
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
29 April 2019
Version 1.464

Title word cross-reference

(2, 2) [KSSY12, LTC+15b], (K, N)
[Bai10, YC11], (n, t, n) [LHYZ12], (t, n)
[QD16, ZPWY12]. 0 [XHX+17], 1
[XHX+17]. 1, 2, 3 [SMDS11]. 11 [LJ17]. 13
[Bl05]. 2 [DBPS12, EAA+16, ESS12, JR13,
MCDB12, PGL10, WY12]. 22 [MNP12]. 2k
[Sun16]. 3 [AP10, CG12b, DWZZ12,
FWS13, GZHD12, GH11a, KWS+12, LJ17,
LJ15, MKH+12, RS16, SS10b, SS12a, SGS14,
WSSO12, tWmC12, YT11a, YI14, YPRI17].
32 × 32 [SA14]. 3 × 3 [ÁMVZ12]. 4
[COP+14, DWZ12, HLYS14]. $49.00
[Sch15a]. 8 [LPO+17]. $99 [APPVP15]. =
[JUW10]. + [PYH+18]. 2 [YNX+16]. 3
[LHM14]. \(MT \) [HRB13]. \(\alpha \) [TTL10]. c

[KRDH13]. \(d \) [QD16]. \(d \times d \) [KA17]. \(\ell \)
[ZTL15]. \(\mathbf{F}_p + \nu \mathbf{F}_p \) [WGF16]. \(\gamma \) [DWZ12].
GF(2)[x] [SF12]. GF(2\(^m\)) [SKH15]. GF(2\(^n\))
[LBOX12]. \(K \)
[FXP12, FR16, CHX13, ZHT16].
\(L(1/4 + o(1)) \) [Jou13]. \(M \) [MMSD13, ÖS11].
\(\mathbf{F}_{p^{e p s o}} \) [AMORH13]. \(\mathbf{F}_q \) [SS13]. \(\mathcal{N}/\mathcal{P} \) [HN10].
GF(q) [LPdS10]. LWE [BV14]. \(\mu \) [Jia14a]. \(\mathcal{N} \)
[FR16]. \(n \times k(k \geq n/2) \) [MC11]. \(O(d^{13}) \)
[KA17]. \(O(n^2) \) [KS11]. \(P \) [DG17]. ±1
[HZW+14]. \(q \) [GMS11]. \(S \) [LJ15]. \(t \)
[HHM+11, Oba11]. \(w \) [Kre13].

-band [MMSD13]. -Bit [LPO+17]. -boxes
-dimensional [DWZ12, QD16]. -Diversity
[ZTL15]. -Encoded [DG17]. -Encoding
[XHX+17]. -Means [KRDH13]. -Multiple
[LTC+15b]. -NN [ZHT16]. -Party [JR13].
-trimmed [TTL10].

.onion [Boy16].

0.13um [KLM+12].

5G [CML+18, FMA+18]. 5th [BYL10, vDKS11].

6 [Ano17b, Bai12, Mur10]. 65th [Nac12].

72 [HYS18]. 768-bit [KFL+10].

8.8/11.2 [GLIC10]. 802.11 [FLH13, ZBR11]. 802.11s [BOB13]. 802.15.4 [NBZP17]. 802.16e [CL11]. 85 [WZM12a].

accumulator-based [LZY16]. Accumulators [PTT16].

Accuracy [CC14, Sar10a], accurate [HQY16], Achieve [BBC+13, Tan15a], Achieved [YM16, Goo12], Achieving [BN14, KTIU16, LW12, Pan14, PH12b, SL12, TK19]. ACIS [ANO11a]. ACM [ACM10, ACM11, ORM+10]. Acoustic [DLMM+18, GST13]. ACPN [LLG15].

Adam [Bar12]. adapted [IMB17].

Adaptive [CT11a, zGXW12, GLG12, HZW+14, HLAZ15, IAD10, Jin10, KD12a, Lin15, PWLL13, SOL13, CLP+13b, dCCSM+12, dCCSB+16, EEAZ13, FXP12, GKKG11, GLM+16, KS11, LHM14, LW+10, PC14, Sh11, Wan13, WKL11].

Adaptively [HPL14, OT12]. adder [MS13a].

Adding [CFVP16, CSL+14]. Additive [TM18, ZDL12]. Additively [PTK12].

Address [WLY17, PSJ+13]. addresses [AZH11].

Addressing [SVG16, SRB+12].

Adelson [BBB16b].

administration [ZHV14]. Adoption [LKKL13, YWK10b]. Advanced

[Böhl10, CSYY18, DR10, TC10, YWF18, ALL+18, DRF13, GLC10, Kra12, MKR10, NMWM16, SKK10]. Advances

[LLK18, PHWM10, WP15, Abe10, GIL10, LW11a, PJ12, Rab10]. Advantage

[WSSO12].

Adversarial [BAG12, BJ+14].

Adversaries [BC14, XTK10].

Adversary

[Yon12, KS11, LXJ12, ZPY12].

Advertisement [ANO16h, AMHJJ10].

Advertises [AHS13]. AES

[BW16, BBBP13, BKR11, BB10, DGP10, FAA+18, HF14b, LB13, Mar10c, MM14b, PBCC14, SY15a, YWF18]. AES-Like

[BW16]. AET [HTC+15]. Affiliation

[XLM+12, XGLM14, XZW15]. Affiliation-Hiding

[XLM+12, XGLM14, XZW15]. Ane

[AN16h, AMHJJ10]. Ane-transformation-invariant

[GZH12].

Ane-transformation-invariant

[AN17e, BVS+13, BL15, CW12b, CMA14, DZS+18, GDC16, HCTD+12, Sch13, SGL15, SLY+16, WSA15, AAT18, ASBdS16, BBP13, BVIB12, BPR14a, BPR14b, BFK16, BSR+14, BK12b, Bud16, Che15, CG14a, CGCS12, CGH17, DHLAW10, DK17, EWS14, FTV+10, zGXW12, GSC17, HLLG18, JSM18, JHHN12, LGL+12, LLY+12a, LWCJ14, Ma16, MD12b, MNR13, OF11, QRW+18, SEY14, SY15b, SD12, TLL13, WHN+12, Yon12, ZLQ15, ZHS+19]. Age

[Bla12, SR14, Lan17, Sto12]. Aged

[Ree15].

agency [Ald11, ABJ13]. agent

[GPVdBC12]. Aggregate

[CCT+14, PSM17, GLB+18, LLY15, LLY+18, ZQZW10, CLW16]. Aggregated

[LNY15]. Aggregated-Proof [LNY15].

Aggregating [DP12]. Aggregation [BJL16, LHK10, SP15b, ZHW+16, WMY16].

Aging [SKV12]. Agnes [Bur11, Joh15].

Agreement [Chi16, HCL+14, HEC+12, MNS11, TM12, WSS12, XLM+12, XGLM14, XZW15, APK+18, AN15, BGAD12, CSD18, CTL13, DLF+16, GH16, HPC12, HWB12, IS+16, IIV+18, KS11, KIH19, KIP18, KLW+16, KDW+17, LLLS13, LIK+17, NCL13, N11, N14, L5Z15, TLL12, XWK+17, XCL13, XMHD13, XHM14, YZZ+14, ZWQ+11, ZTJ16, ZZC15, OHJ10].

agriculture [APK+18]. Aided

[BGK12, BCGK12, BGB12, GMSV14, Vua10, ABBD13, LLY15, SFG+18, SSA11, WLF17]. AIPISte [AGLW16]. Air

[AUMT16, ZWX+18]. aircraft [XZ18W16].

Airflow [RSCX18]. Airway [RSCX18]. AK
CGH11, FSGW12, GTSS19, HL14, ISC+16, LNK+18b, LHM14, LYL15, LY14, MYYR13, QMC17, VS11, WLS14, YZL+18. ANSI [Ano11b]. answers [Wu16]. anti [QZ14]. anti-forensics [QZ14]. AntiNoise [WXL+17]. Antispoofing [MR14b]. Antoine [AY12]. any [Goo12, LP11]. Apache [Lit14]. API [FLW12]. Append [YNR12b]. Append-Only [YNR12b]. Application [AKP12, AK14, BD15, BRT12, BS12, CCLM13, CCKM16, CCW+10, CSTR16, CLCZ10, CHS15, Kup15, LW11a, LWKP12, MNS11, OO12, SEHK12, SS13, XJW+16, YWK10b, YTS12, ZH15, ZM16, Abe10, BBBP13, BT18, CZ15b, GLIC10, HH15, Jia14b, LGKY10, LWKP14, MSM+18b, NAL17, OTO18, SE18, SGCRM+18, XHH12, YY11, ZWQ+11, ZAC17]. Application-Level [CCW+10]. Application-Specific [BD15]. Applications [AMVZ12, Ana14, BKPV12, Ber18, BKS18, BCG+12b, BJCHA17, BSV12, CLCZ12a, CCLC12b, CPS16, CK18, DK15, FSK10, GKM16, GRL12, HH15, Jia14b, LGKY10, LWKP14, MSM+18b, NAL17, OTO18, SE18, SGCRM+18, XHH12, YY11, ZWQ+11, ZAC17].

Bar15, KMP+11, RBNB15, WL11, Ser12].

Assured [Tan15a, WMYR16]. **Asymmetric** [HG12, XLM+12, XGLM14, XZLW15, ZZQ+19, ZWQ+11, CSS+13].

asymmetric-histogram [CSS+13].

asymptotic [DTZZ12, TD14].

Asymptotically [LPS12].

Attack [Ano15d, BRS17, BMB12, Bro17, Che18, CJP12, DSB15, FXP+17, zGXW12, GV14b, GDC16, HCETPL+12, HLAI15, JH12, JKP12, LLSW16, LGL+12, LJ17, LCLW17, LWP12, LWPF12, MS12b, Pud12, SP13, SDM+12, WLC12, XJWW13, Ano17a, Blo15, BNST17, CJP15, DFDR13, FLZ+12, Goo12, KA17, LLY+12a, LC13, LYH14, LWP14, MBB11, MN12, NZL+15, SB17, SXL16, WYL13].

attacker [PLGMCdF18].

Attackers [BL15].

Attacks [ARP12, Ano17e, BGK12, BFK16, FXP+17, zGXW12, GV14b, GDC16, HCETPL+12, HLAI15, JH12, JKP12, LLSW16, LGL+12, LJ17, LCLW17, LWP12, LWPF12, MS12b, Pud12, SP13, SDM+12, WLC12, XJWW13, Ano17a, Blo15, BNST17, CJP15, DFDR13, FLZ+12, Goo12, KA17, LLY+12a, LC13, LYH14, LWP14, MBB11, MN12, NZL+15, SB17, SXL16, WYL13].

attribute [Fel13].

attestation [FQZF18].

Attribute [EGG+12].

Authentication [HM12].

Authenticated [Alo12, BCO13, BDMLN16, CCL16, CLY14, CCS14, CRE+12, DS11, EAA12, FVS17, FFL12, GTT11, GZ12, HCL12, HCL12, HCL14, HEC+12, KMY18, LHR10, LY16, LH11b, LCCJ13, LTT10, MR14a, MMY12, MMS17b, MHKS14, MSU13, PTT16, Sar10b, SM11b, Tan11, TW14, XLM+12, XCH+12, XGLM14, XZLW15, YS12, YL16, YTA+16, Yon12, ZPZ+16, ZXH16, AIB+16, CTL13, FA14b, FIO15, GPN+12, GLM+11, HPC12, HWW12, H11, HPY10, ISC+16, KMTG12, LWS10, LHH11, LML+13, NCL13, Nos11, Nos14.
PPTT15, PJ18, SMBA10, TCS14, Tso13, TKHK14, WZM12a, WZM12b, WTT12, XWXC14, XCL13, XWZ+18, YC12, YZZ+14, YZL+18, ZTZ16, ZXWA18, ZG10, ZZC15.

Authenticating [BS12, CHX13, GRL12, OKG+12, RGP12, WY12, ZCWS15, Cer18, LGCCGCRP14, PGLL10, ZLDD14].

Authentication [ASO14, AAZ+16, ACAT+15, AUMT16, ABB19, BL12, BCE+12, BCM12, BSSV12, Bel18, BKST18, BCD+12, Bis17, BF11, Boy16, BKJP12, BSV12, CGCGPDMG12, CTC+15, CC14, CSH+18, CCW+10, CCF17, CJ13, CD12, CJIP12, CLH13, DL15, DBPS12, DKPW12, DP12, FLH13, FR16, FMTR12, FD11, GHS14, Gl12, GI12, GM14, GU13, GMV17, GCK12, HZC+12, Hs12, HLLC11, Har13, Hay13, HBC13, HM10, HCPBL12, HCTE+12, HKL+12, HXC+11, HLC11, HRK18, IGR+16, JN12, JCM12, Jia17, JAEP10, KP12, KS18, KR+10, KSD+17, KPC+11, KLY+15, KTA12, KGP12, Kims15, KPKS12, KLM+12, K016, KH10, LLC11, LH12, LLG15, LCLL15, LNZ+13, LZCK14, LXNY15, LL+12, MWZ12, MEFO12, MKH+12, MBC15, MRRT17, MRS+17, May15, MLL12, Mor12, MSKRJ17, MPM+17, NR11, NR12, NJL12, NL15, OdH12, OO12, OS+12, PCDG14, PPRT12].

Authentication [PDT12, PWVT12, RS11, RWWL14, RSN14, SGG18, Saa12a, SBS+12, Sar12, SGC16, Sch+15b, SKV12, ST14, SM12, SD12, Sh11, SGC14, SSA13, SC12, SZDL14, SHS12, SAA12b, SRK+17, TGC16, TYK+12, TM12, Vet10, WGMdZ12, WHZ12, WZXL12, WgMW12, WZCC18, WSS12, WT10b, Xio12, YTP11, YFT17, ZBR11, ZHW+16, ZLD12, ZLDC15, AMN18, AabT16, ABK13, AAM18, Aia15, AL15, AHM+18, APK+18, Alp18, AIK18, ACF16, AZF+12, ATT+10, AN15, ACM12, BS13a, BDM18, BCM13, BGAD12, BLAN+16, BAL10, BMM12, BVOS15, BT18, BTW15, BM11, CLM+12, CML+18, CLP+13b, CTR12, CJXX19, CSD18, CH10, CCSW11, CHS11, CLH13, Ci15a, Ch13a, CJIP15, Cho14, CL11, DCA12, DSCS12, DLK+16, DMV15, DLN12, DZS+12, DMT12, uHAN+18, EA12, ED19, EA11, FPBG14, FHII10a, FLL+14, FPX12, Far14, FA14a, FHZW12, FQZF18].

authentication [FMA+18, GJ13, GMSW14, GDH19, GLPL13, GH16, GAI+18, GCS+12, GLB+18, GTSS19, HU15, HSH11, Ham12, Ham19, HDPC13, HZC+14, HZWW17, HL14, HCM11, HLC16, HCC10, HS11, IMB17, IC17, IG11, IB11, IOV+18, Jac16, JNUH17, JKAU19, Jia16, JKL+16, JMW+16, JAS+11, JXLZ15, KPP16, Kem11, KKG14, KSB+17, KVvE18, Kims11, Kims16, KIH19, KP18, KP17, KLW+16, KDW+17, LLLS13, LLZ+16, LC17, LH11, LT13, LH10c, LMN+18, LMJ11, LXMW12, LNKL13, LXX14, LIK+17, LCM+17, LNK+18a, LWK+18, LNK+18b, LHM14, LH13, Lit14, LLIW11, LTC+15a, LY15, LBR12, LTT10, MM12, MCN+18, MvO11, MMP19, MA17, MMS17c, MK12a, NR17, NACLR12, NCG13, NLYZ12, NB13, OF11, OCG11, OYHS14, PYH+18, PYP10, Par12b, PLGMCdF18, PZBF18, PA10, PAK15, PRN+19, QMC17, QMW17, SPLHCB14, SB17, SGGCR+16, Sar10a, SGJ+18, hSZZ15, SCKH10, SA15, SYW17].

authentication [SSS11, SKEG14, SHBC19, Tan12b, Tan15b, TODQ18, TG17, TTL12, Wan13, WW14, WLZ+16, WCFW18, Wat14a, Wat15, WDKV19, WT10a, WKK11, WWX+17, XH12, XWDN12, XCHH14, XMHD13, XH14, YHL16, YHHS16, YWK+10a, YSL+10, YMM13, YD17, ZYL+10, ZQW10, ZLDD14, ZH+17, ZX11, ZLY+19, ZZL+18, OHJ10].

authentication-chaining [EA11].

authenticators [SY+17].

authenticity [SYY17].

Authority [LSXY15, ZXLW15, ZQQ15, JB11, ZZ12].
Authorization [CS14, LMGC17, MPM+17, YKK18, AL15, DFJ+17, JAE10, JAS+11].

Authorized [HTC+15, LSLW16].

Authorship [BTW15, BAG12, LCM+17].

Autoblocking [YH16].

Automata [CCD15, Gas13, dRsd1VC12, HBBRNM+16, SS11, WOLSI2]. automata-based [SS11].

Automated [CCD15, Gas13, dRsd1VC12, HBBRNM+16, SS11, WOLSI2]. automated [SS11].

Automaton [YH16].

Automata [CCD15, Gas13, dRsd1VC12, HBBRNM+16, SS11, WOLSI2].

Automated [CCD15, Gas13, dRsd1VC12, HBBRNM+16, SS11, WOLSI2].

Autonomous [BT18].

Auxiliary [DL12, GGHW17, XXZ12, YCZY12].

Auxiliary-Input [XXZ12]. Availability [CK11, ADF12, CFVP16]. Available [Ano16d].

Average [Lim11, YL11].

Avoidance [CFZ+10].

Aware [BCF16, LMHH14, LMS16, QLL17, TODQ18, Wan13, ZFH+18].

Awareness [MSas12, Li10, MSas13].

Axiomatic [AT10].

Azure [Sti19].
Based
[WSSO12, WgMW12, WYW+13, Wan14, WZCC18, yWXY+18, WDC18, WLH15, WCL+18, WT10b, WMS+12, XNG+14, XNRG15, XXZ12, XMLC13, XQL11, Xio12, XGLM14, XWLJ16, XJW+16, XJR+17, XHX+17, YE12, YZLC12, YZX+12, YGL15, YT12, Ye10, Ye14, YH16, YTH17, YYO15, Y+17, YKNS12, YHK+10, YW+10, YKC+11, YFK+12, YCZY12, ZP+15, ZJ11, ZX+11, ZDL12, ZHL+12, ZQQ15, ZMW16, ZXYL16, ZMM17, ZPW16, ZVG16, ZPX+17, ZYM18, ZHL15, AM18, AGLW16, AaBT16, AY14a, AHS14, AAT16, ASO14, AKG13, ASVE13, Ar13, AT1+10, AHL+12, BS15, BDM18, BBP13, BGAD12, BAAS13, BOB13, BWR12, BW13, BWA13, BMM12, BC18, BBB16b, BK12b, CPPT18, CML+18, CFI13, CNY10, CCLL11, CTHP13, CJP12, CJP15, CCG10, CTL13, Cho14, Con12, dCCSM+12, Cra11, CDL18, DSCS12, DZ14].

based [DLN13, Dra16, uHAN+18, EZ15, FH13, Far14, FA14a, FA14b, FIO15, Fay16, FHZW18, FNWL18, Gai13, GJ13, GMOGCC15, GMRT+15, GKCK11, GMMP15, GCAddP11, GMS11, GLL+18, HSH11, HT11, Ham19, HGWY11, HMS13, HZC+14, HZL18, HFI14a, HWDL16, HZW11, HZW18, HBBN+16, HL11, Her14, H015, B113, HL14, HL11, HLC12, HLC16, HYWS11, HYS18, HYF18, HPY10, HKKH13, HCC10, Hwa11, IM18, IM14, ISC+16, IB11, IA15, IOV+18, Jac16, JNUI17, JKAU19, JK13, JLT+12, JZS+10, JMW+16, JSMG18, KPP16, K13, KM10a, KHM13, KKG14, Kim11, KGO10, K11, KSH18, LLY12, LZL+16, Lau12, LCL10, LK14, LH10c, LZJX10, LNM+11, LMJ11, LK12, LXLW12, LKAT12, LHS12, LNK13, LJJ14, LCL+15, LZY+16, LFZ+17, LNK+18a, LWK+18, LCT+14, LFWS15, LLM+19, LPdS10, Lin14a, LLY+12a, LW10, LSQ+11a, LSK+11b, LWK11, LW13b, LZZ+14, LPZJ15, LTC+15a, LYL15, LY15, LJJW+17].
based [LJWY18, LDZW19, LW+10, LL16a, LW13c, LWY12, LY14, MCM+18, MCP15, MJJS12, MJS13, ML16, MM12, MM13, Mes15, MBB11, MO14, MHT+13, MG15, M19, M11, NCL13, NZL+15, PPA18, PYY+18, PLPW13, PTK14, PWW10, PGLL10, PPB16, PLGMD18, PS14, PL16, PKA15, PC14, PPR+12, QZD16, QRW+18, QXY16, QMW17, RD17, RG10, RS15, SPLHC14, SGGR+16, SI12, SYL13, SE14, SE16, SH11, SM14, SR10, hSSZ15, SCKH10, SA16b, SSAF11, SWW+16, SSS11, SKE14, Sun16, SM16, SHBC19, SS11, TPL16, TQL+14, T15, TH16, TTT10, TPK12, TKKH14, VS11, VN17, WWY11, WYY11, WLL11, WLFX17, WXX+17, Wan18, WZG+12, WYLH16, WS14, WS12, WTT12, WOLS12, WCCC18, XHH12, XWW16, XW12, XCL13, XWS17, XCH14, XWW+18, XMHD13, XHM14, YYL+17, yYqWq13, Yan14, YTM+14, YCC16, YXA+18, YCT15, YLS12, YSSH10].
based [YKC+12, YLZ+16, YX+16, YL11, ZKA17, ZLW+12, ZC14, ZT14, ZTS16, ZML17, Z12, ZHI+17, ZL12, ZVH14, ZDW+16, ZLY+19, LZJX10, HZC+14, MM12, PP11, ZBR11, Kat13].

Based-Encryption [ZH15]. Bases
[EVP10, TSH14, FES10]. Basing
[Mate14, MN10]. Basis
[BNA15, ERRMG15, CG12b, Har15, LPP+18, Tam15]. Batch
[ZPX+17, AGHP14, CG10]. batch-based
[CG10]. Batters
[Chi13b]. battles
[Ano15e, Ano16f, Sch15c]. Bay
[Ano10, DDS12]. Bayes
[McG11]. Bayesian
[WY+13, ZL+17]. Be
[DSMM14, Par12a, YM16, AZH11, Ana14, Eve15, Ree15, RK11]. Beat
[LTKP16]. BECAN
[LZ+12]. Becomes
[Bra13]. been
[Ana14]. before
[GST12, Goo12]. Beginning
[Ch16].
Behavior [GSC17]. behavioral [HT11].
Behaviors [GAF+15], Behind [Fre10, Sti19]. Beijing [BYL10, Yan10].
Beissinger [Ayu12], Belief [BT12], Bell [JEA+15, QD16]. Benchmarked [MKAA17]. benchmarking [ZZKA17].
Benefit [HB14]. benefits [Wat14a].
Benford-Style [GHS12, GHS13]. biased [LLP+18]. Biclique [BKR11, KDH13].
Bilinear [ADB11, AK14, MBR15, MBF18, SA14]. Bilinear-Ternary [ADB11].
[MCDB12]. **Block-Wise** [SSA13].
Blockchain [Hur16]. blockcipher [CMMS17]. **Blockciphers** [LST12]. Blocks [JSDK+17, Bra15]. Bloom [ATKH+17].
Blowfish [KB10]. BLS [BP18]. BlueKrypt [Gir15]. Boardroom [LHF12]. Bodacious [KM10c].
Body [LZCK14, ASO14, CP18, LIK+17, SGJ+18]. body-sensor [ASO14]. bogus [XWDN12].
Bombe [Bur11, Car10]. Boneclike [SSA13]. Bonebrake [SS10c]. Bonebrake [TK19]. Book [Ano15b, Ano17b, Ayu12, Bar12, Dew11, Fu10, JDB10, Kob15, Kob10, Low12, Mei10, Mur12, Sch15a, Sha10, SR14, Ter11, To12].
Boolean [ACZ16, AS17, CW14b, DQFL12, Mur10, Sch15a, Sha10, SR14, Ter11, To12].
Boolean-based [CW14a, YCC16].
Bootstrapping [BGV14, GM14]. **Border** [LGM+16, ZTSR12]. **BotMosaic** [HB13].
Botnet [NS15]. botnets [HB13]. **Bottom** [Sm11b]. Bound [LST12, TK19]. **Bounded** [GW12, GJO+13, PSM17, QZ18, S12a, ZYT13, IM14]. bounding [PYH+18].
Bounds [Jia17, LJ15, SNN11, S110b, Sha10].
Bouzefrane [Ano15b]. Box [BW16, BCGN16, BR14, CPS16, HHPI17, KMO14, Mic10b, Rja12, SS10b, Kos16, LR13, MS13, RMP10, SFGFRM+18, ZZ12, ZSW+18a]. Boxes [NN12, LJ15, S111].
BRAMs [DG10, Branch [MPG16]. Branchless [RBS+17]. Brave **[KM10c].**
Break [SD12, JB11]. Break [Ayu12, Win17]. **Breakers** [St15, Mun17].
Breaking [AP13, CN12, Che18, Cop10a, KS11, TPL16, WGMdZ12, Ant14, Bri11].
Breaks [Ano17e]. breakthrough [Goo12]. breath [LSR13]. Breathing [CSH+18].
Breathing-Based [CSH+18]. **Bregman** [CCZC13]. **Bribeny** [CW12b]. Bridging [LRVW14, TMGP13]. **Briggs** [Bat12].
Bring [Zha15a]. Bringing [Ano15c, OYHSB14]. Britain [Ald11].
British [And13]. Broadcast [BS14, GMV17, HMR14, KH10, LGM17, LMG+18, PSM17, PPS12a, WQZ+16, XJW+16, Yan14, ZHW15, CPPT18, DNL13, WWYY11, XWDN12, YMM13, ZWQ+11, ZZ12, Zhu13]. Broadcasting [OO12, MK11, OCGD11, YY11]. broke [Bat10, Hea15]. Broken [MDAB10]. **Broker** [TK14]. **Broker-Less** [TK14]. **browser** [GJ+12]. browsers [R15]. **Bruce** [Sev16].
Brute [CJP12, JR14, CJP15]. Brute-Force [JR14, CJP12, CJP15]. **BRW** [CMLRHS13].
BTC [CLF11]. **BTC-compressed** [CLF11].
Buchwald [AB13]. **Bucket** [KKK10].
Buyer-Friendly [Fra16]. **BYOE** [Tan17a]. byte [Hof15, Hof16]. bytes [PDNH15, QZZ18, SS12a, ZYT13, IM14].
Byzantine [KS11, LKA19, YKGK13]. Byzantine-resistant [YKGK13].
C [AD12, ACZ16, Cra14, DGINJ14, C1G2 [LK12a]. CA [ACM11, DUN12b, K11, Lin14b, Pie10, Rab10]. **CABA** [MSK17].
CABE [XHH+17]. **Cache** [AB15, ADR18, DKMR15, HLAZ15, SY15a, DFL12, DK17].
CacheAudit [DKMR15]. **Caches** [LLG16, CDPAL16, DL1+12]. Caching [A18R, HLAZ15]. **cackled** [Bat12]. **CAD** [PGL10]. **Caernarvon** [KMP+11].
Calculus [MR10, Jou13]. **Calibrated** [LC15]. **California** [Ano10, IEE11b]. Call [Ano16a, Ano16b, Ano16d, CS14, KRM+10].
Call-Back [KRM+10]. **Calls** [Mur16]. cam [PKS18]. Cambridge [ACM10, PJ12].
Camellia [Bla15, LWKP12, LWKF12, LWKP14, SEHK12]. Camellia-192 [Bla15].
cameras [MKH+12]. Can [Ako12, AZH11, Bar15, DSN14, Y16, R11, R15, S10, GMMV17, LMS16].
Canada [JY14, MV12]. Cancellation [DLMM+18]. **Candidate** [GGH+16a].
candidates [ABM+12]. canonical [Bul10a].
Chaotic [BGGH11, IAD10, Ye10, GCH15, ISC16, KLW16, LWK18, LW10, NES14, WGZ12, ZT14]. Chapman [Fu10]. Character [SI12b]. Characteristic [BGJT14, SR10, BGJT13, Jou13].

Characterization [ALR13, BS13b, DPCM16, YZLC12, PLGMCdF18]. Characterizing [Ash14, JR13, MPJ16].

Choquet [SH11, SM11, SNM14]. Chosen [FSGW12, zGXW12, HLW12, HPY10, LCT14, LJC12a, LLML12, MH14, RS10, WWHL12, GLM16, GH12, LJC14].

Chosen-Ciphertext [RS10, FSGW12, LCT14, GH12, LJC14].

Church [ABJ13]. CHURNs [RBNB15]. Cipher [BW16, BFMT16, BCG12b, CMLS15, CGCS12, DM18, DG12, DWW12, Fis15, FXP17, GLLSN12, GCS13, HZ11, Hey17, IOM12, JKP12, KR11, KWS12, LPS12, LW12, LJC17, LWKP12, LWPF12, MRT12, MHC12, MS12b, OGG15, PH12a, PRC12, WSSO12, WHN12, YLC17, ZAG19, AMS10, BNY14, CR12, FVK17, HKT11, Hol12, Jeo13, KDH15, Lew10, LC13, LYHH14, LWKP14, MNP12, PL16, Rec15, RS14, Sar11, WYL14, WWBC14, ZSS18a, LGL12].

Ciphers [ABS12, BMS12, BSS13, BKLS12, Bru12, CWP12, DGI12, DJG15, EGG12, EKP13, GT12, GST12, GNL12, Has16, Hey17, IS12, KE19, KPC16, Kla10, LCL17, LLML12, LJ16, MD1b2, NN12, Pud12, Sasi12, SEHK12, Vua10, WH18, WW12, Xie12, ZH15, ZSW12, Zha12, Bay10, Bia12, Bior10, Die12, KM10a, LWK11, MRT10, MH15, MH18, QQGL13, SKK10, TQL14, WB12].

Ciphertext [BDPS12, CWWL12, zGXW12, HLW12, JMG16, JSMG18, KA17, LJC12a, LLML12, MH14, PDNH15, PPS12b, Rao17, RW12, RS10, SSW12, VSR12, WWHL12, XMLC13, XWJ16, ZHW15, CPPT18, FSGW12, GLM16, GH12, HPY10, HJK13, KTT12, LCT14, LFWS15, LJC14, LDZW19, QRW18, RD17, SGM16, WLFX17, XWS17, LAL15, LHL15].

Ciphertext-only [KA17]. Ciphertext-Policy [Rao17, XMLC13, XWJ16, ZHW15, JSMG18, LFWS15, LJC14, LDZW19, QRW18, RD17, SGM16, WLFX17, XWS17, LAL15, LHL15].

Ciphertexts [LLPY19, Sta12, WQZ16, AHL12, LCT14, NMP13, WXLY16]. Circle [SC10]. Circuit [Kar12, MTY11, XWS17, XWJ16, Lau12, MS13a]. Circuit-Size [MY11]. Circuits [AIK14, AS17, BR14, GGH16a, GH11a, GVW15, MFB18, SS10b, SS12a].

Classification [HPC10, HS18, KA1K17, SGP12, LZ17, LHL18]. Classifiers [KGV16, LCM17]. classroom [Pow14].

Claudius [Hol12]. CLEFIA [LWZ12, TSSL11, TS16a, WB12]. CLEFIA-128 [TSSL11]. CLEFIA-type [WB12]. Client
[ASM12, CTC+15, FD11, RAZS15, Vle12, FA14a, FA14b, hSZZ15, WT10a].

Client-Based [ASM12], Client-Centric [Vle12], client-server [FA14b, hSZZ15].

Clients [Chi16, LLPY19, LH13].

cooking [NZL+15]. Close [Wal18]. Cloud [AJA16, BÇQ+13, BCK17, CCL+14, CWL16, CDFZ16, CCT+14, CLW16, DXA14, FCM14, FPY15, JLS12, KMSMY15, KS18, KKA15, Küp15, LA15, LLPY19, LYZ+13, LGR14, LLC+15, LNYX15, MLO17, PSH17, Pet12, RSGG15, SGG18, SGJ+18, SHH17, SRAA17, TV15, Vle12, WLFX17, WWW17, XKG15, XWSW16, XMLC13, XWLJ16, XJW+16, YDH+16, YHL16, YXA+16, YMC+17, ZZQ+19, ZDL12, ZLDC15, ZVG16, ZLW+17, ZZZ+18, AAT16, AKKY17, AZP14, ASO14, AAZ+16, AAK+17, ADH17, ALL+18, BG14, BK12b, CFVP16, CSH16, CZ15b, CDL18, FH13, FNWL18, GLB+18, GZS+18, HSM13, HZW18, HY18, IMB17, JEO13, KKA14, KKM+13, KKM+14, KBB+17, LXX+14, LZY+16, LAL+15, LW13a, LYL15, LHL15, LCY+16, LCZ71, MLM16, NR17, Nam19, NB13, PPA18, PP11, RAO17, SY+17, SAR19b, SLM10, SKB+17, SWW+16, SWW+17, TLMM13, WL12, WSC14, WMX+17, WLS14, WCCH18, WL19, XXX15, WXY+18, YYS+16, YZC17].

cloud [YHHM18, YQOL17, YWT+12, ZYV+17, ZVH14, ZD+16, ZWS+18, ZFH+18, ZLY+19, ZHT16].

