A Bibliography of Publications on Floating-Point Arithmetic

Norbert Juffa
2445 Mission College Blvd.
Santa Clara, CA 95054
USA
Tel: +1-408-727-1885
FAX: +1-408-727-1265
E-mail: juffa@ira.uka.de (Internet)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

11 March 2024
Version 3.706

Introduction

This is a bibliography of material on floating-point arithmetic that I came up with while doing research on a floating-point package of my own. I don’t claim it to be anywhere near complete. The material listed is only what I myself possess.

My main interest was in software based, binary floating-point arithmetic on a microprocessor, so you won’t find much material about the hardware used in floating-point arithmetic (e.g. adders, carry propagation schemes, higher radix
representation for multiplication and division, etc.) in this list. There is also
not too much on non-binary floating-point arithmetic.

For most fields covered in this bibliography, the important or historically
relevant articles should be included. There is also some material on integer
arithmetic in this list as some of the methods used with integer arithmetic
contain interesting ideas that may be useful in the realization of a floating-point
arithmetic package.

Also, depending on the type of microprocessor used, one may need to imple-
ment integer multiplication and division for use in the floating-point package,
so articles about this topic are included as well.

As I am German, there is a bit of material in German in this bibliography.
However, English translations are provided for all non-English titles.

Thanks to the people who have helped me with previous versions of this
document by sending me papers or additional references:

• Steven Sommars (sesv@research.bell-labs.com),
• Jim Kiernan (jmk@teak.cray.com),
• Warren Ferguson (ferguson@seas.smu.edu),
• Nhuan Doduc (ndoduc@framentec.fr),
• K. C. Ng (kwok.ng@eng.sun.com),
• Nelson H. F. Beebe (beebe@math.utah.edu).

Bibliography entries in the Books section are ordered alphabetically by
author; ordering is by ascending year in the remaining sections.

[Warning: it has yet not been possible to bring this citation list up-to-date with the entries in the BibTeX]

Books, hardware oriented

[1721, 281, 1286, 1216, 3111, 3315, 1916, 841, 1164, 1000, 1457, 843, 1343, 7212,
7213, 1557]

Books, software oriented or theory

[1273, 466, 469, 470, 119, 1420, 2393, 908, 1049, 352, 2952, 2434, 2969, 2270,
320, 527, 7066]

Books, machine specific

[2175, 3217, 3113, 2436, 1767, 1903, 2289, 1935, 2471]
1 CHOICE OF BASE, FLOATING POINT FORMATS

Journal Publications, Conference Papers, Technical Reports, Ph.D. Dissertations, Book Contributions, etc.

1 Choice of base, floating point formats

1.1 Precision and Rounding

1.2 Determination of parameters of floating point arithmetic

1.3 IEEE standards for floating point arithmetic

1.4 Floating point arithmetic, general and implementation issues

1.5 Floating point packages

1.6 Floating point units
1.7 Test of floating point routines

2 Addition and Subtraction

[375, 1513]

2.1 Floating-point Summation

[325, 345, 362, 361, 570, 639, 677, 831, 1661, 2275, 2352]

2.2 Multiplication

[680, 1246, 1260, 1476, 1543, 1516, 1574, 1601, 1593, 1619, 1676, 1591, 1758]

2.3 Division

[209, 238, 223, 322, 348, 438, 1017, 1064, 1311, 1403, 1567, 1645, 1623, 1606, 1770, 1890, 2015, 1994, 2387, 2777, 2722, 2967, 3016, 7234, 2949]

3 Elementary functions, general

[384, 398, 586, 650, 615, 1122, 1265, 1656, 1756, 1719, 1717, 1794, 1840, 7153, 1945, 2051, 2154, 2098, 2277, 7172, 2560, 2597, 2547, 3334, 2549, 2518, 2697, 2850, 2661, 2812, 2813, 2690, 3367, 3335]

3.1 Elementary functions, CORDIC and related algorithms

[190, 191, 248, 264, 373, 523, 551, 659, 651, 667, 733, 855, 1068, 1084, 1293, 1451, 1699, 1897, 1708, 1811, 1963, 2159, 2381, 2310, 2541, 2567, 2716, 2810, 3010, 3005, 3128, 3068, 3114]

3.2 Elementary functions, function approximation

[240, 241, 481, 623, 768, 767, 983, 1021, 1162, 2000, 2052, 2610, 2685, 2783, 2784]

3.2.1 Polynomial evaluation

[259, 279, 304, 426, 1061, 1228, 2351]
3.3 Square root, general
[1082, 1187, 1481, 1598, 1651, 2565, 2677]

3.3.1 Square root, bit-oriented, iterative, and table methods of computation
[120, 153, 359, 1022, 1008, 1151, 1353, 1444, 1406, 1372, 1426, 1825, 1922, 1834, 1887, 1971, 1952, 2046, 2089, 2139, 2179, 2253, 2390, 2577, 2534, 2709, 3038]

3.3.2 Square root, Newton’s method

3.4 Sine and Cosine
[180, 1068, 1018, 1023, 1176, 1398, 1544, 1666, 1665, 1765, 1853, 1953, 2120, 2231, 2606, 2961, 2958, 2880, 2980, 3074]

3.5 Logarithm
[154, 271, 331, 690, 998, 1112, 1299, 1529, 2107, 2108, 2607, 2735]

3.6 Exponential function
[141, 409, 1183, 1361, 1518, 1748, 1847, 2470, 2608, 3002]

3.7 Arctangent
[143, 160, 207]

3.8 Other transcendental functions
[499, 613, 161, 1024, 365, 275, 360, 2100, 1157, 2860, 3054]

4 Binary-decimal conversion
5 BCD arithmetic

[674, 726, 777, 778, 779, 780, 781, 782, 783, 1382, 1492, 1705, 1640, 2037, 2646, 2960]

6 Multiple precision arithmetic

[292, 330, 410, 428, 632, 616, 953, 1002, 1099, 1098, 1265, 1350, 1430, 1542, 2805, 2789, 3033, 3224]

7 Conferences on computer arithmetic

[7092, 7102, 7107, 7116, 7119, 7132, 7150, 7151, 7193, 7223, 7231, 7257]

8 Additional contributions from Nelson H. F. Beebe

Title word cross-reference

#26 [5487].

\((2^n)^m \) [3796]. \((10^{x_1} - 1)/9 \) [1976]. \((2^n) \) [4349, 4370, 4553, 4562, 4468]. \((2^n + 1) \) [1081, 4785, 3909]. \((2^n - 1) \) [5004]. \((2^n - 1, 2^{n+p}, 2^n + 1) \) [6266]. \((2^n+1) \) [6072]. \((2^n \pm 1) \) [5514, 4136]. \((2m) \) [4433]. \((2n + 3) \) [6520]. \((2n - (2p \pm 1)) \) [4847]. \((a \cdot x) \cdot x? \) [6792]. \((d, r) \) [789]. \((M, p, k) \) [5800]. \((\mathcal{R}) \) [2908]. \((p) \) [4349, 4433].
$(x + y) * (x - y) [6666]. -2 [743, 183, 206, 949, 801]. -\infty < n < +\infty [141, 160]. 0 [5632]. 0 < N < 1 [161], 0 / 0 [699]. \$1 [3739]. 1 [4984, 4342, 5149, 5633, 3694, 2165]. 1, 000, 000 [618], 1/\sqrt{x} [5771]. 1/t [2174]. 10 [530, 6003]. 116 [4018]. 128 [4853], 15 [530]. 16 [2504, 4183, 4071]. 17 \times 69 [3047]. 2 [1005, 4300, 2049, 5669, 3229, 3990, 618, 6036, 430, 4342, 5005, 3283, 4359, 1760, 3469, 3140, 3476, 5607, 3491, 530, 321, 3681, 3815, 4449, 3694, 5903, 3361, 4937]. 2, 576, 980, 370, 000 [5634]. 22n + 1 [2146]. 256 [4436]. 27 [433]. 2^n + 1) [3967]. 2^{2n+1} - 1 [6018]. 2^{2n+2} - 1 [6018]. 2^n - 1 [2856]. 2^k [4481, 4992, 5494, 5033, 5041]. 2^k + 1 [866]. 2^{k-1} [4481]. 2^n [4554]. 2^n [1568, 6018, 3967]. 2^n + 1 [3967, 4984, 5713, 4459]. 2^{n+1} - 1 [6510]. 2^{n+k} [6510]. 2^n - (2^{n-1} + 1) [5336]. 2^N - 1 [2987, 4820, 6510, 4212, 3967]. 2^n + 1 [6008]. 2^n [6008]. 2^p \pm 1 [6234]. 2 \times 2 [5906]. 3 [377, 4986, 4177, 430, 4033, 4201, 4038, 5025, 4870, 321, 6203, 4117, 6594, 4943, 4935]. 3 - j [298]. 32 [3983, 4436]. 3 \times 3 [2493], 4 [3967, 4314, 4657, 2521, 2522, 2540, 2918, 5330, 581, 6323, 5949, 5680, 4158, 6047, 1294, 3622].
$r \geq 8$ [5843]. s [4874]. $\sin(BIG)$ [5230]. \sin^{-1} [3128]. $\sin N$ [180]. $\sin x$ [373]. $\sqrt{a^2 + b^2}$ [6274]. \sqrt{x} [1481]. $\sqrt{x/d}$ [3844]. $\sqrt{2}$ [6965]. $\sqrt{2}$ [1307, 451]. $\sqrt{x^2 + y^2}$ [5669]. T [6558]. $\tan^{-1} x$ [373]. $\theta(\log N)$ [2354]. \times [4064, 3914, 4130]. w [4730]. X [1542, 2893]. $x^2 + ny^2$ [3706]. x^n [5972, 3307]. y [4412]. Z [5327].

.NET [6412, 5068].

/m [4863]. /spl [4863].

0.18-CMOS [5767]. 0.4.1rc [6413]. 0.80pJ [6546]. 0.80pJ/flop [6546]. '00 [7333, 7338, 2540]. '01 [7347]. '03 [7376]. '04 [7385, 7393]. '07 [7428, 7434, 7436, 7441]. '08 [7445, 3032, 5375].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

= [2799, 2800, 3343, 7089].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Algorithm [569, 2107, 262, 640, 4723, 2113, 6896, 762, 2947, 1649, 1890, 2115, 2254, 5330, 2566, 6423, 1654, 1897, 4410, 2774, 2960, 4412, 1532, 1661, 2777, 2778, 3660, 4894, 5424, 5758, 1157, 2589, 6099, 4900, 923, 2105].
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Architecture

Arctan [160, 651].

Arctangent [1630, 3277].

Area

Area-Efficient

Area-Optimized

Area-Time

Area/Performance

Ariane

Arithmetic

Arithmetic [5463, 330, 1093, 1094, 2047, 2649, 2864, 5873, 6625, 6735, 6736, 6959, 5122, 3046, 1717, 5667, 6234, 6468, 6023, 728, 809, 861, 1097, 1098, 1099, 1192, 1264, 3971, 5668, 1375, 4311, 2866, 196, 6963, 7452, 5670, 6471, 7105, 2329, 6630, 7346, 7487, 4315, 1194, 23, 2195, 171, 2053, 2054, 1721, 5470, 3559, 2198, 6362, 612, 6966, 668, 1821, 669, 867, 1381,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

187, 1918, 587, 5543, 927, 928, 269, 212, 5769, 1779, 19, 22, 930, 1456, 1686, 2805, 3938, 4754, 5631, 2287, 6812, 3814, 5198, 6700, 6813, 1000, 1457, 2807, 789, 6926, 6927, 5199, 5200, 4612, 712, 656, 933, 934.

Arithmetic [1458, 1459, 5544, 4617, 6929, 4112, 844, 533, 1170, 1171, 1342, 1343, 1344, 1691, 1925, 7212, 789, 6926, 6927, 5199, 5200, 4614, 712, 656, 933, 934].

Arithmetic [1458, 1459, 5544, 4617, 6929, 4112, 844, 533, 1170, 1171, 1342, 1343, 1344, 1691, 1925, 7212, 789, 6926, 6927, 5199, 5200, 4614, 712, 656, 933, 934].
698, 3797, 3798, 3799, 4083, 4251, 4735, 2575, 2576, 5338, 700, 989, 3800, 2578, 2267, 2579, 3325, 837, 3327, 1329, 4899, 1535, 2976, 3666, 3667, 5339, 838, 5430].

Arithmetic-Based [6462].

Arithmetic-Centered [6752].

Arithmetic-Friendly [6510].

Arithmetic-Geometric [1717, 3632, 3970].

Arithmetic-Level [5185].

Arithmetic-Modular [4342].

Arithmetic-Type [482, 5251].

Arithmetic/Logic [2195].

Arithmetic/Logical [3021].

Arithmetical [6, 46, 512, 5826, 5915, 6070, 6305, 197, 4345, 400].

Arithmetick [3, 43].

arithmético [3970].

arithmético-géométrique [3970].

arithméticas [4788, 5400, 4225, 2756].

arithméiques [4788, 5400, 4225, 2756].

arithmetischen [1885].

arithometer [146].

Arithmos [4321].

arithmética [4588].

arithmetik [1739].

AritPIM [6990].

Arizona [7114].

ARM [5250, 6637, 6747, 6852, 6544, 6596, 5775, 3352].

ARMv8 [6299, 6596, 6577].

ARMv8-A [6596, 6577].

Army [7137].

ARPREC [4493].

Arrangement [198, 2324].

Array-Like [851].

Arrays [7384, 7401, 1186, 1823, 870, 5966, 3248, 6973, 2704, 1135, 6167, 4056, 2930, 5980, 3122, 3462, 978, 3470, 643, 1664, 2130, 2794, 5631, 7369, 6359, 2688, 2403, 3123, 3481, 3513, 4279, 3199, 3361].

Arrondi [5408, 5081].

Arsenal [272].

arsenide [3228].

Art [7165, 6552, 2270, 2972, 6101, 1178, 7099].

Article [1483].

Articles [53].

Artificial [6509, 43, 6795, 6708].

artificially [5685].

ary
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

calculated [29, 40, 108]. calculus [40, 3151]. calculus [7048]. Calgary [7465].
calibrating [4842]. Calif [7188]. California [7331, 7384, 7401, 7428, 7247,
7174, 7192, 7203, 7193, 7087, 7220, 7277, 7308, 7362, 7481, 7146, 3771, 7299,
7336, 7379, 7533, 7366, 7448, 7135, 7486, 7228, 7241, 7282, 7369, 7216, 7388,
7273, 7298, 7056, 7145, 7347, 7435, 7313, 7326, 7337, 7380, 7460, 7489, 7293,
7300, 7314, 7367, 7426, 7442, 7368]. Call [5235, 5236, 5456, 5650]. Call-for-
Papers [5456]. called [5]. calls [1190]. CalmRISC32 [4363]. calorimeter
[3593]. Cambridge [7197, 7209, 7234, 7227]. CAML [2944]. Can [5563,
4334, 1040, 1136, 2544, 2965, 3382, 5113, 4662, 2074, 1296, 3103, 3615, 6418].
Canada [7271, 7445, 7128, 7303, 7130, 7222, 7393, 7433, 7312, 3183, 7432].
Canadian [7465]. Cancellation [5879, 4322, 994, 3930, 6371, 5916, 2965,
3929]. Cancun [7453]. Canon [3572]. Canonical [1548, 2918, 3899, 5369].
Can’t [6492]. Cantilever [3760]. capabilities [1846, 2739]. Capability
[1565, 2866, 6893, 6894, 1372, 2939, 1996]. Cape [7409, 7412]. CAPI [6363].
Cardinality [5965]. Cards [4697]. Care [3077]. Carefully [6387, 3699].
Carlo [7056, 5880, 6034, 6137, 6040, 3798, 3799, 4083, 4251, 4252, 5363, 5780].
Carry [377, 6953, 4312, 5673, 3722, 4155, 4800, 3566, 4518, 4519, 6135, 335,
5275, 3072, 1124, 2075, 5722, 6159, 753, 233, 286, 144, 3139, 2001, 3324, 2782,
5759, 4909, 5212, 5226, 802, 2331, 2660, 2875, 4333, 2520, 4681, 2725, 1899,
5067, 1167, 5768, 5853, 2474, 4456]. Carry-aware [6953]. carry-free [5067],
carry-look-ahead [802]. Carry-Lookahead [4155, 2001, 2660, 1899]. carry-
propagate [2520]. Carry-Propagation [377, 233]. Carry-Save [4518, 4519,
6135, 335, 5275, 3139, 2782, 3566, 2875, 4333, 4681, 1167, 5768, 5853].
carry-save-adders [4456]. Carry-Select [5743]. Carry-Skip [2075, 2331, 2660,
2725, 2474]. Carry-Storage [286]. carrying [761, 1053]. cas [5081]. Cascade
[366, 477, 2899, 2401, 2330]. cascade-correlation [2899]. Cascaded
[4289, 6652, 3768, 1438, 3484, 4261, 1452, 2903, 933, 4442, 6109, 3359, 6112,
3221, 4516, 4684, 3900, 5596, 5983, 6695, 4448, 6335, 3370]. Cases [3419, 2351,
5286, 4387, 4717, 5172, 5409, 5917, 4398, 4616, 5083, 5230, 6474, 4700, 3449,
4716, 4578, 4722, 4756, 5081]. Casting [6025, 6988, 2829]. Castle [7446].
Catastrophic [4322]. Categorial [7105]. Cauchy [3624]. caused [1755, 700].
Causes [6326, 6436, 3350, 1702]. Causing [5959]. CAV [7451]. Caveats
[5684, 5478]. CCD [1526, 2111]. CCECE [7465]. CD [7339]. CD-ROM
[7339]. CDC [624, 302, 731, 554, 636, 1242, 1345, 717]. CDC-3600 [302].
CDMA [5150, 4231, 4232, 4233, 4394, 4395, 4576, 4871, 4132]. CCA [3080].
Celebration [7441]. CELEFUNT [3052]. céleste [40]. celestial [40]. Cell
[5673, 2889, 4018, 7222, 2387, 2909, 3178, 5561, 2674, 3733, 2800, 2722, 3277,
2413, 2747, 3181, 5049, 5059]. Cells [6609, 3430]. Cellular [5255, 5475, 1595,
2882, 4008, 1217, 4559, 637, 685, 938, 3404, 5405, 2580]. Cent [333, 165].
Center [7201, 7415, 719, 7151, 7288, 7334, 7406, 7458, 7473, 7133, 7100]. Centered
[6752]. central [3146, 3147]. Centre [7490, 7222, 7376, 7292, 7089].
complex

Complex-arithmetic

Complex-Number

Complexities

Complexity

Compliance

Compliant

complying

Component

Component-wise

Components

Composite-field

Computation

Computation/Decompression

Compressor

Compressors

Comprising

COMPSAC

Computable

Computation

Computation/Decompression
putational [7271, 7317, 7342, 6451, 854, 806, 3562, 3407, 4815, 5277, 5948, 7043, 3853, 1500, 4321, 4675, 4687, 3583, 7264, 2910, 575, 7096, 7296, 7496]. Computationally [3625, 3188]. Computations [3625, 3188]. Compu-

computers [703, 704, 769, 990, 1235, 7124, 1921, 4271, 80, 3240, 2012].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

gent [2173, 3675, 3633]. convergents [5400]. Converging [3445, 2388, 3504].
Additions from Nelson H. F. Beebe [4160, 1173, 6819, 748].
Correctly [5378, 6625, 6738, 4793, 4966, 5379, 5669, 6235, 7042, 4329, 4330, 5280, 2525, 6650, 4843, 3747, 6398, 5521, 5822, 4381, 6292, 3774, 4224, 6171, 6924, 3164, 1298, 5596, 6293, 6411, 706, 4090, 4339, 1853, 3265, 3277, 4720, 4244, 4259, 3203, 3204, 4010, 4339, 5185, 6219, 6721].
Corrections [4160, 1173, 6819, 748].
Correctly-Rounded [6625, 6235, 5521, 7042, 6847, 6961, 6962, 6981, 7047, 5593, 4916].
Correctly-Rounding [4843].
Correctness [3862, 3988, 1506, 3242, 4240, 3802, 3241, 3416, 1298, 5596, 6293, 6411, 706, 4090].
Correspondence [381, 3067, 625, 584].
Corrigenda [3210].
Corrigendum [2700, 1295, 2090, 2254, 2022].
Corum [7332].
Cos [1765, 2231, 536].
cosimulation [5185].
cosisim [2120].
Cosine [4030, 2120, 1068, 2810, 2606, 242, 952, 4010, 4339, 1853, 3265, 3277, 4720, 4244, 4259, 3203, 3204].
Cosines [52, 1398].
Cost [1365, 1805, 6732, 4154, 4158, 6032, 5267, 4180, 3752, 5715, 5818, 4038, 4851, 6529, 5924, 7005, 6798, 2973, 5614, 654, 6699, 6105, 6591, 943, 6709, 7042, 6869, 1402, 5714, 4850, 2578, 2798, 2134, 3497, 2799, 1066].
cost-effective [4850, 2578, 2799].
Cost-Efficient [6529].
Cost/performance [4158, 4038].
Costs [3968, 6111, 1483].
COSY [5063].
Cotes [3706, 4215].
Cox [3706, 4215].
Cox-Rower [4215].
CPFloat [6972].
CPU [5649, 1290, 2223, 2235, 3924, 3683, 4115, 4924, 6112].
CPUs [6497, 4925].
CR [5952, 4979, 5180].
CR-LIBM [4979, 5180, 5952].
Cray [7204, 2419, 2176, 3391, 2542, 2547, 2454, 1163, 2014].
Cray-1 [1163].
Cray-2 [2176, 2014].
Cray-4 [3391].
CRC [6148].
CRC-Based [6148].
CRD [1368].
Creating [6501, 3746, 3273].
Creation [5966].
Credible [3464].
Creek [7435, 7457].
crisis [6699, 3833].
Criteria [1054].
Criterion [333, 427, 415, 425, 5941].
Critical [6349, 3011, 6945, 4700, 4250].
Critique [418].
crlibm [4807].
CRNS [5866].
cross [6645, 3440].
cross-compiler [3440].
CRT [4637, 3987, 4665].
CRT-based [4665].
Crunch [1256].
Cruncher [1212].
crunching [1188].
Cryptanalysis [4631].
Crypto [3264].
Crypto-Chip [3264].
Cryptographic [6120, 4649, 6483, 5148, 4352, 5199, 5200, 4891].
Cryptography [5452, 4645, 6017, 6734, 6468, 6491, 5582, 6498, 6394, 5167, 4903, 5851, 3173, 6937, 5866, 6748, 4179, 1907, 2971].
cryptoprotoocols [1907].
Cryptosystem [4125, 3000].
Cryptosystems [5647, 4192, 4554, 3112, 6305, 4412, 6191].
Crystal [3650].
CS2 [2568].
CSD [3239].
CSI [7219, 3593].
CSI/IEEE [7219].
c’t [2080].
c’t-KAT-Ce. [2080].
Cube [6401, 49, 2123, 5422, 6603, 798, 1496, 1444, 3926].
Cubic [6039, 6827].
Cubiche [3926].
CUDA [6508, 5344, 7030].
CUDA-Accelerated [7030].
CUG247 [2283].
Cultural [2945].
Cumberland [7375].
Cumulative [1881].
Currency [3734, 3875, 4002, 4404].
Current [6118, 5488, 2707, 5742, 3286, 3897, 3903, 3461, 2941, 3658, 6111].
current-mode [3286, 3658].
curriculum [575].
Curve [5452, 5647, 4284, 5789, 4288, 4645, 6498,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 38

4546, 5167, 4401, 4585, 4726, 4412, 4587, 4903, 372, 5237, 6962, 4198, 6191.
Curve-Based [5167]. Curve-Fitting [372]. Curve25519 [6691]. Curves
[5374, 5115, 5661, 5392, 5808, 4343, 4351, 4371, 5829, 3132, 4415, 4416, 4591,
3922, 1915, 3814, 4474, 3858, 6748, 6367, 6375, 4529, 6426, curvilinear [3692].
Custom [7388, 7273, 6742, 6743, 6643, 1964, 4987, 1848, 4028, 7220, 7235, 6300,
7293, 7300, 7314, 7367, 7426, 7442, 6589, 4527, 2900, 1868, 3505].
custom-designed [1868]. Custom-Precision [6742, 7420, 6643, 6589]. Customer
[2821]. customers [3382]. Customisation [4528]. Customizable [6449].
customized [6496, 6654, 6685, 3344]. Customizing [4989, 6892, 3496].
Cuts [2091]. Cutting [6574, 3185]. CVA6 [6892]. CVAX [2251]. CX
[2512]. CX-83S87 [2512]. CXgen [2674]. Cycle
[3047, 987, 1155, 3039, 744]. Cycle-Accurate [6554]. Cycles
[506, 1488, 3435, 3292, 899, 975, 2009, 3009].
Cyclic [4342, 5061, 2136, 1003]. Cylindrical
[5207]. Cyprus [7322]. Czech
[7306, 7423, 7455].

