Title word cross-reference

\((1 + 1) \) [CB10]. \((d, \alpha, \beta)\) [Zho10]. \((\nabla + \Delta)\) [CB10]. \(0\) [Sch12, Wag16]. \(1\)
\[HL15b, Jac14, Li14, Sch12, SK15, Sim00\]. \(1/2\) [KV15]. \(2\)
\[BDT11, Har12, Li14, Swa01, VZ11\]. \(2D\) [DXZ11]. \(2M - X\)
\[Bau02, HMO01, MY99\]. \(3\) [AB14, SK15]. \([0, t]\) [MLV15]. \(\alpha\) [DXZ11, Pat07].
\(\alpha \in (0, 1/2)\) [Sch12]. \(\beta\) [Ven13]. \(d\) [Hag02, Mal15, Wan14]. \(d = 2\) [KO06]. \(d > 1\)
\[Sal15\]. \(d_2\) [Wan14]. \(d \geq 2\) [BR07]. \(f\) [DGG13]. \(\frac{\partial u}{\partial t} = \kappa \frac{\partial^m u}{\partial x^m}\) [OD12]. \(G\)
\[NY09, BCH00, FGM11\]. \(H\) [Woj12, WP14]. \(k\)
\[AV12, BKR06, Gao08, GRS03\]. \(k^{(n)}\) [dBJP13]. \(k^\alpha\) [Sch12]. \(L^1\)
\[CV07, MR01\]. \(L^1((0, 1])\) [FP11]. \(L^2\) [HN09]. \(L^\infty\) [MHC13]. \(L^p\) [CGR10]. \(L_1\)
\[EM14\]. \(\Lambda\) [Fou13, Fou14, Lag07, Zho14]. \(Lu = u^\alpha\) [Kuz00]. \(m(n)\) [dBJP13].
\(C^n\) [Tko11]. \(\mathbf{R}^2\) [Kri07]. \(\mathbf{R}^d\) [MN09]. \(\mathbf{Z}\) [Sch12]. \(\mathbf{Z}^2\) [Gla15]. \(\mathbf{Z}^d\)
\[DP14, SBS15, BC12\]. \(\mathbf{R}^3\) [Far98]. \(\mathbf{Z}^d\) [BS96]. \(C^\infty\) [DCF06]. \(N \times N \times 2\)
\[BF11\]. \(p\) [Eva06, GL14, Man05]. \(p_c < p_u\) [NP12a]. \(\phi\) [Kie97]. \(q\) [Bar14]. \(r\)
\[SC09\]. \(\mathbf{R}^2\) [HL15a]. \(S\) [RS07]. \(S_2(\delta)\) [Ost14]. \(SU(3)\) [Ras10]. \(T\)
[IR10, GG04, Gri02, MLV15]. T^2 [DS06]. U [Arc98, RW02]. \nabla [Loe13]. \Xi [Fre12]. Z [DJ06, RS11a, Sin14]. Z^d [Pet08, Zer06]. Z^d_+ [LK08]. \zeta(2) [Wäs09].
\zeta(2n) [BFY07].

* [KNN15].

10 [MZ05a].

2D [Kis14, vdBJV07, vdBC12, vdBC13, GPL08]. 2d-random [GPL08].

Answers [BS06]. anticipated [YE13]. Application [DS10, HCA17, Ruf15b, BP10, CK12, Gan16, JK13, Sai07]. Applications [GG11, Jan97, Li99, BKS16, MU10, Pri09, TM15, dIP09]. Approach [DZ96, Lon04, BC15, Ber17, DW12, DL09a, HvDS08, Lac10, Led17, LS13b].

approaching [DC13]. Approximating [YLW15]. Approximation [BZ06, DL08, KS97, BRT10, BC15, BN08, CK12, Dal13, FT07, FM12b, KV13, LY13, MR13, Pri15, SŽ17, Sio14, VM13, WYY13]. Approximations [Pec07, CNPP16, Fan16, FM12a, KDV17, Sab13]. Arbitrage [SV11a].
PW11, SK15. Brascamp [Har14]. Bridge [Gao03, Li17, Li16]. Bridges [Ali01, CLMR15, Con16, BCP03]. Brownian [MW12, AG15, Ald98, Ali01, Aur11, Bar05, BBB97, BBKM00, BB06, BA14, BPR99, BDE13, BH16, BGT07, BFP+09, Bor10, BO03, BN08, BC98, CM12a, CC98, CK08, CSS99, DeB07, DM09, Fur98, Gao03, Gao08, GL14, GT11, GHJ16, HCA17, HH07, HK15, Has05, HT05, Hoo99, HN09, HN10, HLN13, HSY15, Ist05, Jan13, JV09, KT03, KT13, Ken09, KLS05, Law96, LM06, Li17, Mai13, Mal15, Mar11, MY99, MLV15, MW09, NP13, NX15, NX13, NS13, Oka14, Owo15, PW11, QR11, SV04, SW02, Spi13, Tan06, Tud09, Unt10, VA06, VY12b, VY12a, Wag16, WYY13, Wan15, ZN03]. BSDEs [Bah02, BCH+00, BDM01, CEK11, FPZ16]. Buers [AS16]. BV [Tre13a]. BV-regularity [Tre13a].

Owo15, Ruf15a, RM16, Tap13, Tap15, Unt10, YE13, YRE16].

differential-algebraic [AF06]. differentially [Ose16]. Diffusion
[Hus08, Jan96, Rin98, Wan09, AS16, BR16, CSC13, Cla14, DCLYY13, Eth14,
GG14, GM16, GM17, HLWZ15, KDV17, KTT17, LST15, PW11, RBS15, Sai07].

Diffusion-Limited [Hus08]. Diffusions [Sam10, BC14, CK14, DN07, Fan16,
Gau16, Hut11, KSY06, Kli12a, MU12, Rey15, Ruf15b, RW09, Tug16].

Diffusive [NY10, dBM15]. dilations [Gri11, Tko11]. Dimension
[BR07, Sim00, Bor13, Far98, Hol15, HKZ12a, Hue16, Jou12, Law96, Le 08,
Sal15, Yan06, vB15].

Dimensional [Spr07, Swa01, Abe15, AS11, Att10, BFRH15, BDZ11, BS07b, BR16,
Can15, CB10, CEG11, Dae06, EK08, GPHS13, Häg02, HM09, Har04, Jac14, Kli12b,
KTT17, Mal15, MU12, OdS16, Pet15, Rei05, RW09, San13, TYZ12, TYZ15,
Van07, Wag16, Wan09, Wat12, Yuk08]. Dimensions
[Law98, EMR15, MS11, Sap11, SZ17].

Directed [Bir04, HS09, HS12, SHH14, Wat12], direction [Cou11], directional
[OdS16]. Dirichlet [Arg07, JK08, RW09, Uem07]. Disaggregation [DCF06].

disconnectedness [Zho14]. Disconnection [PW96, Wer96].

discontinuities [BK16]. Discontinuity [Jan97]. discontinuous
[AP14, Att10, GS12, Lej11, LST15]. Discrete [Fan16, SBS15, Van08, BDZ11,
Cra13, DOL14, KZ13, LUP16, Mak08, Rok07, SB07, Win08]. discrete-time
[SB07]. discretized [BBMT09]. Disjoint [Gan14, Wei03]. disk [Ga14].

Disorder [Bir04, DW15, Lac10]. Disordered [BD02, CdH13, KO06].

Displacement [FZ10, Mal15]. Dissipative [LT11]. distance
[EB99, vdBHH10]. Distribution
[CK08, DFN00, Jan97, JK04, JK08, MZ05a, MZ05b, Ost14, Spr07, Bac11,
Bar14, BD13, Bas15, BH16, Bor10, BW08, But17, DR12, Jan15, Kli12a,
Led16, MZ14a, Mic13, MPP15, MP16, Rey15, SV11b, Sub12, Tam07].

distribution-valued [Led16]. Distributions
[Jun11b, KM06, Res01, Arg07, ALW14, BC15, Bob08, Dem11, DMPARA13,
Gra15, GPHS13, HM14, HK14, KV11, Lab13, LG09, MG16a, MG16b, MN09,
MU10, MAPS14, Mar14, Ost13, Tan17]. Divergence [CP05, BD15, Oto09].

divergent [BI15]. Divisibility [MR08, AJ14, VY12b]. Divisible
[MR01, AV12, DMPARA13, MN09, MU10, Wat12]. DLA [RS11a]. do
[EHW15]. Does [MZO5a, MZ05b, BLL16, Sap11, Wei03]. Domain
[DeB07, Dok15]. domains [BB06, Fra13, Mar11]. dominate [Sap11].

