A Bibliography of Publications on Floating-Point Arithmetic

Norbert Juffa
2445 Mission College Blvd.
Santa Clara, CA 95054
USA
Tel: +1-408-727-1885
FAX: +1-408-727-1265
E-mail: juffa@ira.uka.de (Internet)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

09 August 2023
Version 3.664

Introduction

This is a bibliography of material on floating-point arithmetic that I came up with while doing research on a floating-point package of my own. I don’t claim it to be anywhere near complete. The material listed is only what I myself possess.

My main interest was in software based, binary floating-point arithmetic on a microprocessor, so you won’t find much material about the hardware used in floating-point arithmetic (e.g. adders, carry propagation schemes, higher radix
representation for multiplication and division, etc.) in this list. There is also not too much on non-binary floating-point arithmetic.

For most fields covered in this bibliography, the important or historically relevant articles should be included. There is also some material on integer arithmetic in this list as some of the methods used with integer arithmetic contain interesting ideas that may be useful in the realization of a floating-point arithmetic package.

Also, depending on the type of microprocessor used, one may need to implement integer multiplication and division for use in the floating-point package, so articles about this topic are included as well.

As I am German, there is a bit of material in German in this bibliography. However, English translations are provided for all non-English titles.

Thanks to the people who have helped me with previous versions of this document by sending me papers or additional references:

- Steven Sommars (sesv@research.bell-labs.com),
- Jim Kiernan (jmk@teak.cray.com),
- Warren Ferguson (ferguson@seas.smu.edu),
- Nhuan Doduc (ndoduc@framentec.fr),
- K. C. Ng (kwok.ng@eng.sun.com),
- Nelson H. F. Beebe (beebe@math.utah.edu).

Bibliography entries in the Books section are ordered alphabetically by author; ordering is by ascending year in the remaining sections.

Warning: it has yet not been possible to bring this citation list up-to-date with the entries in the BIBTEX files.

Books, hardware oriented

[1670, 263, 1249, 1179, 3050, 3253, 1865, 813, 1128, 969, 1416, 815, 1302, 6710, 6711, 1511]

Books, software oriented or theory

[1236, 445, 448, 449, 107, 1379, 2338, 879, 1017, 334, 2890, 2379, 2907, 2216, 302, 505, 6568]

Books, machine specific

[2120, 3155, 3052, 2381, 1716, 1852, 2234, 1884, 2416]
1 Choice of base, floating point formats

1.1 Precision and Rounding

1.2 Determination of parameters of floating point arithmetic

1.3 IEEE standards for floating point arithmetic

1.4 Floating point arithmetic, general and implementation issues

1.5 Floating point packages

1.6 Floating point units
1.7 Test of floating point routines

2 Addition and Subtraction
[357, 1469]

2.1 Floating-point Summation
[307, 327, 344, 343, 546, 613, 651, 803, 1611, 2221, 2297]

2.2 Multiplication
[654, 1209, 1223, 1434, 1498, 1472, 1527, 1554, 1546, 1571, 1626, 1544, 1707]

2.3 Division

3 Elementary functions, general
[366, 379, 562, 624, 590, 1088, 1228, 1579, 1606, 1705, 1668, 1666, 1743, 1789, 6652, 1894, 2000, 2100, 2044, 2223, 6670, 2505, 2542, 2492, 2494, 2463, 2640, 2791, 2604, 2753, 2754, 2633, 3305, 3273]

3.1 Elementary functions, CORDIC and related algorithms
[175, 176, 231, 246, 355, 501, 528, 633, 625, 641, 706, 827, 1035, 1051, 1256, 1410, 1648, 1846, 1657, 1760, 1912, 2105, 2326, 2256, 2486, 2512, 2659, 2751, 2948, 2943, 3067, 3007, 3053]

3.2 Elementary functions, function approximation
[223, 224, 460, 599, 740, 739, 952, 990, 1126, 1949, 2241, 2133, 2628, 2725, 2726]

3.2.1 Polynomial evaluation
[241, 261, 286, 405, 1028, 1190, 2296]
3.3 Square root, general
[1049, 1150, 1438, 1551, 1602, 2510, 2620]

3.3.1 Square root, bit-oriented, iterative, and table methods of computation

3.3.2 Square root, Newton’s method
[144, 262, 284, 356, 329, 325, 365, 430, 406, 491, 496, 510, 572, 561, 555, 557, 676, 1288, 1278, 1356, 1536, 2279, 2957, 2885]

3.4 Sine and Cosine
[165, 1035, 987, 992, 1139, 1357, 1499, 1616, 1615, 1714, 1802, 1902, 2066, 2177, 2551, 2899, 2896, 2820, 2918, 3013]

3.5 Logarithm
[140, 253, 313, 664, 967, 1078, 1262, 1485, 2053, 2054, 2552, 2677]

3.6 Exponential function
[127, 390, 1146, 1320, 1474, 1697, 1796, 2415, 2553, 2940]

3.7 Arctangent
[129, 145, 191]

3.8 Other transcendental functions
[476, 588, 146, 993, 347, 257, 342, 2046, 1121, 2801, 2993]

4 Binary-decimal conversion
[174, 158, 206, 454, 552, 658, 1129, 1254, 1255, 1364, 1604, 1658, 1951, 1924, 2454, 2546, 2470, 2797]
5 **BCD arithmetic**

[648, 699, 749, 750, 751, 752, 753, 754, 755, 1341, 1449, 1654, 1592, 1986, 2589, 2898]

6 **Multiple precision arithmetic**

[274, 312, 391, 407, 607, 591, 922, 971, 1066, 1065, 1228, 1309, 1389, 1497, 2746, 2731, 2972, 3192]

7 **Conferences on computer arithmetic**

[6593, 6603, 6607, 6616, 6619, 6631, 6649, 6650, 6691, 6721, 6729, 6723, 6755]

8 **Additional contributions from Nelson H. F. Beebe**

Title word cross-reference

#26 [5367].

\((2^n)^m\) [3726]. \((10^{31} - 1)/9\) [1925]. \(2^m\) [4267, 4288, 4469, 4478, 4385].
\((2^n + 1)\) [1048, 4700, 3838]. \((2^n - 1)\) [4903]. \((2^n-1,2^n+p,2^n+1)\) [6112]. \((2^n+1)\) [5932]. \((2^n \pm 1)\) [5394, 4062]. \((2m)\) [4350]. \((2n+3)\) [6334]. \((2n - (2p \pm 1))\) [4755]. \((d, r)\) [761]. \((\mathcal{R})\) [2846]. \((p)\) [4267, 4350]. \((x + y) * (x - y)\) [6448]. -2
\(\sqrt{x^2 + y^2} \) [5542]. \(T \) [6364]. \(\tan^{-1} x \) [355]. \(\theta(\log N) \) [2299]. \(\times [3992, 3843, 4056] \). \(w \) [4645]. \(X \) [1497, 2833, 430]. \(x^2 + ny^2 \) [3637]. \(x^n \) [5836, 3245]. \(y \) [4329]. \(Z \) [5216]. \(Z^2 \) [4931].

.NET [4966].

/m [4771]. /spl [4771].

0.18-CMOS [5638]. '00 [6830, 6835, 2485]. '01 [6844]. '03 [6873]. '04 [6861, 6889]. '07 [6924, 6930, 6932, 6937]. '08 [6941, 2971, 5263].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[6947, 6918]. 1st [6803].

2 [2121, 2462, 1683, 60, 62, 64, 4278, 3962, 6244, 3846, 4794, 506,
1963, 3447, 4041, 4677, 2762, 2951]. 2-D [3447]. 2-Digit [4095]. 2-
dimensional [2926]. 2.0 [3551]. 2.44 [3961, 4124]. 20 [2608, 2344].
[6840, 6841, 6843, 4735, 6845, 6851, 6852]. 2002 [6854, 6855, 6857, 6858,
6859, 6866]. 2003 [6869, 6870, 6873, 6874]. 2004 [6880, 6881, 6883,
6889, 6907, 4786]. 2005 [6897, 6898, 6900, 6903, 6909]. 2006 [6912, 6913,
6916, 6920]. 2006Petrozavodsk [6967]. 2007 [6924, 6926, 6927, 6929,
6932, 6934, 6944, 6939]. 2008 [6940, 6941, 5360, 6943, 6333, 5780,
6400, 5410, 5621, 5431]. 2009 [6946, 6949, 6952, 6953, 5392]. 2010 [6962,
6414, 6415, 6417, 6428, 6988, 6446]. 20th [6951, 6989, 6970, 6933]. 21-23
[6949]. 2100 [2503]. 21064 [3279]. 21164 [324]. 21st [6957, 6886,
6831, 6973]. 22 [319]. 22nd [6977]. 23-28 [6917]. 23nd [6981]. 23rd [6706,
24th [6982, 6804, 6807, 6861, 6965]. 25-28 [6830]. 256 [6116]. 25th [6702,
[1832]. 2nd [6961, 4491, 6589]. 2Sum [5983, 6081].

3 [3032, 5051, 2711, 5958]. 3-ps [5638]. 30-bit [2366]. 30-MFLOP [2191].
30-ns [3403]. 300 [4124, 1191]. 300-MHz [4124]. 300MHz [3961]. 312 [411].
3171 [2444]. 31st [6675]. 32 [5007, 2008]. 32-Bit [3645, 2258, 2528,
2271, 5352, 4713, 3349, 1362, 1575, 2676, 2351, 2352, 2353, 2354,
2502, 1945, 2376, 3247, 2514, 3126, 3878, 2429, 3140]. 320 [3035]. 320-MFLOPS
[3036, 3035]. 320C25 [3225]. 32b [2191]. 33 [2159]. 33rd [6785, 6836, 6730]. 34
[489]. 34-MFLOP [2429]. 360 [398, 399, 481, 372, 373, 655, 418, 459, 1400,
[4003, 3740, 4028, 4029]. 39th [6924, 6941]. 3CT [3319]. 3DNow
[3846, 3962]. 3DTV [5627]. 3m [6179]. 3rd [6801, 6593, 6906].

4 [3329, 4701]. 4-2 [1130]. 4-Input [5230]. 4-Input/1-Output [5230].
4.4ns [3417]. 40 [2353]. 40-MFLOPS [2351, 2353]. 40-ns [622]. 400 [888].
4000 [490]. 400MHz [3843]. 40ns [621]. 41 [422]. 432 [1805]. 44th [6920].
45th [3689]. 48th [6903]. 4d [4583]. 4m [6179]. 4th [6603, 6830, 6725, 6852].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

= [2740, 2741, 3281, 6590].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6876, 6892, 3405, 3415, 5416, 6737, 6726, 1495, 2231, 903, 5113, 4383, 1761, 6505, 6914, 1980, 6849, 6907.

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Arithmetic [4244, 5672, 4881, 5363, 2621, 2150, 5750, 592, 841, 4725, 1463, 4091, 6485, 5895, 5993, 5157, 842, 6305, 3659, 3663, 4256, 3006, 2823, 1916, 5454, 3932, 4735, 1782, 6213, 1079, 2154, 2301, 6691, 4269, 3524, 6008, 6106, 6107, 6108, 6986, 1566, 653, 320, 321, 322, 535, 3953, 1004, 1256, 3814, 2838, 2653, 3683, 4458, 6324, 4120, 4274, 6114, 6222, 6327, 3686, 4616, 5181, 5287, 1927, 4756, 6115, 1096, 1263, 1368, 4465, 1097, 1264, 2031, 4277, 495, 1098, 1179, 1477, 1807, 6649, 1694, 1929, 2484, 3818, 6589, 6593, 6603, 6619, 6631, 1810, 1811, 2032, 6905, 6973, 5921, 6333, 5053, 5187, 324, 4066, 1372, 6663, 6116, 5288, 2847, 1932, 416, 5602, 5774, 6119, 1577, 3040, 5397, 6121, 1578, 5839, 6019, 6122].

Arithmetic [6123, 6451, 1696, 3967, 3545, 1375, 1935, 4132, 4759, 4912, 714, 717, 328, 3693, 4915, 20, 5464, 6721, 857, 4469, 4289, 799, 3697, 2042, 3048, 862, 1821, 2673, 3389, 6778, 1585, 4140, 5690, 3050, 6821, 3979, 4141, 4471, 1011, 1103, 1383, 1702, 2045, 2355, 6723, 5195, 6935, 5401, 5469, 5608, 5692, 5840, 3053, 3700, 723, 864, 3981, 865, 1012, 1013, 869, 1271, 1941, 4476, 5294, 5779, 6345, 5780, 3851, 6131, 872, 1828, 3702, 6796, 6134, 5066, 2049, 3985, 4302, 4482, 6026, 6138, 6348, 217, 268, 323, 3232, 3988, 2869, 6541, 1106, 4148, 270, 1109, 5614, 6143, 3233, 6144, 1833].

Arithmetic [1399, 1610, 2069, 3726, 1025, 1284, 1853, 2070, 4169, 5933, 4173, 109, 5306, 2, 6789, 6524, 675, 2076, 2727, 193, 3422, 6369, 2731, 5086, 1405, 4340, 5088, 3854,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Arithmetic
[2746, 3867, 4669, 5505, 2232, 6495, 3744, 5092, 6496, 969, 1416, 2748, 761, 5093, 5094, 1417, 1418, 5422, 4533, 6526, 4039, 816, 511, 1133, 1134, 1301, 1302, 1303, 1640, 1874, 6710, 6711, 3122, 6754, 6755, 6978, 6979, 6980, 6987, 4192, 2414, 2415, 2552, 2553, 2940, 765, 1505, 1633, 4666, 1207, 2090, 172, 1867, 563, 5421, 898, 899, 251, 196, 540, 1728, 19, 22, 901, 1415, 1635]

Arithmetic
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 20

Asian [6764]. ASIC [6728, 6852, 6909, 5029, 6748, 6818, 5395, 3120, 2956].
avoidance [924]. avoided [4577]. Avoiding [4406, 3609, 3501, 1093].
AVR [5918]. Avril [6801]. AVX [6187]. AVX-512 [6187]. AVX512 [6547].
AWGN [5069]. Axiomatic [3101, 609]. Axiomatisierung [2636].
Axiomatization [1710, 2636, 2637]. Axiomatizations [1890, 2524]. AXP [3441].

B [321, 322, 244, 6267, 3199, 3570, 3403, 2895, 2386, 3417, 2224, 4368, 2776, 3459, 3342, 3526, 961, 2608].
Backward [3333, 3000, 3668, 5903]. Bad [4075, 3795, 6242, 6652, 6302, 3923].
Baltimore [6699, 6896, 6832, 6860]. Band [2569]. Bandwidth [6175, 1355, 5768, 4312].
Additional Contributions from Nelson H. F. Beebe
3968, 4129, 3218, 3690, 5056, 2677, 267, 2047, 5930, 242, 5402, 217]. Binary
[268, 4933, 1109, 6351, 166, 243, 3400, 244, 2054, 612, 659, 664, 1595, 4315, 245,
425, 666, 667, 732, 247, 91, 248, 4951, 1022, 618, 109, 956, 1119, 2723, 1197,
349, 30, 890, 1489, 559, 194, 351, 111, 561, 170, 249, 508, 222, 1629, 464, 3272,
353, 1129, 4028, 4353, 87, 814, 1729, 687, 1417, 1418, 6526, 2097, 4984, 174, 152,
908, 5244, 5245, 5246, 5426, 5643, 6183, 632, 395, 227, 1888, 3144, 528, 1658,
1659, 6274, 5976, 921, 1992, 2583, 2589, 82, 4232, 3650, 6198, 4710, 2138, 6292,
5552, 1910, 6211, 5763, 209, 5379, 1254]. Binary-BCD [1255, 3028, 1262, 1812,
4280, 3217, 3547, 2853, 2668, 2856, 2495, 2357, 1191, 5699, 1, 4148, 1387, 1706,
218, 382, 3065, 4494, 4637, 668, 804, 3840, 5482, 1195, 6250, 2721, 3598, 6041,
4805, 1627, 5803, 2537, 1965, 5641, 2407, 1419, 1876, 3624, 5511, 5645, 3291,
3292, 2771, 3303, 5255, 5258, 772, 4548, 4687, 4688, 6502]. Binary-Coded-Decimal
[1558, 1566]. Binary-Coded-Ternary [5056, 1109]. Binary-Decimal [2470]. Binary-Integer
Binary-Integer-Residue-Complex [3840, 3291, 3292]. Binary-to-Decimal [2797, 5822, 141,
208, 1364, 243]. Binary-to-Multidigit [4951]. Binary/Ternary [5588, 5687, 6026, 6138].
Bipartite [4853, 5292, 3434, 3739, 4022]. Bipolar [2879]. Biquad [1827]. Biquinary
[782]. Birmingham [6734, 6664]. Birthday [6703]. Bis [57]. Bisect [3179, 6350, 3627,
3178, 3353]. Bisection-like [3353]. BIST [4678]. BIT [201, 212, 3645, 2986, 5544,
4873, 1158, 5358, 3912, 4878, 2815, 1552, 5898, 4446, 1561, 6315, 4267, 5386, 2836,
5180, 3210, 324, 5049, 2037, 4469, 2045, 2355, 4478, 5811, 4301, 6024, 4932, 545,
4498, 2377, 4502, 3843, 6461, 2896, 5082, 622, 5312, 4657, 1959, 3734, 4344,
4963, 5316, 2917, 1501, 1728, 1502, 5506, 1735, 2238, 2422, 3134, 6500, 1510,
3139, 4541, 2791, 6503, 2962, 1223, 2258, 5818, 4692, 2266, 2269, 2128, 2310,
2271, 2135, 5347, 6505, 5270, 1903, 5020, 4872, 5352, 4713, 3349, 4585, 4090,
4884, 1916, 1554, 3008, 4890, 4891, 2309, 4742, 3015, 3946, 4609, 3519]. bit
[1362, 1563, 3365, 289, 4453, 6320, 5045, 2654, 3380, 1575, 2344, 2345, 2490,
3828, 2349, 2676, 2351, 2352, 2353, 2354, 2184, 2495, 2862, 4627, 5066, 5067,
4928, 2366, 5787, 1708, 2501, 2502, 1945, 4494, 4637, 1596, 2376, 5707, 6156,
6157, 2201, 2710, 3247, 2205, 2514, 5222, 1401, 4171, 3261, 1856, 621, 5311,
3597, 4806, 4809, 4810, 2410, 4361, 4041, 3126, 1877, 2942, 4046, 4823, 3878,
2429, 6264, 1434, 1982, 1218, 1653, 2775, 3140, 3881, 3882, 5813, 2254, 1891].
bit-complexity [1401]. bit-flip [5787]. Bit-Level [5989, 2815, 4498, 5707]. Bit-Manipulations
[6024]. bit-map [3134]. Bit-Parallel [5358, 5386, 4301, 5082, 5312, 5316, 5049, 2917,
4541, 4872, 4891, 3828, 4928, 3597, 3881, 3882], Bit-Pipelined [2355, 2184, 2495].
bit-reproducible [5818]. Bit-Sequential [1158, 1959, 1501, 1728, 1502, 2130, 2410]. Bit-Serial
[4873, 1561, 4267, 5386, 4469, 2045, 4932, 4502, 2836, 3210, 2135, 3519, 4810,
2942, 1653, 2254]. bit-slice [1903, 1218]. Bit-Sliced [5544, 4344]. bit-vector [5347]. Bit-Width
[5611, 4742, 5222]. Bits [4846, 4074, 409, 412, 2502, 5791, 6166, 1891]. bitwise
Oriented [4126]. butterfly [1709, 1671].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

561, 624, 6624, 5802, 171, 3859, 813, 1632, 1864, 6878, 967, 390, 761, 2933, 686, 815, 5506, 2751, 1039, 1911, 3173, 3352, 4589, 4727, 4929, 3802, 2298, 70, 5033, 5369, 3937, 2305, 6640, 6762, 4607, 1171, 1246, 1172, 1693, 1262, 798, 1178, 5773, 2487, 6665, 2043, 2672, 4296, 865, 1012, 6453, 1490, 4515, 3096, 1204, 1293, 5804, 195, 3271, 2230, 2231, 4974, 4975, 4357, 4358, 4531, 118, 5423, 4986, 2764, 2421, 3133, 5867, 1429, 1430, 519, 2565, 521, 1886, 2578, 2593, 1579, 2512, 6939, 6742, 1743, 964.

Computationally [3558, 3127].

Computations [3465, 4401, 3157, 5014, 5883, 5270, 3493, 3657, 843, 994, 977, 4106, 4452, 5575, 6223, 1098, 1371, 3539, 4467, 3824, 5840, 3699, 865, 1012, 6454, 875, 1389, 6652, 5630, 2911, 4802, 5858, 2088, 4526, 4971, 5240, 820, 1307, 3305, 4204, 4565, 5744, 2013, 3805, 2631, 3668, 3811, 6768, 3829, 5693, 4142, 1105, 609, 5065, 728, 5217, 5218, 5299, 5411, 6623, 4808, 3865, 5098, 2563].

Compute-Bound [2921, 2741, 2920].

Computed [2747, 2210].

Computer [1308, 6895, 2950, 5967, 88, 137, 1512, 5728, 5729, 471, 577, 1748, 3146, 528, 1311, 1426, 6925, 89, 3469, 278, 580, 1056, 1152, 2585, 581, 524, 4417, 984, 229,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6424, 6536, 2273, 3902, 4233, 4572, 4710, 3491, 1454, 1670, 3165, 361, 4874, 2278, 2451, 4236, 5986, 5354, 5148, 5356, 4875, 1068, 3788, 6914, 6429, 1677, 2997, 315, 2998, 5032, 5366, 6885, 6212, 2464, 3008, 2154, 4739, 3667, 1354, 1556, 1089, 5569, 5570, 5765, 3670, 3015, 5905, 3946, 851, 3364, 4107, 1794, 6103, 1360, 1249, 853, 370, 4751, 413, 5578, 1253, 447, 3684, 3956, 6324, 1926, 4464, 5586, 5587, 4908, 5186, 588, 494, 1179, 6692, 6580, 6656.

Design

Design

Designed

Desirable

Desynchronization

Details

Detect

Detectable

Detecting

Detection

Determinants

Determine

Determining

Determinism

Deterministic

Deutschland

Developed

Developers

Developing

Development

Desk-Calculator
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 40

Division [2953, 2954, 2955, 6404, 5122, 5674, 3766, 637, 2576, 3773, 919, 439, 3482, 1054, 4706, 3336, 2449, 5021, 3166, 3341, 2612, 2452, 3500, 4585, 6095, 2815, 2300, 2302, 2467, 2631, 3010, 4594, 4597, 4598, 2304, 3512, 3513, 3514, 2306, 209, 2020, 2641, 5175, 287, 3812, 3525, 3191, 4110, 4753, 2024, 3373, 3374, 3375, 3378, 3206, 3207, 3959, 3817, 3688, 2038, 4621, 4914, 3043, 3222, 2857, 3830, 381, 3982, 3056, 3986, 4488, 5297, 5475, 2875, 2055, 2501, 3064, 3713, 4494, 4637, 4639, 4640, 2696, 2697, 3070, 553, 1839, 5480, 3841, 2702, 2888, 3079, 3240, 3241, 3410, 4319, 3842, 5850].

division [2064, 2894, 431, 4001, 3414, 3586, 4004, 4795, 4649, 2905, 4801, 4342, 4659, 117, 148, 3856, 3857, 1031, 751, 3274, 3108, 3109, 3438, 4814, 6468, 3448, 3745, 2412, 2413, 275, 4191, 4192, 1135, 1422, 5104, 1404, 2417, 3877, 4198, 4681, 4832, 4833, 1216, 2110, 2775, 2778, 4834, 4684, 4393, 4202, 1943, 244, 1719, 1434].

DMT [4692]. DNA [4465]. DNA-based [4465]. DNS [5182, 5183].

Do [4573, 1375, 4253, 5835, 3366, 3042, 4284, 1288]. Document [6034].

