
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

09 March 2019
Version 1.458

Title word cross-reference

(2, 2) [KSSY12, LTC+15b], (K, N) [Bai10, YC11], (n, t, n) [LHYZ12], (t, n) [QD16, ZPWY12]. 0 [XHX+17]. 1 [XHX+17]. 1, 2, 3 [SMDS11]. 11 [LJ17]. 13 [Blo15]. 2 [DBPS12, EAA+16, ESS12, JR13, MCDB12, PGLL10, WY12]. 22 [MNP12]. 2k [Sun16]. 3 [AP10, CG12b, DWWZ12, FWS13, GZHD12, GH11a, KWS+12, LJ17, LJ15, MKH+12, RS16, SS10b, SS12a, SGS14, WSSO12, tWmC12, YT11a, Yi14, YPRI17]. 32 × 32 [SA14]. 3 × 3 [ÁMVZ12]. 4 [COP14, DWZ12, HLYS14]. 49.00 [Sch15a]. 8 [LPO+17]. 89 [APPVP15]. = [JJUW10]. 2 [PYH+18]. 2 [YNX+16]. 3 [LHM14]. MT [HRB13]. α [TTL10]. c [KRDH13]. d [QD16]. d × d [KA17]. t [ZTL15]. $F_p + \nu F_p$ [WGF16]. γ [DWZ12]. $GF(2^[x])$ [SF12]. $GF(2^n)$ [SKH15]. $GF(2^n)$ [LBOX12]. K [FXP12, FR16, CHX13, ZHT16]. $L(1/4 + o(1))$ [Jou13]. M [MMSD13, OS11]. $F_{q^{k^200}}$ [AMORH13]. F_q [SS13]. \mathcal{NP} [HN10]. $GF(q)$ [LPdS10]. LWE [BV14]. μ [Jia14a]. N [FR16]. n × k(k ≥ n/2) [MC11]. O(d13) [KA17]. O(n2) [KS11]. P [DG17]. ±1 [HJM+14]. q [GMS11]. S [LJ15]. t [HJM+11, Ob11]. w [Kre13].

-trimmed [TTL10].

.onion [Boy16].

0.13um [KLM+12].

1 [AAE+14, Ano15b, BH15, Bar16, CGCS12, Ful10, MSas12, SKP15]. 1-58488-551-3 [Ful10]. '10 [Ano10]. 1024 [Bro17, Win17]. 128 [LW11a, Wes16, Ano10].
2D [HIDFGPC15].

3 [ABM+12, jCPB+12, Ful10, LC17]. 30th [Rab10]. 31st [PJ12]. 348-bit [MMN12].
3GPP [FPBG14].

5G [CML+18, FMA+18]. 5th [BYL10, vDKS11].

6 [Ano17b, Bai12, Mur10]. 65th [Nac12].

72 [HYS18]. 768-bit [KFL+10].
al-Qaeda [Mac14, Keb15].

Alan [CS12, Don14, Hel17, LCKBJ12].

Algebra [Xie12, BS15, Bul10b, CFR11, DWZ12, FGPGP14].

Algorithm [ABCL17, Ano11b, AK14, BGTJ14, BKLS18, CNR14, jCPB+12, ESS12, GKSBI7, JHL12, JSZS12, JHHN12, JL16, KB10, LL11, LT14a, LLL17a, MRL+18, NdMMW16, NV10, RR11, RVRSCM12, WHZ12, WZCC18, YPR11, YH16, ZSW+12, Ant14, BGJT13, BMB16, CG12b, Chm10, EEAZ13, JK13, Jou13, KY10, KHMB13, LC17, LR15, MS12a, MM14b, MNM+16, MN14, PGLL10, PA10, PC14, SH11, SLM10, SWW+17, jT12b, TTL10, W0GZ+12, XTK10, YWL+17, ZLW+12, ZL12, ACZ16, ZOC10].

Algorithmic [GO17, AY12].

Algorithmics [Gas13].

Algorithms [AMKA17, AB10b, BCG12a, BJ10, CN12, GP17, KRDH13, MR14a, MM17, TKM12, WH18, YS15, ZW15, AGHP14, Fri10a, Mac12, NACLR12, NC13, O010, O018, Xie12].

Alignment [Don14, IA15].

Almost-Tight [GDCC16].

Almost-Universal [BKST18].

Alterna [SMOP15].

Alternating [BKL12, CN12].

American [Sch12a, Mun17].

Analyses [ZPXX17].

Analysis [ABS+12, ARP12, BR17, BBB+16a, BC14, BS14, BKLS18, CFE16, CCG+16, CGL+12, DMR15, FSFW11, GZZ+13, GMC16, GLG12, HC12, HHH+13, HZWW17, HB17, IBM13a, IS12, JT12a, KE19, KOP12, Kre13, LPS12, LTKP16, LCK11, LLW16, LGLL12, MD12b, MAS16, MRTV12, MR10, NDC+13, NSA15, NAL17, PH12a, PFS12, PS14, RZZ+15, Rao10, RBS+17, SK11, SY15a, SR12a, Sh11, SZDL14, SCGW+14, VKC15, WDDW12, YZLC12, Zh15, ZAG19, Aia15, AFC16, AN15, BNY14, CFH+13, CFL13, DMV15, DK17, DW+13, DMT12, FTV+10, FAA+18, FHM+12, HM10, Lan11, MFH13, NLYZ12, PPA18, PL16, QGGL13, RITF+11, SKEG14, TQL+14, TLMM13, Ts013, VS11, Ven14, ZK17].

Analysis-Based [RZZ+15].

Android [Chi13a, EBFK13, FHM+12, SFE10].

Android-Powered [SFE10].

Angle-Based [ZPWW16].

Angular [pNyWyY+14].

Anisotropic [ZZJC14].

Anonymity-Based [HEC+12].

Anonymity-preserving [AIB+16].

 anonymization [XTK10].

 anonymous [TMK11].

Anonymous [CG12a, CZLC12a, CC17, Ch12, DX12, FHH10b, FH18, HLT+15, KP18, LIK+17, LZ14, Muf16, Per13, RSN14, TKS10, Wan14, WX+17, WYML16, ZJ14, ZMW16, AICK18, AT11, BT18, CCSW11, Chi13a, CG11, FSGW12, GTSS19, HL14, ISC+16, LNK+18b, LHM14, LLY15, LY14, MYRR13, QMC17, VS11, WLS14, YZL+18].

ANSI
[Ano15d, BRS17, BMS12, Bro17, CJP12, DSM15, FXP+17, zGXW12, GV14b, GDCC16, HCTTPL+12, HLAZ15, JHL12, JKP12, LLSW16, LGL+12, LJ17, LCLW17, LWKP12, LWPF12, MS12b, Pud12, SP13, SDM+12, WLC12, XJWW13, Ano17a, Blo15, BNST17, CJP15, DDFR13, FLZ+12, Goo12, KA17, LLY+12a, LC13, LYHH14, LWKP14, MBB11, MNP12, NZL+15, SB17, SXL16, WYL13]. attacker [PLGMCdF18]. Attackers [BL15]. Attacks [ARP12, Ano17e, BGK12, BFK16, BKBK14, Che15, CMA14, DGI15, DHLAW10, DHB16, EWS14, GPT14, HLL18, Hay13, HRS16, JSK+16, JWJ+17, KNR10, LLC11, LWZ12, LCJC14, LCL17b, MD12b, PYM+13, PS12, Sas12, SEY14, SY15a, SP15a, SH15, SVG16, SGH15, WW14, WHN+12, XNG+14, YL17, YCM+13, ZLQ15, ZHS+19, AATM18, BBP13, BVB12, BSR+14, CGH17, dCCSM+12, DCAT12, DJL+12, DK17, Dra16, EA12, FTV+10, FIO15, GPP+16, GBNM11, KM10a, KPS10, LWK11, NDNR13, OF11, PX13, SG+17, TK19, TS16a, TY16b, TLL13, VS11, WWBC14, XWDN12]. attempt [Fel13]. attestation [FQZF18]. ATtiny [EGG+12]. Attribute [AAC+16, AHW+12, BFK+10, Boy13, CD16, CGL18, FHR14, GZZ+13, GSW+16, Gl12, GVW15, HSMY12, Her14, KGP12, LW11b, LW11c, LW12, LJJL12, LYZ+13, LHL+14, LAL+15, LHL15, LW16, OT12, PPA18, PB12, RVH+16, Rao17, SSW12, TMY+17, WDC18, WHL15, XMLC13, XWJ16, XHX+17, ZPM+15, ZQQ15, ZSM17, AHW+12, CDL18, Her14, WHL16, WPS15, YC12, YZZ+16, ZHZ18, YSM12, LW11b, LW11c, LW12, LJLC12, LYY+13, LHL+14, LAL+15, LHL15, LW16, PB12, RVH+16, WPS15, YC12, YZZ+16, ZHZ18, YSM12, LW11b, LW11c, LW12, LJLC12, LYY+13, LHL+14, LAL+15, LHL15, LW16, PB12, RVH+16, Rao17, SSW12, TMY+17, WDC18, WHL15, XMLC13, XWJ16, XHX+17, ZPM+15, ZQQ15, ZSM17, AHW+12, CDL18, Her14, WHL16, CPPT18, HZL18, HYS18, HKHK13, JSMG18, LCL+15, LFZ+17, LFWS15, LY15, LJW+17, LJWY18, LDZW19, QRW+18, RD17, XWS17, YCT15, ZML17]. Attribute-Hiding [OT12, ZWM14]. Attributes [CG12a, Yon11, LCL+17a]. Attribution [XHC+12, FNP+15]. Auction [Con10, HJM+11]. auctions [MR14c, QS18]. Audience [DTE17]. Audio [Ber18, DA12, FM15, GCK12, HGT15, KD12a, KD12b, LSL12b, NXH+17, TC10, gWpNyY+14, XNG+14, XNRG15, ZS12, LSQ11a, SKEG14, yWpNyL11, YQH12]. Audit [YNR12b]. Auditing [LMD16, TCN+17, YYS+16, YXA+16]. August [AB10a, JY14, MV12, Rab10]. Austin [IEE13]. Authentic [HLT+15, SZMK13]. Authenticate [HM12]. Authenticated [Al12, BCO13, BDMLN16, CL16, CNY14, CCS14, CRE+12, DS11, EAA12, ESP12, FVS17, FLL12, GPP+12, GL12, GZ12, HC12, HL10a, HCL+14, HEC+12, KMY18, LHKR10, LY16, LHL1b, LCCJ13, LTT10, MR14a, MMY12, MMS17b, MHKS14, MSU13, PT16, Sar10b, Smi11b, Tan11, TW14, XLM+12, XCH+12, XGLM14, XZLW15, YS12, YLJ13, YRT+16, Yon12, ZPZ+16, ZXH16, AIB+16, CT13, FA14b, FIO15, GPN+12, GLM+11, HPC12, HWB12, HL11, HPY10, ISC+16, KMTG12, LWS10, LHH11, LML+13, NCL13, Nos11, Nos14, PPT15, PJ18, SMB10, TCS14, Tso13, TKHK14, WZM12a, WZM12b, WTT12, XWXC14, XCL13, XWZ+18, YCY12, YZZ+14, YZL+18, ZT16, ZXWA18, ZG10, ZZZC15]. Authenticating [BS12, CHX13, GRL12, OKG+12, RPG12, WY12, ZCWS15, Cer18, LFGGCCRP14, PGLL10, ZLDD14]. Authentication [ASO14, AAZ+16, ACAT+15, AUMT16,
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_ /:.,;!?@#%^&*()[]{}<>~`|\+=\[]
BJR⁺14, KKK⁺16]. Automatic
[MMP19, WW12]. Automation
[BGK12, IEE11a, KPP16]. Automotive
[LMS16, MPM⁺17]. autonomous [BT18].
Auxiliary [DMS⁺16, DL12, GHWH17, XXZ12, YCZY12]. Auxiliary-Input
[XZ12]. Availability
[CK11, ADF12, CFVP16]. Available
[Ano16d]. AVC [JSZS12, JH1N12, LW13c]. average [Lim11, YL11]. avoid [CFZ⁺10]. Avoidance
[RVH⁺16]. avoiding [BHCdFR12]. AVR [LPO⁺17]. award [Ano16g, Orm16]. Aware
[BCF16, LMMH14, LSL16, QLL17, Wan13, ZFH⁺18]. Awareness
[MSas12, Li10, MSas13]. axiomatic [AT10].

B [Tan12a]. B-Spline [Tan12a]. Back
[KRM⁺10, SKS⁺18, YZLC12, Ran10].
Backdoor [Sch13, Fel13]. Backside
[DDR⁺16]. backup [Cor14a]. backward
[BM11]. Bacterial [Kar12]. bad
[Hai17, RY10]. BAF [YNR12a]. Bake
[Boy16]. Balanced [YTP11]. balancing
[FXP12, PRN⁺19, Zha15a]. Ballots
[CW12b, LH12]. balls [Svo14]. band
[MMSD13]. Bandwidth
[GST13, NR11, LLZ⁺12]. Bandwidth-Efficient [LLZ⁺12]. Banking
[KSD⁺17, RBS⁺17, KV⁺E18]. banned
[Ev16]. BANs [BLL⁺19]. Baptiste
[Dew11]. Barbara [Rab10]. Barcodes
[Wy12]. Barrier [JR14, KS11]. barriers
[LKKL13]. base [MS12a, XSWC10]. Based
[ADM12, AGW15, ASM12, AAC⁺16, ABC17, Ano11b, AOS15, AYS15, BWL16, BL12, BBB⁺16a, BSSV12, BHG12, BKPW12, BRT12, BHH⁺15, BS13b, BFK⁺10, Bon12, BSJ15, Boy13, BKJP12, BDH11, BCF⁺14, CMSL15, CLL16, CGM14, CCM17, CSH⁺18, CZLC12a, CZLC12b, CLHC12, CCZC13, CLY14, CZLC14, CST⁺17, CGL⁺12, CDD13, CGY⁺13, CD12, Chi12, CK18, CD16, DSSM14, DA12, DLZ⁺16b, EM12, EKB⁺16, FM15, FHH10b, FHR14, FZ14, GM10, FVS17, FSX12b, FSX12c, FSX12a, GWWC15, GZZ⁺13, GSW⁺16, GV14b, GI12, GY13, GDC16, GVW15, GJJ15, GJZ17, HZC⁺12, HSMY12, HSM14, HL10a, HZX15, HCPSLB12, HKL⁺12, HG12, HM12, HSA14, HPO⁺15, HKR⁺18, HGT15, HLC⁺14, HLN⁺10, Hui13, HRS16, HBG⁺17, HE⁺10, HP12, JTH⁺16, JH1N12, JEA⁺15, JKH12, KS18, KZG10, KK12, KKA15, Kha10, KLY⁺12, KSSY12, KPKS12, KRB12, KAK18, KS15]. Based
[LMGC17, LMG⁺18, LTKP16, LSL12a, LSL12b, LW11b, LW11c, LW12, LH12, LJLC12, LYZ⁺13, LHL⁺14, LTH⁺15, LLC⁺15, LTZ16, LLL⁺17, LPL15, LSL15, LAL⁺15, Lnl15, LP12, LNZ⁺13, LCCJ13, LWCJ14, LNX15, LHL15, LW16, LPO⁺17, LGPRH14, LDB⁺15, LD13, LSC12, LBR12, LLH18, MWZ12, MLO17, MEFO12, MCD12, MV12, MD12b, MBC15, MK1N13, MZ17b, MCS⁺15, MMS17b, MKF⁺16, MCF17, Men13a, MST18, Mor12, MSKRJ17, MK1A17, Mu16, NC12, NX17⁺1, NXB13, NLLJ12, NLY15, pNWyY⁺14, OT10, PB12, PTT16, PYM⁺15, PD1H15, PPS12b, PYS18, PG12, PAS13b, PRNC17, RVH⁺16, RZZ⁺15, RS16, Rao17, RR11, RDZ⁺16, RVRSCM12, RW12, SS12, Sar18a, SS13, S17, SJ12, SGP⁺12, SP15b, SSA13, SRA17, SH15, SGH15, TB18, TKR14, TWZ11, TW12, TZW⁺12, TYM⁺17, TSH17, TT12, TTH15, TC10, VDB⁺16, VAG15, Vle12, WY10, Wan10]. Based
[WSSO12, WgMW12, WYW⁺13, Wan14, WZCC18, yWYXZ⁺18, WDC18, WLH15, WCL⁺18, WT10b, WMS⁺12, XNG⁺14, XNRG15, XXZ12, XML13, XQL11, Xio12, XGLM14, XWLJ16, XJW⁺16, XJR⁺17, XHŽ⁺17, YE12, YZLC12, YZX⁺12, YFG15, YTS12, Ye10, Ye14, YH16, YTH17, YYO15, Y⁺17, YKNS12, YHK⁺10, YMWS11,
based [DLN13, Dra16, uHAN18, EZ15, FH13, Far14, FAI14a, FAI14b, FIO15, Fay16, FHZW18, FNWL18, Gal13, GJ13, GMRT15, GKCK11, GJMP15, GCS AddP11, GMS11, GLL18, HSH11, HT11, Ham19, HGWY11, HSM13, HZC14, HZL18, HF14a, HWDL16, HZW17, HZW18, HBBRN16, HLR11, Her14, HBW12, HB13, HL14, HL11, HLC12, HLC16, HYWS11, HYS18, HYF18, HPY10, HKHK13, HCC10, Hwa11, IMB17, IM14, ISC16, IB11, IA15, IOV18, Jac16, JNUH17, JKAU19, JK13, JLT12, JZS10, JMW16, JSMG18, KPP16, KK13, KM10a, KNMB13, KKG14, Kim11, KGO10, KLI1, KSH18, LXL12, LLZ16, Lalu2, LLC10, LK14, LH10c, LZJX10, LNM11, LMJC11, LLK12, LXMW12, LKAT12, LLHS12, LNLK13, LXJ14, LCL15, LZY16, LFZ17, LNK18a, LWK18, LCT14, LFWS15, LLM19, LPdS10, Lin14a, LLY12a, LW10, LSQ11a, LSQ11b, LWK11, LW13b, LZC14, LPZJ15, LTL15, LTY15, LW17, [based [LJYW18, LDZW19, LW18+10, LL16a, LW13c, LWY12, LY14, MCN18, MCP15, MJGS12, MJJS13, MLM16, MMZ12, MNI13, Mes15, MBB11, MO14, MHT13, MG15, MS17, NR11, NCL13, NZL15, PPPA18, PYH18, PLPW13, PTK14, PW10, PGLL10, PPB16, PLGMCdf18, PS14, PL16, PKA15, PC14, PR12, QZDJ16, QRW18, QYW16, QMW17, RD17, RG10, RS15, SPLHC14, SGGCR16, SI12, SYL13, SE14, SE16, SH11, SN11, SMN14, SR10, hSSZ15, SCKH10, SA16b, SAAF11, SWW16, SSS11, SKEG14, Sun16, SM16, SHBC19, SS11, TPL16, TQL14, Tan15, TH16, TTL10, TPKT12, TKHK14, VS11, VN17, WWYZ11, WWYY11, WLD11, WLFX17, WMX17, Wan18, WGZ12, WHHL16, WS14, WS12, WTT12, WOLS12, WCH18, XHH12, XZW16, WX12, XCL13, XWS17, XHCH14, XZW18, XMHD13, XHM14, YWL17, YqWqZC13, Yan14, YTM14, YCC16, XYA18, YCT15, YLS12, YMSH10, YKC12, [based [YLZ16, YXA16, YL11, ZZKA17, ZLW12, ZCL14, ZT14, ZTZ16, ZML17, ZZ12, ZHI17, ZL12, ZVH14, ZDW16, ZLY19, LZJX10, HZC14, MM12, PP11, ZBR11, Kat13, [Based-Encryption [ZHW15], Bases [EVP10, TSH14, FES10], Basing [Mat14, MN10], Basis [BNA15, ERRMG15, CG12b, Har15, LLP18, Tam15], Batch [ZPXX17, AGHP14, CCG10], batch-based [CCG10], Batters [Chi13b], battles [Ano15e, Ano16f, Sch15c], Bay [Ano10, DDS12], Bayes [McC11], Bayesian [WYW13, ZLW17], Be [DSMM14, Par12a, YM16, AZH11, Ana14, Eve16, Ree15, RK11], BeagleBone [Cri16], Beat [LTKP16], BECAN [LLZ12], Becomes [Bra13], been [Ana14], before [GST12, Goo12], Beginning [Chu16], Behavior [GSC17], behavioral [HT11], Behaviors [GAF15], Behind [Fre10], Beijing [BYL10, Yan10], Beissinger [Ayu12], Belief [BT12], Bell [JEA15, QD16], Benchmarking [MKAA17], benchmarking [ZZKA17], Benefit [HB14], benefits [Wat14a], Benford [AOT13], Bessel [GJ13], best [Cha13c], Beth [CTHP13], better
Between [KA18, LRVW14, SAKM16, CLM+12, HLR11, KPP16, Kim16, PBC14, WDD15]. Beyond [LST12, MJS13, TS16b, FNP+15, JR14].

Bidirectional [GMNS15, GH12]. bifurcation [SE18]. Big [MLO17, Mal13, MMS17b, PNRC17, YDY+16, ZLW+17, FS18, LSB14, QCX18, Tan17b, WS14].

Bio [OK18, GPVCdBRO12]. Bio-inspired [OK18, GPVCdBRO12]. BioAura [MSKRJ17]. biographical [Maf16]. Biometric [Alp18, ATI+10, BCTPL16, DWB12, JN12, KHB13, LGM+16, May15, NGAuHQ16, Sar12, Skv12, Vet10, AHM+18, DIMIT12, GCSÁdP11, HT11, Ham19, LK12, LTC+15a, MLBL12, Sar10a, Sar18a, SR10].

biometric-based [SR10]. Biometrics [BW13, ERLM16, SP13, ZPW16, FHZW18, GM16, LXLY12, LH10c, LNM+11, LNK+18a, MRRT17, SS17].

biometrics-based [FHZW18, LXLY12, LH10c, LNM+11]. biosensor [Kim16]. Birhäuser [Sha10]. Birthday [LST12, SXL16, Nac12].

Birthday-Bound [LST12]. Bit [CG14a, GV14b, HG12, HS18, LJK17, LPO+17, NIS12, Ros11, YLL+12, APPVP15, KS11, KFL+10, MN12, PLsVL10, RH10, TWZ+12, VN17]. Bit-Wise [CG14a].

Black [BR14, CPS16, HHP17, KOS16, KMO14, MSas13, JB11, Rja12, SS10b, DD13, SK14, YSC16, ZZ12, Crit16]. Black-Box [BR14, HHP17, KMO14, Rja12, SS10b, KOS16, MSas13, ZZ12]. Blackbox [MSas12, SS12a].

Block [AMVZ12, BRS17, BSS+13, BFMT16, BDGH15, BCG+12b, CPW12, DWWZZ12, EGG+12, FXP+17, GL/S12, GT12, GST12, GN12, IS12, KR11, KWS+12, LWZ12, LJ17, LGL17, LG/LL12, LWKP12, LW/FP12, MCD12, MRT/2, OGK+15, PHI/2a, PRC12, Pud12, SGP+12, SSA13, WW12, YCL17, ZSW+12, BNY14, Jeo13, KM11, LPZJ15, LC13, LYHH14, LWKP14, MP12, MV15, MHY+18, PL16, Sar11, S/11, SKK10, TQL+14, Tan17a, WB12, WWBC14, ZSW+12, JP12]. Block-Parallel [MCD12]. Block-Wise [SSA13].

Body [LZCK14, ASO14, KP18, LK+17, SGJ+18]. body-sensor [ASO14]. bogus [XWDN12].
Bombe [Bur11, Car10]. Bonebrake
[SS10c]. Boneh [TK19]. Book
[Ano15b, Ano17b, Ayu12, Bar12, Dew11,
Full10, Joh10, Keb15, Kob10, Low12, Mei10,
Mur10, Sch15a, Sha10, SR14, Ter11, Sto12].
Boolean [ACZ16, AS17, CW14a, DQFL12,
FY11, LVV11, WT13, YCC16].
Boolean-based [CW14a, YCC16].
Bootstrapping [BGV14, GM14].
Border [LGM16, ZTSR12].
BotMosaic [HB13].
Botnet [NSA15].
Botnets [HB13].
Bottom [Smi11b].
Bound [LST12, TK19].
Bounded [GVW12, GJO13, PDNH15, QZZ18,
SS12a, ZYT13, IM14].
bounding [PYH18].
Bounds [Jia17, LJ15, SNJ11, SS10b, Sha10].
Bouzefrane [Ano15b].
Box [BW16, BCGN16, BR14, CPS16, HHP17,
KMO14, Mic10b, Rja12, SS10b, Kos16,
LRW13, MSas13, RMP10, SGFCRM18,
ZZ12, ZSW18a].
Boxes [NN12, LJ15, SS11].
BRAMs [DG10].
Branch [EPAG16]. Branchless [RBS17].
Brave [KM10c].
Breath [SD12, JB11].
Break [Ayu12, Win17].
Breakers [Sti15, Mun17].
Breking [AP13, CN12, Cop10a, KS11, TPL16,
WgMdZZ12, Ant14, Bri11].
Breaks [Ano17e].
breakthrough [Goo12].
breath [LSR13].
Breathing [CH18].
Breathing-Based [CH18].
Bregman [CCZ13].
Bribery [CW12b].
Bringing [LRVW14, TMGP13].
Briggs [Bai12].
Bring [Zha15a].
Bringing [Ano15c, OYHSB14].
Britain [Ald11].
British [And13].
Broadcast [BS14, GMVV17, HMR14, KH10, LMG17,
LMG18, PSM17, PPS12a, WQZ16,
XJW16, Yan14, ZHW15, CPPT18, DLN13,
WWYY11, XWDN12, YMM13, ZWQ11,
ZZ12, Zhu13].
Broadcasting [O012, MK11, OCGD11, YY11].
broke [Bat10, Hea15].
Broken [MDAB10].
Broker [TKR14].
Broker-Less [TKR14].
browser [GIJ12].
browsers [Ree15].
Bruce [Sev16].
Brute [CJP12, JR14, CJP15].
Brute-Force
[JR14, CJP12, CJP15].
BRW [CMLRHS13].
BTC [CLF11].
BTC-compressed [CLF11].
Buchwald [ABJ13].
Bucket [BKKV10].
Bug [Chi13b].
Building [BPS16, KMP11, MJS13, Sev16,
WL11, LCKBJ12].
Burdens [Bla12, SR14].
Bus [AN17].
Business
[LDB15].
Buyer [Fra16, KJN16].
Buyer-Friendly [Fra16].
BYOE [Tan17a].
byte [Hof15, Hof16].
bytes [PBC14].
Byzantine [KS11, LLKA19, YGKG13].
Byzantine-resistant [YGKG13].
C [AD12, ACZ16, C1G212a].
CA [ACM11, D12b, Kai11, Lin14b, Pie10, Rab10].
CABA [MSKR17].
CABE [XH17].
Cache [AB15, ADR18, DKMR15, HLAZ15, SY15a, DJL12, DK17].
CacheAudit [DKMR15].
Caches
[LLG16, CDPLCA16, DJL12].
Caching [ADR18, HLAZ15].
cackled [Bai12].
CAD [PGL10].
Caernarvon [KMP11].
Calculus [MR10, Jou13].
Calibrated [LC15].
California [Ano10, IEE11b].
Call [Ano16a, Ano16b, Ano16h, CS14, CRM10].
Call-Back [KRM10].
Calls [Mur16].
cam [PKS18].
Cambridge [ACM10, PJ12].
Camel [O15, LWP12, LWP12, LWP14, SEHK12].
Camellia-192 [BLO15].
cameras [MKH12].
Can [Alo12, AZH11, Bar15, D1M14, YM16,
RK11, Rus15, Sto12, GMVV17, LMS16].
Canada [JY14, MV12].
Cancellation
[DLMM18].
Candidate [GHH16a].
candidates [ABM12].
canonical [Bull10a].
CANS [HW10, LT11].
Can’t [RAZ15].
CAOVerif [ABF14].
Capabilities
[RGBF12, Lop15a].
Capability
[IA15, LZZ17].
Capability-Based
[LZ17].
Capacity
[TODQ18, XNRG15, YWW10, CLZ17,
GZH12, PW12, WH13].
Capacity-aware [TODQ18].
Capacity-Raising [YWW10].
Capitalism
[Fid18]. **CAPTCHA** [OTO18, SKEG14]. **CAPTCHA-based** [SKEG14]. **Capture** [NYR14]. capturing [PKS18]. **Card** [BDFK12, HMR12, HCL+14, PDT12, Ano17c, CLHJ13, GLIC10, LNKL13, Mar10b, Cho10, SD12]. **CARDIS** [GLIC10].

Cards [BSJ15, LA10, PWVT12, WgMdZIZ12, WgMW12, CHS11, HCC10, KY10, LH10c, LNM+11, LXMW12, MM12, SGGCR+16, YZZ+14, YSL+10]. care [FHV16]. Carlo [CR12, FVK17]. Carol [Xie12]. Carry [GWM16]. Carved [LC15].

Cascade [WDG18]. Cascading [GT12].

