A Complete Bibliography of Publications in Designs, Codes, and Cryptography

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

02 October 2019
Version 2.37

Title word cross-reference

(0, 1) [628]. (0, 2) [962]. (0, 2, t) [637]. (0, α) [696, 844]. (1, −1) [518]. (1, 2) [1269]. (17, 9) [351]. (17q, 17, 2) [364]. (2) [1198]. (2, 2) [1179]. (2, 2*) [1431]. (2, 7) [1432]. (2, 8) [667, 1133]. (2, n) [904]. (2, p, p) [2430]. (2, q) [1432]. (2, qα) [1231]. (255, k) [657]. (25q, 25, 3) [364]. (28, 12, 11) [117]. (2n) [1270]. (2n) [1452]. (3, 4) [1788, 1872].
(3, 5, v) [578]. (3, 8) [667]. (3, p3) [635]. (3, t) [1550]. (31, 10, 3) [34]. (36, 16, 12) [117]. (4) [659]. (4, 4) [634, 741]. (4, 8) [1133]. (49, 9, 6) [142]. (5, 2) [1138]. (6, 3) [835]. (6, q) [642]. (64, 227, 12) [236]. (8, 2) [451]. (96, 20, 4)
[803]. (Ck ⊕ G, k, 1) [251]. (G, k, 1) [251]. (k) [1634]. (k, 3) [1963]. (k, n) [478, 1214, 2066]. (k, n)* [1982]. (k, p) [425]. (λ + m)Kv+u\λKv [1803]. (m, n) [151]. (m, n, 4, 2) [2260]. (m − 1)/pm [167]. (n, 3) [1644]. (n, 4) [1467]. (n, m) [2394]. (n, q) [636]. (n × m, 3, 2, 1) [2391]. (ν, 5, 5) [872]. (v, 6, λ) [901]. (p3, p, pα, pα−1) [139]. (p5, pα, pα) [605]. (q) [362]. (q + t, t) [637]. (q, 6, 1) [342]. (Q−(3,q)) [1643]. (q2 + q + 2, q + 2) [540]. (q2 + q + 8)/2 [1125]. (q2, 2) [1541]. (qm) [362]. (r, λ) = 1 [2034]. (t, k) [1160]. (t, L) [2420]. (t, m, s) [814, 1332]. (t, n) [892, 1153, 1360]. (t − 1) [1534]. (v, (2, 4), 1) [245]. (v, 3, 1) [581]. (v, 4, 2, 1) [1285]. (v, k, 1) [1835]. (v, k, 2) [2283]. (v, k, 3) [2273]. (v, k, 4) [1237]. (v, k, k − 1) [1892, 2346]. (v, k, λ) [109]. (v, K1,3(3) ∪ {w∗}) [1013]. (x(q + 1), x; 2, q) [1201]. (Z/4Z)3 × Z/5Z [522]. −1 [26]. −2 [751, 2113, 2120]. 0
D [2146]. p [54, 114, 124, 136, 525, 608, 625, 665, 680, 719, 817, 865, 1016, 1124, 1162, 1649, 1807, 1822, 2056, 2278, 2430, $p + 1$ [1016]. p^2 [1674, 1804, 2259]. p^3 [1804]. $P^4(F_q)P^4(F_q) [1107]$. p^c [974]. p^k [1406]. p^n [949, 2374]. p^{n+1} [1361]. p^r [817]. $p = 1$ [863, 994]. $PG(2, 16)$ [1644]. $PG(2, p)$ [452]. $PG(2, q)$ [1002, 1539, 1751, 1967]. $PG(2, q^2)$ [1645]. $PG(2, q^3)$ [1636]. $PG(2n, q), n \geq 3$ [786]. $PG(2t + 1, q)$ [421]. $PG(3, 4)PG(3, 2)$ [74]. $PG(3, 5)$ [1125]. $PG(3, 7)$ [498]. $PG(3, q)$ [174, 320, 845, 1220]. $PG(3, q), q \equiv 2 \pmod{3}$ [1125]. $PG(4, 2)$ [472]. $PG(4, 4)$ [366]. $PG(9, 2)$ [717]. $PG(m, 2)$ [44]. $PG(n, 2)$ [472, 773, 1000, 1409]. $PG(n, 4)$ [1741]. $PG(n, p^2)$ [1534]. $PG(n, q)$ [528, 909, 1031, 1065, 1411]. $PG(n, q), n \geq 3$ [718]. $PG(n, q), n \geq 3$ [474]. $PG(n, q^2)$ [1525]. $PG(n, q^3)$ [692]. $PG^* (PG) [981]$. $PGL(2, 2^f)$, $f \geq 13$. $PGL(n + 1, q)$ [692]. ψ [1000]. $PSL(2, 7)$ [1667]. $PSL(n + 1, q)$ [692]. $PSL_2(q)$ [879]. $PSU(3, q)$ [2345]. q [98, 183, 342, 488, 505, 528, 594, 610, 642, 740, 756, 804, 845, 879, 977, 1057, 1058, 1163, 1220, 1221, 1231, 1268, 1411, 1472, 1598, 1643, 1714, 1752, 1815, 1823, 1916, 1974, 2190, 2250, 2342, 2370]. $Q(4, q)$ [1532]. $q + 1$ [985]. $q = 19$ [107]. $Q^+ (2n + 1, 3)$ [881]. $Q^+ (7, q)$ [778]. $Q^{-5,1}$ [410]. $Q^+ (q, q)$ [1191]. q^2 [985]. $q^4 - 2q^2 - 2q + 1 \leq d \leq q^4 - 2q^2 - q$ [797]. q^m [505]. $q^* [98]$. R [1061, 1330]. $R(1, 7)$ [275]. $R(1, 9)$ [192]. $R(4, 9)$ [192]. R^a [628, 812]. R_3 [1783]. R_3 [1407]. $\rightarrow k [767]$. $RM(3, 7)$ [2183]. S [291, 333, 468]. $s(u)$ [12]. $S_{1,1,1}(2)S_{1,1,1}(2)$ [1387]. S_0 [1143]. $SL(2, 5)$ [232, 980, 1067]. $SL(2, F_{2^m})$ [1628]. $SL(n + 1, q)$ [692]. SL_2 [2011]. $SQS(16)$ [1069]. $STS(31)$ [899]. sv [15]. T [97, 131, 199, 207, 420, 421, 491, 566, 702, 707, 711, 713, 811, 1193, 1627, 1668, 1731, 1732, 1734, 1811, 1916, 1937, 1982, 2095, 2111, 2158, 2241, 2261, 2392]. $\theta - (v, k, \lambda)$ [740]. $T_2(o)$ [683]. τ [1004, 1290, 2093, 2173]. $DW(2n - 1, 2)$ [2359]. θ [620]. $U(6)$ [55]. $u2^r [1017]$. U_3 [2237]. $U_n(q)$ [1869]. v
v = 4(k - \lambda) + 2 [1695].
\begin{align*}
v = r + c - 1 \quad [822]. \quad &v_k \quad [1980]. \quad v \equiv 0, 1 \\
&\text{(mod } 8) \quad [1133]. \quad w \quad [990]. \quad W(2n + 1, q) \quad [684].
\end{align*}
W_5(q) \quad [977]. \quad X \quad [1000, 1121]. \quad X^# \quad [1000].
\begin{align*}
x^{-1} + g(x) \quad [1315]. \quad x^6 + x + a \quad [652]. \quad x^n \text{ mod } N \\
\quad [303]. \quad x^{n-1} \in F_q[x] \quad [1875]. \quad x^\gamma g(x^\gamma) \quad [2266].
\end{align*}
\begin{align*}
x^\gamma h(x^{n-1}) \quad [2302]. \quad y^{\gamma^2} \quad &- y = \gamma x^{\gamma^2 + 1} - \alpha \\
&[1599]. \quad Z \quad [994, 1075, 1238, 1501]. \quad Z/(2^{32} - 1) \\
&[1602]. \quad Z/2kZ \quad [789]. \quad Z_2 + uZ_2 \quad [954]. \quad Z_2 + uZ_2 + u^2Z_2 \quad [954]. \quad Z_2^5 \quad [959]. \quad Z_2^7 \\
&[794, 1523]. \quad Z_{2k} \quad [559]. \quad Z_2 \times Z_4 \quad [1348]. \quad Z_2Z_4 \\
&[1203, 1236, 1842, 2079]. \quad Z_4 \quad [343, 346, 375, 401, 622, 658, 869, 1348, 1486, 1559, 2206]. \quad \mathbb{Z}_2^n \\
&[439]. \quad Z_4 \times Z_4 \quad [664]. \quad Z_8 \quad [929]. \quad Z_8 \quad [929]. \quad Z_m \\
&[1108]. \quad Z_2 \times \cdots \times Z_2 \quad [181]. \quad Z_2 \times \cdots \times Z_2 \quad [1120]. \quad Z_2 \times \cdots \times Z_2 \quad [922]. \quad Z_2 \quad [1202].
\end{align*}

