A Bibliography of Publications on Floating-Point Arithmetic

Norbert Juffa
2445 Mission College Blvd.
Santa Clara, CA 95054
USA
Tel: +1-408-727-1885
FAX: +1-408-727-1265
E-mail: juffa@ira.uka.de (Internet)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

23 May 2024
Version 3.714

Introduction

This is a bibliography of material on floating-point arithmetic that I came up with while doing research on a floating-point package of my own. I don’t claim it to be anywhere near complete. The material listed is only what I myself possess.

My main interest was in software based, binary floating-point arithmetic on a microprocessor, so you won’t find much material about the hardware used in floating-point arithmetic (e.g. adders, carry propagation schemes, higher radix
representation for multiplication and division, etc.) in this list. There is also not too much on non-binary floating-point arithmetic.

For most fields covered in this bibliography, the important or historically relevant articles should be included. There is also some material on integer arithmetic in this list as some of the methods used with integer arithmetic contain interesting ideas that may be useful in the realization of a floating-point arithmetic package.

Also, depending on the type of microprocessor used, one may need to implement integer multiplication and division for use in the floating-point package, so articles about this topic are included as well.

As I am German, there is a bit of material in German in this bibliography. However, English translations are provided for all non-English titles.

Thanks to the people who have helped me with previous versions of this document by sending me papers or additional references:

- Steven Sommars (sesv@research.bell-labs.com),
- Jim Kiernan (jmk@teak.cray.com),
- Warren Ferguson (ferguson@seas.smu.edu),
- Nhuan Doduc (ndoduc@framentec.fr),
- K. C. Ng (kwok.ng@eng.sun.com),
- Nelson H. F. Beebe (beebe@math.utah.edu).

Bibliography entries in the Books section are ordered alphabetically by author; ordering is by ascending year in the remaining sections.

Warning: it has yet not been possible to bring this citation list up-to-date with the entries in the Bibliography.

Books, hardware oriented

[1721, 281, 1286, 1216, 3111, 3315, 1916, 841, 1164, 1000, 1457, 843, 1343, 7254, 7255, 1557]

Books, software oriented or theory

[1273, 466, 469, 470, 119, 1420, 2393, 908, 1049, 352, 2952, 2434, 2969, 2270, 320, 527, 7108]

Books, machine specific

[2175, 3217, 3113, 2436, 1767, 1903, 2289, 1935, 2471]
1 CHOICE OF BASE, FLOATING POINT FORMATS

Journal Publications, Conference Papers, Technical Reports, Ph.D. Dissertations, Book Contributions, etc.

1 Choice of base, floating point formats

1.1 Precision and Rounding

1.2 Determination of parameters of floating point arithmetic

1.3 IEEE standards for floating point arithmetic

1.4 Floating point arithmetic, general and implementation issues

1.5 Floating point packages

1.6 Floating point units
1.7 Test of floating point routines

2 Addition and Subtraction
[375, 1513]

2.1 Floating-point Summation
[325, 345, 362, 361, 570, 639, 677, 831, 1661, 2275, 2352]

2.2 Multiplication
[680, 1246, 1260, 1476, 1543, 1516, 1574, 1601, 1593, 1619, 1676, 1591, 1758]

2.3 Division
[209, 238, 223, 322, 348, 438, 1017, 1064, 1311, 1403, 1567, 1645, 1623, 1606, 1770, 1890, 2015, 1994, 2387, 2777, 2722, 2967, 3016, 7276, 2949]

3 Elementary functions, general
[384, 398, 586, 650, 615, 1122, 1265, 1627, 1656, 1756, 1719, 1717, 1794, 1840, 7195, 1945, 2051, 2154, 2098, 2277, 7214, 2560, 2597, 2547, 3334, 2549, 2518, 2697, 2850, 2661, 2812, 2813, 2690, 3367, 3335]

3.1 Elementary functions, CORDIC and related algorithms
[190, 191, 248, 264, 373, 523, 551, 659, 651, 667, 733, 855, 1068, 1084, 1293, 1451, 1699, 1897, 1708, 1811, 1963, 2159, 2381, 2310, 2541, 2567, 2716, 2810, 3010, 3005, 3128, 3068, 3114]

3.2 Elementary functions, function approximation
[240, 241, 481, 623, 768, 767, 983, 1021, 1162, 2000, 2052, 2610, 2685, 2783, 2784]

3.2.1 Polynomial evaluation
[259, 279, 304, 426, 1061, 1228, 2351]
3.3 Square root, general
[1082, 1187, 1481, 1598, 1651, 2565, 2677]

3.3.1 Square root, bit-oriented, iterative, and table methods of computation
[120, 153, 359, 1022, 1008, 1151, 1353, 1444, 1406, 1372, 1426, 1537, 1825, 1922, 1834, 1887, 1971, 1952, 2035, 2006, 2046, 2089, 2139, 2179, 2253, 2390, 2577, 2534, 2709, 3038]

3.3.2 Square root, Newton’s method

3.4 Sine and Cosine
[180, 1068, 1018, 1023, 1176, 1398, 1544, 1666, 1665, 1765, 1853, 1953, 2120, 2231, 2606, 2961, 2958, 2880, 2980, 3074]

3.5 Logarithm
[154, 271, 331, 690, 998, 1112, 1299, 1529, 2107, 2108, 2607, 2735]

3.6 Exponential function
[141, 409, 1183, 1361, 1518, 1748, 1847, 2470, 2608, 3002]

3.7 Arctangent
[143, 160, 207]

3.8 Other transcendental functions
[499, 613, 161, 1024, 365, 275, 360, 2100, 1157, 2860, 3054]

4 Binary-decimal conversion
5 BCD arithmetic

[674, 726, 777, 778, 779, 780, 781, 782, 783, 1382, 1492, 1705, 1640, 2037, 2646, 2960]

6 Multiple precision arithmetic

[292, 330, 410, 428, 632, 616, 953, 1002, 1099, 1265, 1350, 1430, 1542, 2805, 2789, 3033, 3224]

7 Conferences on computer arithmetic

[7134, 7144, 7149, 7158, 7161, 7192, 7193, 7235, 7265, 7273, 7267, 7299]

8 Additional contributions from Nelson H. F. Beebe

Title word cross-reference

#26 [5490].

\[((2^n)^m) [3797]. \ (10^{41} - 1)/9 [1976]. \ (2^n) [4350, 4371, 4555, 4564, 4469]. \ (2^n + 1) [1081, 4788, 3910]. \ (2^n - 1) [5007]. \ (2^n - 1, 2^n+p, 2^n + 1) [6270]. \ (2^n \cdot 2^n) [6076]. \ (2^n \cdot 2^n) [5517, 4137]. \ (2^n) [4434]. \ (2n + 3) [6525]. \ (2n - (2p + 1)) [4850]. \ (a \cdot x) \cdot x? [6799]. \ (d, r) [789]. \ (M, p, k) [5803]. \ (R) [2908]. \ (p) [4390, 4434]. \]
8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

7

(x + y) ∗ (x − y) [6672]. −2 [743, 183, 206, 949, 801]. −∞ < n < +∞ [141, 160].
0 [5635]. 0 < N < 1 [161]. 0 ÷ 0 [699].
$1 [3739]. 1 [4987, 4343, 5152,
√
5636, 3694, 2165]. 1, 000, 000 [618]. 1/ x [5774]. 1/t [2174]. 10 [530, 6007].
[1005, 4301, 2049, 5672, 3229, 3991, 618, 6040, 430, 4343, 5008, 3283, 3459, 1760,
3469, 3140, 3476, 5610, 3491, 530, 321, 3681, 3816, 4450, 3694, 5096, 3361, 4940].
2, 576, 980, 370, 000 [5637]. 22n + 1 [2146]. 256 [4437]. 27 [433]. 2(n + 1) + 1}
[3968]. 22n+1 − 1 [6022]. 22n+2 − 1 [6022]. 22q [6012]. 28 − 1 [2856]. 2k
[4482, 4995, 5497, 5036, 5044]. 2k + 1 [866]. 2k−1 [4482]. 2m [4556]. 2n
[1568, 6022, 3968]. 2n + 1 [3968, 4987, 5716, 4460]. 2n+1 − 1 [6515]. 2n+k
[6515]. 2n − (2n−2 + 1) [5339]. 2N − 1 [2987, 4823, 6515, 4213, 3968]. 2q − 3
[7007]. 2q ± 1 [6012]. 2q ± 3 [6012]. 2x py ± 1 [6238]. 2 × 2 [5909]. 3 [377, 4989,
4178, 430, 4034, 4202, 4039, 5028, 4873, 321, 6207, 4118, 6599, 4937, 4938].
3 − j [298]. 32 [3984, 4437]. 3 × 3 [2493]. 4 [3968, 4315, 4659, 2521, 2522, 430,
3428, 5721, 5523, 4382, 4715, 2950, 4072, 4074, 2811, 3001, 1932, 3524, 3529].
$49.95 [3706]. 5 [6012, 4800]. 54 × 54 [3483]. 6 − j [298]. 64 × 64 [2278]. 8
[433, 3441, 4072, 3491]. 84 [307]. $85.00 [4142, 4143]. 88062 [530]. 8k [6836].
8 × 8 [5096]. 9 − j [298]. < [6215]. > [6215]. [0, 1] [5152]. 0 [4356]. 2 [5734]. 4
[2796]. 5 [3897]. e [1159]. th [1159]. T M [4626]. A(N + C) [1910]. a + b [3638].
a+b+c [6296]. AB +CAB +C [6944]. ab+cd [6091]. ab+cd+e [7085]. a·(x· x)
[6799]. A ·p
T [4065]. arctan Z [143]. a × b + c × d [6296]. β [6327, 7050]. C + AB 2
[4280]. c/ (a2 + b2) [6278]. CLP(R) [2928]. cos−1 [3128]. cos N [180]. cos x
[373]. cot−1 x [373]. d [4693, 5500, 3803]. ∆02 [4941]. e [459]. en [141]. ex [409].
 [3472]. ηT [5664]. ηT [5244]. exp(x) [1361]. exp x [373]. f (x) = 0 [1222]. Gα
[809]. GF(2)[x] [5857]. GF (2m) [4404, 4772, 4387, 6041, 4974, 5430, 4905, 5861].
GF(2n) [4199]. GF (pm) [4651]. H [5169]. I 2 L [3238]. ∞/∞ [5015]. K
[5438, 4301, 5911, 2107, 5995, 6327, 5952]. k < m [6327]. L [4343]. L2 [5252].
L∞ [5251, 6974]. l2 [6051]. ln(x) [1529]. ln x [373]. log n [1228]. log Z [143].
LU [6788, 6547]. M [4837, 180, 4132, 2626, 2631, 2640, 2918, 5333, 581, 6327].
M E mod N [2776]. F2 [X] [7049]. f2m [4229]. F55n [5681]. F77n [5681]. Rn
[6897]. Z2 [4060, 5035]. GF(2) [5307, 1692]. GF(24)2 [6154]. GF(24n) [3921].
GF(28) [6154]. GF(2k) [4962, 3768, 4920]. GF(2m) [5480, 4672, 4980, 3873,
4526, 5141, 3581, 4532, 3884, 5509, 2896, 2897, 3752, 4860, 5307, 5170, 4714,
4385, 5032, 2428, 5431, 4604, 4745, 4906, 5435, 3198, 4280, 4935, 4771, 2308].
GF(2n) [4994]. GF(p) [2081]. GF(pm) [3487]. GF(pk) [4647]. GF(qn) [4695].
MECIPTI [282]. µ [1426, 4866, 4908, 2309]. µP [1610, 2008]. N [3963, 808,
2333, 2334, 160, 161, 180, 4575, 5068, 4926, 5952, 5683, 4159, 6051, 1294, 3622].
nième [1159]. N00 = −N0−1 mod W [4257]. N ≥ 32 [5846]. n log(n) [6463]. n × n
[3139]. O(1) [6363]. O(n) [1195, 3431, 1547]. O(n2) [2777, 2778]. O(n log n)
[1915]. P [6503, 4636, 2059, 1130, 894, 1044, 1635, 7050, 4273, 4622, 3349]. pk
[6680]. π [1630, 2233, 2234, 4601, 268, 5637, 1693, 459]. p × p [4580, 4724]. q
[5776]. q∗m − n [1628]. QR [6116]. R [3602, 3061, 1605, 1613, 6406, 5846].
r = mk [1438]. ra [4945]. rb − 1 [4945]. rc + 1 [4945]. {rn − 2, rn − 1, rn } [5298].


$r \geq 8$ [5846].

-2 [1004]. -adic [1130, 1044, 1635, 2059, 894].

-Approximations [6974, 5251, 5252].

-ary [2918, 4132].

-Bit [3984, 6836, 307, 5952, 5068].

-body [4575, 4926].

-circulant [6406].

-Coordinate [4413].

-count [135x549].

-Depth [3431].

-Digit [433].

-Dimensional [5500, 2049, 4693].

-Fold [5438].

-Friendly [5803].

-function [5169].

-gram [5683].

-Matrix [4837].

-Moduli [6012, 3968, 4659, 4800].

-Norms [6051].

-Order [3602].

-Partition [5995].

-Real [4941].

-select [4159].

-sets [3061].

-spaces [4877].

-th [5911, 3803, 5776, 2334].

-transform [5330].

-Vectors [6051].

.NET [6416, 5071].

/ [4866]. /spl [4866].

