Title word cross-reference

(1 + 1) [SP18a]. (2 + 1)D [HP14]. (MC)3 [KSW15]. 1
[CC14, Gio14a, HTT13, HTT14, MGL13, PM16, RKVL14, SBH+14, WNYP17].
1 + 1 [Fan19, SÖÖN11]. 1/2 [HvWT17]. 1/t [AM17]. 2
[APC+14, BBB17b, BVP10, DLM18, EW14a, FJK+17, FK12, GCVA14b,
Gwi12, Ixa10, JCL+18, KO14b, KO16, RAV11, SW14a, SW14b, SA15b,
SKK11, SW11, TMA+15, TY10, TKL+12, TPC16, VLM11, WMRR17,
WRMR19, YLKN17, YTYA17, ZSW+17a]. 3
[AV13, AGMS15, BAR12b, CP15a, CPCDdM18, CdLOL19, DGG13, FLZ+18,
FRFH10, GS15, Gai17, GMF+17, Gnu19, GG16, GX15, HKJ+12, HDM+12,
JEC+12, JCL+18, JKIS16, KAK12, KL11, KO14b, KO16, KMJS16, LHJZ10,
LHC+13, LX14, LKW11, LBP15, MGO13, MCP+11, NHD16, NCB18, PR10,
PCGM14, QSC14, Qia17, RF15, RS12, RJLL16, RHBH15a, RHBH15b,
TGH+16, TIM+16, WNYP17, ZXL16, ZZD+16, ZSW+17a, ZFR18]. 3 + 1
[LM16]. 125f [RMS+12]. 2
[BG13b, BG14a, BLG14, Bon15, Bon16, GBD10, HFSK12, RPB+15, 3
[CDT10]. 3Σ [Faw10]. (R) [LNSD15]. Tσ [RJKC16]. 3σ [LSJ13]. 1→w
[TMA+15]. 11→x [LQZ+13], 2 [CJH11, CHW+15, DSM+11, LS11]. 20
[CHW+15]. 21 [CHW+15]. 3
[BKA+14, CJH11, CHW+15, DSM+11, KAR+15, LQZ+13]. 4 [LQZ+13]. 5
[LS11]. 6 [CJH11, CHW+15]. aMC@NLO [ADF+15], pf Fp, F1, F2, F3, F4
[HFSK12]. α3 [GGGH14]. δApart [Fen12a], Be [CWW15, YWW13], Be
[WW12]. BR(β^3_{p, d} → ℓℓ) [DNPS13]. C [Nik12b], C3v [Nik12b]. N = 4 [SD15]
O(α^2) [HP17], COCOS [SM13]. D [CZ17, Kap12b, KT17]. D = 4 [Fis12]
Δ(S^2) [MC17]. df [DF14], e^+e^− [YW13]. e^+e^− → e^+e^− π^+π^− [CI11]
GGA [WH11]. H [HWM+15]. j [Wei11a], jj [Erm18], k
[AWK+16, Ell17b, MDGC+12, OBH10]. kT [vH18]. k · p [Bot12, MBF+10]. L
[SS13b]. Lα [TK14b]. A [WL11a]. λ^4 [Chr18]. LDA + U [HWW12]. O(N)
[PSP16]. μ [TACA15]. N [BBL+13, CDS13a, MAM13, MBFD12, PII11
SGNL1, WSH+12, dHV12, GJ14, RF10]. N = 8 [Fis12]. N_f = 2 + 1 + 1
P3^JM [KK17]. p^m_{1/2+ir}(x) [GST12]. φ^4 [KVW11]. π [KS12]. q
[FDWC12, KO13]. q = 3 [dSLF13]. Q^2 [HK12]. R
[AB10, AK12, Bot12, Des16, NPM16]. R_2 [D15]. S
[ACDm19, DmMN16, LB10a, LB11, LB12, LB13, SAS11]. S^4 [LF12]
SO(2N) [CECG16]. SO(8) [Fis12]. * [Tos10]. SU(2) [Alv12], SU(3) [BW12a]
SU(N_c) [CBB13a]. T [HCRD14, TU14]. T_1 − T_2 [GWF+16], T_{3} [GCF+17], T_{4}
[CM+11]. T_d [Nik12b]. τ [CPWZ18]. Θ [B11], U(1) [BB13a]. V [ABB+16
W] [QGLP13, Veb12], ðbb [CWW10], ðbb [CWW10], ðcc [CWW10], XY
[KO14b]. Z [GLPQ11]. Z_2 [FWZ+12].

-body [CDS13a, MAM13, MBFD12, PIH11, WSH+12]. -conjugated [KS12].
coupled [QSC14]. -Coupling-based [Erm18]. -D
[FK12, Gio14a, GX15, LHJZ10, LHC+13, RKL14]. -dependent [vH18]
diff [TACA15]. -dim [GMF+17]. -dimensional [Kap12b, dHV12]
-electron [PM16]. -function [ACDm19, DmMN16]. -gauged [Fis12]
-helices [HFSK12]. -Inclusive [DLM18]. -matrix
[DEMM19]. -parity [AB10, AK12]. -point [MDGC+12]. -polymers
[B11]. -product [Tos10]. -qubit [RF10]. -ray
[BH16, CCM12, HCM19, LL15, MM11]. -Reverse [SGNL1]. -scattering

/Python [SV14].

2 [AMR+18, CKFB12, DLU18, DDK+17, DES+11, Fen16, FP14, HD17, HM12c, JNN13, LS17b, dR11, dR14, dR17, PR12, RSBB14, TBB+14, ZE16, Cro16]. 2.0 [AFIS12, ACD+14b, ABH+18, BCH13, BHS15, DDKM15, GLPQ11, GBR+14, HEPW13, HHS+10, Liu15a, LRR+15, LR16, MSH14, Pat17, PBL+18, RVDS18, SZY+12, SZY+13, Sha16]. 2.0-Hybrid [GBR+14]. 2.0.0 [BBH+11a]. 2.0.2 [VRV18]. 2.1 [BH13, CNMC10a, PSMS15, QGLP13, SZY+13, YZCS18]. 2.2 [YZCS18, ZYL+15]. 2.8 [OK12]. 2.9 [OK18]. 2014 [MAM14]. 213 [AZ17a]. 220 [Maz19, MLK+19]. 230 [Wei11a]. 2d [WWVB11]. 2d-Ising [WWVB11]. 2F [ML17]. 2HDMC [ERS10c, ERS10a, ERS10b]. 2nd [FMRP16]. 2ODEs [ADdM14].

4 [EJG+19, Gri10, Sta14]. 4.0 [KUVV13, OO15b]. 4.1 [KRW13]. 4.5 [CBYG18]. 4OEC [SK15].

5 [CFS13].

6 [Nik12b]. 6.4 [KRW13]. 6.5 [KRW13]. 64-bit [TC11a].

70th [Pat12]. 77 [GH18].

8.2 [SAC+15].

9 [Nik12b]. 9.0 [SMO16a]. 90 [GST12, KS12, SSG+10, SSG+18, SS10a]. 95 [vH10].
= [LQZ+13].

Adiabatic

Adiabatic-rolling-windows [NDSH18].

adjacent [NDSH18].

adjacent-rolling-windows [NDSH18].

adjoined [GCVA14b].

adjoint [GHR16, VKS16].

admission [VPVMH17].

ADS [LWP17].

adsorbed [SSH16].

Adsorption [MJB11, VB11, EY11].

advanced [LBR18, SLR11, Ano11a, BKM11, CXH15, PVH17, Tan19, WGVPL17].

Advances [SMC17].

Adhesions [RFSF18].

ADVANTG [BL18b].

advection [CYN19, JL10, MMA15, PSB11, PSBT12, WFV14, dTOV18].

advection-diffusion [WFV14, dTOV18].

advection-dispersion [JL10, PSB11, PSBT12].

AELAS [ZZ17a].

aerodynamic [ZS13].

aerosol [SSP16].

AESS [JP11].

affine [Naz12].

Affine.m [Naz12].

AFiD [ZPS18].

AFiD-GPU [ZPS18].

Afivo [TE18].

AFMPB [LCHM10, LCHM13, ZPH15].

Africa [Che11].

Afterlive [KSS18].

aggregate [MS11].

aggregates [HCRD14, RU13, Van15].

aggregation [MST18, WXW14, XLCW14, BR11, KdMvO14, LX14].

aggregation-fragmentation [MST18].

aerodynamic [ZS13].

aerosol [SSP16].

AESS [JP11].

affine [Naz12].

Affine.m [Naz12].

AFiD [ZPS18].

AFiD-GPU [ZPS18].

Afivo [TE18].

AFMPB [LCHM10, LCHM13, ZPH15].

Africa [Che11].

Afterlive [KSS18].

aggregate [MS11].

aggregates [HCRD14, RU13, Van15].

aggregation [Bis15, MST18, WXW14, XLCW14, BR11, KdMvO14, LX14].

aggregation-fragmentation [MST18].

aided [FLW17, Zhe15].

Air [MSML10, BTC17, BG14b, KRB15].

Airy [JL12].

Aitken [HV15].

Al [TMA15].

alanine [PSMS14, PSMS15].

ALARIC [VSG18].

ALCBEAM [BRL12].

Alfvén [BF10, HSK12, TJH17].

AlGaN [YSN14].

AlGaX [AM14].

alanine [PSMS14, PSMS15].

ALARIC [VSG18].

ALCBEAM [BRL12].

Alfvén [BF10, HSK12, TJH17].

AlGaN [YSN14].

AlGaX [AM14].

algorithm [MGS13, MEM11, MC10, MTO15, NBN14, Nem16, OL12, OOK12, OCM19, PH13, PSB11, PDRG10, PP13, PYW14, PR10, PG17, QwWL15, Ray10, RU13, Rom15, RW11, SG11a, SG11b, SCB17a, SCB19, SG15, SWL15, SPS10, Sin12b, SKK11, SQA15, SOJ14, Ste17, TTT16, TIM16, UW12, Urb18, US16, VSG18, VvAV11b, VLL17, VGM15, WP11, WRFS15, WWHW14, Wei12, WRV15, XWhZ13, YZ17, YvOSM15, YLYL17, ZKG18, ZZHG18, ZCC19, Zhe15, ZMJ13, Zou18, vRWS14, Cho11, KS16a, SK11].

Algorithm
[HB12, Mey18, GHR+16]. Algorithms

analyzing [BPML12, SAHP15, WJCZ18]. and/or [XHLM12]. Anderson [BHT19, FFT+14, MST+18, SJ17, SPP19]. angle [HJ14, SLLP17]. angular [LN16, PR12, Pos18, We99, WT12]. *angustifolia* [VLM11]. anharmonic [Liu15a, LLZ+17]. *anharmonicity* [FCCTFR18, ZMCT12, ZMPT13]. anisotropic [HWS16, JG16, KYSV+15, LBB+16, MLW+10, McM17, MLS10, MN18, NO14, Ots11, SSB+16, SKML11, Tau10, VVB+12, YSVM+16]. anisotropically [CAN11]. *anisotropy* [BDK11, KGNS10, MS11, NO14]. annealing [BSM13, BWB+17, CM10a, CD12, IZRT15, LM12, ON11, Yam16, JKG+18]. annihilation [BUJ15, GGGH14, Gre18, HLM13, Kol15]. *annotate* [BVC13]. Announcement [YZCS18, AC18, SSG+18, WRMR19]. anomalous [CPWZ18, LRK13, PPV+11]. ANOVA [CC16]. *anQCD* [AC15, AC16, AC18]. Ansys [LNSD15]. antenna [THDH14]. ANTICOOL [Gre18]. antiferromagnetism [BG11]. antiflux [HD17]. antipeakon [HDZ14]. antivortex [BUJ15]. *any* [Fer15]. APart [Fen16, Fen12a]. APCAD [SLLP17]. application [HKF+12]. *APFEL* [BCHR14]. *APFELgrid* [BCH17]. API [NMCR15, Zag14]. *APINetworks* [MCNRC16, NMCR15]. *appearing* [LM16]. Application [BHH+10, BBH+15, CZD15, CGM17, CSSB15, DG10a, Evs14, GZ14, GHJF14, Hon18, HW12, IUM13, KPA13, Kom15a, Kra10, KOK17, Lan13, LHJZ10, MKU+12, MS14, MK10, PGO17, QA13b, STK10, SGM11a, SGM11b, SCB+19, SCG11, TKS10, WWR+16, YK10, AAA+16, AS16, APS+16, BJBC+14, BALV16, BMW14, BMNS14, Bru13, BGDM+17, CZ17, CGSB18, CTL15, CBYG18, CCN17, Dua12, FBHB17, FK15, Fer15, GKB+12, HCRD14, HTJ+16, HBP14, HJL+15, KPPC13, LOK+16, LWJY18, NDH18, OILK17, PEM19, PS11, PB16, RWKS15, SV14, Sva12, TFBW14, TC12, WZS+11, WX14, vWS14, HD17, MFM15]. application-driven [BJB+14]. *application-programming* [SV14]. Applications [CM10a, HH11a, sL10, RBB15, VDF15, Asc10, BDPM15, BKA+14, CMSV14, CCY18, Dim14, DBK+14, FUSH14, FOB+15, GMH11, GCHL15, HM18, JTW+17, JKG+18, KV10a, KMJS16, LM12, MCAF14, MFC+13, NPM16, Pan15, PBL+18, Ram10, RDC+18, Sai13, SHW18, SSKS13, TK14a, Veb12, VSG18, WJCZ18, ZS13, MD11b]. applied [AHK+12, ASS13, BUJ15, BARR12b, DKG16, FBN+13, GBSY18, HJL+14, KBB+17, KL11, LAG+17, MCP+11, NBC18, SD14, TH17, VFIK14, WSTP15, Yam16]. Applying [HKZN17, KSH11, BS14a]. approach [ASS18, AV13, AGVP10, AKKK16, Add14, Aza13, BD12, BOGL17, BSk+18, BTC+17, Bot12, CSC11, CNM10b, Cho11, CKCS13, Dan12, DF11a, DCU+19, EKO16, ERP+12, FM12, FLW17, GLAC13, GMC18, Gen10, GS14, GLX+14, GCVA14a, HO13, HFSK12, HCC14, Ixa16, Jiw12, JHL+15, JSL16, KK16a, KY14, Kan14, KLKR11, KP16, KKL+18, KV10a, Kra18b, KSY13, Lan13, LHJ+15, MGB11, MLR10, Ma19, MBS+10, MC10, MLK+17, MLK+19, MCP10, MCNRC16, NS10, ON14, ONS+15, ORCR17, OK14, PC11, PLD15, QJF16, RS12, RM10a, RHC15, RJLL16, RCH16, SGAA18, SLY18, Sch14a, SK11, SCM+16, SMC+17, SSBS15,
[BCMS10, BB12, CHH+11, KHBS19, LHH+12a, MFH+13, RDN+17, WW15].

atmospheric-pressure [CHH+12, LHH+12a]. Atom

[Jav17, BH17, CYD11, DFM+15, Duf16, FZY17, KCA+15, LRW+15, LH11, RGKR17, SGSG19, TT11, XLX+15].

atom-centered [KCA+15, LRW+15].

Atomic [Pit12, Ruf13, AAT17, BMF+19, CPV13, CJJ+17, CKS10, Col14, Cor14, DBJ11, EPP12, Erm18, Ert15, Fri12, Gjo14a, Gre18, Hei12, Hin11, Hir15, JWL13, JTH14, JGL+13, KRL+17, Kra17, Kra18a, LB10a, NPVR14, OT11, PM16, PVK+18, PLD15, SEW12, SEW14, WR16, YZZ+17, ZKW+15].

atomic [Jav17, BH17, CYD11, DFM+15, Duf16, FZY17, KCA+15, LRW+15, LH11, RGKR17, SGSG19, TT11, XLX+15].

atom-centered [KCA+15, LRW+15].

Atomic [Pit12, Ruf13, AAT17, BMF+19, CPV13, CJJ+17, CKS10, Col14, Cor14, DBJ11, EPP12, Erm18, Ert15, Fri12, Gjo14a, Gre18, Hei12, Hin11, Hir15, JWL13, JTH14, JGL+13, KRL+17, Kra17, Kra18a, LB10a, NPVR14, OT11, PM16, PVK+18, PLD15, SEW12, SEW14, WR16, YZZ+17, ZKW+15].

atomic-molecular [JWL13].

atomistic [AZ17a, AZ17b, BSC+13, CHDCJA17, CL13, DZ15, EBCB+14, EVB14, EBCBG17, GC12, HHP16, KK13, KP16, LFKD18, LZ18, RK11, RPL+14, THDS16, Voy13, WBY11].

atomic-continuum [CL13, GC12, KK13].

atoms [AKV18, BH14a, BH14b, BRH+16, GJ18a, Kob13, Lit13, MCA17, MGB18, SLK19, SPAW17, WL11b, ZZ15].

Atomsk [Hir15].

ATOR [CKFB12].

ATSP2K [BSGG10].

ATSP2K-package [BSGG10].

attached [SCNJ18].

attempt [GM18].

ATUS [MGL16].

Augmented [RCGT16, AM14b, CKT17, CSPAD10, DKSG16, DA16, JGAL+13, KAW+10, PBMA12, THJ+10, YLO13, JTH14].

Augmented-Wave [RCGT16, JTH14].

auto_deriv [SF10].

autocorrelations [CDS+13b].

AutoDipole [HM10].

automata [FBG10, PC11].

Automated [AC13, BS WC14, HBP+15, HMU10, JC13, JC14, KHKR14, KH10, Per14, SPMM11, YFAT17, HR11, HKVR10, UW12, ZSW+17a].

Automatic [CF16, DAW+19, Deg15, GAGW16, LV13, LHWL16, MV11, MO14, RC11, Sta11, ZZ17a, dALM+12, CL15a, CD15, Cha16, DZ15, Gjo18, Kol14, Kol15, LLQX19, Liu15b, OK10, Ros16, Sem16, Sha13b, SF10, VKS16, Wei15, XWhZ13, YB13, ZPH+15, Zio13, ZUT13, vH10].

automation [GBS+16a, GHvSF14].

automatized [Str15].

Automatizing [TdAdSS11].

autostructure [Bad11].

auxiliary [GA15, JBKM15].

auxiliary-field [GA15].

available [Cip13].

avert [LB11b, LLQX19].

average [SGSG19].

averaged [KQYH17].

averages [LP15, Wan16].

averaging [MMO+17, WHB16].

avoiding [SBB13].

AVX [GBS16b, AWESoMe [MSHLS15, MSHL17]].

axes [BDK11, CNMC10a, CNMC10b].

axial [RS12, Sza13b, Sza13a].

axial-symmetric [Sza13b, Sza13a].

Axially [PLS+17, SSK+13, MCP10].

axially-symmetric [MCP10].

axis [CLW11, JTP15, SMdONF14].

axisymmetric [CLW11].

azimuth [LWZ14].

Azurite [GLZ17].

balls [BH110, BB115]. bamboo [VLM11]. band [CGB14, GBP13, HC16, LOK16, LHL14, MD10a, MCV18, QDZ13, RJ12, SW13a, SCG11, Zlo13]. band-gap [MD10a, SW13a]. ballistic [KLKR11].

BASDet [WG16a]. based [AGB15, BLPP13, BD12, BCJW13, BDKS10, BH17, BALV16, BLS17, BK12, BRL12, BPMM14, BHT19, BDBV12, BAR12b, BMW14, Boe14, BO12, BPS16, BCG15, BC11, BS12, BKK13, BK15, BK16b, CM10b, CCL14, Cap13, CMVRB14, CCS16, CGSB18, CMJ11, CDL12, CKhN11, CAGL13, CDR15, DBMR18, DIP11, DSHS17, DG10b, DM17, DDH17, DRR15, DBL16, DSP10, ELD14, EBDM17, Ern18, ESM17, FRG12, FGC11, FDWC12, FWS17, FZY17, FHA17, Fu19, GLZ17, GJ18a, GLX14, GJ18b, GNT17, HLL13, HFOF15, HPK15, HWT10, HS16, HLD13, HKVR10, HM17, IH11, IKS19, ICPD16, JPCG15, JEC12, rJmYT11, JGAL13, JTP15, KK13, KCN18, KK14b, KK14a, KHZ18, KO14a, KSH14, KM17, KO12, KO13, Kom15a, Kom15b, KLV15, KPST15, Khe18b, KMA12, LCC13, LJE11, LFG14].

based [LN16, LYX17, LO14, Liu13, LH18, LY16, LWRQ16, LNP17, MGL16, MB12, MKR12, MW14, MNW17, NPAD11, ND18, NA16, ON14, OLG16, Oul13, OT11, OAKS11, OY13, PP13, PFFK19, PG17, PKRS16, RCGT16, RC13, RC16, RB18, RH17, SVGS18, SAA10, SC14, Sh18, Sh13a, SCRS17, SSX14, Sit18, SM14, SH11, SK10, SGSG19, TGH16, TMD11, TB14, TDL14, U12, V14, VSG17, VDJ11, V14, WP10a, WLS13, WH19, WS14, WBS18, Wit14, XLL15, ZAG15, ZAFFAM16, ZLLP17, ZSW17, ZHS16, ZS13, Zhe15, Zlo13, Cho11].

Basic [GFB10]. Basics [CB15a, CB17]. basis [Cor14, DM17, FM12, GWY10, HJ15, JDG12, KAK12, LRW15, MCWJ15, Mey18, MBFB13, MK10, MCR11, MAM14, ONS15, PZY16, PKV18, PSL17, Pit12, PKV14a, PVK14b, Pre17, RCGT16, Ray10, RHC15, RCH16, RLM13, SDM12, SD10b, SSK13, ZDHW10, ZDWM17].

basis-set [MBFB13]. bath [Fri10]. baths [DS13b]. bathymetry [STA18].

Bayesian [AMR15, BPS16, CRB17, KZ14, WG16a, ZHL11]. BBN [Ar12]. BCC [HH17]. BCS [RHBH15a, RHBH15b]. BCVEGPY [WW12]. BCVEGPY2.2 [CWW15]. Be [MSN11]. beam [BRL12, BKN17, KPA19, KK17, OKP10, PR14, PBL18, QL10, TSK16, ZPvR16].

Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k].

Breaking [GTPWL12, EW14b, LRC⁺11]. Breit [Bad11]. BREMS [Pos18].
bremstrahlung [Pos18, Eme11]. Brenner [FMRP16]. bridges [BALV16].
Bridging [RK11, RV10]. brief [Bre10]. Brillouin [GJ18b, Kap12a, WQ18].
Brillouin-zone [GJ18b]. brings [CDSG11]. broad [BNV18, Ber14].
Browndye [HM10]. Brownian [BALV16, BMG⁺15, CHNS18, CSSB15, HM10, SKM15, TSTT13].
bubbles [SPS18]. builders [Sta14]. Building [BCJ⁺11, MW14, TOB⁺14].
bulk [KSL⁺11]. bundled [CSL⁺13]. Burgers’ [BK16a, Jiw12, Jiw15a, KP14].
Buttiker’s [KKS18].
Caveats [CH11b, SYE+18]. cavities
[AG14, BBH+10, BBH+15, CBB14, CdFDS16, VBMP15]. cavity [LLSK17].
CBFM [GM18]. CCA [FLZ+18, ZXL16, ZZD+16]. CCD [SL14].
CCOMP [Zou18]. Cd [DSM+11]. CE
[NAQ16, QYM11, QA13a, SP18b, WZS+11, CHW+15]. CE/SE
[NAQ16, QYM11, QA13a, SP18b, WZS+11]. Celeris [TL17]. Celestial
[LSJ13]. Cell
[BOP17, DS11a, HZW+16, AM14a, BPB+17, BCP+16, CC14, CC15,
DBP+18, DG16, JvOK17, KK+15, HH+11, LJE11, LYJY10, LWRQ16,
MKL17, MKU+12, MEM+11, MTO15, NCB18, OBPL19, PG17, QDZ+13,
QL10, RKL14, SSS+11, SC15, SC16b, SKK17, Sok13, VS19, VFMFS16,
WWC+16, WN10, WG11, ZLFM11, CDBM16, CHZ18, DS14, IBP+15, KC18,
LKA+16, PMMF15, RD10, SGB16, VLM11, VLL+17].

Chambers [DAW+19]. Chandrasekhar
[Jab12, Jab13, Jab15, Jab19, MR13]. change [HYM11]. changes
[BL17, LSD18, ZBM11]. Channel
[KSW15, CCL18, Des16, GCVA14a, LLQX19, ZLFM11].

Charge-conserving [CC14, CC15, MTO15, Sok13]. Charge
[CC14, CC15, MTO15, Sok13]. Charge-sign [Kap16].

charge-conserving [CC14, CC15, MTO15, Sok13]. Charge-sign [Kap16].

charge/current [VLL+17]. charged
[BBH+11a, BG13b, BG14a, BLG14, Bon15, Bon16, BAK+17, CLC14, Gwi12,
KB15a, KRK16, KFS+13, MF17, NJ18, PCGM14, SKK11, Ume18]. **charges** [SGDS16]. **CHARM** [PLRT14]. **Chebyshev** [DT11a, LD10b, SW14c, Wan10a]. **check** [HWW12]. **checkerboard** [BW12a]. **checking** [ÇÖSU11, Yan16]. **CheckMATE** [DDK+17, DDK+15, KSTR15]. **chemical** [BBF+10, BO12, BSWC14, DBDP12, GAGW16, LCC13, LSK+14, LL12, MLGVE14, MEG12, NCS17, dRJL14, PBD+15, Pla16, PB16, RH11, SAN18, SAG13, TM14, TPC16]. **chemically** [MTE17]. **chemistries** [YFAT17]. **chemistry** [CHH+11, IIO16, KEH12, Sou14, WPAV14]. **chemokine** [rJmYT11]. **CheMPS2** [WPAV14, WPD+15]. **Chen** [HLD13, ÖY13]. **Cherenkov** [GV15]. **chi** [GST15]. **chi-square** [GST15]. **CHICOM** [Gag12a]. **CHIEF** [MJKB18]. **chiral** [GBD10]. **CHIWEI** [Gag12b, GH18]. **choice** [DDM14]. **Cholesky** [LHJZ10]. **choosing** [GLR17]. **Christoffel** [JC16]. **CI** [DKG+14, KPST15]. **CIF2Cell** [Bjö11]. **CIJET** [Gao13a]. **circuit** [LW11, LW13]. **circular** [DA16, KGG+16, LWZ14, OILK17]. **citation** [wHwH11]. **CL** [BHW+12, BBH+15]. **clarifying** [vMB14]. **class** [BPC12, BPC13, GCHL15, Kra17, Kra18a, LLP15, MP11, MST+18, MNOØ11, SS13b, SCM14]. **classes** [rJmYT11]. **Classical** [CPHL14, VMFS16, BDJS18, BTM+17, CEF16, DT11b, DS13b, GH15, Gwi12, KO12, MCV18, SKK11, SLR16, SA14, WJCZ18]. **classically** [Wil15]. **classification** [CFSK14]. **classifications** [sL10]. **ClassSTRONG** [CPHL14]. **cleaning** [LLQX19]. **Clebsch** [HR11]. **CleGo** [HR11]. **climate** [DBD+17]. **cloning** [BS12]. **close** [BAK+15, BAK+16, BAK+17, WISA11]. **close-coupling** [BAK+15, BAK+16, BAK+17, WISA11]. **closed** [Faw10, MCA17, SL17]. **closed-shell** [Faw10, MCA17]. **cloud** [CNS+14, JTW+17, JVR12, KCN18, VPMVH+17]. **clouds** [APC+14, JH11]. **CLUMPY** [BHN+16, HCM19, CCM12]. **Cluster** [LX14, PEMS19, Smi14, BTC+17, CSPAD10, GGSB18, FLW17, GTH11, HLW16, JSLM16, KP12b, KSL+11, KO12, K103, KO14b, Kom15a, Kom15b, Kon15c, KO16, KZ14, LKM+16, MCA17, MTM13, TKR13, XLCW14, ZSW+17b, LX14]. **cluster-application** [GGSB18]. **cluster-cluster** [XLCW14]. **Cluster-Expansion** [PEMS19]. **cluster-labeling** [Kom15a]. **Cluster-parallelizable** [Smi14]. **Clustering** [HB14, MKMK10, DAW+19, LLHC11]. **clusters** [BBF+13, BG13b, BG14a, BLG14, Bon15, Bon16, BRH+16, DRR16, DCVB+13, GS17b, Gwi12, KSL+11, LLHC11, LSYZ12, LS17a, RRSCSJ10, RD10, SKK11, SQL+10, VK14, YZZ+17, YHL11, YLYL17, ZPS+18]. **CMBE** [GFJ+14]. **CMFD** [PZL+19]. **CMIstark** [CFSK14]. **CN** [PYW+14]. **CN-ICCG-FDTD** [PYW+14]. **Co** [CJH11, LQZ+13, DS13c, TG11]. **coalescence** [GCC+18]. **Coarse** [GB11, AGVP10, AMJ18, ESM17, FPY+17, PA13, SM19]. **coarse-grained** [AMJ18, ESM17, FPY+17, PA13, SM19]. **Coarse-graining** [GB11]. **coated** [CKLM10]. **coating** [CDSG11]. **Code** [KUV15, ZCC19, Bab14, BSM13, BNV18, Bar11a, Bar12a, BU11, BDPM15,
confined

[confined]

confinement

[confinement]

conformal

[conformal]

conformations

[conformations]

conformal

[conformal]

conformal

[conformal]

conformations

[conformations]

conformal

[conformal]

conformal

[conformal]

conformations

[conformations]

conformal

[conformal]

conformal

[conformal]

conformations

[conformations]

conformal

[conformal]

conformal

[conformal]

conformations

[conformations]

conformal

[conformal]

conformal

[conformal]

conformations

[conformations]

conformal

[conformal]

conformal

[conformal]

conformations

[conformations]
density-based [SSX14]. density-functional [GBR+14, MGRB11, MC17, SCRS17, SA14, TVGB15].

