A Complete Bibliography of Publications in
Computer Physics Communications: 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

29 May 2020
Version 1.90

Title word cross-reference

(1 + 1) [SP18a]. (2 + 1)D [HP14]. (MC)3 [KSW15]. 0 0 0 1 [Dan19]. 0 0 0 1
[Dan19]. 1
[CC14, Gio14a, HTT13, HTT14, MGL13, PM16, RKVL14, SBH+14, WNYP17].
1 + 1 [Fan19, SÖÖN11]. 1/2 [HvWT17]. 1/t [AM17]. 2
[APC+14, BBB17b, BVP10, DLM18, EW14a, FJK+17, FK12, GCVA14b,
Gwi12, Ixa10, JCL+18, KO14b, KO16, RAV11, SW14a, SW14b, SA15b,
SKK11, SW11, TMA+15, TY10, TKL+12, TPC16, VLM11, WMRR17,
WRMR19, YLKN17, YTYA17, ZSW+17a]. 3
[AV13, AM19, AGMS15, BAR12b, CP15a, CPCdM18, CdLOL19, DGG13,
FLZ+18, FRFH10, GS15, Gai17, GMF+17, Giu19, GG16, GX15, HKJ+12,
HDM+12, JEC+12, JCL+18, JKIS16, KAK12, KL11, KO14b, KO16, KMJS16,
LHJZ10, LHC+13, LX14, LKW11, LBP15, MGO13, MCP+11, NHD16,
NCB18, PR10, PCGM14, QSC14, Qia17, RF15, RS12, RJLL16, RHBH15a,
RHBH15b, TGH+16, TIM+16, VMGP+19, WNYP17, WRBL19, YKK+19,
ZXL16, ZZD+16, ZSW+17a, ZFR18]. 3 + 1 [KHB14]. 4 [GGF+13, dSLF13]. 5
[GAB+16], 6 [YKK+19], 71 [JTH14]. ∼ [KH11]. 1 [LM16], [HFSK12]. RM12, 2 [BG13b, BG14a, BLG14, Bon15, Bon16, GBD10, HSK12, RPB15]. 3 [CDTV10], 3Σ [Faw10]. ∗ [R] [LNSD15]. T_M [RJKC16]. [LSJ13]. 1_w [TMA+15], 11−x [LQZ+13]. 2 [CJH11, CHW+15, DSM+11, LS11]. 20 [CHW+15], 21 [CHW+15]. 3 [BKA+14, CJH11, CHW+15, DSM+11, KAR+15, LQZ+13]. 4 [LQZ+13]. 5 [LS11]. 6 [CJH11, CHW+15], MCGNLO [ADF+15]. Φ [KYM+17]. 1 [DKT14], E_6 [Dep17]. ep [AFIS12], η' [AHK+12], ym(Z) [CEPI10]. F [DGS+19, GAB+16, KTB17]. Fε [BK16b]. F_D [BKM14]. F_2 [BK16b]. G [CNCM10a, HR11]. Γ [DEMM19, GTKC16a, BCM16]. GGA [HWW12]. [HS19]. BR(B_0^0 → ℓℓ) [DNPS13]. C [Nik12b]. C_3 [Nik12b]. N = 4 [SD15]. O(α_s^2) [HP17]. Cocos [SM13]. D [CZ17, Kap12b, KTB17]. D = 4 [Fis12], Δ(S^2) [MC17], δf [DF14]. e^+e^- [FWWC15], e^+e^- → e^+e^−π^+π^− [CI11], e^+e^- → e^+e^-π^0 [CI11]. e^+e^- → e^+e^-R(J^{PC}=0^−+) [DKT14]. E_6 [Dep17]. ep [AFIS12], η' [AHK+12], ym(Z) [CEPI10]. F [DGS+19, GAB+16, KTB17]. Fε [BK16b]. F_D [BKM14]. F_2 [BK16b]. G [CNCM10a, HR11]. Γ [DEMM19, GTKC16a, BCM16]. GGA [HWW12]. GW [JGAL16]. H [MR13]. hp [CMC15, BCM16]. HΦ [KYM+17]. i [HWM15, KB19]. j [Wei11a], jj [Erm18], k [AWK+16, Ell17b, MDG+12, OBH10]. k_T [Vh18]. k·p [Bot12, MBF+10]. L [SS13b], L_2 [ZY19b], L_∞ [TK14b]. Λ [Kur17], λϕ [Chr18], LDA + U [HWW12]. O(N) [SSP18]. μ [TACA15]. N [BBL+13, COS13a, MTM13, MBDF12, PII11, SGNL17, WSH+12, dHV12, GJ14, RF10]. N = 8 [Fis12]. N_f = 2 + 1 + 1 [BBC+11]. ν [BNH+16, HCM19]. O(N) [SSP18]. O_h [Nik12b], p [Wei13]. F_3 [MK17]. p_{i/2+τ}(r) [GST12]. φ^4 [KVW11]. π [KS12]. q [FDWC12, KO13]. q = 3 [dS13], Q^2 [HK12]. R [AB10, AKH12, Bot12, Des16, NPM16]. R_2 [Deg15]. S [ACDdM19, BG19b, DdMN16, LB10a, LB11, LB12, LB13, SAS11]. S^4 [LF12], SO(2N) [CECGS16], SO(8) [Fis12]. ∗ [Tos10]. SU(2) [Alv12], SU(3) [BW12a], SU(N_c) [CB13a], S [HCRD14, TUC14]. T_1 − T_2 [GWF+16], T_2 [GFCF+17], T_3 [CJM+11]. T_4 [Nik12b], τ [CPWZ18], Θ [BJ11]. U(1) [BB13], U(3) [LDD+19]. V [ABB+16]. W [QGLP13, Vebl12]. w = 8 [ABRS19]. Z [CWW10]. Z [CWW10]. Z [CWW10]. Z [CWW10]. Z [CWW10]. Z [CWW10]. Z [CWW10].
8.2 [SAC+15].

9 [Nik12b]. 9.0 [SMO16a]. 90 [GST12, KS12, SSG+10, SSG+18, SS10a]. 95 [FGJB19, vH10].

= [LQZ+13].

adaptation-resolution [ABRS12]. adaptively [JL19]. adaptor [BV13].
algorithm [LTP16, Lya15, LOSZ13, MM17, MGO13, MPM14, MH11, MGS13, MEM+11, MC10, MTO15, MFLY19, NBN+14, Nen16, NFD+19, OL12, OOK+12, OCM+19, PH13, PSB11, PDRG10, PP13, PYW+14, PR10, PG17, PdMML19, QwWL+15, Ray10, RU13, Rom15, RW11, SGM11a, SGM11b, SCB+17a, SCB+19, SG15, ST19, SWL+15, SPS10, Sin12b, SKKI11, SQA+15, SOYHDD19, SOJ14, Ste17, TMS19, TIM+16, UW12, Urb18, US16, VSG18, VvAV+11b, VLL+17, VGM+15, WP11, WRF15, WWHW14, Wei12, WRVdL15, XWhZ13, YZZ+17, YvOSM15, YLYL17, ZKG+18, ZZHG18, ZCC19, Zhe15, ZMJ13, Zou18, vRWS14, Cho11, KS16a, SKH+10, YKS11].

Algorithmic [HB12, Mey18, GHR+16].

Algorithms [Fri14a, KD17, KBLJ18, Pan15, TK14a, BS14a, BK11b, BAF18, CWJ19, CLH+17, CCW10, CR12, CF17, CLB11, DS11a, DS14, Dim14, DS13c, ER19, FDWC12, Fri10, FHA17, GBR+14, GWF+16, GBJ+19, GCHL15, GSC+16, Has11, HLLH16, HRC11, Hon18, HVMR10, HCSW10, JPH+14, KMS19, KK17, KME+11, LBM+14, LIJY10, Mag18, MEG12, MD11b, MA11, PBS+17, STK10, SGM18, SJ17, SMJ17, Sha18, TRM+12, VPP+12, Vuk12, WG11, XQ19, ZH16, dSF18]. Alias [SKSK13].

ALICE [Ano19m].

aligned [DXY+19, HO13, HWS16, LDR+17, PHT+19]. alignment [BKM11, SJY18, SJY20].

alkali [SPAW17].

almost [PdMML19]. AIN [Dan19]. ALOHA [dALM+12]. along [McM17].

AlpGen [CUL+17]. Alphen [RJ12]. ALPS [DBK+14, GAC+17]. alteration [SVG10]. AlterBBN [Arb12]. Alternating [Sok13, SSP19, XZ12, BDK11, LST15, TTT14, XYK12].

alternating-direction-implicit [TT14]. Alternating-order [Sok13].

Alternative [ADdM17, Arb12, BKA+14, CLF18, KAR+15, SPP19]. altruistic [HLS12]. Am [MSNI11]. AMB [KB19]. AMBER [NBW16].

[Raw15, BT17b, MPSV15, Raw16]. Amplitudes [DLU18, BBU11, BvH15, Kvd011, Per14, dALM+12, ADH+17]. AMR [GX15, TE18, TK19, ZKG+18]. AMRVAC [TK19]. analog [CO11, Fer15].

analyser [LW11, LW13]. analyses [Ham11, KSTR15, SUS+17a, WLM14].

analysing [BPMS16]. Analysis

[BBB+15, Car10a, CAN11, GdGB+18, GES13, IB11, SLLP17, ÜS18, WHB16, vDSM16, AAA+16, ÁSS18, ASE1A4, AS11b, AMR15, Ano11o, AdM+12b, ACDdM14, APC+14, BHN+16, BKN+17, BHH+10, BBH+15, CSC11, Car10b,
CMRVVR+14, CF16, CPW17, CZL+11, DRR16, DGPO18, EBCB+14, EBDM17, EW14b, EW16, Faw10, FF11, FNPM10, FBN+13, Fri17, GWL+17, GMRHCM13, GMPFC+14, GMC18, Gio14b, GMO19, GHBL18, GA13, GBJ+10, GBJ+12, GBJ+13, GFJ+14, GAO13b, Hak16, Hak19, HC16, HJL+14, JuIAM16, JCK+13, KKP11, KYKN15a, KYKN15b, Lev19, LS16, LHWL16, LRP+15, LWP+17, MNO+17, MLLW+10, ME18, MB12, ML14, MPSV15, NEW+18, Nov17, Ost10, dLRJ14, OVS15, PCVZ11, PVH+17, PM14, Ram10, RRRSC10, Ram19, RV10, RJW+19, Rui13, RWKS15, SAA+10, iSYS12, Sha13a, SLW19a, SLW19b, SLCl1, Sin11, Sin12a].

analysis [SUS+17a, TRM+18, TBZ12, TS11, UW12, VV16, WLH+12, WLS13, xJS16, xS19, Yan09, GGF+13].

Analytic [BK13b, NS10, AC15, AC16, AC18, HSF+19, Kau13, KLLG17, LLL12, LLL13, LYL+17, PSB11, PSBT12, Pat15, Pat17, Ser10, THDS16, TGUvS19, WAHL13, YOM+19].

Analytical [MCAdF14, NCS17, BHW+12, DS10, FMRP16, FJK+17, JDG12, KCT15, KR14, MRVF13, MHWH19, SV19, Tan19].

analyze [GWM13, GNT17].

Analyzer [FCC15, RLR+19, KHZ+18, LZ18, ZLZ19].

Analyzer [BPM12, SAHP15, WJZ18]. and/or [XHL12].

And [BHT19, FHT+14, MST+18, SJ17, SPP19]. angle [HJ14, SLLP17]. angular [LN16, PR12, Pos18, We99, WT12].

Anisotropic [ZFZ19, HWS16, JG16, KYSV+15, LBB+16, MLW+10, McMi17, MLS10, MNI18, NO14, Ots11, SSB+16, SKML11, Taul10, VVB+12, YXZ19, YSV+16].

anisotropically [CAN11].

anisotropy [BDK11, KGSN10, MS11, NO14, QZ19].

annealing [BSM13, BWB+17, CM10a, CD12, IZRT15, DK+16, LM12, ON11, Yan16, JKG+18].

annihilation [BUDA15, GGHH14, Gre18, GT19, HLM13, Kol15].

annotate [BVC13].

Announcement [AAT+20, Hak19, YZCS18, AC18, SSG+18, WMR19].

anomalous [CPW18, LRRK13, PPV+11].

ANOVA [CC16].

anQCD [AC15, AC16, AC18].

Ansys [LNSD15]. antenna [TDDH14].

ANTICOOL [Gre18].

antiferromagnetism [BG11].

antipeakon [HDZ14].

antivortex [BUJ15].

any [Fer15, HLT19].

APart [Fen16, Fen12a].

APCAD [LSSP17].

aperiodic [PDML19].

aperture [HKF+12].

APFEL [BCR14].

APFELgrid [BC17].

API [NMCR15, Zag14].

APINetworks [MCNRC16, NMCR15].

appearing [LM16].

Application [BL19, BHH+10, BHH+15, CZD15, CGM17, CSSB15, DGI0a, Evs14, GZL14, GJHF14, Hon18, HW12, IUM13, KPA13, Komi15a, Kra10, KOK17, Lan13, LHJZ10, MKU+12, MS14, MK10, PG017, QA13b, RCH19, STK10, SGM11a, SGM11b, SCB+19, SCG11, TKS10, WVR+16, YK10, AAA+16, AS16, APS+16, BJBC+14, BG19a, BALV16, BMW14, BMNS14, Bru13, BGDM+17, CZ17, CGS18, CTL15, CZGC19, CBZ19, CCN17, Dua12, FBHB17, FK15, Fer15, GBK+12,
application-driven [BjBC14]. application-programming [SV14].

Applications [CM10a, HH11a, sL10, RBB15, VDF15, Asc10, BDPM15, BKA+14, CMSV14, CCY18, Dim14, DBK+14, FUSH14, FOB+15, GMH11, GCHL15, HM18, JHG+19, JTW+17, JKG+18, KV10a, KMJS16, LM12, MCAdF14, MFG+13, NPM16, Pan15, PBL+18, Ram10, RDC+18, Sai13, SHW18, SKSK13, TK14a, Veb12, VSG18, WJCZ18, ZS13, MD11b].

approaches

applying [HKZN17, KSH11, BS14a].

approximants [IH11].

approximations [Ike18, LO14, TK14b, ZY19b].

AQUAgpusph [CP15a].

aqueous [Beu11, Mar19].

arbitrarily [KMJS16, OL12, VSG18].

arbitrary [Asc10, Tic14, Ara14a, Ara14b, BBH+10, BCH13, CCD+16, CLHL19, CC10a, ECSh16, FRW17, GM16, HSD17, KAH18, MSRl10, MSR+17, NO14, NMCr15, SH12a, STA19, SW14a, SVV19, SS11a, VV16, vH10].

arbitrary-order [SV19, vH10].

arbitrary-rank [Ara14a, Ara14b].

arbitrary-shaped [HSD17, MSR+17].

arc [JTN+11, SCNJ18, SPA17].

Architecture [PMS+15, SCC+12, BW15, CRA10, Dan12, EGT+18, GBK+12, MR14, NBW16, SM19, YLQ+17].

architecture-independent [EGT+18].

 architectures

[DS14, Hdm16, HWcdM19, HAV+14, HWT10, NBN+14, PH13, RDN+17, TRM+12, TGH+16, VLPPM14, WEH+19, WFV14].

Arduino [KSH14].

area [BHw+12, EBV14, QLN14, YLK10].

argon [JTN+11].

argon-water
CC16, CGSB18, CMJ+11, CDL+12, CKhN11, CZGC19, CAGL13, CDR+15, DBMR18, DIP11, DSHS17, DG10b, DM17, DHH17, DRR15, DBLF16, DSPJ10, ELDS14, EBDM17, Ern18, EMS17, FRG12, FGC+11, FDWC12, FWS+17, FZY17, FBA17, Fu19a, GLZ17, GJ18a, GLX+14, GJ18b, GNT17, HLL13, HFOPF15, HPKF15, HWT10, HS16, HLD13, HKVR10, HM17, IH11, IKS19, ICPD16, JPCG15, JEC+12, JFA19, rJmYT11, JGAL+13, JTP15, KVV19, KK13, KCN18, KK14b, KK14a, KHZ+18, KO14a, KSH14, KM17, KO12, KO13, Kom15a, Kom15b, KLV15. [KPST15, Kra18b, KMA+12, LCC13, LJE11, LFG14, LN16, LYX+17, LO14, Liu13, LH18, LY16, LRS19, LWRQ16, LNP+17, MGL16, MB12, MHWH19, MHR+12, MW14, MNW+17, MNL19, MRL19, NPAD11, NDSH18, NAQ16, ON14, OLG+16, Ot13, OT11, OAKS11, OY13, PP13, PFFK19, PG17, PKRS16, RCCT16, RC13, RC16, RCH19, RB18, RH17, SVGS18, SAA+10, SC14, Sha18, Sha13a, SCRS17, SSX14, Sit18, SZM+14, SLL11, SK10, SGSG19, TKJ19, TMS19, TGH+16, TMD11, TB14, TDL+14, UW12, VPP12, WFZ19, WGG+19, WP10a, WLS13, WYH19, WSH+14, WBS+18, Wit14, XL15, XGH+19, YLL+19, Zaf14, ZAFAM16, ZLLP17, ZSW+17b, ZY19b, ZHC16, ZS13, Zhe15, Zlo13, Cho11].

Bethe [GGG16, GVS+15, SAW18]. Between [ABB+14, AC13, Ano10o, BB13b, CDBM16, FD13, FHTO17, DRI+16, GZL14, LSK+14, PDC14, TJH17, USOA13, VC10, Yan11]. Beyond [BM19, HLM17, ABC+18, BCP14, BHJ+15, Deg15, DNP13, DML+16, GTK+19a, HRC14, LSK+14, PDC14, TJH17, USOA13, VC10, Yan11]. BGK [CM14a]. Biased [Sin11, Sin12a]. Biasing [Gio14b]. BiCGGR [TKS10]. BiCGSTAB [NIK+12a]. BiconeDrag [SPTPR19]. Biased [Sin11, Sin12a]. Biharmonic [SK15]. Bilayer [FPY+17]. Billiard [TTS11]. Billion [YBK+11]. Bimolecular [SAG13]. Bin [CMRVVR16, GGG+19]. Binary [CM10b, GCC+18, JuIAM16, LM12, WLU11]. Binary-coalescence [GCC+18]. Binoth [ABB+14]. Bio [BG13a]. Bio-molecular [BG13a]. Biochemical [HL19a]. BioEM [CRB+17]. Bioheat [BBB17b, IBB18]. Biological [BHVMH15, CRNK12, NBM+15, Yan11]. Biology [DS10]. Biomass [XAPK14]. Biomolecular [VPM16, YBK+11, CBB14, GCH+18, LCHM10, LCHM13, SCC+12, TVZ+15]. Biomolecules [Mar19]. Biophysical [JJ15]. Biopolymers [PA13]. BiO [sX19]. Board [Ano18c, Ano18i, Ano18j, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano10k, Ano10l, Ano10m, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano14a, Ano14b, Ano14c, Ano14d, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano15n, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano16m, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k]. Board [Ano17l, Ano18a, Ano18b, Ano18c, Ano18d, Ano18f, Ano18g, Ano18h, Ano18k, Ano18l, Ano19a, Ano19b, Ano19c, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19l]. Bob [SPTPR19]. Bodies [MNV13]. Body [GBJ+13, GBJ+15, GBJ+19, ADT+19, BBC+13b, BY13, BRH+16, CDS13a, CKS10, EKO16, FCVH17, FEH11, GBJ+10, GBJ+12,

C [ADH17, Ano11o, Ara14a, Ara14b, Aas14, BV13, COK19, CECGS16, DPW16, Ein16b, Fow18, GH18, GHN19, GC10, GC11, GC16, GC18, GCK19, HL18, KvdO11, KPV16, KLV15, KKO19, KYSV15, KLM19, LCJ10, LSDD14, LYSS16, MD11b, MCAdF14, Sai13, SV14, SS12, Sch18, SWS12, Smi15, SJHS19, Stu10, TS11, Ver16, VVB12, Vuk12, YSVM16, HFSK12]. C# [GBJ10, GBJ12, GBJ13]. C-code [GC10, GC13, GC16, GC18, GCK19]. C-library [MD11b, MCAdF14]. C2x [Rut18]. Ca [CJH11]. cable [OVS15]. cache [SSF14]. caching [WMRR17, WRMR19]. Cadabra [Bre10]. CADISHI [RK19]. CADNA [LCJ10]. Cahn [KL17, LCJ12, LLXK16, XYXZ19, YZ19, ZFH14]. CalcHEP [BCP13, Sta10]. CalcHep/CompHep [Sta10]. calculate [BBU11, CATK11, FLE19, Fen12b, KA17, KST14b, MPS13, Sar17b, SHZ13, UFKB19, ZK15]. calculated [HS16, LS12b, RJ12, YFA17]. Calculating [ABB16, ECSH16, Fon12, LKM16, AM10, AM11, Arb12, AMR19, BBL13, BN18, BBPS14, Brá15, CLJ12, EZBA16, FS17, FEH11, GPS13, HEF12, HL19b, Jab12, Jab13, LZZL11, LCHM10, LCHM13, MCV18, MH11, NGM10, PH13, PCR17, Pos18, SEW12, SEW14, ST15, STY18, SC16a, SPAW17, SW12b, VDJ11, WCL14, YLTS16, ZMCT12]. Calculation [GKM10, Kir10, LXR18, MK19, Pla16, Sar17a, SMGK19, WW15, WBY11, AHK12, AC17, AG14, AAT17, Aza13, BGM14, BPC12, Buc19, CMVRB14, CMRVVR14, CHDCJA17, CYD11, CFSK14, Cip11, Cip13, CM14b, DBDP12, DSS12, DRR15, DNP13, Eba13, ELL17a, FWZ12, GKM17, GAHP15, GM16, HLM13, HK15, HAN16, JL12, KAK12, LPRPR17, LFK18, LS14, LKL1, LSC1, Liu15b, LHGF18, MGF13, MSNI11, MFSV15, MSLR10, MSL15, MSL17, MC17, NKS15, Nik12b, ORCRL7, PBMA12, Pat15, Pat17, QZ19, QZWU19, QLN14, Ram10, RK19, SD10a, Shi16, SS11a, SZM14, SKK11, Sta11, Ste17, SMGK14, TZG12, TMA15, WLGY18, Wei09, Wit14, XMLC16, Yan09, ZPH15, ZT13, ZT14, ZFBR11].

Calculations [Lit13, PDC14, ZY10, APS16, ART17, AC15, AC18, BK13b, BC10, BDPM15, DdJC19, BH17, BBHI1b, BS13b, Bor14, BHS15, CLHL19, Cas12, CKSM19, CPV13, CCGC13, Cor14, Cri18, Dan11, Dat13, DN18, DSW15a, DHS14, DA16, DO14b, DML16, EJG19, Ern18, FSH13,
FUSH14, FCC15, Fri12, FZY13, GA15, GGG16, GVS+15, GBSY18, HSF+19, HWI12, HHS+10, HW12, HL19c, Jac19, JPCG15, JWCM17, JL19, JOK13, KB19, KT12, KCT15, KKL+18, KSL+11, KPK+17, KPST15, KH10, LA13, LS19, LZP12, LSR+17, LS17a, MED11, MAz19, MAM14, MLK+17, MLK+19, NGG+13, NSXZ14, Nis11, OBH10, OT11, PB13, PUO14, PKRS16, PSP16, RPL+14, Roh16, RC11, SA18, SW14a, SZ15, SCRS17, SAY+18, SMUT19, SLR+11, SSF, SUT11, SUT11, Smi14, Smi16, SQL+10, SPSP18, TC12].

calculations [VSG17, VCMS+13, WL11a, WR16, Wil15, XJS16, Zit11, VPM16].

calculator [ERS10c, ERS10a, ERS10b, HTY17, ZZH+16, ALL+11].

calculus [ERS10c, ERS10a, ERS10b, HTY17, ZZH+16, ALL+11].

Calibration [BMG+15, BDGM+17, Ost10, ZUT13].

callbacks [BV13].

calorimeter [dAFdSVM12, GRZ10, BPMM14].

CALPHAD [TKP15].

CALYPSO [WLZM12].

camera [MGA+13].

Camassa [ZST11].

cancer [GC15].

candidates [BBPS15].

CANONICA [Mey18].

Canonical [AS16, PA13, GA15, Mey18, Pra17, PLCC12, RMC16, Slt18].

canonical-ensemble [GA15].

canonicalization [Nie18].

capabilities [OTC14].

capability [LLE+18].

capacitance [CLC14].

capabilities [ZMCT12].

capacitively [SBL16].

Can [Pra11, CBB14, KSL+11].

Canal [SCW+11].

cancer-related [SCW+11].

canonical [AS16, PA13, GA15, Mey18].

canonical-ensemble [GA15].

canonicalization [Nie18].

capabilities [OTC14].

capability [LLE+18].

capacitance [CLC14].

capacitively [SBL16].

Car [SCW+11].

car [SCW+11].

car [SCW+11].

car [SCW+11].

carbon [Beu11, CSL+13, LHS14, OPO+11, OPSR13, OPR14, RM14, TM19].

Carcinogenesis [SCW+11].

cardinal [LD10b].

Cardiac [MBS+10].

cards [GLB13, RPL+14].

Carlo [ZTG14, AFIS12, ASGLK10, AK15, ABB+14, ASPDL+16, AIG16, Ano10o, AK13a, AK13b, AMJ18, BKV16, Bar11a, Bar12a, BDP16, BVP10, BG11, BMW14, BG13b, BLG14, Bon15, Bon16, BHJ+19, BMDP19, BENK+17, CGG+19, CL11, CGZC19, CL15b, CKS10, CNS+14, CI11, CK19, DSH17, DGPW11, DEMM19, DPK+15, Dem11, DDKM15, DK14, EBD17, ES11, FGG11, FLE19, FW11, FDWC12, GTPS19, GA15, Gin10, GSB+14, GWF+11, GB17, HKZ17, HKZ19, HBE10, HMR14, HP11, HWM+15, Hu17, IUM13, JPS10, JLA+14, JA17, KOT12, KMO19, KGE12, Kan14, KRW13, KC14, KKK+17, KNS+17, KV19, KLO+19, KSW15, KPvdH13, LS14, LS15a, LS15b, LLE+18, LWL11, Lut15, MP11, MBRV+13, MRZ10, MEM+11, MW14, MHR+13, MMY+19, NAPD11, NHD16, NDS18, NSXZ14, NBC18, NM14, OPO+11, OPSR13].

Carlo [OPI14, PZL+19, PEM19, PM14, RF16, Ram19, RMS+12, RV10, RV11, RB18, SH11, SGNL17, SFP11, SL16, SHT18, SMJ17, SM19, SD14, SKFP16, SLZ16, SSF+14, SKM15, SKSK13, TGG12, TVZ+15, Tic10, Tic14, TKP12, TMS19, TU14, Trö11, TDL+14, UKKB19, UA17, Uvb18, VK14, WRFS15, WDL11, WSTP15, WBS+18, WvSL13, WT12, WWVB11, WLZ17, XGH+19, YWOD19, ZBG+16, ZLM12, ZTG13, ZDD+13, dSF18, dHGCS11].

Carlo-based [EBDM17, MW14].

Carlo [Kol14].

Carlo [Kol14].

Carlo [Kol14].
carrier [Buc19]. carriers [MSRL10]. Cartesian [BOGL17, BLAS19, FZY17, MAM14, NKS15, SDM+12, SDS+17, SHL+11].
Cartesian-grid-based [FZY17]. cascade [LMAB16, Szy+12, Szy+13, SZM+14, TB14, ZYL+15]. cascaded [LJD+19].
cascades [BTM+17, Fri19, KOT12, RLS16]. case [Asi10, CMRVVR+14, Che11, CzI9, FKL13, sLqSqL+13]. Casimir [AG14].
Caveats [CH11b, SYE+18]. cavities [AG14, BHH+10, BBH+15, CBB14, CdFDS16, VBMP15]. cavity [LLSK17].
[NAQ16, QYM11, QAla3a, SP18b, WZS+11, CHW+15]. CE/SE [NAQ16, QYM11, QA13a, SP18b, WZS+11]. Celeris [TL17].
[BTL+17, D12, FRG12, HGCARM15, KMJS16, LAz15, LHG+19, NGCI+12].
CellSim3D [MAW18]. Cellular
[TD11, CRA10, FGC+11, FBG10, JEPF14, MAW18, PC11, DG16]. center [BAR12b, DT18, Nis11]. centered [KCA+15, LRW+15, SC15, SC16b].
Cerovik [LQYX+17, XXD+15, YXT+15]. CESE [FXZ+14]. CFD
[CDR+15, HMD16, HJ1H17, KDM17, LNSD15, LSD18, Shs13a, XAPK14].
CFEL [FBC+12]. Chain
[EBDM17, KSW15, APV10, Lev19, RV10, RV11, UIY11, LN16].
[Jab12, Jab13, Jab15, Jab19, MR13]. change [HYM11]. changes
[BLS17, LSD18, ZMM11]. Channel
[KSW15, CCL18, Des16, GCV14a, LLQX19, ZLFM11]. channeled
[Aza13, BP12]. channelling [Aza13]. channels
[BEKP19, TXZL15, WJHW14]. chaotic [GBJ+10, GBJ+12, GBJ+13, GFJ+14, GBFJ14, MCL+17, GBJ+13, GBJ+15, GBJ+19]. Chaotic [HVP+19, ADdM16a, ADdM17, GTS14, HLD13, KI11, ÖY13, RDN+17, TTS11].
CHAPLIN [BD14]. CHAPLIN-Complex [BD14]. characteristic
[LSD14, MH18]. Characteristics
[TGH+16, CSR13, KK13, KF+16, SZM+14, TKJ19, SC14].
characteristics-based [TKJ19]. Characterization
[CKLM10, HFSK12, CZN14]. characteristics [Mar19]. characterizing
[SPY11]. Characterization [Kap16, SCW+11, Buc19, CC14, CC15, CAGL13, MSRL10, MTO15, NF117, iNSK+15, PFFK19, Qia17, SGM11a, SGM11b, Sok13, VLL+17, XNK+16, YXT+15]. charge-conserving
[BBH+10, BO12, BSWC14, DBDP12, GAGW16, LCC13, LSK+14, LL12, MLGVE14, MEG12, NCS17, diRJL14, PBD+15, Pla16, PB16, RH11, SAN18, SAG13, TM14, TPC16]. chemically [MTE17]. chemistries [YFAT17]. chemistry
[CHH+11, GHK19, IIO16, KEH12, Sou14, WPAV14, WMI19]. chemokine [rJmYT11]. CheMPS2 [WPAV14, WPD+15]. Chen
CHICOM [Gag12a, GHN19]. CHEF [MJKB18]. chiral
[CZ19, GBD10]. CHIWEI [Gag12b, GH18]. choice
[DDM14]. Cholesky [LHJZ10]. choosing
[GLR17]. Christoffel [JC16]. CI
[DKG+14, KPST15]. CIF2Cell
[Bjo+11]. CIJET [Gao13a]. circuit
[LW11, LW13]. circular
[DA16, KGG+16, LWZ14, OILK17]. citation [wHwH11]. CL
[BHW+12, BBH+15]. clarifying [vMB14]. class
[BPC12, BPC13, GCHL15, Kra17, Kra18a, LL15, MP11, MST+18, MNO011, SS13b, SCM14]. classes
[rJmYT11]. Classical
[CPLH14, VMFS16, BDFS18, BTM+17, CEF16, DT11b, DS13b, GH15, Gwi12, KO12, MCV18, SKK11, SLR16, SA14, WJC17]. classification
[CFSK14]. classifications
[SL10]. ClassSTRONG
[CPLH14]. clathrate
[MD19]. cleaning
[LLQX19]. Clebsch
[HR11]. CleGo
[HR11]. climate
[DBD+17, MW19]. cloning
[BS12]. close
[BAK+15, BAK+16, BAK+17, WISA11]. close-coupling
[BAK+15, BAK+16, BAK+17, WISA11]. closed
[Faw10, MCA17, SL17]. closed-shell
[Faw10, MCA17]. closure
[CXL19]. cloud
[CNS+14, JTW+17, JVR12, KCON18, VPMVH+17]. clouds
[APC+14, JH11]. CLUMPY
[BHN+16, HCM19, CCX12]. Cluster
[SRJ14, PEMS19, SM14, BCT+17, CSDP10, CGS18, CZGC19, HFW17, GTS11, HFW16, JSLM16, KPS12, KSL+11, KO12, KO13, KO14b, Kom15a, Kom15b, Kom15c, KO16, KZ14, LKM+16, MCA17, MTM13, MFY19, TMR13, TM19, XLCW14, ZSW+17b, LX14]. cluster-application
[CGS18]. cluster-cluster
[MFLY19, XLCW14]. Cluster-Expansion
[PEMS19]. cluster-labeling
[Kom15a]. Cluster-parallelizable
[SM14]. Clustering
[HPB14, MKMK10, DAW+19, LLHC11]. clusters
[BBF+13, BG13b, BG14a, BLG14, Bon15, Bon16, BRH+16, DRR16, DCVB+13, GS17b,
GZZ19, Gwi12, KSL+11, LLHC11, Law19, LSYZ12, LS17a, RRCSCJ10, RD10, SKK11, SQL+10, VK14, YZZ+17, YHL11, YLYL17, ZPS+18. CMBE [GFJ+14], CMFD [PZL+19]. CMIstark [CFSK14]. CN [PYW+14].

CN-ICCG-FDTD [PYW+14]. Co [CJH11, LQZ+13, DS13c, TG11].

codes [BDL+19, BPP11, BFPP12, CYD11, DGS+19, FMRP16, Gio18, HC10, GC13, GC16, GC18, GCK19, GHL18, GAB+16, GBJ+13, HdM16, HBE10, HV15, Hak16, Hak19, HCRD14, HTT13, HTT14, Hol19, HF16, HHM+15, IBP+15, JulAM16, JCW+13, JFC12, JGAL+13, JHL+15, KHB14, KSS18, KPA+19, KTE+12, KBSP12, KCS+15, LAA+10, LEE+18, LHH+12b, LJZ+18, Lit13, LO14, LL15, LDF+16, LMB16, LR13, LR16, MDW16].

coding [BBB+17b, CFCB12, FFT+14]. coefficient [BBB17b, IBB18, PR13, PYW+14]. coefficients [ABC+18, ARYT17, BNPPD19, CATK11, DT10, Dev12, HR11, Ixa12, KKS18, LZZL10, LKT+16, MCV18, Moh14, ORCR17, PKT15, Shi16, SMGK19, VCD16, Wei99, Wit14, YC¸ ¨O15].

collaborative [DBP+18, Liu14]. collapse [BNAB11, KH19]. collective [GLR17, Gio18, WR16].

