Title word cross-reference

(1 + 1) [CB10]. (d, α, β) [Zho10]. (V + Δ) [CB10]. 0 [Sch12, Wag16]. 1
[HL15b, Jac14, Li14, Sch12, Sim00]. 1/2 [KV15]. 2
[BDT11, Har12, Li14, Swa01, VZ11], 2D [DXZ11]. 2M + X
[Bau02, HMO01, MY99]. 3 [AB14, SK15]. [0, t] [MLV15]. α [DXZ11, Pat07].
α ∈ (0, 1/2] [Sch12]. β [Ven13]. d [Hág02, Mal15, Van07]. d = 2 [KO06]. d > 1
[Sal15]. d2 [Wan14]. d ≥ 2 [BR07]. f [DGG+13]. ∂u
∂t = κ m ∂m
∂x
[OD12]. G
[NY09, BCH+00, FGM11]. H [Woj12, WP14]. k
[AV12, BKR06, Gao08, GRS03]. k(n) [dBJP13]. kα [Sch12]. L1
[CV07, MR01]. L1([0, 1]) [FP11]. L2 [HN09]. L∞ [MHC13]. Lp [CGR10]. L1
[EM14]. A [Fou13, Fou14, Lag07, Zho14]. Lu = uα [Kuz00]. m(n) [dBJP13].
[DP14, SBS15, BC12]. R3 [Far98]. Zd [BS96]. C∞ [DCF06]. N × N × 2
[SC09]. S [RS07]. S2(δ) [Ost14]. SU(3) [Ras10]. T

easy [Was09]. Edge
[Gui99, MR11, Cra13, Geo10, Law14, Mon07, RRZ11, SV16].

...
Expansion

expansions

expected

Explicit

explosive

expansions

Expectation

expectations

dependent

expected

Explicit

explosion

explosive

exponent

Exponential

exponentially

Exponents

extended

Extension

Extensions

extinct

extinction

Extremal

Extreme

Extreme-Value

Extreme-Value

Factor

Factorial

Factorizations

Factors

Fast

Fastest

Ferguson

field

Fisher

fitness

fix

Fixation

Fixed

FK

FKG

flat

Flatness

Flatness

forms

Flow

Flows

Fluctuation

Fluctuations

Fokker

forests

forest-fire

Forest

Form

Fractional

fractions

fractional

Fractal

Fractals

fractals

Frangi

free

free-energy

free-energy
Beg14, BO03, BN08, D’O10, DOS16, HLN13, Jun11a, MW09, MW12, NX13, NS13, PS16, Tud09, Unt10, WYY13, ZN03. fragmentation [Ber10, BS16].

growth-fragmentation [BS16].

Markov [ADOS11, BA01, BLL08, BY01, BW08, CNPP16, CC98, CLMR15, Con16, Cra13, CP14, DG15, Die15, Fit06, Gu199, HR07, KF09, LW09, MPY14, Mon07, Müi08, NW15, RR97, RS02, SB07, Tel00, W08, YRE16]. Markovian [AGS14, CHA15, DL09a, FPZ16, HMO01, Man05]. Martin [IR10, Ras10]. Martingale [CHL97, DW12, Lac10, Rok07, TM06, CV07, FGM10, Kost08, KV13, Men11, Ose11, Ruf15a, Yor15]. Martingales [Dem96, Pec04, vZ02, AP16, Çet12, GGPZ14, JR11, KM17, L15, Ose09, Ose16, PR12a, Ruf17, Sok13, Tro11]. Mass [JC04, Mik02, BK13, RS16]. massless [KO06]. matching [Wäs08]. Matchings [HP03, Sal15]. Matrices [DV11, DBGP03, GZ00, Sch16, Sos04, Tuc11, BB10, BD13, BGP14, Bor11, Bor13, BS07b, BHS10, Del10, DS15, EM16, ES16, FG13, GL09, HCS08, HKZ12a, Kar09, LPP15, MM13, O’R12, Oli10a, Ora07, PS08, Sim17, Ste08, Tko13, Ven13, Woj12, WP14]. Matrix [Kös08, Law08, SP00, Sep03, AEK14, BS07a, E09, Mec07, SV11b, SC09, Tro11, Y14, Yas14, Yas15].

Maxwell [Tôt13], McDiarmid [Rio13b], MCMC [AA07, RR15]. Mean [CD13, Gao03, MP13, BZ16, BBMT09, DJ06, DS15, Dz13, LW15, NP12a, RS07, Uch15]. mean-field [NP12a]. Mean-Square [MP13]. meaner [HSY15]. Means [MR08]. Measurability [FGM10, Bas10, Bas11]. measurable [OS13, PRT13]. Measure [Gu199, GZ00, KM06, Mar05, RZ98, Ban15, Del10, DGP11, ER09, EM16, Fun07, GG14, GL09, Hua17, LM06, Le08, Lo08, NW15, SW10, Li17].

