Title word cross-reference

1 [2434]. 2 [583, 378, 1031, 1043]. 2
[356, 1591]. 2 x 2 [428]. 3
[970, 744, 1340, 1043]. 4 [1372]. (R) [3]. 2
[1891]. α [628, 1857, 912]. AR(1) [1196].
ARCH(1) [50]. β [440, 673]. C [690, 2218]. D
[1381, 183, 1388, 52, 1142, 2144, 2253, 2590,
1392, 137, 2574]. δ [1554]. g [770, 1459, 1766].
GARCH[1, 1] [1998]. h [1459, 1766]. I
[1324, 87, 1664, 1392, 346, 1859]. I_2 [313]. J
[166]. K
[72, 694, 177, 1582, 735, 1450, 1794, 1327, 132,
203, 2408, 194, 1232, 785, 119, 1283, 1048]. L
[1372]. L_1 [1888]). L_1 [1100, 602, 2003]. L_2
[211]. L_∞ [1527]. Λ [1002]. M
[235, 41, 343, 1182, 853, 1564, 161, 2046]. n
[2046, 1732, 1918]. ν [1550]. P [1806, 1304,
2369, 1096, 760, 856, 1220, 647, 2334, 526,
1646, 649, 944, 1732, 2241, 1592, 1918].
P(T_1 < T_2) [706]. φ [608]. ψ [745]. Q [223].
Q_n [1564]. R [488, 260]. S [453]. \sqrt{n} [2053].
T [2211, 242, 358, 923, 1597, 1313,
1944, 441, 1039, 1316, 1526, 249, 768, 1547,
909, 1776, 883, 2372, 1665, 2461, 1311, 422],
τ [1819]. U [2538, 198, 9, 145]. z [1298, 1575].

-and- [1766]. -Birnbaum [440, 673].
-consistent [2053]. -convex [260]. -copula
[2372]. -copulas [242]. -D [970, 1340].
-dimensions [2574]. -distribution
[909, 1311]. -distributions
[358, 768, 1459, 422]. -divergence [608].
-errors [1531]. -estimated [161].
-estimates [1819]. -estimation [235].
bias [436, 555, 1420, 1781, 1646, 49, 1462, 1870, 910, 1080, 1273, 856, 1973, 2582, 216, 1709, 2507, 1943].

bias-adjusted [1080]. bias-corrected [856].

biased [2219, 64, 2593, 2495, 2134].

biased-coin [2219]. BIC [1724].

biclustering [1789, 1731]. big [1719].

big-data [1719].

Binary [146, 1323, 634, 338, 823, 1687, 18, 670, 447, 1789, 1731].

biased [2219, 64, 2593, 2495, 2134].

bi-level [1724].

bioassay [520, 1232, 963, 819, 123, 835, 610, 1737].

biomarker [613, 158].

biomarkers [1345, 2343, 1610, 430, 1063, 1688, 1326, 2296, 2347].

biomedical [2407]. biomolecular [102].

Biostatistics [2407]. biosurveillance [1032].

bipartite [382]. biplots [2444].

BIRCH [67]. Birnbaum [923, 979, 440, 646, 125, 412, 522, 1144, 1128, 40, 673, 750, 460, 1595, 1898, 958, 37, 24, 516].

Bispectral [1149]. Bispectral-based [1149].

Bivariate [2181, 931, 554, 447, 1655, 1631, 2013, 1902, 2445, 22, 224, 2542, 1161, 493, 1039, 992, 2189, 351, 780, 1078, 1526, 1010, 150, 192, 2489, 369, 2560, 1595, 1898, 1660, 408, 420].

Blackwellisation [70]. block [306, 2354, 176, 2572, 2544, 1387, 1330, 363, 147, 1627, 2243, 1079, 2095, 2312].

block-wise [2243]. blocks [2512, 590].

Boosting [211, 2198, 927, 1503, 1822, 2485].

breaks [886, 1480, 1489, 238, 866, 246, 1196, 2528, 1965]. breast [836, 390, 442].

build [2178]. building [1796]. Burr [413]. byproduct [2267].

capacity [2213]. capture
Depth [2068, 2349, 2379, 554, 1901, 1078, 991, 461, 2474, 1927, 934, 2600, 420].

distance-constrained [1668]. distances [1167, 221]. distortion [1068, 1653, 2182].

Distributed [69, 342, 2282, 1247, 260].

disturbances [432]. divergence [608, 1598, 2110, 2573, 2365, 1466].

divergences [166]. diverging [1469, 1881].
dose-response [2415]. Double [1634, 2443, 70, 1802, 1221, 123, 384, 1697].
double-sampling [123]. Doubly [788, 840, 587, 976, 749, 683, 1102, 1808, 185].
heavy-tailed [266, 650, 801, 908, 1073, 948, 2571, 877, 909, 373, 387]. hedge [898].
Hellinger [591]. Helmet [970]. Herriot [1850, 1050, 1290]. heterogeneous [98, 647, 822, 1859].
heterogeneous [571, 779, 1869, 1499, 2517, 2595, 2591, 2370].
heteroscedastic [788, 650, 474, 1288, 812, 10, 1187, 1745, 1975].
Heteroscedasticity [2033, 752, 544, 798, 1385, 2114, 130, 1241].
heteroskedastic [2060, 1249].
heteroskedasticity [240, 1282, 1513].
heuristic [1952, 2397]. Heuristics [858, 250].
hierarchical-likelihood [337].
high-frequency [2484]. high-performance [1379]. High-throughput [757, 2398, 394].
Higher [910, 112, 2490, 790, 934, 1084].
Higher-order [910, 2490, 1084]. highest [533]. highly [1441, 2590, 760, 1065, 1564].
Hilbert [1925, 2252]. Hill [1011, 1166].
homogeneous [2101]. homoscedastic [291]. Hong [432, 1016]. Hopfield [2562].
Huber [343]. Huberized [433, 661].
Human [3, 80, 769]. hurdle [1101]. Hybrid [986, 552, 2471, 1656, 433, 1431, 654, 370, 1214, 1736, 1765]. hydrology [458].
HYGARCH [905]. Hyper [504, 1179, 2039, 1105]. hyper-parameter [2039]. hyper-parameters [1179].
hyper-Poisson [1105]. hyperbolic [998, 867, 1499, 1896, 2263, 2461].
Hypercube [1350]. hypergeometric [822]. hypergeometric-Dirichlet [822].
Hypothesis [2500, 190, 799, 2368, 978, 1913, 2047, 1080, 1526, 768, 1575, 963, 713, 2242, 2182, 2429].

Improved

increased [1028]. increasing [748, 465, 1123, 2242, 93, 1448].

incremental [1190]. increments [469].

index [2056, 2331, 151, 1222, 892, 2601, 1920, 775, 1646, 2288, 965, 1117, 1069, 2531, 728, 1153, 347, 709, 1288, 2345, 348, 2297, 2573, 2593, 2554, 637, 1577, 764, 1235, 1681, 1208, 609, 1607, 2247, 994, 1279, 1224, 1525, 2427, 1877, 2404]. indexed [1066, 1068].

Inferences [316, 90, 965, 1117, 1776, 1613]. inferential [986]. inferiority [942, 2492, 2202, 2406, 568, 2370, 723].

influential [2267, 271, 275, 1166, 2123].

[2293]. instrumental [2602, 1354].
instruments [248]. insurance [931].
insured [2494]. integer
integrals [1652]. integrated [1508, 762].
integrating [779]. Integrative [2051, 836].
integro [2138]. integro-difference [2138].
inversion [1377, 333]. invertibility [1507].
Investigating [969, 1374, 32].
Investigation [126, 1094, 1592].
Investigations [963]. ionosphere [344].
ionspheric [1066]. irregular
[1415, 675, 299]. irregullarly
[759, 2472, 926, 1740]. irregularly-shaped
[759, 1740]. IRT [345, 964]. ischemic [2488].
isotonic [2602]. Issue
[227, 1815, 2487, 2497, 1786, 1476, 858, 699,
1349, 305, 1976, 863, 884, 1302, 1966, 848,
1322, 689, 1359, 1164, 1804, 2210, 2470, 1367,
679, 62, 1380, 1930, 2225, 1025, 98, 265].
Issues [1785, 1364, 356]. Italian [2188].
Item [1071, 1373, 2022, 592]. Iterated
[2023, 1678]. iterations [1678]. Iterative
[561, 64, 103, 421, 2003, 860, 1854].
Iteratively [1975]. IV [901].
Jackknife
[2418, 1845, 1767, 1777, 1414, 2317]. James
[203]. Japan [252]. Jeffreys [2332]. JM
[2139]. Joint
[228, 802, 1763, 401, 2388, 1234, 416, 2328,
25, 1525, 2419, 230, 1687, 2431, 967, 1921,
2271, 392, 1680, 2306, 2451, 356, 1795, 1455,
617, 2344, 1512, 657, 2604, 1533].
joint-quantile [1680]. Jones [228].
judgment [648, 1538, 2193]. Jump
[864, 1416, 2437, 1404, 444, 1907, 2603, 1346].
jumping [2420]. jumps [2101, 1953].
Kalman
[1266, 1116, 1035, 1497, 1027, 1657,
786, 1454, 619]. Kaplan [1438]. Kappa
[1701, 408, 1630]. Kendall
[1420, 2543, 155, 2284]. Kernel
[1644, 275, 34, 1231, 576, 1757, 2383, 838,
2270, 237, 144, 1218, 588, 2089, 779, 2019,
49, 1870, 165, 999, 675, 745, 308, 330, 1400,
1128, 194, 2587, 1102, 518, 1994, 1229, 2312,
2011, 980, 1828, 2109, 692, 1456].
methodologies [757]. methodology [1386].

minimal [1621, 2011]. minimax [2310, 2221, 1827]. minimising [963].

minimization [1639, 1527, 2532]. Minimum [973, 608, 1598, 1820, 1146, 2268, 85, 2607, 1044, 799, 591, 1172, 1740].