Collider [BBB+18, CKhN11, EFG+10, BCP13, BDDM18, CFS13, YWW13, BSW12].
colliders [AHH+19, BDC+14, BHZ13, CM14b, DDKM15, Gao13a, GLS+13].
colliding [Lit13]. Collier [DDH17]. collision [ART17, BTM+17, BO12,
CYD11, HPN18, HDZ14, MWI+19, NNWS15, RF16, SD10a, WSH+14].
collisional [CXL19, DGS+19, HJ14]. Collisions [BHO14a, BHI14b, CUL+17, CKS10, Col14, DCC+10, Gin10, GFJ+14, GBJ+15,
HL19c, JH11, KKK+15, KHB14, KHK+11, KNS+17, MEM+11, Nis11, OK12,
OK18, SZY+12, SHT18, SQS+16, SKK17, Tom16, VC10, VS19b].
Collocation [LD10a, LX12, LCCC11, MM10, PDRG10, ZWLZ17, ZST11].
Colloidal [TCCV18, BHND16, DGPOR18, HAN+16, HCSW10, MDPTK15, Van15].
colloids [OOGP19]. COLONEMA [Car16]. colony [vRWS14]. color
[HKK11]. Columbus [Pit12]. combination [LAG+17]. combinations
[BH14a, BH14b, CUL+17, CKS10, Col14, DCC+10, Gin10, GFJ+14, GBJ+15,
HL19c, JH11, KKK+15, KHB14, KHK+11, KNS+17, MEM+11, Nis11, OK12,
OK18, SZY+12, SHT18, SQS+16, SKK17, Tom16, VC10, VS19b].
Collocation [LD10a, LX12, LCCC11, MM10, PDRG10, ZWLZ17, ZST11].
Colloidal [TCCV18, BHND16, DGPOR18, HAN+16, HCSW10, MDPTK15, Van15].
colloids [OOGP19]. COLONEMA [Car16]. colony [vRWS14]. color
[HKK11]. Columbus [Pit12]. combination [LAG+17]. combinations
[BH14a, BH14b, CUL+17, CKS10, Col14, DCC+10, Gin10, GFJ+14, GBJ+15,
HL19c, JH11, KKK+15, KHB14, KHK+11, KNS+17, MEM+11, Nis11, OK12,
OK18, SZY+12, SHT18, SQS+16, SKK17, Tom16, VC10, VS19b].
Collocation [LD10a, LX12, LCCC11, MM10, PDRG10, ZWLZ17, ZST11].
Colloidal [TCCV18, BHND16, DGPOR18, HAN+16, HCSW10, MDPTK15, Van15].
colloids [OOGP19]. COLONEMA [Car16]. colony [vRWS14]. color
[HKK11]. Columbus [Pit12]. combination [LAG+17]. combinations
[BH14a, BH14b, CUL+17, CKS10, Col14, DCC+10, Gin10, GFJ+14, GBJ+15,
HL19c, JH11, KKK+15, KHB14, KHK+11, KNS+17, MEM+11, Nis11, OK12,
OK18, SZY+12, SHT18, SQS+16, SKK17, Tom16, VC10, VS19b].
Collocation [LD10a, LX12, LCCC11, MM10, PDRG10, ZWLZ17, ZST11].
Colloidal [TCCV18, BHND16, DGPOR18, HAN+16, HCSW10, MDPTK15, Van15].
colloids [OOGP19]. COLONEMA [Car16]. colony [vRWS14]. color
[HKK11]. Columbus [Pit12]. combination [LAG+17]. combinations
[BH14a, BH14b, CUL+17, CKS10, Col14, DCC+10, Gin10, GFJ+14, GBJ+15,
HL19c, JH11, KKK+15, KHB14, KHK+11, KNS+17, MEM+11, Nis11, OK12,
OK18, SZY+12, SHT18, SQS+16, SKK17, Tom16, VC10, VS19b].
Collocation [LD10a, LX12, LCCC11, MM10, PDRG10, ZWLZ17, ZST11].
Colloidal [TCCV18, BHND16, DGPOR18, HAN+16, HCSW10, MDPTK15, Van15].
colloids [OOGP19]. COLONEMA [Car16]. colony [vRWS14]. color
[HKK11]. Columbus [Pit12]. combination [LAG+17]. combinations
[BH14a, BH14b, CUL+17, CKS10, Col14, DCC+10, Gin10, GFJ+14, GBJ+15,
HL19c, JH11, KKK+15, KHB14, KHK+11, KNS+17, MEM+11, Nis11, OK12,
OK18, SZY+12, SHT18, SQS+16, SKK17, Tom16, VC10, VS19b].
Collocation [LD10a, LX12, LCCC11, MM10, PDRG10, ZWLZ17, ZST11].
Colloidal [TCCV18, BHND16, DGPOR18, HAN+16, HCSW10, MDPTK15, Van15].
colloids [OOGP19]. COLONEMA [Car16]. colony [vRWS14]. color
[HKK11]. Columbus [Pit12]. combination [LAG+17]. combinations
[BH14a, BH14b, CUL+17, CKS10, Col14, DCC+10, Gin10, GFJ+14, GBJ+15,
HL19c, JH11, KKK+15, KHB14, KHK+11, KNS+17, MEM+11, Nis11, OK12,
OK18, SZY+12, SHT18, SQS+16, SKK17, Tom16, VC10, VS19b].
Collocation [LD10a, LX12, LCCC11, MM10, PDRG10, ZWLZ17, ZST11].
Colloidal [TCCV18, BHND16, DGPOR18, HAN+16, HCSW10, MDPTK15, Van15].
colloids [OOGP19]. COLONEMA [Car16]. colony [vRWS14]. color
[HKK11]. Columbus [Pit12]. combination [LAG+17]. combinations
[BH14a, BH14b, CUL+17, CKS10, Col14, DCC+10, Gin10, GFJ+14, GBJ+15,
HL19c, JH11, KKK+15, KHB14, KHK+11, KNS+17, MEM+11, Nis11, OK12,
OK18, SZY+12, SHT18, SQS+16, SKK17, Tom16, VC10, VS19b].
Collocation [LD10a, LX12, LCCC11, MM10, PDRG10, ZWLZ17, ZST11].
[BHVMH15, YKS11]. complicated [AKR15]. component [Eba13, Erm18, HLS+17, TZM17, WLM14]. components [KCA+15].

comprehensive [CEZ16, SAHP15, VBG+10, WJCZ18]. comprehensive [HLW16].

Computational [ABB13, AL17, BBB+17a, BBC+17b, JAS17, MCRG11, NMS14, NMS15, RH11, SWS+12, WWR+16, YFAT17, ÁSS18, BHNS17, BCP+16, CL15a, Che11, CRC+13, Fri19, GBSY18, GBS+16a, HWCdM19, JOR+12, LFKD18, LHJ+15, LLX14a, MWI+19, MMC10, MCR15, Müll14c, NMR15, NVAFO18, PSMS14, PSMS15, RK11, RBB15, RCD+10, Ros15, Sou14, WC15, ZTG13, ZTG14, dSVLP13, dSF18]. Computational [WRBL19, DMC10]. Computations [Dan10a, Dan10b, BKS15, Bog16, Bre10, DS13c, GJ18a, GLW14, HKSW10, MKR+12, Naz12, NOR15, Wei15, YRR13, ZFZ19, dALM+12]. compute [BH11, Boy15, HHP+14, PB16, RLS16, RW11, SSG+10, SSG+18, TZM17, VB19, Wei11a, ZZSW19].

computer-generated-hologram [WSO+12]. computers [BWPT11, BKPT12, BY13, ILZ+19, IW15, LS12b, MNW+17, SOM+13].

Computing [ASTT16, ADF+15, BBC+11, Gio14a, LSG+12, RE19, TCP13, Vit19, Wai12, YE14a, ARAB+17, ARTY17, ABDR17, Ara14a, Ara14b,
[ABdA15, AMRdA17, BBUY13, BCR14, HP17, LP15, Sta11, YW17, NJ18].
corrector [PAS11, PS14, SD10b, SA15b, TYH+15, Yua19]. correlated
[APS+16, BKS15, CSK+19, DB13, HLL13, JDG12, KH11, MDF11, OOK+12, PZY16]. correlated-electron [CSK+19]. correlation
[ARAB+17, CMVRB+14, CMSN18, DKG+14, KCL11, LAA+10, MHHL11, MOB12, PZL+19, QHZ+14, RMW13, RGKR17, WPD+15]. Correlations
[DBB12, CLKK11, GTH+19a, K ´OG17, MBGV15, RE19, iT11, WT12, YK12]. correlators [DE13, Nem16]. correspondence [GLX+14]. corresponding
[GCVA14a]. Corrigendum [AAT+20, Ano20, AZ17a, Ber16a, KYKN15a, Kra18a, LR16, Ras17, RC16, RBBH15a, YQM14, ZTG14, Sco13].
cosmic [HCRD14, LKW11, TS10, VDJ+11]. Cosmo [Asl14]. Cosmological
Coulomb [EUT+15, GH11, HK15, JH15, JZZ+19, LB13, MC16, MRL10, Nis11, PH11, RZ19, RGKR17, Sar17a, Sar17b, SHT18, SV13, X13D, XHD15, ZHP10].
coupled [AV13, BSM13, BK16a, CZS10, CZL+11, DT11a, DN13, DHJ13, Des16, DGMZ15, EEGW12, FBHB17, FCCTFR18, GMHZ19, GCVA14a, HWCH11, KGFS18, KP14, LWL12, MCA17, MZE13, PGO17, QSC14, SBL16, TK19, TPC16, WX14, YS17, ZMPT13]. coupled-channel [Des16, GCVA14a].
coupled-cluster [MCA17]. coupled-wave [CZL+11]. Coupling [DRI+16, KST14a, SCNJ18, BAK+15, BAK+16, BAK+17, CL14, FLSZ13, FHTO17, KA17, KVW11, LSK+14, MKL17, NGM+10, PMVG16, Pre18, Schl14a, SS12, TD17, WISA11, WX11, WNP17, WLGY18, We99, YLL+19, ZCC19, Ern18]. couplings [AGH+16, AC16, KKS18]. covalent
[HXW+13]. covariant [BS12]. cover [Ano16m]. Cowan [Kra18a, Kra17]. CP [CRC+13, LCE+13, PS12, RCD+10, Ros15]. CP-phases [PS12].
CP-violating [CRC+13, RCD+10, Ros15]. CPC [Wei11a]. CPMC
[NSXZ14]. CPMC-Lab [NSXZ14]. CPPPO [MGR16]. CPSuperH2.3
[LCE+13]. CPU [BPP11, DCGG13, ELDS14, FBN+13, FOB+15, LSYZ12, Lya15, MDM16, MPM14, WC13]. CPU/GPU [LSYZ12]. CPUs
[AEK018, BS14a, ON12, RK19, SAN18]. CR [ANAJ12, BTM+17]. CR-39
[ANAJ12]. Crank [BB10, CWS14]. CrasyDSE [HM12b]. create
[KSTR15]. creation [DEW16, Kr19]. criteria [AG12a]. criterion
[HFSK12, SK10]. Critic [dRLJ14]. Critical
[CND11, CM10a, Fri10, OML11, XZF12]. Cross
[CPW17, SJY18, SJY20, ALL+11, ASEA14, BPC12, BS13b, BHS15, CYD11, CFW17, Cip11, Cip13, CM14b, DHS14, DLM18, Gao13a, GLS+13, Kol14, Lit13, LWJV18, OILK17, PDL+18, SGAA18, Shi16, VC10, vdS13].

D [BL18a, JCL+18, LBP15, RPB+15, RHBH15a, TGH+16, WNYP17, WRBL19, AV13, AM19, AGMS15, APC+14, BBC+11, BABB17b, BAR12b, BVP10, CP15a, CPC1dM18, CC14, CdLOL19, DGG13, EW14a, FLZ+18, FAN19, FJK+17, FK12, FRFH10, GS15, Gai17, Gio14a, Giu19, GG16, GAB+16, GGF+13, GX15, GCVA14b, Gwi12, HKJ+12, HHT13, HHT14, HDM+12, IXa10, JEC+12, JCL+18, JKIS16, KAK12, KL11, KO14b, KO16, KMJS16, LHZ10, LHC+13, LX14, LKWN11, MGL13, MGO13, MCP+11, NHD16, NCB18, PR10].

PCGM14, Qia17, RKVL14, RF15, RS12, RAV11, RJLL16, RHHB15b, SBH+14, SW14b, SP18a, SA15b, SKK11, SW11, TMA+15, TY10, TKL+12, TIM+16, TPC16, VMGP+19, VLM11, WNY17, WMRR17, WRM19, YKK+19, YLKN17, ZXTL16, ZSD+16, ZSW+17a, ZFR18, SW14a.

delocalization \cite{HW11}. Delta \cite{SCM+18}. Delta-plus-SPH \cite{SCM+18}. demand \cite{CLH+17}. dendrite \cite{ZKG+18}. dendritic \cite{JEFP14, JK19}. dense \cite{BMC+11b, CNS+18, MSZW11}. densities \cite{BR14, Gio14a, GZW17, SHZ13}. Density \cite{GS17a, NJS17, VCMS+13, ASA18, AKZ+13, AG14, AM10, AM11, AM17, BL19, BHH11b, BCH17, BR13, BSGG10, CDTV10, CXH+15, DSM+11, Du1a2, FT118, FLE19, GWL+17, GBR+14, GJ18a, Gio14a, GCP+15, HYM11, HHS+10, JCW+13, KT12, KCT15, KK16b, KKL+18, KBSP19, KSY13, Liu15a, LW13, LS11, LRR+15, LRR+17, MGRB11, MOB12, MSS+16, Mi116, MNPY14, MC17, NPAD11, NBN+14, OOK+12, OT11, QJF16, RCC15, RCH16, RCH19, RHG10, RWKS15, SH12a, SCRS17, SXX14, SBH+12, SAHP15, SA14, TVGB15, VBS+17, VSG18, VvAV+11b, VvAV+11a, WLGY18, Wit14, WPV14, XLL15, XNK+16, YKK+19, YLYL17, YRR13, BC10, DBB12, GS17b, LT15}. density-based \cite{SSX14}. density-functional \cite{GBR+14, MGRB11, MC17, SCRS17, SA14, TVGB15}. DensToolKit \cite{SAHP15}. dependence \cite{Maź19, MLK+17, MLK+19}. dependencies \cite{Kan14}. Dependent \cite{LB10b, BBB17b, BMBC+17, CFCB12, CVK+17, DS13a, DHR14, DM12, FGLB12, GYW+17, GS15, GBR+14, GTG+11, HST+11, HM18, IBB18, Ixa12, JL19, Kap16, Ker17, KBS19, KTA12, KYSV+15, LV14, LBB+16, LYSS+16, MC16, MGRB11, MGL16, MC17, NPM16, ÔN12, PR13, PM16, RVS16, RDS18, SBB+16, SHZ13, SSH+13, SLC11, SBH+12, SCB17b, Ste17, TC11b, TVGB15, TT11, UW12, VBS+17, VVB+12, WL11b, XJS16, YSVM+16, YSMA+17, ZHCR18, ZYZ15, ZKS13, dSF18, vH18}. depending \cite{EY11}. depinning \cite{SLZ16}. deployment \cite{HKK11}. deposit \cite{YXT+15, Lit13, LO14}. deposition \cite{BT17a, RH11, VLL+17, ZLFM11}. Derivation \cite{CWS14, ZFZ19, BENK+17, HB12, Miy15}. derivations \cite{ZZ17a}. derivative \cite{RVA14, SK10, SAHP15}. derivatives \cite{BDJS18, GCAV14b, KTB17, KCA+15, LWZ14, MDHD18, NS15, PB16, WWS10, dTOV18}, describing \cite{ASTT16, BDKS10, HJ14}. Description \cite{US18, DCM+12, DPK+15, DOP17, DCL+11, MNC15, TKP15}. Design \cite{CFB12, Fri14b, Dan12, LOK+16, ML14, NFA+16, NVAFO18, TUY15, SAA+10}. Designed \cite{UO15a, DLW+18, MCA+F14}. Designed-walk \cite{UO15a}. DESOLVII \cite{VJC12}. detail \cite{OK10}. Detailed \cite{HWW12, MP15, Str15, VV16, BCT+17, CFFR15, LCC13, dSF18}. Details \cite{BGHBL18}. detect \cite{RMC16}. detecting \cite{DBJ11}. Detection \cite{Ber14, AKKK16, BLS17, BHH+10, BBH+15, BMG+15, HTY17, KME+11, LTP+17, NSHI18, OL12, ZBM11}, detector \cite{AANA1J2, BPM14, BMK11, PCEH15, TdAdS11}, detectors \cite{JulAM16}. determinantal \cite{Zou18}. determinants \cite{USOA13}. determination \cite{BR13, BHHMH15, JK13, JMG+17, KKCC19, MD10b, SBB+17, Ver16, VvAV+11b, WG16a}. determinations \cite{BCH17}. determine \cite{BG19b, BMF+19, BSW14, MD19}. determined \cite{Buc19, RU13}. Determining \cite{ACDdM14, VdLF14, MC10}. Deterministic \cite{UO15b, ALC18, Asi10, BL18b, GJLB12, TZG12, ZTG13, ZTG14}.
Disconnected [BWWM19, ACD+14a, BCS10]. discontinuities [DR12]. Discontinuous [SVS19, EW14a, Ein16a, HLLH16, HWS16, LLP15, LLMW17, Maz13, QWZW18, WP10b, YWX11]. discovery [LCRL10].

discrepancy [VD+12]. Discrete [CR12, EW16, ZXZ+19, AGMS15, ELDS14, GMRHRCME13, GMPFC+14, GJHF14, KV10b, Law19, LCH11, LYL+17, MD10a, NMS14, RTÅT15, SL17, SWL+15, Sza13b, Sza13a, Sza16, ZAHA10, EW14b, EEGW12].
discretization [CDBM16, DM17, DJ12, MLS10]. discretized [HLLH16, JYPA18, LHC+13]. discrimination [sL10]. discussion [Nem16].
discrete [CR12, EW16, ZXZ+19, AGMS15, ELDS14, GMRHRCME13, GMPFC+14, GJHF14, KV10b, Law19, LCH11, LYL+17, MD10a, NMS14, RTÅT15, SL17, SWL+15, Sza13b, Sza13a, Sza16, ZAHA10, EW14b, EEGW12].
discrete [CR12, EW16, ZXZ+19, AGMS15, ELDS14, GMRHRCME13, GMPFC+14, GJHF14, KV10b, Law19, LCH11, LYL+17, MD10a, NMS14, RTÅT15, SL17, SWL+15, Sza13b, Sza13a, Sza16, ZAHA10, EW14b, EEGW12].
discrete [CR12, EW16, ZXZ+19, AGMS15, ELDS14, GMRHRCME13, GMPFC+14, GJHF14, KV10b, Law19, LCH11, LYL+17, MD10a, NMS14, RTÅT15, SL17, SWL+15, Sza13b, Sza13a, Sza16, ZAHA10, EW14b, EEGW12].
MCL+17, Oti13, QL10, Ram14, SGM18, SVV19, SO19, SW12b, TD14, TT14, VDB14, WYH19, ZLL13, ZHC16, HKF+12, MCM+12, Wil19).

domain-decomposition [MRL18]. domains [Bot13, DS13a, GMHZ19, JYPA18, KSW12, OOK+12, SNB11, SK15].
dosimetry [ACdS13]. dot [BMNS14, CL10, KPK+17, YÇO15, ZHC16]. dots [Den10, GWL+17]. double [CWW10, GC10, GC16, GC18, GCK19, MD10a, Ram14, TTG11].
double-dispersive [Ram14]. Doublet [Ore19, ERS10c, ERS10a, ERS10b]. Doubling [CL15b, FGLB12]. Doubly [GH11, SEW12, SEW14, WW13].
DPD [MDPTK15, PTMDPK14, SH12a]. DPM [RB18]. Dr [OTC14]. DRA [LM16].
Drift [DOP17, CEP18, DJ12, Evs14, SISW10, SO19, XYM+13]. Drift-Asymptotic [DOP17]. drift-diffusion [DJ12]. drift-kinetic [CEP18, Evs14, SISW10]. drive [MTM14, SKK+19]. Driven [Dan10a, Dan10b, BJBC+14, De 11, GTL11, GAB+16, Hn11, HJL+14, IBKK11, LDW13, LHJ+15, MiH12, MS11, RHHF12, RTT+18, VPM12]. driving [BNAB11, THDH14].
dust [HCRD14]. DVC1 [Gar19]. Dyck [Br´a15]. dye [HG13]. Dynamic [ALS16, Bar12a, DSHS17, FRG12, SJ17, SUS+17a, SKSK13, AGMS15, Bar11a, BS15b, CD12, DF11a, DGMZ15, EDPZ19, HST+11, JFHA19, JOR+12, Krö19, KHH19, PE15, Sus17b, Sva12]. Dynamical [KLKR11, LLHC11, AG14, AddM+12b, ACdM14, BVC13, BG11, CZ18b, CZ19, Dan11, DT11b, Er14, GTK+19a, KP12a, KS19, Ki11, LS16, LMAB16, MW19, TS11, WHG+19, Wie18]. dynamically [CFCB12]. Dynamics [AS16, AD15, DRR15, wHwH11, JBM15, MDPTK15, Ngu17, NLB+19, SBPN15, TD17, WWR+16, ADD+11, ASPW13, ABB13, BS14b, Bar11a, Bar12a, BHS18, BBB+19, BPLML2, Bin13, BTL+17, BG14a, BVSG19, BWPT11, BKPT12, BY13, BCG+15, BBV+16, BMDP19, BENK+17, CHTT17, CMM14, C LKL11, CXH+15, CKS10, CH11b, DCM+12, Dat13, DLGP10, DEW16, DT11b, DHR14, DS13b, ENEO15, ER19, ESM17, FSH13, FCVH17, FRG12, Fil14, FJ19, Fu19b, FFHH11, GK11, GM11, Gio14b, GLR17, GNA+15, GAHP15, GTS14, GH15, HWdM19, Has11, HST+11, HL19a, HRC11, HG13, HYMN1, HXX+13, HLZ+13, HPN18, HBB+17, HWL+17, HM10, HM17, HDM+12, JWL13, JPH+14, JNN12, JNN13, JSLM16, JKIS16, KST14a, KKCC19, KPA+19, KDM11, Kon11, KK17, KKO19, KS15,
KCS+15, KR14, KHN19, KSY17, LGW13, Leô12, LS12b, LHZ11]. **dynamics** [LK15, LLZ+17, LBR+18, LSK+14, LDF+16, LS17a, MDW16, MIW+13, MDPTTC17, MM17, MTS11, Miu11, MNC15, MKB+11, MSH11, NBM+15, NBW16, NPAG11, NP19, INSK+15, ÖKC11, OKM12, OYK+14, PR14, PLCC12, QL10, QLE16, RC15, Rap11, RSFS18, RBB15, SV14, SGM18, SBH+14, SL17, SH18, Sco13, SCR17, SOM+13, SM16b, SKM15, SYE+18, SAG13, SJY18, SJY20, TM19, TK14a, TM17, Tan19, TST13, TL19, TS11, WJCZ18, WC10, WX11, WXW13, WXW14, WZHE18, WSI13, WSH+14, XQ19, YW17, YHCS11, YLQ+17, YK12, Zag14, ZZH18, ZS13, Zhe15, ZPr16, BJM15, BHND16, DLGP10, LBM+14]. **dynamics-based** [ZS13, Zhe15]. **DynaPhoPy** [CTT17]. **Dyson** [HB12, HM12b, SAW18].

e-infrastructures [GBS+16a]. e-Science [LSJ13, CKhN11]. **E6Tensors** [Dep17]. early [SCW+11]. **Earth** [MPS13]. Easy [DEW16, Sou14]. EasyFeynDiag [XW15]. EBT2 [ACdS13]. EC [MTM14]. ECE [MTM14]. **ECOM** [LC15]. ECPS [BPC12, Cip11]. ECR [MTM14]. ecs [BH16]. ECSim [GHBL18, GHMB+19]. ECSim-CYL [GHMB+19]. eddy [MRL19, TIMM13]. edge [MU11, CCLL18, FRFH10, FR15, LDR+17, SCB+17a, SPY11, ZDWM17, ZFR18]. **edge-based** [CCLL18]. Editor [Sco13]. Editorial [Ano18e, Ano18i, Ano18j, Sco16, Ano10b, Ano10c, Ano10d, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano10k, Ano10m, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano14a, Ano14b, Ano14c, Ano14d, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j]. Editorial [Ano17k, Ano17l, Ano18a, Ano18b, Ano18c, Ano18d, Ano18f, Ano18g, Ano18h, Ano18i, Ano19b, Ano19c, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19l]. Editors [Ano10a, Ano11b, Ano12a, Ano13a, Ano15a, Ano16a]. EDRIXS [WFDK19]. education [LPBH11, Mühl14c, TN11]. Edwards [FFT+14, SJ17]. EERAD3 [GGGH14]. ef [DIP11]. ef-based [DIP11]. Effect [CHH+11, KSH11, SBL16, AG14, CFSK14, Kri12, OCL+13, QHZ+14, SWL11, SDJ+12, WBY11, XGH+19]. Effective [BCS10, VLD+12, CLC14, CM15, CGG+14, Cri18, Ern18, GR19, HHC16, IK19, Jab12, LSG+12, Num16, NRSVW12, ZTG13, ZTG14]. effective-mass [HHC16]. effectiveness [SS18]. Effects [iT11, BDK11, DGMZ15, GTSL+13, GB14, KZ11, KS16b, KKS18, LHSL14, Liu15a, MDPTK15, NLB+19, OOGP19, PBE14, VV16, WT12, dSVLP13]. Efficacy [DML+16]. Efficiencies [AMJ18]. Efficiency
Efficient [AS11b, AAT17, BCJW13, CMN12, CZ18b, CSRV13, FUSH14, FCVH17, GBP13, GST17, GGG16, GVS+15, GA13, HWG13, HXW+13, HAN+16, HPN18, HCH16, Ju17, JMG+17, KA17, Krö19, LDD+19, LHZ11, LAG+17, sLqSqL+13, MA11, MSRL10, NVAFO18, Qi16, QZ19, RA13, RF15, RZ19, SZ15, SHNM11, SOYHDD19, SCM14, SA14, THDS16, USAO13, VDF15, VBS+17, Wall11, WSI1a, WLI+12, WT12, Wil15, WWFT11, WAW14, WMI19, XYZX19, YZ19, dBCH14].

efficient [Nik12b, OK14, PMS+17, PM16, PS11, Pos19, QLN14, RLM13, RJKc16, SW13a, ST19, SR12, Shi16, SK14, SPP19, TSM16, TZM17, VdLF14, VLL+17, WWS10, Wan10a, WX11, WZ13, WLGY18, WDR16, YWOD19, Zou18].

efficiently [MHWH19, RTT+18, SZC+13].

eigenvalues [BW12b, DKO14, GCVA14b, HLW16, JZJ18, NJ18]. eigenvectors [JZJ18].
eight [PAS11, PS14]. eight-step [PAS11, PS14]. eigSUMR [CL16].

Einstein [ARYT17, CCW10, GM14, Hoh14a, JWC13, JWL13, KM+19, LCC+11, MT13, TZM17, VBMS17, WX11, WX14].

EIRENE [SK12]. Eisenbud [RA13]. EKHARA [CI11, CK19]. EIAM [ML+10].

elastic [ASEA14, AFIS12, CKSM+19, CHDCJA17, CGJ14, DMC10, GPS+13, Gri10, Jab17, Kas14, KGF18, LSCZ11, MLW+10, Maz19, MLK+17, MLK+19, QDZ+13, TH17, TW15, Voi13, WBY11, YZ10, ZC12, ZZ17a, GPS+13].
elasticity [MBF+10]. Elastodynamic [MAIAHV14]. ElecSus [KA18, ZKW+15]. Electric [OCL+13, RE12, CFSK14, GBYS18, JTN+11, JPK+12, LXR+18, MRL18, SCNJ18, ZKW+15, ZDM17].
electrical [CKT17]. electrically [HC16, Ram12]. electro [POG17, Wie18].
electro-dynamical [Wie18]. electro-mechanics [POG17].
edrodes [OBA10]. Electrodynamics [HBS+11, GH15]. electrolyte [Mar19].

electromagnetic [AHK+12, CC14, CC15, CSJ+17, CZF18, Fuk17, GLAC13, GMC18, GH15, GCHL15, JLM18, KOT12, KC14, KTE+12, LPRPR17, LHJZ10, LHC+13, LL19, LF12, MIW+13, MKU+12, MCM+12, ORI+10, Oti13, OVS15, PP13, PYW+14, Ram10, Ram14, SKK17, Sor19, SDL+16,
electromagnetically
electromigrative [DSK19].
Electron
[DSM+11, FP14, PB13, PMVG16, YSN+14, AKZ+13, ART17, ACTP15,
AG12b, BH16, BH17, BMW14, BSOG10, CYD11, CL11, CSK+19, CGRB14,
CRB+17, DCC+10, Du12, FYYK18, FUSH14, Gai17, GGHH14, GH11,
Hoh14b, Ihn12, IUM13, ID18, JA17, JGAL+13, JH15, KEH12, KK14a,
KCA+15, Kol15, KA17, LSf14, LRW+15, LZL11, Lit13, LB10a, LRR+15,
LRR+17, MHV17, MSPD12, MJKB18, NBM+15, NPM16, NGM+10,
ONS+15, PM16, PBE14, PR10, PR12, PBL+18, Pos18, RF16, RCCT16,
RFSF18, STT11, SMOB19, SW14b, SNG+11, SD14, SLW19a, SLW19b,
SS11a, SAHP15, TVGB15, TO10b, WS11a, YÇÖ15, YW17, VFV19].
electron-atom [BH17, CYD11].
electron-cyclotron [PBL+18].
electron-electron [DCC+10].
electron-loss [Lit13].
electron-molecule [ART17].
electron-phonon [PMVG16, CGBR14, KA17, NGM+10].
electron-positron [GGGH14, Kol15].
electron-surface [CL11].
electron-transfer [NBM+15].
electron/hole [Du12].
ElectronDiffraction [SLW19a].
Electronic [BDPM15, CJH11, CSL+13, GZL14, THJ+10, WWL11, BC10, Bjö11,
CLC14, CSK+19, Cor14, DO14b, FZ16, GWL+17, GCP+15, HKS10, HCC14,
Hol19, JWCW17, KKS18, LCY+11, LS19, LZP12, LSK+14, MED11, MNPY14,
MC17, PVPK+14, PVK+14b, PSL16, Ru18, RJK16, SS10a, TMA+15,
TC12, TG11, YFAT17, zYCG+18, YG12, ZDD15, XNK+16].
electronic-structure [LS19, MED11].
electrons [AzA13, BH14a, BH14b, Jab17, KTB17, KQVH17, MDF11, NNWS15,
OOR+12, RS12, Sit18, SLEF17].
electroosmotic [SS11c].
electrospinning [SS11c].
electrophoresis [SS11c].
electrophysiology [MFM15].
electrospinning [LPC+15].
Electrostatic [VPM16, BBL+13, CH19, CFB11, CB16b, FK12, GB11,
HZW+16, KC18, KK14b, LRR+17, MCW15, MRL18, SGDS16, YLQ+17].
electrostatics [CB14, LCHM10, LCHM13, YBK+11].
electroweak [BM19].
elegant [YL17, KPA+19].
Elegant [Kas14].
Element [FHTO17, Hak19, BKOZ16, BLAS19, BCM+16, CCL18, CMC+15,
CKSM+19, CAN11, CTL15, CRA10, EKDG15, FKS+19, GML15, GBP13,
GLW14, Ham11, IP14, JTH14, KMD12, Koh15, KM17, LW14a, LHJJ10,
LCQF18, MLS10, NMS14, Oti13, OVS15, OT11, PS11, RS12, RVDS16,
RDVS18, RTAT15, SW14a, S1D15, Sha13b, Sh16, SBH+12, TXZL15,
VDA116, WP10a, YRR13, Z0Z13, vSGB+18, Hak16].
element-Fourier [BLAS19].
element-spectral [LW14a].
elemental [HW12].
elementary [FBG10].
elements [ABB+16, AC13, Arb12, CPWZ18, CCHL11, CK12, CBB14, FNPMB10,
HS14b, LA13, MSRL10, PO14, Sar17a, Sar17b, SD10a, UFKB19, USOA13].
eleven [DJW+19].
eliminate [HHT14].
eliminating [SCM13].
Elimination [MBFB13, YXD+15].
ellipses [SC14].
elliptic [Boy15, GCVA14b, HVP+19, MCL+17, PS11].
elliptical [Hal17].
ELMAG

Energy
[AAA+16, AK15, BG19a, BvH15, CMR17, GHMB+19, MGL13, NJ18, RtV16, XYX19, AG14, AHH+19, AKV18, BMC+11a, BT17a, BDKS10, BH14a, BH14b, BUJ15, BKA+14, BIT12, Buc19, CLH+17, CDTV10, CHDCJA17, CC14, CC15, CXG+19, DCC+10, DGPW11, Den10, DR12, DFM+15, Duf16, Eme11, ECSV16, EFK+19, FT18, FGGM11, FS17, FZY13, GBD10, Gio18, GZW17, GCVAa14, Hali12, Hoh14b, HEPW13, HS16, JPCG15, KTB17, Ker17, KAR+15, KK14a, KCA+15, Kra11, LA+10, LCY+11, LL19, MD10a, MD18, MSPD12, MMT+11, Miy15, NRSV1212, PB13, QZ19, QZU19, RPL+14, RFPM+17, Rom15, SSF+14, SA14, TAFD19, TM14, TVGB15, TS10, UA17, WRFS15, WS11a, WXL13, WX14, WZHE18, WP10a, WYH19, Wie15, Wil15, YZ16, ZPH+15, ZDD15, ZKS+18, GHBL18].

Enhancement [VCMS+13, CLY11, EEW12]. enhancements [LK+18].

ENO [AAD14]. ENO-flux [AAD14]. Ensemble
[TDL+14, BALV16, BG13a, GA15, MHO+17, MHR+13, PA13, ZKW+15]. ensembles [CRNK12, FD13, KRA18b, MJB11]. entangled [JWC18].

entanglement [RLL12]. enthalpies [ZZH+16, ZMC12]. entire [Wei11a].

entropies [ZMC12]. Entropy
[TW11, CHDF10, Les16, LLG17, PE17, VB19]. entry [JXTS16].

enumeration [CS16]. envelope [TL19]. environment
[CPW17, GIO14b, JVR12, RTT+18, SUS+17a, WP10a]. environmental [GMPFC+14, KKS18]. EnvironmentalWaveletTool [GMPFC+14].

environments [FS17, GBC+18, NMCR15]. EPAP [SHW18]. EPAP-1.0 [SHW18]. EPCM [PS14]. ePDF [SLW19b]. epidemic [CF17]. epitaxy
[ZZH+19]. epsilon [GM17, GS14, HL13, Pra17]. Epstein [Ram10, Yan09]. EPW [NM+10, PMVG16]. eqtools [CFW17]. equality [ON11]. Equation
[LB10b, AL17, Asi10, BB15, BALV16, BK16a, BAR12b, Bot12, BMBC+17, BB13b, CWS11b, CVK+17, CYN19, CZS10, CC10b, CC12, CHZ18, DG10a, DS11b, DZ13, DGST17, DSP15, DM12, Eba13, Exl17, FTI18, Fil13, FGLB12, FGG11, GS15, GVS+15, GA10, GG16, GBSY18, GTG+11, GCVA14b, HLS+17, HP14, HC16, HC17, HWS16, HM12a, HAK+14, HJ14, HS14b, HH11a, HDZ14, HCSW10, IKS19, Ixa10, Ixa12, JC16, JL10, Jiw12, Jiw15a, KL17, KH12, KN13, KBSP12, KP14, KR14, KYSV+15, LD10a, LD10b, LV14, LZZI10, LS12a, LCKM14, LLXK16, Lin13, LBB+16, LYS+16, LY16, MC16, MGL13, MGL16, MC12, MLS10, ML14, MN18, MA11, MM10, MM12, MJKB18, ON12, OILK17, ORS+14, OAKS11, OK14, PSB11, PSBT12, PAS11, PR13, PM16, Pla16, QSC14, RM10a, RHBH15a].

Equations

[QSB19, AAD13, ACCB13, APV10, ABB13, AD14, AD15, ABDR17, AG12a, ABH+19, ADdM12a, ACDdM15, ACDdM19, BSM13, Bar11b, BKZ16, BLAS19, BCT17, BK11b, BB10, BB13b, BAK+15, BAK+16, BAK+17, BHW+12, CJD15, CR13, CDTV10, CB13b, CSJ+17, CCK+13, CBB+10, CM14a, CEF16, DT10, DT11a, DN13, DM17, DJ12, Dem13, DJH13, DJ14, DSP15, ENEO15, EW14a, FDZ17, FBBH17, FF11, FSC13, Fon12, GML15, GJ14, GJLB12, GM17, GX15, GMHZ19, HVP+19, HLLL16, HK12, HHC+10, HB12, HM12b, HCHW11, IH11, JPS10, JK10, JC13, JC14, JYPA18, JCL+18, Jiw15b, JSLM16, Kan14, KMM13, KD17, KO14a, KZC+10, Kra10, CL12, Lev19, LWZ14, LLP15, LST15, LPKH19, LSzSZ14, LLL12, LLL13, SL10, LRSS19, LSSW14, MDHD18, MJB+10, MHWH19, MWCY14, MZE13, Moh14, ICD13, MNNO11, NO14, NO12]. equations

[PKT15, PDRG10, PTS12, PSL+17, PE15, QYM11, QA13a, Ras09, Ras17, RBB15, SFV19, SAW18, SDM+12, SDS+17, SK15, SW14c, SP18b, SCLW16, SMdONF14, Sta11, SSK+13, SL14, TD14, Tia11, TYH+15, VSO+13, VBC+12, VJC12, Wan10a, WZ13, WYSW10, WT15, WFX18, XYK12, YWX11, YTYA17, YQM12, ZWC+19, Zou18, dTOV18]. equiangular [ME18]. equidistant [LS15b]. equidistributed [GN14].

Error-controlled \[Exl17\]. ES2MS \[XNK + 16\]. escape \[DS15\].

error-controlled \[Exl17\]. ES2MS \[XNK + 16\]. escape \[DS15\]. ESI \[LZ17\].

