A Bibliography of Publications on Floating-Point Arithmetic

Norbert Juffa
2445 Mission College Blvd.
Santa Clara, CA 95054
USA
Tel: +1-408-727-1885
FAX: +1-408-727-1265
E-mail: juffa@ira.uka.de (Internet)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

26 September 2023
Version 3.675

Introduction

This is a bibliography of material on floating-point arithmetic that I came up with while doing research on a floating-point package of my own. I don’t claim it to be anywhere near complete. The material listed is only what I myself possess.

My main interest was in software based, binary floating-point arithmetic on a microprocessor, so you won’t find much material about the hardware used in floating-point arithmetic (e.g. adders, carry propagation schemes, higher radix...
representation for multiplication and division, etc.) in this list. There is also not too much on non-binary floating-point arithmetic.

For most fields covered in this bibliography, the important or historically relevant articles should be included. There is also some material on integer arithmetic in this list as some of the methods used with integer arithmetic contain interesting ideas that may be useful in the realization of a floating-point arithmetic package.

Also, depending on the type of microprocessor used, one may need to implement integer multiplication and division for use in the floating-point package, so articles about this topic are included as well.

As I am German, there is a bit of material in German in this bibliography. However, English translations are provided for all non-English titles.

Thanks to the people who have helped me with previous versions of this document by sending me papers or additional references:

- Steven Sommars (sesv@research.bell-labs.com),
- Jim Kiernan (jmk@teak.cray.com),
- Warren Ferguson (ferguson@seas.smu.edu),
- Nhuan Doduc (ndoduc@framontec.fr),
- K. C. Ng (kwok.ng@eng.sun.com),
- Nelson H. F. Beebe (beebe@math.utah.edu).

Bibliography entries in the Books section are ordered alphabetically by author; ordering is by ascending year in the remaining sections.

Warning: it has yet not been possible to bring this citation list up-to-date with the entries in the BibTeX entries.

Books, hardware oriented

[1671, 266, 1250, 1181, 3054, 3257, 1866, 815, 1130, 971, 1417, 817, 1303, 6863, 6864, 1512]

Books, software oriented or theory

[1237, 448, 451, 452, 109, 1380, 2339, 881, 1019, 337, 2894, 2380, 2911, 2217, 305, 508, 6719]

Books, machine specific

[2121, 3159, 3056, 2382, 1717, 1853, 2235, 1885, 2417]
Journal Publications, Conference Papers, Technical Reports, Ph.D. Dissertations, Book Contributions, etc.

1 Choice of base, floating point formats

[479, 724, 726, 705, 702, 866, 1108, 1099, 1986, 2214, 2337, 2490, 2715, 2729]

1.1 Precision and Rounding

[415, 537, 719, 821, 854, 869, 935, 1003, 1011, 1015, 1159, 1260, 1395, 1336, 1494, 1679, 2227, 2402, 2475, 2785, 3101, 3222]

1.2 Determination of parameters of floating point arithmetic

[662, 797, 1589, 2220, 2148]

1.3 IEEE standards for floating point arithmetic

[964, 1162, 1187, 1198, 1161, 1168, 1300, 1287, 1288, 1244, 1264, 1418, 1345, 1369, 1347, 1675, 1774, 1812, 1813, 1810, 2034, 2119, 2285, 2519, 2996]

1.4 Floating point arithmetic, general and implementation issues

[610, 694, 985, 1006, 1052, 1064, 1063, 1200, 1202, 1175, 1238, 1230, 1434, 1451, 1942, 1962, 2164, 2165, 2318, 2392, 2295, 2474, 2716, 2717, 2646, 2714, 2953]

1.5 Floating point packages

[1251, 1650, 1630, 1723, 1681, 1834, 1799, 1835, 1917, 2027, 2049, 2151, 2245, 2246, 2247, 2425, 2426, 1312]

1.6 Floating point units

1.7 Test of floating point routines
[481, 1414, 1676, 1820, 1819, 2053, 2415, 2551, 2618, 2617, 2732, 2711, 2697, 2995]

2 Addition and Subtraction
[360, 1470]

2.1 Floating-point Summation
[310, 330, 347, 346, 549, 615, 653, 805, 1612, 2222, 2298]

2.2 Multiplication
[656, 1210, 1224, 1435, 1499, 1473, 1528, 1555, 1547, 1572, 1545, 1708]

2.3 Division
[196, 224, 210, 307, 333, 420, 988, 1033, 1273, 1363, 1521, 1597, 1576, 1560, 1720, 1840, 1965, 1944, 2333, 2721, 2667, 2909, 2959, 6885, 2891]

3 Elementary functions, general
[369, 382, 565, 626, 593, 1090, 1229, 1580, 1607, 1706, 1669, 1667, 1744, 1790, 6805, 1895, 2001, 2101, 2045, 2224, 6823, 2506, 2543, 2493, 3276, 2495, 2464, 2642, 2793, 2606, 2755, 2756, 2635, 3309, 3277]

3.1 Elementary functions, CORDIC and related algorithms
[178, 179, 234, 249, 358, 504, 531, 635, 627, 643, 708, 829, 1037, 1053, 1257, 1411, 1649, 1847, 1658, 1761, 1913, 2106, 2327, 2257, 2487, 2513, 2661, 2753, 2952, 2947, 3071, 3011, 3057]

3.2 Elementary functions, function approximation
[226, 227, 463, 601, 742, 741, 954, 992, 1128, 1950, 2242, 2134, 2630, 2727, 2728]

3.2.1 Polynomial evaluation
[244, 264, 289, 408, 1030, 1192, 2297]
3.3 Square root, general
[1051, 1152, 1439, 1552, 1603, 2511, 2622]

3.3.1 Square root, bit-oriented, iterative, and table methods of computation
[110, 142, 344, 993, 979, 1117, 1313, 1404, 1366, 1332, 1386, 1493, 1775, 1872, 1784, 1837, 1921, 1902, 1985, 2036, 2086, 2125, 2200, 2336, 2523, 2480, 2654, 2981]

3.3.2 Square root, Newton’s method
[147, 265, 287, 359, 332, 328, 368, 433, 409, 494, 499, 513, 575, 564, 558, 560, 678, 1289, 1279, 1357, 1537, 2280, 2961, 2889]

3.4 Sine and Cosine
[168, 1037, 989, 994, 1141, 1358, 1500, 1617, 1616, 1715, 1803, 1903, 2067, 2178, 2552, 2903, 2900, 2822, 2922, 3017]

3.5 Logarithm
[143, 256, 316, 666, 969, 1080, 1263, 1486, 2054, 2055, 2553, 2679]

3.6 Exponential function
[130, 393, 1148, 1321, 1475, 1698, 1797, 2416, 2554, 2944]

3.7 Arctangent
[132, 148, 194]

3.8 Other transcendental functions
[480, 591, 149, 995, 350, 260, 345, 2047, 1123, 2803, 2997]

4 Binary-decimal conversion
[177, 161, 209, 457, 555, 660, 1131, 1255, 1256, 1365, 1605, 1659, 1952, 1925, 2455, 2547, 2471, 2799]
5 BCD ARITHMETIC

5 BCD arithmetic

[650, 701, 751, 752, 753, 754, 755, 756, 757, 1342, 1450, 1655, 1593, 1987, 2591, 2902]

6 Multiple precision arithmetic

[277, 315, 394, 410, 609, 594, 924, 973, 1068, 1229, 1310, 1390, 1498, 2748, 2976, 3166]

7 Conferences on computer arithmetic

[6745, 6755, 6760, 6769, 6772, 6784, 6802, 6803, 6844, 6874, 6882, 6876, 6908]

8 Additional contributions from Nelson H. F. Beebe

Title word cross-reference

#26 [5380].

\((2^n)^m\) [3730]. \((10^{31} - 1)/9\) [1926]. \((2^n)\) [4278, 4299, 4480, 4489, 4396]. \((2^n + 1)\) [1050, 4711, 3842]. \((2^n - 1)\) [4914]. \((2^n - 1, 2^n + p, 2^n + 1)\) [6132]. \((2^m)\) [4950]. \((2^p + 1)\) [5407, 4067]. \((2m)\) [4361]. \((2n + 3)\) [6359]. \((2n - (2p + 1))\) [4766]. \((a \cdot x) \cdot x?\) [6573]. \((d, r)\) [763]. \((R)\) [2850]. \((p)\) [4278, 4361].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

= [2742, 2743, 3285, 6742].

Additional Contributions From Nelson H. F. Beebe

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

algorithm [3802, 3803, 6118, 3515, 3013, 447, 4606, 4608, 3939, 3516, 1169, 5186, 4754, 2162, 5700, 5588, 6124, 1921, 3816, 4124, 3199, 3377, 3378, 4261, 4262].

algorithm [3802, 3803, 6118, 3515, 3013, 447, 4606, 4608, 3939, 3516, 1169, 5186, 4754, 2162, 5700, 5588, 6124, 1921, 3816, 4124, 3199, 3377, 3378, 4261, 4262].

algorithm-based [3802, 3803, 6118, 3515, 3013, 447, 4606, 4608, 3939, 3516, 1169, 5186, 4754, 2162, 5700, 5588, 6124, 1921, 3816, 4124, 3199, 3377, 3378, 4261, 4262].

Algorithmen [2193, 3451, 3141, 3303, 3313].

Algorithmes [2339, 2178, 2513, 1649, 2247].

Algorithmic [5695, 7070, 3829, 3278, 3119, 3619, 3451, 1872, 3452, 2548, 278, 1877, 2754, 2943, 4995, 4687, 5341, 5342, 4205].

Algorighm [824, 1987, 6441, 4072, 4073, 697, 1755, 3780, 829, 641, 982, 7051, 3165, 5279, 5553, 6101, 1335, 5285, 5287, 1538, 260, 2998, 6109, 3795, 4592, 1073, 5688, 2816, 4445, 4446, 4598, 3185, 4447, 3663, 5914, 993, 994, 995, 1080, 6625, 5296, 3015, 3938, 4103, 6333, 5046, 2019, 2305, 6553, 6554, 5387, 3017, 449, 3673, 711, 797, 850, 6471, 1474, 5924, 856, 4120, 5056, 2480, 7095, 4128, 4285, 3541, 4472, 3542, 3820, 1476, 1372, 1478, 3215, 4135, 4629, 4630, 3041, 3042, 5611, 2487, 3043, 6037, 6488, 2339, 2178, 4144, 801, 502, 1380, 3831, 7117, 503, 6490, 3054, 4482].

Algorithms [824, 1987, 6441, 4072, 4073, 697, 1755, 3780, 829, 641, 982, 7051, 3165, 5279, 5553, 6101, 1335, 5285, 5287, 1538, 260, 2998, 6109, 3795, 4592, 1073, 5688, 2816, 4445, 4446, 4598, 3185, 4447, 3663, 5914, 993, 994, 995, 1080, 6625, 5296, 3015, 3938, 4103, 6333, 5046, 2019, 2305, 6553, 6554, 5387, 3017, 449, 3673, 711, 797, 850, 6471, 1474, 5924, 856, 4120, 5056, 2480, 7095, 4128, 4285, 3541, 4472, 3542, 3820, 1476, 1372, 1478, 3215, 4135, 4629, 4630, 3041, 3042, 5611, 2487, 3043, 6037, 6488, 2339, 2178, 4144, 801, 502, 1380, 3831, 7117, 503, 6490, 3054, 4482].

Alignment [5811, 3784, 3848].
ALU [4222, 5352, 5542, 2042, 1852, 1610, 5655, 1983, 1748, 2787].
Am29000 [2210].
Am29027 [2210].
Am29050 [2516].
Am29C327 [2261].
Am9511A [1340].
Am9511A/Am9512 [1340].
Am9512 [1234, 1340].
ALUs [2113].
always [5990].
am [2555].
Am25S05 [598].
Ambiguity [4855].
AMD [6336, 3966, 3850, 4008, 3860, 3861, 4022, 4192].
AMD-K7™ [4008, 3861].
ameliorating [1008].
am´elioration [4237].
America [23].
American [1989, 6780, 6716, 2798].
Amherst [7138].
Amidst [6558].
Among [1186, 4003].
amount [3952].
Amounts [3669, 3808, 3935].
amplifier [2167].
Amplifiers [172].
Amplifying [1668].
Amsterdam [7080, 7143].
AN-Codes [4271].
AN/UYK-17 [812].
Anaheim [6812, 6839, 6867].
Analogue [527, 1032, 3147].
analogue-to-digital [3147].
Analysis [581, 2116, 6763, 141, 4220, 1753, 5023, 6925, 6303, 4234, 6304, 6100, 3338, 6456, 159, 5565, 5364, 1538, 2278, 2609, 5569, 1542, 2615, 1345, 988, 6543, 6899, 6008, 3797, 6462, 6329, 2297, 6234, 792, 4755, 6794, 102, 5590, 4759, 5592, 5701, 2836, 3026, 6350, 6351, 115, 4473, 2167, 7142, 3966, 6482, 380, 3216, 6817, 2851, 6034, 2335, 381, 604, 2668, 2854, 716, 1105, 1015, 383, 6150, 6493, 3710, 3805, 5629, 6048, 6378, 6570, 2690, 1114, 6170, 4326, 340, 886, 4956, 5962, 5696, 4907, 5051, 2317, 2651, 6795, 3532, 2166, 293, 798, 2026, 1694, 3207, 3208, 5605, 5201, 1932, 5607, 5790, 3221, 454, 3224, 5943, 605, 3225, 721].
Analyzing [2328, 6579].
Anatomy [3431].
Ancient [6313, 6165].
Andrews [6991].
Ann [6772, 6904].
Annotated [5554, 1199].
Announcements [3775].
Annual [6762, 6910, 6922, 6967, 7077, 7094, 6868, 6728, 6764, 6853, 7037, 7079, 2020, 6771, 6827, 6859, 6883, 7054, 6918, 6950, 7017, 7075, 7091, 7047, 6989, 6738, 6743, 6992, 6780, 6815, 6740, 6768, 3693,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6500, 4967, 1618, 6277, 6184, 2091, 2095, 3450, 3620, 3621, 4205, 6584, 6426, 6204, 6589, 6512, 3321, 3335, 4471, 3228, 3060, 3997, 2705, 1849, 3594, 7059.

Area-Efficient [5580, 2024, 4967, 2095, 6512, 6138, 4205, 3228, 3594].

Area-Optimal [6024].

Area-Optimized [6584].

ARITH-15 [6996].

ARITH-16 [7022].

ARITH-17 [7058, 7061].

ARITH-26 [7140].

ARITH9 [2302].

Ariane [3476, 3710, 3565].

arifmetiki [2268, 1209].

ARITH [7022, 6996, 4967, 2095, 6512, 6138, 4205, 3228, 3594].

Arenaire [5088].

Argument [5358, 3365, 3408, 2900, 3448, 3196, 4644].

Arguments [5189, 2047, 2055, 2900, 1141].

Ariane [3476, 3710, 3565].

arifmetiki [2268, 1209].

ARITH [7022, 6996, 4967, 2095, 6512, 6138, 4205, 3228, 3594].

Arenaire [5088].

Argument [5358, 3365, 3408, 2900, 3448, 3196, 4644].

Arguments [5189, 2047, 2055, 2900, 1141].

Ariane [3476, 3710, 3565].

arifmetiki [2268, 1209].

ARITH [7022, 6996, 4967, 2095, 6512, 6138, 4205, 3228, 3594].

Arenaire [5088].

Argument [5358, 3365, 3408, 2900, 3448, 3196, 4644].

Arguments [5189, 2047, 2055, 2900, 1141].

Ariane [3476, 3710, 3565].

arifmetiki [2268, 1209].
3054, 6974, 3983, 4150, 4482, 1013, 1105, 1384, 1703, 2046, 2356, 6876, 5208, 7088, 5414, 5483, 5623, 5708, 5857, 3057, 3704, 725, 866, 3985, 867, 1014, 1015, 871, 1272, 1942, 4487, 5307, 5796, 6371, 5797, 3835, 6151, 874, 1829, 3706, 6949, 6154, 5078, 30, 2050, 3989, 4313, 4493, 6044, 6158, 6375, 220, 271, 335, 6684, 3236, 3992.

Arithmetic [2873, 6686, 1108, 4158, 273, 1111, 5629, 6163, 6689, 3237, 6164, 1834, 423, 551, 1835, 6379, 2500, 2876, 2877, 2878, 3401, 3568, 4787, 169, 3569, 7089, 4502, 2690, 2880, 3402, 2501, 5418, 949, 1276, 1838, 4487, 5307, 5796, 6371, 5797, 3835, 6151, 874, 1829, 3706, 6949, 6154, 5078, 30, 2050, 3989, 4313, 4493, 6044, 6158, 6375, 220, 271, 335, 6684, 3236, 3992].

Arithmetic [4742, 3005, 446, 5044, 3008, 6623, 2463, 4099, 3805, 3806, 2014, 483, 2296, 5294, 1354, 2300, 3809, 5383, 1466, 1467, 1685, 2828, 3810, 3937, 709, 4454, 997, 4610, 4612, 998, 486, 4613, 1919, 710, 3192, 489, 2159, 4270, 6555, 3520, 449, 1000, 5184,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

2512, 4001, 5966, 4338, 4017, 5644, 4207, 4813, 6276, 5503, 6189, 6405, 687, 5516, 5247, 2750, 1643, 4833, 5658, 6196, 5265, 5742, 6661, 3883, 3309, 6662, 974, 6512, 5013, 5690, 6327, 4208, 4856, 4563, 5541]. **based** [3485, 6096, 6214, 3783, 6531, 4083, 5360, 4585, 4591, 3921, 4439, 5574, 5576, 4741, 4451, 4743, 3806, 2824, 2152, 4612, 4107, 4903, 6557, 5186, 6628, 5851, 5297, 4760, 6243, 3689, 3380, 4475, 5058, 5602, 4476, 3964, 2332, 1479, 2173, 5303, 5620, 3048, 3049, 3050, 3051, 2187, 2359, 2362, 3235, 5716, 3994, 3713, 2875, 5630, 2193, 4162, 4163, 4164, 4322, 4323, 4503, 4789, 3997, 4165, 2371, 5632, 5224, 5085, 348, 4958, 4653, 3248, 3593, 2906, 2208, 171, 193, 5643, 2212, 4187, 4189, 4525, 1492, 1723, 1127, 2919, 745, 4671, 4819, 5649, 5820, 4366, 3443, 1966, 5656, 970, 1870]. **based** [3451, 4539, 3453, 3626, 4204, 4687, 1306, 2763, 3759, 5258, 5259, 2422, 4392, 5662, 3141, 3303, 4063, 4064, 4399, 4555, 4556, 2782, 3313, 2256, 1892, 6440]. **Basel** [6865, 2525]. **Bases** [5353, 6529, 6604, 528, 529, 6003, 6015, 5181, 4489, 5492, 5960, 511, 576, 5037, 3961, 2169, 3731, 4666, 5112, 3119, 3297, 3886]. **Basic** [3483, 5679, 1230, 1458, 493, 6143, 4306, 610, 4937, 3572, 1113, 274, 6641, 2084, 1127, 5878, 5008, 1158, 5624, 729, 2752, 2938, 4830, 1054, 981, 2528, 1297, 2540, 1060, 4426, 1677, 4385]. **Basics** [2441, 4078]. **Basis** [5559, 2815, 5848, 5915, 5046, 4616, 724, 725, 866, 3989, 6178, 4337, 5095, 3737, 4191, 4354, 4668, 6399, 466, 1651, 5010, 578, 4596, 3518, 3532, 3832, 4638, 3715, 1846, 4800, 4174, 135, 4667, 4669, 4816, 4817, 4974, 4374, 2429, 4552]. **Basisweiterung** [3097]. **Basiswahl** [724, 725, 866]. **batch** [6283]. **batches** [6438]. **Bath** [3393, 6931]. **Battle** [3674]. **Baugh** [5441]. **Baule** [6762, 6764]. **Bayesian** [6633, 6683]. **BC** [6002, 3008]. **BCD** [6007, 1952, 1659, 832, 1450, 6111, 5167, 5303, 3971, 501, 1393, 1605, 1952, 751, 752, 753, 754, 755, 756, 757, 1311, 4997, 1738, 5119, 5120, 5444, 5882, 5262]. **BCD-based** [5303]. **BCD-floating-point** [1738]. **BDDs** [5025]. **Be** [599, 2972, 4588, 2022, 1260, 2488, 862, 6265, 5]. **Beach** [6967, 7033, 7050, 7118]. **Beamforming** [3052, 2362, 2391]. **Beating** [6127]. **Beauty** [6856, 1892]. **Because** [6317, 6331]. **bedingte** [527]. **beefs** [2163]. **been** [6678]. **Before** [6389, 5361, 29, 1782, 1964, 89]. **Begründung** [945]. **behave** [5383]. **Behavior** [4859, 853, 5744, 6465, 852, 5863]. **Behavioral** [3810, 4226, 3937]. **behaviour** [2539, 2559]. **Behind** [5471, 3371]. **Behrooz** [4072, 4073]. **Beijing** [7008, 7014]. **Being** [2517]. **Beispiel** [2555]. **Beispielen** [2672]. **Beitr** [774]. **Belfast** [6995, 7109]. **Belgium** [7096, 6894]. **beliebige** [2047]. **beliebig** [2001]. **beliebiger** [626]. **Bell** [2629, 70, 91, 5607]. **bench** [3444]. **Benchmark** [6008, 1690, 1820, 1700, 1713, 1722, 1639, 4441, 1683, 1684, 1686, 3508]. **Benchmarks** [2615, 2179, 2972, 3550]. **Benefit** [6437, 1448]. **Benefits** [6539, 6540, 5084, 2432, 1441]. **Benford** [5160, 5454, 3639, 5547, 5548, 5458, 1065, 5171, 5386, 4757, 4906, 4462, 5059, 4934, 5074, 4154, 1405, 4348, 5326, 5647, 2226, 2275, 758, 692, 1429, 636]. **Benutzerhandbuch** [1427]. **Berechnung** [1761, 1063, 369, 2044, 564, 626, 1580, 1744]. **beregner** [1289]. **Berger** [3566, 2369, 3064]. **Bergman** [4541]. **Berichtigung** [866, 342]. **Berkeley** [1338, 2053, 2191]. **Berlin** [6758, 6792, 7070, 7004]. **Berlin/Wendisch** [6758]. **Berlin/Wendisch-Rietz** [6758]. **Bernstein** [5476, 6382, 6183]. **Bertinoro** [7067]. **Beschreibung**
3399, 2194, 2883, 2701, 4510, 4511, 1196, 3594, 2724, 5327, 1132, 5246, 2936, 763, 3872, 4384. **circular** [6254]. **Circular** [4074, 4863, 2666, 4373]. **Cirencester** [7036]. **CIRM** [6942]. **City** [6727, 6734, 6722, 6716, 6979]. **Civic** [6803]. **CIVP** [5256]. **Claims** [6284]. **Clara** [6898, 7134]. **Clarity** [4627]. **Class** [5371, 4889, 3511, 1554, 711, 5402, 3539, 1104, 3231, 4312, 4317, 250, 5238, 3855, 1860, 152, 2740, 3610, 358, 179, 531, 3641, 2146, 5045, 5382, 2839, 3025, 216, 3053, 3383, 507, 119, 151, 3280, 5822, 3885, 4554]. **Classes** [1383, 4939]. **Classical** [6139, 4907]. **Classification** [4479]. **classifier** [2772]. **Claude** [3117]. **Clean** [1333, 1346]. **Cleaning** [4745]. **Clenshaw** [4422, 1025]. **Cleve** [3412, 3581, 5865, 5866, 6175, 6176, 6177, 6389, 6390]. **Climate** [6368, 6182, 6293, 6985]. **Clipper™** [2325]. **Clock** [3750, 4083, 5916, 3293]. **clocked** [3129]. **Clock-gating** [5429]. **Clocking** [847]. **Close** [6364, 6192]. **Closed** [2835, 2068, 5426]. **closest** [4580]. **Closing** [4837]. **Closure** [3890, 2500]. **Cloud** [6432]. **Clouds** [6425]. **CLP** [2850]. **CLT** [5454]. **cluster** [2128, 5622, 2391]. **Clusters** [6068]. **cm** [5619]. **cmath** [6527]. **CMOS** [3638, 5537, 2270, 5561, 2991, 3655, 2604, 2278, 3792, 4095, 2812, 2813, 2814, 1783, 2830, 3019, 2324, 3964, 3039, 3040, 3560, 2192, 3417, 3421, 2916, 4820, 3744, 3745, 5653, 4045, 4379, 3289, 3290, 1743, 2430, 3142, 2777, 2778, 4061, 5011]. **CNC** [5662]. **CNIT** [6881]. **CNN** [6569]. **Co** [3644, 1530, 6006, 2378, 1953, 1893, 1894, 5891, 3779, 3783, 3356, 5862, 2946, 6838]. **co-designed** [5862]. **Co-processeur** [1953]. **Co-Processor** [1530, 2378, 1893, 1894, 5891, 3783, 3356, 2946]. **Co-Transformation** [6006]. **Co-Transformations** [3644, 3779]. **Coarse** [4484, 4383]. **Coarse-Grain** [4484, 4383]. **COBOL** [4134, 243]. **Cod** [7058, 7061]. **Code** [1323, 1755, 1528, 6310, 5902, 5571, 3913, 6464, 1366, 5597, 7028, 2491, 1821, 169, 1593, 3239, 5638, 1510, 5744, 5277, 6309, 2005, 2463, 5920, 6121, 6477, 1572, 5712, 6385, 6193, 4063]. **codebreaker** [7052]. **Coded** [697, 6007, 1559, 1567, 5068, 1111, 3237, 1446, 5058, 4147]. **Coder** [3657, 3114, 3115, 3453, 3626]. **coders** [2346]. **Codes** [1325, 1525, 779, 1059, 184, 784, 785, 6539, 6540, 5462, 644, 6007, 6111, 6232, 1559, 4271, 164, 371, 1567, 1111, 561, 1408, 1860, 2083, 2085, 1868, 5882, 914, 1227, 5354, 1999, 216, 5195, 5196, 1374, 1375, 1479, 3059, 4157, 5081, 2369, 2205, 2524, 5244, 4398, 4399, 2572]. **Codesign** [5873]. **codesigned** [4778]. **Coding** [160, 3792, 4287, 188, 6377, 6494, 5730, 175, 4999, 4217, 2005, 60, 61, 62, 63, 64, 65, 4779, 4932, 2864, 3707, 3994, 6942, 2941, 2248]. **Codings** [5073, 4873]. **Coefficient** [4394, 2004, 3223, 868, 3087, 2788]. **Coefficients** [2998, 992, 4273, 2120, 5573, 3806, 4495, 2403, 1216]. **Cohesive** [1914]. **Coimbatorare** [7099]. **COIN** [136]. **coins** [5]. **Collected** [6711, 6712, 6713, 6716, 6717, 6718, 3117]. **Collection** [5775]. **College** [6741, 6834, 3623]. **Collision** [5034, 5943]. **Colloquium** [6925, 6858]. **Colorado** [6996, 7068, 6869, 6768, 7045, 6775, 6941, 6975]. **Colossus** [1029]. **Colour** [3436, 3269]. **Columbia** [6922, 7094, 6915]. **Column** [4234, 3461, 4694]. **Combatting** [1389]. **Combination** [5023, 4639, 6297, 2662]. **Combinational** [830, 2922, 572, 6074, 2655, 5805]. **Combinatorial** [4189, 1309, 3559]. **Combinatoric** [714]. **combine** [1957]. **Combined** [4411, 4457, 3044, 3397, 5639, 6277, 4194, 4673, 3873, 3874, 4993, 5118, 5256, 5439, 6204, 4391, 5743, 4058, 3777, 5686, 5392, 3986, 4005]. **Combines** [969].
Compute [5758, 6215, 6344, 2925, 5852, 6647, 1857, 4190, 2743, 2924, 3119].

