Title word cross-reference

(18, 6) [MW00]. + [BCF06]. 1
[AVGASAP15, BDL’06]. 101 [FFFP07]. 16
[MMS97], 2
[AXSVL14, AVGASAP15, Ano01m, AS08b, ABVC16, AVC19, AM97, BN15, BBC00, BL16, Bd96, BZ99, BCF06, CL18, CDM+F+13, CC96, DB03, DAM12, DBB13, FCC+08, FAB97, FKL+98, GSPL10, HB98a, HUI16, HB98b, IAP+11, JDP97, JC98, KMB97, KTF+17, KSL+20, KM03, KN11, KNO+09, Lao97, LST13, LDH+15, LQQS21, LS12, Luc01, Mal21, Mil09, MBMC11, MIP16, NT10, Neg12, NKPT13, NSEA13, ODT17, OJRT08, Ste01, TH04, WCZ02, YGC15]. 2.5
[MCB13, SRHC13, ZP11]. 3
[ACF00, AMNCM16, AXSVL14, AGC+09, AB13, ALY+22, AS08b, ABVC16, AVC19, AM97, ARARCE11, ACDB12, BN15, BM99, BB16, BI10, BI11, BCA98, Bar05, BSALF18, BT05, BR95, BY12, BW15, Bd96, BZ99, BAKM18, BCF06, BGK95, BF05, BS00a, BB14, BSBW14, BMX22, COW98, CGH08, CLZY15, CM12, CK11, CL18, CS98, CYNO11, CC11, CPPY21, CLCO13, CLO17, CDF+13, CC96, CP02, CG04, CS00, CPS10, DT96b, Dam08, DWB11, Dan97, DWV19, DF01, DMSM21, DSY10, EK98, EOP22, ES04, FBF08, FF09, FRL+98, FDM97, FAB97, FKL+98, FL96, FO18, GM19, GFL+19, GGGROE+17, GSPL10, GHMT09, GKBW14, GSV05, GW07, GLZF23, Gui98, Gui99, GPC+10, GML+21, GWFF22, GSK02, HFKN97, HUI16, HHRZ17, HASS10, HRS02, HR99, Hen98, HSS+16, HGSM11, HMB17, HG11, HMF10]. 3
null
RMN$^{+17}$, ROGT14, SOK16, SJB20, SBIK16, SPT$^{+18}$, SJST07, SCR$^{+17}$, SYK96, SAC$^{+12}$, SSDvLO6, SCCP05, TPNP15, TCZ$^{+12}$, TDT12, UTB$^{+11}$, VMP03, WD14, WY07, WS08, WL08, WLMG08, XG08b, YLM11, YSS$^{+14}$, YHS$^{+20}$, YSD03, ZZP$^{+16}$, ZMCA05, ZZJS18, ZG10, ZZP12, NLW13, ZZCL14. Analysis-by-synthesis [JB15].

antipodal [LB10]. any [AVB10]. Antiproximal [YMD10]. Anytime [BAP08]. AP [CZ14]. Aperture [SGA12, BSH13]. Apparent [KMB97]. Appearance [BFY00, CW00, HF01, MKK02, SN99, TRG$^{+13}$, BF10, BMX22, CD13, DZL07, DB03, ESS10, EL07, Gwa17, HFR06, HJZ16, JVD$^{+20}$, JRS08, KEG15, LDS$^{+07}$, LHYK05, LPS$^{+11}$, LLS21b, LLL15b, MC09a, MCB13, MSW15, MU11, QTL02, RB16, RRAR$^{+16}$, SI03, SRDC09, TC11, XYRS17, YJ16, YO11, YT13, YG16].

Appearance-Based [CW00, SN99, ESS10, MC09a, RRAR$^{+16}$, SRDC09, TC11]. appearances [BBC$^{+18}$, GPG$^{+15}$]. applicability [KHK10]. applicable [Ano17j, Ano17k, Ano17l, Ano18k].

Application [ABK$^{+18}$, ACF00, AM01, AVC19, GK98, JLD12, KABP98, LSB$^{+00}$, MCPB00, MAM97, OMLL98, RAP16, RMFB02, SOL16, SRHC13, TW98, TZ00, VMP03, WSKH13, BT17, BwdHL$^{+13}$, BB13, BB15a, CTGC95, DB14, GCFM12, GWT09, KGB10, KGP10, KMHH09, MS06, Mar07, PWsvdH17, PD14, PMC13, RC03, RCT12, PBP$^{+17}$, SA04, WZY13, Ang07, BC10].

Applications [Ano98d, BY98, Gui99, Gui00, HT98, MS96a, KKK02, NBPM22, SU01b, SWG02, TPR$^{+00}$, WK$^{+16}$, CB$^{+04}$, DB03, DBBB14, GWFF22, JB23, KLB011, KPPK09, LL04, MB$^{+22}$, MM05, NBFG20, RC13, SC96, Sah05, TGM17, TMB12, UWH17, WS08, WB12, WTBdD15, XSD12, YJC$^{+09}$, YG16, ZT09]. Applied [WF02, AG$^{+15}$, GGGROE$^{+17}$, LEE$^{+18}$, MJ11].

Approach [APV99, AMMV99, BZ99, CH96, CCP97, DGH98, DGY98, DC01, FM99, HLF$^{+97}$, HP96, KW00, LSHT02, MRW$^{+97}$, MYLP98, ND$^{+97}$, OMLL98, PLL00, RJ00, RH95, Tsa96, YB95, ZKK02, AS17b, Ano06h, BBS15, BMJF$^{+17}$, BT05, DSI2, BPC$^{+17}$, BCM06, BL16, BAKM18, BNG03, WYV$^{+22}$, ZTB20]. Anti-jamming [WYW$^{+22}$]. anti-spoofing [ZTB20].
approach [ZY14, dP10]. Approaches [LCZ+01, RC97, BCF06, DCFM07, GMM15, GJ10, HHWP03, KYM13, KMN11, SJST07]. Approximate [Che96, DBB13, ZCK09, CLL17]. Approximation [BM98, DGH98, JB98b, Lil97]. Approximations [DG01, CDJM14, Pat13]. April [Ano20a, Ano21a, Ano22a, Ano23a]. Arbitrary [ANM98, APB10, Coe12, CDIF14, KK09]. Arc [WWW95, dMFU10]. arc-weight [dMFU10]. architectural [KRBSV17]. architecture [DRAB08, HGP15, LWH+23, MFG10, SB18, SJS12, SSC14, ST07, TRPD20, ZLLP21]. Architectures [TV99]. Arcs [DHG98, HB98b, Li97]. Area [Jok98, KS98, Mil99, MSW96, CKM11, CCPK16, GE08, KM03, PK18]. Area-Based [Jok98]. Areas [FMR01, YHS+20]. ARG [PLL03]. Arrays [THT+98, CPT07]. art [JM09b, KTP08, SCD11, SHL18]. Artefacts [PMV00]. arterial [EX17]. artery [LAFB16]. article [Ano01m]. Articulated [ACLS98, DF01, GESB95, Tay00]. ARTIF [HC13c, HS17, JNLG15, KS12, LEE+18, LJHH07, LDH+15, LG+17, LS12, LzmC+17, LRD19, MPST08, MNMK16, MHH09, MP09, ME18, NHSC09, Nic95, OAGN18, ODT17, PRG+14, PLYW21, PC15, PTE12, RRK13, SM12, Sha06, SCL13, SOJ17, SACC09, SPK14, TMNM09, TH06, THL03, UJ22, VBA19, VMC+16, VJ17, WZT13, WLX+14, WAPB17, WDB12, WSFTK18, XSD12, XW16, YS08]. approach [ZY14, dP10]. As-planar-as-possible [PY19]. Ascender [CJC+98]. Asian [Ano95a, Rei16]. ASIST [PLLL03]. Assignment-guided [LKZ20]. assignment [Kim17, MEYD11]. assistance [HPvB10, NPM+16, OBTMT15, PBPD+17, WWH07]. assisted [ÁB13, GRMH19, PJW11, YG16, YG17]. assisting [CNO16]. Assistive [CEA16, CSV16, CMCM16, CC16, LMT+17, MML+16b, PLB16, RRAR16]. association [LJC+23, VLL+22a, WB16]. Association-guided [LKZ20]. attachment [CLA+17]. attack [CWC+20, NCDG21, NCDG21]. Attacks [MCAF21, JPN+22, OIJ+21, XSL+23, ZTB20]. Attending [TLMT+05]. attends [LGG+18]. Attention [ABJ+21, DAZ+17, DCTO97, GFW13, HRC09, LLG+23, OS19, QCXJ19, SKOS95, TW98, YWL+20, YH19, ZWW+20, ZSC+23, BBHF10, DL05, FOCB+20, Ham05, IKST05, JOvW+05, KHG22, LBC+21, LH+23, LHZY19, LZYW23, LML+23, NF12, QB22, RMS+19, SGL+19, SVA+22, SFWG08, THH+23, WRKP05, WPQ20, WLZM20, Ano05j, FRNS05, HH05].
attention-based \cite{THH+23},
Attention-from-motion \cite{HRC09},
Attention-induced \cite{ZSC+23},
Attentional \cite{MNE00, YYL96},
Attentive \cite{BCC+21, MHX19, XZQJ21, YWM19, CPPY21, ZZSD21}, attraction \cite{RM03}.

Attribute
\cite{BJ96, GK95, CWLY22, DPCA15, GKH+21, TL15, ZTGL18, ZRKZ+11}.

Attentional \cite{MNE00, YYL96}.

Attentive \cite{BCC+21, MHX19, XZQJ21, YWM19, CPPY21, ZZSD21}.

attributes \cite{DFJL15, Hen98, CWLY22, DPCA15, GKH+21, TL15, ZTGL18, ZRKZ+11}

audiovisual \cite{DGG08, SKT18}.

Augmented \cite{CKM11, GWFF22}.

Augmenting \cite{FAZ14}.

aurora \cite{GFL+11}.

authentication \cite{DIMT12, PY08, UBEP09}.

Author \cite{Ano95b, Ano95c, Ano96b, Ano96c, Ano97b, Ano97d, Ano97e, Ano98a, Ano98b, Ano99a, Ano99b, Ano99c, Ano99d, Ano00a, Ano00b, Ano00c, Ano00d, Ano01a, Ano01d, Ano01e, Ano01f, Ano02a, Ano02b, Ano02c, Ano02d, Ano02e, Ano03a, Ano03b, Ano03c, Ano04c, Ano04d, Ano04m, Ano04n, Ano05a, Ano05b, Ano05m, Ano05n, Ano06a, Ano06b, Ano06c, Ano06d, Ano06m, Ano06n}.

autism \cite{CSV+16}.

Axes \cite{SB98c}.

Back \cite{WH18, BK07}.

Background-action \cite{ZZSD21}.

Background-action \cite{ZZSD21}.

background-action \cite{ZZSD21}.

background-weighted \cite{JBR08}.

backgrounds \cite{LBNS09}.

backlit \cite{LZL+22}.

BacklitNet \cite{LZL+22}.

Backpack \cite{HCHD01}.

Backtracking \cite{KW12}.

backviews \cite{SK02}.

Bag \cite{PWWQ16, ADR16, KBMD15, MYV19, RG17, XQZL23, RB18}.

bag-of-discriminant-words \cite{MYV19}.

bag-of-models \cite{XQZL23}.

bag-of-tracklets \cite{ADR16}.

bag-of-visual-words \cite{KBMD15, RB18}.

bag-of-words \cite{RG17}.

Balanced \cite{JLM22, MNL+17}.
[MSSS09, CG09, ROJX09, WASF14, YJC+09]. ball-tracking [WASF14].

Balloon [CM95]. band [Mil09, MBMC11].

bandwidth [CC15]. bandwidth-efficient [CC15].

bank [TKL+09]. barrier [CSMS14, Liu10, NBFG20, SCMS13]. Base [KPH02].

baseball [GHHX04]. Based [APV99, Ano01m, BGSdVL98, BM98, BS99a, BL00, BL01, Bra97, CFS98, Che00, CCS01, CL07, CW00, DRCF95, DCC199, DUC97, DT96, DLHT99, DY98, Egg98, FDMA97, FL96, HTEB11, HR99, HSIW98, HF01, HLF+97, HY98, IF95, JB99, Jok98, JEK98, KW00, KR98, KABP98, KMA+00, KP00, KR99, LL99, LHHC98, LLSV00, LK00, Luc01, MKB02, MS97a, MS97b, MWL99, MG01, Mok97, Muk97, NPBM22, NK00, Nis97, OG98, PLL00, PBQ99, PM97, PM00, RWWH00, SK02, SU00, SYF99, SB98a, SMK02, SLST99, SN99, SBK+99, SPK+02, SHKP98, SLL01, SL96, TJ01, TN95, TY01, TB99, TS01, VKP98, WF02, WW97, YC98, YB01, AAASC11, AYD+18, AQ99, AGB+15, AS09, AMCB20, AM17, AAL22, ACG+09, ABEN09, AK10, AK11, ATG15, AWK04, Ang07, AS08b, AZN11]. based [AO04, AVC19, AYG23, ARARCE11, BI10, Bar18, BZS08, BLKG21, BY08, BSALF18, BL04, BM15, BFMW23, BB15b, BAKM18, BDFG17, BW17, BBH14, BJS14, BH12, BRPC17, BBP11, CBD+03, CGU11, CPC08, CEA16, CLZY15, CM12, CTM+13, CM16, CK11, CCPK16, CL18, CALO20, CBB19, CKPV21, CS10, CHZ+13, CS16, CH17, CKF18, CHT20, CLZ22, CWW+22, CSS13b, CE17, CJL06, CP09, CO16, CT13, CD13, CU10a, CU10b, CNS18, CS20, CMMC16, CC16, CZZS07, DK13, DETE17, DT10, DLMC16, DW11, DKG22, DS07, DD11a, DRK03, DLV15, DZJB14, DH19, ESS10, EPH+21, EH21, EDB12, EBN+07, EyGS11, EB14, FPC+08, FMGA+12, FFY+04, FM22, Far11, FBZP15, FB12, FKV+11, FB16, FBS21, FBK16, FAB12, FSV07, FKS10, FK09, FO18, GRGB+13, GB10, GRCD18, GSPL10, GBHS06]. based [GBB+18, GB13, GGMV08, GB13, GH08, GHHX04, GCPF08, GFW13, GYW+22, GZ19, GWFF22, HTTN18, Ham05, HDS08, HD09, HRHZ17, HKM22, HAT+15, HSH07, HSBS16, HGR+13, Hei04, HWWP03, HSKH07, HFR06, HCC+16, HNB04, HQN05, Hu08, HC13b, HH19, HMA10, HWW06, HDF12, HG08, ILRB04, ITNP12, JLY+17, JHA17, JBC08, JBWK11, JLD13, JGM20, JM09a, JMPG11, JSC23, KKKR23, KSI15, KBWT16, KG14, KKV7, KB09, KLL+11, KS12, KY06, KZ05, KDV12, KT07, KGU10, KL10, KY19, KGM19, LvdHK+15, LB10, LMR08, LY05, LJHH07, LFM13, LM16, LLG+14, LLL+18a, LDH+15, LSP+16, LJJ18, LWLC22, LLN22, LLZL23, LZZP08, LW18, LL12, LFL08, LC09, LLC+11, LLM+23, LEA+10, LNS14, LRL15, LBCA10, LAL+10, LN10, LW03, MT16, ML13, MRH19, MSV+20, MP09a, MC09a, MG10, MTG07, MdBG15, MCT10, MHS10].

based [MDBA19, MGPP11, MW13, Mig12, Mil09, MBMC11, MIUS16, MHK06, MFP+20, MML+16b, MP09b, MTA11, MJ17, NHK08, NRJ11, NMP+16, NWJ15, OM19, OAGN18, OMBH06, ODT10, OSM16, OJ1+21, PW23, PK19, PLL03, PT15, PL07, PSR08, PD11, Pen03, PLYW21, PV14, PPK+09, PA10b, PFGG09, PR03, PKvGS16, PS15, PCM21, Pop07, PZV13, PB04, QC20, QTLP22, RB18, RM03, RB16, RE05, RRAR+16, RSS07, RFS03, SLKU22, SGS+10, SE11, SBB10, SM12, SB18, SOL16, SS17a, SBR21, SIO3, SRDC09, SHE17, SG11, SLK23, SB22, SZW+21, SW05, SJSL21, SF16, SPRS23, SPK14, SH08, SVA+22, SFWG08, SZB+21, SY23, SH03, SCSVdH14, TABK17, TTTXT21, TAK09, TYH+21, THH+23, TA13, TPT17, TRPD20, TT16, TBC+21, TB13,
TB23, TMN06, TC11, TVE+16, TDZ+20, UBE09, VBA19, VPL23, VAW010. **Based** [VWMZ15, VAC16, WPS03, WLZW04, WZ04, WGD14, WLX+14, WWCZ15, WSY+16, WAPB17, WPSL18, WLO+18, WML21, WM20, WRB11, WS06, WLI08, WR08, WB11, WYX+16, WZWH16, WLI22b, WZYC22, XAB07, XYY+08, XGT+22, XWLY23, YB07, YHR+05, YCA+10, YGC13, YFX+18, YYZL19, YWL+22, YSN14, YZL+21, YZX+20, YG17, ZJZY16, ZLL13, ZLZH17, ZTGL18, ZWZZ18, ZD18, ZTBO20, ZWW+20, ZZ20, ZJJ22, ZCL14, ZLS+13, ZCF13, ZWL16, ZHZ17, ZUS06, ZCK09, dSdSF12, dSM14, FRNS05, ZH18].

Baseline [LWLZ16, YCZ23]. Bases [Nis95]. Basic [ME98a]. BasicTAD [YCZ23]. basis [BSM10, BH12, DLV15, WR03, WR08].

Basketball [CD10, PK+09]. Bayesian [AMGG16, BAPXH16, Car96, CCPK16, CC07, DLF06, FFFF07, JNLG15, KDV12, LWI03, MOB14, QC04, RH95, SKLM22, SC00a, SAC09, SPW15, SS11, TS16, TN07, WLW+16, YC98, ZCK09]. be [MRdRGC23], bead [FLCyA06], beam [BZP+23], beauty [LB14], Beckmann [RH06], bee [CKF18], beginning [WH18].

Behavior [GJH01, SC00a, GZJ05, KDV12, PB16, TDT12]. Behaviors [GMW12, SVS97, WWH07]. Behaviour [CX11, CGH08, HFR06, SGH07, WMBY12, XG08a, ZZP+16]. belief [BCMCM09, CS07, PBW14, PL08, TB13]. belief-propagation [PBW14]. Benchmark [LWIZ16, AA20, EHG+10, LLL+15a, SCR+17, THL13, WDC+20].

Benchmarking [MNG01, LYBT17]. benchmarks [CH17, DFS08]. benefit [GKG10a]. best [AQ09, TCB+08]. better [NHTG15]. between [Ast97, BS96, BDFG17, CU11, Co97, CDH99, FDC+19, HLKK19, KHB01, KZ12, MGS15, PRW97a, STC14, UE01, WD+12].

Beyond [CM99a, FHSKP13, LCS+21, BCC+18, HD07]. Bi [LDT21, JSZY17, OAGN18, ZJJ22]. Bi-branch [LDT21]. bi-channel [JSZY17]. bi-directional [OAGN18, ZJJ22]. Bias [Che98, WH00, FPNK22, RK+18].

Bias-Reduced [Che98]. Bias-Variance [WH00]. biased [BMX22], biases [SHSJ10, WGGHvdW21]. Bibliography [Ros01]. Big [MGLB17]. bijection [AXSVL14]. Bilateral [ZW97]. bin [MRdRGC23]. Binary [Hei99, JEK98, KD96, LHY14, MW00, RM98, YSX+19, BPBS13, BDHM09, GRGB+13, HCN05, KS19, McBJG15, MB11, OEK08, RLB17, SC96, SW05, SM13b, TT16, UWH17, VNNB14, WTB15, YZX+17].

Binocular [CPC99, WD96, BK16, LS08, LSL+18]. Bio [MMNI16, BC10, BCDH10, BEK18, EK12]. Bio-inspired [MMNI16, BC10, BCDH10, BEK18, EK12]. bi-informatics [BL16]. Biological [SGDP01, FPC08, MSG10, MNMK16].

Biologically [BL98a, EF14, HL13, MFG10]. Biologically-inspired [EF14, MFG10]. Biomedical [ABW97, ACW+16, KORC10, SOL16]. Biometric [CR18, DMT12, HBF09, LFMP13, MKF15, RBC22, WF05].

Blink [FB16, FB18]. blobs [FB12, SB03]. Block [KH15, HMA10, SOL14, SOL16]. block-spin [SOL14, SOL16]. blocks [NHY10]. blood [TDD10]. blur [LWL17, SHE17]. blurred...
[CG09, MNR18]. **blurring** [JHA17]. **BMI** [JGM20]. **BMVC96** [Ano96a]. **Board** [Ano04a, Ano04b, Ano04c, Ano05a, Ano05b, Ano05c, Ano05d, Ano17g, Ano17k, Ano18d, ME98a, Ano05f, Ano06g, BL14, GSPL10, Ano03d, Ano03e, Ano03f, Ano03g, Ano03h, Ano03i, Ano03j, Ano03k, Ano03l, Ano04c, Ano04f, Ano04g, Ano04h, Ano04i, Ano04j, Ano05e, Ano05g, Ano05h, Ano05i, Ano06c, Ano06d, Ano06e, Ano06f, Ano06a, Ano06b, Ano07a, Ano07b, Ano07c, Ano07d, Ano07e, Ano08a, Ano08b, Ano08c, Ano08d, Ano08e, Ano08f, Ano08g, Ano08h, Ano08i, Ano08j, Ano09a, Ano09b, Ano09c, Ano09d, Ano09e, Ano09f, Ano09g, Ano09h, Ano09i, Ano09j, Ano09k, Ano10a, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano10k, Ano11a, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h]. **Board** [Ano11i, Ano11j, Ano11k, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano13a, Ano13c, Ano13e, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano18a, Ano18b, Ano18c, Ano18e, Ano18f, Ano18g, Ano18h, Ano18i, Ano18j, Ano18k, Ano18l, Ano19c, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i]. **Board** [Ano19j, Ano19k, Ano19l, Ano19m, Ano20d, Ano20e, Ano20f, Ano20g, Ano20h, Ano20i, Ano20j, Ano20k, Ano20l, Ano20m, Ano20n, Ano21c, Ano21d, Ano21e, Ano21f, Ano21g, Ano21h, Ano21i, Ano21j, Ano21k, Ano21l, Ano21m, Ano21n, Ano22d, Ano22e, Ano22f, Ano22g, Ano22h, Ano22i, Ano22j, Ano22k, Ano22l, Ano22m, Ano22n, Ano23c, Ano23d, Ano23e, Ano23f, Ano23g, Ano23h, Ano23i, Ano23j]. **Boards** [ME98b]. **Bodies** [GK98]. **body** [BCMCB09, CGH08, CFCP11, CPT07, DLC14, DLF06, HUF05, HW07, NESP10, PA06, PT08, PYS03, RRR11, Rem04, SWMM22, UFF06, WPB+14]. **Boltzmann** [NWJ15]. **Bone** [MDFS11a, MDFS11b]. **Books** [Ano97f, Ano98c]. **Boolean** [GPK99]. boosted [NB20]. **Boosting** [CWO+11, LL17, RCT14, YZL16, YG16]. **Bootstrap** [KN11, BRP04]. **Border** [CCP97]. both [YZX+17]. bottom [KMN11, ZWY14]. bottom-up [KMN11, ZWY14]. bottom-up/top-down [KMN11]. **Bound** [SHKP98, Zha97, Bre03]. **Boundaries** [WSSD96, BSH13, SKT18, ZYT10, ZS19]. **Boundary** [ABK16, GJP96, HKS06, KI98, LHHC98, BB16, DCS05, JA16, KA12, LK03, NRJ11, PDK96, RC03, SOD10, YFDA17, ZSC+23, WP09]. bounded [ZZ10]. **bounding** [SJH17]. box [SJH17]. boxing [KFSM17]. **Brain** [CFYU12, Dav97, GMT00, WPS03, ASFP03, DCS05, LPR+03, MAK+17, MPPP14, ZRL+11, ZU09]. **Branch** [SHKP98, Bre03, LDT21]. branch-and-bound [Bret03]. branches [SadB14, WCZ+20]. BRDF [AH08, YSL11]. breakdown [HHB11]. Breaking [TY01]. **Breast** [KHB01, CSY08, SRP10]. bridging [WM20]. **brightness** [TLCH05]. British [Ano96a]. **Broadband** [SM10]. broadcast [DZLH17, MSSS09, WHN08, YJC+09]. broadcasts [DRK03]. bronchoscopy [HSKH07]. **browsing** [MCK99]. brushing [MST16]. **Bubbles** [TK97]. **Building** [CJC01, DCH12, FM01, GN98, HB98a, Hen98, LN98, NHTG15, PCJ98, SF95, VV02, Che08, FBS21, HBH10]. Buildings [FKL+98, May99, JRH03, KN04, XHZ+19]. built [GKBW14]. **Bundle** [KSY15, BS05, GA09]. bundles [LAL+10]. **Bus** [THT+98]. BVS [FHSKP13].
Byzantine [PRG+14].

CAD [CFS98, EFF98, IF95, ZZZ06].
CAD-Based [CFS98, IF95]. Cadastral [OML98]. calculation [WGAD14].
Calculations [MMS99]. Calib [RPBK22].
Calibrated [WLD99, PD14, PD17, UWH17].
Calibration [CRC97, DC01, Gui00, PA13, PBSG12, Rob96a, AAB19, BHSD+13, CXFS06, CF07, CDT11, CZS+20, CP04, CX11, DWW+12, DMW10, FK09, GOF+15, GGO10, HHAE14, HEPH15, JF10, KK09, KGK10, KGFP10, LSKK10, LWLS12, LLWZ21, LP10, MCT10, MM21, NL17, NNT11, QC04, RSL10, RPBK22, SW13, SP06, SJH17, SBMM15, SL16a, SCCP05, TM04, WCF10, YJC+09, ZKRH04].

Call [Ano01k, Ano01l].
calligraphy [WLI08].
camera-captured [LDD09].
camera-independent [ME18]. Cameras [WLD99, AAB19, AVBK10, BPSG12, BCLNG18, BBK15, BYK+18, CMM20, CVP10, CVY+10, CS10, CL17, CKP+19, DWC16, DWW+12, DMW10, GOF+15, HKHE14, HEPH15, KHK10, KJB+10, LLL+20, LG14, LWLS12, MHSP10, MLH13, MMBG18, NFA04, NL17, PD11, PBSG12, RSL10, ROJX09, SRO+19, SBMM15, SL16a, SCEvdH14, TS17, TM04, UMH16, UWH17, WZ08, ZZO7]. Camouflage [TY01, WF02].
Camouflaged
[ZW+22, LNN+19, ZSC+23]. Can [FFA+19]. cancellation [CSK22].
candidates [FBK16]. Canonical [DSNN08, LV96]. capability [ZTB20].
Capsule [HCLZ21, TZL+22, MFP+20].
Capsules [BDT23]. captioned
[CLA+17, JEF+12]. captioning [DWLW23, LXW+17, MRdRGC23, MC22, NB20, NLW+17, WZHS19, YH19]. Capture [MG01, CFCP11, DSM21, MHK06].
captured [HKHE14, LDD09, PT08].
Capturing [OGB14, WWJ16, RSY22].
Cardiac [RWWH00, GPDR13, TA13, WSH13, WWJ13b].
Cardio [ACC+16].
Cardio-metabolic [ACC+16].
caricaturization [SAK15]. Carlo [SOL14, SOL16].
cartilage [LPS+11].
carrying [GJMO14].
Cascade [AVBK10, WPQ20, ZP18, DYM14, DZHL17, LLJ+23].
Cascode [ZHB18, MDM+21, SJS121].
Case [MS96b, SU01a, VF96, DBZ07, Got08, VD10].
Cases [Lin02, RL17, SCCP05].
Cast [SCE04].
Casting [LZ97a]. catadioptric [ALIRT18, BDVK10, BCLNG18, DWW+12, GA09, Lh08, LNS14, PA13].
Cataract [TA+22].
categorical [SBM+06].
Categories [SPK+02, FFFP07, FKS10].
Categorization [BKMSR98, MK01, CCSS14, GB10, MDLS11b, MVG16, TSL14, YZY11, ZG10, vGSV+10].
Categorizing [BKMSR98].
category [GCPF08]. Causal [CBB95, LA05].
Celebration [CV13]. cell [CDIF14, KORC10, SH09, KL10, SM10].
Cellular [SC98, Ros10]. Census [PCC13].
Center [OD97, WW95, Dem05, EK12].
center-surround [EK12].
centered [SCL13].
Central [DPB00, Bar06, BCLNG18, CMM20, Dem05, DWW+12, PA13, RSL10].
centre [DMW10].
centroids [KŽ12]. Certifiable [SGPJ22].
cervical [BvdHL+13]. CFA [LPVM13].
Chain [KD96]. Chain-Encoded [KD96].
Chains [Cre99]. Challenge
[MST00, BVWS21, IZJ+17, BGPD09].
Challenges [BS99b, dOSJVBS12, BCF06, KK17].
Chain [YWL+20, ZWW+20, IJDAB13, JSZY17,
LZB+23, NN13, TYH+21, THH+23].
Channel-based [ZWW+20].
Channels [OGH04, SGS+10]. Character
[MP97, YT13]. Characteristics
[Hod95, IE99, CCR+05, CE17, TG95c].
Characterization [KW99, NSK+97, NS98,
SRT01, VMU095, ADFR18, AQ99, ASFP03,
BCM13, BB04, RBA20, TCB+08, Žun03].
Classified [SYF99].
Classifier [GK95, ZGC20, LLC11, PD17].
Classifier-agnostic [ZGC20].
Classifiers [DZLH17]. Classifying
[AO04, Ros00a]. clean [CLFH22]. clinical [MBD+22].
Clinically [BCMR16].
Cluster [FSG22, MJ17, LWLC22, LZLP10, TWW14].
Classification
[ARC14, BBC00, BCC16, CKPV21, DT09,
DF02, DH19, GL19, HãVL99, HB98c,
KdVL09, LL97b, LCZ+16, MCPB00, SL99,
SC98, TS00a, XL98, AMCB20, AMMG+16,
BVWS21, BBFC20, BL16, BMV+19,
CSDNR17, CL15, CCPK16, CP21, CNS18,
DFJL15, DPCA15, DL10, FFM05, GG20,
GHHX04, GBVDC18, HL13, HAT+15,
HCC+16, JLZ23, KT15, KGH22, Kim15,
KSL+20, KGB17, KORC10, LHL+21,
LLC11, LCLH18, MRH19, MNL+17, MIP16,
MSP+18, NL23, PRS08, PC15, PLKP23,
QXS17, RRR11, RLG+14, RSS07, SB13,
SYPK13, TRPD20, VPL23, VMP03, WZT13,
WHJK23, WLL22b, XZX+21, XQZL23,
XMN+15, YSL+14, YGI7, ZLZ13, ZLL+14,
ZDZ+23, ZWN14, dSDSF+12, kCE+18].
Classified [SYF99]. Classifier
[UK12b]. clothing [WPB+14].
Clothing [Cal02, FBZP15, HWL+22, JSC23,
KKSC23, Lhu18, LZZ22, MSP08, VBT19].
Clouds
[ANHGS17, BSALF18, CLK09, CACB17,
THH+23, ZZK+20, ZSK+23, ZMM+22].
Clouds [KABP98].
Clouds [BSALF18, CLK09, CACB17,
THH+23, ZZK+20, ZSK+23, ZMM+22].
Cluster [FSG22, MJ17, LWLC22, LZLP10, TWW14].
Cluster-based [MJ17]. clustered [TSD17].
Clustering
[AW98, LJJ18, PF99, Pha01, TB99, WF02,
YYL98, ZW16, AS09, BDFG17, CSY08,
CFU12, CO16, CD13, DBT+17, FLHK08,
HHG+20, HF11, KBN12, Kim17, MTG07,
compare [ZK17]. Comparing
[CDJM14, GJ10, Sha11, vGSV+10, CU11, OJRT08, TN05]. Comparison [HSSB08, KLFK20, KYM13, RFC97, SOL14, SGB01, Ste01, FCM20, LLG+14, LLL+15a, MSR07, PBSG12, She16, VTRC14, YARL+20].
compensation [LMP+19]. competition
[HSSB98, KLKF20, KYM13, RFC97, SOL14, SGB01, Ste01, FCM20, LLG+14, LLL+15a, MSR07, PBSG12, She16, VTRC14, YARL+20].

Complete
[BNG02, DG01, DY98, TG95b, KM03]. completeness
[LMB+19]. completeness
[CDIF14, Cou13]. complexity
[GMF14, LT05, SJB20]. Composite
[ZMM+22]. Completing
[WH96, WZWT99, AKE23, BF05, GWFF22, KKKR23, LA11, LDH+14, ZA22]. Complex
[CM95, Jon97, LM99b, MS97b, SP97a, VKP98, BKPS15, BP09, ÇÖD08, CT10, DETE17, FL09, HY11, Hu11, HML15, KV06, KN04, LL12, LCL+17, LCG21, MJ11, MiMO+16, SZ07, SM17, TN07, VB16, XYW11, YR06]. complex-cue
[LL12]. complexes
[CDIF14, Cou13]. complexity
[GMF14, LT05, SJB20]. Component
[BZ14, Jon99, BRSSAL11, CCL04, CE17, DB03, HHWP03, HQN05, Nic95, Ros08, SVSM15, SIS03, WLMG08]. component-based
[HHWP03]. component-labeling
[CCL04]. Components
[CCS01, AO16, AHDM10, DBB13, WPZ+18]. Composed
[LER95, LL12, WB97]. Composite
[HZL11, SL99, LHLZ23, SOJ17]. Compositing
[KW99]. composition
[CZ14, LRZ+19, ZSG+20]. Compositional
[DFH+22, LSW18, LVS20, TLB+15]. compositions
[RL13, TLB+15]. compound
[BAM16]. Comprehensive
[Cha21, PWWQ16, ASVO12, JKW+21, SV14, TZLT21, TPT15, ZCLX20]. Compressed
[Spi98, WHL+21, ZSK+23]. Compression
[GSK02, JEK98, KDRC98, NK00, BT17, CWC+20, HDL+20, HBL+17, SBS04, TVLS08, TAC23, WLZW04, YWMS08]. Comput
[AK11, Ano06h, BB15a, MBMC11, PZ09]. Computation
[BM00, BM02, CM99a, CCP97, CH99, LHKC97, MKY01, Neg96, OJ99, SA96, DRAB08, FKV+11, FBK15, Kle13, MSL10, MN06, OJ05, TLCH05, XSD12, Ano95e]. Computational
[LZ97a, MJS97, SMK02, SA95, TVY+18, FFY+04, FFL14, KTP08, Pec07, SGA12, VBS+04]. Computer
[Ano95a, Ano98d, Ano15n, BY98, BS99b, CFS98, DRDKE13, FKL+16b, FKL+16a, FHP01, GKL+17, HTEB11, HSKH07, LB14, LHKC97, LMT+17, MP09a, MST00, MG01, MTH+17, MT00, Ros95, Ros96, Ros97, Ros98, Ros99a, Ros00a, Ros00b, Ros01, TGM+17, WKI+16, ZSK02, Ano05j, BK15, GRMH19, HBH11, JS07, JNLG15, KPKH07, KMT11, LBK10, MdBJG15, MNMK16, NLM05, PZ08, PZ09, PYS03, Rei16, Sah05, SBB10, SBD22, SVA+22, SFWG08, TCB+08, WKP13, WZ23, ZSSF16, LLE+09, STLH08, BPQ15]. Computer-based
[HSKH07]. Computing
[Ano98d, AM97, BY98, DT96a, FK00, GK98, LH99, WZWT99, CKK+12, FYH11, SRS11]. Concept
[WTBdB15, HS14, Kim15, KYM13, KM03, THL13, USK10, WSY+16]. concepts
[LDC+13]. Conciliating
[IJDAB13]. Concurrent
[CTE95]. Condition
[RM02]. Conditional
[BCC+21, SKM06, CL18, GFL+19, MLB+18, RB19, PV13]. Conditional-VRNN
[BCC+21]. Conditions
[OD01, CSV+16, Mal21, OK04, SPK14, ZJ05]. Conference
[Ano95a, Ano96d, Rei16, Ano96a]. Confidence
[Neg96, KN11, PTM20, PMC13, SvdMH15]. Configuration
[OD01]. Configurations
[MRF96, TZM98]. confocal
[KGK10]. Conforming
[Spe97]. Confusion
[RLB17]. Conic
[BF14]. conical
[LNS14]. Conics
[QV98, BA06, KGK10]. Connected
[Hei99, Jon99, PC15, SUO00, SU01a, AHDM10, HQN05, HQW+12, Nic95, SH09, SHS03, ZUS06]. connected-component [HQN05, SHS03]. Connectedness [SU01b, CUSZ07, CU10a, CU10b, CU11, MVP06].

connecting [GBL08]. Connection [ZWB+22]. connections [KHH+22]. Connectedness [SU01b, CUSZ07, CU10a, CU10b, CU11, MVP06].

connecting [GBL08]. Connection [ZWB+22]. connections [KHH+22]. Connectedness [SU01b, CUSZ07, CU10a, CU10b, CU11, MVP06].

connected-component [HQN05, SHS03]. Connectedness [SU01b, CUSZ07, CU10a, CU10b, CU11, MVP06].
Cross-domain [DWL19, DWLW23, WZQ+23, BPCT22, SIRS21, TMS20, ZFG+22, ZJL23].
cross-entropy [JLM22]. cross-lingual [WHN08]. cross-modal [HBKG22, PV14, LCL+17, PS22, VJ17].
Cross-modality [YNZ’19]. cross-ratio [YJ05]. Cross-Ratios [LF98]. cross-referencing [AWK04].
cross-sectional [EX17]. Cross-spectral [LZC+20]. Cross-view [KIS17, RB19].
crossing [JB15, KB12, LKZ20, PBI16, RDSF15, SCR+17, WX16, ZZP12].
CrowdCam [DMAD17].
crowded [BSZ+21, HHG+20, SFF+18]. crowds [CZZS07, GLOC10]. Crowdsourcing [JRBD+15, TMM16]. Crude [VV02].
CT [HRS02, LAFLB16, MDdMG09, SMD+08]. CT-slice [MDdMG09]. CTC [ZLLP21].
Cube [CHC11]. cubic [SB05]. cubical [Cou13]. CuD3D [BAMK18]. Cue [KR99, RJ00, RWWH00, EDB12, JC06, LL12].
Cue-Based [RWWH00]. Cues [LL97b, SLST99, AB+20, CLZZ13, DKG22, GW07, HLB17, KN03, KSR+12, LGL15, Mig12, MAJ16, NT10, RBC22, ZTH+11].
Current [BAM18]. Curricular [DDZ+23]. Curriculum [SIRS21]. Cursive [AHD98]. curtaining [FMS17]. Curvature [DT97, FW97, Kis96b, LW18, LLSV00, MKY01, OD99, SF97, CLL14b, FB12, MS07].
Curvature-based [LW18, FB12].