Mining [1815, 68, 1351, 1821, 1000, 34]. mis [82, 811]. mis-specification [82, 811].

misclassification [1862]. misclassified [823, 2154]. Mises [126, 59, 5, 65, 785].

missingness [1319, 341, 722].

mixed-effect [776]. mixed-effects [205, 1157, 23, 1458, 2097, 2571, 1795, 1006, 334, 439, 664]. mixed-type [2388, 2150].

mixing [1490, 2342, 1213, 1318, 217, 215].

mode-sharing [2614]. Model [1349, 2339, 358, 1447, 2437, 1307, 380, 946, 1218, 581, 2481, 2576, 2066, 124, 1315, 1309, 2355, 685, 2214, 2079, 2580, 536, 834, 2230, 1789, 291, 2096, 257, 1021, 301, 1357, 579, 1626, 940, 1707, 843, 1303, 2206, 2613, 2213, 1562, 1284, 1381, 1477, 1118, 885, 1266, 755].

models

models [495, 1868]. Moderately [1774].

modern [1500]. modification [1146].

modifications [113]. Modified [1484, 703, 1268, 2506, 572, 1834, 2566, 1563, 1843, 990, 2417]. modifiers [1576].

modulation [2612]. molecular [2398, 1460].

Moment [1972, 1195, 2081, 876, 310, 2185].

moments [1372, 560, 1937, 953, 545, 169].

Monitoring [1148, 1484, 1057, 578, 534, 821, 222, 2489, 563, 1568, 162, 214].

Monotone [1548, 1133, 548, 1450, 1794, 1399, 437, 341].

monotonic [532]. monotonicity [2408, 137].

Monotony [1659]. Monte
Optimization [250, 858, 1422, 1415, 775, 2342, 66, 1843, 2496, 1378, 1841, 638, 1522].

Powered [2248]. powerful [1090, 2146, 391, 1905]. powers [14].

predictions [2058]. Predictive [729, 1360, 1468, 452, 1558, 730, 582, 587, 1830, 713, 72, 2489, 2204, 774, 1156, 721, 1591]. predictor [1669, 1861, 450, 215].

prefetching [259]. presence [886, 1656, 1402, 277, 1631, 1363, 1196, 2175, 1911, 2149, 1795, 637, 1501, 1958, 134, 1776, 84, 1444, 919, 10, 1070, 1520, 2446].

projected [496, 1339]. projection [132, 2375, 2249, 2240, 1078, 2316, 1463, 293, 934, 1745, 420].
projection-based [132]. projections [1051, 2444, 2300]. projective [2127].
promotion [868, 2369, 620]. prone [1069]. propensity [468, 1832, 2426, 1694].
Properties [1251, 960, 193, 2322, 520, 1753, 1447, 319, 242, 2307, 412, 536, 1209, 1543, 42, 32].
2266, 2419, 605, 361, 97, 2033, 2163, 2228].
regressions [2502, 2520, 1531, 874, 1138, 2123, 1853, 125, 2580, 1791, 814, 1798, 215].
regressive [1709]. regular [1064, 1997, 2220, 2096, 299].
reinforced [2223]. Reinforcement [1398].
Repeatability [80]. Repeated [597, 415, 1088, 2199, 1676, 704, 2400, 182, 841, 1048].
Representation [223]. representations [670, 2312, 2439]. representative [1708].
Reproducibility [3, 80, 1344]. reproducing [2436]. reproductive [205].
repulsion [1341]. require [1274].
requirements [1091, 568]. resampling [2667, 2127, 284, 605]. resampling-based [2667]. Research [699, 2250]. reservoir [2597].
Residual [2167, 733, 1109, 1691, 574, 1714, 2017, 2541, 50]. resistance [1305].
Resistant [1051]. resolution [2002, 1863].
respiratory [1016]. Response [1071, 2370, 2219, 1373, 1687, 838, 1399, 1544, 2023, 2476, 1386, 2069, 2024, 1265, 2443, 2576, 52, 729, 533, 541, 1223, 1083, 2438, 1579, 2022, 2237, 2353, 376, 304, 1041, 2415, 1697, 1183, 1877, 1775, 2163, 592, 2216].
right [933, 2311, 2538, 277, 464, 1914, 2115, 824, 1445, 663, 456, 1438, 2300].
robust [1953, 1635, 834, 2225, 294, 1727, 1425, 1527, 1564, 940, 647, 561, 818, 302, 265, 373, 161, 776, 14, 2581, 552, 2216].
robustly [715]. Robustness [2197, 2215, 304, 998, 2314, 748, 702, 2508, 1668]. ROC

semi-definite [292]. semi-infinite [1721].

Semi-parametric [1539, 2054, 57, 2259, 371, 242, 363, 1305, 1262, 1212, 2495].

Semi-supervised [751, 518, 1156, 1070].

semi-varying [1745]. semidefinite [2310].

Semiparametrically [381].

semivariogram [756]. semivarying [2521].

sense [600, 1190]. sensed [809]. Sensible [2392]. sensitive [2024, 1202, 1536].

Sequential [2413, 996, 2083, 1413, 1030, 2434, 717, 1625, 1324, 2385, 1377, 939, 1056, 872, 1526, 2294, 1803, 2577, 1889, 2074, 1542, 1032, 1840]. sequentially [996, 1890]. Serial [71, 1233, 1493, 239, 1293]. serially [1370].

sex [1262]. Shape [923, 36, 837, 557, 2610, 567, 1892, 2181, 1214, 2402, 859].

shape-constrained [567, 859]. shaped [759, 1123, 1020, 1740]. shapes [1043].

Shared [1999]. sharing [2614]. Sharpening [535]. Shewhart [87]. Shewhart-type [87].

shift [204, 629]. shifted [1583, 2498, 2116].

significance [219, 2478, 1669, 994, 346].

significant [549]. SIMD [1719]. similar [8].

Simplicial [1847, 1927]. Simplified [141].
Thresholding [357]. Test
Transformation-based [1567].
transformations [2202, 2263].
Transformed [2191, 1132, 1661, 2234, 2414].
Transforming [2237].
Transformation [1796, 945, 1601].
transitions [2154, 1294].
transmission [425].
treat [2492]. treated [693].
treatment [183, 1159, 2254, 2490, 706, 2147, 393, 712, 1959, 1264, 104, 113, 454, 721, 449, 2370, 2526].
treatment-by-gene [721].
treatments [365, 2061].
Tree-based [1696].
trees [1360, 1446, 2251, 183, 1326, 2405, 1159, 1091, 784, 2214, 712, 714, 2489, 2204, 556, 424, 376, 718, 2207, 1254, 2370].
triangular [2008, 1536].
trimmed [66, 307, 729, 1675, 758, 292].
trimming [279, 1921, 617, 298].
triplet [1826].
tropical [1108].
true [550, 2241].
truncated [993, 1471, 1541, 796, 2200, 566, 1914, 2115, 844, 1102, 1808, 595, 261, 361].
truncation [1420, 2422, 2059].
trust [1491].
trust-region [1491].
try [1416].
tube [1550].
Tucker2 [1903].
Tukey [2428, 1964, 1766].
tumor [755, 2101].
tumorigenicity [2149].
tuned [1052].
Tuning [1062, 786].
turning [92].
TVICA [1442].
twin [1810].
two- [1807].
two-compartment [755].
two-component [44, 2209].
two-dimensional [2073, 1096, 1037, 2070].
two-factor [2298, 1200].
two-group [577].
Two-layer [2257].
Two-level [2512, 2298, 1260, 1099, 1040].
two-parameter [1214, 2333, 1347].
two-part [1912].
two-person [195].
two-phase [1392].
two-piece [1883].
two-sample [523, 198, 123, 1437, 1894].
Two-sided [21].
Two-stage [2517, 2239, 528, 435, 2114].
Two-step [2465, 2485].
two-stratum [2262].
two-treatment [2490].
Two-way [1190, 1225, 1240].
Tyler [41].
type-I [152, 316, 564].
type-II [522, 1736, 560, 429, 336, 149, 167, 719].
types [2201].
U.S. [2145].
Uhlenbeck [244, 881, 537].
Uhlenbeck-based [537].
UK [873].
ultra-high [2311, 1669, 2458, 2570].
ultrahigh [2311, 2458].
ultrahigh-dimensional [2566, 2308, 2518, 2122].
ultrasound [2344].
unbalanced [179, 1065, 2328].
Unbiased [1718, 76, 2093, 2329, 1721].
uncensored [1327].
certain [2590, 1432].
Uncertainty [701, 1238, 2140, 241, 2460, 1942, 257].
Uncertainty-safe [2140].
unconditional [398].
undercounts [850].
derunderdispersed [1105].
derunderfitting [2411].
derunderreported [297].
Understanding [331, 2559, 1338].
derunderdirected [1230].
unequal [183, 1426].
unevenly [2178].
Unified
44