Documentation [5923, 562]. Documents [3771]. Does [5882, 2462, 2].

Domain [5447, 1769, 3606, 2451, 3191, 2334, 3276, 3865, 6498].

Dot-Product [6423, 6339, 3226, 6368]. dot-products [5590].

Double [4551, 4231, 4708, 5319, 4576, 284, 4587, 3505, 3661, 3927, 5997, 6213, 3361, 6437, 5383, 4120, 4274, 3382, 5597, 6118, 6123, 5192, 329, 6344, 5403, 4304, 4632, 5842, 5203, 333, 5942, 2375, 343, 344, 5708, 6518, 5077, 4650, 4511, 5861, 682, 5501, 356, 1882, 1039, 5112, 5812, 6477, 3313, 5816, 4855, 4856, 4858, 5444, 4077, 4228, 4705, 5747, 4585, 4880, 4248, 4249, 2295, 600, 5395, 4926, 4936, 5790, 669, 5482, 1291, 5641, 4819, 5104, 3304, 5116, 2567, 4721, 4722]. Double-Base [3661, 3927, 5383, 5116]. Double-Based [3505]. double-basis [4585].

Double-residue [5112]. double-single [4856]. Double-Size [4576].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Experience [3646, 1603].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

52

[200, 3139, 2248, 6060, 2777, 4199, 5968, 1746, 5117, 5812, 2569, 771, 1316, 2958,
1655, 3462, 5259, 5652, 4061, 917, 1890, 6501, 5814, 6405, 5000, 5438, 5519, 5001,
5260, 5123, 6406, 5452, 5563, 5751, 4538, 6178, 4197, 1886, 2118, 3313, 5261,
636, 2792, 1892, 1893, 6265, 3885, 1518, 5521, 6062, 2962, 3636, 3770, 5335,
5336, 5873, 5972, 5874, 693, 278, 1442, 2437, 2577, 2968, 3152, 3318, 3319, 3320,
3321, 4404, 6189, 6274, 6275, 2438, 1052, 979, 5526, 1749, 2258, 1750, 1751, 1321,
2260, 1522, 1523, 1990, 2261, 4695, 5976, 4070, 1444, 2441, 2802, 2976, 5444].
floating [5738, 1992, 1327, 1756, 2125, 2442, 2126, 5739, 4218, 1994, 2265,
2586, 3159, 2978, 2266, 4221, 5133, 5134, 1058, 2127, 1329, 2269, 5668, 4699,
2443, 1153, 5016, 3780, 2270, 2271, 2131, 2589, 2590, 2984, 1762, 4226, 4418,
4566, 4702, 4703, 5017, 5137, 5821, 6079, 3648, 1665, 281, 2132, 640, 5140, 5446,
4229, 3781, 984, 4706, 5269, 2134, 985, 1156, 6196, 5670, 3163, 4870, 3489, 1764,
2136, 2599, 6198, 1903, 6291, 1336, 6292, 3338, 6085, 1337, 4712, 4871, 2604,
3165, 361, 1538, 6200, 3784, 4874, 1767, 2004, 2608, 3654, 3786, 5745, 1339,
1671, 2146, 2281, 4424, 5357, 3907]. floating [3908, 5824, 4714, 4715, 3911,
1542, 5359, 5557, 4086, 2617, 1070, 1910, 3917, 4584, 4431, 401, 5362, 3349,
5559, 2287, 2810, 2811, 2812, 3794, 3923, 3174, 6095, 2622, 6096, 5278, 5279,
928, 1239, 2624, 6205, 5827, 5564, 2998, 2818, 3178, 3353, 4437, 4589, 4727,
5992, 5895, 3926, 3000, 232, 4731, 5030, 5156, 4254, 930, 4440, 5453, 5032, 2461,
5161, 2462, 4884, 2293, 4092, 2822, 5162, 2151, 479, 1682, 1683, 2824, 3929,
1165, 5164, 5033, 5369, 707, 1082, 4890, 4097, 4098, 6513, 4599, 4600, 5456,
1468, 1917, 2305, 1685, 1918, 791, 485, 3668, 1167, 5170, 998, 6101, 2830, 2309].
floating [4742, 6436, 4606, 5680, 4607, 264, 3015, 3189, 4609, 4745, 3016, 2471,
597, 850, 999, 1171, 1246, 1688, 3364, 2832, 3017, 1000, 2645, 1792, 5379, 1793,
2475, 1794, 5573, 2315, 4748, 4749, 1795, 5285, 5836, 5909, 1250, 2316, 234,
163, 3810, 2320, 1799, 4268, 4751, 3811, 2477, 3949, 3019, 3950, 3526, 5686,
3951, 4455, 4613, 6319, 2834, 2835, 3528, 6221, 3022, 3371, 3529, 1254, 1366,
1176, 1923, 3531, 2165, 3372, 1367, 1260, 3198, 3029, 3957, 2166, 4463, 2839,
2480, 3030, 2654, 5182, 5183, 1693, 2841, 6225, 6331, 6445, 5587, 2030, 5588,
494, 798, 1178, 2328, 5590, 655, 2330]. floating [1181, 1812, 1695, 3213, 3541,
5051, 5052, 5054, 5392, 2169, 2170, 3961, 4466, 3540, 1099, 1182, 1815, 2331,
4620, 5770, 2844, 5598, 5599, 1576, 3216, 5838, 6017, 6120, 6229, 185, 2034,
3544, 6233, 2173, 2849, 3041, 3217, 2175, 2340, 2341, 2176, 3042, 2038, 2039,
3385, 3547, 3548, 4131, 4133, 5604, 4622, 2853, 3219, 3387, 3550, 3220, 5925,
603, 452, 716, 2344, 2345, 2346, 2347, 718, 719, 1186, 2181, 2043, 1584, 293, 498,
4766, 4767, 2676, 1187, 1188, 2351, 2353, 2354, 1700, 1823, 1483, 1701, 5468,
3556, 3829, 4294, 3054, 3228, 4770, 5470, 2862, 3391, 5196, 801, 868]. floating
[942, 1942, 4143, 5929, 4771, 2496, 3230, 870, 944, 2864, 2187, 2188, 5782, 6237,
6132, 3832, 3833, 5696, 5067, 6027, 727, 2683, 2866, 3056, 4481, 5699, 5935,
5841, 5785, 4774, 3707, 4308, 4487, 333, 4489, 3836, 4775, 502, 547, 5474, 1706,
5207, 3563, 5475, 5787, 1590, 5209, 5210, 4150, 5845, 4777, 6354, 2193, 1018,
1944, 1274, 2879, 3570, 549, 614, 729, 730, 382, 662, 663, 550, 5846, 2195, 4779,
1945, 1946, 949, 880, 3065, 1393, 2506, 4494, 4637, 5941, 3068, 2197, 2060,
2698, 4942, 2198, 5212, 3074, 1597, 1598, 1599, 669, 2508, 5621, 5707, 3407,


8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

53

5214, 4785, 4944, 5216, 5217, 5218]. floating [5299, 5411, 2509, 1948, 3842,
4946, 5301, 301, 1843, 2201, 2380, 2383, 2704, 3580, 5851, 2892, 2893, 888, 2386,
2387, 953, 4163, 3247, 4644, 2205, 3083, 6036, 3248, 3249, 3848, 2391, 3725,
4794, 6522, 3254, 556, 4795, 5222, 5713, 6038, 459, 4165, 3085, 3086, 5223, 5414,
5952, 5714, 954, 4168, 4010, 4171, 5627, 737, 955, 3728, 4011, 4650, 3261, 4798,
1287, 1953, 5628, 2209, 192, 674, 958, 2210, 2906, 2211, 3730, 2213, 2524, 3263,
504, 3426, 2214, 6556, 2528, 2733, 2913, 4803, 2217, 3266, 4014, 5631, 2396,
2531, 2736, 2532, 2533, 1722, 2081, 1292, 892, 893, 4961, 961, 506]. floating
[1203, 1204, 1293, 680, 1029, 2915, 1030, 3267, 1627, 462, 4808, 3430, 745, 5798,
5493, 5494, 5716, 6047, 5634, 3856, 3857, 4018, 1296, 4809, 4521, 1862, 3098, 96,
5635, 5497, 6257, 966, 2916, 2402, 3858, 5498, 3603, 3270, 748, 1962, 2225, 2538,
2087, 6548, 4810, 5862, 683, 684, 3109, 3740, 4029, 4664, 5419, 2404, 3861, 4355,
4813, 4814, 5638, 3863, 3608, 2740, 2741, 2919, 2920, 2742, 3277, 3114, 2230,
3610, 3742, 4527, 897, 3115, 3439, 1965, 3440, 1032, 3865, 5091, 4036, 4356, 6468,
3743, 2411, 1637, 1870, 2932, 4529, 2233, 1132, 2412, 2413, 4357, 4358, 4531].
floating [4976, 4977, 4978, 5099, 5100, 5235, 5236, 5237, 5238, 1733, 1419, 274,
1420, 1973, 4672, 3620, 4041, 357, 305, 4674, 817, 2758, 2759, 3125, 3126, 4983,
1877, 3621, 133, 1423, 1736, 1879, 2239, 1883, 1737, 2941, 5104, 6173, 2942,
1645, 818, 3284, 4368, 4823, 1038, 3286, 1305, 4047, 4195, 1740, 3623, 1741,
1646, 1885, 4050, 4196, 1978, 911, 6176, 4826, 4827, 689, 766, 3624, 1742, 2559,
2421, 2423, 4374, 4375, 1980, 5112, 1310, 2770, 2106, 470, 3134, 2426, 821, 3878,
2429, 2945, 4681, 4832, 5113, 5254, 5648, 6059, 2430, 1744, 1652, 1314, 1745,
517, 518, 519, 2108, 2247, 4994]. floating [767, 2431, 2432, 1218, 276, 1653,
2109, 3140, 3303, 1887, 1513, 2250, 2433, 1315, 2565, 4054, 1747, 1514, 4835,
5119, 5437, 5650, 916, 2568, 4056, 4200, 4836, 4837, 5651, 574, 769, 2782, 179,
2784, 2253, 2434, 2786, 2787, 3143, 3765, 5121, 4841, 4842, 5002, 5004, 4548,
4687, 4688, 2255, 6478, 6530, 5026, 2290, 2625, 1215, 6283, 1680, 3820, 4773,
1833, 3577, 3127, 2244, 2245, 2246, 2424, 2425, 1433, 5451, 964]. floating[5261, 5745]. Floating-Point [1988, 3883, 4550, 4846, 5127, 5656, 5440, 4551,
4847, 3887, 6269, 6064, 4556, 5010, 6188, 6190, 6416, 5524, 5525, 5662, 5663,
5735, 6479, 4857, 3326, 3894, 4072, 4073, 4074, 1898, 4412, 2268, 2444, 3647,
5536, 832, 983, 1061, 1996, 2592, 2805, 5138, 5538, 5740, 5881, 5882, 5883, 6194,
6481, 3334, 3335, 1999, 5884, 2446, 2000, 700, 2274, 5742, 5984, 1229, 1230,
1335, 4231, 6197, 6426, 3488, 6290, 5349, 230, 836, 5549, 3164, 3339, 5020, 2602,
1536, 5447, 2606, 3494, 4236, 5352, 5671, 6506, 1233, 6087, 703, 1344, 1459,
1674, 2284, 2992, 3912, 5988, 3914, 1161, 1237, 1675, 5748]. Floating-Point
[3791, 3918, 5023, 5152, 5360, 5361, 2809, 4239, 3347, 3348, 3503, 2008, 5994,
5990, 4244, 2458, 2459, 4246, 4725, 591, 5754, 5755, 5893, 6485, 5159, 5031, 6306,
4256, 1914, 2012, 5996, 3803, 1681, 2823, 2825, 5282, 481, 6434, 4442, 5166, 5371,
3358, 3934, 4096, 1786, 5999, 2157, 1241, 1467, 6000, 4102, 2159, 6312, 4893,
5678, 1242, 2160, 2829, 4444, 5569, 3670, 1919, 5377, 848, 3946, 851, 1247, 2643,
2644, 4610, 5284, 5767, 6102, 6438, 1361, 1562, 6439, 4265, 4452, 5382, 288,
2163, 2164, 2317, 1798, 4108, 5579, 4752, 938, 372, 373, 5177, 3813, 2479, 5460].
Floating-Point [1924, 939, 6327, 2483, 2655, 2840, 6010, 1263, 5186, 5687,


floating-point
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 58

599, 6440, 653, 3952, 4112, 4113, 3813, 3958, 1097, 3205, 1807, 3539, 3382, 5602, 5776, 5924, 1759, 793, 3554, 1482, 2492, 3555, 379, 1904, 2494, 2046, 4297, 5934, 4304, 4632, 1705, 879, 1017, 3565, 3399, 334, 664, 4156, 1485, 342, 347, 2379.

Functions [2512, 3581, 3719, 1714, 1606, 3415, 1850, 2717, 1615, 1616, 3731, 2394, 1201, 1292, 6042, 302, 505, 562, 624, 965, 4348, 6167, 3272, 3103, 3273, 4022, 1499, 6467, 3867, 1969, 1970, 223, 253, 1035, 4038, 2550, 2551, 2753, 2754, 6561, 3124, 5430, 1648, 1139, 2107, 3628, 3630, 6476, 6477, 2791, 4433, 1311, 1743, 5816, 3899, 5142, 1156, 2598, 584, 4082, 4880, 3796, 3351, 3173, 3352, 5675, 2298, 4888, 1355, 4743, 2314, 2646, 6104, 2477, 3191, 1178, 4278, 5051, 6447, 185, 5196, 610, 727, 4146, 5202, 5786, 4488, 3711, 730, 335, 662, 2505, 3067, 4495, 1845, 3242, 5076, 2709, 3252].

Functions [5714, 3088, 2725, 1957, 5314, 1410, 755, 3102, 4356, 1870, 2095, 761, 4819, 4677, 5964, 633, 3304, 3460, 5003, 4721, 5026, 5452, 5752, 1760, 2425].

Fundamentals [6294, 943, 6610, 6606].

Fusion [3316, 4176, 6270, 5845].

Fusul [388].

Futile [4760].

Future [2262, 5291, 458, 5456].

Fuzzy [5441, 4402, 4847, 3672, 1194, 4902, 5191].

FV [6422].

FVG [1681].

G [772].

G. [772].

G4 [4431, 3740].

G5 [4003, 4028, 4029].

GaAs [3645, 3349, 3350].

GAF [2617].

Gain [5966].

Gal [4817, 4979].

Galinhas [6965].

Gallely [381].

Gallium [3165].

Galois [4446, 6004, 3072, 4320, 3726, 3849, 4006, 4192].

Galois-Enhanced [3072].

Galois/Counter [6004].

Galt [6643].

Galveston [6888].

Gamble [4173, 5548].

Game [6107].

Games [6567].

GAMM [6936, 6780, 6729, 6848, 1217].

GAMM-IMACS [6848].

Gamma [2615, 407, 4356, 581].

gap [4826].

GAP9 [6462].

GAPP [2674].

Gappa [5278, 5563].

Gate [6880, 6897, 3185, 1010, 3061, 3396, 5505, 6866, 2765, 3062].

gatefield [1651].

Gates [1727, 5421, 5233].

gating [4078, 5899].

gauge [2328].

Gauss [5526, 5348, 6095, 5169, 1582, 3553, 3072, 1642, 4829].

Gaussian [5974, 1756, 1762, 5025, 5997, 5577, 5685, 2674, 6370, 1496, 1420, 1873, 1973, 1979].

gave [6514].

GCC [6460].

GCD [1763, 2651, 3039, 2721].

GCM [6004].

GDR [6060].

Gem [5367].

gens [2580].

Genauigkeit [1579, 2043, 1173, 624, 1311].

Gene [4874, 4887, 4936].

Gene/L [4874, 4887, 4936].

General [278, 5445, 1061, 4877, 5888, 6507, 843, 844, 994, 5571, 5180, 6763, 721, 1854, 4343, 5963, 1425, 2422, 1311, 579, 2441, 258, 2612, 5179, 4779, 2374, 2375, 2201, 4656, 4200, 2255, 2625, 4829, 1173].

General-Purpose [5180, 6763, 5963, 2441, 2374, 2255].

generalisation [2161].

Generalization [1459, 5795, 524, 1542, 2374].

Generalized [525, 1330, 1908, 6317, 2053, 1835, 2519, 557, 2082, 4032, 4985, 4371, 3627, 787,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

59

Generators [6566, 885, 2824, 6376, 3766, 4398, 3656, 3524].

Generators [6566, 885, 2824, 6376, 3766, 4398, 3656, 3524].

Generators [5855, 2824, 6376, 3766, 4398, 3656, 3524].

Generators [5656, 5885, 885, 2724, 6376, 3766, 4398, 3656, 3524].

Generic [4246, 2294, 4277, 4930, 2083].

Genetic [5559, 2624].

Geneva [6831].

Genus [4269].

Geometric [1666, 3337, 4439, 2322, 3565, 3237, 3101, 3611, 3899, 4229, 3975, 4142, 4296, 2681, 4934, 5212, 4324, 3271, 3610, 3742].

Geometrical [575].

g´eom´etrique [3899].

Geometry [6769, 6814, 6839, 4728, 3012, 3966, 5397, 4924, 6564, 3782, 4200].

George [40].

Georgia [6758, 6700, 6668].

German [2320, 2043, 524, 57, 2636, 371, 3038, 723, 1191, 878, 2873, 807, 554, 3093, 1294, 96, 748, 627, 772, 4394, 4686, 31, 255, 1426].

Germany [6780, 6781, 6729, 6802, 6942, 6917, 6817, 6900, 6848, 6617, 6767, 5348, 57, 6820, 6857, 6970, 6966].

Gers [6738].

Gesamte [1426].

Geschichte [772].

Gesellschaft [6618].

Get [6243, 2136, 3531, 6161, 2431].

Gets [1898, 6473, 5690].

Getting [2468, 2686, 4491].

gewisser [1760].

GF [4192, 3726, 4478, 6314, 4267, 4139, 4288, 4469, 4470, 4289, 2674, 4350, 4385].

GFLOPS [3961, 4124, 4728, 5239, 5690].

Giant [40].

Giants [1448].

Gigabyte [6491].

Gigaflops [2595, 2708].

Given [1282, 5413, 6696].

Givens [2647].

Gives [5239].

giving [2080].

glasses [1357].

glassy [5359, 5557].

Gleichungssysteme [4394, 4686].

gleitendem [96].

Gleitkomma [864, 2872, 2873, 722, 723, 2554, 1313].

Gleitkomma-Arithmetik [864, 722, 723].

Gleitkomma-Prozessoren [1313].

Gleitkomma-Prozessoren [2554].

Gleitkomma- und [2872].

Gleitkommaarithmetik [1833].

Gleitkommadarstellung [748].

Gleitkommaformat [1579].

Gleitkommaprozessor [1738, 3127].

Gleitkommarechnern [2320].

Gleitkommazahlen [1061, 1924, 2043, 2199].

Gleitpunktalgorithmen [3037, 3038].

Gleitpunktrastern [2000].

Gitch [6468].

Global [3485, 3508, 495, 1180, 6731, 3554, 4497, 3591, 3599, 5747, 5179].

Globally [6536, 3606].

GLOBECOM [6731].

GLSVLSI [6881, 6940].

GMICRO [2181].

GMP [4413, 5015, 4202, 5122, 5173].

gmp-based [5173].

GMRES [4894, 5375].

GNB [5725].

GNU [4750, 3377, 6026, 6138, 4026].

Goals [1665].

Gödel [3200].

Godfather [1027].

Godson [5548].

Goldschmidt [4093, 4597, 4105, 5467, 5629].

Golem [961].

Golub [1841].

Good [4213, 4075, 3795, 1789, 2896, 6302, 3923].

Gordon [2627].

got [4716].

GPFP [2587].

GPU [6281, 5886, 5567, 6213, 6219, 6488, 5839, 6346, 5484].

GPUMixer [6346].

GPUMP [5518].

GPUs [6407, 6064, 5529, 5539, 5557, 5998, 6147, 5708, 5307, 5649, 5969, 5518].

Gracious [5859].

Gradient [105, 5489, 4712, 4871, 5074, 2886].

Gradual [4848, 5035, 1087, 4910, 2363, 1394].

Gradual-Underflow [4848].

Grain [4473, 4372, 3187].

grained [6237].
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5617, 2501, 46, 2881, 3074, 6565, 2508, 4319, 2894, 1117, 3249, 3725, 4646, 2718, 5712, 2894, 1117, 3249, 3725, 4646, 2718, 5712, 4008, 4167, 4649, 3089, 5227, 5628, 2523, 4654, 2528, 4803, 1957, 86, 3597, 1033, 2932, 4976, 1733, 3620, 1135, 6176, 3289, 5513, 6402, 2562, 2789, 3310, 2625, 2000, 2512].

Highlights [1009]. Highly [4690, 2445, 5359, 5557, 6433, 1790, 4113, 495, 2506, 3874, 2145, 1801, 4651, 1429, 1430].

Hot [3788, 4426, 6805, 3496, 3497, 3498, 3906, 4427]. Hotel [6880, 6881, 6588, 6630, 6644, 6655, 6718, 6720, 6732, 6733, 6808, 6832, 6889, 6890, 6891, 6613, 6956, 6852, 6792]. Hough [713]. hour [3548]. House [6602, 6643].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

HUB [6010, 6444, 6058, 6262, 6263, 6399]. Huffman [4286]. Huge [6308, 2896]. Hull [3533, 3955, 3216]. Hulls [3483, 2869].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

1905, 5748, 4581, 5360, 6313, 3670, 5037, 6005, 6105, 6443, 1805, 4620, 1581, 5689, 2187, 2188, 1276, 5300, 1025, 1283, 2408, 6468, 2234, 5721, 3763, 2253.

Intellectual [6644]. Intelligience [5568, 6323, 6462, 6473]. Intel(R) [4701].

Intensive [1667, 6287, 6151, 3127, 6501]. Inter [1047, 6324, 6655]. Inter-Continental [6655]. Inter-Modulo [6324]. Inter-relationships [1047]. interaction [5495]. Interactions [3892]. Interactive [1701, 952, 6885].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3794, 3795, 3923, 3670, 4448, 3673, 3950, 3822, 3823, 4160, 4175, 4540]. Java-
5577, 5685, 6008, 3689, 3973, 5504, 6560, 6561, 6562, 6564, 6566, 6567]. Johno
[6969]. Join [2922]. Joint [6563, 6569, 6576, 6578, 6579, 6583, 5334, 6891,
6664, 4522, 5046]. joint-detection [5046]. Jointly [6557, 6918, 6933, 6963].
jokes [4557]. Jordan [5526, 6095]. Jose [6828, 6775, 6844, 6976, 6865]. Joseph
[6372]. July [6669, 6670, 6757, 6780, 6758, 6912, 6794, 6928, 6792, 6773, 6957,
6642, 6917, 6558, 6904, 6929, 6943, 6951, 6954, 6967, 3389, 6778, 6787, 3702,
6796, 6822, 6862, 6861, 6981, 6647, 6789, 6726, 6865, 6970, 3122, 6754, 6755,
6837, 6798, 6910, 6966, 1481, 4049]. Jump [5300]. Jumps [3670]. June
[6757, 6769, 6814, 6839, 6924, 6715, 6728, 6840, 6869, 6947, 6843, 6702, 6988,
6598, 6871, 6462, 6558, 6649, 6631, 6785, 6905, 6972, 6736, 6723, 6935, 6989,
6751, 6908, 2705, 6977, 6608, 6789, 6737, 6738, 6635, 563, 3122, 6754, 6755,
6987, 6985, 6653, 6626, 6698]. Just [5031, 4716].

