A Complete Bibliography of Publications in
Computer Physics Communications: 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

29 July 2017
Version 1.65

Title word cross-reference

(2 + 1)D [HP14]. (MC)3 [KSW15]. 1
[CC14, Gio14a, HTT13, HTT14, MGL13, PM16, RKVL14, SBH$^+$14, WNYP17]. 1 + 1 [SÖÖN11]. 1/2 [HvWT17]. 2
[APC$^+$14, BBB17b, BVP10, EW14, FJK$^+$17, FK12, GCVA14b, Gwi12, Isa10, KO14b, KO16, RAV11, SW14a, SW14b, SA15b, SKK11, SW11, TMA$^+$15, TY10, TKL$^+$12, TPC16, VLM11, WMRR17, YTYA17, ZSW$^+$17a]. 3
[AV13, AGMS15, BAR12b, CP15a, DGG13, FRFH10, GS15, Gai17, GMF$^+$17, GG16, GX15, HKJ$^+$12, HDM$^+$12, JEC$^+$12, JKIS16, KAK12, KL11, KO14b, KO16, KMJS16, LHJZ10, LHC$^+$13, LX14, LKW11, LBP15, MGO13, MCP$^+$11, NHD16, PR10, PCGM14, QSC14, Qia17, RF15, RS12, RJLL16, RHBH15a, RBH15b, TGH$^+$16, TIM$^+$16, WNYP17, ZXL16, ZZD$^+$16, ZSW$^+$17a]. 3 + 1
[KHB14]. 4 [GGF$^+$13, dSLF13]. 5 [GAB$^+$16]. 71 [JTH14]. − [KH11]. 1
[LM16]. 1257 [RMS$^+$12]. 2
[BG13b, BG14a, BLG14, Bon15, Bon16, GBD10, HFSK12, RPB$^+$15]. 3

4. 0 [KUVV13, OO15b]. 4.1 [KRW13]. 4OEC [SK15].

5. CFS13.

6. 0 [Nik12b]. 6.4 [KRW13]. 6.5 [KRW13]. 64-bit [TC11a]. 70th [Pat12].

8.2 [SAC +15].

9. 0 [SMO16a]. 90 [GST12, KS12, SSG +10, SS10a]. 95 [vH10].

= [LQZ +13].

SKM15, WSH+14, XLX13, ARYT17, ELDS14, GHR+16, TL17, WXW13].
Accelerating
[BK11a, Col14, FZY13, HV15, JK10, LHL16, RPL+14, TK14a, WXW13].
CM10a, CC14, CC15, CDS+13b, CGRB14, CBGY17, CBAM12, DKSG16, DE13, DG10c, DG16, EZL+16, Eme11, ES11, FLA+16, FSJ+16, FRG12, FZ16, FKH15, GCF+17, GJLB12, GST12, GV15, GZW17, GTL11, GD14, GES13, GLX+14, GX15, Gwi12, HGCARM15, HWT10, HK15, HCH16, HP11, HZW+16, Jab12, Jab13, JWJL12, JW1C13, JvOK17, J15, JPK+12, KP12a, KBB+17, KO12, KO13, KO14b, Kom15a, Kom15b, Kom15c, KO16, KVV11, KSW15, LKL11, LK12, LKA+16, LM12, LHH+12a, Liu14, LZ11a, LZ11b, LY13, LYT16, Lya15, LOZ13, MM17, MGO13, MPM14, MH11, MGS13, MEM+11, MC10, MTO15, NBN+14, Nem16, OL12, OOK+12, PH13, PSB11, PDRG10, PP13, PY14, PR10, PG17, QwWL+15, Ray10, RU13.

Algorithmic [HB12, GHR+16]. Algorithms [Fri14a, KD17, Pan15, TK14a, BS14a, BK11b, CLH17, CR12, CF17, CLB11, DS11a, DS14, Dim14, DS13c, FDWC12, Fri10, GBR+14, GWF+16, GCHL15, GSC+16, Has11, HLLH16, HRC11, HVMR10, HCSW10, JPH+14, KK17, KME+11, LBM+14, LYJY10, MEG12, MD11b, MA11, PBS+17, STK10, SMJ17, TRM+12, VPP+12, Vuk12, WG11, ZHC16].

Alias [SKSK13].

aligned [HO13, HWS16, LDR+17]. alignment [BKM11].

All-electron [KCA+15, ONS+15, AKZ+13, JGAL+13, LRW+15, RCGT16].

call-optical [PM14]. all-to-all [EPS15]. Allen [LK12, ZHF14].

amorphous [HYM11, MHV17]. amount [DO14a]. Amp [KP16].

amphiphilic [FFIH11, SSF+17]. amplified [EZBA16, ZLM12]. Amplitude [Raw15, MPSV15, Raw16]. amplitudes [BBU12, BV15, Kvd11, Per14, dALM+12, ADH+17].

Amp [KP16]. analog [CO11, Fer15]. analyser [LW11, LW13]. analyses [Ham11, KSTR15, SUS+17a, WLM14]. analysing [BPMS16]. Analysis [BBB+15, Car10a, CAN11, GES13, IB11, SLLP17, WHB16, vDSM16, AAA+16, ASE14, AS11b, AM15, Ano11a, AdMD+12b, ACdMD14, APC+14, BHN+16, BKN+17, BH+10, BB+15, CSc11, Car10b, CMRVR+14, CF16, Czl+11, DRR16, EEBB+14, EBD17, EW14b, EW16, Faw10, FF11, FNPMB10, FBN+13, Fri17, GMRHRCE13, GMPFC+14, Gio14b, GA13, GBJ+10, GB+12, GBJ+13, GFJ+14, GAO13b, Hak16, HC16,
HCC14, Ixa16, Jiw12, JHL^+15, JSLM16, KK16a, KY14, Kan14, KLKR11,
KP16, KV10a, KSYY13, Lan13, LHJ^+15, MGRB11, MLR10, MBS^+10, MC10,
MCP10, MCNRC16, NS10, ÔN14, ONS^+15, ORCR17, OK14, PC11, PLD15,
QJF16, RS12, RM10a, RHC15, RJL16, RCH16, Sch14a, SKK11, SCM^+16,
SMC^+17, SSB516, TVGB15, TGH^+16, TUY15, VBMP15, WG16a, Wei99,
WFV14, WAW14, YLK10, YG12, ZLLP17, ZLL13, Ziô14]. approaches
[AMR15, BDP16, CM10b, DS10, VEM12]. Approaching [mZfXL15].
approximants [IH11]. Approximate
[CB13b, Hei12, JL10, CGM17, JC13, KMM13, LLL12, LLL13, MSR^+17].
approximated [VDF15]. approximating [FM12]. Approximation
[SMJ17, AQS10, BKOZ16, BK12, Cou13a, Cou13b, Evs14, Kau13, KK14b,
LY16, PDRG10, Ram10, RVDS16, WSTP15, WC15, Wit14, DVB11, YLO13,
SKB10]. approximation-based [LY16]. approximations [LO14, TK14b].
AQUAgpusph [CP15a]. aqueous [Beu11]. arbitrarily [KMJS16, OL12].
Arbitrary [Asc10, Tic14, Ara14a, Ara14b, BBH^+10, BCH13, CCD^+16,
CC10a, ECF16, FRW17, GM16, HSD17, MR14, MSR^+17, NO14,
NMR15, SH12a, SW14a, SS11a, VV16, vH10]. arbitrary-order [vH10].
arbitrary-rank [Ara14a, Ara14b]. arbitrary-shaped [HSD17, MSR^+17].
arc [JTN^+11]. Architecture
[PMS^+15, SCC^+12, BW15, CRA10, Dan12, GBK12, MR14, NBW16].
arbitrarily [KSH14]. architectures [DS14, HML16, HAV^+14, HWT10, NBN^+14, PH13, TRM^+12,
TGH^+16, VLPPM14, WFV14]. Arduino [KSH14]. area
[BHW^+12, EVB14, QLN14, YLK10]. argon [JTN^+11]. argon-water
[JTN^+11]. argument [CS17]. arguments [Cai11, Maî12]. ARIADNE
[KRW13]. arising [CB13b, DBB12, KMM13, KR14, PDRG10]. ARKN
[LW14b, SW12a, SW13b]. Armchair [SPY11, GZL14]. Arnoldi
[BW12b, GBP13]. array [ECD^+10, BSB^+11, Vuk12]. art [Pat12, MAdF14].
articulated [PA13]. artificial [LW14, RH17, TAMA^+15, vRWS14]. artistic
[GES13]. ARVO [BHW^+12]. ARVOC-CL [BHW^+12]. As/GaAs [TAMA^+15].
ASCOT [HAK^+14]. ASG [FBC^+12]. ASP [JC13]. aspects
[EVB14, Ein16a]. asphaltene [WXW14]. Assembly [DEW16]. assembled
[KK14b]. assemblies [YHC11]. Assessment [HVMR10, Car16, NHS14].
assemblage [BALV16, FBH17]. assisted [BRB12, GTR^+17, W113].
associated [LSJ13]. Astrodynamic [LSJ13]. Astrophi [KCS^+15].
astrophysical [GSKM14, KCS^+15]. astrophysics [Asc10, CB13b, JFC12, KMM13, PDRG10]. Asymmetric
[LTL^+12, CFSK14, MNV13]. asymmetry [SF11]. Asymptotic
[BD12, CCHL11, CM14a, DOP17, CEF16, PSBT12, NO14]. Asynchronous
[GXF^+15, FFT^+14, UBRT10]. ATAT [CSPAD10]. ATI [Dem11]. ATLAS
[dAFdSVM12, MSS^+16]. atmospheres [HTT13, HTT14]. atmospheric
[BCMS10, BB12, CHH^+11, LHH^+12a, MFH^+13, VW15]. atmospheric-pressure
[CHH^+11, LHH^+12a]. Atomic
BiCGSTAB [NIK+12a]. bidirectional [FSF11]. biharmonic [SK15].
bilayer [FPY+17]. bilayers [MSRL10]. bilinear [MWCY14, Ram10].
BiKris tal [OG14, OO15b]. Bil2d [SLR16]. billiard [TTS11]. billion
[CM10b, JuIAM16, LM12, WLU11]. BiNCa [BKA+14]. binding
[BBH11b, PDC14, RJKC16, SHNM11]. Binhoth [ABB+14]. bio [BG13a].
bio-molecular [BG13a]. BioEM [CRB+17]. bioheat [BBB17b]. biological
[BHVMH15, CRNK12, NBM+15, Yan11]. biology [DS10]. biomass
[XAPK14]. Biomolecular
[VPM16, YBK+11, CBB14, LCHM10, LCHM13, SCC+12, TVZ+15].
biophysical [JJ15]. biopolymers
[PA13]. BIOTC [XAPK14]. bird
[TTB+14]. birthday [Pat12]. bit [MP11, TC11a]. black [Gin10].
block [SKH+10]. Bloch [CCW10, Dem13, SDL+16]. Block
[DB13, FRFH10, JBG+16, JBG+17, SPS10, DKOS14, LW14a, NIK+12a,
Nem16, STK10, TKS10, US16, WT15]. Block-pulse [SPS10].
Block-structured [FRFH10, JBG+16, JBG+17]. block-tridiagonal
[LW14a]. blocking [TSIM16]. blood
[BTL+17, CRA10, MCM10, MBS+10]. Blue [CRA10, BW15]. Blume
[FLP10]. BN2D [SBPN15]. BNL [GFJ+14].
Boat [Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h,
Ano10i, Ano10j, Ano10k, Ano10l, Ano10m, Ano11c, Ano11d, Ano11e,
Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m,
Ano11n, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h,
Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano13b, Ano13c, Ano13d,
Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l,
Ano14a, Ano14b, Ano14c, Ano14d, Ano15b, Ano15c, Ano15d, Ano15e,
Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m,
Ano15n, Ano15o, Ano15p, Ano15q, Ano15r, Ano15s, Ano15t, Ano15u,
Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i,
Ano16j, Ano16k, Ano16l, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e,
Ano17f, Ano17g, Ano17h, Ano17i, Ano17j]. bodies [MNV13]. Body
[GBJ+13, GBJ+15, BBC+13b, BY13, BRH+16, CDS13a, CJS10, EKO16,
FCVH17, FEH11, GBJ+10, GBJ+12, GFB14, HEF12, HLZ+13, Ixa16,
JOK13, JGD12, KPA13, KPS15, LSD14, LB13, MTTM13, MBFD12,
MPAG11, PMMW15, PKRS16, PIH11, RC11, VvAV+11b, WSH+12,
XML16, ZC12]. Bogoliubov Mr [SSK+13]. Bogolyubov [SDM+12, SDS+17]. BOINC
[GHdF10]. Boltzmann [As10, BBB+17a, BHNS17, BO12, CAN11, CB16b,
FGG11, FKH15, GTS1+13, GJ13, HLS+17, HCSW10, JK14, JEFF14,
LCKM14, LCHM10, LCHM13, MOD13, MR14, Maz13, Sch14a, SSF+17,
SD14, SD10a, TD17, WLU11, ZCG17, vdS10, vdS13, vdSM16].
Boltzmann-cellular [JEF14]. Boltzmann/finite [CRA10]. BoltzWann
[PVK+14a, PKV+14b]. bond [CM15, MH11, THDS16, WDR16, XZF12].
bond-order [THDS16]. bond-orientational [WDR16]. bonded
[BL14, Faw10, GTPWL12]. bonding [Sva12]. Boost [Ein16b]. Boosting
d[JBB16]. boron [HW12, Yan11]. Borwein [BJCW13, BCJW13]. Bose
[CCW10, GM14, Hoh14a, JWC13, JWL13, LCC11, MT13, TZM17, US16,
VBMS17, WX11, WX14]. boson
[BGM+14, Brá15, Cas12, DDKM15, OK12, QwWL+15]. **bosonic** [ZBG+16].

boundaries

[ADdM+12b, DV11, FJK+17, HSD17, KSH11, KS16a, NVW+13]. **Boundary**

[Ks16a, KPPC13, WLU11, YZ16, BMHP17, CCHL11, CS10, CBB14, DG10a, DS13c, DGG13, FBHB17, GJ13, GN14, Han11, HSD17, Hon10, Jiwi15b, LX12, LWZ14, LS13, MRVF13, Mil16, NPM16, PN15, PS11, PLCC12, Qia17, Ras09, Ras17, RC13, RC16, RHH12, RTA10, SN16, SK14, Uty14, Wan16, ZWLZ17, ZLL13, vds13]. **boundary-layer** [Ras09, Ras17]. **bounded** [MRVF13]. **boundedness** [MD11a]. **bounding** [WP11]. **Bounds** [TK14b, BBH+10, BBH+11a]. **Boussinesq** [MA11, SD10b, TL17, YZ16]. **Boussinesq-type** [TL17]. **box** [GES13, JLW13, SOPS12, WP11, YdDH+12].

box-counting [GES13]. **brackets** [GKM10, GSMK17, MGK13, SMGK14, XMLC16]. **braided** [OVSI15]. **braiding** [FSF11]. **Bratu** [Jal10, KK16a]. **Breakdown** [BD16]. **Bremsstrahlung** [Eme11]. **Brenner** [FMRP16]. **bridges** [BALV16]. **Bringing** [RK11, RV10]. **Brief** [Bre10]. **Brillouin** [Kap12a]. **brings** [CSL+13]. **Burgers’** [BK16a, Jiw12, Jiw15a, KP14].

C [ADH+17, Ano11o, Ara14a, Ara14b, Asl14, BV13, CECGS16, DPW16, Eii16b, GC10, GC13, GC16, KvdO11, KPV16, KLV15, KYSV+15, LCJ10, LSDD14, LYSS+16, MD11b, MAdF14, Sai13, SV14, SS12, SWS+12, Smi15, Stu10, TS11, Ver16, VVB+12, Vuk12, YSVM+16, HFSK12]. C# [GBJ+10, GBJ+12, GBJ+13]. **C-code** [GC10, GC13, GC16]. **C-library** [MD11b, MAdF14]. **Ca** [CJH11]. **Cable** [OVSI15]. **cache** [SSF+14]. **caching** [WMRR17]. **Cadabra** [Bre10]. **CADNA** [JCL10, LCJ10]. **CADNA_C** [LCJ10]. **Cahn** [LK12, LLXK16, ZH14]. **CalcHEP** [BCP13, Sta10]. **CalcHeP/CompHeP** [Sta10]. **calculate** [BBU11, CATK11, Fen12b, KST+14b, MPS13, Sar17b, SHZ13, ZKW+15]. **calculated** [HS16, LS12b, RJ12, YFAT17]. **Calculating** [ABB+16, ECH16, Fon12, LKM+16, AM10, AM11, Arb12, BBL+13, BBPS14, Brá15, CLJ12, EZBA16, FS17, FEHH11, GPS+13, HEF12, Jab12, Jab13, LZL11, LCHM10, LCHM13, MH11, NGM+10, PH13, PCHR17, SEW12, SEW14, STY15, SCl16a, SW12b, VDJ+11, WCL14, YLTS16, ZMCT12]. **Calculation** [GKM10, Kir10, Pla16, Sar17a, WW15, WB11, AHK+12, AG14, AAT17, Aza13, BGM+14, BPC12, CMVRR+14, CMVRVR+14, CHDCJA17, CYD11, CFSK14, Cip11, Cip13, CM14b, DBDP12, DSS+12].
Calculations

[Lit13, PDC14, YZY10, APS+16, AC15, BK13b, BDPM15, BH17, BBH11b, BS13b, Bor14, DHS14, DA16, Do14b, DML+15a, FSH13, FUSH14, FCC15, Fri12, FZY13, GA15, GGG16, GVS+15, HWW12, HHS+10, HW12, JPCG15, JWCW17, JOK13, KT12, KCT15, KSL+11, KST15, KHS10, LA13, LZP12, LSR+17, LS17a, MED11, MAM14, NGG+13, NSXZ14, Nis11, OBH10, OT11, PB13, POK15, PSL+16, Roh16, RC11, SW14a, SZ15, SCR17, SPMM11, SLR+11, SFX+14, SST11, Smi14, Smi16, SQL+10, TC12, VSG17, VCMS+13, WL11a, WR16, Wil15, XJS16, Zit11, VPM16].

calculator [ERS10c, ERS10a, ERS10b, HTY17, ZZZ+16].
calculus [GLMG12, KD17, SBQ14].
calibration [BMG+15, Ost10, ZUT13].
callbacks [BV13].
calorimeter [dAFdSVM12, GRZ10, BPMM14].
CALPHAD [TKP15].
cALYPSO [WLZ12].
Camassa [ZST11].
camera [MGA+13].
Camorra [KvdO11].
can [Pra11, CB14, KSL+11].
cancer [SCW+11].
cancer-related [SCW+11].
candidates [BBPS15].
Canonical [AS16, PA13, GA15, Pra17, PLCC12, RMC16].
canonical-ensemble [GA15].
capabilities [OTC14].
capacitance [CLC14].
capacities [ZMCT12].
capacitively [SBL16].
capel [FLP10].
capillaries [vdS13].
capped [RM14].
capture [SR12].
car [VCMS+13].
carbide [OPR14].
carbon [Beu11, CSL+13, LHS14, OPO+11, OPSR13, OPR14, RM14].
carcinogenesis [SCW+11].
cardinal [LD10b].
cardiovascular [MBS+10].
cards [GLB13, RPL+14].
carlo [ZTG14, ASFL12, AK15, ABB+14, ASPDL+16, AIG16, No10o, AK13a, AK13b, BV16, Bar11a, Bar12a, BDP16, BVP10, BG11, BM14, BG13b, BLG14, Bon15, Bon16, BENK+17, CL11, CL15b, CKS10, CNS+14, CI11, DHS17, DGPW11, DPK+15, Dem11, DDLM15, DKT14, EBDM17, ES11, FGGM11, FW11, FDWC12, GA15, Gin10, GSB+14, GWF+11, GB17, H3KN17, HBE10, HMR14, HP11, HWM+15, IUM13, JPSS10, JLA+14, KOT12, KEH12, Kan14, KRW13, KC14, KKK+17, KNS+17, KSW15, KVPvH13, LS14, LS15a, LS15b, LWL11, Lu15, MP11, MBRV+13, MRZ10, MEM+11, MW14, MHR+13, NPAD11, NH16, NSXZ14, NM14, OPO+11, OPSR13, OPR14, PM14, R16, RMS+12, RV10, RV11, SI11, SGNL17, SFP11, SL16, SM17, SD14, SKFP16, SLZ16, SSF+14, SKM15, SKSK13, TZ12, TVZ+15].
carlo [Tic10, Tic14, TKP12, TU14, Tröl11, TDL+14, UA17, VK14, WFRS15, WDL11, WSTP15, WvSL13, WT12, WWVB11, WZ1N17, ZBG+16, ZLM12, ZTG13, ZDD+13, dHGC11].
carlo-based [EBDM17, MW14].
carlo [Kol14].
carlo-3.0 [Kol15].
 carriers [MSRL10].
 Cartesian [FZY17, MAM14, NKS15, SDM+12, SDS+17, SHL+11].
MTM13, MAM14, MSHLS15, MSHL17, MO14, Nik12b, NMS14, dIRAPL11,
RF16, ReViH12, RtV16, Rei10, RWKS15, RHBH15a, RHBH15b, SSS+11,
SKB10, SGNL17, SL16, SEW12, SEW14, SM14, SHZ13, SQS+16, SD10a,
SS11a, SC16a, SC15, SC16b, SHL+11, SCB17, SF10, SMGK14, Tau10,
TVGB15, TRN16, TKL+12, VKP14, VSG17, VPM12, WN10, WR16,
WSH+12, XAPK14, Zag14, ZD15, ZXL16, ZZD+16, ZMPT13, vWB10,
MZE13, GBJ+10, GBJ+12, OKP10. Code_Saturne [Sha13a].
BPP11, BFPP12, CYD11, FMRP16, HTJ+16, KLV15, Kro16, LW14a,
LTP16, MHA+12, MNPY14, OLG+16, PMMF15, SISW10, VLL+17, VKS16,
VGM+15, WRF815, XNK+16, YB13, YXD+15. coding
BBB+17a, CFCB12, FFT+14. coefficient
BBB17b, PR13, PYW+14. coefficients
ARYT17, CATK11, DT10, Dev12, HR11, Ixa12, LZZL10,
LKT+16, Moh14, ORCR17, PKT15, Shi16, VCD16, Wei99, Wit14, YÇÖ15.
CoFlame [EZL+16]. colow [EZL+16]. coherence [SSM+17]. coherent
[BP12, CCXC15]. coincidence [WT12]. COKOSNUT [SCB17].
collaborative [Liu14]. collapse [BNAB11]. collective [GLR17, WR16].
Collider [CKhN11, EFG+10, BCP13, CFS13, YWW13, BS12]. colliders
[BCD+14, BHZ13, CM14b, DDKM15, Gao13a, GLS+13]. colliding
[Lit13]. Collier [DDH17]. collision
[BTM+17, BO12, CYD11, HDZ14, NNWS15, RF16, SD10a, WSH+14].
collisional [HJ14]. Collisions [BH14a, BH14b, CUL+17, CKS10, Col14,
DCC+10, Gin10, GFI+14, GB1+15, JH11, KKK+15, KHB14, KHK+11,
KN5+17, MEM+11, Nis11, OK12, SZY+12, SQS+16, SKK17, Tom16, VC10].
Collocation [LD10a, LX12, LCCC11, MM10, PDRG10, ZWLZ17, ZST11].
colloidal [BHND16, HAN+16, HCSW10, MDPTK15, Van15]. COLOMA
[Car16]. colony [vRWS14]. color [HKK11]. Columbus [Pit12].
combinations [KCT15]. Combinatorial [BR14, DS13c]. Combined
[BBB+15, BKS15, SCM14]. Combining
[Laz15, SC16b, SKK17, GWF+16, KPST15]. Comm [Ber16a, KYKN15a,
LR16, Ras17, RC16, RHBH15a, SGM11a, Sco13, SIMGCP14, YQM14].
comment [Ram10]. Comments [San15, MR13]. common [Bar11b, Laz15].
Commun [ERS10c, Nat10, ZTG14]. communication
[DO14a, KP12b, RSHH+10, SCM13, TIM+16, WLZN17]. Communications
[Ano16a, Ram10, Wu10, Ano10a, Ano11b, Ano12a, Ano13a, Ano15a].
communicator [CBGY17]. communities [IBKK11, Kra10]. Compact
[Dual12, MBGK11, BK16a, Cap13, DT10, FFT+14, HZ11, LLXK16, ILSZ14,
SR12, SA15b, SB11, TY10, Tia11, WZ13, XYK12, YTYA17, ZFH14, ZNT15].
Comparative [VEM12, JTN+11, LHS114]. comparing [Gag12a].
Comparison [CM10b, CDBM16, Fuh15, LXYJ10, WLM14, BR13, CDS13a,
CHC+11, CS10, TBZ12, WG12]. comparisons [DGPW11]. compatibility
[BS13a]. compensation [AAJA14]. competing [BSWC14]. Competition
[MS11]. competitive [Dan11]. compilation [CW13]. compile [Vuk12].
compile-time [Vuk12]. compiler [LWC14, LW16]. Complete
complex
complexes
complexation
complexes
complexity
complicated
component
components
composite
Composition
compositions
compounds
comprehensive
compressibility
compressible
Compressive
comprising
compromise
Comput
Computation
computations
compute
computed
Computer
computer-generated
computer-generated-hologram
computers
computing
computer-aided
computer-assisted
continuous-energy [WRFS15]. Continuous-time [GWF+11, SGW17, HWG13, HWM+15, IW15, PBS+17, SKFP16].

continuum [CL13, FM12, GC12, HLS+17, KK13, MBF+10, NFA+16, PG10, TKL+12, WSTP15]. continuum-scale [HLS+17]. contracted [AC13].

contraction [DE13, PG017]. Contribution [TW11, Pat12]. control [BM13, CAN11, CLL16, CB16a, FBHB17, FR15, HRC11, Hoh14a, KHK+11, KSW12, KSYY13, MS14, MD10b, MGFRG12, OK10, SCB17, VPMVH+17, vWB10]. control-variate [KHK+11, MS14]. controlled [HST+11, Pla16].

controlling [LYX+17, CB15d, KSH14]. conventional [Kom15a, PE17].

convex [RLL12]. correlation [CMVRB+14, DKG+14, KCL11, LAA+10, MHHL11, MOB12, QHZ+14, RMW13, RGKR17, WPD+15]. Correlations [DBB12, CLKK11, MBGV15, iTh11, WT12, YK12]. correlators [DE13, Nem16]. correspondence [GLX+14]. corresponding [GCVA14a].

correlation [CMVRB+14, DKG+14, KCL11, LAA+10, MHHL11, MOB12, QHZ+14, RMW13, RGKR17, WPD+15]. Correlations [DBB12, CLKK11, MBGV15, iTh11, WT12, YK12]. correlators [DE13, Nem16]. correspondence [GLX+14]. corresponding [GCVA14a].

Corrigendum [Ber16a, KYKN15a, LR16, Ras17, RC16, RHBH15a, YQM14, ZTG14, Sco13].

CosmoTransitions [Wai12]. Cost [HJH17, KL14].