* [1614]. *-

- Additive [1666]. - adic
- [136, 525, 865, 1004, 1290, 1649]. - affine
- anonymous [1633, 1634]. - AONTs [2430].
- [98, 111, 488, 505, 594, 804, 817, 1016, 1057, 1058, 1268, 1598, 1705, 1714, 1752, 1807, 1815, 1823, 1974, 2278, 2370]. - associative [1000].
- block-intersection [1995]. - Blocking
- Clans [756]. - codes
- [41, 478, 658, 874, 1457, 2116, 2242, 2291]. - concurrence [2167]. - configurations [1130].
- coordinates [1121]. - Covering
- [713]. - Coverings [352]. - covers [1111].
- Cycle [36, 176, 1803, 1878]. - cyclic
- [291, 1333, 994, 2175]. - D [1623, 2391].
- Deletion-Correcting [317, 595, 1278, 1754].
- Derived [611]. - Design
- [394, 491, 566, 758, 1848]. - Designs
- dimension [75, 783]. - dimensional
- [1044, 1347, 1422, 1667, 1786, 2432]. - double
- [2202]. - error
- [912, 949, 1182, 1298, 1394, 1451, 1694].
- extensions [1776]. - factor [1440].
- Factors [403]. - FCSR [726]. - flag [19].
- flocks [683]. - fold [1232, 1377, 1732, 2420].
- frameproof [2338]. - free [1227].
- functions [1627, 2261, 2394]. - GDDs
- [1327, 1420]. - Generator
- [548, 1329, 1670, 1973]. - Geometries
- [696, 962, 981]. - Goethals [622]. - Groups
- [266, 377, 404, 1037, 1162, 2397].
- identifying [1330]. - input [501].
- intersecting [988, 2101]. - invariant
- [1422, 1539, 1667, 2412]. - Kernels [817].
- Kneser [1472]. - level [68, 1430]. - lifts
- [1783]. - Linear [401, 742, 922, 1203, 1236, 1559, 1842, 1868, 2079, 2206, 2253]. - linearly
- [2437]. - matrices [1193]. - MDS [835].
- method [2037]. - metric [2093, 2173].
- minihipters [1201]. - neighbour [1966].
- nest [980]. - Nets [586, 741, 814, 1332, 1960].
- optical [2391]. - output [501]. - Overlap
- [1681]. - ovoids [1111, 2229]. - Packings
- [352, 420, 1872]. - PBDs [1013]. - Perfect
- [36, 594, 901, 1019, 1450, 1598, 1878, 2079, 2175].
- periodic [949, 1017, 1182, 1451, 1694].
- polynomials [143, 1865]. - potent [2056].
- Power [143]. - projectable [899].
- quasigroups [1052]. - Rank
- [54, 114, 680, 899, 2353]. - Ranks
- [124, 665, 719, 1663, 2008]. - Rectangles
- [125]. - Regular [468]. - Reguli [844].
- relative [139]. - residue [1811].
- resolvability [1269]. - resolvable [86].
- rotation [1834]. - rotational [1373].
790, 796, 931, 970, 989, 1005, 1070, 1122, 1158, 1228, 1233, 1256, 1278, 1286, 1300, 1333, 1364, 1368, 1380, 1401, 1423, 1497, 1511, 1603, 1759, 1762, 1781, 1859, 1918, 1936, 1992, 1995, 2027, 2089, 2201, 2247, 2297, 2320, 2321, 2373, 2416. block-cipher-based [1070].

block-intersection [56, 1368].

Butson [969, 2335]. byte [283, 1083]. bytes [1083].

C [571, 1186]. Caen [745]. calculate [2263].

Calculation [836, 1017]. Calculus [436, 437].

Cameron [320, 1535, 1741, 2188, 2410].

capacity [2110]. Caps [196, 235, 289, 381, 513, 666, 773, 807, 861, 1030, 1125, 1247, 1687].

CCZ [1305, 1492, 1493, 2211].

CCZ-equivalence [1305, 1493]. CDMA [651, 1145]. cells [1885]. center [1347].

Certificateless [945, 1624]. Chain [107, 336, 367, 654, 783, 999, 1381, 1488, 1541, 1601, 2085]. Chan [1017]. change [57].

Changed [725]. channel [1224, 1573, 2057, 2080, 2289]. channels [913].

Character [234, 483, 543, 815, 825, 944, 1029, 1191, 1243, 1735, 1938, 2032, 2084, 2168].

character-theoretic [1938].

Correcting [88, 130, 317, 506, 524, 595, 619, 623, 800, 941, 952, 1073, 1082, 1184, 1278, 1320, 1620, 1659, 1712, 1746, 1754, 2129, 2181, 2355].

Correction [120, 164, 246, 555, 1090, 1726, 1888, 2220, 2388, 2403, 2425, 2442].

Correlation [130, 365, 374, 670, 726, 760, 1304, 1323, 1506, 1603, 1665, 1700, 1874, 1912, 2037, 2137, 2281, 2437].

Corresponding [241, 390, 916, 1588]. corruption [2312]. Coset [764, 1262, 1588, 1641]. cosets [2230].

counter-attacks [1062]. counter-example [98]. counterexample [1451].

Cover [694, 712, 1921, 2052, 2054, 2305]. Cover-Free [694, 712, 2052, 2054]. covered [1751].

Covering [3, 40, 57, 72, 80, 121, 129, 192, 224, 260, 302, 316, 349, 357, 360, 372, 383, 418, 496, 567, 603, 648, 709, 713, 727, 772, 806, 819, 915, 917, 943, 1026, 1061, 1064, 1123, 1209, 1226, 1307, 1380, 1385, 1562, 1664, 1712, 1740, 1746, 2044, 2168, 2183, 2225, 2315].

Coverings [352, 632, 991, 1577]. Covers [292, 353, 589, 746, 1111, 1147, 1444, 1604, 2371, 2419].

critical [2282]. Critique [1311]. Crooked [1032, 1115]. Cross [84, 268].

Cross-Correlations [84, 268]. crosscorrelation [1126]. crosstalk [1888].

CRT [1496]. cryptanalyses [1302].

Cryptanalysis [285, 445, 601, 1122, 1527, 1551, 1603, 1849, 1862, 1940, 2037, 2042, 2071, 2132, 2285, 2367, 2369, 2380].

Cryptanalytic [1496, 1999]. Cryptanalyzing [966].

cryptography [1429]. CRYPTOSYSTEM [119, 137, 144, 314, 497, 798, 1062, 1095, 1594, 1891, 2301, 2369].

Cryptosystems [193, 324, 340, 503, 521, 663, 704, 781, 1194, 1505, 1990, 2195, 2268].

Cryps [175]. cube [1786, 1820, 2139, 2248, 2380].

cube-attack-like [2380]. Cubes [644].

Cubic [65, 370, 710, 1138, 1332, 1440, 1834, 1879, 2083, 2278, 2360]. cubics [1641].

cycles [1235, 1274, 1287, 1368, 1681, 1721, 2110, 2341].

Lehmer
Leech [1465].
[102x527][550,912,1785,2379].
Lee learning Leakage-resilient [2159,2251,2423].
Lempel Lattice-based [698,793,1471].
layers 1855,2009,2132,2146,2182,2287,2404.
Lee Lattice-based [1622].
Leakage-resilient [2251,2423]. learning [1791]. Least [104,751,2113].
Lee [911,1161,1165,1471,1583,1769,2379].
Leech [1465]. left [1432,1813]. Legendre [550,912,1785].
Lehner [2131]. Lemma [698,793,1471]. Lempel [639,843,2442].
Lengths [306,523,656,829,1007,1402,1742].
Lenz [170,237,1567]. Lenz-Barlotti [237].
less [1284]. level [68,509,1430]. Levels [552,730].
Levenshtein [1229]. Lexicodes [804,1688,2317].
Lexicographic [230]. LFSRs [2372]. Li [2212]. Liao [1272].
Lie [1229]. Liebler [320,1535,1741,2188,2410]. lies [1468]. Life [170].
limited [1059,1712,1746].
limited-magnitude [1712,1746]. Lin [1328].
Line [19,75,320,714,786,886,985,1045,1215,1242,1408,1535,1640,1741,1818,2188,2393,2419].
line-oval [1215].
line-transitive [1045]. line/off [2395].
Linear-Algebraic [369]. linear/coset [1262].
Linearity [200,230,805,1168].
linearized [1014,1720]. Linearly [288,1887,2157,2437].
Lines [400,909,1167,1254,1376,1470,1751,1977].
Ling [1789]. link [2219]. Linked [2439].
links [2416]. List [689,1097,1204,1356,1684,1716,1725,2053].
list-decoding [2053]. LLL [1713,1845].
Local [160,448,465,698,793,1086,1598,1779,2382].
locality [2198]. Locally [459,2199]. lock [2311].
log [1166,1900]. Logarithm [158,324,436,553,584,615,1200,1518,1904,2404].
logarithmic [1229,1337,1869]. Logarithms [4,432,1905,2363].
Low-hit-zone [1700,2137,2156].
Low-Memory [857,1399]. low-power [1888].
Lower [59,335,349,353,501,556,668,941,968,991,1313,1769,1798,2044,2110,2426]. LP [2171].