[103, 147, 393, 1378, 603]. Uniform
[27, 1415]. uniformity [789, 1158]. unifying
[1892]. Unimodal [1397, 453]. unique
[1924]. uniqueness [1181]. unit
[1477, 1931, 1565, 2009, 1492, 1404, 869,
1570, 49, 1870, 1650, 1502, 1972, 1512, 1974,
258, 1965, 1249]. unit-level [1565]. unitary
[1185]. univariate
[1477, 1321, 2505, 1892, 1963]. universally
[1384]. unknown [1483, 1698, 2286, 2403,
239, 240, 821, 403, 1293, 2046, 731, 2373,
2312, 1207, 1963, 722, 822]. unobserved
[1483, 2400, 1811, 619]. unrelated [262, 814].
unreplicated [1200, 356]. unrestricted
[1947]. unscented [1266, 1027].
Unsupervised [1134, 2381, 808]. Update
upper [1821, 1047]. upside [1123, 93].
upside-down [1123, 93]. urban [2434].
Usage [453]. Use [1332, 80, 1321, 921, 2041,
525, 1529, 2204, 2068]. used [552]. useful
[1945]. usefulness [1485]. user [1377].
user-friendly [1377]. Using
[1996, 66, 2110, 2058, 1355, 1632, 1907, 128,
370, 1776, 266, 2383, 1717, 83, 1372, 1848,
770, 1471, 1222, 2168, 2396, 1351, 2437, 1468,
1541, 1806, 2007, 624, 1936, 1289, 696, 913,
1800, 973, 1794, 365, 1436, 479, 687, 2379,
1304, 523, 33, 2135, 526, 783, 670, 1134, 2292,
239, 730, 1055, 1912, 1631, 674, 851, 702,
813, 2482, 1260, 1781, 1313, 1495, 2039, 342,
623, 2369, 244, 2050, 1997, 743, 1081, 1606,
1389, 67, 2036, 1948, 1462, 2260, 282, 2558,
1500, 2519, 685, 766, 1862, 1952, 729, 872,
1609, 1157, 26, 1073, 1690, 1849, 1855, 2173].
using
[2409, 2506, 2345, 1431, 1293, 2249, 2107,
1080, 991, 2571, 760, 1460, 1391, 1979, 286,
421, 2284, 1573, 388, 1657, 1803, 856, 2605,
1797, 2209, 880, 909, 292, 1599, 1588, 2365,
663, 2496, 525, 997, 712, 416, 2077, 1320, 28,
1536, 123, 384, 1214, 1022, 311, 657, 1612, 81,
2268, 1513, 2279, 762, 206, 2071, 733, 1007,
2523, 2589, 816, 982, 715, 2011, 259, 4, 133,

2300, 2287, 561, 110, 1437, 952, 1742, 1098,
1397, 2170, 373, 387, 1028, 988, 1734, 1660,
2118, 2448, 2597, 159, 1280, 1537, 2252, 1311,
2241, 1739, 1461, 1894, 2480, 105, 2414, 50].
usual [1261]. utility [754, 2212, 255].
V [1447]. vaccine [2177]. validated
[2095, 1681, 2027, 1734]. validating [1118].
Validation [1179, 2314, 141, 473, 1485, 2318,
272, 281, 766, 985, 1285, 716]. validations
[308]. validity [2318, 510, 485]. Value
[897, 436, 1407, 2482, 22, 224, 1646, 649, 1061,
944, 500, 880, 938, 1343, 2206, 1825, 1961].
value-added [1061]. Value-at-Risk
[897, 1825, 1961]. valued
[1479, 1770, 2271, 1574, 510, 842, 1998, 1971,
38, 982, 950, 2028, 50]. values
[2334, 526, 65, 2023, 112, 2490, 1606, 282,
790, 1855, 760, 2281, 1575, 2178, 713, 1046,
2237, 1651, 1665, 25, 2241, 1592]. VAR
[1946, 2001, 1510]. variability
[2379, 1639, 1285, 715, 214]. Variable
[1009, 2151, 1169, 1606, 2368, 1288, 2173,
2107, 2540, 602, 1566, 1005, 1645, 213, 1535,
1625, 1155, 634, 773, 770, 2267, 326, 1528,
571, 2552, 1980, 2186, 2602, 236, 464, 1623,
1685, 1750, 2032, 1081, 191, 2420, 1878, 1263,
1952, 845, 562, 2041, 2192, 488, 1458, 1741,
1853, 1107, 1954, 2301, 1135, 2450, 1083,
2153, 1635, 2152, 521, 1355, 1019, 293, 108,
295, 981, 297, 2386, 2124, 727, 2513, 1406,
1403, 265, 1542, 2521, 2501, 2578, 832, 1131,
1880, 793, 2504, 1613, 1877, 2419].
variable-adjusted [2578]. variables
[2090, 1489, 2598, 1698, 1238, 414, 2319,
1150, 524, 1494, 1176, 2024, 2250, 1331, 470,
1895, 16, 541, 121, 1253, 1148, 2010, 1354,
1019, 38, 1046, 2233, 1861, 450, 945, 216,
169, 580, 1653]. Variance [1511, 1213, 682,
2545, 968, 234, 1486, 864, 928, 2601, 802,
1271, 204, 2566, 954, 70, 363, 1196, 1504,
1390, 574, 1538, 409, 2204, 2589, 1633, 2326,
1206, 303, 2075, 2338, 207, 2427, 157, 515].
variances [2141, 220, 555, 694, 2370, 2356].


REFERENCES

References

Ospina:2006:1PI

Said:2008:RSN

Fridley:2008:RGM

Su:2009:CIQ

Chiu:2009:GCM

Anonymous:2010:EBa

Gervini:2010:RFSa

Lee:2010:ACI

Xu:2010:RAB

Yang:2010:JAM

Lee:2010:LND

Chuang:2010:UDG

Polansky:2010:OIU

Anonymous:2010:EBE

Anonymous:2010:Ce

Bouezmarni:2010:NDE

dePeretti:2010:GMI

Das:2010:EMC

Karatzoglou:2010:KBM

Cheng:2010:BAS

Boudaoud:2010:CSM

Farcomeni:2010:TCW

Boj:2010:DBL

Xue:2010:GDT

Crujeiras:2010:LSE

Tian:2010:CIE

Hirukawa:2010:NMB

Zhu:2010:DCI

Gallegos:2010:UCO

Harrington:2010:FAS

Hanea:2010:MVO

Hu:2010:DEM

Iacobucci:2010:VSP

McNicholas:2010:SPI

Poitevineau:2010:IBP

Reddy:2010:LMM

Saadaoui:2010:AEA

Wu:2010:GGE

Yang:2010:UGQ

Yucel:2010:INN

Anonymous:2010:EBg

Anonymous:2010:Cg

REFERENCES

[86] Pierre Duchesne and Pierre Lafaye De Micheaux. Computing the distribution
<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
</table>
| [93] Rodrigo B. Silva, Wagner Barreto-Souza, and Gauss M. Cordeiro. A new distribution with decreasing, increasing and upside-down bathtub

[100] Elizabeth M. Hashimoto, Edwin M. M. Ortega, Vicente G. Cancho, and Gauss M. Cordeiro. The

[107] Ling Chen and Jianguo Sun. A multiple imputation approach to the analysis of interval-censored failure time data with

