A Bibliography of Publications in *Empirical Software Engineering*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/
05 October 2023
Version 1.19

Title word cross-reference

```plaintext
#define [447, 1157]. #SAT [1410].

13th [315]. 19 [989, 1109, 1134, 1139, 1287, 1342, 1434, 1490]. 1987 [57].

3 [872]. 36th [1438]. 3rd [131].

'97 [65].

Achieving [543, 547, 682, 864, 1376].

activities [609, 656, 777, 1036, 1296, 1306, 1451].
```
estimations [1392, 1414]. Estimator [105].
Ethereum [995, 1053, 1184, 1344, 1412, 1420].
Ethical [127, 141, 143–145, 148, 1110].
Ethics [95, 102, 139, 140, 142, 143, 1203].
ethnicity [1464]. Ethnographic [209, 1249].
Europe [1050]. Evaluate [39, 148].
Evaluating [8, 27, 192, 277, 292, 312, 334, 374, 383, 419, 607, 739, 1136, 1152, 1157, 1166, 1316, 1384, 1407, 1410, 1437, 1453, 1469].
Evaluations [188, 383]. evasion [1194].
event [345, 375]. event-driven [345].
events [526, 730, 1374]. eventual [1198].
Every [50, 1006]. evidence [349, 544, 626, 785, 817, 1038, 1252, 1471].
execution [433, 435]. executions [605].
exhibitionism [595]. existing [1068].
expansion [514]. expenses [1196].
Experience [32, 70, 203, 219, 257, 285, 387, 388, 487, 503, 646, 725, 734, 795, 845, 852, 1116, 1127, 1140, 1172, 1368]. Experience-Based
Factors

Explanation

Exploratory

expertness failures

Expert

Expert-based

Expertise

Failures

Fairness

Face-to-face

F-Droid

family

FACER

Factor

Faster

F-Droid

Fe-Droid

Fairness

Face-to-face

FACER

Factor

Faster
General-purpose [439, 735, 1250, 1300]. flows [1326].
flows-aware [1326]. fluent [1300].
Fluently [1300]. Focus [204]. Focused [237]. follow [560]. forecasting [760].
FOREPOST [654]. foreshadow [692].
Fostering [553, 945]. foundation [562, 663, 706]. Four [303, 429, 445, 500, 848, 1446]. Fragile [728].
fragility [929]. fragments [1130, 1393].
Frameworks [1018, 1025, 1094, 1480, 1492, 1494]. free [695, 776, 815, 838, 850, 861, 954, 1328].
free-form [815]. free/open [1328].
frequency [1464]. frequently [619].
frequently-updated [619]. Fresh [619].
friction [1366]. frugal [1231]. fulfillment [1047].
Function [2, 84, 185, 494, 1234, 1355, 1467].
function-level [1355]. functional [240, 899, 942, 1117, 1125, 1291, 1483].
Functions [502, 1051]. Fundamental [24].
gained [286]. Game [259, 335, 634, 855, 1012, 1186, 1219, 1323, 1398]. Game-based [1219].
games [714, 763]. Gamification [945, 1015, 1237]. gaps [916]. gate [241].
gatekeepers [1296]. GBGallery [1323]. GCC [271]. Gender [906, 1238, 1473].
General [410, 425, 781, 818, 1027].
general-purpose [410, 818]. generated [1141].
Generating [680, 1073, 1130, 1215, 1234]. Generation
[240, 260, 266, 375, 547, 678, 745, 795, 851, 897, 1005, 1120, 1135, 1175, 1294, 1343, 1382, 1417, 1460]. generator [1299]. generic [400].
Getting [141, 387, 821]. Gin [1485].
Git [588, 969, 1347]. git2net [1211].
GitHub [638, 669, 700, 744, 794, 886, 887, 894, 895, 947, 949, 959, 1022, 1196, 1217, 1247, 1295, 1331, 1388, 1464, 1504]. Gitter [1232].
goal-oriented [266]. goals [347]. Going [964]. good [945]. Google [619, 776, 874, 1118, 1139, 1238]. GPGPU [443].
GQM [29, 552]. grained [247, 693, 1224, 1338].
grammatical [1294]. GRAPE [693].
Graph [58, 164, 1135, 1399, 1468].
graph-based [1468]. Graphical [317, 738, 1048, 1049, 1301]. graphics [443].
graphs [1176, 1246, 1272]. great [957].
Green [535, 1171]. GreenHub [1107].
GreenScaler [897]. grey [348]. Greybox [1350].
grounded [388, 421, 1062, 1482].
Group [155, 207, 218, 712, 1464].
GUI [274, 545, 736, 929]. Guidance [39].
guide [527, 1029]. guideline [734].
Guidelines [112, 292, 327, 618, 955, 1271, 1347]. Guiding [333, 1008].
Guttman [56].
hackathon [1374]. hackathons [793].
hackers [858]. hairy [1190]. Handling [691, 1164, 1334, 1339]. happened [1183].
happens [1276]. hard [824]. harder [709].
hardware [1481]. hardware/software [1481]. harmful [319, 554]. hazards [691].
HAZOP [526]. HAZOP-based [526]. HCI