Computer-Bound [2925, 2743, 2924]. Computed [2749, 2211].

Computer [3815, 238, 6126, 4912, 1097, 1693, 2479, 3531, 4465, 323, 451, 452, 6857, 6937, 7009, 7124, 417, 6135, 4287, 2328, 1265, 2032, 498, 1181, 6802, 1809, 1931, 7102, 6731, 6740, 6741, 6745, 6751, 6755, 6772, 6783, 6814, 6864, 3126, 6907, 6908, 7131, 7132, 7133, 7140, 6700, 2415, 569, 7138, 570, 6749].

Computing [6743, 6952, 7064, 7077, 7094, 7099, 6206, 70, 4702, 205, 6789, 3642, 6294, 6520, 7037, 6814, 42, 6882, 6924, 4421, 1448, 3650, 6306, 5898, 96, 1625, 1203, 6400, 5976, 1862, 6402, 1129, 6837, 3437, 1414, 4979, 2090, 7123, 468, 1866, 1634, 566, 900, 7047, 6966, 1417, 44, 1039, 6658, 6748, 1303, 6863, 6864, 3126, 6907, 6908, 7131, 7132, 7133, 7140, 6700, 2415, 569, 7138, 570, 6749].
Computing [5498, 4341, 6395, 6649, 5320, 3856, 6943, 6950, 6964, 7017, 7075, 7091, 2217, 2914, 1620, 2220, 6400, 5430, 5505, 225, 5512, 2227, 6655, 3609, 1415, 6906, 3753, 4048, 4375, 5982, 1978, 6196, 2244, 178, 229, 5273, 5534, 5768, 6897, 6934, 7078, 6780, 6297, 5894, 6098, 55, 1538, 3172, 4439, 4593, 5779, 2156, 2828, 6792, 3192, 4617, 597, 86, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 73, 4956, 6836, 7090, 350, 5963, 3250, 4006, 5809, 5872].

Cómputo

Conception [2441, 1312, 5697, 2320].

Concepts [3024, 2343, 4735, 1458, 2489, 4978].

Concerning [949].

Concise [6384, 6192].

Concordia [6747].

Concurrent [5355, 1791, 6022, 5596, 2369, 5806, 6178, 1615, 5814, 1802, 1430, 1431].

Condition [3716, 3925, 1688, 1008, 4403].

Conditional [6224, 1353, 717, 6496, 3419, 200, 5124, 527].

Conditional-Sum [717].

Conditioned [2740, 2090, 4478, 180, 181].

Conducted [6753].

Conference [7071, 7083, 7084, 7086, 7096, 7103, 7104, 7105, 7113, 7114, 7115, 7116, 7142, 6831, 7122, 6817, 6752, 7125, 6888, 6889, 6874, 6798, 7143, 6832, 6918, 6820, 6941, 6834, 6963, 6976, 6987, 7003, 7016, 7030, 7097, 7108, 7137, 6804, 7073, 6835, 6786, 6787, 6799, 6810, 7074, 7090, 6919, 6800, 6788, 6775, 7118, 7018, 7099, 6979, 566, 7092, 6892, 6937, 6982, 6989, 6990, 6412, 7005, 7062, 6951, 6838, 6866, 6894, 7063, 7020, 6807, 6909, 7048, 6779, 6812, 6850, 6921, 6945, 6980, 6738, 6757, 654, 6793, 6958, 7056, 7082, 7106, 7144, 7145, 7089, 6942, 6988, 6944, 6806, 6893, 6867].

Conference [6762, 6714, 6948, 6963, 6976, 6987, 7097, 7108, 7137].

Confidence [6581].

Configurability [6611].

Configurable [4645, 4524, 6651, 6079, 5370, 4160, 5093, 3882].

Configurations [4366].

Conformance [2975, 5276].

Conforming [5262].

Conforms [4173].

Congress [7099, 6911, 6968, 7008, 6735, 7112, 6769, 7014, 6733, 6920, 6777, 6722, 6732, 7039].

Conjecture [4728].

Conjugate [6624, 5503, 5247, 5087, 4663, 4038, 4039].

Conjugate-pair-moduli [4039].

Conjunction [6786, 6799].

Connect [3258].

Connected [3347, 1618, 2439].

Connection [649, 2597, 2710].

Connectionist [3176].

Connectivity [6985].
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

D [3333, 5557, 4898, 4108, 3814, 3965, 4132, 3970, 3225, 5412, 4935, 878, 4788, 5495, 3616, 3285, 3451, 6699, 6072, 4048, 4051, 4379, 6425, 5001, 3303, 2112, 4847, 4848, 4850, 775]. D-cache [3333]. D-konverter [3285]. D-LNS
DDC [1636]. DDFUN90 [4866]. de-normalized [4485]. Deadly [6265].
Decimal [105, 5091, 2902, 2725, 964, 252, 1495, 5733, 815, 1130, 1633, 467, 4822, 4980, 5432, 254, 154, 2546, 514, 4996, 4997, 177, 5258, 5259, 5439, 5658, 3458, 5124, 5261, 5443, 5444, 5524, 5741, 6201, 6586, 6204, 3300, 4843, 5005, 5265, 5266, 5447, 5448, 123, 5133, 1047, 5349, 6297, 1754, 5286, 5366, 446, 2644, 5851, 5392, 1254, 5595, 5064, 5066, 5405, 5408, 544, 2180, 2181, 4774, 5222, 5223, 385, 338, 6173, 1125, 1031, 5511, 754, 628, 5436, 5522, 4834, 5525, 5660, 2428, 5267, 5528].
Decimal-Based [5784, 5658, 5297, 5258, 5259]. Decimal-Binary [161, 2471].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[6858, 6766, 6797, 6828, 6850, 6921, 6945, 6740, 6870, 6928, 6980, 6927]. Digit
[6207, 4861, 4862, 206, 1325, 443, 1992, 2583, 5562, 3787, 1769, 4247, 4597,
5171, 2827, 5914, 6015, 4605, 4102, 6237, 4108, 370, 534, 415, 5589, 1361,
3819, 1575, 5475, 4138, 331, 4930, 5944, 5075, 4309, 5211, 4491, 6262, 6868,
504, 6688, 1112, 3065, 3996, 1113, 6050, 150, 5322, 3416, 5234, 1400, 1611,
2520, 5971, 3266, 5321, 1858, 5819, 514, 4048, 5255, 5657, 6073, 471, 572, 5262,
6077, 4388, 3883, 1890, 2114, 2450, 4586, 4088, 927, 5916, 3188, 4611, 5595,
5408, 4294, 4636, 3990, 3066, 303, 3083, 3243, 3244, 3414, 5496, 4964,
4655, 3092, 4180, 5098, 2393, 4816]. digit [1961, 1430, 1431, 5270]. Digit-by-Digit
[504, 5232, 5321, 3243, 3245]. Digit-by-Rounding [5562, 5567]. Digit-First [6686].
Digit-Level [6015]. digit-multiplier [5916]. Digit-Recurrence [4862, 5211, 3065, 4048, 4861, 4605, 3188, 3066]. Digit-Serial
[3787, 4388, 4180, 4816, 1430, 1431]. Digit-serial-in-serial-out [4491]. Digit-Slice
[1361]. Digital [124, 6708, 698, 1447, 3330, 3331, 6307, 3388, 234, 6610,
1457, 1671, 6317, 2608, 207, 1236, 1550, 3509, 845, 846, 996, 1786, 2155, 4749,
114, 1355, 847, 2161, 3193, 322, 598, 1250, 4115, 416, 187, 109, 2602, 6998,
3044, 1268, 1102, 3549, 716, 606, 5795, 1942, 4487, 298, 873, 2362, 131, 6819,
169, 1592, 1837, 2504, 2884, 882, 5224, 302, 2889, 1023, 170, 1196, 2515, 2904,
2299, 5971, 11, 4351, 6723, 6724, 6726, 6746, 6774, 112, 390, 113, 152, 563,
435, 7046, 5653, 2932, 2233, 1037, 4829, 912, 1043, 1138, 6202, 1512, 229, 90,
140, 1513, 4066]. Digital [1319, 1438, 1048, 1149, 2794, 1519, 2258, 91, 1750,
2123, 1057, 2982, 2932, 2233, 1037, 4829, 912, 1043, 1138, 6202, 1512, 229, 90,
140, 1513, 4066]. Digital [1319, 1438, 1048, 1149, 2794, 1519, 2258, 91, 1750,
2123, 1057, 2982, 2932, 2233, 1037, 4829, 912, 1043, 1138, 6202, 1512, 229, 90,
140, 1513, 4066]. Digital [1319, 1438, 1048, 1149, 2794, 1519, 2258, 91, 1750,
2123, 1057, 2982, 2932, 2233, 1037, 4829, 912, 1043, 1138, 6202, 1512, 229, 90,
140, 1513, 4066]. Digital [1319, 1438, 1048, 1149, 2794, 1519, 2258, 91, 1750,
2123, 1057, 2982, 2932, 2233, 1037, 4829, 912, 1043, 1138, 6202, 1512, 229, 90,
1660, 3173, 3174, 3510, 657, 1702, 3234, 6376, 1396, 3087, 2051]. direct-executing
[1702]. Direct-Form [3330, 3234, 1396]. Directed [5311, 4016, 4184, 7028, 5817]. direction-
[3058]. Directions [6930, 5147]. directly

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Factors

Factor-2

5674, 362, 206, 3780, 5145, 5996, 2125, 6671, 2983, 2984, 5549, 3165, 3784, 5331, 3438, 3740, 4221

Fairchild

6616, 6617, 6618

FasMath

4195, 3748, 5261, 4402, 2442, 5284, 5854, 6819, 2504, 2884, 3288, 3305

2599, 5285, 5288, 1783, 5587, 5589, 4766, 3038, 3213, 3981, 4301, 1595, 3238

Extreme

Extracts

Precise

683, 1868, 1510, 1150, 5573, 5464, 5970

4743, 4754, 3685, 188, 3405, 2720, 4665, 397, 5466

1698, 6155, 5080, 5308, 4811, 2416, 2551, 5826, 1148, 3906, 587, 4259, 4260, 4743, 4754, 3685, 188, 3405, 2720, 4665, 397, 5466. exponentially [1990].

Exponentials [643, 1797, 3062, 756]. Exponentiation [3902, 6224, 5168, 3663, 6015, 6235, 5586, 5695, 5395, 3372, 3542, 4299, 3702, 6159, 5966, 744, 5242, 3764, 3881, 1437, 5768, 4236, 480, 3802, 4903, 3945, 4153, 6283, 2943, 5296, 5271].

Extended [2798, 6207, 315, 5180, 5181, 2653, 6132, 2465, 6037, 6142, 2340, 3704, 5217, 6052, 3267, 1416, 973, 695, 1054, 981, 998, 3954, 3053, 609, 4497, 5724, 4800, 1297, 5112, 2768, 4732. extended-precision [695, 3954, 609].

Extended-Range [1416]. Extending [1444, 5146, 594, 3672, 5961, 1842, 4238].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

53

2562, 1652, 5005, 5127, 5265, 5266, 5447, 5448, 5526, 5529, 6287]. Floating
[1511, 1314, 1430, 1431, 1432, 1433, 3884, 1983, 5664, 6702, 1984, 2953, 2954,
5828, 203, 3143, 2249, 6079, 2779, 4210, 5986, 123, 1747, 5130, 5829, 2570, 773,
1317, 2962, 1656, 3466, 5272, 5667, 4066, 919, 1891, 6589, 5831, 6435, 5012, 5451,
5533, 5013, 5273, 5136, 6436, 5466, 5578, 5768, 4549, 6199, 4208, 1887, 2119,
3317, 5274, 638, 2794, 1893, 1894, 6288, 3889, 1519, 5536, 6081, 2966, 3640, 3774,
5348, 5349, 5890, 5990, 5891, 695, 281, 1443, 2438, 2579, 2972, 3156, 3322, 3323,
3324, 3325, 4415, 6210, 6297, 6298, 2439, 1054, 981, 5541, 1750, 2259, 1751].
floating [1752, 1322, 2261, 1523, 1524, 1991, 2262, 4706, 5994, 4075, 1445,
2442, 2804, 2980, 5457, 5755, 1993, 1328, 1757, 2126, 2443, 2127, 5756, 4229,
1995, 2266, 6671, 2588, 3163, 2982, 2267, 4232, 5146, 5147, 1060, 2128, 1330,
2270, 5683, 4710, 2444, 1155, 5028, 3784, 2271, 2272, 2132, 2591, 2592, 2988,
1763, 4237, 4429, 4577, 4713, 4714, 5029, 5150, 5838, 6099, 3652, 1666, 284,
2133, 642, 5153, 5459, 4240, 3785, 986, 4717, 5282, 2135, 987, 1158, 6218, 5686,
6458, 3168, 4881, 3493, 1765, 2137, 2601, 6220, 1904, 6314, 1337, 6315, 3343,
6105, 1338, 4723, 4882, 2606, 3170, 364]. floating [1539, 6222, 3788, 4885, 1768,
2005, 2610, 3658, 3790, 5762, 1340, 1672, 2147, 2282, 4435, 5370, 3911, 3912,
5841, 4725, 4726, 3915, 1543, 5372, 5572, 4092, 2619, 1072, 1911, 3921, 4595,
4442, 404, 5375, 3354, 5574, 2288, 2812, 2813, 2814, 3798, 3927, 3179, 6115,
2624, 6116, 5291, 5292, 930, 1240, 2626, 6227, 5844, 5579, 3002, 2820, 3183,
3358, 4448, 4600, 4738, 6010, 5912, 3930, 3004, 235, 4742, 5042, 5169, 4265, 932,
4451, 5467, 6465, 5044, 2462, 5174, 2463, 4895, 2294, 4099, 2824, 5175, 2152,
483, 1683, 1684, 2826, 3933, 1167, 5177, 5045, 5382, 709, 1084, 4901, 4104, 4105].
floating [6627, 4610, 4611, 5470, 1469, 1918, 2306, 1686, 1919, 793, 489, 3672,
1169, 5183, 1000, 6121, 2832, 2310, 4753, 6470, 4617, 5696, 4618, 267, 3019,
3194, 4620, 4756, 3020, 2472, 599, 852, 1001, 1173, 1247, 1689, 3369, 2834, 3021,
1002, 2647, 1793, 5392, 1794, 2476, 1795, 5588, 2316, 4759, 4760, 1796, 5298,
5853, 5926, 6339, 1251, 2317, 237, 166, 3814, 2321, 1800, 4279, 4762, 3815, 2478,
3953, 6477, 3023, 3954, 3530, 5702, 3955, 4466, 4624, 6343, 2836, 2837, 3532,
6243, 3026, 3375, 3533, 1255, 1367, 1178, 1924, 3535, 2166, 3376, 1368, 1261,
3202, 3033, 3961, 2167]. floating [4474, 2842, 2481, 3034, 2656, 5195, 5196,
1694, 2845, 6247, 6356, 6481, 5602, 2031, 5603, 497, 800, 1180, 2329, 5605, 657,
2331, 1183, 1813, 1696, 3217, 3545, 5063, 5064, 5066, 5405, 2170, 2171, 3965,
4477, 3544, 1101, 1184, 1816, 2332, 4631, 5787, 2848, 5613, 5614, 1577, 3220,
5855, 6035, 6140, 6251, 188, 2035, 3548, 6255, 2174, 2853, 3045, 3221, 2176,
2341, 2342, 2177, 3046, 2039, 2040, 3389, 3551, 3552, 4140, 4142, 5619, 4633,
2857, 3223, 3391, 3554, 3224, 5943, 605, 455, 718, 2345, 2346, 2347, 2348, 720,
721, 1188, 2182, 2044, 1585, 296, 501, 4777, 4778, 2678, 1189, 1190]. floating
[2352, 2354, 2355, 1701, 1824, 1484, 1702, 5482, 6566, 3560, 3833, 4305, 3058,
3232, 4781, 5484, 2866, 3395, 5209, 803, 870, 944, 1943, 4152, 5947, 4782, 2497,
3234, 872, 946, 2868, 6683, 2188, 2189, 5799, 6259, 6152, 3836, 3837, 5712, 5079,
6045, 729, 2685, 2870, 3060, 4492, 5715, 5953, 5858, 5802, 4785, 3711, 4319,
4498, 336, 4500, 3840, 4786, 505, 550, 5488, 1707, 5220, 3567, 5489, 5804, 1591,
5222, 5223, 4160, 5862, 4788, 6381, 2194, 1020, 1945, 1275, 2883, 3574, 552,


Additional Contributions from Nelson H. F. Beebe

1920, 3590, 850, 3950, 853, 1248, 2645, 2646, 4621, 5297, 5784, 6122, 6472, 1362, 1563, 6473, 4276, 4463, 5395, 291, 2164, 2165, 2318, 1799, 4115, 5594, 6559.

Floating-point

1920, 3590, 850, 3950, 853, 1248, 2645, 2646, 4621, 5297, 5784, 6122, 6472, 1362, 1563, 6473, 4276, 4463, 5395, 291, 2164, 2165, 2318, 1799, 4115, 5594, 6559.
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

56

Additional Contributions from Nelson H. F. Beebe

5762, 4588, 5041, 5691, 5042, 4451, 4743, 4895, 6467, 6468, 4901, 5472, 5188, 5588, 3689, 5404, 5600, 6562, 5612, 5408, 6260, 4492, 4640, 5802, 5859, 5310, 5632, 5224, 5085, 4504, 5423, 5636, 5495, 4958, 5640, 5645, 4530, 5503, 4819, 5820, 6189, 3443, 5656, 4204, 7019, 6196, 4837, 6586, 6285, 4392, 5449, 5662, 4393, 4394, 6703, 5013, 4444, 3181. FPGA-Based [5600, 6163, 5588, 3689, 5632, 5224, 5085, 4958, 5662].

FPGA-processor [5762]. FPGA-specific [5640]. FPGAs [6924, 7101, 6943, 6964, 2966, 6670, 5457, 6455, 6538, 6676, 5282, 5581, 6017, 6337, 4759, 4760, 6243, 5474, 6137, 5621, 4781, 5946, 6148, 6257, 6040, 6153, 6155, 3711, 4500, 3840, 5630, 3567, 5635, 6397, 4661, 5243, 6506, 5115, 5340, 5118, 5256, 5981, 4838, 4692, 5663, 5667, 4852, 5465, 5466, 5769, 6327].

FPgen [4561]. FPL [7080, 6995, 7103, 7066, 7023, 4525]. FPL-based [4525]. FPLibrary [5042].

France [6762, 6822, 6764, 7021, 7065, 7007, 6936, 7127, 6926, 6954, 7136, 6793, 7069, 2707, 7130, 6761, 6942, 6891, 7110, 6876, 7088, 7046]. Francisco [6740, 6797, 6828, 6927, 7028, 6787, 6945, 6980]. fraud [4757]. Fraudulent [5171].

Fray [3674]. Free [5839, 3657, 6120, 2649, 1252, 1691, 6370, 2875, 6379, 1023, 1716, 5326, 1645, 3761, 5001, 2962, 527, 1912, 6115, 1174, 3196, 4778, 5310, 4946, 6706, 1394, 5812, 5968, 6056, 5236, 5427, 4977, 4049, 4690, 4844, 3303, 2784, 6666]. Freiburg [6973, 7010, 6770]. Freie [6792]. French [3903, 4237, 4239, 4428, 4713, 5685, 3348, 27, 37, 4598, 5301, 4156, 4784, 1, 2503, 2700, 5086, 1953, 677, 960, 1125, 17, 4406, 4407, 5016].

Fully [2827, 4109, 5393, 1570, 5218, 4969, 1611, 6447, 4790]. Fully-Pipelined [4969]. Function [2257, 5453, 282, 3896, 6097, 6303, 1664, 5281, 6217, 234, 3656, 4246, 5763, 1461, 2617, 2618, 2997, 989, 4736, 4740, 5775, 707, 2464, 408, 410, 6471, 5189, 4118, 5401, 3374, 3959, 3540, 5935, 1929, 6137, 6370, 421, 610, 5080, 5308, 5859, 3236, 504, 2053, 2191, 6267, 2718, 959, 4972, 3741, 3743, 2922, 4992, 4041, 2416, 2553, 2554, 2944, 5981, 2101, 2106, 6430, 5004, 5883, 2565, 3309, 2781, 5578, 531, 4855, 5139, 1053, 836, 925, 4580, 3906, 3654, 4582, 481, 2619, 2626, 4259, 4260, 4741, 5169, 2822, 2823, 3186, 3187, 1466,

Gleitkomma-Rechnern
GMRES
und
Prozessoren
Gleitkomma-Arithmetik
globally
Gleitpunktalgorithmen
Giant
Gems
Genaue
Genauer
Genauigkeit
Gene
Gene/L
General
Generale
generated
generates
Generating
Generation
Generators
Generic
genetic
genius
Genus
Geometric
Geometrical
Geometrie
Geschichte
Gesellschaft
Get
geois
gesuisse
GFlops
Ghub
Glaz
Giants
Gigabyte
Gigaflops
Given
Givens
Gives
Giving
glasses
Gleichungssysteme
gleitendem
Gleitkomma
Gleitkomma-Arithmetik
Gleitkomma-Prozessoren
Gleitkomma-Prozessoren
Gleitkomma-und
Gleitkommaarithmetik
Gleitkommaformat
Gleitkommaprozessor
Gleitkommarechnern
Gleitkommazahlen
Gleitpunktraster
Gleitpunktraster
Globale
Globally
GLOBECOM
GLSVLSI
GMICRO
GMP
GMP-based
GMRES
GNB
GNU
AVERAGE CONTRIBUTIONS FROM NELSON H. F. BEEBE

1837, 339, 6168, 2698, 2701, 1948, 6173, 1023, 4510, 4000, 1604, 3417, 3588, 4967, 1851, 3423, 4176, 3594, 194, 4521, 4522, 4664, 4972, 5502, 2916, 72, 678, 2396, 6060, 964, 5503, 5733, 467, 628, 4025, 6655, 3742, 4029, 3109, 3110, 3866, 4035, 4981, 1634, 6404, 2744, 689, 1038, 80, 5340, 1302, 1875, 1877, 2098, 1879, 4050, 4378, 1646. **High** [910, 6196, 6509, 6200, 5261, 5444, 5524, 5262, 4387, 6655, 3742, 4029, 3109, 3110, 3866, 4035, 4981, 1634, 6404, 2744, 689, 1038, 80, 5340, 1302, 1875, 1877, 2098, 1879, 4050, 4378, 1646].

