A Complete Bibliography of Publications in *Concurrency: Practice and Experience*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 October 2017
Version 1.19

Title word cross-reference

3 [BDOP95, Fah96]. *T* [Cun97]. T^M

365 [BDL00, KSN97]. Advanced [MBF+90]. advection [Ber94].

abstract [NHZ96]. abstractions [KAS98].

Accelerated [GH95]. accelerator [HBKR96]. access [CDD97, HAFY00, PH00a].

Accurate [JDZW99]. Achievements [Fox91a]. ACM [Fox00a, Fox00b, Fox00c].

adaptation [SB99]. Adaptive [BSS91, HM98, KB98, Lap92, RGSB94, CYL95, CD99, CH99, DW97, HBG00, LzM97, LL95, LL99, WB95a, SBS93].

address [BDL00, KSN97]. Advanced [MBF+90]. advection [Ber94].

advection-diusion [Ber94]. advisory [CQ95]. aerial [ND94]. Aeroelastic [SW91].
Aerospace [HWPG92]. Age [Fox89].
Agent [BMR+00, XW00]. agents [KB98].
Aircraft [TV90, KWB+99]. Ajents [ICB00].
Algebra [Dem91, CDW96, CWB94, WKE98].
Algebraic [SS98, MPR95]. Algorithm [ALV+91, AH91, CSTG92, KK90, SBBG99, ST92, TV90, WHe90, AD95, AMVA95, CHB98, CE95, Cho98, CYL95, CB98, DV94, HBE98, JT96, KSK00, LRN97, LSF97, LL95, LL99, MRR+96, WB95b, Wu95, vdGW97].
Algorithms [BC91, BSS91, BF92b, GR+97, LF91, MF92, MF93, Wi91, AGMM94, AW97, CH99, DM98, GM00, GHSJ98, JPK98, LzM96, MR96, MF94, MW96, MF96, MGG00, NA96, SB99, XMNL95, CDW94].
Allocating [MF92, MF94]. allocation [KSN97, MMN95, NR94]. alternating [Lin97].
AMT [CWB94, WCB91]. Analysis [Hel93, JR92, KMT93, MT91, SSB92, SF93, TDD93, AFH98, ARS00, BGZ97, Cl97, DV94, FSDC99, GLV96, JT96, LP00, LF98, PH00b, SS94, Tog97, Top98, VNL98, ZP99]. analytical [WDT+99]. animation [LC000].
Annealing [KK90, PdOG99].
Annotating [HAKN97, JK00]. annotation [ANH00]. annotation-aware [ANH00]. announce [CRS98]. announce-listen [CRS98]. anti [LLL98]. anti-tasks [LLL98]. applets [BBK98, GPO98]. Application [GWP93, RCZM91, SCL97, VBFW91, ABC+00, CBW94, CPM00, DM96, RR96, WRMB98, HWPG92]. Application-level [SCL97]. Applications [BKTJ92, BGL92, Rin98, SW91, SSB92, vD89, Bak99b, BGZ97, Ben00, BCBO, CFLH99, DAB97, EAK00, ICBO, Kar99, Kea99, KSAC95, LK96, MLF97, XLD97, Bkg99a]. Apply [WDW91]. approach [Dav97, RG00, TBBK94].
Approaches [ALV+91, DCGC92, CC97a, PS00b].
Approximate [Lap92, PRA00].
Architecture [MBF+90, AB98, ARS00, CvE00, EE95, JH00, JCS98, LzNM96, WLR+00].
Architectures [GOJ89, MPS93, PDH91, VBFW91, ACF99, BN00, KSAC95, Wad99, YTPS95]. area [BFFL97, vNMB+00]. Argus [Bal92].
Automatically [BG97a]. Autopilot [TV90]. Averaging [MR+93]. avoiding [HBCG00]. aware [ARS97, ANH00].
BACI [BCB00]. backpropagation [AB98]. balance [RG00, AH91]. balanced [BAGGB99, EE95]. Balancing [Boi90, Wi91, AGMM94, CYL95, HBE98, MO95, MGG00, NK99, RR97, SS97, T994, Top98, VO98b, WB95a, Wu97, XMLL95].
bandwidth [WRMB98]. Based [FFH+93, Ada91, AFH98, AIS97, AW97, AR94, Bak00, BBC+97, BMR+00, CMM+97, CF96, CCI+97, CSS98, CPM00, Cun97, DM96, DF97, DAB97, DTY91, G92, GS98, HAFY90, HG90, JAA98, KAB+91, Ln97, LCL97, PSS97, RM91, SRW+00, SHGD98, TBBK94, VO98a, WJC93, Wu97, WX00, YC98]. Basic [BH92, CDW96]. Bayanihan [SHW98]. BBN [SMC92]. beam [VS096].
behaviour [CP95]. Benchmark [AAB+93, AH91, MR98a, BSW+00, Cun97].
Benchmarking [BR95, DBCF96, MBB+90]. Benchmarks [AAB+93, HHGW95].
benefits [BRTK94]. best [MJC99].
between [AW97, Kar98, Ll95]. Beyond
Designing [BF92b, CPM00]. designs [UTS00]. Determining [CDMW94, DT98].
develop [CRS98]. Developing [BDP98].

Development [SK00, ABC00]. developments [Per92]. dialect [YSP98].
different [BN00]. differential [MPR95, TFB94]. differential-algebraic [MPR95].
diﬀerential-algebraic [Ber94].

Digital [Woo91]. dilemma [TSV94]. Dimension [Wu97, Cor98].
dimension-exchange-based [Wu97].
dimensional [ES92, LL96, LGFK99, LSF97, MMN95]. directories [HW00]. discrete
[BSS98, Cow98, VO98a]. discrete-event [BSS98, Cow98]. Discussion [ST92].

Displacements [SDT91]. Display [VBFW91]. dissection [PRA00].

Distributed [AAB93, AMB93, Bak99a, BKTJ92, BGL92, BD93, BSS91, BCB00, DAB97, FFH93, Ge90, GOJ99, HV93, JJ92, JL95, KBW99, Lap92, LDP98, MR91, MRCH93, MPS93, MB99, Sun90, TV90, WHF99, WGC93, dMP92, Ahm95b, Ahm95a, AFH98, AM00b, ASL95, AC99, BDL00, BBC97, BRTK94, BAG99, BGKR99, CRS98, CKH91, CC97b, CMM97, CT90, CDW94, Ch98, CHMZ94, CP98, DD94, EE95, FS98, GGS00, GS97b, GS98, HKSK97, HPPF94, HW00, HHGW95, HY98, HHA96, ICB00, JT96, JA98, JS90, JJ96, JCS98, Kar98, Kea99, KAS98, LRN97, LCLL97, Man98, MF94, MMV98, NR94, PdOG99, PA95, Phi00a, Pir97, SHGD98, TBBK94, Tä94, TKN94, VO98a, VO98b, WLR99, XLD97, ZHS99].