Coulomb [EUT+15, GH11, HK15, JH15, LB13, MC16, Mil16, MSRL10, Nis11, PH11, RGKR17, Sar17a, Sar17b, SV13, XD13, XHD15, ZHPS10].
coupled-channel [Des16, GCVA14a]. coupled-cluster [MCA17].
coupled-wave [CZL+11]. Coupling [DRI+16, KST14a, BAK+15, BAK+16, BAK+17, CL14, FLSZ13, FHTO17, KVW11, LSK+14, NGM+10, PMVG16, Schl4a, SS12, TD17, WISA11, WX11, WNP17, Wei99].
couplings [AGH+16, AC16]. covalent [HXW+13].
covariant [BS12]. cover [Ano16m].
Cowan [Kra17].
CP [CRC+13, LCE+13, PS12, RCD+10, Ros15].
CP-phases [PS12].
CP-violating [CRC+13, RCD+10, Ros15].
PCC [Wei11a].
PCCMC [NSXZ14].
PCCMC-Lab [NSXZ14].
CPPPO [MGR16].
CPsuperH2.3 [LCE+13].
CPU [BPP11, DCGG13, ELDS14, FBN+13, FOB+15, LSYZ12, Lyo15, MDW16, MPM14, WC13].
CPU/GPU [LSYZ12].
CPUs [BS14a, ´ON12].
CR [AANAJ12, BTM+17].
CR-39 [AANAJ12].
Crank [BB10, CWS14].
CrasyDSE [HM12b].
create [KSTR15].
Creation [DEW16].
criteria [AG12a].
criterion [HFSK12, SK10].
Pcrit [dlRJL14].
Critical [CND11, CM10a, Fri10, OML11, ZF12].
crOss [ALL+11, ASEA14, BPC12, BS13b, BHS15, CYD11, CF17, C11, C13, CM14b, D14, Gao13a, GLS+13, Kol14, Lit13, OILK17, Shi16, V10, vD13].
cross-machine [CFW17].
cross-section [CYD11, CM14b, OILK17, vD13].
cross-sections [Lit13].
crosswell [CL15a].
crowd [GK11].
crowded [BJ11].
cruncher [LKT+16].
CRunDec [SS12].
crystal [AZ17, AZ17, Aza13, BP12, Bab14, BK13a, FLA+16, FBP+14, HWCH11, K16, LSLK17, L14, LZ11a, LZ11b, LZ12, LOV10, MW14, OG14, O15b, O15a, WS11a, WLZM12, WBY11, YZY10, HBB+17].
crystal-cutting [K16].
crystalline [AKZ+13, DJB11, TK12].
crystallization [AYD11].
crystals [BBH11b, CL14, Gen10, HWB+13, HWL16, K16, K16, LOK+16, NJS17, PYL+14, R12, S12b].
cross [War16].
CSD [CW13].
CT [LP15].
Cu [LS17a, T11].
Cuba [Hah16].
Cube [CD12, MGO13].
cubic [Ji15b, LD10b, LST15, Lin13, WZ13, WBY11, XZ12, YSN+14].
cubic-quintic [W13].
CUDA [BTC+17, CB13a, DM12, FWS+17, GRTZ10, HE13, HD11, K10, KO14b, KO16, LBB+16, LY13, MSML10, iSYS12, SK15, WMRR17, WWFT11, YHL11, ZAFAM16].
CUDA/MP [LYS+16].
CUDAEASY [Sai10].
CUGatesDensity [LW13].
Cummings [KAvdL11].
Cumulative [AMR15, GST15].
current [LYX+17, MTM14, VLL+17, YXT+15, ZD17].
currents [HLS+17].
current [ERPDFLS15].
curves [Bo16].
Curvilinear [GSKM14, MGA+13].
customisable [BGL+14].
customised [KSTR15].
customized [DGG13, LYX+17].
cut [JvOK17, LCRL10].
cut-cell [JvOK17].
cutoff [SH12, dJBIM16].
cutting [K16].
CWO [SWS+12].
cycles [GTSL+13].
cyclokinetics [Z15].
cyclotron [BB13b, JGC+11, KMD12, SS11a].
cylinders [MCM+12]. cylindrically [RS12].

D

[LB15, RP+15, RHH15, TGH16, WNY17, AV13, AGMS15, APC+14, BBC+11, BB17b, BAR12h, BVP10, CP15a, CC14, DGG13, EW14, FJK+17, FK12, FRF10, GS15, Gai14a, GG16, GAB+16, GGF+13, GX15, GCVA14b, Gwi12, HKJ+12, HTT13, HTT14, HDM+12, Ixa10, JEC+12, JKS16, KAK12, KL11, KO14b, KO16, KMS16, LH10, LHC+13, LX14, LKW11, MGL13, MGO13, MPP11, NHD16, PR10, PCD14, Qia17, RK14, RF15, RS12, RAV11, RJL16, RHH15b, SBH+14, SW14b, SA15b, SK11, SW11, TMA+15, TY10, TK12, TIM16, TPC16, VLM11, WNY17, WMR17, YTYA17, ZXL16, ZSW+17, SW14a]. D-3V [CC14]. damage [MBRV+13]. damped [DZ13, Eba13]. damped-relaxation [Eba13]. damping [MD11a, SS11a]. DAMQT [LRR+15, LRR+17].

[BC1+11, Car10a, DPK+15, KST14b, XLC14, AAA+16, Ano10n, Ano11a, Ano11b, DBS10, BAL16, BG13a, BBV10, CL15a, Car10b, CMS14, CO11, DRUE12, DDK+15, DADS11, CED+10, End11, Fer15, FCC15, FWS17, GMR13, GTH13, GTL+17, HBP14, Huy15, JTH14, KFF+16, Kom15b, MW12, MGO13, MD10b, MM11, MG12, MGI12, MRI16, dR11, PCV11, PGO17, RMW13, RSS+10, SEW12, SEW14, Shi16, Sin11, Sin12a, SAS11, SOJ14, SSM+17, TRM+12, Var16, WKM11, YG12, ZSW+17a, Zlo14, dBC14].

data-assisted [GT+17]. data-sharing [TRM+12]. Database

Density [GS17a, NJS17, VCMS′+13, AKZ′+13, AG14, AM10, AM11, BBH11b, BCH17, BR13, BSGG10, CDTV10, CXH′+15, DSM′+11, Dua12, GBR′+14, Gio14a, GCP′+15, HYM11, HHS′+10, JCW′+13, KT12, KCT15, KK16b, KSYY13, Liu15a, LW13, LS11, LRR′+15, LRR′+17, MGRB11, MOB12, MSS′+16, Mil16, MNPY14, MC17, NPAD11, NBN′+14, OOK′+12, OT11, QJF16, RHC15, RCH16, RGH10, RWKS15, SH12a, SCRS17, SSX14, SBH, SAHP15, SA14, TVGB15, VvAV′+11b, VvAV′+11a, Wit14, WPV14, XLL15, YRR13, SH12a, SCB17, TC11b, SAHP15, SA14, TVGB15].
density-functional [GBR′+14, MGRB11, MC17, SCRS17, SA14, TVGB15].
DensToolKit [SAHP15].
dependencies [Kan14].
Dependent [LB10b, BBB17b, CFCB12, DS13a, DHR14, DM12, FGLB12, GS15, GBR′+14, GTG′+11, HST′+11, Ixa12, Kap16, Ker17, KTA12, KYSV′+15, LV14, LBB′+16, LYSS′+16, MC16, MGRB11, MGL16, MC17, NPM16, ÔN12, PR13, PM16, RVDS16, SSB′+16, SHZ13, SSH′+13, SLC11, SBH′+12, SCB17, TC11b, TVGB15, TT11, UW12, VVB′+12, WL11b, XJS16, YSVM′+16, ZYZ15, ZKS13].
depending [EY11].
depinning [SLZ16].
deployment [HKK11].
deposit [YXT′+15, Lit13, LO14].
deposition [BT17, RH11, VLL′+17, ZLFM11].
Derivation [CWS14, BENK′+17, HB12, Miy15].
derivative [RA14, SK10, SAHP15].
derivatives [GCVA14b, KCA′+15, LWZ14, NS15, PB16, WWS10].
desccribing [ASTT16, BDKS10, DPK′+15, DOP17, DSLP11, MNC15, TKP15].
Design [CFCB12, Fri14b, Dan12, LOK′+16, ML14, NFA′+16, TUY15, SAA′+10].
Designed [UO15a, MCA1F14].
Designed-walk [UO15a].
DESVII [VJC12].
detail [OK10].
Detailed [HWW12, MPSV15, Str15, VV16, BTC′+17, CFFR15, LCC13].
Details [JG16].
detect [RMC16].
detecting [DBJ11].
Detection [Ber14, AKKK16, BLS17, BHH′+10, BBH′+15, BMG′+15, HTY17, KME′+11, LTP′+17, OL12, ZBMM11].
detector [AANA1J12, BPM14, BKM11, PCEH15, TdAdSS11].
detectors [JuI1AM16].
determinants [USOA13].
determination [BR13, BHVMH15, JK13, MD10b, SBB′+17, Ver16, VvAV′+11b, WG16a].
determinations [BCH17].
determine [BSWC14].
determined [RU13].
Determining [ACDdM14, VdLF14, MC10].
Deterministic [UO15b, Asi10, GJLB12, TZZG12, ZTG13, ZTG14].
deterministic/stochastic [GJLB12].
detonations [MTE17].
detuning [CdFDS16].
Development [Dan10a, Dan10b, HF16, HCHW11, KYKN15a, KYKN15b, LHH′+12b, OILK17, QLN14, SCLW16, Sit14a, Sit14b, SHL′+11, Gio14b, HvAS′+13, HVMR10, HKVR10, RK11, Uty14].
developments [GJA′+16, LOSZ13, SMO16a].
deviates [AM14a].
device [CDSG11].
devices [ASGLK10, AK15, AGB′+15, BKA′+14, HEF′+11, KRK16, NAQ16, WWC′+16].
devoted [Org15].
De Witt [SMdON14].
DFT [BFD′+11, DSW′+15a, DO14b, KST14a, SW13a, VCMS′+13].
DFT-calculations [VCMS′+13].
DFT/LDA [SW13a].
dftatom [CPV13].

Diagonalisation [MKV11, OILK17]. diagonalization [CL10, SA15a, SH12b, SH16, TC12]. diagram [GBP17, Liu15b, MS11, XWhZ13, XW15, dALM+12]. diagrams [BL17, Ell17b, YdDH+12]. dialog [Zlo13].

diamagnetism [Aza13]. diamagnetisation [Aza13].
KMA+12, LJSW11, LLSK17, LWL12, LST15, LLXK16, LHH+12b, LLX14b, LR13, LR16, MEM+11, MKR+12, MSZW11, Müll14a, Naz12, NAQ16, PBE14, QA13a, QLE16, RtV16, Rei11, Rei12, RHC15, RCH16, RGKR17, RWKS15, SFP11, SÓÓN11, SCLW16, SLR16, SDJ+12, SJW10, TD14, TT14, VK14, WC10, WWC16, WaSL13, XZF12, XZ12, YWX11, ZFH14, ZYZ15, dHV12, vRWS14].

Dimensionality [BH17].

dimensions [DMC10, DKOS14, KAvdL11, LA13, TSIM16, dSdO12].

dimensionality [BH17].

dimensions [DMC10, DKOS14, KAvdL11, LA13, TSIM16, dSdO12].

dimensionality [BH17].

dimensions [DMC10, DKOS14, KAvdL11, LA13, TSIM16, dSdO12].

dimensionality [BH17].

dimensions [DMC10, DKOS14, KAvdL11, LA13, TSIM16, dSdO12].

dimensionality [BH17].

dimensions [DMC10, DKOS14, KAvdL11, LA13, TSIM16, dSdO12].

dimensionality [BH17].

dimensions [DMC10, DKOS14, KAvdL11, LA13, TSIM16, dSdO12].

dimensionality [BH17].

dimensions [DMC10, DKOS14, KAvdL11, LA13, TSIM16, dSdO12].

dimensionality [BH17].

dimensions [DMC10, DKOS14, KAvdL11, LA13, TSIM16, dSdO12].

dimensionality [BH17].

dimensions [DMC10, DKOS14, KAvdL11, LA13, TSIM16, dSdO12].

dimensionality [BH17].

dimensions [DMC10, DKOS14, KAvdL11, LA13, TSIM16, dSdO12].

dimensionality [BH17].

dimensions [DMC10, DKOS14, KAvdL11, LA13, TSIM16, dSdO12].

dimensionality [BH17].

dimensions [DMC10, DKOS14, KAvdL11, LA13, TSIM16, dSdO12].

dimensionality [BH17].

dimensions [DMC10, DKOS14, KAvdL11, LA13, TSIM16, dSdO12].

Disciplinary [WSH+12].

Discontinuous [EW14a, Ein16a, HLLH16, HWS16, LLP15, LLMW17, Maz13, WP10b, YWX11].

discovery [LCRL10].

discrepancy [VLD+12].

Discrete [CR12, EW16, AGMS15, ELDS14, GMRHRCME13, GMPFC+14, GJHF14, KV10b, LCH11, LYL+17, MD10a, NMS14, RTAT15, SL17, SWL+15, Sza13b, Sza13a, Sza16, ZAHAI10, EW14b, EEGW12].

discrete-dopant [LCH11].

discrete-element [RTAT15].

discrete-time [GJHF14].

discretization [CDBM16, DM17, DJ12, MLS10].

discretized [HLLH16, HLC+13].

discrimination [sL10].

discussion [Nem16].

disks [TACA15].

dislocation [DZ15, MTS+16].

dislocations [PE17].

disorder [ABC14, TK12].

disordered [CLJ12, CRNK12, CZN14, Dan10a, Dan10b, LZL11].

disperse [Sie16].

dispersion [FMW10, JL10, Kon11, LKA+16, MFH+13, PSB11, PSBT12, Sco13, SB11, sX14, vMB14].

dispersion-free [LKA+16].

dispersions [ZZ17].

dispersives [CW16, GAO13b, HLLH16, Ram10, Ram12, Ram14, WWHW14].

Displacement [UW12].

displacements [LS15b].

dissemination [LHC+12].

dissipation [PDJ10].

Dissipative [JBKM15, ASPW13, BTLL+17, CCWL11, GAHP15, GTS14, MNC15, TK14a, TD17, WXW13, WXW14, BJ15, LBM+14, MDPTK15].

dissolution [XHL12].

distance [PDC14].

distances [RAW15].

Distinct [Cro16].

distorted [Bad11, HK15].

Distributed [GHD10, AM14a, BKS15, CL15b, GB11, GBS+16a, IW15, MV11, OLG+16, SOJ14, WMK11, WC13, WAW14, YG12, RPB+15].

distributing [HWT10].

DNAD [YB13]. DnaFabric [MVI+16]. DNS [APC+14]. DNSLab [VK16].

documentation [DNP+12, DPW16, KLV15]. doing [GLMG12].

Domain [BS15a, IBP+15, ASPW13, APC+14, BS15b, CW16, DO14b, FRG12, FNPMB10, HJH17, HC16, HKvH16, Hsu11b, JU17, Kap12b, MBFD12, ICD13, MCL+17, Oti13, QL10, Ram14, SW12b, TD14, TT14, VDB14, ZLL13, ZHC16, HKF+12, MCM+12]. domains [Bot13, DS13a, KSW12, OOK+12, SNB11, SK15]. dominated [Kau13].

dot [BMNS14, CL10, YC¸O15, ZHC16]. dots [Den10].

double [CWW10, GC10, GC13, GC16, MD10a, Ram14, TTG11]. double-dispersive [Ram14]. doublet [ERS10c, ERS10a, ERS10b]. doubling [CL15b, FGLB12].

drainage [GTS+13]. DRED [SV12]. DREG [SV12]. Drift [DOP17, DJ12, Evs14, SISW10, XYM+13]. Drift-Asymptotic [DOP17].

drift-diffusion [DJ12]. drift-kinetic [Evs14, SISW10]. drive [MTM14].

Driven [Dan10a, Dan10b, BJBC+14, CHC+11, De 11, GTHL11, GAB+16, Hin11, HJL+14, IBKK11, LDW13, LHI+15, MiH12, MS11, RHFH12, VPM12].

driving [BNAB11, THDH14]. DRoplet [Tom16]. droplets [APC+14].

droosophila [SLC11]. Drude [HLW16]. DSAM [SLLP17]. dsDNA [AGVP10].

DSMC [JvOK17, OCF10, TKL+12]. dual [CBG+17, DG10a, VvAV+11b, YB13]. DualSPHysics [CDR+15]. duct [ZNT15].

dust [HCRD14]. Dyck [Bra15]. dye [HG13]. Dynamic [ALS16, Bar12a, DSHS17, FRG12, SUS+17a, SKSK13, AGMS15, Bar11a, BS15b, CD12, DF11a, DGMZ15, HST+11, JOR+12, PE15, Sus17b, Sva12].

Dynamical [KLKR11, LLHC11, AG14, ADDm+12b, ACdm14, BVC13, BG11, Dan11, DTi11b, Er14, KP12a, Ki11, LS16, LMAB16, TTS11].

dynamically [CFCB12]. Dynamics [AS16, AD15, DRR15, wHwH11, JBKM15, MDPTK15, Ngu17, SBPN15, TD17, WWR+16, ADD+11, ASPW13, ABB13, BS14b, Bar11a, Bar12a, BPML12, Bin13, BTL+17, BG14a, BWPT11, BKPT12, BY13, BCG+15, BBV+16, BENK+17, CMM14, CLLL11, CXH+15, CKS10, CH11b, DCM+12, Dat13, DLP10, DEW16, DT11b, DHR14, DS13b, ENE15, ESM17, FSH13, FCVH17, FRG12, Fil14, FFIH11, GK11, GM11, Gio14b, GL17, GNA+15, GAHP15, GTS14, GH15, Has11, HST+11, HRC11,
HG13, HYM11, HXW+13, HLZ+13, HBH+17, HWL+17, HM10, HDM+12, JWL13, JPH+14, JNN12, JNN13, JSLM16, JKIS16, KST14a, KDM11, Kon11, KK17, KS15, KCS+15, KR14, KSY17, LGW13, Leô12, LS12b, LHZ11, LK15, LLZ+17, LSK+14, LDF+16, LS17a, MDW16, MIW+13, MM17, MTS11, Min11, MNC15, MkB+11, MSH11, NBM+15, NBW16, NPAG11, nsK+15, dynamics [ÖKC11, OKM12, OYK+14, PR14, PLCC12, QL10, QLE16, RC15, Rap11, RBB15, SV14, SBH+14, SL17, Sco13, SCRS17, SOM+13, SMO16b, SKM15, SAG13, TK14a, TZM17, TSTT13, TS11, WC10, WX11, WXW13, WXW14, WSL13, WSH+14, YW17, YHCS11, YK12, Zag14, ZS13, Zhe15, ZPvR16, BJM15, BHN16, DLG10, LB16+14]. dynamics-based [ZS13, Zhe15]. Dyson [HB12, HI12b].

e-infrastructures [GBS+16a]. e-Science [LSJ13, CKH11]. E6Tensors [Dep17], early [SCW+11]. Earth [MPS13]. Easy [DEW16, Son14]. EasyFeynDiag [XW15]. EBT2 [ACdS13]. EC [MTM14]. ECE [MTM14]. ECOM [LC15]. ECPFSSR [BPC12, Cip11]. ECR [MTM14]. ecs [BH16]. eddy [TIMM13]. edge [BMU11, FRFH10, FR15, LDR+17, SPY11, ZDM17]. Editor [Sco13]. Editorial [Sco16, Ano10b, Ano10c, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10k, Ano10l, Ano10m, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano14a, Ano14b, Ano14c, Ano14d, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j]. Editors [Ano10a, Ano10b, Ano11a, Ano11b, Ano13a, Ano15a, Ano16a]. education [LPBH11, Müller14c, TN11]. Edwards [FFT+14]. EERAD3 [GGGH14]. ef [DIP11]. ef-based [DIP11]. Effect [CHH+11, KSH11, SBL16, AG14, CFSK14, Kri12, OCL+13, QHZ+14, SWL11, SDJ+12, WBY11]. Effective [BCS10, VLD+12, CLC14, CM15, CGG+14, HHC16, Jab12, LSG+12, Nem16, NRSVW12, ZTG13, ZTG14]. effective-mass [HHC16]. Effects [iT11, BDK11, DGMZ15, GTSL+13, GB14, KZ11, KS16b, LHSL14, Liu15a, MDPTK15, PBE14, VV16, W12, dSVLP13]. Efficacy [DML+16]. Efficiency [LV15, W11, ZPvR16, FZ16, GLAC13, GSKM15, JAS17, KK17, LCR10, VKS16, WW12]. Efficient [AS11b, AAT17, BCJW13, CMN12, CSR13, FUSH14, FCVH17, GBP13, GST17, GGG16, GVS+15, GA13, HWG13, HXW+13, HAN+16, HCH16, JU17, LHZ11, SLqSqL+13, MA11, MSRL10, Qia16, RA13, RF15, SZ15, SHNM11, SCM14, SA14, THDS16, USOA13, VDF15, Wal11, WS11a, WLH+12, W12, Wi15, WWFT11, WAW14, vRWS14, ASPW13, AMM11, AGH+16, ACTP15, BJCW13, BB13b, BHIW+12, CLB11, DCC+10, DKSG16,
KQYH17, MDF11, NNWS15, OOK+12, RS12, SLEF17]. electroosmotic [SS11c]. electrophoresis [SS11c]. electrophysiology [MFM15].

ExoData [Var16]. exoplanet [Var16]. expanding [HM12c, LP15].

Expansion [JGD12, AJ10, AK13b, CSP10, Deu16, FLW17, GS14, HWG13, HvWT17, HK15, HL13, IUM13, KZ14, Per14, Pit12, Ros16, SKF16, SGW17].

Explicit [Bl15, AH13, Ber16a, Ber16b, CW16, DM17, DJ14, FG13, FGR14, KZC+10, KAS12, LCE+13, QSC14, RL10, SCL16, SS10b]. explicitly [LV14, PZY16].

Exploiting [ASWP13, BBV+16, YRR13]. Exploring [CDS+13b, GTS14, Yan11, MG10a, Mü11a]. explosions [BNAB11].

Exponent [XZF12]. Exponential [Ert15, PTMD14, ZNT15, AQJ10].

FAST [Ruf13, ABRS12, BG13a, BKM11, Bot11, BGL+14, BSW12, CZ17, CC10b, CC12, DHJ13, GRZ10, HC16, HS16, KAK12, KME+11, Lat15, Maz13, MSS+14, PKRS16, TO10a, VLPPM14, WISA11, WSO+12, AGB+15, Bru13, CJJ+17, CB15d, CCN17, Dat13, GMF+17, GHF14, Ham11, HP11, JMW13, LC15, LL15, LCHM10, LCHM13, LLX14a, MRZ10, OL12, OYK+14, Qia10, Qia17, RMW13, Ser17, Sza16, iT11, TSIM16, XW15, XAPK14, YBK+11, YBNY13, ZHPS10, ZC12, ZPvR16, vWB10, EBDM17, FCC15, JLM13].

fermion-doubling [FGLB12], Fermionic [Men11, ÖKc11],フェルミオン [FGLB12].
Fermions [FKL13, BG11, BCDI12, CvW12a, CvW12b, CL16, LSR+17], ferrimagnetic [CJH11].
ferroelectric [Gen10], ferrofluid [PLD+13]. ferromagnetic [CAGL13]. FESTR [Hak16], few [CKS10, FE11, PKRS16, RAV11, RC11], few-body [CKS10, PKRS16, RC11], few-level [FE11]. few-particle [RAV11]. FEWZ [GLFQ11, QGLP13]. FeynArts [FHH+14, Sta10, SV12].
FeynCalc [SMO16a, Sht17]. FeynDyn [Dat13]. FeynHelpers [Sht17]. FeynHiggs [HP17]. Feynman [Bor14, Dat13, Ell17b, Fri14b, GM17, Nog17a, Nog17b, Pan15, Sem16, Sni15, Sni16, Sni10, XWhZ13, XW15, dALM+12].
Field [NHD16, RLMGM+11, BW16, BG11, BMS+16, CzD15, CHDCJA17, CSJ+17, CCHL11, CPHL14, DF13, DPB16, EPB+16, EEGW12, ESM17, GA15, GZW17, GLW14, GX15, HO13, HEF+11, JTT11, KB15a, KH12, LPRPR17, LDR+17, LLSK17, LGF14, McM17, MEG12, NPVR14, NVW+13, Nut14, PC11, PCGM14, Pit12, QL10, QJF16, RS12, RK11, SEW12, SEW14, SZM+14, SCM+16, SW11, TSK+17, TPK15, XHLM12, XLX+15, YLK10, dB14, vdSM16, Asc10]. field-aligned [HO13, LDR+17]. field-particle [CSJ+17]. field-theory [DF13, Nut14]. fields [Asc10, BMW14, CFSK14, DOP17, Dua12, GH15, HSD17, JPK+12, KOT12, Ki10, LS13, LR13, LR16, ÖN14, PSTQ17, PM13, SW14a, SW14b, SAHP15, Taui0, TC11b, Wall12, ZY15].
OVSI15, OT11, PVK+17, PB16, QLN14, Ram14, RS12, RVDS16, RC13, RC16, SW14a, SP16, SC15, SHL+11, SBH+12, SCG11, TT14, Ter17, TYH+15, TXZL15, VLPMP14, VDB14, VDAH16, VV16, WZ13, WP10a, WIt14, YRR13, YXT+15, YQM12, YQM14, Hak16, HKF+12, LYP14, MCM+12].

Finite-difference

fitted
[CFMR10, FG13, KMS14, KV10b, Myi15, PS14, RVA14, WT15, YZZ11].