D [Ano01m, AS08b, ABVC16, BCF06, CLZY15, CL18, CFM+13, FAB97, GSP10, KTE+17, KHH+22, LEA+10, MBMC11, WHJK23, ACF00, AMNC16, AXSV+14, AVGASAP15, ACG+09, ÁB13, ALY+22, AS08b, ABVC16, AVC19, AM97, ARARCE11, ACDB12, BN15, BM99, BB16, BBC00, BI10, B11, BCA98, Bar05, BSALF18, BT05, BR95, BL16, BY12, BW15, Bd96, BZ99, BAK18, BCF06, BGK95, BF05, BS00a, BDL+06, BBH14, BSBW14, BMX22, COW98, CICN22, CG08, CLZY15, CM12, CK11, CL18, CS98, CYN011, CC11, CPPY21, CZHT15, CLCO13, CLO17, CFM+13, CC96, CP20, CG04, CS00, CPS10, DT96b, Dan08, DsdH+11, DBW11, Dan97, DWV19, DB03, DF01, DTL17, DMSM21, DAM12, DSY10, DDB13, EK98, EOPS22, ES04, FPC+08, FBF08, FF09, FRL+98, FDMA97, FAB97, FKL+98, FL96, FO18, GM19, GFL+19].

D [GGGROE+17, GSP10, GHMT09, GKBW14, GSV05, GW07, GLZG23, GC19, Gui98, Gui99, GPC+10, GML+21, GWFF22, GSK02, HFKN97, HB98a, HU16, HRRH17, HASS10, HRS02, HR99, HB09, Hen98, HSS+16, HGSM11, HMB17, HG11, HMF10, HCLZ21, HGB98, IAP+11, IDY+18, JDP97, JC98, JZWD16, JRBD+15, Jok98, JSC23, dOSJVBS12, KMB97, KTE+17, KSL+20, KC22, KS16, KMO3, KMA+00, KMN11, KNO+09, LCT09, LM96, Lau97, LPS+11, LST13, LM16, LÁB15, LAFBL16, LS08, LLG+14, LLL+15a, LDH+15, LQWS21, LSHT02, LS12, LMM22, LSF12, LK00, LDL+19, Luc01, MS96a, MW00, MSV+20, Mal21, MBD+22, MFJ95, MC09b, MCB13, MMA06, MOB14, MWTN04, MCT10, Mi09, MKY01, MB95, MJPS16, MIP16, NSK+97,
NG98b, NT10, Neg12, NFA04, NKPT13, NL96, NDO09, NSEA13, OG98, OMBL06, ODT17, OJRT08, OCVV04, PSR08). D [PYGGLNG17, PMW05, PMCN22, Pud98, QL96, RAH97, RB18, RZH17, RWWH00, Rem04, RXDS22, RZZ23, RT14, SC96, SECS15, STC+16, SCD11, SBK16, ST96, SCALFG+18, STV09, SS17a, SSHP17, SM06, SN99, Sh99, SKU+09, ST10, SKVS13, SJH17, SQP+17, SBBM15, SB00, Ste01, SWS11, SRHC13, SKBS13, SWMM22, SS11, SB02, TGG23, THH+23, TB09, TPT15, TPT17, TDPD20, TS17, TN05, TN08, TML00, TH04, THL03, UK12h, UFF06, VBVB19, VV02, VBT19, VAC16, VKP98, WCLS02, WPS03, WLO+18, WTZ+21, WHJK23, WWLV11, XOF05, XP11, YB07, YHR+05, YZX+17, YT99, YC98, YGC15, YJC+09, YLX+18, YZL+21, YARL+20, ZW97, ZP11, ZZK+20, ZSK+23, ZSCP08, ZZJS18, ZZZ+13, ZT15, ZC19, ZCLX20, ZLHJ18, ZDZ+23, ZH04, Ziv10]. D- [FAB97]. D-based [GSPL10]. D-image [LS12]. D-range [LS12]. D-Space [HR99]. D-tracking-based [AVC19]. D/ [ABVC16, CLZY15, CFM+13]. DAAL [ZTG18]. DAGs [XYZ16]. daily [BKPS15, VCDS+17]. dandelion [LYG07]. dark [LZC+20, TYH+21, LC19]. Dashed [JvdBS99]. Data [BCA98, BL98a, BZ99, BS00a, BS00b, CKB96, GSK02, Jac01, LR02, MAM97, MGLB17, NWP97, RAH97, RF02, SB00, SM97, WLZW04, WALL00, ZOMK00, AM06, BBDS15, BC+18, BC10, BR12, BYN+04, BSBW14, BJ14, BG18, CLZY15, CH06, CP21, CB+04, CD10, CP09, CC96, Cret08, DW19, FLHK08, GLOC10, GYWZ23, HRH27, HF11, JBC08, JRBD+15, Kim04, KSHE20, LY13, LSCK15, LZZ22, LPR+03, MRH19, MSR07, MC09b, MFP+20, NY14, NWJ15, ÖU20, Pat13, PPT06, PKC+18, QT10, RH06, RKG03, RBC22, STHHB18, SY10, SPT+18, SRB21, Shal, SKVS13, SRHC13, TG11, TST14, TFL+09, TN05, TN08, TB23, TZY08, VBT19, WS08, WZ17, WLL+22a, WHN05, WB16, WYMS08, YW07, YW16, ZZ06, ZZ10, ZCW13]. Data- [CKB06, SM97]. data-driven [BBSD15, TZY08]. data-efficient [ZCWH23]. Database [BS99a, SPK+02, ABVC16, CM21, DR04, MTAA11, YAK+08]. Databases [ADDK99, KAES99, KR98, MK01, SBK+99, GDR04, PA10b, PS15]. dataset [CLFH22, CYG16, KLKF20, LC19, LZL+22, SCR+17, WZY13, YST21]. Datasets [KK17, BSH22, CCFC13, EDX16, FPNK22, OB14, TIL21, WTW+17, YGJ+20, YST21]. dating [HSBS16]. day [ASC17]. days [WSJ15]. DCNNs [MTP21]. dead [Gre04]. Dealing [TO99]. Deblurring [MRW+97, WZJ+21, HWZ+23, KLY21, LDT21, SRM0, WPSL18, XZQJ21]. Decade [Boo97]. December [Ano19a, Ano20c, Ano21b, Ano22c]. decentralized [CC15, HML15, HW07]. deception [SL16b]. Deciduous [HdVL99]. Decision [RM98, CKL18, HPvB+10]. decoder [XGT+22]. decomposable [CKK+12]. Decomposition [LL99, MK01, SW05, ARFF18, AM15, BLKG21, BFR13, CW15, DK22, DAM12, HKM22, HML15, KRBV17, LRZ+19, LQQS21, PAK19, RDM+11, SH09, SKS11, UFK20, UIK22, XYW+08, XGT+22, YZL+21, ZLL+14, ED16]. decomposition-composition [LRZ+19]. decomposition-like [DAM12]. decompositions [EOPS22]. deconvolution [JHA17, LEE+18]. Decoupled [LPS01, ANHGS17]. decoupling [BDVK10]. dedicated [YG17]. Deducing [RBC22]. Deep [ALY+22, AYG23, BBCF20, CLCO19, CGL+21, DAZ+17, GFL+19, GKL+17, HH19, MSF+17, MAK+17, NNS+18, NNN+22, SFP+18, SRB21, SWYP00, ST20, TDPDP20, WTZ+21, ZK17, ZTGL18, AM17, AXJE21,
ABLL19, BCC⁺18, CTH20, CWW⁺22, CKL18, DSFC20, EOPS22, FZ20, FSI21, GG20, GLG22, GYW⁺22, GZ19, HBL⁺17, HZK19, HSHA20, JCLZ20, KDSF20, LRG⁺19, LZZ⁺21, LLL15b, LLIW21, MSV⁺20, MFP⁺20, MP20, NL23, OTAH20, PKC⁺18, PLKP23, RCLS19, PBPD⁺17, SB18, SJB20, SP23, SHSJ23, TAC21, TAC23, VGLP17, WLO⁺18, WHL⁺20, WL23, WWG⁺18, XYRS17, XZQ121, XMT22, YGJ⁺20, ZWZZ18, CKPV21. Deep-anomaly [SFF⁺18], Deep-STaR [CKPV21], deepfakes [NNN⁺22], deeply [VBVB19], deeply-initialized [VBVB19].

DeeShoe [ZSDK19]. defend [LWH⁺23].

Defending [JPN⁺22]. defense [SLK23]. defined [TWS06]. Defining [CU10b].

Definition [ACF00, SU01a, DBF04, KMBH09, Dam08].

Defocus [ZD01]. Defocused [RC97].

Deformable [BCA98, CYE00, Dax97, DJG01, FB97, GSP02, LT05, NFSK97, Pe099, RAH97, TI01, TC11, WRH97, BVVMS15, BM15, BPB13, CMD06, HW06, ML13, MSF⁺12, RB18, SB18, SI03, SRHC13, TLY⁺16, WB12, ZZZ⁺13].

Deformation [KMB07, RW97, FPC⁺08, LPR⁺03, Mar07, MWTN04, SY10, SKH08, XFP⁺16].

Deformations [FT98, LHH97, NMP07, ASF03].

Deformed [Nis07]. Degenerate [TZM98, MC09b].

Degradation [BHBF10, HWZ⁺23]. degraded [PS12].

degrades [HBF09]. degree [Sha11].

degrees [LWLS12]. degrouping [ABD11].

dehazed [CYD⁺22].

Dehazing [FSI21, ECC18, GGP23, JSZY17, LZmC⁺17, SZB⁺21, TYH⁺21, YXZ⁺20, ZWW⁺20].

delay [NSEA13].

Deletable [Che98].

Delineate [AM00]. delineated [An06b, GKK05].

Delineation [SU01a, LCZ09]. dementia [HPvB⁺10].

demodulation [WB11], demonstration [KRK11]. demosaicing [dLAH07].

demosaicking [ZZ07]. denoisier [ZXC⁺20].

denoising [CWW⁺22, FZ20, HSJ10, LEE⁺18, LZmC⁺17, MGPJ11, PYWZ17, SZW⁺21, TQG23, XTZ⁺18, ZD18, ZLHZ18].

Dense [FM01, LSC08, TGQ23, X998, BG16, CM16, CRCM16, FBS21, HF11, IZKB12, LNM⁺21, WN05].

DenseNet [ZLLP21].

DenseNet-CTC [ZLLP21].

densities [MIP16]. Density [BH99, PV07, YKA01, JHV19, LCZ09, SPK14, SRP10, WHM⁺09, ZZP12].

Depart [Lee02, LY05]. Departures [SC00b], dependencies [CHC11].

dependency [XYW11]. Dependent [OYTY98, GDR04, TAC21].

Depth [CP04, MNE00, MMBG18, RC97, ZD01, AAM016, ALM23, ASF14, BL20, BZP⁺23, GKG20, HCC⁺16, JC06, KK15, KF17, KIS17, KKSC23, KLKF20, KY19, LYKY19, LDL⁺19, PY19, PCR⁺04, RF23, RA15, SB96a, SSL⁺12, SRB21, SRO⁺19, SKS13, WN05, ZT18, ZSL⁺16, ZTGL18, HBBG22].

depth-encoded [SKS13].

deraining [DDZ⁺23, LZZ⁺23]. derivatives [MB95].

derived [SCMP14]. Deriving [SYK96].

dermoscopy [BCMR16]. describing [SJ15a].

Description [AYB⁺18, Ant98, CM95, DG01, KW00, LN98, LL97b, MBHRC21, ASVO12, BGK95, CH09, CNC03, FMGA⁺12, KN04, STD14, TPN15, XHJF12, YJA96]. descriptions [Nis96].

Descriptor [DUC97].

Descriptors [ANM98, GAD01, AVBK10, ADG16, BRPC17, FBZP15, HOH⁺07, KSF16, LL12, MVT17, PZX13, PG13, PS12, RGL6, RLB17, SW17, TABK17, ZZJS18, ZZL13, ZCLX20, dSM14, SGM15].

Design [BS00a, SBB10].

Designing [DUC97, PK18].

designs [LFMP13]. destinations [PHY⁺11].

Detail
[SZW’21, LSH19, WGZL20]. detect
[AVBK10, SB18, ÜB05]. detected
[HBL’11]. Detection
[BL20, BBK14, CHP’11, CC01, DT96a, DMAD17, GWT09, IW97, LB05, MOT17, ST96, SRHC13, SM99, VMC’16, WZ04, XYRS17, ZhZFL22, ZYT10, BLH16, CCF17, HRC09, RL13, SG17, WK21]. Detection
[BB04, BCC95, BS00a, BP09, Che98, CBM01, Che00, CYE500, CMG16, DHG98, FD99, FM801, GMZ’22, GS95, GJP96, HCHD01, HRS02, HL01, JB99, KMA’00, Lee02, LB98, LN98, LD98, Loh10, MLB’18, MCAF21, MGK00, NS98, Ols99, PCJC98, PRY98, Ros02, Sp98, TW98, TZM98, VMU95, XLA98, YKA01, YW99, ABN’20, AZSVK05, ALY’22, ATG15, ALK’09, AHDM10, ABK16, AwdWM18, BVW21, BIG’23, BL14, BT05, BDS12, BBC’07, BL09, BM15, BFD22, BPCT22, BAKM18, BDFG17, BWG17, BS14, CSY08, CVP10, CM16, CGHTK16, CW0’11, CZS’20, CYD’22, CCYC12, CYG16, CZZS07, DLS’09, DK13, DETE17, DZL07, DWC16, DFJL15, DLBG19, DLF06, DD11b, DZLH17, EB13, ED16, FWL’20, FM22, FFM05, FBZP15, FLCdA06, FDC’19, FB16, FB18, FOCSB’20, GP05, GCS23, GMM15, GBY21, GS06]. detection
[GZK’23, GSP10, GG09, GPC’15, GHX04, GLG22, GYCS21, GYWZ23, HHA014, HLL’23, HGP15, HWW’22, HKK08, JA16, JWDF05, JTYK11, KLL07, KRRK12, KBKS18, KKL’11, KL09, KS12, KYM13, KBD’12, KLL’16, KL10, LWZ16, LMJ08, LE09, LTY’15, LLS21b, LHLZ23, LFLZ23, LHZ’23, LG14, LHC16, LRR15, LAL’10, LCL18, LCG21, MYC09, ML13, MP14, MAG’16, MC20, MTV17, MTC’14, MMP09, MTAA11, MSP’18, NCDG21, NNN’22, NB10, OÖ20, PDK96, PZX13, PYW17, PD17, PEN15, PZM’21, PB16, PYGGLNG17, PL10, PS05, PLB16, LL17, QKH’12, RG16, RZH17, RXS22, RB16, RAP16, RCTV12, RCT14, RKK22, SFF’18, SPC’15, SFK18, SJST07, SVSM15, SZ16, SS09, SOD10, SIRS21, SYF’21, SGZ21, SCC’22, SM13b, SKBS13, SY23, SMHH04, TAB117, TLY+16, TY05, TKL21, TDK10, TP14, TH13, TBC’21, TAK’22]. detection
Different [KHB01, RWV95, Shi99, TS01, BKK11, CU11, FKS10, MOT17].

Differential [GL95, KPH02, TD04, VB98, WW97, ME18, RMD08, SOJ17, TG95c, YS08].

differential-radon [SOJ17].

differentiation [WCZ+20], differentiators [HTNN18].

differentiators [HTNN18].

differently [WYX+16].

Diffusion [AG00, BABB19, CBM01, KS96, KY19, SLS01, T´ESK11, BI11, KGC05, LYSS12, WWJ13a]. Diffusion-based [KY19].

Digital [Bor96, Bre01, KCD00, Kis96b, NS96, Pud98, Rob06b, SB02, WB97, BRSSAL11, BT05, BBK15, Coe12, CLL14b, DBBB14, EL03, Eva06, FLCdA06, LA11, MOT17, NKPT13, SC96, SOJ17, SRP10, VRKL13, ZZ07].

Digitalization [ASS97]. Digitization [GL97].

digitizations [GL95].

digitized [CSY08].

digits [Por00].

dilation [HBF09].

dilations [SVF+21].

Dimension [DL97, CP09, Coe12]. Dimensional [LZ97a, MG95, MNHO00, SF95, SCS99, TK97, WD96, ZM96, ACF16, AMCB20, ASVO12, AH08, BEGB13, BKMV07, DBF04, DM12, GHZ+13, Got08, HQN05, KCD00, KON+17, LB08, LSCK15, ML15, NWJ15, PJW11, Pat13, SOL16, SB05, WD14, ZM+22].

Dimensionality [KAES99, RRR11, LLL13].

Dimensioning [DV98].

Dimensions [Bor96, Jos99, TML00, CB+04, CDIF14].

Direct [Dre96, GL98, Neg96, WTYC18, BF07, HC15c, KYYC14, PZC17, SC14].

directed [BI11, DB14, EKY08, WHGZ20].

Direction [PE09, ACA+08, CSS+13a, Dre96, GWT09, HQW+12, MC20, YGH11].

Directional [BS00a, FB99, AS08a, DPM14, FMS17, LSPV04, NBNB20, OAG18, TKL+09, ZJJ22, kCE+18]. Directions [AT13, AZP14].

Dirichlet [KBKS18, WZX+14].

Disaggregation [QLY+17].

disaster [KB12].

disc [QKH+12].

Discontinuity [SP97b, Spe97, VB98].

Discontinuity-Preserving [SP97b, VB98].

Discontinuous [KS03].

Discounting [BK07, SS11].

Discovering [JEF+12, JRB+15, LXW+17, BG16, FR11].

discovery [DLMC16, DHP08, FT23, LC09, MGPP11, MJ17, WW16].

Discrrete [Ano15n, DRDKE13, GGO10, IE99, KII98, KC99, LL99, MRW97, MMS97, PZ08, PZ09, AMGG+16, BTB14, CT12, PV13, TMN06, Zun03, LL08].

Discriminant [HH19, ZZCL14, CLZZ22, ITNP12, LZD+14, MYV19, SAC+12, TLH22, WJ07].

discriminants [TAC23].

discriminating [RAP16].

discrimination [AL99, DH00, YZL16].

Dispersive [GYTL09, PS22, SVSM15, SJ15b, XSQZ15, AAL22, DYM14, DZHL17, HJ16, JNGL5, LL15, LC12, LTCT14, LLL15b, LSTARMBl, TLB+15, TABK17].

discriminatively [VKL18].

Disentanglement [LLNZ22].

Distinction [BI11, MGMS01, BK16, Gon09, KN03, LJC+20, MSJ10, PTM20, WGAD14].

distances [ANG07].

Dissimilarity [RPTB01].

Distance [ALK99, APV99, ABL19, Bor96, BM00, BM02, Chu02, CM99b, Egg98, ER96, KSKB95, Kis96a, KŽ12, LHKC97, LH99, MMS99, Mass02, Por00, Pudd98, RG16, SWG02, SJ01, SLK23, SB05, SB02, TV99, CCTC09, CDJM14, CSM14, CS20, DT10, ET15, GBB+18, GH08, Gre04, MGW10, MK18, NBF20, NSEA13, PRR03, REF15, SW04, ScvW11, SCMS13, SCevdH14, WDN+12, YZX+12, dSdSF+12].

Distance-based [SLK23].

Distance-Ordered [Pudd98].

distances [ANG07, ITNP12, NSEA13, YSX+19].

Distancing [JPN+22].

Distillation [PZM+21, BIMD23, FM22, HBKG22, LPSK23, MZ21, SJSL21, WZCY22].

distillation-based [FM22].

distinct [SY20].
distinctive [DDL10, YK08].
distinctiveness [FLS+14], distinguish [WLX+14]. Distinguishing [CHL05, WWJ16]. distorted [UWH17].
distortion [CP04, GOF+15, KBJ+10, TM04, WHL14, XN+15]. distortions [SCGAF+17]. Distributed [BPQ15, OML98, Ham05, IKST05, MCT10, SKS11].
Distribution [HB08c, TML00, CLO17, Coe12, FL09, FS03, JGM20, Kim04, MPT21, PKD07, PTE12, QAB+11, QT10, STHBJH18, TS11, YLLG18, YZL+21].
distribution-aware [YLLG18].
Docking [SV97]. Document [Ano96d, Doe98, KB98, KH96, KDRC98, LPH01, Spi98, CMH13, LDD09].
Documents [BKMSR98, CB98, SHKP98, GRMH19].
Does [Lau97, SL16b]. DOF [SIT07, FPMK19]. Domain [Ano01m, BKMSR98, DAL+22, HLL+23, Luc01, TS19, ZD01, AT17, BPC22, BVC2P21, DWL19, DWWL23, GLG22, Hu11, KG14, LWH+23, LBCA10, MFSB23, MJ17, NFS13, PLYW21, PV14, PTM20, QCH20, RMC+22, SHS32J, SCS14, SIRS21, SSJ+20, SGZ21, TMS20, TP05, WZQ+23, YSD03, ZFG+22, ZJL23], domain-shift [KG14].
Domains [DFH+22, MHL14]. Dominant [Spi98, KZ05, RCT14]. door [ESS10]. Dot [CCP97]. double [WLZM20, WX16].
double-layer [WX16]. Dougherty [Ano95d].
down [BYJG23, HLB17, KMN11, MAJ16, MSP+18, TY22, ZWY14]. down-up [TY22]. DP [SHKP98]. DRAU [OS19].
Drawing [JV97, SP97a]. Drawings [CLD96, DL97, DV98, LDC97, PC99]. drift [RMD08, SCALFG+18]. Driven [CKB96, IW97, BPBD+17, SM07, ABD11, BUD19, BBSD15, BCM13, CSZ+15, CQ15, FAB12, MSP+18, RGA10, TLY+16, TZY08, WK21, Wor05, ZTI+13].
driver [CPT07, OBTMT15, TDT12]. driving [FPMK19, RCJ+13]. drone [SS21].
dual-stream [CYD+22]. dual-tree [ČOD08, CT10, Hu11].
dual-view [LDH+14]. due [BHBF10]. duplicate [CH11, JN09, XTZ214].
duplicated [ZTH+11]. during [DLS+09].
Dynamic [BPBS13, BBHF10, CS07, CCO0, GB13, GSK02, HML15, KAES09, LEO9, MdOBA19, MS96b, TW98, UFK20, UIK22, WPK09, XQZL23, XST04, YLM11, ZT98, ZKRH04, AAM016, BMJF+17, Bar05, BDFG17, BBK15, DWV19, DD11a, EL07, FT23, GA13, HKM22, HQW+12, JBC08, KG14, KTP08, LWH03, LDT21, MSI10, MWTN04, MPP09, NNBN20, QSX17, SKLM22, SCL13, SHK11, TS16, TT16, TN07, TMN06, VWZM15, XG08b, XZQJ21, YJ16, YR06, ZJZY16, ED16].
Dynamics [MJS97, LHL2Z3, TPD+16, TFD07, UIK22, YG16].

E-ProSRNet [CU20]. ear [AZN11, HNC05]. early [SGS+10, WH18].
eccentricity [IA+11]. Ed [Ano04a, Ano04b, Ano04c, Ano04d, Ano05a, Ano05b, Ano05c, Ano05d, Ano06a, Ano06b].
Ed. [Ano07a, Ano07b, Ano07c, Ano08a, Ano08b, Ano08c, Ano08d, Ano08e, Ano08f, Ano08g, Ano08h, Ano08i, Ano08j, Ano09a, Ano09b, Ano09c, Ano09d, Ano09e, Ano09f, Ano09g, Ano09h, Ano09i, Ano09j, Ano09k, Ano10a,
Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano10k.

Edge [BKD01, BS00a, CBM01, HSSB98, HLF+97, JB99, MGPJ11, PA10b, PDTE06, RM02, SGB01, ABN+20, BSRV17, DETE17, FZ20, GB22, GMF14, JM09a, KY06, LMDB11, ML13, MLJC20, SS09, WO10, WBS14, WPK09].
edge-avoidance [JM09a].
edge-aware [BSRV17].
Edge-Based [HLF+97, DETE17].
Edge-Preserving [RM02, MGPJ11, GB22].
Edges [LL97b, PE09].
edit [DT10].
editing [CWLY22, WQY+21].
editor [GSST03].
Editorial [Ano01g, Ano05f, Ano05i, Ano06c, Ano06d, Ano06e, Ano06f, Ano06g, Ano07d, Ano07e, Ano15n, Ano15o, Ano17j, Ano17k, Ano18d, ACW+16, BCH+18, BK15, BPQ15, CGL+21, GKL+17, JGSP16, Kak95, LLNS18, MYC+14, NPBM22, PSY+21, SUS+15, TVY+18, YLM+17, ZZP+16, Ano03d, Ano03e, Ano03f, Ano03g, Ano03h, Ano03i, Ano03j, Ano03k, Ano03l, Ano04e, Ano04f, Ano04g, Ano04h, Ano04i, Ano04j, Ano05e, Ano05f, Ano05i, Ano11a, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano13a, Ano13c, Ano13e, Ano13g, Ano13h, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e].
Editorial [Ano14f, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano16a, Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano17c, Ano17d, Ano17e, Ano18a, Ano18b, Ano18c, Ano18e, Ano18f, Ano18g, Ano18h, Ano18i, Ano18j, Ano18k, Ano19b, Ano19c, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19l, Ano19m, Ano20d, Ano20e, Ano20f, Ano20g, Ano20h, Ano20i, Ano20j, Ano20k, Ano20l, Ano20m, Ano20n, Ano20o, Ano21a, Ano21b, Ano21c, Ano21d, Ano21e, Ano21f, Ano21g, Ano21h, Ano21i, Ano21j, Ano21k, Ano21m, Ano21n, Ano22a, Ano22b, Ano22c, Ano22d, Ano22e, Ano22f, Ano22g, Ano22h, Ano22i, Ano22j].
Editorial [Ano22k, Ano22l, Ano22m, Ano22n, Ano23a, Ano23b, Ano23c, Ano23d, Ano23e, Ano23f, Ano23g, Ano23h, Ano23i, Ano23j].
Editorial [GKL+17].
EDITORS [DCCL99, MT97, BS99b].
effect [GGGROE+17, YLK+23].
Effective [LDGS+13, LG17, LKZ20, CWO+11, DETE17, NF21, PD17, SSM06, TAC23, BIMD23].
effectiveness [TKDN16, ZBDP15].
effectors [SRHC13].
Effects [CFA98, FT98, MPFG98, FMS17, HC13a, YLLG18].
Efficiency [LHH+98, KTP08].
Efficient [ATG15, Bar18, BSRV17, BM00, BM02, BG16, CC01, CCL+17, CSMS14, CS20, CYES00, DOSD11, DG01, DZJB14, DMW10, DSK+20, FKW98, FN14, HWZ+23, HMB17, HP96, KB00, KRBSV17, LHY+17, LZmC+17, LA05, MNL+17, MK01, MdRNM15, OK04, PZX13, PLJS14, PG13, PL08, REF15, RCTV12, RSS07, SKH08, TSL14, TGSH98, XOF05, XL98, AMN18, BB16, CGHTK16, CBT+04, CYNO11, CZ14, CP20, CQ15, DLV15, GRGB+13, GCS23, HDL+20, KHH+22, LDH+15, LS22b, LMM22, PD17, RCT14, TLF06, VAWW10, WXWC18, WHL+20, WLL22b, XSD12, XWLY23, ZWT+14, ZCWH23].
EFSCNN [ZDZ+23].
ego [RN12].
ego-motion [RN12].
Egocentric [DLMC16, ADR16, ADFR18, ASC17, AB18, BMB+17, CGHTK16, DBT+17, LSH19, RFMF21, PBPD+17, VCDS+17].
Egomotion [DT96a, DH00].
Eigenimages [LB00].
eigenspaces [BWL04, EKY08].
Eigenvalues [SB98a].
Eigenvector [PLL00].
Eigenvectors [SB98a].
Elastic [ACLS98, AG00, BSH13, BL09, Far11, JKM07, NBDB04, RFS03, WPSL18, WR08, XWLY23].
ZP11]. elastic-net [WPSL18]. Elastically
[Dav97]. elasticity [LV11]. elderly
[MML+16b]. electroencephalogram
[HKZ+16]. Element [TGSH08, KRBSV17].
elementary [CKK+12, ZZRC15]. elements
[MGS15, SW05, TCZ+12]. Eliminating
[Kim04]. Elimination [CM99a]. elliptic
[LDGS+13]. Elliptical [DGH98].
EM-ICP [CP20]. Embedded
[EA95, AZSVK05, Bar05, CVP10, CKB10,
HZW+10, SBB10, VAWW10, YCA+10].
Embedding [BSZ+21, CLZZ21, FKV+11,
GHZ+13, GG20, LCP13, LHY14, LZD+14,
LTTJ14, LLL+14, LSZ16, LCG21, SK15,
TS19, XHW09, ZRKZ+11]. embeddings
[KL07]. emergence [Hamt05]. emotion
[HKZ+16, NNS+18, LL17, ZM+15].
emphasize [SH09]. Empirical
[BK01, FHP01, RPTB01, DAM12, FCM20].
enable [SSdVL06]. enabled [SRC+19].
enables [TFL+09, WRKP05]. Encoded
[KD96, Jea11, SKBS13, YLM11, ZDZ+23].
Encoder [ZM+18, XGT+22].
encode-decoder [XGT+22]. Encoding
[YSX+19, TVLS08]. End
[MSV+20, RZZ23, SRHC13, ZLLP21].
end-effectors [SRHC13]. End-to-end
[MSV+20, RZZ23, ZLLP21]. Endoscope
[OD97]. endoscopic [HSKH07]. endoscopy
[MFP+20]. Endothelia [GAD01, ZMCA05].
Energy
[Ano01m, Luc01, MR96, ACG+09, Bar18,
EyGS11, MAJ16, QTL22, WAPB17].
enenergy-based [ACG+09, Bar18, EyGS11].
enforcing [Lhu18]. engine
[LEA+10, SM10]. Engineering
[DL07, DV98, EHF98, PRW97b, SOJ+95].
Enhance [QDLB17]. Enhanced
[AAL22, BSMK13, GSP02, JZWD16,
ACDB12, CU20, KG05, LSD+07].
Enhancement
[AAM016, SLS01, ZCL09, Ang07, HWW06,
HSJS10, LYBT17, LSH19, LYZ+23, LZL+22,
SRB21, TKL+09, WLZ23, YAK+08].
Enhancing [CE17, Dem96, MAJ16, ZA22,
AZ15, WSY+16, YST21]. enrollment
[FBF08]. Ensemble
[KUHY18, JVD+20, VBVB19, ZWL16].
ensembles [HBL+17, PWSvH17]. entirely
[HN08]. Entropic [DFSC20]. Entropy
[TVE+16, GHHX04, JLM22, PYWZ17,
SE11]. Entropy-based [TV+16].
Envelope [HGB98]. environment
[CP09, LY13, ST10, ZKSV18].
environments [AM04, Ano06h, BPLT15,
CM12, Cha21, CPS10, FPDK12, GKK05,
GC19, GPC+10, HCC+16, LS12, LA05,
MP09a, NKB11, ROGT14, STC+16].
Epiparam [ZN08]. Epipolar
[KHB01, ACAAC+08, BF14, CPC08,
CKS+05, LHY+17]. epipolar-based
[CP08]. epipolar-plane-image [CKS+05].
epipole [LB10]. Epipoles [LF98].
Equalization [ZCL99, BK07]. Equation
[KS96, CS10, MZC+05]. Equations
[CBM01, VB98, VF96]. equidistant
[ASV+14]. Equivalence [CU10a].
equivalencies [CU11]. equivalent
[BYJG23, RG17]. eraser [TDZ+20]. erasing
[DZ+23]. Erratum [Ano06h, OBH04].
erroneous [CX11]. Error
[BRP04, CAB17, Jur99, KS95, OD02,
SRT01, CPS05, LHY14, QAB+11, RBdS14,
SB96a, UTB+11, WZWH16, ZWN14].
Error-aware [CACB17]. Errors
[CFB98, KW99, KB00, LZ97b, RFS03].
estimated [RF23]. Estimates
[Mi99, WALL00, DL14]. Estimating
[BK01, BFY00, DGC12, GA09, KRJ+08,
MC09b, PBW14, Shi99, SWMM22, TML00,
TMZ98, TZ00, WSV05, ZL01, MLC09,
LYKY19, RN12, RA15, YSL11]. Estimation
[Ano01m, ACB98, BA96, BKG08, CSC96,
CL00, CF98, Dan97, DC09, FD99, Imm96,
Jos99, LB10, Lin02, Luc01, MS97a,
MGMS01, NDBT95, SP97b, Spe97, SJB02,
WLD99, WPB+14, ZD01, AJ23, AS08a,
AS09, ACG+09, ABVC16, AVCL19, AYG23,
AH08, BZP+23, BDVK10, BPLT15, BJS14, BG18, CSS+13a, CL18, CS10, CTH20, CPPY21, CLO17, CRCM16, CC16, DM12, DPCA15, DMSM21, DJF14, EBN+07, FL09, F DW21, FPMK19, FS121, Gou09, GKG2M0, GLZF23, GML+21, HD09, HKW+21, HSH07, HCLZ21, HSH11, HSHA20, HH12, IH15, IDY+18, JGM20, JC06, JF10, KUHY18, KHK10, KYYC14, KLK20, KGB17, KMN11, LWY+17, LvHK+15, LSC10, LCZ10, LWW17, LZZ+21, LZC+20, LYA13, MSR07, MSS09, MP09b, NT10, NWT17, ODD06, ODT17, OSM16, OSM17, OTA20, PRK19, PD05, PY19, PBT14, PV06, PHH+15, PRCP16, estimation [PZC17, RDM+11, RAC+13, SOK16, SECS15, SBK16, SHE17, SM06, SO07, SM21, SPK14, SRHC13, SM13b, SKEvH14, TMN09, TAK09, TST14, TP14, TP05, U118, UBT+11, VBT19, WHM+09, WTZ+21, WJS15, WCF10, WTYC18, WYW+22, XTZ+18, YCH07, YZT+13, YA12, YC05, ZDSL13, ZEGJ15, ZSL+16, ZC19, ZIT+13, ZPP12, ZDF10, ZHZ17, dP10, dM04], Estimator [TZ00, CBT+04, CYC10, Dre96, HBB11, SKLM22, XSL+23, estimators [CLL14b], Euclidean [BM02, BI10, BM00, Cou13, CM99b, Egg98, ER96, GBB+18, KGK10, LHLC97, MMS99, PCJ14, SW04], Euler [IE99], Evaluate [WZC+21], evaluated [SV14], Evaluating [BH12, Ste01, KGBW14], Evaluation [BKDO1, CHE00, ELF05, GAS01, GAD1, HRS02, LC+1, LPH10, PMR17, PR03, RPB01, WLM+14, A20, Bor19, Bor22, BZ14, BG09, Cha21, CZH15, CCS14, CYG16, DL10, GEO08, GMJ14, HYJ11, HMC10, HSL13b, HWW06, KDT+18, LK03, LF08, MO11, MSM17, MM06, OAGN18, PD14, RN12, RBD14, RDS15, RLC+11, SJST07, SLL18, SL16b, TPT15, VD10, WL15, WBS14, WHL14, YAK+08, ZFG08, ZCLX20, evaluation-based [OAGN18], Evaluations [RTM+17], Event [WPZ+16, CGR13, HHM+16, HNB04, JYT11, LmC16, LC21, SM12, SM21, SMHH04, YLM11, ZhZFL22], events [ABI+04, CCF17, DLS+09, HS14, LCSL07, OBTMT15, PSYZ13, RC+13, TD04, XYRS17], everyday [WSY+16], Evidence [ANM98, BBK15, MYLP98], Evidence-Gathering [ANM98], evidences [YSS+14], Evidential [HHM+16], Evolution [LL99, DCS05], Evolutionary [KBD+12, RF02, BPD11, SCD11], exact [CS14, Mal21], examples [FFP07, SS21, XST04, ZTB20], Exclusively [LC19], exemplar [AYD+18, AZ15, FBK16, OMBH06, ZH18], exemplar-based [AYD+18, FBK16, OMBH06, ZH18], exemplars [SBH+17], Exhaustive [Lin02], exocentric [AB18], Expansion [VF96, BK11, TY+21], expectation [SBPF17], experiment [LFP13], Experimental [LCZ+01, HF11], experiments [HMEB17, HKA13, CH17], expert [CSDN17, Mah16], experts [EY08], explicit [NLV+17], Explicitly [HFKN97], exploitation [CP21], Exploiting [CHC11, DDLP10, PXT14, PK+18, ROGT14, STC14, KU08, NY14, YDP+20], exploration [OMW+07], Exploring [HZK19, KU08, MBC17, ZMM+22], exposed [WYX+16], Exposure [YW+20, ABK+18, LLL+20, MOT17], expression [CST+03, DH19, EB14, HOH+07, LOY, LDH+15, LSM03, LWSM16, MB11, SS17a, SKYS13, SSS13, WY07, XFP+16], Expressions [BY01, HKZ+16, SHK11, SSS13, TMM16, WWJ16], Expressive [CSV+16], Extended [CTF+98, KSS97, WB97, ADR16, LCP13], Extending [GR05, KKK23], Extension [FDMA97, GBB+18, MMV06], extensions [PRK19], exteriors [BB10], external...
Facets [ZT15]. Facial
[ÇÖD08, CSG+03, EB14, FM22, KdVL99, LSCM03, MDM+21, TW98, YB01, CWLY22, DB03, DH19, GZJ05, GHK+21, HOH+07, HKZ+16, JB23, JLY+17, JGP19, LC14, LB05, LY06, LDH+15, LZC+20, MB11, RG16, SS17a, SHK11, SSS13, SL16b, TMM16, TLWT12, WY07, YDP+20, YLM11, ZZP+16, ZMJ+15]. Factorization
[GRCD18, SRT01, TI01, ZEGEJ15, AO16, HRC09, KBWT16, KCZ18, LLL13, ZZ10, LTL14]. factorization-based [KBWT16]. Factors
[BGPD09, CP09, GML+21]. Fake
[GYCS21, GYWZ23]. Fall
[GMZ+22, ALK+09, YG16]. family
[DBBB14, SKA23]. far [BBC+07].
far-infrared [BBC+07]. Farin [Ano95e].
fascia [TLY+16]. Fast
[BCMBC09, CH11, Coe12, CM99b, Egg98, GK95, HQN05, Imm96, IP98, KBJ+10, LCZ09, LK03, MAP99, MPP08, MMP15, MPP14, MÇK09, NFSD13, Nis95, Nis99, PLL00, PBQ99, PM97, Rob96a, RWV95, SB98a, TGG23, TS01, TPR+00, WF02, ZWW+20, ZDZ+23, Faster [ZS19, BAP08, MCM+17]. feasibility [WML21]. Feasible [WSSD96].
Feature [BL98b, GHZ+13, HR99, HH19, KS97, KN99, LCLD97, LFLL23, MF95, NFSD13, Nis95, Nis99, PLL00, PBQ99, PM97, Rob96a, RWV95, SB98a, TGG23, TS01, TPR+00, WF02, ZWW+20, ZDZ+23, BWG17, CBD+03, CM12, ÇÖD08, CWO+11, CYNO11, CZ14, CZS+20, CLZZ21, CYD+22, CZHT15, CWW+22, CP09, CK09, DOSD11, DDWZ12, DLV15, DG11, EXP+20, FYH11, GCT+14, HYJ11, HISHA20, HNC05, JPN+22, JYX+23, JSC23, KGF01, Kim15, KKM13, LDH+15, LHSG15, LTY+15, LWZP17, LSH19, LZZ22, LZB+23, LK03, LFL08,
Feature-Based [HR99, LDH15, LFL08].

