A Complete Bibliography of *Electronic Communications in Probability*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

24 August 2017
Version 1.08

Title word cross-reference

(1 + 1) [CB10]. (d, α, β) [Zho10]. (∇ + Δ) [CB10]. 0 [Sch12, Wag16]. 1
[HL15b, Jac14, Li14, Sch12, SK15, Sim00]. 1/2 [KV15]. 2
[BDT11, Har12, Li14, Swa01, VZ11]. 2D [DXZ11]. 2M × X
[Bau02, HMO01, MY99]. 3 [AB14, SK15]. [0, t] [MLV15]. α [DXZ11, Pat07].
α ∈ (0, 1/2) [Sch12]. β [Ven13]. d [Hag02, Mal15, Van07]. d = 2 [KO06]. d > 1
[Sal15]. d ≥ 2 [BR07]. f [DGG+13]. δm = κm δm, m [OD12]. G
[NY09, BCH+00, FGM11]. H [Woj12, WP14]. k
[AV12, BKR06, Gao08, GRS03]. k(n) [dBJP13]. kα [Sch12]. L1
[CV07, MR01]. L1([0, 1]) [FP11]. L2 [HN09]. L∞ [MHC13]. Lp [CGR10]. L1
[EM14]. A [Fou13, Fou14, Lag07, Zho14]. Lu = uα [Kuz00]. m(n) [dBJP13].
p [Eva06, GL14, Man05]. pε < pu [NP12a]. φ [Kie97]. q [Bar14]. r [SC09]. S
[RS07]. S2(δ) [Ost14]. SU(3) [Ras10]. T [IR10, GG04, Grit02, MLV15]. T2
[DS06]. U [Arc98, RW02]. $\square \triangle [\text{Loe13}]. \Xi [\text{Fre12}]. Z [\text{DJ06, RS11a, Sin14}]. Z^d [\text{Pet08, Zer06}]. Z^d_+ [\text{LK08}]. \zeta(2) [\text{Wäss09}]. \zeta(2n) [\text{BFY07}].$

* [KNN15].

10 [MZ05a].

2D [Kis14, vdBJ07, vdB12, vdB13, GPL08]. 2d-random [GPL08].

Brownian

[Ali01, CLMR15, Con16, BCP03].

[Bah02, BCH00, BDM01, CEK11, FPZ16].

buffers [AS16].

BV-regularity [Tre13a].

C [KS10]. Calculus [GKH03, TM15].

cancellative [Swa13].

canonical [Ali01].

cantor [Mar17, Zhu14].

capacity [CKS99, LLN09].

caring [BK11].

carlo [BA01].

cascades [DW15].

case [BI15, Def12, Gau16, IM16, RS07, SW10].

catalytic [BH16, SS06].

Cauchy

[Ber00, BFY07, GN06, MZ14a].

Cayley

[Mar17, NP12a].

cells

[BDM07, HM15].

cellular [BP10].

censoring [DM14].

center [JC04].

Central

[HN10, NX13, Rok15, GV14, GPPdS14, HN09, Rio11, BLL08, BR07, Cha10, DV11, DBGP03, Kar07].

Certain

[Ali01, Hiig02, MR01, BB06, MP16, RR15].

Chafee [DHI11].

Chain

[BA01, Gui09, HR07, Yad09, Lac15, LW09, YRE16].

Chains

[BLL08, Ros02, Tel00, ADOS11, CP17, CP14, DG15, Die15, KF09, Miil08, NW15, RR07, SB07].

chambers [KS10].

Chance [DeB07].

Chandra

[KT03].

change [BY13, GG14].

changed [HRKU11].

Changes [MY99].

chaos [Ber17, Bou16, NP12b, NP12c].

chaoses [CNPP16].

chaoticity [Rey15].

Characterisation [Die15, JR11].

Characteristic

[Kös08, BCG12b, Har04].

characterization

[AP16, FJ00, LG09, Arg07, BMV07, DN07, Ejs13, KNN15, Neh14].

cheeger [Mon07].

Chernovnenkis [Pan02].

ci [Jou12].

choice [MP14a].

Choquet

[Men14, Men13].

Chordal

[AK08, Doh13].

Chung

[Hil06].

CIR

[Aly13].

circular [MZ14a].

claims [PRT13].

Clark [MN08].

Class

[DCF06, Mor05, NY10, Wan02, BBCG08, Er16, Kili12a, Kub11, KZ13, Led17, LST15, MG16a, MG16b, OR12, San13, Swa13, Woj12, WP14].

classes [CLMR15, GP11, LMK03, MN09].

classical [Li17].

Classification

[Wan02].

Close [BM05, Mar05].

Closeness [HM16].

Closure [Mar10].

CLT

[Fan15].

CLTs [HR07].

clumpy [JM15].

cluster

[BS17, GJ09b, Kis14, Li14, Pet08, PR12b, Sap11, vB15, vdB12].

clustering [vdBBH10].

Clusters [KS03, PV05, vdBKN12, vdB13, vdB16].

cogulation [Ber10].

coalescence [Nic06].

Coalescent

[Möh11, Sch99, DPS15, KP15, MP14b].

coalescents [Fre12, Lag07].

Coalescing

[HT05, BFGG16, TYZ12].

Coarsening [DKNS16].

coefficient

[Bah02].

coefficients [AF06, Böt11, Owo15].

Collide [KP04].

Colliding

[KO01, OY01, BFP10].

Collisions [HP15, IS17].

colored

destructive [AST14]. detection [FY15]. Determinantal [Pet10]. determinants [Har04]. Deterministic [Eri16, Ste08]. Deviation [GJ09a, Oli10b, DJ12, Dz13, FGL12, Gan14, Kis14, Re13, WY08, dHP14].

Deviations [Big04, Dem96, DS06, FX02, KS03, BP09, But17, BZ17, Com08, DF16, DJ16, DKS15, ES09, EMR15, GRR14, GJ09a, Har12, KLM15, KSW12, LW09, MYP14, TIS13, Yin15, Zhu14].

diagonals [FG13, HM16]. Diagonals [Sch16].

Differ [Wan15]. Dichotomy [Fun07].

dies [GM13]. diffeomorphisms [Att01]. Difference [CP05, CV07].

different [BDE13, NS13]. differentiability [AP14, Pan08]. differentiable [Luo14].

Differential [AK04, Bar05, BLY15, CR05, FW00, TW03, AF06, Ban15, Beg14, CD13, CY13, D’O10, DOS16, DC15, FT07, Fra13, Hoe09, Ose08, Ose10, Ose11, Owo15, Ruf15a, RM16, Tap13, Tap15, Unt10, YE13, YRE16].

...
differential-algebraic [AF06]. differentially [Osc16]. Diffusion
[Hu08, Jan96, Rin98, Wan09, AS16, BR16, CSC13, Cla14, DCLYY13, Eth14,
GG14, GM16, GM17, HLWZ15, KDV17, KTT17, LST15, PW11, RBS15, Sai07].