Domination [Lin99]. Doney [PN15, PN16]. Donsker [BRT10, BDM01].

Donsker-Type [BDM01]. Double [Wai13, BK11]. double-branching
[HSY15]. drawn [dHP14]. Drazin [SB07]. drift
[AP14, Att10, BO03, DN07, DP14, GN06, GJO9a, GM16, GM17, Jan13, JV09,

Driven [HT05, Ban15, BO03, DXZ11, HHN16, MY13, Owo15, Tap15, Unt10].

dualities [JK13]. Duality [HT05, Jan96, CLMR15, HA07]. dyadic
easy [Was09]. Edge [Gui99, MR11, Cra13, Geo10, Law14, Mon07, RRZ11, SV16].

efficiency [AA07]. Eigenfunctions [AB02]. Eigenvalue [DV11, Wan09, SV11b, Woj12, Yas14]. Eigenvalues [KO01, Sos04, BGP14].
eigenvectors [BGP14]. Electric [Gao08]. elementary [Ber17, Duq09].
electromagnetic [Bia13, Sio14]. Dyck [KM09]. Dykema [But17].
dynamic [Buc13, GS12, OdS16]. Dynamical [DN07, Arg07, Ave12, BLMZ12].
dynamics [Gor15]. Dyson [BFP+09, KT13].

...
[Aur11, CGPPS13, DHI11, Dok15, Mar11, Pat07, VY12b]. Expansion
[CSS99, EM16, HvdHS08, MY13]. expansions [Mar09, Pri15]. Expectation
[BCH+00]. expectations [GHJL17, HLWZ15]. expected
[EM16, Eva06, FV14, Mar11, NX15, Sap10, vdBC16]. Explicit
[BL10, D’O10, DL08, Mic13], exploding [KT11]. explosion [BS16].
explosive [Lab13], exponent [KV15, Ven13]. Exponential
[Bau02, BGHK08, BY01, DS10, GM12, IM10, Jun11b, KS14, PR11, Rio15,
RS06, TM06, dPP09, AI12, BLL16, CSC13, DM09, Emr16, FGL12, GRR14,
KM09, KMS06, Pet08, Sch09, SC09, Yin15]. exponentially [DZ13].
Exponents [Ham05, PW96, Wer96, NP12a]. extended
[TYZ12, TYZ15, VY12a]. Extension
[MR15b, Hoe09, HvdHS08, Pin16, Pos09, Uem07]. Extensions
[BGT07, Fit06, Pan02, Rio13a]. extinct [FF12]. extinction
[BK11, JL08, SV16]. Extremal [Dzi13, CCH15]. Extreme [KLS05].

Extreme-Value [KLS05].

factor [RR15]. Factorial [BLY15]. Factorizations [BY01]. Factors
[Bal05, MG16a, MG16b, Tim04]. fail [CD17]. family [Bac11, BLL16, Neu11].
Fast [BA01, BR16, Wai13]. Fastest [Roc05]. Feller [Böt11, PW11].
Ferguson [JK08]. Few [BS96]. Feynman [Bal09, Tak10]. field
[BZ16, BDE13, BDZ11, CD13, LW15, LW16, NP12a, CCH15]. Fields
[CGXM96, Ist06, BMV07, CGXM97, Kli12b, KZ13, MHC13]. Fill [Mac02].
Filtered [Çet12]. Filtering [Mak08, CL06, FMP17]. filters [Van08].
filtrations [KK15, Lau13]. finding [MU10]. Fine [Fit00]. Finite
[Har04, LX15, Ald16, BC15, Cer14, DJ06, Der16, Die15, HM09, JV09,
KS14, LR16, MLV15, Mon07, Rok07, Sio14, Tho16, vdBKN12]. Finitely
[Gne10, KP04]. finiteness [DR12, KSY06, Zho10]. fire [Due06, Gra16]. First
[And06, BT17, IM10, Kes96, Lal03, Sch09, Wan09, BCP03, BB01, CSC13,
CEG11, DHI11, Dok15, Gan14, HM14, Vid14, Yao14]. First-Passage
[Kes96, Lal03, Sch09, Yao14]. Fisher [Fou14, Fon13, HT05]. Fit [Sam10].
fitness [GMRC16]. fix [Pin17]. Fixation [GA10]. Fixed
[FJ00, AG15, ALW14, BKS16, LS13a]. FK [LW16]. FKG [Bar05]. flat
[PSY13]. Flatness [Tap15]. Fleming [Zho14, FX02, LSY99]. Flow
[Tha98, AP14, Led17, Xio04]. Flows
[CSS99, Att10, Die15, ERM15, Har17, HCA17, MR15b, VAO]. fluctuation
[KO06]. Fluctuations [ES16, KZ13, BGT10, Dok15, GJ09b]. Fokker
forest [Due06, Gra16]. forest-fire [Due06, Gra16]. Form [CP05, BW08].
Forms [Tha98, HKZ12b, Uem07]. Formula
[Bal09, Sch01, BY13, EW09, KT03, MN08, Mic13, Oto09, Pan08, Yan06].
Formulas [Han05, BFY07]. formulas [CLMR15, Def12]. formulation
[BZ16, But17, Sir14]. forward [CD13]. forward-backward [CD13]. Four
[Law98]. fourth [AJ14, Yas15]. fractal [BJT17]. fraction [AHM06].
Fractional [BDE13, BGT07, CC98, GG14, Ist05, Ist06, Aur11, BRT10,

Inequality [Bar05, ESvRS09, Kah03, Li99, Mar10, Pan01, Pan02, Ada15, BCG08, CdH13, CR10, CM12b, Haj14, Har14, HKZ12b, Jon13, Jou12, Maj06, Oli10a, Ose08, Ose09, Ose14, Ose16, Pos09, Rio13b, RV13, Tro11, VZ11].

Infante [DH11]. Infinite [BZ06, MR08, AJ14, BS17, BC12, BT17, CY13, DKW14, Due06, HJT12, Li14, RW09, Sap11, SZ17, VY12b, vB15]. Infinitely [Law98, MR01, DMPARA13, MN09, MU10, Wat12].

Infinite [BZ06, MR08, AJ14, BS17, BC12, BT17, CY13, DKW14, Due06, HJT12, Li14, RW09, Sap11, SZ17, VY12b, vB15]. Infinitely [Law98, MR01, DMPARA13, MN09, MU10, Wat12].

Infinitesimal [BZ06, MR08, AJ14, BS17, BC12, BT17, CY13, DKW14, Due06, HJT12, Li14, RW09, Sap11, SZ17, VY12b, vB15]. Infinitesimally [Law98, MR01, DMPARA13, MN09, MU10, Wat12].

Infection [Hus08, RS11a, DCLYY13]. Interpretation [LNN09, Har16]. Intersection [AK08, EP98, BCG12a], Interval [Tan06, BA14, KS14, MLV15]. intervals [Eri16]. Intrinsic [KTA17, HKZ12a, Sap10]. Invariance [CH94, DL09b, HZ07]. Invariant [DXZ11, GN06, HLW15, LT11, LW15, Pin16, Tap15].

Jammed [AHM05]. Joint [HS11, MP16, NS13, GL14]. jump [BY13, CSCP16, Kua16, Lai13, LP12, Mak08, Sai07, Uem07]. jumping [SV04].

[GKH03]. **Loop** [Law98, Lup16, Mar99, Law14, LW16]. **Loop-Erased** [Law98, Mar99, Law14]. **loop-soups** [LW16]. **loops** [CHA15]. **Lower** [Doh13, GP14, Han98, Yas14, CG15, Han99, KO06, PS08, Yas15]. **Lukacs** [Ejs12]. **Lyapunov** [Liu15]. **Lyons** [Mar98].