0.18-CMOS [5770]. 0.4.1rc [6417]. 0.80pJ [6551]. 0.80pJ/flop [6551].

'00 [7375, 7380, 2540].

'01 [7389].

'03 [7418].

'04 [374x346].

'07 [7487, 7487, 7487, 7483].

'08 [7487, 3032, 5378].

1 [217, 3547, 6637, 3412, 2876, 228, 63, 65, 563, 3275, 6670, 4065, 4407, 1163, 5770, 7055, 1933, 3865].

1-GHz [6637, 4407, 5770].

1-Output [5344].

1.0 [3866].

1.24Tflop [6551].

1.24Tflop/sW [6551].

10 [5734].

10-ka/cm [5734].

10/20 [958].

100 [2889, 2890].

100-MFLOPS [2889, 2890].

1014 [6743].

1057 [1981].

10858 [1746].

10967 [4361, 5158].

10th [7185, 7519, 7267, 7396, 7409, 27, 7166, 2763].

11 [7514, 1110, 1391, 1507, 1408, 1312].

11-bit [4908].

11/780 [2036, 1569, 1570, 1803, 1019].

116 [270].

1164/WTL [2033].

11i [4923].

11th [7387, 7280, 7298, 7299, 3183].

120B [1120].

12-bit [6318, 1116].

12th [7430, 7496, 7141, 7322, 3454, 7482].

13 [4320, 2090].

12-Bit [342].

13th [7415, 7157, 7341, 7311, 7469, 3844, 3772, 7539].

14-Port [3915].

14th [7302, 7386, 7417, 7468, 7380, 7366].

15 [2766].

15-bit [4452].

15C [1629].

15th [7295, 7476, 7141, 7484, 7388, 7434].

16-19 [7105].

16-Bit [4531, 6678, 6693, 7065, 6836, 3023, 1260, 1601, 4992, 3076, 1759, 6317, 1476].

16-bit [1610].

16-bit-Multiplikation [1476].

16-by-8-bit [1645].

16-Digit [5364].

160-ns [2835].

160-Word [3915].

1620 [255].

164 [1815].

167 [3491, 3529].

16BST [1817, 1733, 1734, 1736, 1740, 1750, 1763, 1772, 1689].

16F/400 [917].

16th [7459, 7450, 4648, 7414, 7456].

17 [287, 838].

17-Bit [648, 647].

1788 [6539].

1788-2015 [6065].

17th [7521, 7461, 7377, 7451, 7454].

18 [7532, 562].

18-21 [7467].

18.Mai [1484].

18th [7486, 7475, 7481, 5470].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

= [2799, 2800, 3343, 7131].

Additions from Nelson H. F. Beebe
ADDCONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDERS/SUBTRACTORS

ADDITION [1382, 3391, 2324, 3866].

ADDITION-BASED [4995].

ADDITION-RELATED [5033].

ADDITION/SUBTRACTION [4155, 5914, 4716, 6931, 3857, 4662].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Algorithm [2105, 569, 2107, 262, 640, 4725, 2113, 6903, 762, 2947, 1649, 1890, 2115, 2254, 5333, 2566, 6187, 6427, 1654, 1897, 4411, 2774, 2960, 4413, 1532, 1661, 2777, 2778, 3660, 5997, 4897, 5427, 5761, 1157, 2589, 6103, 4903, 923, 2139, 924, 7052, 775, 4610, 1243, 2015, 5631, 6005, 372, 3815, 4113, 3184, 4118, 4448, 5088, 1693, 6208, 456, 4456, 2822, 3518, 2155, 489, 5555, 5776, 5860, 5948, 595, 3698, 1478, 244, 3206, 3531, 5107, 4279, 2630, 1710, 603, 2173, 2040, 4782, 6463, 3549, 3850, 5240, 6357, 3399, 1582, 1720, 4802, 2661, 2662, 3403, 5128, 3229, 2669, 2507, 3980, 3567, 3412].

algorithm-based [2246, 3513, 3199, 3361, 3371].

Algorithmen [2393, 2231, 2567, 1699, 2300].

Algorithmen [4674, 5322, 4341, 2756].

Algorithmic [5813, 7463, 3897, 252, 3656, 2796].

Algorithms [850, 2037, 6616, 4142, 4143, 722, 1805, 3848, 855, 665, 1011, 6850, 7444, 3223, 5381, 5668, 6237, 1265, 1375, 5387, 5389, 1584, 275, 3055, 6246, 3863, 4668, 1105, 5806, 2874, 4519, 4520, 4674, 3243, 4521, 3728, 6040, 1022, 1023, 1024, 1112, 6878, 5398, 3072, 4007, 4173, 6499, 5141, 2071, 2359, 6768, 6769, 5497, 3074, 467, 3738, 736, 823, 877, 6655, 1517, 6050, 5504, 883, 4190, 5151, 2534, 7488, 4198, 4357, 3604, 4546, 3605, 3888, 1519, 1412, 1521, 3273, 4025, 4705, 4706, 3098, 3099, 5726, 2541, 3100, 6168, 6675, 2393, 2231, 4214, 827, 521, 1420, 3899, 7511, 522, 6680, 3111].

Algorithms [4557, 3289, 4376, 630, 5829, 5314, 2930, 1528, 4061, 3120, 2933, 3295, 7333, 7453, 1049, 6798, 3636, 1639, 1887, 686, 1640, 690, 1641, 4878, 7211, 7225, 4398, 5045, 4582, 3299, 447, 356, 476, 463, 3043, 5049, 4404, 2567, 3790, 7033, 4408, 1322, 3793, 3315, 1440, 3797, 1443, 4249, 1444, 1770, 5998, 2789, 3802, 7282, 6000, 6812, 5988, 5939, 7270, 6927, 4608, 774, 2456, 3502, 5345, 925, 7055, 7056, 711, 3682, 373, 4112, 1341, 2603, 2812, 2813, 5774, 5859, 3005, 939, 2828, 3828, 1699, 2300, 5558, 3359, 4173, 3367, 7093, 5106, 5375, 551, 3209, 1083, 3548, 5461, 5958, 4964, 4964].

algorithms [4308, 5124, 6130, 6235, 6745, 6854, 7233, 2664, 2199, 221, 3859,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

7331, 5305, 4370, 2921, 5168, 1139, 5410, 312, 7223, 6541, 6893, 6544, 7021, 5835, 4577, 1432, 4877, 6312, 6695, 4890, 7311, 2128, 3801, 4422, 5197, 7178, 6435, 1539, 372, 2289, 1553, 6939, 7131, 6610, 4814, 7301, 6951, 1185, 3022.

applications [1485, 2312, 5957, 3220, 1490, 4151, 7387, 7233, 5682, 2056, 5881, 2335, 1727, 3417, 3729, 6649, 2684, 6255, 1839, 2365, 5143, 4698, 4023, 5006, 6509, 4196, 5717, 7085, 5977, 6403, 3103, 3450, 748, 2415, 7295, 2932, 7209, 2588, 2942, 316, 4887, 4592, 3148, 2585, 5765, 7166, 5943, 3501, 3511, 2018, 790, 455, 17, 3190, 7285, 1351, 5780, 1704, 5372, 1975, 1700, 7131].

Applied [7302, 7179, 548, 1194, 3562, 6384, 1128, 7462, 5006, 7522, 7105, 5344, 7197, 7539, 2045, 2319, 2710, 3613, 7462, 7432, 7519].

Approach [6735, 6021, 4146, 3392, 4313, 1723, 1103, 5264, 3574, 6496, 5279, 6500, 5812, 1840, 5701, 736, 6156, 5512, 7248, 7329, 7401, 7518, 6517, 1539, 372, 2289, 1553, 6939, 7131, 6610, 4814, 7301, 6951, 1185, 3022, 1918, 790, 455, 17, 3190, 7285, 1351, 5780, 1704, 5372, 1975, 1700, 7131].

1816, 1100, 5256, 6134, 1820, 4668, 5130, 5482, 1019, 2877, 6249, 4981, 6879, 4172, 1970, 6152, 5144, 1517, 4350, 6262, 2708, 4025, 3599, 7249, 5155, 7249, 7264, 7403, 4705, 4706, 6277, 6400, 6405, 5735, 2094, 2916, 3618, 4216, 4556, 1422, 4559, 4561, 6072, 5312, 6172, 1312, 1881, 4228, 3296, 6313, 6319, 2949, 7310, 4241, 6804, 6912, 3315, 7252, 5935, 5997, 4256, 4897, 5425, 6922, 6700, 6103, 993, 4605, 2993, 7228, 1679, 6575, 4434, 6931.

Architecture [2803, 2985, 3507, 6708, 2150, 5214, 5358, 1467, 5776, 5948, 1469, 3360, 3362, 6214, 7074, 6716, 6830, 4772, 6718, 1083, 4488, 6459, 2636, 4782, 3386, 1810, 5804, 2661, 3229, 3051, 4164, 4672, 2347, 2064, 7181, 2367, 6994, 4842, 1972, 3593, 5514, 2222, 7129, 4707, 2722, 5405, 2228, 2229, 2395, 2396, 2402, 2546, 4218, 2736, 2412, 2413, 3902, 2241, 3774, 2420, 4873, 3910, 1760, 4874, 2559, 2754, 2755, 2252, 5418, 5611, 5057, 2570, 3657, 480, 2265, 4260, 3666, 6195, 2587, 2588, 1062, 7166, 5070, 2281, 5773, 3514, 935, 1339, 4759, 4763, 1788, 2295, 3198, 1704, 2163, 6011, 3374, 4852] Architecture [2109, 2248, 7358].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6742, 6969, 5125, 3046, 1717, 5670, 6238, 6473, 6027, 809, 861, 1097, 1098,
1099, 1192, 1264, 2866, 196, 6976, 7494, 5673, 6476,
7147, 2329, 6635, 7388, 7529, 4316, 1194, 23, 2195, 171, 2053, 2054, 1721, 5473,
3559, 2198, 612, 6979, 668, 1821, 6976, 7494, 5673, 6476,
7147, 2329, 6635, 7388, 7529, 4316, 1194, 23, 2195, 171, 2053, 2054, 1721, 5473,
3559, 2198, 612, 6979, 668, 1821, 6976, 7494, 5673, 6476,
7147, 2329, 6635, 7388, 7529, 4316, 1194, 23, 2195, 171, 2053, 2054, 1721, 5473,
3559, 2198, 612, 6979, 668, 1821, 6976, 7494, 5673, 6476,
7147, 2329, 6635, 7388, 7529, 4316, 1194, 23, 2195, 171, 2053, 2054, 1721, 5473,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

propagate.