DensToolKit [SAHP15]. dependence [Ma´z19, MLK+17, MLK+19]. dependencies [Kan14]. Dependent [LB10b, BB17b, BMBC+17, CFCB12, CVK+17, DS13a, DHR14, DM12, FGLB12, GWL+17, GS15, GBR+14, GTG+11, HST+11, HML18, IB18, Ixa12, Kap16, Ker17, KTA12, KYSV+15, LV14, LBB+16, LYSS+16, MC16, MGRB11, MGL16, MC17, NPM16, ÖN12, PR13, PM16, RVDS16, RDVS18, SSB+16, SHZ13, SSH+13, SLC11, SBH+12, SCB17b, Ste17, TC11b, TVGB15, TT11, UW12, VBS+17, VVB+12, WL11b, XJS16, YSM+16, YSMA+17, ZHCR18, ZY15, ZKS13, dSF18, vH18].
determinations [BCH17]. determine [BMF+19, BSWC14]. determined
Determining [ACDdM14, VdLF14, MC10]. Deterministic [OU15b, ALC18, Asiu10, BL18b, GJLB12, TZG12, ZTG13, ZTG14].

deterministic/stochastic [GJLB12]. detonations [MTE17]. detuning [CdFDS16]. Development [Dan10a, Dan10b, GdGB18, HF16, HCHW11, KYKN15a, KYKN15b, LH+12b, OILK17, QLN14, SCLW16, SYD17, Sit14a, Sit14b, SHL+11, YLK17, YS17, ZKG+18, DBMR18, Gio14b, HvAS+13, HVMR10, HKVR10, RK11, Sch18, Uty14]. developments [GJA+16, LOSZ13, SAW18, SMO16a].

difference-collocation [LD10a]. difference-FFT [YXT+15]. differences [PVK+17, SCG11, UA17]. differencing [PTMDPK14]. different [CDS13a, DN13, EMW19, GVR19, MJB11, TRM+12, XLX+15]. Differential [BKK13, BKM14, BK15, BK16b, DSW15b, PTS12, APV10, ADr12, ADr14, ACDm15, ADr15, ACDdM19, CJJ+17, DJH13, DdMN16, DGST17, DSP15, FSJ+16, FBHB17, FF11, GJ14, GM17, GCA14b, HJ14, IH11, Jan10, JK10, JC13, JC14, JPM12, Jiw15b, KD17, KSIP12, Kra10, Lev19, LLI+12, LLI+13, sL10, MJ+10, MZE13, NO12, Ras09, Ras17, RBB15, VBC+12, VJC12, WYS10, WT15]. differentiate [Gio18]. differentiation [CL15a, CD15, Cha16, Gio18, GHR+16, HAV+14, SF10, VKS16, YB13, vH10]. differentiator [LZZL10]. difficult [ACDdM19]. diffraction [FNPMB10, GTL+17, MSPD12, WGI16a, WS11a]. diffactive [FNPMB10]. diffuse [Gri10, XD13, XHD15]. diffusion [BMW14, BO12, CYN19, CATK11, CB15b, CMdB11, CM14a, DMP18, DJ12,
EZL$^{+16}$, GA10, GN14, HJ14, HZ11, MBRV$^{+13}$, MFM15, MS11, Pla16, SGAA18, SCM14, SL14, Tau10, Tia11, WXW14, WFV14, XWF18, YQM12, YM14, ZSW$^{+17b}$, dSF18, dTOV18, BR11, KdMvO14, MNPF17].

diffusion-controlled [Pla16]. diffusion-convection [GA10].

digitized [KME$^{+11}$]. dilute [WZS$^{+11}$]. diluted [SFP11].
dim [GMF$^{+17}$].
dimensional [AG14, ASS13, AH13, BT17a, BDP16, BC11, CZD15, Cap13, CAN11, CZ18b, CS16, CJH12, CC15, CW16, CHC$^{+11}$, CC10b, CC12, CR12, CvW12a, CvW12b, CHZ18, Dan14, Dan16, Dan17, DG10b, DS11b, DM17, DS13c, Du10, DO14a, DO14b, FFT$^{+14}$, Fen12b, dAfDSVM12, Fil13, GTPW112, HHC$^{+10}$, HLW16, HCSW10, JEFFP14, JWCCW17, JPM12, Kap12b, KHB14, KS16a, KKP11, KP12b, KYKN15a, KYKN15b, KH12, KO12, KO13, KS12, KRB15, KMA$^{+12}$, LJSW11, LLSK17, LWL12, LST15, LXK16, LCQF18, LHH$^{+12b}$, LJZ$^{+18}$, LLX14b, LR13, LR16, MEM$^{+11}$, MKR$^{+12}$, MSZW11, MNPF17, Müll14a, Naz12, NAQ16, PBE14, QA13a, Qia16, QE16, RtV16, Rei11, Rei12, RHC15, RCH16, RGRK17, RWKS15, SFP11, SÖÖN11, SCLW16, SLR16, SDJ$^{+12}$, SJW10, TD14, TTT14, VK14, WC10, WWC$^{+16}$, WvSL13, XZF12, XZ12, YWX11, ZFH14, ZYZ15, dHV12].
dimensional [dTOV18, vRWS14].
dimensionality [BH17]. dimensions [BDDM18, Chr18, DMC10, DKOS14, Exl17, KAvdL11, LA13, MÅWK18, TSIM16, dSdO12].
dimer [Ots11]. diminishing [MKU$^{+12}$]. diodes [YSN$^{+14}$]. dipo[lar [KYSV$^{+15}$, LBB$^{+16}$, LYSS$^{+16}$, TZM$^{+17}$].
dipole [HMU10, HRC11, RE12, SGD16, Tan19, TU14, vWB10]. dipole-dipole [Tan19].
Dirac [MN16, MFS10b, AL17, BB15, BW12b, BBF$^{+10}$, CPV13, FGLB12, HP14, KCT15, PB16, STK10, SP16, Sta13, TKS10, ZF16, dHV10].
Direct [LLZ$^{+17}$, SKH$^{+10}$, Wei11a, BCM$^{+16}$, CDS13a, GJ13, LOK$^{+16}$, LSK$^{+13}$, ML16, OP12, WBS$^{+18}$, WAW14]. Direct-MPI [WAW14].
direct-sum [GJ13]. directed [FLP10, QHC$^{+10}$, dSLF13]. direction [LST15, LSK$^{+13}$, MRL18, NO14, TT14, XYK12, XZ12]. directions [Hal17].
directive [BCG$^{+15}$]. directive-based [BCG$^{+15}$]. directly [Kon11, Sco13].
DMRHB [NPVR14]. Dirichlet [RC16, HSD17, Jiw15b, RC13, RHH12].
disaggregation [Bi15]. disc [Lan13]. discharge
[CHC$^{+11}$, LHH$^{+12a}$, UBERT10]. discharges
[FK12, HCHW11, KRB15, KSSY13, MRL18, SVG10, SBL16].
disciplinary [WSH$^{+12}$]. disconnected [ACD$^{+14a}$, BCS10]. discontinuities [DR12].
Discontinuous [SVS19, EW14a, Ein16a, HLLH16, HWS16, LLP15, LLMW17, Maz13, QWZW18, WP10b, YWX11]. discovery [LCRL10].
discrepancy [VLD$^{+12}$].
Discrete
[CR12, EW16, AGMS15, ELD14, GMRHCM13, GMPFC$^{+14}$, GJHF14, KV10b, LCH11, LYL$^{+17}$, MD10a, NMS14, RTÄT15, SL17, SWL$^{+15}$, Sza13b, Sza13a, Sza16, ZAHAI10, EW14b, EEWG12]. discrete-dopant [LCH11].

e-infrastructures [GBS+16a]. e-Science [LSJ13, CKhN11]. E6Tensors
early [SCW+11]. Earth [MPS13]. Easy [DEW16, Sou14].
EasyFeynDiag [XW15]. EBT2 [ACdS13]. EC [MTM14]. ECE [MTM14].
ECsim [GHBL18]. eddy [TIMM13]. edge [BMU11, CCLL18, FRFH10,
FR15, LDR+17, SCB+17a, SPY11, ZDWM17, ZFR18]. edge-based
[CCLL18]. Editor [Sco13]. Editorial
[Ano18e, Ano18i, Ano18j, Sco16, Ano16b, Ano16c, Ano16d, Ano16e,
Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano16m,
Ano16n, Ano16o, Ano16p, Ano16q, Ano16r, Ano16s, Ano16t, Ano16u,
Ano16v, Ano16w, Ano16x, Ano16y, Ano16z, Ano16a, Ano16b, Ano16c,
Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k,
Ano16l, Ano16m, Ano16n, Ano16o, Ano16p, Ano16q, Ano16r, Ano16s,
Ano16t, Ano16u, Ano16v, Ano16w, Ano16x, Ano16y, Ano16z, Ano16a,
Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i,
Ano16j, Ano16k, Ano16l, Ano16m, Ano16n, Ano16o, Ano16p, Ano16q,
Ano16r, Ano16s, Ano16t, Ano16u, Ano16v, Ano16w, Ano16x, Ano16y,
Ano16z, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g,
Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano16m, Ano16n, Ano16o,
Ano16p, Ano16q, Ano16r, Ano16s, Ano16t, Ano16u, Ano16v, Ano16w,
Ano16x, Ano16y, Ano16z, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e,
Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano16m,
Ano16n, Ano16o, Ano16p, Ano16q, Ano16r, Ano16s, Ano16t, Ano16u,
Ano16v, Ano16w, Ano16x, Ano16y, Ano16z, Ano16a, Ano16b, Ano16c,
Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k,
Ano16l, Ano16m, Ano16n, Ano16o, Ano16p, Ano16q, Ano16r, Ano16s,
Ano16t, Ano16u, Ano16v, Ano16w, Ano16x, Ano16y, Ano16z, Ano16a,
Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i,
Ano16j, Ano16k, Ano16l, Ano16m, Ano16n, Ano16o, Ano16p, Ano16q,
Ano16r, Ano16s, Ano16t, Ano16u, Ano16v, Ano16w, Ano16x, Ano16y,
Ano16z, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g,
Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano16m, Ano16n, Ano16o,
Ano16p, Ano16q, Ano16r, Ano16s, Ano16t, Ano16u, Ano16v, Ano16w,
Ano16x, Ano16y, Ano16z, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e,
Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano16m,
Ano16n, Ano16o, Ano16p, Ano16q, Ano16r, Ano16s, Ano16t, Ano16u,
Ano16v, Ano16w, Ano16x, Ano16y, Ano16z, Ano16a, Ano16b, Ano16c,
Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k,
Ano16l, Ano16m, Ano16n, Ano16o, Ano16p, Ano16q, Ano16r, Ano16s,
Ano16t, Ano16u, Ano16v, Ano16w, Ano16x, Ano16y, Ano16z, Ano16a,
Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i,
Ano16j, Ano16k, Ano16l, Ano16m, Ano16n, Ano16o, Ano16p, Ano16q,
Ano16r, Ano16s, Ano16t, Ano16u, Ano16v, Ano16w, Ano16x, Ano16y,
Ano16z, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g,
Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano16m, Ano16n, Ano16o,
Ano16p, Ano16q, Ano16r, Ano16s, Ano16t, Ano16u, Ano16v, Ano16w,
Ano16x, Ano16y, Ano16z, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e,
Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano16m,
Ano16n, Ano16o, Ano16p, Ano16q, Ano16r, Ano16s, Ano16t, Ano16u,
Ano16v, Ano16w, Ano16x, Ano16y, Ano16z, Ano16a, Ano16b, Ano16c,
eigenfunctions [BAF18, GCVA14b, MGL13]. eigenmodes [HSK+12, TJH17]. eigenproblems [DBB12, RLM13]. eigensolution [FZ16].

eigensolver [GBP13, GAO13b, SAY+18]. eigensolvers [DB13, LT15, VBS+17]. eigenstates [RPL+18].
eigenvalue [BMU11, CDMCN11, DB13, DPB16, DS15, GHvdL11, HKSW10, Ixa10, JWM+18, LR13, LR16, MKR+12].
eigenvalues [BW12b, DKOS14, GCVA14b, ILW16, JZJ18, NJ18]. eigenvectors [JZJ18].
eigensolvers [DB13, LT15, VBS+17].
eight [PAS11, PS14]. eight-step [PAS11, PS14]. eigSUMR [CL16].
eight-step [PAS11, PS14]. eight [PAS11, PS14].

Einstein [ARYT17, CCW10, GM14, Hoh14a, JWC13, JWL13, LCCC11, MT13, TZM17, VBMS17, WX11, WX14]. Einstein- [ARYT17]. EIRENE [SK12].
Eisenbud [RA13]. EKHA [CI11, CK19]. EIAM [MLW+10].
electric [ASEA14, AFIS12, CHDCJA17, CGJ14, DMC10, GPS+13, Gri10, Jab17, Kas14, KGF18, LSCZ11, MLW+10, Mazz19, MLK+17, MLK+19, QDZ+13, TH17, TW15, Voy13, WBY11, YZY10, ZC12, ZZ17a, GPS+13].
electrical [CKT17]. electrically [HC16, Ram12].
electro [PGO17, Wie18]. electro-dynamical [Wie18].
electro-mechanical [SWL11].
electromagnetic [AHK+12, CC14, CC15, CSJ+17, CZF18, Fuk17, GLAC13, GCM18, GH15, GCHL15, JLM18, KOT12, KC14, KTE+12, LRPR17, LHJZ10, LHC+13, LF12, MIW+13, MUK+12, MCM+12, ORI+10, Oti13, OVI15, PP13, PY14, Ram10, Ram14, SKK17, SDL+16, VV18, WGG16, WN10, ZHSL13].
electromagnetically [WL11b]. electromagnetics [QWZW18].
electrodynamic [MAIVA14].

Elastodynamic [MAIVA14].

Electron-phonon [PMVG16, CGB14, KA17, NGM+10].
electron-atom [BH17, CYD11]. electron-cyclotron [PBL+18].
electron-electron [DCC+10]. electron-loss [Lit13]. electron-molecule [ART17].
electron-phonon [PMVG16, CGB14, KA17, NGM+10].
electron-positron [GGGH14, Kol15]. electron-repulsion [TO10b].
electron-surface [CL11]. electron-transfer [NB1+15]. electron/hole [Dua12].

Electronic [BDPM15, CJH11, CSL+13, GZL14, THJ+10, WWL11, BC10, Bjo11, CLC14, Cor14, DO14b, FZ16, GWL+17, GCP+15, HKSW10, HCC14, JWCD17, KKS18, LCY+11, LCP12, LSK+14, MED11, MNPY14, MC17, PKV+14a, PVK+14b, PSI16, Rut18, RJKC16, SS10a, TMA+15, TC12, TG11, YFAT17, zYCG+18, YG12, ZZ15, XNK+16].
Enhanced [BHNS17, CHDCJA17, Rap11, JTP15, KGFS18, PLD15].
Enhancement [VCMS+13, CLY11, EEEW12]. enhancements [LOK+18].
ENO [AAD14]. ENO-flux [AAD14]. Ensemble
[TDL+14, BALV16, BGJ13a, GA15, MMO+17, MHR+13, PA13, ZKW+15].
ensembles [CRNK12, FD13, Kra18b, MJB11]. entangled [JWC18].
entanglement [RLL12]. enthalpies [ZZH+16, ZMCT12]. entire [Wei11a].
entropies [ZMCT12]. Entropy
[TW11, CHDF10, Les16, LLG17, PE17, VB19]. entry [JXTS16].
enumeration [CS16]. environment
[CPW17, Gioi14b, JVR12, RBT+17a, WP10a]. environmental
[GMPFC+14, KKS18]. EnvironmentalWaveletTool [GMPFC+14].
environments [FS17, GBC+18, NMCR15]. EPAW [SHW18]. EPAW-1.0
[SHW18]. EPCM [PS14]. epidemic [CF17]. epsilon
[GM17, GS14, HL13, Pra17]. Epstein [Ram10, Yan09]. EPW
[NGM+10, PMV16]. eqtools [CFW17]. equality [ON11]. Equation
[LB10b, AL17, Asli10, BB15, BALV16, BK16a, BAR12b, Bot12, BMBK+17,
BB13b, CWS14, Cap13, CVK+17, CYN19, CZS10, CC10b, CC12, CHZ18,
DG10a, DS11b, DZ13, DGST17, DSP15, DM12, Eba13, Exl17, FTI18, Fil13,
FGLB12, FGG11, GS15, GVS+15, GA10, GG16, BSY18, GTG+11,
GCVA14b, HLS+17, HP14, HC16, HC17, HWS16, HM12a, HAK+14, HJ14,
HS14b, HH11a, HDZ14, HCSW10, IKS19, Ixa10, Ixa12, JC16, JL10, Jiw12,
Jiw15a, KL17, KH12, KN13, KBSP12, KP14, KR14, KYSV+15, LD10a,
LD10b, LV14, LZZL10, LS12a, LCKM14, LLK16, Lin13, LBB+16, LYSS+16,
LY16, MC16, MGL13, MGL16, MC12, MLS10, ML14, MN18, MA11, MM10,
MM12, MJKB18, ON12, OILK17, ORS+14, OAKS11, OK14, PS11,
PSBT12, PAS11, PR13, PM16, Pla16, QSC14, RM10a, RBBH15a]. equation
[RBBH15b, STK10, SBS19, iYS12, SSB+16, SP16, SP18a, SH+13, SD10b,
SA15b, SB11, SELF17, SSGS19, TKS10, TT14, Ter17, TY10, TH17, TKZ18,
UNK12, Ume18, VDAH16, VB+12, Wil19, XHLUF+18, XZ12, YZ16, YZ19,
YK18, YSV+16, YSMA+17, ZFH14, ZSW+17b, ZDW17, ZST11, ZCG17,
dB14, dHV12]. equations [AAD13, ACCB13, APV10, ABB13, AD14, AD15,
ABDR17, AG12a, ABH+19, ADdM12a, ACddM15, ADdM15, ACddM19,
BSM13, Bar11b, BKO16, BCT17, BK11b, BB10, BB13b, BAK+15, BAK+16,
BAK+17, BHW+12, CZD15, CR13, CDT10, CB13b, CSJ+17, CKK+13,
CBB+10, CM14a, CEF16, DT10, DT11a, DN13, DM17, DJ12, Dem13,
DH13, DJ14, DSP15, ENE015, EW14a, FDZ17, FBHB17, FF11, FSC13,
Fon12, GML15, GJ14, GJLB12, GM17, GX15, HLLH16, HK12, HHC+10,
HB12, HM12b, HCHW11, HII11, JPSS10, JK10, JC13, JC14, JYPA18,
JCL+18, Jiw15b, JSLM16, Kan14, KMM13, KD17, KO14a, KZC+10, Kra10,
LK12, Lev19, LW14, LLP15, LST15, LSSZ14, LL12, LL13, sL10,
LLSW14, MDHD18, MBJ+10, MWCY14, MZE13, Moh14, ICD13, MNOO11,
NO14, NO12, PKT15, PDRG10, PES12, PSL+17, PE15, QYM11]. equations
[QA13a, Ras09, Ras17, RBB15, SAW18, SDM+12, SDS+17, SK15, SW14c,
34
Exchange [NHD16, ABC+ 18, AAB+ 10b, BKC+ 17, Boe18, DG10c, GXF+ 15,
GJB11, HW12, IIO16, IFOI18, JJ15, LK15, LKT+ 16, MOB12, UO15b,
UO15a, WISA11]. excitation [BP12, CM15, GVS+ 15]. excitations [MC17].
excited [BP12, CWW15, Er14, GH11, LH11, LMAB16]. exciting [PGD17].
exciton [VBMS17]. exciton-polariton [VBMS17]. excluded
[BHW+ 12, CHNS18]. exclusion [BBH+ 10, BBH+ 11a, LTL+ 12]. exemplar
[JTP15]. exhaustive [TC11a]. ExoData [Var16]. exoplanet [Var16].
expanding [HM12c, LP15]. Expansion [JDG12, PEMS19, AQJ10, AK13b,
CSPAD10, Deu16, FLW17, GS14, HWG13, HvWT17, HK15, HL13, IKS19,
IUM13, KZ14, Per14, Pit12, Pre18, Ros16, SKFP16, SGW17]. expansions
[Eks11, GB11, TKR13]. experiment [Ano11a, CKhN11, DDM14, DMH16].
experiment-computing-theory [CKhN11]. experimental
[CRNK12, KSH14]. experiments
[CHC+ 11, GSB+ 14, KD16, DMH16, VLD+ 12, WJCZ18]. explained
[JKG+ 18]. Explicit
[Bla15, VEB+ 18, AH13, Ber16a, Ber16b, CW16, DBMR18, DM17, DJ14,
FG13, FGR14, KZC+ 10, KAS12, LCE+ 13, QSC14, RL10, SCLW16, SS10b].
explicitly [LV14, PZY16]. Exploiting
[ASPW13, BBV+ 16, RDN+ 17, RFSF18, YRR13]. Exploring
[CDS+ 13b, GTS14, Yan11, MG10a, Mül11a]. explosions [BNAB11].
exponent [XZF12]. Exponential [Ert15, PTMDPK14, ZNT15, AQJ10,
BCT17, CEP18, GDB10, GH11, Ike18, Moh14, PZY16, Pat12, PH11, Ram12].
Exponential-time [PTMDPK14]. exponentially
[Bla15, CFMR10, FG13, Miy15]. exponentially-fitted [Miy15]. exponents
[MH18, dSFdFF13]. expressions [Dua12, MBGK11, Zit11]. Extended
[FLW10, FMW10, GS17a, KSL+ 11, KR16, LS15a, PPY14, WC15, Wu10,
YWYF09, BSM13, Bla15, BDGM+ 17, DDH17, DGST17, LWYW11, LW13,
Mül11b, Mül14b, iNSK+ 15, PBL+ 18, RLM13, XW15, YZWR14].
extended-Lagrangian [iNSK+ 15]. extendible [SCM14]. Extending
[KK16b, FHA17]. extensible [CFW17, RBG+ 19]. Extension
[AM11, GHvSF14, KAH18, Maı̂12, NBW16, GYW+ 10]. Extensions
[ABH+ 18, BCPS11, PS12]. extensive [BG14b]. exterior [BH14b, BH16].
eXtra [BBB+ 15, BDDM18, CD12, EGPS10, PR13]. extra-high-order
[CD12]. Extracting [SAS11, CTT17]. extraction
[CKCS13, MSPD12, OG14, OO15b, OO15a, RJ12]. extragalactic [KOT12].
extrapolation [MC12, dDYK+ 18]. extrasolar [HTT13, HTT14]. extreme
[BY17, DKOS14, NOR15, VV18, WSH+ 12]. extreme-scale
[BY17, WSH+ 12]. extrinsic [DMC+ 15]. extruded [NCB18].
F [NDSH18]. F-t-Pj-RG [NDSH18]. FabSim [GBS+ 16a]. Facilitating
[GBS+ 16a]. factor
[GDB10, MSZW11, TZG12, XHLUF+ 18, dlHV10, XHLUF+ 18].
Factorization [BvH15, JOK13, Gar19, KK14a, LHJZ10, RW11]. factors
[AHK+ 12, Pál12, YFAT17]. Faddeev [DVB11]. Faddeeva [Cha16]. failure


[Pra11]. Falkner [RL10]. family
[ACDdM15, AAdM15, DZ13, rJmYT11, NCHN15, WCT11]. FAPT [BK13b].

far [CFZ18]. far-field [CFZ18]. FAST [Ruf13, ABRs12, BG13a, BKM11, Bot11, BGL+14, BSU12, CZ17, CdLOL19, CC10b, CC12, DHJ13, GRZ10, HC16, HS16, KAK12, KME+11, KHN19, Lut15, Maz13, MSS+14, PKR16, TO10a, VLPPM14, WISA11, WSO+12, AGB+15, BT17b, BMBC+17, Bru13, CJ+17, CRLS18, CB15d, CCN17, Dat13, Fow18, GMF+17, GJHF14, GCH+18, Ham11, HDF+19, HP11, JLR13, KL17, LC15, LCQF18, LL15, LCHM10, LCHM13, LLX14a, MRZ10, OL12, OYK+14, Qia10, Qia17, RMU13, Ser17, Ste17, Sza16, iT11, TSH16, WX15, XAPK14, YBK+11, YBNY13, ZHSV10, ZIC12, ZrvR16, vWB10, EBD17, FCC15, JLR13].

Fast-NPS [EBDM17]. Faster [Nie18]. favourite [DDK+15]. FCNC [CRC+13, RCD+10, Ros15].

FD [DM17]. FDTD [Ram10, BAFR12b, CKK+13, Fan19, FBN+13, FOB+15, Jia18, KKP11, KP12b, KO14a, LJD+19, ORI+10, PYW+14, Ram10, Ram12, RHW+12, SSH+13, VEB+18, WWWH14, Yan09]. FDTD-based [BAR12b]. Fe [LQZ+13, BTM+17, LS17a, TG11]. Fe-3 [LS17a]. FEAST [LZP12].

features [TBB+14]. featuring [EBCB+14]. FeCo [PEMS19]. Fedosov [Tos10].

Femto [LQZ+13, BTM+17, LS17a, TG11]. Femto-second [LJSW11]. Femto-second [IB11, REtVH12]. FEOS [FT18].

FeynArts [FHH+14, Sta10, SV12]. FeynCalc [SMO16a, Sht17]. FeynDyn [Dat13]. FeynHelpers [Sht17]. FeynHiggs [HP17]. Feynman

[Bar14, Dat13, Ell17b, Fri14b, GM17, Kan18, MUU18, Nog17a, Nog17b, Pan15, Sem16, Smi15, Smi16, Stu10, XW1Z13, WX15, dALM+12].

FibrilJ [SBB+17]. fidelity [HZW+16, MMO+17, TTS11]. Field

[NDH16, RLGM+11, BW16, BG11, BMS+16, CZD15, CHDCJA17, CSJ+17, CZF18, CCHL11, CPXL14, Cri18, CHZ18, DF13, DPB16, EPB+16, EEW12, Erm18, ESM17, Fk17, GA15, GZW17, GLW14, GX15, HO13,
HEF$^{+11}$, JTT$^{+11}$, KB15a, KH12, LPRPR17, LDR$^{+17}$, LLSK17, LFG14, LXR$^{+18}$, ME18, McM17, MEG12, NPVR14, NVW$^{+13}$, Nut14, PC11, PCCM14, Pit12, QL10, QJF16, RS12, RK11, SEW12, SEW14, SZM$^{+14}$, SCM$^{+16}$, SW11, TSK$^{+17}$, TKP15, WHG$^{+19}$, WHY19, Wie18, XHLM12, XLX$^{+15}$, YLK10, YZ19, ZKG$^{+18}$, ZKS$^{+18}$, dB14, vdSM16, Asc10.36

field-aligned [HO13, LDR17]. field-particle [CSJ$^{+17}$]. field-theory [DF13, Nut14]. fields [Asc10, BMW14, CFSK14, DOP17, Dua12, GH15, GBSY18, HSD17, JPK$^{+12}$, KOT12, Ki10, LSJ13, LR13, LR16, ´ON14, PQTGS17, PM13, SW14a, SAHP15, Tau10, TC11b, Wai12, ZYZ15].

FIESTA [SST11, Smi14]. FIESTA4 [Smi16]. FiEstAS [Asc10]. fifth [DSW$^{+15a}$, NS15]. file [iSYS12, SMCB15, SV12, dBCH14]. file/Mif [CF16]. files [CF16, Hir15, Sta10]. filled [CBB14]. films [BL14, BKN17].

financial [CLKK11]. find [ADdM14, ACDdM19, MLGVE14, Pra17, ZAHA10]. Finding [ACDdM15, DdMN16, Kan14, SS13a, VJC12, BUJ15, GLZ17, Ike18, MST$^{+18}$, MWCY14, RC18]. Fine [MEM$^{+11}$, Bru13, CYD11, Faw10]. fine-grained [Bru13]. Fine-sorting [MEM$^{+11}$]. fine-structure [CYD11]. FinFET [LCH11]. Finite [DJ12, DSPJ10, FHTO17, HZW$^{+16}$, KST14a, MAIVAH14, OBH10, SBvD13, TMA$^{+15}$, Wil19, Zag14, AAD13, AS11a, ACTP15, BKOZ16, BM16, BMNS14, CCLL18, CAN11, CTL15, CW16, CCHL11, CRA10, Cor14, DT10, DM17, Den10, EKDG15, EVs14, FNPMB10, Fu19, GML15, GBP13, GS17b, GS17a, GB14, GLW14, HE13, Has11, Hsu11b, HZ11, IP14, JLM18, KCT15, Kob13, KMD12, Koh15, KM17, KVW11, LOL$^{+18}$, LD10a, LA13, LW14a, LV15, LHJZ10, LLXK16, LUX$^{+17}$, LHH$^{+12b}$, LOK$^{+18}$, LNP$^{+17}$, Ma19, MB12, MSS$^{+16}$, MMB15, MBJ11, MLK$^{+17}$, MLK$^{+19}$, MBFD12, ICD13, Naz12, ´ON14, OWS$^{+15}$, Ot13, OVS15, OT11, PVK$^{+17}$, PB16, QLN14, Ram14, RS12, RVD16, RVS18, RC13, RC16, SW14a, SP16, SLK19, SC15, SHL$^{+11}$, SBH$^{+12}$, SAN18, SCG11, TT14, Ter17, TYH$^{+15}$, TXZL15, VLPPM14, VDB14, VDA16, VV16, WZ13]. finite [WP10a, Wit14, YRR13, YXT$^{+15}$, YQM12, YQM14, dDYK$^{+18}$, Hak16, HKF$^{+12}$, LYP14, MCM$^{+12}$]. Finite-Difference [Wil19, DSPJ10, TMA$^{+15}$, ACTP15, CW16, FNPMB10, GS17b, GS17a, GB14, HE13, MSS$^{+16}$, MBFD12, ICD13, RC13, TT14, VDB14, VV16, Wit14, MCM$^{+12}$]. finite-dimensional [Naz12]. finite-element [VDA16, Hak16].

finite-range [Cor14]. finite-rate [SAN18]. Finite-size [OBH10, EVs14]. Finite-temperature [KST14a, BM16, KCT15, SLK19]. finite-time [Has11]. finite-volume [Fu19, LHH$^{+12b}$, SHL$^{+11}$]. finite-volume-particle [LOK$^{+18}$]. finite/infinite [SBH$^{+12}$]. Finsler [YE14b]. FIRE [Sht17]. FIRE4 [SS13c]. FIRE5 [Smi15]. First [BK16, EY11, FWZ$^{+12}$, PBMAD12, SQL$^{+10}$, ADdM12a, ACDdM14, ACDdM15, BP12, Boy15, CSL$^{+13}$, DdMN16, ELL$^{+17a}$, GPS$^{+13}$, GM18, GCVA14b, JLA$^{+14}$,
fractal [ADdM+12b, EBCBG17, GTL11, GFB+10, GGF+13, RU13, GGF+13, GES13].

fraction [BMS+16, ZTG13, ZTG14]. fractional [CYN19, Dev12, DS15, HZ11, JC14, JL10, LLL13, MDHD18, PSB11, PSBT12, SW12b, YQM12, YQM14, BK13b]. fracture [RT˚AT15, VLM11, VKLM11, VLM11].

fragmentation [BG14a, DG16, HK12, MST+18]. frames [MFS+10a, SS11b]. framework [AKH+18, Ano11o, CMC+15, CEZ16, CPWZ18, CFS13, CFFR15, DMC+15, ESM17, DRI+16, GVR19, GBFJ14, HMR14, HU12b, JEC+12, JNN12, JNN13, KEH12, KSTR15, KSH14, KPOR18, LFDK18, LSSD14, LS14, LS15a, LRW+15, LPZ12, MLR10, MGFRG12, NBM+15, NPG14, PGO17, RBBG+19, RM14, SV14, SSSX14, SJ18, SJS11, SPS18, Sva12, TOB+14, TE18, TVT+16, VEB+18, WVG14, ZHZ+16, ZHL11, CF16, FCC15].