M. [Tot13]. **M1** [Led16]. **Macroscopically** [RT08]. **Malliavin** [GKH03, Lau17, Tan06, TM15, Tre13a]. **Mandelbrot** [LL15]. **manifolds** [KT17, RM16, Tap15]. **Many** [BS96, Gne10]. **mappings** [MU10]. **maps** [AB14, ACCR13, SW16]. **Marchenko** [BLR17]. **Marchal** [DS16]. **Marchenko** [O’R12, Yas16]. **Marcus** [Sim00]. **marginals** [GPL08]. **Marked** [DP11]. **Markets** [SV11a]. **Markov** [ADOS11, BA01, BLL08, BY01, BW08, CNPP16, CC98, CLMR15, Con16, Cra13, CP14, DG15, Die15, Fit06, Guo99, HR07, KF09, LW09, MPY14, Mon07, Müü08, NW15, RR97, Ros02, SB07, Tel00, WOY08, YRE16]. **Markovian** [AGS14, CHA15, DL09a, FPZ16, HMO01, Man05]. **Martin** [IR10, Ras10]. **Martingale** [CHL97, DW12, Lac10, Rok07, TM06, CV07, FGM10, Kin08, KV13, Men11, Ose11, Ruf15a, Yor15]. **Martingales** [Dem96, Pec04, vZ02, AP16, Çet12, GGPZ14, JR11, KM17, LL15, Ose09, Ošč16, PR12a, Ruf17, Sok13, Tro11]. **Mass** [JC04, Mik02, BK13, RS16]. **massless** [KO06]. **matching** [Wäs08]. **Matchings** [HP03, Sal15]. **Matrices** [DV11, DBGP03, GZ00, Sch16, Soš04, Tuc11, BB10, BD13, BGP14, Bor11, Bor13, BS07b, BHS10, Del10, DS15, EM16, ES16, FG13, GL09, HCS08, HKZ12a, Kar09, LPP15, MM13, O’R12, Oli10a, Ora07, PS08, Sim17, Ste08, Tk013, Ven13, Woj12, WP14]. **Matrix** [Kös08, Law08, SP00, Sep03, AEK14, BS07a, ESO09, Mec07, SV11b, SC09, Tro11, Yas14, Yas15]. **matrix-exponential** [SC09]. **Matrix-Valued** [Law08]. **Matsumoto** [KV11]. **max** [AP16, RS06]. **max-continuous** [AP16]. **max-recursive** [RS06]. **Maxima** [BDM07, Fit00, Lin09, KZ13]. **Maximal** [BYZ07, Maze15, Ose14, Haj14, HSY15, Ose09, Ošč16, VZ11, BYZ12]. **maximizing** [LS13a]. **Maximum** [Abe15, BFP*09, Gao03, KM08, AI12, Bob08, BDZ11, GT11, Jan13, JV09, KM09, MLV15, Oka14, Tre13a]. **Maxwell** [Tot13]. **McDiarmid** [Rio13b]. **MCMC** [AA07, RR15]. **Mean** [CD13, Gao03, MP13, BZ16, BBMT09, DJ06, DS15, DzI13, LW15, NP12a, RS07, Úch15]. **mean-field** [NP12a]. **Mean-Square** [MP13]. **meander** [HSY15]. **Means** [MR08]. **Measurability** [FGM10, Bas10, Bas11]. **measurable** [OS13, PRT13]. **Measure** [Guo99, GZ00, KM06, Mar05, RZ98, Ban15, Del10, DGP11, ER09, EM16, Fun07, GG14, GL09, Hua17, LM06, Le 08, Loe13, NW15, SW10, Li17]. **Measures** [LP99, LT11, Mar10, BBCG08, BB07, DXZ11, DS15, EM14, FGM11, FGM10, GN06, GG11, Gho16, Hue16, LR16, MWW11, MM13, Neu11, Tk011, Zha12]. **mechanics** [Gaa14]. **Media** [RT08]. **medium** [Lej11]. **Meinhardt** [LX15]. **Meixner** [Ejs13]. **Memory** [DCF06, ESvRS09]. **Method** [Kar07, Dal13, KDV17, NW15, Rok14]. **methods** [GS12, YY13]. **Metric**

[BDL15, VM13]. Neumann [AB02]. neutral [CY13, DC15, Lag07]. never [FF12]. next [Lau13]. next-jump [Lau13]. No [Pes08, Mil08]. Nodal [AB02]. nodes [DJ14]. Noise [HT05, ST99, BC14, DHI11, FMP17, LW15, Nee14, Tre13b, YRE16]. noises [Gri11, HHN16]. noisy [Ram14]. Non [AK04, CP05, DL09a, HLN13, Kar07, Kes96, KO01, KV15, Man05, MR08, NP12a, OY01, Zer02, AST14, AHM06, AV12, AS16, Ave12, Ban15, Bor11, BFP+09, BN08, DJR16, Def12, FdM07, FPZ16, HPS14, Hus08, KT11, KF09, MPY14, Neu11, RR15, Yor15].

Noncolliding [KT03]. Noncommutative [Ejs13]. nonconventional [Kif15, Kif16]. Noninvadability [Swa13]. Nonlinear [AK04, FMP17, Mor05, GHJL17, HLWZ15, Van08]. nonnegative [Ose10].

nonpositive [Woj12]. nonstandardness [Lau13]. norms [MR01, Tan06, BS07b, BHS10, Mec07, PS08]. Normal [GG04, BN08, MR13].

normalized [BGHK08, DW15, MZ05a, MZ05b, Spi13, dIPP09]. norms [HLN13]. Note [Bal09, Bjo09, KDV17, KS05a, NY10, Ost14, Pan01, SW02, Ada15, AF14, AS16, Bo10, CEK11, CSC13, CCH15, DV11, DS16, Fl08, GS12, Gor15, HK13, Har12, HL13, HS09, HZ07, Jos07, Kev16, KSY06, KS09, Lau17, LMK03, LW16, MN09, Msi13, Men13, Men14, OR12, Pan07, Pet08, Sab13, SZ17, SC09, Sir14, Tko13, Vid14]. Notes [Car05]. Novikov [Sok13, KS05b]. Novikov-type [Sok13]. Nualart [Nou11]. number [Eva06, Fre12, IM07, MNZ12, MV14, Oka14, Uch15, vdBC16].

Numbers [Ar98, CLS05, RA05, SP00, Zer02, BBMTO9, HR14, Rui17, Van07, Yao14].

optimality [KS07]. Optimisation [RR14]. Optimising [McV08].
Optimization [GL14, Tan17]. Optimizing [Cla14]. Option [Kle02].
Optimal [KK15, KT11, KS09]. Options [GKH03, Dol14]. Order
[Kös08, BT12, Gaal14, LPP15, Sch12]. organized [Due06]. oriented [CM13, LK08]. origin [Tam07]. origins
[Eri16]. Ornstein
[BH12, CGXM96, CGXM97, CKS99, GJ09a, GP11, Jeg09, MY13, Pat07].
orthant [SB515]. orthogonal [BD13]. Orthogonality [Kov09, Kov10].
oscillation [AK04]. Oscillator [BW04]. overlapping [AHM06].