Case [Ano17c, DR11, SBS+12, SY15a, YL17, LKKL13, MD12a, SS17]. **Cash** [YMWS11]. Casting [CW12b]. cat [Pow14].

Catalog [AHS13]. CBA [KRM+10]. **CCA** [AHS14, BWLA16, CCL14, LTZY16, LSW15, MSas12, PDNH15, SYL13, SLZ12, yYqWqZC13, ZY17a, ZSW+18b].

CCA-Secure [BWLA16, CCL14, LTZY16, SYL13, yYqWqZC13, ZSW+18b]. **CCA1** [MSas13]. **CCA2** [Gal13, GV14b, LLW16, LLSW16, MVVR12, RG10, ZZ12, ZY17b].

CCA2-secure [LLW16, ZY17b]. **CCM** [SKK10]. **CDF** [Ara13]. **CDH** [PDNH15, ZG10]. **CDPS** [LLL+17b].

CDTA [YFT17]. cell [LLY+12a]. cell-counting-based [LLY+12a]. **Cells** [DSB16]. **Cellular** [dRSdlVC12, FMA+18, HBBRM+16, HCM11, KRM+10, SS11, WOLS12].

Censorship [DRS16]. centralized [NACLR12]. centre [McK10, McKi11, Pal16, ISC+16]. **Centric** [DLZ+16b, Vie12, ZVG16, AHM+18, BLV17, BPP10, PN10]. **centroid** [LWY12].

Centuries [Gri15, M-G11]. **Century** [Wes16]. Cerf [Cer15, Cer18]. **Certificate** [GWWC15, HP12, LTH+15, WMS+12, YLZ+16, BJR+14, GLL+18, Lan13, LL16a, MBF+13, NPH+14, JB11].

Certificate-Based [GWWC15, HP12, LTH+15, WMS+12, YLZ+16, GLL+18, LL16a]. **Certificateless** [CT18, GWWC15, IL15, LZCK14, SJS14, TCL15, WMS+12, YT11a, YT11b, HPC12, JXLZ15, LL16b, SGJ+18, ZQWZ10, ZY17b].

Certificates [Muf16, SC12, GIJ+12, HREJ14]. **Certification** [LDB+15]. **Certified** [ABBD13, CLL16, STC11, HL14, LH13, XWXC14]. **CertShim** [NP+14]. chaff [KHMB13].

Chain [EAA+16, FVK17, KPW13, QZL+16a, QZL+16b, YFT17, CR12, CL16, SJWH+17]. chaining [EA11]. **Chains** [JSK+17, HLYS14, JCHS16]. **Challenge** [AD12, GHS14, YDH+15, ZCC15].

Challenges [CN12, FS15, Fra15, LLGJ16, MRS+17, PCV+17, SBV14, ALL+18, KJN+16, WS14].

Changes [ALL+18]. change [ZWT13]. **Changeable** [FGM10, ZCL+12]. changed [Mac12]. **Channel** [AN17, ASN11, CDK+10, CBL13, EWS14, GWM16, GPT14, KOP12, LG14, NDC+13, PRC12, SG15, TTI12, YL17, ADG16, BVIB12, CPPT18, DMWS12, DJL+12, JLT+12, MFH13].

Channels [ASN12, BGN17, DKMR15, EPAG16, LW13b, SR11, RVRSCM12, SR11, SBS+11, SY15].

Chaotic [BGGH11, IAD10, Ye10, GCH15, ISG+16, KLW+16, LWK+18, LW10, NES+14, WZG+12, ZT14].

Chapman [Fu10]. **Character** [SS12b]. Characteristic [BGJT14, SR10, BGJT13, Jou13].

Characterization [ALR13, BS13b, DPCM16, YZLC12, DDD14, PLGMCdF18].

Characterizing [Ash14, JR13, MPJ+16].

Chattarjee [Kat13]. cheat [WS12]. cheat-preventing [WS12].

Cheater [KI11, Ob11]. **Chebyshev** [LPdS10].
SLM10, Vai11, Vle12, XMLC13, XWLJ16, YE12, YHL16, ZLDC15, AaBT16, AAZ+16, And13, CJI5b, CSTR16, DKL+16, DWZ12, HSM13, HYS18, Geo13, JSMG18, KKA14, KKM+13, KKM+14, KB+17, KH18, LKX+14, LYL15, LHL15, MS12a, NR17, NCCG13, PPA18, PF11, PKA15, QZD16, QRW+18, Rao17, Tan12b, WSC14, Wan18, WDKV19, WLS14, WL19, XXX15, XY+18, YHM18, YQL17, YY11, ZWS+18, ZLY+19, ZSW+18b, YXA+18. conceal [EIAZ13].

Concept [TMC15].

Conceptual [PMZ12, SPM+13, TSH14].

Concrete [BS14]. Concurrent [CLP13a, FCM14, GJO+13, MKRM10, OOR+14, AKG13, SRB+12, XLIW16].

condition [TD14]. Conditional [HBCC13, KPW13, LLG15, LSLW15, MLOI17, XJW+16, FSGW11, FSGW12, HWDL16, HYF18, IOV+18, LCT+14, PZBF18, SKB+17, Tan12b]. Conditionally [ZJ14]. Conditions [Ano17d]. Conference [BC11, CGB+10, Che11, Cra12, Dan12, Dun12b, FBM12, GLIC10, IEE11a, JY14, LCK11, LW11a, LTW11, Lin14b, PJ12, SNJ11, Sah13, Yan10, AB10a, Abe10, BYL10, BL10, Gill10, GG10, HWG10, Kia11, LH10a, Pie10, Rab10, vDKS11]. Confidential [HS11, AZPC14].

Confidentiality [BFK+10, HLLC11, OFMR16, SZQ+17, WDDW12, Bia12, CHX13, ZHT16].

Consecutive [Tan12a]. Consensus [ABCL17, JSK+17, LLKA19].

Consequences [Ess17]. Consideration [CJP12, CJP15, KM10b]. Considerations [KD12b]. considering [MLMSMG12].

Consistency [BCK17, SES+16]. Consolidated [KKA14]. Constant [App14, AEHS15, CWWL12, KOTY17, KHP16, KMO14, LP11, Pan14, ZMW16, AHL+12, DWZ12, LCT+14, SGM16].

Constant-Round [KOTY17, KMO14, LP11]. Constant-Size [AEHS15, AHL+12, LCT+14, SGM16].

constants [DWZ12]. Constraining [BSJ15, CSH+18, EAA12, JMG+16, YNR12a, Yon12, DMV15, KAS15, LLZ+16, LCL+17a].

Construction [BWLA16, DF11, EM12, FZT14, GWWC15, HHP17, KMO14, MSas12, Rog16, Sar10b, ST14, WZ15, WCL+18, WMS+12, XH+17, LFZ+17, MSas13, SA14, YWL+17, YT11b, YKC+12, ZCLL14].

Constructions [BCF+14, DQFL12, HL10b, KOTY17, SNJ11, SES+16, CIZ15a, CGKO11, NAL17, Zin10].

Constructive [Mau12, WB12]. constructs [BP10]. Containing [XWDN12]. contemporaries [LCBKJ12].

Contemporary [Opp11]. Content [ADR18, BCP14a, MHT+13, PMZ13, PZPS15, WHZ12, WZXL12, YT12, ZZ+11, GPX+12]. Content-based [MHT+13].

Continual [BKKV10, XZY+12, YZ12, YCZ12].

Continual-Leakage [YZ12]. Continually [DLW11]. Continuous [ACAT+15, BCF16, DHLAW10, uHAN+18, FMN14, MSKRJ17, PYP10, Sch15b, Yan12, ZY17a, ZYM16, BTW15, PLGMCdF18].

Continuous-Tone [Yam12]. contract
[MMP19, Men13b]. contrast
[DDD14, GLW13, LWL10a, MM14a].
Contributory [WQZ+16]. Control
[ATS15, BFK+10, DLZ+16b, HHS+15,
LGZ+16, MM17, MK12b, NA10b, QZL+16a,
RSN14, SGC14, TBCB15, XMLC13, YTH17,
ACK+10, AMHJ10, CLH+16, CO11, Cra11,
FNWL18, FS18, GHD19, JAS+11, LCL+17a,
LCL+15, NZM10, QCX18, Sch15c, SA15,
Tan12b, Wan18, XHH12, ZML17, ZVH14,
ZWS+18, ZFH+18]. Controllable
[FIH13, ZLDC15, ZHT16]. Controlled
[FMTR12, WP17, Har16]. Controller
[GMV17]. Controllers [AMH+16].
corresponding [YT12, MHT+13]. Copyright
[CG12a, SSW12]. Credible
[ZW15]. creditors [Pea11]. criticism
[OdH12]. Criteria [PYS18, ZZKA17].
Criteria-Based [PYS18]. crittografia
[Sac14]. CRM [LHM+15]. Cropping
[SR12b]. Cross [AKK+17, CLY14, DSB15,
LHM+15, MV16a, YGFL15, YZL+18,
ZXH16, ZTSR12, SS17, der10].
Cross-Border [ZTSR12]. Cross-Domain
[CLY14, YZL+18]. Cross-group [AKK+17].
Cross-Layer [LHM+15, ZXH16].
cross-matching [SS17]. Cross-Site
[DSB15]. Crossword [Mar10a]. Cryptis
[GSC17]. Cryptanalysis [BW12, Bor10,
CWP12, GCGS12, DG12, DJG+15, Far14,
GST13, Gor10, Hin10, IOM12, Jia13, Kha10,
KN10, KWS+12, LH10b, LNM+11, LJF16,
LJ16, MWZ12, NXB13, OTD10,
PSOMPL13, SPLHCB14, SM10a, SM10b,
TY16a, TG17, Vua10, Wag10, WWYZ11,
WYYY11, WSSO12, WYW14, XQL11,
YCL17, YMWS11, AP11, BMB16, BKR11,
Cryptography-Related [Cil11]. Cryptol
[BC11, Bro11, Dun12b, LW11a, PJ12, AB10a, Abe10, BYL10, BL10, FES10, FGPGP14,
Gil10, GG10, Kia11, LH10a, MZ17a, Pal16, Pie10, Rab10, HWG10, LTW11, Kob10].
Cryptomania [Gen13]. Cryptoprocessor
[GV14b, SWM†10]. Cryptosystem
[CCT†14, LH10b, SWM†10, BS15, Chi13a,
Gal13, GV14a, GLB†18, IB11, MM13,
MG15, NZM10, SvT10, yYqWqZC13, YY11].
Cryptosystems [ADI11, OTD10, PSM17,
BNST17, FWS13, SA16b]. Csec
[AD12]. CT
[Dun12b, Kia11, Pie10]. CT-RSA
[Dun12b, Kia11, Pie10]. Cube
[MS12b]. Cubic
[RV12, VM14]. Cuckoo
[BHK13]. CUDA
[DLV16]. cultural
[Mid10]. Culture
[Bla12, SR14]. Currencies
[TS16b]. Current
[DP17, GCK12, FPBG14]. Curse
[GG11, HB14]. curvature
[GJ13]. curvature-feature
[GJ13]. Curve
[ADI11, ARM15, BJ10, GPT12, LGH†17,
LWHS17, PPH12, SG15, AMN18, BL14,
BL17, BBB16b, Cho14, Far14, FWS13, IB11,
KK10, Krc13, MCN†18, MS13b, NZM10,
SKH15, WHJ17, JL16]. Curve25519
[SG15]. Curve41417 [BCL14]. Curves
[AK14, BWR12, DW12, LL11, LT14a,
MST18, YTS12, BL17, BP18]. Customization
[ODH12]. Cyber
[LJ†14, GHD19, HZW18, KSA16, QMC17].
Cyber-Espionage [LJ†14].
cyber-physical
[GH19, HZW18, QMC17]. Cybernetica
[Ano17c]. Cybersecurity
[DF16, Hel17, Lan17, LRVW14]. Cycle
[HG12, KU12, MNK13]. Cycle-Based
[MKN13]. Cycles
[WBA17, CLCZ10]. Cyclic
[ODT10].

D [AP10, CG12b, DBPS12, DWWZ12,
EAA†16, GZH12, KWS†12, LJ17, LJ15,
MCDB12, MKH†12, PGLL10, RS16, SGS14,
SRK†17, WSSO12, WY12, tWmC12, YI14,
YPRI17]. D-Based
[WSSO12]. D-like
[LJ15]. D-PUF
[SRK†17]. Dana
[Ano10]. Dandelion
[VFV17]. Dangerous
[HLW12, GLJ†12]. Dao
[FMS12a]. Dao-Fa
[FMS12a]. Daoism
[FMS12a]. Darel
[Xie12]. Darmstadt
[FBM12, Sen10]. DASH
[KCC17]. Data
[Ano13c, ADT12, Bar12, BJL16, BCD†12,
BJL12, BW12, BKLS18, CWL†14, CMLS15,
CCW†10, CSV15, CCT†14, CLW16, DDS12,
Dan12, DR12, DMS†16, DA12, DCA18,
DLZ†16b, EKB†16, FMY15, FPY15,
FRS†16, GT11, HSM14, HLT†15, HK14,
IBM13a, KRDH13, KG16, LLZ†17,
LWCJ14, LLZ†12, LZC†12b, MLO17,
Mal13, MMS17b, MM14b, NNA10, NR12,
PD14, PSM17, PH12b, PNRC17, QZL†16a,
QZZ18, RCP†18, Rea16, RSN14, SGG18,
SAKM16, Sar10b, SMSK18, SP15b, SKH17,
Sia12, SL10, TCN†17, Tan15a, Vai12,
VSV15, WZCC18, XNK15, XWSW16,
YDY†16, YMC†17, ZXL16, ZPKX17,
ZRT15, ZLW†17, AP10, ASO14, Ana14,
Ano11a, ARA13, ADH17, ALL†18, BLL†19,
BTPL15, BC18, BKV13, CDGC12,
CLH†16, CDF†10, CDL18, DFJ†10,
DTZZ12, DRD11, ED17, FS18, GHD19,
Gen10, GLB†18, GZS†18, HSM13,
HWK†15, HMCK12, HH16, HYS18, HYF18,
JHCC14, Kim16, KH18, KWH16]. data
[LSBN14, LT14b, LXK†14, LZY†16,
LLL†17b, LHL†18, LFWS15, LAL†15,
LCW†16, LZC17, LLL†18, LL16a, LHA†16,
MHKS14, OOI18, OSSK16, QCX18, Sch15c,
SYY†17, SAR18b, SWV†17, Tan17b,
TMK11, TKMZ13, LTH13, LWS14,
WZLW13, WS14, WL19, XXX15, XWZ†18,
XY†18, YVS†16, YQL17, YXAX†16,
YNX†16, ZZKA17, ZMM†10, ZWY†13,
ZHT16, AEH17, HLYS14, Sch15c].
Data-Centric [DLZ†16b].
Data-Classifiers [KG16].
Data-Compression [DA12].
Data-Minimizing [BCD†12].
Data-Oriented [NNAM10]. Database [BTHJ12, SBV14, WCL+18, BL11, JC14, LW13a, PRZB12, Suc12, YXD18].

Databases [FCM14, HPC10, JKZeY12, Kaw15, RP12, WP17, GA11, JK13, LCY+16, SS17, TG12], datacenters [PRN+19]. Dataset [SP13].

Description [WH18, PLS11]. Design [AMN18, Abe12, ARH+18, AIB+16, ADD10, AUM16, Bel18, BKL+13, DHB16, DR11, FSK10, HSA14, JWJ+17, KPP16, KW14, Lop12, MS13a, MFG16, MRL+18, Mur16, NBZP17, NYY+14, PC16, QLL17, RYF+13, Sch13, SAAB10, SZDL14, VPK17, WKB16, WDKV19, XZH16, CZ14, Gor10, KHF10, KDW+17, MNN15, MAK+12, MYY+18, ZYC+17]. Designated [WHJ17, HYWS11, RPSL10, SY15b].

Designated-verifier [WHJ17]. Designation [Che15, LSQ11a]. designed
[Goo12]. Designer [KMY18]. Designing
[CDK10, FLW12, MRT10, PSD15, SR10].
Designs [BGK12, PCY+17, KDH15].
Detailed [DL16, ZPXX17]. Detect
[JW1+17, NSA15, WOLP15, Lan11],
detectability [LRW17]. Detectable
[Ess17]. Detecting
[BKBK14, Ess17, GAS+16, HLW12, KW14, SH15, YSC+15, LWLW11]. Detection
[AMKA17, ATS15, DSB15, DF11, GZH17, HDWH12, KU14, LGL+12, LC15, MKRM10, MKAA17, NDC+13, NSMS14, SAIJ16, SBV14, SPI5a, SRAA17, SGS14, TM18, YFT17, AKKY17, AOT13, BM13, HB13, JC13, KLC+10, Maz13, MHT+13, WYL13].
Detective [Cho10]. Detector [LTKP16].
Detector-Based [LTKP16]. Determine
[FSWF11, Sto12]. Determining [NN12].
Deterministic
[MPRS12, NS12, XXZ12, DTZZ12].
Detering [WGJT10]. DEUCE [YNQ15],
develop [Ham19]. Developed [Har16].
Developing [CH11]. Development
[Pal10]. Developments [GCK12, Vai11].
Device [ABCL17, CFXY17, DFKC17, KLM+12, SRK+17, TYK+12, GM16, KKG14, Kim16, Par12b, SHBC19, XHH12].
Devices
[AAC+16, CSF+18, DLW11, EGG+12, GPT12, GD16, GMSV14, HH+13, HDWH12, JMG+16, LWHS17, MFG16, May15, MS16, NVM+17, Sch15b, SFE10, WKB16, WT10b, XJR+17, Aia15, CLP+13b, CFL13, CTL12, Chi13a, FRT13, GTSS19, IB11, KPP16, LKAT12, MvO11, MHV15, OYHSB14, SHBC19, TG17, ZPZ+16]. DFA
[WH17]. DFA-Resistant [WH17]. DFT
[DDFR13]. DHA [AKY13]. DHA-256
[AKY13]. DHTs [YGGK13]. Diagram
[WGD18]. dickory [NN15]. dictionary
[Maf16, MBB1]. did [CMG+18]. Diego
[Ano10, Lin14b]. Dies [Mar10a, MMB17].
Difference [BS14, YTP11, JK13].
Differencing [LyWZ212, YWW10].

Different
[GZ12, HH+13, KU12, AKK+17, ABW10].
Differential
[BMS12, BNY14, CWP12, CGCS12, ESS15, FXP+17, KWS+12, LGL+12, LJF16, LJ15, LYHH14, MRTV12, PH12a, QGGL13, RCP+18, Sun11, WHN+12, Bla15, DDFR13, LLLK10, MNP12, PBCC14, SDM10, SDM14, TSSL11, TS16a, WYL14]. Differentials
[WW12]. Differing [GWH17].
Differing-Inputs [GGHW17]. Diffie
[LCZ14, ABD+15, Ch16, Hof16, HLC11, HLYS14, Orn16, RH10]. Diffusion
[ZHL15, WB12, jT12b]. DIG [NKWF14].
DigiNotar [JB11]. digit [KWH16]. Digital
[AYS15, BBC+13, BM13, BCP14a, FMS12a, GP17, HPO+15, Jin10, Joh10, JL16, LZC+12b, MBF+13, MSI10, MMN12, NC12, pNyWyY+14, Orn16, PH12b, PAS13b, SAA15, SM13, SC12, SOS15, TC11, TS16b, Yon11, Y+17, YLS12, dRsVdVC12, AGHP14, BPP10, CCG10, FLZ+12, Fri10a, GMS11, Har14, KM11, Lan13, LWZG10, MS13b, MM14a, MO14, QCX18, Sim15b, SLM10, yWpNyL11, ZZKA17, Zet14, ZSMS18, Ano13a, Ano15b, Mou15]. Dilly [Bat10].
Dimensional
[Ano17d, LZC+12b, XYYX11, DWZ12, QD16]. dimensions
[Pal15]. direct [GH12]. Directed
[NNLJ12, KPS10]. Direction [NS12].
Directions
[BKBK14, CDFZ16, Hof16, PPA18].
Directly [LZC12a]. directory [SMBA10].
disabled [HFT16]. disassociation
[TMLS12]. Disaster [NRZQ15, BBG+17].
disclosure
[DZS+12, PKA15, SB17, WGJ10].
discovery [Ano11a, MMP19]. Discrete
[BGJT14, CCL16, HKR+18, KLM+12, Xie12, AMORH13, BGJT13, MM13, Mes15, TPL16, VM14]. discrimination
[GPVCdBRO12]. Discriminative [YI14].
Discussion [Gli12, W118, Bul10a].
Discussions [KD12b]. Disk [GMI14, Ran16].
e-commerce [Ano11a]. E-exam [Mor12].

E-health
[WMX+17, IC17, YZL+18, JKL+16].

E-Learning [Yon11]. e-mail [BTW15].

E-passport [LZiX10]. e-rental [LY14].

EAP-based [HZC+14, ZCLL14]. Early [Bel18, Bro11, And13]. Earth [Har14].

easier [MBF+13]. Easy [Bel16, SMS11, Tay14, Wu16, ZDW+16].

Eat [DSSDW14]. Eavesdropping [CWL16, Han12, PX13, YS1L14]. EC [Dra16, CFN+14, CCG+16, CMG+18]. ECC [BSSV12, JMW+16]. ECC-Based [BSSV12]. ECDSA [BBB+16a, DHB16].

ECG [PLGMCdF18]. ECG-based [PLGMCdF18]. Echo [DLM+18, HGT15].

Echo-Based [HGT15]. economy [Sir16].

Ecosystems [LDB+15, MMR19]. EDAK [ABB19]. EdDSA [JL16]. Edge [AHM+18, DF16, KAI18, MD15, PRN+19, Sun16].

Edge-centric [AHM+18]. Edition [Cor14a, Kob10]. Editorial [OK18].

Editors [LLK18]. Education [LRWV14].

Edwards [JL16, LT14a, YTS12].

Edwards-curve [JL16]. EFADS [WLS14].

Effect [PLGMCdF18, WB12]. Effective [HLS+15, KRDH13, WMX+17]. Effectively [YM+17].

Effects [MAL10, SKV12, SHBC19]. Efficiency [ABF12, Chi16, DG17, FRS+16, HRV10, LMLL12, LCL+17a, MS13b, WXLY16].

Efficient [ABB13, ASB+16, ABB19, BWL16, BCGH11, BHG12, BV11, BV14, CG12a, CML+18, CMLRH13, CWWL12, CJ13, DWR12, Dn11a, DG17, EM12, FLH13, FHS13, GT12, GH13, GTC11, GPN+12, GPT12, GJJ15, GH12, GZH17, GCH15, HZC+14, HZC+14, HL18, HL10b, HBC13, HZX15, HKL+12, HIDFGPC15, HCDM12, HH16, HC17, IAD10, KPC+11, Kim15, KHPP16, KH10, LLP+18, LDDA12, LZT12, LXX+14, LCLL15, LSLW15, LHYZ12, LWHS17, LZC17, LBOX12, MXY13, MTY11, MVVR12, MU12, MP12, MC11, MN14, NES+14, NdMMW16, NZM10, PB12, PAF18, PRC12, PG12, PCPK14, PRNC17, RBHP15, SGG11, SZZ14, SGM16, TLF16, TWZ11, TT12, TM18, WDC18, WLS14, WQZ+16, WCCH18, XLWZ16, XLMC13, YHL16, YNMR12a, YNMR12b, YLW13, YNQ15, YLA+13, YS15, ZQW10, ZLY+12, ZSW+12, ZXX+14, ZXYL16, ZCL+19, ZHS+19, ZPK16, ZHW15, AZPC14, AIZ+12, CH11, CSGW11].

efficient [CLJH13, CZZ14, Cho14, Cra11, CGKO11, EA12, FLL+14, Far14, FA14a, FA14b, FIO15, FNWL18, GH16, GLM+11, HPC12, HYS18, ISC+16, IB11, IOV+18, JCH16, JZS+10, KKG14, KHH19, KL11, KHS18, LLLS13, LH11a, LH10c, LXMW12, LCL+15, MLM16, Mes15, Nov10, OCDD11, PZBF18, PC14, RAO17, SZMK13, TTL12, TSS13, TTHK14, VN17, WLY13, WLZ+16, WT1a, WXK+17, XWZW16, yWqWzC13, ZLY10, ZZ11, ZCLL14, ZTT16, ZC15, ZH13, LLZ+12, TCC15].

Efficiently [FWS13, LGH+17, SLY+16].

Effort [RSGN12]. Effort-Release [RSGN12].

EGHR [CML+18]. eHealth [TMGP13].
eID [SGGCR+16]. eight [Sun11].

eight-round [Sun11]. Einführung [Buc10].

Einstein [HR13, Wes15]. Elbirt [Bar12].

Election [Ess17, TKM12]. elections [QS18].

electrocardiogram [BLL+19].

Electrocardiography [YH16].

Electromagnetic [HHH+13]. Electronic
[Bla12, PWVT12, SR14, YWMS11].

Elementary [Led16, Sch15a, CM13].

Elements [Kra12]. Elevation [LZC+12b].

Elliptic [AD11, AK14, ARM15, DW12, GPT12, LGH+17, LWHS17, MST18, PPH12, SG15, AMN18, BAA13, BL14, BL17, BBB16b, Cho14, Far14, IB11, KK10, MCN+18, MS13b, NZM10, SKH15, WHJ17].
elliptic-curve [BL17]. ELmD [BDMLN16].
Elsevier [Ano15b]. Email
[Bel16, CCS14, XJW+16, WR15]. embed
[KPS10]. Embedded
[AB15, BS12, BJCHA17, CFXY17, HC17,
JWJ+17, LWHS17, SOG15, SK12b, SDM+12,
WXY+17, YGD+17, YS15, Ano11a,
CVG+13, Eis10, MFI13, XWZW16].
Embedding
[KD12a, MCD12, XNRG15, XZZ18, YE12,
ZS12, EA11, MKH+12, PWWL13].
Embeddings [FHS13]. Emergable
[YT12]. emerged [McG11]. Emergence [LM12],
Emergency [HLKL15, YTH17, KLC+10].
Emerging [BSV12, KSA16, OS16, FPBG14,
YSJ+16, LW15, Ano11a, CVG+13, Eis10,
MFI13, EMV [Cho10]. Enable [SMS14]. Enabled
[GPT12, HFT16, QZL+16a, QZL+16b,
SGC16, SSPC12, BMM12, TODQ18].
Enabled/disabled [HFT16]. Enables
[IBM13a]. Enabling
[FRS+16, JSM+18, SSY12, WPZM16,
YSJ+16, MMP19, Sch12b]. eNB [CLM+12].
Enciphering
[CMLRHS13, HMR12, MLCH10, Sar11].
Enclaves [WBA17]. Encoded
[DG17, HS18]. Encoding [Br14, CK18,
SK12a, TJJF12, XHX+17, PC14, Sun16].
Encounter [NA10a]. Encrypt
[RAZS15, Ran14]. Encrypted
[ADR18, BTHJ12, CWL+14, CWL16,
Cor14a, DWB12, DCA18, FCM14, FRS+16,
Gen13, GLG12, GZH17, HTZ12, HB17,
HCDM12, IMB17, IBM13a, JSCM17, Kaw15,
KGV16, LA15, LQD+16, Lop12, Mur16,
NBZP17, NNAM10, QLL17, SAKM16, Sia12,
TM18, Vai12, WBC+10, XWSW16,
YDY+16, ZDL12, ZXYL16, ZVG16,
ZLW+17, AHH+18, AZH11, BTPLST15,
BGP+17, BKV13, BL11, CH11, Cri16,
CDL18, DKL+16, DRD11, ED17, FTV+10,
Gen10, GZS+18, HH16, KH18, LKX+14,
LZY+16, LHL+18, LW13a, OSSK16,
PRZB12, SEXY18, SWW+17, Snc12,
TKMZ13, WR15, WL19, XWY+18, XYD18,
YQOL17, ZLY10, ZFH+18, ZHT16].
Encrypting [CC10, Mar10c, dRSdVC12,
LFGC4CP14, Pow14]. Encryption
[ADM12, AV12, AHE17, Alo12, AAC+16,
Ano13c, Ano14, Ano15c, Ano17d, AKP12,
ABF12, AS16, BVS+13, BWLA16, BPR14a,
BPR14b, Bel16, BDOZ11, BWR12, BS14,
BV18, Bla16, BKLS12, BDP12, BHJP14,
BDMLN16, Boy13, BV11, BV14, BGV14,
CVM14, CMO+16, CCL16, CWWL12, CN12,
CZF12, CLHC12, Che15, CGL+12, Chi12,
Chu16, CRE+12, Con18, CNT12, CLW16,
CD16, DR10, DN12, DFJ+10, DSB18,
Des10b, DOS15, Dun12a, DF11, EAA12,
ESS12, FHH10b, FHR14, FJH12, FLL12,
Fuc11, GWWC15, GGH+16a, GGH17,
GM13, GZZ+13, GSW+16, GHI1a, GHI1b,
GHS12, GHPS12, GDCC16, GVW12,
GVW15, GM14, GL12, GKS17, Gue16,
HSMY12, HLLG18, HZ11, HG12, HC17,
HTC+15, HP12, IAD10, JLS12, JHL12,
Jia14a, JR14, Kami13, KB10, KME+12,
KMY18, KTT12, KOS16, KKA15, KFOS12,
KHPP16]. Encryption
[KS12, LMGC17, LMG+18, Lai17, Led16,
LSLW16, LW11b, LW11c, LW12, LLLC12,
LYZ+13, LHL+14, LLK+15, LTZY16,
LLL17a, LSJW15, LH11b, LSJQ18, LB13,
LY15, LW16, LYY+18, LLML12, LHL18,
MZHY15, MLO17, MMP14, MR14a, MTK11,
MSM18a, MVVR12, MSSI17b, MRL+18,
MBF18, MPRS12, MT12, MRM10, MSAs12,
Nac16, NdMMW16, NTY12, NMS14, NAL17,
OT12, OKG+15, PMZ13, PR12, PB12,
PNNH15, Per13, PKTK12, PPS12a, PYS18,
PM12, PCY+17, PRSV17, RVH+16,
RCP+18, RZZ+15, RSG12, RDZ+16,
RVRS12, SG18, Saa12a, SSW12, Sar10b,
Sch15a, SLGZ12, SSZ14, She14, Sm11b,
Sta12, SH15, SMOP15, Tan11, TCN+17,
TCL15, TMC15, Tan17b, TTD13, TRK14,
Encryption
[XHX+17, YZ12, YZX+12, Ye10, Ye14, YH16, YKNS12, YNQ15, YKC+11, YFK+12, YCY12, YKKL12, ZOC10, ZPM+15, ZDL12, ZYT13, ZWTM15, ZQ15, ZMW16, ZMI7, ZHW15, ZY17a, ZYM18, ZWS+18, AHS14, ATK17, AKKY17, Ana14, Ano13b, Ano15c, Ano16f, ABR12, AMHJ10, ACD+15, AHL12, BLL+19, BAAS13, BC18, BG14, BSW12, BGP+17, CPPT18, CFVP16, CFZ+10, CW14b, CLH+16, CMMS17, CZ15b, CS11, Chm10, CW12a, CDF+10, CM13, CGKO11, DLZ16a, DMD17, DTZZ12, Eve12, Eve16, FAA+18, FSGW11, FSGW12, FMB+18, Fay16, GMOGCC15, GH13, GHPS13, GLM+16, GI12, GLL+18, HG14, HQZH14, HZ18, HWDL16, HZW18, HT13, HL11, HFT16, HTC17, HYS18, HY18, HKHK13, JCH16, Jia14b, JSMG18, JHC+14, JSM+18, Kam16, KMB13, KKM+14, LLW16, LCL+17a, LCL+15, LFZ+17, LCT+14, LFWS15, LLM+19, LP+19, LH11, LW10, LW13b, LCO14, LPZ15, LCY+16]. encryption
[LCI17, L17, LW17, LLW18, LLL+18, LDZ19, LL16a, LW13c, LSC12, Mar10b, MMS17c, Mes15, Mid10, Mon13, MSs13, NES+14, PPA18, Pet12, QRW+18, Ran16, RG10, RWZ13, RPSL10, SES+16, SE18, Sar11, SYL13, SE14, SE16, SH11, SM11, SNM14, SLZ12, SY15b, Sha13, SGFCRM+18, SLM10, SKB+17, Spa16, SGP+17, SG16, Tam15, TPI16, jT12b, WG1T10, WY10, WW17, WWY11, WHY12, WDZ13, WFX17, Wan18, WGZ+12, WLS14, WC18, XWZ16, XW1C14, XSW10, XDX15, XWS17, XWZ+18, YT11b, yYqWzC13, Yan14, YZ17, YHH18, YCT15, YLZ+16, YL11, ZWQ+11, ZZ11, ZLW+12, ZW14, ZWT14, Zha15a, ZCC15, ZML17, ZYC+17, ZCL+19, ZZ12, Z12, ZDW+16, ZY17b, Zhu13, Wan14, LAL+15, Sar18a, Kat13].

encryption-based
[B18, XZ+18]. Encryption/Decryption
[KB10].