Distributed-Memory [LDP98, AAB93, Lap92, Ch98, CHMZ94, MF94].

downhill [CB98]. Driving [Zim91]. DSM [YC97]. DSP [LZM96]. duplication [SCM95].

Dusty [BP92]. Dynamic [EAK00, HLA95, LLL95, PF89, SDT91, WB95a, WMC98, Wt91, Ahm95a, BSD94, C99, CYL95, GARR00, HBE98, Pir97, Tä94].

Dynamically [ITM91, NM00, SBS93]. Dynamics [PS96, Zom92, AGD97].

Dynamo [Tä94].

Echidna [JJ92]. EcliPSe [KRS96].

editing [PH00]. Editor [Han00].

Editorial [Bak96, Bak99a, Bak99b, Bak99c, Fox97a, Fox98, Fox00a, Fox00b, Fox00c, KZ93, Pri91, Wad99, vD96]. education [BCF97, WCL97]. effect [Cla97].

Effective [MR91]. Effects [MR91].

Efficiency [MMV98]. Efficient [AC98, CW91, HR92, LFA98, MCB99, Zom92, Han90, KSK00, Lc600, PHA00, PHN00, RDL99, WO00]. efficiently [KP98]. eigenproblem [BV00].

Eigenvalues [WCB91]. Eigenvectors [WCB91].

Electron [MRCH93, VSK96]. element [CYL95]. elimination [Fur96].

embedded [RR99, YTP95]. EMMA2 [ABMR91].

Empirical [SS94]. emulation [ZS94]. enabling [BCF97, WC90].

encryption [Sch99].

cipher [Sch99]. end [SHGD98].

Engineering [KAB91, LTH99, Wol93, BSP00, DAB97, Fox97a, Fox97b, FF97].

Environment [NHMW91, AFH98, AC98, CF96, DF97, DAB97, ICB00, JA98, LCLL97, RBF98, SRW99, WLR99, WBD94].

Environments [Bak99a, CBC94, Hsvd96, S94, TSS98, W95].

Equation [Boi90].

equations [CH99, Han98, HW96, TFB94].

ES-Kit [CKH91]. EDA [DTY91]. EDA/NASA

DTY91]. ESL [HNS94].

ESP [WGC93]. Estelle [JJ92]. estimating

[Fah96]. estimation [KSK00, Kon99].
estimator [Fah96]. European
[BC00, BCE+99, Guo00, Per92]. Evaluating
[BH92, ZK99]. **Evaluation**
[CSTG92, CLMP95, PR92, CHB98, HYI98,
HASnP00, IKY+00, MR98a, VO98b, SBS93].

event [BSS98, Cow98, VO98a]. **events**
[CRS98]. **EVALUOM** [BC00]. **Exception**
[Ada91]. exceptions [KP98]. exchange
[Wu97]. **Execution** [BSS91, GGS00, Ols99,
RR99, RRMA99, YQ95]. executions
[NM00]. **Experimentation** [SBBG89].

Experiments [CCF+97, CRM94, MBS91,
RM91, van90, BSV98]. exploitation
[GAM+00]. **Exploiting**
[DM96, BG97a, GMM98]. extend [Lin97].
Extended [HDF00]. Extending [YTY00].

extensible [SHW98]. **Extension** [Ada91].
extensions [CZF+98]. extrapolation
[RR97].

F [Han00, Le600]. F90 [WCC99].
F90/HPF [WCC99]. Factor
[AVL+91, AMVA95, CH99]. factorization
[DD00, GS97a, MP96]. Fail [KRS96].

Fail-safe [KRS96]. Falcon [GESV98].
family [MP96]. Farm [MP93, FDC99].
farms [MR98b]. Fast
[BS94a, dMP92, CE95]. faster [Han94a].
fatally [Pug00]. Fault
[Bal92, YQ95, The96]. fault-tolerant
[The96]. feasibility [JK98]. feedforward
[AB98]. FEM [DMM98]. FEM-meshes
[DMM98]. FFT [AG98]. FFT1 [HGW95].

FFTs [GTV98]. file [BRTK94]. files
[JK00, MLF97]. filesystem [GS98].

financial [Kea96, Kea99]. fine
[LFA98, PH00a, The96]. fine-grain
[LFA98, The96]. fine-grained [PH00a].
finite [CYL95]. First [BC00]. Flagship
[MK93]. flawed [Pug00]. Flexible
[SHPT00, GAM+00]. FLITE3D [BMT96].
Flow [MO91, Wi89, DW96, RSt00].

Flows [AMP+91, LL96]. Fluid
[AMP+91, Wi89, AGD97, Pir97].

footprinting [LA95]. formal
[BSP00, PDH91]. Forman [VO98a].
Fortran [ADG96, BP92, CWB94, EHI+93, FLQ97,
KLW93, KP91, SF93, SSG97]. Fortran-77
[MF93]. **Fortran-to-Java** [FLQ97].

Fourier [Fur96]. Fourier-Motzkin [Fur96].
fractal [JT96]. Fracturing [NM91].
Framework [Sun90, CMM+97, CML999,
DW97, Kea99, LPP0, NR94, SHW98, SU96,
TMN+98, TDB00, WSG95, WCC99]. Free
[CSTG92, Nas99]. front [SHG98].
front-end [SHG98]. fully [EE95].
functional [HLLM95]. fuzzy [EKR97].

G [LTH+99]. Gain [GWP93]. Galatica
[CDM94]. gap [Kar98]. garbage [Phi00a].
García [Han00, Le600]. Gate [Woo91].
Gate-level [Woo91]. Gateway [HAFY00].