[BDL15, VM13]. **Neumann** [AB02]. neutral [CY13, DC15, Lag07]. never [FF12]. **next** [Lau13], **next-jump** [Lau13]. No [Pes08, Mil08]. **Nodal** [AB02]. **nodes** [DJ14]. **Noise** [HT05, ST99, BC14, DHI11, FMP17, LW15, Nee14, Tre13b, YRE16]. **noises** [Gri11, HHN16]. noisy [Ram14]. non [AK04, CP05, DL09a, HLN13, Kar07, Kes96, KO01, KV15, Man05, MR08, NP12a, OY01, Zer02, AST14, AHO06, AV12, AS16, Ave12, Ban15, Bor11, BFP+09, BN08, DJR16, Def12, FdM07, FPZ16, HPS14, Hus08, KT11, KFM9, MPY14, Neu11, RR15, Yor15]. **Non-amenable** [NP12a, AST14, Hus08]. **Non-Ballistic** [Zer02]. Non-Colliding [KO01, OY01, BFP+09]. Non-Commutative [Kar07, FdM07]. **Non-Convexity** [Kes96]. non-crossing [AV12]. Non-degeneracy [HLN13]. Non-Divergence [CP05]. non-elliptic [Ave12]. non-existence [AS16]. non-exploding [KT11]. non-Hermitian [Bo11]. non-homogeneous [MPY14]. Non-Liouville [KV15]. Non-Markovian [Man05, FPZ16]. non-normal [BN08]. **Non-oscillation** [AK04]. non-overlapping [AHM06]. Non-perturbative [DL09a]. non-reconstruction [KF09]. non-reversible [RR15]. non-semimartingales [Yor15]. non-stopping [HPS14]. non-uniform [Neu11]. Non-zero [MR08]. noncentral [BS07b]. noncoexistence [Swa13]. Noncolliding [KT03]. Noncommutative [Ejs13]. nonconventional [Kif15, Kifi6]. Noninvariance [Swa13]. **Nonlinear** [AK04, FMP17, Mor05, GHJ17, HLWZ15, Van08]. nonnegative [Ose10]. nonpositive [Woj12]. nonstandardness [Lau13]. **Norm** [MR01, Tan06, BS07b, BHS10, Mec07, PS08]. Normal [GG04, BN08, MR13]. **normalized** [BGHK08, DW15, MZ05a, MZ05b, Spi13, dIPP09]. **norm** [HLN13]. **Note** [Bal09, Bjo09, KDV17, KS05a, NY10, Ost14, Pan01, SW02, Ada15, AF14, AS16, Bo08, CEK11, CSC13, CCH15, DV11, DS16, Fhu08, GS12, Gor15, HK13, Har12, HLN13, HS09, HZ07, Jos07, Kev16, KSY06, KS09, Lau17, LMK03, LW16, MN09, Mai13, Men13, Men14, O'R12, Pan07, Pet08, Sab13, SZ17, SC09, Sir14, TKo13, Vid14]. **Notes** [Car05]. **Novikov** [Sok13, KS05b]. **Novikov-type** [Sok13]. **Nualart** [Nou11]. number [Eva06, Fre12, IM07, MNZ12, MV14, Oka14, Uch15, vdBC16]. **Numbers** [Arc98, CLS05, RA05, SP00, Zer02, BBMT09, HR14, Rul17, Van07, Yao14]. observation [CL09, FG13]. observations [Mak08, Van08]. Occupation [Gu99, Hoo99, KS05a, BGT10, LM06, Zhou10]. occurring [Mais13]. **Ocone** [MN08, Pec04, VZ02]. **ODEs** [Mor05]. Often [KP04, Law98]. old [AC10]. once [Ros08]. **One** [AS11, RA05, Ro05, TY12, Wan09, Att10, Aur11, BFRH15, BR16, Can15, CGPPS13, EK08, GPHS13, Holi15, Hru16, Jou12, KSS11, MU12, OdS16, Pet15, San13, Wag16, Woi12, Zer07, TY15]. One-dimensional [AS11, Ro05, Wan09, Att10, BFRH15, BR16, Can15, EK08, GPHS13, MU12, OdS16, Pet15, San13, Wag16]. one-sided [Aur11, CGPPS13, KSS11]. **operator** [Jac14]. **Optimal** [BD15, GM16, KS05b, Mik02, Sok13, EW09, FGM10, FPZ16, Jon04, Rok14, GM17].