Cloud-aided [SGJ+18, WLFX17].

Cloud-Based [KKA15].

Cloud-Manager-Based [KKA15].

Cloud-of-Clouds [BCQ+13].

Cloudier [CFE16].

Clouds [BCQ+13, RSN14, HFT16, IC17, JKL+16, LFWS15, LL16a, WU17, YNX+16].

Clustered [DS11, KS18].

Clustering [KRDH13, VSV15].

CMAC [SKK10].

Co [MBR15, MRL+18].

Co-Design [MRL+18].

Co-Processor [MBR15].

cocktail [OHJ10].

Code [AD12, Bud16, CCL+13, Cop10a, Fox13, HG12, KSSY12, Mun17, PYM+13, SS13, Sen17, Sti15, War11, ABBD13, Ant14, Bha16, Bri11, CCLL11, GIJ+12, MCP15, McG11, McK12, Moo14, OF11, PA10, Wes15].

Code-Based [HG12, SS13, Sen17, MCP15].

Code-breaking [Ant14, Bri11].

Code-cracking [War11].

Codebreakers [Ano11c, Bud16, Maf16, McK12, Smi11a].

Codebreaking [Bai12, Cop10b, McK10, McK11].

Codes [Ano19, BBC+13, Bay10, PKST18, DBPS12, DPW18, FMV14, GMS15, Gri15, HC17, KW14, MBR15, OTD10, SEY14, ST14, TLW12, WGF16, WSS12, Xie12, YTP15, Yek10, ATI+10, Bul10a, C475a, Chi13a, Fag17, Hea15, LTT10, MG15, OŠ11, Tan15b, YSIL14, Ayu12, Low12].

Codevelopment [DF16].

Coding [Che11, CWL16, CJ13, CG14a, DG17, He12, LCLL15, Per13, AZF+12, Bul10b, CJX19, DTZZ12, JYS+10, KM11, LLP+18, NDNR13, OF11, Tan15b, YTM+14, Kim15].

CoDiP2P [NCCG13].

Codon [HEK18].

Coefficients [BDB14].

Coercion [CW12b].

Cognitive [PP11, Kim11, OK18, RPG12].

Cog [Ara13].

Coin [ALR13, CLP13a, DSSM14, Mat14, BB14, Wag16].

Coins [Fok12].

CoinTerra [BH15].

COIP [BCF16].

COIP-Continuous [BCF16].

Colbert [Dew11].

Collaboration [CRE+12, PPCP14, HYS18].

Collaboration-Preserving [CRE+12].

Collaborative [LT14b, HB13].

Collect [Sch15c].

Collision [BK12a, ZL12, AKY13, SKP15, SBK+17].

Collision-based [ZL12].

Collision-Resistant [BK12a].

Collusion [MMSD13, RVH+16, FLZ+12, GMRT+15].

Collusion-resistant [GMRT+15].

Collusions [GVW12].

Color
BK12b, LR15, SSAF11, TLMM13].

Compute [Vai12]. Computer [BGK12, BCGK12, BGB12, Bul10b, DF16, Gas13, IEE10, IEE11b, IEE13, LL15, Orm16, Ter11, Vua10, ABBD13, DK12, FGPGP14, PHWM10, Sta11b]. Computer-Aided [BGK12, BCGK12, BGB12, ABBD13].

computers [Cop10b, LCKB12, Mac12, MvO11, PHWM10]. Computing [Aeon10, ACM11, Aja16, Aoo17c, BGC12b, Cer14, CGB10, DXA14, EAA12, FES10, Gao10, KMS15, KPI17, LCK11, LTI14a, LYZ+13, LLC+15, LLGJ16, LNYX15, MLO17, OS16, PAF18, Pet12, SJWH+17, SLIM10, Vai11, Vle12, XMCL13, XWJ16, YE12, YHL16, ZLDC15, AnBT16, Aa+16, An13, Cz15b, CSTR16, DKL+16, DWZ12, HSM13, HY18, Jeo13, JSMG18, KKA14, KKM+13, KKM+14, KSB+17, KH18, LXX+14, LYL15, LHL15, MS12a, NAM17, NCCG13, PPA18, PP11, PAK15, QZJD16, QW+18, Rao17, Tan12b, WSC14, Wan18, WDKV19, WLS14, WL19, XXX15, XWY+18, YHIM18, YWK+10a, YQOL17, YY11, ZWS+18, ZLY+19, ZSW+18b, YX+18].

Conceal [EEAZ13]. Concept [TM15]. Conceptual [PMZ12, SPM+13, TSH14]. Concrete [BS14]. Concurrent [CLP13a, FCM14, GJO+13, MRR13, OOR+14, AKG13, SRB+12, XLWZ16].

Condition [TD14]. Conditional [HBCC13, KPW13, LLG15, LSLW15, MLO17, JXW+16, FSFW11, FSFW12, HWD16, HY18, IOV+18, LCT+14, PZBF18, SKB+17, Tan12b]. Conditionally [ZJ14]. Conditions [Aeon17d]. Conference [BC11, CGB+10, CHe11, Cra12, Dan12, Dun12b, FMB12, GLIC10, IEE11a, JY14, LCK11, LW11a, LTW11, Lin14b, PJ12, SNJ11, Sah13, Yan10, AB10a, Abe10, BY10, BL10, GII10, GII10, HWG10, Kia11, LHI10a, Pie10, Rab10, vDKS11]. Confidential [HS11, AZPC14]. Confidentiality [BFK+10, HLLC11, OFMR16, SZQ+17, WDDW12, Bia12, CHX13, ZHT16].

Confidentiality-Preserving [OFMR16, SZQ+17]. Configurable [CVG+13]. Configuration [Bi17, SHB19].

Consecutive [Tan12a]. Consensus [ABCL17, JSK+17, LLKA19].

Consequences [Ess17]. Consideration [CJP12, CJP15, KM10b]. Considerations [KD12b]. considering [MLMSM12]. Consistency [BCK17, SES+16].

Consolidated [KKA14]. Constant [App14, AEHS15, CWL12, KOTY17, KHP16, KMO14, LP11, Pan14, ZM16, AHI+12, DWZ12, LCT+14, SGM16].

Constant-Round [KOTY17, KMO14, LP11]. Constant-Size [AEHS15, AHI+12, LCT+14, SGM16].

constants [DWZ12]. Constrained [BS15, CSH+18, EAA12, JMG+16, YN12a, Yon12, DMV15, KAS15, LZZ+16, LCL+17a].

Constraints [CCM16]. Construct [SGY11, WT13]. Constructed [Ye10, ZH15]. Constructing [CDS14, ZSW+12, HRV10].

Construction [BWLA16, DF11, EM12, FZT14, GWWC15, HHP17, KMO14, MSas12, Rog16, Sari10b, ST14, WZ15, WCL+18, WMS+12, XHZ+17, LFZ+17, MS13, SA14, YWL+17, YT11b, YKC+12, ZCLL14].

Constructions [BCF+14, DQFL12, HLI10b, KOTY17, SNJ11, SES+16, CZZ15a, CGKO11, NAL17, Zim10].

Constructive [Mau12, WB12]. constructs [BP10]. Containing [XWDN12].

contemporaries [LCKB12]. Contemporary [Opp11]. Content
[ADR18, BCP14a, MHT+13, PMZ13, PZPS15, WHZ12, WZXL12, YT12, ZXZ+11, GPN+12]. Content-based [MHT+13].

Continual [BKKV+10, XZY+12, YZ12, YCYZ12]. Continual-Leakage [YZ12]. Continually [DLW11]. Continuous [ACAT+15, BCF16, DHLAW10, uHAN+18, FMNV14, MSKRJ17, PYP10, Sch15b, Yam12, ZY17a, ZYM18, BTW15, PLGMD18].

Continuous-Tone [Yam12]. contract [MMP19, Men13b]. contrat [DDD14, GLW13, LWL10a, MM14a].

Contributory [WQZ+16]. Control [ATS15, BFK+10, DLZ+16b, HHS+15, LGM+16, MM17, MK12b, NA10b, QZL+16a, RSN14, SGC14, TBCB15, XMLC13, YTH17, ACK+10, AMHJ10, CLH+16, CO11, Cra11, FNWL18, FS18, GHD19, IAS+11, LCL+17a, LCL+15, N/Z10, QCX18, Sch15c, SA15, Tan12b, Wan18, XHH12, ZML17, ZVH14, ZWS+18, ZH+18, ZZL+18].

Controllable [FH13, ZLDC15, ZHT16]. Controlled [FMTR12, WP17, Har16]. Controller [GMV17]. Controllers [AMH+16].

controls [CGHI1]. controversy [McG11].

conundrum [Eve12]. Conversations [WBC+10]. Converse [KPK12].

Conversion [BJ10]. Convertible [CLL16, LH11b, HL1, LHH11, XWXC14].

Convolution [DWZ18]. convolution [MG15]. cookies [DCAT12]. Cooperative [LLZ+12, SJW+17, ZLDC15, WQZ+13].

Coordinate [YYK18]. Coppersmith [Dra16]. coprocessor [ABC+12, BGG+13, IBM13b].

coprocessors [GCVR17]. Copy [YT12, MHT+13]. Copyright [SJ12, GJ13]. Core [LB13, YWF18, YS15, RSI7, HLYS14].

Correction [LSC+15, yWXY+18, Chl13a, Sun16]. Correctness [YGS+17, WS13]. Correlated [RS10, Jia16, ZPZ+16]. Correlation [BW12, FAA+18, LD13, SMD+12, WWB14, XHH12, YCL17]. correlations [Sar14]. Correspondence [SY14].

Cost [ABC+17, AMH+16, CML15, CJP12, GJ12, HLT+15, Man13, NVM+17, WMX+17, CZ14, CJP15, LEW19, Sar10a, YL11].

Cost-Effective [HLT+15, WMX+17].

Counter [ARP12, Fay16].

Counterexample [KPK12]. Counterfeit [YFT17]. Counterfeiting [Ano16e].

counterfeits [GSN+16]. Countermeasures [BBB+16a, MD12b]. Countermeasures [BGN17, DZS+18, EWS14, PZPS15, DK17, FAA+18].

counting [LLY+12a]. Coupling [SMS14]. cover [UUN13]. Covert [EPAG16, JRT+16, NSA15, LT13, LyWS10, SRB+12].

CovertBand [NTKG17]. Cozzens [Led16, Sch15a]. CP [TY16a, YMC17].

CP-ABE [YMC+17]. CPM [PYM+13].

CPS [FQZF18]. CPU [ZBP18]. Crack [Fox13]. cracked [Ano13b, Mcg11, McK12, Mool14].

Cracking [Gri15, GAS+16, War11].

Crisis [Odh12]. Criteria [PYS18, ZZKA17].

Criteria-Based [PYS18]. crittografia [Sac14]. CRM [LHM+15]. Cropping [SR12b].

Cross [AKK+17, CLY14, DSB15, LHM+15, MV16a, YGFL15, ZY18].

Correcting [ATT+10, LTT10, MCP15]. Correction [LSC+15, yWXY+18, Chl13a, Sun16].

Correctness [YGS+17, WS13]. Correlated [RS10, Jia16, ZPZ+16]. Correlation [BW12, FAA+18, LD13, SMD+12, WWB14, XHH12, YCL17]. correlations [Sar14]. Correspondence [SY14].

counting [LLY+12a]. Coupling [SMS14]. cover [UUN13]. Covert [EPAG16, JRT+16, NSA15, LT13, LyWS10, SRB+12].

CovertBand [NTKG17]. Cozzens [Led16, Sch15a]. CP [TY16a, YMC17].

CP-ABE [YMC+17]. CPM [PYM+13].

CPS [FQZF18]. CPU [ZBP18]. Crack [Fox13]. cracked [Ano13b, Mcg11, McK12, Mool14].

Cracking [Gri15, GAS+16, War11].

Crisis [Odh12]. Criteria [PYS18, ZZKA17].

Criteria-Based [PYS18]. crittografia [Sac14]. CRM [LHM+15]. Cropping [SR12b].

Cross [AKK+17, CLY14, DSB15, LHM+15, MV16a, YGFL15, ZY18],
ZXH16, ZTSR12, SS17, der10].

Cross-Border [ZTSR12]. Cross-Domain [CLY14, YZL+18]. Cross-group [AKK+17].

Cross-Layer [LHM+15, ZXH16].
cross-matching [SS17]. Cross-Site [DSB15]. Crossword [Mar10a]. Cryptis [GSC17]. Cryptanalysis [BW12, Bor10, CWPI12, CGCS12, DGL12, DJG+15, Far14, GST13, Gor10, Him10, IOM12, Jeo13, Kha10, KN10, KWS+12, LHIb, LNM+11, LJF16, LJ16, MWZ12, NXB13, OTD10, PSOMPL13, SPLHCB14, SM10a, SM10b, TY16a, TG17, Vua10, Wag10, WWYZ11, WWY11, WSSO12, WY14, XQL11, YCL17, YMWS11, AP11, BMB16, BKR11, Bul10a, Bul10b, Con12, Eis10, FVK17, Her10, KDH13, LLLK10, LFW+16, Nov10, RITF+11, SDM10, SDM14, Sun11, SvT10, Tam15, TSS11, WYL14, WWBC14, Ay12].

Cryptanalyzing [LLL17a, ZLW+12].

CryptDB [PRZB12]. Cryptic [Mar10a].

Crypto [Goo12, Pfl10, Rab10, SCPSN10a, SCPSN10b, SMK18, WL11, BSR+14, BGG+13].

Cryptocurrencies [JSK+17]. Cryptography

Cryptography [ACZ16, Ano15d, Ano16a, Ano16b, Ano19, App14, AAB17, ACM+17, ARM15, Bar12, BGRK12, Bar15, BRT12, BC110, BKKV10, BJ10, Buc10, BL17, BCF+14, CR11, CT18, CFJH14, Cas10, CGMO14, Che17, CST+17, CDFZ16, CS12, Cri12, DDI12, Dui12, DUK15, DX14, DP17, DHLH10, DF16, DK15, DR11, Eis10, FPH10, FSK10, Fd18, FBM12, Fre10, GO17, G17, GBT12, GLW12, Ham17, Hes12, HGI2, HKR+18, J12T12a, KM10c, KP10, KAK18, LSL12a, Lin17, LW110b, LGWY12, LMH14, LGH+17, LWHS17, LPO+17, MO12, MSI10, Maur12, Men13a, MR14c, Mic10b, M18ST, MV12, MMB17, NNA10, NS12, Orm16, P10Pa, PH12, PG12, RW12, Rog16, SY14, SG15, SOG15, Sch16, Sen10, SS13, Sen17, SK12b, SA16a, Sim15a, SGS14].

Cryptography [Sma16, Sta11a, Ste15a, VS16, WWL+14, WY12, Wes16, Yan12, Yan11, YTS12, YL17, ZZCJ14, ZÁC17, vTJ11, AMN18, AMORH13, AEH17, AAT16, AA14, ABBD13, Ano11a, ABW10, ACK+10, BOB13, BB14, Ber14, BL14, BL17, BAB+13, Bl612, BSR+14, BSW12, BBB16b, CFR11, Cha13b, CQX18,
Cho14, CSTR16, Con12, CDSLY14, DDD14, Dav11, DD13, Dur15, Far14, GCVR17, Har15, HH15, HZWW17, Ho16, IM14, JLT+12, JY14, JW14, KK10, KGO10, Kre13, KSH18, Lan11, LLLK10, Lin14b, LWL10a, Lüd12, LY14, MCN+18, MS13b, MD12a, MCP15, Mic10a, NLYZ12, Nov10, OK18, OTO18, PHW10, PP11, RY10, Sac14, Sah13, SK14, SSAF11, Sta1b, Sti11, Svo14, UK18, VDO14, VN17, WHJ17, WYK12, YT11a, YSC16, YXA+18, YDH+15, YR11, ZXW+18, vDKS11, Che11, LZJX10.

Cryptography [Nac12, Cou12, Ful10, Gas13, Low12, Mei10, Mur10, Ter11].

cryptography-based [BOB13].

Cryptography-Related [Cil11].

Cryptol [Lau12].

Cryptology [BC11, Bro11, Dun12b, LW11a, PSM17, Pie10, Rab10, HWG10, LTW11, Kob10].

Cryptomania [Gen13]. Cryptoprocessor [GV14b, SWM+10].

Cryptosystem [CCT+14, LH10b, SWM+10, BS15, Chi13a, Gal13, GV14a, GLB+18, IB11, MM13, MG15, NZM10, Sv1T0, yYqWqZC13, YY11].

Cryptosystems [AD11, OTD10, PSM17, BNST17, FWS13, SA16b].

Cryptography-Related [Cil11]. Cryptol [Lau12].

Cryptology [BC11, Bro11, Dun12b, LW11a, PSM17, BNST17, FWS13, SA16b].

CT [Dun12b, Ki11, Pie10].

CT-RSA [Dun12b, Ki11, Pie10].

cube [MS12b].

Cubic [RW12, VM14].

Cuckoo [BHKN13].

Cuda [DLV16]. cultural [Mid10].

Culture [Bla12, SR14].

Currencies [TS16b].

Current [DP17, GCK12, FPBG14].

Curse [GG11, HB14].

curvature-feature [GG13].

Curved [SG15]. Curved [BC18].

Customization [OdH12].

Cyber [LJS+14, GHD19, HZWW18, KSA16, QMC17].

Cyber-Espionage [LJS+14].

cyber-physical [GHD19, HZWW18, QMC17].

Cybernetica [Ano17c].

Cybersecurity [DF16, Hel17, Lan17, LRVW14].

Cycle [HG12, KU12, MKN13].

Cycle-Based [MKN13].

Cycles [WBA17, CLCZ10].

Cyber [Che18, OTD10].

D [AP10, CG12b, DBPS12, DWWZ12, EAA+16, GZHD12, KSV+12, LJ17, LJ15, MCDB12, MKH+12, PLL10, RS16, SG14, SRK+17, WSSO12, WY12, tWmC12, YI14, YPR11].

D-Based [WSSO12].

D-like [LJ15].

D-PUF [SRK+17].

Dana [Ano10].

Dandelion [VF17].

Dane [Ano10].

Dankel [VF17].

Dangers [VF17].

Dare [FMS12a].

Dao [FMS12a].

Daoism [FMS12a].

Darmstadt [FMB12, Sen10].

DASH [KCC17].

Data [Ano13c, ADF12, Bar12, BJL16, BCD+12, BJL12, BW12, BKLS18, CWL+14, CMLS15, CCW+10, CSV15, CCT+14, CLW16, DDS12, Dan12, DR12, DMS+16, DA12, DCA18, DLZ+16b, EKB+16, FMY15, FPy15, FRS+16, G1TT11, HSM14, HLT+15, HK14, IB13, KRD13, KG16, LLPY19, LLZ+17, LWJ+C14, LLZ+12, LZC+12b, MLO17, Mal13, MMS17b, MM14b, NNAM10, NR12, PD14, PSM17, PH12b, PNRC17, QZL+16a, QZZ18, RCP+18, Real16, RSN14, SGG18, SAKM16, Sar10b, SMSK18, SP15b, SKH17, Sia12, SL10, TCN+17, Tan15a, Vai12, VSY15, WZCC18, XNK15, XWSW16, YDY+16, YMC+17, ZXYL16, ZPXX17, ZTL15, ZLW+17, AP10, ASO14, Ana14, Ana11a, Ara13, ADH17, ALL+18, BLL+19, BTP1215T, BC18, BKL13, CDG12, CLH+16, CDF+10, CDL18, DFJ+10, DTZZ12, DRD11, ED17, FS18, GHD19, Gen10, GLB+18, GZS+18, HSM13, HKW+15, HMCK12, HH16, HYS18,
21

Directly [BKBK14, CDFZ16, Hof16, PPA18]. Directions [BKBK14, CDFZ16, Hof16, PPA18].

Directions [BKBK14, CDFZ16, Hof16, PPA18].

Directions [BKBK14, CDFZ16, Hof16, PPA18].

Directions [BKBK14, CDFZ16, Hof16, PPA18]. Directions [BKBK14, CDFZ16, Hof16, PPA18].

Directions [BKBK14, CDFZ16, Hof16, PPA18]. Directions [BKBK14, CDFZ16, Hof16, PPA18].
[LD13, SJ12]. **dyadic** [MO14]. **Dynamic** [ABB19, EKB+16, FHR14, HH15, KYH18, LHM+15, MWZ12, MM12, NKWF14, PPS12a, PNRC17, SSW12, SY14, SKV12, SGC14, VM15, XNKG15, XWSW16, XZY+12, XWZ+18, ZXYL16, CTL12, CSTR12, DSCS12, EA11, GLM+11, GLB+18, JZS+10, KKM+13, KH18, KPB17, LXMW12, LHM14, LZC17, NPH+14, PSJ+13, SES+16, SSS11, SGM16, XHM14, YZL+18, YD17, ZSMS18, ZZL+18].

dynamic-identity [JZS+10]. **dynamical** [JTI12b]. **Dynamics** [RSCX18, AaBT16, LTC+15a, Lud12].

dynamics-based [AaBT16].

dyslexic [Bha16].

e-**commerce** [Ano11a]. **E-exam** [Mor12].

E-health [WMX+17, IC17, YZL+18, JKL+16].

E-Learning [Yon11].

e-mail [BTW15].

E-passport [LZJX10].

E-rental [LY14].

E-Voting [LGPRH14].

E2 [WYL14]. **EAC** [LZJX10].

Each [YLL+12]. **EAP** [FLH13, HCZ+14, ZCLL14].

EAP-based [HCZ+14, ZCLL14].

Easy [Bel16, Bro11, And13].

Earth [Har14].

easier [MBF+13].

Eat [DSSDW14].

Eavesdropping [CWL16, Han12, PX13, YSJL14].

EC [Dra16, CFN+14, CCG+16, CMG+18].

ECC [BSSV12, JMW+16, KRH18].

ECC-Based [BSSV12].

ECDSA [BBB+16a, DHB16].

ECG [PLGMCdF18].

ECG-based [PLGMCdF18].

Echo [DLMM+18, HGT15].

Eco- **Based** [HGT15].

Ecosystems [LB+15, MTP19].

EDAK [ABB19].

EdDSA [JL16].

Edwards [JL16, LT14a, YTS12].

Edwards-curve [JL16].

EFADS [WLS14].

Effect [PLGMCdF18, WB12].

Effective [HTL+15, KRDH13, WMX+17].

Effectively [YMC+17].

Efforts [MAL10, SKV12, SHBC19].

Efficiency [ABF12, Chi16, DG17, FR+16, HRV10, LML12, LCL+17a, MS13b, WXLY16].

Efficient [ABB13, ASBdS16, ABF19, BWLA16, BCGH11, BHI12, BV11, BV14, CG12a, CML+18, CMLRHS13, CWVL12, CJ13, DWB12, Dun12a, DG17, EM12, FLH13, FHS13, GT12, GH13, GTR+11, GPN+12, GPT12, GJ15, GH12, GZH17, GCH15, HZC+12, HZL+18, HL10b, HBC13, HZL+15, HKL+12, HIFDGPC15, HCMD12, HH16, HC17, IAD10, KPC+11, Kim15, KHPP16, KH10, LLP+18, LDDAM12, LNT12, LXX+14, LCLL15, LSW15, LHYZ12, LWH17, LCL+17, LBOX12, MX13, MTY11, MVVR12, MU12, MP12, MC11, MN14, NES+14, NdMMW16, NZM10, P12, PAF18, PRC12, PG12, PCPK14, PNRC17, RBHP15, SGG11, SZ14, SGM16, TLCF16, TWZ11, TT12, TM18, WDC18, WLS14, WQZ+16, WCC18, XWZ16, XMLC13, YHL16, YNR12a, YNR12b, YLW13, YNQ15, YLA+13, YS15, ZQW10, ZLH+12, ZSW+12, ZJX+14, ZXYL16, ZCL+19, ZHS+19, ZPW16, ZHW15, AZPC14, AZF+12, CH11, CWS11].

efficient [CLHJ13, CZ14, Cho14, Cra11, CGKO11, EA12, FLL+14, Far14, FA14a, FA14b, FIO15, FNWL18, GH16, GLM+11, HPC12, HYS18, ISC+16, IB11, IOV+18, JCHS16, JZS+10, KKG14, KKH19, KL11, KSH18, LLS13, LH11a, LHI0c, LXM12, LAL+15, MLM16, Mes15, Nov10, OCDG11, PZBF18, PC14, Rao17, SZMK13, TLL2, Tso13, TKHK14, VN17, WYL13, WLZ+16, WT10a, WXK+17, XWZW16, yWqWqZC13, ZLY10, ZZ11, ZCLL14, ZTZ16, ZSC15, Zhu13, LLZ+12, TCL15].

Efficiently [FWS13, LGH+17, SLY+16].

Effort
[RSBGN12]. **Effort-Release** [RSBGN12].

EGHR [CML18]. **eHealth** [TMGP13].

eID [SGCR16]. eight [Sun11].

eight-round [Sun11]. **Einführung** [Buc10].

Einstein [HR13, Wes15]. Elbirt [Bar12].

Election [Ess17, TKM12]. elections [QS18].

electrocardiogram [BLL19].

Electrocardiography [YH16].

Electromagnetic [HHH13]. **Electronic** [Bla12, PWVT12, SR14, YMW11].

Elementary [Led16, Sch15a, CM13].

Elements [Kra12].

Elevation [LZC12].

ElGamal [HLH19]. ElGamal-like [HLH19].

Elliptic [ADI11, AK14, ARM15, DW12, GPT12, LGH17, LWHS17, MST18, PPH12, SG15, AMN18, BAAS13, BL14, BL17, BBB16b, Cho14, Far14, IB11, KK10, MCN18, MS13b, NM10, SKH15, WHJ17].

elliptic-curve [BL17].

ELmD [BDMLN16].

Elsevier [Ano15b]. Email [Bel16, CCS14, XJW16, WR15]. embed [KPS10]. **Embedded** [AB15, BS12, BJCHA17, CFXY17, HC17, JWJ17, LWHS17, SOG15, SK12b, SDM12, WXY17, YGD17, YS15, Ano11a, CVG13, Ets10, MFH13, XWZW16].

Embedding [KD12a, MCDB12, XNRG15, XZZ18, YE12, ZS12, EA11, MKH12, PWLL13].

Embeddings [FHS13]. **Emergable** [YT12]. emerged [McG11]. **Emergence** [LMB12].

Emergency [HLKL15, YTH17, KLC10].

Emerging [BSV12, KSA16, OS16, FPG14, ZHH17].

Empirical [gWpNyY14, EBFK13, Sar14].

Employees [Mor12]. **EMV** [Cho10].

Enable [SMS14]. **Enabled** [GPT12, HFT16, QZL16a, QZL16b, SG16, SPC12, YSF18, BMI12, TODQ18, YFT18].

Enabled/disabled [HFT16]. Enables [IBM13a]. **Enabling** [FRS16, JSM18, SSY12, WPZM16, YYS16, MPP19, Sch12b]. eNB [CLM12].

Enciphering [CMLRHS13, HMR12, MLCH10, Sar11].

Enclaves [WBA17]. **Encoded** [DG17, HS18]. **Encoding** [BR14, CK18, SK12a, TJJF12, XHX17, PC14, Sun16].

Encounter [NA10a]. **Encrypt** [RAZ15, Ran14]. **Encrypted** [ADR18, BTHJ12, CWL14, CWL16, Cor14a, DWB12, DCA18, FCM14, FRS16, Gen13, GLG12, GZH17, HTZ12, HB17, HCDM17, IMB17, IBM13a, JSCM17, Kaw15, KGV16, LA15, LQD16, Lop12, Mur16, NBZP17, NNAM10, QLL17, SAKM16, Sia12, TM18, Vai12, WBC10, XWSW16, YDY16, ZDL12, XZYL16, ZVG16, ZLW17, AHM18, AZH11, BTPLST15, BGP17, BKV13, BL11, CH11, Cri16, CDL18, DL16, DRD11, ED17, FTV10, Gen10, GZS18, HH16, KHL18, LKX14, LZY16, LHL18, LW13a, OSS16, PRZB12, SXY18, SW17, Suc12, TKMZ13, WR15, WL19, XYX18, YX18, YQOL17, ZLY10, ZFH18, ZHT16].

Encrypting [CC10, Mar10c, dRSdlVC12, LGGCGRP14, Pow14]. **Encryption** [ADM12, AV12, AEH17, Alo12, AAC16, Ano13c, Ano14, Ano15c, Ano17d, AKP12, ABF12, AS16, BVS13, BWLA16, BPR14a, BPR14b, Bel16, BDOZ11, BWR12, BS14, BV18, Bla16, BKLS12, BDPS12, BHPF14, BDMN16, Boy13, BV11, BV14, BGV14, CVM14, CMO16, CL16, CW112, CN12, CZF12, CLHC12, Che15, Che18, CGL12, Ch12, Ch16, CRE12, Con18, CNT12, CL16, CD16, DR10, DN12, DFJ10, DSB18, Des10b, DOS15, Dun12a, DF11, EAA12, ES11, FHH10b, FHR14, FJHJ12, Fei19, FFL12, Fuc11, GWCC15, GGH16a, GGHW17, GM13, GZZ13, GS16. GH11a, GH11b, GH12, GHPS12, GDCC16, GV12, GVW12, GM14, GL12, GKS17, Gue16, HSMY12, HLLG18, HZ11, HG12, HC17, HT17, HLC17, HPL12, IAD10, JLS12, JHL12, Jia14a, JR14, Kam13, KB10, KME12, KMY18, KTT12, KOS16].
Encryption

[KKA15, KFOS12, KHPP16, KS12, LMGC17, LMG+18, Lai17, Led16, LLSW16, LLPY19, LW11b, LW11c, LW12, LLJC12, LYZ+13, LHL+14, LLC+15, LTZY16, LLL17a, LSLW15, LH11b, LSQL18, LB13, LY15, LW16, LYY+18, LLML12, LLH18, MZHY15, MLO17, MMF14, MR14a, MTY11, MSMA18a, MVVR12, MSSM17b, MRL+18, MBF18, MPSR12, MT12, MKRM10, MSa12, Nac16, NdMMW16, NTY12, MCF14, NAL17, OT12, OGR+15, PMZ13, PR12, PB12, PDZH15, Per13, PTK12, PPS12a, PYS18, PMZ12, PCY+17, PRSV17, RVH+16, RCP+18, RZZ+15, RSBGN12, RDZ+16, RVRSM12, SGG18, Saa12a, SSLW12, Sar10b, Sch15a, SLGZ12, SZS14, She14, Sm11b, Sta12, SGG15, SMOP15, Tan11, TCN+17, TCLI15, TMC15, Tan17b, TDTH13, TKR14, TTT12, Unr15, Vai11, VSR12, VOG15, Wall18, WHC+15, WP17, WDCL18, WSS12, Wat12, WLC12, WDDW12, WZ15, WWH12, WMS+12, WQZ+16, XNK15, XY18].