ESP \[SGDS16\]. especially \[SHW18\]. ESPRESSO \[BK\textsubscript{C} + 17, MMSF + 15, CGJ14, GTK + 19b, HBL + 13, JP10, GSZ13, KST14a\]. essentially \[AAD13\]. ESTEST \[YG12\]. estimates \[BKV16, KKK + 15, LS15b\]. Estimating \[Asc10, AM17, GFB + 10, GGF + 13, JCL10\]. Estimation \[DS15, KTA12, ABH + 19, BBB17b, DMP18, EVB14, IBB18, SM14, Sha18, TW15\]. Estimator \[Asc10, SAA + 10\]. etched \[VSG17\]. etching \[MFG + 13\].

eTextBooks \[LPBH11\]. Eucb \[TS11\]. Euclidean \[TGUvS19\]. Euler \[SBvD13, QYM11, QSB19, SP18b, YWX11\]. Eulerian \[JBG + 16, JBG + 17, PUO14\]. European \[AGL11\]. EUTERPE \[SSS + 11\]. Ev8 \[RHBH15a, RHBH15b\]. evaluate \[MNV13\]. evaluating \[LHJ + 15, RLL12, SZC + 13, UA17, WDR16\]. Evaluation \[AHK + 12, ACD + 14a, AC13, ADT + 19, AG12b, BBUY13, BDJS18, BCH13, BHJ + 15, BHJ + 18, BvH15, CZ17, CSR13, Deg15, FSH13, GBRB11, HJL + 14, KZ14, KHN19, LAA + 10, LSYZ12, MGB18, MSR10, MR13, MN16, MFG + 13, PZL + 19, PVK + 14a, PVK + 14b, Str15, TO10b, Yi11, ZC12, vH11\]. evaporation \[TB14, XLX + 15\]. Event \[DDM14, GGGH14, KBT + 14, MM11, TMD11, VRV15, VRV18, BPSS18, BABC19, CKS10, CK19, DIR + 19, De 11, dAFsVM12, Gin10, GTL11, Kas14, KR13, RHHF12, Sha16, YWW13, vH18\]. Event-based \[TMD11, BABC19\]. Event-by-event \[DDM14, VRV15\]. event-driven \[De 11, GTL11, RHHF12\]. Events \[EF + 10, AFIS12, BDC + 14, Bin13, HWT10, WW12\]. everyone \[Kap16\]. EVO \[BK13a\]. EvolFMC \[JPSS10\]. Evolution \[Cho11, HLS12, ABH + 19, BCR14, BCT17, Bot11, Brál15, CJJ + 17, FSJ + 16, GM16, HK12, Hon10, HWC11, JPSS10, JMG + 17, MBRV + 13, SW11, VPM12, XLX + 15\]. Evolutionary \[BK13a, AFZ17, AFZ18, ATCZ19, FLA + 16, LZ11a, LZ11b, LOSZ13, SH18, Wie18, dASJC + 19\]. Evolver \[Ore19\]. evolving \[FGC + 11, PHA18, US16\]. EW \[BS13b\]. Ewald \[KR16, LHZ11\]. Exact \[CS16, ID18, JP11, MP11, MTO15, PMMW15, SH12b, SH16, BKC + 17, CL10, HCH16, HW12, LKL11, Lee18, Pla16, QLN14, SA15a, Wei99, Wei11a\]. exact-exchange \[HW12\]. EXAFS \[PCVZ11, TKP12\]. Examining \[WAHL13\]. exascale \[AGL11, DdJC + 19, KY14\]. excellent \[DSW + 15a\]. Exchange \[NHD16, ABC + 18, AAB + 10b, BKC + 17, Boe18, DG10c, GXF + 15, GJB11, HW12, IIO16, IFOI18, JL19, JJ15, LK15, LKT + 16, MOB12, RZ19, UO15b, UO15a, WISA11\]. excitation \[BP12, CM15, GVS + 15\]. excitations \[MC17\]. excited \[BP12, CWW15, Er14, GH11, LH11, LMAB16\]. exciting \[PGD17\]. exciton \[VBMS17\]. exciton-polariton \[VBMS17\]. excluded \[BH + 12, CHNS18\]. exclusion \[BBH + 10, BBH + 11a, LTL + 12\]. executing \[LYJH19\]. exemplar \[JTP15\]. exhaustive \[TC11a\]. ExoData \[Var16\]. exoplanet \[Var16\]. expanding \[HM12c, LP15\]. Expansion \[JDG12, PEM19, AQJ10, AK13b, CSPAD10, Deu16, FLW17, GS14,
HWG13, HvWT17, HK15, HL13, IKS19, IUM13, KZ14, Per14, Pit12, Pre18, Ros16, SKFP16, SGW17. expansions [Eks11, GB11, TKR13]. experiment [Ano11a, CKhN11, DDM14, DMH16]. experiment-computing-theory [CKhN11]. experimental [CRNK12, KSH14, OBM19]. experiments [CHC+11, GSB+14, KD16, DMH16, VLD+12, WJCZ18]. explained [JKG+18]. Explicit [Bla15, VEB+18, XQ19, AH13, Ber16a, Ber16b, CW16, DBMR18, DM17, DJ14, FG13, GFR14, KZC+10, KAS12, LCE+13, QSC14, RL10, SCLW16, SS10b]. explanations [Eks11, GB11, TKR13]. Exploring [Bla15, VEB+18, XQ19, AH13, Ber16a, Ber16b, CW16, DBMR18, DM17, DJ14, FG13, GFR14, KZC+10, KAS12, LCE+13, QSC14, RL10, SCLW16, SS10b].
field-aligned [DXY+19, HO13, LDR+17]. field-particle [CSJ+17].

field-theory [DF13, Nut14]. fields [Asc10, BMW14, CFSK14, CSP+17, DOP17, Dua12, GH15, GBSY18, HSD17, JPK+12, KOT12, Ki10, LS19, LSJ13, LR13, LR16, ÖN14, PQTGS17, PM13, SW14a, SW14b, SAHP15, Tau10, TC11b, Wai12, ZYZ15].

FinFET [LCH11]. Finite [ALA+19, DJ12, DSPJ10, FHTO17, Hak19, HZW+16, KST14a, MAIAH14, OBH10, OOGP19, SBvD13, TMA+15, Wil19, Zag14, AAD13, AS11a, ACTP15, BKOZ16, BM16, BMNS14, CCLL18, CSM+19, CAN11, CTL15, CW16, CCHL11, CRA10, Cor14, DT10, DM17, Den10, EKDG15, Evs14, FNPMB10, Fu19a, FKS+19, GML15, GBP13, GS17b, GSI7a, GB14, GL14, GMH19, HE13, Has11, Hsu11b, HZ11, IP14, JK19, JLM18, KCT15, Kobi13, KMD12, Koh15, KM17, KVW11, LOL+16, LD10a, LA13, LW14a, LV15, LH1JZ10, LLKX16, LYX+17, LHH+12b, LOK+18, LNP+17, Ma19, MB12, MSS+16, MA15, MBAJ11, MLK+17, MLK+19, MBFD12, ICD13, Naz12, ÖN14, OWS+14, Oti13, OVS115, OT11, PVK+17, PB16, QLN14, Ram14, RS12, RVDS16, RDVS18, RC13, RC16, SW14a, SP16, SLK19, SC15, SHL+11, SBH+12, SAN18, SCG11, TT14, Ter17]. finite [TYH+15, TXZL15, VLPPM14, VDB14, VDAH16, VV16, WZ13, WFZG19, WP10a, Wit14, XGH+19, YRR13, YXT+15, YQM12, YQM14, dDYK+18, Hak16, HKF+12, LYP14, MCM+12]. Finite-Difference [Wil19, DSPJ10, TMA+15, ACTP15, CW16, FNPMB10, GS17b, GSI7a, GB14, HE13, MSS+16, MBFD12, ICD13, RC13, TT14, VDB14, VV16, Wit14, MCM+12].

finite/infinite [SBH+12]. Finsler [YE14b]. FIRE [Sht17]. FIRE4 [SS13c]. FIRE5 [Smi15]. First [BKV16, EY11, FWZ+12, PBMAD12, SQL110,
ADdM12a, ACDdM14, ACDdM15, BP12, Boy15, CSL+13, DdMN16, ELL+17a, GPS+13, GM18, GCVA14b, HL19a, JLA+14, LZL11, LSI17a, NS15, SS13b, SWL11, VDF15, ZZ17a, ZFZ19. First- [BKV16]. First-principles
Four-quark [ARAB+17]. Fourier
[FCC15, J LW+19, RJW+19, AQJ10, AH13, BNPPD19, BK11a, BLAS19, BCM+16, CZ17, C21+18, GMF+17, HbotRC15, KZC+10, LDF+16, MJB+10, PCGM14, RJW+19, RWKSI5, SS11b, SBvD13, TO10a, Trö11, WLM14, YZ16].

Fourth [BK16a, MC16, XYK12, BIT12, DZ13, HZ11, KMS14, LLXK16, IllsSZ14, NS15, PZZL19, SB11, SS10b, UNK12]. fourth-degree [UNK12].

Fourth-order [BK16a, MC16, XYK12, BIT12, DZ13, HZ11, KMS14, LLXK16, IllsSZ14, NS15, PZZL19, SB11, SS10b, UNK12].

FOXTAIL [TJH17]. FOXP [FWZ+12]. FPGA [KHZ+18]. FPGA-based
[ADdM+12b, EBCBG17, GTL11, GSB+10, GGF+13, MFLY19, RU13, GGF+13, GES13].}

fraction [BMS+16, LHG+19, ZTG13, ZTG14]. fractional
[CYN19, CZZ+19, Dev12, DS15, GMHZ19, HZ11, JL10, LLL13, MDHD18, PSB11, PSBT12, SW12b, SMK19, YQM12, YQM14, BK13b].

fracture [RT˚AT15, VLM11, VKLM11, VLM11]. FracVAL
[MFLY19].

fragment
[JWCW17]. fragmentation
[BG14a, DG16, HK12, MFLY19, RJLL16, SA14, Sit18, Sja11, Sva12, TOB+14, TE18, TVT+16, WCT11, YZWR14, ZH16, ZHL11, CF16, FCC15].

free-boundary [FBHB17, Hon10]. free-form [Zhe15]. free-software
[ORI+10].

free-standing [ACTP15]. Free-surface
[ACMM10, CPR12, GZW19]. free-surfaces [TKJ19]. freedom [Er14].

Freeze
[BBG+16]. Freeze-in
[BBG+18]. Frenkel
[AMM11].

frequencies
[KMD12, RVA14, RJ12, YFat17]. Frequency
[HIC17, BDGM+17, GLAC13, GHB14, Hsu11b, KMD12, KM17, KSY17, LY16, LAC+17, MCP+11, Oti13, PPP13, Ram10, SVG10, TSIM16, TIM+16, TUY15, WCT11, YZWR14, MCM+12].

free-boundary
[FBHB17, Hon10]. free-form
[Zhe15]. free-software
[ORI+10].

Freeze
[BBG+16]. Freeze-in
[BBG+18]. Frenkel
[AMM11].

frequencies
[KMD12, RVA14, RJ12, YFat17]. Frequency
[HIC17, BDGM+17, GLAC13, GHB14, Hsu11b, KMD12, KM17, KSY17, LY16, LAC+17, MCP+11, Oti13, PPP13, Ram10, SVG10, TSIM16, TIM+16, TUY15, WCT11, YZWR14, MCM+12].

fresh
[Fri19]. FRESHS
[KBT+14]. Fresnel
[JTP15, VLZ17]. FRETE
[EBDM17, HGL13]. FREFA
[VRV15, VRV18]. fRG
[Roh16]. FRIB
[HDF+19]. friction
[AMM11, HST+11, RU12]. frictionless
[LDW13].

Friedel
[TW11]. friendly
[CSF13, RFPM+17]. fringe
[MB12, MB12].

FRODO
[AC13]. frog
[AZM14, HP14]. front
[Ano16m]. fronts
[KR14].

Frozen
[LY16]. RCGT16]. frozen-core
[RCGT16]. frustrated
fuzzy

Grazing [MPSV15]. Grazing-incidence [MPSV15]. greedy [SJ17]. Green
[Ant20, AK13b, CYOS19, JLM18, KK16a, KDM11, Liu13, PLF+17, Pla16,
SGSG19, WAHL13, XD13, XHD15, YOM+19]. Greenwood [CKT17]. Grid
[KK14b, ACM19, BH17, BPSS18, BAR12b, BOGL17, CBGY17, CB16b,
DF11a, DCU+19, FZY17, GBN17, GXF+15, GLHG12, HP14, HvAS+13,
HZW+16, HKK11, KDP+14, KK14a, KKL+18, KV10a, KRB19, LWRQ16,
ME18, NVW+13, PHT+19, RC11, Ser17, TH17, TIMM13, WRFS15, WQ18,
YRR13, ZS13, BCJ+11, LHL11, MLR10, MWL+10]. Grid-based
[KK14b, KK14a]. grid-computing [KDP+14]. grid-convergence [CB16b].
grid-resolution [CBGY17]. Gridless [BCDP18, OCF10]. gridlock [wH15].
GridMD [MV11]. grids [ALA+19, BHS15, Cha19, DJ11, DHS14, FRFH10,
GN14, GSKM14, HWS16, JBG+16, JBG+17, LYP14, LHF18, MTO15,
Sch18, SC15, SGL+11, TK19, YJK11, ZNT15]. GriF [MLR10]. GRLW
[MM10]. GROMACS [PSMS14, PSMS15]. GROMOS [SCC+12]. Gross
[ABB13, AD14, AD15, ABDR17, CR13, JCL+18, KYSV+15, LBB+16,
LYSS+16, MGL13, MGL16, SSB+16, VDAH16, VYV+12, YSVM+16,
YSMA+17]. ground [CR13, ELL+17a, JWL13, MH11, WX14, WGG16].
group [CLKK11, FSC13, Fon12, HB12, JC16, KK16b, LSSW14, MK19,
MSHL15, MSHL17, NBN+14, PO14, RGH10, Roh16, Sta11, Trö11, Ver16,
WPAV14, ZAH10, LSR+17]. group-correlations [CLKK11].
group-theory [ZAHA10]. groups [Nik12b, SK10]. Grover [LYZ13].
GROW [HKVR10]. grown [RDP14]. growth [FBG10, JEF14, IK19,
LLSK17, LRSS19, MAWK18, MS11, RHO11, ZKG+18]. GSGPES
guide [Hah12]. guiding [Nis11, PCGM14]. guiding-centre [PCGM14].
GUIMesh [PG19]. guise [ZF15]. Guumel [PFFK19]. GW
[DaDC+19, DSLP11, KMM+19, KOK17]. gyro [SSK17]. gyro-kinetic
[SKK17]. Gyrokinetic
[DXY+19, KG+16, DJ14, GAB+16, HKJ+12, JBG+16, JBG+17, KS16b,
KH12, MIW+12, MIW+13, MW1+19, MKR+12, PDJ10, SISW10].
gyrokinetics [DGS+19, ZW15]. GYSELA
[DGS+19].

H [BL18a, KKS18, PCEH15]. H-COUP [KKS18]. H1 [GRZ10].
H2SO4V [PZY16]. H5MD [dBCH14]. Haar [Jiw12, KMM13]. Haas [RJ12].
Hadron
[BSW12, ACD+14a, AH+19, BDC+14, BHZ13, CCN17, CM14b, DDKM15,
Gao13a, GLS+13, Gri10, OK12, OK18, SYZ+12, SYZ+13, ZYL+15, Tom16].
hadronic
[CWW10, CWW15, CPWZ18, GLPQ11, KKK+15, VS19b, WW13, ALL+11].
hadrons [Kol15]. hadroproduction [WW14]. haggies [Rei10]. Haldane
[BDK11]. half [HM12c]. half-integer [HM12c]. Hall [VPM12]. Hall-driven
[VPM12]. halo [JH11]. HAM [ZLL13]. Hamiltonian [ART17, Alv12,
CWI19, CYSL12, CSJ+17, Chr18, CKCS13, DPB16, Gar19, LV14, MBFD12,
DPHB17, SP16, SEGP15, SLR16, USOA13, Vit19, WXL13, YZ16.

Hamiltonians [BM16, CNMC10b, HHC16, LJB+16]. hand [STK10, TKS10].

[BD14, ABRS19, BDP16, BDV11, GKM10, GSMK17, GBSY18, HLLH16, LLP15, sLqS-L+13, ME18, MBGK11, MGK13, dIRL11, PSL+17, SDM+12, SDS+17, SS11a, SMGK14, SSK+13, TVT+16, VB19]. harmonic-oscillator [GKM10, MBGK11, MGK13, SDM+12, SDS+17]. harmonics [ASS13].

Harness [KBT+14]. Hartmann [ZOZ13, ZNT15]. Hartree [PSL+17, SW14b, SDM+12, SDS+17, ZF16, BM16, BMW14, DG10c, Fis11, GBD10, JZZ+19, Kob13, KS12, OT11, SEW12, SEW14, ZYZ15].

HAWK [DDKM15]. HDECAY [CG+14, DKMS19]. HDMR [LLX14b, LWL12]. heart [ZBMM11]. heat [CB15b, CZF18, DBMR18, Fri10, Gor19, HWS16, JYPA18, LWZ14, MLS10, MK10, iSYS12, SR12, SN16, XZF12, ZMCT12]. heat-bath-inspired [Fri10].

HELAC-Onia [Sha13b, Sha16]. helical [LFG14]. helices [HFSK12].

helicity [CJHR11, dALM+12]. helicon [ML14].

helium [CHH+11, LB11, LB12, Min11, SQA+15, WFM14].

helium-like [LB11, LB12]. Helmholtz [CC10b, CC12, OK14].

helper [WMK11].

hemodynamics [GVR19]. HEP [CMSV14]. HEPMath [Wie15].

HepML [BDKS10]. Hermit [CBDM16, GMHZ19, LDF+16, PDRG10].

Hermitian [BW12b, CDMCN11, JK13, LWW10]. HERWIG [KRW13].

heteropitaxial [Dan14, Dan16, Dan17, Dan19]. heterogeneous
[CF17, DCVB+13, FKS+19, GFX+15, LSG+12, LSYZ12, MPM14, San11, SCJH19, TKP15, VLPMM14, XLX+15].

heteropolymer [Fri17].

heteroscedasticity [ICPD16]. heterotic [NRSVW12]. Heuristic
[CNCM10a]. hex [BH16]. hex-ecs [BH16].

hexagonal [CCL15, KLO+19, TMA+15, VLM11].

hexahedral [FXZ+14]. HF
[RHBH15a, RHBH15b].

hftho [PSL+17, SSK+13]. hfodd
[SDS+17, SDM+12]. HFOLD [FEH11]. HIBRA [JuIAM16]. hidden
[KZ11].

HidSecSOFTSUSY [KZ11]. hierarchic [CHDF10]. Hierarchical
[Hoh18, Roh16, CB15c, DAW+19, KN13, MCW15, OKM12, QJF16, ZMvE+13].

hierarchy [GGG+19]. Higgs [EMW19, ERS10c, Ore19, AC17, BGM+14].
BM19, BBH+10, BBH+11a, BHZ13, CGG+14, DDKM15, DLM18, ERS10a, ERS10b, FEH11, HP17, HLM13, KKS18, MGS13, SAE+16. Higgs-mass [HP17]. HiggsBounds [BBH+10, BBH+11a]. High [AAA+16, AQJ10, AHJ+19, Ano19m, BG19a, BCT17, BvH15, CLHL19, Ein16a, GS15, Gai17, GBF14, HS19, HvWT17, JTW+17, LVL12, LSR+17, MF17, MD10b, ML16, DPHB17, NS15, NO12, PHA18, RHW+12, SSH+13, SA15b, SBPD19, SMGK14, TY10, WGVPL17, ZBN+19, AAD13, AAD14, Ara14a, Ara14b, AH13, BDT15, BL19, BDKS10, BH14a, BCH17, BCDP18, BWPT11, BKPT12, BY13, BMG+15, BDGM+17, CFMR10, Cap13, CNS+18, CZ18b, CMJ+11, CD12, CL15b, CR12, CBYG17, CBY18, DBMR18, DGPW11, DRR16, DJ11, DM17, EZBA16, ECD+10, EGT+18, FTF18, FG13, Fu19b, FB19, GLAC13, Gar19, GA10, Hah12, HEPW13, HYM11, JH11, JVR12, KB19, KVV19, Koh15, KSY13, LV15, LM16, LWZ14, Liu15a, LJ+17, LWJV18, LQJ11, LS19, MTO14, MNO11, PE17, high [PVK+17, POG17, Qia10, RRCSCJ10, RLS16, SHW18, Sh14b, SHZ13, SLK19, SCNJ18, SCM+18, SPSP18, Tia11, TGH+16, TS10, VL19, VMGP+19, VV16, WWS10, WC10, WSL1a, WWC+16, WvSL13, WLM14, Wie15, WWR+16, XHLUF+18, XQ19, YvOSM15, Zag14, ZD15, ZF14, ZOZ13, ZZ17a, ZF19, ZW15, ZNT15, DBLF16, OBM19]. high-accuracy [AQJ10, CLHL19]. high-density [HYM11]. high-energy [Hah12, WS11a], high-entropy [PE17], high-frequency [BDGM+17]. high-intensity [SCNJ18]. high-level [MVS15]. high-level/high-performance [MVS15]. high-nuclearity [MTO14, RRS17]. High-order [BCT17, MF17, MD10b, RHW+12, SSH+13, SA15b, TY10, ZBN+19, AAD13, AAD14, BL19, Cap13, DBMR18, DJ11, EGT+18, FG13, GA10, Koh15, LV15, LWZ14, LWJV18, Ma19, MLK+17, MLK+19, PKV+17, Qia10, Tia11, VL19, VV16, WWS10, WWR+16, XHLUF+18, XQ19, Zag14, ZF14, ZNT15, DBLF16]. High-performance [GS15, Gai17, JTW+17, LSR+17, DPHB17, Ara14a, Ara14b, FB19, MVS15, SHZ13, VMGP+19]. high-precision [BD15, KB19, LM16, SLK19]. high-pressure [SHW18]. High-resolution [PHA18, BMG+15]. high-speed [CNS+18, VL19]. High-temperature [HvWT17, Liu15a]. high-throughput [ZZ17a, ZFZ19]. high-velocity [JH11]. Higher [ABdA15, CD15, KO14a, WP10b, ACDD15, Cha16, CLJ12, DKS14, MK19, MO14, SR12, SC16b, SB11, VJC12]. Higher-order [CD15, KO14a, Cha16, MK19, SC16b, SB11]. Highly [CH11b, HLTW19, LBP15, MTM13, MGR16, PFFK19, dSF18, BL19, BY17, GRLS18, HBP+15, MSI+10, MLS10, SEW12, SEW14, WQ18, WDR16, YBN13]. highly-efficient [WDR16]. Hiking [BrA15]. Hilbert [ERPDFLS15, SA15a]. Hilliard [LLXK16, XYZX19, YZ19]. Hirshfeld [EPP12]. histocompatibility [HFSK12]. Histogram [FLE19, CMRVVR+14, CMRVVR16, GGG+19, Sha18, VK14].
Histogram-free [FLE19]. Histograms
[AMR15, Gag12b, Gag12a, GH18, GHN19, RK19]. Hitting [KMS19]. HMC
[CD513b, KP12a]. HNLS [SB11]. HOC [TY10]. Hole
[DIR19, Du12, Gin10, LZL11]. Holm [ZST11]. Hologram
[BGL14, JTLP15, MFS114, WSO12]. Holograms [BD10]. Holographic
[FBN13]. Holography [MSI10, ZSW17]. Hom [KAR15].
Homogeneous
[Asi10, BK11b, MSHL15, MSHL17, PN15, SCNJ18, SLEF17, vMB14].
Homology [DS13]. Homotopy [CS10, PSBT12]. Honeycomb [MHH11].
Hooke [RGKR17]. Hopf [Bor14]. Hopping [LM19]. Horizontal [ME18].
Horn [BK14, BK15]. Horn-type [BK14, BK15]. Horner [KPVvdH13].
HOS [DBLF16]. HOS-ocean [DBLF16]. Hoschen [FKH15]. Hosphe
[CDTV10]. HOTB [GSMK17, SMGK14]. Houches
[ABB14, BBC13a, MHA12]. Householder [NLS17]. HP
[LWL11, Roh16]. hp-fRG [Roh16]. HPAM [EPP12]. HPC
[DDJC19, GBK12, HL18, OLG16]. hPIC [KC18]. HPL
[Mat12]. HRMC [MHV17]. HRMC_1.1 [OPO11]. HRMC_2.0 [OPS13].
HRMC_2.1 [OPR14]. HTC [CC14]. Hubbard
[KLO19, MHH11, SA15a, SH12b, US16, WDL11]. Huge
[WSI13, BM11b]. Huge-scale [WSI13]. Hut [WSH12]. Huygens
[VL17]. Hybrid
[BCTP18, GILB12, KS18, LRW15, ML17, OPR14, SSB16, SS11b, TH17,
VCMS13, WDL11, WLZ17, YHL11, dIRM18, AAD14, BMC11a, BD12,
BT17a, BWPT11, BKPT12, BY13, BMDP19, CW16, CL13, DCU19, ES11,
FGR14, FKS19, GWL17, GC12, G119, Gw12, HL16, JTN11, J19,
Jiw15a, KK13, KKL18, Kro19, KC15, LCY11, LHC13, LHH12a,
LSYZ12, MIW12, MM17, MKU12, MSM11, MJKB18, PZZL19, RTT18,
SZ15, SP18b, SS13b, SPS10, SYE18, SGSG19, TFBW14, WLGY18, WC13,
WAW14, YVOSM15, YLQ17, YXT15, ZC12, ZBN19, GBR14, HKZN17,
HKZN19, KLO19, OPO11, OPS13, Urb18]. Hybrid-node [ZBN19].
Hybrid-optimization [WLZ17]. hybrid-stabilized [JT11].
Hybrid-symbolic [SZ15]. hybridisation [SKP16]. Hybridizable
[SV19, HLLH16, LLP15, LLMW17]. hybridization
[AKF13b, HG13, SGW17, VPP12]. hybridizations [SGW17]. hybridizes
[YLY19]. Hydrodynamic
[MOD13, BOGL17, GZ17, HKB14, LCH11, LKW11, WSH12, ZD15].
Hydrodynamical [NAQ16, QA13b]. Hydrodynamically [APC14].
Hydrodynamics
[CDR15, FHT017, GRLS18, KS16a, DCVB13, DCGG13, EKK14, GLB13,
GCH18, HLS17, HNP18, JX16, KPPC13, MRSD15, NFS15, RH17,
RTA10, SC15, SC16b, SN16, WRR18, YK19, dASJC19, dIRM18].
Hydrogen
[WBY11, BP12, BH14a, BH14b, BH16, BKS15, CLHL19, JTT11,
LH11, MFS10b, SW14a]. Hydrogen-like [BP12, MFS10b]. Hydrogenic
Hydrokinetic [MBS+10, BBF+13].
hydrothermally [CLY11].
Hylleraas [JH15].
Hyper [GGF+13, GES13].
Hyper-Fractal [GGF+13, GES13].
Hyperbolic
[AOK15, AAD14, BB10, CGM17, DJ11, Ert15, Jiw15b, PKT15, RD10].
hypercubes [TOB+14].
[HYPERDIRE [BK15, BKK13, BKM14, BK16b, GES13, HL13, HM12c, BKK13, BKM14, BK16b].
hyperlogarithms
[Pan15].
hypersonic
[BTC+17, PBD+15, TIMM13].
hyperspherical
[AV13].
HYPERgeometric
[BK15, BKK13, BKM14, BK16b, GS14, HL13, HM12c, BKK13, BKM14, BK16b].
Hyper-Fractal
[GGF+13, GES13].
Hyperbolic
[AOK15, AAD14, BB10, CGM17, DJ11, Ert15, Jiw15b, PKT15, RD10].
hypercubes
[TOB+14].
HYPERDIRE
[BKM14, BKK13, BK15, BK16b].
Hyperfine
[ZE11, ZE16].
HYPERgeometric
[BK15, BKK13, BKM14, BK16b, GS14, HL13, HM12c, BKK13, BKM14, BK16b].
HypExp
[HM12c].
hypotheses
[Zlo14].
Hyper-Fractal
[GGF+13, GES13].
Hyperbolic
[AOK15, AAD14, BB10, CGM17, DJ11, Ert15, Jiw15b, PKT15, RD10].
hypercubes
[TOB+14].
HYPERDIRE
[BKM14, BKK13, BK15, BK16b].
Hyperfine
[ZE11, ZE16].
HYPERgeometric
[BK15, BKK13, BKM14, BK16b, GS14, HL13, HM12c, BKK13, BKM14, BK16b].
HypExp
[HM12c].
hypotheses
[Zlo14].
PBMAD12, PM16, PMS+15, PIH11, QLE16, RRCSCJ10, RU12, SL16].

implementation
[SCC+12, SSF+17, SBPN15, SLK19, Smi15, TKP15, TL19, TS19, TTT16, US16, VS19a, VB19, WMRR17, WMR19, WC15, WPAP14, ZMJ13, vRWS14].

implementations [CSV+18, DCGG13, HSK+12, Hol19, THJ+10].

implemented [FVH18, MOD13, PGD17, SS18].

Implementing [BWPT11, BKPT12, BY13, QJF16, BF16, BCPS11, MJKB18, SOPS12].

implements [MZE13].

implications [PdMML19].

Implicit
[FLSZ13, FM15, GHBL18, GHMB+19, Lai13, TYH+15, VL19, ALA+19, BB12, BF10, CZD15, CBM16, CC14, CC15, CW16, DBMR18, FZR19, GZZ19, HCHW11, IBP+15, JCL+18, KKG+15, LLO+18, LHH+12b, MIW+12, MWI+19, NFD+19, NSLJ17, RC15, SS13b, SC15, SHL+11, TTI4, WG16b, XWF18, XYK12, XZ12, YLSLY19, YLKN17, ZSW+17b].

implicit-explicit [CW16].

implicitly [WWS10].

implosion [SKK+19].

import
[PG19].

importance [HLL13, KTB17, LLX14a, SK10, dHGCS11].

important [rJmYT11].

Imposition [MDPTTC17].

improve [FZ16, SCM13, WW12].

Improved
[AK13b, BKC+17, CZL+11, GV15, Jab13, KCT15, KO16, LRK13, NNWS15, RGH10, SSF+14, WMK11, WPD+15, ADdM16b, BW15, CKLM10, CDdM14, GCF+17, GST12, HKH+11, KDM11, KPPC13, LJD+19, MGO13, MS14, MBFB13, MFLY19, Nat09, Nat10, RLS16, RJLL16, SWL+15, SD10b, TD17, WZS+11, WW13, War16, XDM16, vDSM16].

Improvement [ADdM16a].

Improvements [PLF+17, SSS+11, DSS+19, Tan19].

Improving
[AKK+18, ADdM15, HHC16, KPVDH13, SGM11a, SGM11b, CMRVR16, KK17, Pit10].

impurity [BHT19, FLSZ13, GWF+11, HWG13, HWM+15, Hu17, SKF16, GW17, YWOD19]. IMT [MN10].
in-core [AZM14].
in-situ [KY14].

InAs [BMNS14]. incidence [BFM+19, MPSV15, VDB14].

Including
[AB10, EFC+10, DXY+19, PS12, WT12, XGH+19, ZMCT12, dTov18].

Inclusion [RU12, AMRdA17, TKJ19, UIY1].

inclusions [Bot13].

Inclusive
[DL18, GLS+13].
incomplete [LHJ10].

incompressible [BLAS19, BCM+16, CC16, DBMR18, EW14a, GZW17, KGFS18, Ki10, Koh15, Kra18b, LOK+18, LH18, LWJ18, NHSY15, RH17, TK19, YTYA17, ZBN+19, CRLS18, GRLS18]. incorporated [AM14b].

Incorporating
[KZ11, NLB+19, LYZ13, TKP15, WN10].

incorporation [CL11].

independent
[EGT+18, Ein16a, H013, Les16, LLX14a, SMC+17, XQ19, ZKS13, HSD17].

index [ICPD16, SAA+10].

India [BPM14].

India-based [BPM14].

indices [KTA12, SK10].

Indirect [BBB+11, Ham11].

individual
[HFOPF15].

individual-based [HFOPF15].

induced
[Gao13a, HYM11, LS17a, San11, SJY18, SJY20, Van15, WIL11b, ZLM12].

induction [VMGP+19, YTYA17]. inelastic [ASEA14, TVGB15, WFDK19].

inertia [DBP19].

Inertial
[JFHA19, HJL+14, LHJ+15, MJKB18, SKK+19, SS11b, RTv16].
inexact
[Dan10a, Dan10b, Dan14, Dan16, Dan17, Dan19, Hei12, ARYT17]. intensity
[Dan11, MSPD12, SCNJ18]. intensity-energy [MSPD12]. inter
[HB13, KK17, PZL+19]. inter-cycle [PZL+19]. inter-particle [KK17].
inter-polyelectrolyte [HB13]. Interacting [ATW+19, Cas12, APC+14,
CvW12a, CvW12b, Fil14, HL19b, LJSW11, LSR+17, LKT+16, MBFD12,
PFA+15, RS12, SSF+17, TD17, TKZ18, UKKB19]. Interaction
[BF16, BM13, BL14, BSC+13, CSJ+17, CL11, CUL+17, DCU+19, Gai17,
GC12, Gar19, GBD10, GC10, GC13, GC16, GC18, GCK19, HMR+19,
HRC11, IKS19, ICPD16, KPST15, LB13, MPS13, NS11b, ReViH12, Re12,
Sar17a, Sar17b, SS14, SAY+18, TJH17, Yan11, ZZ15]. Interactions
[BK18, BBL+13, BCH11, CCGC13, CB16b, Cro16, ERP+12, Fil13, FZY17,
FN17, Gao13a, GM16, GB+19, HCSW10, KMO19, KDFS18, KMD12, KM17,
Kra17, Kra18a, LSDD14, LH18, dIRJ14, Ots11, PH13, Tan19, TMA+15,
TRN16, TT11, YLQ+17, ZE11, ZE16, ZHPS10]. Interfacial
[KY14, Gio14b, MMC10, TL17, KST+14b]. interatomic [GD14, LYJH19].
interchangeable [ZVvE+13]. interdiffusion [CHDCJA17]. interest
[OK10]. interesting [MN10]. Interface [LZ17, ABB+14, Ano100, BPML12,
BB13b, CMM14, CSPAD10, CF16, CCHL11, DNP+12, DPW16, EW14b,
FLS13, GWM13, GLR17, HHP+16, KDP+14, MZ14, Nov17, PTA18, TM14,
Uty14, WMK11, XZ+16, XD13, XD15, xYCG+18, ZMvE+13]. interfaced
[BHJ+19]. interfaces [KRW13, KMJS16, NPM16, PR10, RH11, ZFBR11].
Interfacing [HLS+17, SPTPR19]. Interfacing [MHA+12]. interference
[FNPMB10]. interior [HLW16]. interrelated [CMdB11]. intermediate
[CYOS19, vMB14]. intermediate-representation [CYOS19]. intermetallic
[DMC+15]. intermolecular [KHKR14]. internal [BHH+10, BBH+15].
interoperability [GVPJ18]. interoperating [CCdC+11]. interparticle
[QLN14]. interpolated [FZY13]. interpolating [MCV18]. Interpolation
[HK+12, KMO19, Cha19, DGL10, GGG16, Ji15b, PCGM14, RWKS15,
Sok13, UNK12, XLL15]. interpretation [HLL13]. Interpreter [US18].
inversion [PC11]. interval [Zlo14]. intramolecular [VB19].
intraneuronic [TB14]. intrinsic [Dev12, DMC+15]. intrinsically [CRNK12].
Introducing
[BHS15, CXH+15, HH+10, LM16, MDGC+12, MCDAdF14, dHGCSS11].
Introduction [IBP+15, Bre10, SAC+15, TKR13]. intrusive [HMM+15].
invariant [MDHD18, QwWL+15, SMGK19, XYZX19]. invariants
[AdM14, DdMN16, FWZ+12, Ver16]. inverse
[Boy15, CL15b, KL11, MW12, MK10, MD10b, WHB16]. inversely [KB15a].
inversion [CL15a, GWF+16, GCF+17, GST15]. invert [FZ16, RLM13].
inverter [CL16]. investigate [ABH+18, KFF+16, DDP14]. investigated
[CSL+13]. Investigating [ARAB+17, BG14a, TKJ19]. Investigation
[AM14b, CLY11, KK13, MDPTK15, MRVF13, vdS13, EEGW12, MSH11,
NS11b]. inviscid [LSK+13, TFBW14]. involving
[CIP13, GC13, Sar17a, Sar17b]. ion [BT17b, BB13b, BKN+17, CCL18, Gai17,

Bis15, BH11, BC19, CB15a, CB17, CB18, Cas12, CF17, CO11, Deu16,
DO14b, DML+16, ECD+10, GS15, GHvdL11, GZL14, GMC18, GJLB12,
GHdF10, GBS+16a, GAO13b, HLS12, HC16, HLW16, JWCW17, JLIW13,
JOK13, LKM+16, LRW+15, LCQF18, LSYZ12, LR13, LR16, LOV10,
MBS+10, MAM14, MSR+17, MRL19, MCNRC16, NLB+19, PB16, Raw15,
RLM13, SI11, SZC+13, Sha13a, SMUT19, SPSP18, SPP19, Tau10, THDS16,
TIM+16, VBG+10, Var16, WDL11, WLZN17, BSW12. **Large-eddy**
[TIMM13, MRL19]. **Large-scale** [BMC+11a, DdJC+19, HKK11, JEFP14,
KH+18, PLD+13, SXW+18, SLZ16, BC19, CB15a, CB17, CB18, Deu16,
DO14b, DML+16, GS15, GHvdL11, GHdF10, GBS+16a, GAO13b, HLS12,
JOK13, LCQF18, LR13, LR16, MBS+10, MCNRC16, NLB+19, RLM13,
SMUT19, SPSP18, Tau10, THDS16, WDL11, WLZN17]. **Larmor** [XGH+19].
laser [BT17a, BEKP19, EZBA16, FZY17, GC12, GH15, HJL+14,
IB11, IKS19, JTT11, LJW11, LV19, LHJ+15, MiH12, MFS+10a, ON14, RetVH12,
SZM+14, BC19, CB15a, CB17, CB18, Deu16, DO14b, DML+16, GS15,
GHvdL11, GHdF10, GBS+16a, GAO13b, HLS12, JOK13, LCQF18, LR13,
LR16, MBS+10, MCNRC16, NLB+19, RLM13, SMUT19, SPSP18, Tau10,
THDS16, WDL11, WLZN17]. **laser-atom** [FZY17, TT11]. **laser-driven**
[HJL+14]. **laser-induced** [SJY18, SJY20, ZLM12]. **laser-plasma**
[RetVH12, TL19]. **lasers** [FYK18]. **latency** [GCC+18]. **later**
[DJW+19]. **laterally** [EBCBG17]. **Lattice** [BCJ+11, CYN19, CDS+13b,
CKCS13, LS13, SCRS17, TD17, dHGCS11, vds10, AGH+16, BWMM19, BBC+11,
BBB+17a, BHNS17, BB13a, BW12a, BDP16, BO12, CB13a, CAN11, CS16,
CZ19, CBB+10, CRA10, CND11, DCF+19, DE13, EPS15, FD13, Fri14a,
FKH15, GM18, HLS+17, HPOP15, HMR14, HCH16, HLTW19, HbotRC15,
IUM13, JLA+14, JK14, JEFP14, KP12a, KYM+17, KOG17, KK14b, KAvdL11,
KLO+19, KdMvO14, Law19, LKL11, Lee18, LS14, LQZ+13, LCL+11,
MHHL11, MDW16, MOD13, MR14, MRZ10, Maz13, MGS13, NIK+12a,
Ots11, RV10, Sai10, STK10, STA18, SD15, Sch14a, SV13, SLZ16, Sin12b,
SH16, TKS10, TS19, UA17, WLG+13, Wan16, WLU11, XLCW14, ZKG+18,
BLPP13, BCS10, GSTL+13, MLW+10, SSF+17, vds13, vds16]. **lattice-Boltzmann**
[CRA10, FKH15, MOD13, Maz13, TS19, SSF+17]. **lattice-Boltzmann/finite**
[CRA10]. **lattice-switch** [UA17]. **lattices** [BG11, CCW10, FLP10,
HML11, LCCC11, MKV11, SÓØN11]. ** launched** [sLqSqL+13]. **Laura**
[BGH+18]. **Laurent** [Per14]. **Lauricella** [BK16b]. **law** [JAS17, SB11,
UW12, WCT11]. **laws** [AAD14, DJ11, MWCY14, SW12b]. **Lax**
[MWCY14]. **Layer** [LV15, GGI+13, GLW14, JHL+15, Ras09, Ras17, SVV19,
WTH15]. **layered** [Bot12, CZF18, CL15b, DV11, FL12, MPSV15, PP13,
SVGS18, VCD16]. **LayerOptics** [VCD16]. **layers** [CBB14]. **LB3D**
[SSF+17]. **LDA** [PGD17, SW13a]. **LDA-1** [PGD17]. **LDA-1/2** [PGD17].
leading [GLPQ11]. **leagues** [dSVLP13]. **leap** [HP14]. **leap-frog**
[HP14]. **leaping** [AZM14]. **learning** [BG19a, BSW12, CSp+19, HJE+19,
KP16, Law19, WZHE18, YZZ+17]. **Least** [Ber16a, Ber16b, LSCZ11,
Liu13, AG12a, DSPJ10, Gor19, Kra11, LWW10, Wan10b]. **least-square**
[SPSJ10]. **least-squares** [AG12a, Kra11].
Lugovskoy [Maç19]. luminescence [PVH+17, Str15]. Lyapunov [MH18].