K5 [3399, 4018]. K6 [3962, 3846]. K6-2 [3962, 3846]. K7 [3856]. K7TM
[4004, 3857]. K6b [6959]. kA/cm [5604]. Kahan [554, 5346, 6008, 5773, 1611,
3863, 3864, 3764]. Kalman [2257, 2569]. Kalray [6116]. KaratSaber [6553].
Karatsuba [4595, 6442, 6235, 6140, 5473, 4945, 6553, 4063]. Karatsuba-
Based [5473]. Karatsuba-Like [4945, 6442]. Karlsruhe [6848]. Karpinski
[2921, 2741, 2920]. Key [5442, 3776, 6226, 4287, 4470, 6436, 6376, 3726,
5718, 3152, 4103, 3711, 4006, 2909]. Key-Exchange [6463]. keying [3065].
Keynote [5736, 2614, 5011, 5280, 4269]. Knuth [1462, 5958]. Kobe
[6902]. Koblitz [5698, 5262, 5011, 5280, 4269]. Kolloquium [1441]. Komma
[3281]. Konvertierung [1924]. Konvertierungs Routinen [2424]. Konvolutionssumme
[3093]. Korea
[6818, 6923]. Koren [4578]. Krivine [6355, 6163]. Krylov
[3481, 6513, 4189]. Kulisch [1621, 1622]. Kummer [6519]. kvadratroden
[1288]. KY [6872]. Kyoto [6987, 3129].

L [1440, 6483, 1621, 4695, 4874, 4887, 2332, 4936]. L-U [2332]. L
[24, 1622]. l.s.d [2102]. label [2968]. Laboratories [69, 89, 2692].
Laboratory [6557, 3480, 4017, 4995]. Ladder [6459, 866, 6250]. Lafayette
[6746, 6808, 6894]. Lagrange [5012]. Lahey [3771]. Lake [6931, 6952]. Lakes
[6881, 6940, 6808, 6824]. Lancaster [6696]. Lanczos [3942, 5074]. Land
[6143]. Language [6698, 6882, 2796, 1677, 1348, 4242, 4243, 4244, 1467, 4106,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Modula-3 [3032, 2711] · Modular [1048, 6503, 3643, 4216, 4859, 5340, 5737, 5265, 5980, 1530, 3898, 2135, 5348, 5146, 5987, 4576, 5150, 5151, 3352, 5155, 2621, 5750, 5028, 6305, 3805, 5998, 6213, 2632, 4103, 4260, 5766, 6315, 5907, 6317, 6442, 3367, 5044, 2837, 5178, 3538, 5589, 1180, 5591, 6116, 3040, 5292, 4288, 5466, 3051, 4475, 3984, 4301, 6139, 270, 3717, 5073, 5478, 1842, 2511, 5948, 736, 3419, 3727, 4959, 4334, 2724, 5956, 4015, 5229, 4182, 6376, 5502, 816, 1133, 2938, 3123, 5242, 4367, 2772, 4378, 4379, 1436, 5868, 6528, 5260, 6057, 3778, 4225, 6505, 5145, 6203, 5277, 3798, 3009, 6487, 3941, 2611, 4119, 4460, 5390] · modular [3957, 4621, 4914, 4139, 4303, 4483, 1274, 4782, 4784, 5220, 5633, 6260, 2752, 2939, 4676, 5112, 3135, 3761, 5256, 4997, 6529, 4841]. Modular-Multiplication [2511] · modulation [4138, 4057] · Modulator [119, 3906].

Module [3771, 1455, 1079, 2631, 2369, 3415, 3100, 4352, 3454, 4219, 2273, 1234, 2302, 2881, 4661, 5647] · Modules [1528, 4412, 4482, 3415, 4774, 3267] · Moduli [5869, 5879, 3816, 6317, 1691, 4755, 6112, 6324, 5185, 889, 5234, 4051, 4379, 3314, 3315, 4843, 1226, 1662, 4572, 4710, 5145, 3916, 4580, 2863, 4652, 1858, 1958, 4972, 4033, 4034, 4055, 2774].

Modulo [4549, 4700, 5540, 6082, 780, 642, 838, 5832, 5374, 4612, 4903, 6324, 5586, 3934, 6334, 1268, 4134, 5932, 4932, 4940, 5225, 3908, 3423, 4324, 1860, 170, 5490, 4667, 4536, 4376, 6401, 972, 4062, 2574, 3891, 4733, 4885, 4892, 1257, 3838, 1856, 4651, 4520, 2925, 5507, 2570].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

545, 3565, 382, 734, 4500, 2513, 5948, 2719, 2720, 3924, 221, 2397, 3429, 1497, 6812, 1863, 4665, 758, 2746, 3867, 4669, 5093, 5094, 5424, 6054, 435, 2422, 1309, 5966, 3134, 912, 2719, 2720, 2904, 193, 221, 2397, 3429, 1497, 6812, 1863, 4665, 758, 2746, 3867, 4669, 5093, 5094, 304, 2548, 2937, 5170, 798, 6447. multiple [2179, 2180, 3224, 6515, 553, 4498, 4499, 5850, 3590, 4177, 2532, 2533, 4356, 1968, 274, 4191, 4983, 5508, 2243, 1310, 5250, 4058, 4546, 1064, 4786].

Multiple-Bit [545, 2422]. Multiple-length [3192].

Multiple-modulus [1911]. Multiple-Precision [833, 922, 1065, 1066, 1155, 5746, 4434, 2422, 3192].

Multiple-Precision-arithmetic [3004]. Multiple-Radix [5565].

Multiple-Radix [5565].

Multiple/Arbitrary [5693]. Multiples [5221, 2803].

Multiplexed [938, 1113, 1605, 2185].

Multiplexor-Based [4013]. multiplicand [6260, 5258].

Multiplication [1319, 5262, 6503, 4203, 1150, 1223, 6, 7, 14, 5660, 5011, 3643, 4216, 4860, 5340, 5737, 5978, 638, 3160, 698, 1900, 699, 4414, 4862, 3161, 779, 5535, 1040, 1285, 3435, 5095, 785, 5274, 5550, 5350, 5745, 585, 4236, 5554, 5097, 4576, 5150, 5151, 3792, 1071, 2809, 5994, 6092, 5155, 5750, 645, 4729, 5160, 5280, 6538, 5898, 6486, 5455, 5567, 5998, 4889, 5166, 5283, 5371, 112, 2632, 3934, 4096, 2827, 5034, 5168, 790, 483, 4100, 5376, 4261, 161, 5766, 935, 1001, 6103, 5906, 3948, 5907, 5383, 6317, 6442, 6105, 184, 5769, 5386, 5581, 447].

Multiplication [4115, 1257, 654, 414, 6325, 4462, 5585, 3538, 5589, 6226, 5591, 5393, 325, 941, 6336, 3970, 1268, 5292, 656, 238, 4137, 5192, 4287, 6340, 6452, 5466, 1380, 3051, 4292, 267, 4769, 800, 4475, 5694, 6127, 6236, 4478, 6238, 3994, 5098, 3648, 128, 1108, 5473, 545, 6142, 4149, 1707, 2369, 2194, 5071, 612, 336, 245, 246, 3071, 5942, 248, 1841, 4318, 4501, 5944, 6158, 1842, 2511, 6033, 5854, 4326, 4327, 2898, 1282, 1608, 4329, 4503, 3419, 3420, 4332, 4333, 4507, 5797, 4512, 6160, 676, 5956, 4180, 4343, 111, 1625, 1626, 895, 4349, 4522, 1863, 1489, 5499, 3104, 3604].

Multiplication [4027, 4185, 4662, 4353, 5718, 685, 1209, 5502, 5421, 758, 2094, 3748, 1036, 5962, 3123, 3753, 5242, 5105, 5243, 152, 908, 4372, 909, 469, 6179, 6498, 5865, 6499, 2722, 4379, 4833, 1434, 1654, 437, 4382, 5115, 4383, 6553, 5868, 4391, 6474, 5200, 4062, 5123, 5673, 6408, 919, 2121, 6278, 3778, 4560, 5131, 5132, 1225, 1527, 3895, 2803, 5136, 82, 3568, 5140, 4707, 2135, 2598, 6505, 5145, 3341, 1225, 5515, 1544, 6300, 5025, 6203, 3175, 5277, 6209, 4884, 6211, 3009, 2302, 2465, 2631, 4506, 2156, 3513, 3514, 3939, 792, 3941, 4013, 2020, 4604, 5172, 5173, 595, 2161, 936, 1793].

multiplication [3190, 6321, 6322, 5918, 3688, 5595, 6120, 4621, 4914, 4623, 4917, 4139, 2183, 2856, 3054, 3228, 4303, 4483, 4309, 2498, 4310, 5297, 5937, 3563, 3838, 2055, 4780, 2373, 4784, 2697, 4648, 5826, 5713, 5795, 5950, 6037, 3421, 2722, 4651, 4334, 2393, 4177, 6041, 4655, 4656, 4806, 6547, 3857, 750, 627, 3861, 4814, 5959, 6200, 2743, 5233, 5503, 3615, 2407, 3747, 5721, 4042, 1876, 2752, 2938, 2939, 3871, 4983, 4676, 1040, 5645, 3456, 470, 5250, 3135, 3761, 5116, 5255, 4997, 5258, 3308, 5517, 2571, 3309, 4841, 5002, 6549,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5845, 4942, 4644, 4830]. Multiply-Add-Fused [5203, 5204, 5205, 4772, 4672].
Multiply-Addition [1987]. multiply-additions [3542]. multiply-adds
[1540, 3454, 3145, 3311, 4595, 3303]. Multiprecise [2275]. Multiprecision
[6271, 2799, 2500, 2972, 3223, 4086, 5576, 5914, 6114, 5918, 3543, 6142, 5214,
1723, 3734, 3920, 5370, 3054, 3228, 4142, 4296, 2056, 5804, 5321, 2404].
Multiprocessor [2656, 2088, 1671, 5080, 5648]. Multiprocessors [3316,
1807, 2562], multiPULPly [6486]. multipurpose [2438]. Multispeculative
Multivariate [1104]. Multivariate [2857, 3859, 6159, 6249, 3858]. Munich
[6900, 6966]. muP [2469]. Must [6243, 2968, 3630]. MWSCAS [6958]. My
[5727, 3146, 6009]. mystery [2095].

NAF [4645]. Names [4282, 3415]. N.A.N [6435, 6540]. Nancy [6912],
nanoelectronics [6933]. nanometer [6881]. Nanosecond [3362, 3515, 1882,
2128]. NaNs [3937, 3594]. Napa [6884, 6771, 6790, 6797, 6811, 6864, 6922,
6938]. Narrow [3557, 2569]. Narrow-Band [2569]. Narrowing [3536]. Nat
[4049]. National [1988, 2796, 6700, 2692, 6647, 1899, 4995]. Native [6434,
4984]. Natural [3974, 6022, 6357, 5553, 8, 3430]. Naturally [4895]. Nature
[6946, 5953, 4451, 4337]. Xavier [3495, 4052]. Navy [6557]. Nb [5604]. NBFS
[2554]. NC [2443]. NDRAM [3670]. Near [3505, 1558, 1480, 3593, 1028,
6193, 4477, 1891]. Near-optimal [1028, 6193]. near-optimum [1891]. Near-
Perfect [1558]. Nearest [6481, 6010, 6011, 5608, 5692, 5318, 5417, 5799].
Nears [3670]. nebst [561]. Necessary [4418, 3980, 738, 3450, 4195]. Need
[1663, 1375, 5240, 3759, 5768]. Needed [1251, 3415, 3420, 509, 757, 5087].
Needle [4130]. Needle-like [4130]. needs [3026, 3027]. Neergaard [508].
Negabinary [774, 1047, 1221, 1319, 1330]. Negabinary-Binary [1221].
Negative [822, 786, 403, 260, 1382, 605, 620, 4512, 746, 747, 5241, 134, 631,
Netherlands [6927, 6747, 6804, 6736, 6989, 6871]. Nets [569, 2107]. Network
[6799, 6318, 6443, 1585, 4291, 6129, 6458, 5943, 6524, 6475, 3636, 3770, 4838].
Networking [6911]. Networks [6268, 6898, 6289, 6293, 1069, 6204, 789, 841,
2825, 6538, 6486, 3357, 6216, 1574, 6340, 6341, 883, 6523, 6380, 2138, 2989, 3939,
2653, 3709, 3751, 2788, 6264]. Neue [1441]. Neuenahr [6652]. Neumann
[6661, 6097, 649, 5577, 5865, 6109, 3689, 542, 6560, 6561, 6562, 6564, 6566, 6567].
Neural [6268, 6289, 6293, 6204, 6538, 6486, 6216, 6318, 6443, 6340, 6341, 4291,
6129, 6458, 6523, 6524, 6380, 6264, 6475, 2989, 3431, 2788]. Neuromorphic
[6244]. Neuroprocessors [5814]. Nevada [6688, 6898, 6569, 6579]. Never
Newest [2250, 3284]. Newman [2756]. News [3670, 6452, 2567]. Newton
[3467, 6193, 4697, 784, 3917, 5832, 4105, 4754, 4906, 3218, 3222, 496, 5060,
8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

83

Novel [775, 4219, 846, 6442, 3204, 2665, 2051, 6158, 4008, 4167, 2735, 3597,
4519, 5106, 5107, 5249, 6499, 5868, 4554, 5899, 2875, 5482, 5803, 4672, 4834].
November [6688, 6828, 6911, 6569, 6579, 6829, 6974, 6602, 6672, 6690, 6701,
6795, 6674, 6593, 6599, 6677, 6719, 6775, 6860, 6615, 6645, 6809, 6680, 6810,
6834, 6850, 6863, 6877, 6944, 6955, 6984, 6620, 6634, 6779, 6791, 6659, 6686,
6714, 4786]. NPL [914]. ns [1442, 3199, 3403, 622, 2775, 2776]. NS16000
[1899]. NS32532 [2127, 2169]. NS32532-NS32580 [2127]. NS32580 [2127].
Nullstellensätze [3981]. Number [5520, 5869, 6503, 3469, 3639, 1443, 3640,
4558, 4853, 4854, 5339, 5527, 5528, 6276, 6421, 203, 826, 3777, 4216, 4859, 474,
639, 775, 828, 697, 777, 1057, 1528, 6533, 5981, 5882, 5540, 700, 1906, 3783,
4873, 586, 204, 1238, 1548, 5672, 5363, 645, 6305, 3505, 3661, 3927, 4255, 6208,
3803, 1164, 3357, 6099, 3011, 5374, 411, 162, 318, 319, 6514, 5905, 855, 1691,
235, 2022, 4903, 5582, 536, 1175, 1255, 6942, 6223, 5185, 1569, 6013, 6230,
1577, 1100, 1101, 1268, 3692, 186, 328, 1377, 1583, 3388, 5058, 721, 799, 187,
1102, 1382, 1824, 5469, 5778, 724, 5695, 5781]. Number [25, 1015, 1192, 4629,
269, 6491, 3988, 4933, 876, 658, 5211, 5073, 4493, 665, 1112, 1837, 4496, 3072,
2883, 299, 1600, 3411, 4951, 885, 3845, 1116, 889, 3416, 2717, 1398, 3420, 3255,
3256, 4331, 4505, 2519, 4012, 4174, 956, 1119, 738, 1855, 3262, 3093, 3423, 1623,
1860, 1494, 5717, 682, 433, 463, 6049, 3272, 1865, 509, 757, 2092, 1131, 4530,
4533, 2548, 907, 1210, 5241, 3872, 2414, 2238, 5723, 908, 1977, 1213, 2768, 2103,
6182, 5512, 3458, 2955, 4998, 768, 4547, 573, 2958, 6590, 2572, 3144, 3314, 3315,
4843, 4844, 4398, 1659, 4206, 4554, 3468, 2579, 2259, 3775, 4559]. number
[5734, 4692, 3482, 6192, 2122, 1055, 1224, 1445, 1992, 1994, 2265, 1226, 3158,
3159, 1759, 1897, 2979, 2980, 1662, 4076, 3779, 5446, 3901, 3650, 4571, 4572,
4710, 2138, 2142, 4079, 4421, 924, 2003, 4574, 5145, 2278, 2451, 2609, 2610,
2611, 2612, 2452, 3168, 3169, 3496, 3497, 3498, 3906, 4577, 3656, 4427, 5889,
1775, 4089, 5561, 1074, 1075, 4252, 2292, 2821, 3003, 3181, 3182, 3506, 3660,
3800, 3664, 3802, 1240, 3938, 4257, 2636, 2637, 3941, 4103, 2310, 2641, 2831,
2311, 3808, 3518, 210, 2312, 2314, 2646, 234, 1003, 1172, 2318, 2319, 1254, 4905,
6917, 3373, 3374, 3375]. number [3376, 2323, 4464, 600, 5046, 5587, 1369, 2660,
3817, 4280, 1007, 1183, 1265, 1373, 1374, 1478, 1479, 1817, 2172, 1933, 2849,
3041, 2176, 1008, 239, 858, 4138, 2669, 3044, 3045, 3046, 3047, 293, 215, 2356,
2860, 3055, 1825, 1937, 1938, 1939, 1940, 2185, 2186, 2357, 2358, 2861, 2680,
2863, 2360, 2681, 2361, 1191, 3704, 3834, 3990, 4147, 5069, 1703, 2687, 2875,
4152, 4153, 4154, 4311, 4312, 4313, 4492, 4778, 3993, 4155, 5703, 2370, 2057,
550, 5618, 5477, 1711, 3840, 4950, 5413, 4952, 6546, 219, 4325, 4643, 2390, 3250,
3251, 2901, 2902, 4008, 4166, 4167, 3088, 3257, 3258, 386]. number [3259, 3260,
3421, 1718, 1856, 5085, 6040, 4334, 4335, 4652, 2908, 2909, 3424, 3595, 504, 4178,
2395, 2530, 4179, 1491, 1858, 1958, 2397, 1408, 4342, 506, 4520, 2402, 3858, 5638,
4972, 3608, 1866, 3114, 2091, 5641, 2409, 2745, 2926, 3866, 4033, 4034, 4035,
968, 1033, 1034, 1636, 1730, 1731, 1967, 1968, 4973, 2929, 2930, 4528, 2936,


173, 2547, 2937, 305, 1421, 1503, 3449, 3622, 1879, 2239, 1975, 5108, 2761, 3755, 1138, 4986, 3129, 4050, 496, 2767, 3624, 1979, 3291, 3292, 3293, 5251, 134, 4381, 2773, 2778, 3141, 3142, 3306, 3307, 4057, 4058, 4059, 4387, 4388, 4544.

Number-Theoretic [4012, 4174]. Numbers [6868, 6912, 638, 981, 4075, 35, 5014, 1449, 1061, 6194, 2446, 527, 5742, 5984, 3488, 6294, 6295, 6801, 4422, 1341, 2454, 313, 1347, 1073, 1777, 1778, 4246, 142, 4734, 6309, 646, 1169, 51, 848, 1471, 3672, 6439, 50, 3675, 6007, 2651, 534, 535, 37, 1174, 2479, 1924, 2483, 2655, 2840, 6011, 6013, 4125, 324, 5771, 6215, 4472, 1587, 5927, 242, 1484, 5405, 612, 659, 5704, 6357, 425, 2883, 4316, 2199, 3408, 5848, 103, 5852, 1115, 2719, 2720, 349, 4512, 1407, 3732, 1201, 170, 3859, 2092, 6378, 2546, 4816, 5240, 3749, 3452, 1647, 3294, 6264, 6473.

numbers [1428, 1219, 634, 5813, 917, 1045, 5126, 3885, 1672, 4048, 2270, 3489, 6198, 5552, 5021, 2609, 2610, 2611, 5747, 4714, 4715, 2286, 5453, 2821, 5161, 3662, 2629, 2630, 2639, 2310, 123, 1362, 2316, 289, 2321, 5913, 4455, 4613, 5286, 1177, 1258, 124, 6009, 3206, 655, 1575, 238, 2043, 2675, 2856, 4768, 4921, 3391, 5196, 1942, 2864, 6132, 3986, 5474, 6354, 2195, 6030, 3066, 1393, 2882, 1279, 3575, 3409, 3238, 345, 5482, 2704, 3580, 8, 4651, 4175, 4337, 1292, 1030, 2537, 2087, 627, 684, 4030, 4663, 2739, 4355, 5503, 3120, 2935, 817, 5328, 5329, 5964, 3874, 821.

Optoelectronic 4791, 3283, 4054, 5652, 1452, 4440, 4143, 2758, 4195, 2559.
Optimized 6875, 3554, 6127, 946, 4497, 3418, 4506, 3089, 6367, 3599, 5636, 3614, 5432, 2603, 2287, 2624, 3806, 3933, 2645, 5464, 2346, 5222, 3269, 5862, 6050, 6875.
Optimizations [3892, 3363, 4104, 4519, 4389, 4568, 5625, 6036]. optimize [5696, 6173]. Optimized [4690, 3634, 6277, 6433, 5458, 4113, 6339, 6026, 6138, 5939, 2706, 6247, 6364, 5796, 5501, 6497, 3588, 5626, 4813, 3176].
Optimizing [5279, 5998, 485, 2307, 1797, 6105, 5837, 5184, 2497, 4929, 3235, 4791, 3283, 4054, 5652, 1452, 4440, 4143, 2758, 4195, 2559].
Optimum [823, 3466, 315, 5063, 2103, 2667, 1891]. Options [935, 1001, 2080, 2255].
Optoelectronic [4101, 6524, 3709]. Oracle [6530]. Oracle-free [6530].
Optical [1559]. Optical [2960, 2141, 2329, 2176, 1600, 2370].
Optimalen [1450]. optimaler [1173, 1028, 1738, 1311]. optimisation [4742].
Optimised [4336]. Optimistic [5190]. Optimization [3485, 5994, 6431, 6875, 3554, 6127, 946, 4497, 3418, 4506, 3089, 6367, 3599, 5636, 3614, 5432, 2603, 2287, 2624, 3806, 3933, 2645, 5464, 2346, 5222, 3269, 5862, 6050, 6875].
Optimations [3892, 3363, 4104, 4519, 4389, 4568, 5625, 6036]. optimize [5696, 6173]. Optimized [4690, 3634, 6277, 6433, 5458, 4113, 6339, 6026, 6138, 5939, 2706, 6247, 6364, 5796, 5501, 6497, 3588, 5626, 4813, 3176].
Optimizing [5279, 5998, 485, 2307, 1797, 6105, 5837, 5184, 2497, 4929, 3235, 4791, 3283, 4054, 5652, 1452, 4440, 4143, 2758, 4195, 2559].
Optimum [823, 3466, 315, 5063, 2103, 2667, 1891]. Options [935, 1001, 2080, 2255].
Optoelectronic [4101, 6524, 3709]. Oracle [6530]. Oracle-free [6530].
Order [6770, 1997, 6841, 3502, 4729, 85, 3535, 4281, 1595, 1021, 6519, 2900, 3599, 1861, 4020, 4024, 2928, 68, 2978, 2292, 232, 3022, 5179, 3549, 1395, 4642, 3727, 3105, 3106, 5100, 4362, 4190, 3756, 2947, 3459, 2568].
Origins [5577, 5685, 6594, 6621, 677, 678, 741, 959, 1198].
Orlando [6940, 6727, 6677, 6680, 6937, 6625]. Orleans [6715, 6674, 6630].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

execution [3459]. Outer [3533, 4032]. outline [3917, 4545]. Output [1158, 1561, 5230, 1501, 515, 2425, 1827, 301, 3257, 3258, 6164, 1315]. Outputs [671].

Overview [694, 931, 1219, 1684, 4620]. Own [6107, 6473]. Oxford [4067, 4068, 6794].

Package [2800, 312, 833, 1065, 1066, 1155, 1227, 2275, 2991, 2993, 2294, 1914, 2012, 931, 5902, 1818, 5840, 1834, 1486, 2083, 2746, 5422, 971, 4409, 4855, 4856, 4858, 6480, 282, 1336, 3784, 479, 1367, 498, 3567, 948, 1315, 1514, 1064, 2245].