optimality [KS07]. Optimisation [RR14]. Optimising [McV08].
Optimization [GL14, Tan17]. Optimizing [Cla14]. Option [Kle02].
Optional [KK15, KT11, KS09]. Options [GKH03, Dol14]. Order
[Kös08, BT12, Gaa14, LPP15, Sch12]. ordered [FW10]. ordinary [FT07].
organized [Due06]. oriented [CM13, LK08]. origin [Tam07]. origins
[Eri16]. Ornstein
[BH12, CGXM96, CGXM97, CKS99, GJ09a, GP11, Jeg09, MY13, Pat07].
parabolic [EK08, HL15a, Jan13]. Parameter [Aly13, Mak08, RW09, Yan07].
Parisi [DDT07, Pan05, Pan08, Sal15]. Partial
[CP05, EZ99, CY13, Kri14, LL07, Tap13, Tap15, dBJP13]. Partially
[FW10, Kua16]. Particle
[BGT07, BGT10, Ven13, BH16, Def12, Kna16, TYZ12, TYZ15, VR10, dBM15].
Particles [HT05, Def11, IS17]. Partitions [Pet10, AV12, Zha12]. partly
[YY13]. Passage [BM05, IM10, Kes96, Lal03, RT08, BT17, BBMT09,
BCP03, CPS12, CSC13, CEG11, Gan14, Sch09, Vid14, Yao14]. Past
[ABV03]. Pastur [BLR17, O’R12, Yas16]. Path
[BPR99, BCP03, CHL97, Tan06, AK08, CEG11, FW17, KM09, MP16, de 06].
Paths [BM05, CDNX17, Geo10, RZ13]. Pathwise
Penalisations [Tak10]. Wigner [NP12c, NP12b]. Percolation
[BS96, BM05, Far98, FdLS04, Ham05, Kahl03, Kes96, KS03, Lal03, PV05,
RT08, Sch01, AST14, Ald16, BT17, BFRH15, Can15, CPS12, Cer14, CEG11,
DDG+10, DC13, Gan14, GJ09b, GP14, HM09, Kis14, Lup16, Pet08, Pim06,
PR12b, Sapi11, Sch09, Stu13, Yao14, vdBKV07, vdBKN12, vdBIC12, vdBIC13,
vdBIC16]. Perfect [DFN00, Ken04, Ste08]. Periodic [BDT11, Gan16].
periodically [Wai13]. permanental [MR15a]. permutation
[MNZ12, Pin17]. permutations [Bjö15, GMS08, Pin17]. perpetual [KSY06].
perpetuities [BI15]. Perron [Rok14]. persistence [GLY14]. persistent
[Er16]. Perturbation [MW05]. Perturbations [App02, KL14].
perturbative [DL09a]. Petersburg [dBJP13]. Petrov [Eth14]. Pfaffian
[TYZ12, TYZ15]. Phase [AHM05, BJ17, HK15, Rá15]. phenomena
[Gho16, Ros08]. phenomenon [Ber10]. Phi [WY08]. Pickands [AC10].
Piecewise [Ruf17]. Pieri [Def12]. Pieri-type [Def12]. pinned
[Uch15]. Pinning [CG05, CB10, Lac10]. Pitman [Bas15, Bau02, HMO1, MY99].
pivotal [Jon13]. Planar [AAK01, JS00, BB06, BCG12a, CM12a, Geo10,
GPPdS14, GGNS17, Law96, Law14, Mar11, Mie08, SW16, VY12b, Zer07].
Planck [HRKU11, Luo14]. Plane [LLN09, Gra16, GHJ16, Lup16]. Poincaré
[CGR10, BBCG08, Jou12, MZ14a]. Point [BL10, HP03, Pet10, Tim04, AG15,
Der16, Gho16, Glo14, LR15, Mai13, Rei13, Stu13, TYZ12, TYZ15, Uch15].
Points [And06, FJ00, Pes08, ALW14, BKS16, BR16, Kri07, Sub12].