[122] Camila B. Zeller, Filidor V. Labra, Victor H. Lachos, and N. Bal-

Yu:2010:SMC

Vermeulen:2010:OMI

Glen:2010:AEO

Rufibach:2010:ASA

Abrahantes:2010:SMS

Xu:2010:ELA

Jamshidian:2010:SCB

Mortaza Jamshidian, Wei Liu, and Frank Bretz. Simultaneous confidence bands for all contrasts of three or more simple linear regression models over an interval. *Computational Statistics & Data Analysis*, 54(6):1475–1483, June 1, 2010. CODEN CSDADW. ISSN 0167-9473 (print), 1872-7352 (electronic). URL http:

REFERENCES

REFERENCES

Lefebvre:2010:PSI

Raqab:2010:PPD

Wang:2010:FSI

Wong:2010:PEG

Priebe:2010:SIA

Grothendieck:2010:SIA

Koch:2010:PMR

REFERENCES

Anonymous:2010:EBk

Anonymous:2010:Ck

Konietschke:2010:TEP

Candel:2010:OUV

Yu:2010:BMA

Seo:2010:CSD

Heuchenne:2010:GFT

Chen:2010:ATL

[187] Ying Chen, Chi Kin Chan, and Bartholomew P. K. Leung. An anal-

[194] Pablo Martínez-Camblor. Nonparametric k-sample test based on kernel density estimator for paired design. *Computational Statistics*

Chung:2010:FDS

Anonymous:2010:EBI

Anonymous:2010:Cl

Kossler:2010:MTR

Han:2010:ISS

Ojeda:2010:NIS

Wetzels:2010:EPG

[216] Ian R. White, Rhian Daniel, and Patrick Royston. Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables. *Computational Statistics-
REFERENCES

REFERENCES

Gervini:2010:RFSb

Anonymous:2010:EBc

Anonymous:2010:Cc

Belsley:2010:FSI

Alp:2010:JFD

Audrino:2010:MTT

Aisin:2010:TVJ

Bauwens:2010:IDP

Duchesne:2010:TSC

Dufour:2010:EOI

Dufour:2010:EUS

Fantazzini:2010:TSS

Grane:2010:WBD

Griffin:2010:BIS

Hafner:2010:EES

REFERENCES

Anonymous:2010:EBd

Vassiliou:2010:LDL

Vilar:2010:NLT

Wang:2010:SSU

Anonymous:2010:Cd

VanAelst:2010:SIV

REFERENCES

Adrover:2010:GRC

Alvarez-Esteban:2010:AWS

Basso:2010:RMM

Boente:2010:DIO

Borra:2010:MPE

Chen:2010:NAS

REFERENCES

REFERENCES

[324] Carlos A. Navarrete and Fernando A. Quintana. Similarity analysis in

Chen:2011:PSS

Brusco:2011:EAA

Barbillon:2011:NMI

Kuroda:2011:AAL

Hammer:2011:AFB

Maalouf:2011:RWK

Xu:2011:UCD

[331] Chonggang Xu and George Gertner. Understanding and compar-

[338] Christian Aßmann and Jens Boysen-Hogrefe. A Bayesian approach to

Pedersen:2011:NTD

Zhao:2011:SRA

Sotto:2011:MBE

Garcia-Ligero:2011:DCD

Hampel:2011:SPH

Khorsheed:2011:MED

REFERENCES

REFERENCES

REFERENCES

Wan:2011:BAR

Huang:2011:DRE

Langrock:2011:HMM

Tolusso:2011:IER

Kang:2011:GFD

Nicolis:2011:WBS

Prendergast:2011:NPI

Chen:2011:MSZ

[380] Xue-Dong Chen and Ying-Zi Fu. Model selection for zero-inflated regression
REFERENCES

REFERENCES

REFERENCES

Liu:2011:BAP

Anonymous:2011:EBg

Anonymous:2011:Cg

Denman:2011:DEB

Phinikettos:2011:FCH

Wright:2011:OSM

Strasak:2011:CPS

Ye:2011:SBM

REFERENCES

Wang:2011:EIM

Vilca:2011:EEP

Lopez-Pintado:2011:HRD

Shen:2011:RLI

Ingrassia:2011:DEA

Fang:2011:EMM

Fabrizi:2011:HBM
REFERENCES

REFERENCES

Gijbels:2011:CCA

Adler:2011:ECP

Dettmann:2011:DFM

Dosse:2011:AGP

Wu:2011:BVI

Tenreiro:2011:AIM

Li:2011:CSM

REFERENCES

REFERENCES

[518] Subhadeep Mukhopadhyay and Anil K. Ghosh. Bayesian multiscale smooth-

Tsai:2011:GEE

Li:2011:QNB

Marra:2011:PVS

Lemonte:2011:THB

Darilay:2011:PUL

Ferrari:2011:IMC

[531] O. Sysoev, O. Burdakov, and A. Grimvall. A segmentation-based algorithm

REFERENCES

REFERENCES

Angela Montanari and Cinzia Virol. Maximum likelihood esti-
REFERENCES

Templ:2011:ISR

Kwon:2011:ESS

Su:2011:AEP

Xu:2011:OBA

Holmstrom:2011:SSM

Gurler:2011:FCL

Hazelton:2011:SRS

REFERENCES

REFERENCES

Monsalve-Cobis:2011:GFT

Khan:2011:SAP

Filippone:2011:AIB

REFERENCES

[709]

[610]

[611]
REFERENCES

Mulugeta Gebregziabher, Matthew S. Shotwell, Jane M. Charles, and Joyce S. Nicholas. Comparison of methods for identifying phenotype

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2012:EBf

Anonymous:2012:Cf

Lin:2012:IWD

Fang:2012:SNC

Berrett:2012:DAS

Rizopoulos:2012:FFJ

Balakrishnan:2012:EAO

Yu:2012:PTI

[659] Donghyeon Yu, Johan Lim, Feng Liang, Kyunga Kim, Byung Soo Kim, and Woncheol Jang. Permutation test

Lui:2012:EPR

VanAelst:2012:SDE

Hotz:2012:LAI

Osman:2012:NRM

Zhang:2012:GDF

Wang:2012:FLR

Guo:2012:SIS

Junpeng Guo, Wenhua Li, Chenhua Li, and Sa Gao. Standardization of interval symbolic data based on the em-
REFERENCES

REFERENCES

Anonynous:2012:EBg

Anonymous:2012:Cg

Fung:2012:ESI

Sobotka:2012:GER

[695] Giulianella Coletti, Osvaldo Gervasi, Sergio Tasso, and Barbara Vantaggi. Generalized Bayesian inference in a fuzzy context: From theory to a vir-

REFERENCES

[709] Chin-Ying Lai, Lili Tian, and Enrique F. Schisterman. Exact confidence interval estimation for the
REFERENCES

[609]

Marschner:2012:SAP

Nofuentes:2012:GHT

Rotondi:2012:SSE

Spangl:2012:AST

REFERENCES

Melnykov:2012:IEA

Punathumparambath:2012:ATI

Schutzenmeister:2012:RAL

Moraga:2012:GCM

Cardot:2012:FRA

Rigat:2012:PHS

Erhardt:2012:ABC

Robert J. Erhardt and Richard L. Smith. Approximate Bayesian computing for spatial extremes. *Compu-
REFERENCES

REFERENCES

REFERENCES

Chen:2012:CRL

Borges:2012:CDG

Karabatsos:2012:BNM

Albano:2012:IST

Carmack:2012:NCS

Asomaning:2012:HTD

Neykov:2012:LTQ

[758] N. M. Neykov, P. Čižek, P. Filzmoser, and P. N. Neytchev. The least

REFERENCES

REFERENCES

Li:2012:SAB

Lu:2012:EEA

Crabbé:2012:IEI

Quessy:2012:CMC

Ran:2012:STW

[794] Nina Golyandina, Andrey Pepelyshev, and Ansgar Steland. New approaches to nonparametric density estimation and selection of smoothing

Barranco-Chamorro:2012:CDT

Emura:2012:GFT

Rubio:2012:MOT

Cheng:2012:SIO

Ghimire:2012:CIP

Gradowska:2012:LST

Chen:2012:BTM

REFERENCES

158

[809] Valeria Rulloni, Oscar Bustos, and Ana Georgina Flesia. Large gap imputation in remote sensed imagery

Augustin:2012:QQP

Lu:2012:PBU

Levine:2012:SAT

Fitch:2012:CUD

Wang:2012:BIC

Seo:2012:RSN

Soliman:2012:EPL

REFERENCES

[823] Daniel P. Beavers and James D. Staney. Bayesian sample size determination for binary regression with