Feature-domain [NFSD13].

Feature-oriented [FYH11].

Features [AM00, COW98, CS98, HDVL99, Jon97, LLZ23, LRLR15, PA00, RY98, SA95, Tsa96, ACP16, AMCB20, BCM13, BL14, BEGB13, BDL06, CCSS14, CNS18, CR18, CH09, DSN08, EK12, ET15, FAZ14, FMGA12, FAB12, GLM17, GTP18, GS95, GLG22, GBL08, GYWZ23, Gwa17, HGP15, JY14, KDT18, KK1, LXF16, LYSS12, MU11, MB05, NKO8, PMR17, PTM20, PMCN22, RDSF15, SCD04, SIJ20, SKVS13, SCMP14, SM13b, TLP17, UM16, VAC16, WS07, YFF18, YG16, YG17, ZMM18, ZCLX20, ZYS09, dCPC12, AW09, BETV08, LL08, SYZ15].

February [Ano20o, Ano21o, Ano22o, Ano23k].

Feedback [MBKB02, MIUS16, XZ+20, KDV12, MW13, MKL21, Pen03, RGA10, dSdSF12].

feedback-based [dSdSF12].

few-beam [dSdSF12].

Few [CLL+21, BZP+23, FFP07, LHL+21, LFL23, MHX19, SS21, WQZ+23, WKT22, WLY23].

few-shot [CLL+21, LHL+21, LFL23, MHX19, WQZ+23, WKT22, WLY23].

Fine [Hob00, MT16].

Finder [PKP97].

Finding [CDH99, GS06, LF96, PF99, SBZ07, WW995, CSMS14, OGB14].

Fine-grained [KFSM17, YDP+20, CHL21, GZL+23, JLZ23, KHG22, LYKY19, ML13, RT14, SY10, YNZ+19, ZIT13].

fine-scaled [LYKY19].

Flexible [BHSD13, BS99a, NMP97, AAB19, LHJ09, NS16].

Fixed-point [CTWH15].

flattenable [GLR99, ROJX09, CTWH15].

Flexible [RB18].

Flight [LSKK10, SLK15, BHMB10, HHA14].
HEPH15, LBK10. FLIR [LCZ+01]. floating [RLB17]. floating-point [RLB17].
Floor [MCPB00, ES06]. Flow [BA96, DC98, FSA01, LSH19, LHH+98, MNCG01, NDBT95, SP97b, Spe97, SJB02, WALL00, XS98, ADGB16, BL09, CHZ+13, CSS13b, DRAB08, FWG18, FBK15, FBK16, FSV07, GYTL09, GPy+07, Gou09, HMF10, JM09a, KN03, KN11, LNM+21, LSo8, LB10, LmCT16, MN06, Mar07, MZC+05, MEYD11, MCF10, PBW14, RDM+11, RPB17, SM06, SM21, TCH05, TD19, WWJ13a, ZSCP08, ZLS+13].

flow-based [BL09, CHZ+13]. Flow-guided [LSH19].

Flow-based [WD96, ACG+09, HC13c, LGG+18]. fluctuations [AFMY14]. Fluid [WALL00].

fluoroscopic [KNO+09]. fMRI [KGC05].

Focal [Che08, SCCP05]. Focus [PGP15, SKO95, ALM23, CXFS06, IKST05, PLYW21, ZLHJ18, DR04].

Focus-aided [PGP15].

Focusing [BM99, May99, WASF14, ZS19].

FOE [Neg96]. following [NPM+16, RMAL23]. Font [KHK96]. food [CNS18, FCM20, MP16]. foot [TD12].

footage [CSK22]. Force [HNC05, IW97].

Force-Driven [IW97]. Forces [DF01].

Foreground [FT23, AHDM10, CVP10, CW15, CMG16, DDI1b, LRLR15, MCCRAC20, UFK20, YO10, ZHZFL22].

Forensics [CGL+21]. forest [CFYU12, CZ14, LLJ+23, MRH19, dSdSF+12, CGHTK16].

Foresting [MSF+12]. forests [JW15]. Form [BSF02, CF01, CS98, FAB97, HS06, MKY01, ADF19, BvlHL+13, Lju10, MFB11, UJ22, WSFTK18]. formal [DAL+22]. Formation [MSB7b].

Forms [UE01]. Formulation [ACB98]. forward [AT13, FMS17]. four [HF11, HQW+12, KDSF20].

diagram-connected [HQW+12]. Fourier [AM98, DUC97, DG01, LEA+10, TS00a, ZS11]. Fourier-Mellin [DG01]. Fourth [Ane06d].

Fourth [YL96].

function-based [MZB+10, MAY+10]. FPGAs [MZC+05].

Fragments [ADB15, DT09, TS17]. Frame [ADB99, FAZ14, HG11, KKSC23, PR03, SM21, SVF+21, TY22]. frame-based [PR03]. frame-to-frame [FAZ14]. frames [EH21]. framework [U016]. Framework [ADB99, Car96, GGR01, LH95, VM01, ASFP03, BWG17, BYK+18, CSR13, CCK16, CCF17, CMH13, CNO+16, CL08, CU11, DBW11, FF05, FK+11, GGP23, GC+18, GML16, GYW23, HKH14, JLD13, KK15, KBN12, KSR+12, LC11, LV11, LL13, LZW17, LJH+09, LH03, Msv+20, MA16, MIP16, MP20, NS16, PJW11, PL10, PLKP23, PMW05, RLS06, RB18, RS03, RA15, ŠRDC09, T´EŠK11, TMB12, WML21, XWLY23, YGC13, ZC19, ZZZ20, ZDF10].

frameworks [CU11, TPT15]. FReBIR [PFSG09]. Free [BvdHL+13, BSF02, CF01, CS98, FAB97, LHSG15, Lju10, MKY01, TML00, UJ22, WRB06, CZS+20, CC16, JGP19, PZM+21, RC03, SS17a, SLK23, ZLLP21, ZJJ22].

Free-Form [BSF02, CF01, CS98, FAB97, MKY01, BvdHL+13, UJ22]. Free-hand [LHS15]. Free-Swimming [TML00].

freedom [LWLS12, Sha11]. freehand [MJPS16]. Freeman [Kak97]. French [KABP98]. frequencies [SRM20].

Frequency [Ano01m, AT17, Luc01, SDK22, LWH+23, NL23, SGS+10].

frequency-domain [LWH+23]. FRIDA [RMC+22]. friendly [CPP+11, CTWH15]. fringe [MSV+20]. Front [Ano17]. Ano17k, Ano17l, Ano18k, SK02].

Front- [SK02]. FS [Neg12]. FSpH [ZW+14]. Full [BR95, LPR+03]. Fully [AGL23, ACF08, BW15, CZ14, CJWW22, FWL+20, MS96a, SFT+18].

Function [CG98, GESB95, KH96, BSM10, KDSF20, PSR08, RSS07, TS16]. function-based
Functional [Hod95, RDR95]. Functionalities [RR95]. Functionality [BB95, Sta95]. Functions [BGSDVL98, AJ23, CGU11, CU10a, CU10b, DLV15, EPH+21, PRR03, WR08].

Fundamental [BGK98, CZZF97, TZM98, ZL01, ASCF13].

Fusion

Future [MBHRC21, BCC+21, KK17, NHZ+22, RFMF21, ZZZ15].

Fuzzy

Fuzzy-rough [SB13]. Fuzzy-rule-based [DK13].

G [Ano95c]. Gabor [Far11]. GAFL [SBD22]. gain [YCH07]. Gait [AFMY14, CT13, AM17, CR18, CNC03].

gaits [Boy04]. Game [YB95, PKK+09, RMN+17, VMC+16].

game-theoretic [VMC+16]. games [CL17, KBD+12].

GAN [Bor19, Bor22, SKS+22]. GANs [FSG22, GM19, RB19, YXZ+22]. gap [MTP21, WM20]. Gathering [ANM98].

Gauss [CRC97, JWG04]. Gaussian [CTWH15, AQ09, AMCB20, CE14, EB13, FL09, FWL+20, Jur99, KNL15, KLK14, KKKC23, Kui08, KMN11, LBCA10, MSR07, MRW+97, OD99, PKvGS16, RR11, Ste13, UK12a, WWCZ15, WLW+16].

Gaussians [SGMC15, VWMZ15].

gaze [CC16, MM05, NMA123, NKB11, NLM05, WSV05, YC05, ZSSF16]. GC [CUAT13].

GA-ASM [CUAT13].

GCN [WZCY22].

GCN-based [WZCY22]. Gender [ZSSF16, CSDN17, GBVDC18].

General [MWL99, MLW99, CL08, DMW10, DSY10, LC14, RR06, RLC+11].

generalised [BWG17].

Generalized [CLCO13, DFH+22, GPY+07, LD97, MUS06, MP09b, Zac18, CCL+17, EB13, FL09, GML16, PW23, ZS11].

Generalizing [OZT19, WO10].

generate [CKLP09].

Generated [MWL99, MLW99, JWG04, PHY+11, ZCLX20].

Generation [EK98, LMDB11, MN18, ZT98, ZMM+22].

Generative [BK15, CWLY22, MCB13, MC22, PL07, RMC+22, ZHFL22, BCMR16, BBCF20, BMvT+19, DYM14, FFM05, FFP07, JNLG15, Kim15, NWJ15, OZT19, Pec07, RB16, SEFV15, SB22, SDK22, TLB+15, TY22, VKL18, XHW09, AW09, FDSB22, GFL+19, LB19].

generator [GLZF23].

generators [GDIIHK11].

Generic [ALIRT18, BKMSR98, GESB95, KBS16, LD98, RSL10, CC03, DMW10, FKV+11, OCYV04, RLS06, RPBK22].

Genetic [DUC97, SC98, GRGB13, HDS08, SW05].

Genetically [HBL+11].

Genomics [KFRD+18].

genomics-inspired [KFRD+18]. geo [RTM+17, WCF10].

geo-accurate [RTM+17].

geo-location [WCF10].

Geodesic [HUI16, PD05, RC13, MJ11, PMCN22, YG17].

geodesic-aware [PMCN22].

geo-geodesic [YG17].

geo-geodesics [WPS03].

geographic [CCPK16].
Hand-Printed [Por00]. handle
MiMO+16. handles [VZP+09]. Handling
[BVCP21, CH11, FBK16, KFN15, LST13].
handoff [CYP+10]. handwashing
[HPvB+10]. Handwriting [AHD98].
Handwritten [DLHT99, HY98, GRMH19].
Hankel [LL17]. haptic
[NPM+16, RRAR+16]. Hard
[FB97, LBP23, MT16]. hard-to-find
[MT16]. Hardware
[MZC+05, MNH00, AK10, AK11,
AHDM10, Gon09, MSII10, PCC13].
hardware-based [AK10, AK11].
 hardware-oriented [PCC13], harmonic
[HMF10, SGS+10]. Harnessing [VGLP17].
Hash [GBKW14].
[DKB95, FWXW17]. Hashing
[RH95, Ta96, CBS17, C1L14a, FWG18,
HMCT22, HLDL+20, JBKW11, LBP23,
ML15, WWG+18, ZWT+14]. Haze
[LYBT17, ECC18]. hazy [ZH17]. Head
[CSS+13a, HGP15, PHI1+15, ABV16,
AVC19, CC16, DPCA15, HDG+14, HCLZ21,
MBD+22, TST14, WPQ20, YWZ11, YC05].
heading [RS03]. heading-guided [RS03].
Heads [FM99]. health [RBC22].
Healthcare [NPBM22]. Heart
[LSB+00, WYW+22]. Heat [KS96].
heatmap [SJS12], heatmap-based
[SJS12], heavily [BPLT15], heavy
[LG17, MSSS09]. HELOC [CPC08]. Height
[SF16, ATG15, BABB19, CH06, LSC08,
Mas09]. heights [EMMV19], held
[LLL+20]. help [MST16]. hemispherical
[GA10]. hepatic [ARC14]. Herb [Kak97].
heritages [dOSJVS12]. hermeneutics
[GMW12]. Hessian [LTCT14].
Heterogeneous
[DVW19, GBL08, HH19, PZX13, WLW+16].
Heteroscedastic [KB00]. Heuristic
[KvdG+97]. Hi [GTMR23]. Hi-ROS
[GTMR23]. Hidden
[Che98, KABP98, BCM06, CL17, CLCO13,
NN13, VMN16, XQLZ23, ZYXZ13], hiding
[YCL07]. Hierarchical
32

[BAM16, CWH+13, CN95, DPCA15, FWG18, FKL+98, HUF05, HP96, KBKS18, KD96, LXW+17, IWS20, ML13, NN13, PCR+04, SL96, SPW15, Tan95, TGFF15, YZ06, YNCO11, YW99, YSY+18, ZWB+22, BPC+17, CL15, CZ14, CDIF14, Cou13, HBH10, JEF+12, KS15, KSF16, LRD19, TLB+15, TS19, XSQZ15, ZWN14].

Hierarchy
[Jon97, SN99, MdRNM15, NFA04, PCJ14].

High
[AM15, CJL06, CJC01, DT96b, EA95, EPH+21, HSHA20, MCPB99, PCJC98, SM21, UO16, BEGB13, BKMV07, BBK15, CB1+04, DRA808, HHH11, JLY+17, JPP+14, KA08, LGL15, LGD16, MWTN04, NJW15, RMN+17, RT14, SRM20, SP06, SL16b, MNR18, VGR16, WD14, YAK+08, YZT10]. high-dimensional [BEGB13, BKMV07, NJW15, WD14].

High-frequencies [SRM20].

High-level [EPH+21, JLY+17, RMN+17, YZT10].

High-order [UO16, JPP+14, KA08, LGD16, VGR16].

high-performance [DRAB08].

High-Resolution [MCPB99, PCJC98, SP06]. High-Speed [DT96b, HSHA20]. high-stakes [SL16b].

Higher [KSRS16, SJ15a, She16, ZZP12, PL08].

Higher-Order [SJ15a, KSRS16, ZZP12, PL08]. highlight [GCD+18, GHHX04, WXZG18]. Highlights [CTE95, MS00, ABC+03]. Highly [SM10, HHG+20]. hippocampus [XFSC13].

Histogram [MGW10, MAP99, WCZ02, ZT15, ZCL99, BK07, CKC14, KGU10, MHSP10].

histogram-based [KGU10, MHSP10].

history [WRB06]. HMI [FKL+16a]. Hock [SCR+17]. HOG [AT17, HC13b]. holes [CHSV08]. Holistic [VCLS19, ZC19].

Homeostatic [FY06]. homogeneity [KLL+11, MVP06]. homogeneous [BFR13, YZT+22]. homographies [CPS05, SCvD14]. homography [GYF18, CPC08]. Homotopic [Pud98].

Hopfield [BBB96]. Horizon [ABN+20, MAL10]. Hough [CGHTK16, CGR13, CS04, CL95, DGH98, FS03, GLR+99, GRB13, KB00, KBD+12, LY05, MKG00, MNHO00, MAK+17, Ols99, PKP97, SYK96, Sha06, SK98, SKBS13, dSM14]. Hough-based [GRB13].

Hough-CNN [MAK+17]. houses [ÜB05].

HRCT [SBK+99]. HSGAN [YZ+22].

HtHT [KB00]. HTS [dSM14]. HTSs [dSM14]. hull [BL08, MHL14]. Human [AC99, BDT23, BLO1, BDFG17, CPF11, CMBP09, DA+17, DLF06, FCM20, GCS23, Gav99, GBB+18, GMW12, GAD01, LW1Z16, LRD99, LLC13, LSW18, LSTF12, MbBJG15, MYLP98, MG01, NMA123, PC05, SBK16, SPK+02, SS21, YG16, ZK02, Ano06h, BCM13, BSZ+21, BSBB14, CGHO8, CL18, CCFCC13, CYNO11, CTH20, CPPY21, CLO17, CNC03, DPM14, DMSM21, DMIT12, FFY+04, FOCSB+20, GKK05, GBY21, GMZ+22, GLZF23, HRC16, HUF05, HCC+16, HWW06, ITNP12, IDY+18, JS07, KV06, KIS17, Kin17, KCC22, KRR11, KPKH07, KLK+16, Kou03, LE09, LSCM03, LW03, LYA13, MML+16a, MFBI11, Mtal21, MK06, MdRNM15, NFM08, NLM05, OMB06, OVJ+21, PT08, PDS+07, PQML11, PKC+18, PYS03, Pop07, Rem04, RSPD12, RR06, ROGT14, RS03, SKM06, SH08, SP19, SRHC13, TR09, UU08, UFF16, VAC16, VGSM16, VKNK14]. human [WS08, WH18, WLO+18, WZT+21, WPB+14, YO11, YS08, YST21, ZMCA05, ZT15, ZSSF16, ZKC03, ZDF10, Ziv10, BCD10, CEA16, HG11].

Human-computer [MdBJG15, ZSSF16].
human-delineated [Ano06h, GKK05].
human-human [SP19]. humanoid [ZMJ+15]. Humans [DAZ+17]. Hybrid
[CC96, FLS+14, SOK16, DWL+12, FN14, KSR+12, KL11, LLF18, LZW+21, MK18, VMP03]. hypercomplex [AS09].
Hypercube [DRCF95, LHKC97]. hypergraph [YYZL19].
hypergraphs [BB13, BB15a, DB14]. hyperquadric [CC96].
Hyperspectral [ZXC+20, GL19, RRK13, TLH22, BFC16, BFY00, BB15a, BHF08, CG19, CM17, CH19, CC00, CL97, Cre08, CW00, DT96a, DF02, DCL+99, DPB00, DG00, DSH04, EK95, FRL+98, FL96, GFS04, GB17, GMV08, GMW12, GHS95, GRMH19, GGR01, GKH+21, HR99, HWZ16, HLF+97, HMA10, IP98, JWG04, JSZY17, KB98, KSS97, Kis96a, KD96, KvdG+97, KM19, Lai00, LN98, LDH+14, LLE+09, MBB02, MAP99, MKK02, MS97b, MK01, MSW15, MBMC11, MYLP98, MPP98, MGLB17, MLK21, NDN+97, NWV97, NLW13, OD97, OTL96, OYTY98, OBH04, PZ09, PF99, PBQ99, PM97, PM00, RWH00, RC03, RM98, Ros95, Ros96, Ros97, Ros98, Ros99a, Ros00a, Ros01, Ros10, SUO00, SU01b, ST96, SC99, SLST99]. Image
[SF95, Shi99, SBK+99, SPK+02, SL99, Ste01, TVLS08, TS00a, Tay00, TZ00, THT+98, UZC97, VKP98, WN99, WLD99, WD96, WCZ02, WX+14, WKI+16, WQY+21, WLL00, YGC15, YB95, YZX+20, YFZ98, ZW97, ZL01, ZFG08, ZLL+14, ZCL99, ÅS17b, AGL23, AM06, AA20, AQ09, Ang07, Ano17j, Ano17k, Ano17l, Ano18k]. IFS
[BB00]. ITrace [MSF+12]. I [CU10b]. Illuminant [DC98, AJ23, DJF14].
illuminants [AP10]. Illumination
[ADGB16, BFF97, BDL04, FW97, GG09, Lai00, LZZ7a, MCF10, OD99, OD01, ASC17, AC09a, AC09b, AZP14, ARARCE11, CCYC12, DD11b, DL10, Hu11, Jea11, KTE+17, LMP+19, LCT09, LY06, MTTM04, OK04, TD19, WLZ+23, YWZ11]. illumination-based [ARARCE11].
illumination-encoded [Jea11]. illumination-invariant [AC09a, TD19].
Illumination-robust [MCF10]. Image
[AYB+18, AK11, ABW97, APV99, Ano95d, Ano01, Ano06h, AKE23, ACW+16, BK01, BS99a, BPQ15, BCC16, BFY00, BB15a, BHF08, CGL19, CM17, CH09, CC00, CL97, Cre08, CW00, DT96a, DF02, DCL+99, DPB00, DG00, DSH04, EK95, FRL+98, FL96, GFS04, GB17, GMV08, GMW12, GHS95, GRMH19, GGR01, GKH+21, HR99, HWZ16, HLF+97, HMA10, IP98, JWG04, JSZY17, KB98, KSS97, Kis96a, KD96, KvdG+97, KM19, Lai00, LN98, LDH+14, LLE+09, MBB02, MAP99, MKK02, MS97b, MK01, MSW15, MBMC11, MYLP98, MPP98, MGLB17, MLK21, NDN+97, NWV97, NLW13, OD97, OTL96, OYTY98, OBH04, PZ09, PF99, PBQ99, PM97, PM00, RWH00, RC03, RM98, Ros95, Ros96, Ros97, Ros98, Ros99a, Ros00a, Ros01, Ros10, SUO00, SU01b, ST96, SC99, SLST99]. Image
[SF95, Shi99, SBK+99, SPK+02, SL99, Ste01, TVLS08, TS00a, Tay00, TZ00, THT+98, UZC97, VKP98, WN99, WLD99, WD96, WCZ02, WX+14, WKI+16, WQY+21, WLL00, YGC15, YB95, YZX+20, YFZ98, ZW97, ZL01, ZFG08, ZLL+14, ZCL99, ÅS17b, AGL23, AM06, AA20, AQ09, Ang07, Ano17j, Ano17k, Ano17l, Ano18k]. IFS
[BB00]. ITrace [MSF+12]. I [CU10b]. Illuminant [DC98, AJ23, DJF14].
MLB^+18, MN06, MOT17, MJ11, MAL10, Mig12, MB95, MGPF08, MHA13, NKPT13, NBF20, NHTG15, OJRT08, PE09, PL10, Pey09, MCN22, PS12, PCR^+04, QKH^+12, RF23, RSS07, RbDS14, RLF15, RTM^+17, SOL16, Sch06, SJ15a, SBH^+17, SS11, Sdb03, TAK09, TA13, TS11, TRP020, TGFF15, TP05, TAK^+22, ÚB05, VBA19, VMC^+16, VJ17, VGPL17, WBS14, WP09, WLI08, WB11, WYX^+16, XHX^+19, YHR^+05, YWMS08, YZ06, YT13, YLX^+18, ZMCA05, ZSCP08, ZRL^+11, ZC19, ZHZ17].

ImageWeb [XTZZ14]. Imaging [SGK00, AZP14, BN15, BK15, CKF18, GHA10, GCD^+18, GHMT09, GPC^+10, HGSM11, KLL^+11, KLBP11, SGA12, WAPB17].

impact [TM04]. impaired [CNO^+16, LM16]. impairment [MAG^+16].

Imperfect [DY98]. Implementation [Bre03, GLR^+99, LHHC98, MNHO00, MSI10, MFB11, MAY^+10, NN04, SBB10, SM10, dLAH07]. implementing [KL10]. Implicit [HSIW98, LDPD97, LSB^+00, RAH97, ÜE01, ZOMK00, CCL^+21, HUF05, WSKH13].

Importance [AXJE21]. Improving [FB97]. Improvement [ACB98, ZW97, BVWS21, FBF08, KBMD15, WZC^+21, dSF^+12]. Improved [AM17, CM12, GPC^+10, MFSB23, Mil09, MB05, OEK08, VCD^+17, GYW^+22, HH07, HWZ16, KDSF20, SZ07, STC14, SVF^+21, SYPK13, WLZ23, ZSDK19].

improved-variation [HWZ16]. improvement [SHE17, TVE^+16].

improves [BHMB10]. Improving [CL17, GFB12, HCC^+16, LvdHK^+15, RP12, RF23, TL15, WASF14, XSL^+23, XJK12, YAK^+08, BSH13, CCpp16, CE17, GM15, QWHW20]. Improvisation [Hod95]. impulsive [MGPF08]. IMU [GYF18]. IMU-camera [GYF18].

in-the-wild [JT17]. In-vehicle [OBTM15]. inaccurate [KEG15]. including [NL17, WR08]. Incompatibility [Äst97, Col97, PRW97a]. incomplete [KB12, MYC09]. incompressible [ACG^+09]. inconsistent [LPC08].

Incorporating [ALM23, GW07, LHH07, dSF^+12, CSS08, PYWZ17]. increasing [ZBDP15]. increment [NFM08].

Incremental [DHP08, GB08, HRC16, IT15, PMZ^+21, XG08a, Dan08, FFFP07, JLM22, MZ21, RMC^+22]. independence [YLZ^+21]. Independent [BKMSR98, DT96a, FD99, NFMO08, EKYO8, LT05, ME18]. independently [OCV04]. Index [Ano95b, Ano95c, Ano96b, Ano96c, Ano97b, Ano97c, Ano97d, Ano97e, Ano98a, Ano98b, Ano99a, Ano99b, Ano99c, Ano99d, Ano00a, Ano00b, Ano00c, Ano00d, Ano01c, Ano01d, Ano01e, Ano01f, Ano02a, Ano02b, Ano02c, Ano02d, Ano03n, Ano03p, Ano03q, Ano04k, Ano04l, Ano04m, Ano04n, Ano05k, Ano05l, Ano05m, Ano05n, Ano06j, Ano06k, Ano06l, Ano06m, WCZ02, Ano03o, BJ03, CLZ15, LZWP03, PB04]. index-based [CLZ15].

Indexing [BGSdVL98, CS98, CS00, DvLV08, Doe98, GFS04, MAP99, ML97, Nis99, YC98, BZS16, BL04, JN09, MTC^+14, MY^+14, Pha17, QT10, TKAK14].

Indicators [CH06]. Individual [WPZ^+16, XFC13]. individuals [CSV^+16].

Indoor [KM17, LYSK17, SPQ^+17, ANHGS17, CGU11, DWB11, DPM14, DTL17, GC19, KPPK09, RRAR^+16, TS17, YHS^+20]. indoor-sports [KPPK09]. induced [YG17, ZSC^+23]. Induction [PC99, VBS^+04]. inductive [HSJ32].

Industrial [SOJ^+95, ZZZ06]. inextensible [BBH14]. Inference [AS17a, JvdBS99, SB95, WK1^+16, BBK14, BCA16, CKP^+19, GF15, Ham05, HHM^+16, JNLG15, PBW14, SCC17, WKP13, WW16].

Inferring [KMB97, OGH04, KKR11].

Inflation [GY19]. Inflating [CM95]. Influence [HFKN97, BPDP09, GZP05]. Information [BEGB13, Boo97, CM97,
Information-Based [PMV00].

Information-theoretic [BEGB13, WSSS13].

Informative [BMvT19, DL10].

Informed [JNLG15].

Infrared [FWLQ23, KH23, MZ20, WB15, BBC07, DZL07, EB13, GFY14, GZL23, HASS10, KHA05, SRO19, SSN03, TAK22, XGT22].

infrared-enabled [SRO19].

infrequently [PK18].

inherently [BMX22].

inhibition [ZHL20].

inhomogeneity [MUS06].

Inhomogeneous [GSP02, YHN11, KSHE20].

Initial [HSSB98].

Initialization [CYES00, NFSK97, SKSR08].

initialized [VBVB19].

initiative [MLK21].

inlier [HWL22].

inpaint [UJ22].

inpainting [BR12, BABB19, CHSV08, JKW21, JLY17, QBZ21, UJ22].

Inscribed [BM98].

inscriptions [PRG14].

insensitive [YJC09].

Insertion [JYC09].

Inspection [COW98, MG95, MEDT96, ME98b, NJ95, SOJ95, TG95a, TG95b, LA11].

inspired [BCMR16, BC10, BCDH10, BEK18, EF14, EK12, HL13, KFRD18, MNMK16, MFG10, SVA22].

Instabilities [ASZ99a, Instance [ABJ+21, LYX+21, WPZ+18, BYJG23, FBF08, GLG22, GK+21, HWG21, KLO20, PHH+15, YGC13, ZS10, ZS19].

instance-aware [KLO20].

Instance-level [LYX+21, BYJG23, GK+21].

instances [MT16].

instantaneous [PV06].

Instantiating [WRH97].

instrumental [BKPS15].

Integrability [FW97, KS03].

integral [CYG16].

Integrated [BL09, LD98, SA95, VZP+09, ASFP03, CNO+16, GGP23, PBG04, SCS14, TMB12, TG95a].

Integrating [BZ99, DCTO97, MNE00, SSdVL06, TCZ+12, NT10, Nis96, WLM+14, eGZW07].

Integration [DL97, KMN11, MFJ95, Mas02, CUAT13, CJL06, DGG08, EDB12, dOSJVBS12, RFS03, SSL+12, TLP+17, VSP06].

Intelligent [SO07, YHS+20, MFG10, RGA10, Tho10, VD10, Jom08].

Intensities [WQY+21].

Intensity [CW00, FDMA97, GJP96, LN98, ZU09, AS08b, CD13, HKWC14, JC06, RG16, RBA20, SM21, SKU+09, SKR08].

Intensity-Based [FDMA97].

intert [PSYZ13].

Inter [BZ99, ZDL20, DLM16, EK12, FR11, GZX+23, HSH07, JS07, JZWD16, JRB+15, KPKH07, LXFM16, MBBJ15, NMAL23, PYS03, RKKK22, SA04, SVSM15, TMM16, WHC14, ZSSF16, ZSC+23, CEA16].

Interactions [PT08, SP19, TBC+21, ZNG+13].

Interactive [BB95, GK95, MBK02, PZV13, QTLP22, VGSN16, BCNS15, CG04, DW811, FN14, GRMH19, GML16, HSS+16, MO11, MM05, SBS04, THL03, WWH07, WWLV11, dMUF10].

Interactively [PC99].

interconnected [PBW14].

Interdigital [MKF15].

Interdisciplinary [MST00].

interest [BL20, CHMG12, GG09, ILRB04, KL10].

interest-based [ILRB04].

interface [NLM05, RRAR+16].

interfaces [MCK09].

interference [SRO+19].

interferometric [WB11].

Interframe [AM01], intermediate [SJB20, YDP+20].

intermediate-layer [SJB20].

International [Ano96d].

Internet [WL15].

interpolated [EH21, TVE+16, ZS11].

Interpolation [AM01, BS96, GL98, PMV00, FWG18].
Kim04, SBB18, TY22]. interpretability [OVJ+21]. Interpretation [DUC97, DTG96, HB98a, MS00, Mun95, OMLL98, SB00, Ste01, TN07, ARARCE11, BC10, KK07, LWH03, SM06, SCS14, VZP+09, XP11]. interpretations [OTO06]. Interval [VB16]. intra [ASFP03]. intra-surgical [ASFP03]. intraoperative [LPR+03]. Intrinsic [DKG22, DAM12, AAB19, BLKG21, LC11]. introducing [EDX16]. Investigation [OVJ+21]. Investigation [RWV95, LL12]. invisible [ZZS+23]. Involving [KW00]. IP [ZIT+13]. IP-driven [ZIT+13]. IR [CFB05, LCP13, LLZ23, MNSK98]. Iris [BKK11, Far11, GRGB+13, BHBF10, BHF08, ET15, HBF09, HBL+11, LMP+19, LDGS+13, NFSD13, PS12, CJI06]. irises [HBL+11]. irregular [GDIIHK11, KA12, VRKL13]. Irregularly [GSP01, PPT06, TN05]. irrelevant [GZL+23]. Islamic [AGB+15]. isointensity [TG95c]. Isolated [BBC00, NS98, Sup02]. Isolated-Object [BBC00]. Isolating [MGPF08]. isometric [BBH14, KY19, RB18, SB18]. isothetic [DBBB14]. Issue [uvo01k, ano01l, ano15o, ACW+16, CFS98, DRDKE13, FKL+16a, FHP01, KB98, MZL+16, NPBM22, RFL02, SPQ+17, WPZ+16, ano05j, BK15, BPS10, BPQ15, CA10, CKB10, DFJL15, FKL+16b, FPDK12, FYH11, GHMT09, HMC10, HTEB11, HGS11, JWDF05, Jon08, KPKH07, KLBP11, LK10, LLE+09, MPF07, MYK03, MYC+14, NLW13, STV09, STS06, SMHH04, THL13, Tho10, ZZP+16]. Iterative [CH99, CUSZ07, DH19, GM19, GSK02, ODD06, AYG23, CO16, HQN05, LTL+23, LBNS09, SZB+21, TMB12]. IterGANs [GM19]. IVIS [TG95a].
FLHK08, GBB+18, GB17, GLG22, GCPF08, GYW+22, GLZF23, GZ19, Gwa17, HRC16, HOH+07, HBL+17, IT15, JRS21, JNP+22, JLZZ23, JRAJ17, JLM22, KKKR23, KG14, KDSF20, KSF19, KRGI7]. learning [KOC17, LBP23, LHS21, LPC+20, LLS21b, LZZ22, TTL+23, LCL+17, ML13, MSV+20, Mah16, MK18, MNL+17, MHX19, MFSB23, MPM16, MPT21, MdoBA19, MZ21, MAK+17, MFP+20, MP20, NWNT17, NNN+22, OGH04, OTAH20, PWSvdH17, PS22, PZM+21, PBD20, PLC18, RLCS19, RL13, SP23, SRB21, SRS21, TSL14, TDPD20, TCM18, TBC+21, TA11, UFK20, VPL23, VSLS16, WRK05, WS08, WK13, WLI+16, WLO+18, WL23, WM20, WKT22, XZZ+21, XST04, XSQ21, XW16, XYSR17, YGJ+20, YGC13, YSS+14, YGC15, ZSK+23, ZP18, ZTLG18, ZZ20, ZRKZ+11, ZSG+20, dSdSF+12, RG16, WPZ+18]. Learning-based [TMN06, AYG23, CTH20, ML13, MSV+20, SRB21]. learnt [CGH08]. Least [ADC19, FM99, GSV05, ILKK19, MP09b, ZZ10].

Least-Squares [FM99, ADC19, GSV05]. leaves [CTM+13]. Left [BMB+17, WSKH13, WWJ13b]. Left/right [BMB+17]. Legal [KAPB98]. legend [Ano17j, Ano18k]. Legendre [KP97]. LeMéHauté [Ano95d]. Length [GJH01, Ksa96b, LL97b, Chc08, Klc13, SGH07, SCCP05]. lens [WHL14]. lenses [BHB10]. lesion [ARC14]. less [Pen15]. Level [DPB00, DG01, KSKB95, KB95b, LLS00, ME98b, PA00, ZOMK00, AA20, AZ15, BC10, BCDH10, BB03, BJYJ23, CICN22, CU11, DFJL15, DGC12, Dem05, DCS05, EPH+21, FPC+08, GKH+21, HWZ16, HG15, JLY+17, KK13, KHH22, KYM13, KS04, LBC+21, LXY+21, LFL08, LGL15, MMV06, NLI+17, PSE+11, PD05, RMN+17, STO17, SM06, SB22, WZ04, WLZM20, YWL+22, YFF+23, ZYT10, ZJW15]. Level-Set [LLSV00, FPC+08]. levelings [AHM17]. levels [FKS10, SsdVL06]. levelsets [TRG+13]. leverage [KH23]. Leveraging [KTV17, MSI10, WPI+16]. LHS [SJ15a]. Libraries [DCCL99]. LiDAR [GDCM17, SPT+18, S007, ALY+22, BZP+23, BABB19]. LiDAR-camera [ALY+22]. LiDARTouch [BZP+23]. lie [SL16b]. lifelogs [WSY+16]. Ligature [ASZ99b]. Light [CVP10, LZ97a, OD97, OD01, WZCY22, XMN+15, AZP14, BHS+13, CF07, CFB05, CMD06, DWC16, Dr+96, HASS10, KHR+16, LF08, LC19, MC20, MHL14, RBA20, SLK15, SBB18, SW13, SF16, TMN09, WLZ23, WNH05, YHS95, ZSL+16, ZHZ17]. light-field [CMD06]. Light-weight [CVP10, WZCY22]. Lighting [Bic98, GJ10, LCT09, LC14, MC20, ZJ05]. lights [MAG+16]. Lightweight [LWW+21, LZB+23, LCLH18, XSZ+20, ZHL+20]. like [DAM12, XHJF12]. Likelihood [CHR96, HH07, KNL15]. likelihoods [JPP+14]. Limb [UZC97]. Limb/Terminator [UZC97]. Limbs [LRD99]. Limited [SMD+08, CD10]. limits [HUF05, PV15]. Line [AHG98, CA97, CH99, DLHT99, GB98, JV97, JB99, KB00, KP90, LD98, PKP97, PLL00, Rob96b, SP97a, SM97, Ts96, ABN+20, AAP19, BAPX16, BCLNG18, CTD11, FS03, HMB17, KM17, NDO09, PYWZ17, PBD20, PZC17, RL13, Sha06, SW17, WXC20, XSK15, YGH11, ZRKK18, ZS11]. Line-Drawing [SP97a]. line-pairs [ZRKK18]. line-scan [AAP19]. Linear [AM01, BS96, BEPW00, Jac01, NN04, PRK19, SH03, WZWT99, AC09b, AM15, Bar05, BBK15, CCL04, CSS13b, CO16, CP20, GTP18, ITNP12, KL07, KORC10, LLY5, LHH+14, MM21, PXTZ14, PL08, PZC17, QAB+11, ZZCL14]. Linear-Time [WZWT99, SH03, CCL04]. Lines [GL97, JVdB99, KHB01, MKG00, MAM97, SLL01, BA06, BS05, Sch06, Ste13,
WZWH16, GOF+15]. lingual [WHN08].
Linguistic [ALK+09]. linguistics [JN09].
linked [AKC11]. Linking [KVdG+97]. Lip
[LmCT16, CZ18, JB23, NN18].
LIP-signature [NN18]. Literature
[Ros00a, SBH16]. live [KK15]. living
[BKPS15, YG16, YG17]. LMMSE
d[LAH07]. lobe [YS11]. Lobula
[MAY+10]. Local
[GBB98, KP00, LCSL07, LS09, Mil99, MB11,
PA00, RRL20, SGMC15, SRL+23, SKVS13,
TG11, TQ23, TS00b, VNNB14, WTBdB15,
YSX+19, ZCL99, kCE+18, BCM13,
BFMW23, BB15b, BG09, CLZY15, CH06,
CHC11, CK09, ESS10, FBK16, GPKS15,
GCFT12, HBC13, HSJS10, JBR08,
KYYC14, KKSC13, LPS+11, LLF18, LSL16,
MML+16a, MdBJG15, MTP21, PXTZ14,
PV06, PGC13, PTE12, PMCN22, REF15,
RLB17, Sal05, SBB18, SJ15a, SW17, SHS03,
TLP+17, TQ23, TS11, TT16, WPS03,
WX+16, WHGZ20, XYW11, YXT+13,
YGC13, YZX+17, ZL13, ZC19, ZCLX20,
RK11, SJ15a]. local-global
[MAY+10]. localized
[SB00, XFSC13]. Localizing
[GF15, SAL16, MAL10, TSD17]. Locally
[FLH08, SKS+22, KL07, LvdHK+15,
LZD+14, LLC11, PK05, dCCP12]. Locate
[HdVL99, CH12]. Locating
[Kou03, SZ07, CCF17]. Location
[AW98, FTT15, Sh99, PBG04, SZ03,
SM13b, WCF10, XWD123]. loci [WS11].
LocoGAN [SKS+22]. locomotion [LE09].
Log [MGMS01, Mas09, Sch06, SCS14, TP05,
GBB+18]. Log-Euclidean [GBB+18].
Log-Polar
[MGMS01, Mas09, Sch06, SCS14, TP05].
logarithm [Hu11]. Logic
[MCBP00, ALK+09, BKPS15, XP11]. logo
[PA10b, SGZ21]. Logotype [Spi98]. loin
[CCR+05]. Long
[NB20, TKB11, CRCM16, GFB12, MBC17,
PA10a, TTN17, WHL+21, YAK+08].
long-term [CRCM16, MBC17, PA10a].
longer [CRCM16]. Look
[DAZ+17, AB18, CL17]. Lookahead
[JRS21]. Looking [BCC+18]. Looming
[RJ00]. Loop [SBK+99, WWL11]. Loss
[HH19, BRPC17, DFSC20, EPH+21,
KDSF20, MP20, SAK1A, WGLZ20,
XWD123]. lossy [CWC+20, YWMS08].
Loveparade [KB12]. Low
[AA20, ASO12, DBP00, LN10, WLZ23, ARFF18, BCD10,
CSS+13a, DGC12, Dem05, ED16, GF15,
KHH+16, KMBH09, LBC+21, LHY14,
LGL15, LmCT16, LC19, MHA13, RAC+13,
SZ16, WZ04, YFDA17, ZX+20, ZLL+14,
ZLZH17, ZD18, ZMM+22, ZZ10, ZYT10].
low- [ZYT10]. Low-dimensional
[ASO12, ZMM+22]. low-grade [RAC+13].
Low-Level
[DPB00, AA20, LN10, WLZ23, ARFF18, BCD10,
CSS+13a, DGC12, Dem05, ED16, GF15,
KHH+16, KMBH09, LBC+21, LHY14,
LGL15, LmCT16, LC19, MHA13, RAC+13,
SZ16, WZ04, YFDA17, ZX+20, ZLL+14,
ZLZH17, ZD18, ZMM+22, ZZ10, ZYT10].
Low-resolution
[LN10]. Lowe [AB98]. Lower
[Zha97, JB23]. LSS [TB13].
LSS-based [TB13]. LSTM
[BSZ+21, Jvd+20]. LSTMs [SBK+18]. Luca
[Ano01a]. Lucchese [Ano01a]. luggage
[DE17]. luminance [LAH07]. Lungs
[LSB+20].
M2FINet [LLZ23]. Ma [Loh10]. Machine
[Ano96a, BD02, FHSKP13, Lee02, Boy04,
NWJ15, YHS95, YG17]. machines
[CMBP09, CEA01, CB13]. macro [SAK16].
macro-micro [SAK16]. Macrofeature
May [Ano20t, Ano21u]. MC [RPBK22]. MC-Calib [RPBK22].

mdBRIEF [UWH17]. **MDS** [Mig12].