Encryption

[XXZ12, XJWW13, XWLJ16, XJW+16, XH+17, YZ12, YZX+12, Ye10, Ye14, YH16, YKNS12, YNQ15, YKC+11, YFK+12, YCZ12, YK DL12, ZY13, ZWMT15, ZQQ15, ZM16, ZMM17, ZHW15, ZY17a, ZYM18, ZWS+18, ZHZ+19, AHS14, ATK17+17, AKKY17, Ana14, Ano13b, Ano15e, Ano16f, ABR12, AMHJ10, ACD+15, AHL+12, BLL+19, BAAS13, BC18, BG14, BSW12, BGP+17, CPPT18, CFVP16, CFZ+10, CW14b, CLH+16, CMMS17, CZ15b, CS11, Chm10, CW12a, CDF+10, CM13, CGKO11, DLZ16a, DDM17, DTZZ12, Eve12, Eve16, FAA+18, FH13, FSGW11, FSGW12, FMF+18, Fay16, GMOGCC15, GH13, GHPS13, GLM+16, GH12, GLL+18, GZXA19, HGWW11, HQZH14, HZL18, HDW16, HZWS18, HT13, HLRI1, HL11, HFT16, HTC17, HYS18, HYF18, HKHK13, JCHS16, Jia14b, JSMG18, JHCC14, JSM+18, Kam16, KHM13, KKM+14, LLW16, LCL+17a, LCL+15, LFZ+17, LCT+14, LFWS15, LLM+19]. encryption

[LPJ10, LH11, LW10, LW13b, LZC14, LPZJ15, LCY+16, LZC17, LJW+17, LJYW18, LLL+18, LDZW19, LL16a, LW13c, LSC12, Mar10b, MMS17c, Mes15, Mid10, Mon13, MSA13, NES+14, Nam19, PPA18, Pet12, QRW+18, Ran16, RG10, RWZ13, RPSL10, SES+16, Se18, Sar11, SY13, SE14, SE16, SH11, SM11, SNM14, SLZ12, SY15b, Sha13, SGFCRM+18, SLM10, SKB+17, Spa16, SGP+17, SGM16, Tam15, TPL16, jT12b, WGJT10, WY10, WWY11, WWY+11, WHY+12, WDL19, WLFX17, Wan18, WGWZ12, WLS14, WCCH18, XWWX16, WXCC14, XWSC10, XXX15, XWS17, XWZ+18,YT11b, yYqWqC13, Yan14, YZC17, YHH18, YCT15, YLZ+16, YL11, ZWQ+11, ZZ11, ZLZ+12, XZJ+14, ZWM14, ZT14, Zha15a, ZCC15, ZML17, ZYC+17, ZCL+19, ZZ12, ZL12, ZDW+16, ZY17b, Zhu13, Wan14, LAL+15, Sar18a, Kat13]. encryption-based

[BC18, XZW+18].

Encryption/Decryption [KB10].

Encryptions

[zGXW12, LG12, SYL+16, RD17].

Encyclopedia [tJ11]. End

[Ano15c, BRR+15, BGP+17, CFE16, Chu16, RST15a, RST15b, Ch13a]. End-to-End

[CFE16, RST15a, RST15b, Ano15c, BRR+15, BGP+17]. endomorphism

[FWS13]. Endomorphisms

[AK14, LGH+17]. enemies [Fag17]. Enemy

[BC14, CAC14]. Energetic [PDMR12].

Energy [Ano15d, AZF+12, ABC+17, Bla16, JEA+15, LSC+15, MP12, PAF18, TLF16, TCN+17, VN17, CZ14, ZTZ16].

Energy-Efficient [MP12, TLF16].

Energy-Harvesting [ABC+17].

engagement [LSBN14], engaging [ISC+16], engine [BS13a], Engineering [Bel18, FSK10, GHD19, LLK18, MSM18a, MP12, PGLL10, TQL+14]. Engines [LB13, BGG+13]. enhance [CZ14, SL10]. Enhanced [DTE17, KY10, KKM+13, MS17, SGG18, TV15, YCC16, AMN18, ACK+10, DLK+16, GM16, LNKL13, YQOL17].

Ergodic [IAD10]. Erratum [YFK+12]. Error [KW14, LSC+15, MCP15, TLCF16, ATI+10, Chi13a, LTT10]. Error-correcting [MCP15, LTT10]. Errors [TM18, CSS+13].

Establishing [DKL+16, GSFT16]. Establishment [ASN12, Ano11b, BCO13, DL12, NRY+14, GTSS19, SZMK13, ZPZ+16, ZWX+18].

Estimation [BCF16, GSN+16]. Estonian [Ano17c]. Ethernet [KCR11], EU [PH12b].

EUROCRYPT [PF12, Gil10]. Europe [GOPB12, Mid10]. European [GOPB12].

Evaluating [RAZS15, WP15]. Evaluation [BLKS18, CGCS12, DM15, EGG+12, KVvE18, KLM+12, MKN13, MLB12, SMOP15, ZLDD12, FPBG14, TPKT12, ZZKA17, ZLDD14]. Evaluations [ZM16].

evaluators [ZZKA17]. Evasive [BBC+14]. Eve [AAE+14, ERL16, FHM+12].

Even [ARH14, LPS12, Ana14, DK12].

Even-Mansour [LPS12]. EventGuard [SL11]. every [Hof16]. everyday [HST14].

Everyone [Ano15c]. Evidence [Bla12, SR14]. evident [MN10]. Evolution [LQY10, Tay17, BHvOS15].

Exact [TKM12]. exam [Mor12]. examination [VCK+12]. Examining [SP13]. Example [KD12b].

Exchange [CLY14, CST+17, DG15, FVS17, GZ12, HC12, LY16, MSU13, TYM+17, WSA15, WT10b, YS12, YLW13, YRT+16, Yon12, XZH16, AKB13, A1B+16, FHH10a, FA14b, FIO15, GBNM11, GLM+11, Jia14b, KMTG12, LWS10, LML+13, SEXY18, TCS14, Tso13, TKHK14, WHJ17, WZM12a, WZM12b, WT10a, WT12, WX12, YC12, ZWXA18, ZG10].

Excitation [SOS15]. Exclusive [Men13b].

Execution [AARJ12, RQD+15, YS15]. existing [FMA+18, HT13]. Expanding

F5 [LLY+12b]. Fa [FMS12a]. fabricating [WW13]. Fabrication [VDB+16]. Fabrication-Induced [VDB+16]. Face [AQD12, XHH12]. Facial [KRB12]. facilitate [Chi13a]. Facsimile [Ano16d]. Factor [HXC+11, LLC11, AIB+16, CLP+13b, DMWS12, ED19, HCl2, IC17, JKL+16, JM+16, Kem11, LNK+18a, LNK+18b, Lit14, WW14, Wat14a].

Fairness [ALR13, Ash14, GHKL11, Wag16, MV16b]. Fake [KU14]. Fallen [HCP15]. False [LL+12, CDGC12]. Families [BSS+13, KU12]. Family [ARH+18, BMS12, BKST18, DGIS12, DJG+15, FLS+10, FFL12, GNL12, LYY+18, MFG16, YCL17].

Fast [BLAN+16, Bru12, CHS15, DSLB18, GS+16, NR12, PRSV17, WHZ12, WBA17, WQZ+13, WHV+16, FHH10a, KHMB13, MB11]. FastAD [SMA10].

Faster [CN12, HVL16, TH16, Ant14]. Fault [AMKA17, BMS12, BBB+16a, FXP+17, GST12, JWJ+17, JKP12, JT12a, LGL+12, LCLW17, LGLL12, MKRM10, MKA17, PH12a, RZZ+15, SEY14, YGD+17, BBBP13, PBCC14, WMYR16]. Fault-Based [BBB+16a]. fault-resistant [PBCC14].

fault-tolerant [WMYR16]. FFI [Bha16]. FC [DDS12, Dan12]. FEAD [ZWM14].

Feasibility [AAC+16, FKS+13, WHC+15]. Feature [Ber18, SGP+12, FTV+10, GJ13, MHT+13]. Features [YI14, ZTL15, FNP+15, LCM+17, LTC+15a].

Feauveau [Ara13]. February [Ano10]. DSD12, Dan12, Dun12b, Kla11, Lir14b].

FedCohesion [CCFM12]. Federated [BS13b, CCFM12, CSL+14, SAM+19, BMBS10, JAS+11, TOD18]. federated-IoT-enabled [TODQ18].

Federation [SS+10a, NB13]. federations [MMS+17a, MLM16]. Feedback [HZ11, Hey17, PYM+15, SKGY14, ZH15, LWK11]. Feedback-Based [PYM+15].

FEIPS [DG15]. Feistel [BMT16, KDH15, Sas12, SEHK12]. FHE
Francis [Joh10]. Francisco
[ABJ13, Joh10, Mar10a].
frankencerts [BJR +14]. Fraud [Ber12].
Fred [Xie12]. Free [App13, Boy16, HLH19, IL15, TWZ +12, TTH15, ZHL +12, ATK11, ED19, LL16a, SA12, SE16, YT11b].
Free-View [TWZ +12]. FreeBSD [MNNW15].
FreeBSD [MNNW15].
Freedom [Con18]. Freestart [SKP15].
French [Ant14]. Frequency [BBM15, KAHKB17, LTKP16, LWCJ14, TC10, CJP12, CJP15, EA12, NLYZ12].
Frequency-Based [LWCJ14]. Freshness [RBNB15]. Fresnelet [FMB +18]. Friendly [Fra16, KCC17, SZDL14, ACM12, BP18, KLL +16, RD17, WOLS12]. Frontside [DDR +16].
FSR [MD12b]. FSR-Based [MD12b].
Fugue [AP11]. Full
[ALR13, HEC +12, LW12, VS16, WLC12, BKR11, DDM17, LC13, Ran16, SWW +17, SKP15, Tam15, TY16b]. Full-hiding [DDM17] full-text [SWW +17]. Fully
[AKP12, BV11, BV14, BGV14, CMO +16, CN12, CZF12, CNT12, DOS15, GH11a, GH11b, GHS12, HLLC11, LMGC17, LSLW15, LSC12, MVV12, MSM18a, Nac16, NCCG13, PB12, SGH15, Vai11, VV19, WHC +15, XWZ +18, ZZ12, GH13, ZXJ +14, ZML17].
Fully-Homomorphic
[FH11b]. Fully-Homomorphic-Encryption [CN12].
Fun [APPVP15]. Function
[AMPH14, Bee17, BKST18, FLS +10, LyW112, MMS17b, SCY11, WSSO12, AKY13, AP11, CMMS17, LK14, LP11, RS14, Sar11, SXL16, TQL +14, WYW14].
Functional
[AS16, BV18, BSW12, Boy13, GGH +16a, GVW12, LQD +16, MVV12, Rus15, Wat12, ZYT13, ZWTM15, ZWM14].
Functionalities [JR13]. Functions
[ACZ16, ALR13, BBC +14, BIKK14, BKPW12, BK12a, CPS16, D5MM14, DQFL12, FY11, LVV11, NR12, Rja12, RW12, SMS14, SLY +16, Tan12a, YTP11, AY14a, BDP11, CG12b, CQX18, CW12a, ESR114, Gen10, HRV10, Li10, QZDJ16, WT13].
Fundamentals [Joh10]. Further
[HCL +14, WHY +12]. Fus [FMS12a].
Fusion [ABCL17]. Future
[AYS15, BCE +12, BKBK14, Bon12, CDFZ16, GCK12, HYS18, Mon13, Ano13d, FPBG14, Mac12, PPA18, PHWM10, MJS13].
Future-proof [Mon13]. Fuzzy
[KRDH13, NC12, SH11, XJWW13, Alp18, KHMB13, MMSD13, SM11, SNM14].
G [HLYS14]. G2 [BP18]. G2C [BMP12].
GA [MMSD13]. GA-fuzzy [MMSD13].
gadgets [Gel13]. Gait [XJR +17, XJR +17].
Gait-Based [XJR +17]. Gait-Key
[XJR +17]. Gallai [SS106]. Galois
[CFR11, CLF +17, HSA14]. gambling
[Ana14]. Game
[MZA +13, LPZJ15, SD10, SKEG14].
game-theoretic [SD10, SKEG14]. Gap
[LRVW14, TMGP13, PPA18]. Gaps
[SMP +13, DLK +16]. Garble [AIK14].
Garbling [App13]. Gard [Kap11]. Gate
[Kar12]. Gates [App13]. Gateway
[WZM12a, WZM12b, WL11, WXK +17].
Gateway-oriented [WZM12a, WZM12b].
Gaussian
[HKR +18, YWL +17]. GCD
GCM/GMAC [SKK10]. GDLP [MMZ12].
Gear [AHS13]. Geckos [GSC17]. geese
[Bai12]. GenePrint [HQY +16]. Gener
[HYS18]. General
[Bar16, CJXX19, FJJH12, GFBF12, Gu16, HP12, KOTY17, LPL15, PB12, SJWH +17, YFF12, ABDP15, Bai12, DGNJ14, HZQH14, LWS10, WS12, YC11, ZYC +17].
General-Purpose
[Gue16, ABDP15, DGNJ14]. generalisation
[LR15]. Generalised [Hes12].
Generalization [GMNS15]. Generalized
[BFMT16, LPL15, PC14, TY16b, Ye14, ZAC17, ADG16, BNST17, KL11, NC13, YMSH10]. Generated [ADD10, LCL17b]
Generating [Ano16e].

Generating [ABS+12, BCGH11, BH15, LTC+15b,
MR14a, MJGP12, NIS12, PS14, SOS15,
SRK+17, XJR+17, Aia15, ACD+15,
CJXX19, GMRT+15, GCH15, KHMB13,
KKM+13, SGFCRM+18, XW13, YDH+15].

Generation [Ano16e].

Generators [ADD10, BK12a, CDK+10, MVV12,
NNAM10, NKWF14, CFY+10, LGKY10,
MRT10, PLSvdLE10, SH11, SM11, XSWC10].

Generators [AS17, DSLB18, LTKP16, MFG16, NIS12,
PFS12, CP13, HRV10, MG15, Sti11, Zim10].

Generic [BWLA16, BR14, Chi16,
GWWC15, HXC+11, Sar10b, SY15a,
WCL+18, ZCLL14, HQY+16, YTY11b].

generically [MHKS14].

Genetic [JK13, MM17, ASVE13, EEAZ13, PTK14].

Genius [Hai17].

Genomic [BKLS18, RCP+18].

Gentry [GH11b].

Genuine [HR13].

Genus [FWS13].

Geo [Har14].

Geo-location [Har14].

Geodesics [ZZCJ14].

Geographic [LC17].

Geolocation [FPY15].

Geometric [DSB16, GTT11, WLZL12, YWWN15,
CLZ+17, GZHD12].

g eo-metrically [TLL13].

Geometrically [WYW+13].

Geometry [tWmC12, CFR11, CZ15a].

German [BDKF12, Biö12, Buc10, Cop10a].

Germany [FBM12, GLIC10, Sen10, Wat10].

Gesture [LCL17b, SHBC19].

g esture-based [SHBC19].

Gestures [AUMT16, GCSAddP11].

Get [GPT14, Sch11].

Getting [ESS15].

GH [GH10b].

Ghost [CD14].

GHZ [CCL+13].

GHZ-State [CCL+13].

g iant [Joh15].

girls [Mun17].

Girod [GMNS15].

GLARM [LLZ+16].

glimpse [Mic10a].

Global [CLP13a, CLH13, MRS+17, GH16, HL11a,
TMK11, ZX11, LNK+18a].

Globally [CSS14].

Glyph [XZZ18].

GMAC [SKK10].

Goal [BM12].

Goal-Driven [BM12].

Goes [BCD+12, RY10].

Goldreich [Lin17].

Goldstrike [BH15].

Goliath [Sch15c].

Gong [LLW16].

Good [DQFL12, FY11,
LSBN14, RY10, SA14, WT13].

g oodbye [HU15].

Google [Har14, Lo15, VGN14].

Goppa [MBR15].

Gordon [GW14].

GOST [LC13, WYW14].

Government [Ano15e].

GPG [Ran14].

GPGPU [RVRSCM12].

GPGPUs [TLCF16].

GPU [BCGH11, GCH15, HBBRM+16, HHJC14,
MMB11, ZOC10].

GPUs [VKP17].

Graded [BR14].

Grain [BMS12, FSGW11].

Gray [DA10, UUN13].

Gray-Level [DA10].

Great [Acz11].

green [dCCSB+16, ZTZ16].

Grey [LRW13].

Grey-box [LRW13].

Grid [CGB+10, DLZ+16b, KS15, LPL15, AMN18,
JAS+11, MCN+18, WS12, YYY11].

Grid-Based [LPL15, WS12].

Grids [SC10, CT11b, GLW13, SLY15, JAE10].

Gröbner [EVP10, FES10, Tam15].

Gros [Dan12].

Group [AEHS15, BSV12, CGY+13, CLW16, DT13,
FVS17, HL10a, Har13, LLZ+16, LCCJ13,
TW14, XLM+12, XGLM14, XZLW15,
ZXH16, AKK+17, CML+18, GBNM11,
HCCC11, HPY10, I0V+18, LLLS13, LWS10,
LMM+19, RS15, WDZL13, WTT12, YZL+18,
ZZKA17, ZWQ+11].

Group-based [LLZ+16, CML+18].

group-key [I0V+18].

Grouping [LNZ+13].

Grouping-Proofs-Based [LNZ+13].

Groups [Abe12, GZ12, XNK15, YS12,
YKNS12, MZ17a, WQZ+13, ZZ15].

GRS [TD14].

Guangdong [IEE11a].

Guaranteed [TBCB15].

Guerrillas [Has16].

Guess

H.264 [JSZS12, JHHN12, LLHS12, LW13c, MU12, WDDW12, ZLDD12, ZLDD14]. H.264/AVC [JSZS12, JHHN12, LW13c]. H.264/SVC [MU12, WDDW12, ZLDD12, ZLDD14]. H.265 [GKSB17]. H.265/HEVC [GKSB17].

Handoff [HNC12, HZC14, XHCH14, ZBR11, ZCLL14]. Handover [HBCC13, LBR12, CLM12, CML18, HZWW17, QMW17, YHL16, YHHS16, YLS12]. Hands [GPT14, BSS11]. hands-on [BSS11]. Handshake [KK12, KK13, WZ11].

Hard-to-Invert [ZWTM15]. Hardcover [Joh10]. Harder [KTA12, Sch16]. Hardness [BHKN13, SS13]. Hardware [AW17, BRPB13, BDMMIN6, BJCHA17, CMLRHS13, DZS18, DOS15, ERRMG15, GP17, GCCV17, GCS13, HAK14, HG12, HSA14, HC17, HLN10, KAK18, LGH17, LLKA19, LRWW14, MLCH10, MCS15, MRL18, MZY18, NDC13, NdMMW16, PC16, PG12, RMP10, SN10, Set16, Sti19, Tay17, WOLP15, YSF18, ZHS19, ZAG19, AMN18, BDM18, BGG13, KHF10, MD12a, NS10, Nov10]. Hardware-Assisted [LLKA19]. Hardware-Based [HLN10]. Hardware-Enabled [YSF18]. Hardware-Enforced [Set16]. Hardware-Intrinsic [SN10, NS10]. Hardware/Software [MRL18]. hardwares [SKH15]. Hardy [Xie12].

Harmonic [YWNW15]. Harnessing [DFKC17]. Harvesting [ABC17, ZGC16]. HAS-160 [WLC12]. Hash [ANO12, AMPH14, BHH15, BKST18, BK12a, CLP13a, JCPB12, CZLC12a, CZLC12b, CZLC14, CJP15, EAA16, FLS10, GI12, HCPPSB12, Hui13, HRS16, HBG17, MKF16, MCF17, MKAA17, NTY12, NR12, XB13, PT16, Rja12, SGY11, WSS012, ZZM17, ZHZ19, AY14a, AKY13, AP11, CJP15, ESR014, KKG14, PPB16, RS14, SPLHC14, SXL16, WY14].

Hash-Based [BHH15, GI12, HCPPSB12, Hui13, HRS16, HBG17, MKF16, MCF17, MKAA17, NXB13, CJP12, CJP15, PPB16, SPLHC14].

Headline [YGFL15]. Health [LYZ13, LHL15, Rao17, ZVG16, BC18, Ham19, IC17, WMX17, YZL18, JKL16].

Healthcare [BN14, HLLK15, ZLDC15, ASO14, Kim16]. Hearing [Bla16]. Heartbeat [IA15].

Heartbleed [DKA14, Ven14]. hedging [RY10]. Heights [Gen13]. held [Cho10].

Heuristic [BGJT14]. HEVC
HIBE [LN11c]. Hickory [NN15]. Hidden
FMS12b, PSS+13, YLL+12, ZYT13, BDK11, LCL+17a, Sch15c, Smi15a.
Hiding
DCA18, GGH+16b, GL10, JHNN12, MK12b, OT12, XLM+12, XGML14, XZLW15, Ara13, DDM17, HZL18, KWH16, LXLY12, LT14b, UUN11, WLH13, WZLW13, ZWM14.
hiera
Lac15]. Hierarchical
ADM12, BSSV12, FSX12a, LSLW15, NMS14, NLY15, OT12, WYML16, ZMW16, ZHW+16, DSCS12, HYS18, KPB17, LFZ+17, NZM10, RG10, SE14, SE16, WWYZ11.
Hierarchy
NA10b, VN16]. High
AW17, ASBdS16, Ano17d, ARM15, Bar15, BDL+11, DM15, DG17, GL12, GCS+13, HZ11, KMP+11, KPC+16, KAK18, LTKP16, LCK11, LPO+17, MS13b, MS13c, PCPK14, WYCF14, WL11, XNRG15, ABBD13, GHZ12, GCVR17, KL13, MAK+12, RS17, WLH13, WXLW13, WZLW13, WKH11.
High-Assurance
[Bar15, MK+11, WL11]. high-capacity [GZH12].
High-Dimensional
[Ano17d]. High-Efficiency
[DG17]. High-Impact
[DM15]. High-Level
[AW17, KPC+16, ABBD13]. High-Performance
[GCS+13, KAK18, LPO+17, GCVR17]. High-Rate
[PCPK14]. High-Security
[WYCF14, BDL+11]. High-Speed
[ARM15, HZ11, LTKP16, BDL+11, KL13]. high-throughput
[MAK+12]. Higher
[LWK12, PRC12, gWpNyY+14, ZSW+12, LWKP14]. Higher-Order
[LWK12, PRC12, ZSW+12, gWpNyY+14, LWKP14]. Highly
[SZDL14, ACD+15, DT13]. HIGHT
[CWP12, WWBC14]. hijacking
[DCAT12]. HILL
[KPW13, KA17]. HIMO
[GMRT+15]. Hindering
[BTPLST15]. HISS
[DT13]. histogram
[CSS+13, Lin14a]. Historians
[Cer14]. Historical
[Hai17, Han12]. History
[ABJ13, Ano19, Cer14, Cop10a, LT14b, McK10, McK11, SE16, Smi15a].
history-free
[SE16]. Hitler
[Hea15, Moo14]. HMAC
[GWM16, MAK+12, YGS+17]. HMAC-DRBG
[YGS+17]. HMAC-SHA256
[GWM16]. Hoc
[LH12, PD14, She14, XHC+12, KM10b, LXX14, SGGR+16]. Hoffstein
[Mei10]. Holden
[Ano17b]. Hole
[Ano15d, BKKV10, PC16]. Holocaust
[Han12]. holy
[Wat15, Mic10a]. home
[KPP16, Cor14a]. Homogeneous
[HT11]. Homomorphic
[AKP12, BV11, BV14, BGV14, CMO+16, CN12, CJ13, CK18, CNT12, DOS15, GH11a, GH11b, GHS12, GHPS12, KOS16, KG16, Kim15, Lau17, LCLL15, MLO17, LSM18a, MRL+18, MBF18, Nac16, PKTK12, RCP+18, Tan15b, Vai11, WHC+15, XWZ+18, AKKY17, BDOZ11, BC18, CXXJ19, CW12a, GH13, GHPS13, GLM+16, LWL16, SEXY18, Tan15, WSC14, ZJX+14, ZYC+17]. Homomorphism
[Bra13]. Honey
[J14]. Hop
[RWLL14, LCT+14]. Hop-by-Hop
[RWLL14]. Hopf
[Kuz11]. hose
[BSR+14]. host
[LKKL13, der10]. hostile
[CDA14]. HotCalls
[WBA17]. House
[Ano16h, Bla16]. HP
[CGB+10]. Hromkovic
[Gas13]. HTTP
[BHCdFR12]. Huang
[LSW16]. Huffman
[Sun16]. Hui
[FMS12a]. Hui-Yuan
[FMS12a]. Human
[HHS+15, IA15, DMT12, LW+10, PYH+18]. Humans
[RBNB15]. Hummingbird
[ESS12]. Hummingbird-
[ESS12]. hunt
[Bha16]. hunted
[McG11]. HVS
[RMG18]. HWMP
[BOB13]. Hybrid
[ADI11, ARM15, JHW+19, KBL11, KKA15, LP12, NGAuHQ16, OA012, Per13, SGG18, XWLJ16, SAM+19, EEAZ13, KP18, XWLY16, WS14, XWS17, BOB13]. Hybrid-Double
[ARM15]. hybrid-indexed
[WXLW16]. hybridization
[MMSD13]. Hyderabad
[GG10]. Hyper
[BL14, WZG+12]. Hyper-and-elliptic-curve
[BL14].
hyper-chaotic [WGZ+12]. Hyperchaotic
[GMOGCCC15]. hyperelliptic
[FWS13, Kre13]. hypergeometric [YL11].

i-NVMM [CS11]. I/O [CDD13]. i2b2
[RCP+18]. IB [CZLC14]. IBC [BOB13].
IBC-HWMP [BOB13]. IBM [ABC+12, ACD+15, BAB+13, HKS+14, JSM+18].
i-NVMM [CS11]. I/O [CDD13]. i2b2
[RCP+18]. IB [CZLC14]. IBC [BOB13].
IBC-HWMP [BOB13]. IBM [ABC+12, ACD+15, BAB+13, HKS+14, JSM+18].

ICA [tWmC12]. ICICTA [IEE11a]. ICISC
[LH10a]. ICs [GSFT16]. IF
[Ano17c, CTL13, CDPICA16, EZ15, HCC10, IB11, KGO10, LMGCI7, LY14, MWZ12, MM12, MMZ12, Mes15, PLPW13, TPL16, TT12, TTH15, Wan18, WT10b, WTT12].

ID-based [MM12, LMGCI7, MWZ12, TT12, TTH15, WT10b, CTL13, EZ15, HCC10, IB11, KGO10, LY14, MMZ12, Mes15, PLPW13, TPL16, Wan18, WTT12].

ID-card [Ano17c]. IDEA [BNY14]. Ideal
[LPO+17, WCL+18, HKT11, yYqWqZC13]. idealness [TD14]. ideas [Mac12].

idempotent [Dur15]. Identical [Bow11].
Identifiable [Oba11]. Identification
[FSX12b, FSX12c, FSX12c, VAG15, YGFL15, YKK18, AGLIW16, CTHP13, CJP12, CJP15, EA12, HQY+16, KI11, KL13, NLYZ12, YTM+14]. identified [AZH11].

identifier [MJ13]. identifiers [Cer18].

Identifying [CSV15, SVG16, ZCS15].

identities [GLM+11]. Identity [AQD12, ASM12, ASVE13, Ano15b, ACAT15, ASS15, BWLA16, BCF16, BGG12, BKWP12, BDFK12, Ber12, Ber17, BS13b, Bow11, Cal13, CCFM12, CSL+14, CSZ+11, CPL12a, CPL12b, CLHC12, CLYC14, CGL+12, CGY+13, Chi12, dCCSM+12, FHH10b, FZT14, FSX12b, FSX12c, FSX12c, GOBP12, Gy13, GDC16, GJG15, GJZ17, HZC+12, HwS12, HSM13, HSM14, HZ15, HYWS11, HYF18, KKA14, KRB12, Kuz11, LMG+18, LMB12, LSL12a, LKAT12, LJX14, LLC+15, LTZY16, LSLW15, LH11b, LSL12, LBR12, MLO17, MFB+13, MJGS12, MR10, OdH12, Par12a, PSS+13, PSJ+13, PWVT12, RZD+16, RS15, SS10a, SS10b, SS12a, SAAB10, Sch11, Ser12, SSCP12, SKGY14, SWW+16, SGH15, TKN14, Tina15, TH16, TMGP13, Vl16, WY10, Wan14, XZX12, XQL11, XJW+16, YXY+12, YTM+14, Yon11, YHK+10, YKK+11, YFK+12, YCZY12, ZHL+12, ZMW16, ZD+16, ZPXX17, ZYM18, ZTSM12, ATKH+17].

Identity [Ano13d, BMBS10, BOB13, BMM12, BBGT12, CTHP13, dCCSM+16, DJ14, D10, DWZ12, FA14b, GMRT+15, GVCdBR012, HZC+14, HWD16, HZWW17, HLR11, HWD16, HZWW17, HL11, HPY10, Hwa11, JZS+10, KKGK10, KKM+13, KL11, LKKL13, LK12, LMX12, LCT+14, MMM+17a, MD15, MGP10, MJS13, MLM16, MM13, NCL13, OJSI, PLCs11, QYWX16, RG10, SSS12, SE14, SR10, hSZZ15, SA16b, Sim15b, SASS11, SSS11, SG16, WWY11, WLY11, WSC14, WLFX17, WMX+17, Wat14b, WWWW17, XW12, XCL13, XHM14, YWL+17, yYqWqZC13, YYS+16, YMS10, YKK+12, YXA+16, YNX+16, ZZ12, LZJX10, PN10, Sar18a, Kat13].