Encryptions
[zGXW12, LG12, SLY+16, RD17].

Encyclopedia
[vTJ11]. End
[Ano15c, BRR+15, BGP+17, CFE16, Chn16, RST15a, RST15b, Chi13a]. End-to-End
[CFE16, RST15a, RST15b, Ano15c, BRR+15, BGP+17]. endomorphism
[FWS13]. Endomorphisms
[AK14, LH17]. enemies
[Fag17]. Enemy
[BC14, CAC14]. Energetic
[PDMR12].

Energy
[ABC+17].

Energy-Efficient
[MP12, TLC16].

Energy-Harvesting
[ABC+17].

Energy-time
[Ano15d]. Enforced
[Set16]. Enforcement
[LLZ+17, Tan15a, Cra11]. engagement
[LSBN14]. engaging
[ISC+16]. engine
[BS15a]. Engineering
[Bel18, FSK10, GHD19, LLK18, MS18a, MP12, PGLL10, TQL+14]. Engines
[LB13, BGG+13]. enhance
[CZ14, SLM10]. Enhanced
[DTE17, KY10, KKM+13, MS17, SGG18, TV15, YCC16, AN18, ACK+10, DLK+16, G16, LNK13, YQOL17].

Enhancement
[FSX12b, LA15, NNA10, CHS11].

Enhancements
[FSX12b]. Enhancing
[CSW12, IA15, Lan13, YS15]. Enigma
[KM15, KM16, LHA+16, Ore14, Ano16c, Bur11, Kap11, Kap13, McG11, McK12]. Enigmas
[Bat10]. Enough
[JC12, Ano14]. Enrollment
[YWZ+12]. ensuing
[SS17]. Entanglement
[Ano15d, JEA+15].

Entanglement-Based
[JEA+15]. Enterprise
[TGC16, Din10, NB13].

Enterprises
[KCR11]. Entities
[GZ12].

Entity
[BCM12, BCM13]. Entropy
Extending [ZSW+12]. Extensible [YZ12].
Extension [ARH14, EKP+13, GFBF12, GT12, RW12, SGY11, HTC17, ZXJ+14].
Extensions [LWL10b, external [ZZKA17].
Extract [AN12].
Extract-Transform-Load [AN12].
Extractability [BCP14b]. Extractable [CZLC12b, CZLC14, GGHW17].
Extraction [BWLA16, GST13, GPP16, extractors [Zim10].
extraordinary [Hol12], extreme [GJ13].
Extruded [CJFH14]. Eye [ERLM16, SM13, Tox14].

F5 [LLY+12b]. Fa [FMS12a]. fabricating [WW13]. Fabrication [VDB16].
Fabrication-Induced [VDB+16]. Facet [AQD12, XHH12]. Facial [KRBI2].
facilitate [Chi13a]. Facsimile [Ano16d].
Factor [HXC+11, LLC11, AIB+16, CLP+13b, DMWS12, ED19, HC12, IC17, JKL+16, JMW+16, Kem11, LNK+18a, LNK+18b, Lit14, WW14, Wat14a].
Factoring [APPVP15, LML12, MM13].
Factorization [Cou12, FS15, KFL+10, Kuz11, YAM+15, Mesi5, TPL16]. Fails [Cer14]. Fails [ABD+15].
Fairness [ALR13, Ash14, GHKL11, Wag16, MV16b].
Fake [KU14]. Fallen [HCPLS12]. False [LLZ+12, CDGC12].
Families [BSS+13, KU12]. Family [ARH+18, BMS12, BKST18, DGIS12, DJG+15, FLS+10, FFL12, GN12, LYY+18, MFG16, YCL17].
Fanin [SS12a]. Fast [BLAN+16, Bru12, CHS15, DSLB18, GSN+16, NR12, PRSV17, WHZ12, WBA17, WQZ+13, ZHW+16, FHH10a, KHBMB13, MBB11]. FastAD [SMBA10].
Faster [CN12, HVL17, TH16, Ant14]. Fault [AMKA17, BMS12, BBB+16a, FXP+17, GST12, JWJ+17, JKP12, JT12a, LGL+12, LCLW17, LGLL12, MKRM10, MKAA17, PH12a, RZZ+15, SEY14, YGD+17, BBBP13, PBCC14, WMYR16]. Fault-Based [BBB+16a]. fault-resistant [PBCC14].
fault-tolerant [WMYR16]. FBI [Bha16].
FC [DDS12, Dan12]. FEAD [ZWM14].
Feasibility [AAC+16, FKS+13, WHC+15].
Feature [Ber18, SGP+12, FTV+10, GJ13, MHT+13].
Features [YI14, ZTL15, FNP+15, LCM+17, LTC+15a].
Feauveau [Ara13]. February [Ano10, DDS12, Dan12, Dun12b, Kha11, Lin14b].
FedCohesion [CCFM12]. Federated [BS13b, CCFM12, CSL+14, BMBS10, JAS+11, TOSQ18].
Federated-IoT-enabled [TOSQ18].
Federation [SS10a, NB13]. federations [MMS17a, MLM16]. Feedback [HZ11, Hey17, PYM+15, SKGY14, ZH15, LWK11].
Feedback-Based [PYM+15].
FEIPS [DG15]. Feistel [BFMT16, KDH15, Sas12, SEHK12].
FHE [CK18]. FHE-Based [CK18]. FHSN [SP15a]. FI [YNR12a]. FI-BAF [YNR12a].
Flat [BDSG+13]. Fibonacci [FM15, LLP+18].
Fibonacci-number [LLP+18]. Fidelity [BCP14a]. Field [CLF+17, GHPS13, HSA14, SS12a, TGC16, ZAG19]. Fields [ARH14, BGJT14, HVL17, AA14, BGJT13, CZA15a, LBOX12, ÖÖ11].
filtered [HTC17]. filtered-equality-test [HTC17]. Filtering [LLZ+12, CDGC12].
Financial [Ano11b, Ber12, DDS12, Dan12].
Finding [Hof16, Ste15a]. Fine [CDD13, YTH17, ZML17, CLH+16, FSWG11].
Fine-Grained [CDD13, YTH17, ZML17, CLH+16].
FinFET [ZJ11]. FinFET-Based [ZJ11].
Finger [KLY+12]. Fingerprint [MR14b, KKG14, ZHH+17]. Fingerprinting
[TH17, ZS12, FLZ+12, RS17]. Finite
Fully-Homomorphic [GH11b].
Fully-Homomorphic-Encryption [CN12].

[Har14]. geo-location [Har14]. geodesics
[ZZCJ14]. Geographic [LC17].

Geolocation [FPY15]. Geometric
[DSB16, GTT11, WA12, YWNW15, CLZ+17, GZHD12]. geometrical [TL13].

Geometrically [WYW+13]. Geometry
[tWmC12, CFR11, CZ15a]. German
[BDSF12, Blö12, Buc10, Cop10a].

Germany [FBM12, GLIC10, Sen10, Wat10].

Gesture [LCL17b, SHBC19]. gesture-based
[AUMT16, GCSAddP11]. Get
[ESS15]. GGH
[LH10b].

Ghost [CDA14]. GHZ
[CC+13]. GHZ-State [CCL+13]. giant [Joh15]. girls
[Mun17].

Girod [GMNS15]. GLARM
[LLZ+16]. glimpse [Mic10a]. Global
[CLP13a, CLH13, MRS+17, GH16, LH11a, TMK11, ZXL11, LNK+18].

Globally [CCS14]. Glyph [XXZ18]. GMAC
[SKK10].

Goal [BMP12]. Goal-Driven [BMP12].

Goes [BCD+12, RY10].

Goldreich [Lin17].

Goldstrike [BH15]. Goliath [Sch15c].

Gong [LW16]. Good [DQFL12, FY11, LSBN14, RY10, SA14, WT13].

goodbye [HU15].

Google [Har14, Loe15, VGN14].

Goppa [MBR15]. Gordon [GW14].

GOST [LC13, WYW14]. Government [Ano15e].

GPG [Ran14]. GPGPU [RVRS12].

GPGPUs [LCF16].

GPU [BCGH11, GCH15, HBBRNM+16, JHCC14, MBB11, ZOC10].

GPUs [VKP17].

Graded [BR14].

grail [Wat15, Mic10a]. Grain
[BMS12, FSGW11].

Grained
[CDD13, YTH17, CLH+16, ZML17].

Graph
[ATS15, GTH11, WH18, GJMP15].

graph-based [GJMP15].

Graphical [BCV12, CTL12, LTC+15a].

graphical-based [CTL12].

Graphics
[HHMK14, ABDP15, KY10, PGL10].

Graphs [BFM12, KU12, KA18, Lw17, PMZ12, BBGT12].

Gray [DA10, UUN13].

Gray-Level [DA10]. Great [Acz11]. green
[dCCSB+16, ZT16].

Grey [LRW13].

Grey-box [LRW13].

Grid
[CGB+10, DLZ+16b, KS15, LPL15, AMN18, JAS+11, MCN+18, WS12, YY11].

Grid-Based [LPL15, WS12].

Grinds
[SC10, CT11b, GLW13, SHY15, JAE10].

Gröbner [EVP10, FES10, Tam15].

Gros [Dan12].

Ground [KP17].

Groups
[AEHS15, BS12, CGY+13, CLW16, DT13, FVS17, HL10a, Har13, LLZ+16, LCCJ13, TW14, XLM+12, XGLM14, XZL15, ZXH16, AKK+17, CML+18, GBNM11, HCCC11, HPY10, IOV+18, LLLS13, LWS10, LLM+19, RS15, WDLZ13, WTT12, YZL+18, ZZA17, ZWQ+11].

Group-based
[LLZ+16, CML+18].

group-key [IOV18].

Grouping
[LNZ+13].

Grouping-Proofs-Based
[LNZ+13].

Groups
[ABe12, GZ12, XNKGM15, YS12, YKNS12, MZ17a, WQZ+13, ZZ15].

GRS
[TD14].

GSR
[LC17].

Guangdong
[IEE11a].

Guaranteed
[TBC15].

Guerrillas
[Has16].

Guess
[FSWF11, Fok12].

_guessing
[Che15, LCL17b, XJWW13, FIO15].

Guest
[Gup15, LLK18].

Guide
[STC11, Han12].

Guided
[CJFH14, ZSMS18].

Guiding
[DGNJ14].

H.264
[JSZ12, JH012, LLHS12, LW13c, MU12, WDDW12, ZLDD12, ZLDD14].

H.264/AVC
[JSZ12, JH012, LW13c].

H.264/SVC
[MU12, WDDW12, ZLDD12, ZLDD14].

H.265
[GKSB17].

H.265/HEVC
[GKSB17].

Hack
[DLV16, FOL16, RAN10, RAN14, RAN16].

Hacker
[ZGC16].

Hacking
[GHS14, Hea15, JEA+15, Sta13].

hacks
[Ran10].

Halftone
[GL10].

Hall
[Ful10, Don14].

Hall-CRC
[Ful10].

Hamming
[CCCL11, KSY12].

Hand
[SR12a, Cho10].

hand-held
[Cho10].

Handauth
[HBC13].

Handbook
[Bee17, AB10b].

handheld
[CTL12].
High-Efficiency [DG17]. High-Impact [DM15]. High-Level [AW17, KPC+16, ABBD13].
High-Performance [GCS+13, KAK18, LPO+17, GCVR17].
High-throughput [MAK+12]. Higher-Order [LWKP12, PRC12, gWpNyY+14, ZSW+12, LWKP14].
Highly [SZDL14, ACD+15, DT13]. HIGHT [CWP12, WWBC14]. hijacking [DCAT12].
HILL [KPW13, KA17]. HIMMO [GMRT+15]. Hindering [BTPLST15].
HISS [DT13]. histogram [CSS+13, Lin14a]. Historians [Cer14]. Historical [Hai17, Han12].
History [ABJ13, Ano19, Cer14, Cop10a, LT14b, McK10, McK11, SE16, Sm15a].
history-free [SE16], Hitler [Hea15, Moo14]. HMAC [GWM16, MAK+12, YGS+17].
HMAC-DRBG [YGS+17]. HMAC-SHA256 [GWM16]. Hoc [LH12, PD14, She14, XHC+12, KM10b, LXX14, GSGCR+16]. Hoffstein [Mei10].
Holden [Ano17b]. Hole [Ano15d, BKKV10, PC16]. Holocaust [Han12]. holy [Wat15, Mic10a]. home [KPP16, Cor14a].
Homogeneous [HT11]. Homomorphic [AKP12, BV11, BV14, BGV14, CMO+16, CN12, CJ13, CK18, CNT12, DOS15, GH11a, GH11b, GHS12, GHPS12, KOS16, KGV16, Kim15, Lau17, LCLL15, MLO17, MSM18a, MRL+18, MBF18, Nac16, PTKT12, RCP+18, Tan15b, Vai11, WHC+15, XWZ+18, AKKY17, BDOZ11, BC18, CJXX19, CW12a, GH13, GHPS13, GLM+16, LLIW16, SEXY18, Tam15, WSC14, ZXJ+14, ZYC+17].
host [LKKL13, der10]. hostile [CDA14]. HotCalls [WBA17]. House [Ano16h, Bbl16]. HP [CGB+10].
HVS [RMG18]. HWMP [BOB13]. Hybrid [ADH11, ARM15, KBL11, KKA15, LP12, NGAuQ16, OQ12, Per13, SGG18, XWLL16, EEAZ13, KPI18, WSL16, WS14, XWS17, BOB13]. Hybrid-Double [ARM15]. hybrid-indexed [XWLL16].
IBC-HWMP [BOB13]. IBM [ABC+12, ACD+15, BAB+13, HKL+14, JSM+18].
ICA [tWmC12]. ICICTA [IEEE11a]. ICISC [LHL0a]. ICs [GSFT16]. ID [Ano17c, CTL13, CDPLCA16, EZ15, HCC10, IB11, KG010, LMG17, LLY14, MWZ12, MM12, MMZ12, Mes15, PLPW13, TPL16, TT12, TTH15, Wan18, WT10b, WTT12].
ID-based [MM12, LMG17, MWZ12, TT12, TTH15, WT10b, CTL13, EZ15, HCC10, IB11, KG010, LLY14, MMZ12, Mes15, PLPW13, TPL16, Wan18, WTT12].
ID-card [Ano17c]. ID2S [YRT+16]. IDEA [BNY14]. Ideal [LPO+17, WCL+18, HKT11, yYQWqZC13]. idealness [TD14]. ideas [Mac12].
YGFL15, YKK18, AGLW16, CTHP13, CJP12, CJP15, EA12, HQY+16, KI11, KL13, NLYZ12, YTm+14. **identified** [AZH11].

identifier [MJS13]. **identifiers** [Cer18].

Identifying [CSV15, SVG16, ZCSW15].

identities [GLM+11]. **Identity** [AQD12, ASM12, ASVE13, Ano15b, ACAT+15, ASS15, BWLA16, BCF16, BHG12, BKPW12, BDFK12, Ber12, Ber17, BS13b, Bow11, Cal13, CCFM12, CSL+14, CSZ+11, CZLC12a, CZLC12b, CLHC12, CZLC14, CGL+12, CGY+13, Chii12, dCCSM+12, FHH10b, FZT14, FSX12b, FSX12c, FSX12a, GOPB12, KY13, GDCC16, GJJ15, GJJ17, HZC+12, HvS12, HSM13, HSM14, HZC15, HYWS11, HYF18, KKA14, KRB12, Kuz11, LMG+18, LMB12, LSL12a, LKAT12, LXJ14, LCC+15, LTZ16, LD11, LSC12, LCR12, MLO17, MBE+13, MJGS12, M10, OdH12, Par12a, PSS+13, PSJ+13, PWVT12, RDZ+16, RS15, SS10a, SS10b, SS12a, SAAB10, Sch11, Ser12, SSPC12, SK14, SWW+16, SGH15, TCR14, Tia15, TH16, TMGP13, Vle12, WY10, Wan14, XXZ12, XQL11, XJW+16, YXZ+12, YTm+14, Yon11, YHK+10, YKc+11, YFK+12, YC12, ZH12+12, ZMW16, ZDW+16, ZPXX17, ZYM18, ZTSR12, ATKH+17. **identity** [Ano13d, BMBS10, BOB13, BMM12, BBGT12, CTHP13, dCCS+16, DZ14, Din10, DWZ12, FA14b, GM15+15, GPVClBRO12, HZC+14, HWD16, HZWW17, HL11, HLB12, HL11, HPM10, Hwa11, JZS+10, KKGK10, KLM+13, KL11, LK12, LXM12, LC+14, MMS+17a, MD15, MGP10, MJGS13, MML16, MM13, NCL13, OJ11, PLCCS11, QYWX16, RG10, SSY12, SE14, SE16, SR10, hSS2Z15, SA16b, Sim15b, SSS11, SSS11, SM16, WWYZ11, WYWY11, WSC14, WLFX17, WMX+17, Wat14b, WWW17, XW12, XCL13, XH14, YWL+17, YQWqZ13, YPS+16, YMSH10, YKC+12, YXA+16, YNX+16, ZJ12, LZXJ10, PN10, Sar18a, Kat13].

Identity-Based [ASS15, BWLA16, BHG12, BKPW12, CZLC12a, CZLC12b, CZLC14, CGY+13, Chii12, FHH10b, FZT14, FSX12b, FSX12c, FSX12a, GY13, GJJ15, GJ17, HZC+12, HSM14, HZC15, LMG+18, LSL12a, LCC+15, LTZ16, LSLW15, LH11b, LSC12, LBR12, MLO17, RDZ+16, SGH15, TCR14, Wan14, XXY12, XJW+16, YXZ+12, YHK+10, YKc+11, YFK+12, YC12, ZH12+12, ZMW16, PZX17, ZYM18, CSZ+11, HSM13, HYWS11, HYF18, LKAT12, LJ14, MJGS12, RS15, SWW+16, Tia15, TH16, ZDW+16, BOB13, BMM12, CTHP13, DZ14, FA14b, GMRT+15, HZC+14, HWD16, HZWW17, HL11, HLB12, HL11, HPM10, Hwa11, LK12, LCT+14, MJGS13, MM13, NCL13, QYWX16, RG10, SE14, SE16, hSS2Z15, SA16b, SSS11, SM16, WLFX17, XW12, XCL13, YW+17, yQWqZ13, YKC+12, YXA+16, ZJ12, LZXJ10, Kat13].

Identity-Hidden [PSS+13]. **IdM** [ACAT+15]. **IDs** [SOS15]. **IEC** [BCM12, BCM13]. **IEEE** [IEE10, IEE11b, IEE13, Yan10, BOB13, CL11, FLH13, NBZP17, ZBR11].

IEEE802.16e [HLCL11]. **if** [ABJ13, Rus15]. **IFIP** [GLIC10]. **IP** [MMZ12]. **Igor** [Sha10]. **II** [Mun17, SCP101b, SMOP15, ZWS+18].

III [SMOP15]. **Illegal** [ABJ13]. **Ilogical** [Hel17]. **Illumination** [KLY+12]. **Illusion** [GHS14]. **Illustrated** [Cop10a]. **Im** [BGI+10, BGI+12] **IMA** [Che11]. **IMACC** [Che11]. **Image** [Bal10, BAA13, BB14, BWR12, CJFH14, DA10, IAD10, JH12, KPS10, LA15, LLL17a, MBC15, MAL10, MSM+18b, PWW10, RS16, RVRSCM12, SH11, SM11, SJ12, SP+12, SMK18, SSA13, SRAA17, SZT18, TB18, WHZ12, WZL12, WW+13, WYCF14, yQWqZ18, WYK12, YL+12, YN15, Ye10, Ye14, YH16, YXD18, ZZX+11, BWA13, BM13, CT11a, CW14a, EA11, FMB+18, GKK11, HLC16, KM11, LXML11, LW10, LULW11,
BF11, CVM14, CDGC12, CGB+10, CST+17, CBL13, Dew11, DP12, FHKP17, FHS13, HHH+13, IF16, JHHN12, LG12, LW11a, Low12, MA17, MAL10, NTKG17, SGC14, STC11, TWZ11, WSS12, XZZ18, Yan10, Ye10, ZZ15, ZHL15, AB10a, Abe10, AL15, ASVE13, BSS11, BGP+17, DMWS12, KL13, LWK+18, MKH+12, Mar10b, SRB+12, WW13, BYL10, LH10a.

Invention
[YKWF14, CDSLY14, KK10, MZ17a, TLL13].

Invariant
[ZXYL16].

Invisibility
[KHHH14].

IoT
[ISO/IEC BCM12, BCM13, TS16a, WWBC14].

Irregular
[JKHeY12].

Isogeny-Based
[KAK18, Lau17].

Isolating
[LG12].

ISSAC
[Wat10].

Issue
[Ano13d, Ano16a, Ano16b, Ano16h, CSYY18, GO17, LW13a, LKL18, XW13, PHWM10, Sim15b].

IP
[ZXYL16].

Invert
[yWpNyL11].

involution
[BCM12, BCM13, TS16a, WWBC14].

IRIW
[KK10, MZ17a, TLL13].

Inert
[ZXYL16].

invertible
[SLY16].

Investigating
[SPM+13].

Investigations
[Bl16a, Har14].

ISN
[ISO/IEC BCM12, BCM13, TS16a, WWBC14].

ISO-IEC
[BCM12, BCM13, TS16a, WWBC14].

ISO/IEC
[BCM12, BCM13, Isogenies [Y+17].

Isogeny
[KAK18, Lau17].

Isogeny-Based
[KAK18].

Isolated
[YS15].

Isolating
[LG12].

ISSAC
[Wat10].

Issue
[Ano13d, Ano16a, Ano16b, Ano16h, CSYY18, GO17, LW13a, LKL18, XW13, PHWM10, Sim15b].

Italian
[Sac14].

Italy
[Cra12].

Item
[YD17].

Iterate
[HHR11].

Iterated
[ILPS12].

Iteration
[CCZC13].

Iterative
[SXL16].

ITUbee
[FXP+17].

J
[Bar12, Led16, Sch15a, WZM12a].

J2ME
[GPT12].

J2ME-Enabled
[GPT12].

Jacobian
[BAAS13].

Jacobians
[Hes12].

Jacques
[Nac12].

jamming
[YSJ14].

Janet
[Ayu12].

Japan
[Sah13, Maf16].

Japanese
[Don14].

Java
[GPT12, XHH12].

Jaypee
[CGB+10].

Jean
[Dew11, Nac12, SR14].

Jean-Baptiste
[Dew11].

Jean-Francois
[SR14].

Jean-Jacques
[Nac12].

Jeffrey
[Mei10].

Jill
[Mei10].

Joe
[Car11].

John
[Wes16].

Johnny
[HM12, RAZS15].

Join
[PD14].

Joint
[ABF12, LC15, PMZ13, TCN+17, LSQ11b, ZC12].

Jonathan
[Ful10, Mou15].

Jones
[Ber16a].

Jose
[ACM11].

Joseph
[Mei10].

Joshua
[Ano17b].

Journey
[CST17].

Joux
[AY12].

JPEG
[AOT13, LSQ11b, LC15, MAL10, QZ14, SK12a, WHZ12, WLIH13, ZC12].

JPEG-2000
[ZC12].

July
[Wat10].

Junction
[VDB+16].

June
[ACM10, ACM11, Gill0, Kap11, Wes16].

Juniper
[CCG+16, CMG*18].

Juraj
[Gas13].

Just
[Pfi10].

JXTA
[AMHJ10].

K
[BKLS12, BKKV10, BB10, CVM14, CT18, CLY14, Che15, CJ13, Ch16, CCT+14, CNT12, Cou12, CMA14, DWWZ12, DL12, EAA+16, FZT13, FVS17, FBMI2, GFBF12, GT12, GZZ+13, GSW+16, GST13, GPT14,
[YYO15].

Large-Scale [DM15, JKHeY12, LQD+16, dCCSB+16, FXP12, GSN+16, SR10, ZZKA17, ZVH14].

Lattice [ADM12, Ano11b, AYS15, BSJ15, EM12, FGM10, HPO+15, HKR+18, LPO+17, MLO17, PG12, AAT16, Dra16, LLM+19].

Lattice-Based [ADM12, Ano11b, AYS15, BSJ15, EM12, HPO+15, HKR+18, LPO+17, MLO17, PG12, AAT16, LLM+19].

Lattices [Boy13, Lau17, TH16, XZ12, ZQQ15, Kre13, Tia15, XLW16, yQyWqZ13].

Layer [LHM+15, ZHX16, HQY+16, LKK13, ZHIH+17].

Layered [BS14, GRL12, WWL+14, JCHS16, ZC12].

Leakage [AV12, BKKV10, CBL13, DCA18, DHB16, FPS12, HHH+13, HHP17, IL15, LTZ16, NTKG17, NTY12, Pan14, SGH15, TTH15, Wan18, XZY+12, YZLC12, YZ12, YCZY12, ZYT13, ZWTM15, ZM16, ZZZ17, ZY17a, ZY17b, ZYM18, CQX18, DLZ16a, DMWS12, GV14a, GLL+18, SGP+17, YLZ+16, ZWM14, ZCC15]. Leakage-Free [IL15, TTH15]. Leakage-Resilience [NTY12]. Leakage-Resilient [AV12, FPS12, LTZY16, Pan14, XZY+12, ZYT13, ZZZ17, ZY17a, ZYM18, ZY17b, CQX18, DLZ16a, GV14a].