poisoning [SS06]. Poisson

[Arg07, Bal05, BDE13, BFRH15, Bou16, BJT17, CK12, Dal13, Dei09, Gne08, HM15, KM06, Kr07, MAPS14, Möh11, Neh14, PS16, Rei13, RW09, Sos04].

Principle [And06, Sam10, Der16, HZ07, Pan07, Ruf15b, Wag16, Wai13].

Principles [CH04, GS12, WY08, dHP14]. Priority [MZO5a, AGS14, PN16].

Probab. [MZO5a]. Probabilistic [OD12, IM07]. Probabilities [And06, Kah03, Li99, MY99, AK08, BS17, BF11, HH07, Mar09, Pim06]. Probability [Gao08, Jun11b, MLV15, Tel00, BBCG08, CG15, Doh13, GHJ16, HM14, Jan09, KV15, Kov09, Kov10, Kul16, Law14, PS17, Spi13]. Problem [BDT11, LSY99, Mik02, Aur11, CGPPS13, Fuk09, Pat07, Rok07, Sai07, Wäs09, Y13]. Problems [KS05b, FPZ16, GN06, GS12, Men11, Rok14, Sir14, Wäs08].

Process [Ber00, CKS99, FX02, Gne08, KO01, Man05, Mor05, Pat07, Pes08, TW03, de 06, Aly13, BL13, BH12, Ber10, Bor10, Can15, CCH15, DKK14, DZ13, Dei09, DMPARA13, EK08, GJ09a, GMT15, GJ12, GJ09b, GRS03, HK13, Hil06, HK11, J08, Jon13, KU16, Lej11, Mak08, MY13, Mic13, MP16, MP14b, Mor08, Neh14, PS16, PZ16, RW09, Sen16, S16, Tre13a, VR10, YL15, vdBH10, vdBKN12]. Processes [BL10, BY01, DCF06, EP08, Fit06, HP03, Jan96, KO01, KS05a, Law08, LSY99, LP08, Mik02, Pet10, Tak10, Wan09, APRB11, AF14, AI12, BKS16, Bas15, Beg14, BBM09, BY13, BS16, Bob08, Bot11, BW08, CGPPS13, CSC13, CLMR15, Con16, CP11, Der16, DZ11, EW09, Ejs12, Ejs13, ESY08, Eri16, EM14, FF12, GHJ17, GG14, Gho16, GP11, HM09, HRKU11, HM14, HR14, HLW15, JL08, Jos07, Ker17, KLM15, KS14, KMI06, Kri14, KT11, Kul16, KTT17, Lat08, Led16, Mai13, Mar09, MR15a, MPP15, Mil08, MYY14, Möh11, MW16, PS16, Rei13, San13, SW10, SC09, Sio14, SV08, Stu13, Tap15, Tim04, TYZ12, TYZ15, Tsi13, WY08, Yan06, dPP09, vZ08]. Product [DZ06, GHJ17, Bor11, BW08, HZ07, Lac15, Ros08, Sim17, Tko13].

SABR [GHJ16]. same [Cou11]. Sample [SP00, Sep03, Tan06, BLL16, HCS08, Yas14, de 06]. Sampled [DBGP03]. samplers [RBS15]. Sampling [BA01, Gne10, Han05, JV09, Jon13, Ste08, Wan14]. Sandpiles [SW16]. Sanov [MZ14b]. Sausage [ABP00]. Scale [ALW14, Ber10, Roi05]. Scale-free [ALW14]. Scaling [BFV10, DK12, NY10, Fun07, HL13, Hol09, LG09, Mie08, VY12a].

subcritical [GMRC16, Sen16]. Subdiagonal [Res01]. subdivision
[Hou09]. subexponential [DW12]. Subgaussian [DG15, HKZ12b].
subgraphs [FvdHH16]. submartingales [Ose08, Ose10]. submatrices
[CL09]. Subordinate [SV04, Osg16, SV08, Wag16]. subordinates
[Ose08, Ose10]. subordination [Ose11]. Subordinator [And06].
Subordinators [BY01, DS16, MY12, Sav14]. subsequences
[HM16, NS13]. Subsets [BYZ07, BYZ12]. subtrees [DJ14]. Sudakov
[Pan10]. Sufficient [Sch99, MR15a, Yas16]. Sum
[MZ05a, MZ05b, BD13, Bor11, DM09, Kri14, Nic06, Yor15].
sum-of-exponential [DM09]. summability [Kie97]. Sums [EZ99,
Oli10a, RW02, BB07, BGHK08, CM12b, GRR14, Gri11, HJT12,
HKZ12a, HZ07, Kif15, Kif16, LL07, NY09, Oli10b, Rio15, dBJP13].
super [LM06]. super-Brownian [LM06]. Supercritical
[Hut11, Cer14, CCH15, GMT15, PR12b]. Supercriticality [VM13].
superhedging [PRT13]. supermartingales [FGL12, Haj14].
Superprocess [KS97, Zho10]. Superprocesses [Wan02, Xio04].
Support [Kar08, Sim00, DR12, Zho14]. supremum
[HK13, HK11, Mic13, MPP15, ZN03]. Sure
[App02, Lin09, Fre12, HR14, Zho10]. Surface [CGXM96, CGXM97].
Survival [BK11, EP17, H07, BAMR11, Fuk09, Kul16, SV16].
switched [BLMZ12]. Sylvester [Zhu14]. Symmetric
[Ave12, GP01, GG04, GS09, Han05, HL15b, Kös08, Tak10, CG15,
HCS08, KF09, PS08, San13, Tko11, Uem07, VR10].
Symmetrization [Pal08]. symmetry [Bar14]. symplectic [Def12].
System [LX15, TW03, Eva06, Kua16]. Systems
[BD02, BGT07, NY10, BLMZ12, BGT10, BFP+, Swa13, TYZ12,
TYZ15, Ven13, Wai13]. Sznitman [KP15, MP14b].
Tail [Aid10, HKZ12a, Fuk09, GT11, HKZ12b, Ose10, PR15, RRZ11,
RS06]. tailed [BH10, Cha10, DHI11]. Tails
[FdlS04, Jun11b, Sos04, Jan15]. Talagrand
[MW12, MW09, Pan01, Pan07]. tamed [Sab13]. Tameness [Lon04].
Tanaka [Haj15, KSS11]. tangent [CV07]. target
[Ale13, Cla14, Sai07]. tau [BLR17]. Tauberian [Gor15].
Tauberian-type [Gor15]. techniques [Men11]. tempered [Gra15].
terms [BCG12b]. Tessellation [Hou09]. test [JR11]. Testing [DR12].
Their [ABV03, BGT10, Eri16, HRKU11, Ose08, Ose10]. Theorem
[Bau02, BCH+00, BDM01, HMO01, Lin09, Lin99, Mar98, MY99,
Roi05, BPR13, BT11, GV14, GPL08, GPPdS14, HN09, HN10,
Kev16, MZ14b, NX13, Pil17, Rio11, Rok15, Ste13, Szn12, Tap13,
Tót13, Tsl13, VR10, Yan07, Yas16, vdHKM09, BLL08, BR07,
Cha10, DV11, Kar07]. Theorems [DS10, AED13, BI15, Com08,
HCS08, Tud09, YRE16, Yuk08, DBGP03]. Theory [Ost13, Yan07].