Anonymous:2012:EBI

Anonymous:2012:C1

Pasanisi:2012:EDM

Kiiveri:2012:FVL

Balakrishnan:2012:COP

Chakraborty:2012:BMR

Kim:2012:RAU

Sajobi:2012:RDD

Kim:2012:DMD

Turek:2012:MAW

Lee:2012:EAM

REFERENCES

Kung:2012:SVS

Anonymous:2012:EBb

Anonymous:2012:Cb

Chambers:2012:SIS

Esteban:2012:SAE

Burgard:2012:MUD

Ferraz:2012:SAE
REFERENCES

DeWachter:2012:DSB

Deschamps:2012:BEG

Fok:2012:MDE

Fossati:2012:CUR

Fried:2012:OEL

Bocart:2012:EA

Kleppe:2012:FGS

REFERENCES

Nakajima:2012:GEV

Raknerud:2012:IIM

Bellini:2012:RAD

Trapani:2012:ATL

Belsley:2012:SSI

Ahmed:2012:ASE

Alexeev:2012:LLC

[886] Vitali Alexeev and Alex Maynard. Localized level crossing random walk test robust to the presence of structural breaks. *Computational Stats-

[922] Pooja Soni, Isha Dewan, and Kan-chang Jain. Nonparametric esti-
REFERENCES

Zhang:2012:IRT

Bermudez:2012:FMB

Gottlieb:2012:SCL

Balakrishnan:2012:LTR

Shao:2012:SAH

Lu:2012:ADM

Mahmoudi:2012:GEP

REFERENCES

Bartolucci:2012:BIT

Schaumburg:2012:PEV

Chung:2012:BAM

Smucker:2012:MRD

Berlinet:2012:AEA

Almendra-Arao:2012:ECT

Hong:2012:BBH

Kwong:2012:ODV

Wang:2012:BMR

Cox:2012:MBE

Song:2012:BAG

Li:2012:DCS

Andrianakis:2012:ENG

Xu:2012:MIV

REFERENCES

REFERENCES

REFERENCES

[993] Tian Siva Tian and Gareth M. James. Interpretable dimension reduction for

Wong:2013:TSI

Chen:2013:TFL

Drovandi:2013:SMC

Park:2013:SIV

Bruffaerts:2013:RHE

Horova:2013:FBM

Hofer:2013:DMD

REFERENCES

Wu:2013:LIE

Remenyi:2013:NWS

Varughese:2013:PEM

Rolfs:2013:NLS

Tang:2013:VSQ

Matos:2013:IDL

REFERENCES

REFERENCES

Wong:2013:MRI

Janicki:2013:BMA

Lin:2013:SRC

Mkhadri:2013:EVI

Liu:2013:CBS

Salter-Townshend:2013:VBI

Redenbach:2013:PEG

REFERENCES

REFERENCES

Ramirez-Cobo:2013:WBM

Zamba:2013:TSR

Poskitt:2013:DLD

Moghtaderi:2013:TFE

Frei:2013:MEK

Navarro-Moreno:2013:WLP

Nandi:2013:NSD

Biernacki:2013:GMR

Yi:2013:ESP

Nagatsuka:2013:CME

Su:2013:DCE

Zevallos:2013:MDE

REFERENCES

[1051] Ricardo Fraiman and Marcela Svarc. Resistant estimates for high dimensional and functional data based on

REFERENCES

Lee:2013:RIU

Warrens:2013:CAW

Jones:2013:ESB

Anonymous:2013:EBf

Anonymous:2013:EBg

Liu:2013:ECB

McDaid:2013:IBI

Liu:2013:HTU

[1080] Shen Liu and Elizabeth Ann Maharaj. A hypothesis test using bias-adjusted AR estimators for classifying
REFERENCES

197

Hapfelmeier:2013:NVS

Yoo:2013:ASD

Liu:2013:GVS

Ventura:2013:OBH

Delatola:2013:BSM

Rauch:2013:EPA

Zhao:2013:NCG

[1087] Xingqiu Zhao, Ran Duan, Qiang Zhao, and Jianguo Sun. A new class of generalized log rank tests for interval-censored failure time data. *Computational Statistics & Data Analysis*, 60(??):123–131, April 2013. CODEN
REFERENCES

Chen:2013:AAI

Reis:2013:BDM

Frey:2013:MPR

Heo:2013:SSR

Anonymous:2013:EBh

Anonymous:2013:EBi

Lloyd:2013:NIA

Bolin:2013:CBM

David Bolin and Finn Lindgren. A comparison between Markov approxi-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hsu:2013:EEM

Anonymous:2013:EBm

Anonymous:2013:Cc

Kim:2013:MVC

Ghitany:2013:PLD

Lemonte:2013:NEB

Yousef:2013:ACT

Mandal:2013:MDE

Klingenberg:2013:SCI

Maboudou-Tchao:2013:MCM

Harvill:2013:BBM

Fellinghauer:2013:SGM

Alcantara:2013:LRM

Friedrich:2013:GIE

Jiang:2013:TSC

[1153] Rong Jiang, Zhan-Gong Zhou, Weimin Qian, and Yong Chen. Two step composite quantile regression for single-index models. Computational Statistics & Data Analysis, 64(??): 180–191, August 2013. CODEN CSDADW. ISSN 0167-9473 (print),
Kim:2013:BMP

Alhamzawi:2013:CPV

Vandewalle:2013:PDC

Lachos:2013:BIN

Petrie:2013:EST

Ding:2013:SIS

Korzen:2013:LRW

REFERENCES

REFERENCES

Bowman:2013:IV

Hsieh:2013:LRO

Bachoc:2013:CVM

Amini:2013:NMA

Zuo:2013:MMU

Lee:2013:TSS

Zhao:2013:ELI

REFERENCES

Vinciotti:2013:RMI

Franck:2013:MDH

Hino:2013:EBS

Liu:2013:VPM

Guan:2013:SHD

Yang:2013:RFW

Lin:2013:NFS

REFERENCES

Paula:2013:DDG

Beh:2013:RAA

Li:2013:PLA

Xue:2013:EEL

Hui:2013:NML

Chen:2013:BDT

Luong:2013:FEP

Salazar:2013:AST

Perez:2013:BSM

Perry:2013:SDC

Lee:2013:KCR

Nashimoto:2013:MCB

Weiss:2013:SDN

Molas:2013:JHG
Poon:2013:BAG

Lopes:2013:SFP

Chang:2013:DML

Conti:2013:UAS

Kang:2013:ECI

Lang:2013:ITI

Wu:2013:OSM

Fox:2013:MZI

[1242] Jean-Paul Fox. Multivariate zero-inflated modeling with latent pre-
REFERENCES

Sadooghi-Alvandi:2014:SCI

Emiliano:2014:ICH

Amiri:2014:REN

Fu:2014:PET

Stein:2014:AUL

Park:2014:EDA

Jiang:2014:ISV

Rosenkranz:2014:BCT

Guo:2014:DRM

Ahn:2014:ACL

Arribas-Gil:2014:PDT

Anonymous:2014:EBb

Anonymous:2014:Cb

Anonymous:2014:AAV

Grossmann:2014:AAV

[1271] Heiko Großmann. Automating the analysis of variance of orthog-

Hautphenne:2014:EAM

Menendez:2014:SAB

Ryan:2014:TBE

Roberts:2014:FAP

Maharaj:2014:DAM

Cruz-Cano:2014:FRC

Wang:2014:SEL

REFERENCES

REFERENCES

Anonymous:2014:EBc

Anonymous:2014:Cc

Bohning:2014:SIA

Vicari:2014:MBC

Coffey:2014:CLP

Jaspers:2014:NSP

Ng:2014:MMC

Bouveyron:2014:MBC

[1307] Charles Bouveyron and Camille Brunet-Saumard. Model-based clustering of high-dimensional data:
REFERENCES

Grassi:2014:CET

Gupta:2014:EMC

Heaps:2014:CML

Jin:2014:USB

Lijoi:2014:DMM

McKinley:2014:SBB

Mulder:2014:PAD

Naranjo:2014:BBR

L. Naranjo, J. Martín, and C. J. Pérez. Bayesian binary regression with

[1343] Mike K. P. So and Raymond K. S. Chan. Bayesian analysis of tail

Soneson:2014:IGE

Spezia:2014:MSA

vanderMeulen:2014:RJM

Beran:2014:HEP

REFERENCES

Blommaert:2014:DML

Dernoncourt:2014:AFS

Hall:2014:SIF

Martins:2014:LIV

Mielniczuk:2014:URS

Mougeot:2014:LSH

Schomaker:2014:MSM

Lopez-Fidalgo:2014:OED

Montes:2014:SDI

Filzmoser:2014:SIS

Golyandina:2014:BSS

Polpo:2014:TBS

Millo:2014:MLE

Golyandina:2014:BSS

REFERENCES

Eddelbuettel:2014:RAR

Gilmour:2014:SIA

Abebe:2014:BOD

Almohaimeed:2014:EDD

Boukouvalas:2014:ODC

Dette:2014:NUO

Gaffke:2014:AAL
Georgiou:2014:CCD

Godolphin:2014:EPA

Gutman:2014:ASD

Harman:2014:CEE

Loeza-Serrano:2014:CED

Lu:2014:ODE

Sambo:2014:CET

Tommasi:2014:IAC

Anonymous:2014:EBd

Anonymous:2014:Cd

Huang:2014:FIP

Turnbull:2014:UDE

Bonneau:2014:RLB

Colubi:2014:TCM

Malec:2014:NKD

REFERENCES

[1407] Derek Beaton, Cherise R. Chin Fatt, and Hervé Abdi. An ExPosition of multivariate analysis with the singular value decomposition in R. *Computational Statistics & Data Analysis,*
REFERENCES