Diffusion-Limited [Hu08]. Diffusions [Sam10, BC14, CK14, DN07, Fan16,
Gan16, Hut11, KSY06, Kli12a, MU12, Rey15, Ruf15b, RW09, Tug16].

Diffusive [NY10, dBM15]. dilations [Gri11, Tko11]. Dimension
[BR07, Sim00, Bor13, Far98, Hol15, HKZ12a, Hue16, Jou12, Law96, Le 08,
Sal15, Yan06, vB15].

Dimensional [Spr07, Swa01, Abe15, AS11, Att10, BFRH15, BDZ11, BS07b, BR16, Can15,
CB10, CEG11, Dru06, EK08, GPHS13, Häg02, HM09, Har04, Jac14, Kli12b,
KT‘17, Mal15, MU12, OdS16, Pet15, Roh05, RW09, San13, TYZ12, TYZ15,
Van07, Wag16, Wan09, Wat12, Yuk08]. Dimensions
[Law98, EMMR15, MS11, Sap11, SZ17].

Directed [Bir04, HS09, HS12, SHH14, Wat12], direction [Cou11], directional
[OdS16]. Dirichlet [Arg07, JK08, RW09, Uem07]. Disaggregation [DCF06].

disconnectedness [Zho14]. Disconnection [PW96, Wer96].

discontinuities [BKS16]. Discontinuity [Jan97]. discontinuous
[AP14, Att10, GS12, Lej11, LST15]. Discrete [Fan16, SBS15, Van08, BDZ11,
Cra13, Doli14, KZ13, Lup16, Mak08, Rok07, SB07, Win08]. discrete-time
[SB07], discretized [BBMT09]. Disjoint [Gan14, Wei03]. disk [Gaa14].

Disorder [Bir04, DW15, Lac10], Disordered [BD02, CdH13, KO06].

Displacement [FZ10, Mal15]. Dissipative [LT11]. distance
[EM14, Liu15, Rei13, Rio11], distant [Uch15]. Distributed
[EZ09, vdBHH10].

Distribution
[CK08, DFN00, Jan97, JK04, JK08, MZ05a, MZ05b, Ost14, Spr07, Baci11,
Bar14, BD13, Bas15, BH16, Bor10, BW08, But17, DR12, Jan15, Kli12a,
Led16, MZ14a, Mic13, MPP15, MP16, Rey15, SV11b, Sub12, Tam07].

distribution-valued [Led16]. Distributions
[Jun11b, KM06, Res01, Arg07, ALW14, BC15, Bob08, Dem11, DMPARA13,
Gra15, GPHS13, HM14, HK14, KV11, Lab13, LG09, MG16a, MG16b, MN09,
MU10, MAPS14, Mar14, Ots13, Tan17]. Divergence
[CP05, BD15, Oto09].

divergent [BI15]. Divisibility [MR08, AJ14, VY12b]. Divisible
[MR01, AV12, DMPARA13, MN09, MU10, Wat12]. DLA [RS11a]. do
[EHW15]. Does [MZ05a, MZ05b, BLL16, Sap11, Wei03]. Domain
[De07, Dok15]. domains [BB06, Fra13, Mar11]. dominate [Sap11].

Domination [Lin99]. Doney [PN15, PN16]. Donsker [BRT10, BDM01].

Donsker-Type [BDM01]. Double [Wai13, BK11], double-branching
[HSY15]. drawn [JHP14]. Drazin [SB07]. drift
[AP14, Att10, BO03, DN07, DP14, GN06, GJ09a, GM16, GM17, Jan13, JV09,

Driven [HT05, Ban15, BO03, DXZ11, HHN16, MY13, Owo15, Tap15, Unt10].

dualities [JK13]. Duality [HT05, Jan96, CLMR15, HA07]. dyadic
[Bia13, Sio14]. Dyck [KM09]. Dykema [But17]. dynamic
Dynamical [DN07, Arg07, Ave12, BLMZ12].

dynamics [Gor15].

Dyson [BFP+09, KT13].

easy [Was09].

Edge [Gui99, MR11, Cra13, Geo10, Law14, Mon07, RRZ11, SV16].

Edge-Reinforced [MR11].

edges [Fan15].

Edgeworth [MY13, Pri15].

eciency [AA07].

Eigenfunctions [AB02].

Eigenvalue [DV11, Wan09, SV11b, Woy12, Yas14].

Eigenvalues [KO01, Sos04, BGP14].

eigenvectors [BGP14].

elect [BFP+09, KT13].

electric [Gor15].

Dyson [BFP+09, KT13].

Dyson [BFP+09, KT13].
expansions [Mar09, Pri15]. Expectation
[BCH +00]. expectations [GHJL17, HLWZ15]. expected
[EM16, Eva06, FV14, Mar11, NX15, Sap10, vdBC16]. Explicit
[BL10, D’O10, DL08, Mic13]. exploding [KT11]. explosion [BS16].
explosive [Lab13]. exponent [KV15, Ven13]. Exponential
[Bau02, BGHK08, BY01, DS10, GM12, IM10, Jun11b, KS14, PR11, Rio15,
RS06, TM06, dLP09, AI12, BLL16, CSC13, DM09, Enr16, FGL12, GRR14,
KM09, KMI06, Pet08, Sch09, SC09, Yin15]. exponentially [DZ13].
Exponents [Ham05, PW96, Wer96, NP12a]. extended
[TYZ12, TYZ15, YY12a]. Extension
[MR15b, Hoe09, HvHS08, Pin16, Pos09, Uem07]. Extensions
[BGT07, Fit06, Pan02, Rio13a]. extinct [FF12]. extinction
[BK11, JL08, SV16]. Extremal [Dzi13, CCH15]. Extreme [KLS05].
Extreme-Value [KLS05].