Uhlenbeck [BH12, CGXM96, CGXM97, CKS99, GJ09a, GP11, Jeg09, MY13, Pat07]. ultimate [AI12]. UMD [MN08]. Unbounded

Wald [HPS14]. Walk [BFV10, BW03, BR07, DBGP03, JK04, KS97, MR11, PV05, RA05, Abe15, Aid10, Ale13, BFGG+16, BK11, CJ13, ČS16, DHS14, DL09a, ER09, GM13, Gra15, GPL08, GPHS13, Hol09, KM17, KSW12, LSP3a, Law14, Le08, MV14, Pet15, Uch15, Win08]. Walks [ABV03, BD02, FZ10, GP01, GGA10, HMO01, HN11, IM10, KP04, Law98, Mar99, OY01, Roi05, Zer02, APRB11, BKR06, BFT13, DW12, DW16, DK12, DJ12, Dur14, EP17, GLY14, GPPdS14, GGPZ14, Hol15, HK16, HS12, HP15, IR10, KS10, OdS16, Pil17, RS11a, Ras10, RS16, SHH14, Sch12, SK15, Sin14, Ste13, Vid14,
REFERENCES

WYY13, Zer06, Zer07], wall [Def11]. Walsh [VY12a]. Wasserstein
[EMR15]. Watanabe [Hoe09, Tap13]. Watson
[Duq09, GP14, HL13, HVM15, KF09, PS17, Tas10]. way
[Bor10, CK08]. Weak [BRT10, Bir04, BC98, Kur14, MV14, Pec04,
SP00, WYY13, vZ02, IM07, Kri14, Ose14, Sin14, Stu16]. weak-type
[Ose14]. Weakly [LT11, Har12, Luo14, Oli10b]. wedge
[DM09, QR11]. Weierstrass [Com08]. weight [Sch12]. Weighted
[LL15, MZ05a, MZ05b, Ose16, Ald16, BB07, GRR14, Gla15, Ria15].
weights [Def12, Emr16, Sch09]. Welch [Tan17]. Wetting [CG05].
Weyl [KS10]. where [KP04, vdBKN12]. Which
[KV11, And06, CD17, Eri16, Yor15]. White [Gri11]. Whose
[Swa01, Luo14]. Widom [Hag02]. width [Sch09]. width-two [Sch09].
Wiener [NP12c, ABP00, Bar97, Bar98, CKS99, Fun07, Har04,
JC04, MY12, NP12b, Oto09, Pri09, Tan06, Tre13a, YLW15].
Wiener/Wigner [NP12c, NP12b]. Wigner
[DV11, EM16, ES16, HCS08, Kös08, Sos04]. winding [Oka14].
window [AF14]. windows [Tho16]. wise [BKR06]. Wishart [GL09].
without [BPR13, Lac15, Yas15]. Woodroofe [KV13, Tót13]. words
[ES09, HM16, dHP14]. works [Haj15]. Wright
[Fou13, Fou14, Ada15, HT05, Pat07, RV13]. Wronskian [Kli12a].
Wulff [DC13].

Xi [Ost14].

Yamada [Hoe09, Tap13]. Yor [Bas15, KV11]. Yule [de 06].

