassani:2021:QP

Shah:2021:IMI

[512] Sayed Qaiser Ali Shah, Farrukh Zeeshan Khan, and Muneer Ahmad. The impact and mitigation of ICMP based economic denial of sustainabil-

Yang:2021:DAI

Zhao:2021:IFB

Xue:2021:RCD

Al-Makhadmeh:2021:ITN

Liu:2021:CBF

Anonymous:2021:Aa

Anonymous:2021:EBE

Anonymous. Editorial Board. *Computer Networks (Amsterdam, Netherlands: 1999)*, 188(??): Article 107964, April 7, 2021. CODEN ?????

Xu:2021:DBW

Benedetti:2021:SME

Wang:2021:DFG

Amaizu:2021:CED

Kazemifard:2021:MDF

Faroughi:2021:TWD

Yang:2021:DSE

REFERENCES

Kumar:2021:OA

Gao:2021:OCE

Khormali:2021:CDN

Anonymous:2021:Ab

Fawaz:2021:RLA

Lin:2021:NLG

REFERENCES

[558] Libing Wu, Shuqin Cao, Yanjiao Chen, Jianqun Cui, and Yanan Chang. An adaptive multiple spray-

Biswas:2021:LBU

Zhong:2021:CSC

Huang:2021:ITC

Venkateswararao:2021:UUV

Shang:2021:DUA

Enoch:2021:NSM

Anonymous:2021:EBg

Huang:2021:SJR

Shaer:2021:EEP

Femminella:2021:EDT

Chen:2021:ATM

Chen:2021:MEC

Sundberg:2021:LET

Sun:2021:SSD

[579] Penghao Sun, Zehua Guo, Julong Lan, Junfei Li, Yuxiang Hu, and

Adebayo:2021:PEU

Attarian:2021:ACP

Li:2021:ADD

Strinati:2021:NBS

Lalle:2021:CTS

Akbar:2021:NET

Anonymous:2021:Mc

Anonymous:2021:EBh

Hu:2021:BBT

Chaudhry:2021:GIC

Vasudev:2021:SPP

Hei:2021:MMA

Zhong:2021:APP

REFERENCES

REFERENCES

Yurekten:2021:CCT

Hadem:2021:SBI

Anonymous:2021:Jb

Anonymous:2021:EBi

Sun:2021:CLT

Ashraf:2021:RQA

Jain:2021:UAR

Liu:2021:RTC

Yakici:2021:SMO

deVos:2021:CMF

Tomassilli:2021:DRP

Dou:2021:MMN

Gupta:2021:LIH

Vallero:2021:BSS

[626] Greta Vallero, Margot Deruyck, Michela Meo, and Wout Joseph. Base station switching and edge caching optimisation in high energy-efficiency wireless access network. *Computer Networks (Amsterdam, Netherlands:
REFERENCES

[Bryant:2021:EVN]

[Jiang:2021:WML]

[Babun:2021:SIP]

[Priyadarsini:2021:SDN]

[Yang:2021:DAS]

[Khorsandroo:2021:HSE]

[Spiekermann:2021:UPB]
REFERENCES

REFERENCES

[659] Gaurang Bansal, Vinay Chamola,
REFERENCES

Zhang:2021:TCF

Wang:2021:TRL

Lu:2021:NTI

Wang:2021:DEC

Tang:2021:JGL

Sen:2021:VET

[665] Priyangshu Sen, Viduneth Ariyarathna, Arjuna Madanayake, and Josep M. Jornet. A versatile experimental testbed for ultrabroadband communication networks above 100 GHz. *Com-

REFERENCES

[679] Yasin Yigit, Vahid Khalilpour Akram, and Orhan Dagdeviren. Breadth-first search tree integrated vertex cover algorithms for link monitoring and routing in wireless sensor networks. Com-
REFERENCES

Magan-Carrion:2021:UIW

Caiazza:2021:MDD

Cai:2021:DAP

Wang:2021:DSA

Glabowski:2021:MSS

Xing:2021:VBM

REFERENCES

Magoula:2021:GAA

elhoudaNouar:2021:SVN

Steadman:2021:DED

Kosek-Szott:2021:DCA

Aguilar-Fuster:2021:NEF

Tu:2021:ROM

Li:2021:STP

[699] Junfeng Li, Dan Li, Wenfei Wu, K. K. Ramakrishnan, Jinkun Geng, Fanzhao

Mohamed:2021:SDN

Huang:2021:MAR

Gao:2021:EAB

Rojas:2021:CSH

Irshad:2021:SBO

Anonymous:2021:S

Anonymous:2021:EBm

Khalily-Dermany:2021:TPA

Sun:2021:CCD

Khan:2021:BBD

Achroufene:2021:MCC

Bruschi:2021:FHP

Paul:2021:BBS

Marco Zambianco and Giacomo Verticale. Intelligent multi-branch allocation of spectrum slices for inter-numerology interference minimization. *