1406, 1423, 1432, 1442, 1454, 1484, 1496.
Model-based [576, 1301, 1381, 1442].
Model-driven [429, 519, 788, 1177].
Modeling
[71, 86, 150, 186, 326, 356, 469, 490, 503, 528,
533, 665, 1086, 1093, 1181, 1233, 1355, 1379].
Modelling
[47, 136, 153, 168, 182, 206, 213, 230,
242, 267, 281, 289, 311, 312, 341, 400–403, 427,
438, 468, 529, 590, 605, 618, 631, 633, 639, 705,
708, 711, 805, 816, 817, 842, 864, 875, 897, 904,
918, 927, 951, 985, 1040, 1056, 1064, 1075, 1152,
1154, 1165, 1194, 1251, 1301, 1343, 1359, 1370,
1419, 1421, 1430, 1453, 1469, 1470, 1502].
Modern
[372, 608, 641, 674, 788, 1059, 1153, 1336, 1463].
modification [1485]. modifications
[247, 1012, 1166]. modular
[874]. modularization [453]. module [351].
Modules [30, 64, 79, 167]. Monitoring
[19, 961]. monolithic [391]. months [1287].
Morasca [41]. most [821]. Motivating
[1358]. motivations [983, 1397].
Motivators [157]. movements [685].
moving [370, 673]. MRE [181]. MSR
[1032]. MSRBot [994]. Much [1479].
Multi [372, 542, 563, 679, 705, 775, 805, 861,
943, 944, 1046, 1084, 1091, 1106, 1156, 1173,
1274, 1288, 1289, 1319, 1423, 1476, 1496, 1507].
multi-abstraction [805]. multi-case
[1084, 1496]. multi-component [1173].
multi-criteria [372]. multi-dimensional
[1091]. multi-factor [563]. multi-label
[1156]. Multi-language [1288, 1289].
multi-licensing [1106]. multi-modal
[1507]. multi-model [1423].
Multi-objective [542, 679, 705, 1319, 1476].
multi-revision [861]. multi-scale [1507].
multi-task [1274]. Multi-variate [1046].
multi-view [775]. multi-vulnerability
[943, 944]. Multidimensional [157].
Multidisciplinary [125]. multilingual
[610]. multiple
[244, 377, 393, 411, 913, 1037, 1082, 1219].
multiple-component [393]. multiplicative
[357]. mutants [960, 1290, 1381]. Mutation
[128, 333, 547, 810, 1069, 1141, 1331, 1381].
mutation-based [547]. mutations [1070].
my [983, 1276]. Mylyn [761].
names [863, 1489]. Naming [460, 720].
narrative [571]. NASA [10, 34]. native
[1320]. natural
[809, 844, 902, 1117, 1211, 1363]. nature
[596, 1113]. nearest [250]. Need [50, 795,
809, 1057, 1058, 1154, 1252, 1309, 1461].
needed [473, 635, 950]. Needs
[145, 520, 522, 1059, 1153]. Negative
[724, 726, 729]. negotiations [422].
neighbour [250]. Nets [313]. Network
[425, 439, 664, 713, 862, 938, 1136, 1216, 1235,
1286, 1348, 1350]. Networks
[467, 509, 1121, 1159, 1297, 1302, 1322, 1425].
Neural
[425, 938, 1135, 1159, 1322, 1348, 1425].
neuroplasticity [1267]. Newcomer [1295].
next [373]. nine [574]. NLP [845]. Noise
[761]. noisy [1372]. Nokia [114]. Non
[46, 169, 211, 342, 381, 608, 804, 942, 1125,
1202, 1291, 1293]. non-cloned [804].
non-coding [1202]. non-exact [381].
non-functional [942, 1125, 1291].
non-linear [342]. Non-Programmers [46].
Non-reproducible [1293]. Non-Technical
[211, 608]. Non-Traditional [169]. Nopol
[851]. North [1050]. Norwegian [249].
Note [220, 800, 822, 917, 923, 989, 1026].
notebook [1439]. notebooks [1131]. notes
[613]. novel [650, 928, 1361]. Novice
[1295, 1462]. novices [253, 785, 820, 1157].
npm [975, 1083, 1098, 1160, 1297, 1465].
notebook [1131]. numbers [271].

obfuscation [493, 567]. Object
[8, 40, 52, 63, 84, 92, 122, 137, 158, 163, 185, 214,
269, 376, 397, 408, 486, 544, 546, 853].
Object-Oriented

QoS-aware [359]. Qt [1336]. Qualitative
[26, 142, 143, 225, 352, 385, 386, 407, 495, 758, 793, 1287, 1433]. Quality

quality-related [1423]. Quantifying
[31, 275, 629]. Quantitative
[129, 201, 336, 352, 489, 495, 758]. Quantization [1348]. quasi [308, 379, 474]. quasi-experiment [379].

quasi-experimental [308, 474]. queries
[815, 921, 1028, 1185, 1300]. query [903].

Querying [332, 865, 876]. Question
[771, 1007, 1315, 1398, 1416].

question-and-answer [1416].

Questionnaire [57]. questions
[871, 994, 1007, 1197, 1261, 1367]. Quick
[1206].