GEC [RST00]. General
[AA93, CMG+97, DM98, FF97, LF98].
generalized [ZK99]. generated [Han97].
Generation [HWP92, LZ97]. generator
[CP98]. generic
[FDC99, HSvdL+96, MJC99]. Genesis
[AA+93, HHGW95]. genetic
[AD95, MF94]. geographically [BGKR99].
geophysical [JP98]. Global
[BWA94, DNH93, Lap92, SBBG89, AISS97,
CRS98, JJ96, NBK+00, SS95, WU97, XW00].

GLU [JDA97]. gradient [Han98]. grain
[BBC+97, LFA98, The96]. grained
[HHKP97, PH00a]. Grande
[Fox00a, Fox00b, Fox00c]. granular
[JDA97]. Graph [Bo90, RM91, GM00].

Graphs [HS90]. Grid
[HWP92, DW97, LSF97, K96]. Grids
[HWP92, HBG90]. group [JCS98]. groups
[WMC98].

Irregularly [Yan00, EAK00]. Issue [Bak99c, Bak00, BC00, Fox00a, Fox00b, Fox00c, Yan00, Guo00]. issues [AISS97, NBK+00, PA95]. Iterated [HS90, RR99]. Iterative [ST92, CHMZ94].

Jacobi [GHvdGV97]. Jacobians [ZM92]. Jade [Rin98]. Jaguar [WC00]. Japanese [JMM90]. Java [Fox00a, Fox00b, Fox00c, CCF+97, AFH98, AISS97, AGD97, ANH00, Bak00, BKKK98, BCF+97, BBC+97, BG97a, BV97, BG97b, BSS98, BDP+98, BDV+98, B97, BSW+00, CKV98, CZF+98, CGJ+00, CFKL00, CCD97, CcV90, CC97b, CCI+97, CL97a, CL97b, Cl97a, C97b, Cow98, Dav97, Dem98, DF97, DAB97, EKR97, Fer98, FTT97, Fox97a, Fox97b, FF97, FLQZ97, Fox98, GHM98, GPO98, GTV98, GS97b, HNS97a, HWO0, HNO0, HI95y, HAKN97, HSN97b, IKY+00, ICB00, JPK98, JK00, K98, KB98, MLF97, NM00, PHH00, PSS00a, PS00a, PZ97, PG00, PHN00, Pug97, RBF98, RS97, SHW98, SL97, SRW+00, SMS97, G97b, SHGD98, St900, T9N+98, TDB90, V0989, W97L97, WC90, Y98C, Y9798, Y97C97, Y97C97, ZTL98].

join [ARS99, BMAT97]. JPVM [FF98].

JSPICE [SHGD98]. JTED [Cow98]. Just [CL97a, KG97, IKY+00]. Just-in-time [CL97a, KG97, IKY+00]. JWarp [SS98].

L [Han00, Le600, BDOP95]. Label [Mir91]. Laboratory [DF97]. language [BDOP95, FF97, GS98, Han94b, LAKL00, LHIZ97, Per92, RR96, VNL98, vRvGS97].

Languages [DRW90, BR00, Phi00b, SU96]. LAPACK [Dem91]. Large [JPK98, JMM97, LL96, ST92, Wal90, WCB91, ASLY95, DD94, KSN97, MP95].

Large-scale [JPK98, JMM90, LL96, ST92, Wal90, MP95]. latency [CDMW94, Tog97, WRM98]. Lattice [BRSR93]. leaks [PS00a]. León [Han90].

Letter [Han00]. Level [Bru92, Fox89, BDOP95, BG97b, G93, HHKP97, JDA97, KAS98, OP99, SCL97, Woo91, CGM97].

Levels [MK93]. libraries [BDP+98, CDD97, GHM98, GGS00, Han00, HNO0, Le600, RDG99]. Library [Dem91, BSS98, PD99, PS00b, SGB97]. like [CGJ+00]. limitations [H900]. Linda [BWA94, LA95, TDB90]. line [GESV98, ZM92]. Linear [Dem91, Fid97, Whe91, CDW96, CB94, DD94, Han98, HW96, Kon99, TFB94].

Link [JM89]. listen [CRS98]. Load [Boi90, MR91, RR97, Wi91, AGMM94, BAGBB99, CYL95, CD99, HEB98, LL95, LLL98, LL99, MO95, MGG00, NK99, SS95, SS97, SCL97, TN99, T9g98, V9989, WB95a, Wu97, XML95].

LU-decomposition [van90]. Lyapunov [CH99].

Machine [JM89, RM91, ANH00, WB95b, YTY00, AM91, Ber94, MT91, SW91, ZS93].

Machines [BSS91, ST92, TDD93, AGW97, CHB98, CP98, HHK97, Han94a, LFA98, YC98].

Macromolecular [MRCH +93].

magnetostatic [LGFK99]. management [Ahm95b, Ahm95a, BFFL97, BSD94, ChMZ94, Hin97, TDKK94]. Manager [NR94].

Memory [BP92, BSS91, GOJ98, LDP98, MR91, MRCH+93, MPS93, dMP92, AAB+93, CDL+93, CDW94, Choi98, ChMZ94, CP98, DD94, E195, GOM90, HSK97, HHGW95, JN96, Kar98, KSN97, Lap92, LRN97, LRM96, LF98, MFP94, PA95, PS90a, Pir97, Ps90b, Pug00, Tår94, XLD97, Tog98].

Mentat [GWP93]. Mesh [W189, WI91, CT90, GvdG97, MJC99, MNN95, SB99]. meshes [CYL95, DMM98, LK96, MO95, WB95a]. Message [AW97, CPV93, DHN93, DD97, KK90, BW98, CGJ+90, CSS98, CH99, GGS90, Han90, Kar98, KSAC95, Le600, LZW96, Ps90b, RRMA99, RDLG99, WRMB98, Bak00, TDB00].

Message-passing [CPV93, DHN93, DD97, KK90, BW98, CSS98, KSAC95, LZW96, Ps90b, WRMB98]. message-passing/shared-memory [LZW96]. metacomputer [vL99].

metacomputing [ARS97, BFFL97, CKV98, FGN+98, JCS98, PSS97]. Method [BRSR93, RBW97, WWD92, WD92, DD94, DM96, GvdG97, KSN97, TTK98, VS996, vNB+00]. Methodology [FSDC99, Han93a, ST89, Han00, Leo00, RDLG99, XW00].