Pustokhina:2021:EEN

Paguada:2021:TPA

Dhananjay:2021:PRV

Anonymous:2021:Oa

Anonymous:2021:EBn

Dinh:2021:DEUM

Rahman:2021:AAS

REFERENCES

REFERENCES

Gringoli:2021:LDH

Lu:2021:CCM

SureshKumar:2021:EER

Belhamra:2021:ECN

Chai:2021:NCO

Bhooanusas:2021:PMM

Wei:2021:ASE

Christabelle Alvares, Dristi Dinesh, Syed Alvi, Tannish Gautam, Maheen Hasib, and Ali Raza. Dataset of attacks

Boucetta:2021:LRB

Al-Marridi:2021:RLA

Khan:2021:QLB

Miao:2021:FDR

Lv:2021:BDT

Anonymous:2021:Ob

Anonymous:2021:EBo

[779] Anonymous. Editorial Board. Computer Networks (Amsterdam, Nether-

REFERENCES

[799] Mantun Chen, Yongjun Wang, Hongzuo Xu, and Xiatian Zhu. Few-shot web-

Roostaei:2021:GTJ

He:2021:TSD

Prathapchandran:2021:TAS

Khaturia:2021:FUM

Rea:2021:BSM

Shokouhifar:2021:SIR

REFERENCES

[812] Unai Rioja, Lejla Batina, Jose Luis Flores, and Igor Armendariz. Auto-tune POIs: Estimation of distribution

REFERENCES

Cheng:2021:MLN

Kohli:2021:OAF

Velasco:2021:LMS

Anonymous:2021:Da

Anonymous:2021:EBq

Tamang:2021:ARS

Garrett:2021:HAL

REFERENCES

[859] A. Helen Sharmila and N. Jaisankar. Edge intelligent agent assisted hybrid hierarchical blockchain for continuous healthcare monitoring and recommendation system in 5G WBAN-IoT. Computer Networks (Amster-
REFERENCES

Zhan:2021:WFE

Chen:2021:VCA

Fu:2021:TRE

Ujjwal:2021:DAH

Su:2021:GBD

Zhang:2021:QSE

Ma:2021:ISC

REFERENCES

REFERENCES

[886] Noelia Pérez Palma, Falko Dressler, and Vincenzo Mancuso. Precise: Predictive content dissemination scheme

REFERENCES

REFERENCES

[922] Zeng:2022:UIO

[923] Nguyen:2022:CAO

[924] Ruckel:2022:FIP

[926] Perna:2022:ROS

REFERENCES

Wang:2022:LLT

Carpio:2022:SMR

Hbaieb:2022:STM

Bodet:2022:DST

Kumar:2022:HSH

REFERENCES

[Anonymous:2022:EBc]

[Aski:2022:ANE]

[Griner:2022:CLP]

[Hameed:2022:TFM]

[Guo:2022:EHC]

[Zhou:2022:TSD]

[Zheng:2022:EPM]

REFERENCES

[967] Zain Abubaker, Nadeem Javaid, Ahmad Almogren, Mariam Akbar, Mansour Zuair, and Jalel Ben-Othman. Blockchained service provisioning and malicious node detection via federated learning in scalable Internet of

REFERENCES

Lin:2022:NLB

Kuk:2022:APA

Li:2022:CAS

Wang:2022:COR

Zahedi:2022:PEP

Liu:2022:MMB

Zhong:2022:PBD
[981] Hong Zhong, Jinshan Xu, Jie Cui, Xiwen Sun, Chengjie Gu, and Lu Liu.