MDS-based [Mig12]. **me** [SL16b]. **Mean** [LLR10, MHMO09, ZLS +13, HW06, MSR07, ZYS09]. **means** [BBC +07, HS06, JLD12, LLF18, MJ11].

Measure [ALK99, APV99, KN11, LMRMJ08, MGW10, PD96, PTM02, RBDIS14, RM06, Ros08, TH04, WDN +12, YK08].

Measurement [OD02, SGK00, TI01, NN18, SJH17, XFS13, ZZ06]. **measurements** [ATG15, BHM10, WLM +14]. **Measures** [Neg96, RPTB01, SB98a, YYL96, Bor19, Bor22, BAP08, KY06, MM06, RKG03, SvM15, Got08].

Measuring [Car01, CK11, KT08, Ros99b, Rž05, WHN08].

Mechanical [CLD96, LCD97, AAB19]. **mechanism** [GS08]. **Mechanisms** [YLL96].

media [FSI21, NHTG15]. **median** [SB98c, CLK09, CK11, PAK19, PCJ14, SWS11, MDFS11a]. **median** [FKV +11].

Medical [AMGG +16, Boo97, BM97, DUC97, MAM97, NLW13, SPK +02, TK97, BK15, BCA16, CUAT13, EPH +21, KLBP11, KHE20, KSG +13, MLB +18, Mah16, MJ11, WP90, YZT +13]. **medium** [CSK22].

Meet [Ano15o, CICN22]. **meets** [KKRK23]. **MEG** [CSNR17]. **Mellin** [DG01].

Membranes [Pen99]. **Memory** [NB20, JLM22]. **merge** [DWL23, LK03].

Merging [BL00, BS00b, SCvW11]. **Mesh** [LHJC97, TGS98, BSR17, dOVJB12, MWT04, RZ23, SY10, SWMM22, TGQ23, TPT15, ZZC +13]. **Meshes** [MKY01, Tan95, WH00, CL95, MSR07, RT14, WTBD15]. **meshSIFT** [SKVS13].

meta [BPCT22, TFL +09, YST21].

meta-data [TFL +09]. **meta-learning** [BPCT22]. **metabolic** [ACC +16]. **MetaVD** [YST21].

Method [Cre99, HY98, KB95b, KB00, MY95, OD02, PM97, SRT01, TB99, ZOMK00, AAB19, AGB +15, ACG +09, AVC19, BYN +04, CE17, DTE17, DMW10, Eva06, FL09, GYV +22, HDS08, HMA10, JGM20, KKK13, LSL +18, Liu10, MCT10, MM21, MM15, MJ17, NW15, PD14, PW06, PT15, RR06, RL13, RLMK15, SAS12, SSL +12, SOL14, SCCP05, TM07, WGA15, WWC15, WYX +16, WHGZ20, XSK15, YHS +20, YCL07, YZL +21, ZS11, ZCF13].

methodologies [TPT15]. **Methodology** [HSSB98, AC09a, DL10, LMRMJ08, LFMP13]. **Methods** [Car01, FK98, HrVL99, NBPM22, RFC97, AYD +18, BSLF18, BSH22, Bre03, BHH14, CTC09, CT90, CM13, CU11, DFS08, DSY10, EK14, GBB +18, HNB04, JKW +21, KLKF20, LLG +14, LL +15a, MSR07, OEK08, PD05, PWQ16, P15, PBS12, RN12, RDSF15, SCD11, WRR11, WWT +17, XYH11, YGJ +20, YARL +20, ZFG08, ZCK09, RC13].

Metric [BCP15, KK11, Por00, RG16, ARC14, ALIRT18, BP +23, CGU11, FLHK08, FK09, JRA17, FLZ23, LFL08, MYY17, MTG07, PWSvH17, SMD +08, SSCW11, WZW16, ZZ06].

metric-based [MTG07]. **Metrically** [KP00]. **Metrics** [Sto1, CS20, KLKF20]. **MF** [WHJK23]. **MF-DFA** [WHJK23].

MGRF [LGD16]. **micro** [SOK16, TDW13, XFP +16].

micro-expression [XFP +16].

Microbathymetric [SWYP00].

Micrographs [IT15]. **microscopy** [ZMCA05].

Microstructure [WH01]. **Mid** [DFJL15, PCJC98, KYM13, LGL15, NLW +17, ZY10]. **Mid-** [PCJC98, ZYT05].

Mid-level [DFJL15, KYM13, NLW +17].

min [ZSCP08]. **min-cut** [ZSCP08].

min-cut/max-flow [ZSCP08]. **minima** [PV06]. **Minimal** [GYF18, NSEA13, IH15, KBJ +10, LZZ22]. **Minimal-delay** [NSEA13]. **minimization** [LLY +18, MAJ16, QDB17, SE11, WAP17]. **Minimum** [LL97b, MRF96, CSMS14, Kle13, MEYD11, NFG90, SCMS13].
minimum-cost [MEYD11].
Minimum-Energy [MRF96].
minimum-length [Kle13]. Mining [TABK17, ZWZZ18, GB17, GYWZ23, JYX+23, PHY+11, ZSY+19]. Minutiae [UBEP09]. Minutiae-based [UBEP09].
MIRFLICKR [THL13].
MIRFLICKR/ImageCLEF [THL13].
mirror [LNS14, PA13, ACC+16]. Missing [Jac01, MC09b, ZZ10]. Mixed [SHKP98, LTY+15, MBD+22, MLK21, PV13].
Mixture [CTWH15, FWL+20, MK01, CE14, CLO17, EKY08, EB13, FL09, JWG04, KLK14, VWMZ15, XQZL23, ZLY+20, AQ09].
Mixtures [KNL15, VKNK14]. MLESAC [TZ00]. mobile [DWC16, GLOC10, HSH07, MAG+16, MLH13, SSHP17, ST10, ZKRH04].
Model [FKL+16a, BWVS21]. modal [ABI+04, BCF06, CA10, CM21, HBKG22, HKZ+16, KKL+16, LCL+17, MML+16b, NT10, PS22, PNSF21, PV14, RKG03, VJ17].
Modeling [ACF00, CJC+98, EK98, FPDK12, GA13, HF01, HFR06, JSRS08, LS+00, LB98, LSP+16, LCZ+16, Mas02, MKK02, MCPB00, NLW13, PF01, RVW95, SC00a, SL96, SPQ+17, TS17, TDT12, TGH98, WPI+16, YB09, ZTH+11, ZNZ+13, AASSC11, BN15, BCDH10, CLC03, CD13, CSG+03, ES04, FF09, FBK15, GHMT09, HKMZ2, HJZ16, KON+17, MMP09, NWJ15, RE15, ST017, SCD11, SEFV15, SPK14, TKL21, TEK11, THL03, TA11, UFK20, UIK22, WY07, WK13, XFP+16, YJ16, YT13]. Modelled [HFK97]. modelling [AAL22, HGSM11, KMN11, LRLB11, PZV13, SKBS13, TPD+16, VWMZ15, VGR16, WX16].
Models [ACW+16, BL98a, BD02, Dav97, DF01, DUC97, EFF98, FB97, GHJ01, GSP02, GMT00, HB98a, IP98, KVdG+97, LWV97, LK00, LT97, NFK97, Nis97, Nis99, Pha01, SF95, SP97a, SRS11, SB00, TML00, TS01, TGH98, WK+16, WRH97, YKA01, AB13, ARACE11, BK15, BVMMMS15, BBCF20,
BSH13, BF10, CGH08, CFCP11, CHSV08, CSS13b, CMD06, CTCG95, CNC03, DPRC17, DCH12, DB03, DSY10, ESS10, EB13, EK14, Eva06, FFP07, GKBW14, GCFMT12, HRC16, JEF+12, JNLG15, JBC08, JB15, KG14, KLV14, Kim15, KCM+17, KDV16, LSD+17, LSCK15, LGD16, LLWZ21, MGCS17, MCB13, MMT20, MTP21, MSW15, NN13, OJRT08, Pec07, Pey09, QAB+11, QWHW20, RB16, RDSF15, SEFV15, SI03, SVSM15, SKM06, SGH07, SPW15, SRHC13, TS16, TVE+16, UK12a, UFF06, VTRC14, VKL18, WPI+16.

models [XG08b, XQZL23, YSNiT14, ZKSV18, ZZC+13, ZWZ+16, ZDZ+23, DGG08, TRG+13].

modes [DLMC16, OGB14].

modification [Dre96].

modifications [CDIF14].

Modified [LLF18, GBB+18, KK15, MAY+10].

MODS [MMP15].

module [JCLZ21, SVA+22].

Moment [DBP00, MTVM04, GHML17, SM22].

Momental [NNBN20].

Moments [SC99, Dem05].

monitoring [ACC+16, ESS10, HMEB07, HCC+16].

Monocular [BZP+23, BBH14, CTH20, CN95, GML+21, SGDP01, WN99, WLD99, AB13, CC03, GKM20, KM17, KLKF20, RSPD12, ROGT14, UFF06, dp10].

monocularity [RF23].

monotonic [HKWC14].

Monte [SOL14, SOL16].

morphable [GFL+19].

morphing [XS04].

Morphological [Ang07, CND13, GHS95, He199, JC98, SH09, CE17, SW05].

Morphology [Ano95d, BB13, BB15a, GE08, XWC+23].

Morphometric [Boo97, Sah05].

Morse [AC07].

mosaic [AWK04, SP06].

mosaic-based [AWK04].

Mosaicing [LDD09, CPS10].

Mosaics [GV00, AGB+15].

Most [Ano12m, Ano13o, Ano07f, Ano08k].

Motion [ACLS98, AC99, AS09, BDVK10, BEPW00, Bri17, CSC96, DT96a, Dan97, DH00, DC98, DC00a, FD99, GB97, IF99, Jac01, KN03, KC99, Lin02, LHHHC98, MNE00, MS97a, MG01, MS96b, NK00, Oli00, Oli01, Pen99, SA96, SP97b, SGDP01, SF97, SBZ97, TO99, TS01, VF96, WL99, WF02, WD96, WY21, XL98, ACP16, AMN18, AS08a, ACG+09, BS05, BF07, BC10, BT05, BRC+17, BW15, CG09, CMV04, CFPC11, CMBP09, CT13, CRMC16, CSK22, DGC12, DSM31, EMV19, EF14, EH21, ED16, FDW21, FLB06, FB16, GZP05, GRCD18, GBS06, GW07, GWT09, Gwa17, HSH07, HWZ+23, HHG+20, HMF10, HGP15, HRC09, HC13c, KBN12, KBWT16, KH10, KYYC14, KC22, KL10, KRS14, LCLS07, LMRMJ08, Lmu08, LLS21b, LZW03, LW03, LIA3, MPF07, Mal21, MST16].

motion [MU11, MHK06, MP09b, NFM08, NT10, Neg12, NWJ15, NHZ+22, OGB14, PD05, PW06, PT15, PV06, PRCP16, Pop07, QWHW20, RDA+15, RLS06, RN12, RSPD12, ROGT14, SHE17, SOJ17, SKM06, SCS14, MNR18, TMQM13, TP+16, TPN15, TYDH18, TGFF15, TP05, TR09, TLMT+05, UK12a, UFF06, VSP06, WLO+18, WRR06, WS06, XYW11, YXRS17, XQZJ21, YYZ11, YNZ+19, YS06, YNCO11, YC05, YSD03, YR06, YG16, ZDLS13, ZT09, LY13].

Motion-Based [NK00, WF02, EH21, KL10].

motion-blurred [CG09].

Motion-Egomotion [DH00].

Motion-Model-Based [LHHC98].

Motions [BA96, Bar05, KV06, RR11, RAP16].

Motivated [BL98a].

mounted [JZWD16].

mouse [TTH07].

Movement [BL01, Gav99, HF01, HFR06, ITNP12, LSP+16, PQML11, WS08, MAY+10].

Movements [KS95, SFWG08].

movies [ZS03].

Moving [SMK02, WD96, AMNC16, BP09, CYC10, CCY12, CYG16, DMS17, HLK19, JKM07, MP14, MOT17, OCV04, QC04,
SZ16, WZT13, ZY14. MPEG [ADDK99],
MPM [CMBV04]. MR
[BvdHL+13, CFYU12, DCS05, HRS02,
LPS+11, LSB+00, ZHL+20, ZU9].
MR-image [CFYU12]. MRF
[BKK14, GJP96, KLI1, SKH08]. MRFs
[AKC11, KTP08]. MRI
[GPDR13, MAK+17, MPPP14, RAH97,
WSKH13, WWJ+13b, ZRL+11].
MRF-Video [CLFH22]. MTCD
[TAH+22]. MTRNet [TDZ+10]. Multi
[ADR16, ABJ+21, AMMV99, BDJ12, BTO,
CPT07, CRCM16, CPS10, GMZ+22, Gwa17,
HH19, HKZ+16, HJZ16, ITNP12, KKI3,
KCM+17, KLK+16, LSO8, LLL+20, LJC+23,
MFB11, Pat13, PNSF21, Pen03, PLYW21,
PnMC13, QBZ21, SKA23, SIZ+23, SCL13,
SvNW23, SZG21, VB19, WJ07, WZY13,
XZS+20, YFF+23, ZSCK19, ACP16, ABI+04,
Ano06h, AKC11, AS23, BAPXH16, BYR17,
BIG+23, BKK11, BCC+21, BSMM13,
BBK14, BCF06, BG16, CIC22, CSNM17,
CA10, CDJM14, CPP+11, CM21, CD10,
CWO+11, CSLX16, CZS+20, CCL+14a,
CABC17, DR04, HPRC17, DDIb, DCS05,
DWWY23, DSK+20, EXP+20, EOPS22,
FBF08, FN14, FSI21, GKK05, GCEC07,
GBVC18, GTM23, GLM+21, HGWS1,
HWZ+23, HBC+14, HGP15, HSHA20,
HCL3c, IJDB13, JRA17, JCLW2, JBI5,
JHV19, KDI10, Kim15, KSF19, KW12, KLI10,
LWY+17, LvdHK+15, LHS15, LKZ20,
LWL22, LGO+14, LZS+17]. multi
[LLJ+23, LZZ+23, LzS16, LBNS09, LYSK17,
MNL+17, MSW15, MCM+17, MML+16b,
MB11, NAS+17, NNS17, NT0, NLI7,
OSY18, PLJS14, PLKP23, RPBK22, RM03,
RXWS22, RB16, RCTV12, RKG03, RTM+17,
SKLM22, SSL+12, SOL14, SB22, SQ17,
ST20, SY23, TPT17, UM05, VRK13,
VMN16, WPQ0, WLL+22a, WDC+20,
WCS13, XYZ16, XWC+23, YWZ11,
YGC13, YWY+16, YJ10, YCKA10, ZRL+11,
ZZRC15, ZHO4, ZNG+13, LLL23].
Multi-agent [KK13, GBVC18],
multi-atlas [LvdHK+15]. Multi-Attention
[ABJ+21]. Multi-camera
[MFB11, CA10, DPRC17, GTRM23, HC13c,
JBI5, KD10, RPBK22, RCT12, YKA10].
multi-cameras [NL17]. multi-channel
[IJDAB13, NN13]. Multi-class
[Pen03, AS23, KSF19, MNL+17, PLJS14].
multi-colored [DR04, OSI18].
multi-constrained [SOJ17]. multi-core
[KL10]. multi-dimensional [ACP16].
multi-expert [CSNR17].
multi-exposure [LLL+20]. Multi-face
[ADJ16]. multi-feature
[CWO+11, CZA+20]. Multi-focus
[PLYW21]. multi-future [BBC+21].
multi-grained [LLL+23].
multi-granularity [LLL23].
multi-graph [CLK+14a]. multi-head
[WPQ0]. Multi-human [GMZ+22].
multi-instance [FBF08, YGC13].
multi-Kalman [Ano06h, GKK05].
multi-kernel [LHS15]. multi-label
[BBK14, CSLX16, Kim15, SOL14, ST20,
TPT17, XYZ16, XWC+23]. Multi-layer
[HH19]. Multi-level
[YFF+23, CIC22, BB2]. Multi-modal
[HKZ+16, KLG+16, PNSF21, ABI+04,
BCF06, CA10, CM21, MML+16b, NT0,
RKG03]. multi-module [JCL21].
Multi-object [Gwa17, HJZ16, LJC+23,
SCL13, EOPS22, MCM+17, NAS+17, RB16,
SKLM22, WLL+22a, WDC+20, ZNG+13].
multi-output [DSK+20]. Multi-person
[VBT19, BAPXH16, GML+21, HSHA20,
LWL22, LG14, YJ16]. Multi-perspective
[SGZ1, CPT07, ZHO4]. multi-phase
[DCS05, IJDAB13]. multi-prior [HWG21].
Multi-reference [CRC16].
multi-resolution [AKC11, LKZ20].
multi-resolution [Pat13]. Multi-Scale
[XZS+20, AMMV99, BDS12, LSO8, QBB21,
SZL+23, BKK11, CDJM14, EXP+20,
LZM+17, LBNS09, MSW15, RXWS22,
[HWW06, CTM+13, JYX+23, LBNS09, Mig12, MLJC20, TRPD20, YWMS08].

Naturally [GHML17], naturalness [LLNC20]. Navigation [GSV00, KR99, RJ00, ILRB01, LBC+21, LM16, PLB16, RRAR+16, SRDC09, TDWH07].

near-isometric [RB18]. Nearest [CGU11, GKPS15, KHH+12, LZS16].

Nearest-neighbor [CGU11]. Necklaces [GSP02]. negative [AO16, LLL13, ZLL+14].

neglect [HH05]. Neighbor [ZWB+22, CGU11, GZX+23, KHH+12, TCM18].

Neighborhood [MMS97, MKK02, ADGB16, GHZ+13, Hu08, NSEA13, SW04].

neighborhood-sequence [NSEA13].

Neighborhoods [CM99b, HUI16].

neighbors [GKPS15]. neighbour [LZS16].

Neighbourhoods [SB02]. Nested [TS00b, VGR16].

Net [WRH07, LLP16, WPSL18, THH+23]. Nets [AMMV99, MAM97, TLEF06].

Networks [BPQ15, DAZ+17, FCM20, LCS+21, LVS20, SB95, SC00a, SRT18, SC98, VPL23, ZhZFL22, AMGG+16, BSM10, BP510, BB96, BSZ+21, BMV+19, BMX22, CLC019, CQ15, DFSC20, DDLP10, FM22, FF+19, GL19, GGGROE+17, HZK19, KUHY18, KLY21, LBC+21, LLWZ21, LCLH18, LWH03, MDM+21, MCT10, MP20, NB20, NL23, OBTMT15, OZT19, PKC+18, PCM21, RCLS19, RTM+17, SLK22, SCC17, SB22, SOT6, TAC21, TN07, TY22, Ub05, VKL18, VBT19, WQ20, WWG+18, WLL22b, YFX+18, ZK17, FDSB22, GFL+19, LB19, LLG+23, ZH18].

Neural [CGL98, FCM20, SC98, TGQ23, WRH97, ZDZ+23, AM17, BB96, BRPC17, DFSC20, EXP+20, EH21, FM22, GL19, GGGROE+17, GFW13, HZK19, KUHY18, KLY21, LLP16, LLWZ21, LCLH18, MDM+21, MSM17, NL23, RG17, RKKK22, SNL22, SFF+18, SCC17, TLEF06, TAC21, VBT19, WZC+21, WWG+18, WLL22b, YFX+18, ZK17, MBHRC21].

neurymphetic [CS14]. Neuroprostheses [PBPD+17].

neurotrophic [SG11]. news [WHN08].

night [ASC17, MCCRAC20]. Nighttime [TYH+21].

No [MvGS16, MYYY17].

no-reference [MYYY17]. nodes [PL08].

Noise [Imm99, TO99, AYG23, DFSC20, GGGROE+17, LG17, MRH19, MGPFO8, RK11, WLW+16, XTZ+18].

Noisy [LR02, BTB14, KGC05, LCP+20, LLWZ21, LBCA10, VRKL13, VGLP17].

Non [BHS22, BY12, CMD06, JHA17, LMP+19, LBCA10, PRR03, QDLB17, SPC+15, SS17a, TS16, AMNC16, AMN18, AO16, AM15, BHBF10, BPS10, BCLNG18, BDS12, CR03, CP20, DRC21, FB05, GRB13, GW07, HHG+20, HMCT22, HSJS10, HC13c, JRS08, KOR610, LNM+21, LHJH07, L´AB15, LLL13, LLF18, LW18, Lo10, MMK04, MC20, NLM05, PW23, PA13, RKG03, SCALFG+18, Sha06, SJ15a, SKH08, SLZ+23, SAC09, SB05, TMQM13, TLCH05, TWW14, UM16, WWCZ15, WLW+16,
non-alternating [HMCT22].
non-binarized [SJ15a]. Non-blind [JHA17].
non-central [BCLNG18, PA13].
non-contact [NLM05]. non-conventional [BPS10].
non-cosmetic [BHZ05]. non-Gaussian [LBCA10].
non-ideal [LMP9+]. non-intrusive [YC05].
non-linear [AM15, CP20, KORC10]. non-local
[HSJS10, LLF18, SZL9+]. non-metric [ZZZ06].
non-model-based [PW23]. non-motion [GW07].
non-contact [NLM05]. non-motion [GW07].
non-contact [NLM05]. non-redundant [DPRC17].
non-rigid [BY12, PRR03, SS17a, AMN99, CR03, GRB13, LNM9+].
LBB15, LW18, RK903, SCALFG9+8, SKH08, TMQM13, WWCZ15, ZDZ9+3].
non-SVP [FB05]. non-topology [Loh10]. non-uniform
[MC20, SAC09, TCH05]. non-voting
[Sha06]. Nonanalytic [SCS99]. noncentral
[GA09]. Nonconvex [Bd96, BBH14].
Noncoplanar [CRC97]. Nonfuzziness
[WCZ02]. Nonlinear
[CRC97, CBM01, EL07, KS96, NVW97, TGS98, DAM12, HLKK91, KG14, LV91, PW06, SCvW11, ZP98].
Nonparametric
[GBK95, PF99, ZOMK00, BCMCB09, TL16, YHN11].
Nourgid [ACLS98, An011].
FDMA97, FT98, GSST03, LPR9+3, Pen99, TGS98, CBD9+3, CALO20, SK15].
norm [CZS9+2, DO9D11, QDLB17]. normal
[CLO97, HC13c, LHLZ23, YA12].
Normalization
[RRL20, RY98, CM12, Hu11, KTE9+7, LDGS9+3, WLFL21, XMT22].
normalized
[GH08]. normals [MC20]. normative
[WPI9+]. nose [NB10]. Note
[An01h, An01i, An01j, An03m, An06i].
Novel
[APV99, CCP97, KR99, ABVC16, BYJG23, CKLP90, CU10b, DK13, GCD9+8, GLZF23, KBN12, LLS21a, LZYW23, PRG9+1, FCC13, RBDS14, TT16, WGDAD14, WX20, XW16, YWL9+2, YC05, YLX9+18, ZSCP98, ZCF93].
novelty [WHN08, WLFL21]. November
[PLYW21]. NSST [LZWX21].
Numbers
[An01m, Oli01, APB10, GLM17].
Number
[An01m, Oli01, APB10, GLM17].

Object
[ACF00, AW98, AW98, BBC00, BB03, BZ99, BSF92, CFI01, CL98, CS98, CS00, DUC97, DTO97, DC99b, GBL08, GZ98, GCT9+4, HR99, Hod95, HP96, ILRB04, KMB97, K000, L097, LD98, LLC12, LWH93, MDFS91, MFJ95, Mas92, MKK92, May99, MNS98, NG98b, NCDG21, OG98, PRCP95, PS90, QV98, RW97, PBP9+7, SU01a, S95, SN99, SGB01, SL01, Sta95, SKBS13, TNP15, WZW17, WP9+18, XA07, YT99, YC98, YSNT14, ZZZP99, ZYS09, ACAC9+9, ALY9+2, AT13, AHD9M, BN15, BSM10, BVWS21, BL04, BUM15, BPB13, BFD22, BSH13, BH12, CICN22, CHH90, COW9+1, CZS9+3, CSZ9+5, CZHT15, CL08, CYC10, CCY12, CPO16, CYG16, DLC14, DFJL15, DTL17, DHP98, DDBB14, EB13, EOPS22, ES04, FFM95, FBZP95, FFFP97, FLCA06, FR11, GM19, GB10, GGGROE9+7, GRCD18, GZX9+3].
object [GPG9+5, GLG22, Gwa17, HYJ11, HML15, HJZ16, JEF9+2, JBR08, JHVI9, KG14, KLO20, KKR11, KBD9+12, KS94, KH13, LMRF90, LNN9+9, LWZC14, LYM9+1, LFLZ23, LJC9+3, LL12, LO9, LAL9+10, LLG9+3, MT16, MW22, MP14, MSF9+17, MGS17, MFSB23, MHSP10,
Panoramas [BDL+06, CACB17].
Panoramic [FB05, KW99, AAB19, CMM20, MAL10, ZKRH04]. Paper [Ano07f, Ano08k, Ano12m, BKMSR98, Ano13o]. Papers [Ano01k, Ano01l, LLNS18].
parabolic [FB05, KW99, AAB19, CMM20, MAL10, ZKRH04]. Paper [Ano07f, Ano08k, Ano12m, BKMSR98, Ano13o]. Papers [Ano01k, Ano01l, LLNS18].
paracatadioptric [BA06].
paradigm [KFRD+18, ZN08]. Parallel [AW98, BCC95, Che98, CCS95, DRCF95, ER96, IW97, KSS97, LHIC97, LH99, MS96a, MW00, MNHO00, RF02, SKS11, SM97, Tan95, THT+98, HSSP10, NB20]. parallelogram [ZSL+16]. parallelograms [KK09].
Parameter [SC00a, SCS99, HD09, Sah05, SS11, UTB+11]. parameterization [CHZ+13, PHH+15, YNZ+19]. parameters [NEPI0].
Parameterized [WSSD96, YB99, DB03]. Parameterizing [ANM98]. Parameters [CSC96, CL00, AAB19, BF07, BJS14, GA09, KY06, LM09, PA13, RRK13, RAC+13, STBH18, TA11]. Parametric [BCA98, BA96, DM01, GBHS06, Gui99, LV97, QAB+11, UE01, WF02, BUD9, BVVMMS15, BDS12, BSH22, CMD06, FKB16, HHG+20, KA08, KGC05, KNO+09, MFM04, MP09b, TS16, WLW+16].
Parametrization [BGK95].
ParticleAugment [TB23]. Particular [Lin02]. Partition [CCTCR09, ABD11, BW11, MWF07].
Partition-distance [CCTCR09].
partitions [WDB12]. Partitioning [SB98b, DBB13, MMV06, MMK04]. partly [WSJ15]. Parts [DFJL15, LF96, DRD95, LLC12, MvGS16, PA06, PYS03, SADB14, ZZNO6].
Patch-based [DH19, SZW+21]. Patches [BM97, KBMD15, KYC14, PV13, XYW11, ZK17]. Path [DJG01, SU01a, YYL96, CFYU12, CS20, GTP18, MZB+10, dSSF+12]. path-based [CS20]. pathological [KSHE20, WPI+16].
Pathology [MFP+20].
Pathology-sensitive [MFP+20]. paths [DDBB14]. Pathway [ZZSD21]. pathways [HHG+20]. Pattern [Bi97, CCP97, HB98c, KC99, MT00, ADFR18, BRP04, HSSB16, MGPP11, TT16, WYX+16, YR06, kCE+18].
Patterns [Bd96, ME98a, Ni97, YSX+19, BHSD+13, GWT09, Gwa17, LSP+16, MdBJG15, MB05, MB11, NNNB20, SJ15a, WW16, WTBd15, YLM11, AGB+15].
PCA [BZ14, DBB03, QDLB17]. PCB [MEDT96]. PDE [MPST08]. peaks [FS03].
Pedestrian [BBC+07, DZL07, JB15, PLB16, YHS+20, CSK22, GSPL10, KRJ+08, NHH14, RRKK11, SPT+18]. pedestrians [MAG+16]. peer [MGPF08]. pelvis [CZ14].
Pentland [Dre96]. People [HCHD01, HF01, MJD+00, PF01, UMH16, CHP+11, CZZS07, FFA+19, GMN15, GLOC10, GTRM23, RHRZ17, HFR06, HH12, DFP+13, PMC13, TMB12, TB13].
Perception [MJS97, SGDP01, Boy04, FY06, MML+16b, OH05, SB96a, WGZL20].

Perceptual [ASZ99b, BS99b, CH96, CCP97, JDP97, SB95, SMK02, San99, SN97, SPK+02, WH96, GZP05, KH23, LSP+16, LBNS09].

Perceptually [IW97, SM99].

Perfecting [CLD96].

Performance [BS00a, BG09, Car01, FPMK19, KTP08, LPH01, MM06, PDK06, SGB01, TCB+08, TS01, VD10, Ano05j, BHBF10, BGPD09, DRAB08, FB08, GMM15, HBF09, HC13b, KDT+18, LvdHK+15, PV15, QWHW20, RZH17, TPT15, WBS14].

Periocular [SR23, PMR17].

Period [GLR+99].

periodic [RSPD12].

permutation [TAK09].

persistency [She16].

Persistent [JY14, MiMO+16].

Person [HF01, LLCY21, LZZ23, ACP16, Alk+09, BAPXH16, CKP+19, DRPC17, GZL+23, GML+21, HBF09, HC13b, KDT+18, LvdHK+15, PV15, QWHW20, RZH17, TPT15, WBS14].

Personal [RCJ+13, MFS+07].

Personality [SCC17].

Personalized [CD10].

Persons [WN99, HPV+10, MW13, PA06].

Perspective [BR95, Che96, Gui99, BYJG23, CPT07, DWW+12, HN95, MOB14, SCGAF+17, SG21, WXWC18, WX20, YHR+05, YLX+18, ZH04].

perspective-three-line [WX20].

perspective-three-point [WXWC18].

Perturbations [LC+21].

pervasive [SFK18].

PET [LWL17].

PGF [LLJ+23].

PGF-BIQA [LLJ+23].

Phase [AVGASAP15, AS09, AT17, DCS05, HTN18, IJDB13, LSCK15, PWYZ17, WB11].

phase-based [HTN18].

phase-field [LSCK15].

phase-preserving [PWYZ17].

phenotyping [WM20].

Phong [RF23].

photo [ADR16, ADFR18, DBT+17, JRBD+15, WL15].

photo-streams [ADR16, ADFR18].

photo-textured [JRBD+15].

photographs [ABK+18, CHE05, WLX+14].

Photography [TVY+18, KHR+16, NFA04].

Photometric [APB10, CMM20, KP97, NG98b, OD01, RBA20, ATK17, GCFMT12, HASS10, HJ12, JC06, JMPG11, OSY18, SF16, TKDN16, YA12].

photomontage [LLL+20].

Photomotion [ZTS96].

photos [IZKB12, PHY+11].

Physical [DF01, Hod95, RWV95].

Physician [SBK+99].

Physician-in-the-Loop [SBK+99].

Physics [BLKG21, Bra97, MS97b, WR08, DKG22].

Physics-Based [Bra97, MS97b, BLKG21, WR08, DKG22].

physiology [PDS+07].

PICASO [TKV16].

Pick [NCDG21].

Pick-Object-Attack [NCDG21].

pictogram [BRA+10].

Pictorial [KRG98].

Picture [BIC98, LRD19].

Piecewise [BS96, BA96, Bar07, BL08, KCZ18, MJS16, PVZ13, SOL14].

Piecewise-Linear [BS96].

Piecewise-Smooth [BA96].

piles [TN08].

Pipelined [OTL96].

pitted [PK05].

PIV [ACG+09].

Pixel [Che98, AVGASAP15, ACDB12, CKC14, GBF12, GGO10, HUI16, HWZ+23, JLL13, LFL08, SJ15a, VMP03, XJK12, ZLZH17, ZJW15, TKV16].

pixel-labeling [JLL13].

pixel-level [LFL08, ZJW15].

pixels [MGPF08].

Pizlo [HM97, May97, Ver97].

Placement [MG95, CYP+10].

plan [ES06].

plan-specific [ES06].

Planar [BH99, GBB98, MS96b, NG98a, ST96, SY11, ACAAC+08, Bar07, GSGJ22, HY11, KCZ18, PAK19, PY19, PVZ13, WTVC18].

planarity [RF23].

Plane [LB98, CKS+05, HN95, KK11, Neg12, OK04, ZH17].

planes [KK11].

Planetary [UZC97].

Planned [IB01].