D [3391, 5669, 4986, 4177, 3881, 4033, 4201, 4038, 3283, 5520, 5025, 905,
4870, 5607, 6795, 3681, 3343, 3513, 7032, 6203, 4117, 4120, 4511, 6594, 5093,
3361, 2165, 4934, 4935, 4937, 801]. D-cache [3391]. D-konverter [3343].
[5864]. DAG [6922, 7024]. Dagstuhl [7383, 7446]. d’algorithmes [4307]. Dallas
[7092, 7224, 7184, 7147]. Dangerous [4268]. Dangers [3715]. DAP [1764].
Darcy [4236]. Dark [6750, 6968]. d’arrondi [989]. Darstellung [2609].
Data [3032, 5375, 6718, 6213, 6449, 5567, 1375, 5468, 865, 5266, 6490, 5809,
1616, 3081, 6503, 1036, 970, 6392, 5517, 3765, 6884, 892, 2100, 6988, 5314,
5174, 3635, 7169, 1315, 982, 145, 1323, 6912, 6803, 2453, 7027, 591, 1471, 6334,
5091, 6596, 5555, 4461, 5095, 3359, 4639, 1804, 48, 2498, 6230, 2656, 6474,
2665, 3978, 4335, 4524, 5896, 1509, 4836, 2892, 3078, 681, 5320, 5321, 1760,
4394, 4871, 2756, 4583, 4584, 5415, 3788, 1320, 3323, 2004, 1329, 3340,
2286, 2613, 3692, 1347, 2162, 2682, 292]. Data-Dependent [3765]. Data-
Driven [1375]. data-objects [3765]. Data-Parallel [3359]. data-paths
[4524]. DataBase [2821]. Dataflow [2038, 4018, 7025, 6938]. Datapath
[4635, 4312, 4794, 6855, 4542, 2940, 5561, 2320, 2184, 3976, 4505, 4915].
datapaths [3745]. Datatron [110]. Datatype [6509]. Datatypes [6624].
[3572, 4171, 4043, 5939, 5770]. DC [7137, 1150, 7215, 3065]. DCIS [7322].
DCT [4176, 5298, 5093, 4765, 4473, 3531]. DCT/IDCT [3531]. DDA
[1148, 969]. DDC [1686]. DDFUN90 [4954]. de-normalized [4558]. Deadly
December [7201, 7140, 7387, 7402, 7453, 7454, 7377, 7395, 7115, 7312, 7425,
7159]. Decidability [5126]. Deciding [5817]. Decimal [5233, 2037, 5114,
2856, 5793, 5118, 2947, 2646, 6354, 5958, 6127, 2866, 2867, 810, 811, 170, 4315,
32, 5676, 6475, 5124, 611, 865, 5471, 5802, 1382, 1386, 1590, 5127, 5259, 5479,
5480, 155, 4319, 4320, 4513, 4685, 4699, 4976, 6027, 6856, 6857, 6858, 6859,
6860, 6861, 198, 224, 6133, 6244, 5261, 173, 3731, 5270, 501, 4526, 4681, 4988,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5275, 5395, 5491, 5492, 5580, 672, 674, 6146, 2525, 5396, 5900, 5500, 6045, 2531, 1405, 4843, 5902, 3747, 86, 5507, 1291, 1292, 1975, 3889, 5152, 5157, 5297, 5513, 1303, 2227, 4040, 5160, 5732, 1630, 4856, 5017, 5019, 260, 1144, 261. **Decimal** [94, 402, 6554, 115, 5183, 2960, 2781, 993, 267, 1539, 5849, 841, 1164, 1638, 485, 4908, 5070, 5541, 269, 166, 2600, 533, 5087, 5088, 189, 5357, 5358, 5548, 5772, 3520, 5217, 5360, 5552, 5553, 5636, 5857, 6339, 6818, 6342, 3358, 4930, 5097, 5364, 5365, 5556, 5557, 134, 3835, 5226, 1078, 5454, 6455, 1804, 5569, 5385, 5472, 464, 2699, 5970, 5499, 1290, 5707, 5156, 5158, 5512, 5515, 2233, 2234, 4855, 5320, 5321, 401, 353, 630, 610, 1159, 1062, 5623, 780, 652, 6926, 5545, 5634, 4921, 5637, 5774, 2482, 5366, 5640. **Decimal-Based** [5900, 5772, 5396, 5357, 5358]. **Decimal-Binary** [173, 2525]. **Decimal-Floating-Point** [5152]. **decimal-point** [780]. **Decimal-to-Binary** [155, 4843, 267, 1291, 1292, 401]. **Decimal/Hexadecimal** [2600]. **decimal64** [5750, 5875, 5531, 5409, 5172]. **Décimales** [1159]. **Decimals** [618, 43, 5299, 5523, 268, 1693]. **decimation** [3266]. **decimation-in-time** [3266]. **Decision** [4289, 5533, 4112, 5466, 3607, 4062, 5532, 4912]. **Decisions** [5013, 1977, 1308]. **decNumber** [5128, 5200]. **Decodable** [4342]. **Decoded** [5556]. **Decoder** [7045, 6322, 4115]. **decoders** [4108]. **Decoding** [4492, 6977, 6508, 6673, 569, 4498, 1088, 2354, 4226, 5173, 4888, 2026, 4470]. **Decoding-Free** [6977]. **Decodings** [6901]. **decomposable** [3997]. **Decomposition** [3094, 2387, 3285, 1886, 5321, 5175, 355, 4415, 772, 3675, 2986, 791, 2505, 4839, 6781, 2417, 476, 3338, 5207]. **Decompositions** [5297, 996]. **Decompression** [6866, 3671]. **Decreasing** [3999, 2457]. **decryption** [3565]. **DECSYSTEM** [1400, 958]. **DECsystem-10** [958]. **DECsystem-10/20** [958]. **DECSYSTEM-20** [1400]. **Dedicated** [2983, 2800, 2982]. **Dedication** [5864]. **dedié** [2800]. **Deductive** [5957]. **Deep** [6448, 7041, 6449, 6349, 6476, 6477, 6366, 6636, 6638, 6853, 6854, 6866, 6050, 6503, 6980, 6526, 6285, 6410, 6784, 6678, 6995, 6543, 6788, 6608, 6557, 6912, 6097, 6913, 6428, 6802, 6805, 6931, 6596, 6605, 6713, 7039, 6637, 6747, 6403, 6677, 6415, 6686, 6904, 6476, 6686, 7008, 6444]. **Deep-dish** [6097]. **Defect** [7254, 1784, 2820]. **defect-tolerant** [2820]. **Defektberechnung** [2567]. **defense** [2863, 1566, 1644]. **deficiencies** [1736]. **defined** [4971, 5145]. **Defining** [3473]. **Define** [6607, 282]. **Definiteness** [6193]. **Definition** [2343, 555, 6395, 5022, 5050, 3401, 2365, 747, 1224, 4860, 6195, 17]. **Definitions** [6857, 1553]. **Degeneracies** [3472]. **Degeneracy** [3333]. **Degradation** [5028, 5997]. **Degrades** [3760]. **Degree** [5784, 5662, 4318, 1665, 4774, 5281, 6316, 6328]. **Dekker** [6783, 5121, 6653, 6676]. **Delaunay** [3681]. **Delay** [3720, 2660, 3563, 3859, 5492, 5970, 6985, 4064, 6692, 4910, 4728, 4731, 3365, 5779]. **Delay-based** [5970]. **Delay-optimized** [4910]. **Delay-power** [3563]. **delayed** [5243, 4229]. **Delays** [2884]. **Delhi** [7219]. **Delight** [5946, 7382, 4575]. **delimit** [5201]. **Delimiting** [3019, 2841]. **deliver** [3196]. **delivers** [2182, 2503]. **Delivery** [7259]. **delta** [138]. **Delta** [3564, 3977]. **Delta-sigma** [3564, 3977]. **Demmel** [4829]. **demodulator** [3564]. **Demonstration** [5012, 3558, 88]. **Denmark** [7132]. **denoising** [5686]. **dénominateurs** [5400]. **Denominator** [5989, 5535]. **denominators** [5400]. **Denormal** [6925, 5867]. **Denormalization**

8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

43

[3874, 7306, 2622]. Dive [6596]. Diversity [7441]. Divide [3955, 3537, 2050,
5250, 814, 3862, 2344, 5504, 6054, 4204, 4703, 348, 438, 1664, 3491, 4430, 5437,
654, 3512, 3685, 3686, 2806, 322, 596, 2168, 3382, 4314, 3988, 4163, 2561, 2943,
3492, 4088, 4607, 3017]. Divide-and-Conquer [6054]. Divide-and-Correct
[814, 348, 438, 322]. Divide/Square [3512]. divided [6642]. Dividends
[5677]. Divider [11, 6358, 1596, 3069, 6523, 4367, 230, 312, 2101, 4072, 5332,
1155, 713, 3940, 1933, 5365, 2033, 6709, 1479, 6357, 2200, 5577, 4826, 4694, 3428,
5499, 2376, 6504, 2896, 4850, 4365, 4707, 5830, 5744, 2939, 2247, 114, 3311, 2975,
2135, 5440, 5558, 2835]. Dividers [6609, 5565, 808, 6129, 3442, 6417, 6891,
3629, 2127, 6431, 6695, 4949, 4181, 3121, 2580, 4115, 1933, 5639]. divides
Division [2632, 6, 1567, 1568, 852, 3848, 1366, 857, 5796, 726, 4498, 1811, 6957,
3553, 5958, 728, 3224, 3398, 6628, 6848, 6964, 6128, 1581, 32, 729, 5386, 5677,
814, 5253, 670, 3860, 3981, 1017, 4666, 3056, 3233, 4977, 3995, 3419, 5485, 6036,
6970, 3735, 1602, 1835, 3246, 3247, 4004, 4169, 4678, 2071, 6381, 424, 507, 552,
4012, 431, 1606, 822, 305, 6499, 2704, 6046, 3253, 2375, 1851, 5706, 3749, 7046,
4189, 6054, 5711, 3751, 4355, 3753, 4028, 4199, 5008, 4704, 4035, 3444, 3445,
740, 6273, 343, 5516, 5905, 4041, 3448, 4044, 3762, 3763, 6527, 257, 4554, 749].
Division [5406, 5592, 5735, 5020, 4375, 285, 348, 567, 568, 631, 1635, 313, 3458,
4713, 5309, 5523, 25, 287, 1311, 1880, 1048, 128, 1754, 2105, 2933, 5833, 6996,
3122, 2424, 2248, 3467, 4875, 3469, 4397, 6081, 2113, 5042, 4398, 264, 762, 3643,
266, 5751, 1893, 2949, 3301, 4068, 4882, 5051, 7006, 236, 4071, 5753, 6185, 5842,
5183, 3652, 3653, 3792, 3793, 2777, 2778, 2125, 4595, 5191, 5424, 3664, 2132,
238, 6801, 6694, 1774, 2590, 649, 3804, 164, 584, 5065, 4087, 239, 775, 186, 165,
5342, 2015, 711, 4752, 842, 270, 3813, 322, 5351, 1923, 2022, 6702, 5085, 5354].
Division [4119, 4449, 6814, 167, 214, 939, 1174, 2155, 489, 593, 6205, 6336,
2475, 6208, 3006, 3830, 5859, 1001, 543, 244, 2303, 5450, 6111, 3015, 3016,
6603, 5228, 5805, 3837, 663, 2633, 3844, 950, 460, 3549, 1087, 4792, 6961,
3399, 2504, 5125, 3229, 3404, 4156, 2669, 2507, 3567, 4670, 6248, 2875,
2355, 2357, 2522, 2688, 3071, 4679, 4682, 4683, 4990, 2359, 3579, 3580, 3581,
3425, 2361, 225, 2073, 2698, 5285, 3883, 3592, 3254, 4186, 4844, 2078, 3436,
3437, 3438, 3441, 3268, 3269, 4031, 3888, 3757, 2092, 4706, 5015, 3104, 3284,
2919, 3901, 400, 4054, 3117, 4058, 4572, 5411, 5601, 2937, 2109]. division
[2556, 3125, 3782, 4578, 4722, 4724, 4725, 2754, 2755, 3131, 577, 1890, 5606,
6898, 3912, 2760, 2950, 3140, 3302, 3303, 3476, 4402, 3913, 5987, 5926, 2118,
2956, 452, 4073, 3480, 3654, 4076, 4889, 4734, 2967, 4896, 4425, 4744, 130, 163,
3927, 3928, 1064, 779, 3336, 3169, 3170, 3504, 4911, 6699, 3514, 3815, 2467, 2468,
293, 4271, 4272, 1172, 1463, 5210, 1073, 2472, 3948, 4279, 4766, 4930, 4931, 1253,
2164, 2834, 2837, 4932, 4769, 4476, 4283, 1994, 262, 1770, 1476]. Divisionand-accumulation [3751]. Division-Free [5958, 3254]. Division/Square
[5859, 3844, 4054]. division/square-root [3844]. Divisionless [222, 211].
Divisions [560, 265, 531, 785, 4241, 3198]. Divisionsalgorithmus [1770].
Divisionsverfahren [1811]. Divisor [560, 438, 3922, 531, 785, 543, 460,
4792, 2956, 4734]. Divisors [740, 3269]. DivSqrt [6979]. DLFloat [6448].


8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

...
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6205, 7035, 1075, 5550, 6595, 5555, 6342, 5096, 5858, 6820, 6934, 4466, 7037, 6937, 5371, 6824, 5103, 3206, 6604, 6605, 6711, 6712, 6825, 7039, 4136, 6942, 6944, 5648, 3536, 3853, 2661, 3723, 3858, 6241.

efficient [6949, 5290, 5728, 5026, 4591, 3307, 6328].

Efficiently [4591].

Effort [4114, 4383].

Egypt [7399].

Eidetic [6969].

Eigensolvers [5040, 5176].

Eigenvalue [1831, 4454, 7072, 3416, 6078, 4121].

eigenvalues [6078, 4411].

Eigenvectors [2806].

Eighteenth [7146, 7094, 31, 2371].

Eighth [7272, 7145].

Eignung [1699].

Ein- [2480].

Einbettung [1352].

einfach [1794].

Einiger [1236].

Einigen [835, 384].

Einplatinenrechner [2080].

Einzel [547].

Eisenstein [3729].

Eispack [3092, 3263].

electric [2406, 2408].

electrical [7158].

Elastic [2406, 2408].

Elements [1123, 308, 139, 6159, 2144, 3872, 3733, 2350, 4531, 1039, 5779].

Elevation [6481].

Eleventh [7271, 7259].

Elf [6994].

elicited [3934].

Eliminate [1206, 1079, 1184, 3380, 1269, 1436].

Eliminating [2167, 3882].

Elimination [3392, 5704, 5816, 3292, 5842, 5653, 1807, 1813, 2732, 1541, 1461, 1924, 2024].

Elision [6414].

Elizabeth [7393].

Elliptic [5452, 5647, 4284, 5789, 4288, 6350, 4645, 5237, 5661, 6043, 4343, 4546, 4371, 3132, 4401, 4585, 4726, 4412, 4587, 4730, 4415, 4416, 4903, 4432, 4606, 1915, 5629, 3814, 3858, 6748, 4198, 6426, 6919, 3338, 5222].

elliptical [108].

elliptique [108].

ELU [6638].

Elusive [4575, 5430].

ELXSI [1694].

Email [3481].

Embedded [7331, 6255, 6394, 7410, 7422, 7437, 7468, 6880, 6670, 3902,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6071, 6410, 2952, 6687, 5842, 5851, 6945, 2496, 3580, 6360, 5133, 4868, 4590, 3925, 5439, 5440, 5442, 5635. Embedding [1027, 1352]. emerged [3659].

enemy [6320]. Energy [6828, 6011, 6345, 5863, 6632, 6750, 5492, 5696, 6765, 5969, 6271, 6985, 6424, 5927, 4731, 6910, 5337, 7018, 4758, 6820, 6934, 6942, 7018, 4839, 6385].

Engine [3044, 4336, 6971, 6760, 5518, 2463, 4, 16, 6469, 2383, 4550, 2163, 7403, 6505, 3659]. Engineer [2907, 4723]. Engineering [311x3842, 7479, 7176, 7403, 7465, 7466, 2392, 5403, 4367, 3775, 3681, 7443, 7399, 7411, 5003, 1620, 4854, 4707, 316]. engineers [254, 738, 1973]. engines [2843].

England [3454, 7280]. English [195, 73]. Enhance [5382, 1540, 1778]. Enhanced [6346, 3842, 5463, 1504, 1592, 4871, 3133, 6925, 6704, 5252, 3637, 4099].

Entwurf [2299, 1000]. Enumeration [2160]. envelope [3177]. Environment [7103, 3551, 1193, 1266, 5572, 3442, 5769, 1711, 4321, 6069, 5757, 3325, 1696].

ERL [4833]. Errata [1387, 231]. Erratum [1108, 922, 5445]. erreurs [989].

2100, 5835, 543, 460, 3992, 6288, 6537, 3127, 3642, 5197, 1461, 1924, 4768, 6593.

[4294], [4500], [5310], [4422], [5434], [5435], [3500], [3806], [4291]. Faithfully [5966], [6047], [6057], [6106]. Fall [7067], [7077]. fallback [7007]. Falls [7375]. Family [2491], [4785], [1578], [1579], [2654], [5384], [5387], [1833], [5699], [5701], [3095], [3271], [4049], [4373], [1642], [3296], [4264], [3814], [5360], [4474], [2496], [5383], [5973], [7167], 2558, 2942, 3346, 3363. famous [6609]. Fan [2132]. Fan-In [2132]. Fans [6813]. FAQ [4960], [6856], [6857], [6858], [6859], [6860], [6861]. FasMath [2512]. Fast [4481], [6610], [6829], [3532], [4284], [4641], [5788], [377], [219], [3847], [5238], [6121], [2179], 6954, [3040], [3041], [5661], [3223], [3851], [2048], [6739], [1717], [2659], [905], [953], [6627], 5673, [1583], [2333], [2334], [4317], [5474], [1383], [1587], [6636], [6637], [6638], [1018], [3987], 6484, [1594], [1828], [3058], [3236], [2678], [5483], [3238], [5389], [5883], [4518], [4519], [4815], [5888], [3417], [3999], [1831], [6377], [3068], [6970], [2520], [4991], [3422], [4176], [820], [4012], 6043, [1606], [3739], [1842], [1517], [1847], [1612], [556], [2077], [5508], [3884], [5288], [3601], [3752], [5585], [4847], [3605], [2713], [1299], [6515], [3442], [3269], [4031], [6394], [6271], [3445], [6159], [309], [5909], [4215]. Fast-Direct [2048]. Fast-Division [1048]. fast-optimaler [1061]. Fast-Start [5039]. Fast2Sum [6126], [6233]. Faster [6728], [1949], [4661], [3060], [3243], [118], [6379], [5282], [5496], [4343], [5710], [6506], [6524], [5591], [5735], [6539], [4415], [7020], [1919], [2831], [6108], [6115], [6623], [1490], [6747], [2687], [6079], [3010]. Fastest [463], [3029]. FastRTS [4619]. FastTwoSum [6783], [6676]. Fault [5870], [3395], [2203], [4181], [6148], [5709], [3101], [7254], [3231], [3222], [2130], [1170], [2166], [4631], [6945], [6120], [2177], [3040], [3041], [3585], [2710], [4548], [2246], [2963], [3511], [3513], [3199], [3361], [2843], [3371]. Fault-Masking [2166]. Fault-Tolerant [5709], [2130], [4181], [3321], [3222], [6945], [3040], [3041], [3585], [4548], [3511], [3199]. faults [3252]. Faulty [6830]. FCC [3739]. FCCM [7388], [7442], [7367], [7426]. Fclass [4552]. FCT [7105]. FD [6632], [6546]. FD-SOI [6632], [6546]. FDIV [3568], [3408], [3494]. FDLIBM [3142]. FDTD [4918]. Fe [7338]. Feasibility [2518], [1138], [1147], [4605], [2711]. Feasible [3625]. Feature [255], [5820], [6429], [3196]. Features [5040], [5176], [4406], [2857], [3031], [378], [3443], [2394]. featuring [7259]. February [7384], [7401], [7367], [7113], [7145], [7177], [7311], [7289], 7224, [7398], [7369], [7295], [4122]. Federal [108]. Fédérale [108]. Federation
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

53

1376, 6470, 4312, 4794, 4968, 6358, 6628, 6964, 3555, 6473, 2503, 5468, 247, 6360, 864, 5676, 171, 3227, 3402, 1497, 1498, 5384, 5124, 6632, 2659, 1583, 5570, 2663, 3561, 4317, 5802, 6851, 1270, 2666, 2667, 2668, 5959, 6025, 6240, 3051, 3980, 1724, 2509, 730, 1196, 1385, 1501, 1502, 1725, 1824, 2202, 2339, 3053, 3983, 6131, 3985, 1197, 1198, 1274, 1387, 1726, 5881, 3862, 3989, 5127.

Floating [5259, 5479, 5480, 2869, 4320, 4803, 3410, 3411, 3570, 2061, 2062, 3413, 3726, 6138, 6134, 3571, 3864, 3866, 4325, 6751, 2344, 2513, 2514, 6641, 3995, 3996, 4327, 2204, 4812, 616, 2346, 2879, 3242, 4334, 4520, 4522, 4673, 4815, 5887, 6032, 6756, 1964, 5265, 4677, 6868, 5267, 5135, 6490, 3732, 4338, 6759, 1965, 2065, 501, 6140, 3874, 1724, 1824, 2202, 2339, 3053, 3983, 6131, 3985, 1197, 1198, 1274, 1387, 1726, 5881, 3862, 3989, 5127].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 56

<table>
<thead>
<tr>
<th>Floating Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>4842, 3882, 2532, 4021, 6656, 6657, 3080, 4022, 5001, 3593, 5817, 6978, 4023, 4539, 4698, 6504, 2894, 2895, 3595, 6388, 3083, 4022, 5001, 3593, 5817, 6978, 4023, 4539, 4698, 6504, 2894, 2895, 3595, 6388, 3083, 4022, 5001, 3593, 5817, 6978, 4023, 4539, 4698, 6504, 2894, 2895, 3595, 6388, 3083, 4022, 5001, 3593, 5817, 6978, 4023, 4539, 4698, 6504, 2894, 2895, 3595, 6388, 3083, 4022, 5001, 3593, 5817, 6978, 4023, 4539, 4698, 6504, 2894, 2895, 3595, 6388, 308!</td>
</tr>
</tbody>
</table>
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

4934, 4935, 5780, 598, 797, 2841, 6938, 194, 2843, 2307, 2489, 2845, 2846, 3205, 3836, 7052, 5227, 4940, 5106, 5108, 4632, 4772, 4773, 2309, 6716, 6943, 5130, 2345, 2682, 1252, 6466, 1731, 3891, 4865, 1884, 3644, 3188, 2298, 2299, 2300, 2479, 2480, 1475, 5575, 995

Floating-Decimal [134], Floating-Point [2039, 6952, 3954, 2629, 4635, 4945, 5233, 5785, 5562, 4636, 6948, 4946, 3958, 650, 6949, 6214, 6943, 5651, 5652, 5791, 598, 628, 6729, 3836, 3965, 4146, 4147, 4148, 1949, 4496, 2322, 6732, 2499, 3410, 3411, 3570, 2061, 6138, 6134, 4325, 6751, 2513, 2514, 6641, 4327, 4812, 616, 5887, 5888, 6032, 6756, 6868, 5267, 5135, 6490, 4338, 1965, 6140, 3874, 1732, 2883, 2885, 5394, 504, 6647, 4526, 5275, 5491, 3421, 4006, 4172, 1837, 6143, 2211, 1278, 6762, 6763, 1511, 6144, 4178, 6973, 2213, 6496, 4993, 5809, 1279, 2214, 2889, 4528, 5696, 3739, 1970, 5497, 877, 4018, 880, 1284, 6767, 2700, 4695, 5396, 5900, 6255, 6651, 1402, 1609, 6652, 4347, 4536

Floating-Point [5502, 306, 2217, 2218, 2372, 1849, 4184, 6976, 5706, 6769, 4843, 969, 391, 392, 5287, 3884, 2534, 6771, 5585, 1975, 970, 6513, 2538, 2712, 2902, 6155, 6270, 1300, 5296, 5818, 3887, 1131, 6158, 1618, 6518, 1860, 1861, 1862, 2086, 2087, 6519, 5157, 5721, 6663, 3096, 3097, 4201, 342, 5586, 6062, 5904, 5516, 5727, 5729, 5905, 5907, 6274, 6400, 4363, 3892, 5517, 1221, 6164, 6278, 6669, 1627, 5910, 6165, 344, 1223, 1307, 1416, 1986, 2913, 3759, 3893, 3894, 4210, 4364, 4552, 4851, 4852, 5013, 5403, 4367, 3761, 742, 745, 5300, 1870, 2545, 6528, 890, 1041, 3287, 5520, 827, 2407, 2921, 5305

Floating-Point [5306, 5823, 3768, 750, 751, 893, 1045, 5913, 3291, 6535, 6536, 6886, 6887, 6286, 6168, 6291, 6074, 5028, 2742, 6170, 4866, 5031, 6171, 6294, 6538, 1528, 440, 5314, 5315, 6992, 6994, 2105, 5174, 5980, 831, 904, 1430, 570, 4762, 3671, 5305, 2934, 2245, 2424, 6302, 2746, 4880, 2555, 6546, 639, 686, 2557, 5924, 6419, 1640, 2753, 6999, 5835, 6790, 4577, 525, 576, 1148, 3471, 5605, 4399, 7002, 7049, 982, 5531, 5324, 2432, 5533, 1763, 681, 641, 1895, 2116, 2256, 2436, 2437, 341, 5049, 5609, 6183, 6422, 1121, 2765, 2443, 2444, 6424, 6559, 6687, 915, 5056, 5183

Floating-Point [5332, 2774, 4077, 3653, 3655, 3793, 2962, 5930, 2777, 2778, 5418, 7014, 2003, 644, 1324, 2537, 2262, 6693, 5993, 7017, 701, 4255, 5994, 2785, 2786, 3152, 6564, 5538, 4897, 5146, 5425, 5426, 6430, 2272, 2273, 1238, 3669, 6192, 2274, 993, 3158, 2275, 4603, 2276, 2797, 5066, 5434, 5435, 5617, 5937, 6696, 6435, 1680, 6327, 3931, 1543, 4093, 1454, 1775, 4908, 5070, 5342, 4437, 4750, 5071, 5766, 5073, 2983, 7027, 5627, 5852, 3680, 2461, 212, 2948, 2805, 2990, 3178, 3179, 3342, 3685, 3686, 2287, 5942, 6202, 6925, 6103, 6104, 6576, 2020, 2995, 2601, 4913, 1458, 1459, 1785, 5544, 5084, 1340, 5855

Floating-Point [1786, 5546, 2470, 2607, 2608, 3002, 1465, 5547, 6703, 1789, 3517, 4920, 6106, 6589, 4120, 592, 3347, 6333, 6002, 7034, 5356, 2027, 848, 5548, 2822]

FLOATP Toolbox [6862]. Floats [2178, 5728, 6531, 3944, 6320, 6330, 2790].

FloatX [6496]. FLoC [5616]. FloCq [5665, 6736]. flop [4239, 502, 6546].

Flottante [2557, 2003, 701, 4307, 4788, 4340, 2213, 4865, 5319, 2756, 989].

Flow [6808, 5631, 3705, 3841, 2332, 2506, 5894, 1347, 1251]. FlowFPX [6948].

FLPPEG [349]. Fluid [6327, 7043]. Flux [3452]. Fly [5877, 6135, 3738, 5871, 2069, 2355, 2886, 5006, 4715]. Flying [4021]. Flytta1s [3343].

FMA [5378, 5664, 5697, 5715, 5818, 6777, 5905, 6275, 6292, 5601, 6911].

FMAC [3599, 3915]. FMCAD [7294]. FME [7354]. Focus [1230, 1247, 1201, 1047].

Fold [5435]. Fonctionnelle [2557]. Fonctions [4672, 3970, 5408, 5081].

Forces [2984]. Forcing [5423, 5079]. Forensic [5794]. Foreword [1009, 6218, 1364, 4646, 3975, 4506, 6639, 1114, 2356, 1859, 6778, 3454, 4050, 3771, 2763, 920, 3183, 6581, 6863].

Form [5452, 4284, 951, 3388, 547, 5257, 5258, 1828, 1829, 4834, 2893, 4847, 6297, 5599, 3781, 4412, 4587, 1445, 2146, 6602, 3706, 825, 7047, 5587, 5730, 6402, 3292, 3467, 1436, 5196, 3826, 3009].

Formal [6347, 6349, 2045, 2319, 4303, 4650, 4788, 5243, 5244, 5666, 5874, 6020, 6736, 6023, 7479, 7418, 4688, 4827, 4829, 876, 3077, 4188, 4189, 4699, 4361, 4367, 5518, 4048, 5743, 2749, 6419, 6552, 5842, 2573, 6430, 6193, 4261, 5938, 6917, 4607, 5766, 7294, 3375, 2044, 4787, 5121, 5979, 5957, 6231, 5010, 4707, 4383, 7354, 3146, 3147, 2487, 7479, 7418]. Formalisation [4307]. Formalization [4482, 4307, 829, 897, 973, 2938, 576, 6900].

Formalization [6062]. Formally [5464, 5465, 5873, 6354, 6080, 5323, 6898, 4077, 3488, 4805, 4806, 7000].

Formally-Proved [6354]. Formally-Verified [5873]. Format [6448, 6460, 6744, 3985, 5259, 5480, 6134, 970, 6660, 6158, 5160, 6404, 6888, 5172, 5409, 2753, 6556, 6693, 3943, 5087, 6705, 5361, 6596, 6208, 6598, 2172, 3966, 666, 4799, 6371, 4524, 4684, 2530, 3748, 520, 6677, 5027, 4879, 319, 5213, 1627, 2253, 3334].
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

high [2556, 50, 2943, 3135, 7063, 2563, 4402, 2956, 1153, 3311, 3795, 4731, 2776, 5843, 4080, 4246, 4734, 3150, 5338, 5757, 2578, 4739, 2583, 4898, 2008, 95, 3666, 1062, 1678, 5618, 3169, 3170, 1066, 2994, 5078, 1784, 3689, 1172, 6335, 3351, 5639, 6601, 2618, 2848, 3372, 2682, 2051, 2567].