parabolic [EK08, HL15a, Jan13]. Parameter [Aly13, Mak08, RW09, Yan07].
Paris [DDT07, Pan05, Pan08, Sal15]. Partial
[CP05, EZ99, CY13, Kri14, LL07, Tap13, Tap15, dBJP13]. Partially
[FW10, Kua16]. Particle
[BGT07, BGT10, Ven13, BH16, Def12, Kua16, TYZ12, TYZ15, VR10, dBM15].
Particles [HT05, Def11, IS17]. Partitions [Pet10, AV12, Zha12]. partly
[YY13]. Passage [BM05, IM10, Kes96, Lal03, RT08, BT17, BBMT09, BCP03, CPS12, CSCI13, CEG11, Gan14, Sch09, Vid14, Yao14]. Past
[AVB03]. Pastur [BLR17, O'R12, Yas16]. Path
[BPR99, BCP03, CHL97, Tan06, AK08, CEG11, FW17, KM09, MP16, de 06].
Paths [BM05, CDNX17, Geo10, RZ13]. Pathwise
Penalisations [Tak10]. Wigner [NP12c, NP12b]. Percolation
[BS96, BM05, Far98, FdLS04, Ham05, Kahl03, Kes96, KS03, Lal03, PV05, RT08, Sch01, AST14, Ald16, BT17, BFRH15, Can15, CPS12, Cer14, CEG11, DDG10, DC13, Gan14, GJ09b, GP14, HM09, Kis14, Lup16, Pet08, Pim06, PR12b, Sapi11, Sch09, Stu13, Yao14, vdBKJ07, vdBKN12, vdB12, vdB13, vdB16]. Perfect [DFN00, Ken04, Ste08]. Periodic [BDT11, Gan16].
periodically [Wai13]. permamental [MR15a]. permutation
[MNZ12, Pin17]. permutations [Bj615, GMS08, Pin17]. perpetual [KS06].
perpetuities [Bl15]. Perron [Rok14]. persistence [GLY14]. persistent
[Eri16]. Perturbation [LW05]. Perturbations [App02, KL14].
perturbative [DLO9a]. Petersburg [DBJ13]. Petrov [Ett14]. Pfaffian
[TYZ12, TYZ15]. Phase [AHM05, BJT17, HK15, Rát15]. phenomena
[Gho16, Ros08]. phenomenon [Ber10]. Phi [WY08]. Pickands [AC10].
Piecewise [Ruf17]. Pieri [Def12]. Pieri-type [Def12]. pinned [Uch15].
Pinning [CG05, CR10, Lac10]. Pitman [Bas15, Bau02, HMO01, MY99].
pivotal [Jon13]. Planar [AAK01, JS00, BB06, BCG12a, CM12a, Geo10, GPPdS14, GGNS17, Law96, Law14, Mar11, Mie08, SW16, YY12b, Zer07].
Planck [HRKU11, Luo14]. Plane [LLN09, Gra16, GHJ16, LUP16]. Poincaré
[CGR10, BCCG08, Jou12, MZ14a]. Point [BL10, HP03, Pet10, Tim04, AG15, Der16, Gho16, Glo14, LR15, Mai13, Rei13, Stu13, TYZ12, TYZ15, Uch15].
Points [And06, FJ00, Pes08, ALW14, BKS16, BR16, Kri07, Sub12].
poisoning [SS06]. Poisson [Arg07, Bal05, BDE13, BFRH15, Bou16, BJT17, CK12, Dal13, Dei09, Gne08, HM15, KM06, Kri07, MAPS14, Möh11, Neh14, PS16, Rei13, RW09, SOS04].

powers [MM13], predictable [Sio14], predicting [AI12]. prediction [McV08], predictor [CL06]. Preemptive [LM99]. preferential [MP14a, Tam07]. prescribed [DJ06, Dei09]. Price [Kle02]. pricing [Rok07].
Principle [And06, Sam10, Der16, HZ07, Pan07, Ruf15b, Wag16, Wai13].
Principles [CH04, GS12, WY08, dHP14]. Priority [MZ05a, AGS14, PN16].

Proba. [MZ05a]. Probabilistic [OD12, IM07]. Probabilities [And06, Kah03, Li99, MY99, AK08, BS17, BF11, HH07, Mar09, Pim06].
Probability [Gao08, Jun11b, MLV15, Tel00, BBCG08, CG15, Doh13, GHJ16, HM14, Jan09, KV15, Kov09, Kov10, Kul16, Law14, PS17, Spi13]. Problem [BDT11, LSY99, Mik02, Aur11, CGPPS13, Fuku09, Pat07, Rok07, Sai07, Wäs09, YI13]. Problems [KS05b, FPZ16, GN06, GS12, Men11, Rok14, Sir14, Wäs08].
Process [Ber00, CKS99, FX02, Gne08, KO01, Man05, Mor05, Pat07, Pes08, TW03, de 06, Aly13, BL13, BH12, Ber10, Bor10, Can15, CCH15, DKW14, DZ13, Dei09, DMPARA13, EK08, GJ09a, GMT15, GJ12, GJ09b, GR030, HK13, Hlo06, HK11, JK08, Jon13, KMI06, Lej11, Mak08, MY13, Mic13, MP16, MP14b, Mor08, Neh14, PS16, PZ16, RW09, Sen16, SV16, Tre13a, VR10, YLW15, vdBH10, vdBKN12]. Processes [BL10, BY01, DCF06, EP08, Fit06, HP03, Jan96, KO01, KS05a, Law08, LSY99, LP08, Mik02, Pet10, Tak10, Wan09, APRB11, AF14, AI12, BKS16, Bas15, Beg14, BBM109, BY03, BS16, Bob08, Böt11, BW08, CGPPS13, CSC13, CLMR15, Con16, CP11, Der16, DXZ11, EW09, Eje12, Eje13, ES08, Er16, EM14, FF12, GHJL17, GI04, Gho16, GP11, HM09, KRUK11, HM14, HR14, HLWZ15, JL08, Jox07, Ker17, KLM15, KS14, KMS06, Kri14, KT11, Kul16, KTT17, Lat08, Led16, Mai13, Mar09, MR15a, MP15, Mil08, MPY14, Möh11, MW16, PS16, Rei13, San13, SW10, SC09, Sio14, SV08, Stu13, Tap15, Tim04, TY12, TYZ15, Ts17, WY08, Yan06, dPP09, vZ08].

Product [DZ06, GHLJ17, Bor11, BW08, HZ07, Lac15, Ros08, Sim17, Tko13].

[And06, BLL08, CHL97, Kar07, KPS96, AC10, BBCG08, Bar14, Duq09, IM07, MW09, MW12, Nou11, Rát15, Sim11, Tug16, VY12a, Wäs09, Yan06].

Properties [BCH+00, Mar10, BCG12a, BS07a, DN07, Ejs12, KMiS06, KTT17, VY12b, WP14, YE13].

Property [BM05, CC98, DL09b, Eth14, KV11, LG09, QR11, Ruf15a].

Protected [DJ14].

Prudent [BFV10].

Pseudo [HLN13, Sal15].

Pseudo-dimension [Sal15].

Pseudo-norms [HLN13].

Pure [BY13, NP13].

pursuit [Mec09].

quadrangulations [Mie08].

Quadrant [Gne08].

Quadratic [Tan06, DKW14, Har04, HKZ12b].

quantiles [BCG12b].

Quantitative [BLMZ12, Mec09, Ros02, AJ14, Con16].

Quantities [IM10].

Quantization [Jun11b].

quantizers [Yuk08].

Quantum [FW00, NP13].

Quasi [FX02, Lab13, Ban15, BS17, BC15, BGT10].

quasi-homogeneous [BGT10].

quasi-left [Ban15].

quasi-multiplicativity [BS17].

Quasi-Potential [FX02].

Quasi-stationary [Lab13, BC15].

quenched [Fuk09, GPHS13, GPPdS14].

Question [Pan05].

Questions [BS96].

queue [AGS14, AS16].

Queues [Lim99].

Quicksort [DFN00, FJ00, Jan15].

Rademacher [Pin16].

Radial [Jun11b].

Radii [Jun11b].

Ramanujan [Her17].

