A Complete Bibliography of Publications in
Computational Statistics & Data Analysis (2020–2029)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

10 April 2024
Version 1.31

Title word cross-reference

2 [196, 480], 2 [40], nd [670], \(C_p \) [486], \(D \) [424], \(\ell_0 \) [666], \(\ell_1 \) [666, 19], \(\ell_2 \) [664], \(\ell_p \) [185], \(I \) [387], \(K \) [76, 9, 136, 432, 314], \(L \) [622], \(L_0 \) [782, 805], \(L_q \) [567], \(\lambda \) [217], \(M \) [116, 185, 508, 118, 351], \(p \) [712], \(R \) [234], \(R^2 \) [695], \(S \) [693], \(t \) [221, 128], \(U \) [547], \(V \) [547], \(\varepsilon \) [653].

-abdominal [534], absolute [7], abundance [75], Accelerate [700, 117], accelerated [466, 701, 344, 850, 523], Accelerating [709], acceleration [228], accelerator [577], accommodation [629], accuracy [200], achieve [513], achievement [286].
177, 131, 254, 524, 787, 688, 803, 103, 344, 202, 751, 849, 85, 120, 285, 428, 28, 204, 271, 639, 508, 291, 784, 467, 127, 94, 507, 26, 98, 497, 737, 516, 503, 152, 386. data

Data-cloning [40]. Data-driven
[613, 3, 217, 524]. datasets
debiased [433, 791]. December
[171, 372, 500, 753]. decision [590, 535].
decision-theoretic [535]. decomposition
[756, 747]. decompositions [254, 471].
deconvolution [676]. decorrelation [210].
decreasing [119, 612]. Decrement [245].
Deep [637, 391, 321, 528, 476, 469].
DeepQuadtrreg [391]. default [775, 414].
defining [555]. definite [526]. degree
delayed [535]. delta [329]. delta-variance
[329]. denoising [452]. dense [513].
Densely [664]. densities
[532, 762, 451, 272]. Density
dependence
[174, 209, 203, 336, 648, 430]. dependencies
[68]. dependent [582, 644, 69, 145, 22, 300, 186, 486, 508, 59, 485]. depression [352].
depth [555, 746, 297]. depths [267].
derivative [486]. Design
[110, 201, 274, 778, 476, 654, 818]. designs
Detecting [9, 655, 788]. detection
[542, 580, 817, 135, 236, 190, 280, 379, 210, 389, 432, 629, 184, 647, 731, 266, 824].
determination [306, 683, 111].
Determining [46]. deterministic [493].
developmental [352]. devices [580].
diagnosis [233]. diagnostic [769, 200].
diagonal [621]. difference [827, 655].
differencing [581]. different [69].
differential [319, 340, 654, 507, 54, 262].
diffusion [31, 443, 29]. diffusions [444].
Dimension
[252, 255, 410, 651, 576, 434, 182, 750, 438, 177, 563, 513, 646, 343, 226, 149, 24].
Dimension-reduced [255].
dimension-reduction [750].
dimension-wise [576]. dimensional
Dimensionality [111]. dimensions
[241, 330]. direct [241]. directed [203].
direction [810]. directional [74].
directions [541]. Dirichlet [608, 620].
Dirichlet-multinomial [620]. disclosure
[564]. discovery [334, 812, 714, 667].
Discrepancy [819, 261]. discretely
[596, 31].
discriminant [592, 177, 54, 241, 21]. disease [320, 282].
dispersion [31]. Dissimilarity [313, 559].
distance [710, 774, 563, 332, 226].
distortion [7]. Distributed [458, 361, 198, 791, 758, 351, 353, 327, 731, 263].
distributional [743, 423]. distributions
divergence [655].
divergent [683, 604]. diverging [263].
diversity [257]. divide [78]. divisive [569].
dose [299, 600]. dose-response [600].
double [347, 111]. Doubly
[437, 378, 830, 304, 57]. doubly-censored
[378]. driven [613, 217, 524, 3]. driving
[571]. drug [276]. drugs [274]. dual [830].
duration [146, 294]. during [413]. dwell
[496]. dwell-time [496]. Dynamic
Dynamical [507, 248].
dynamics [138, 633, 381].
earthquake [216]. ecological [827]. edge [189].
educational [386]. EEG [413, 74]. effect [642, 540, 145, 558, 585, 506, 404, 850, 523, 311].
elastic [693]. ellipsoids [477].
elliptical [556, 705]. EM-type [109]. embedded [809]. Embedding [287].
embeddings [285]. Empirical [653, 66, 826, 557, 104, 80, 2, 113, 324, 142, 359, 787, 186, 98, 737, 443, 250, 73, 175].
enclosing [477]. endogenous [253]. endpoint [300]. endpoints [33, 499].
Ensemble [756, 320, 58, 343]. ensembles [173, 634]. Entropy [511, 586, 652].
exact [778, 377]. exact-approximate [778]. example [662]. Exceedance [714].
extended [105]. Extending [631, 128]. extension [516, 678]. Extrapolation [494].
Extremal [570]. extreme [230, 733].