PAPIA [1765]. Par'96 [6783]. PARA [6972]. Paradigm [1888, 4163]. Paradoxes [2342, 2488]. Parallel [3883, 1516, 5262, 5871, 5872, 5660, 3322, 203, 4860, 4217, 698, 4220, 6898, 3485, 1330, 3331, 779, 2445, 701, 6505, 1765, 6889, 1158, 5554, 3342, 4082, 5148, 4875, 1771, 4577, 5358, 1772, 2005, 5989, 6091, 314, 2996, 5154, 2814, 2621, 645, 1779, 2819, 3179, 5894, 6872, 6097, 6432, 2825, 5167, 6639, 404, 484, 4101, 3939, 1470, 1244, 1245, 849, 5766, 1791, 4747, 5906, 5769, 5386, 4272, 2656, 3202, 1569, 4465, 495, 6763, 6858, 5393, 6334, 6972, 5777, 6020, 4134, 2490, 4137, 3696, 5465, 3980, 4769, 800, 4475, 6134, 5932, 4301, 2868, 4306, 1484, 3708, 4309, 4148, 2872, 2873, 1835, 130]. Parallel [2710, 2895, 886, 5854, 4797, 6366, 6464, 1402, 3591, 5082, 6738, 5312, 5858,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

89

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5078, 5221, 3415, 2716, 4005, 3584, 3585, 3587, 3723, 3724, 4957, 2514, 2900, 5794, 4330, 2719, 2720, 5304, 1952, 618, 1025, 1284, 2518, 2208, 4332, 4507, 4173, 6039, 6465, 1120, 1197, 1286, 5796, 5856, 2073, 675, 4176, 4338, 5857.

Point

[2727, 2728, 3091, 3593, 6369, 5416, 2731, 2911, 1721, 2527, 3094, 4802, 5488, 5309, 6325, 6253, 2218, 960, 2225, 962, 3097, 2226, 4519, 5489, 2227, 2738, 4816, 1495, 6168, 1629, 432, 1630, 6169, 5636, 3860, 4966, 1498, 4020, 2539, 1413, 1724, 4811, 4968, 2228, 4028, 4354, 4665, 4969, 5637, 4526, 4971, 2921, 1725, 5501, 5719, 2540, 3616, 3617, 2232, 5806, 6052, 3281, 5960, 5961, 6379, 1969, 1970, 1638, 2933, 5807, 2546, 4816, 815, 1297].

Point

[5814, 6405, 5438, 5519, 5001, 5260, 5123, 6406, 5563, 5751, 5892, 4538, 6178, 4197, 2415, 2552, 2553, 2940, 4984, 4985, 1424, 5425, 1738, 5105, 5426, 2763, 3452, 2765, 6470, 3288, 6175, 1308, 469, 4987, 5724, 6396, 3759, 3132, 6058, 6263, 2245, 3876, 6472, 199, 6183, 1427, 1650, 2561, 4993, 5114, 5252, 5253, 5434, 5435, 5512, 5515, 6264, 1510, 1314, 1982, 5649, 2949, 2950, 5811, 200, 3139, 2248, 2600, 4199, 5968, 1746, 4384, 5117, 2569, 771, 2958, 1655, 3462, 5259, 5652, 4061, 917, 1890, 6501]. Point

[5814, 6405, 5438, 5519, 5001, 5260, 5123, 6406, 5563, 5751, 5892, 4538, 6178, 4197, 2415, 2552, 2553, 2940, 4984, 4985, 1424, 5425, 1738, 5105, 5426, 2763, 3452, 2765, 6470, 3288, 6175, 1308, 469, 4987, 5724, 6396, 3759, 3132, 6058, 6263, 2245, 3876, 6472, 199, 6183, 1427, 1650, 2561, 4993, 5114, 5252, 5253, 5434, 5435, 5512, 5515, 6264, 1510, 1314, 1982, 5649, 2949, 2950, 5811, 200, 3139, 2248, 2600, 4199, 5968, 1746, 4384, 5117, 2569, 771, 2958, 1655, 3462, 5259, 5652, 4061, 917, 1890, 6501].

Point

[5814, 6405, 5438, 5519, 5001, 5260, 5123, 6406, 5563, 5751, 5892, 4538, 6178, 4197, 2415, 2552, 2553, 2940, 4984, 4985, 1424, 5425, 1738, 5105, 5426, 2763, 3452, 2765, 6470, 3288, 6175, 1308, 469, 4987, 5724, 6396, 3759, 3132, 6058, 6263, 2245, 3876, 6472, 199, 6183, 1427, 1650, 2561, 4993, 5114, 5252, 5253, 5434, 5435, 5512, 5515, 6264, 1510, 1314, 1982, 5649, 2949, 2950, 5811, 200, 3139, 2248, 2600, 4199, 5968, 1746, 4384, 5117, 2569, 771, 2958, 1655, 3462, 5259, 5652, 4061, 917, 1890, 6501].
8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

92

5379, 936, 1793, 2475, 1794, 5573, 2315, 4748, 4749, 1795, 5285, 5836, 5909, 1250,
1563, 2316, 234, 163, 289, 2649, 3810, 2320, 1799, 4268, 4751, 3811, 2477, 3949,
3019, 3950, 3676, 3526, 5686, 3951, 4455, 4613, 6319, 3681, 5043, 2834, 2835].
point [3193, 3528, 4114, 6221, 1005, 3022, 3371, 3529, 1254, 1366, 4905, 1176,
1923, 3531, 2165, 3372, 1367, 1259, 3198, 3029, 3957, 2166, 3377, 5391, 4463,
2839, 2480, 3030, 1261, 2654, 5182, 5183, 1693, 2841, 6225, 6331, 6445, 5587,
3203, 3204, 2030, 5588, 494, 2660, 798, 1178, 2328, 5590, 655, 2330, 3819,
1181, 1812, 1695, 3213, 3541, 4128, 5051, 5052, 5054, 5392, 2169, 2170, 3961,
4466, 5188, 3540, 1099, 4127, 1182, 1815, 2331, 4620, 5770, 2844, 5598, 5599,
1576, 3216, 5838, 6017, 6120, 6229, 2334, 185, 2034, 3966, 3544, 6233, 2173,
2849, 3041, 3217, 2175, 2340, 2341, 2176, 3042, 1934, 601, 2038]. point
[2039, 3385, 3547, 3548, 4131, 4133, 5604, 4622, 2853, 3219, 3387, 3550, 3220,
5925, 603, 452, 716, 2344, 2345, 3221, 3222, 2346, 2347, 718, 719, 1186, 240,
4917, 2491, 2181, 2043, 1584, 293, 498, 4766, 4767, 2676, 1187, 1188, 2351, 2353,
2354, 2858, 1700, 1823, 1483, 1701, 5468, 3556, 3829, 4294, 3054, 3228, 1936,
4770, 5470, 4474, 866, 2862, 3391, 5196, 801, 868, 942, 1942, 5927, 4143, 5929,
4771, 2496, 3230, 870, 944, 2864, 2187, 2188, 6129, 5782, 6237, 4479, 4772, 6132,
6454, 3832, 3833, 5696, 5067, 6027, 331, 727, 2362, 2683, 2866, 3056, 4481, 5699,
5935, 5841, 5785, 6492, 4774]. point [3707, 4308, 4487, 333, 4489, 3836, 4775,
502, 547, 657, 5474, 1706, 5207, 3563, 5475, 5787, 1590, 5209, 5210, 4150, 5845,
4777, 6354, 2193, 1838, 1018, 1944, 1274, 1708, 2879, 3570, 549, 614, 729, 730,
382, 3572, 662, 663, 948, 550, 5846, 2195, 4779, 1945, 1946, 949, 880, 3065, 6030,
3066, 1393, 2506, 4494, 4637, 5620, 5941, 3068, 2197, 2060, 6516, 6151, 2698,
4942, 2198, 5212, 3074, 1597, 6460, 3077, 1598, 1599, 669, 2508, 2199, 5621,
5707, 3407, 5214, 4785, 4944, 5216, 5217, 5218, 5299, 5411, 2509, 1948, 3842,
4946, 5301, 301, 1843, 2201, 2380, 2383, 2385, 2704, 3580]. point [5851, 1396,
3843, 2063, 2892, 2893, 888, 5485, 5302, 2386, 2387, 953, 4163, 3247, 4644, 2897,
2205, 3083, 6036, 3248, 3249, 3848, 4004, 2391, 3725, 4794, 6522, 2515, 3254,
556, 4795, 5222, 5713, 6038, 459, 4165, 3085, 3086, 5223, 5414, 5952, 5714, 954,
4168, 4010, 4171, 5627, 737, 955, 3728, 4011, 4650, 3261, 4798, 619, 1287, 1953,
5628, 5487, 2209, 192, 674, 958, 2210, 2906, 2211, 3730, 2212, 2213, 2524, 3263,
1956, 504, 3426, 2214, 809, 6556, 2528, 2733, 2913, 4803, 1957, 2217, 3266, 4014,
5631, 2396, 2531, 2736, 2914, 2532, 2533, 1722, 2081, 1292, 892, 893, 4961, 961].
point [506, 1203, 1204, 1293, 680, 1029, 2915, 1030, 3267, 1627, 462, 4808, 3430,
745, 5798, 6044, 5493, 5494, 5716, 6047, 5634, 3856, 3857, 4018, 1296, 4809, 4521,
1862, 3098, 96, 5635, 5497, 6257, 966, 2916, 2402, 3858, 3859, 5498, 3603, 3270,
748, 1962, 2225, 2538, 2087, 6548, 4810, 5862, 752, 683, 684, 3109, 3740, 4029,
4664, 5419, 3861, 4187, 4355, 4813, 4814, 5638, 3863, 3608, 2740, 2741, 2919,
2920, 2742, 1634, 3277, 3114, 5805, 2230, 3610, 3742, 4527, 4815, 897, 3278,
3115, 3439, 1965, 3440, 2093, 1032, 3865, 5091, 1500, 2408, 759, 4036, 4356,
6468, 3743, 2411]. point [1637, 1870, 2932, 4529, 1639, 2233, 1132, 2412, 2413,
4357, 4358, 4531, 4976, 4977, 4978, 5095, 5096, 5097, 5098, 5099, 5100, 5235,
5236, 5237, 5238, 5322, 5323, 5324, 5325, 5326, 2750, 2934, 1733, 1419, 2236,
274, 1420, 1973, 1974, 4672, 3620, 4041, 357, 305, 4190, 4674, 817, 2758, 2759,


5637, 224, 3753, 5424, 5428, 6397, 4991, 5259, 6474, 4078, 4079, 4711, 3496, 4089, 5827, 6486, 5899, 3933, 4595, 3512, 3595, 1250, 3810, 5768, 4110, 4753, 5583, 3817, 2857, 3830, 4155, 3713, 4952, 4001, 4647, 4505, 5627, 4814, 3621, 4195, 2555, 2557, 3134, 4381, 3300]. Power-Delay [3050, 4052].

Precise [2115, 3767, 2594, 5904, 3536, 3963, 4759, 6357, 3269, 4974, 4975, 4379, 5027, 2170, 6036, 5328, 5329, 4296, 4142]. Precision [6047, 5655, 5970, 3465, 4551, 6268, 3771, 1443, 3642, 4857, 6280, 4697, 6281, 6282, 700, 833, 922, 1064, 1065, 1066, 1155, 1227, 4867, 5267, 5542, 6084, 6290, 5349, 5270, 6293, 3492, 3493, 362, 5555, 6296, 6297, 6427, 5556, 5746, 6087, 1541, 284, 1345, 1543, 5749, 207, 3350, 6204, 4434, 4435, 4587, 6431, 591, 4439, 3355, 5455, 5567, 6213, 5999, 931, 407, 4893, 5160, 5459, 6437, 4265, 4452, 5575, 4750, 854, 6441, 4752, 6323, 4274, 6222, 6327, 6328, 6224, 10, 2167, 3958, 4122, 4123, 4756, 4907, 5186, 1475, 1804, 1928, 77, 1098, 3211, 324, 4467, 3214, 3382, 5597, 6118].

Precise [5924, 6121, 6336, 6019, 6122, 1696, 3968, 5604, 3694, 6338, 329, 5467, 1702, 1824, 4920, 4922, 5469, 3700, 330, 5694, 6022, 6135, 5403, 6456, 2049, 4304, 4632, 4930, 6025, 6137, 5842, 5203, 5205, 6028, 1389, 6143, 3396, 2499, 6458, 3565, 6145, 4786, 2055, 2194, 4156, 665, 1275, 1837, 5619, 5943, 6154, 734, 6155, 6156, 6362, 343, 344, 3080, 5708, 6033, 6461, 5791, 3246, 5077, 1282, 4957, 2719, 2720, 191, 4511, 193, 6369, 2731, 3246, 221, 4516, 4517, 679, 742, 4345, 3429, 5569, 6165, 6374, 682, 1497, 1863, 4352, 3436, 4184, 2228, 2229, 5501, 2746, 3118, 3867].

Precision [4669, 5093, 5094, 304, 5422, 4039, 5327, 356, 5424, 174, 1882, 4045, 5243, 6392, 1039, 1309, 5966, 5114, 5512, 5515, 5649, 4384, 971, 5812, 5969, 6554, 438, 6405, 6475, 5518, 6476, 6477, 6406, 5965, 6178, 4587, 3313, 693, 5816, 979, 280, 2973, 4409, 5666, 5736, 5876, 6480, 5444, 4861, 6283, 3899, 4077, 4227, 4228, 4565, 834, 923, 5446, 4707, 3489, 2276, 3784, 1234, 363, 364, 5747, 5359, 5557, 4087, 4431, 4880, 3797, 4090, 6096, 4248, 4249, 2010, 1550, 1679, 5032, 3004, 5761, 6432, 2013, 3806, 3933, 4594, 707, 4098, 6539, 3187, 5170, 4607, 5768, 3950, 6111, 6218]. precision [6219, 1253, 3679, 6319, 9, 5182, 5183, 600, 415, 798, 1476, 2661, 856, 6226, 5590, 6447, 1816, 6449, 6450, 5839, 2039, 2179, 2180, 3043, 1378, 1586, 2678, 5693, 607, 6237, 5201, 5699, 5785, 5786, 3707, 4486, 333, 2870, 3563, 382, 731, 4779, 4636, 5406, 6358, 6544, 4943, 2884, 5074, 6153, 553, 2375, 669, 4498, 4499, 4500, 5850, 2513, 5485, 4791, 6449, 4650, 4177, 1289, 5087, 2217, 1291, 6161, 1205, 1960, 5798, 6044, 5492, 2086, 5496, 3098, 5862, 4661, 683, 3275,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

processor [2240, 1741, 1646, 2429, 3137, 3299, 767, 1218, 3459, 1513, 2433, 2290, 2159, 1089, 2522, 1738]. Processor-T [6443]. Processors [4402, 6186, 523, 3334, 6760, 6773, 6957, 2606, 5748, 5360, 6871, 6915, 1786, 5766, 5180, 3033, 3034, 3209, 6676, 6695, 6707, 6732, 6806, 6887, 6888, 6904, 6929, 6943, 6951, 3035, 3036, 1376, 1948, 2201, 2380, 3244, 2386, 1281, 2205, 2390, 1117, 3254, 4165, 1285, 5627, 737, 2209, 2077, 2214, 2217, 3857, 3098, 5635, 2917, 3275, 4525, 5419, 1634, 3277, 1869, 3447, 2411, 1877, 1879, 2239, 1883, 1737, 2942].

produce [6515, 4644]. produced [3126]. producing [4170]. Product [6757, 777, 5880, 6423, 6084, 5272, 3788, 1342, 2997, 4889, 4747, 5382, 6440, 4753, 6443, 6336, 6339, 5399, 3226, 6126, 1847, 4792, 4793, 4956, 6368, 1411, 1868, 5806, 6052, 2564, 3466, 1442, 5341, 5273, 1907, 3496, 2813, 3002, 3506, 6513, 3948, 4456, 1478, 3044, 3045, 3046, 3047, 3055, 5609, 5785, 3588, 5716, 760, 1869, 2941, 1646, 5119, 5437, 5333].

Production [6620]. productivity [6851].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[5869, 6503, 4853, 4854, 6276, 6421, 1322, 1324, 3777, 4216, 4860, 474, 4383, 4931, 3997, 109, 1961, 6048, 683, 1506, 4828, 1889, 1753, 3780, 2136, 3496, 5747, 2298, 3951, 4455,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 104

105
3972, 3694, 496, 165, 4919, 3392, 45, 3393, 4298, 5701, 2871, 5702, 6543,
3396, 2369, 1591, 3403, 6360, 2885, 2871, 5702, 6543, 3396, 2369, 1591, 3403,
6360, 2885, 2701, 5219, 6247, 1115, 5624, 5711, 3845, 555, 3418, 1487, 5083,
1955, 3393, 4298, 5701, 2871, 5702, 6543, 3396, 2369, 1591, 3403, 6360, 2885,
2701, 5219, 6247, 1115, 5624, 5711, 3845, 555, 3418, 1487, 5083, 1955, 3393,
4298, 5701, 2871, 5702, 6543, 3396, 2369, 1591, 3403, 6360, 2885, 2701, 5219,
6247, 1115, 5624, 5711, 3845, 555, 3418, 1487, 5083, 1955, 3393, 4298, 5701,
2871, 5702, 6543, 3396, 2369, 1591, 3403, 6360, 2885, 2701, 5219, 6247, 1115,
5624, 5711, 3845, 555, 3418, 1487, 5083, 1955, 3393, 4298, 5701, 2871, 5702,
6543, 3396, 2369, 1591, 3403, 6360, 2885, 2701, 5219, 6247, 1115, 5624, 5711,
3845, 555, 3418, 1487, 5083, 1955, 3393, 4298, 5701, 2871, 5702, 6543, 3396,
2369, 1591, 3403, 6360, 2885, 2701, 5219, 6247, 1115, 5624, 5711, 3845, 555,
3418, 1487, 5083, 1955, 3393, 4298, 5701, 2871, 5702, 6543, 3396, 2369, 1591,
3403, 6360, 2885, 2701, 5219, 6247, 1115, 5624, 5711, 3845, 555, 3418, 1487,
5083, 1955, 3393, 4298, 5701, 2871, 5702, 6543, 3396, 2369, 1591, 3403, 6360,
2885, 2701, 5219, 6247, 1115, 5624, 5711, 3845, 555, 3418, 1487, 5083, 1955,
3393, 4298, 5701, 2871, 5702, 6543, 3396, 2369, 1591, 3403, 6360, 2885, 2701,
5219, 6247, 1115, 5624, 5711, 3845, 555, 3418, 1487, 5083, 1955, 3393, 4298,
5701, 2871, 5702, 6543, 3396, 2369, 1591, 3403, 6360, 2885, 2701, 5219, 6247,
1115, 5624, 5711, 3845, 555, 3418, 1487, 5083, 1955, 3393, 4298, 5701, 2871,
5702, 6543, 3396, 2369, 1591, 3403, 6360, 2885, 2701, 5219, 6247, 1115, 5624,
5711, 3845, 555, 3418, 1487, 5083, 1955, 3393, 4298, 5701, 2871, 5702, 6543,
3396, 2369, 1591, 3403, 6360, 2885, 2701, 5219, 6247, 1115, 5624, 5711, 3845,
555, 3418, 1487, 5083, 1955, 3393, 4298, 5701, 2871, 5702, 6543, 3396, 2369,
1591, 3403, 6360, 2885, 2701, 5219, 6247, 1115, 5624, 5711, 3845, 555, 3418,
1487, 5083, 1955, 3393, 4298, 5701, 2871, 5702, 6543, 3396, 2369, 1591, 3403,
6360, 2885, 2701, 5219, 6247, 1115, 5624, 5711, 3845, 555, 3418, 1487, 5083,
1955, 3393, 4298, 5701, 2871, 5702, 6543, 3396, 2369, 1591, 3403, 6360, 2885,
2701, 5219, 6247, 1115, 5624, 5711, 3845, 555, 3418, 1487, 5083, 1955, 3393,
4298, 5701, 2871, 5702, 6543, 3396, 2369, 1591, 3403, 6360, 2885, 2701, 5219,
6247, 1115, 5624, 5711, 3845, 555, 3418, 1487, 5083, 1955, 3393, 4298, 5701,
2871, 5702, 6543, 3396, 2369, 1591, 3403, 6360, 2885, 2701, 5219, 6247, 1115,
5624, 5711, 3845, 555, 3418, 1487, 5083, 1955, 3393, 4298, 5701, 2871, 5702,
6543, 3396, 2369, 1591, 3403, 6360, 2885, 2701, 5219, 6247, 1115, 5624, 5711,
3845, 555, 3418, 1487, 5083, 1955, 3393, 4298, 5701, 2871, 5702, 6543, 3396,

Schneller Schools [135x347] [135x335] [135x455] [6781]. [1719]. schnell

SC'06 [6911]. SC2002 [6860]. SC22 [5052, 5053, 5054].