High-Bandwidth [6848].

High-Dimensional [6305, 6645].

High-end [1517].

high-frequency [4855].

High-Level [1094, 6138, 1511, 4178, 7003, 993, 6706, 4144, 6847, 6412, 4583, 1696, 1062, 6335].

High-Order [2048, 3569, 1054, 3166, 3167].

High-Performance [7302, 1571, 5674, 3721, 4316, 3854, 4800, 5495, 5009, 4201, 6163, 5057, 5614, 5444, 6334, 5360, 5553, 5636, 6935, 6936, 6764, 4702, 2223, 4572, 6338, 3240, 3209, 5954, 4780, 6016, 4973, 4838, 4839, 4022, 2943, 3311, 4731].

high-period [5269].

High-Precision [3532, 4956, 4782, 6473, 1132, 3763, 6302, 5795, 5869, 6015, 6645].

High-Radix [5565, 3233, 3112, 6066, 4060, 3485, 5071, 4119, 4450, 6940, 4306, 4245, 4594, 4738, 3166, 3167, 2384, 2776, 4080, 4246, 4734, 4739, 3169, 3170, 1172].

High-Spped [1069, 1178].

High-Throughput [5564, 5025, 6990, 6571].

high/variable [2330].

Higher [7272, 460, 545, 5956, 7344, 1581, 2508, 1602, 6509, 2391, 2927, 5528, 2566, 5927, 2138, 1912, 1174, 2029, 543, 3075, 3083, 2911, 3102, 2433, 5072, 3831].

Higher-Order [7272, 3083].

Higher-Precision [6509].

Higher-Radix [1602, 543, 460].

Highlights [1041].

Highly [4775, 2500, 5478, 5684, 6646, 1841, 4190, 517, 2561, 3945, 2199, 1852, 4736, 1471, 1472].

Hile [384, 35].

Hilton [7259, 7157, 7178, 7195, 7335].

Hind [407].

hings [6211].

Hisab [407].

histogram [5344].

Historical [5529, 6100, 529, 3528].

History [852, 7285, 91, 21, 6252, 511, 622, 1399, 6516, 6775, 4202, 2720, 4046, 20, 2945, 2475, 5895, 2078, 6086, 800, 6826, 7125].

hits [6671].

HLS [6589].

HMC [6401].

HMC-MAC [6401].

HMFPCC [6013].

HMM [6592].

Hobbit [3091].

 Hochgenaue [2051, 2567].

Hogenauer [387].

höheren [1094].

HOL [4482, 5562, 3401, 3402, 3432, 3750, 4187, 6062].

HOL95 [7272].

Holiday [7151].

Homepage [4323].

homogeneous [1972, 5323].

Homomorphic [6610, 6997, 6557, 6566, 7030].

Hong [7376].

honor [6434].

Hood [5184, 3695].

hopped [4630].

Horizon [2295].
IEEE [3394, 2649, 6023, 3973, 4969, 3401, 3402, 4508, 1196, 1502, 1589, 2339, 3053, 3862, 3989, 5127, 5259, 5479, 5480, 6485, 3412, 3413, 3865, 3867, 4324, 4167, 2683, 6756, 7374, 7419, 4819, 5488, 3736, 4006, 4172, 4173, 4174, 4683, 6762, 6763, 1511, 4175, 4178, 4340, 2697, 2526, 5285, 2705, 2532, 2083, 7176, 5149, 1409, 6516, 6775, 6518, 6518, 1218, 7113, 7131, 7414, 7511, 1862, 7157, 7177, 7178, 7195, 7197, 7209, 7220, 7234, 5721, 4704, 4361, 1626, 1307, 2093, 3449, 3614, 3759, 5159, 5160, 4051, 4862, 6534, 7299, 7267, 5172, 5409, 5921, 6416, 7254, 1757, 5318, 3630, 2424, 2555, 4230, 5040, 5176, 2253, 5517, 5531].

IEEE-754 [5750, 3473, 3643, 3644, 6555, 2435, 7012, 4242, 3309, 4077, 3652, 4413, 4588, 2573, 4082, 3323, 6189, 2781, 7328, 7293, 3325, 3488, 2792, 4989, 2271, 1674, 6433, 6320, 1677, 7021, 3927, 3928, 3159, 4546, 7499, 4932, 4267, 4437, 4750, 4910, 4911, 5071, 3935, 4746, 1776, 5627, 2016, 7398, 2287, 5351, 1338, 1458, 1460, 7340, 2470, 2607, 2608, 3002, 1465, 5213, 7301, 1696, 5358, 3350, 5553, 5361, 2033, 7245, 5778, 7036, 1798, 7199, 7295, 7330].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Implementation [5735, 3871, 4819, 3733, 5270, 3070, 6875, 4010, 1204, 2361, 5283, 3076, 3586, 3428, 5285, 2530, 5700, 7218, 1850, 4842, 2532, 3883, 6388, 4194, 3260, 4029, 3440, 6664, 6160, 5726, 2088, 2090, 2546, 2732, 2240, 2413, 829, 897, 973, 4863, 5308, 2417, 4058, 3459, 5920, 4570, 2104, 5411, 3123, 4065, 5746, 3638, 5749, 6683, 1762, 2563, 2433, 5180, 5181, 2956, 3311, 4076, 3149, 3319, 3320, 4083, 2268, 2791, 2793, 1677, 5433, 4910, 1167, 2016, 5770, 2462, 1546, 7988, 2019, 2288, 5854, 5634, 1172, 2152, 5213, 846, 4275, 1175, 2473, 4464, 5558, 2834, 4473, 4476, 2682. Implementations [5651, 5652, 5791, 5792, 3223, 6480, 5387, 4672, 6647, 4348, 3746, 3749, 4557, 6412, 3122, 7291, 7411, 4580, 4071, 3972, 1902, 4247, 4085, 5424, 7228, 6569, 3173, 3512, 3685, 3686, 2606, 3519, 4125, 4623, 6709, 3260, 6031, 4672, 1261, 3039, 2655, 4158, 4164, 5390, 3246, 3425, 3439, 2727, 5307, 3292, 6293, 6411, 3627, 3777, 1757, 7325, 7336, 7352, 7365, 7379, 7396, 4086, 2592, 4748, 3813, 5075, 5218, 4928, 3007, 4934, 4283.

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5741, 5919, 5034, 2108, 2109, 2248, 6552, 6558, 6793, 145, 3484, 2120, 3486, 4415, 1905, 4895, 1669, 2132, 6317, 1774, 2590, 4425, 6192, 2139, 6435, 6920, 4752, 2146, 588, 5085, 5087, 5211, 5355, 6814, 5357, 5358, 5772, 6205, 6336, Integer [5093, 3358, 1253, 1076, 3527, 5644, 5805, 2179, 4784, 5801, 2655, 4156, 6484, 5389, 2205, 820, 3583, 5282, 2698, 2891, 2366, 5283, 6048, 4537, 4724, 7000, 5838, 6898, 5987, 5988, 7019, 1668, 6318, 2802, 3684, 5080, 2997, 4444, 4624, 5643, 3275, Integer-Division [6527], Integerarithmetik [2120], Integer [6840, 18, 549, 811, 5257, 5258, 3055, 877, 6652, 5711, 3885, 4369, 3635, 3636, 2112, 1146, 6179, 5751, 1768, 4419, 1667, 4596, 530, 2015, 3944, 5555, 2303, 3207, 3373, 2318, 1826, 871, 3253, 5600, 5606, 5193, 2030, 4764, integrable [4407], Integral [547, 333, 1349, 282, 4003, 6645, 1512], Integrals [6043, 1306, 3624, 6645, 1512], integrands [5149], Integrate [6892], Integrated [5649, 7328, 4777, 723, 3551, 2500, 724, 7235, 7436, 1424, 2242, 1879, 1179, 4321, 1031, 2530, 1868, 2421, 2252, 2466], Integrated-Circuit [1879], Integrating [3091, 1433, 5757, 7355, 4941], Integration [6232, 1822, 4003, 624, 82, 4357, 83, 7267, 440, 204, 77, 6701, 936, 4675, 282, 92, 95, 2134, 4109, 194], Integrations [6073, 2584], Integrator [62, 3588], Integrity [4461, 3634], INTEL [1377, 979, 5111, 6346, 5112, 5865, 1487, 1956, 5811, 4666, 5479, 6970, 6497, 3739, 5141, 6149, 6258, 6658, 1856, 4705, 1629, 5820, 2241, 2242, 1315, 5414, 1058, 1323, 2463, 6099, 2289, 5854, 3833, 2307], Intellectual [7145], Intelligence [5695, 6509, 6688, 6708], Intel(R) [4786, 5518], Intensive [1718, 6470, 6308, 3188, 6824], Inter [1080, 6510, 7156], Inter-Continental [7156], Inter-Modulo [6510], Inter-relationships [1080], interaction [5621], Interactions [3963], Interactive [1752, 1150, 983, 7389], Interchangeability [1080], interconnected [5764], Interest [7224, 53], Interface [1097, 1264, 7129, 7449, 2224, 985], Interfaces [3746, 3093, 5512], Interfacing [3186], Interim [6950, 6983], Interior [4467], Interior-Point [4467], Interlaced [6145], Interleaved [1132, 5591, 3294, 6681, 3118], interlock [2191], Intermediate [4945, 5233, 4843, 4064, 4085, 3748, 5027], Internal [3534, 3386, 6045, 5902, 6897, 3678, 2997, 1843, 2559, 2843], Internal-Newton-Method [3534], Internals [3170], Internation [7268], International [7717, 7189, 7384, 7400, 7401, 7283, 7284, 2635, 7247, 7272, 3707, 7303, 7387, 7231, 7356, 7274, 4646, 7402, 7417, 7431, 7357, 7451, 7286, 7344, 7345, 7432, 7479, 7262, 7275, 7462, 7373, 7418, 7358, 7248, 7319, 7453, 7463, 7374, 7488, 7375, 7419, 7140, 7082, 7464, 7305, 7499, 7501, 7176, 7446, 7306, 7454, 7087, 7098, 7113, 7130, 7311, 7415, 7156, 7157, 7177, 7185, 7195, 7196, 7197, 7209, 7219, 7222, 7234, 7265, 7277, 7278, 7309, 7322, 7323, 7333, 7334, 7347, 7349, 7360, 7361, 7376, 7377, 7386, 7391, 7392, 7393, 7394, 7395, 7406, 7408, 7422, 7433, 7434, 7435, 7437, 7447, 7447, 7456, 7457, 7458, 7466, 7467, 7468], International [7495, 7477, 7238, 7223, 7496, 7290, 7267, 7364, 7254, 7440, 7183, 7120, 7425, 7079, 7108, 7117, 7354, 7091, 7240, 3156, 5616, 7315, 7368, 7381, 7461, 7329, 7443, 7339, 7340, 7355, 7413, 7491, 7301, 7341, 7369, 7414, 7370, 7258, 7399, 7244, 7471, 7245, 7199, 7270, 7295, 7330, 7497, 7427,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 75

1393, 281, 4342, 338, 7278, 7323, 7438, 7455, 5299, 1526, 6787, 4575, 6561,
4597, 482, 583, 3802, 4261, 7470, 7315, 2980, 4751, 4610, 781, 782, 783, 2019, 3689,
5213, 5089, 3694, 7078, 7058]. Logic-Based [6787]. Logical [3021, 1102, 1742, 4114,
Long [3398, 4972, 2671, 4697, 5711, 437, 6073, 3635, 3636, 6899, 4419, 844,
4119, 3731, 2692, 4540, 5737, 2584, 2802, 5768, 5853, 5643]. long-term [2584].
longer [6419]. Look [5892, 3880, 1742, 4192, 3433, 5053, 5184, 2122, 4422,
3823, 5212, 802, 2661, 4015, 5510, 6418, 3942, 2153, 4937]. Look-Ahead [5212].
Look-Up [1742, 4192, 5053, 2122, 4422, 3823, 3433, 2661, 4015, 3942, 4937].
Lookahead [4155, 3457, 2001, 5226, 2660, 1899]. Looking [6542]. Lookup [5494, 4012, 6057, 5023, 4397, 5041, 5748, 2124, 2125, 6325, 3807, 1544, 998,
2812, 2813, 3856, 3430, 4031, 4850, 3319, 3320, 4081, 3150, 2035]. Lookup-
Table-Based [6057]. Loop [3378, 3098, 5415, 2163, 3099]. Loops [3227, 4597].
L¨osung [1598, 4477, 4771]. Lottery [7026]. Louis [21, 7163]. Louisiana [7176, 7311, 7398]. Louiville [7144]. Low [2851, 4950, 4951, 1365, 1805, 6732, 6846, 6628, 6848, 6237, 608, 4798, 6477, 4971, 4800, 3859, 5257, 5258, 6967, 6248, 5267, 5486, 4005, 6874, 3579, 6972, 6382, 4183, 1402, 3881, 6976, 5705, 6977, 3752, 6513, 5009, 5715, 5818, 4032, 6163, 6523, 6985, 4708, 3899, 5911, 6283, 6888, 5029, 4389, 6992, 4234, 5924, 7005, 4071, 4072, 4073, 6688, 6899, 4883, 4414, 4589, 7016, 4255, 4421, 7328, 5933, 5654, 6514, 6802, 4742, 4743, 4902, 5064, 5432, 4092, 4094, 4909, 5766, 654, 5628, 6001, 6575, 6105, 5546,
3005, 6931, 943, 6933, 4464, 3952, 6939, 6712, 6940, 4633, 5951, 5963]. low [6760, 2897, 5714, 3888, 5515, 6986, 3901, 4712, 5918, 5744, 3782, 5054, 2258,
3657, 5756, 3797, 2578, 2978, 1066, 5208, 2615, 3953, 4932]. Low-Complexity [5432, 3899, 5029, 3953, 4932]. Low-Cost [1365, 1805, 6732, 5267, 3752,
5818, 5924, 7005, 5614, 654, 6105, 943, 1402, 5714, 2258, 2578, 1066]. Low-
dimensional [4883]. Low-frequency [2851]. Low-Latency [6848, 5628]. low-level [2615]. Low-Overhead [6992]. Low-Power [4800, 5009, 6163,
6523, 5911, 4071, 4072, 4414, 7016, 7328, 4092, 4909, 5766, 5546, 5036, 6712, 4798, 4005, 3579, 4073, 4633, 3901, 5054, 5756]. Low-Precision [6846, 6477, 6976, 6777, 6899, 6802, 6972, 6888]. Low-Weight [5257, 5258]. Lowerr [1948, 4059, 3645, 5431, 5955, 4543, 5430, 2815]. LP [3645]. LPE [6820].
LSI-11 [1507, 1408]. LTI [6707]. LU [4839]. Lubbock [7151]. LUCAS
LX-1 [563]. Lyapunov [6005]. Lyon [7371, 7286, 7482]. LZA [2535].

1579]. MA [7385, 7491, 7189, 7076, 7112, 7175, 7456, 7158]. mac [4964, 5956,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6480, 6862, 6967, 5812, 6882, 5923, 6794, 4255, 6921, 4115, 4937, 2317].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 80

mécanique [40]. Mechanical [3538, 5666, 12, 3769, 6100, 4608, 40, 5895]. mechanically [4308, 3913, 3927, 3928, 4090]. mechanically-checked [3927].
Additional Contributions from Nelson H. F. Beebe

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6817, 6003, 6818, 2831, 4462, 4931, 1476, 1705, 458, 4465, 5221, 4466, 7037, 6006, 4474, 6712, 5372, 4136, 5229, 5804, 6608, 950, 2176, 6459, 3849, 4645, 5237, 5238, 1262, 1574, 3966, 2862, 5242, 90, 4653, 5246, 4793, 6961, 2189, 2655, 6849, 5252, 3404, 3566, 2510, 1591, 6484, 5129, 6369, 3238, 5389, 6375, 4983, 6377, 3070, 2357, 2520, 2688, 4681, 2210, 3580, 3581, 4011, 820, 4013, 4179	multiplication
2073, 4689, 5282, 5283, 619, 2215, 967, 1844, 3253, 6506, 6507, 6058, 101, 6881, 3757, 5722, 6275, 4706, 5015, 4708, 5018, 4217, 2237, 2918, 3115, 3290, 4386, 4567, 4392, 2553, 4393, 5411, 6077, 3630, 3909, 2109, 4873, 2428, 4878, 2755, 4733, 5755, 5844, 5931, 6092, 6187, 3487, 2780, 4736, 4417, 2448, 4256, 27, 6191, 4740, 4741, 4902, 7020, 5848, 3928, 778, 653, 3932, 4911, 6102, 6439, 2802, 5345, 5629, 3684, 2462, 3817, 5854, 4116, 1927, 2811, 3000, 3001, 3942, 5086, 4761, 1073, 5774, 3522, 492, 5362, 3197, 3831, 5222, 5367, 5101, 5370, 5377, 5643, 2627, 3371, 4940, 5106, 7030	Multiplication
371, 3706	Multiplication/division
3996, 6141, 4837, 6264, 5148, 5294, 3787, 6090, 4730, 6912, 766, 2477, 3527, 5656, 5678, 6048, 4241, 2811	3909, 2109
1011, 4977, 5968, 4352, 5041, 6081, 6315, 5994, 5656, 5312, 6400, 609, 1108, 1109, 4683, 5285, 1611, 3757, 2622, 3020	Multiplicative
1562, 6113, 4636, 5565, 1565, 3961, 4293, 329, 462, 1572, 3966, 4498, 3854, 1195, 6851, 5255, 5475, 5477, 5387, 198, 3413, 6133, 1595, 1830, 6135, 6868, 503, 3069, 6646, 424, 507, 111, 430, 6145, 1514, 5099, 5739, 5009, 309, 1304, 6985, 140, 5161, 6780, 6882	Multiplier
6057, 5362, 6828, 2310, 3703, 6953, 2042, 5566, 3392, 4785, 5377, 3043, 4304, 4300, 6626, 6741, 6960, 3720, 4661, 4507, 2057, 6244, 332, 1594, 1828, 5692, 1599, 5966, 6872, 4170, 5276, 1603, 6498, 5699, 878, 6975, 556, 7045, 5385, 1217, 6163, 3285, 6530, 3765, 5167, 6284, 6406, 5739, 4384, 6786, 6298, 6541, 6787, 3629, 4064, 6307, 3139, 6685, 1055, 1152, 2127, 5428, 4742, 1675, 6435, 2450, 5765, 6095, 5013, 4179	Multiplier/Divide
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 86

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

- Non-Restoring [6423, 3484, 852, 1311, 3627, 3777].
- Non-Smooth [3621].
- Non-standard [505].
- non-strict [2904].
- Non-traditional [5100].
- Non-Underflow [1285].
- Non-Volatile [680].
- Nonbinary [1918].
- Nonclassical [2696].
- Nondecimal [622, 1399].
- Nonlinear [6461, 3574, 737, 3446, 3621, 2947, 3675, 3698, 4467, 3779, 758, 5326, 946].
- Nonrectangular [3338].
- nonrecursive [2239].
- nonredundant [3945].
- Nonrestoring [857, 1581, 670, 637, 649, 1353, 1890, 1064, 3169].
- Nonscalar [766].
- Nonspeculative [5707].
- Nonstandard [1811, 1257].
- Nonsupersingular [3132].
- Nord-2B [645].
- Nordseeck [440].
- Norfolk [7255].
- Norm [1092, 4117, 6387].
- Normal [6949, 1489, 5671, 6141, 5277, 4562, 758, 5326, 946].
- Normalis´ee [4340].
- normality [5621].
- Normalization [2059, 966, 1032, 438, 2011, 1940, 2167, 1585, 1832, 4020, 1611, 3693].
- Normalizing [6255, 3080, 5745].
- Norms [5669, 5474, 6047].
- normwise [5893].
- North con [7237].
- Northcon/92 [7237].
- Northeast [7134, 7158].
- Northeast-83 [7134].
- Northeast-86 [7158].
- Northeast/83 [7134].
- Northern [7345, 7461].
- Norwegian [1739].
- Notation [4671, 6098, 1335, 311, 5530].
- notations [4789].
- notch [2959].
- Note [1005, 3962, 274, 223, 277, 125, 175, 158, 968, 512, 341, 560, 82, 342, 743, 202, 361, 8, 918, 1669, 3802, 707, 711, 1923, 2022, 3011, 2303, 5450, 6111, 4472, 949, 4310, 116, 2878, 4540, 1974, 1624, 1227, 6676, 6783, 3633, 756, 1668, 3189, 78, 1252].
- Notes [195, 668, 52, 36, 26, 343, 2388, 4036, 3759, 30, 207, 1669, 741, 3614, 5313].
- Nothing [2091, 4046, 6906].
- notice [6217, 6614, 6720, 6579].
- Notwendigkeit [404].
- Nov [7383].
- Novel [803, 4300, 6638, 6759, 875, 6655, 3266, 2722, 015, 2105, 6315, 4080, 4246, 2794, 3666, 6694, 4603, 5212, 5213, 5361, 6818, 6006, 4639, 6038, 2937, 5608, 5939, 4757, 4932].
- November [7190, 7331, 7415, 7067, 7077, 7322, 7479, 7101, 7174, 7192, 7023, 7298, 7176, 7092, 7098, 7179, 7221, 7277, 7363, 7495, 7115, 7146, 7312, 7182, 7313, 7337, 7353, 7366, 7380, 7448, 7460, 7489, 7120, 7135, 7282, 7294, 7160, 7188, 7216, 4880].
- NPB [6634].
- NPL [945].
- NPU [6934].
- NS16000 [1642].
- NS16081 [1642].
- NS32000 [1952].
- NS32081 [1952] [1970, 2016].
- NS32831 [1950].
- NS32532 [2182, 2223].
- NS32532-NS32580 [2182].
- NS32580 [2182].
- NSA [1644].
- NSW [7180].
- NTRU [4733].
- NTT [6734, 6885, 6712].
- NTT-Based [6885, 6712, 6734].
- NTT-Uncoupled [6712].
- NTU [6712].
- NU [1362].
- Nuclear [7229].
- Null [390].
- Nullstellensätze [4053].
- Number [5647, 6008, 6829, 7041, 3536, 3708, 1486, 3709, 4491, 4643, 4952, 4953, 5457, 5654, 5655, 6457, 6622, 6841, 219, 854, 3848, 4297, 4958, 6731, 946, 665, 803, 856, 724, 805, 1090, 1575, 6955, 6124, 6021, 5667, 727, 6850, 6476, 1957, 3854, 4972, 611, 220, 1275, 1595, 5803, 5482, 671, 6489, 3572, 3730, 3998, 4337, 6374, 3874, 1201, 3420, 6252, 3072, 5494, 432, 177, 336, 337, 6877, 6044, 884, 1742, 253, 2076, 5004, 5709, 560, 1212, 1292, 7446, 6390, 5295, 1617, 6158, 6400, 1625, 1134, 1135, 1305, 3761, 202, 346, 1418, 1631, 3452, 5162, 749, 827, 6672, 6884, 203].
- Number [6404, 1137, 1423, 1875, 5595, 5911, 752, 5826, 5915, 25, 1047, 1230, 1231, 2386].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Number [597, 3019, 7089, 2628, 3206, 3376, 3377, 4942, 4943, 4481, 1710, 4287, 4639, 3535, 2636, 2313, 3846, 4644, 5867, 4777, 6227, 3549, 6351, 2177, 1088, 1261, 1488, 2043, 2045, 2319, 1263, 3220, 3221, 3317, 3318, 4414, 4589, 2574, 4084, 4253, 987, 2666, 2676, 2669, 2507, 3231, 3232, 3563, 3564, 3565, 3977, 4662, 3725, 4511, 6028, 1826, 4165, 5688, 1108, 1109, 4333, 2347, 2881, 3064, 3244, 3245, 3573, 3729, 3871, 3733, 3873, 1277, 4010, 4339, 2693, 2694, 4013, 4179, 2365, 4408, 4728, 2445, 3312, 3313, 2963, 2964, 4080, 4245, 4246, 3149, 3319, 3320, 405, 3321, 3322, 3487, 1769, 1907, 5190, 6190, 4417, 4418, 4737, 2970, 2971, 3490, 3664, 526, 7019, 4258, 2450, 2585, 4259, 1536, 1909, 2009, 2452, 1449, 4425, 4258, 4604, 4257, 3929, 5767, 5074, 3677, 1917, 3175, 2145, 5770, 2464, 2804, 2988, 3937, 4106, 4107, 4108, 999, 1066, 1067, 1687, 1781, 1782, 2018, 2019, 5075, 2991, 2992, 4612, 2998, 188, 2602, 2999, 323, 1462, 1549, 3515, 3691, 1930, 2294, 2026, 5214, 2820, 3825, 1175, 5089, 3190, 4124, 4277, 2826, 3603, 2030, 3353, 3354, 3355, 5363, 148, 4464, 2832, 2837, 3203, 3204, 3368, 3369, 4131, 4132, 4133, 4470, 4761, 6286, 4329, 2839, 2840, 2841, 4936, 544, 800, 3020, 2848, 2849, 6827, 4798]. Number-Theoretic Numbers [7371, 7416, 664, 1012, 4149, 39, 5118, 1492, 1094, 6354, 2501, 550, 5875, 6127, 3555, 6478, 6479, 7304, 4506, 1382, 2509, 6636, 331, 1388, 1107, 1828, 1829, 4327, 156, 6759, 4821, 6493, 672, 1206, 4830, 7383, 55, 877, 1515, 3741, 6652, 54, 3744, 6152, 6977, 2708, 558, 559, 41, 1211, 2534, 6771, 1975, 2538, 2712, 2902, 6156, 6158, 4202, 342, 5904, 6166, 6281, 4556, 6987, 1635, 6067, 260, 1528, 5526, 638, 685, 5835, 6549, 446, 2945, 4399, 2253, 3474, 5985, 115, 5989, 7005, 1151, 2777, 2778, 367, 4596, 1448, 3802, 1238, 6806, 185, 3930, 4907, 2146]. Numbers [6574, 2601, 4913, 5352, 3819, 3518, 1698, 3356, 6444, 6708, 1470, 1256, 660, 5949, 948, 1078, 4938, 6754, 5232, 3956, 6115, 3381, 4961, 2324, 3556, 4796, 6359, 5679, 5125, 2666, 2667, 2668, 5880, 4801, 4802, 2341, 5577, 2881, 5269, 3731, 2686, 2687, 2696, 2365, 137, 1403, 2371, 307, 2376, 1614, 6053, 4539, 4698, 5398, 1214, 1295, 138, 6154, 3268, 681, 1623, 256, 2097, 2733,
2918, 4860, 5022, 3456, 5307, 1993, 2926, 6288, 4058, 5600, 6545, 2249, 6178, 3127, 1434, 2944, 1318, 3642, 3475, 3300, 363, 5608, 2762, 3647, 8, 4736, 4254, 4420, 4895, 1332, 1063, 2592, 5629, 3181, 6926, 2997, 845, 5445, 5446, 6107, 3945, 849, 4931, 2301, 3365, 5227, 2952, 7010, 4413, 1326, 2270, 2972, 2973, 1236, 7122, 1061, 5996, 6319, 5343, 1341, 7064, 3190, 7198, 3828, 6334, 7214, 4926, 1426, 946, 1077, 718, 2306, 7089, 4475, 411, 74, 3838, 3209, 1083, 5955, 4647, 1812, 6239, 6635, 419, 6246, 6249, 6753, 6755, 1729, 3060, 4985, 510, 6042, 3740, 1126, 1738, 5143, 6050, 4195, 308, 824, 2079, 2899, 1215, 4360, 5155, 396, 3274, 7099, 2394, 472, 4047, 2402, 6677, 5831, 1637, 5527, 6550, 2756, 833, 5327, 5534, 696, 6904, 1327, 2579, 368, 1158, 4424, 2591, 840, 4755, 5076, 5077, 3688, 1251, 3834, 194, 544, 7143, 1854, 768].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

planes [4509]. planetary [2584]. Planning [246, 63, 64, 65, 66, 67, 68].
3051, 3979, 5960, 4801, 4802, 3982, 1501, 1589, 1824, 2202, 5478, 5684, 6132, 4161, 2674, 1104, 1961, 3988, 4669, 4515, 421, 2062, 5481, 3412, 5686, 3726.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

2271, 3328, 4086, 5760, 2451, 2586, 2795, 2976, 2587, 2588, 1773, 2135, 1332, 921, 922, 5063, 6804, 992, 528, 1240, 1241, 1333, 706, 1062, 2977, 1063, 3329, 1677, 483, 4904, 3496, 773.

point [5934, 6194, 5619, 5620, 5847, 6197, 5763, 3927, 3928, 4090, 1336, 4905, 4605, 1913, 3159, 107, 5764, 5623, 6436, 997, 2978, 2457, 3929, 3930, 5624, 3672, 3332, 776, 2013, 2279, 2593, 2141, 7023, 4906, 6000, 780, 709, 710, 3170, 3810, 4102, 4749, 5541, 3932, 4267, 4438, 4910, 4911, 5767, 3934, 3677, 2799, 2800, 2981, 2982, 2801, 1685, 3339, 3175, 5941, 2284, 3679, 3812, 4611, 4912, 926, 3340, 3176, 3505, 2016, 3506, 2145, 1065, 3936, 5197, 1546, 2463, 787, 4115, 4439, 6699, 3813, 2466, 1688, 1921, 2994, 4613, 1690, 2288, 1169, 2467, 2468, 4440, 4441, 4615, 5078].

point [5079, 5080, 5201, 5202, 5203, 5204, 5205, 5206, 5347, 5348, 5349, 5350, 5439, 5440, 5441, 5442, 5443, 2809, 2996, 1784, 1460, 2291, 292, 1461, 2024, 2025, 4757, 3689, 4115, 375, 323, 4270, 4759, 845, 2817, 2818, 3186, 3187, 6203, 5086, 1928, 3690, 4760, 4118, 147, 1464, 1787, 1930, 2294, 1934, 1788, 3003, 5210, 6331, 3004, 1696, 846, 3346, 4451, 4921, 1071, 3348, 1346, 4121, 4276, 1795, 1471, 1472, 1473, 1474, 1703, 1355, 1796, 540, 541, 542, 3951, 2162, 2301, 5098, 795, 2034, 2486, 2487, 1255, 294, 1704, 2163, 3202, 3365, 1938, 1559, 2304, 2836, 2488, 1356, 2621, 2622, 4128, 5222, 1798, 1560, 4933, 5225, 5559, 5779, 5948, 947, 2624, 4130, 4934, 4935, 7038, 5780, 598, 797, 1357, 2841, 6938, 194, 2843, 2307, 6710, 2489, 2845, 2846, 3205, 3836, 7052, 5227, 4940, 4941, 5106, 5108, 4632, 4772, 4773, 2309, 6716, 6943, 5130, 5576, 5885, 6030, 2345, 2682, 1252].