[BK11b, DBK+14, JWC18, ZLL18, ABB+16, ACM19, ART17, APV10, AC13, BG19b, Bot12, CNMC10a, CLJ12, CPWZ18, CK12, DN18, Des16, GZL14, GJ18a, HCRD14, HD17, IH11, JZJ18, KK16b, KH12, Lee18, Lev19, LJB+16, MIH12, MKG13, Mil16, MSRL10, NBN+14, NPM16, PO14, QJF16, Ram12, RHG10, Sai13, Sar17a, Sar17b, SDS15, Sha13b, Sha16, SD10a, SAS11, SDL+16, TK14b, UFKB19, USOA13, VvAV+11b, VvAV+11a, WPAV14, WWR+16, BD12, BR13]. matrix-element [Sha16].

matrix-exponential [Ram12].

matrix-free [KH12].

Matter [NSH+19, AMR19, BBP+11, BBPS14, BBPS15, BHN+16, CCM12, FTL18, GT19, HBL+13, HTY17, HCM19, IKS19, J(ab)17, LRC+11, MKB+11, ONS+15, SBH+14, WJCZ18]. maximal [Maz13]. maximally [KA+10, MYP+14, NGM+10, PVK+14a, PVK+14b, PMVG16, SV13, SPMM11].

maximally-localised [MYP+14, SPMM11].

maximally-localized [PVK+14a, PVK+14b]. maximum [LLG17].

Maxis [LJ+18]. Maxwell [BSK+18, BB13b, CSJ+17, CKK+13, CEF16, Dem13, FE11, HLLH16, KV19, KO14a, LV15, LLP15, LXY+17, SCLW16, VV16, VV18, YXT+15].

Maţdzia [MK+19]. MBE [AH13]. MBPT [KPST15].

MCgrid [BHS15, DHS14]. MCMC [BG13b, BLG14, Bon15, Bon16, VPMV+17]. MCNP [Car10a, Car10b]. MCNP5 [SMCB+15].

MEAM [DFM+15, Duf16]. MEAMfit [DFM+15, Duf16]. Mean [LS15b, BG11, DPB16, DBP19, EPB+16, GTK+19a, NPVR14, QJF16, UW12, WHC+19, dB14]. mean-field [BG11, DPB16, DBP19, GTK+19a, NPVR14, QJF16, dB14]. mean-square [UW12]. means [ACMM10, DAW+19, dASJC+19]. measure [ABCM14, LLLX14a]. measured [Kou11, Sco13]. measurement [AK13b, BJM15, CDSG11, LLQX19, PR13, RBG+19]. measurements [EBDM17, ERPDFS15, FBHB17, RF10, RBG+19, SW12b, WLM14].

measures [HLL13, RLL12]. measuring [ICPD16]. Mechanical [Voy13, AMM11, AYDY11, DGMZ15, LV13, RC11, SZ15, Sin11, Sin12a].

Mechanics [LSJ13, JZJ18, KV10a, OML11, ORCR17, PGO17, RK11, RU12, STT11, SU18, ZF15]. Mechanism [GAGW16, BUJ15, BNAB11, CHDF10, CGV13, ÇÖSÜ11, JJHG14, YZZ+17].

mechanisms [CFFR15, GAGW16]. Mechanistic [ORS+14]. media [BJ11, CNS+18, EZBA16, FKS+19, HZW+19, HSF+15, JA17, MPM14, MAIVAH14, OP12, RndB19, SVGS18, SGNL17, Ser10, TMD11, Ziö14, vMB14].

memory-mapped [LL15]. **MEMPSODE** [VPP+12, VHP+15]. **Mercedes** [HDM+12, SBPN15]. **merge** [PMMF15]. **merging** [LTP16, VGM+15, XLI13]. **MESA** [GWM13]. **MESA** Face [GWM13]. **Mesh** [HS14a, ACMM19, AWK+16, BCH11, BKPT12, EGT+18, FXZ+14, GX15, HCC14, ILZ+19, JG16, JFC12, JCL+18, KC14, KYKN15a, KYKN15b, LJWK11, LH18, LWRQ16, McM17, PZZL19, RHBH15a, RHBH15b, UBRT10, VM11, ZD15, CZF18]. **mesh-free** [JCL+18, McM17]. meshes [ASGLK10, AK15, FXZ+14, LA13, OCM+19, SP18b, YWX11]. meshing [ZPH+15]. meshless [DG10b, MM12, QLN14, SW14c, SD10b, XLL15]. mesh-free [JCL+18, McM17]. meshing [ZPH+15]. meshless [DG10b, MM12, QLN14, SW14c, SD10b, XLL15]. meson [BBC+11, CWW15, YWW13]. mesoscale [HPN18, WSH+14]. Mesoscopic [SS11c, BLV+19, WJHW14]. message [TSTT13]. message-passing [TSTT13]. messages [BABC19]. meta **[GSZ13]**. meta-GGA [GSZ13]. Metadata [RSSH+10]. Metadyn [HS16]. metadynamics [BPML12, HS16]. **METAGUI** [BPML12, GLR17]. metaheristic [CNMC10b]. metaheristics [dASJC+19]. meta **[FSJ+16, HBB+17]**. metallic **[HKF+12, HLW16, LLHC11, ZHCR18, ZLLP17]**. metals **[BT17a, KOK17, PSP16]**. metamagnetic **[dSFdFF13]**. metamaterial **[LL19]**. metamaterials **[RHW+12]**. Metamodelling [ZKS13]. metaphor **[BPML12, GLR17]**. metastable **[FSJ+16, HBB+17]**. Metatomic **[FSJ+16, HBB+17]**. Method [BUJ15, EW16, GHBL18, Les16, RNdB19, TG+16, ZLL18, AM14a, AM14b, ARY17, AS11b, ADdM16b, ASS13, ABD17, AG12a, ACdM19, AAJA14, BOPL17, BBL+13, BM13, BF16, BBB+17a, BK11a, BH14b, BH16, BW12b, BR14, BHT19, BT17b, BL18b, Bis15, BH11, BMW14, BCM+16, BMNS14, BPM16, BIT12, BHND16, BENK+17, CZ18a, CL15a, CB13b, CKSM+19, CAN11, CSPAD10, CZS10, CL10, CL12, CW13, CTL15, CW16, CS17, CSL+13, CKK+13, CB15d, CvW12a, CvW12b, Cor14, Cou13a, Cou13b, CNS+14, DZ15, DEMM19, DT10, DG10b, DT11a, DM17, Den10, DK5G16, DCM+19, DA16, DMC10, DCG13, DLF16, DF+15, Duf16, DOI14a, DOI14b, EBCB+14, ELS14, EKK14, EFK+19, FGM11, FS17, Fen12b, FK12, FNPB10, FBN+13, FPY+17, Fu19a, FJ19, FKS+19, FN17, GC12, GL14, GML15, GBP13, GA15, GA10, GZZ19, GGG+19]. method [GCH+18, GYW+10, GB17, GMHZ19, HE13, HV15, Ham11, HCL16, HLLH16, HTPF19, HSD17, HKvH16, HDZ14, HJGL18, HJGL19, HHC+10, HW12, HLW16, HM18, HN11, Ixa10, Ixa12, Jal10, Jan10, JK14, JK19, JFHA19, JW17, JLM18, rJmvY11, JOR+12, JGAL+13, JLW13, JCL+18, JPM12, JK13, JU17, KMS14, KK13, KU10, Kap12a, Kap12b, KCN18, KKG+15, KGFS18, Ki10, KL17, KO14a, KL11, KN13, Koh15, KDM11, KA17, KV19, KS12, KPST15, Kra10, KZ14, KH19, KMS16, KR14, KSW12, KOK17, KSY17, LOL+18, LLHC11, LM19, LLQX19, LX12, LM16, LLG17, LHJZ10, LSCZ11, LCC11, LHC+13, LST15, LMM17, LCQF18, LJWK11, LHI+12b, Lin13, LSK+13, LTP+17, Liu11, Liu13, LLZ+17, LOK+18, LJ+19, LLX14a,
MCWJ15, MD11a, MDHD18, MiH12, MIW+12, MRL18, MST+18, MSPD12, MRZ10, MC12, MH18, MBFB13, MK10, MNPF17, MMY+19, MM10].

method

[MM12, MFG+13, MSR+17, MBGV15, MBFD12, NDSH18, NPM16, NHL516, NZQ14, NCB18, NAQ16, Nis11, NMS14, OYK+14, OP+11, OPSR13, OPR14, ORI+10, OT11, PHA18, PSBT12, PAS11, PS14, PDRG10, PR13, PBMAD12, PEM19, PGD17, Pit12, PS11, PSP16, PB16, QMY+11, QA13a, QWZ18, QDZ+13, Qia10, QwWL+15, QL14, Ram10, RVA14, RCFT16, Ras09, Ras17, Raw15, Raw16, RVDS16, RLS16, RVDS18, RMS+12, RH17, RTA10, Sal16, San15, SW13a, Sch14a, SEW12, SEW14, SW14b, SF+17, SNB11, SCS12, SDS15, SD14, Ser10, SW14c, SMUT19, SD10b, SA15b, Sie16, SM10NF14, SHL+11, SBvD13, SS10b, SCG11, SDL+16, SSK13, SL14, SPSP18, SPP19, Sza13b, Sza16, TSM16, TD14, TDM17, TT14, TFtw14, TC11b, TKP15, TY10, Tia11, TT11, TW15].

method

[TKZ18, TDL+14, UO15b, UO15a, UFKB19, VdLF14, VK14, Wan10a, WX11, WLZ12, WZ13, WM13, WX14, WLGY18, WN10, Wil19, WP10b, XHLUF+18, XWF18, XZ12, XLL15, XLX+15, XD16, XGH+19, Yam16, YLO13, YBNY13, YS17, YTYA17, YQM12, YQM14, ZAH10, ZFH14, ZHPS10, ZOZ13, ZSW+17b, WZW17, ZKG+18, ZXZ+19, ZX10, ZS13, ZC12, ZST11, dASJC+19, vsSM16, CC10b, CC12, EW14b, EEEGW12, SVGS18].

Method- [Les16].

Methods

[EVBI4, EBCBG17, PVK+17, ARAB+17, ACCB13, ABB13, ABCM14, AH13, ABH+19, ADMD15, BCI11, BBWM19, BB15, BH17, Bla15, BBF+10, BB10, CFCM10, CDM16, CH19, CYSL12, CS10, Coll14, CHZ18, DIPI11, DMP18, DN13, DF11a, DLW+18, FLW10, FM10, FHTO17, FG13, FGR14, Fri14a, GBN17, GSKM14, GSKM15, GTK+19b, HV+19, JLA+14, Jiw15b, KFS17, KKL+18, LMC15, LD10a, LV10, LWWY11, LLP15, LW14b, LGHF18, LY16, LAC+17, LL12, MCP+11, MCGR11, MKS10, MM11, DPHB17, PMM15, PPF15, RL10, HH12, SZ15, SV19, SE15, SW12a, SW13b, SO19, SC16b, SBB+12, SS18, SAN18, SPP19, TBZ12, TE18, TVT+16, TXZ15, WC10, WLX13, WWC+16, WHL+12, WYH19, Wu10, WW10, WT15, XJS16, XHML12, YZ16, YYFY09, YZZ11, YWX11, YJK11, ZW15, ZTG13, ZTG14].

metric [WN10].

Metropolis [AIG16, GM14, MP11, PM14, ZDD13].

MeV [Pos18].

MFIE [ZD2Y10].

Mg [HH11a].

Mg-like [HH11a].

MH [HFSK12].

MHD [Ras17, BT17b, FDZ17, FZ+14a, JFC12, LC15, ML17, PHT+19, PE15, Ras09, VKNP14, WRBL19, ZOZ13, ZNT15].

MIC [NBW16, RB18, BSB14].

micro [Bal19, BD10, HLS+17].

micro-currents [HS+17].

micro-manipulation [BD10].

micro-resonators [Bal19].

Microcanonical [AMR15, FD13].

mccracy [VBMS17].

microengineering [MFG+13].

microfluidic [JHH+19].

micrographs [Nov17].

microgrid [CLH+17].

Micromagnetic [CF16, FCC15, EKF+19, RJW+19].

micromagnetics [TIM+16].

micromegas4.1 [BBPS15].

micromegas5.0 [BBG+18].
micrOMEGAs_2.4 [BBB+11], micrOMEGAs_3 [BBPS14].
micrOMEGAs_4.3 [BBB+18], micromotors [AD11]. micron [BHNS17].
micron- [BHNS17]. microquasar [Lan13]. microreology [BDGM+17, OOGP19]. microscope [TCK+15]. Microscopic [VCD16, AMM11, BBP+17, Gen10, RU12, VSO+13]. Microscopy [MAC12, BDGM+17, CRB+17, DGPOR18, MHV17, SSM+17, ZSW+17a].
model [MEG12, MNC15, MSM+11, MFH+13, NCHN15, NFI17, dRL11, dRAPL11, Ots11, Pål12, PBE14, RTÅT15, REBS16, SZY+12, SZY+13, SGM11a, SGM11b, STA18, SAA+10, SFP11, SH18, SJ17, SMJ17, SBPN15, SK12, STY15, STY18, SA15a, SLK19, SYD17, SMUT19, SO19, SLR+11, Sin12b, SH12b, SVG10, SS10a, SQA+15, SCB17b, Sta10, Sta14, SW11, SV12, SSBS15, Sza13a, TL19, TU14, TIMM13, TW11, US16, VS19a, VLM11, WR16, WDL11, WSTP15, WWVB11, WCT11, XZF12, XLCW14, XLL15, XYX19, Yam16, YK10, YFAT17, ZZ15, ZXL16, ZZG+16, ZZD+16, ZZG+19, ZY19a, ZY19b, ZML12, ZYL+15, ZCG17, ZKS+18, ZFR18, ZWC+19, dSdO12, dSFdFF13, dSLF13, dSVLP13, dSF18, vMB14, ABC+18, AB10, BCPS11, BCP13, DET12, DG16, HLM13, KPV16, MW19]. Model-Driven [Dan10a, Dan10b]. Modeling [CLW11, wH15, TJH17, AD11, BOPL17, Bar11b, BMNS14, BMZ+18, CSJ+17, CL11, CFFR15, Dan12, EZL+19, EDPZ19, EKK+14, FZY17, Gai17, GGI+13, HV15, Hak16, Hak19, HDF+19, HCHW11, IP14, Jab19, JGC+11, KEH12, KPA13, KM10, KRB15, KMJS16, KGNS10, Lan13, LV19, LZZL10, LHH+12b, LTHL+12, MPS13, MN18, NGCI+12, OBPL19, OP12, PBF+16, PE17, Ram10, Ram12, RAV11, RTA10, SGNL17, SL11, SN16, SHL+11, Sol11, SCG11, Sva12, TPK12, Uty14, VBMS17, VCD16, XHL17, YOM+19, ZE11, ZE16]. modelling [Hon18]. modelled [MRL19]. Modelling [AGB+15, CC16, HdM16, IBKK11, ANO10n, AMR+18, CdLOL19, DDB+17, HKF+12, Kra18b, MDPTK15, MRSD15, MSML10, OBH10, ORS+14, Org15, ORG15, RLMGM+11, TN11, Van15]. Models [Rei11, Rei12, AS11a, AC17, AABC+13, AG12a, AH13, AhPSV15, ABH+18, AC15, AC16, AC18, BW16, BBC+13a, BR13, BHT19, BMK11, CECGS16, CZ18b, Che17, DCM+12, DNP513, ELDS14, FW11, Fil13, FD13, Fuh15, HLL13, HvWT17, HCH16, HVR10, ID18, KÖG17, KO14b, KO16, KST+14b, KTA12, LLMW17, MLGVE14, MST+18, Mur14, NEW+18, NIS14, NP19, NAQ16, PdML19, PS12, QA13b, RK11, RDN+17, SLZ16, SH16, SOPS12, Sus17b, TAFD19, TSTT13, TVZ+15, WG12, Wan16, Wei11b, XLX+15, YZ19, dRAPL11, Me19]. Modern [HdM16, BS14a, CDSG11, Ein16b, HBL+13, RK11]. modes [AM19, ALSW14, Ball9, CS17, HSK+12]. modifications [RL10]. Modified [LYL+17, NIK+12a, ZLL18, BKN+17, DFM+15, Du16, FZY13, GSZ13, Jiw15b, KMS14, LM19, LCQF18, MS15, Ras09, Ras17, SMJ17, SBvD13, XHLUF+18, ZY19a]. Modular [CFW17, Gui19, Sin11, Sin12a, DLP10, FWS+17, KP16, KSH14, Kro16, TCK+15, Zag14]. modulated [TTG11]. modulation [Kap16, OCL+13]. module [DF11b, DGST17, GST12, LRK13, SK12]. modules [AAB+10a]. moduli [Bo16]. MOLDY [ADD+11]. Molecular [AS16, DLP10, Fil14, FFHI11, GM11, HLZ+13, LS17a, MTS11, MKB+11, Ngu17, NLB+19, SBPN15, SYE+18, TD17, ZS13, Zhe15, ADD+11, Bar11a, Bar12a, BBH11b, BBF+19, BPLM12, BKS15, Bin13, BG13a, BG14a, BGHN19, BWPT11, BKPT12, BY13, BCG+15, BBV+16, BMDP19, CTT17,
XGH+19, YWOD19, ZBG+16, ZLM12, ZTG13, dSF18, dHGCS11.
Monte-Carlo [DPK+15, LS15a, NBCL18, PEMS19, SM19, UKKB19].
MonteCUBES [BFM10]. MonteGrappa [TVZ+15]. monteswitch [UA17].
MoRiBS [ZBG+16]. MoRiBS-PIMC [ZBG+16]. morping [ZF15].
Morphological [MS11]. morphologies [Bar11b]. morphology [PR10].
MOSFET [ZBG+16].
MonteCUBES [BFM10]. MonteGrappa [TVZ+15]. monteswitch [UA17].
MoRiBS [ZBG+16]. MoRiBS-PIMC [ZBG+16]. morping [ZF15].
Morphological [MS11]. morphologies [Bar11b]. morphology [PR10].
MOSFET [SO19]. Moshinsky [XMLC16]. most [BS14a]. Mosyagin [Ma´z19].
motile [HPKF15].
Motion [KB15a, BMG+15, HH11a, MF17, SBPD19]. Motion4D [DPK+15, LS15a, NBCL18, PEMS19, SM19, UKKB19]
Monte-CUBES [BFM10]. MonteGrappa [TVZ+15]. monteswitch [UA17].
MoRiBS [ZBG+16]. MoRiBS-PIMC [ZBG+16]. morping [ZF15].
Morphological [MS11]. morphologies [Bar11b]. morphology [PR10].
MOSFET [SO19]. Moshinsky [XMLC16]. most [BS14a]. Mosyagin [Ma´z19].
motile [HPKF15].
Motion [KB15a, BMG+15, HH11a, MF17, SBPD19]. Motion4D [DPK+15, LS15a, NBCL18, PEMS19, SM19, UKKB19].
Monte-CUBES [BFM10]. MonteGrappa [TVZ+15]. monteswitch [UA17].
MoRiBS [ZBG+16]. MoRiBS-PIMC [ZBG+16]. morping [ZF15].
Morphological [MS11]. morphologies [Bar11b]. morphology [PR10].
MOSFET [SO19]. Moshinsky [XMLC16]. most [BS14a]. Mosyagin [Ma´z19].
motile [HPKF15].
Motion [KB15a, BMG+15, HH11a, MF17, SBPD19]. Motion4D [DPK+15, LS15a, NBCL18, PEMS19, SM19, UKKB19].
Multi-dimensional
[MKR+12, ASS13, BT17a, Cap13, CC15, DO14a, NAQ16, TD14].
multi-directional [TKJ19]. multi-disciplinary [WSH+12]. Multi-Domain
[IBP+15]. Multi-electron [BMW14, SW14b]. multi-exponential [Ike18].
[SLR+11, sX14]. Multi-frequency [PP13, LY16, YZWR14]. MULTI-fs
[REtVH12].
multi-gluon [BBU11, BvH15]. Multi-GPU
[BFPP12, BVP10, OP12, TPC16, DCVB+13, JK14, JXTS16, LBP15, NHD16,
WAW14, FOB+15, WFG19]. Multi-GPU-based [KO13, Kom15b].
multi-GPUs [SV13]. multi-instance [NB17]. multi-Intel [BBS14].
multi-jet [BBUY13]. Multi-Kepler [BBS14]. multi-layered [CL15b].
multi-level [HZW+19, IBP+15]. multi-loop [BCH13, Mey18, dDYK+18].
multi-moment [MAA15]. multi-objective [AZM14]. multi-orbital
[DKG+14]. Multi-resolution [SCM+18].
multi-scale [UBRT10, BHJ+15, BHJ+18, Sch14a]. multi-socket
[TRM+12]. multi-structural [ZMPT13]. multi-symplectic
[CZS10, HDZ14, ZST11, CWJ19, LS12a, QSC14]. Multi-type
[MRSD15, BT17b, FHA17, ZAFAM16]. Multi-physics
[ZMvE+13, DRF+16]. multi-populations [FSJ+16]. multi-purpose
[DBP+18]. multi-reference [DKG+14]. Multi-resolution [SCM+18].
multi-scale [UBRT10, BHJ+15, BHJ+18, Sch14a]. multi-socket
[BVP10]. Multi-step [Ume19]. multi-strategies [FSJ+16].
multi-structural [ZMPT13]. Multi-symplectic
[CZS10, HDZ14, ZST11, CWJ19, LS12a, QSC14]. Multi-type
[MRSD15, BT17b, FHA17, ZAFAM16]. Multi-physics
[ZMvE+13, DRF+16]. multi-populations [FSJ+16]. multi-purpose
[DBP+18]. multi-reference [DKG+14]. Multi-resolution [SCM+18].
multi-scale [UBRT10, BHJ+15, BHJ+18, Sch14a]. multi-socket
[BVP10]. Multi-step [Ume19]. multi-strategies [FSJ+16].
multi-structural [ZMPT13]. Multi-symplectic
[CZS10, HDZ14, ZST11, CWJ19, LS12a, QSC14]. Multi-type
[MRSD15, BT17b, FHA17, ZAFAM16]. Multi-physics
[ZMvE+13, DRF+16]. multi-populations [FSJ+16]. multi-purpose
[DBP+18]. multi-reference [DKG+14]. Multi-resolution [SCM+18].
multi-scale [UBRT10, BHJ+15, BHJ+18, Sch14a]. multi-socket
[BVP10]. Multi-step [Ume19]. multi-strategies [FSJ+16].
multiplication [GJ18a, WWR+16], multiplicities [Wei12]. multiplicity [Car16]. multiplier [AQJ10, TC11a]. multiply [BG13b, BG14a, BLG14, Bon15, Bon16, WLG+13]. multiply-charged [BG13b, BLG14]. Multipole [CC10b, CC12, GCH+18, Ham11, LCQF18, LCHM10, LCHM13, OYK+14, TSIM16, YBK+11, YBNY13, ZHPS10]. multipoles [EPP12]. multiprecision [Sai13]. multirate [SEGP15]. Multiresolution [LB10b, RHH12]. Multiscale [CC10b, CC12, GB11, GCH+18, Ham11, LCQF18, LCHM10, LCHM13, OYK+14, TSIM16, YBK+11, YBNY13, ZHPS10]. multispin [FFT+14]. multisymplectic [CWS14]. multithreaded [TV10]. multivariate [CSRV13, KPVvdH13, LR18a, LR18b, vH10]. MultivariateResidues [LR18a, LR18b]. multiwavelength [SSP16]. MuMax3 [RJW+19]. muon [NBCL18]. muons [BCMS10]. MUPAGE [BCMS10]. Muse [Liu14]. mVMC [MMY+19]. mVMC-Open-source [MMY+19]. mxpfit [Ike18]. myFitter [Wie13]. N [CKFB12, CDTV10, GBD10]. N2HDECAY [EMW19]. N2HDM [EMW19]. Nabarro [PE17, ZLZ19]. NAMD [BW15, JHP+14, JJ15, MBP10]. NAME [MFH+13]. names [WCT11]. nano-devices [HEF+11]. nano-friction [HST+11]. NanoCap [RM14]. nanochannels [SS11c]. nanoclusters [FSJ+16]. nanodevices [CLL16]. nanodiamond [AZS+11]. nanofiber [LPC+15]. nanographite [AZS+11]. nanomaterials [Mar19]. nanometric [ZHCR18]. nanoparticles [Bar11b, YHCS11]. nanotubes [LCY+11, SWL11]. Nanoporous [ZDD+13]. nanoribbon [LCY+11, SWL11]. nanoribbons [GZL14, Iln12]. nanoscale [Dan14, Dan16, Dan17, Dan19, LCH11]. Nanoscience [NSH+19]. nanosystems [GS15]. nanotube [LCY+11, TM19, Yan11]. nanotube-nanoribbon [LCY+11]. nanotubes [Beu11, CSL+13, HCC14, LHS14, RM14, ZRS12]. nanowire [DJ12]. nanowires [CM15, TG11, VB11]. NAO [KBSP19]. NAPL [PBF+16]. NASAL [CPCDm18]. NASAL-Geom [CPCDm18]. Natural [BHT19, OP12]. NAVier [BKOZ16, BLAS19, EW14a, FDZ17, LWJV18, MV15, QSB19, Sal16, SK15, SP18b, ZPS+18]. NBL [KHN19]. Nd [LQZ+13]. NDL [HAV+14]. NDL-v2.0 [HAV+14]. ndom [SKB10]. Ndynematics [ADdM+12b]. Near [BKMP16, AGVP10, CZF18, DT11b, EEGW12, Faw10, JU17, LPRPR17, MZE13, TGL+12, Uty14, XD13, XHD15]. near-barrier [DT11b]. near-continuum [TGL+12]. near-field [CZF18, LPRPR17]. near-rigid [Faw10]. Near-threshold [BKMP16]. near-wall [JU17, Uty14]. nearly [LYL+17]. nearly-analytic [LYL+17]. necessary [BSWC14]. neighbor
[ABRS12, HAN+16, KHN19, LYJY10, ZZHG18]. Neighbour
[MRZ10, WRR18]. Nektar [CMC+15]. neoclassical
[BSM13, HSK+12, MS14, SISW10]. Nernst [Fuh15]. Nested
[BBV+16, BH11, SEGP15]. Network [VKLM11, VLM11, DLW+18, HH11b, LYJH19, ORCR17, YKK+19, dSLF13, ZHL11]. networks
[BHVMH15, CHDF10, CB15c, CMdB11, CF17, CLF18, HLS12, HZC19, IBKK11, Kra10, MCNRC16, NMC15, PHA18, QHC+10, SOYHD19]. Neumann
[RC16, Jiw15b, RC13, RTA10, SP16, SN16]. Neural
[ORCR17, ZHL11, dCD19, HZC19, LYJH19]. neural-network
[LYJH19]. Neumann
[BRL12, AGB+15, BBH+11a, Lit13, PE15, Tic14]. neutral
[Tic14]. Neutrino
[BFM10, AKH12, BPMM14, BNAB11, KHBS19]. neutrino-driving
[BNAB11]. neutrinos
[WW15]. NEutron
[Car16, BNV18, CXG+19, ECSH16, KB15b, LS12b, RLS16, SEW12, SEW14, VPM12, WJCZ18, ZTG13, ZTG14]. neutron/gamma
[RLS16]. Neutron
[MSNI11]. Neutron
[MSNI11]. Neutron
[MSNI11]. Neutron
[MSNI11]. neutronics/thermal
[YLL+19]. neutronics/thermal-hydraulics/fuel-performance
[YLL+19]. neutrons
[MSNI11]. newly
[CCW15]. Newton
[BK12, CB15d, HCSW10, YJK11, vWB10]. Newton/Yukawa
[BK12]. Newtonian
[BHNS17, NCB18, RJLL16]. Next
[AAT+14, AAT+20, AC17, AMRdA17, GLPQ11, PLF+17, DET12]. next-generation
[PLF+17]. Next-to-Minimal
[AAT+20, AAT+14, AC17, AMRdA17, DET12]. next-to-next-to-leading
[GLPQ11]. Nexus
[Kro16]. NF
[YE14a]. NF-package
[YE14a]. NGluon
[BBU11]. ngrav
[Cro16]. Ni
[BTM+17, CHW+15, TG11]. nickel
[WB11]. Nicolson
[BB10, CWS14]. Ninja
[Per14]. NiTi
[NS11b]. nitride
[Yan11]. nitrogen
[CHC+11, LJSW11]. Nix
[Rom15]. NLO
[BDC+14, BCG+13, BS13b, GHvSF14, Pit10]. NLS
[LlSZ14]. NLSEmagic
[Cap13]. NMSDECAY
[DET12]. NMSSM
[AM11, BGM+14, SAE+16]. NMSSMCALC
[BGM+14]. NN
[LYJH19]. NNDrone
[BG19a]. NNLO
[HLM17, BHZ13]. nnlo-Higgs
[BHZ13]. nodal
[Koh15, Oti13]. nodal-based
[Oti13]. node
[CTL15, NZQL14, SC16b, ZBN+19]. node-centered
[SC16b]. nodes
[Sch14b, YKK+19]. noise
[BCS10, BDBV12, CC10a, Er14, HH11b, KS16b, MW12, VSG18]. noises
[iT11]. noisy
[QHC+10]. noloco
[NPAD11]. NOMAD
[GHK19]. Non
[FW11, GTK+19a, Gor19, Jal10, VDA+19, WL11b, AAD13, ABF19, ABH+18, AMJ18, BL19, BHNS17, BL14, BDP16, BW12b, Bla15, BCT17, BH13, BPS+16, BMG+15, CLW11, CjLOL19, DBJ11, DJ11, EW16, FR15, HWS16, HM17, HMM+15, HL19c, JBMK15, JU17, KKS18, KS15, LMRC15, LA13, LS15b, LGC14, NCB18, OILK17, PHT+19, PLF+17, PBF+16, PBD+15, SK15, SCLW16, SCNJ18, SC15, SS11b, SLEF17, TDL+14, UNK12, USOA13, Wit14, YQM12, YQM14, ZDWM17, ZXZ+19, dSFdFF13, dSVLP13]. non-adiabatic
[HM17]. non-aligned
[HWS16]. non-autonomous
[Bla15, BCT17]. non-axisymmetric
[EW16]. non-bonded
[BL14].
non-equidistant [LS15b]. non-equilibrium [BPS+16, JBMK15, PLF+17, PBD+15, SC15, XZZ+19, dSFdFF13].
non-intrusive [HHM+15]. non-isothermal [PBF+16]. Non-linear [Gor19, VDB+19, JBKM15, PLF+17, PBD+15, SC15, XZZ+19, dSFdFF13].
Non-local [GTK+19a, AMJ18]. non-Markovian [dSVLP13]. non-minimal [KKSY18]. non-Newtonian [BHNS17, NCB18].
non-orthogonal [USOA13]. non-oscillatory [AAD13, DJ11, UNK12]. non-overlapping [JU17]. Non-perturbative [WLB11b].
non-transferred [CLW11]. non-uniform [BDP16, KS15, LA13, LFG14, Witt14, YQM12, YQM14]. nonadiabatic [GVPJ18, LWW10, vSGB+18].
non-central [GST15]. nonclassical [Shi16]. nonequilibrium [KL11, LD10a, LV19, LWL12, LST15, LLL12, Lin13, LLL13, SL10, MD11a, MHWH19, Mel19, MFM15, Moh14, ICD13, PDRG10, PHS12, QSC14, RM10, SWI1c, SK14, SB11, SS10b, TD14, TJBH17, WP10a, Wil19, XZ12, YCO15, ZAH10, ZWLL17, ZY19a, ZLL13, ZW15, ZST11, ZL14, dlHV10].
nonlinearity [SB11, VEB+18]. nonlinearly [CC14, CC15]. nonlocal [LAA+10, LLMW17, TRN16, YZ19, ZY19b]. nonresonant [HSH16].
nonuniform [ZNT15]. nonzero [BBF10]. norm [BDB16, LD10a, LV19, vSGB+18]. norm-conserving [GVPJ18, vSGB+18].
number [ASPW13, BS11, BS13a, BS14a, BCJW13, BCJW13, CBYG17, CBYG18, Dem11, FP14, GP13, GBS16b, Kan18, LS15a, LNP+17, Mis13, Sav15, SS13a, Sib17, SCM+18, TC11a]. numbering [BBC+13a]. numbers [BS13a, BCJW13, Nog17a, Nog17b, UO15b, YB13, ZO13, ZNT15].

Numeric [GBRB11, KCA+15, LRW+15]. Numerical [ABRS19, ASEA14, ACCB13, ALSW14, AD11, ACM12, AH13, ADdM+12b, BBUY13, BCH13, BJH+13, BMNS14, BS12, BvH15, CMJ+11, DG10b, DGS+19, DR12, FGLB12, Fis12, Fuk17, GG16, GLX+14, HKSW10, HK12, HML11, HW11, HB13, HL13, Ixa16, JLM18, JPK12, KFS17, KM10, Kri12, LDF15, LD10b, LSF14, ILSZ14, MT13, MIW+13, MFS+10a, MLC12, MMS17, Nog17a, Nog17b, UO15b, YB13, ZOZ13, ZNT15].

Object-oriented [BC19, CB15a, CB17, CB18, Asl14, BFD+11, CDMCN11, CFFR15, DM12, OKM12, SL16, WP10a, Zag14]. objective [AZM14].