Learning

[219, 413, 293, 664, 333, 287, 656, 304, 792, 577, 608, 391, 95, 529, 848, 68, 6, 256]. Least

Likelihood

[624, 179, 367, 264, 162, 520, 336, 655, 428].

quasi-sudoku [141].

Robustness [271, 299]. ROC [270, 23, 538]. role [587]. Ross [106], rotation [676], Rothman [35], roughness [532], ruin [88], rule [524], rules [505, 199].

SAEM [10], Safe [505, 199], same [786], same-step [786], sample [362, 205, 145, 505, 72, 367, 162, 468, 142, 387, 679, 85, 278, 330, 423, 814, 382, 604]. samples [186], Sampling [133, 309, 562, 232, 614, 28, 98, 110, 796, 456, 105, 198, 15]. sampling-based [198], SAR [480], Saunders [345], SCAD [766], scalable [357, 227], scalar [793], scalar-on-image [793], scale [174, 525, 770, 236, 333, 830, 515].
scale-invariant [203]. scale-mixture [291].
scan [280, 301, 406], scatter [610, 493].
scheme [579, 554]. schemes [105]. science [835].
score [207, 804, 533, 370, 768].
screening
[622, 505, 736, 30, 655, 417, 120, 285, 26, 503, 81, 500, 841, 8, 652, 531, 137, 310].
set [472, 192, 283, 430, 795, 456, 822, 651].
set [365]. sets [102, 677, 450, 639]. setting
[164]. settings [656]. several [785]. Shape
597, 365, 420]. Shape-constrained
597, 365]. shaped [374]. shapes [169, 126].
share [845]. Shared [578, 523]. shifts
[387, 277]. shotgun [112]. shrinkage
sign [315]. signal [210]. signatures [287].
signed [698]. signed-rank [698].
Significance [772]. Silhouette [303].
SIMEX [279]. simple [127, 832].
Simplified [234]. simulating [808, 356].
simulation [525]. Simultaneous
Single-index
[51, 558, 407, 380, 66, 826, 253, 687].
singular [517]. sited [688]. sites [512]. size
[362, 102, 509]. sJIVE [551]. skew [164].
skew-symmetric [164]. skewed [271, 181].
skewness [113, 674]. slice [614]. sliced
[628, 375, 410]. Small [703, 92, 702]. SMC
[40]. Smirnov [846, 712]. SMLSON [686].
Smooth [566, 238, 97, 722]. Smoothed
[599, 73, 626]. smoothing [201, 555, 71].
Smoothly [627]. social [42, 630]. sociology
[296]. soft [349]. soft-labels [349]. Solution
[16, 433, 366]. Some [67, 164]. source
spaced [170]. spaces [150]. span [844].
sparsity [798]. Spatial
spatial-temporal [688]. spatially
[796, 16, 583]. Spatio
[694, 409, 650, 761, 251, 161, 342, 473].
Spatio-temporal
[694, 409, 650, 761, 251, 161, 342, 473].
Spearman [721]. special [706, 669, 670].
species [155]. specific [847]. Specification
[93, 654]. specificity [769]. specified [533].
spectral
[526, 2, 770, 781, 593, 581, 105, 170, 604].
References