Fitting [GD14, BW16, Ber16a, Ber16b, BMPI14, Bla15, Bru13, DFM+15. Duf16, DSPJ10, Eme11, LFG14, LAS+17, Pat12, PBD+15, RFP+17]. five [XMLC16]. five-body [XMLC16]. fixed

[ACMM10, BHNS17, BBF+13, BCM+16, BTC+17, CDD+16, CPR12, GSC+16, Jo1K17, JPK+12, Ki10, Koh15, KPPC13, LSK+13, MTE17, MRVF13, ML16, PBD+15, PE15, RJLL16, Sza13b, Sza13a, TMM13, TCP13, WZS+11, WG16b, XDL16, ZOZ13, vds10]. fluctuated [LCH11]. fluctuating
[BK16a, XYK12, BIT12, DZI3, HZI11, LLXK16, ILsSZ14]. **FOXTAIL** [TJH17]. **FP** [FWZ+12]. **FracSym** [JC14]. **fractal** [ADdM+12b, EBCBG17, GTL11, GFB+10, GGF+13, RU13, GGF+13, GES13]. **fraction** [BMS+16, ZTG13, ZTG14]. **fractional** [Dev12, DS15, HZ11, JC14, JL10, LLL13, PSB11, PSBT12, SW12b, YQM12, YQM14, BK13b]. **fracture** [RT˚AT15, VLM11, VKLM11, VLM11]. **fragment** [BG14a, DG16, HK12]. **fragmentation** [BG14a, DG16, HK12]. **frames** [MFS+10a, SS11b]. **framework** [Ano11o, CMC+15, CEZ16, CFS13, CFFR15, DMC+15, ESM17, DRI+16, GBFJ14, HMR14, HMI2b, JEC+12, JNN12, JNN13, KEH12, KSTR15, KSH14, LSD14, LS14, LS15a, LRW+15, LZF12, MLR10, MGRG12, NBM+15, NPVR14, PGO17, RM14, SV14, SSX14, SJI11, Sva12, TOB+14, TVT+16, WFW14, ZHH+16, ZHL11, CF16, FCC15]. **Free** [ACMM10, Gen10, AK15, ACTP15, CCD+16, CGM17, CP15a, CXH+15, CPR12, Deu16, DFM+15, Duf16, DGG13, FS17, FBHB17, FM15, Hon10, HS16, HHS+10, JPCG15, KT12, KST14a, KH12, LKA+16, LF12, McM17, MFS+16, ORI+10, PH11, DMI16, RJLL16, SA14, UA17, Wil15, WPV14, XD16, ZAG14, ZOZ13, ZPH+15, Zhe15, ZMCT12]. **free-boundary** [FBHB17, Hon10]. **free-form** [Zhe15]. **free-software** [ORI+10]. **free-standing** [ACTP15]. **Free-surface** [ACMM10, CPR12]. **freedom** [Er14]. **Frenkel** [AMM11]. **frequencies** [KMD12, RAV14, RJ12, YFAT17]. **frequency** [GLAC13, GB14, Hsu11b, KMD12, KSY17, LY16, MCP+11, Oti13, PP13, Ram10, SVG10, TSI16, TIM+16, TUY15, WCT11, YZWR14, McM12]. **Frequency-Domain** [MCM+12]. **FRESH** [KBT+14]. **Fresnel** [JTP15, VZL17]. **FRETS** [EBDM17, HG13]. **FREYA** [VRV15]. **FRG** [Roh16]. **friction** [AMM11, HST+11, RU12]. **frictionless** [LDW13]. **Friedel** [TW11]. **friendly** [CFS13, RFP+17]. **fringe** [MB12, MB12]. **FRODO** [AC13]. **frog** [AZM14, HP14]. **front** [Ano16a]. **frustrated** [LIM13, KGNS10, Le12]. **frustration** [HML11]. **fs** [RE17]. **FSAL** [FLW10]. **FSI** [FHT17]. **FTS** [Ruf13]. **Fuchsia** [GM17]. **fuel** [AZM14, BCP+16, NGC12]. **Full** [DNPS13, AM14b, BMU11, CL15a, CGB14, Dan11, FE11, GAB+16, HEF12, JBG+17, KGG+16, Liu15a, PBMAD12, PCGM14, YTYA17, ZY15, RSSH+10]. **full** [GAB+16]. **Full-Metadata** [RSSH+10]. **full-orbit** [PCGM14]. **full-potential** [PBMAD12]. **full-torus** [KGG+16]. **fullerenes** [RM14]. **fully** [HHS+10, KRB15, PN15, SSB+16, VVB+12]. **FUMILI** [SIT14a, Sit14b]. **FUMILIM** [SIT16]. **function** [AJQ10, AK15, AK13b, BH11, BSG10, BK16b, Cha16, CDL+12, DCC+10, DM17, DdMN16, FCM12, FCM16, FM12, GST12, Jab12, Jab13, Jab15, KDM11, LSF14, LKL11, LHS14, MR13, OKP10, PLF+17, Pla16, PM13, Raw15, RMC16, SS11a, TTT16, Vve12, XD13, XHD15, YTYA17, ZF15, ZDWM17]. **function-velocity-magnetic** [YTYA17]. **Functional** [BC10, DBB12, GS17b, GS17a, LT15, VCMS+13, AKZ+13, BBH11b, CDTV10, CXH+15, FSC13, GBR+14, GSZ13, HB12, HHS+10, JCW+13, KT12, KCT15,
Generalized [JPH+14, BDV11, Brá15, BKK13, BKM14, BK15, BK16b, CC16, DDB12, Ert15, Fen12a, Fen16, GV15, GS14, GTG+11, KMM13, KMS16, LJ11, LS12a, LsSZ14, MBFD12, ICD13, PH11, PA13, RJLL16, RLC12, TCI1b, BD12, MCGR11, MN16]. generate [AM14a, ZLLP17].

Generated [BD10, MVI+16, MSH11, MSS+14, VKS16, WSO+12]. Generating [Bjö11, CB13a, MMT+11, Mis12, WWR+16, AZ17, KFF+16, Mis13, RM14, Rom15, SGDS16, WW12]. Generation [CC10a, JTH14, BJBC+14, BS11, BS13a, BS14a, BJCW13, Bor14, BGL+14, CF16, DCM+12, FMRP16, Fer15, GB17, GBS16b, HBP+15, HU10, MV11, DPHB17, PLF+17, Rei10, SG15, Sem16, XWhZ13, YFAT17, ZS13].

Generator [CF16, GAGW16, AFIS12, AOK15, AhPSV15, BCMS10, BCJW13, CWW10, CUL+17, CI11, DKT14, GP13, Gin10, HLD13, Kas14, KRW13, KYKN15a, KYKN15b, MO14, NCS17, ÖY13, RVDS16, Sav15, Sha13b, Sha16, TU14, Tom16, XW15, YWW13]. generators [ASPW13, BS13a, CKS10, Dem11, MZ14, Mis13, SS13a, SAE+16, TC11a].

GPU [BS14a, BKOZ16, BPP11, BFPP12, BF+13, BBS14, BLS17, BD10, BVP10, BV11].
BTL+17, Boe14, BTC+17, Cap13, CMVRB+14, CMRVR16, CSSB15, CRB+17, CLB11, DRR16, DS13a, DCVB+13, DCGG13, DGG13, ELD14, ELL+17a, FFT+14, FGC+11, FDWC12, Fil13, FBN+13, FOB+15, Gai17, GP13, GJ13, GLHG12, GHR+16, GB17, Ham11, HXW+13, HW12, Ihn12, JK14, JPCG15, JXT16, JCW17, KKP11, KP12b, KO12, KO13, KO14b, Kom15a, Kom15b, KO16, KMA+12, LYP14, LCC13, LGW13, LBP15, LWRQ16, Lut15, Lya15, MDW16, MPM14, MFM15, MHR+13, MTM13, NHD16, Ngu17, OP12, PR14, PLD15, PBS+17, PKRS16, RD10, Sai10, SGNL17, iSYS12, Sie16, Smi16, SKM15, TL17, TDL+14, TPC16, WXW14, Wei11b, WSH+14, WC13, WAW14, XLX13, YHL11, ZSW+17b, ARYT17.

GPU-accelerated
[ELDS14, GHR+16, TL17, WXW14, BTL+17, Cap13, CRB+17, DS13a, GJ13, Ham11, HXW+13, MHR+13, Ngu17, PBS+17, XLX13].

GPU-based
[Boe14, CMVRB+14, FDWC12, JPCG15, KO12, Kom15a, KMA+12, LCC13, PKRS16].

GPU-centric
[Sie16].

GPU-enabled
[LYP14].

GPUs
[ACD+14a, AAT17, BS14a, BCDI12, CMRVR+14, CB13a, CSBO13, CBB+10, CH11b, CBB+14, Dat13, Dem13, DSP15, ECD+10, FGG11, GNA+15, GJB11, HTJ+16, HAH13, HLZ+13, sLqSqL+13, MR14, Maz13, MRSD15, MKB+11, ON12, PKV+17, SV13, SÖON11, TK14a, TCP13, WXW13, WAHL13, WWM14, YL12, YBK+11, YBYNS16, jDBIM16].

GPU-The
[HLZ+13].

gpuSPHASE
[WMRR17].

GR
[OK12].

Grad
[HS14b].

gradient
[AG12a, CR12, HbotRC15, HKVR10, JHL+15, KN13, SEGP15, WX14].

gradient-based
[HKVR10].

GRADSPMHD
[VKP14].

grained
[AGVP10, BRU13, ESM17, FQY+17, PA13].

grazing
[GB11].

Grass
[AS16, PLCC12].

Grand-Canonical
[AS16].

grand-canonical-like
[GTPWL12, KPPC13, RU12, San11].

graph
[ASTT16, AOK15, Bor14, SSBS15, ZLLP17].

graph-theoretic
[SSBS15].

graphene
[CW16, FUSH14, GZL14, Ihn12, KLKR11, LHS14, OCL+13, STT11, SPY11, SWL11, TMA+15].

graphical
[CF16, GB13, RPL+14, RLMGM+11].

graphical
[CCL15, WWL11].

graphics
[BBW11, Bor14, FRW17, MKMK10, MKV11, SI11].

Grasp
[JGB+13].

gravatons
[AAB+10b].

gravitational
[ACML11].

Green
[AK13b, KK16a, KDM11, Liu13, PLF+17, Pla16, WAHL13, XD13, XHD15].

Grid
[KK14b, BH17, BAR12b, CBGY17, CB16b, DF11a, FZY17, GBN17, GXP+15, GLHG12, HP14, HvAS+13, HZW+16, HKK11, KDP+14, KK14a,
Grid-based [KK14b, KK14a]. grid-computing [KDP+14]. grid-convergence [CB16b].
grid-resolution [CBGY17]. gridless [OCF10]. gridlock [wH15]. GridMD [MV11].
grids [BHS15, DJ11, DHS14, FRFH10, GN14, GSKM14, HWS16, JBG+16, JBG+17, LYP14, MTO15, SC15, SHL+11, YJK11, ZNT15]. GriF [MLR10].
gyrokinetics [ZW15].

H [PCEH15]. H1 [GRZ10]. H2SOLV [PZY16]. H5MD [dBCH14]. Haar [Jiw12, KMM13]. Haas [RJ12]. Hadron [BSW12, ACD+14a, BDC+14, BHZ13, CCN17, CM14b, DDKM15, Gao13a, GLS+13, Gri10, OK12, SZY+12, SZY+13, ZYL+15, Tom16].
hadronic [CWW10, CWW15, GLPQ11, KKK+15, WW13, ALL+11]. hadrons [Kol15].
hadroproduction [WW14]. haggies [Rel10]. Haldane [BDK11]. half [HM12c]. half-integer [HM12c]. Hall [VPM12]. Hall-driven [VPM12].
Hartree [SW14b, SDM+12, SDS+17, SSK+13, ZF16, BM16, BMW14, DG10c, Fis11, GBD10, KOB13, KSI2, OT11, SEW12, SEW14, ZY15]. hase [SKB10]. HASEonGPU [EZBA16]. Hastings [GM14, MP11].
[MVS15]. high-nuclearity [DRR16, RRCSCJ10]. High-order
[MD10b, RHW+12, SSH+13, SA15b, TY10, AAD13, AAD14, Cap13, DJ11,
FG13, GA10, Koh15, LV15, LWZ14, PVK+17, Qia10, Tia11, VV16, WWS10,
WWR+16, Zag14, ZFH14, ZNT15, DBLF16]. High-performance
[GS15, Gai17, JTW+17, LSR+17, DPHB17, Ara14a, Ara14b, SHZ13].
high-precision [BDT15, LM16]. high-resolution [BMG15].
High-temperature [HvWT17, Liu15a]. high-velocity [JH11].
Higher [ABdA15, CD15, KO14a, WP10b, ACDdM15, Cha16, CLJ12, DKOS14,
MO14, SR12, SC16b, SB11, VJC11]. Higher-order [CD15, KO14a, Cha16, SC16b, SB11]. Highly
[CH11b, LBP15, MGR16, HBP+15, MSI+10, MLS10, SEW12, SEW14, WDR16, YBY13].
highly-efficient [WDR16]. Hiking [Br´a15]. Hilbert
[ERPDFLS15, SA15a]. Hilliard [LLXK16]. Hirshfeld
[EPP12]. histocompatibility [HFSK12].
histogram [CMRVR14, CMRVR16, VK14]. histograms
[AMR15, Gag12b, Gag12a]. HMC [CDS+13b, KP12a]. HNLS [SB11]. HOC
[TY10]. hole [Gin10, LZR11]. Holm [ZST11]. hologram
[BGL+14, JTP15, MSS+14, WSO+12]. holograms [BD10]. holographic
[FBN+13]. holography [MSI+10, ZSW+17a]. HoMnO [KAR+15].
homogeneous [Asi10, BK11b, MSHLS15, MSHL17, PN15, SLEF17, vMB14].
homology [DS13c]. Homotopy [CS10, PSBT12]. honeycomb
[MHHL11]. Hooke [RGKR17]. Hopf [Bor14]. Horn [BKM14, BK15]. Horn-type
[BKM14, BK15]. Horner [KPvdH13]. HOS [DBLF16]. HOS-ocean
[DBLF16]. Hoshen [FKH15]. hosphere [CDTV10]. HOTB
[GSMK17, SMGK14]. Houches [ABB+14, BBC+13a, MHA+12]. HP
[LW111, Roh16]. hp-frG [Roh16]. HPAM [EPP12]. HPC
[CCdC+11, GBK+12, OLG+16]. HPL [Mai12]. HRMC [MHV17].
HRMC_{1.1} [OPO+11]. HRMC_{2.0} [OPSR13]. HRMC_{2.1} [OPR14].
Huge [WSI13, BMC+11b]. Huge-scale [WSI13]. Hut [WSH+12]. Huygens
[VLZ17]. Hybrid
[GJLB12, LRW+15, ML17, OPR14, SSB+16, SS11b, TH17, VCMS+13,
WDL11, WLZ17, YHL11, AAD14, BMC+11a, BD12, BT17, BWPT11,
BKP+12, BY13, CW16, CL13, ES11, FGR14, GC12, Gwi12, HLW16,
JTN+11, Jiwi15a, KK13, KCS+15, LCY+11, LHC+13, LHH+12a, LSYZ12,
MIW+12, MM1, MUK+12, MSM+11, SZ15, SS13b, SPR+10, TFBW14, WC13,
WA14, YvOSM15, XYT+15, ZC12, GHR+14, HKZN17, OPO+11, OPSR13].
Hybrid-optimization [WLZN17]. hybrid-stabilized [JTN+11].
hybrid-symbolic [SZ15]. hybridisation [SKFP16]. hybridizable
[HLLH16, LLP15, LLMW17]. hybridization
[AK13b, HGW13, SGW17, VPP+12]. hybridizations [SGW17]. hydraulic
[WNYP17]. Hydrodynamic
[MOD13, GZW17, KHB14, LCH11, LW11, WSH+14, ZD15].
hydrodynamical [NAQ16, QA13b]. hydrodynamically [APC+14].
Hydrodynamics
Hydrogen [WBY11, BP12, BH14a, BH14b, BH16, BKS15, JTT11, LH11, MFS10b, SW14a]. hydrogen-like [BP12, MFS10b]. hydrogenic [PG10, Sar17a, Sar17b]. Hydrogen-like [BP12, MFS10b].

instruments [KSH14]. insulator [CJH11]. insulators [PSP16]. integer [HM12c]. integrability [ACDdM14]. Integral [Smii15, ASEA14, Boy15, CMM14, Dat13, DG17a, GJ13, GHvSF14, KO14a, MNV13, ML14, Miu11, Qia10, RGRK17, Smii16, Stu10, WM14, ZBG+16, ZDWM17, ZWLZ17].

integral-equation [ML14]. integrals [AG12b, ACDdM14, Bog16, BH13, BCH13, BHJ+15, CEZ16, CGH+11, GBN17, GM17, JH15, Kap12b, KCT15, KK14a, Pan15, Pat15, Pat17, PB13, Prai17, RMW13, TO10b, WiA11, NW16].

integrating [Bot12, dHV10]. Integrating [JGC+11, NBW16, Ano10a, GGI+13, GC12]. Interacting [Cas12, APC+14, CvW12a, CvW12b, Fil14, LJSW11, LSR+17, LKT+16, MFB12, PFA+15, RS12, SSF+17, TD17].

Integration [MAIVAH14, AK13a, BG13, BGK15, CEZ16, CGH+11, GBN17, GM17, JH15, Kap12b, KCT15, KK14a, Pan15, Pat15, Pat17, PB13, Prai17, RMW13, TO10b, WiA11, NW16].

integrand [Per14]. Integrated [JGC+11, NBW16, Ano10a, GGI+13, GC12]. Interacting [Cas12, APC+14, CvW12a, CvW12b, Fil14, LJSW11, LSR+17, LKT+16, MFB12, PFA+15, RS12, SSF+17, TD17].

Intel [BBS14, Lya15, NBW16, RJKC16].

intelligent [LWL12].

intense [GH15, JTT11, MiH12, ´ON14, TC11b].

intense-laser-driven [MiH12].

intensities [Dan10a, Dan10b, Dan14, Dan16, Hei12, ARY17].

intensity [Dan11, MSPD12].

intensity-energy [MSPD12].

inter [HB13, KKT17].

inter-particle [KK17].

inter-polyelectrolyte [HB13].

Interacting [Cas12, APC+14, CvW12a, CvW12b, Fil14, LJSW11, LSR+17, LKT+16, MFB12, PFA+15, RS12, SSF+17, TD17].

interaction [BF16, BM13, BL14, BSC+13, CSJ+17, CL11, CUL+17, Gai17, GC12, GBD10, GC10, GC13, GC16, HRC11, ICPD16, KPST15, LB13, MPS13, NS11b, RETV12, RE12, Sar17a, Sar17b, SS14, TJH17, Yan11, ZZ15].

interactions [BB13, BHL11, CCGC13, CB16b, Cro16, ER+12, Fil13, FZY17, FN17, Gao13a, GM16, HCSW10, KMD12, Kra17, LSDD14, dRL14, Ot11, PH13, TMA+15, TRN16, TTN11, ZEI11, ZEI16, ZHPS10].

Interactive [KY14, Gio14b, MMC10, TL17, KST+14b].

interatomic [GD14].

interchangeable [ZMV+13].

interdiffusion [CHDCJA17].

interest [OK10].

interesting [MN10].

interface [ABB+14, Ano10o, BPML12, BB13b, CMM14, CSPAD10, CF16, CCHL11, DNP+12, DPW16, EWI14, FLSZ13, GMW13, GLR17, HHP+16, KDP+14, MZ14, Nov17, TM14, Uty14, WMK11, XNK+16, XD13, XHD15, ZMV+13].

interfaces [KR13, KMJS16, NPM16, PR10, RH11, ZFR11].

Facial [HLS+17].

Interfacing [MHA+12].

interference [FNPMB10].

interior [HLW16].

interlaced [CMdB11].

intermetallic [DMC+15].

intermolecular [KHKR14].

internal [BBH+10, BHH+15].

International [BCJ+11].

Internet [VDJ+11].

Internet-based [VDJ+11].

interoperating [CCdC+11].

interparticle [QLN14].

interpolated [FZY13].

Interpolation [HKJ+12, DG17b, GGG16, Jiw15b, PCGM14, RWKS15, Sok13, UNK12, XLL15].

interpretation [HLL13].

intersection [PC11].

interval [Zlo14].

intranuclear [TB14].

intrinsic [Dev12, DMC+15].

intrinsically [CRNK12].

Introducing

laser [BT17, EZBA16, FZY17, GC12, HJL+14, IB11, JTT11, LJSW11, LHJ+15, MiH12, MFS+10a, ÖN14, RETVH12, SZM+14, SBE+16, TC11b, TT11, ZYZ15, ZZ15, ZLM12].
laser-atom [FZY17, TT11].
laser-driven [HJL+14].
laser-induced [ZLM12].
laser-plasma [REtVH12].
laterally [EBCBG17].
Lattice
[BCJ+11, CDS+13b, CKCS13, LS13, SCRS17, TD17, dHGCS11, vdS10, AGH+16, BBC+11, BB+17a, BHNS17, BB13a, BW12a, BDP16, BO12, CB13a, CAN11, CS16, CBB+10, CRA10, CND11, DE13, EPS15, FDI3, FRI14a, FKH15, HLS+17, HFOFPi15, HMR14, HCH16, HbotRC15, IUM13, JLA+14, JKF14, KCP+12a, KYM+17, KAVD11, KdMvO14, LKL11, LS14, LQZ+13, LCL+11, MDW16, MOD13, MR14, MRZ10, Maz13, MGS13, NIK+12a, ON14, RETVH12, SÁM14, SBE+16, TC11b, TT11, ZYZ15, ZZ15, ZLM12].
lattice-Boltzmann [CRA10, FKH15, MOD13, Maz13, SÁM14].
lattice-Boltzmann/finite [CRA10].
lattice-switch [UA17].
launched [sLqSqL+13].
Laurent [Per14].
Lauricella [BK16b].
laws [AAD14, DJ11, MWC14, SW12b].
Lax [MWC14].
Layer
[LV15, GGI+13, GLW14, JHL+15, Ras09, Ras17, WTH15].
layered
[Bot12, CL15b, Dv11, LF12, MPSV15, PP13, VCD16].
LayerOptics
[VCD16].
layers [CB14].
LB3D [SSF+17].
leading [GLPQ11].
leagues [dSVLP13].
leap [HP14].
leap-frog [HP14].
leaning [AZM14].
learning
[BSW12, KP16, YZZ+17].
Least
[Ber16a, Ber16b, LSCZ11, Liu13, AG12a, DSP10, Kra11, LW10, Wan10b].
least-square [DSP10].
least-squares [AG12a, Kra11].
left [REBS16].
left-right [REBS16].
legacy [BCG+15].
Legendre
[MR10, MS15, SS1+10, SPS10].
Lemon [DRUE12].
length
[SBB+17, UIY11].
Lennard [FPY+17, MHR+13].
Lennard-Jones
[FPY+17].
Lennard-Jonesium [MHR+13].
LEOrbit [MP313].
LEP
[BBH+10, BB+11a].
lepton [CGV13, Mur14].
leptons [KFS+13].
less
[Ber16a, Ber16b].
Level
[Ki10, NHS15, ACD+14, BR14, BSK15, Fen12b, FE11, Feh11, FN17, Hef12, KN13, LW14a, LY16, MNPY14, OK10, SHZ13, WL11b, XHLM12, XLX+15, ZHC16, IBP+15, MFG+13].
level-of-detail
[OK10].
Level-Set [NHS15].
level/high [MVS15].
levels
[GCVA14a, Kra11, TRM+12, ZZ15].
LEVIS [PCGM14].
Levy [YZZ+17].
LHC
[UL+17, DDK+15, KSTR15, QGPL13].
LibCreme [RLL12].
LIBERI
[TO10b].
MSPD12, MCP+11, NRSVW12, PTMDPK14, RF16, RHC15, TSIM16, TIM+16, Wei12, Zlo14, vRWS14, BH14b, MPS13. low-density [HYM11].
low-dimensional [vRWS14]. Low-energy [HYM11].
low-dimensional [vRWS14]. Low-energy [HYM11].
low-frequency [MCP+11, TSIM16]. low-mass [PTMDPK14]. low-noise [BDBV12].
low-order [AGH16]. Low-rank [BK12]. Low-temperature [KGNS10].
lowest [Kol14]. LSQR [Wan10b]. LU [San15, WM13, ZSW+17b].
luminescence [PVH+17, Str15].
Maclaurin [SBvD13]. Macromolecular [CRNK12, Gio14a]. macroscopic [BS12].
MadAnalysis [CFS13]. made [YZY10]. MadGraph [ADF+15].
Madland [Rom15]. MAGE [CF16]. Magnetic [MHHL11, VCMS+13, BDK11, BUJ15, BMW14, CHW+15, CFW17, CZL+11, DOP17, DA16, Dua12, HSD17, HELF+11, KB15a, KOT12, KI10, LFG14, LR13, LR16, MDW16, MJB+10, MEG12, PBE14, PCGM14, RS12, SEW12, SW14a, SEW14, SW14b, SHNM11, Tau10, TG11, VPM12, YTYA17, YJK11]. magnetically [Ram12, SCM+16]. magnetized [BOPL17, LDF+16, MCM+12, MMB15, Ram10, sX14, Yan09].
magneto-optical [CCL15, OCL+13]. magnetohydrodynamic [SNB11, TYH+15, WWFT11, WAW14, WWM14, YTYA17, ZD15].
magnetohydrodynamics [CGM17, Ein16b, QM10, QA13a].
ManeParse [CGO17]. manifest [REBS16]. manifolds [DS13c].
Many [BRH+16, GBJ+13, GBJ+15, BBC+13b, FCVH17, FLW17, GBJ+10, GBJ+12, GBFJ14, HLZ+13, JOK13, JDG12, KPS15, Men11, Mül14c, PMMW15, PBS+17, RJK16, ZC12, NBW16].
Markov \cite{EBDM17, KSW15, LN16}. Markovian \cite{CF17, JPS10, ZF15, dSVLP13}. marriage \cite{WCT11}. Martini \cite{dJBIM16}.

mass \cite{AHK12, BBC11, BO12, CGV13, CKCS13, HKZN17, HP17, HHC16, LS13, NGCI12, PTMDPK14, Sal16, SVG10, SAE16, Ros16}.

mass-preserving \cite{Sal16}.

mass-transfer \cite{NGCI12}.

masses \cite{AKH12, AMRdA17, BGM14, BBC11, CGH11, SS12, YdDH12}.

Massive \cite{BH13, WAHL13, ABB16, BBF13, OLG16}. Massively \cite{BPB17, DBDP12, GJB11, KBB17, Sus12, YdDH12}.

Massive \cite{AHK12, BBC11, BO12, CGV13, CKCS13, HKZN17, HP17, HHC16, LS13, NGCI12, PTMDPK14, Sal16, SVG10, SAE16, Ros16}.

mass-preserving \cite{Sal16}.

mass-transfer \cite{NGCI12}.

masses \cite{AKH12, AMRdA17, BGM14, BBC11, CGH11, SS12, YdDH12}.

Massive \cite{BH13, WAHL13, ABB16, BBF13, OLG16}. Massively \cite{BPB17, DBDP12, GJB11, KBB17, Sus12, YdDH12}.

Massive \cite{AHK12, BBC11, BO12, CGV13, CKCS13, HKZN17, HP17, HHC16, LS13, NGCI12, PTMDPK14, Sal16, SVG10, SAE16, Ros16}.

mass-preserving \cite{Sal16}.

mass-transfer \cite{NGCI12}.

masses \cite{AKH12, AMRdA17, BGM14, BBC11, CGH11, SS12, YdDH12}.

Massive \cite{BH13, WAHL13, ABB16, BBF13, OLG16}. Massively \cite{BPB17, DBDP12, GJB11, KBB17, Sus12, YdDH12}.

Massive \cite{AHK12, BBC11, BO12, CGV13, CKCS13, HKZN17, HP17, HHC16, LS13, NGCI12, PTMDPK14, Sal16, SVG10, SAE16, Ros16}.

mass-preserving \cite{Sal16}.

mass-transfer \cite{NGCI12}.

masses \cite{AKH12, AMRdA17, BGM14, BBC11, CGH11, SS12, YdDH12}.

Massive \cite{BH13, WAHL13, ABB16, BBF13, OLG16}. Massively \cite{BPB17, DBDP12, GJB11, KBB17, Sus12, YdDH12}.

Massive \cite{AHK12, BBC11, BO12, CGV13, CKCS13, HKZN17, HP17, HHC16, LS13, NGCI12, PTMDPK14, Sal16, SVG10, SAE16, Ros16}.

mass-preserving \cite{Sal16}.

mass-transfer \cite{NGCI12}.

masses \cite{AKH12, AMRdA17, BGM14, BBC11, CGH11, SS12, YdDH12}.