8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

101

Precision [6607, 5784, 6946, 6113, 3532, 4636, 6449, 3842, 1486, 3711, 4956,
6462, 4782, 6846, 6463, 6465, 2865, 727, 861, 953, 1097, 1098, 1099, 1192, 1264,
4966, 5379, 5669, 6742, 6743, 6237, 6473, 5468, 5382, 6477, 3559, 3560, 380,
5682, 6480, 6481, 1101, 6633, 5683, 5879, 6240, 6634, 1588, 302, 1386, 1590,
5882, 223, 6967, 3413, 6370, 4518, 4519, 4672, 6643, 616, 4523, 3418, 6870, 6970,
5579, 5694, 6379, 6143, 962, 428, 6973, 4993, 5278, 5280, 5584, 7044, 6650, 4347,
4536, 5702, 4841, 883, 6654, 6976, 6977, 4843, 6978, 6509, 4356, 6389, 6513,
6514, 6391, 10, 2221, 4030, 4199]. Precision [4200, 4848, 5008, 5296, 1519,
1855, 1979, 83, 1132, 3273, 342, 6984, 4551, 6665, 3276, 3446, 5724, 6273, 6064,
6277, 6524, 6164, 6278, 1747, 4040, 5731, 3763, 6527, 347, 5592, 1753, 1875,
5021, 5023, 5595, 3769, 348, 5825, 6168, 6291, 5524, 6678, 2103, 4387, 4717,
4866, 5031, 6171, 6294, 5979, 5314, 5316, 6175, 1430, 6300, 3462, 2554, 6680,
3632, 6302, 4880, 2109, 2248, 4235, 6789, 6790, 691, 1314, 1888, 5748, 6084,
6311, 762, 6312, 6313, 6314, 6556, 361, 362, 3141, 5839, 6183, 7009, 6687, 5927,
3308, 6689, 6690, 5182, 1322, 5059, 2777, 2778, 207, 7017, 4595, 209, 6564].
Precision [2789, 3326, 238, 6802, 4600, 4601, 705, 770, 4428, 3495, 5998, 6323,
7021, 7022, 6807, 6569, 708, 1542, 1914, 4435, 3502, 4264, 2282, 2283, 6809,
6922, 5627, 6575, 2805, 3179, 3938, 4754, 5199, 5200, 322, 5544, 4112, 5444,
374, 5546, 189, 1933, 4119, 5355, 6589, 1072, 1350, 6109, 5220, 5638, 5641, 5778,
4467, 1002, 5948, 6112, 7038, 459, 6604, 6713, 6825, 5644, 6714, 6715, 6606,
6108, 6337, 4672, 3375, 720, 5952, 1010, 5458, 298, 3034, 4493, 5795, 5869, 6015,
6730, 5566, 4960, 6466, 3970, 4151, 4308, 4309, 4650, 862, 954, 5568, 4793, 7043,
6629, 3556, 2330, 3855, 1271, 381]. precision [382, 5880, 5478, 5684, 6132, 4162,
4515, 4979, 3868, 4166, 6249, 4329, 4330, 2063, 1597, 1730, 5136, 3065, 5894,
6645, 5486, 2066, 3877, 4005, 4679, 734, 4174, 6972, 3250, 5279, 4692, 6500,
6050, 5901, 4022, 6265, 6385, 6386, 1290, 3748, 6504, 2899, 2901, 9, 5292, 5293,
625, 6659, 436, 826, 1520, 2718, 885, 6394, 5717, 6664, 6881, 1867, 6667, 6668,
5976, 2093, 2233, 2234, 3104, 1419, 6986, 1634, 6781, 2736, 5824, 632, 6408,
6888, 5312, 5830, 5918, 5920, 5921, 3776, 4570, 351, 2932, 3630, 401, 759, 4872,
4721, 5527, 6550, 7000, 5044, 2946, 5179, 6682, 6310, 577, 2430]. precision
[695, 4582, 4583, 4584, 6898, 5987, 2568, 5611, 7008, 4885, 4734, 4735, 4256,
1329, 5193, 2271, 1331, 6804, 6318, 1242, 2011, 5934, 6194, 5618, 2140, 5622,
5850, 3159, 6000, 4746, 709, 3337, 3501, 2458, 5851, 3677, 3175, 3679, 3812, 3509,
4439, 292, 5208, 4916, 4271, 5086, 5634, 4760, 5210, 6332, 4276, 6817, 491, 4457,
4458, 1351, 2481, 5219, 6005, 6209, 2618, 2301, 5098, 2486, 2621, 3366, 3526,
3372, 4479, 5109, 4808, 4809, 5263, 3970, 4309, 5319, 3151, 4479, 296, 1538].
Precisions [6772, 6608]. Precompiler [1106, 1002, 5438]. precomputation
[4256]. Precomputed [4419]. preconditioned [2614]. Preconditioners
[3620]. predecessor [5539]. Predicates [3680, 5555, 6954, 4220, 4379, 5323,
3679, 3812]. Predictable [3829]. Prediction [3384, 1835, 5809, 3629, 3779,
3121, 6550, 2793]. Prediction-Based [5809]. Predictive [4184, 6525, 6670,


ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

1788, 3004, 2295, 1792, 2484, 3199, 3361, 795, 1255, 3525, 1559, 2488, 6938, 2345, 2213, 1123, 2577, 1789.

Processor-based [6938]. Processor-T [6658].

Processors [4845, 6345, 6722, 546, 3396, 7262, 7275, 7462, 2663, 6853, 5881, 5479, 7374, 7419, 1837, 5899, 5290, 3094, 3095, 3271, 7178, 7197, 7209, 7234, 7309, 7391, 7392, 7408, 7447, 7456, 3096, 3097, 1417, 2096, 5590, 3114, 894, 1044, 1431, 4719, 3296, 6687, 4079, 6192, 4426, 7368, 2984, 1779, 4442, 7340, 7301, 7414, 7258, 1556, 6337, 2643, 1491, 4784, 3717, 6355, 3226, 1585, 5880, 2676, 3417, 5580, 3435, 7360, 3105, 3106, 3107, 3108, 3116, 5737, 5920, 3656, 5847, 788, 1920, 3003, 1697, 491, 5225, 5559, 5451]. Product-based [6936].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3071, 2359, 3579, 3428, 6979, 3441, 2384, 2911, 3102, 3279, 889, 2733, 2925, 2927, 4054, 3459, 1760, 2433, 2760, 2950, 3140, 3476, 4402, 4073, 2776, 5843, 4080, 4245, 4246, 4734, 4594, 4738, 4739, 2975, 5433, 3166, 3167, 3169, 3170, 5072, 3514, 2811, 3001, 1172, 3831, 5558, 5639, 2840, 1746.

Radix-10 [5309].

Radix-16 [733, 5753, 5859].

Radix-2 [3219, 855, 4961, 5422, 5843, 3492].

Radix-4 [5485, 2358, 7046, 6298, 5332, 2155, 3514].

Radix-64 [6357, 6358, 6848, 6964, 2975].

Radix-8 [5674, 6163, 3302, 3492, 3811, 5433, 5558].

Randomized [6489, 3800].

Randomness [6483, 2039, 2087, 6161, 1785, 1746].

RAIVE [6075].

RAND [91, 5351, 1566].

Random [385, 6652, 5302, 5977, 6179, 2115, 2254, 115, 914, 4299, 91, 3725, 3979, 5259, 3328, 776, 3677, 3175, 5633].

Randomization [6489, 3800].

Range-Addressable [5053].

Range-Independent [2039, 2087, 6161, 1785, 1746].

Range-Reduction [4967].

Range-Transformation [568, 631].

Range-Reduction [4967].

Range-Transformation [568, 631].

Rate [503, 5980, 1055, 697, 1181, 379, 4394, 4871, 3498, 3351, 2682].

Rates [874, 4892].

Ratio [3227, 4133, 3564, 2078, 2475].

Ration [1065].

Rational [2052, 5380, 6356, 427, 1404, 1132, 1413, 2911, 3102, 1986, 2549, 1424, 1753, 2099, 2410, 1314, 1888, 4238, 1650, 5080, 579, 3327, 1448, 4900, 241, 2838, 1706, 3956, 221, 425, 251, 6257, 1214, 1295, 1411, 4036, 4037, 1227, 1634, 2238, 2550, 5535, 4895, 3498, 1248, 5445, 5446, 5804].

Rational/Radix [1132].

Rationalize [2349, 5157].

Rationally [1838].

Rationals [1643, 1597, 1730].

Ratios [667].

Rayleigh [5173, 4231].

RC [497].

RC-4000 [497].

RDSP [4659].

Re [3067, 3481, 3907].

re-evaluation [3907].

Re-ordering [3067].

Reach [3409].

Read [863, 2509, 1904, 4801, 4802, 3522].

Read-Only [863, 1904, 3522].

Reading [5904, 48].

Readings [606].

Readyreckoner [31].

Ready [3021, 7371, 7416, 3708, 3709, 5457, 5654, 329, 6955, 4305, 1095, 2051, 2052, 4311, 6128, 7304, 4506, 1588, 6852, 2672, 5482, 2880, 4003, 5495, 4830, 7383, 1515, 2367, 968, 3743, 6152, 6977, 2076, 3885, 7446, 2538, 2712, 2902, 6156, 563, 4359, 7410, 1627, 4556, 2100, 6070, 446, 2952, 2567, 5839, 5840, 7005, 3922, 6806, 4907, 6702, 4112, 410, 3188, 5089, 5224, 2625, 4938, 6945, 3956, 3846, 4777, 5123, 4796, 2656, 2658, 2322, 381, 3573, 3871, 3876, 4994, 4689, 4840, 1614, 2232, 635, 5308, 6288, 5978, 4568, 1429, 2249, 6178, 6082, 5044, 3642, 5052, 6919, 2798, 6573].

real [5447, 2616, 1177, 2080, 4134].

REAL-Arithmetik
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 108

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

SIGNUM [7103, 538]. SIGPLAN [7200, 7386]. SIKE [6646, 6761, 6532]. Silicon [5303, 6968, 2271]. SIMD [4288, 6118, 4780, 5667, 4973, 4978, 4335, 6764, 3584, 5715, 5818, 6693, 5546, 4281, 7038, 6207, 6337]. Similar [1699, 942].

Simple [857, 4790, 1267, 1376, 1602, 2522, 5493, 2888, 1517, 4536, 4546, 6515, 4549, 5161, 2548, 441, 572, 2760, 6188, 121, 1770, 649, 1452, 1794].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

4822, 4017, 6269, 7265, 2225, 1415, 6779, 7224, 4051, 4219, 5522, 3114, 6074, 5979, 360, 5052, 5990, 6907, 6434, 6920, 6198, 5069, 1558, 6116, 7387, 5029, 2259, 4745, 1414]. Special-Purpose [7265, 3114, 5979]. Specialized [5542].

Specific [6624, 7262, 7275, 7462, 7374, 7419, 5504, 5505, 7392, 7433, 7447, 7368, 6928, 7340, 7301, 6706, 7414, 7258, 2633, 7408, 7456, 5754, 6335, 6209, 6968].

Spoken [99]. Sponsored [7055, 7078]. Sponsors [6618, 6724, 6835, 6583].

Square [2388, 972, 5727, 5728, 6523, 1304, 2089, 2390, 4044, 4853, 30, 3763, 347, 518, 3897, 5020, 3457, 3458, 4381, 4713, 120, 5832, 2933, 3461, 5833, 6996, 3462, 2424, 1639, 1887, 637, 685, 2752, 4875, 3469, 6552, 359, 2947, 2253, 1651,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Square-Root-X [1482, 1552].

Square-Rooting [1583, 1207, 1887, 702, 3897, 3461, 2253, 2035, 4164, 2888, 2046, 1426].

Squares [602, 1829, 2704, 4853, 4861, 685, 642, 1676, 4747, 2173, 1947, 100, 291, 2023].

Squaring [610, 5256, 1518, 5004, 5506, 1748, 4559, 5528, 6315, 4419, 3207, 2338, 2888, 4380, 211, 6102].

Squarer [7435, 7457].

Squarers [3962, 1891].

Squared [333].

Squarer [333, 4370, 6562, 4468, 4222, 4625, 4627].

Squarers [4972, 132, 4463, 4929, 5096, 4127, 3272].

Squares [602, 1829, 2704, 4853, 4861, 685, 642, 1676, 4747, 2173, 1947, 100, 291, 2023].

Squaring [610, 5256, 1518, 5004, 5506, 1748, 4559, 5528, 6315, 4419, 3207, 2338, 2888, 4380, 211, 6102].

Squaw [7435, 7457].

Squeezing [6514].

SQUID [2707].

SRTEST [4365].

SSEC [1530].

St [7171, 7163, 7341].

ST100 [4882, 5051].

ST231 [5156, 5728].

Stabilität [1061].

Stabilitätsatzes [547].

Stability [6121, 1715, 6630, 3562, 1111, 1207, 4354, 3604, 4545, 7015, 2973, 1061, 5941, 1077, 495, 547, 3575, 4195, 1755, 1637, 833, 2591, 946].

Stabilized [103].

Stabilizing [4892].

Stable [5024, 1228, 2610, 888, 889].

Stack [1033, 1285].

Stacked [6203].

Stacking [6203].

Stage [5963].

Stages [4176, 3491, 3492, 1933, 2834].

Staggered [5463, 3503].

stairs' [2953].

Stairway [3701].

Standard [2576, 2271, 1677, 4749, 2016, 1460, 4918, 3364, 4948, 6349, 4178, 4690, 3644, 2573].
2969, 3156, 3803, 5351]. **Standard**- [1627]. **Standard-Cell** [5673, 5561, 2674]. **Standardfunktionen** [1811, 2051, 2100, 2567, 586, 3334, 1352, 1794, 1811]. **Standardization** [5682, 4812, 5307, 3481, 4622, 2808]. **Standardized** [4364]. **Standards** [5112, 2671, 5154, 3935, 6703, 2298, 1501, 2202, 1757, 3470]. **Standpoint** [389]. **Stanford** [7308, 7168]. **STAP** [5749]. **Start** [5039]. **Starting** [280, 383, 2759, 579, 3676, 532, 596, 5164, 451, 3168]. **starts** [1662]. **State** [7472, 3389, 3396, 7320, 7307, 7113, 7114, 7177, 7165, 3772, 6552, 2990, 1178, 7199, 7270, 7295, 7330, 3530, 3717, 7099, 3282, 4858, 2451, 1241, 1333, 2599, 4270, 2305, 2624]. **State-of-the-Art** [6552]. **State-Space** [3396, 2990, 3772, 3717, 3283, 4858, 4270, 2624]. **Statement** [3378]. **States** [7115]. **Static** [4800, 730, 4511, 6868, 3583, 4347, 5143, 5702, 4868, 4897, 3678, 4164, 5734, 3782, 5327, 7427]. **statistic** [4133]. **Statistical** [4776, 549, 3055, 225, 54, 3887, 1226, 752, 904, 3910, 4066, 3339, 4611, 592, 719, 417, 7129, 562, 1809, 5388, 3083, 290, 2611, 2612, 2613]. **Status** [5488, 3759, 2597, 3614, 6076, 771, 5079, 5203, 5439, 5440, 5441, 5442, 5443]. **Std** [2039, 6485, 6519]. **Steady** [6899]. **Steamboat** [7419]. **Steering** [6222, 6725, 6836, 6585]. **Stein** [1017]. **Stencil** [6575]. **Stengle** [6547, 6321]. **Step** [6232, 6738, 1075, 92, 3105, 3106, 3107, 3108, 1697]. **step-by-step** [92]. **Steps** [4342, 5840, 282, 2760]. **Stepwise** [5359]. **Sterbenz** [995]. **Sticky** [4148, 3727, 4250]. **sticky-bit** [4250]. **still** [2186]. **stingy** [2571]. **Stinks** [2705]. **STOC** [7428, 7445]. **Stochastic** [2170, 4779, 6749, 6871, 5813, 5703, 6500, 6659, 4873, 4874, 6561, 2264, 6000, 6200, 6921, 6812, 4926, 4774, 6355, 4508, 6049, 6384, 2894, 5831, 6415, 5416, 2593, 3194, 6822, 3406]. **Stochastically** [6762, 6763]. **stochastique** [3406]. **Stock** [3626, 1670]. **Stocks** [4257]. **STOIC** [1685]. **Stokes** [3562, 3649, 4126]. **stopping** [415]. **Storage** [865, 5498, 7495, 286, 144, 5901, 3340]. **Storage-Efficient** [865]. **Stored** [2495, 3072, 5586]. **Stored-Carry** [3072]. **Stories** [5002]. **story** [5312]. **Strader** [2465]. **Straight** [6206]. **Straight-Line** [6206]. **Strasbourg** [7275]. **Strassen** [5694, 5283]. **Strategies** [6287, 3468, 4152]. **Strategy** [6391]. **Strawman** [4668]. **Stream** [6690, 6809, 6227]. **Stream-Based** [6809, 6690]. **Streamed** [6329]. **streaming** [5764]. **streamlined** [2263]. **streamlines** [1795]. **Streams** [6334, 5645]. **Strength** [4752, 3527]. **Stretch** [246]. **Strict** [2024, 2904]. **strikes** [6438]. **string** [6343, 4150, 626, 1889]. **Strings** [1768, 832]. **Strings** [1768, 832]. **Strong** [3739, 3670]. **Strongly** [2931]. **Structural** [480]. **Structurally** [2196]. **Structure** [248, 671, 732, 1841, 882, 5979, 6100, 2807, 4460, 5555, 4196, 2923, 1140, 405, 4744, 1917, 3836, 1384]. **Structured** [2053, 1964, 7106, 4755]. **Structures** [851, 606, 858, 2650, 4510, 5494, 1412, 6290, 5041, 1438, 1659, 1450, 6572, 2990, 1250, 5252, 3997, 4544, 895, 3481, 2978, 790, 2298]. **struggle** [7403]. **strukturelle** [2609]. **Strukturen** [2298]. **Studies** [7142, 179, 840, 793, 6112, 821]. **Study** [4289, 549, 6742, 6743, 6239, 3562, 504, 5810, 1124, 176, 6652, 6526, 1041, 752, 144, 3484, 4261, 4152, 7027, 2803, 933, 2821, 3359, 3221, 299, 3226, 2664, 561, 3435, 2711, 1224, 5596, 759, 5983, 5003, 1907, 709, 323, 6335, 194, 3370, 2003]. **Stupid** [6021]. **Sub** [3426, 3582, 3579, 2380, 626].
124

135x681

135x634

135x598

135x574

135x551

135x539

135x527

135x515

135x513

135x491

135x479

135x467

135x455

135x423

135x403

135x383

135x363

135x343

135x323

135x303

135x283

135x263

135x243

135x223

135x203

135x183

135x163

135x143

135x123

135x103

135x083

135x063

135x043

135x023

135x003

135x792

135x612

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

135x646

135x622

135x610

135x598

135x574

135x551

135x527

135x515

135x513

135x491

135x479

135x467

135x455

135x423

135x403

135x383

135x363

135x343

135x323

135x303

135x283

135x263

135x243

135x223

135x203

135x183

135x163

135x143

135x123

135x103

135x083

135x063

135x043

135x023

135x003
3698, 134, 2838, 5102, 4631, 1706, 2628, 1710, 4287, 4639, 3535, 296, 3029, 2636, 4644, 5867, 2041, 2315, 6227, 6351, 2177, 1088, 1261, 1488, 2045, 2319, 3222, 1948, 3040, 3041, 1713, 4150, 3850, 2498, 2863, 6231, 3719, 4657, 4797, 2192, 1453, 4505, 4798, 3401, 2055, 4659, 5252, 2332, 2506, 2665, 1722, 2507, 3231, 3232, 3563, 3564, 3565, 3977.

system [2676, 422, 4165, 2872, 5688, 1108, 1109, 4333, 2347, 2881, 3064, 3244, 3245, 3573, 3729, 3871, 4685, 4010, 4339, 4013, 4179, 2365, 2891, 2366, 3879, 2367, 2369, 1846, 2373, 2374, 6265, 3593, 561, 3436, 3437, 2378, 5150, 2903, 5714, 1410, 3888, 5512, 2386, 101, 2906, 6160, 4362, 1522, 1523, 1984, 2230, 1039, 472, 4216, 5405, 2727, 2415, 2739, 2416, 1229, 3773, 3905, 4392, 4062, 4226, 5173, 977, 6076, 2937, 4231, 4232, 4233, 4394, 4395, 4576, 4871, 4065, 4234, 5834, 2425, 980, 3137, 1762, 5607, 6686, 5054, 2955, 236, 4408].

System [681, 971, 2102, 2560, 2564, 1441, 3317, 3318, 4589, 187, 6332, 537, 3363, 4629].

System-based [4576, 4871].

System-definition [2365].

System-Level [3101, 5691].

System/370 [1745, 1945, 1100, 971, 2102].

System/390 [2871, 2872, 2870].

System/6000 [2540, 3270, 2535, 2560, 2564, 3363].

Systematic [5966, 82, 5399, 5173, 1438, 2964, 3317, 3318, 4898, 1450, 2991, 2992, 3376, 3377, 5817, 2556, 2586].

Systematizations [5467].

Systeme [1935].

Systemen [1236].

Systems [752, 5826, 5915, 3902, 5026, 5170, 287, 1142, 5743, 7254, 6542, 5322, 7313, 7326, 7337, 7363, 7380, 7489, 7849, 8579, 4610, 5162, 7146, 6884, 1137, 1423, 1875, 5595].

Systems [752, 5826, 5915, 3902, 5026, 5170, 287, 1142, 5743, 7254, 6542, 5322, 7313, 7326, 7337, 7363, 7380, 7489, 7849, 8579, 4610, 5162, 7146, 6884, 1137, 1423, 1875, 5595].

Systems [752, 5826, 5915, 3902, 5026, 5170, 287, 1142, 5743, 7254, 6542, 5322, 7313, 7326, 7337, 7363, 7380, 7489, 7849, 8579, 4610, 5162, 7146, 6884, 1137, 1423, 1875, 5595].

Systems [6360, 2196, 955, 5251, 2666, 2667, 2668, 2699, 4662, 4511, 4512, 1826, 5133, 3737, 1836, 1277, 7139, 386, 2693, 2694, 4179, 2696, 2698, 3585, 226, 336, 2526, 5284, 2368, 2703, 4696, 1034, 1209, 2040, 3846, 4777, 45, 1487, 3549, 2179, 1263, 2640, 1810, 2326, 5568, 3972, 1815].

systems [6360, 2196, 955, 5251, 2666, 2667, 2668, 2699, 4662, 4511, 4512, 1826, 5133, 3737, 1836, 1277, 7139, 386, 2693, 2694, 4179, 2696, 2698, 3585, 226, 336, 2526, 5284, 2368, 2703, 4696, 1034, 1209,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 127

[135x681]8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 127

Additional Contributions from Nelson H. F. Beebe

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 129

...
Two [3030, 3216, 1086, 1805, 1572, 725, 807, 810, 6966, 221, 3858, 331, 1603, 620, 878, 483, 883, 4351, 6977, 6515, 1217, 1873, 630, 828, 5739, 3293, 1755, 1149, 3474, 1655, 4085, 3662, 53, 123, 1913, 1165, 4263, 5543, 3341, 5346, 5353, 5632, 168, 5093, 4463, 6004, 1001, 4127, 3966, 4961, 4789, 2341, 3575, 4680, 3754, 3439, 3475, 5054, 984, 6188, 2266, 5193, 5621, 2592, 1917, 5941, 5345, 788, 4107, 5206, 3009, 3018].