R [768, 1487]. race [1464]. railway [845].

raised [612, 871]. randomised [307].

randomness [507]. rank [640, 660, 910, 996].

rank-performance-based [996]. Ranking

Scientific [1087].
Scientist [1396].
Scientists [232].
Scoping [804].
Scorecard [1172].
Scratch [1460].
Screen [657].
Screen-cast [657].
Screen-casts [698, 986, 1060].
Screenshot [1360].
Scripted [929].
Scripting [1491].
Scrum [1015, 1076, 1376].
Scrutiny [976].
SDK [1072].
SE [1119, 1384].
SE-specific [1119].
Search-Based [375, 444, 506, 649–651, 658, 661, 662, 672, 677, 943, 944, 952, 1175, 1244, 1284, 1319, 1348, 1349, 1375].
Sciences [507, 965].
Second [1382].
Second-generation [1382].
Secondary [1299].
Secret [1149, 1264].
Section [532, 536, 589, 602, 649, 677, 719, 724, 765, 891, 917, 923, 927, 980].
Secure [580].
Security [634, 715, 738, 924, 954, 1014, 1065, 1109, 1126, 1178, 1193, 1218, 1297, 1312, 1370, 1399, 1402, 1440, 1470, 1471, 1480, 1499].
Seeing [1462].
Seeking [272].
SEI [57].
Selecting [168, 565, 960, 1396].
Selection [32, 256, 267, 542, 573, 578, 627, 636, 747, 964, 996, 1014, 1040, 1234, 1240, 1243, 1432, 1452].
Selenium [1142].
Self [421, 755, 1044, 1062, 1112, 1116, 1170, 1223, 1239, 1285, 1324, 1332, 1333, 1378, 1446, 1452].
Self-admitted [755, 1044, 1112, 1170, 1223, 1285, 1324, 1332, 1333, 1378, 1446, 1456].
Self-assignment [1062].
Self-driving [1452].
Self-organizing [421].
Self-rated [1116].
Self-trials [1239].
Semantic [453, 711, 789, 1102, 1253, 1262, 1507].
Semantically [518, 1423, 1431].
Semantically-enhanced [1431].
Semantics [827, 846, 926, 1373].
Semantics-aware [1373].
Semantics-based [827].
Semantics-driven [926].
Semi [365, 564, 578, 798, 844, 1087, 1285].
Semi-automatic [578, 844, 1087].
Semi-parametric [365].
Semi-structured [798].
Semi-supervised [1285].
Semi-systematic [564].
Sense [539, 1310].
Sensitive [150, 1326, 1346].
Sentiment [726, 778, 1119, 1169].
Sequence [375, 1205].
Sequences [56].
Series [657, 760, 1022].
Server [334, 433, 950, 1380].
Server-side [433, 1380].
Servers [236, 1350].
Service [183, 448, 1405, 1478, 1494].
Service-oriented [448].
Services [359, 941, 1120].
SeSG [1299].
Session [236].
Session-Based [236].
Set [684, 1338].
Sets [398, 772].
Setting [484, 858].
Seven [862].
Seventh [59].
Several [356].
Severe [1227].
Severity [645, 679].
Share [1045].
Shared [406, 1153, 1201].
Shared-memory [406].
Sharing [49, 197, 553, 698, 1129].
Shelf [1119].
Shift [403].
Short [220, 877].
Short-lived [877].
Shorter [863].
Should [424, 560, 703, 977, 1327].
Shoulders [1032].
Shuttle [34].
Siamese [913].
Side [204, 433, 1380, 1491].
Sight [1137].
Silver [44].
similar [1489].
similarity [581, 747, 811, 932].
simple [1227].
Simulated [260].
Simulation [71, 97, 170, 171, 618, 717, 999, 1452].
Simulation-based [1452].
Simulations [192].
Simulink [864].
Single [152, 289, 1177, 1392].
Single-company [289].
Single-state [1177].
Site [1491].
Sites [664, 764, 875, 953].
Situation [1226].
six [517].
Size [58, 181, 727, 1143].
Sized [172, 496].
sizes [796].
sizing [2].
Skewness [105].
Slack [1232].
slices [309].
Slicing [154, 265, 925].
slow [1420].
SLR [854, 965].
Small [496, 890, 1335].
Small-Amp [1335].
Smalltalk [461, 1189].
Smart [770, 931, 995, 1053, 1184, 1344, 1500].
SmartFast [1344].
Smartphones [1308].
Smell [418, 614, 920, 951, 1026, 1149, 1259, 1458].
Smell-related [951].
Smells [248, 495, 541, 554, 774, 801, 920, 924, 939].
Smoke [1227].

Software-intensive [1301].

source-code [817]. SourceForge.net [337].

Sources [244, 411, 1366, 1446]. sourcing [833]. space [464, 479, 529, 805, 1292, 1303].

spaces [1410]. Spain [883]. spam [351].