High-Accuracy [1930, 1933, 6142, 6655, 1634, 1762, 1734, 2001, 2513]. High-Bandwidth [6608]. High-Dimensional [6168, 6466]. High-end [1474]. High-frequency [4774]. High-Level [1063, 6012, 1468, 4109, 964, 6509, 4075, 6607, 4510, 1646, 1031, 6197]. High-Order [1998, 3506, 1023, 3109, 3110]. High-Performance [6952, 1525, 5562, 3656, 4246, 3787, 4724, 5388, 4919, 4132, 6036, 4967, 5502, 5340, 6196, 5261, 5444, 5524, 6606, 6661, 6555, 4628, 2170, 4499, 6200, 3182, 3151, 5835, 4706, 5894, 4885, 4759, 4789, 2883, 5632, 2502, 47, 2885, 3078, 6716, 2509, 4330, 2898, 1119]. High-Throughput [5455, 4935, 6684, 6404].

Highlights [1011]. Highly [4701, 2446, 5372, 5572, 6467, 1791, 4121, 498, 2507, 3878, 2146, 1802, 4662, 1430, 1431].

IEEE-754
1966, 7047, 2233, 5252, 1298, 1418, 1420, 6990, 2416, 2553, 2554, 2944, 1425, 2402, 4675, 3865, 4198, 4365, 4676, 4824, 4825, 4981, 3868, 7109, 1726, 5515, 2725, 6978, 6943, 3267, 3426, 4814, 2218, 1625, 6278, 1628, 3860, 3861, 3102, 1707, 5220, 3567, 2370, 2501, 4161, 4950, 5084, 2200, 5423, 5636, 3411, 3551, 3694, 5067, 5068, 3983, 4781, 6371, 6949, 6918, 5080, 5308, 5803, 6905, 1707, 5220, 3567, 2370, 2501, 4161, 4950, 5084, 2200, 5423, 5636, 3411]. IEEE
2327, 3037, 1370, 6031, 3966, 6136, 6032, 5612, 5409, 5942, 1579, 2036, 6142,
1269, 715, 5619, 5068, 2042, 4300, 5207, 1940, 2186, 5307, 3396, 4309, 2049,
5949, 6153, 5952, 5714, 5859, 3711, 4943, 3063, 5630, 1708).

Implementation

Implementation

[1835, 3567, 3400, 3241, 3078, 1601, 1116, 5495, 3723, 887, 1607, 4337, 4338,
3254, 3990, 3398, 5802, 4497, 2051, 5310, 3066, 3997, 5632, 3575, 6497, 1712,
2509, 2379, 5088, 5089, 2898, 3253, 4008, 3092, 3261, 3262, 4015, 2215, 2735,
2736, 1628, 4824, 1132, 1966, 5656, 2408, 1501, 2930, 1969, 2234, 5738, 5522,
1137, 2099, 5120, 820, 4205, 1140, 2419, 4392, 5449, 2777, 4401, 4404, 2627].

Implementations

Implementations

[5539, 5540, 5677, 5678, 3165, 6319, 5288, 4598, 6468, 4277, 3681, 3684, 4484,
3065, 6941, 7060, 4507, 4003, 3726, 1852, 4178, 4017, 6879, 6403, 3116, 3450,
4056, 4550, 3148, 5909, 4598, 1225, 2982, 2600, 4089, 4095, 5291, 3188, 3350,
2671, 5209, 3234, 6156, 6261, 3564, 3712, 1707, 6975, 6986, 7002, 7015, 7029,
7045, 4018, 2538, 4674, 3747, 4985, 5125, 4841, 2949, 4847, 4213].

Implemented

Implemented

[3338, 837, 864, 6202, 3652, 2004, 1719, 2218, 1422, 1504, 4846].

Implementierung

Implementierung

[1175, 1708, 1835, 1312].

Implementing

Implementing

[6452, 5031, 3793, 3209, 2487, 3589, 2404, 5106, 5107, 3725, 2101, 6200, 3460,
1221, 587, 6120, 2499, 2207, 1290].

Implements

Implements

[1958].

Implicants

Implicants

[446].

Implications

Implications

[1468, 2103, 4549, 2757].

Implicit

Implicit

[1648, 4786].

Implicit-Explicit

Implicit-Explicit

[1648].

Importance

Importance

[5954].

Important

Important

[3768].

Imprecise

Imprecise

[3631, 1280, 5969].

Improbability

Improbability

[3828].

Improve

Improve

[4283, 5579, 4126, 5077, 4984].

Improved

Improved

[5988, 4418, 6303, 6534, 1159, 5687, 6321, 185, 5172, 6021, 1096, 5398, 450,
4915, 4469, 5791, 4300, 5071, 1273, 4325, 4793, 5494, 5637, 4652, 459, 558,
4344, 3272, 6066, 5104, 154, 5823, 3748, 6582, 4042, 5524, 1655, 2783, 1890,
4586, 3532, 2677, 2529, 2092, 1637, 5109, 4851].

Improvement

Improvement

[5040, 2296, 5835, 6028, 6168, 3256, 5968, 1612, 4849, 4237, 4953].

Improvements

Improvements

[3471, 1148, 4258, 3173, 3174, 6118, 1955, 3612].

Improves

Improves

[6628, 1564, 1366].

Improving

Improving

[2578, 5544, 5996, 3169, 5158, 6113, 4100, 5586, 322, 4910, 5054, 1798, 4286,
1694, 5406, 6151, 6569, 805, 4323, 5083, 3997, 302, 6184, 2562, 5274, 4083,
2138, 5289, 5970].

Impulse

Impulse

[1009, 2431, 4557].

IMS

IMS

[6985].

IMTC/2000

IMTC/2000

[6985].

In-and-out

In-and-out

[457].

In-Memory

In-Memory

[6679, 6684].

In-Order

In-Order

[4292].

In-place

In-place

[3199].

In-Situ

In-Situ

[6495].

Include

Include

[1428].

Including

Including

[4341, 2472, 3196].

Inclusion

Inclusion

[3559].

Inclusions

Inclusions

[3959, 3539, 3561].

Inclusive

Inclusive

[6651].

Incompletely

Incompletely

[2311].

Incorporated

Incorporated

[959].

Incorporating

Incorporating

[782, 4324].

Increase

Increase

[1251].

Increasing

Increasing

[7004].

Increment

Increment

[4081].

incremental

incremental

[2316, 4324].

incrementation

incrementation

[928].

Indefinite

Indefinite

[4200].

Independent

Independent
[4223, 56, 4967, 4972, 4221, 3061]. Interpolators [3236]. Interpretation
[3343, 6195, 3310, 3311]. Interpreter [4463, 136]. Interpretive [123, 281, 277].
interrupt [761]. Intersections [6637, 2376]. INTErval [4021, 4411, 3786,
3494, 5157, 5460, 4892, 5376, 5295, 5381, 535, 1801, 3526, 3537, 3959, 3962, 4767,
3543, 5939, 6141, 1580, 3557, 2047, 7000, 3562, 1272, 6371, 1392, 3577, 387, 6836,
1604, 3582, 5869, 4006, 6770, 3587, 3598, 3735, 5099, 1126, 4527, 4528, 5875,
896, 564, 6065, 3440, 3441, 3608, 4027, 4195, 4036, 3617, 3873, 3874, 4370, 5116,
5000, 772, 1318, 3635, 4549, 5348, 4570, 1232, 5184, 5852, 5053, 4470, 4507, 6067, 6399,
5709, 5624, 1591, 5086, 348, 349, 1281, 5426, 5726, 5729, 3267, 5241, 3279, 3439,
4030, 3280, 5109, 4373, 1984, 5131, 1317, 5038, 6770, 3276]. interval-enhanced
[4030]. Interval-type [5157]. Intervall [3276]. Intervallargumente [2047].
Intervalle [2001]. Intervals [2001, 5945, 3596, 6581, 5116, 3179, 1467, 267,
5250, 5251]. Interview [3868, 3977, 3867, 4053, 4054]. INTLAB [4021].
Intra [6404]. Intra-Unit [6404]. Intractable [3562]. IntRepair [6574].
Intrinsic [3896, 3897, 4076]. Introduction [1518, 5676, 696, 827, 4428, 5558,
6311, 3669, 3808, 3935, 491, 3949, 5049, 1360, 416, 38, 1176, 3534, 115, 798,
2026, 6135, 1806, 4150, 5414, 427, 1278, 4956, 275, 5870, 4979, 631, 907, 1299, 3455,
1512, 6946, 1465, 4913, 5299, 4962, 2080]. introductory [2284]. intrusion [1169]. intrusion-detection [1169].
Invariant [3639, 5637, 3195, 5494]. Invariant-Sum [3639]. Invarianten [3041, 3042].
Invariants [1447, 3041, 3042]. invented [5518]. Invention [4133, 6658, 4328, 1125].
Inventor [6284]. Inverse [1325, 5040, 995, 4101, 5056, 6354, 3598, 2047,
3396, 4949, 6178, 350, 4522, 6277, 6399, 4193, 4029, 228, 3632, 5674, 6470,
3196, 188, 6254, 3390, 4793, 1841, 6268, 4176, 2047, 4946]. Inverse-Square-
Root [3396]. Inverses [1079, 5849, 4281, 4951, 3077, 6431, 3140]. Inversion
[5998, 3494, 4889, 2833, 6129, 4481, 5207, 6490, 5541, 449, 3816, 6035, 4977,
6281, 4209, 4695]. Inversion/Division [4481]. Inversions [5776]. invertible
[4466, 4624]. Inverting [87, 69]. Investigating [6437, 6131]. Investigation
[3079, 3869, 312, 2804, 2980, 5425]. investigations [745]. Invisible [4857].
Invitation [1482, 1699]. invited [7039]. Involved [6456]. involving
[5464, 3598, 3599, 5112]. IoT [6556, 6557, 6499]. IP [6405, 6421]. Ipm [58, 58].
Ipojuca [7118]. Ireland [6995, 7109, 7107]. rRRAM [4333]. Irrational
[528, 1982]. Irreducible [3571, 5095, 5061, 4671]. ISA [6344, 6606]. ISAAC
[6968]. ISCAS [7055, 6984]. ISIC [7085]. ISMVL [6965]. ISMVL'07
[7087]. Isn't [533, 2494, 3101, 3634]. ISO [3823, 2847, 1696, 3824, 5405,
4926, 6497, 2432]. ISO-Pascal [2432]. ISO/IEC [2847, 1696, 3217, 3824,
4289, 5063, 5064, 5065, 5066, 5405, 6483, 4926]. ISO/IEC/IEEE [5609].
ISO/IEC/TR2 [3823]. Isogeny [6308]. Isogeny-Based [6308]. Isolating
[4626, 6477]. isolation [6214, 5343, 5131, 2786]. ISPAN [7051]. Israel
[4589]. ISSAC [6895, 6955, 6940, 7031, 6991, 7119]. ISSCC [6828]. Issue
[5142, 4746, 3949, 6135, 4292, 3983, 4150, 4979, 6589, 2172, 4962, 6279]. Issues
[4702, 1753, 3549, 1377, 6497, 3588, 3727, 3856, 5875, 4244, 5807, 3435, 2930,
4038, 4371]. ISVLSI [7079, 7054, 7047]. Italia [3859]. Italian [126, 127, 3859].
Italy [7067, 6816, 6905, 6773, 6890, 6909, 6978, 3859]. Itanium [4415, 4439,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Itanium-2 [4498]. Itanium-Based [4833, 4439]. Iterated [228, 1531, 4874, 5926, 5868]. Iterating [2060]. Iteration [4708, 1079, 5849, 532, 4765, 2054, 558, 643, 228, 1531, 4874, 5926, 5868]. Iterative [4708, 1079, 5849, 532, 4765, 2054, 558, 643, 228, 1531, 4874, 5926, 5868].

Iterate [4592, 4135, 4136, 4629, 4306, 4319, 4498, 4647, 4688, 4833]. Itanium-2 [4498]. Itanium-Based [4833, 4439]. Iterated [228, 1531, 4874, 5926, 5868]. Iterating [2060]. Iteration [4708, 1079, 5849, 532, 4765, 2054, 558, 643, 228, 1531, 4874, 5926, 5868]. Iterative [4708, 1079, 5849, 532, 4765, 2054, 558, 643, 228, 1531, 4874, 5926, 5868]. Iterations [1172, 1246, 2959, 1071, 3610, 5679, 4670, 2225, 1730, 2754, 4052, 691, 768, 4845, 5009, 4404].

IV [401, 402, 541, 1080, 6832, 754, 6715, 6807].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 74

2248, 3627. lossy [6314]. Lost [786, 5704, 6186]. Lösung [1552, 4405, 4697].
Louis [21, 6815]. Louisiana [6827, 6961, 7047]. Louisville [6796]. Low
[2794, 4862, 4863, 1325, 1755, 6606, 6457, 6608, 6104, 586, 4722, 6316, 4883,
4724, 3792, 5163, 5164, 6115, 5172, 3937, 3516, 6681, 6238, 4114, 1362, 3814,
5593, 3687, 6352, 4919, 5603, 5703, 3964, 6036, 6361, 4634, 3832, 5795, 6147,
4939, 4317, 6685, 4165, 5806, 4003, 4004, 4005, 6499, 4800, 4342, 4516, 4186,
4349, 6978, 5814, 6398, 5502, 4668, 4669, 4817, 4974, 5329, 4025, 4823, 5652, 630, 5516, 5880, 5980, 5437, 2947, 914, 4392, 3885, 6663, 6512, 6664, 5832,
5844, 6551, 2839, 5602, 3821, 5408, 3834, 4638, 5630, 3717, 4964, 2205, 3593,
5642, 3731, 2524, 2920, 1035]. Low-Complexity [5329, 3832, 4939, 3886, 4845]. Low-Cost [1325, 1755, 5172, 3687, 5703, 5806, 5502, 630, 5980, 914, 1362, 5602, 2205, 2524, 1035]. Low-dimensional [4800].
Low-frequency [2794]. Low-Latency [6608, 5516]. low-level [2560]. Low-
Overhead [6685]. Low-Power [4724, 4919, 6036, 6361, 5795, 4003, 4004, 4342,
6978, 4025, 4823, 5652, 5437, 6512, 4722, 3937, 3516, 4005, 3834, 4964, 5642].
Low-Precision [6606, 6316, 6881]. Low-Weight [5163, 5164]. Lower
[1898, 3991, 5382, 5832, 5836, 4470, 5327, 2758]. LP [5382]. LS [1832].
LSA [4377]. LSB [5407]. LSI [1153, 1465, 1368, 1285, 1208, 1220]. LSI-11
[1609, 1429, 636]. Luigi [5748]. Luminy [6942]. LWE [6697, 6662]. LX

[1532, 1533]. MA [7034, 7138, 6840, 6729, 6765, 6826, 7104, 6810]. mac
[4876, 5837, 6319, 5697, 6253, 5805, 4186, 6655, 4046, 4850, 2264]. MACHAR
[2148]. Machin [4526]. Machine [70, 6211, 1522, 142, 2446, 43, 2148, 211, 991,
1464, 3948, 4908, 856, 326, 3957, 3035, 3205, 6365, 46, 25, 3076, 1412, 1209, 5433,
632, 6508, 972, 1436, 3632, 280, 42, 403, 404, 86, 1802, 2850, 15, 731, 3579, 5723,
6647, 2096, 631, 1884, 1307, 2772, 2427, 3882, 2597, 2710]. Machine-Checked
[3957]. machine-independent [731]. Machinery [96, 6708]. Machines
[7037, 5679, 6924, 1335, 76, 3673, 430, 6943, 6950, 6964, 7017, 7075, 7091, 72,
4544, 4239, 27, 37, 67, 88, 1206, 3443, 473, 32, 564]. Macintosh [3159, 2845].
MacLISP [808]. Macro [4469, 3124]. Macro-Model [4469]. Macrocell
[5156, 3847, 3770]. Macromolecular [843]. macromodule [747]. Macros
[1045, 123, 3708]. Magnification [2106]. Magnitude [1059, 1821, 273, 562,
5247, 2823, 1828, 659, 2424]. Magnum [2568]. mail [3674]. main [363, 774].
[3447]. Major [6017, 3747]. Majority [4271, 6032, 6570]. Majority-Logic-
Decodable [4271]. majors [2752, 2938]. Make [6228, 5858, 5838, 1291, 3634].
[4098, 6331, 394, 3412]. Makuhari [6983]. malicious [6081]. Malo [6822].
man [1289, 3867, 5518]. management [2979, 1646]. Managing [6171].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

4514, 4656, 1025, 4344, 1855, 111, 560, 5644, 746, 174, 3611, 4034, 1500, 5247, 4828, 4991, 513, 4041, 765, 5981, 4382, 201, 3628, 3631, 4057, 3307, 1985, 1046, 578, 6590, 1516, 5673, 5990, 6297, 4703, 1056.

Method [5906, 5696, 2644, 2647, 1793, 1095, 3196, 4917, 3382, 6709, 3210, 544, 3062, 6381, 2692, 4322, 2502, 4795, 2200, 4041, 765, 5981, 4382, 201, 3628, 3631, 4057, 3307, 1985, 1046, 578, 6590, 1516, 5673, 5990, 6297, 4703, 1056].

Methodology [6610, 2155, 4461, 4539].

Methods [3888, 2664, 380, 3216, 3553, 4928, 2044, 7001, 2867, 3235, 5222, 2693, 301, 4653, 7004, 5094, 2211, 2525, 1957, 119, 151, 5507, 5508, 3447, 6944, 3133, 691, 768, 182, 1657, 5531, 1216, 1552, 1130].

Metric [29].

Metrics [3488].

Metropolis [324, 325, 511]. Metropolitan [7059]. Mexico [6872, 6988, 7101].

Mflop [2291, 2192, 2221, 2430]. Mflops [2160, 2449, 2604, 2831, 3039, 3040, 2345, 2346, 2352, 2353, 2354, 2355, 2712, 2387, 2388, 2389, 2390, 2409, 2160, 2832].

MHz [2299, 2270, 3915, 4132, 3574, 2278, 3429, 3430, 2407, 3466].

Miami [6967].

Michigan [6772, 6904, 6977].

Microarchitecture [1753, 4712, 2309, 5631, 6700, 1524, 2147, 6859, 4536]. Microbenchmarking [6360]. microcode [1271, 4022]. Microcoding [1219].

Microcontroller [2219, 2125]. microcontrollers [6693, 5646].

Microelectronics [7107, 7115, 6831].

Micrografx [3138]. micropipeline [3884].

Microprocessor [1224, 1439, 2283, 4091, 5575, 1552, 1917, 6791, 2654, 3027, 542, 6767, 5609, 6483, 2351, 2871, 1109, 1946, 2385, 4799, 4961, 2712, 2899, 4007, 3850, 2221, 4025, 5345, 5577, 2974, 1445, 3328, 4720, 1337, 1367, 3034, 2331, 3548, 2350, 2866, 2375, 2377, 4008, 4657, 1723, 1628, 3274, 2744, 3618, 3747, 4046, 1306, 3293, 1892, 4090, 1386].

Microprocessor-Based [1109, 1723, 1306, 1892]. Microprocessors [1537, 2461, 4111, 6248, 5735, 4454, 950, 1291, 2081]. Microprogrammable [859, 1319].

Microprogrammed [1000, 1281, 695, 1840, 1315]. Microprogramming [6768, 812, 6859]. Microsecond [122]. Microsoft [2540].

MicroVAX [1967].

Midcon [6799]. Midcon/84 [6799].

Middle [4764]. Midpoint [6141, 5852]. Midpoints [5617].

Midwest [7111, 6903, 7056, 6747].
5492, 6638, 1843, 2512, 5966, 738, 3423, 3731, 4971, 4345, 2726, 6577, 6578, 5974, 4019, 5242, 4193, 6405, 6697, 5516, 818, 1135, 2942, 3127, 5255, 4378, 2774, 4389, 4390, 1437, 5885, 6664, 5273, 6076, 3782, 4236, 6609, 5158, 6225, 5290, 3802.

modular [3013, 6555, 3945, 2162, 4127, 4471, 5403, 3961, 4632, 4925, 4148, 4314, 4494, 1275, 6706, 4793, 4795, 5233, 4984, 4037, 4038, 4039, 2776].

Modular-Multiplication [2512]. modulation [4147, 4062]. Modulator [121, 3910]. Module [3775, 1456, 1081, 2633, 2370, 3419, 3104, 4363, 3458, 4230, 2274, 1235, 2303, 2885, 4672, 5662]. Modules [1529, 4423, 4493, 3419, 4785, 3271]. Moduli [5886, 5896, 3900, 6341, 1692, 4766, 6132, 6349, 5198, 891, 6654, 5247, 4056, 4390, 3318, 3319, 4854, 1227, 1663, 4583, 4271, 5158, 3920, 2867, 4663, 1859, 1959, 4984, 4037, 4038, 4039, 2776].

Modulo [4560, 4711, 5555, 6102, 782, 644, 840, 5849, 5387, 4623, 4914, 6349, 5601, 5407, 6359, 1269, 4143, 5950, 4943, 4951, 5742, 4396, 4554, 6664].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3596, 6184, 6068, 1632, 2228, 2230, 5735, 5438, 3883, 5904, 2294, 5916, 6343, 1828, 2701, 5495, 4964, 3259, 3260, 3130, 5269.
multi-
5904.
multi-base
5761.
multi-Core
6068, 5783.
Multi-Dimensional
4266, 4964.
Multi-Exponentiation
3663, 5269.
Multi-fault
5995.
multi-FPGA
5495.
multi-function
3259, 3260.
multi-Input
1845, 2701.
multi-Intervals
3596.
multi-Length
493.
multi-Media
3793.
multi-Mode
6694.
multi-modulus
3259, 3260.
multi-modulus/multi-function
3259, 3260.
Multi-Operand
1055, 1353, 1381, 2837, 5085, 1632, 2228, 5438, 5916, 5995, 5495.
multi-modulus
3259, 3260.
multi-modulus/multi-function
3259, 3260.
Multi-Parallel
3000.
multi-port
3130.
Multi-Precision
2230, 6248, 5735, 6343.
multi-purpose
5761.
multi-purpose
2230, 6248, 5735, 6343.
Multi-Term
6691.
multi-purpose
3259, 3260.
Multi-User
1530.
multi-Valued
1055, 1353, 1381, 2837, 5085, 1632, 2228, 5438, 5916, 5995, 5495.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
multibit
5728, 2538.
multibyte
6082, 1917.
multibyte
6082, 1917.
2634, 3938, 4103, 2829, 5046, 5181, 792, 487, 4107, 5389, 4272, 164, 5783, 4275, 5784, 937, 1003, 6123, 5923, 3952, 5924, 5396, 6341, 6476, 6125, 187, 5786, 5399, 937, 1003, 6123, 5923, 3952, 5924, 5396, 6341, 6476, 6125, 187, 5786, 5399.

Multiplication [5596, 450, 4123, 1258, 656, 417, 6350, 4473, 5600, 3542, 4272, 164, 5783, 4275, 5784, 937, 1003, 6123, 5923, 3952, 5924, 5396, 6341, 6476, 6125, 187, 5786, 5399].

Multiplication [3108, 3608, 4031, 4196, 4673, 4364, 5735, 687, 6697, 1210, 5516, 5434, 760, 2095, 3752, 1038, 5980, 3127, 3757, 5255, 5118, 5256, 155, 910, 4383, 911, 472, 6200, 6585, 5882, 6586, 2774, 4390, 4844, 1435, 1655, 440, 4393, 5128, 4394, 6703, 5885, 4191, 4354, 113, 1626, 1627, 897, 4360, 4533, 1864, 1499, 5513].

Multiplication [2162, 938, 1794, 3195, 6345, 6346, 5936, 6630, 3692, 5610, 6140, 4632, 4925, 4634, 4928, 4148, 2184, 2860, 3058, 3232, 4314, 4494, 4320, 2499, 4321, 5310, 5955, 3872, 2056, 4791, 2374, 4795, 2699, 4659, 5641, 5729, 5812, 5968, 6056, 3425, 2724, 4662, 4345, 2394, 4187, 6060, 4666, 4667, 4817, 6695, 3861, 752, 629, 3865, 4825, 5977, 6283, 2745, 5246, 5517, 3619, 2408, 3751, 5738, 4047, 1877, 2754, 2942, 2943, 3875, 4995, 4867, 1042, 5660, 3460, 473, 5263, 3139, 3765, 5129, 5268, 5009, 5271, 3312, 5531, 2572, 3313, 4852, 5014, 6998, 356, 3641].

Multiplication-Add [4247]. Multiplication-free [4844, 5310].

multiplication/division [4632, 4925].

Multiplication/Division/Square [2370].

Multiplications [3929, 6015, 4758, 6130, 5056, 5197, 3721, 5966, 4656, 6649, 740, 2423, 3465, 5544, 5566, 5926, 4172, 2754].

Multiplicative [982, 4889, 5849, 4281, 4951, 5958, 6178, 5874, 6399, 3450, 6431, 587, 1076, 1077, 4609, 5188, 1565, 3692, 2567, 2963].