242

REFERENCES

Butler:2014:EOL

Rachdi:2014:TPA

Dufour:2014:ADQ

Roy:2014:EEL

Li:2014:NTP

Nourmohammadi:2014:CIQ

Huang:2014:ADE

[1449] Chun Pan, Bo Cai, Lianming Wang, and Xiaoyan Lin. Bayesian semiparametric model for spatially correlated interval-censored survival data. *Computational Statistics & Data Analysis*, 74(??):198–208, June 2014. CODEN CS-DADW. ISSN 0167-9473 (print),
REFERENCES

Lee:2014:BVS

Xu:2014:REP

Loza-Reyes:2014:CMS

Zhang:2014:LCL

Hirukawa:2014:NBR

Nieto-Reyes:2014:RPB

DeCanditiis:2014:FBS

Daniela De Canditiis. A frame based shrinkage procedure for fast oscillating functions. *Computational Statistics & Data Analysis*, 75(??):
REFERENCES

Rauch:2014:CAA

Zhang:2014:FPD

Chen:2014:FDT

Braun:2014:CGL

Stegeman:2014:FLD

Safarkhani:2014:ICO

[1478] António Afonso, Pedro Gomes, and Abderrahim Taamouti. Sovereign credit ratings, market volatility, and financial gains. *Computational Statistics & Data Analysis*, 76(??):20–33, August 2014. CODEN CS-

REFERENCES

Bos:2014:LMS

Calzolari:2014:EGT

Caporin:2014:RRM

Chan:2014:MBC

Chen:2014:BES

Chretien:2014:MGE

Diaz-Emparanza:2014:NDF
Du:2014:TSI

Galeano:2014:MBD

Gallegati:2014:IRS

Ghoudi:2014:CST

Grassi:2014:WLM

Harvey:2014:EMF

Hwang:2014:IOL

Jaschke:2014:ERM
[1500] Stefan Jäschke. Estimation of risk measures in energy portfolios using

Shirota:2014:RSV

Skaug:2014:FAL

So:2014:VCG

Stober:2014:RSD

Venter:2014:ESV

Wang:2014:ODF

Wied:2014:FTC

Yen:2014:SNC

Yu-Min Yen and Tso-Jung Yen. Solving norm constrained portfolio optimization via coordinate-wise descent

Nooraee:2014:GLO

Cozzini:2014:BML

Kundu:2014:MDP

Tang:2014:SBJ

Teran:2014:SCR

Zhang:2014:VAL

Qiu:2014:SSD

[1536] Shi-Fang Qiu, G. Y. Zou, and Man-Lai Tang. Sample size determination for estimating prevalence and a difference between two prevalences of sensitive attributes using the non-randomized tri-

Wu:2014:PLM

Ozturk:2014:SIP

Doyen:2014:SPE

Das:2014:SAF

Brechmann:2014:PPC

Wang:2014:DOE

Schweer:2014:CPI

REFERENCES

Anonymous:2014:EBj

Anonymous:2014:Cj

Renfro:2014:CWT

Gouet:2014:SIG

Lourenco:2014:MRF

Gutierrez:2014:BNC

Coolen-Maturi:2014:TGR

[1565] Emily Berg and Hukum Chandra. Small area prediction for a unit-level lognormal model. *Computational Statistics & Data Analysis*, 78(??):159–175, October 2014. CODEN CSDADW. ISSN 0167-9473 (print),
Matsui:2014:VBS

Feng:2014:TBE

Wang:2014:SMP

Zhang:2014:SAB

Harvey:2014:IDF

Anonymous:2014:EBk

Anonymous:2014:Ck

Gu:2014:PET

Hirose:2014:EOS

Yamamoto:2014:FFM

Bourel:2014:RAS

Lam:2014:SAC

Leiva:2014:FAC

Gumedze:2014:DOL
REFERENCES

Anonymous:2014:C1

Vilca:2014:BSE

Horrocks:2014:BAE

Cerny:2014:CCA

Kang:2014:MDP

Nguyen:2014:EFI

Xu:2014:ICC

Wei:2014:MTM

Lui:2014:NTE

Lau:2014:RSU

Lee:2014:BCF

Chi:2014:SEC

Hapfelmeier:2014:VSR

Wang:2014:RES

Auffray:2014:BRE
[1608] Yves Auffray, Pierre Barbillon, and Jean-Michel Marin. Bounding rare
REFERENCES

Anonymous:2015:Ca

Han:2015:SCB

Dijkstra:2015:CAN

Raillard:2015:MPA

Fuchs:2015:PSF

Cabras:2015:NMT

Hubert:2015:DDE

Feizjavadian:2015:ADC

OMalley:2015:URS

Tsai:2015:CCC

Wu:2015:DGT

Lv:2015:ERV

Pulkkinen:2015:RBM

Park:2015:SMH

REFERENCES

REFERENCES

DeOliveira:2015:PII

Zhang:2015:CAD

Christiansen:2015:MFD

Diaz:2015:PMB

Bhattacharya:2015:COR

Mbalawata:2015:AMA

delCastillo:2015:LIG
REFERENCES

Ingrid Hobæk Haff and Johan Segers. Nonparametric estimation of pair-copula constructions with the empirical pair-copula. *Computational Statistics & Data Analys
Bee:2015:AML

Klouda:2015:EPT

Fu:2015:GPA

Sun:2015:PSM

Mante:2015:IBO

Liu:2015:PLA

Jang:2015:SBA

Poon:2015:CIC

Ding:2015:NMA

Anonymous:2015:EBe

Gijbels:2015:RNG

Tan:2015:CGL

Bernhardt:2015:FEA

REFERENCES

Kong:2015:GTI

Dobbin:2015:SSM

Lee:2015:BTS

Lee:2015:ETR

Hu:2015:DDF

Moores:2015:EFP

Zhu:2015:MCS

[1694] Hong Zhu and Bo Lu. Multiple comparisons for survival data with propensity score adjustment. Com-
REFERENCES

Bowman:2015:ACI

Burgin:2015:TBV

Zhang:2015:BED

Chkrebtii:2015:TAB

Anonymous:2015:Cf

Anonymous:2015:EBf

Yang:2015:KSC

REFERENCES

REFERENCES

Zhao:2015:MMS

Xie:2015:QRM

Chan:2015:MCL

Paul:2015:SOE

Anonymous:2015:EBi

Anonymous:2015:Ci

Swihart:2015:MSF

Vu:2015:VAB

[1731] Duy Vu and Murray Aitkin. Variational algorithms for biclustering models. Computational Statistics & Data Analysis, 89(??):12–24, September 2015. CODEN CSDDADW. ISSN 0167-9473 (print),
Shen:2015:ATM

Ye:2015:SAR

Wang:2015:ICV

Hino:2015:NPE

Tian:2015:EME

Tian:2015:GEI

Lazariv:2015:BET

[1745] Yan-Yong Zhao, Jin-Guan Lin, Pei-Rong Xu, and Xu-Guo Ye. Orthogonality-projection-based estimation for semi-varying coefficient models with heteroscedastic errors. *Computational
REFERENCES

REFERENCES

Wraith:2015:LSM

Ahn:2015:SHD

Tutz:2015:IMI

Jovanovic:2015:TEB

Tenenhaus:2015:KGC

Anonymous:2015:EBk

Anonymous:2015:Ck

Jarocinski:2015:NID

REFERENCES

Anonymous:2015:EB1

Anonymous:2015:Cl

Friedrich:2015:FIV

Pesonen:2015:CME

Ryan:2015:SBF

Yang:2015:SAN

Kwon:2015:MCL

Zhu:2015:EIC

[1775] Liping Zhu and Wei Zhong. Estimation and inference on central mean subspace

Rashid:2015:UMD

Liu:2015:TET

Wu:2015:MCD

Lin:2015:DMR

Salehabadi:2015:RUC

Funke:2015:NDE

Schafer:2015:BMM

[1782] Martin Schäfer, Yvonne Radon, Thomas Klein, Sabrina Herrmann, Holger Schwender, Peter J. Vermeer, and Katja Ickstadt. A Bayesian mixture model to quantify parameters
REFERENCES