Random [ABV03, BW03, BKR06, BYZ07, BR07, Bir04, Bjo09, BD02, CJ13, CP11, DBGP03, FZ10, GP01, GG04, GS09, GGA10, HM001, HN11, IM10, JK04, KS10, KP04, LW05, Mar99, MR01, MR13, MR11, NP13, OY01, Pet10, PV05, RA05, Roi05, Sch16, Sos04, Tas10, Tuc11, Wäs08, Win08, Zer02, Abe15, APRB11, Ada15, AB14, Aid10, AG15, Ale13, AV12, Ave12, Bac11, Ban15, BB10, BGP14, BYZ12, BFT13, BFGG+16, BB07, BF11, BP09, Bjo15, BK11, Bor11, Bor13, BS07a, BS07b, BT11, BJT17, Buc13, CGEPS13, CS16, Cha10, DJ06, Dei09, Del10, Dem11, DW12, DW16, DGG+13, DJ14, DL09a, DK12, DJ12, Dur14, DS15, ER09, EP17, Eva06, FvdHH16, Flu08, FV14, FG13, FY15, GRR14, GLY14, GM13].

random [Glo14, GMS08, Gri11, GPL08, GPHS13, GPPdS14, GGPZ14, Hil06, HCS08, Hol09, Hol15, HM16, HKZ12b, HKZ12a, HZ07, HK16, Huet15, HP15, Hut11, IK10, IM07, Jac14, JK08, Jon04, Kar09, Kie97, Kli12a, KM17, KSW12, KM16, KTA17, KO06, KTT17, LS13a, Law14, Le 08, LW16, MNZ12, MV14, Mec07, MM13, Mie08, MHC13, OR12, Oli10a, Ora07, OdS16, PS08, Pet15, Pil17, PT11, QM17, RS11a, RS07, Ras10, RS11b, Rát15, RS16, Rio15, Sch12, SK15, SV11b, Sin14, Ste13, SW16, Szn12, Tko13, Uch15, Van07, Ven13, Vid14, WYY13, Wäs09, Woi12, WP14, YAS15, YIN15, ZER06, ZER07, vdHKM09].

Random-to-front [Bjo09].

random-to-random [QM17].

Randomly [MZ05a, MZ05b, BP09].

Range [FLS04, Can15, CS16, Der16, Ga14, GJ09b, Sav14, Spi13].

ranges [DS16].

Rank [BF11, BZ16, BS07a, Rey15].

rank-based [BZ16, Rey15].

Ranked [CH04].

Rapid [JM15, GJ12].

Rate [KM08, Yad09, Cla14, CP17, LW09, MII08].

Rates [Ros02, Kua16, NX15].

re
[DL09b]. \textit{re-rooting} [DL09b]. \textbf{Real} [Kös08, BF11, Sim17], \textit{realized} [KT11]. \textbf{Reciprocal} [CLMR15, VY12b]. \textbf{Reconstructing} [GN14]. \textbf{Reconstruction} [PR11, KF09]. \textbf{Records} [Gne08, GM12]. \textbf{Recovering} [LY16]. \textbf{Recurrence} [BC12, BD02, Car05, DP14, GGNS17, Mül17, Sin14, Zer06, ADOS11, BFGG+16, DHS14, HS12, Ker17, SHH14]. \textbf{Recurrent} [Fit06, GP01, KP04, BFT13, DK12, KZ13]. \textbf{Recursions} [GN14]. \textbf{Reconstruction} [PR11, KF09]. \textbf{Records} [Gne08, GM12]. \textbf{Recovering} [LY16]. \textbf{Recurrence} [BC12, BD02, Car05, DP14, GGNS17, Mül17, Sin14, Zer06, ADOS11, BFGG+16, DHS14, HS12, Ker17, SHH14]. \textbf{Recurrent} [Fit06, GP01, KP04, BFT13, DK12, KZ13]. \textbf{Recursions} [GN14]. \textbf{Reconstruction} [PR11, KF09]. \textbf{Records} [Gne08, GM12]. \textbf{Recovering} [LY16]. \textbf{Recurrence} [BC12, BD02, Car05, DP14, GGNS17, Mül17, Sin14, Zer06, ADOS11, BFGG+16, DHS14, HS12, Ker17, SHH14].
ZN03, GG14, Lau17. snake [BC12]. Sobolev [CHL97, HLN13, MZ14a, WY08]. Soccer [Bar97, Bar98]. Soft [Geo10].
Solution [Kuz00, AG15, LY16, QR11, SSS15]. Solutions [AK04, FW00, Swa01, Bah02, CEK11, D’O10, Kur14, LST15, LP12, LY16, OD12, Tap13, Unt10]. solving [YY13]. Some
[BY01, BGT07, Car05, CV07, CP14, DZ96, DPS15, HM09, KMiS06, LL07, MY99, Pan02, Pin17, SS06, Tha98, YY12b, YE13, BLMZ12, DOS16, DJ14, Ejs12, HLN13, HA07, KTA17, MU10, Mar09, Men11, Möh11, Ose11, PS16]. soups [LW16]. source [FY15]. Space [CHS99, FW17, GHJL17, HN10, IR10, Jan09, Lau17, Le 08, Loe13, Mar17, PS16, Pri09]. space-fractional [PS16]. Spaces [CHL97, DZ96, Ist06, BMV07, BC15, CV07, DGP11, GV14, HCS08, Jeg09, Kie97, Loc13, MN08, MP13, MR15b, Oto09, Ros08, VZ11]. Spanning [Mar99]. sparse [BG14, BDL15]. Spatial [Lou04, Dei09]. Spatially [KS97]. SPDEs [AED13, SSS15]. special [BS07a]. Species [Gne10, BAMR11].
Spectral [BS07b, BHS10, DOS16, GZ00, MM13, Mor08, RR15, Sch16, BD13, Del10, DS15, EM16, FW17, GL09, KP15, Mec07, MP14b, Ora07, PS08, WP14]. Spectrally [Pat07, Mic13, MPP15]. Spectrum [BDN10, Kar09, Bor11, Sin17]. Speed [KS03, Gau14, GM16, GM17, Hol15, LS13a]. Spent [Jan97]. sphere [Gau16, JK08, Tan17]. Spheres [Spr07]. Spherical [Ist05]. spherically [Pin16]. sphericity [Mic08]. spin [CM13, Kli12b, KO06]. Spitzer [Tud09]. spreading [FY15]. Square [MP13, Tan06, ESY08, Jon12]. square-root [ESY08]. Squared [KO01]. Squares [MR08]. Srinivasan [Jon13]. St. [dBJP13]. Stability [App02, FP11, HK16, ST99, CL06, DC15, Nec14]. stabilizing [Tug16]. Stable [Mar05, Pat07, Pes08, RZ98, Tak10, Beg14, BFRH15, CGPPS13, Dem11, DXZ11, Gra15, HK13, HK14, HK11, Jon11a, Mai13, Mic13, Sim11, Van08]. Standard [GG04, Jan09, Jan97, Nic06]. Standardized [KM08]. Standardness [Lau13]. State [Lou04, Wan02, Die15, FF12, Rok14]. states [BGT10, NP13]. Stationary [BL10, DJ06, Dei09, KS05a, BC15, BW08, DM09, Glo14, Lab13, Rey15]. Statistic [GG04, Gri02]. statistical [DR12, Gaâ14]. Statistics [DS06, Sos04, Arc98, BT12, LPP15, RW02]. stay [DJ12, KS10, Mil08]. Stefankovic [GJ12]. Stein [Dal13, KDV17, LS13b, MG16a, MG16b, Pri15]. step [GRS03]. sticky [HCA17]. still [JL08]. Stochastic [App02, AK04, Att10, Bar05, BDT11, CR05, FW00, Fra13, HN09, KL14, Law08, Lin09, LT11, MR01, Mik02, Rob14, AF06, AP14, Ban15, BC15, Bia13, CD13, CY13, DOS16, DC15, DXZ11, FT07, FP11, FM12a, FM12b, GN06, GS12, Gor15, HCA17, Hoe09, HNN16, Hua17, HA07, Ker17, KS09, Kur14, Lej11, LP12, LX15, LY13, Nak08, MR15b, MW09, MW12, Nie06, Nut12, Ose09, Ose14, Owo15, Ruf15a, RM16, Sai07, Szi17, Sir14, Ste08, Tap13, Tap15, Unt07, VZ11, Wai13, Xio04, YE13, YRE16]. Stochastically