Multiplier [1729, 2093, 1502, 3874, 1503, 4684, 766, 2098, 5437, 1505, 1506, 1645, 4378, 5439, 6584, 309, 5742, 5530, 3462, 139, 1983, 2112, 4396, 4212, 3466, 6664, 3317, 6667, 776, 5536, 3470, 2576, 2135, 3170, 4883, 3354, 2824, 5916, 4105, 4902, 4106, 649, 3019, 1795, 2322, 2838, 3025, 4127, 3203, 2483, 4628, 1807, 3964, 5408, 3228, 4774, 4485, 4638, 2361, 4153, 4491, 2874, 2689, 2057, 3574, 4790, 2701, 3078, 2895, 2204, 3251, 3421, 3593, 3853, 3594, 4014, 623, 4529, 5820, 2538, 2225, 3274, 3113, 2411, 3124, 5108, 4044, 4374, 1743, 2957, 2958, 1748, 4552,

Additional Contributions from Nelson H. F. Beebe

[3540]. Nat [4054]. National [1989, 2798, 6853, 2694, 6800, 1900, 5007].
Native [6468, 4996]. Natural [3978, 6040, 6384, 5568, 8, 3434]. Naturally
[4906]. Nature [7099, 5971, 4462, 4348]. Navig [3499, 4057]. Navy
[3509, 1559, 1481, 3597, 1030, 6214, 4488, 1892]. Near-optimal [1030, 6214].
near-optimum [1892]. Near-Perfect [1559]. Nearest [6532, 6028, 5430, 5816].
Nears [3674]. Nebst [564]. Necessary [4429, 3984, 740, 3454, 4206]. Need
[1664, 1376, 6648, 5253, 3763, 5785]. Needed [1252, 3419, 3424, 512, 759, 5010].
Needle [4139]. Needle-like [4139]. needs [3030, 3031]. Neergaard
[511]. Negabinary [776, 1049, 1222, 1320, 1331]. Negabinary-Binary [1222]. Negative
[824, 788, 406, 1383, 607, 622, 4523, 748, 749, 5254, 137, 633, 579, 4443, 5633, 135].
Nets [6576, 572, 2108]. Network [6952, 6591, 6342, 6478, 1586, 4302, 6149, 6495, 5961, 6693, 6650, 6513, 3640, 3774, 2843, 4849]. Networking [7064, 7142]. Networks [6291, 7051, 6312, 6316, 1071, 6226, 791, 843, 2827, 6679, 6551, 3362, 6238, 6556, 6557, 1575, 6366, 6367, 6631, 885, 6449, 6506, 6409, 2139, 2993, 3943, 2655, 3713, 3755, 6287]. Neue [1442]. Neumann [6814, 6117, 651, 5592, 5701, 6129, 3693, 545, 6711, 6712, 6713, 6715, 6717, 6718].
Neural [6591, 6291, 6312, 6316, 6226, 6679, 6551, 6238, 6556, 6557, 6342, 6478, 6366, 6367, 6631, 4302, 6149, 6495, 6693, 6649, 6650, 6409, 6287, 6513, 2993, 2843, 4749, 3435, 3479]. Neumorphic [6267]. Neuroprocessors [5831].
News [3674, 6489, 2568]. Newton [3471, 6214, 4708, 6673, 6535, 786, 3921, 5849, 4112, 4765, 4917, 3222, 3226, 499, 5072, 5489, 1279, 2703, 2891, 3243, 433, 558, 2909, 560, 6190, 3278, 513, 4052, 4382, 6431, 4843, 5005, 5266, 3314, 6463].
Nicholas [490]. Nicht [1761]. Nicht-Standardfunktionen [1761]. NIL
[1290]. Nimble [6669]. Ninth [6953, 6932, 6977]. NIOS [5467, 4901]. Nis
NNP-T [6478]. No [1441, 575, 4855, 1259, 2037, 6266]. No.95 [6858].
Nodes [6556, 6557, 2621, 6169]. Noise [1447, 3338, 782, 5698, 2652, 3233, 762, 2932, 3652, 649, 710, 793, 3197, 3532, 2857, 3225, 2347, 1189, 1190, 868, 2497, 2397, 2532, 2738, 813, 2920, 1034, 3759, 2422, 520, 521, 522, 2567, 2569, 2435]. noise-tolerant [3759]. noises [3760]. nombres [3527, 6742]. Non
[362, 826, 6544, 5781, 486, 6472, 1249, 6341, 4630, 1584, 3558, 1273, 6160, 4158, 6495, 6270, 3422, 5047, 6073, 179, 5008, 1754, 6096, 1227, 6106, 5573, 4443, 3186, 3187, 5069, 5053, 3815, 2846, 3221, 3564, 3712, 6653, 6192, 2558].
Non-Analytical [179]. Non-binary [4158, 6096, 3221]. non-computable
[5053]. Non-Coprime [6341]. non-decimal [1754]. non-determinism
8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

85

1177, 1256, 7095, 6245, 5198, 1570, 6031, 6252, 1578, 1102, 1103, 1269, 3696,
189, 331, 1378, 1584, 3392, 5070, 723, 801, 190, 1104, 1383, 1825, 5483, 5795].
Number [726, 5711, 5798, 25, 1017, 1194, 4640, 272, 6568, 3992, 4944, 878, 660,
5224, 5085, 4504, 667, 1114, 1838, 4507, 3076, 6638, 2887, 302, 1601, 3415, 4963,
887, 3849, 1118, 891, 3420, 2719, 1399, 3424, 3259, 3260, 4342, 4516, 2520, 4016,
4184, 958, 1121, 740, 1856, 3266, 3097, 3427, 1624, 1861, 1495, 5733, 684, 436,
466, 6068, 3276, 1866, 512, 759, 2093, 1133, 6506, 4541, 4544, 2549, 909, 1211,
5254, 3876, 2415, 2239, 5740, 910, 1978, 1214, 2770, 2104, 6203, 5526, 3462, 2959,
5010, 770, 4558, 576, 2962, 6742, 2573, 3148, 3318, 3319, 4854, 4855, 4409, 1660,
4217, 4565]. number [3472, 2581, 2260, 3779, 4570, 5751, 4703, 6096, 3486,
6213, 2123, 1057, 1225, 1446, 1993, 1995, 2266, 1227, 3162, 3163, 1760, 1898,
2983, 2984, 1663, 4081, 3783, 5459, 3905, 3654, 4582, 4583, 4721, 2139, 2143,
4084, 4432, 926, 2004, 4585, 5158, 2279, 2452, 2611, 2612, 2613, 2614, 2453, 3173,
3174, 3500, 3501, 3502, 3910, 4588, 3660, 4438, 5906, 1776, 4096, 5576, 1076,
1077, 4263, 2293, 2823, 3007, 3186, 3187, 3510, 3664, 3804, 3668, 3806, 1241,
3942, 4268, 2638, 2639, 3945, 4110, 2311, 2643, 2833, 2312, 3812, 3522, 213, 2313,
2315, 2648, 237, 1005, 1174, 2319, 2320]. number [1255, 4916, 7070, 3377, 3378,
3379, 3380, 2324, 4475, 602, 5058, 5602, 1370, 2662, 3821, 4291, 1009, 1185, 1266,
1374, 1375, 1479, 1480, 1818, 2173, 1934, 2853, 3045, 2177, 1010, 242, 860, 4147,
2671, 3048, 3049, 3050, 3051, 296, 218, 2357, 2864, 3059, 1826, 1938, 1939, 1940,
1941, 2186, 2187, 2358, 2359, 2865, 2682, 2867, 2361, 2683, 2362, 1193, 3708,
3838, 3994, 4157, 5081, 1704, 2689, 2879, 4162, 4163, 4164, 4322, 4323, 4324,
4503, 4789, 3997, 4165, 5719, 2371, 2058, 553, 5633, 5491, 1712, 3844, 4962, 5426,
4964, 6692, 222, 4336, 4654, 2391, 3254, 3255, 2905, 2906, 4012, 4176]. number
[4177, 3092, 3261, 3262, 389, 3263, 3264, 3425, 1719, 1857, 5098, 6059, 4345,
4346, 4663, 2912, 2913, 3428, 3599, 507, 4189, 2396, 2531, 4190, 1492, 1859, 1959,
2398, 1409, 4353, 509, 4531, 2403, 3862, 5653, 4984, 3612, 1867, 3118, 2092, 5656,
2410, 2747, 2930, 3870, 4037, 4038, 4039, 970, 1035, 1036, 1637, 1731, 1732, 1968,
1969, 4985, 2933, 2934, 4539, 2940, 176, 2548, 2941, 308, 1422, 1504, 3453, 3626,
1880, 2240, 1976, 5121, 2763, 3759, 1140, 4998, 3133, 4055, 4207, 2769, 3628,
1980, 3295, 3296, 3297, 5264, 137, 4392, 2775, 2780, 3145, 3146, 3310, 3311].
number [4062, 4063, 4064, 4398, 4399, 4555, 4556, 4557, 2782, 2783, 2784,
4849, 524, 774, 2963, 2791, 2792, 6590, 4722]. Number-Theoretic [4016, 4184].
Numbers [7021, 7065, 640, 983, 4080, 36, 5026, 1450, 1063, 6215, 2447, 530,
5759, 6002, 3492, 6317, 6318, 6954, 4433, 1342, 2455, 316, 1348, 1075, 1778, 1779,
4257, 145, 4745, 6332, 648, 1171, 52, 850, 1472, 3676, 6473, 51, 3679, 6025, 2653,
537, 538, 38, 1176, 2480, 1925, 2484, 2657, 2844, 6029, 6031, 4133, 327, 5788,
6039, 6145, 4483, 1588, 5945, 245, 1485, 5418, 614, 661, 5720, 6384, 428, 2887,
4327, 2200, 3412, 5865, 105, 5869, 1117, 2721, 2722, 352, 4523, 1408, 3736, 1202,
173, 3863, 2093, 6407, 2547, 4827, 5253, 3753, 3456, 1648, 3298, 6287, 6511].
Numbers [1429, 1220, 636, 5830, 919, 1047, 5139, 3889, 5990, 3323, 4873,
2271, 3493, 6220, 5567, 5033, 2611, 2612, 2613, 5764, 4725, 4726, 2287, 5467,
2823, 5174, 3666, 2631, 2632, 2641, 2311, 126, 1363, 2317, 292, 2322, 5931,
4466, 4624, 5299, 1179, 1259, 127, 6027, 3210, 657, 1576, 241, 2044, 2677,



Additional Contributions from Nelson H. F. Beebe

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 100

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Reciprocals [2217, 2914]. Reciprocals [2577, 5562, 4933, 4028, 1910, 4626, 3618]. Reciprocity [1222]. RECIPROOT [83]. Recoding [5761, 5396, 2327, 4138, 3404, 5420, 563, 5144, 2860, 5728, 3854, 2538, 5268]. Recodings [4982]. Recompiling [6018]. ReConFig [7101]. Reconfigurable [3643, 3902, 1771, 7101, 7109, 3387, 4484, 4507, 5650, 4383, 4388, 5529, 4397, 4696, 5831, 5273, 5768, 5750, 4081, 4236, 4432, 2159, 4320, 5314, 2208, 4532].

Reduction [6083, 5358, 4879, 5164, 5771, 3365, 6629, 5191, 5935, 5611, 5705, 2019, 1897, 921, 1446, 2982, 2274, 4606, 1795, 1185, 1934, 2186, 868, 2497, 3234, 955, 1859, 1867, 1035, 1732, 1888, 2789]. Redundancy [525, 827, 828, 4708, 1769, 6319, 4597, 3427, 5241, 813, 6654, 6070, 4678, 3448, 5453, 4992, 5530, 4393, 3465, 5013, 6213, 4719, 5286, 5461, 5904, 3178, 3357, 4261, 4262, 3196, 4677, 4681, 4682, 5125, 2963, 2789].

Reducible [1799, 1800]. Reduced-Instruction-Set [1799, 1800]. Reduced-precision [6479], Reducibility [1186]. Reducing [4084, 5285, 4096, 4597, 5777, 330, 5626, 3083, 3414, 3590, 3852, 3424, 5731, 355, 225, 4206, 310].

Redundancy [525, 827, 828, 4708, 1769, 6319, 4597, 3427, 5241, 813, 6654, 6070, 4678, 3448, 5453, 4992, 5530, 4393, 3465, 5013, 6213, 4719, 5286, 5461, 5904, 3178, 3357, 4261, 4262, 3196, 4677, 4681, 4682, 5125, 2963, 2789].

Representations [4560, 1986, 206, 828, 5752, 5580, 1569, 2337, 4931, 5623, 5077, 1394, 3072, 672, 4808, 3269, 750, 5104, 2939, 2942, 823, 4553, 5270].

Reproducible [5887, 5888, 5989, 6441, 5997, 6216, 6313, 6108, 5771, 5772, 5774, 5845, 5911, 5938, 6165, 5967, 6429, 5835, 6010, 6228].

Republic [6956, 7103, 7072]. Required [4763, 539, 3223, 5481, 1108, 361, 440, 4660]. Research [7107, 6785, 6150, 2053, 6890, 6753, 6400, 4400, 6742, 1894, 141, 1672, 5700, 3198, 2031, 2035, 5713, 6820, 1646].

Results [4413, 1440, 4235, 3011, 6472, 4942, 4001, 111, 1962, 6067, 685, 1507, 4839, 1890, 1754, 3784, 2137, 3500, 5764, 2299, 3955, 4466, 4624, 5195, 5196, 6634, 3068, 5088, 4180, 1857, 2211, 2910, 5507, 5508, 5514, 2744, 2766, 1887].

RISC [2481, 2486, 2506, 2510, 6306, 6447, 6606, 2599, 4585, 2283, 2151, 6552, 6556, 6557, 2320, 4623, 2482, 2168, 2326, 3038, 3212, 3213, 2041, 2858, 3555, 2345, 2346, 2866, 6636, 3238, 2199, 2893, 2385, 3847, 3091, 2221, 1501, 2550, 6422, 3305, 2568, 6704, 3294].

RLWE-Based [6440]. RN [4873, 4779, 4932, 5073]. RN-coding [4779, 4932]. RN-Codings [5073, 4873]. RNC [7065]. RNC3 [6954]. RNC5 [7021].

RNS [5697, 6059, 6698, 4855, 5139, 4563, 5675, 3647, 3782, 4707, 5353, 5754, 5895, 5995, 6004, 5998, 4582, 3920, 4437, 4591, 6322, 5576, 4737, 3359, 6622, 3803, 6330, 2300, 4107, 5586, 5695, 3947, 4461, 6341, 3688, 3960, 4127, 4471, 6132, 6349, 3210, 3211, 3821, 3052, 2358, 6159, 4338, 4011, 5971, 5238, 2737, 4525, 1492, 4984, 2406, 4039, 5247, 6507, 4203, 1882, 3761, 4689, 5009, 5885].

RNS-Based [5675, 4461, 4107]. RNS-to-weighted [4039]. Road [2616].

Robert [40]. Robust [5682, 2876, 6637, 6272, 5239, 6403, 3105, 3615, 4351, 6671, 6542, 3800, 3803, 4743, 3979, 6406, 3614, 3746, 3467, 2877].

ROM-based [2187]. ROM-less [5068]. ROM-Rounding [869]. Roman
5925, 3682, 5935, 1805, 6250, 5413, 5707, 4309, 6491, 3709, 6043, 6157, 2873, 432, 3107, 3277, 5981, 1308, 2793, 5833, 6607, 4717, 4718, 6108, 4891, 5464, 4259, 4260, 2039, 5482, 611, 3839, 4155, 6634, 2376, 4653, 4180, 762, 4830, 4733.

Rounding [3718]. Rounding [3893, 4224, 5895, 4422, 3163, 780, 5279, 5557, 5562, 5687, 1673, 2998, 3660, 5453, 5766, 1777, 3179, 4598, 1165, 5846, 3669, 3808, 3935, 6625, 3189, 3938, 4103, 3366, 163, 4904, 5918, 4755, 5698, 4907, 4763, 6351, 1932, 3967, 5475, 1935, 3222, 5067, 5620, 3230, 5481, 869, 1015, 4488, 3397, 4310, 5416, 2364, 4315, 4643, 4941, 4942, 876, 1485, 877, 5956, 4332, 5311, 4000, 3585, 618, 1848, 1197, 4807, 4016, 4184, 5644, 1621, 50, 3602, 965, 5878, 6062, 5330, 5331, 2402, 1296, 3442, 899, 199, 4679, 4200, 2546, 1301, 5657, 1740, 5259, 5658, 74, 3879, 472, 5444, 6286, 5265, 2950, 6719, 637, 2785, 5451, 975, 6463, 6424, 3777, 4703, 1994, 4574, 4427, 4106, 3811, 5183, 5048, 5188, 2317, 1261, 2843, 6479, 2665, 4290, 862, 2670, 3058, 3232, 3395, 1828, 3986, 3837, 3987, 3235, 6263, 6634, 947, 1020, 5807, 4167, 6169, 4505, 4648, 6497, 1396, 4330, 5425, 4339, 1026, 5730, 4014, 1911, 960, 4521, 4665, 4814, 5731, 5430, 5816, 5817, 6065, 5509, 5514, 3106, 2405, 4832, 4833, 5341, 5342, 3132, 2556, 2557, 2558, 1215, 2105, 1311, 2951, 1657, 3467, 4069, 4732, 5770, 3760, 2422, 520, 521, 397, 2567, 2569, 2788, 2789, 3313, 3181, 3760, 2422, 520, 521, 397, 2567, 2569, 2788, 2789, 3313, 3181, 3760, 2422, 520, 521, 397, 2567, 2569, 2788, 2789, 3313, 3181.

Scientists [6331, 239, 713, 1923]. Scilab [5682, 5510].
Scope [1842]. scoped [1453]. Scotland [6994, 6795, 6991, 6779, 5504]. script [5289, 4134].
Seattle [6743, 7111, 6888, 7015]. Second [6968, 4740, 2161, 2482, 6874, 4929, 6834, 6963, 3603, 4028, 2932, 1443, 2982, 6936, 6875, 6568, 1396, 4201, 3760, 2569, 696].
Seidel [3557]. Seismic [2710]. Selbsttätigen [32]. Select [5629, 4089].
Selection [7035, 3893, 5687, 6236, 1556, 3189, 1692, 5620, 4930, 3397, 6688, 4000, 5234, 5819, 3297, 5885, 3777, 5906, 3014, 2429, 861, 4636, 2892, 4330, 4521, 4665, 1961, 4984, 3749, 1883].
Selections [6224]. selective [4162]. selectively [5248].
Self-Contained [591, 480]. Self-Delimiting [2962, 2784].
Self-Validating [3609, 6865, 2525, 5666].
Seoul [6971, 7076]. Separate [5631, 133, 3258]. Sept [7085]. September [6934, 6898, 6923, 6953, 7021, 7006, 6994, 6758, 7023, 7068, 6844, 6792, 7112, 6970, 6845, 6740, 6782, 6860, 6972, 6983, 6998, 6999, 7010, 7041, 7043, 7059, 7103, 7145, 6874, 7001, 7089, 6804, 6835, 6799, 6920, 7046, 7109, 6979, 7092, 7048, 6742].
3457, 4388, 1045, 2112, 2583, 2136, 2287, 4596, 2624, 3523, 5851, 2838, 3214, 4491, 4180, 4816, 4821, 2232, 2946, 1430, 1431, 1654, 2255.

serial-data

[2232]. serial-input

[2287]. Serial-Parallel

[1773, 1792, 2112]. Series

[3888, 6095, 2618, 3506, 6117, 6129, 2190, 737, 1025, 6395, 5731, 357, 227, 4422, 106, 1677, 447, 4117, 4764, 5598, 2861, 3570, 1026, 4534, 3623, 2166, 1007].

Server

[5477, 3744, 2852]. servers

[5622, 3887]. services

[5306]. Servo

[2434]. ses

[17]. Sessions

[6765, 6826, 6786, 6787, 6799, 6810, 6778, 6812, 5991, 6839]. Set

[5886, 4412, 6207, 5896, 3494, 2615, 4597, 2816, 3360, 5914, 5781, 1362, 1799, 6132, 2325, 5198, 876, 1018, 1620, 394, 5000, 4215, 6297, 527, 4426, 4583, 2451, 4591, 1078, 1351, 5467, 2462, 6229, 4905, 2320, 1800, 3958, 3244, 4815, 6695, 4984, 1745, 4848]. set-ups

[527]. Sets

[1223, 6341, 6349, 863, 1113, 959, 2910, 5099, 4036, 5105, 6711, 5446, 3318, 3319, 1232, 6314, 5158, 3004, 4757, 612, 5219, 5417, 3245, 5314, 2393, 5738, 4405]. Setters

[5252]. Setun

[5560]. SEU

[2744]. Seven

[4957]. Seven-Term

[6992, 903]. Seventeenth-Century

[903]. Seventh

[7049, 7030, 6919, 1809]. Several

[3043, 1367, 804, 1200]. severe

[1918]. Sexagesimal

[5973]. SFM

[7067]. SFQ

[5619]. SFU

[6046]. SFU-Driven

[6046]. Shadow

[6546]. Shift

[2724]. Shanghai

[7055, 7062]. Shannon

[3117]. SHARE

[383]. Shared

[2019, 3543, 3407, 2305, 4112, 3834, 3990, 4686, 2563]. Sharing

[101, 6238]. Sharp

[6035, 6374, 4069]. Sharp

[6873, 6873]. sheet

[4454]. Sheraton

[6968]. Shi

[1073, 791, 412, 712, 1177, 3231, 1024, 630, 6327, 489, 3952, 3069]. Shift-And-Add

[6327]. Shifted

[5046, 5095, 3952]. shifter

[2377]. Shifters

[2074, 4520]. Shifting

[1267]. Shiftrix

[339]. Shifts

[958, 1121, 3848]. Shop

[4077, 4078, 4079, 4080]. Short

[4560, 3, 5599, 328, 2334, 2863, 5626, 194, 1620, 3284, 5986, 4467, 3405, 4172, 5640]. short-latency

[5640]. Shortcut

[969]. Shortest

[3877]. Shorthand

[1296]. Shorthand

[6898, 3157, 7036, 3338, 6824, 2608, 4437, 3509, 2155, 2161, 2831, 3193, 542, 6858, 6808, 6873, 6902, 7012, 7026, 7042, 7044, 3044, 3549, 6832, 6941, 7060, 5224, 2515, 2209, 6879, 1034, 3121, 2233, 1136, 6894, 1319, 2794, 2123, 1057, 3652, 3168, 4601, 3806, 6900, 2832, 5697, 2315, 6343, 3197, 3376, 2667, 3219, 1266, 1010, 3391, 2862, 1826, 1939, 1941, 2358, 4152, 2874, 6819, 6975, 6986, 7002, 7015, 7029, 7045, 2504, 2884, 2202, 4517, 2078, 2215, 2531, 812, 3102, 5650, 2747, 4037, 1968, 3129, 2945, 1142, 2775, 1654, 2434, 2627]. Signal-to-noise

[1034]. signaling

[4555, 4556]. Signalling

[5277]. Signals
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

1347, 1676, 3922, 3355, 6008, 6548, 2295, 1682, 5295, 5381, 1468, 1168, 1243, 2642, 3950, 3690, 1264, 1369, 6355, 5653, 6357, 1810, 1811, 1812, 2033, 2034, 5593, 6358, 24, 1580, 1187, 1270, 1376, 2040, 3551, 3694, 4479, 3419, 5317, 1027, 6058, 1122, 1198, 4359, 3276, 1726, 6504, 1298, 1418, 1419, 1300, 1425, 1977, 1428, 1145, 5452, 3770, 1523, 1993, 1155, 3343, 4435, 1543, 2619, 1072, 1911, 3668, 486, 2169, 1183, 1813, 1945, 6497, 3411, 2521, 2522, 2218]. standard
[1268, 4675, 1966, 1420, 3581, 1523, 1911, 4359, 3276, 1726, 6504, 1298, 1143, 6850, 6921, 6945, 6980, 3467, 5548, 3652, 6752, 3225, 4777, 2397, 1205, 2545, 4201, 2252, 2569]. State-of-the-Art [6387]. State-Space
[3338, 2932, 3707, 3652, 3225, 4777, 4201, 2569]. Statistic [3320]. States
[6768]. Static [4724, 705, 4438, 3520, 4276, 5051, 5590, 4786, 4813, 3613, 4095, 5622, 3717, 5229, 7076]. statistic [4064]. Statistical
[4702, 529, 2998, 212, 51, 3820, 1190, 726, 877, 3843, 3998, 3281, 4538, 571, 6780, 2069, 127, 1189, 3235, 957, 3733, 4182]. statistici [127]. Statistics
[604, 401, 6781, 541, 4502, 1759, 5289, 3026, 275, 2556, 2557, 2558]. Status
[5381, 3694, 2543, 3551, 5954, 745, 4989, 5110, 5335, 5336, 5337, 5338, 5339]. Std [1989, 6324, 6358]. Steady
[6640]. Steamboat [7068]. Steering
[6091, 6523, 6598, 6417]. Stein [988]. Stegler [6382, 6183]. Step
[6100, 6535, 1044, 86, 3048, 3049, 3050, 3051, 1647]. step-by-step [86]. Steps
[4271, 5725, 267, 2704]. Stepwise [5260]. Sterbenz
[966]. Sticky [4079, 3662, 4181]. sticky-bit [4181]. still [2132]. stingy
[2517]. Stinks [2650]. STOC [7077, 7094]. Stochastic
[2117, 4705, 6543, 6625, 5698, 5591, 6339, 6479, 4791, 4792, 6395, 2211, 5879, 6069, 6655, 6581, 4839, 4700, 6216, 4435, 5927, 6239, 2836, 5716, 6263, 5315, 2539, 3137, 6588, 3348]. Stochastically
[6553, 6554]. stochastique [3348]. Stock
[3563, 1621]. Stocks
[4188]. STOIC [1635]. Stokes [3499, 3586, 4057]. stopping [399]. Storage
[839, 5391, 7142, 271, 133, 5785, 3282]. Storage-Efficient
[839]. Stored
[2441, 3015, 5475]. Stored-Carry [3015]. Stories
[4912]. story
[6926]. Strassen [5582, 5186]. Strategies
[6151, 3406, 4083]. Strategy
[6246]. Strawman [4594]. stream
[6096]. Streamed
[6191]. streaming
[5650]. streamlined [2210]. streamlines [1745]. Streams
[6196, 5533]. Strength
[4678, 3465]. Stretch
[3322]. Strict
[1974, 2846]. strikes [6282]. string
[6205, 4081, 603, 1839]. Strings
[1718, 806]. Strong
[3674, 3605]. Strongly
[2873]. Structural
[462]. Structurally
[2143]. Structure
[234, 647, 707, 1791, 855, 5859, 5975, 2750, 4388, 5446, 4127, 2865, 1107, 389, 4670, 1867, 3769, 1344]. Structured
[2002, 1914, 6759, 4681]. Structures
[825, 832, 2595, 4437, 5387, 1372, 6154, 4951, 1398, 1610, 1410, 6405, 2932, 1214,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

1379, 3048, 3049, 3050, 3051, 2357, 2864, 1826, 1938, 1939, 1940, 2187, 2359, 2682, 2867, 5079, 1704, 4787, 4164, 4324, 553, 5633, 4651, 1278, 2702, 5227, 1840, 5228, 3844, 5315, 5327, 5318, 3092, 389, 3263, 3264, 3425, 4809, 1719, 5098, 6059, 4346, 3734, 2912, 2913, 3428, 3599, 4189, 3858, 2081, 2398, 1409.