Metrobridge [RCZ91]. micro [ACF99]. micro-kernel [ACF99]. microkernel [AC98]. Migrant [MR99b]. migratable [TMN+98]. Migration [AMB+93, CP95, HBE98, SCL97]. MIMD [AB98, AGW97, AG98, CHMZ94, MRCH+93, ST92, TSV94], minimum [PAA00]. Mission [DTY91]. mixed [SK00]. mobile [ICB00, XW00]. Model [FFH+93, Han93a, Han93b, BDR+98, DAV+97, KSS+96, Kon99, LF98, MCB+99, Pug00, vNB+00].

modeling [AGMM94, BMR+00, BWM98, Fox97a, Fox97b, FF97, GS97a]. modelling [NA96]. Models [BC91, RRMA99, Wal00].

Monte [MR96, SK00, VSK96]. Monte-Carlo [MR96]. motion [KSK00]. Motzkin [FF97]. Movement [BF92].

MOVIE [FFH+93]. MP [CRM94, GS97a, RR96]. MP-2 [GS97a].

MPE [BGL92]. MPI [TDB00, CGJ+00, CFK00, Man98, Ps90b, RRG+99, SK00, WO96, Wa00]. MPI-like [CGJ+00]. MPJ [CGJ+00]. MPOOL [PD99]. MPP [MR98a]. Multi [Bat91, BT93, HWP92, JM89, MR91, MBS91, ARS99]. Multi-block [HWP92].

Multi-computers [Bat91]. multi-join
Multi-processor [MR91, MBS91].
Multi-scale [Bat91]. Multi-Transputer [JM89, BT93]. multi body [PS96].
multicast [AC98]. Multicomputer [MF92, van90, DV94, GH95].
Multicomputers [Han93a, SBBG89, MG00, Tär94].
Multidimensional [Lap92, MT91, BV97]. multidisciplinary [KWB++99]. Multilevel [Gra91, BS94a, GAM++00]. Multiparadigm [FS98].
multiprocessing [The96]. Multiprocessor [ABMR91, BP92, BR89, CDL++93, KK90, Lap92, LDF99, RP99, ZW93, ARS99, ARS00, GOM00, YTPS95].
Multiprocessors [SBW91, Whe90, Whe91, dMP92, AG98, CH99, DD94, KSN97, MF94, XLD97].
Multiprogramming [LDP89].
Multiresolution [Nak99, LZM97]. multistage [The96]. multithread [CS95, ZK98]. multithreaded [BGZ97].
MUSCL [LL96].
N [HNS97a]. N3S [LL96]. N3S-MUSCL [LL96]. NanosCompiler [GAM++00].
NASA [DTY91]. Native-language-based [GS98, HsvL96+, BG97b, GHM98].
Nearest [XMLL95]. Nearest-neighbor [XMLL95]. neighbor [XMLL95]. nested [PRA00]. net [CB96, CDMW94]. Nets [Gor93].
Network [GS92, HTM91, JMM90, MB91, NQ93, The96, ZW93, Zin91, AB98, ARS00, BFFL97, BKK98, Cor98, Fer98, Fox98, GS98, NA96, TSV94, TSS98, ZK99].
Network-based [CS92]. networked [CQ95, HM95, RRG+99, WJH+97].
Networks [CPV93, AGMM94, BV00, CD99, DHS99, LAKL00, RGSB94, TDB00, Wei99].
Neural [CPV93, JMM90, AGMM94, CB96, TSV94].
neutral [RIST00]. Nexus [FTT97, TKKN94]. Ninflet [TMN++98]. No [GPW93]. Nodes [MF92].
non [BRTK94, SCM95, hSM97]. non-clustering [SCM95]. non-periodic [hSM97].
non-volatile [BRTK94]. nonlinear [LGFK99]. notation [BSP00]. note [BG97b].
Notebook [WJH++97]. NOWs [BR00]. numbers [PG00]. Numerical [AMP++91, ES92, Pir97, BDP+98, CDD97, SS98, HS94].
O [WC00]. Object [CFKL00, Epp91, Gue00, TBBK94, ACF99, BDV+98, CK91, CSS98, HY98, JS00, JCS98, Lin97, Phi00b, PD99, UTS00].
Object-based [TBBK94, CSS98].
Object-oriented [Epp91, Gue00, ACF99, CK91, Phi00b, PD99]. object-relational [UTS00].
Objects [LF91, CE90, HW00, JA98, JL95, PZ97, TMN++98]. observing [JJ96].
Oceam [Ho91]. Ocean2 [ST89].
ocean [WJH++97].
OpenMP [BB00].
Optimal [JH00, TV90, BHE98]. optimisation [CB98, GRS++97].
Optimization [KLW93, MF92, CF97, HAKN97, LF98, PH00b, SS98].
optimizations [AMVA95, CL97a, IKY++00, WCC99].
optimizer [Cla97]. Optimizing [Ben00, BK97, CL97b].
ordering [PRA00]. Ordinary [Kon99].
ordination [Kea99, OP99, PD99].
organization [HD96]. oriented
[ACF99, CKH91, Dav97, Epp91, Gue00,
LRGS97, Phi00b, PD99]. Origin2000
[Bri00]. out-of-core [DD00]. Outer
[SF93, Cun97]. outer-product [Cun97].
overheads [SS94]. overlap [CDR99].
overlapped [KK90]. overlapping
[GHSJ98]. Overrelaxation [dR93].
overview [AHS93, Per92].