Left-to-right [BBG+17]. Legacy [CS12, Smi11b, CGH17]. Legal [ZTSR12].

LeGall [Ara13]. Legislation [PH12].

Lemonade [DFKC17]. Lemons [DFKC17].

Less [TKR14, GM13, Kam16]. Lessons [KMP+11, TGC16, WL11, CMG+18]. Level [AW17, Ano15a, BRPB13, BKJP12, CCW+10, DA10, Gh12, HS18, JWJ+17, KPC+16, KGP12, MV16a, ZLD15, ABBD13, MEFQ12, RS17, UUN13, VS11, YT11a, BAI12].

Leveled [BGV14]. leveling [LY15]. Levels [HLC11, LRL17].

Leveraging [DMS+16, HCM11, MvO11, SKGY14].

Lewis [Mar10a]. Lexicographic [ZAC17].

Light [JEA+15]. lightning [Ran10]. Lightweight [AMKA17, AARJ12, BSS+13, BFTM16, BKL+13, BM11, CGC16, DMWS12, CWP12, CCF17, DS11, ESS12, EKP+13, FQZF18].
GNL12, GAI+18, GMVV17, GMSV14, HZWZ18, HCETPL+12, IS12, IOM12, KE19, MO12, MFG16, MPM+17, PCDG14, Shel14, ZWY+13, ZLY+19, AMN18, AATM18, AKKY17, BLL+19, Bor10, BBB16b, CL11, FLL+14, GTSS19, KDH15, LLZ+16, MCN+18, MNP12, MV15, MHY+18, PJ18, PSdO+13, SGJ+18, Tan12b, TG17, WLZ+16, WCFW18, WWCBC14, XWZ+18, XHM14, YCT15, ZSW+18a. Like [BW16, ERLM16, CGCS12, KO16, LJ15, LJ16, RS14]. Lilliput [BFMT16]. Limitations [DR12]. Limited [DFKC17]. Limited-Use [DFKC17]. Limits [AS16, GV14a, KS12]. Lindell [Ful10]. Line [FEL12, YMWS11]. Linear [BC1+13, BW12, CGCS12, CMA14, EKP+13, FGMP12, LGLL12, LJ15, LJ16, LFW+16, WGF16, YCL17, BBEP14, Bul10a, FES10, MOGOGCC15, Her10, HCCC11, LJ15, O811, SA14, XSWC10]. Linear/Linear [EKP+13]. Linearly [ADD10]. Linguistic [OO18, OO10, OTO18]. linguists [Maf16]. link [Ham12, VS11]. link-state [Ham12]. Linkable [YLA+13]. linked [JCHS16]. linking [NPH+14]. Linux [Fel13]. Lipreading [OS12]. LISISAP [VS11]. List [AEHS15]. Listening [Lan17]. live [ZZCJ14]. live-wire [ZZCJ14]. Liveness [OS12]. Lives [Acz11, McK12]. LLL [NV10]. Load [AN12, FXP12, PRN+19]. Loc [CDPLCA16]. Loc/ID [CDPLCA16]. Local [pNyWyY+14, TMK11, VGA15, WYW+13, LMJC11, LWW+10, PTK14]. Locality [Kaw15, NCCG13]. Localization [SRAA17, GAI+18, NC13, SCY15]. Locally [Yek10]. locating [ZYL+10]. Location [Kim11, PSD15, PAK15, WPZM16, CHX13, Har14, NZL+15, PC14, YXX+18]. Location-based [Kim11, CHX13, NZL+15]. Location-dependent [PKA15]. Location-Privacy [PSD15]. Locations [KD12a, Alp18]. locator [MJS13]. loci [FES10]. Locking [AB15, FHS13, LCW+16, LHA+16]. Loève [BCP11]. Log [YKK18, PGLL10]. Log-polar [YKK18, PGLL10]. Logarithm [BGJT14, CLL16, VM14, AMORH13, BGJT13, MM13, Mes15, TPL16]. LogCA [AW17]. Logging [YNR12a, YNRT12b]. Logic [Cll11, DGP10, Hel17, RZZ+15, Ter11]. logical [CO11]. Loiss [DG12]. long [CFVP16, BF12]. long-term [CFVP16]. look [AY14a]. look-up [AY14a]. Looks [ERLM16, KTA12, Sch16]. lookup [LDDAM12]. lookup-table [LDDAM12]. loop [DWA12]. losing [SLZ12]. Loss [DK16, JTZ+16, DMV15]. Lossless [DA12, LZA+12b, GJ13, TTL10, WH13]. Lossy [BKPW12, CW12a, DN12, ASO14, CQX18]. Lost [WBA17]. love [Fag17, FHM+12]. Lovers [Keb15, Mac14]. Low [ABC+17, AWSS17, Ba10, BCO13, BCG+12b, CMLS15, DJL+12, FHS13, GST13, G12, LJK17, LBR12, Man13, NVM+17, RS17, SAJL16, WT10b, ZJ11, CZ14, Chi13a, FQZF18, LKGY10, LKAT12, LEW19, MV15, NR11, ZPZ+16]. Low-Bandwidth [GST13, NR11]. Low-Bit-Rate [LJK17]. Low-complexity [DJL+12]. Low-Cost [ABC+17, GI12, Man13, NVM+17, LEW19]. Low-Distortion [FHS13]. low-end [Chl13a]. Low-Latency [BCG+12b]. Low-Overhead [AWSS17]. Low-Power [SAJL16, WT10b]. low-resource [FQZF18, MV15, ZPZ+16]. Lower [LJ15, Sha10]. lp231 [LK14]. LPM [LD13, PJ18]. LPN [HKL14]. LPSNR [LP12]. LR [Y12, ZWM14]. LR-FEAD [ZWM14]. LR-UESDE [Y12]. LSB [DAA10, Tan12a]. LTE [CLM+12, DLK+16, LL13, QMW17, SGC16, TM12]. Lucas [RW12]. Lucia [DDS12, Dan12]. Lucky [AP13]. Lumpur [HWG10]. LUT [HF14b]. Luther [ABJ13]. LWE [BV11, XY18].
MitM [TY16b]. mix [WGJT10].
mix-networks [WGJT10]. Mixed [ST16].
mMTC [CML+18]. Mo [RBS+17]. Mobile [BCD+12, FD11, GPT12, GdM16, HvS12, HLKL15, KP12, KKA15, LH12, May15, NRZQ15, Sch15b, SFE10, She14, SAA12b, WPZM16, WT10b, XHH12, XNKG15, XHC+12, YHL16, Yon11, ZLDD12, Aia15, AAZ+16, ALL+18, CLP+13b, CTL12, CWSN11, CT12, uHAN+18, FHH10a, FA14b, FHZW18, GM16, GH16, HZW17, HZW18, HL14, IB11, Kem11, KKA14, KKM+13, KKM+14, KKG14, KSB+17, LH13, OYHSB14, Par12b, hSZZ15, SSAF11, SKB+17, SHBC19, TKHK14, WSC14, WT10a, YHH18, YNX+16, ZLDD14, ZDW+16, ZC12, MFB+13, SLL10].
mobile-cloud [KKM+13]. mobiles [GCSAddP11]. Mobility [CLH13, LNK+18a, CL11, GH16, LH11a, MYYR13, YLS12, ZX11]. Mode [HZ11, Mar10c, PAF18, gWPNyY+14, WLC12, Fay16]. Model [AW17, App13, CT18, CLP13a, GLG12, GJO+13, GJJ15, GJZ17, HZ15, IA15, Kar12, KP17, LHM+15, LZC+12b, MVR12, PYM+15, PNRC17, SZZ14, SPM+13, TBCB15, WWC+11, WWH12, XZY+12, Yon12, ZH15, BL11, CK11, CDPLC16, DFJ+17, HKT11, HTC17, KSU13, LZT12, LCY+16, LL16b, MGP10, Mas17, MM13, NB13, WYL13, WZM12a, WZM12b, YC12, ZCL+19, TCH15]. Model-Predictive [TBCB15]. Model-based [IA15].

Model-Predictive [TBCB15].
Modeling [CJFH14, GBNM11, LTPK16, MKN13, PAS13b, Ana14, CDGC12, MY+18].
Modular [Abe12, VN17]. modulation [CPB17]. Moduli [APPV15]. Modulus [CNT12, LyWIZ12, SEY14, KFL+10].

MPSS [SLL10]. MRAM [DSB16, PAF18, VDB+16]. MRAM-Based [VDB+16]. MrCrypt [TLM13]. MSP430 [KSH18].

MSP430X [GL12]. MST_1tn3 [SvT10]. Much [DL15]. Muhammad [ABJ13]. Multi [ASS15, BBEPT14, BRT12, CWL+14, Chi12, GVV12, GZJ12, HYS11, HC12, HRS16, IG11, KTT12, KMO14, LyWSZ10, MZHY15, MEFO12, MLBL12, NGAuHQ16, OKG+12, OSSK16, SK12b, TWZ+12, TTM+17, Wan14, WOLP15, XWSW16, YWW10, Ye14, ZC13, ZQQ15, ZLDC15, BGG+13, CPPT18, CLP+13b, CFVP16, CJXX19, CG12b, CLHJ13, CW14a, CZ15b, DFJ+17, FHZW18, GMOGCCC15, GPVCD12, GZS+18, HL14, HL14, HCC11, HLC12, ISC+16, JCHS16, KM11, LXMW12, LXX+14, LCT+14, LH13, LWY12, Mas17, QMC17, SCY15, SWW+16, SSS11, TLL12, WDZL13, WXX+17, XLYZ16, XHM14, YCC16,ZZKA17]. multi-agent [GPVCD12]. multi-authenticated [HL11].

Multi-Biometric [NGA16, MLBL12]. Multi-bit [TWZ+12]. multi-channel
Multi-ciphertext [CFVP16, SWW+16].
Multi-criteria [ZZK17].
Multi-crypto-processor [BGG+13].
Multi-domain [IG11, QMC17].
Multi-factor [HC12, CLP+13b].
Multi-flow [LWY12].
Multi-gateway [WXK+17].
Multi-generation [CJXX19].
Multi-hop [LCT+14].
Multi-instance [BRT12].
Multi-KeyWord [CWL+14, XWSW16, OSSK16, GZS+18, LXX+14].
Multi-lateral [SCY15].
Multi-layered [JCH16].
Multi-Level [ZLDC15, MEFO12].
Multi-linear [BBEPT14].
Multi-Party [KMO14, TYM+17, GVW12, LyWSZ10, XLWZ16].
Multi-Pixel [YWY10].
Multi-precision [SK12b].
multi-privileged [WDZL13].
Multi-Proxy [ASS15, GJZ17].
multi-purpose [KMI1].
Multi-Receiver [WK14, Chi12].
Multi-sawtooth [Ye14].
multi-scale [CG12b].
multi-scroll [GMOGCCC15].
Multi-Secret [HYS11, ZC13, CW14a, HCC11, HLC12].
Multi-Segment [WOLP15].
multi-server [CLHJ13, FHZW18, HL14, ISC+16, LXMW12, LH13, SSS11, TLL12, XHM14].
Multi-Signature [ASS15].
multi-stage [M17].
Multi-target [HRS16].
multi-use [CZ15b].
Multi-User [MZY15, OKG+12].
multibit [KPS10].
Multicast [CC14, BAL10, HGKY11, LIT10, NACLR12].
Multicoupon [HHDFGC15].
Multidevice [DPCM16].
Multidimension [AJA16].
Multidimensional
[Her10, WWBC14, HMCK12].
Multifactor [MMY12].
Multigigabit [PP10b].
multi-hop [ADF12].
Multilayer [NXH+17].
Multilevel [FMS12b, HF14a, NSA15].
Multimedia [NSA15, PMZ13, PZPS15, PM+15, WLY+15, ZW15, Zha15b, ZSA12, HM10, HWYW14, LLLK10, Wan13, XWSW16, TW14].
Multimodal [GM16, Sar18a, AHM+18, ATT+10, MHT+13].
MultiObjective [ZÁC17].
Multipartite [HR13].
Multiparty [BDOZ11, CCL+13, Fri10b, ADMM16, LDDAM12].
Multipath [LH12].
Multiple
[DSB15, DUN12a, FR16, KBL11, LTC+15, LQD+16, NDC+13, SY14, SC10, SKS+18, Sta12, WWL+14, GZS+18, LWZG10, LTC+15a, LZC17, MN14, RWZ13, TKHK14].
Multiple-Layered [WWL+14].
Multiple-Parameter [NDC+13].
multiple-precision [MN14].
Multiple-Secret [SC10].
Multiplication [AK14, CMO+16, HVL17, SK12b, YTS12, AAT16, SKH15, SF12].
multiplicative
[KHHH14].
multipliers [ARM15].
Multireceiver [FHH10b].
multisecret [FGMP12].
Multistream [WXL+17].
Multitone [GL10].
Multivariate
[DP17, ST16, YL17, YDH+15].
multiwatermarking [WL12].
multiwavelet [PPW10].
Munich [Wat10].
Music [NTKG17, Wes16].
musical [Ana14].
Mutt [Tan14].
Mutual
[CJP12, GI12, GM14, Kim16, SBS+12, WT10b, AATM18, BDM18, CJP15, Cho14, CL11, FHH10a, Far14, GPLZ13, GH16, HDPC13, IB11, JNUH17, JKAU19, KIH19, KP18, KLW+16, LK+17, MMP19, SPLHC14, TG17, XMHD13].
MVP
[CD12].
mvSERS [HLKL15].
My
[GPT14, CMG+18].
Naïve [ZW+17].
Name [YCM+13].
Named [LLZ+17].
Names
[ABJ13, MPJ+16].
National
[Fid18, ABJ13].
Natural [ZWS15].
nature [KL13].
Naval [Don14].
Navy
[Maf16].
Nazis [Hea15].
NDSS [Ano10].
nearest [LVR10].
nearby [PHGR16].
necessary
[TD14].
NECPPA [PZBF18].
needs
[Sch12b].
neglected [Joh15].
Negligible
[DF11].
negotiation [MMP19].
Neighbor
[KA18, LVR10].
Neighborhood [DA10].

Network-Assisted [KCC17]. network-based [YLS12]. Network-Coded [She14]. Network-on-Chip [Bis17]. Networking [LCK11, LLZ+17, ZHL15, Kim11, LCM+17]. Networks [ABCL17, ABC+17, BN14, BPSD17, BFMT16, CS14, CSH+18, DS11, DF16, FMS12b, GMV17, HZC+12, HBC13, HK14, KHI10, LLCI1, LL15, LHM+15, LZCK14, LWCJ14, LLZ+12, MPN+17, NSA15, NRY+14, OO12, OKG+12, PYM+15, PCPK14, RWLL14, SWYP12, She14, SP15b, Smil11b, SL111, SZT18, TCN+17, WXL+17, WLY+15, XHC+12, YMI6, ZC13, ZW15, Zha15b, ZLDD12, ZSA12, Aia15, ASO14, APK+18, AIB+16, AIKCI18, ADF12, BDK11, BLAN+16, BBB16b, CDGC12, CLM+12, CML+18, CLSW12, CL11, DSCS12, DK12, DLN13, EEA13, FA14b, FMA+18, GH16, HGYY11, HZC+14, HZWW17, HCC11, HCM11, HTC+10, HYF18, JNLI17, JLT+12, JM1W+16, KM10b, KLC+10, KO16, KLV+16, KDW+17, LLLS13, LC17, LMJC11, LXY14, LK17, LN+18b, M5M+18b, QMW17, RPG12, SGCR+16, SA12, SGJ+18, SZMK13, lSZZ15, SKK10, TODQ18, TKHK14, WGJT10, Wan13, WW14, WXK+17, WX13, XWDN12, XCHCI4, XMHD13, YHH16, ZWQ+11].

networks [ZR11, ZCLL14, ZTW16, ZLDD14, ZHH+17, ZX11, LNK+18a].

Neural [CSH+18, SKS+18, YZLC12, EEAZ13].

Neuroscience [BSR+14, JW14].

Neutrality [Kha10]. Neutrality-Based [Kha10]. Nevada [IEE10]. never [Bai12].

Next-Generation [MR14a]. NFC [LY14, Mic16]. NFSR [WGD18].

Niederreiter [HIC17, MVVR12].

nobody [Sto12]. Node [NYR+14, OKG+12, LC17, PX13, SAAB10]. Node-Capture [NYR+14]. Nodes [VGA15, ZYL+10].

Noise [ASN11, YM17, ZHH+17]. Noised [JLS12].

Noisy [ASN12, HZ+14]. Non [AS17, AMH+16, BCI+13, CG14a, CPS16, DJL+12, DPW18, EKP+13, FHKP17, FMVN14, HKB14, KTT12, LLG15, MH13, MSas12, OOR+14, Pas13a, RMG18, Svo14, WgMW12, YNQ15, YKCI12, ZLDD12, AY14a, BS15, CS11, ESI14, GI12, GI1+12, Kre13, Lan11, LP11, MSas13, SES+16, SXL6, XSWC10, Yan14]. non-adjacent [Kre13].

non-associative [BS15]. Non-Black-Box [CPS16]. Non-blind [HKB14, RMG18].

Non-contextual [Svo14].

non-cryptographic [AY14a, ESI14].

non-dynamic [SES+16]. Non-interactive [BCI+13, Pas13a, Yan14]. Non-intrusive [MH13].

non-iterative [SXL6].

Non-Linear [EKP+13, XSWC10]. Non-Linear/Linear [EKP+13].
Non-malleability [KTT12].
Non-Malleable [DPW18, MSas12, CG14a, FMNV14, OOR’14, Pas13a, LP11, MSas13].
Non-monopolizable [DJL’12].
Non-perfect [FHKP17].
Non-Repudiation [LLG15].
Non-stationary [ZLDD12]. Non-tamper [WgMW12]. Non-uniformly [YKDL12].
Non-Volatile [AMH’16,YNQ15,CS11].
NonInteractive [KOS16,GOS12].
Nonlinear
Norm [Low12]. Note [HYS11,Gal13,Hwa11,Lin11]. nothing [Cer15]. Notions
[KFOS12,SNJ1,Sal12,BP11]. Novel [CLHC12,KRHD13,LLG15,LyWZZ12, LH1b, MJGS12, MCS’15, SWM’10, SC’12, VN16, WHZ12, WZXL12, YZX’12, Ye14, ZMZ17, BOB13, CH10, DDFR13, GPLZ13, HCCC11,J XLZ15, LXC11, LMJC11, LH13, LWW’10, LML’13, MRT10, NZL’15, PZBF18, SYW17, Sun16, TG17, jT12b, WYL13, WZG’12, YWT’12, ZBR11].
November [Kap11,LCK11,Yan11]. NSA [ABJ13,Ano13b,AHS13,Bud16, Men13b, Sta13, Tox14]. NSDG [SSP12]. NTOW [BS15]. NTRUEncrypt [DWZ18,KY10].
NTRUSign [Wan10]. NTT [MCDB12].
NTRU-Based [MCDB12]. Nuclear [Hel17].
Number
[AD11,BKLS12,CDK’10,DSL18,Fok12, Ham17, KAI18, LTPK16,LCLW17,MFG16, NIS12, NNAM10, Shal0, SARA17, SRK’17, CFY’10, CP13, LLP’18, LGKY10,Lin11, MS12a, MRT10, SH11, Sti11, XSWC10].
Numbering [MNS11]. Numbers
Numerology [GG11]. NVMM [CS11].
O [CDD13]. Obfuscated
[LSM16,OWHS12,ZM16]. Obfuscating [BGI’10,BGI’12]. Obfuscation [ABCL17, AS16, AWSS17, BBC’14, BV18, BCP14b, BR14, CZ15b, DRS16, EMW14, FKO15, GGHR14, GGH’16a, GGHW17, MH14, BBGT12, CFVP16, GGH’16b, OSSK16].
Obfuscation-Based [ABCL17].
Obfuscators [PSD15]. Obfuscated
[AWSS17]. Object [BCK17]. Objects
[ZCWS15,HST14,SMBA10,WW13].
Oblivious
[DN12,WCL’18,CGH11,RYF’13].
Obscurity [Edw14]. observation
[WHY’12]. Observations [HCL’14].
Obtaining [BB10]. Occasion [Nac12].
October [CGB’10,IEE10,IEE11b].
OFDM [CLZ’17].
[Par12b]. Offers [Pau10]. Office [Mor12].
officers [Maf16]. Official [Küp15]. Offline
[Ano15a,GAS’16, JMG’16, JW’17, LKAT12, RSM15].
Offline/online
[LW’17]. Offloading [JHCC14]. Offs
[ASBD16,BS14,SR10]. offsets [YQH12].
Old [Che17,GY13]. on-chip [BAB’13].
On-Line [FFL12]. On-siteDriverID
[SGGCR16]. On-the-fly [PS14]. One
[CP16,DSMM14,DCAT12,FD11,HP14, HG12,Mat14,NA10a,PC16,TYM’17, XW12,XXYYX11,XZLW15,Yon12,BM15, FHH10a,GPLZ13,HRV10,LP11, LW10,LW13b,LML’13, RK11,Rus15,SM10a, TCS14,QZWZ10]. One-Dimensional
[XXYYX11]. One-Round
[TYM’17,XZLW15,Yon12,XW12,TCS14].
One-Sided [HP14]. One-Time
[NA10a,DCAT12,BM15,FHH10a,GPLZ13, LW10,LW13b,LML’13]. One-Time-Password [FD11]. One-Way
[CP16,DSMM14,Mat14,HRV10,LP11,
RK11. Onion [KZG10]. Online [BPSD17, JMGG+16, KSD+17, PSM17, SKGY14, SZTZ18, WXY+17, ZHL15, CCG10, HYF18, KveE18, LKAT12, LJW+17, MSM+18b, SKS+18, SYW17].

TLL13, YWT12. protection-key
[HLYS14]. Protocol
[BL12, BC14, BCM15, BSSV12, BFK16, CC14, CCM17, FLH13, FMTR12, Fra16, GI12, HsV12, HC12, HLo10a, HCP11S12, HCETPL12, HKL12, JTZ16, KMO14, LNZ13, LCCJ13, LNXY15, MBC15, MR10, PSS13, SBS12, SGC16, TYYK12, WT10b, XJR17, YS12, YWF18, YZW12, ZXZ11, AAT18, AGK13, AIB16, AIKC18, AN15, BDM18, BGAD12, CSD18, CCSW11, CJP15, DLK16, EA12, FA14b, FIO15, GMSW14, GLM11, HPC12, HWB12, HLo14, IC17, IOV18, JKL16, JXLZ15, Kim11, KO16, LLLS13, LDDAM12, LKKL13, LWS10, LXMW12, LEW19, LY14, ML133, NCL13, NLYZ12, OS16, PR12b, SPL11C14, SB17, SGG18, SWS16, SSS11, SSLPT13, TG17, Tso13, TPKH14, VS11, WCFW18, WZM12a, WZM12b, WLS14, WMYR16, WT10a, WTT12, WCCH18, XCL13, XHM14, YC12, YZZ14, YMM13, ZWQ11, ZTZ16, ZYC17, ZXW18, ZWX18, ZG10, ZZC15, ZX11, BOB13, CJP12, LFGCCG14).

Protocol [Ste15b]. Protocols [AP13, ABHC16, BMP12, CCK12, CCK16, CCF17, CCD15, Con10, CM11, Fra15, GRL12, GM11, GLR10, HLC11, HLo10b, KOS16, LY16, MS16, MT12, Mur16, NYY14, NSMS14, PS14, SBS12, Sch12c, SOF12, TM12, Xio12, YRT16, Aia15, Ano13b, ACM12, CML18, CR10, CLCZ10, DGJ14, FTV10, GBNM1, GLR13, HSH11, Ham12, HDPC13, HZW17, HST14, KJN16, Ksu13, KKK16, LKKL13, MN10, NR11, Nos11, Nos14, SD10, YSL10].

Prototyping [KPC16]. Provably
[BKLS12, CC14, EKB16, Rog16, YMSH10, ZX11, ZPXX17, FA14a, HRS13, LHN11, WB12, XCL13]. Provably [BCGAP12M1, BCM12, BCM13, BHJ14, FH10a, GLL18, IL15, LH11a, LL16b, PSM17, WMS12, XJW13, YC12, YZZ14, ZG10, ABBD13, FIO15, SXL16, XWXC14]. prove

DGJ14]. provenance [CDL18, ZOSZ17]. Provide [Ano15a]. Provided [KS12].

Providence [Sch15a]. provider [DFJ17]. providers [AKK17, BK12b, YWK10b].

Providing
[DLN13, HTZR12, KS18, MLM16]. Proving
[Sar14, AGH17]. Proximity [IW14, Alp18].

Proxy [AS15, GSW16, GJ15, GJ17, HG1Y11, HX15, KP12, LSL15, LAL15, LSC12, MLO17, MBC15, NAL17, Pet12, PR17, SY13, WY10, WMS14, XJW16, YM11, YCM13, BGP17, CLH16, FSGW11, FSGW12, GHI2, HWDL16, HYF18, KKM14, LCT14, LF15, LL16a, LL16b, QMW17, SL12, SK17, Tia15, Why12, Wan18, WLS14, XWXC14, YZCT17, ZLY10, ZDW16].

Proxy-invisible [SYL13]. Ps [HDWH12].

Pseudo
[NN12, XXYY11, CFY10, KM10a, MG15, PLsv1E10, SH11, SM11, XSW10, Zim10].

Pseudo-Random
[XXYY11, CFY10, KM10a, MG15, PLsv1E10, SH11, SM11, XSW10, Zim10]. pseudonym [XHM14]. Pseudonymous
[BDFK12]. Pseudoprime [DW12].

Pseudorandom
[AS17, BCGH11, BK12a, Kla10, MFG16, CP13, GCH15, HRV10].
Pseudorandomness [Sha10]. PSMPA
[ZLDC15]. PSO [TLL13]. PSPACE
[JJUW10]. Public
[Ano11b, ABW10, BVS13, BB14, BKLS12, BBK10, CT18, CLP13a, Che15, CNT12, Cou12, FAM12, KSI17, HCT15, IM14, JLT12, KFOS12, LLS16, LPd10, LSQ18, LZC14, LH18, MZHY15, MMP14, MT11, Mat14, MPRS12, Muf16, NTY12, ORm16, PD15, RSBGN12, RW12, RBHP15, SG18, Saa12a, SK12b, SWM10, Sia12, SC12, SL16, SGP17, SvT10, TMC15, TT12, WP17, WZ15, WWHL12, Wil18, XNK15, XZ12, Xio12, XJW13, YL17, YK11, YFK12, YMC17, ZY17a, AA14, ATKH17, BS15, BSW12, Dur15,
HZWW17, HL14, HTC17, LSBN14, LLY15, LFWS15, LH13, LL16a, RPSL10, SES+16, SY15b, VN17, YT11b, YYS+16, ZZ11, ZCC15, ZCL+19, ZY17b, FB12.

Public-Coin [CLP13a, Mat14].

Public-Key [BVS+13, BKKV10, GKS17, KFOS12, LLH18, MMP14, MPRS12, NTY12, Orm16, PDNH15, RSBGN12, RW12, SK12b, SWM+10, Sia12, XNKG15, XJWW13, YKC+11, YFK+12, ZY17a, ABW10, IM14, LPdS10, LZC14, BSW12, RPSL10, SES+16, VN17, ZCC15, ZY17b].

Publication [ZTL15].

Publicly [NMP+13, SZQ+17, YNR12a].

Publish [BGP+17, DLZ+16b, OFMR16, PRSV17, SLI11, TKR14, YSM14].

Publish/Subscribe [DLZ+16b, OFMR16, PRSV17, TKR14, YSM14].

published [MYYR13].

Publisher [Ful10, Mur10].

Publishing [VSV15, LLL+17b].

Puebla [AB10a].

PUF [BDM18, CCKM16, CCM17, DS16, KPKS12, LKM+12, MVV12, SRK+17, VDB+16].

PUF-Based [CCM17, KPKS12, MVV12, BDM18].

Pufferfish [KM14].

PUFKY [MVV12].

PUFs [IGR+16].

pulse [MRRT17].

pulse-response [MRRT17].

punctured [MG15].

Purpose [GBFB12, Gue16, ABDP15, DGNJ14, KM11].

purposes [ABB+14].

push [Wu17].

Pushdown [CCD15].

Pushing [FHV16].

Puzzle [IBM13a].

Puzzles [RSBGN12, dCCSM+12, dCCSB+16].

Py [DGIS12].

Py-Family [DGIS12].

pyramid [MHT+13].

Q&A [Hof15, Hof16].

Q3 [Ven14].

Quaeda [Mac14, Keb15].

QC [CY14, HC17, VOG15].

QC-MDPC [HC17].

QIM [LJK17].

QIP [JJUW10].

QS [AZPC14, HDWH12].

Quadratic [KRDH13, SEY14, YDH+15].

Quadraticity [MS12b].

Quality [CS12, NN12, YCM+13, SS11, WZLW13, WKH11].

Quantitative [BL15, MLBL12, MV16b, HM10].

Quantization [SSA13].

Quantization-Based [SSA13].