Wang:2020:EAA

Zhao:2020:SPG

Sarkar:2020:PMM

Zhao:2020:SPG

Barthel:2020:PCV

Yu:2020:VND

Jentsch:2020:TDP

Jokiel-Rokita:2020:ERC

Yan:2020:QBD

Liu:2020:SMC

Ni:2020:FSU

Caimo:2020:MER

Ma:2020:SMM

[28] Huijuan Ma, Wei Zhao, and Yong Zhou. Semiparametric model of

REFERENCES

[42] Ariel Duarte-López, Marta Pérez-Casany, and Jordi Valero. The Zipf–Poisson-stopped-sum distribution

Fouskakis:2020:VPE

Bommert:2020:BFM

Rodriguez:2020:BMM

McCloud:2020:DNE

Han:2020:BMC

Anonymous:2020:Aa

Anonymous:2020:EBd

García-Rodenas:2020:CGP

Yang:2020:SIM

Taylor:2020:MUN

Posch:2020:NBA

Pan:2020:ECD

Wang:2020:MPG

vonSchroeder:2020:ECJ

REFERENCES

Han:2020:SEN

Tian:2020:BBR

Xue:2020:ELP

Puig:2020:SGF

Paci:2020:SLC

Deresa:2020:MNR

Liu:2020:SAH

[77] Jongho Im, Kosuke Morikawa, and Hyung-Tae Ha. A least squares-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2020:Jb

Anonymous:2020:EBg

Filzmoser:2020:CRR

Liu:2020:SVA

Qin:2020:GMQ

DeBlasi:2020:IID

Lu:2020:JMF

Fordellone:2020:FGS

REFERENCES

Anonymous:2020:S

Anonymous:2020:EBi

Anon2020:OUM

Lee:2020:OUM

Anonymous:2020:EBi

Ma:2020:BNT

Lee:2020:OUM

Dai:2020:FOD
REFERENCES

Nguyen:2020:VIH

Philipson:2020:FMC

Edwards:2020:MPS

He:2020:HDT

Lin:2020:HTP

Ivanovic:2020:CST

Hao:2020:CRM

Yehong Liu and Guosheng Yin. The Delaunay triangulation learner and its ensembles. *Computational Statistics & Data Analysis*, 152(??):Article
REFERENCES

Babkin:2020:LSE

Zhao:2020:JEL

Nie:2020:SFP

Le:2020:ALD

Lv:2020:RKH

Dong:2020:MFV

Baak:2020:NCC

Bak:2021:PLD

Gromping:2021:ABR

Zilber:2021:VLA

Zeng:2021:HSS

Ito:2021:ICR

Bagkavos:2021:FDL

REFERENCES

[216] Tianbo Chen, Ying Sun, and Tahan Li. A semi-parametric estimation method for the quantile spectrum with an application to earthquake