Non-Abelian [704, 1543, 1813].
non-adjacent [1290]. non-amorphic [1477]. Non-Binary [130, 316, 385, 486].
Non-Cayley [754]. Non-Collinearity [451]. non-commutative [2301].
non-cyclic [1659]. non-degenerate [1107]. non-Desarguesian [2427].
Non-Deterministic [716]. Non-Existence [320, 722, 780, 1338, 1354, 1640, 1660, 1690, 2013, 2107, 2152, 2200, 2255, 2326, 2438].
non-interactive [222, 576, 663, 808, 1166, 1443, 1724, 1787, 2275, 2384].
nonlinearity [805]. non-malleable [2012]. Non-linear [152, 330, 396, 870, 891, 1019, 1036, 1080, 1092, 1447, 1782, 1792, 1827, 2025, 2161, 2306].
Nonfactorizable [1547]. Nonisomorphic [125]. Nonlinear [152, 330, 396, 870, 891, 1019, 1036, 1080, 1092, 1447, 1782, 1792, 1827, 2025, 2161, 2306].
Nonlinearity [501, 788, 890, 1306, 1509, 1616, 1843, 1850, 2056, 2405, 2408]. nonsingular [1254, 1546–1548].
Non-symmetric [61, 464]. Nontrusting [149]. nonuniform [1380]. nonweight [225]. nonzeros [1730].
normalized [1394]. Normalizers [695].
Note [10, 32, 55, 85, 218, 305, 504, 586, 646, 758, 1055, 1126, 1225, 1258, 1406, 1470, 1570, 1606, 1690, 2013, 2107, 2152, 2200, 2255, 2326, 2438].
Notes [843, 1192, 1250, 1633].
Nonexistence [32, 62, 64, 168, 297, 350, 485, 488, 797, 1132, 1391, 1587, 1704, 1814, 2067, 2170].
Obtained [149, 980, 1067, 1186]. Obtaining [1034]. occasion [1219]. octagon [1044].
Octonion [470]. Odd [13, 268, 357, 500, 528, 845, 977, 1047, 1125, 1135, 1220, 1231, 1310, 1355, 1359, 1363, 1433, 1507, 1541, 1551, 1643, 1657, 1703, 1733, 1755, 1776, 1777, 1797, 1809, 1818, 1993, 2110, 2208, 2390].
on-chip [1888]. On-line [1408, 2395].
on-line/off-line [2395]. O’Nan [1171]. One [616, 662, 783, 803, 891, 924, 930, 973, 1119, 1127, 1320, 1521, 1660, 1788, 1800, 1856, 2174, 2175, 2364]. one-and-half [1856].
one-coincidence [924]. one-error-correcting [1320].
one-factorizations [2364]. One-point [930, 973, 1800]. One-way [783, 1521].
one-weight [1660]. ones [2012]. only
...
Preparata-like [2079]. Prescribed [739, 868, 1118, 1502, 1587, 1797, 1996].
presemifields [983, 1080, 2358]. Presence [781, 1441].
PRESENT-like [1849]. preserved [739, 868, 918, 1118, 1502, 1587, 1797, 1996].
Probabilities [903, 1426, 1756, 1823].
Probability [363, 1058, 1297, 1302].
Problem [94, 158, 263, 436, 518, 584, 607, 632, 735, 798, 880, 1018, 1113, 1175, 1194, 1383, 1639, 1651, 1661, 1864, 1900, 1904, 1956, 2150, 2182, 2231, 2286, 2299, 2414].
Product [376, 666, 668, 724, 1295, 1399, 1528, 1544, 1599, 1617, 1625, 1901, 1992]. products [10, 1564, 1604, 1690].
Profile [249, 870, 2020, 2408]. profiles [1653].
programmable [2295]. programming [946, 955, 1003, 1780, 2413]. progress [1233, 1373, 1904]. progression [1156].
Proof [7, 393, 486, 520, 584, 720, 747, 751, 799, 1448, 1479, 1553, 2105, 2256].
Proofs [1597, 1898, 2310].
Property [218, 256, 700, 977, 990, 1268, 1623, 1626, 1874, 2028, 2074].
Protect [631].
Protocol [157, 433, 614, 649, 1034, 1753, 2395].
protocols [1142, 1521].
Provable [1122, 1624]. Proving [621, 1661].
Proving [1873].
Probabilities [903, 1426, 1756, 1823].
Probability [363, 1058, 1297, 1302].
Problem [94, 158, 263, 436, 518, 584, 607, 632, 735, 798, 880, 1018, 1113, 1175, 1194, 1383, 1639, 1651, 1661, 1864, 1900, 1904, 1956, 2150, 2182, 2231, 2286, 2299, 2414].
problem-based [1194].
Public-Key [144, 154, 222, 430, 607, 663, 762, 966, 1622, 1975, 1990, 2268].
Publicly [1724, 2340].
Putative [167, 1848].
Puzzle [175]. puzzles [1701].
1255, 1362, 1412, 1502, 1654, 1727, 1839, 1930, 2022, 2056, 2106, 2418. Quadrature [536].
Quadratic [300, 451, 845, 1504, 1532].
Quadratics
[106, 235, 842, 1533, 1549, 1608, 1640].
quadruphase [1506]. Quadruple
[81, 775, 838, 2114]. Qualified
[738, 1152, 1357]. Quantifying [1884].
Quantum [631, 1552, 1687, 1704, 1717, 1789, 1832, 1870, 1883, 1915, 2096, 2141, 2153, 2181, 2264, 2292, 2300, 2417, 2429]. quartic
[1879, 1963]. Quasi
[409]. Quasi-abelian [1774]. Quasi-affine
[947]. Quasi-Cyclic
[1283]. Quasi-Frobenius [448].
Quasi-Multiple [520]. quasi-orthogonal
[2444]. quasi-perfect [911, 1093, 1307].
Quasi-Symmetric
[20, 30, 39, 71, 116, 117, 142, 520, 604, 616, 617, 926, 934, 1137, 1286, 1404, 1882].
Quasi-Twisted [548, 1844, 2431]. Quasideterminant [310]. quasidivisible
[1965]. quasifields [1647]. Quasigroups
[36, 81, 825, 1052, 1445]. quasiprimitive
[1542, 2283]. quasiregular [8]. Quaternary
[88, 167, 723, 839, 1186, 1281, 1309, 1310, 1384, 1585, 1687, 1717, 1929, 2026, 2233]. Quaternion
[824, 2301]. Question [55, 406]. Quintic [717]. Quotient [830]. Quotients
[1437, 1524].
R. [1513]. Rabin [314, 359]. Rabin-type
[359]. Rabin-Williams [314]. Rackoff
[876]. Radii [72, 418, 507, 943, 1356]. Radius
[3, 40, 192, 224, 302, 316, 357, 603, 727, 772, 917, 1026, 1061, 1209, 1307, 1555, 1651, 2044, 2183]. Rado [1642, 1658, 1819, 2345].
rainbow [1273]. Random
[327, 545, 917, 1095, 1106, 1262, 1444, 1573, 1585, 1894, 1939, 2396]. Randomizers [160].
Randomness [264, 2203]. Rank
Rank-metric [1983, 2176]. Rankin [20].
Ranks [124, 594, 665, 719, 1663, 2008, 2026].
Rao [1830, 2277, 2330]. Rate
[146, 167, 225, 257, 510, 1308, 1595, 1609].
ratio [1692, 2382]. Rational
[263, 277, 458, 739, 874, 1217, 1398, 1570, 1897, 1959, 2102, 2240]. RC4
[1068, 1083, 1873, 2048, 2315]. re [1845, 2312].
re-encryption [2312]. re-evaluation [1845].
reaching [2327]. Real [163]. realizability
[1130]. Realization [367, 1595]. realizing
[1960]. Receiver [478]. receivers [2383].
Reciprocal [736, 858, 2270]. Reconciliation
[649]. Reconstructed [552].
reconstructing [2198]. Reconstruction
[328, 892, 966]. Recovery
[158, 1728, 1743, 2243, 2254]. Rectangles
[125, 1008, 1144, 1857]. Rectilinear [466].
recurrence [1820]. recursions [1092].
Recursive [296, 776, 1075, 1335, 1734, 2045, 2051, 2095, 2241, 2368, 2390]. Redefining
[2046]. Rédei [2390]. Reduced
[535, 1596, 1860, 2094, 2214, 2248].
reduced-round [1596, 2241]. reducibility
[1258, 1446]. reducible
[1300, 1425, 1594, 1859]. Reducing
[1602, 1771, 1825]. Redundancy [335, 1184].
Redundant [162, 932, 1290]. Ree
[228, 290, 790, 1027, 1044]. Reed
[28, 40, 72, 165, 275, 467, 507, 529, 582, 948, 952, 1064, 1072, 1097, 1202, 1210, 1498, 1556].

Related

Relationship [650, 1459]. Relative

remark [22, 1559]. Remarks [6, 226, 643, 695, 949, 1129, 1638].

Replacement [511, 980, 1067].

Representation [550, 624, 647, 933, 948, 1257, 1308, 1593, 1827, 2050, 2097].

Results [60, 72, 331, 355, 558, 635, 653, 748, 772, 1088, 1104, 1212, 1270, 1285, 1353, 1363, 1427, 1496, 1519, 1520, 1562, 1587, 1659, 1736, 1771, 1814, 1897, 1959, 2002, 2091, 2115, 2328, 2341]. retrasmmission [1481]. retrieval [2197]. retrospective [1894]. Reusable [2308].

Rijndael-160 [2047]. Rijndael-224 [2047].

Ring [319, 367, 442, 526, 566, 893, 999, 1048, 1112, 1401, 1488, 1489, 1747, 2226, 2257, 2323]. ring-like [2323]. ring-linear [1489].

Roots [563, 608, 625, 686, 854, 1014, 2103].

Rosenbloom [834]. rotation [1418, 1616, 1834]. rotational [1373].