P [LTH +99, BDOP95, Fah96]. Package
[HS90, CSS98]. Pain [GWP93]. pair [Lil95].
Paradigm [Wil92, BBC +97]. paradigms
[CF96]. PARADOX [WB95b]. Paragon
[hSM97]. Parallel
[AMB +93, AH91, AR94, BC91, Bal92,
BKTJ92, BSD94, BV97, BH92, BMAT97,
BS94b, Bru92, CPV93, CP92, CGM +97,
CH99, CB96, Dag92, DRW90, DCGC92,
DT98, DHN93, DMM98, FHC98, Fox89,
Fox91a, GOM00, Gor93, HKS97, Han93b,
HS90, HWPG92, Hel93, Kea96, KMT93,
KK90, KP91, LRN97, LGFK99, LZM96,
LZM97, MFR95, MK93, MF93, MW98,
Mes91, MPS93, MGG00, ND94, Per92,
RM91, RR99, SBBG89, SB99, SS92, Sun90,
TDD93, Tog97, Tog98, TSH98, VBFW91,
Wal90, WE97, WEC98, WH90, Wil89,
ZP99, dJ93, Ahm95b, Ahm95a, AW97,
AAGF94, AG98, BDOP95, Bak00, BFCL97,
BN00, BR00, BSS98, BCF +99, CP95, CC97a,
CZF +98, CCCL97, CT98, CF96, CDW96,
Cho98, CCF +97, CY95, CD99, CB99,
CB98, Cow98, CQ95, Cun97, DDF99, DD00].
parallel [DF97, DR99, DM98, DW97, EE95,
Fah96, Fer98, FS89, FF97, GM00,
GRS +97, GLV96, GM00, GARR00,
GJC96, GESV98, Han94b, HHL95,
HD96, HG99, HSvdL +96, HM95, HAA96,
ICB00, JPK98, JDA97, JK96, KB98, KSS +96,
KSK00, Kon99, LL96, LAKL00, LSF97,
Lil97, LTH +99, LF98, MR98b, MP96,
MRR +96, MCB +99, MJ96, NH96, NA96,
NQ93, NASW98, PDG99, Pir97, RPL96,
RG00, SMS00, SSS98, SU96, hSM97, SS96,
TMN +98, TDB00, TFB94, VNL98, Wad99,
WG95, WDT +99, XML95, XLD97, XW00,
YC98, vNMB +00, vRvGS97, CDW94, Gra91,
JR92, ZHS99]. Parallel-Processing
[SSB92]. parallelisation [MJC99].
parallelising [BMT96]. Parallelism
[MB91, RDLG99, Wil92, BG97a, BR00,
DM96, GAM +00, HM98, KWB +99, LFA98,
SHPT00, Han00, Le00]. Parallelization
[LK96, SF93, BG98, CLMP95]. parallelized
[HM98]. Parallelizing
[VSKN96, WW92, WD92, ADG96].
parameterized [Fur96]. parameters
[SS97, ZP99]. ParaPARL [CT90].
PARLOG [ST89]. PARSE [GJC96].
Par [WWD92, Bak99b, AAB +93,
HWPG92, HHGW95]. partial [TFB94].
Particle
[BD93, Dag92, MO91, SMC92, Wal90].
Particle-in-cell [SM92, Wal90].
partitioned [BM97]. Partitioning
[BD96, Lil95, MO95, YTPS95, BS94a, CT90,
CQ95, PA95, WG95]. Passing
[TDB00, Bak00, BWM98, CJG +00, CPV93,
CSS98, CH99, DHH93, DD97, GGS00,
Han00, Kar98, KSAC95, KK90, Le00,
PS00b, RRA99, RDLG99, WRM98].
passing/shared [LZM96]. patterns
[EAK00, PS00a]. PB [CDW96]. PB-BLAS
[CDW96]. PDE [WB95a]. PDEs [HHA96].
Performance
[AB98, AGMM94, AH91, ARS00, BH92,
BN00, BRTK94, BWM98, GS97a, He93,
HN00, HY98, JT96, JR92, LF98, NA96,
NM00, PFS +93, SM92, hSM97, WJC93,
Wal90, WHF +99, Wil91, ALCG95, AFH98,
AR94, BS94b, BDV +98, BGK99, BSW +00,
CL97a, CS97, DV94, Dem91, DBR96,
DD97, DM98, Fah96, Fox98, FHH +93,
GHM98, GFS99, HV93, HPPF94, HBRK96,
HAp00, HAA96, JK00, JDZ99, MR98a,
NH96, RPL96, SBD +96, SK00, SSG97,
VNL98, WDT +99, YC98, YSP +98, ZS94].

QCD2 [HHGW95]. QR [DD00, MP96]. Quadratic [dR93]. Quadrature [Lap92]. quantum [SK95]. queries [ARS99, SBH95]. Queues [HS90, Man98].

Real-time [Bat91, CFMP91, TV90, VBFW91, GFS99]. realizations [HKSK97]. Recognition [JMM90], Recognizer [CFMP91]. reconfigurable [HBKR96].

Reconfiguration [JM89, FHC98]. recursion [Han00, Leć00, RDLG99]. recursive [BS94a, CE95, GHSJ98, SBH95]. Recycling [HKSK97].

Reduction [HMF99]. Redistribution [WO96]. reference [PS00a, RIST00, YTY00]. references [Dem98, LP00]. Reflective [TTK98].

Region [TDD93]. Region-to-Region [TDD93], registers [JK00]. Regularity [PNRC90]. relational [BMAT97, UTS00, WDT+99]. Relativity [AAB+93].

relevance [BCE+99]. Reliable [GJC96]. remapping [XLD97]. Remote [PF98+93, RW97, P97, T98, YQ95, vNMB+00]. Rendering [MPS93].

Resource-aware [ARS97]. resources [HAFY00]. Response [Leć00]. Restructuring [EHJ+93, BVG97]. Results [AAB+93, BI98].

RISC [BRSR93]. RMI [BDV+98, PHN00, RFB98]. Robot [MF93, PDH91, Zom92, ZM92]. Rock [NHMW91]. Rodriguez [Han00]. role [CC97].

safe [KRS96]. Sande [Han00, Leć00]. Santa [BA98]. scalability [NBK+00, SB99].

Scalable [GM00, KB98, Nas99, NR94, NR00, Wu95, vdGW97]. ScalAPACK [DD00]. scale [ASLV95, Bat91, JPK98, JMM90, LL96, MPR95, SBD+96, ST92, Wa90]. Scanning [Fur96]. SCHEDULE [HS90]. schedulers [GFS99]. Scheduling [ARS95, AGW97, Ahm95b, Ahm95a, AM00b, CS95, HLA95, RG00, SC95, SS95, WMC98, Wei99, Wu95]. schemes [UTS00].

Sensing [PDH91]. sensitivity [WRMB98, ZP99]. Sequence [AM91].

Sequent [AH91]. Sequent/Balance [AH91]. Sequential [BC91, ADA91]. serialization [CFK100, PHN00]. server [AM00b, Kar99]. service [HG99, RGSB94].

Set [MPS93, CDW96, hSM97]. sets [AGW97]. shaped [HKSK97]. Shared [BP92, CDL+93, PS00b, CSS98, GOM00, HW00, Kar98, KAS98, KNS97, LFA98].

Shared-Memory [BP92, CDL+93, PS00b, GOM00, LZM96, LFA98]. shared-variable [CSS98]. sharing [CD99]. ship [BSD94].

side [Cla97]. side-effect [Cla97]. signal [GT98]. SIMD [AGW97, HEB93, KLM93, Kom99].