factor [RR15]. Factorial [BLY15]. Factorizations [BY01]. Factors
[Bal05, MG16a, MG16b, Tim04]. fail [CD17]. family [Bac11, BLL16, Neu11].
Fast [BA01, BR16, Wai13]. Fastest [Roc05]. Feller [Bot11, PW11].
Ferguson [JK08]. Few [BS96]. Feynman [Bal09, Tak10]. field
[BZ16, BDE13, BDZ11, CD13, LW15, LW16, NP12a, CCH15]. Fields
[CGXM96, Ist06, BMV07, CGXM97, Kli12b, KZ13, MHC13]. Fill [Mac02].
Filtered [Cet12]. Filtering [Mak08, CL06, FMP17]. filters [Van08].
filtrations [KK15, Lau13]. finding [MU10]. Fine [Fit00]. Finite
[Har04, LX15, Ald16, BC15, Cer14, DJ06, Der16, Die15, HM09, JV09, KS14,
LR16, MLV15, Mon07, Rok07, Sio14, Tho16, vdBKN12]. Finite
ology [Gne10, KP04]. finiteness [DR12, KSY06, Zho10]. fire [Due06, Gra16]. First
[And06, BT17, IM10, Kes96, Lal03, Sch09, Wan09, BCP03, BB01, CSC13,
CEG11, DHI11, Dok15, Gan14, HM14, Vid14, Yao14]. First-Passage
[Kes96, Lal03, Sch09, Yao14]. Fisher [Fon14, Fon13, HT05]. Fit [Sam10].
fitness [GMRC16]. fix [Pin17]. Fixation [GGA10]. Fixed
[FJ00, AG15, ALW14, BKS16, LS13a]. FK [LW16]. FKG [Bar05]. flat
[PSY13]. Flatness [Tap15]. Fleming [Zho14, FX02, LSY99]. Flow
[Tha98, AP14, Led17, Xio04]. Flows
[CSS99, Att10, Die15, EMR15, Ha]15, HCA17, MR15b, VA06]. fluctuation
[KO06]. Fluctuations [ES16, KZ13, BGT10, Dok15, GJ09b]. Fokker
[HRKU11, Luo14]. foliated [Ruf15b]. foliations [MR15b]. forced
[BS16, Wu14]. forest [Due06, Gra16]. forest-fire [Due06, Gra16]. Form
[CP05, BW08]. Forms
[Tha98, HKZ12b, Uem07]. Formula
[Bal09, Sch01, BY13, EW09, KT03, MN08, Mic13, Oto09, Pan08, Yan06].
Formulæ [Han05, BY07]. formulas [CLMR15, Def12]. formulation
[BZ16, But17, Sir14]. forward [CD13]. forward-backward [CD13]. Four
[Law98]. fourth [AJ14, Yas15]. fractal [BJT17]. fraction [AHM06].
Fractional [BDE13, BGT07, CC98, GG14, Ist05, Ist06, Aur11, BRT10,
Beg14, BO03, BN08, D’O10, DOS16, HLN13, Jun11a, MW09, MW12, NX13,
NS13, PS16, Tud09, Unt10, WYY13, ZN03]. fragmentation [Ber10, BS16].
fragmentation-coagulation [Ber10]. Fragmenting [GMS08]. Free
[AS08, CCH15, HMO01, Kar08, AV12, ALW14, BDZ11, Bou16, Dem11,
DMPARA13, Ejs12, Ejs13, HK14, KZ13, LW16, MR13, RS07, SV11a, Wat12].
Freedman [Tro11]. Frieze [Sen16], fringe [DJ14]. frog [DP14, JJ16]. front
[Bjo09, HHN16]. frontier [Law96]. frozen [DKNS16, vdBKN12].

[Bjo09, HHN16]. frontier [Law96]. frozen [DKNS16, vdBKN12].

[Duq09, GP14, HL13, HMSH15, KF09, PS17, Tas10]. Game
[Wee06, BZ16, Doli14, Jon04]. games [LW15, dBJP13]. Gamma
[AS08, BT11, D'O10, Mar14, PR15, NY09]. gap [Mor08]. gaps
[FW17, Jac14, vdB13]. gas [Har12]. Gases [Han98, Han99]. Gauss [Oto09].

Gaussian
[BMV07, Ber17, BDN10, BDZ11, BW04, CNGP16, CCH15, DS15, GLY14,
Gri11, HRKU11, HJT12, HS09, HK16, Jos07, KM08, Kii12b, KZ13, Li09,
Lin09, Liu15, LW16, MR08, Pec07, Pin16, RV13, Sim17, Tko11, Tuc11, Yor15, vZ08].

Ge [GJ12]. General [CLS05, JL08, Tim04, Ald16, AF14, CdH13, EK08,
Gor15, Jan09, Kurl14, Sai07, SW10]. Generalization
[Bar97, Bau02, Bar98, PS16]. Generalized
[AS08, Ali01, Def11, CL14, D'O10, NY09, Pat07, YE13]. generated [RS11a].
generator [EK08]. genus [ACCR13]. Geodesics [BD02, BT17, Con11].

Geometric
[Beg14, Ken04, LLN09, MY99, RR97, Emr16, Kua16].

generically [DG15]. Geometry [CR05, PT11, RM16, KTA17, VA06].

germ [AHM06]. giant [Ald16]. Gibbs [Der16, MW11, Stu13, Wan14].

Gibbsian [FGM11]. Gierer [LX15]. girth [NP12a]. Given
[BPR99, Jan09, Kuz00, Kli12a, Law14, Luo14]. glasses [Kli12b]. glassy
[HK15]. Global [VA06]. Gluing [BPR15]. GMS [GMR16]. Godbillon
[DN07, Die15, EMR15, Luo14]. Graham [Hil06]. grain [AHM06]. graph
[BT17, CL14, DHS14, FvdHH16, OS16, Tam07, Wäso8, vdBKM09].