Planning [SKOS95, TG95b, YT99, PW23, ZKRH04].

plant [LZD+14, WM20].

platform
platforms
[BVWS21, YAWW10]. Plausibility
[CPC99]. plausible [FFA+19]. Play
[GB22, WASF14]. playback [SB04].
player [GLM17, LCLH18, MEM17]. players
[FLB06, PD17]. playing [BLH16].
playing/non [BLH16]. playing/non-playing [BLH16]. plenoptic
[MMBG18, SL16a]. Plug [GB22].
Plug-and-Play [GB22]. POCS [AM06].
Point [CPC99, GSP02, GSK02, HRS02,
LK00, OD97, RKG03, SCALFG+18, SBZ97,
Tay00, TML00, TS01, WB01, ADC19,
ANHGS17, ABD11, ATC+13, BHSD+13,
BSALF18, BWG17, CLK09, CALO20,
CDT11, CS04, CK09, CR03, CP20, CACB17,
FBZP15, GG09, GDCM17, HY11, HWL+22,
JHV19, JSC23, KDS+18, LSD+18, MB+18,
MLB+18, PD14, PB11, RAC+13, RLB17,
SAS12, TST14, THH+23, WZC21, WH18,
WXWC18, WHGZ20, YK08, ZSK+20,
ZSK+23, ZSM+22, CTW15].
Point-Based [LK00]. Point-Enhanced
[GSP02]. point-set [SAS12]. pointed
[PTB14]. Pointer [DRCF95].
Point-Based [DRCF95]. Pointly
[ZLY+20]. Pointly-supervised [ZLY+20].
Points [DT96a, FT98, GQ98, PM97, Shi09,
SL01, ZL01, ATG15, BL20, CHMG12,
FM22, Kuo08, LLL+14, LLY+18, LB10,
Loh10, MPST08, ODD96, TY05, UTB+11].
Polar [MGM501, UE01, KORC10, Mas09,
Sch06, SC14, TP05, LMP+19].
Polar/Spherical [UE01]. polarimetric
[ZZZP09]. Polarisation [Atk08, AH08].
Polarization [LL97a, WAPB17]. policies
[OH05]. Polygon [LR02]. Polygonal
[BS96, HB98b]. Polygons
[BM98, MSW96, Kle13]. Polyhedra
[SP97a, KM03]. Polyhedral [KCD00].
Polynomial [DSdH+11]. Polynomials
[KP97, KA12]. pool [JVD+20]. Pooling
[ATC+13, KYM13, NNS+18]. popular
[CH17]. population [Ham05].
population-based [Ham05]. pork
[CCR+05]. Portable
[HT98, RZH17, STC+16]. Pose
[AKC11, ACB98, AW98, BK01, CS10, CH99,
CS00, HWK+21, HDF12, Jos99, Jur99,
LSW18, NB00, RY98, AB13, AC09b,
ABV16, AVC19, BPLT15, CLCO19, CL18,
CDT11, CYN011, CTH20, CPPY21, CLO17,
CC16, DLT14, DGC12, DPCA15, DMSM21,
DLM06, EDX16, EBN+07, FPMK19, GLZF23,
GML+21, HF11, HCLZ21, HSHA20, HH12,
IDY+18, KTE+17, KUSY18, KZ05, KGB17,
KMN11, LST13, LY06, LSTF12, MML+16a,
NWNT17, ODD96, PBT14, PD11, PHH+15,
PDTE06, PZC17, SBK16, SO07, SAC+12,
SRHC13, TAK09, TST14, TPD+16, TP14,
UU18, VTB19, WXWC18, WZC20,
WTZ+21, WSFTK18, WTYC18, ZEGJ15,
ZC19, ZIP+13, ZDF10, Ziv10, dP10].
pose-based [PD11]. pose-counter
[PDTE06]. Pose-Estimation [ACB98].
pose-free [CC16]. Pose-insensitive
[NB10]. Pose-invariant [AKC11].
pose-wise [AC09b]. posed [WWJ16].
PoseGU [GLZF23]. poses
[DL14, MrNM15]. position [PA13].
positioning [AVC19, YHS95]. positive
[BB13, BB15a]. possible [PY19]. Post
[GMM15]. Post-processing [GMM15].
potential [HCC+16, WPB+14]. Potential
[BS99b, GESB95]. Potentials [RM02].
Power [QV98, TLB+15]. Practical
[Ano95e, SBMM15, dLAH07]. practice
[PWWQ16, PBSG12]. practices
[DAL+22, TCB+08]. PRCG [WLX+14].
Precise [GCEE07, AAMO16, ASO8b,
dOSJVB12, RTM+17, WZC+20].
Precondition [YLK+23]. preconditioners
[KMT11]. predict [CCR+05].
predictability [GGMV08]. Predicting
[RFMF21, TYDH18, GML+21]. Prediction
[MBHRC21, RWV95, TS01, BMJF+17,
BCC+21, BSZ+21, DSK+20, EMM19].
[HAM+16]. protocol [WDC+20].
prototype [XWDL23]. prototypes [LWSC16, RAHT11]. Protuberance [BL20].
provide [RGA10]. Proximal [KCZ18].
proximity [JN09]. proxy [SKA23]. prune [TAC23]. Pruning [AXJE21, SB98c, BFD22, TAC21].
PS [MFP+20]. PS-DeVCEM [MFP+20].
Pseudo [LLLW23, BBCF20, DAL+22]. pseudo-generative [BBCF20].
Pseudo-label [LLLW23]. pseudo-generative [BBCF20].
Psychological [CPC99]. PTZ [WZ08].
Publisher [Ano03m, Ano06i]. Pulmonary [WW97]. pulse [GFW13, SVF+21].
Pyramid [WZJ+21, WZWT99, ZWW+20, CWLJ13, HGP15, YSY+18].
pyramids [BBB96, GDIIHK11].
Quadra [LHY14]. Quadra-embedding [LHY14]. Quadratic [BM97, BPB11, LZLP10, OEK08].
Quadtrees [DRCF95]. Qualitative [Got08, FMGA+12]. Quality [DT96b, KLL+11, LKZ20, LJJ+23, MYY17, OAGN18, OSM17, MNR18, TPD+16, WZC+21, WLM+14, ZZC+13]. quality-sensitive [KLL+11]. quantification [LSCM03, TLY+16].
quantifying [AXJE21]. Quantitative [SB98a, LYTBT17, LFL08, ZCLX20].
quantity [WLM+14]. Quantization [SYF99, CS07, HDL+20, JO11, JWG04, LHY14, WZY14]. quantized [WLL22b]. quartet [KDSF20]. Quasi [IE99, Por00]. Quasi-Metric [Por00]. Quasi-Objects [IE99]. Quaternion [HKM22, SF07]. Quaternion-based [HKM22].
Question [DAX+17, OS19, KK17, RMS+19, WTW+17, ZWZZ18]. question-answer-based [ZWZZ18]. Quick [BL14].
R [Ano95d, MCM+17, ZS19]. R-CNN [MCM+17, ZS19]. R3DG [VAC16]. racquet [LHJ+09]. radar [LB19, OVJ+21].
radar-based [OVJ+21]. Radial [An001m, Luc01, WHL14, BSM10, GOF+15, KBJ+10, TM04, WR08]. radiance [RH06].
radiographs [FLCdA06]. Radiological [PV97, OTO06]. radiometric [KGF10].
radioson [SOJ17, TWS06, ZS11]. rain [JCLZ21, LRZ+19]. ramp [SA15]. Random [DB14, IF99, MCPB00, MRF96, NL23, PV13, WKP13, AMCB20, Bar07, CICN22, CL18, CZ14, CIL06, MRH19, MLB+18, MJPS16, VGR16, WB11, ZSK+23]. randomization [RG10]. Randomized [CC01, ED16].
Range [DBL95, BR12, BS00b, CFM02, CM95, DFO2, EFF98, GJP96, HH910, JB99, LF96, MY95, M02, Mur95, NL96, OD02, RF02, RFL02, SA96, ST96, SF97, SJBO2, SQ+17, SB00, ASFP03, BBK15, CLZ01, CKF18, FK09, GBR12, HF11, HSIS10, LQCS21, LSKK10, LS12, LSO9, MSR07, Mas09, MB05, MMBBG18, RSS07, SY10, SLK15, SKU+09, SKSR08, TG11, TST14, TS11, WB15, YAK+08, YW07, ZG06]. range-sensing [ASFP03]. rank [ARFF18, ED16, GF15, KHR+16, LCMCT16, LCL+17, SZ16, TR09, WPSL18, YFDA17, ZXC+20, ZLL+14, ZLZH17, ZD18, ZZ10]. ranked [WDB12]. ranking [LWW+23, PLJS14, ZS17]. RANSAC [CCL+17, FWG18, LMP+19, LG17]. Rao [KLK14]. rapid [AC09a, YCH07]. rate [SM21, SVF+21, TVC09, WYW+22]. rates [ZBMP15]. ratio [ACB12, SF16, YC05].
rationale [Pec07]. Ratios [LF98, ASCF13].
ray [AS08b, GYW+22]. Rays
[KHB01, BMvT+19, CZ14]. Re
[LLZ23, BCC+18, CKP+19, GZL+23, HBKG22, JHA17, Raja17, KU19,
KDSF20, LLY21, LLIW23, LZYW23, LML+23, PWSwH17, SSJ+20, UMH16,
WWG+18, DAL+22]. re-blurring [JHA17].

Re-Identification [LLZ23, BCC+18, BCM13, CKP+19, GZL+23, HBKG22,
JRAJ17, KU19, KDSF20, LLY21, LLIW23, LZYW23, LML+23, PWSwH17, SSJ+20,
UMH16, WWG+18, DAL+22]. re-weighting [JRAJ17].

reactive [TM07]. read [CZ18].

Real [AMNCM16, BCPQ15, BPLT15, CGH08, CKL18, Gon99, HT98, LC14, LÀB15,
LB98, LHHC98, MWTN04, MA11, OYT98, PGM04, RZH17, UM05,
WHL+21, ZKK02, AM04, BCMCB09, BDS12, CEA16, CSK22, DLS+09, DPCA15, DJJB14,
FFM05, GTMR23, HWZ+23, HWL+22, HZW+10, JRS21, DFP+13, LL21a,
MZB+10, MFS+07, Nic95, Pen15, PBI16, RSS07, RL13, SM12, STC+16, SFK18, SV14,
SGH07, SIT07, TKV16, UWH17, WX16, WWLV11, YWZ11, YZC+17, ZJ05, Ziv10].

Real-World [BPCQ15, DPCA15, HWL+22].

Realistic [GL97, YB01]. reality
[CKM11, GWFF22, MBM+22]. Reasoning
[GESB95, KN99, AYB+18, DFP+13, LSP+16, YLK+23]. Received
[Ano89f, Ano98c]. receptive

[KKCK23, LL12]. reckoning [Gre04].

Recognition [LZS16, SM17]. Recognition
[AHD98, Ano96d, Ano10k, Ano15o, BH99, Big97, BB95, BZ99, BSF02, CF01, CGL98,
CTF+98, CS98, CSS1, CS00, CW00, DL97, DCTO97, DV98, DC00b, DT97, GBB+18,
GESB95, GK95, HR99, Hod95, JHR03, KH96, KABP98, KP00, LB00, LVS20,
MF95, MLP97, MCAF21, MK02, MNSK98, MLYP98, MT00, NSK+97,
NG98b, NMP97, PLL10, Pha96, QV98, RDR95, RW97, SN99, Shi99, SGB01, SLL01,
Sta95, VPK98, YB99, YC98, YFZ98, ZXX02.

AAASC11, ACP16, AM17, AAL22, AT13,
AFMY14, AC09a, AC09b, AKC11, ASCF13,
AS14, BGE+17, BHBF10, BMJF+17,
BRA+10, BKK11, BDT23, BL04, BFMW23,
BW04, BAM16, BRP04, BEGB13, BCF06,
BPSV16, BH12, CICN22, CGU11, CMBP09,
CLL+21, CGR13, CGHTK16, CCF13,
CS04, CFB05, CH21, CSZ+15, CZHT15,
CKLP09, CT13, CSZ+03, CR18, CNC03].

recognition [DT10, DFJL15, DWV19,
DH19, EKY08, EK12, EB14, FBF08,
FFY+04, Far11, FBZP15, FLCDa06, FTT15,
FR11, FAB12, FCM20, GGGROE+17,
GLM17, GFRY+14, GJ10, GBL08, GJ05,
GA9, HHWP03, HOH+07, HMF10, HNB04,
Hu08, Hu11, HHH17, ITNP12, JLD12,
JLD13, JMS9b, KTE+17, KK15, KFSM17,
KIS17, KCM+17, KRR11, KFN15, KHA+05,
KSF16, KD12, KS04, KRS14, LRL30,
LCSL07, LSS21a, LHYK05, LZD+14, LY06,
LLC13, LDH+15, LHS15, LGG+18,
LPC+20, LWC22, LXF016, HLYZ19,
LL12, LL08, LYY12, LLC12, LDC+13,
LDG16, LWSC16, MW22, MSF+17,
MBJG15, MPM16, MK03, MU11,
MTVM04, MAJ16, MB11, MHA13,
NFM08, NN13, NFSN13, NPS+18, NNB20,
Nis96, NHZ+22, NDO09, OB14, OGB14,
OVY+21, PC05, PQML11, PWQW16,
PPT06, PS05, PKC+18, PS15, PC21,
PET3, LL17, PS12, QCMJ19, RAHT11].
recognition [RM03, RG17, RR06,
PBPD+17, RS03, RLMK15, RKL+18,
RCJ+13, SM12, STV09, SPT+18, SS17a,
SVSM15, SAC+12, SSM06, SJ15b, SKVS13,
SKM06, SSN03, SSC14, SKT18,
SS21, TG11, TPDP20, TFL+09, TESY15,
TT16, TS19, TL15, VAC16, VKNK14,
WRKP05, WY07, WZC+07, WS08, WH18,
WLO+18, WPQ20, WXZ23,
WRB06, WRB11, WL15, XWDL23, XYZ16,
YS09, YFF+23, YLK+23, YST21,
YSX+19, ZLLP21, ZMK15, ZPB20,
ZSS13, SCMP14, SKT18,
ZT15, ZSFS16, ZTGL18, ZTB20, ZZC14,
ZK03, ZCWH23, BGPD09, TFL+09].

Recognizing [BKPS15, DBBB03, IB01, LZL+17,
Por00, VM01, CU10b, HS14, LLC13, PD11].

recombination [SZS17].

Recommendations [HS14].

Reconfigurable [THT+98, CL95].

Reconstruct [Lau97].

reconstructed [RBdDS14].

Reconstructing [Gol05, KS03, OCVV04, RSP12].

Reconstruction [BM99, BL01, CFM02, CPC99, CCS01, DG01,
DC00a, FW97, FRL+98, FKW98, Gui98,
Gui99, GJP96, Hen98, LDPD97, LSHT02,
OG98, OD97, PCJC98, RFC97, Tan95, Tay00,
VB98, ZW97, ZRRK18, ZM96, ZOMK00,
AMNCM16, AYG23, BYR17, BI01, BLK921,
BR12, BSRV17, BBK15, BBH14, CLK09,
CPP+11, CC11, CC03, CCD11, DWW11,
FPC+08, FB05, GRGB+13, GS05, GPC+10,
HLB17, HDG+14, IZKB12, JRH03, JPP+14,
dOSJVBS12, KK11, KH15, KCH12, KNO+09,
LB08, LLY13, Lm18, LLL+14, LSKC15,
LLY+18, LFLZ23, MISTIC, MWTN04,
MJPS16, OSM16, PW23, PCR+04, RDT+19,
Rem04, RZ23, SY10, SHHP17, SCL13,
SHK11, SMD+08, SHOS, SS11, TTTX21,
TH06, Tan11, TTN17, UK12b, VNNB14,
WZT13, YHR+05, YW07, ZD18, Ziv10].

Reconstructions [CDH99, GJMO14,
HA99, LDH+14, RETM+17].

Recover [FL96, GR05].

Recycling [ACAAC+08, CG09, LR02, MT16, Mur95,
SP97a, WD96, WC99, WALL00].

Recovery [CJC01, DC98, RC97, SF97, SA02, TIO1,
YFZ98, BF07, CYNO11, FF15, KLL+11,
KM17, KZ05, LCL14, Mal21, RRK13, SKBS13,
TGG15, TWW14, WML21, ZXC+20].

rectangular [KK05].

rectification [CDD11, GMK19].

rectilinearity [RZ05, Ros08].

Recurrent [LZZ+23, OS19,
FOCS2+20, RG17, YFX+18].

recession [HQN05].

Recurrent [CSC96, DC98, HDG+14, Kle13, LMM22,
TMQM13, FKV+21, LHSC09].

Reduced [Che98].

Reducing [RMD08, YZX+22].

Reduction [CDH99, GJMO14,
HASS10, LD+14, RTM+17].

Reduction [FL96, GR05].

Recovering [ACAAC+08, CG09, LR02, MT16, Mur95,
SP97a, WD96, WC99, WALL00].

Recovery [CJC01, DC98, RC97, SF97, SA02, TIO1,
YFZ98, BF07, CYNO11, FF15, KLL+11,
KM17, KZ05, LCL14, Mal21, RRK13, SKBS13,
TGG15, TWW14, WML21, ZXC+20].

rectangular [KK05].

rectification [CDD11, GMK19].

rectilinearity [RZ05, Ros08].

Recurrent [LZZ+23, OS19,
FOCS2+20, RG17, YFX+18].

recession [HQN05].

Recurrent [CSC96, DC98, HDG+14, Kle13, LMM22,
TMQM13, FKV+21, LHSC09].

Reduced [Che98].

Reducing [RMD08, YZX+22].

Reduction [CDH99, GJMO14,
HASS10, LD+14, RTM+17].

Reduction [FL96, GR05].

Recovering [ACAAC+08, CG09, LR02, MT16, Mur95,
SP97a, WD96, WC99, WALL00].

Recovery [CJC01, DC98, RC97, SF97, SA02, TIO1,
YFZ98, BF07, CYNO11, FF15, KLL+11,
KM17, KZ05, LCL14, Mal21, RRK13, SKBS13,
TGG15, TWW14, WML21, ZXC+20].

rectangular [KK05].

rectification [CDD11, GMK19].

rectilinearity [RZ05, Ros08].

Recurrent [LZZ+23, OS19,
FOCS2+20, RG17, YFX+18].

recession [HQN05].

Recurrent [CSC96, DC98, HDG+14, Kle13, LMM22,
TMQM13, FKV+21, LHSC09].

Reduced [Che98].

Reducing [RMD08, YZX+22].

Reduction [CDH99, GJMO14,
HASS10, LD+14, RTM+17].
Registration [Ano01i, CFM02, DF02, Dav97, EFF98, FDM97, FAB97, HLF+97, JGP97, Jok98, KPH02, KSH920, MY95, Mas02, OD02, PMV00, RC03, RF02, RFL02, SK02, SSKR08, TB99, VV02, WB01, WHGZ20, ADC19, ASC17, AS08b, AT17, ASFP03, BI10, BT05, BvdHL+13, BW15, CBD03, CALO20, Che08, CHZ+13, CKF18, CFM+13, CR03, CP20, FBS21, GGMV08, GSST03, GDCM17, HTNN18, HY11, HWL+22, JBWK11, KKSC23, KT07, LV11, Liu10, LS12, LPR+03, MMA06, Mas09, MOB14, MddMG09, NESP10, NDB04, OM19, PB11, PR03, RKG03, RFS03, SCD11, SCALFG+18, SS17a, Tan11, TA13, TMB12, TB13, TZY08, WWCZ15, WR08, XOF05, ZIT+13].

Registration-free [JGP19].

Regression [AS17a, LSW18, ABLL19, CZ14, CLZZ21, CFM+13, KGB17, LY05, LTY+15, LJC+23, OZT19, RDSF15, VBVB19, YGC15].

Regular [BM98].

Regularised [VWMZ15].

Regularity [Kis96a].

Regularization [DH19, RM02, AS17b, ALM23, AZ15, GY19, JHA17, LEB07, PV14, QCXJ19, SM13a, ZAG+22].

regularizations [LWLT17].

regularized [BGE+17, BvdHL+13, DBT+17, WZX+14, YLA09, ZXC+20].

regularizing [AM15].

rehearsal [ZSK+23].

Reillumination [War05].

Reillumination-driven [War05].

reinforced [CKL18].

reinforcement [SP23].

Rejection [OSM16, Bar18].

Related [GK98, Ros00a, PZM+21].

relation [FO18, OVJ+21].

Relational [COW08, CS00, Gwa17, OD17, PLLL03].

relations [FAB12].

relationship [STC14, SCC+22].

Relationships [KW00, JSRS08].

Relative [Chn02, SU1b, VAC16, CUSZ07, OGB14, RA15, SM17].

relaxation [GL19, LC14, LPZ08, OEK08].

relaxed [WS06].

Relevance [MBKB02, MIUS16, PBQ99, Mooba19, MW13, Pen03, RLG+14, SR23].

Relevant [JDP97, KLKF20, NY14].

Reliable [CDT11, LRV08, LCG21, WPZ+18].

relighting [WLZ04].

relocalization [DSK+20].

remote [CP21, CBB19, DFS20, FDC+19, MRH19, OM19, ÔÜ20, SVF+21, XHX+19].

Removal [FMS17, YWL+20, JCLZ21, LRZ+19, WAP17].

removing [CYC10, LB05].

Rendering [EK98, CACB17, RLF15].

Reparative [YH19].

Repeated [CCS01, GS06, PGGM04].

replay [RMC+22, ZTB20].

Reply [Ast97, Col97, HM97, May97, Ver97].

Report [BVWS21].

Representational [BCC16, BB95, CF01, CWH+13, CM99a, DT97, G98, HGB98, KCD00, KD96, Mok97, WLL+22a, ZSG+20, ZT98, ZK02, AQ09, AWK04, ATC+13, Bar06, BYJG23, BFWM23, BSMK13, CPP+11, CDIF14, CG04, DBF04, Dam08, DFJL15, DGRS22, FPC+08, GZL+23, HH17, HN04, JSC23, KM03, LLL15b, NLW+17, PD11, PLK23, RK11, REF15, STV09, SMC15, SZW+21, SMB+06, SSS13, SY11, SWS11, TST14, TPD+16, TCM18, VBS+04, VGLP17, WWCZ15, WSY+16, WRB11, WX16, XMT22, YYY+16, ZLZ17, ZT09, ZH04, BS05].

representational [ZCWH23].

Representations [Ano15o, FPDK12, G98, JP96, HTE11, KP00, LV96, NWW97, ÜE01, AXJ21, BKK11, CKPV21, HS06, NHTG15, OGH04, SCMP14, VAC16, XYRS17, YDP+20, YZX+17, ZZZ+20].

representative [DK17, GDIHK11, LLL15b].

Representing [NL96, TAK09, YS08].

reproduction [LMC09].

repulsion [RM03].

requirements [ES06].

resample [CKF18].

research [TGM+17].

residential [UB05].

Residual [HKWC14, RK11].

Resolution [CJC01,
MCPB99, PE09, PCJC98, WZWT99, AM06, AAMO16, AKC11, AYG23, CSS+13a, CD10, CWW+22, CLA+17, CU20, EH21, FSV07, FDSB22, GB22, HSJS10, LT05, LEE+18, LLF18, LKZ20, LW+21, LZXW21, LN10, MYYY17, MHAFA13, NFSD13, RT14, SA15, SRRM20, SP06, TDV15, WGZL20, XWC+23, XSZ+20, YFX+18, YGC15, ZHL+20, ZH04].

resolutive [Pat13]. resolved [JC06]. Resolving [CLA+17]. Resonance [RMFB02, CCR+05]. resource [MFG10]. resource-constrained [MFG10]. respect [BFR13]. response [TS16]. Rest [RM02]. restoration [AGL23, CWC+20, GY19, GGP23, HMA10, LWLT17, MWF07, PSY+21, SZL+23, WHL+20, ZXC+20]. restricted [LWL12, NW15]. Results [BNG02]. retargeting [OAGN18, ZDF10]. retina [BEK18]. Retinex [TYH+21]. Retrieval [APV99, BS99a, Car01, Doe98, GFS04, JEK98, KB98, MBKB02, MKK02, MK01, PBQ99, SLST99, SBK+99, SPK+02, Sup02, AB13, ABI+04, BRFC17, CEO18, CBB19, CHC11, CWLJ13, CNS18, DSY10, FLHK08, FO18, GSS12, GH08, GCPF08, HMC10, Hei04, HC13b, HGS08, ILRB04, JW04, JN09, KHH+12, KSL+20, LLG+14, LLL+15a, LNNZ22, LW18, LK03, LZWP03, LC09, MSG10, MIUS16, MLK21, NIH08, Pen03, PV14, PA10b, PFGG09, PR03, PBG04, Pun03, QLY+17, RB18, SLS03, ST20, TLF06, TPT17, TBFJ15, YWW+16, YARL+20, ZSDK19, ZTH+11, ZYZ13, ZTH+14, ZZL14, ZYD+23]. Retrieving [LF08]. Retrospective [KW12]. Reverse [EFF98, SOJ+95]. Review [AC99, Ano95d, Ano95e, Ano97f, BL98a, BSBW14, BZ14, DMSM21, EBN+07, HHZ17, JK1W+21, KHA+05, MRdRCG23, PS15, RN12, SBIK16, SV14, WT+21, Ano98c].

Robustly \cite{BFY00, TS11}. robustness \cite{MN06, RPG12, SLK23, XSL+23}. ROC \cite{BKD01, SJST07}. rock \cite{TN08}. rocks \cite{TN08}. RocNet \cite{LMM22}. ROI \cite{BRSSAL11, TVLS08}. ROIs \cite{RSY22}. Role \cite{Hen98, Ham05}. Rolling \cite{FDW21, NL17}. Rolling-Shutter-stereo-aware \cite{FDW21}. room \cite{GPC+10}. ROS \cite{GTMR23}. Rosenfeld \cite{HM97, May97, Ver97}. rotating \cite{TAK09, TM04}. Rotation \cite{AMCB20, EA95, Pun03, TBFJ15, BDVK10, BYJG23, HAT+15, LCP13, SBPF17, ZZL13}. Rotation-invariant \cite{Pun03}. Rotational \cite{YY98, GYF18}. Rotationally \cite{SK02}. rotations \cite{OK04}. roto \cite{ANHS17}. roto-translation \cite{ANHS17}. rough \cite{AZP14, SB13}. route \cite{MSSS09, MRdRGC23}. RTI \cite{MC20}. Rule \cite{DY98, KW00, LL99, DK13}. Rule-Based \cite{DY98, KW00}. Rules \cite{BS00b, BDFG17, SYK96}. running \cite{LWIZ16}.

S \cite{CHC11, SCR+17}. S-Cube \cite{CHC11}. S-Hock \cite{SCR+17}. saddle \cite{Kui08}. safe \cite{NPM+16}. safety \cite{OBTMT15}. Saliency \cite{BSF02, PBPD+17, AvdWDM18, BWG17, FXWW17, LTY+15, MSP+18, REF15, SY20, WZY13, XHX+19, ZWY14, ZGC20, ZYW14}. saliency-based \cite{BWG17}. Salient \cite{CM99a, PF99, SM99, ZLZH17, BB15b, CVP10, CM16, GZX+23, JRBD+15, LXY+21, RXDS22}. Same \cite{DAZ+17}. Sample \cite{CM99a, BMvT+19, HBB+12, NAS+17, WCYS13}. sample-and-filter \cite{WCYS13}. Sampled \cite{SW11, PPT06}. sampler \cite{JNLG15}. samples \cite{LWH+23, YZX+22}. Sampling \cite{IF99, STHBH18, Tan95, TB23, BW11, Bar07, CCD11, HMA10, KL11, MT16, SBB18, WDB12}. Sampling-based \cite{TB23}. Sampson \cite{SCEvdHI4}. SASP \cite{ZZSD21}. SAR \cite{HMEB07, RDT+19}. SAR-Theory \cite{HMEB07}. Satellite \cite{MAM97, KSC+19, PK18, QAB+11, SO07, UB05}. Satisfaction \cite{BZ99}. satisfy \cite{ES06}. Savitzky \cite{HTNN18}. SCA \cite{THH+23}. SCA-Net \cite{THH+23}. scaffold \cite{CLK09}. scaffolds \cite{CK11}. Scalable \cite{KOC17, WM20, AMN18, CFCP11, CLL+14a, GB08, MCK09, NS16, SRDC09, ZTH+14}. Scale \cite{FT98, JC98, PCJ14, SUO00, SA02, SPQ+17, TWW14, XHJF12, XSZ+20, ANHS17, AMMV99, ALIRT18, BKK11, BDS12, BPC+17, BDLM06, CDJM14, CEO18, CCR13, CHC11, CPS10, DLBG19, DSH04, EXP+20, FPDK12, GE08, GY20, GYF20, GDCM17, HMST22, IZKB12, KL07, Kui08, KON+17, LS08, LLL+15a, LZMC+17, LBN509, MUS06, MNL+17, MSW15, MYC+14, OB14, PKvGS16, QBZ21, RXDS22, RTM+17, Sah05, SOK16, SSL+12, SP23, SSHP17, SZL+23, SW23, TTN17, TS17, TKAK14, TY22, TL15, WL15, XSD12, YWZ11, YSS+14, YWY+16, ZTH+11, ZUS06}. Scale-Based \cite{SUO00, ZUS06}. Scale-space \cite{XHJF12, ALIRT18, BDL+06}. scale-spaces \cite{GE08}. scale/irregular \cite{VRKL13}. scaled \cite{IH15, LYKY19}. Scales \cite{BL98b, MKY01, LML+23}. Scan \cite{JB09, YYL96, AAB19, CAB17, NES10}. scanner \cite{FK09, GZ06}. scanning \cite{LCT09, SO07, WWLV11, YGH11}. Scans \cite{SPQ+17, CPS10, NB10, SW04, SKSR08}. scanty \cite{VGSW16}. Scattered
scattering [FSI21]. scenarios [CEA16]. Scene
[AYB+18, Bi09, CFM02, Che00, CBB95, DC00b, HFKN97, KWO0, MNE00, MJS97, MMP09, PD17, SB00, Ste01, TY05, TL16, WJS15, XL98, YW16, ZT98, BKPS15, Bar07, BC10, BSH22, BYJG23, BCM06, CINC22, CGU11, CSS+13a, CLZZ13, CG04, DFJL15, DCH12, DZZ+23, DSK+20, EOPS22, GF15, GDM14, HUI16, HL13, HMB17, JY14, KK07, Lhn08, LS08, LRF+17, LTD21, MCM+17, MAJ16, PGP15, PBW14, STV09, SPRS23, SPW15, TL15, TDZ+20, VCD+17, YGJ+20, YT13, YARL+20, ZLY+20, ZHO4, XP11]. Scene-Based [Che00]. Scene-consistent [TY05]. scene-specialized [MCM+17]. Scene-specific [PD17]. Scenes
[BM99, BFF97, CCS01, FRL+98, HGB98, SA02, SPQ+17, AAMO16, AS23, BAPXH16, Bar05, BSZ+21, BSRV17, BP09, CLA+17, DWB11, DTL17, HHG+20, HLL+23, HML5, MCT+14, MMP09, PLB16, SFF+18, SCL13, TS17, TN07, TD19, WRKP05, XZQJ21, YR06]. Scheme
[SYF99, YW99, GBY21, KKSH23, LZYW23, LDC+13, LBNS09, NHO8, NBDB04, TT16, WHN05, ZJZY16, ZZO7]. Schumaker
[Ano95d]. Science
[Ast97, Col97, PRW97a, PRW97b]. Scientific
[Ano95e]. score [XMT22]. scoring [GMF14, PKvGS16]. script
[SYZ+15]. scripted [RLMK15]. SDART
[BTB14]. SdcNet [MW22]. SE
[ADC19, ARFF18]. sea [Cha21]. Search
[AM01, YT09, YLA09, CAL020, CLL+14a, FN14, HMCT22, KSG+19, LWLC22, LCL+14, MU11, RSO7, ST10, SM13b, TMS20, TYDH18, VJ17, WZY14, XTZZ14, XST04, ZWT+14, LEA+10, TYDH18, ZZSD21]. Searching
[HP96, KAES99, MRF96, DR04]. Second
[Ano95a, RM02, LEE+18]. secret [CJL06]. Secrets
[HBG13]. Section
[SU01a, CUSZ07]. Seeing
[RG10]. Segment
[MNHO00, FS03, IT15, LK03, XSK15, DGG08]. Segmentation
[An09, BM98, BL00, BS00b, CM97, DH00, DV98, DC05, HGR+13, HY98, Jon99, KSF98, KVg+97, LLM99b, LL97b, MNE00, MGS17, MY95, MS97b, MS00, MCBP99, ME98a, NVWV97, PF99, PB99, RWWH00, RMFB02, SU00, SU01b, SMK02, SA95, SPBF17, SC98, TK97, WF02, WWJ13b, YHN1, YYL98, AA20, ABJ+21, AS09, ABEND0, AHD10, ABL19, ASFP03, AS23, BYR17, BUD19, BB16, Bar07, BSALF18, BP05, Bwdf+13, BMB+17, BCA16, BPB13, BSH13, BVCB21, BP09, BF10, CMBV04, CFYU12, CT10, CP21, CUAT13, CZ14, CE17, CO16, CLA+17, CU10a, CU10b, CU11, CMCM16, Cre08, DBZ07, DPM14, DB14, EPH+21, EF14, ECC18, EX17, FLS+14, FBS21, FAB12, GFL+11, GBHS06, GKBW14, GCEC07, GB13, GBL04, GDM14, GPD13, GW07, GML16, GWF22]. segmentation
[HDS08, HW21, HW16, HC13a, HSS+16, HB10, HBL+17, IJDB13, JRS21, JLD13, JMPG11, KS15, KSR16, KBN12, KK13, KS19, KGU10, LMP+19, LvdHK+15, LNN+19, LV11, LPS+11, LAFL16, LWLT17, LSH19, LYY+21, LZZ22, ML13, MVP06, Mah16, MMK04, MCRCA20, MTP21, MO11, MSW15, MGPP11, MZ21, Mig12, Mil09, MBMC11, MAK+17, MB05, MSF+12, MPPP14, NRJ11, NF21, NHSC09, NO04, PJW11, PYWZ17, PLJS14, PNSF21, PV15, PG15, PCR+04, QAB+11, QTL12, RDA+15, RBDS14, STHBH18, SCE04, SOL14, SOL16, SM06, SG11, Sha05, SF07, SY20, SMD+08, SCvW11, SVA+22, TT17, TA13, TPT15, TN08, TRG+13, TC11, VMP03, WO10, WSS13, WHC14, WW16, WZW17, WRB11, WS06, WSKH13,
WWJ13a, XWC+23, XST04, XAB07, XYW11, XLWY23, YZT+13, YWMS08, YGC13, YJA96, ZDS13, ZSCP08, ZFG08, ZRL+11. segmentation [ZA22, ZLS+13, ZFG+22, ZUS06, ZU09, dMFU10].

Segmentation-based [HGR+13].

segmentations [CCTCR09, KSG+13, LH95]. Segmented [Pla96, EHG+10]. segmenting [BBK14]. Segments [Cre99, GB98, HMB17].

Segregation [JKM07]. Segidel [CRC97]. Sejong [CM21]. Selectable [DT96b]. selected [HKK08]. Selection [BL98b, BS00b, ET15, LSPV04, SM07, BPBS13, BEGB13, CYNO11, CZ14, CZS+20, CLZZ21, DPRC17, GBHS06, GFW13, HG11, KY06, LvdHK15, LK03, NAS+17, NHH14, PZX13, SO07, SB13, SF16, TG11, TKV16, TKAK14, YSL+14, YZL16, ZRL+11].

Selective [CHMG12, HH05, OH05, PZM+21, WRKP05, DL05, GZJ05, LDC+13, MTG07].

Self [BPCT22, CXFS06, CPPY21, DWW+12, DC01, LPSK23, LZZ22, LWLS12, NL17, PBD20, BIG+23, CE14, DDZ+23, DZZ+23, FPMK19, FK09, GB13, JLZ23, MM21, NF21, QC04, RSL10, SIRS21, TLEF06, TM04, WK21, ZDF10, ZZSD21].

Self-supervised [LZZ22, PBD20, BIG+23, JLZ23, WK21].

Self-supervision [BPCT22, DZZ+23].

Semantic [ABC+03, CP21, DBT+17, GMW12, GLMM16, GDM14, HAM+16, TVD15, ZZS+23, ABI+04, ABLL19, AS23, BVC21, CL15, COV+22, DLBG19, DCH12, FBS21, GYLTL09, GZX+23, GWFF22, HBL+17, ILRB04, IJDAB13, JRS21, JN09, LYS12, LZL+17, LSTARMB11, LCG21, MTP21, MZ21, MYC+14, PSE+11, PS22, PLJS14, PNSF21, SM12, SDK22, SY20, TLP+17, VZP+09, XST04, YSY+18, ZG10, ZTH+11, ZTH+14, ZSC+23, ZFG+22].

semi-supervised [CLL+14a, CZHT15, TLWT12, WHM+09, ZJL23, DB14, LHL+21, Mah16, MPT21, NWNT17, OZT19, VPL23].

semi-transparent [KS12]. semisupervised [MP20]. sense [CWO+11]. sensing [ASFP03, CBB19, DFSC20, FDC+19, GZJ05, LSKK10, MRH19, OM19, OH05, ÖÜ20, SB96a, SLK15, XH+19]. sensitive [FWG18, KLL+11, MFP+20, SPT+18, ZWZZ18]. Sensitivity [LPFP13, LP10].

Sensor [MG95, TG95b, YT99, AZSVK05, CA10, CP21, CÇ15, GTMR23, HCC+16, LSKK10, SPC+15, TDWH07, TMB12, YHS95].

sensor-based [HCC+16]. sensored [CD10].

sensorial [CCR+05]. sensorimotor [TPD20].

sensors [IKST05, STC+16, SM21]. sensory [OGH04]. sentence [WLZM20].

sentence-level [WLZM20]. sentimental [RMS+19]. separated [ZhZFL22].

Separation [AO16, AS09, ZZZP09].

September [Ano21x]. Sequence [CA97, LCZ+16, LZ97b, NDN+97, WALL00, X98, FR11, GS06, JM09b, NSEA13, PGGM04, Rem04, ZZZ06]. Sequences
Sequential [BSF02, FAB12, HW06, SYK96, SZ16, SAC09, SHS03, WS08, ABK16, VB16].

Serial [TV99, Tan11]. Series [MRW+97, CKPV21, LEa+10, MOrT17, TYY+21].

service [MFS+07]. Set

[ACF00, BiC98, GAD01, LLSV00, TS00b, ZOM00, CDT11, CB+04, CH17, CU11, DM12, FC+08, HWZ16, KK13, MMV06, PB11, PD05, SAs12, SG11, SRS11, WWcz15, WHGZ20, WWD23].

Set2Model [VKL18]. Sets [DL97, KSKB95, KB95b, LEr95, Nc98a, Sh99, WB97, WB01, ADC19, BFR13, CSZ+15, CP20, Cre08, DCS05, GDCM17, HY11, KKSC23, MGS15, SM06, Sha11, WK21, dCCP12].

Setting [KTP08]. setups [FPMK19].

Seven [SOD10]. Seventh [Ano96a]. several [SKA23]. SFM [CX11, FAZ14, CCL+17].

Shading [BHBMP10, KP97, KB95a, KB95b, LK97, OD97, SKB96, BLK21, DFS08, KN03, Wor05].

shadow [CYC10, SGE04, WCF10, WZYC22, YZ06].

shadows [CF07, JF10]. Shah

[SOL14, SOL16]. Shape

[Ano15a, ASZ99b, BH99, BCG95, Boo97, COW98, Car01, CPC99, CCP97, CF+98, CFA98, CCD11, DT10, DM01, DC98, DY98, DT97, FW97, HF01, Hbo00, JC98, JKE98, JMPG11, KP97, KB95a, KB95b, KR98, LPC08, LL09, LK97, LYG07, LK00, Mas02, Mok97, MPP98, NSK+97, NNN0, Nis06, Nis09, OD97, OBH04, OH04, PEFM98, PV97, SKB96, SP97a, Ti01, TSP97, TFL+09, TZY08, YFZ98, ZOM00, AAASC11, ALM23, BF07, BvdHL+13, BL16, BY12, BGK95, BSBN14, BF10, CLZY15, CH06, CK11, CC11, CUAT13, CZ14, CPHY21, CL08, CLCO13, CT13, Coe12, CTCG95, DZL07, DFS08, EL07, EOPS22, EK14, FC+08, Goh08, GKBW14, GHML17, GPDR13, GWFF22, HFR06, HG11, HC13c, KK15, KSL+20, KZ12, KNO+09, KSR14, LL21a, LE09, LPS+11, LC14, LLG+14, LLL+15a, LQQS21, LP208, LW18, Li10].

shape

[MDFS11a, MC09b, MWT04, MIP16, NHK08, ÖU20, PAK19, Pen15, PBG04, PS12, RK11, RAHT11, Rem04, SECSI5, SPT+18, SM+06, SK15, SM13a, SY11, SH08, SWS11, SKBS13, TG11, TWS06, TMQM13, TESK11, TH04, TC11, WB12, WYC15, WSKH13, WSJ15, Wor05, WWJ13b, WPB+14, YB07, YZT+13, YY+16, YZX+17, YFF+23, YLA09, YZL+21, YARL+20, YG16, ZZC+13, dSM14, MIP16, NL13].

Shape-based [JMPG11]. shape-color [GHML17]. shape-constrained [WWJ13b].

Shape-from-recognition [TFL+09].

shape-from-shading [DFS08].

shape-texture [HG11].

Shape [GSP01, TA13]. shaped-based [TA13].

Shapes [ANM98, KS96, NWP97, Pla96, ST96, Sup02, AMN16, AC07, BSH13, CDJM14, CKK+12, FO18, GR05, HW06, IAP+11, LBNS09, Sha05].

Shared

[ASZ99a, KSL+20, LLZ23, QCH20].

Sharing [MVGS16]. sharper [SRM20].

sharpness [RF23]. shearlet [GY19].

sheetmetal [ZZZ06]. shift

[KG14, ZYS09, ZLS+13, LRL10]. shifts

[GLG22]. shoe [ZSDK19]. shop [ZSDK19].

shorelines [BKP10].