[Hoh14a]. Octree [FGC+11, TE18, TK19]. Octree-based [FGC+11]. ODE [HKSW10]. ODEs [K10a, NO12]. off [HFOPF15, JCL10, JTP15, JHL+15, KdMvO14, MRS10, RV10, SMOB19, Zag14]. off-axis [JTP15]. off-lattice [HFOPF15, KdMvO14, MRS10, RV10]. offload [BCG+15]. offs [BNB+14]. ohmic [KGG+16, YLKN17]. oil [ZAFAM16]. OK2 [OP10]. OK3 [OP10]. old [TBB+14]. on-lattice [XLCW14]. on-the-fly [GGG16]. ONCV [SG15]. One [ADH+17, CHC+11, DLU18, EGPS10, ABB+14, AG14, Ano10o, BBU11, Ber16a, Ber16b, BDP16, BDV11, BHJ+15, CZD15, CEZ16, CJI11, CR12, CvW12a, CvW12b, CGH+11, DDH17, Dua10, Fen12b, Fil13, FEH11, HLS12, HEF12, HHC+10, JWC18, KKS18, KS12, LS19, Liu11, Liu13, LK+16, MCA17, MP11, MEM+11, OAKS11, Pat15, Pat17, Per14, QA13a, RtV16, RVA14, Rei12, RCH16, RGKR17, TD14, Ter17, WHG+19, vH11]. one-dimensional [CHC+11, AG14, BDP16, CZD15, CR12, CvW12a, CvW12b, Dua10, Fil13, HHC+10, KS12, MEM+11, QA13a, Rei12, RCH16]. One-Loop [ADH+17, DLU18, ABB+14, Ano10o, BBU11, CEZ16, CGH+11, DDH17, Fen12b, FEH11, HEF12, KKS18, Pat15, Pat17, Per14, vH11]. one-particle [LS19, Liu11, Liu13]. one-shot [HLS12]. one-valence [MCA17]. one-way [OAKS11, Ter17]. OneLoop [vH11]. onetep [BDPM15]. Onia [Sha13b, Sha16]. online [HDF+19, Mis13, PR14, TdAdSS11]. only [Sta14]. Open [BCP+16, CYOS19, CDR+15, DSK19, DBL16, JWC18, MMY+19, SH18, WGG16, WGG+19, AZ17a, AZ17b, AFZ17, AFZ18, ATCZ19, CMC+15, CLJ12, CFW17, CCHL11, Dan11, DGJ19, Dat13, DBP+18, FLA+16, Faw10, FJK+17, FLW17, HSF+15, HKvH16, HWM+15, Hua17, ILZ+19, JNN12, JNN13, JMG+17, KDM17, KPK+17, KSH14, KPO+18, LPC+15, LZ11a, LZ11b, LZ12, LS13, MZE13, MVS15, MGFRG12, NMS14, NGCI+12, ORS+14, PLCC12, Qia16, Qia17, STA18, SV14, SC16a, SPAW17, SAHP19, SDL+16, TL17, TACA15, TVT+16, VBG+10, VDA+19, VSI9a, VB19, WDFK19, WVF14, WPV14, WZS+18, XAPK14, ZCG17, Zag14]. open-shell [Faw10]. Open-source [BCP+16, CYOS19, CDR+15, DSK19, DBL16, JWC18, MMY+19, SH18, WGG16, WGG+19, AZ17a, AZ17b, AFZ17, AFZ18, ATCZ19, CMC+15, CLJ12, CFW17, CCHL11, Dan11, DGJ19, Dat13, DBP+18, FLA+16, Faw10, FJK+17, FLW17, HSF+15, HKvH16, HWM+15, Hua17, ILZ+19, JNN12, JNN13, JMG+17, KDM17, KPK+17, KSH14, KPO+18, LPC+15, LZ11a, LZ11b, LZ12, LS13, MZE13, MVS15, MGFRG12, NMS14, NGCI+12, ORS+14, PLCC12, Qia16, Qia17, STA18, SV14, SC16a, SPAW17, SAHP19, SDL+16, TL17, TACA15, TVT+16, VBG+10, VDA+19, VSI9a, VB19, WDFK19, WVF14, WPV14, WZS+18, XAPK14, ZCG17, Zag14]. open-source [MGR16]. operated [LM19]. Operating [SC14]. operational [dlHV12]. operations [CB18].
operator [ABB$^+$16, ABF19, BK11a, BW12b, BBF$^++$10, BF10, DGS$^+$19,
Eks11, GTS14, JHL$^+$15, KAK12, MWI$^+$19, NNWS15, PB16, Ram10, Sch14a,
STY15, STY18, Zit11]. operators [Bra15, LYL$^+$17, SD10a, Vit19]. Opinion
[YH15, CHDF10, IBKK11]. OptaDOS [MNPY14]. OptHyLiC [BCTP18].

optic [FPMB10]. Optical [AWK$^+$16, Ost10, PGMU19, AM14b, APRG11,
AKV18, BF16, Bal19, BD10, BG11, BGL$^+$14, BMG$^+$15, CM15, CCL15,
CS17, CCW10, CSL$^+$13, DSS$^+$12, FE11, GGG16, HCRD14, HWCH11,
HHT14, LCCCI11, LLMW17, MNPY14, NJS17, OCL$^+$13, PM14, SS$^+$17,
VEB$^+$18, VCD16, WX11, WQ18, ZHCR18, ZYL$^+$19]. Optics
[NSH$^+$19, Dem13, KAH18, SWS$^+$12]. Optimal
[FBHB17, KKCC19, MLEM19, CNMC10b, DJ14, FSF11, FJ19, Hoh14a,
Ike18, MFS$^+$10a, PSBT12, PGMU19, RC18, SH18, SJHS19, XLL15].

optimality [KL14]. optimisation [EGT$^+$18, HdM16, dCD19].

optimisations [HKZN19, HWCDM19]. Optimised
[IZRT15, RWKS15, Wei12, BCTP18]. Optimising [Rei10]. Optimization
[BS14b, DF14, DCGG13, FGR14, MCY$^+$16, SG15, ATA$^+$19, AcS13,
AZM14, BS15a, BR11, BPS$^+$16, CI10b, CLH$^+$17, CJJ$^+$17, CXG$^+$19, DBJ11,
FSJ$^+$16, DRI$^+$16, GWF$^+$16, GD14, Has11, HWL$^+$17, HJL$^+$14, HVMR10,
HKVR10, JKG$^+$18, KPA13, KPR11, KHKR14, Kra11, KUV15, KL14,
LM19, LHL16, LCR10, MR14, MBGV15, PCVZ11, QwWL$^+$15, RMS$^+$12,
RLL12, SHW18, SWL$^+$15, SZM$^+$14, SKH$^+$10, TTT16, VvAV$^+$11a, VPP$^+$12,
VHP$^+$15, Wie18, WLZ17, XLCW14, YZZ$^+$17, YLYL17, ZBMM11, ZPV16,
Zio14, dASJC$^+$19, vRWS14, PE17]. Optimizations
[iSYS12, WRFS15, BD11$^+$19]. optimize [TVZ$^+$15]. Optimized
[Cha16, CF17, DRR16, HLLHI16, LJB$^+$16, MAIVAH14, Smi16, BD10,
CNMC10a, FDWC12, KD17, KAS12, LWC14, LW16, LBP15, SEW12,
SEW14, TVT$^+$16, vSGB$^+$18]. Optimizing
[BPSS18, BCCG$^+$15, De 11, GBN17, KdMV014, RKVL14]. Optimum
[WS11b]. ORBS [MBB$^+$19]. orbifolder [NRSVW12]. orbifolds
[NRSVW12]. Orbit [BBDV12, CL14, CFF19, HSK$^+$12, Nis11, PCGM14,
RE12, WX14, WLGY18, XGHI$^+$19, MPS13]. Orbit-based [BBDV12].

orbit-following [HSK$^+$12, XGH$^+$19]. orbital
[BHT19, CM15, CXH$^+$15, Cor14, FGR14, HHS$^+$10, KT12, KST14a, KAS12,
MSS$^+$16, PS14, PK18, QwWL$^+$15, SGW17, SGSG19, SMGK19].

orbital-based [BHT19]. orbital-free
[CXH$^+$15, HHS$^+$10, KT12, KST14a, MSS$^+$16]. orbitals
[BCC$^+$18, Ert15, KTB17, KCA$^+$15, KBSP19]. orbits
[BRB12, BDT15, KRK16]. orchestration [CCdC$^+$11]. order
[AAD13, AAD14, ABdA15, AGH$^+$16, AH13, AdDM12a, AdDM14, AcDM15,
AdDM15, AcDM19, BBL$^+$13, BKV16, BL19, BK16a, BCT17, BVC13,
BIT12, CFMR10, Cap13, CZH18b, CD15, Cha16, CD12, CR12, DBMR18,
DJ11, DZ13, DdMN16, EGT$^+$18, FG13, Fu19b, GLPQ11, GGGH14, GJ14,
GA10, GPS$^+$13, HSF$^+$19, HZ11, KVV19, KMS14, KO14a, KBB$^+$17, Koh15,

XNK+16, YE14a, YE14b, ZZ15, Zit11, vH10, BH14a, FGJB19, Pat15, Pat17, Sht17. **Package-X** [Pat15, Pat17, Sht17]. **packages** [BKK13, BKM14, BK15, BK16b, Hol19, THJ+10]. **packet** [AV13, DHR14]. **packing** [CBAM12]. **Padé** [IH11, SB11, SAS11]. **page** [Gor19]. **pair** [CHA11, CM14b, DGST17, FCCTFR18, FPY+17, KHKR14, PH13, RK19, SLW19b]. **pair-instability** [CHA11]. **pair-potential** [FPY+17]. **Pairing** [WRB11, GLX+14]. **pairs** [HL19b, MWCY14]. **palladium** [SQL+10]. **Palmeras** [DLGP10]. **paper** [BLV+19]. **Para** [GX15, ZKG+18]. **Para-AMR** [GX15, ZKG+18]. **parabolic** [AAD13, BB10, GN14, HC16, HC17, NO14, OAKS11, PR13, RS12, TKZ18]. **Paradeisos** [JWM+18]. **paradigm** [CKhN11]. **Parallel** [APC+14, Bab14, BC11, CLH+17, CL15b, Cra14, EDPZ19, EKDGG15, FFT+14, FB19, GGI+13, GMF+17, GSMK17, GCH+18, HL19a, HvAS+13, HCSW10, JKS16, KPPC13, LBM+14, LKL11, LT15, Mau16, NCHN15, NFD+19, NZQL14, PIH11, QLE16, RRCSCJ10, RNdB19, RD10, SD15, SO19, TSK+17, TSST13, TMS19, US16, VHP+15, WC10, WYH19, YSLY19, YRR13, ZPH+15, ZHC16, ART17, AL17, BMC+11b, BS13a, BS14a, BPB+17, BHS18, BJCW13, Boe14, BCM+16, BVSG19, BHND16, BENK+17, CCL18, CHNS18, CPR12, CUL+17, CSK+19, CDR+15, DBDP12, DN18, DJW+19, DSS+12, DRUE12, ER19, Fan19, FZ16, FZY17, FKS+19, Gai17, GFP10, GWF+16, GS1b, GS17a, GD14, GB14, GZWJ18, GX15, GRLS18, HAV+14, HFOPF15, HMR+19, HZW+19, HPN17, HCHW11, ILZ+19, JHL15, JKL19, K ´OG17, KBB+17]. **parallel** [LAA+10, LSG+12, LHH+12b, LHH+12a, LS12b, LHZ11, LW14, LW16, MDW16, MIW+13, MM17, MCA17, MSI+10, MGB18, MGR16, NFA+16, NPAG11, Ngu17, NM14, NFD15, OCF10, ORS+14, PDC14, PGO17, QL10, Qia17, RJLL16, RK19, RFSF18, RBB15, SL16, SSF+17, Sch18, SDLS15, Shai13a, SOM+13, SC16b, SOJ14, Ste17, SMKG14, Str15, SP18, Sus17b, SSM+17, TTT16, VKP14, WMK11, WEH+19, WAHL13, WSH+12, WC15, WRvDL15, YHL11, YLQ+17, YL12, YBN13, Zag14, ZAFAM16, ZSW+17b, ZMJ13, ZBN+19]. **parallel-adaptive** [GX15]. **Parallelisation** [MFH+13, Roh16, SCC+12]. **Parallelised** [FKH15]. **parallelism** [BS14a, BKS15, MDGC+12, TGH+16]. **parallelizable** [Smi14]. **Parallelization** [HBE10, MiH12, ASPW13, BW12a, CWT+17, DKG+14, DO14a, GLAC13, Gnu19, JFC12, KEH12, KSY17, LKM+16, LW14a, ML17, OLG+16, PM+15, RGH10, SCB+17a, SS18, THDS16, TE18]. **Parallelizable** [SST11]. **parallelized** [GJB11, HHS+10, OKM12, TKL+12]. **Parallelizing** [TD11]. **Parameter** [DMP18, Mau16, dASJC+19, Ber16a, Ber16b, BHVM15, BMF10, Che17, GCVA14b, JWC13, LAS+17, LHL11, Mel19, MKR+12, MD10b, PM13, PIH11, Yam16]. **parameter-free** [PIH11]. **parameterization** [AANAJ12, KHKR14]. **parameterized** [KL14]. **parameters** [ÇOSU11, DBP19, HM12c, KKCC19, KP16, MDPTTC17, MPS13, OO15b, PG10, RKVL14, SZM+14, WDR16]. **Parametric** [Lin13, WXL13, BCMS10, GCVA14b, Zhe15]. **parametrization**
parareal [SCB+17a, SCB+19], paraxial [PBL+18], PAREMD [MBG18], parentage [Dev12, SMGK19], Pariser [KS12, SS10a], parity [AB10, AKH12, SHZ13], parity-dependent [SHZ13], Parker [DSP15, LKW11], PARPLE [Str15], parquet [LKPH19], Parr [KS12, SS10a], Parrinello [VCMS+13], Parsek2D [IBP+15], Parsek2D-MLMD [IBP+15], PArthENoPE [CdSM+18], partial [DH13, FBHB17, GCVA14b, HK15, Jiw15b, JK13, MJB+10, SGDS16], partially [MC17], ParticLE [KDP+14, BOPL17, BJM15, BKPT12, CBAM12, CDR+15, DS11a, FHTO17, GLHG12, GRLS18, HPKF15, HZW+16, JBKM15, JFHA19, KS16a, KKK+17, LBM+14, MDPTK15, NHSY15, QL10, RNdb19, US18, VGM+15, AM14a, ASPW13, AGMS15, ABCM14, AGB+15, ABRS12, BCH11, BPB+17, BBB+17a, BHN17, BDL+19, BS15b, BE14, BTL+17, BCDP18, BDGG19, BY17, CH19, CAT11, CPW17, CC14, CC15, CSJ+17, CL11, CSSB15, CFF19, DCM+12, DET12, DGPW11, DF14, DBP+18, Dev12, DCVB+13, DCG13, ENEO15, EKO16, E19, EKK14, EW14b, E-vs14, FLW17, FJ19, FN17, GWF+16, GKM10, GSKM17, GAHP15, GHMB+19, GD14, GZZ19, GH15, HBE10, HKJ+12, HAK+14, HCSW10, ILZ+19, JXTS16, KB15a, KKK+15, KPA+19, KHK+11, KvO11, KK17, KPPC13, LJE11, LS19, Liu11, Liu13, LOK+18, LQ18, LTP16, Mag18, MDPTTC17, MKL17].

Particle-based [HPKF15, JFHA19, WS+14], particle-beam-dynamics [KPA+19], particle-cell [PG17], particle-continuum [SYE+18].

Particle-field [QL10].

Particle-In-Cell [HZW+16, BOPL17, DS11a, AM14a, BPB+17, BDL+19, CH19, CC14, CC15, DBP+18, KKK+15, KH+11, LJE11, MKL17, MUK+12, MEM+11, MTO15, OBPL19, QL10, RKVL14, SSS+11, SKK17, Sok13, VMF16, WVC+16, WN10, WE12, WSH+14, WRR18, XQ19, XLL13, YZZ+17, YLQ+17, YK19, YLKN17, ZSW+17a, ZLF11, dASJC+19, CDBM16, CHZ18, DS14, FJ19, IBP+15, KC18, LKA+16, PE17, PMMF15, iSSM11, SVG10, SBE+16, VLL+17].

Particle-based [HPKF15, JFHA19, WS+14].

Particle-continuum [SYE+18].

Particle-In-Cell [HZW+16, BOPL17, DS11a, AM14a, BPB+17, BDL+19, CH19, CC14, CC15, DBP+18, KKK+15, KH+11, LJE11, MKL17, MUK+12, MEM+11, MTO15, OBPL19, QL10, RKVL14, SSS+11, SKK17, Sok13, VMF16, WVC+16, WN10, IBP+15, LKA+16, VEL+17, CDBM16, CHZ18, DS14, KC18, PMMF15, SVG10, SBE+16].

particle [MKU+12, MF17, MST+18, MH18, Men11, MEM+11, MBGK11, MKG13, MAM14, MTO15, MNC15, Müll14c, NFD+19, NP19, NFD15, OBPL19, OCM+19, PR14, PMMF15, PG17, PBS+17, QL14, RKVL14, RAV11, RK19, RH17, RFA10, SSS+11, Sch14a, SS14, SWL+15, Sie16, SN16, SM11, SBPD19, SSP16, SKK17, Sok13, SYE+18, SMCB+15, SMGK14, SBL+16, TK14a, Tau10, Tic14, TadSS11, UW12, VSG18, VBMP15, VB19, VMF16, WHG+19, WRS15, WZS+11, WXW13, WXW14, WWC+16, WLQ+17, WN10, WE12, WSH+14, WRR18, XQ19, XLL13, YZZ+17, YLQ+17, YK19, YLKN17, ZSW+17a, ZLF11, dASJC+19, CDBM16, CHZ18, DS14, FJ19, IBP+15, KC18, LKA+16, PE17, PMMF15, iSSM11, SVG10, SBE+16, VLL+17].

Particle-based [HPKF15, JFHA19, WS+14].

Particle-continuum [SYE+18].
partition [HCH16, LKL11, Lee18, RMC16, ZMCT12]. partitioned
[BY17, EPP12, FZ16, KZC+10, MKS10, WXL13]. partitioning [HJH17].
partly [KH12]. Parton
[CGO17, BCH17, CUL+17, SZY+12, SZY+13, War16, ZYL+15, vH18].
partition-interaction [CUL+17], parton-level [vH18], parts
[Fen12b, Kan14, SS13c, ZYL+19]. passages [JU17], passing
[TSTT13, XNK+16], past [TKL+12]. PASTA [KBLJ18]. Path
[NSXZ14, AGL11, Brä15, BHG19, CMM14, LA13, MTS+16, MNV13,
Min11, RGK17, WM14, ZGB+16]. path-integral [ZGB+16]. pathology
[LWES18]. pathology-free [LWES18]. paths [GA13]. pathways
[MLGVE14]. pattern [CGS18, FBG10, OG14, O015a]. patterns
[LSYZ12, MS12, WS11a]. Pauli [Bad11]. PAW
[Hol19, RCGT16, SHW18, THJ+10]. PBSA [PSMS14, PSMS15]. PCTDSE
[FZ17]. Pd [CHW+15, SWL+15]. PDB [DPK+15], PDB4DNA
[DPK+15]. PDE [BS15a, Fan19, RD10]. PDE-constrained [BS15a].
PDEBellIII [MWCY14]. PDEs
[CWJ19, GLHR19, KSW12, MCL+17, RHH12]. PDF [BCR14]. PDG
[BBC+13a]. PDDoublePop [TT16]. PDRF [sX14]. pe [FBP+14].
Peacemaker [KSL+11], peekon [HDZ14]. pedestrian [PC11]. Peierls
Penetrating [WGG16]. PENGEOM [ASPDL+16]. PenNuc [GTPS19].
Pentadiagonal [TT14, GN19]. pentoxide [LS11]. peptides [BBV+16].
Percolation [SW11, YHCS11, YH15]. perfect [JWM+18, DMH16].
Perfectly [LV15, SVV19, SKML11]. perform [PSMS14, PSMS15].
Performance [CMRVR+14, CCY18, FBN+13, GHB18, KKP11, KVV11,
LSYZ12, PZL+19, Sha13a, Sin12b, TRM+12, Yi11, AL17, Ara14a, Ara14b,
BBB+17a, BHSN17, BL18a, BCH17, BR13, BWPT11, BKPT12, BY13,
CD313a, CL15b, CRA10, E116a, FB19, GS15, Gai17, Gar19, GKB+12,
HLZ+13, JTW+17, JVR12, KPA+19, KMS19, LSR+17, M1119, MNO+17,
MV15, ML16, DPHB17, N134, NFS15, PG017, Rap11, RV10, SG14,
SHZ13, SSF+14, Tan19, TGH+16, VMPG+19, WGVPL17, WEH+19,
XLCW14, YLL+19, dJBIM16]. performant [KSS18]. perfusion
[BBB17b, IBB18]. peridynamic [CB15b, HSS14a]. periodic
[BRB12, BDT15, CY17, CZF18, DV11, EBCB17, GBP13, HBP14,
HBS+11, KFS17, KS12, KMS16, KY17, Law19, LRW+15, LF12, M116,
PMS+15, Q17, SXW+18, SS10b, TAFD19, VDB14, YW17, YLK10].
periodical [KAS12]. periodicity [PDML19]. peripheral [KNS+17].
Periphery [ZCC19]. Perl [MGFRG12]. permanent [RS+12, RE12].
persistence [KCL11, SBB+17]. personal [CIP11]. personalized [QHZ+14].
perspective [MT15]. pertaining [OK14]. Perturbation
[BK13b, ADT+19, BRH+16, CS10, CZ19, GBR+14, KBB+17, KPST15, LV10,
MGRB11, NS11, SCRS17, SU18, TVGB15, ZX10]. perturbations
[LMRC15, Tic14]. perturbative [WL11b]. perturbed
[Bla15, FMW10, GN14, WU10, WYW09, YZZ11]. petabyte [Ano11a].
Petaflop \[BBF^{+13}\]. Petascale
\[OYK^{+14}, YBNY13, CBGY17, CBYG18, SKSK13, VCMS^{+13}\]. petascaling
\[SSS^{+11}\]. PETOOL \[OAKS11\]. Petviashvili \[LS12a\]. Pfaffian \[GBRB11\].
Pfaffians \[RW11\]. PFMC\[BDGM^{+17}\]. PGAS \[BY17, TSTT13\]. Phase
\[BM19, DVB11, JC16, KV10b, LLSK17, Ots11, Raw15, WJHW14, XHLM12,
YLO13, AKR15, ABB^{+19}, BT17b, BMW14, BS12, CZD15, CHW^{+15},
CMR17, Eys14, FFA17, FKS^{+19}, FFIH11, GTS14, GZW17, GLW14, GX15,
Hon10, JHH^{+19}, Ki10, KSW15, KS15, Liu15b, MRS15, MKS10, MSHLS15,
MSL17, NS15, ÖKC11, PS14, QDZ^{+13}, Ram10, SYD17, Sie16, SJW10,
TK15, VDF15, VS19a, Wai12, WYH19, XGH^{+19}, YLK10, YZ19, ZAFAM16,
ZKG^{+18}, ZY19a, ZY19b, ZKS^{+18}, vdSM16\]. Phase-Amplitude
\[Raw15, Raw16\]. phase-covariant \[BS12\]. Phase-field
\[LLSK17, CZD15, GZW17, JHH^{+19}, TKP15, YLK10, ZKG^{+18}, ZY19a, ZKS^{+18}\].
Phase-fitting \[KV10b, PS14\]. phase-lag \[MKS10, NS15\]. phase-space
\[KSW15, ¨OKC11, XGH^{+19}, YLK10, ZKG^{+18}, ZY19a, ZKS^{+18}\].
Phasego \[Liu15a, Liu15b, LHWL16\]. phases \[BSWC14, EMW19, PS12\]. PHAST
\[Fri17\]. phenomena \[KS15\]. phenomenological \[BNV18\]. phenomenology
\[ACD^{+14b}, ABH^{+18}, BDDM18, BSW12, CFS13, LCE^{+13}\]. PHI
\[BFD^{+11}, RJKC16, CGSB18, Lya15, MSS^{+14}, SBE^{+16}\]. Philip \[Sco19\].
phone \[Sal12\]. Phonon
\[CP15b, Kon11, RE19, Sco13, BW16, CTT17, CCXC15, CRGB14, KA17,
Liu15a, NGM^{+10}, PMVG16, ZZSW19, ZZ17b, ZZ17b\]. phonons
\[CVK^{+17}, LCKM14, WCL14\]. PhonTS \[CP15b\]. photoelastic \[Wit14\]. Photoelectron
\[MB16, Jab19\]. photoionization \[Hei12, HH11a, LH11\]. photon
\[CMJ^{+11}, DKT14, HEPW13, LLE^{+18}, OK18, SMCB^{+15}, Tic10,
VDJ^{+11}, ZLM12\]. photon-based \[CMJ^{+11}\]. Photonic
\[BDGM^{+17}, HWCH11, HLW16, HLTW19, NJS17, PYW^{+14}\]. photonic-crystal
\[HWCH11\]. photons \[LN16\]. photorefractive \[Zi´o14\]. PHOTOS \[DPW16\]. photovoltaic
\[CLH^{+17}, RF15\]. phq \[ZZSW19\]. Phys
\[AAT^{+20}, Ano20, AZ17a, Ber16a, ERS10c, KYKN15a, Kru18a, LR16,
Nat10, Ras17, RC16, RHBH16, SGM11a, Sco13, SIMGCP14, SJY20, YQM14,
ZTG14\]. Physalis \[Sie16\]. physical \[AABC^{+13}, COK19, Che17, LCH11,
MD11a, MDPTTC17, Mel19, RKVL14, Sitt18, Sni14, ZF15\]. physicist
\[Hah12\]. Physics \[AAA^{+16}, Ano10a, Ano11b, Ano12a, Ano13a, Ano15a,
Ano16a, BG19a, CGX^{+19}, DS13c, Maż19, MLK^{+19}, Ram10, US18, Wn10,
ADF^{+15}, Ano10n, AM10, AM11, AMR19, BBH^{+18}, BDKS10, BCP13, BCI19,
CB15a, CB16, CPW17, Che11, CKhN11, DGPW11, DNP^{+12}, DPW16,
Des16, DKK^{+15}, ELL^{+17a}, DR1^{+16}, Hon18, JPCG15, JEC^{+12}, KV10a,
LPHH11, Mühl14c, ONS^{+15}, PBL^{+18}, QGLP13, Sha13b, Sha16, SLR^{+11},
Veb12, Wie15, YLK17, ZWLZ17, ZMV^{+13}\]. Physics-oriented \[CXG^{+19}\].
PI \[CMM14, KRM^{+19}\]. PIC \[FK12, GV15, HTJ^{+16}, KS16b, LYT^{+17},
LTP16, SBL16, VV18, VGM^{+15}, XYM^{+13}, YXD^{+15}\]. PIC/MC/Vlasov
\[FK12\]. PIC/MCC \[SBL16\]. PICPANTHER \[KKG^{+15}\]. Picture
\[BF16, BM13\]. PID \[OCF10\]. piecewise \[IH11, LV10\].
piecewise-linearized [IH11]. PIGLE [ATW+19]. PIMC [ZBG+16].
pinning [HBS+11, JW13]. pipe [Qia16]. pipeline [ECD+10, GCC+18].
pipelines [FWS+17, MSL10]. pipes [DMC10]. PISO [SQA+15]. PISO-like
[SQA+15]. Pitaevskii [ABB13, AD14, AD15, ABDR17, CR13, JCL+18,
KYSV+15, LBB+16, LYSS+16, MGL13, MGL16, SSB+16, VDAH16,
VVB+12, YSVM+16, YSMA+17]. pitch [HJ14]. pitch-angle [HJ14].
Pitfalls [SYE+18]. Pj [NDSH18]. placement [NZL14]. planar
[Aza13, BP12, BH13, MTE17, XD13]. Planck
[BMBC+17, Fuh15, JSMLM16, KBS12, PG17, SLEF17]. Plane
[MBF+10, AM14b, AD14dM14, DKSG16, GMF+17, HK15, JCW+13,
JGAL+13, KAW+10, LT15, MED11, MS11, PDC14]. Plane-wave
[MBF+10, LT15, MED11]. planet [HTT13, HTT14]. planewave
[CSPAD10, PBMAD12]. planning [CLH+17]. Plasma
[KC18, ZCC19, ALA+19, AJA14, BMU11, BRL12, BT17, BEK19,
CL11, CGSB18, CXL19, CHH+11, DBP+18, Evis14, FRF10, GBSY18,
HK12, HO13, HBP14, Hor10, Hon18, Hsu11b, KYKN15a, KYKN15b,
KTE+12, KMD12, KM17, KR15, KSYY13, LGL+18, LDR+17, LHH+12b,
LHH+12a, LID+19, LDF+16, MPS13, MLGVE14, MKU+12, MCM+12,
ML14, MN18, MA15, MM+11, NNWS15, OBL19, PYW+14, PBD+15,
PDJ10, Ram10, RRetVH12, SCB+17a, SCB+19, SLF17, SBE+16,
THDH14, TL19, sX14, sX19, XYM+13, Ya09, ZFR18]. Plasma-Material
[KC18]. plasmas [AM19, BSM13, BT17a, BBDV12, BB13h, CHH+11,
CFF19, DS11b, DOP17, FR15, GB14, HK12, HAK+14, KGG+16, LXR+18,
LH11, LH+19, LMK13, MF17, OILK17, PHT+19, PMS+17, PBL+18, RF16,
RFT+18, SS14, SCM+16, VBC+12, VV18]. plasmonic [HT12, SVGS18].
Plasmonics [WTH15]. plate [TKL+12]. platelet [ZZG+16]. platform
[AABC+13, AMR+18, CPW17, HJT+16, LWV18, RPD14, Sal12, SJY18,
SJY20, ZZ16]. platforms [LHZ11, PNL13, TK15]. PLATYPUS
[DT11b]. Plesset [KK14a, KBB+17]. plot [BGH+18, Liu15b]. plugin
[SCM+18]. PML [DV11]. PNADIS [ZLZ19]. POD [HJC19]. POINCARÉ
[MZE13]. point [Ano20, BMU11, BH13, BMZ+18, Buc19, CS10, CH11b,
DG10b, DMC15, K16a, KC18, MDG+12, NF17, Nik12b, PPy14,
PDL+18, Pra11, SGM11a, SGM11b, TGT11, dSFD11]. point-cloud
[KCN18]. point-transition [NF17]. point-wise [PDL+18]. points
[Fis12, GVR19, NO12]. Poisson
[CMI14a, CR16, BCDP18, Bot13, BC11, CDBM16, CCL18, CRSL18, CB16b,
CH18b, Dua10, DGG13, Ex17, GBN17, GJ13, HCSW10, JLV13, LCHM13,
LCHM13, LCR10, Miy15, Qia16, Qia17, RC13, VLPPM14, ZPvR16]. polar
[CZL+11, WCL14]. polarimetry [FBHB17]. polarizability [FBHB17]. Polarization
[KAvdL11]. polarization
[AKZ+13, CAGL13, Den20, MCP10, NLB+19]. polarized [AFIS12]. pole
[ASEA14, AMR17, PDL+18]. poles [BG19b, SAS11]. political [Cho11]. pollution
[MSML10]. POLYANA [DR15]. Polycrystalline
polydisperse \cite{HKPF19, MFLY19, OL12}, polyelectrolyte \cite{HB13}. Polygonal \cite{vdS13}. Polylogarithms \cite{ABRS19, MFLY19, OL12}. Polymer \cite{DF13, BL14, HCH16, LKL11, Lee18, MSZW11, MNC15, SAG13, WSTP15, dHGCS11}. Polymeric \cite{DEW16, SM19}. Polymers \cite{ACDdM15, SM19}. Polynomial \cite{IUM13, KP12a, CB13b, GDB10, GLX14, HKZN17, Jal10, SAG13, WSTP15, dHGCS11}. Polynomials \cite{ACDdM15, BDJS18, GST17, SPS10, WISA11}. Polystyrene \cite{RV11}. Polyurethane \cite{KDM17}. Pool \cite{BKS15}. Pople \cite{KS12, SS10a}. Population \cite{BWB17, VPP12, WRB11, YH15}. Population-based \cite{VPP12}. Populations \cite{FSJ16, HFOPF15}. Pore \cite{DADS11, OP12}. Pore-scale \cite{OP12}. Porous \cite{CTL15, FKS19, HZW19, HSF15, MPM14, OP12, RNdB19, SM14, vMB14}. Portable \cite{CDSG11, HTJ16, RDC18, RBG19, SGM18, SS13a, VLL17, dBCH14}. Porting \cite{HD11}. Posed \cite{LLP15}. Positive \cite{Has11, XZF12, SMdONF14}. Positivity \cite{SP18b, dTOV18}. Positivity-preserving \cite{SP18b, dTOV18}. Positron \cite{GGGH14, Gre18, Kol15, SMOB19}. POSSMat \cite{MCY16}. Possible \cite{´ASTT16}. Post \cite{LAA10}. Post-processing \cite{LAA10}. Posteriori \cite{CLL16}. Potential \cite{MCY16, AM14b, BBE10, BNAB11, DBDP12, DR12, FMRP16, FZY13, FPY17, GC10, GC13, GC16, GCK19, GB11, HSF19, HJ15, JZZ19, LCQF18, LRES18, LRR17, MC16, MEG12, MAM14, ORCR17, PBMA12, PH11, PB16, RS12, RFPM17, SGS16, TM14, WZHE18, WN19, Wit14, XNK16, XD13, XHD15, ZHCR18, ZY19a, ZMPT13, ZFBR11}. Potentials \cite{BNV18, BL14, BY13, BSWC14, DT18, DHR14, Erm18, FCVH17, GH11, GD14, HLZ17, KK14b, KHKR14, KHN19, LYJH19, Ngu17, OPO11, OPSR13, OP14, THDS16, TVZ15, YW17, ZC12}. POTHEA \cite{GCVA14b}. POTLIB2Math \cite{TM14}. Potts \cite{DG16, Beo14, FDC12, KO13, KO14b, KO16, MEG12, NCH15, TD11, ZXF12, dSLF13}. Power \cite{ZLL18, CC10a, CH11b, EZBA16, SB11, SW12b, UW12, WWC16, WCT11}. Power-law \cite{WCT11}. PPA \cite{OK12, OK18}. ppohDEM \cite{NMS14}. Practical \cite{ABH19, Dan12, EPS15}. Prager \cite{GCH18}. PRAND \cite{BS14a}. pre\cite{DDJC19, RU13}. pre-determined \cite{RU13}. pre-esascale \cite{DDJC19}. Precipitation \cite{XHLM12}. Precise \cite{CKCS13, NKS15, ZY19b}. Precision \cite{AG12b, BDT15, CMMVR14, CMMVR16, CBB10, CH11b, GBFJ14, HS19, KB19, LGW13, LM16, MW19, MNO11, NO12, RC16, SLK19, SMGK14, TC12}. Preconditioned \cite{EFK19, HZKN17, LHJZ10, SAY18, SPP19, TKS19, VBS17}. Predict \cite{LOV10, Pra11}. Predicting \cite{JM11, WS11b, YS17, ZZH16}. Prediction \cite{AFZ17, AFZ18, ATCZ19, BK13a, DBD17, FLA16, Lit14, LZ11a, LZ11b, LOSZ13, MW19, MW14, SLY18, WLZM12}. Predictions \cite{BBH11a, DGPW11, KKK15, Pi10, RH11, SAE16}. predictor \cite{PAS11, PS14, SD10b, SA15b, TYH15, Yua19}. predictor-corrector
Gin10, HLM13, KMO19, KKK+15, Les16, OK12, OK18, WW13, YWW13].

PROFESS [CXH+15, HHS+10, KST14a]. profile

[ABB+19, Gio14a, VSG17]. profiles [AANA12J, MSNI11, Wai12]. profiling [CCY18].

Program [BS11, BS13a, BB13a, CGV13, DHR14, GBS16b, LSDD14, NS10, VPM16, AC13, AM10, AM11, Arb12, AMR19, Asi10, AZ17a, AZ17b, AKV18, BGM+14, BF16, BBPS14, BH14b, BFD+11, Bog16, CKLM10, CDTV10, CH11a, CATK11, CXH+15, Cip11, Cip13, CCGC13, CRNK12, CM14b, CO11, Dan11, Dat13, DEMM19, DDKM15, Dev12, DGK+14, EJG+19, FMRP16, Fer15, FCCTF18, Fis11, FEH11, Fri12, Gaol13a, GLS+13, GCCA14a, GCCA14b, GNT17, HSF+19, HLM13, HEF12, HHS+10, HL19c, JPSS10, Jia18, KKS+17, Kob13, Kol14, KS12, Kra11, LHC+12, LZL11, MC18, MUU18, MCA17, MPS13, MLW+10, ME18, MNV13, MGB18, MBGK11, MSNI11, NGG+13, NGM+10, ON14, OKM12, dlRJL14, PCR17, PS+17, Pit12, Pos18, RDP14, RFPM+17, SYZ+12, Sai10, Sar17b, SSG+10, SSS+18, SBB13, SDM+12, SDS+17]. program [STY15, STY18, SZM+14, SS10a, SLLP17, SY+16, YLL16, YTLS16, ZF16, ZBG+16, ZKW+15, ZYZ15, ZSW+17a, ZMCT12, ZZ17b, ZHL11, Zlo13, ZUT13, dB14]. programmable [Rap11]. programme [KB19, LTP+17]. programming [BY17, EGT+18, GRTZ10, JTW+17, LSYZ12, SV14, iSYS12, TSTT13, VvAV+11b, VvAV+11a, WMMK11, YHL11].