Quantum [Ano15d, Ano16c, Ano17d, Aou17e, BB14, Ber14, BCF+14, Che17, CCL+13, Feh10, FKS+13, Fol16, JEA+15, Kar12, KP10, LLK18, LHA+16, MS16, MSU13, MKAA17, NNA10, NA10b, QCX18, RK11, RSM15, Sti11, TMI12, Unr15, WCL+18, Y+17, ZWS+18, ABB+14, BJ16, CML16, Edw17, FRT13, GJMP15, IM14, JSK+16, KKK+16, LLP+18, LyWSZ10, LCW+16, Lüd12, QD16, SK14, Svo14, YDH+15, vDKS11, Sen10, Yan11].

Quantum-Oblivious-Key-Transfer-Based [WCL+18].

Quasi [BGJT14, OWHS12, OTD10, BGJT13].

Quasi-Chirp [OWHS12].

Quasi-Cyclic [OTD10].

Quasi-Polynomial [BGJT14, BGJT13].

Quaternion [YWNW15, yWpWyYpN13].

Queries [HLW12, LHKR10, BKV13, CHX13, DFJ+17, HMCK12, PRZB12, TKMZ13, WL19].

Query [DCA18, GA11, PCDG14, WCL+18, AZPC14, BS13a, CH11, ED17, HWK+15, JCHS16, LKX+14, LW13a, YQOL17, ZHT16].

Query-preserving [GA11].

Quest [Fox13].

question [Cha13b].

Quisquater [Nac12].

Quorum [Kar12].

R [BS12, LVV11, PP10b, WYW14].

R3579X [BDK11].

Rabbit [FSWF11].

Rabin [Chi13a].

Radial [pNyWyY+14, CG12b].

Radio [KAHK17, CJP12, CJP15, EA12, Kim11, NLZY12, RGP12].

radio-frequency [CJP12, CJP15].

radix [GKCK11].

RAGuard [ZHS+19].

Rail [HF14b].

Raising [YWW10].

RAKAPOSHI [IOM12].

RAM [BYF+13].

Ramanujan [KK10].

Ramiﬁcations [ALR13].

Random [Ana14, CDK+10, DSLB18, EAA+16, FZT14, FSX12a, GSW+16, Gre17, KS15, LTKP16, LPL15, NIS12, NAM10, NN12, SC10, SRK+17, TM18, WS12, XYXYX11,
Refinements [LL11]. reflections [Hai17, OF12]. refractive [PHN+12].
Refresh [LSC+15]. Regaining [WBA17].
Register [TLCF16, LWK11]. Registers [LLGJ16, ZH15]. Registration [ISC+16].
Regular [CQX18, Wat12, WR15]. regular-expression [WR15]. regulating [DFJ+10]. regulatory [BP10]. regulatory-compliant [BP10].
Reinforcing [WXY+17]. Rejewski [Kap13].
Rekeying-Aware [QLL17]. Related [Cil11, CMA14, DGS12, HLLG18, Pud12, WLC12, MNP12]. Related-Key [CMA14, HLLG18, Pud12, WLC12, DGS12].
Relational [HPC10, RP12, WP17, BFG+14, BL11, GA11, JK13, PYP10]. Relations [BP11, FHS13, HLR11, WGD18, KGO10, LLM+19]. Release [KFOS12, RSBGN12, Umr15, WSS12].
remapping [PSJ+13]. Remarks [SSU12].
Remote [BCE+10, CS14, FYMY15, LZCK14, Sar12, SYY+17, VM15, WgMdZ12, WgMW12, CHS11, HU15, IB11, KKG14, LH10c, LNM+11, LNKL13, LWK18, LH13, MM12, Sar10a, WQZ+13, YSL+10]. remotely [Wat14b, YHHM18]. Removing [HKHK13].
Renewal [MMY12]. renewed [GPLZ13].
rental [LY14]. Reordering [Alo12].
Repositories [Ano15a]. repository [RSM15]. Representation [AGW15, BFM16, MHT+13]. Representation-Based [AGW15].
Representatives [Bla16]. reproducible [CW12a]. Repudiation [LLG15].
requiring [KHHH14]. Rescue [TSH17].
Resettably-Sound [COP14]. Resilience [NTY12, GLL+18]. Resiliency [YM16].
Resilient [AV12, BKKV10, FPI12, LTZY16, LD13, NYR+14, Pan14, PSD15, XZY+12, YZ12, YN12b, YCY12, ZYT13, ZWTM15, ZMM17, ZY17a, ZYM18, CQX18, DLZ16a, GV14a, KPS10, MM1313, SGP+17, Wan18, YSFL14, YKC+12, YLZ+16, ZY17b].
Resistance [CGCS12, PRC12, WLZ12, ZJ11, DLN13, FIO15]. Resistant [BK12a, CDK+10, GV14b, HF14b, WH12, WgMW12, WH17, YP117, GMZ15, HCC10, PBCC14, VCK+12, WTT12, YKGG13].
Resource-Constrained [CSH+18, YN12a, LLZ+16]. Resource-efficient [SZMK13, XWZ16].
Respiratory [RSCX18]. Response [GHS14, HLLL15, ZWH+16, MRRT17].
Rethinking [Che13, HU15, LSG16, MV16a].
Retrieval [BBB+16a, BTHJ12, CJP12, HK14, JMG+16, JHK12, Yek10, ZXZ+11, CJP15, SWW+17]. returned [War11].
reusable [RS17]. Reuse [ABF12]. Reveal

Scalar [YTS12, SHK15]. Scale [DM15, GU13, JKHeY12, LQD+16, CG12b, dCCSB+16, FXP12, GSN+16, SR10, ZZKA17, ZVH14].

Schedules [Pud12]. scheduling [MV16b]. Schema [AN12]. Scheme [ASS15, Bai10, BHG12, BS14, BKJP12, BDH11, CMS15, CLL16, CCW+10, CLH12, CHH12, CCZC13, CGY+13, CLH13, CWW12, DA10, DS11, DKS12, FR16, FG10, GZ+13, GHL11b, GJZ17, GLW12, GZH17, HYS11, HIDFGPC15, HMR12, HHP17, HL13, HP12, IL15, JSZS12, KU14, KP12, KTT12, KI12, KKA15, KSSY12, KLM+12, LSL12b, LHF12, LTH+15, LTYZ16, LHI11b, LGYY12, LTC+15b, LYY+18, LGPR14, MWZ12, MVR12, MRL+18, MN12, MSas12, NXB13, NLLJ12, NLY15, Pet12, PDA12, RVH+16, RMG18, SK12a, SJ12, SG+12, SD12, She14, ST16, SP15b, SJW+17, SSA13, Tan11, TTD13, TWZ11, WY10, WgMDZI12, WgMW12, gWpNyY+14, WH15, XWS16, XHC+16, XJWW13, YM16, Yami12, YZX+12, Ye10, Ye14, YTH17, YL17, Y+17, YHK+10, YMS11, ZPM+15, ZC13, ZQQ15, ZLDD12, ZY17a, AMN18, AHS14, APK+18, AKK+17, BOB13, BAL10, BM12, BBB16b, CCL11, CLSW12].

scheme [CH10, CT11a, CLHI13, CW14a, CTHP13, Cho14, DCS12, EAA+16, EZ15, FLL+14, Far14, FA14a, FHZW18, GZH12, GJ13, GMR+15, GPLZ13, GLM+16, GH16, GAI+18, GTSS19, HZW18, HBBRM+16, HL11, HCC11, HL16, HCC10, Hwa11, IB11, JNU17, JKAI19, JLT+12, JSZ+10, JM+16, KI11, KPP16, KDHI15, KK13, KMB13, KKM+13, KKM+14, KKG14, Kim16, KHI19, KP18, KLW+16, KDW+17, KWH16, KL11, LXYL12, LLZ+16, LSR13, LH10c, LZX10, LNM+11, LMJC11, LK12, LHS12, LNLK13, LK+17, LNK+18a, LWK+18, LK+18b, LFWS15, LHI3, LHH11, LWW10a, LWW11, LW13b, LZC14, LDZW19, LL16a, LL16b, LWY12, MCN+18, MMS17c, MK12a, MSas13, NR17, Nos14, PZBF18, QMC17, QMW17, RPS10, SGGC+16, SM11, Tan12b, TY16a, TK14, TD14, TL13, TTL12, UUN11, WWYZ11, WYYY11, yWpNyL11, WLH13, WDZL13,
WLZ+16, WLFX17, Wan18, WDKV19, WZ11, WKH11, WOLS12, WXK+17, XHH12, XWZW16, WXWC14, XXX15].

scheme [XMHD13, YC11, YCC16, YHHM18, YWK+10a, YCT15, YXD18, YQOL17, YMSH10, ZYL+19, ZLY10, ZXJ+14, ZYC+17, ZPYW12, ZHI+17, ZY17b, ZFH+18, ZLY+19, ZC12, ZBR11, DT13, LLZ+12]. Schemes [ABF12, BVS+13, BFM12, BBEPT14, BSJ15, CMLRHS13, CGL+12, Chu16, Des10b, FHKP17, FFL12, HSM14, HLLG18, HPO+15, LWL10b, LZCK14, MLCH10, MR14b, MMS17b, MBB18, MKRM10, Oba11, PB12, PDNH15, PH12b, Sch10, Shi11, SKH17, SSU12, VSR12, WGF16, YNR12a, YNR12b, Yik10, YWZ+12, AGHP14, AN15, AHL+12, CDGC12, CJXX19, CHS11, CCG10, CTL13, DDD14, DD13, DZ14, FPG14, FGMP12, FMA+18, HWDL16, HM10, KTUI16, LHYZ12, MM12, MA17, NZL+15, QYWX16, SES+16, Sar10a, Sar11, hSZS15, SAR18b, WW14, YT11b, ZCL+12, ZCLL14, ZT14].

Seattle [LCK11, KCR11]. Seberry [AHS14]. SEC [PA10]. Secondary [RS11]. Secrecy [ABD+15, BKST18, KZG10, TSH14, Yon12, AKY13, ABM+12]. secrecy-preserving [TSH14]. Secret [ASN11, ASN12, ADH17, Ayu12, Bai10, BBB+16a, BFM12, BBEPT14, Bri11, CCM+15, CFOR12, CCL+13, DR12, Dew11, EM12, EA11, FHKP17, FR16, Fok12, HYS11, HL10a, Has16, JLS12, Ku14, SK18, KOTY17, KK12, KK13, KSSY12, KS15, LH12, LPL15, Lin15, LCCJ13, LTC+15b, LJ16, LLKA19, Men13b, MNS11, NS12, Oba11, PCPK14, QSI18, SLL10, SC10, SS10c, SUS12, Sti15, TLW12, TWZ11, WKB16, WGF16, Wik18, XZY+12, XJR+17, YFF12, YWZ+12, ZC13, Ald11, ADG16, AKK+17, Ara13, BJ16, Bud16, Cha13c, CT11b, CW14a, CLZ+17, DD13, EEA13, EZ15, FHH10a, GJMP15, GLW13, HF14a, HH15, Hea15, HBBRM16, HCC11, HLC12, KI11, KTUI16, LXY12, LT13, LyW510, LHY12, LEW19, Mas17, Mc10, McK11, McK12, MB11, OO10, Pea11, Pet11, QD16, Rus15, SB17, SA12, SAR18b, TQL+14, TD14, UUN11]. secret [UUN13, WYL13, WZ11, WS12, WOLS12, Wu17, WX13, YC11, YCC16, YSC16, ZCL+12, ZZZ15, ZPWY12, LSC+15, BAI12]. secret-key [BJ16]. Secret-Sharing [BBEPT14]. Secretion [RSCX18]. Secretocracy [Ber16b]. Secrets [BT12, CG14b, DLWW11, FMS12a, KOB10, Man13, Bha16, Cop10b, GGH+16b, Gup15, HRS13, Sm11a, Aol17b]. Secure [ADMM16, AARRJ12, Ash14, AMH+16, BVS+13, BBLA16, BCW11, BCG12a, BCQ+13, BWA13, BJL12, BHJP14, BF11,
Security-Aware [LMS16, GHD19].
security-enhanced [AMN18].
security-modified [MM14b].
SEDURA [LY15].
Seed [AS17, LYHH14, Sun11].
seeing [Tox14].
seen [Goo12].
Segment [WOLP15].
Segmentation [WYW+13, ZZCJ14]. selectable [GLM+11].
Selected [DDS12, Dan12, MV12, BYL10, JY14, LH10a, vDKS11, JY14, MV12].
Selection [KD12a, RP12, SEY14, FXP12].
Selective [BTHJ12, GDCC16, LW12, LSC+15, LZC12a, LLH18, LZC14, LW13c].
Selective-Opening [LLH18].
Self [Cer18, CLL16, CHHW12, CSV15, DM18, HZ11, LCL+17a, LH12, LH11, SAA15, SM12, WHZ12, XWXC14, ZLDC15, AGH+17, FXP12, HL14, LT13, LH13, SH11].
Self-adaptive [LHM14, FXP12, SH11].
Self-authenticating [Cer18].
Self-Authentication [LH12, LT13].
Self-Certified [CCLL16, XWXC14, HL14, LH13].
self-composition [AGH+17].
Self-Controllable [ZLDC15].
Self-Identifying [CSV15]. Self-Recovery [SAA15, CHHW12].
Self-restoration [WHZ12].
Self-Synchronized [DM18].
Self-Synchronizing [HZ11].
Self-updatable [LCL+17a]. SELinux [SFE10], seller [KJN+16].
Semantic [YZCT17, HLR11, HTC17].
Semi [BDOZ11, KKK+16, WHZ12, ZLW15, PGLL10].
Semi-automated [KKK+16]. Semi-fragile [WHZ12, PGLL10].
Semi-homomorphic [BDOZ11]. Semi-trusted [XZLW15].
Seminary [SS10c].
Sender [WZ15]. Sensational [YGFJ15].
Sensi [Kem11]. Sensing [CCZC13, Kar12, uHAN+18, RPG12, XWZW16, Fay16].
Sensitive [Kaw15, RQD+15, Tan15a, QCX18].
Sensivity [YGD+17, LW+10].
Sensor [ABC+17, BN14, CS14, DS11, KH10, LLY+12, NNAM10, NYR+14, OKG+12, PX13, PCPK14, RWLL14, SP15b, YM16, ASO14, APK+18, AIB+16, AIFC18, ADF12, BLAN+16, BIB16b, CDGC12, CLSW12, DSCS12, DLN13, HTC+10, JHU+17, JMW+16, KLC+10, KO16, KLW+16, KDW+17, LC17, LNK+18b, PL16, SZMK13, SKK10, Wan13, WW14, WXL+17, XWDN12, XMHD13, ZYL+10].
Sensors [DL12, LIK+17].
Sensory [SGC14]. Seoul [LH10a, LW11a]. separation [MJS13].
Sequence [PFIS12, WZG+12]. Sequences [ADD10, Kla10, NN12, XXYYX11, HLC12, VM14].
Sequential [GLR10, GLR13, LLY15, WYL13].
Series [BJL16, Die12].
Serpent [PC16].
Server [BCO13, Che15, GMSV14, LSQL18, LY15, YLW13, ATKH+17, CSD18, CLHJ13, FA14b, FZH18, HDPC13, HL14, ISC+16, KMTG12, LXM12, LH13, SY15b, hSZZ15, SSAF11, SS11, TLL12, WT10a, XHM14].
Server-Aided [GMSV14, LLY15, SSAF11].
Server-Designation [Che15, LSQL18].
Server-Side [BCO13]. servers [DRD11].
Service [BKJK14, CCS14, Hay13, LDB+15, LBR12, NRZQ15, RGSG15, SPPC12, St15, VS16, AaBT16, KPP16, LHL+18, LW13a, MMP19, MLM16, Par12b, Wu17, YWK10b, ZX11, YCM+13]. Service-Based [LDB+15].
Service-Oriented [RSG15]. Services [ANO11b, DLZ+16b, MEFO12, OO12, ZHL15, AZPC14, CSD18, CHX13, GAI+18, IMB17, IG11, NZL+15, PP11, WDK19, XXX15].
Session [BS12, BKJP12, CFST17, SHS12, AN15, DCAT12, SHBC19]. Session-Based
[BKJP12]. Set
[Cor14b, EKP+13, YZ12, Con12, TMK11].
set-valued [TMK11]. sets [SF12]. Setting
[BKLS12, HHP17, MZHY15, TYM+17, XXZ12, ZHL15]. Settings [GZ12]. setup
[Jia16]. Several [Sas12, ZT14]. SGX
[WBA17]. SHA [AAE+14, ABM+12, App15, jCPB+12, LC17, MAK+12, SKP15]. SHA-1
[AAE+14, SKP15]. SHA-256
[App15, MAK+12]. SHA-3
[ABM+12, jCPB+12, LC17]. SHA1
[SBK+17]. SHA256
[GWM16]. Shadow
[Kap11]. Shadows [YSC+15]. Shakes
[CNR14]. Shamir
[BDSG+13, UUN11, WKB16]. Shannon
[AMS+10]. Shape [RITF+11, SY14, Pet11].
Shapes
[CJFH14, LMHH14, SY14, SGS14, ZZCJ14].
Share [LTC+15b, ZPYW12]. shareable
[XWY+18]. Shared [DRD11, LNX15, OKG+12, TYK+12, XJR+17, PZPS15, SA12, TG12, YYS+16, YNX+16].
shared-secret [SA12]. Shares
[CFOR12, KU14, SA16a, WY12]. Sharing
[Bai10, BFM12, BBEPT14, CCM+15, CFOR12, CCL+13, CCT+14, CLW16, DR12, EM12, FHKP17, FR16, HYS11, HL10a, HRS13, HLT+15, KU14, KOTY17, KSSY12, KS15, LYZ+13, LPL15, Lin15, LCCJ13, LTC+15b, LLKA19, NS12, Oba11, PSM17, QZZ18, SC10, SU12, SZTT18, TLW12, TZW11, WYCF14, WKB16, WGF16, XNKG15, XZY+12, YFF12, YWZ+12, ZC13, AKE+17, ADH17, CT11b, CW14a, EZ15, EA11, FGMP12, GPLZ13, GJ15, GLW13, GLB+18, HFF14a, HBBNN+16, HCCC11, HLC12, HYF18, KI11, KTU16, KPB17, LXY12, LT13, LFWS15, LAL+15, LyWSZ10, LHYZ12, LHL15, LLL+18, LEW19, LL16a, Mas17, OQ10, OQ18, QD16, Rao17, SAR18b, TD14, UUN11, UUN13, WLS14, WKK11, WS12, WOLS12, YC11, YCC16, ZCL+12, ZZ15, ZPYW12, SLL10].
Shell [WZCC18, YSS14, Tay14]. Shenzhen
[IEE11a]. Shield [NDG+17, KGV16]. Shift
[AKP12, ZHI15, LWK11]. Shift-Type
[AKP12]. Shifting [YWW10, CSS+13]. Shih
[Joh10]. Shopping [AHS13]. Shor
[MNM+16]. Short
[BHG12, CWWL12, NR12, SKV12, WQZ+16, XGLM14, LLY15, RD17, ZPYW12].
Short-Output [NR12]. Shorter
[Hü13, PPB16, TH16]. Should [Eve16]. shown
[Ana14]. shows [Goo12]. Shparlinski
[Sha10]. Shredder [AMH+16]. Shredding
[AMH+16]. SHS
[Ano12]. Shuffler [BVIB12]. Shuffles
[CKLM13]. shunned [Ree15]. Sicily
[Cra12]. Side [AN17, BCO13, CFE16, CDK+10, CBL13, DMWS12, DKMR15, EWS14, GWM16, GPT14, KOP12, NDC+13, PRC12, SG15, SR12a, Vua10, YL17, BVIB12, DJ+12, MFH13]. Side-Channel
[CBL13, EWS14, GWM16, GPT14, KOP12, NDC+13, PRC12, SG15, YL17, DMWS12, BVIB12, MFH13]. Sided
[HP14]. Sieve
[VM14]. SIFT [KLY+12]. Sign
[LL15, MEFO12, SPM+13]. Sign-On
[LL15, MEFO12, SPM+13]. Signal
[Kar12, BLL+19, MS13b, RITF+11]. Signals
[LJK17, XNRG15, AIA+18]. Signature
[Ano13a, ABF12, ASS15, AEHS15, BHG12, BDH11, CGB+13, FGM10, GJ15, GJZ17, GMSV14, HZ15, HPP+15, HHP17, Hü13, JL16, LTH+15, LGPH14, MM12, NBX13, PH12a, ST16, TTH15, WZXL12, WLB15, WYML16, WHLH16, XGLM14, Y+17, YHK+10, YMSW11, YLA+13, ZJ14, ZLH+12, AGPH14, CLSW12, CCG10, DZ14, DLN13, HYWS11, Hwa11, JZS+10, LWZ10, LL16b, NOS14, QYWX16, QMW17, QCX18, RSM15, SLM10, VSS1, WSC14, XIW16, YWL+17, YLS12, YKC+12, ZLY+10]. signature-based
[DLN13, QWM17]. Signatures
[Ano15a, ABC+17, AYS15, BBC+13, BDFK12, BHH+15, Fuc11, GY13, GdM16, HS18, Hü13, HRS16, HBG+17, MKF+16, MCF17, MKAA17, ORM16,
PST13, TH16, ASVE13, BDL+11, BPP10, GMS11, Her14, LLY15, PPB16, SEXY18, Tia15, ZQWZ10, Mou15. Signtryption
[CMA14, DZY10, FZT13, FZT14, IL15, LSL12a, Rao17, QXL11, ZYD10, EZ15, HPY10, HS11, KL11, LK12, LZT12, LKAT12, YMSH10, LHL15]. Signed
[KWH16]. signer [Hwa11]. Signing
[YAM+15, JC13]. Silent
[AMH+16]. Silverman [Mei10]. similarity [ZFH+18]. similarity-aware
[AMKA17, BSS+13]. Simple [Ano13c, CFZ12, LYY+18, Ros11, Sar10b, Sma16, TDTD13, ZH15, Zim10, CLM+12, MMS17c]. Simpler
[TH16]. Simplified [PS12]. Simulation
[CPS16, LLH18, MS13a]. Simulation-Based
[LLH18]. simulations [Ana14]. Simultaneous
[YWZ+12]. Singapore
[Abe10]. Single [ABK13, LL15, MEF012, Sas12, SPM+13, CJXX19]. single-generation
[CJXX19]. Single-SP
[Sas12]. Singular [LSL12b, BWA13]. sins
[HILV10]. SIP
[KKGK10, ZTZ16]. SIP-based
[ZTZ16]. SIP
[SYC+17]. Site
[DSB15, SS10c]. siteDriverID
[IBM13a]. Size
[AS17, AEHS15, CJ13, CSW12, EAA12, Kim15, LCLL15, MTY11, ZMW16, AHW+12, LCT+14, PPTT15, SGM16, SHBC19]. Size-Constrained
[EA12]. Skein
[FLS+10, KNR10]. Skin [AQD12]. skyline
[BKV13]. Slantlet
[TK14]. Slicing
[MZ17b]. Slide
[IOM12, LC13]. Sliding
[BBG+17, Bro17, Win17]. sLiSCP
[ARH+18]. SLMAP
[HCETPL+12]. Slow
[Sm11b]. Small
[BGJT14, BKLS12, BB10, CJ13, Kin15, LCLL15, YM16, AAT16, BGJT13, Jou13]. Smart
[AN17, ABC17, BSJ15, DLZ+16b, HCL+14, LA10, MFG16, PTD12, WgMdZ12, WgMW12, AMN18, CHS11, CLHJ13, GHD19, GAI+18, Ham19, HCC10, LH10c, LNM+11, LXMW12, LNKL13, LNK+18a, LTC+15a, MM12, MCN+18, WMYR16, YZZ+14, YSL+10, Cho10, GLIC10, SD12]. Smart-Card-Based
[HCL+14]. Smartphone
[MDMJ17, uHAN+18, DL15]. Smartphones
[Cor14b]. smashed [Fag17]. Smith
[Ano16g]. Smooth
[XYYXY11, YC11, ZBR11]. SMS
[KRM+10, PSdO+13]. SMSCrypto
[PSdO+13]. Snakes
[PC16]. SNOW
[PC16]. Snowden
[Tox14]. SoC
[GSC17]. Social
[BPSD17, KTA12, NSA15, NRZQ15, PYM+15, Rog16, SKGY14, SZTZ18, WLY+15, ZW15, Zha15b, ZHL15, BDK11, HYF18, LCM+17, LZC17, GSM+18b, SKS+18, Smi15a, YZL+18]. Society
[Sch20a, Sch20b]. Socio
[NS12]. Socio-Rational
[NS12]. SoD
[VN16]. Soft
[Jin10, TLCF16, SS17]. Soft-Error
[TLCF16]. Softw
[WZM12a]. Software
[Bar15, Bee17, EWS14, LRVW14, MRL15, WZM12a]. Software
[ABF+14, CFH+13, DK17, Eve16, GGH+16b, GIJ+12, HLV10, KHF10, LBOX12, SF12, YWT+12]. Solan
[CGB+10]. solid
[Cri16]. Solution
[Fra15, GSFT16, HLKL15, Kam13, NA10b, YFT17, Cor14a]. Solutions
[LLGJ16, BLV17, KAS15, MMP19, WW14]. Solved
[IBM13a]. Solving
[Ano17c, BB10, Bul10a]. Some
[AD12, Ber12, Dur15, LWL10b, Mid10]. Somewhat
[HTC17, KOS16, MBF18]. Song
[Con12]. Sood
[MWZ12]. SOEMONUK
[PC16]. SOT
[PAF18]. SOT-MRAM
[PAF18]. Sound
[COP14, LSR13, Sav15]. Source
[Bis17, FKOV15, MBC15, RWLL14, ZPM+18]. Sources
[LLG16, BLV17, KAS15, MMP19, WW14]. Solved
[IBM13a]. Solving
[Ano17c, BB10, Bul10a]. Some
[AD12, Ber12, Dur15, LWL10b, Mid10]. Somewhat
[HTC17, KOS16, MBF18]. Song
[Con12]. Sood
[MWZ12]. SOEMONUK
[PC16]. SOT
[PAF18]. SOT-MRAM
[PAF18]. Sound
[COP14, LSR13, Sav15]. Source
[Bis17, FKOV15, MBC15, RWLL14, ABF+14, LZC17, PX13, Pow14]. Source-Based
[MB15]. Sources
[DHB16, BJ16, SSY12]. South
[BL10, LW11a]. Soviet
[Bud16]. SP
[Sas12, SEHK12]. SPAPBox
[FG+17]. Space
[BWR12, BKL+13, NYR+14, RMG18, MMM+18b, RFY+13, ZZ15]. Space-Filling
[BWR12]. Spaces
[SH15]. spam
[SKEG14]. Spanish
Survival [YCM+13, MMS+17a]. Surviving [CFST17], suspect [der10]. SVC
[MU12, WDDW12, ZLDD12, ZLDD14]. SVD [LP12, TB18]. SVM [TLL13, swarm
[ZSMS18]. SWIFT [PLCGS11]. Switching
[CNT12, GHPS12, GHPS13, WB12]. Sybil
dCCSM+12]. Sylvie [SS10b]. Symbolic
[Wat10]. Symmetric
[BPR11a, BPR11b, BDPS12, CVM14,
FPS12, GFBF12, JCHS16, KTT12,
Khalo, PR12, PCY+17, TW11, YKNS12,
BGG+13, CGK011, DLZ16a, FH13,
GMRT+15, Gor10, GCVR17, KAS15,
LZC17, SKK10]. Symmetric-Key
[Gor10, GCVR17, KAS15, LZC17, SKK10].
Symmetry-Key [CVM14, KTT12]. symmetrical [RS17]. Symmetry [SGS14].
Symposium [ACM10, ACM11, Ano10,
IEE10, IEE11b, IEE13, Wat10, Ano11a].
symptom [YZL+18]. symptom-matching
[YZL+18]. Synchronization [BL12,
WXY+17, yWXyZ+18, AATM18, XNG+
14]. Synchronized [DM18, ACM12].
Synchronizing [HZ11]. SYND [MHC12].
Syndromes [BBC+13]. Synergy [KRB12].
Synergy-Based [KRB12]. synthesis
[RS17]. Syst [HYS18, WZM12a]. System
[AD11, Ano10, CZLC12a, CZLC14,
Cor14b, CRST15, DG15, GOPB12,
Har16, HHS+15, IAD10, JN12,
JWV+17, Jin10, KMP+11,
Lop12, MLBL12, NMS14, QLL17,
RSCX18, SMSK18, SRAA17, SLI11,
YE12, YZX+12, YKK18, ZZM17,
ZPW16, ZLDC15, ZVGM16,
AHM+18, BC18, BGG+13, Bul10a,
CH11, CTL12, CZ14, CS11,
FNWL18, GCK11, HWK+15,
HJM+11, HLYS14, JC13,
LLK10, LLL+17b, Lit14, LTC+15a,
LLL+18, MS12a, MNNW15,
PSOMPL13, SSPL+13, WMX+17,
VGZ+12, WXW16, YZL+18,
ZMM+10, ZML17, KKA14,
Dew11]. System-Level [JWV+17].
Systematic
[CCG+16, CBL13, PC16]. Systems
[AN12, AB15, BL15, BS13b, BCPT16,
BB10, CWL16, CCF17, CRE+12,
DLZ+16b, GI12, HXC+11, HCL+14,
HLN+10, LMD16, LQY10, LY16,
LNZ+13, MR14b, OS12,
PRSV17, QZL+16b, RST15a,
RST15b, SBS+12, SFKR15, Sev16,
SKH17, SGC14, SDM+12, STC11,
TKR14, YNR12a, AT10,
ATI+10, CFVP16, CFZ+10, CLZ+17,
dCCSM+12, dCCSB+16, CGH11,
CVG+13, CDA14, DZS+12, Eis10,
FXP12, GMOGCCC15, GHD19,
GSN+16, GPVcBRO12, HZGW18,
JSK+16, JHCC14, KSA16,
LCL+15, LWK+18, MLMSMG12,
MGP10, MFH13, NLYZ12, QMC17,
SS10a, SR10, SRB+12, WS14,
YSM14, ZHV14, Zhu13, MA17,
Ano11a]. Symmetric [MCDB12].
Systolic-Array [MCDB12]. SZK
[MX13]. T [SJWH+17]. T-Chain
[SJWH+17]. Table
[CCL+13, AY14a, LDDAM12]. Tables
[PTT16, XHM14]. Tag
[NNAM10, PPH12, CJP15,
SPLHC14, CJP12]. Tags
[M012, HSH11, HDPC13,
HQQ+16, LEW19, MK12a,
PLSvdLE10, TG17, WCFW18].
Taipei [Yan11]. Taiwan [Yan11]. Takes
[Ano16c]. Talking [FD11]. Tamed
[NXB13]. taming [BBDL+17]. tamper
[MN10, NC13, WgMW12]. tamper-evident
[MN10]. Tamperable [ACM+17].
Tampered [SSA13]. Tampering
[CG14a, SRAA17, SGp+17]. TAO
[Sta13]. Taormina [Cra12]. tap [ADG16]. target
[HRS16]. Targeted [ABJ13]. Tasks
[Abe12, FKS+13, CL16]. Taxonomy
[AJ16, GAF+15, KMS15, MA17]. Taylor
[Joh10]. TCC [Cra12, Lin14b, Sah13]. TEA
[CWP12]. Teaching [GY13]. Team
[LJS+14, Pfi10, Ant14]. Tear
[Boy16]. Tear-Free [Boy16]. TEASE
[ZBR11]. tech [Aono15e]. Technical
[Sir16, TS16b, Wag16, JW14, Suc12].
Technique [HEK18, KBL11, ZLDD14,
BBBP13, CPPT18, GCSAddP11, SM12,
SKS+18, TS16a, ZWS+18]. Techniques
[Bis17, DA12, GOS12, HPC10, HL10b,
LW12, Mor12, PJ12, AB10b, BM13,
FGPGP14, Gil10, HT13, KHF10,
LH11a, OO18, VN17, WMX+17, Joh10].
technologies
[JAE10, JAS+11, Lan10, MMP19].