Canada

Canadian

Calculators [726, 1021, 4373, 4275, 3460, 107].
calculator [29, 40, 108].
calcul [40, 3151].
calculus [7088].
Calgary [7507].
calibrating [4845].
Calif [7230].
California [7373, 7426, 7443, 7470, 7289, 7216, 7234, 7245, 7235, 7129, 7262, 7319, 7350, 7404, 7523, 7188, 3772, 7341, 7378, 7421, 7395, 7408, 7490, 7177, 7528, 7270, 7283, 7324, 7411, 7258, 7430, 7315, 7340, 7098, 7187, 7389, 7477, 7355, 7368, 7379, 7422, 7502, 7531, 7335, 7378, 7421, 7395, 7408, 7490, 7177, 7528, 7270, 7283, 7324, 7411, 7258, 7430, 7315, 7409, 7196, 7484, 7410].
Call [5238, 5239, 5459, 5653].
Cal-for-Papers [5459].
called [5].
calls [1190].
CalmRISC32 [4364].
calorimeter [3593].
Cambridge [7239, 7251, 7276, 7269].
CAML [2944].
Can [5566, 4335, 1040, 1136, 2544, 2965, 3382, 5116, 4644, 2074, 1296, 3103, 3615, 6422].
Canada [7313, 7487, 7170, 7345, 7172, 7264, 7435, 7475, 7354, 3183, 7474].
Canadian [7507].
Cancellation [5882, 4323, 994, 3931, 6375, 5919, 2965, 3930].
Cancun [7495].
Canonical [3572].
Can't [6497].
Cantilever [3761].
capabilities [1846, 2739].
Capability [1565, 2866, 6900, 6901, 1372, 2939, 1996].
Cape [7451, 7454].
CAPI [6367].
Carathéodory [7133].
Card [94, 1545, 104].
Card-Programmed [1545, 104].
Cardinality [5968].
Cards [4699].
Care [3077].
Carefully [6391, 3699].
Carlo [7098, 5883, 6038, 6141, 6044, 3799, 3800, 4084, 4252, 4253, 5366, 5783].
CARM [7064].
Carnegie [7138].
Carnegie-Mellon [7138].
Carriers [150].
Carry [377, 6960, 4313, 5676, 3722, 4156, 4803, 3566, 4519, 4520, 6139, 335, 5278, 3072, 1124, 2075, 5725, 6163, 753, 233, 286, 144, 3139, 2001, 3224, 2782, 5762, 4912, 5215, 5229, 802, 2331, 2660, 2875, 4334, 2520, 4683, 2725, 1899, 5070, 1167, 5771, 5856, 2474, 4457].
Carry-aware [6960].
carry-free [5070].
carry-look-ahead [802].
Carry-Lookahead [4156, 2001, 2660, 1899].
carry-propagate [2520].
Carry-Propagation [377, 233].
Carry-Save [4519, 4520, 6139, 335, 5278, 3139, 2782, 3566, 2875, 4334, 4683, 1167, 5771, 5856].
carry-save-adders [4457].
Carry-Select [5746].
Carry-Skip [2075, 2331, 2660, 2725, 2474].
Carry-Storage [286].
carrying [761, 1053].
cas [5084].
Cascade [366, 477, 2899, 2401, 2330].
cascade-correlation [2899].
Cascaded [3457].
cascades [1780].
Cascading [370, 1778].
CASCON'98 [7354].
Case [4290, 6657, 3769, 1438, 3484, 4262, 1452, 2803, 933, 4443, 7069, 6113, 3359, 6116, 3221, 4517, 4686, 3901, 5599, 5987, 6701, 4449, 6339, 3370].
Cases [3419, 2351, 5289, 4388, 4719, 5175, 5412, 5920, 4399, 4618, 5086, 5233, 6479, 4702, 3449, 4718, 4580, 4724, 4758, 5084].
Casting [6029, 7014, 2829].
Castle [7488].
Catastrophic [4329].
Categorical [7147].
Cauchy [3024].
caused [1755, 700].
Causes [6330, 6440, 3350, 1702].
Causing [5962].
CAV [7493].
Caveats [5687, 5481].
CCD [1526, 2111].
CCECE [7507].
CD [7381].
CD-
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Circuitry [1993, 2414, 133]. Circuits [1360, 5789, 3958, 7374, 723, 2053, 3561, 1272, 7505, 5581, 3072, 4178, 250, 4347, 7376, 7448, 7449, 7456, 7478, 7500, 5734, 3763, 3452, 7188, 5041, 1639, 1887, 442, 3468, 4238, 4880, 1649, 477, 2775, 5434, 2590, 4679, 3062, 3874, 1031, 2530, 4033, 1868, 2932, 5926, 3783, 3647, 3316, 5206, 5444, 291, 3203, 3204].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[662]. Compilers [7373, 3965, 7417, 6812, 6935, 6544]. Compiling [707].
Complement [1572, 725, 807, 1828, 176, 620, 878, 4184, 1217, 1873, 828, 6539,
5742, 1427, 911, 144, 914, 3803, 123, 4264, 1246, 1428, 14964, 4792, 3229,
2341, 3575, 3439, 1414, 1415, 4237, 2592, 5944, 788, 5370].
Complementary [630, 6604, 5240]. complements [5373]. Complete [5871,
1761, 3358, 3199, 134, 1468]. Completely [5027]. Completes [1785].
Complex [3532, 3708, 3962, 3709, 4645, 5460, 5657, 5658, 3035, 3218, 2860, 5799,
1012, 2051, 6132, 3855, 3052, 2869, 1275, 1505, 1595, 3728, 5488, 4860, 4826,
4827, 5276, 5277, 4009, 5498, 432, 1851, 6268, 3086, 3267, 5908, 1302, 2091,
2723, 2095, 3285, 2100, 1876, 1989, 6543, 4061, 3632, 4582, 1892, 5482, 3482,
367, 4255, 5936, 1427, 911, 144, 914, 3803, 123, 4264, 1246, 1428, 14964, 4792,
3575, 3439, 1414, 1415, 4237, 2592, 5944, 788, 5370]. complex-arithmetic [1995,
5097]. Complex-Number [3855, 3524]. Complex-Number [6280, 1988, 1990,
1991, 2240, 2412, 2415, 2739, 5414, 1995, 2111, 2005, 4899, 5632, 2986, 999,
1781, 5078, 3181, 188, 4446, 5097, 3950, 5561, 5642, 4934, 2619, 2832, 5371,
5109, 5158, 270]. complex-arithmetic [1995, 5097]. Complex-Number [3855,
3524]. complexities [1663]. Complexity [5789, 854, 3993, 5265, 4535, 5279,
5280, 6386, 5512, 6679, 3625, 5828, 4390, 4241, 3919, 2125, 5936, 4744, 5435,
5344, 3682, 5645, 2844, 5954, 862, 954, 2655, 4974, 4676, 3873, 4526, 5140, 5492,
4532, 2897, 4710, 3900, 4714, 5032, 2932, 5747, 2426, 833, 3657, 1442, 3922,
1907, 4745, 4905, 5067, 4920, 7138, 5450, 5554, 3953, 3954, 4935, 3020]. Compliance
[7039, 4078, 5781, 7073, 5321, 3928, 3929]. Compliant [6353, 3571, 3736, 3643,
4268, 5094, 4509, 4174, 4553, 4243, 3309, 3933]. complying [3838]. Component
[5734, 5634, 715, 794, 574]. Component-wise [715, 794]. Components [504,
1517, 4543, 1244, 5760, 5211, 5222]. Componentwise [5908]. Composite
[431, 6154, 3756, 4430, 5776, 4244, 3657, 4079, 4738]. Composite-Field
[6154]. Composition [5323, 3146, 3147]. Compostela [7144]. Compound
[1858, 1440]. Compressed [5984]. Compression [4305, 611, 6495, 5812,
5305, 7020, 5177, 5616, 3671, 6338, 1800, 6479, 3323, 3692, 3523]. Compression/
Decompression [3671]. Compressor [5471, 5388, 2757]. Compressors
[2057, 1281, 6260, 6089]. Comprising [5748]. COMPSAC [7143]. Comput
[1483, 1295]. Computable [4967, 4593, 5148, 4570, 3304]. Computation
[7152, 4486, 7302, 7097, 3845, 4959, 804, 2645, 6232, 6965, 153, 1811, 860, 1014,
1094, 5468, 1717, 1814, 1266, 1267, 1376, 7474, 3400, 667, 2333, 4155, 6638,
5477, 5963, 614, 1103, 331, 6488, 4806, 1389, 3996, 156, 4335, 4521, 4523, 960,
5138, 6254, 4000, 3732, 4339, 1600, 2211, 6500, 3423, 4177, 384, 553, 6047, 1284,
7347, 1288, 1741, 6156, 3081, 5508, 4025, 5511, 4353, 6059, 2377, 4031, 4550,
1131, 1411, 2539, 5726, 3446, 4044, 4854, 4855, 5406, 3762, 7265, 3767, 1872,
2729, 141, 160, 161, 180, 5524, 5825, 2735, 1988, 2923, 974, 7175, 1310, 7332,
5742, 903]. Computation [6418, 5835, 523, 2934, 2935, 143, 1049, 758, 2560, 6084,
3136, 6559, 448, 4884, 1901, 1533, 1326, 4423, 4597, 4897, 7112, 7113, 2272, 7164,
5435, 585, 650, 7166, 5941, 180, 3931, 841, 1683, 1915, 7423, 998, 409, 789,
2995, 712, 843, 5635, 2810, 1072, 214, 7383, 3829, 5555, 1350, 5096, 6607, 412,
7513, 216.
5951, 4135, 7076, 6216, 3034, 4494, 5798, 5872, 3221, 4965, 1812, 3971, 2187, 1016, 1193, 7147, 3856, 2334, 3857, 4662, 4158, 6640, 1962, 3236, 3415, 6759, 4676, 4817, 4169, 3874, 2353, 76, 5140, 5492, 4010, 2360, 7183, 251, 5943, 211, 3333, 2284, 2286, 5079, 5080, 4441, 4442, 4617, 131, 5548, 5092, 2823, 2476, 3194, 6009, 1471, 1472, 542, 2621, 544, 1937, 2635, 2650, 1627, 2567, 7485, 7286, 1794, 995].

Computationally [7313, 7359, 7384, 6455, 854, 806, 3562, 3407, 4818, 5280, 3073, 389, 2388, 5520, 5304, 3625, 1142, 833, 1655, 2962, 1538, 4910, 3682, 7485, 5951, 7080, 3854, 1500, 4322, 4677, 4689, 3583, 7306, 2910, 575, 7138, 7338, 7538].

Computations [5877, 6358, 6510, 2983, 5974, 6916, 1907, 4260, 2800, 2982, 3176].

Compute-Bound [2983, 2800, 2982].

Computed [2806, 2264].

Computer [7341, 5028, 1636, 4386, 1312, 2420, 1427, 569, 3463, 3631, 7482, 4577, 2938, 5529, 1761, 1641, 4725, 5532, 446, 4239, 317, 162, 5608, 266, 7454, 5728, 6184, 6906, 5417, 2000, 3646, 4241, 2763, 7524, 642, 7190, 2768, 2957, 5994, 478, 5187, 6914, 2121, 3315, 1439, 2572, 4249, 5615, 121, 7252, 7491, 988, 7311, 129, 3488, 6569, 1672, 1060, 582, 920, 1674, 1239, 6571, 6105, 1912, 6573, 1163, 7228, 3499, 1454, 5072, 2143, 7517, 486, 1916, 1684, 587, 927, 7440, 7358, 1457, 47, 1070, 6936, 7137, 1343, 7254, 7255, 3183, 7298, 7299, 7525, 7526, 7527, 7535, 7068].

Computer [2469, 590, 7533, 591, 7138, 940, 1074, 1173, 2156, 7256, 1349, 7441, 3012, 6114, 97, 151, 1558, 717, 5864, 5865, 6449, 493, 601, 1799, 3208, 6981, 551, 1352, 1468, 7471, 98, 3536, 296, 604, 1089, 1189, 2642, 605, 547, 4502, 1015, 6240, 955, 1499,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 34

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5592, 3286, 4049, 1632, 2734, 4711, 3774, 3906, 2421, 3779, 3780, 2421, 3779, 3780, 2757, 5047, 695, 2563, 2431, 3303, 2953, 2258, 1153, 3311, 3317, 3318, 2261, 1059, 3658, 771, 4907, 3159, 3497, 3672, 7440, 3814, 7336, 4918, 7137, 4119, 3826, 2483, 3523, 4632, 4939, 6011, 4944, 2345, 7446, 1000, 7106.

Designed [6452, 1964, 1868, 5986].

Designed [5789, 5957, 4325, 5402, 2725, 2464, 4115, 7071, 5108, 4695, 5815, 2699, 4768].

Desirer [614, 1131, 1215].

DESIRE [1527].

Desk [1527].

Desk-Calculator [121].

Desk-calculator [5782].

Desktop [5782, 4639, 5729].

Determinant [3996, 2868].

Determinants [3711, 3871, 5909, 6406, 5422, 1541].

Determination [513, 1636, 3485, 1775, 588, 3973, 5722].

Determine [3032, 5378, 2201].

Determining [1054, 705, 772, 791, 3748, 1429, 2249].

Determinism [5584, 6243].

Determine [5235, 6461, 5873, 6124, 496, 1871, 6893, 900, 287, 7018, 288, 5927, 5327, 2126, 1664, 5936, 4424, 3803, 2138, 4435, 4266, 2603, 1170, 6208, 1698, 6343, 943, 944, 5874, 5875, 2189, 1108, 1109, 5899, 1277, 1204, 5145, 2710, 5153, 3268, 257, 5919, 1754, 2423, 2745, 6194, 5077, 2999, 2843, 7094].

detective [5315].

Detect [1359, 7035, 6827, 6941, 2194, 1702].

Devices [13, 3119, 7035, 6827, 6941, 2194, 1702].

DSS [726, 1101, 86, 1150, 121, 100].

Desk-calculator [121].

Developed [1731].

Developers [5017, 4454].

Developing [858, 2499, 2906, 7043, 7311].

Development [7145, 7301, 3551, 3225, 5575, 7180, 1106, 2065, 2750, 3126, 2251, 2137, 5625, 3161, 5779, 6607, 3528, 1711, 2498, 1818, 61, 3077, 2906, 3137, 235, 5055, 2991, 2992, 7137, 273, 1354].

Developments [852, 4624, 98, 7361].

Deviation [312, 3313].

DFT [3049, 1822].

DFU [5274].

Dhahran [2863].

Diagnostic [7465, 1524].

diagnostic [4010].

Diagnostics [7465, 7155, 7219, 7312, 7337, 7261, 7319, 7372, 7318].

Diego [7470, 7262, 7404, 7378, 7394, 7421, 7453, 7270, 7287].

Dienste [124].

Different [6629, 437, 6908, 4310, 5883, 5287, 1524].

Différences [4310].

Differential [859, 1013, 3577, 4834, 7125, 179, 313, 440, 4075, 6700, 1727, 5142, 92, 2370, 5148, 6665, 2736, 364, 4757].

Differentiation [3576, 3650, 7260, 2720, 2129].

differently [2687].

Difficult [1187, 3449].

Dig [1483].

Digest [7249, 7155, 7187, 7219, 7241, 7312, 7379, 7129, 7261, 7319, 7372, 7318].