Fuchsia [GM17]. fuel [AZM14, BCP+16, NGCI+12, VS19]. Full [DNPS13, AM14b, BMU11, CL15a, CGRB14, CFF19, Dan11, DGS+19, FYK18, FHE11, GAB+16, HEF12, JBG+17, KGG+16, Liu15a, LWES18, PBADM12, PGM14, Wie18, YTYA17, ZYY15, RSSH+10]. full-[GAB+16, DGS+19]. full-field [Wie18]. Full-Metadata [RSSH+10].

full-orbit [CFF19, PGM14]. full-potential [LWES18, PBADM12]. full-torus [KGG+16]. full-wave [FYK18]. fullerences [RM14]. Fully [LOL+18, LWES18, FVH18, HHS+10, KRB15, PN15, Pik18, SSB+16, VVB+12]. Fully-implicit [LOL+18]. Fully-relativistic [LWES18]. FUMILI [Sit14a, Sit14b]. FUMILIM [Sit16]. function
[AQJ10, AKR15, AK13b, ACDm19, BH11, BSGG10, BK16b, Cha16, CDL+12, DCC+10, DN18, DM17, DdMN16, Fen12a, Fen16, FM12, GST12, Jab12, Jab13, Jab15, Jab19, JLM18, KDM11, LSF14, LKL11, Lee18, LHS114, MR13, OKP10, PLF+17, Pla16, PM13, Raw15, RMC16, SS11a, SGSG19, TTT16, Ve12, XD13, XHD15, YTYA17, ZF15, ZDWM17].

function-velocity-magnetic [YTYA17]. function/orbital [SGSG19].

Functional
[BC10, DBB12, GS17b, GS17a, LT15, VCMS+13, ASA18, AKZ+13, BBH11b, CDTV10, CXH+15, FSC13, GWL+17, GBR+14, GSZ13, HB12, HHS+10, JCW+13, KT12, KCT15, KKL+18, LS11, MGRB11, MOB12, MSS+16, MC17, OOK+12, OT11, RHC15, RCH16, Roh16, RWKS15, SCRS17, SBH+12, SA14, TVGB15, VBS+17, WX14, WLGY18, YLYL17, YRR13].

functionality [CB15a, CB17]. Functionally [WT15]. Functionally-fitted [WT15]. functionals [GBR+14, LRW+15, MOB12, NPAD11]. Functions [CGO17, ARAB+17, AWK+16, BCC+18, BDBV12, BMW14, BKK13, BKM14, BK15, BK16b, CM10a, Cai11, CMSN18, CD15, CCWL11, CLJ12, CSRV13, CEPI10, Cui13a, Cui13b, DRRI17, EUT+15, Ert15, ERP+12, Fow18, FP14, GDB10, GST15, GTS14, GS14, GYW+10, GCVA14a, HK12, HCH16, HL13, HM12c, JL12, KK16a, Kap12a, KH11, KCL11, Kir10, KAW+10, LD10b, LM12, Liu11, Liu13, MK10, MYP+14, NGM+10, OWS+14, PPY14, PDRG10, PG10, PVK+14a, PVK+14b, PMVG16, PB16, RA13, RE12, Sar17a, Sar17b, SSG+10, SSG+18, SPMM11, SD10b, WWS10, WAHL13, WPD+15, ZDY10, ZMCT12, vH11].

fundamental [LZP12, MK10]. Fusion [RtV16, AGB+15, DDKM15, ECSH16, FK12, FR15, HLM13, Hon18, HJL+14, KRK16, LLQX19, LHJ+15, Maz13, MN18, PBL+18, Shi16]. fuzzy [GES13].

GASPRNG [GP13]. gate [MNW+17]. gate-based [MNW+17]. gateway [VK16]. gather [MTO15]. gauge [BB13a, BW12a, CB13a, CSBO13, Fri14a].
Gillespie [CF17]. GiMMiK [WWR +16]. Ginzburg [SA15b, Wan10a, WZ13]. GISAXS [BNK +17].

glacial [RT˚AT15]. Glass [LC +11, BL14, BPP +11, LB15, Yama16]. glasses [BW11, IZRT15].

Glasstone [TZG12]. Glassy [CH11b, Has11].

GLauber [RSBB14].

GLISSANDO [RSBB14].

Global [MTS +16, PPS10, WMM +14, Addm16a, Addm16b, BY17, CDm14, CJJ +17, DGS +19, FLK +13, GAB +16, KTE +12, KHR14, KTA12, KSY +13, LLQX19, LYP +14, SK10, TBZ12, VPP +12, VHP +15, WLH +12, WLS13, ZFR18].

globally [RC18]. globular [RV10].

glsim [Gri11]. gluino [AMRdA17].

gluodynamics [Fri10]. gluon [BBU11, BvH15, HLM +13, HAH13].

Gmat [CNMC10a].

GMES [CKK +13].

GMXPBSA [PSMS14, PSMS15].

GNU [YSMA +17].

GO [BD12].

Godunov [KPPC13].

gold [YLYL17, ZDD +13].

Golem95C [CGH +11, GHvSF14].

good [MA11, TC11a, YZ16].

goodness [Gag12b, GH18].

Gordan [HR11].

Gordon [DN13, KZC +10, AH13, DG10a, DG10b, Eba13, JPM12, LD10a, MD10a, PIL12, PTA12, RM +10a, SW1 +14c, dHL12].

GPELab [AD14, AD15].

GPGPU [LYZ13, ÔN14, PQTG17].

GPGPU-accelerated [PQTG17].

gprMax [WGG16].

GPU [AKS17, BS14a, BWB +17, BKOZ16, BPP +11, BFP +12, BBS14, BLS17, BD10, BPV10, BTL +17, Boe14, BTC +17, CCL +18, Cap13, CMVRB +14, CMRVR16, CHNS18, CCL +18, CSSB15, CRLS18, CBYG18, CRB +17, CLB11, DRR16, DS13a, DCV +13, DCGG13, DG13, ELD14, ELL +17a, Exl17, FFT +14, FGC +11, FDWC12, Fil13, FBN +13, FOB +15, Gai17, GP13, GJ13, GLHG12, GHR +16, GB17, GCC +18, GJ18b, Ham11, HWX +13, HPN18, HW12, Ihn12, JK14, JPCG15, JXTS16, JCW +13, JWCC17, KKP11, KP12b, KPA +19, KO12, KO13, KO14b, Kom15a, Kom15b, KO16, KMA +12, LYP14, LCC13, LGW13, LSYZ12, LB15, LWRQ16, Lut15, Lya15, MDW16, MÅWK18, MP +11, MFM15, MHR +13, MTM13, NDU16, Ng17, OP12, PR14, PLD15, PBS +17, PKR +16, RD10, Sai10, SGN17, iSYS12, Sie16, Sm16, SKM15, T17, TS19, TCCV18, TDL +14].

GPU [TPC16, WXW14, Wei11b, WS14 +14, Will9, WC13, WAW14, XL13, YHL +13, ZSW +17b, ZPS +18, ARYT17].

GPU-accelerated [ELD14, GHR +16, TL17, WXW14, BTL +17, Cap13, CRB +17, DS13a, GJ13, Ham11, HWX +13, MHR +13, Ng17, PBS +17, XLX13].

GPU-based [Boe14, CMVRB +14, FDWC12, JPCG15, KO12, Kom15a, KMA +12, LCC13, PKR16].

GPU-centric [Sie16].

GPU-code [EZBA16].

GPU-enabled [LYP14].

GPUQT [FVH18].

GPUs [BL18a, Boe18, ACD +14a, AAT17, AEKO18, BS14a, BCDI12, CMVRV +14, CB13a, CSBO13, CWY +17, CBB +10, CSV +18, Ch11b, CBB14, Dat13, Dem13, DSP15, ECD +10, FGG11, GNA +15, GB17, GM18, HTJ +16, HA +13, HLYZ +13, LQ18, sLqSqL +13, MR14, Maz13, MRSD15, MKB +11, ÔN12, PVK +17, SV13, SOON11, SAN18, TK14a, TCP13, WXW13, WAHL13, WRR18, WWM14, YL12, YBK +11, YBN13, dJBIM16].

GPUs-The [HLZ +13].

gpuSPHASE [WMRR17, WRMR19].

GR [OK12, OK18].

Grad
\[\text{gradient} \text{ [AG12a, CR12, EFK} +19, \text{HbotRC15, HKVR10, JHL} +15, \text{KN13, SEGPG15, WX14].} \]
\[\text{gradient-based} \text{ [HKVR10].} \]
\[\text{grading} \text{ [vSGB} +18]. \]
\[\text{GRADSPMHD} \text{ [VKP14].} \]
\[\text{grained} \text{ [AGVP10, AMJ18, BRU13, ESM17, FPY} +17, \text{PA13, SM19].} \]
\[\text{graining} \text{ [GB11].} \]
\[\text{Grand} \text{ [AS16, PLCC12, Sit18].} \]
\[\text{Grand-Canonical} \text{ [AS16].} \]
\[\text{grand-canonical-like} \text{ [PLCC12].} \]
\[\text{granular} \text{ [AGVP10, AMJ18, Bru13, ESM17, FPY} +17, \text{PA13, SM19].} \]
\[\text{graining} \text{ [GB11].} \]
\[\text{graphics} \text{ [CCL15, WWL11].} \]
\[\text{graphics-processing} \text{ [CCL15, WWL11].} \]
\[\text{GravitinoPack} \text{ [ES16].} \]
\[\text{gravitational} \text{ [Cro16, GCC} +18, \text{KM10, PMS} +15]. \]
\[\text{Gravitation} \text{ [MM10].} \]
\[\text{Greedy} \text{ [SJ17].} \]
\[\text{Greenwood} \text{ [CKT17].} \]
\[\text{green} \text{ [AK13h, JLM18, KK16a, KDM11, Lin13, PLF} +17, \text{PLa16, SGS19, WAHL13, XD13, XHID15].} \]
\[\text{GridMD} \text{ [MV11].} \]
\[\text{grids} \text{ [BHS15, DJ11, DHS14, FRFH10, GN14, GSKM14, HWS16, JBG} +17, \text{JBG} +18, \text{LYP} +14, \text{LHGF} +18, \text{MTO} +15, \text{Sch} +18, \text{SC15, SHL} +11, \text{YJK} +11, \text{ZNT} +15].} \]
\[\text{GriFF} \text{ [MLR10].} \]
\[\text{GRLW} \text{ [MM10].} \]
\[\text{GROMACS} \text{ [PSMS14, PSMS15].} \]
\[\text{GROMOS} \text{ [SCC} +12]. \]
\[\text{ground} \text{ [ABB13, AD14, AD15, ABD17, CR13, JCL} +18, \text{KYSV} +15, \text{LBB} +16, \text{LYSS} +16, \text{MGL13, MGL16, SSB} +16, \text{VDAH16, VVB} +12, \text{YSVM} +16, \text{YSMA} +17].} \]
\[\text{group} \text{ [CR13, ELL} +17, \text{JWI13, MH11, WX14, WGG16].} \]
\[\text{group} \text{ [CLKK11, FSC13, Fon12, HB12, JC16, KK16b, LSSW14, MSHLS15, MSHL17, NBN} +14, \text{PO14, RH10, Roh16, Sta11, Trö11, Ver16, WPAV14, ZAH10, LSR} +17].} \]
\[\text{group-correlations} \text{ [CLKK11], group-theory} \text{ [ZAHA10], groups} \text{ [Nik12b, SK10].} \]
\[\text{Grover} \text{ [LYZ13].} \]
\[\text{GROW} \text{ [HKVR10].} \]
\[\text{grown} \text{ [RDF14].} \]
\[\text{growth} \text{ [FBG10, JEF14, LLSK17, MÄWK18, MS11, RH11, SÖN11, ZKG} +18].} \]
\[\text{GSGPEs} \text{ [CR13].} \]
\[\text{GTROTA} \text{ [BSM13].} \]
\[\text{Guadua} \text{ [VLM11].} \]
\[\text{GUI} \text{ [VLM11].} \]

H [BL18a, KKSY18, PCEH15]. H-COUP [KKSY18]. H1 [GRZ10]. H2SOLV [ZY16]. H5MD [dBCH14]. Haar [Jiw12, KMM13]. Haas [RJ12]. Hadron [BSW12, ACD+14a, BDC+14, BHZ13, CCN17, CM14b, DDKM15, Gao13a, GLS+13, Gri10, OK12, OK18, SZY+12, SYZ+13, ZYL+15, Tom16]. hadronic [CWW10, CWW15, CPWZ18, GLPQ11, KKK+15, WW13, ALL+11].

high-precision [BDT15, LM16, SLK19]. high-pressure [SHW18].
High-resolution [PHA18, BMG+15]. high-speed [CSN+18].
High-temperature [HvWT17, Liu15a]. high-throughput [ZZ17a].
high-velocity [JH11]. Higher [ABdA15, CD18, KO14a, WP10b, ACDdM15,
Cha16, CLJ12, DKOS14, MO14, SR12, SC16b, SB11, VJC12]. Higher-order
[CD15, KO14a, Cha16, SC16b, SB11]. Highly
[CH11b, LBP15, MTM13, MGR16, PFK19, dSF18, BY17, GRLS18,
HBP+15, MSL10, SEW12, SEW14, WQ18, WDR16, YBNY13].
highly-efficient [WDR16]. Hiking [Br´a15]. Hilbert [ERPFLS15, SA15a].
Hilliard [LLXK16, YZ19]. Hirshfeld [EPP12]. histocompatibility
[HFSK12]. Histogram [FLE19, CMRVVR+14, CMRVVR16, Sha18, VK14].
Histogram-free [FLE19]. histograms [AMR15, Gag12b, Gag12a, GH18].
HMC [CD15, KP12a]. HNLS [SB11]. HOC [TY10]. hole
[Dua12, Gin10, LZL11]. Holm [ZST11]. hologram
[BGL+14, JTP15, MSS+14, WSO+12]. holograms [BD10]. holographic
[FBN+13]. holography [MSI+10, ZSW+17a]. HoMnO [KAR+15].
homogeneous
[Asi10, BK11b, MSLS15, MSHL17, PN15, SCNJ18, SLEF17, vMB14]. homology
[DS13c]. Homotopy [CS10, PSBT12]. honeycomb [MHH11].
Hooke [RGKR17]. Hopf [Bo14]. horizontal [ME18]. Horn
[BKM14, BK15]. Horn-type [BKM14, BK15]. Horner [KPvH13].
HOS [DBLF16]. HOS-ocean [DBLF16]. Hoshen [FKH15]. hosphe
[CDTV10]. HOTB [GSMK17, SMGK14]. Howes [ABB+14, BBC+13a, MHA+12].
Householder [NLSJ17]. hp [BCM+16, LWL11, Roh16]. hp-RG [Roh16].
HPAM [ERPFL12]. HPC [DDJC+19, Cdc+11, GBK+12, HL18, OLG+16].
HRMC_2.0 [OPSR13]. HRMC_2.1 [OPR14]. HTC [Cdc+11]. Hubbard
[MHH11, SA15a, SH12b, US16, WDL11]. Huge
[WSI13, BMC+11b]. Huge-scale
[WSI13]. Hut [WHS+12]. Huygens [VLZ17]. Hybrid
[BCTP18, GJLB18, KSS18, LRW+15, ML17, OPR14, SSB+16, SS11b, TH17,
VCMS+13, WDL11, WLZN17, YHL11, dIRM18, AAD14, BCD+11a, BD12,
BT17a, BWPT11, BKPT12, BY13, BMDP19, CW16, CL13, DUC+19, ES11,
FGR14, GWL+17, GC12, Gni19, Gwi12, HLW16, JTN+11, Jiw15a, KK13,
KKL+18, KCS+15, LCY+11, LHC+13, LHH+12a, LSYZ12, MIW+12, MM17,
MKU+12, MSM+11, MKKB18, PZZL19, RTT+18, SZ15, SP18b, SS13b,
SPS10, SYE+18, SGS919, TFBW14, WLGY18, WC13, WAW14, YvOSM15,
YLO+17, YXT+15, ZC12, GBR+14, HKZN17, OPO+11, OPSR13, Urb18].
Hybrid-optimization [WLZN17]. hybrid-stabilized [JTN+11].
hybrid-symbolic [SZ15]. hybridisation [SKF16]. Hybridizable
[SVS19, HLLH16, LLP15, LLMW17]. hybridization
[AK13b, HWG13, SGW17, VPP+12]. hybridizations [SGW17]. hybridizes
[YLY17]. hydraulie [WNYP17]. Hydrodynamic
[BSL13, BOGL17, GZW17, KHB14, LCH11, LKW11, WSH+14, ZD15]. hydrodynamical
[NAQ16, QA13b]. hydrodynamically [APC+14].
Hydrodynamics [CDR 15, FHTO17, GRLS18, KS16a, DCVB 13, DCGG13, EKK14, GLB13, GCH 18, HLS 17, HPN18, JXTS16, KPPC13, MRS15, NFS15, RH17, RTA10, SC15, SC16b, SN16, WRR18, dIRM18].

Hydrogen [WBY11, BP12, BH14a, BH14b, BH16, BKS15, JTT11, LH11, MFS10b, SW14a].

hydrogen-like [BP12, MFS10b].

hydrogenic [PG10, Sar17a, Sar17b].

Hydrokinetic [MBS 10, BBF 13].

hydrothermally [CLY11].

Hylleraas [JH15].

Hyper [GGF 13, GES13].

Hyper-Fractal [GGF 13, GES13].

Hyperbolic [AOK15, AAD14, BB10, CGM17, DJ11, Ert15, Jiw15b, PKT15, RD10].

hypercubes [TOB 14].

HYPERDIRE [BKM14, BKK13, BK15, BK16b].

hyperfine [ZE11, ZE16].

HYPERgeometric [BK15, BKK13, BKM14, BK16b].

hyperlogarithms [Pan15].

hypersonic [BTC 17, PBD 15, TIMM13].

hyperspherical [AV13].

HypExp [HM12c].

Hypotheses [Zlo14].

i-PI [CMM14].

I.V.P.s [RL10].

I/O [DRUE12, GGI 13].

IAST [SSH16].

IBAR [Cas12].

IBM [CRA10].

ICC* [KSH11].

ICCG [PYW 14].

ice [HYM11, IUM13, RTAT15, TS10].

ICSM [BBL 13].

Ideal [SSH16, LOL 18, PE15, TDL 14].

IDEN2 [AKV18].

identification [PLD15, VBMP15].

Identifying [LZ12, Kra10].

IDSOLVER [GJ14].

iEBE [SQS 16].

IFE [RtV16, RtV16].

IGA [LWP 17].

iHixs [DLM18].

II [RHHB15a, Ano11a, AD15, ABH 19, BJBC 14, BH14b, BMW14, BAK 16, Dan10b, HBS 11, Nog17b, dRAPL11, RHHB15b, SH18, SAS11, SSK 13].

III [PSL 17].

illustrating [ZW15].

illustration [CLB11].

Image [DGPOR18, iSSMI11, GES13, JTP15, LAS 17, TW15, XD13, XHD15].

ImageJ [SBB 17].

images [AKKK16, CRB 17, GBF 10, PVH 17, WGI 16].

Imaginary [LR13, LR16, ABDR17].

imaging [CFCB12, Fer15, GB 14, SSM 17].

imbalance [WRB11].

imbibition [GTSL 13].

imbibition-drainage [GTSL 13].

Imeall [LFKD18].

IMEX [DMP18].

IMEX-trigonometrically [DMP 18].

imbibed [CCHL11, CGJ14, JvOK17, NCB18, Ser10, YS17].

impact [CCLL18].

impedance [deadlock].

Impingement [LNS15].

impinging [HHT14].

implants [RS 12].

implement [MRL18].

Implementation [AS16, Alv12, BKOZ16, BDPM15, Boe18, BF10, DPK 15, GSZ13, GES13, GFJ 14, HP17, IIO16, IFO18, LLG17, MHI 19, MPB10, MFG 13, MBGV15, NBN 14, RV10, REBS16, SSX14, TIM 16, VDB14, WP10a, Ara14a, Ara14b, AKS17, ADyM12a, APC 14, Bad11, BCW13, BCW13, BH16, BVS19, BW15, BG14b, BEN 17, CTK17, CFCB12, CL15b, CGJ14, CGG 14, DEMM19, DA16, DCVB 13, DM12, FGC 11, Fow18, Fri14b, FHH 14, GS17b, GS17a, GVS 15, GBH18, GB17, HWG13, HPOP15, HLM 13, HDM 12, JWL12, JK14, JWCW17, JJ15, JKS16, JP10, KFS17, Kap12a, KKG 15, LKM 16, LBM 14, LH11, LK15, MFB 10, MSS 16,
infrared [Gar19, SC16a]. infrastructures [GBS+16a, VPMVH+17]. InGaN [YSN+14]. InGaN/AlGaN [YSN+14]. Ingólfsson [BL18a].

SAY+18, TJH17, Yan11, ZZ15. **Interactions**

[KC18, BBL+13, BCH11, CCGC13, CB16b, Cro16, ERP+12, Fil13, FZY17, FN17, Gao13a, GM16, HCSW10, KGFS18, KMD12, KM17, Kra17, Kra18a, LSDD14, LH18, dRJL14, Ots11, PH13, Tan19, TMA+15, TRN16, TT11, YLQ+17, ZE11, ZE16, ZHPS10]. **Interactive**

[KY14, Gio14b, MMC10, TL17, KST+14b]. **interatomic** [GD14].

[OK10]. **interesting** [MN10].

Interface [LZ17, ABB+10, Ano10o, BPML12, BB13b, CMM14, CSPAD10, CF16, CCHL11, DNP+12, DPW16, EW14b, FLSZ13, GWM13, GLR17, HHP+16, KDP+14, MZ14, Nov17, PHA18, TM14, UTy14, WMK11, XNK+16, XD13, XHD15, zYCG+18, ZMvE+13]. **interfaces** [KRW13, KMSJ16, NPM16, PR10, RH11, ZFBR11]. **Interfacial** [HLS+17]. **Interfacing** [MHA+12]. **interference** [FNPMB10]. **interior** [HLW16]. **interlaced** [CMdB11]. **intermediate** [vMB14]. **intermetallic** [DMC+15].

intemolecular [KHKR14]. **internal** [BHH+10, BBH+15]. **International** [BCJ+11]. **Internet** [VDJ+11]. **Internet-based** [VDJ+11].

interoperability [GVPJ18]. **interoperating** [CCdC+11]. **interparticle** [QLN14]. **interpolated** [FZY13]. **interpolating** [MCV18]. **Interpolation** [JKJ+12, DG10b, GGG16, Jiw15b, PCGM14, RWKS15, Sok13, USN12, XNK+16]. **interpolation** [HLL13]. **Interpreted** [¨US18]. **intersection** [PC11].

interval [Zlo14].

intramolecular [VB19]. **intranuclear** [TB14].

intrinsic [Dev12, DMC+15]. **intrinsically** [CRNK12].

Introducing [BHS15, CXH+15, HHS+10, LM16, MDGC+12, MCAF14, dHGS11]. **Introduction** [IBP+15, Brie10, SAC+15, TKR13]. **Intrusive** [HHM+15].

invariant [MDHD18, QwWL+15]. **invariants** [ADdM14, DdMN16, FWZ+12, Ver16]. **inverse** [Boy15, CLI5b, KL11, MW12, MK10, MD10b, WHB16]. **inversely** [KB15a].

inversion [CLI5a, GWF+16, GCF+17, GST15]. **invert** [FZ16, RLM13].

inverter [CL16]. **investigate** [ABH+18, KFF+16, RDP14]. **investigated** [CSL+13].

Investigating [ARAB+17, BG14a].

Investigation [AM14b, CLY11, KK13, MDPTK15, MRVF13, vdS13, EGGW12, MISH11, NS11b].

inviscid [LSK+13, TFBW14]. **involving** [Cip13, GC13, Sar17a, Sar17b]. **ion** [BT17b, BB13b, BKN+17, CCL18, Gai17, GAB+16, JuLAM16, JGGC+11, KB14, KMD12, PCR17, PR14, SK12, SQS+16, SVG10, TXZL15]. **ion-ion** [BG14a]. **ionosphere** [Gai17]. **IONIS** [Hei12].

Ionization [JTT11, BPC12, BH17, Fri12]. **ionospheric** [KST+14b]. **ions** [BP12, HH11a, JTT11, KNS+17, Lit13, LB11, LB12, MICA17, MS10b, NNWS15].

IPEC [HB13].

iQIST [Hua17]. **IR** [War16]. **IR-improved** [War16].

iron [ALC18, BPMM14]. **irradiation** [MBRV+13, PC17]. **irregular** [BS15b, RHH12, SSS+10, SSS+18, VHP+15, vdS13].

ISDEP [VBC+12].

ISICS [Cip11, Cip13]. **ISICS2011** [Cip11].

ISICSoo [BPC12, BPC13].

Ising [LWL11, BVP10, CB15d, IZRT15, KO14b, KO16, LBP15, MH11, NHD16, SMJ17, SLZ16, SW11, SSBS15, WWVB11].

Ising-type [SLZ16].

islanded [CLH+17]. **isobaric** [VK14].

isochronous [CWC+17].

50

Knudsen [DS13a]. Kohn [KKL+18, SCS12, SCB17b, SPSP18, zYCG+18].
Krasilnikov [Ma´z19]. Kriging [RPB+15]. Krylov
[HCSW10, BB15, BBF+10, BH11, BVSG19, CB15d, CSV+18, LHZJ10,
STK0, SPP19, YJK11, vWB10]. Kubo [CKT17]. Kutta
[FG13, KMS14, KAS12, BM13, CFMR10, DBMR18,
DIP11, DM17, Ix12, KZC+10, MIW+12, MKS10, NS15, WXL13].

L [ADH+17, Cip11]. L- [Cip11]. lab [RGG+19, NSXZ14, RGG+19]. labeling
[Kom15a]. laboratory [DMM16]. LabVIEW [CO11, Fer15]. ladder
[ABB+16]. laden [SYD17]. lag [MKS10, NS15]. Lagrange [Jiw15b].
Lagrangian [CGG+14, Ein16a, FRFH10, GAB+16, KV10b, Lan13, MIW+12,
MFH+13, iNSK+15, Sem16, UNK12]. Lagrangians [Deg15]. Laguerre
[GST17, Ter17]. Lamb [STY15, STY18]. Lamb-shift [STY15, STY18].
Lambda [Eks11]. Lambert [Yeb12]. laminar [EZL+16]. LAMMPS
[CL13, FMRP16, FPY+17, LK15, MMSF+15, MOD13, NKS15, RU12, Sva12].
Landau [AKS17, BHT19, MGRB11, MC10, RLM13, TVG15, JK13].
Landau-Transition-Matrix [BR13]. Landweber [KL11]. Lane
[CB13b, KMM13, PDRG10]. LANFOS [PCEH15]. LANFOS-H [PCEH15].
Langevin [Tan19, THDH14]. Langmuir [AAJA14]. Language
[US18, GMM18, KST14b]. LanHEP [Sen16]. Laplacian [NHS14]. LAPW
[FWZ+12]. Large
[BMC+11a, DdJC+19, DSW+15a, HKK11, JEFP14, JXTS16, KHZ+18,
PLD+13, SXW+18, SOM+13, SLZ16, TIMM13, BC10, BS15, BH11, CB15a,
CB17, CB18, Cas12, CF17, CO11, Deu16, DO14b, DML+16, ECD+10, GS15,
GHvdL11, GZL14, GMC18, GJLB12, GHdf10, GS8+16a, GAO13b, HLS12,
HC16, HLW16, JWCC17, JLD13, JOK13, KLM+16, LRW+15, LCQF18,
LSY12, LR13, LR16, LOV10, MBS+10, MAM14, MSR+17, MCNRC16,
PB16, Raw15, RLM13, SI11, SZC+13, Sh13a, SPSP18, SPP19, Tov10,
THDS16, TIM+16, VBG+10, Var16, WDL11, WLZN17, BSW12].
Large-eddy [TIMM13]. Large-scale
[BMC+11a, DdJC+19, HKK11, JEFP14, KHZ+18, PLD+13, SXW+18,
SLZ16, CB15a, CB17, CB18, Deu16, DO14b, DML+16, GS15, GHvdL11,
GHdf10, GS8+16a, GAO13b, HLS12, JOK13, LCQF18, LR13, LR16,
MBS+10, MCNRC16, RLM13, SPSP18, Tov10, THDS16, WDL11, WLZN17].
laser [BT17a, EZBA16, FZY17, GC12, GH15, HJL+14, IB11, IKS19, JTT11,
LJSW11, LHZJ15, MH12, MFS+10a, ON14, REtVH12, SZM+14, SBE+16,
SY18, TC11b, TT11, ZY15, ZZ15, ZLM12]. laser-atom [FZY17, TT11].
laser-driven [HJL+14]. laser-induced [SY18, ZLM12]. laser-plasma
[REtVH12]. lasers [FYK18]. latency [GCC+18]. laterally [EBCB17].
BGM + 14, BBH + 18, BH13, BCH13, BHJ + 15, CEZ16, CGH + 11, DDH17, DNPS13, Fen12b, FEH11, GLZ17, HEF12, KKS18, LS17b, MCW15, Mey18, Pat15, Pat17, Per14, Pik18, Sta11, YdDH + 12, dDYK + 18, vH11.

loop-corrected [BGM + 14]. Loopedia [BBH + 18]. Loophole [DMH16].