Technology [CGB+10, FoJ16, EEI11a, Wu16, Ham19, IMB17].
telecare [LWK+18, MA17].

Telephony [SKEG14].

Television [DTE17]. Tell [Cer14].

Template [NGAuHQ16, SKV12].

Templates [DWB12, AHM+18].

temporal-credential-based [JMW+16, XMHD13].

temporary [JMW+16, MHT+13, XMHD13].

Tenant [TV15].

terahertz [WW13].

Term [SKV12, CFVP16].

termination [SRB+12].

Ternary [ADI11].

Test [HTC+15, JEA+15, LLSW16, MZHY15, SS10b, WH18, HTC17, ZCL+19, Ano16g].

Testable [RMP10].

tester [RPSL10, SY15b].

Testing [Cou12, SS12a, AY14a].

tests [GLG12, MS12b, Sim15a].

Texas [IEE13].

Text [GdM16, SMSK18, XZZ18, CR12, SI12, SWW+17]. Text-dependent [GdM16].

Textbook [PP10a].

Texture [TSH17].

Theft [Ber12, Ber17, BTPLST15].

Their [CZLC12b, CK18, JSK+17, NR12, CQX18, Hof16, IK15, KK10, Sti11].

them [HLV10, JSK+16, Rus15].

Theological [SS10c].

Theorem [Lau12, HF14a].

Theorem-based [Lau12].

Theoretic [CVM14, MAL10, WSS12, CDGC12, SD10, SKEG14].

theoretical [KL13, ZZ15, Gas13].

Theoretically [TWZ11].

Theories [ABR12].

Theory [AC10, ACM11, CCKM16, CDFZ16, CDFS10, Cra12, FGM10, FB12, FS15, He12, LW11a, Lin14b, Nac12, Per13, PJ12, RBHP15, RST15a, RST15b, Sah13, SAKM16, Sha10, Wsl16, Yan10, Abe10, AR10b, Bul10b, CFR11, Gil10, LPZJ15, MZA+13, McG11, YTM+14, Cra12, Lin14b, Sah13, vDKS11].

theory-based [LPZJ15].

There [Cer15, McK10, McK11, SM13].

Thin [Chi16].

things [FQZF18, AAC+16, CLF+17, Ham19, HZL18, JKAU19, LNK+18b, LGH+17, NLLJ12, NLY15, PLGMDF18, SB17, WCH18, YCT15].

Third [JCPR12, QZL+16b, Sen10, BL10, ED19, Kip13].

Third-Party [QZL+16b].

Third-Round [JCPR12].

Thirteen [AP13].

Thou [BDK11].

Threat [CSYY18, ALL+18, Ven14].

Threats [AJA16, ERLM16, GSC17, LJS+14].

Three [CZ15a, HXC+11, LZC+12b, PC16, Sh11, YKNS12, AIB+16, IC17, JKL+16, LNK+18a, LNK+18b, LML+13, Tso13, TKKH14, XCL13, YC12, YZZ+14].

Three-Dimensional [LZC+12b].

Three-Factor [HXC+11, AIB+16, IC17, JKL+16, LNK+18a, LNK+18b].

three-party [LML+13, Tso13, TKKH14, XCL13, YC12, YZZ+14].

Threshold [CT11b, Cil11, FGM10, GLW13, HYS11, LWL10b, SSU12, Sta12, Tan11, WYCF14, WLH15, YFF12, YHK+10, YLA+13, ZCL+12, DZ14, FGMP12, HF14a, HH15, OO10, QD16, SES+16, Shy15, SGM16, TD14, ZXJ+14, ZPYW12].

thresholding [PC14].

thrive [Sch12b].

throughput [MAK+12].

Thru [SYC+17, SYW17].

Thwart [LJS+14].

Thwarting [XTK10].

Ticket [XHCH14].

Ticket-based [XHCH14].

tickets [LMJC11].

tied [Men13b].

Ties [PYM+15].

Tight [GDC16, LPS12, LLH18].

Tightly [HLLG18].

Time [ASBDs16, Ane17d, App14, AYS15, BJL16, Che17, F11, GSC17, HC17, HGT15, IF16, JWJ+17, JEA+15, KME+12, LCL+17a, NA10a, Nov10, PNRC17, Ste15b, WLZL12, YE12, AY14a, Ano15d, BM15, CC14, DCT12, FHH10a, GPLZ13, HU15, LW10, LW13b, LML+13, MK11, Ano16g].

Time-area [Nov10].

Time-Memory [ASBDs16].

Time-Series [BJL16].

Time-Specific [KME+12].

Time-Spread [HGT15].

Timed [Jia14b, KFOS12, Tan15a, Unr15, WSS12].

Timed-Ephemerizer [Tan15a].
Trusted [AWSS17, EAA12, FPY15, YCR16, ED19, HTC+10, Küp13, XZLW15].

Trusted [AWSS17, EAA12, FPY15, YCR16, ED19, HTC+10, Küp13, XZLW15].

Trusted [AWSS17, EAA12, FPY15, YCR16, ED19, HTC+10, Küp13, XZLW15].

Twice [BM15].

Two [Ash14, Bru12, CTL13, DZ14, ED19, GGH14, GLW12, HL10b, HP14, KMTG12, KOS16, KU12, LLC11, Lit14, NMS14, OTD10, YSL+10, YLW13, ZM16, AN15, CSD18, CHS11, DHW+13, FIO15, HPC12, HWDL16, HWB12, JLT+12, JMW+16, Kem11, Li10, Mcg11, QYW16, Rus15, SM10b, hSZZ15, WW14, Wat14a, YT11b, ZZC15, GHKL11].

Two-Channel [JLT+12].

Two-Party [Ash14, HL10b, HP14, KOS16, NMS14, ZM16, FIO15, HPC12, HWB12, ZZC15, GHKL11].

Two-Round [GGHR14].

Two-Server [YLTW13, KMTG12, CSD18].

Two-Thread [MD12a].

Type [AKP12, CFL13, PFS12, SH15, BNST17, SYL13, WB12].

Type-Based [CFL13, SYL13].

Type-Flaw [SH15].

Types [BCEM15].

U.S. [Maf16].

Ubiquitous [OS16, Par12b].

UDES [YZ12].

UHF [HQY+16, PPH12].

UK [Che11, FJ12, vDKS11, Ano15e].

Ukraine [OGK+15].

Ultra [AATM18, TG17, WCF18].

Ultra-Lightweight

Ultra-Lightweight
[ÁMVZ12]. URLs [AY14a]. USA [Dun12b, IEE13, Koa11, Lin14b, Pie10, Rab10, ACM10, ACM11, IEE10, IEE11b]. Usability [RAZS15]. Usable [DL15, TGC16]. usage [AKK17, BHCdFR12]. Use [CSV15, DFKC17, KOS16, NR12, YT12, der10, CZH15b, Die12, Hof16, KK10, MBF13, O010, Sti11, UK18]. Used [CGCGPDMG12, BM15, MS13b]. useful [dCCSB16, Usernet [Be18]]. User [BLV17, BKJP12, FLH13, Gdm16, Har16, JN12, LLC11, LCL17b, MZHY15, MBC15, MDB17, OdHi12, PDT12, PWVT12, RVH16, SDZ14, SP+13, WgMdZ12, WgMW12, ZHS19, ZPW16, AabT16, ATKH17, APK18, BT18, CH10, CSH11, CLHJ13, DSCS12, GH16, GTSS19, HL14, KKM13, KLW16, KDW17, LH10c, LNM11, LNKL13, LH13, MM12, OKG12, hSZZ15, SHBC19, WDKV19, WT10a, WOLS12, YHL16, YSL10]. User-centric [BLV17]. User-controlled [Har16].

User-Friendly [SDZ14, WOLS12]. User-Generated [LCL17b]. User-Level [BKJP12]. user-participating [CH10]. User-Transparent [ZHS19]. Users [DPCM16, KKA15, TAKS10, WPZ16, ATK11, uHAN18]. uses [Rus15]. Using [ABS12, ABB14, Anot15a, Ayu12, ARM15, BBC13, BCPV11, Bee17, BFMT16, BKLS12, BJR14, CST17, CCL13, DSB16, DR12, DA10, DBPS12, DL12, ERLM16, ERRMG15, FMS12a, GH11a, GSC17, GAS16, HEK18, HHS15, IL15, JIN10, JEA15, KL11, Lac15, Lan11, LYK13, LLG16, MM17, MBC15, MRL18, MS16, NIS12, NGuH16, NNAM10, NN12, NMS14, PMZ13, PSS13, PAF18, PDM12, PDT12, PCPK14, RVRC12, SR12a, SFE10, SSA13, SRA17, SC12, SR12b, Tan12a, TKR14, WWL14, WgMdZ12, WY12, XZI18, YWW10, YNNW15, YCL17, YSS14, ZH15, ZPW16, ZS12, dRsdVC12, ATKH17, AHiM18, APK18, ASVE13, BLL19, BM13, CSH18, CHS11, CR12, CLHJ13, CP13, CR16, DAV11, DTZZ12, uHAN18, EEAZ13, FES10, Ham19, Har14, HZW17, HWW12, H14, HYY10, HCC10, HS11, JCS16, JMW16, K11, KY10, KKG14, KM11].

using [KUS13, KUTU16, KBP17, KLL16, LXX12, LLP18, LCI17, LH10c, LNM11, LXMW12, LH13, LML13, MM12, MS13a, MMSD13, MM14a, MKH12, MRRT17, GSM18b, NTK17, PBC14, PC14, QD16, RS15, RS17, Sar11, SGFC18, SRS18, SAR18b, TLC16, TG17, TK14, TLL13, UUN11, WY12, WHJ17, YQH12, YZZ14, YSL10, ZK1A17, ZLW12, ZY1C17, ZXW18].

utilization [NZM10].

Verifiability [RST15a, RST15b, VSR12, WWHL12, YMC+17, BRR+15, Hwa11]. Verifiable [CFE16, CRST15, Fuc11, HYS11, HLC12, LLL+18, QD16, RDZ+16, SZQ+17, WWHL16, YNR12a, YCR16, LZY+16, LJW+17, NMP+13, FHGR16, QS18, XWS17, ZZ15]. verifiably [SEXY18, ZLY10].

Verification [App15, ABR12, BL15, CCK12, CCCK16, CM11, EWS14, Ess17, GLLSN12, GdM16, GMSV14, Lin15, MV16a, OS12, PNRC17, SOF12, Tom16, Vet10, ZPW16, AGHP14, ABF+14, ASVE13, BFG+14, BTW15, GNP+12, KKK+16, LEW19, MR14c, NPH+14, SD10, XHM14, YNX+16].

Video [BWR12, D1G1, KS1B17, JSZS12, O1+S, TWZ+12, WLZL12, YE12, YT12, Cri16, LLHS12, MK11, OCGD11, XWZW16].

Vulnerability [M1N13, TM12, VKC15, Wal18, Ano17f, DMWS12, MYY13]. Vulnerable [Ano15d]. vVote [CRST15].

W [Mar10a, X1e12, H1l13]. W-OTS [H1l13]. WA [LCK11]. Waknaghat [CGB+10].

Walker [Xie12]. Wallets [Chi13b]. Wallis [Wes16]. War [Has16, M1n17, Bud16, Car11, Sml11a].

Warbler [MFG16]. warriors [Bud16]. wartime [McK10, McK11]. was [Goo12, LHA+12]. Watermark [CHHW12, DLM+18, EM14, J1n10, KBL11, LZC+12b, MCD12, SJ12, YE12, ZS12, HB13, TLL13, WYL13].

Watermark-Driven [DLM+18].

Watermarking [BCGAPM12, BF12, BCPV11, BDB14, BBM15, CG12b, CHHW12, CCZC13, DG17, FM15, Fra15, Fra16, GKS17, GP17, HPC10, HEK18, HGT15, HMMK14, JSZS12, Joh10, JKHeY12, KD12a, LSL12b, LP12, LD13, MM17, MR16, MU12, NGAnuo1Q16, NC12, NXH+17, pNyWyY+14, OWHS12, RS16, RP12, RR11, RMG18, SAA15, SLGZ12, SSA13, TB18, TWZ+12, TC10, WHZ12, WLZL12, WYW+13, gWpNyY+14, W1W12].
REFERENCES

References

Akyildiz:2014:OTB

Applebaum:2017:AC

Abo-alian:2016:KDB
Ambrosin:2016:FAB

Albertini:2014:MHE

Arora:2012:ILM

Akleylek:2016:SPM

Aghili:2018:ISA

REFERENCES

Athmani:2019:EED

Almeida:2013:CCA

Ambrosin:2017:OBB

Ateniese:2017:LCS

Arnold:2012:ICC
Adrian:2015:IFS

Agosta:2015:OPP

Abe:2010:ACA

Abe:2012:TBG

Arriaga:2012:JSS
REFERENCES

Almeida:2014:COS

Ananth:2013:SFP

Avoine:2016:SSP

Aid:2013:DIO

Acar:2013:SPA
Andreeva:2012:SAS

Arapinis:2012:RET

Arias-Cabarcos:2015:BIP

Arnold:2015:NGH

T. W. Arnold, M. Check, E. A. Dames, J. Dayka,

[ACM10]

[ACM11]

[ACK10]

REFERENCES

REFERENCES

Ahmed:2017:IRD

Attrapadung:2015:RGS

Antonopoulos:2017:DIS

Ahani:2015:AAI

Akin:2014:MGA

Abdullaziz:2016:AAI

REFERENCES

Attrapadung:2012:ABE

Ali:2018:ECM

Appelbaum:2013:SSG

Ak:2014:ICS

Aia:2015:FAA

Ali:2018:CBR

Zulfiqar Ali, Muhammad Imran, Mansour Alsulaiman, Muhammad
REFERENCES

Amin:2016:DAP

Amin:2018:UAP

Alhanahnah:2016:MTI

Applebaum:2014:HGA

Alander:2016:MAB
REFERENCES

October 2014. CODEN IT-COB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

[AlTawy:2013:SOC] Riham AlTawy, Aleksandar Kircanski, and Amr Youssef. Second order col-
REFERENCES

Alash:2015:IAA

Aldrich:2011:GUS

Au:2018:PPP

Alomair:2012:AEH

Alpar:2018:BTA

REFERENCES

Adj:2013:WDC

Aumasson:2014:HFB

Albrecht:2012:SDL

Arshad:2015:SAI

[AMS+10] Zahra Ahmadian, Javad Mohajeri, Mahmoud Salmasizadeh, Risto M. Hakala, and Kaisa Nyberg. A prac-
REFERENCES

Aga:2017:ISM

Anawis:2014:ARR

Anderson:2013:MNF

Anonymous:2010:NDS

Anonymous:2011:AIS

Anonymous, editor. *ACIS international symposium on cryptography, and network security, data mining and knowledge discovery, e-commerce and its applications, and embedded systems*. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
Anonymous:2011:AXL

Anonymous:2011:MCB

Anonymous:2012:SHS

Anonymous:2013:DSS

Anonymous:2013:NCI

Anonymous:2013:SSD

Anonymous:2013:SIS

Anonymous. Special issue on “Security and identity architecture for the future Internet”. Communicati...
REFERENCES

Anonymous:2014:ERE

Anonymous:2015:BSU

Anonymous:2015:BRDa

Anonymous:2015:QCS

Anonymous:2015:UGB

[Ano15e] Anonymous. UK Government battles tech firms over encryption. Net-
Anonymous:2016:CPSd

Anonymous:2016:CPSe

Anonymous:2016:EMT

REFERENCES

[Ano17a] Anonymous. BitErrant attack. Web site, March 6, 2017. URL http://biterrant.io/. The story describes how SHA-1 collision attacks could lead to bogus, and malware, file downloads via BitTorrent: the obvious solution, which should have been adopted long ago, is to use multiple checksum algorithms, and require all to match before concluding that two files are in fact identical.

[Ano17c] Anonymous. Cybernetica case study: Solving the Estonian ID-card case. Web news story, December 13, 2017. URL https://cyber.ee/en/news/cybernetica-case-study-solving-the-estonian-id-card-case/. The story describes a poor choice of generating large (about 1024 bits) primes p and q that led to crackable RSA cryptography. The solution for Estonia was to switch to elliptic-curve cryptography that was also supported by the cards.

city-conditions-first-time.

Anonymous:2017:MBH

Anonymous:2017:RV

The ROCA vulnerability affects millions of smartcards, and devices using TPM (Trusted Platform Modules). It allows recovery of the private key from knowledge of the RSA public key, and thus, facilitates malicious cloning of the cards, and decrypting of some encrypted filesystems.

Anonymous:2019:HCC

Anthes:2014:FTI

Andriotis:2013:JSD

Agarwal:2010:BRW

REFERENCES

Aumasson:2011:CHF

AlFardan:2013:LTB

Ali:2018:SUA

Applebaum:2013:GXG

Applebaum:2014:CCP

Appel:2015:VCP

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

[ARM15] Reza Azarderakhsh and Arash Reyhani-Masoleh. Parallel and high-speed computations of elliptic curve cryptography us-

Ahmadi:2011:SKC

Ahmadi:2012:SKE

Asaar:2015:IBM

Alsulaiman:2013:IVB

Altman:2010:AAP
Alon Altman and Moshe Tennenholtz. An axiomatic

Argyropoulos:2010:BTP

Au:2011:PPT

Alam:2015:ACF

Aslan:2016:DEM

Ahmada:2014:RTN

Ahltawy:2014:IDR

Aysu:2015:FRT
Aydin Aysu, Bilgiday Yuce, and Patrick Schau-

REFERENCES

Barthe:2015:HAC

Barker:2016:RKM

Baylis:2010:CC

Bulygin:2010:OSS

Bax:2014:PPD

Bennett:2014:QCP

Beurdouche:2017:MSU

Beimel:2014:MLS

Bernstein:2017:SRD

Boldi:2012:IUG

Bollman:2015:PWI

Bernstein:2011:PCI

Daniel J. Bernstein and Sanjit Chatterjee, editors. *Progress in Cryptology — INDOCRYPT 2011: 12th International Conference on Cryptology in India, Chennai, India*,
Bichsel:2012:DMA

Badrignans:2010:SSA

Balfanz:2012:FA

Basin:2014:KYE

Bocu:2018:HEB
REFERENCES

REFERENCES

REFERENCES

[Basin:2012:PRI]

[Basin:2013:PRI]

[Basin:2015:ISC]

[Bicakci:2013:LSS]

[Botta:2014:PCI]

Boyle:2014:EO

Basso:2011:BWC

Bessani:2013:DDS

Blasco:2016:SWB

Biddle:2012:GPL

Belkacem:2014:DCM

REFERENCES

www.sciencedirect.com/
science/article/pii/S0743731518302582.

Bosseut:2016:EP

Bendlin:2011:SHE

Bertoni:2011:CSF

Bendlin:2011:SHE

Bertoni:2012:KIO

Boldyreva:2012:SSE

Bitansky:2013:WFS

Beebe:2017:MFC

Bellovin:2016:EEE

Bellovin:2018:UAE

Berghel:2012:ITF

Bera:2014:QC

Berghel:2016:DJT

Berghel:2016:S

REFERENCES

Bobba:2010:ABM

Bhargavan:2016:MVP

Beimel:2012:SSS

Bhargavan:2016:MVP

Boldyrev:2014:MEW

Battistello:2012:TBA

REFERENCES

Barthe:2012:CACb

Bossuet:2013:AFS

Barak:2010:IPO

Barak:2012:IPO

Barbulescu:2013:QPA

Barbulescu:2014:HQP

Barthe:2012:ACA

Biswas:2017:STC

Borcea:2017:PEE

Brakerski:2014:LFH

Barkatullah:2015:GCF

REFERENCES

Bonneau:2015:PEI

Biswas:2017:SA

Brumley:2010:CAI

Boche:2016:DSK

REFERENCES

CODEN JMAPAQ. ISSN 0022-2488 (print), 1089-7658 (electronic), 1527-2427.

Benhamouda:2016:NFP

Bouti:2012:SCB

Boldyrev:2012:NPG

Benhamouda:2016:NFP

[BK12b] Adil Bouti and Jörg Keller. Securing cloud-based computations against malicious

REFERENCES

REFERENCES

Byun:2011:SMC

Bai:2012:SSR

Bernstein:2014:HEC

Bidgoly:2015:MQV

Bernstein:2017:SCS

Blanchette:2012:BPC

REFERENCES

Blaze:2016:UHR

Benzaid:2016:FAW

Bai:2019:LMD

Buchmann:2017:PCU

Blomer:2012:TKG

Blondeau:2015:IDA

REFERENCES

Baldwin:2010:AFI

Biswas:2012:IBA

Backes:2012:GCP

Banik:2012:DFA

Babamir:2014:AKP

Buckley:2015:RVV

REFERENCES

REFERENCES

REFERENCES

128

SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

Bellare:2014:SSEa

Bellare:2014:SSEb

Boneh:2016:BCR

Balsa:2017:TIC

Brakerski:2014:VBB

Brakerski:2013:WHB

REFERENCES

REFERENCES

Bellare:2012:MIS

Brumley:2012:SFI

Bajaj:2013:CSE

Birrell:2013:FIM

Bhattacherjee:2014:CAT

Bagheri:2015:NNA

REFERENCES

Boorghany:2015:CIL

Bojinov:2014:NMC

Basin:2011:AIS

Beaulieu:2013:SSF

Batina:2012:HEB

REFERENCES

Brocardo:2015:AVM

Buchmann:2010:EKG

Bulygin:2010:AOP

Bulygin:2010:CAC

Burke:2011:AMD

Brakerski:2011:EFH

Brakerski:2014:EFH

Bitansky:2018:IOF

Bayrak:2012:AII

Baek:2013:SPK

Bogdanov:2012:ZCL

Bhatnagar:2013:BIW

REFERENCES

[135]

[BAC14] CACM Sta. Know your steganographic enemy. Communications of
the Association for Computing Machinery, 57(5): 8, May 2014. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

0169-2968 (print), 1875-8681 (electronic).

Chadha:2016:AVE

Chretien:2015:SPP

Chen:2017:LAA

Carota:2012:FFI

Chou:2010:PSO

Checkoway:2016:SAJ

Stephen Checkoway, Shaanan Colhney, Christina Garman, Matthew Green, Nadia Heninger, Jacob Maskiewicz, Eric Rescorla, Ho-vav Shacham, and Ralf-Philipp Weinmann. A systematic analysis of the Juniper Dual EC incident.
REFERENCES

Chadha:2012:AVE

Chatterjee:2016:TAD

Chou:2013:UGS

Chatterjee:2017:PBS

Chappell:2013:MCS

Cascudo:2015:SSN

Chatterjee:2017:PBS
REFERENCES

Cho:2014:DGA

Chen:2011:EAA

Chu:2014:KAC

Chen:2010:ALD

Chen:2013:WSB

REFERENCES

REFERENCES

[CFXY17] Kim-Kwang Raymond Choo, Yunsu Fei, Yang Xiang, and Yu Yu. Embedded device forensics and security. ACM Transactions
on Embedded Computing Systems, 16(2):50:1–50:??, April 2017. CODEN ???.
ISSN 1539-9087 (print), 1558-3465 (electronic).

Chang:2010:PRN

Chen:2010:IFA

Cheraghchi:2014:NMC

Che:2012:WAM

Corrigan-Gibbs:2014:KS

REFERENCES

145

magazine/article/?article_id=74801.

Chaudhuri:2010:PIC

Caballero-Gil:2012:LAR

Chmiel:2012:EPC

Coull:2011:ACO

Cohney:2017:PSR

Curtmola:2011:SSE

Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryption: Improved definitions...

Cheng:2012:PAI

Cheng:2013:NIB

Chen:2010:NUP

Chang:2011:DEQ

Chan:2013:OCK

REFERENCES

Chang:2013:MPQ

Chappell:2013:PMI

Chen:2011:CCI

Cheswick:2013:RP

Chen:2015:SSS

Chen:2017:CSQ

[Cho10] Omar S. Choudary. The Smart Card detective: a hand-held EMV intersector. M. Phil. dissertation in Advance...
REFERENCES

Chou:2014:EMA

Chu:2016:BEE

Chen:2013:ATK

Cilardo:2011:EPT
Alessandro Cilardo. Exploring the potential of threshold logic for cryptography-related operations. IEEE
REFERENCES

Cheng:2013:EHM

Cao:2014:SCI

Cho:2012:CBF

Chang:2019:GTS

REFERENCES

Chandra:2011:AST

Chung:2018:ERN

Chase:2013:SMN

Chuang:2011:LMA

Colin:2016:CTC

Comon-Lundh:2010:DSP
Chang:2011:RSB

Chen:2017:PGF

Chen:2016:RPR

Chen:2012:NCB

Chen:2013:TSE

REFERENCES

Baojiang Cui, Zheli Liu, and Lingyu Wang. Key-Aggregate Searchable Encryption (KASE) for group data sharing via cloud storage. *IEEE Transactions*

[CMG+18] Stephen Checkoway, Jacob Maskiewicz, Christina

CHECKOWAY:2018:WDL
REFERENCES

Jiageng Chen, Rashed Mazumder, Atsuko Miyaji, and Chunhua Su. Vari-

DEN LIJOFX. ISSN 1075-3583 (print), 1938-3827 (electronic).

Corthesy:2014:SSD

Coutinho:2012:RPT

Claessen:2013:SPN

Canard:2018:NTC

Chung:2016:NBB

Chen:2018:RLF

Yu Chen, Baodong Qin, and Haiyang Xue. Regular lossy functions and their applications in leakage-

[Chen:2012:DCC]

[Crampton:2011:PEC]

[Cramer:2012:TCT]

[Crav:2014:UCC]

[Clear:2012:CPA]
Michael Clear, Karl Reid, Desmond Ennis, Arthur Hughes, and Hitesh Tewari. Collaboration-preserving authenticated encryption for operational transformation systems. Lecture
160

REFERENCES

Chen:2017:SIE

Chong:2015:SID

Stephen Chong, Christian...