Programs [HL19b, ABB+14, Ano10o, AC16, Bjöll, CL15b, HD11, JCL10, JZZ+19, KO14b, Kom15c, KO16, KPST15, KYSV+15, KLM+19, LC10, LBB+16, LYSS+16, SS+16, VVB+12, YSVM+16, YSMA+17]. ProfO [BABC19].

Project [GTT+19, ABC+13b, DBK+14, GAC+17, LKPH19, LSJ13]. projected [BK12, Jan10, PR10, SKB10]. Projecting [BHS15, DHS14].

Projection [DAW+19, WX14, GHvdL11, Sal16]. Projective [CH19, LL12].

Projector [CKT17, DA16, Hol19, THJ+10, YLO13, JTH14, RCGT16].

Proper [HJH17, ST19].

Properties [AM14b, BKA+14, BIT12, CLC14, CHW+15, CSL+13, DSS+12, DES+11, EY11, Fri12, GWL+17, GM11, GRR+14, HCRD14, KAR+15, KMM+19, Kavl11, KZ14, LFKD18, LSDD14, LSG+12, MLW+10, MF17, MFS10b, MGB18, PVK+14a, PVK+14b, PMVG16, PGU19, RKGC+17, SPAW17, Ste17, TG11, Voy13, WXL13, WQ18, WYL11, ZZSW19, ZMJ13].

Property [FLW10, ZZ17a]. proportional [KB15a]. Proposal [BBC+13a, Yan16, Ano10o, DSS+19, KFS+13]. prostate [RMS+12].

Protein [Fri17, CB16b, LWL11, SZC+13, YK10, DPK+15]. Protein-like [Fri17]. protein-surface [CB16b]. proteins
CFFR15, HL19c, MLR10, iNSK+15, PNL13, WMI19]. **reactor**

[TGH+16, ZSW+17b]. **reader** [CGO17, Sta19]. **Real** [Ano19m, AAB+10b, BD10, CDL+12, LAS+17, MSH11, SP16, SBH+12, AAA+16, BW12b, BR14, BG11, CDMCN11, ECD+10, FZ16, JL19, KK16b, KHZ+18, KKL+18, KS16b, MC16, MBF+10, MSS+16, OOK+12, dJRL14, PVK+18, SCRS17, TL17]. **Real-space** [MSH11, SP16, SBH+12, BG11, FZ16, KKL+18, MBF+10, MSS+16, OOK+12, dJRL14]. **Real-time**

[Ano19m, BD10, CDL+12, LAS+17, AAA+16, BR14, JL19, PVK+18, TL17]. **Realistic** [Sol11]. **reality** [GHK19]. **realization** [BS11, GBS16b]. **realizations** [´ASTT16]. **realized** [NPAG11, RH11]. **rearrangement** [Bin13, UFKB19]. **Receiver** [SC14]. **receptors** [PDC14]. **reciprocity** [DG10a]. **recognition** [DAW+19, UIY11]. **recoil** [DIR+19]. **RECOLA2** [DLU18]. **recombination** [Fri12, SVG10]. **recommendation** [QHZ+14]. **reconfigurable** [RDN+17]. **reconfiguration** [KC14]. **reconnection** [PBE14, YJK11]. **reconnections** [CZ17]. **reconstructing** [PR10]. **Reconstruction** [MD11b, ALC18, CPCDdM18, FBHB17, GMH11, HZC19, LSK+13, LAS+17, SAS11, VL19, WFW14, YvOSM15]. **record** [BS14b]. **recording** [MP11]. **recoupling** [Wei99]. **rectangular** [JYPA18, Qia16, SK15]. **recurrence** [BBF+10, TO10a, WSO+12]. **Recursive** [PO14, Fen12b, KvdO11, ADH+17, DLU18]. **Red** [BGL+14, BTL+17]. **reduced** [CZ18b, KKCC19, Kom15b]. **reduced-order** [CZ18b]. **Reducing** [BH17, BHVMH15, CMSN18, GM17]. **REduction** [BK14, ASGLK10, BCS10, BKK13, BK15, BK16b, Che17, EPS15, GSB+14, MUU18, Me19, MZE13, MNC15, PZL+19, Per14, SH18, Stu10, ZWC+19, BKK13, BK15, BK16b, Sni15]. **Redundant** [QHZ+14]. **Reduce** [Stu10]. **reference** [DKG+14, DFM+15, Duf16, JP10, KKO19, SS11b, VS19a]. **reference-free** [DFM+15, Duf16]. **refined** [EZL+16]. **refinement** [ACMM19, AWK+16, FZX+14, GX15, JFC12, LH18, IWRQ16, MHV17, UBRT10, WQ18, YRR13, ZD15]. **reflection** [GCVA14a, Ram10, WS11a, Yan09]. **reflections** [NLSJ17]. **Reformulation** [LZP12]. **refractory** [SCN18]. **regarding** [MS15]. **Reg** [ASEA14]. **region** [CXL19, RetVH12, TKL+12, YWOD19, dSFdFF13, vMB14]. **Region** [OK10, HJGL18, HJGL19, SZM+14]. **Region-of-interest** [OK10]. **regional** [BB12]. **regions** [Smi14]. **regression** [AG12a]. **regular** [MKV11, NO12, Sch18, SSG+10, SSG+18]. **Regularization** [Pál12, dDYK+18, Fen12b, Kri12]. **regularizations** [DDH17]. **regularized** [DS11b, PDL+18]. **regulatory** [HH11b]. **reinitialization** [FHA17]. **rejection** [SOYHDD19]. **related** [KAS12, MHA+12, PAS11, PS14, SCW+11]. **relation** [WSO+12, sX14]. **relations** [SS13c]. **relative** [Bar11b, BSW14, FS17]. **Relativistic** [FGJB19, GLB13, Hsu11b, Mü14a, TM19, Aza13, Bab14, BHS18, BEKP19, CGM17, CEF16, EJG+19, Erm18, Fri12, GM11, GTS14, GBJ+10, GBJ+12, GBJ+13, GFJ+14, GBJ+15, GYW+10, HH11a, JGB+13, KB19, KHB14].
SARAH [DNPS13, Sta13, Sta14], Sassena [LS12b], SASSIE [CRNK12], satisfactory [DGST17], SATLAS [GdGB+18], saturated [JHJG14], saw [BBC+13a], SAWdoubler [SBB13], Saxon [DT18, MAM14], Sb [AM14b], ShNc [BKA+14], SC-NBL [KHN19], Scala [Pos19], Scalability [ZZG+16, APC+14, SCm13, VV18], Scalable [ASA18, AIG16, KMM+19, NSH+19, VFV19, BL19, BVC13, BY17, BHND16, BENK+17, DHJ13, DG10c, FWS+17, GGI+19, JPH+14, KC18, MTM13, VBG+10], scalar [AHK+12, BMS+16, CEZ16, LS19, LZZL10, PQTGS17, SAHP15, vH11], scale [BMC+11a, BC10, DdJC+19, Bis15, BHJ+15, BJH+18, BAF18, BY17, BC19, CB15a, CB17, CB18, DSW+15a, Deu16, DADS11, DO14b, DML+16, GS15, GHvdL11, GZL14, GHdF10, GBS+16a, GAO13b, HLS12, HLS+17, HKK11, JEPF14, JXtS16, JWcW17, JOK13, KHZ+18, LCQF18, LR13, LR16, MBS+10, MNCrC16, NLB+19, ORS+14, OP12, PLD+13, RLM13, Sch14a, Sha13a, SXW+18, SMUT19, SLZ16, SPSP18, Tau10, THD16, TIMM13, TIM+16, UBR10, VBG+10, WSI13, WDL11, WSH+12, WLZN17, YFAT17], scales [HCM19], Scaling [ZMJ13, AS11a, BH14b, BH16, CCWL11, FUSH14, FVH18, GNA+15, GYW+10, HHS+10, JWCW17, KBB+17, LD10b, MMO+17, OOK+12, RWKS15, YKK+19, dSVLP13, vMB14], scanning [Fer15, PSMS14, PSMS15, TCK+15, MAC12], Scans [Mau16], scar [TT811], SCATCI [ART17], scatter [LP15, MTO15], scatter-gather [MTO15], scattered [End11], Scattering [BD12, AV13, AKR15, AFIS12, Bab14, BH16, BH17, CKLM10, CAN11, CGrB14, CRNK12, EW14b, EW16, GLAC13, Gmc18, HCl6, HHT14, Hl19c, IB11, Jab17, KC14, KB15b, KL11, KvO11, LhJZ10, LN16, LS12b, LWES18, Lag+17, MLR10, OK14, PNL13, PR10, Pkr16, SMob19, Sng+11, Ser10, SKML11, SAs11, SDL+16, TACA15, TVGB15, WjCZ18, WFDK19, ZHSL13, ZYl+19, ELL+17a, XNK+16], SCbICG [GChL15], scene [CFCB12], scene-dependent [CFCB12], SCF [WPD+15], Scharfetter [PFFK19], Scheduler [ALS16], Scheifele [YZZ11], scheme [AAD13, AAD14, ACM11, ACTP15, BM13, BBC+13a, BE14, BMBC+17, BB12, CWS14, CzD15, CYN19, CWY+17, CEF16, DJ11, DM17, DOP17, DML+16, EW14a, EW14b, EGGW12, FOB+15, Fu19a, Fu19b, GN14, GRLS18, HP14, HZ11, Jiw15a, JSLM16, JPO10, KC14, KHK+11, KZC+10, KP14, LJE11, Les16, LS12a, LLXK16, LL19, LWES18, LB10b, MWI+19, MKU+12, MS14, MF17, McM17, MN18, MAA15, MBA+19, MS15, MD10b, ICD13, NO14, NQ16, INSk+15, OKM12, PZZL19, PA13, QSC14, RHw+12, RH11, SP16, SR12, SK15, SSH+13, SCLW16, SD10b, SA15b, SC15, SB11, Sok13, SW12b, SCm14, TKJ19, TD17, TYh+15, TCP13, UNK12, WZS+11, WG16b, Yua19, ZY19a, ZNT15, ZWC+19, dTOV18], scheme-independent [Les16], schemes [ACMM10, ACM12, BK16a, Cap13, CBAM12, CM14a, DBMR18, DJ14, FDZ17, GA10, GLW14, HWS16, HJ14, IKS19, JKS16, Kaw19, KPVvdH13, ILsSZ14, LYL+17, MIW+12, PFKK19, PTMDPK14, QA13b, SP18b, SYE+18]
self-consistent-field [Erm18, Pit12]. Self-energy
[BMC+11a, PB13]. self-force [AK15]. self-forces [ASGLK10].
[HPKF15]. self-organized [CGSB18]. self-polarization [Den10].
self-questioning [QHC+10]. selfadaptable [CFCB12]. Selfconsistent
[ELL+17a]. Semi [DS15, GHBL18, GHMB+19, KKC+10, MHHW19, BB12,
CZ15, DS10, Ein16a, FJK+17, GZZ19, GAB+16, IBP+15, JYPA18, Lan13,
LHH+12b, MCV18, MIW+12, MRVF13, QSC14, Ser10, SmDNF14, SHL+11,
UNK12, WG16b, Wei15, ZLL13]. semi-analytic [Ser10]. Semi-analytical
[DS15, FJK+17, MRVF13]. Semi-analytics [DS15].
semi-automatic [Wie15]. semi-axis [SMdONF14]. semi-classical
[MCV18]. semi-discretized [JYPA18]. Semi-explicit
[QSC14, Ser10]. Semi-Implicit [BB12, CZD15, GZZ19, IBP+15,
LHH+12b, MIW+12, SHL+11, WG16b]. semi-infinite [ZLL13].
semi-Lagrangian [Ein16a, GAB+16, Lan13, MIW+12, UNK12].
semi-magnetic [ACCB13, Bot12, CM15, CLL16, DJ12, GTC+11,
HHC16, MIH12, NAQ16]. semiconductors [BMZ+18, GC12, KOK17,
LHH+12b, PFFK19]. semidefinite [VvAV+11a]. semiempirical
[IIO16]. semismooth [CB15d]. semismooth-Krylov
[CB15d]. Semtex [BLAS19]. sensitivities [GA13].
sensitivity [CSC11, HS14a, KTA12, PPS10, SAA+10, SK10, TBZ12, WLH+12,
WLS13]. separation [MSRL10, SJW10]. separations [DS19]. sequence
[GCF+17, HLD13, OY13]. SequenceL [BBB+17a]. sequences
[DBB12, DB13, PdMML19]. sequential [AL17, NL14]. serial [CUL+17].
series [AddM16a, AdDM17, BDJS18, CZ17, CC10a, CO11, GMPFC+14,
HvWT17, LHC11, NO12, YZCS18]. SERS [CLY11]. SERS-active
[NS15, CK18, FM12, FHA17, Ki10, KN13, MBFB13, PVK+18, Pit12,
RCGT16, XHLM12, YS17, MFG+13]. sets
[Cor14, FBG10, GJLB12, JH15, SLC+13, VdLF14]. setting [CNS+14]. setup
[FJ19]. several [GCHL15]. sfermion [HEF12]. SFOLD [HEF12]. sGDML
[CSP+19]. SGO [CJJ+17]. SGS [ZSW+17]. Shafranov [HS14b, SVS19].
Shakhov [XZ+19]. shaking [RHHF12]. shallow [QM10, STA18]. Sham
[KKL+18, SC512, SCB17b, SPSP18, zYCG+18]. Shape
[DMG15, BNPPD19, NS11b, OK14]. shaped
[HSD17, KKO19, MSR+17, Nov17]. shapes
[AIG16, GTPWL12, GGGH14, HS19, XLX+15, YLYL17]. Shardlow
[LBMB+14]. Shardlow-like [LBMB+14]. SHARE [PLRT14]. Shared
[DKG+14, BKS15, CL15b, LRSS19, NFF15, TE18, WMRR17, WMRR19].
Shared-memory [DKG+14, NFF15, TE18]. sharing [TRM+12]. sharp
[CDL+12]. SHAPE [ME18]. shear [BF10, CMVRB+14, SPTP19].
shear-shear [CMVRB+14]. sheath [KMD12, KM17, KSY17].
GRZ10, GSB+14, GHMB+19, GB14, Gri11, GRTZ10, GTK+19b, HBE10, HBL+13, HL19a, HKJ+12, HTL, HvAS+13, HXW+13, HAN+16, Hsu11b, HB13, HHT14, HCSW10, JA17, JXTS16, JLM18, Ji12, JPM12, JAS17]. simulation [KOT+12, KDM17, KS19, KGFS18, KNS+17, KO12, KO13, KKO19, Kro16, KMJS16, KCSW10, JA17, JXTS16, JLM18, Ji12, JPM12, JAS17].

simulations [KOT+12, KDM17, KS19, KGFS18, KNS+17, KO12, KO13, KKO19, Kro16, KMJS16, KCSW10, JA17, JXTS16, JLM18, Ji12, JPM12, JAS17].
[AAT$^+_{20}$, AAT$^+_{14}$]. **SOFTSUSY3.0** [AB10]. **SOFTSUSY3.2** [AKH12]. **SOFTSUSY3.5** [AbdA15]. **SOFTSUSY3.7** [AMRdA17]. **SOFTSUSY4.0** [AC17]. **Software** [Jav17, MCY$^+$16, NFA$^+$16, SSP16, AKZ$^+$13, BMF$^+$19, BCG$^+$15, BRC$^+$16, CCPDdM18, CYOS19, Dan12, FBC$^+$12, GXF$^+$15, GJA$^+$16, HBF$^+$17, HM10, HM17, KMM$^+$19, KST$^+$14b, LPHG18, LSK$^+$14, MAW18, MNL19, MMY$^+$19, NBW16, ORI$^+$10, Ost10, PVH$^+$17, PMS$^+$15, RDP14, SD15, SCC$^+$12, Sh11, Sh12a, SLR16, SS18, Sou14, SJY18, SJY20, TL17, VPP$^+$12, WGG16, WGG$^+$19, WZS$^+$18, zYCG$^+$18, ZMvE$^+$13].

Software [OML11, PBF$^+$16]. **Software** [GTSL$^+$13]. **SOL** [FLSZ13]. **Soil** [OML11, PBF$^+$16]. **Software** [FLSZ13]. **SOL-core** [FLSZ13].

Solar [DJ12, FXZ$^+$14, GSKM15, HGCARM15, Kap16, WFZG19]. **SOLARPROP** [Kap16].

Solid [BCP$^+$16, Bot13, CCD$^+$16, HXW$^+$13, JPCG15, KS16a, Miu11, NGCI$^+$12, dlRAPL11, PLD15, QDZ$^+$13, UA17]. **Solid-fluid** [CCD$^+$16]. **Solid-solid** [QDZ$^+$13, UA17]. **Solid-state** [dlRAPL11].

Solidification [YK18].

Solitary [AS11b, DS11b, DN13]. **Soliton** [DT11a, Pål12, TD14, XLL15].

Soliton-like [XLL15].

Solitons [DG10b, GMHZ19, HWCH11, JPM12]. **SOLPS** [SCB$^+$17a, ZCC19]. **Solvation** [ZPH$^+$15]. **Solve** [AD14, ADdM12a, DG10a, JSLM16, ON14, RJLL16, SS13c]. **Solved** [ACMM10]. **Solvant** [CB14]. **Solvant-filled** [CB14]. **Solvents** [ZBG$^+$16].

Solvant [DSW15b, ALA$^+$19, BMC$^+$11a, BMCM$^+$11b, BKOZ16, BAR12b, BLAS19, Bot13, BC11, CVK$^+$17, CP15a, CPV13, CCL18, CZF18, CRLS18, CRA10, CFF19, CBB14, CDR$^+$15, DLBL16, DGG13, DM12, Ein16b, Exl17, FJK$^+$17, FSC13, FE11, FZY17, GS15, Gyal17, GBP13, GJ14, GJ13, GNP19, GG16, HWG$^+$13, HWM$^+$15, Hua17, HCHW11, KV19, KDM17, KMM$^+$17, KH12, LYP14, LW14a, LC15, LCM14, LXY$^+$17, LKPH19, LF12, LWJ18, LWP$^+$17, LCHM10, LCHM13, MC16, MTE17, MGL16, MR14, MCM$^+$12, ML14, MMF15, MVS15, MCL$^+$17, OILK17, ORS$^+$14, PZY16, PMS$^+$17, PBD$^+$15, Qia17, QSB19, RVDS16, RDVS18, RC13, RC16, SVGS18, SYS19, SKFP16, SSX14, SGW17, SLEF17, TL17, Ter17, UKKB19, VL19, VV16, VV18, WFZG19, WBS$^+$18, WC13, Wit14, sX14, YXT$^+$15, YWOD19,
Zag14, ZPH⁺15, ZPvR16, ZCG17, ZPS⁺18, HB13]. solvers
[AL17, BSK⁺18, BB13b, CB18, CGM17, CBB⁺10, CSV⁺18, DBMR18, DZ13,
FR15, GWF⁺11, HC17, Hoh18, JH cynical19, LV15, Qia16, VLPMM14, zYCG⁺18].
Solving [BAK⁺15, BAK⁺16, BAK⁺17, CD12, CBB⁺10, Dem13, DPB16,
DSP15, ENEO15, Fan19, Fil13, FGG11, HAK⁺14, HAH13, HS14b, IH11,
JC16, Jan10, LV10, RHH12, SMdONF14, VSO⁺13, BK11b, BMBC⁺17, CS10,
CKK⁺13, DT10, DM17, FGR14, GBSY18, GX15, HLLH16, HM12b, JPS10,
Jal10, Jiw15b, LLMW17, LBB⁺16, LYSS⁺16, LAG⁺17, MHHW19, MLS10,
MM12, IC13, NAQ16, PS11, QYM11, QA13b, QA13a, RL10, Ras09, Ras17,
SSB⁺16, SSH⁺13, SP18b, SCLW16, TY10, TKS19, UNK12, VVB⁺12, Wi19,
WFV14, XWF18, XZ12, YZWR14, YSVM⁺16, YSMA⁺17, ZHSL13].
SOM [KH19]. SOMA [SM19]. Some
[CEPI10, FG13, HWCdM19, MR13, MS15, ZHSL13, Er14, Ixa16, KD16].
soot [ZLFM11]. sooting [EZ16].
sorting [BDL⁺19, MEM⁺11, MM11].
[AZ17a, AZ17b, AFZ17, AFZ18, ATCZ19, BCP⁺16, CMC⁺15, CHC⁺11,
CYOS19, CFW17, CDR⁺15, DSK19, Dan11, DGHJ19, DBLP⁺18, DBLF16,
FLA⁺16, HSF⁺15, HKvH16, HW⁺15, Hua17, JWC18, JNN12, KDM17,
KPK⁺17, KSH14, LPC⁺15, LZ11a, LZ11b, LZ12, MK10, MZE13, MSN11,
MMY⁺19, MVS15, MGRF12, NMS14, NGCI⁺12, ORS⁺14, SC16a,
SPA17, SAHP15, SDL⁺16, TL17, TACA15, VBG⁺10, VB19, WFDK19,
WGG16, WGG⁺19, WFV14, WP14, WZ⁺18, XAPK14, Zag14, ZCG17].
Sources [EW14b, EW16, EEGW12, KM10, ML14]. Space [BBB17b, FDZ17,
JKG⁺18, BG11, BAK⁺15, BAK⁺16, BAK⁺17, BY17, CDBM16, CVK⁺17,
Chr18, CSV⁺18, EUT⁺15, Esv14, FZ16, FGLB12, GTS14, GBSY18, HLW16,
JBG⁺17, JLM18, Jia18, KKL⁺18, KS16b, KSW15, KS15, LOK⁺16, MDH18,
MC16, MBF⁺10, MJB⁺10, MGB18, MSS⁺16, MSM⁺11, MS11, NAQ16,
OB10, ÖKC11, OOK⁺12, dirJL14, PSB11, PSBT12, QYM11, QA13a,
Qia17, SP16, SCRS17, SA15a, SBH⁺12, UFK19, XG⁺19, ZD15].
space-charge [Qia17]. Space-dependent [BBB17b]. space-fractional
[MDHD18]. Space-time [FDZ17, CVK⁺17, Chr18, JLM18, Jia18].
spacecraft [MPS13]. spacecraft-plasma [MPS13]. spacegroups
[AZ17a, AZ17b]. Spaces [Asc10, Bog16]. spacetimes [Müll14a]. spacewise
[PR13]. spacewise-dependent [PR13]. SPARC [GS17b, GS17a]. Sparse
[YOM⁺19, CB16a, DN18, GBP13, GJ18a, Kra10, SPP19, TS19]. sparticle
[AC17]. Spatial [RLBC⁺14, ABCM14, BMF⁺19, BNA11, FCC15, KS16b,
LST15, LJB⁺16, MCM17, MLS10, MSRL10, MGR16, TZW12, VV16, FCC15].
spatially [MD10a]. spatio [KEH12]. spatio-temporal [KEH12]. Special
[MSI⁺10, iSSMI11, QA13a, RL10, ZD15]. Special-purpose [iSSMI11].
specialist [OTC14]. species [DGS⁺19, HAK⁺14, NNWS15, SM14, SCM14].
specific [AZ17a, AZ17b, Gor19, LPC⁺15, SGM18, XZF12]. specific-heat
[XZF12]. specific-purpose [LPC⁺15]. specified [MD10b]. specifying
[DZ15]. spectra
[Aza13, AKV18, BW16, BPMS16, Bru13, CM15, CCL15, CGV13, DA16,
ECSH16, GG16, HW11, MGRB11, MSPD12, MNPY14, MB16, PBMAD12, Pos18, Rfu13, SC16a, TPK12, TVGB15, WFDK19, YLTS16, Zlo13.

Speed [LGW13, MSR+17, CNS+18, Fu19b, JTP15, MTE17, VL19, WLM14, YvOS15]. Speed-up [MSR+17]. Speeding [GMC18, MED11, KC14]. Speeding-up [GMC18]. Speeds [SSX14].

stable [DSPJ10, GZW17, Ram14, SS13b, SPS10, WYH19, ZY19a, ZKS⁺18]. STAG [NCB18]. stage [CCW10, PZZL19]. Staggered [HP14, BCDI12, DJ11, GM18, Mar15, SCLW16, TH17]. Standard [AB10, AAB⁺10a, BM19, DET12, Deg15, ABB⁺14, ABDa15, AC17, AMRdA17, Ano10o, Cou13a, Cou13b, GLX⁺14, ABC⁺18, BCPS11, BCP13, HLM13, KP1⁺16]. standing [ACTP15, BMF⁺19]. star [SEW12, SEW14].

Stark [CFSK14, PMMW15]. Stark-effect [CFSK14]. STARlight [KNS⁺17]. stars [VPM12]. star [SDJ⁺12]. starting [RLS16]. State [BBRS19, RSBB14, ASE14, BP12, BKS15, Bis15, BK11b, BTC⁺17, CR13, DBK⁺14, DLW⁺18, Eba13, ELL⁺17a, FTI18, Faw10, FDWC12, GM14, HM12a, JWL13, JTT11, JMG⁺17, KO13, KSY17, MST⁺18, MEG12, NDSH18, OK12, OML11, dRARPL11, Pat12, RLS16, SAW18, SGSG19, TPC16, VS19b, WX14, XZF12, dSF18]. state-of-the-art [Pat12].

state-to-state [ASEA14, BTC⁺17, TPC16]. States [JWC18, ABDR17, ACTP15, AM17, BR13, BVC13, CLHL19, CW15, Dua12, FLE19, GH11, HL19b, JDG12, KHL11, LKM⁺16, LV13, Liu15a, LB10a, LB11, LB12, LB13, MH11, Mis12, Mis13, MNPY14, NJS17, RV10, TTS11, XJS16, ZAHA10, dSLF13, vH18, KBLJ18]. static [Fuk17, GB17, dRL11]. stationary [AD14, ABDR17, Fis12, GG16, MGL16, VDAH16, ZAHA10].

Statistical [Bin13, Mag18, SLC11, SM11, Ano11o, CSR13, ELL⁺17a, Fri17, HJE⁺19, KD16, LLHC11, MW12, PMMF15, Sin11, Sin12a, VLM11, ZF15]. statistics [Zlo14, dSVLP13]. steady [Bis15, HJGL18, HJGL19, JMG⁺17, KSY17, MST⁺18, NDSH18, SK15, YTTYA17, ZNT15, dSF18]. steady-state [JMG⁺17, MST⁺18, NDSH18, dSF18]. steam [CLW11]. steered [ZF15].

KH10, Pan15, SZ15, Zit11, KDP^+14, Mel19]. symbols [Nik12b, Wei11a]. Symmetric [CFMR10, CYSL12, ACC17, CDMCN11, CFSK14, CLW11, GBRB11, GHMB^+19, GCHL15, HC17, HM18, JOR^+12, KSW12, MCP10, NLSJ17, PAS11, PR14, RS12, REBS16, SW12a, SW13b, Sza13b, Sza13a, SJY18, SJY20, TC12, Yua19]. symmetric [SJY18, SJY20]. symmetrical [AAD14]. Symmetry [MW14, Alv12, BCDP18, CDTV10, CFSK14, FF11, GNT17, HJL^+14, LRC^+11, ZAHa10]. Symplectic [LQ18, MKS10, Bla15, CWJ19, CFMR10, CZS10, CYSL12, HDZ14, KMS14, KZC^+10, LS12a, LYL^+17, QSC14, RH^+12, SS^+13, SW12a, SW13b, WXL13, WWHW14, WWC^+16, XQ19, ZST11]. SYMLER [KDP^+14]. synchronous [BENK^+17, Fer15, SCM13]. synergetic [BP16, BSK^+18, ER19, GA13, MNL19, RCGT16]. systems [ASTT16, ASS18, AKR15, ABF19, ASPDL^+16, AGH^+16, AdDM^+12b, ACDdM14, BMC^+11b, DdJC^+19, BFPP12, BBS14, BKS15, Bis15, BVC13, BMW14, BC11, CR13, CLH^+17, CGM17, CZ18b, CLJ12, CYSL12, CSK^+19, CL15b, CB15d, CB16a, CR12, CBB^+10, CFFR15, Dan14, Dan16, Dan17, Dan19, DBJ11, DEW16, Er14, Ert15, FLW10, Fil14, FE11, FLW17, GLHR19, GJ18a, GS17a, GH11, GM16, GBJ^+10, GBJ^+12, GBJ^+13, GCHL15, HBL^+13, HL19a, HAN^+16, IUM13, JLA^+14, JWC18, JXTS16, JLW13, JNN12, JNN13, JGC^+11, KFS17, Kau13, KPA13, KHZ^+18, KI11, KO12, KS12, KPOR18, KGS10, LLQX19, LKM^+16, LCY^+11, Leol2, LRW^+15, LWYW11, LS16, LB10a, LB13, LKT^+16, LCHM10, LL12, LCHM13, LBP15, MPM14, MFMI15, Men11, MGS13, Miy15, NFD^+19, PFA^+15, PTMDPK14, PLCC12, QZU19, RF10, RAV11, RHC15, RCH16, RCH19]. systems [RLMG11, SW14b, SL17, SH18, SCJH19, SEG15, SGW17, SLR16, SS10a, SPP19, TM14, TDL^+14, UO15b, UO15a, Voy13, VBMP15, VB19, Vuk12, WXL13, WRB11, WAW14, WYSW10, WW10, YZW14, ZAHa10, dB14]. SYVA [GAN17].

Three-dimensional [CW16, dAfSVM12, LIJSW11, MNPF17, WWC16, BC11, DS13c, DO14b, FFT14, GTPWL12, HLWT19, HCSW10, KKP11, KP12b, KH12, KRB15, KKO19, LLXK16, LCQF18, Qia16, RWKS15, SFP11, SCLW16, XZF12]. three-level [WL11b]. three-nucleon [GDB10]. three-state [XZF12].

Three-step [Ume18]. Three-temperature [SC15, SC16b]. threshold [BH17, BKMP16, Has11, HST11, dSD12]. throttling [DSHS17]. throughput [EC10, ZZ17a, ZFZ19]. THz [WQ18]. Ti [Ell17b].

TIERRAS [TS10]. TIGER2 [BW15, MPB10]. tight [HSF19, HM17, Jac19, RJKC16, SHNM11, YLYL17, LSK14]. tight-binding [HSF19, HM17, Jac19, RJKC16, YLYL17]. TIM [LHC12, OTC14]. Time [DAW19, GTG11, HFK12, IBB18, LLQX19, LB10b, RJKC16, TD14, TC11b, TT11, AAD16, AddM16a, AddM17, Ano19m, ABD17, AH13, BS15a, BR14, BD10, BMBC17, BB12, BENK17, CZ18a, CMSN18, CVK17, CC10a, CH19, CKSM19, CCL12, CW16, CZZ19, CYOS19, Chr18, CHZ18, CO11, DS13a, DS10, DM17, DV11, DS15a, DKSG16, DHR14, DJ14, DM12, ECD10, FDZ17, FGLB12, FNPM10, Fri10, GS15, GMPFC14, GML15, GBR14, GM16, GVR19, GBSY18, GJHF14, GWF11, GMHZ19, HE13, HWG13, Has11, HC16, HLLH16, HC17, HL19a, HKe16, Hsu11b, HHC10, HW15, Hua17, HM18, IW15, JLM18, Jia18, JL19, JdBG14, JMG17, KK16b, KBSP19, KYS15, KSY17, LLHC11, LV14, LS15b, LLP15, LTP17, LAS17, LBB16, LYSS16, LR13, LR16, MW119, MC16, MGRB11, MGL16, MC10, MBFD12, ICD13].

time [MC17, NPM16, NAQ16, ON12, PS11, PSBT12, PM16, PVK18, PTMDPK14, PBS17, QYM11, QA13a, QWZW18, RE19, Ram14, RVDS16, RDVS18, SHT18, SSB16, SLY18, SKFP16, SVV19, SSH13, SGW17, THz [WQ18]. Ti [Ell17b].

Thick [SMUT19]. Thick-restart [SMUT19]. thickness [CDSG11]. thin [BL14]. Three [MAM14, NS15, VEB18]. Thomas [GLHR19, SLK19]. Thouless [RCM16]. threads [CUL17, sLqSqL13]. Three [BY13, CW16, dAfSVM12, HWS16, LIJSW11, LB13, MNPF17, SC15, WWC16, YWX11, ABB16, BC11, BKM14, BK16b, CS16, DS13c, DMC10, DO14b, EKO16, Exl17, FFT14, GTPWL12, GBD10, GSKM17, HL16, HLWT19, HCSW10, Ixa16, JWCW17, KKP11, KP12b, KH12, KRB15, KKO19, LA13, LLXK16, LCQF18, MAWK18, PBE14, Qia16, RWKS15, SFP11, SCLW16, SC16b, TSIM16, Ume18, WL11b, XZF12, ZFH14, ZZG16]. three- [GSKM17]. Three-body [BY13, LB13, EKO16, Ixa16].

Three-dimensional [CW16, dAfSVM12, LIJSW11, MNPF17, WWC16, BC11, DS13c, DO14b, FFT14, GTPWL12, HLWT19, HCSW10, KKP11, KP12b, KH12, KRB15, KKO19, LLXK16, LCQF18, Qia16, RWKS15, SFP11, SCLW16, XZF12]. three-level [WL11b]. three-nucleon [GDB10]. three-state [XZF12].

three-step [Ume18]. Three-temperature [SC15, SC16b]. threshold [BH17, BKMP16, Has11, HST11, dSD12]. throttling [DSHS17]. throughput [EC10, ZZ17a, ZFZ19]. THz [WQ18]. Ti [Ell17b].

TIERRAS [TS10]. TIGER2 [BW15, MPB10]. tight [HSF19, HM17, Jac19, RJKC16, SHNM11, YLYL17, LSK14]. tight-binding [HSF19, HM17, Jac19, RJKC16, YLYL17]. TIM [LHC12, OTC14]. Time [DAW19, GTG11, HFK12, IBB18, LLQX19, LB10b, RJKC16, TD14, TC11b, TT11, AAD16, AddM16a, AddM17, Ano19m, ABD17, AH13, BS15a, BR14, BD10, BMBC17, BB12, BENK17, CZ18a, CMSN18, CVK17, CC10a, CH19, CKSM19, CCL12, CW16, CZZ19, CYOS19, Chr18, CHZ18, CO11, DS13a, DS10, DM17, DV11, DS15a, DKSG16, DHR14, DJ14, DM12, ECD10, FDZ17, FGLB12, FNPM10, Fri10, GS15, GMPFC14, GML15, GBR14, GM16, GVR19, GBSY18, GJHF14, GWF11, GMHZ19, HE13, HWG13, Has11, HC16, HLLH16, HC17, HL19a, HKe16, Hsu11b, HHC10, HW15, Hua17, HM18, IW15, JLM18, Jia18, JL19, JdBG14, JMG17, KK16b, KBSP19, KYS15, KSY17, LLHC11, LV14, LS15b, LLP15, LTP17, LAS17, LBB16, LYSS16, LR13, LR16, MW119, MC16, MGRB11, MGL16, MC10, MBFD12, ICD13].

time [MC17, NPM16, NAQ16, ON12, PS11, PSBT12, PM16, PVK18, PTMDPK14, PBS17, QYM11, QA13a, QWZW18, RE19, Ram14, RVDS16, RDVS18, SHT18, SSB16, SLY18, SKFP16, SVV19, SSH13, SGW17,
traveling [JA17], TRAVIS [MTM14], treat [FCCTFR18].
treatment [BKC+17, FZR19, Fuh15, KPPC13, MCNR16, NMCR15,
DG10b, DS11b, JEF14, JPM12, KS16a, KYKN15b, KO12, KO13, LLSK17, LST15, LHH+12b, LR13, LR16, MSZW11, QSB19, SLR16, SDJ+12, SJW10, TT14, XZ12, dTOV18. two-electron
AG12b, GH11, JH15, KK14a, LB10a, YÇÖ15. two-flavor [CDS+13b].
AG12b, GH11, JH15, KK14a, LB10a, YÇÖ15. two-fluid
ALA+19, KTE+12, LOL+18, ML17, SQA+15, ZFR18. Two-grid
AG12b, GH11, JH15, KK14a, LB10a, YÇÖ15. two-layer
[AG12b, GH11, JH15, KK14a, LB10a, YÇÖ15].
AG12b, GH11, JH15, KK14a, LB10a, YÇÖ15. two-layered
PP13. two-level
BKS15, LW14a, LY16, ZHC16. two-loop
AMRdA17, BH13, CB13b, CCGC13, Ert15, FG13, FPY+17, Gnu19, HF16, HBS+11, IUM13, KBSP12, MNOO11, NS15, PPy14, PKT15, PDRG10, RJW+19, SLZ16, TL17, WFV14, Wu10, WL11b, YYF19, SAS11, MWCY14. type-II
HBS+11, SAS11.