Graphical [HA07, JK13, Mec09]. Graphs [JS00, KP04, AST14, Ald16,
BCG12a, BP09, BFRH15, CJ13, DJ06, Dei09, Doh13, Fan15, Her17, Hsu08,
HS12, HP15, KZ13, Mar17, NP12a, OW13, RBS15, SHH14, Yin15]. Greeks
[GKH03]. Green [LR15, Ras10, SV04]. Grid [Tim04]. Grinevich
groups [BMV07, BFRH15, CR10, KV15, MP13]. Growing [AB14]. Growth
[Kar08, BS16, Emr16, Mil08, MS11, PW11]. growth-fragmentation [BS16].
Haagerup [But17]. Hahn [Bar14]. Half
[BHS11, LLN09, Gra16, IR10, KLM15, Lup16]. half-line [KLM15].
Half-Plane [LLN09, Gra16, Lup16]. half-space [IR10]. Hamiltonian
Hard [Häg02, RRZ11, Ga14]. Hard-core [Häg02]. Harish [KT03].
Harish-Chandra [KT03]. harmonic [Dur14, Le 08, SBS15]. Harnack
[ESvRS09, Wag16]. Hausdorff [Yan06]. Hawkes [DZ13, Duq09]. Heat
[HT05, Rev03, Tha98, Buc13, HHN16, HK16, Hua17, Led17, MW09, MW12].
Heavy [FdLS04, Lim99, Sos04, BHS10, Cha10, HHN16].
heavy-tailed [DHI11]. Hedging [Dol14, Sai07]. Height [Wan15]. Heights
[CH04, Gra16]. Heisenberg [Bjö15]. Hermite [BN08, Law08]. Hermitian
[Bor11, DMPARA13, Oli10a, Ora07]. Heuristic [BA01]. Hexagon [AB14].
High [Kli12b, Spr07, ACCR13, Bor13, CEG11, MS11, NP12a].
High-dimensional [Kli12b, CEG11]. Hilbert [GV14, Jeg09]. hit
[Cla14, RU13]. hit-and-run [RU13]. Hits [And06, BR16]. Hitting
[JK04, Pes08, Bas10, Bas11, Bor10, CK08, GHJ16, HM14]. Hoeffding
[IM16, Maj06, Rio13a]. holomorphic [Kinh08]. Homogeneous
[KS97, Kor05, BM07, BGT10, EM14, Li14, MP13, MPY14].
Homogenization [CP05]. homozygosity [DF16]. horizon [JV09]. Horn
[DeB07]. Horn-Shaped [DeB07]. Hotelling [DS06]. Houdré [KPS96]. Hsu
[Tud09]. Hull [ABV03, FV14]. hulls [LMK03, MW16]. hybrid [RR97].
hyper [CSC13]. hyper-exponential [CSC13]. Hyperbolic
[Ist05, BT17, Le 08, P16]. Hypercontractivity [ST99]. hypercube
[KMU16]. hypergeometric [Pat07]. hypoelliptic [GM16, GM17, Li16].
hypothesis [JR11].
i.i.d [Zer07]. I.I.D. [Zer02]. Identically [EZ99]. Identifiability [EZ99].
Identification [LW09]. identities [GM12, Pri09]. identity
[Bar14, BB01, Har16]. II [NX13, NS13]. iid [DJ06, Dei09, EP17].
Illustration [YY13]. impact [Fon13, Fon14]. impatient [HSI14]. implies
[Swa13]. imply [Wei03]. imprimitive [AEK14]. Improved [QM17].
improvement [Tan17]. impulses [DC15]. incipient
[Ald16, BS17, Sap11, vB15]. Inclusion [KS02]. Inclusion-Exclusion [KS02].
Increasing [RZ13, BY13, FY15, Ge10, Wei03]. increment [Glo14].
increment-stationary [Glo14]. Increments
[HMO01, KM08, BKR06, GHJL17, HK10, Kli12b, MV14]. Independence
[BDN01, BH11, HS11]. Independent
[KP04, Sch16, Tuc11, BKR06, BB07, CM12b, GHJL17, PS08, Yor15]. Index
[JC04, Mar05]. indexed [BH12, CP14, Ist06]. Indicator [Jun11a]. indices
[LL07]. individual [GMRC16]. inductive [HvdHS08]. Inequalities
[CHL97, DZ96, MR11, BT12, DG15, Del10, Dz13, FGL12, GJ09a, Goz06,
HKZ12a, LS13b, MWW11, MJ14a, Mon07, Oli10b, Ose10, Ose11, Rei13,
Rio13a, Rio15, Rio17, TM15, Wan14, WY08, dIPP09]. Inequality
[Bar05, ESvRS09, Kaho13, Li99, Mar10, Pan01, Pan02, Ada15, BBCG08,
CdH13, CGR10, CM12b, Haj14, Har14, HKZ12b, Jon13, Jou12, Maj06, Oli10a, Ose08, Ose09, Ose14, Ose16, Pos09, Rio13b, RV13, Tro11, VZ11.

Infante [DH11]. Infinite [BZ06, MR08, AJ14, BS17, BC12, BT17, CY13, DKW14, Due06, HJT12, Li14, RV09, Sap11, SZ17, VY12b, vB15]. Infinitely [Law98, MR01, DMPARA13, MN09, MU10, Wat12]. infinitesimal [Cla14].

Infinitesimal [BZ06, MR08, AJ14, BS17, CY13, HJT12, Li14, RW09, Sap11, SZ17, VY12b, vB15]. Infinitely [Law98, MR01, DMPARA13, MN09, MU10, Wat12]. infinity [Sch99, AP16]. In

infinitesimal [CPS12]. In

fluence [CPS12]. Information [LS13b, MWW11]. Informational [BD15]. Informative [Van08].

Inhomogeneous [GP01, RT08, Emr16]. Initial [BGT10, CPS12, Hua17]. Instability [HK16]. Integers [DK12, ER09, HL15b]. Integrability [Liu15].

Integral [Goz06, HN09, KSY06, Luo14, MU12]. Integrals [MR01, Pec07, KMiS06, MY12, Nut12, Ose09, Ose14, Pri09, Pri15, YLW15].

Jumps [Dem96, Pes08, Hoe09, Mil08, Ruf17, RM16, Sok13].

Mixer [Yad09]. Mixing [BZ06, ČS16, CM13, DM14, Lou04, Ram14, RA05, Roc05, Wil03, ER09, GV14, GJ12, JM15, Kie97, Kov10, QM17]. Mixtures [Big04, MAPS14]. Mod [KNN15]. Mod* [KNN15]. Model [AHM05, AS11, Gne10, Kor05, MR13, AHM06, Ave12, BARMR11, BF10, Bia13, Bjö15, Buc13, DDT07, Def11, DP14, Dol14, ES09, Foi13, Gaa14, Gra16, GMRC16, HL15a, HK15, JJ16, KT13, KO06, Lag07, LK08, Li14, Mu15, Ram14, SK15, Sir14, SS06, SS08, Fou14].

Models [CG05, Häg02, SV11a, BJT17, CB10, CPS12, CM13, Def12, Due06, Emr16, HA07, JK13, Kur14, Lac10, Möh11, Pim06]. Moderate [Dem96, DS06, ES09, GJ09a, Ts13]. modifications [OS13]. modified [DdT07]. modulus [HN09]. Moment [CLS05, LP08, PR11, Pri09, Unt10, AJ14, HN10, JK13, KM09, Yas15]. Moments [ADOS11, D510, IM10, Jan13, MY12, LL15].

Monotone [Bal05, DHS14, Gao08, Mac02, BO03, CDNX17, DM14, McV08]. Monotonicity [Häg02, DGG+13, Hol15, RS16]. Monte [BA01]. most [CM12a, KY15].

Motion [Bar05, BBKM00, BGT07, CC98, De07, Has05, Ist05, KLS05, LW05, MY99, Aur11, BB06, BA14, BH16, BFP+09, Bor10, BO03, BN08, CM12a, CK08, DM09, Far98, Fhu08, GT11, HCA17, HH07, HK15, HLN13, Jan13, JV09, KT13, Law96, LM06, Mai13, Mai15, Mar11, MLV15, MW09, MW12, NP13, NX13, NS13, PW11, Sp13, Tued09, Unt10, VY12b, VY12a, Wag16, ZN03].

Motions [BC98, Gao08, SV04, SW02, GHJ16, Jun11a, KT03, Oka14, Owo15]. mult [ES09]. mult-matrix [ES09]. multi [Due06, KTT17, Yan07, Yuk08]. multi-dimensional [Due06, KTT17, Yuk08]. multi-parameter [Yan07].

multiclass [AGS14]. multidimensional [AP14, CEK11, LL07, Nee14, Pin16]. multinomial [BDM07].

multiparameter [GP11]. Multiple [Coul11, Pec07, EMR15, Fra13, YLW15].

Multiplication [RS07]. Multiplicative [Kar08, Ber17, DW15, Sim11]. multiplicity [BS17]. multiply [GGNS17]. multiply-ended [GGNS17]. multisets [Pin17]. multitype [CP11]. Multivariate [CNPP16, GG04, MG16b, Mar14, BGHK08, Jan09, Ker17, Maj06, MG16a].

mutations [Lag07].

nodes [DJ14]. Noise

[HT05, ST99, BC14, DHI11, FMP17, LW15, Nee14, Tre13b, YRE16]. noises [Gri11, HHN16]. noisy [Ram14]. Non [AK04, CP05, DL09a, HLN13, Kar07, Kes96, KO01, KV15, Man05, MR08, NP12a, OY01, Zer02, AST14, AHM06, AV12, AS16, Ave12, Ban15, Bor11, BFP+09, BN08, DJR16, Def12, FdM07, FPZ16, HPS14, Hus08, KT11, KF09, MPY14, Neu11, RR15, Yor15].