tail [Aid10, HKZ12a, Fuk09, GT11, HKZ12b, Ose10, PR15, RRZ11, RS06].
tails [BHS10, Cha10, DHI11]. Tails [FdLS04, Jun11b, Sos04, Jan15].
Talagrand [MW12, MW09, Pan01, Pan07]. tamed [Sab13]. Tameness [Lon04].
Tanaka [Haj15, KSS11]. tangent [CV07]. target [Ale13, Cla14, Sai07].
tau [BLR17]. Tauberian [Gor15]. Tauberian-type [Gor15]. techniques [Men11].
tempered [Gra15]. Temporal [Lou04].
tensor [Tko13]. tensors [BF11]. term [Xio04]. terms [BCG12b].
Tesselation [Hou09]. test [JR11]. Testing [DR12]. Their
[ABV03, BGT10, Eri16, HKU11, Ose08, Ose10]. Theorem
[Bau02, BCh49, BDM01, HMO01, Lin09, Lin99, Mar98, MY99, Roi05,
BPR13, BT11, GV14, GPL08, GPPdS14, HN09, HN10, Kev16, MZ14b, NX13,
Pil17, Riu11, Rok15, Ste13, Szn12, Tap13, Tót13, Tó313, VR10, Yan07, Yas16,
vdHKM09, BLL08, BR07, Cha10, DV11, Kar07]. Theorems
[DS10, AED13, BI15, Com08, HCS08, Tud09, YRE16, Yuc08, DBGP03].
Theorem [Bau02, BCH49, BDM01, HMO01, Lin09, Lin99, Mar98, MY99, Roi05,
BPR13, BT11, GV14, GPL08, GPPdS14, HN09, HN10, Kev16, MZ14b, NX13,
Pil17, Riu11, Rok15, Ste13, Szn12, Tap13, Tót13, Tó313, VR10, Yan07, Yas16,
vdHKM09, BLL08, BR07, Cha10, DV11, Kar07]. Theorems
[DS10, AED13, BI15, Com08, HCS08, Tud09, YRE16, Yuc08, DBGP03].
Theorem [Bau02, BCH49, BDM01, HMO01, Lin09, Lin99, Mar98, MY99, Roi05,
BPR13, BT11, GV14, GPL08, GPPdS14, HN09, HN10, Kev16, MZ14b, NX13,
Pil17, Riu11, Rok15, Ste13, Szn12, Tap13, Tót13, Tó313, VR10, Yan07, Yas16,
vdHKM09, BLL08, BR07, Cha10, DV11, Kar07]. Theorems
[DS10, AED13, BI15, Com08, HCS08, Tud09, YRE16, Yuc08, DBGP03].
Theorem [Bau02, BCH49, BDM01, HMO01, Lin09, Lin99, Mar98, MY99, Roi05,
BPR13, BT11, GV14, GPL08, GPPdS14, HN09, HN10, Kev16, MZ14b, NX13,
Pil17, Riu11, Rok15, Ste13, Szn12, Tap13, Tót13, Tó313, VR10, Yan07, Yas16,
vdHKM09, BLL08, BR07, Cha10, DV11, Kar07]. Theorems
[DS10, AED13, BI15, Com08, HCS08, Tud09, YRE16, Yuc08, DBGP03].
Theory [Ost13, Yan07]. thermostats [CP17]. thin [Lat08]. Thinning
[Bal05, ALW14]. third [HN10]. Three [Gra15]. Threshold
[Ros08, CK12, FvdHH16]. Tightness [BKS16, Gra02, SS08, BDZ11]. Time
[Ald09, Han98, Hoo99, Jan97, JK04, JS00, Kes96, KS05b, RR14, Wil03, BL13,
Ber10, BGT10, BB01, Cer14, ČS16, CM13, Cla14, Dol14, Eri16, EM14, GL08,
HKU11, Han99, HN09, HN10, HK16, Jeg09, Kli12a, Lau13, LX15, Mar09,
Mar11, MR15b, Oka14, Oli10b, PW11, Pim06, QM17, Rok07, Sá17, SB07,
Tho16, VY12b, Van08, Vov08, Zho10]. time-changed [HRKU11].
time-dependent [HK16]. time-homogeneous [EM14]. Times
[DS10, IM10, KS05a, Pes08, Abe15, ADOS11, Bas10, Bas11, BM09, DH11,
D16, DP13, Dok15, Fan16, HM14, HPS14, KSW12, Kov10, KT11,
Tre13b, Vid14]. Toeplitz [BB10, BS07b, Kar09, Mec07, SV11b].
Topological [Car05]. topology [Led16, Ruf15b, Stu16]. torus [CP17].
total [Aid10, Zho10]. Touchard [Pin17]. Trace [Kuz00]. traces
[ES09]. trading [Vov08]. Traffic [AHM05, Lim99]. Transaction [SV11a].
transform [RS07]. Transformation [FJ00]. transformations
[ALW14, BCP03, Jos07]. transforms [Gra15]. Transience
[HS12, SHH14, DHS14, Ker17, KTT17, OdS16, Pet15, RS11b, San13, Zer06].
Transient [GP01, MR15a]. Transition
[BBB97, PZ16, Tel00, BJT17, BC14, Mar09, Rá15]. transitions [Kov09].
Translation [LW15]. translations [Gri11]. Transport
[Hue16, BD15, Jou12]. transport-chi-square [Jou12]. Transportation
[DZ06, MWW11, Mks02, FGM10, Goz06]. Transportation-information
Tree [Kor05, Tm04, AG15, Bia13, DKW14, IM07, JJ16, Wan15, vdBKN12].
Trees [HP03, JC04, KDN05, Mar99, PR11, ST99, Tas10, War99, Bc11,
Bjo09, Cra13, CP14, DJ14, Duq09, DL9b, FY15, GP14, HL13, HMSH15,
KF09, MS11, PSY13, RZ13]. triangle [Hou09]. Triangles [Dub03].
triangular [CK12, DC13, Yao14]. triangulations [GGNS17]. trimmed
[LL07]. truncated [Cha10]. Tsirelson [DR12]. Two
[DJR16, Kah03, KPF04, Mui15, Pat07, Abe15, Ber10, BDZ11, BJT17, GHJ17,
HM09, LR15, RR15, RW09, Sap11, Sch09, Tko13, Yor15]. two-dimensional
[Abe15, HM09]. two-factor [RR15]. two-parameter [RW90]. two-point
Type [Bal09, BDT11, BDM01, BHS10, Com08, Def12, G05, KS10, LP12,
LL07, Mon07, Ose14, Oto09, Pri15, Sok13, Tug16, Uem07, Wj12, dBJP13].
Types [Gne10, Fre12]. typically [PSY13].
Uhlenbeck
[BH12, CGXM96, CGXM97, CKS99, GJ09a, GP11, Jeg09, MY13, Pat07].
ultimate [AI12]. UMD [MN08]. Unbounded [Man05, Böt11]. uncertainty
[Do14, Rok15, Sir14]. underlying [WP14]. unicellular [ACCR13],
unicycles [SW16]. Uniform
[BLY15, KM09, LPP15, RES01, RŽ98, BC14, GM12, Neu11, Stu16, Tsi13],
Uniformly [BLL08, Fan15]. unimodality [Sim11]. unimodularity [BC12].
union [Doh13]. Unique [Swa01, AG15]. Uniqueness [Bia13, Due06, ER09, Kuz00, Li14, LT11, Luo14, Bah02, Ban15, BB06, CEK11, Hoe09]. unit
[JK08]. Unitary [BDN10, Def11, BD13, NP13, Tko13]. Universal
[BZ17, Fan15]. Universality [BM05, DW16, Zha12]. unstable [GN06].
[RR14].
vacant [Rát15]. Value [KDN05, KLS05, Wag16, Yas15]. Valued
[Law08, BC12, Bou16, Cha10, Led16, MHC13]. vanishing [AP16, RS07].
Vapnik [Pan02]. Variable [BY01, Cla14, Dem11]. variable-rate [Cla14].
variables [AV12, BB07, BY13, BFY07, BT11, GRR14, HZ07, Kie97, NY09, RS07, Rio15, Van07]. Variably [BBKM00]. Variance
[BZ06, HR07, RBS15, Wее06, AEK14, Rok15, SB07]. Variation
[Man05, DKW14, KT11, NS13, Sio14]. Variational [Der16, But17].
[GG04, GS09, MR01, Ada15, Cha10, CM12b, DGG+13, HKZ12b]. Velocity
[CGXM96, CGXM97]. Version [MY99, Maj06, MZ14b, Nee14]. versus
[DHS14]. vertex [DKNS16, Mon07, Sch12, Sin14]. vertex-reinforced
[Sch12, Sin14]. Vey [Led17]. via [AED13, ALW14, BC12, D’O10, Dal13, Doh13, Ga08, Ham05, Her17, NP13, Pet08, SB07, TM15, WY08]. viewed
[CM12a, Uch15]. variability [Vov08]. Volterra [App02, Jos07, KL14].
volume [AHM06, Due06, Kis14]. Voter [AS11, Ram14, SS08].