Anonymous:2021:Ma

Anonymous:2021:EBc

Wu:2021:MAD

Gerber:2021:PCV

Zhou:2021:LPN

Song:2021:RVS

Hees:2021:SII

[245] Hangsuck Lee, Hongjun Ha, and Taewon Lee. Decrement rates and a numerical

REFERENCES

Anonymous:2021:EBe

Brown:2021:NMM

Wiqvist:2021:EIS

Zhou:2021:CED

Hashemi:2021:FFA

Bansal:2021:FBE

Yuan:2021:CDE

REFERENCES

Dyckerhoff:2021:ACP

Hintz:2021:NVM

Liebscher:2021:KRC

Fanjul-Hevia:2021:NPT

Manju:2021:RCE

Gijbels:2021:SQR

Peng:2021:FIS
Huang:2021:CDC

Mishra:2021:GCS

Xiao:2021:MBU

Wu:2021:EHD

Huang:2021:CDC

Xiao:2021:MBU

Fitzpatrick:2021:SVS

Zhang:2021:GBN

[281] Hongmei Zhang, Xianzheng Huang, Shengtong Han, Faisal I. Rezwan, Wilfried Karmaus, Hasan Arshad, and

Jian Cao, Marc G. Genton, David E. Keyes, and George M. Turkiyyah. Sum of Kronecker products representation and its Cholesky factorization

[Anonymous:2021:Jb]

[Anonymous:2021:EBf]

[Mirfarah:2021:MLE]

[Gangloff:2021:UIS]

[Cappozzo:2021:RVS]

[Luati:2021:EDH]

[Bouchouia:2021:HDR]

REFERENCES

REFERENCES

Nam-Hwui Kim and Ryan P. Browne. In the pursuit of sparseness: a new
rank-preserving penalty for a finite mixture of factor analyzers. Compu-
tational Statistics & Data Analysis, 160(??):??, August 2021. CODEN
CSDADW. ISSN 0167-9473 (print), 1872-7352 (electronic). URL http:

[326] David Reynolds and Luis Carvalho. Latent association graph in-
ference for binary transaction data. Computational Statistics & Data
Analysis, 160(??):??, August 2021. CODEN CSDADW. ISSN 0167-9473
article/pii/S0167947321000633.

[327] Kangning Wang and Shaomin Li. Robust distributed modal regres-
sion for massive data. Computational Statistics & Data Analysis, 160
(??):??, August 2021. CODEN CSDADW. ISSN 0167-9473 (print),
article/pii/S0167947321000591.

[328] Lei Jin. Robust tests for time series comparison based on Laplace
periodograms. Computational Statistics & Data Analysis, 160(??):??,
August 2021. CODEN CSDADW. ISSN 0167-9473 (print), 1872-7352

[329] Nan Zheng and Noel Cadigan. Frequentist delta-variance approxi-
mations with mixed-effects models and TMB. Computational Statistics & Data
Analysis, 160(??):??, August 2021. CODEN CSDADW. ISSN 0167-9473
article/pii/S016794732100061X.

[330] Tao Qiu, Wangli Xu, and Liping Zhu. Two-sample test in high dimen-
sions through random selection. Computational Statistics & Data Analysis,
160(??):??, August 2021. CODEN CSDADW. ISSN 0167-9473 (print),
article/pii/S0167947321000529.

[331] Chaohui Guo, Jing Lv, and JiBo Wu. Composite quantile regression
for ultra-high dimensional semiparametric model averaging. Compu-
tational Statistics & Data Analysis, 160(??):??, August 2021. CODEN
CSDADW. ISSN 0167-9473 (print), 1872-7352 (electronic). URL http:

[332] Yuting Wei, Qihua Wang, Xiaogang Duan, and Jing Qin. Bias-
corrected Kullback–Leibler distance criterion based model selec-
tion with covariables missing at random. Computational Statistics & Data
Analysis, 160(??):??, August 2021. CODEN
REFERENCES

Rodríguez:2021:CPF

Ghorbani:2021:TFO

Wang:2021:EIM

Liu:2021:GAH

Kakizawa:2021:CBS

Fan:2021:TEH

Lambert:2021:FBI

Anonymous:2021:N

Anonymous:2021:EBk

Dumbgen:2021:ASA

Wang:2021:FFE

Ghosh:2021:TSH

Tucker:2021:MBR

Rodwell:2021:CCB

Zhang:2021:CBF

[370] Xiaoke Zhang, Wu Xue, and Qi Yue Wang. Covariate balancing functional propensity score for func-