Identity-Based [ASS15, BWLA16, BGG12, BKWP12, CTCG12a, CTCG12b, CTCG14, CGL+12, CGY+13, Chi12, FHH10b, FZT14, FSX12b, FSX12c, FSX12c, Gy13, GJG15, GJZ17, HZC+12, HSM14, HZ15, LMG+18, LSL12a, LLC+15, LTZY16, LSLW15, LH11b, LSL12, LBR12, MLO17, RDZ+16, SGH15, TKN14, Wan14, XZX12, XJW+16, YXY+12, YHK+10, YKK+11, YFK+12, YCZY12, ZHL+12, ZMW16, ZPXX17, ZYM18, CSZ+11, HSM13, HYWS11, HYF18, LKAT12, LJX14, MJGS12, RS15, SWW+16, Tia15, TH16, ZD+16, BOB13, BMM12, CTHP13, D14, FA14b, GMRT+15, HZC+14, HWD16, HZWW17, HLR11, HWD16, HZWW17, HL11, HPY10, Hwa11, LK12, LCT+14, MJS13, MM13, NCL13, QYWX16, RG10, SE14, SE16, hSZZ15, SA16b, SASS11, SG16, WWY11, WSC14, WLFX17, WLY+17, yYqWqZC13, YMS10, YKK+12, YXA+16, YNX+16, ZZ12, LZJX10, PN10, Sar18a, Kat13].
YKC$^{+}$12, YXA$^{+}$16, ZZ12, LZJX10, Kat13. Identity-Hidden [PSS$^{+}$13]. IdM [ACAT$^{+}$15]. IDs [SOS15]. IEC [BCM12, BCM13]. IEEE [IEE10, IEE11b, IEE13, Yan10, BOB13, CL11, FLH13, NBZP17, ZBR11]. IEEE802.16e [HLCL11]. if [ABJ13, Rus15]. IFIP [GLIC10]. IFP [MMZ12]. Igor [Sha10]. II [Muni17, SCPSN10b, SMOP15, ZWS$^{+}$18]. III [SMOP15]. ILA [HZS$^{+}$19]. Illegal [ABJ13]. Illogical [Hel17]. Illumination [KLY$^{+}$12]. Illusion [GHS14]. Illustrated [Cop10a]. Im [BGI$^{+}$10, BGI$^{+}$12]. IMA [Che11]. IMACC [Che11]. Image [Bai10, BAAS13, BDB14, BWR12, CJFH14, DA10, IAD10, JKeY12, KPS10, LA15, LLL17a, MBC15, MAL10, MSM$^{+}$18b, PWW10, RS16, RVRSCM12, SH11, SM11, SJ12, SG$^{+}$12, SMSK18, SSA13, SRAA17, SZST18, TB18, WHZ12, WZXL12, WYWF13, WYCF14, yWXY$^{+}$18, WKY12, YLL$^{+}$12, YWNN15, Ye10, Ye14, YH16, YXW18, XZ$^{+}$11, BWA13, BM13, CT11a, CW14a, EA11, FMB$^{+}$18, GKK11, HLC16, KM11, LXCM11, IW10, LWLW11, LW13b, LPZJ15, MO14, MS17, NES$^{+}$14, PTK14, SE18, Sch12a, SM13, SM12, SNM14, SGFCRM$^{+}$18, Sun16, jT12b, TTL10, TLL13, UUN11, UUN13, yWpWY$^{+}$13, WGZ$^{+}$12, WKH11, WOLS12, XSWC10, YWL$^{+}$17, YC11, YCC16, YSC16, ZLW$^{+}$12, ZTU14, ZSMS18, ZL12]. Image-Guided [CJFH14]. Image-Scrambling [LL17a]. ImageMagick [Tay14]. Imagery [BCP14a, Ara13]. Images [BCPV11, BBMV15, CLF11, FR16, GL10, LC15, LLY$^{+}$12b, MR16, NC12, Yan12, dRSdVC12, AMK12, DD13, HWY14, LW13b, MM14a, MKH$^{+}$12, UUN13, WLH13, WZWL13]. imaging [WW13]. IMFlexCom [PAF18]. IM [FN10]. imitation [Hai17]. Impact [Alo12, BLS12, DM15, SF12]. Impartial [BCF16]. Imperceptibility [HGT15]. Imperceptible [Lin14a]. Imperfect [ABD$^{+}$15, BHvOS15]. Impersonation [AATM18, GBNM11]. Implants [Mic16, SSPL$^{+}$13]. Implausibility [GGHW17]. Implementation [BW16, BKLS18, BSJ15, BDMVN16, EGG$^{+}$12, GP17, GL12, GPT12, GCS$^{+}$13, HF14b, KB10, KGV16, MGF16, MAS16, NdMMW16, QLL17, RMP10, VKPI17, ZPM$^{+}$15, AMN18, BDP$^{+}$12, GH13, HBBRMN$^{+}$16, KY10, KSH18, MM14a, MNNW15, NES$^{+}$14, PBCC14, SK14, SAAB10, SF12]. Implementations [BFCZ12, BFK16, BDGH15, BJ10, Bru12, CMLRHS13, CBL13, ERRMG15, LGH$^{+}$17, MLCH10, Tom16, YZLC12, ABBD13, ABF$^{+}$14, BFG$^{+}$14, BJR$^{+}$14, CFN$^{+}$14, CG1H7, LBOX12, Sta11b, ZSW$^{+}$18a]. Implementing [Dav11, GH11b, HTZ12, LTC$^{+}$15a, SG15, SL010, VOG15, SA16b]. implicit [DWW12]. Imply [ALR13, LRW17]. Importance [YL17, MLMSMG12]. Important [TC10]. Impossibility [ACM$^{+}$17, BCF$^{+}$14, Mat14]. Impossible [Bio15, CWP12, LFJ16, TSL11, WYLY, WW12, MNP12, SDM10, SDM14]. improbable [TS16a]. Improve [AQD12]. Improved [Ber18, BCP14a, Chi12, CGKO11, FVK17, GLLSN12, IK15, JLH12, KZG10, LT14a, LWZ12, LJF16, LHH11, LCCJ13, LC15, LLLM12, PH12a, QZ14, SK12a, SEHK12, SS10b, SP15a, TS16a, WLC12, WWBC14, YHHS16, ZJ11, ZLDD12, GLW13, HB12, Nam19, PWLL13, SDM10, XHH12, Wan14]. Improving [FRS$^{+}$16, MWZ12, PLPW13, AN15, BMB16, CHS11, Far14, LNM$^{+}$11]. improvements [EA12, HRV10, Tso13]. Improving [AB15, BCM$^{+}$15, Chi16, FMS12b, GMS11, HLC11, MHC12, Sar10a, SS11, YWFW18, YKBS10]. IMS [IG11, MEF012]. In-Memory [PAF18]. In-Order [ZBP18]. Incentive [SJWH$^{+}$17, YTH17]. Incentive-Aware [YTH17]. Incident [CCG$^{+}$16, CMG$^{+}$18].
Interface [WBA17].
International [ACM10, ACM11, BC11, CGB+10, Che11, Dan12, FBM12, GLIC10, JY14, LCK11, LW11a, LTW11, MV12, PJ12, Sen10, Wat10, Yan10, Yan11, AB10a, Abe10, Ano11a, BYL10, BL10, Gil10, GG10, HWG10, LII10a, IEE11a].
Internet [Ano13d, LFGCGCRP14, TW14, AAC+16, Ano13b, ClF+17, CW12b, DRS16, DG15, Gel13, Ham19, HZL18, JKAU19, JTZ+16, LNK+18b, LGH+17, LSG16, MJS13, MCF17, NLLJ12, NLY15, Orn16, PLGMCdF18, SB17, SYW17, SYC+17, SKEG14, WCCH18, YCT15].
Internet-Draft [MCF17].
Internetworking [SAAB10].
Interoperability [HWK+15].
Interplay [HWK+15].
Interpolation [JTZ+16, KU14].
Interpretation [MZ17b].
Interpretation-Based [MZ17b].
Intersection [LZY+16].
Interval [PPR+12, Cra11, DTZZ12, LWY12, MO14].
Interval-based [PPR+12, Cra11].
Intra [HF14b].
Intra-Masking [HF14b].
Intrinsic [HRK18, SN10, NS10, RCW15].
Intrinsically [SRK+17].
Introducing [Fay16].
Introduction [DK15, Gas13, G+13, JSK+17, LKL18, Low12, Mei10, Men13a, Sch15a, SOG15, Stal1b, CM13, Buc10, Led16, Sch15a, Full10, Mur10].
Intrusion [NSMS14, SAJL16, SBV14, YKC+12].
Intrusion-resilient [YKC+12].
Intrusive [AARJ12, MFH13].
Invariant [yWpNyl11].
Invariant [CSW12, NKWF14, RS16, WYW+13, YWN15, GZH12, LCM11].
Invariants [NKWF14, CDSLY14, KK10, MZ17a, TLL13].
Invention [Orn16].
Inverts [Ant14].
inversion [KHHH14].
Invert [ZWTM15].
Inverted [XYL16].
Invertible [SLY+16, UUN13].
Investigating [SPM+13].
Investigations [Bla16, Har14].
Invisibility [BN14].
Invisible [Keb15, Mac14, SYL13].
InvisiMem [AN17].
INVISIOS [AARJ12].
Involution [Bru12].
Involving [HLCL11].
IoT [AATM18, CCM17, CSH+18, FQZF18, GAI+18, MMP19, NVM+17, SGC16, TODQ18, TG17, WCFW18, WXK+17, YFT17, YFT18, YTH17, ZCW15, ZLY+19].
IoT-Based [YTH17, ZLY+19].
IoT-Enabled [SGC16].
IoT-Enabled [YTH17, ZLY+19].
IoT-Based [SAJL16, ZSW+18a].
IP [AGLW16, AZH11, PJ18, PA10, RS17, SP15a, TJZF12, WBC+10].
IP-SEC [PA10].
IPs [GSFT16, NDG+17].
IPs [AGLW16, AZH11, PJ18, PA10, RS17, SP15a, TJZF12, WBC+10].
IP-SEC [PA10].
IPs [GSFT16, NDG+17].
IPv6 [KP12].
IPA [ZM16].
iphone [Wu16].
IPs [GSFT16, NDG+17].
IPs [GSFT16, NDG+17].
IP-SEC [PA10].
IPs [GSFT16, NDG+17].
IR [BAAS13].
I, [HJJ+12].
IRC [HB13].
IRC-based [HB13].
IRIW [JKHeY12].
irregular [YWL+17].
ISBN [Ano15b, Ano17b, Bai12, Joh10, Mur10, Sch15a].
Islet [Dan12].
ISO [BCM12, BCM13, TS16a, WWBC14].
ISO/IEC [BCM12, BCM13].
Isogenies [Y+17].
Isogenous [YAK18].
Isogeny-Based [YAK18].
Isolated [YS15].
Isolating [LG12].
ISSAC [Wat10].
Issue [Ano13d, Ano16a, Ano16b, Ano16h, CSYY18, GO17, LW13a, LKK18, XW13, PHWM10, Sim15b].
Issues [ABHC+16, PZPS15, JAE10, KJN+16, MHV15].
ISTE [Ano15b].
Italian [Sac14].
Italy [Cra12].
items [YD17].
Iterate [HRH11].
Iterated [LPS12].
Iteration [CCZC13].
iterative [SXL16].
ITUbee [FZP+17].
J [Bar12, Led16, Sch15a, WZM12a].
J2ME [GTP12].
J2ME-Enabled [GTP12].
Jacobian [BAAS13].
Jacobians [Res12].
Jacques [Nac12].
jamming [YSJL14].
Janet [Ayu12].
Japan [Sah13, Maf16].
Japanese [Don14].
Java [GTP12, XHH12].
Jaypee [CGB+10].
Jean [Dew11, Nac12, SR14].
Jean-Baptiste [Dew11].
Jean-Francois [SR14].
Jean-Jacques [Nac12].
Jeffrey [Mei10].
Jill [Mei10].
Joe [Car11].
John [Wes16].
Johnny [HMI2, RAZS15].
Join [PD14].
Joint [ABF12, LC15, PMZ13, TCN+17, LSQ11b, ZC12]. Jonathan [Ful10, Mou15].
[CFST17]. Joux [AY12].
JPEG [AOT13, LSQ11b, LC15, MAL10, QZ14, SK12a, WHZ12, WLH13, ZC12].
Junction [VDB+16]. June
[ACM10, ACM11, Gil10, Kap11, Wes16].
Juniper [CCG+16, CMG+18]. Juraj [Gas13].
Just [Pf10]. JXTA [AMHJ10].
K2 [PS12]. Kalya [OGK+15]. Karatsuba
[BCL14, MRL+18]. Karhumen [BCPV11].
KASE [CLW16]. Katz [Ful10, Mou15].
KDM [MTY11]. Kecceak [BDP+12]. keep
[Rus15]. Keeping [CG14b, Man13, Gup15].
KEM [CZLC14]. kept [Cha13c]. Kerberos
[SCH10, TW14]. Key
[ASN12, Ano11b, ABB19, BN14, BVS+13, BL12, BBB+16a, BD15, Bar16, BCO13, BKLS12, BF11, BKKV10, BB10, CVM14, CT18, CLY14, Che15, CJ13, Chl16, CCT+14, CNT12, Cou12, CMA14, DWWZ12, DL12, EAA+16, FZT13, FVS17, FBMI2, GFBD12, GT12, GZZ+13, GSW+16, GST13, GPT14, Gir15, GKS17, GZ12, GLB+18, HSY12, HLLG18, HC12, HL10a, HCL+14, HCT+15, HEC+12, HLIH9, Jia14a, JEA+15, KPI12, KTT12, KFOS12, Kin15, LLSW16, LCLL15, LQY10, LY16, LH11b, LSQ18, LCCJ13, LYY+18, LBR12, LLH18, MZHY15, MVV12, MNP14, MTY11, MMY12, MPRS12, MNS11, MSU13, NNA10, NRY+14, NTY12, Orm16, PSM17, PDNH15, PCPK14, Pud12, PNRC17, RVIH16, RSBGN12, RW12, Saa12a, SK11, SNJ11, SEHK12, SK12b, SWM+10, Sia12, SGL15, SLY+16, TMC15, TYM+17, TM12, WP17, WSS12, WLC12, WZ15, WCL+18, WWHL12, WT10b, XNKG15]. Key
[XXZ12, Xio12, XLM+12, XJWW13, XGLM14, XZLW15, XJR+17, YM16, YZX+12, YS12, YLW13, YRT+16, YL17, Yon12, YKC+11, YFK+12, ZXH16, ZY17a, AA14, ATKH+17, APK+18, ABB+14, AKG13, AIB+16, ABW10, AN15, BS15, BAGD12, BB14, BJ16, BS12, BGG+13, BBB16b, CFL13, Cha13a, CSD18, CLZ+17, CTL13, CML16, CLCZ10, DLK+16, DGIS12, Dur15, FHH10a, FA14b, FIO15, FHZW18, GMT+15, GPP+16, GH16, GBMN11, GLM+11, GTSS19, HPC21, HZWW17, HBW12, HL11, HLYS14, HCT17, IM14, ISC+16, IB11, IOV+18, JSK+16, JLT+12, Jia14b, JSM18, KD15, KMT12, KKG14, KIH19, KP18, KLV+16, KDW+17, LLS13, LLP+18, LWS10, LIK+17, LPs10, LW13b, LZ14, LML+13, MNP12, MRT10, NACL12, NCL13, Nos11, Nos14, RG10, RWZ13, RPSL10, SES+16, Sar14, Sav16, SLZ12, SY15b, SMK13, SZZ15, SA15, SGP+17, St10, TK19, TCS14, TLL12, Tso13, TKh14]. key
[VV19, VN17, WWYZ11, WDK19, WZM12b, WT10a, WTT12, WQZ+13, WXX+17, WX12, XW13, XCL13, XMHD13, XHM14, YT11b, YC12, Yan14, YZZ+14, YHHS16, YZL+18, YLZ+16, ZPZ+16, ZWQ+11, ZZ11, ZCC15, ZZ16, ZXS+18, ZXL+19, ZG10, ZZZ15, ZY17b, ZWS+18, ZHT16, CLW16, OHJ10, XJR+17].
Key-Aggregate
[CCT+14, PSM17, GLB+18, CLW16]. Key-Agreement
[WSS12, APK+18]. Key-Alternating
[BBKS12]. Key-Based
[Xio12]. key-correlations
[Sar14].
key-delegation
[JSMG18]. Key-Establishment
[BCO13].
Key-Extraction
[GPT14]. key-hash
[KKG14]. Key-Insulated
[FZT13, LH11b, HL11, RG10, RWZ13, WWYZ11].
Key-Length
[GT12]. Key-Length-Based
[PNRC17]. Key-Policy
[GZZ+13, GSW+16, HSY12, RV16].
Keyed
[KE19, MMS17b, YHHM18].
Keyed-Function
[MMS17b]. KEYing
[TW14, BCPV11]. Keyless
[PDMR12, ZXW+18]. keyrings [MBB11].

Keys [ASN11, BF12, Bro17, CC10, HDWH12, MS16, PSM17, TW14, ZMW16, CMG+18, HL14, IK15, LLY15, LH13, LW10, LLL+18, RWZ13]. keystream [SM11].

Keystroke [AaBT16, SP13, CTL12, LTC+15a].

Keyword [CWL+14, Che15, HCDM12, HLH19, LSQ18, WDC18, XWSW16, XJWW13, ZXY16, BL11, CLH+16, FSGW12, GJS+18, LKK+14, OSSK16, SY15b, WHY+12, WXLY16, XWY+18, YZCT17].

Keywords [CWWL12, ZZ11].

KGC [YT11a].

Kid [Tan17a].

King [ABJ13].

Kiss [HU15, Ros11].

KLEIN [GNL12].

Klepto [XY18].

Knapsacks [Dun12a].

Knocking [DB17].

Know [BC14, CAC14, XTK10].

Knowledge [CLP13a, COP+14, GJO+13, GOS12, LW14, MX13, MT12, OOR+14, Pan14, TSH14, Ano11a, KPP16, LLM+19]. Known [DWWZ12, JLH12, SEHK12]. Known-Key [DWWZ12, SEHK12]. Kobliitz [BJ10].

Kode [NN15].

Korea [LH10a, LW11a].

KP [FJH12, HQZH14].

KP-ABE [FJH12, HQZH14].

Kristie [Keb15].

Kryptografie [VlBö12].

Kryptographie [Buc10].

Kuala [HWG10].

Kurtosis [YYO15].

L [Low12, Xie12].

Labs [Ven14].

Labyrinth [Fox13].

Lacks [BDSG+13].

LAKE [BCO13].

Landis [BBB16b].

Languages [MX13, Wat12].

LANs [FLH13].

Lapin [HKL+15].

Laptop [GPT14].

Large [AN12, DM15, FNW18, JLS12, JKHeY12, KCR11, KU12, LW16, LQD+16, MC11, SP13, dCCSB+16, EEAZ13, FXP12, GSN+16, LFZ+17, LBOX12, SR10, ZZKA17, ZVH14].

Large-Scale [DM15, JKHeY12, LQD+16, dCCSB+16, FXP12, GSN+16, SR10, ZZKA17, ZVH14].

LARK [DS11].

LED [IS12, JKP12, MRTV12].

Learning [CTC+15, KPC+11, KRBI2, Yon11, GJ13, Sch12a, WS14, BCV12].

Learning-based [WS14].

Leave [KPP16, LLM+19].

Learning [CTC+15, KPC+11, KRBI2, Yon11, GJ13, Sch12a, WS14, BCV12].

Learning-based [WS14].

Leakage [AV12, BKKV10, CBL13, DCA18, DHB16, FPS12, HHH+13, HHP17, IL15, LTZY16, NTKG17, NTY12, Pan14, SCH15, TTH15, Wan18, XZ12, YZLC12, YZ12, YCY12, ZYT13, ZWTS15, ZM16, ZMM17, ZY17a, ZY17b, ZYM18, ZBPF18, CQX18, DLZ16a, DMWS12, GV14a, GL+18, SP+17, YLZ+16, ZWM14, ZCC15].

Leakage-Free [IL15, TTH15].

Leakage-Resilience [NTY12].

Leakage-Resilient [AV12, BKKV10, CBL13, DCA18, DHB16, FPS12, HHH+13, HHP17, IL15, LTZY16, NTKG17, NTY12, Pan14, SCH15, TTH15, Wan18, XZ12, YZLC12, YZ12, YCY12, ZYT13, ZWTS15, ZM16, ZMM17, ZY17a, ZY17b, ZYM18, ZBPF18, CQX18, DLZ16a, DMWS12, GV14a, GL+18, SP+17, YLZ+16, ZWM14, ZCC15].

Leaky [DLWW11].

Leak [BBG+17].

Leakage [AV12, BKKV10, CBL13, DCA18, DHB16, FPS12, HHH+13, HHP17, IL15, LTZY16, NTKG17, NTY12, Pan14, SCH15, TTH15, Wan18, XZ12, YZLC12, YZ12, YCY12, ZYT13, ZWTS15, ZM16, ZMM17, ZY17a, ZY17b, ZYM18, ZBPF18, CQX18, DLZ16a, DMWS12, GV14a, GL+18, SP+17, YLZ+16, ZWM14, ZCC15].

Learned [KMP+11, WL11].

Learning [CTC+15, KPC+11, KRBI2, Yon11, GJ13, Sch12a, WS14, BCV12].

Learning-based [WS14].

leave [CMG+18].

Lecture [Hel17].

LED [IS12, JKP12, MRTV12].

Ledger [Muf16].

Leeds [vDKS11].

Left [BBG+17].
Less [TKR14, GM13, Kam16], [ADD10].
Lessons [KMP11, TGC16, WL11, CMG18], [AW17, Ano15a, BRPB13, BKJP12, CCW+10, DA10, Glii2, HZS+19, HS18, JWJ+17, KPC+16, KGP12, MV16a, ZLDC15, ABBD13, MEF012, RS17, UUN13, VS11, YT11a, Bai12].
Level-Doubling [Zha12].
Levels [HLCL11, LRW17].
Leveraging [DMS+16, HCM11, MvO11, SKGY14].
Lewis [Mar10a].
Lexicographic [ZAC17].
LFSR [HLC12, MRT10, WGD18].
LFSRs [QGGL13].
Liability [Bra13].
Libgcrypt [Sch12b].
Library [ACZ16, Bee17, BLS12, FLW12, KRH18].
Life [MK13, MK10, McK11, War11].
Lifecycle [Tan15a].
Lifting [LSL12b].
Light [JE15].
Lightweight [AMKA17, AARJ12, BSS+13, BFM16, BKL+13, BM11, CGCGPD12, CPWP12, CCF17, DS11, ESS12, EKP+13, FQZF18, GNL12, GAI+18, GMV17, GMSV14, HZWZ18, HCETPL+12, IS12, IOM12, KE19, MO12, MFG16, MPM+17, PCDG14, She14, ZWY+13, ZLY+19, AMN18, AATM18, AKKY17, BLL+19, Bor10, BB16b, CL11, FLL+14, GTSS19, KDH15, LLZ+16, MCN+18, MN12, MHI15, MHI+18, PJJ18, PSO+13, SGJ+18, Tan12b, TG17, WLZ+16, WCFW18, WWBC14, XWZ+18, XHM14, YCT15, ZSW+18a].
Like [BW16, ERLM16, CGCS12, HLH19, KO16, LJ15, LJ16, RS14].
Lilliput [BFMT16].
Limitations [DR12].
Limited [DFKC17].
Limited-Use [DFKC17].
Limits [AS16, GV14a, KS12].
Linear [Ful10].
Line [FFL12, YMWS11].
Linear [BCI+13, BW12, CGCS12, CMA14, EKP+13, FGMP12, LGLL12, LJ15, LJ16, LFW+16, WGF16, YCL17, BBEPT14, Bul10a, FES10, GOGGCC15, Her10, HCC11, LWK11, ÖS11, SA14, XSWC10].
Linear/Linear [EKP+13].
Linearly [ADD10].
Linguistic [OO10, OTO18].
liinguists [Maf16].
link [Ham12, VS11].
link-state [Ham12].
Linkable [YLA+13].
linked [JCHS16].
linking [NPH+14].
Linux [Fel13].
Lipreading [OIS12].
LISISAP [VS11].
List [AEHS15].
Listening [Lan17].
live [ZZCJ14].
live-wire [ZZCJ14].
Liveness [OS12].
Lives [Acz11, McK12].
LLL [NV10].
Load [AN12, FXP12, PRN19].
Loc [CDPLCA16].
Loc/ID [CDPLCA16].
Local [pNyWY14, TMK11, VCA15, WYW+13, LMJC11, LWW+10, PTK14].
Locality [Kaw15, NCCG13].
Localization [SRA17, GAI+18, NC13, SCY15].
Locally [Yek10].
locating [ZYL+10].
Location [Kim11, PSD15, PKA15, WPZM16, CHX13, Har14, NZL+15, PC14, YXA+18].
Location-based [Kim11, CHX13, NZL+15].
Location-dependent [PKA15].
Location-Privacy [PSD15].
Locations [KD12a, Alp18].
locator [MJS13].
loci [FES10].
Locking [AB15, FHS13, LCW+16, LHA+16].
Loève [BC11].
Log [YK18, PGLL10].
Logarithm [BGJT14, CLL16, VM14, AMORH13, BGJT13, MM13, Mes15, TPL16].
LogCA [AW17].
Logging [YR12a, YR12b].
Logic [Che18, Cil11, DGP10, Hel17, RZZ+15, Ter11].
logical [CO11].
Logistic [JHW+19].
Lois [DG12].
long [CFVP16, BF12].
long-term [CFVP16].
look [AY14a].
look-up [AY14a].
Looks [ERLM16, KTA12, Sch16].
lookup [LDDAM12].
lookup-table [LDDAM12].
loop [DWZ12].
losing [SLZ12].
Loss
[DK16, JTZ+16, DMV15]. **Lossless**
[DA12, LZC+12b, GJ13, TTL10, WLH13].
Lossy
[BKPW12, CW12a, DN12, ASO14, CQX18].

Lovers [Keb15, Mac14].
Low
[ABC+17, AWSS17, Bai10, BCO13, BCG+12b, CML15, DJL+12, FHS13, GST13, GI12, LJK17, LBR12, Man13, NVM+17, RS17, SAJL16, WT10b, ZJ11, CZ14, Chi13a, FQZF18, LGKY10, LKAT12, LEW19, MHV15, NR11, ZPZ+16].

Low-Bandwidth [GST13, NR11].

Low-Bit-Rate [LJK17].

Low-complexity [DJL+12].

Low-Cost [ABC+17, GI12, Man13, NVM+17, LEW19].

Low-Distortion [FHS13].

Low-end [Chi13a].

Low-Latency [BCG+12b].

Low-Overhead [AWSS17].

Low-Power [SAJL16, WT10b].

Low-resource [FQZF18, MHV15, ZPZ+16].

Lower [LJ15, Sha10].

LPM [LD13, PJ18].

LPN [HKL+12].

LPSNR [LP12].

LR [YZ12, ZWM14].

LR-Fead [ZWM14].

LR-Uesde [YZ12].

LSB [DA10, Tan12a].

LTE [CLM12, DLK+16, LLS13, QMW17, SGC16, TM12].

Lucas [RW12].

Lucky [AP13].

Lumpur [HWG10].

LUT [ABJ13].

Lyu2 [ASBdS16].

LZSS [CFY+10].

M [Orm16, HvS12].

M-Identity [HvS12].

MA [ACM10].

MAC [Kim15, LCLL15, ABS+12, CJ13, GKM16, MS13a, MS13b, MS13c, VN16].

MacGuffin [LGL+12].

Machine [AGHP14, Ano16c, CHS15, Sch12a, ABBD13, GJ13, Gup15, LLZ+16, LHA+16, QMC17, RY10, TTL10, War11, WS14].

Machine-generated [AGHP14].

machine-to-machine [QMC17].

Machines [Ber16a, HB17, BBDL+17, KSU13, PWW10].

Macrakis [Keb15].

MacWilliams [ÖS11].

Made [Orm16, Sma16].

magic [PHN+12].

Magnetic [VDB+16].

Magnifying [DKL+16].

Main [AMH+16, LY15, ZHZ+19, CS11].

Maintaining [WP15].

Make [Ayu12].

makes [Kem11].

Making [BG14, dCCSB+16, Gel13, LA10, ZDW+16].

Malaysia [HWG10].

Malicious [AAE+14, BL15, TM18, VQA15, BK12b, WTT12].

Malleable [LGL+12].

Malleability [KTT12].

Machines [Ber16a, HB17, BBDL+17, KSU13, PWW10].

Machines [Ber16a, HB17, BBDL+17, KSU13, PWW10].

Manhattan [SS10].

manipulation [OF12].

Mansour [DKS12, LPS12].

Manual [Sac14].

Manuale [Sac14].

Manuscript [Ano16d].

Many [LB13, HRS13, ZQWZ10].

Many-Core [LB13].

many-to-one [ZQWZ10].

Map [XYXYX11, ISC+16, LZY+16, LK+18, PC14, SE18, ZT14].

map-based [LWK+18].

Maple [G’13].

Mapping [CBDL+13, MS17, MM14a].

Mappings [MC11, CDPLCA16].

MapReduce [LJLC12].

Maps [Ye14, BAAS13, KLW+16, LW10].

March [Ano10, Cra12, DSS12, Dan12, Dun12b, IEE11a, Pie10, Sah13, WZM12a].

Marche [CCFM12].

Margaret [Led16, Sch15a].

Marian [Kap13].
marking [PJ18]. Markov [CR12, FVK17].
Marotto [SE18]. Marshall [Don14].
Martin [ABJ13, Hof16]. Maryline
[Ano15b]. Mashup [HTZR12].
Mashup-Providing [HTZR12]. Masked
[WH17]. Masking [HF14b, PYM+13]. Mass
[BPR14a, BPR14b]. Masses [Ano15c].
Master [Dew11, Mar10a]. Matching
[Lin15, Tan12a, MR14c, MHT+13, PPTT15,
SS17, YZL+18]. MathCW [Bee17].
Mathematical [Bee17, FGPGP14, Ham17, IBM13a, Mei10,
Sch15a, Wes16, KMI14, OO10, Sta11b].
Mathematical-Function [Bee17].
Mathematician [Ano17e].
Mathematicians [Acz11]. Mathematics
[Ano17b, Ayu12, Led16, Sch15a, Ter11,
CM13, Kra12, PHWM10, Wes16].
MATLAB [TRD11]. Matrices
[AMVZ12, BNA15, AKG13, FES10]. Matrix
[BFM16, IAD10, LYY+18, SK12a,
TDTD13, Ye10, Cha13b, LLM+19, TK14].
matrix-vector [LLM+19]. Matter
[Rau15, SS12a, DKA+14]. Max [And13].
Maximizing [DBPS12]. Maxims [Kob10].
May [BL10, FBM12, Gil10, Sen10]. maze
[LLC10]. mbedTLS [YGS+17]. MC
[HIDFGPC15]. MC-2D [HIDFGPC15].
McEliece [DN12, GV14b, MBR15, MT12,
MG15, OTD10, SWM+10, VG15]. McOE
[FLL12]. MDPC [HC17, VOG15]. ME
[XHH12]. mean [TTL10]. Meaningful
[LTC+15b, SA16a]. Means
[KRD13, AMHJ10, Kam16, Pa16].
Measure [DDD14]. Measure-independent
[DDD14]. measurement [VGN14].
Measurements [DTE17]. measuring
[DMWS12]. Mechanical [RSCX18, Mat19].
Mechanism [ABB19, KD12b, LL15, Lin15,
PKTK12, Saa12a, SMOP15, ZHS+19, CL11,
FXP12, PLPW13, PSJ+13, WB12, YXA+16,
ZWM14]. Mechanisms
[CBO+18, JSK+17, SGG18, FHH10a,
KSA16, MMZ12, PLGMCdF18]. Media
[KBL11, Fri10a]. Mediated
[Fra16, YHK+10]. Medical
[KBL11, UUN11, AIA+18, AMK12, KSA16,
KLC+10]. Medicine [MA17, LWK+18].
MEDiSN [KLC+10]. Meet
[LJ17, LWKP12, LWPF12, LWKP14].
Meet-in-the-Middle
[LJ17, LWKP12, LWPF12, LWKP14].
meeting [Hof16]. Meets [RBHP15,
BSR+14, MZA+13, PYH+18, SM13].
Members [YWZ+12]. Membership
[FHR14]. MemGuard [CZ14]. Memorial
[Ano11c]. Memoriam [Gre11]. Memories
[AWSS17, BDGH11, YNQ15]. Memory
[AN17, ASBdS16, AMH+16, BKKV10,
DLZ16a, DHLAW10, GKM16, GM13, Gue16,
HT13, HF14b, LY15, PA18, TLCF16,
ZH+19, BAB+13, CZ14, CS11, CVG+13,
VCK+12, ZWT13]. Memory-less [GM13].
memoryless [BJ16]. Memristor [MCS+15].
Memristor-Based [MCS+15]. men
[McK10, McK11, McK12, MPJ+16].
mercurial [CSZ+11]. Merkle [XWZ+18].
Mesh
[BOB13, Y14, CG12b, HGWW11, HCC11,
WLD11, XHCH11, YHHS16, ZZCJ14].
Mesher [PLPW13]. Message
[DGJ+12, KPFW12, HLLC11, Jia17, KHHH14, PSS+13, PPS12b, PA10,
RWWL14, CJXX19, CMMS17, EEAZ13,
Jia16, LC17, YMM13]. Message-Based
[PPS12b]. Messages [Gen13, YLL+12,
BBM12, BTW15, KPS10, LCM+17, SA15].
Messaging [BFK+10, Wu17]. messy
[BBDL+17]. Metaheuristic [HCETPL+12].
Metamorphic [ATS15]. metaphors
[Mat19]. metering [WMYR16]. Meters
[DM15]. Method [AGW15, Ara13,
BBB+16a, FLH13, GLLSN12, GMNS15,
HHS+15, LyWZZ12, LP12, LD13, LBR12,
MU12, OWHS12, PS14, SAA15, SY15a,
SP15a, SZDL14, WZXL12, WZCC18,
XNG+14, XNRG15, YY015, AGLW16,
AIA+18, BLL+19, CSS+13, Dra16, FVK17,
[AK14, CMO+16, HVL17, SK12b, YTS12, AAT16, SKH15, SF12]. multiplicative [KHHH14]. Multipliers [ARM15].
Multiclient [FH10b], multisecret [FGMP12]. Multistream [WXL17].
Multitone [GL10], Multivariate [DP17, ST16, YL17, YDH15].
Mutt [Ran14]. Mutual [CJP12, GM14, Kim16, SBS12, WT10b, AT18, BDM18, CJP15, Cho14, CL11, FHH10a, Far14, GPL13, GH16, HDPC13, IB11, JNUH17, JKAU19, KIH19, KP18, KLW16, LIK17, MMP19, SPLHC14, TG17, XMHD13]. MVP [CD12]. mvSERS [HLKL15]. My [GPT14, CMG18].
Naïve [ZLW17]. Name [YCM+13]. Named [ABJ13, MPJ16]. National [Fid18, ABJ13]. Natural [ZCWS15].
Nets-based [PS14]. Network [Ano10, Bis17, CWL16, CJ13, CL13, DRS16, Hay13, HDWH12, HS18, Kim15, KCC17, LH12, LCLL15, LY16, LTW11, MJGS12, NNAM10, NRZQ15, SGC16, She14, TLW12, VKPI17, VFV17, VGA15, VKC15, WP15, YZLC12, YS1L14, AKM11, AL15, Ano11a, AZF12, CJXX19, CL11, DLK16, FFBG14, HWG10, HB13, HKB14, JZS10, KP18, LH11a, LKKL13, MZA13, MJS13, NDN13, OP11, PL16, RCW15, Ser12, SCKH10, SKS18, Sta11a, Tan15b, WYL13, WS14, YLS12, ZOS17, Ste15b]. Network-Assisted [KCC17].
network-based [YLS12]. Network-Coded [She14]. Network-on-Chip [Bis17]. Networking [LCK11, LLZ17, ZHL15, Kim11, LCM17].
Networks [ABCL17, ABC17, BN14, BPSD17, BFMT16, CS14, CSH18, DS11, DF16, FMS12b, GMVV17, HZC12, HBCC13, HK14, KH10, LCLL11, LI15, LHM15, LZCK14, LWCJ14, LLZ12, MPM17, NSA15, NYR14, OO12, OKG12, PYM15, PCPK14, RWLL14, SWYP12, She14, SP15b, Smi11b, SL11, SZT17, TCN17, WXL17, WLY15, XHC12, YM16, ZC13, ZW15, Zha15b, ZLDD12, ZSA12, Aia15, ASO14, APK18, AIB16, AIK18, ADF12, BDK11, BLAN16, BB16b, CDGC12, CLM12, CML18, CLSW12, CL11, DSCS12, DK12, DLN13, EEA13, FA14b, FMA18, GH16, HG16, HZC14, HZWW17, HCC11, HCM11, HTC10, HYF18, JNUH17, JLT12, JMW16, KM10b, KLC10, KO16, KLW16, KDW17, LLLS13, LC17, LJMC11, LJX14, LIK17, LN18b, MSM18b, QMW17, RPHG12, SGCC16, SA12, SG18, SZMK13, hSZ15, SK10, TODQ18, TKHK14, WGT10, Wan13, WW14, WXK17, WX13, XWDN12, XHCH14, XMHD13, YHHS16, ZWQ11]. networks [ZBR11, ZCLL14, ZTZ16, ZLDD14, ZHH17, ZX11, LNK18a].
Neural [CSH18, SKS18, YZLC12, EEA13]. Neuroscience [BSR14, JW14].
Neutrality [Kha10]. Neutrality-Based [Kha10]. Nevada [IEE10]. never [Bai12].
Oblivious
[DN12, WCL+18, CGH11, RYF+13].