Scalable [5763, 4887, 4904, 5591, 4795, 6169, 4350, 5502, 4367, 4372, 5117, 6528, 4841, 5001, 5260, 5859, 4676]. Scalar [1894, 5262, 4203, 6268, 5011, 2591, 5744, 5383, 4462, 5606, 5942, 4644, 4329, 4503, 4645, 4349, 4522, 4391, 5131, 5132, 3329, 6209, 2175, 2340, 2341, 2043, 1942, 2359, 6041, 2941, 5116, 6283]. Scalars [4522, 4780]. Scale [6557, 1771, 5754, 5566, 1371, 6765, 6162, 5420, 906, 2751, 6551, 3575, 6624, 6174]. scale-dependent [6174]. scalable [3878].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

successor

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6769, 6814, 6839, 6880, 6881, 6897, 6924, 6941, 6780, 6727, 6611, 2578, 3638, 3772, 6884, 6821, 6723, 6935, 6787, 3702, 6824, 6607, 6565, 6652, 6908, 6981, 2705, 6977, 6608, 6617, 6851, 6592, 6790.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Table-assisted
Table-Based
Table-Driven
Table-Lookup
Tables
tabular
tackles
tactics
Tahoe
Taipei
Taiwan
take
Taken
Takes
Taking
tale
Talk
talks
Tall
Tall-Skinny
Tampa
Tanaka
Tang
Tangent
Tapered
Tapia
Tar
Target
Targeting
targets
Task
Taub
Taylor
TC
TC2
TC2/WG
TCCA
TDC
Teaching
Tech.
technical
Technique
techniques/floating
Technologies
Technology
techniques
Teil
telco
Telecommunications
teleoperator
Telephone
Telephony
Tempe
Ten
ten-thousandfold
ten
Tender
Tensor
TensorFlow
Tenth
Terabytes
Teraflop
Term
Termination
Terms
Ternary
Terril
Tesla
Test
Tests
Threading
Three-Rail
5815, 6225, 6445, 2, 3623.
Three-dimensional
[24].
Thomson
[4369, 4370].
Théorique
[6679, 2215, 5490, 6741].
3910, 453, 4330, 4524, 524, 2272, 3500, 5043, 5507.
Theorems
[1268, 665, 1116, 4012, 4174, 1224, 1937, 1939, 5108].
Theoretic
[6009].
them
[1221, 121, 4412, 3672, 5778, 879, 883, 1625, 3613, 2753, 2754, 4538,
3320, 6201, 27, 1915, 3193, 5392, 2333, 1831, 680, 4187, 2407, 354, 762,
1972, 2938, 5107, 3129]. them [6009]. Theorem [4552, 6770, 6854, 6841,
3910, 453, 4330, 4524, 524, 2272, 3500, 5043, 5507].
Theorems [4633].
Theoretic
[1268, 665, 1116, 4012, 4174, 1224, 1937, 1939, 5108].
Theoretical
[6207, 164, 719, 4295, 3852, 1507, 1186, 17]. Theorie
[6607, 6590].
Theories
[6679, 2215, 5490, 6741]. théorique [17]. Theory
[6591, 6924, 6941, 5443, 6577, 4854, 6661, 3661, 3927, 995, 319, 1091, 37,
1174, 3953, 6942, 6803, 6692, 5294, 1193, 503, 6607, 299, 5479, 2391, 1621,
1622, 2926, 2414, 6560, 6561, 6566, 6590, 2961, 3637, 6606, 924, 2450, 2146,
2148, 1788, 6716, 5286, 6917, 4279, 2860, 3055, 1384, 5206, 5404, 3571, 272,
955, 6789, 1856, 2937, 1135, 6567]. there
[6286, 3408]. therefore [5209]. Thereof [6124]. Things [4075, 6549]. Third
[6687, 6729, 6772, 4271, 6764, 6823, 6955, 3603, 226, 6959, 6722, 6854, 891,
6677]. Thirteenth [6897]. Thirty [6795, 6810, 6823, 6834, 6850, 6863, 6877]. Thirty-Fifth
[6850]. Thirty-First [6795]. Thirty-Fourth [6834]. Thirty-Second
[6810]. Thirty-Seventh [6877]. Thirty-Third [6823]. Thomas
Threading [5689]. threads [3415]. threats [4577]. Three
[7, 5135, 782, 3934, 4096, 846, 6112, 6012, 889, 1856, 4515, 170, 4020, 2097,
1878, 2755, 5815, 6225, 6445, 2, 3623]. Three-dimensional
[2755, 3623]. Three-Moduli
[6112]. Three-Rail [2097]. three-term [6225, 6445]. Three-Way
[4020]. Threshold
[233, 1010, 6464, 5559, 3625]. thresholding [3432]. Throughput
[5442, 6195, 6127, 6131, 4924, 5489, 6375, 1144, 3491, 3284]. throughputs
[6313]. Thumb
[4330]. Thyrite
[101]. TI
[903, 3125, 4369, 4370]. TI-89
[4369, 4370]. TI-89/TI-92
[4369, 4370]. TI-92
[4369, 4370]. Tick
[2948]. tidal [3320]. Ties
[6481]. Tight
[6123, 6518, 5626, 4649, 5642, 3649, 3630].
tti
[1688, 619]. Tiling
[2001]. Time
[2960, 6269, 311, 3158, 442, 1769, 1541, 6092, 4253, 99, 409, 937, 2476, 539,
6906, 4135, 3980, 1190, 5611, 115, 6352, 4491, 5213, 1950, 6463, 1617, 2078,
222, 150, 2090, 3748, 6392, 2943, 3127, 2103, 358, 437, 2112, 2569, 5261,
6532, 2573, 1442, 1989, 581, 6535, 2601, 4573, 2278, 2451, 2455, 6205, 2820,
3662, 4105, 2312, 5684, 6322, 6221, 3204, 5097, 3079, 3410, 2890, 1848, 3865,
6468, 6173, 2771, 3761, 5867, 1140, 4838]. Time-Division
[115, 150]. time-domain [3865]. Time-Optimum
[2103]. Time-Redundant
[2112]. Time-Sharing
[99]. time-varying
[2573, 1989]. Timed
[4081, 3403, 3905, 3165, 3986, 3713, 2110, 2776]. timer [5627]. Times
[761, 1447]. Timing
[3853, 5873, 2775]. Tiny
[6501, 5760]. Titan
[2744]. Title
[6074, 6075, 6419, 6420, 6390]. TMR
[4021]. TMR
[4105]. TMS
[3225].
TMS320
[6666, 2214, 2758, 2759]. TMS32010
[2093]. TMS32020
[2099]. TMS320C30
[3065, 2208]. TMS320C3x
[3754, 4824]. TMS320C67x
[4535]. TMS34082
[2757, 2760]. TMS390C602A
[2458, 2459]. Today
[1207, 1447, 3126]. Todd
[321, 322]. Toeplitz
[5389]. together
[561].
MULTILINE
UX [4308, 4487, 4677, 4822]. UYK-17 [810].

References

[1] G.-W. Leibniz. Explication de l’arithmétique binaire. (French) Explanation of binary arithmetic. Mémoires de mathématique et de physique de l’Académie royale des sciences, ???(?).:85–89. 1703. URL https://hal.archives-ouvertes.fr/ads-00104781/document. Leibniz is often credited with the invention of the binary number system, but there is other work from his era, and detailed analysis of Leibniz’s use of binary numbers. See [371, 488, 598, 1191, 1358, 6099, 6526, 6555].

REFERENCES

to count to three]. ???, Prague, Czechoslovakia, 1712. ???. pp. URL
https://play.google.com/books/reader?id=cNxdAAAACAAJ.

Philosophical transactions of the Royal Society of London, 34(392–398):
161–173, ???. 1726. CODEN PTRSAV. ISSN 0370-2316. URL http://
/arithmetic22.gforge.inria.fr/slides/s2-ercegovac.pdf.

Manuscript held by Museum of the History of Science, Oxford, UK.
Reprinted in [6621, §2.1.], December 1837.

weight, measure and coins, proposed to be called the tonal system, with
sixteen to the base*. J. B. Lippincott and Co., Philadelphia, PA, USA,

Scientific American, 32(3):41–42, January 16, 1875. CODEN SCAMAC.
nature.com/scientificamerican/journal/v32/n3/pdf/
scientificamerican01161875-41.pdf.

American*, 41(12):184, September 20, 1879. CODEN SCAMAC.
ISSN 0036-8733 (print), 1946-7087 (electronic). URL http://www.nature.
com/scientificamerican/journal/v41/n12/pdf/
scientificamerican09201879-184.pdf.

[8] Simon Newcomb. Note on the frequency of use of the different digits in
CODEN AJMAAN. ISSN 0002-9327 (print), 1080-6377 (electronic). URL http://links.jstor.org/sici?stici=0002-9327%
281881%294%3a1%2f4%3c39%3anotfo%3e2.0.co%3b2-k.

REFERENCES

[31] K. Zuse. Verfahren zur selbsttätigen Durchführung von Rechnungen mit Hilfe von Rechenmaschinen. (German) [Procedure for automatic
execution of calculations by calculating machines]. German patent application Z23624., April 11, 1936. Reprinted in [6621, §4.1].

REFERENCES

REFERENCES

Aiken:1946:ASC

Burks:1946:PDL

Cesareo:1946:RI

Comrie:1946:BDC

Dreyer:1946:REM

[57] H.-J. Dreyer and A. Walther. Der Rechenautomat Ipm. Entwicklung Mathematischer Instrumente in Deutschland 1939 bis 1945. (German) [The Ipm calculator. The development of mathematical instruments in Germany 1939–1945]. Bericht A3, Institut für Praktische Mathematik, Technische Hochschule, Darmstadt, West Germany, August 19, 1946. Reprinted in [6621, §3.3]. Translated by Mr. and Mrs. P. Jones.

Goldstine:1946:ENI

Goldstine:1947:PCPa

REFERENCES

Goldstine:1947:PCPb

Goldstine:1947:PCPe

Goldstine:1947:PCPd

Goldstine:1947:PCPf

Goldstine:1947:PCPf

Juley:1947:BC

Mauchly:1947:PPE

REFERENCES

REFERENCES

Reading, MA, USA, 1951. 167 pp. LCCN QA76.5 .W55 1951. See also second edition [137], and reprint [1512].

Andrews:1952:RBL

Davis:1952:ARS

Michaelson:1952:BA

Morrill:1952:SEM

Sheldon:1952:ICP

Brooker:1953:FOE

IBM:1953:POT

REFERENCES

Lowan:1960:PREa

Lowan:1960:PREb

Pawlak:1960:ODC

Perlin:1960:HPC

Perry:1960:CBF

Pope:1960:MPA

Reitwiesner:1960:BA
G. W. Reitwiesner. Binary arithmetic. In Alt et al. [6559], pages 231–308. ISSN 0065-2458. LCCN QA76.A3.

Sarafyan:1960:DCS
REFERENCES

REFERENCES

Avizienis:1961:SDN

Cheney:1961:DCB

Cheney:1961:TNA

Clarkson:1961:DMI

Cox:1961:NMP

Croy:1961:RTM

Freiman:1961:SAC

REFERENCES

REFERENCES

Keir:1962:DOD

Kesner:1962:FPA

Knuth:1962:EPC

Lake:1962:LEH

Lynch:1962:WBD

MacSorley:1962:RBA

McGee:1962:BM

Meggitt:1962:PDP

REFERENCES

Zuse:1962:ERE

Bemer:1963:NRT

Clenshaw:1963:ASF

Daly:1963:HSA

Descloux:1963:NRE

Dietmeyer:1963:CPN

REFERENCES

REFERENCES

Stein:1964:DCM

Swo:1964:SFP

Wallace:1964:SFM

Wolfe:1964:RTE

Ashenhurst:1965:EEC

Ashenhurst:1965:EIU

Ashenhurst:1965:TAE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Filippi:1966:BEE

Flehinger:1966:PRI

Garner:1966:ECA

Grau:1966:BRB

Gregory:1966:DAU

Greve:1966:HLR

REFERENCES

[378] W. Kahan. 7094 II system support for numerical analysis. SHARE Secretary Distribution 159, C4537, 1966.

REFERENCES

REFERENCES

REFERENCES

Adams:1967:SCP

Anderson:1967:ISMb

Clark:1967:PSF

Cody:1967:CFI

Cody:1967:IMD

Crisansan-Zverca:1967:PED

Curry:1967:ART

DeRegt:1967:NRA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Machinery, 10(7):430–432, July 1967. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

REFERENCES

October 1967. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

REFERENCES

REFERENCES

REFERENCES

1969. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

Flores:1969:BRB

Froberg:1969:INA

Glaser:1969:HMN

Hammersley:1969:NAP
REFERENCES

[496] Richard F. King and David L. Phillips. The logarithmic error and Newton's method for the square root. *Communications of the Association*
REFERENCES

Kirsch:1969:ACA

Knight:1969:FPS

Knuth:1969:SA

Knuth:ACP69-2

Linhardt:1969:DDT

Liu:1969:EAD

Matula:1969:TAM

Posnov:1969:FPR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1970. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See addendum [734].

Nickel:1970:KBS

Ninomiya:1970:BRS

Oppenheim:1970:RDF

Phillips:1970:GLE

Rao:1970:BEC

Rao:1970:BLR

Robertson:1970:CBM

REFERENCES

REFERENCES

REFERENCES

Yohe:1970:ACB

Yohe:1970:BPF

Yong:1970:GBA

Zohar:1970:NRC

Zuse:1970:CML

Abdelmalek:1971:REA

Alway:1971:GFA

REFERENCES

REFERENCES

Clark:1971:SCP

Cody:1971:DHC

Cody:1971:SEF

Dekker:1971:FPT

DeLong:1971:UPA

Dutka:1971:SRD

Gear:1971:NIV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bandyopadhyay:1972:IAM

Banerji:1972:TAR

Brakefield:1972:OFP

Chen:1972:ACE

Chiang:1972:NAB

REFERENCES

Ripley:1972:PFP

Rohl:1972:NCA

Samet:1972:CDL

Schulenberg:1972:RSS

Schurmann:1972:MEA

Shaham:1972:NDA

Stallings:1972:CPM

Stefanelli:1972:SHS

Tung:1972:A

Urabe:1972:CEA

Varian:1972:LEB

Young:1972:SNM

Aird:1973:SUM

Anjoorian:1973:EME

REFERENCES

Kulisch:1974:PCC

Ling:1974:CSA

Linnainmaa:1974:ASK

Metropolis:1974:SAA

Miller:1974:CCN

Moon:1974:MRM

Neumaier:1974:REV

[807] A. Neumaier. Rundungsfehleranalyse Einiger Verfahren Zur Summation Endlicher Summen. (German) [Rounding error analysis of a method for

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Myron Ginsberg and Dennis J. Frailey. The design and use of a floating-point (software) simulator for testing the arithmetic behavior of mathematical software. Technical report CP 74028, Department of Computer Science, Institute of Technology, Southern Methodist University, Dallas, 1975. 26 pp.

REFERENCES

REFERENCES

[874] Frans Lemeire. Computation of equivalent inherent rounding errors in the solution of a set of linear equations. *BIT (Nordisk tidskrift*
REFERENCES

Linnainmaa:1975:TAS

Lipovski:1975:RND

Liu:1975:REF

Lorez:1975:BGB

Martinson:1975:DMF

Matula:1975:FSF

McDonald:1975:TCQ

Meo:1975:ANT

Miller:1975:SRA

Nance:1975:IFR

Nelson:1975:PPF

REFERENCES

REFERENCES

1975. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic). See [892].

REFERENCES

REFERENCES

References

[928] Giovanni De Sandre, Angelo Subrizi, and Franco Brettì. Fixed point to floating point conversion in an electronic computer. US Patent
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES
267

REFERENCES

REFERENCES

REFERENCES

Ligomenides:1977:SSF

Maag:1977:SRE

Metropolis:1977:MSA

Metropolis:1977:SAP

Mitra:1977:CDI

Ninke:1977:SRB

REFERENCES

REFERENCES

43, March 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

McCrea:1978:CFP

Mitra:1978:ITD

Murphy:1978:SRP

Nussabaumer:1978:FMN

OLeary:1978:DHS

[1117] G. P. O’Leary. The design of a high-speed arithmetic processor. In COMPSAC ’78 [6602], pages 175–176. LCCN ???.

Olver:1978:NAE

Patel:1978:ASB

REFERENCES

REFERENCES

University, Pittsburgh, PA, USA, 1979. 20 pp. URL http://books.google.com/books?id=mutgGwAACAAJ.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bareiss:1980:RED

Barsi:1980:ECC

Brent:1980:AIB

Brent:1980:UAE

Brown:1980:EPB

Brown:1980:SRM

L. Farrell. 8232: a peripheral for floating-point arithmetic. In IEEE MICRO ’80 [6614], pages 13–18. LCCN QA76.5 .P74.

REFERENCES

REFERENCES

REFERENCES

311

Oberaigner:1980:AMG

Palmer:1980:IND

Palmer:1980:LIN

Palmer:1980:UND

Payne:1980:VFPa

Payne:1980:VFPb

Pedersen:1980:HBM

Purtilo:1980:IAP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1336] Earnest Allan Cariker. A rapid-approximation floating-point mathematics package for the INTEL 8080 microprocessor. Computing science thesis (M.S.), Texas A&M University, College Station, TX, USA, 1981. viii + 152 pp.

REFERENCES

REFERENCES

REFERENCES

Grappel:1981:RDB

Gregory:1981:RAR

Griffiths:1981:BDC

Grote:1981:CIS

Hazlerig:1981:CES

Hendra:1981:FPS

Hough:1981:API

Huang:1981:IFD

REFERENCES

[1397] Diem Dinh Nguyen. A systematic approach to the design of structures for addition and subtraction — case of radix $r = m^k$.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

328–335, April 1982. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

Fulton:1982:BJB

Gerrity:1982:CRR

Goodrich:1982:VEP

Gordon:1982:BFS

Hantler:1982:ESS

Hull:1982:PCE

Hull:1982:UCP

Hwang:1982:PMA

REFERENCES

REFERENCES

REFERENCES

on Acoustics, Speech, and Signal Processing, ICASSP ’82, pages 56–59. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1982. CODEN ????. ISSN ????

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bushard:1983:MTS

Caraiscos:1983:REA

Chamrad:1983:FFP

Chan:1983:ACS

Chang:1983:HSN

Chow:1983:PDA

Ciminiera:1983:FIM
REFERENCES

REFERENCES

582–589, November 1983. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic). See [1602] and generalization [2333].

Dyer:1983:ZRP

Ercegovac:1983:HRD

Ferguson:1983:DTE

Fraenkel:1983:SN

Gaitanis:1983:NPC

Galand:1983:FD

REFERENCES

REFERENCES

Halatsis:1983:ECC

Heninger:1983:ZZF

HP:1983:CDR

Huang:1983:FPM

Huntsman:1983:MFP

Iffrig:1983:ULC

Ingram:1983:ACW

[1572] Windell F. Ingram, N. (Narayanswamy) Radhakrishnan, and Deborah F. Dent. Accuracy considerations when using some minicomputers for scientific and engineering problems. Technical report, U.S. Army Engineer Waterways Experiment Station; available from National

[1579] C. Jung. Berechnung der reellen und reellintervallwertigen Standard-
funktionen mit maximaler Genauigkeit in einem hexadezimalen
Gleitkommaformat [English: Computation of the Real and Real Interval
Valued Standard Functions with Maximal Accuracy in a Hexadecimal
Floating-Point Format]. Diplomarbeit, Institut für Angewandte
Mathematik, Universität Karlsruhe, Karlsruhe, Germany, September

[1580] W. Kahan. Minimizing $q^m - n$. Technical report, Department of
Mathematics and Department of Electrical Engineering and Computer
Science, University of California, Berkeley, Berkeley, CA, USA, March

[1581] W. Kahan. Mathematics written in sand — the HP-15C, Intel 8087,
LCCN QA276.4 .A43a. URL http://www.cs.berkeley.edu/~wkahan/
MathSand.pdf.

to 10,013,395 decimal places based on the Gauss–Legendre algorithm and
Gauss arctangent relation. Technical report CCUT-TR-84-01, Computer
Centre, University of Tokyo, Bunkyo-ky, Yayoi 2-11-16, Tokyo 113,
Japan, December 1983.

[1583] S. Kaushik. Sign detection in non-redundant residue number system
with reduced information. In IEEE SCA6 '83 [6631], pages 24–
28. ISBN 0-8186-4476-1 (paperback), 0-8186-8476-3 (hardcover), 0-
8186-6476-2 (microfiche), 0-8186-0034-9 (hardcover). LCCN QA 76.9
Computer Society order number 476.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Payne:1983:DRT

Payne:1983:RRT

Preparata:1983:MCA

Prosser:1983:NCS

Prosser:1983:SNN

REFERENCES

REFERENCES

[1651] Edmund John Walsh. Floating gate field effect transistor operating point changes: causes, characterization, and effect on electric field measurement by the device. Thesis (M.S.), Boston University, Boston, MA, USA, 1983. v + 121 pp.

[1653] Bertrand Jeffery Williams. A bit-serial floating point multiply/add architecture for signal processing applications. Electrical engineering thesis (M.S.), Texas A&M University, College Station, TX, USA, 1983. x + 97 pp.

Anonymous:1984:CPD

Bell:1984:RMR

Black:1984:NIS

Bollen:1984:NSD

Boney:1984:GTD

Borwein:1984:AGM

Braddock:1984:ASP

REFERENCES

Butterfield:1984:MT

Caraiscos:1984:REA

Cavanagh:1984:DCA

Cheng:1984:FPC

Clarke:1984:AAR

Clenshaw:1984:BFP

Cody:1984:PRW

Coonen:1984:CPS

REFERENCES

Corliss:1984:AGT

Cowlishaw:1984:DRL

Demmel:1984:URN

Demsky:1984:MMC

Dietrich:1984:FPR

Duncan:1984:FSF

Dunford:1984:SFPa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Stetter:1984:SDC

Stewart:1984:PWG

Takla:1984:MBF

Taylor:1984:BFP

Teufel:1984:HAO

Teufel:1984:OG

Tricker:1984:ERM

Zuse:1984:CML

Aridgides:1985:EIQ

Armstrong:1985:PLHa

Armstrong:1985:PLHb

Aspinwall:1985:RVM

Auzinger:1985:AAR

Avizienis:1985:AAO

REFERENCES

Bleher:1985:AHA

Bohte:1985:GEF

Brent:1985:SAI

Burton:1985:SFE

Cantoni:1985:PPA

Cathey:1985:ISR

REFERENCES

REFERENCES

[1797] Curt Gridley. Improving the performance of scientific applications on a supermicro using a custom floating point processor and an optimizing

REFERENCES

REFERENCES

REFERENCES

Kobayashi:1985:MTC
Koopman:1985:FFP
Kornerup:1985:FPL
Krishnan:1985:CDS
Kurokawa:1985:PT
Kwan:1985:MOW

Ngai:1985:RAT

Ni:1985:VRT

Ohhashi:1985:HSC

Oklobdzija:1985:SOS

Palmer:1985:MGN

Papachristou:1985:MIR

REFERENCES

REFERENCES

REFERENCES

Magdy A. Bayoumi. Lower bounds for VLSI implementation of residue number system architectures. *Integration, the VLSI journal*, 4(3):263–269, September 1986. CODEN IVJODL. ISSN 0167-9260.

B. Beims. The floating-point performance standard gets even faster! In WESCON ’86 [6659], pages 35/1/1–13. LCCN TK 7801 W47 1986.

REFERENCES

[1926] Mark Hill, Susan Eggers, Jim Larus, George Taylor, Glenn Adams, B. K. Bose, Garth Gibson, Paul Hansen, Jon Keller, Shing Kong, Corinna Lee,

REFERENCES

[1933] T. Johnson and G. Clark. Techniques for realization of high-speed
recursive digital filters using residue number system arithmetic. In
IEEE [6655], pages 2623–2626. CODEN ITCOB4. ISBN ???? ISSN
lieeexplore.ieee.org/servlet/opac?punumber=8362. IEEE catalog
number 86CH2243-4.

[1934] P. Kabal and B. Sayar. Performance of fixed-point FFT’s: Rounding and
scaling considerations. In IEEE International Conference on Acoustics,
Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1986. CODEN ???? ISSN ????

343, Center for Pure and Applied Mathematics, University of California,
Berkeley, CA, USA, September 1986. 8 pp.

[1936] Daniel E. Kreithen. Floating point calculation speeds for the image
processing workstation. Technical report, Brown University, Division
of Engineering, Providence, RI, USA, 1986. 23 pp.

theoretic transforms using quadratic residue number systems. In IEEE
International Conference on Acoustics, Speech, and Signal Processing,
ICASSP ’86, pages 233–236. IEEE Computer Society Press, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA, 1986.

processing using quadratic residue number systems. Acoustics, Speech,
and Signal Processing [see also IEEE Transactions on Signal Processing],
ISSN ???? URL http://ieeexplore.ieee.org/xpl/tocresult.jsp?
isnumber=26196.

number theoretic transforms using quadratic residue number systems.

REFERENCES

Pfenninger:1986:SQA

Porter:1986:FPM

Quong:1986:FPI

Ramnarayan:1986:LCL

Rhyne:1986:SBS

Robertson:1986:NQD

Rump:1986:SER

Troutman:1986:DSF

Truong:1986:TCD

Twaddell:1986:HPM

Vaccaro:1986:SDF

Verma:1986:DEF

Waterhouse:1986:TMW

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES 422

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2091] A. Shenoy and R. Kumaresan. An accurate scaling technique in improved residue number system arithmetic. In IEEE International Conference
REFERENCES

431

Shyu:1987:CIM

Simar:1987:FPA

Smith:1987:SAE

Spangler:1987:RMM

Sun:1987:SAM

Takagi:1987:LED

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cavallaro:1988:CAS

Chaitin:1988:RA

Chen:1988:GCM

Cheng:1988:ATM

Cody:1988:AMS

Cody:1988:FPS

Cosentino:1988:FTS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Motorola:1988:GPF

Motorola:1988:MFP

Nakamura:1988:SCP

Nikolos:1988:EDT

Normand:1988:PSP

Oklobdzija:1988:IAV

Papadourakis:1988:VDP

REFERENCES

REFERENCES

Rowen:1988:MRF

Roylance:1988:EMS

Santoro:1988:PIA

Schatte:1988:ASC

Schatte:1988:MDC

Scherson:1988:MOA

Schwarz:1988:CLI

Scott:1988:CMM

REFERENCES

REFERENCES

[2237] Sun:1988:PG

Voelzke:1988:FSAa

Voelzke:1988:FSAb

Voelzke:1988:FSAc

Weyland:1988:LCS

Wilson:1988:FPS

Wilson:1988:NDP

Wilson:1988:NFP

Wollard:1988:TSS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????