Calzavara:2015:SLA Stefano Calzavara, Gabriele Tolomei, Andrea Casini,

Chin:2013:SMB

Chang:2012:GBP

Chou:2013:TIB

Crenne:2013:CMS

Calmon:2014:ITM

REFERENCES

Choi:2012:LT
[164]

Chung:2012:CBI
[184]

Chen:2014:DSE
[224]

Cao:2014:PPM
[252]

Chen:2016:EPN
[283]
Chen:2012:IDC

Chen:2012:CKS

Chen:2014:MLC

Chen:2015:TCP

Cheng:2015:OMU

REFERENCES

Danezis:2012:FCDb

Davies:2011:IST

Diong:2012:DAU

Dou:2018:OHR

Dacosta:2012:OTC

Cordeiro:2016:MPG

Weverton Luis da Costa Cordeiro, Flávio Roberto Santos, Marinho Pilla Barcelos, Luciano Paschoal Gaspary, Hanna Kavalionak, Alessio Guerrieri, and Alberto Montresor. Making

Cordeiro:2012:IMB

DePrisco:2013:CVC

DaRolt:2013:NDS

Datta:2017:SFH

Castro:2016:FVB

Danezis:2012:FCDa

Dew:2011:BRB

REFERENCES

REFERENCES

REFERENCES

[Dom12] Leonid Domnitser, Aamer

Dolev:2012:ATC

Dello:2015:ICP

Dorre:2016:ELO

Doychev:2017:RAS

Durumeric:2014:MH

Dolev:2016:MCG

Doychev:2015:CTS

Dodis:2012:MAR

Dunkelman:2012:MCE

Dong:2012:UAS

DeLuca:2015:SUS

Alexander De Luca and Janne Lindqvist. Is secure and usable Smartphone authentication asking too much? *Computer,
REFERENCES

Degefa:2016:PSE

Djaziri-Larbi:2018:WDA

Dong:2013:PRS

DiPietro:2016:CLD

Dodis:2011:SSC

Dai:2016:MLR

Shuguang Dai, Huige Li, and Fangguo Zhang. Memory leakage-resilient searchable symmetric encryption. Future Generation Computer Systems,
Duan:2016:SDC

DeCarneDeCarnavalet:2015:LSE

Demme:2012:SCV
REFERENCES

David:2012:UCO

Donovan:2014:ATM

Doroz:2015:AFH

Y. Doroz, E. Ozturk, and B. Sunar. Accelerating fully homomorphic encryption in hardware. IEEE Transactions on Comput-

Duncan:2012:CAI

Ding:2017:CSM

Das:2016:CWM

Dziembowski:2018:NMC

Dong:2012:NCV

Daemen:2010:FYA

Duong:2011:CWC

Dautrich:2012:SLU

Draziotis:2016:EDL

Dong:2011:SSE

REFERENCES

Deng:2018:SFE

Dachman-Soled:2014:COF

Dini:2013:HHS

Drosatos:2017:PET

REFERENCES

Dong:2012:KKD

Dong:2012:NDI

Dai:2018:OPC

Deng:2014:CCC

Dodis:2013:O

Deng:2014:TNI

Lunzhi Deng and Jiwen Zeng. Two new identity-based threshold ring sig-
REFERENCES

Ehdaie:2016:HCR

Egele:2013:ESC

Esiner:2017:QRI

Esiner:2019:TFA

Edwards:2014:NRP

Edwards:2017:NSQ

Embar:2014:PWO

Evtushkin:2016:UMC

Eberz:2016:LLE

El-Razouk:2015:NHI

Estebanez:2014:PMC

Engels:2012:HLA
REFERENCES

Enos:2015:IBS

Farash:2014:ECC

Farash:2014:SEI

Fahd:2018:CPA

Fagone:2017:WWS

Farash:2014:CIE

Mohammad Sabzinejad Farash. Cryptanalysis and improvement of an efficient mutual authentication RFID scheme based on elliptic curve cryptography. The Journal of Supercomputing, 70(2):987–
REFERENCES

[Fel13] Edward Felten. The Linux backdoor attempt

[Fel13] Edward Felten. The Linux backdoor attempt
freedom-to-tinker.com/
blog/felten/the-linux-
backdoor-attempt-of-2003/.

[FES10] Jean-Charles Faugère, Mo-
hab Safey El Din, and
Pierre-Jean Spaenlehauer.
Computing loci of rank de-
fects of linear matrices us-
ing Gröbner bases and ap-
plications to cryptology. In
Watt [Wat10], pages 257–
LCCN QA76.95 .I59 2010.

[FLE12] Ewan Fleischmann, Chris-
tian Forler, and Stefan
Lucks. McOE: a fam-
ily of almost foolproof on-
line authenticated encryp-
tion schemes. Lecture
Notes in Computer Sci-
CODEN LNCSDO. ISSN
0302-9743 (print), 1611-
3349 (electronic). URL
http://link.springer.
com/chapter/10.1007/978-
3-642-34047-5_12/.

[FGR17] Jingyuan Fan, Chaowen
Fan:2017:SSP

[FGR+17] E-Government (ICCEE),
Guangzhou, China, 7–9
May 2010. IEEE Computer
Society Press, 1109 Spring
Street, Suite 300, Silver
Spring, MD 20910, USA,
LCCN ???. URL http://
ieeeexplore.ieee.org/
servlet/opac?punumber=
5589107.

[FAR12] Oriol Farràs, Ignacio Gra-
cia, Sebastià Martín, and
Carles Padró. Linear
threshold multisecret shar-
ing schemes. Information
Processing Letters, 112
(17–18):667–673, Septem-
ber 30, 2012. CODEN IF-
PLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0020019012001378.
REFERENCES

Fan:2013:CPP

Fan:2010:AMI

Farras:2017:IRN

Fahl:2012:WEM

Fan:2010:PSN

REFERENCES

4913, December 10, 2015. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

REFERENCES

ISSN 1532-0626 (print), 1532-0634 (electronic).

Ferguson:2010:SHF

Forler:2012:DAC

Feng:2012:CAO

Fallahpour:2015:AWB

Ferrag:2018:SCN

Farwa:2018:FAI
Shabieh Farwa, Nazeer Muhammad, Nargis Bibi, Sajjad A. Haider, Syed R. Naqvi, and Sheraz Anjum. Fresnelet approach for image encryption in the algebraic frame. Applied

REFERENCES

REFERENCES

Fu:2015:TVG

Feng:2018:ALA

Fathimal:2016:SSS

Frattolillo:2015:WPP

Frattolillo:2016:BFM

Frey:2010:ABC

[FS18] Somchart Fugkeaw and Hiroyuki Sato. Scalable and secure access control policy update for outsourced big data. *Future Generation Computer Systems*, 79 (part 1)(??):364–
REFERENCES

[Fang:2011:ICP]

[Fang:2012:CCS]

[Feng:2011:GDA]

[Feng:2011:GD]

[Feng:2011:GD]

[Fujioka:2012:SHI]

[FSX12b] Atsushi Fujioka, Taiichi Saito, and Keita Xagawa. Security enhance-

[Fujioka:2012:SEP]

[Fadlullah:2010:DCA]

[FVT+10]

REFERENCES

Groß-Amblard:2011:QPW

Gregio:2015:TTM

Gop:2018:LPP
Prosanta Gope, Ruhul Amin, S. K. Hafizul Islam, Neeraj Kumar, and Vinod Kumar Bhalla. Lightweight and privacy-preserving RFID authentication scheme for distributed IoT infrastructure with secure localization services for smart city environment. Future Generation Computer Systems, 83(??):629–637,

Fan:2013:KIS

Fan:2014:NCI

GomezPardo:2013:ICM

[GA11]
[FZT13]
[FZT14]
[GAF+15]
[GAI+18]
REFERENCES

Current developments and future trends in audio authentication. *IEEE Multi-

[Sourav Sen Gupta, A. Chatt-
topadhyay, K. Sinha, S. Maitra, and B. P. Sinha. High-performance hard-
ware implementation for RC4 stream cipher. *IEEE Transactions on Com-

[J. Guerra-Casanova, C. Sán-
chez-Avila, A. de Santos Sierra, and G. Bailador del Pozo. Score optimization and template updat-
ing in a biometric tech-
SODM. ISSN 0164-1212 (print), 1873-1228 (electronic). URL http://www.sciencedirect.com/
science/article/pii/S0164121211001427.

[Nilson Donizete Guerin, Jr., Flavio de Barros Vi-
dal, and Bruno Macchi-
avello. Text-dependent user verification of handwritten words and signa-
org/content/59/9/1415.
REFERENCES

Geller:2013:MIS

Gentry:2010:CAF

Gentry:2013:EMH

Gong:2010:PCI

Grigg:2011:CCN

Garg:2016:CIO

Gaspar:2012:SEF

Lubos Gaspar, Viktor Fischer, Lilian Bossuet, and Sanjam Garg, Craig Gentry, Shai Halevi, Mari-
Sanjam Garg, Craig Gentry, Shai Halevi, Mari-
a Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and func-
929, 2016. CODEN SMJCAT. ISSN 0097-5397
(print), 1095-7111 (electronic).

Sanjam Garg, Craig Gentry, Shai Halevi, Mari-
a Raykova, Amit Sahai, and Brent Waters. Hiding
secrets in software: a cryptographic approach
to program obfuscation. *Communications of the
Association for Computing Machinery*, 59(5):
113–120, May 2016. CODEN CACMA2. ISSN
0001-0782 (print), 1557-7317 (electronic). URL

Sanjam Garg, Craig Gentry, Shai Halevi, and
Mari Raykova. Two-round secure MPC from indis-
tinguishability obfuscation. *Lecture Notes in
LNCSD9. ISSN 0302-9743 (print), 1611-
com/content/pdf/10.1007/978-3-642-20465-4_9.

Lifeng Guo and Lei Hu. Efficient bidirectional proxy

[GHPS13] Craig Gentry, Shai Halevi, Chris Peikert, and Nigel P. Smart. Field switching

REFERENCES

3-642-13189-1 (softcover).
LCCN ????

cryptographic key length
recommendation. Web site,
February 26, 2015. URL
http://www.keylength.
com/.

Gao:2013:LCA

[GGJ13] Guangyong Gao and Guoping
Jiang. A lossless
copyright authentication
scheme based on Bessel-
Fourier moment and ex-
treme learning machine
in curvature-feature do-
main. The Journal
of Systems and Soft-
ware, 86(1):222–232, January 2013. CODEN JS-
SODM. ISSN 0164-1212
(print), 1873-1228 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0164121212002270.

Gu:2015:EIB

identity-based proxy signa-
ture in the standard model. The Computer
Journal, 58(4):792–807,
April 2015. CODEN CM-
PJA6. ISSN 0010-4620
(print), 1460-2067 (elec-
tronic). URL http://
conqnl.oxfordjournals.
org/content/58/4/792.

Gravier:2015:WOD

Sylvain Gravier, Jérôme
Javelle, Mehdi Mhalla, and
Simon Perdrix. On weak
odd domination and graph-
based quantum secret shar-
ing. Theoretical Computer
Science, 598(??):129–137,
September 20, 2015. CO-
DEN TCSCDI. ISSN 0304-
3975 (print), 1879-2294
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0304397515004806.

Goyal:2013:CZK

Vipul Goyal, Abhishek
Jain, Rafail Ostrovsky,
Silas Richelson, and Ivan
Visconti. Concurrent zero
knowledge in the bounded
player model. Lecture
Notes in Computer Sci-
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-
3349 (electronic). URL
http://link.springer.
com/chapter/10.1007/978-
3-642-36594-2_4/.

Gu:2017:IBM

Ke Gu, Weijia Jia, and
Jianming Zhang. Identity-
based multi-proxy signa-
ture scheme in the standard model. Fundamenta
Informaticae, 150(2):179–
210, ????. 2017. CODEN
FUMAAJ. ISSN 0169-2968
(print), 1875-8681 (elec-
tronic).
Geetha:2011:VRN

Gaj:2017:DCR

Garay:2016:MPA

Guo:2010:HMW

Grigoriev:2017:YMP

Guo:2011:EDA

Guo:2012:ETD

Gradwohl:2010:SRC

Gradwohl:2013:SRC

Guo:2012:ETD

Garcia-Morchon:2015:HCR

Guo:2011:ISS

Guo:2014:SAS

Gao:2014:URA

Groza:2017:LCL

REFERENCES

Gong:2013:NOT

Goodrich:2012:EVW

Genkin:2016:PKE

Grossschadl:2012:EJI

Genkin:2014:GYH

Daniel Genkin, Itamar Pihman, and Eran Tromer. Get your hands off my laptop: Physical side-channel key-extraction attacks on PCs. Report, Technion and Tel Aviv University, Tel Aviv, Israel, July 31, 2014. 25 pp. URL http://www.cs.tau.ac.il/~tromer/handsoff/

Gonzalez-Pardo:2012:CID

Antonio González-Pardo, Pablo Varona, David Camacho, and Francisco de Borja Rodríguez Ortiz. Communication by identity discrimination in bio-inspired multi-agent sys-

Greengard:2011:MRM

Green:2017:SSE

Grimes:2015:CCT

Gibson-Robinson:2012:AAL

Guha:2017:RTS

Guin:2016:FCS

Ujjwal Guin, Qihang Shi, Domenic Forte, and Mark M. Tehranipoor. FORTIS: a comprehensive solution for establishing forward trust for protecting IPs and ICs.
REFERENCES

220

[GWpNyY] Xiangyang Wang, Panpan Niu, Hongying Yang, Yan Zhang, and Tianxiao Ma. A robust audio watermarking scheme using higher-order statistics in empirical mode decomposition domain. *Fundamenta*

Gao:2015:GCC

Goh:2013:TOT

Guo:2012:AKE

Guo:2017:EMD

Gao:2012:RHC

Guo:2018:SMK

Ziqing Guo, Hua Zhang, Caijun Sun, Qiaoyan Wen, and Wenmin Li. Secure multi-keyword ranked

REFERENCES

[Harn:2013:GA]

[Har16] Hardesty:2016:SUC

[Has16] Hastings:2016:SWS

REFERENCES

Hurlburt:2014:BBC

Hetzelt:2017:SAE

Hernandez-Becerril:2016:GIS

He:2013:HEH

Hulsing:2017:XEH

Hao:2012:SAM

[HCL+14] Xinyi Huang, Xiaofeng Chen, Jin Li, Yang Xiang, and Li Xu. Further observations on smart-card-based password-authenticated

[Huang:2014:FOS] Xinyi Huang, Xiaofeng Chen, Jin Li, Yang Xiang, and Li Xu. Further observations on smart-card-based password-authenticated
REFERENCES

[Hwang:2012:ABA] Jung Yeon Hwang, Sungwook Eom, Ku-Young Chang, Pil Joong Lee, and

Hamad:2018:DWU

Hellman:2017:TLC

Hermelin:2010:MLC

Herranz:2014:ABS

Hess:2012:GJC

Heys:2017:SCF

Harn:2014:MTS

Hoang:2014:IMD

Hua:2015:TSE

Heyse:2012:TOC

Huang:2016:EDP

Han:2011:PEB

REFERENCES

(HH+13) Y.-I. Hayashi, Y. Hayashi, N. Homma, T. Mizuki, and T. Aoki. Analysis of electromagnetic information leakage from cryptographic devices with different physical structures. IEEE Transactions on Electromagnetic Compatibility, ??

HONG:2015:RSM

HINAREJOS:2015:MES

HINEK:2010:CRV

HIKELMANN:2011:CPA

HUR:2014:SDR

HOUMANSADR:2014:NBW

REFERENCES

REFERENCES

tronic). URL http://
/ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=
5416683.

[HL10b] Carmit Hazay and Yehuda
Lindell. Efficient Secure
Two-Party Protocols:
Techniques and Construc-
tions. Information Security
and Cryptography. Spring-
er-Verlag, Berlin, Ger-
many / Heidelberg, Ger-
many / London, UK / etc., 2010. ISBN 3-642-
14302-4 (hardcover), 3-642-
14303-2 (e-book). ISSN
1619-7100 (print), 2197-
845X (electronic). xiii +
263 + 1 pp. LCCN Z103
H39 2010. URL http://
www.springerlink.com/
content/978-3-642-14303-
8.

[HLC12] Chunqiang Hu, Xiaofeng
Liao, and Xiuzehn Cheng.
Verifiable multi-secret shar-
ing based on LFSR se-
quencies. Theoretical Com-
puter Science, 445(1):52–
62, August 3, 2012. CODEN
TCSCDI. ISSN 0304-
3975 (print), 1879-2294
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0304397512004276.

[Hs:2011:NIB] Chien-Lung Hsu and Han-
Yu Lin. New identity-based
key-insulated convertible
multi-authenticated en-
cryption scheme. Journal
of Network and Computer
Applications, 34(5):1724–
1731, September 2011. CO-
DEN JNCAF3. ISSN 1084-
8045 (print), 1095-8592
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S1084804511001172.

[HL14] Wen-Bin Hsieh and Jenq-
Shiou Leu. An anony-

mous mobile user authenti-
cation protocol using self-
certified public keys based
on multi-server architec-
tures. The Journal of Su-
percomputing, 70(1):133–
148, October 2014. CO-
DEN JOSUED. ISSN
0920-8542 (print), 1573-
0484 (electronic). URL
http://link.springer.
com/article/10.1007/s11227-
014-1135-8.

[Hmood:2015:A] Haider Salim Hmood, Zhi-
tang Li, Hasan Khalaf Ab-
dulwahid, and Yang Zhang.
Adaptive caching approach
to prevent DNS cache poi-
soning attack. The Com-
puter Journal, 58(4):973–
985, April 2015. CODEN
CMPJA6. ISSN 0010-4620
(print), 1460-2067 (elec-
tronic). URL http://
comjnl.oxfordjournals.
org/content/58/4/973.

[Hu:2012:VMS] Chunqiang Hu, Xiaofeng
Liao, and Xiuzhen Cheng.
Verifiable multi-secret shar-
ing based on LFSR se-
quencies. Theoretical Com-
puter Science, 445(1):52–
62, August 3, 2012. CODEN
TCSCDI. ISSN 0304-
3975 (print), 1879-2294
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0304397512004276.
Hu:2016:PBR

Huang:2011:ISL

Huang:2015:MSE

Harn:2011:FDM

Han:2018:TSE

Huffmire:2010:SPR

Ted Huffmire, Timothy Levin, Thuy Nguyen, Cynthia Irvine, Brett Brotherston, Gang Wang, Timothy Sherwood, and Ryan Kast-

References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Shi:2015:CTS

Hu:2010:TTW

Hamdy:2011:HPB

Henson:2013:MES

Huang:2015:SSS

Huang:2017:SSS
Kaibin Huang, Raylin Tso, and Yu-Chi Chen. Somewhat semantic secure public key encryption with filtered-equality-test in the standard model and its extension to searchable encryption. Journal of Com-
Herbert:2012:SMP

Hald:2015:RRA

Hurlburt:2016:MBO

Harvey:2017:FPM

Han:2012:MIA

REFERENCES

See [?].

[Hao:2011:NTV]

[Huang:2011:GFT]

[Huang:2018:PIB]

[Huang:2018:CT]

See [?].

Heys:2011:PSC

Han:2012:ERI

Han:2014:ATS

He:2017:AHA

He:2018:LAB

He:2015:IEI

Islam:2015:MBA

Ismail:2010:EAE

Islam:2011:MES

IEEE:2010:PIA

IEEE:2011:ICI

IBM:2013:DMP

IBM:2013:IPC

Irshad:2017:CPP

IEEE:2011:PIA
REFERENCES

IEEE:2013:PIS

Imanimehr:2016:HPR

Islam:2011:MDA

Iyengar:2016:SPS

Imai:2015:IRR

Islam:2015:LFP
Sk Hafizul Islam and Fagen Li. Leakage-free and provably secure certificateless signcryption scheme using bilinear pairings. The Computer Journal,

REFERENCES

Irshad:2016:EAM

Ishai:2014:PCP

Jie:2010:AAI

Jie:2011:RGA

Prins:2011:DCA
JR Prins and Business Unit
REFERENCES

Jain:2013:MSD

Jho:2016:SSE

Jakobsson:2012:AWD

Chang:2012:TRR

Jogenfors:2015:HBT

Jeong:2013:CBC

REFERENCES

Jin:2010:ADW

Jain:2010:QP

Jawad:2013:GAD

Jiang:2016:PPT

Jun:2012:IIR

Jan:2019:PBM

Jin:2010:ADW

Jain:2010:QP

Jawad:2013:GAD

Jiang:2016:PPT

REFERENCES

Jovanovic:2012:FAL

Joseffson:2016:ECD

Jeong:2012:IKP

REFERENCES

Jefs:2013:CCP

Juels:2014:HEE

Jevdjic:2017:ASC

Jain:2016:APQ

Jadmayer:2017:BCI

REFERENCES

Jiang:2016:CVI

Juels:2014:INC

Jiang:2017:SLD

Joux:2014:SAC

Jiang:2010:EDI

Yixin Jiang, Haojin Zhu,
REFERENCES

Khazaei:2017:COA

Kurkcu:2018:CBE

Kornycky:2017:RFT

Koziel:2018:HPS

Kamp:2013:MES

Kamp:2016:MEM

REFERENCES

Kapera:2011:SPD

Kapera:2013:MRM

Karafyllidis:2012:QGC

Kong:2015:CSM

Katz:2013:RIB

Kawamoto:2015:LSH

Karthigaikumar:2010:PPV
P. Karthigaikumar and K. Baskaran. Partially pipelined VLSI implementation of Blowfish encryption/decryption algo-
REFERENCES

REFERENCES

Karakoc:2015:AKA

Kumari:2017:DSU

Kara:2019:ALS

Keblusek:2015:BRK

Kemshall:2011:WMT

Kleinjung:2010:FBR

[Thorsten Kleinjung, Kazumaro Jens Franke, Arjen K. Lenstra, Emmanuel Thomé, Joppe W. Bos, Pierrick Gaudry, Alexander Kruppa, Peter L. Montgomery, Dag Arne]
REFERENCES

Kikuchi:2012:SSN

Kramer:2010:FDC

Kim:2012:SLT

Khedr:2016:SSH

Kwon:2010:SEB

REFERENCES

[102x68] KAI:2011:CIS

[102x68] KIAYIAS:2011:TCC

[102x68] KOMPARA:2019:REM

[102x68] KIM:2011:LBA

[102x68] KIM:2015:CEH

[102x68] KIM:2016:MAS

[KKA15] Abdul Nasir Khan, M. L. Mat Kiah, and Mazhar Ali. A cloud-manager-based re-encryption scheme for mobile users in cloud environment: a hybrid ap-
REFERENCES

Khan:2014:MEK

Karopoulos:2010:FIP

Kubota:2016:SAV

Khan:2013:EDC

Khan:2014:IPR

Saru Kumari, Xiong Li, Fan Wu, Ashok Kumar Das, Hamed Arshad,

REFERENCES

Kifer:2014:PFM

Koblitz:2015:RWE

Koblitz:2016:RWE

Kasamatsu:2012:TSE

Kiyoshima:2014:CRB

Karger:2011:LLB

Kanwal:2015:TTM

Katz:2012:TSP

Kavun:2018:SAE

Khovratovich:2010:RCA

Khovratovich:2010:RRA

Kumari:2016:APW

Koblitz:2010:BRB

Neal Koblitz. Book review: Decrypted Secrets: Methods and Maxims of
REFERENCES

CODEN SIREAD. ISSN 0036-1445 (print), 1095-7200 (electronic).

Kasper:2012:SCA

CODEN LNCSDD. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://link.springer.com/chapter/10.1007/978-3-642-25286-0_5/.

Khamsemanan:2016:BBU

CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Kawachi:2017:GCR

Akinori Kawachi, Yoshio Okamoto, Keisuke Tanaka, and Kenji Yasumaga. General constructions of rational secret sharing with expected constant-round re-

Kollmitzer:2010:AQC

Kang:2012:AKM

Kolman:2017:SCG

Eyal Kolman and Benny Pinkas. Securely computing a ground speed model.
REFERENCES

Koya:2018:AHM

Kumar:2017:TAU

Kiltz:2011:EAH

Khalid:2016:RHL

Kocabas:2012:CPB

Kang:2016:DSA

Keskinarkaus:2010:IWD

Krenn:2013:CCR

Knudsen:2011:BCC

Krantz:2012:EAM

Kostinger:2012:SBL
REFERENCES

http://link.springer.com/chapter/10.1007/978-3-642-32717-9_20/.

REFERENCES

REFERENCES

http://link.springer.com/chapter/10.1007/978-3-642-28490-8_14/.

Klingler:2013:UPT

Kim:2012:SAH

Kawachi:2012:SKE

Kobayashi:2016:ASC

Klisowski:2012:CCP

Kai:2014:FSD

Hiroshi Kai and Keita Ueda. Fake shares detection on a visual secret shar-
Kupcu:2013:DTT

Kupcu:2015:OAS

Kuznetsov:2011:APP

Kiljan:2018:ETA

Karpovsky:2014:DSS

Kuo:2016:SDD

Koyama:2012:NTD

Kamal:2010:EIN

Kuo:2018:DRA

Kate:2010:PBO

Lu:2010:MSC

Lathey:2015:IEE

Lackey:2015:UHP

[102x681]Liang:2015:SEC

[184x610]Landau:2010:SSR

[184x610]Landau:2017:LCI

[184x610]Launchbury:2012:TBC

[184x622]Lauter:2017:POL

B. Prathusha Laxmi and A. Chilambuchelvan. GSR: Geographic Secured Routing using SHA-3 algorithm.

Liu:2013:IA

Lathrop:2011:SPI

Lavington:2012:ATH

Li:2015:NAC

Lee:2017:SUE

Kwangsu Lee, Seung Geol Choi, Dong Hoon Lee, Jong Hwan Park, and Moti Yung. Self-updatable encryption: Time constrained access control with hidden attributes and better efficiency. Theoretical Computer Sci-

[Li:2017:GAU]

[Li:2015:CEH]

[Li:2017:CCF]

[Liang:2014:CCS]

[Ledin:2016:RME]

[Lewand:2010:PC]

[Liu:2019:DVP]

[Liu:2016:LCR]

[Liang:2015:CPA]

Kaitai Liang, Liming Fang, Duncan S. Wong, and Willy Susilo. A ciphertext-policy attribute-based proxy re-encryption scheme for data sharing in public

Li:2017:PCL

Lancrenon:2012:IP1

Liu:2017:ECC

Lan:2010:RNG

Li:2012:FDM

REFERENCES

Lee:2010:CGC

Li:2010:EBB

Lee:2011:PSE

Lin:2011:NIB

Lertvorratatham:2012:ISM

Liao:2013:NMS

REFERENCES

Li:2010:PAP

Li:2017:AMA

Lim:2011:NAN

Lin:2014:IVW

Lindell:2014:TCT

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
</table>
| Li:2016:IRI | Xinran Li, Chen-Hui Jin, and Fang-Wei Fu. Improved results of impossible differential cryptanaly-

[Li:2017:SQS]

[LJW+17]

[Liu:2017:OO]

Lin:2016:SCU

Lyu:2018:PKE

Li:2012:RIB

Li:2017:CIS

Liu:2018:GEI

Liu:2019:SBC

REFERENCES

Li:2017:CCD

Liu:2018:VSE

Libert:2019:ZKA

Lu:2012:IEC

[LLML12] Xianhui Lu, Bao Li, Qixiang Mei, and Yamin Liu.

REFERENCES

[LMD16] Anh Le, Athina Markopoulou, and Alexandros G. Dimakis. Auditing for dis-

[Liu:2015:SAB] Hong Liu, Huansheng

Robert J. Low. Book re-

[LPL12] Rodolphe Lampe, Jacques Patarin, and Yannick Seurin. An asymptoti-

Liskiewicz:2013:GBS

Liskiewicz:2017:SLS

Lane:2014:PBD

Luo:2012:FSU

Lin:2015:SSE

Lychev:2016:RSI
Lee:2012:IBS

Lei:2012:RAW

Liang:2015:EFC

Liu:2011:DBA

Liu:2011:NJD

Lin:2018:SSS

REFERENCES

[LT15a] Chao-Liang Liu, Cheng-Jung Tsai, Ting-Yi Chang, Wang-Jui Tsai, and Po-Kai Zhong. Implementing multiple biometric features for a recall-based graph-

Liu:2015:MSG

Lao:2016:BFD

Lysyanskaya:2010:AEC

Lin:2011:CNS

Li:2016:LRC

Ludge:2012:NLD

Lucchese:2010:RPT

Lafitte:2011:CBF

Liu:2010:CIE

REFERENCES

Liu:2013:TIE

Lui:2013:CBS

Liu:2014:DAF

Liu:2017:EEC

Liu:2011:SBA

Li:2018:SCM
Xiong Li, Fan Wu, Muhammad Khurram Khan, Lili

Lu:2012:HOM

Lu:2014:HOM

Liu:2010:NDC

Liu:2010:SET

Liu:2011:PIA

Lu:2012:MMA

Lu:2012:ICB

Li:2010:GCP

Li:2012:IIA

Lou:2010:NAS

Lou:2010:NAS

Dai-Rui Lin, Chih-I Wang, Zhi-Kai Zhang, and D. J. Guan. A digital signature with multiple subliminal channels and its

[Li:2011:N1W]

[Li:2014:IBD]

[Li:2014:EMK]

[Lai:2012:RHB]

[Li:2012:ESD]
Luo:2014:ARP

Liu:2015:SDS

Lim:2016:AKE

Lu:2014:DAN

Liu:2015:SAA

Liao:2012:NSM

REFERENCES

1519, June 10, 2014. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

Liu:2017:ESS

Liu:2014:CRA

Liu:2012:ESS

Li:2010:PES

Li:2016:BMA

Masdari:2017:STA
REFERENCES

MacCormick:2012:NAC

With a foreword by Christopher M. Bishop.