Loop-hole-free [DMH16]. Loopedia [BBH + 18]. Loophole [DMH16].

Lossy [WWHW14]. Low [BK12, KGNS10, LCY + 11, AGH + 16, BDBV12, BT17b, Fu19, GCC + 18, HYM11, Kol15, LO14, MSPD12, MCP + 11, NRSVW12, PTMPPK14, RF16, RHC15, TSIM16, TM + 16, VSG18, Wei12, Zio14, VRWS14, BH14b, MPS13, MNPF17]. Low-amplitude [BT17b].

Low-density [HYM11]. Low-dimensional [vRWS14]. Low-dissipation [Fu19]. Low-energy [LCY + 11, MSPD12, NRSVW12, BH14b].

Lower-hybrid-wave-driven [RTT + 18]. Lowest [Kol14]. LS [NCF18].

LS-STAG [NCF18]. LSQR [Wan10b]. LU [San15, WM13, ZSW + 17b].

Lugovskoy [Maz19]. Magnetic [MHHL11, VCMS + 13, BDK11, BUJ15, BMW14, CHW + 15, CFW17, CZL + 11, CHZ18, DOP17, DA16, Dua12, HSD17, HEF + 11, KB15a, KOT12, Kii10, LLQX19, LFG14, LZ17, LR13, LR16, MDW16, MJB + 10, MEG12, PBE14, PGM14, RS12, SEW12, SW14a, SEW14, SW14b, SZM + 14, SHNM11, Tau10, TG11, VPM12, YTYA17, YJK11]. magnetically [Ram12, SCM + 16]. magnetisation [ALC18]. magnetized [BOPL17, CFF19, LJ + 19, LDF + 16, MF17, MCM + 12, MAMA15, Ram10, sX14, Yan09].

Magnetohydrodynamic [MKL17, SNB11, TYH + 15, WWFT11, WAW14, WWM14, YTYA17, ZD15].

Magnet [AEKO18, BCT17, IKS19]. MAGPACK [RRCSC11, major [HFSK12].

MATHEMATICA [BKM14, AC13, AC15, AC18, Aza13, BK13b, BKK13, BK15, BK16b, CGO17, CMS17, Dep17, Eks11, FRW17, FMRP16, FK15, Feni12a, Fen16, GLMG12, HHP+14, LR18a, LR18b, MZ14, Mis12, Mis13, Naz12, Nov17, Nut14, Pat15, Pat17, Pre18, Ros16, SBQ14, TJ11, Tab16, TM14, Tos10, WL11a, Wiet15, XML16, Zit11]. Mathematica-based [BKK13, BK15, BK16b]. Mathematical [TN11, CD15]. Mathematica(R)
mediated [HLS12],

medium [IB11, PP13, SM14], Meep [OR1+10], MEKS [GLS+13], melting [YK18], membrane [CZN14, FPY+17], membranes [PDC14], memetic [VHP+15].

Memory
[MR14, BKS15, CL15b, CSV+18, DGMZ15, DKG+14, IW15, LP15, LL15, MD11a, NS11b, NFS15, OLG+16, TE18, WMRR17, WRMR19], memory-mapped [LL15], MEMPSODE [VPP+12, VHP+15], Mercedes [HDM+12, SBPN15], merge [PMMF15], merging [LTP16, VGM+15, XLX13].

Mesh
[HS14a, AWK+16, BCH11, BKPT12, EG+18, FXZ+14, GX15, HCC14, JG16, JFC12, JCL+18, KC14, KYKN15a, KYKN15b, LJWK11, LH18, LWRQ16, McM17, PZZL19, RHBH15a, RHBH15b, UBRT10, VLM11, ZD15, CZF18]. mesh-free [JCL+18, McM17], meshes [ASGLK10, AK15, FXZ+14, LA13, OCM+19, SP18b, YWX11], meshing [ZPH+15], meshless [DG10b, MM12, QLN19, SW14c, SD10b, XLL15], meson [BBC+11, CWW15, YWW13], mesoscale [HPN18, WSH+14].

Mesoscopic [SS11c, WJHW14], message [TSTT13], message-passing [TSTT13], meta [GSZ13], meta-GGA [GSZ13], Metadata [RSSH+10], Metadyn [HS16], metadynamics [BPML12, HS16], METAGUI [BPML12, GLR17], metaheuristic [CNMC10b], metal [FSJ+16, HBB+17], metallic [HKF+12, HLM16, LLHC11, ZHCR18, ZLLP17], metals [BT17a, KOK17, PSP16], metamagnetic [dSFdFF13], metamaterials [RHW+12], Metamodelling [ZKS13], metaphor [DMH16], metastability [FDWC12, JHG14], metastable [BVC13, ES16], METATOY [LHC+12], METHES [RF16].

Method
[BUJ15, EW16, GHBL18, Hes16, TGH+16, ZLL18, AM14a, AM14b, ARYT17, AS11b, ADdM16b, ASS13, ABDR17, AG12a, ACdM19, AAAAA14, BOPL17, BBL+13, BM13, BF16, BBR+17a, BK11a, BHI4b, BHI6, BW12b, BR14, BT19, BTB17b, BL18b, BS15, BH11, BM14, BCM+16, BMNS14, BPMS16, BTT12, BHND16, BENK+17, Cz18a, CL15a, CB13b, CAN11, CSP10, CZS10, CL10, CLJ12, CW13, CTL15, CW16, CS17, CSL+13, CKK+13, CB15d, CvW12a, CvW12b, Cor14, Cou13a, Cou13b, CNS+14, DZ15, DEM19, DT10, DG10b, DT11a, DM17, Den10, DKSG16, DUC+19, DA16, DMC10, DCGG13, DLF16, DFM+15, Duf16, DO14a, DO14b, EBCB+14, ELDS14, EK14, EFK+19, FGG11, FS17, Fen12b, FK12, FPMB10, FB+13, FPY+17, Fu19, FJ19, FN17, GC12, GZL14, GML15, GBP13, GA15, GA10, GCH+18, GYW+10, GB17, HE13, HV15], method [Ham11, HCH16, HLH16, HSD17, HKvH16, HDZ14, HJGL18, HHC+10, HWW12, HLW16, HM18, HI11, Ixa10, Ixa12, Jal10, Jan10, JKH14, JWCC17, JLM18, rJmYT11, JOR+12, JGAI+13, JLIW13, JCL+18, JPM12, JK13, JU17, KMS14, KK13, KU10, Kap12a, Kap12b, KC118, KKG+15, KGFS18, Ki10, KLI7, KO14a, KL11, KN13, Koh15, KDM11, KA17, KAS12, KPS15, Kra10, KZ14, KMS16, KR14, KSW12, KOK17, KSY+17, LOL+18, LLHC11, LLQX19,
method [Nis11, NMS14, OYK14, OPO11, OPSR13, OPR14, ORI10, OT11, PHA18, PSBT12, PAS11, PS14, PDRG10, PR13, PBMAD12, NDSH18, NPM16, NHSY15, NZQL14, NCB18, NS15, NAQ16].

ZLM12, ZYL+15, ZCG17, ZKS+18, ZFR18, dSD012, dSFdFF13, dSLF13, dSVLP13, dSF18, vMB14, ABC+18, AB10, BCPS11, BCP13, DET12, DG16, HLM13, KPV16. **Model-Driven** [Dan10a, Dan10b]. **Modeling** [CLW11, wH15, TJH17, AD11, BOPL17, Bar11b, BMNS14, BMZ+18, CSJ+17, CL11, CFFR15, Dan12, EZL+16, EDPZ19, EKK14, FZY17, Gai17, GGI+13, HV15, Hak16, HDF+19, HCHW11, IP14, Jab19, JGC+11, KEH12, KPA13, KM10, KRB15, KMJS16, KGNS10, Lan13, LZZL10, LHH+12b, LTL+12, MPS13, MN18, NGCI+12, OBPL19, OP12, PBF+16, PE17, Ram10, Ram12, RAV11, RTA10, SGNL17, SN16, SHL+11, Sol11, Sva12, TKP12, Uty14, VBMS17, VCD16, WGVPL17, XHLM12, ZE11, ZE16]. modelings [Hon18]. Modelling [AGB+15, CC16, HDM16, IBKK11, Ano10n, AMR+18, CdLOL19, DBD+17, HKF+12, Kra18b, MDPTK15, MRSD15, MSML10, OBH10, ORS+14, Org15, RF15, RLMGM+11, TN14, Van15]. Models [Rei11, Rei12, AS11a, AC17, AABC+13, AG12a, AH13, AliPSV15, ABH+18, AC15, AC16, AC18, BW16, BBC+13a, BR13, BHT19, BKM11, CECGS16, CZ18b, Che17, DCM+12, DNPS13, EDS14, FW11, Fil13, FD13, Fuh15, HLL13, HvWT17, HCH16, HVMR10, HKVR10, ID18, KÖG17, KO14b, KO16, KST+14b, KTA12, LLMW17, MLGVE14, MST+18, Mur14, NEW+18, NHS14, NAQ16, PS12, QA13b, RK11, RDK+17, SLZ16, SH16, SOPS12, Sus17b, TSTT13, TVZ+15, WG12, Wan16, Wei11b, XLY+15, YZ19, dRAPL11]. Modern [HdM16, BS14a, CDSG11, EDB16, BNL+13, RK11]. modes [ALS14, CS17, HSK+12]. modifications [RL10]. Modified [LYL+17, NIK+12a, ZLL18, BKN+17, DF+15, Duf16, FZY13, GZ13, Jiw15b, KMS14, LCQF18, MS15, Ras09, Ras17, SMJ17, SBvD13, XHLUF+18]. Modular [CFW17, Gpiu19, Sin11, Sin12a, DLGP10, FWS+17, KP16, KSH14, Kro16, TCK+15, Zag14]. modulated [TTG11]. modulation [Kap16, OCL+13]. module [DF11b, DGST17, GST12, LRK13, SK12]. modules [AAB+10a], moduli [Bog16]. MOLDY [ADD+11]. Molecular [AS16, DLGP10, Fil14, FFIH11, GM11, HLZ+13, LS17a, MTS11, MKB+11, Ngu17, SBPN15, SYE+18, TD17, ZS13, Zhe15, ADD+11, Bar11a, Bar12a, BBH11b, BPM12, BKS15, Bin13, BG13a, BG14a, BWPT11, BKPT12, BY13, BCG+15, BBV+16, BMDP19, CTT17, CMM14, CXH+15, Col14, DEW16, DES+11, DRR15, ESM17, FSH13, FCVH17, FRG12, FP14, Gar19, Gio14b, GLR17, GNA+15, GRR+14, GHF14, HST+11, HMY11, HXW+13, HAN+16, HBH+17, HWL+17, HVMR10, HKVR10, HM17, HDM+12, JWL13, JPH+14, JTT11, KJIS16, KST14a, KPA13, KDM11, Kon11, KKS18, KS15, KHN19, LGW13, LS12b, LHZ11, LK15, LLZ+17, LBR+18, LRR+17, MDW16, MGRB11, MM17, Min11, MSH11, NBW16, NFA+16, NB17, NPAG11, iNSK+15, OKMI12, OYK+14, PLCC12, Rap11, Rei11, Rei12, RKGC+17, SMOB19, SGM18, Sco13, SOM+13, SC16a]. molecular [SMO16b, SCM14, SCM13, SAG13, SA14, TS11, VBG+10, VK14, WJCZ18, WZHE18, WSI13, YK12, ZBG+16, ZPH+15, ZZHG18, dBC14]. molecular-continuum [NFA+16, NB17]. molecular-dynamics
[CRC+13, DNPS13, FEH11, FHH+14, HP17, HLM13, HEF12, KZ11,
LCE+13, PS12, RCD+10, Ros15, SV12]. MsSpec [SNG+11]. MsSpec-1.0
[SNG+11]. MSTor [ZMCT12, ZMPT13]. MT [HHP+14]. muffin [LZP12].
muffin-tin [LZP12].
Multi
[BFPP12, BBS14, BVP10, BMW14, CZS10, ELDS14, FBN+13, HDZ14,
IBP+15, KO13, Kom15b, KSW15, Liu14, MRK+12, MRSD15, OP12, PP13,
SW14b, SM19, SCM+18, TPC16, UBR10, ZST11, ZMvE+13, ASS13,
AZM14, BBU11, BBUY13, BBP+17a, BT17a, BT17b, BAR12b, BCH13,
BHJ+15, BJH+18, BVH15, CJW19, Cap13, CC15, CL15b, DBP+18, DKG+14,
DE13, DCVB+13, DGS+19, DO14a, Er14, FSJ+16, FHA17, DRI+16,
GBC+18, HLS+17, HZW+19, HWT10, Ike18, JK14, JXTS16, KPA13, KO12,
KO14b, Kom15a, Kom15c, KO16, LLQX19, LS12a, LH11, LQ18, LY16,
LPB15, LRK13, Mey18, MMA15, NWS15, NH16, NB17, NAQ16, Pal12,
PR14, PC11, QSC14, QwWL+15, Sch14a, SV13, SGW17, SLR+11, SC16b,
TRM+12, TD14, TDL+14, Vuk12, WSH+12, WAW14, sX14, YZWR14, Yi11,
ZAFAM16, ZMPT13, dDYK+18, ReTVH12, RiV16, FOB+15, IBP+15].
[Vuk12]. multi-baryon [DE13]. multi-center [BAR12b]. Multi-Channel
[KSW15, LLQX19]. multi-cluster
[KO12, KO13, KO14b, Kom15a, Kom15b, Kom15c, KO16].
multi-component [HLS+17]. Multi-core
[BFN+13, HWT10, LH11, TRM+12, TDL+14]. Multi-core-CPU
Multi-dimensional
[MKR+12, ASS13, BT17a, Cap13, CC15, DO14a, NAQ16, TD14].
multi-disciplinary [WSH+12]. Multi-Domain [IBP+15]. Multi-electron
[BMW14, SW14b]. multi-exponential [lR18]. multi-flexible-body
Multi-frequency [PP13, LY16, YZWR14]. MULTI-fs [ReTVH12].
multi-gluon [BBU11, BVH15]. Multi-GPU [BFPP12, BVP10, OP12,
TPC16, DCVB+13, JK14, JXTS16, LBP15, NH16, WAW14, FOB+15].
Multi-GPU-based [KO13, Kom15b]. multi-GPUs [SV13]. multi-instance
multi-layered [CL15b]. multi-level [HZW+19, IBP+15]. multi-loop
[BCH13, Mey18, dDYK+18]. multi-material [SC16b]. multi-mode
[LRK13]. multi-moment [MMA15]. multi-objective [AM14].
multi-orbital [QwWL+15, SGW17]. multi-particle
[BBB+17a, LQ18, PR14]. Multi-phase
[MRSD15, BT17b, FHA17, ZAFAM16]. Multi-physics [ZMvE+13, DRI+16].
Multi-scale
[UBR10, BJH+15, BJH+18, Sch14a]. multi-socket [TRM+12].
Multi-symplectic [CZS10, HDZ14, ZST11, CWJ19, LS12a, QSC14].
multi-user [GBC+18]. multi-zone [Yi11]. multiband [Bot12, HHC16].
multiblock [HdM16]. multibubble [WSI13]. Multicanonical
[KI11, BB13a, FLE19, GZWJ18, SI11, ZMJ13]. multichannel [GMRHRCME13, HBP14, NFI17]. Multiconfiguration
[BSGG10]. multicellular [HFOPF15]. multichannel [GMRHRCME13, HBP14, NFI17].
Multidimensional [CHA11, End11, LW14b, WW14, ZF15, ZLM12, AM17, KBSP12].
multidomain [DT11a]. multifluid [RC15]. multiframe [SGDS16].
multigrid [BOT13, FN17, TE18]. multilayered [MCWJ15, OL12, ZZHG18]. multilevel [MCWJ15, OL12, ZZHG18].
multilevel-skin [ZZHG18]. multiloop [SST11, Smi14]. multimode [Br’a15].
multiparticle [HPN18, WSH+14]. multiphase [ZLFM11, HSF+15, LOK+18, N2H4, M2H15]. multiphoton
[TC11b]. multiphysics [ZLFM11]. Multiple
[ELL+17a, Jab17, XNK+16, AKR15, BAF18, EBCB+14, GLAC13, GM18, HLZ+13, JA17, JPH+14, Kap12b, Kra18b, LWES18, STK10, SNG+11, SCMi14, TSMS10, TACAI5, VK14, Wai12, WMK11, WXW13, WJW14, WWM14, YL12, BBV10, CYN19]. multiple-histogram [VK14].
Multiple-Relaxation-Time [CYN19]. multiple-trapping [Ja17].
multiplication [GJ18a, WWR+16]. multiplicities [Wei12]. multiplicity
[Bar16]. multiplier [AQJ10, TC11a]. multiply
[BG13b, BG14a, BLG14, Bon15, Bon16, WLG+13]. multiply-charged
[BG13b, BLG14]. Multipole
[CC10b, CC12, GB11, GCH+18, Ham11, LCQF18, LCHM10, LCHM13, OMY+14, TSM16, YBK+11, YBY13, ZHPS10]. multipoles [EP112].
multiprecission [Sai13]. multirate [SEGP15]. Multiresolution
[LB10b, RHH12]. multiscale [AKH+18, C8b, HBL+13, KFS17, KK13, RLC+14, SMO16b, ZOZ13, ZGZ+16, CHZ18].
multispin [FFT+14].
multisymplectic [CWS14]. multithreaded [TV10]. multivariate
[CSR13, KPVvdH13, LR18a, LR18b, vH10]. MultivariateResidues
[LR18a, LR18b]. multivolume [SML16]. muon [NBCL18].
mouns [BCMS10]. MUPAGE [BCMS10]. Muse [Liu14]. mVMC [MMY+19].
mVMC-Open-source [MMY+19]. mxpfit [Ike18]. myFitter [Wie13].
N [CKFB12, CDT10, GBD10]. N2HDECA[Y] [EMW19]. N2HDM
[EMW19]. Nabarro [PE17]. NAMD [JPH+14, BW15, JJ15, MPB10].
nanostructures [SS11c]. nanoclusters [FSJ+16]. nanodevices [CLL16].
nanometric [ZHCR18]. nanoparticle [Bar11b, YHCS11]. nanoparticles
[CKLM10, HT12, Nov17, SWL+15]. Nanoporous [ZDD+13]. nanoribbon
[LCY+11, SWL11]. nanoribbons [GZL14, Ihn12]. nanoscale
[Dan14, Dan16, Dan17, LCH11]. Nanoscience [NSH+19]. nanoscopic
[EVB14]. nanostructured [NPM16]. nanostructures [BMC+11a, BW16,
DSS+12, DGMZ15, GTG+11, GAO13b, HHC16, MCP10, Wie18].
nanosystems [GS15]. nanotube [LCY+11, Yan11]. nanotube-nanoribbon
[LCY+11]. nanotubes [Beu11, CSL+13, HCC14, LHSL14, RM14, ZRS12].
nanowire [DJ12]. nanowires [CM15, TG11, VB11]. NASAL [PBFS+16].
NASAL-Geom [CPCDdM18]. Natural
[BHT19, OP12]. NAVier
[BKOZ16, EW14a, FZDJ17, LWJV18, MVS15, Sa116, SK15, SP18b, ZPS+18].
NBL [KHN19]. Nd [LQZ+13]. NDL [HAV+14]. NDL-v2.0 [HAV+14].
ndom [SKB10]. Ndynamics [ADdM+12b]. Near
[BKMP16, AGVP10, CZF18, DT11b, EGGW12, Faw10, Ju117, LPRPR17,
MZE13, TKL+12, Uty14, XD13, XHD15]. near-barrier [DT11b].
near-continuum [TKL+12]. near-field [CZF18, LPRPR17]. near-rigid
[Faw10]. Near-threshold [BKMP16]. near-wall [Ju117, Uty14]. nearly
[LYL+17]. nearly-adiabatic [LYL+17]. necessary [BSWC14]. neighbor
[ABRS12, HAN+16, KHN19, LYJY+10, ZZHG18]. Neighbour
[MRZ10, WR18]. Nektor [CMC+15]. neoclassical
[BSM13, HSK+12, MS14, SISW10]. Nernst [Fuh15]. Nested
[BBV+16, BH11, SEGP15]. Network
[VKLM11, VLM11, DLW+18, HH11b, ORCR17, dSLF13, ZHL11]. networks
[BHVMH15, CHDF10, CB15c, CMdB11, CF17, CLF18, HLS12, IBKK11,
Kra10, MCNRC16, NMC15, PHA18, QIC+10]. Neumann
[RC16, Jiw15b, RC13, RTA10, SP16, SN16]. Neural [ORCR17, ZHL11].
Neutral [BRL+12, AGB+15, BBH+11a, Lit13, PE15, Tic14]. neutral-particle
[Tic14]. Neutrino [BFM10, AKH12, BPMM14, BNAB11, KBHS19].
nutrino-driving [BNAB11]. neutrinos [WW15]. NEutron
[Car16, BN18, CXX+19, ECH16, KB15b, LS12b, RLS16, SEW12, SEW14,
[CWW15]. Newton [BK12, CB115d, HCSW10, YJK11, sWB10].
Newton/Yukawa [BK12]. Newtonian [BHNS17, NCB18, RJL116]. Next
[AAT+14, AC17, AMRD17, GLPQ11, PLF+17, DET12]. next-generation
[PLF+17]. Next-to-minimal [AAT+14, AC17, AMRD17, DET12].
next-to-next-to-leading [GLPQ11]. Nexus [Kro16]. NF [YE14a].
NF-package [YE14a]. NGluon [BBU11]. ngravity [CRO16]. Ni
Ninja [Per14]. NiTi [NS11b]. nitride [Yan11]. nitrogen
[CHC+11, LJSW11]. Nix [Rom15]. NLO
[BEC+14, BCG+13, BS13b, GHvSF14, Pit10]. NLS [ILsZ14]. NLSemagic
[Cap13]. NMSDECAY [DE12]. NMSSM [AM11, BGM+14, SAE+16].
NMSSMCALC [BGM+14]. NNLO [HLM17, BHZ13]. nlo-Higgs
GG16, GFJ+14, GBJ+15, PDL+18, SZY+12, SHZ13, SAY+18, Shi16, SUS+17a, Tom16, ZSW+17b).

nuclearity [DRR16, RCCSCJ10].

nucleation [JJB11, RDP14].

nuclei [Bab14, DT11b, DML+16, GC10, GC13, GC16, LMAB16, NPVR14, PUO14, WSI13].

nucleon [AHK+12, GBD10].

nucleus [GC18, WR16].

nuCraft [WW15].

nudged [QDZ+13].

NUFFT [Giu19].

null [HLW16].

null-space [HLW16].

nullity [YE14a].

number [ASPW13, BS11a, BS14a, BJCW13, CBGY17, CBYG18, Dem11, FP14, GP13, GBS16b, Kan18, LS15a, LNP+17, Mis13, Sav15, SS13a, Sib17, SCM+18, TC11a].

numbering [BBC+13a].

numbers [BS13a, BCJW13, Nog17a, Nog17b, UO15b, YB13, ZOZ13, ZNT15].

Numeric [GBRB11, KCA+15, LRW+15].

Numerical [ASEA14, ACCB13, ALSW14, AD11, ACM12, AH13, ADdM+12b, BBUY13, BCH13, BHJ+15, BMNS14, BS12, BVH15, CMJ+11, DG10b, DGS+19, DR12, FGLB12, Fis12, Fuku17, GG16, GLX+14, HKSW10, HK12, HML11, HW11, HB13, HL13, Ixa16, JL12, JML18, JPM12, JK13, JHL+15, KFS17, KM10, Kri12, LMRC15, LD10b, LSF14, LLSZ14, MT13, MIW+13, MFV+10a, MC12, MM10, PBT15, PFB+16, QwWL+15, RC15, RAV11, RJ12, RGKR17, SW12b, VBMS17, Wie13, XJS16, XYM+13, Ydh+12, ZFH14, ZDWY10, ZW15, dHV12, AS11b, AB10, AGH+16, ACM10, ACML11, AAT17, BK16a, BSK+18, BCM+16, BHZ+18, CL10, CLL16, CvW12a, CvW12b, CFFR15, DMP18, DCC+10, DCM+12, Dat13, DS13a, DBD+17, DN13, DM17, Den10, EZL+16, EVB14, FSC13, Fuh15, GHvdL11, GV15, GA10, GN14, Gni11, GSKM15].

numerical [GM14, HAV+14, HVMR10, HCSW10, Ixa10, JK10, JTN+11, JWL13, Ji12, Jiw15a, Ker17, KZ11, KL17, KKL+18, KAS12, KST+14b, KP14, LV14, LK12, LNY+17, LHH+12a, MD11a, Mar15, MN16, MA11, ML16, NGCI+12, PAS11, PMMW15, PVK+18, PQTGS17, PO14, Pt10, PE15, PJD10, PB16, RM10a, RM10b, RLS16, Sal12, SKB10, SLY18, SL17, SH18, SW14e, SS11a, SD10b, SS13b, SK14, SST11, Smi14, SAI11, SPS18, SCG11, TCR13, TGM17, TFW14, TO10b, VLD+12, WX11, Wu10, WW11b, XLL15, YZ16, YYWF09, YX+15, YXT+15, Zhi14, dB14, dDYK+18, vMB14].

numerically [BMBC+17, DGST17].

numerics [TK14a].

NumExp [HL13].

NuSoI [GG16].

NVidia [Lya15, MR14].

NVM [MN13].

NWChem [LSK+14, VBG+10].

nX [BFD+11].

NXSG4 [KB15b].

Nyström [FG13, KMS14, KAS12, WW10, YZWR14].

Nyström-tree [YZWR14].

O [ADH+17, CjJH11, LS11, Mazi19, CKFB12, DRUE12, GGI+13].

Oasis [MV15].

Object [CB15a, CB17, CB18, Asl14, BFD+11, CDMCN11, CJ12, CFFR15, DM12, HHP+16, OKM12, SL16, WP10a, Zag14, CF16, FCC15, MBRV+13].

Object-oriented [CB15a, CB17, CB18, Asl14, BFD+11, CDMCN11, CFFR15, DM12, OKM12, SL16, WP10a, Zag14].

objective [AZM14].

objects [AKKK16, CGJ14, GGF+13, GSC+16, JvOK17, KCS+15, OL12, Ser10].

oblique [ÇOSÜ11, VDB14].

Obrechkoff [SS13b].

observables
observations [BVC13]. observations [UIY11]. obstacle [OK14]. obstacles [KL11]. obtain [CLB11, EBDM17]. obtaining [LP15, Liu13, MNPY14, MYP14]. ocean [DBLF16, DBLF16]. OCTBEC [Hoh14a]. Octree [FGC11, TE18]. Octree-based [FGC11]. ODE [HKSW10]. ODEs [KV10a, NO12]. off [HFOPF15, JCL10, JTP15, JHL15, KdMvO14, MRZ10, RV10, SMOB19, Zag14]. off-axis [JTP15]. off-lattice [HFOPF15, KdMvO14, MRZ10, RV10]. offload [BCG15]. offs [NBN14]. ohmic [KGG16, YLKN17]. oil [ZAFAM16]. OK1 [OKP10]. OK2 [OKP10]. old [TBB14]. on-axis [JTP15]. on-lattice [XLCW14]. on-the-fly [GGG16]. ONCV [SG15]. One [ADH17, CHC11, DLU15, CZD15, CR12, CvW12a, CvW12b, DDH17, Dua10, Fen12b, Fil13, FEH11, HHS12, HFC10, KKS18, KS12, Liu12, Liu13, LKT15, MCA17, MCG16, NMS14, ORS14, PLA12, QIA16, QIA17, STA18, SDL16, TL17, TACA15, TVT15, VBG15, VS19, VB19, WFW14, WPA14, WZS18, XAPK14, ZCG17, Zag14]. one-dimensional [CHC11, AG14, BDP16, CZD15, CR12, CvW12a, CvW12b, Dua10, Fil13, HHC10, KS12, MEM+11, QA13a, RtV16, Rei12, RCH16]. One-Loop [ADH17, DLU18, EGPS10, ABB14, AG14, Ano10o, BBU11, Ber16a, Ber16b, BDP16, BDV11, BHJ15, CZE16, CJE11, CR12, CvW12a, CvW12b, CGH11, DDH17, Dua10, Fen12b, Fil13, FEH11, HLS12, HEF12, HHC10, JWC18, KKS18, KS12, Liu11, Liu13, LKT15, MCA17, MP11, MEM+11, OALES11, Pat15, Pat17, Per14, QA13a, RtV16, RSA14, Rei12, RCH16, RGKR17, TD15, Ter17, WHG19, vH11]. oneparticle [TD14, WHG19]. one-way [OALES11, Ter17]. OneLOop [vH11]. onetep [BDPM15]. Onia [Sha13b, Sha16]. online [HDF19, Mis13, FR14, TDAdSS11]. only [Sta14]. Open [BCP+16, CDR+15, DBLF16, JWC18, MM+19, SH18, WGG16, AZ17a, AZ17b, AFZ17, AFZ18, CMC+15, CLJ12, CFW17, CCHL11, Dan11, Dat13, DBP+18, FAW10, FJK17, FLW17, HSF15, HKvH16, HWM15, Hu17, JNN12, JNN13, JMCG17, KDM17, KPP17, KSH14, KPOR18, LPC15, LIZ1a, LIZ1b, LZ12, LSN13, MZE13, MVS15, MGFRG12, NMS14, NGCF12, ORS14, PLCC12, QIA16, QIA17, STA18, SV14, SC16a, SPA17, SAHP15, SDL16, TL17, TACA15, TVT16, VBG10, VS19, VB19, WFW14, WPA14, WZS18, XAPK14, ZCG17, Zag14]. open-shell [FAW10]. Open-source [BCP+16, CDR+15, DBLF16, AZ17a, AZ17b, AFZ17, AFZ18, CMC+15, CFW17, Dan11, DBP+18, FAw10, FJK17, FLW17, HSF15, HKvH16, HWM15, Hu17, JNN12, JNN13, JMCG17, KDM17, KPP17, KSH14, LPC15, LIZ1a, LIZ1b, LZ12, MZE13, MGFRG12, NGCF12, SC16a, SPA17, SAHP15, TACA15, VBG10, VB19, WPA14, WZS18, XAPK14]. OpenACC [GM18, HTJ16, Kom15c]. OpenCL [BLPP13, BWH12, BBH12, CP15a, HD11, KM10, MAI1H14, ON12, RBB15, TKP15]. OpenFOAM [CL13, DBMR18, LBR18, LNSD15, MTE17, SSX14, WBS18, ZCG17]. Opening [JWC18]. OpenMP [BCFR15]. OPENMP [OKM12, CBYG18, GSMK17, KT10, LYSS16, SSB16, YHL11, YSVM16, YSMA17]. OpenMP/MPI [LYSS16, SSB16]. OpenPhase [TSK17]. openPSTD

parabolic
[AAD13, BB10, GN14, HC16, HC17, NO14, OAKS11, PR13, RS12, TKZ18].