TX [7349, 7184]. Type-2 [6117, 6624, 3963, 6465, 3079, 6503, 106, 255, 6673, 892, 6988, 4562, 2764, 5538, 482, 2136, 588, 3342, 5858, 5251, 5896, 6402, 4712, 3125, 72, 5535, 108, 4446, 6460, 6396, 6412].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

using [3656, 580, 5185, 5755, 4891, 4589, 3658, 3150, 3321, 3322, 3487, 3797, 6798, 1769, 6913, 3492, 2131, 2271, 2450, 4259, 6801, 4741, 7020, 6194, 5619, 5620, 5936, 5850, 3159, 708, 3498, 6327, 4607, 3331, 1917, 1167, 5941, 2460, 5770, 2986, 1066, 2019, 2991, 2992, 2288, 4915, 5207, 4272, 1462, 1549, 4760, 5354, 1934, 6589, 5635, 1346, 5214, 1175, 5447, 2030, 2297, 5637, 5774, 4764, 5093, 3830, 3831, 3948, 3949, 2483, 4930, 412, 5098, 2163, 2834, 2488, 2837, 3015, 5222, 3203, 3204, 3953, 4625, 4626, 5368, 5224, 4628, 4629, 4936, 5226, 194, 7296, 5782, 2845, 3205, 4808, 3968].

Verfahren [513, 2097, 835, 1236, 1598, 1164, 35]. Verificarlo [6034, 6137].
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

References

[1] G.-W. Leibniz. Explication de l’Arithmétique binaire. (French) [Explanation of binary arithmetic]. Mémoires de mathématique et de physique de l Académie royale des sciences, ??(??):85–89, ????. 1703. URL https://hal.archives-ouvertes.fr/ads-00104781/document. Leibniz is often credited with the invention of the binary number system, but there is other work from his era, and detailed analysis of Leibniz’s use of binary numbers. See [390, 511, 622, 1229, 1399, 6252, 6929, 7040].

Anonymous:1879:TRA

Newcomb:1881:NFU

Holman:1888:DPM

Holman:1892:DPM

Anonymous:1893:IDb

Felt:1893:MA

Aley:1897:DES

REFERENCES

September 1897. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

REFERENCES

REFERENCES

REFERENCES

References

Cesareo:1946:RI

Comrie:1946:BDC

Dreyer:1946:REM

[61] H.-J. Dreyer and A. Walther. Der Rechenautomat Ipm. Entwicklung Mathematischer Instrumente in Deutschland 1939 bis 1945. (German) [The Ipm calculator. The development of mathematical instruments in Germany 1939–1945]. Bericht A3, Institut für Praktische Mathematik, Technische Hochschule, Darmstadt, West Germany, August 19, 1946. Reprinted in [7121, §3.3]. Translated by Mr. and Mrs. P. Jones.

Goldstine:1946:ENI

Goldstine:1947:PCPa

Goldstine:1947:PCPb

REFERENCES

April 1, 1947. 69 pp. Report prepared for U.S. Army Ordnance
published treatment of double-precision arithmetic on digital computers.

[65] Herman H. Goldstine and John von Neumann. Planning and coding
Technical report, Institute for Advanced Study, Princeton, NJ, USA,

[66] Herman H. Goldstine and John von Neumann. Planning and coding
Technical report, Institute for Advanced Study, Princeton, NJ, USA,

[67] Herman H. Goldstine and John von Neumann. Planning and coding
Technical report, Institute for Advanced Study, Princeton, NJ, USA,

[68] Herman H. Goldstine and John von Neumann. Planning and coding
Technical report, Institute for Advanced Study, Princeton, NJ, USA,

for the Automatic Sequence Controlled Calculator. Its Annals v. 1.

[71] J. Juley. The ballistic computer. Bell Laboratories Record, 24(???):5–9,
1947. CODEN BLRCAB. ISSN 0005-8564. Reprinted in [7121, §6.3].
<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>147</th>
</tr>
</thead>
</table>

REFERENCES

Worsley:1950:ED

Anonymous:1951:R

Booth:1951:SBM

Brown:1951:HRR

Gill:1951:PSS

Goldstine:1951:NIM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[136] Paolo Ercoli and Roberto Vacca. Errors due to overflow in arithmetic operations particularly as regards FINAC electronic computer. *Journal*
REFERENCES

of the Association for Computing Machinery, 4(4):450–455, October 1957. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic). See letter [199].

Gini:1957:SFD

Herzel:1957:SDD

Howe:1957:TRA

Kalbfell:1957:EAM

Kogbetliantz:1957:CEN

Lehman:1957:HSD

REFERENCES

REFERENCES

6, August 1958. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

[159] Franz Hammer. Nicht Pascal sondern der Tübinger Professor Wilhelm Schickard erfand die Rechenmaschine!. (German) [Not Pascal, but the Tübingen professor William Schickard, invented the calculator!]. *Büromarkt*, 20(??):1023–1025, ???. 1958. ISSN 0007-3148.

REFERENCES

REFERENCES

[179] Peter Henrici. Theoretical and experimental studies on the accumulation of error in the numerical solution of initial value problems for systems

REFERENCES

REFERENCES

REFERENCES

February 1960. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See [186].

REFERENCES

REFERENCES

informationsbehandling, 1(3):222, 1961. CODEN BITTEL, NBITA.B.
ISSN 0006-3835 (print), 1572-9125 (electronic). See [227, 217].

of the 1961 16th ACM national meeting, pages 132.101–132.104. ACM

IRE Transactions on Electronic Computers, EC-10(2):269–272, June

Communications of the Association for Computing Machinery, 4(8):355,
August 1961. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317
(electronic). See [203].

IRE Transactions on Electronic Computers, EC-10(3):512–515, September

[233] M. Lehman and N. Burla. Skip techniques for high-speed carry-
propagation in binary arithmetic units. IRE Transactions on Electronic
&arnumber=5219274.

[235] Philip Morrison and Emily Morrison, editors. Charles Babbage on the
principles and development of the calculator: and other seminal writings.
Nadler:1961:DSR

Pinkham:1961:DFS

Rabinowitz:1961:MPD

Saltman:1961:RCT

Spielberg:1961:ECF

Spielberg:1961:RPS

Thacher:1961:ISR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[300] R. A. Brooker. A programming package for some general modes of arithmetic. *Communications of the Association for Computing*
REFERENCES

REFERENCES

REFERENCES

474, August 1964. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

Swo:1964:SFP

Wallace:1964:SFM

Wolfe:1964:RTE

Ashenhurst:1965:EEC

Ashenhurst:1965:EIU

Ashenhurst:1965:TAE

Atrubin:1965:ODR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[364] Ramon E. Moore. Automatic local coordinate transformations to reduce the growth of error bounds in interval computation of solutions of
ordinary differential equations. In Rall [7071], chapter 2, pages 103–140. URL http://interval.louisiana.edu/Moores_early_papers/Moore_in_Rall_V2.pdf. Proceedings of an advanced seminar conducted by the Mathematics Research Center, United States Army, at the University of Wisconsin, Madison, October 5–7, 1964.

REFERENCES

REFERENCES

REFERENCES

Flehinger:1966:PRI

Flehinger:1966:PRI

Flynn:1966:VHS

Garner:1966:ECA

Grau:1966:BRB

Gregory:1966:DAU

Greve:1966:HLR
REFERENCES

Shea:1969:NDN

Sterbenz:1969:OSA

Svoboda:1969:DAS

Troelstra:1969:EA

Turner:1969:CSI

Turner:1969:DSC

Turner:1969:IOC

REFERENCES

REFERENCES

REFERENCES

1970. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See addendum [762].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mathematical Software Symposium held at Purdue University, Lafayette, Indiana, USA, April 1–3, 1970.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[703] Randell:1972:ATO
Randell 1972: ATO

[704] Randell:1972:ODC
Randell 1972: ODC

[705] Richman:1972:AEA
Richman 1972: AEA

Ripley 1972: PFP

[707] Rohl:1972:NCA
Rohl 1972: NCA

Samet 1972: CDL
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kreifelts:1973:OBF

Kreifelts:1973:OBG

Kuki:1973:SSA

Larson:1973:HSM

Larson:1973:MSM

Lee:1973:SFP

Majithia:1973:NBL

[771] James E. Robertson and Kishor S. Trivedi. The status of investigations into computer hardware design based on the use of continued

REFERENCES

REFERENCES

REFERENCES

250

REFERENCES

REFERENCES

REFERENCES

[831] Seppo Linnaennaa. Analysis of some known methods of improving the accuracy of floating-point sums. *BIT (Nordisk tidskrift for Informationsvidenskab)*
Metropolis:1974:SAA

Miller:1974:CCN

Moon:1974:MRM

Neumaier:1974:REV

Newbery:1974:EAP

Prezas:1974:FPA

Rauscher:1974:MUX

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kreifelts:1975:OBF

Krishnamurthy:1975:MPU

Ku:1975:FPC

Kuck:1975:RRN

Kulisch:1975:FIF

Kulisch:1975:MFC

Lacroix:1975:PEM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Conference on the state of the art in numerical analysis, 12 April 1976, University of York, England, UK.

REFERENCES

REFERENCES

Yau:1976:DMA

Zohar:1976:RTR

Agrawal:1977:CNB

Albrecht:1977:GC

Albrecht:1977:GCA

Alexander:1977:SRR

REFERENCES

REFERENCES

REFERENCES

[1030] Myron Ginsberg. Numerical influences on the design of floating-point arithmetic for microcomputers. Technical report CS 7708, Department
of Computer Science, Southern Methodist University, Dallas, TX, USA, 1977. 72 pp.

REFERENCES

REFERENCES

Maag:1977:SRE

Merzbach:1977:GSF

Metropolis:1977:MSA

Metropolis:1977:SAP

Mitra:1977:CDI

Ninke:1977:SRB

REFERENCES

Rjabko:1977:AHM

Sanyal:1977:AND

Simmons:1977:SRA

Soderstrand:1977:HSL

Soderstrand:1977:MRN

Steer:1977:DHS

Stenzel:1977:CHS

Stoutemyer:1977:AEC

Yuen:1977:NRD

Abu-El-Haija:1978:AER

Agrawal:1978:AIR

Agrawal:1978:MAL

Andrews:1978:EFM

Andrews:1978:IAN

Andrews:1978:UEF

REFERENCES

Apple:1978:AIR

Atkins:1978:CTA

Banerji:1978:HSD

Baraniecka:1978:DTR

Bareiss:1978:PEA

Barsi:1978:ACR

BellHowellCo:1978:BHF

REFERENCES

REFERENCES

[1106] F. D. Crary and J. M. Yohe. The Augment precompiler as a tool for the development of special purpose arithmetic packages. MRC Technical
Summary 1892, Mathematics Research Center, University of Wisconsin, Madison, Madison, WI, USA, 1978.

REFERENCES

REFERENCES

REFERENCES

[1153] G. P. O’Leary. The design of a high-speed arithmetic processor. In COMPSAC ’78 [7101], pages 175–176. LCCN ????

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
Shen:1978:CSA

Slekys:1978:MBI

Sripad:1978:QEF

Svoboda:1978:ACF

Swartzlander:1978:MAS

Tan:1978:TIH

Trivedi:1978:CUC

REFERENCES

Wittmayer:1978:APP

Wozniakowski:1978:REA

Wrathall:1978:CGI

Abu-El-Haija:1979:AER

Aggarwal:1979:REM

Agrawal:1979:HSA

Alt:1979:SRD

[1195] I-Ngo Chen and R. Willoner. An $O(n)$ parallel multiplier with bit-sequential input and output. *IEEE Transactions on Computers*, C-
REFERENCES

REFERENCES

[1224] Jan Kent. *The theoretical and practical study of floating point instructions: Consisting of Theoretical definition, analysis and
comparison of floating point instruction, and procedures for the
description and simulation of floating point instructions. Dr. Avhandling,
Universitetet i Oslo, Oslo, Norway, 1979.

[1225] Thomas Joseph Kolze. Block floating point FFT statistical noise
analysis program. Technical report CSR-79-2, Department of Electrical
Engineering, University of Missouri–Rolla, Rolla, MO, USA, 1979. vii +
180 pp.

[1226] Thomas Joseph Kolze. Statistical noise analysis of a block floating point
FFT and an example application. Electrical engineering thesis (M.S.),
University of Missouri–Rolla, Rolla, MO, USA, 1979. viii + 88 pp.

[1227] Peter Kornerup. A note on rational arithmetic. ACM SIG Micro
Newsletter, 10(2):28, June 1979. CODEN SIGMDJ. ISSN 0163-
1218004. See [1248, 1249].

[1228] Roland Kusterer and Manfred Reimer. Stable evaluation of polynomials
in time \(\log n \). Mathematics of Computation, 33(147):1019–1031, July
1979. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic).

[1229] Günter Lautz. 300 Jahre leibnizsches dualzahlensystem. (German) [300
years of the Leibniz binary number system]. Biological Cybernetics, 35
(3):175–181, December 1979. CODEN BICYAF. ISSN 0340-1200 (print),
1432-0770 (electronic).

System”. IEEE Transactions on Computers, C-28(9):693, September
1979. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
.tp=&arnumber=1675442. See [1047, 1247].
REFERENCES

REFERENCES

REFERENCES

Sheue:1979:TCM

Swartzlander:1979:CFN

Thacker:1979:MPR

Thacker:1979:R

Tseng:1979:IFS

REFERENCES

81566-x. ISSN 0344-8029. LCCN QA297 .F84. In cooperation with R. Albrecht, U. Kulisch, and F. Stummel.

REFERENCES

Grappel:1980:IZP

Gregory:1980:ECW

Gruner:1980:IUC

Hamacher:1980:DCV

Havender:1980:DBF

Havender:1980:DBN

Haviland:1980:CAP

Head:1980:MM

REFERENCES

REFERENCES

Palmer:1980:UND

Payne:1980:VFPa

Payne:1980:VFPb

Pedersen:1980:HBM

Purtilo:1980:IAP

Rallapalli:1980:CMF

Reid:1980:CDP

Reid:1980:FMF

REFERENCES

Stone:1980:TFP

Stummel:1980:REA

Swartzlander:1980:AUH

Swartzlander:1980:CA

Swartzlander:1980:MA

Thornton:1980:CP

Ting:1980:MCU

REFERENCES

Waser:1980:EGP

Watkins:1980:MFU

Wong:1980:IOF

Yohe:1980:FPE

Yohe:1980:PSI

Zeman:1980:HSM

Agrawal:1981:NAM

Andrews:1981:EFM

REFERENCES

REFERENCES

REFERENCES

Ganesan:1981:GSC

Glaser:1981:HBO

Gorin:1981:IDA

Gorji-Sinaki:1981:DDS

Gosling:1981:CSH

Grappel:1981:RDB

Gregory:1981:RAR

REFERENCES

REFERENCES

[1418] Saroj Kaushik and R. K. Arora. Sign detection in the symmetric residue number system. In IEEE CA5 '81 [7119], pages 146–150. LCCN QA 76.6
Kielbasinski:1981:IRL

Knuth:1981:SA

Kobayashi:1981:FMO

Kogge:1981:APC

Koren:1981:CPN

Kornerup:1981:IRA

Kulisch:1981:CAT

REFERENCES

Owens:1981:CAD

Padegs:1981:SB

Pan:1981:BCA

Papachristou:1981:APA

Peng:1981:AES

Peters:1981:EFB

Raghavendra:1981:SLA

Schryer:1981:TCF

Schwarz:1981:EYC

Smith:1981:ERA

Spaniol:1981:CAL

Stevenson:1981:ITP

Stevenson:1981:PSBa

Stevenson:1981:PSBb

REFERENCES

vonGudenberg:1981:GAP

Walker:1981:EMA

Washington:1981:BLF

Watanuki:1981:FOAa

Watanuki:1981:FOAb

Watanuki:1981:FPLa

Watanuki:1981:FPLb

REFERENCES

Anonymous:1982:ARBf

Anonymous:1982:MKF

Anonymous:1982:NPAa

Arnold:1982:EPS

Bairstow:1982:FPP

Baraniecki:1982:QEL

REFERENCES

REFERENCES

Dao:1982:KCA

Dekker:1982:PCM

DeSautels:1982:ALP

Dreyer:1982:ACI

Epstein:1982:UAF

Epstein:1982:UAI

Fateman:1982:HLL

Hull:1982:UCP

Hwang:1982:PMA

Jenkins:1982:FRD

Jenkins:1982:RNS

Kahan:1982:NOS

Katzan:1982:IAA

Kerkhoff:1982:LDM

REFERENCES

Korn:1982:EDF

Leuprecht:1982:PAR

McCormick:1982:EFM

McPherson:1982:LSG

Monroe:1982:FFP

Oklobdzija:1982:LSR

REFERENCES

Sips:1982:CPM

Strader:1982:CBS

Tan:1982:ADC

Taylor:1982:ARM

Taylor:1982:VRA

Teachey:1982:SRX

TorresyQuevedo:1982:EAD

Turner:1982:DLS

Velasevic:1982:RLC

Ware:1982:BMF

Waser:1982:IAD

REFERENCES

[1570] David B. Aspinwall and Yale N. Patt. Modifications to the VAX-11/780 microarchitecture to support IEEE floating point arithmetic. *ACM*

Avizienis:1983:AAE

Bandeira:1983:TCA

Banerji:1983:RPF

Baxter:1983:CRS

Bayoumi:1983:MVI

REFERENCES

Chamrad:1983:FFP

Chan:1983:ACS

Chang:1983:HSN

Chow:1983:PDA

Ciminiera:1983:FIM

Cloutier:1983:PAR

REFERENCES

REFERENCES

Ferguson:1983:DTE

Fraenkel:1983:SN

Gaitanis:1983:NPC

Galand:1983:FD

Gavrielov:1983:CSF

Gnanasekaran:1983:BSI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Moran:1983:BRB

Morrison:1983:EHL

Murugesan:1983:ACF

Nagpal:1983:PAT

Nave:1983:ITF

Ni:1983:VRM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1702] Edmund John Walsh. Floating gatefield effect transistor operating point changes: causes, characterization, and effect on electric field measurement by the device. Thesis (M.S.), Boston University, Boston, MA, USA, 1983. v + 121 pp.

[1704] Bertrand Jeffery Williams. A bit-serial floating point multiply/add architecture for signal processing applications. Electrical engineering thesis (M.S.), Texas A&M University, College Station, TX, USA, 1983. x + 97 pp.

REFERENCES

Braddock:1984:ASP

Butterfield:1984:MT

Caraiscos:1984:REA

Cavanagh:1984:DCA

Cheng:1984:FPC

Clarke:1984:AAR

Clenshaw:1984:BFP

Cody:1984:PRW

[1725] William J. Cody, Jr., Jerome T. Coonen, David M. Gay, K. Hanson, David Hough, W. Kahan, R. Karpinski, John F. Palmer, F. N. Ris, and
REFERENCES

Coonen:1984:CPS

Corliss:1984:AGT

Cowlishaw:1984:DRL

Demmel:1984:URN

Demsky:1984:MMC

Dietrich:1984:FPR

Duncan:1984:FSF
REFERENCES

[1741] Robert Todd Gregory and E. V. Krishnamurthy. *Methods and Applications of Error-Free Computation*. Texts and monographs in

REFERENCES

March 1984. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Miller:1984:ILA

Moran:1984:SST

Munzel:1984:RAE

Murray:1984:SFA

OliverWhiteheadQuintet:1984:FN

Palmer:1984:P

Parker:1984:CCS

Pei:1984:CAD

[1769] Soo-Chang Pei and Kuo-Chih Ho. Comments on “Adaptive digital control implemented using residue number systems”. *IEEE*

REFERENCES

REFERENCES

REFERENCES

Dadda:1985:SBN

DeMori:1985:DRP

Dongarra:1985:FAS

Dunham:1985:PFM

Eldon:1985:FCF

REFERENCES

1845 Markian Myron Gooley. Design of a floating-point multiplier with a recursive fraction-unit. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61801, USA, 1985. vi + 54 pp.

and 80287 are. A valuable reference for instruction definitions. See also [1621, 1767].

REFERENCES

REFERENCES

REFERENCES

April 1985. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic).

REFERENCES

416

REFERENCES

REFERENCES

Zadrozny:1985:AFP

Zorpette:1985:BBN

Adams:1986:FSSa

Adams:1986:FSSb

Agarwal:1986:NSV

Apple:1986:ANM

REFERENCES

REFERENCES

REFERENCES

[1977] Mark Hill, Susan Eggers, Jim Larus, George Taylor, Glenn Adams, B. K. Bose, Garth Gibson, Paul Hansen, Jon Keller, Shing Kong, Corinna Lee,

REFERENCES

Kabal:1986:PFP

Kahan:1986:RAF

Kreithen:1986:FPC

Krishnan:1986:CCN

Krishnan:1986:CDS

Krishnan:1986:ICN

REFERENCES

Pfenninger:1986:SQA

Porter:1986:FPM

Quong:1986:FP1

Ramnarayan:1986:LCL

Rhyne:1986:SBS

Robertson:1986:NQD

Rump:1986:SER

REFERENCES

REFERENCES

Troutman:1986:DSF

Truong:1986:TCD

Twaddell:1986:HPM

Vaccaro:1986:SDF

Verma:1986:DEF

Waterhouse:1986:TMW

REFERENCES

REFERENCES

REFERENCES

Crockett:1987:PFF

Crowell:1987:FPA

Demmel:1987:EAA

Dion:1987:MFA

DuCroz:1987:DFP

Duff:1987:EAP

Duhamel:1987:ASR

See Chapter 11: The Floating Point Arithmetic Package.

Dunham:1987:PMA

Ercegovac:1987:FCR

Ercegovac:1987:LSC

Fandrianto:1987:AHS

FPS:1987:AR

Froggatt:1987:FPC

Grosse:1987:UCB
REFERENCES

[2081] Bertrand Hochet, Patrice Quinton, and Yves Robert. Systolic solution of linear systems over GF(p) with partial pivoting. In Irwin and
REFERENCES

REFERENCES

REFERENCES

[2101] Shigeo Kuninobu, Tamotsu Nishiyama, Hisakazu Edamatsu, Takashi Taniguchi, and Naofumi Takagi. Design of high speed MOS multiplier and divider using redundant binary representation. In Irwin and
REFERENCES

Lange:1987:ITA

Lange:1987:ITA

Leavitt:1987:APF

Leavitt:1987:APF

Lien:1987:RCI

Lien:1987:RCI

Lin:1987:NFP

Lin:1987:NFP

Liu:1987:BEF

Liu:1987:BEF

Lo:1987:HGA

Lo:1987:HGA
REFERENCES

REFERENCES

REFERENCES

[2142] Isaac D. Scherson and Yiming Ma. Vector computations on orthogonal memory access multiprocessor system. In Irwin and Stefanelli

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chen:1988:GCM

Cheng:1988:ATM

Cody:1988:AMS

Cody:1988:FPS

Cosentino:1988:FTS

Davila:1988:FPA

Duerksen:1988:CAP

Thesis (M.S.), Department of Computer Science, Ball State University, Muncie, IN 47306, USA, 1988. ix + 206 pp.

REFERENCES

REFERENCES

REFERENCES

[2234] Yasumasa Kanada. Vectorization of multiple-precision arithmetic program and 201,326,000 decimal digits of π calculation. In *Proceedings
REFERENCES

REFERENCES

[2268] Papadourakis:1988:VDP

[2270] Perlman:1988:AFP
REFERENCES

REFERENCES

Santoro:1988:PIA

Schatte:1988:ASC

Schatte:1988:MDC

Scherson:1988:MOA

Schwarz:1988:CLI

Scott:1988:CMM

Shepherd:1988:LEC

Simon:1988:SP

REFERENCES

REFERENCES

Voelzke:1988:FSAc

Weyland:1988:LCS

Wilson:1988:FPS

Wilson:1988:NDP

Wilson:1988:NFP

Wollard:1988:TSS

Young:1988:SNMa

Yuen:1988:IFP

REFERENCES

REFERENCES

B. J. Benschneider, W. J. Bowhill, E. M. Cooper, M. N. Gavrielov, P. E. Gronowski, V. K. Maheshwari, V. Peng, J. D. Pickholtz, and

REFERENCES

[2335] Patty Chinn. The design, implementation, and applications of an ACT8837 floating point processor in an image processing hardware
REFERENCES

REFERENCES

[2347] A. M. Dennis, C. B. Marshall, and I. A. Burgess. Algorithm and architecture design for the implementation of high order FIR filters using the residue number system. In *IEE Colloquium on Signal Processing Applications of Finite Field Mathematics, 1 June 1989*, pages 1/1–1/5. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????
Dowling:1989:MFV

Dritz:1989:RPS

Dunham:1989:ICA

Dunham:1989:PAH

Dunham:1989:S

Duprat:1989:SRA

Elleithy:1989:ARA

References

Ercegovac:1989:FRD

Ercegovac:1989:FSC

Ercegovac:1989:IMC

Ercegovac:1989:RSR

Fandrianto:1989:AHS

REFERENCES

Feldstein:1989:NAP

Fowler:1989:AHS

Fried:1989:ONC

Fu:1989:PMI

Fujiyama:1989:FD

Gamberger:1989:ISN

Games:1989:AIQ

REFERENCES

Griffin:1989:RNS

Groeger:1989:DRG

Guyot:1989:JLM

Hoffmann:1989:PAR

Hohne:1989:PHP

Hollingsworth:1989:CP1

Hoshi:1989:RPV

Hu:1989:ARM

Huck:1989:ACA

Husby:1989:FPE

Hwang:1989:OAU

IEC:1989:IBF

REFERENCES

Jones:1989:EDC

Jorke:1989:AAM

Joslin:1989:EPN

Jouppi:1989:UVSa

Jouppi:1989:UVSb

Kahan:1989:PCA

Kak:1989:BAS

REFERENCES

Kaneko:1989:VRM

Kaneko:1989:VRP

Kawarai:1989:OPM

Kawasaki:1989:FPV

Koc:1989:SAI

Kohn:1989:ISM

REFERENCES

REFERENCES

Lo:1989:CED

Lu:1989:VMI

Malarkey:1989:RNS

Mansour:1989:CAS

Mastrovito:1989:VDM

REFERENCES

[2443] T. Nakayama, S. Kojima, H. Harigai, H. Igarashi, K. Tamada, and T. Toba. An 80b, 6.7 MFLOPS floating-point processor with
Vector/Matrix instructions. In Wuorinen [7199], pages 52–53, 289.