Noncolliding [KT03]. Noncommutative [Ejs13]. nonconventional [Kif15, Kif16]. Noninvadability [Swa13]. Nonlinear [AK04, FMP17, Mor05, GHJL17, HLWZ15, Van08].

nonnegative [Ose10]. nonpositive [Woj12]. nonstandardness [Lau13]. Norm [MR01, Tan06, BS07b, BHS10, Mec07, PS08]. Normal [GG04, BN08, MR13].

normalized [BGHK08, DW15, MZ05a, MZ05b, Spi13, dPP09]. norms [HLN13]. Note [Bal09, Bjo09, KDV17, KS05a, NY10, Ost14, Pan01, SW02, Ada15, AF14, AS16, Bob08, CEK11, CSC13, CCH15, DV11, DS16, Flu08, GS12, Gor15, HK13, Har12, HL13, HS09, HZ07, Jos07, Kev16, KSY06, KS09, Lau17, LMK03, LW16, MN09, Mai13, Men13, Men14, O'R12, Pan07, Pet08, Sab13, SZ17, SC09, Sir14, Tko13, Vid14]. Notes [Car05]. Novikov [Sok13, KS05b]. Novikov-type [Sok13]. Nualart [Nou11]. number [Evo06, Fre12, IM07, MNZ12, MV14, Oka14, Uch15, vDBC16]. Numbers [Arc98, CLS05, RA05, SP00, Zer02, BBMT09, HR14, Ruf17, Van07, Yao14].

separation [LR16]. Sequences [BZ06, EP98, EZ99, Lin09, CD17, CV07, Kie97, McV08, RS06, dHP14]. series
[ESY08, HK13, HK11, Oli10b, Zhu14]. serve [AS16].
serve-the-longest-queue [AS16]. Set
[FJ00, BH12, Cla14, Kin08, Mar17, Pin17, Rá15]. set-indexed
[BH12]. Sets [GP01, JK04, Glo14, Lat08, Tko11]. setting [BRT10].
sewing [FdM07]. shadow [LX15]. Shape [Lal03, GMT15]. Shaped
[DeB07]. shapes [Emr16]. Sharp
[GL08, Mon07, Ose08, Ose09, Ose10, SV04, Wat12, Yas15].
Sharpness [OW13]. sheet [WYY13]. Shields [BP10]. Shiryaev
[KS05b]. Shkolnikov [Har16]. shock [GRS03]. short
[Bar14, CEG11, CP17, Rá15, Sim11, Yan06]. Shuffle
[Wil03, QM17]. shuffles [Bjo09, JM15]. shy [Ken09]. shy-ness
[Ken09], sided [Aur11, CGPPS13, KSS11, Pat07]. Signature
[CDNX17]. signatures [NX15]. signed [NS13]. Similar
[BY01, BS16, Fit06, Jos07, Neu11]. Simple [CHL97, Ros02,
BBCG08, Fre12, FG13, HL15a, KO06, MW09, MW12, Tug16].
simply [Mar11]. Simulation [DFN00, Ken04, Lej11, DZ13].
Simulations [PW96]. sine [VY12a]. single [FPZ16, Gri11, SV16].
singular [LST15, Lu14, Yas15]. Site
[BFGG+16, Ale13, DC13, Mui15]. sites [CM12a, Uch15]. size
[AS16, GG11, Sap10, vdBJV07, vdB12]. sizes [vdBC13]. Skew
[Sch16, EHW15]. Skew-Diagonals [Sch16]. skew-products [EHW15].
Skewed [BBK00]. Skip [HMO01]. Skip-Free [HMO01]. Skorohod
[BPR13, BPR15, Pri09, Pri15, Tho16]. Skorokhod
[Har14, Led16, YY13]. SLE [AK08, Dub03, LR15]. sliding [AF14].
Slow [BA01, Wai13]. slow-fast [Wai13]. slowly [Mui15]. Small
[Gao08, jeg09, Li09, RZ98, BBM09, BC14, DHI11, GL08].
smallest [Yas14]. Smooth [Sim10, VZ11]. smoothing [CdH13].
Smoothness [ZN03, GG14, Lau17]. snake [BC12]. Sobolev
[CHL97, HLN13, MZ14a, WY08]. Soccer [Bar97, Bar98]. Soft
[Geo10]. Solution [Kuz00, AG15, LY16, QR11, SSS15]. Solutions
[AK04, FW00, Swa01, Bah02, CEK11, D’O10, Kur14, LST15, LP12,
LY16, OD12, Tap13, Unt10]. solving [YY13]. Some
[BY01, BGT07, Car05, CV07, CP14, DZ96, DPS15, HM09,
KMi06, LLo7, MY09, Pan02, Pin17, SS06, Tha98, VY12b, YE13,
BLMZ12, DOS16, DJ14, Ejs12, HLN13, HA07, KTA17, MU10,
Mar09, Men11, Möh11, Ose11, PS16]. soups [LW16]. source [FY15].
Space [CKS99, FW17, GHL17, HN10, IR10, Jan09, Lau17, Le 08,
Loe13, Mar17, PS16, Pri09]. space-fractional [PS16]. Spaces
[CHL97, DZ96, Ist06, BMV07, BC15, CV07, DGP11, GV14, HCS08,
Jeg09, Kie97, Loe13, MN08, MP13, MR15b, Oto09, Ros08, VZ11].
Spanning [Mar99]. sparse [BGP14, BDL15]. Spatial [Lou04, Dei09].
Spatially [KS97]. SPDEs [AED13, SSS15]. special [BS07a]. Species