Macrakis:2014:PLS

Maffleo:2016:UNC

Michail:2012:EHT

Moskowitz:2010:ITE

Malkin:2013:SCB

Mangard:2013:KSL

Martin:2010:FWL

Martin:2010:PCC

Matsuda:2014:IBP
REFERENCES

Maurer:2012:CCN

Mayron:2015:BAM

Mazurczyk:2013:VSD

Milo:2011:FGB

Mao:2015:PUA

Malone:2013:MOD

Migliore:2018:PPF

Massolino:2015:OSC

Mukhopadhyay:2011:PEA

Madanayake:2012:BPS

McGrew:2017:IDH

McGrayne:2011:TWH

McKay:2010:SLB

McKay:2011:SLB

McKay:2012:SLC

Mahmood:2018:ECC

Marquez-Corbella:2015:ECP

Mathew:2015:NMB

Majzoub:2012:MRH

[MD12a] Sohaib Majzoub and Hassan Diab. MorphoSys reconfigurable hardware for cryptography: the Twofish
REFERENCES

Mansouri:2012:ACA

Mansfield-Devine:2015:MIC

Murdoch:2010:CPB

Mosenia:2017:PTS

Maachaoui:2012:MLA

Meiklejohn:2010:BRB

Menezes:2013:IPB

Menn:2013:ESC

Meshram:2015:EIB

Mandal:2016:DIW

Moreno:2013:NIP

Moufek:2015:MCB

Hamza Moufek and Kenza Guenda. McEliece cryptosystem based on punctured convolutional codes and the pseudo-random generators. *ACM Communications in Computer Science*

Marmol:2010:TPA

Matsuda:2014:CCS

Meziani:2012:IPS

Mou:2013:CBC

Mohd:2015:SLB

Bassam J. Mohd, Thaier Hayajneh, and Athanasios V. Vasilakos. A survey on lightweight block ciphers for low-resource de-
REFERENCES

Mohd:2018:HDM

Micciancio:2010:FGC

Micciancio:2010:OWB

Midgley:2010:SEE

Martinez-Julia:2012:NIB

Martinez-Julia:2013:BSI

Muller:2012:HPC

Moazaffari-Kermani:2017:FDA

McGrew:2016:SMH

Mohanty:2011:RTP

Moessner:2012:SAS

MK11

MK12a

MK12b

MK13

MK14

MK15

MK16

MK17

MK18

MK19

MK20

MK21

Maity:2014:FIR [MM14a] Hirak Kumar Maity and Santi P. Maity. FPGA implementation of reversible watermarking in digital im-

[MMP19] Francesco Marino, Corrado Moiso, and Matteo Petracca. Automatic contract negotiation, service discovery and mutual authentication solu-

Macedo:2017:SSP

Maity:2013:CRS

Matsuo:2012:MAK

REFERENCES

Meshram:2012:IBC

Moran:2010:BCP

Mukhopadhyay:2014:EMP

This paper provides a correction to the algorithm presented in [?], and also supplies a complicated correctness proof.

Monz:2016:RSS

McKusick:2015:DIF

Minier:2012:RKI

Marine Minier and María Naya-Plasencia. A related key impossible differential attack against 22 rounds of the lightweight block cipher LBlock. *Information Processing Letters*, 112(16):624–629, Au-

REFERENCES

Subhayan Roy Moulick.

Marine Minier and Raphael C.-W. Phan.

Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M. Voelker, and Stefan Savage.

Philipp Mundhenk, Andrew Paverd, Artur Mrowca, Sebastian Steinhorst, Martin Lukasiwycz, Suhaib A. Fahmy, and Samarjit Chakraborty.

Ilya Mironov, Omkant Pandey, Omer Reingold, and Gil Segev.
Mukhamedov:2010:IEP

Maimut:2014:AET

Marasco:2014:SAS

Micali:2014:CMS

Manimekalai:2016:NRR

Migliore:2018:HSC

Martinovic:2017:AUP

[MRRT17] Ivan Martinovic, Kasper Rasmussen, Marc Roeschlin, and Gene Tsudik. Authentication using pulse-response biometrics. *Com-
Matsumoto:2017:ACG

Moghadam:2010:DRN

[MRTV12]

Mendel:2012:DAL

Maitra:2012:NAC

[MRT10]

Mroczkowski:2012:CAS

References

[MSas13] Myers:2013:BBC

Michele Mosca, Douglas Stebila, and BerkantUstaoglu. Quantum key...

Morozov:2012:ZKP

Malkin:2011:ECS

Meerwald:2012:ERW

Muftic:2016:BCC

Mundy:2017:CGU

Murphy:2010:BRB

Cillian Murphy. Book review: *Introduction to Cryptography*, by Hans...

[Mur16]

Murdoch:2016:IDP

[MV16a]

Miri:2012:SAC

[MvO11]

Mannan:2011:LPD

[MV12]

Mishra:2016:AFP

[MV16b]

[MV16a]

Mishra:2016:AFP

[MV12]

Mannan:2011:LPD

[MV12]

Roel Maes, Anthony Van Herreweghe, and Ingrid Ver-

Mastroeni:2017:APS

Manshaei:2013:GTM

Ma:2015:PKE

Nagy:2010:OTP

Nagy:2010:QCS

Naccache:2012:CST

Naccache:2016:FHE

David Naccache. Fully

Naranjo:2012:SAK

Nunez:2017:PRE

Noureeddine:2013:AMT

Nain:2017:SPE

Naskar:2012:FIR

Nedjah:2016:PYP

Newell:2013:PCD

Naeem:2014:EIC

Nafea:2016:HMB

NIST:2012:RRN

NIST:2013:CSS

NIST. Cryptographic standards statement. National Institute of Stan-
Nguyen:2014:DDI

Ning:2012:DPB

Ning:2015:APB

Ning:2012:DCA

Nieto:2013:PVC

Nieto:2014:FSH

REFERENCES

[Nos14] Peter Nose. Security weaknesses of a signature scheme and authenticated key agreement protocols. Information Process-
Novotny:2010:TAE

Nichols:2014:CSS

Nguyen:2011:APB

Nguyen:2012:SOU

Namasudra:2017:NSA

Niu:2015:CRS

Dannmei Niu, Lanlan Rui, Cheng Zhong, and Xuesong Qiu. A composition and recovery strategy for mobile social network service in disaster. *The Com-

Nguyen:2012:LRS

Nguyen:2010:LAS

Noorman:2017:SLC

Nie:2013:CHB

Natgunanathan:2017:PBM

Ogiela:2012:UML

Ohtake:2012:AAH

Ogiela:2018:LTC

Orlandi:2014:SCN

Oppliger:2011:CC

REFERENCES

Orejel:2014:E

Ormond:2016:CPR

Ozen:2011:MIS

Owczarek:2012:LPL

Osborn:2016:SSR

Orencik:2016:MKS

REFERENCES

[PA10] V. Lakshmi Praba and G. Arumugam. Message authentication code algo-

Parveen:2018:IEE

Pal:2015:SDC

Parent:2012:WAI

Park:2012:AP0

Pan14

Par12a

Paul:2016:TSO

Papadopoulos:2014:LQA

Premnath:2014:EHR

Poh:2017:SSE

Pang:2014:PPA

Paul:2012:KSS

Pereira:2015:PKE

Pippal:2012:SVU

Pearson:2011:NWC

Persichetti:2013:SAH

Peterson:2011:SWS

Petric:2012:PRE

REFERENCES

Parno:2016:PNP

Papas:2012:MLR

Park:2010:SIC

Pieprzyk:2010:TCC

Pointcheval:2012:ACE

REFERENCES

Premarathne:2015:LDD

Pramila:2018:ICA

Peter:2012:AHE

Phuc:2016:SAS

Tran Song Dat Phuc and Changhoon Lee. Security analysis of SDDO-based block cipher for wireless sensor network. The Journal of Supercomput-

REFERENCES

Pande:2013:SMC

Poursakidis:2010:TPC

Puthal:2017:DDK

Niu:2014:RDW

Powers:2014:OSCa

Paar:2010:UCT

Papadopoulos:2010:TRM

Konstantinos Papadopoulos and Ioannis Papaefstathiou. Titan-R: a multigigabit reconfigurable

Park:2011:ACC

Pereira:2016:SHB

Pendl:2012:ECC

Pyun:2012:IBF

Pereira:2013:SLC

[PSdO+13]

Phatak:2013:SIN

[PSJ+13]

Patranabis:2017:PSK

Picazo-Sanchez:2013:CRS

[PSOMPL13]

Park:2013:PPM

REFERENCES

46–54, January/February 2012. ISSN 1540-7993 (print), 1558-4046 (electronic).

REFERENCES

Pughters:2018:CBE

Pouraghani:2018:NNE

Patsakis:2015:PSM

Qiu:2018:QDS

Qin:2016:VTQ

Qu:2013:DPA
Bo Qu, Dawu Gu, Zheng Guo, and Junrong Liu. Differential power analysis of stream ciphers

Qin:2017:DIR

Qiu:2017:AAS

Qiao:2018:CTC

Quaglia:2018:SVA

REFERENCES

REFERENCES

REFERENCES

Ruoti:2015:WJS

Rupp:2015:CTM

Radke:2015:CFA

Reaves:2017:MBM

Raisaro:2018:PPS

REFERENCES

REFERENCES

REFERENCES

[Rosen:2010:CCS]

[Reeder:2011:WPD]

[Rivest:2014:SSR]

[Rossi:2015:IBS]

[Rana:2016:DBV]

[Roy:2017:LOS]

[Rangasamy:2012:ERP]
Jothi Rangasamy, Douglas Stebila, Colin Boyd, and Juan Manuel González-Nieto. Effort-release

Ren:2018:IAS

Raju:2014:DA

Ryan:2015:EEVa

Russo:2015:FPT

Alejandro Russo. Functional pearl: two can keep a secret, if one of them uses Haskell. ACM SIGPLAN Notices, 50(9):280–288, September 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Rahulamathavan:2016:UCA

Rodriguez-Vazquez:2012:SCB

Roettger:2012:PKC

Ren:2014:HHM

Rogaway:2012:SCS

REFERENCES

Ren:2013:PPK

Ristenpart:2010:WGR

Rajendran:2015:FAB

Sang:2012:SSF

Sakalli:2014:ACC

Muharrem Tolga Sakalli and Bora Aslan. On the algebraic construction of cryptographically good 32×32 binary linear transformations. Journal of

[RWZ13]

RY10

[SA12]

[SA14]

[RYF+13]

Sarreshtedari:2015:WMD

Schutz:2010:DIN

Sacco:2014:MC

Sahai:2013:TCT

Saeed:2016:IID

Saleh:2016:PED

Sarier:2010:IAS

Sarkar:2010:SGC

Sarier:2012:SNB

Sarkar:2011:TES

Sarkar:2014:PEK

Sarier:2018:MBI

Singh:2018:SDD
Priyanka Singh, Nishant Agarwal, and Balasubramanian Raman. Secure

REFERENCES

4:??, August 2014. CODEN ATISBQ. ISSN 1094-9224 (print), 1557-7406 (electronic).

Edward F. Schaefer. Book review: The Mathematics of Encryption: An Elementary Introduction, Re-

[Sch16]

[Sch15b]

[Sch15c]

[Schneier:2016:CHT]

[SCKH10]

Sendrier:2017:CBC

Serrato:2012:IAN

Sakai:2016:CDN

Sethumadhavan:2016:HEP

Severance:2016:BSB

Seo:2018:AOF

Jae Hong Seo, Keita Emura, Keita Xagawa, and Kazuki Yoneyama. Accumulable optimistic fair exchange from verifiably encrypted homomorphic signatures. *International Journal of In-
REFERENCES

[Savas:2014:SMQ]

[Su:2012:IIN]

[Shabtai:2010:SAP]

[Schneier:2015:SWC]

[Sasdrich:2015:ICS]

[Shu:2014:DAS]
Saxena:2016:API

Silva-Garcia:2018:SBG

Sun:2015:FSW

Sanchez-Garcia:2016:SSA

Sun:2015:FSW

[SGY11] Zhang Shaolan, Xing Guobo, and Yang Yixian. An efficient domain extension to construct a cryptographic hash function. In

Amar Siad. A new approach for private searches on public-key encrypted
Simion:2015:RST

Simmonds:2015:DII

Sirer:2016:TPS

Shakeri:2012:RZW

Shin:2017:CGI

Sabri:2011:AFS

Khair Eddin Sabri and Ridha Khedri. Algebraic framework for the specification and analysis of cryptographic-key distribution. Fundamenta Informaticae, 112(4):305–335,
REFERENCES

December 2011. CODEN FUMAAJ. ISSN 0169-2968 (print), 1875-8681 (electronic).

[SK12a] Sachnev:2012:IME

[SK12b] Seo:2012:MPM

[SKB+17] Son:2017:NOC

[Soupionis:2014:GTA]

[SKB+17] Son:2017:NOC

[SKH17] Shin:2017:SSD

Tobias Scheidat, Karl Kümmel, and Claus Vielhauer. Short term template aging effects on biometric dynamic handwrit-
REFERENCES

Roland Schmitz:2012:NAC

Mudhakar Srivatsa:2011:ESA

David Schultz:2010:MMP

U. Somani, K. Lakhani, and M. Mundra. Implementing digital signature with RSA encryption algorithm to enhance the data security of cloud in cloud computing. In Chaudhuri et al. [CGB+10], pages 211–216. ISBN 1-4244-7675-5. LCCN ???.

U. Somani:2010:IDS

Shi-Feng Sun:2016:RSP

Jun Shao, Peng Liu, and Yuan Zhou. Achieving key privacy without losing CCA security in

Sengupta:2012:SAI

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as easy as 1, 2, 3. In Lathrop et al. [LCK11], pages 16:1–16:12. ISBN 1-4503-0771-X. LCCN ????.

Pawel Swierczynski, Amir Moradi, David Oswald, and Christof Paar. Physical security evaluation

Stankovski:2014:CFE

Sharma:2018:CSS

Sadeghi:2010:THI

3. Foreword by Pim Tuyls.

Safavi-Naini:2011:USC

Seyedzadeh:2014:RCI

REFERENCES

Suriadi:2012:PCV

Schaumont:2015:IEP

Suresh:2015:AGU

Serwadda:2013:ELK

Shiaeles:2015:FII

Shim:2015:SDA
Kyung-Ah Shim and Cheol-Min Park. A secure data aggregation scheme based on appropriate cryptographic primitives in heterogeneous wireless sensor networks. IEEE Transactions on Parallel and Distributed Sys-

Spafford:2016:SE

Safkhani:2014:CCA

Sun:2013:IUP
San-Tsai Sun, Eric Pospisil.

Serwadda:2016:TRR

Shaikh:2010:CTO

REFERENCES

Saklikar:2010:IFV

Saxena:2010:SGC

Sopka:2010:BTS

Szaban:2011:IQB

Saxena:2012:BIT

Shparlinski:2012:CSD
REFERENCES

Sendrier:2013:HCE

Sadhy:2017:PRE

Singh:2013:QBF

Smith:2011:SMC

Shrivastava:2012:UIE

Strydis:2013:SAP
Christos Strydis, Robert M. Seepers, Pedro Peris-Lopez, Dimitrios Siskos,

Sood:2011:SDI

Spiez:2012:RCT

Sahai:2012:DCC

Schiller:2014:CCA

Shen:2016:RMM

[Wuqiang Shen and Shaohua Tang. RGB, a mixed multivariate signature scheme. *The Com-
REFERENCES

Stallings:2011:CNS

Stanojevitch:2011:ICM

Stanek:2012:TEM

Staff:2013:ITD

Stewart:2011:CCI

Steel:2015:APF

REFERENCES

Stenn:2015:SNT

Stipcevic:2011:QRN

Sticke:2015:CBS

Stolte:2012:EDA

Suciu:2012:SED

Sung:2011:DCE

Sun:2016:NEB
REFERENCES

REFERENCES

www.sciencedirect.com/science/article/pii/S0020019015001283

Song:2017:SSI

Seo:2013:PIC

Sui:2014:DAH

Shi:2013:REA

Song:2017:SAM

Sun:2017:CPP

Sun:2018:RPP

Sun:2017:CPP

Shen:2014:ERC

Shen:2014:ERC

Sun:2018:RPP

Sun:2018:RPP

Tsang:2010:BRR

Tsang:2010:BRR

Tamayo:2015:AFH

Tamayo:2015:AFH

Tan:2011:CTA

Tan:2011:CTA

Tan:2011:CTA

REFERENCES

[Tang:2015:CER]

[Tan:2017:JDC]

[Tian:2014:DFS]

[Tiplea:2014:NSC]

[Tao:2013:SMS]

[Terai:2011:BRB]
REFERENCES

DEN SIGNDM. ISSN 0163-5700 (print), 1943-5827 (electronic). See [?].

Tassa:2012:SDC

Tewari:2017:CNU

Tian:2016:IBS

Tian:2015:IBP

Tian:2012:TOE
Thabit:2014:RRW

Takayasu:2019:PKE

Tu:2014:EPB

Tani:2012:EQA

Tu:2013:PAQ

Tariq:2014:SBL

(print), 1558-2183 (electronic).

[Tsay:2012:VUL] Joe-Kai Tsay and Stig F. Mjølsnes. A vulnerability in the UMTS and LTE authentication and key agree-
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL

Tsoutsos:2018:EDM

[TM18] Nektarios Georgios Tsoutsos and Michail Mani-
atakos. Efficient detection for malicious and random errors in addi-
document/7967774/.

Tang:2015:ECP

[TMC15] Qiang Tang, Hua Ma, and Xiaofeng Chen. Extend the concept of public key encryption with dele-

Tormo:2013:IMP

Girao, and Gregorio Martinez Perez. Identity management — in privacy we trust: Bridging the trust
gap in eHealth environments. *IEEE Security
CODEN ????. ISSN 1540-7993 (print), 1558-4046 (electronic).

Terrovitis:2011:LGR

[TMK11] Manolis Terrovitis, Nikos Mamoulis, and Panos Kal-
nis. Local and global recoding methods for anonymizing set-valued data. *VLDB Journal: Very Large
VLDBFR. ISSN 1066-8888 (print), 0949-877X (elec-
tronic).

Terrovitis:2012:PPD

[TMLS12] Manolis Terrovitis, Nikos Mamoulis, John Liagouris,
andSpiros Skiadopoulos. Privacy preservation by
CODEN ????. ISSN 2150-8097.

Tao:2018:AAC

[TODQ18] Ming Tao, Kaoru Ota, Mianxiong Dong, and Zhuzhong Qian. Access-
ssAuth: Capacity-aware security access authenti-
cation in federated-IoT-enabled v2g networks.

[Trd11] Ken Taylor, Scott Rickard,
Tschorsch:2016:BBT

Tao:2014:CFS

Toreini:2017:TRP

Tang:2011:IDC

Tso:2013:SAI

REFERENCES

Wu:2012:SWG

Tartary:2011:EIT

Tian:2012:SSB

Tan:2016:CCA

Tolba:2016:GMA

Trammel:2012:DTP
John Trammel, Ümit Yağcınalp, Andrei Kalfas, James Boag, and Dan Brotsky. Device token protocol for persistent authentication shared across applications. Lecture Notes in Computer Science, 7592:
REFERENCES

[UK18] Uzunkol:2018:SWU

Vuagnoux:2010:CA

Wagstaff:2010:C

Wagner:2016:TPF

Walter:2018:RCS

Wang:2010:NSB

Wang:2013:CRA

Wang:2014:IIA

REFERENCES

REFERENCES

4472-1034-4 (paperback),
1-4472-4660-8 (ePub e-book). 400 pp. LCCN ????

Wei:2012:NCI

Wang:2017:DRM

Wang:2017:DVP

Wei:2016:PAB

[WH17] [WHC+15] [WHLH16]
REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume/Issue/Pages</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

[Wang:2017:ABS] Qi Wang, Xiangxue Li, and Yu Yu. Anonymity for Bitcoin from secure escrow ad-

REFERENCES

[Wu:2016:CBE] Q. Wu, B. Qin, L. Zhang,

Wei:2015:TPE

Wu:2012:RGB

Williams:2013:APC

Whitworth:2014:SPC

Wang:2015:RSA

REFERENCES

[Watanabe:2012:ITT]

[Wang:2012:PAC]

[Wang:2013:NMC]
REFERENCES

[WW14] Ding Wang and Ping Wang. On the anonymity of two-factor authentication schemes for wireless sensor networks: Attacks, principle and solu-
Wen:2014:MZC

Wang:2011:MMW

Weng:2012:NCC

Wahaballa:2014:MLS

Werner:2017:CIM

Wang:2011:CIB

Wang:2011:CHI

Wang:2017:FWA

Wang:2016:SHI

Yuechuan Wei, Xiaoyuan Yang, and Chao Li. Impos-

REFERENCES

www.sciencedirect.com/science/article/pii/S1084804512002184

REFERENCES

ISSN 0018-9340 (print), 1557-9956 (electronic).

Xu:2012:AHA

Xiang:2016:EMP

Xue:2013:TCB
Kaiping Xue, Changsha Ma, Peilin Hong, and Rong Ding. A temporal-credential-based mutual authentication and key agreement scheme for wireless sensor networks. *Journal of Network and Computer App-

Xie:2013:ECP

Xiang:2014:PBA

Xia:2015:SPK

REFERENCES

[XWZW16]

Xu:2018:SKS

[XWY18]

Xu:2018:DFH

[XWZ18]

[XXZ12]

[XXX15]

Xie:2012:DPK

Xiao:2018:KRL

[XY18]

Xing-Yuan:2011:PRS

[XYYXY11]

Xiao:2018:FEI

[XZZ18]

Yo+o:2017:PQD

[Y+17]

[Yang:2011:GSS] Ching-Nung Yang and Yu-Ying Chu. A general \((k,n)\) scalable se-

Yang:2012:PST

Yang:2016:EBB

Yi:2017:ZCL

Yuan:2013:PV

Yu:2016:DNF

Yao:2015:LAB

Yuen:2012:IBE

Yu:2017:PDA

Yasuda:2015:MQC

Yan:2016:DEB

Ye:2010:ACC

Yamada:2012:PBR

Ye:2014:NIE

Yekhanin:2010:LDC

Yoshida:2012:OGT

Yu:2012:EPF

Yang:2017:CCS

REFERENCES

Yuce:2017:AFI

Yang:2015:SHI

Ye:2018:RKF

REFERENCES

Yang:2016:IHA

[184x646]Yu:2010:IBF

Yu:2011:FSI

Jia Yu, Fanyu Kong, Xiangguo Cheng, Rong Hao, and Jianxi Fan. Forward-secure identity-based public-key encryption without random oracles. Fundamenta Informaticae, 111(2):241–256,

Yo:2010:IRR

[184x646]Yu:2010:FSI

[184x646]Yang:2016:EHA

[184x646]Yu:2011:FSI

Jia Yu, Fanyu Kong, Xiangguo Cheng, Rong Hao, and Jianxi Fan. Forward-secure identity-based public-key encryption without random oracles. Fundamenta Informaticae, 111(2):241–256,
Yu:2012:IRI

Young:2013:TPC

Yang:2018:AIW

Yum:2012:OPE

Yoshino:2012:SIP

Yum:2011:ACO
Dae Hyun Yum and Pil Joong Lee. On the average cost of order-preserving

Yi:2017:ICM

Yuen:2013:ELT

Yang:2012:WSI

You:2012:DDS

Yi:2013:ETS

Yu:2016:CBE

Yu:2017:A

Yagan:2016:WSN

Yakubu:2017:SSN

Yu:2017:A

Ying:2013:PPB

Yu:2010:PSI

References

Yu:2011:CLE

CODEN TCSCDI. ISSN 0304-3975 (print), 1879-2294 (electronic).

Yu:2011:SPP

J. Yong. Security and privacy preservation for mobile E-learning via digital identity attributes. *J.UCS: Journal of Universal Com-
REFERENCES

Yoneyama:2012:ORA

Yang:2012:EMA

Yin:2017:QPE

Yengisetty:2011:AVC

REFERENCES

REFERENCES

IEANEP. ISSN 1063-6692 (print), 1558-2566 (electronic).

Lo-Yao Yeh, Woei-Jiunn Tsaur, and Hsin-Han

Yang:2011:CCK

Yang:2011:CPK

Yamada:2012:UEW

Yeh:2017:SIB
Lo-Yao Yeh, Woei-Jiunn Tsaur, and Hsin-Han

[Yang:2014:IBI]

[YTM+14]

[YTP11]

Yurong Yao, Edward Wat-

Yan:2017:PIS

Yang:2015:RCI

Wang:2011:RDA

Wang:2013:RBC

Yu:2012:NWM

REFERENCES

Yang:2017:SKS

Yang:2018:CDD

Yang:2012:BPN

Yang:2012:NIB

Yang:2014:PST

Zufiria:2017:GLM

Zidaric:2019:HOA

Zhang:2011:TNT

Zhu:2012:JLS

Zhang:2013:RMS

Zhang:2015:PCL

Zongyang Zhang, Sherman S. M. Chow, and Zhenfu Cao. Post-challenge leakage in public-key encryption. *Theoretical Com-
puter Science, 572(??):25–49, March 23, 2015. CO-
DEN TCSCDI. ISSN 0304-
3975 (print), 1879-2294
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0304397515000377.

[ZCWS15]
Zhi-Kai Zhang, Michael
Cheng Yi Cho, Zong-Yu
Wu, and Shiu-Hyung Win-
ston Sheih. Identifying
and authenticating IoT ob-
jects in a natural con-
text. Computer, 48(8):
81–83, August 2015. CO-
DEN CPTRB4. ISSN
0018-9162 (print), 1558-
0814 (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0018916215001598.

[ZDL12]
Jiuling Zhang, Beixing
Deng, and Xing Li. Ad-
ditive order preserving en-
cryption based encrypted
documents ranking in se-
cure cloud storage. Lecture
Notes in Computer
CODEN LNCSDR. ISSN
0302-9743 (print), 1611-

[YWZ11]
Yu, Wen; Wang, Zhi; Zhou,
Yanlin. Novel and Ef
cient Adaptive Intruder
Identification in Wireless
Networks. Journal of Con-
current Engineering & Tech-
CODEN JCETEH. ISSN
0929-5032 (print), 1548-
l.org/journals/toc/jconengtech/19-2/.

[ZCL+12]
Zhifang Zhang, Yeow Meng
Chee, San Ling, Mulan
Liu, and Huaxiong Wang.
Threshold changeable se-
cret sharing schemes revis-
ited. Theoretical Computer
Science, 418(1):106–115,
February 10, 2012. CO-
DEN TCSCDI. ISSN 0304-
3975 (print), 1879-2294
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0304397511008206.

[ZCL+19]
Kai Zhang, Jie Chen,
Hyung Tae Lee, Haifeng
Qian, and Huaxiong Wang.
Efficient public key en-
cryption with equality test
in the standard model.
Theoretical Computer
Science, 755(??):65–80,
January 10, 2019. CO-
DEN TCSCDI. ISSN 0304-3975
(print), 1879-2294 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S030439751830464X.

[ZCCL14]
Yinghui Zhang, Xiaofeng
Chen, Jin Li, and Hui Li.
Generic construction for se-
cure and efficient handoff
authentication schemes in
EAP-based wireless net-
works. Computer Networks
(’Amsterdam, Netherlands:
1999), 75 (part A)(??):192–
211, December 24, 2014.
CODEN ???. ISSN 1389-
1286 (print), 1872-7069
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S1389128614003648.
Zhou:2016:IBP

Zetter:2014:CZD

Zhao:2010:PSA

Zhou:2018:SAE

Zhou:2016:HFD

Gao:2012:DES

REFERENCES

Zimand:2010:SEC

Zhang:2011:FBP

Zeng:2014:NFC

Zhou:2015:PPS

Zhao:2012:IAS

REFERENCES

Zhang:2014:TAH

Zhang:2012:EEF

Zhang:2015:RBA

Zhang:2012:CCB

Zhu:2017:PSN

Zhang:2010:ESP
Jianhong Zhang, Chenglian Liu, and Yixian Yang. An efﬁcient secure proxy veriﬁably encrypted signature

Zhou:2017:IBB

ZU OC
48.5

www.sciencedirect.com/
science/article/pii/S0898122111011382

Zenger:2016:AKE

Zhang:2015:MAA

Zmudzinski:2012:WEU

Zhao:2012:SSM

Zheng:2018:GDP

Zhang:2012:EHO

Zuo:2018:CSA

Zhang:2014:NCM
REFERENCES

Zhu:2015:PPD

Zwattendorfer:2012:CBL

Zhang:2016:EEA

Zhou:2016:SRB

Zhou:2014:SAC

Zhang:2015:FAA

Zhiyong Zhang and Kanhliang Wang. A formal analytic approach to credible potential path and mining

Zhang:2013:LPP

Zhang:2016:PA

Zhang:2014:EFH

Zhang:2018:AKE

Zhang:2018:VPA

Zheng:2015:EPT

Zaidan:2017:NDW

Zhang:2017:NLR