Similarity [Hoc95]. simple [LP00]. simplex [CB98]. Simulated [PdOG99].

Simulation [AMP+91, BD93, Dag92, ES92, Gra91, MP93, NHMW91, SMC92, Wal90, WHF+89, Woo91].
SCM95]. **Tasks** [CP92, ARS99, Lit95, LLL98, OP99, SS95]. **TC2000** [SMC92]. **TCP** [DHS99]. **TCP/IP** [DHS99]. **technique** [GHSJ98, Kar99]. **Techniques** [BKTJ92, KLL93, CGM98, HLA95, SCM95]. **Technologies** [FTT97, HY98]. **templates** [FDC99, SS98]. **Test** [Wol93, GOM00]. **tetrahedral** [SB99]. **theory** [BI98, BK97, GARR00, LSS00, MMV98]. **Thermal** [ES92]. **thinning** [MGG00]. **thrashing** [LL95]. **threading** [KPO00]. **threads** [MR98b]. **Three** [ES92, LL96, LGFK99, NA96]. **Three-dimensional** [ES92, LL96, LGFK99]. **Tightly** [Whe90, Whe91]. **Tiling** [CDR99]. **Time** [BSS91, JM89, TFB94, AR94, Bat91, CS95, JM89, TFB94, AR94, Bat91, CS95, CFMP91, CP92, CL97a, GFS99, KG97, OP99, PA95, RRM99, SBW91, SS97, TV90, VBF91, IKY+00, WFR+89]. **Time-parallel** [TFB94]. **Timing** [LF91, Woo91]. **TINA** [RPB91]. **Tiny** [CW91]. **Titanium** [YSP+98]. **Tmon** [WJC93]. **Toeplitz** [BV00]. **tolerance** [YQ95]. **Tolerant** [Ba92, The96]. **Tool** [KMT93, ASLV99, BFL97, BSP00, BG98, CT00, EKR97, MR98a, MB99, SS97, Tipt94, TSS98, WDR+99]. **Toolkit** [BGL92, BC00, HLL95]. **Tools** [ABC+00, KP91, FSDC99, GARR00, Wad99]. **top** [SLC97]. **topologies** [LSF97]. **tori** [CYL95]. **Touchstone** [HLJTZ94, TFB94]. **TPVM** [FP98]. **Tracing** [JR92, GH95, LR97]. **Tracking** [SDT91]. **trained** [AB98]. **training** [CB98]. **TRANS1** [HHGW95]. **Transfer** [MP93, SS95]. **Transform** [HTM91, WWD92, WD92]. **Transformation** [DRW90, KMT93, SBS93]. **transformations** [DR99]. **Translating** [ST89]. **Transparent** [RCZ91, PZ97]. **transport** [BS94b, KSS+96, RGSB94]. **Transputer** [BKL91, CW91, DTY91, HTM91, Hoa91, HW96, JM89, KABG+91, PDH91, RM91, WJC93, WDR91, Zim91, Zom92, ZM92, BT93, HSvdL+96, NA96, PS96]. **Transputer-based** [DTY91, KABG+91, RM91, WJC93]. **Transputers** [Chr91, Gra91, Mir91, RCZ91, WO91, vR98, SBH95]. **tree** [HKS97, Han94a]. **tree-shaped** [HKS97]. **Triangulator** [CLMP95]. **tridiagonal** [EE95, hSM97]. **TRIO** [CPM00]. **TurboNet** [LZM96]. **Twisted** [Bru92]. **Two** [ALV+91, AH91, Bru92, HW00, LS97, MMN95]. **two-dimensional** [LSF97, MMN95]. **Two-Level** [Bru92]. **Two-stage** [AH91]. **type** [PH00b]. **ubiquitous** [FTT97]. **UDP** [DHS99]. **UDP/IP** [DHS99]. **unconstrained** [CB98]. **Unification** [CRM94]. **uniform** [HA90]. **Universal** [CDW94, ZTL98, vdGW97]. **Unix** [MB99]. **unpredictable** [DHS99]. **Unstructured** [Wil89, Wil91, BS94a, DMM98, HBG00, MO95, MJ99, SB99, WB95]. **update** [CDMW94]. **Updating** [Ger90]. **use** [CDMW94]. **usability** [SS96]. **Use** [NBMW91, LP00]. **used** [VBF91]. **useful** [Fah96]. **Usefulness** [CD99]. **user** [KAS98]. **user-level** [KAS98]. **Using** [CRS98, Chr91, CPM00, DF97, HWG92, HS94, Mir91, RRG+99, TDD93, AGMM94, AD95, BFL97, Ben00, CCI+97, Cla97, Fur96, Gor93, GJG96, GH95, HBBK96, HAB99, JDZW99, LL96, LLL98, MLF97, MJ96, RBF98, SH98, SBD+96, SS97, SMO90, SSS98, TNN+98, W96, WCB91, vNM+98]. **utilisation** [To98]. **uv** [Cun97]. **Variable** [AGW97, CSS98]. **Variables** [Ger90]. **variation** [WRMB98]. **various** [DD97]. **vector** [CS95, CW91, TSH98]. **vectors** [LL98]. **verify** [Lin97]. **versatility** [CC97a]. **versus** [KPO00, SCM95, Wad00]. **very** [KSK00]. **via** [PH00a, dR93]. **video**
REFERENCES

Addison:1993:GDB

Averbuch:1994:PPI

References

Adapalli:1997:WWW

Abbas:1998:PBT

Adhianto:2000:TOA

Appiani:1991:EMO

Averbuch:1998:EMD

Armano:1999:CMK

Ahmad:1995:TAU

REFERENCES

CPEXEI. ISSN 1040-3108 (print), 1096-9128 (electronic).