Digit [6349, 4952, 4953, 219, 1365, 461, 2042, 2638, 5677, 3855, 1819, 4318, 4673, 5269, 2885, 6040, 6145, 4681, 4172, 6385, 4178, 385, 554, 433, 5704, 1401, 7083, 3887, 1622, 5589, 4208, 346, 5023, 6070, 5170, 4382, 5312, 4566, 6418, 7019, 523, 7022, 1145, 3122, 4065, 1146, 6183, 162, 5333, 3478, 5335, 1440, 1660, 2574, 6099, 3324, 5425, 1908, 5941, 533, 4118, 5357, 5774, 5677, 4289, 593, 5364, 6212, 4461, 3951, 1940, 2167, 2504, 4662, 4158, 956, 6042, 3246, 4687, 5710,

Additional Contributions from Nelson H. F. Beebe

Elevation

Eleventh

Elf

elicited

Eliminate

Eliminating

Elimination

Elision

Elizabeth

Elliptic

elliptical

elliptique

ELU

Elusive

ELXSI

Email

Embedded

Embedding

emerged

Emergence

Emerging

emphasis

Empirical

Empiricism

Employing

empty

emulate

Emulating

Emulation

emulator

Enable

Enabled

Enabling

Encapsulation

Encoding

Encodings

Encrypted

Encryption

End

end-points

ENDGame

Endlicher

Endomorphism

Endomorphisms

enemy

Energy

Energy-delay

Energy-Efficient

Engine

Engineer

Engineering

engineers

engines

England

English

Enhance

Enhanced

Enhancement

Enhancements

ENIAC

Enough

enriched

enriched

Ensure

entering

Enterprise

entwickelt

Entwicklung

Entwicklungslinien

Entwurf

Enumeration

Envelope

Environment

Environments

Epsilon

Epsilon-Inflation

equal

equality

Equations [1715, 809, 303, 3577, 7125, 883, 253, 179, 903, 430, 3675, 4127, 3698, 3702, 45, 4300, 1815, 1727, 4834, 92, 6665, 514, 515, 564, 2736, 364, 5338, 946, 4478, 4773, 1252].

Equatorial [7397]. Equipment [106, 695, 273].

Equivalence [6924]. Equivalent [903, 1445, 530]. equivalents [6933].

Era [5698, 5613, 6981, 7427, 7479, 147]. Erasing [7020]. Erasing-Based [7020].

error [4237, 3127, 3138, 5048, 3474, 363, 364, 2440, 5992, 1437, 2117, 2954, 2955, 835, 2959, 3144, 1233, 5934, 6096, 3145, 5539, 3800, 4252, 481, 989, 2264, 2266, 2584, 1334, 6201, 5624, 6440, 3930, 7054, 710, 3171, 3172, 4755, 5200, 2989, 2599, 4757, 229, 2023, 1461, 1924, 2024, 2602, 2999, 3821, 3822, 4119, 4440, 6335, 1175, 4125, 4278, 715, 794, 2158, 3088, 3361, 4770, 413, 3699, 1182, 947, 4472, 3837, 2848, 2849, 3371, 7094, 4139, 6647, 3239]. Error-Bounding [3463, 3631]. Error-Correcting [482]. Error-Coded [722, 3295].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

errors [1251, 6213, 457, 1707, 3530, 2845, 2846, 672, 6213, 457, 1707, 3530, 2845, 2846, 6722, 2614, 199].

Erweiterungen [1935].

Essays [3153, 1553, 17].

ESSCIRC [7362, 7349].

Essential [1353, 1793].

Estimate [481, 5761, 4776, 6978, 6759].

Estimates [1194, 963, 1122, 1128, 2100, 5838, 543, 460, 3993, 6292, 6542, 3127, 3642, 5200, 1461, 1924, 4770, 6598].

Estimating [2191, 3048, 5404].

Estimation [6614, 326, 3577, 904, 4106, 6107, 6108, 6581, 3083, 5720, 2720, 5834, 1755, 4733, 5850, 2599, 947].

estimators [4968, 1059].

ETAPS [7399].

etc [1629, 6647].

´Etendue [17].

ethical [3834].

Etruscan [5533].

`etude [989, 2003].

Euclid [3884].

Euclidean [6391, 3549, 3849, 1092, 4663, 6379, 4693, 5500, 2779, 4118].

Euro [7530, 3734, 3876, 4003, 7272, 7328, 7530].

Euro-Par [7530, 7328, 7530].

Euro-Par'96 [7328].

EUROCAL [7191].

EUROMICRO [7439, 7390, 7352].

Europe [7146, 7280, 7396, 7253].

European [7146, 7280, 7396, 7253].

EUROSAM [7150].

EUSIPCO [7223, 7285].

EUSIPCO-88 [7223].

EUSIPCO-92 [7285].

Evading [921, 922].

Evaluate [766, 5304].

Evaluates [6795].

Evaluator [6360, 2110].

Even [1949, 6741, 4577, 5861].

Even-Type [5861].

Event [7292].

Ever [6762, 1670].

Ever-Changing [6762].

Every [6757, 2883, 2700, 2701, 4697, 3012].

Everybody [4326].

Everyone [3894, 3895].

Everywhere [3894, 3895].

Evils [6018].

Evolution [5879, 5390, 3742, 3785, 6760, 29, 3687, 29].

Evolutionary [4588].

Evolving [3867, 3995].

Exa [7068].

Exa-Scale [7068].

Exact [3042, 5121, 6023, 4306, 5667, 4312, 6241, 3400, 4806, 4328, 6984, 4004, 3423, 3073, 4349, 6267, 3886, 1130, 4360, 6063, 5732, 1303, 6286, 894, 1044, 6074, 4869, 5034, 5035, 7087, 1528, 2931, 6547, 5536, 3645, 2762, 3648, 4406, 5843, 6329, 3163, 4439, 2616, 4135, 5563, 5648, 4478, 298, 4965, 2647, 5801, 4591, 4503, 5126, 5493, 3583, 3290, 5740, 5741, 5311, 4056, 5982, 5923, 4570, 4571, 5038, 6086, 5535, 3647, 5055, 1764, 6092, 6093, 6578, 4773].

Exactly [3335, 4250, 2297].
Extraction [726, 158, 49, 637, 685, 5333, 4071, 5948, 3592, 4027, 1159].
Extractor [2709]. Extracts [2577, 1397]. Extrapolation [6538, 3305, 6647].
extremal [4580, 4724].
8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

56

3858, 5881, 1380, 1722, 2200, 2335, 4509, 5479, 3979, 3980, 5963, 4804, 4805,
3983, 1589, 5481, 5687, 6136, 4162, 2674, 1104, 1961, 3989, 4671, 4516, 421,
5484, 3412, 5689, 2342, 2870, 2871, 2872, 3866, 3995, 3237, 6252]. floating
[2679, 6253, 5393, 5394, 959, 1276, 2681, 6375, 5966, 5694, 3059, 2878, 3241,
3416, 4522, 4676, 4817, 6140, 6038, 3998, 3061, 249, 4821, 5137, 5267, 4336, 961,
4525, 5580, 6649, 5139, 2516, 5272, 2517, 4986, 2348, 4169, 2882, 5273, 2205, 502,
1733, 1734, 2884, 4001, 1202, 5275, 5140, 5492, 734, 1116, 4992, 4174, 4175, 6882,
4686, 4687, 5583, 1512, 1968, 2360, 1736, 1969, 819, 508, 3737, 1204, 5282, 1029,
6258, 2890, 2364, 4835, 6654, 4693, 5814, 4694, 282, 3076, 3252, 4696, 4838, 3077,
2526, 621, 879, 1030, 1208, 1283, 1739, 3428, 2892, 3078, 1031, 2702, 1843, 5502].
floating [1844, 2530, 1845, 5703, 2370, 4841, 4842, 1846, 5400, 5975, 6052, 6505,
1287, 2371, 252, 178, 3882, 2375, 1850, 4351, 4845, 3883, 2532, 4022, 6661, 6662,
3080, 4023, 5004, 3593, 5820, 6999, 4024, 4540, 4700, 6509, 2894, 2895, 3595,
6392, 3083, 3434, 3596, 1291, 1407, 1213, 1974, 3598, 2219, 3435, 1408, 1297,
3260, 3090, 4030, 2220, 4548, 2900, 2535, 3091, 2711, 5295, 5296, 1744, 2903,
6397, 6522, 6667, 5717, 2084, 5718, 516, 826, 1215, 2383, 5720, 681, 2385, 1218,
1863, 1746, 3275, 3608, 5158, 5159, 5161, 5515, 2223, 2224, 4034, 4551, 3607,
1133, 1219, 1866, 2386, 4707, 5906, 2906, 4553]. floating [5728, 5729, 1624,
3278, 5977, 6166, 6279, 6280, 6403, 201, 2088, 3611, 5978, 6407, 2227, 2911,
3102, 3279, 5979, 2229, 2395, 2396, 2230, 3103, 2092, 2093, 3449, 3614, 3615,
4210, 4212, 5734, 4709, 2915, 3281, 3451, 3617, 3282, 6069, 628, 473, 744, 2399,
2400, 2401, 2402, 746, 747, 1224, 2235, 2097, 1632, 311, 520, 4861, 4862, 2734,
1225, 1226, 2406, 2408, 2409, 1751, 1874, 1527, 1752, 5597, 6788, 3623, 3901,
4378, 3115, 3290, 4865, 5599, 2924, 3456, 5310, 829, 897, 973, 1993, 4222, 5917,
6073, 4866, 2551, 3292, 899, 975, 2926, 7015, 2241, 2242, 5919, 6412, 6292].
floating [3904, 3905, 5830, 5174, 7086, 6177, 755, 2741, 2928, 3117, 4567, 5833,
6079, 5982, 5923, 4870, 3777, 4392, 4573, 351, 4575, 3908, 4871, 524, 571, 5603,
1757, 5321, 3630, 5604, 5925, 1638, 5323, 5324, 4230, 5986, 4873, 6550, 2247,
1050, 1995, 1313, 2941, 3637, 573, 640, 757, 758, 401, 688, 689, 574, 5987, 2249,
4875, 1996, 1997, 980, 909, 3126, 1434, 2561, 4580, 4724, 6086, 3129, 2251, 2114,
2756, 5046, 2252, 5326, 3135, 6688, 7028, 1646, 1647, 1648, 695, 2563, 5753,
5841, 3473, 5328, 4882, 5048, 5330, 5331, 5332, 5416, 5535, 6905, 2564, 1999,
3914, 5051, 5418, 319, 1894, 2255]. floating [2435, 2438, 2762, 3647, 5992, 2954,
2955, 917, 7035, 2441, 2442, 984, 4243, 3309, 4731, 2259, 3144, 6190, 3310, 3311,
3920, 2446, 3796, 4891, 6916, 3316, 580, 4892, 5336, 5847, 6192, 480, 4245, 3146,
3147, 5337, 5539, 6098, 5848, 985, 4248, 4083, 4251, 5759, 765, 986, 3799, 4084,
7044, 4737, 3323, 6100, 4895, 1327, 2004, 5760, 2263, 208, 700, 989, 2264, 2968,
2265, 3801, 7046, 2267, 2579, 3325, 526, 7047, 3492, 2268, 7096, 2583, 2791, 2975,
4901, 2271, 3328, 4087, 5763, 2451, 2586, 2795, 2587, 2588, 1773, 2135, 1332,
5066, 6811, 992, 528, 1240, 1241, 1333, 706, 1062, 2977]. floating [1063, 3329,
1677, 483, 4907, 3496, 773, 5937, 5622, 5623, 5850, 6201, 5766, 3928, 3929, 4091,
1336, 4908, 4607, 1913, 3159, 107, 5767, 5626, 6440, 997, 2978, 2457, 3930, 5627,
3672, 3332, 776, 2013, 2279, 2593, 2141, 7054, 4909, 6004, 709, 710, 3170, 3811,
4103, 4751, 5544, 2459, 3933, 4439, 4913, 4914, 5770, 3935, 3677, 2799, 2800,


8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Floating-Point [5535, 2774, 4078, 3653, 3655, 3794, 2962, 5933, 2777, 2778, 5421, 7041, 2003, 644, 1324, 2573, 2262, 6699, 5997, 7045, 701, 4256, 5998, 2785, 2786, 3152, 5659, 5541, 5617, 6426, 1151, 2765, 2443, 2444, 6428, 6564, 6693, 915, 5059, 5186]. Floating-Point [5335, 2774, 4078, 3653, 3655, 3794, 2962, 5933, 2777, 2778, 5421, 7041, 2003, 644, 1324, 2573, 2262, 6699, 5997, 7045, 701, 4256, 5998, 2785, 2786, 3152, 5659, 5541, 5617, 6426, 1151, 2765, 2443, 2444, 6428, 6564, 6693, 915, 5059, 5186].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 60

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

FPgen [4637]. FPL [7473, 7387, 7497, 7459, 7415, 4600].

FPL-based [4600]. FPLibrary [5137]. FPMAC [5946]. FPS [1815, 2219].

FPS-164 [1815]. FPT [7419]. FPTRP [344]. FPU [3838, 5868, 6738, 5901, 3430, 2736, 5040, 5927, 7043, 5778, 5097].

FPUs [5013, 6423]. FPV [1965]. FPX [7018].

fractal [3773, 3196]. fractals [2572].

Fraction [3380, 6050, 1875, 3510, 240, 271, 189, 3828, 1827, 1845, 4580, 4724, 5538].

Fraction-Free [3828]. Fractional [3886, 5932, 4130, 3535, 4542].

Fractions [1573, 26, 676, 6074, 4391, 441, 572, 1159, 1684, 241, 940, 1074, 1173, 1709, 5403, 310, 3765, 1654, 771, 3818, 5450, 2616].

Frameworks [4637, 6218, 6965, 4179, 1118, 1205, 6779, 6676, 6895, 6684, 5869, 4989, 6992, 3800, 4252, 1907, 7062, 6602, 6829]. frameworks [4881].

France [7151, 7213, 7153, 7413, 7458, 7399, 7493, 7328, 7521, 7317, 7346, 7530, 7183, 7462, 2763, 7524, 7150, 7334, 7282, 7504, 7267, 7481, 7439].

Francisco [7129, 7187, 7219, 7318, 7420, 7177, 7337, 7372]. fraud [4839]. Fraudulent [5269].