Paradeisos [JWM+18]. paradigm [CKhN11]. Parallel
[APC+14, Bab14, BC11, CLH+17, CL15b, CRA10, EDPZ19, EKDDG15, FFT+14, GGI+13, GFM+17, GSKM17, GCH+18, HvA+13, HCSW10, JKIS16, KPPC13, LBM+14, LKL11, LT15, Mau16, NCHN15, NZL14, PIH11, QLE16, RRCSCl0, RD10, SD15, TSK+17, TSTT13, US16, VHP+15, WC10, WYH19, YRR13, ZPH+15, ZHC16, ART17, AL17, BHC+11b, BS13a, BS14a, BBP+17, BHS18, BJCW13, Boe14, BCM+16, BVSG19, BHND16, BENK+17, CCLL18, CHNS18, CPR12, CUL+17, CDR+15, DBDP12, DN18, DSS+12, DRUE12, Fun19, FZ16, FZY17, GS15, Gai17, GP13, GWF+16, GS17b, GS17a, GD14, GB14, GZWJ18, GX15, GRLS18, HAV+14, HFOPF15, HZW+19, HPN18, HHB+17, HCHW11, JEFP14, JHL+15, KHBS19, KÖG17, KHZ+18, KD17, KBB+17, LAA+10, LSG+12, LHH+12b, LHH+12a, LS12b, LH11, LWC14, LW16, MDW16, MIW+13, MM17, MCA17, MSI+10, MGB18, MGR16, NÖR15]. parallel
[NFA+16, NPAG11, Ngu17, NM14, NFS15, OC5F10, ORS+14, PDC14, PGO17, QL10, Qia17, RJLL16, RFSF18, RBB15, SL16, SSF+17, Sch18, SDF15, Sh13a, SOM+13, SC16b, SOJ14, Ste17, SMGK14, Str15, SPSP18, Sus17b, SSM+17, TTT16, VKP14, WML11, WAHL13, WSH+12, WC15, WRV11L15, YHL11, YLQ+17, YL12, YBY13, Z14, ZAFAM16, ZSW+17b, ZMJ13]. parallel-adaptive [GX15]. Parallelisation [MFH+13, Roh16, SCC+12]. Parallelised [FKH15]. parallelism [BS14a, BKIS15, MDGC+12, TGH+16]. parallelizable [SM14]. Parallelization
[HBE10, MHI2, ASPW13, BW12a, CWT+17, DKG+14, DO14a, GLC13, GIu19, JFC12, KEH12, KSY17, LKM+16, LW14a, ML17, OLG+16, PMS+15, RGH10, SCB+17a, SS18, THDS16, TE18]. Parallelizable [STI11]. parallelized [GBJ11, HHS+10, OKM12, TKL+12]. Parallelizing [TD11].

Parameter
[DM18, MAN16, Ber16a, Ber16b, BHVM15, BMF10, Che17, GCVA14b, JW13, LAS+17, LHL11, MKR+12, MD10b, PM13, PIH11, YAM16].

parameter-free [PIH11]. parameterization [AAN12, BKHR14].

parameterized [KL14]. parameters [ÇÖSÜ11, HM12e, KPV16, MDP+17, MPS13, OO15b, PG10, RKL14, SZM+14, WDR16].

[DS15, LKW11]. PARPLE [Str15]. Parr [KIS12, SS10a]. Parrinello
[VCMS+13]. Parsek2D [IBP+15]. Parsek2D-MLMD [IBP+15]. Part
[ALS16, Dan10a, Dan10b]. PArTHENoPE [CdSM+18]. partial
[DHJ13, FBBH17, GCVA14b, HK15, Jiw15b, JK13, MJB+10, SGDS16].
partially [McM17]. participating [CAN11]. Particle
[KDP+14, BOPL17, BJM15, BKPT12, CBAM12, CDR+15, DS11a, FHTO17, GLKG12, GRLS18, HPKF15, HZW+16, JBKM15, KS16a, KKK+17, LBM+14, MDPTK15, NSHY15, QL10, US18, VGM+15, AM14a, ASPW13, AGMS15, ABCM14, AGB+15, ABRS12, BCH11, BBP+17, BBH+17, BHNS17, BS15b, BE14, BTL+17, BCDP18, BY17, CATK11, CPW17, CC14, CC15, CSJ+17, CL11, CSSB15, CFF19, DCM+12, DET12, DGPW11, DF14, DBP+18, Dev12, DCVB+13, DCGG13, ENEO15, EKO16, EKK14, EW14b, Evs14, FLW17, FJ19, FN17, GWF+16, GKM10, GNS17, GAHP15, GD14, GH15, HBE10, HKJ+12, HAK+14, HCSW10, JXTS16, KB15a, KRK16, KG+15, KPA+19, KKH+11, KvdO11, KK17, KPPC13, LJE11, Liu11, Liu13, LOC+18, LQ18, LTP16, Mag18, MDPTTC17, MKL14, MKU+12, MF17, MTO15, Mem11, MEM+11, MBGK11, MGK13, MAM14, MTO15]. particle
[MNC15, Mül14c, NFS15, OBPL19, OCM+19, PR14, PMMF15, PG17, PBS+17, QLN14, RKVL14, RAV11, RH17, RTA10, SSS+11, Sch14a, SS14, SWL+15, Sie16, SN16, SM11, SSP16, SKK17, Sok13, SYE+18, SMCB+15, SMGK14, SBL16, TK14a, Tau10, Tic14, TdAdS11, Uw12, VGP18, VB19, VMFS16, WHG+19, WRSF15, WKS+11, WX13, WX14, WWC+16, WLQ+17, WN10, Wei12, WSH+14, WRR18, XLX13, YZZ+17, YLQ+17, YLKN17, ZSW+17a, ZLFM11, CDBM16, CHZ18, DS14, FJ19, IBP+15, KC18, LKA+16, PE17, PMMF15, iSSMI11, SVG10, SBE+16, VLL+17]. Particle-based [HPKF15, WSH+14]. particle-beam-dynamics [KPA+19]. particle-cell [PG17]. particle-continuum [SYE+18]. Particle-field
[QL10]. Particle-In-Cell [HZW+16, BOPL17, DS11a, AM14a, BPB+17, CC14, CC15, DP+18, KKG+15, KKH+11, LJE11, MKL17, MKU+12, MEM+11, MTO15, OBPL19, QL10, RKVL14, SSS+11, SKK17, Sok13, VMFS16, WWC+16, WN10, IBP+15, LKA+16, VLL+17, CDBM16, CHZ18, DS14, KC18, PMMF15, SVG10, SBE+16]. particle-mesh [BCH11]. ParticleRecognition [Nov17]. particles [AFIS12, CHNS18, ES16, EBCB+14, EGGW12, GBJ+15, Gw12, HL18, MDPTK15, MMT+11, PCGM14, RC18, SKK11, TJH17, TD17, Ume18, VC10, ZHCR18]. particulate [ZLFM11]. partition
[HCH16, LKL11, Lec18, RMC16, ZMCT12]. partitioned
[BY17, EPP12, FZ16, KZC+10, MKS10, WXL3]. partitioning [HJH17]. partly [KH12]. Part [ABH+19]. Parton
[CGO17, BCH17, CUL+17, SZY+12, SYZ+13, War16, ZYL+15, vH18]. parton-interaction [CUL+17]. parton-level [vH18]. parts
[CGSB18, FBG10, OGU14, OOG15a]. patterns [LSYZ12, MSTD12, WS11a]. Pauli [Bad11]. PAW [RGCT16, SHW18, THJ+10]. PBSA
phenomenological [BNV18]. phenomenology
[ACD+14b, ABH+18, BDDM18, BSW12, CFS13, LCE+13]. PHI
[BF6+11, RJKC16, CGSB18, Lya15, MSS+14, SBE+16]. phone [Sal12].
Phonon [CP15b, Kon11, Sco13, BW16, CTT17, CCXC15, CGB14, KA17,
Liu15a, NGM+10, PMVG16, ZZ17b, ZZ17b]. phonons
[CVK+17, LCKM14, WCL14]. PhonTS [CP15b]. photoelastic [Wit14].
Photoelectron [MB16, Jab19]. photoionization [Hei12, HH11a, LH11].
photons [CMJ+11, DKT14, HEPW13, LLE+18, OK18, SMCB+15, Tic10,
VDJ+11, ZLM12]. photonic-crystal [HWCH11]. photos [LN16]. photorefractive [Zi64]. PHOTOS
[DPW16]. photovoltaic [CLH+17, RF15]. Phys
[AZ17a, Ber16a, ERS10c, K15a, Kra18a, LR16, Nat10, Ras17, RC16,
RHH15a, SGM11a, Sco13, SIMG14, YQM14, ZTG14]. Physalis [Sie16].
physical [AABC+13, Che17, LCH11, MD11a, MDPTTC17, RRVL14, Si18,
Sm14, ZF15]. Physicist [Hah12]. Physics [AAA+16, Ano10a, Ano11b,
Ano12a, Ano13a, Ano15a, Ano16a, CXG+19, DS13c, Ma219, MLK+19,
Ram10, US18, Wu10, ADF+15, Ano10n, AM10, AM11, BBB+18, BDKS10,
BCP13, CB15a, CB17, CB18, CPW17, Che11, CKhN11, GNPW11, DNP+12,
DPW16, Des16, DDK+15, ELL+17a, DRI+16, Hon18, JPCG15, JEC+12,
KV10a, LPBH11, MUI+14, ONS+15, PBL+18, QGLP13, Sh13b, Sha16,
SLR+11, Veh12, Wie15, YLKN17, ZWLG17, ZMe+13]. Physics-oriented
[CXG+19]. PI [CMC14]. PIC [FK12, GV15, HTJ+16, KS16b, LEX+17,
LTP16, SBI16, VV18, VGM+15, YXM+13, YXD+15]. PIC/MC/Valos
piecewise-linearized [HI11]. PIMC [ZBG+16]. pinning [HBS+11, JW13].
pipes [Qia16]. pipeline [ECD+10, GCC+18]. pipelines [FWS+17, MS1+10].
pipes [DMC10]. PISO [SQA+15]. PISO-like [SQA+15]. Pitaevskii
[ABB13, AD14, AD15, ABDR17, CR13, JCL+18, KYSV+15, LBB+16,
LYS+16, MGL13, MGL16, SSB+16, VDAH16, VVB+12, YSV+16,
[NDSH18]. placement [NZQL14]. planar
[Aza13, BP12, BH13, MTE17, XD13]. Planck
[BMBC+17, Fuh15, JSLM16, KBSP12, PG17, SLEF17]. Plane
[MBF+10, AM14b, ACDD14, DKSG16, GMF+17, HK15, JCW+13,
JGL+13, KAW+10, LT15, MED11, MS11, PDC14]. Plane-wave
[MBF+10, LT15, MED11]. planet [HTT13, HTT14]. planewave
[CSPAD10, BPMAD12]. planning [CLH+17]. Plasma
[KC18, ZCC19, AAA14, BMU11, BRL12, BT17b, CLW11, CGSB18, CHH+11,
DBP+18, Evi14, FRFH10, GBSY18, HKF+12, HO13, HBP14, Hons10, Hon18,
Hsu11b, KYKN15a, KYKN15b, KTE+12, KMD12, KM17, KRB15, KSY+13,
LOL+18, LDR+17, LHH+12b, LHH+12a, LJ+19, LDF+16, MPS13,
MLGVE14, MKU+12, MCM+12, ML14, MN18, MMA15, MSM+11, NNWS15,
OBPL19, PYW+14, PBD+15, PDJ10, Ram10, REtVH12, SCB+17a, SCB+19, SLR+11, SLEF17, SBE+16, THDH14, sX14, XYM+13, Yan09, ZFR18.

Plasma-Material [KC18]. plasmas

[BSM13, BT17a, BDBV12, BB13b, CHH+11, CFF19, DS11b, DOP17, FR15, GB14, HKJ+12, HAK+14, KGG+16, LXR+18, LH11, LRK13, MF17, OILK17, PMS+17, PBL+18, RF16, RTT+18, SS14, SCM+16, VCC+12, VV18].

plasmonic [HT12, SVGS18]. Plasmonics [WTH15].

plate [TKL+12].

platelet [ZZG+16]. platform [AABC+13, AMR+18, CPW17, HTJ+16, LWJV18, RDP14, Sal12, SJY18, ZZH+16]. platforms [LHZ11, PNL13, TKP15]. PLATYPUS [DT11b].

Plesset [KK14a, KBB+17]. plot [BGH+18, Liu15b]. plugin [SBB+17]. PLUMED [Gio14b, TBB+14]. PLUMED-GUI [Gio14b]. plus [SCM+18]. PML [DV11].

Poincaré [MZE13]. point [BMU11, BH13, BMZ+18, CS10, CH11b, DG10b, DMC+15, KK16a, KCN18, MDGC+12, NFI17, Nik12b, PPY14, PDL+18, Pna11, SGMM11a, SGMM11b, TTG11, dSFdFF13].

point-cloud [KCN18]. point-transition [NFI17]. point-wise [PDL+18]. points [Fis12, GVR19, NO12]. Poisson [CM14a, RC16, BCDP18, Bot13, BC11, CDBM16, CCL18, CRLS18, CB16b, CHZ18, Dua10, DGG13, Exl17, GBN17, GJ13, HCSW10, JLW13, LCHM10, LCHM13, LCR1L0, Miy15, Qia16, Qia17, RC13, VLPPM14, ZPvR16]. polar [CZL+11, WCL14]. polarimetry [FBHB17]. polariton [VBMS17].

Polaritonic [KAvdL11]. polarization [AKZ+13, CAGL13, Den10, MCP10]. polarized [AFIS12]. pole [ASEA14, AMRdA17, PDL+18]. poles [SAS11].

political [Cho11]. pollution [MSML10]. POLYANA [DRR15].

Polycrystalline [KB15b, EBCBG17]. polydisperse [OL12].

polymers [AMJ18, BJ11, GJB11, HP11, MJBI11, RV10, VB11]. Polynomial [IU13, KP12a, CB13b, GDB10, GLX+14, HKZN17, Jal10, sL10, MCL+17, OCM+19, Pos19, UNK12]. polynomials [ACDdM15, BDJS18, GST17, SPS10, WISA11]. polystyrene [RV11].

polyurethane [KDM17]. pool [BKS15]. Pople [KS12, SS10a]. population [BBW+17, VPP+12, WRB11, YH15]. population-based [VPP+12]. populations [FSJ+16, HOFP15]. Pore [DADS11, OP12]. pore-scale [OP12]. porous [CTL15, HZW+19, HSF+15, MPM14, OP12, SM14, vMB14]. portable [CDGS11, HTJ+16, RDC+18, RBG+19, SGM18, SS13a, VLL+17, dBC14].

porting [HD11]. posed [LLP15]. Positive [Has11, XZF12, SmdONF14]. Positivity [SP18b, dTOV18]. Positivity-preserving [SP18b, dTOV18]. positron [GGGH14, Gec18, Kol15, SMOB19]. POSMat [MCY+16]. possible [ASTT16]. post [LAA+10]. post-processing [LAA+10]. posteriori [CLL16]. Potential [MCY+16, AM14b, BBF+10, BNAB11, DBDP12, DR12, FMRP16, FZY13, FPY+17, GC10, GC13, GC16, GC18].
GB11, HSF+19, JH15, LCQF18, LWES18, LRR+17, MC16, MEG12, MAM14, ORCR17, PBMD12, PH11, PB16, RS12, RFPM+17, SGDS16, TM14, WZHE18, Wit14, XNK+16, XD13, XHD15, ZHCR18, ZMPT13, ZFBR11. potentials [BNV18, BL14, BY13, BSWC14, DT18, DHR14, Erm18, FCVH17, GH11, GD14, HLZ+13, KK14b, KHH14, KHN19, Ngu17, OPO+11, OPSR13, ORCR17, PBMAD12, PH11, PB16, RS12, RFPM+17, SGDS16, TM14, WZHE18, Wit14, XNK+16, XD13, XHD15, ZHCR18, ZMPT13, ZFBR11].

POTHEA [GCVA14b]. POTLIB2Math [TM14]. Potts [DG16, Boe14, FDWC12, KO13, KO14b, KO16, MEG12, NCHN15, TD11, XZF12, dSLF13]. Power [ZLL18, CC10a, CHC+11, EZBA16, SB11, SW12b, UW12, WWC+16, WCT11].

POTHEA [GCVA14b]. POTLIB2Math [TM14]. Potts [DG16, Boe14, FDWC12, KO13, KO14b, KO16, MEG12, NCHN15, TD11, XZF12, dSLF13]. Power [ZLL18, CC10a, CHC+11, EZBA16, SB11, SW12b, UW12, WWC+16, WCT11].

POTHEA [GCVA14b]. POTLIB2Math [TM14]. Potts [DG16, Boe14, FDWC12, KO13, KO14b, KO16, MEG12, NCHN15, TD11, XZF12, dSLF13]. Power [ZLL18, CC10a, CHC+11, EZBA16, SB11, SW12b, UW12, WWC+16, WCT11].
[AABC+13, AG12a, BCDP18, CCLL18, CAN11, CCHL11, CS10, DMP18, Des16, DCU+19, DB13, DS15, FGR14, GHvdL11, GMC18, GN14, GCHL15, HKSW10, Ixa16, Jan10, JWM+18, JOR+12, KV10a, KBSP12, KAS12, KL14, LMRC15, LV0, LHHZ10, LWL12, LHC+13, LCFQ18, LW14b, LG+17, LR13, LR16, MCWJ15, ÖY13, PS14, PS11, SKFP16, SS13b, SK14, SMCB+15, SS10b, TFWB14, TACA15, TVT+16, VSO+13, WFD14, ZHSL13, ZWLZ17, ZX10, ZLL13, ZNT15, vRWS14, vWB10]. procedure

[AKS17, BW16, BSWC14, CCLL18, KMD12, KM17, KSW12, RC18, TIMM13]. procedures

[Dua10, FG13]. Process

[HDZ14]. Process

[BS11, BS13a, BB13a, CGV13, DHR14, GBS16b, LSDD14, NS10, VPM16, AC13, AM10, AM11, Arb2, Asi10, AZ17a, AZ17b, AKV18, BGM+14, BF16, BBPS14, BH14b, BF+11, Bog16, CKLM10, CDTV10, CH11a, CATK11, CXH+15, Cip11, Cip13, CC13, CRNK12, CM14b, CO11, Dan11, Dat13, DEMM19, DDKM15, Dev12, DKG+14, FMRP16, Fer15, FCCFR18, Fis11, FEH11, Fri12, Gao13a, GLS+13, GCV14a, GCV14b, GNT17, HSF+19, HLM13, HEF12, HS+10, JPSS10, Jia18, KKS18, KNS+17, KQ13, Kol14, Kra11, LHC+12, LZZ11, MCV18, MUC18, MCA17, MPS13, MWL+10, ME18, MVN13, MGB18, MBGK11, MSN11, NGG+13, NGM+10, ON14, OKM12, dRJL14, PCR17, PSL+17, P12, Pos18, RDP14, RFP+17, SYZ+12, Sui10, Sar17b, SS+10, SSG+18, SBB13, SDM+12, SDS+17, STY15, STY18]. program

[STM+14, SS10a, SLQP17, SSS+13, TVZ+15, TS11, UW12, Ver16, XMLC16, YLTS16, ZF16, ZBG+16, ZK+15, ZY15, ZSW+17a, ZMCT12, ZZD15, ZZ17b, ZHL11, Zio13, ZUT13, dB14]. programmable [Rap11]. programme

[LTP+17]. programming

[BY17, EGT+18, GRTZ10, JT+17, LSYZ12, SV14, iSYS12, TSTT13, VvVA+11b, VvVA+11a, WMK11, YHL11]. programs

[ABB+14, Ano10o, AC16, Bjö11, CL15b, HD11, JCL10, KO14b, Kom15c, KO16, KPST15, KYSV+15, LCJ10, LBB+16, LYS+16, SSB+16, VVB+12, YSVM+16, YSM+17]. project
Q [SKB10, Wan10b]. Q2DTor [FCCTFR18]. QBH [Gin10]. QCD
[AC15, AC16, AC18, BLPP13, BBUY13, BK13b, BCS10, BBC1+11, BCDI12,
BS1+3b, Bot11, CB13a, CDS1+13b, CBB1+10, FKL13, GM18, HKK11, JPSS10,
KP12a, Kan18, LCL1+11, LS13, MWL1+10, NIK1+12a, NS10, STK10, SV13,
TSK10, WL11a, War16]. QCDLoop [CEZ16]. QCDMAPT [NS10, NS11a].
QCDMAPT_F [NS11a]. QCDNUM [Bot11]. Qcompiler [CW13].
QDENSITY [Tab16]. QDENSITY/QCWAVE [Tab16]. QE [BCR14]. QEDMOD
[STY15, STY18]. QEDv2 [SV14, Vuk12]. QIST [HWM1+15]. QLM [Kri12].
QM [MMSF1+15]. QME [KPK17]. QMM [MMSF1+15]. QMEQ [KPK17]. QMMMW
[MMSF1+15]. Qprop [MB16]. QQbar [BKMP16]. QRAP [SKB10].
QSATS [Hin11]. QSWalk [FRW17]. QSWalk.jl [GMO19].
Quadrature [SPSP18, AG12b, AAT17, BK12, JPM12, Ji15b, MSR10,
MN10, PFFK19, PTS12, Sch14b, Shi16, PSP16]. Quadrature-based
[BK12, PFFK19]. quadratures [PPY14]. quadric
[ASPDL1+16, DSPJ10, GSB1+14]. quadrilateral [LWRQ16]. quadrupole
[TUY15]. quadtree [TE18]. quadtree/octree [TE18]. quality [SZC1+13].
quantiﬁcation [CNS1+14, KZ14, OO15b, OO15a]. quantitative
[BHH1+10, BBH1+15, CSC11, LN16, SSM1+17]. quantities
[KFT1+17, LCH11, WHG1+19]. quantity [CLH1+17]. quantization [Zit11].
Quantum [BDK11, BG11, CW13, DSW15b, DS13b, FGGM11, GRTZ10,
KYM1+17, LCH11, LW13, ON11, PNL13, TTS11, ZZD15, ACTP15, AK13b,
Aza13, BBW11, BMW14, BBC1+13b, BMNS14, BAF18, BVSG19, BS12, CZ17,
CZ18a, CL10, CK12, CB16a, Dat13, Den10, DHR14, DMM14, EY11, FRW17,
FUSH14, FVH18, FE11, FLW17, Fri14b, GWL1+17, GZL14, GMO19, GM16,
GH15, GWG1+11, HWG13, Hin11, HRC11, Hoh14a, HWM1+15, Hua17, Hin12,
ID18, IO16, IW15, JWCl8, JNN12, JNN13, JMG1+17, JDG12, KSL1+11,
KPP1+17, KPOR18, Kro16, LKM1+16, LV13, LW11, LW11, LHC14, IW16, Lut15,
LJB1+16, Men11, MNW1+17, Mis12, Mis13, MKV11, MBFD12, NEW1+18,
Nog17a, Nog17b, NVW1+13, OBH10, ORCR17, dIRJL14, PFA1+15, PBS1+17,
PKR16, R10, RK11, RPL1+14, RC11, Sai13, SV14, Sam15, SGAA18, SL17].
quantum [SH18, SZ15, SKF16, SPMM11, SOM1+13, SGW17, SH16,
SZM1+14, Sou14, SCG11, SKSK13, S118, TJD11, Tab16, TTS11, Vuk12,
WF14, Wan10b, WC10, WM13, WPAV14, YCO15, ZHC16, vWB10,
BKC1+17, GSZ13, KST14a, MMSF1+15, RF10, YKS11].
QuantumOptics.jl [KPOR18]. Quark [BBB1+15, ARAB1+17, ACD1+14a,
BG14b, CCN17, Gaol3a, HLM13, KKK1+15, SS12]. quarkonium
[Sha13b, Shal6, WW14]. quarks [ALL1+11, BKP16, KP12a]. quartic
[KVW11]. Quasi [JLA1+14, BCT17, CJIH11, CHC1+11, GZ17, HDZ14,
KFS17, LKA1+16, LB13, NJS17, dIRL11, PE15, VB19]. quasi-bound [LB13].
quasi-cylindrical [LKA1+16]. quasi-Degasperis [HDZ14]. quasi-harmonic
[dIRL11]. quasi-incompressible [GZ17]. quasi-Magnus [BCT17].
Quasi-Monte [JLA1+14]. quasi-neutral [PE15]. quasi-one-dimensional
GYW

Erm18, Fri12, GM11, GTS14, GBJ+10, GBJ+12, GBJ+13, GFJ+14, GBJ+15, GYW+10, HH11a, JGB+13, KHB14, KKG+15, KNS+17, KPS15, KMA+12, LWES18, MDHD18, MCA17, MF17, NGG+13, NPVR14, QYM11, QA13a, SZY+12, Sar17a, SQS+16, SS11a, SLEF17, XYM+13, ZD15, dRM18.

relativity [MG15a, Mü11a, Bre10, GLMG12]. Relaxation [CVN19, BSM13, BPP11, BPMS16, Eba13, FN17, KS15, MKB+11, SW12b, XHLUF18].

Removal [BCH11, DF14]. renormalisation [Fon12, Roh16].

Renormalization [LSSW14, FSC13, HB12, KK16b, NBN+14, PO14, RGH10, Sta11, Trö11, Ver16, WPAV14, LSR+17]. renormalized [FHN+14, GZL14]. reorthogonalization [JK13]. repeated [OK14].

replacement [YZCS18]. replica [Boe18, GXF+15, GJB11, HIO16, IFOI18, JJ15, LRC+11, LK15, UO15b, UO15a]. replica-exchange [Boe18, GJB11, HIO16, IFOI18, UO15b, UO15a]. Reply [MLK+19].

requiring [Fer15]. rescaling [Odr11]. research [GBS+16a, LHC+12, LYJ10, PFA+15, PYW+14]. reservoir [ZAF16].

resonators [WX11]. resources [CCdC+11]. respect [GCVA14b].

reweighting [BMH17, LS13, Sin11, Sin12a]. Reynolds [SCM+18].

re zoning [LJWK11, LJZ+18]. RF [DFM+15, Duf16, AAJA14]. RF-MEAM [DFM+15, Duf16]. RG [NDSH18]. RGEs [LS17b]. RGsearch [Ver16].

RHEED [Dan10a, Dan10b, Dan11, Dan14, Dan16, Dan17].

rhoCentralRffoam [MTE17]. rhombohedral [WWL11]. ribbed [JU17].

ribosome [MTS11]. Riccati [HI11, LD10b]. Richards [BALV16, ORS+14].
RichardsFoam [Org15], RichardsFoam2 [Org15], Richardson [SPP19], Riemann [FJK+17], Riesz [MDHD18], right [REBS16, STK10, TKS10],
right-hand [STK10, TKS10], Rigid [NPAG11, Faw10, MNV13, SA14, Van15], rigid-molecular [SA14],
Rigorous [FNPMB10, BDT15, CZL+11, NM14], ring [SAG13, WJHW14],
rings [Pos19, Pos19], ris [NGG+13, EJG+19], Rivet [BBG+13], RKN [Wu10, Bla15, FLW10, FMW10, LWYW11, YWYF09], RKN-type [Wu10, FMW10, YWYF09], RIW [MC12], RMHD [Mar15],
RNGAVXLIB [GBS16b], RNGSSELIB [BS11, BS13a], Robin [RTA10, SN16], Robust [CS17, GN14, ACdS13, CPV13, Den10, TZM17, dRL11], Roe [TCP13], role [BNAB11, GAHP15, Has11, HH11b, PDJ10], rolled [NJS17], rolled-up [NJS17], rolling [NDSH18], roof [RLL12], roofline [KKP11], ROOT [Ano11o, Car10a, Car10b, SS18, ZHL11],
Roothaan [BMW14, SEW14, SEW14, SW13], rootless [GBC+18], roots [Zou18], Rosenberg [GB17], rotating [JWC13, LCCCI1, TZM17], rotation [BM13, VDAH16], Rotational [AS11a, KSW12, CATK11], rotationally [HC17, QwWL+15], rotations [OML11, PUO14], Round [GCH+18], rotors [ZBG+16], rough [EBCB+14, KC14, SKML11], roughened [LY11],
roughness [NEW+18], round [JCL10], round-off [JCL10], roundabout [wH15], route [CMR17, SDL+16, mZXL15], routine [RM10b, WPD+15],
rovibrational [CNMC10a, CNMC10b], RPA [CCGC13, DSW+15a], RPIM [DG10b], RPMDrate [SAG13], RPYFMM [GCH+18], Rubik [CD12],
rules [Nog17a, Nog17b, Sem16, WL11a], run [GHdF10], runaway [LSF14], RunDec [HS18], rung [DSW+15a], Runge [BM13, CFMR10, DBMR18, DIP11, DM17, FG13, Ixa12, KMS14, KZC+10, Kas12, MIW+12, KMS10, NS15, WXL13, WW10, YZWR14],
running [CDS13a, KPV16, SS12], Runtime [US18], RWG [ZDWY10], Rydberg [SPA17], Rys [AG12b, Sch14b],
S [BL18a, Ma19, BFD+11], S/PHI/nX [BFD+11], SaaS [VPVMVH+17],
SADE [FF11], SAFT [ESEM17], SAFT- [ESEM17], Sailfish [JK14],
SALMON [NSH+19], Salpeter [GGG16, GVS+15, SAW18], sample [MP11], sampled [ME18], samples [MPSV15], Sampling
[BBV+16, Hal17, KBT+14, RPB+15, BMF10, Boe18, CND11, FLE19, GM14, IIO16, IFO18, KCN18, KB17, KI11, KS16b, KSW15, KS15, LWL12, PPS10, RLBC+14, SSBS15, TBZ12, WHL+12, Wil15, XLL15, YK10, YL12, ZF15],
SANC [AAB+10a], sandpile [AS11a], Sar [TU14], SARAH [DNS13, Sta13, Sta14], Sassenca [LS12b], SASSIE [CRNK12],
satisfactory [DGST17], SATLAS [GdGB+18], saturated [JHJG14], saw
[BBC+13a], SAWdoubler [SBB13], Saxon [DT18, MAM14], Sb [AM14b],
SbNCa [BKA+14], SC-NBL [KHN19], Scala [Pos19], Scalability
[ZZG+16, APC+14, SCM13, VV18], Scalable
[ASA18, AIG16, NSH+19, BVC13, BY17, BHND16, BENK+17, DHJ13,
DG10c, FWS+17, GGI+13, GP13, JPH+14, KC18, MTM13, VBG+10.

scalar [AHK+12, BMS+16, CEZ16, LZZL10, PQTGS17, SAHP15, vH11].

scale [BMC+11a, BC10, DdJC+19, Bis15, BHJ+15, BHJ+18, BAF18, BY17, CB15a, CB17, CB18, DSW+15a, Deu16, DADS11, DO14b, DML+16, GSI5, GHvdL11, GZL14, GhDf10, GBS+16a, GA013b, HLS12, HZL+17, HKK11, JEPF14, JXTS16, JWC17, JOK13, KhZ+18, LCQ18, LR13, LR16, MBS+10, MCNRC16, ORS+14, OP12, PpL+13, RLM13, Sch14a, Sha13a, SXW+18, SLZ16, SPSP18, Tau10, THDS16, TIMM13, TIM+16, UBR10, VBG+10, WSI13, WLZN17, YFAT17]. *scales* [HCM19].