Atwood:1997:PCF

Ahmad:1994:PML

I. Ahmad, A. Ghafoor, K. Mehrotra, and C. K. Mohan. Performance modeling of load-balancing algorithms using neu-

Abu-Ghazaleh:1997:VIS

Ariyawansa:1991:PBP

Ahmad:1995:RMP

Arbab:1993:OMI

Alexandrov:1997:SRI

REFERENCES

Albrizio:1995:POP

Azevedo:2000:AAJ

Anonymous:1997:AI

Anonymous:1998:AI

Ayani:1994:PSB

Acharya:1997:RAM

REFERENCES

REFERENCES

Bak:1996:E

Bak:1999:ESI

Bak:1999:ECI

Bak:1999:EAD

Bak:1999:SIM

Bal:1992:FTP
Battiti:1991:RMV

Brunschen:2000:OCP

Bhatia:1997:WVP

Baillie:1991:CIA

Brorsson:2000:SIE

Burdette:2000:DBT

REFERENCES

Brindle:1999:EPP

Beca:1997:JEC

Bartoli:2000:SAS

Boisvert:1998:DNL

Bacci:1995:PSH

Becker:1993:PSH

REFERENCES

Breg:1998:JRP

Berggren:1994:SAP

Benkner:2000:OIH

Brochard:1992:CDM

Brochard:1992:DAR

Baraglia:1997:EWA

REFERENCES

[BGZ97] M. Bednorz, A. Gwozdowski, and K. Zielinski. Contextual

REFERENCES

Beton:1991:TRE

Bozyigit:1997:PJI

Boloni:2000:ABS

Baxter:1996:EPF

Berrendorf:2000:PCO

Boillat:1990:LBP

Beavis:1992:PDD

S. T. Barnard and H. D. Simon. Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Concurrency: Practice and Experience,
REFERENCES

REFERENCES

Bishop:1993:EMA

Baritompa:1997:PMB

Badia:2000:ITE

Bik:1997:JPJ

Butcher:1994:GSL

Brehm:1998:PMS

REFERENCES

[CCF+97] Bryan Carpenter, Yuh-Jye Chang, Geoffrey Fox, Donald

REFERENCES

REFERENCES

[Cheng:1999:CFI]

REFERENCES

[CKV98] Denis Caromel, Wilfried Klauser, and Julien Vayssière. Towards seamless computing and meta-computing in Java. *Concur-
Cierniak:1997:JTO

Cierniak:1997:OJB

Chrisochoides:1997:COH

P. Crooks and R. H. Perrott. An automatic data distribution generator for distributed
REFERENCES

http://www3.interscience.wiley.com/cgi-bin/fulltext?ID=10008696&PLACEBO=IE.pdf

Coen-Porisini:2000:UTD

Ceccarelli:1993:CNN

Crandall:1995:PAS

Chuang:1994:EPU

Chandy:1998:UAL

Special Issue: Java for High-performance Network Computing.

Chang:1995:CSM

Cierniak:1997:PBP

Chrobot:1998:AIP

Cunha:1997:BSB
REFERENCES

REFERENCES

Daniel:1996:EAP

Dowsing:1998:PSS

Diekmann:1998:PDU

DiSerafino:1992:FPS

deLeone:1993:MPS

Diniz:1999:STP

C. T. H. Everaars, F. Arbab, and B. Koren. Dynamic process composition and com-
munication patterns in ir-
regularly structured applica-
tions. *Concurrency: Prac-
tice and Experience*, 12(2-3):
CODEN CPEXEI. ISSN
1040-3108 (print), 1096-9128
(electronic). URL http://
www3.interscience.wiley.
com/cgi-bin/abstract/72504935/
START; http://www3.interscience.
wiley.com/cgi-bin/fulltext?
ID=72504935&PLACEBO=IE.pdf

Eidson:1995:IFB

T. M. Eidson and G. Er-
lebacher. Implementation of a
fully balanced periodic tridiag-
onal solver on a parallel dis-
tributed memory architecture.
*Concurrency: Practice and Ex-
perience*, 7(4):273–302, June
1995. CODEN CPEXEI. ISSN
1040-3108 (print), 1096-9128
(electronic).

Eigenmann:1993:RFP

R. Eigenmann, J. Hoe
finger, G. Jaxon, Z. Li, and D. Padua.
Restructuring Fortran pro-
grams for Cedar. *Concurrency: Prac-
tice and Experience*, 5(7):
553–573, October 1993. CO-
DEN CPEXEI. ISSN 1040-3108
(print), 1096-9128 (electronic).

Eppinger:1991:OSM

A. Eppinger. Object-oriented
simulations in mechatronics.
*Concurrency: Practice and Ex-
perience*, 3(4):387–397, August
1991. CODEN CPEXEI. ISSN
1040-3108 (print), 1096-9128
(electronic).

Erhard:1992:NST

W. Erhard and M. Schafer.
Numerical simulation of three-
dimensional thermal convection
on the array processor DAP
510. *Concurrency: Practice and Ex-
1992. CODEN CPEXEI. ISSN
1040-3108 (print), 1096-9128
(electronic).

Fahringer:1996:EUW

Thomas Fahringer. On estimat-
ing the useful work distribution
of parallel programs under P3
T: a static performance esti-
mator. *Concurrency: Practice and Ex-
1996. CODEN CPEXEI. ISSN
1040-3108 (print), 1096-9128 (electronic). URL http:
REFERENCES

REFERENCES

Fidanov:1997:LAS

Fox:1997:PFJ

Fox:1989:PCC

Fox:1991:APP

Fox:1991:PC

Fox:1997:EJC

REFERENCES

REFERENCES

Gupta:1998:TOC

Gimenez:1997:BJM

Gorton:1996:RPS

Germain:1996:VAM

Gebremedhin:2000:SPG

REFERENCES

wiley.com/cgi-bin/fulltext?
ID=76500356&PLACEBO=IE.pdf

Gerogiannis:1989:HCD

Gil:2000:PVT

Gorton:1993:PPD

Gladych:1998:CRJ

Special Issue: Java for High-performance Network Computing.

Grabienski:1991:DPM

George:1997:ASS

REFERENCES

Geist:1992:NBC

Garg:1997:PMD

Gray:1997:IDC

Grossner:1998:JSP

Guerraoui:2000:SIE

[Rue00] Rachid Guerraoui. Special issue: European Conference on Object-oriented Program-
REFERENCES

Grimshaw:1993:NPG

Haupt:2000:GSU

Hummel:1997:AJB

Hansen:1993:MPC

Hansen:1993:PCA

Hansen:1994:DHS
Hansen:1994:SPL

Hansen:1998:CGS

Hansen:2000:LEP

Hisley:2000:PPE

Hu:1998:OMA

Heber:2000:SAW
Gerd Heber, Rupak Biswas, and Guang R. Gao. Self-avoiding walks over adaptive

Hui:1996:SPP [HHA96] Chi-Chung Hui, Mounir Hamdi, and Ishfaq Ahmad. SPEED: A parallel platform for solving and predicting the performance of

[Hamidzadeh:1995:DST] B. Hamidzadeh, D. J. Lilja,

Hoogerbrugge:1995:ENP

Hall:1998:APC

Hummel:1997:SPJ

Hoare:1991:TOP

Hockney:1995:CS

Hariri:1994:CSH

Ho:1992:ECP

Hanson:1990:SPP

Homer:1994:USS

Sun:1997:PCS

Special Issue: Java for High-performance Network Computing.