Massive \cite{BH13, WAHL13, ABB16, BBF13, OLG16}. Massively \cite{BPB17, DBDP12, GJB11, KBB17, Sus12, YdDH12}.

Massive \cite{AHK12, BBC11, BO12, CGV13, CKCS13, HKZN17, HP17, HHC16, LS13, NGCI12, PTMDPK14, Sal16, SVG10, SAE16, Ros16}.

mass-preserving \cite{Sal16}.

mass-transfer \cite{NGCI12}.

masses \cite{AKH12, AMRdA17, BGM14, BBC11, CGH11, SS12, YdDH12}.

Massive \cite{BH13, WAHL13, ABB16, BBF13, OLG16}. Massively \cite{BPB17, DBDP12, GJB11, KBB17, Sus12, YdDH12}.

Massive \cite{AHK12, BBC11, BO12, CGV13, CKCS13, HKZN17, HP17, HHC16, LS13, NGCI12, PTMDPK14, Sal16, SVG10, SAE16, Ros16}.

mass-preserving \cite{Sal16}.

mass-transfer \cite{NGCI12}.

masses \cite{AKH12, AMRdA17, BGM14, BBC11, CGH11, SS12, YdDH12}.

Massive \cite{BH13, WAHL13, ABB16, BBF13, OLG16}. Massively \cite{BPB17, DBDP12, GJB11, KBB17, Sus12, YdDH12}.

Massive \cite{AHK12, BBC11, BO12, CGV13, CKCS13, HKZN17, HP17, HHC16, LS13, NGCI12, PTMDPK14, Sal16, SVG10, SAE16, Ros16}.

mass-preserving \cite{Sal16}.

mass-transfer \cite{NGCI12}.

masses \cite{AKH12, AMRdA17, BGM14, BBC11, CGH11, SS12, YdDH12}.

Massive \cite{BH13, WAHL13, ABB16, BBF13, OLG16}. Massively \cite{BPB17, DBDP12, GJB11, KBB17, Sus12, YdDH12}.

Massive \cite{AHK12, BBC11, BO12, CGV13, CKCS13, HKZN17, HP17, HHC16, LS13, NGCI12, PTMDPK14, Sal16, SVG10, SAE16, Ros16}.

mass-preserving \cite{Sal16}.

mass-transfer \cite{NGCI12}.

masses \cite{AKH12, AMRdA17, BGM14, BBC11, CGH11, SS12, YdDH12}.

Massive \cite{BH13, WAHL13, ABB16, BBF13, OLG16}. Massively \cite{BPB17, DBDP12, GJB11, KBB17, Sus12, YdDH12}.

Massive \cite{AHK12, BBC11, BO12, CGV13, CKCS13, HKZN17, HP17, HHC16, LS13, NGCI12, PTMDPK14, Sal16, SVG10, SAE16, Ros16}.

mass-preserving \cite{Sal16}.
MCgrid [BHS15, DHS14]. MCMC
[BG13b, BLG14, Bon15, Bon16, VPMVH+17]. MCNP [Car10a, Car10b].
MCNP5 [SMCB+15]. MCNPX [LL15]. MCPL [KKK+17, mcsanc
[BS13b], mcsanc-v1.01 [BS13b], MD [FMRP16, BBH+17]. MDMC
[BG14a]. MEAM [DFM+15]. MEAMfit [DFM+15, Duf16]. Mean
[LS15b, BG11, DPB16, EPB+16, NPVR14, QJF16, UW12, dB14].
mean-field [BG11, DPB16, NPVR14, QJF16, dB14]. mean-square
[LL12]. means [ACMM10]. measured
[Kon11, Sco13]. measurement [AK13b, BJM15, CDSG11, PR13].
measurements [EBDM17, ERPDFS15, FBHB17, RF10, SW12b, WLM14].
measures [HLL13, RLL12]. measuring
[ICPD16]. Mechanical
[Voy13, AMM11, AYDY11, DGMZ15, LV13, RC11, SZ15, Sin11, Sin12a].
Mechanics
[LSJ13, KV10a, OML11, ORCR17, PGO17, RK11, RU12, STT11, ZF15].
Mechanism
[GAGW16, BUJ15, BNAB11, CHDF10, CGV13, ÇOSÜ11, JHJG14, YZZ+17].
mechanisms [CFR15, GAGW16]. Mechanistic [ORS+14]. media
[BJ11, EZBA16, HSF+15, MPM14, MAIAVH14, OP12, SGNL17, Ser10, TMD11, Zol14, vMB14]. mediated
[HS12]. medium [IB11, PP13, SM14]. Meep [ORI+10]. MEKS
[GLS+13]. membrane [CZN14, FPY+17]. membranes
[DC14]. memetic [VHP+15]. Memory
[MR14, BKS15, CL15b, DGMZ15, DKG+14, IW15, LP15, LL15, MD11a, NS11b, NFS15, OLG+16, WMR17]. memory-mapped
[LL15]. MEMPSODE [VPP+12, VHP+15]. Mercedes
[HD+12, SBPN15]. merge
[FMF15]. merging
[LTP16, VGM+15, XLL13]. MESA
[GWM13]. MESAFace [GWM13]. Mesh
[HS14a, AKW+16, BCH11, BKPT12, FXZ+14, GX15, HCC14, JG16, JFC12, KC14, KYKN15a, KYKN15b, LJKW11, LWRQ16, McM17, RHBH15a, RHBH15b, UBRT10, VLM11, ZD15].
mesh-free [McM17]. meshes
[ASGLK10, AK15, FXZ+14, LA13, YWX11]. meshing
[ZPH+15]. meshless
[DG10b, MM12, QLN14, SW14c, SD10b, XLL15]. meson
[BBC+11, CWW15, YWW13]. mesoscale
[WSH+14]. Mesoscopic
[SS11c, WJHW14]. message
[TSTT13]. message-passing
[TSTT13]. meta
[GSZ13]. meta-GGA
[GSZ13]. Metadata
[RSSH+10]. Metadyn
[HS16]. metadynamics
[BPMIL12, HS16]. METAGUI
[BPMIL12, GLR17]. metaheuristic
[CNM10b]. metal
[FSJ+16, BBH+17]. metallic
[HKF+12, HIL16, LLHC11, ZLLP17]. metals
[BT17, KOK17, PSP16]. metamagnetic
d[SFdFF13]. metamaterials
[RHW+12]. Metamodelling
[ZKS13]. metaphor
[DMH16]. metastable
[BVC13, ES16]. METATOY
[LHC+12]. METHESIS
[RF16]. Method
[BUJ15, EW16, Les16, TGH+16, AM14a, AM14b, ARYT17, AS11b, ADdM16b, ASS13, ABDR17, AG12a, AAJA14, BOPL17, BBL+13, BM13, BF16, BBB+17a, BK11a, BH14b, BH16, BW12b, BR14, Bis15, BH11, BMW14, BCM+16, BMNS14, BPM16, BIT12, BHND16, BENK+17, CL15a,
CB13b, CAN11, CSPAD10, CZS10, CL10, CLJ12, CW13, CTL15, CW16,
CS17, CSL+13, CJKK+13, CB15d, CvW12a, CvW12b, Cor14, Cou13a,
Cnn13b, CNS+14, DZ15, DT10, DG10b, DT11a, DM17, Den10, DKSG16,
DA16, DMC10, DCGG13, DBL16, DFM+15, Duf16, DO14a, DO14b,
EBCB+14, ELDS14, EKK14, FGMG11, FS17, Fen12b, FK12, FNPMB10,
FBN+13, FPP+17, FN17, GC12, GZL14, GML15, GBP13, GA15, GA10,
GYW+10, GB17, HE13, HV15, Ham11, HC16, HLLH16, HSD17, HKvH16,
HZD14, HHC+10, HWW12, HLLW16, HP11, Ixa10, Ixa12, Jia10]. method
[Jan10, JK14, JWCF17, rJmYT11, JOR+12, JGAL+13, JLW13, JPM12,
Jk13, JU17, KMS14, KKK13, KU10, Kap12a, Kap12b, KKKG+15, Ki10, KO14a,
KL11, KN13, Koh15, KMD11, KAS12, KPD15, Kra10, KZ14, KMI15,
KR14, KW12, KOK17, LLHC11, LX12, LM16, LLG17, LHZJ10,
LSCZ11, LCCCI11, LHC+13, LST15, LLMW17, LJWK11, LHH+12b, Lin13,
LSK+13, LTP+17, Lin11, Liu13, LLZ+17, LLX14a, MCFW15, MD11a, MiH12,
MIW+12, MSPD12, MRZ10, MC12, MBFB13, MK10, MM10, MM12,
MFG+13, MSR+17, MBBG15, MBFD12, NPM16, NSWY15, NZQL14, NS15,
NQA16, Nis11, NMS14, OYK+14, OPO+11, OPSR13, OPR14, ORW+10,
OT11, PSBT12, PSS11, PS14, PDRG10, PR13, PBMD12, Pit12, PS11,
PS16, PB16, QM10, QYM11, QA13a, QDZ+13, Qia10, QwWL+15, QL14,
Ram10, RVA14, RCCT16, Rac9, Rac17, Raw15, Raw16]. method
[RVD16, RLS16, RMS+12, RH17, RTA10, Sal16, San15, SW13a, Sch14a,
SEW12, SEW14, SW14b, SSF+17, SNB11, SCS12, SDS15, SD14, Ser10,
SW14c, SD10b, SS13b, SA15b, Sie16, SMdON14, SHL+11, SBvD13, SS10b,
SCG11, SDL+16, SKSK13, SL14, Sza13b, Sa13a, Sza16, TSM16, TD14,
TZM17, TT11, TFBW14, TC11b, TKP15, TY10, Tia11, T11, TW15,
TDL+14, UO15b, UO15a, VdLF14, VK14, Wan10a, WX11, WLZM12, WZ13,
WM13, WX14, WN10, WP10b, XZ12, XLL15, XLX+15, XD16, Yam16,
YLO13, YBNY13, YTYA17, YQM12, YQM14, ZAH10, ZHF14, ZHPS10,
ZOZ13, ZSW+17b, ZWLZ17, ZX10, ZS13, ZC12, ZST11, vdSM16, CC10b,
CC12, EW14b, EEG12].

[Dan10a, Dan10b]. **Modeling** [CLW11, wH15, TJH17, AD11, BOPL17, Bar11b, BMNS14, CSJ+17, CL11, CFFR15, Dan12, EZL+16, EKK14, FZY17, Gai17, GGI+13, HV15, Hak16, HCHW11, IP14, JGC+11, KEH12, KPA13, KM10, KRBl5, KMIJ16, KGNS10, Lan13, LZZL10, LHH+12b, LTL+12, MPS13, NGCI+12, OP12, PBF+16, PE17, Ram10, Ram12, RA11, RTA10, SGNL17, SLC11, SN16, SHL+11, Sol11, SCG11, Sva12, TKP12, Uty14, VBMS17, VCD16, VGVPL17, XHLM12, ZE11, ZE16]. **Modelling** [AGB+15, CC16, HdM16, IBKK11, Ano10n, HKF+12, MDPTK15, MRSD15, MSML10, OBH10, ORS+14, Org15, RF15, RLMGM+11, TN11, Van15]. **Models** [Rei11, Rei12, AS11a, AABC+13, AG12a, AH13, AhPSV15, AC15, AC16, BW16, BBC+13a, BR13, BKMI11, CE CCS16, DCM+12, DNPS13, ELDS14, Fw11, FI13, FD13, Fuh15, HLL13, HvWT17, HCH16, HVMR10, HKVR10, KO14b, KO16, KST+14b, KTA12, LLMW17, MLGVE14, Mur14, NHS14, NAQ16, PS12, QA13b, RK11, SLZ16, SH16, SOPS12, Sus17b, TSTT13, TVZ+15, WG12, Wan16, Wei11b, XLX+15, dllRAPL11]. **Modern** [HdM16, BS14a, CDSG11, Ein16b, HBL+13, RK11]. **modes** [ALSW14, CS17, HSK+12]. **Modified** [LYL+17, NIK+12a, BKN+17, DFM+15, Duf16, FZY13, GSZ13, Jiw15b, KMS14, MS15, Ras09, Ras17, SMJ17, SBvD13]. **Modular** [CFW17, Sin11, Sin12a, DLGP10, FWS+17, KP16, KSH14, Kro16, TCK+15, Zag14]. **modules** [AAB+10a]. **moduli** [Bog16]. **MOLDY** [ADD+11]. **Molecular** [AS16, DLGP10, Fil14, FFIH11, GM11, HLZ+13, LS17a, MTSI11, MKB+11, Ngu17, SBPN15, TD17, ZS13, Zhe15, ADD+11, Bar11a, Bar12a, BBH11b, BPML12, BKSI5, Bin13, BG13a, BG14a, BWPT11, BKPT12, BY13, BCG+15, BBV+16, CMM14, CXH+15, Col14, DEW16, DES+11, DRR15, ESM17, FSH13, FCVH17, FRG12, FP14, Gio14b, GLR17, GNA+15, GRR+14, GJHF14, HST+11, HYNI11, HXW+13, HAN+16, HBB+17, HWL+17, HVMR10, HKVR10, HDM+12, JWL13, JPH+14, JTT11, KJS16, KST14a, KPA13, KDM11, Kon11, KS15, LGW13, LS12b, LHZ11, LK15, LLZ+17, LRR+17, MDW16, MGRB11, MM17, Miu11, MSH11, NBW16, NFA+16, NPAG11, iNSK+15, OKM12, OYK+14, PLCC12, Rap11, Rei11, Rei12, Sco13, SOM+13, SC16a, SMO16b, SCM14, SCM13, SAG13, SA14, TS11, VBG+10, VK14, WSI13, YK12, ZBG+16, ZPH+15, dBCH14]. **molecular-continuum** [NFA+16]. **molecular-dynamics** [HYNI11, MSH11]. **molecular-hydrogen** [BKS15]. **molecule** [CNMC10a, CNMC10b, EY11, EBDM17, Faw10, JLSW11, WG16a]. **molecule-fixed** [CNMC10a, CNMC10b]. **molecules** [BRH+16, CRNK12, DVB11, FS17, GNT17, Kob13, LRR+15, PZY16, TC11b, WFM14, Yan11, YLTS16, ZYZ15, ZZ15, ZMCT12]. **molgw** [BRH+16]. **Møller** [KK14a, KBb+17]. **MolSOC** [CL14]. **moment** [KKG+15, LLX14a, MMA15]. **moment-independent** [LLX14a]. **momenta** [AC16]. **moments** [MSR+17, RE12]. **Momentum** [HHC+10, BAK+15,
BAK+16, BAK+17, DSM+11, EUT+15, HKJ+12, MMT+11, Trö11, Wei99].
Momentum-time [HHC+10]. monolayer [OCL+13]. monopolar
[ZDWY10]. monosized [AYDY11]. monotonic [SC15]. monotonically
[HRC11]. Monte
[AIG16, HKZN17, JPSS10, MBRV+13, NSXZ14, OPO+11, OPSR13, TDL+14,
WLZN17, ZTG14, ZDD+13, AFIS12, ASGLK10, AK15, ABB+14, ASPDL+16,
Ano10o, AK13a, AK13b, BKV16, Bar11a, Bar12a, BDP16, BVP10, BG11,
BMW14, BG13b, BLG14, Bon15, Bon16, BENK+17, CL11, CL15b, CKS10,
CNS+14, CI11, DSHS17, DGPW11, DPK+15, Dem11, DDKM15, DKT14,
EBDM17, ES11, FGGM11, FW11, FDWC12, GA15, Gin10, GSB+14, GWF+11,
GB17, HBE10, HMR14, HWM+15, IUM13, JLA+14, KOT12, KEH12,
Kan14, KRW13, KC14, KKK+17, KNS+17, KSW15, KPVvdH13, LS14,
LS13a, LS13b, LWL11, Lu15, MP11, MRZ10, MEM+11, MW14, MHR+13,
NPA11, NHD16, NM14, OPR14, PM14, RF16, RMS+12, RV10, RV11, SI11,
SGNL17, SFP11, SL16, SMJ17, SD14, SKFP16, SLZ16, SSF+14, SKM15].
Monte Carlo [SKSK13, TZG12, TVZ+15, Tic10, Tic14, TKP12, TU14, Trö11,
UA17, VK14, WRS15, WDL11, WSTP15, WvSL13, WT12, WWB11,
ZBG+16, ZLM12, ZTG13, dHGCS11]. Monte-Carlo
[DPK+15, LS15a]. MonteCUBES [BFM10]. MonteGrappa
[TVZ+15]. monteswitch [UA17]. MoRiBS
[ZBG+16]. MoRiBS-PIMC [ZBG+16]. morphing [ZF15].
Morphological
[MS11]. morphologies [Bar11b]. morphology [PR10].
Moshinsky [XMLC16]. most [BS14a]. motile [HPKF15].
Motion [KB15a, BMG+15, HH11a]. Motion 4D
[MG10b, Müll11b, Müll14b]. Motion4D-library
[MG10b, Müll11b, Müll14b]. motors [SKM15]. moves
[RV10]. Moving [YJK11, AKKK16, JvOK17, KS16a, LP15, NH5Y15]. MP2
[KK14a]. MPBEC [VPM16]. MPI [ARYT17, BW12a, BCM+16, BTC+17,
DRUE12, EZBA16, Hin11, OLG+16, OKM12, TKP15, WAW14, YHL11].
MPI-based [OLG+16]. MPI-driven [Hin11]. MPI/GPU
[EBZA16]. MPI/GPU-code [EBZA16]. MPL
[Bog16]. MPLS [NHS15]. MPPhys
[Mu11c]. MPS [SIMGCP14, NHS14, SIMGCP13]. mr [KPV16]. MRT
[vdS10]. ms [DES+11]. ms 2 [GRR+14]. MSSM
[CRC+13, DNPS13, FEH11, FHH+14, HP17, HLM13, HEF12, KZ11,
LCE+13, PS12, RCD+10, Ros15, SV12]. MsSpec
[SNG+11]. MsSpec 1.0
[SNG+11]. MStor [ZMCT12, ZMPT13]. MT [HHP+14]. muffin [LZP12].
muffin-tin [LZP12]. Multi
[BFPP12, BBS14, BVP10, BMW14, CZS10, ELDS14, FBN+13, HDZ14,
IBP+15, KO13, Kom15b, KSW15, Liu14, MKR+12, MRS15, OP12, PP13,
SW14b, TPC16, UBR10, ZST11, ZMV+13, ASS13, AZM14, BBU11,
BBUY13, BBB+17a, BT17, BAR12b, BCH13, BHJ+15, Bh15, Cap13, CC15,
CL15b, DKG+14, DE13, DCBV+13, DO14a, Er14, FSJ+16, DRI+16,
HLS+17, HWT10, JK14, JXTS16, KPA13, KO12, KO14b, Kom15a, Kom15c,
KO16, LS12a, LHZ11, LY16, LB15, LRP13, MMA15, NNWS15, NHD16,
NAQ16, Pål12, PR14, PC11, QSC14, QwWL+15, Sch14a, SV13, SGW17,
SLR+11, SC16b, TRM+12, TD14, TDL+14, Vuk12, WSH+12, WAW14, xX14,

Newtonian [BHNS17, RJLL16]. Next
[AAT+14, AMRdA17, GLPQ11, PLF+17, DET12]. next-generation
[PLF+17]. Next-to-minimal [AAT+14, AMRdA17, DET12].
next-to-next-to-leading [GLPQ11]. Nexus [Kro16]. NF [YE14a].
NF-package [YE14a], NLH [BBU11]. ngrav [Cro16]. Ni
Ninja [Per14], NiTi [NS11b]. nitride [Yan11]. nitrogen
[CHC+11, LJSW11]. Nix [Rom15]. NLO
[BDC+14, BCG+13, BS13b, GHvSF14, Pit10]. NLS [ILsZ14]. NLE
[Cop13]. NMSDECAY [DET12]. NMSSM [AM11, BGM+14, SAE+16].
NMSSMcalc [BG+14]. NNLO [HLM17, BHZ13]. nlo-Higgs
[CTL15, NZQL14, SC16b]. node-centered [SC16b]. nodes [Sch14b]. noise
[BCS10, BDBV12, CC10a, Er14, HH11b, KS16b, MW12]. noises [IT11].
nosy [QHC+10]. no loco [NPAD11]. Non
[FW11, Jal10, WL11b, AAD13, BHNS17, BL14, BDP16, BW12b, Bla15,
BH13, BPS+16, BGM+15, CLW11, DBJ11, DJ11, EW16, FR15, HWS16, HHM+15,
JBKM15, JU17, KS15, LMRC15, LA13, LS15b, LFG14, OILK17,
PLF+17, PBF+16, PB+15, SK15, SCLW16, SC15, SS11b, SLEF17, TDL+14,
UNK12, USOA13, Wit14, YQM12, YQM14, ZDWM17, dSFdFF13, dSVLP13].
non-aligned [HWS16]. non-autonomous [Blu15]. non-axisymmetric
[EW16]. non-bonded [BL14]. non-circular [OILK17]. non-conformal
[ZDWM17]. non-crystalline [DBJ11]. non-equidistant [LS15b].
non-equilibrium [BPS+16, JBKM15, PLF+17, PBF+16, SC15, dSFdFF13].
non-Hermitian [BW12b]. non-ideal [TDL+14]. non-inertial [SS11b].
non-intrusive [HHM+15]. non-isothermal [PBF+16]. non-linear
[FR15, SLEF17]. non-Markovian [dSVLP13]. non-Newtonian [BHNS17].
non-orthogonal [USOA13]. non-oscillatory [AAD13, DJ11, UNK12].
non-overlapping [JU17]. Non-perturbative [WL11b]. non-planar
[BH13]. Non-polynomial [Jal10]. non-rectangular [SK15].
Non-reversible [FW11]. non-spherical [BGM+15]. non-staggered
[DJ11, SCLW16]. non-transferred [CLW11]. non-uniform
[BDP16, KS15, LA13, LFG14, Wit14, YQM12, YQM14]. nonadiabatic
[SOM+13]. non-central [GST15]. nonclassical [Shi16]. nonequilibrium
[KH10, MDF11]. Nonextensive [Fri14a]. nonhydrostatic [BB12].
Nonlinear [Asi10, BAR12b, Cap13, AAD13, ABB13, BSM13, CWS14,
CB13b, CSZ10, DG10a, DT10, DS10, DT11a, DM17, Dem13, DZ13, DBLF16,
Er14, GAO13b, Jan10, Kau13, KL11, LD10a, LWL12, LST15, LLL12, Lin13,
LLL13, sL10, MD11a, MFM15, Moh14, ICD13, PDRG10, PT12, QSC14,
RM10a, SW14c, SK14, SB11, SS10b, TD14, TJH17, WP10a, XZ12, YÇÖ15,
ZAHA10, ZWLZ17, ZLL13, ZW15, ZST11, Ziò14, dHV10]. nonlinearity
[SB11]. nonlinearly [CC14, CC15]. nonlocal [LAA+10, LLMW17, TRN16].
nonresonant [Shi16]. nonuniform [ZNT15]. nonzero [BBF+10]. norm
[LWW10]. normal [AG12a, BCJW13]. normalization [MZE13]. NORSE
optics [Dem13, SWS12]. Optimal
[FBHB17, CNMC10b, DJ14, FSF11, Hoh14a, MFS10a, PSBT12, XLL15]. optimality [KL14]. optimisation [HdM16]. Optimised
[IZRT15, RWS15, Wei12]. Optimising [Rei10]. Optimization
[BS14b, DF14, DCGG13, FGR14, MCY16, SG15, ACDs13, AZM14, BS15a, BR11, BPS16, CM10b, CLH17, CJJ17, DBJ11, FSJ16, DRI16, GWF16, GD14, Has11, HWL17, HJL14, HVM10, HKVR10, KPA13, KKP11, KHKR14, Kra11, KLV15, KL14, LHL16, LCRL10, MR14, MBGV15, PCVZ11, QwWL15, RMS12, RLL12, SWL15, SZZ14, SKH10, TTT16, VvAV11a, VPP12, VHP15, WLZN17, XLCW14, YZZ17, ZBM11, ZPr16, Zhi14, vRWS14, PE17]. Optimizations [iSYS12, WRFS15]. optimize [TVZ15]. Optimized
[Cha16, CF17, DRR16, HLLH16, LBJ16, MAIVH14, Smi16, BD10, CNMC10a, FDWC12, KD17, KAS12, LWC14, LW16, LB15, SEW12, SEW14, TVT16]. Optimizing
[BDBV12, CL14, HSK12, Nis11, PCGM14, RE12, WX14, MPS13]. Orbit-based
[BDBV12]. orbit-following [HSK12]. orbital
[CM15, CXH15, Cor14, FGR14, HHS10, KT12, KST14a, KAS12, MSS16, PS14, QwWL15, SGW17]. orbital-free
[AAD13, AAD14, Abd15, AGH16, AH13, ACDm12a, ACDm14, ACDm15, ACDm15, BBL13, BKV16, BK16a, BVC13, BIT12, CFMR10, Cap13, CD15, Cha16, CD12, CR12, DJ11, DZ13, DMN16, FG13, GLPQ11, GGHH14, GJ14, GA10, GPS13, HZ11, KMS14, KO14a, KBB17, Koh15, Kol14, LX12, LV15, LWZ14, LST15, LLKX16, LSZ14, LW14b, MC16, MD10b, MO14, NS15, NO12, PTK15, PVK17, PM13, Qia10, RL10, RHW12, Sch14b, SR12, SSH13, SS13b, SA15b, SC16b, SB11, Sok13, SS10b, THDS16, TY10, Tia11, VDF15, VV16, WWS10, WDR16, WC13, WP10b, WWR16, WYSW10, WT15, XYK12, Zag14, ZD15, ZFH14, ZNT15, vH10, DBLF16]. ordering [ZHS13]. Ordinary
[NO12, ACDm12a, ACDm15, ACDm15, FBHB17, MZE13, RBB15, WT15]. ordinate [ELDS14]. organic [HGCA15]. Organization [SA15a]. orientational [WDR16]. Oriented
[CF16, FCC15, As14, BFD11, CB15a, CB17, CDMC11, CJ12, CFFR15, DM12, HHP16, KMS16, OKM12, SL16, WLG13, WP10a, Zag14]. Orthogonal
[Ser17, USOA13]. orthogonalization [BC10]. oscillating

Package [EFG+10, ADD+11, AKZ+13, ASPDL+16, AG14, AdM+12b, AdM14, AC15, Aza13, BBU11, BGM+14, BK13b, BB3a, BSGG10, BHH+10, BHW+12, BBH+15, CDdM14, CFSS14, CKK+13, CMS17, Dep17, Des16, DSS+12, DF11b, Eks11, FRW17, FF11, FEH11, GST15, GLMG12, GJA+16, HBL+13, HEB12, HR11, HHP+14, HLZ+13, HM10, IIO16, JGB+13, KST+14b, KPS15, LM16, LRR+15, LL15, LSK+14, MB12, MWCY14, MZE13, Müll14c, Naz12, NS10, NS11a, NSXZ14, Nut14, ORI+10, Pat15, Pat17, PCEH15, RRCSC10, Ros16, SS12, SL17, SN+11, Sem16, SM14, SQS+16, SSH16, SIt14a, SIt14b, SIt16, SAHP15, SLR16, TS10, UA17, Var16, VJC12, WW14, WL11a, WCL14, Wei15, XNK+16, YE14a, YE14b, ZSC15, Zit11, vH10, BH14a, Pat15, Pat17, Sht17]. Package-X [Pat15, Pat17, Sht17].