Wang:2022:BDM

Nasir:2022:SII

Cao:2022:APM

Cortesi:2022:NAB

Liu:2022:CNT

Floris:2022:SIB

Sicari:2022:SIC

Deb:2022:CSV

Wang:2022:SPL

Anonymous:2022:Ab

Zhang:2022:CSN

Makarem:2022:DEC

REFERENCES

Ndwayezu:2022:LEA

Guo:2022:SSR

Huang:2022:PLF

Ribeirol:2022:SHT

Nassef:2022:SDM

Alghafari:2022:DJR

Tang:2022:UAM

[1035] Qiang Tang, Lixin Liu, Caiyan Jin, Jin Wang, Zhuofan Liao, and Yuansheng Luo. An UAV-assisted mobile edge computing offloading strategy for minimizing energy consumption. Computer Networks (Amsterdam, Netherlands:

References

Conti:2022:SCA

Aouedi:2022:HPL

Hyland-Wood:2022:GEB

Anonymous:2022:EBg

Anonymous:2022:Mb

Islam:2022:ITE

Islam:2022:ITE

Qu:2022:PAV

Bhattacharjee:2022:CRB

Li:2022:PSR

Enoch:2022:PFC

Yin:2022:JAD

Bian:2022:SLD

REFERENCES

REFERENCES

Anonymous:2022:Jb

Anonymous:2022:EBi

Borromeo:2022:FAS

Beraldi:2022:ISI

Wang:2022:TEE

Luomala:2022:ARB

Ogundoyn:2022:SPP

Sabbioni:2022:DDD

Ghosh:2022:BED

Anonymous:2022:Jc

Ioannou:2022:NDA

Ali:2022:SMS

Anonymous:2022:EBj

Anon:2022:Jd

Anonymous:2022:EBk

Chang:2022:SMD

Qin:2022:JOS

Wu:2022:RNC

Li:2022:TCC

Giakoumakis:2022:SMN

WENJIA WU, YUJING LIU, JIAZHI YAO, XIAOLIN FANG, FENG SHAN, MING YANG, ZHEN LING, AND JUNZHOU LUO. Learning-aided client association control for high-density WLANs. *Computer Networks (Amsterdam, Netherlands: 1999)*, 212(??):??, July 20, 2022. CODEN ???. ISSN 1389-1286 (print),
REFERENCES

Chen:2022:DFS

Macas:2022:SDL

Uyan:2022:RSM

Junfeng:2022:PDS

Nakimuli:2022:ERA

Dao:2022:ABS

Anonymous:2022:Ac

Anonymous:2022:EB1

Vitor:2022:SAS

Basturk:2022:EEC

Zaki:2022:GGM

Zahedinia:2022:FBC

Langer:2022:NCK

REFERENCES

Tu:2022:RES

Souza:2022:CDA

Cremonezi:2022:IAR

Mian:2022:VAI

Ran:2022:DSA

Abbas:2022:PBR

Catena:2022:DLB

[1157] Tiziana Catena, Vincenzo Eramo, Massimo Panella, and Antonello Rosato. Distributed LSTM-based cloud resource allocation in Net-

Nisha:2022:NPP

Guo:2022:JWR

Aliouna:2022:IMC

Waleed:2022:WOS

Hilal:2022:TAO

Arsalan:2022:IBT

Anonymous:2022:EBm

Jmila:2022:AML

Cao:2022:FSE

Lasla:2022:GPE

Barakabitze:2022:SNQ

Yang:2022:DDD

[1177] Donghui Yang, Zhenyu Li, Haiyang Jiang, Gareth Tyson, Hongtao Li, Gaogang Xie, and Yu Zeng. A deep dive into DNS behavior and query

Kumari:2022:TOF

Sasabe:2022:AMD

Habibi:2022:RBP

Chen:2022:AJC

Li:2022:CEC

Picano:2022:HLV

[1190] Wenchao Chen, Guanqun Shen, Kaikai Chi, Shubin Zhang, and Xiaolong Chen. DRL based partial offloading for maximizing sum computation rate of

[Duan:2022:FFG]

[Huang:2022:FEC]

[Mertens:2022:MFC]

[Wang:2022:UMS]

[Qian:2022:DDS]

[Jurdak:2022:EBB]

Wang:2022:RAO

Dong:2022:SSI

Wang:2022:ODO

Ribeiro:2022:DAE

[1203] Rafael Hengen Ribeiro, Arthur Selle Jacobs, Luciano Zembruzki, Ricardo Parizotto, Eder John Scheid, Alberto Egon Schaeffer-Filho, Lisandro Zambenedetti Granville, and Burkhard Stiller. A deterministic approach for extracting network se-

[1210] Fan Wu, Chaonong Xu, Yutong Zhu, and Chao Li. Complexity of minimum uplink power scheduling with delay bound for backbone-assisted pdma wireless networks. *Computer...
Li:2022:MOO