Nakayama:1989:MFPb

Nowacki:1989:ABQ

Ochs:1989:TPF

Petkovsek:1989:CDS

Pincin:1989:NAM

Prince:1989:FTF

REFERENCES

Vassiliadis:1989:GPO

Vassiliadis:1989:SMF

Voelzke:1989:FSAa

Voelzke:1989:FSAb

Vulchanov:1989:SCR

Wagner:1989:EDD

Wang:1989:ADF

REFERENCES

Wang:1989:MBC

Wichmann:1989:SPI

Wichmann:1989:TFS

Wittman:1989:SCU

Zeng:1989:RNP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2567] Volker Müller. Hochgenaue CORDIC-Algorithmen für reelle Standardfunktionen mittels dynamischer Defektberechnung

REFERENCES

REFERENCES

1. Table 5 (page 124):
insert $k \leftarrow 0$ after assertion, and also delete $k \leftarrow 0$ from Table 6.

2. Table 9 (page 125):
 for -1 substitute -1;
 substitute -1 substitute -1;
 and delete the comment.

3. Table 10 (page 125):
 for $\text{fill}(-k, "0")$
 substitute $\text{fill}(-k-1, "0")$

REFERENCES

REFERENCES

97(9):836–839, November 1990. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

REFERENCES

REFERENCES

REFERENCES

Bohlender:1991:SPH

Bohlender:1991:VEI

Boughton:1991:CSG

Briggs:1991:PCF

Bromley:1991:FAT

Brunner:1991:VAR

Bruss:1991:RMF

Bryant:1991:CVI

[2655] R. E. Bryant. On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer

REFERENCES

Chiang:1991:GDA

Cmelik:1991:AMS

Cody:1991:KAA

Cody:1991:PEP

Cody:1991:UTS

Compan:1991:GPS

[2674] A. Compan, P. Debaud, V. Delorme, J. A. François, H. Mehrez, and F. Pecheux. GAF: a portable standard-cell floating point adder generator using the CXgen function library. Microprocessing and
REFERENCES

Demmel:1991:OIA

Dongarra:1991:GBP

Dunham:1991:ABA

Duprat:1991:NRR

Duprat:1991:WND

Ercegovac:1991:MPM

REFERENCES

Golubev:1991:FPM

Gonnella:1991:ACF

Gotze:1991:SRD

Grcar:1991:IAS

Griffin:1991:REA

Gusev:1991:NCS

Guyot:1991:OAV

REFERENCES

[2711] Ian Holmes. A feasibility study into the design of a 64-bit floating point processor. Thesis (M.Sc. in Electronics), University of Southampton, Department of Electronics and Computer Science, Southampton, UK, 1991.

REFERENCES

REFERENCES

Kahan:1991:APL

Kahan:1991:ARL

Kantabutra:1991:DOC

Kim:1991:ERB

Kim:1991:NIC

Klette:1991:PSB

REFERENCES

Kramer:1991:EFA

Kuhnel:1991:OPS

Kurokawa:1991:CGU

Lai:1991:HNS

Lee:1991:FPPa

Lee:1991:FPPb

Lee:1991:FPPc

REFERENCES

Nakano:1991:MBM

Nelson:1991:SPM

Ochs:1991:NRU

Ochs:1991:NTR

Ochs:1991:RF

Ochs:1991:SRF

OGrady:1991:HOA

Okabe:1991:LDC

Orup:1991:HRH

Ozawa:1991:FND

Ozawa:1991:FOD

Parikh:1991:RBE

Paterson:1991:SMC

Paxson:1991:PTI

REFERENCES

645–653, October 1991. CODEN SJMAEL. ISSN 0895-4798 (print),
1095-7162 (electronic).

[2798] T. J. Scott. Mathematics and computer science at odds over real
numbers. SIGCSE Bulletin (ACM Special Interest Group on Computer
ISSN 0097-8418 (print), 2331-3927 (electronic). 22nd SIGCSE Technical
Symposium on Computer Science Education.

[2799] Andre Seznec and Karl Courtel. OPAC: a cost-effective floating-point
coprocessor = le coprocesseur numérique OPAC. Technical report, Institut
National de Recherche en Informatique et en Automatique, Le Chesnay,

[2800] Andre Seznec and Karl Courtel. OPAC: a floating-point coprocessor
dedicated to compute-bound kernels = OPAC: un coprocesseur flottant
dedié au calcul matriciel. Rapports de recherche 1555, Institut National
de Recherche en Informatique et en Automatique, Le Chesnay, France,

Wilburn, R. W. Davis, N. J. Colella, and D. B. Holtkamp. High energy
proton SEU test results for the commercially available MIPS R3000
microprocessor and R3010 floating point unit. IEEE Transactions on
ISSN 0018-9499 (print), 1558-1578 (electronic).

integer multiplication. ACM SIGARCH Computer Architecture News,
19(1):106–113, March 1991. CODEN CANED2. ISSN 0163-5964 (print),
1943-5851 (electronic).

[2803] Daniel P. Siewiorek and Philip John Koopman, Jr. The Architecture of
Supercomputers—Titan, A Case Study. Academic Press, New York, NY,
REFERENCES

REFERENCES

REFERENCES

Wigley:1991:FMR

Wigley:1991:SMR

Williams:1991:NBC

Williams:1991:ZOS

Winter:1991:FPA

Wong:1991:FDU

[2837] Derek C. Wong and Michael J. Flynn. Fast division using accurate quotient approximations to reduce the number of iterations. In Kornerup
REFERENCES

[2843] Tsung Lun Yu and William B. Ribbens. A floating-point coprocessor for fault detection and isolation in electronically controlled internal

REFERENCES

Ziv:1991:FEE

Acha:1992:LOF

Anonymous:1992:FPa

Anonymous:1992:FPb

Anonymous:1992:FPc

ANSI:ftn92

Arazi:1992:BDC

Arnold:1992:AFI

Bailey:1992:ATF

Bailey:1992:PHP

Baker:1992:LCE

Bakhrakh:1992:NIF

Bewick:1992:BMU

Blair:1992:PMU

Bohlender:1992:PAF

REFERENCES

Borwein:1992:MHP

Brosgol:1992:ADA

Brosgol:1992:DAA

Clarkson:1992:SED

Cosentino:1992:AMJ

Dao-Trong:1992:SCI

REFERENCES

REFERENCES

REFERENCES

[2885] J. Duprat and M. Fiallos Aguilar. On the simulation of pipelining of
fully digit on-line floating-point adder networks on massively parallel
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

arithmetic]. IEEE Transactions on Computers, 41(12):1497–1503,
December 1992. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
tp=&arnumber=214659.

[2887] Barry S. Fagin. Large integer multiplication on hypercubes. Journal of
JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

and squaring circuits. IEEE Transactions on Circuits and Systems
CODEN ITCAEX. ISSN 1057-7122 (print), 1558-1268 (electronic).

A floating-point cell library and a 100-MFLOPS image signal processor.
CODEN LISCBC. ISSN 0018-9200 (print), 1558-173X (electronic).

floating-point cell library and a 100-Mflops image signal processor. IEEE
LISCBC. ISSN 0018-9200 (print), 1558-173X (electronic).

[2891] D. Gamberger. Inversion of integer matrices in residue number
system. IEE Proceedings. Computers and Digital Techniques, 139
xpl/tocresult.jsp?isnumber=4186.
Goldberg:1992:DFD

Gray:1992:UMF

Hartwig:1992:AFQ

Hartwig:1992:MFA

Hasan:1992:BSS

Hasan:1992:MCL

Hegeman:1992:AF

Hoehfeld:1992:LLN

[2899] M. Hoehfeld and S. E. Fahlman. Learning with limited numerical precision using the cascade-correlation algorithm. IEEE Transactions
Hoff:1992:FCH

Hohfeld:1992:PRN

Horiguchi:1992:FNR

Hoyt:1992:MFP

Hudak:1992:RPL

IFIF:1992:CVD

[2906] P. B. Jackson. Developing a toolkit for floating-point hardware in the
Nuprl proof development system. In Prinetto and Camurati [7239], pages

issue/v2i3/tutorials/toolbox/index.html.

[2908] Joxan Jaffar, Peter J. Stuckey, Spiro Michaylov, and Roland
H. C. Yap. An abstract machine for CLP(R). ACM SIGPLAN
0-89791-475-9. ISSN 0362-1340 (print), 1523-2867 (print), 1558-
proceedings/pldi/143095/p128-jaffar/.

of a new reciprocal cell. In IEEE ICCD ’92 [7234], pages 106–109. ISBN
0-8186-3110-4 (paper), 0-8186-3111-2 (microfiche), 0-8186-3112-0 (case).

(M.S.), University of Missouri, Columbia, Columbia, MO, USA, 1992. vi
+ 183 pp.

[2911] P. Johnstone and F. E. Petry. Rational number approximation in higher
radix floating point systems. In IEEE [7236], pages 501–504 vol.2. ISBN
0-7803-0494-2. LCCN ???? Two volumes. IEEE catalog no. 92CH3094-0.

[2912] W. Kahan. Analysis and refutation of the LCAS. ACM SIGPLAN
(print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

[2933] K. J. R. Liu and E. Frantzeskakis. Qrd-based square root free and division free algorithms and architectures. In Workshop on VLSI Signal
REFERENCES

Lozier:1992:RPC

Lozier:1992:RPV

Lozier:1992:SLI

Lu:1992:NDA

Lynch:1992:FCA

Lynch:1992:HSD

REFERENCES

REFERENCES

REFERENCES

[2988] A. Skavantzos and N. Mitash. Theory and implementation issues of the 2-dimensional polynomial residue number system. In *IEEE Southeastcon*
REFERENCES

REFERENCES

Werter:1992:SLC

Wesner:1992:TS

Wichmann:1992:NUF

Wichmann:1992:SFW

Wilkes:1992:E

Wilt:1992:ALP

Wong:1992:DSR

REFERENCES

REFERENCES

REFERENCES

Anonymous:1993:FSB

[3029] Anonymous. The “fastest system on the block” label must be qualified with new multiplatform, floating-point benchmarks. PC Week, 10(22):85–??, June 1993. ISSN 0740-1604.

Anonymous:1993:SRT

Asprey:1993:PFP

ASTM:1993:AES

Bailey:1993:AMT

Bailey:1993:MPM

Bajard:1993:BNH

REFERENCES

Briggs:1993:XBM

Callaway:1993:EPC

Chang:1993:REP

Choi:1993:FPR

Chu:1993:FPA

REFERENCES

REFERENCES

REFERENCES

[3069] David Eisig, Josh Rotstain, and Israel Koren. The design of a 64-bit integer multiplier/divider unit. In Swartzlander, Jr. et al. [7257], pages

REFERENCES

Hendtlass:1993:MNIa

Hendtlass:1993:MNIb

Higginbotham:1993:ISR

Higham:1993:AFP

Holler:1993:IFP

Hopkins:1993:CEM

Horning:1993:SUM

Hu:1993:EIS

REFERENCES

REFERENCES

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1993. CODEN ???? ISSN ????

Kim:1993:FABc

Kim:1993:FABd

Kirsch:1993:ABU

Klatte:1993:CXC

Koren:1993:CAA

REFERENCES

Kortemeyer:1993:CPT

Kota:1993:NAH

Krandick:1993:EMF

Krishna:1993:TFA

Lee:1993:DAE

REFERENCES

595

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Schwarz:1993:HSA

Schwarz:1993:PHR

Schwarz:1993:UFM

Shanbhag:1993:REAA

Shanbhag:1993:REAB

Shand:1993:FIR

REFERENCES

[3187] Inside technology today 32-bit floating point multi-port DSP / produced by Texas Instruments. VHS format. High-speed, multi-port DSPs can be used in parallel processing applications to really enhance computation time and power. A popular 6-port floating point DSP and high speed design integration and applications are described in this tape., 1993. 1 videocassette.

REFERENCES

REFERENCES

ISSN 0747-7171 (print), 1095-855X (electronic).

[3207] D. Zuras. On squaring and multiplying large integers. In
Swartzlander, Jr. et al. [7257], pages 260–271. ISBN 0-7803-1401-
8 (softbound), 0-8186-3862-1 (casebound), 0-8186-3861-3 (microfiche).
ISSN 0018-9340 (print), 1557-9956 (electronic). LCCN QA 76.9 C62
papers/ARITH11_Zuras.pdf. IEEE Transactions on Computers 43(8),
1994.

Germany / Heidelberg, Germany / London, UK / etc., 1993. ISBN

functional parallelism of POWER2 to design high-performance numerical
September 1994. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-
8556 (electronic). URL http://www.almaden.ibm.com/journal/rd38-
5.html#eight.

20(4):553, December 1994. CODEN ACMSCU. ISSN 0098-3500 (print),
1557-7295 (electronic). See [3267].

65–??, June 1994. CODEN CCAEDJ. ISSN 0733-3536 (print), 2162-1365
(electronic).

85–??, July 1994. CODEN CCAEDJ. ISSN 0733-3536 (print), 2162-1365
(electronic).
Anonymous:1994:FPc

Anonymous:1994:SCSa

Anonymous:1994:SPF

Anonymous:1994:SRT

Apple:1994:IMP

Bajard:1994:BNH

Bajard:1994:SOL

[3220] Ferruccio Barsi and M. Cristina Pinotti. Time optimal mixed radix
conversion for residue number applications. The Computer Journal, 37
(10):907–916, ????. 1994. CODEN CMPJA6. ISSN 0010-4620 (print),

[3221] M. Bartolucci and G. R. Sechi. Rounding error in the computation
of opposite sign floating point number parametric addition: a case
study. Microprocessing and Microprogramming, 40(10-12):833–839,
December 1994. CODEN MMICDT. ISSN 0165-6074 (print), 1878-7061
and Integration.

(4):245–250, August 1994. CODEN INSKDW. ISSN 0170-6012 (print),
1432-122X (electronic).

Ph.D. thesis, Computer Systems Laboratory, Stanford University,
Stanford, CA, USA, February 1994. 170 pp. Also issued as report CSL-
TR-94-617.

[3224] Per Brinch Hansen. Multiple-length division revisited: a tour of the
CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic). URL
http://brinch-hansen.net/papers/1994b.pdf. This paper derives an
algorithm for division of long integers, and implements it as a literate
program, although without identifier cross-references. See also related
work on division [3398, 1774].

[3225] Benjamin M. Bros gol, Robert I. Eachus, and David E. Emery.
Information systems development in Ada. In ACM [7259], pages 2–16.
ISBN 0-89791-684-0. LCCN ????
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dimauro:1994:DFNb

Ercegovac:1994:DSR

Ercegovac:1994:VHR

Fagin:1994:FPG

Farquhar:1994:MPH

FiallosAguilar:1994:HPA

Gander:1994:AFP

REFERENCES

[3269] Ching Yu Hung and Behrooz Parhami. Fast RNS division algorithms for fixed divisors with application to RSA encryption. *Information*
REFERENCES

REFERENCES

Jackson:1994:PCE

http://www.cs.toronto.edu/pub/reports/na/prec.except.ps.Z.

Jain:1994:SRR

Jaromczyk:1994:CCH

Johnstone:1994:DAN

Kabuo:1994:ARS

Kalliojarvi:1994:RCW

Seehyun Kim and Wonyong Sung. A floating-point to fixed-point assembly program translator for the TMS 320C25. IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 41(11):
REFERENCES

730–739, November 1994. CODEN ICSPE5. ISSN 1057-7130 (print), 1558-125X (electronic).

Kobbelt:1994:FDP

Kornerup:1994:SLA

Krandick:1994:EMF

Laakso:1994:BFP

Laakso:1994:ELC

Ledoux:1994:TOW

Lewis:1994:IMF

REFERENCES

November 1994. CODEN ICDTEA. ISSN 1350-2387 (print), 1359-7027 (electronic).

Montuschi:1994:RDO

Montuschi:1994:RDS

Muller:1994:SCF

Murofushi:1994:RBR

Nakamura:1994:EPV

Narayanaswami:1994:AE

Nedialkov:1994:PCE

REFERENCES

REFERENCES

REFERENCES

and Systems, ISCAS ’94, 2 June 1994, volume 2, pages 441–444. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1994. CODEN ????. ISSN ????

Parker:1994:FTLb

Patankar:1994:SHA

Phatak:1994:HSD

Popova:1994:EIA

Prince:1994:TFM

Pritchard:1994:RAR

Rajski:1994:DRP

REFERENCES

Solhaug:1994:FDK

Srivastava:1994:ASB

Stockman:1994:OMM

Thompson:1994:PSN

Timmermann:1994:CFP

Timmermann:1994:CFV

Turner:1994:SRM

REFERENCES

REFERENCES

Yuen:1994:PMC

Zhang:1994:EMR

Zhang:1994:TDN

Zuras:1994:MSM

Zuse:1994:PPV

Aagaard:1995:FVP

Abdallah:1995:SASa

REFERENCES

REFERENCES

REFERENCES

[3415] Marc Daumas, Christophe Mazenc, Xavier Merrheim, and Jean-Michel Muller. Modular range reduction: a new algorithm for fast and

Demmel:1995:CSB

DiClaudio:1995:FCR

Doman:1995:SAP

Doran:1995:SCD

Ercegovac:1995:SDC

REFERENCES

REFERENCES

REFERENCES

[3445] Masayuki Ito, Naofumi Takagi, and Shuzo Yajima. Efficient initial approximation and fast converging methods for division and square

Jain:1995:HSD

Jang:1995:OSA

Kahan:1995:TSD

Kahan:1995:USP

Kaliski:1995:MIA

Kalliojarvi:1995:FWL

[3451] Kari Kalliojärvi. *Finite word length effects in floating-point and block-floating-point digital signal processing systems*. Avhandling (doktorgrad),
REFERENCES

[Tampereen teknillinen korkeakoulu, Tampere, Finland, 1995. vii + 71 + 68 pp.]

[3453] Friedrich Wilhelm Kistermann. Die Rechentechnik um 1600 und Wilhelm Schickard’s Rechenmaschine. (German) [The calculating technique of 1600 and Wilhelm Schickard’s calculator]. In Seck [7281], pages 241–272. ISBN 3-7995-3235-8. ISSN 0340-6857. LCCN ????. DM 76.00, sfr 76.00, S 600.00.

[3457] Hercule Kwan, Robert Leonard Nelson, Jr., and Earl E. Swartzlander, Jr. Cascaded implementation of an iterative inverse-square-root algorithm,

Lang:1995:VHR

Leeser:1995:VSR

Lehmann:1995:SLE

[3460] N. Joachim Lehmann. Schickard und Leibniz als Erfinder von rechenmaschinen. (German) [Schickard and Leibniz, the inventors of calculators]. In Seck [7281], pages 273–286. ISBN 3-7995-3235-8. ISSN 0340-6857. LCCN ???? DM 76.00, sfr 76.00, S 600.00.

Liu:1995:SRV

Louie:1995:VPS

Lozier:1995:EBL

Lynch:1995:HRL

Lynch:1995:KTF

Lyu:1995:RBB

Mandelbaum:1995:DUL

Martel:1995:DSO

Matsubara:1995:NBS

Meissner:1995:EAD

Metafas:1995:FAC

Michelucci:1995:ARD

Miner:1995:DIF

Moler:1995:CCT

[3474] Cleve B. Moler. Cleve’s corner: a tale of two numbers: With the Pentium, there is a very small chance of making a very large error. Technical note, The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA,
REFERENCES

REFERENCES

J. Arjun Prabhu and Gregory B. Zyner. 167 MHz radix-8 floating point divide and square root using overlapped radix-2 stages. In
REFERENCES

Pratt:1995:APB

Price:1995:PFF

Rogers:1995:UMP

Rubenking:1995:UNI

Sammut:1995:AUD

Sangwine:1995:CIT

REFERENCES

Sanyal:1995:CAS

Sarma:1995:FBR

Schulte:1995:DAV

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of
the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

Schulte:1995:HDA

Schulte:1995:PSI

Schwarz:1995:RQC

Shirazi:1995:QAF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wong:1995:FEE

Wu:1995:SRM

Ypma:1995:HDN

Yu:1995:MRF

Zaytoun:1995:SFR

Zhou:1995:HSD

Ahrendt:1996:FHC

Al-Twaijry:1996:OPR

Alefeld:1996:EII

Andraos:1996:FPU

Angarai:1996:NRS

[3536] Vijayanand Jaganaathan Angarai. Number representation schemes for energy efficient computer arithmetic. Thesis (M.S.), University of Texas at Dallas, Dallas, TX, USA, 1996. ix + 57 pp.

Anonymous:1996:DC

Anonymous:1996:FPF

Anonymous:1996:IBT

Anonymous:1996:SROa

Anonymous:1996:SROb

Anonymous:1996:SROc

Anonymous:1996:SROd

Anonymous:1996:SROe

Anonymous:1996:SROf

REFERENCES

REFERENCES

[3564] W. A. Chren, Jr. Delta-sigma demodulator with large oversampling ratio using the one-hot residue number system. In *IEEE International
REFERENCES

Chren:1996:RDU

Ciminiera:1996:CSM

Clarke:1996:VSD

Clarke:1996:WLS

Corliss:1996:VPE

REFERENCES

REFERENCES

techniques to circuit simulation. In Alefeld et al. [7284], pages 329–333.

[3577] B. S. Dobronets. A posteriori error estimation for partial
ISSN 0138-3019. LCCN QA76.95 .I575 1995.

[3579] Emad N. Farag, M. Anwarul Hasan, and Mohamed I. Elmasry. Low-
power radix 2 division algorithm with minimum add/sub operations.

[3580] Alan Feldstein and Peter R. Turner. Overflow and underflow in
multiplication and division. Applied Numerical Mathematics, 21(3):221–
239, August 20, 1996. CODEN ANMAEL. ISSN 0168-9274 (print),

[3581] S. T. J. Fenn, M. Benaissa, and D. Taylor. GF(2m)
multiplication and division over the dual basis. IEEE Transactions on Computers,
45(3):319–327, March 1996. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-

[3582] Michael J. Flynn, Stuart Oberman, Steve Fu, Hesham Al-Twaijry, Kevin
Nowka, Gary Bewick, Eric Schwarz, and Nhon Quach. The SNAP project: Towards sub-nanosecond arithmetic. In NSF/MIPS Conference
on Experimental Research on Computer Systems, June 1996, page ??
REFERENCES

Fortune:1996:SAY

Ganesan:1996:CSM

Garg:1996:FTP

Gibb:1996:FFI

Goldberg:1996:CA

Goldstine:1996:ENI

Gedenberg:1996:HSI

Guedj:1996:EN

Gupta:1996:AAG

Guyot:1996:STD

Haller:1996:AFP

Hamacher:1996:CO

Hartwig:1996:RNA

REFERENCES

REFERENCES

Herzberger:1996:OCC

Hickey:1996:FSP

Higham:1996:ASN

Hong:1996:NMM

Hyvoenen:1996:SCE

Inacio:1996:DDF

ISO:1996:TRF

REFERENCES

Industry immediately started to investigate the failure." From the report: “The internal SRI software exception was caused during execution of a data conversion from 64-bit floating point to 16-bit signed integer value. The floating point number which was converted had a value greater than what could be represented by a 16-bit signed integer. This resulted in an Operand Error. The data conversion instructions (in Ada code) were not protected from causing an Operand Error, although other conversions of comparable variables in the same place in the code were protected.”.

REFERENCES

REFERENCES

Oberman:1996:VLP

Oklobdzija:1996:MSO

Paar:1996:NAP

Parhami:1996:CHS

Park:1996:OHW

Park:1996:PAG

REFERENCES

Engineering. 26–29 May 1996, volume 1, pages 294–297. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1996. CODEN ???? ISSN ????

Shokin:1996:IPI

Sinclair:1996:ORS

Singer:1996:EAP

Soderquist:1996:AFT

Soderquist:1996:APT

Steele:1996:EL

Stewart:1996:ANA

REFERENCES

REFERENCES

[3699] K. B. Williams. Testing math functions: When requirements are tight, we must carefully examine all potential sources of error. Make sure your math library isn’t the weak link in the chain. *C/C++ Users Journal*, 14 (12):49–54, 58–65, December 1996. CODEN CCUJEX. ISSN 1075-2838. Describes a package that extends the Cody-Waite-Plauger work on the ELEFUNT package for the testing of the elementary functions, including the inverse hyperbolic functions, cube root, and Bessel functions of the first and second kinds. The C++ package implements 192-bit extended precision versions of all of the functions, so that accurate results are available for comparison with the normal double-precision results.

Zgliczynski:1996:RVC

Al-Twaijry:1997:APO

Allaart:1997:ISC

Althaus:1997:MNF

Anonymous:1997:BRPk

Anonymous:1997:SIS

REFERENCES

[3710] Martin Atkinson-Barr. Letter to the Editor: Pentium II math bug. Dr. Dobb’s Journal of Software Tools, 22(10):10, October 1997. CODEN DDJOEB. ISSN 1044-789X. Identifies himself as the “Mr. X” cited in [3724], and provides more the background on the discovery of the Pentium FIST (floating-point to integer store) instruction.

REFERENCES

REFERENCES

REFERENCES

Hanson:1997:MAD

Harris:1997:SDA

Harrison:1997:FPV

Hasan:1997:DA

Hekstra:1997:FRL

Hiasat:1997:DIR

Society order number PR07846. IEEE Order Plan catalog number 97CB36091.

[3765] E. J. King and E. E. Swartzlander, Jr. Data-dependent truncation scheme for parallel multipliers. In Fargues and Hippenstiel
REFERENCES

Kinoshita:1997:RAE

Koc:1997:FSE

Kramer:1997:PWC

Kravchenko:1997:AEP

Lang:1997:CVA

REFERENCES

REFERENCES

Conference and Workshop on Engineering of Computer-Based Systems, pages 339–346. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1997. URL http://ieeexplore.ieee.org/document/581900/. From the article: “The SRI S/W exception was raised during a conversion from a 64-bit floating point number F to a 16-bit signed integer number. F had a value greater than what can be represented by a 16-bit signed integer, which caused an Operand Error (data conversion — in Ada code — was not protected, for the reason that a maximum workload target of 80% had been set for the SRI computer). . . . The value of BH was much higher than expected because the early part of the trajectory of Ariane 5 differs from that of Ariane 4, which results in considerably higher horizontal velocity values.”.

REFERENCES

REFERENCES

702

Rederlechner:1997:NCP

Reppy:1997:EAH

Rice:1997:MDB

Sanz-Gonzalez:1997:TBR

Sarma:1997:FIR

Schulte:1997:AFA

[3807] M. J. Schulte and James E. Stine. Accurate function approximations by symmetric table lookup and addition. In Thiele et al. [7301], pages
REFERENCES

Schulte:1997:HSR

Schulte:1997:SBT

Schwarz:1997:CFP

Schwarz:1997:RCM

Shewchuk:1997:APF

REFERENCES

REFERENCES

Computer Society order number PR07846. IEEE Order Plan catalog number 97CB36091.

REFERENCES

REFERENCES

Aberbour:1998:PMF

Aberth:1998:PNM

Al-Twaijry:1998:SPB

Al-Twaijry:1998:TSE

Althaus:1998:MNF

Anonymous:1998:ANO

[3842] Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic;
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3866] Joseph D. Darcy. Evolving Java’s floating point support: The good, the bad, and the ugly. In MacKay and Johnson [7312], page ?? LCCN TK
REFERENCES

REFERENCES 714
REFERENCES

REFERENCES

Hill:1998:FDP

Huertgen:1998:TFP

Hussein:1998:LPA

IBM:1998:DAI

IEC:1998:IIIta

ISO:1998:IIItc

REFERENCES

McCullough:1998:ARS

Mohan:1998:EFC

Montalvo:1998:NST

Moore:1998:MCP

Murabayashi:1998:WBP

Naffziger:1998:MAB

 Nguyen:1998:MLS

Oberman:1998:ATK

Oberman:1998:MCS

Oberman:1998:RML

Paar:1998:EMA

Paul:1998:CBR

Paulus:1998:CRI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:1999:SLH

Antelo:1999:VRC

Aoki:1999:RCA

Bach:1999:NTS

Batten:1999:IBO

Batten:1999:IFB

Beaumont-Smith:1999:RLI

[3965] A. Beaumont-Smith, N. Burgess, S. Lefrere, and C. C. Lim. Reduced latency IEEE floating-point standard adder architectures. In Koren

Benschop:1999:MML

Bhardwaj:1999:RCM

Bhardwaj:1999:VCA

Blum:1999:MME

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[4052] Peter Kornerup. Necessary and sufficient conditions for parallel, constant
time conversion and addition. In Koren and Kornerup [7324], pages 152–
final/paper-103.ps; http://www.acsel-
lab.com/arithmetic/arith14/papers/ARITH14_Kornerup.pdf. IEEE
Computer Society Order Number PR00116. IEEE Order Plan Catalog
Number 99CB36336.