Short

[NB20, WHT+21, WB15]. Short-Term

[NB20, WHL+21]. Shortest

[DJG01, DBBB14]. Shot

[Che00, YFCA17, YW99, BPCT22, CLL+21, DWL19, DFH+22, GBY21, JGP91, LHL+21, LLNZ22, LFLZ23, LCG21, MHX19, SOD10, WZQ+23, WKT22, XZX+21, XLYL23, YWM19, STD14]. shots [NY14, MNR18].
Symmetries [Big97, ST96]. Symmetry [BCM13, Rob06b, TS00b, VMU095, YHR+05, ZW97, BCLNG18, HZK19, AGB+15]. Symmetry-based [YHR+05]. Symmetry-driven [BCM13].

Synthesis [Boo97, Nis97, AYD+18, CCD11, HKS06, JB15, RB19, SHK11, UBEF09, YLLG18].synthesize [LPR+03]. Synthetic [BCC+18, AGL23, BSH13, BG18, DM12, DLV15, RLF15, SV14]. System [BKMSR98, BS99a, CN95, CJC+98, FCM20, Lee02, MF95, ME98b, SBK+99, THT+98, YYL96, ABR+04, AZSVK05, ALY+22, ACC+16, BMF+17, CEA16, CJL06, DLS+09, DR04, ESS10, FFY+04, FY06, FLCDa06, GSPL10, GBVDC18, HSKH07, HWW06, IRLRB04, KGFP10, LM16, Lhoo8, LNS14, MSG10, MTC+14, MML+16, NKB11, PFGG09, RGA10, TKDN16, ÜB05, VD10, VZP+09, YH19, BCDH10, FRNS05, TG95a].

Systematic [MSM17, LS12]. Systems [BBC00, CL97, EA95, KS95, LH99, SC00a, Bar06, BHS+13, BRP04, CYP+10, GF15, GA09, GYF18, HD07, HZW+10, KFN15, KGM19, LFMP13, OBTMT15, OH05, OJY+21, PLYW21, PA13, PV14, RPBK22, SBB10, Tho10, TA11, WMYB12, YCA+10].

Systolic [Nic95].

TAB [MYV19]. Table [GK95, CXFS06].
tables [JRBD+15]. tag [BBSD15, LDH+14, WZ+14, ZXY14].
Tag-Saliency [ZXY14]. Tagging [CWH+13, LTTL14]. tailored [JPN+22].
Take [Lau97, WASF14]. Taking [EMMV19, FL96]. tampering [KLL+11].

Tangential [LKK00]. Target [IKST05, MYC09, TLH22, BG16, BVCP21, CSLX16, GFY+14, JBC08, KW12, LSL+18, PMC13, UM05, VSP06, YCKA10, ZZRC15].

Target-aware [TLH22]. targets [BYR17, BYK+18, KPPK09, MC09a, PBT14]. Task [DC00b, GZJ05, SGB01, TAC21, WCZ+20, ZSDK19, BIG+23, BRA+10, BSMK13, ES06, FCM20, HL13, HML15, JRAJ17, RGA10, TVN23]. task-driven [RGA10].

Technical [OMLL98]. Technique [Ano01m, BL01, Luc01, OD97, PLO0, CCL04, DM12, HBL+17, KA12, MWF07, RO03, YW07].
Techniques [Ano98d, BY98, BS00b, CF01, MAP99, MNSK98, A500, Bc03, FK09, HBG13, JB23, JM09h, MGF08, MM05, OTO06, PSE+11, PR03, SM13b, TA13].
technologies [LMT+17]. technology [CSV+16, CMCM16, MN+17].

Telepresence [OYTY98]. tells [YSL+14].
Template [CYES00, THT+08, BBH14, FN14, SBPF17, UBEF09, AW09].
template-based [BBH14]. Templates [DJG01, LSB+00, SL99, DLF06, GORB+13, RCT14].

Temporal [BZS16, CA97, DGRS22, KHH+22, MIUS16, STO17, SC15, SA04, UFF06, WY21, WLL+22a, YJ16, AAL22, CIL+21, CHMG12, CKPV21, CWL13, CSY+03, DPCA15, DLF06, FWK17, HSBS16, HDF12, KYYC14, LCR15, LTY+15, LXFM16, MTV17, MYV19, NNS+18, NDO09, PCM21, RCLS19, RL13, SM22, SCMP14, SSJ+20, SVF+21, TIKL21, TBC+21, WZT13, WX16].
Temporally [MYV19].

Theory [HKA13, Mok97, SUO00, SU01b, SWG02, WKI+16, AGB+15, AC07, BBK15, DB03, KLBP11, NRJ11, XP11, HMEB07, KGK10, MUS06].

Thermal [DS07, HOH+07, MHAF13, SSN03, TMB12, TB13, YCH07].

Thermal-visible [TMB12, TB13].

Thermophysical [MNSK98].

Thickness [DS07, HOH+07, MHAF13, SSN03, TMB12, TB13].

Thermophysical [MNSK98].

Thickness [DS07, HOH+07, MHAF13, SSN03, TMB12, TB13].

Three [Bor96, Jos99, LSCK15, LWZP17, MNHO00, MCPB99, OD01, SF95, TK97, WD96, ZM96, AMCB20, CH17, HQN05, KON+17, LB08, PJW11, SOL16, SB05, WXWC18, WX20].

Three-Class [MCPB99].

Three-Dimensional [MNHO00, SF95, TK97, WD96, ZM96, LSCK15, HQN05, LB08, PJW11, SOL16, SB05].

Three-Light-Source [OD01].

Thresholding [Ros02, WCZ02, GFL+11, HDS08].

THUMOS [IZJ+17].

Tighter [Zha97].

Tilings [Mil99].

Tilt [CC00, DDL010, SP+C15, SP06].

Time [BEPW00, CBM01, HT98, LB98, LSCK10, LHHC98, OITY98, SKOS95, SLK15, WZWT99, ZK02, AMNCM16, AM04, BT05, BCMB09, BDS12, HMBB10, BLT15, CGH08, CEA16, CCL04, CKPV21, CKL18, CSK22, DLS+09, DDWZ12, DZJB14, FFM05, FT15, Gon09, GTMR23, HHRZ17, HHAE14, HEP15, HWZ+23, HWZ+10, JRS21, JSRS08, DFP+13, LSL21a, LC14, LAB15, MZB+10, MWTN04, MFS+07, MHL14, MTTA11, Nic95, Pen15, PBI16, PGM04, RZH17, RAC+13, RL13, SM12, STC+16, SFK18, SGH07, SIT07, SHS03, TKV16, UM05, UWH17, WX16, WHL+21, WVL11, YWZ11, Z05, Ziv10, LBK10].

Theorem [BFR13].

Theorem [BFR13].

Theorem [BFR13].
Time-of-Flight [LSKK10, SLK15, BHMB10, HHAEL14, HEPH15, LBK10].
Time-Varying [CBM01, SKOS95].
times [MOT17].
timescale [SY23].
tissue [CFYOU12, DCOS05, SRP10].
TMF [WY21].
TOF [NB10, GPC+10].
TOF-scans [NB10].
together [CLA+17].
tolerant [MRH19].
tomographic [VNNB14].
tomography [BPBS13, BTB14, RDT+19, RBdDS14].
tone [ABK+18, BEK18, LLNC20, LJZ18].
tone-mapped [LLNC20].
tone-mapping [ABK+18].
tool [BCNS15, DAM12].
toolbox [RPBK22].
tools [RLMK15].
tooth [MST16].
Toothbrush [MST16].
Top [MSP+18, BYJG23, HLBI7, MAJ16, ZWY14].
Top-down [MSP+18, BYJG23, HLBI7, KM11, MAJ16, ZWY14].
Topic [NHTG15].
topics [TGM+17].
topographic [WY07].
Topological [ACF00, ASS97, AC07, CDIF14, Cou13, DBF04, Dam08, Eva06, GL95, GJMO14, ABD11, Bar18, GFW13, WL14, ZZJS18].
Topologies [EL03].
Torsion [Mok97].
Torsion-Based [Mok97].
torus [LNS14].
Total [Kis96b, MLJC20].
tally [Ang07].
touch [WHC14].
touching [CL04, MW13, WPK09].
Tracker [KSS97, TS01, AM04, MiMO+12, SKLM22, SGS07, VM16].
trackers [DYMM14, TM06].
Tracking [BL09b, DLC14, DF01, Dem06, DJG01, FLB06, HFKN97, IP98, KS95, KB95b, KH13, KDV16, LCP13, LRD09, MJ11, MJD+00, MZI+16, PV13, Pet99, PF01, QL96, RAH97, ROX90, TRP+00, WN99, WS06, ADR16, An06h, ABVC16, AVC19, BAPX16, B1R17, BSM10, BW11, BBH+12, BCM10, BL09, BY12, BBK14, BB15b, BG16, BKMV07, BYK+18, CHH08, CKM11, CYP+10, CSLX16, CPT07, CKC14, CKL18, CQ15, CSK22, CZZS07, CWW22, DL07, DBZ07, DD11a, DJB14, DG11, DPT07, DZLH17, EDB12, FXXW17, FN14, GKK05, GOC10, GB08, GRB13, GFW+14, GCFM12, GTR13, GCT+14, Gwa17, HD09, HYJ11, HP05, HHH07, HGR+13, HUF05, HML15, HW07, HDF12, HJJ16, HH12, IKST05, JVD+20, JRS08, JBR08, JWD05, JBC08, JY14, JB15, JHV19, KBN12, KN15, KV06, KG14, KSR+12, KGF10, KL14, KW12, KPPK09, KT07].
tracking [KT17, DFP+13, LHYK05, LST13, LLR10, LAB15, IWCZ14, LLP16, LG17, LSN+18, LWWC22, LJC+23, LG14, LSTF12, LA05, LN10, LLG+23, MYC09, ML15, MML+16a, MO9a, MEM17, MB+10, MEYD11, MHR05, MLEMO9, ML13, MBC17, MM05, MdRNM15, N+17, MLY10, NKB11, NL05, OMBH06, PA10a, PD05, PA06, PMC13, PYS03, QW HW20, RMD08, RRR11, RB16, RCT12, SPC+15, SC15, STC+16, SKF18, SA04, SHE17, TTXT21, TLLH22, TFD07, TKV16, TMB12, TM07, TP05, TTH07, UM05, UO16, UFF06, VSP06, WASF14, WLL+22a, WDC+20, WDB12, WB16, WZP+18, YWZ11, YZL16, YJ16, YNCO11, YJC+09, ZN08, ZR15, ZT09, ZWZ+16, ZYS09, ZJ05, ZWL16, ZCK09].
tracklet [HHG+20].
tracklets [ADR16, SM17].
Tractable [SP23].
Trade [LHH+98].
Trade-offs [LHH+98].
trademarks [PA10].
Traffic [HEBO07, SJH17, HLL+23, KBKS18, MAG+16].
trained [DYMM14].
training [AGL23, BCC+18, BCC16, CHH09, CSZ+15, CTCG95, FFP07, GKG20, KSC23, LKZ20, LLW21, RRH19, RLF15, SLK23, SS21, ZS19].
trajectories [AAASC11, CHP+11, KBN12, OCVV04, TS17, WCF10].
Trajectory [LB08, BCC+21, BSZ+21, PKK+09, SY23].
tree-structure [TN07], tree-structured [CCL+17], Trees [HdVL99, Jou99, LHMC97, Mun95, MN1+17, MU11, QT10, VBVB19].

Tri [XS04]. Tri-view [XS04]. triangles [Zu03]. triangular [MSR07, WTBD15].

Triangulated [KPH02]. Triangulation [HS97, SL96, Tan95, WZWH16, BS05, CH11, GSGJ22, Nor09]. Triangulations [WCH98].

Tribute [Kak97]. Trilinear [Zha97].

true [CU10b]. truth [Cre08, SYPK13].

truthing [RLMK15]. Tubular [KMA+00].

Tumor [RAC+13, LWLT17, ZRL+11].
tunnel [RCT12]. turn [CFX06].

turn-table [CFX06]. Tutor [FKS10].

Tutor-based [FKS10]. TV [ACDB12].

Two [AH08, CDH99, DM12, Egg98, Jos99, ML15, QWWH20, SP97b, SA95, WHL+20, WLMG08, ACAAC+08, BI10, BYN+04, DBF04, GHZ+13, GSGJ22, Got08, JM09b, KHG22, KSY15, KNO+90, LYKY19, MMP15, Ros08, Sha11, SW04, SCCP05, WZ08, WCF10, YGH11].
two-component [Ros08].

two-dimensional [AH08, DBF04, GHZ+13, Got08].
two-level [KHG22].
two-orthogonal [YGH11].

Two-Stage [SP97b, WLMG08, KSY15].
two-step [BYN+04].

two-stream [WHL+20].
two-streamed [LYKY19].
two-view [GSGJ22, MMP15].

Type [NCDG21, GY19].
type-specific [NCDG21].
types [RWV95, SKA23].
typical [MB95].
typology [COV+22].

UA [WDC+20]. UA-DETRAC [WDC+20].

UG [BVWS21]. Ultimate [AHM17].

ultrasound [MAK+17, MJP16, ZIT+13].

Unbiased [Stc13, GLZF23]. Uncalibrated [BK01, Tay00, Vf96, SCEvH14, TGFF15].

Uncertain [KN99, NHZ+22, PS05].

uncertainties [WR08].

Uncertainty [CZZF97, GOF+15, Sh99, ZFG+22, CP04].
CC03, DD11a, KT08, KTV17, KN11, SS11, TM07, VNNB14, ZLY+20.
Uncertainty-aware [ZFG+22].
unconstrained
[TBVW21, DCH12, NKB11, PA10b].
Understand [MBMC11].
Understanding [MBMC11].
Underwater [CFM02, ECC18, GSV00, MCPB00, MT00, NK00, SWYP00, MN06].
Unified [BYK+18, CWH+13, RJ00, JLD13, LLTL14, LH03, MIP16, YZY11, ZLZH17].
uniform [MC20, SAC09, TLCH05].
Unifying [SLST99, SVF+21, Bar06].
Unique [STD14, RAC+13, XGT+22].
Uniqueness [CM99a, OD01, XGT+22].
Unit [HB98b, LHZY19].
Unitary [LNS14].
units [TYDH18, OS19].
universal [WSFTK18].
Unknown
[FW97, OD99, BBK14, CS06, LC14, SSS13].
unlabeled [CHH09, WZQ+23].
Unmanned [NK00].
unordered [MAL10].
Unorganized [ZOMK00, LLL+14, LLY+18].
unprepared [LA05].
Uncented [DG11, IH15].
unseen [KKRK23, RG10].
Unstructured
[BCA98, CPS10, PLB16, RAP16].
Unsupervised
[BP05, BCC16, BCM06, CHH09, CT10, DTL17, DAL+22, GMF14, LB03, LTL+23, MGPP11, MHL14, NHSC09, PB99, RM03, RCLS19, SJS17, SY23, TVC09, TA11, YWMS08, BPCT22, CCSS14, DLMC16, FDC+19, GEC07, HDL+20, LLLW23, PC15, SPW15, XW16, ZFG08].
untextured [ÁB13].
UP-SR [AAMO16].
up/top
[ÁKM11].
Updating [MS96b, YFDA17].
upsampling [AAMO16, XJK12].
Urban
[BM99, FRL+98, FMR01, HB98a, RDT+19, SPQ+17, BSRV17, CM12, GDCM17, LS12, MTC+14, ZA22].
Usage [NSK+97].
Use
[BBCC00, CN95, EFF98, GPK99, RWV95, SGB01, CU11, CSSS14, Loh10, NF21, REF15, Ano95e].
Useful
[GHMQ07, TDV15].
User
[CYES00, IZKB12, KV12, PJW11, PHY+11, RTM+17, YWZ11].
user-assisted
[PW11].
user-contributed [IZKB12].
user-generated [PHY+11].
users
[CNO+16].
Using
[APV99, Ant98, AMMV99, BKP10, BCDH10, BH99, BDK01, COW98, CM95, CS98, Che98, CL00, CM99b, DT96a, DT96b, Dv97, DUC07, DJ01, FB08, FD09, FKL+98, GKBW14, GBB98, GJP96, GSK02, HB98a, HCHD01, HR99, HB98b, Hb00, HN95, HLF+97, Jrn99, Jrn99, KP97, KSI98, KH01, LVW97, LB00, LL797a, LSHT02, LL97b, LZ97b, LF98, MBKB02, MG00, MS07b, MK01, MB95, Mur95, NG98b, NMP97, NL69, Nis95, OJRT08, PKP97, PA00, PC90, RH08, SF99, SB95, SC00a, SB98b, SP97a, SPK+02, SHKP98, SL99, SSL01, SF97, Spe97, SYPK13, SB02, SM97, SC98, TML00, Tsa96, UE01, VB98, WW97, WZWT99, YKA01, YC98, ZW97, ZOMK00, AJ23, ARC14, AYB+18, AM06, ABN+20, ADC19, AS09, ADGB16, AW09, AC07, ABEN09, ALK+09, AC09a, AC09b].
using
[AZP14, AT17, AMGG+16, ASCF13, AS22, AS09, ABK16, ARARCE11, BW11, BKPS15, BCM16, BMJF+17, BS05, BMT+10, BZS08, BP05, BBCF20, BL09, BCC16, BWL04, BBK14, BB15b, BMV+19, BPSV16, BRPC17, BF10, CG08, CHP+11, CLZY15, CFC01, CMB09, CH06, CMK11, ÇÖD08, CT10, CT12, CE08, CQ13, CCQ14, CPP+11, CL17, CE17, CLO17, CEF+13, CC03, Cre08, CKS+05, DK13, DLZ17, DT09, DBZ07, DGK22, DM12, DGC12, DS07, DZW19, DLF06, DCS05, Dsr96, DLZ17, DH19, EK08, ESS10, EOPS22, EF14, EH21, ET15, Ewa06, FPC+08, FM22, FB05, FN14, FK10, FKG99, GHX+13, GS06,
Vessel [TKL+09, PYWZ17]. via
[AAASC11, ANM98, AXJE21, ARFF18, BI11, BIMD23, BZ14, BG16, CFUY12, CZ14, CYD+22, EK12, FWL+20, FWLQ23, GFL+19, GWT09, GYCS21, GML+21, HJZ16, IH15, JPN+22, JCLZ21, JSC23, KSRs16, KHC22, KAO8, KM17, KKSC23, KSKB95, KOC10, LPSK23, LRZ+19, LZZ+21, LDH+14, LTL+23, LYSS12, LC16+17, LZL+17, LZWX21, LJJ+23, LYSKI7, LCG21, MMS99, MFSB23, MSW15, NAS+17, PBT14, PZM+21, Pcm21, QLY+17, QDLb17, SM21, SZW+21, SJSJ21, SMD+08, SBH+17, SMWM22, TPT17, TCM18, TY22, TAK+22, TGH98, UFK20, UIK22, WW16, WZW17, WZJ+21, WPZ+18, WLFL21, WZCY22, XFP+16, XTZ+18, YWLM+20, YWLM+08, YLLG18, YG15, YFDA17, YG16, ZSL+16, ZWZZ+22, ZRKK+11, ZH+20]. vice [AB18]. Vide [KFRD+18].

Vide-omics [KFRD+18]. Video
[ALK99, ASC17, AWK04, ADDK99, BS19, BPQ15, DCCL99, FWL+20, GSV00, HR99, HNBD09, LC09, LCZ+16, MBHRC21, MSF+12, MRGRGC23, MC22, MGLB17, NB20, NK00, OYTY98, PFI01, SL03, SOD10, TBC+21, TY22, TR09, TPR+00, WPZ+16, WZJ+21, XLO8, YGJ+20, YFX+18, YYL98, YST21, YW99, ABJ+21, ABI+04, ALK+09, An06h, ADHD10, AC09b, AS23, BC17, BZ16, BVWS21, BIG+23, BZS08, BCNS15, BY12, BZ14, CHH09, CCFC13, CTWH15, CCF17, CPT07, CWLJ13, CC03, CSG+03, DK13, DLMC16, DGRS22, DCH12, DG08, DRK03, DPO8, ESS10, ECC18, FHY11, GKK05, GYTLP09, GS06, GB22, GB17, GMW12, GLMM16, GDM14, GWC011, HS14, HM10, HDG+14, HPV+B10, HHM+16, JN09, JYTK11, JB15, KFRD+18, KYYC14, KIm17, KKH+22, KB12, KGU10, LLS21b, LHLZ23, LK03, LHJ+09, LLE+09, LLC11, LXW+17, LW03, MWT04, MUS16]. video

[GMZ+22, ABC+03, BBS15, BLH16, BMB+17, CCTCR09, CD10, CPFY21, CI18, DETE17, DPM14, DPA15, FT23, GCS23, GBL08, HMK22, HR16, IZJ+17, KKKR23, KM17, KT07, LLVM18, LSH19, LYSK17, Lya13, MEM17, MCCRA20, MW13, MBCJ17, NML23, NDO09, QLY+17, RSY22, RCLS19, PBPD+17, RL13, RCJ+13, SV14, SS17b, SS21, SAL16, MNR18, TD04, TB13, UFK20, UIK22, WW16, WZQ+23, XYRS17, YG16, ZTGL18]. View
[ASCF13, ASF14, EK98, Gu198, HMFI0, KHP01, ODY02, OYTY98, ZRKR18, ZSDK19, ATC+13, BY17, BF10, CPP+11, CC11, CH11, CCD1, CPS10, EKY08, FSI21, GSGJ22, GY+14, HJ12, HKS06, HDG+14, HDF12, ITNP12, KIS17, KCM+17, KM03, LSL+18, LDH+14, LYS16, LYSK17, MPM15, MB11, PW23, PLKP23, RM03, RB19, ROGT14, SBB18, SMD+08, TAK09, TWW14, TVC09, WJ07, XS04, YW16, ZEGE15, ZLHJ18, ZKRRH04]. view-based [HDF12, TAK09]. View-Dependent
[OYTY98]. view-identity [GFY+14]. view-independent [EKY08]. View-invariant
[HMFI0, ZSDK19, ROGT14]. view-object [ZEGE15]. Viewing [CFA98, Chu02]. Viewpoint
[BG18, DCTO97, OMBH06, WCZ+07, CM12, DL10, LA11, MTVM04, ODT17, WRB06].

Viewpoints [RWV95]. Views

[BGSdVL98, BLP95, CFM02, EFF98, LV96, MFJ95, RFC97, SA95, ACAA+08, CKLP09, G0l05, GSV05, JSRS08, KV06, MOB14, PT08, RSPD12, SH08, SCCP05].

vignetting [RBA20].

violence [GC32, RAP16].

virtual-endoscopic [HSH07].

Virtual

[BG18, DCTO97, OMBH06, WCZ+07, CM12, DL10, LA11, MTVM04, ODT17, WRB06].

Virtual-Endoscopic [HSH07].

Visibility

[BG18, DCTO97, OMBH06, WCZ+07, CM12, DL10, LA11, MTVM04, ODT17, WRB06].

Vision

[Ano95a, Ano99b, Ano00a, Ano00c, Ano00d, Ano01c, Ano01d, Ano05j, BK15, BPS10, BDVK10, BC10, BCC+07, CKB10, CNO+16, CLA+17, CMC16, DBZ07, Ham05, HD07, HAM+16, HBB11, JB23, JNLG15, JZWD16, KU19, KPPH07, KLB11, KNT11, LBC+21, LVB10, LMT+17, LXW+17, MP09a, MNSK16, MFS+07, MFG10, MKH06, PZ08, PZ09, PL07, PS15, Re16, RMF21, SGS+10, Sah05, SBI10].

vision-and-language [LBC+21].

Vision-Based [HF01, KR99, MG01, EBN+07, HSH07, HFR06, NPM+16, Pop07, CMCM16, KU19, MKH06, PS15, WRB11].

Vision-language [TL+17].

[AST9, Ano98d, Ano15o, BY98, Bra97, Col97, CPO16, DAZ+17, FCM20, Gav99, GSS12, GSV00, GAD01, HOH+07, JNO9, JGM20, KKL+15, KSG+19, KRK11, KR99, LHYK05, LWZC14, LVS20, MZL+16, Neg12, NJ95, OWM+07, OS19, PBT14, PR97a, PR97b, RB18, RJ00, SVS97, SJB20, SLST99, ST10, Sup02, TW98, TY01, WS08, WL15, WTW+17, YH19, YR06, ZSY+19, AXJE21, ATC+13, BBH+12, BBH10, BL08, BF05, BJS14, CSV+16, CGI, CYN011, CKL18, C+15, DLS+09, DDL01, DD11a, EMMV19, FPP07, Fab11, FKS10, FLHK08, GLMM16, GCPF08, GBL08, HD09, HY11, HH05, HWW06, ILQ04, JLZ23, JLVW05, KD10, KMD15, KLM14, KHA+05, KYM13, KTV17, LLP16, LDC+13, LCL+14, LSTARM11, LN10, LLG+23, LCG1, L15, MFP07, MdBJ15, MAG+16, MHL14, MIP+18, NT10, NHY10].

visual

[PY08, PWWQ16, PL10, RSY22, RE15, RMS+19, STHHH18, SOK16, SJ15b, SCC+22, SFWG08, TSL14, THL13, TMS20, TESY15, TLMT+05, TTH07, WRKP05, WZ04, WSY+16, XZX+21, YXZ+19, vGSV+10, BCDH10, JN08, NHTG15].

visual-context-aware [PL10].

visible

[PY08, PWWQ16, PL10, RSY22, RE15, RMS+19, STHHH18, SOK16, SJ15b, SCC+22, SFWG08, TSL14, THL13, TMS20, TESY15, TLMT+05, TTH07, WRKP05, WZ04, WSY+16, XZX+21, YXZ+19, vGSV+10, BCDH10, JN08, NHTG15].

virtual-context-aware [PL10].

visual-semantic [LBC+21].

Visualization

[CC00, ACDB12, CB+04, CG04, HKHE14, MWTN04].

visualizing [TN05].

virual-iris [NC+16, COV+22, LM16].

vocabularies [HS14].

vocabulary [KFN15, LSTARM11].

Volume

[Ano95a, Ano95b, Ano96b, Ano96c, Ano97b, Ano97c, Ano97d, Ano98a, Ano98b, Ano99a, Ano99b, Ano99c, Ano99d, Ano00a, Ano00b, Ano00c, Ano00d, Ano01c, Ano01d,
Ano01e, Ano01f, Ano01m, Ano02a, Ano02b, Ano02c, Ano02d, Ano03n, Ano03a, Ano03p, Ano03q, Ano04k, Ano04l, Ano04m, Ano04n, Ano05k, Ano05l, Ano05m, Ano05n, Ano06j, Ano06k, Ano06l, Ano06m, BM97, BYN+04, BF05, FSI21, GMJMO14, LB08, LLL+14, LSCK15, LPR+03, SdB03, Tan11, Oli01.

Volumes [FDMA97, LSB+00, BZS08, WRB06].
Volumetric [GSU00, NWP97, SBS04, TG95a, TK97, AMCB20, MdBJG15, THL03, YW07].
Voronoi [BBB96, KSI98, NSK+97]. Voting [IF99, LZ97b, LBNS09, MGPJ11, RPG12, RC13, Sha06, SBK13]. voxel [ALK+09, GMJMO14]. voxels [SB05].
VRML [FPDK12]. VRNN [BCC+21]. vs [FCM20, KTP08, LHH+98, TS00a].

walks [DB14, GB13]. Warping [YF98, LHH07, SOJ17]. watching [CZ18].
Water [MTV17, PCR+04, TKDN16].
Watermarking [CWC+20]. Watershed [BL00]. Watershed-Based [BL00].
Wave [ACF00]. Waved [WB15]. wavelengths [PS12]. Wavelet [AM00, DLHT99, MAP99, SB22, TS00a, ÇOĐ08, CT10, CT12, CE17, Hu11, Lzmc+17, LBCA10, MIP16, SG11].
Wavelet-Based [DLHT99, SB22, CE17].
Wavelets [Ano95d, Far11, WLZ04].
Weak [SG17]. Weakly [AS23, EOPSS2, HWG21, KHG22, KRG17, LCM+16, NF21, RDA+15, SY20, GLG22, MTP21, MPP+20, NWNT17, PD14, RZZ23, SS17b, TD19, UU18, WZM21, ZKSV18, ZZ20, ZZSD21]. weakly-supervised [NWNT17, RZZ23, UU18, ZZSD21].
while [TZM98]. whole [FO18, YHS+20].
Wireless [Ziv10, LWLS12]. Wise [DF02, AC09b, CKC14, HWZ+23]. wisely [Pav17]. within [Kou03]. without [CB98, CYES00, JLM22, OD99, Rob96a, RKL+18, SLK23, SWMM22, YHS+20].
Wize [ACC+16]. WMCP [GGP23].
WMCP-EM [GGP23]. Word [KH96, KABP98, JN09, SKT18, WLZ20].
word-level [WLZ20]. words [CZ18, KBMD15, MYV19, PWWQ16, RG17, RB18].
workflows [KDV12]. workspace [RGA10].
World [BPQ15, LSHT02, SLST99, DPCA15, HWL+22, KH15, KPPK09]. Wrinkles [YB01]. writer [PRG+14].

X [AS08b, BMV+19, CZ14, GYW+22, HT98, KHB01]. X-ray [AS08b, GYW+22]. X-rays [BMV+19, CZ14].

ZDF

References

Akbas:2020:LLM

Ait-Aider:2019:FCM

Alsarhan:2022:EDG

AlIsmaeil:2016:EDD
REFERENCES

Alvarez:2013:JAP

Ardeshir:2018:ELE

Assfalg:2003:SAS

Alata:2011:GDP

Amayeh:2009:HBV

Amir:2004:MMS

Arnon Amir, Sankar Basu, Giridharan Iyengar, Ching-Yung Lin, Milind Naphade,

Touqeer Ahmad, George Bebis, Monica Nicolescu, Ara Nefian, and Terry Fong. Horizon line detection us-

REFERENCES

Adan:2000:MWS

Abebe:2016:RMD

Aggarwal:1998:NMA

Abebe:2016:RMD

Alvarez:2009:NEB
REFERENCES

Ahmed:2019:LSR

Avrithis:1999:SFO

Aghaei:2018:TSP

Ali:2016:IIO

REFERENCES

Aghaei:2016:MFT

Aqmar:2014:GRF

Alexander:2000:EMD

Albert:2015:NMA

Achddou:2023:FST

Atkinson:2008:TDB

[AGH08] Gary A. Atkinson and Edwin R. Hancock. Two-

Abuhaiba:1998:RLC

Appiah:2010:AHV

Alves:2017:UL

Abedini:2023:SMI

Ambrosch:2010:AHB

REFERENCES

Ambrosch:2011:CAH

Arashloo:2011:PIF

Ao:2023:IAC

Amir:1999:GFD

Aziz:2018:GSC
REFERENCES

Angel:2000:AMW

Aguado:2001:PLS

Anderson:2004:RRT

Aguena:2006:MID

Atto:2015:HOS

Abdourrahmane Mahamane Atto and Grégoire Mercier. High order structural image decomposition by using non-linear and non-convex reg-

Alotaibi:2017:IGR

Almakady:2020:RIF

Arias:2016:MIM

Armande:1999:TNE

Agudo:2018:SEA

Antonio Agudo and Francesc Moreno-Noguer. A scalable,

[ANHGS17]

[ANM98]

[Ano95a]

Anonymous. ACCV ’95 Second Asian Conference on...

[AMNCM16]

[Ang07]

REFERENCES

REFERENCES

Anonymous:1996:ABS

[Ano96a]

Anonymous:1996:IFI

[Ano96d]

Anonymous:1997:A

[Ano97a]
Anonymous: 1997:AIVa

Anonymous: 1997:AIVb

Anonymous: 1997:AIVc

Anonymous: 1997:AIVd

Anonymous: 1997:BRR

Anonymous: 1998:AIVa
Anonymous. Author index for volume 71. *Com-
REFERENCES

Anonymous:1998:AIVb

Anonymous:1999:CVV

Anonymous:1998:CVV

Anonymous:1999:AIVa

Anonymous:1999:AIVa

Anonymous. Author index for volume 74. *Computer Vision and Image Understanding: CVIU*, 74(3):236, June 1999. CODEN CVIUFX. ISSN 1077-
REFERENCES

Anonymous:2000:AIVd

Anonymous:2001:Aa

Anonymous:2001:Ab

Anonymous:2001:AIVa

Anonymous:2001:AIVb

Anonymous:2001:AIVc

Anonymous:2001:AIVd

[Ano01f] Anonymous. Author index for volume 84. Computer Vision and Image Understanding: CVIU, 84(3):409,
References

Anonymous:2001:GE

Anonymous:2001:Na

Anonymous:2001:Nb

Anonymous:2001:Nc

Anonymous:2001:SIF

Anonymous:2001:SIN

Anonymous:2001:VNA

Anonymous:2002:AIVa [Ano03a]

Anonymous:2002:AIVb [Ano03b]

Anonymous:2002:AIVc [Ano03c]

Anonymous:2002:AIVd

Anonymous:2003:Aa [Ano03a]

Anonymous:2003:Ab [Ano03b]

Anonymous:2003:Ac [Ano03c]

Anonymous:2003:EBa
Anonymous. Editorial Board. Computer Vision and Image Understanding:
REFERENCES

Anonymous:2003:EBb

Anonymous:2003:EBc

Anonymous:2003:EBd

Anonymous:2003:EBe

Anonymous:2003:PN

Anonymous. Publisher’s note. Computer Vision and Image Understanding:
REFERENCES

REFERENCES

ISSN 1077-3142 (print), 1090-235X (electronic).

Anonymous:2004:EBb

Anonymous:2004:EBc

Anonymous:2004:EBd

Anonymous:2004:EBe

Anonymous:2004:EBf

Anonymous:2004:VAIa

Anonymous:2004:VAIb

Anonymous:2004:VAIc

Anonymous:2004:VAId

REFERENCES

Anonymous:2005:EBa

Anonymous:2005:EBb

Anonymous:2005:EBc

Anonymous:2005:EBd

Anonymous:2005:EBe

[Ano05e] Anonymous. Editorial Board. Computer Vision and Image Understand-

Anonymous:2005:EBf

Anonymous:2005:EBg

Anonymous:2005:EBh

Anonymous:2005:EBi

REFERENCES

REFERENCES

[Ano06m] Anonymous. Volume author index. Computer Vi-
REFERENCES

REFERENCES

Anonymous:2008:CEBd

Anonymous:2008:CEBe

Anonymous:2008:CEBf

Anonymous:2008:CEBg

Anonymous:2008:CEBi

Anonymous:2008:CEBj

Anonymous:2008:MCP

Anonymous:2009:CEBa

Anonymous. COV2: Ed. Board. Computer Vision and Image Understanding: CVIU, 113(1):??, January
2009. CODEN CVIUF4. ISSN 1077-3142 (print), 1090-235X (electronic).

REFERENCES

CVIU, 114(9):??, September 2010. CODEN CVIUUF4. ISSN 1077-3142 (print), 1090-235X (electronic).

Anonymous:2010:CEBj

Anonymous:2010:CEBk

Anonymous:2011:EBa

Anonymous:2011:EBb

Anonymous:2011:EBc

Anonymous:2011:EBd

Anonymous:2011:EBe

Anonymous:2011:EBf

Anonymous:2011:EBg

Anonymous. Editorial Board. Computer Vi-
REFERENCES

Anonymous:2011:EBh

Anonymous:2011:EBi

Anonymous:2011:EBj

Anonymous:2011:EBk

Anonymous:2012:EBa

Anonymous:2012:EBb

Anonymous:2012:EBc
REFERENCES

Anonymous:2012:EBd

Anonymous:2012:EBe

Anonymous:2012:EBf

Anonymous:2012:EBg

Anonymous:2012:EBh

Anonymous:2012:EBi

Anonymous:2012:EBm
REFERENCES

Anonymous:2012:EBq

Anonymous:2013:EBa

Anonymous:2013:EBh

Anonymous:2013:EBb
REFERENCES
REFERENCES

Anonymous:2013:EBp

Anonymous:2013:EBq

Anonymous:2014:EBa

Anonymous:2013:MCP

Anonymous:2013:RA

REFERENCES

Anonymous:2014:EBb

Anonymous:2014:EBc

Anonymous:2014:EBd

Anonymous:2014:EBe

Anonymous:2014:EBf

Anonymous:2014:RA

Anonymous:2015:CEBa
REFERENCES

Anonymous:2015:CEBb

Anonymous:2015:CEBc

Anonymous:2015:CEBd

Anonymous:2015:CEBe

Anonymous:2015:CEBf

Anonymous:2015:EBa

Anonymous:2015:EBb

Anonymous. Editorial Board. Computer Vision and Image Understanding: CVIU, 137(??): IFC, August 2015. CO-
REFERENCES

Anonymous:2015:EBc

Anonymous:2015:EBd

Anonymous:2015:EBe

Anonymous:2015:EBf

Anonymous:2015:EBg

Anonymous:2015:EAD

Anonymous. Editorial of special issue on shape representations meet visual
REFERENCES

Anonymous:2015:RA

Anonymous:2016:EBa

Anonymous:2016:EBb

Anonymous:2016:EBc

Anonymous:2016:EBe

Anonymous:2016:EBf
REFERENCES

Anonymous:2016:EBg

Anonymous:2016:EBh

Anonymous:2016:EBi

Anonymous:2016:EBj

Anonymous:2017:EBl

Anonymous:2017:EBm

Anonymous:2017:EBn

Anonymous:2017:EBp

Anonymous. Editorial Board. Computer Vision and Image Understanding: CVIU, 155(??): ifc, February 2017. CO-
Anonymous:2017:EBn

Anonymous:2017:EBb

Anonymous:2017:EBc

Anonymous:2017:EBd

Anonymous:2017:EBe

Anonymous:2017:IFCa

Anonymous:2017:IFCb

Anonymous:2017:IFCc

Anonymous:2018:EBa

Anonymous:2018:EBb

Anonymous:2018:EBc

Anonymous:2018:EBd

Anonymous:2018:EBe

Anonymous:2018:EBf

Anonymous:2018:EBg

Anonymous:2018:EBh

Anonymous:2018:EBi

Anonymous:2018:EBj

REFERENCES

REFERENCES

Anonymous:2019:EBg

Anonymous:2019:EBj

Anonymous:2019:EBk

Anonymous:2019:EBi

Anonymous:2019:N

REFERENCES

REFERENCES

Anonymous:2020:EBf

Anonymous:2020:EBg

Anonymous:2020:EBh

Anonymous:2020:EBi

Anonymous:2020:EBj

Anonymous:2020:EBk

Anonymous:2020:F
REFERENCES

1077-3142 (print), 1090-235X (electronic).