Tightness [BKS16, Gri02, SS08, BDZ11]. Time
[Ald98, Han98, Hoo99, Jan97, JK04, JS00, Kes96, KS05b, RR14,
Wil03, BL13, Ber10, BGT10, BB01, Cer14, ČS16, CM13, Cla14,
Dol14, Eri16, EM14, GL08, HRKU11, Han99, HN09, HK16,
Jeg09, Kli12a, Lau13, LX15, Mar09, Mar11, MR15b, Oka14, Oli10b,
PW11, Pim06, QM17, Rok07, SŽ17, SB07, Tho16, VY12b, Van08,
Vov08, Zho10]. time-changed [HRKU11]. time-dependent [HK16].
time-homogeneous [EM14]. Times
[DS10, IM10, KS05a, Pes08, Abe15, ADOS11, Bas10, Bas11,
BBMT09, DH11, DW16, DP13, Dok15, Fan16, HM14, HPS14,
KSW12, Kov10, KT11, Tre13b, Vid14]. Toeplitz
[BB10, BS07b, Kar09, Mec07, SV11b]. Topological [Car05].
topology [Led16, Ruf15b, Stu16]. tori [ČS16]. torus [Win08]. total
[Aid10, Zho10]. Touchard [Pin17]. Trace [Kuz00]. traces [ES09].
trading [Vov08]. Traffic [AHM05, Lim99]. Transaction [SV11a].
transform [RS07]. Transformation [FJ00]. transformations
[ALW14, BCP03, Jos07]. transforms [Gra15]. Transience
[HS12, SHH14, DHS14, Ker17, KTT17, OdS16, Pet15, RS11b,
San13, Zer06]. Transient [GP01, MR15a]. Transition
[BBB97, PŽ16, Tel00, BJT17, BC14, Mar09, Rát15]. transitions
[Hue16, BD15, Jou12]. transport-chi-square [Jou12]. Transportation
[DZ96, MWW11, Mik02, FGM10, Goz06].
Transportation-information [MWW11]. trap [Mui15]. trapping
[Fuk09]. traps [Mui15]. travel [Cer14]. Tree [Kor05, Tim04, AG15,
Bia13, DKW14, IM07, JJ16, Wan15, vdBKN12]. Trees
[HP03, JC04, KDN05, Mar99, PR11, ST99, Tas10, War99, Bac11,
Bjo09, Cra13, CP14, DJ14, Duq09, DL09b, FY15, GP14, HL13,
HMSH15, KF09, MS11, PSY13, RZ13]. triangle [Hou09]. Triangles
[Dub03], triangular [CK12, DC13, Yao14], triangulations [GGNS17],
trimmed [LL07]. truncated [Chao11]. Tsirelson [DR12]. Two
[DJR16, Kah03, KP04, Mui15, Pat07, Abe15, Ber10, BDZ11, BJT17,
GHJ11, HM09, LR15, RR15, RW09, Sap11, Sch09, Tko13, Yor15].
two-dimensional [Abe15, HM09]. two-factor [RR15]. two-parameter
[RW09]. two-point [LR15]. Two-sided [Pat07]. Two-site [Mui15],
two-time-scale [Ber10]. Type [Bal09, BDT11, BDM01, BHS10,
Com08, Def12, Gor15, KS10, LP12, LL07, Mon07, Ose14, Oto09,
Pri15, Sok13, Tug16, Uem07, Woi12, dBJP13]. Types
[Gne10, Fre12]. typically [PSY13].

Uhlenbeck [BH12, CGXM96, CGXM97, CKS99, GJ09a, GP11,
Jeg09, MY13, Pat07]. ultimate [AI12]. UMD [MN08]. Unbounded
[Man05, Böt11]. uncertainty [Dol14, Rok15, Sir14]. underlying
[WP14]. unicellular [ACCR13]. unicycles [SW16]. Uniform [BLY15,

Wald [HPS14]. Walk [BFV10, BW03, BR07, DBGP03, JK04, KS97, MR11, PV05, RA05, Abe15, Aid10, Ale13, BFGG+16, BK11, CJ13, ČS16, DHS14, DL09a, ER09, GM13, Gla15, GPL08, GPHS13, Hol09, KM17, KSW12, LS13a, Law14, Le 08, MV14, Pet15, Uch15, Win08]. Walks [ABV03, BD02, FZ10, GP01, GGA10, HMO01, KN11, IM10, KP04, Law98, Mar99, OY01, Roi05, Zer02, APRB11, BKR06, BFT13, DW12, DW16, DK12, DJ12, Dur14, EP17, GLY14, GPPdS14, GGPZ14, Hol15, HK16, HS12, HP15, IR10, KS10, OdS16, Pil17, RS11a, Ras10, RS16, SHH14, Sch12, SK15, Sin14, Ste13, Vid14, WYY13, Zer06, Zer07]. wall [Def11]. Walsh [VY12a]. Wasserstein [EMR15]. Watanabe [Hoe09, Tap13]. Watson
REFERENCES

[Duq09, GP14, HL13, HMSH15, KF09, PS17, Tas10]. way
[Bor10, CK08]. Weak [BRT10, Bir04, BC98, Kur14, MV14, Pec04,
SP00, WYY13, vZ02, IM07, Kri14, Ose14, Sin14, Stu16]. weak-type
[Ose14]. Weakly [LT11, Har12, Luo14, Oli10b]. wedge
[DM09, QR11]. Weierstrass [Com08]. weight [Sch12]. Weighted
[LL15, MZ05a, MZ05b, Ose16, Ald16, BB07, GRR14, Gla15, Rio15].
weak [Def12, Emr16, Sch09]. Welch [Tan17]. Wetting [CG05].
Weyl [KS10]. where [KP04, vdBKN12]. Which
[KV11, And06, CD17, Eri16, Yor15]. White [Gri11]. Whose
[Swa01, Luo14]. Widom [Häg02]. width [Sch09]. width-two [Sch09].
Wiener [NP12c, ABP00, Bar97, Bar98, CKS99, Fun07, Har04,
JC04, MY12, NP12b, Oto09, Pri09, Tan06, Tre13a, YLW15].
Wiener/Wigner [NP12c, NP12b]. Wigner
[DV11, EM16, ES16, HCS08, Kös08, Sos04]. winding [Oka14].
window [AF14]. windows [Tho16]. wise [BKR06]. Wishart [GL09].
without [BPR13, Lac15, Yas15]. Woodroffe [KV13, Tót13]. words
[ES09, HM16, dHP14]. works [Haj15]. Wright
[Phi13, Fou14, Ada15, HT05, Pat07, RV13]. Wronskian [Kli12a].
Wulff [DC13].

Xi [Ost14].

Yamada [Hoe09, Tap13]. Yor [Bas15, KV11]. Yule [de 06].

Zero [OdS16, RA05, Tre13b, Bor10, CK08, GJ09b, Kin08, MR08,
MV14, MLV15, Oka14, Zer07]. Zero-one [OdS16, Zer07]. zero-range
[GJ09b]. zero-set [Kin08]. zeros [Eva06]. Zhang [DDT07]. Zhao
[KV13].

References

Andrieu:2007:EAM

[AA07] Christophe Andrieu and Yves Atchade. On the efficiency of adapt-
ive MCMC algorithms. Electronic Communications in Probabil-

Atar:2001:BDP

[AAK01] Rami Atar, Siva Athreya, and Min Kang. Ballistic deposition
on a planar strip. Electronic Communications in Probability, 6:
ecp.ejpecp.org/article/view/1032.
REFERENCES

REFERENCES

Albenque:2015:BCR

Atar:2014:RSC

Angel:2005:JPB

Andersson:2006:VFN

Angel:2013:AC

Ano:2012:PUM

REFERENCES

CODEN ????. ISSN 1083-589X. URL http://ecp.ejpecp.org/article/view/2763.

REFERENCES

equations with damped stochastic perturbations. *Electronic
DEN ???? ISSN 1083-589X. URL http://ecp.ejpecp.org/
article/view/1063.