REFERENCES

http://www3.interscience.wiley.com/cgi-bin/fulltext?ID=10050409&PLACEBO=IE.pdf
Special Issue: Java for High-performance Network Computing.

Jagannathan:1997:GHL

Justo:1999:APP

Jezequel:1996:BGC

Jones:2000:AJC

REFERENCES

wiley.com/cgi-bin/fulltext?
ID=72516222&PLACEBO=IE.pdf

Jackson:1996:PAD

Khaddaj:1991:SRE

Karl:1998:BGB

Karimi:1999:SDT

Kohli:1998:IUL

Keren:1998:APP

REFERENCES

Keane:1996:PSF

Keane:1999:COF

Krall:1997:CBJ

Kim:1990:SPA

Ki:1997:CSD

REFERENCES

REFERENCES

Kuhn:2000:OVT

Knop:1996:FSC

Kenyon:1995:PPC

Konstantopoulos:2000:EPA

Koide:1997:NMA

Kindler:1996:PSM

[LA95] Landry:1995:IFS

[LACL00] Lastovetsky:2000:PLP

[LCLL97] Lu:1997:WBD
REFERENCES

Leuze:1989:MDM

Leon:2000:ARP

Lowenthal:1998:ESF

Levine:1999:PCT

REFERENCES

 Laure:2000:IOC

 LHMZ00

 Liebrock:1996:PSC

 Lilja:1995:PTB

 Lu:1995:AAR

 Lin:1997:TDP

S. Lanteri and M. Loriot. Large-scale solutions of three-dimensional compressible flows using the parallel N3S-MUSCL solver. Concurrency: Practice and Experience, 8(10):769–798, December 1996. CODEN CPEXEI. ISSN 1040-
REFERENCES

Lu:1999:ALD

Lu:1998:DLD

LRGS97

Leon:1997:POP

Lee:1997:PIR

LP00

Lin:2000:SFC
REFERENCES

wiley.com/cgi-bin/fulltext?ID=13810&PLACEBO=IE.pdf.

Li:1997:PAP

Lecomber:2000:PPT

Li:1999:EPS

Li:1996:PD

Li:1997:PGA

Mans:1998:PDP

Murillo:1999:DSU

Messina:1990:BAA

Mansour:1992:ADM

[MF92] N. Mansour and G. C. Fox. Allocating data to multicomputer

Marsland:1991:NME

Morrow:1999:EIP

Messina:1991:PCP

Mckerrow:1993:IPA

Mansour:1994:ADD

Montoya:2000:PTA

Mirmehdi:1991:PLI

Mullin:1996:EDP

Mcmanus:1999:CBM

REFERENCES

REFERENCES

Mascarenhas:1998:MTP

Marinescu:1993:MED

Mehta:1998:PA

Narasimhan:1996:PMT

REFERENCES

DEN CPEXEI. ISSN 1040-3108 (print), 1096-9128 (electronic).

Orlando:1999:CR

Pande:1995:RIP

Poggi:1999:MOO

Perrott:1992:PLD

Pu:1993:PCD

C. Pu, D. Florissi, P. Soares, K. Wu, and P. S. Yu. Performance comparison of dynamic...

Philippsen:2000:CNJ

Philippsen:2000:LOJ

Philippsen:2000:SCO

Philippsen:2000:MES

Michael Philippsen, Bernhard Haumacher, and Christian

REFERENCES

Pauw:2000:VRP

Protopopov:2000:SMC

Pedroso:1997:WBM

Pugh:2000:JMM

Philippsen:1997:JTR

REFERENCES

wiley.com/cgi-bin/fulltext?ID=13835&PLACEBO=IE.pdf. Special Issue: Java for computational science and engineering — simulation and modeling II.

Selwood:1999:PUT

Schwan:1989:GDC

Schmidt:1993:ADA

Saltz:1991:MRC

Schroeder:1999:SEA

Wayne Schroeder. The SDSC encryption/authentication (SEA)
REFERENCES

Song:1997:ALL

Shirazi:1995:CST

Stephen:1991:VTS

Stein:1993:DAO

Smith:1997:MML

Souder:1998:JCB

[Dan Souder, Morgan Herrington, Rajat P. Garg, and Dennis Deryke. JSPICE: a component-

Shah:2000:FCS

Sarmenta:1998:TBB

Silva:2000:HPC

Smith:2000:DPM

Sturtevant:1992:PPP

REFERENCES

Skvoretz:1992:PAD [SSB92]

Suzuoka:1997:PDT [SSG97]

Singh:1998:EPP [SSS98]

Scott:1989:TPO [ST89]

Shadid:1992:SIA [ST92]

Stankovic:2000:OJS [Sta00]
REFERENCES

Y. Ansel Teng, Daniel Demethon, and Larry S. Davis. Region-to-region visibility analysis using data parallel ma-
REFERENCES

Roberto Togneri. Parallel program analysis on workstation clusters: Memory utilisation

REFERENCES

[VNL98] Steven P. Vanderwiel, Daphna Nathanson, and David J. Lilja. A comparative analysis of parallel programming language complexity and performance. Con-
REFERENCES

Matt Welsh and David Culler. Jaguar: enabling efficient com-

REFERENCES

REFERENCES

D. W. Walker, M. Li, O. F. Rana, M. S. Shields, and Y. Huang. The software architecture of a distributed

REFERENCES

Oiwa Yutaka, Kenjiro Taura, and Akinori Yonezawa. Ex-

Zhou:1998:LST

Zoraja:1999:SPD

Zimmermann:1991:VSM

Ziavras:1999:ECC

Zomaya:1992:TAO

Zomaya:1992:HET

A. Y. Zomaya. Highly efficient transputer arrays for the computation of robot dynamics. *Concurrency: Practice

Zhu:1999:PSA

Ziaavras:1993:PMH

Ziaavras:1994:HEH

Zhu:1998:SUP

Zhang:1993:MVM