Zeng:2022:OMQ

Wang:2022:PPF

Tu:2022:RRN

Leyva-Pupo:2022:DUP

Bringhenti:2022:ODF

REFERENCES

Oligeri:2022:GSD

Vanitha:2022:OPR

Beduneau:2022:MPC

Paolucci:2022:LCS

Bhamare:2022:IBN

Lima:2022:GAS

[1237] Lei Yan, Maode Ma, Dandan Li, Xiaohong Huang, Yan Ma, and Kun

Pirayesh:2022:PHB

Febro:2022:SDD

Naha:2022:MLR

REFERENCES

[1250] Kehong Li, Wengang Ma, Huawei Duan, Han Xie, Juanxiu Zhu, and

Khorasani:2022:NTD

Batchu:2022:IAE

Restuccia:2022:GWA

Silveira:2022:TCB

Tedeschi:2022:SBC

Wu:2022:SAB

Vargas-Arcila:2022:SDS

Rajak:2022:EEM

Satpathy:2022:CEV

Zhang:2022:BEM

REFERENCES

[1270] Minghao Jiang, Zhen Li, Peipei Fu, Wei Cai, Mingxin Cui, Gang Xiong,

[1283] Swati Kumari, Maninder Singh, Raman Singh, and Hitesh Tewari. A

Barmpounakis:2022:ADQ

Selim:2022:SBF

Masoudi-Sobhanzadeh:2022:RTI

Saad:2022:RTB

M:2022:SHO

Kaur:2022:RV1

[1316] Shashi Ranjan, Pranav Jha, Abhay Karandikar, and Prasanna Chaporkar. Two stage downlink scheduling for balancing QoS in multihop IAB net-

Shan:2022:LBE

Wilhelmi:2022:AES

Ramineni:2022:PER

Fedrizzi:2022:AGB

Ghosal:2022:SAS

Tu:2022:BBT

[1329] Syed Maaz Shahid and Sungoh Kwon. Distributed robust channel allocation...

REFERENCES

REFERENCES

REFERENCES

[1362] Miguel Landry Foko Sindjoung, Mthulisi Velempini, and Alain Bertrand Bomgni. A MEC architecture
REFERENCES

Zheng:2022:IBN

Hong:2022:RPN

Bagnulo:2022:WLM

Busacca:2022:MMD

Mohammadi:2022:DSO

Zou:2022:ECD

REFERENCES

Grasso:2022:HHL

Guarino:2022:CCM

Ayoub:2022:EAI

Navarro:2022:HRN

Ashraf:2022:FCV

Anonymous:2023:Ja

Anonymous:2023:EBa

Sharvari:2023:CCC

Avanzato:2023:DBA

Baidas:2023:NCU

Wan:2023:CPM

Anedda:2023:SSC

Robles-Enciso:2023:MLG

[1395] Zhilin Xu, Hao Sun, and Weibin Han. A collaboration-driven mechanism for AI diagnose with multiple requesters under incomplete information. *Com-
References

Ariemma:2023:LLS

Kazemi:2023:OSF

Darbandeh:2023:SSA

Biomo:2023:NMA

REFERENCES

[1415] Xiaolan Ji, Biao Han, Cao Xu, Congxi Song, and Jinshu Su. Adaptive

Ibrahim:2023:DPS

Salehi:2023:ADC

Waqas:2023:DSA

Takahashi:2023:SMS

Maier:2023:LMS

Gong:2023:ESA

[1429] Rodrigo Carvalho, Noéïlia Correia, and Faroq Al-Tam. Mobility planning of LoRa gateways for edge storage

Carvalho:2023:MPL
REFERENCES

Liu:2023:OMU

Ramos:2023:WCP

Garrido-Hidalgo:2023:EOR

Luglio:2023:FWT

Roy:2023:APM

Zhou:2023:SMA

Zhang:2023:RMF

Pattaranantakul:2023:SFC

Ramezanpour:2023:SPV

Tuan:2023:UDD

Giuliano:2023:MMS

Bao:2023:MMC

Anonymous:2023:Fb

REFERENCES

REFERENCES

Sheng:2023:GDB

Ju:2023:COT

Xu:2023:CTO

Li:2023:TDC

Truong:2023:SPO

Patel:2023:LLD

Aghapour:2023:TOR

Qin:2023:SFC

Guler:2023:BEC

Hoang:2023:SAC

Shi:2023:AUD

Campolo:2023:SIE

Anonymous:2023:Aa

Anonymous. April 2023. *Computer Networks (Amsterdam, Nether-
Anonymous:2023:EBe

Laroui:2023:SFC

Chen:2023:AAQ

Luconi:2023:IFM

Zhou:2023:PLP

Zhu:2023:IIL

Shi:2023:JTP

REFERENCES

[1497] Jiayi Liu, Wenbin Yao, Chen Wang, and Qinghai Yang. Provisioning net-

REFERENCES

Bothra:2023:HCA

Longo:2023:DIA

Ali:2023:SHA

Chen:2023:MMS

Song:2023:DEA

REFERENCES

[1524] Hao Chen, Hua Qin, Weimin Chen, Ni Li, Tao Wang, Jianxin He, Gelan Yang, and Yang Peng. BMS: Bandwidth-aware multi-interface scheduling for energy-efficient and delay-