Unitals [242, 290, 313, 348, 399, 860, 1213, 1230, 1338, 1645, 2362]. Unitary
[52, 242, 512, 1177, 1869, 2335]. Universal
[112, 262, 403, 1297, 1435, 1574, 1851].
universally [935]. unknown [1572]. Unreal
[1947]. unrestrict [812]. uninscription [1600]. Untransferability
[190]. Untrusted [878]. Unweighted
[2279]. updatable [1942]. update
[198, 2303]. upon [1566]. Upper
[316, 418, 501, 547, 657, 1140, 1937, 2042, 2147, 2262, 2271]. Use
[497, 763, 876, 902]. User
[446, 735, 1932, 2321, 2396].
Utilizing [144].

valuations [927, 1592]. value
[1192, 1937, 2023]. Valued [566]. Values
[518, 678, 1116, 1217, 1692, 1735].
Vandermonde [1452, 2125]. Vanstone
[1876]. Variable [122]. Variable-Length
[122]. variables [1418]. Variant
[1106, 1134, 1293, 1715, 2363]. variants
[1551, 1562, 1860]. variation [2358].
Variations [2389]. Varieties
[21, 36, 301, 476, 627, 729, 759, 953, 1101, 1107, 1244, 1251, 1397, 1504, 1608, 1880, 1886, 2030].
variety [295, 1138, 1387, 1570, 1832]. various
[1302]. Varshamov [885, 2279, 2343]. Vault
[848]. Vazirani [2373]. Vector
[361, 1053, 1181, 1198, 1260, 1299, 1403, 1425, 1455, 1838, 2043, 2182]. Vectorial
[760, 1305, 1306, 1865, 2143, 2278]. Vectors
[161, 582, 628, 812, 882, 896, 1131, 1318, 1346, 1455, 1465, 1728, 1883, 2315]. Verheul [1175].
Verifiable [549, 1724, 1893, 2340].
Verifiably [1864]. Veronese
[301, 476, 944, 2031]. Veronesean [570, 1536].
Veronesians [755]. Version
[137, 993, 1713]. versions [1054]. versus
[2243]. Vertex [754, 1395, 1542, 2362].
vertex-isoperimetric [2362].
vertex-quasiprimitive [1542].
Vertex-Transitive [754]. Vertices
[539, 914, 2424, 2425]. very [1593]. VES
[1864]. via [236, 272, 298, 622, 703, 896, 1369, 1483, 1511, 1739, 2102, 2144, 2145, 2154, 2180, 2250, 2251, 2295]. viewed [1685]. virtual

Wagner [1343]. Walk [1648, 2443].
Walk-regular [1648]. Wall [948]. Walnut
[2433]. Walsh [1081, 1710]. Ward
[1174, 1279]. Warning [1480]. Watching
[156]. Waterloo [584]. way [783, 1521].
Weak [63, 832, 883, 984, 1043]. Weakly
[641]. Weaknesses [284]. Web [779]. Wei
[1396]. Wei-type [1396]. Weierstrass
[482, 770, 830, 1499]. Weighing
[128, 272, 351, 655, 813, 920, 1674, 1840, 2318].
Weight-preserving [871]. Weighted
[993, 1088, 1111, 1165, 1410, 1498, 1847].
Weightwise [2408]. Weil [2055]. Welch
[263, 651, 1414]. Welch-Berlekamp [263].
well [48]. Weng [1522]. wet [1833]. Which
[15, 631, 750, 1455, 1468, 1809]. Whirlwind
REFERENCES

References

Anonymous:1991:E

Moorhouse:1991:BNC

Tietavainen:1991:CRD

LaMacchia:1991:CDL

Lamken:1991:FPB

Ho:1991:SRO

REFERENCES

Simonis:1991:SPD

Arasu:1991:QCG

Metsch:1991:IBC

Davis:1991:NPR

Siemon:1991:CSQ

Peterson:1991:FPS

Bierbrauer:1991:HOS

Anderson:1991:CSO

Leonard:1991:LCC

Bruen:1991:JMG

Pfaff:1991:CDT

[27] Ka Hin Leung, Siu Lun Ma, and Yan Loi Wong. Difference sets in di-

REFERENCES

[41] Noboru Hamada, Tor Helleseth, and Øyvind Ytrehus. On the construction of \([q^4 + q^2 - q, 5, q^4 - q^3 + q^2 - 2q; q]\)-codes meeting the Griesmer bound. Designs, Codes, and Cryptography, 2(3):225–229, September 1992. CODEN DCCREC. ISSN 0925-1022 (print), 1573-7586 (electronic).

Beth:1992:DMA

Melone:1992:RTI

Gao:1992:ONB

Jackson:1992:RBT

Wan:1992:CCA

Stinson:1992:ESS

deCaen:1992:RIM

Schmidt:1992:NQB

Hare:1993:CBI

Wallis:1993:SCC

Beutelspacher:1993:LSS

Carlet:1993:PBF

Chan:1993:NCM

Sane:1993:SCQ

Hou:1993:FRC

Blokhuis:1993:SMP

vanDam:1993:CS

Beth:1993:DCG

Colbourn:1993:SMP

Rifa-Coma:1993:HAC

O’Keefe:1993:SGD

[78] Christine M. O’Keefe and Alan Rahilly. Spreads and group divisible designs. Designs, Codes, and Cryptography, 3
REFERENCES

REFERENCES

DCCREC. ISSN 0925-1022 (print), 1573-7586 (electronic).

Koukouvinos:1994:SZA

Mitchell:1994:CAP

Stinson:1994:UHA

Zemor:1994:HFC

Arasu:1995:DSA

Buratti:1995:PMC

Coster:1995:QSD

Lam:1995:QSD

Mathon:1995:TPO

Naccache:1995:CMP
[119] David Naccache, David M’Raïhi, and Dan Raphaeli. Can Montgomery

Dempwolff:1995:CTP

Assaf:1995:CDB

Gillman:1995:CVL

Paterson:1995:PFB

Peeters:1995:RNG

Suchower:1995:NCS

Carpentieri:1995:PTS

Colbourn:1995:TTD

REFERENCES

REFERENCES

Beth:1996:WBM

Syverson:1996:FLC

Nyberg:1996:MRS

Safavi-Naini:1996:ACP

Mitchell:1996:ASP

Zhang:1996:CSC

REFERENCES

REFERENCES

REFERENCES

nl/oasis.htm/110888. Special issue dedicated to Hanfried Lenz.

Shult:1996:SPS

Siemon:1996:PIS

Bailey:1996:OPDb

Cameron:1996:SAGb

Domingo-Ferrer:1996:ARU

Harada:1996:ENE

Hou:1996:CR

Janwa:1996:MPK

Landgev:1996:CGD

[194] Ivan N. Landgev. Constructions of group divisible designs. Designs,

[202] Charles J. Colbourn and Donald L. Kreher. Concerning difference matri-
REFERENCES

REFERENCES

S. R. Blackburn. A note on sequences with the shift and add property. Designs, Codes, and Cryptography, 9(3):251–256, November 1996. CODEN DCCREC. ISSN 0925-1022 (print), 1573-
REFERENCES

Helleseth:1996:CSW

Jackson:1996:PSS

Jackson:1996:CMT

Maurer:1996:NIP

Huybrechts:1996:GO

Cohen:1997:LPB

Conan:1997:EGN

Gacs:1997:TRB

Hamada:1997:NSC

[227] Noboru Hamada. A necessary and sufficient condition for the existence

REFERENCES

References

Batten:1997:BSD

Bernard:1997:LCN

Erdmann:1997:ADM

Faldum:1997:CSD

Houston:1997:LMD

Wan:1997:SSC

Buratti:1997:DF
Marco Buratti. From a $(G,k,1)$ to a $(Ck \oplus G,k,1)$ difference family. Designs, Codes, and Cryptography, 11(1):5–9, April 1997. CODEN DCCREC. ISSN 0925-1022 (print), 1573-7586 (electronic). URL http://www.wkap.nl/oasis.htm/125555.

Buratti:1997:RDF

Gulliver:1997:CED
T. Aaron Gulliver and Masaaki Harada. Classification of extremal double circulant formally self-dual even

REFERENCES

Bierbrauer:1997:UHG

Blackburn:1997:GRI

Blundo:1997:DRR

Brouwer:1997:CBP

Davis:1997:USC

Khosrovshahi:1997:TSD

Klapper:1997:CCQ

Boukliev:1997:SNO

Burmester:1997:GZK

[270] Mike Burmester, Yvo G. Desmedt, Fred Piper, and Michael Walker. A
REFERENCES

Levenshtein:1997:SOA

vanDijk:1997:LCS

Kranakis:1997:I

Stinson:1997:SMU

Rogier:1997:SCB

Rijmen:1997:WNS

Lee:1997:RCL

Adams:1997:CSC

REFERENCES

REFERENCES

Mackenzie-Fleming:1998:RCD

Hamada:1998:NTC

Michael:1998:SHM

Morgan:1998:EFH

Panigrahi:1998:CGQ

Zanella:1998:LSF

Baicheva:1998:CRT

Brennan:1998:AIM

Chen:1998:CDS
[304] Yu Qing Chen. A construction of difference sets. Designs, Codes, and...
Dokovic:1998:NPC

Gulliver:1998:CED

Harada:1998:NET

Krasikov:1998:BSC

Safavi-Naini:1998:TST

Zain:1998:QCM

Bennett:1998:PMP

Bezzateev:1998:SBG

REFERENCES

REFERENCES

Colbourn:1998:PCM

Ionin:1998:TCS

Muller:1998:DLB

Simonis:1998:AAC

Banihashemi:1998:ICG

Fripertinger:1998:ECR

He:1998:SSR

Langevin:1998:WAC

Paterson:1998:RCD

[330] Kenneth G. Paterson. Root counting, the DFT and the linear complexity of nonlinear filtering. Designs,
Stinson:1998:SNR

vanDijk:1998:USG

Siemon:1998:ENT

Betten:1998:SDS

DePrisco:1998:LBR

Chen:1998:WHL

Gehrmann:1998:MUS

Kurosawa:1998:NCB

REFERENCES

REFERENCES

Blake-Wilson:1999:CWC

Davydov:1999:NLC

Jha:1999:COS

Kurosawa:1999:ERT

Ostergaard:1999:CCC

Padro:1999:DCV

Shiromoto:1999:WEL

Barg:1999:BMD

Buratti:1999:SBC
[364] Marco Buratti. Some (17q,17,2) and (25q,25,3) BIBD constructions. Designs, Codes, and Cryptography, 16(2):117–120, February 1999. CODEN DCCREC. ISSN 0925-1022 (print), 1573-
REFERENCES

Camion:1999:CIR

Edel:1999:LSC

Norton:1999:MRF

Phelps:1999:SEC

vanZanten:1999:CCC

Batten:1999:SST

Bonnecaze:1999:JPT

Chateauneuf:1999:CAS

Egner:1999:HP

[373] Sebastian Egner and Thomas Beth. How to play M_{13}? *Designs, Codes,
REFERENCES