Walld [HPS14]. Walk [BFV10, BW03, BR07, DBGP03, JK04, KS97, MR11, PV05, RA05, Abe15, Aid10, Ale13, BFG+16, BK11, CJ13, ČS16, DHS14, DL09a, ER09, GM13, Gla15, GPL08, GPHS13, Hol09, KM17, KSW12, LS13a, Law14, Le 08, MV14, Pet15, Uch15, Win08]. Walks
[ABV03, BD02, FZ10, GP01, GGA10, HMO01, HN11, IM10, KP04, Law98, Mar99, OY01, Roi05, Zer02, APRB11, BKR06, BFT13, DW12, DW16, DK12, DJ12, Dur14, EP17, GLY14, GPPdS14, GGPZ14, Hol15, HK16, HS12, HP15, IR10, KS10, Ods16, Pil17, RS11a, Ras10, RS16, SHH14, Sch12, SK15, Sin14, Ste13, Vid14, WYY13, Zer06, Zer07]. wall [Def11]. Walsh [VY12a].
Wasserstein [EMR15]. Watanabe [Hoe09, Tap13]. Watson
[Duq09, GP14, HL13, HSMH15, KF09, PS17, Tas10]. way [Bor10, CK08].
REFERENCES

Xi [Ost14].

Yamada [Hoe09, Tap13]. Yor [Bas15, KV11]. Yule [de 06].

References

Andrieu:2007:EAM

Atar:2001:BDP

Atar:2002:NLN

[AB02] Rami Atar and Krzysztof Burdzy. On nodal lines of Neumann eigenfunctions. Electronic Communications in Probability, 7:
Addario-Berry:2014:GRC

Abe:2015:MML

Angel:2000:LWS

Angel:2003:RWA

Albin:2010:NPO

Angel:2013:LLU

Adamczak:2015:NHW

Radoslaw Adamczak. A note on the Hanson–Wright inequality for random vectors with dependencies. *Electronic Commu-
Aurzada:2011:MR

Aman:2013:RTS

Ajanki:2014:LSL

Alabert:2006:LSD

Alon:2014:NGS

Albenque:2015:BCR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BBCG08] Dominique Bakry, Franck Barthe, Patrick Cattiaux, and Arnaud Guillin. A simple proof of the Poincaré inequality for a large class
REFERENCES

REFERENCES

REFERENCES

REFERENCES
REFERENCES

[BL10] Raluca Balan and Sana Louhichi. Explicit conditions for the convergence of point processes associated to stationary arrays. *Elec-
REFERENCES

REFERENCES

Bodineau:2005:UPL

Baldi:2007:CIG

Breton:2008:EBN

Boufoussi:2003:SDF

Bobkov:2008:NDM

Borovkov:2010:DBM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chang:2017:SIM

Couronne:2011:CSP

Chassagneux:2011:NEU

Cerf:2014:TTF

Cetin:2012:FAM

Caravenna:2005:CAB
REFERENCES

[Cha10] Arijit Chakrabarty. Central Limit Theorem for truncated heavy tailed Banach valued random vectors. *Electronic Commu-
REFERENCES

Chang:2015:CRL

Capitaine:1997:MRS

Cannings:2013:RW

Chigansky:2008:DBM

Chigansky:2012:CPA

Cox:2014:MEM

REFERENCES

REFERENCES

Cammarota:2012:MVS

Cranston:2012:CIS

Chleboun:2013:MTB

Campese:2016:MGA

Comman:2008:SWT

Conforti:2016:BMC
REFERENCES

REFERENCES

Cui:2013:ABN

Daly:2013:CPA

Duheille-Bienvenue:2003:CLT

delBarrio:2013:BPS

debuyer:2015:DDE

Duminil-Copin:2013:LWC

REFERENCES

REFERENCES

Dereudre:2016:VPG

Dawson:2016:LDH

Devroye:2000:PSQ

Dedecker:2015:SCI

Depperschmidt:2011:MMM

Debussche:2011:AFE

Arnaud Debussche, Michael Hoegele, and Peter Imkeller. Asymptotic first exit times of the Chafee–Infante equation with

REFERENCES

REFERENCES

[DOvidio:2010:ESF]

[Dohmen:2013:LBP]

[Dokuchaev:2015:DFE]

[Dolinsky:2014:HGO]

[Dobler:2014:RFM]
REFERENCES

Depperschmidt:2015:SLD

Delattre:2012:TFS

Dembo:2006:LMD

Doring:2010:ART

Duy:2015:MSM

Deng:2016:CBF
REFERENCES

REFERENCES

REFERENCES

[Emr16] Elnur Emrah. Limit shapes for inhomogeneous corner growth models with exponential and geometric weights. *Electronic Com-
Evans:1998:EIS

Englander:2017:SAB

Eckhoff:2009:UMM

Erickson:2016:DTI

Eichelsbacher:2009:MDT

Erdos:2016:FFW

REFERENCES

Fan:2016:DAL

Fargason:1998:PDB

Friedli:2004:LRP

Feyel:2007:NCS

Fittipaldi:2012:SAC

Friedland:2013:SOR
REFERENCES

Frikha:2012:CBS

Frikha:2012:ECB

Fotsa–Mbogne:2017:NFD

Foucart:2013:ISW

Foucart:2014:EIS

Fournier:2011:SSH

Fuhrman:2016:RNM

Marco Fuhrman, Huyên Pham, and Federica Zeni. Representation of non-Markovian optimal stopping problems by constrained

REFERENCES

REFERENCES

Gao:2017:PST

Ghosh:2016:PMR

Gao:2009:DIM

Goncalves:2009:DFZ

Goldberg:2012:CRM

Gobet:2003:CGB
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[GS12] Dan Goreac and Oana Silvia Serea. A note on linearization methods and dynamic programming principles for stochastic discon-
REFERENCES

Hajek:2014:MIS

Hajri:2015:FAT

Hammond:2005:CEP

Handa:1998:LBT

Handa:1999:LBT

Handa:2005:SFS

Hara:2004:FDD

REFERENCES

Hardy:2012:NLD

Hariya:2014:CBL

Hariya:2016:PIG

Hashorva:2005:BCB

Hajri:2017:ASF

Hofmann-Credner:2008:WTR

Hermon:2017:CRG

REFERENCES

He:2013:NSL

Hairer:2015:SCC

Holroyd:2015:SDC

Hu:2013:NDS

Hu:2015:IEN

Haggstrom:2009:STD

Hamana:2014:APD

Yuji Hamana and Hiroyuki Matsumoto. Asymptotics of the probability distributions of the first hitting times of Bessel processes.
Holroyd:2015:PAB

Houdre:2016:CDL

Hambly:2001:PTS

Huss:2015:RRG

Hu:2009:SIR

Hu:2010:CLT

REFERENCES

[Heil:2011:RLB]

[Hoe09]

[Hol09]

[Hol15]

[Hoo99]

[Hough:2009:TTR]

REFERENCES

REFERENCES

Hasebe:2011:JCN

Huss:2012:TRR

Hu:2015:MDB

Hobson:2005:DBC

Huang:2017:SHE

Huesmann:2016:TCE
REFERENCES

REFERENCES

Tobias Johnson and Matthew Junge. The critical density for the frog model is the degree of the tree. *Electronic Communications in Probability*, 21(??):82:1–82:12, ???? 2016. CODEN ????
REFERENCES

ISSN 1083-589X. URL http://projecteuclid.org/euclid.ecp/1480734227.