Kontoghiorghes:2016:CSI

Hinde:2016:TSI

Scrucca:2016:ICC

OHagan:2016:CMN

Melnykov:2016:MBB

Fernandez:2016:MBC

D. Fernández, R. Arnold, and S. Pledger. Mixture-based clustering

Nguyen:2016:MSS

Nguyen:2016:MSS

Ciarleglio:2016:WBS

Papastamoulis:2016:EMP

Chee:2016:NES

Lu:2016:FMN

Bolano:2016:GFM
REFERENCES

REFERENCES

Datta:2016:SIA

Hu:2016:PLT

Bremhorst:2016:FEC

Shen:2016:ELC

Moreira:2016:NRD

Talamakrouni:2016:PGN

Holst:2016:LTM

Alfons:2016:RGL

Salibian-Barrera:2016:RTL

Kirschstein:2016:MVP

Hamalainen:2016:NUB

Martinez:2016:NPM

Anonymous:2016:EBb

Anonymous:2016:Cb

Kim:2016:NER

Gardner-Lubbe:2016:TMC

Zhou:2016:PMS

Tang:2016:FAC

Hasegawa:2016:LFF

Martin:2016:SSM

Ng:2016:DCV

Jiang:2016:PSA

[1832] Depeng Jiang, Puying Zhao, and Niansheng Tang. A propensity score adjustment method for regression models with nonignorable missing covariates. Computational Statistics & Data Analysis, 94(??):98–119, February 2016. CODEN CSDADW. ISSN 0167-9473 (print),

[1839] Junyang Qian and Jinzhu Jia. On stepwise pattern recovery of the fused lasso. *Computational Statistics & Data Analysis, 94(??):221–
REFERENCES

REFERENCES

Wickramarachchi:2016:HOD

Qin:2016:SMC

Zhao:2016:EVS

Janitza:2016:RFO

Stoklosa:2016:ESC

Yen:2016:SVS

Xia:2016:REL

[1881] Xiaochao Xia, Zhi Liu, and Hu Yang. Regularized estimation for the least absolute relative error models with a diverging number of covariates. *Computational Statistics & Data Analysis*, 96(??):104–119, April 2016. CODEN CSDADW. ISSN 0167-9473 (print),

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Volume</th>
<th>Pages</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morris:2016:CCD</td>
<td>Katherine Morris and Paul D. McNicholas</td>
<td>Clustering, classification, discriminant analysis, and dimension reduction via generalized hyperbolic mixtures</td>
<td>Computational Statistics & Data Analysis</td>
<td>2016</td>
<td>97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

Boente:2016:RTS

Vilca:2016:BBS

Anonymous:2016:EBf

Anonymous:2016:Cf

Ikemoto:2016:STA

REFERENCES

References

Fang:2016:IPS

Li:2016:THS

Kundu:2016:BIW

Chen:2016:GPA

Sellers:2016:FZI

Safo:2016:GSM

Zhao:2016:GLR

Zhou:2016:MIA

Elfadaly:2016:PEA

Garcia-Escudero:2016:JRT

Mount:2016:PAA

Emily:2016:SND

Stegeman:2016:NMS

Bongiorno:2016:CMH

REFERENCES

Blasques:2016:SSD

Bisaglia:2016:BNF

Caldeira:2016:PYC

Creel:2016:SSA

Dissanayake:2016:SSM

Fengler:2016:MRR

Fiorentini:2016:SKM

Gabriele Fiorentini, Christophe Planas, and Alessandro Rossi. Skewness and kurtosis of multivariate Markov-switching processes. *Computational Statistics & Data Analysis*, 100(??):153–159, August 2016. CODEN CSDADW. ISSN 0167-9473 (print),
Franses:2016:STB

Fresoli:2016:UCR

vanGiersbergen:2016:ACB

Giorgi:2016:CMS

Groen:2016:RUA

Hayakawa:2016:IGE

Hayakawa:2016:BGE
Hendrych:2016:CCM

Holzmann:2016:TNS

Ishihara:2016:MES

Jondeau:2016:ATD

Kapetanios:2016:FIG

Laurent:2016:TJC

Li:2016:SGE

Li:2016:GNS

[1955] Degui Li, Léopold Simar, and Valentin Zelenyuk. Generalized nonparametric smoothing with mixed discrete

REFERENCES

Sucarrat:2016:EIU

Vijverberg:2016:LTL

Vosseler:2016:BMS

Boswijk:2016:SIT

Alj:2016:EGL

Arteche:2016:BAD

Clements:2016:RTF

Kurose:2016:DES

Virbickaite:2016:BNP

Lubrano:2016:IID

Chan:2016:FCD

Anonymous:2016:EBi

Anonymous:2016:Ci

Ding:2016:EAG

Davies:2016:SAS

REFERENCES

Hosseini:2016:IMM

McElroy:2016:CAT

Lee:2016:CAQ

Cipolli:2016:BNM

Kim:2016:CSS

Zhou:2016:DGG

Korobilis:2016:PSP

Wu:2016:BMS

Hu:2016:MLE

OBrien:2016:FOM

Bedair:2016:MFM

Chen:2016:ULP

Haff:2016:SLB

Li:2016:RCF

[1998] Qi Li, Heng Lian, and Fukang Zhu. Robust closed-form estimators for the integer-valued GARCH(1,1).

Gross:2016:DSL

Hatjispyros:2016:RDF

Lee:2016:BSE

Kleiber:2016:HRS

Mandal:2016:RMI

Wilson:2016:APC

Anonymous:2016:EBj
REFERENCES

Feng:2016:NNC

Anonymous:2016:EBk

Anonymous:2016:Ck

Chauveau:2016:NMM

Wu:2016:DMP

Zilko:2016:CMM

Hazelton:2016:BSK

Alhamzawi:2016:BMS

Xiang:2016:SMC

Hook:2016:ECQ

Anonymous:2016:EB1

Anonymous:2016:C1

Lyubchich:2016:DFB

Lin:2016:PCH

Epifanio:2016:FAA

[2056] Abdelkader Ameraoui, Kamal Boukhetala, and Jean-François Dupuy. Bayesian

Anonymous:2017:EBa

Anonymous:2017:Ca

Hui:2017:MBS

Wilhelm:2017:QSS

Serfling:2017:DBN

Gertheiss:2017:NMS

Xiao:2017:FAT

REFERENCES

Anonymous:2017:Cb

Kwon:2017:GEE

Wang:2017:PMC

Gramacki:2017:FBF

Bianco:2017:REP

Schaarschmidt:2017:SCI

Li:2017:EAB

Giorno:2017:ENH

Boubeta:2017:PMM

Rocha:2017:NCD

Cui:2017:IEG

Doove:2017:DOD

Agostinelli:2017:REA

REFERENCES

REFERENCES

Pan:2017:ESP

Maronna:2017:REE

Fujita:2017:CBG

Zhu:2017:IBT

Das:2017:BQR

Han:2017:BRP
[2136] Ningning Han, Yumeng Song, and Zhanjie Song. Bayesian robust principal component analysis with structured sparse component. Computational Statistics & Data Analysis, 109(??):144–158, May 2017. CODEN 342

Kouritzin:2017:RSB

Belalia:2017:SCD

Alam:2017:PGO

Ueckert:2017:NME

Anonymous:2017:EBh

Anonymous:2017:Ch

Lee:2017:VSH

REFERENCES

Anonymous:2017:Ci

Lee:2017:AMS

Bertrand:2017:REM

Blagus:2017:GBH

Friedrich:2017:WBA

Frumento:2017:EEC

Ghebremichael-Weldeselassie:2017:SCC

Ghosh:2017:NIT

REFERENCES

[229] Yong He, Xinheng Zhang, Pingping Wang, and Liwen Zhang. High dimensional Gaussian copula graphical model with FDR control. *Computational Statistics & Data Analysis*, 113(??):457–474, September 2017. CODEN CSDADW. ISSN 0167-9473 (print),
REFERENCES

Maruotti:2017:MBT

Yu:2017:HDC

Carzolio:2017:WPT

Gorynin:2017:FSS

[237] Shonosuke Sugasawa and Tatsuya Kubokawa. Transforming response val-

Jeon:2017:HDH

Baddeley:2017:TSM

Li:2017:UDF

Yu:2017:PME

Sahoo:2017:THI

Marbac:2017:FBW

Wang:2017:THM

[2244] Chunlin Wang, Paul Marriott, and Pengfei Li. Testing homogeneity for multiple nonnegative distributions with

Anonymous:2017:EBk

Anonymous:2017:EBI

Wang:2017:SEL

Li:2017:PEP

Li:2017:FDC

Hayes:2017:SWI

Bilton:2017:CTP

Bhuyan:2017:ERS

Hoff:2017:LFN

Ledoit:2017:NIQ

Cuervo:2017:AFG

Tsai:2017:HTN

Lee:2017:ACF

Kuk:2017:FCA

Zhao:2017:TRM

Junlong Zhao, Lu Niu, and Shushi Zhan. Trace regression model

[2273] Masayo Yoshimori Hirose. Non-area-specific adjustment factor for second-order efficient empirical Bayes confidence interval. *Computational Statis-
REFERENCES