Para-AMR [GX15]. parabolic
[AAD13, BB10, GN14, HC16, NO14, OAKS11, PR13, RS12]. paradigm [CKhN11]. Parallel [APC+14, Bab14, BC11, CLH+17, CL15b, CRA10, EKDGG15, FFT+14, GGI+13, GMF+17, GSMK17, HvAS+13, HCSW10, JKIS16, KPPC13, LBM+14, LKL11, LT15, Mau16, NCH15, NZQL14, PIH11, QLE16, RRSC10, RD10, SD15, TSK+17, TSTT13, US16, VHP+15, WC10, YRR13, ZPH+15, ZHC16, BMC+11b, BS13a, BS14a, BPB+17, BJCW13, Boe14, BCM+16, BHND16, BENK+17, CPR12, CUL+17, CDR+15, DBDP12, DSS+12, DRUE12, FZ16, FZY17, GS15, Gai17, GP13, GWF+16, GS17b, GS17a, GD14, GB14, GX15, HAV+14, HFOPF15, HBH+17, HCHW11, JEPF14, JHL+15, KD17, KBB+17, LAA+10, LSG+12, LHH+12b, LHH+12a, LS12b, LHZ11, LW14c, LW16, MDW16, MW+13, MM17, MCA17, MSI+10, MGR16, NOR15, NFA+16, NPAG11, Ngu17, NM14, NFS15, PH13, PR13, RS12]. paradigm [CKhN11]. Parallel [APC+14, Bab14, BC11, CLH+17, CL15b, CRA10, EKDGG15, FFT+14, GGI+13, GMF+17, GSMK17, HvAS+13, HCSW10, JKIS16, KPPC13, LBM+14, LKL11, LT15, Mau16, NCH15, NZQL14, PIH11, QLE16, RRSC10, RD10, SD15, TSK+17, TSTT13, US16, VHP+15, WC10, YRR13, ZPH+15, ZHC16, BMC+11b, BS13a, BS14a, BPB+17, BJCW13, Boe14, BCM+16, BHND16, BENK+17, CPR12, CUL+17, CDR+15, DBDP12, DSS+12, DRUE12, FZ16, FZY17, GS15, Gai17, GP13, GWF+16, GS17b, GS17a, GD14, GB14, GX15, HAV+14, HFOPF15, HBH+17, HCHW11, JEPF14, JHL+15, KD17, KBB+17, LAA+10, LSG+12, LHH+12b, LHH+12a, LS12b, LHZ11, LW14c, LW16, MDW16, MW+13, MM17, MCA17, MSI+10, MGR16, NOR15, NFA+16, NPAG11, Ngu17, NM14, NFS15,
perturbations [LMRC15, Tic14].
perturbative [WL11b]. perturbed
[Bla15, FMW10, GN14, Wu10, YWYF09, YZZ11]. petabyte [Ano11o].
PETAFLOP [BBF+13]. Petascale
[OYK+14, YBNY13, CBGY17, SKSK13, VCMS+13]. petascaling [SSS+11].
PGAS [TSTT13]. Phase
[DVB11, JC16, KV10b, LLSK17, Ots11, Raw15, WJHW14, XHLM12, YLO13, AKR15, BMW14, BS12, CZD15, CHW+15, CMR17, Evs14, FFHI11, GTS14, GZW17, GLW14, GX15, Hon10, Ki10, KSW15, KS15, Liu15b, MRS15, MSHLS15, MSHL17, NS15, ÖKC11, PS14, QDZ+13, Raw16, Sie16, SJW10, TKP15, VDF15, Wai12, YLK10, ZAFAM16, vdSM16].
Phase-Amplitude [Raw15, Raw16]. phase-covariant [BS12].
Phase-field [LLSK17, CZD15, GZW17, TKP15, YLK10]. Phase-fitted [KV10b, PS14].
[BFD+11, RJKC16, Lya15, MSS+14, SBE+16]. phone [Sal12]. Phonon
PHOTOS [DPW16]. photovoltaic [CLH+17, RF15]. Phys
[Ber16a, ERS10c, KYKN15a, LR16, Nat10, Ras17, RC16, RHBB15a, SGM11a, Sco13, SIMGC14, YQM14, ZTG14]. Physalis [Sie16]. physical
[AABC+13, LCH11, MD11a, RKVL14, Sni14, ZF15]. physicist [Hah12].
Physics
[AA+11b, Ano10a, Ano11b, Ano12a, Ano13a, Ano15a, Ano16a, DS13c, Ram10, Wu10, ADF+15, Ano10n, AM10, AM11, DKSK10, BCP13, CB15a, CB17, Che11, CKhN11, DGPW11, DNP+12, DPW16, Des16, DDK+15, ELL+17a, DRT+16, JPCG15, JEC+12, KV10a, LPBHI11, Müll14c, ONS+15, QGLP13, Sha13b, Sha16, SLR+11, Veb12, Wie15, ZWLZ17, ZMV+13]. PI
[CMM14]. PIC [FK12, GV15, HTJ+16, KS16b, LYX+17, LTP16, SBL16, VGM+15, XYM+13, YXD+15]. PIC/MC/Vlasov [FK12]. PIC/MCC
[SBL16]. PICPANTHER [KKG+15]. Picture
[BF16, BM13]. PID
[OCF10]. piecewise [IH11, LV10]. piecewise-linearized [IH11]. PIMC
[ZBG+16]. pinning [HBS+11, JWC13]. pipe [Qia16]. pipeline
[EC1+10]. pipelines [WFS+17, MSI+10]. pipes [DMC10]. PISO [SQA+15]. PISO-like
[SQA+15]. Pitaevskii
[ABB13, AD14, AD15, ABDR17, CR13, KYSV+15, LBB+16, LYSS+16, MGL13, MGL16, SSB+16, VDAH16, VVB+12, YSVM+16]. **pitch** [HJ14]. **pitch-angle** [HJ14]. **placement** [NZQL14]. **planar** [Aza13, BP12, BH13, MTE17, XD13]. **Planck** [Fuh15, JSLM16, KBSP12, PG17, SLEF17]. **Plane** [MBF+10, AM14b, ACDdM14, DKSG16, GMF+17, HK15, JCW+13, JGAL+13, KAW+10, LT15, MED11, MS11, PDC14]. **Plane-wave** [MBF+10, LT15, MED11]. **planet** [HTT13, HTT14]. **planewave** [CSPAD10, PBMAD12]. **planning** [CLH+17]. **plasma** [AAJA14, BMU11, BRL12, CLW11, CHH+11, Evs14, FRFH10, HKF+12, HO13, HBP14, Hon10, Hsu11b, KYKN15a, KYKN15b, KTE+12, KMD12, KRB15, KSYY13, LDR+17, LHH+12b, LHH+12a, LDF+16, MPS13, MLGVE14, MKU+12, SCM+16, ML14, MMA15, MS11, NNWS15, PYW+14, PBD+15, PDJ10, Ram10, REtVH12, SLR+11, SLEF17, SBE+16, THDH14, sX14, XYM+13, Yan09]. **plasmas** [BSM13, BT17, BDBV12, BS11b, CHH+11, DOP17, FR15, GB14, HKJ+12, HAK+14, KGG+16, LH11, LRK13, OILK17, PMS+17, RF16, SS14, SCM+16, VBC+12]. **plasmonic** [HT12]. **Plasmonics** [WTH15]. **plate** [AABC+13, HTJ+16, RDP14, Sal12, ZZH+16]. **platelet** [ZZG+16]. **platform** [AABC+13, HTJ+16, RDP14, Sal12, ZZH+16]. **platforms** [LHZ11, PNL13, TKP15]. **PLATYPUS** [DT11b]. **Plesset** [KK14a, KBB+17]. **plot** [Liu15b]. **plugin** [SBB+17]. **PLUMED** [Gio14b, TBB+14]. **PLUMED-GUI** [Gio14b]. **PML** [DV11]. **POINCARÉ** [MZE13]. **point** [BMU11, BH13, CS10, CH11b, DG10b, DMC+15, KK16a, MDGC+12, NFI17, Nik12b, PPY14, Pra11, SGM11a, SGM11b, TTTG11, dSFdFF13]. **point-transition** [NFI17]. **points** [Fis12, NO12]. **Poisson** [CM14a, RC16, Bot13, BC11, CDBM16, CB16b, Dua10, DGG13, GBN17, GJ13, HCSW10, JLW13, LCHM10, LCHM13, LCRL10, Miy15, Qia16, Qia17, RC13, VLPPM14, ZPvR16]. **polar** [CZL+11, WCL14]. **polarimetry** [FBHB17]. **polariton** [VBMS17]. **Polaritonic** [KAvdL11]. **polarization** [AKZ+13, CAGL13, Den10, MCP10]. **polarized** [AFIS12]. **pole** [ASEA14, AMRdA17]. **poles** [SAS11]. **political** [Cho11]. **pollution** [MSML10]. **POLYANA** [DRR15]. **Polycrystalline** [KB15b, EBCBG17]. **polydisperse** [OL12]. **polyelectrolyte** [HB13]. **polydisperse** [OL12]. **polylogarithms** [BDV11, BD14]. **Polymer** [DF13, BL14, HCH16, LKL11, MSZW11, MNC15, SAG13, WSTP15, dHGCS11]. **polymeric** [DEW16]. **polymers** [Bj11, GB11, HP11, MB11, RB11]. **Polynomial** [IUM13, KP12a, CB13b, GDB10, GLX+14, HKZN17, JAI10, sL10, MCL+17, UNK12]. **polynomials** [ACDdM15, GST17, SPS10, WISA11]. **polystyrene** [RV11]. **polyurethane** [KDM17]. **pool** [BKS15]. **Pople** [KS12, SS10a]. **population** [VPP+12, WRB11, YH15]. **population-based** [VPP+12]. **populations** [FSI+16, HFOPF15]. **Pore** [DADS11, OP12]. **pore-scale** [OP12]. **porous** [CTL15, HSF+15, MPM14, OP12, SM14, vMB14]. **portable** [CDSG11, HTJ+16, SS13a, VLL+17, dBCH14]. **porting** [HD11]. **posed**
Positive [Has11, XZF12, SMdONF14]. positron [GGGH14, Kol15]. POSMat [MCY16]. possible [ASTT16]. post [LAA10].

prescription [Deu16]. presence [DCC10, JPK12, Nis11, RS12, SD14]. Present [Pat12, GFJ14, TIMM13]. preserving [MD11a], preserving [BIT12, CM14a, CEF16, Miy15, Sal16, San15, WXL13, WM13, YZ16, NO14].

quadratures [PPY14], quadric [ASPDL+16, DSPJ10, GSB+14], quadrilateral [LWRQ16], quadrupole [TUY15], quality [SZC+13], quantification [CNS+14, KZ14, OO15b, O015a], quantitative [BHH+10, BBH+15, CSC11, LN16, SSM+17], quantities [KFF+16, LCH11], quantity [CLH+17], quantization [Zit11], Quantum [BDK11, BG11, CW13, DSW15b, DS13b, FGGM11, GRTZ10, KYM+17, LCH11, LW13, ON11, PNL13, TTS11, ZDD15, ACTP15, AK13b, Aza13, BBW11, BMW14, BBC+13b, BMNS14, BS12, CZ17, CL10, CK12, CB16a, Dat13, Den10, DHR14, DDM14, EY11, FRW17, FUSH14, FE11, FLW17, Fri14b, GZL14, GM16, GH15, GWF+11, HWG13, Hin11, HRC11, Hoh14a, HWM+15, Hlin12, HIO16, IW15, JNN12, JNN13, JG12, KSL+11, Kro16, LKM+16, LV13, LW11, LWC14, LW16, Lut15, LJB+16, Men11, Mis12, Mis13, MKV11, MBFD12, Nog17a, Nog17b, NVW+13, OBH10, ORCR17, dIRJL14, PFA+15, PBS+17, PKRS16, RF10, RK11, RPL+14, RC11, Sai13, SV14, San15, SL17, SZ15, SKFP16, SPMM11, SOM+13, SGW17, SH16, SZM+14, Sou14, SCG11, SKSK13, TJD11, Tab16, TTG11, Vak12, WFM14], quantum [Wan10b, WC10, WM13, WPAV14, YCO15, ZHC16, vWB10, BKC+17, GSZ13, KST14a, MMS+15, RF10, YKS11], quantum-mechanical [LV13, RC11], quantum-transport [EY11], Quark [BBB+15, ACD+14a, BG14b, CCN17, Gao13a, HLM13, KKK+15, SS12], quarkonium [Sha13b, Sha16, WW14], quarks [ALL+11, BKMP16, KP12a], quartic [KVW11], Quasi [JLA+14, CJH11, CHC+11, GZW17, HDZ14, LKA+16, LB13, NJS17, dIRL11, PE15], quasi-bound [LB13], quasi-cylindrical [LKA+16], quasi-Degasperis [HDZ14], quasi-harmonic [dIRL11], quasi-incompressible [GZW17], Quasi-Monte [JLA+14], quasi-neutral [PE15], quasi-one-dimensional [CJH11], quasi-pulsed [CHC+11], quasicrystalline [HCC14], quasiharmonic [dIRPL11], quasilinear [BB13b], quasilinearization [Jiw12, KV10a], quasiparticle [DS+12, KOK17], quaternion [San15, WM13], quaternionic [LWW10, San15, Wav10b, WM13], qubit [RF10], qubits [WW11], QuCon [vWB10], qudits [LV11], questioning [QHC+10], Quick [TW15], quiet [LSK+13, SKH+10], Quintic [LX12, WZ13], quotient [KSW12], QuTiP [JNN12, JNN13], qwViz [BBW11], R [LQZ+13, ADH+17, LQZ+13, MiH12], R-matrix [MiH12], r10 [AFZ17], r7 [LZ11b], r9 [FLA+16], RA [SKB10], raaSAFT [ESM17], Radar [WGG16], radial [DG10b, DM17, DRR15, Kir10, MK10, PSL11, SD10b], radially [KSW12], radiation [ASPDL+16, ASS+13, Aza13, BSC+13, CAN11, GLAC13, HJL+14, KEH12, LHJ+15, LSA17a, PCEH15, QA13b, SL16, SC15, SC16b, VMFS16, YXT+15, Hak16], radiation-hydrodynamics [SC15], radiation-induced [LSA17a], radiative [AFIS12, ELDS14, HHT13, HTT14], radical [Faw10], radio [ECD+10, GB14, KMD12, KSY17, SVG10, TRM+12, TUY15], radio-frequency [GB14, KMD12, SVG10], radio-map [TRM+12].
radioactive [SM14]. radiobiological [KEH12]. radiography [WHB16].
radioisotope [WT12]. radiowave [OAKS11]. radius [KB15a, SH12a]. raft
[MD11b]. Raman [CRY11]. ramp [Hon10]. ramp-up [Hon10]. Random
[DVBI1, NHD16, AM14a, ASPW13, BS11, BS13a, BS14a, BCW13, BCW13,
CSRV13, Dem11, FL10, GP13, GAHP15, GBS16b, HA17, KC14, KS16b,
KD16, LS15a, LG1+12, MKMK10, MH11, Mis12, Mis13, PPS10, Rom15,
Sav15, SS13a, SW11, TC11a, UO15b, WRVL15, ZXF12, YZZ1+17, YLO13].
RandSpg [AZ17]. range [ADD1+11, BTM1+17, Boe14, BWPT11, BSWC14,
Cor14, Fil13, Fil14, FN17, HWL1+17, KK16b, KMD12, PG10, iTi11]. rank
[Ara14a, Ara14b, BK12, DSHS17, KK14b, LO14]. rank-structured [KK14b].
Rapid [FWS1+17, MB1+10, Ray10, SKH1+10, Hvas1+13, Ruf13]. RapidSim
[CCN17]. Rare [KBT1+14, CGV13, KI11]. rarefied [JvOK17, PG17].
Rashba [XJS16]. ratchet [HCT11]. rate
[ACDD15, ADD15, Tia11, TK14b]. Ratip [Fri12]. Ray
[MJ14, OTC14, BHN1+16, DA16, FWS1+17, GTL1+17, KMA1+12,
LHC1+12, LP15, LL15, MCM10, MCAF14, MM11, Mf14a, Tic10, TVGB15,
TS10, VDJ1+11, WG16a, YVMOS15, Btu13, CDSG11, Cip13, GSB1+14, LS12b,
MD11b, PBMD12, TIC10]. Ray-tracer [OTC14]. Ray-tracing
RCPPAC [MCA17]. RCM [ZHS13]. RCS [MSR1+17]. re [CL12, TU14].
re-formulation [CLJ12]. Reaching [RCGT16]. reactant [ECS16].
reacting [LL12]. Reaction [GAGW16, VRV15, BO12, DT11b, JuIAM16,
FM15, Sh16, SCM14, SAg13, TRN16, VMFS16, TDL1+14].
reaction-diffusion [FM15, SCM14]. reactions
[GC13, GBJ1+12, GBJ1+13, Pia16]. Reactive
[WF14, AV13, ASEA14, CFF15, MRR10, INSK1+15, PNL13]. reactor
[TGH1+16, ZSW1+17b]. reader [CGO17]. Real
[AB1+10, BD10, CD1+12, LAS1+17, MSH11, SP16, SH12+12, AAA1+16,
BW12b, BR14, BG11, CDMCN11, ECD1+10, FZ16, KK16b, KSI16b, MC16,
MBF1+10, MSS1+16, OOK1+12, dRJL14, SCSR17, TL17]. Real-space
[MSH11, SP16, SH12+12, BG11, FZ16, MBF1+10, MSS1+16, OOK1+12, dRJL14].
Real-time [BD10, CD1+12, LAS1+17, AAA1+16, BR14, TL17]. Realistic
[SOL11]. realization [BS11, GBS16b]. realizations [ASTT16]. realized
[PC14]. reciprocity [DG10a]. recognition [UIY11]. recombination
[Fri12, SVG10]. recommendation [QHZ1+14]. reconfiguration [KC14].
reconnection [PBE14, YJK11]. reconstructions [CZ17]. reconstructing
[PR10]. Reconstruction
[MD11b, FBHB17, GMH11, LSK1+13, LAS1+17, SAS11, WFV14, YVMOS15].
record [BS14b]. recording [MP11]. recoupling [Wei99]. rectangular
[Qia16, SK15]. recurrence [BB1+10, TO10a, WSO1+12]. Recursive
[PO14, Fen12b, KvdO11, ADH+17]. recycling [CMRVVR16, YRR13]. Red
[BGL+14, BTL+17]. reduced [Kom15b]. Reducing
[BHK17, BHVMH15, GM17]. REduction
[BKM14, ASGLK10, BCS10, BKK13, BK15, BK16b, EPS15, GSB+14,
MZE13, MNC15, Per14, Stu10, BKK13, BK15, BK16b, Smi15]. Redundant
[QHZ+14]. Reduze [Stu10]. reference
[DKG+14, DFM+15, Duf16, JP10, SS11b]. reference-free [DFM+15, Duf16].
refined [EZL+16]. refinement [AWK+16, FXZ+14, GX15, JFC12, LWRQ16,
MHV17, UBRT10, YRR13, ZD15]. reflection
[GCVA14a, Ram10, WS11a, Yan09]. Reformulation [LZP12]. regarding
[MS15]. Regge [ASEA14]. regime [REtVH12, TKL+12, dSFdFF13, vMB14].
Region [OK10, SZM+14]. Region-of-interest [OK10]. regional [BB12].
regions [Smi14]. regional [BB12]. regions [Smi14]. relation
[WSO+12, sX14]. relations [SS13c]. relative [Bar11b, BSWC14, FS17]. Relativistic
[GLB13, Hsu11b, Müll14a, Aza13, Bab14, CGM17, CEF16, Fri12, GM11,
GTS14, GBJ+10, GBJ+12, GBJ+13, GFJ+14, GBJ+15, GYW+10, HH11a,
JGB+13, KHB14, KKG+15, KNS+17, KPST15, KMA+12, MCA17, NGG+13,
NPR14, QYMI11, QA13a, SZY+12, Sar17a, SQS+16, SS11a, SLEF17,
XYM+13, ZD15]. relativity [MG10a, Müll11a, Bre10, GLMG12]. relaxation
[BSM13, BPP11, BPMS16, Eba13, FN17, KS15, MKB+11, SW12b]. release
[DF14]. relevant [LZP12]. reliability [WLH+12]. reliable
[AMM11, BS14a, CO11]. reliably [SZC+13]. Relic [AM11, AM10, AM10].
remaining [CB13b]. remapping [KN13, LJK16]. remarks [MS15].
Removal [BCH11, DF14]. renormalisation [Fon12, Roh16].
Renormalization [LSSW14, FSC13, HB12, KK16b, NBN+14, PO14,
RHG10, Sta11, Trö11, Ver16, WP14, LSR+17]. renormalized
[FHH+14, GZL14]. reorthogonalization [JK13]. repeated [OK14]. replica
[GXF+15, GBJ11, IO16, JJ15, LRC+11, LK15, UO15b, UO15a].
replica-exchange [GJB11, IO16, UO15b, UO15a]. representation
[BDBV12, FK15, KCT15, LXL12, MLW+10, Naz12, PFCM14, WISA11,
WvSL13]. representations [HR11, LLX14b, LJB+16, ÖK11, SL17].
representing [McM17]. reproduce [BW16]. Reproducing [LLX14b].
repulsion [PB13, TO10b]. requiring [Fer15]. rescaling [Odr11]. research
[GBS+16a, LHC+12, LYJY10, PFA+15, PYW+14]. reservoir [ZAFAM16].
Reshetikhin [JWJ12]. resilient [MCL+17]. resistive [Ein16b].
Resolution
[AS16, ABR12, BMG+15, CBGY17, JP10, JAS17, TRM+12, dB14].
resolved [Sie16]. resolved-particle [Sie16]. Resonance
[KH11, VCMS+13, ASEA14, GH11]. resonances [LTP+17, SAS11].
Resonant [BP12, Dem13, JTT11, JGC+11, YSN+14]. resonator
[HWCH11]. resonators [WX11]. resources [CCdC+11]. respect

scripts [CF16, Giol4b]. SCTE [MGFRG12]. search
[BBZ+11, BG13a, DR12, JTP15, KPVvdH13, MTS+16, PP13, PMS+15, TC11a, WP11, WRFS15]. searches [GTL+17, VPP+12, WRVdL15].

SearchFill [DBJ11]. searching [Ano11a, LOK+16]. SecDec
[BH13, BCH13, BHJ+15, CH11a]. SecDec-3.0 [BHJ+15]. Second
[BB13a, ADdM15, BKV16, GPS+13, Kir10, KBB+17, LX12, LJSW11, LW14b, NS15, NO12, PTK15, Pla16, RL10, WC13, WYSW10, WT15, Zit11].

second-order [BB13a, ADdM15, BKV16, GPS+13, Kir10, KBB+17, LX12, LJSW11, LW14b, NS15, NO12, PTK15, Pla16, RL10, WC13, WYSW10, WT15, Zit11].
second-quantization-operator [Zit11].

sectors [BBH+11a, CH11a, KU10]. sectors [BBH+11a, CH11a, KU10]. Security
[ÖY13]. see [BBC+13a]. see-saw [BBC+13a]. seed [RMS+12]. seeding
[ASPW13]. seesaw [CGV13]. segment [LFG14]. segment-wise [LFG14].

segmentation [MGO13]. Segmented [KS16a]. Seismic
[LZZL10, CL15a, GMRHRCME13, MCAFdF14]. SeismicWaveTool
[GMRHRCME13]. Selecting [CB15b]. selection [CLH+17, HJH17].

selective [JK13, TIMM13]. Self
[BMCC+11a, CCGC13, ASGLK10, AK15, BCH11, CDTV10, Den10, DR12, GCVA14b, HPKF15, KOK17, MT13, NPVR14, PB13, Pit12, QHC+10, SEW12, SEW14, SBB13, SHNM11, XNK+16]. self-avoiding [SBB13]. self-consistency [SHNM11]. Self-consistent
[CCGC13, CDTV10, DR12, KOK17, NPVR14, SEW12, SEW14, XNK+16].

self-consistent-field [Pit12]. Self-energy [BMCC+11a, PB13]. self-force

self-questioning [QHC+10]. self-adaptable [CFCB12]. Selfconsistent
[ELL+17a]. Semi [DS15, KZC+10, BB12, CzD15, DS10, Ein16a, FJK+17, GAB+16, IBP+15, Lan13, LHH+12b, MIW+12, MRVF13, QSC14, Ser10, SmDONF14, SHL+11, UNK12, WG16b, Wie15, ZLL13]. semi-analytic
[Ser10]. semi-analytical [DS10, FJK+17, MRVF13]. Semi-analytics [DS15].
semi-automatic [Wie15]. semi-axis [SmDONF14]. Semi-explicit
[KZC+10, QSC14]. semi-implicit
[BB12, CzD15, IBP+15, LHH+12b, MIW+12, SHL+11, WG16b].