Scaling [ZMJ13, AS11a, BH14b, BH16, CCWL11, FUSH14, FVH18, GNA+15, GYW+10, HHS+10, JWC17, KBB+17, LD10b, MMO+17, OOK+12, RWKS15, dSVLP13, vMB14].

scan [Fer15, PSMS14, PSMS15, TCK+15, MAC12]. *Scans* [Mau16].

scattering [CFCB12].

scene [CFCB12].

SCATCI [ART17].

scatter [LP15, MTO15].

scatter-gather [MTO15].

scene-dependent [CFCB12].

SCBiCG [GCHL15].

Scharfetter [PFFK19].

Scheduler [ALS16].

Scheifele [YZZ11].

scheme [ACMM10, ACM12, ACML11, ACTP15, BM13, BBC+13a, BE14, BMBC+17, BB12, CWS14, CZD15, CY19, CWY+17, CEF16, DJ11, DM17, DOP17, DML+16, EWI4a, EW14b, EE12, FOB+15, Fu19, Gd14, GRLS18, HP14, HZ11, Jiw15a, JS16, JP10, KC14, KH+11, KZC+17, KP14, LJE11, Le16, LS12a, LLX16, LWS18, LH+17, MLR10, OK14, PLN13, PR10, PK18, SMOB19, SN+11, Ser10, SKML11, SAS11, SDL+16, TACA15, TVGB15, WJCZ18, ZHL13, ELL+17b, XNK+16].

scheme-independent [Les16].

Schmidt [CBGY17, CBG18].

Schneke [Sch18].

Schramm [SW11].

Schroedinger [ABB13, AB+19, BAR12b, CWS14, Cap13, CP13, CZS10, CSJ+17, DT10, DT11a, DM17, Dua10, DM12, FE11, GS15, GM16, IKS19, Ixa10, JYP18, KZC+10, LV14, LW14, LST15, Lin13, LB10b, LY16, MC16, Moh14, ICD13, MNO+11, ON12, PAS11, PM16, QSC14, SSH+13, SB11, TD14, TT14, TY10, Wan10a, Wil19, XZ12, ZST11].

Schrödinger/Gross [ABB13].

Schroedinger [SmD14].

Schwarz [HLLH16, HCSW10, TVT+16].

Schwarzschild [JLM18, Jia18].

Schwinger
[CKCS13, HB12, HM12b, SAW18]. Science
[LSJ13, SNG+11, TN11, CKhN11]. sciences [GMH11]. Scientific
[NAQ16, QYM11, QA13a, SP18b, WZS+11]. search
[BBB+11, BPSS18, BG13a, DR12, GCC+18, JTP15, KPVvdH13, MTS+16, PP13, PMS+15, TC11a, WP11, WRFS15]. searches
[GTL+17, VPP+12, WRVdL15]. SearchFill [DBJ11]. Searching
[KBLJ18, Ano11a, LOK+16]. SecDec [BH13, BCH13, BJH+15, CH11a]. SecDec-3.0 [BHJ+15]. Second [BB13a, HD17, ADdM15, CH11a, CKV16, GPS+13, KTB17, Kir10, KBB+17, LX12, LJSW11, LW14b, NS15, NO12, PTK15, Pla16, RL10, VEB+18, WC13, WYSW10, WT15, Zit11]. second-order
[ALL+11, BS13a, BHS15, CYD11, CM14b, DHS14, OILK17, SGA18, Shi16, vdS13]. sections [ASEA14, BPC12, Cip11, Cip13, DLM18, Gao13a, GLS+13, Kol14, Lit13, PDL+18, VC10]. sector
[BBH+11a, CH11a, KU10]. sectors [BBH+10, KKS18, KZ11]. Security [ÖY13]. sediment [SYD17]. see [BBC+13a]. see-saw [BBC+13a]. seed
[ABH+19, BPSS18, CLH+17, HJH17]. selective [JK13, TIMM13]. Self
selfadaptable [CFCB12]. Selfconsistent [ELL+17a]. Semi
[KZC+10, QSC14]. **Semi-Implicit**

[GHBL18, BB12, CZD15, IBP+15, LHH+12b, MIW+12, SHL+11, WG16b].

semi-infinite [ZL13]. **semi-Lagrangian**

[Ein16a, GAB+16, Lan13, MIW+12, UNK12]. **semiconductor**

[ASGLK10, AK15, ACCB13, Bot12, CM15, CL10, CLL16, DJ12, GTG+11, HHC16, MiH12, NAQ16]. **semiconductors**

[BMZ+18, GC12, KOK17, LZL11, PFFK19]. **semidefinite**

[VvAV+11b, VvAV+11a]. **semiempirical** [IIO16].

semismooth [CB15d]. **semismooth-Krylov** [CB15d].

sensitivities [GA13].

sensitivity [CSC11, HS14a, KTA12, PPS10, SAA+10, SK10, TBZ12, WLH+12, WLS13]. **separation** [MSRL10, SJW10].

sequence [GCF+17, HLD13, ¨OY13].

SequenceL [BBB+17a]. **sequences** [DBB12, DB13].

sequential [AL17, NM14].

serial [CUL+17].

series [ADdM16a, ADdM17, BDJS18, CZ17, CC10a, CO11, GMPFC+14, HvWT17, LLHC11, NO12, YZCS18].

SERS [CLY11]. **SERS-active** [CLY11]. **servers** [WMK11].

Service [MLR10, HDF+19, VDJ+11]. **Set**

[NHSY15, CK18, FM12, FHA17, Ki10, KN13, MBFB13, PVK+18, Pit12, RCGT16, XHL12, XLX+15, YS17, MFG+13].

sets [Cor14, FBG10, GJLB12, JH15, SZC+13, VdLF14]. **setting** [CNS+14].

setup [FJ19]. **several** [GCHL15].

sequences [DBB12, DB13].

sequential [AL17, NM14].

serial [CUL+17].

series [ADdM16a, ADdM17, BDJS18, CZ17, CC10a, CO11, GMPFC+14, HvWT17, LLHC11, NO12, YZCS18].

shape [DGMZ15, NS11b, OK14]. **shaped** [HSD17, MSR+17, Nov17].

shapes [AIG16, GTPWL12, GGKH14, XLX+15, YLYL17]. **Shardlow** [LBM+14].

Shardlow-like [LBM+14]. **SHARE** [PLRT14]. **Shared**

[KKK+18, BKS15, CL15b, NFS15, TE18, WMRR17, WMR19].

Shared-memory [DKG+14, NFS15, TE18]. **sharing** [TRM+12].

sharp [CDL+12]. **SAVEL** [ME18]. **shear** [BF10, CMVRB+14]. **shear-shear** [CMVRB+14].

sheath [KMD12, KM17, KSY17]. **sheath-plasma** [KMD12, KM17]. **shedding** [TKL+12].

shell [ACTP15, BM16, Cip11, DT18, Faw10, MCA17, Trö11].

shell-model [BM16].

ShengBTE [LCKM14]. **Shepard** [FZY13]. **shields** [OVSI15]. **Shift**

[KHN19, Ber14, EJG+19, FZ16, NGG+13, Ram10, RLM13, STY15, STY18].

shift-invert [RLM13]. **shift-operator** [Ram10]. **shift-without-invert** [FZ16].

Shift/collapse [KHN19]. **shifts** [NLSJ17].

shock [Fu19, KR14, PBD+15, QLE16]. **shock-capturing** [Fu19]. **shock-fitting** [PBD+15]. **Short** [BBF+10, ADD+11, BTM+17, BWPT11, Fri10, FN17, HWL+17, Ram10, TKR13].

short-range [ADD+11, BTM+17, FN17, HWL+17]. **Short-recurrence** [BBF+10].

short-time [Fri10]. **shorter** [BL18a, dJBIM16]. **shot** [HLS12]. **showers** [BG14b, GRZ10, TS10, War16].

shuffled [AZM14]. **Si**

[CHW+15, Dan16, MTS+16]. **SiC** [Dan17]. **sides** [STK10, TKS10].

sign [BH11, Kap16]. **signal** [JHJG14, LCR10]. **signals**
[ASA18, MRSU14, SRS+18]. **Skyrme**
(RHBH15a, CCGC13, PSL+17, RHBH15b, SDM+12, SDS+17, SSK+S13].
Skyrme-HF [RHBH15a, RHBH15b]. **Skyrme-type** [CCGC13].
skyrme_rpa [CCGC13]. **skyrmion** [BUJ15]. **slabs** [LN16]. **SLAM** [MZ14].
Slater [USOA13]. **slave** [QwWL+15]. **slave-boson** [QwWL+15]. **SLDMOL**
[CZN14]. **sleep** [SLC11]. **SLHA** [Mur14]. **SLHAplus** [BCPS11]. slicing
[SCS12]. slightly [BAF18]. **SLIMP** [ZZ15]. **Slow** [SDJ+12, WL11b].
Slow-to-start [SDJ+12]. **Slurm** [OBPL19]. **small** [Ber14, BBV+16, FLP10, JLW13, PP13, QHC+10, TIMM13, dSLF13].
small-world [FLP10, QHC+10, dSLF13]. **smallest** [DS15]. **Smilei**
[DBP+18]. **SMMP** [YK10]. **SModelS** [AKK+S18]. **smooth** [CCLL18, Cou13a, Cou13b, Qia10, WG16b, WvSL13].
smoothed [HHC16]. **SNEG** [Zit11]. **snowdrift** [QHC+10]. **SO-FDTD**
[LJD+19]. **SoAx** [HL18]. **soccer** [dSVLP13]. **social** [CHDF10, IBKK11].
socket [TRM+12]. **soft** [GSC+16, HBL+13, KL11, SM19, SM19, WS11b].
SOFTSUSY [AAT+14]. **SOFTSUSY3.0** [AB10]. **SOFTSUSY3.2**
[AKH12]. **SOFTSUSY3.3** [AbdA15]. **SOFTSUSY3.7** [AMRdA17].
SOFTSUSY4.0 [AC17]. **Software** [Jav17, MCV+16, NFA+16, SP16, AKZ+S+13, BFM+S+13, BCG+S+15, BRH+S+16, CPCdM18, Dan12, FBC+S+12, GXF+S+15, GJA+S+16, HRI+S+17, HM10, HM17, KST+S+14b, LPC+S+15, LHGF18, LSK+S+14, MÅWK18, MZY+S+19, NBW16, ORI+S+10, Ost10, PVH+S+17, PMS+S+15, RDP14, SD15, SCC+S+12, Sin11, Sin12a, SLR16, SS18, Sou14, SJY18, TL17, VPP+S+12, WGG16, WZS+S+18, zYCG+S+18, ZMe+S+13]. **soil** [OML11, PBF+S+16].
soils [GTSL+S+13]. **SOL** [FLSZ13]. **SOL-core** [FLSZ13]. **solar**
[DJ12, FXZ+S+14, GSKM15, HGCA+S+S+15, Kap16]. **SOLARPROP** [Kap16].
solid [BCP+S+16, Bot13, CCD+S+16, HXW+S+13, JPcG15, KS+S+16a, Min11, NGC+S+12, dlRAPL11, PLD15, QDZ+S+13, UA17]. **solid-fluid** [CCD+S+16].
solid-solid [QDZ+S+13, UA17]. **solid-state** [dlRAPL11]. **solidification**
[YK18]. **solids** [AKZ+S+13, Hin11, Jab19, MSHLS15, MSHL17, dlRJ14].
solitary [AS11b, DS11b, DN13]. **soliton** [DT11a, Pål12, TD14, XLL15].
soliton-like [XLL15]. **solitons** [DG10b, HWCH11, JPM12]. **SOLPS**
[SCB+S+17a, ZCC19]. **soluble** [vdSM16]. **solute** [DMC+S+15, JJJ+S, XHM12].
Solution [APV10, CDTV10, DS10, LHC+S+13, PH11, RRBH+S+15a, RRBH+S+15b, SDM+S+12, SDS+S+17, AGH+S+16, AH13, BSM13, BH16, BK15, Bis15, CDMC+S+11, CSJ+S+17, DMP18, DT11a, DS11b, DN13, DSW+S+15a, FGLB12, FFH11, FM15, HKS10, HK12, JK10, JL10, Jiw15a, KAS12, LD10a, LD10b, LV14, LZIP12, LLP15, Lin13, LWL10, LZ12, MBJ+S+10, Moh14, MA11, MM10, MNC15, NF17, ÖN12, OK14, PSBT12, PAS11, PDRG10, PR13, PTS12, PSL+S+17, RDP14, RWA+S+14, RM10a, RM10b, RLM13, RGKR17, SW14c, SD10b, SS13b, SSH16, SK14, SSK+S+13, VBG+S+10, YZ16, ZDWM17].
Solutions [Lev19, AD14, ADdM+S+12a, Bem11, CZ18a, CB13b, DGST+S+17, Er14, JLW13, KMM+S+13, LLL+S+13, sL10, MC+S+12, MSZW11, MK10, MNO+S+11].
NO12, PAS11, PS14, SR12, TD14]. solvated [WFM14]. solvation [ZPH+15]. solve [AD14, AD15, ADdM12a, DG10a, JSLM16, ÖN14, RJLL16, SS13c]. solved [ACMM10]. solvent [CBB14]. solvent-filled [CBB14]. solvents [ZBG+16]. Solver [DSW15b, BMC+11a, BMC+11b, BKOZ16, BAR12b, Bot13, BC11, CVK+17, CP15a, CPV13, CCL18, CZF18, CRLS18, CRA10, CFF19, CBB14, CDR+15, DLBL16, DGG13, DM12, Eiu16b, Eiu17, FJK+17, FSC13, FE11, FZY17, GS15, Gai17, GBP13, GJ14, GJ13, GG16, HWG13, HZW+19, HWM+15, Hua17, HCHW11, KDM17, KYM+17, KH12, LYP14, LW14a, LC15, LCKM14, LLY+17, LF12, LWJV18, LWP+17, LCHM10, LCHM13, MC16, MTE17, MGL16, MR14, MMC+12, ML14, MFM15, MVS15, MCL+17, OILK17, ORS+14, PZY16, PMS+17, PBD+15, Qia17, RSV16, RVS18, RC13, RC16, SGS16, SSX14, SGW17, SLEF17, TL17, Ter17, VV16, VV18, WBS+18, WC13, Wit14, sX14, YXT+15, Zag14, ZPH+15, ZPvR16, ZCG17, ZPS+18, HB13]. solvers [AL17, BSK+18, BB13b, CB18, CGM17, CBB+10, CV18, DBMR18, DZ13, FR15, GWF+11, HC17, Hoh18, LV15, Qia16, VLPPM14, zYCG+18]. Solving [BAK+15, BAK+16, BAK+17, CD12, CBB+10, Dem13, DBP16, DSP15, ENE015, Fan19, Fil13, FGG11, HAK+14, HAH13, HS14b, HI11, JC16, Jan10, LV10, RHH12, SMdONF14, zYCG+18]. Some [CEPI10, FG13, HWCdM19, MR13, MS15, ZHS13, Er14, Ixa16, KD16]. soot [ZLFM11]. sooting [EZL+16]. sorting [MEM+11, MM11]. SSSpin [CECGS16]. sound [KL11]. sound-soft [KL11]. source [AZ17a, AZ17b, AFZ17, AFZ18, BCP+16, CMC+15, CHC+11, CFW17, CDR+15, Dan11, DBP+18, DLBL16, FLA+16, HSF+15, HKvH16, HWM+15, Hua17, JWC18, JNN12, KDM17, KPF+17, KSH14, LPC+15, LZ11a, LZ11b, LZ12, MK10, MZE13, MSN11, MMY+19, MVS15, MGFRG12, NMS14, NGCI+12, ORS+14, SC16a, SPAW17, SAHP15, SDL+16, TL17, TACA15, VBG+10, VB19, WGG16, WVF14, WPAV14, WZS+18, XAPK14, Zag14, ZCG17]. Sources [EW14b, EW16, EGGW12, KM10, ML14]. Space [BBB17b, FDZ17, JKG+18, BG11, BAK+15, BAK+16, BAK+17, BY17, CDBM16, CVK+17, Chr18, CSV+18, EUT+15, Evs14, FZ16, FGLB12, GTS14, GBSY18, HLL16, JBG+17, JLM18, Jia18, KKL+18, KS16b, KSW15, KS15, LOK+16, MHD18, MC16, MBF+10, MJB+10, MGB18, MSF+16, MSM+11, MSH11, NAQ16, OBH10, ÖKC11, OOK+12, dRJL14, PSB11, PSBT12, QYM11, QA13a, Qia17, SP16, SCR17, SA15a, SBH+12, ZD15]. space-charge [Qia17]. Space-dependent [BBB17b]. space-fractional [MDHD18]. Space-time [FDZ17, CVK+17, Chr18, JLM18, Jia18]. spacecraft [MPS13]. spacecraft-plasma [MPS13]. spacegroups [AZ17a, AZ17b]. Spaces [Asc10, Bog16]. spacetimes [Mül14a]. spacewise
95

[JC13, JC14, VJC12]. **Symmetry** [MW14, Alv12, BCDP18, CDTV10, CFSK14, FF11, GNT17, HJL+14, LRC+11, ZAHAI0]. **Symplectic** [LQ18, MKS10, Bla15, CWJ19, CFMR10, CZS12, CYSL12, HDZ14, KMS14, KZC+10, LS12a, LYL+17, QSC14, RHW+12, SSH+13, SW12a, SW13b, WXL13, WWHW14, WWC+16, ZST11]. **SYMPLE** [KDP+14]. synchronous [BENK+17, Fer15, SCM13]. synchrotron [LSF14]. synthesis [LHWL16]. **Synthetic** [MGA+13, BL18b, KFF+16, PN15]. **System** [KBT+14, Ana11a, BM+11a, BJBC+14, BCP18, BBH+10, BBH+15, CDBM16, CFCSB12, Cas12, Dat13, FBHB17, GZL14, GBP13, HAH13, HZ11, HLD13, JMG+17, Kro16, LDR+17, MD10a, MSI+10, MCA1F14, MSH11, OK10, OY13, PMMW15, SXW+18, TTG11, TTS11, TD17, WNY17, mZXL15], **SYSTEM** [KDP+14]. systematic [BW16, BSK+18, GA13, RCGT16]. systems [ASTT16, ASIS18, ARI15, ASPDL+16, AGH+16, ADaM+12b, ACaM14, BMD+11b, D4JC+19, BFPP12, BBS14, BK15, BVC13, BM14, BC11, CR13, CLH+17, CGM17, CZ18b, CLJ12, CYSL12, CL15b, CB15d, CB16a, CR12, CBB+10, CFFR15, Dan14, Dan16, Dan17, DBJ11, DEW16, Ert14, Ert15, FIW10, Fil14, FE11, FLW17, GLHR19, GJ18a, GS17a, GH11, GM16, GBJ+10, GBJ+12, GBJ+13, GCHL15, HBL+13, HAN+16, IUM13, JLA+14, JWC18, XTS16, JLL13, JNN12, JNN13, JGC+11, KFS17, Kau13, KPA13, KHZ+18, KI11, KO12, KS12, KPOP18, KGNS10, LLQ19, LMK+16, LCV+11, LCo12, LRW+15, LWYW11, LS16, LB10a, LB13, LKT+16, LCM10, LL12, LCHM13, LBP15, MPM14, MFM15, Men11, MGS13, Miy15, PFA+15, PTMDPK14, PLCC12, RF10, RAV11, RHC15, RCH16, RLMGM+11, SW14b, SL17, SH18, SEGP15, SGW17]. systems [SL16, SS10a, SPP19, TM14, TDL+14, UO15b, UO15a, Voy13, VBMP15, VB19, Viuk12, WXL13, WRB11, WAW14, WWS10, WW10, YZWR14, ZAHAI0, dB14]. **SYVA** [GNT17].

T [HD17, PC11, NDSH18, MB16], **T-matrix** [HD17], t-**SURFF** [MB16]. **3PS** [Mau16], **table** [JTH14, LYJY10, Wei11a, vSGB+18], tackle [CKS10], **tadpoles** [Pik18], tag [DKT14, HLS12], tag-mediated [HLS12], **tailed** [VvAV+11b], **tangents** [PR10, PR12]. **Target** [DAW+19, GC13, HHT14, RT16], **targets** [BAK+17, HC+16, LHJ+15, MSR+17, MOB19], **Tartarus** [SGG19], **task** [TGH+16], task-based [TGH+16], **tasks** [HWT0]. tau [SW14c, Wan10a, HTT13, HTT14], **TAUOLA** [CPWZ18, DNP+12], Taylor [WG12], **Taylor** [vH10], **TD** [HM17], **TD-DFT** [HM17], **TDDFT** [PVK+18, POU14], **TDDS** [GLHR19], **TDF** [SGDS16], **TDHF** [MRS14, SRS+18], **TDSE** [FZY17, ON14], **TE** [LS17b, LSS14], tearing [HSE+12]. Technical [DNP+12, DPW16, LS15a], **technique** [BALV16, BCP18, CS10, DGI10a, DGI10b, DM17, Eba13, EKDG15, GHydL11, GGG16, GTS14, Hon10, JAS17, KN13, Koh15, KR16, LLX14b, NPAD11, NSH18, NVAFO18, Ram10, SK14, TH17, VDB14, WLS13, WDR16, MAIVA14]. **techniques**

Temperature [HST+11, HEF+11, BM16, CM10a, GB14, HyWT17, Hin11, KST14a, KCT15, KA17, KNGS10, Liu13, LK15, Liu15a, LJD+19, Mil16, RF16, SLK19, SLC11, SC15, SC16b, SPSP18, VdLF14].

temperatures [Wai12].

tempering [Boe14, FFT+14, JJ15, VdLF14, VDF15]. Template [LHL11, BJ14].

TemplateTagger [BJ14]. Temporal

[MDF11, SCB+17a, YHCS11, IBP+15, KEH12]. TENO [Fu19].

tensile [SCM+18]. Tension [RM10a]. Tensor

[SPS18, BK12, Bre10, DKSOS14, DLW+18, GCH+18, HR11, KAK12, KK14b, KK14a, KCA+15, Lya15, NKS15, Nie18, PGO17]. Tensors

[Dep17, Ara14a, Ara14b]. term [Pla16]. terms

[ACM10, ACM11, ACM12, Deg15, HMU10, LNP+17, MSR10]. ternary [Sza16].

terrain [OAKS11]. TERS [Nat10, Nat09]. Tersoff [Ngu17]. Tesla

[Lya15, AAA+16]. Tessellation [CMSN18]. tessellations [SOJ14]. Test

[LNSD15, PBE14, SIS10, TdAdSS11, VEM12, ZZG+16]. test-kinetic [VEM12]. TESTER [DGPW11]. Testing

[ES11, FMRP16, Pit10, Liu11, MGFRG12, TVT+16, Zlo14]. Tests

[SM17, Gag12b, Gag12a, GH18]. tetrahedral [JG16]. tetrahedron

[GJ18b, Kap12a]. tetrahedron-based [GJ18b]. Tevatron

their [BDJS18, GSK17, GCVA14b, KAR+15]. theoretic [SSBS15].

Theoretical [HCC14, LQT+13, NS11b, NV+13, Sit18]. theories

[ADF+15, CJ12, Cip11, Fri14a, LSSW14, SA14]. Theory

[GS17a, VCMS+13, ZZH+16, ASA18, BPC12, BB13a, BW12a, BG11, BO12, BRH+16, CXH+15, CKhN11, Chr18, Cri18, DF13, FK15, GRL+17, GB+14, HAH13, Hsu11b, HHS+10, JCR+13, KBB+17, KVW11, KVST15, Kra17, Kra18a, LA13, LSD14, LWS18, LSK+14, MGRB11, MBF+10, MOB12, MSS+16, MG01a, Mii11a, MC17, Naz12, NRS12, Nut14, OOK+12, OT+11, Pre18, QJF16, RWKS15, San15, SD15, SCR17, SSS16, SB+12, SU18, TVGB15, VBS+17, WHG+19, Wan10b, WM13, YZWR14, YLYL17, ZAH10, BK13b, BC10, DKB12, GS17b, LT15]. thermal [CCXC15, DS13b, FSH13, Fow18, FM15, GM14, TKP12, Wan16, YK18, CKFB12]. thermally [CZN14].

THERMINATOR [CKFB12]. thermo [DMGZ15]. thermo-mechanical [DGMZ15].

thermochemistry [YFAT17]. thermodynamic [BSWC14, Cou13a, Cou13b, DES+11, GRR+14, MJ11, RKGC+17, TDL+14, ZZH+16]. thermodynamics [AGVP10, Fri17, KH10, MWL+10, dlRAPL11].

Thermoelectric [BKA+14, KAR+15, NVAFO18, PVK+14a, PVK+14b].

thermostat [GJHF14, JBM15]. Thermostatistical [GM11].

thermostatistics [AMR15]. thickness [CDSG11]. thin [BL14]. Third
Three-body [BY13, LB13, EKO16, Ixa16]. Three-dimensional [CW16, dAFdSVM12, LJSW11, MNPF17, WWC+16, BC11, DS13a, DHR14, FGLB12, GS15, GBR+14, GM16, HM18, KYSV+15, KSY17, LLHC11, LV14, LS15b, LLP15, LTP+17, LAS+17, LB+16, LYS+16, LR13, LR16, MWI+19, MC16, MGRB11, MGL16, MC10, MBFD12, ICD13, MC17, NPM16, NAQ16, ÔN12, PSB11, PSBT12, PM16, PVK+18].

Three-temperature [SC15, SC16b]. throughput [EC10, ZZ17a]. Ti [Ell17b]. TIERRAS [TS10]. TIGER2 [BW15, MPB10]. tight [HSF+19, HM17, RJKC16, SHNM11, YLYL17, LSK+14]. tight-binding [HSF+19, HM17, RJKC16, YLYL17]. TIM [LHC+12, OTC14]. Time [DAW+19, GTG+11, HFK+12, IBB18, LLQX19, LB10b, RJKC16, TD14, TC11b, TT11, AAA+16, AdM16a, AdM17, ADBR17, AH13, BS15a, BR14, BD10, BMBC+17, BB12, BENV+17, C17+16, CMSN18, CVK+17, CC10a, CDL+12, CW16, Chr18, CHZ18, CO11, DS13a, DS10, DM17, DV11, DSW+15a, DKSG16, DHR14, DJ14, DM12, ECD+10, FDZ17, FGLB12, FNPMB10, Fr10, GS15, GMPPC+14, GML15, GBR+14, GM16, GVR19, GBSY18, GJHF14, GWF+11, HE13, HWG13, Has11, HCL16, HLLH16, HC17, HKvH16, Hsu11b, HHC+10, HWM+15, Hua17, HM18, IW15, JLM18, Jia18, JHJG14, JMG+17, KK16b, KYSV+15, KSY17, LLHC11, LV14, LS15b, LLP15, LTP+17, LAS+17, LB+16, LYS+16, LR13, LR16, MWI+19, MC16, MGRB11, MGL16, MC10, MBFD12, ICD13, MC17, NPM16, NAQ16, ÔN12, PS11, PSBT12, PM16, PVK+18]. time [PTMDPK14, PBS+17, QYM11, QA13a, QWZW18, Ram14, RVDS16, RDVS18, SHT18, SSB+16, SLV18, SKF16, SVV19, SSH+13, SGW17, SBH+12, SCB17b, SW12b, TTG11, TL17, TT14, TVT+16, TVGB15, UW12, US16, VDB14, VBS+17, VVB+12, Vuk12, WL11b, YSVM+16, YSMA+17, ZD15, ZYZ15, dSF18, dHGCS11, CYN19, Wil19].

time-delay [DS10, LTP+17]. time-delayed [JHJG14]. Time-Dependent [LB10b, GTG+11, IBB18, TC11b, TT11, BMBC+17, DS13a, DHR14, DM12, FGLB12, GS15, GBR+14, HM18, KYSV+15, LV14, LBB+16, LYSS+16, MC16, MGRB11, MGL16, MC17, NPM16, ÔN12, PM16, SSB+16, SSH+13, SCB17b, TVGB15, UW12, VBS+17, VVB+12, WL11b, YSVM+16, YSMA+17, ZYZ15, dSF18]. Time-domain [LLQX19, CW16, FNPMB10, HE13, HC16, HC17, HKvH16, MBFD12, ICD13, SVV19, SW12b, TT14, VDB14, Wil19]. Time-efficient [RJKC16].
trajectory [DAW+19, TS11, Wil15]. Transfer [Hak16, Lee16, TRN16, ZLL18, ASS13, BBB17b, CLJ12, CZF18, DBMR18, ELDS14, Gai17, GZL14, HTT13, HTT14, IBB18, MR14, NBM+15, NCHN15, NFI17, NGCI+12, STT11, SR12, XHLUF+18]. transferable [HBP+15]. transferred [CLW11]. transform [CLW11]. transformed [CLW11]. transformations [Che17, MWCY14]. transient [NB17, CAN11, CCXC15, CB15b, GTSL+13, MK10, QWZW18, RJLL16, WNYP17]. transienta [PLF+17]. Transition [BP12, BR13, KBLJ18, LA13, BL14, CK12, DSHS17, Fri12, HW11, KA17, LRC+11, MTS+16, NFI17, RMC16, RE12, SLZ16, SV12, Wai12, WJHW14].