Anonymous:2018:EBa

Cai:2018:NLD

Samanta:2018:ORI

Ma:2018:IDM

[2281] Hua Ma, Andriy I. Bandos, and David Gur. Informativeness of di-

Kang:2018:IDP

Barthel:2018:VCB

Mao:2018:TII

Marchetti:2018:SDC

Craiu:2018:SEC

Sun:2018:DSR

Holland-Letz:2018:OED

[2288] T. Holland-Letz and A. Kopp-Schneider. Optimal experimental de-

Deng:2018:RAP

Anonymous:2018:EBb

Anonymous:2018:Cb

Drovandi:2018:APM

Buonocore:2018:GRV

Jiang:2018:SSD

Li:2018:ETT

Chen:2018:OTL

Lin:2018:RMB
REFERENCES

[2310] Belmiro P. M. Duarte, Guillaume Sagnol, and Weng Kee Wong. An al-

Chen:2018:RFS

Cederbaum:2018:FSA

Loperfido:2018:SBP

Yang:2018:SJE

[2317] Hanfang Yang and Yichuan Zhao. Smoothed jackknife empirical likelihood for the one-sample difference of quantiles. Computational Statistics & Data Analysis, 120(??):
REFERENCES

Bergmeir:2018:NVC

Fattore:2018:LSA

Suesse:2018:MML

Hartog:2018:NBL

Anonymous:2018:EBe

Chao:2018:MFE

Guadarrama:2018:SAE

REFERENCES

REFERENCES

Wang:2018:GTC

Anonymous:2018:EBg

Vencalek:2018:DWB

Huttunen:2018:AEA

Ye:2018:CSB

Lee:2018:TDV

Talska:2018:CRF

Haruhiko Ogasawara. A family of the information criteria using the phi-
divergence for categorical data. Computational Statistics & Data Analysis,
124(??):87–103, August 2018. CODEN CSDADW. ISSN 0167-9473 (print),
article/pii/S0167947318300495.

Jeffrey Daniel, Julie Horrocks, and Gary J. Umphrey. Penalized com-
posite likelihoods for inhomogeneous Gibbs point process models. Compu-
tational Statistics & Data Analysis, 124(??):104–116, August 2018. CODEN
CSDADW. ISSN 0167-9473 (print), 1872-7352 (electronic). URL http:

P. Y. O’Shaughnessy and A. H. Welsh. Bootstrapping longitudinal data with
multiple levels of variation. Computational Statistics & Data Analysis, 124
(??):117–131, August 2018. CODEN CSDADW. ISSN 0167-9473 (print),
article/pii/S0167947318300434.

Yong He, Xinsheng Zhang, and Li-
wen Zhang. Variable selection for
high dimensional Gaussian copula
regression model: An adaptive hypoth-
thesis testing procedure. Computational Statistics & Data Analysis, 124
(??):132–150, August 2018. CODEN

The natural text is: REFERENCES

124(??):15–26, August 2018. CODEN
CSDADW. ISSN 0167-9473 (print),
article/pii/S0167947318300392.

T. P. Yuen, H. Wong, and K. F. C.
Yiu. On constrained estimation of
graphical time series models. Computa-
tional Statistics & Data Analysis,
124(??):27–52, August 2018. CODEN
CSDADW. ISSN 0167-9473 (print),
1872-7352 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S0167947318300288.

Mengjiao Peng, Liming Xiang, and
Shanshan Wang. Semiparametric re-
gression analysis of clustered survival
data with semi-competing risks. Computa-
tional Statistics & Data Analysis,
124(??):53–70, August 2018. CODEN
CSDADW. ISSN 0167-9473 (print),
1872-7352 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S0167947318300409.

David J. Warne, Ruth E. Baker,
and Matthew J. Simpson. Multi-
level rejection sampling for approxi-
mate Bayesian computation. Computa-
tional Statistics & Data Analysis,
124(??):71–86, August 2018. CODEN
CSDADW. ISSN 0167-9473 (print),
1872-7352 (electronic). URL http:
//www.sciencedirect.com/science/
article/pii/S0167947318300483.

Gressani:2018:FBI

Xu:2018:RAT

Kawano:2018:SPC

Villa:2018:OPN

Papastamoulis:2018:OBM

Shi:2018:FBS

Giraldi:2018:OPO

[2375] Loïc Giraldi, Olivier P. Le Maître, Ibrahim Hoteit, and Omar M. Knio. Optimal projection of observations in a Bayesian setting. *Computational Statistics & Data Analysis*...
REFERENCES

[2382] Ville Vuollo and Lasse Holmström. A scale space approach for exploring structure in spherical data. Computational Statistics & Data Analysis, 125(??):57–69, September 2018. CODEN CSDADW. ISSN 0167-9473 (print),

CASTRO:2018:PLB

CHANDRA:2018:SAE

CHEN:2018:SFL

RODRIGUES:2018:RPP

DONG:2018:SDR

ZHENG:2018:BEH

BERNARDI:2018:BQR

REFERENCES

Andrews:2018:AOU

Das:2018:BNP

Bhattacharya:2018:SBI

Zhao:2018:CTM

Yu:2018:ODD

Zhang:2018:RPB

Wong:2018:AND

Anonymous:2018:EBI

Lilun Du, Wei Lan, Ronghua Luo, and Pingshou Zhong. Factor-adjusted mul-

Lenis:2018:MMM

Zhang:2018:QLE

Beh:2018:CAF

Lee:2018:AMS

Das:2018:IZI

Chen:2018:STJ

Lee:2018:AMS

Niu:2018:PDB

Niu:2018:PDB

Santitissadeekorn:2018:SDA

Archimbaud:2018:IMO

Celisse:2018:NEA

Bouranis:2018:MCG

Lu:2018:FSM

Weiss:2018:GCA

Sikora:2018:RSA

Wang:2018:OBC

Anonymous:2019:EBa

Lin:2019:BMS

Li:2019:BFJ

Dickhaus:2019:SSI

Manghi:2019:GAP

Roberto F. Manghi, Francisco José A. Cysneiros, and Gilberto A. Paula. Gen-

Hinoveanu:2019:BLB

Zang:2019:RTG

Yu:2019:REC

Hsu:2019:GAL

Ma:2019:QRF

Anonymous:2019:EBb

Flores-Agreda:2019:BEU

REFERENCES

Wang:2019:GPM

Febrero-Bande:2019:EIP

Liebl:2019:POF

Ahmad:2019:STR

Wong:2019:NOR

Zhang:2019:MFD

Fu:2019:MBC

[Anonymous:2019:EBd]

[Anonymous:2019:EBd]

[2489] Valeria Sambucini. Bayesian predictive monitoring with bivariate binary out-

[2496] Antony M. Overstall, David C. Woods, and Kieran J. Martin. Bayesian prediction for physical models with application to the optimization of the

Einbeck:2019:ESI

Morris:2019:ACO

Marbac:2019:TMP

Wichitchan:2019:HTF

Xia:2019:BAM

Ahonen:2019:PFF

Anonymous:2019:EBe

REFERENCES

Zhang:2019:NVE

Zhu:2019:BSR

Bogomolov:2019:ORU

Lee:2019:MSS

Chen:2019:SGI

Wisniowski:2019:HMF

[2510] Arkadiusz Wiśniewski, Jakub Białak, Jonathan J. Forster, and Peter W. F. Smith. Hierarchical model for forecasting the outcomes of binary referenda. *Computational...
Lee:2019:CMD

Godolphin:2019:TLF

Sheng:2019:SVS

Li:2019:CST

Zhang:2019:BCS

Fang:2019:NAC

Karavarsamis:2019:TSA

REFERENCES

REFERENCES

REFERENCES

Yoshida:2019:RSM

Agostinelli:2019:IRE

Singh:2019:EBD

Cevallos-Valdiviezo:2019:FCR

Qiu:2019:SNA

Anonymous:2019:EBg

Chen:2019:AMS

Chaudhuri:2019:FAC
Li:2019:VSC

Zamanzade:2019:EMR

Gregory:2019:SAB

Derumigny:2019:CPV

Choi:2019:MBB

Baey:2019:ADL

Anonymous:2019:EBh

Ditzhaus:2019:WBL

Yu:2019:SWE

Geraci:2019:MEN

Lee:2019:MML

Xiu:2019:ADM

Chakraborty:2019:GLP

Golightly:2019:CPM

[2568] Maryclare Griffin and Peter D. Hoff. Lasso ANOVA decompositions for matrix and tensor data. *Computational Statistics & Data Analysis*, 137(??):

REFERENCES

REFERENCES

LeSage:2019:MCM

Caterina:2019:LAW

Cheng:2019:EIN

Liang:2019:MEL

Mazo:2019:CKE

Johnson:2019:ERW

Sinha:2019:EMV