REFERENCES

Chen:1999:FCE

Ward:1999:IDC

Charpin:1999:MDN

Cohen:1999:CLU

Thas:1999:EFG

Calkin:1999:MWD

Tonchev:1999:LPC

Eisfeld:1999:EBM

REFERENCES

Thierry P. Berger and Pascale Charpin. The automorphism groups of BCH codes and of some affine-invariant

REFERENCES

[Dinitz:2000:HCR]

[Vance:2000:GGC]

[Zhang:2000:RDD]

[Koblitz:2000:GE]

[Lenstra:2000:IF]

[Odlyzko:2000:DLP]

Koblitz:2000:SEC

Solinas:2000:EAK

Silverman:2000:XCE

Jacobson:2000:AXC

McQuillan:2000:PHP

Wolfmann:2000:DSZ

Schulz:2000:ACW

Bommier:2000:BQC

Norton:2000:KEC

[442] Graham H. Norton and Ana Salagean-Mandache. On the key equation over a commutative ring. Designs, Codes,
REFERENCES

Bonisoli:2000:MPP

Halbutogullari:2000:PMU

Patarin:2000:CMI

Colbourn:2000:MKS

Encheva:2000:LCT

Hou:2000:BFP

Juels:2000:HCC

Obana:2000:CCO

REFERENCES

Panigrahi:2000:NCG

Polverino:2000:SBS

Yang:2000:NCV

Blokhuis:2000:P

deBruijn:2000:JS

Bajnok:2000:SDG

Baker:2000:PBS

Beelen:2000:NPP

Brouwer:2000:LP

Dubuc:2001:CLS

Obana:2001:BCS

Daemen:2001:LFB

Gulliver:2001:CIB

Matthews:2001:WPM

Winterhof:2001:SEC

Stinson:2001:SAA

Ward:2001:NCG

Tanabe:2001:NPA

Dizon-Garciano:2001:SSA

Maruta:2001:NAL

Johnson:2001:TTP

Dempwolff:2001:PRG

Sebille:2001:TES

Ahlswede:2001:PCR

Scheidler:2001:CQF

Kurosawa:2001:CBA

REFERENCES

98

[538] Kwok Yan Lam and Francesco Sica. The weight distribution of. Designs,
REFERENCES

Honkala:2001:CIS

Ball:2001:APP

Janko:2001:EBT

Ballico:2001:CPS

Hagita:2001:BBG

Blundo:2001:ISV

Shparlinski:2001:LCN

Lam:2001:DF

REFERENCES

Tapia-Recillas:2001:UBN

Aydin:2001:SGQ

Mao:2001:VPE

Kim:2001:TRL

Bouyuklieva:2002:AOF

Eisen:2002:TVC

Winterhof:2002:PID

Bannai:2002:SDA

Brozovic:2002:CIM
[555] D. Brozovic, C. Ho, and A. Munemasa. A correction to “Incidence Ma-
REFERENCES

Guajardo:2002:ITI

Biehl:2002:SSB

Giulietti:2002:CAA

Thas:2002:TCN

Martinez:2002:RVA

Carlet:2002:CSB

REFERENCES

104

Bilous:2002:EBS

Buratti:2002:CDB

Blake:2002:SDS

Cao:2002:KPD

Blundo:2002:CBU

Charnes:2002:HBF

REFERENCES

Mathon:2002:PST

Ostergaard:2002:EDT

Phelps:2002:RAP

Shalaby:2002:EPD

Simmons:2002:PEB

Stevens:2002:PAP
REFERENCES

REFERENCES

[610] P. Govaerts and L. Storme. On a particular class of minihypers and

Abatangelo:2003:DDT

Arasu:2003:NFC

Hou:2003:BRF

Law:2003:EPA

Konyagin:2003:LCD

Mavron:2003:QSD

REFERENCES

[622] Dong-Joon Shin, P. Vijay Kumar, and Tor Helleseth. 3-designs from the \mathbb{Z}_4-Goethals codes via a new Kloosterman sum identity. Designs, Codes, and Cryptography, 28(3):247–263, April 2003. CODEN DCCREC. ISSN 0925-1022 (print), 1573-7586 (electronic). URL http://ipsapp007.kluweronline.com/content/getfile/4630/47/2/abstract.htm; http:/

[629] Rudolf Ahlswede and Levon Khachatrian. Cone dependence — a ba-

Bader:2003:SBS

Beth:2003:NCD

Bierbrauer:2003:PPC

Blokhuis:2003:STG

Edel:2003:LCA

Ferret:2003:RMP

[635] S. Ferret and L. Storme. Results on maximal partial spreads in PG(3, p^3) and on related minihy-
REFERENCES

See correction [2442].

REFERENCES

Axenovich:2003:EBS

Liu:2003:PPA

Mellinger:2003:GRB

Ding:2003:MWK

Bluher:2003:CT

Bouyukliev:2003:SNR

Ling:2003:ASQ

REFERENCES

REFERENCES

Cardinali:2003:SSF

Sarkar:2003:CSB

Huhnlein:2003:TPN

Nocon:2003:CST

Chandler:2003:CRD

Edel:2004:EGP

Barat:2004:MBSa

Glynn:2004:OGC

Golic:2004:CAA

Shin:2004:AMT

Biehl:2004:EUS

Trung:2004:CTC
REFERENCES

REFERENCES

Brown:2004:SFO

Metsch:2004:SPS

Rinaldi:2004:KDP

Muller:2004:CSR

Avgustinovich:2004:CSP

Anonymous:2004:P

References

DeClerck:2004:GDS

DeFeyter:2004:POS

Deng:2004:LLL

DeSantis:2004:AMB

DeWinter:2004:SRS

Drake:2004:NSD

REFERENCES

Korchmaros:2004:HOF

Kuccukccifcci:2004:MCH

Labbate:2004:ACB

Laue:2004:RD

Mellinger:2004:LCT

Martirosyan:2004:CA

Mellinger:2004:LCT
REFERENCES

[721] Steven T. Dougherty and Keisuke Shiomoto. Maximum distance codes in Mat$_{n,s}(Z_k)$ with a non-Hamming metric and uniform distributions. *Designs, Codes, and Cryptography*, 33
REFERENCES

REFERENCES

REFERENCES

VanDam:2005: CDC

DeCaen:2005: DRC

Coolsaet:2005: CAP

Sejeong:2005: SIR

Hirasaka:2005: MTA

Shaw:2005: CFW

Cvetkovic:2005: GLE

Curtin:2005: ACG

Muzychuk:2005: SPB

Seress:2005: SFN

REFERENCES

[764] Olgica Milenkovic. Support weight enumerators and coset weight distributions of isodual codes. *Designs, Codes,
References

[774] Harri Haanpää and Petteri Kaski. The near resolvable $2 - (13,4,3)$ designs and thirteen-player whist tournaments. Designs, Codes, and Cryptography, 35

REFERENCES

[790] Shenglin Zhou. Block primitive 2 – (v, k, 1) designs admitting a Ree group of characteristic two. Designs, Codes, and Cryptography, 36
REFERENCES

[797] E. J. Cheon, T. Kato, and S. J. Kim. Nonexistence of \([n, 5, d]_q \) codes attaining the Griesmer bound for \(q^4 - 2q^2 - 2q + 1 \leq d \leq q^4 - 2q^2 - q \). Designs, Codes, and Cryptography, 36(3):

REFERENCES

Yin:2005:CDP

Suetake:2005:CST

Spera:2005:AGC

Mcsorley:2005:DATb

Barwick:2005:OMT

Dorofeev:2005:MGR

Belyavskaya:2005:CCSb

REFERENCES

Cheon:2005:MLS

Wispelaere:2005:CGH

Carlet:2005:PCB

Gulliver:2005:NEF

Matthews:2005:WSC

Ahmadi:2005:NTO

Bohli:2005:WKM
REFERENCES

Harada:2006:SOD

Ozen:2006:LCR

Alderson:2006:MCA

Coron:2006:ICA

Homma:2006:TPCa

Ji:2006:ADL

Dougherty:2006:HWT
REFERENCES

REFERENCES

Grolmusz:2006:COC

Wang:2006:NCO

Weng:2006:LMA

Ahmadi:2006:SRI

Arazi:2006:CCT

Dover:2006:SSH

Khatirinejad:2006:CCC

REFERENCES

Cossidente:2006:AGP

Feng:2006:EZC

Garciano:2006:RDS

Dougherty:2006:CAI

DeWinter:2006:GQA

Masucci:2006:SMS

Shparlinski:2006:RMP
Dougherty:2006:CCE

Aly:2006:LCP

Giudici:2006:CCW

Chen:2006:SSD

Ciet:2006:TIM

Bini:2006:CRF

Guneri:2006:IGH

REFERENCES

Rodier:2006:ANB

Carlet:2006:ASH

Koga:2006:BPR

Herranz:2006:DRS

Evans:2006:LSO

Wanless:2006:ELS

Huang:2006:CPA
REFERENCES

REFERENCES

[938] Chong-Dao Lee, Yaotsu Chang, and Trieu-Kien Truong. A result on

REFERENCES

Westerback:2007:MPP

Kelly:2007:CIS

Fu:2007:CBC

DeFeyter:2007:CGE

Caggegi:2007:DTI

Giese:2007:DDD

Izu:2007:LDA

Kiayias:2007:CPR

[966] Aggelos Kiayias and Moti Yung. Cryptanalyzing the polynomial-reconstruction

Jedwab:2007:TNB

Gashkov:2007:GAF

Jang:2007:BHM

Arhin:2007:SDM

Ji:2007:CLSa

Cheon:2007:MLS

Bras-Amoros:2007:AGC

[973] Maria Bras-Amorós. Algebraic-geometry codes, one-point codes, and evaluation codes. Designs, Codes, and Cryptography, 43(2–3):