semi-infinite [ZLL13]. semi-Lagrangian
[Ein16a, GAB+16, Lan13, MIW+12, UNK12]. semiconductor
[ASGLK10, AK15, ACCB13, Bot12, CM15, CL10, CLL16, DJ12, GTG+11, HHC16, MiH12, NAQ16]. semiconductors [GC12, KOK17, LZL11].
semidefinite [VvAV+11b, VvAV+11a]. semiempirical [IIO16].
semismooth [CB15d]. semismooth-Krylov [CB15d]. sensitivities [GA13].
sensitivity
[CSC11, HS14a, KTA12, PPS10, SAA+10, SK10, TBZ12, WLH+12, WLS13].
separation [MSRL10, SJW10]. sequence [GCF+17, HLD13, ÖY13].
SequenceL [BBB+17a]. sequences [DBB12, DB13]. sequential [NM14].
serial [CUL+17]. series [ADdM16a, AddM17, CZ17, CC10a, CO11,
GMFPC+14, HvWT17, LLHC11, NO12]. SERS [CLY11]. SERS-active
[CLY11]. servers [WMK11]. Service [MLR10, VDJ+11]. Set [NHSY15,
FM12, K10, KN13, MBFB13, Pit12, RCGT16, XHL12, XLX15+15, MFG+13].
sets [Cor14, FBG10, GJLB12, JH15, SZC+13, VdLF14]. setting [CNS+14].
several [GCHL15]. sermon [HEF12]. SFOLD [HEF12]. SGO [CJJ+17].
SGS [ZSW+17]. Shafranov [HS14b]. shaking [RHHF12]. shallow [QM10].
Sham [SCS12, SCB17]. Shape [DGMZ15, NS11b, OK14]. shaped
[HSD17, MSR+17, Nov17]. shapes [AIG16, GTPWL12, GGGH14, XLX+15].
Sharlow [LB+14]. Sharlow-like [LB+14]. SHARE [PLR14].
Shared [DKG+14, BKS15, CL15b, NFS15, WMRR17]. Shared-memory
[DKG+14, NFS15]. sharing [TRM+12]. sharp [CDL+12]. shear
[BF10, CMVRB+14]. shear-shear [CMVRB+14]. shear [KMD12, KSY17].
sheath-plasma [KMD12]. shedding [TKL+12]. shell
[ACP15, BM16, Cip11, Faw10, MCA17, Trö11]. shell-model [BM16].
ShengBTE [LCKM14]. Shepard [FZY13]. shields [OVSI15]. shift
[Ber14, FZ16, NGG+13, Ram10, RLM13, STY15]. shift-invert [RLM13].
shift-operator [Ram10]. shift-without-invert [FZ16]. shock
[KR14, PBD+15, QLE16]. shock-fitting [PBD+15]. Short [BBF+10,
ADD+11, BTM+17, BWPT11, Fri10, FN17, HWL+17, Ram10, TKR13].
short-range [ADD+11, BTM+17, FN17, HWL+17]. Short-recurrence
[BBF+10]. short-time [Fri10]. shorter [dJB16]. shot [HLS12]. showers
[BG14b, GRZ10, TS10, War16]. shuffled [AZM14]. Si
[CHW+15, Dan16, MTS+16]. sides [STK10, TKS10]. sign [BH11, Kap16].
signal [JJHG14, LCR10]. signals [CCM12, PMS+15, SSP16]. signatures
[RMC16]. significance [SC14]. silane [SVG10]. silicene [ZRS12].
silicene-like [ZRS12]. silico [HG13]. silicon
[LOK+16, OPO+11, OPSR13, OPR14, PVH+17, Wit14]. SIMD
[PH13, VLL+17]. Simflowny [AABC+13]. similar [FS17]. SIMLA [GH15].
Simple [DSW15b, NOR15, PM16, CCL15, DZ15, GAHP15, KKG+15,
KOK17, RZ13, SGM11a, SGM11b, WWC+16, WCT11, WXZ13, XW15,
YY10, YB13, dSVLP13]. simplex [Kap12b]. simplification [SBQ14].
simplifications [BD12]. Simplified [vMB14, SA14, TVZ+15, YZWR14].
simulate
[AMM11, CUL+17, MPM14, SQA+15, TXZL15, TS10, WGG16, ZBG+16].
Simulated [BL14, BS13, BDKS10, CM10a, CD12, HG13, IZRT15, LM12,
VdLF14, VDF15, Yan16]. Simulating [GH15, Hoh14b, Wan16, Wei11b,
BHNS17, BENK+17, CJ12, DMC10, HGCARM15, JPK+12, LHH+12a, LL15,
LL12, SV14, WX11, XAPK14, XD16, YWW13]. Simulation
[AZS+11, AKR15, Bar12a, BdVGS11, Ben11, CM15, CAGL13, EFG+10,
FBP+14, HEPW13, Hon10, JP11, MHEV17, MTE17, PPV+11, PC11, RF10, RSB14, SÖÖN11, SKH+10, UIY11, XLX+15, AFIS12, ASPDL+16, ALSW14, AIG16, AABC+13, AAJA14, BF16, Bar11a, BK16a, BE14, BOC14, BCM+16, BO12, BHND16, CC16, CHC+11, CSSB15, CHH+11, CvW12a, CvW12b, CdFDS16, CF17, CCN17, DG10b, DSW+15a, DHJ13, DES+11, DMD14, FFT+14, FGC11, FFIH11, FM15, FN17, GC12, GM11, GRR+14, GRZ10, GSB+14, GB14, GRI11, GRTZ10, HBE10, HBL+13, HKJ+12, HT12, HvAS+13, HWX+13, Hsu11b, HB13, HHT14, HCSW10, JXTS16, Ji12, JPM12, JA17, KOT12, KNS+17, KO12, KO13, Kro16, KMS16, KCS+15, KP14, KSYY13, KQY17, KSY17, LCC13, LDR+17, LJE11, LJSW11, LCH11, LX14, LSK+13, LYZ13, LS17a, MD10a].

simulations

[MT13, MGRB11, ML17, MTS11, MKU+12, MMC10, MSNI11, MFG+13, Müll14c, MSH11, NF17, NQ14, NM14, NFI17, OKM12, OYK+14, PKT15, PVK+17, PCE15, PA13, QL10, RF16, RD10, RLBC+14, Sal12, SBH+14, SCC+12, SSF+17, Sie16, SS11b, SVG10, SKM15, SMCB+15, SBL16, SBE+16, TJD11, Tab16, Tan10, TL17, Tic10, TVGB15, TIM13, TGH16, TMD11, TB14, TIM+16, TPC16, VDB14, VPMV+17, VR15, VEM12, VK16, WP11, WS11a, WGVP17, WSI13, WBY11, WT12, WL11b, WLZ17, YBY13, YG12, ZF14, ZXL16, ZDD+16, ZHC16, ZPvR16, ZLFM11, dlHV12].

Simulations

[APRG11, Bab14, LDW13, TKL+12, AM14a, ASGLK10, AK15, AD15, AGB+15, ARBS12, BJBC+14, BBB+17a, BT17, BB13a, BS15b, BSC+13, BFPP12, BBB+13, BBS14, BPM12, BBDV12, BPV10, BG11, BTL+17, BCDI12, BB13b, BBV+16, CDS13a, CB15a, CB17, CM14, CH11, CXH+15, CLL16, CW16, CL11, CPHL14, CBGY17, CH11b, DJ15, DSH17, De 11, DS13a, DPK+15, DF13, Dem11, DF14, EBCB+14, EVB14, EBCBG17, ESM17, Evs14, FCV17, FW11, FRFH10, FKH15, FPS+17, GhDF10, Gio14a, GL17, GNA+15, GAB+16, GSKM14, GM14, GJH14, GJB15, GB17, HJ17, HO13, HS14a, Hin11, HPKF15, HY11, HLZ+13, HHH+15, HKK11, HHP+16, JBKM15, JBG+16, JBG+17, JPH+14, Jv17, JJ15, JHL+15, JVR12, JKSI16, KK16b, KC14, KP16, KS16b, KHK+11, Kon11, KGG+16, KRB15, LYP14]. simulations

[LFC+15, LGW13, LSK17, LSI14, LS15a, LS15b, Les16, LWH11, LYT+17, LH11, LYL+17, LKW11, LSK+14, LBP15, MMSF+15, MD16, MIF+12, MIW+13, MAC12, MMO+17, MM17, MP11, MFS+11a, MS14, MRZ10, Maz13, MNV13, MVI+16, MHR+13, MMA15, MTO15, MB+11, ML16, MNB+15, NNWS15, NFA+16, Ngu17, NSK+15, NVW+13, OKC11, ORI+10, Oli13, PCGM14, PG17, PLD+13, PE15, PLCC12, PDJ10, Qia17, RKVL14, Rv16, RV11, RHGH12, RJ16, SH12a, SFP11, SISW10, Scol13, SOM+13, SLZ16, SKK17, SJ11, SS11c, Sok13, SCM+16, SCMI3, Sus17b, TK14a, TSK+17, TST13, THDS16, THDH14, Trö11, TYH+15, UBR10, U015b, UO15a, VB+10, VK14, VMFS16, WMF14, WW14, WW14, WNY17, WTH15, WDL11, WSH+14, WVV12, WSH+12, WWFT11, WAW14, WM14, XY+13, YW17, ZW15, ZLeE+13, dHGC11].
Simulator [CP15b, IW15, MBRV+13, PR14, ZAFAM16, KDP+14].
simultaneous [SGDS16]. sinc [MM10]. sinc-collocation [MM10]. Sine
[SW14c, AH13, DG10b, JPM12, MD10a, Pá12, PTS12, dHV12].
Sine-Gordon [SW14c, AH13]. Single [GM16, MAM14, Az13, CATK11,
CS+13, DKT14, EY11, EBDM17, JXTS16, KKK+15, LHS14, LB15,
RV10, RV11, SD14, UW12, WG16a, WBY11, YZY10, ZLFM11]. single-
JXTS16, LB15]. single-crystal [WBY11, YZY10]. single-molecule
[CS+13, LHS14]. singular
[GW16, HKSW10, MC16, NO12, SK14, ZX10]. singularities
[BAK+15, BAK+16, BAK+17]. singularity [PP14]. singularly [GN14].
Sinosoidal [RHHF12]. SIP [FXZ+14]. SISCone [Wei12]. site
[JXTS16, LBP15]. single-crystal [WBY11, YZY10]. single-molecule
[CS+13, LHS14]. singular
[GW16, HKSW10, MC16, NO12, SK14, ZX10]. singularities
[BAK+15, BAK+16, BAK+17]. singularity [PP14]. singularly [GN14].
Sinosoidal [RHHF12]. SIP [FXZ+14]. SISCone [Wei12]. site
sixth [LST15, NS15]. sixth-order [LST15]. Size
 [VKLM11, AS11a, BM13, BHNS17, Evis14, MDPK15, OB10, SSP16]. sizes
SKRYN [CB15d]. Sky3D [MRSU14]. Skyrme
[RHBH15a, CC13]. RHBH15b, SD12, SSK+13. Skyrme-HF
[RHBH15a, RH15b]. Skyrme-type [CC13]. skyrme-rpa [CC13].
skyrmion [BUJ15]. slabs [LN16]. SLAM [MZ14]. Slater [USA13]. slave
Slow [SDJ+12, WL11b]. Slow-to-start [SDJ+12]. small
[Ber14, BBV+16, FL10, JLL13, PP13, QHC+10, TIMM13, dSLF13].
small-world [FLP10, QHC+10, dSLF13]. smallest [DS15]. SMMP [YK10].
smooth [Con13a, Con13b, Qia10, WGL16b, WvSL13]. Smoothed
[FHTO17, KS16a, PE15, DCGG13, EKK14, JXTS16, KPPC13,
NF15, RH17, RTA10, SN16, CDR+15]. smoothing [HHC16]. SNEG
[Zit11]. snowdrift [QHC+10]. soccer [DSVLP13]. social
[CHDF10, IBKK11]. socket [TRM+12]. soft
[GSC+16, HBL+13, KL11, WS11b]. SOFTSUSY [AAT+14].

SOFTSUSY3.0 [AB10]. SOFTSUSY3.2 [AKH12]. SOFTSUSY3.5
[ABAla15]. SOFTSUSY3.7 [AMRdA17]. Software
[JD17, MCY+16, NFA+16, SSP16, AKZ+13, BC15, BRH+16, Dan12,
FBC+12, GXF+15, GJA+16, HB1+17, HM10, KST+14b, LPC+15, LSK+14,
NB16, ORI+10, Osi10, PH1+17, PMS+15, RDP14, SD15, SCC+12, Sin11,
Sin12a, SLR16, Sou14, TL17, VPP+12, WGG16, ZMV+13]. soil
solar [DJI2, FXZ+14, GSKM15, HGCARM15, Kap16]. SOLARPROP
[Kap16]. solid [BCP+16, Bot13, CCD+16, HWX+13, JPCG15, KS16a,
Mini1, NGCl+12, dIRAPL11, PL15, QDZ+13, UA17]. solid-fluid
[CCD+16]. solid-solid [QDZ+13, UA17]. solid-state [dIRAPL11]. solids
[AKZ+13, Hin11, MS1, MS1, MSL17, dRJL14]. solitary
[AS11b, DS11b, DN13]. soliton [DT11a, Pá12, TD14, XLL15]. soliton-like
solitons [DG10b, HWCH11, JPM12]. soluble [vdSM16]. solute
[DMC+15, JJ15, XHLM12]. Solution [APV10, CDTV10, DS10, LHC+13,
PH11, RBHß15a, RBHß15b, SDM+12, SDS+17, AGH+16, AH13, BSM13,
BH16, BKS15, Bis15, CDMCN11, CSJ+17, DT11a, DS11b, DN13, DSW+15a,
FGLB12, FFIH11, FMI15, HKSW10, HK12, JK10, JL10, Jiw15a, KAS12,
LD10a, LD10b, LV14, LJP12, LTP15, Lin13, LWW10, LZ12, MJß+10,
Moh14, MA11, MM10, MNC15, NFI17, ÖN12, OK14, PSBT12, PAS11,
PDRG10, PR13, PTS12, RDP14, RVA14, RM10a, RM10b, RLM13, RGKR17,
SW1+4c, SD10b, SS13b, SSH16, SK14, SSK+13, VBG+10, YZ16, ZDWM17].
solutions [AD14, ADdM12a, Beu11, CB13b, DGST17, Er14, JLW13,
KMM13, LLL12, LLL13, sL10, MC12, MSZW11, MK10, MNOØ11, NO12,
PAS11, PS14, SR12, TD14]. solvated [WFM14]. solvation [ZPH+15]. solve
[AD14, AD15, ADdM12a, DG10a, JSLM16, ÖN14, RJLL16, SS13c]. solved
[ACMM10]. solvent [CBB14]. solvent-filled [CBB14]. solvents [ZBG+16].
Solver [DSW15b, BMC+11a, BMC+11b, BKOZ16, BAR12b, Bot13, BC11,
CP15a, CPV13, CTA10, CBB14, CDR+15, DBLF16, DGG13, DM12, Ein16b,
FK+17, FSC13, FE11, FZY17, GS15, Gaß17, GP13, GJ14, GJ13, GG16,
HWG13, HWß+15, HCHW11, KDM17, KYM+17, KH12, LYP14, LW14a,
LC15, LCMK14, LXY+17, LF12, LWP+17, LCHM10, LCM13, MC16,
MTE17, MGL16, MR14, McM+12, ML14, MF15, MV15, MCL+17,
OILK17, ORS+14, PZY16, PMS+17, PBD+15, Qia17, RVS16, RC13, RC16,
SKEP16, SSX14, SGW17, SLEF17, TL17, Ter17, VV16, WC13, Wit14, sX14,
YXT+15, Zag14, ZPH+15, ZPvR16, ZCG17, HB13]. solvers
[BB13b, CGM17, CBB+10, DZ13, FR15, GWF+11, LV15, Qia16, VLPP14].
Solving [BAK+15, BAKß+16, BAK+17, CD12, CBB+10, Dem13, DPB16,
DSP15, ENEO15, Fil13, FGG11, HAK+14, HAßH13, HS14b, IH11, JCC6,
Jan10, LV10, RHH12, SmÖNF14, VSO+13, BK11b, CS10, Ckk+13, DT10,
DM17, FGR14, GX15, HLLH16, HM12b, JPSS10, Jaß10, Jiw15b, LLWM17,
LBß+16, LÝSS+16, MLS10, MM12, ICD13, NAQ16, PS11, QYM11, QA13b,
QA13a, RL10, Ras09, Ras17, SSß+16, SSH+13, SCLW16, TY10, UNK12,
VBB+12, WFV14, XZß, YZWR14, YSV+16, ZHSL13]. Some
[CEPI10, FG13, MR13, MS15, ZHSL13, Er14, Ixa16, KD16]. soot [ZLFM11].
sooting [EZL+16]. sorting [MEM+11, MM11]. SOSpin [CECGS16]. sound
[KL11]. sound-soft [KL11]. source
[AZ17, AFZ17, BCP+16, CMC+15, CHC+11, CFW17, CDR+15, Dan11,
DBLF16, FlA+16, HSF+15, HKßH16, HWß+15, JNN12, KDM17, KSSH14,
LPC+15, LZß11a, LZß11b, LZ12, MK10, MZE13, MS111, MVß15, MGGR12,
NMS14, NGç+12, ORS+14, SC16a, SAßP15, SDL+16, TL17, TACA15,
VBß+10, WGG16, WFV14, WPV14, XAPK14, Zag14, ZCG17]. Sources
[EW14b, EW16, EEGW12, KM10, ML14]. Space
[BBB17b, BG11, BAK+15, BAKß+16, BAK+17, CDBM16, EUT+15, Evs14,
FZ16, FGLB12, GTS14, HLLW16, JBG+17, KSß16b, KSW15, KSß15, LOK+16,
MC16, MBß+10, MJß+10, MSS+16, MSM+11, MSH11, NAQ16, OBH10,
ÖK11, OOK+12, dRJL14, PSß11, PSBT12, QYM11, QA13a, Qia17, SP16,
[CB16a, GBP13, Kra10]. Spatial
[RLBC+14, ABCM14, BNAB11, FCC15, KS16b, LST15, LJB+16, McM17, MLS10, MSRL10, MGR16, TZG12, VV16, FCC15]. spatially [MD10a]. spatially-dependent [MD10a]. specific
[AZ17, LPC+15, XZF12]. specific-heat [XZF12]. specific-purpose
[LPC+15]. specified [MD10b]. specifying [DZ15]. spectra
[Aza13, BW16, BPM16, Bru13, CM15, CCL15, CGV13, DA16, ECSV16, GGG16, HW11, MGB11, MSPD12, MNPY14, MB16, PBMA12, Ruf13, SC16a, TKP12, TVGB15, YLTS16, ZIo13]. Spectral
[Hak16, MLS10, AH13, BCM+16, CDBM16, CMC+15, CvW12a, CvW12b, Col14, HS14b, HZP+16, Kap12a, KZC+10, LSDK14, LW14a, LW15, LKA+16, LCC11, Liu11, Liu13, LDF+16, Raw15, SI11, SNB11, SmDO14, TD14, Wan10a, YX+15, DBFL16, PSP16, SmDON14]. spectral
[Hak16, MLS10, AH13, BCM+16, CDBM16, CMC+15, CvW12a, CvW12b, Col14, HS14b, HZP+16, Kap12a, KZC+10, LSDK14, LW14a, LW15, LKA+16, LCC11, Liu11, Liu13, LDF+16, Raw15, SI11, SNB11, SmDO14, TD14, Wan10a, YX+15, DBFL16, PSP16, SmDON14]. spectral/hp
[BCM+16]. spectrally [ABDR17]. spectrometry [SMCB+15]. spectroscopic
[Hak16, MM11]. spectroscopies
[CMJ+11, SNG+11]. spectroscopy
[GSB+14, Hoh14b, HTT13, HTT14, LCL+11, MGA+13, RMW13]. Spectrum
[FCC15, Ruf13, Ab10, AhPSV15, Bru13, CCl10a, GWF+16, GCF+17, JK13, KZ11, MZ14, OCL+13, Rom15, SCS12, SAE+16, ZUT13]. Speed
[LGW13, MSR+17, JTP15, MTE17, WLM14, YvOS15]. Speed-up
[MSR+17]. Speeding
[MED11, KC14]. speeds [SSX14]. SPFF
[LGW13]. SPH
[CDR+15, ACM10, ACM11, ACM12, BE14, CCD+16, CP15a, CPR12, CBAM12, FJK+17, JOR+12, KPPC13, Lan13, MRF13, MRSD15, OLG+16, RJLL16, VSO+13, VKP14, WMRR17, XLX13, XD16]. SPH-DCDEM
[CCD+16]. SPHeNo
[DNPS13, PS12]. sphere
[LP1RPR17]. spheres
[AYD11, CKLM10, LDW13]. Spherical
[ASS13, BMG+15, Cai11, CDTV10, Den10, GDB10, GC10, GC16, KT10, sLsqL+13, NK15, PM16, RV11, SR12, Ser17, TO10a, YCO15]. spherocylinder
[FBP+14]. spheroidal
[Kir10, OWS+14]. spheroids
[ALS14]. SPICE
[EFG+10]. SPILADY
[MDW16]. Spin
[BW11, BJBC+14, BPP11, BFP12, BBS14, BR13, BVP10, CL14, CB15d, CAGL13, DRR16, FW11, HvWT17, IzRT15, IUM13, KO12, KO14b, Kom15a, Kom15c, KO16, LPB15, MDW16, RRC1C10, RLS16, RE12, SHZ13, WX14, Wan16, Wei11b, WPW14, XJS16, Yam16]. spin-
[HvWT17, SHZ13]. spin-adapted
[WPW14]. spin-dependent
[XJS16]. spin-ice
[IUM13]. spin-lattice
[MDW16, Wan16]. spin-orbit
[CL14, RE12]. spin-orbit-coupled
[WX14]. spin-system
[BJBC+14]. spinney
[CKJR11]. spinor
[GLMG12]. spinors
[CKJR11, GLMG12]. SPIP
[BF16]. SPIREs

Split-operator [GTS14]. split-step [DT10, OAKS11, Ram14, WZ13].

Splitting [Bla15, BE14, BB12, CZS10, GML15, LBMB14, NAQ16, QM10, QSL14, Sch14a, TD14, TCP13, XLX13]. spontaneous [EZBA16, ZLM12].

GBJ +13, GCHL15, HBL +13, HAN +16, IUM13, JLA +14, JXTS16, JLW13, JNN12, JNN13, JGC +11, Kau13, KPA13, KI11, KO12, KS12, KGNS10, LKM +16, LCY +11, Leó12, LRW +15, LWYW11, LS16, LB10a, LB13, LKT +16, LCHM10, LL12, LCHM13, LBP15, MPM14, MFM15, Men11, MGS13, Miy15, PFA +15, PTMDPK14, PLCC12, RF10, RAV11, RHC15, RCH16, RLMGM +11, SW14b, SL17, SEGPI5, SGW17, SLR16, SS10a, TM14, TDL +14, UO15b, UO15a, Voy13, VBMP15, Vuk12, WXL13, WRB11]. Systems [WAW14, WYSW10, WW10, YZWR14, ZAHA10, dB14]. SYVA [GNT17].

target [GC13, HHT14, RtV16]. targets [BAK +17, HC16, LHJ +15, MSR +17]. task [TGH +16]. task-based [TGH +16]. tasks [HWT10]. tau [SW14c, Wan10a, HWT13, HTT14].

technical [DNP +12, DPW16, LS15a]. technique [BALV16, CS10, DG10a, DG10b, DM17, Eba13, EKDG15, GHvdL11, GGG16, GTS14, Hon10, JAS17, KN13, Koh15, KR16, LLX14b, NPAD11, Ram10, SK14, TH17, VDB14, WLS13, WDR16, MAIVAH14].

techniques [BCS10, BD12, BJM15, BSW12, GSB +14, KHKR14, MIW +13, MC12, OBH10, PLF +17, RGH10, RWKS15]. technological [CMB11].

technology [DM12, MSI +10]. telegraph [PKT15, XYK12]. telescope [ECD +10].

their [GSMK17, GCV14b, KAR +15]. theoretic [SSB15]. Theoretical
turbulent

Tweezers [BGL+14, BMG+15, Ost10]. TweezPal [Ost10]. twisted

Two

Two-body [FEH11, HEF12, LSDD14, VvAV+11b]. two-color [KK11].
two-component [Eba13, TZM17]. Two-dimensional [VK14, AH13, CAN11, CC10b, CC12, Dan14, Dan16, DG10b, DS11b, JEFF14, JPM12, KS16a, KYKN15b, KO12, KO13, LSLK17, LST15, LH1+12b, LR13, LR16, MSZW11, SLR16, SD1+12, SJW10, TT14, XZ12].
two-electron [AG12b, GH11, JH15, KK14a, LB10a, YCÖ15].
two-flavor [CDS+13b]. two-fluid [KTE+12, ML17, SQA+15]. Two-grid [KV10a].
two-Higgs-doublet [ERS10c, ERS10b]. two-layer [GLW14].
two-layered [PP13]. two-level [BKS15, LW14a, LY16, ZHC16].
two-loop [AMRD17, BH13, LS17b, YdDH+12]. two-parameter [JWC13].
two-photon [DKT14, ZLM12].
two-point [CS10].
two-power [SW12b].
two-route [nZIXL15].
two-stage [CCW10]. Two-step [LWYW11, BIT12, FGR14, NS15, SS10b, YZZ11].
two-loop [AMRD17, BH13, LS17b, YdDH+12].
two-parameter [JWC13].
two-photonic [DKT14, ZLM12].
two-electromagnetic [CS10].
two-photon [CS10].
two-particle [Dev12].
two-phase [Ki10, Sie16].
two-photon [DKT14, ZLM12].
two-point [CS10].
two-power [SW12b].
two-route [nZIXL15].
two-stage [CCW10]. Two-step [LWYW11, BIT12, FGR14, NS15, SS10b, YZZ11].
two-loop [AMRD17, BH13, LS17b, YdDH+12].
two-parameter [JWC13].
two-photonic [DKT14, ZLM12].
two-electromagnetic [CS10].
two-photon [CS10].
two-particle [Dev12].
two-phase [Ki10, Sie16].
two-photon [DKT14, ZLM12].
two-point [CS10].
two-power [SW12b].
two-route [nZIXL15].
two-stage [CCW10]. Two-step [LWYW11, BIT12, FGR14, NS15, SS10b, YZZ11].
two-loop [AMRD17, BH13, LS17b, YdDH+12].
two-parameter [JWC13].
two-photonic [DKT14, ZLM12].
two-electromagnetic [CS10].
two-photon [CS10].
two-particle [Dev12].
two-phase [Ki10, Sie16].
two-photon [DKT14, ZLM12].
two-point [CS10].
two-power [SW12b].
two-route [nZIXL15].
two-stage [CCW10]. Two-step [LWYW11, BIT12, FGR14, NS15, SS10b, YZZ11].
two-loop [AMRD17, BH13, LS17b, YdDH+12].
two-parameter [JWC13].
two-photonic [DKT14, ZLM12].
two-electromagnetic [CS10].
two-photon [CS10].
two-particle [Dev12].
two-phase [Ki10, Sie16].
two-photon [DKT14, ZLM12].
two-point [CS10].
two-power [SW12b].
two-route [nZIXL15].
two-stage [CCW10]. Two-step [LWYW11, BIT12, FGR14, NS15, SS10b, YZZ11].
two-loop [AMRD17, BH13, LS17b, YdDH+12].
two-parameter [JWC13].
two-photonic [DKT14, ZLM12].
two-electromagnetic [CS10].
two-photon [CS10].
two-particle [Dev12].
two-phase [Ki10, Sie16].
two-photon [DKT14, ZLM12].
two-point [CS10].
two-power [SW12b].
two-route [nZIXL15].
two-stage [CCW10]. Two-step [LWYW11, BIT12, FGR14, NS15, SS10b, YZZ11].
two-loop [AMRD17, BH13, LS17b, YdDH+12].
two-parameter [JWC13].
two-photonic [DKT14, ZLM12].
two-electromagnetic [CS10].
two-photon [CS10].
two-particle [Dev12].
two-phase [Ki10, Sie16].
two-photon [DKT14, ZLM12].
two-point [CS10].
two-power [SW12b].
two-route [nZIXL15].
two-stage [CCW10]. Two-step [LWYW11, BIT12, FGR14, NS15, SS10b, YZZ11].
two-loop [AMRD17, BH13, LS17b, YdDH+12].
two-parameter [JWC13].
two-photonic [DKT14, ZLM12].
two-electromagnetic [CS10].
two-photon [CS10].
two-particle [Dev12].
two-phase [Ki10, Sie16].
two-photon [DKT14, ZLM12].
two-point [CS10].
two-power [SW12b].
two-route [nZIXL15].
two-stage [CCW10]. Two-step [LWYW11, BIT12, FGR14, NS15, SS10b, YZZ11].
two-loop [AMRD17, BH13, LS17b, YdDH+12].
two-parameter [JWC13].
two-photonic [DKT14, ZLM12].
two-electromagnetic [CS10].
two-photon [CS10].