Obscurity [Edw14]. observation
[WHY+12]. Observations [HCL+14].

Obtaining [BB10]. Occasion [Nac12].

October [CGB+10, IEE10, IEE11b].

Ocotonin [BS15]. odd [GJM+15]. Oded
[Lin17]. ODIN [ABCL17], odyssey [Car11].

OFDM [CLZ+17]. Off
[GPT14, GHS14, YMWS11]. Off-Line
[YMWS11]. Off-Path [GHS14]. offering
[Par12b]. Offers [Par10]. Office [Mor10].

officers [Mal16]. Official [Küp15]. Offline
[Ano16a, GAS+16, JMG+16, LJW+17,
LKT12, RSM15]. Offline/online
[LJW+17]. Offloading [JHC14]. Offs
[AsBd16, BS14, SR10]. offsets [YQH12].

Old [Che17, GY13]. on-chip [BAB+13].

On-Line [FFL12]. on-siteDriverID
[SGGCR+16]. On-the-fly [PS14]. One
[CP16, DSM14, DCAT12, FD11, HP14,
HG12, Mat14, NA10a, PC16, TYM+17,
XW12, XYXYX11, XZLW15, Yon12, BM15,
FH10a, GPLZ13, HRV10, LP11, LW10,
LW13b, LML+13, RK11, Rus15, SM10a,
TCS14, ZQZW10]. One-Dimensional
[XYXYX11]. One-Round
[TYM+17, XZLW15, Yon12, XW12, TCS14].

One-Sided [HP14]. One-Time
[NA10a, DCAT12, BM15, FH10a, GPLZ13,
LW10, LW13b, LML+13].

One-Time-Password [FD11]. One-Way
[CP16, DSM14, Mat14, HRV10, LP11,
RK11]. Onion [KZG10]. Online
[BPsd17, JMG+16, KSd+17, PSM17,
SKGY14, SZZT18, WXY+17, ZHL15,
Ccc10, HfYf18, KvVe18, LKT12,
LJW+17, SM+18b, SKS+18, SYW17].

Online/Offline [JMG+16, LKT12]. Only
[BB10, YNR12b, YLW13, Buì10a, KMTG12,
KA17, Sar11]. open
[ABF+14, MHV15, Pow14, Win17, ZWQ+11].

open-source [ABF+14, Pow14]. OpenCL
[ABDP15]. Opening
[GDC16, LZZC12a, LLH18, LZZC14].

Openings [SP13]. openness [Bia12].

OpenPGP [MBB11]. OpenStack
[CSL+14]. Operable [BCF16]. Operating
[KMP+11, CDA14, MNNW15]. Operation
[KLLSN12, JB11, AL+18, Fay16, Lin14a,
Skk10, WGZ+12]. Operational
[CRe+12, CM11]. Operations
[Cil11, SEY14, WYW10, LZY+16].

Opportunities [Lau17, Mic10b].

opportunity [Sch11]. Optimal
[AS17, DSSDW14, HBB13, PDN15,
PPS12b, Cha13a, DDD14, PPT15].

Optimality [MM17, SDM+12]. Optimally
[DSM14, GT12]. Optimally-Fair
[DSM14]. Optimised [CMO+16].

Optimising [EVP10]. Optimistic
[WSA15, SXXY18]. Optimization
[WH17, ZAC17, FLZ+12, GCSAdP11,
Khf10, PTK14, RYF+13, ZSM18].

Optimizations [ZAG19]. Optimized
[Ays15, EKB+16, HGT15, MFB+13,
MBR15]. Optimizing [DZW18, ZSM18].

Optimum [oba11, YFF12]. Optional
[PC16]. OR-Proof [FSX12c]. oracle
[GLM+16, HKT11]. Oracles
[FZT14, FSX12a, GSW+16, XQL11, YS12,
YKc+11, YLA+13, ZY18, LLY15, RG10,
SYL13, WWYY11, YFK+12]. Order
[DCN18, K12, LWP12, PRC12, YKKL12,
ZDL12, ZSW+12, ZBPF18, AKY13, LW13a,
LCY+16, LWP14, gWpWvY+14, YL11].

Order-Hiding [DCA18].

Order-Preserving [KS12, YK12, YL11].

organisational [Sm15a]. Organization
[RSGG15]. Oriented [TJZ12].

Oriented [NNM10, Rg16, RSGG15,
WW12, WZM12a, WZM12b]. Orthogonal
[tWmC12]. Oscillator [YKBS10]. OSN
[BCF16]. OSNs [SZZT18, PZPS15]. other
[Sm15b]. OTS [Hü13]. outliers [Sch12].

Outlive [Hur16]. Output
[DK16, GST12, NR12, PBCC14]. Outright
ABJ13. Outsourceable [QZZ18].
Outsourced [FRS+16, LLC+15, LHL+18, LQD+16, PD14, RDZ+16, YMA17, YMC+17, DFK+10, FS18, HMK12, LCL+15, LCY+16, LJW+17, QZDJ16, ZML17, ZSW+18b].
Outsourcing [DR12, LJLC12, LHL+14, LJWY18, SKB+17, SWW+16].
Over-the-air [ZXW+18].
Overcoming [BKKV10, DY13].
Overhead [AWSS17, Bai10, CCW+10, GHS12, ZJ11, RS17].
Overlay [CHS15, MJS13].
Oversight [Bla16].
overview [AA14, BDP+12].
own [Zha15a].
owners [GZS+18].
Ownership [FMTR12, RR11, HWYW14, KH18].
Oxford [Che11, Wes16].
ozarow [ADG16].
P2P [dCCSM+12].
P3 [HK18].
Packet [FGR+17, JTZ+16, VKPI17, XHC+12, MV16b, PJ18, PX13, XWDN12].
Packets [Bis17].
Pads [NA10a, BM15].
Paillier [Gal13].
Paillier-based [Gal13].
Pair [Lin15].
Pairing [Bon12, CWWL12, CST+17, KZG10, KHPP16, LGPRH14, Meni3a, MST18, YTS12, BP18, Con12, KSH18, LL16a, LR15, YT11b, ZY17b].
Pairing-Based [Bon12, CST+17, KZG10, LGPRH14, Meni3a, MST18, YTS12, Con12, KSH18].
pairing-free [LL16a, YT11b].
pairing-friendly [BP18].
Pairings [ASS15, Hof15, IL15, LTI14a, HBW12, QYWX16, RS15, UK18].
pairs [MCP15].
Pairwise [DL12, YM16].
Palash [Kat13].
Palm [EE11b].
Pan [GOPB12].
Pan-European [GOPB12].
Paper [TSH17, Ano16g, SK14, YFK+12].
Papers [Ano16a, Ano16b, Ano16d, LW13a, LW13b, DDS12, Dan12, MV12, BYL10, JY14, LH10a, vDKS11].
Paradigm [ABGR13, BSV12, Mau12, MP12, WQZ+13].
Parallel [App14, ARM15, BBM15, CGB+10, GP17, LY16, LB13, MCDB12, MC11, NdMMW16, SMDS11, YE12, CSTR16, MRT10, RG10, RWZ13, WWYZ11].
Parameter [NDC+13].
Parameters [HRB13, MBF18].
parametric [Bul10a].
Paranoia [Cor14a].
Park [Ano11c, Bri11, Cop10a, Cop10b, GW14, McK10, McK11, McK12, Pea11, Smi11a, Smi15b, Smi15a, Bai12].
part [Vol14, BD15, Bar16].
Partial [DL16, GFBF12, LG12, SGS14, TK19, WDDW12, Bax14].
Partially [KB10].
participants [KSU13, WTT12].
participating [CH10].
particle [ZSMS18].
Parts [YCR16, Küp13].
Partitioned [FVS17].
Partitioning [ADR18, AP11].
Party [Ash14, HL10b, HP14, JR13, KOS16, KMO14, NSMS14, QZL+16b, TYM+17, ZM16, ED19, FIO15, GVW12, HPC12, HWB12, LyWSZ10, LML+13, Tso13, TKHK14, XLZW16, XCL13, YC12, YZZ+14, ZZZ15, GHKL11].
Passau [GLIC10].
PASSERINE [Saa12a].
Passion [Hof15].
Passive [DHB16, GSC17, SB17, BM13, uHAN+18, LWL11, MK12a].
passport [LZJX10].
Password [ASBdS16, BRT12, CLY14, DM15, FVS17, FD11, GAS+16, HCL+14, Lop15a, Lop15b, RS11, SD12, Shi11, WgMW12, YLW13, YRT+16, ZXH16, ABK13, AIC18, CTL12, DSCS12, FA14a, FIO15, FHV16, GPLZ13, HCC10, IOV+18, KMTG12, LWS10, LNKL13, MM12, Mvo11, Tso13, TKHK14, WZM12a, WZM12b, YC12, ZW18a].
Password-Authenticated [HCL+14, YRT+16, ZXH16, LWS10, WZM12a, WZM12b].
Password-Based [BRT12, CLY14, FVS17, WgMW12, DSCS12, FA14a, FIO15, IOV+18, TKHK14].
Password-Only [YLW13, KMTG12].
Passwords [BHvOS15, LCL17b, BCV12, Che13, GPLZ13].
Past [Bon12].
Patchwork [NXH+17, XNG+14].
Patchwork-Based [NXH+17, XNG+14].
Path [DMS+16, GHS14, NLLJ12, ZW15, Ham12, RYF+13].
Patient [ZLDC15, ZVG16]. Patient-Centric [ZVG16]. Pattern [DCA18, ATKH+17, uHAN+18, KPS10, OSSK16, PPTT15]. Patterns [Ano16e, BPSD17, TSH17, WOLP15, BDK11].

PAWN [JNUH17], pay [CCSW11]. pay-TV [CCSW11]. Payload [CHH12, AZH11, JNUH17, JKAU19]. payload-based [JNUH17, JKAU19].

Payment [DG15, SYC15, JNUH17, JKAU19]. Payments [RBHP15, MPJ+16]. PC [YE12].

PC-Based [YE12]. PCIe [IBM13b]. PCM [LY15]. PCM-based [LY15]. PCPs [MX13].

PCs [GPT14, GPP+16], PDGC [CGB14]. Peaks [TC10]. pearl [Russ15].

Perceived [CSW12]. perceptual [MK11].

PEREA [ATK11]. Perfect [Pas13a, Sch13, CZS16, FHKP17, LLC10, Lew10, XW12].

perfectly [ADG16]. Performance [Alo12, AW17, AB15, CGL+12, CCG10, DLK+16, DBPS12, EGG+12, ER814, FBPB14, GLG12, GCS+13, HKL+14, KAK8, LCK11, LPO+17, MCH12, SKV12, TPK12, WDDW12, Xio12, YWF18, ZLDD12, ABDP15, GCVR17, MMS+17, MS13c, ZLDD14].

Performed [Ano17d].

perimeter [Cal13]. periodic [KPS10]. periodical [CLSW12]. Permission [VN16].

Permutation [LJ16, GMSW14, LK14].

permutation-based [LK14].

Permutations [ARH+18, BKL12, Mat14]. Persistent [CSY18, TYK+12, ALL+18, PAK15].

person [PN10]. person-centric [PN10].

Perspective [KMY18, MSt18a, RSGG15, Sir16, Wag16, JW14, Suc12, ZWT13].

Perspectives [Sen17, SP+13]. Perturbation [XZZ18]. Pervasive [ACAT15, BCG+12, YD17, JSM+18, PAK15, SCY15, Tan12b, YWK+10a].

Petri [PS14]. PGP [RAZ15]. Pharmaceutical [YSF+18]. Phase [LD13, NBZP17, ZWT13, ZHH+17].

Phase-change [ZWT13]. Phase-Encrypted [NBZP17]. philosophy [Mat19]. Phone [Mur16, SAA12b, KRM+10, LTC+15a].

Physical [GPT14, GPP+16, HHH+13, SMOP15, GHD19, HQY+16, HZW18, KSA16, QMC17, VCK+12, WW13, YD17, ZHH+17].

Pipelineable [BDML16].

Pipelined [HZ11, KB10, NdMM16].

Pixel-Wise [SSA13]. Pixels [PDM12, Tan12a]. PKC [BMY12].

PKCS#11 [CFL13]. PKDS [HLC11, HLYS14]. PKE [HTC+15].

PKE-AET [HTC+15]. PKI [Dav11, YCR16]. PKIs [KGO10]. PKZIP [HL12]. plain [LW13b]. Plaintext [BM15, JLH12, MSas12, MSas13].

Plaintexts [YKL12]. Plane [YLL+12]. Platform [YE12, ABF+14, NCCG13].

Platforms [HTZ12, LMS16, SOG15, LT14b].

Podolsky [HR13]. Point
[AK14, MH14, ZC13, ZM16].
Point-To-Point [ZC13].
MBR15, YS15, ABDP15, BAB+13, BGG+13, KSH18, SSPL+13, Tar10. **Processors**

[GBF12, Gue16, RYF+13]. **Product**

[ADM12, CCM+15, OT12, YKNS12, Cha13b, DDM17]. **Products**

[LMG+18, RS10]. **Professional** [STC11].

Profiles [BCP16]. **Profiling** [DP12]. **Profit**

[APPVP15]. **Program** [MZ17b, Wai18, CLZ+17, GGH+16b, MFT13].

Programmable [CLF+17]. **Programming**

[Bee17, BCEM15, SY14, ASV13, HL10].

Programs [BG1+10, BGI+12, CL16]. **Progress**

[AB10a, BL10, BC11, GG10].

Progressive [SA16a]. **Project**

[ACK+10, SS10c, Wil18]. **projective** [CZ15a].

Prominent [AB13]. **Promise**

[Pau10, PWVT12]. **promised** [HS11].

Proof [BDSG+13, Bla12, CZLC12a, CZLC14, FSX12c, Kuz11, LW12, NLY15, SR14, Ste15a, ZZM17, Mon13, PPT15, WHJ17].

Proofs [BGK12, BCGK12, BGB12, BCI+13, BDSG+13, CZLC12b, IW14, LNZ+13, Mau12, NTY12, Sav13b, WPZM16, AGHP14, KPP16, KKK+16, Li10].

Propagate [GWM16]. **Propagation**

[SKS+18, WWC+11, YZLC12]. **Properties**

[CK12, CCK16, DQFL12, FY11, JR13, KU12, Sch12c, CLC10, WT13].

Property [HEC+12, PR12, Rja12]. **Proportions**

[Ber12]. **Propose** [BFMT16]. **proposed**

[Bax14]. **Protect** [CTC+15, YMC+17, BVIB12, CDF+10, dCCSM+12].

Protected

[BDGH15, SG15]. **Protecting**

[BCP14a, GSFT16, LLPY19, Mar10b, RCP+18, SCY15, Wat14b, ATK17, CDA14].

Protection [CDDD13, GST12, Lop12, NGAuH16, NGD+17, RR11, SEY14, SJ12, ATI+10, HLYS14, KKM+13, LVRY10, RS17, TLL13, YWT+12]. **protection-key**

[HLYS14]. **Protocol**

[BL12, BC14, BCM+15, BSSV12, BFK16, CC14, CCM17, FLH13, FMTR12, Fra16, GI12, HvS12, HCl12, HLI10a, HCP12, HCET1+12, HKL+12, JTZ+16, JHW+19, KMO14, LNZ+13, LCCJ13, LNX15, MBC15, MR10, PSS+13, SBS+12, SGC16, TYK+12, WT10b, XJR+17, YS12, YWF18, YWZ+12, ZZX+11, AATOM18, AKG13, AIB+16, AIKC18, AN15, BDM18, BGAD12, CSD18, CCW11, CJ15, DLK+16, EA12, FA14b, FIO15, GM15, GMS14, GLM+11, HPC12, HWS12, HL14, IC17, IOV+18, JKL+16, JLZ15, Kim11, KO16, LLL13, LDDAM12, LKKL13, LWS10, LXW12, LEW19, LY14, LML+13, NCL13, NLYZ12, OH10, Par12b, SPL114, SB17, SGJ+18, SSW+16, SSS11, SSPL+13, TG17, Tso13, TKH14, VS11, WCFW18, WZM12a, WZM12b, WLS14, WM1R6, WT10a, WTT12, WC18H, XCL13, XHM14, YC12, YZZ+14, YMM13, ZWQ+11, ZTM16, ZYC+17, ZW+18, ZXW18, ZG10, ZZC15, ZX11, BOB13, CJP12, LFGCGCP14].

Protocol [Ste15b]. **Protocols**

[AP13, ABHC+16, BMP12, CCK12, CCK16, CCF17, CCD15, Con10, CM11, Fra15, GRL12, GM11, GLR10, HLC11, HL10b, KOS16, LY16, MS16, MT12, Mur16, NYR+14, NMS14, PS15, SBS+12, Sch12c, SOF12, TM12, Xio12, YRT+16, Ala15, Ano13b, ACM12, CML+18, CR10, CLC10, DJG14, FTV+10, GBMD11, GLR13, HSH11, Ham12, HDP13, HZWW17, HST14, KIN+16, KUS15, KKK+16, LKK13, MN10, NR11, Nos11, Nos14, SD10, YSL+10].

Prototyping [KPC+16]. **Provable**

[BLKLS12, CC14, EKB+16, Rog16, YMSH10, ZK11, ZPXX14, FA14a, HRS13, LHL11, WB12, XCL13]. **Provably** [BCPM12, BCM12, BCM13, BHP14, FHH10a, GLL+18, IL15, LH11a, LL16b, PSM17, WMS+12, XJWW13, YC12, YZZ+14, ZG10, ABBD13, FIO15, SLX16, WXWC14]. **prove**

[DGJN14]. **provenance** [CDL18, ZOS17].

Provide [Ano15a]. **Provided** [KS12].

Providence [Sch15a]. **provider** [DFJ+17].

providers [AKK+17, BK12b, YWK10b].

Providing

[DLN13, HTZR12, KS18, MLM16]. **Proving**
Proximity [IW14, Alp18]. Proxy

Proxy [ASS15, GSW16, GJJ15, GJZ17, GZX19, HGWK11, HZX15, KP12, LSLW15, LAL15, LSC12, MLO17, MBC15, NAL17, Pet12, PRSV17, SYL13, WY10, WYML16, XJW16, YMWS11, YCM13, BGP17, CLH16, FSGW11, FSGW12, GH12, HWDL16, HYF18, KKM14, LCT14, LFWS15, LL16a, LL16b, QMW17, SLZ12, SKB17, Tia15, WHY12, Wan18, WLS14, XJWW13, YKC11, YFK12, ZY17a, ABW10, IM14, LPS10, LZC14, BSAW12, RPSL10, SES16, VN17, ZCC15, ZY17b].

Proxy-invisible [SYL13].

Ps [HDWH12].

Pseudo

Pseudo [NN12, XYXYX11, CFY10, KM10a, MG15, PLsvLE10, SH11, SM11, XSWC10, Zim10].

Pseudo-Random

Pseudo-Random [XYXYX11, CFY10, KM10a, MG15, PLsvLE10, SH11, SM11, XSWC10, Zim10].

Pseudonym [XHM14].

Pseudonymous [BDFK12].

Pseudoprime [DW12].

Pseudorandom

Pseudorandom [AS17, BCGH11, BK12a, Kla10, MFG16, CP13, GCH15, HRV10].

Pseudorandomness [Shi10].

PSMPA [ZLD15].

PSO [TLL13].

PSPACE [JUW10].

Public

Public [Ano11b, ABW10, BVS13, BB14, BKL12, BKKV10, CT18, CLP13a, Che15, CNT12, Cou12, FB12, GKS17, HT15, HLH19, IM14, JLT12, KFOS12, LLSW16, LP10, LSQ18, LZC14, LH18, MZH15, MPP14, MTK11, Mat14, MP12, Muf16, NDT12, Orn16, PDNH15, RSBGN12, RW12, RBHP15, SG18, Sa12a, SK12b, SM10, Sia12, SC12, SLY16, SGP17, SVT10, TMC15, TT12, WP17, WZ15, WWHL12, Wil18, XNK15, XXZ12, Xio12, XJWW13, YL17, YKC11, YFK12, YM17, ZYY17a, AA14, AT17, BS15, BSW12, Dur15, HZWW17, HL14, HTC17, LSNB14, LLY15, LFWS15, LH13, LL16a, RPSL10, SES16, SY15b, VN17, YTT11b, YYS16, ZZ11, ZCC15, ZCL19, ZY17b, FB12].

Public-Coin [CLP13a, Mat14].

Public-Key [BVS13, BKKV10, GKS17, KFOS12, LL18, MPP14, MP12, NDT12, Orn16, PDNH15, RSBGN12, RW12, SK12b, SW10, Sia12, XNK15, XJWW13, YKC11, YFK12, ZY17a, ABW10, IM14, LPS10, LZC14, BSW12, RPSL10, SES16, VN17, ZCC15, ZY17b].

Publication [ZTL15].

Publicly

Publicly [NMP12, SZQ17, YNR12a].

Publicly

Publicly [BGP17, DLZ16b, OFMR16, PRSV17, SL11, TKR14, YSM14].

Publish/Subscribe [DLZ16b, OFMR16, PRSV17, TKR14, YSM14].

Published

Published [MYYR13].

Publisher

Publisher [Ful10, Mur10].

Publishing

Publishing [ZTL15].

Publicly

Publicly [NMP12, SZQ17, YNR12a].

Publish

Publish [BGP17, DLZ16b, OFMR16, PRSV17, SL11, TKR14, YSM14].

Publicly

Publicly [BGP17, DLZ16b, OFMR16, PRSV17, SL11, TKR14, YSM14].

Publish/Subscribe [DLZ16b, OFMR16, PRSV17, TKR14, YSM14].

Publicly

Publicly [NMP12, SZQ17, YNR12a].

Publish

Publish [BGP17, DLZ16b, OFMR16, PRSV17, SL11, TKR14, YSM14].

Publicly

Publicly [BGP17, DLZ16b, OFMR16, PRSV17, SL11, TKR14, YSM14].

Publish/Subscribe [DLZ16b, OFMR16, PRSV17, TKR14, YSM14].

Published

Published [MYYR13].

Publisher

Publisher [Ful10, Mur10].

Publishing

Publishing [ZTL15].

Publicly

Publicly [NMP12, SZQ17, YNR12a].

Publish

Publish [BGP17, DLZ16b, OFMR16, PRSV17, SL11, TKR14, YSM14].

Publicly

Publicly [BGP17, DLZ16b, OFMR16, PRSV17, SL11, TKR14, YSM14].

Publish/Subscribe [DLZ16b, OFMR16, PRSV17, TKR14, YSM14].

Published

Published [MYYR13].

Publisher

Publisher [Ful10, Mur10].

Publishing

Publishing [ZTL15].

Publicly

Publicly [NMP12, SZQ17, YNR12a].

Publish

Publish [BGP17, DLZ16b, OFMR16, PRSV17, SL11, TKR14, YSM14].

Publicly

Publicly [BGP17, DLZ16b, OFMR16, PRSV17, SL11, TKR14, YSM14].

Publish/Subscribe [DLZ16b, OFMR16, PRSV17, TKR14, YSM14].

Published

Published [MYYR13].

Publisher

Publisher [Ful10, Mur10].

Publishing

Publishing [ZTL15].

Publicly

Publicly [NMP12, SZQ17, YNR12a].

Publish

Publish [BGP17, DLZ16b, OFMR16, PRSV17, SL11, TKR14, YSM14].

Publicly

Publicly [BGP17, DLZ16b, OFMR16, PRSV17, SL11, TKR14, YSM14].

Publish/Subscribe [DLZ16b, OFMR16, PRSV17, TKR14, YSM14].

Published

Published [MYYR13].

Publisher

Publisher [Ful10, Mur10].

Publishing

Publishing [ZTL15].

Publicly

Publicly [NMP12, SZQ17, YNR12a].

Publish

Publish [BGP17, DLZ16b, OFMR16, PRSV17, SL11, TKR14, YSM14].

Publicly

Publicly [BGP17, DLZ16b, OFMR16, PRSV17, SL11, TKR14, YSM14].
Quantum-Oblivious-Key-Transfer-Based [WCL +18]. Quasi [BGJT14, OWHS12, OTD10, BGJT13].
Quasi-Chirp [OWHS12]. Quasi-Cyclic [OTD10]. Quasi-Polynomial [BGJT14, BGJT13].
R [BS12, LVV11, PP10b, WYW14].
R3579X [BDK11]. Rabbit [FSWF11].
Rabin [Chi13a]. Radial [pNyWyYp +14, CG12b]. Radio [KAKHB17, CJP12, CJP15, EA12, Kim11, NLYZ12, RPC12]. radio-frequency [CJP12, CJP15].
radio [GKCK11].
RAGuard [ZH +19]. Rail [HF14b].
Raising [YWW10]. RAKAPOSHI [IOM12].
RAM [RYF +13]. Ramanujan [KK10].
Randomized [ARP12, GT12, HHR11, SR12b, BWA13].
Randomness [AY14a, Ana14, ABF12, ACM +17, BWLA16, MS10, MS16, DTZZ12, FRT13, RY10, TC11].
Range [DCA18, HMCK12, JCHS16].
Rank [SS10b, FES10].
Ranked [CWL +14, XWSW16, GZS +18, LXK +14].
Ranking [ZDL12, AT10]. Rapid [KPC +16].
Rare [Sch11]. RASP [AZPC14]. RASP-QS [AZPC14]. Rate [LJK17, PPS12b, PCPK14].
Ratio [FHKP17]. Rational [CK18, KU14, KOTY17, NS12, TWZ11, ZC13].
Rationality [GLR10, GLR13].
RBAC [VN16]. RC4 [GC +13, Loc15, Rec15, RS14, Sar14].
RC4-like [RS14].
Re [ABR12, GSW +16, GZXA19, KKA15, LSLW15, LSC12, LBR12, MLO17, NAL17, Pet12, PRSV17, WY10, XJW +16, BGP +17, CFZ +10, CLH +16, CZ15b, FSGW11, FSGW12, FXP12, GH12, HWDL16, HYF18, KKM +14, LMJC11, LCT +14, LFS15, LL16a, SYL13, SLZ12, SKB +17, Tia15, WGJT10, WHY +12, Wan18, WLS14, XXX15, YZCT17, ZDW +16, LAL +15].
Re-authentication [LBR12, FXP12, LMJC11]. Re-Encryption [GS +16, KKA15, LSLW15, MLO17, NAL17, PRSV17, XJW +16, ABR12, GZXA19, LSC12, Pet12, WY10, BGP +17, CFZ +10, CLH +16, CZ15b, FSGW11, FSGW12, GH12, HWDL16, HYF18, KKM +14, LCT +14, LFS15, LL16a, SYL13, SLZ12, SKB +17, Tia15, WGJT10, WHY +12, Wan18, WLS14, XXX15, YZCT17, ZDW +16, LAL +15].
re-signatures [Tia15].
Reachability [SVG16]. Reactive [JR13].
Read [LLPY19, Sto12]. Read/Write [LLPY19]. readers [HDPC13]. readership
Robustness [HTG15, YKBS10, AEH17].

Rotational [KN10, KR10]. Roulette [Ber17]. Round [Ber17, jCPB+12, COP+14, DWZW12, GGH14, KOTY17, KMO14, LWZ12, LJ17, Pan14, TYM+17, XZLW15, Yun12, AY14b, ABM+12, Blo15, LP11, LFW+16, Sun11, TSSL11, TQL+14, TCS14, XW12]. Round-Reduced [DWZW12]. Rounds [GST12, Sas12, LYHH14, MNP12]. Router [Bis17, SA15]. Routing [Ham12, KZG10, WLY+15, LSG16, LC17].

RSA [Dun12b, Kia11, Pie10, APPVP15, BBBP13, Bro17, BNST+17, CLSW12, Chm10, GM13, GST13, Her14, Hin10, HLYS14, IK15, KHHH14, KFL+10, Lim11, Moot12, SM10a, S10b, SLM10, TK19, Win17, YHK+10, YXA+16]. RSA-1024 [Bro17, Win17].

Rule-Based [TW12]. Rumor [FKOV15]. Run [IF16]. Run-Time [IF16].