Dimensional [1755, 1116, 1606, 5001, 5883, 955, 6057, 2213, 1867, 2951].

REFERENCES

130

References

[1] G.-W. Leibniz. Explication de l’Arithmétique binaire. (French) [Explanation of binary arithmetic]. Mémoires de mathématique et de physique de l’Académie royale des sciences, ??(??):85–89, ???? 1703. URL https://hal.archives-ouvertes.fr/ads-00104781/document. Leibniz is often credited with the invention of the binary number system, but there is other work from his era, and detailed analysis of Leibniz’s use of binary numbers. See [374, 492, 600, 1193, 1359, 6119, 6658, 6705].

Babbage:1837:MPC
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Department. Reprinted in [6748, pp. 221–259], [6774, §8.3], and [6814, pp. 97–146].

[58] H.-J. Dreyer and A. Walther. Der Rechenautomat Ipm. Entwicklung Mathematischer Instrumente in Deutschland 1939 bis 1945. (German) [The Ipm calculator. The development of mathematical instruments in Germany 1939–1945]. Bericht A3, Institut für Praktische Mathematik, Technische Hochschule, Darmstadt, West Germany, August 19, 1946. Reprinted in [6774, §3.3]. Translated by Mr. and Mrs. P. Jones.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1955. CODEN MTTCAS. ISSN 0891-6837 (print), 2326-4853 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Buchholz:1959:FFC

Carr:1959:EAF

Carr:1959:PC

Daggett:1959:DBC

Ercoli:1959:BAD

Forsythe:1959:RNR

Garner:1959:RMS

Garner:1959:RNS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

 August 1961. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See [190].

 &arnumber=5219274.

[222] Morton Nadler. Division and square root in the quarter-imaginary number system. *Communications of the Association for Computing
 Machinery*,
REFERENCES

REFERENCES

REFERENCES

595–599, December 1962. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See letter [269].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Aiken:1964:PAC

Anonymous:1964:PPF

Ashenhurst:1964:FEU

Baer:1964:MPA

Bookhart:1964:SFP

Brooker:1964:PPS

Burroughs:1964:BBI

REFERENCES

REFERENCES

Khinchin:1964:CF

Klokacev:1964:RNF

Kundu:1964:TMD

Lamson:1964:DAD

Lynn:1964:REM

Maley:1964:MDM

McCracken:1964:NMF

REFERENCES

REFERENCES

REFERENCES

Hammel:1965:RLC

Hammer:1965:BRBa

Hammer:1965:BRBBb

Hamming:1965:NLB

Ikebe:1965:NTP

James:1965:GSR

REFERENCES

REFERENCES

&arnumber=4038397.

REFERENCES

REFERENCES

Specker:1965:CAL

Swarztrauber:1965:LED

Sweeney:1965:AFP

Winograd:1965:TRP

Arango:1966:FCP

Brooker:1966:MFA

REFERENCES

[377] Peter Henrici. Test of probabilistic models for the propagation of roundoff errors. *Communications of the Association for Computing Machinery*, 9

[381] W. Kahan. 7094 II system support for numerical analysis. SHARE Secretary Distribution 159, C4537, 1966.

REFERENCES

Mazor:1966:FSI

Moore:1966:IA

Nickel:1966:NFA

Parker:1966:SNS

Richards:1966:EDS

Saidan:1966:EEA

Smith:1966:CP

Spielberg:1966:CEU

Tienari:1966:SPM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hart:1968:CAa

Hart:1968:CAb

IBM:1968:ISP

Kahan:1968:ISS

Kaneko:1968:PSA

Matula:1968:BCT

Matula:1968:C

REFERENCES

REFERENCES

REFERENCES

Field:1969:OFP

Flores:1969:BRB

Froberg:1969:INA

Glaser:1969:HNM

Hammersley:1969:NAP

Holzwarth:1969:VBB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[544] M. V. Kailas. Another method of converting from hexadecimal to decimal. *Communications of the Association for Computing Machinery*,

REFERENCES

Oppenheim:1970:RDF

Phillips:1970:GLE

Rao:1970:BEC

Rao:1970:BLR

Robertson:1970:CBM

Rothmaier:1970:BQN

Rothmaier:1970:DSB

[565] B. Rothmaier. Dokumentation der Standardfunktionen des Betriebssystems Hydra X8 [English: Documentation of the elementary
functions of the operating system Hydra X8]. Interner Bericht Nr. 70/8, Institut für Informatik, Universität Karlsruhe, 1970. ?? pp.

REFERENCES

REFERENCES

Zohar:1970:NRC

Zuse:1970:CML

Abdelmalek:1971:REA

Alway:1971:GFA

Banerji:1971:RAC

Bataille:1971:GCW

Berg:1971:SAO

REFERENCES

REFERENCES

proceedings of the Mathematical Software Symposium held at Purdue University, Lafayette, Indiana, USA, April 1–3, 1970.

REFERENCES

REFERENCES

REFERENCES

Pawlak:1971:ACN

Pezaris:1971:BBA

Pezaris:1971:NBB

Rhyne:1971:SPN

Rothmaier:1971:BEF

Sarkar:1971:EPP

Schmookler:1971:HSD

REFERENCES

REFERENCES

Fettweis:1972:CBM

Franklin:1972:ZDA

Goldstine:1972:CPN

Gosper:1972:HCF

Gregory:1972:CFP

Gregory:1972:URA

Hallin:1972:PAF

Heising:1972:MM

REFERENCES

REFERENCES

[671] Peter Edwin Miller. The design of a floating-point, double-precision arithmetic unit for the Digital Equipment Corporation’s PDP-9
computer. Thesis (M.S.), Ohio State University, Columbus, OH, USA, 1972. 83 pp.

REFERENCES

REFERENCES

230

[717] Dhirubhai V. Kanani and Kenneth H. O’Keefe. A note on conditional-
sum addition for base –2 systems. *IEEE Transactions on Computers*, C-
22(6):626, June 1973. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-
jsp?tp=&arnumber=5009117; http://www.acsel-lab.com/
arithmetic/arith2/papers/ARITH2_Kanani.pdf.

CODEN ITADAS. ISSN 0018-9278.

[719] Toyohisa Kaneko and Bede Liu. On local roundoff errors in floating-
point arithmetic. *Journal of the Association for Computing Machinery*,
20(3):391–398, July 1973. CODEN JACOAH. ISSN 0004-5411 (print),
1557-735X (electronic).

[720] Jan G. Kent. Procedures for the description and simulation of floating
point instructions. Report 426, Norwegian Computing Center, Oslo,

[721] Jan G. Kent. Theoretical definition, analysis and comparison of floating
point instructions. Report 425, Norwegian Computing Center, Oslo,

[722] Andrzej Kielbasiński. Summation algorithm with corrections and some

[723] E. Kinoshita, H. Kosako, and Y. Kojima. General division in the
symmetric residue number system. *IEEE Transactions on Computers*,
stamp/stamp.jsp?tp=&arnumber=1672267;
REFERENCES

REFERENCES

Stanford University, Computer Science Department, Stanford, CA, USA, 1973. 6 pp.

REFERENCES

REFERENCES

Roy:1973:ARC

Rubinfield:1973:FM

Sankar:1973:AAN

Sankar:1973:DDA

Schatte:1973:VMG

Schmid:1973:BLIa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[805] Seppo Linna. Analysis of some known methods of improving the accuracy of floating-point sums. *BIT (Nordisk tidskrift*

REFERENCES

REFERENCES

REFERENCES

Brent:1975:FMP

Brent:1975:MZM

Brubaker:1975:MUL

Caprani:1975:REF

Chen:1975:SER

Chinal:1975:LMA

Chinal:1975:MA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Miller:1975:SRA

Nance:1975:IFR

Nelson:1975:PPF

Newbery:1975:PES

NSC:1975:IFP

OKeefe:1975:NFB

Phillips:1975:BC

REFERENCES

Shriver:1975:BCA

Shriver:1975:UUN

Smith:1975:CPC

Smith:1975:SCO

Soule:1975:AAB

Stephenson:1975:CSP

Sterbenz:1975:UA

REFERENCES

[913] Konstantina Tzaferos. Error bounds due to index of significance specifications in floating-point operations with encoded mantissa lengths.
Thesis (M.S.), California State University, Chico, Chico, CA, USA, 1975. vi + 43 pp.

REFERENCES

Paoni:1976:PFI

Parker:1976:STR

Patel:1976:ASB

Paul:1976:SEF

Pichat:1976:CEE

Randell:1976:ODC

REFERENCES

REFERENCES

REFERENCES

Bivins:1977:SAA

Bohlender:1977:FPC

Brinkmann:1977:FPT

Brown:1977:MSI

Collins:1977:APS

Colquhoun:1977:FAS

DEC:1977:VAH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES 279

REFERENCES

REFERENCES

Brent:1978:AMF

Brent:1978:FMP

Case:1978:AIS

Chow:1978:LDR

Cohen:1978:MAI

Coonen:1978:SPS

Corsini:1978:USM

REFERENCES

283

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1133] Arunas G. Sleikys and Algirdas Avižienis. A modified bi-imaginary number systems. In IEEE SCA ’78 [6755], pages 48–55. ISSN 1063-
REFERENCES

Sripad:1978:QEF

Svoboda:1978:ACF

Swartzlander:1978:MAS

Tan:1978:TIH

Trivedi:1978:CUC

Trivedi:1978:HRL

Tseng:1978:EAF

In IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '78, pages 800–803. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1978. CODEN ???? ISSN ????

[1148] Celia Wrathall and Tien Chi Chen. Convergence guarantee and improvements for a fast hardware exponential and logarithm evaluation
REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

Günter Lautz. 300 Jahre leibnizsches dualzahlensystem. (German) [300 years of the Leibniz binary number system]. *Biological Cybernetics*, 35(3):175–181, December 1979. CODEN BICYAF. ISSN 0340-1200 (print), 1432-0770 (electronic).

Robertson:1979:VPA

Scharf:1979:HRW

Shapiro:1979:ELM

Shauman:1979:OMA

Sheue:1979:TCM

Swartzlander:1979:CFN

Thacker:1979:MPR

REFERENCES

Arnold:1981:PFP

Arora:1981:CSR

Atkins:1981:FIS

Avizienis:1981:LCR

Banerji:1981:HSD

Barlow:1981:DAA

REFERENCES

REFERENCES

[1337] Earnest Allan Cariker. A rapid-approximation floating-point mathematics package for the INTEL 8080 microprocessor. Computing science thesis (M.S.), Texas A&M University, College Station, TX, USA, 1981. viii + 152 pp.

REFERENCES

Griffiths:1981:BDC

Grote:1981:CIS

Hazlerig:1981:CES

Hendra:1981:FPS

Hough:1981:API

Huang:1981:IFD

Hwang:1981:CFF

REFERENCES

[1378] Saroj Kaushik and R. K. Arora. Sign detection in the symmetric residue number system. In IEEE CA5 '81 [6772], pages 146–150. LCCN QA 76.6

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Schryer:1981:TCF

Schwarz:1981:EYC

Smith:1981:ERA

Spaniol:1981:CAL

Stevenson:1981:ITP

Stevenson:1981:PSBa

Stevenson:1981:PSBb

Anonymous:1982:MKF

Anonymous:1982:NPAa

Arnold:1982:EPS

Bairstow:1982:FPP

Baraniecki:1982:QEL

Barnes:1982:RNI

Bernhard:1982:CCS

REFERENCES

REFERENCES

[1464] T. J. Dekker. Program correctness and machine arithmetic. In Paul C. Messina and Almerico Murli, editors, Problems and Methodologies in Mathematical Software Production, volume 142 of Lecture Notes in
DeSautels:1982:ALP

Epstein:1982:UAF

Epstein:1982:UAI

Fateman:1982:HLL

Feldstein:1982:EPI

Feldstein:1982:LSF

Fulton:1982:BJB

REFERENCES

REFERENCES

Jenkins:1982:RNS

Kahan:1982:NOS

Katzan:1982:IAA

Kerkhoff:1982:LDM

Korn:1982:EDF

Leuprecht:1982:PAR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Taylor:1982:VRA]

[Teachey:1982:SRX]

[TorresyQuevedo:1982:EAD]

[Turner:1982:DLS]

[Velasevic:1982:RLC]

REFERENCES

REFERENCES

Aspinwall:1983:IIF

Aspinwall:1983:MVM

Avizienis:1983:AAE

Bandeira:1983:TCA

Banerji:1983:RPF

Baxter:1983:CRS

REFERENCES
REFERENCES

REFERENCES

REFERENCES

582–589, November 1983. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic). See [1603] and generalization [2334].

REFERENCES

Gavrielov:1983:CSF

Gnanasekaran:1983:BSI

Gosling:1983:STF

Grappel:1983:FPP

Grnarov:1983:LMN

Guibas:1983:FBA
REFERENCES

[1573] Windell F. Ingram, N. (Narayanswamy) Radhakrishnan, and Deborah F. Dent. Accuracy considerations when using some minicomputers for scientific and engineering problems. Technical report, U.S. Army Engineer Waterways Experiment Station; available from National...

REFERENCES

REFERENCES

Lozier:1983:UFP

Majerski:1983:SRA

Maric:1983:PBC

Markov:1983:NAF

Martin:1983:FPS

Matula:1983:OPF

REFERENCES

Moler:1983:RSR

Morrison:1983:EHL

Murugesan:1983:ACF

Nagpal:1983:PAT

Nave:1983:ITF

Ni:1983:VRM

REFERENCES

REFERENCES

REFERENCES

Voelz:1983:CAE

Vogt:1983:AFM

Wallis:1983:AFP

Walsh:1983:FGE

Edmund John Walsh. Floating gatefield effect transistor operating point changes: causes, characterization, and effect on electric field measurement by the device. Thesis (M.S.), Boston University, Boston, MA, USA, 1983. v + 121 pp.

Watanuki:1983:EAC

Williams:1983:BFP

Bertrand Jeffery Williams. A bit-serial floating point multiply/add architecture for signal processing applications. Electrical engineering thesis (M.S.), Texas A&M University, College Station, TX, USA, 1983. x + 97 pp.
REFERENCES

REFERENCES

Anonymous:1984:CPD

Bell:1984:RMR

Black:1984:NIS

Bollen:1984:NSD

Boney:1984:GTD

Borwein:1984:AGM

Braddock:1984:ASP

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Publication Details</th>
</tr>
</thead>
</table>
REFERENCES

Corliss:1984:AGT

series in Pascal-SC: Basic operations and applications to differential

Cowlishaw:1984:DRL

[1678] M. F. Cowlishaw. The design of the REXX language. *IBM Systems

Demmel:1984:URN

SIAM Journal on Scientific and Statistical Computing, 5(4):887–919,
December 1984. CODEN SIJCD4. ISSN 0196-5204.

Demsky:1984:MMC

program for calculating the square root of rationals at arbitrary precision.
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic). URL http://

Dietrich:1984:FPR

[1681] D. Dietrich and R. Fischer. Floating-Point-Routinen, entwickelt
für Mikrorechner [English: Floating-point Routines Developed for
Microcomputers]. *Elektroniker (Switzerland)*, 8:49–54, 1984. CODEN
ELKRBL. ISSN 0531-9218.

Duncan:1984:FSF

[1682] Ray Duncan and Martin Tracy. The FVG standard floating-point
extension. *Dr. Dobb’s Journal of Software Tools*, 9(9):110–??, September
1984. CODEN DDJOEB. ISSN 1044-789X.

Dunford:1984:SFPa

[1683] Christopher J. Dunford. Savage floating-point benchmark in 8088/8087
assembly language in 16BST. *Dr. Dobb’s Journal of Software Tools*, 9
(7):116–??, July 1984. CODEN DDJOEB. ISSN 1044-789X.
REFERENCES

REFERENCES

REFERENCES

In IEEE International Conference on Acoustics, Speech, and Signal Processing: ICASSP ’84, pages 571–574. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1984. CODEN ???. ISSN ???.

Pfenninger:1984:DES

Pountain:1984:PM

Prince:1984:SFP

Rauchwerk:1984:MBF

Regener:1984:MID

Schryer:1984:DCF

Shahan:1984:MIF

Shen:1984:DET

Stetter:1984:SDC

Stewart:1984:PWG

Takla:1984:MBF

Taylor:1984:BFP

Teufel:1984:HAO

Teufel:1984:OG

Tricker:1984:ERM

Zuse:1984:CML

Aridgides:1985:EIQ

Armstrong:1985:PLHa

Armstrong:1985:PLHb

Aspinwall:1985:RVM

Auzinger:1985:AAR

Avizienis:1985:AAO

REFERENCES

REFERENCES

REFERENCES

[1768] Chen:1985:FPP

[1769] Chen:1985:MRS

[1770] Cheng:1985:APF

[1771] Chiarulli:1985:DDR

[1772] Chow:1985:PFD
Ciminiera:1985:ESP

Cody:1985:PRW

Conover:1985:AHS

Cozzens:1985:CDF

Cuyt:1985:REA

Dadda:1985:FMT

Dadda:1985:SBN

DeMori:1985:DRP

Dongarra:1985:FAS

Dunham:1985:PFM

Eldon:1985:FCF

Enzmann:1985:WDS

REFERENCES

REFERENCES

[1798] Curt Gridley. Improving the performance of scientific applications on a supermicro using a custom floating point processor and an optimizing

REFERENCES

IEEE:1985:ASI

IEEE:1985:ISBa

IEEE:1985:ISBb

Intel:1985:FPL

Intel:1985:PRM

REFERENCES

REFERENCES

[1828] Hon Kwan. A multi-output wave — digital biquad using magnitude truncation instead of controlled rounding. IEEE Transactions on Circuits...
REFERENCES

Lang:1985:ICL

Li:1985:FCD

Li:1985:PAC

Ling:1985:NFL

Liu:1985:DVR

Lohninger:1985:GF

Moharir:1985:ESG

Montgomery:1985:MMT

Motorola:1985:MFC

Motorola:1985:MFP

Muller:1985:DBC

Naseem:1985:MCA

Neumaier:1985:IPR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1927] Mark Hill, Susan Eggers, Jim Larus, George Taylor, Glenn Adams, B. K. Bose, Garth Gibson, Paul Hansen, Jon Keller, Shing Kong, Corinna Lee,

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Troutman:1986:DSF

Truong:1986:TCD

Twaddell:1986:HPM

Vaccaro:1986:SDF

Verma:1986:DEF

Waterhouse:1986:TMW

REFERENCES

Boisvert:1987:AAH

Bose:1987:DAR

Bose:1987:FMD

Braune:1987:HSF

Carter:1987:SAT

Cavallaro:1987:CAS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Obermaier:1987:SCI

Olver:1987:CCA

Olver:1987:ILI

Owens:1987:AC

Papachristou:1987:ATL

Parhami:1987:CTL
REFERENCES

REFERENCES

REFERENCES

Rolfe:1987:FIS

Rysavy:1987:MSC

Scheidt:1987:DFP

Scherson:1987:VCO

Schumacher:1987:CAI

Sharma:1987:ATE

Shenoy:1987:AST

[2092] A. Shenoy and R. Kumasen. An accurate scaling technique in improved residue number system arithmetic. In IEEE International Conference
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bewick:1988:ANB

Birman:1988:DHS

Blaker:1988:FPB

Bohlender:1988:IFA

Bose:1988:VDT

Breuer:1988:NMR

Brooks:1988:VIF

Brosnan:1988:MED

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kanada:1988:VMA

Kanada:1988:VMP

Kida:1988:FPP

Kirchner:1988:AAV

Knuth:1988:FM

Kornerup:1988:LAU

Krishnan:1988:IRN

Nakamura:1988:SCP

Nikolos:1988:EDT

Normand:1988:PSP

Oklobdzija:1988:IAV

Papadourakis:1988:VDP

REFERENCES

Papamichalis:1988:TFP

Perlman:1988:AFP

Pichat:1988:APC

Pier:1988:IPA

Pitas:1988:FPE

Plauger:1988:PFP

Prandolini:1988:VIB

REFERENCES

REFERENCES

REFERENCES

Sun:1988:PG

Taylor:1988:BLN

Taylor:1988:HFP

Thistle:1988:PAH

Trefethen:1988:PSP

Tsao:1988:AST

Venkaiah:1988:CMS

Voelzke:1988:FSAa

Voelzke:1988:FSAb

Voelzke:1988:FSAc

Weyland:1988:LCS

Wilson:1988:FPS

Wilson:1988:NDP

Wilson:1988:NFP

Wollard:1988:TSS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dadda:1989:SIM

Dally:1989:MOF

D'Angelo:1989:DEA

Darley:1989:FPI

deLange:1989:DMA

Demmel:1989:FPE

Dennis:1989:AAD

IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????

REFERENCES

REFERENCES

REFERENCES

Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????

Griffin:1989:RNS

Groeger:1989:DRG

[2321] Detlef Gröger. Zur Division mit Rest auf Gleitkommarechnern. (German) [on division with remainder on floating point computers]. Mathematische Semesterberichte, 36(1):106–111, 1989. ISSN 0720-728X.

Guyot:1989:JLM

Hoffmann:1989:PAR

Hohne:1989:PHP

Hollingsworth:1989:CPI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lo:1989:CED

detection in arithmetic and logical operations using Berger codes. In
Ercegovac and Swartzlander, Jr. [6844], pages 233–240. ISBN 0-8186-
8963-3 (case), 0-8186-5963-7 (microfiche). LCCN QA 76.9 C62 S95
ARITH9_Lo.pdf. IEEE catalog no. 89CH2757-3.

Lu:1989:VMI

multiplication/division/square root. In IEEE ICCD '89 [6848], pages
366–368. ISBN 0-8186-1971-6 (paper), 0-8186-5971-8 (microfiche), 0-
89CH2794-6.

Malarkey:1989:RNS

[2371] E. C. Malarkey, G. E. Marx, J. D. Fogarty, D. Mergerian, H. K. Hahn,
J. C. Bradley, P. R. Beaudet, and R. Fenton. Residue-number-system-
based optical adaptive processor. In IEEE Military Communications
IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????

Mansour:1989:CAS

[2372] Y. Mansour, B. Schieber, and P. Tiwari. The complexity of
approximating the square root. In 30th Annual Symposium on
Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 1989. CODEN ???? ISSN ????

ISSN 0141-9331 (print), 1872-9436 (electronic).

Mastrovito:1989:VDM

[2374] E. D. Mastrovito. VLSI designs for multiplication over finite fields
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).
REFERENCES

Motorola:1989:FPC

Motorola:1989:MFP

Motorola:1989:MMF

Motorola:1989:MRM

Mulcahy:1989:FPR

Nakayama:1989:BMF

Nakayama:1989:FCV

Nakayama:1989:MFPa

[2389] T. Nakayama, S. Kojima, H. Harigai, H. Igarashi, K. Tamada, and T. Toba. An 80b, 6.7 MFLOPS floating-point processor with
REFERENCES

Nowacki:1989:ABQ

Ochs:1989:TPF

Petkovsek:1989:CDS

Pincin:1989:NAM

Prince:1989:FTF

REFERENCES

REFERENCES

Sasaki:1989:AAD

Schwarz:1989:IIP

Scott:1989:FRM

Shenoy:1989:FBE

Shimazu:1989:MFP

Sinha:1989:FPA

Sit:1989:MFP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Glass:1990:MC

Goldberg:1990:CA

Goodman:1990:SMR

Goodreau:1990:DIF

Gries:1990:BDO

Gu:1990:TIT

REFERENCES

REFERENCES

Lozier:1990:CPL

MacDonald:1990:IFP

Mandelbaum:1990:SMD

MangaEbongue:1990:PBV

Mar:1990:DSP

Margulis:1990:IMI

Markstein:1990:CEF

REFERENCES

[2513] Volker Müller. Hochgenaue CORDIC-Algorithmen für reelle Standardfunktionen mittels dynamischer Defektberechnung...