461, 526, 633, 651, 673, 704, 712, 715, 736, 739, 747, 756, 835, 848, 987, 1043, 1051, 1125, 1260, 1290, 1301, 1327, 1424]. Used
[86, 186, 266, 427, 1078, 1173], used-by [1002]. useful [787, 1305]. User
[396, 525, 612, 721, 740, 786, 815, 838, 839, 844, 905, 1071, 1155, 1231, 1238, 1345, 1401, 1407, 1469, 1476, 1499, 1506]. user-perceived [740]. user-related [905]. user-reported [1071]. users [776]. Using

variability [496, 594, 628, 631, 705, 992, 1087, 1251, 1303, 1405]. variability-safe [705].

vulnerability-contributing [1099]. vulnerability-proneness [1118]. vulnerable [1137].

Weighted [1163]. weighting [291].

Welcome [121]. Well [238, 1134, 1161]. well-being [1134, 1161]. were [1179].

WESS [65]. wheels [968]. Where [1020, 1045, 1179, 1281]. whether [857].

Which [703, 704, 1327]. while [543, 858]. whispers [1048, 1049]. whole [387, 547, 678].

[10, 212, 339, 475, 1057, 1058]. within-company [339]. within-project
REFERENCES

[1057, 1058], without [199], word [297], words [518], Work [113, 116, 528, 624, 1062, 1309, 1434, 1461], workarounds [1477], worked [571], workers [1267], Workflow [1088, 1388], workflows [1068, 1439], Working [315, 900], Workload [236, 334, 491], Works [1293], Workshop [23, 47, 59, 71, 88, 131], workshops [1402], World [1017, 1088, 1204, 1316], worth [870, 890, 1447], wound [1470], written [934], XML [943, 944], XP [209], XSnare [1491], year [1342], Years [194, 1371], Yes [139], Zealand [1490], Zen [658], Zen-ReqOptimizer [658],

References

REFERENCES

REFERENCES

32

REFERENCES

[38] Robert W. Bowdidge and William G. Griswold. How software engineering tools organize programmer behavior during the task of data encapsulation.
REFERENCES

Lott:1997:CEE

Briand:1997:ECM

Zuse:1997:CPB

Briand:1997:RCP

Harrison:1997:IC

Brooks:1997:MAS

Silverman:1997:SSC

35

REFERENCES

35

Kiper:1997:VDD

Harrison:1997:PME

Harrison:1998:I

Harrison:1998:SWA

Johnson:1998:DEI

Miller:1998:FES

Briand:1998:UFC

Anonymous:1998:Ta
REFERENCES

REFERENCES

Anonymous:1998:VLE

MacDonald:1998:CTB

Harrison:1998:IAV

Khoshgoftaar:1998:CFP

Briand:1998:ESS

Anonymous:1998:IC

Jeffery:1998:VPA

Sandahl:1998:ERE

Porter:1998:CDM

Runeson:1998:EEE

Raffo:1998:SPS

Scholtz:1999:ISI

Paterno:1999:EDU

Zhang:1999:PBU

Keenan:1999:UPT

REFERENCES

Harrison:1999:Ia

ElEmam:1999:BKI

Walkerden:1999:ESA

Khoshgoftaar:1999:CSO

Agresti:1999:ISI

Avritzer:1999:MAL

McGregor:1999:CMC

Elbaum:1999:SEC
[83] Sebastian G. Elbaum and John C. Munson. Software evolution and the

Ott:1999:RES

Briand:1999:ESO

Harrison:1999:DME

Harrison:2000:IA

Harrison:2000:EIE

Land:2000:UPR

Angelis:2000:STE

REFERENCEs

Anonymous:2000:EE

Shepperd:2000:BPS

Berry:2000:IAS

Host:2000:USS

Phalp:2000:PRP

Lavazza:2000:RBE

Cox:2000:RCU

Brooks:2000:ELW

REFERENCES

Anonymous:2001:WNM

Briand:2001:RCS

Khoshgoftaar:2001:COC

Laitenberger:2001:CED

Sim:2001:BBS

Anonymous:2001:Ja

Andrews:2001:EIE

Delamaro:2001:IMT
REFERENCES

REFERENCES

Isabella Wieczorek. Improved software cost estimation — a robust and interpretable modelling method and a
REFERENCES

50

Anonymous:2002:ISE

Anonymous:2002:1b

Deligiannis:2002:REI

Purchase:2002:EEA

Bi:ff:2002:URG

Anonymous:2002:1c

Khoshgoftaar:2002:UCF

Stringfellow:2002:EMS

[168] C. Stringfellow and A. Anschler Andrews. An empirical method for select-
REFERENCES

51

Laitenberger:2002:ICS

Jorgensen:2002:CST

Dybaa:2002:ESP

Anonymous:2003:I

Angelis:2002:RCM

Beecham:2003:SPI

[175] Sarah Beecham, Tracy Hall, and Austen Rainer. Software process improvement problems in twelve soft-

[Hanebutte:2003:TSA]

[Giraudo:2003:DCE]

[Lindvall:2003:EBP]

[Briand:2003:Ja]

[Pighin:2003:FTP]

[Stensrud:2003:FEI]

[Mendes:2003:CSC]