Anonymous:2020:Ja

Anonymous:2020:Jc

Anonymous:2020:Jb

Anonymous:2020:Ma

Anonymous:2020:Mb

Anonymous:2020:N

Anonymous:2020:O

Anonymous:2021:A

Anonymous:2021:D

REFERENCES

Anonymous:2021:EBa

Anonymous:2021:EBb

Anonymous:2021:EBc

Anonymous:2021:EBd

Anonymous:2021:EBg

Anonymous:2021:EBh

Anonymous:2021:EBi

REFERENCES

Anonymous:2021:Jd

Anonymous:2021:Jb

Anonymous:2021:Ma

Anonymous:2021:N

Anonymous:2021:O

Anonymous:2021:S

Anonymous:2022:Aa

Anonymous:2022:Ab

Anonymous:2022:D

Anonymous:2022:EBa

Anonymous:2022:EBb

Anonymous:2022:EBc

Anonymous:2022:EBd

Anonymous:2022:EBe

Anonymous:2022:EBf

Anonymous:2022:EBg

[Ano22j] Anonymous. Editorial Board. Computer Vision and Image Under-
REFERENCES

Anonymous:2022:EBk

Anonymous:2022:F

Anonymous:2022:Ja

Anonymous:2022:Jb

Anonymous:2022:Jd
REFERENCES

Anonymous:2022:Jc

Anonymous:2022:Ma

Anonymous:2022:N

Anonymous:2022:O

Anonymous:2023:Aa

Anonymous:2023:Ab

Anonymous:2023:EBa

Anonymous:2023:EBb

REFERENCES

Anonymous:2023:EBc

Anonymous:2023:EBd

Anonymous:2023:EBc

Anonymous:2023:EBf

Anonymous:2023:EBg

Anonymous:2023:E Bh

Anonymous:2023:F

Anonymous:2023:Ja

REFERENCES

Argyriou:2010:PSA

Androutsos:1999:NVB

Ayala-Raggi:2011:AFI

Adcock:2014:CHL

Alata:2009:TBC

Olivier Alata and Ludovic Quintard. Is there a best color space for color image characterization or representation based on Multivariate Gaussian Mixture Model? *Computer Vision and Image Understanding: CVIU*, 113(8):867–877, August 2009. CODEN CVIU64. ISSN 1077-3142 (print), 1090-235X (electronic).
REFERENCES

REFERENCES

Awan:2023:WSM

Alletto:2017:VRE

Ashraf:2013:VIA

Audette:2003:IRS

Agrawal:1997:PTP

REFERENCES

REFERENCES

REFERENCES

Aner-Wolf:2004:VSC

Alqahtani:2021:PCF

Aditya:2018:IUU

Akl:2018:SEB

Ates:2023:DLB

Aytar:2015:PLT

Arbab-Zavar:2011:GMB

Argyriou:2014:OID

Amir:2005:ESE

Black:1996:REM

Barreto:2006:FCP

Biasutti:2019:DIR

Boulahia:2018:CCD

Bloom:2016:HTL

Ba:2016:LVB

Sileye Ba, Xavier Alameda-Pineda, Alessio Xompero, and Radu Horaud. An on-line variational Bayesian model for multi-person tracking from cluttered scenes.
REFERENCES

[Bartoli:2005:GDS]

[Barr06]

[BB95]

[Bergetuin:2003:OLS]

[Barath:2018:EEB]

[Bogoni:1995:IRR]

[BB03]
REFERENCES

1077-3142 (print), 1090-235X (electronic).

Bergevin:2004:DCJ

Bloch:2013:MMH

Bouachir:2015:CPB

Baldacci:2016:OBG

Bertin:1996:VPC

Etienne Bertin, Horst Bischof, and Pascal Bertolino. Voronoi pyramids controlled by Hopfield neural networks. *Computer Vision and Image Un-
REFERENCES

148

Baldoni:2000:UIC

Bertozzi:2007:PDM

Besedin:2020:DOC

Bellotto:2012:CVT

Brunet:2014:MTB

F. Brunet, A. Bartoli, and R. I. Hartley. Monocular template-based 3D surface reconstruction: Convex in-

Bardinet:1998:PDM

Blaiotta:2016:VIM

Bianco:2016:CIC

Barbosa:2018:LBA

Bertugli:2021:AVA

REFERENCES

REFERENCES

Bazzani:2013:SDA

Bernier:2009:FNB

Barata:2016:CIA

Bianco:2015:ITM

Bartoli:2015:MCA

Borgefors:1996:ANP
Gunilla Borgefors and Gabriella San

REFERENCES

Bay:2008:SRF

Brecht:2005:AVC

Benoit:2007:TDR

Bentolila:2014:CEC

Bonnaens:2022:APO

Barnard:1997:CCS

Kobus Barnard, Graham Finlayson, and Brian Funt. Color constancy for scenes with varying illumination. *Computer Vision and Image Understanding: CVIU*, 65
REFERENCES

Bian:2023:GLC

Battaglino:2013:DTH

Black:2000:REC

Burghouts:2009:PEL

Bozorgtabar:2016:EMT
Busto:2018:VRE

Bagheri:2017:LRG

Beveridge:2009:FIA

Bober:1998:ARE

Beveridge:2009:FIA

159

REFERENCES

REFERENCES

Bigun:1997:PRI

Borza:2023:TSE

Breen:1996:AOT

Basri:1997:CS

Barbalau:2023:SRS

[Big97] [BIMD23] [BJ96] [BIMD23] [BJ97]
REFERENCES

Biswas:2014:AS

Bugaric:2014:AEV

Barron:2001:EAP

Bassiou:2007:CIH

Barbu:2015:EIC

Adrian Barbu and Iasonas Kokkinos. Editorial introduction to the CVIU special issue on “Generative models in computer vision and medical imaging”. *Computer Vision and Image Understanding: CVIU*, 136
REFERENCES

Baek:2016:SFC

Bowyer:2001:EDE

Bayer:1998:CPD

Bray:2007:SPF

Baker:2010:USA

Banerjee:2015:RCI

Bolduc:1998:RBM

Bretzner:1998:FTA

Bleau:2000:WBS

REFERENCES

REFERENCES

59–69, April 2016. CO-
DEN CVIU:4. ISSN 1077-
3142 (print), 1090-235X
(electronic). URL http:/
/www.sciencedirect.com/
science/article/pii/S1077314215002556

Ban:2020:PDD

Yuseok Ban and Sangy-
oun Lee. Protuberance
of depth: Detecting inter-
est points from a depth
image. Computer Vi-
sion and Image Under-
standing: CVIU, 194(??):
Article 102927, May 2020. CO-
DEN CVIU:4. ISSN 1077-
3142 (print), 1090-235X
(electronic). URL http:/
/www.sciencedirect.com/
science/article/pii/S1077314220300187

Bazzica:2016:DPN

Alessio Bazzica, Cynthia
C. S. Liem, and Alan Han-
jalic. On detecting the
playing/non-playing activity
of musicians in symphonic
music videos. Computer Vi-
sion and Image Under-
standing: CVIU, 67(1):
188–204, March 2016. CO-
DEN CVIU:4. ISSN 1077-
3142 (print), 1090-235X
(electronic). URL http:/
/www.sciencedirect.com/
science/article/pii/S1077314215002040

Baslamisli:2021:PBS

Anil S. Baslamisli, Yang
Liu, Sezer Karaoglu, and
Theo Gevers. Physics-
based shading reconstruc-
tion for intrinsic image de-
composition. Computer Vi-
sion and Image Under-
standing: CVIU, 205(??):
Article 103183, April 2021. CO-
DEN CVIU:4. ISSN 1077-
3142 (print), 1090-235X
(electronic). URL http:/
/www.sciencedirect.com/
science/article/pii/S1077314221000278

Bergevin:1995:RRV

Robert Bergevin, Denis Lau-
rendeau, and Denis Pous-
sart. Registering range views
of multipart objects. Com-
puter Vision and Image Un-
derstanding: CVIU, 61(1):
1–16, January 1995. CO-
DEN CVIU:4. ISSN 1077-
3142 (print), 1090-235X
(electronic). URL http:/
/www.idealibrary.com/
links/artid/cviu.1995.1001/production;
http://www.idealibrary.com/
links/artid/cviu.1995.1001/produc-
tion/pdf

Bricault:1997:VMI

Ivan Bricault and Olivier
Monga. From volume med-
ical images to quadratic
surface patches. Computer Vi-
sion and Image Under-
standing: CVIU, 67(1):
24–38, July 1997. CO-
DEN CVIU:4. ISSN 1077-
3142 (print), 1090-235X
(electronic). URL http:/
/www.idealibrary.com/
links/artid/cviu.1996.0501/production;
http://www.idealibrary.com/
links/artid/cviu.1996.0501/produc-
tion/pdf
REFERENCES

REFERENCES

[Babaee:2015:DOM] M. Babaee and S. Negah-
daripour. 3-D object modeling from 2-D occluding contour correspondences by opti-acoustic stereo imaging.

Bookstein:1997:SIM

Borgefors:1996:DDT

Borji:2019:PCG
Ali Borji. Pros and

REFERENCES

Batenburg:2013:DAS

Bhowmick:2017:DCH

Borlino:2022:SSM

Bratanic:2015:RTP

Bhanu:2015:EIS

Barreto:2010:SIO

Brun:2016:ARU

Bhavsar:2012:RMS

Beveridge:1995:OGM

Brand:1997:PBV

Bascon:2010:OPI

Bretto:2001:CGD

Breuel:2003:ITG

Bozorgtabar:2019:LSS

Brito:2017:ASM

Bolle:2004:EAP

REFERENCES

Bui:2017:CDS

Bartrina-Rapesta:2011:JRC

Barequet:1996:PLI

Berman:1999:FID

Boyer:1999:GEI

Brejl:2000:DED

Bubna:2000:MST

Bartoli:2005:SMU

Baskurt:2019:VSS

Ben-Shabat:2018:GBS

REFERENCES

Bodis-Szomorú, 2017: EEA

Bisagno, 2021: EGO

Bleichrodt, 2014: SAD

Badoual:2019:TDP

Bucher:2021:HNT

Berenguer-Vidal:2015:CAM

Banerjee:2021:RUC

REFERENCES

Bouwmans:2014:RPP

Bartoccioni:2023:LMM

Chang:1997:LCC

REFERENCES

Cakir:2017:OSH
Fatih Cakir, Sarah Adel Bargal, and Stan Sclaroff.
Online supervised hashing.

Chaudhuri:2004:ESE

Cohen:1996:HMM
Isaac Cohen and Laurent D. Cohen. Hybrid hyperquadric model for 2-D and 3-D data fitting.

Chen:2001:ERA
Teh-Chuan Chen and Kuo-Liang Chung. An efficient randomized algorithm for detecting circles.
Chowdhury:2003:FRM

Cheng:2007:BSM

Chen:2011:SSV

Cosar:2015:SDB

Cristina:2016:MBH

Colombo:2011:SRT

REFERENCES

Cardoso:2009:PDM

Choi:2012:RMO

Csurka:1999:FCB

Chung:2013:RAM

Comic:2014:TMH

[CDIF14] Lidija Comić, Leila De Floriani, Federico Iuricich, and Ulderico Fugacci. Topological modifications and hierarchical representation...

Cerri:2014:CST

Chaperon:2011:RCP

Chen:2014:SAG

Chi:2017:ETD

Canal:2016:RTH

Cevikalp:2018:LSI

Campbell:2001:SFF

Cheong:1998:EEV

Chen:2005:IVL

REFERENCES

[CG04] Guido M. Cortelazzo and Concettina Guerra. Model-

[Chakraborty:2013:LSC] Bhaskar Chakraborty, Jordi González, and F. Xavier

Cakir:2011:NNB

Castano:1996:PAP

Christy:1999:IPC

Castelan:2006:AHD

Corso:2009:IDF

REFERENCES

Chesi:2011:FMV

Chen:2017:SHG

Chen:2021:CCE

Cheng:2011:ELD

Cheng:1996:AAI

Chen:1998:HDP

Yung-Sheng Chen. Hidden deletable pixel detection using vector analysis in parallel thinning to obtain bias-reduced skeletons. *Computer
REFERENCES

REFERENCES

Chakraborty:2012:SST

Calderara:2011:DAP

Cox:1996:MLS

Caselles:2008:GVM

Chung:2002:RVD

Chen:2013:RFB

Caglayan:2022:WCM

Collins:1998:ASA

Cord:2001:ABS

Chin:2006:HSI

198

REFERENCES

REFERENCES

REFERENCES

[Cheng:2014:SSM] Jian Cheng, Cong Leng, Peng Li, Meng Wang, and Hanqing Lu. Semi-

Shaun Canavan, Peng Liu, Xing Zhang, and Lijun Yin. Landmark localization on 3D/4D range data using a shape index-based statistical shape model with global and local constraints. *Computer Vision and Image Un-

REFERENCES

Cuisenaire:1999:FED

Cao:2012:IFE

Chakraborty:2016:DSB

Cheema:2021:SFD

Cao:2009:HMR

[CMBP09] Dongwei Cao, Osama T. Masoud, Daniel Boley, and
REFERENCES

Jordan Caracotte, Fabio Morbidi, and El Mustapha...

Chung:1995:UMG

Cunado:2003:AED

Cousty:2013:MFG

Chessa:2016:IAV

Ciocca:2018:CBF

Gianluigi Ciocca, Paolo Napoletano, and Raimondo Schettini. CNN-based features for retrieval and classification of food images. *Computer Vision and Image Understanding: CVIU*, 176–177(??):70–77, Novem-
REFERENCES

Choi:2016:SBA

Celik:2008:FFE

Coeurjolly:2012:FAA

Collins:1997:GVS

Couprie:2013:TMR
REFERENCES

Chu:2022:STV

Caelli:1998:SMI

Cheong:2004:DDU

Cho:2009:FAD

Combes:2020:EEI

Chatterjee:2021:SSR

[CP21] Bodhiswatta Chatterjee and Charalamboi Poullis. Semantic segmentation from remote sensor data and the

Calderara:2008:HHE

Chang:2011:GFM

Chen:2021:SAH

Castrillon-Santana:2017:MTO

Chen:2016:PBM

Ciesielski:2014:EAF

Celik:2010:UCI

Celik:2012:ACC

Choudhury:2013:GRB

Cootes:1995:ASM

Ching:1995:RVC

Chen:1998:EAS

Krzysztof Chris Ciesielski and Jayaram K. Udupa. Affinity functions in fuzzy connectedness based image
REFERENCES

Casares:2010:LWS

Cui:2000:ABH

Chang:2015:ODM

Chen:2020:JSN

Cao:2013:UDL

Choi:2013:STP

Jaesik Choi, Ziyu Wang,

REFERENCES

Chen:2010:CHP

Chen:2014:FAS

Chen:2015:SSL

Chen:2020:NTA

Chung:2018:LLR

Chung:2018:LLR

Csurka:1997:CUF

[CZZF97] Gabriella Csurka, Cyril Zeller, Zhengyou Zhang, and Olivier D. Faugeras. Characterizing the uncer-

[Cui:2007:LBD]

[Dubourg2012:INM]

[Dan97]
REFERENCES

Davatzikos:1997:STR

Das:2017:HAV

DelaTorre:2003:RPC

Ducournau:2014:RWD

Dutt:2013:APO

Mousumi Dutt, Arindam Biswas, and Partha Bhownick. Approximate partitioning of

Draper:2003:RFP

Dutt:2014:FSI

Damiand:2004:TMT

Dimiccoli:2017:SCS

Dankers:2007:MZS

Deshpande:1998:REI

Dornaika:2000:CSM

Drummond:2000:LTS

Dornaika:2001:AAC

REFERENCES

DelBimbo:1999:GEI

deCampos:2012:ISL

Denis:2007:SSQ

Dickinson:1997:AOR
References

DelBimbo:2011:PFB

Dong:2011:ALM

DelBimbo:2010:EDV

Deng:2012:CTG

Du:2023:DTS

[DFH+22] Hanze Dong, Yanwei Fu, Sung Ju Hwang, Leonid Sigal, and Xiangyang Xue. Learning the compositional

Darrell:2015:ICS

Lascio:2013:RTA

Durou:2008:NMS

Damodaran:2020:EOT

Derrode:2001:REF

Stéphane Derrode and Faouzi Ghorbel. Robust and efficient Fourier-Mellin transform approximations for gray-level image reconstruction and complete invariant description. *Com-
REFERENCES

Dorini:2011:UFT

Daubney:2012:EPA

Daul:1998:HTN

Dave:2022:TTC

Delakis:2008:AIS

Demirdjian:2000:MED

Du:2019:WPB

Drouin:2008:IDO

Drosou:2012:SAH

Drew:2014:ZII

Dubuisson-Jolly:2001:TDT

Das:2022:IID

Das:1997:RID

Draper:2005:ESA

Bruce A. Draper and Albert Lionelle. Evaluation of selective attention under similarity transformations.
REFERENCES

233

Drbohlav:2010:TCI

deLavarene:2007:PIL

Daudt:2019:MLL

Darby:2014:TOP

Dimitrijevic:2006:HBP

Deng:1999:WBL

[DLHT99] Peter Shaohua Deng, Hong-Yuan Mark Liao, Chin Wen Ho, and Hsiao-Rong Tyan. Wavelet-based off-line handwritten signature verifica-
REFERENCES

REFERENCES

[Datta:2012:TDS]

[Desmarais:2021:RHP]

[Dafni:2017:DMR]

[DM12]

[DMAD17]

[DMW10]

[dMFU10]

[Doc98]

[DMSM21]

[Desmarais:2021:RHP]

[Dunne:2010:EGC]

[Doermann:1998:IRD]

REFERENCES

Demirci:2011:EMM

Junior:2012:RCH

DeLaGorce:2010:VAM

Demi:2000:FAC

Demirkus:2015:HTG
Meltem Demirkus, Doina Precup, James J. Clark, and Tal Arbel. Hierarchical tem-

Dehne:1995:HAP

Debled-Rennesson:2013:SID

Drew:1996:DSO

Denman:2003:CBA

Davis:2007:BSU

Damiand:2011:PAS

[DSdlH+11] Guillaume Damiand, Christine Solnon, Colin de la Higuera, Jean-Christophe

[DSK⁺20]

[dSdSF⁺12]

[DSH⁺20]

[DSH04]

REFERENCES

Dutagaci:2010:SMR

DaVitoriaLobo:1996:CED

Dudek:1997:SRR

Daliri:2009:CSU

Demirci:2008:ITL

Dang:2011:SIP

Dansereau:2016:SCD

Duan:2023:CDM

DeSmedt:2019:HHG

Quentin De Smedt, Hazem Wannous, and Jean-Philippe Vandeborre. Heterogeneous hand gesture recog-

Drory:2017:ADT

Du:2023:PST

Eggers:1995:HSI

Elguebaly:2013:FAG

Eskil:2014:FER

REFERENCES

Ellis:2014:BIR

Eggert:1998:SRM

Guo:2007:PSI

Elwarfalli:2021:FCN

REFERENCES

CODEN CVIUFS. ISSN 1077-3142 (print), 1090-235X (electronic).

Eckhardt:2003:TDS

Elgammal:2007:NML

Ehrhardt:2019:TVM

Elich:2022:WSL

ElJurdi:2021:HLP

Embrechts:1996:PED
REFERENCES

Ehab Essa and Xianghua Xie. Automatic segmentation of cross-sectional coronary arterial images. Computer Vision and Image Understanding: CVIU, 165(??):97–110, December 2017. CO-

Fakih:2014:AAS

Fua:1997:IHC

Fiala:2005:PSR

Ferraz:2012:SCB

Fogelton:2016:EBD

Fogelton:2018:EBC

REFERENCES

Faltemier:2008:UMI

Fortun:2015:OFM

Fortun:2016:ALP

Fond:2021:MIR

Fehr:2015:CBP

Furtado:2020:HVS

Pedro Furtado, Manuel Caldeira, and Pedro Mar-
REFERENCES

Tristan Frizza, Donald G. Dansereau, Nagita Mehr Seresht, and Michael Bewley. Semantically accurate super-resolution Generative Adversarial Networks. *Computer Vision and Image Understanding: CVIU*, 221(??):??, August 2022. CO-

Fejes:1999:DIM

Ferraris:2019:CDL

Fejes:1999:DIM

Ferraris:2019:CDL

Feldmar:1997:EIA

Frizza:2022:SAS
REFERENCES

Fan:2021:RSS

Farenzena:2009:SMG

Fulgeri:2019:CAN

Fei-Fei:2007:LGV

Ferri:2014:SSC

Fasel:2005:GFR

Ian Fasel, Bret Fortenberry, and Javier Movellan. A generative framework for real time object detection and classification. Computer
References

Fang:2004:ARS

Flynn:2001:SIE

Furukawa:2009:LRS

Fan:2013:SSA

Fielding:2000:CCO
Fischer:1998:EBA

Farinella:2016:SIAb

Fritz:2010:TBL

Ferrer:2011:GFM
REFERENCES

[Fieguth:1998:EMC] [FKW98]

[Fua:1996:TAI] [FL96]

[Fan:2009:FEM] [FL09]

[Figueroa:2006:TSP] [FLB06]

REFERENCES

Fablet:2008:IBR

R. Fablet, S. Pujolle, A. Chesnel, A. Benzinou, and F. Cao.

Frahm:2012:SIV

Fu:2019:PAS

Fabbrizzi:2022:SBV

Filipovych:2011:RSA

Faugeras:1998:DRU

Olivier Faugeras, Luc Robert, Stéphane Laveau, Gabriella Csurka, Cyril Zeller, Cyrille Gaucin, and Imad Zoghlami. 3-D reconstruction of urban scenes from image sequences. *Computer

Yuki Fujimura, Motoharu Sonogashira, and Masaaki Iiyama. Dehazing cost volume for deep multi-view stereo in scattering media with airlight and scattering coefficient estimation. Computer Vision and Image Understanding: CVIU, 211(??):??.
REFERENCES

REFERENCES

Fan:2018:HCS

Fan:2020:VAD

Fang:2023:IVI

Fan:2017:OHT

Feldman:2006:HIP
REFERENCES

Golland:1997:MC

Gilbert:2008:IST

Gilbert:2017:IVM

Galleguillos:2010:CBO

Goncalves:2013:DTS

REFERENCES

REFERENCES

Maximilien Guislain, Julie

Maximilien Guislain, Julie

Gonzalez-Diaz:2011:IRC

Gritti:2014:SVS

Greenspan:2004:CDS

Gimenez:2008:EAM

Green:1995:GRA

REFERENCES

//www.idealibrary.com/
1049/production/pdf.

Ghanei:2015:LST

Gao:2011:AIS

Galteri:2019:DMM

Gevers:2004:CII

Gu:2013:ASU

Gong:2014:JVI
Jiulu Gong, Guoliang Fan, Liangjiang Yu, Joseph P. Havlicek, Derong Chen, and Ningjun Fan. Joint view-identity manifold for infrared target tracking and
Gevrekci:2009:IRI

Goldman:2020:CDC

Gomez-Garcia:2008:IRB

Grossmann:2010:DCC

Gautam:2023:WEI

Sidharth Gautam, Tapan Kumar Gandhi, and B. K.

Greenspan:2001:CPF

Gondra:2008:CBI

Gao:2010:HIC

Chunyu Gao, Hong Hua, and Narendra Ahuja. A hemispherical imaging camera.

Greenspan:2001:CPF

Gong:2017:NCS

Gros:1997:HUP

REFERENCES

Godin:2009:SIN

Goutsias:1995:MOI

Gao:2013:FEU

Gopalan:2010:CCL

Galata:2001:LVL
REFERENCES

[GKPS15] D. Giordano, I. Kavasidis, S. Palazzo, and C. Spamp-
REFERENCES

Gross:1995:DPT

Gross:1997:RDM

Guo:1998:DVS

Gao:2019:CHI

REFERENCES

Guan:2023:PHP

Galama:2019:IIG

Gimenez:2014:UEM

Gueziri:2016:GGR

Guo:2021:MMP

Guimond:2000:ABM

Gonzalez:2012:SUH

Gomes:2022:MHF

Gruen:1998:ABE

Galego:2015:UAD

Ricardo Galego, Agustín Ortega, Ricardo Ferreira,
REFERENCES

D. Grosgeorge, C. Petitjean, J.-N. Dacher, and S. Ruan. Graph cut segmentation with a statistical shape model in car-
REFERENCES

Gong:2007:GOF

Gil:2005:EAO

Godec:2013:HBT

Gay:2018:FBS
Paul Gay, Cosimo Rubino, Marco Crocco, and Alessio Del Bue. Factorization based

Grevera:2004:DRS

Galbally:2013:IIR

Granell:2019:ISC

Gong:1995:DRM

Gauch:2006:FIU

REFERENCES

Goshtasby:2008:AWM

Garcia-Salguero:2022:CAT

Gupta:2002:CDG

Garcia-Sevilla:2001:AIS

Ghebreab:2002:NIP

Geronimo:2010:BBP

REFERENCES

REFERENCES

[GW07] Amit Gruber and Yair Weiss.

REFERENCES

ISSN 1077-3142 (print), 1090-235X (electronic).

REFERENCES

Ho:1998:PCC

Hassan:2012:ASC

Hollingsworth:2009:PDD

Hosni:2013:SAS

Hesami:2010:RSL

REFERENCES

Hoseinnezhad:2011:EHB

Hafner:2022:CMD

Hollingsworth:2011:GIH
<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

Hammoud:2007:AVA

Han:2009:PFB

Huang:2012:PRF

Herold:2014:RHR

Hoang:2020:SCQ

Hammouche:2008:MAT

REFERENCES

Hilton:2001:MPT

Hillenbrand:2011:ESF

Haag:1997:IEM

Hilton:2006:MPV

Hofmann:2011:HMA
Michael Hofmann and Darius M. Gavrila. 3D Human model adaptation by frame selection and shape-texture op-

Hoover:1998:SER

Hsu:2015:HDU

Heber:2013:SBT

Hurtut:2008:AIR

Hilton:2011:SII

REFERENCES

REFERENCES

Hong:2016:EEI

Heisele:2003:FRC

Harrison:2012:TPA

Huang:2016:MOT

Huq:2013:OFS

Hamid:2014:VFT

Raffay Hamid, Ramkrishan Kumar, Jessica Hodgins, and Irfan Essa. A visualization framework for team sports captured using multiple static cameras. *Com-
REFERENCES

Han:2022:QBD

Hasinoff:2006:BMV

Huang:2014:NDR

Huang:2016:MME

Hjelmáss:2001:FDS

[Erik Hjelmás and Boon Kee Low. Face detection: a
Han:2013:BIT

Hsieh:1997:IRU

Hwang:2019:PML

He:2023:DAM

Xuan He, Zhiyong Li, Jiachen Lin, Ke Nai, Jin
REFERENCES

[HMB17]

[HMC10]

[PRW97a]

Huan:2010:IRB

[HMA10]

[HMB17]

Hanbury:2010:SII

[PRW97a]

Hemati:2022:NAG

Sobhan Hemati, Mohammad Hadi Mehdizavareh, Shojaeddin Chenouri, and Hamid R. Tizhoosh. A non-alternating graph hashing algorithm for large-scale image search. *Computer Vision and Image Understanding: CVIU*, 219:??, June 2022. CODEN CVIU4. ISSN 1077-
REFERENCES

REFERENCES

Hoey:2010:AHA

Hu:2005:FCC

Hu:2009:AMF

Hasan:2016:ILH

Han:2017:STR

Hartkens:2002:EOD

Hartley:1997:T

Heo:2006:FRM

Habibian:2014:RRV
Amirhossein Habibian and Cees G. M. Snoek. Recommendations for recognizing video events by concept vocabularies. Computer Vision and Image Under-
derstanding: CVIU, 124(??):110–122, July 2014. CO-
DEN CVIUF4. ISSN 1077-3142 (print), 1090-235X (electronic). URL http://
//www.sciencedirect.com/
science/article/pii/S1077314214000290

[He:2016:HMD] Sheng He, Petros Samara, Jan Burgers, and Lambert Schomaker. His-
torical manuscript dating based on temporal pattern codebook. Computer Vi-
sion and Image Understanding: CVIU, 152(??):167–175, November 2016. CO-
DEN CVIUF4. ISSN 1077-3142 (print), 1090-235X (electronic). URL http://
//www.sciencedirect.com/
science/article/pii/S1077314216301163

mation for interaction with mobile devices. Computer Vision and Image Under-
ISSN 1077-3142 (print), 1090-235X (electronic).

[Huang:2020:HSM] Ying Huang, Hubert P. H. Shum, Edmond S. L. Ho, and Nauman Aslam. High-
speed multi-person pose estimation with deep feature transfer. Computer Vision
and Image Understanding: CVIU, 197–198(??):Article 103010, August 2020. CO-
DEN CVIUF4. ISSN 1077-3142 (print), 1090-235X (electronic). URL http://
//www.sciencedirect.com/
science/article/pii/S1077314218302261

dart, J. Illingworth, and T. Windeatt. Implicit
surface-based geometric fusion. Computer Vision
and Image Understanding: CVIU, 69(3):273–
291, March 1998. CODEN CVIUF4. ISSN 1077-
3142 (print), 1090-235X (electronic). URL http://
//www.idealibrary.com/
0664/production; http://
//www.idealibrary.com/
0664/pdf; http://www.idealibrary.
0664/ref

[Huhle:2010:FRC] Benjamin Huhle, Timo
Schairer, Philipp Jenke, and Wolfgang Straßer. Fusion
of range and color images for denoising and resolution
enhancement with a non-
local filter. Computer Vision
and Image Understanding: CVIU, 114(12):1336–1345,
December 2010. CODEN
REFERENCES

CVIU5F. ISSN 1077-3142 (print), 1090-235X (electronic).

[Helferty:2007:CBS]

[Hershkovich:2016:PMI]

[Heath:1998:CED]

[HT98]
Hancock:2011:SIG

HajiRassouliha:2018:SPB

Hu:2008:IBN

HajiRassouliha:2018:SPB

Herda:2005:HIS

Haltakov:2016:GPN

Hua:2006:SMF

Hua:2007:DPA

Hao:2021:WSI

Han:2021:PIA

Huang:2006:NCI

He:2016:ISU

Hao:2023:EMS

Hu:1998:MBS

Ho:2011:ARP

Han:2011:CFE

Hu:2019:EWS

REFERENCES

Huang:2011:CSA

Humenberger:2010:FSM

Ion:2011:MAS

Intille:2001:RPM

Iqbal:2018:DSA

REFERENCES

[IJDAB13] Vincent Israel-Jost, Jérôme Darbon, Elsa D. Angelini, and Isabelle Bloch. Con-

Immerkaer:1996:FNV

Ivins:1998:CAR

Impoco:2015:ILS
REFERENCES

Roy Josef Jevnisek and Shai Avidan. Semi global boundary detection. *Computer Vision and Image Under-
REFERENCES

315

Jacobs:2001:LFM

Jiang:1999:EDR

Jin:2015:ASP

J:2023:ALH

Jia:2008:VBD

[102x681]REFERENCES

[177x646]Jeyakar:2008:ROT

[JBR08]

[177x634]Jiang:2011:GBM

[JBWK11]

[177x598]Joshi:2006:SES

[JC06]

[177x461]Jiang:2021:SIR

[JCLZ21]
REFERENCES

[Jacot-Descombes:1997:APG]

[Jean:2011:OSP]

[Jamieson:2012:DHO]

[Jordan:1998:PCB]

[Junejo:2010:GCE]
REFERENCES

Jiang:2020:VBE

Jang:2019:RFF

Ju:2016:E

Javaran:2017:NBI

Jorquera:2019:PHD

Jain:2007:SMO

REFERENCES

[JLY+17] Mahdi Jampour, Chen Li, Lap-Fai Yu, Kun Zhou, Stephen Lin, and Horst Bischof. Face inpaint-
REFERENCES

Ji:2023:SSS

Julia:2011:SBI

Jiang:2009:VWP

Jampani:2015:ISD

REFERENCES

REFERENCES

Jones:2008:SII

Joseph:1999:OPE

Jost:2005:ACC

Ji:2022:DAA

Jung:2014:SRU

Jia:2017:MML

Jieren Jia, Qiuqi Ruan, Gaoyun An, and Yi Jin. Multiple metric learning with query adaptive weights and multi-task re-weighting for person re-identification.
REFERENCES

Jiang:2017:IDU

Jin:2017:FAW

Jurie:1999:SSP

Janssen:1997:AVL

Jain:2020:LGE

Monika Jain, Subramanyam A. V., Simon Denman, Sridha

JWG04

JvdBS99

JWDF05

Jeong:2004:IRU

Jiang:2011:AVE

JY14

REFERENCES

Kanth:1999:DRS

Kak:1997:THF

Kimmel:1995:GSS

Kimmel:1995:TLS

[KB95b] Ron Kimmel and Alfred M. Bruckstein. Tracking level sets by level sets: a method for solving the shape from shading problem. *Com-
Kanai:1998:SID

Kiryati:2000:HHT

Krausz:2012:LAV

Khandelwal:2016:LGC

Kontschieder:2012:EHG
[KBD+12] Peter Kontschieder, Samuel Rota Bulò, Michael Donoser, Mar-

Kou:2018:PRF

KDRC98

KD96

Kaess:2010:PSM

Kia:1998:SCP

Khatun:2020:JIV

Amena Khatun, Simon Denman, Sridha Sridharan, and Clinton Fookes. Joint identification-verification for

[Kiforenko:2018:PEP]

[Kosmopoulos:2012:BFB]

[Kwon:2016:TSS]

[Kwon:1999:ACF]

[Kooij:2015:IMO]

Julian F. P. Kooij, Gwenn Englebienne, and Darius M. Gavrila. Identifying multiple objects from their ap-

[KGB17] Philip Krejov, Andrew Gilbert, and Richard Bowden. Guided optimisation through classification and regression for hand pose estimation. *Computer Vi-
REFERENCES

Kim:2005:RAD [KGC05]

Kim:2010:JRC [KGFP10]

Kim:2010:ESC [KGK10]
Jun-Sik Kim, Pierre Gurdjos, and In So Kweon. Euclidean structure from confocal cones: Theory and application to camera calibration.

Kuznetsov:2019:IRP [KGM19]

Kucuktunc:2010:FCH [KGU10]

Khoubyari:1996:FFW [KH96]
REFERENCES

[Ke:2022:WSF]

Kim:2004:EEU

Kim:2015:MCF

Kiselman:1996:RPD

Kishimoto:1996:CDC

REFERENCES

Kerola:2017:CVH

Kim:2007:RMB

Kim:2009:CCB
Jun-Sik Kim and In So Kweon. Camera calibration based on arbitrary parallelograms. *Computer Vision and Image Understanding: CVIU*, 141(??):138--
Kafle:2017:VQA

Kim:2023:ADI

Kim:2023:ECA

Kim:2023:RKV

Kim:2023:ADI

Kajo:2023:TBC

Kajo:2023:TBC

M. Kowalczyk and W. S. Mokrzycki. Obtaining complete 2 D view represen-

Kim:2017:IMS

Krisiian:2000:MBD

Kroon:2009:ELL

REFERENCES

REFERENCES

Kouzani:2003:LHF

Kim:1997:SSP

Kruger:2000:OOR

Krsek:2002:DIB

Kolsch:2007:SIV

Kristan:2009:CWT

Kliot:1998:IBS

Kobyshev:2017:EAS

Kundur:1999:NAV

Kuehne:2017:WSL

Kilambi:2008:EPC

Kjellstrom:2011:VOA

Kviatkovsky:2014:OAR

Kehtarnavaz:1995:EAC

Kimia:1996:GHE

Karacal:2003:RDS

Bilge Karaçal and Wesley

[KSG+13] Sebastien Kurtek, Jingyong Su, Cindy Grimm, Michelle Vaughan, Ross Sowell, and...