Bravo. Convex minorants of random walks and Lévy pro-
cesses. *Electronic Communications in Probability*, 16:38:423–
38:434, 2011. CODEN ???? ISSN 1083-589X. URL http://
ecp.ejpecp.org/article/view/1648.

[Arc98] Miguel A. Arcones. The law of large numbers for U-statistics
under absolute regularity. *Electronic Communications in Probabil-

[Arg07] Louis-Pierre Arguin. A dynamical characterization of Poisson–
Dirichlet distributions. *Electronic Communications in Probabil-

[AS08] Victor Perez Abreu and Noriyoshi Sakuma. Free generalized
gamma convolutions. *Electronic Communications in Probability*,

interface revisited. *Electronic Communications in Probability*,

[AS16] Rami Atar and Subhamay Saha. A note on non-existence of
diffusion limits for serve-the-longest-queue when the buffers are
equal in size. *Electronic Communications in Probability*, 21(??):
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BBCG08] Dominique Bakry, Franck Barthe, Patrick Cattiaux, and Arnaud Guillin. A simple proof of the Poincaré inequality for a large class
REFERENCES

Benjamini:2012:LIP

Bobkov:2012:BCF

Briand:2000:CCT

Bertoin:2003:PTF

Boivin:2002:GRR

Basak:2013:LSD

[Bolthausen:2011:RTM]

[Beghin:2014:GSP]

[Bertoin:2000:CMC]

[Bertoin:2010:TTS]

[Berestycki:2017:EAG]

[Bergqvist:2011:RPR]

REFERENCES

REFERENCES

REFERENCES

[BL10] Raluca Balan and Sana Louhichi. Explicit conditions for the convergence of point processes associated to stationary arrays. *Elec-
REFERENCES

Bo
dineau:2005:UPL

Baldi:2007:CIG

Breton:2008:EBN

Boufoussi:2003:SDF

Bobkov:2008:NDM

Borovkov:2010:DBM

REFERENCES

[BS07a] Arup Bose and Arnab Sen. On asymptotic properties of the rank of a special random adjacency matrix. Electronic

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Cha10] Arijit Chakrabarty. Central Limit Theorem for truncated heavy tailed Banach valued random vectors. *Electronic Commu-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[DeB07] Dante DeBlassie. The chance of a long lifetime for Brownian motion in a horn-shaped domain. *Electronic Communications in

REFERENCES

DeMarco:2016:TEN

Dolgopyat:2012:SLR

Damron:2016:CFV

Dahmer:2014:KTL

Dumbgen:2008:EBA

Dolgopyat:2009:NPA

REFERENCES

delaPena:2009:EIS

Dieker:2009:RBM

Dominguez-Molina:2013:CRH

Darses:2007:DPC

REFERENCES

REFERENCES

Depperschmidt:2015:SLD

Delattre:2012:TFS

Dembo:2006:LMD

Doring:2010:ART

Duy:2015:MSM

Deng:2016:CBF
REFERENCES

REFERENCES

Evans:1998:EIS

Englander:2017:SAB

Eckhoff:2009:UMM

Erickson:2016:DTI

Eichelsbacher:2009:MDT

Erdos:2016:FFW

REFERENCES

Fan:2016:DAL

Fargason:1998:PDB

Friedli:2004:LRP

Feyel:2007:NCS

Fittipaldi:2012:SAC

Friedland:2013:SOR

REFERENCES

REFERENCES

[FPZ16] Marco Fuhrman, Huyên Pham, and Federica Zeni. Representation of non-Markovian optimal stopping problems by constrained

REFERENCES

REFERENCES

Gaál:2014:LRO

Ganesan:2014:DCP

Gao:2003:MML

Gao:2008:EEM

Gauthier:2016:SAD

Georgiou:2010:SER

Gine:2004:SNC

Evarist Giné and Friedrich Götze. On standard normal convergence of the multivariate Student t-statistic for symmetric

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[GS12] Dan Goreac and Oana Silvia Serea. A note on linearization methods and dynamic programming principles for stochastic discon-
REFERENCES

REFERENCES

[Harris:2007:SPB]

[Hu:2016:IFS]

[Hildebrand:2006:CDG]

[Hillion:2012:CEA]

[Hashorva:2012:ISD]

[Hubalek:2011:CSR]
REFERENCES

He:2013:NSL

Hairer:2015:SCC

Holroyd:2015:SDC

Hu:2013:NDS

Hu:2015:IEN

Haggstrom:2009:STD

Hamana:2014:APD

Yuji Hamana and Hiroyuki Matsumoto. Asymptotics of the probability distributions of the first hitting times of Bessel processes.
REFERENCES

[Houdre:2016:CDL]

[Ham:2001:PTS]

[Huss:2015:RRG]

[Hu:2009:SIR]

[Hu:2010:CLT]

Heil:2011:RLB

Hoepfner:2009:EYW

Holmes:2009:SLS

Holmes:2015:SMS

Hooghiemstra:1999:OTB

Hough:2009:TTR

REFERENCES

Hasebe:2011:JCN

Huss:2012:TRR

Hu:2015:MDB

Hobson:2005:DBC

Huang:2017:SHE

Huesmann:2016:TCE

References

Irina Ignatiouk-Robert:2010:MBR

Tobias Johnson and Matthew Junge. The critical density for the frog model is the degree of the tree. *Electronic Communications in Probability*, 21(?):82:1–82:12, ????. 2016. CODEN ???.

Jansons:1997:DTS

Janson:2009:SRM

Janson:2013:MLM

Janson:2015:TLQ

Janson:2004:CMI

Jegaraj:2009:STA

Johnson:2016:CDF

REFERENCES

ISSN 1083-589X. URL http://projecteuclid.org/euclid.ecp/1480734227.

Jonasson:2013:BIP

Jost:2007:NET

Jourdain:2012:EPI

Jones:2011:CHT

Jonasson:2000:CTP

Jung:2011:IFS

Junglen:2011:QBA

Stefan Junglen. Quantization balls and asymptotics of quantization radii for probability distributions with radial exponential tails. *Electronic Communications in Probability*, 16:27:283–
REFERENCES

Janssen:2009:ESM

Kahn:2003:ITC

Kargin:2007:PNC

Kargin:2008:AGS

Kargin:2009:SRT

Khan:2005:LLR

Kasprzak:2017:NBP

Mikołaj J. Kasprzak, Andrew B. Duncan, and Sebastian J. Vollmer. Note on A. Barbour’s paper on Stein’s method for diffu-