Briand:2003:Ib

Antoniol:2003:OOF

Khoshgoftaar:2003:FPM

Wohlin:2003:PAS

Thelin:2003:EEU

REFERENCES

[197] Forrest Shull, Manoel G. Mendonça, Victor Basili, Jeffrey Carver,

Anonymous:2004:I

Vokac:2004:CEC

Chen:2004:OSC

Wohlin:2004:IDS

Khoshgoftaar:2004:CAS

Carver:2004:IBE

REFERENCES

Zettel:2005:MSC

Anonymous:2005:Ic

Do:2005:SCE

Vegas:2005:CSS

Verelst:2005:ILA

Takagi:2005:EAC

Segal:2005:WSE

Anonymous:2006:Ia

Ellims:2006:EUT

Do:2006:PJT

Goseva-Popstojanov:2006:ECS

Maldonado:2006:PBR

Syed-Abdullah:2006:IAM

Anonymous:2006:Ib

Sinha:2006:EEH

Grindal:2006:ECS

Anonymous:2006:ESE

Briand:2007:IA

Karlsson:2007:PWC

Waeselynck:2007:SAA

Li:2007:FMS

Basili:2007:PUE

Briand:2007:Ib

Yu:2007:UCC

Zhang:2007:SED

Xiao:2007:EEO

Andersson:2007:RES

Briand:2007:Ic

Kirk:2007:IAP

Counsell:2007:QMD

REFERENCES

REFERENCES

Wojcicki:2007:MIG

Kommeren:2007:PEG

Maldonado:2008:1

Mendes:2008:RSC

Babar:2008:CDF

Li:2008:AAW

Kitchenham:2008:EGR

Briand:2008:Ia

Jung:2008:ICP

Sentas:2008:SFA

Shull:2008:RRE

Kitchenham:2008:RRE

Miller:2008:TBK

Crespo:2008:BSR

REFERENCES

REFERENCES

Diehl:2009:GEI

Gonzalez-Barahona:2009:MLS

Pan:2009:TUB

Voinea:2009:VQA

Smith:2009:GAA

Huynh:2009:AVE

vonWangenheim:2009:EEE

[336] Jihyun Lee, Sungwon Kang, and Chang-Ki Kim. Software architec-

REFERENCES

[350] Xuchang Zou, Raffaella Settimi, and Jane Cleland-Huang. Improving automated requirements trace re-

Hata:2010:FPM

Benestad:2010:UCD

Lee:2010:DAP

Hackbarth:2010:ASS

Falessi:2010:AES

Weyuker:2010:CES

Gokhale:2010:MMS

[357] Swapna S. Gokhale and Robert E. Mullen. A multiplicative model of

REFERENCES

REFERENCES

[386] Laurie McLeod, Stephen G. Mac...
REFERENCES

[393] Zude Li, Nazim H. Madhavji, Syed Shariyar Murtaza, Mechelle Gittens, Andrei V. Miranskyy, David Godwin, and Enzo Cialini. Characteristics of
REFERENCES

Babar:2011:ERS

Robillard:2011:FSA

Herbold:2011:COT

Menzies:2012:SIR

Herbold:2011:COT

Murphy:2012:DBG

Murphy:2012:DBG

REFERENCES

Calefato:2012:CMC

Pikkarainen:2012:SBB

Monperrus:2012:WSD

Lopez-Martin:2012:SDE

Kocaguneli:2013:KMS

Shin:2013:CTF

Capiluppi:2013:EEF

Mohagheghi:2013:ESS

Raja:2013:ACC

Holbrook:2013:SMT

Antoniol:2013:PSI

Zaidman:2013:UAA

Binkley:2013:IIS

Dit:2013:IIR
Lammel:2013:UPP

Bell:2013:LII

Bettenburg:2013:SIS

Corazza:2013:UTS

Menzies:2013:PMS

OCinneide:2013:ISI

Schulz:2013:PFD

Yoo:2013:GTS

REFERENCES

Parnin:2013:AUJ

Pagano:2013:HDO

Hindle:2013:ATN

Callau:2013:HWD

Outt:2014:CSB

Canfora:2014:HCA

Pontes:2014:CMC

Offutt:2014:CSB

[472] Davide Fucci and Burak Turhan. On the role of tests in test-driven development: a differentiated and
REFERENCES

Gomez:2014:RQE

Apa:2014:EDF

Williams:2014:ESA

Biggers:2014:CLD

daSilva:2014:RES

[479] Jeff Offutt and Chandra Alluri. An industrial study of applying input

Offutt:2014:ISA

Linares-Vasquez:2014:UML

Barua:2014:WDT

Ljungkrantz:2014:ESC

Reinhartz-Berger:2014:CUB

Salleh:2014:IEP

Latorre:2014:SA

AlDallal:2014:POO

Jehad Al Dallal and Sandro Morasca. Predicting object-oriented class reuse-proneness using internal quality at-
Prikladnicki:2014:DCG

Bardsiri:2014:FME

Gousios:2014:CQS

Nugroho:2014:IUM

Vasilescu:2014:VSW

Eyolfson:2014:CBB

Ceccato:2014:FEA

REFERENCES

[507] Márcio de O.Barros. An experimental evaluation of the importance of ran-

Fredericks:2014:AAR

Aitken:2014:ERN

Chen:2014:SPE

Borg:2014:RDS

Bavota:2014:AEC

Tan:2014:BCO

Guerrouj:2014:EIE
[514] Latifa Guerrouj, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and