U [CHW+15]. uasiparticle
SK10. UCL [CYD11]. udkm1Dsim
SBH+14. udocker
GBC+18. UFO
DF+12, Sta13. ultra
HEPW13, KVV19, KNS+17, QYM11, TIM+16. ultra-high
HEPW13, KVV19. ultra-large-scale
TIM+16. ultra-peripheral
KNS+17. ultra-relativistic
QYM11. ultracold
BG11, SJHS19. ultrafast
FWS+17, NFI17, SBH+14. Ultrahigh
VV18. Ultrahigh-order
VV18. ultrashort
GC12. ultrashort-pulsed
GC12. ultrasonic
RLMG+11. umbrella
IIO16, IFO18. UnMTracker
SW+17a. unbounded
Exl17, GMHZ19. uncertain
ÅSS18, MCL+17. Uncertainty
CNS+14, CC16, HHM+15, KKK+15, KZ14, LCRL10, LXX14a.
Unconditionally
Ram14, ZY19a. under-ice
TS10. under-saturated
JHG14. underground
TS10. underwater
TS10. undirected
FLP10. UNEDF
BBC+13b. Unfolding
ZZD15, ZZ17b, ZZ17b. unification
ABdA15. Unified
DE13, Ram12, We99, CSC11, CSJ+17, KEH12, MRVF13, RHW+12, Sch14a, SK12, sX19, YK18, zYCG+18, MW19.
uniform
BDP16, CDMCN11, GBN17, KS15, LA13, LFG14, PdMML19, Ser10, Ser17, Wit14, YQM12, YQM14. uniformly
Gwi16, SKK11. union
TMS19. union-find
TMS19. Unique
WLG+13. UNIST
LLE+18. unit
Laz15, MEM+11, RC18, Tic10, MSML10, YLO13. Units
Boe18, APRG11, BK11a, BHS18, BJWC13, CDS13a, Col14, DBDP12, DS11a, DF13, FSH13, FUSH14, FCVH17, FVH18, Fil14, FZY13, HAN+16, LAS+17, MED11, NPAG11, PLD+13, SH12b, TD11, WDL11, WWFT11, Dem11. Universal
CCW11, DNP+12, BDDM18, DGW111, EGPS10, GGI+13, KRM+19, SJ11, DDF+12. Universality
Fri10, PM13. unknown
PR13.
unknowns [YBK+11]. unparticles [AAB+10b]. unsaturated [GTSL+13]. Unsteady [FJK+17, SL14, TY10, Tia11, TCP13, TPC16, Uty14]. unstuctured [ASGLK10, AK15, ALA+19, Cha19, GLHG12, HWCD19, LYP14, LJWK11, LWQ16, MTO15, OCM+19, PZZL19, PBD+15, SP18b, SC15, ZS13]. unstructured [ACAL10, AK15, ALA+19, Cha19, GLHG12, HWCdM19, LYP14, LJWK11, LWQ16, MTO15, OCM+19, PZZL19, PBD+15, SP18b, SC15, ZS13]. unstructured-grids [SC15]. unweighted [Gag12b, Gag12a, GH18, GHN19, WW12]. Update [ABB+14, CYD11, KT10, AMJ18, BCMS10, CK19, GMSK17, HJGL18, HJNL19, NM14, TJDB11, Tab16, Tom16]. Updated [GAC+17, Hol19, KKK+15, Cip11, LCE+13, LW16, MBGK11, MYP+14, MG10b, PVK+14b, SYZ+12, SYZ+13]. upgrades [LS15a]. upgrade [Dan11]. upgraded [AMR+18, CWW10, CWW15, OKP10, Shal6, ZYL+15]. upper [CPCDdM18]. Uquantchem [Sou14]. use [ERPDFLS15, KAR+15, Kom15a, LCJ10, MNV13, Sou14, ZDWM17]. Useful [Bar11b, HWCD19]. user [AKK+18, BBG+13, CFL13, GLR17, GBC+18, RFP+17]. user-friendly [CFS13, RFP+17]. uses [CEPI10]. Using [BS14a, CSR13, RMC16, AM14b, APRG11, ACD+14a, AGMS15, Ano20, ALC18, Asc10, AH13, APC+14, AAJA14, BSM13, BdVGS11, BH14b, BL18a, BD10, BKM11, BCM+16, BTC+17, BVSG19, BGHN19, BY17, BS12, BMDP19, CKLM10, CL15a, Capt13, CHNS18, CB13b, CAN11, CC16, CMSV14, CSP+19, CUS+13b, CKK+13, Cip11, CB+10, CB+18, CH11b, CB14, CB16b, CL13, CLB11, CRNK12, CMS17, DXY+19, DM17, Dem13, DRUE12, DKOS14, DM12, EDPZ19, Enl16b, EKDG15, FJK+17, FDWC12, FNPMB10, FWS+17, FZY13, GBP13, GMSK17, GA10, GSB+14, Gor19, GMH11, GSY+10, GM18, GRTZ10, HTJ+16, HCC14, HAN+16, HHC16, HZC19, HKK11, Ihn12, JK13, JU17, JSLM16, KK16a, KHI11, KTB17, KK14a, KD17, KKK11, KMM+19, KN13, Koh15, KS12, KKS18, KST+14b, KHRK14, KCS+15, LLHC11, LD10b, LA13]. using [LBM+14, LOK+16, LWZ14, LXY+17, LXR+18, LHH+12b, LS12b, LTP+17, LAS+17, LNSD15, LGK18, LW+17, LRSS19, MED11, MGRB11, MHV17, MP11, MSI+10, MRVF13, MAz19, MC12, MVI+16, Mis12, MM10, MSML10, MLK+17, MLK+19, MGR16, MSS+14, NGM+10, OBH10, OKM12, OYK+14, PSBT12, PPV+11, PDRG10, PVK+17, PDL+18, PSL+17, PR10, PR12, PCEH15, PMVG16, PA13, RE19, RDP14, RMS+12, RLGMG+11, SCB+17a, SAW18, SEW12, SEW14, SOON11, SW14c, SWL+15, SPMM11, SD10b, SA15b, SLR+11, SSF+14, Sie16, SC15, SN16, SPS10, SKH+10, SHL+11, SBH+12, SS10a, SOYHD19, SK+13, TOB+14, TVGB15, TW15, TCP13, UbR10, VSO+13, VDA+19, VvAV+11a, VJC12, WISA11, WW15, WLG+13, WAHL13, WMRI17, WRMR19, WTV14, WAW14, XHLUF+18, XLX+15, XYZX19, YZ16, YK10, Yi11, YBK+11, YBYN13, YEL14a, YB13, YXT+15, YG12, ZBG+16]. using [ZDWW10, ZKG+18, ZMV+13, dJBIM16, VFV19]. USPEX [LOSZ13]. utilitarian [BC19, CB15a, CB17]. utilization [sLqSqL+13, SMCB+15]. UV
UV-divergent

V [Maž19, DGPW11, LS11, RF10]. v.2 [JPSS10]. v.3 [MNL19]. v.0.7 [Hua17]. v.03 [GBJ+13]. v.04 [GES13]. v.05 [GFJ+14].

v05-Implementation [GFJ+14]. v.1.0 [GTK+19a, HM12a, LKPH19, Man16]. v.1.0.0 [BJ14]. v.1.01 [BS13b]. v.1.02 [CDTV10]. v.1.1 [AKK+18]. v.1.3 [LW16]. v.2 [CRC+13]. v.2.0 [Nat10, HAV+14, Nat09]. v.2.00d [SSK+13]. v.2.49t [SDM+12]. v.2.5 [Ros15].

v.2.73y [SDS+17]. v.3 [HCM19]. v.3.0 [AM11]. v.3.00 [PSL+17]. v.4 [AMR19].

Variation [KHK+11, MS14]. Variates [Rom15]. Variation [MKU+12].

Ver [BBRS19, RSSB14]. Verification [LLE+18, DGS+19, YG12].

Verlet [LYJY10]. Versatile [Sou14, ZSW+17a, ZPS+18]. Version [AAT+20, AFZ17, ATCZ19, BC19, CB17, FLZ+18, Hak19, HS18, ZDD+16, AC13, AFZ18, AC18, BPC13, BB13a, BH16, BLG14, Bon15, Bon16, BHW+12, BHH+15, CWW10, CWW15, Cip11, FLA+16, FGJB19, Gin10, GRR+14, GFH+10, GBJ+13, GCVAA14a, HAV+14, HD17, JCL10, Jia18, JGB+13, Kol14, KDM11, KUVV13, LCJ10, LZ11b, LRR+15, MFS10b, MAM14,
MYP+14, MG10b, Nat09, Nat10, NS11a, OKP10, Org15, dlRL11, dlRAPL11, PSL+17, PR12, Pit12, PVK+14b, RDVS18, RHHHI5a, RHHHI5b, SMO19, SSG+18, SRS+18, SDM+12, SDS+17, Sit16, SSK+13, TV10, WMI11, WW13, WRMR19, XW15, ZXL16, ZMPT13, DIR+19, FP14, Semi16, ZE16].

versions [Cip13, KRW13, dSdO12]. versus [FBN+13, RD10]. vertex [BDGG19, Eks11, Sus17b]. vertexing [Dim14]. vertex [KRW13, dSdO12]. versus [FBN+13, RD10].

wake [BEKP19]. wakefield [LV19, MFS⁺10a]. Walk [RNdB19, IW15, KMS19, UO15a]. walks [BBW11, FRW17, GMO19, PBS⁺17, SBB13]. wall [BDP16, BNO17, CdLLOL19, EKK14, JU17, MRVF13, MRL19, PHT⁺19, Uty14, ZPS⁺18].

Wang [San15, BR13, Boe18, CND11, KO12, KO13, KO14b, Kom15a, Kom15b, Kom15c, KO16, PEMSI9, SMJ17, Sin12b, WSTP15, YK10, YL12]. Wannier [AWK⁺16, BCC⁺18, ERP⁺12, KAW⁺10, MYP⁺14, NGM⁺10, PHT⁺19, PVMG16, SPMM11]. wannier90 [MYP⁺14].

watershed [ORS⁺14]. waterway [San11]. Wave [RCGT16, SS14, AV13, AM14b, AM19, ABH⁺19, Bad11, BF16, BMF⁺19, CKT17, CLJ12, CZL⁺11, DS11b, DN13, DZ13, DKS16, DHR14, DA16, EUT⁺15, FYK18, FM12, GB14, GBSY18, GCC⁺18, GCVA14a, Hol19, HK15, HZ11, HHC⁺10, JCW⁺13, JGAL⁺13, KH11, KM10, Kir10, KV19, LT15, LZZL10, sL10, LYL⁺17, MDHD18, MED11, MBF⁺10, MHWH19, MA11, MSH11, OWS⁺14, PG10, PYW⁺14, QLE16, Raw15, RFSF18, RKT⁺18, RE12, SFV19, Sar17a, Sar17b, SWS⁺12, SKH⁺10, TL17, TVT⁺16, TH17, THJ⁺10, VDA⁺19, WGG16, YLO13, JTH14]. wave-function [KV19].

References

Abedian:2013:HOW

Abedian:2014:HOS

Azooz:2014:LPR

Azooz:2012:PNT

Allanach:2014:NMS
Aslanyan:2017:ECD

Allanach:2020:CNM

Allanach:2010:IPV

Antoine:2013a:CMD

Alioli:2014:UBH

REFERENCES

Ablinger:2016:CTL

Athron:2019:BFF

Aebischer:2018:WEF

REFERENCES

[ABH*18] Peter Athron, Markus Bach, Dylan Harries, Thomas Kwasnitza, Jae hyeon Park, Dominik Stöckinger, Alexander Voigt, and Jolst Ziebell. FlexibleSUSY 2.0: Extensions to investigate the phenomenology of SUSY and non-SUSY models. *Computer Physics Communications*, 230(?):145–217,
Auzinger:2019:PSM

Awile:2012:FNL

Ablinger:2019:NIH

Angeli:2013:AEM

REFERENCES

REFERENCES

[Adams:2019:CMC]

[Arsoski:2015:EFD]

[Angelani:2011:NMB]

[Antoine:2014:GMT]

[Antoine:2015:GMT]

Xavier Antoine and Romain Duboscq. GPELab, a Matlab toolbox to solve Gross–Pitaevskii equations II: Dy-
REFERENCES

REFERENCES

Avellar:2015:IFD

Alves:2016:IGF

Alves:2016:NMI

Alves:2017:APC

Alwall:2015:CDR

Actis:2017:RCO

Arthuis:2019:AAG

Auer:2018:MIM

Akushevich:2012:MCG

Avery:2017:XNV

REFERENCES

Arthur:2013:MCI

Augustinsky:2013:IGF

Aldegunde:2015:ECS

Allanach:2012:CNM

Adler:2018:VIS

REFERENCES

V. I. Azarov, A. Kramida, and M. Ya. Vokhmentsev. IDEN2 — a program for visual identification of spectral lines and energy levels in optical spectra of atoms and simple molecules.
Ahmed:2013:BSS

Antoine:2017:CPS

Asensio:2019:GEI

Appel:2018:ERI

REFERENCES

Anonymous:2010:EBd

Anonymous:2010:EBe

Anonymous:2010:EBf

Anonymous:2010:EBg

Anonymous:2010:EBh

Anonymous:2010:EBi

Anonymous:2010:EBj

Anonymous:2010:EBk

Anonymous:2010:EBl

Anonymous:2010:GDS

Anonymous:2010:PSI

Anonymous:2011:ADS

REFERENCES

REFERENCES

REFERENCES

Anonymous:2013:EBc

Anonymous:2013:EBd

Anonymous:2013:EBc

Anonymous:2013:EBf

Anonymous:2013:EBg

Anonymous:2013:EBh
REFERENCES

Anonymous:2014:EBd

Anonymous:2015:BPC

Anonymous:2015:EBa

Anonymous:2015:EBb

Anonymous:2015:EBc

Anonymous:2015:EBd

REFERENCES

REFERENCES

Anonymous:2015:EBk

Anonymous:2015:EBl

Anonymous:2016:CPC

Anonymous:2016:EBa

Anonymous:2016:EBb

Anonymous:2016:EBc
Anonymous:2016:EBd

Anonymous:2016:EBe

Anonymous:2016:EBf

Anonymous:2016:EBg

Anonymous:2016:EBh

Anonymous:2016:EBi

REFERENCES

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Anonymous:2017:EBj</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2017:EBk</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2017:EBl</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2018:EBa</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2018:EBb</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2018:EBc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2018:EBd</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2019:EBk

Anonymous:2019:RTD

Anonymous:2020:CBP

Aldecoa:2015:HGG

Ayala:2014:DHI

Alcaraz-Pelegrina:2011:SPP

Aichhorn:2016:TDT

Amaku:2010:DCD

Abrarov:2010:HAA

Aragon:2014:CIAa

Ahmed:2011:RSM

Alexandrescu:2011:ENM

Agarwal:2016:GCA

Afibuzzaman:2018:SND

Ascasibar:2010:EMP

REFERENCES

Afshar:2013:ESR

Andrienko:2013:SHM

Acs:2018:CAS

Acs:2016:CAP

Adachi:2019:SCM

Avery:2019:XNV

Avidor:2019:PP1

Adhikari:2013:CWP

Assmann:2016:WOC

An:2011:SCM

Avery:2017:CRO

Avery:2017:ROS

Azadegan:2013:MPC

REFERENCES

REFERENCES

[Barletta:2011:CCD]

[Barnard:2011:UEM]

[Barletta:2012:CCD]

[Bigaouette:2012:NGM]
Bourchtein:2010:ICN

Bourchtein:2012:SIT

Bazavov:2013:PPM

Brambilla:2013:EIB

Beerwerth:2015:KSM
Belanger:2011:ISD

Barducci:2015:XEQ

Basagaoglu:2017:CPS

Bazan:2017:SDP

Barducci:2018:CLN

Bethune:2019:MSE

Baron:2011:CKD

Basso:2013:PGS

Bogner:2013:CNQ

REFERENCES

171

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Beliakov:2013:EIBb

Bolis:2016:APA

Bazzotti:2010:UGA

Belyaev:2013:CCP

Beale:2016:OSC

REFERENCES

Belanger:2011:SLI

Bertone:2014:APE

Bali:2010:ENR

Blanes:2017:HOC

Busato:2018:OOT

REFERENCES

REFERENCES

Beuria:2018:LCP

Bonciani:2019:NRC

Butykai:2017:PPF

Barrio:2018:OLA

Barasinski:2011:QEH

A. Barasiński, A. Drzewiński, and G. Kamieniarz. Quantum effects and Haldane gap in magnetic chains with al-

Belov:2010:HXB

Beck:2019:ASO

Berger:2016:HWN

Bell:2015:ETC

REFERENCES

Byun:2017:DSI

Berg:2014:DSS

Berg:2016:CLS

Berg:2016:LSF

Beu:2011:SFA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Busa:2012:ACO

Brein:2013:VHS

Bingemann:2013:SIS

Biswas:2015:IAD

Brugnano:2012:TSF

REFERENCES

REFERENCES

REFERENCES

Bilal:2014:TPS

Barnes:2017:ITE

Bytev:2013:HHF

Blobel:2011:FAC

REFERENCE

[BKPT12] W. Michael Brown, Axel Kohlmeyer, Steven J. Plimpton, and Arnold N. Tharrington. Implementing molec-
REFERENCES

Biborski:2015:CSD
Bakx:2016:FSO
Batistakis:2014:SGT
Benedetti:2018:CM
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bhattacharya:2014:EPT

Brazzano:2016:BMA

Bernaschi:2011:BGC

Brock:2016:FBO

Bhat:2018:OES

Pushpalatha C. Bhat, Harrison B. Prosper, Sezen Sekmen, and Chip Stewart. Optimizing event selection with

Brewin:2010:BIC

Bruneval:2016:MMB

Bespamyatnov:2012:ANB

Brunetti:2013:FFG

Barash:2011:RPL
REFERENCES

REFERENCES

[Barker:2015:DDT]

[Begau:2015:ADL]

[Bernal:2013:AGM]

[Borgoo:2010:MED]

[Blinne:2018:SAN]
REFERENCES

[B Buckley:2012:FSP]

[Buckeridge:2014:APD]

[Basko:2017:HML]

REFERENCES

REFERENCES

[Block:2010:MGA] Benjamin Block, Peter Virnau, and Tobias Preis. Multi-GPU accelerated multi-spin Monte Carlo simulations of

REFERENCES

REFERENCES

Brown:2013:IMD

Buaria:2017:HSP

Comesana:2013:SSP

Cai:2011:CSB

Chaabane:2011:ATD

REFERENCES

Cheng:2015:JHN

Ciaramella:2015:SFS

Ciaramella:2016:LCS

Cooper:2016:PBM

Cardall:2017:GNB

Clay:2018:GAP

Carrettoni:2010:GNT

Cho:2010:WFM

Cho:2012:RWW

Chen:2014:ECC

REFERENCES

[CCEC+11] Luis Cabellos, Isabel Campos, Enol Fernández del Castillo, Michal Owsiak, Bartek Palak, and Marcin Plóciennik. Scientific workflow orchestration interoperating HTC and HPC

[C CCLL18] Yong Cai, Xiangyang Cui, Guangyao Li, and Wenyang Liu. A parallel finite element procedure for contact-impact problems...

Charbonnier:2012:CCR

Cowan:2017:RAF

Chien:2010:TSC

Chen:2011:USF

Chen:2015:CPP
REFERENCES

Corno:2016:ISL

Chen:2012:RTI

Chiron:2019:FAS

Castro:2011:UOO

Crespo:2015:DOS

-Capuzzo-Dolcetta:2013:PCD-

-Chowdhury:2013:EAT-

-Carapelle:2011:HMC-

-Consiglio:2018:PR-

REFERENCES

REFERENCES

ISSN 0010-4655 (print), 1879-2944 (electronic). URL

[CFW17] M. A. Chilenski, I. C. Faust, and J. R. Walk. eqtools: Modular, extensible, open-source, cross-machine Python tools

Contino:2014:EIH

Cullen:2011:GLO

Cimrak:2014:EIE

Castro:2017:JFA

REFERENCES

REFERENCES

[CHW+15] Hai-Xia Cheng, Yao-Wen Hu, Xiao-Xu Wang, Guo-Hua Zhang, Zhi-Wei An, Zhen-Feng Zhang, Biao Zhang, Tao Zhou, Ping Qian, Ying Liu, and Nan-Xian Chen. The phase stability, magnetic and vibrational properties of

Catterall:2012:OOC

Chang:2011:ESQ

Chen:2017:SFE

Ciappina:2012:SSC

Cunningham:2018:CSG

REFERENCES

Czyz:2019:EUE

Cichy:2013:LHA

Chojnacki:2012:TTH

Cho:2011:CPB

Cullen:2011:SFL

REFERENCES

Chen:2016:PEC

Cha:2011:WDW

Chau:2011:MAS

Cheng:2011:IRE

Cai:2010:ACT

REFERENCES

REFERENCES

Cardenas-Montes:2014:PPH

Cardenas-Montes:2016:RSI

Cyrol:2017:FMT

Cardenas-Montes:2018:VTR

Chekanov:2014:PIO

Cunha:2014:UQT

Cerda:2018:HST

Czerwinski:2011:TVL

Campoli:2019:KKA

Colavecchia:2014:ASA

REFERENCES

Chernatynskiy:2015:PTS

Cercos-Pita:2018:NGF

Ciappina:2014:CCS

Cherfils:2012:JPS

Certik:2013:DRG

REFERENCES

REFERENCES

Croker:2016:NDG

K. A. S. Croker.

ngrav: Distinct gravitational interactions in GADGET-2.

Chun:2010:HPT

Changbum Chun and Rathinasamy Sakthivel. Homotopy perturbation technique for solving two-point boundary value problems — comparison with other methods.

Chandrasekar:2016:EEC

K. Silpaja Chandrasekar and M. V. Sangaranarayanan. Exact enumeration of conformations for two and three dimensional lattice proteins.

Chen:2017:RLO

Parry Y. Chen and Yonatan Sivan. Robust location of optical fiber modes via the argument principle method.

Cardoso:2013:LGF

Nuno Cardoso, Paulo J. Silva, Pedro Bicudo, and Orlando Oliveira. Landau gauge fixing on GPUs.

REFERENCES

Campolongo:2011:SQS

[CSC11] Francesca Campolongo, Andrea Saltelli, and Jessica Cari-
boni. From screening to quantitative sensitivity analy-
sis. A unified approach. *Computer Physics Communi-

Chen:2017:UHS

[CSJ+17] Yongpin P. Chen, Wei E. I. Sha, Lijun Jiang, Min Meng,
Yu Mao Wu, and Weng Cho Chew. A unified Hamilton-
ian solution to Maxwell–Schrödinger equations for mod-
eling electromagnetic field-particle interaction. *Computer Physics Communications*, 215(??):63–70, June 2017. CO-
DEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-

Choi:2019:CMP

[CSK+19] Sangkook Choi, Patrick Semon, Byungkyun Kang, An-
drey Kutepov, and Gabriel Kotliar. ComDMFT: a mas-
ively parallel computer package for the electronic struc-
ture of correlated-electron systems. *Computer Physics Communications*, 244(??):277–294, November 2019. CO-
DEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-

Cho:2013:EOP

[CSL+13] T. H. Cho, W. S. Su, T. C. Leung, Wei Ren, and
C. T. Chan. Electronic and optical properties of bun-
dled single-walled carbon nanotubes investigated by the
first-principles method. *Computer Physics Communica-
tions*, 184(4):1077–1085, April 2013. CODEN CPHCBZ.
REFERENCES

[Clark:2018:PMB] M. A. Clark, Alexei Strelchenko, Alejandro Vaquero, Mathias Wagner, and Evan Weinberg. Pushing memory bandwidth limitations through efficient implementations of block-
REFERENCES

[CXG+19] Zhenping Chen, Jinsen Xie, Qian Guo, Qin Xie, Zijing Liu, Wenjie Zeng, Chao Xie, Pengcheng Zhao, and Tao Yu. Physics-oriented optimization strategy for the energy lookup algorithm in continuous energy Monte Carlo

Chen:2019:ELF

Chen:2019:ELF

Chane-Yook:2011:UUC

Cartalade:2019:MRT

REFERENCES

Curtis:2014:STS

Chen:2010:MSS

Chen:2019:AEA

Dixit:2016:ICX

REFERENCES

Daniluk:2019:RIT

deAnda-Suarez:2019:POS

Dattani:2013:FMP

Dalitz:2019:ATR

DiNapoli:2013:BIE
[DB13] Edoardo Di Napoli and Mario Berljafa. Block iterative eigensolvers for sequences of correlated eigenvalue problems. *Com-

REFERENCES

Daly:2012:MPC

Davis:2011:SSO

Dolfi:2014:MPS

Ducrozet:2016:HOO

DAlessandro:2018:DOS

Valerio D’Alessandro, Lorenzo Binci, Sergio Montelpare, and Renato Ricci. On the development of OpenFOAM solvers based on explicit and implicit high-order Runge–Kutta schemes for incompressible flows with heat transfer.

REFERENCES

Denner:2017:CFB

Ben:2019:LSG

Drees:2015:CCY

Dercks:2017:CML

Doi:2013:UCA

Degrande:2015:AEU

Demchik:2011:PRN

Demeter:2013:SMB

DePalma:2019:PPI

REFERENCES

Deuar:2016:TPL

Deveikis:2012:CPT

Degiacomi:2016:ECP

Delzanno:2011:FDA

Duhr:2011:SMF

Duchemin:2010:SAA

Durand:2016:ECP

Dugan:2013:CGP

Dasgupta:2019:FSO

Dhote:2015:SMA

REFERENCES

Dominguez-Garcia:2018:JIA

Davidson:2011:MTV

Donnel:2019:MSC

Dunster:2017:CEM

deHaan:2011:IIW

REFERENCES

DeRaedt:2019:MPQ

Dieterich:2014:SMP

Djouadi:2019:HTY

Dolgov:2014:CEE

REFERENCES

REFERENCES

G. M. Doctors, M. D. Mazzeo, and P. V. Coveney. A computationally efficient method for simulating fluid flow in

REFERENCES

REFERENCES

Duy:2014:TDD

Deluzet:2017:DAS

Dobrowolski:2016:SEP

Napoli:2017:HPG

Delage:2015:PID

REFERENCES

DeVuyst:2013:GAN

Dlamini:2013:QDC

Dlotko:2013:PIA

Decyk:2014:PCA

Dybiec:2015:ESE
REFERENCES

REFERENCES

[daSilva:2013:PMI]

[Dixit:2011:APD]

[Dhaka:2011:EMD]

[Dunzlaff:2015:SPT]

[Dupuy:2010:FDS]
Deslippe:2012:BMP

Dunsch:2019:RIL

daSilva:2013:SNM

DelBen:2015:ESF

duToit:2018:PPS

Duarte:2010:CII

Duarte:2012:CEM

Duff:2016:MRF

Deinega:2011:LTB

Degroote:2011:FRP

Matthias Degroote, Dimitri Van Neck, and Carlo Barbieri.
Faddeev Random Phase Approximation for molecules.
CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).

Dai:2019:GSI

Gyrokinetic simulation of ITG turbulence with toroidal geometry including the magnetic axis by using field-aligned coordinates.
Computer Physics Communications, 242(??):72–82, September 2019.
CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).

Deng:2013:FNF

Dingwen Deng and Chengjian Zhang.
A family of new fourth-order solvers for a nonlinear damped wave equation.
CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).

Dai:2015:ASM

Fu-Zhi Dai and Wen-Zheng Zhang.
An automatic and simple method for specifying dislocation features in atomistic simulations.
Computer Physics Communications, 188(??):103–109, March 2015.
CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).

Ebadi:2013:BSC

Hossein Ebadi.
Bound state calculation of two-component Klein–Gordon equation with damped-relaxation technique.
CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).
Eder:2014:AMA

Eder:2017:MAA

Eilert:2017:FNM

Edgar:2010:EHT

Eriksson:2016:CFN

[ECSH16] J. Eriksson, S. Conroy, E. Andersson Sundén, and C. Helleisen. Calculating fusion neutron energy spectra from arbi-

Markus Eisenbach, Jeff Larkin, Justin Lutjens, Steven Ren-
nich, and James H. Rogers. GPU acceleration of the Lo-
cally Selfconsistent Multiple Scattering code for first prin-
ciples calculation of the ground state and statistical physics of
materials. Computer Physics Communications, 211(??):2–7,
February 2017. CODEN CPHCBZ. ISSN 0010-4655 (print),
com/science/article/pii/S0010465516301953.

Joshua P. Ellis. Ti\textsc{k}Z-Feynman: Feynman diagrams with
\textsc{Ti}\textsc{k}Z. Computer Physics Communications, 210(??):103–123,
January 2017. CODEN CPHCBZ. ISSN 0010-4655 (print),
com/science/article/pii/S0010465516302521.

D. Emeliyanov. A new algorithm for fitting tracks with
energy losses due to Bremsstrahlung. Computer Physics
Communications, 182(7):1491–1501, July 2011. CODEN
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic). URL
http://www.sciencedirect.com/science/article/
pii/S0010465511001202.

Isabell Engeln, Margarete Mühlleitner, and Jonas Witt-
tbrodt. N2HDECAY: Higgs boson decays in the dif-
ferent phases of the N2HDM. Computer Physics Com-
munications, 234(??):256–262, January 2019. CODEN
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0010465518302777.

Gergely Endrödi. Multidimensional spline integration of
scattered data. Computer Physics Communications, 182
(6):1307–1314, June 2011. CODEN CPHCBZ. ISSN 0010-
sciencedirect.com/science/article/pii/S0010465511000877
REFERENCES

REFERENCES

REFERENCES

Eriksson:2010:THDb

Eriksson:2010:ETH

Erturk:2015:ETO

Engel:2011:TTM

Eberl:2016:GDS

REFERENCES

Eremin:2014:NSD

Eremin:2016:DSM

Exl:2017:GAE

Egami:2011:FPS

Eckert:2016:HAL

Eaves:2016:CRV

Fang:2019:FSD

Fawzy:2010:CAF

Furuseth:2019:PHP

REFERENCES

Carlos E. Fiore and Cláudio J. DaSilva. Equivalence between microcanonical ensembles for lattice models. Computer
REFERENCES

Ferrero:2012:SPM

Fambri:2017:STA

Fleischhaker:2011:MSS

Frisch:2011:HPP

Feng:2012:AGM

Feng Feng. \textbackslashapart: a generalized Mathematica \textbackslashapart function. Computer Physics Communications, 183(10):2158–
REFERENCES

REFERENCES

[FGGM11] Edward Farhi, Jeffrey Goldstone, David Gosset, and Harvey B. Meyer. A quantum Monte Carlo method at fixed en-
REFERENCES

Fillion-Gourdeau:2012:NST

Franco:2014:OET

REFERENCES

REFERENCES

REFERENCES

Fernandes:2010:BCM

Feng:2013:ICI

Fang:2010:ERM

Foerster:2017:CAC

Fan:2018:VCJ
Fiori:2012:NAA

Furuichi:2015:ISM

Favata:2016:ABM

Fang:2010:ERT

Furuichi:2017:ILB
Frances:2010:RID

Frances:2015:MGM

Fonseca:2012:CRG

Fowlie:2018:FCI

Francisco:2014:END

REFERENCES

REFERENCES

REFERENCES

Fan:2016:MPM

Faik:2018:ESP

Fu:2019:LDF

Fu:2019:VHO

Fuhrmann:2015:CNT

Fukushima:2017:NCE

Fan:2014:ELS

Fan:2018:GEL

Fernandes:2011:NRM

Frust:2017:RDP

REFERENCES

REFERENCES

REFERENCES

[Grandgirard:2016:GFG]

[Gaenko:2017:UCL]

[Gagunashvili:2012:CCT]

[Gagunashvili:2012:CCG]

Garnier:2019:DVC

Gramada:2011:CGE

Green:2014:IAP

Guo:2017:GIR

Gomes:2018:ERL

REFERENCES

Gebremariam:2010:SCH

Grossu:2014:HPF

Grossu:2010:CCC

Grossu:2012:CCC

Grossu:2013:CMB

REFERENCES

Grossu:2015:SMP

Grossu:2019:IQC

Gray:2012:MAP

Gabay:2017:OKM

Garnier:2013:EPB

Ge:2014:THF

Gonzalez-Ballestero:2011:NSE

Groen:2016:FFC

Guskova:2016:RPL

Green:2018:KJC

Gontchar:2010:CCD

Gontchar:2013:CCD

Gontchar:2016:DCC

[GC16] I. I. Gontchar and M. V. Chushnyakova. DFMSPH14: a C-code for the double folding interaction potential of

A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky, and A. G. Abrashkevich. POTHEA: a program for computing eigen-

Gonzalez:2014:FIP

Gebremariam:2010:SIP

Gins:2018:ACD

Geneste:2010:FEF
REFERENCES

REFERENCES

[GHvdL11] Ralf Gamillscheg, Gundolf Haase, and Wolfgang von der Linden. A numerical projection technique for large-

[Gio18] Toni Giorgino. How to differentiate collective variables in free energy codes: Computer-algebra code genera-

Gonze:2016:RDA

Gross:2011:MPR

Gronbech-Jensen:2014:AGJ

Gherardi:2012:HDS

Gawronski:2011:CDB

Germanas:2010:CFP

Garcia:2013:SEP

Gerhard:2013:RHG

Gao:2013:MPC

Guo:2014:CFE

Guan:2014:NAS

Georgoudis:2017:AAG

Ghodrat:2011:MDS

Grisins:2014:MHT

Gonoskov:2016:SSP

Gituliar:2017:FTR

Gupta:2018:ALQ

Garcia:2018:SCM

Gao:2017:PDF

Grise:2011:SRU

Guo:2019:EFD

Gao:2015:TSG

REFERENCES

Gebhardt:2019:BDA

Green:2018:ASP

Grichine:2010:GHE

Grigera:2011:GGL

Guo:2018:NMP
REFERENCES

Ghosh:2017:SAEb

Ghosh:2017:SAEa

Golosio:2014:MCS

Guckenberger:2016:BAS

REFERENCES

References

Gil:2017:ECL

Germaneau:2013:IMB

Green:2019:DDM

Gudmundsson:2011:TDM

Galler:2019:APV

Anna Galler, Patrik Thunström, Josef Kaufmann, Matthias Pickem, Jan M. Tomczaka, and Karsten Held. The AbinitioD Γ A Project v1.0: Non-local correlations beyond and

Gomez:2014:SOT

Galindo-Torres:2013:LBM

Godfrey:2015:INC

Tomasz M. Gwizdalla. The hybrid algorithm for the study of geometric configurations of 2D clusters of uniformly charged classical particles. *Computer Physics Communications*, 183(9):1899–1903, September 2012. CODEN

REFERENCES

Hahn:2012:HEP

Hopfer:2013:SGG

Hahn:2016:CC

Hirvijoki:2014:ASK

Hakel:2016:FFE

Hakel:2019:FFE

Hall:2017:SRD

Hamada:2011:GAI

Howard:2016:ENL

Hasegawa:2011:PRG

Halverson:2013:EMM

Hudspith:2015:FAC

Haskey:2014:CPM

Hansel:2015:AGH

Hung:2011:ETI

REFERENCES

References

Halder:2017:JSV

He:2019:FLA

Hynninen:2012:MDI

Hadade:2016:MMM

Hu:2014:MSM

REFERENCES

Honda:2016:DFT

Harvey:2015:PIL

Hischenhuber:2012:MCM

Hoefling:2013:SFS

Hernandez-Garcia:2015:CAS

REFERENCES

Hoschele:2014:MMP

Hynninen:2016:OOP

Hung:2010:IPP

Huang:2014:OTE

REFERENCES

REFERENCES

REFERENCES

Homann:2018:SGC

Hedin:2019:GPF

Hutson:2019:BNF

Hutson:2019:MPN

Hu:2013:PSG

[HLD13] HanPing Hu, LingFeng Liu, and NaiDa Ding. Pseudorandom sequence generator based on the Chen chaotic system.
Hao:2013:NIV

He:2016:OSA

Harlander:2013:SPC

Harlander:2017:SBB

Qing Hou, Min Li, Yulu Zhou, Jiechao Cui, Zhenguo Cui, and Jun Wang. Molecular dynamics simulations with many-body potentials on multiple GPUs-the implementa-

REFERENCES

REFERENCES

Honda:2010:STF

Honda:2018:AGA

Hsu:2011:FMC

Hammer:2014:SGL

Hahn:2017:IIM

Peter Hill, Brendan Shanahan, and Ben Dudson. Dirichlet boundary conditions for arbitrary-shaped boundaries

REFERENCES

REFERENCES

Hollis:2014:TRT

Huang:2017:LLC

Huang:2017:IQV

Haelterman:2015:ACT

Honkonen:2013:PGL

REFERENCES

Hulsmann:2010:ANO

Hawkes:2019:CMM

Hehn:2017:HTS

Huang:2011:NSL

Hutchinson:2012:VGA
Huang:2011:ESC

Hafermann:2013:EIC

Hu:2017:KOS

Huang:2015:IOS

Li Huang, Yilin Wang, Zi Yang Meng, Liang Du, Philipp Werner, and Xi Dai. iQIST: an open source continuous-
REFERENCES

Held:2016:TDG

Holmes:2010:EBA

Huang:2012:DCC

Hou:2013:EGA

REFERENCES

Hoshino:2011:PIS

Hu:2011:CFD

Huang:2019:CCN

Huang:2016:FGI

Ho:2019:MLP
Ilyushin:2011:APF

Ismailov:2018:TDP

Iniguez:2011:MOF

Innocenti:2015:ITS

Moxley:2013:GFD

REFERENCES

Ito:2016:IRE

Ikeno:2018:MLF

Iserles:2019:CSL

Incardona:2019:OSO

Nomura:2015:ELS
REFERENCES

REFERENCES

REFERENCES

Jarema:2016:BSG

Jarema:2017:BSG

Jamali:2015:GIA

Jefferson:2013:AAS

Jefferson:2014:FAS

Jaeken:2016:SCE

Jezequel:2010:NVC

Jiang:2018:ESS

Jia:2013:APW

Julia-Diaz:2012:SEA

REFERENCES

REFERENCES

REFERENCES

[Jiao:2015:CTE]

[Jamshidi:2019:SPF]

[Jiang:2014:NMM]

[Jolliet:2015:NAP]

[Jia:2018:NVF]

REFERENCES

[JKG+18] InSuk Joung, Jong Yun Kim, Steven P. Gross, Keehyoung Joo, and Jooyoung Lee. Conformational Space Annealing explained: a general optimization algorithm, with diverse applications. Computer Physics Communications, 223(??):28–33, February 2018. CODEN CPHCBZ.