Transition-path [LA13], transitions [BUJ15, CMR17, JJB11, KPA13, Ots11, QDZ+13, RAV11, VDF15]. translation [TSIM16]. translational [CATK11]. translocation [KSH11, dHGCs11]. transmission [GCVA14a, HTT13, HTT14, MD10a, PYW+14, SVGS18, WHB16]. transmutation [CLF18]. transparency [WL11b]. Transparent [NPM16, SP18a]. Transport [CP15b, VC10, ASPL+16, BDPM15, BTL+17, CVK+17, CCXC15, CXG+19, CAGL13, DSP15, EY11, FUSH14, FVH18, FZ16, FLSZ13, FRFH10, FR15, FM15, GZL14, GLHG12, HBE10, HCC14, HF16, Htn12, Jab19, JA17, KLKR11, KYKN15a, KYKN15b, KPK+17, KKS18, LLE+18, LCKM14, LRK13, MD11a, MCIV18, Mar15, MS14, NPM16, NBL18, OBH10, PPV+11, PLF+17, PMS+17, PBF+16, PFFK19, PVK+14a, PVK+14b, PMVG16, RF16, RDC+18, RB18, SL16, SISW10, SK12, SD14, SCW+11, SSF+14, SC15, SC16b, Tic10, Tic14, WRFS15, XJS16, YSN+14, ZFR18]. transpose [Lya15]. transverse [MSH11, Qia17]. trap [BDP16, KYSV+15, LBB+16, SSB+16, VVB+12, YSVM+16]. trapping [JA17]. traveling [sL10]. TRAVIS [MTM14]. treat [FCCTFR18].

CB16b, CL13, CLB11, CRN12, CMS17, DM17, Dem13, DRUE12, DKOS14, DM12, EDPZ19, Ein16b, EKDDG15, FJK+17, FDWC12, FNPMB10, FWS+17, FZY13, GBP13, GSKM17, GA10, GSB+14, GMH11, GYW+10, GM18, GRTZ10, HTJ+16, HCC14, HAN+16, HHC16, HKK11, Ihn12, JK13, JU17, JSLM16, KK16a, KH11, KTB17, KK14a, KD17, KKP11, KN13, Koh15, KS12, KKS18, KST+14b, KHKR14, KCS+15, LLHC11, LD10b, LA13, LBM+14, LOK+16, LWZ14, LLY+17, LXR+18, LHH+12b, LS12b, LTP+17.

using [LAS+17, LNSD15, LHGF18, LWP+17, MED11, MGRB11, MHV17, MP11, MHS+10, MRFV13, Mazz19, MC12, MVL+16, Mis12, MM10, MSML10, MLK+17, MLK+19, MGR16, MSS+14, NGH10, OBH10, OKM12, OYK+14, PST12, PPV+11, PDRG10, PVK+17, PDL+18, PSL+17, PR10, PR12, PCEH15, PMV16, PA13, RDP14, RMS+12, RLMGM+11, SCB+17a, Saw18, SEW12, SEW14, SÖÖN11, SW14c, SWL+15, SPM11, SD10b, SA15b, SLR+11, SSF+14, Sie16, SC15, SN16, SPS10, SKH+10, SHL+11, SBH+12, SS10a, SSK+13, TOB+14, TVGB15, TW15, TCP13, UBRT10, VSO+13, VvA+11a, VJC12, WISA11, WW15, WLG+13, WAHL13, WMRR17, WMR19, WVF14, WAW14, XHLUF+18, XLX+15, YZ16, YK10, Yi11, YBK11, YBNY13, YE14a, YB13, YXT+15, YG12, ZBG+16, ZDY10, ZKG+18, ZMvE+13, dJB16v16]. USPEX [LSOZ13]. utilitarian [CB15a, CB17]. utilization [sLsqL+13, SMCB+15]. UV [Deg15, Fen12b, dDYK+18]. UV-divergent [Fen12b, dDYK+18].

vascular [GVR19]. **VASP** [DA16, HW12, MDGC+12]. **vdW** [LAA+10]. **vector** [BW11, DDKM15, FBHB17, GJ18a, GNT17, KYKN15a, KYKN15b, KL17, LK12, LHJZ10, ME18, PDL+18, QM10, SAHP15, SBQ14]. **vector-boson** [DDKM15]. **vector-valued** [KL17, LK12]. **vectorisation** [TH17]. **vectorization** [SAN18]. **Vectorized** [RMW13, TGH+16].

velocimetry [BW11, DDKM15, DDKM15], **velocities** [JC16, MSHLS15, MSHL17]. **Velocity** [PVK+18, CDBM16, HST+11, JBG+17, JH11, Sza13b, Sza13a, Sza16, YW17, YTYA17]. **velocity-dependent** [HST+11]. **Velocity-gauge** [PVK+18, YW17]. **VENUS** [LSK+14, PCGM14]. **VENUS/NWChem** [LSK+14]. **versatile** [Sou14, ZSW+17a, ZPS+18]. **Version** [AFZ17, CB17, FLZ+18, HS18, AC18, BPC13, BB13a, BH16, BLG14, Bon15, BHW+12, BBH+15, CWW10, CWW15, Cip11, FLA+16, Gin10, GRR+14, GFB+10, GCV14a, HAY+14, HD17, JCL10, Jia18, JGB+13, Kol14, KDM11, KUV13, LCJ10, LZ11b, LRR+15, MFS10b, MAM14, MYP+14, MG10b, Nat09, Nat10, NS11a, OKP10, Org15, dRL11, dRL11, PSL+17, PR12, Pit12, PVK+14b, RDS18, RHRH15a, RHRH15b, SMOB19, SSG+18, SRS+18, SDM+12, SDS+17, Sin16, SSK+13, TV10, WMK11, WW13, WRMR19, XW15, ZXL16, ZMPT13, FP14, Sem16, ZE16].

versions [Cip13, KRW13, dSD12]. **versus** [FBN+13, RD10]. **vertex** [Eks11, Sus17b]. **vertexing** [Dim14]. **vertical** [TKL+12]. **Very** [BC10, MNO011, GMC18, LOV10, MN16]. **Very-high-precision** [MNO011]. **VEST** [SBQ14], **vh** [BHZ13]. **via** [AC13, AG14, ADdM14, BK11a, Boe14, BHW+12, BMG+15, CS17, DG10b, DS10, DN13, GB11, GH15, GTG+11, JTT11, LBH11, LN16, LWJV18, Maz13, Per14, SGDS16, SDL+16, TO10a, UA17, XLL15, YJK11, ZZ17a, dSF18, dH12]. **viability** [BL18b]. **vibration** [Gar19]. **vibrational** [CHW+15, HW11, YFAT17]. **vibrations** [AYDY11, LQZ+13]. **vibroacoustic** [FOB+15]. **video** [DGPOR18]. **video-microscopy** [DGPOR18]. **View** [HS16]. **viewer** [HS16], **viewing** [KY14]. **VII** [SDM+12]. **VIII** [SDS+17]. **violating** [AKH12, CGV13, CRC+13, Mur14, RCD+10, Ros15]. **violations** [AB10, LCE+13, Urb18]. **violent** [MRSD15]. **Viratio** [LDF+16]. **virtual** [AAB+10b, BBU13, BCM+16, GHdF10, NOR15, TCK+15]. **viscoelastic** [MAIVAH14, RT˚AT15, XD16]. **viscosities** [GZW17]. **Viscosity** [BJM15]. **viscous** [dCLOL19, GZW17, KHB14, XD16]. **VISHNU** [SQS+16]. **visited** [BVC13]. **Visual** [Dan12, AKV18, GGF+13, GFB+10]. **Visualisation** [BBW11, Rut18]. **Visualization** [AKH+18, GCP+15, SC14, AZS+11, Aon11o, dAFdSVM12, JEC+12, KY14, MSI+10, NBM+15, OK10, TL17, WLG+13]. **Visualizing** [ERPDFS15].

Vlasov [BCDP18, CDBM16, CC14, CC15, CEF16, CHZ18, FL13, FK12, GBSY18, KSS18, MIW+12, MIW+13, MMA15, PDJ10, SS11b, UN12, dB14]. **Vlasov-Hybrid** [KSS18]. **VLBI** [TRM+12]. **VLBI-resolution** [TRM+12].
Wealth [CLLK11], weather [DBD+17, SLY18], web [HS16, MLR10].

web-based [HS16], WebRun [VDJ+11], weight [LJE11], weight-based [LJE11], weighted [AAD13, AAD14, CDL+12, Gag12b, Gag12a, GH18, Wan16]. Weighting [XHLUF+18], Weighting-Factor [XHLUF+18], weights [Odr11, Sch14b, VDF15]. Well [STA18, LLP15]. Well-balanced [STA18], well-posed [LLP15]. Well-posed [STA18], LLP15].

Waven [VDF15+16], wFMM [CC12]. Wheeler [SMdONF14]. Where [ACDdM19], wherever [TIMM13]. whispering [ALSW14], white [Er14]. Wide [SGSG19, HC16, MST+18, PG10]. Wideband [CC10b, CC12]. Widths [BGM+14].

Worm [MEG12, KVW11, MGS13]. wrapper [MMSF15]. wurtzite [HHW12].

X [BMU11, BMF+19, Bru13, CDSG11, Cip13, DA16, FWS+17, GTL+17, GSb+14, LP15, LS12b, MD11b, PBMAD12, Pat15, Pat17, Sht17, Tic10, TVGB15, WGI6a, XHLUF+18, YvOSM15]. X-factor [XHLUF18].

X-point [BMU11]. X-ray [Bru13, CDSG11, Cip13, GSb+14, LS12b, MD11b, PBMAD12, Tic10, BMF+19, DA16, FWS+17, GTL+17, LP15, TVGB15, WGI6a, YvOSM15].

Yukawa-folded [DPB16].

REFERENCES

References

REFERENCES

Aslanyan:2017:ECD

Allanach:2010:IPV

Antoine:2013a:CMD

Alioli:2014:UBH

REFERENCES

[AC13] C. Angeli and R. Cimiraglia. Automated evaluation of matrix elements between contracted wavefunctions: a Mathe-

[ACC17] Ana Arnal, Fernando Casas, and Cristina Chiralt. On the structure and convergence of the symmetric Zassenhaus for-
REFERENCES

Alvaro:2013:NMK

Alexandrou:2014:EDQ

Alloul:2014:FCT

Avellar:2014:DLF
REFERENCES

Avellar:2015:FHO

Avellar:2019:DRS

Alves:2013:GED

Antuono:2012:NDT

Antuono:2011:PGW

REFERENCES

REFERENCES

REFERENCES

Alves:2016:IGF

Alves:2016:NMI

Alves:2017:APC

Alwall:2015:CDR

Actis:2017:RCO

REFERENCES

[AG12a] M. Arioli and S. Gratton. Linear regression models, least-squares problems, normal equations, and stopping criteria

REFERENCES

References

Aksenova:2015:SMS

Aurentz:2017:CGI

Azarov:2018:IPV

Ahmed:2013:BSS

Antoine:2017:CPS

Appel:2018:ERI

Aliev:2011:HHT

Adelmann:2016:DKS

Amodio:2014:NSW

Alvarez:2012:IHS

Gonzalo Alvarez. Implementation of the SU(2) Hamiltonian symmetry for the DMRG algorithm. *Computer Physics Communications*, 183(10):2226–2232, October 2012. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-
REFERENCES

REFERENCES

[AMRdA17] B. C. Allanach, Stephen P. Martin, David G. Robertson, and Roberto Ruiz de Austri. The inclusion of two-

Anonymous:2010:CPC

Anonymous:2010:EBa

Anonymous:2010:EBb

Anonymous:2010:EBc

Anonymous:2010:EBd

Anonymous:2010:EBe

Anonymous:2010:EBf

Anonymous:2010:EBg

Anonymous:2010:EBh

Anonymous:2010:EBi

Anonymous:2010:EBj

REFERENCES

Anonymous:2011:EBa

Anonymous:2011:EBb

Anonymous:2011:EBc

Anonymous:2011:EBd

Anonymous:2011:EBe

Anonymous:2011:EBf

Anonymous:2011:EBg

Anonymous:2011:EBh

Anonymous:2011:EBi

Anonymous:2011:EBj

Anonymous:2011:EBk

Anonymous:2011:EBl

Anonymous:2011:RCF

Anonymous:2012:CPC

Anonymous:2012:EBa

Anonymous:2012:EBb

Anonymous:2012:EBc

Anonymous:2012:EBd

REFERENCES

Anonymous:2012:EBk

Anonymous:2012:EBl

Anonymous:2013:CPC

Anonymous:2013:EBa

Anonymous:2013:EBb

Anonymous:2013:EBc

REFERENCES

REFERENCES

Anonymous:2013:EBj

Anonymous:2013:EBk

Anonymous:2014:EBa

Anonymous:2014:EBb

Anonymous:2014:EBc

Anonymous:2014:EBd

REFERENCES

Anonymous:2015:EBl

Anonymous:2016:CPC

Anonymous:2016:EBa

Anonymous:2016:EBb

Anonymous:2016:EBc

Anonymous:2016:EBd

Anonymous:2016:EBf

Anonymous:2016:EBi

Anonymous:2016:EBj

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ahmed:2011:RSM

Alexandrescu:2011:ENM

Agarwal:2016:GCA

Afibuzzaman:2018:SND

Ascasibar:2010:EMP

REFERENCES

Afshar:2013:ESR

Andrienko:2013:SHM

Acs:2018:CAS

Acs:2016:CAP

Adhikari:2013:CWP

Assmann:2016:WOC

An:2011:SCM

Avery:2017:CRO

Avery:2017:ROS

Azadegan:2013:MPC

Arshi:2014:MOS

Adler:2011:SVN

Babaev:2014:PCN

Badnell:2011:BPD

REFERENCES

Barletta:2011:CCD

Barnard:2011:UEM

Barletta:2012:CCD

Bigaouette:2012:NGM

Bourchtein:2010:ICN

REFERENCES

Remi Baron, Philippe Boucaud, Jaume Carbonell, Vincent Drach, Federico Farchioni, Gregorio Herdoiza, Karl Jansen,

REFERENCES

REFERENCES

[BBPS14] G. Bélanger, F. Boudjema, A. Pukhov, and A. Semenov. micrOMEGAs⁻³: a program for calculating dark matter observ-

BURKOFF:2016:EMD

BERRY:2011:QVQ

BEKAS:2010:VLS

BUDIARDJA:2011:PFB

BAKHTA:2018:CWF

REFERENCES

REFERENCES

Bolis:2016:APA

Bazzotti:2010:UGA

Belyaev:2013:CCP

Beale:2016:OSC

REFERENCES

Bianchi:2010:RTO

Barka:2012:ASH

Buehler:2014:CCH

Bierwage:2012:OBR

Bern:2014:NNE

REFERENCES

[BDDM18] Jyotiranjan Beuria, Asesh Krishna Datta, Dipsikha Deb-nath, and Konstantin T. Matchev. LHC collider phe-

[BDGDM+17] A. Butykai, P. Domínguez-García, F. M. Mor, R. Gaál, L. Forró, and S. Jeney. PFMCal : Photonic force micro-
croscopy calibration extended for its application in high-

[BDJS18] Roberto Barrio, Peibing Du, Hao Jiang, and Sergio Ser-
rano. ORTHOPOLY: A library for accurate evaluation of series of classical orthogonal polynomials and their deriva-

[BDK11] A. Barasiński, A. Drzewiński, and G. Kamiennarz. Quantum effects and Haldane gap in magnetic chains with al-

REFERENCES

Bian:2014:SIS

Byun:2017:DSI

Berg:2014:DSS

Berg:2016:CLS

Berg:2016:LSF

Bernd A. Berg. Least square fitting with one explicit parameter less. *Computer Physics Communication-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BHN+16] Vincent Bonnivard, Moritz Hütten, Emmanuel Nezri, Aldéè Charbonnier, Céline Combet, and David Maurin. CLUMPY: Jeans analysis, γ-ray and ν fluxes from dark
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BK16a] H. P. Bhatt and A. Q. M. Khaliq. Fourth-order compact schemes for the numerical simulation of coupled Burg-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Badia:2011:LSL

Badia:2011:PSH

Bussone:2019:THM

Bocquet:2019:TSD

Butykai:2015:COT

[BMG+15] A. Butykai, F. M. Mor, R. Gaál, P. Domínguez-García, L. Forró, and S. Jeney. Calibration of optical tweezers with non-spherical probes via high-resolution detec-
REFERENCES

Broberg:2018:PPT

Burrows:2011:PRS

Brower:2017:MDW

Baran:2018:JCC

Bonhommeau:2015:MVM

Bonhommeau:2016:MVM

Bacchini:2017:NPC

Borinsky:2014:FGG

Botje:2011:QFQ

Botha:2012:GMA

[Bot12] A. E. Botha. General \(R\)-matrix approach for integrating the multiband \(k \cdot p\) equation in layered semiconductor struc-
REFERENCES

REFERENCES

REFERENCES

Brock:2016:FBO

Bhat:2018:OES

Braga:2011:DLA

Bhar:2013:CPW

Bertsch:2014:CLD

BPSS18

BR11

BR13

BR14

BPS+16

REFERENCES

192

References

184(10):2343–2350, October 2013. CODEN CPHCBZ.
ISSN 0010-4655 (print), 1879-2944 (electronic). URL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Brown:2013:IMD

Buaria:2017:HSP

Comesana:2013:SSP

Cai:2011:CSB

Chaabane:2011:ATD

Raoudha Chaabane, Faouzi Askri, and Sassi Ben Nasrallah. Analysis of two-dimensional transient conduction-radiation problems in an anisotropically scattering participating enclosure using the lattice Boltzmann method and
REFERENCES

Charsooghi:2011:MPC

Cardoso:2013:GPG

Caruntu:2013:APS

Cardall:2015:GBO

Chen:2015:SKP

Ziguang Chen and Florin Bobaru. Selecting the kernel in a peridynamic formulation: a study for transient heat diffusion. *Computer Physics Communications*, 197(??):51–60,
REFERENCES

Cheng:2015:JHN

Ciaramella:2015:SFS

Ciaramella:2016:LCS

Cooper:2016:PBM

Cardall:2017:GNB

REFERENCES

Colo:2013:SCR

Chu:2011:ABC

Chen:2015:BOM

Chen:2018:GPF

Cai:2018:PFE

REFERENCES

Charbonnier:2012:CCR

Cowan:2017:RAF

Chien:2010:TSC

Chen:2011:USF

Chen:2015:CPP

REFERENCES

Capuzzo-Dolcetta:2013:PCD

Chowdhury:2013:EAT

Carapelle:2011:HMC

Consiglio:2018:PR

REFERENCES

REFERENCES

Cuoci:2015:OOO

Calvo:2010:SSE

Conte:2013:MUF

Chang:2014:CPP

Chilenski:2017:EME
M. A. Chilenski, I. C. Faust, and J. R. Walk. eqtools: Modular, extensible, open-source, cross-machine Python tools

REFERENCES

REFERENCES

Cheng:2010:LAM

Che:2011:NMS

Cheviakov:2017:SCE

Chiu:2011:EPC

Carter:2018:GPS

Francisco Carter, Nancy Hitschfeld, Cristóbal A. Navarro, and Rodrigo Soto. GPU parallel simulation algorithm

REFERENCES

REFERENCES

REFERENCES

Chen:2016:PEC

Cha:2011:WDW

Chau:2011:MAS

Cheng:2011:IRE

Cai:2010:ACT

Cai:2010:CAB

Crouseilles:2014:APS

Czakon:2014:TPC

Chang:2015:SOE

Cantwell:2015:NOS

REFERENCES

REFERENCES

REFERENCES

Cunha:2014:UQT

Cerda:2018:HST

Czerwinski:2011:TVL

Colavecchia:2014:ASA

Corsetti:2014:OMM
Fabiano Corsetti. The orbital minimization method for electronic structure calculations with finite-range atomic basis

REFERENCES

REFERENCES

REFERENCES

Chen:2017:UHS

Cho:2013:EOP

Chakraborty:2010:AIC

Chudoba:2013:UPS

REFERENCES

REFERENCES

Carrete:2017:ASS

Clason:2012:GSMa

Clason:2012:GSMb

Chen:2013:QQC

REFERENCES

REFERENCES

Cai:2015:ALO

Chen:2018:MFE

Cho:2011:IRC

Curtis:2014:STS

Chen:2010:MSS

Dixit:2016:ICX

Dupuy:2011:PSD

Filho:2012:TDE

deAquino:2012:AAL

Daniluk:2010:MDDa

REFERENCES

REFERENCES

Dolfi:2014:MPS

Ducrozet:2016:HOO

DAlessandro:2018:DOS

Derouillat:2018:SCO

REFERENCES

REFERENCES

Duhr:2011:SMF

Delaney:2013:PFT

Deng:2014:OMR

Duff:2015:MRF

Dehghan:2010:ADR

<table>
<thead>
<tr>
<th>Reference Code</th>
<th>Authors and Title</th>
</tr>
</thead>
</table>
REFERENCES

Domínguez-García:2018:JIA

Davidson:2011:MTV

Donnel:2019:MSC

Dunster:2017:CEM

deHaan:2011:IIW

Dolgov:2014:CEE

Dewhurst:2016:EAT

Druzhinin:2014:GMC

Davis:2010:PMD

REFERENCES

REFERENCES

Dreiner:2013:FLC

Duy:2014:DMM

Duy:2014:TDD

Deluzet:2017:DAS

Dobrowolski:2016:SEP

REFERENCES

REFERENCES

Dupuy:2010:FDS

Deslippe:2012:BMP

daSilva:2013:SNM

DelBen:2015:ESF

duToit:2018:PPS

Duarte:2010:CII

Duarte:2012:CEM

Duff:2016:MRF

Deinega:2011:LTB

REFERENCES

Degroote:2011:FRP

Deng:2013:FNF

Dai:2015:ASM

Ebadi:2013:BSC

Eder:2014:AMA
Eder:2017:MAA

Eilert:2017:FNM

Edgar:2010:EHT

Eriksson:2016:CFN

Egorova:2019:PSM
M. S. Egorova, S. A. Dyachkov, A. N. Parshikov, and V. V. Zhakhovsky. Parallel SPH modeling using dynamic domain decomposition and load balancing displace-

[Eremina:2012:NSD]

[Engelhard:2010:SSP]

[Exl:2019:PNC]

[ElKacimi:2010:OUE]

[ELL+17a] Markus Eisenbach, Jeff Larkin, Justin Lutjens, Steven Rennich, and James H. Rogers. GPU acceleration of the Locally Selfconsistent Multiple Scattering code for first principles calculation of the ground state and statistical physics of materials. Computer Physics Communications, 211(??):2–7, February 2017. CODEN CPHCBZ. ISSN 0010-4655 (print),
REFERENCES

REFERENCES

Erturk:2015:ETO

Engel:2011:TTM

Eberl:2016:GDS

Ervik:2017:RFE

Eremenko:2015:CWF

REFERENCES

283

Eder:2014:MNA

Evstatiev:2014:APS

Einkemmer:2014:CDG

Eremin:2014:NSD

Eremin:2016:DSM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Frigori:2014:NLG

Fritzsche:2014:FTQ

Frigori:2017:PPL

Falloon:2017:QMP

Farhi:2017:NMC

REFERENCES

[FYK18] Arya Fallahi, Alireza Yahaghi, and Franz X. Kärtner. MITHRA 1.0: A full-wave simulation tool for free electron lasers. *Computer Physics Communications*, 228(??):192–208, July 2018. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-

REFERENCES

Gagunashvili:2012:CCT

Gaenko:2017:UCL

Grandgirard:2016:GFG

Gilbreth:2015:SCE

Gagunashvili:2012:CCG

Gao:2016:RMG

Goicochea:2015:RDR

Gainullin:2017:HPG

Gao:2013:CPC

Guo:2013:LSN

Garnier:2019:DVC

Gramada:2011:CGE

Green:2014:IAP

Guo:2017:GIR

Grossu:2013:CMB

Grossu:2015:SMP

Gray:2012:MAP

Gabay:2017:OKM

REFERENCES

REFERENCES

Gontchar:2018:DCC

Guo:2018:GAL

Ge:2017:IPS

Guan:2018:RPA

[Grossu:2010:NVV]

[GFJ+14]

[Grossu:2013:HFAa]

[GG16]

REFERENCES

Ralf Gamillscheg, Gundolf Haase, and Wolfgang von der Linden. A numerical projection technique for large-

Guillet:2014:TNA

Gingrich:2010:MCE

Giorgino:2014:CDA

Giorgino:2014:PGE

Giorgino:2018:HDC

[Gio18] Toni Giorgino. How to differentiate collective variables in free energy codes: Computer-algebra code genera-

Giuliani:2019:BMC

Geng:2013:GAD

Gelmi:2014:IGP

Ghale:2018:SMV

Guterding:2018:EGA

Gonze:2016:RDA

Gross:2011:MPR

Gronbech-Jensen:2014:AGJ

Gong:2012:PTU

Gerdt:2019:MPT

Gomez-Lobo:2012:SMP

Gavin:2011:FCH

Giorgino:2017:MGU

Gao:2013:MPC

Guo:2014:CFE

Guan:2014:NAS

Georgoudis:2017:AAG

Ghodrat:2011:MDS

Grisins:2014:MHT

Gonoskov:2016:SSP

Gituliar:2017:FTR

Gupta:2018:ALQ

Garcia:2018:SCM

REFERENCES

Gao:2013:GGA

Golesorkhtabar:2013:ETC

Green:2018:ASP

Grichine:2010:GHE

Grigera:2011:GGL

Guo:2018:NMP
[GRLS18] Xiaohu Guo, Benedict D. Rogers, Steven Lind, and Peter K. Stansby. New massively parallel scheme for In-

REFERENCES

REFERENCES

[GVPJ18]

[GVR19]

[GVS+15]

[GWF+11]

[2016] Xinmin Ge, Hua Wang, Yiren Fan, Yingchang Cao, Hua Chen, and Rui Huang. Joint inversion of $T_1 - T_2$ spectrum

Gwizdalla:2012:HAS

Gabay:2017:SDE

Giannotti:2013:MGI

Guo:2015:SDP

REFERENCES

REFERENCES

Halder:2014:JAS

Hwang:2010:PNK

Huang:2011:FRR

Harvey:2011:STP

Halder:2017:JSV
Prithish Halder and Himadri Sekhar Das. JaSTA-2: Second version of the Java Superposition T-matrix Application. *Computer Physics Communications*, 221(?):421–422,
He:2019:FLA

Hynninen:2012:MDI

Hadade:2016:MMM

Hu:2014:MSM

Hadi:2013:CFA

Mohammed F. Hadi and Seyed A. Esmaeili. CUDA Fortran acceleration for the finite-difference time-domain method.
REFERENCES

Hirayama:2011:TDN

Hlucha:2012:SPP

Heinasmaki:2012:IAA

Homola:2013:SUH

Honda:2016:DFT
Mitsuru Honda and Atsushi Fukuyama. Development of the fluid-type transport code on the flux coordinates in a tokamak. *Computer Physics Communications*, 208(??):117–134,
REFERENCES

Harvey:2015:PIL

Hischenhuber:2012:MCM

Hoefling:2013:SFS

Hernandez-Garcia:2015:CAS

Hsiao:2011:ARE

Ju-Tang Hsiao and Keh-Ning Huang. Applications of the relativistic equation of motion to photoionization of Mg-like ions. *Computer Physics Communications*, 182(1):136–139,

[Hoschele:2014:MMP] Maik Höschele, Jens Hoff, Alexey Pak, Matthias Steinhauser, and Takahiro Ueda. MT: a Mathematica pack-

Hirai:2012:NSE

Hornyak:2015:ACP

Hamiaz:2012:FVT

Heikkinen:2012:IMC

Hwang:2011:LSD

REFERENCES

Hammerling:2010:NSS

Hornikx:2016:OOS

Hulsmann:2010:GGB

Haar:2017:APF

Huang:2013:NNE

REFERENCES

[Harlander13] Robert V. Harlander, Stefan Liebler, and Hendrik Mantler. SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in

REFERENCES

References

Hsu:2011:FMC

Hammer:2014:SGL

Hahn:2017:IIM

Hinz:2015:PBS

Howard:2018:EMH

Hosek:2016:MVF

Herren:2018:VRC

Hill:2017:DBC

Horgue:2015:OST

Hammerschmidt:2019:BPT

Ulrich Hohenester and Andreas Trügler. MNPBEM — a Matlab toolbox for the simulation of plasmonic nanoparticles. *Computer Physics Communications*, 183(2):370–381, February 2012. CODEN CPHCBZ. ISSN 0010-4655 (print),
Hariri:2016:PPA

Hollis:2013:TRT

Hollis:2014:TRT

Huang:2017:LLC

Huang:2017:IQV

Li Huang. iQIST v0.7: an open source continuous-time quantum Monte Carlo impurity solver toolkit. *Computer Physics Communications*, 221(??):423–424, December 2017. CODEN
REFERENCES

Haelterman:2015:ACT

Honkonen:2013:PGL

Hulsmann:2010:ANO

Hehn:2017:HTS

Huang:2011:NSL

Hutchinson:2012:VGA

Hadade:2019:SUO

Huang:2011:ESC

Hafermann:2013:EIC

Hu:2017:KOS

Changjun Hu, Xianmeng Wang, Jianjiang Li, Xinfu He, Shigang Li, Yangde Feng, Shaofeng Yang, and He Bai. Kernel optimization for short-range molecular dynamics.