Polancic:2015:EIC

Martinez:2015:MSR

Misbhauddin:2015:UMR

Bettenburg:2015:MCC

DiPenta:2015:GESa

Bettenburg:2015:TIS

Khomh:2015:UIR

Hindle:2015:GMM

DiPenta:2015:GESb

Mader:2015:DDB

Ali:2015:ESI

Hindle:2015:DTM

Lotufo:2015:MHB

Hermans:2015:DRC

delSagrado:2015:MOA

[542] José del Sagrado, Isabel M. del Águila, and Francisco J. Orellana. Multi-objective ant colony optimization for

REFERENCES

Russo:2015:MSL

DiGiuseppe:2015:FDF

Petersen:2015:EIO

Santos:2015:FEI

Bavota:2015:TSR

Yang:2015:CMC

Wu:2015:IIC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Maffort:2016:MAV

Jaafar:2016:EID

Baysal:2016:ITN

Adams:2016:ESI

Calefato:2016:AIR

Tu:2016:EIT

McIlroy:2016:AAL

[612] Stuart McIlroy, Nasir Ali, Hammad Khalid, and Ahmed E. Hassan. Analyzing and automatically labelling the types of user issues that are
References

[619] Stuart McIlroy, Nasir Ali, and Ahmed E. Hassan. Fresh apps: an empirical study of frequently-updated...

[Bagheri:2016:FSI] Ebrahim Bagheri, David Benavides, Klaus Schmid, and Per Runeson. Foreword to the special issue on empir-

Feng Zhang, Audris Mockus, Iman Keivanloo, and Ying Zou. Towards...
REFERENCES

REFERENCES

[654] Qi Luo, Aswathy Nair, Mark Grechanik, and Denys Poshyvanyk. FOREPOST: finding performance problems automatically with feedback-directed learn-
References

[668] Safwat Hassan, Weiyi Shang, and Ahmed E. Hassan. An empirical study

Jiang:2017:WHD

Kitchenham:2017:RSM

Jiang:2017:DPD

Kessentini:2017:SBD

Lokan:2017:IUM

Thongtanunam:2017:RPM

Duarte:2017:PPR

REFERENCES

Tosun:2017:ESH

LeGoues:2017:GES

Rojas:2017:DIE

Mkaouer:2017:RMO

Kifetew:2017:GVG

Mader:2017:ESS

Staahl:2017:ATL

REFERENCES

REFERENCES

REFERENCES

[711] Anas Mahmoud and Gary Bradshaw. Semantic topic models for source code

[724] Richard F. Paige, Jordi Cabot, and
REFERENCES

REFERENCES

Assuncao:2017:RLA

Labunets:2017:MCS

Antinyan:2017:ECC

Noei:2017:SRM

Bezemer:2017:ESU

Xia:2017:WDD

Zhang:2017:DTC

REFERENCES

Hadar:2018:PDS

Kabinna:2018:ESL

daCosta:2018:ESI

Faleza:2018:ESE

Kula:2018:DDU

Huang:2018:ISA

Wang:2018:EET

Robbes:2018:GES

daCosta:2018:IRR

Dintzner:2018:FAA

Zagalsky:2018:HRC

Rolfsnes:2018:AAR

REFERENCES

REFERENCES

Wang:2018:UFF

Ribeiro:2018:CPS

Gupta:2018:RUI

ElMezouar:2018:TUB

Ricca:2018:ISB

Ajienka:2018:ESI

Guo:2018:DEP

[790] Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar,

Ali:2018:EAC

Tsikerdekis:2018:PCC

Kopec:2018:OAH

Borle:2018:AET

Arcuri:2018:ERA

Madeyski:2018:EST

 REFERENCES

REFERENCES

[810] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, Nicos Malevris, and Yves Le Traon. How effective are mutation testing tools? An empirical analysis of Java

Ragkhitwetsagul:2018:CCS

Zhong:2018:TRH

Paasivaara:2018:LSA

Rakha:2018:RPA

Sirres:2018:ASU

Li:2018:SSL

REFERENCES

[837] Simona Bernardi, Juan L. Domínguez, Abel Gómez, Christophe Joubert, José Merseguer, Diego Perez-Palacin, José I. Requeno, and Alberto Romeu. A systematic approach for performance assessment using process mining. *Em-
REFERENCES

Mujahid:2018:ESA

Pano:2018:FAL

Laukkanen:2018:CRE

Stevanetic:2018:SAA

Grunbacher:2018:FSI

Quirchmayr:2018:SAR

[844] Thomas Quirchmayr, Barbara Paech,
References

Ferrari:2018:DRD

Jha:2018:UFS

Hu:2018:UHE

Feldt:2018:FCU

Anonymous:2019:AES

Hu:2019:SCS

[850] Hanyang Hu, Shaowei Wang, Cor-Paul Bezemer, and Ahmed E. Hassan. Studying the consistency of star ratings and reviews of popular free hybrid Android and iOS apps. *Empirical Soft-