Zero [OdS16, RA05, Tre13b, Bor10, CK08, GJ09b, Kin08, MR08,
MV14, MLV15, Oka14, Zer07]. Zero-one [OdS16, Zer07]. zero-range
[GJ09b]. zero-set [Kin08]. zeros [Eva06]. Zhang [DDT07]. Zhao
[KV13].

References

Andrieu:2007:EAM

[AA07] Christophe Andrieu and Yves Atchade. On the efficiency of adap-
tive MCMC algorithms. Electronic Communications in Probabil-
ejpecp.org/article/view/1320.

Atar:2001:BDP

[AAK01] Rami Atar, Siva Athreya, and Min Kang. Ballistic deposition
on a planar strip. Electronic Communications in Probability, 6:
REFERENCES

REFERENCES

REFERENCES

CODEN ???. ISSN 1083-589X. URL http://ecp.ejpecp.org/article/view/2763.

Alili:2001:CDC

Arratia:2014:SFP

Aly:2013:PSC

Andrew:2006:PFP

Aryasova:2014:DSF

Acciaio:2016:CMC

REFERENCES

[AS16] Rami Atar and Subhamay Saha. A note on non-existence of diffusion limits for serve-the-longest-queue when the buffers are equal in size. *Electronic Communications in Probability, 21*(??):

REFERENCES

REFERENCES

[Bak08] Dominique Bakry, Franck Barthe, Patrick Cattiaux, and Arnaud Guillin. A simple proof of the Poincaré inequality for a large class
REFERENCES

REFERENCES

REFERENCES

[Bolthausen:2011:RTM]

[Beghin:2014:GSP]

[Bertoin:2000:CMC]

[Bertoin:2010:TTS]

[Berestycki:2017:EAG]

[Bergqvist:2011:RPR]

REFERENCES

[BL10] Raluca Balan and Sana Louhichi. Explicit conditions for the convergence of point processes associated to stationary arrays. Elec-
REFERENCES

Bordenave:2011:SSP

Bordenave:2013:ERM

Böttcher:2011:CFP

Bourguin:2016:VVS

Biggins:2009:LDR

Best:2010:ASM

Bertoin:1999:CBP

REFERENCES

REFERENCES

REFERENCES

Benjamini:2007:MAP

Benjamini:2012:EMA

Balan:2006:SAM

Bayraktar:2016:RBM

Butez:2017:ULD

Can:2015:CPO

REFERENCES 52

[Cha10] Arijit Chakrabarty. Central Limit Theorem for truncated heavy tailed Banach valued random vectors. *Electronic Communi-

[CHA15] Yinshan CHANG. A convergence result on the lengths of Markovian loops.
Electronic Communications in Probability, 20(??): ???:1–???:11, 2015. CODEN ???.

[CHL97] Mireille Capitaine, Elton P. Hsu, and Michel Ledoux. Martingale
representation and a simple proof of logarithmic Sobolev inequalities on path spaces.

Electronic Communications in Probability, 18:77:1–77:5, 2013. CODEN ???.

[CK08] Pavel Chigansky and Fima Klebaner. Distribution of the Brownian motion on its way to hitting zero.

[CK14] Alexander Cox and Martin Klimmek. From minimal embeddings to minimal diffusions.

Cammarota:2012:MVS

Cranston:2012:CIS

Chleboun:2013:MTB

Campese:2016:MGA

Comman:2008:SWT

Conforti:2016:BMC

REFERENCES

REFERENCES

Crane:2013:CMB

Corwin:2014:EAL

Cerny:2016:MTR

Chen:2013:NFP

Cranston:1999:LEI

Cox:2007:SRT
REFERENCES

REFERENCES

[DeB07] Dante DeBlassie. The chance of a long lifetime for Brownian motion in a horn-shaped domain. *Electronic Communications in
REFERENCES

Defosseux:2011:GLU

Defosseux:2012:IPM

Deijfen:2009:SRG

Delyon:2010:CIS

Dembo:1996:MDM

Demni:2011:KRV
Dereudre:2016:VPG

Dawson:2016:LDH

Devroye:2000:PSQ

Dedecker:2015:SCI

Depperschmidt:2011:MMM

Debussche:2011:AFE

[DH11] Arnaud Debussche, Michael Hoegele, and Peter Imkeller. Asymptotic first exit times of the Chafee–Infante equation with

REFERENCES

REFERENCES

Depperschmidt:2015:SLD

Delattre:2012:TFS

Dembo:2006:LMD

Doring:2010:ART

Duy:2015:MSM

Deng:2016:CBF

REFERENCES

[Emr16] Elnur Emrah. Limit shapes for inhomogeneous corner growth models with exponential and geometric weights. *Electronic Com-
REFERENCES