Iqbal:2023:UQA

Hamnache:2023:JLB

Zhou:2023:CPD

ullah:2023:ITS

Mabrouk:2023:IDG

Li:2023:PRA

REFERENCES

Sun:2023:JSS

Carpi:2023:EAR

Chu:2023:ILD

Drainakis:2023:CFL

Wang:2023:GQA

Vidal:2023:USM

REFERENCES

274

Anonymous:2023:Mb

Anonymous:2023:EBg

Akar:2023:PFS

Hassanpour:2023:PPE

Rengaraj:2023:SUS

Mushtaq:2023:KHA

Zheng:2023:DCT

REFERENCES

Huang:2023:RFF

Singh:2023:OLA

Fazio:2023:NPA

Alqarni:2023:OBO

Jeon:2023:HNC

Liu:2023:PNSb

Zeng:2023:SSW
REFERENCES

Castell-Uroz:2023:TLW

Anonymous:2023:Mc

Anonymous:2023:EBh

Hu:2023:WEB

Ugurlu:2023:APA

Stokkink:2023:WSA

Gupta:2023:ABV

Guo:2023:AES

[1572] Hui Guo, Ruichang Shi, Pingli Gu, Jia Lu Li, and Shu long Wang. Allocating edge service resources to the up-offloaded vehicle

[1585] Shikha Mathur, Anshuman Kalla, Günkan Gür, Manoj Kumar Bohra, and Madhusanka Liyanage. A survey on role of blockchain for IoT: Applications and technical aspects. *Computer Networks (Amsterdam, Nether-
REFERENCES

REFERENCES

An internet search was performed on the provided references to identify the correct URLs and titles.

Yaqun Liu, Jun Xie, Changyou Xing, and Shengxu Xie. Topol-

[1619] Yemane Teklay Seyoum, Syed Maaz Shahid, Eun Seon Cho, and Sungoh

Ali:2023:RPB

Lau:2023:GOP

Yang:2023:DJD

Lastovicka:2023:POS

Rivas:2023:RIG

Wang:2023:TRM

REFERENCES

REFERENCES

REFERENCES

Garroppo:2023:DMI

Shu:2023:NCM

Fotiou:2023:SVC

Tang:2023:RRB

Li:2023:DEC

Kayathri:2023:SDL

Kowalski:2023:TMR
[1646] Mikolaj Kowalski and Wojciech Mazurczyk. Toward the mutual routing security in wide area networks:

Mazloum:2023:SRT

Qin:2023:HCD

Anonymous:2023:Je

Anonymous:2023:EB1

Zhao:2023:AMP

Zhao:2023:FSL

Jung:2023:OFS

Zeba:2023:MPH

Duong:2023:CMA

Dung:2023:EED

Chen:2023:ASM

Wang:2023:CCB

Abubakar:2023:CTA

Dao:2023:ONI

Ali:2023:SUV

Guda:2023:AAO

Valente:2023:OBC

Yigit:2023:NFT

Dong:2023:EEE

Zhang:2023:CRT

Anonymous:2023:S

Anonymous:2023:EBn

Ren:2023:CAD

Bagnulo:2023:DIV

Zhou:2023:EPL

[1707] KaKei Wong and Lin Cui. Fine-grained HTTP/3 prioritization via

Fang:2023:RRA

Li:2023:DAW

Lekssays:2023:MBB

Naqvi:2023:ID

REFERENCES

Amador:2023:SIP

Li:2023:PBM

Parra-Espin:2023:SBA

Damsgaard:2023:ACB

Li:2023:CSD

N:2023:SSC

REFERENCES

REFERENCES

Ted “Taekyoung” Kwon, Junghwan Song, Heeyoung Jung, Selin Chun, Hyunwoo Lee, Minhyeok Kang, Minkyung Park, and Eunsang Cho. How to decentralize the Internet: a focus on data consolidation and user privacy. *Computer Networks (Am

Anonymous:2023:N

Anonymous:2023:EBp

REFERENCES

Liu:2023:MDG

Wang:2023:CED

Liu:2023:RLB

Erazo-Agredo:2023:ERE

Lin:2023:NOD
REFERENCES