REFERENCES

Jonasson:2013:BIP

Jost:2007:NET

Jourdain:2012:EPI

Jones:2011:CHT

Jonasson:2000:CTP

Jung:2011:IFS

Junglen:2011:QBA
Janssen:2009:ESM

Kahn:2003:ITC

Kargin:2007:PNC

Kargin:2008:AGS

Kargin:2009:SRT

Khan:2005:LLR

Kasprzak:2017:NBP
Mikołaj J. Kasprzak, Andrew B. Duncan, and Sebastian J. Vollmer. Note on A. Barbour’s paper on Stein’s method for diffu-
REFERENCES

Kendall:2004:GEP

Kendall:2009:BCC

Kersting:2017:RTM

Kesten:1996:NCT

Kevei:2016:NKG

Kulske:2009:SEB
REFERENCES

REFERENCES

Kabluchko:2008:ECR

Khorunzhiy:2009:UBE

Kolesko:2017:CCM

Kondo:2006:SPE

Kotecky:2016:RIP

Kowalski:2015:CLF

REFERENCES

[KP04] Manjunath Krishnapur and Yuval Peres. Recurrent graphs where two independent random walks collide finitely often. *Elec-
REFERENCES

REFERENCES

[KS14] Martin Kolb and Mladen Savov. Exponential ergodicity of killed Lévy processes in a finite interval. Electronic Communications in
REFERENCES

[Magazine]
Kartzas:2011:OST

[KSW12]

[KSY06]

[KT03]

[KT11]

[KT13]
REFERENCES

REFERENCES

REFERENCES

Lawler:1998:LEW

Lawi:2008:HLP

Lawler:2014:PPL

LePrince:2008:RBD

Ledger:2016:SMT

Ledesma:2017:HFA

Lejay:2011:SSP
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

Lin:2009:ASL

Liu:2015:GID

Lalley:2008:OCM

Liu:2007:SLT

Liang:2015:WMM

Lalley:2009:GIH

LeGall:2006:OMS

REFERENCES

Lugosi:2003:NRC

Loehr:2013:EGP

Londono:2004:STN

Louis:2004:EPE

Lewis:1999:CM

Luschgy:2008:MEL

REFERENCES

REFERENCES

[Mai13] Pascal Maillard. A note on stable point processes occurring in branching Brownian motion. Electronic Communications in
REFERENCES

Major:2006:MVH

Makhinin:2008:FPE

Mallein:2015:MDD

Manstavicius:2005:NMP

Marcand:1998:BBT
Marc\(hal\):1999:LER

Marc\(hal\):2005:MCS

Marc\(hal\):2009:STE

Mark\(strom\):2010:CPN

Mark\(owsky\):2011:EET

Marcus:2014:MGD

Martineau:2017:SCC
REFERENCES

ISSN 1083-589X. URL http://projecteuclid.org/euclid.ecp/1485507643.

[MG16a] Lester Mackey and Jackson Gorham. Erratum: Multivariate Stein factors for a class of strongly log-concave distribu-
REFERENCES

124

Mercier:2015:PMR

Meckes:2013:SMP

Maas:2008:COF

Maejima:2009:NNC

Maples:2012:NCR

Mohle:2011:CPD

Montenegro:2007:SEV

[Mon07] Ravi Montenegro. Sharp edge, vertex, and mixed Cheeger type inequalities for finite Markov kernels. Electronic Com-
Morandin:2005:RBP

Morris:2008:SGI

Marinucci:2013:MSC

Malyshkin:2014:PCC

Mohle:2014:SDB

Mijatovic:2016:JAD

REFERENCES

References

[Morgado:2015:ETD]

[Miranda:2011:GCL]

[Maejima:2010:CMI]

[Mijatovic:2012:CIF]

[Muirhead:2015:TSL]

[Muller:2008:RBM]

REFERENCES

Marynych:2014:WCN

Mueller:2009:CBS

Mueller:2012:ECB

Molchanov:2016:CHL

Ma:2011:TI

Matsumoto:1999:SCP

Hiroyuki Matsumoto and Marc Yor. Some changes of probabilities related to a geometric Brownian motion version of Pitman’s $2M – X$ theorem. *Electronic Communications in Probability*, 4:

REFERENCES

REFERENCES

REFERENCES

Enzo Orsingher and Mirko D’Ovidio. Probabilistic representation of fundamental solutions to \(\frac{\partial u}{\partial t} = \kappa_m \frac{\partial^m u}{\partial x^m} \). *Electronic Communications in Probability*, 17:34:1–34:12, 2012. CODEN ???? ISSN 1083-589X. URL http://ecp.ejpecp.org/article/view/1885.

REFERENCES

Olivier:2010:DIS

ORourke:2012:NMP

Oraby:2007:SLH

Ondrejat:2013:EPM

Orbanz:2016:BLG

Osekowski:2008:SIB

Osekowski:2009:SMI

REFERENCES

REFERENCES

Panchenko:2007:NTP

Panchenko:2008:DPF

Panchenko:2010:DSR

Patie:2007:TSE

Peccati:2004:WCO

Peccati:2007:GAM

Peskir:2008:LHT

[Pes08] Goran Peskir. The law of the hitting times to points by a stable Lévy process with no negative jumps. Electronic
REFERENCES

Pete:2008:NPI

Petrov:2010:RSP

Peterson:2015:STO

Pilipenko:2017:FLT

Pimentel:2006:TCC

Pinelis:2016:MSI

REFERENCES

Pinsky:2017:SCB

Pogany:2015:RD

Pogany:2016:APR

Posfai:2009:EMC

Peres:2011:RTE

Perkowski:2012:CM

Procaccia:2012:CEI

Eviatar Procaccia and Ron Rosenthal. Concentration estimates for the isoperimetric constant of the supercritical percolation

REFERENCES

Qin:2017:IBM

Quastel:2011:LBP

Rassoul-Agha:2005:ZOL

Ramadas:2014:MNV

Raschel:2010:GFM

Rath:2015:SPP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Sen:2016:LCS

Sepanski:2003:LIL

Sava-Huss:2014:ETR

Simon:2000:SME

Simon:2011:MSP

Simm:2017:RSP

REFERENCES

[SP00] Steven Sepanski and Zhidong Pan. A weak law of large numbers for the sample covariance matrix. *Electronic Communications in
REFERENCES

Spinu:2013:PLB

Spruill:2007:ADC

Stenflo:2008:PSL
Stenlund:2013:LLT

Stucki:2013:CPG

Stupfler:2016:WCK

Subramanian:2012:DCP

Song:2004:SBG

Song:2008:RBS

REFERENCES

Sayit:2011:AFM

Sen:2011:ACL

Szabo:2016:SEC

Soucaliuc:2002:NRB

Savo:2010:RIL

Sun:2016:SUR

Swa:2001:DSW
REFERENCES

REFERENCES

REFERENCES

[Tre13a] Dario Trevisan. BV-regularity for the Malliavin derivative of the maximum of the Wiener process. Electronic Communications in
REFERENCES

vandenBerg:2010:ERD

vandenBerg:2007:SPI

vandenBerg:2012:PPB

vanderHofstad:2009:LLT

Venker:2013:PSR

Vidmar:2014:NTF

Valesin:2013:SAA

VanNeerven:2011:MIS

Wagner:2016:BHP

Wainrib:2013:DAP

Wang:2002:SCC

Wang:2009:FEO

Wang:2014:CIG

Wang:2015:HDB

REFERENCES

REFERENCES

[WYY13] Zhi Wang, Litan Yan, and Xianye Yu. Weak approximation of the fractional Brownian sheet from random walks. *Electro-
REFERENCES

Pavel Yaskov. Sharp lower bounds on the least singular value of a random matrix without the fourth moment condition. *Electronic

[Yaskov:2016:NSC]

Yukich:2008:LTM

Yen:2013:IVM

Zerner:2002:NBL

Zerner:2006:RTE

Zerner:2007:ZOL

Zhao:2012:UAE

Zhou:2010:ASF

REFERENCES

170