Evans:1998:EIS

Englander:2017:SAB

Eckhoff:2009:UMM

Erickson:2016:DTI

Eichelsbacher:2009:MDT

Erdős:2016:FFW
Es-Sarhir:2009:HIF

Enriquez:2008:RSS

Ethier:2014:PPD

Evans:2006:ENZ

Eisenbaum:2009:OIF

Evans:1999:IES

Fang:2015:UEB

Fan:2016:DAL

Fargason:1998:PDB

Friedli:2004:LRP

Feyel:2007:NCS

Fittipaldi:2012:SAC

Friedland:2013:SOR

REFERENCES

Fan:2012:LDE

Fontbona:2010:MOT

Fernandez:2011:RMA

Fitzsimmons:2000:SFM

Fitzsimmons:2006:ERE

Fill:2000:CSF

Flury:2008:NBL

[Flu08] Markus Flury. A note on the ballistic limit of random motion in a random potential. Electronic Communications in Probability,
REFERENCES

Frikha:2012:CBS

Frikha:2012:ECB

Fotsa–Mbogne:2017:NFD

Foucart:2013:ISW

Fuhrman:2016:RNM

[FPZ16] Marco Fuhrman, Huyên Pham, and Federica Zeni. Representation of non-Markovian optimal stopping problems by constrained
REFERENCES

REFERENCES

Evarist Giné and Friedrich Götze. On standard normal convergence of the multivariate Student t-statistic for symmetric

[GHJ16] Archil Gulisashvili, Blanka Horvath, and Antoine Jacquier. On the probability of hitting the boundary for Brownian motions on the SABR plane. *Electronic Communications in Probability*, 79:

Gao:2017:PST

Ghosh:2016:PMR

Gao:2009:DIM

Goncalves:2009:DFZ

Goldberg:2012:CRM

Gobet:2003:CGB

Garet:2013:CBR

Guillin:2016:OLD

Guillin:2017:EOL

Grejo:2016:FSI

Goldschmidt:2008:FRP

Garet:2015:CAS

REFERENCES

REFERENCES

Graversen:2011:RUC

Gunderson:2014:LBB

Guillotin-Plantard:2013:QLD

Guillotin-Plantard:2008:FLT

Guillotin-Plantard:2014:QFC

Grabchak:2015:TUT

REFERENCES

REFERENCES

Hajek:2014:MIS

Hajri:2015:FAT

Hammond:2005:CEP

Handa:1998:LBT

Handa:1999:LBT

Handa:2005:SFS

Hara:2004:FDD

REFERENCES

REFERENCES

- **Hackmann:2013:NSR**

- **Hasebe:2014:FSD**

- **Hartung:2015:GPC**

- **Huang:2016:SIG**

- **Hsu:2012:TIS**

- **Hsu:2012:TIQ**
He:2013:NSL

Hairer:2015:SCC

Holroyd:2015:SDC

Hu:2013:NDS

Hu:2015:IEN

Haggstrom:2009:STD

Hamana:2014:APD

Yuji Hamana and Hiroyuki Matsumoto. Asymptotics of the probability distributions of the first hitting times of Bessel processes.
REFERENCES

[Holroyd:2015:PAB]

[Houdre:2016:CDL]

[Hambly:2001:PTS]

[Huss:2015:RRG]

[Hu:2009:SIR]

[Hu:2010:CLT]
Yaozhong Hu and David Nualart. Central limit theorem for the third moment in space of the Brownian local time increments. Electronic Communications in Probability, 15:36:396–
REFERENCES

REFERENCES

REFERENCES

[Hasebe:2011:JCN]

[Huss:2012:TRR]

[Hu:2015:MDB]

[Hobson:2005:DBC]

[Hua17]

[Huesmann:2016:TCE]
REFERENCES

REFERENCES

Tobias Johnson and Matthew Junge. The critical density for the frog model is the degree of the tree. *Electronic Communications in Probability*, 21(??):82:1–82:12, ???. 2016. CODEN ????

Jonasson:2013:BIP

Jost:2007:NET

Jourdain:2012:EPI

Jones:2011:CHT

Jonasson:2000:CTP

Jung:2011:IFS

Junglen:2011:QBA

Stefan Junglen. Quantization balls and asymptotics of quantization radii for probability distributions with radial exponential tails. *Electronic Communications in Probability*, 16:27:283–
REFERENCES

Janssen:2009:ESM

Kahn:2003:ITC

Kargin:2007:PNC

Kargin:2008:AGS

Kargin:2009:SRT

Khan:2005:LLR

Kasprzak:2017:NBP
Mikołaj J. Kasprzak, Andrew B. Duncan, and Sebastian J. Vollmer. Note on A. Barbour’s paper on Stein’s method for diffu-