SIGSAM Bulletin (ACM Special Interest Group on Symbolic and
Algebraic Manipulation), 33(3):17, September 1999. CODEN SIGSBZ.
ISSN 0163-5824 (print), 1557-9492 (electronic).

[4054] T. Lang and P. Montuschi. Very high radix square root with prescaling
and rounding and a combined division/square root unit. IEEE
Transactions on Computers, 48(8):827–841, August 1999. CODEN
ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http:/

[4055] Ph. Langlois and F. Nativel. When automatic linear correction of
rounding errors is exact. Comptes Rendus des Séances de l’Académie
CASMEI. ISSN 0249-6291. See erratum, p. 829, in same volume.

[4056] Sung-Woo Lee, Hyun-Sung Kim, Jung-Joon Kim, Tae-Geum Kim,
and Kee-Young Yoo. Efficient fixed-size systolic arrays for the
modular multiplication. Lecture Notes in Computer Science, 1627:
442–??, 1999. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349
series/0558/bibs/1627/16270442.htm; http://link.springer-

[4057] Chang-Hyi Lee and Jong-In Lim. A new aspect of dual basis for
efficient field arithmetic. Lecture Notes in Computer Science, 1560:
12–28, 1999. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349
REFERENCES

[4063] D. Lopez, J. Llosa, E. Ayguade, and M. Valero. Impact on performance of fused multiply-add units in aggressive VLIW architectures. In Shiratori...

REFERENCES

Nedialkov:1999:IHO

Northrop:1999:GM

Oberman:1999:FPD

OLeary:1999:FVI

Paar:1999:FAP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Schulte:1999:AEF

Schulte:1999:CSI

Schulte:1999:ESO

Schulte:1999:HSI

Schulte:1999:IEG

REFERENCES

Tanskanen:1999:REF

Tenca:1999:DHR

Thompson:1999:BPF

Tisseur:1999:NMF

Tropp:1999:HAI

[4129] N. Yadav, M. J. Schulte, and J. Glossner. Parallel saturating fractional
arithmetic units. In Mazumder and Lomax [7327], pages 214–217. ISBN

CMOS image sensor with ultrawide dynamic range floating-point pixel-
level ADC. IEEE Journal of Solid-State Circuits, 34(12):1821–1834,
December 1999. CODEN IJSCBC. ISSN 0018-9200 (print), 1558-173X
electronic).

[4131] Lie-Liang Yang and L. Hanzo. Residue number system arithmetic
assisted M-ary modulation. IEEE Communications Letters, 3(2):28–30,
ieee.org/xpl/tocresult.jsp?isnumber=16186.

[4132] Lie-Liang Yang and L. Hanzo. Residue number system based
multiple code DS-CDMA systems. In IEEE 49th Vehicular Technology
Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1999. CODEN ???? ISSN ????

[4133] Lie-Liang Yang and L. Hanzo. Ratio statistic test assisted residue number
system based parallel communication schemes. In IEEE 49th Vehicular
Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1999. CODEN ???? ISSN ????

realexpr/.

REFERENCES

[4139] Record, page various, 19xx. Floating Point Systems, Portland, OR, USA.

[4140] Intel. Intel 8231A Arithmetic Processing Unit. Intel Corp, San Jose, CA, USA, 19xx. URL http://www.datasheetarchive.com/pdf-datasheets/Datasheets-14/DSA-276911.html. From the datasheet (p. 3-5): “The mantissa is expressed as a 24-bit (fractional) value; the exponent is expressed as a two’s complement 7-bit value having the range \(-64\) to \(+63\). The most significant bit is the sign of the mantissa (0 = positive, 1 = negative), for a total of 32 bits. The binary point is assumed to be [to] the left of the most significant mantissa bit (bit 23). All floating-point data values must be normalized. Bit 23 must be equal to 1, except for the value zero, which is represented by all zeros. The range of values that can be represented in this format is \(\pm(2.7^{-10} \ldots 9.2 \times 10^{18})\) and zero.”.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[4195] Yun He and Chris H. Q. Ding. Using accurate arithmetics to improve numerical reproducibility and stability in parallel applications. In
REFERENCES

Hiasat:2000:NES

Hida:2000:QDA

Higuchi:2000:FAA

Hormigo:2000:HAVA

Hormigo:2000:HAVB

Ide:2000:GMF

[4201] Nobuhiro Ide, Masashi Hirano, Yukio Endo, Shin ichi Yoshioka, Hiroaki Murakami, Atsushi Kunimatsu, Toshinori Sato, Takayuki Kamei, Toyoshi Okada, and Masakazu Suzuki. 2.44 GFLOPS 300-MHz

Ifrah:2000:UHN

Imajo:2000:CSB

Intel:2000:DSR

Intel:2000:IPF

ISO:2000:FSI

Joye:2000:OLR

REFERENCES

REFERENCES

884–888. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2000. CODEN ???? ISSN ????

Madhukumar:2000:PRN

Madhukumar:2000:RNS

Mahesh:2000:LPR

Markstein:2000:IEF

Maryska:2000:SCR

McKenzie:2000:ACP

REFERENCES

776

[4243] Sangho Oh, Chang Han Kim, Jongin Lim, and Dong Hyeon Cheon. Efficient normal basis multipliers in composite fields. IEEE Transactions
REFERENCES

Paliouras:2000:FPP

Paliouras:2000:HRR

Paliouras:2000:NHR

Papakonstantinou:2000:IU

Parhami:2000:CAA

Parhami:2000:PER

REFERENCES

REFERENCES

Department, University of Saarland, Saarbrücken, Germany, 2000. xii + 188 pp.

Seife:2000:ZBD

Sleijpen:2000:DER

Swider:2000:FPR

Takahashi:2000:IMP

Talahmeh:2000:ADR

Tchoumatchenko:2000:FBS

REFERENCES

REFERENCES

References

REFERENCES

[4311] Keith Briggs and Yannis Smaragdakis. XR — exact real arithmetic. World-Wide Web document and software package., March 01, 2001. URL http://www.btexact.com/people/briggsk2/XR.html. From the overview: “This is an implementation of exact (or constructive) real arithmetic, as an alternative to multiple-precision floating-point (MPFP). An important distinction is that in MPFP one sets the precision before starting a computation, and then one cannot be sure of the final result. Interval arithmetic is an improvement on this, but still not an ideal solution because if the final interval is larger than desired, there is no simple way to restart the computation at higher precision. By contrast, in XR no precision level is set in advance, and no computation takes place until a final request takes place for some output. Despite this, programming with XR is no different from MPFP, except for the declaration of critical variables as type ‘XR’.

The main aim is to produce a usably efficient implementation, which can be easily interfaced with existing C++ code. This contrasts with previous implementations in functional languages (Haskell, Miranda etc.), which, although theoretically important, seem to be rather too slow for real use.

This code is designed as an add-on to Victor Shoup’s arbitrary-precision arithmetic package NTL, and implements a new type XR, to complement NTL’s ZZ and RR integer and real types.

REFERENCES

REFERENCES

Dimitrov:2001:UMD

Drmac:2001:AQS

Fernandez:2001:IOD

Finot-Moreau:2001:PAU

Flynn:2001:ACA

Galan-Simon:2001:MLD

REFERENCES

REFERENCES

REFERENCES

[4364] W. Kahan. Names for standardized floating-point formats. Technical report, Mathematics Department and Electrical Engineering and Computer Science Department, University of California, Berkeley,
REFERENCES

REFERENCES

REFERENCES

[4381] Tomás Lang and Elisardo Antelo. Correctly rounded reciprocal square-root by digit recurrence and radix-4 implementation. In
REFERENCES

Langlois:2001:ALC

Laurent:2001:UFV

Lee:2001:BPS

Lee:2001:CAP

Lee:2001:DLS

REFERENCES

Lippert:2001:HSM

Madhukumar:2001:EMH

Madhukumar:2001:IBE

Madhukumar:2001:IIR

Matula:2001:ITL

McFearin:2001:GAH

Michel:2001:SCF

Mobley:2001:ICW

Moller:2001:SEC

Montuschi:2001:BVH

Morioka:2001:TEV

MRaihi:2001:ACR

REFERENCES

Muller:2001:IEA

Naini:2001:GHS

Nakamura:2001:AAA

Nannarelli:2001:TBR

Ning:2001:ESI

References

REFERENCES

REFERENCES

Yasuyuki Sakai and Kouichi Sakurai. On the power of multidoubling in speeding up elliptic scalar multiplication. Lecture Notes in Computer Science, 2259:268–??, 2001. CODEN LNCSDE. ISSN 0302-9743 (print),
REFERENCES

[Savas:2001:SUM]

[Schmookler:2001:LZA]

[Schonfelder:2001:VPA]

[Seidel:2001:BMR]

[Seidel:2001:DFI]
Seidel:2001:EAB

Smith:2001:AFS

Steele:2001:SMFa

Steele:2001:SMFb

Stine:2001:CIH

Stine:2001:DIA

REFERENCES

REFERENCES

Tenca:2001:HRD

Thompson:2001:BPC

TI:2001:TTPa

TI:2001:TTPb

Tisseur:2001:NMF

Trichina:2001:SAM

Um:2001:OAC

REFERENCES

REFERENCES

REFERENCES

[4478] Paul Zimmermann. De l’algorithmique à l’arithmétique via le calcul formel. (French) [From algorithmics to arithmetic via symbolic calculation]. Technical report, Département de formation doctorale en
REFERENCES

REFERENCES

REFERENCES

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2002. CODEN ???? ISSN ????

Arnold:2002:LNS

Arnold:2002:RPC

Bailey:2002:AAP

Bailey:2002:HPC

Bario:2002:REB

Belanovic:2002:LPF

BORDE:2002:PGS

BEUCHAT:2002:SMB

BLACKFORD:2002:USB

BOLDO:2002:FRF

BOLDO:2002:IAO

References
REFERENCES

REFERENCES

REFERENCES

Goldberg:2002:CA

Gonzalez:2002:NME

Gottwald:2002:NBL

Goubault:2002:APF

REFERENCES

REFERENCES

REFERENCES

Kulisch:2002:RNZ

Kwon:2002:EBS

Lang:2002:FPF

Lee:2002:DSS

Lee:2002:PFP

Leeser:2002:LPH

REFERENCES

hundred and one exercises], Translated from the 2001 English original by Alejandro Casares Maldonado.

REFERENCES

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2002. CODEN ???. ISSN ???.

[4605] Ibrahim Sahin, Clay S. Gloster, and Christopher Doss. Feasibility of floating-point arithmetic in reconfigurable computing systems. In

REFERENCES

REFERENCES

[4619] Texas Instruments, Dallas, TX, USA. *TMS320C67x FastRTS Library Programmer’s Reference (SPRU100A)*, October 2002. URL http://focus.ti.com/lit/ug/spru100a/spru100a.pdf. The FastRTS library is a collection of 26 optimized floating-point math functions for the TMS320C67x device. This source code library includes C-callable (ANSI-C-language compatible) optimized versions of the floating-point math functions included in previous run-time-support libraries.

REFERENCES

REFERENCES

Aharoni:2003:FTG

Akkas:2003:QPD

Al-Radadi:2003:RSD

Altman:2003:RAN

Ammar:2003:NDH

REFERENCES

Anonymous:2003:AI

Anonymous:2003:FFP

Anonymous:2003:RHP

Arnold:2003:FFT

Arnold:2003:ILN

REFERENCES

[4654] Nicolas Brisebarre and Jean-Michel Muller. Finding the “truncated” polynomial that is closest to a function. Research Report 4787, INRIA Rhone-Alpes, ZIRST, 655 Avenue de l’Europe, Montbonnot, 38334 Saint Ismier cedex,

Brown:2003:DPA

Burgess:2003:SRN

Cao:2003:DHS

Chaudhuri:2003:DAO

Chaves:2003:RRD

REFERENCES

REFERENCES

REFERENCES

[4689] Christiane Frougny and Athasit Surarerks. On-line multiplication in real and complex base. In Bajard and Schulte [7372], pages
212–219. ISBN 0-7695-1894-X. ISSN 1063-6889. LCCN QA76.6

Gansner:2003:SMB

Gavrilova:2003:ESC

Geddes:2003:EFH

Geiselmann:2003:RRD

Gerwig:2003:HPF

Goldberg:2003:WEC

[4695] David Goldberg. What every computer scientist should know about floating-point
REFERENCES

Grabmeier:2003:CAH

Grossschadl:2003:ASL

Hanrot:2003:DRF

Harrison:2003:FVS

Harrison:2003:ICC

Holmes:2003:PTC

Huang:2003:HPL

Intel:2003:DSR

Intel:2003:NID

Iordache:2003:OFP

Kaihara:2003:VAM

REFERENCES

[4712] Soonhak Kwon. A low complexity and a low latency bit parallel systolic multiplier over GF(2^m) using an optimal normal basis of type II. In Bajard and Schulte [7372], pages 196–202. ISBN 0-7695-1894-X. ISSN 1063-6889. LCCN QA76.6
REFERENCES

REFERENCES

number PR01894. Selected papers republished in *IEEE Transactions on Computers*, 54(3) (2005) [5069].

REFERENCES

Paschalakis:2003:DPF

Percival:2003:RMM

Phillips:2003:SRR

Pineiro:2003:HRI

Pineiro:2003:LHR

REFERENCES

REFERENCES

REFERENCES

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2003. ISBN ???? LCCN ????

REFERENCES

REFERENCES

[4771] Gerhard Zielke and Volker Drygalla. Genaue Lösung linearer Gleichungssysteme. (German) [Exact solution of linear systems of equations]. Mitteilungen der Gesellschaft
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2004.

[4806] Marc Daumas and Guillaume Melquiond. Generating formally certified bounds on values and round-off errors. In Frougny et al. [7383], pages
REFERENCES

[4818] Jérémie Detrey and Florent de Dinechin. A tool for unbiased comparison between logarithmic and floating-point arithmetic. Research Report RR2004-31, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07,
REFERENCES

REFERENCES

REFERENCES

[4836] Christina Lynn Geyer and Patricia Pepple Williamson. Detecting fraud in data sets using Benford’s Law. Communications in Statistics:
REFERENCES

versions are 1.0 (8-Aug-1991), 2.0 (24-Apr-1996), 3.0 (17-Apr-2000), and 4.0 (1-Dec-2001).

REFERENCES

REFERENCES

Nguyen:2004:LDL

Nievergelt:2004:AAP

Ogasawara:2004:OPO

Ogita:2004:ASDa

Ogita:2004:ASDb

Olausson:2004:RFP

REFERENCES

Ortiz:2004:SPI

Pace:2004:ERL

Page:2004:PCA

Paul:2004:SMR

Petkovic:2004:GCS

Pineiro:2004:AAL

REFERENCES

REFERENCES

Schulte:2004:LPC

Seidel:2004:DOI

Seidel:2004:LIF

Shi:2004:FPF

Steele:2004:RHP

Stehle:2004:GAT

D. Stehlé and P. Zimmermann. Gal’s accurate tables method revisited. World-Wide Web
REFERENCES

Thompson:2004:BDF

TI:2004:TUG

Tsoi:2004:ALA

Underwood:2004:CGC

Underwood:2004:FVC

Vignes:2004:DSA

REFERENCES

Forschungsbericht Nr. 04-8.

Zhu:2004:ISR

Zhuo:2004:SMA

Zimmerman:2004:DCI

Abdallah:2005:MRN

Abtahi:2005:CFR

Adharapurapu:2005:LSO

Aharoni:2005:SCI

Alvarez:2005:FMF

Anonymous:2005:HAP

Anonymous:2005:TMF

Antelo:2005:DRD

Antelo:2005:LLD

Antelo:2005:LLP

[4951] Elisardo Antelo and Julio Villalba. Low latency pipelined circular CORDIC. In Montuschi and Schwarz [7412], page ?? ISBN 0-7695-

REFERENCES

REFERENCES

268, April 2005. CODEN ISPLEM. ISSN 1070-9908 (print), 1558-2361 (electronic).

REFERENCES

REFERENCES

REFERENCES

Eleftheriou:2005:SFF

Enenkel:2005:CMF

Erle:2005:DME

Etiemble:2005:CBF

REFERENCES

Sofronioua:2005:PNC

Steele:2005:SME

Steele:2005:SMF

Steele:2005:SMG

Stehle:2004:ARR

Stehle:2005:GAT

Stehle:2005:SCW

REFERENCES

REFERENCES

REFERENCES

[5102] V. Yatskiv and N. Yatskiv. Multiple access on the basis of residue number system transformation. In Proceedings of The Third Workshop 2005

[5108] Paul Zimmermann. MPFR: vers un calcul flottant correct ? (French) [MPFR: Towards correct floating-point arithmetic?]. Online interactive report., LORIA/INRIA Lorraine, Bâtiment A, Technopôle de Nancy-Brabois, 615 rue du jardin botanique, F-54602 Villers-lès-Nancy Cedex,
REFERENCES

REFERENCES

Bonten:2006:ACF

Briggs:2006:IER

Castellanos:2006:BDF

Chang:2006:DAR

Choi:2006:DCB

Cornea:2006:SII

Cowlishaw:2006:DCL

Dahab:2006:SMU

deDinechin:2006:STP

Demmel:2006:EBE

Deng:2006:IMM

Deschamps:2006:SAC

Detrey:2006:FVL

[5134] Jérémie Detrey and Florent de Dinechin. FPLibrary. A VHDL library of parametrisable floating-point and LNS operators for FPGA. Web site and source code., 2006. URL http://www.ens-lyon.fr/LIP/ArenaireWare/FPLibrary/. The FPLibrary has been superceded by the FloPoCo project [5575].
REFERENCES

[5141] Simcha Gochman, Avi Mendelson, Alon Naveh, and Efraim Rotem. Introduction to Intel Core Duo processor architecture. *Intel
REFERENCES

Gok:2006:IMO

Goubault:2006:SAN

Graa:2006:IFF

Graca:2006:ODE

[5145] Daniel S. Gra¸ca, Ning Zhong, and Jorge Buescu. The ordinary differential equation defined by a computable function whose maximal interval of existence is non-computable. In Anonymous [7416], page ?? ISBN ???? LCCN ????

Graillat:2006:ICH

Harrison:2006:FPV

REFERENCES

[5173] T. H. Liew, Lie-Liang Yang, and L. Hanzo. Systematic redundant residue number system codes: analytical upper bound and iterative decoding

Lindstrom:2006:FEC

Mahalingam:2006:IAM

Marques:2006:BIF

Maslennikowa:2006:DFB

Melquiond:2006:AIC

REFERENCES

Michael Parks. Unifying tests for square root. In Anonymous [7416], page ?? ISBN ???? LCCN ????

Qian:2006:HMP

Rajagopal:2006:TOA

Shen:2006:TAS

Shou:2006:MAA

Singh:2006:IEE

Solymosi:2006:APS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5241] Jean-Luc Beuchat, Masaaki Shirase, Tsuyoshi Takagi, and Eiji Okamoto. An algorithm for the η_T pairing calculation in characteristic three and

Bodrato:2007:IPM

Boldo:2007:FPD

Boldo:2007:FVF

Boldo:2007:PCA

Brent:2007:EBC

Brisebarre:2007:CRA

REFERENCES

REFERENCES

Dimitrov:2007:MCS

Doornik:2007:CHP

Duale:2007:DFP

Eisen:2007:IPA

Eisinberg:2007:AFP

Ercegovac:2007:CSR

Ercegovac:2007:HOM

[5280] Laurent Fousse. Multiple-precision correctly rounded Newton–Cotes quadrature. RAIRO. Informatique théorique et applications :=
REFERENCES

0948-6968. URL http://www.jucs.org/jucs_13_5/floating_point_verification.

Hasenplaug:2007:FMR

Hernandez:2007:MPO

Hilewitz:2007:PAB

Holmes:2007:BA

Homann:2007:IFPa

Homann:2007:IFPb

Hosangadi:2007:AMO

REFERENCES

Hosseinzadeh:2007:NMS

Huang:2007:NAM

Iguchi:2007:DRC

Ihsberner:2007:REA

James:2007:QAD

Kapre:2007:OPF

Kechagias:2007:CME

[5301] P. S. Kechagias and Basil K. Papadopoulos. Computational method to evaluate fuzzy arithmetic operations. Applied Mathematics and
REFERENCES

Khabbazian:2007:DPC

Knowles:2007:RSE

Kobayashi:2007:AIG

Kornerup:2007:CIPa

Kornerup:2007:CIPb

Kuliamin:2007:ST1

[5307] V. V. Kuliamin. Standardization and testing of implementations of mathematical functions in floating point numbers. Programming and Computer Software; translation of Programmirovaniye (Moscow, USSR)
REFERENCES

REFERENCES

[5320] Shawn D. Lundvall, Eric M. Schwarz, Ronald M. Smith, Sr., and Phil C. Yeh. Composition of decimal floating point data, and methods therefor.
REFERENCES

REFERENCES

[5339] Andreas Rauh, Marco Kletting, Harald Aischmann, and Eberhard P. Hofer. Reduction of overestimation in interval arithmetic simulation of biological wastewater treatment processes. *Journal of Computational...
REFERENCES

Saldamli:2007:SME

Saqib:2007:CAI

Schulte:2007:FPD

Scott:2007:NHC

Shams:2007:EHA

Shpilka:2007:IDA

REFERENCES

[5373] Tor M. Aamodt and Paul Chow. Compile-time and instruction-set methods for improving floating- to fixed-point conversion accuracy. *ACM*
Ahmadi:2008:PFS

ASTM:2008:AES

Bapst:2008:SIO

Beuchat:2008:AGM

Boldo:2008:EFC

Brisebarre:2008:CRM

REFERENCES

Brisebarre:2008:EME

Brisebarre:2008:IFP

Buttari:2008:UMP

Carnicer:2008:REP

Castaldo:2008:RFP

REFERENCES

[5391] Florent De Dinechin and Christoph Quirin Lauter. Optimizing polynomials for floating-point implementation. *arXiv.org*, ??(?):1–12,
REFERENCES

Dimitrov:2008:PSP

Dvir:2008:HRT

Edmonson:2008:ISS

Erle:2008:AHD

Gonzalez-Navarro:2008:BID

Graillat:2008:ASZ
REFERENCES

Nakamori:2008:SRA

Namin:2008:NFF

P754:2008:ISF

Pan:2008:SAL

Patterson:2008:AC

Patterson:2008:GCG

Pineiro:2008:RDD

Quinnell:2008:BFP

Quinnell:2008:FPF

Rahaman:2008:CTB

Rahaman:2008:DRT

Rahaman:2008:NRA

Quinnell:2008:FPF
REFERENCES

Ravikumar:2008:BND

Raz:2008:EFL

Raz:2008:LBS

Rodriguez-Henriquez:2008:LCB

Ruiz:2008:EIR

Rump:2008:AFPa

Rump:2008:AFPb

REFERENCES

[5463] Frithjof Blomquist, Werner Hofschuster, and Walter Krämer. A modified staggered correction arithmetic with enhanced accuracy and very wide

[5469] Murat Cenk, Çetin Kaya Koç, and Ferruh Özbudak. Polynomial multiplication over finite fields using field extensions and interpolation. In
REFERENCES

REFERENCES

REFERENCES

86

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wang:2009:RCD

XILINX:2009:XLF

Zhu:2009:CRH

Zimmermann:2009:DSS

Akbarpour:2010:VSI

Aldous:2010:WCO

Alimohammad:2010:UAA

REFERENCES

REFERENCES

Cheng:2010:BSS

Chevillard:2010:SED

Cuyt:2010:VSF

Daumas:2010:CBE

deDinechin:2010:FGA

Florent de Dinechin and Bogdan Pasca. FloPoCo: generator of arithmetic cores (Floating-Point Cores, but not only) for FPGAs (but not only). Web site and source code., August 10, 2010.

deDinechin:2010:FPE

REFERENCES

REFERENCES

REFERENCES

[5601] Nicolas Louvet, Jean-Michel Muller, and Adrien Panhaleux. Newton–Raphson algorithms for floating-point division using an FMA. In
REFERENCES

Maruyama:2010:SVN

Mathews:2010:AOE

Mehrotra:2010:SLR

Meyer:2010:CGT

Moller:2010:IDI

Morisita:2010:IEA

REFERENCES

REFERENCES

REFERENCES

[5627] Basit Riaz Sheikh and Rajit Manohar. An operand-optimized asynchronous IEEE 754 double-precision floating-point adder. In IEEE,
editor, ASYNC 2010: 16th IEEE Symposium on Asynchronous Circuits
and Systems, 3–6 May 2010, Grenoble, France, Proceedings, pages 151–
162. IEEE Computer Society Press, 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 2010. ISBN 0-7695-4032-5. LCCN
???? URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
arnumber=5476966; https://www.semanticscholar.org/paper/
An-Operand-Optimized-Asynchronous-IEEE-754-Double-Sheikh-
Manohar/3e30463d11ba059f19c5959e0acc66709390475e.

[5628] Ming-Der Shieh and Wen-Ching Lin. Word-based Montgomery modular
multiplication algorithm for low-latency scalable architectures. IEEE
Transactions on Computers, 59(8):1145–1151, ???. 2010. CODEN
ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http:/

[5629] John A. Shuster and Jens Köpflinger. Elliptic complex numbers with dual
3514, August 15, 2010. CODEN AMHCBQ. ISSN 0096-3003 (print),
1873-5649 (electronic).

[5630] Jane Smiley. The man who invented the computer: the biography of John
0-385-52713-6, 0-385-53372-1 (e-book), 1-299-11995-6 (e-book). 246 + 8

[5631] Alastair M. Smith, George A. Constantinides, and Peter Y. K.
Cheung. An automated flow for arithmetic component generation in
field-programmable gate arrays. ACM Transactions on Reconfigurable
ISSN 1936-7406 (print), 1936-7414 (electronic).

[5632] Tsz-Wo Sze. The two quadrillionth bit of pi is 0 ! distributed
computation of pi with Apache Hadoop. In IEEE, editor, 2010 IEEE
Second International Conference on Cloud Computing Technology and
Science (CloudCom), page 727. IEEE Computer Society Press, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2010. ISBN
1-4244-9405-2. LCCN ???

REFERENCES

Zimmermann:2010:RCG

Adikari:2011:HBT

Al-Ashrafy:2011:EIF

Anderson:2011:GVD

Anonymous:2011:CPSa

Antelo:2011:IIFa

Antelo:2011:IIFb

[5652] Elisardo Antelo, editor. Industrial Implementations of Floating-Point Units, volume 2. IEEE Computer Society Press, 1109 Spring Street,
REFERENCES

LCCN ????

Arias-Garcia:2011:SFI
A suitable FPGA implementation of floating-point matrix inversion
based on Gauss–Jordan elimination. In 2011 VII Southern Conference on
Programmable Logic (SPL), pages 263–268. pub-IEEE, pub-IEEE:adr,

Arnold:2011:RCL
number system ALU. IEEE Transactions on Computers, 60(2):202–213,
February 2011. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
(electronic).

Arnold:2011:TQC
Towards a quaternion complex logarithmic number system. In Schwarz

Badin:2011:IAM
[5656] Matthew Badin, Lubomir Bic, Michael Dillencourt, and Alexandru
Nicolau. Improving accuracy for matrix multiplications on GPUs.
1058-9244 (print), 1875-919X (electronic).