REFERENCES

REFERENCES

Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????

[2320] Detlef Gröger. Zur Division mit Rest auf Gleitkommarechnern. (German) [on division with remainder on floating point computers]. Mathematische Semesterberichte, 36(1):106–111, 1989. ISSN 0720-728X.

REFERENCES

Hoshi:1989:RPV

Hu:1989:ARM

Huck:1989:ACA

Husby:1989:FPE

Hwang:1989:OAU

IEC:1989:IBF

REFERENCES

REFERENCES

REFERENCES

Lo:1989:CED

Lu:1989:VMI

Malarkey:1989:RNS

Mansour:1989:CAS

Mastrovito:1989:VDM

REFERENCES

REFERENCES

[2388] T. Nakayama, S. Kojima, H. Harigai, H. Igarashi, K. Tamada, and T. Toba. An 80b, 6.7 MFLOPS floating-point processor with
REFERENCES

Nakayama:1989:MFPb

Nowacki:1989:ABQ

Ochs:1989:TPF

Petkovsek:1989:CDS

Pincin:1989:NAM

Prince:1989:FTF

REFERENCES

REFERENCES

Sasaki:1989:AAD

Schwarz:1989:IIP

Scott:1989:FRM

Shenoy:1989:FBE

Shimazu:1989:MFP

Sinha:1989:FPA

Sit:1989:MFP

REFERENCES

REFERENCES

Vassiliadis:1989:GPO

Vassiliadis:1989:SMF

Voelzke:1989:FSAa

Voelzke:1989:FSAb

Vulchanov:1989:SCR

Wagner:1989:EDD

Wang:1989:ADF

REFERENCES

REFERENCES

Chen:1990:DIH

Chren:1990:NRN

Ciminiera:1990:HRS

Clinger:1990:HRF

Codenotti:1990:ATT

Cosnard:1990:STF

REFERENCES

Cyrix:1990:FCU

Darley:1990:TFC

Darley:1990:TFP

Dewar:1990:MPV

Dixon:1990:HPB

Dotzel:1990:DMG

Dunham:1990:FFE

REFERENCES

REFERENCES

Gibson:1990:CII

Glass:1990:MC

Goldberg:1990:CA

Goodman:1990:SMR

Goodreau:1990:DIF

Gries:1990:BDO

Gu:1990:TIT

REFERENCES

REFERENCES

REFERENCES

[2512] Volker Müller. Hochgenaue CORDIC-Algorithmen für reelle Standardfunktionen mittels dynamischer Defektberechnung
REFERENCES

REFERENCES

REFERENCES

1. Table 5 (page 124):
insert k <-- 0 after assertion, and also delete k <-- 0 from Table 6.

2. Table 9 (page 125):
 for -1:USER"();
 substitute -1:USER"0);
 and delete the comment.

3. Table 10 (page 125):
 for fill(-k, "0")
 substitute fill(-k-1, "0")

Tang:1990:TDIa

Tang:1990:TDIb

Teetz:1990:SNS

Tricker:1990:ERP

Tricker:1990:ERSa

Tricker:1990:ERSb

vanderVorst:1990:CBP

REFERENCES

VanElsen:1990:OCL

Vuillemin:1990:ERC

Wallis:1990:IFP

Weber:1990:EHP

Wigley:1990:MRR

Wingler:1990:TMI
REFERENCES

REFERENCES

sciencedirect.com/science/article/pii/S037704279190071Q.

Arambepola:1991:CVA

[2579] B. Arambepola. Common VLSI architecture for a practically useful
residue number system. In IEEE International Symposium on Circuits
Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1991. CODEN ???? ISSN ????

Arvo:1991:GGI

science/book/9780080507545.

Balsara:1991:DSM

[2581] Poras T. Balsara, Robert M. Owens, and Mary Jane Irwin. Digit serial
162, February 1991. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
0848 (electronic).

Barrenechea:1991:NEH

Barsi:1991:MAB

[2583] Ferruccio Barsi. Mod m arithmetic in binary systems. Information
Processing Letters, 40(6):303–309, 1991. CODEN IFPLAT. ISSN 0020-
0190 (print), 1872-6119 (electronic).

Bartholomew-Biggs:1991:AST

[2584] M. C. Bartholomew-Biggs. Ada software for teaching modern computer
SNEWD6. ISSN 0163-5778 (print), 1558-0237 (electronic).

BartholomewBiggs:1991:AST

[2585] M. C. Bartholomew-Biggs. Ada software for teaching modern computer
SNEWD6. ISSN 0163-5778 (print), 1558-0237 (electronic).

REFERENCES

Bohlender:1991:VEI

Boughton:1991:CSG

Briggs:1991:PCF

Bromley:1991:FAT

Brunner:1991:VAR

Bruss:1991:RMF

Bryant:1991:CVI

505 REFERENCES

Calvetti:1991:REF

Catanzaro:1991:STP

Celarier:1991:AML

Chai:1991:MCF

Chan:1991:DOC

Chance:1991:EPA

Chang:1991:PLA

REFERENCES

[2625] Alfons A. J. de Lange and Ed F. Deprettere. Design and implementation of a floating-point quasi-systolic general purpose CORDIC rotator for high-rate parallel data and signal processing. In Kornerup and
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2672] Andreas Knöfel. Fast hardware units for the computation of accurate dot products. In Kornerup and Matula [6723], pages 70–74. ISBN 0-

REFERENCES

REFERENCES

Nelson:1991:SPM

Ochs:1991:NRU

Ochs:1991:NTR

Ochs:1991:RF

Ochs:1991:SRF

OGrady:1991:HOA

Okabe:1991:LDC

REFERENCES

REFERENCES

Wigley:1991:SMR

Williams:1991:NBC

Williams:1991:ZOS

Winter:1991:FPA

Wong:1991:FDU

Yan:1991:RFA

[2779] Tak W. Yan. A rational function arithmetic and simplification system in Common Lisp. SIGSAM Bulletin (ACM Special Interest Group
REFERENCES

Yassine:1991:FAB

Yassine:1991:IMR

Yokoo:1991:OUF

Yoshida:1991:PRT

Yu:1991:FCF

Zelniker:1991:RCF

December 1991. CODEN ICSYBT. ISSN 0098-4094 (print), 1558-1276 (electronic).

REFERENCES

REFERENCES

Daumas:1992:BIR

Davarakis:1992:PPA

Dawid:1992:BSC

Dawson:1992:RLS

DEC:1992:AAH

Demmel:1992:LWN

Demmel:1992:SFP

REFERENCES 538

REFERENCES

REFERENCES

[2840] Hiroshi Horiguchi and Tsutomu Tayama. Floating-point numbers and real numbers II. Advances in software science and technology, 3(??): 151–156, 1992. ISSN 1044-7997.

Zaccone. Describes the design, development, implementation, and use of MacFavs (Macintosh Floating point arithmetic visualization system). MacFavs uses simulation, visual displays, and animations to allow students to see actual machine representations of floating point numbers.

[Hudak:1992:RPL]

[IFIF:1992:CVD]

[Jackson:1992:DTF]

[Jackson:1992:ETF]

[Jaffar:1992:AMC]

[Jain:1992:AEB]

REFERENCES

REFERENCES

Kubosawa:1992:BFP

Kutuso:1992:EMO

Lacroix:1992:DDM

Lang:1992:HRS

Lee:1992:ACR

Lee:1992:FPP

Leighton:1992:IPA

REFERENCES

REFERENCES

[2895] H. Nakano, M. Nakajima, Y. Nakakura, T. Yoshida, Y. Goi, Y. Nakai, R. Segawa, T. Kishida, and H. Kadota. An 80-FLOPS (peak) 64-
REFERENCES

Ng:1992:ARH

Nishimura:1992:FPR

Obaidat:1992:DMA

Ochs:1992:SIR

Okada:1992:AQE

Orton:1992:NFT

Paliouras:1992:SDP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2937] J.-D. Sun and H. Krishna. A coding theory approach to error control in redundant residue number systems. II. multiple error detection and correction. *IEEE transactions on circuits and systems. 2, Analog*

REFERENCES

REFERENCES

Wilt:1992:ALP

Wong:1992:DSR

Wong:1992:DSU

Wong:1992:FDU

Woods:1992:HPD

Yeyios:1992:TSA

Yokoo:1992:OUF

REFERENCES

REFERENCES

[2968] Anonymous. The “fastest system on the block” label must be qualified with new multiprocessor, floating-point benchmarks. PC Week, 10(22): 85–??, June 1993. ISSN 0740-1604.

REFERENCES

REFERENCES

Beckmann:1993:FFTa

Beckmann:1993:FFTb

Benouamer:1993:LEA

Bickerstaff:1993:RAM

Bizzan:1993:IMA

REFERENCES

REFERENCES

International Joint Conference on Neural Networks. IJCNN '93-Nagoya, volume 2, pages 1947–1950. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1993. CODEN ???? ISSN ????

REFERENCES

REFERENCES

Eisig:1993:DBI

Eldridge:1993:HIM

Ercegovac:1993:VHR

Etiemble:1993:AMV

 Fortune:1993:EEA

REFERENCES

REFERENCES

REFERENCES

References

REFERENCES

REFERENCES

REFERENCES

[3067] Christophe Mazenc, Xavier Merrheim, and Jean-Michel Muller. Computing functions \(\cos^{-1} \) and \(\sin^{-1} \) using CORDIC. IEEE Transactions
REFERENCES

McClellan:1993:AFP

McKeeman:1993:AOC

McQuillan:1993:NAV

Meier:1993:EMC

Mellott:1993:GMG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3126] Inside technology today 32-bit floating point multi-port DSP / produced by Texas Instruments. VHS format. High-speed, multi-port DSPs can be used in parallel processing applications to really enhance computation time and power. A popular 6-port floating point DSP and high speed design integration and applications are described in this tape., 1993. 1 videocassette.

REFERENCES

Weste:1993:PCV

Williams:1993:BFM

Williams:1993:FM

[3140] Al Williams. 32-bit floating-point math. Dr. Dobb’s Journal of Software Tools, 18(6):70, 72, 74, 76, 80, June 1993. CODEN DDJOEB. ISSN 1044-789X.

Wrzyszcz:1993:DDCa

Wrzyszcz:1993:DDCb

Zeng:1993:CFA

Zhang:1993:EAP

REFERENCES

Zuras:1993:SML

Zuse:1993:CML

Agarwal:1994:EFP

Anonymous:1994:C

Anonymous:1994:FPa

Anonymous:1994:FPb

Anonymous:1994:FPc

Anonymous:1994:SCSa

Anonymous:1994:SPF

Anonymous:1994:SRT

Apple:1994:IMP

Bajard:1994:BNH

Bajard:1994:SOL

Barsi:1994:TOM

REFERENCES

[3166] Sau-Gee Chen and Chieh-Chih Li. Efficient designs of unified 2’s complement division and square root algorithm and architecture.
REFERENCES

REFERENCES

[3179] James Demmel, Inderjit Dhillon, and Huan Ren. On the correctness of parallel bisection in floating point. LAPACK Working Note 70, Department of Computer Science, University of Tennessee, Knoxville,

[3185] B. Fagin and C. Renard. Field programmable gate arrays and floating point arithmetic. *IEEE Transactions onVery Large Scale Integration*
REFERENCES

Farquhar:1994:MPH

FiallosAguilar:1994:HPA

Gander:1994:AFP

Gerber:1994:DPH

Granlund:1994:DII

Hahn:1994:UDF

REFERENCES

[3198] T. N. Hicks, R. E. Fry, and P. E. Harvey. POWER2 floating-point unit: Architecture and implementation. *IBM Journal of Research and
REFERENCES

REFERENCES

REFERENCES

Ignatowski:1994:CNA

Isaacson:1994:ANM

ISO:1994:IIIa

Jackson:1994:PCE

Jain:1994:SRR

Jaromczyk:1994:CCH

REFERENCES

Murofushi:1994:RBR

Nakamura:1994:EPV

Narayanaswami:1994:AE

Nedialkov:1994:PCE

Niescier:1994:DIC

Novak:1994:AFP

Oberman:1994:DIH

REFERENCES

REFERENCES

[3276] Hartmut Schwandt. An interval arithmetic domain decomposition method for a class of elliptic PDEs on nonrectangular domains.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Zhang:1994:EMR

Zhang:1994:TDN

Zuras:1994:MSM

Zuse:1994:PPV

Aagaard:1995:FVP

Abdallah:1995:SASa

Abdallah:1995:SASb

March 1995, pages 445–449. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1995. CODEN ????, ISSN ???.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

618

Cheng:1995:PBS

Chesneaux:1995:LSL

Coe:1995:CAP

Coe:1995:IPF

Coe:1995:ITS

REFERENCES

[3353] James W. Demmel, Inderjit Dhillon, and Huan Ren. On the correctness of some bisection-like parallel eigenvalue algorithms in floating point...
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Liu:1995:SRV

Louie:1995:VPS

Lozier:1995:EBL

Lynch:1995:HRL

Lynch:1995:KTF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Sangwine:1995:CIT

Sanyal:1995:CAS

Sarma:1995:FBR

Schulte:1995:DAV

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:
• economic input-output models,
• quality control in manufacturing design,
• a computer-assisted proof in quantum mechanics,
• medical expert systems,
• and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

• on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

Schulte:1995:HDA

Schulte:1995:PSI

REFERENCES

REFERENCES

Wei:1995:CNM

Williams:1995:SBA

Wong:1995:FEE

Wu:1995:SRM

Yu:1995:MRF

Zaytoun:1995:SFR

Zhou:1995:HSD

[3464] Feng Zhou and Peter Kornerup. High speed DCT/IDCT using a pipelined CORDIC algorithm. In Knowles and McAllister [6778],

[3469] Vijayanand Jaganaathan Angarai. Number representation schemes for energy efficient computer arithmetic. Thesis (M.S.), University of Texas at Dallas, Dallas, TX, USA, 1996. ix + 57 pp.

REFERENCES

[3478] Anonymous. *The Square Root of 10 to one million digits*, volume 635 of *Project Gutenberg*. Project Gutenberg, P.O. Box 2782, Champaign, IL
REFERENCES

REFERENCES

Berlejung:1996:PSM

Berner:1996:PMV

Blum:1996:RPD

Bockenfeld:1996:TNT

Burger:1996:PFP

Burnikel:1996:HPF

[3489] Christoph Burnikel and Jochen Könemann. High precision floating point numbers in LEDA. Report MPI I 96 1 002, Max-Planck-Institut für Informatik, Saarbrücken, Germany, 1996. 7 pp.

Candev:1996:AIA

REFERENCES

[3497] W. A. Chren, Jr. Delta-sigma demodulator with large oversampling ratio using the one-hot residue number system. In *IEEE International
REFERENCES

REFERENCES

Gudenberg:1996:HSI

Guedj:1996:EN

Gupta:1996:AAG

Guyot:1996:STD

Haller:1996:AFL

Hamacher:1996:CO

Hartwig:1996:RNA

[3528] F. Hartwig and A. Lacroix. Roundoff noise analysis on the basis of an improved floating point error model. In IEEE International Symposium
REFERENCES

REFERENCES

Herzberger:1996:OCC

Hickey:1996:FSP

Higham:1996:ASN

Hong:1996:NMM

Hyvoenen:1996:SCE

Inacio:1996:DDF

ISO:1996:TRF

Ito:1996:SRI

Jayasuriya:1996:MAU

Jessani:1996:FPU

Jullien:1996:VDS

Kahan:1996:BEC

Kahan:1996:DNS

Kahan:1996:WCY

REFERENCES

REFERENCES

Kowaleski:1996:DEP

Kraemer:1996:CNI

Kreinovich:1996:CCI

Ley:1996:PDU

Li:1996:NNR

Lions:1996:AFF

Industry immediately started to investigate the failure. From the report: "The internal SRI software exception was caused during execution of a data conversion from 64-bit floating point to 16-bit signed integer value. The floating point number which was converted had a value greater than what could be represented by a 16-bit signed integer. This resulted in an Operand Error. The data conversion instructions (in Ada code) were not protected from causing an Operand Error, although other conversions of comparable variables in the same place in the code were protected."

Lo:1996:CBC

Louca:1996:IIS

Lozier:1996:EBL

Luther:1996:CAG

MacDonald:1996:NSS

Mayer:1996:SEI

Mikov:1996:LSA

Miner:1996:VIC

Moler:1996:CCF

Mraz:1996:ELB

Mrozek:1996:IPC

Muller:1996:CES

REFERENCES

REFERENCES

REFERENCES

Werner:1996:CIW

Wiethoff:1996:PAE

Williams:1996:TMF

[3630] K. B. Williams. Testing math functions: When requirements are tight, we must carefully examine all potential sources of error. Make sure your math library isn’t the weak link in the chain. *C/C++ Users Journal*, 14 (12):49–54, 58–65, December 1996. CODEN CCUJEX. ISSN 1075-2838. Describes a package that extends the Cody-Waite-Plauger work on the ELEFUNT package for the testing of the elementary functions, including the inverse hyperbolic functions, cube root, and Bessel functions of the first and second kinds. The C++ package implements 192-bit extended precision versions of all of the functions, so that accurate results are available for comparison with the normal double-precision results.

Zachary:1996:ESD

Zachary:1996:SHA

Zgliczynski:1996:RVC

REFERENCES

REFERENCES

[3641] Martin Atkinson-Barr. Letter to the Editor: Pentium II math bug. Dr. Dobb’s Journal of Software Tools, 22(10):10, October 1997. CODEN DDJOEB. ISSN 1044-789X. Identifies himself as the “Mr. X” cited in [3655], and provides more the background on the discovery of the Pentium FIST (floating-point to integer store) instruction.

REFERENCES

Beaumont-Smith:1997:GBA

Blackford:1997:PEN

Blinn:1997:JBC

Bomar:1997:RNA

Bshouty:1997:TBA

Burgess:1997:SUR

REFERENCES

REFERENCES

Doring:1997:DAL

Drmac:1997:IJR

Drolshagen:1997:PES

EC:1997:IER

Edelman:1997:MPD

Even:1997:DIC

REFERENCES

REFERENCES

REFERENCES

Harrison:1997:FPV

Hasan:1997:DA

Hekstra:1997:FRL

Hiasat:1997:DIR

Hix:1997:CTV

Holmes:1997:CAP

REFERENCES

Irmay:1997:RBZ

Ito:1997:EIA

Kahan:1997:JNL

Kahan:1997:LNS

Kahan:1997:RDI

Kako:1997:PEF

REFERENCES

REFERENCES

[3706] Gérard Le Lann. An analysis of the Ariane 5 Flight 501 failure — a system engineering perspective. In Proceedings of the International Conference and Workshop on Engineering of Computer-Based Systems, pages 339–346. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1997. URL http://ieeexplore.ieee.org/document/581900/. From the article: “The SRI S/W exception was raised during a conversion from a 64-bit floating point number F to a 16-bit signed integer number. F had a value greater than what can be represented by a 16-bit signed integer, which caused an Operand Error (data conversion — in Ada code — was not protected, for the reason that a maximum workload target of 80% had been set for the SRI computer). . . . The value of BH was much higher than expected because the early part of the trajectory of Ariane 5 differs from
that of Ariane 4, which results in considerably higher horizontal velocity values.”.

REFERENCES

Oberman:1997:DID

Oberman:1997:SPD

Oklobdzija:1997:CLZ

Paar:1997:FAA

Parker:1997:MAU

REFERENCES

[3730] Brad Pierce. Applications of randomization to floating-point arithmetic and to linear systems solution. Thesis (Ph.D.), Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA, 1997.

REFERENCES

Rice:1997:MDB

Sanz-Gonzalez:1997:TBR

Sarma:1997:FIR

Schulte:1997:AFA

Schulte:1997:HSR

Schulte:1997:SBT

[3739] Michael J. Schulte and James E. Stine. Symmetric bipartite tables for accurate function approximation. In Lang et al. [6796], pages 175–
REFERENCES

Srinivas:1997:RDR

Stan:1997:SUC

Stankovic:1997:ASM

Stelling:1997:IMA

Strzebonski:1997:CFC

Szabo:1997:REAa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dimitrov:1998:FRR

Dimitrov:1998:RNS

Drolet:1998:NRE

Drolshagen:1998:RNA

Dunay:1998:DFP

ECDG:1998:IER

[3804] European Commission Directorate General II. The introduction of the euro and the rounding of currency amounts. II/28/99-EN Euro

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kramer:1998:PWC

Kuhlmann:1998:FLP

Labrosse:1998:FPA

Langer:1998:CFP

Langlois:1998:RBR

Lee:1998:DRN

Lefèvre:1998:TCR

REFERENCES

REFERENCES

[3855] M. T. Rivolo and A. Simi. Il calcolo delle radici quadrate e cubiche in Italia da Fibonacci a Bombelli. (Italian) [The calculation
of square and cube roots in Italy from Fibonacci to Bombelli.

REFERENCES

REFERENCES

REFERENCES

Weiss:1998:FPM

Wu:1998:LCB

Wu:1998:NLC

Abbott:1999:ASS

Agarwal:1999:SAM

REFERENCES

Ait-Ameur:1999:RRE

Allender:1999:BDA

Anderson:1999:DAF

Anonymous:1999:SLH

Antelo:1999:VRC

REFERENCES

Aoki:1999:RCA

Bach:1999:NTS

Batten:1999:IBO

Batten:1999:IFB

Beaumont-Smith:1999:RLI

Benschop:1999:MML

Bhardwaj:1999:RCM

[3896] M. Bhardwaj, T. Srikanthan, and C. T. Clarke. A reverse converter for the 4-moduli superset \{2\^n – 1, 2\^n, 2\^n + 1, 2\^{n+1} + 1\}. In
REFERENCES

[Bhardwaj:1999:VCA]

[Blum:1999:MME]

[Boldo:1999:CRE]

[Brent:1999:CAP]

REFERENCES

http://euler.ecs.umass.edu/paper/final/brentr.ps;

Bronnimann:1999:SDR

Bui:1999:DSI

Burgess:1999:EIR

Burgess:1999:FIS

Cappuccino:1999:HSS

REFERENCES

Collavizza:1999:CPC

Connors:1999:SOF

Constales:1999:PSS

Conway:1999:FCM

Cornea-Hasegan:1999:CPO

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hung:1999:FDA

Hyogo:1999:LVF

Ide:1999:GFP

Iordache:1999:ARS

Iordache:1999:IPR

Jamieson:1999:NRF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

McCullough:1999:NRE

Montuschi:1999:BVH

Muller:1999:FRT

Muroi:1999:ESR

Nannarelli:1999:LPDa

REFERENCES

Paar:1999:FAP

Paliouras:1999:MAR

Paliouras:1999:NHR

Parhami:1999:ALT

Park:1999:FPM

Parker:1999:SPA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

734

Street, Suite 300, Silver Spring, MD 20910, USA, 1999. CODEN ????
ISSN ????

[4034] A. Skavantzos and M. Abdallah. Implementation issues of the two-
level residue number system with pairs of conjugate moduli. IEEE
ITPRED. ISSN 1053-587X (print), 1941-0476 (electronic). URL http://
/ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=16138.

conjugate-pair-moduli residue number systems. In Conference Record
of the Thirty-Third Asilomar Conference on Signals, Systems, and
Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
1999. CODEN ???? ISSN ????

[4036] R. D. Skeel. Symplectic integration with floating-point arithmetic and
other approximations. Applied Numerical Mathematics, 29(1):3–18,
January 1999. CODEN ANMAEL. ISSN 0168-9274 (print), 1873-5460
(electronic).