Huang:2019:ESI

Malloy:2019:EAT

Mori:2019:BTB

Rahman:2019:MFT

Calefato:2019:EAB

Hindle:2019:PDB

Thongtanum:2019:WCS
Ruangwan:2019:IHF

Malgonde:2019:EBM

Fernandez:2019:OSI

Shahin:2019:ESA

McChesney:2019:ETA

Chen:2019:WSP

Vera-Perez:2019:CSP

Lin Tan and Abram Hindle. Guest editorial: Special section on mining

REFERENCES

Medeiros:2019:IMC

Salman:2019:CET

Baum:2019:AWM

Binkley:2019:CTL

Liva:2019:SDE

Bowes:2019:GES

Minku:2019:NOS

Coppola:2019:SGT

Panichella:2019:GES

Farias:2019:DSC

[938] Xu Wang, Chunyang Chen, and Zhenchang Xing. Domain-specific machine
REFERENCES

Carvalho:2019:ECC

Khanmohammadi:2019:ESA

Jha:2019:MNF

Jan:2019:SBM

Jan:2019:CSB

Gemma Catolino, Fabio Palomba, Francesca Arcelli Fontana, Andrea De Lucia, Andy Zaidman, and Filomena Ferrucci. Improving change

[958] Barbara Kitchenham, Lech Madeyski, and Pearl Brereton. Meta-analysis for

REFERENCES

Kruger:2020:SRR

Ghanavati:2020:MRL

Kim:2020:ECB

Xu:2020:WRW

Nugroho:2020:HDD

Fearon:2020:RA

Heeager:2020:MAP

REFERENCES

REFERENCES

REFERENCES

Ahasanuzzaman:2020:CST

Tosun:2020:GES

Alahmadi:2020:CLP

Amasaki:2020:CVD

Dey:2020:DUI

Anonymous:2020:ENE

Mazuera-Rozo:2020:ITS

REFERENCES

REFERENCES

Koyuncu:2020:FMR

Robert:2020:VLO

Kamei:2020:GEM

Li:2020:CCD

Agrawal:2020:BSA

Siegmund:2020:PSI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ponta:2020:DAM

Rios:2020:PPV

Kotti:2020:SSF

Krutauz:2020:DCR

Cotroneo:2020:CSS

Lee:2020:ESC

Rahman:2020:LCA

[1036] Akond Rahman, Effat Farhana, and Laurie Williams. The ‘as code’ activities: development anti-patterns

Krishna:2020:LAA

Chapetta:2020:TEB

Aktas:2020:AIA

Jiarpakdee:2020:IAF

Alami:2020:TPA

Wang:2020:TFC

Hajri:2020:AST

[1049] Rodi Jolak, Maxime Savary-Leblanc, Manuela Dalibor, Andreas Wortmann, Regina Hebig, Juraj Vincur, Ivan Polasek, Xavier Le Pallec, Sbastien
REFERENCES

178

Gleirscher:2020:FMD

[Xu:2020:MUH

[1051] Xu:2020:MUH

[Heumuller:2020:PPD]

[Kondo:2020:CCS]

[Wang:2020:BRA]

[daSilva:2020:CES]

[Rodrigo Fernandes Gomes da Silva, Chanchal K. Roy, Mohammad Masudur Rahman, Kevin A. Schneider, Klérisson Paixão, Carlos Eduardo de Carvalho Dantas, and Marcelo de Almeida Maia. CROKAGE: effective solution recommendation for programming tasks by leveraging crowd

Masood:2020:HAT

Scalabrino:2020:ACI

REFERENCES

[1093] Gharib Gharibi, Vijay Walunj, Raju Nekadi, Raj Marri, and Yuyung Lee. Automated end-to-end management of the modeling lifecycle in deep learn-

João Pedro Moraes, Ivanilton Po-

Pereira:2021:GLS

Anonymous:2021:AES

Hatamian:2021:PAS

Kim:2021:DIR

Foundjem:2021:RSS

Maipradit:2021:CWI

[120] Man Zhang, Bogdan Marculescu, and Andrea Arcuri. Resource and

REFERENCES

Tang:2021:USO

Timperley:2021:UIA

Wu:2021:GAT

Pimentel:2021:UIQ

Tuarob:2021:ATR

Wang:2021:PCM

Russo:2021:PWB

[1142] Boni García, Mario Munoz-Organoero, and Carlos Delgado Kloos. Automated

Tahir:2021:DCS

Olsson:2021:MAS

Bogner:2021:IPC

Ernst:2021:UPR

Rodriguez-Perez:2021:PDS

Moe:2021:FSS

Kim:2021:SLT

[1164] Luan P. Lima, Lincoln S. Rocha, and Matheus Paixão. Assessing ex-

Tian:2021:WED

Cheers:2021:ERS

Petrulio:2021:ILJ

Laaber:2021:ATC

Nugroho:2021:HPS

Zampetti:2021:SAT

Aranega:2021:RGT

REFERENCES

Kamienski:2021:ESQ

Laaber:2021:PUS

Revoredo:2021:SPR

Rani:2021:WDC

Berry:2021:EET

Abid:2021:FAU

Zampetti:2022:UCR

Croft:2022:ESD

[1193] Roland Croft, Yongzheng Xie, and Christoph Treude. An empiri-
References

199

Shu:2022:OAE

Li:2022:EYO

Zhou:2022:SDT

Escobar-Velasquez:2022:SEC

Wang:2022:DRE

Marques:2022:ISF

REFERENCES

[1215] Jinfeng Lin, Yalin Liu, and Jane Cleland-Huang. Information retrieval versus deep learning approaches for generating traceability