Scan [LWK11, DDFR13, KPS10].
Scan-based [LWK11]. scanning [Ara13].
Scattering [KA18]. Scenarios [DSB15].
Schedules [Pud12]. scheduling [MV16b].
Schema [AN12]. Scheme [ASS15, Bai10, BHG12, BS14, BKJP12, BDHI1, CMLS15, CLEL16, CCM+10, CLHC12, CHHW12, CCZC13, CGY+13, CLHI3, CSW12, DA10, DS11, DKS12, FGM10, GZZ+13, GH11b, GJ1Z17, GLW12, GZH17, HYS11, HIDFGPC15, HMR12, HH17, Hli13, HLH19, HP12, IL15, JSZS12, KU14, KP12, KTT12, KK12, KKA15, KSSY12, KLM+12, LSL12b, LHF12, LTH+15, LTY16, LH11b, LGWY12, LTC+15b, LYY+18, LGPRH14, MWZ12, MVRI12, MRL+18, MN12, MSas12, NX13, NLLJ12, NLY15, Pet12, PDI12, RVH+16, RMG18, SK12a, SJ12, SGP+12, SD12, SHe14, ST16, SP15b, SJWH+17, SSA13, Tan11, TTD13, TWZ11, WYO10, WgMdz12, WgMW12, wWpNyY+14, WLH15, XWSH16, XHC+12, CXWJ13, YMI16, Yami12, YZ1X+12, Ye10, Ye14, YTH17, YL17, Y+17, YHK+10, YMWS11, ZPM+15, ZZQ+19, ZC13, ZQK15, ZLDD12, ZY17a, AMN18, AHS14, APK+18, ACK+17, BOB13, BAL10, BMM12, BB16b]. scheme [CCLL11, CLSW12, CH10, CT11a, CLJH13, CW14a, CTH13, Chol14, DSCS12, EAA+16, EZ15, FLL+14, Far14, FA14a, FH1Z18, GZH12, GJ13, GMRT+15, GPLZ13, GLM+16, GH16, GAI+18, GTSS19, HZ1W18, HBBRN16, HL11, HCC11, HL16, HCC10, Hwa11, IB11, JNU17, JKAU19, JLT+12, JZS+10, JM1W+16, KI11, KPP16, KDIH15, KK13, KHMB13, KKM+13, KMM+14, KKG14, Kim16, KIH19, KP18, KLM+16, KDW+17, KWH16, KL11, LXLY12, LZ1+16, LSR13, LH10c, LZ1X10, LNMI+11, LM1C11, LK12, LHLS12, LNK13, LK+17, LNK+18a, LWK+18, LNK+18b, LFW15, LH13, LHH11, LW110a, LWL11, LW13b, LZ14, LDZW19, LL16a, LL16b, LW12, MCF+18, MMS17c, MK12a, MSas13, NR17, Nos14, PZBF18, QM17, QMW17, RPSL10, SGGR+16, SM11, Tan12b, TY16a, TK14, TD14, TLL13, TLL12, UUN11, WWY11, WWYY11, yWpNyL11, WLH13, WDZL13, WLY+16, WLF17, Wan18, WDKV19, WZ11, WKL11, WOLS12, WXX+17, XHH12, XWZW16]. scheme [XMX14, XXX15, XM13, YC11, YC16, YJH18, YW+10a, YCT15, YXD18, YQOL17, YM10, ZYL+10, ZLY10, ZX+14, ZYC+17, ZP.CV12, ZZ+17, Zy17b, ZF+18, ZLY+19, ZC12, ZBR11, DT13, LLZ+12]. Schemes [ABF12, BV5+13, BF12, BBEPT14, BS15, CMLRHS13, CGL+12, Chu11, Des10b, FHKP17, FL12, HSM14, HLLG18, HPO+15, LWL10b, LZ1K4, MLCH10, MR14b, MMS17b, MFB18, MKRM10, Ob11, PB12, PDNH15, PH12b, Sc10, Shi11, SHK17, SSU12, VSR12, WGP16, YNR12a, YNR12b, Yek10, YWZ+12, AGH14, AN15, AHL+12, CDGC12, CJXX19, CHS11, CCG10, CTL13, DDD14, DD13, DZ14, FPBG14, FMP12, FMA+18, HD16, HM10, KT1U16, LHZ12, MM12, MA17, Nzl1+15, QYWX16, SES+16, Sar10a, Sar11, sSZZ15, SAR18b, WW14, Y11b, ZCL+12, ZCL14, ZT14]. Schneier [Sev16]. Science [Bow11, G12, Gas13, IEE10, IEE11b, Ter11, Bai12, PWH1M0, Pet11]. scientists [Goo12]. Scientometric [Pal15, Pal16]. Scope [Bai12]. Score [GCSAddP11]. scoring [OSSK16]. Scrambling [LL17a]. Screen [SPW+16, CTL12]. Script [Rao10, Bax14]. Scripting [DSB15]. scroll [GMOGCCC15]. SDB [HMK+15]. SDDO [PL16]. SDDO-based [PL16]. SDH [GMS11]. SDIVIP [YNX+16]. SDN [KCC17]. SDVS [Wan10]. SE [LL13]. SE-AKA [LL13]. seals [MN10]. Seam [LC15]. Seam-Carved [LC15]. Search
[CWL+14, Che15, DCA18, FRS+16, GTT11, HCDM12, HLH19, LSQM18, TMC15, WDC18, WW12, XWSW16, XJWW13, ZXYL16, BL11, CLH+16, FH13, FSGW12, GZS+18, HH16, OSSK16, SY15b, WHY+12, WXLY16, XWY+18, YD18, YQOL17, ZJ11]. Searchable [BHJP14, CWWL12, CLW16, CGKO11, FJHJ12, PCY+17, XNKG15, ZZQ+19, DLZ16a, DRD11, HQZH14, HCTS16, LZC17, LL+18, RPSL10, WXLY16, WCCH18, YZCT17]. Searches [Sia12, WR15]. searching [GPN+12]. Seattle [LCK11, KCR11]. Seberry [AHS14]. SEC [PA10]. Second [AKY13, ABM+12]. Secondary [RS11]. Secrecy [ABD+15, BKST18, KZG10, TSH14, Yon12, ATKH+17, Bia12, RCW15, TCS14]. Secrecy-preserving [TSH14]. Secret [ASN11, ASN12, ADH17, Ayu12, Bai10, BBB+16a, BFM12, BBEPT14, Bri11, CCM+15, CFOR12, CCL+13, DR12, Dew11, EM12, EA11, FFHP17, FR16, Foki12, HYS11, HLI0a, Has16, JLS12, KU14, KS18, KOTY17, KK12, KK13, KSSY12, KS15, LH12, LPL15, Lin15, LCCJ13, LTC+15b, LJ16, LLKA19, Men13b, MNS11, NS12, Ob11, PCPK14, QSH18, SLL10, SC10, SS10c, SSU12, Sti15, TLLW12, TWZ11, WKB16, WGF16, Wu18, XZY+12, XJR+17, YFF12, YWZ+12, ZCL13, Ald11, ADG16, AKK+17, Ara13, BJ16, Bud16, Cha13c, CT11b, CW14a, CLZ+17, DD13, EEAZ13, EZ15, FH10a, GJYM15, GLW13, HF14a, HH15, Hea15, HBBRNM+16, HCC11, HLC12, KI11, KTU16, LLY12, LT13, LYSZ10, LHYZ12, LEW19, Mas17, Mck10, Mck11, Mck12, MB11, OO10, Pea11, Pet11, QD16, Rus15, SB17, SA12, SAR18b, TQL+14, TD14, UUN11]. secret [UUN13, WYL13, WZ11, WS12, WOLS12, Wu17, XW13, YC11, YCC16, YSC16, ZCL+12, ZZ15, ZPYW12, LSC+15, Bai12]. secret-key [BJ16]. Secret-Sharing [BBEPT14]. Secretion [RSCX18]. Secretocracy [Ber16b]. Secrets [BT12, CG14b, DLWW11, FMS12a, Kob10, Man13, Bha16, Cop10b, GGH+16b, Gup15, HRS13, Smi11a, AnQ17b]. Secure [ADMM16, AARJ12, Ash14, AMH+16, BVS+13, BWLA16, BCGH11, BCG12a, BQ+13, BWA13, BHLJ12, BHJP14, BF11, Bru12, BDH11, BCGM15, CFOR12, CCM17, CZF12, CZL14, Che15, CMA14, DM18, DL15, DMS+16, DG15, DLZ+16b, Edw17, FLH13, Fri10b, FD11, FSX12a, zGXW12, GKM16, GGH14, GFBF12, GT12, GV14b, GHKL11, GMI4, GZS+18, Hv112, HSM14, HLLG18, Har16, HL10b, HP14, HTZ12, HMCK12, HLM115, HYS18, HK14, HLH19, IL15, Jac16, JH19+19, KW14, KME+12, Kup15, KH10, LJS+14, LL15, LH12, LYZ+13, LTH+15, LIT16, LSLW15, LLC16, LSLQ18, LY15, LHL15, LLML12, LSC12, LMO17, MMP14, Mal13, MVVR12, MMS17b, MK12a, MKA17, NZP17, NG+17, NR12, NMS14, NSMS14, PB12, PSM17, Per13, PRN+19, QZL+16b, QZDJ16, QZ18, RMP10, Rea16, RSGG15, SAM+19, SN11, SZ14, SVC15, SP15b, SKH17, SRA17, SAR18b]. Secure [SSAF11, SVG16, SYW17, SYC+17, SMS14, SZDL14, SGH15, SY+16, SR12b, TB18, TCL15, TWZ11, TG12, TGC16, VM15, WgMW12, WKB16, WXLY16, WLY17, WDC18, WHL15, WBA17, WWHL12, WMS+12, tWmC12, XW16, XJWW13, YNR12a, YNR12b, YTH17, YHK+10, YKC+11, YAM+15, YGD+17, ZXX+11, ZDL12, ZV14, ZVG16, ZHT16, ZLW+17, ZH+19, ZBR11, AHS14, APK+18, ABBD13, ACF16, AKK+17, ACD+15, BOB13, BSR+14, CCLL11, CSD18, CLHJ13, CW14a, CS11, CDL18, FHH10a, FLL+14, FSGW12, FA14b, FIO15, FS18, Gal13, GAI+18, GLL+18, GCH15, HGWY11, HWK+15, HLYS14, HTC17, HPY10, IB11, JZS+10, KPP16, KKA14, KRM+10, KTI16, KDW+17, LLLS13, LDDA12,
secure [Tar10, TLMM13, TLL12, VS11, WLZ+16, WMX+17, WDKV19, WCCH18, WL19, WXXC14, XXX15, YC12, yYqWqZC13, YZZ+14, YZCT17, YQOL17, YY11, YLS12, YMSH10, ZLY10, ZC15, ZZ15, ZYC+17, ZG10, ZZ12, ZX11, ZY17b, ZC12, Zhu13, ZSW+18, Ano12, DSB18, HRK18, OKG+12, YSS14, YFK+12].

Secure-TWS [OKG+12]. Secure [LC17, SGG18].

Security [SNJ11, SBS+12, Sar12, Sch13, SD12, Shi11, SLM10, STC11, Sti19, SMOP15, SGW+14, Tso13, TV15, Wal18, WYCF14, WSA15, WSS12, WCL+18, WS14, Yan10, YZLC12, YSF+18, YGS+17, YSS14, You11, Zha15b, ZY17a, vTJ11, AMN18, AB10a, Abe10, ABGR13, ABM+12, Ano11a, ADH17, BYL10, BSS11, BDL+11, BLV17, BM11, BL11, CO11, CTHP13, CLCZ10, CVG+13, DLK+16, DWH+13, Edw14, FHM+12, FA14a, Fei19, Fis15, GHD19, GM16, GLM+16, GMS11, GH12, HWD16, HWG10, HLR11, HRS13, HLV10, KSA16, KKK+16, Lan10, Lan13, LH10a, LMXW12, LHH11, LZC14, LSG16, MZA+13, Men13b, MM14b, MSM+18, NS10, Nam19, NCL13, NLYZ12, OK18, OYHSB14, PHWM10, QYWX16, Rec15, RPSL10, RH10, SA12, Ser12, SLZ12, SY15b, Sir16, Sta11a, Tan17b, TOD18, UUN11, VCK+12, WCFW18, XCL13, Zha15a, XW12, YKC+12, Bar12].

Self-Certiﬁed [CLL16, XWXC14, HL14, LH13].

Self-Controllable [ZLDC15].
XNKG15, XZY+12, YFF12, YWZ+12, ZC13, AKK+17, ADH17, CT11b, CW14a, EZ15, EA11, FGMP12, GPLZ13, GJMP15, GLW13, GLB+18, HF14a, HBBRM+16, HCC11, HYL12, HYF18, KI11, KTI16, KPBI7, LXLY12, LT13, LFSW15, LAL+15, LyWSZ10, LHY12, LHL15, LLL+18, LEW19, LL16a, Mas17, OO10, OO18, QD16, Rao17, SAR18b, TD14, UUN11, UUN13, WLS14, WKL11, WOL12, WOL12, WOL12, YC16, ZCL+12, ZZ15, ZPWY12, SLL10.

Solved [Smi11b]. Small
[BGJT14, BKLS12, BB10, CJ13, Kim15, LCLL15, YM16, AAT16, BGJT13, Jou13].

Some
[Ano17c, BB10, Bul10a]. Some
[AD12, Ber12, Dur15, LWL10b, Mid10]. Somewhat [HTC17, KOS16, MBF18]. Song
[Con12]. Sood [MWZ12]. SOSEMANUK
[PC16]. SOT [PAF18]. SOT-MRAM
[PAF18]. Sound [COP+14, LSR13, Sav15].
Source [Bis17, FKOV15, MBC15, RWLL14, ABF+14, LZC17, PX13, Pow14].

Source-Based [MBC15]. Sources
[DHB16, BJ16, SSY12]. South
[BL10, LW11a]. Soviet [Bud16]. SP
[Sas12, SEHK12]. SPABox [FGR+17].
Space [BWR12, BKL+13, NRY+14, RMG18, MSM+18b, RYF+13, ZZ15].

Space-Filling [BWR12]. Spaces [SH15]. spam [SKEG14]. Spanish
[Pet11, SGGCR+16]. Sparse
[AGW15, AAT16, BBC+13]. SPARTA
[MMS+17a]. SpartanRPC [CS14]. Spatial
[AV12, CZF12, PDMA12, CW14b, NZL+15].

Spatial-Temporal [DMT12]. Speaker
[BJCHA17, PPR12]. Special [Ano13d, Ano16a, Ano16b, Ano16h, AB10b, CSYY18, GO17, LW13a, LLK18, PHWM10, XW13].
Specific [BD15, BDFK12, KME+12].

Specification [HZS+19, SK11, SD10]. Specifications [BMP12]. SPECK
[DFW+16, AMKA17, BSS+13]. Spectrum
[KD12a, TZW+12, XNRG15, KP17, LWY12, MMS13]. Spectrum-Based
[TZW+12, XNRG15]. Speech
[AGW15, LJK17, SAA15, YMA17]. Speed
[ARM15, GL12, HZ11, KP17, LTK16, BDL+11, KL13]. Speeding [RVRSCM12].
Speedup [Che18]. SPEKS [Che15]. spell
[Bha16]. Sphere [Sti19]. SPHINCS
[BBH+15]. Spies
[Has16, Keb15, Fag17, Mac14]. Spintronic
[IGR+16]. Splicing [YSC+15]. Spline
[Tan12a]. Split [CG14a, XYZ+12]. Split-State
[CG14a, XYZ+12]. Splttable
[CP13]. SPN [LCLW17]. Spoken
[WBC+10]. sponge [BDP11].
SPONGENT [BK+13]. spongy [RS14].

SpooF [SP15a]. spotty [OS11]. Spread
[HGT15, KD12a, PSJ+13, TZW+12,
T [SJWH+17]. T-Chain [SJWH+17]. Table
[CCL+13, AY14a, LDDM12]. Tables
[PTT16, XHI14]. Tag [NNAM10, PPH12, CJP15, SLPHC14, CJP12]. Tags
[MO12, HSH11, HDPC13, HQY+16, LEW19, MK12a, PLSwLe10, TG17, WCFW18].
Taipei [Yan11]. Taiwan [Yan11]. Takes
[Ano16c]. Talking [FD11]. Tamed [NXB13].
taming [BBDL+17], tamper
[MN10, NC13, WgMW12]. tamper-evident
[MN10]. Tamperable [ACM+17].
Tampered [SAS13]. Tampering
[CG14a, SRAA17, SGP+17]. TAO [Sta13].
Taormina [Cra12]. tap [ADG16]. target
[HRS16]. Targeted [ABJ13]. Tasks
[Abe12, FKS+13, CL16]. Taxonomy
[AJA16, GAF+15, KSM15, MA17]. Taylor
[Joh10]. TCC [Cra12, Lin14b, Sah13]. TEA
[CWP12]. Teaching [GY13]. Team
[LJS+14, Fpl10, Ant14]. Tear [Boy16].
Tear-Free [Boy16]. TEASE [ZBR11]. tech
[Ano15e]. Technical
[Sir16, TS16b, Wag16, JW14, Suc12].
Technique [HEK18, KBL11, ZLD14, BBBP13, CPPT18, GCSÅddP11, Nam19, SM12, SKS+18, TS16a, ZWS+18].
Techniques [Bis17, DA12, GOS12, HPC10, HL10b, LW12, Mor12, PJ12, AB10b, BM13, FGPGP14, Gil10, HT13, KHF10, LH11a, OO18, VN17, WMX+17, Joh10].
technologies
[JAE10, JAS+11, Lan10, MMP19].
Technology [CGB+10, Fol16, IEE11a, Wu16, Ham19, IMB17]. telecare
[LWK+18, MA17]. Telephony [SKEG14].
Television [DTE17]. Tell [Cer14].
Template
[NGAuHQ16, SKV12, ATT+10, GCSÅddP11].
Templates [DWB12, AHM+18]. temporal
[JMWh+16, MHT+13, XMHD13].
temporal-credential-based
[JMWh+16, XMHD13]. Tenant [TV15].
terahertz [WW13]. Term
[SKV12, CFVP16]. termination [SRB+12].
Ternary [ADI11]. Test
[HTC+15, JEA+15, LLSw16, MZHY15, SS10b, WH18, HTC17, ZCL+19, Ano16g].
Testable [RMP10]. tester
[RPSL10, SY15b]. Testing
[Con12, SS12a, AY14a, BJ+14]. Tests
[GLG12, MS12b, Sim15a]. Texas [IEE13].
Text [GdM16, SMS18, XZZ18, CR12, SI12, SWW+17]. Text-dependent [GdM16].
Textbook [PP10a]. Texture [TSH17].
Theft [Ber12, Ber17, BTP15]. Their
[CZLC12b, CK18, JSK+17, NR12, CQX18, Hof16, IK15, KG10, Mat19, Sti11]. them
[HLV10, JSK+16, Rus15]. Theological
HL10b, HP14, KOS16, NSMS14, ZM16, FIO15, HPC12, HWB12, ZZC15, GHKL11.

Two-Round [GGHR14], Two-Server [YLW13, KMTG12, CSD18], Twofish [MD12a], TWS [OKG+12]. Type [AKP12, CFI13, PFS12, SH15, BNST17, SYL13, WB12]. Type-based [CFI13, SYL13], Type-Flaw [SH15]. Types [BCEM15].

U.S. [Maf16], Ubiquitous [OS16, Par12b]. UESDE [YZ12], UHF [HQY+16, PPH12]. UK [Che11, PJ12, vDKS11, Ano15e]. Ukraine [OGK+15]. ultra [AAM18, GW14, TG17, WCFW18]. ultra-lightweight [AAM18, TG17, WCFW18].

ultralightweight [ACM12, GMSW14, SB17]. UMTS [OHJ10, TM12], un-traceability [Chi13a]. Unattended [BN14], unauthorizing [MLMSMG12]. Unauthorized [CBO+18]. Unbounded [LV1c, YZ12], unbreakable [Bha16]. Uncalibrated [SGP+12].

Unconditionally-Secure [CFOR12], uncorrelated [MSM+18b]. Uncovering [FMS12a, WBC+10]. Undeciphered [Rao10]. Undeniable [BH12].

union [BBDL+17, Bus16]. Unique [SSPC12, SOS15]. Unit [PP10b, Sta13, MS13a, MS13b, MS13c].

units [ABDP15]. Universal [ASM12, BKS18, BJL12, NR12].

Universally [DN12]. Universe [LW16, FNWL18, LFZ+17]. University [Ano17b, CGB+10, Wes16]. unlike [Goo12].

unlikely [Fag17], Unlimited [IBM13a]. Unlocking [VS16]. unmanned [XZW16].

Updatable [LLPY19, LCL+17]. Update [BCE+10, KE19, LQY10, FS18, WLF17].

update [GCSAddP11, LHY18]. Upper [AMVZ12]. URLs [AY14a]. USA [Dun12b, EIE13, K11, Lin14b, Pie10, Rab10, ACM10, ACM11, EIE10, EIE11b].

Usability [RAZ15]. Usable [DL15, TGC16], usage [AKK+17, BHCdFR12]. Use [CSV15, DFKC17, KOS16, NR12, YT12, der10, CZ15b, Die12, Hof16, KK10, MBB+13, Mat19, O010, Sti11, UK18].

Used [CGCPDMG12, BM15, MS13b]. useful [dCCSB+16]. Use-net [Bel18]. User [BLV17, BKJP12, FLH13, GdM16, Har16, JN12, LLC11, LCL17, MZH15, MBC15, MDM17, Odl12, PDT12, PWV12, RV+16, SDZ14, SP+13, WgMDZ12, WgMW12, ZHS+19, ZPW16, AaBT16, ATK+17, AP+18, BT18, CH10, CHS11, CLHJ13, DSC12, GH16, GTSS19, HL14, KKM+13, KLW+16, K+17, LH10c, LNM+11, LNL13, LH13, MM12, OKG+12, hSZZ15, SHBC19, WDKV19, WT10a, WOLS12, YHL16, YSL+10]. User-centric [BLV17]. User-controlled [Har16].

User-Friendly [SZDL14, WOLS12], User-Generated [LCL17b]. User-Level [BKJP12]. user-participating [CH01].

User-Transparent [ZHS+19]. Users
[DPCM16, KKA15, TAKS10, WPZM16, ATK11, uHAN+18]. uses [Rus15]. Using [ABS+12, AB3+14, Anol5a, Ayu12, ARM15, BBC+13, BCPV11, Bee7, BFT16, BKL12, BJ+14, CST+17, CCL+13, DSB16, DR12, DA10, DBPS12, DL12, ERLM16, ERRMG15, FMS12a, GH11a, GSC17, GAS+16, HEK18, HHS+15, IL15, Jm10, JEA+15, KBL11, Lac15, Lan11, LZ+13, LLL16, MM17, MBC15, MRL+18, MS16, NIS12, NGAuH16, NNAM10, NN12, NSMS14, PMZ13, PSS+13, PAF18, PDMR12, PDT12, PCKP14, RVRSCM12, SR12a, SFE10, SSA13, SRA17, SC12, SR12b, Tan12a, TKR14, WWL+14, WgMdZ12, WY12, ZZ12, YWW10, YWW15, YCL17, YSS14, ZH15, ZPW16, ZS12, dRsR12, ATRK+17, AHM+18, APK+18, ASVE13, BL+19, BM13, CSH+18, CHS11, CR12, CLHJ13, CPI3, Cri16, Dav11, DTZZ12, uHAN+18, EEAZ13, FES10, Ham19, Har14, HZWW17, HWB12, HL14, HPY10, HCC10, HS11, JCHS16, JMW+16, KI11, KY10, KKG14, KM11].

using [KU13, KTO16, KP17, KLS+16, LXXY12, LLP+18, LC17, LH10c, LNM+11, LXMW12, LH13, LML+13, MM12, MS13a, MMSD13, MM14a, MKH+12, MRRT17, MM+18b, NTKG17, PBCC14, PC14, QD16, RS15, RS17, Sar11, SGFCRM+18, SKS+18, SAR18b, TLF16, TG17, TK14, TLL13, UUN11, yWpNyL11, gWpNyY+14, WMX+17, WH12, YQH12, YZZ+14, YSL+10, ZZKA17, ZLW+12, ZYC+17, ZZW+18, ZZL+18]. utilization [NZM10].

Vicious [NN15].

Virtual [BR14, HB17, RY10, VDO14, CDA14].

Virtualization-Based [CDD13, QZDJ16].

Virus [WOLP15].

Visible [Cas10, HWYW14, LZC+12b, WZLW13, Lin14a].

VCTest [DP12], DGT12, GKR12, GKR13, HS12, OL12, YYG12].

Visitors [XGGG+14].

Vista [Bac10].

Vista-Driven [SP12].

Vitamins [ARR13].

Vivital [JG13].

Vixen [Cas10].

Vlad [KPS10].

Vladimir [KPS10].

Vladivostok [KPS10].

VLAN [MD11].

VLAN-Tagging [MD11].

Volume [XL12].

Volcanic [CPS15].

Volcanic Ash [CPS15].

Volcano [CPS15].

Voltage [BBBP13].

Voluntary [WGJT16].

Voting [Ber16a, CFE16, CRST15, LHF12, LGPRH14, RST15a, RST15b, Sch10].

Voytci [L01].

W [Mar10a, Xie12, Hüll13].

W-OTS [Hüll13].

WA [LCK11].

Waknaghat [CGB+10].

Walker [Xie12].

Wallet [Chi13b].

Wallets [Chi13b].

War [Has16, Mun17, Bud16, Car11, Sm11a].

Warbler [MFG16].

Wars [Bud16].

wartime [McK10, McK11].

was [Goo12, LHA+12].

Watermark [CHHW12, DLM+18, EMW14, Jin10, KBL11, LZC+12b, MCD12, SJ12, YE12, ZS12, HB12, TLL13, WYL13].

Watermark-Driven [DLM+18].

Watermarking [BCGAM12, BF12, BCV11, BDB14, BMM15, CG12b, CHHW12, CCZC13, DG17, FM15, Fra15, Fra16, GKS17, GP17, HPC10, HEK18, HGT15, HMK14, JSS12, Joh10, JKH12, KD12a, LSL12b, LP12, LD13, MM17, MR16, MU12, NGA15, NC12, NY+17, pNyW14, OWHS12, RS16, RP12, RR11, RMI18, SA15, SLG12, SSA13, TB18, TW+12, TC10, WHZ12, WLZ12, WYW+13, gWpN14, WXL+17, wWX18, rWmC12, XNG+14, XNR15, YWN15, YPR17, YK18, YY15, ZZX+11, AP10, AIA+18, AMK12, BW13, BWA13, CCLL11, CT11a, CSS+13, GZHD12, GA11, HKB14, HWYW14, JK13, KPS10, KJN+16, KM11, LRS13, LXC11, LLS12, Lin14a, LWY12, MMS13, MM14a, MO14, MK11, NC13, PTK14, PWL13, PWW10, PGL10, PWS18, PC14, PPR+12, RS17, SSK+18, Tay14, TK14, TTT10, TP12, WLDB11, wWpN11, Wan13, yWpWyY13, WZLW13, WYT+12, ZZZ17, ZMS18].

Watermarking-Encryption [SLG12].

Watermarks [GL10, YT12].

WAVE [BMM12].

WAVE-enabled [BMM12].

Wavelet [AGW15, LSL12b, MR16, Ara13, AMK12, BW13, LXC11, MO14, wWpN11].

Wavelet-Domain [MR16].

Weak [BF11, DY13, HDW12, PYM+15, Pud12, GJMP15, RH10].

Weakening [SFKR15].

Weaker [Sas12].

Weakness [AMOR13].
REFERENCES

References

[AACB17] Ange Albertini, Jean-Philippe Aumasson, Maria Eichlseder, Florian Mendel,

[Arora:2012:ILM]

[Akleylek:2016:SPM]

[Aghili:2018:ISA]

[Alizadeh:2016:AMC]

[Abdalla:2010:PCL]
Michel Abdalla and Paulo S. L. M. Barreto, editors. Progress in cryptography — LatinCrypt 2010: first international conference on cryptography and information security in Latin

[ABBD13] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François

Arnold:2012:ICC

Atenieise:2017:LCS

Ambrosin:2017:OBB

Adrian:2015:IFS

Agosta:2015:OPP

Giovanni Agosta, Alessandro Barenghi, Alessandro Di Federico, and Ger-

10.1007/978-3-642-33272-2_1.

Avoine:2016:SSP

Aid:2013:DIO

Acar:2013:SPA

Andreeva:2012:SAS

REFERENCES

ALMashrafi:2012:AIM

Applebaum:2010:PKC

Arias-Cabarcos:2015:BIP

Arnold:2015:NGH

Amoah:2016:FMA

REFERENCES

80

Adikari:2011:HBT

Abdalla:2012:LBH

Andrychowicz:2016:SMC

Araldo:2018:CEC

Ahmed:2017:IRD

Attrapadung:2015:RGS

(print), 1460-2067 (electronic). URL http://comjnl.oxfordjournals.org/content/58/10/2698.

Antonopoulos:2017:DIS

Akinyele:2014:MGA

Abdullaziz:2016:AAI

Ahani:2015:SRB

Attrapadung:2012:ABE

Ali:2018:ECM

Appelbaum:2013:SSG [AHS13]

Ak:2014:ICS [AHS14]

Murat Ak, Turgut Hanoymak, and Ali Aydin Söçük. IND-CCA secure encryption based on a Zheng-Seberry scheme. [AIB+16]

Amin:2016:DAP

REFERENCES

REFERENCES

REFERENCES

Armedo-Moreno:2010:JRA

Arsalan:2012:IRW

Ahir:2017:LAR

Abbasinezhad-Mood:2018:DHI

Adj:2013:WDC

Aumasson:2014:HFB
Jean-Philippe Aumasson, Willi Meier, Raphael C.-W. Phan, and Luca Henzen. The Hash Function BLAKE. Informa-
REFERENCES

Ahmadian:2010:PDS

Alvarez:2012:CAB

Albrecht:2012:SDL

Arshad:2015:SAI

Aga:2017:ISM

Anawis:2014:ARR
Mark Anawis. Applications for randomness: Random

Anonymous:2012:SHS

Anonymous:2013:DSS

Anonymous:2013:NCI

Anonymous:2013:SSD

Anonymous:2013:SIS

Anonymous:2014:ERE

Anonymous:2015:BSU

REFERENCES

Anonymous:2015:BRDa

Anonymous:2015:CEB

Anonymous:2015:QCS

Anonymous:2015:UGB

Anonymous:2016:CPSd

Anonymous:2016:CPSe

Anonymous. Call for papers special issue on postquantum cryptography. IEEE Security & Privacy, ??(??):??, ???.

[Ano15b] Anonymous:2015:BRDa

[Ano15c] Anonymous:2015:BRDa

Anon Anonymous:2016:EMT

Anon Anonymous:2016:FVM

Anon Anonymous:2016:GUP

Anonymous:2016:MBE

Anonymous:2016:SWT

Anonymous:2016:SIR

Anonymous:2017:BA

describes how SHA-1 collision attacks could lead to
rogous, and malware, file
downloads via BitTorrent.
the obvious solution, which
and multiple checksum algorithms,
and require all to match
before concluding that two
files are in fact identical.

Anonymous:2017:BRM

Anonymous. Book review:
*The Mathematics of Sec-
tests*, by Joshua Holden.
Princeton University Press.
CODEN NTSCF5. ISSN 1353-4858 (print), 1872-9371 (electron-
science/article/pii/S1353485817300247.

Anonymous:2017:CCS

Anonymous. Cybernet-
ica case study: Solv-
ing the Estonian ID-
card case. Web news
URL https://cyber.ee/
en/news/cybernetica-case-
study-solving-the-estonian-
id-card-case/. The story
[Ano17] describes a poor choice
of generating large (about
1024 bits) primes \(p \) and \(q \)
that led to crackable RSA cryptography. The solution
for Estonia was to switch to
elliptic-curve cryptography
that was also supported by
the cards.

Anonymous:2017:HDQ

Anonymous. High-dimensional
quantum encryption per-
fomed in real-world city
conditions for first time.
CODEN SCHRCU. ISSN
1930-5753 (print), 1930-
6156 (electronic). URL
https://www.scientificcomputing.com/news/2017/08/high-
dimensional-quantum-encryption-performed-real-world-
city-conditions-first-time.

Anonymous:2017:MBH

Anonymous. Mathematician
breaks down how to
defend against quantum
computing attacks. *Re-
CODEN REDEEA. ISSN
2017/02/mathematician-
breaks-down-how-defend-
against-quantum-computing-
attacks.

Anonymous:2017:RV

Anonymous. ROCA vulner-
ability. Wikipedia arti-
cle., October 2017. URL
org/wiki/ROCA_vulnerability.
The ROCA vulnerability
affects millions of smart-
cards, and devices using
TPM (Trusted Platform Modules). It allows recovery of the private key from knowledge of the RSA public key, and thus, facilitates malicious cloning of the cards, and decrypting of some encrypted filesystems.

Anonymous:2019:HCC

Anthes:2014:FTI

Andriotis:2013:JSD

Agarwal:2010:BRW

Aumasson:2011:CHF

AlFardan:2013:LTB

REFERENCES

[AQD12] Garsah Farhan Al-Qarni and Farzin Deravi. Explicit integration of identity information from skin regions to improve

[AS16] Gilad Asharov and Gil

Artemenko:2017:PGO

Andrade:2016:LEP

Asharov:2014:TCC

Al-Sinani:2012:UCB

Ahmadi:2011:SKC

Ahmadi:2012:SKE

REFERENCES

Al-Tariq:2017:SFP

Alam:2015:ACF

Aslan:2016:DEM

Abdalla:2012:LRS

Altaf:2017:LHL

[AZF+12] Anya Apavatjrut, Wassim Znaidi, Antoine Fraboulet, Claire Goursaud, Katrina Jaffrès-Runser, Cédric

Alshammari:2011:CET

Alavi:2014:RQE

Behnia:2013:IEB

Blaner:2013:IPP

Brennan:2012:ASC

REFERENCES

Bax:2014:PPD

Baylis:2010:CC

Bulygin:2010:OSS

Bennett:2014:QCP

Barenghi:2016:FBS

Boumerzoug:2016:LKM

Hayette Boumerzoug, Boucif Amar Bensaber, and Ismail Biskri. A lightweight key management scheme based on an Adelson-Velskii and Landis tree and elliptic curve cryptography for wireless sensor networks.

REFERENCES

Bernstein:2017:SRD

Boldi:2012:IUG

Bollman:2015:PWI

Bernstein:2011:PCI

Basin:2014:KYE

Bocu:2018:HEB
R. Bocu and C. Costache. A homomorphic encryption-based system for securely managing personal health

Bichsel:2012:DMA

Badrignans:2010:SSA

Balfanz:2012:FA

Bugliesi:2015:ART

Buhrman:2014:PBQ

Bahri:2016:CCO

Leila Bahri, Barbara Carminati, and Elena Ferrari.

REFERENCES

Beunardeau:2016:WBC

Bitansky:2013:SNI

Brandenburger:2017:DTC

Bernstein:2014:CKR

Basin:2012:PRI

Basin:2013:PRI

David Basin, Cas Cremers, and Simon Meier. Prov-

Basin:2015:ISC

Bicakci:2013:LSS

Botta:2014:PCI

Boyle:2014:EO

Basso:2011:BWC

REFERENCES

REFERENCES

[Baschos:2015:EFB]

[Baschos:2011:XP]

[Backstrom:2011:WAT]

[Baschos:2011:XPF]

[Barbareschi:2018:PBH]

[Bosquet:2016:EPA]
Bendlin:2011:SHE

Bertoni:2011:CSF

Bertoni:2012:KIO

Boldyreva:2012:SSE

Bitansky:2013:WFS

Bertoni:2011:CSF

Bertoni:2012:KIO

Boldyreva:2012:SSE

Beebe:2017:MFC

[Ber18] Stefano Berretti. Improved audio steganalytic

Bouman:2011:SAW

Bas:2012:BLK

Bhargavan:2012:VCI

Barthe:2014:PRV

Bobba:2010:ABM

REFERENCES

Bhargavan:2016:MVP

Beimel:2012:SSS

Berger:2016:EGF

Boldyreva:2014:MEW

Battistello:2012:TBA

Barthe:2012:CACb
REFERENCES

[B&DG+17]

[B&G15]

[B&G+16]

[B&G16]

[B&G+17]

REFERENCES

REFERENCES

119

Biagioli:2012:CCS

Beimel:2014:CCW

Biswas:2017:SA

Brumley:2010:CAI

Boche:2016:DSK

Bouraoui:2017:HAE

REFERENCES

DEN ???? ISSN 1539-9087 (print), 1558-3465 (electronic).