U [CHW+15, uasiparticle [SBH+14].
UCL [CYD11].
UCL [CYD11].
udkm1Dsim [SBH+14].
ultra [HEPW13].
ultra-high [HEPW13].
ultra-large-scale [TIM+16].
ultra-peripheral [KNS+17].
ultra-relativistic [QYM11].
ultracold [BG11].
ultrafast [FWS+17, NF17, SBH+14].
ultrashort [GC12].
ultrashort-pulsed [GC12].
ultrasonic [RLMG+11].
umbrella [IIO16].
UmUTracker [ZSW+17a].
uncertain [MCL+17].
uncertainty [CC16, CC16, HHM+15, KKK+15, KZ14, LCRL10, LLX14a].
Unconditionally \cite{Ram14}. under-ice \cite{TS10}. under-saturated \cite{JHJG14}. underground \cite{TS10}. underwater \cite{TS10}. undirected \cite{FLP10}. UNEDF \cite{BBC13b}. Unfolding \cite{ZZD15, ZZ17, ZZ17}. unification \cite{ABdA15}. Unified \cite{DE13, Ram12, Wei99, CSC11, CSJ17, KEH12, MRVF13, RHW12, Sch14a, SK12}. uniform \cite{BDP16, CDMCN11, GBN17, KS15, LA13, LFG14, Ser10, Ser17, Wit14, YQM12, YQM14}. uniformly \cite{Gwi12, SKK11}. Unique \cite{WLG13}. unit \cite{Laz15, MEM11, Tic10, MSML10, YLO13}. units \cite{APRG11, BK11a, BJCW13, CDS13a, Col14, DBDP12, DS11a, DF13, FSH13, FUSH14, FCVH17, Fil14, FZY13, HAN16, LAS17, MED11, NPAG11, PLD13, SH12b, TD11, WDL11, WWFT11, Dem11}. Universal \cite{CCWL11, DNP12, DGPW11, EGPS10, GGI13, SJ11, DDF12}. Universality \cite{Fri10, PM13}. unknown \cite{PR13}. unknowns \cite{YBK11}. unparticles \cite{AAB10b}. unsaturated \cite{GTSL13}. Unsteady \cite{FJK17, SL14, TY10, Tia11, TCP13, TPC16, Uty14}. unstructured \cite{ASGLK10, AK15, GLHG12, LYP14, LJWK11, LWRQ16, MTO15, PBD15, SC15, ZS13}. unstructured-grids \cite{SC15}. unweighted \cite{Gag12b, Gag12a, WW12}. Update \cite{ABB14, CYD11, KT10, BCMS10, GSKM17, NM14, TJ1D11, Tab16, Tom16}. Updated \cite{GAC17, LCE13, LW16, MBGK11, MYP14, MG10b, PVK14b, SZY12, SZY13}. updates \cite{LS15a}. upgrade \cite{Dan11}. upgraded \cite{CWW10, CWW15, OKP10, Sha16, ZYL15}. Uquantchem \cite{Sou14}. use \cite{ERPDFLS15, KAR15, Kom15a, LCJ10, MNV13, Sou14, ZDWM17}. Useful \cite{Bar11b}. user \cite{BBG13, CFS13, GLR17, RFPM17}. user-friendly \cite{CFS13, RFPM17}. uses \cite{CEPI10}. Using \cite{BS14a, CSRV13, RMC16, AM14b, APRG11, ACD14a, AGMS15, Asc10, AH13, APC14, AAJA14, BMC11a, BSM13, BDVGLS11, BH14b, BD10, BKM11, BCM16, BTC17, BSU12, CKLM10, CL15a, Cap13, CB13b, CAN11, CC16, CMSV14, CDS13b, CKK13, Cip11, CB11b, CBB14, CB16b, CL13, CLB11, CRNK12, CMS17, DM17, Dem13, DRUE12, DKS14, DM12, Ein16b, EKDGG15, FJK17, FDW12, FNPM10, FWS17, FYZ13, GBP13, GSKM17, GA10, GSB14, GMH11, GWY10, GRT10, HTJ16, HCC14, HAN16, HHC16, HKK11, Him12, JK13, JU17, JSL16, KK16a, KH11, KK14a, KD17, KKP11, KN13, Koh15, KS12, KST14b, KHKR14, KCS15, LLHC11, LD10b, LA13, LB14a, LOC16, LWZ14, LYY17, LH12b, LS12b, LTP17, LAS17, LNSD15, LWP17, MED11, MGRB11, MHV17, MP11, MSI10, MRVF13, MC12, MVI16, Mis12]. using \cite{MM10, MSML10, MGR16, MSS14, NGM10, OBH10, OKM12, OYK14, PSBT12, PPV11, PDRG10, PVK17, PR10, PR12, PCEHI5, PMVG16, PA13, RDP14, RMS12, RLMGM11, SEW12, SEW14, SÖÖN11, SW14c, SWL15, SPMM11, SD10b, SA15b, SLR11, SSF14, Sie16, SC15, SN16, SPS10, SKH10, SHL12, S10a, SSK13, TOB14, TVGB15, TW15, TCP13, UBR10, VSO13, VVAV11a, VJC12, WISA11, WW15, WLG13, WAHL13, WMRR17, WFV14, WAW14, XLX15, YZ16.
YK10, Yi11, YBK11, YBNY13, YE14a, YB13, YXT15, YG12, ZBG16, ZDWWY10, ZMvE13, dJBIM16. USPEX [LOSZ13]. utilitarian [CB15a, CB17]. utilization [sLqSqL13, SMCB15]. UV [Deg15, Fen12b]. UV-divergent [Fen12b].

Version [AFZ17, CB17, ZZD16, AC13, BCP13, BB13a, BH16, BLG14, Bon15, Bon16, BHV12, BHH15, CWW10, CW15, Cip11, FLA16, Gin10, GRR14, GFB10, GBJ13, GCA14a, HAV14, JCL10, JGB13, Kol14, KDM11, KUUV13, LCJ10, LZ11b, LRR15, MFS10b, MAM14, MYP14, MG10b, Nat09, Nat10, NS11a, OKP10, Org15, dRL11, dRAP11, PR12, Pit12, PVK14b, RBHH15a, RBHH15b, SDM12, SDS17, SIT16, SSK13, TV10, WMK11, WW13, XW15, ZXL16, ZMPT13, FP14, Semi16, ZE16]. versions [Cip13, KRW13, dSD12]. versus [FBN13, RD10]. vertex [Eks11, Sus17b]. vertexing [Dim14]. vertical [TKL12].

ACdS13, AG14, ADdM14, BK11a, Boc14, BHW+12, BMG+15, CS17, DG10b, DS10, DN13, GB11, GH15, GTG+11, JTT11, LPBH11, LN16, Maz13, Per14, SGDS16, SDL+16, TO10a, UA17, XLL15, YJK11, dHV12.

Volume [HK+12, BMS+16, BHW+12, CAN11, FBN+13, LHt+12b, LK15, ML14, MAA15, QLN14, SNB11, SC15, SHL+11, YLK10, Zagr14, ZDWM17, LYP14].

Voxel [Ham11]. VR [OK10]. vs [BBS14]. VSHEC [ZUT13].

Water [HDM+12, JTN+11, JXTS16, MA11, ORS+14, QM10, SMM11a, SMM11b, SBPN15, SA14]. Watershed [ORs+14]. Waterway [San11]. Wave [RCGT16, SS14, AV13, AM14b, Bad11, BF16, CLJ12, CZL+11, DS11b, DN13, DZ13, DKSG16, DH14, DA16, EUT+15, FM12, GB14, GCV14a, HK15, HZ11, HHC+10, JCW+13, JGAL+13, KH11, KM10, KIR10, LT15, LZZL10, sL10, LYL+17, MED11, MBF+10, MA11, MSH11, OWS+14, PG10, PYW+14, PQTGS17, PMS+15, Raw15, Re12, Sar17a, Sar17b, SW+12, SKH+10, TL17, TVT+16, TH17, THJ+10, WGG16, YLO13, JTH14].

Wave-functions [CLJ12]. Wave-packet [DHR14].

91
REFERENCES

[CECGS16, DPB16, ZHPS10]. Yukawa-folded [DPB16].

References

Aaij:2016:TAR

Andonov:2010:SSM

Ask:2010:REV

Arbona:2013:SGP

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>93</th>
</tr>
</thead>
</table>
Allanach:2014:NMS

Aslanyan:2017:ECD

Allanach:2010:IPV

Antoine:2013a:CMD

Alioli:2014:UBH

Xavier Antoine, Christophe Besse, Romain Duboscq, and Vittorio Rispoli. Acceleration of the imaginary time method for spectrally computing the stationary states of

Awile:2012:FNL

Angeli:2013:AEM

Ayala:2015:AMP

Ayala:2016:AFP

Arnal:2017:SCS

Ana Arnal, Fernando Casas, and Cristina Chiralt. On the structure and convergence of the symmetric Zassenhaus for-
REFERENCES

Avellar:2015:FHO

Alves:2013:GED

Antuono:2012:NDT

Antuono:2011:PGW

Antuono:2010:FSF

REFERENCES

References

References

REFERENCES

Avery:2017:XNV

Arioli:2012:LRM

Asadchev:2012:MPE

Alves:2014:CAP

Asunta:2015:MNB
[AGB+15] O. Asunta, J. Govenius, R. Budny, M. Gorelenkova, G. Tardini, T. Kurki-Suonio, A. Salmi, S. Sipilä, the ASDEX

REFERENCES

REFERENCES

Ahmed:2013:BSS

Aliev:2011:HHT

Adelmann:2016:DKS

Amodio:2014:NSW

Alvarez:2012:IHS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2012:EBc

Anonymous:2012:EBd

Anonymous:2012:EBe

Anonymous:2012:EBf

Anonymous:2012:EBg

Anonymous:2012:EBh

REFERENCES

REFERENCES

Anonymous:2013:EBb

Anonymous:2013:EBc

Anonymous:2013:EBd

Anonymous:2013:EBf

Anonymous:2013:EBg

Anonymous:2013:EBh

REFERENCES

<table>
<thead>
<tr>
<th>Anonymous:2015:EBd</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2015:EBe</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2015:EBf</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2015:EBg</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2015:EBh</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2015:EBi</th>
</tr>
</thead>
</table>

REFERENCES

Anonymous:2016:EBi

Anonymous:2016:EBj

Anonymous:2016:EBk

Anonymous:2016:IFC

Anonymous:2017:EBa

Anonymous:2017:EBb
Anonymous:2017:EBc

Anonymous:2017:EBd

Anonymous:2017:EBe

Anonymous:2017:EBf

Anonymous:2017:EBg

Anonymous:2017:EBh

Anonymous:2017:EBi

Anonymous:2017:EBj

Aldecoa:2015:HGG

Ayala:2014:DHI

Alcaraz-Pelegrina:2011:SPP
Aichhorn:2016:TDT

Amaku:2010:DCD

Abrarov:2010:HAA

Aragon:2014:CIAa

Aragon:2014:CIAb
REFERENCES

Almansa:2016:PGP

Afshar:2013:ESR

Andrienko:2013:SHM

Acs:2016:CAP

Adhikari:2013:CWP

Satrajit Adhikari and António J. C. Varandas. The coupled 3D wave packet approach for triatomic reactive scattering in hyperspherical coordinates. *Computer Physics
Assmann:2016:WOC

An:2011:SCM

Avery:2017:ROS

Azadegan:2013:MPC

REFERENCES

Bray:2016:SCC

Bray:2017:SCC

Berardi:2016:NDA

Barletta:2011:CCD

Barlett:2011:UEM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Belyaev:2013:CCP

Beale:2016:OSC

Belanger:2011:SLI

Bertone:2014:APE

REFERENCES

[BDPM15] Robert A. Bell, Simon M.-M. Dubois, Michael C. Payne, and Arash A. Mostofi. Electronic transport calculations in the onetep code: Implementation and applications. *Computer Physics Communications*, 193(?):78–88, August 2015. CODEN CPCHBZ. ISSN 0010-4655 (print), 1879-2944 (elec-
REFERENCES

BERG:2014:DSS

BERG:2016:CLS

BERG:2016:LSF

BEU:2011:SFA

BRESLAU:2010:IIS

REFERENCES

REFERENCES

Benda:2016:NVH

Benda:2017:RDG

Busa:2010:CPD

Borowka:2015:SNE

Bonnivard:2016:CJA

Bulow:2016:SPS

Basagaoglu:2017:ECP

Bothmann:2015:IMP

Binder:2015:RCI

REFERENCES

Busa:2012:ACO

Brein:2013:VHS

Bingemann:2013:SIS

Biswa:2015:IAD

Brugnano:2012:TSF

[BIT12] Luigi Brugnano, Felice Iavernaro, and Donato Trigiante. A two-step, fourth-order method with energy preserving properties. Computer Physics Communications, 183
REFERENCES

REFERENCES

Bahmann:2013:EEA

Bakulev:2013:FMP

Bytev:2015:HHF

Bhatt:2016:FOC

Bytev:2016:HHF

REFERENCES

 Bytev:2014:HFD

 Beneke:2016:NTP

 Buljan:2017:GAI

 Bauer:2016:IVT

 Brown:2012:IMD

[W. Michael Brown, Axel Kohlmeyer, Steven J. Plimpton, and Arnold N. Tharrington. Implementing molec-
Biborski:2015:CSD

Bakx:2016:FSO

Batistakis:2014:SGT

Blanes:2015:ESR

REFERENCES

Bonhommeau:2014:MVM

Bach:2013:LQB

Bernaschi:2017:GBD

Balac:2013:ERK

Bertsch:2016:FTH

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

[BO12] C. S. Bresolin and A. A. M. Oliveira. An algorithm based on collision theory for the lattice Boltzmann simulation of
Boer:2014:GBS

Bogner:2016:MPC

Bonhommeau:2015:MVM

Bonhommeau:2016:MVM

Bacchini:2017:NPC
Borinsky:2014:FGG

Botje:2011:QFQ

Botha:2012:GMA

Botto:2013:GMP

Boyd:2015:FWC

REFERENCES

Bhar:2013:CPW

Bertsch:2014:CLD

Bradler:2015:HGD

Barrio:2012:CAP

Brewin:2010:BIC

REFERENCES

Barash:2013:RPL

Bondarenko:2013:NEQ

Barash:2014:PGA

Barettin:2014:ORD

Barker:2015:DDT

Begau:2015:ADL

Bernal:2013:AGM

Borgoo:2010:MED

Bae:2013:GCS

Buckley:2012:FSP

REFERENCES

M. Bury and A. van Hameren. Numerical evaluation of multi-gluon amplitudes for high energy factorization. *Computer Physics Communications*, 196(??):592–598, November 2015. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-

Barrett:2016:SFP

Brown:2011:IMD

Brown:2013:IMD

Comesana:2013:SSP

Cai:2011:CSB

Chaabane:2011:ATD

Caplan:2013:NNS

Carasco:2010:MODa

Carasco:2010:MODb

Carasco:2016:CNM

REFERENCES

174

REFERENCES

Cardall:2017:GNB

Colagrossi:2012:PPA

Clark:2010:SLQ

Cooper:2014:BES

Clay:2017:DCD

REFERENCES

REFERENCES

Chen:2011:USF

Chen:2015:CPP

Chen:2012:SEH

Charpentier:2015:HOA

Camporeale:2016:VSD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cota:2017:OGA

Carles:2012:DIS

Cuoci:2015:OOO

Calvo:2010:SSE

Conte:2013:MUF

Eric Conte, Benjamin Fuks, and Guillaume Serret. MadAnalysis 5, a user-friendly framework for collider phenomenology. *Computer Physics Communications*, 184(1):222–256,

REFERENCES

Cecilia:2017:ECE

Cheng:2010:LAM

Chetty:2011:NMS

Chiu:2011:EPC

Chou:2011:KBE

REFERENCES

REFERENCES

REFERENCES

Chen:2010:NME

Cheng:2011:MCM

Cosden:2013:HAC

Chiodo:2014:MSO

Cao:2015:CMF

REFERENCES

Yang Cao, Chun Liu, Yuehui Huang, Tieqiang Wang, Chen-jun Sun, Yue Yuan, Xinsong Zhang, and Shuyun Wu. Par-

Chau:2011:MAS

Cheng:2011:IRE

Cai:2010:ACT

Cai:2010:CAB

Crouseilles:2014:APS

[CM14b] Michal Czakon and Alexander Mitov. Top++: a program for
the calculation of the top-pair cross-section at hadron collid-
ers. *Computer Physics Communications*, 185(11):2930–2938,
November 2014. CODEN CPHCBZ. ISSN 0010-4655 (print),
com/science/article/pii/S0010465514002264.

excitation spectra of semiconductor nanowires within
effective bond orbital model. *Computer Physics Com-
munications*, 196(??):92–112, November 2015. CODEN
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0010465515002039.

[Cantwell:2015:NOS] C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco,
G. Mengaldo, D. De Grazia, S. Yakovlev, J.-E. Lombard,
D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson,
Computer Physics Communications, 192(??):205–219, July
2015. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-
science/article/pii/S0010465515000533.

Motta e Albuquerque, and Américo T. Bernardes. The diffusion
of technological knowledge through interlaced networks.
Computer Physics Communications, 182(9):1875–1878,
September 2011. CODEN CPHCBZ. ISSN 0010-4655 (print),
com/science/article/pii/S0010465510004789.

of photon-based spectroscopies on high-T_c superconduc-
tors. *Computer Physics Communications*, 182(1):106–108,

REFERENCES

REFERENCES

transport simulator (PhonTS). Computer Physics Commu-
nications, 192(??):196–204, July 2015. CODEN CPHCBZ.

ClassSTRONG: Classical simulations of strong field pro-
cesses. Computer Physics Communications, 185(1):398–406,
January 2014. CODEN CPHCBZ. ISSN 0010-4655 (print),
com/science/article/pii/S001046551300310X.

parallel SPH code for free-surface flows. Computer Physics
Communications, 183(7):1468–1480, July 2012. CODEN
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).

[CPV13] Ondrej Certík, John E. Pask, and Jirí Vackár. dftatom:
a robust and general Schrödinger and Dirac solver for
atomic structure calculations. Computer Physics Commu-
nications, 184(7):1777–1791, July 2013. CODEN CPHCBZ.

[CR12] Jan L. Cieśliński and Boguslaw Ratkiewicz. Discrete gra-
dient algorithms of high order for one-dimensional systems.
Computer Physics Communications, 183(3):617–627, March
2012. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-
science/article/pii/S0010465511003961.

Croker:2016:NDG

Chun:2010:HPT

Chandrasekar:2016:EEC

Chen:2017:RLO

Cardoso:2013:LGF

REFERENCES

Chudoba:2013:UPS

Cheng:2015:AGP

Chen:2015:KNF

Childers:2017:ASA

Clason:2012:GSMa

REFERENCES

[Chang:2010:GUV] Chao-Hsi Chang, Jian-Xiong Wang, and Xing-Gang Wu. GENXICC2.0: An upgraded version of the generator for hadronic production of double heavy baryons Ξcc, Ξbc, and
REFERENCES

Chang:2015:BNU

Chen:2015:IPA

Chane-Yook:2011:UUC

Chen:2012:SSE

REFERENCES

Daniluk:2010:MDDb

Daniluk:2011:CCC

Daniluk:2012:VMS

Daniluk:2014:RIT

Daniluk:2016:RIT
Dattani:2013:FMP

DiNapoli:2013:BIE

deBuyl:2014:VPN

DiNapoli:2012:CSG

deBuyl:2014:HSE

REFERENCES

Duchemin:2010:SAA

Durand:2016:ECP

Dugan:2013:CGP

Dhote:2015:SMA

Davidson:2011:MTV

REFERENCES

V. P. Druzhinin, L. V. Kardapoltsev, and V. A. Tayursky. GGRESRC: a Monte Carlo generator for the two-photon process $e^+e^- \rightarrow e^+e^- R(J^{PC} = 0^{-+})$ in the single-tag mode. *Computer Physics Communications*, 185(1):236–243, January 2014. CODEN CPHCBZ. ISSN 0010-4655 (print),

Otero-de-la-Roza:2011:GNV

Dziubak:2012:OOI

Dehghan:2017:NSB

Doctors:2010:CEM

REFERENCES

Gallo:2016:CBM

Dimitroulis:2015:PTC

Davina:2016:OAI

Deuzeman:2012:LMP

Dehghan:2010:SNT

Decyk:2011:APC

Dehghan:2011:SWS

DeVuyst:2013:GAN

Dlamini:2013:QDC

Dlotko:2013:PIA

Pawel Dlotko and Ruben Specogna. Physics inspired algorithms for (co)homology computations of three-dimensional combinatorial manifolds with boundary. *Computer Physics Communications*...

[Danielson:2017:SDR] Thomas Danielson, Jonathan E. Sutton, Céline Hin, and Aditya Savara. SQERTSS: Dynamic rank based throttling of
REFERENCES

REFERENCES

[DSW15b] Carlos A. Argüelles Delgado, Jordi Salvado, and Christopher N. Weaver. A simple quantum integro-differential
REFERENCES

233

[Dua12] C. A. Duarte. Compact expressions for the magnetoresistance and the electron/hole density of states un-

REFERENCES

REFERENCES

Einkemmer:2016:HPC

Einkemmer:2016:RMS

El-Kurdi:2015:PFE

Eitzlmayr:2014:NMM

Edvardsson:2016:CPA

Ekstrand:2011:LMP

Efremenko:2014:MCC

Eisenbach:2017:GAL

Ellis:2017:TZF

Emeliyanov:2011:NAF

Guo-Kang Er. Probabilistic solutions of some multidegree-of-freedom nonlinear stochastic dynamical systems

Espejo:2012:WFA

Estevez-Rams:2015:VLV

Eriksson:2010:THDa

Eriksson:2010:THDb

Eriksson:2010:ETH

David Eriksson, Johan Rathsman, and Oscar Stål. Erratum for “2HDMC — two-Higgs-doublet model calcula-
REFERENCES

Eremin:2016:DSM

Egami:2011:FPS

Eckert:2016:HAL

Eaves:2016:CRV

Fawzy:2010:CAF

Wafaa M. Fawzy. A code for analysis of the fine structure in near-rigid weakly-bonded open-shell complexes that consist of a diatomic radical in a $^3\Sigma$ state and a closed-shell molecule.
Foucar:2012:CCA

Freire:2010:CSI

Faugeras:2017:OCC

Frances:2013:PAF

REFERENCES

Fleischhaker:2011:MSS

Frisch:2011:HPP

Feng:2012:AGM

Feng:2012:RMC

Feng:2016:AGM

REFERENCES

REFERENCES

Fischbacher:2012:NTV

Ferrand:2017:UOB

Fitzgerald:2012:DPM

Feger:2015:LMA

Frijters:2015:PHK

Fang:2010:ERM Yonglei Fang, Qinghong Li, and Xinyuan Wu. Extended RKN methods with FSAL property for oscillatory systems. *Computer Physics Communications*, 181(9):1538–1548, September 2010. CODEN CPHCBZ. ISSN 0010-4655 (print),
REFERENCES

[Fang:2010:ERT] Yonglei Fang, Qinghe Ming, and Xinyuan Wu. Extended RKN-type methods with minimal dispersion error

REFERENCES

Frigori:2010:UST

Fritzsche:2012:RPR

Frigori:2014:NLG

Fritzsche:2014:FTQ

Frigori:2017:PPL

Falloon:2017:QMP
Peter E. Falloon, Jeremy Rodriguez, and Jingbo B. Wang. QSWalk: a Mathematica package for quantum stochas-

Gaenko:2017:UCL

Gagunashvili:2012:CCT

Gagunashvili:2012:CCG

Gao:2016:RMG

Goicochea:2015:RDR

A. Gama Goicochea, M. A. Balderas Altamirano, J. D. Hernández, and E. Pérez. The role of the dissipative and random forces in the calculation of the pressure of simple fluids with dissipative particle dynamics. *Computer
REFERENCES

Gainullin:2017:HPG

Gao:2013:CPC

Guo:2013:LSN

Gramada:2011:CGE

Green:2014:IAP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Grossu:2014:CVI

Graen:2016:NNS

Grossu:2013:HFAa

Gillet:2016:EFI

REFERENCES

Gremse:2016:GAA

Gamillscheg:2011:NPT

Guillet:2014:TNA

Gingrich:2010:MCE

Giorgino:2014:CDA

Toni Giorgino. Computing 1-D atomic densities in macromolecular simulations: the density profile tool for VMD.
Giorgino:2014:PGE

Geng:2013:GAD

Gelmi:2014:IGP

Gonze:2016:RDA

REFERENCES

273

García:2013:SEP

Gerhard:2013:RHG

Gong:2012:PTU

Gomez-Lobo:2012:SMP

Gavin:2011:FCH

Ryan Gavin, Ye Li, Frank Petriello, and Seth Quackenbush. FEWZ 2.0: a code for hadronic Z production at

REFERENCES

Ghodrat:2011:MDS

Grisins:2014:MHT

Gonoskov:2016:SSP

Gituliar:2017:FTR

Gao:2017:PDF
REFERENCES

Grise:2011:SRU

Gao:2015:TSG

Galiana-Merino:2014:ECD

Galiana-Merino:2013:SCD

Gowrisankar:2014:RNS

Grigera:2011:GGL

Glass:2014:IMS

Gutierrez:2010:QCS

Glazov:2010:FSS

Greynat:2014:NAE

[David Greynat and Javier Sesma. A new approach to the epsilon expansion of generalized hypergeometric functions.]
REFERENCES

REFERENCES

Gil:2015:GPI

Gil:2017:ECL

Germaneau:2013:IMB

Gudmundsson:2011:TDM

Gonzalez:2011:EDA

REFERENCES

REFERENCES

Giannotti:2013:MGI

Guo:2015:SDP

Gallicchio:2015:ARE

Guo:2010:REC

Gao:2014:ETL

Miao Gao, Gui-Ping Zhang, and Zhong-Yi Lu. Electronic transport of a large scale system studied by renormalized

[HBH+17] Changjun Hu, He Bai, Xinfu He, Boyao Zhang, Ningming Nie, Xianmeng Wang, and Yingwen Ren. Crystal MD: the massively parallel molecular dynamics soft-

REFERENCES

Hung:2011:ETI

He:2016:FAW

Ho:2014:TSE

Hsieh:2016:EAC

Hung:2011:DPI

REFERENCES

Halder:2014:JAS

Hwang:2010:PNK

Huang:2011:FRR

Harvey:2011:STP

Hynninen:2012:MDI

Hoefling:2013:SFS

Hernandez-Garcia:2015:CAS

Hsiao:2011:ARE

Hung:2011:CRN

Huang:2010:MTF

Hsieh:2016:IAU

Hunt:2015:PCN

Hoschele:2014:MMP

Hynninen:2016:OOP

Hung:2010:IPP

Huang:2014:OTE

Hinde:2011:QMD

Hirel:2015:ATM

Hook:2014:CSS

[HKVR10] Marco Hülsmann, Thorsten Köddermann, Jadran Vrabec, and Dirk Reith. GROW: a gradient-based optimization work-

Haar:2017:APF

Huang:2013:NNE

Hu:2013:PSG

Hao:2013:NIV

He:2016:OSA

[HLLH16] Yu-Xuan He, Liang Li, Stéphane Lanteri, and Ting-Zhu Huang. Optimized Schwarz algorithms for solving time-