Fray [3739]. Free [5961, 3722, 6257, 2704, 1288, 1741, 6998, 6538, 2933, 6547, 1054, 1762, 5414, 5039, 7088, 1434, 5934, 6096, 6191, 5337, 5539, 5070, 4119, 4766, 4934, 3361, 2841, 6950]. Freiburg [7365, 7402, 7159]. Freie [7182].

French [3971, 4308, 4310, 4502, 4791, 5802, 6240, 3460, 9, 40, 4674, 5403, 5411, 4226, 4868, 1, 2557, 2756, 5181, 2003, 701, 989, 1159, 5084, 108, 17, 4479, 4480, 5111].

FRG [7195]. Friedman [5118, 3859]. front [3593, 2309, 6223, 6727].

front-end [3593]. FT [6952]. FT-EALU [6052].

Fujitsu [3843]. Fukuoka [7471, 7360, 7357].

Fukuoka-shi [7360]. Full [3105, 3106, 3107, 6932, 7066, 3838, 4783, 5124, 2900, 4059, 4614, 7381, 3571].

Fully [2885, 4179, 5503, 1617, 7007, 5319, 5062, 1660, 6622, 4553, 4875]. Fully-Pipelined [5062].

Function [2310, 5565, 297, 3964, 6232, 6466, 1714, 5383, 5803, 6300, 248, 3721, 4317, 5882, 6643, 1503, 2672, 2673, 3054, 1018, 4815, 4819, 5894, 732, 2518, 426, 428, 6883, 6655, 5289, 4118, 5511, 3433, 4028, 3603, 6061, 1979, 6276, 6538, 439, 633, 5175, 5412, 3294, 523, 2106, 2244, 6424, 2774, 988, 5065, 3808, 3810, 2980, 5086, 4111, 2470, 2607, 2608, 3002, 6110, 2154, 2159, 6604, 5099, 6008, 2620, 3367, 2838, 5693, 551, 4946, 5235, 1084, 862, 954, 4656, 6971, 6972, 6973, 7079, 3974, 3719, 4658, 500, 2674, 2681, 4330, 4331, 4820, 5267, 2880, 2881, 3244, 3245, 1509, 5148, 3750, 4192]. function [7002, 7003, 7084, 4037, 4038, 5169, 5033, 3118, 6896, 1759, 4723, 3138, 5183, 3317, 3318, 3150, 1681, 4139, 513].

Functional [7214, 1943, 1944, 809, 552, 6516, 395, 2557, 2591, 1162, 996, 3209, 5142, 2904, 5987].

Functions [1945, 4777, 5567, 5114, 1082, 1361, 4951, 854, 6735, 3035, 3218, 855, 2860, 6356, 3965, 4146, 6964, 1811, 860, 1014, 4967, 1717, 2051, 953, 1265, 6239, 6974, 1266,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Adjust contribution to table...

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3276, 2913, 4231, 3308, 2639, 5254, 3060, 3256, 3891, 3608, 3892, 1357.

Hands [5593, 4862]. Hands-on [5593]. Hannover [1484]. Happen [4150].

Happened [5863]. Hard [6172, 6295, 4399, 2828, 3192, 5839, 7044]. Hard-

wired [2828, 3192]. Hardest [5920, 6084]. Hardest-to-Round [5920, 6084].

Hardness [5396, 5581]. Hardness-Randomness [5581, 5396]. Hardware

[6951, 1080, 1258, 6615, 6954, 5568, 6351, 6353, 6734, 4781, 3035, 3218, 6356, 6595, 6853, 5244, 6023, 3970, 6233, 2648, 6969, 3721, 6366, 4155, 614, 6865, 958, 1505, 5265, 5487, 5395, 3070, 1025, 5277, 4527, 5398, 6881, 5811, 3074, 4018, 6993, 3589, 6154, 6508, 4200, 4201, 4359, 5719, 7004, 1621, 6399, 6526, 1039, 6533, 7010, 6296, 3114, 260, 6895, 5832, 4568, 6793, 5036, 5037, 4577, 690, 6902, 4582, 6559, 915, 2774, 4078, 4249, 7491, 6431, 7281, 6321, 6434, 6103, 4906, 1451, 4605, 3671, 3164, 3335, 3502, 3673, 3168, 3676, 4750, 7055, 7056, 7058, 7059, 7061, 2802, 6817, 7063, 6931. Hardware [6934, 1068, 4443, 4448, 5088, 1465, 5360, 5361, 5775, 6596, 6340, 7071, 4462, 4767, 5560, 5644, 6828, 3367, 1183, 6715, 6944, 4633, 6011, 6035, 5457, 4142, 4143, 1088, 4307, 4655, 2193, 2330, 2335, 7460, 5967, 4677, 4820, 5267, 1836, 4528, 7181, 4694, 3252, 5147, 1036, 2906, 6673, 6674, 5018, 5592, 4049, 1308, 2730, 4862, 5033, 1757, 4230, 5986, 4729, 5844, 2776, 5188, 5615, 765, 3323, 6195, 4746, 771, 3498, 1243, 1917, 1688, 2811, 3000, 3001, 1463, 1788, 5221, 5643, 1355, 1560, 6034]. Hardware-accuracy [6951]. Hardware-Based [5959, 3367]. Hardware-

Friendly [6508]. Hardware-Oriented [1025, 5277, 2774, 4729]. Hardware-

6854, 2865, 6360, 6855, 6478, 3556, 5471, 5677, 3721, 4317, 729, 3977, 1585, 3855, 669, 4803, 6859, 1825, 4511, 5677, 3578, 5582, 5697, 3247, 125, 2071, 1395, 1396, 1511, 3250, 4179, 5698, 6771, 5498, 1840, 822, 4696, 93, 1517, 5704, 6049, 1402, 4351, 200, 339, 340, 5905, 4545, 4704, 5012, 1132, 1745, 1980, 2539, 7537, 2223, 4202, 5726, 3446.

High [5727, 5518, 1983, 6167, 6282, 4213, 3616, 682, 5164, 3104, 3764, 3286, 5020, 1042, 1633, 3112, 6070, 567, 6892, 6071, 6287, 2101, 3458, 5028, 6413, 753, 142, 233, 6416, 7016, 4061, 4574, 1143, 3780, 3247, 125, 2071, 1395, 1396, 1511, 3250, 4179, 5698, 6771, 5498, 1840, 822, 4696, 93, 1517, 5704, 6049, 1402, 4351, 200, 339, 340, 5905, 4545, 4704, 5012, 1132, 1745, 1980, 2539, 7537, 2223, 4202, 5726, 3446].

High-Accuracy [1925, 1927, 2151, 1929, 4120, 4451, 1696, 938, 6338, 6712, 6342, 5363, 1178, 4935, 5226, 4283, 1359, 1801, 1802, 5957, 4782, 2176, 6020, 1087, 2182, 2184, 1653, 3796, 4733, 2776, 5846, 4081, 4247, 4376, 3150, 5341, 5760, 2578, 4741, 2583, 4901, 2008, 95, 3666, 1062, 1678, 5621, 3169, 3170, 1066, 2994, 5081, 1784, 3689, 1172, 6339, 3351, 5642, 6606, 2618, 2848, 3372, 2682, 2051, 2567].

High-Bandwidth [6855].

High-Dimensional [6309, 6569].

High-Performance [3532, 4959, 4785, 6478, 1132, 3764, 6306, 5798, 5872, 6019, 6650, 2618].

High-Radix [5568, 3233, 3112, 6070, 4061, 3485, 5074, 4120, 4451, 6947, 4307, 4246, 4596, 4740, 3166, 3167, 2384, 2776, 4081, 4247, 4736, 4741, 3169, 3170, 1127].

High-Speed [1094, 6142, 1511, 4179, 7030, 993, 6712, 4145, 6854, 6416, 4585, 1696, 1062, 6339].

High-Throughput [5567, 5028, 7016, 6576].

Higher [7314, 460, 545, 852, 5959, 7386, 1581, 2508, 1602, 6514, 2391, 2927, 5531, 2566]
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8

1507, 1733, 2904, 5159, 5160, 5161, 5515, 626, 2917, 1527, 1752, 5601, 2575, 2576, 2133, 2796, 1783, 2818, 1696, 3014, 3275, 4361, 5158, 3156.

Languages [7231, 7327, 1203, 4179, 3079, 4367, 4231, 5432, 7164, 993, 3830, 7183, 252, 2216, 3891, 3892, 4207, 5515, 7208, 3298, 1062, 5092, 3364, 1094, 7417].

LAPACK [2878, 6872, 6313].

LAProof [7011].

Large [219x598] [7097, 1571, 6849, 858, 6631, 4155, 5480, 5890, 5696, 2887, 2708, 5289, 4193, 1412, 4368, 6288, 25, 2108, 1530, 3642, 5064, 1667, 6321, 7048, 6323, 6812, 2015, 936, 3696, 1176, 1077, 3207, 3373, 45, 6242, 4662, 3050, 3564, 3978, 6253, 3737, 5286, 2526, 2376, 4709, 2918, 3474, 6092, 6093, 5846, 1909, 2009, 7166, 653, 2994, 409, 946, 1182].

Large-Number [25].

Large-Scale [7097, 5696, 1412, 1530, 6812, 3642, 7166].

l'Arithmétique [1].

l'Arrondi [4674].

Laser [1963, 3251].

Last [5468, 2958, 2850].

Latched [335].

latencies [6502].

Latency [4953, 4954, 3966, 3047, 4971, 6633, 6855, 5700, 5523, 6549, 3655, 5427, 5761, 5631, 6005, 6947, 4797, 3231, 3232, 6252, 5518, 4714, 4565, 4867, 5046, 5757, 3654, 3920, 3933].

Latin [2].

Lattice [6021, 5607, 4618, 5086, 2173, 4802, 4973, 5574, 2383, 1982, 1882, 4886, 3144, 4758, 2023, 2489, 3837].

Lattice-Based [6021].

Lattices [6309].

Lauderdale [7403].

Launches [6353].

Law [39, 1096, 4224, 2280, 5354, 5683, 825, 3757, 4237, 5058, 5849, 2279, 5566, 3704, 5662, 5663, 5257, 5269, 5496, 4839, 4998, 4536, 5154, 5027, 5169, 1445, 5764, 784, 716, 1470, 660].

Lawrence [6438].

Laws [5027, 5058, 4421, 4345].

Layer [6979, 4891].

layers [3196].

Layout [6452, 6353, 6861, 6879, 6886, 2899, 6531, 6533, 1633, 6414, 6684, 7021, 6562, 6432, 6812, 6813, 6938, 6711, 6601, 6610, 7076, 6054, 2901, 6407, 6683, 6419, 6692, 6916, 7046, 7035].

Least [602, 2704, 46, 6282, 2173, 1947, 3967, 2023].

Least-Square [2822].

Least-Squares [642, 1947].

Lebenswerk [601, 1799].

Lecture [4834, 3614, 3760, 4898, 4910, 741, 3759].

Lectures [3560, 2684, 3688, 7240, 7460].

led [2863].

LEDA [3400, 3556].

Ledley [262].

Left [5012, 4208, 6547, 5531, 4704, 5021].

Left-Looking [6547].

Left-to-Right [5012, 4208, 5531, 4704, 5021].

legacy [5782].

Legendre [5970, 5281, 1630, 1456, 1693].

Leibniz [390, 3460, 800, 390, 1229, 3460, 6090, 96, 6936, 800].

leibnizches [1229].

leichtes [547].

leistungsfähig [1758].

LEMA [5601].

L'empire [3590].

lengte [547].

Less [2860, 5818, 5831, 4682, 1619, 5723].

Lessons [3494, 3382].

Let [3598].

leur [29].

leurs [29].

Leuven [7489].