Kiesel:1997:SLS

Kifer:2015:ERL

Kifer:2016:EER

Kink:2008:MZS

Kiss:2014:LDB

Karatzas:2015:ODC

Karczewska:2014:SVE

REFERENCES

REFERENCES

[KP04] Manjunath Krishnapur and Yuval Peres. Recurrent graphs where two independent random walks collide finitely often. *Elec-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lacoin:2015:PCC

Lageras:2007:PMC

Lalley:2003:SCL

Latala:2008:BBP

Laurent:2013:SNN

Laukkarinen:2017:NMS

Lawler:1996:DFP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

Marchal:1999:LER

Marchal:2005:MCS

Marchal:2009:STE

Markstrom:2010:CPN

Markowsky:2011:EET

Marcus:2014:MGD

Martineau:2017:SCC

REFERENCES

ISSN 1083-589X. URL http://projecteuclid.org/euclid.ecp/1485507643.

[MG16a] Lester Mackey and Jackson Gorham. Erratum: Multivariate Stein factors for a class of strongly log-concave distribu-
REFERENCES

123

Mercier:2015:PMR

Meckes:2013:SMP

Maas:2008:COF

Maejima:2009:NNC

Maples:2012:NCR

Mohle:2011:CPD

Montenegro:2007:SEV

[Ravi Montenegro. Sharp edge, vertex, and mixed Cheeger type inequalities for finite Markov kernels. Electronic Com-

REFERENCES

REFERENCES

Marynych:2014:WCN

Mueller:2009:CBS

Mueller:2012:ECB

Molchanov:2016:CHL

Ma:2011:TII

Matsumoto:1999:SCP

[MY99] Hiroyuki Matsumoto and Marc Yor. Some changes of probabilities related to a geometric Brownian motion version of Pitman’s 2M − X theorem. *Electronic Communications in Probability*, 4:
REFERENCES

REFERENCES

Nourdin:2012:ECL

Nechita:2013:RPQ

Nualart:2013:JCA

Nutz:2012:PCS

Ng:2015:MDC

Nualart:2013:CLT

Ni:2015:CEC

[OD12] Enzo Orsingher and Mirko D’Ovidio. Probabilistic representation of fundamental solutions to $\frac{\partial u}{\partial t} = \kappa m \frac{\partial^m u}{\partial x^m}$. Electronic Communications in Probability, 17:34:1–34:12, 2012. CODEN ???? ISSN 1083-589X. URL http://ecp.ejpecp.org/article/view/1885.

REFERENCES

Olivier:2010:DIS

ORourke:2012:NMP

Oraby:2007:SLH

Ondrejat:2013:EPM

Orbanz:2016:BLG

Osekowski:2008:SIB

Osekowski:2009:SMI

REFERENCES

REFERENCES

Panchenko:2007:NTP

Panchenko:2008:DPF

Panchenko:2010:DSR

Patie:2007:TSE

Pec04

Pec07

Pes08

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Rokhlin:2007:MSP

Rokhlin:2014:SPM

Rokhlin:2015:CLT

Rosenthal:2002:QCR

Rossignol:2008:TPP

Roberts:1997:GEH

Rasonyi:2014:CTP

REFERENCES

146

REFERENCES

REFERENCES

Samee:2010:PSF

Sandric:2013:TCC

Sapozhnikov:2010:UBE

Sapozhnikov:2011:IIC

Savov:2014:RS

Spitzner:2007:AVF

REFERENCES

[Sch16] Kristina Schubert. Spectral density for random matrices with independent skew-diagonals. Electronic Communications in Prob-
REFERENCES

REFERENCES

[SP00] Steven Sepanski and Zhidong Pan. A weak law of large numbers for the sample covariance matrix. Electronic Communications in
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Swart:2013:NIN

Seidler:2017:NCT

Sznitman:2012:ITR

Takeda:2010:FKP

Tamas:2007:DDN

Taniguchi:2006:QWF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Vovk:2008:CTT

Vandenberg-Rodes:2010:LTP

Vakeroudis:2012:SPW

Vakeroudis:2012:SID

vanZanten:2002:COM

vanZanten:2008:REG

Van Neerven:2011:MIS

Wagner:2016:BHP

Wainrib:2013:DAP

Wang:2002:SCC

Wang:2009:FEO

Wang:2014:CIG

Wang:2015:HDB

REFERENCES

REFERENCES

[WYY13] Zhi Wang, Litan Yan, and Xianye Yu. Weak approximation of the fractional Brownian sheet from random walks. *Elec-
REFERENCES

REFERENCES

[Zhou:2010:ASF] Xiaowen Zhou. Almost sure finiteness for the total occupation time of an \((d, \alpha, \beta)\)-superprocess. Electronic Communications in...
REFERENCES

Zhou:2014:CDF

Zhu:2014:LDE

Zaidi:2003:SLS