REFERENCES

Kiesel:1997:SLS

Kifer:2015:ERL

Kifer:2016:EER

Kink:2008:MZS

Kiss:2014:LDB

Karatzas:2015:ODC

Karczewska:2014:SVE

REFERENCES

REFERENCES

Kabluchko:2008:ECR

Khorunzhiiy:2009:UBE

Kolesko:2017:CCM

Kondo:2006:SPE

Kotecky:2016:RIP

Kowalski:2015:CLF
Konig:2001:ELP

Kuelske:2006:SFL

Kordzakhia:2005:EMH

Kosters:2008:SOC

Kovchegov:2009:OPB

Kovchegov:2010:OPM

Krishnapur:2004:RGW

REFERENCES

REFERENCES

Kovchegov:2003:LSL

Kozlova:2005:NOT

Kyprianou:2005:NSO

Kuwada:2007:COK

Kuhn:2009:NSI

Konig:2010:RWC

Kolb:2014:EEK

REFERENCES

REFERENCES

REFERENCES

REFERENCES

La\wler:1998:LEW

Law2008:HLP

Lawler:2014:PPL

LePrince:2008:RBD

Ledger:2016:SMT

Ledesma:2017:HFA

Lejay:2011:SSP

Lopez-Garcia:2009:CDL

Li:1999:GCI

Li:2014:UIH

Li:2016:HB

Li:2017:SCB

Limic:1999:BLP

Lindvall:1999:STS

REFERENCES

Lin:2009:ASL

Liu:2015:GID

Lalley:2008:OCM

Liu:2007:SLT

Liang:2015:WMM

Lalley:2009:GIH

LeGall:2006:OMS

Jean-François Le Gall and Mathieu Merle. On the occupation measure of super-Brownian motion. *Electronic Communications
REFERENCES

REFERENCES

Li:2012:SSJ

Lechner:2015:UEA

Lawler:2015:CBT

Lohr:2016:BFM

Lampert:2013:MSR

Ley:2013:SDA

Leobacher:2015:ESC

Gunther Leobacher, Michaela Szölgyenyi, and Stefan Thonhauser. On the existence of solutions of a class of SDEs with

REFERENCES

[119]

[135x681] REFERENCES

[Li:2015:FTB]

[Machida:2002:FAA]

[Maillard:2013:NSP]

References

REFERENCES

McVinish:2008:OPE

Meckes:2007:SNR

Meckes:2009:QA

Menozzi:2011:PTM

Mentemeier:2013:NK

Mentemeier:2014:EN

Mackey:2016:EMS
Lester Mackey and Jackson Gorham. Erratum: Multivariate Stein factors for a class of strongly log-concave distribu-
REFERENCES

Mercier:2015:PMR
Sabine Mercier, Agnès Lagnoux, and Pierre Vallois. Probability that the maximum of the reflected Brownian motion over a finite interval \([0, t]\) is achieved by its last zero before \(t\). *Electronic Communications in Probability*, 20(??):62:1–62:9, ????. 2015. CODEN ????. ISSN 1083-589X. URL http://ecp.ejpecp.org/article/view/4279.

Meckes:2013:SMP

Maas:2008:COF

Maejima:2009:NNC

Maples:2012:NCR

Mohle:2011:CPD

Montenegro:2007:SEV
Ravi Montenegro. Sharp edge, vertex, and mixed Cheeger type inequalities for finite Markov kernels. *Electronic Com-
REFERENCES

REFERENCES

REFERENCES

Hiroyuki Matsumoto and Marc Yor. Some changes of probabilities related to a geometric Brownian motion version of Pitman’s $2M − X$ theorem. *Electronic Communications in Probability*, 4:
REFERENCES

Madan:2012:MWI

Masuda:2013:EEI

Mason:2005:APW

Mason:2005:WDR

Ma:2014:LSP

Mariani:2014:RVS

REFERENCES

[Neeman:2014:MVN]

[Nehring:2014:CPP]

[Neunhauserer:2011:FEP]

[Nicolas:2006:SSC]

[Nourdin:2011:YAP]

[Nachmias:2012:NAC]

[Nourdin:2012:CLS]
REFERENCES

Nourdin:2012:ECL

Nechita:2013:RPQ

Nualart:2013:JCA

Nutz:2012:PCS

Ng:2015:MDC

Nualart:2013:CLT

Ni:2015:CEC

REFERENCES

Olivier:2010:DIS

ORourke:2012:NMP

Oraby:2007:SLH

Ondrejat:2013:EPM

Orbanz:2016:BLG

Osekowski:2008:SIB

Osekowski:2009:SMI

REFERENCES

Oseko:2010:STI

Oseko:2011:RAD

Oseko:2014:MWT

Oseko:2016:WMI

Ostrovsky:2013:TBB

Ostrovsky:2014:NDR

Otobe:2009:TGD

REFERENCES

REFERENCES

Panchenko:2007:NTP

Panchenko:2008:DPF

Panchenko:2010:DSR

Patie:2007:TSE

Peccati:2004:WCO

Peccati:2007:GAM

Peskir:2008:LHT

[Pes08] Goran Peskir. The law of the hitting times to points by a stable Lévy process with no negative jumps. Electronic

Pete:2008:NPI

Petrov:2010:RSP

Peterson:2015:STO

Pilipenko:2017:FLT

Pimentel:2006:TCC

Pinelis:2016:MSI

REFERENCES

[PR12b] Eviatar Procaccia and Ron Rosenthal. Concentration estimates for the isoperimetric constant of the supercritical percolation

Pitman:2015:BGT

Privault:2009:MIS

Privault:2015:SAI

Possamai:2013:RSM

Peche:2008:LBS

Polito:2016:GSF

REFERENCES

Andrzej Pyć and Tomasz Żak. Transition density of a hyperbolic Bessel process. *Electronic Communications in Probability, 21*
REFERENCES

[SP00] Steven Sepanski and Zhidong Pan. A weak law of large numbers for the sample covariance matrix. *Electronic Communications in
REFERENCES

REFERENCES

Stenlund:2013:LLT

Stucki:2013:CPG

Stupler:2016:WCK

Subramanian:2012:DCP

Song:2004:SBG

Song:2008:RBS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Trevisan:2013:ZNL

Tropp:2011:FIM

Tsirelson:2013:URT

Tucci:2011:API

Tudor:2009:HRS

Tugaut:2016:SPK
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Vovk:2008:CTT

Vandenberg-Rodes:2010:LTP

Vakeroudis:2012:SPW

Vakeroudis:2012:SID

vanZanten:2002:COM

vanZanten:2008:REG

Werner:1996:BDE

Wilson:2003:MTR

Windisch:2008:RWD

Wojtylak:2012:CSR

Wojtylak:2014:SPC

Wu:2008:LDP

Wang:2013:WAF

Zhi Wang, Litan Yan, and Xianye Yu. Weak approximation of the fractional Brownian sheet from random walks. *Elec-
REFERENCES

[Yas15] Pavel Yaskov. Sharp lower bounds on the least singular value of a random matrix without the fourth moment condition. Electronic

Yaskov:2016:NSC

Yang:2013:SPG

Yin:2015:LDE

Yan:2015:ARP

Yor:2015:GMW

Yang:2016:CCC

REFERENCES

[Zho10] Xiaowen Zhou. Almost sure finiteness for the total occupation time of an \((d, \alpha, \beta)\)-superprocess. *Electronic Communications in
REFERENCES

Zhou:2014:CDF

Zhu:2014:LDE

Zaidi:2003:SLS