Yildiz:2007:WML

Jackson:2007:PAA

Ghinelli:2007:P

Thas:2007:USS

Cameron:2007:DGG

Ebert:2007:MPR

Prince:2007:TPO

Pasini:2007:CTP

Lunardon:2007:SSF

Weng:2007:PPG

Ball:2007:HKK

Biliotti:2007:TPO

Dewar:2007:DTP

Rodriguez-Henriquez:2007:PIT

References

REFERENCES

Ge:2007:KFH

Cao:2007:CGS

Gutierrez:2007:ISP

Asamov:2007:SAL

Martinez-Moro:2007:RRM

Shaw:2007:AF

Kim:2007:CMS

REFERENCES

1023 Boris Skorić, Stefan Katzenbeisser, and Mehmet U. Çelik. Symmet-

REFERENCES

Donati:2008:ITS

Bierbrauer:2008:CB

Cuaresma:2008:HFJ

Ustaoglu:2008:OSE

Holzmann:2008:WMO

Kolokotronis:2008:CPN

Polhill:2008:NNL

REFERENCES

REFERENCES

Hyun:2008:MDS

Prince:2008:FTP

Klein:2008:ARS

Geil:2008:SWG

Gong:2008:SIA

Dempwolff:2008:DSD

Geil:2008:SWG

REFERENCES

[1093] Danyo Danev and Stefan Dodunekov. A family of ternary quasi-perfect

[Brinkmann:2008:CAF]

[Nojima:2008:SSM]

[Siqueira:2008:FTL]

[Fourquet:2008:ILD]

[Bey:2008:BFS]

[Homma:2009:SGH]

[1100] Masaaki Homma and Seon Jeong Kim. The second generalized Ham-

Schillewaert:2009:CHV

Yan:2009:COC

Dougherty:2009:MCF

Weng:2009:SRS

Guo:2009:EGM

Coron:2009:VBF

Edoukou:2009:CDF

[1107] Frédéric A. B. Edoukou. Codes defined by forms of degree 2 on non-degenerate Hermitian varieties in $\mathbf{P}^1(F_q)\mathbf{P}^1(F_q)$. Designs, Codes, and Cryptography, 50(1):135–146, January 2009. CODEN

REFERENCES

[1135] Iliya Bouyukliev, Veerle Fack, and Joost Winne. $2 - (31,15,7)$, $2 -$

Cossidente:2009:SCH

Jungnickel:2009:PQS

Shaw:2009:CSV

Bamberg:2009:HNG

Collins:2009:UBP

Feng:2009:DSN

Lee:2009:ERA

REFERENCES

José Joaquín Bernal, Ángel del Río, and Juan Jacobo Simón. An intrin-
REFERENCES

Liu:2009:GMT

Bryant:2009:IPL

Wen:2009:OGH

Harada:2009:TEN

Tassa:2009:PSB

AlBdaiwi:2009:EDP

Polhill:2009:PTP

REFERENCES

REFERENCES

Mishima:2009:OCA

Caranti:2009:AOS

Carlet:2009:FPS

Nuida:2009:IDT

Kim:2009:GGP

Moody:2009:DHP

Coulter:2009:SSD

REFERENCES

Bras-Amoros:2009:NSR

Ball:2009:MBS

Tang:2009:NOQ

Mossinghoff:2009:WPB

Fanali:2009:MCF

Pinto:2009:CAS

REFERENCES

Bierbrauer:2010:NSP

Dokovic:2010:NYN

Abe:2010:EHE

Petelczyc:2010:TFS

Davydov:2010:LCC

Schillewaert:2010:MCR

Vandendriessche:2010:SLD

[1219] Ronald C. Mullin and Rainer Steinwandt. Special issue dedicated to

References

[1233] Marco Buratti and Anita Pasotti. Further progress on difference fam-
REFERENCES

Jan De Beule, Yves Edel, Emilia Käsper, Andreas Klein, Svetla Nikova,

Ball:2010:MAG

Lavrauw:2010:LSP

Cossidente:2010:STC

Marino:2010:OBS

Fanali:2010:SOP

Barreto:2010:WNC

Edel:2010:MCF

REFERENCES

[1254] John Fuelberth, Athula Gunawardena, and C. David Shaffer. On
incidence structures of nonsingular points and hyperbolic lines of ovoids in finite orthogonal spaces.

References

[1261] Shenglin Zhou and Huili Dong. Alternating groups and flag-transitive triplanes. *Designs, Codes, and
REFERENCES

202

Blinovsky:2010:WDM

Zaverucha:2010:ASS

Fernandez-Cordoba:2010:MDG

Byrne:2010:NBC

Krotov:2010:BCP

Park:2010:MDH

Zhou:2010:OPD

[1268] Zhengchun Zhou and Xiaohu Tang. Optimal and perfect difference systems of sets from q-ary sequences with difference-balanced property. Designs, Codes, and Cryptography, 57(2):
REFERENCES

REFERENCES

REFERENCES

[1303] Andrey Bogdanov. On unbalanced Feistel networks with contracting MDS diffusion. Designs,

Harris:2011:CRK

Joye:2011:HDS

Klove:2011:LBS

Leander:2011:BDA

Lisonek:2011:ZKS

Maitra:2011:SOH

Tu:2011:CAB

Kim:2011:NRR

Chang:2011:PDG

Ghodosi:2011:CHL

Cao:2011:SPE

Ranto:2011:BLI

Hiramine:2011:FNC

Yutaka Hiramine. A family of non class-regular symmetric transversal designs of spread type. Designs, Codes, and Cryptography, 60(1):91–99, July 2011. CODEN DCCREC. ISSN 0925-1022 (print), 1573-7586 (electronic). URL http:
REFERENCES

REFERENCES

Lee:2011:DPA

Marino:2011:TCR

Bilal:2011:MDS

Batra:2011:SCC

Avanzi:2011:DCN

Prazmowska:2011:SPC

Plagne:2011:ACT

REFERENCES

Abel:2011:EGB

REFERENCES

[1373] Simona Bonvicini, Marco Buratti, Gloria Rinaldi, and Tommaso Traetta. Some progress on the existence of 1-rotational Steiner triple systems. Designs, Codes, and Cryptography, 62

Xiande Zhang, Hui Zhang, and Gennian Ge. Optimal constant weight covering codes and nonuniform group divisible 3-designs with block size four. Designs, Codes, and Cryptography, 62

REFERENCES

Kaski:2012:STS

Britz:2012:WTD

Havlicek:2012:INS

Webster:2012:URI

Bisson:2012:LMA

Donovan:2012:NDA

McLoughlin:2012:GRC

[102] REFERENCES

Aggarwal:2012:CST

[1409] Manohar L. Aggarwal, Andreas Klein, and Leo Storme. The character-
isation of the smallest two fold blocking sets in PG(n, 2). Designs, Codes,
and Cryptography, 63 (2):149–157, May 2012. CODEN DCCREC. ISSN 0925-

DeBeule:2012:CRP

lar class of non-weighted minihypers. Designs, Codes, and Cryptography,
63 (2):159–170, May 2012. CODEN DCCREC. ISSN 0925-1022 (print), 1573-

DeBoeck:2012:SWC

[1411] M. De Boeck. Small weight codewords in the dual code of points and hyper-
planes in PG(n, q), q even. Designs, Codes, and Cryptography, 63
(2):171–182, May 2012. CODEN DCCREC. ISSN 0925-1022 (print), 1573-7586

Hou:2012:CSD

[1412] Xiang-Dong Hou. Classification of self dual quadratic bent functions. De-
signs, Codes, and Cryptography, 63 (2):183–198, May 2012. CODEN
DCCREC. ISSN 0925-1022 (print), 1573-7586 (electronic). URL http:

Kurosawa:2012:REP

[1413] Kaoru Kurosawa. Round-efficient perfectly secure message transmission
scheme against general adversary. Designs, Codes, and Cryptography,
63 (2):199–207, May 2012. CODEN DCCREC. ISSN 0925-1022 (print), 1573-

Zhang:2012:CCC

nearly meeting the Welch bound. Designs, Codes, and Cryptography,
63 (2):209–224, May 2012. CODEN DCCREC. ISSN 0925-1022 (print), 1573-

Stankovski:2012:IDH

[1415] Paul Stankovski, Sushmita Ruj, Martin Hell, and Thomas Johansson. Im-
proved distinguishers for HC-128. Designs, Codes, and Cryptography,
63 (2):225–240, May 2012. CODEN DCCREC. ISSN 0925-1022 (print),

[1422] Zhi Hu, Patrick Longa, and Maozhi Xu. Implementing the 4-dimensional GLV method on GLS elliptic curves with j-invariant 0. Designs, Codes, and Cryptography, 63(3):331–343,
Silvesan:2012:CBD

Huang:2012:TCO

Ballico:2012:SCC

Simone:2012:APT

Weng:2012:FRP

Panario:2012:DPF

Bonisoli:2012:PGC

Korchmaros:2012:PAL

Korhmaros:2012:PAL

DeClerck:2012:SAW

DeClerck:2012:SAW

Indaco:2012:APL

Indaco:2012:APL

Cardinali:2012:TFR

Cardinali:2012:TFR

Temmermans:2012:CPS

Temmermans:2012:CPS

DeBruyn:2012:DUE

DeBruyn:2012:DUE

Payne:2012:ESD

REFERENCES

Marquardt:2012:PNG

Grosek:2012:QFA

Cao:2012:RSC

Fu:2012:CHN

Pun:2012:GPT

Heden:2012:ESS

Krotov:2012:BCP

Zhou:2012:CCE

Sajadieh:2012:CIM

Cossidente:2012:HHP

vanDam:2012:PGA

Ball:2012:SVF

Jungnickel:2012:HTC

Jurisic:2012:ECD

[1457] Aleksandar Jurisić and Janos Vidal. Extremal 1-codes in distance-

[1471] Bahattin Yildiz. A lemma on binomial coefficients and applications to Lee weights modulo 2^e of codes over \mathbb{Z}_4. *Designs, Codes, and Cryptography*, 65
REFERENCES

[1477] Tom Høholdt and Heeralal Janwa. Eigenvalues and expansion of bipartite graphs. Designs, Codes,
REFERENCES

Hernando:2012:PCS

Hernando:2012:PCS

Katz:2012:TDM

Dinitz:2012:CRP

Singhi:2012:SDM

Singhi:2012:SDM

Baldi:2012:BAH

REFERENCES

[1496] Santanu Sarkar and Subhamoy Maitra.