Level [6962, 1094, 3561, 2058, 2337, 6142, 6041, 6145, 1511, 4179, 6670, 3101, 7010, 5314, 5318, 2554, 2936, 3463, 3631, 1653, 7030, 2122, 993, 7053, 6712, 6597, 4145, 4790, 6854, 3568, 2338,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

224, 958, 2067, 4692, 69, 3084, 1621, 1864, 1865, 834, 1895, 2116, 2256, 2436,
2437, 2439, 2993, 2985, 3507, 2150, 4453, 1467, 3360, 1477, 1085, 1010, 1091,
1380, 2512, 1133, 1219, 1525, 2114, 2944, 1894, 2435, 2438, 1161]. Many
[6664, 437, 6533, 6030, 1624, 777, 5230]. many-core [6030]. Many-Term
[6664, 6533]. Map [5980, 5951, 3859, 3196]. MAPLD [7412]. Maple
[7295, 5413, 2865, 4968, 5391, 5397, 5341, 6926, 7338]. MAPM [4429]. Mapping
[3044, 588, 5106, 6011]. Mappings [444]. Maps [3196, 4965]. March
[1483, 7244, 7290, 7171, 7534, 7541, 7543, 7348, 7156, 7173, 7187, 9139,
7318, 7420, 7446, 7266, 7309, 7466, 7195, 7396, 7370, 7142, 7512, 7297, 7168].
[6216, 5663]. marks [2029]. Marriott [7369, 7337]. Marseille [7150]. Maryland
[7442, 7130, 7377, 3688, 721, 7130]. mashinnoi [1245]. mask
[4634, 4774]. Masking [3392, 2166]. MasPar [3547]. Massachusetts [7127,
7384, 7239, 7251, 7276, 7277, 7451, 7454, 7382]. Massey [3082, 4604]. Massive
[5792, 6267]. Massively [2500, 2885, 4178, 7307, 5593, 3508, 2643, 2644, 3250,
4180, 2979, 4909, 2345, 3240], massively-parallel [2643, 4180, 2979]. master
Materialienansammlung [1484]. Math [5114, 6350, 6457, 3710, 3713, 1095,
1719, 3724, 3410, 3411, 3570, 553, 2524, 3739, 6884, 2527, 2083, 3087, 3088,
2090, 439, 4389, 6423, 2753, 2250, 4581, 1998, 3136, 5417, 3481, 3326, 2134, 4429,
7051, 2597, 2020, 2021, 5202, 5203, 2289, 3345, 2153, 6006, 3201, 3699, 5465,
2503, 2658, 4990, 2695, 4707, 2008, 1330, 1688, 1921, 3202, 7095, 6930].
MathCW [6232]. Mathemagix [6211]. Mathematica [2893, 2907, 3635,
3636, 5218]. Mathematical [719, 4777, 1481, 4951, 5118, 7398, 5660, 5798,
6232, 6974, 4657, 6748, 6749, 6028, 5685, 1103, 7400, 7180, 81, 4815, 6648, 466,
1028, 1119, 7506, 2697, 4183, 880, 7081, 4191, 3885, 6162, 7006, 7265, 633, 898,
974, 1046, 7295, 908, 1049, 525, 7162, 7105, 2434, 53, 7115, 7126, 2277, 1540,
6704, 2475, 6720, 6721, 2850, 4481, 6983, 1711, 4, 495, 6019, 61, 879, 2078,
5310, 5411, 755, 2767, 1451, 3818, 2809, 2996, 709, 7964, 7398, 7400,
7506, 7142]. Mathematical-Function [6232]. Mathematicians [7406, 4027].
Mathematics [7302, 7179, 7429, 4495, 5797, 7290, 6756, 3735, 2371, 7522,
1629, 4210, 4212, 6539, 7194, 1722, 2137, 7429, 7197, 2032, 2620, 7539,
718, 2306, 7131, 1377, 1839, 7306, 7432, 3613, 2751, 7105, 4071, 7159, 7284,
1629, 4210, 4212, 6539, 7194, 1722, 2137, 7429, 7197, 2032, 2620, 7539,
718, 2306, 7131, 1377, 1839, 7306, 7432, 3613, 2751, 7105, 4071, 7159, 7284,
1796, 6833, 7306, 339, 340]. Mathematik [7160, 7159]. mathématiques
[5411, 7334, 5084]. mathematische [974]. mathematischen [3113, 1903].
Mathematischer [61]. MATLAB [6456, 6271, 4907, 6688, 5547]. Matrices
[6612, 93, 1212, 5618, 2797, 712, 3193, 74, 6613, 5245, 4655, 1268, 2891, 4192,
6406]. matriciel [2800]. Matrix [6613, 6014, 6125, 5385, 6367, 4977, 1384,
6142, 6254, 6985, 4837, 6262, 6267, 5512, 3086, 6516, 6059, 6519, 5715, 1412,
1521, 6529, 894, 1044, 6287, 3632, 6308, 355, 2444, 6912, 1658, 2966, 5935, 5997,
1914, 2148, 3345, 1692, 6938, 79, 2476, 6342, 6824, 6113, 5375, 5656, 5659, 2176,
5963, 2510, 4986, 2688, 2210, 4192, 6888, 973, 4393, 4394, 6081, 2110, 476, 2441,
2442, 4731, 4412, 5758, 5847, 5934, 6096, 6191, 1334, 5851, 5943, 2297, 3199,

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[135x681]81

[135x646]4917, 5085, 532, 4111, 791, 6110, 4455, 214, 3693, 3696, 4127, 3365, 2035, 1077,

[135x634]599, 3528, 6834, 1561]. method [5790, 6119, 6459, 4779, 1087, 6032, 5814,

[135x622]2699, 2702, 1843, 1127, 3254, 5010, 3441, 7098, 3268, 565, 5304, 400, 3119, 6550,

[135x598]2748, 4395, 2556, 4881, 2253, 5538, 3305, 2956, 835, 578, 3656, 4251, 4896, 27,

[135x586]4901, 6808, 1063, 5853, 1541, 6332, 3338, 4613, 4441, 4442, 4617, 5081, 5082,

[135x551]3602, 5297, 6061, 7390, 3444, 3445, 6284, 3620, 891, 5594, 4375, 6538, 7392, 438,

[135x539]1045, 831, 6797, 445, 981, 1052, 3787, 2949, 7227, 2952, 2434, 182, 4070, 1657,

[135x515]2966, 6321, 7115, 702, 3668, 164, 584, 4435, 1165, 3675, 7485, 2807, 5352, 5353,

[135x491]322, 2810, 3829, 7256, 1348, 6342, 414, 1705, 4468, 4329, 4984, 5376, 3839, 7325,

[135x479]4287, 2170, 2171, 3548, 2045, 2319, 862, 954, 7233, 7460, 6882, 7183, 4021, 3883]. methods [254, 738, 1973, 5513, 5722, 2719, 396, 3274, 3616, 5021, 2097, 7393, 2925, 3293, 523, 2749, 316, 4729, 7396, 5189, 2264, 2579, 2007, 130, 163, 5622,

modular

Modular-Multiplication

modulation

Modulator

Module

Modules

Moduli

Modulo

Modulo-

Modulus

modulus/multi

M¨oglichkeiten

Molecular

Møller

moment

Moments

Monica

Monitoring

monodromy

Monolithic

Monotone

Monotonicity

Monte

Monte-Carlo

Monte-Carlo-Form

Monterey

MOPS

Morocco

Morphable

MORUS

MOS

Most

Most-Significant

Motion

Motivations

Motorola

Motorola-Form

movable

movable

MP

MP-1

MP/Model

mpc

mpcheck

MPCs

MPEG

MPEG-1

MPEG-2

MPEG1

MPEG1/2

MPFI

MPFR

MPFUN

MPHELL

MPI

mpmath
8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

85

Multiplexor-Based [4086]. multiplicand [6443, 5373]. Multiplication
[1360, 5377, 6836, 4285, 1187, 1260, 6, 7, 14, 5792, 6847, 5118, 3712, 4298,
4962, 5462, 5873, 6125, 664, 3222, 725, 1951, 726, 4499, 4964, 3223, 6740, 807,
5665, 1492, 463, 4969, 5382, 863, 5674, 6132, 813, 5389, 5680, 5472, 5880, 610,
4318, 5684, 6134, 4663, 5260, 5261, 3861, 1105, 2869, 6142, 6249, 5265, 5886, 671,
4819, 5271, 5395, 6985, 6041, 6766, 5582, 5697, 6146, 4991, 5278, 5398, 5494, 125,
2689, 4007, 4173, 2887, 5141, 5280, 818, 506, 4177, 5499, 4344, 176, 5902, 4347,
5903, 966, 1032, 6260, 6049, 4021, 6050, 6996, 5506, 6507, 6660, 6262, 200, 5905].
Multiplication [5509, 5711, 468, 4193, 1294, 680, 435, 6516, 4547, 5715, 3605,
5719, 6398, 5721, 5516, 7007, 343, 972, 6529, 4043, 1305, 5407, 682, 256, 4216,
5305, 4370, 6534, 6890, 6677, 5594, 1421, 3112, 4376, 285, 4864, 828, 4561, 6892,
5828, 6171, 6287, 6411, 4564, 6413, 4057, 5832, 6543, 142, 1143, 5602, 569, 6303,
4229, 1758, 2424, 2248, 5178, 638, 354, 263, 264, 3132, 6087, 266, 1892, 4402,
4587, 6089, 6319, 1893, 2566, 6187, 5995, 4410, 7091, 4411, 2960, 1322, 1658,
4413, 4589, 3485, 3486, 4416, 4417, 4593, 5936, 4598, 6321, 702, 6103, 4261,
4427, 123, 1675, 1676, 924]. Multiplication [6439, 4433, 4608, 1914, 1543,
5628, 3165, 3673, 4101, 4266, 4749, 4437, 5854, 711, 7061, 1246, 5631, 5546, 786,
2148, 3819, 1069, 6109, 3184, 3824, 5357, 5214, 5358, 167, 938, 6938, 4456, 939,
490, 6342, 6824, 6007, 6825, 2831, 4463, 4934, 1476, 1705, 458, 4466, 5224, 4467,
7074, 6010, 4475, 6718, 5375, 4137, 5232, 5807, 6613, 950, 2176, 6463, 3850,
4647, 5240, 5241, 1262, 1574, 3967, 2862, 5245, 90, 4655, 5249, 4796, 6971, 6972,
2189, 2655, 6856, 5255, 3404, 3566, 2510, 1591, 6489, 5132, 6373, 3238, 5392,
6379, 4986, 6381, 3070, 2357, 2520, 2688, 4683, 2210, 3580]. multiplication
[3581, 4012, 820, 4014, 4180, 2073, 4691, 5285, 5286, 619, 2215, 967, 1844, 3253,
6511, 6512, 6663, 6062, 101, 6888, 3758, 5725, 6279, 4708, 5018, 4710, 5021, 4218,
2237, 2918, 3115, 3290, 4387, 4569, 4393, 2553, 4394, 5414, 6081, 3630, 3910,
2109, 4876, 2428, 4881, 2755, 4735, 5758, 5847, 5934, 6096, 6191, 3487, 2780,
4738, 4418, 2448, 4257, 27, 6195, 4742, 4743, 4905, 7049, 5851, 3929, 778, 653,
3933, 4914, 6106, 6443, 2802, 5348, 5632, 3684, 2462, 3818, 5857, 4117, 1927,
2811, 3000, 3001, 3943, 5089, 4763, 1073, 5777, 3522, 492, 5365, 3197, 3832, 5225,
5370, 5104, 5373, 3370]. multiplication [5646, 2627, 3371, 4943, 5109, 7064,
371, 3706]. Multiplication-Add [4318]. Multiplication-free [4934, 5414].
multiplication/division [4708, 5018]. Multiplication/Division/Square
[2424]. Multiplications [3997, 6145, 4840, 6268, 5151, 5297, 3788, 6094,
4732, 6919, 766, 2477, 3527, 5659, 5681, 6052, 4242, 2811]. Multiplicative
[1011, 4980, 5971, 4353, 5044, 6085, 6319, 5998, 6570, 3512, 6605, 609, 1108,
1109, 4685, 5288, 1611, 3758, 2622, 3020]. Multiplier [1562, 6117, 4638, 5568,
1565, 3962, 4294, 329, 462, 6962, 1572, 3967, 4499, 3855, 1195, 6858, 5258,
5478, 5480, 5390, 198, 3413, 6137, 1595, 1830, 6139, 6875, 503, 3069, 6651, 424,
507, 111, 430, 6149, 1514, 4531, 620, 1608, 1842, 4184, 5399, 968, 4350, 5708,
5008, 5512, 4850, 5716, 3264, 139, 5012, 309, 1304, 7008, 140, 5164, 6787, 6889,
1042, 230, 4371, 5595, 3289, 4559, 113, 232, 4713, 6072, 312, 2101, 4390, 6301,
128, 3468, 443, 911, 2431, 5534, 1149, 103, 6563, 6909, 5420, 366, 477, 6804,
697, 5190, 987, 648, 184, 5194, 1667, 1911, 2010, 584, 6923, 5852]. Multiplier


[5344, 4434, 165, 5345, 3812, 5769, 6576, 5855, 1778, 2146, 1547, 3942, 1548, 4760, 792, 2151, 5549, 1550, 1551, 1695, 4451, 5551, 6823, 6939, 324, 5861, 5645, 3524, 150, 2033, 2165, 4469, 7093, 3428, 3529, 6717, 6832, 6947, 3375, 6951, 802, 5651, 3533, 2631, 2188, 3228, 4974, 3412, 2882, 6042, 4175, 4994, 4176, 673, 3076, 1845, 2376, 2896, 3082, 4197, 3261, 2537, 4704, 1857, 4033, 5518, 3286, 4858, 4560, 7144, 2415, 4223, 4566, 2932, 2745, 2110, 3637, 4875, 2757, 3135, 2953, 2257, 3309, 3483, 3657, 3921, 3658, 647, 7046, 4604, 5942, 7053, 2592, 2278, 3332, 3170, 2465, 3181, 5204, 4114, 4447].

Multiplier [1793, 3015, 1798, 4627, 4628, 4629, 2845, 2308].

Multiplier-Accumulator [3855, 4760].

Multiplier-Based [4499].

Multiplier-Dividers [5568].

Multiplier-Free [7053].

Multiplier/accumulator [3309].

Multiplier/Divider [3069, 2033, 2376].

Multiplier/shifter [2431].

Multiplier/Squarer [323x5].

Multiplierless [6061, 5365].