Murthy:1990:MPA

Ohtomo:1990:FPD

Olson:1990:FAA

Owens:1990:BSM

Palmore:1990:CAC

Pan:1990:FSI

REFERENCES

REFERENCES

REFERENCES

1. Table 5 (page 124):
REFERENCES

insert k <-- 0 after assertion, and also delete k <-- 0 from Table 6.

2. Table 9 (page 125):
 for -1:USER!(""");
 substitute -1:USER!("0");
 and delete the comment.

3. Table 10 (page 125):
 for fill(-k, "0")
 substitute fill(-k-1, "0")

REFERENCES

[Tang:1990:TDIa]

[Tang:1990:TDIb]

[Teetz:1990:SNS]

[Tricker:1990:ERP]

[Tricker:1990:ERSa]

[Tricker:1990:ERSb]

[vanderVorst:1990:CBP]
VanElsen:1990:OCL

Vuillemin:1990:ERC

Wallis:1990:IFP

Weber:1990:EHP

Wigley:1990:MRR

Wingler:1990:TMI

REFERENCES

REFERENCES

Bartholomew-Biggs:1991:AST

Bartoloni:1991:MFU

Beal:1991:GAP

Beebe:1991:ASR

Bohlender:1991:DFP

Bohlender:1991:SEF

REFERENCES

[2600] R. E. Bryant. On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer

[2619] A. Compan, P. Debaud, V. Delorme, J. A. François, H. Mehrez, and F. Pecheux. GAF: a portable standard-cell floating point adder generator using the CXgen function library. Microprocessing and
REFERENCES

Cox:1991:TSS

Crenshaw:1991:SRS

Davida:1991:FPA

Davies:1991:FPS

Davis:1991:CC

Deb:1991:BFF

DeLange:1991:DIF

Demmel:1991:OIA

Dongarra:1991:GBP

Dunham:1991:ABA

Duprat:1991:NRR

Duprat:1991:WND

Ercegovac:1991:MPM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2674] Andreas Knöfel. Fast hardware units for the computation of accurate dot products. In Kornerup and Matula [6876], pages 70–74. ISBN 0-

REFERENCES

REFERENCES

Marcus:1991:HSR

Markstein:1991:WFF

McQuillan:1991:HPV

McQuillan:1991:VAM

Mehrez:1991:AVP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wigley:1991:SMR

Williams:1991:NBC

Williams:1991:ZOS

Winter:1991:FPA

Wong:1991:FDU

Yan:1991:RFA

[2781] Tak W. Yan. A rational function arithmetic and simplification system in Common Lisp. SIGSAM Bulletin (ACM Special Interest Group
REFERENCES

Krishnan:1992:CGF

Kubosawa:1992:BFP

Kutuso:1992:EMO

Lacroix:1992:DDM

Lang:1992:HRS

Lee:1992:ACR

Lozier:1992:SLI

Lu:1992:NDA

Lynch:1992:FCA

Lynch:1992:HSD

Maguire:1992:MD

Makhdumi:1992:CCS

Mar:1992:DSP

REFERENCES

McQuillan:1992:VMH

MenissierMorain:1992:CNR

Menninger:1992:NWN

Meredith:1992:NPF

Mikami:1992:NDO

Mitchell:1992:VFA

Montuschi:1992:DAC

REFERENCES

REFERENCES

[Nakano:1992:FPB]

[Ng:1992:ARH]

[Nishimura:1992:FPR]

[Obaidat:1992:DMA]

[Ochs:1992:SIR]

[Okada:1992:AQE]

[Orton:1992:NFT]

REFERENCES

REFERENCES

Simar:1992:FPP

Sites:1992:AAR

Skavantzos:1992:DCM

Skavantzos:1992:NMM

Skavantzos:1992:TII

Skeel:1992:REP

Smith:1992:FPR

REFERENCES

Fortune:1993:EEA

Fowkes:1993:HEA

Fox:1993:HLS

Geraminejad:1993:DIC

Gibbons:1993:FMW

Goldberg:1993:DFP

REFERENCES

Hemkumar:1993:ECM

Hendtlass:1993:MNIa

Hendtlass:1993:MNIb

Higginbotham:1993:ISR

Higham:1993:AFP

Holler:1993:IFP

REFERENCES

REFERENCES

Jahn:1993:SIG

Jebelean:1993:CSG

Jenkins:1993:CSL

Johnstone:1993:RNA

Ju:1993:WCB

Karp:1993:HPD

Kim:1993:FABa

Kim:1993:FABb

Kim:1993:FABc

Kim:1993:FABd

Kirsch:1993:ABU

REFERENCES

REFERENCES

Louie:1993:DRD

Lozier:1993:UGF

Lozier:1993:UGF

Mandelbaum:1993:SRS

Maryoung:1993:DBP

[3082] Paolo Montuschi and Luigi Ciminiera. $n \times n$ carry-save multipliers without final addition. In Swartzlander, Jr. et al. [6908], pages 54–
REFERENCES

Montuschi:1993:RIT

Motteler:1993:APF

Ng:1993:FV

Nguyen:1993:LDR

North:1993:FPA

Ozawa:1993:SAE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1993. CODEN ???. ISSN ???

Shanbhag:1993:REAb

Shand:1993:FIR

Shannon:1993:CES

Sharp:1993:PRN

Shirayanagi:1993:MCM

Shute:1993:AAB
REFERENCES

REFERENCES

[3130] Inside technology today 32-bit floating point multi-port DSP / produced by Texas Instruments. VHS format. High-speed, multi-port DSPs can be used in parallel processing applications to really enhance computation time and power. A popular 6-port floating point DSP and high speed design integration and applications are described in this tape., 1993. 1 videocassette.

REFERENCES

Anonymous:1994:FPa

Anonymous:1994:FPb

Anonymous:1994:FPc

Anonymous:1994:SCSa

Anonymous:1994:SPF

Anonymous:1994:SRT

Apple:1994:IMP

Bajard:1994:BNH

Bajard:1994:SOL

REFERENCES

Chren:1994:ALIb

Cortadella:1994:HRD

Dallaway:1994:DAC

DasSarma:1994:MAR

Daumas:1994:FAR

Daumas:1994:RFP

De:1994:FPA

REFERENCES

[delaSerna:1994:TBF]

[delRosario:1994:HIM]

[Demmel:1994:CPBa]

[Demmel:1994:CPBb]

[Demmel:1994:FNA]

[Dimauro:1994:DFNa]

REFERENCES

Street, Suite 300, Silver Spring, MD 20910, USA, 1994. CODEN ?? ??
ISSN ?? ??

Dimauro:1994:DFNb

Ercegovac:1994:DSR

Ercegovac:1994:VHR

Fagin:1994:FPG

Farquhar:1994:MPH

FiallosAguilar:1994:HPA

Gander:1994:AFP

REFERENCES

REFERENCES

[3218] K. R. Jackson and N. S. Nedialkov. Precision control and exception handling in scientific computing. Technical report, Department of

REFERENCES

REFERENCES

 REFERENCES

REFERENCES

REFERENCES

Srivastava:1994:ASB

Stockman:1994:OMM

Thompson:1994:PSN

Timmermann:1994:CFP

Timmermann:1994:CFV

Turner:1994:SRM

Tydeman:1994:WCT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Baumhof:1995:NVV

Beaty:1995:EAS

Bederr:1995:AAE

Bickerstaff:1995:PRA

Bierman:1995:FAI

Boley:1995:FPF

REFERENCES

[3357] Marc Daumas, Christophe Mazenc, Xavier Merrheim, and Jean-Michel Muller. Modular range reduction: a new algorithm for fast and

REFERENCES

[3374] Hannes Hassler and Naofumi Takagi. Function evaluation by table look-up and addition. In Knowles and McAllister [6931], pages 10–

REFERENCES

Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1995. CODEN ???? ISSN ????

Ho:1995:FPI

Hobson:1995:EMR

Houelle:1995:AFL

Hunt:1995:APF

Ito:1995:EIA

Jain:1995:HSD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Nielsen:1995:MFD

Nowka:1995:HPC

Oberman:1995:DRC

OGara:1995:SET

Ohi:1995:RCN

Ohkubo:1995:CBM

REFERENCES

Orup:1995:SQD

Owens:1995:RNC

Parker:1995:MUP

Popova:1995:FCI

Posch:1995:MRRa

REFERENCES

Rubenking:1995:UNI

Sammut:1995:AUD

Sangwine:1995:CIT

Sanyal:1995:CAS

Sarma:1995:FBR

Schulte:1995:DAV

REFERENCES

• branch and bound algorithms for global optimization,
• constraint propagation,
• solution sets of linear systems,
• hardware and software systems for interval computations, and
• fuzzy logic.

Actual applications described in the book include:
• economic input-output models,
• quality control in manufacturing design,
• a computer-assisted proof in quantum mechanics,
• medical expert systems,
• and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

• on Kluwer homepage http://www.wwap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

REFERENCES

[3447] Gérard L. G. Sleijpen and Henk A. van der Vorst. Maintaining convergence properties of BiCGstab methods in finite precision
CODEN NUALEG. ISSN 1017-1398 (print), 1572-9265 (electronic).

REFERENCES

[3473] Vijayanand Jaganaathan Angarai. Number representation schemes for energy efficient computer arithmetic. Thesis (M.S.), University of Texas at Dallas, Dallas, TX, USA, 1996. ix + 57 pp.
REFERENCES

REFERENCES

[3493] Christoph Burnikel and Jochen Könemann. High precision floating point numbers in LEDA. Report MPI I 96 1 002, Max-Planck-Institut für Informatik, Saarbrücken, Germany, 1996. 7 pp.

REFERENCES

REFERENCES

[3518] S. T. J. Fenn, M. Benaissa, and D. Taylor. GF(2^m) multiplication and division over the dual basis. IEEE Transactions on Computers, 45(3):

Flynn:1996:SPT

Fortune:1996:SAY

Ganesan:1996:CSM

Garg:1996:FTP

Gibb:1996:FFI

References

Goldberg:1996:CA

Goldstine:1996:ENI

Gudenberg:1996:HSI

Guedj:1996:EN

Gupta:1996:AAG

Guyot:1996:STD

Haller:1996:AFP

REFERENCES

Inacio:1996:DDF

ISO:1996:TRF

Ito:1996:SRI

Jayasuriya:1996:MAU

Jessani:1996:FPU

Jullien:1996:VDS

Kahan:1996:BEC

REFERENCES

REFERENCES

REFERENCES

[3565] Jacques-Louis Lions, Mauro Balduccini, Yvan Choquer, Remy Hergott, Bernard Humbert, and Eric Lefort. Ariane 5 Flight 501 failure, report by the Inquiry Board. Technical report, European Space Agency, Paris, France, 1996. URL http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html. From the foreword: “On 4 June 1996, the maiden flight of the Ariane 5 launcher ended in a failure. Only about 40 seconds after initiation of the flight sequence, at an altitude of about 3700 m, the launcher veered off its flight path, broke up and exploded. Engineers from the Ariane 5 project teams of CNES and Industry immediately started to investigate the failure.” From the report: “The internal SRI software exception was caused during execution of a data conversion from 64-bit floating point to 16-bit signed integer value. The floating point number which was converted had a value greater than what could be represented by a 16-bit signed integer. This resulted in an Operand Error. The data conversion instructions (in Ada code) were not protected from causing an Operand Error, although other conversions of comparable variables in the same place in the code were protected.”.

REFERENCES

et al. [6934], pages 18–24. ISBN 3-05-501737-4. ISSN 0138-3019.
scan_system.ps.Z.

reciprocal caches. Reliable Computing = Nadezhnye vychisleniia, 2(2):
147–153, April 1996. CODEN RCOMF8. ISSN 1385-3139 (print), 1573-
ps.Z.

[3591] S. F. Oberman and M. J. Flynn. A variable latency pipelined floating-
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL
ftp://arith.stanford.edu/tr/fpadd_euro.ps.Z.

optimized partial product reduction and generation of fast parallel
multipliers using an algorithmic approach. IEEE Transactions on
Computers, 45(3):294–306, March 1996. CODEN ITCOB4. ISSN 0018-
org/stamp/stamp.jsp?tp=&arnumber=485568.

[3593] C. Paar. A new architecture for a parallel finite field multiplier with low
complexity based on composite fields. IEEE Transactions on
Computers, 45(7):856–861, July 1996. CODEN ITCOB4. ISSN 0018-9340 (print),
stamp.jsp?tp=&arnumber=508323.

[3594] B. Parhami, S. Kawahito, M. Ishida, T. Nakamura, M. Kameyama,
and T. Higuchi. Comments on “High-speed area-efficient multiplier design
using multiple-valued current-mode circuits”. IEEE Transactions on
Computers, 45(5):637–639, May 1996. CODEN ITCOB4. ISSN 0018-
org/stamp/stamp.jsp?tp=&arnumber=509918. See [3228].

REFERENCES

Engineering. 26–29 May 1996, volume 1, pages 294–297. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1996. CODEN ????. ISSN ????.

[Ratz:1996:BRS]

[Reid:1996:RFF]

[Rump:1996:DBR]

[Sarma:1996:HRT]

[Saunders:1996:TGF]

[Schulte:1996:HDI]

[Schulte:1996:PAS]

REFERENCES

REFERENCES

[3634] K. B. Williams. Testing math functions: When requirements are tight, we must carefully examine all potential sources of error. Make sure your math library isn’t the weak link in the chain. *C/C++ Users Journal*, 1(4):49–54, 58–65, December 1996. CODEN CCUJEX. ISSN 1075-2838. Describes a package that extends the Cody-Waite-Plauger work on the ELEFUNT package for the testing of the elementary functions, including the inverse hyperbolic functions, cube root, and Bessel functions of the first and second kinds. The C++ package implements 192-bit extended precision versions of all of the functions, so that accurate results are available for comparison with the normal double-precision results.

Zgliczynski:1996:RVC

Al-Twaijry:1997:APO

Allaart:1997:ISC

Althaus:1997:MNF

Anonymous:1997:BRPk

Anonymous:1997:SIS

[3645] Martin Atkinson-Barr. Letter to the Editor: Pentium II math bug. Dr. Dobb’s Journal of Software Tools, 22(10):10, October 1997. CODEN DDJOEB. ISSN 1044-789X. Identifies himself as the “Mr. X” cited in [3659], and provides more the background on the discovery of the Pentium FIST (floating-point to integer store) instruction.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hanson:1997:MAD

Harris:1997:SDA

Harrison:1997:FPV

Hasan:1997:DA

Hekstra:1997:FRL

Hiasat:1997:DIR

REFERENCES

Society order number PR07846. IEEE Order Plan catalog number 97CB36091.

[3700] E. J. King and E. E. Swartzlander, Jr. Data-dependent truncation scheme for parallel multipliers. In Fargues and Hippenstiel

REFERENCES

REFERENCES

Conference and Workshop on Engineering of Computer-Based Systems, pages 339–346. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1997. URL http://ieeexplore.ieee.org/document/581900/. From the article: “The SRI S/W exception was raised during a conversion from a 64-bit floating point number F to a 16-bit signed integer number. F had a value greater than what can be represented by a 16-bit signed integer, which caused an Operand Error (data conversion — in Ada code — was not protected, for the reason that a maximum workload target of 80% had been set for the SRI computer). . . . The value of BH was much higher than expected because the early part of the trajectory of Ariane 5 differs from that of Ariane 4, which results in considerably higher horizontal velocity values.”

REFERENCES

Oberman:1997:DAI

Oberman:1997:DID

Oberman:1997:SPD

Oklobdzija:1997:CLZ

Paar:1997:FAA

REFERENCES

Reppy:1997:EAH

Rice:1997:MDB

Sanz-Gonzalez:1997:TBR

Sarma:1997:FIR

Schulte:1997:AFA

Schulte:1997:HSR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3775] Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. *ACM Fortran Forum*, 17(3):1–2, December 1998. CODEN ???? ISSN 1061-7264 (print), 1931-1311 (electronic).

Chen:1998:PCL

Chen:1998:VFP

Cheon:1998:TEA

Chren:1998:OHR

Citron:1998:AMM

Collins:1998:PFB

Dimitrov:1998:AME

Dimitrov:1998:FRR

Dimitrov:1998:RNS

Drolet:1998:NRE

Drolshagen:1998:RNA

Dunay:1998:DFP

REFERENCES

dunay98dithering.ps.gz;

Grisoni-Busca:1998:LPF

Grushin:1998:CMA

Guo:1998:SAI

Hars:1998:FCC

Heckmann:1998:ABI

Hill:1998:FDP

Huertgen:1998:TFP

[3820] F. Huertgen, H. Meyr, and M. Willems. Transformation of floating-point into fixed-point algorithms by interpolation applying a statistical
approach. In Anonymous [6953], pages 630–634. LCCN TK5102.5. Two volumes.

[3826] W. Kahan and Joseph D. Darcy. How Java’s floating-point hurts everyone everywhere. Technical report, Department of Mathematics and

REFERENCES

[3859] M. T. Rivolo and A. Simi. Il calcolo delle radici quadrate e cubiche in Italia da Fibonacci a Bombelli. (Italian) [The calculation
REFERENCES

of square and cube roots in Italy from Fibonacci to Bombelli].

Russinoff:1998:MCPa

Russinoff:1998:MCPb

Russinoff:1998:ACE

Sasaki:1998:CEM

Sastry:1998:EIF

REFERENCES

REFERENCES

Thorup:1998:FIS

Ulman:1998:HPF

Upton:1998:RH

Vogt:1998:FPP

Walter:1998:EUD

Walters:1998:SFF

Wei:1998:RAC

REFERENCES

REFERENCES

[3900] M. Bhardwaj, T. Srikanthan, and C. T. Clarke. A reverse converter for the 4-moduli superset \(\{2^n - 1, 2^n, 2^n + 1, 2^{n+1} + 1\} \). In
REFERENCES

Bhardwaj:1999:VCA

Blum:1999:MME

Boldo:1999:CRE

Brent:1999:CAP

REFERENCES

http://euler.ecs.umass.edu/paper/final/brentr.ps;
http://www.acsel-lab.com/arithmetic/arith14/
papers/ARITH14_Brent.pdf. IEEE Computer Society Order Number
PR00116. IEEE Order Plan Catalog Number 99CB36336.

[Bronnimann:1999:SDR]

Sign determination in residue number systems. *Theoretical Computer
com/cas/tree/store/tcs/sub/1999/210/1/2931.pdf.

[Bui:1999:DSI]

function. In *1999 IEEE Canadian Conference on Electrical and
Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1999. CODEN ???? ISSN ????

[Burgess:1999:EIR]

[3907] N. Burgess and S. Knowles. Efficient implementation of rounding
units. In *Conference Record of the Thirty-Third Asilomar Conference
IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 1999. CODEN ???? ISSN ????

[Burgess:1999:FIS]

[3908] Neil Burgess and Luigi Ciminiera. Fifteenth IEEE Symposium on
Computer Arithmetic: Foreword. In Koren and Kornerup [6974],
page ix. ISBN 0-7803-5609-8, 0-7695-0116-8, 0-7695-0118-4. ISSN 1063-
arithmetic/arith15/papers/ARITH15_contents.pdf;
http://www.acsel-lab.com/arithmetic/arith15/papers/ARITH15_
foreword.pdf; http://www.acsel-
lab.com/arithmetic/arith15/papers/ARITH15_prelude.pdf. IEEE
Computer Society Order Number PR00116. IEEE Order Plan Catalog
Number 99CB36336.

[Cappuccino:1999:HSS]

self-timed pipelined datapath for square rooting. *Circuits, Devices and
Systems, IEE Proceedings [see also IEE Proceedings G- Circuits, Devices
and Systems]*, 146(1):16–22, February 1999. CODEN ???? ISSN ????
REFERENCES

REFERENCES

Collavizza:1999:CPC

Connors:1999:SOF

Constales:1999:PSS

Conway:1999:FCM

Cornea-Hasegan:1999:CPO

Cornea-Hasegan:1999:IFP

Corsonello:1999:HPS

Crandall:1999:VIM

Cucker:1999:CED

Cuyt:1999:UR

Darcy:1999:JEF

REFERENCES

Daumas:1999:DFP

Daumas:1999:MFP

Denise:1999:URG

Dimitrov:1999:TAD

Dimitrova:1999:VCF
REFERENCES

[3945] W. L. Freking and K. K. Parhi. Montgomery modular multiplication and exponentiation in the residue number system. In Conference Record of the
REFERENCES

Frommer:1999:VEB

Garcia:1999:LSS

Gay:1999:SAF

German:1999:ISI

Gerwig:1999:FPU

REFERENCES

REFERENCES

REFERENCES

http://euler.ecs.umass.edu/paper/final/paper-128.ps;

Hung:1999:FDA

Hyogo:1999:LVF

Ide:1999:GFP

Iordache:1999:ARS

Iordache:1999:IPR

http://euler.ecs.umass.edu/paper/final/paper-164.ps;
 REFERENCES

REFERENCES

REFERENCES

Koren:1999:FIS

Koren:1999:ITS

Kornerup:1999:NSC

Krick:1999:AN

Lang:1999:VHR
REFERENCES

REFERENCES

REFERENCES

729

McCullough:1999:ARS

McCullough:1999:NRE

Montuschi:1999:BVH

Muller:1999:FRT

Muroi:1999:ESR

Nannarelli:1999:LPDa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Schulte:1999:RPD

Schwarz:1999:GFPa

Schwarz:1999:GFPb

Schwarz:1999:MSE

Seidel:1999:HSR

Shary:1999:OEG

REFERENCES

REFERENCES

REFERENCES

[4070] Record, page various, 19xx. Floating Point Systems, Portland, OR, USA.

[4071] Intel. Intel 8231A Arithmetic Processing Unit. Intel Corp, San Jose, CA, USA, 19xx. URL http://www.datasheetarchive.com/pdf-datasheets/Datasheets-14/DSA-276911.html. From the datasheet (p. 3-5): “The mantissa is expressed as a 24-bit (fractional) value; the exponent is expressed as a two’s complement 7-bit value having the range −64 to +63. The most significant bit is the sign of the mantissa (0 = positive, 1 = negative), for a total of 32 bits. The binary point is assumed to be [to] the left of the most significant mantissa bit (bit 23). All floating-point data values must be normalized. Bit 23 must be equal to 1, except for the value zero, which is represented by all zeros. The range of values that can be represented in this format is ±(2.7⋯ × 10) and zero.”.

REFERENCES

REFERENCES

ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

SPRA707, Texas Instruments, Post Office box 655303, Dallas, TX 75265,
spra707.pdf.

elementary functions using quaternary signed-digit arithmetic. *Optics
and Laser Technology*, 32(6):391–399, 2000. CODEN ???? ISSN 0030-
3992.

[4089] Wanming Chu and Yamin Li. Cost/performance tradeoff of n-select
Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2000. CODEN
???? ISSN ????

on the European Logarithmic Microprocessor. *IEEE Transactions on
Computers*, 49(7):702–715, July 2000. CODEN ITCOB4. ISSN 0018-

to “Arithmetic on the European Logarithmic Microprocessor”. *IEEE
Transactions on Computers*, 49(10):1152, October 2000. CODEN
ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=888057. See
[4090].

[4092] George E. Collins and Werner Krandick. Multiprecision floating point
REFERENCES

REFERENCES

REFERENCES

http://wwwlib.umi.com/dissertations/fullcit/9956669;

Freking:2000:MMR

[4110] W. L. Freking and K. K. Parhi. Modular multiplication in the
residue number system with application to massively-parallel public-
key cryptography systems. In Conference Record of the Thirty-
Fourth Asilomar Conference on Signals, Systems and Computers, 2000,
volume 2, pages 1339–1343. IEEE Computer Society Press, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA, 2000. CODEN ????
ISSN ????

Fu:2000:CPO

[4111] Steve Fu. Cost Performance Optimizations of Microprocessors. Ph.D.
thesis, Department of Electrical Engineering, Stanford University,

Gallagher:2000:FTN

Raphson and Goldschmidt dividers using time shared TMR. IEEE
ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http:∕∕
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=862218.

Gay:2000:SAC

[4113] David M. Gay. Symbolic-algebraic computations in a modeling language
for mathematical programming. Technical Report 00-3-02, Computing
Sciences Research Center, Bell Laboratories, Murray Hill, NJ, USA, July
2000.