Rock:2013:GMA

Geil:2013:WRM

Beelen:2013:BNP

Cesmelioglu:2013:CBF

Gangopadhyay:2013:NCB

REFERENCES

REFERENCES

Yamada:2013:DSG

Cao:2013:CQC

Tang:2013:CBB

Leemans:2013:BCS

Bose:2013:KPS

[1533] L. Beukemann and K. Metsch. Small tight sets of hyperbolic quadrics. *De-

Sziklai:2013:SMB

Rodgers:2013:CLL

Glynn:2013:PFV

Betten:2013:TFM

Honold:2013:EMA

Thomas Honold and Michael Kiermaier. The existence of maximal $(q^2,2)$-arcs in projective Hjelmslev

Amarra:2013:SDT

Chen:2013:ANA

Polhill:2013:NPC

Jungnickel:2013:NII

Coolsaet:2013:CNH

Glynn:2013:NNH

Lavrauw:2013:FSN

REFERENCES

Munuera:2013:GHC

Hernando:2013:DSS

Lunardon:2013:RSS

Yankov:2013:NOS

Martinez-Moro:2013:ASM

Gravier:2013:NRV

Abel:2013:GSG

REFERENCES

REFERENCES

[1579] Padmapani Seneviratne. Codes associated with circulant graphs and permutation decoding. *Designs, Codes,

Ghinelli:2014:HCI

Sidorenko:2014:FSF

Malevich:2014:CES

Araujo:2014:GLC

Haymaker:2014:GWC

Pernas:2014:CAG

Bras-Amoros:2014:GMB

Eraj Khan, Ernst Gabidulin, Bahram Honary, and Hassan Ahmed. Modified Niederreiter type of GPT cryptosystem based on reducible rank codes. *Designs, Codes, and Cryptography*, 70(1–

Smart:2014:FHS

Laarhoven:2014:OST

Loidreau:2014:ABC

Sharma:2014:SNM

Fan:2014:MPC

Tian:2014:LAS

Su:2014:CRS

Zeh:2014:NBM

Nilson:2014:IBS

Wachter-Zeh:2014:DIR

Dukes:2014:GDD

Sepahi:2014:LBC

Dai:2014:CCO

Zhou:2014:PCG

REFERENCES

REFERENCES

[1655] Stanley Payne and Morgan Rodgers. Double k-sets in symplectic generalized quadrangles. Designs, Codes,

Hyun:2014:BFM

Fu:2014:OCA

Ihringer:2014:MSE

Bracken:2014:NCT

Wood:2014:ROW

Swanson:2014:CSP

Shi:2014:ESS

Adams:2014:RIM

[1663] Megan Adams and Junhua Wu. 2-ranks of incidence matrices associated

Etzion:2014:CSS

Ren:2014:NSF

Dougherty:2014:AFS

Sonnino:2014:TIA

Krcadinac:2014:ECT

Johnsen:2014:SRR

Cao:2014:CGR

Wei:2014:KFH

[1671] Hengjia Wei and Gennian Ge. Kirkman frames having hole type $h^n m^k$ for
REFERENCES

REFERENCES

REFERENCES

Carlet:2014:AWC

Pirsic:2014:DFT

Klove:2014:LCC

Fontein:2014:PPT

Kim:2014:NIA

Sarkar:2014:SSE

Rosenthal:2014:GBG

References

Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter identity-based encryption via asymmetric pairings. Designs, Codes,
REFERENCES

Raaphorst:2014:CSC

Gavrilyuk:2014:CLL

Yankov:2014:NBS

Bulygin:2014:FAP

Gavrilyuk:2014:CLL

Horiguchi:2014:ESD

Klove:2014:ELC

[1761] Bocong Chen, Hongwei Liu, and Guanghui Zhang. A class of mini-

Feng:2015:SCH

Albrecht:2015:CBA

Yang:2015:SDC

Dokovic:2015:CPC

Torezzan:2015:OCG

Lee:2015:AHS

Lavrauw:2015:EMD

Randriam:2015:LBM

Alfaro:2015:CSD

Yang:2015:FRD

Hunt:2015:DME

Farras:2015:EBD

Jitman:2015:QAC

Liu:2015:BAA
REFERENCES

REFERENCES

[1791] Nelly Fazio, Kevin Iga, Antonio R. Nicolosi, Ludovic Perret, and William E. Skeith III. Hardness of learning prob-

Peter Horak and Zsolt Tuza. Speeding up deciphering by hypergraph ordering. *Designs, Codes, and Cryptography*,...
Yang:2015:OPK

Ma:2015:ASF

Cossidente:2015:NFR

Newman:2015:CD

Swartz:2015:CPD

delaCruz:2015:ESD

Han:2015:MCS

Zheng:2015:WDF

[1815] Yew Meng Chee, Gennian Ge, Hui Zhang, and Xiande Zhang. Hanani triple packings and optimal q-ary...

Rifa:2015:SEH

Nilson:2015:TAY

Vandendriessche:2015:SLS

DeBoeck:2015:LEK

Cho:2015:NCR

Janiszczak:2015:PCI

Hiramine:2015:DMR

[1822] Yutaka Hiramine and Chihiro Suei.

Simone:2015:FPP

Gluesing-Luerssen:2015:FRP

Langlois:2015:WCA

Kotsireas:2015:FCA

Villanueva:2015:ERB

Duck:2015:HDL

Hoholdt:2015:OCT

Geil:2015:IFR

REFERENCES

REFERENCES

Hu:2015:NPP

Lo:2015:WMM

Harada:2015:DRP

Liu:2015:DCP

Xu:2015:BNF

Dunkelman:2015:AUF

Barwick:2015:ITS

Fujioka:2015:SSA

REFERENCES

Le:2015:ADC

Dougherty:2015:CRH

Olmez:2015:PFO

Evans:2015:DCE

Carlet:2015:EBF

Wei:2015:CRS

Dunkelman:2015:PTA

REFERENCES

Lu:2015:MDL

Nakic:2015:TDD

Nishimaki:2015:VES

Mesnager:2015:BVF

Tang:2015:DUB

Kim:2015:FAP

Cao:2015:SML

Hong:2015:MLS

Qian:2015:EAQ

Winter:2015:LRS

Bao:2015:CDO

Sarkar:2015:PTA

Zeng:2015:SGC

Martinez:2015:EF

Blake:2015:GES

Chiasson:2015:QSA

Archdeacon:2015:SIH

Silverberg:2015:IAV

Libert:2015:LHS

Chee:2015:OLP

Dull:2015:HSC

Roettger:2015:SPT

Hoffstein:2015:PEP

[1891] Jeffrey Hoffstein and Joseph H. Silverman. PASS-Encrypt: a pub-

Lamken:2015:AED

Zhang:2015:BVC

Koblitz:2015:ROM

Andreeva:2015:OPH

Dinur:2015:RST

McGuire:2015:FRN

Maurer:2015:ZKP

REFERENCES

[1906] Neal Koblitz and Alfred J. Menezes. Cryptocash, cryptocurrencies, and
REFERENCES

Ng:2016:DDF

Niederreiter:2016:SSA

Pott:2016:APP

Moura:2016:FFC

Ng:2016:DDF

Niederreiter:2016:SSA

Pott:2016:APP

Moura:2016:FFC

Gordon:2016:SMC

Schmidt:2016:SSC

Fragouli:2016:SLN

Etzion:2016:GGC

REFERENCES

[1922] Adonus L. Madison and Junhua Wu. Conics arising from external points and...

Chen:2016:GCI

Cossidente:2016:SC

Wu:2016:SIP

Gauravaram:2016:BIC

Lavrauw:2016:BCF

Caullery:2016:EPP

Steinbach:2016:CQL

[1953] Seyed Hassan Alavi, Mohsen Bayat, and Ashraf Daneshkhah. Symmetric

REFERENCES

Beelen:2016:SDG

DeWinter:2016:ASR

Bartoli:2016:CAQ

DeBruyn:2016:HHD

Landjev:2016:EQG

Gillespie:2016:EFN

Kusejko:2016:SDC

Betten:2016:P

REFERENCES

Cossidente:2016:NLM

Hui:2016:ESI

Cooper:2016:TH

Fancsali:2016:HPS

Chen:2016:NBH

Moreira:2016:ASA

Hofheinz:2016:TSS

Shparlinski:2016:SGB

Jedwab:2016:CCE

Krotov:2016:PCD

Guo:2016:GCS

Davydov:2016:CPS

Chen:2016:GCD

Dutta:2016:CAS

REFERENCES

[1989] Yarkin Doröz, Yin Hu, and Berk

Londahl:2016:SAM

Schmidt:2016:BSO

Sheekey:2016:DDH

LeGrow:2016:HCE

REFERENCES

Hachenberger:2016:AER

Guo:2016:EMM

Ku-Cauich:2016:ACB

Stones:2016:LSA

Yan:2016:TCC

Kendall:2016:GTD

Abiad:2016:SSG

Cheng:2016:PBS

Banin:2016:RSD

Mullan:2016:HHF

Guo:2016:SIK

Bamberg:2016:NRH

Braun:2016:NIS
REFERENCES

Zhou:2016:LCT

Liu:2016:FVF

Cheng:2016:BCS

Meidl:2016:MHJ

Dougherty:2016:KRC

Abel:2016:GHD

Yanfeng Wang and Wenling Wu.