Multipliers [6835, 2310, 3703, 6960, 2042, 5569, 3392, 4788, 5380, 3043, 4305, 6631, 6747, 6970, 3720, 4663, 4508, 2057, 6248, 332, 1594, 1828, 5695, 1599, 5969, 6879, 4171, 5279, 1603, 6503, 5702, 878, 6993, 556, 7082, 5588, 1217, 6167, 3285, 6535, 3766, 5170, 6288, 4640, 5742, 4385, 7087, 6793, 6302, 6546, 6794, 3629, 4065, 6311, 3139, 6691, 1055, 1152, 2127, 5431, 4744, 1675, 6439, 2456, 5768, 4264, 1777, 588, 3508, 1067, 132, 7070, 5553, 5363, 5639, 6600, 4461, 5098, 4625, 4767, 5099, 6942, 6943, 4281, 3367, 2842, 6946, 7076, 6493, 3841, 3379, 2638, 3393, 5384, 2199, 2341, 4823].

multiplies [4987, 4526, 4020, 5145, 2897, 2222, 3272, 5156, 3900, 5032, 3121, 3789, 4244, 3656, 5846, 2571, 4801, 4901, 5430, 4745, 4904, 5067, 4747, 5075, 2986, 2987, 3940, 4445, 4920, 2828, 3192, 5640, 2483, 3523, 1177, 3953, 3954].

Multiplikation [1823, 653, 1476].

Multiplikationsprogramme [1758].

Multiply [6014, 2038, 6467, 5467, 2050, 3047, 4971, 6241, 6367, 6485, 5479, 4981, 875, 6386, 5149, 5009, 2536, 6666, 5299, 3444, 6784, 6402, 6405, 3893, 5307, 4379, 753, 754, 5317, 5318, 5319, 3120, 5748, 6695, 3148, 1664, 5541, 5617, 5428, 5429, 5068, 6924, 6928, 4752, 654, 7066, 5946, 3819, 6207, 3520, 6346, 6609, 6610, 6719, 2168, 4482, 3380, 4501, 2327, 4797, 3051, 1593, 1601, 5002, 4023, 4551, 1619, 3609, 5013, 4565, 4867, 4064, 5986, 6083, 2943, 5046, 4731, 3666, 5626, 4759, 4762, 4931, 1704, 3017].

Multiply-Accumulate [4981, 6386, 6784, 6695, 6928, 3819, 6610, 6719].

multiply-accumulator [4762].

Multiply-Add [6467, 5467, 4971, 5479, 2536, 5299, 3444, 3893, 4379, 3120, 5748, 5617, 5428, 5429, 5068, 4752, 4752, 7066, 6207, 6609, 5009, 3148, 2327, 4797, 3051, 4023, 4551, 4565, 4064, 5986, 5046, 4731, 4931].

Multiply-Add-Fused [5317, 5318, 5319, 4867, 4759].

Multiply-Addition [2038].

multiply-additions [3609].

Multiply-by-Three [875].

multiply/add [1704].

Multiplying [1587, 3520, 3207, 3373, 4682, 3365].

MultiPosits [6897].

Multiprecise [2329].

Multiplication [6456, 2858, 2859, 3385, 6637, 4162, 5706, 6058, 6272, 6062, 3610, 6303, 5328, 1774, 3805, 3992, 5493, 3115, 3290, 4221, 4380, 2110, 5943, 5441, 2459].

Multiprocessor [2713, 2142, 1722, 5188, 5780].

Multiprocessors [3378, 1858, 2618].

multiPULPly [6766].

multipurpose [2493].

Multispeculative [6139].

Multistep [2418].

MultiTitan [2064, 2228].

multivalued [3238].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 88

8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

89

2105, 6319, 4081, 4247, 2794, 3666, 6700, 4605, 5215, 5216, 5364, 6825, 6010,
4641, 6042, 2937, 5611, 5942, 4759, 4935]. November [7232, 7373, 7457, 7109,
7119, 7374, 7521, 7143, 7216, 7234, 7245, 7340, 7218, 7134, 7140, 7221, 7263,
7319, 7405, 7537, 7157, 7188, 7354, 7224, 7355, 7379, 7395, 7408, 7422, 7490,
7502, 7531, 7162, 7177, 7324, 7336, 7202, 7230, 7258, 4883]. NPB [6639].
NPL [945]. NPU [6941]. ns [1485, 3261, 3469, 648, 2834, 2835]. NS16000
[1950]. NS32532 [2182, 2223]. NS32532-NS32580 [2182]. NS32580 [2182].
[1362]. Nuclear [7271]. Null [390]. Nullstellensätze [4054]. Number
[5650, 6012, 6836, 7078, 3536, 3708, 1486, 3709, 4492, 4645, 4955, 4956, 5460,
5657, 5658, 6461, 6627, 6848, 219, 854, 3849, 4298, 4961, 6737, 496, 665, 803,
856, 724, 805, 1090, 1575, 6965, 6128, 6025, 5670, 727, 6857, 6481, 1957, 3855,
4975, 611, 220, 1275, 1595, 5806, 5485, 671, 6494, 3572, 3730, 3999, 4338, 6378,
3875, 1201, 3420, 6256, 3072, 5497, 432, 177, 336, 337, 6884, 6048, 884, 1742, 253,
2076, 5007, 5712, 560, 1212, 1292, 7488, 6394, 5298, 1617, 6162, 6404, 1625, 1134,
1135, 1305, 3762, 202, 346, 1418, 1631, 3452, 5165, 749, 827, 6678, 6891, 203].
Number [6408, 1137, 1423, 1875, 5598, 5914, 752, 5829, 5918, 25, 1047, 1230,
4716, 287, 6792, 4061, 5037, 905, 684, 6548, 6795, 7024, 5325, 5180, 4579, 691,
1147, 1888, 4582, 3133, 6904, 2945, 317, 1649, 3477, 5056, 914, 3917, 1152,
918, 3482, 2775, 1439, 3486, 3317, 3318, 4415, 4591, 2574, 4085, 4254, 987,
1155, 766, 1906, 3324, 3154, 3489, 1673, 6808, 1911, 6810, 1539, 5852, 708, 454,
484, 6203, 3334, 1916, 531, 785, 2146, 7065, 1168, 6706, 4616, 4619, 2603, 937,
1247, 5356, 3944, 2469, 2293, 5859, 938, 2028, 1250, 6596, 2827, 2157, 6345,
5641, 3524, 3016, 5105, 796, 4633]. Number [597, 3019, 7131, 2628, 3206,
3376, 3377, 4945, 4946, 4482, 1710, 4288, 4641, 3535, 2636, 2313, 3847, 4646,
5870, 4779, 6231, 3549, 6355, 2177, 1088, 1261, 1488, 2043, 2045, 2319, 1263,
3220, 3221, 1810, 1948, 3040, 3041, 1713, 4151, 3851, 5571, 6240, 3973, 3719,
4658, 4659, 4800, 2192, 2196, 4154, 4506, 955, 2055, 4661, 5255, 2332, 2506,
2666, 2667, 2668, 2669, 2507, 3231, 3232, 3563, 3564, 3565, 3978, 4664, 3725,
4512, 6032, 1826, 4166, 5691, 1108, 1109, 4334, 2347, 2881, 3064, 3244, 3245,
3573, 3729, 3872, 3733, 3874, 1277, 4011, 4340, 2693, 2694, 4014, 4180, 2365].
number [2698, 2891, 2366, 3880, 3585, 226, 2367, 2369, 2703, 252, 1034,
1209, 2373, 2374, 1291, 5009, 7463, 3436, 3437, 3438, 3439, 2378, 4549,
625, 5153, 5717, 1410, 2717, 3889, 6401, 4363, 1038, 1220, 1302, 1414, 1415,
1522, 1523, 1868, 2226, 1984, 2911, 3102, 2230, 1039, 257, 887, 4217, 2727,
3105, 3106, 3107, 3108, 311, 231, 2411, 2922, 3116, 1876, 1988, 1989, 1990,
1991, 2239, 2240, 2412, 2413, 2923, 2738, 2925, 2415, 2739, 2416, 1229, 3774,
3906, 4063, 4227, 5176, 1754, 2745, 2937, 4232, 4233, 4234, 4395, 4396, 4397,
4578, 4874, 4066, 4235, 5837, 2425, 2111, 574, 5750, 5606, 1762]. number
[3912, 5055, 5538, 6692, 5057, 7034, 236, 4409, 4730, 2445, 3312, 3313, 2963,
2964, 4081, 4246, 4247, 3149, 3319, 3320, 405, 3321, 3322, 3487, 1769, 1907, 5193,
6194, 4418, 4419, 4739, 2970, 2971, 3490, 3664, 526, 7047, 4259, 2450, 2585, 4260,


3022, 7326, 7471, 1956, 7393, 2808, 5210, 5218, 3217. Numerik [1903, 2471].
Numerator-Prozessoren [1903]. numérique [2799, 7131]. numériques [2756].
Numerische [768]. numerischen [974, 1935]. numerischer [1236, 1061].
Nuprl [2906]. NV [7330, 7190]. Nvbit [6602]. NVIDIA [6146, 6770, 7018,
5347, 6602, 5781, 7073, 6527].

O [6887, 3240]. Oak [7139]. Obey [5663, 660]. Object [6316, 3659, 5440,
3196]. Object-Relational [5440]. Objectives [633]. objects [4585, 4586,
3196]. Obreshkoff [4075]. observed [137]. Obsolete [3470]. Obtaining
[5883, 5173, 5998, 651, 1843, 5174]. OCAPI [2708]. Occurring [4998].
OCF [7028]. Oct [7256]. October [7442, 7471, 7271, 7289,
7273, 7398, 7216, 7234, 7291, 7144, 7199, 7220, 7239, 7274, 7276, 7351, 7404,
7433, 7477, 7499, 7279, 7158, 7296, 7368, 7379, 7531, 7483, 7283, 7324, 7397,
7455, 7229, 7300, 7212]. Octocore [5605]. Octonary [930]. Octuple
[5728, 5729]. Off [6852, 608, 277, 1111, 175, 881, 633, 204, 205, 274, 314,
6309, 1670, 6581, 6337, 3518, 79, 602, 1185, 2170, 6021, 2317, 6236, 864, 1582,
6482, 955, 3993, 422, 1199, 4808, 4809, 6144, 4528, 3740, 5287, 967, 5722,
4039, 5404, 473, 5408, 1308, 1755, 1882, 2249, 3305, 6910, 1059, 2264, 53,
3937, 6107, 6108, 2023, 4119, 1936, 4125, 4278, 1182, 3239]. offer [7047].
Offers [6353]. Official [3843, 6458]. Offs [6203, 6951, 2510, 4167, 4734, 3832].
Ofman [4682]. OFPS [7028]. often [3430]. Ohio [7449]. Oja [3821]. Okay
[5354]. Old [3554, 3273, 6474, 3935]. Oldenburg [7325, 7273]. Olmo [7206].
Omnidirectional [6449]. Omura [3082, 4604]. on-chip [2761]. On-Device
[7035]. on-fly [5009]. On-Line [3219, 3392, 2885, 1115, 2070, 2208, 1401, 3258,
7348, 1622, 1532, 1440, 1660, 1446, 4424, 2151, 4120, 4450, 939, 1174, 2155, 2824,
1473, 1474, 1940, 2167, 6132, 1735, 2209, 4691, 1611, 2422, 3464, 4582, 4741,
4914, 1073, 2327, 2353, 2884, 820, 2376, 2238, 4865, 3304, 4250, 2598, 2472, 2823,
1471, 1472, 1703]. On-the-Fly [5880, 6139, 3738, 5874, 2069, 2355, 2886, 4717].
One [5566, 5115, 329, 6236, 810, 3860, 4511, 2531, 6521, 6782, 5157, 6896, 144,
914, 4414, 5064, 1776, 5086, 4460, 133, 3540, 3541, 3542, 3543, 3544, 3545, 4974,
3563, 3564, 3565, 3978, 4512, 4340, 390, 3615, 5426, 2793, 6332, 6705]. One-
Dimensional [329]. One-Hot [3860, 4511, 3563, 3564, 3565, 3978]. One-
Megacycle [133]. One-Microsecond [133]. one-sided} [5426]. One-Step
[6236]. One-Variable [5086]. Ones [3409, 4381]. OneSpin [6353]. Online
[6150, 5716, 2105, 5197, 5648, 3745]. Only [863, 1904, 4834, 1867, 2111, 5606,
4898, 3522, 5578]. Ontario [7474, 7246, 7264, 7354, 3183, 7298, 7299]. OPAC
[2799, 2800, 2982, 2983]. OPEN [6367, 6457, 6853, 6147, 6259, 5017, 7021,
6900, 6901, 7045, 7228, 6474, 6164]. Open-Architecture [7228]. Open-
Source [6147, 7021, 6900, 6901, 7045]. OpenCL [6188]. OpenFOAM
[7080]. OpenGL [3843]. OpenLibm [6164]. OpenVMS [4888]. Operand
[1086, 1393, 4826, 5276, 890, 1421, 5178, 6094, 4086, 5762, 5630, 786, 3824,
2831, 5862, 5224, 3399, 6042, 4827, 2895, 3758, 5180, 5846, 1682, 2281, 5081,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Operationen [1885]. Operations [5236, 6, 6353, 3546, 5796, 4961, 5119, 5464, 6468, 6741, 6632, 105, 196, 3227, 2058, 3990, 4978, 2061, 6374, 5890, 136, 199, 157, 6768, 6769, 387, 4840, 4348, 6776, 512, 6778, 5715, 6405, 6284, 1135, 2545, 5739, 1309, 5028, 6296, 1885, 181, 5531, 5415, 289, 6088, 7032, 3653, 3794, 121, 482, 122, 6437, 6003, 4840, 4348, 6776, 5858, 2824, 5560, 5641, 6115, 5954, 1485, 2861, 3037, 3676, 3823, 3199, 4634, 4774].