Jimenez:2021:ADE

Anonymous:2021:D

Anonymous:2021:EBI

Mao:2021:CTS

Pircalabelu:2021:GIS

Castelletti:2021:ECS

Singh:2021:EEE

Choi:2021:SLS

[378] Taehwa Choi, Arlene K. H. Kim, and Sangbum Choi. Semiparametric least-squares regression with

[386] Jaewoo Park, Ick Hoon Jin, and Michael Schweinberger. Bayesian model selection for high-dimensional Ising models,
REFERENCES

Kelter:2022:PA

Mishra:2022:RRC

Kim:2022:NCT

Li:2022:BMP

Jia:2022:DLQ

Anonymous:2022:F

Anonymous:2022:EBb

Ghosal:2022:BIG

Rahul Ghosal and Sujit K. Ghosh. Bayesian inference for generalized linear

Wang:2022:LLP

Kim:2022:PGM

Shin:2022:JEM

Xing:2022:MBS

Anonymous:2022:Ma

Anonymous:2022:EBc

Rugamer:2022:SIA

Kruse:2022:MAL

[402] René-Marcel Kruse, Alexander Silbersdorff, and Benjamin Säfken. Model

Nattino:2022:PAO

Ollier:2022:FSN

Franke:2022:AQC

Smida:2022:WMW

Heuchenne:2022:IMS

Zhou:2022:BBR

Chen:2022:HBM

REFERENCES

Xiao:2022:DRB

Wang:2022:OEE

Conti:2022:EUP

Boland:2022:SLT

Yang:2022:MAH

Pavithra:2022:PEC

Brunet-Saumard:2022:KBR

[416] Camille Brunet-Saumard, Edouard Genetay, and Adrien Saumard. K-
REFERENCES

74

Liu:2022:PQC

Wu:2022:UQH

Zhang:2022:GGF

Samaddar:2022:GCF

Anonymous:2022:Aa

Anonymous:2022:EBd

Wiemann:2022:CSS

REFERENCES

Kapla:2022:FSD

Ning:2022:CIT

Villa:2022:OBF

Agarwal:2022:FQC

Ameijeiras-Alonso:2022:FTP

Szarek:2022:STA

Kirkby:2022:MLE

REFERENCES

Zhu:2022:CIP

Anonymous:2022:Mb

Anonymous:2022:EBe

Bigot:2022:LRM

Thompson:2022:RSS

Hamel:2022:CQS

DeGooijer:2022:KBH

Bigot:2022:LRM
References

[460] Qiansheng Zhu and Joseph B. Lang. Test-inversion confidence intervals for...

Sosa:2022:LSM

Grazian:2022:ABC

Liu:2022:TEF

Anonymous:2022:Jcb

Anonymous:2022:EBf

Cheng:2022:RHD

Murray:2022:FAE

Hediger:2022:URF

[468] Simon Hediger, Loris Michel, and Jeffrey Näf. On the use of random
Mao:2022:NFS

Corsini:2022:DOM

Rhee:2022:RMM

Santos-Fernandez:2022:BST

Anonymous:2022:EBg

Shi:2022:CSM

Sottile:2022:RER

Schmurr:2022:GOP

Zhao:2022:NIT

Liu:2022:GCC

Zhou:2022:ACE

Hornung:2022:IFI

Anonymous:2022:Ab

Anonymous:2022:EBh

Zhu:2022:RVS

Betancourt:2022:PRL

Pokojovy:2022:RDA

Ayub:2022:EEP

Hudecova:2022:MRB

Pohle:2022:FES

Osei:2022:BLM

Du:2022:VSC

Mingyue Du, Xingqiu Zhao, and Jianguo Sun. Variable selection for case-cohort studies with informatively