Wang:2016:NCD

Zhou:2016:TPC

Zheng:2016:LCP

Chen:2016:IAM

Kim:2016:CIS

Charpin:2017:ESI

Boura:2017:RC

Ronjom:2017:IAA
[2041] Sondre Ronjom. Improving algebraic attacks on stream ciphers based on linear feedback shift register over \mathbb{F}_{2^k}. Designs, Codes, and Cryptography, 82(1–2):27–41, January 2017. CODEN DCCREC. ISSN 0925-1022 (print),
Zajac:2017:UBC

Dyshko:2017:MET

Bezzateev:2017:LBC

Gupta:2017:DCR

Chakraborty:2017:RTO

Minier:2017:IID

REFERENCES

[2054] Arkadii D’yachkov, Ilya Vorobyev, Nikita Polyanskii, and Vladislav Shchukin. Almost cover-free codes and designs. *Designs, Codes, and
REFERENCES

Fan:2017:FTB

Kurosawa:2017:HML

Li:2017:GCP

Sarkar:2017:NMD

Delgado:2017:CAF

Lakshmanan:2017:CVC

Liu:2017:NGB
Yang:2017:CWE

Huggan:2017:SLA

Li:2017:AGS

Peng:2017:CDR

Zheng:2017:DCL

Lu:2017:AIS
315

REFERENCES

Cheng:2017:CIP

Ahn:2017:CWE

Napp:2017:MCC

Pace:2017:LCA

Landerreche:2017:CSA

Krotov:2017:AGL

Chen:2017:ACH

Xiaotian Chen and Yue Zhou. Asynchronous channel hopping systems from difference sets. *Designs, Codes, and Cryptography*, 83(1):179–196, April 2017. CODEN DCCREC. ISSN 0925-1022 (print),
REFERENCES

Sajadieh:2017:NCM

Rua:2017:PSO

Mennink:2017:OCS

Luo:2017:GAL

Ma:2017:SNR

Jiang:2017:NIL

Wang:2017:SBC

Hao:2017:TDB

vanTrung:2017:SDR

Zhang:2017:QMC

Gorla:2017:ORT

Nastase:2017:SMS

Fan:2017:MPC

Kim:2017:PDB

Erzurumluoglu:2017:TTS

Jin:2017:CBL

Martínez-Penas:2017:RMR

Bereg:2017:EPA

Guo:2017:PCK

Tang:2017:LCF

Anonymous:2017:EN

Blokhuis:2017:PSI

Koolen:2017:LTH

Mathew:2017:NLB

Bannai:2017:RDB

Diego:2017:DMR

Abdollahi:2017:DRC

Litjens:2017:SBN

Soicher:2017:UDR

Cameron:2017:CTG

Bishnoi:2017:CST

Cheng:2017:GTN

Dhaeseleer:2017:MSM

Cioaba:2017:GAT

REFERENCES

DCCREC. ISSN 0925-1022 (print), 1573-7586 (electronic).

Chandler:2017:SGH

Verhoeff:2017:SDH

Jia:2017:CMM

Meng:2017:DRS

Lavrauw:2017:BRF

Li:2017:CMD

DeCaro:2017:PRS

Han:2017:CLH

Davis:2017:NCE

Salagean:2017:HOD

DeWinter:2017:CPD

Jin:2017:QMC

Fan:2017:GSD

Martinsen:2017:PSV

Shen:2017:PCX

Lee:2017:ERI

Strey:2017:LCG

Kurz:2017:IUB

REFERENCES

Kolomeec:2017:GMD

Zheng:2017:LSK

Chen:2017:SBS

Tzanakis:2017:CAM

Cossidente:2017:SRG

Li:2017:NTC

Hagiwara:2017:CCC

Egan:2017:ENG
REFERENCES

Wang:2017:NBP

Rubin:2017:MPO

Borges:2017:TEO

delaCruz:2018:WDR

Herold:2018:ACS

Gnilke:2018:MCD

Kim:2018:FEC

Jongkil Kim, Willy Susilo, Fuchun Guo, and Man Ho Au. Functional encryption for computational hiding in prime order groups via pair encodings.

Watanabe:2018:TRC

Jongkil Kim, Willy Susilo, Fuchun Guo, and Man Ho Au. Functional encryption for computational hiding in prime order groups via pair encodings.

REFERENCES

REFERENCES

Horlemann-Trautmann:2018:EOA

Neri:2018:GMR

Horlemann-Trautmann:2018:MER

Raviv:2018:CLR

Silberstein:2018:ABL

Anonymous:2018:EN

Jungnickel:2018:BTB

REFERENCES

[209] Jooyoung Lee, Atul Luykx, Bart Meunink, and Kazuhiko Minematsu. Connecting tweakable and multi-key block-

[2216] Fengwei Li and Qin Yue. The primitive idempotents and weight distributions of irreducible constacyclic codes.
REFERENCES

Moreira:2018:CAS

Zhang:2018:CCP

Olmez:2018:LBC

Vega:2018:CDW

Ding:2018:NCM

Polak:2018:NNC

Sudha:2018:CPM

Hou:2018:CNB

Colbourn:2018:ACM

Lin:2018:FCB

Lee:2018:KAC

Ryabko:2018:PTS

Bamberg:2018:ORN

Zheng:2018:FCL

Liu:2018:SFS
REFERENCES

Morales:2018:AMT

Lan:2018:CCQ

Harada:2018:BES

Bereg:2018:CPA

Merai:2018:ECE

Gangopadhyay:2018:GNS

Wen:2018:CCS

Cossidente:2018:ISF

[Antonio Cossidente and Francesco Pavese. On intriguing sets of finite sym-

Donati:2018:GNR

vanTrung:2018:RCS

Shi:2018:TWC

Paul:2018:DCD

Aydin:2018:SCC

Alahmadi:2018:SDD

Chen:2018:CCC

REFERENCES

REFERENCES

Wang:2018:APS

Wang:2018:UBL

Shuai:2018:MCD

Qian:2018:MLC

Kharaghani:2018:UOD

Bartoli:2018:PPT

Xiong:2018:CDU

Emura:2018:CCS

REFERENCES

Augot:2018:GGC

Farran:2018:SFRa

Mesnager:2018:ACB

Bibak:2018:ULC

Rifa:2018:HFP

Sun:2018:ZCA

Koga:2018:CED
Zhang:2018:FTP

Ravagnani:2018:DCS

Schmidt:2018:NIG

Otmani:2018:ICR

Xu:2018:SCM

Fan:2018:FTB

[2290] Yun Fan and Bangteng Xu. Fourier transforms and bent functions on fi-

Dougherty:2018:GRC

Zhu:2018:CNB

Chang:2018:LCS

Hodaj:2018:SNK

Catalano:2018:HSS

Bandi:2018:CSS

Ji:2018:GDD

Lijun Ji. Group divisible designs with large block sizes. Designs, Codes, and Cryptography, 86(10):2255–2260, October 2018. CODEN DC-
REFERENCES

[2309] Zhou:2018:TWT

[2306] Liu:2018:NDL

[2307] Shi:2018:SDN

[2311] Liu:2018:HBT

[2312] Ge:2018:CSK
Chunpeng Ge, Willy Susilo, Liming Fang, Jiandong Wang, and Yunqing Shi. A CCA-secure key-policy...

Carlet:2018:EHL

Mogilnykh:2018:EMW

Torres-Jimenez:2018:CAS

Zhang:2018:MCB

Antrobus:2018:LFP

Tan:2018:GIW

Cogliati:2018:ASP

REFERENCES

[2327] Jin Li, Aixian Zhang, and Keqin Feng. Linear codes over $F_{q}[x]/(x^{2})$

Lu:2018:SRG

Xu:2018:CCP

Fan:2019:SSB

Ethier:2019:SMO

Fu:2019:IDU

Ethier:2019:SMO

Egan:2019:PUG

Mefenza:2019:PIG

Shi:2019:HMW

Cheng:2019:IBF

Zhang:2019:COF

Soleimanian:2019:PVS

Zhang:2019:NRS

Chen:2019:BBF

[2350] Daniele Bartoli, Massimo Giulietti, and Maria Montanucci. Linear codes

REFERENCE

Guo:2019:BBS

Farras:2019:LBO

Huang:2019:SBS

Derler:2019:KHS

Chang:2019:EFD

Bartoli:2019:MWC

Shi:2019:TCB

Ihringer:2019:CMM

Kapetanakis:2019:VPN

Fu:2019:RCP

Feng:2019:ODO

vanTrung:2019:ETS

Lavauzelle:2019:LPR

Carlet:2019:CIF

Meng:2019:SEL

Cogliati:2019:MUS

Polhill:2019:NFP

Jia:2019:ECB

Reis:2019:FCC

Fickus:2019:ETF

Dutta:2019:MCC

Liu:2019:ISB

See correction [2403].

[2410] A. Blokhuis, M. De Boeck, and J. D’haeseleer. Cameron–Liebler sets

Shi:2019:APC

Olson:2019:TPI

Brouwer:2019:UCU

Dinur:2019:AFG

Wu:2019:MTW

Michel:2019:ADT

Lai:2019:QEG

REFERENCES

[2425] Minjia Shi, Denis S. Krotov, and Patrick Solé. Correction to: A
REFERENCES

[2432] Liang Bai and Zihui Liu. On the third greedy weight of 4-dimensional

[2439] Hadi Kharaghani and Sho Suda. Linked systems of symmetric group divisible designs of type II. *Designs, Codes, and Cryptography*, 87(10):2341–2360, October 2019. CODEN DCCREC. ISSN 0925-1022 (print),
Kim:2019:SSP

Armario:2019:GBA

Cao:2019:CES

Li:2019:WDS