Bailey:2011:GMD
[5657] David H. Bailey and Jonathan M. Borwein. The greatest mathematical
discovery? Report, Lawrence Berkeley National Laboratory and Centre
for Computer Assisted RMA, University of Newcastle, Berkeley, CA
94720, USA and Callaghan, NSW 2308, Australia, May 8, 2011. 10 pp.

Baudin:2011:EBC
complexerrorbounds_v0.2.pdf.

[5665] Sylvie Boldo and Guillaume Melquiond. Flocq: a unified library for proving floating-point algorithms in Coq. In Schwarz and Oklobdzija

BILLY BOB BRUMLEY AND DAN PAGE. Bit-sliced binary normal basis multiplication. In Schwarz and Oklobdzija [7475], pages 205–212.
REFERENCES

Brusentsov:2011:TCS

Burgess:2011:FRC

Butts:2011:RDR

Calamia:2011:CGG

Carlough:2011:IZD

Cavagnino:2011:AAD

REFERENCES

[5683] Sylvain Chevillard. Automatic generation of code for the evaluation of constant expressions at any precision with a guaranteed error bound.
REFERENCES

[5689] Florent de Dinechin. The arithmetic operators you will never see in a microprocessor. In Schwarz and Oklobdzija [7475], pages 189–190.
REFERENCES

REFERENCES

REFERENCES

Ikhile:2011:RBD

Ismail:2011:RLL

ISO:2011:III

Izsak:2011:CPM

Jaime:2011:HSA

Jaiswal:2011:HPF

REFERENCES

REFERENCES

Kainuma:2011:DIC

Kaivani:2011:DCR

Kathiara:2011:AVS

Kim:2011:ZAS

Kong:2011:GDM

Kornerup:2011:PAO

REFERENCES

Liu:2011:ILC

Lutz:2011:FMA

Malone:2011:FBI

Masakova:2011:ANS

Matula:2011:PLP

Mauer:2011:FPS
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5810] Filippo Gandino, Fabrizio Lamberti, Gianluca Paravati, Jean-Claude Bajard, and Paolo Montuschi. An algorithmic and architectural study on
REFERENCES

Gazeau:2012:NL

Ghosh:2012:FPR

Giessing:2012:FRB

Goldberg:2012:CA

Goossens:2012:CTS

Grcar:2012:JNA

REFERENCES

[5823] Peter Kornerup, Jean-Michel Muller, and Adrien Panhaleux. Floating-point arithmetic on round-to-nearest representations. arXiv.org, ??(??):
REFERENCES

REFERENCES

REFERENCES

Masotti:2012:FPN

McCalpin:2012:OSH

Milicevic:2012:PAO

Mine:2012:ADB

Mukunoki:2012:PCD

Muller:2012:SSV

REFERENCES

REFERENCES

[5847] Siegfried M. Rump. Error estimation of floating-point summation
and dot product. BIT Numerical Mathematics, 52(1):201–220, March
2012. CODEN BITTEL, NBITAB. ISSN 0006-3835 (print), 1572-
genre=article&issn=0006-3835&volume=52&issue=1&page=201.

(1):1–34, September 2012. CODEN NUALEG. ISSN 1017-1398 (print),

[5849] Prabir Saha, Arindam Banerjee, Anup Dandapat, and Partha
Bhattacharyya. Design of high speed Vedic multiplier for decimal number
system. Lecture Notes in Computer Science, 7373:79–88, 2012. CODEN
LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://
link.springer.com/chapter/10.1007/978-3-642-31494-0_10/.

[5850] Tsubasa Saito, Emiko Ishiwata, and Hidehiko Hasegawa. Analysis
of the GCR method with mixed precision arithmetic using QuPAT.
sciencedirect.com/science/article/pii/S1877750311000329.

[5851] Hwajeong Seo and Howon Kim. Multi-precision multiplication for
public-key cryptography on embedded microprocessors. Lecture Notes
in Computer Science, 7690:55–67, 2012. CODEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (electronic). URL http://link.springer.com/
chapter/10.1007/978-3-642-35416-8_5/.

[5852] Basit Riaz Sheikh and Rajit Manohar. An asynchronous floating-point
multiplier. In IEEE, editor, 2012 IEEE International Symposium on
Asynchronous Circuits and Systems: proceedings, ASYNC 2012: 7–
9 May 2012, Copenhagen, Denmark, pages 89–96. IEEE Computer
Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,

[5858] Zhen Wang and Shuqin Fan. Efficient Montgomery-based semi-systolic multiplier for even-type GNB of GF(2^m). IEEE Transactions on
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lefevre:2013:SSI

Lei:2013:FIE

Lei:2013:VCI

Lowery:2013:RED

Maitra:2013:DSM

Maniatakos:2013:LCC

Martin-Dorel:2013:SIR

REFERENCES

REFERENCES

REFERENCES

[5963] Alberto A. Del Barrio, Nader Bagherzadeh, and Román Hermida. Ultralow-power adder stage design for exascale floating point units. ACM
REFERENCES

Demmel:2014:THS

Doerr:2014:RRP

Drane:2014:SCF

Du:2014:AEP

Dumas:2014:NRI

Gilani:2014:EEP

Gladstein:2014:DBP

REFERENCES

[5989] Hiroshi Murakami. Calculation of rational numbers in an interval whose denominator is the smallest by using FP interval arithmetic. *ACM*
REFERENCES

REFERENCES

Ahrens:2015:RPM

Aktan:2015:MEA

Andrysco:2015:SFP

Aneesh:2015:HHM

Anonymous:2015:EFP

Bailey:2015:HPA

REFERENCES

REFERENCES

Brain:2015:AFS

Brunie:2015:CGM

Chiang:2015:UFP

Collange:2015:NRP

Cowlishaw:2015:GDA

Coxon:2015:MMP
Nicholas Coxon. Montgomery’s method of polynomial selection for the number field sieve. Linear Algebra and its Applications, 485(??):

[6030] Florent de Dinechin. On fixed-point hardware polynomials. Technical report, INSA, CITI Lab, Université de Lyon, Lyon, France, October 2015. URL https://hal.inria.fr/hal-01214739.

[6041] Terry Froggatt. An error in the Ada universal arithmetic package. *ACM SIGADA Ada Letters*, 35(2):14, August 2015. CODEN AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic). See [1737]. The 32-year-old error is a test with digit t that has if ($t > $BASE), but the operator should instead be \geq.

October 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Fukushima:2015:PFCc

Gerard:2015:CDR

Gorgin:2015:CXH

Gouicem:2015:MMD

Graillat:2015:ECF

Graillat:2015:MRE

REFERENCES

Holzmann:2015:B
REFERENCES

Hsiao:2015:TSR

Hutter:2015:MMA

Iakymchuk:2015:EEB

Iakymchuk:2015:ERA

IEEE:2015:ISI

Jacobsen:2015:PFP
REFERENCES

8th International Workshop on Numerical Software Verification 2015, Seattle, WA, USA.

REFERENCES

Liu:2015:IBI

Liu:2015:SSS

Lu:2015:REP

Lutz:2015:OLZ

Martin-Dorel:2015:FVC

Matula:2015:MDE

REFERENCES

[6088] Radford M. Neal. Fast exact summation using small and large superaccumulators. Report, Department of Statistical Sciences and Department of Computer Science, University of Toronto, Toronto, ON,
REFERENCES

Neal:2015:FESb

Negre:2015:EME

Nguyen:2015:RTS

Ozaki:2015:IEF

Palmer:2015:MBI

Panchekha:2015:AIA

REFERENCES

[vanderHoeven:2015:FFM]

[Volkova:2015:REW]

[Wilczak:2015:CAP]

[Wittmann:2015:SNC]

[Yamazaki:2015:MPC]

Ahmed:2016:ILM

Ahrens:2016:ERF

Peter Ahrens, Hong Diep Nguyen, and James Demmel. Efficient reproducible floating point summation and BLAS. Report UCB/EECS-2016-121, EECS Department, UC Berkeley, Berkeley, CA, USA, June 18, 2016. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html.

Andrysco:2016:PFP

Anonymous:2016:KTS

Area:2016:ACS

Avenel:2016:STM

Bagnara:2016:EBF

Roberto Bagnara, Matthieu Carlier, Roberta Gori, and Arnaud Gotlieb. Exploiting binary floating-point representations for constraint

REFERENCES

Boldo:2016:RFA

Brisebarre:2016:CBB

Brzicova:2016:LMD

Chen:2016:DAR

Chen:2016:PSA

Coleman:2016:LCT

Collange:2016:PFP

REFERENCES

Cui:2016:PDM

Damouche:2016:TSB

DelBarrio:2016:PCS

Demmel:2016:ERF

Denis:2016:VCF

[6143] Xin Fang and Miriam Leeser. Open-source variable-precision floating-point library for major commercial FPGAs. *ACM Transactions on

Shay Gueron and Samu Mathew. Hardware implementation of AES using area-optimal polynomials for composite-field representation GF(2^4)^2 of

[6154] David Hopkins. Will my numbers add up correctly if I round them? The Mathematical Gazette, 100(549):396–409, November 2016. CODEN MAGAAS. ISSN 0025-5572 (print), 2056-6328 (electronic). URL https://www.cambridge.org/core/product/88F65753D8900DDDEAD1F2552B0F8B22. The probability that rounding after fixed-point summation of n terms gives the same result as summation of rounded terms is given by \(p(n) = \frac{2}{\pi} \int_0^\infty (\sin(x)/x)^{n+1} \, dx \), and that function is always a rational number. Its values are \(p(n) = 1, 3/4, 2/3, 115/192, 11/20, 5887/11520, 151/315, 259723/573440, \ldots \) for \(n = 1 \) to 8.

REFERENCES

[6169] Philippe Langlois, Rafife Nheili, and Christophe Denis. Recovering numerical reproducibility in hydrodynamic simulations. In Montuschi

[Lee:2016:VBM]

[Lefevre:2016:CRA]

[Lefevre:2016:OBB]

[LeMaire:2016:CFP]

[Li:2016:SDT]

[Lichtenau:2016:QPF]

[6175] Cedric Lichtenau, Steven Carlough, and Silvia Melitta Mueller. Quad precision floating point on the IBM z13. In Montuschi et al. [7486], pages
Liu:2016:DAI

Martin-Dorel:2016:PTB

Mascarenhas:2016:FPN

Meloni:2016:RDR

Montuschi:2016:MCA

Morancho:2016:UAF

Moroz:2016:FCI

REFERENCES

1095

Muller:2016:NMA

Munshi:2016:OCS

Nannarelli:2016:PPS

Notzli:2016:LVP

Ozaki:2016:EFT

Ozaki:2016:SFP

Paulk:2016:IFP

[6189] Mark Paulk and Lori Cameron. IEEE floating point standard. Computer, 49(6):10, June 2016. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-
REFERENCES

Anonymous:2017:C

[6216]

Anonymous:2017:CN

[6217]

Anonymous:2017:F

[6218]

Anonymous:2017:FC

[6219]

Anonymous:2017:PCM

[6220]

Anonymous:2017:PI

[6221]

Anonymous:2017:SC

[6222]
[Anonymous:2017:TC]

[Anonymous:2017:TP]

[Anonymous:2017:TPI]

[Aurentz:2017:CCS]

[B:2017:GML]

[Beebe:2017:MFC]
Bocco:2017:HSU

Boehm:2017:SDC

Boldo:2017:CAF

Boldo:2017:REA

Boldo:2017:RFA

Bos:2017:FAM

Brisebarre:2017:ESC

[6235] Nicolas Brisebarre, Guillaume Hanrot, and Olivier Robert. Exponential sums and correctly-rounded functions. IEEE Transactions on

[6241] Chemseddine Chohra, Philippe Langlois, and David Parello. Reproducible, accurately rounded and efficient BLAS.
REFERENCES

In Desprez et al. [7488], pages 609–620. ISBN 3-319-58943-1 (e-book), 3-319-58943-1 (hardcover). LCCN QA76.9.E94; QA76.758TK.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6276] Claude-Pierre Jeannerod and Jean-Michel Muller. On the relative error of computing complex square roots in floating-point arithmetic. In Michael B. Matthews, editor, 2017 51st Asilomar Conference on Signals,

Johansson:2017:AEA

Joldes:2017:IPE

Joldes:2017:TRE

Jorgensen:2017:ACR

Alan A. Jorgensen. Apparatus for calculating and retaining a bound on error during floating point operations and methods thereof. US Patent 9,817,662., November 14, 2017. URL https://patents.google.com/patent/US9817662B2/; https://tinyurl.com/y7ctbsez. This patent, filed 23 October 2016, was issued despite substantial prior art that should have resulted in its rejection: see [6440]. The inventor does not appear to have published in the area of floating-point arithmetic (apart from this entry, none by him can be found in this bibliography). The only literature references in the patent are [5413, 2701, 5835, 5609].

Kneusel:2017:NC

REFERENCES

REFERENCES

Mazahir:2017:PEA

Medhat:2017:MPE

Merchant:2017:ABL

Mian:2017:HPC

Micikevicius:2017:MPT

Moler:2017:CCB

REFERENCES

REFERENCES

[6331] Laurent Thévenoux, Philippe Langlois, and Matthieu Martel. Automatic source-to-source error compensation of floating-point programs: code
REFERENCES

[Thornes:2017:USD]

[Titolo:2017:AIF]

[Ueno:2017:BCF]

[Uguen:2017:BHL]

[Ugurdag:2017:HDS]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chaurasiya:2018:PPA

Chen:2018:MMU

[6363] Jianyu Chen and Zaid Al-Ars. A matrix-multiply unit for posits in reconfigurable logic using (OPEN)CAPI. In ACM [7490], pages 1–5.

Cherkaev:2018:SLN

Chung:2018:PCP

Cococcioni:2018:EPA

Costello:2018:MCT

Dai:2018:FBM

REFERENCES

[6375] Yssouf Dosso, Fabien Herbaut, Nicolas Méloni, and Pascal Véron. Euclidean addition chains scalar multiplication on curves with efficient
Drucker:2018:CRS

Drucker:2018:FMB

Dutt:2018:ADA

Emmart:2018:FME

Emmart:2018:NVB

Ferguson:2018:DSM

Hutter:2018:FMP

Intel:2018:BHN

Jaiswal:2018:AGT

Jaiswal:2018:UNP

Jeangoudoux:2018:CRM

Jeannerod:2018:REF

REFERENCES

Jeannerod:2018:VWS

Jeon:2018:HMP

Jiang:2018:EFD

Johnson:2018:RFP

Kohlbecker:2018:SNF

[6404] Ignaz Kohlbecker. The slide number format. In ACM [7490], pages 1–6.

Kromer:2018:AQO

Kumm:2018:KRM

REFERENCES

REFERENCES

[6419] Sergio Marchese. AI chips must get the floating-point math right: Formal verification of FPUs is no longer a prerogative of big companies spending big bucks. Web site., September 27, 2018.
REFERENCES

Oliveira:2018:MLB

Podobas:2018:HIP

Popescu:2018:FPN

Radford:2018:FIF

Ram:2018:FVF

Reddy:2018:DAD

REFERENCES

REFERENCES

[6440] Tiffany Trader. Inventor claims to have solved floating point error problem. HPC Web site., January 17, 2018. URL https://www.hpcwire.com/2018/01/17/inventor-claims-solved-floating-point-error-problem/. From the HPC editor: “After this article was published, a number of readers raised concerns about the originality of Jorgensen’s techniques, noting the existence of prior art going back years. Specifically, there is precedent in John Gustafson’s work on unums and interval arithmetic both at Sun and in his 2015 book, *The End of Error*, which was published 19 months before Jorgensen’s patent application was filed.”.

REFERENCES

Anonymous:2019:CPC

Anonymous:2019:MCT

Anonymous:2019:RMV

Anonymous:2019:SOL

Anonymous:2019:UFP

Anonymous:2019:YAF

Arnold:2019:UOD

REFERENCES

REFERENCES

REFERENCES

Carmichael:2019:PET

Caygill:2019:DCF

Caygill:2019:NLH

Chen:2019:EIR

Cheng:2019:TCI

Cornea:2019:NTI

REFERENCES

[6507] David Harvey and Joris Van Der Hoeven. Integer multiplication in time $O(n \log n)$. Report hal-02070778, School of Mathematics and Statistics, University of New South Wales, and CNRS, Laboratoire d’informatique, École polytechnique, Sydney, NSW 2052, Australia and 91128 Palaiseau, France, March 18, 2019. URL https://hal.archives-ouvertes.fr/hal-02070778/document.

researchgate.net/publication/349173096_SIMPLE_EFFECTIVE_FAST_INVERSE_SQUARE_ROOT_ALGORITHM_WITH_TWO_MAGIC_CONSTANTS.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6570] Souradip Sarkar, Purushotham Murugappa Velayuthan, and Manil Dev Gomony. A reconfigurable architecture for posit arithmetic. In IEEE,
Seo:2019:HTM

Serre:2019:DBM

Sherman:2019:SRS

Silver:2019:CCN

Singh:2019:LPP

Solovyev:2019:REF

REFERENCES

REFERENCES

[6591] Yohann Uguen, Luc Forget, and Florent de Dinechin. Evaluating the hardware cost of the posit number system. In IEEE, editor, 2019 29th
REFERENCES

vanDam:2019:APA

Laurens van Dam, Johan Peltenburg, Zaid Al-Ars, and H. Peter Hofstee. An accelerator for posit arithmetic targeting posit level 1 BLAS routines and Pair-HMM. In Gustafson and Dimitrov [7492], pages 5:1–5:10. ISBN 1-4503-7139-6. LCCN ????.

vanWyk:2019:RVT

Vazquez:2019:NPT

Venkatachalam:2019:DAA

Verheyde:2019:BDD

Villa:2019:NDB

REFERENCES

Bottcher:2020:HDL

Brisebarre:2020:EAS

Bruguera:2020:LLF

Brunie:2020:TFP

Buoncristiani:2020:ENS

Calligo:2020:PNU

Cavalcante:2020:AGS

[6632] Matheus Cavalcante, Fabian Schuiki, Florian Zaruba, Michael Schaffner, and Luca Benini. Ara: a 1-GHz+ scalable and energy-efficient RISC-
REFERENCES

Cherubin:2020:TRP

Chien:2020:PNA

Chowdhary:2020:DDN

Cococcioni:2020:FAH

Cococcioni:2020:FDN

Cococcioni:2020:NPB

REFERENCES

[6644] Peter Dinda, Alex Bernat, and Conor Hetland.Spying on the floating point behavior of existing, unmodified scientific applications. In ????,
Dolgov:2020:PCI

Elkhatib:2020:HOM

Erickson:2020:GNF

Fog:2020:FPE

Gallois-Wong:2020:OIP

Godunov:2020:ACC

REFERENCES

Hickmann:2020:INN

Hopkins:2020:SRR

Hormigo:2020:FPF

Hrycak:2020:ELP

Ipsen:2020:PEA

ISO:2020:III

REFERENCES

[6670] Chaitanya Jugade, Deepak Ingole, Dayaram Sonawane, Michal Kvasnica, and John Gustafson. A framework for embedded model predictive control

REFERENCES

Muller:2020:EFA

Murillo:2020:CPA

Murillo:2020:DPD

Nannarelli:2020:VPB

Nass:2020:GUL

Neves:2020:DFM

REFERENCES

1174

Systems (SiPS), pages 1–6. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2020.

REFERENCES

REFERENCES

[6729] Roberto Bagnara, Michele Chiari, Roberta Gori, and Abramo Bagnara. A practical approach to verification of floating-point C/C++ programs
REFERENCES

REFERENCES

REFERENCES

Czachor:2021:NNM

Darcy:2021:FPA

deDinechin:2021:TAC

Defour:2021:SCB

delaFraga:2021:DEU

Demeure:2021:TET

Demmel:2021:NIS

REFERENCES

Dimitrakopoulos:2021:SPAA

Dimitrakopoulos:2021:SPAb

Druck:2021:NSB

Eliahu:2021:MME

Elkhatib:2021:ARV

Fasi:2021:ASRa

Fasi:2021:ASRb

REFERENCES

[6769] Oscar Gustafsson and Noah Hellman. Approximate floating-point operations with integer units by processing in the logarithmic domain.

REFERENCES

[6792] Jean-Michel Muller. $a \cdot (x \cdot x)$ or $(a \cdot x) \cdot x$?. In IEEE [7498], pages 17–24. ISBN 1-66542-293-9 (print), 1-66544-648-X (e-book). LCCN ????

REFERENCES

Raposo:2021:PTD

Reichenbach:2021:RVR

Revy:2021:AIF

Rodriguez:2021:DLS

Romanov:2021:APB

Saiki:2021:CPT

Saxena:2021:BOF

REFERENCES

Ahmadinejad:2022:EQE

Ahmadpour:2022:BMM

Alder:2022:FPU

AMD:2022:AIM

Anonymous:2022:AI

Anonymous:2022:C

Anonymous:2022:PCA

Anonymous:2022:SA
REFERENCES

[6844] Farah Benmouhoub, Pierre-Loic Garoche, and Matthieu Martel. An efficient summation algorithm for the accuracy, convergence and
REFERENCES

REFERENCES

REFERENCES

In IEEE [7500], pages 58–65. ISBN 1-66547-827-6, 1-66547-828-4. LCCN ????

[6877] Dina Genkina. Posits, a new kind of number, improves the math of AI: The first posit-based processor core gave a ten-thousandfold accuracy

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Abdi:2023:FEF

Adela:2023:DIS

Alapati:2023:HIP

Allred:2023:FNT

Andrlon:2023:FNB

Anonymous:2023:IWG

REFERENCES

Anonymous:2023:TDT

ARM:2023:ACA

Awais:2023:TOS

Bartels:2023:FFP

Belorgey:2023:MFE

Beutel:2023:PFA

Blanchard:2023:NMD

Baldo:2023:FPA

Bommana:2023:DST

Böttcher:2023:TGO

Brisebarre:2023:EUM

Brisebarre:2023:IPC

Eckert:2023:EMM

Edamatsu:2023:FMP

Edavoor:2023:DAP

Fasi:2023:CCL

Filippas:2023:RPF

Fog:2023:FPE

REFERENCES

Bharath Krishna. Rounding numbers in the financial domain! Web site, January 1, 2023. URL https://www.foundingminds.com/rounding-numbers-in-the-financial-domain/. Includes important mention of financial regulatory sites, with this text taken verbatim from the article, because such information may be hard to find elsewhere: * International
Financial Reporting Standards (IFRS): IFRS is a set of accounting standards developed by the International Accounting Standards Board (IASB). It includes guidelines on rounding financial numbers in financial statements, such as the requirement to round amounts to the nearest whole number or the nearest multiple of 10. * Generally Accepted Accounting Principles (GAAP): GAAP is a set of accounting standards used in the United States. It includes similar guidelines on rounding financial numbers as IFRS and requires that any rounding errors should be immaterial and insignificant. * International Organization for Standardization (ISO): ISO has a standard for Rounding off numerical values, which is ISO 80000-1:2009. It provides guidelines on rounding numerical values in general and not specific to the finance domain, but it’s widely used in financial systems. * The Federal Reserve Board (FRB): The FRB, the central banking system of the United States, has guidelines on rounding financial numbers for bank reporting and financial statement preparation. * The European Central Bank (ECB): The ECB, the central banking system of the European Union, has similar guidelines on rounding financial numbers as the FRB.

REFERENCES

Ullah:2023:DRE

Whitehead:2023:FP1

Wong:2023:KNS

Yang:2023:ATF

Zhang:2023:EAP

Zlatopolski:2023:PAV

REFERENCES

[7047] Tom Hubrecht, Claude-Pierre Jeannerod, and Jean-Michel Muller. Useful applications of correctly-rounded operators of the form $ab+cd+e$. Report hal-04461089, DI-ENS (Département d’informatique — ENS Paris) and Université de Lyon, Paris, France and Lyon France, February 16, 2024. URL https://inria.hal.science/hal-04461089.

REFERENCES

REFERENCES

1963. ix + 574 pp. LCCN ???? See also volumes I–II, IV–VI [7058, 7059, 7062, 7064, 7065].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[7108] Edward W. Ng, editor. Symbolic and algebraic computation: EUROSAM ’79, an International Symposium on Symbolic and Algebraic Manipulation, Marseille, France, June 1979, volume 72 of Lecture Notes
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[7163] Pat Davis and Vicki McClintock, editors. Proceedings of the 15th annual conference on Computer Science, St. Louis, Missouri, USA. ACM Press,

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:1989:PII

Turner:1989:NAP

Wuorinen:1989:DTP

ACM:1990:PAS

ACM:1990:PDB

Anonymous:1990:PAN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[7225] KENNETH R. (KENNETH RAY) MEYER AND DIETER S. SCHMIDT, EDITORS. Computer aided proofs in analysis, volume 28 of The IMA volumes in
REFERENCES

Morris:1991:RWP

SPIE:1991:PSI

Alley:1992:CRI

Anonymous:1992:EAP

Atanassova:1992:CAE

IEEE:1992:ASF

IEEE:1992:IIC

IEEE:1992:PIS

IEEE:1992:NCR

Katwijk:1992:AMT

REFERENCES

Prinetto:1992:CHD

Quinton:1992:APV

Singh:1992:CRT

Turing:1992:PM

Vandewalle:1992:SPV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Jain:1995:PET

Knowles:1995:PSC

Seck:1995:GWS

Singh:1995:CRT

Alefeld:1996:NME

REFERENCES

Kearfott:1996:AICa

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Matthews:1998:CRT

Pocek:1998:PIS

Sasao:1998:ISM

Sohi:1998:YIS

ACM:1999:PFA

Begehr:1999:PSI

REFERENCES

REFERENCES

Wuorinen:1999:IIS

ACM:2000:PIC

Anonymous:2000:DPX

IEEE:2000:EPI

IEEE:2000:IGP

IEEE:2000:IPI

REFERENCES

REFERENCES

Anonymous:2001:JJ

Boulton:2001:TPH

Brebner:2001:FLA

Burgess:2001:ISC

REFERENCES

REFERENCES

REFERENCES

[Borrione:2002:TIW]

[Cohen:2002:MSP]

[Hennessy:2002:CAQ]

[IEEE:2002:IIC]

[IEEE:2002:IRA]

IEEE Computer Society Order Number PR01573.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:2005:ICS

IEEE:2005:IIS

IEEE:2005:MSC

IEEE:2005:PII

IEEE:2005:PIS

IEEE:2005:PWE

Luk:2005:ASP

Montuschi:2005:PIS

Tang:2005:AIC

Vassiliadis:2005:IIC

ACM:2006:SCH
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[7438] IEEE:2007:IP1

[7440] Luther:2007:GII

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>1300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumplido:2009:RPI</td>
<td></td>
</tr>
<tr>
<td>ICCIT:2009:ICC</td>
<td></td>
</tr>
<tr>
<td>IEEE:2009:ICF</td>
<td></td>
</tr>
<tr>
<td>IEEE:2009:IICa</td>
<td></td>
</tr>
<tr>
<td>IEEE:2009:IICb</td>
<td></td>
</tr>
<tr>
<td>IEEE:2009:IIS</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

IEEE:2009:PDR

Matthews:2009:CRF

Sezer:2009:IIS

Charot:2010:API

Delgado-Frias:2010:IIM

REFERENCES

Fukuda:2010:MSI

IEEE:2010:CCE

IEEE:2010:ICC

IEEE:2010:ICM

IEEE:2010:ICV

REFERENCES

REFERENCES

REFERENCES

IEEE:2015:ISS

Muller:2015:ISC

Swartzlander:2015:CAa

Swartzlander:2015:CAb

REFERENCES

REFERENCES

REFERENCES