Florez:2022:EAA

Qu:2022:VSV

Anonymous:2022:S

Anonymous:2022:EBi

Pan:2022:FSF

Blier-Wong:2022:SRF

Fan:2022:SSS

REFERENCES

Liu:2022:VCH

Nanshan:2022:DMN

Merlo:2022:MQR

Yuan:2022:MMA

Ouyang:2022:RBH

Cadirci:2022:EBT

Wang:2022:LGT

REFERENCES

Sardy:2022:TTB

Arcagni:2022:CRA

Hamura:2022:LRV

Paige:2022:BMM

Usefi:2022:CMS

Su:2022:TSO

Wei:2022:SV

REFERENCES

Krivobokova:2022:JNP

Anonymous:2022:O

Anonymous:2022:EBj

Wang:2022:GAE

Li:2022:DDL

Cole:2022:LSL

Chau:2022:TVS

Uemoto:2022:SVR

REFERENCES

Aushev:2022:LFI

Obst:2022:ILR

Sugasawa:2022:RFM

Yuan:2022:IIS

Arnone:2022:RPA

Li:2022:EEP

Huang:2022:ART

REFERENCES

Williamson:2022:GBD

Granados-Garcia:2022:BWA

Codazzi:2022:GGM

To:2022:EVU

Banerjee:2022:HSM

Embleton:2022:WTR

Cho:2022:NPD

Amo
vin-Assagba:2022:ODM

naz, and Julien Jacques. Outlier detec
tion in multivariate functional data
through a contaminated mixture model.
Computational Statistics & Data Analy
sis, 174(??):??, October 2022. CODEN
CSDADW. ISSN 0167-9473 (print),
www.sciencedirect.com/science/
article/pii/S0167947322000767.

Cai:2022:HDC

[543] Xizhen Cai, Yeying Zhu, Yuan Huang,
and Debashis Ghosh. High-dimensional
causal mediation analysis based on par
tial linear structural equation models.
Computational Statistics & Data Analy
sis, 174(??):??, October 2022. CODEN
CSDADW. ISSN 0167-9473 (print),
www.sciencedirect.com/science/
article/pii/S0167947322000810.

Ghaderinezhad:2022:WIM

[546] Fatemeh Ghaderinezhad, Christophe
Ley, and Ben Serrien. The Wasser
stein impact measure (WIM): a prac
tical tool for quantifying prior impact
in Bayesian statistics. Computational
Statistics & Data Analysis, 174(??):
??, October 2022. CODEN CSDADW.
ISSN 0167-9473 (print), 1872-7352 (electronic). URL http://
www.sciencedirect.com/science/
article/pii/S0167947321001869.

Seri:2022:CAD

[547] Raffaello Seri. Computing the asymp
totic distribution of second-order U-
and V-statistics. Computational
Statistics & Data Analysis, 174(??):
??, October 2022. CODEN CSDADW.
ISSN 0167-9473 (print), 1872-7352 (electronic). URL http://
www.sciencedirect.com/science/
article/pii/S0167947322000172.

Anonymous:2022:E

tational Statistics & Data Analysis, 175
(??):??, November 2022. CODEN CSDADW. ISSN 0167-9473 (print), 1872-7352 (electronic).

Anonymous:2022:EBk

tational Statistics & Data Analysis,

REFERENCES

REFERENCES

Goffinet:2022:FNP

Dallaky:2022:TSG

Miron:2022:RPL

Anonymous:2022:FNP

Anonymous:2023:EBa

Bianconcini:2023:DWQ

Hector:2023:PSA

Uddin:2023:SBV
REFERENCES

REFERENCES

Hu:2023:FBI

Acharki:2023:RPI

Huang:2023:GSA

Hormann:2023:PFR

Ghosal:2023:SCE

Boente:2023:RSA

Ke:2023:STQ

Yu:2023:ODS

[600] Jun Yu, Xiran Meng, and Yaping Wang. Optimal designs for semi-

REFERENCES

[615] Luz Adriana Pereira, Luis Gutiérrez, Daniel Taylor-Rodríguez, and Ramsés H. Mena. Bayesian nonparametric hypothesis testing for longitudinal data