REFERENCES

Azuma:2022:ESS

Yang:2022:MPF

Li:2022:ESE

Amasaki:2022:ESA

Herbold:2022:STM

Heradio:2022:USS

Dabrowski:2022:AAR

Herbold:2022:PSF

Gao:2022:PFU

Parra:2022:CSA

Camilli:2022:MPM

Almulla:2022:LHS

Xiao:2022:PCA

Bjarnason:2022:ITC

Stol:2022:GSE

REFERENCES

Noei:2022:SGU

Hanenberg:22:TST

Hu:2022:CIC

Schroder:2022:EIC

Pan:2022:TCS

Perera:2022:SBF

[1259] Fabiano Pecorelli, Savanna Lujan, and Andrea De Lucia. On the adequacy of static analysis warnings
REFERENCES

Penzenstadler:2022:TDB

Ginelli:2022:CSC

Brandt:2022:DCT

Ocariza:2022:EBP

Liu:2022:UMT

Fang Liu, Ge Li, and Zhi Jin. A unified multi-task learning model for
REFERENCES

Huang:2022:CUU

Fregnani:2022:WHM

Meloca:2022:CSA

Shin:2022:PSM

Sas:2022:EIA

Moreira:2022:OSS

Jehnoun:2022:CDL

Zhang:2022:SLP

Cazzola:2022:TRL

Saidani:2022:TBU

Tu:2022:DML

Walunj:2022:DPU

Uddin:2022:QSD

Abidi:2022:MLD

Lopes:2022:HWW

[1289] Mateus Lopes and Andre Hora. How and why we end up with complex meth-

Ojdanić:2022:UCR

Callan:2022:HDA

Michelon:2022:ESS

Rahman:2022:WMC

Mariani:2022:GRA

Rehman:2022:NOC

Wessel:2022:QGI
[1296] Mairieli Wessel, Alexander Serebrenik, and Marco A. Gerosa. Quality gatekeepers: investigating the effects of code review bots on pull request activities. Empirical Software Engineer-

Hoppner:2022:ADD

Chowdhury:2022:RDC

Klotins:2022:TCB

Pasuksmit:2022:SPC

Bokhari:2022:HDE

Elder:2022:DRN

Patel:2022:SLL

REFERENCES

Carka:2022:EAM

Sawadogo:2022:SLC

Horvath:2022:UCK

Loriot:2022:SLF

Zhu:2022:ESQ

Widyasari:2022:RWP

Lamine:2022:USD
REFERENCES

DiGregorio:2022:MAA

Wu:2022:PQI

Henning:2022:CMB

Lee:2022:OPA

UlHaq:2022:CCO

Li:2022:GBF

Cassee:2022:SA

REFERENCES

Boutaib:2022:HUS

Feitelson:2022:CPR

Xia:2022:PHI

Aagren:2022:ASD

Tao:2022:LSE

Tsay:2022:EEA

Bradley:2022:SSD

Diaz:2022:DRQ

Dominic:2022:HEC

Wu:2022:UDD

Zhou:2022:SSP

Panichella:2022:TSY

[1378] Laerte Xavier, João Eduardo Montandon, Fabio Ferreira, Rodrigo Brito, and Marco Tulio Valente. On the documentation of self-admitted technical debt in

Md Abdullah Al Alamin, Gias Uddin, Sanjay Malakar, Sadia Afroz, Tameem

Mehrpour:2023:CSA

Fu:2023:ESI

Ramasamy:2023:WAD

Aghayi:2023:CEI

Schurhoff:2023:ESS

Related Work

Karmakar:2023:JEJ

Ernst:2023:RRS

Abnane:2023:EEI

Blincoe:2023:PSI

Ramasamy:2023:VDS

Alfadel:2023:EAS

Bhatia:2023:TCT

Shinpei Hayashi, Yann-Gaël Guéhéneuc, and Michel R. V. Chaudron. In-
REFERENCES

[1456] Noppadol Assavakamhaenghan, Supatsara Wattanakriengkrai, Naomichi Shimada, Raula Gaikovina Kula, Takashi

Torre:2023:DLT

Alazba:2023:DLA

Han:2023:CSC

Deiner:2023:ATG

Zaina:2023:WDS

daCosta:2023:SCT

REFERENCES

Chouchen:2023:LPC

Shameer:2023:RBD

Maeprasart:2023:URE

Ayas:2023:ESS

Ciurumelea:2023:CFD

Mi:2023:GBC

Hadi:2023:EPT

Iannone:2023:RSW

Labunets:2023:NEB

Xiao:2023:MLC

Sultana:2023:CRO

Rahman:2023:ECS

Ozk:2023:RDD

Guizzo:2023:ITM

REFERENCES

REFERENCES

Pazos:2023:XAS

Mindom:2023:CRL

Piantadosi:2023:DAM

Chen:2023:PCW

Berntzen:2023:RCT

Bjarnason:2023:EBM

Santos:2023:TIA

Alaboudi:2023:WCD

Piskachev:2023:CCS

Chen:2023:SDC

Sharma:2023:IDP

Wang:2023:MTR

References