[4037] J. E. Stine and M. J. Schulte. The symmetric table addition method
for accurate function approximation. Journal of VLSI Signal Processing,
21(2):167–177, June 1999. CODEN JVSPED. ISSN 0922-5773. URL

[4038] Shane Story and Ping Tak Peter Tang. New algorithms for improved
transcendental functions on IA-64. In Koren and Kornerup [6821], pages
4–11. ISBN 0-7803-5609-8, 0-7695-0116-8, 0-7695-0118-4. ISSN 1063-
6889. LCCN QA76.6 .S887 1999. URL http://euler.ecs.umass.edu/
paper/final/paper-118.pdf; http://euler.ecs.umass.edu/
paper/final/paper-118.ps; http://www.acsel-lab.com/
arithmetic/arith14/papers/ARITH14_Story.pdf. IEEE Computer
Society Order Number PR00116. IEEE Order Plan Catalog Number
99CB36336.

[4039] A. Strzebonski. A real polynomial decision algorithm using arbitrary-
precision floating point arithmetic. Reliable Computing = Nadezhnye
REFERENCES

REFERENCES

REFERENCES

Watanabe:1999:NVM

Wires:1999:CUT

Wong:1999:OFP

Yadav:1999:PSF

Yang:1999:CIS

Yang:1999:RNSa

Yang:1999:RNSb

Yang:1999:RST

Yap:1999:REI

Yuan:1999:FPA

Zimmermann:1999:EVI

Zimmermann:1999:KSR

[4066] Intel. *Intel 8231A Arithmetic Processing Unit*. Intel Corp., San Jose, CA, USA, 19xx. URL http://www.datasheetarchive.com/pdf-datasheets/Datasheets-14/DSA-276911.html. From the datasheet (p. 3-5): “The mantissa is expressed as a 24-bit (fractional) value; the exponent is expressed as a two’s complement 7-bit value having the range −64 to +63. The most significant bit is the sign of the mantissa (0 = positive, 1 = negative), for a total of 32 bits. The binary point is assumed to be to the left of the most significant mantissa bit (bit 23). All floating-point data values must be normalized. Bit 23 must be equal to 1, except for the value zero, which is represented by all zeros. The range of values that can be represented in this format is \(\pm\left(2 \times 10^{18}\right)\) and zero.”.

Antelo:2000:VHR

Baidas:2000:HLF

Batten:2000:NAD

Becker:2000:JSE

Becker:2000:JSF

Becker:2000:JST

Becker:2000:JSWb

Bertossi:2000:RNS

REFERENCES

[Boldo:2000:QDP]

[Cardarilli:2000:RPD]

[Chen:2000:PCV]

[Cheng:2000:STC]

[Cherri:2000:PCC]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[4118] Yun He and Chris H. Q. Ding. Using accurate arithmetics to improve numerical reproducibility and stability in parallel applications. In

[4124] Nobuhiro Ide, Masashi Hirano, Yukio Endo, Shin ichi Yoshioka, Hiroaki Murakami, Atsushi Kunimatsu, Toshinori Sato, Takayuki Kamei, Toyoshi Okada, and Masakazu Suzuki. 2.44 GFLOPS 300-MHz

REFERENCES

Moreira:2000:FMJ

Mueller:2000:CAC

Mulders:2000:SMD

Nielsen:2000:ICF

Oh:2000:ENB

Paliouras:2000:FPP

Parker:2000:MCAa

Parker:2000:MCAb

Parks:2000:NTT

Philippsen:2000:CNJ

Pillai:2000:LPA

Ploog:2000:MPB

REFERENCES

REFERENCES

Schulte:2000:FVP

Schulte:2000:IMO

Schulte:2000:PSM

Seidel:2000:DIC

Seife:2000:ZBD

Sleijpen:2000:DER

REFERENCES

Swider:2000:FPR

[4190] Zbigniew Świder. Floating-point roundoff errors of second-order state-

Takahashi:2000:IMP

[4191] D. Takahashi. Implementation of multiple-precision parallel division and
square root on distributed-memory parallel computers. In Proceedings
of the 2000 International Workshops on Parallel Processing, pages 229–
235. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 2000. CODEN ???? ISSN ????

Talahmeh:2000:ADR

March 2000. CODEN CMAPDK. ISSN 0898-1221 (print), 1873-7668
(electronic).

Tchoumatchenko:2000:FBS

square-root coprocessor. In Proceedings of the 22nd EUROMICRO
Conference EUROMICRO 96. ’Beyond 2000: Hardware and Software
Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2000. CODEN
???? ISSN ????

Tommiska:2000:AEI

[4194] M. T. Tommiska. Area-efficient implementation of a fast square root
Conference on Devices, Circuits and Systems, 15–17 March 2000, pages
S18/1–S18/4. IEEE Computer Society Press, 1109 Spring Street, Suite
300, Silver Spring, MD 20910, USA, 2000. CODEN ???? ISSN ????

Tong:2000:RPO

optimizing the necessary precision/range of floating-point arithmetic.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
8(3):273–286, June 2000. CODEN IEVSE9. ISSN 1063-8210 (print),
1557-9999 (electronic).
Tsuj;2000:REO

vanderKolk;2000:FPV

Wang;2000:NSA

Wires;2000:VCT

Yang;2000:EPG

Yeh;2000:HSB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[4230] Keith Briggs and Yannis Smaragdakis. XR — exact real arithmetic. World-Wide Web document and software package., March 01, 2001. URL http://www.btexact.com/people/briggsk2/XR.html. From the overview: “This is an implementation of exact (or constructive) real arithmetic, as an alternative to multiple-precision floating-point (MPFP). An important distinction is that in MPFP one sets the precision before starting a computation, and then one cannot be sure of the final
result. Interval arithmetic is an improvement on this, but still not an ideal solution because if the final interval is larger than desired, there is no simple way to restart the computation at higher precision. By contrast, in XR no precision level is set in advance, and no computation takes place until a final request takes place for some output. Despite this, programming with XR is no different from MPFP, except for the declaration of critical variables as type ‘XR’.

The main aim is to produce a usably efficient implementation, which can be easily interfaced with existing C++ code. This contrasts with previous implementations in functional languages (Haskell, Miranda etc.), which, although theoretically important, seem to be rather too slow for real use. This code is designed as an add-on to Victor Shoup’s arbitrary-precision arithmetic package NTL, and implements a new type XR, to complement NTL’s ZZ and RR integer and real types.

REFERENCES

deDinechin:2001:SIM

Defour:2001:CREa

Defour:2001:CREb

Defour:2001:NRRa

Defour:2001:NRRb

REFERENCES

REFERENCES

on Electronics, Circuits and Systems, ICECS 2001, volume 1, pages 433–436. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2001. CODEN ???? ISSN ????

Finot-Moreau:2001:PAU

Flynn:2001:ACA

Galan-Simon:2001:MLD

Gallant:2001:FPM

Gelbukh:2001:ZHL

Gil:2001:SAT

REFERENCES

Gok:2001:EIM

Goubault:2001:SAP

Gowland:2001:SEA

Grossschadl:2001:BSU

Groza:2001:HRF

[4274] Yozo Hida, Xiaoye S. Li, and David H. Bailey. Algorithms for quad-double precision floating point arithmetic. In Burgess

Jamil:2001:CBN

Jeong:2001:OIO

Kahan:2001:NSF

Kahan:2001:SFP

Kahan:2001:WVT

Kaivola:2001:PEL

REFERENCES

REFERENCES

com/arithmetic/arith15/papers/ARITH15_Knowles.pdf. IEEE order number PR01150.

Koc-Sahan:2001:STA

Kosaraju:2001:MAM

Koy:2001:SLRb

Kramer:2001:AFE

Kreinovich:2001:INB

Krishnan:2001:PEM

[4296] Shankar Krishnan, Mark Foskey, Tim Culver, John Keyser, and Dinesh Manocha. PRECISE: efficient multiprecision evaluation of algebraic roots

REFERENCES

REFERENCES

[4313] A. S. Madhukumar and F. Chin. Incorporating incremental redundancy and link adaptation in communication systems using residue number

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2002:OFP

ARM:2002:VVF

Arnold:2002:AOS

Arnold:2002:ICL

Arnold:2002:RPC

Bailey:2002:AAP

Bailey:2002:HPC

[4410] David H. Bailey, David Broadhurst, Yozo Hida, Xiaoye S. Li, and Brandon Thompson. High performance computing meets experimental

Barrio:2002:REB

Belanovic:2002:LPF

Bertot:2002:PGS

Beuchat:2002:SMB

Blackford:2002:USB

REFERENCES

Cardarilli:2002:RNS

Chesneaux:2002:FRN

Chiricescu:2002:MM

Chotin:2002:FPU

Col:2002:ALC

Conway:2002:NOH

Conway:2002:SRI
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gottwald:2002:NBL

Goubault:2002:APF

Guo:2002:RIB

Hamacher:2002:CO

Hanrot:2002:DRF

Hanrot:2002:LN

Heckmann:2002:CLF

REFERENCES

REFERENCES

REFERENCES

LCCN TK5102.5 A78 2002. UK£265.00. Two volumes. IEEE catalog number 02CH37387.

REFERENCES

Matousek:2002:LNS

Matula:2002:PTP

McCluskey:2002:MLF

McIlhenny:2002:CNL

Messine:2002:EAA

Molina:2002:BLA

Molina:2002:HLS
REFERENCES

REFERENCES

816

Pineiro:2002:HSD

Puchta:2002:RNN

Ramasubramanian:2002:ACL

Ramirez:2002:FRF

Reid-Green:2002:TEA

REFERENCES

Sahin:2002:FFP

Sakai:2002:AES

Sawada:2002:FVD

Sawada:2002:MVS

Schwarz:2002:MIE

Serebrenik:2002:TLP
[4526] Alexander Serebrenik and Danny De Schreye. On termination of logic programs with floating point computations. Lecture Notes in Computer Science, 2477:151–164, 2002. CODEN LNCS9D. ISSN 0302-9743 (print),

REFERENCES

[4535] Texas Instruments, Dallas, TX, USA. *TMS320C67x FastRTS Library Programmer’s Reference (SPRU100A)*, October 2002. URL http://focus.ti.com/lit/ug/spru100a/spru100a.pdf. The FastRTS library is a collection of 26 optimized floating-point math functions for the TMS320C67x device. This source code library includes C-callable (ANSI-C-language compatible) optimized versions of the floating-point math functions included in previous run-time-support libraries.

Walters:2002:DTU

Winkler:2002:SVU

Wu:2002:BPF

Wu:2002:FFM

Wu:2002:MMS

Yang:2002:RNSa

Yang:2002:RNSb

Yen:2002:RSR

Ziv:2002:SGM

Agou:2003:SPR

Aharoni:2003:FTG

Akkas:2003:QPD

Al-Radadi:2003:RSD

Altman:2003:RAN

Ammar:2003:NDH

REFERENCES

Society order number PR01894. Selected papers republished in IEEE Transactions on Computers, 54(3) (2005) [4967].

[Brown:2003:DPA]

[Burgess:2003:SRN]

[Cao:2003:DHS]

[Chaudhuri:2003:DAO]

[Chaves:2003:RRD]

REFERENCES

Suite 300, Silver Spring, MD 20910, USA, 2003. CODEN ???? ISSN ????

REFERENCES

829

Cotofana:2003:CAR

Cowlishaw:2003:DAE

Cowlishaw:2003:DFP

Daneshbeh:2003:UBS

Daumas:2003:FRR

Defour:2003:FEA

REFERENCES

[4599] Hossam A. H. Fahmy and Michael J. Flynn. The case for a redundant format in floating point arithmetic. In Bajard and Schulte [6869],
REFERENCES

Fahmy:2003:RDF

Fang:2003:FPE

Fernandez:2003:FPA

Fousse:2003:AST

Frougny:2003:LMR

Gansner:2003:SMB

REFERENCES

2003. URL http://www.springer.com/sgw/cda/frontpage/0,11855,1-102-22-1477871-0,00.html. Includes CD-ROM.

[Intel:2003:DSR]

[Intel:2003:NID]

[Iordache:2003:OFP]

[Kaihara:2003:VAM]

[Kaivola:2003:PEL]

[Katti:2003:LCM]

Koren:2003:SCA

Kornerup:2003:RSQ

Krithivasan:2003:MAM

Kwon:2003:LCL

Lang:2003:RRS

REFERENCES

Markstein:2003:ASC

Markstein:2003:FQP

Matula:2003:BFM

Matula:2003:CAA

Matula:2003:PID

REFERENCES

[4645] Katsuyuki Okeya and Tsuyoshi Takagi. The width-\(w\) NAF method provides small memory and fast elliptic scalar multiplications secure against side channel attacks. Lecture Notes in Computer Science, 2612:

REFERENCES

REFERENCES

REFERENCES

REFERENCES

coverage of, and clever algorithms for, integer arithmetic operations that are fundamental for implementing hardware floating-arithmetic and software multiple-precision arithmetic.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ercegovac:2004:CSRa

Ercegovac:2004:CSRb

Ercegovac:2004:DA

Ercegovac:2004:DCD

Fousse:2004:AST

Fousse:2004:FPD
REFERENCES

Gaffar:2004:UBW

Gebali:2004:EAF

Gemignani:2004:REA

Gerwig:2004:IEZ

Geyer:2004:DFD

Gok:2004:DSP

REFERENCES

Govindu:2004:AHP

Govindu:2004:HPE

Granlund:2004:GMG

Groza:2004:DIS

Hack:2004:IPR

[4752] Michel Hack. On intermediate precision required for correctly-rounding decimal-to-binary floating-point conversion. In Christiane Frougny et al., editors, RNC’6, 6th Conference on Real Numbers and Computers:
REFERENCES

Hanrot:2004:MPA

Hanrot:2004:NIR

Hiasat:2004:SFR

Hormigo:2004:CPV

IBM:2004:ZAP

[4771] Taek-Jun Kwon, Joong-Seok Moon, J. Sondeen, and J. Draper. A 0.18 μm implementation of a floating-point unit for a processing-in-
REFERENCES

McKenzie:2004:ACP

McLaughlin:2004:NFM

Mitra:2004:NAB

MPFRTeam:2004:MMP

Muller:2004:CSR

Muller:2004:DCS

[4788] Jean-Michel Muller, A. Tisserand, B. Dupont de Dinechin, and C. Monat. Division by constant for the ST100 DSP microprocessor. Research Report

REFERENCES

REFERENCES

[4807] Joseph Riley and Michael J. Schulte. A hardware accelerator for elliptic curve cryptography over GF(2^m). *International Journal of
REFERENCES

Roy:2004:ACF

Sadaghdar:2004:BFP

Schimmler:2004:BSF

Schulte:2004:DED

Schulte:2004:LPC

Seidel:2004:DOI

REFERENCES

[4819] Sun Microsystems, Inc. Libmcr 0.9 beta: a reference correctly-rounded library of basic double-precision transcendental elementary functions.

References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Danysh:2005:AIV

Daramy-Loirat:2005:CLL

Daumas:2005:GPU

deDinechin:2005:MTM

REFERENCES

[4894] Valérie Frayssé, Luc Giraud, Serge Gratton, and Julien Langou. Algorithm 842: a set of GMRES routines for real and complex
arithmeticsonhighperformancecomputers."ACMTransactionson
ISSN0098-3500(print),1557-7295(electronic).

Giles:2005:BLN

[4895]DavidE.Giles.Benford’sLawandnaturallyoccurringpricesincertain
ebaYauctions.EconometricsWorkingPaperEWP0505,Department
ofEconomics,UniversityofVictoria,Victoria,BC,Canada,May2005.

Giraud:2005:REA

[4896]LucGiraud,JulienLangou,MiroslavRozlozník,andJaspervanden
Eshof.RoundingerroranalysisoftheclasicalGram–Schmidt
orthogonalizationprocess.NumerischeMathematik,101(1):87–100,
July2005.CODENNUMMA7.ISSN0029-599X(print),0945-

Glusker:2005:TCM

calculatingmachinedeThomasFowler.IEEEAnnalsoftheHistoryof
1058-6180(print),1934-1547(electronic).

Graillat:2005:CHS

ResearchReportRR2005-04,ÉquipedeRechercheDALI,Laboratoire
LP2A,UniversitédePerpignan,ViaDomitia,Perpignan,France,July

Graillat:2005:ICH

[4899]S.Graillat,P.Langlois,andN.Louvet.Improvingthecompensated
HornerSchemewithafusedmultiplyandadd.ResearchReport
RR2005-05,ÉquipedeRechercheDALI,LaboratoireLP2A,Université
dePerpignan,ViaDomitia,Perpignan,France,November2005.

Guizzo:2005:IRS

15–16,February2005.CODENIEESAM.ISSN0018-9235(print),1939-
9340(electronic).
Hally:2005:EBS

Hanss:2005:AFA

Hariri:2005:SMS

Harris:2005:IUS

He:2005:MAF

Hernandez:2005:ACN

REFERENCES

REFERENCES

Klarer:2005:DTC

Kornerup:2005:DSS

Kornerup:2005:LGD

Kornerup:2005:RCN

Kornerup:2005:SPR

REFERENCES

Lorencz:2005:SFA

Lorenz:2005:VTB

Macchetti:2005:QPH

Markstein:2005:FSM

Marques:2005:BIF

Matula:2005:TLS

McCann:2005:SDA

REFERENCES

REFERENCES

Rump:2005:AFP

Savas:2005:CFA

Sax:2005:FPN

Schulte:2005:GEI

Schulte:2005:PED

Seidel:2005:HRI

REFERENCES

Takagi:2005:HAI

Takahashi:2005:AMP

Tang:2005:BBI

Tang:2005:GBE

Tsuiki:2005:RNC

Usevitch:2005:JCL

Verdonk:2005:BSI
REFERENCES

REFERENCES

REFERENCES

[5015] Yves Bertot, Nicolas Magaud, and Paul Zimmermann. A proof of
GMP square root using the Coq assistant. Research Report RR-4475,
LORIA/INRIA Lorraine, Bâtiment A, Technopôle de Nancy-Brabois,
615 rue du jardin botanique, F-54602 Villers-lès-Nancy Cedex, France,
2006. 28 pp. URL ftp://ftp.inria.fr/INRIA/publication/publi-
pdf/RR/RR-4475.pdf;
ftp://ftp.inria.fr/INRIA/publication/publi-ps-gz/RR/RR-
4475.ps.gz; http://www.inria.fr/rrrt/rr-4475.html.

vectorization of floating-point MIN/MAX reductions. *Concurrency and
CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

[5017] S. Boldo. Pitfalls of a full floating-point proof: example on the formal
proof of the Veltkamp/Dekker algorithms. *Lecture Notes in Computer
Science*, 4130:52–66, 2006. CODEN LNCSD9. ISSN 0302-9743 (print),
1611-3349 (electronic).

October 5, 2006. URL http://home.hetnet.nl/mr_1/81/jhm.bonten/
computers/bitsandbytes/wordsizes/.

[5019] Keith Briggs. Implementing exact real arithmetic in python, C++ and C.
TCSCDI. ISSN 0304-3975 (print), 1879-2294 (electronic).

[5020] I. D. Castellanos and J. E. Stine. A 64-bit decimal floating-point
comparator. In Dimopoulos et al. [6915], pages 138–144. ISBN 0-7695-
2682-9. ISSN 1063-6862. LCCN TK7874.6 .I57 2006. URL http:
//ieeexplore.ieee.org/servlet/opac?punumber=4019472. IEEE
Computer Society Order Number P2682.

[5021] Chin-Chen Chang and Yeu-Pong Lai. A division algorithm for residue
numbers. *Applied Mathematics and Computation*, 172(1):368–378,
REFERENCES

January 1, 2006. CODEN AMHCBQ. ISSN 0096-3003 (print), 1873-5649 (electronic).

[5030] Jérémie Detrey and Florent de Dinechin. FPLibrary. A VHDL library of parametrisable floating-point and LNS operators for FPGA. Web site and source code., 2006. URL http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/. The FPLibrary has been superceded by the FloPoCo project [5451].

REFERENCES

Feldstein:2006:GTO

Gandhi:2006:DRA

Gochman:2006:IIC

Gok:2006:IMO

Goubault:2006:SAN

Graa:2006:IFF

[5041] Daniel S. Graça, Ning Zhong, and Jorge Buescu. The ordinary differential equation defined by a computable function whose maximal interval of existence is non-computable. In Anonymous [6912], page ?? ISBN ????. LCCN ???.

Hurlimann:2006:BLB

IBM:2006:PDF

Imana:2006:BPF

Intel:2006:IFP

ISO:2006:IIIa

ISO:2006:IIJa

REFERENCES

REFERENCES

http://www.loria.fr/~zimmerma/wc/decimal128.html;

REFERENCES

REFERENCES

REFERENCES

Pryce:2006:IAC

Qian:2006:HMP

Rajagopal:2006:TOA

Shen:2006:TAS

Shou:2006:MAA

Singh:2006:IEE

REFERENCES

REFERENCES

REFERENCES

[5119] XILINX. XILINX LogiCORE floating-point operator v3.0 product specification. Xilinx, Inc.,

REFERENCES

Aharoni:2007:SCI

Anonymous:2007:AI

Anonymous:2007:CPSa

Anonymous:2007:CPSb

Balasubramaniam:2007:ECS

Balasubramaniam:2007:FSS

Beebe:2007:ETM

REFERENCES

REFERENCES

REFERENCES

Fan:2007:SCC

Fousse:2007:AMP

Fousse:2007:MMP

Frommer:2007:PEZ

Furer:2007:FIM

Gaudry:2007:GBI

REFERENCES

REFERENCES

[5188]
REFERENCES

[5194] Katsuki Kobayashi, Naofumi Takagi, and Kazuyoshi Takagi. An algorithm for inversion in GF(2^m) suitable for implementation using a polynomial multiply instruction on GF(2). In Kornerup and Muller
REFERENCES

Kornerup:2007:CIP

Kuliamin:2007:STI

Lambov:2007:REI

Lang:2007:RDR

Langlois:2007:HEF

Langlois:2007:MIL

Laurie:2007:VPA

Lefevre:2007:SNP

Li:2007:DDP

Li:2007:DEF

Li:2007:DFP

Li:2007:FAT

Lopez:2007:EIF

REFERENCES

REFERENCES

[5226] Dinesh Patil, Omid Azizi, Mark Horowitz, Ron Ho, and Rajesh Ananthraman. Robust energy-efficient adder topologies. In Kornerup

Pearce:2007:MLH

Rauh:2007:ROI

Saldamli:2007:SME

Saqib:2007:CAI

Scott:2007:NHC

Shams:2007:EHA

REFERENCES

Ahmadi:2008:PFS

ASTM:2008:AES

Bapst:2008:SIO

Beuchat:2008:AGM

Boldo:2008:EFC

Brisebarre:2008:CRM

REFERENCES

REFERENCES

[5279] Florent De Dinechin and Christoph Quirin Lauter. Optimizing polynomials for floating-point implementation. arXiv.org, ??(??):1–12,
Dimitrov:2008:PSP

Dvir:2008:HRT

Edmonson:2008:ISS

Erle:2008:AHD

Gonzalez-Navarro:2008:BID

Graillat:2008:ASZ

REFERENCES

REFERENCES

REFERENCES

January 17, 2008. CODEN ELLEAK. ISSN 0013-5194 (print), 1350-911X (electronic).

REFERENCES

0-7381-5753-8 (paper), 0-7381-5752-X (electronic). 58 pp. LCCN
ieeexplore.ieee.org/servlet/opac?punumber=4610933.

[5305] V. Y. Pan, D. Grady, B. Murphy, G. Qian, R. E. Rosholt, and A. D.
Ruslanov. Schur aggregation for linear systems and determinants.
CODEN TCSCDI. ISSN 0304-3975 (print), 1879-2294 (electronic).

Computer Organization and Design: the Hardware/Software Interface
[6945], chapter 3, pages 222–297. ISBN 0-12-374493-8. LCCN
QA76.9.C643.

GPUs. In Computer Organization and Design: the Hardware/Software
LCCN QA76.9.C643.

radix-2 digit-by-digit architecture for cube root. IEEE Transactions on
Computers, 57(4):562–566, April 2008. CODEN ITCOB4. ISSN 0018-
org/stamp/stamp.jsp?tp=&arnumber=4407683.