REFERENCES

[BKLS18] Dan Bogdanov, Liina Kumm, Sven Laur, and Ville Sokk. Implementation and evaluation of an algorithm for cryptographically private principal component analysis on genomic data. IEEE/ACM Transactions on Computational Biol-

Bellare:2012:IBL

Bogdanov:2011:BCF [BL10]

Bothe:2013:EFS

Bibak:2018:AUH

Byun:2011:SMC

Jin Wook Byun and Dong Hoon Lee. On

Benzaid:2016:FAW

Bai:2019:LMD

Blomer:2012:TKG

Blondeau:2015:IDA

Buchmann:2017:PCU

Bernstein:2012:SIN

Biswas:2012:IBA

Backes:2012:GCP

Banik:2012:DFA

Babamir:2014:AKP

Buckley:2015:RVV

Bunder:2017:GAR

REFERENCES

REFERENCES

REFERENCES

Bojinov:2014:NMC

Basin:2011:AIS

Beaulieu:2013:SSF

Batina:2012:HEB

Broustis:2012:GAN
REFERENCES

Buchmann:2010:EKG

Bulygin:2010:CA

Burke:2011:AMD

Brakerski:2011:EFH

Brakerski:2014:EFH

Zvika Brakerski and Vinod Vaikuntanathan. Efficient

Bitansky:2018:IOF

Bayrak:2012:AII

Bogdanov:2012:ZCL

Bhatnagar:2013:BIW

Bai:2016:ALC

REFERENCES

REFERENCES

137

Carter:2010:TB

Carlson:2011:JRW

Casselman:2010:VC

Cobb:2013:LMS

Chang:2018:DMU

Cachingin:2010:EKS

Chang:2014:RRT

Chin-Chen Chang and Ting-Fang Cheng. A reliable real-time multicast authentication protocol with provable accuracy. *Fundamenta Informaticae*, 131
Chadha:2016:AVE

Chretien:2015:SPP

Chen:2017:LAA

Carota:2012:FFI

Chou:2010:PSO

Checkoway:2016:SAJ

Stephen Checkoway, Shaanan Cohney, Christina Garman, Matthew Green, Nadia Heninger, Jacob Maskiewicz, Eric Rescorla, Ho-vav Shacham, and Ralf-Philipp Weinmann. A systematic analysis of the Juniper Dual EC incident.
REFERENCES

Chadha:2012:AVE

Chatterjee:2016:TAD

Chou:2013:UGS

Chatterjee:2017:PBS

Cascudo:2015:SSN

Chatterjee:2017:PBS

Cho:2014:DGA

Chen:2011:EAA

Chu:2014:KAC

Chen:2010:ALD

Chen:2013:WSB

REFERENCES

Chiasson:2012:MWB

Cui:2016:RD

Criswell:2014:VGP

Cheng:2013:DVB

Ciriani:2010:TPA

Ciriani:2010:CFE

Ciriani:2010:CDFS

REFERENCES

Choo:2016:CCT

Cao:2012:ITM

Chari:2010:DSC

Cui:2018:ABC

Coras:2016:AML

Costello:2014:CAS

Ceruzzi:2014:HFT

Cerf:2015:CTN

Cerf:2018:CSA

Chang-Fong:2016:CSC

Carter:2013:SSA

Centenaro:2013:TBA

REFERENCES

Checkoway:2014:PED

Cevallos:2012:USR

Carstensen:2011:AAA

Calzavara:2017:SWJ

Celesti:2016:ALT

Choo:2017:EDF

Kim-Kwang Raymond Choo, Yunsi Fei, Yang Xiang, and Yu Yu. Embedded device forensics and security. ACM Transactions

Chang:2010:PRN

Chen:2010:IFA

Camenisch:2012:EAA

Che:2012:WAM

Cheraghchi:2014:NMC

Corrigan-Gibbs:2014:KS

146

[Curtmola:2011:SSE] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryption: Improved definitions

Cheng:2012:PAI

Chandran:2014:PBC

Chen:2010:NUP

Chang:2011:DEQ

Chan:2013:OCK

REFERENCES

Chen:2018:ESA

Chen:2012:SRF

Chien:2013:CR

Chirgwin:2013:ABB

R. Chirgwin. Android bug batters Bitcoin wallets. The Register, ??(??): ??, 2013. URL ????.

Chien:2016:GAI

Chmielowiec:2010:FPR

Andrzej Chmielowiec. Fixed points of the RSA encryp-
REFERENCES

REFERENCES

Chang:2019:GTS

Chandra:2011:AST

Chung:2018:ERN

Chase:2013:SMN

Chuang:2011:LMA

Colin:2016:CTC

Alexei Colin and Brandon Lucia. Chain: tasks and channels for reliable intermittent programs. ACM
REFERENCES

Comon-Lundh:2010:DSP

Chang:2011:RSB

Chen:2017:PGF

Chong:2013:ASG

Chen:2016:RPR

Chen:2012:NCB

REFERENCES

http://link.springer.com/chapter/10.1007/978-3-642-27901-0_7/.

[CLSW12] Shih-Ying Chang, Yue-Hsun Lin, Hung-Min Sun, and Mu-En Wu. Practical RSA signature scheme based on periodical rekey-

REFERENCES

Chakraborty:2015:SSC

Chen:2017:VME

Cao:2016:OMA

Chen:2012:FAA

CNRS:2014:NAS

See [BGJT14].

Coron:2012:PKC

REFERENCES

4_26; http://link.springer.com/chapter/10.1007/978-3-642-29011-4_27. [Con18]

Chin:2011:ACS

Conitzer:2010:AP

Constantin:2012:RSN

Connolly:2018:FE

Copeland:2010:CBG

Copeland:2010:CSB

Chung:2014:RRS

Kai-Min Chung, Rafail Ostrovsky, Rafael Pass, Muthuramakrishnan Venkitasubramaniam, and Ivan

Cordova:2014:EBS

Corthesy:2014:SSD

Coutinho:2012:RPT

Claessen:2013:SPN

Canard:2018:NTC

Chin-Ling Chen, Jung-pil Shin, Yu-Ting Tsai, Aniello Castiglione, and Francesco Palmieri. Securing information exchange in VANETs by using pairing-based cryptography. *International Jour-

Chen:2011:TVS

Canard:2018:CPK

Calzavara:2015:SLA

Chin:2013:SMB

Chang:2012:GBP

Chou:2013:TIB

Crenne:2013:CMS

[CVГ+13] Jérémie Crenne, Romain...

Calmon:2014:ITM

Chung:2012:CBI

Chen:2014:SBB

Chen:2014:DSE

[Chen:2015:TCP] Shangdi Chen and Xiaolian Zhang. Three constructions of perfect authentication codes from projective geometry over fi-

Djejbar:2012:ASB

Djejbar:2012:ASB

Davies:2011:IST

Djong:2012:DAU

Dou:2018:OHR

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>YEAR</th>
<th>AUTHORS</th>
<th>TITLE</th>
<th>VOLUME</th>
<th>NUMBER</th>
<th>PAGES</th>
<th>JOURNAL</th>
<th>CODEN</th>
<th>ISSN</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dacosta:2012:OTC</td>
<td>2012</td>
<td>Italo Dacosta, Saurabh Chakradeo, Mustaque Ahamad, and Patrick Traynor</td>
<td>One-time cookies: Preventing session hijacking attacks with stateless authentication tokens.</td>
<td>12</td>
<td>1</td>
<td>1-??</td>
<td>ACM Transactions on Internet Technology (TOIT)</td>
<td>TCIT</td>
<td>1533-5399</td>
<td>http://www.acm.org/pubs/cnc/otit/12-1-1-1-??</td>
</tr>
</tbody>
</table>
DaRolt:2013:NDS

Datta:2017:SFH

Castro:2016:FVB

Danezis:2012:FCDa

derhans:2010:USC

Desmedt:2010:CF

REFERENCES

Deng:2017:LLH

Ding:2012:CLS

Djuric:2015:FSF

Dutta:2017:EFC

Dupressoir:2014:GGP

Ding:2012:NRR
REFERENCES

Drimer:2010:DBP

Dubeuf:2016:EPA

Dodis:2010:CA

Driessen:2013:ESA

Diem:2012:UES

Drosou:2012:SAH

REFERENCES

[DK16] Felix Dörre and Vladimir Klebanov. Entropy loss and output predictability in the Libgcrypt PRNG. Report CVE-2016-6313, Karlsruhe Institute of Technology, Karlsruhe, Germany, August 18, 2016. 2 pp. URL http:
REFERENCES

//formal.iti.kit.edu/~
klebanov/pubs/libgcrypt-
cve-2016-6313.pdf.

Doychev:2017:RAS

Doychev:2015:CTS

Durumeric:2014:MH

Dolev:2016:MCG

Doychev:2015:CTS

Do dishes:2012:MAR

Dunkelman:2012:MCE

Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in cryptography: The Even–Mansour scheme revisited. Lecture
REFERENCES

REFERENCES

Dimitrakakis:2015:ELA

Demme:2012:SCV

Doroz:2015:AFH

Duncan:2012:CAI

REFERENCES

Ding:2017:CSM

Das:2016:CWM

Dziembowski:2018:NMC

Dong:2012:NCV

Daemen:2010:FY

Duong:2011:CWC

Dautrich:2012:SLU
REFERENCES

Draziotis:2016:EDL

Dong:2011:SSE

Dixon:2016:NTO

Dini:2011:LLA

Das:2015:DCS
REFERENCES

comjnl.oxfordjournals.org/content/58/4/808.

Das:2016:MPU

Das:2012:DPB

Deng:2018:SFE

Dachman-Soled:2014:COF

Dodis:2014:HEY
Yevgeniy Dodis, Adi Shamir, Noah Stephens-Davidowitz, and Daniel Wichs. How to eat your entropy and have it too — optimal recovery strategies for compromised RNGs. Report, Dept. of Computer Science, New York University; Dept. of Computer Science and Applied Mathematics, Weizmann Institute; Dept. of Computer Science, Northeastern University, New York, NY, USA; Tel Aviv, Israel; Boston, MA, USA, March 3, 2014. 27 pp. URL http://eprint.iacr.org/2014/
REFERENCES

David:2012:PRE [DW12]

Dorn:2012:ECE [DWB12]

Dong:2012:KKD [DWWZ12]

Dong:2012:NDI [DWZ12]

Dai:2018:OPC [DWZ18]

Deng:2014:CCC [DXA14]
Robert H. Deng, Yang Xiang, and Man Ho Au.

Dodis:2013:OWE

Deng:2014:TNI

Dossedonne:2018:CDA

Dent:2010:PS

REFERENCES

[QRI] Ertem Esiner and Anwita-man Datta. On query result integrity over encrypted data. Information Processing Letters, 122
Esiner:2019:TFA

Edwards:2014:NRP

Edwards:2017:NSQ

El-Emam:2013:NSA

Eisenbarth:2010:CCE

Thomas Eisenbarth. Crypt-

[187]

[Esiner:2016:FFB]

[EM14]

[Engels:2013:NLL]

[EPAG16]

[ElBansarkhani:2012:ELB]

[ERL16]

[Embar:2014:PW]

[EPAG16]

[Evtushkin:2016:UMC]

[ERLM16]

[Eberz:2016:LLE]
REFERENCES

Evett:2016:SES

Eibach:2010:OGB

Eldib:2014:FVS

Enos:2015:IBS

Farash:2014:ECC

Farash:2014:SEI

REFERENCES

Fahd:2018:CPA

Fagone:2017:WWS

Farash:2014:CIE

Fay:2016:ICM

Fischlin:2012:PKC

REFERENCES

REFERENCES

0302-9743 (print), 1611-3349 (electronic). URL http://link.springer.com/chapter/10.1007/978-3-642-34047-5_12/

Fan:2010:PSN

Fan:2010:AMI

Farras:2017:IRN

Fahl:2012:WEM

Fan:2014:ASA

Fawzi:2013:LDN

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL
http://link.springer.com/chapter/10.1007/978-3-642-30598-6_6/.

[Feng:2012:CAO] Hui Feng, Hefei Ling, Fuhao Zou, Weiqi Yan, and
Zhengding Lu. A collusion attack optimization strategy for
digital fingerprinting. ACM Transactions on Multimedia
Computing, Communications, and Applications, 8(2S):36:1–
36:??, September 2012. CODEN ???? ISSN 1551-6857 (print),
1551-6865 (electronic).

watermarking based on Fibonacci numbers. IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
23(8):1273–1282, August 2015. CODEN ???? ISSN 2329-
9290.

[Ferrag:2018:SCN] Mohamed Amine Ferrag,
Leandros Maglaras, Antonios Argyriou, Dimitrios
Kosmanos, and Helge Janicke. Security for 4G and
5G cellular networks: a survey of existing authentication
and privacy-preserving schemes. Journal of Network and
Computer Applications, 101 (??):55–82, January 1,
2018. CODEN JNCAF3. ISSN 1084-8045 (print),
science/article/pii/S1084804517303521.

[Farwa:2018:FAI] Shabieh Farwa, Nazeer Muhammad, Nargis Bibi,
Saijad A. Haider, Syed R. Naqvi, and Sheraz Anjum.
Fresnelet approach for image encryption in the algebraic
frame. Applied Mathematics and Computation, 334(??):343–355,
October 1, 2018. CODEN AMHCBQ. ISSN 0096-
3003 (print), 1873-5649 (electronic). URL http://

Nielsen, and Daniele Venturi. Continuous non-
malleable codes. Lecture Notes in Computer Science,
8349:465–488, 2014. CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349 (electronic). URL
http://link.springer.com/chapter/10.1007/978-3-642-54242-8_20/.

See also [?].

REFERENCES

[FQZF18] Wei Feng, Yu Qin, Shijun Zhao, and Dengguo architectures.
REFERENCES

Fathimal:2016:SSS

Frattolillo:2015:WPP

Frattolillo:2016:BFM

Frey:2010:ABC

Fridrich:2010:SDM

Frikken:2010:SMC

REFERENCES

Fang:2012:CCS

Ferguson:2010:CED

Feng:2011:GDA

Fujioka:2012:SHI

Fujioka:2012:SEI

Fujioka:2012:SEP

REFERENCES

http://link.springer.com/chapter/10.1007/978-3-642-31284-7_9/. [FTV+10]

[Feng:2013:ECE] Jun Feng, Xueming Wang, and Hong Sun. Efficiently computable endomorphism for genus 3 hyperelliptic curve cryptosys-

Fanyang:2012:SAK

Fan:2015:IRD

Fan:2013:KIS

Fan:2014:NCI

REFERENCES

204

William Gasarch. Review of Theoretical Computer
References

Gutierrez:2016:IDO

Gorantla:2011:MKC

Gupta:2012:CDF

Gupta:2013:HPH

Guyeux:2015:ECS

Guerra-Casanova:2011:SOT

Granado-Criado:2017:HCH

Gong:2016:ATI

Guerin:2016:TDU

Geller:2013:MIS

Gentry:2010:CAF

[GGH+16b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Hiding secrets in software: a cryptographic approach to program obfuscation. Communications of the Association for Comput-
REFERENCES

Garg:2014:TRS

[Garg:2017:IDI]

[Gh11b]

[L14a]

[Gh12]
Craig Gentry and Shai Halevi. Efficient implementation of fully homomorphic encryption without squashing using depth-3 arithmetic circuits. In *IEEE [IEE11b]*.

[Gh13]

[Gh16]
Prosanta Gope and Tzonelih Hwang. An efficient mu-

REFERENCES

DEN ????. ISSN 2471-2566 (print), 2471-2574 (electronic).

Grigoriev:2017:YMP

Gaj:2017:DCR

Guo:2010:HMW

Gouvea:2012:HSI

Guo:2018:KAA

Gorawski:2012:EAS

[GL12]

REFERENCES

214

[GLM+16] Linming Gong, Shundong Li, Qing Mao, Daoshun Wang, and Jiawei Dou.

[GM13] Behrad Garmany and Tilo Müller. PRIME: Pri-

Gotzfried:2014:MAT

Gofman:2016:MBE

Giambruno:2015:GGB

Garcia-Martinez:2015:HEB

Garcia-Morchon:2015:HCR

Guo:2011:ISS

Fuchun Guo, Yi Mu, and Willy Susilo. Improving security of q-SDH based digi-

Guo:2014:SAS

Gao:2014:URA

Groza:2017:LCL

Gong:2012:KNF

Garay:2017:SIA

Dan Goodin. Crypto breakthrough shows Flame was designed by world-class scientists: The spy malware achieved an attack unlike any cryptographers have seen before. Web document., June 7, 2012. URL http://arstechnica.com/security/2012/06/flame-crypto-breakthrough/.

Michael T. Goodrich, Charalampos Papamanthou, Duy Nguyen, Roberto Tamassia, Cristina Videira Lopes, Olga Ohrimenko, and Nikos Triandopoulos. Efficient verification of web-content searching through authenticated web...

[Genkin:2016:PKE]

[Gonzalez-Pardo:2012:CID]

[Greengard:2011:MRM]

[Green:2017:SSE]

story-of-extended-random/[1]

Discussion of suspected NSA-supported back door in the 2007 NIST standard for the Dual Elliptic-Curve default random number generator, and the associated RSA cryptographic library BSAFE. There is evidence that the back door exists in some older Canon laser printers.

Grimes:2015:CCT

Gibson-Robinson:2012:AAL

Guha:2017:RTS

Guin:2016:FCS

Gong:2016:FSC

Gierlichs:2012:ICD

Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. Infective computation and dummy rounds:

Genkin:2013:RKE

Ge:2016:KPA

Gazi:2012:EOS

Gupta:2019:LAU

Goodrich:2011:EAD

Michael T. Goodrich, Roberto Tamassia, and Nikos Triandopoulos. Efficient authenticated data structures for graph connectivity and geometric

REFERENCES

Gorbunov:2015:ABE

Greenberg:2014:GWB

Gebotys:2016:PCP

Wang:2014:RAW

Gao:2015:GCC

Goh:2013:TOT
Guo:2012:AKE

Guo:2017:EMD

Gao:2012:RHC

Guo:2018:SMK

Guo:2019:NTP

Ge:2013:SAP

Aijun Ge, Jiang Zhang, Rui Zhang, Chuangui Ma, and Zhenfeng Zhang. Secu-

Harn:2013:GA

Harrington:2014:GEF

Hardesty:2015:BA

Hardesty:2016:SUC

Hastings:2016:SWS

Hayes:2013:NSA

Houmansadr:2013:BCN

Hurlburt:2014:BBC

Hetzelt:2017:SAE
Felicitas Hetzelt and Robert Buhren. Security anal-

Hernandez-Becerril:2016:GIS

He:2013:HEH

Hu:2017:ATE

Hulsing:2017:XEH

Hao:2012:SAM

Hwang:2010:RIB

Hsu:2011:NLM

Hore:2012:IED

Hernandez-Castro:2012:MTA

Huang:2014:FOS

Hsu:2011:WLC

REFERENCES

Hernandez-Castro:2012:AFH

Han:2013:RMA

Heninger:2012:MYP

Heath:2015:HNS

Hwang:2012:ABA

Hamad:2018:DWU

[HEK18] Safwat Hamad, Ahmed Elhadad, and Amal Khalifa. DNA watermarking using

Hellman:2017:TLC

Hermelin:2010:MLC

Herranz:2014:ABS

Hess:2012:GJC

Heys:2017:SCF

Harn:2014:MTS

Hoang:2014:IMD

Hua:2015:TSE

Huang:2016:EDP

Heyse:2012:TOC

Han:2011:PEB

Harn:2015:DTS

comjnl.oxfordjournals.org/content/58/10/2583.

REFERENCES

[HK+14] Timothy Heil, Anil Kr

tronic). URL http://
/ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=
5416683.

Carmit Hazay and Yehuda
Lindell. Efficient Secure
Two-Party Protocols: Tech-
niques and Constructions.
Information Security and
Cryptography. Springer-
Verlag, Berlin, Germany / Hei-
delberg, Germany / London, UK / etc., 2010. ISBN 3-642-
14302-4 (hardcover), 3-642-
14303-2 (e-book). ISSN
1619-7100 (print), 2197-
http://www.springerlink.com/
content/978-3-642-14303-
8.

Chien-Lung Hsu and Han-
Yu Lin. New identity-based
key-insulated convertible
multi-authenticated en-
cryption scheme. Journal
of Network and Computer
Applications, 34(5):1724–
1731, September 2011. CO-
DEN JNCAF3. ISSN 1084-
8045 (print), 1095-8592
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S1084804511001172.

Wen-Bin Hsieh and Jenq-
Shiou Leu. An anony-
mous mobile user authenti-
cation protocol using self-
certified public keys based
on multi-server architec-
tures. The Journal of Su-
percomputing, 70(1):133–
148, October 2014. CO-
DEN JOSUED. ISSN
0920-8542 (print), 1573-
0484 (electronic). URL
http://link.springer.
com/article/10.1007/s11227-
014-1135-8.

Haider Salim Hmood, Zhi-
tang Li, Hasan Khalaf Ab-
dulwahid, and Yang Zhang.
Adaptive caching approach
to prevent DNS cache poi-
soning attack. The Com-
puter Journal, 58(4):973–
985, April 2015. CODEN
CMPJA6. ISSN 0010-4620
(print), 1460-2067 (elec-
tronic). URL http://
comjnl.oxfordjournals.
org/content/58/4/973.

Chunqiang Hu, Xiaofeng
Liao, and Xiuzeheh Cheng.
Verifiable multi-secret shar-
ing based on LFSR se-
quencies. Theoretical Com-
puter Science, 445(1):52–
62, August 3, 2012. CO-
DEN TCSCDI. ISSN 0304-
3975 (print), 1879-2294
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0304397512004276.
REFERENCES

235

REFERENCES

Hefeeda:2010:ASM

Herzberg:2012:TJA

Hore:2012:SMR

Hoang:2012:ESB

Hirt:2014:BA

Harnik:2010:CIC

SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic).

Hoffmann:2015:LBQb

Hoffmann:2016:LBQb

Hyla:2012:CBE

Hazay:2014:OSA

Halder:2010:WTR
He:2012:ECT

Howe:2015:PLB

Hur:2010:CCS

Han:2016:GGA

Han:2014:GTK

He:2013:GME

REFERENCES

Hulsing:2013:OPX

Hussain:2018:SSH

Herranz:2013:SMS

Hulsing:2016:MMT

Huang:2014:AFS

[HSM14] Jinguang Han, Willy Susilo, and Yu Mu. Identity-based secure distributed data...

Huang:2015:PAP

Huang:2017:SSS

Hald:2015:RRA

Hulse:2013:WOS

Herbert:2012:SMP

Hurlburt:2016:MBO

ber, Germany / London, UK / etc., 2010. ISBN 3-642-17618-6 (softcover). LCCN ???.

He:2015:SSQ

Zhian He, Wai Kit Wong, Ben Kao, David Wai Lok Cheung, Rongbin Li, Siu Ming Yiu, and Eric Lo. SDB: a secure query processing system with data interoperability. *Proceedings of the VLDB Endowment*, 8(12): 1876–1879, August 2015. CODEN VLDBFR. ISSN 2150-8097.

Hsu:2014:VWR

Huang:2011:GFT

Huang:2018:PIB

Hao:2011:NTV

Huang:2018:CT

Qinlong Huang, Yixian Yang, and Mansuo Shen. Corrigendum to “Secure

See [?].

Qi Han, Yinghui Zhang, and Hui Li. Efficient and robust attribute-based encryption supporting access policy hiding in Internet of Things. Future Generation Computer Systems, 83(??):269–277, June 2018. CODEN FGSEVI. ISSN 0167-739X.
Huang:2019:ILA

Han:2014:ATS

He:2017:AHA

He:2018:LAB

He:2015:IEI

IEEE:2010:PIA

IEEE:2011:ICI

IEEE:2011:PIA

IEEE:2013:PIS

Imanimehr:2016:HPR

Islam:2011:MD

REFERENCES

[Iyengar:2016:SPS]

[Imai:2015:IRR]

[Islam:2015:LFP]

[Ioannou:2014:PKC]

[I:2017:ETB]

[Isobe:2012:SCL]
Takanori Isobe, Toshihiro Ohigashi, and Masakatu

Islam:2018:REP

Isobe:2012:SAL

Irshad:2016:EAM

Ishai:2014:PCP

Jacobs:2016:STB

REFERENCES

Jie:2010:AAI

Jie:2011:RGA

Prins:2011:DCA

Jain:2013:MSD

Jho:2016:SSE

Jakobsson:2012:AWD

Prins:2011:DCA

Chang:2012:TRR

Jogenfors:2015:HBT

Jeong:2013:CBC

Jo:2014:ODE

Jing:2012:MVB

Jiang:2019:SSL

Jiang:2014:UIS

Jiang:2014:TEA

Jiang:2016:MAC

Jiang:2017:BMA

Jin:2010:ADW

Jain:2010:QP
REFERENCES

REFERENCES

Jeong:2012:IKP

Jajo:2012:RET

Jia:2012:PKD

Jiang:2016:OOC

Jiang:2016:UTC

REFERENCES

Jain:2012:BAS

Jan:2017:PPB

Johnson:2010:BRF

Johnson:2015:NGA

Joux:2013:NIC

Jes:2013:CCP

Jeoffs:2013:CCP
REFERENCES

Yinhao Jiang, Willy Susilo,

Jiang:2012:DCA

Joye:2012:FAC

Tong:2012:NBD

Jiang:2016:CVI

Juels:2014:INC

Ari Juels and Bonnie Wong. The interplay of neuroscience and cryptography: technical perspective. *Communications of
the Association for Computing Machinery, 57(5):109, May 2014. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

Jiang:2017:SLD

Jin:2015:NCD

Joux:2014:SAC

Jiang:2010:EDI

Khazaei:2017:COA

REFERENCES

Karaflidis:2012:QGC

Kong:2015:CSM

Katz:2013:RIB

Kawamoto:2015:LSH

Karthigaikumar:2010:PPV

Kallel:2011:SMM

Kleinrouweler:2017:SAP
Jan Willem Kleinrouweler, Sergio Cabrero, and Pablo Cesar. An SDN architecture for privacy-friendly network-assisted DASH. *ACM Transactions...

Kara:2019:ALS

Keblusek:2015:BRK

Kemshall:2011:WMT

Kleinjung:2010:FBR

Kikuchi:2012:SSN

REFERENCES

Kramer:2010:FDC

Kim:2012:SLT

Khedr:2016:SSH

Kwon:2010:SEB

Koo:2018:PPD

Khazaei:2010:NBS

REFERENCES

REFERENCES

UK / etc., 2011. ISBN 3-642-19073-1. LCCN ????

Kompara:2019:REM

Kim:2011:LBA

Kim:2015:CEH

Kim:2016:MAS

Kim:2016:BSW

Konstantinou:2010:RC1

[KK10] Elisavet Konstantinou and Aristides Kontogeorgis. Ramanujan’s class invariants and their use in elliptic curve cryptography. *Computers and

Kawai:2012:SHS

Kawai:2013:SHS

Khalil:2014:CIM

Khan:2015:CMB

Khan:2014:MEK

Karopoulos:2010:FIP

Kubota:2016:SAV

Khan:2013:EDC

Khan:2014:IPR

Kushwah:2011:EIB

Khakpour:2013:ITA

[KL13] Amir R. Khakpour and Alex X. Liu. An information-

Klapper:2010:PSS

Ko:2010:MME

Koeberl:2012:EPD

Kumari:2016:UFM

Kim:2012:INS

Koblitz:2016:RWE

Kasamatsu:2012:TSE

Kiyoshima:2014:CRB

Karger:2011:LLB

Kanwal:2015:TTM

Katz:2012:TSP

Khamsemanan:2016:BBU

Kawachi:2017:GCR

Kollmitzer:2010:AQC

Kang:2012:AKM

Kolman:2017:SCG

Koya:2018:AHM

Kumar:2017:TAU

Kiltz:2011:EAH

Khalid:2016:RHL

Kocabaş:2012:CPB

Kang:2016:DSA

Keskinarkaus:2010:IWD

A. Keskinarkaus, A. Pramila.

[Kra12]

[KRB12]

[KR11]

[Krantz:2012:EAM]

[Kostinger:2012:SBL]

[Kannan:2013:NQF]
REFERENCES

[References]

REFERENCES

[KU14] Hiroshi Kai and Keita Ueda. Fake shares detection on a visual secret sharing scheme by rational interpolation. *ACM Communications in Computer
Kupcu:2013:DTT

Kupcu:2015:OAS

Kuznetsov:2011:APP

Kiljan:2018:ETA

Karpovsky:2014:DSS

Kuo:2016:SDD

Liang:2015:SEC

Landau:2010:SSR

Launchbury:2012:TBC

Lauter:2017:POL

REFERENCES

Liu:2013:PAE

Luo:2012:ESI

Lupu:2012:IBK

Lu:2013:CSA

Liu:2015:IAC

Laxmi:2017:GGS

B. Prathusha Laxmi and A. Chilambuchelvan. GSR: Geographic Secured Routing using SHA-3 algorithm for node and message authentication in wireless sensor networks. *Future Generation Computer*
Liu:2013:IAG

Lathrop:2011:SPI

Li:2015:NAC

Lee:2017:SUE
Liu:2017:GAU

Li:2015:CEH

Liang:2014:CCS

Liu:2016:EQD

Yang Liu, Zhu Cao, Cheng Wu, Daiji Fukuda, Lixing You, Jiaqiang Zhong, Takayuki Numata, Si-

[Liu:2016:NOP] Zhenhua Liu, Shuhong Duan, Peilin Zhou, and Baocang Wang. Traceable-then-revocable ciphertext-policy attribute-based en-

[Liu:2019:TTR] Zhenhua Liu, Shuhong Duan, Peilin Zhou, and Baocang Wang. Traceable-then-revocable ciphertext-policy attribute-based en-

REFERENCES

DEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

Lop ez-Garcia:2014:PBB

Liu:2012:FVC

Lee:2010:ISC

REFERENCES

REFERENCES

Liu:2015:SSP

Lian:2014:SSA

Li:2018:OPP

Liu:2012:ESS
REFERENCES

www.sciencedirect.com/science/article/pii/S0164121212000234

[Lin15] Pei-Yu Lin. Double verification secret sharing mechanism based on adaptive

Lindell:2017:TFC

Litton:2014:TFA

Liu:2015:LBD

Liu:2016:LCP

Li:2017:MMA

Li:2016:IRI

REFERENCES

Li:2017:SQS

Liu:2017:OOA

Li:2012:OEA

Laszka:2014:STC

Liu:2012:BIB
Fagen Li and Muhammad Khurram Khan. A biometric identity-base

Lee:2014:SPB

Li:2012:IBO

Leva:2013:ABN

Le:2011:RMA

Lee:2015:TSS

Jingqiang Lin, Bo Luo, Le Guan, and Jiwu Jing. Secure computing using registers and caches: The

Lyu:2018:PKE

Li:2012:RIB

Liu:2018:GEI

Liu:2019:SBC

Li:2017:CIS

Li:2017:CCD

Liu:2018:VSE

Li:2010:DCY

Lai:2013:SAS

Libert:2019:ZKA

Lu:2012:IEC

Xianhui Lu, Bao Li, Qixiang Mei, and Yamin Liu. Improved efficiency of chosen ciphertext secure encryption from factoring. *Lecture Notes in Computer Science*, 7232:34–45, 2012. CODEN LNCS'D9. ISSN
Lai:2018:EQK

Lee:2019:CSS

Lee:2016:CAM

Lee:2016:AGA

Luo:2012:FSI
Xiangyang Luo, Fenlin Liu, Chunfang Yang, Shiguo Lian, and Daoshun Wang. On F5 steganography in

[LMB12] Ariane Lambert-Mogiliansky and Jerome R. Busemeyer. Emergence and instability of individual identity. Lecture Notes in Computer Science, 7620:

Le:2016:ADS

Lai:2018:IBB

Lai:2017:FPP

Liu:2014:SCS

Li:2011:NRA

Lv:2013:NTP

[LML+13] Chao Lv, Maode Ma, Hui Li, Jianfeng Ma, and Yaoyu Zhang. An novel three-party authenticated key exchange protocol using one-time key. Journal

Lukasiewycz:2016:SAO

Li:2018:RBB

Li:2018:TFA

Li:2013:ESC

Li:2011:CIB

[LMN+11] Xiong Li, Jian-Wei Niu, Jian Ma, Wen-Dong Wang, and Cheng-Lian Liu. Cryptanalysis and improvement of a biometrics-based remote user authentication scheme using smart

Liu:2015:SAB

Liu:2013:GPB

Loeb:2015:MGM

Lopriore:2012:EPP

Lopriore:2015:PCR

Lopriore:2015:PMD

[Lop15b] Lanfranco Lopriore. Password management: Distribution, review and revoca-
REFERENCES

Lampe:2012:ATS

Liu:2015:GTB

Liu:2016:PPO

Libert:2010:KES

Lubicz:2015:GMA

Lukowiak:2014:CEB

Marcin Lukowiak, Stanislaw Radziszowski, James
REFERENCES

Liskiewicz:2013:GBS

Liskiewicz:2017:SLS

Lane:2014:PBD

Luo:2012:FSU

Lin:2015:SSE

Lychev:2016:RSI

Robert Lychev, Michael Schapira, and Sharon

Lee:2012:IBS

Liang:2015:EFC

Liu:2011:DBA

Liu:2011:NJD

DEN ???. ISSN 1551-6857 (print), 1551-6865 (electronic).