Goldovsky:2000:DIL

[4114] A. Goldovsky, B. Patel, M. Schulte, R. Kolagotla, H. Srinivas, and
G. Burns. Design and implementation of a 16 by 16 low power two’s
complement multiplier. In IEEE [6984], pages 345–348. ISBN 0-7803-
5482-6, 0-7803-5483-4, 0-7803-5484-2. LCCN TK7801 .I22 2000. URL

Groza:2000:FPA

[4115] V. Groza. Floating-point analog-to-digital converters with predictive
auto-ranging. In IEEE [6985], pages 759–762. ISBN 0-7803-5891-0,

REFERENCES

Hiasat:2000:NES

Hida:2000:QDA

Higuchi:2000:FAA

Hormigo:2000:HAVa

Hormigo:2000:HAVb

Ide:2000:GMF

Ifrah:2000:UHN

Imajo:2000:CSB

Intel:2000:DSR

Intel:2000:IPF

ISO:2000:FSI

Joye:2000:OLR

Kahan:2000:MAA

Kawamura:2000:CRA

Keller:2000:ARR

Kim:2000:PSA

Kobayashi:2000:HBF

Koren:2000:GEI

Krishnan:2000:PEM
REFERENCES

755

REFERENCES

Street, Suite 300, Silver Spring, MD 20910, USA, 2000. CODEN ???? ISSN ????

REFERENCES

In IEEE VTS-Fall VTC 2000. 52nd Vehicular Technology Conference, 2000, volume 5, pages 2433–2440. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2000. CODEN ???? ISSN ????

Madhukumar:2000:RNS

Mahesh:2000:LPR

Markstein:2000:IEF

Maryska:2000:SCR

McKenzie:2000:ACP

REFERENCES

Parker:2000:MCAa

Parker:2000:MCAb

Parks:2000:NTT

Philippsen:2000:CNJ

Pillai:2000:LPA

REFERENCES

Ploog:2000:MPB

Poitras:2000:EHF

Premkumar:2000:CLB

Ramirez:2000:NAC

Reyhani-Masoleh:2000:ENB

Russinoff:2000:CSF

Department, University of Saarland, Saarbrücken, Germany, 2000. xii + 188 pp.

REFERENCES

[4211] Chia-Lin Yang, B. Sano, and A. R. Lebeck. Exploiting parallelism in geometry processing with general purpose processors and floating-point

REFERENCES

[Arnold:2001:SMQ]

[Arnold:2001:UFR]

[Atlamazoglou:2001:ALP]

[Baidas:2001:FPB]

[Bajard:2001:MMB]

[Balzola:2001:DAP]

REFERENCES

REFERENCES

Keith Briggs and Yannis Smaragdakis. XR — exact real arithmetic. World-Wide Web document and software package., March 01, 2001. URL http://www.btexact.com/people/briggsk2/XR.html. From the overview: “This is an implementation of exact (or constructive) real arithmetic, as an alternative to multiple-precision floating-point (MPFP). An important distinction is that in MPFP one sets the precision before starting a computation, and then one cannot be sure of the final result. Interval arithmetic is an improvement on this, but still not an ideal solution because if the final interval is larger than desired, there is no simple way to restart the computation at higher precision. By contrast, in XR no precision level is set in advance, and no computation takes place until a final request takes place for some output. Despite this, programming with XR is no different from MPFP, except for the declaration of critical variables as type ‘XR’.

The main aim is to produce a usably efficient implementation, which can be easily interfaced with existing C++ code. This contrasts with previous implementations in functional languages (Haskell, Miranda etc.), which, although theoretically important, seem to be rather too slow for real use. This code is designed as an add-on to Victor Shoup’s arbitrary-precision arithmetic package NTL, and implements a new type XR, to complement NTL’s ZZ and RR integer and real types.

N. Burgess and C. Hinds. Design issues in radix-4 SRT square root & divide unit. In Conference Record of the Thirty-Fifth Asilomar...
REFERENCES

REFERENCES

Defour:2001:NRRb

DelRe:2001:IDF

Demmel:2001:CAF

Dhong:2001:ACR

Dimitrov:2001:UMD

Drmac:2001:AQS

[4267] Zlatko Drmac and Elizabeth R. Jessup. On accurate quotient singular value computation in floating-point arithmetic. SIAM Journal on Matrix
REFERENCES

Fernandez:2001:IOD

Finot-Moreau:2001:PAU

Flynn:2001:ACA

Galan-Simon:2001:MLD

Gallant:2001:FPM

Gelbukh:2001:ZHL

2004:332–??, 2001. CODEN LNCS9. ISSN 0302-9743 (print), 1611-3349
series/0558/bibs/2004/20040332.htm; http://link.springer-

1340 (print), 1523-2867 (print), 1558-1160 (electronic). URL http://
www.acm.org/pubs/articles/proceedings/plan/360204/p276-gil/
p276-gil.pdf; http://www.acm.org/pubs/citations/
proceedings/plan/360204/p276-gil/.

overflow detection circuits. In Matthews [7003], pages 1661–1665.
pdf. Two volumes. IEEE catalog number 01CH37256.

[4276] Eric Goubault. Static analyses of the precision of floating-point
operations. Lecture Notes in Computer Science, 2126:234–259,
2001. CODEN LNCS9. ISSN 0302-9743 (print), 1611-3349
series/0558/bibs/2126/21260234.htm; http://link.springer-

[4277] Paul Gowland and David Lester. A survey of exact arithmetic
implementations. Lecture Notes in Computer Science, 2064:30–??,
2001. CODEN LNCS9. ISSN 0302-9743 (print), 1611-3349
series/0558/bibs/2064/20640030.htm; http://link.springer-

[4278] J. Großschädli. A bit-serial unified multiplier architecture for finite
fields GF(p) and GF(2^n). Lecture Notes in Computer Science, 2162:
202–??, 2001. CODEN LNCS9. ISSN 0302-9743 (print), 1611-3349
series/0558/bibs/2162/21620202.htm; http://link.springer-

REFERENCES

REFERENCES

[4296] Roope Kaivola and Katherine Kohatsu. Proof engineering in the large: Formal verification of Pentium(R)4 floating-point divider. Lecture Notes

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[4340] K. Okeya and K. Sakurai. Efficient elliptic curve cryptosystems from a scalar multiplication algorithm with recovery of the y-coordinate on a Montgomery-form elliptic curve. Lecture Notes in Computer Science,
REFERENCES

REFERENCES

on Signals, Systems and Computers, 2001, volume 2, pages 1637–1640. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2001. CODEN ????. ISSN ???

REFERENCES

REFERENCES

arithmetic/arith15/papers/ARITH15_Schmookler.pdf. IEEE order
no. PR01150.

1061-7264 (print), 1931-1311 (electronic).

multiplication radix-32 and radix-256. In Burgess and Ciminiera [6996],
com/arithmetic/arith15/papers/ARITH15_Seidel.pdf. IEEE order
no. PR01150.

[4365] Peter-Michael Seidel and Guy Even. On the design of fast IEEE floating-
point adders. In Burgess and Ciminiera [6996], pages 184–194. ISBN
0-7695-1150-3; 0-7695-1152-X. ISSN 1063-6889. LCCN QA76.9.C62

[4366] Peter-Michael Seidel. Exact arithmetic based on floating-point numbers.
In Krämer and von Gudenberg [7000], pages 123–?? ISBN 0-306-
46706-2. LCCN ???? 09.00 EUR / 95.00 USD / 66.50 GBP. URL
IMACS International Symposium on Scientific Computing, Computer
Arithmetic, and Validated Numerics and Interval 2000, the International
Conference on Interval Methods in Science and Engineering were jointly

[4367] David M. Smith. Algorithm 814: Fortran 90 software for floating-
point multiple precision arithmetic, gamma and related functions. ACM
CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

us/patents/6327604/fulltext.html.

REFERENCES

REFERENCES

Yang:2001:MDD

Yang:2001:RRN

Yeh:2001:RAO

Yu:2001:DID

Zhang:2001:FSM

REFERENCES

Anonymous:2002:OFP

ARM:2002:VVF

Arnold:2002:AOS

Arnold:2002:ICL

Arnold:2002:RPC

Bailey:2002:AAP

Bailey:2002:HPC
[4421] David H. Bailey, David Broadhurst, Yozo Hida, Xiaoye S. Li, and Brandon Thompson. High performance computing meets experimental
REFERENCES

Boldo:2002:FRF

Boldo:2002:IAO

Boldo:2002:NSC

Boldo:2002:PSVa

Boldo:2002:PSVb

REFERENCES

Cornea:2002:SCI

Cowlishaw:2002:DPD

Cowlishaw:2002:TB

Crandall:2002:OPF

Daumas:2002:ASN

dedinechin:2002:MTJ

Defour:2002:SCSa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kulisch:2002:AAD

Kulisch:2002:RNZ

Kwon:2002:EBS

Lang:2002:FPF

Lee:2002:DSS

Lee:2002:PFP

LCCN TK5102.5 A78 2002. UK£265.00. Two volumes. IEEE catalog number 02CH37387.

Matousek:2002:LNS

Matula:2002:PTP

McCluskey:2002:MLF

McIlhenny:2002:CNL

Messine:2002:EAA

Molina:2002:BLA

Molina:2002:HLS

REFERENCES

Paliouras:2002:LPC

Paliouras:2002:OLO

Park:2002:SPM

Paul:2002:BB

Pillmeier:2002:DAB

Pineiro:2002:HRL

Pineiro:2002:HSD

Puchta:2002:RNN

Ramasubramanian:2002:ACL

Ramirez:2002:FRF

Reid-Green:2002:TEA

REFERENCES

Revol:2002:MAPa

Revol:2002:MAPb

Reyhani-Masoleh:2002:NCM

Roesler:2002:NOH

Saed:2002:NSC

Alexander Serebrenik and Danny De Schreye. On termination of logic programs with floating point computations. Lecture Notes in Computer Science, 2477:151–164, 2002. CODEN LNCS9. ISSN 0302-9743 (print),

A, Technopôle de Nancy-Brabois, 615 rue du jardin botanique, F-54602
Villers-lès-Nancy Cedex, France, October 15, 2002. 10 pp. URL http://

Stoianov:2002:AAB

[4544] Ivilin Stoianov, Marco Zorzi, Suzanna Becker, and Carlo Umilta.
Associative arithmetic with Boltzmann machines: The role of number
representations. Lecture Notes in Computer Science, 2415:277–?
, 2002. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349
series/0558/bibs/2415/24150277.htm; http://link.springer-

Sun:2002:BJP

[4545] Sun Microsystems. BigDecimal (Java 2 Platform SE v1.4.0). Sun
Microsystems, Mountain View, CA, USA, 2002. 17 pp. URL http://
/java.sun.com/products.

TI:2002:TFL

[4546] Texas Instruments, Dallas, TX, USA. TMS320C67x FastRTS Library
focus.ti.com/lit/ug/spru100a/spru100a.pdf. The FastRTS library
is a collection of 26 optimized floating-point math functions for the
TMS320C67x device. This source code library includes C-callable (ANSI-
C-language compatible) optimized versions of the floating-point math
functions included in previous run-time-support libraries.

Tornaria:2002:SRM

Science, 2286:430–??, 2002. CODEN LNCSD9. ISSN 0302-9743 (print),
service/series/0558/bibs/2286/22860430.htm;
http://link.springer-ny.com/link/service/series/0558/
papers/2286/22860430.pdf.

Turner:2002:RPS

(print), 1879-2294 (electronic).

vanEmden:2002:NDI

implications for floating-point standardization. arXiv.org, ??(??):1–12,

REFERENCES

REFERENCES

Anonymous:2003:AI

Anonymous:2003:FFP

Anonymous:2003:RHP

Arnold:2003:FFT

Arnold:2003:ILN

Bajard:2003:EMG
REFERENCES

Society order number PR01894. Selected papers republished in *IEEE Transactions on Computers*, **54**(3) (2005) [4979].

REFERENCES

REFERENCES

Suite 300, Silver Spring, MD 20910, USA, 2003. CODEN ???? ISSN ????

REFERENCES

Demmel:2003:AEF

Demmel:2003:CAF

Deshmukh:2003:HPS

Detrey:2003:VLL

DiBrino:2003:FPP

Ercegovac:2003:CDP

REFERENCES

[4610] Hossam A. H. Fahmy and Michael J. Flynn. The case for a redundant format in floating point arithmetic. In Bajard and Schulte [7022],
REFERENCES

REFERENCES

2003. URL http://www.springer.com/sgw/cda/frontpage/0,11855,1-102-22-1477871-0,00.html. Includes CD-ROM.

PR01894. Selected papers republished in IEEE Transactions on Computers, 54(3) (2005) [4979].

REFERENCES

REFERENCES

Markstein:2003:ASC

Markstein:2003:FQP

Matula:2003:BFM

Matula:2003:CAA

Matula:2003:PID

REFERENCES

[4656] Katsuyuki Okeya and Tsuyoshi Takagi. The width-\(w\) NAF method provides small memory and fast elliptic scalar multiplications secure against side channel attacks. Lecture Notes in Computer Science, 2612:

REFERENCES

Damien Stehlé, Vincent Lefèvre, and Paul Zimmermann. Worst cases and lattice reduction. In Bajard and Schulte [7022], pages
REFERENCES

REFERENCES

coverage of, and clever algorithms for, integer arithmetic operations that are fundamental for implementing hardware floating-arithmetic and software multiple-precision arithmetic.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Detrey:2004:TBP

Detrey:2004:TUC

Doss:2004:FBI

Efstathiou:2004:MBM

Egner:2004:CTN

ElHajji:2004:SIL

Ercegovac:2004:CSRa

Ercegovac:2004:CSRb

Ercegovac:2004:DA

Ercegovac:2004:DCD

Fousse:2004:AST

Fousse:2004:FPD

Laurent Fousse and Paul Zimmermann. A formal proof of Demmel and Hida’s accurate summation algorithm. Technical report, LORIA/INRIA
REFERENCES

REFERENCES

[4763] Michel Hack. On intermediate precision required for correctly-rounding decimal-to-binary floating-point conversion. In Christiane Frougny et al., editors, RNC’06, 6th Conference on Real Numbers and Computers:
REFERENCES

Hanrot:2004:MPA

Hanrot:2004:NIR

Hiasat:2004:SFR

Hormigo:2004:CPV

IBM:2004:ZAP

REFERENCES

REFERENCES

[4782] Taek-Jun Kwon, Joong-Seok Moon, J. Sondeen, and J. Draper. A 0.18 /spl μ/m implementation of a floating-point unit for a processing-in-

Lang:2004:FPM

Lefevre:2004:AFF

Leyva:2004:GHS

Lin:2004:SFP

Lu:2004:ALC

McKenzie:2004:ACP

McLaughlin:2004:NFM

Mitra:2004:NAB

MPFRTeam:2004:MMP

Muller:2004:CSR

Muller:2004:DCS

Jean-Michel Muller, A. Tisserand, B. Dupont de Dinechin, and C. Monat. Division by constant for the ST100 DSP microprocessor. Research Report
REFERENCES

Nguyen:2004:LDL

Nievergelt:2004:AAP

Ogasawara:2004:OPO

Ogita:2004:ASDa

Ogita:2004:ASDb

Olausson:2004:RFP

REFERENCES

REFERENCES

REFERENCES

[4830] Sun Microsystems, Inc. Libmcr 0.9 beta: a reference correctly-rounded library of basic double-precision transcendental elementary functions.
REFERENCES

Sunar:2004:GMC

Sypniewski:2004:IAU

Thomas:2004:LLF

Thompson:2004:BDF

TI:2004:TUG

Tsoi:2004:ALA

REFERENCES

Wang:2004:DFP

Weaver:2004:MFD

Wu:2004:HSL

Wu:2004:ORF

Yang:2004:EEP

Yang:2004:PFE

REFERENCES

Yoon:2004:IPT

Zhang:2004:PBL

Zhu:2004:ISR

Zhuo:2004:SMA

Zimmerman:2004:DCI

Abdallah:2005:MRN

REFERENCES

Bajard:2005:AOP

Bajard:2005:PMM

Beebe:2005:MPA

Beuchat:2005:MAR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[4894] Florent de Dinechin, Alexey Ershov, and Nicolas Gast. Towards the post-

REFERENCES

[4905] Valérie Frayssé, Luc Giraud, Serge Gratton, and Julien Langou. Algorithm 842: a set of GMRES routines for real and complex

REFERENCES

www.cs.berkeley.edu/~wkahan/ARITH_17.pdf. A Keynote Address,
prepared for the IEEE-Sponsored ARITH 17 Symposium on Computer
Arithmetic, delivered on Mon. 27 June 2005 in Hyannis, Massachusetts.

CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic). URL http://
csd1.computer.org/comp/mags/co/2005/05/r5091abs.htm;
http://csdl.computer.org/comp/mags/co/2005/05/r5toc.htm;

multiplication/division. IEEE Transactions on Computers, 54(1):12–21
54, January 2005. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-
jsp?tp=&arnumber=1362636.

http://www.open-std.org/JTC1/SC22/WG11/docs/n482.pdf;

2005. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
 tp=&arnumber=1453497;

average weight representation for left-to-right point multiplication
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Symposium on VLSI Circuits, June 16–18th, 2005, Rhiga Royal Hotel
Kyoto, Kyoto, Japan, page ?? IEEE Computer Society Press, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2005. ISBN
???? LCCN ???? URL http://www.vlsisymposium.org/circuits/
technical.html. Paper 2.4.

[4970] Lena Pareto. Graphical arithmetic for learners with dyscalculia. In ACM
[7049], pages 214–215. ISBN 1-59593-159-7. LCCN ????

[4971] Dhananjay Phatak and Tom Goff. Fast modular reduction for large
wordlengths via one linear and one cyclic convolution. In Montuschi and

[4972] Jose-Alejandro Piñeiro, Stuart F. Oberman, Jean-Michel Muller, and
Javier D. Bruguera. High-speed function approximation using a minimax
318, March 2005. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
03/t0304abs.htm; http://csdl.computer.org/dl/trans/tc/
2005/03/t0304.htm; http://csdl.computer.org/dl/trans/tc/
2005/03/t0304.pdf; http://ieeexplore.ieee.org/iel5/12/
30205/01388195.pdf?isnumber=30205&prod=JNL&arnumber=
1388195&arSt=+304&ared=+318&arAuthor=Piñeiro%2C+J.-A.%%2B
Oberman%2C+S.F.%2B+Muller%2C+J.-M.%2B+Bruguera%2C+J.D.+
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=30205&
arnumber=1388195&count=13&index=6; http://ieeexplore.
ieee.org/xpls/references.jsp?arnumber=1388195.

[4973] N. Revol, K. Makino, and M. Berz. Taylor models and floating-point
arithmetic: proof that arithmetic operations are validated in COSY.
CODEN ???? ISSN 1567-8326 (print), 1873-5940 (electronic). URL
http://bt.pa.msu.edu/pub/papers/TMJLAP03/TMJLAP03.pdf.

sequential normal basis multipliers. IEEE Transactions on Computers,
54(2):98–110, February 2005. CODEN ITCOB4. ISSN 0018-9340 (print),

Sofronioua:2005:PNC

Sofronioua:2005:PNC

Steele:2005:SME

Steele:2005:SME

Steele:2005:SMF

Steele:2005:SMF

Steele:2005:SMG

Steele:2005:SMG

Stehle:2005:GAT

Stehle:2005:GAT

Stehle:2005:SWC

Verdonk:2005:BSI

Wahid:2005:EFC

Wait:2005:IPF

Walter:2005:DDP

Walters:2005:EFA

Wang:2005:DFFPa

Whidborne:2005:OCF

REFERENCES

Anonymous:2006:IFPa

Anonymous:2006:IFPb

Anonymous:2006:RSI

Avanzi:2006:SMK

Bajard:2006:AOF

Bartzis:2006:EBB

REFERENCES

[Bernal:2006:IRD]

[Bertot:2006:PGS]

[Bik:2006:MVF]

[Boldo:2006:PFF]

[Bonten:2006:ACF]

[Briggs:2006:IER]

[Castellanos:2006:BDF]
I. D. Castellanos and J. E. Stine. A 64-bit decimal floating-point comparator. In Dimopoulos et al. [7068], pages 138–144. ISBN 0-7695-
REFERENCES

[5039] James Demmel, Yozo Hida, William Kahan, Xiaoye S. Li, Sonil Mukherjee, and E. Jason Riedy. Error bounds from extra-precise iterative
REFERENCES

[5042] Jérémie Detrey and Florent de Dinechin. FPLibrary. A VHDL library of parametrisable floating-point and LNS operators for FPGA. Web site and source code., 2006. URL http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/. The FPLibrary has been superceded by the FloPoCo project [5465].

[5053] Daniel S. Graça, Ning Zhong, and Jorge Buescu. The ordinary differential equation defined by a computable function whose maximal interval of existence is non-computable. In Anonymous [7065], page ?? ISBN ???? LCCN ????

REFERENCES

REFERENCES

ISO:2006:IIJa

ISO:2006:IIJb

ISO:2006:IIJc

Kahan:2006:AIR

Kaivani:2006:RID

Kang:2006:SHS

Kettani:2006:CBN

[5070] Houssain Kettani. On the conversion between number systems. IEEE transactions on circuits and systems. 2, Analog and digital signal
REFERENCES

Kong:2006:IGA

Kornerup:2006:CSV

Kornerup:2006:RCN

Kulikova:2006:HFD

Kumar:2006:ODS

Kushner:2006:I

Lang:2006:SRI

Mahalingam:2006:IAM

Marques:2006:BIF

Maslennikowa:2006:DFB

Melquiond:2006:AIC

Meurant:2006:LCG

Muller:2006:CLA

Muller:2006:EFA

REFERENCES

REFERENCES

REFERENCES

Steele:2006:FPSb

Steele:2006:FPU

Steele:2006:SMP

Steele:2006:TOC

Strzebonski:2006:CAD

Strzodka:2006:PMP

Taylor:2006:IAI

Thakkar:2006:PDP
[5117] Anuja J. Thakkar and Abdel Ejnioui. Pipelining of double precision floating point division and square root operations. In Menezes [7073],

REFERENCES

REFERENCES

XILINX:2006:XLF

You:2006:DDA

Zhu:2006:FGA

Zimmermann:2006:AFD

Zimmermann:2006:EBC

Zimmermann:2006:WC

REFERENCES

REFERENCES

REFERENCES

[5158] R. Chaves and L. Sousa. Improving residue number system multiplication with more balanced moduli sets and enhanced modular arithmetic

Chen:2007:NSA

Cho:2007:BBL

Cho:2007:SPM

Chung:2007:ASF

Chung:2007:LWP

Chung:2007:MRA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5212] Philippe Langlois and Nicolas Louvet. How to ensure a faithful polynomial evaluation with the compensated Horner algorithm. In
REFERENCES

REFERENCES

Montuschi:2007:DDA

Muller-Olm:2007:AMA

Nikmehr:2007:FRF

Osborne:2007:AAG

Pan:2007:EFS

Pan:2007:SAS

REFERENCES

REFERENCES

REFERENCES

Yu:2007:DPE

Zhuo:2007:SMA

Aamodt:2008:CTI

Ahmadi:2008:PFS

ASTM:2008:AES

Bapst:2008:SIO

Beuchat:2008:AGM

REFERENCES

Boldo:2008:EFC

Brisebarre:2008:CRM

Brisebarre:2008:EME

Brisebarre:2008:IFP

Buttari:2008:UMP

REFERENCES

Gonzalez-Navarro:2008:BID

Graillat:2008:ASZ

Hardy:2008:ITN

Homma:2008:SAD

Jager:2008:DAD

Jezequel:2008:CLE

Jimeno:2008:BBA

Kahan:2008:BFU

Kaihara:2008:BMM

Khalid:2008:NRE

Kulisch:2008:CAV

949

Lefevre:2008:WCE

Li:2008:MLB

Liu:2008:FIM

Melquiond:2008:DRA

Monniaux:2008:PVF

Moore:2008:IMB

Morris:2008:PLC

Nakamori:2008:SRA

Namin:2008:NFF

P754:2008:ISF

Pan:2008:SAL

Patterson:2008:AC

Patterson:2008:GCG

Pineiro:2008:RDD

REFERENCES

Quinnell:2008:BFP

Quinnell:2008:FPF

Rahaman:2008:CTB

Rahaman:2008:DRT

Ravikumar:2008:BND

Raz:2008:EFL

Raz:2008:LBS

[5328] Ran Raz, Amir Shpilka, and Amir Yehudayoff. A lower bound for the size of syntactically multilinear arithmetic circuits. SIAM Journal on
Rodriguez-Henriquez:2008:LCB

Rump:2008:AFPa

Rump:2008:AFPb

Rump:2008:UFA

Russell:2008:BOR

Schreppers:2008:ACC

REFERENCES

[5368] Sylvain Chevillard, Mioara Joldes, and Christoph Lauter. Certified and fast computation of supremum norms of approximation errors. In

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5407] Ghassem Jaberipur and Behroz Parhami. Unified approach to the design of modulo-(2^n ± 1) adders based on signed-LSB representation
REFERENCES

REFERENCES

REFERENCES

967

REFERENCES

968

Shaw:2009:ASM

Shpilka:2009:IDA

Stewart:2009:FMP

Tajallipour:2009:FCD

Tan:2009:LPM

Tenca:2009:MOF

Vuillemin:2009:EDS

Wang:2009:DFP

Wang:2009:HDD

Wang:2009:RCD

XILINX:2009:XLF

Zhu:2009:CRH

Zimmermann:2009:DSS

REFERENCES

REFERENCES

[5465] Florent de Dinechin and Bogdan Pasca. FloPoCo: generator of arithmetic cores (Floating-Point Cores, but not only) for FPGAs (but not only). Web site and source code., August 10, 2010.
deDinechin:2010:FPE

Digeser:2010:ISE

Dvir:2010:HRT

Emmart:2010:HPI

Fahmy:2010:DFP

Frey:2010:ABC

Fu:2010:FDO

REFERENCES

Hemmert:2010:FEF

Jaberipur:2010:RDF

Jiang:2010:AEP

Kalla:2010:PIN

Kastner:2010:AOT

REFERENCES

[5484] F. E. J. Kruseman Aretz. Design and correctness proof of an emulation of the floating-point operations of the Electrologica X8: a case study.
REFERENCES

[Mathews:2010:AOE]

[Mehrotra:2010:SLR]

[Meyer:2010:CGT]

[Moller:2010:IDI]

[Morisita:2010:IEA]

[Mukherjee:2010:NAC]

REFERENCES

REFERENCES
REFERENCES

[5522] Daisuke Takahashi. Parallel implementation of multiple-precision arithmetic and 2,576,980,370,000 decimal digits of π calculation.
REFERENCES

REFERENCES

REFERENCES

Beuchat:2011:FAP

Bodrato:2011:HDT

Boersma:2011:PBF

Boldo:2011:EAE

Boldo:2011:FUL

Boldo:2011:FVN

REFERENCES

Bos:2011:ESA

Brent:2011:MCA

Brisebarre:2011:APS

Bruguera:2011:GEI

Brumley:2011:BSB

Brusentsov:2011:TCS

REFERENCES

[5567] Anindita Chakraborty and Amitabha Sinha. Conversion of binary to single-term triple base numbers for DSP applications. ACM SIGARCH
REFERENCES

Chang:2011:CGR

Chen:2011:PIM

Chen:2011:TSA

Chevillard:2011:AGC

Colberg:2011:HAS

REFERENCES

REFERENCES

[5591] Stef Graillat, Fabienne Jézéquel, Shiyue Wang, and Yuxiang Zhu. Stochastic

REFERENCES

Harvey:2011:FAS

Harvey:2011:SDL

Holanda:2011:FBA

Hong:2011:EOS

Hsiao:2011:DLC

REFERENCES

REFERENCES

REFERENCES

Kathiara:2011:AVS

Kim:2011:ZAS

Kornerup:2011:PAO

Kulisch:2011:EDP

Kulisch:2011:VFE

Lamberti:2011:RCT

REFERENCES

REFERENCES

[5640] Hong Diep Nguyen, Bogdan Pasca, and Thomas B. Preußer. FPGA-
specific arithmetic optimizations of short-latency adders. In Peter
Athanas, Dionisios Pnevmatikatos, and Nicolas Sklavos, editors, 21st
International Conference on Field Programmable Logic and Applications:
FPL 2011: proceedings: 5–7 September 2011, Chania, Greece,
6044770.

enclosure of matrix multiplication by using optimized BLAS. Numerical
NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

[5642] Daejin Park, Tag Gon Kim, Changmin Kim, and Sungho Kwak. A
low-power sync processor with a floating-point timer and universal edge
tracer for 3DTV active shutter glasses. In 2011 IEEE COOL Chips XIV:
Yokohama Jooh Bunka Center, Yokohama, Japan, April 20–22, 2011
[7121], pages 1–3. CODEN IRELAO. ISBN 1-61284-884-2. ISSN 0367-
jsp?tp=&arnumber=5890924. IEEE Catalog Number CFP11COL-ART.