Wang:2023:GSL

Bhatnagar:2023:SAM

Zhao:2023:CMC

Yang:2023:BDP

An:2023:VSB

REFERENCES

Mc Gonigle:2023:RME

Li:2023:MRM

Nikoloulopoulos:2023:EFI

Hao:2023:NIS

Kim:2023:SVR

Cipriani:2023:TBG

Ma:2023:RFP

REFERENCES

Ganglo:2023:DPP

Lamprinakou:2023:BBI

Mendizabal:2023:FFA

Zhuang:2023:PTM

Eendebak:2023:SET

Cao:2023:AUC

Yang:2023:JIA

Naderi:2023:RMR

Soale:2023:PER

Wang:2023:SHA

Wang:2023:CML

Yamaguchi:2023:MAT

DAngelo:2023:LWM

daSilva:2023:DRT

REFERENCES

REFERENCES

Soave:2023:RRT

Roy:2023:BSM

Cui:2023:CPT

Song:2023:NEP

Khan:2023:TSN

Cheng:2023:GEP

Zou:2023:CQR

REFERENCES

Borgonovo:2023:ECM

Zeng:2023:ODS

Chassan:2023:HTM

Xu:2023:DES

Motegi:2023:SSM

Zhu:2023:SFF

Liang:2023:IQT

REFERENCES

Sohn:2023:FCM

Shi:2023:MST

Sun:2023:ORS

Zhao:2023:HTC

Anonymous:2023:O

Anonymous:2023:EBj

Kim:2023:BPM

REFERENCES

REFERENCES

REFERENCES

[749] Fei Zhou, Jie Ren, Shuangge Ma, and Cen Wu. The Bayesian regularized

Jang:2023:PWL

Liu:2023:OMV

Bar:2023:GMC

Anonymous:2023:D

Anonymous:2023:EBI

Kreuzer:2023:BMN

Gao:2023:ELM

Aghabazaz:2023:URT

Zeynab Aghabazaz and Iraj Kazemi. Under-reported time-varying MINAR(1) process for modeling multivariate...

Bao:2023:SPD

Park:2023:RQR

Chen:2023:BMS

Deb:2023:NST

Bagkavos:2023:GFT

Anonymous:2024:Ja

Anonymous:2024:EBa

Moya:2024:FUA

[765] Blake Moya and Stephen G. Walker. Full uncertainty analysis for Bayesian

[772] Niwen Zhou, Xu Guo, and Lixing Zhu. Significance test for semiparametric con-

Jin:2024:SEE

Hu:2024:TPF

Pelaez:2024:PDE

Anonymous:2024:F

Anonymous:2024:EBb

Kao:2024:HEA

Godichon-Baggioni:2024:RRR

Maia:2024:GBN

[780] Mateus Maia, Keefe Murphy, and Andrew C. Parnell. GP-BART: a novel

Zhao:2024:DCS

Zhao:2024:DDE

Heaton:2024:IML

Wang:2024:NQS

Li:2024:BNE

Weiss:2024:CMM

Robertson:2024:OPP

Onizuka:2024:BBT

He:2024:NAP

Caamaño-Carrillo:2024:NNW

Lbath:2024:CBI

Anonymous:2024:A

Anonymous:2024:EBd

Liang:2024:VSH

REFERENCES

Zhang:2024:GVS

Li:2024:BSS

Yamazoe:2024:SCR

Wu:2024:MBA
REFERENCES

Kalogridis:2024:RAF

Liang:2024:HFD

Cai:2024:SIU

Wu:2024:TST

Tortora:2024:LBM

Goepp:2024:GBS

Cai:2024:SDB
REFERENCES

REFERENCES

Borrajo:2024:GFT

Gagnon:2024:RHT

Li:2024:PER

Marco:2024:FRE

Ma:2024:SPR

Mondal:2024:IOR

You:2024:SEM