Liu:2015:IMB

Liu:2015:MSG

Lao:2016:BFD

Lysyanskaya:2010:AEC

Lin:2011:CNS
Dongdai Lin, Gene Tsudik, and Xiaoyun Wang, ed-

Li:2016:LRC

Ludge:2012:NLD

Lucchese:2010:RPT

Lafitte:2011:CBF

Liu:2010:CIE

Hongjun Liu and Xingyuan Wang. Color image en-
REFERENCES

[LW11c] Dong Hoon Lee and Xiaoyun Wang. Special issue papers: Nonlinear order preserving index for encrypted database query in service...

Liu:2013:TIE

Liu:2013:CBS

Liu:2013:PAB

Lew:2014:DAF

Liu:2017:EEC

Liu:2011:SBA

Yu Liu, Kaijie Wu, and Ramesh Karri. Scan-based attacks on linear feedback shift register based stream ciphers. *ACM Transactions on Design Automation of
Li:2018:SCM

Lu:2012:HOM

Lu:2014:HOM

Liu:2010:NDC

Liu:2010:SET
Liu:2011:PIA

Lu:2012:MMA

Li:2010:GCP

Lou:2010:NAS

Luo:2012:ICB

Li:2012:IIA

REFERENCES

[LWZG10]

[LXCM11] Li:2011:NIW

[LXCM11]

[LXJ14]

[LXK+14]

[LXLY12]

[Li:2012:ESD] Li:2012:ESD

[LXJ14]

Luo:2014:ARP

Liu:2015:SDS

Liu:2015:SAA

Liao:2012:NSM

Xin Liao, Qiao yan Wen,

Liu:2017:ESS

Li:2010:PES

Liu:2012:ESS

Li:2016:BMA

Masdari:2017:STA

Mohammad Masdari and Safiyyeh Ahmadzadeh. A

MacCormick:2012:NAC

Macrakis:2014:PLS

Maffeo:2016:UNC

Michail:2012:EHT

Moskowitz:2010:ITE

Malkin:2013:SCB

Mangard:2013:KSL

Martin:2010:FWL

Mazumdar:2016:CIS

Mashhadi:2017:NMS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

Matsuda:2014:IBP

Mayron:2015:BAM

Matthiessen:2019:RCM

Maurer:2012:CCN

Mazurczyk:2013:VSD

Milo:2011:FGB

Mao:2015:PUA

[Debdeep Mukhopadhyay and Dipanwita Roy Chowdhury. A parallel efficient architecture for large cryptographically robust $n \times k (k \geq n/2)$ mappings. *IEEE Transactions on Computers*, 60(3):375–385, March 2011. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).]

McGrew:2017:IDH

McGrayne:2011:TWH

McKay:2010:SLB

Mahmood:2018:ECC

Marquez-Corbella:2015:ECP

Irene Márquez-Corbella and Ruud Pellikaan. Error-correcting pairs: a new approach to code-based cryp-
Mathew:2015:NMB

Majzoub:2012:MRH

Mansouri:2012:ACA

Mansfield-Devine:2015:MIC

Muroch:2010:CPB

Mosenia:2017:PTS

Maachaoui:2012:MLA

Maiekejohn:2010:BRB

Meiklejohn:2010:BRB

Menn:2013:ESC

Meshram:2015:EIB

REFERENCES

Moreno:2013:NIP

Moufek:2015:MCB

Marmol:2010:TPA

Matsuda:2014:CCS

Meziani:2012:IPS

Miller:2014:ADS
Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. Authenticated data structures, generically. ACM SIGPLAN Notices, 49(1):411–423, January 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867

Midgley:2010:SEE

Martinez-Julia:2012:NIB

Martinez-Julia:2013:BSI

Mohanty:2011:RTP

Moessner:2012:SAS

Muller:2012:HPC

Mozaffari-Kermani:2017:FDA
MKAA17] Mehran Mozaffari-Kermani, Reza Azarderakhsh, and

Leonardo Montecchi, Paolo Lollini, Andrea Bondavalli, and Ernesto La Mattina. Quantitative security evaluation of a

Mancillas-Lopez:2010:RHI

Mendez:2016:PES

Manzanares-Lopez:2012:ICU

Ma:2017:LBI

Madhusudhan:2012:DIB

Meshram:2013:IBC

Maity:2014:FIR

Maity:2017:ODC

Mulholland:2017:DCD

Moldovyan:2012:BBD
Mahmoody:2014:PPK

Marino:2019:ACN

Matedy:2013:CRS

Mazumder:2017:PSK

Mazumder:2017:SAE

Macedo:2017:SSP

Maitany:2013:CRS

Matsuo:2012:MAK

Meshram:2012:IBC

Moran:2010:BCP

Mukhopadhay:2014:EMP

Monz:2016:RSS
REFERENCES

URL http://science.sciencemag.org/content/351/6277/1068.

Moore:2012:RFF

Moody:2014:DMW

Morad:2012:OEA

Moulick:2015:RDS

Minier:2012:EEC

Meiklejohn:2016:FBC

Mundhenk:2017:SAN

Mironov:2012:IDP

Mukhamedov:2010:IEP

Maimut:2014:AET

Diana Maimut and Reza Reyhanitabar. Authenti-

cated encryption: Toward next-generation algo-

Marasco:2014:SAS

Micali:2014:CMS

Manimehalai:2016:NRR

Migliore:2018:HSC

Martinovic:2017:AUP

Matsumoto:2017:ACG

Moghadam:2010:DRN

Mendel:2012:DAL

Maitra:2012:NA

Mroczkowski:2012:CAS

Maitra:2013:DSM

Maitra:2013:HEM

Maitra:2013:HPM

Miller:2016:RPS

Mukherjee:2017:EPP

REFERENCES

REFERENCES

Miret:2018:PBC [MST18]

Mosca:2013:QKD [MSU13]

Muftic:2016:BCC [Muf16]
Sead Muftic. BIX certificates: Cryptographic tokens for anonymous transactions based on certificates public ledger. *Ledger*, 1(??):19–37, ???? 2016. ISSN 2379-5980. URL

Malkin:2011:ECS [MTY11]

Meerwald:2012:ERW [MU12]
Mundy:2017:CGU

Murphy:2010:BRB

Murdoch:2016:IDP

Miri:2012:SAC

Min:2016:RSC

Mishra:2016:AFP

Abhishek Mishra and Parv Venkitasubramaniam. Anonymity and fairness in packet
REFERENCES

Mannan:2011:LPD

Maes:2012:PFF

Mathew:2012:EIC

Ma:2012:CIS

Mahmoody:2013:LEZ

Ma:2013:PVP

Marko:2017:MDI

Mastroeni:2017:APS

Manshiae:2013:GTM

Ma:2015:PKE

Nagy:2010:OTP

Nagy:2010:QCS

REFERENCES

Narasimhan:2013:HTD

Ngo:2017:CSS

Nedjah:2016:PYP

Newell:2013:PCD

Naeem:2014:EIC
REFERENCES

Nafea:2016:HMB

NIST:2012:RRN

NIST:2013:CSS

Nguyen:2014:DDI

Ning:2012:DPB

Ning:2015:APB

Ning:2012:DCA

[Huangsheng Ning, Hong Liu, Laurence T. Yang, and Yan Zhang. Dual...

Nieto:2013:PVC

Nieto:2014:FSH

Nguyen:2012:DQB

Neville-Neil:2015:KVH

Nagy:2010:KDV

Navin:2010:ETU

REFERENCES

[NR12] Long Hoang Nguyen and A. W. Roscoe. Short-

Namasudra:2017:NSA

Niu:2015:CRS

Naccache:2010:THI

Nojoumian:2012:SRS

Natarajan:2015:MAD

Niksefat:2014:ZPP

Salman Niksefat, Babak

Nguyen:2010:LAS

Noorman:2017:SLC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Orencik:2016:MKS

Otmani:2010:CTM

Ogiela:2018:VCA

Ohzeki:2012:NWM

Ortiz-Yepes:2014:BSA

Praba:2010:MAC

Parveen:2018:IEE

Pal:2015:SDC

Pal:2016:ACC

Pandey:2014:ACR

Parent:2012:WAI

Park:2012:APO

Pass:2013:USP

Pasanata:2013:MDR

Paulson:2010:SDO

Pandit:2012:EFS

REFERENCES

Pang:2014:PPA

Paul:2012:KSS

Pereira:2015:PKE

Pippal:2012:SVU

Pearson:2011:NWC

Persichetti:2013:SAH

Edoardo Persichetti. Secure and anonymous hy-

[PGLL10] Fei Peng, Re-Si Guo, Chang-Tsun Li, and Min Long. A semi-fragile watermarking algorithm...

Park:2010:SIC

Jong Hyuk Park, Sajid Hussain, Guilin Wang, and Yi Mu. Special issue of computers and mathematics with applications on “Advances in cryptography, security and applications for future computer science”. *Computers and Mathematics with Applications*, 60(2):175, July 2010. CODEN CMAPDK. ISSN 0898-
REFERENCES

Pieprzyk:2010:TCC

Pointcheval:2012:ACE

Patel:2018:LLA

Premarathne:2015:LDD

Pramila:2018:ICA

Anu Pramila, Anja Keskinarkaus, and Tapio Seppänen. Increasing the capturing angle in...

Peris-Lopez:2010:CSP

Poh:2012:SEC

Pande:2013:SMC

Poursakidis:2010:TPC

Puthal:2017:DDK

Niu:2014:RDW

Pan pan Niu, Xiang yang Wang, Hong ying Yang, Pei Wang, and Ai long Wang. A robust digital watermarking based on local complex angular radial

Powers:2014:OSCa

Paar:2010:UCT

Papadopoulos:2010:TRM

Park:2011:ACC

Pereira:2016:SHB

REFERENCES

Pendl:2012:ECC

Pyun:2012:IBF

Pathak:2012:PPS

Phan:2012:DDB

Phan:2012:MBT

Papadopoulos:2015:PAP

Dimitrios Papadopoulos, Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Practical authenticated pattern matching
REFERENCES

with optimal proof size.
Proceedings of the VLDB Endowment, 8(7):750–761,
February 2015. CODEN ??? ISSN 2150-8097.

Pandey:2012:PPS

Omkant Pandey and Yan-
nis Rouselakis. Prop-
erty preserving symmet-
ric encryption. Lecture
Notes in Computer Sci-
CODEN LNCS11. ISSN
0302-9743 (print), 1611-
3349 (electronic). URL
http://link.springer.com/accesspage/chapter/
10.1007/978-3-642-29011-4_22; http://link.springer.com/chapter/10.1007/978-3-642-29011-4_23/.

Piret:2012:PBC

Gilles Piret, Thomas Roc-
he, and Claude Carlet. PI-
CARO — a block cipher
allowing efficient higher-
order side-channel resis-
tance. Lecture Notes in
Computer Science, 7341:
311–328, 2012. CO-
DEN LNCS91. ISSN
0302-9743 (print), 1611-
3349 (electronic). URL
http://link.springer.com/chapter/10.1007/978-
3-642-31284-7_19/.

Puthal:2019:SAL

Deepak Puthal, Rajiv Ranjan, Ashish Nanda, Priyadars Nanda, Prem Prakash Jayaraman, and Albert Y.

Zomaya. Secure authentication and load balancing of distributed edge data-
centers. Journal of Parallel and Distributed Computing, 124(??):60–69, February 2019. CODEN JPD-
CER. ISSN 0743-7315 (print), 1096-0848 (elec-
science/article/pii/S074373151830741X.

Polyakov:2017:FPR

Yuriy Polyakov, Kurt Rohloff, Gyana Sahu, and Vinod Vaikuntanathan. Fast proxy re-encryption for publish/subscribe sys-
tems. ACM Transactions on Privacy and Security (TOPS), 20(4):14:1–14:??, October 2017. CODEN ???? ISSN 2471-2566 (print), 2471-2574 (elec-
tronic).

Popa:2012:CPQ

Raluca Ada Popa, Catherine M. S. Redfield, Nicko-
lai Zeldovich, and Hari Bal-
akrishnan. CryptDB: pro-
cessing queries on an en-
crypted database. Com-
munications of the As-
sociation for Computing
Machinery, 55(9):103–111,
September 2012. CODEN
CACMA2. ISSN 0001-0782 (print), 1557-7317 (elec-
tronic).
REFERENCES

[PSM17] S. Patranabis, Y. Shrivastava, and D. Mukhopadhyay. Provably secure key-aggregate cryptosystems with broadcast aggregate keys for online data sharing on the cloud. IEEE Transactions on Comput-
REFERENCES

Picazo-Sanchez:2013:CRS

Park:2013:PPM

Papamanthou:2013:SCC

Papakostas:2014:MBL

Papamanthou:2016:AHT

Pudovkina:2012:RKA

Marina Pudovkina. A related-key attack on block

[PYM+13] Pieter Philippaerts, Yves Younan, Stijn Muylle, Frank Piessens, Sven Lachmund, and Thomas Walter. CPM: Masking code point-

Pei:2015:SWT

Papadopoulos:2010:CAR

Phuong:2018:CBE

Pournagh:2018:NNE

Patsakis:2015:PSM

Qiu:2018:QDS

Lirong Qiu, Feng Cai, and

Qin:2016:VTQ

Qiu:2017:AAS

Qiu:2017:PSB

Saifu Qi, Yuanqing Zheng, Mo Li, Yunhao Liu, and Jinli Qiu. Scalable industry data access control in RFID-enabled supply chain. *IEEE/ACM Transactions on Network-
Qi:2016:SPR

Qi:2018:SPR

Qin:2018:BRO

Rankin:2010:HLH

Rankin:2014:HEY

Rankin:2016:HSP

Rao:2010:PAA
Rao:2017:SEC

Rauscher:2015:FMT

Ruoti:2015:WJS

Rupp:2015:CTM

Radke:2015:CFA

Reaves:2017:MBM

[Raisaro:2018:PPS]

[Rabbachin:2015:WNI]

[Reardon:2016:SDD]

REFERENCES

R4223 2016. URL http://www.springerlink.com/content/978-3-319-28778-2.

Rahaman:2010:STB

Rogaway:2016:POP

Rhee:2010:TSS

Rifa-Pous:2012:AHD

Rao:2012:SSA

REFERENCES

Roy:2017:LOS

Rangasamy:2012:ERP

Ren:2018:IAS

Roy:2015:SCP

Ribeiro:2015:QBS

Ruj:2014:DA
Sushmita Ruj, Milos Stojmenovic, and Amiya Nayak. Decentralized access control with anonymous authentication of data stored in clouds. *IEEE Transactions on
REFERENCES

Ryan:2015:EEV

Ryan:2015:EEVb

Russo:2015:FPT
Alejandro Russo. Functional pearl: two can keep a secret, if one of them uses Haskell. ACM SIGPLAN Notices, 50(9):280–288, September 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Rahulamathavan:2016:UCA

Rodriguez-Vazquez:2012:SCB

Roettger:2012:PKC
Eric Roettger and Hugh C. Williams. Public-key cryptography based on a cubic extension of the Lucas
functions. *Fundamenta Informaticae*, 114(3-4):325-344, August 2012. CODEN FUMAAJ. ISSN 0169-2968 (print), 1875-8681 (electronic).

Ren:2014:HHM

Rogaway:2012:SCS

Ren:2013:DSE

Rajendran:2015:FAB

J. Rajendran, Huan Zhang, Chi Zhang, G. S. Rose, Youngok Pino, O. Sinanoglu, and R. Karri. Fault
REFERENCES

385

Sang:2012:SSF

Sakalli:2014:ACC

Somanatha:2015:RAK

Shivani:2016:PVC

Siad:2016:NFI

Saarinen:2012:PPK

Markku-Juhani O. Saari-

Suorananta:2012:SAM

Sarreshtedari:2015:WMD

Schutz:2010:DIN

Sacco:2014:MC

Sahai:2013:TCT

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Notes in Computer Science, 7170:72–89, 2012. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-</td>
</tr>
<tr>
<td>[Sar14]</td>
<td>Santanu Sarkar. Proving empirical key-correlations in RC4. Information Processing Letters,</td>
</tr>
<tr>
<td>[Sar18a]</td>
<td>Neyire Deniz Sarier. Multimodal biometric Identity Based Encryption. Future Generation Computer</td>
</tr>
<tr>
<td></td>
<td>Systems, 80(??):112–125, March 2018. CODEN FGSEVI. ISSN 0167-739X (print), 1872-7115 (electronic).</td>
</tr>
<tr>
<td></td>
<td>Systems, 80(??):112–125, March 2018. CODEN FGSEVI. ISSN 0167-739X (print), 1872-7115 (electronic).</td>
</tr>
<tr>
<td>[Sav13a]</td>
<td>Neil Savage. News: Stopping the leaks. Communications of the Association for Computing Machinery,</td>
</tr>
<tr>
<td></td>
<td>22–24, June 2013. CODEN</td>
</tr>
</tbody>
</table>
REFERENCES

CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

REFERENCES

CODEN SRECD8. ISSN 0163-5808 (print), 1943-5835 (electronic).

Shyu:2010:VMS

Srinivasan:2012:RAP

Syta:2014:SAA

Schoenmakers:2010:VS

Schwartz:2011:IMP

Schaaathun:2012:MLI

REFERENCES

3/13/data_and_goliath_bruc_scheiner_on; http://www.democracynow.org/blog/2015/3/13/part_2_bruc_scheiner_on_the

Schneier:2016:CHT

Shrestha:2010:KBA

Seberry:2010:CTAa

Seberry:2010:CTAb

Shu:2015:PML

Saleh:2010:GTF

Jae Hong Seo and Keita Emura. Revocable hierarchical identity-based encryption via history-free approach. Theoretical Computer Science, 615(??):45–60, February 15, 2016. CODEN TC-

Salman:2018:BMM

Sasaki:2012:IKK

Sendrier:2010:PQC

Sendrier:2017:CBC

Serrato:2012:IAN

Sakai:2016:CDN
Yusuke Sakai, Keita Emura, Jacob C. N. Schuldt, Goichiro Hanaoka, and Kazuo Ohta. Constructions of dynamic and non-dynamic threshold public-key encryption schemes

Set16

Sev16

SEXY18

Savas:2014:SMQ

Su:2012:IIN

Shabtai:2010:SAP

ISSN 1540-7993 (print), 1558-4046 (electronic).

Schneier:2015:SWC

Sasdric:2015:ICS

Shu:2014:DAS

Saxena:2016:API

Silva-Garcia:2018:SBG

S:2018:EDS
Prabu S, Gpinath Ganapathy, and Ranjan Goyal. Enhanced data security for public cloud environment with secured hy-

Sanchez-Garcia:2016:SSA

Sun:2015:FSW

Shen:2018:CAL

Susilo:2016:EDT

Shankar:2012:BDF

REFERENCES

Jeffrey Shallit. Book
REFERENCES

Shaw:2013:DE

Syed:2019:TGB

Shen:2014:LES

Shim:2011:SA

Shparlinski:2010:NWP

Suoranta:2012:ASM

[Sanna Suoranta, Jani Heikkinen, and Pekka Sil-
REFERENCES

Shyu:2015:VCR

Satir:2012:CBT

Siad:2012:NAP

Simion:2015:RST

Simmonds:2015:DI

Sirer:2016:TPS

Shakeri:2012:RZW

Shin:2017:CGI

Sabri:2011:AFS

Sachnev:2012:IME

Seo:2012:MPM

Scarani:2014:BPQ

Son:2017:NOC

Soupionis:2014:GTA

Shin:2017:SSD

Szalachowski:2010:CCG

P. Szalachowski, B. Ksiezepe, and Z. Kotulski. CMAC, CCM and GCM/GMAC: Advanced modes of operation of symmetric block...
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Start Page</th>
<th>End Page</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>

REFERENCES

REFERENCES

[16 pp. LCCN D810.C88 S659 2011.]

Smith:2011:RBA

Smith:2015:HHB

Smith:2015:DBP

Swierczynski:2015:PSE

Stankovski:2014:CFE

Sharma:2018:CSS

Sadeghi:2010:THI

Ahmad-Reza. Sadeghi and David Naccache, edi-

Safavi-Naini:2011:USC

Seyedzadeh:2014:RCI

Suresh:2015:AGU

Suriadi:2012:PCV

Schaumont:2015:IEP

[SP+13] San-Tsai Sun, Eric Pospisil.

REFERENCES

2330-1643 (print), 2330-1643 (electronic).

REFERENCES

Szaban:2011:IQB

Saxena:2012:BIT

Sendrier:2013:HCE

Sadhya:2017:PRE

Singh:2013:QBF

Durgesh Singh, Shivendra Shivani, and Suneeta Agarwal. Quantization-based fragile watermarking using block-wise authentication and pixel-wise recovery scheme for tampered image. International Jour-
REFERENCES

Smith:2011:SMC

Srivastava:2012:UIE

Strydis:2013:SAP

Sood:2011:SDI

Spiez:2012:RCT

Sahai:2012:DCC
Amit Sahai, Hakan Seyalioglu, and Brent Waters.

Staff:2013:ITD

Stewart:2011:CCI

Steel:2015:APF

Stenn:2015:SNT

Stipcevic:2011:QRN

Stickney:2015:CBS

Stiles:2019:HSB
D. Stiles. The hardware security behind Azure Sphere. IEEE Micro,
Stolte:2012:EDA

Suciu:2012:SED

Sung:2011:DCE

Sun:2016:NEB

Shen:2015:CSC

Song:2016:IAR

Svozil:2014:NCC

Karl Svozil. Non-contextual chocolate balls versus value indefinite quantum cryptography. Theoretical
REFERENCES

Sahillioglu:2014:SCM [SY14]

Savas:2015:GMA [SYL13]

Shao:2015:SAS [SYW17]

Song:2017:SSI [SYC17]

Seo:2013:PIC [SYL13]

Song:2017:SAM [SYW17]

Jun Song, Fan Yang, and Lizhe Wang. Secure au-
Shen:2017:RDP

Sui:2014:DAH

Shen:2014:ERC

Shi:2013:REA

Sun:2017:CPP

REFERENCES

www.sciencedirect.com/science/article/pii/S1084804512001609

Tang:2015:ETE

Tang:2015:HAC

Tankard:2017:BNK

Tankard:2017:ECB

Tarnovsky:2010:DSP

Taylor:2014:WSE

Taylor:2017:EBH

REFERENCES

Tian:2014:DFS

Tiplea:2014:NSC

Tao:2013:SMS

Terai:2011:BRB

Tassa:2012:SDC

Tewari:2017:CNU

REFERENCES

Theofanos:2016:SUE

Tian:2016:IBS

Tian:2015:IBP

Tian:2012:TOE

Thabit:2014:RRW

Takayasu:2019:PKE

REFERENCES

Tu:2014:EPB

Tani:2012:EQA

Tu:2013:PAQ

Tariq:2014:SBL

Tan:2016:ESE

Tsaur:2012:ESM
Tsai:2013:ZWS

Tetali:2013:MSA

Tang:2012:RSS

Tsay:2012:VUL

Tsoutsos:2018:EDM

Tang:2015:ECP
Qiang Tang, Hua Ma, and Xiaofeng Chen. Extend the concept of public key encryption with delegated search. The Com-
REFERENCES

[Tox14] Bob Toxen. The NSA and Snowden: securing the all-seeing eye. *Communications of the Association for Computing Machinery*, 57

F. Tschorsch and B. Scheuermann. Bitcoin and beyond: A technical sur-
Tao:2014:CFS

Toreini:2017:TRP

Tang:2011:IDC

Tso:2013:SAI

Tseng:2012:ERI

Tseng:2015:LFI
Tsai:2010:RLI

Tupakula:2015:TES

Thorpe:2012:CRB

Tripunitara:2014:CKM

Wu:2012:SWG

Tartary:2011:EIT

Jonathan Valamehr, Melissa Chase, Seny Kamara, Andrew Putnam, Dan
REFERENCES

[VDO14]

Vatajelu:2016:SMB

[Ven14]

vDam:2011:TQC

[VFKS11]

Visegrady:2014:SCV

[VenafiLabs:2014:VLQ]

[Vetter:2010:ABV]

[Venkatkrishnan:2017:DRB]

[Vle12] Vleju:2012:CCA

Srinivas Vivek and C. E. Veni Madhavan. Cubic Sieve Congruence of the Discrete Logarithm Problem,

Vliegen:2015:SRD

Veloudis:2016:NPH

Vollala:2017:EEM

VonMaurich:2015:IQM

Vembuselvi:2011:LLL

Vassilev:2016:ESU

REFERENCES

REFERENCES

REFERENCES

Weisse:2017:RLC

Wright:2010:USP

Wu:2018:ESS

Wang:2018:SNU

Wei:2018:GCQ

Wang:2018:SEA

Haijiang Wang, Xiaolei Dong, Zhenfu Cao, and...

Wei:2012:NTB

Wazid:2019:DSK

Wang:2013:SES

West:2015:EC

Wess:2016:JWM

[Wu:2011:HQI] Chia-Chun Wu, Shang-Juh Kao, and Min-Shiang Hwang. A high quality image sharing with steganography and adap-

 REFERENCES

Wendzel:2015:CME

Wang:2017:PPK

Wang:2016:SEP

Wu:2013:FTR

Wu:2016:CBE

Wei:2015:TPE

Lei Wei and Michael K. Reiter. Toward practical encrypted email that supports private, regular-

Wu:2012:RGB

Williams:2013:APC

Whitworth:2014:SPC

Wang:2015:RSA

Wang:2014:NDH

[WTT12] Tsu-Yang Wu, Yuh-Min Tseng, and Tung-Tso Tsai. A revocable ID-based authenticated group key exchange protocol with resistant to malicious participants. Computer Networks
REFERENCES

Wu:2016:LTN

Wu:2017:SPM

WW12

WW13

WW14

WWBC14
Long Wen, Meiqin Wang, Andrey Bogdanov, and HuaiFeng Chen. Multidimensional zero-correlation attacks on lightweight

REFERENCES

CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

[Wang:2017:FWA] Ran Wang, Guangquan Xu, Bin Liu, Yan Cao, and Xiaohong Li. Flow watermarking for anti-noise and multistream trac-

[WY10] Xu An Wang and Xiaoyuan

Wang:2013:NSW

Wei:2014:IDC

Wei:2016:APS
REFERENCES

REFERENCES

Wei:2012:CSO

Wei:2012:GOP

Wang:2012:NIS

Xu:2014:AHA

REFERENCES

Kai Xi, Jiankun Hu, and Fengling Han. Mobile device access control: an improved correlation based face authentication scheme and its Java ME appli-

Xie:2012:RAA

Xiong:2012:PPK

Xu:2017:GKG

Xu:2012:AHA

Xu:2016:CIB

Xu:2013:PKE

Xu:2012:AHA
Xiang:2016:EMP

Xue:2013:TCB

Xie:2013:ECP

Xiang:2014:PBA

Xia:2015:SPK

Xiang:2015:SSB
[XNRG15] Yong Xiang, I. Natgunananthan, Yue Rong, and Song Guo. Spread spectrum-based high embedding capacity water-

[XW13] Kaiqi Xiong, Ronghua Wang, Wenliang Du, and Peng Ning. Containing bogus packet insertion at-

[XWSW16]

[XWLJ16]

[XWXC14]

[Xie:2014:SCP]

[XWY+18]

Li Xu, Chi-Yao Weng, Lumin Yuan, Mu-En Wu, Raylin Tso, and Hung-Min Sun. A shareable keyword search over encrypted data in cloud com-

References

Ye:2014:NIE

Yekhanin:2010:LDC

Yoshida:2012:OGT

Yu:2012:EPF

Yang:2017:CCS

Yang:2018:RRE

REFERENCES

ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Yuce:2017:AFI

Yang:2015:SHI

Ye:2017:VCS

Ye:2016:IEA

Ye:2018:RKF

 REFERENCES

tronic). See erratum [YFK+12].

Yu:2012:IRI

Young:2013:TPC

Yang:2018:AIW

Yum:2012:OPE

Yoshino:2012:SIP

Yum:2011:ACO

REFERENCES

[YL†16] Qihong Yu, Jigu Li, Yichen Zhang, Wei Wu,

Yagan:2016:WSN

Yakubu:2017:SSN

Yu:2017:A

Ying:2013:PPB

Yu:2010:PSI

REFERENCES

/Yoneyama:2012:ORA

/Yang:2012:EMA

[Yang:2017:SAS]

/Yengisetty:2011:AVC

/Yi:2016:IPA

Xun Yi, Fang-Yu Rao, Zahir Tari, Feng Hao, Elisa Bertino, Ibrahim Khalil, and Albert Y. Zomaya. ID2S password-authenticated key ex-

Yang:2012:SAK

Yumbul:2015:EEP

Yang:2015:EPS

Yang:2016:ECV

Yang:2018:HEP

Yao:2014:NCR

Hongyi Yao, Danilo Silva, Sidharth Jaggi, and Michael

[YT11a]

[YT11b]

[YT12]

[YT12]

[YT12]

[YT12]

[Yu:2012:SME] Jia Yu, Shuguang Wang, Huawei Zhao, Minglei Shu, Jialiang Lv, and Qiang Guo. A simultaneous members enrollment and revo-

Ye:2018:ISS

Yoon:2011:SBC

Yesilyurt:2015:RWM

Yang:2013:ECS

Yang:2016:EP

Yang:2012:LUC

Bo Yang and Mingwu Zhang. LR-UESDE: a continual-leakage resilient encryption with unbounded extensible set delegation. *Lecture Notes in Computer Science*, 7496:
Yang:2017:SKS

Yang:2018:CDD

Yang:2012:BPN

Yang:2012:NIB

Yang:2014:PST

Haomin Yang, Yaoxue Zhang, Yuezhi Zhou, Xiaoming Fu, Hao Liu, and Athanasios V. Vasilakos. Provably secure three-party authenticated key agreement protocol us-

Zufiria:2017:GLM

Zidaric:2019:HOA

Zoni:2018:CSC

Zhang:2011:TNT

Zhu:2012:JLS

Zhang:2012:AOP

Zhou:2016:IBP

Zetter:2014:CZD

Zhou:2018:SAE

Zhao:2010:PSA

Zhou:2016:HFD

REFERENCES

Gao:2012:DES

Zadeh:2015:ASP

Zhang:2015:BYO

Zhang:2015:STR

Zhao:2017:RAS
Caidan Zhao, Minmin Huang, Lianfen Huang, Xiaojiang Du, and Mohsen Guizani. A robust authentication scheme based on physical-layer phase noise fingerprint for emerging wireless networks. Computer Networks (Amster-
REFERENCES

Zh:2015:IDM

Zhu:2015:IDM

Zh:2016:SCI

Zhu:2015:IDM

Zhang:2019:REU

Zhu:2015:IDM

Zhu:2013:TSC

Zhu:2015:IDM

Zhu:2013:TSC

January 2015. CODEN IT-COB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

REFERENCES

REFERENCES

www.sciencedirect.com/science/article/pii/S0164121216302606

Zheng:2016:EUV

Zhao:2012:SSS

Zhou:2017:IBB

Zenger:2016:AKE

Zhang:2015:MAA

Zhang:2010:EMO

Lei Zhang, Bo Qin, Qianhong Wu, and Futai Zhang.

Zmudzinski:2012:WEU

Zhao:2012:SSM

Zheng:2018:GDP

Zhang:2012:EHO

Zhou:2018:TPW

REFERENCES

Lan Zhou, Vijay Varadharajan, and K. Gopinath. A secure role-based cloud storage system for encrypted patient-centric health records. *The
REFERENCES

Zhou:2014:SAC

Zhang:2015:FAA

Zhang:2014:LFL

Zhou:2018:QT

Lu Zhou, Quanlong Wang, Xin Sun, Piotr Kulicki, and Arcangelo Castiglione. Quantum technique for access control in cloud computing II: Encryption and key distribution. *Journal of Network and Computer...

Zhang:2018:AKE

Zhang:2018:VPA

Zhang:2011:SIR

Zhou:2011:CLR

Zhou:2017:CLR

REFERENCES

Zhang:2011:EPK

Zhao:2012:FCS

Zheng:2015:EPT

Zhang:2015:ITS

Zheng:2015:EPT

Zheng:2015:EPT

Zaidan:2017:NDW

Zhu:2018:CA

Zhu, Biaokai; Zhao, Jumin; Li, Dengao; Wang, Hong; Bai, Ruiqin; Li, Yanxia; Wu, Hao. Cloud access control authentication system using dynamic accelerometers data. *Concurrency and Computation: Practice and Experience*, 30(20):e4474:e4474, October 25, 2018. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

Zhang:2017:NLR

Zeng:2019:SAE