REFERENCES

Ilyushin:2011:APF

Ismailov:2018:TDP

Iniguez:2011:MOF

Innocenti:2015:ITS

Moxley:2013:GFD
Ito:2016:VBI

ID18

Ito:2018:IRE

Ibanez:2011:SDM

Ihnatsenka:2012:CEQ
Ito:2016:IRE

Ikeno:2018:MLF

Iserles:2019:CSL

Nomura:2015:ELS

Idesman:2014:AFE

REFERENCES

Ixaru:2010:NNM

Ixaru:2012:RKM

Ixaru:2016:NAS

Isakov:2015:OSA

Javadi:2017:KMC

Jablonski:2012:EAC
REFERENCES

References

Jiang:2012:NMC

Jensen:2016:DTA

Jiang:2013:FGC

Jonsson:2013:NVG

REFERENCES

Jucker:2011:IMI

Jelinek:2011:CHV

Jiao:2015:CTE

Jiang:2014:NMM

Jolliet:2015:NAP

Junghans:2011:HNT

Januszewski:2010:ANS

Johnson:2013:NDP

Januszewski:2014:SFM

Joung:2018:CSA

Jung:2016:PIF

Jiang:2010:ASF

Jentschura:2012:NCB

Jansen:2014:QMC

Jia:2018:NSE

REFERENCES

Wei Jiang, James C. Phillips, Lei Huang, Mikolaj Fajer, Yilin Meng, James C. Gumbart, Yun Luo, Klaus Schulten, and Benoît Roux. Generalized scalable multiple copy algorithms for molecular dynamics simulations in namd. *Com-
Joulaian:2012:NAS

Jiwari:2012:NST

Jadach:2010:MMC

Jourdan:2016:ASS

Weipeng Jing, Danyu Tong, Yangang Wang, Jingyuan Wang, Yaqiu Liu, and Peng Zhao. MaMR: High-performance MapReduce programming model for material cloud applications. *Computer Physics Communications*, 211(?):79–87,

Jones:2017:ECT

Jamil:2016:HCC

Jin:2017:NCC

Jorissen:2012:HPS

Jeng:2013:TPC

B.-W. Jeng, Y.-S. Wang, and C.-S. Chien. A two-parameter continuation algorithm for vortex pinning in

REFERENCES

Keaveney:2018:EEA

Khoromskaia:2012:FAT

Kant:2014:FLD

Kaneko:2018:CNF

Kaprzyk:2012:AFI

Kaprzyk:2012:AFS

Kappl:2016:SCS

Khan:2015:STP

Kosti:2012:OER

Kaspar:2014:EEE

REFERENCES

Kaushik:2013:IAA

Knap:2011:PPJ

Kunes:2010:WLA

Kabin:2015:MCP

Kittelmann:2015:PNS

Kjaergaard:2017:MPL

Kundu:2018:PPA

Kopp:2012:SDE

Kratzer:2014:FRE

REFERENCES

Kulikov:2015:ACC

Karasiev:2015:IAR

Kupczynski:2016:BSI

Kiesewetter:2017:AIS

Kong:2011:IVG

[KDM11] Ling Ti Kong, Colin Denniston, and Martin H. Müser. An improved version of the Green’s function molecu-

Kerby:2017:EDN

Kim:2016:CGS

Koehoe:2013:PTP

Kachman:2017:NIM

Khayyer:2018:EIS

REFERENCES

REFERENCES

REFERENCES

Kim:2017:NCV

Kao:2011:DAB

Kosower:2015:FFB

Khanna:2010:NMG

Kohno:2017:FEP

REFERENCES

Kalogiratou:2014:FOM

Kohno:2013:NML

Klein:2017:SMC

Komura:2012:GBS

Kniehl:2016:MCL

Kuipers:2013:IMH

Kwon:2017:ITT

Kumar:2014:NAM

Kylanpaa:2016:EES

Kourtzanidis:2015:AFM

Krivec:2012:NRK

Kasilov:2016:GIC

Krogel:2016:NMW

Kersevan:2013:MCE

Borut Paul Kersevan and Elzbieta Richter-Was. The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1. *Computer Physics Communications*, 184(3):919–985, March

Stefan Kesselheim, Marcello Sega, and Christian Holm. Applying ICC* to DNA translocation: Effect of dielectric boundaries. *Computer Physics Communications*, 182

REFERENCES

Kosmas:2010:PFD

Kleiss:2011:CCL

Korzec:2011:PWA

Kageyama:2014:AEV

Kim:2015:CDV

Kong:2010:SES

Kong:2010:SES

Lapelosa:2013:TPT

Lapelosa:2013:TPT

Lazic:2010:JJN

Lazic:2010:JJN

Lozano:2017:ECA

REFERENCES

REFERENCES

REFERENCES

Lerner:2013:SDO

Lee:2018:TMA

Leon:2012:EMS

Lesur:2016:MSI

Levy:2019:DCD

Liu:2012:FES

[Li:2015:ECA]

[Li:2010:AIC]

[Li:2016:AOT]

Lv:2016:OSM

Liu:2019:ICF

Lee:2011:GWB

Lee:2011:TDS

Lin:2011:LRR

REFERENCES

Lin:2018:MRR

Lee:2012:EAN

Liu:2015:LIV

Lehe:2016:SQC

Lee:2011:PAC

REFERENCES

[Lou:2015:MNF] Tak Pui Lou and Bernhard Ludewigt. MMAPDNG: a new, fast code backed by a memory-mapped database for simulat-

REFERENCES

REFERENCES

[LN16] Xuesong Li and William F. Northrop. A Markov Chain-based quantitative study of angular distribution of photons

Lv:2017:CDS

Lopez:2015:CSJ

Litsarev:2014:DCC

Lee:2016:IMD

REFERENCES

[LQZ+13] Jin-Chun Li, Ping Qian, Zhen-Feng Zhang, Ying Liu, Xiao-Jian Yuan, Jiang Shen, and Nan-Xian Chen. Theoretical study of structure and lattice vibrations of

REFERENCES

Leetmaa:2015:KER

Leetmaa:2015:MSD

Linaro:2016:BLB

Lv:2017:MDS

Lyonnet:2017:PPT

REFERENCES

Li:2011:LSM

Lopez:2018:CSF

Launey:2014:PSC

Landreman:2014:NCR

Leidi:2012:CEP
Tiziano Leidi, Giulio Scocchi, Loris Grossi, Simone Pusterla, Claudio D’Angelo, Jean-Philippe Thiran, and Alberto Ortona. Computing effective properties of random heteroge-

[Lopez:2013:ISP]

[Lin:2013:TDR]

[Lourderaj:2014:VNS]

[Lichtenstein:2017:HPF]

REFERENCES

REFERENCES

Ledoux:2014:ANS

Lee:2015:EPM

Loke:2011:EQC

Loke:2013:CQC

Lee:2014:BTS

REFERENCES

Li:2011:TSE

Li:2014:LAB

Lang:2012:QBS

Li:2014:SCC

Li:2018:CTD

REFERENCES

Loncar:2016:OOM

Li:2017:CNC

Lu:2013:WGA

Lonie:2011:XOS

Lonie:2011:XVR

Lonie:2012:IDC

Li:2017:ESI

Liu:2018:AAA

Li:2011:FPC

REFERENCES

Madhikar:2018:CGA

Mazzeo:2013:FDG

Mazdziarz:2019:CAI

McIntyre:2012:FJB

Mosert:2016:PSQ

[MB16] Volker Mosert and Dieter Bauer. Photoelectron spectra with Qprop and t-SURFF. *Computer Physics Communications*, 207(??):452–463, October 2016. CODEN

REFERENCES

Motta:2015:ILM

Martin-Bragado:2013:MOK

Melchionna:2010:HAL

Mohankumar:2010:NAD

Mei:2012:NSR

Liquan Mei and Yaping Chen. Numerical solutions of RLW equation using Galerkin method with extrapolation techniques. *Computer Physics Communications*,
REFERENCES

Mycek:2017:RDD

Melazzi:2012:SFD

McMillan:2017:PMF

Munoz-Caro:2016:AJJ

REFERENCES

Movilla:2010:DPA

Mellet:2011:CIM

Madsen:2018:BPI

Ma:2015:NMM

Martinez:2016:POS

Macias-Diaz:2010:SET

Mohebbi:2010:HOS

Macias-Diaz:2011:SCP

Miqueles:2011:CLR

Moritz:2011:TRN

REFERENCES

[MDW16] Pui-Wai Ma, S. L. Dudarev, and C. H. Woo. SPI-LADY: a parallel CPU and GPU code for spin-lattice mag-

Martinec:2018:SPS

Maintz:2011:SPW

Mercado:2012:WAS

Mertmann:2011:FSO

REFERENCES

integration scheme for relativistic charged particle motion

[Montoliu:2013:IEL] C. Montoliu, N. Ferrando, M. A. Gosálvez, J. Cerdá, and
R. J. Colom. Implementation and evaluation of the Level
Set method: Towards efficient and accurate simulation of

[Muller:2013:PLA] Eike H. Müller, Rupert Ford, Matthew C. Hort, Lois
Huggett, Graham Riley, and David J. Thomson. Parallelisation
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Volume/Issue</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MGS13]</td>
<td>Ydalia Delgado Mercado, Christof Gattringer, and Alexander Schmidt.</td>
<td>Surface worm algorithm for abelian Gauge–</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

REFERENCES

[Miszczak:2013:EOQ]

[Miura:2011:VPI]

[MIW+12]

[MIW+13]

[Miyatake:2015:DEP]
REFERENCES

McMillan:2010:RFS

Möddel:2011:AFP

Muñoz:2018:NHC

Mierzwiczak:2010:AMF

Morozov:2011:MDS

I. V. Morozov, A. M. Kazennov, R. G. Bystryi, G. E. Norman, V. V. Pisarev, and V. V. Stegailov. Molecular dynamics simulations of the relaxation processes in
REFERENCES

[MKU+12] Masaharu Matsumoto, Yoshihiro Kajimura, Hideyuki Usui, Ikkoh Funaki, and Iku Shinohara. Application of a to-

REFERENCES

Mohankumar:2013:SCE

Mawson:2014:MTO

Malagon-Romero:2018:DDM

Mokos:2015:MPS

Maruhn:2014:TCS

Communications, 185(7):2195–2216, July 2014. CODEN
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).

Mayrhofer:2013:IWB

Arno Mayrhofer, Benedict D. Rogers, Damien Violeau,
and Martin Ferrand. Investigation of wall bounded flows
using SPH and the unified semi-analytical wall bound-
ary conditions. Computer Physics Communications,
184 (11):2515–2527, November 2013. CODEN CPHCBZ.
ISSN 0010-4655 (print), 1879-2944 (electronic). URL

Mazzeo:2010:LNL

M. D. Mazzeo, M. Ricci, and C. Zannoni. The Linked
Neighbour List (LNL) method for fast off-lattice Monte
Carlo simulations of fluids. Computer Physics Com-
ISSN 0010-4655 (print), 1879-2944 (electronic). URL

Menshutin:2011:MDD

A. Yu. Menshutin and L. N. Shchur. Morphological dia-
gram of diffusion driven aggregate growth in plane: Compe-
tition of anisotropy and adhesion. Computer Physics Com-
munications, 182(9):1819–1823, September 2011. CODEN CPHCBZ.
ISSN 0010-4655 (print), 1879-2944 (electronic). URL

Matsuoka:2014:AIC

Seikichi Matsuoka and Shinsuke Satake. Application of
an improved control-variate scheme to local neoclassi-
cal transport simulations. Computer Physics Com-
munications, 185(9):2313–2321, September 2014. CODEN
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).
Mohankumar:2015:SRR

Munejiri:2011:RSI

Munoz-Santiburcio:2017:ACC

Munoz-Santiburcio:2015:ACC

Masuda:2010:SPC

REFERENCES

Moreno:2017:SVM

Mondragon-Shem:2010:ECC

Murano:2014:FCC

Mi:2016:ARS

Wenhui Mi, Xuecheng Shao, Chuanxun Su, Yuanyuan Zhou, Shoutao Zhang, Quan Li, Hui Wang, Lijun Zhang, Maosheng Miao, Yanhao Wang, and Yanming Ma. AT-LAS: a real-space finite-difference implementation of orbital-free density functional theory. *Computer Physics Communications*, 200(??):87–95, March 2016. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic). URL

REFERENCES

REFERENCES

Maierhofer:2018:KFI

Morozov:2011:ADW

Meylan:2016:GDS

Mortensen:2015:OHL

Magierski:2012:LLI

REFERENCES

Michel:2014:SBM

Miao:2014:PMP

Maeyama:2019:IGC

Moscicki:2010:LQT

Mostofi:2014:UVW

Marquard:2014:SMI

[MZ14]

Mikram:2013:PCP

[MZE13]

Zhao:2015:ASE

[mZiXL15]

Nisar:2016:SSB

[NAQ16]
Nath:2009:TVI

Nath:2010:ETV

Nazarov:2012:AMM

Neumann:2017:MTM

Niess:2018:BMC

Nakano:2015:FSS

Nemes:2014:DMR

Needham:2016:EAM

Nikfarjam:2018:LSI

Navarro:2015:PFT

Niemeyer:2017:PAJ

Nellis:2018:FPR

Nemura:2016:IDE

Nedjalkov:2018:SAS

Neumann:2016:MSD

REFERENCES

Nguyen:2017:GAT

Navarro:2016:AMG

Ng:2014:AAL

Ng:2015:MPL

Niehoff:2018:FTC

REFERENCES

Nakamura:2015:PCL

Noble:2017:DCS

Nilmeier:2014:RSU

Nino:2015:AGA

Nishiura:2014:PCP

References
Nakata:2015:ICO

Noreen:2012:HPS

Narski:2014:APS

Nogueira:2017:FRCa

Nogueira:2017:FRCb

P. Nogueira. From Feynman rules to conserved quantum numbers, II. *Computer Physics Communications*, 215(??):13–19, June 2017. CODEN CPHCBZ. ISSN 0010-
REFERENCES

G. A. Nemnes, Alexandra Palici, and A. Manolescu. Transparent boundary conditions for time-dependent electron transport in the R-matrix method with applications
REFERENCES

501

Olshevsky:2019:SFP

Olson:2010:PFL

Ou:2013:EME

Ortwein:2019:PLA

REFERENCES

Ozgun:2014:CTA

Odaka:2018:GRM

Ogren:2011:SSF

Oh:2012:MOO

Ogoyski:2010:COU

REFERENCES

Ovaysi:2012:MGA

Opletal:2011:HHR

Opletal:2014:HHR

Opletal:2013:HHR

REFERENCES

Ozaki:2011:AFE

Oxburgh:2014:DTR

Otin:2013:ENB

Otsuka:2011:PTS

Otin:2015:FET
REFERENCES

[Ogburn:2014:FDC]

[Ozkaynak:2013:SPP]

[Ohno:2014:PMD]

[Poursina:2013:CES]

REFERENCES

REFERENCES

Plante:2014:CDD

Pueschel:2010:RND

Peng:2018:CPW

Parand:2010:AAS

REFERENCES

Pikelner:2018:FFM

Pittau:2010:TIN

Pitzer:2012:ASC

Pomerantsev:2016:FGB

Pandit:2015:NSS

REFERENCES

Plante:2016:CST

Prusty:2012:SBC

Polyakov:2013:LSF

Peralta:2015:GEA

Papior:2017:INE

Petran:2014:SC

Plascak:2013:PDF

Petrila:2014:MMC

Patchkovskii:2016:SAE

Pfeiffer:2015:TSP
Parra-Murillo:2015:ENM

Poghosyan:2015:AIP

Park:2017:ETS

Ponce:2016:EEP

Penttinen:2015:FST

REFERENCES

REFERENCES

Petersen:2012:LET

Parand:2013:KMS

Pang:2014:GAO

Pradhan:2011:CWP

Prausa:2017:ETF

Preti:2018:WMP

Pletzer:2011:EMS

Porod:2012:SEI

Panopoulos:2014:NPF

Pandey:2011:AAS

Pandey:2012:ASS

Perez:2017:ADS

Paissoni:2014:GGT

Paissoni:2015:GGT

REFERENCES

[PYW+14] Zhong Peng, Hong Wei Yang, Rui Weng, Yingjie Gao, and Ze Kun Yang. A research on the CN-ICCG-FDTD algo-
Park:2019:PEC

Pachucki:2016:HFS

Pan:2019:TSF

Qamar:2013:STC

REFERENCES

REFERENCES

Qi:2018:ADG

Qamar:2011:STC

Raffah:2013:ECW

Ramadan:2010:AFA
REFERENCES

Rodriguez:2015:OPI

Reinhardt:2019:LMP

Roudnev:2011:AGC

Reimer:2013:MBF

Ramshaw:2015:NSM

REFERENCES

Rostrup:2010:PHP

Reed:2018:DPR

Russell:2017:ECB

Rama:2014:SPI

Regnier:2018:FNV

D. Regnier, N. Dubray, M. Verrière, and N. Schunck. FELIX-2.0: New version of the finite element solver for

REFERENCES

[Rouzbahani:2017:TIS] Fardin Rouzbahani and Kazem Hejranfar. A truly incompressible smoothed particle hydrodynamics based on artifi-

REFERENCES

REFERENCES

Rosiek:2016:MMP

Roehm:2015:DDK

Rodrigues:2014:AAC

Ramos:2010:PIM

Ramirez:2012:TIE

REFERENCES

REFERENCES

Roidl:2018:SES

Ramis:2016:MIO

Ringl:2012:LIG

Ringl:2013:SAC

Ruffoni:2013:FAS

D. Regnier, M. Verrière, N. Dubray, and N. Schunck. FELIX-1.0: a finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation. *Computer Physics Communications*, 200(?):350–363, March 2016. CODEN CPCHCBZ. ISSN 0010-4655 (print),
Rubow:2011:FAC

Russell:2015:OTD

Sundararaman:2014:ECD

Sharma:2015:OHS

Shokri:2015:HOC

Solano-Altamirano:2015:DCO

Sainio:2010:CGA

SaiToh:2013:ZCL

Sala:2012:MPP

Salac:2016:GMP

Sano:2011:FIW

REFERENCES

Sangwine:2015:CSP

Stone:2018:AFR

Sarkadi:2017:CME

Sarkadi:2017:FPC

Sokolovski:2011:EMP

REFERENCES

REFERENCES

Sijoy:2015:TTT

Sibaev:2016:PFO

Sijoy:2016:CNC

Samaddar:2017:TPE

Sprengel:2017:CCC

REFERENCES

REFERENCES

Schmitz:2018:SCL

Sheu:2016:DEN

Straatsma:2013:ESC

Stella:2014:EEC

Stegmeir:2016:FLM

Andreas Stegmeir, David Coster, Omar Maj, Klaus Hallatschek, and Karl Lackner. The field line map approach for simulations of magnetically confined plasmas. *Computer
Sun:2018:MRD

Shirvan:2018:CBC

Scott:2013:ECS

Scott:2016:E

Shang:2017:LDC

Honghui Shang, Christian Carbogno, Patrick Rinke, and Matthias Scheffler. Lattice dynamics calculations based on
Schofield:2012:SSM

Shih:2011:CTC

Shizgal:2010:MCC

Shokri:2010:KMM

Sellier:2014:WBM

Schaich:2015:PSL

Sui:2012:SSE

Sturmberg:2016:EOS

Schunck:2012:SSH

References

Schouten:2015:AME

Schunck:2017:SSH

Shcherbakov:2015:FGN

Semenov:2016:LPA
Serebrennikov:2010:NSA

Serov:2017:OFS

Schimeczek:2012:HOC

Schimeczek:2014:HOC

Stamatiadis:2010:ATA

REFERENCES

Sala:2011:IFM

Saunders:2018:DSL

Sanchez-Gil:2017:NNG

Starrett:2019:WRE

Shinaoka:2017:CTH

Hiroshi Shinaoka, Emanuel Gull, and Philipp Werner. Continuous-time hybridization expansion quantum impurity solver for multi-orbital systems with complex hybridizations.
REFERENCES

Salib:2012:CRD

Siro:2012:EDH

Siro:2016:EDQ

Schmidt:2018:WMP

Shang:2013:PAL

REFERENCES

[Soin:2011:ESC]

[Shtabovenko:2017:FCF]

[Sarkimaki:2018:ATS]

[Sarkar:2018:ECE]

[Senkov:2013:HPF]
REFERENCES

[Sit14b] I. M. Sitnik. Development of the FUMILI minimization package. *Computer Physics Communications*, 185(10):2800, Oc-
REFERENCES

Santos:2016:OOI

Schmidt:2017:WMP

Shih:2011:SAM

Stahl:2017:NSR

Shemyakin:2019:THP
O. P. Shemyakin, P. R. Levashov, and P. A. Krasnova. TFmix: a high-precision implementation of the

Stahl:2017:AAP

Lu:2013:EUL

Shumlak:2011:APC

Solanpaa:2016:BSP

Scheffel:2018:TSA

Si:2016:LSM

Silva:2011:STM

Sauter:2013:TCC

Sen:2014:MCP

REFERENCES

REFERENCES

[SÓÓN11] Henrik Schulz, Géza Ódor, Gergely Ódor, and Mátyé Ferenc Nagy. Simulation of 1 + 1 dimensional surface growth and

Staub:2012:TBI

Souvatzis:2014:UVE

Schreilechner:2016:RSF

Schwendt:2018:TBC

Shen:2018:PPC

[SP18b] Hua Shen and Matteo Parsani. Positivity-preserving CE/SE schemes for solving the compressible Euler and Navier–Stokes equations on hybrid unstructured meshes. *Computer

REFERENCES

REFERENCES

REFERENCES

Shen:2013:HOS

Simon:2016:PIA

Stoitsov:2013:ADS

Sylwestrzak:2017:MPD

Sitarek:2016:SRA

Saez:2011:IPC

Smirnov:2011:FPM

Shen:2014:IDB

Staub:2010:SMF

Staub:2011:ACS

Staub:2013:SDG

Staub:2014:STO

Salinas:2018:WBO

Stein:2017:FPA

Sakurai:2010:ABK

References

Strater:2015:PDA

Sakamoto:2011:SME

Studerus:2010:RFI

Shabaev:2015:QFP

Shabaev:2018:QFP

REFERENCES

Sulejmanpasic:2018:APT

Stork:2017:DAE

Sussman:2017:CMP

Stockinger:2012:FMF

Schrock:2013:CLM
Sandner:2014:CMI

Svaneborg:2012:LFD

Snytnikov:2010:AMA

Sallam:2018:GMS

Sanchez-Vizuet:2019:HDG

REFERENCES

Sarti:2013:BTE

Smiljanic:2014:MBP

Sa:2012:PUP

Sa:2013:PUI

[Ter17] Andrew V. Terekhov. The Laguerre finite difference one-way equation solver. *Computer Physics Commu-
REFERENCES

Tchuen:2014:HNM

Tung:2011:ISM

Tramm:2016:TBP

Titarenko:2017:HMV

TenBarge:2014:OLA

Teijeiro:2016:EPA

Torrent:2010:ESP

Tian:2011:RHO

Tickner:2010:MCS

REFERENCES

Tickner:2014:APM

Tsukahara:2016:ILC

Tordella:2013:LES

Tabakin:2011:QMQ

Tholerus:2017:FMN

[TKP15] P. Gerald Tennyson, G. M. Karthik, and G. Phani Kumar. MPI + OpenCL implementation of a phase-field

Tagliaboschi:2014:PMI

Thirayatorn:2015:FDC

Trieu:2011:EBS

Teodoro:2011:MMS

Toyoda:2010:FSB

REFERENCES

REFERENCES

Tsai:2011:EML

Tretiakov:2015:QAE

Tu:2015:SFE

Tian:2010:HOC

Tsai:2015:IPC

Talamo:2012:MCD

Trofimov:2016:MGB

Tang:2017:REN

Underwood:2017:MPE

REFERENCES

Vecharynski:2017:EBP

Viehland:2010:TCS

Vorwerk:2016:LMM

Varini:2013:EDC

Vergez:2016:FET

Guillaume Vergez, Ionut Danaila, Sylvain Auliac, and Frédéric Hecht. A finite-element toolbox for the stationary
REFERENCES

vanderSman:2010:MLB

vanderSman:2013:ILB

vanderSman:2016:AIL

Veberic:2012:LFA

Varin:2018:EFS

Voitcu:2012:CSF

Verheyen:2016:RCP

Vranic:2015:PMA

vonHippel:2010:TMA

vanHameren:2011:OEO

vanHameren:2018:KPL

Voglis:2015:PMP

Vu:2012:FHS

Vitek:2014:TDM

Vuorinen:2016:DGT

REFERENCES

Verbeke:2015:FRE

Verbeke:2018:FRE

vonRudorff:2014:EIA

Vetter:2019:FOR

Varier:2017:TNJ

REFERENCES

Vincenti:2018:UOM

Verstichel:2011:VDM

Verstichel:2011:PDS

Vudragovic:2012:CPS
vonWinckel:2010:QFK

Windisch:2013:EAS

Wainwright:2012:CCC

Walters:2011:EWP

Wang:2010:ECT

REFERENCES

Weigel:2011:SSM

Weinzierl:2012:SJA

Walewski:2014:RPI

Witherden:2014:POS

Welling:2011:ELC

REFERENCES

REFERENCES

Huang:2015:MGR

Wagner:2016:CAT

Wallerberger:2019:WLO

Hsu:2011:DCD

Wiebusch:2013:NCV
REFERENCES

Wiebusch:2015:HMP

Wiecha:2018:PPP

Wilson:2015:EIF

Wilson:2019:GFD

Wallerberger:2011:FCC

REFERENCES

[Wei:2013:NVB]

[Wei:2013:NVB]

[Wei:2013:NVB]

[Wang:2013:SPM]

[Wang:2013:SPM]

Minghui Wang and Wenhao Ma. A structure-preserving method for the quaternion LU decomposition in quaternionic quantum theory. Computer Physics Communications,
REFERENCES

Wang:2011:IVP

Winkler:2017:GSM

Watson:2010:MIK

Wang:2017:CHS

Wegner:2010:ISE

Tadeusz Wegner and Andrzej Peczak. Implementation of a strain energy-based nonlinear finite element in the

REFERENCES

REFERENCES

REFERENCES

Wang:2012:TIE

Wang:2013:GIV

Wan:2014:FFP

Wallraf:2015:COP

Wang:2016:TDS

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

[XLX+15] Zhijie Xu, Dongsheng Li, Wei Xu, Arun Devaraj, Robert Colby, Suntharampillai Thevuthasan, B. P. Geiser, and D. J. Larson. Simulation of heterogeneous atom probe tip

[Xia:2016:MPC]

[Xu:2016:EIP]

[Xiao:2015:EVS]

[XWF18]

REFERENCES

REFERENCES

Yamaguchi:2016:PCP

Yang:2009:FAM

Yang:2011:EIB

Yu:2013:DST

Yokota:2011:BEU

REFERENCES

Yu:2017:CTA

Yuan:2012:DAV

Yang:2015:OPS

Yang:2011:TDS

Yang:2011:HCO
Chao-Tung Yang, Chih-Lin Huang, and Cheng-Fang Lin. Hybrid CUDA, OpenMP, and MPI parallel programming on multicore GPU clusters. *Computer Physics Communications*, 182(1):266–269, January 2011. CODEN
REFERENCES

REFERENCES

REFERENCES

Young-S:2016:OFP

Yu:2017:SFV

Yang:2015:HTR

Yakovlev:2017:ACV

REFERENCES

Zacares:2010:GTM

Zeng:2016:MPP

Zakynthinaki:2011:SOD

Zhen:2012:DFH

Zhao:2019:IAC

Menglong Zhao, Alex Chankin, and David Coster. An iterative algorithm of coupling the Kinetic Code for Plasma Periphery (KIPP) with SOLPS. *Computer Physics Communications*, 235(??):133–152, February 2019. CODEN
REFERENCES

Zhu:2017:DOS

Zanotti:2015:HOS

Zinchenko:2013:NGF

Zhang:2017:UEB

Zhang:2010:NSN

Zhang:2017:UEB
ACCEPTED MANUSCRIPT

Zacate:2011:SHI

[ZE11]

Zacate:2016:SHI

[ZE16]

Zerbetto:2015:MIT

[ZF15]

Zatsarinny:2016:DBS

[ZF16]

Zilibotti:2011:ICA
Giovanna Zilibotti, Mauro Ferrario, Carlo Maria Bertoni, and Maria Clelia Righi. Ab initio calculation of adhesion and potential corrugation of diamond (001) interfaces. *Computer Physics Communications*, 182(9):1796–1799, Septem-

Zhong:2011:PBN

Zhong:2011:PBN

ZHPS10

Zhang:2010:RFY

Zhang:2013:SNS

Ziolkowski:2014:NAN

Zitko:2011:SMP
Zhang:2018:DPA

Zuniga:2013:MID

Zhu:2018:DES

Zentile:2015:EPC

Zuccaro:2011:MMP

Zuccaro, G., Lapenta, G., Ferrero, F., and Maiazza, G. Multiphase and multiphysics particle in cell simulation of soot

REFERENCES

Zwart:2013:MPS

Zhou:2015:EHO

Zouros:2018:CEA

Zhang:2013:VME

Zhang:2015:PAS
Bo Zhang, Bo Peng, Jingfang Huang, Nikos P. Pitsianis, Xiaobai Sun, and Benzhuo Lu. Parallel AFMPB solver

\[\text{Zhu:2018:AGV}\]

\[\text{ZPS+18}\]

\[\text{Zheng:2016:EOF}\]

\[\text{ZPVr16}\]

\[\text{Zhang:2012:SSS}\]

\[\text{ZRS12}\]

\[\text{Zheleznyakova:2013:MDB}\]

\[\text{ZS13}\]
REFERENCES 685

[ZTG14] Zhaopeng Zhong, Alberto Talamo, and Yousry Gohar. Corrigendum to “Monte Carlo and deterministic computational

[ZXL16] Kebo Zhang, Hailing Xiong, and Chao Li. A new version of code Java for 3D simulation of the CCA model. *Computer
Yu:2018:EUS

Zhou:2015:UIP

Zhang:2015:DFD

Zhang:2015:SSL

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume (Issue):Page(s)</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>