[5309] E. Quinnell, E. E. Swartzlander, and C. Lemonds. Bridge floating-
point fused multiply-add design. IEEE Transactions on Very Large Scale
ISSN 1063-8210 (print), 1557-9999 (electronic).

multiply-add architectures. In Matthews [6944], pages 331–337. ISBN 1-
<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>

REFERENCES

[Boldo:2009:KAC]

[Bryant:2009:ABD]

[Bullynck:2009:MAB]

[Burtscher:2009:FHS]

[Cenk:2009:PMF]

[Chabert:2009:PEA]
REFERENCES

???? 2009. CODEN SJOCE3. ISSN 1064-8275 (print), 1095-7197 (electronic).

tp=&arnumber=4760137.

REFERENCES

REFERENCES

[5377] Marina L. Gavrilova. An explicit solution for computing the vertices of the Euclidean d-dimensional Voronoi diagram of spheres in a floating-

[5384] Elena Guralnik, Ariel J. Birnbaum, Anatoly Koyfman, and Avi Kaplan. Implementation specific verification of divide and square root

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Minchola:2009:FID

Monniaux:2009:UFP

Mosbach:2009:QPI

Murakami:2009:CFT

Pan:2009:NEF

Papadantonakis:2009:PSA

Tajallipour:2009:FCD

Tan:2009:LPM

Tenca:2009:MOF

Tsen:2009:CDB

Usselmann:2009:FPU

Van:2009:PEP

VanDenDries:2009:AC

REFERENCES

Chevillard:2010:SED

Daumas:2010:CBE

deDinechin:2010:FGA

[5451] Florent de Dinechin and Bogdan Pasca. FloPoCo: generator of arithmetic cores (Floating-Point Cores, but not only) for FPGAs (but not only). Web site and source code., August 10, 2010.

deDinechin:2010:FPE

Digeser:2010:ISE

Dvir:2010:HRT

Emmart:2010:HP1

REFERENCES

ISSN 0129-6264 (print), 1793-642X (electronic). See later improvements [5567].

REFERENCES

Jiang:2010:AEP

Kalla:2010:PIN

Kastner:2010:AOT

Kirk:2010:PMP

Knezevic:2010:FIM

Kong:2010:RMR

REFERENCES

REFERENCES

REFERENCES

Moller:2010:IDI

Morisita:2010:IEA

Mukherjee:2010:NAC

Muller:2010:HFP

Nickolls:2010:GCE

NURCL:2010:VNV

Parhami:2010:CAA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Antelo:2011:IIFa

Antelo:2011:IIFb

Arias-Garcia:2011:SFI

Arnold:2011:RCL

Arnold:2011:TQC

Badin:2011:IAM

Bailey:2011:GMD

REFERENCES

Baudin:2011:EBC

Beebe:2011:BPAb

Berger:2011:FSM

Beuchat:2011:FAP

Bodrato:2011:HDT

Boersma:2011:PBF

REFERENCES

[5549] Steven Carlough, Adam Collura, Silvia Mueller, and Michael Kroener. The IBM zEnterprise-196 decimal floating-point accelerator. In Schwarz

Chevillard:2011:AGC

Colberg:2011:HAS

Corless:2011:RCA

Cui:2011:TDB

Curran:2011:ZSM

REFERENCES

deDinechin:2011:AOY

deedDinechin:2011:CFP

DelVento:2011:SLM

Dimitrov:2011:AEM

Dimond:2011:ALS

Emmart:2011:HP1

[5567] Niall Emmart and Charles C. Weems. High precision integer multiplication with a GPU using Strassen’s algorithm with multiple

[Fischer:2011:HIC]

[Galal:2011:EEF]

[Galal:2011:LSF]

[Gandino:2011:GAI]

[Garofalo:2011:ACM]

[Gopikiran:2011:FIF]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Claude-Pierre Jeannerod, Nicolas Louvet, Jean-Michel Muller, and Adrien Panhaleux. Midpoints and exact points of some algebraic functions in floating-point arithmetic. *IEEE Transactions on Computers,*

Peter Kornerup, Jean-Michel Muller, and Adrien Panhaleux. Performing arithmetic operations on round-to-nearest representations. *IEEE
Kulisch:2011:EDP

Kulisch:2011:VFE

Lamberti:2011:RCT

Langhammer:2011:TFD

Lipetz:2011:SCC

Liu:2011:FAH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Vigliar:2011:MFB

Wang:2011:DFB

Wang:2011:RCM

Whitehead:2011:PPF

Xu:2011:DLF

Yeung:2011:MCF

REFERENCES

Yu:2011:OFP

Zalaket:2011:PFU

Abbott:2012:TFA

Adam:2012:FPD

Aharony:2012:IFP

Akleylek:2012:MRR

[5657] Sedat Akleylek and Ferruh Ozbudak. Modified redundant representation for designing arithmetic circuits with small complexity. IEEE
REFERENCES

Al-Mohy:2012:MAB

Anonymous:2012:FIS

Antao:2012:RBE

Antelo:2012:GEI

Antelo:2012:IIFa

Antelo:2012:IIFb

[5663] Elisardo Antelo. Industrial Implementations of Floating-Point Units: Vol. 2. IEEE Computer Society Press, 1109 Spring Street, Suite 300,
REFERENCES

Goldberg:2012:CA

Goossens:2012:CTS

Grcar:2012:JNA

Haller:2012:DFP

Huang:2012:LCB

Hyman:2012:LF

REFERENCES

[5708] Daichi Mukunoki and Daisuke Takahashi. Performance comparison of double, triple and quadruple precision real and complex BLAS
REFERENCES

Muller:2012:SSV

Nehmeier:2012:SHI

Neron:2012:FPS

Oudjida:2012:NHR

Ozaki:2012:FAF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5746] Sylvain Chevillard and Marc Mezzarobba. Multiple-precision evaluation of the Airy Ai function with reduced cancellation. In IEEE [6973], pages

[5752] Florent de Dinechin, Matei Istoan, and Guillaume Sergent. Fixed-point trigonometric functions on FPGAs. *ACM SIGARCH Computer

REFERENCES

REFERENCES

Gustafson:2013:UCN

Han:2013:HSP

Ioualalen:2013:SAF

Jaffer:2013:EAR

Jeannerod:2013:CAC

Jeannerod:2013:FAK

REFERENCES

[5794] Tarek Ould-Bachir and Jean Pierre David. Self-alignment schemes for the implementation of addition-related floating-point operators. *ACM...
REFERENCES

REFERENCES

Rupley:2013:FPU

Russinoff:2013:CFV

Saha:2013:PAF

SaiToh:2013:ZCL

Shen:2013:SCC

Sohn:2013:IAF
REFERENCES

REFERENCES

REFERENCES

[5852] Hiroshi Murakami. Calculation of rational numbers in an interval whose denominator is the smallest by using FP interval arithmetic. *ACM

REFERENCES

REFERENCES

Andrysco:2015:SFP

Aneesh:2015:HHM

Anonymous:2015:EFP

Bailey:2015:HPA

Bailey:2015:NRH

Bajard:2015:RAA

REFERENCES

REFERENCES

Chiang:2015:UFP

Collange:2015:NRP

Cowlishaw:2015:GDA

Coxon:2015:MMP

Damouche:2015:TPC

deDinechin:2015:FPH

[5891] Florent de Dinechin. On fixed-point hardware polynomials. Technical report, INSA, CITI Lab, Université de Lyon, Lyon, France, October 2015. URL https://hal.inria.fr/hal-01214739.
REFERENCES

[5902] Terry Froggatt. An error in the Ada universal arithmetic package. ACM SIGADA Ada Letters, 35(2):14, August 2015. CODEN AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic). See [1686]. The 32-year-old error is a test with digit t that has if ($t > \text{BASE}$), but the operator should instead be \geq.

[5905] Benoît Gérard, Jean-Gabriel Kammerer, and Nabil Merkiche. Contributions to the design of residue number system architectures.

Gorgin:2015:CXH

Gouicem:2015:MMD

Graillat:2015:ECF

Graillat:2015:MRE

Graillat:2015:NVC

Gustafson:2015:EEU

REFERENCES

REFERENCES

[5937] Weifeng Liu and Brian Vinter. Speculative segmented sum for sparse matrix-vector multiplication on heterogeneous processors. Parallel

REFERENCES

REFERENCES

Palmer:2015:MBI

Panchekha:2015:AIA

Parhami:2015:DAN

Peeper:2015:DDP

Proust:2015:KTC

Renardy:2015:HIM

REFERENCES

Roegel:2015:MCA

Ruckert:2015:MSS

Seo:2015:MMS

Solovyev:2015:REFa

Solovyev:2015:REFb

Sullivan:2015:LCD
REFERENCES

[5969] Ichitaro Yamazaki, Stanimire Tomov, and Jack Dongarra. Mixed-precision Cholesky QR factorization and its case studies on multicore

[5971] Peter Ahrens, Hong Diep Nguyen, and James Demmel. Efficient reproducible floating point summation and BLAS. Report UCB/EECS-2016-121, EECS Department, UC Berkeley, Berkeley, CA, USA, June 18, 2016. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html.

REFERENCES

REFERENCES

Boldo:2016:RFA

Brisebarre:2016:CBB

Brzicova:2016:LMD

Chen:2016:DAR

Chen:2016:PSA

Coleman:2016:LCT
REFERENCES

Cui:2016:PDM

Damouche:2016:TSB

DelBarrio:2016:PCS

Demmel:2016:ERF

Denis:2016:VCF

DHollander:2016:HLS

REFERENCES

Fritz:2016:IPM

Garcia-Vega:2016:DMO

Garrido:2016:CIN

Geran:2016:CBC

Gueron:2016:ABI

Gueron:2016:HIA

Gustafson:2016:RAC

[6009] David Hopkins. Will my numbers add up correctly if I round them? The Mathematical Gazette, 100(549):396–409, November 2016. CODEN MAGAAS. ISSN 0025-5572 (print), 2056-6328 (electronic). URL https://www.cambridge.org/core/product/88F5753DFE9FO0DDDEA1F2552B0F8B22. The probability that rounding after fixed-point summation of \(n \) terms gives the same result as summation of rounded terms is given by
\[
p(n) = \frac{2}{\pi} \int_0^\infty \frac{\sin(x)}{x} x^{n+1} \, dx,
\]
and that function is always a rational number. Its values are
\[
p(n) = 1, \frac{3}{4}, \frac{2}{3}, \frac{115}{192}, \frac{11}{20}, \frac{5887}{11520}, \frac{151}{315}, \frac{259723}{573440}, \ldots
\]
for \(n = 1 \) to 8.

REFERENCES

Hunhold:2016:UNF

Jaberipur:2016:FFC

Jaeger:2016:OHQ

Jeannerod:2016:RIE

Jeannerod:2016:SEB

Jiang:2016:ARB

Joldes:2016:AAE

REFERENCES

REFERENCES

Muller:2016:NMA

Munshi:2016:OCS

Nannarelli:2016:PPS

Notzli:2016:LVP

Ozaki:2016:EFT

Ozaki:2016:SFP

REFERENCES

[6039] Paulk:2016:IFP

[6040] Phatak:2016:NDA

[6041] Rashidi:2016:HSH

[6042] Revy:2016:ADF

[6043] Roux:2016:FPR

REFERENCES

Sohn:2016:FFP

Tada:2016:ESG

Tay:2016:NIM

Ugurdag:2016:ECC

vanderHoeven:2016:ESL

vanderHoeven:2016:MSA

Villalba-Moreno:2016:DRF

Wang:2016:DFP

Wilson:2016:UAA

Zhou:2016:PUH

Aliasgari:2017:SCH

Anderson:2017:EMF

Angerd:2017:FAC

[6064] Alexandra Angerd, Erik Sintorn, and Per Stenström. A framework for automated and controlled floating-point accuracy reduction in graphics

[Anonymous:2017:C]

[Anonymous:2017:CN]

[Anonymous:2017:F]

[Anonymous:2017:FC]

[Anonymous:2017:PCM]

[Anonymous:2017:PI]
REFERENCES

Anonymous:2017:SC

Anonymous:2017:TC

Anonymous:2017:TP

Anonymous:2017:TPI

Anonymous:2017:CCS

Anonymous:2017:MFC

REFERENCES

REFERENCES

[6088] Chemseddine Chohra, Philippe Langlois, and David Parello. Reproducible, accurately rounded and efficient BLAS. In Desprez et al. [6983], pages 609–620. ISBN 3-319-58943-1 (e-book), 3-319-58943-1 (hardcover). LCCN QA76.9.E94; QA76.758TK.

REFERENCES

REFERENCES

[6109] Oscar Gustafsson, Erik Bertilsson, Johannes Klasson, and Carl Ingemarsson. Approximate Neumann series or exact matrix inversion
REFERENCES

Gustafsson:2017:LBF

Haidar:2017:IHP

Hiasat:2017:ERS

Higham:2017:MG

Higham:2017:RMA

Hormigo:2017:ISI

REFERENCES

[6124] Alan A. Jorgensen. Apparatus for calculating and retaining a bound on error during floating point operations and methods thereof. US Patent 9,817,662., November 14, 2017. URL https://patents.google.com/patent/US9817662B2/; https://tinyurl.com/y7ctbsez. This patent, filed 23 October 2016, was issued despite substantial prior art that should have resulted in its rejection: see [6261]. The inventor does not appear to have published in the area of floating-point arithmetic (apart from this entry, none by him can be found in this bibliography). The only literature references in the patent are [5299, 2644, 5704, 5483].

REFERENCES

REFERENCES

[6145] David Raymond Lutz and Christopher Neal Hinds. High-precision anchored accumulators for reproducible floating-point summation. In

[6151] Ramy Medhat, Michael O. Lam, Barry L. Rountree, Borzoo Bonakdarpour, and Sebastian Fischmeister. Managing the performance/

REFERENCES

[Rovers:2017:IPP]

[Rump:2017:IPK]

[Russell:2017:LBR]

[Saint-Genies:2017:ELT]

[Sanchez-Stern:2017:FRC]

[Sano:2017:FBS]

REFERENCES

REFERENCES

REFERENCES

Anonymous:2018:HFF

Anonymous:2018:OLA

Babuska:2018:REG

Bajard:2018:MRW

Becker:2018:NOS

Boldo:2018:FPA

REFERENCES
1087

REFERENCES

REFERENCES

[6213] Niall Emmart, Fangyu Zheng, and Charles Weems. Faster modular exponentiation using double precision floating point arithmetic on the
GPU. In Tenca and Takagi [6985], pages 130–137. ISBN 1-5386-2612-8 (USB), 1-5386-2665-9. ISSN 2576-2265. LCCN QA76.9.C62. IEEE catalog number CFP18121-USB.

[6219] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J. Higham. Harnessing GPU tensor cores for fast FP16 arithmetic to speed

[6225] Tomasz Hrycak and Sebastian Schmutzhard. Evaluation of Chebyshev polynomials by a three-term recurrence in floating-point arithmetic. BIT
REFERENCES

Intel:2018:BHN

Jeangoudoux:2018:CRM

Jeannerod:2018:REF

Jeannerod:2018:VWS

REFERENCES

[6243] Sergio Marchese. AI chips must get the floating-point math right: Formal verification of FPUs is no longer a prerogative of big companies spending big bucks. Web site., September 27, 2018.

[6244] Mantas Mikaitis, David R. Lester, Delong Shang, Steve Furber, Gengting Liu, Jim Garside, Stefan Scholze, Sebastian Höppner, and Andreas
REFERENCES

REFERENCES

[6256] Francisco Rodríguez-Henríquez and Erkay Savas. Special issue in honor of Peter Lawrence Montgomery. *Journal of Cryptographic Engineering,*
REFERENCES

Sanchez-Stern:2018:FRC

Savas:2018:MI

Schneider:2018:USS

Seo:2018:FBM

Trader:2018:ICS

[6261] Tiffany Trader. Inventor claims to have solved floating point error problem. HPC Web site., January 17, 2018. URL https://www.hpcwire.com/2018/01/17/inventor-claims-solved-floating-point-error-problem/. From the HPC editor: “After this article was published, a number of readers raised concerns about the originality of Jorgensen’s techniques, noting the existence of prior art going back years. Specifically, there is precedent in John Gustafson’s work on unums and interval arithmetic both at Sun and in his 2015 book, The End of Error, which was published 19 months before Jorgensen’s patent application was filed.”.
REFERENCES

Anderson:2019:SAM

Andrlon:2019:OBF

Anonymous:2019:CPC

Anonymous:2019:MCT

Anonymous:2019:RMV

Anonymous:2019:SOL

Anonymous:2019:UFP
REFERENCES

Burgess:2019:BPN

Burgess:2019:HPA

Cappello:2019:UCL

Carlough:2019:DBF

Carmichael:2019:PET

Caygill:2019:DCF

REFERENCES

REFERENCES

REFERENCES

[6322] David Harvey and Joris Van Der Hoeven. Integer multiplication in time \(O(n \log n)\). Report hal-02070778, School of Mathematics and Statistics, University of New South Wales, and CNRS, Laboratoire d’informatique, École polytechnique, Sydney, NSW 2052, Australia and 91128 Palaiseau, France, March 18, 2019. URL https://hal.archives-ouvertes.fr/hal-02070778/document.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6377] Benjamin Sherman, Jesse Michel, and Michael Carbin. Sound and robust solid modeling via exact real arithmetic and continuity. Proceedings of
REFERENCES

REFERENCES

Thomas:2019:CTG

Tiwari:2019:PPE

vanDam:2019:APA

[6394] Laurens van Dam, Johan Peltenburg, Zaid Al-Ars, and H. Peter Hofstee. An accelerator for posit arithmetic targeting posit level 1 BLAS routines and Pair-HMM. In Gustafson and Dimitrov [6986], pages 5:1–5:10. ISBN 1-4503-7139-6. LCCN ?????

vanWyk:2019:RVT

Vazquez:2019:NPT

Venkatachalam:2019:DAA

Verheyde:2019:BDD

REFERENCES

REFERENCES

[6433] Rami Elkhatib, Reza Azarderakhsh, and Mehran Mozaffari-Kermani. Highly optimized Montgomery multiplier for SIKE primes on FPGA. In
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Volkova:2020:AAR

Ward-Foxton:2020:AIG

Zhang:2020:NAE

Zhang:2020:NFM

Zimmermann:2020:AMFa

Zimmermann:2020:AMFb

REFERENCES

Demmel:2021:NIS

Eliahu:2021:MME

Fortin:2021:HPS

Ho:2021:GFD

Hough:2021:ISO

Lange:2021:CND

REFERENCES

[6503] Zabihollah Ahmadpour and Ghassem Jaberipour. Up to 8k-bit modular Montgomery multiplication in residue number systems with fast 16-

Alder:2022:FPU

Buhrow:2022:PMM

Chen:2022:PPL

Cowlishaw:2022:DAFa

Cowlishaw:2022:DAFb

Cowlishaw:2022:DAFc

REFERENCES

[6516] Conor Mccoid and Martin J. Gander. A provably robust algorithm for triangle–triangle intersections in floating-point arithmetic. ACM
REFERENCES

REFERENCES

[6529] Yi Zhang, Mengdi Sun, and Xin Qi. Speedup of discrete Fourier transform by efficient modular arithmetic. *Concurrency

REFERENCES

REFERENCES

Yang:2023:ATF

Zlatopolski:2023:PAV

QinetiQ:20xx:QFP

Anonymous:1948:PSL

Householder:1951:MCM

Alt:1960:AC

REFERENCES

REFERENCES

the Mathematics Research Center, United States Army, at the University of Wisconsin, Madison, October 5–7, 1964.

REFERENCES

REFERENCES

IEEE:1972:ITS

Zaremba:1972:ANT

ACM:1974:CRS

Panagiotopoulos:1974:PCC

IEEE:1975:SCA

Randell:1975:ODC

Swamy:1975:PEM

REFERENCES

REFERENCES

[6608] Edward W. Ng, editor. Symbolic and algebraic computation: EUROSAM ’79, an International Symposium on Symbolic and Algebraic
REFERENCES

ACM:1980:CPA

Alefeld:1980:FNC

Anonymous:1980:CPA

Electro:1980:ECR

IEEE:1980:IIS

IEEE:1980:PMA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6637] Cowell:1984:SDM

[6638] Evanczuk:1984:MSS

REFERENCES

REFERENCES

REFERENCES

[6657] *Electro/86 and Mini/Micro Northeast Conference Record: Sessions Presented at Electro/86 and Mini/Micro Northeast-86*, Boston, MA, May
REFERENCES

REFERENCES

Kaucher:1987:CAS

Lin:1987:DSP

Losleben:1987:ARV

Zunde:1987:EFI

ACM:1988:ICS

ACM:1988:PAC

Brodersen:1988:VSP

[671] Robert W. Brodersen and Howard S. Moscovitz, editors. VLSI Signal Processing, III. IEEE Computer Society Press, 1109 Spring Street, Suite
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:1991:PFC

IEEE:1991:PIC

IEEE:1991:PSA

IEEE:1991:VCA

Kaucher:1991:CAS

REFERENCES

REFERENCES

Anonymous:1992:EAP

Atanassova:1992:CAE

IEEE:1992:ASF

IEEE:1992:GCG

IEEE:1992:IIIC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wuorinen:1994:IIS

ACM:1995:PEA

Anonymous:1995:HEI

Athanas:1995:PIS

Bainov:1995:PTI

Cappello:1995:ICA

REFERENCES

REFERENCES

REFERENCES

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of
REFERENCES

the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

REFERENCES

[Babuška:2002:MMN]

[Borrione:2002:TII]

[Cohen:2002:MSP]

[Hennessy:2002:CAQ]

[IEEE:2002:IIC]

REFERENCES

REFERENCES

Pocek:2002:FAI

Schulte:2002:PII

Trimberger:2002:FTA

Vladimirova:2002:TMA

Anonymous:2003:CRN

REFERENCES

REFERENCES

IEEE:2003:IICa

IEEE:2003:IICb

Luk:2003:PSA

Matthews:2003:PTS

REFERENCES

Street, Suite 300, Silver Spring, MD 20910, USA, 2003. ISBN 0-7803-8104-1. LCCN ???? IEEE catalog number 03CH37493.

REFERENCES

Anonymous:2004:ICM

Arnold:2004:PAI

Druin:2004:IDC

Hilledt:2004:AME

IEEE:2004:IICa

IEEE:2004:IICb

IEEE:2004:IICC

REFERENCES

IEEE:2004:IIS

IEEE:2004:PJC

Luk:2004:ASP

Selvaraj:2004:PES

Smailagic:2004:ETV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2006:PCR

Bertels:2006:FP1

Cimatti:2006:FMH

Dimopoulos:2006:IIC

Haddad:2006:ACP

REFERENCES

REFERENCES

1205

ACM:2007:SPA

Alefeld:2007:SCC

Becker:2007:EVT

Bertels:2007:PIC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:2010:CCE

IEEE:2010:ICC

IEEE:2010:ICM

Knuth:2010:SPD

Santos:2010:PVS

E. J. P. (Edval J. P.) Santos, Horácio C. Neto, and Elías Todorovich, editors. Proceedings of the VI Southern Programmable Logic Conference:
REFERENCES

Watt:2010:IPI

Impagliazzo:2011:PSR

ACM:2011:SSP

IEEE:2011:ICC

Schwarz:2011:PIS
REFERENCES

IEEE:2015:ISS

Muller:2015:ISC

Swartzlander:2015:CAa

Swartzlander:2015:CAb

Swartzlander:2015:CAc

Montuschi:2016:ISC

[6981] Paolo Montuschi, Michael Schulte, Javier Hormigo, Stuart Oberman, and Nathalie Revol, editors. 2016 IEEE 23rd Symposium on Computer Arithmetic (ARITH 2016), Santa Clara, California, USA, 10–13 July
Burgess:2017:ISC

Desprez:2017:EPP

Matthews:2017:CRF

Tenca:2018:PIS

REFERENCES