REFERENCES

REFERENCES

REFERENCES

[Jakubczyk:2012:CIK]

[JZJ18] Tongsong Jiang, Zhaozhong Zhang, and Ziwu Jiang. Algebraic techniques for eigenvalues and eigenvectors of a split

Kant:2014:FLD

Kaneko:2018:CNF

Kaprzyk:2012:AFI

Kaprzyk:2012:AFS

Kappl:2016:SCS

Khan:2015:STP

Kawamura:2019:FFS

Kabin:2015:MCP

Kittelmann:2015:PNS

Kahl:2019:APH

Kjaergaard:2017:MPL

[KBB+17] Thomas Kjærgaard, Pablo Baudin, Dmytro Bykov, Janus Juul Erik sen, Patrick Ettenhuber, Kasper Kristensen, Jeff Larkin,

Khankhoje:2014:MRS

Khaziev:2018:HSE

Knuth:2015:AEF

Kim:2011:PPP

Kassar:2018:CCV

[Bruno B. M. Kassar, João N. E. Carneiro, and Angela O. Nieckele. Curvature computation in volume-of-fluid method...
REFERENCES

Kong:2011:IVG

Karimi:2017:PNO

Kuijpers:2014:OLD

Kauzlaric:2014:SSP

Kalantzis:2012:UST

REFERENCES

Kerby:2017:EDN

Kim:2016:CGS

Koehne:2013:PTP

Kachman:2017:NIM

Khayyer:2018:EIS

Korpilo:2016:GFT

Kunze:2010:LTM

Kroger:2010:ASC

Kar:2011:RSP

Kleiber:2012:PMF

Kleiber, R. Kleiber and R. Hatzky. A partly matrix-free solver for the gyrokinetic field equation in three-dimensional geometry.
REFERENCES

[KHKR14] Andreas Krämer, Marco Hülsmann, Thorsten Köddermann, and Dirk Reith. Automated parameterization of intermolec-

REFERENCES

Kirby:2010:CRP

Kamali:2013:IMF

Khoromskaia:2014:MPM

Khoromskaia:2014:GBL

Kafri:2016:BPN

P. Kant, O. M. Kind, T. Kintscher, T. Lohse, T. Martini, S. Mölbitz, P. Rieck, and P. Uwer. HatHor for single top-quark production: Updated predictions and uncertainty estimates for single top-quark production in hadronic collisions. *Computer Physics Communications*, 191(??):74–89,
REFERENCES

[KKS18] Roman Korol, Michael Kilgour, and Dvira Segal. ProbeZT: Simulation of transport coefficients of molecular elec-

Kanemura:2018:HCP

Kleefeld:2011:NLM

Kuo:2014:TLO

Kim:2017:NCV

Kao:2011:DAB

REFERENCES

REFERENCES

REFERENCES

Kaur:2013:HWA

Kim:2019:SGS

Kachelriess:2019:AIR

Kalogiratou:2014:FOM

Klimenkova:2019:VSL

Kohno:2013:NML

Klein:2017:SMC

Komura:2012:GBS

Komura:2013:MGB

REFERENCES

Kirsanskas:2017:QOS

Kramer:2018:QJJ

Kumar:2013:PGS

Kozlov:2015:CMP

Kniehl:2016:MCL

[KPV16] Bernd A. Kniehl, Andrey F. Pikelner, and Oleg L. Veretin. *mr*: a C++ library for the matching and running of

Kuipers:2013:IMH

Kwon:2017:ITT

Kumar:2014:NAM

Kylanpaa:2016:EES

Krawczyk:2010:ADE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

YoungJin Kim, Min-Gu Yoo, S. H. Kim, and Yong-Su Na. Corrigendum to “Development of vector following mesh gen-

Kim:2015:DVF

Kawamura:2017:QLM

Kumar:2015:FPT

Keren-Zur:2011:HIE

Lozano:2017:ECA

Lanzafame:2013:IIS

Locans:2017:RTC

Law:2019:ICD

Lazic:2015:CCT

Jungpyo Lee and Antoine Cerfon. ECOM: a fast and accurate solver for toroidal axisymmetric MHD equilibria. *Computer...

Lu:2013:AAF

Lamotte:2010:CVC

Li:2014:SSB

Lin:2011:HBS

Li:2018:MDL

Lundberg:2010:LDC

Lee:2011:LEE

Lakestani:2010:CFD

Lakestani:2010:NSR

REFERENCES

Lambert:2012:TRT

Li:2013:SDE

Lopez:2019:VAV

Lopez:2018:VIS

REFERENCES

Liu:2015:PTA

Lv:2016:OSM

Liu:2019:ICF

Lee:2011:GWB

Lee:2011:TDS

REFERENCES

REFERENCES

467

REFERENCES

Li:2015:CLW

Lan:2019:TDG

Lee:2017:PFS

Liao:2014:NSF

Luo:2014:FCM

REFERENCES

REFERENCES

Lopez:2015:CSJ

Litsarev:2014:DCC

Lee:2016:IMD

Liu:2018:ASE

Luukko:2016:CIT

Larsen:2018:MMPa

Larsen:2018:MMPb

Li:2011:GTR

Luo:2013:IMM

Lopez:2015:DNV

Lopez:2017:TME

Lujan:2019:LTG

Levchenko:2015:HFL

Londero:2011:VPV

Li:2012:NMS

Lindner:2012:SXR

Luscher:2013:LQO

Leetmaa:2014:KGF

REFERENCES

Leidi:2012:CEP

Lopez:2013:ISP

Lin:2013:TDR

Lourderaj:2014:VNS

Lichtenstein:2017:HPF

[Liu:2012:AEP] Mingzhe Liu, Xianguo Tuo, Zhe Li, Jianbo Yang, and Yang Gao. Asymmetric exclusion process for model-
REFERENCES

REFERENCES

Loppi:2018:HOC

Li:2011:MCS

Li:2012:HDM

Los:2017:IAI

Luo:2016:GAC

Xisheng Luo, Luying Wang, Wei Ran, and Fenghua Qin. GPU accelerated cell-based adaptive mesh refinement on unstructured quadrilateral grid. *Computer Physics Communications*, 207(??):114–122, October 2016. CODEN
REFERENCES

Ling:2010:HTS

Sitao Ling, Minghui Wang, and Musheng Wei. Hermi-
tian tridiagonal solution with the least norm to quater-
nionic least squares problem. *Computer Physics Commu-

Li:2011:TSE

Jiyong Li, Bin Wang, Xiong You, and Xinyuan Wu. Two-
step extended RKN methods for oscillatory systems. *Com-
puter Physics Communications*, 182(12):2486–2507, Decem-
ber 2011. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-
science/article/pii/S0010465511002451.

Li:2014:LAB

Hongwei Li, Xiaonan Wu, and Jiwei Zhang. Local artifi-
cial boundary conditions for Schrödinger and heat equations
by using high-order azimuth derivatives on circular artificial
boundary. *Computer Physics Communications*, 185(6):1606–
1615, June 2014. CODEN CPHCBZ. ISSN 0010-4655 (print),
com/science/article/pii/S0010465514000794.

Lang:2012:QBS

Feng-Gong Lang and Xiao-Ping Xu. Quintic B-spline collo-
dication method for second order mixed boundary value prob-
com/science/article/pii/S001046551100405X.

Li:2014:SCC

Chao Li and Hailing Xiong. 3D simulation of the Cluster–
Cluster Aggregation model. *Computer Physics Commu-
Li:2018:CTD

Lorin:2016:FGA

Lyakh:2015:ETT

Lee:2019:SNE

Li:2010:CRN

Liu:2017:MSS

Lani:2014:GEF

Loncar:2016:OOM

Li:2017:CNC

[LYZ13] Xiangwen Lu, Jiabin Yuan, and Weiwei Zhang. Work-
flow of the Grover algorithm simulation incorporating
CUDA and GPGPU. *Computer Physics Communications*,
184(9):2035–2041, September 2013. CODEN CPHCBZ.
ISSN 0010-4655 (print), 1879-2944 (electronic). URL

evolutionary algorithm for crystal structure prediction. *Com-
puter Physics Communications*, 182(2):372–387, February
2011. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-
science/article/pii/S0010465510003140.

An open-source evolutionary algorithm for crystal struc-
ture prediction. *Computer Physics Communications*,
182(10):2305–2306, October 2011. CODEN CPHCBZ.
ISSN 0010-4655 (print), 1879-2944 (electronic). URL

structures: XtalComp, an open-source solution. *Computer
Physics Communications*, 183(3):690–697, March 2012. CO-
DEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-
article/pii/S0010465511003699.

[Li:2017:ESI] Xujing Li and Leonid E. Zakharov. Equilibrium Spline In-
terface (ESI) for magnetic confinement codes. *Computer
Physics Communications*, 221(??):358–382, December 2017.
CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-
article/pii/S0010465517302618.
Liu:2018:AAA

Li:2011:FPC

Levin:2012:FFF

Li:2010:SSW

Mohebbi:2011:ENA

Magoga:2012:NSF

Magniette:2018:SAP

Maitre:2012:EHC

Molero-Armenta:2014:OOI

Mohammed-Azizi:2014:SPC

Marti:2015:CCV

Marucho:2019:JAC

Maurer:2016:TVT

Madhikar:2018:CGA

Mazzeo:2013:FDG

REFERENCES

[MBF+10] Oliver Marquardt, Sixten Boeck, Christoph Freysoldt, Tilmann Hickel, and Jörg Neugebauer. Plane-wave im-

Michalicek:2013:ELE

Moxley:2012:GFD

Mickevicius:2011:FPH

Motta:2015:ILM

REFERENCES

Myneni:2017:CEE

Mani:2017:RPR

Miqueles:2014:ART

Mitnik:2011:CMG

<table>
<thead>
<tr>
<th>References</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
</table>

REFERENCES 501

Ma:2016:SPC

Martinec:2018:SPS

Maintz:2011:SPW

Mercado:2012:WAS

Meleshko:2019:CSC

REFERENCES

REFERENCES

Muller:2013:PLA

Moran:2019:FIT

Mena:2015:GAS

Martins:2010:NSL

McConnell:2010:DNV

Muller:2010:GTE

Muller:2010:UVM

Makkonen:2013:SDS

Meena:2018:PPP

Deep Raj Meena, Shridhar R. Gadre, and P. Balanarayan. PAREMD: a parallel program for the evaluation of momentum space properties of atoms and molecules. *Computer Physics Communications*, 224(?):299–310, March 2018. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-
REFERENCES

Mostaco-Guidolin:2012:SOS

Mickeyvic:2013:RCF

Marojevic:2013:EEG

Marojevic:2016:APF

Masala:2013:IMC

REFERENCES

[MH18] Lijie Mei and Li Huang. Reliability of Lyapunov characteristic exponents computed by the two-particle method.
Mahmoudi:2012:FHA

Ma:2011:MCH

Mick:2013:GAG

Mick:2013:GAG

Maldonis:2017:FHS

REFERENCES

Moddel:2011:AFP

Munoz:2018:NHC

Mierzwiczak:2010:AMF

Morita:2019:CHO

Morozov:2011:MDS

I. V. Morozov, A. M. Kazennov, R. G. Bystryi, G. E. Norman, V. V. Pisarev, and V. V. Stegailov. Molecular dynamics simulations of the relaxation processes in

Makwana:2017:TWC

Manka-Krasoń:2010:CRL

Merz:2012:MDG

Monovasilis:2010:SPR

Matsumoto:2012:ATV

Masaharu Matsumoto, Yoshihiro Kajimura, Hideyuki Usui, Ikkoh Funaki, and Iku Shinohara. Application of a to-
REFERENCES

Mennemann:2019:OCS

Markosyan:2014:PTF

Mosyagin:2017:ICP

Mosyagin:2019:RCM

Manuali:2010:GGF

A. Mirza, P. Nizenkov, M. Pfeiffer, and S. Fasoulas. Three-dimensional implementation of the Low Diffusion method

Marques:2012:LLE

Mackay:2013:HFI

Mohammadi:2014:ESS

Mao:2011:ERM

Menz:2010:TIT

McClure:2014:NHA

Marchand:2013:LPC

Miqueles:2015:GIX

Mohankumar:2013:SCE

Mawson:2014:MTO

REFERENCES

Mondragon-Shem:2010:ECC

Murano:2014:FCC

Mi:2016:ARS

Matveev:2018:AAM

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

C. M. Maynard and D. N. Walters. Mixed-precision arithmetic in the ENDGame dynamical core of the Unified Model, a numerical weather prediction and climate model code.
REFERENCES

REFERENCES

science/article/pii/S0010465509002069. See erratum [Nat10].

REFERENCES

[NFD+19] Saeid Nezamabadi, Xavier Frank, Jean-Yves Delenne, Julien Averseng, and Farhang Radjai. Parallel implicit contact

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume/Issue/Range</th>
<th>Date</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
</table>
References

REFERENCES

Nogueira:2017:FRCa

Nogueira:2017:FRCb

Nejad:2015:SPV

Novotny:2017:PMG

Nguyen:2019:APM

REFERENCES

Masashi Noda, Shunsuke A. Sato, Yuta Hirokawa, Mitsuharu Uemoto, Takashi Takeuchi, Shunsuke Yamada, Atsushi Yamada, Yasushi Shinohara, Maiku Yamaguchi,

Nguyen:2014:CLM

Nutma:2014:XFT

Nunez-Valdez:2018:ETC

Norris:2013:ALB

Olson:2010:PFL

Ou:2013:EME

Ortwein:2019:PLA

Odrzywolek:2011:GIR

Okuyan:2014:BTP

REFERENCES

OGREN:2011:SSF

[ÖKC11]

OK:2012:MOO

[OKM12]

OGOYSKI:2010:COU

[OKP10]

OGARKO:2012:FMA

[OL12]

OLG*16

[Ono:2015:TAE] Shota Ono, Yoshifumi Noguchi, Ryoji Sahara, Yoshiyuki Kawazoe, and Kaoru Ohno. TOMBO: All-electron mixed-

Okuyan:2015:TPI

Okuyan:2015:BTC

Orts:2019:FSE

Ohba:2012:LSA

Ovaysi:2012:MGA

Opletal:2011:HHR

Opletal:2014:HHR

Opletal:2013:HHR

Ossandon:2017:NNA

REFERENCES

Oredsson:2019:THD

Orgogozo:2015:RNV

Oskooi:2010:MFF

Orgogozo:2014:OSM

Osterman:2010:TOT

REFERENCES

REFERENCES

Patel:2017:PXM

Pavlyukh:2013:ERI

Puhr:2016:NMC

Pepe:2015:USF

Perona:2014:TEM

REFERENCES

Peraro:2014:NAI

Parcollet:2015:TTR

Patriarca:2019:HAQ

Peng:2010:AFC

Pfeiffer:2017:APC

REFERENCES

Pinto:2019:GTI

Pela:2017:LMI

Prandini:2019:SCO

Poya:2017:HPD

Paul:2011:SGE

Pittau:2010:TIN

Pitzer:2012:ASC

Pomerantsev:2016:FGB

Pandit:2015:NSS

Plante:2016:CST
Prusty:2012:SBC

Polyakov:2013:LSF

Peralta:2015:GEA

Papior:2017:INE

Petran:2014:SC

REFERENCES

Parand:2013:KMS

Pang:2014:GAO

Pradhan:2011:CWP

Prausa:2017:ETF

Preti:2018:WMP

M. Preti. WiLE: A Mathematica package for weak coupling expansion of Wilson loops in ABJ(M) theory. Computer Physics Communications, 227(??):126–147, June 2018. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (ele-
REFERENCES

Pletzer:2011:EMS

Porod:2012:SEI

Panopoulos:2014:NPF

Pandey:2011:AAS

Pandey:2012:ASS

[PSBT12] Ram K. Pandey, Om P. Singh, Vipul K. Baranwal, and Manoj P. Tripathi. An analytic solution for the space–time fractional advection-dispersion equation using the opti-

Pizzi:2014:UVB

Pekkila:2017:MCF

Pemmaraju:2018:VGR

Peng:2014:RCI

Park:2019:PEC

Jinsu Park, Peng Zhang, Hyunsuk Lee, Sooyoung Choi, Jiankai Yu, and Deokjung Lee. Performance evalu-

Qian:2013:VCN

Quackenbush:2013:PLF

Qiu:2010:CSG

Qiu:2014:RCE

Qiang:2010:HOF

REFERENCES

Qi:2018:ADG

Qamar:2011:STC

Qiao:2019:ETI

Qin:2019:QPP

Raffah:2013:ECW

REFERENCES

Ramadan:2010:AFA

Ramadan:2012:UME

Ramadan:2014:USS

Ramos:2019:ADE

Rosiek:2010:SCT

Rangel:2016:WBP

Ren:2016:MBD

Ren:2019:AVW

Rostrup:2010:PHP

Scott Rostrup and Hans De Sterck. Parallel hyperbolic PDE simulation on clusters: Cell versus GPU. *Computer Physics Communications*, 181(12):2164–2179, December 2010. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (ele-
REFERENCES

REFERENCES

Raj:2019:PDU

Roitgrund:2016:IML

Reiter:2010:OCG

Reis:2011:MZD

Reis:2012:MOD

REFERENCES

Rodrigues:2018:SEW

Rincon:2010:IPT

Ruokosenmaki:2017:NPI

Rohrer:2011:CSI

Rouzbahani:2017:TIS

REFERENCES

Ren:2012:HOU

Rourke:2012:NEH

Ryu:2016:TES

Ren:2016:IPS

Jiang:2011:PIC
[rJmYT11] Zhen ran Jiang, Wei ming Yu, and Ran Tao. Predicting important classes of chemokine family based on kernel method.
REFERENCES

Ren:2019:MMT

Reith:2011:MWF

Reuter:2019:CFP

Rutkai:2017:IMS

REFERENCES

REFERENCES

Juraci P. Reis, Artur F. Menezes, Edmilson M. Souza, Alessandro Facure, Jose A. C. C. Medeiros, and Ademir X. Silva. Dose optimization in 125I permanent prostate seed implants using the Monte Carlo method.

Rohe:2016:HPF

Romano:2015:AGR

Rosiek:2015:SFV

Rosiek:2016:MMP

Roehm:2015:DDK

Ryan:2010:NMM

Riikila:2015:DEM

Roidl:2018:SES

Ramis:2016:MIO

REFERENCES

Reith:2011:MCS

Ramos:2014:TFM

Regnier:2016:FFE

Rubow:2011:FAC

Russell:2015:OTD

Rozanski:2019:ECC

Sundararaman:2014:ECD

Sharma:2015:OHS

Shokri:2015:HOC

Saltelli:2010:VBS

Sjostrand:2015:IP

Staub:2016:HMP

Suleimanov:2013:RBC

Solano-Altamirano:2015:DCO

Sainio:2010:CGA

SaiToh:2013:ZCL

Sala:2012:MPP

Salac:2016:GMP

Sano:2011:FIW

Sangwine:2015:CSP

Stone:2018:AFR

Sarkadi:2017:CME

Sarkadi:2017:FPC

Sokolovski:2011:EMP

Savvidy:2015:MRN

REFERENCES

Sijoy:2015:TTT

Sibaev:2016:PFO

Sijoy:2016:CNC

Samaddar:2017:TPE

Sprengel:2017:CCC

REFERENCES

Samaddar:2019:APA

Schmid:2012:AIP

Stupovski:2011:ACT

Schiller:2014:UOS

Schwenke:2014:CHO
REFERENCES

REFERENCES

[SD10a] Bernie D. Shizgal and Raouf Dridi. Maple code for the calculation of the matrix elements of the Boltzmann col-
REFERENCES

REFERENCES

Sturmberg:2016:EOS

Schunck:2012:SSH

Schouten:2015:AME

Schunck:2017:SSH

[SDL+16

[SDM+12

[SDS15

[SDS+17]

Schimeczek:2014:HOC

Stamatiadis:2010:ATA

Santos-Filho:2011:MCS

Salvat:2019:RFS

Schlipf:2015:OAG

Sanchez-Gil:2017:NNG

Starrett:2019:WRE

Shinaoka:2017:CTH

Salib:2012:CRD

Siro:2012:EDH

Shakirov:2018:CEF

Shizgal:2016:ENQ

Smith:2011:DSI

Soin:2011:ESC

Shtabovenko:2017:FCF

REFERENCES

REFERENCES

Sinha:2012:PWL

Satake:2010:BTD

Sitnik:2014:DFMa

Sitnik:2014:DFMb

Sitnik:2016:NVF

REFERENCES

Szidarovszky:2018:LCP

Szidarovszky:2020:ELC

Sobol:2010:NDB

Seebacher:2012:TUL

Singh:2014:ENT

REFERENCES

Sen:2015:SBS

Samana:2010:QNC

Seth:2016:TCC

Smith:2010:ROB

REFERENCES

[Sudheer:2013:DLB]

[Liu:2010:ACD]

[Sun:2014:CAM]

[Santos:2016:OOI]

[Schmidt:2017:WMP]
Shih:2011:SAM

Stahl:2017:NSR

Shemyakin:2019:THP

Stahl:2017:AAP

Lu:2013:EUL

Shumlak:2011:APC

Solanpaa:2016:BSP

Shi:2019:ETD

Shi:2019:ETP

Scheffel:2018:TSA

REFERENCES

[Si:2016:LSM]

[Silva:2011:STM]

[Sauter:2013:TCC]

[Sen:2014:MCP]

[Schneider:2019:MAM]
L. Schneider and M. Müller. Multi-architecture Monte-Carlo (MC) simulation of soft coarse-grained polymeric materials: SOft coarse grained Monte-Carlo acceleration (SOMA). Computer Physics Communications,

[SMO16a] Vladyslav Shtabovenko, Rolf Mertig, and Frederik Orel-
Communications*, 207(??):432–444, October 2016. CODEN
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0010465516301709.

[SMO16b] Endre Somogyi, Andrew Abi Mansour, and Peter J. Ortol-
eva. ProtoMD: a prototyping toolkit for multiscale molecular
dynamics. *Computer Physics Communications*, 202(??):337–
350, May 2016. CODEN CPHCBZ. ISSN 0010-4655 (print),
com/science/article/pii/S0010465516300030.

VOLSCAT2.0: the new version of the package for electron
and positron scattering off molecular targets. *Computer
CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-
article/pii/S0010465518303230.

[SMUT19] Noritaka Shimizu, Takahiro Mizusaki, Yutaka Utsuno, and
Yusuke Tsunoda. Thick-restart block Lanczos method
for large-scale shell-model calculations. *Computer
Physics Communications*, 244(??):372–384, November 2019.
CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-
article/pii/S0010465519301985.

and Robin boundary conditions for heat conduction mod-
eling using smoothed particle hydrodynamics. *Computer
Physics Communications*, 198(??):1–11, January 2016. CO-
DEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-
article/pii/S0010465515002738.

REFERENCES

Solovyev:2011:RMC

Shimojo:2013:LNQ

Schulz:2011:SDS

Staub:2012:TBI

Sorensen:2019:AAS

REFERENCES

Souvatzis:2014:UVE

St-Onge:2019:ESS

Schreilechner:2016:RSF

Schwendt:2018:TBC

Shen:2018:PPC

REFERENCES

REFERENCES

Suryanarayana:2018:SSQ

Sanchez-Puga:2019:BDP

Singh:2011:AZT

Soulaine:2015:PLA

Su:2010:FPC

[SQL+10] Wei Su, Ping Qian, Ying Liu, Jiang Shen, and Nan-Xian Chen. First principle calculations of yttrium-doped palladium clusters. Computer Physics Communications,

S. Stavroyiannis and T. E. Simos. A nonlinear explicit two-step fourth algebraic order method of order infinity for...

Shkarofsky:2011:NCC

Silin:2011:HFV

Smiatek:2011:MSE

Schmidt:2012:CCP

Sezgin:2013:FBP

Bogdan Satarić, Vladimir Slavnić, Aleksandar Belić, Antun Balaz, Paulsamy Muruganandam, and Sadhan K. Adhikari. Hybrid OpenMP/MPI programs for solving the time-

REFERENCES

[SSM+17] Marcin Sylwestrzak, Daniel Szlag, Paul J. Marchand, Ashwin S. Kumar, and Theo Lasser. Massively parallel data processing for quantitative total flow imaging with optical

Schmidt:2019:ESA

Staub:2010:SMF

Staub:2011:ACS

Staub:2013:SDG

Staub:2014:STO

Salinas:2018:WBO

[STA18] Álvaro Salinas, Claudio E. Torres, and Orlando Ayala. Well-balanced open boundary condition in a lattice Boltzmann

Staub:2019:XHA

Stein:2017:FPA

Sakurai:2010:ABK

Strater:2015:PDA

Sakamoto:2011:SME

REFERENCES

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

Schimeczek:2014:MES

Shao:2014:NSN

Su:2011:FPS

Shao:2015:SOP

Shimobaba:2012:CWO

REFERENCES

Xie:2014:PGD

Xie:2019:BUT

Shao:2018:LSI

Shi:2017:DTP

Stalter:2018:MDS
REFERENCES

Scott:2015:EHS

Szalmas:2013:ADVb

Szalmas:2013:ADVa

Szalmas:2016:FID

Sarti:2013:BTE

[SA:2012:PUP]

[SA:2013:PUI]

[Thierry:2015:IDO]

[TACA15] Bertrand Thierry, Xavier Antoine, Chokri Chniti, and Hasan Alzubaidi. μ-diff: an open-source Matlab toolbox for com-

Tran:2018:CSS

Tracey:2015:FMV

Tuttafesta:2013:CUC

Tapia:2011:PCP

Taleei:2014:TSP

REFERENCES

Tchuen:2014:HNM

Tung:2011:ISM

Tramm:2016:TBP

Tripolt:2019:NAC
Titarenko:2017:HMV

TenBarge:2014:OLA

Teijeiro:2016:EPA

Torrent:2010:ESP

Tian:2011:RHO

Tickner:2010:MCS

Tickner:2014:APM

Tsukahara:2016:ILC

Tordella:2013:LES

Tabakin:2011:QM

REFERENCES

Teodoro:2011:MMS

Toyoda:2010:FSB

Toyoda:2010:LLN

Tapiador:2014:FBH

Tomasik:2016:DHG

REFERENCES

Mitsuyoshi Tomiya, Hiroyoshi Tsuyuki, and Shoichi Sakamoto. Quantum fidelity and dynamical scar states on chaotic billiard system. *Computer Physics Communications*, 182(1):
REFERENCES

[TVGB15] Iurii Timrov, Nathalie Vast, Ralph Gebauer, and Stefano Baroni. turboEELS — a code for the simulation of the electron energy loss and inelastic X-ray scattering spectra using the Liouville–Lanczos approach to time-dependent density-functional perturbation theory. Computer Physics Communications...

Thierry:2016:GOF

Tiana:2015:MIM

Tsai:2011:EML

Tretiakov:2015:QAE

REFERENCES

Ulybyshev:2019:SCS

Umeda:2018:TSB

Umeda:2019:MSB

Umeda:2012:NOC

Urano:2015:DWR

Utyuzhnikov:2014:TDU

Umansky:2012:NAM

Vanni:2015:AMF

Varley:2016:EPP

Vogel:2011:APN

REFERENCES

REFERENCES

Varin:2018:EFS

Voitcu:2012:CSF

Verheyen:2016:RCP

dePut:2019:SAS

Vranic:2015:PMA

REFERENCES

vonHippel:2010:TMA

vanHameren:2011:OEO

vanHameren:2018:KPL

Voglis:2015:PMP

Vitolo:2019:CHO

Vu:2012:FHS

K. T. Vu, G. F. Jefferson, and J. Carminati. Finding higher symmetries of differential equations using the

[VKS16] A. V. Vlasenko, A. Köhl, and D. Stammer. The efficiency of geophysical adjoint codes generated by auto-

[Vanaverbeke:2014:GPM]

[Vlasenko:2016:EGA]

Vandenhoeck:2019:IHO

Varet:2012:EDN

Vincenti:2017:EPS

Villalobos:2011:SMF

REFERENCES

Voyiatzis:2013:MPE

Vigano:2012:NCH

Vergara-Perez:2016:MMP

Vazquez-Poletti:2017:SEA

Voglis:2012:MGO

Varier:2017:TNJ

K. Muraleedhara Varier, V. Sankar, and M. P. Gangu-
dathan. TrackEtching — a Java based code for etched
track profile calculations in SSNTDs. *Computer Physics
Communications*, 218(??):43–47, September 2017. CODEN
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0010465517301273.

Vela:2018:AAC

Luis Vela Vela, Raul Sanchez, and Joachim Geiger.
ALARIC: an algorithm for constructing arbitrarily com-
plex initial density distributions with low particle noise
for SPH/SPMHD applications. *Computer Physics Com-
munications*, 224(??):186–197, March 2018. CODEN
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-
article/pii/S0010465517303570.

vanSetten:2018:PTG

M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Ver-
The PseudoDojo: Training and grading a 85 element opti-
mized norm-conserving pseudopotential table. *Computer
Physics Communications*, 226(??):39–54, May 2018. CO-
DEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-
article/pii/S0010465518300250.

VanLiedekerke:2013:SMF

P. Van Liedekerke, B. Smeets, T. Odenthal, E. Tijskens,
and H. Ramon. Solving microscopic flow problems using
Stokes equations in SPH. *Computer Physics Communi-
cations*, 184(7):1686–1696, July 2013. CODEN CPHCBZ.
ISSN 0010-4655 (print), 1879-2944 (electronic). URL
S0010465513000702.

Vukics:2012:CMA

András Vukics. C++QEDv2: The multi-array concept
and compile-time algorithms in the definition of com-
posite quantum systems. *Computer Physics Communi-
REFERENCES

[Dusan Vudragović, Ivana Vidanović, Antun Balaz, Paulsamy Muruganandam, and Sadhan K. Adhikari. C programs...]

[Vudragovic:2012:CPS]

Wang:2014:YPC

Wu:2011:SMM

Wendt:2011:TLS

Winczewski:2016:HET

Wiesenberger:2019:RAP

REFERENCES

REFERENCES

Walczak:2016:BBA

Wang:2016:SIG

Warren:2016:GOS

Warren:2019:CBG

Wang:2017:HPC

Jue Wang, Fei Gao, Jose Luis Vazquez-Poletti, and Jianjiang Li. High performance computing for advanced modeling and simulation of materials. *Computer Physics Communications*, 211(??):1, February 2017. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic). URL
REFERENCES

Huang:2015:MGR

Wagner:2016:CAT

Wallerberger:2019:WLO

Hsu:2011:DCD

Wiebusch:2013:NCV

[Wie13]
Wiebusch:2015:HMP

Wiecha:2018:PPP

Wilson:2015:EIF

Wilson:2019:GFD

Wallerberger:2011:FCC

REFERENCES

Wei:2013:NVB

Wiklund:2011:BCC

Wang:2012:CMC

Wu:2017:HOS

Wang:2013:SPM

[Wei:2013:NVB]

[Wiklund:2011:BCC]

[Wang:2012:CMC]

[Wu:2017:HOS]

[WM13]

REFERENCES

Walsh:2015:OEG

Winkler:2019:GSM

Winkler:2018:NLS

Wosniack:2015:PAR

Wang:2011:EKS
Kangkang Wang and Arthur R. Smith. Efficient kinematical simulation of reflection high-energy electron diffraction

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wu:2018:WOS

Xiong:2014:BOS

Xue:2013:CGF

Xu:2016:IWC

Xu:2019:MCO

REFERENCES

Xiong:2014:DSL

Xu:2015:NMM

Xiong:2013:GAA

Xu:2015:SHA

Xiao:2016:MPC

Shuyuan Xiao, Xueli Mu, Tingting Liu, and Hong Chen. A Mathematica program for the calculation of five-body

Xiao:2013:SAA

Xie:2012:FOC

Xu:2013:NID

Xu:2019:ELS

Xu:2012:ADI

Xiong:2012:PSH

Yamaguchi:2016:PCP

Yang:2009:FAM

Yang:2011:EIB

Yu:2013:DST

REFERENCES

REFERENCES

Youssef:2014:CNK

Youssef:2014:NFP

Yu:2017:CTA

Yuan:2012:DAV

Yang:2015:OPS

REFERENCES

REFERENCES

Yin:2012:MPW

Yang:2010:PFA

Yoo:2017:DIP

Yu:2019:MBN

Yan:2013:GPU

Yang:2017:HPA

Yurchenko:2016:DGP

Yen:2017:SVS

Yoshimi:2019:SSM

REFERENCES

[YSLY19] Haijian Yang, Shuyu Sun, Yiteng Li, and Chao Yang. Parallel reservoir simulators for fully implicit complementarity formulation of multicomponent compressible flows. *Computer Physics Communications*, 244(?):2–12, Novem-

REFERENCES

Yu:2011:TDD

Yang:2009:ERT

Yu:2015:ENC

Yu:2015:MNC

Yan:2016:NEP

Jinliang Yan and Zhiyue Zhang. New energy-preserving schemes using Hamiltonian Boundary Value and Fourier
pseudospectral methods for the numerical solution of the
“good” Boussinesq equation. Computer Physics Com-
munications, 201(??):33–42, April 2016. CODEN CPHCBZ.
ISSN 0010-4655 (print), 1879-2944 (electronic). URL
S0010465515004518.

Yang:2019:ELS

[XZ19] Xiaofeng Yang and Jia Zhao. Efficient linear schemes for the
nonlocal Cahn–Hilliard equation of phase field models. Com-
puter Physics Communications, 235(??):234–245, February
2019. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-
science/article/pii/S0010465518303084.

Yang:2018:ARP

[YZCS18] Yu-Liang Yan, Dai-Mei Zhou, Xu Cai, and Ben-Hao
Sa. Announcement for the replacement of the PA-
CIAE 2.1 and PACIAE 2.2 series. Computer Physics
Communications, 224(??):417–418, March 2018. CO-
DEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-
article/pii/S0010465517303466.

Yang:2014:SNT

[YZWR14] Hongli Yang, Xianyang Zeng, Xinyuan Wu, and Zhengliang
Ru. A simplified Nyström-tree theory for extended Runge–
Kutta–Nyström integrators solving multi-frequency oscil-
latory systems. Computer Physics Communications, 185
ISSN 0010-4655 (print), 1879-2944 (electronic). URL
S0010465514002434.

Yu:2010:CSC

[YZY10] R. Yu, J. Zhu, and H. Q. Ye. Calculations of single-
crystal elastic constants made simple. Computer Physics
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S0010465509003932.

Zeng:2016:MPP

Zakynthinaki:2011:SOD

Zolfaghari:2019:HOA

Zhen:2012:DFH

REFERENCES

Zhao:2019:IAC

Zhu:2017:DOS

Zanotti:2015:HOS

Zinchenko:2013:NGF

Zhang:2017:UEB

Zhang:2010:NSN

Zacate:2011:SHI

Zacate:2016:SHI

Zerbetto:2015:MIT

Zatsarinny:2016:DBS

Zilibotti:2011:ICA

Zhai:2014:NST

Zhu:2018:GGT

Zhang:2019:AAD

Zhao:2016:PTL

Zapata-Herrera:2018:ICP

Zheleznyakova:2015:MDB

Zhong:2011:PBN

Zhang:2010:RFY

Zhong:2013:SNS

REFERENCES

Xiaoming Zhang, Xin Liu, Xin Li, and Dongyu Pan. MMKG: an approach to generate metallic materials knowledge graph
REFERENCES

Zhao:2012:MMC

Zlokazov:2013:VGD

Zlokazov:2014:CIO

Zhang:2019:PAP

Zheng:2012:MPC

[ZMCT12] Jingjing Zheng, Steven L. Mielke, Kenneth L. Clarkson, and Donald G. Truhlar. MSTor: a program for cal-

Zierenberg:2013:SPP

Zheng:2013:MVN

Zwart:2013:MPS

Zhou:2015:EHO

REFERENCES

REFERENCES

Zheng:2016:EOF

Zhang:2012:SSS

Zheleznyakova:2013:MDB

Zhu:2011:MSW

Zhang:2017:UVM

Zhang:2017:NIL

Zhong:2013:MCD

Zhong:2014:CSC

Zlokazov:2013:VPA

REFERENCES

Zhang:2019:DBM

Zhang:2019:ESO

Zhang:2019:NAN

Yu:2018:EUS

Zhou:2015:UIP

[ZYL+15] Dai-Mei Zhou, Yu-Liang Yan, Xing-Long Li, Xiao-Mei Li, Bao-Guo Dong, Xu Cai, and Ben-Hao Sa. An upgraded is-

Zheng:2019:GDO

Zhang:2015:DFD

Zhang:2015:SSL

Zhang:2017:AAE

REFERENCES