Kim:2020:TCS

Khanloo:2012:LMF

Kume:2015:BAU

Hideyuki Kume, Tomokazu Sato, and Naokazu Yokoya. Bundle adjustment using aerial images with two-stage geometric verification. *Computer Vision and Image Understanding: CVIU*, 138(??):74–84, September 2015. CODEN CVIUF4. ISSN 1077-
Krotosky:2007:MIB

Kohli:2008:MUG

Kalyoncu:2015:GLC

Kakadiaris:2017:FRP

Komodakis:2008:PVC

Kwon:2017:LOU

REFERENCES

Khan:2019:SAV [KU19]

Kawana:2018:ECN [KUHY18]

Kuijper:2008:EES [KV06]

Kehl:2006:MTC [KVdG+97]

Kang:1999:CEC [KW99]

Sing Bing Kang and Richard

Piotr Koniusz, Fei Yan, and Krystian Mikolajczyk. Comparison of mid-level feature coding approaches and pool-

Kim:2014:STW

KYYC14

Kosecka:2005:EMP

KZ05

Klette:2012:ASD

KZ12

Lourakis:2005:ECC

LA05

Law:2011:SVM

LA11

Leizea:2015:RTN

[Ibai Leizea, Hugo Álvarez, and Diego Borro. Real time non-rigid 3D surface tracking using particle filter. *Com-

Lesage:2016:APF

Lai:2000:RIM

Lu:2010:CBO

Laurentini:1997:HMS

Li:1998:MGP

Fuxing Li and Michael Brady. Modeling the ground plane transformation for real-time obstacle detection. Computer Vision and Image Understanding: CVIU, 71
References

Leonardis:2000:RRU

Lim:2010:EEU

Laurentini:2014:CAF

Lekic:2019:ARC

Landi:2021:MAN

Loza:2010:NGM

Larsen:2010:SIT

Loss:2009:IMS

Lee:2023:USH

Liu:2009:VRB

Lai:2011:FII

Lee:2014:RTF

Loh:2019:GKL

Langrana:1997:FIV

REFERENCES

Liu:2014:SOV

Luo:2017:SCC

Lu:2018:LCN

Lee:2013:THR

Li:2021:TTT

Laptev:2007:LVA

Lanman:2009:SSL

Li:2001:EEF

Liu:2016:VCW

Liu:1998:GIL

Wenyin Liu and Dov Dori. A generic integrated line de-

Liu:2013:MRV

Liang:2009:MCC

Lefevre:2013:EEF

Lin:2014:ITC

Li:2015:EMF

[LDH+15] Huibin Li, Huaxiong Ding, Di Huang, Yunhong Wang, Xi Zhao, Jean-Marie Morvan, and Liming Chen. An

Lu:2019:ASE

Lavest:1997:IRZ

Lee:2009:DSO

Lmaati:2010:DSE

Lezoray:2007:GRC

Lee:2002:MVS

Laghrib:2018:SDD

Latecki:1995:WCS

Lejeune:1996:FPO

Luong:1998:DEU
Q.-T. Luong and O. D. Faugeras. On the deter-
References

Lagger:2008:RML

Liu:2008:FBM

Lee:2013:SAB

Liem:2014:JMP

[LHHC98] Hongche Liu, Tsai-Hong Hong, Martin Herman, and Rama Chellappa. Motion-model-based boundary extraction and a real-time implementation. *Computer Vision and Image Under-

References

REFERENCES

REFERENCES

REFERENCES

Li:2021:PRI

Liu:2009:ICV

Li:2014:CMS

Lu:2023:SGA

Liu:2023:PBB

Li:2013:SPN

Li:2014:SEN

Liu:2015:LRD

REFERENCES

Leichter:2010:MST

Lazarou:2021:NSM

Li:2014:PMF

Zechao Li, Jing Liu, Jinlui Tang, and Hanqing Lu. Projective Matrix Factorization with unified embedding for social image tagging. *Computer Vision and Image Understanding: CVIU*, 124
REFERENCES

Liu:2021:MCT

[LLWZ21]

Li:2018:SRU

[LLY+18]

Liu:2023:MMS

Latecki:1996:AST

Lee:1999:GLR
Li:2009:AER

Liu:2016:LED

Lopez-Molina:2011:GFE

REFERENCES

Lu:2010:LRC

Le:2019:ANC

LNM+21

Löpel-Nicolas:2014:UTM

Lohou:2010:DNT

Lee:2023:SKD

Liu:2007:CTA

Liao:2008:FBR

Li:2021:NCD

REFERENCES

Lin:2002:NAA

Lindner:2010:TFS

Li:2018:ATT

Li:2016:MEM

Lukac:2004:SWV

Lee:2013:PFO
Lopez-Sastre:2011:TMD

Livne:2012:HAP

Liang:2018:CHP

Luettin:1997:SUP

Lachaud:2005:DMC

Liu:2014:MHD
Weifeng Liu, Dacheng Tao, Jun Cheng, and Yuanyan Tang. Multiview Hessian

Lin:2023:USL

Li:2015:KRM

Lucchese:2001:FDT

Luong:1996:CRG

LeGuyader:2011:CSR

Carole Le Guyader and Luminita A. Vese. A combined

[Langerak:2015:ILF]

[Lam:1997:HVU]

[Lobel:2020:CCH]

[Luo:2003:OBA]
Ying Luo, Tzong-Der Wu,

Li:2023:RAR

Li:2012:SCW

Li:2017:STS

Lao:2016:HRD

Liu:2016:LPS

Li:2014:VOT

Li:2017:TLG

Liang:2016:AIR

Liu:2017:HMV

Lee:2005:LDI

Levine:2006:FRS

Lhuillier:2013:MSR

Luo:2013:CEH

REFERENCES

Guanbin Li, Pengxiang Yan, Yuan Xie, Guisheng Wang, Liang Lin, and Yizhou Yu. Instance-level salient object segmentation. Com-
REFERENCES

[LZ97c] Langer:1997:CLI

Lei:2014:OLD

Liu:2017:RSC

Lv:2022:BDN

Lian:2010:QPB

Liu:2017:ESI

Long:2016:ROM

[LS] Yang Long, Fan Zhu, and Ling Shao. Recognising occluded multi-view actions using local nearest neigh-

[Liu:2003:MRM] [LZWP03]

(Liu:2021:SIS)

Michel:2010:HML

Malti:2021:ERC

Monga:1997:TNC

Mandal:1999:FWH

Markussen:2007:LDD

Masuda:2002:RIM

Masuda:2009:LPH

Maybank:1997:RPR

Mayer:1999:AOE

Meng:2010:MML

Monga:1995:UPD

Olivier Monga and Serge

MacArthur:2002:ICB

Mille:2011:CNB

Maggio:2009:AAB

Marques:2009:ESD

McGuigan:2020:ARA

Munusamy:2022:VCU

Hemalatha Munusamy and Chandra Sekhar C. Video captioning using Semantically Contextual Generative Adversarial Network. *Computer Vision and Image Understanding: CVIU*, 221(??):??, August 2022. CODEN CVIUF4. ISSN 1077-
REFERENCES

402

[MCL16] Fanman Meng, Jianfei Cai, and Hongliang Li. Cosegmentation of multiple image groups. *Computer Vision and Image Understanding: CVIU*, 146(??):67–76, May 2016. CODEN CVIUUF4. ISSN 1077-

Ana I. Maqueda, Carlos R. del Blanco, Fernando Jaureguizar, and Narciso García. Human-computer interaction based on vi-

Maurin:2009:FAS

Macrini:2011:BGM

Mahpod:2021:FLL

Medeiros:2019:DTR

Moutzouris:2015:ETH

Moganti:1998:SPC

Moganti:1998:SLI

Molnar:2018:DGA

Moganti:1996:API

Manafifard:2017:SPT

Matov:2011:OFM

Mackay:2011:MCA

Michalke:2010:BIV

Mao:1995:IMF

Mohammed:2020:PDP

Medioni:2007:RRT

Marnissi:2023:IDA

Mason:1995:ASP

Moeslund:2001:SCV

REFERENCES

REFERENCES

Moreno:2011:EPC

Melendez:2011:UTB

Moreno-Garcia:2015:CMC

Ma:2010:HSM

Mostafa:2013:FRL

Moeslund:2006:SAV
Thomas B. Moeslund, Adrian Hilton, and Volker Kruiger. A survey of advances in vision-based human motion capture and analysis. *Computer Vision and Image Understanding: CVIU*, 104(2–3):90–126,
REFERENCES

Mikhnevich:2014:UVH

Medrano:2009:MFA

Mignotte:2012:MBS

Mai:2019:AMN

Medeiros:2010:PHB

Medrano:2009:MFA

Mignotte:2012:MBS

Mai:2019:AMN

Miller:1999:ATI

REFERENCES

REFERENCES

Mahpod:2018:KVU

Morales:2015:IPR

Matas:2002:MNS

Mokhtarian:2001:CCF

Ma:2013:HSI
Ma:2015:TDH

Mader:2018:DLS

Mekonnen:2013:CPT

Min:2020:CEP

Murrugarra-Llerena:2021:IRM

Marcelli:1997:SIC

Mokhtarian:2006:PEC

Maschino:2006:JRA

Monteiro:2018:DRA

Martinez:2004:CGP

Ma:2016:LGC

Mishkin:2015:MFR

Mollaret:2016:MMP
REFERENCES

Marchand-Maillet:1999:EOC

Madjidi:2006:RLA

McCane:2001:BOF

Mansouri:2006:MCL

[MNE00] Atsuto Maki, Peter Nordlund, and Jan-Olof Eklundh. Attentional scene segmenta-
REFERENCES

Meribout:2000:HTA

Mai:2017:ELS

Medathati:2016:BIC

Mai:2017:ELS

T:2018:GHQ
REFERENCES

/Michel:1998:GAT

/McGuinness:2011:TAE

/Mateo:2014:BPR

/Mokhtarian:1997:TMT

/Mahmoudabadi:2017:DSM

Magee:2009:CVB

Montoliu:2009:GLS

Maddalena:2014:AMO

Mukherjee:2020:SSS

MacLean:2007:SIS

Martinel:2016:SEL
Morse:1998:ZIV

Moreno:2014:FGC

Marcon:2008:FPA

Mayer:2021:AFD

Moctezuma:2023:VCC

Murino:1996:GSP

REFERENCES

Maas:2019:LNT

Ma:1996:FPT

Murray:1996:DUP

REFERENCES

Malassiotis:1997:MBJ

Maxwell:1997:PBS

Maxwell:2000:SIM

Minetto:2012:IVS

Malmir:2017:DAO
[MSF+17]

Mallik:2010:CBI
[MSG10]

MacLean:2010:LCM
[MSI10]

Mishkin:2017:SEC
[MSM17]

Murabito:2018:TSD
[MSP+18]

Magid:2007:CGM
[MSR07]
Evgeni Magid, Octavian Soldea, and Ehud Rivlin. A comparison of Gaussian and mean curvature estimation methods on triangular meshes of range im-

Miura:2009:BRE

Meer:2000:RCV

Marcon:2016:TMA

Machineni:2020:EED

Mount:1996:AOT

Medeiros:2015:ISM

Metaxas:1997:GEI

M:2016:RHF

Morales:2011:RTA

Néstor Morales, Jonay T. Toledo, Leopoldo Acosta, and Rafael Arnay. Real-time adaptive obstacle detection based on an image database. Computer Vision and Image Understanding.
REFERENCES

Minetto:2014:STD

Mancas-Thillou:2007:CTE

Moeslund:2017:CVS

Mayer:2021:TCG

Mettes:2017:WDT

Mindru:2004:MIR

Florica Mindru, Timne Tuylelaars, Luc Van Gool, and
REFERENCES

References

Mettes:2016:NSP

Macaire:2006:CIS

Ma:2000:PTA

Metternich:2013:TBR

Ma:2022:SOR
REFERENCES

Ma:2009:TTI

Mu:2014:GES

Mirhosseini:1998:HF1

Murtaza:2019:TTA

Ma:2017:LNR

Ma:2020:IVI

Marzotto:2010:RTV

Martin:2005:HIO

Michieli:2021:KDI

Mei:2016:SIV

REFERENCES

REFERENCES

REFERENCES

[NG98a]

[NHSC09]

Kangyu Ni, Byung-Woo Hong, Stefano Soatto, and Tony Chan. Unsupervised multiphase segmentation: a

[NHSC09]

[NHH14]

Niu:2015:VTN

NHTG15

Nic95

Nicol:1995:SAR

Nis95

Nishida:1995:SFE

S. Negahdaripour and A. Khamene. S. Negahdaripour. Motion-based compression

[Ju-Hyeon Nam and Sang-Chul Lee. Random image frequency aggregation]

Nikolaev:2004:LCS

Natarajan:2013:HMC

Nguyen:2018:SMU

Nguyen:2020:MDP

Nguyen:2022:DLD
Nguyen:2018:DST

Nitschke:2011:DCC

Nordberg:2009:TT

Nappi:2022:GEI

Narayanan:2016:VBA

Narappanawar:2011:GTB

REFERENCES

REFERENCES

Cog:CVIUF4

[NWJ15]

[NWNT17]

[NWP97]

Alison Noble, Dale Wilson, and Jean Ponce. On comput-

Oliveira:2018:BDE

Ortiz:2014:FRW

Orrite:2004:ESM

Ohn-Bar:2015:SSC

Eshed Ohn-Bar, Ashish Tawari, Sujitha Martin, and Mohan M. Trivedi. On surveillance for safety critical events: In-vehicle video net-

Ozden:2004:RTI

Okatani:1997:SRE

Okatani:1999:CSG

Okatani:2001:UST

REFERENCES

References

Oshin:2014:CRM

Oliver:2004:LRL

Osadchy:2008:USC

Osadchy:2004:EDU

[OK04] Margarita Osadchy and Daniel Keren. Efficient detection under varying illumi-

Oliensis:2000:CSM

Oliensis:2001:CSM

Olson:1999:CHT

Okorie:2019:RBI

Ong:2006:VIE

[OSM17] Diego Ortego, Juan C. SanMiguel, and José M. Martínez. Stand-alone quality estimation of back-
REFERENCES

Ozawa:2018:SCI

Othmani:2020:AEF

Ogiela:2006:GIL

Ozcan:2020:POD

Olson:1996:PPI

Olson:1996:PPI

Olson:1996:PPI

Olson:1996:PPI

Olson:1996:PPI

Olson:1996:PPI

Olson:1996:PPI

Olson:1996:PPI
Ozbulak:2021:ISA

Onoe:1998:TRT

Papamarkos:2000:GLR

Giuseppe Patanè. Multiresolutive sparse approximations of d-dimensional data.
References

Puzicha:1999:MAG

Papazov:2011:SGO

Prasad:2004:RBI

Pennisi:2016:ORT

Andrea Pennisi, Domenico D. Bloisi, and Luca Iocchi. Online real-time crowd behavior detection in video sequences. Computer Vision and Image Understanding: CVIU, 144(??):166–176, March 2016. CODEN CVIUF4. ISSN 1077-3142 (print), 1090-235X.
Roman:2017:SDO

Peng:1999:PFR

Puig:2012:COC

Pateraki:2014:VEP

Popham:2014:ESF

Perri:2013:ACT

Perret:2015:CIP

Postolski:2014:SFE

Paparoditis:1998:BDR

Plizzari:2021:SBA

Provost:2004:HMS

Paragios:2005:GAR

Pehlivan:2011:NPB

Papachristou:2014:MEP
Christos Papachristou and Anastasios N. Delopoulos. A method for the evaluation of projective geometric consistency in weakly calibrated stereo with application to

Arthur E. C. Pece. On the computational rationale for

Pizer:1998:ZIV

Penna:1999:MAN

Peng:2003:MCR

Peng:2015:CCS

REFERENCES

Peterfreund:1999:VSD

Peyre:2009:MMS

Pauwels:1999:FSR

Plankers:2001:TMP

Philipp-Foliguet:2009:FIR

Picard:2013:EIS

[David Picard and Philippe-Henri Gosselin. 2013. Efficient image signatures and similarities using tensor products of local descriptors. *Com-
Pua:2004:RTR

Pertuz:2015:FAS

Pham:2001:SMF

Peng:2015:CSH

Pla:1996:RPC

Plung:2016:PLD

Pottenmann:2004:RI

Pei:2014:ESI

Pintelas:2023:MVC

Park:2000:LFM

Sang Ho Park, Kyoung Mu Lee, and Sang Uk Lee. A line feature matching technique based on an eigenvector ap-
REFERENCES

Park:2003:RPO

Peng:2021:MFI

Pla:1997:MFP

Poiesi:2013:MTT

Potje:2022:LGA

Guilherme Potje, Renato

Portegys:2000:RHP

Petrou:2006:TRS

Peng:2011:MFE

Pickering:2003:EKF

Perez-Rua:2016:OGM

Papaodysseus:2014:IWA

 REFERENCES

[PS05] Thang V. Pham and Arnold.

[Poggi:2020:LCM] Matteo Poggi, Fabio Tosi, and Stefano Mattoccia. Learning a confidence measure in the disparity domain from O(1) features. *Computer Vision and Image Under-
REFERENCES

Pudney:1998:DOH

Pun:2003:RIT

Poli:1997:SRD

Pauwels:2006:OIR

Pellegrini:2013:TMC

REFERENCES

Dinesh Pandey, Xiaoxia Yin, Hua Wang, and Yanchun Zhang. Accurate vessel segmentation using maximum entropy incorporating line detection and phase-preserving denoising. *Computer Vi-
Paragios:2008:DOC

Paragios:2009:CDO

Pribyl:2017:APE

Peng:2021:SIL

Prankl:2013:IOM

Pan:2013:EAF

Hong Pan, Yaping Zhu, and Liangzheng Xia. Efficient and accurate face de-

Qazi:2011:PML

Qiu:2020:PDA

Quan:2019:ASR

Quach:2017:NCO

Qureshi:2012:CAA

Qu:1996:STA

Qin:2017:FAR

Quan:2017:SLS

Qian:2010:AIT

Xiaoning Qian and He-

Qu:2022:IIS

Quan:1998:JIT

Qu:2020:TMM

Rzeszutek:2015:FER

Rekik:2013:TGP

Islem Rekik, Stéphanie Allassonnière, Olivier Clatz, Ezequiel Geremia, Erin Stretton, Hervé Delingette, and Nicholas Ayache. Tumor growth parameters estimation and source localization from a unique time

Radeva:1997:DBS

Raveaux:2011:LGP

Ribeiro:2016:RFD

Riahi:2016:OMO

Rantoson:2018:DMB

Rindra Rantoson and Adrien Bartoli. A 3D deformable model-based framework for the retrieval of near-isometric...

REFERENCES

480

Richard:2003:NIR

Rouchdy:2013:GVA

Ryoo:2013:PDD

Redondo-Cabrera:2019:ULV

Rios-Cabrera:2014:BMD

REFERENCES

Rios-Cabrera:2012:EMC

Rahmati:2015:WSM

Radgui:2011:OFE

Rivlin:1995:RFP

Ryan:2015:ECC

REFERENCES

[RG16] Neeru Rathee and Dinesh Ganotra. Multiview Distance Metric Learning on facial feature descriptors for automatic pain intensity detection. *Computer Vision and Image Under-
REFERENCES

Raftopoulos:2011:GLT

Rogelj:2003:PSM

Ryu:2022:MIC

Rupprecht:2018:LPA

Roshtkhari:2013:LRT

Royer:2017:CRC

Emilien Royer, Thibault Lelore, and Frédéric Bouchara. COnfusion REduction (CORE) algorithm for local descrip-

Ryberg:2011:AEG

Rozantsev:2015:RSI

Rigamonti:2014:RSI

Ruffieux:2015:GRC

Ramalingam:2006:GSM

REFERENCES

REFERENCES

[Rob96b] Julia Jean Robinson. Line

Rogez:2014:EPG

Ren:2009:TSB

Rosenfeld:1995:IAC

Rosenfeld:1996:IAC

Rosenfeld:1997:IAC

REFERENCES

REFERENCES

Rashwan:2012:IRV

Rubner:2001:EED

Rivera-Rubio:2016:AHI

Rivlin:1995:NF

Robertson:2006:GMH

[RS12] Evan Ribnick, Ravishankar Sivalingam, Nikolaos Papanikolopoulos, and Kostas Daniilidis. Reconstructing and analyzing periodic human motion from stationary monocular views. Computer Vision and Image Un-
 REFERENCES

REFERENCES

Robey:1995:IUP

Ren:2022:PMS

Reisfeld:1998:PFI
REFERENCES

Rosin:2005:MR

Reily:2017:RTG

Ren:2023:EEW

Sull:1995:IMS

Sabata:1996:SCM

Stamos:2002:GTR
Ioannis Stamos and Peter K.

Punam Kumar Saha. Tensor scale: a local morpho-

Sela:2015:CCS

Sanroma:2012:NGM

Saund:1999:POO

Sarkar:1995:UPI

Sahabi:1996:AED

Sarkar:1998:QMC

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>BibKey</th>
<th>Authors</th>
<th>Title</th>
<th>Publication Details</th>
<th>URL</th>
</tr>
</thead>
</table>
| Viktor Shipitsin, Iaroslav Bespalov, and Dmitry V. Dylov | SBD22 | Shipitsin:2022:GGA | GAFL: Global adaptive filtering layer for computer vision. | *Computer Vision and Image Understanding: CVIU*, 223(?): ??, October 2022. CODEN CVIUF4. ISSN 1077-

REFERENCES

REFERENCES

Strand:2013:MBD

Setti:2017:HDN

Ser:1999:GAE

Solari:2014:INA

Sobieranski:2011:LND

Antonio Carlos Sobieranski, Eros Comunello, and Aldo von Wangenheim. Learning a nonlinear distance metric for supervised region-merging image segmentation. Computer Vision and Image Understanding: CVIU, 115
Svensson:2003:SCS

Stina Svensson and Gabriella San
titi di Baja. Simplifying curve skeletons in vol-
ume images. Computer Vision and Image Under-

Saez:2011:EMS

Juan M. Sáez and Francisco Escolano. 6DOF ent-
tropy minimization SLAM for stereo-based wearable
devices. Computer Vision and Image Understand-

Sanchez-Escobedo:2015:SFS

Seales:1995:BTD

W. Brent Seales and Olivier D. Faugeras. Building three-
REFERENCES

Soucy:1997:SRR

Shi:2007:QCT

Smith:2016:HPR

Sabokrou:2018:DAF

Santini:2018:PRP
Sun:2008:CVM

Sengur:2011:CTI

Srikantha:2017:WSD

Shu:2012:AAM

Shin:2001:CED

Song:2001:MPB
[SGDP01] Yang Song, Luis Goncalves, Enrico Di Bernardo, and Pietro Perona. Monocular perception of biological mo-
REFERENCES

Stefanov:2007:RTH

Stokman:2000:CMI

Sabatini:2010:CHC

Hang Su, Shaogang Gong,

Starck:2008:MBH

Schmitt:2009:MMD

Shah:2005:GSS

Shapiro:2006:ASL

Shah:2011:CTS

Shekhovtsov:2016:HOM

Seibold:2017:MBM

Shimshoni:1999:EUL

Sim:1998:AMK

Stutz:2018:SES

Sharma:2015:LHO

Sicre:2015:DPM

Spies:2002:RFE

Saraee:2020:VCA

Sochor:2017:TSC

Si:2021:SAH

Jiaxin Si, Fei Jiang, Ruimin Shen, and Hongtao Lu. Small and accurate heatmap-based face alignment via distillation strategy and cascaded architecture. *Computer Vision and Image Under-

Schmugge:2007:OEA

Soffer:1998:GCH

Sablatnig:2002:MBR

Shtern:2015:SGF

Saeki:2023:MPA

Shimshoni:1996:GSS

Sun:2013:ODS

Shekhovtsov:2008:EMD

Saada:2022:MOT

Sminchisescu:2006:CMC

Sakane:1995:PFA

Strandmark:2011:PDV

Struski:2022:LLC

[SKS+22] Łukasz Struski, Szymon Knop, Przemysław Spurek, Wiktor Daniec, and Jacek Tabor. LocoGAN — locally convolutional GAN. [SKU+09]

Smith:2008:RCR

Stafylakis:2018:PBA

Shinozaki:2009:CCI

[SKU+09] Megumi Shinozaki, Masato

Smeets:2013:MLS

Soucy:1996:MSM

Smith:1999:ICQ

Strobl:2016:SCF

Su:2016:DLM
Lin Su and Martin Levine. Does “lie to me” lie to you?

Hiroki Sugano and Ryusuke Miyamoto. Highly optimized implementation of OpenCV
REFERENCES

Shin:2022:LCM

Singh:2008:LVC

Sarkar:2002:POB

Selinger:1999:PGH

Shahid:2007:ILS

REFERENCES

Smeaton:2010:VSB

Sobh:1995:IIR

Shukla:2017:NCM

Sakurada:2016:HMM

Sashida:2014:CML

Sashida:2016:AMC

Shimshoni:1997:RSP

Sinha:2006:PTZ

Stergiou:2019:AHH
Alexandros Stergiou and Ronald Poppe. Analyzing human-human interactions: a survey. *Computer Vi-

[Sarang:2023:TLS]

[Salvagnini:2015:NMI]

[Spetsakis:1997:OFE]

[Spitz:1998:ACD]
Shyu:2002:UHP

Spampinato:2014:TBK

Stamos:2017:SIL

Sortino:2023:TBI

Savelonas:2018:SSS

Steinberg:2015:HBM

[SPW15] Daniel M. Steinberg, Oscar Pizarro, and Stefan B.

Sharma:2023:PBR

Suau:2013:DEE

Singh:2020:RHF

Singh, Ramnath, and Mittal. Refining high-frequencies for sharper super-resolution and deblurring. *Computer Vision and Image Understanding: CVIU*, 199(??):Article 103034, October 2020. CODEN CVIUFS. ISSN 1077-3142

Segvic:2009:MLF

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Year</th>
<th>Volume</th>
<th>Pages</th>
<th>URL</th>
</tr>
</thead>
</table>
Spanhel:2020:LFA

Saracchini:2012:RMS

Shi:2006:HEL

Socolinsky:2003:FRV

Soladie:2013:IRF

Sturm:2006:SIO

Sato:1996:DPC

Shubina:2010:VSO

Song:2020:DCO

Stark:1995:FOR

Song:2014:ERB

Sanchez:2016:LTK
REFERENCES

Salti:2014:SUS

Stevens:2001:EIC

Sakurada:2017:TCM

Sadri:2018:RVD

Sebe:2008:SMC

Steger:2013:UEL

REFERENCES

Super:2002:FRI [S Sup02]

Stenger:2015:E [SUS+15]

Sobral:2014:CRB [SV14]

Subramaniam:2022:CSI [SVA+22]

Saygili:2015:ASS [SvdMH15]

Speth:2021:UFR [SVF+21]
Jeremy Speth, Nathan Vance, Patrick Flynn, Kevin Bowyer and Adam Czajka. Unifying frame rate and temporal dilations for improved remote pulse detection. Com-
REFERENCES

Schnieders:2013:CLC

Shi:2017:LFM

Saha:2002:FDT

Sun:2022:EBM

Stolpner:2011:SML

Singh:2000:MMU

REFERENCES

Sahillioglu:2010:CFS

Srestasathien:2011:PSR

Shimoda:2020:WSS

Sun:2023:UVA

Sakalli:1999:RBS

REFERENCES

Shaked:1996:DSR

[SYK96]

Shrivastava:2013:UOG

[SYPK13]

Shivakumara:2015:NGS

[SZY+15]

Schaffalitzky:2003:ALM

[SZ03]

Shih:2007:LOC

[SZ07]

Shakeri:2016:CSS

[SZ16]
REFERENCES

Sun:2021:ISI

[SZB⁺21]

Shen:2023:LNL

[SZW⁺21]

Sultani:2017:UAP

[SZS⁺17]

Shi:2021:DPI

[SZW⁺21]

Tzevanidis:2011:ULB

REFERENCES

Tavakoli:2013:SSB

Tachos:2017:MDD

Tian:2023:GPP

Tamaki:2009:RIR

Tripathi:2022:MCD
REFERENCES

Tanaka:1995:ABS

Tang:2011:ARF

Taylor:2000:RAO

Tarel:1999:CFR

Cuong Tran, Anup Doshi, and Mohan Mamubhai Trivedi. Modeling and prediction of driver behavior by foot gesture analysis. *Computer Vision and Image Under-
REFERENCES

Radu Timofte, Vincent De Smet, and Luc Van Gool. [TDV15]

Christel-Loic Tisse, Hugh Durrant-Whyte, and R. Andrew Hicks. [TDWH07]

Osman Tursun, Simon Denman, Rui Zeng, Sabesan Sivapalan, Sridha Sridharan, and Clinton Fookes. [TDZ+20]

Nicolas Thorstensen, Patrick Étyngier, Florent Ségonne, and Renaud Keriven. [TÉSK11]

Caglar Tirkaz, Jacob Eisenstein, T. Metin Sezgin, and Berrin Yanikoglu. [TESY15]

Leonid Taycher, John W. Fisher III, and Trevor Darrell. [TFD07]
Combining object and feature dynamics in proba-

Thomas:2009:SRR

Tarbox:1995:IIV

Tarbox:1995:PCS

Thirion:1995:CDC

Taati:2011:LSD

REFERENCES

1077-3142 (print), 1090-235X (electronic).

[TH04] Andrea Torsello and Edwin R. Hancock. A skeletal measure of 2D shape similarity. *Computer Vi-
Tang:2006:CSA

Tang:2023:SNS

Tubic:2003:VAI

Thomée:2013:SIV

Touretzky:2000:MIN

Truc:2009:VEF

Tapaswi:2021:LTS

Timofte:2016:PPC

Tung:2015:ISA

Tung:2016:SPN

Tabernik:2015:ADP
REFERENCES

Yan Tong, Xiaoming Liu,
REFERENCES

Craig:2014:RBF

Torabi:2012:IIF

Tillett:2000:EDF

REFERENCES

Thurley:2005:IVC

Todorovic:2007:ICS

Thurley:2008:ISE

Traver:2005:SME

Teney:2014:MFD

Thomas:1999:DNM
Tao:2016:CSP

Thermos:2020:DSL

Trucco:2000:FTV

Theologou:2015:COM

Panagiotis Theologou, Ioannis Pratikakis, and Theoharis Theoharis. A comprehensive overview of methodologies and performance evaluation frameworks in 3D mesh segmentation.

Theodoridis:2015:OMA
REFERENCES

[Theologou:2017:PBO]

[Tresadern:2009:VSH]

[TRG+13]

[Tim:2020:DEB]

[Tang:2000:OSI]
Tari:2000:NLS

Tissainayagam:2001:PPA

Thomas:2011:RRR

Tichy:2016:NPB

Thomas:2017:MLS

Tang:2014:SRR

Tiwari:2016:NSB

Tu:2007:FMT

Tateno:2017:LSL

Tai:2021:SRB

Takala:1999:DTA

REFERENCES

Urtasun:2006:TMM

UlHaq:2020:DMD

Uddin:2022:SFF

Ukita:2012:GPM

Ukita:2012:RCR

Norimichi Ukita and Takeo Kanade. Reference consistent reconstruction of 3D cloth surface. Computer Vision and Image Understanding: CVIU, 116(8):869–881, August 2012. CODEN CVIUF4. ISSN 1077-

REFERENCES

REFERENCES

Vaca-Castano:2017:ISI

Vaca-Castano:2019:HOD

Venetianer:2010:PEI

Verri:1997:TMV

Vieville:1996:FOE

Vo:2017:HNW

Versteegen:2016:TMN

Verma:2017:SVA

Vakhitov:2018:SNL

REFERENCES

Vrigkas:2014:MMC

Vijayakumar:1998:IBR

Vascon:2016:DCG

[VRKL13] Antoine Vacavant, Tristan Rousson, Bertrand Kerautret, and Jacques-Olivier
REFERENCES

Veeraraghavan:2006:RTD

VandenWyngaerd:2002:ACP

Veenhoven:2015:SSB

Vacavant:2014:SSB

REFERENCES

Wildes:2000:REF[102]

[WAL00]

[WASF14]

[WAPB17]

[WB97]

REFERENCES

[WBS14] Ian Williams, Nicholas Bowring, and David Svo- bodia. A performance evaluation of statistical tests for edge detection in tex-

Wang:1999:PMR

Wu:2010:CCG

Wilson:1998:SMA

Wong:2013:SSF

Wang:2002:ITM

Qing Wang, Zheru Chi, and

Nicolas Widynski, Séverine Dubuisson, and Isabelle Bloch. Fuzzy spatial constraints and ranked partitioned sampling approach for multiple object tracking. *Computer Vision and Image Understanding:*
REFERENCES

Wang:2021:CBD

Wen:2020:RND

Williams:1996:PCO

Wen:2000:BVA

Wang:2001:STM

REFERENCES

Wang:2020:TSD

Wang:2021:RTA

Wang:2009:SSK

Wu:2008:MNR

Wang:2007:MVF

Wheeler:2021:SDS

Wang:2016:ILG

Wang:2013:MRF

Wang:2016:ILG

Wang:2013:MRF

Wu:2022:SAN

Weyand:2015:VLR

Wagner:1999:RME

Wu:2021:OCA

Wong:2008:MBA

Wang:2022:SST

REFERENCES

[Wei:2020:SDA] Haiyang Wei, Zhixin Li, Canlong Zhang, and Huifang Ma. The synergy of double attention: Combine sentence-level and word-level...

REFERENCES

Wong:2005:FAD

Wang:2010:GED

Worthington:2005:RDS

Wuhrer:2014:EHB

Wang:2016:MPC

Withey:2009:DET
REFERENCES

Worz:2008:PBE

Weinland:2006:FVA

Weinland:2011:SVB

Williams:1997:IDM

Walther:2005:SVA

Wong:2006:TBM

King Yuen Wong and Minas E. Spetsakis. Track-

Wu:2018:DPE

Wang:2021:DHP

Wang:2015:RNR

Williams:1997:APV

Wang:2016:POD

Wang:2015:RNR

REFERENCES

Wu:1995:RAF

Wang:2016:STT

Wang:2018:ESP

Wang:2018:NAS

Wei:2018:SHR

Wang:2007:STM

[WZT13] Tao Wang, Zhigang Zhu, and Clark N. Taylor. A multimodal temporal panorama approach for moving vehi-

REFERENCES

Wang:2014:SQS

Xu:2007:OSU

Xia:2016:SME

Xie:2013:RMI

Xiang:2008:IAA

Xiang:2008:ODG
REFERENCES

DEN CVIU4. ISSN 1077-3142 (print), 1090-235X (electronic).

[XL98] Wei Xiong and John Chung-Mong Lee. Efficient scene change detection and camera motion annotation for video classification. Com-
REFERENCES

Xu:2015:LFD

Xu:2011:SIC

Xing:2023:DTC

Zhengyi Xing, Yulong Qiao, Yue Zhao, and Wenhui Liu. Dynamic texture classification based on bag-of-models with mixture of Student’s t-hidden Markov models. *Computer Vision and Image Understanding: CVIU*, 230(??):??, April 2023. CODEN CVIUF4. ISSN 1077-3142 (print), 1090-235X.

[XYW+08] Shuchang Xu, Xiuzi Ye, Yin Wu, Franck Giron, Jean-Luc Leveque, and Bernard Querleux. Automatic skin decomposition based on single image. *Computer Vision and Image Under-

Xu:2011:LST

Xie:2016:LOS

Xiao:2011:LIS

Yang:2012:SRN

[YA12] Qingxiong Yang and Narenda Ahuja. Surface reflectance and normal estimation from photomet-

REFERENCES

REFERENCES

November 2010. CODEN CVIUFS. ISSN 1077-3142 (print), 1090-235X (electronic).

REFERENCES

Yang:2017:RMV

Yuille:1998:IWS

Yun:2016:HFD

Yang:2018:VSR

Yuille:1998:IWS

Yuille:1998:IWS

Yang:2023:MLC

Yang:2018:VSR

Yun:2016:HFD

Yun:2017:RMV

Yang:2011:SOD

Yang:2005:SBD

Yi:1995:OSL

Yang:2020:IVA

Yang:2016:TDA

Yla-Jaaski:1996:GSS

Antti Ylã-Jääski and Frank Ade. Grouping symmetrical

Yu:2009:ACC

Yu:2009:SSS

Yang:2001:FDU

Yoo:2023:PER

Hongsang Yoo, Haopeng Li, Qiu-hong Ke, Liangchen Liu, and Rui Zhang. Precondition and effect reasoning for action recognition. Computer Vision and Image Understanding: CVIU, 232(??):??, July 2023. CODEN CVIUF4. ISSN 1077-
REFERENCES

Yang:2018:TET

Yang:2011:DSE

Yan:2017:GEL

Yu:2018:NPI

Yin:2011:HKP

Yan:2019:CMM

Yao:2011:FHD

Yue:2006:VMP

Yilmaz:2008:DGA

Yang:2009:CGM

Yu:2003:MMA

REFERENCES

Yu:2011:GOE

Yan:2014:GTY

Yoshinaga:2014:ODB

Yang:2014:SSL

Yoshikawa:2021:MMV

Yuan:2019:EPH

Feiniu Yuan, Jinting Shi, Xue Xia, Lin Zhang, and Shuying Li. Encoding pair-

Yemez:2007:VFT

Yu:2016:SPU

Yan:2020:GRC

Yang:2022:NFC

Yi:2019:AAS

Yang:2008:USN

Yang:2016:IMS

Yan:2011:RRT

Yamamoto:1996:AFV

Yeung:1998:SVC

Yang:2019:SHM

Jing Yang, Xu Yang, Zhang-Bing Zhou, and Zhi-Yong Liu. Sub-hypergraph matching based on adjacency tensor. *Computer Vision and Image Understanding: CVIU*, 183(??):

[YZX+20] Feiniu Yuan, Yu Zhou, Xue
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Month</th>
<th>Year</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xia et al. (2020)</td>
<td>Image dehazing based on a transmission fusion strategy by automatic image matting.</td>
<td>Xia, Jinting Shi, Yuming Fang, and Xueming Qian</td>
<td>Computer Vision and Image Understanding: CVIU</td>
<td>194</td>
<td>Article 102933</td>
<td>May</td>
<td>2020</td>
<td>10.1016/j.cviu.2020.102933</td>
</tr>
<tr>
<td>Yu et al. (2022)</td>
<td>HS-GAN: Reducing mode collapse in GANs by the latent code distance of homogeneous samples.</td>
<td>Simin Yu, Kuntian Zhang, Chuan Xiao, Joshua Zhexue Huang, Mark Junjie Li, and Makoto Onizuka</td>
<td>Computer Vision and Image Understanding: CVIU</td>
<td>214</td>
<td>Article 103071</td>
<td>January</td>
<td>2022</td>
<td>10.1016/j.cviu.2021.103071</td>
</tr>
</tbody>
</table>
Zhang:2019:HLP

Zhou:2013:NBS

Zivkovic:2009:ABM

Zhu:1999:ICE

Zhao:2020:QEC

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Page Range</th>
<th>Date</th>
<th>ISBN</th>
<th>URL</th>
</tr>
</thead>
</table>

Zhou:2022:UAC

Zagorchev:2006:PLR
REFERENCES

Zolna:2020:CAS

Zhu:2004:LLA

Zhang:2018:EBC

Zhao:2020:AMI

Zhu:2017:ALE

Zhao:2020:AMI

Ming-Zhu Zhu, Bing-Wei He, and Li-Wei Zhang. Atmospheric light estimation in

Zhang:2022:DAS

ZhZFL22

Zheng:2013:CFI

Zivkovic:2010:WSC

Zhu:2005:RRT

Zheng:2013:CFI

Zhang:2022:AFO

REFERENCES

CODEN CVIU4F. ISSN 1077-3142 (print), 1090-235X (electronic).

REFERENCES

Zhou:2013:MSB

Zhao:2020:PSS

Zhang:2017:SOD

Zhao:1996:GTD

Zapater:2005:GAS
Zhang:2015:AFP

Zhang:2022:DAM

Zhang:2008:EPT

Zhu:2013:MMO

Zhao:2000:INS

Zafeiriou:2011:EGM

Zhang:2018:CRG

Zhao:2011:GAE

Zhang:2011:KFS

Zaheer:2018:SVR

Zheng:2011:ART

Zimmermann:2019:FTM

Zhang:2023:AIS

Zhao:2020:RLI

Zamorski:2023:CLP

Maciej Zamorski, Michał Stypulkowski, Konrad Karanowski, Tomasz Trzciński, and Maciej Zieba. Continual learning on 3D point clouds with random com-
pressed rehearsal. *Computer Vision and Image Understanding: CVIU*, 228(?): [ZSY+19]

Shuo Zhang, Hao Sheng, Chao Li, Jun Zhang, and Zhang Xiong. Robust depth estimation for light field via spinning parallelogram operator. *Computer Vision and Image Understanding: CVIU*, 145(?):148–159, April 2016. CO-
DEN CVIU4. ISSN 1077-3142 (print), 1090-235X (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S1077314215002714.

Wenhao Zhang, Melvyn L. Smith, Lyndon N. Smith, and Abdul Farooq. Gender and gaze gesture recognition for human-computer interaction. *Computer Vision and Image Understanding: CVIU*, 149(?):32–50, August 2016. CO-
DEN CVIU4. ISSN 1077-3142 (print), 1090-235X (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S1077314216300078.

DEN CVIU4. ISSN 1077-3142 (print), 1090-235X (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S1077314219303001.

DEN CVIU4. ISSN 1077-3142 (print), 1090-235X (electronic). URL http://
www.idealibrary.com/
links/artid/cviu.1998.0678/production; http://
www.idealibrary.com/

Qi Zhao and Hai Tao. A motion observable representation using color correlo-
gram and its applications

Zhang:2015:HFD

Zhang:2020:AER

Zhang:2018:DDA

Zhang:2011:MSS

Zhang:2014:OTS

[ZW+22] Cong Zhang, Kang Wang, Hongbo Bi, Ziqi Liu, and Lina Yang. Camouflaged object detection via neighbor connection and hierarchical information transfer. *Computer Vision and Image Understanding: CVIU*, 221:??, August 2022. CODEN CVIUFS. ISSN 1077-
REFERENCES

Zhu:2016:CBE

Zhu:2014:CER

Zhang:2020:PCB

Zhao:2016:LWP

REFERENCES

Zhai:2018:MDO

Zheng:2010:DOB

Zhang:2013:RIR

Zhang:2007:JDZ

Zhao:2010:SAL

Zhao:2010:SAL

[ZZP+16] Stefanos Zafeiriou, Guoying Zhao, Matti Pietikainen, Rama Chellappa, Irene Kotsia, and Jeffrey Cohn. Editorial of special issue on

Zhang:2015:OLE

Zhang:2015:OL

Zhang:2021:SSA

Zhang:2015:OL

Zafeiriou:2015:SFD

Zhao:2009:OSP