Quartus Wizard-based VHDL floating-point components into a high
performance heterogeneous computing environment. In 2011 Proceedings
of IEEE Southeastcon, pages 413–417. pub-IEEE, pub-IEEE:adr,
&arnumber=5752977.

[5644] Daniel Piso and Javier D. Bruguera. Variable latency Goldschmidt
algorithm based on a new rounding method and a remainder
estimate. IEEE Transactions on Computers, 60(11):1535–1546,
November 2011. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
.tp=&arnumber=5669291.

REFERENCES

Abbott:2012:TFA

Adam:2012:FPD

Aharony:2012:IFP

Akleylek:2012:MRR

Al-Mohy:2012:MAB

Anonymous:2012:FIS

REFERENCES

REFERENCES

CODEN AMHCBQ. ISSN 0096-3003 (print), 1873-5649 (electronic).

REFERENCES

Gandino:2012:AAS

Gazeau:2012:NLN

Ghosh:2012:FPR

Giessing:2012:FRB

Goldberg:2012:CA

Goossens:2012:CTS

REFERENCES

Kornerup:2012:FPA

Kramer:2012:MAP

Kumm:2012:RCS

Kurka:2012:FAA

Langlois:2012:ACT

Langlois:2012:CTS

REFERENCES

REFERENCES

Masotti:2012:FPN

McCalpin:2012:OSH

Milicevic:2012:PAO

Mine:2012:ADB

Mukunoki:2012:PCD

Muller:2012:SSV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

January 2013. CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).

Arnold:2013:DLN

Bagnara:2013:EBF

Bailey:2013:KHP

Bajard:2013:FDR

Bao:2013:FDI

Barr:2013:ADF

REFERENCES

[5764] Mathew A. Cleveland, Thomas A. Brunner, Nicholas A. Gentile, and Jeffrey A. Keasler. Obtaining identical results with double precision

[5770] Florent de Dinechin, Christoph Lauter, Jean-Michel Muller, and Serge Torres. On Ziv’s rounding test. *ACM Transactions on Mathematical
REFERENCES

Demmel:2013:ERF

Demmel:2013:FRF

Demmel:2013:NRA

Demmel:2013:RRB

Detrey:2013:RCF

Dimitrov:2013:ALI

Dingle:2013:RIT

[5785] John Gustafson. Unleashed computing: The need to right-size precision to save energy, bandwidth, storage, and electrical power. Web slides
REFERENCES

Han:2013:HSP

Ioualalen:2013:SAF

Jaffer:2013:EAR

Jeannerod:2013:CAC

Jeannerod:2013:FAK

Jeannerod:2013:IEB

Jiang:2013:AED

Jiang:2013:AFE

Kadric:2013:APF

Kouretas:2013:LPL

Kulisch:2013:CAV

Kupriianova:2013:RCI

Kurka:2013:UAA

REFERENCES

REFERENCES

Pedram:2013:FPA

Pontarelli:2013:LCC

Rubio-Gonzalez:2013:PTA

Rump:2013:ASDa

Rump:2013:ASDb

Rupley:2013:FPU

Russinoff:2013:CFV

Saha:2013:PAF

SaiToh:2013:ZCL

Shen:2013:SCC

Sohn:2013:IAF

Srinivasan:2013:SPF

REFERENCES

REFERENCES

Demmel:2014:THS

Doerr:2014:RRP

Drane:2014:SCF

Du:2014:AEP

Dumas:2014:NRI

Gilani:2014:EEP

Gladstein:2014:DBP

REFERENCES

REFERENCES

arithmetic. In IEEE, editor, Design, Automation and Test in Europe
Conference and Exhibition (DATE), Dresden, Germany March 24–28,
2014, pages 1–4. IEEE Computer Society Press, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 2014. ISBN 1-4799-3297-3,
ieee.org/servlet/opac?punumber=6784162.

Lei:2014:FIS

[5859] Yuanwu Lei, Lei Guo, Yong Dou, Sheng Ma, and Jinbo Xu. FPGA
implementation of a special-purpose VLIW structure for double-precision
elementary function. *ACM Transactions on Reconfigurable Technology
and Systems*, 7(2):8:1–8:??, June 2014. CODEN ???? ISSN 1936-7406
(print), 1936-7414 (electronic).

Lindstrom:2014:FRC

Transactions on Visualization and Computer Graphics*, 20(12):2674–
2683, December 2014. CODEN ITVGEA. ISSN 1077-2626 (print), 1941-
0506 (electronic), 2160-9306. URL http://csdl.computer.org/csdl/
trans/tg/2014/12/06876024-abs.html.

Long:2014:SIF

[5861] Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, and Martin
Rinard. Sound input filter generation for integer overflow errors. *ACM
ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). POPL
'14 conference proceedings.

Lupon:2014:SHS

[5862] Marc Lupon, Enric Gibert, Grigorios Magklis, Sridhar Samudrala, Raúl
Martínez, Kyriakos Stavrou, and David R. Ditzel. Speculative hardware/
software co-designed floating-point multiply-add fusion. *ACM SIGARCH
CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Marche:2014:VFB

[5863] Claude Marché. Verification of the functional behavior of a floating-point
(part 3)(??):279–296, December 15, 2014. CODEN SCPGD4. ISSN 0167-
com/science/article/pii/S0167642314001671.
REFERENCES

Nguyen:2014:RED

Pedram:2014:AAF

Piso:2014:OAE

Revol:2014:NRP

Riemens:2014:TSA

REFERENCES

[5884] PengFei Wang and JianPing Li. On the relation between reliable computation time, float-point precision and the Lyapunov exponent in

Yao:2014:NRP

Ahmadifar:2015:NRN

Ahrens:2015:ERF

Ahrens:2015:RPM

Aktan:2015:MEA

Andrysco:2015:SFP

REFERENCES

1041

Biancolin:2015:HAE

Boldo:2015:FVP

Boldo:2015:SSD

Boldo:2015:VCF

Brain:2015:AFS

Brunie:2015:CGM

Chiang:2015:UFP

[5903] Wei-Fan Chiang, Ganesh Gopalakrishnan, and Zvonimir Rakamarić. Unsafe floating-point to unsigned integer casting check for GPU
REFERENCES

Collange:2015:NRP

Cowlishaw:2015:GDA

Coxon:2015:MMP

Damouche:2015:TPC

deDinechin:2015:FPH

[5908] Florent de Dinechin. On fixed-point hardware polynomials. Technical report, INSA, CITI Lab, Université de Lyon, Lyon, France, October 2015. URL https://hal.inria.fr/hal-01214739.

deDinechin:2015:HIF

REFERENCES

REFERENCES

[5919] Terry Froggatt. An error in the Ada universal arithmetic package. *ACM SIGADA Ada Letters*, 35(2):14, August 2015. CODEN AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic). See [1687]. The 32-year-old error is a test with digit t that has if ($t > \text{BASE}$), but the operator should instead be \geq.

REFERENCES

Gouicem:2015:MMD

Graillat:2015:ECF

Graillat:2015:MRE

Graillat:2015:NVC

Gupta:2015:DLL

Gustafson:2015:EEU
REFERENCES

REFERENCES

[5949] Martin Langhammer and Bogdan Pasca. Design and implementation of an embedded FPGA floating point DSP block. In Muller et al.
REFERENCES

Langroudi:2015:MPP

Laskar:2015:KTN

Lauter:2015:SAF

Lee:2015:RRA

Liu:2015:IBI

Liu:2015:SSS

[5955] Weifeng Liu and Brian Vinter. Speculative segmented sum for sparse matrix-vector multiplication on heterogeneous processors. Parallel
REFERENCES

REFERENCES

Palmer:2015:MBI

Panchekha:2015:AIA

Parhami:2015:DAN

Peeper:2015:DDP

Proust:2015:KTC

Renardy:2015:HIM

REFERENCES

[5987] Ichitaro Yamazaki, Stanimire Tomov, and Jack Dongarra. Mixed-precision Cholesky QR factorization and its case studies on multicore

[5989] Peter Ahrens, Hong Diep Nguyen, and James Demmel. Efficient reproducible floating point summation and BLAS. Report UCB/EECS-2016-121, EECS Department, UC Berkeley, Berkeley, CA, USA, June 18, 2016. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html.

REFERENCES

REFERENCES

Boldo:2016:RFA

Brisebarre:2016:CBB

Brzicova:2016:LMD

Chen:2016:DAR

Chen:2016:PSA

Coleman:2016:LCT
REFERENCES

[6018] François Févotte and Bruno Lathuilière. VERROU: Assessing floating-point accuracy without recompiling. Working paper ??, ????,
REFERENCES

????, October 2016. URL https://hal.archives-ouvertes.fr/hal-01383417.

Fritz:2016:IPM

Garcia-Vega:2016:DMO

Garrido:2016:CIN

Geran:2016:CBC

Gueron:2016:ABI

Gueron:2016:HIA

Gustafson:2016:RAC

[6027] David Hopkins. Will my numbers add up correctly if I round them? *The Mathematical Gazette*, 100(549):396–409, November 2016. CODEN MAGAAS. ISSN 0025-5572 (print), 2056-6328 (electronic). URL https://www.cambridge.org/core/product/88F5753DFE9F0DDDEAD1F2552B0F8B22. The probability that rounding after fixed-point summation of n terms gives the same result as summation of rounded terms is given by $p(n) = (2/\pi) \int_0^\infty (\sin(x)/x)^{n+1} dx$, and that function is always a rational number. Its values are $p(n) = 1, 3/4, 2/3, 115/192, 11/20, 5887/11520, 151/315, 259723/573440, \ldots$ for $n = 1$ to 8.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6076] Joris van der Hoeven, Grégoire Lecerf, and Guillaume Quintin. Modular SIMD arithmetic in Mathemagix. *ACM Transactions on Mathematical
Villalba-Moreno:2016:DRF

Wang:2016:DFP

Wilson:2016:UAA

Zhou:2016:PUH

Aliasgari:2017:SCH

Anderson:2017:EMF

REFERENCES

REFERENCES

[6108] Chemseddine Chohra, Philippe Langlois, and David Parello. Reproducible, accurately rounded and efficient BLAS. In Desprez et al. [7136], pages 609–620. ISBN 3-319-58943-1 (e-book), 3-319-58943-1 (hardcover). LCCN QA76.9.E94; QA76.758TK.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6134] Nicholas John Higham. The rise of multiprecision arithmetic. In Burgess et al. [7135], page 1. ISBN 1-5386-1966-0 (print), 1-5386-1965-2, 1-5386-
Hormigo:2017:ISI

Ishii:2017:FMA

Istoan:2017:FFP

Jaiswal:2017:AEA

Jeannerod:2017:CRE

REFERENCES

patent, filed 23 October 2016, was issued despite substantial prior art that should have resulted in its rejection: see [6284]. The inventor does not appear to have published in the area of floating-point arithmetic (apart from this entry, none by him can be found in this bibliography). The only literature references in the patent are [5312, 2646, 5720, 5497].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Saint-Geniès:2017:ELT

Rocca:2017:CRE

Rovers:2017:IPP

Rump:2017:IPK

Russell:2017:LBR

Saint-Geniès:2017:ELT
REFERENCES

Sanchez-Stern:2017:FRC

Sano:2017:FBS

Schleicher:2017:NMP

Serre:2017:OSL

Stoutemyer:2017:APC

Thevenoux:2017:ASS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

5–8, January/June 2018. CODEN ???? ISSN 1556-6056 (print), 1556-6064 (electronic).

REFERENCES

[6266] Sergio Marchese. AI chips must get the floating-point math right: Formal verification of FPUs is no longer a prerogative of big companies spending big bucks. Web site., September 27, 2018.

[6267] Mantas Mikaitis, David R. Lester, Delong Shang, Steve Furber, Gengting Liu, Jim Garside, Stefan Scholze, Sebastian Höppner, and Andreas

REFERENCES

[6284] Tiffany Trader. Inventor claims to have solved floating point error problem. HPC Web site., January 17, 2018. URL https://www.hpcwire.com/2018/01/17/inventor-claims-solved-floating-point-error-problem/. From the HPC editor: “After this article was published, a number of readers raised concerns about the originality of Jorgensen’s techniques, noting the existence of prior art going back years. Specifically, there is precedent in John Gustafson’s work on unums and interval arithmetic both at Sun and in his 2015 book, The End of Error, which was published 19 months before Jorgensen’s patent application was filed.”.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

David Harvey and Joris van der Hoeven. Faster integer multiplication using plain vanilla FFT primes. Mathematics of Computation, 88(315):

[6346] David Harvey and Joris Van Der Hoeven. Integer multiplication in time \(O(n \log n) \). Report hal-02070778, School of Mathematics and Statistics, University of New South Wales, and CNRS, Laboratoire d’informatique, École polytechnique, Sydney, NSW 2052, Australia and 91128 Palaiseau, France, March 18, 2019. URL https://hal.archives-ouvertes.fr/hal-02070778/document.

REFERENCES

IEEE-754:2019:ISF

IEEE:2019:PDA

Jaberipur:2019:MPP

Jia:2019:DNT

Jiang:2019:LPU

Johansson:2019:FAP

Kalamkar:2019:SBD

REFERENCES

Kulisch:2019:MSI

Laguna:2019:FDF

Laguna:2019:GPD

Lange:2019:SEP

Lefèvre:2019:ACM

Lemire:2019:FRD

REFERENCES

REFERENCES

[6406] Benjamin Sherman, Jesse Michel, and Michael Carbin. Sound and robust solid modeling via exact real arithmetic and continuity. *Proceedings of

REFERENCES

[6423] Laurens van Dam, Johan Peltenburg, Zaid Al-Ars, and H. Peter Hofstee. An accelerator for posit arithmetic targeting posit level 1 BLAS routines and Pair-HMM. In Gustafson and Dimitrov [7139], pages 5:1–5:10. ISBN 1-4503-7139-6. LCCN ?????

Ahrens:2020:AER

Anonymous:2020:ACa

Anonymous:2020:ACb

Anonymous:2020:ACN

Anonymous:2020:AI

Anonymous:2020:ALR

Anonymous:2020:RVE

Anonymous:2020:SA

Anonymous:2020:TC

Anonymous:2020:TPa

Anonymous:2020:TPb

Arnold:2020:IRL

Bajard:2020:AFV

Boldo:2020:CRF
Bottcher:2020:HDL

Brisebarre:2020:EAS

Bruguera:2020:LLF

Brunie:2020:TFP

Cherubin:2020:TRP

Cornea:2020:FA

Coward:2020:ADS

[6461] Samuel Coward, Theo Drane, and Yoav Harel. Automatic design space exploration for an error tolerant application. In Cornea et al. [7141],
REFERENCES

[6467] Rami Elkhatib, Reza Azorderakhsh, and Mehran Mozaffari-Kermani. Highly optimized Montgomery multiplier for SIKE primes on FPGA. In
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6503] SEGGER

[6505] Ernie Smith. How a minor calculation error cost Intel half a billion dollars: How one of the most famous computer bugs of all time, the Intel Pentium floating-point division glitch, blew

Sommer:2020:CAN

Sousa:2020:TIR

Turley:2020:WBA

Uguen:2020:ASA

Volkova:2020:AAR

Ward-Foxton:2020:AIG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hormigo:2021:FAB

Hough:2021:ISO

Joldes:2021:FA

Joldes:2021:SSE

Kouya:2021:ALD

Lange:2021:CND

REFERENCES

[6573] Jean-Michel Muller. $a \cdot (x \cdot x)$ or $(a \cdot x) \cdot x$?. In IEEE [7144], pages 17–24. ISBN 1-66542-293-9 (print), 1-66544-648-X (e-book). LCCN ????

Nannarelli:2021:OCA

Parrot:2021:POU

Plantard:2021:EWSa

Plantard:2021:EWSb

Revy:2021:AIF

Saiki:2021:CPT

Sohier:2021:CIS

REFERENCES

Zaruba:2021:STP

Zlatopolski:2021:MES

Ahmadinejad:2022:EQE

Ahmadpour:2022:BMM

Alder:2022:FPU

Anonymous:2022:AI

Anonymous:2022:C
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6640] Paolo Montuschi, Jean-Michel Muller, and Florent de Dinechin. Computer arithmetic: Continuing a long and steady emergence.
REFERENCES

Muller:2022:FDW

Murillo:2022:PPL

Nath:2022:KVM

Nunez-Yanez:2022:FAD

Oaks:2022:ZNM

Oberman:2022:GES

REFERENCES

REFERENCES

Blanchard:2023:NMD

Boldo:2023:FPA

Bommana:2023:DST

Bottcher:2023:TGO

Bruguera:2023:RFP

1161

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Alt:1960:AC

Taub:1961:JNCa

Taub:1961:JNCb

Taub:1961:JNCc

AFIPS:1962:APS

Taub:1962:JNC

Metropolis:1963:PFS

REFERENCES

Taub:1963:JNCa

Taub:1963:JNCb

Wilkinson:1963:REA

AFIPS:1965:FJC

Alt:1965:AC

Kalenich:1965:IPP

REFERENCES

Morrell:1969:IPP

Morrell:1970:IPP

AFIPS:1971:ACP

Freiman:1971:PIC

Gear:1971:NIV

Rice:1971:MS

REFERENCES

REFERENCES

REFERENCES

Street, Suite 300, Silver Spring, MD 20910, USA, 1977. ISBN ???? LCCN QA76.6.

REFERENCES

Linger:1979:SPT

Meinardus:1979:ATP

Ng:1979:SAC

ACM:1980:CPA

Alefeld:1980:FNC

REFERENCES

[6765] Electro:1980:ECR

[6767] IEEE:1980:PMA

[6768] Johnson:1980:MPA

[6769] Lavington:1980:IPP

REFERENCES

GAMM:1981:PAM

IEEE:1981:PSC

Messina:1982:PMM

Randell:1982:ODC

Reid:1982:RBN

Rodrigue:1982:AC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:1984:CPI

IEEE:1984:ILD

Kirk:1984:CRE

Mini-Micro:1984:MMS

NCC:1984:ACP

Buchberger:1985:PEE

REFERENCES

REFERENCES

REFERENCES

1183

REFERENCES

REFERENCES

References

ACM:1989:APT

ACM:1989:PSN

Carey:1989:PSM

Chen:1989:TSA

Ercegovac:1989:PSC

IEE:1989:EEC

REFERENCES

[6851] ACM:1990:PAS

REFERENCES

REFERENCES

REFERENCES

Basel, Oct. 2–6, 1989), volume 7 of IMACS annals on computing and applied
mathematics. J. C. Baltzer AG, Scientific Publishing Company,
Basel, Switzerland, 1990. ISBN ????? LCCN ????

[6866] Proceedings of the Winter 1990 USENIX Conference, January 22–26,
LCCN QA76.8.U65 U82 1990.

Anaheim, California, volume 34 of Wescon conference record. Electronic
Conventions Management, Los Angeles, CA, USA, 1990. ISBN ?????
LCCN ????

[6869] Andreas Griewank and George F. Corliss, editors. Automatic
differentiation of algorithms: theory, implementation, and application.
Proceedings of the first SIAM Workshop on Automatic Differentiation,
held in Breckenridge, Colorado, January 6–8, 1991. Society for Industrial
284-x. LCCN QA304 1991.

on VLSI Design, New Delhi, India, January 4–8, 1991: digest of papers.
IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver
catalog no. 91TH0340-0.

Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD
REFERENCES

REFERENCES

Meyer:1991:CAP

Morris:1991:RWP

SPIE:1991:PSI

Alley:1992:CRI

Anonymous:1992:EAP

Atanassova:1992:CAE

REFERENCES

IEEE:1992:ASF

IEEE:1992:GCG

IEEE:1992:IIC

IEEE:1992:PIC

IEEE:1992:PIS

postscript by J. L. Britton and Irvine John Good. With a preface by P. N. Furbank.

Vandewalle:1992:SPV

Wang:1992:PII

White:1992:IIS

Adams:1993:SCA

Anonymous:1993:IPF

Corliss:1993:AIC

REFERENCES

Interval’nye vychisleniiia. ???, ???, 1993. ISBN ???. ISSN 0135-4868. LCCN ???.

REFERENCES

REFERENCES

REFERENCES

[6934] Götz Alefeld, Andreas Frommer, and Bruno Lang, editors. Scientific computing and validated numerics: proceedings of the International
REFERENCES

1996. “Applications of Interval Computations” contains primarily survey articles of actual industrial applications of numerical analysis with automatic result verification and of interval representation of data. Underlying topics include:

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:1998:HCC

IEEE:1998:IIC

IEEE:1998:IOM

IEEE:1998:PGL

MacKay:1998:PCT

Matthews:1998:CRT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Matthews:2000:CRT

Reynders:2000:IPI

Sprague:2000:PAH

Swartzlander:2000:IIC

Traverso:2000:IAU

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:2002:IWS

IEEE:2002:STI

Li:2002:PIC

Luk:2002:PSA

Matthews:2002:PTS

Pocek:2002:FAI

REFERENCES

REFERENCES

REFERENCES

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2004. ISBN 0-7695-2230-0. LCCN ????

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cimatti:2006:FMH

Dimopoulos:2006:IIC

Haddad:2006:ACP

Hess:2006:ANT

IEEE:2006:ICV

[7071] IEEE, editor. 19th International Conference on VLSI Design: held jointly with the 5th International Conference on Embedded Systems

REFERENCES

[7082] IEEE, editor. *ASAP 07: conference proceedings; IEEE 18th International Conference on Application-Specific Systems, Architectures, and Processors; Montréal, Canada: July 8–11, 2007*. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Charot:2010:API

Delgado-Frias:2010:IIM

Fukuda:2010:MSI

IEEE:2010:CCE

IEEE:2010:ICC

REFERENCES

IEEE:2013:PIS

Butler:2015:FMS

Higham:2015:PCA

IEEE:2015:ISS

Muller:2015:ISC

REFERENCES

[7136] Frédéric Desprez, Pierre-François Dutot, Christos Kaklamanis, Loris Marchal, Korbinian Molitorisz, Laura Ricci, Vittorio Scarano, Miguel A.