REFERENCES

Huber:2012:HEH

Hu:2011:NSG

Hoffmann:2014:KLK

Hasegawa:2010:AAG

Hariri:2013:FCI

Hohenester:2014:OMT

Ulrich Hohenester. OCTBEC — a Matlab toolbox for optimal quantum control of Bose–Einstein condensates. *Co-
REFERENCES

Hohenester:2014:SEE

Honda:2010:STF

Hsu:2011:FMC

Hammer:2014:SGL

Hahn:2017:IIM

[Hinz:2015:PBS]

[Horst:2011:CPA]

[Ho:2011:GFM]

[Hansen:2011:P]

[Henke:2014:MSP]
REFERENCES

Hollis:2013:TRT

Hollis:2014:TRT

Huang:2017:LLC

Haelterman:2015:ACT

Honkonen:2013:PGL

Hulsmann:2010:ANO

Hehn:2017:HTS

Huang:2011:NSL

Hutchinson:2012:VGA

Huang:2011:ESC
Hafermann:2013:EIC

Hu:2017:KOS

Huang:2015:IOS

Held:2016:TDG

Holmes:2010:EBA

REFERENCES

[Ito:2016:VBI] Keiichi Ito, Ivo Couckuyt, Silvia Poles, and Tom Dhaene. Variance-based interaction index measuring heteroscedastic-

Ibanez:2011:SDM

Ihnatsenka:2012:CEQ

Ito:2016:IRE

Nomura:2015:ELS

Izaac:2015:PCT

Ixaru:2010:NNM

Ixaru:2012:RKM

Ixaru:2016:NAS

Isakov:2015:OSA

Jablonski:2012:EAC

REFERENCES

Jefferson:2013:AAS

Jefferson:2014:FAS

Jaeken:2016:SCE

Jezequel:2010:NVC

Jia:2013:APW

REFERENCES

Jiang:2013:FGC

Jonsson:2013:NVG

Jucker:2011:IMI

Jelinek:2011:CHV

Jiao:2015:CTE

Li Guang Jiao and Yew Kam Ho. Computation of two-electron screened Coulomb potential integrals in Hylleraas basis sets. *Computer Physics Communications*, 188(??):

[Jiw15b] Ram Jiwari. Lagrange interpolation and modified cubic B-spline differential quadrature methods for solving hyperbolic partial differential equations with Dirichlet and Neu-

Xiang-Wei Jiang, Shu-Shen Li, and Lin-Wang Wang. A small box Fast Fourier Transformation method for fast Pois-

REFERENCES

Jenkins:2011:AAE

Januszewski:2015:GBA

Jiang:2014:GSM

Joulaian:2012:NAS

Khalid Jamil, Siraj ul Islam Ahmad, and Shahid Manzoor. HIBRA: a computer code for heavy ion binary reaction
References

Kaprzyk:2012:AFI

Kaprzyk:2012:AFS

Kappl:2016:SCS

Khan:2015:STP

Kosti:2012:OER

REFERENCES

REFERENCES

Kupczynski:2016:BSI

Kiesewetter:2017:AIS

Kong:2011:IVG

Karimi:2017:PNO

Kuijpers:2014:OLD

Kauzlaric:2014:SSP

Kalantzis:2012:UST

Kerby:2017:EDN

Kim:2016:CGS

Koehne:2013:PTP

Korpilo:2016:GFT

Kunze:2010:LTM

Kroger:2010:ASC

Kar:2011:RSP

Kleiber:2012:PMF
R. Kleiber and R. Hatzky. A partly matrix-free solver for the gyrokinetic field equation in three-dimensional geometry. *Computer Physics Communications*, 183(2):305–308, February 2012. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-
REFERENCES

Kirby:2010:CRP

Kamali:2013:IMF

Khoromskaia:2014:MPM

Khoromskaia:2014:GBL

Kafri:2016:BPN

REFERENCES

REFERENCES

Khanna:2010:NMG

Kuchelmeister:2012:GBF

Kohno:2012:FEP

Krasilnikov:2011:FPD

Kroonblawd:2016:GCC
Matthew P. Kroonblawd, Nithin Mathew, Shan Jiang, and Thomas D. Sewell. A generalized crystal-cutting method for

REFERENCES

Komura:2015:GBC

Komura:2015:MGB

Komura:2015:OPS

Kong:2011:PDM

Kachelriess:2012:EMC

Kumar:2013:PGS

Kozlov:2015:CMP

Kniehl:2016:MCL

Kuipers:2013:IMH

Kwon:2017:ITT

Kumar:2014:NAM

Kylanpaa:2016:EES

Krawczyk:2010:ADE

Kramida:2011:PLL

Kramida:2017:CIC

REFERENCES

Kondayya:2012:FHF

Kroonblawd:2015:SNU

Khorasanizade:2016:TDS

Kiviniemi:2016:ESS

Kesselheim:2011:AID

REFERENCES

Koenka:2014:IOS

Kirchner:2011:WCC

Karasiev:2014:FTO

Koyama:2014:IDL

Kim:2015:FCC

[KSTR15] Jong Soo Kim, Daniel Schmeier, Jamie Tattersall, and Krzysztof Rolbiecki. A framework to create customised

REFERENCES

Koval:2010:USB

Karasiev:2012:ICO

Kucherenko:2012:EGS

Knight:2012:CGT

Kaneko:2010:GMS

REFERENCES

Kuipers:2015:COF

Kuipers:2013:FV

Koleva:2010:TGQ

Kosmas:2010:PFD

Kleiss:2011:CCL

Korzec:2011:PWA

Kageyama:2014:AEV

Kim:2015:CDV

Kim:2015:DVF

Kawamura:2017:QLM

REFERENCES

Predrag Lazić. CellMatch: Combining two unit cells into a common supercell with minimal strain. Computer Physics Communications, 197(??):324–334, December 2015. CODEN

Benzhuo Lu, Xiaolin Cheng, Jingfang Huang, and J. Andrew McCammon. AFMPB: an adaptive fast multi-

Lamotte:2010:CVC

Li:2014:SSB

Lin:2011:HBS

Lundberg:2010:LDC

Lerner:2013:SDO

Leon:2012:EMS

Lesur:2016:MSI

Liu:2012:FES

Li:2014:KFB

Li:2016:AOT

Lin:2014:SEB

Liu:2016:PAA

Liu:2011:EPI

Lin:2013:PCS

Liu:2015:PTA

Lv:2016:OSM

Lee:2011:GWB

Lee:2011:TDS

Lin:2011:LRR
Lee:2012:EAN

Liu:2015:LIV

Lehe:2016:SQC

Lee:2011:PAC

Laptyeva:2016:CFS

Loft:2016:CCL

Lo:2011:MHS

Lu:2012:SPM

Lou:2015:MNF

Levy:2017:IME

Liang Li, Stéphane Lanteri, and Ronan Perrussel. A class of locally well-posed hybridizable discontinuous Galerkin
REFERENCES

REFERENCES

Laburta:2015:NMN

Li:2016:MCB

Lv:2017:CDS

Lopez:2015:CSJ

Litsarev:2014:DCC

REFERENCES

REFERENCES

[LR16] P. J. J. Luukko and E. Räsänen. Corrigendum to “Imaginary time propagation code for large-scale two-dimensional eigen-

Li:2011:GTR

Luo:2013:IMM

Lopez:2015:DNV

Lopez:2017:TME

Levchenko:2015:HFL

Londero:2011:VPV

Li:2012:NMS

Lindner:2012:SXR

Luscher:2013:LQO

Tiziano Leidi, Giulio Scocchi, Loris Grossi, Simone Pusterla, Claudio D’Angelo, Jean-Philippe Thiran, and Alberto Ortóna. Computing effective properties of random heterogeneous materials on heterogeneous parallel processors. *Com-
López:2013:ISP

Lin:2013:TDR

Lourderaj:2014:VNS

Lichtenstein:2017:HPF

REFERENCES

REFERENCES

Liu:2014:MAM

Loke:2016:OVU

Loke:2014:OOP

Li:2011:MCS

Li:2012:HDM

Los:2017:IAI

Luo:2016:GAC

Ling:2010:HTS

Li:2011:TSE

Li:2014:LAB

Lang:2012:QBS

Li:2014:SCC

Lorin:2016:FGA

Lyakh:2015:ETT

Li:2010:CRN

LY16

LYJY10

Xiangwen Lu, Jiabin Yuan, and Weiwei Zhang. Workflow of the Grover algorithm simulation incorporating

[LPZ12] Alan R. Levin, Deyin Zhang, and Eric Polizzi. FEAST fundamental framework for electronic structure calculations: Re-

[MAIVAH14] M. Molero-Armenta, Ursula Iturralán-Viveros, S. Aparicio, and M. G. Hernández. Optimized OpenCL imple-
REFERENCES

389

McIntyre:2012:FJB

Mosert:2016:PSQ

Marquardt:2010:PWI

Michalicek:2013:ELE

Moxley:2012:GFD

Mohankumar:2010:NAD

Mei:2012:NSR

Majorosi:2016:FOR

Myneni:2017:CEE

Mani:2017:RPR

[MCA17] B. K. Mani, S. Chattopadhyay, and D. Angom. RCCPAC: a parallel relativistic coupled-cluster program for closed-shell and one-valence atoms and ions in FORTRAN. *Computer Physics Communications*, 213(??):136–154, April 2017. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-
Miqueles:2014:ART

Mitnik:2011:CMG

Mycek:2017:RDD

Melazzi:2012:SFD

McMillan:2017:PMF
Ben F. McMillan. A partially mesh-free scheme for representing anisotropic spatial variations along field lines. Computer

Martinez:2016:POS

Macias-Diaz:2010:SET

Mohebbi:2010:HOS

Macias-Diaz:2011:SCP

Miqueles:2011:CLR

REFERENCES

Mercado:2012:WAS

Mertmann:2011:FSO

Mendl:2011:FTF

Montoliu:2013:IEL

REFERENCES

Marojevic:2016:APF

Masala:2013:IMC

Municchi:2016:HES

Malcioglu:2011:TCS

Mercado:2013:SWA

Miura:2011:VPI

Maeyama:2012:HMS

Maeyama:2013:NTP

Miyatake:2015:DEP

McMillan:2010:RFS

REFERENCES

Moddel:2011:AFP

Mierzwiczak:2010:AMF

Morozov:2011:MDS

Manka-Krasoń:2010:CRL

Merz:2012:MDG

REFERENCES

Monovasilis:2010:SPR

Matsumoto:2012:ATV

Moran:2011:DQO

Melazzi:2014:ASV

Mortensen:2016:HPP

Mikael Mortensen and Hans Petter Langtangen. High performance Python for direct numerical simulations of turbu-
REFERENCES

Marx:2017:HPX

Markosyan:2014:PTF

Manuali:2010:GGF

Meier:2010:SES

Marmier:2010:ECP

[MLW+10] Arnaud Marmier, Zoe A. D. Lethbridge, Richard I. Walton, Christopher W. Smith, Stephen C. Parker, and Ken-
REFERENCES

Mokhtari:2010:NSG

Morhac:2011:ESM

Mokhtari:2012:MMS

Mangiardi:2017:HAP

Minoshima:2015:FVF

MMA15 Takashi Minoshima, Yosuke Matsumoto, and Takanobu Amano. A finite volume formulation of the multimoment advection scheme for Vlasov simulations of magnetized plasma. *Computer Physics Communications,
REFERENCES

Mazzeo:2010:SRT

Makarashvili:2017:PAE

Ma:2015:QWQ

Meres:2011:GHP

Mohankumar:2010:IVI

Mohankumar:2016:VAN

Moreno:2015:CMR

Mushtaq:2011:VHP

Morris:2014:OTO

REFERENCES

Mao:2011:ERM

Menz:2010:TIT

McClure:2014:NHA

Marchand:2013:LPC

Miqueles:2015:GIX

Mohankumar:2013:SCE

Mawson:2014:MTO

Mokos:2015:MPS

Maruhn:2014:TCS

Mayrhofer:2013:IWB

REFERENCES

Mazzeo:2010:LNL

Menshutin:2011:MDD

Matsuoka:2014:AIC

Mohankumar:2015:SRR

Munejiri:2011:RSI

REFERENCES

Ian Mondragon-Shem, Boris A. Rodríguez, and Francisco E. López. Efficient calculation of Coulomb matrix

References

REFERENCES

Mikram:2013:PCP

Zhao:2015:ASE

Nisar:2016:SSB

Nath:2009:TVI

Nath:2010:ETV

Nazarov:2012:AMM

Nakano:2015:FSS

Nemes:2014:DMR

Needham:2016:EAM

Navarro:2015:PFT

Niemeyer:2017:PAJ

Nemura:2016:IDE

Neumann:2016:MSD

Nazarov:2017:PSU

REFERENCES

Trung Dac Nguyen. GPU-accelerated Tersoff potentials for massively parallel molecular dynamics simulations. *Com

REFERENCES

REFERENCES

REFERENCES

Y. C. Ou, Y. H. Chiu, J. M. Lu, W. P. Su, and M. F. Lin. Electric modulation effect on magneto-optical spec-
REFERENCES

Odrzywolek:2011:GIR

Okuyan:2014:BTP

Obrejan:2017:DNZ

Ohno:2010:RIV

Odaka:2012:GIS

Shigeru Odaka and Yoshimasa Kurihara. GR@PPA 2.8: Initial-state jet matching for weak-boson production pro-

Ozgun:2014:CTA

Ogren:2011:SSF

Oh:2012:MOO

Ogoyski:2010:COU

Ogarko:2012:FMA

Oger:2016:DMM

Oquendo:2011:IRC

Ohzeki:2011:QAJ

OBroin:2012:OIS

REFERENCES

Ovaysi:2012:MGA

Opletal:2011:HHR

Opletal:2014:HHR

Opletal:2013:HHR

Ossandon:2017:NNA
Sebastián Ossandón, Camilo Reyes, Patricio Cumsille, and Carlos M. Reyes. Neural network approach for the calculation of potential coefficients in quantum mechanics. *Com-
REFERENCES

Oskooi:2010:MFF

Orgogozo:2010:OSM

Osterman:2010:TOT
<table>
<thead>
<tr>
<th>References</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
</table>
Ogburn:2014:FDC

Ozkaynak:2013:SPP

Ohno:2014:PMD

Poursina:2013:CES

Palmai:2012:RMS

Panzer:2015:ASI

Panopoulos:2011:SES

Paternoster:2012:PSA

Patel:2015:PXM

Patel:2017:PXM

REFERENCES

[PF+16] Ondrej Pártl, Michal Benes, Peter Frolovic, Tissa Illangasekare, and Kathleen Smits. Numerical modeling of non-

REFERENCES

[PH13] Szilárd Páll and Berk Hess. A flexible algorithm for calculating pair interactions on SIMD architectures. *Com-

[PLF+17] Nick Papior, Nicolás Lorente, Thomas Frederiksen, Alberto García, and Mads Brandbyge. Improvements on non-equilibrium and transport Green function techniques: the

REFERENCES

Alexei Y. Pankin, Alex Pletzer, Srinath Vadlamani, John R. Cary, Ammar Hakim, Scott E. Kruger, Mahmood Miah, Thomas D. Rognlien, Svetlana Shasharina, Glenn Bateman, Arnold H. Kritz, Tariq Rafiq, and FACETS team. Simulation of anomalous transport in tokamaks using the FACETS
REFERENCES

K. Parand and J. A. Rad. Kansa method for the solution of a parabolic equation with an unknown spacewise-

[PR13] K. Parand and J. A. Rad. Kansa method for the solution of a parabolic equation with an unknown spacewise-

[PR13] K. Parand and J. A. Rad. Kansa method for the solution of a parabolic equation with an unknown spacewise-

Pang:2014:GAO

Pradhan:2011:CWP

Prausa:2017:ETF

Pletzer:2011:EMS

Porod:2012:SEI

W. Porod and F. Staub. SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM. *Com-

Paissoni:2015:GGT

Pratapa:2016:SQM

Phan-Thien:2014:ETD

Pekmen:2012:DQS

Pigg:2014:ERD

REFERENCES

Payne:2017:ASS

Pizzi:2014:BCE

Pizzi:2014:UVB

Pekkila:2017:MCF

Peng:2014:RCI

[Zhong Peng, Hong Wei Yang, Rui Weng, Yingjie Gao, and Ze Kun Yang. A research on the CN-ICCG-FDTD algo-]
REFERENCES

Quackenbush:2013:PLF

Qiu:2010:CSG

Qiu:2014:RCE

Qiang:2010:HOF

Qiang:2016:ETD

REFERENCES

Qiang:2017:FPP

Qin:2016:IDM

Qiang:2010:PFD

Qiu:2016:PIG

Quinlan:2014:DMF

Qamar:2010:KFV

Qian:2014:SEM

Quan:2015:NOA

Qamar:2011:STC

Raffah:2013:ECW

Rashidi:2009:MDT

Rashidi:2017:CMD

Rancova:2011:NMS

Rawitscher:2015:SPA

Rawitscher:2016:TTB

REFERENCES

REFERENCES

Reimer:2016:CMB

Rosiek:2010:SCT

Rangel:2016:WBP

Ren:2016:MBD

Rostrup:2010:PHP

REFERENCES

REFERENCES

REFERENCES

Roeller:2012:SSE

Ren:2012:HOU

Rourke:2012:NEH

Ryu:2016:TES

Ren:2016:IPS

REFERENCES

Jiang:2011:PIC

Reith:2011:MWF

Ramos:2010:REF

[RM10a] J. Rashidinia and R. Mohammadi. Tension spline approach for the numerical solution of nonlinear Klein–Gordon equa-
REFERENCES

Rawat:2010:MRN

Robinson:2014:NFG

Rocha:2016:UZC

Reis:2012:DOP

Ridgeway:2013:VDA

William K. Ridgeway, David P. Millar, and James R. Williamson. Vectorized data acquisition and fast triple-

[Rohe:2016:HPF]

[Romano:2015:AGR]

[Rosiek:2015:SFV]

[Rosiek:2016:MMP]

[Roehm:2015:DDK]

REFERENCES

REFERENCES

Regnier:2016:FFE

Rubow:2011:FAC

Russell:2015:OTD

Sundararaman:2014:ECD

Sharma:2015:OHS
Medha Sharma and M. A. H. Ahsan. Organization of the Hilbert space for exact diagonalization of Hubbard model.

Sokolovski:2011:EMP

Savvidy:2015:MRN

Smadi:2011:CSS

Schram:2013:SPC

Sokolov:2017:FIP

Squire:2014:VAV

Sprung:2013:FFT

Sarlis:2014:VSR

Sijoy:2015:TTT

Sibaev:2016:PFO

Marat Sibaev and Deborah L. Crittenden. PyVCI: a flexible open-source code for calculating accurate molecular infrared

Sijoy:2016:CNC

Sprengel:2017:CCC

Schmid:2012:AIP

Stupovski:2011:ACT

Stegmeir:2016:FLM

Scott:2013:ECS

Scott:2016:E

Shang:2017:LDC

Schofield:2012:SSM

REFERENCES

Schunck:2017:SSH

Shcherbakov:2015:FGN

Semenov:2016:LPA

Serebrennikov:2010:NSA

Serov:2017:OFS

REFERENCES

REFERENCES

Sant:2016:ITG

Sala:2011:EIF

Sala:2011:IFM

Sanchez-Gil:2017:NNG

Shtabovenko:2017:FCF

Senkov:2013:HPF

Saito:2011:PGL

Sierakowski:2016:GCR

Souto-Iglesias:2013:CM

REFERENCES

REFERENCES

Seebacher:2012:TUL

Singh:2014:ENT

Sen:2015:SBS

Samana:2010:QNC

Seth:2016:TCC

[SKFP16] Priyanka Seth, Igor Krivenko, Michel Ferrero, and Olivier Parcollet. TRIQS/CTHYB: a continuous-time quantum Monte Carlo hybridisation expansion solver for quantum impurity problems. *Computer Physics Communications*

[SKML11] Ingve Simonsen, Jacob B. Kryvi, Alexei A. Maradudin, and Tamara A. Leskova. Light scattering from anisotropic,

REFERENCES

Shumlak:2011:APC

Solanpaa:2016:BSP

Si:2016:LSM

Silva:2011:STM

Sauter:2013:TCC

REFERENCES

REFERENCES

Sokolov:2013:AOI

Solovyev:2011:RMC

Shimojo:2013:LNQ

Schulz:2011:SDS

Staub:2012:TBI

Souvatzis:2014:UVE

Schreilechner:2016:RSF

Shelley:2011:AQC

Singh:2010:SAH

Singh:2011:AZT

Soulaine:2015:PLA

Su:2010:FPC

Shen:2016:IVC

Sekhar:2012:EHO

Sony:2010:GPF

References

REFERENCES

Jing Shen, Wei E. I. Sha, Zhixiang Huang, Mingsheng Chen, and Xianliang Wu. High-order symplectic FDTD scheme for...

Simon:2016:PIA

Stoitsov:2013:ADS

Sylwestrzak:2017:MPD

Sitarek:2016:SRA

REFERENCES

REFERENCES

Shabaev:2015:QFP

Stork:2017:DAE

Sussman:2017:CMP

Stockinger:2012:FMF

Schrock:2013:CLM

Mario Schröck and Hannes Vogt. Coulomb, Landau and maximally Abelian gauge fixing in lattice QCD with multi-GPUs. *Computer Physics Communications*, 184(8):1907–1919, August 2013. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-
REFERENCES

REFERENCES

Sarti:2013:BTE

Smiljanic:2014:MBP

Sa:2012:PUP

Sa:2013:PUI

Tabakin:2016:QQM

REFERENCES

REFERENCES

REFERENCES

Tickner:2010:MCS

Tickner:2014:APM

Tsukahara:2016:ILC

Tordella:2013:LES

REFERENCES

Timoshenko:2012:RMC

Tennyson:2015:MOI

Tang:2013:SIN

Tadano:2010:APB

Tavakkol:2017:CGA

Tagliaboschi:2014:PMI

Thirayatorn:2015:FDC

Trieu:2011:EBS

Teodoro:2011:MMS

Toyoda:2010:FSB

Masayuki Toyoda and Taisuke Ozaki. Fast spherical Bessel transform via fast Fourier transform and recurrence formula.
REFERENCES

Toyoda:2010:LLN

Tapiador:2014:FBH

Tomasik:2016:DHG

Tosiek:2010:FPM

Tuttafesta:2016:MGU
REFERENCES

Tabik:2012:VRR

Titus:2016:TRC

Troster:2011:WMS

Tueros:2010:TPS

Tsoulos:2011:ECP
Takahashi:2016:EBM

Tegeler:2017:PMF

Teijeiro:2013:PBD

Tong:2011:TDM

Tay:2014:PAD

Tang:2011:MTM

Tomiya:2011:QFD

Tsoulos:2016:PIP

Toll:2014:DMM

Turemen:2015:GAR

G. Turemen, G. Unel, and B. Yasatekin. A graphical approach to radio frequency quadrupole design. *Computer
REFERENCES

References

REFERENCES

Vogel:2011:APN

Velasco:2012:IIS

Valiev:2010:NCS

Voyiatzis:2015:GAI

Voronych:2017:NME

REFERENCES

[VDB14] Ilya Valuev, Alexei Deinega, and Sergey Belousov. Implementation of the iterative finite-difference time-domain

[Valentim:2015:EST]

[Vladimirov:2011:GWI]

[Valentim:2014:DET]

[vanderSman:2010:MLB]

vanderSman:2013:ILB

vanderSman:2016:AIL

Veberic:2012:LFA

Voitcu:2012:CSF

Verheyen:2016:RCP

REFERENCES

Vranic:2015:PMA

vonHippel:2010:TMA

vanHameren:2011:OEO

Voglis:2015:PMP

Vu:2012:FHS

REFERENCES

REFERENCES

REFERENCES

Brecht Verstichel, Helen van Aggelen, Dimitri Van Neck, Patrick Bultinck, and Stijn De Baerdemacker. A primal-dual semidefinite programming algorithm tailored to the

REFERENCES

[WAW14] Un-Hong Wong, Takayuki Aoki, and Hon-Cheng Wong. Efficient magnetohydrodynamic simulations on distributed

REFERENCES

Welling:2011:ELC

Waltz:2012:CMM

Walczak:2016:BBA

Wang:2016:SIG

Warren:2016:GOS

REFERENCES

Wilson:2015:EIF

Wallerberger:2011:FCC

Witzens:2014:ICD

Wang:2014:PTM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Wang:2016:TDS]

[Wong:2011:EMS]

[Wong:2011:EPR]

[Wong:2014:GMS]
REFERENCES

REFERENCES

Xiong:2013:GAA

Xu:2015:SHA

Xiao:2016:MPC

Xu:2016:EIP

REFERENCES

Xiao:2015:EVS

Xiao:2013:SAA

Xie:2012:FOC

Xu:2013:NID

Xu:2012:ADI

REFERENCES

Yang:2011:HCO

Yi:2011:PEG

Yuan:2011:MGM

Yang:2010:AWL

Yi:2012:FCM
REFERENCES

Yu:2017:SFV

Yang:2015:HTR

Yakovlev:2017:ACV

Yang:2013:BEG

REFERENCES

Yu:2011:TDD

Yang:2009:ERT

Yu:2015:ENC

Yu:2015:MNC

Yan:2016:NEP

Yang:2014:SNT

Yu:2010:CSC

You:2011:TFS

Yan:2017:PSO

[YZWR14]

[YZY10]

[YZZ11]

[YZZ+17]

Zhen:2012:DFH

Zhu:2017:DOS

Zanotti:2015:HOS

Zinchenko:2013:NGF

Zhang:2017:UEB

Liming Zhang, Ali Deng, Minghong Wang, and Xianzhu Meng. The use of the edge basis function for non-conformal

Zilibotti:2011:ICA

Zhai:2014:NST

Zhao:2016:PTL

Zheleznyakova:2015:MDB

Zhong:2011:PBN
Jiahang Zhong, Run-Sheng Huang, and Shih-Chang Lee. A program for the Bayesian Neural Network in the
REFERENCES

Zhang:2010:RFY

Zhang:2013:SNS

Ziolkowski:2014:NAN

Zitko:2011:SMP

Zuniga:2013:MID

Zentile:2015:EPC

Zuccaro:2011:MMP

Zhao:2013:IHA

Zhang:2017:MAG

Zhao:2012:MMC

Zlokazov:2013:VGD

Zlokazov:2014:CIO

Zheng:2012:MPC

Zierenberg:2013:SPP

Zheng:2013:MVN

Zwart:2013:MPS

Zhou:2015:EHO

Zhang:2013:VME

Zhang:2015:PAS

[ZPH+15] Bo Zhang, Bo Peng, Jingfang Huang, Nikos P. Pitsianis, Xiaobai Sun, and Benuhuo Lu. Parallel AFMPB solver

Zheng:2016:EOF

Zhang:2012:SSS

Zheleznyakova:2013:MDB

Zhu:2011:MSW

REFERENCES

[Zlokazov:2013:VPA] V. B. Zlokazov, V. K. Utyonkov, and Yu. S. Tsyganov. VSHEC — a program for the automatic spectrum calibra-
REFERENCES

Zhao:2015:NMN

Zhao:2010:VIM

Zhang:2016:NVC

Zhou:2015:UIP
REFERENCES