Optimised [4420]. Optimistic [5303]. Optimization [3552, 6862, 6142, 6648, 7420, 3621, 6287, 6894, 977, 4583, 3484, 4592, 3150, 6805, 6567, 3668, 5768, 3683, 5557, 2660, 2342, 2681, 3878, 4006, 2702, 5004, 6781, 5592, 2401, 7015, 7035, 5336, 3331, 6004, 6204, 7058, 7420]. Optimizations [3964, 3427, 4181, 6171, 4605, 4473, 4655, 5757, 6190]. optimize [5830, 6335]. Optimized [4777, 3705, 6402, 6651, 6879, 5586, 4191, 6533, 6176, 6299, 6083, 2704, 6427, 6563, 7091, 7041, 5935, 7061, 5630, 6823, 3656, 5758, 4913, 3239]. Optimizing [5394, 6146, 508, 2362, 1848, 6262, 5976, 5297, 2552, 5033, 3297, 4888, 5194, 3345, 6821, 4129, 5784, 1495, 4525, 4222, 2817, 4277, 2615].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Pascal-SC [1468, 1937, 1727, 2133, 1468]. PASCAL-XSC [3081, 2728, 2729, 2917, 3551].

[3215, 4716, 6810, 4752, 5946, 4251]. Pathology [6471, 6455, 6833].

Paths [6891, 3945, 4525, 6161, 3789, 4746]. Patriot [2863, 2989]. pattern
[3328, 2163]. patterns [3591].

Pentium [3382, 4644, 3710, 3713, 3553, 3568, 3407, 3408, 3724, 3862, 3735,
3427, 3430, 3474, 3493, 3494, 3339, 6705, 3345, 3182, 3834]. Pentium(R)
[4709].

Pentium(R)4 [4368]. penultimate [4731]. PERC [6710]. Percentages [1200, 450]. PERCIVAL [6900, 6901].

Perfectus [2]. Perform [376, 458, 2688, 4024, 2721]. Performance [7344, 7457, 1562,
3703, 3379, 5114, 5457, 2038, 4950, 3031, 1571, 2859, 4495, 1949, 1576, 4310,
1718, 2328, 5385, 5677, 3721, 4317, 6482, 3855, 4662, 4803, 417, 6859, 500,
2672, 3984, 4165, 6980, 2061, 6248, 3571, 3066, 1395, 5698, 5498, 3427, 2363,
4181, 1840, 337, 1848, 562, 2713, 5012, 7537, 4202, 5727, 6167, 6282, 1985,
6787, 6538, 6541, 6413, 5173, 5031, 2740, 2742, 2929, 4233, 6902, 6312, 317,
5842, 2767, 6189, 3479, 3651, 5060, 3925, 5617, 1241, 1333, 6326, 7051, 5942,
6203, 5073, 1778, 3512, 3685, 5447, 6338, 5363, 5556, 5639, 3948, 6942,
6943, 5781, 1797, 3209, 3214, 3381]. performance [5957, 4782, 6020, 2182,
4153, 1956, 4976, 4159, 3991, 5694, 4677, 5896, 2516, 2205, 4989, 4008, 6771,
4997, 2524, 4696, 4841, 4842, 1610, 4023, 1852, 2219, 2378, 3265, 4704, 3443,
2223, 2224, 4034, 5518, 4039, 3904, 5174, 2741, 4574, 5176, 4064, 4232, 2941,
5749, 2754, 2943, 3135, 2563, 3311, 4733, 5341, 5760, 2007, 2134, 7166, 3497,
2014, 3346, 4029, 4927, 4928, 6342, 6606, 3952, 3017, 3240]. Performance-
Driven [5114, 6541]. Performance-Efficiency [6482]. Performance-improved [4662].
Performance/area [3379]. Performance/Error [6312].

Performance/Power [6189]. Performances [4310, 5322]. Performing
[1260, 6242, 5293, 5739, 4001, 6550, 4083, 5208, 5370, 5373]. performs
[1485, 1601]. PERI [6595, 6822]. perilous [5315]. Period [3817, 5272].

Periodic [5289, 7012, 7101, 1176]. Periodicities [891]. periods [4930].

Peripheral [1278, 1417]. permanent [3252]. Permits [3739]. permitted
[1757]. Permutation [3264, 3779]. Permutations [6333]. Perron [547, 547].

Personal [1022, 1023, 1024, 1112, 3739, 1981, 1222, 1636]. Perspective
[3969, 3972, 3776, 4386, 4725, 5532, 3653, 6567, 3200, 5273]. Perspectives
[7516, 7393]. Perturbation [2351, 4615, 6542, 3333, 4755]. Perturbations
Additional Contributions from Nelson H. F. Beebe
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6212, 6446, 2299, 3948, 6713, 215, 6346, 1469, 1701, 2617, 5100, 5223, 5367, 5368, 5559, 5560, 5641, 5644, 6448, 1556, 1354, 2033, 5781, 7073, 3011, 3012, 5950, 216, 3201, 2302, 6214, 4281, 6115, 1797, 4468, 5226, 2625, 799, 3019, 1706, 3529, 5374, 5784, 4136, 948, 1941, 6830, 6831, 5953, 6609, 5107, 5563, 5648, 5108, 5375, 5232, 6611, 5693, 5887, 6035, 6760, 6424, 6341, 4279, 2172, 4489, 3375, 5376, 662, 2851, 2630, 1943, 1944, 6450, 6953, 3957, 1564, 4484, 5651, 6216, 3023, 2170, 2171, 3705, 3842, 5456, 416, 5457, 5246, 5960, 6235, 6968, 3717, 6969, 1578, 1579, 1716, 299, 2187, 1718, 666, 5249, 5571, 4311, 3853, 1015, 4795, 5252, 5384, 5572, 6971, 6972, 7080, 2188, 1016, 1193, 6475, 4979, 4971, 6361, 5804, 6634, 3226, 4972, 3556, 2503, 1815, 4798, 2190, 2656, 6363, 6364, 1954, 6479, 1377, 6480, 3401, 6242, 1378, 4802, 4973, 2661, 3228, 379, 1585, 2662, 6365, 3856, 4976, 1818, 2056, 2665, 3723, 3858, 5881, 1380, 1722, 2200, 2666, 2667, 2668, 5962, 6029, 2335, 3050, 4509, 5479, 3979, 3051, 3980, 5963, 4804, 4805, 3983, 1501, 1589, 1824, 2202, 5481, 5687, 6136, 4162, 2674, 1104, 1961, 3989, 4671, 4516, 421, 2062, 5484, 3412, 5689, 3726, 2342, 2870, 2871, 2872, 3866, 3995, 3237, 6252, 2679, 6253, 5393, 5394, 5959, 1276, 2681, 6375, 5966, 5694, 3059, 2878, 3241, 3416, 4522, 4676, 4817, 6140, 6038, 3998, 3061, 249, 4821, 5137, 5267, 5268, 4336, 4679, 961, 4525, 5580, 6649, 5139, 2516, 5272, 2517, 4986, 2348, 4169, 2882, 5273, 2205, 502, 1733, 1734, 1832, 2884, 4001, 1202, 1394, 5275, 5140, 5492, 734, 1116, 4992, 4147, 4715, 6682, 4686, 4687, 5583, 4688, 1512, 1968, 2360, 1736, 4689, 1969, 735, 819, 508, 821, 3737, 6653, 6992, 1204, 5282, 1029, 2073, 6258, 2890, 2364, 4835, 2524, 6654, 4693, 5814, 4694, 282, 3076, 3252, 4696, 4838, 5815, 3077, 2526, 621, 879, 1030, 1208, 1739, 3428, 2368, 2892, 3078, 1031, 2702, 1843, 5502, 967, 1844, 2530, 1845, 5703, 2370, 4841, 4842, 1846, 5400, 5975, 6052, 6505, 1287, 1610, 2371, 252, 178, 307, 2706, 3882, 2375, 1850, 4531, 4845, 3883, 2532, 4022, 6661, 6662, 3080, 4023, 3745, 5004, 3593, 5820, 6999, 4024, 4540, 4700, 6509, 3750, 5150, 2894, 2895, 3255, 3595, 4192, 6392, 1036, 3083, 3434, 3596, 1291, 1407, 5009, 1213, 1974, 3598, 2219, 3435, 1408, 1296, 3260, 3090, 4030, 2220, 3440, 5514, 4548, 2900, 2535, 3091, 1298, 2711, 5295, 5296, 1744, 6665, 2903, 6397, 6522, 6667, 5717, 3265, 3266, 2084, 5718, 516, 2717, 826, 1215, 2383, 5720, 681, 2385, 3891, 1218, 1863, 7005, 1746, 3275, 3608, 4207, 5158, 5159, 5161, 5515, 2223, 2224, 4034, 4551, 5301, 3607, 1133, 4206, 1219, 1866, 2386, 4707, 5906, 2906, 4553, 5728, 5729, 1624, 3278, 5977, 6166, 6279, 6280, 6403, 2389, 201, 2088, 4039, 3611, 5978, 6407, 2227, 2911, 3102, 3279, 5979, 2229, 2395, 2396, 2230, 3103, 1985, 626, 2092, 2093, 3449, 3614, 3615, 4210, 4212, 5734, 4709, 2915, 3281, 3451, 3617, 3282, 6069, 628, 473, 744, 2399,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

point [917, 5614, 7035, 5419, 2441, 2442, 984, 4243, 3309, 4731, 2959, 3144, 6190, 3310, 3311, 3920, 4077, 2446, 3796, 4891, 6916, 2570, 3316, 580, 4892, 5336, 5847, 6192, 480, 4245, 3146, 3147, 5337, 5539, 6098, 5848, 985, 4248, 4083, 4251, 5759, 765, 986, 3799, 4084, 7044, 4737, 5046, 2252, 5326, 3135, 6688, 7028, 1646, 6689, 3138, 1647, 1648, 695, 2563, 2253, 5753, 5841, 5328, 4882, 5048, 5330, 5332, 5416, 5535, 6905, 2564, 1999, 3914, 5051, 5418, 319, 1894, 2255, 2435, 2438, 2440, 2762, 3647, 5092, 1437, 3915, 2117, 2954, 2955].

point [2994, 4615, 1690, 2288, 1169, 2467, 2468, 4441, 4442, 4617, 5081, 5082, 5083, 5204, 5205, 5206, 5207, 5208, 5350, 5351, 5352, 5353, 5442, 5443, 5444, 5445, 5446, 2809, 2996, 1784, 1460, 2291, 292, 1461, 2024, 2025, 4759, 3689, 4116, 375, 323, 4271, 4761, 845, 2817, 2818, 3186, 3187, 6207, 5089, 1928, 3690, 4762, 4119, 147, 146, 1787, 1930, 2294, 1934, 1788, 3003, 5213, 6335, 3004, 1696, 846, 3346, 4452, 4924, 1071, 3348, 1346, 4122, 7069, 4277, 7092, 1791, 3692, 1792, 3827, 5360, 1697, 1936, 3190, 4125, 4278, 2029, 941, 6339, 2826, 2827, 4927, 4928, 715, 794, 3693, 1075].

point [5552, 1793, 2615, 2476, 2478, 3695, 4458, 4459, 1350, 2031, 6445, 5221, 1351, 2829, 2160, 492, 2481, 849, 1702, 3950, 2484, 3007, 4768, 4933, 5222, 5369, 5780, 6009, 6213, 2485, 1795, 1471, 1472, 1473, 1474, 1703, 1355, 1796, 540, 541, 542, 3952, 2162, 2301, 5101, 795, 2034, 2486, 2487, 1255, 294, 1704, 2163, 3202, 3365, 1938, 1559, 2304, 2836, 2488, 1356, 2621, 2622, 4129, 5225, 1798, 1560, 4936, 5228, 5562, 5782, 5951, 947, 2624, 4131, 4282, 4937, 4938, 7075, 5783, 598, 797, 1357, 2841, 6945, 194, 2843, 2307, 6716, 2489, 2845, 2846, 3205, 3837, 7094, 5230, 4943, 4944, 5109, 5111].

point [4634, 4774,
Possible

Posit

Postscaled

Postcorrections

Posteriori

Postscale

Postshifts

Power

pow
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 101

6881, 4184, 5708, 4543, 4547, 5012, 6167, 6528, 5914, 6287, 6793, 5836, 6549, 4072, 4073, 4730, 6189, 6694, 5058, 4415, 7043, 4256, 4422, 7370, 5617, 4433, 4093, 6331, 6202, 4095, 4101, 4912, 5769, 241, 3824, 5549, 6938, 5553, 6600, 6940, 5098, 5374, 6946, 6717, 6718, 4635, 4153, 4154, 4801, 3563, 4166, 5966, 6766, 6042, 4862, 3579, 619, 1287, 3882, 5904, 4187, 4847, 5713, 7002, 7003, 7084, 3889, 2919, 3902, 4235, 3783, 5057, 4074, 7434, 4591, 5759, 4914, 3690, 4277, 2611, 2613, 3196, 4465, 3362. Power-Delay [3720, 4730]: Power-Efficient [5476, 6331, 5553, 5374, 6042], power-series [2919].

POWER2 [3209, 3260, 3340, 3363, 3259]. POWER3™ [3956]. POWER6 [5274, 5116].

Pre-computations [5880]. Pre-processing [5701]. pre-scaling [3428].

Precisemon [5937]. Precise [2169, 3839, 2651, 6047, 3603, 4036, 4854, 6554, 3331, 5079, 5080, 4463, 5134, 2224, 6190, 5448, 5449, 4380, 4221]. precisie [491].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[508]. Probability [494, 385, 4577, 2746, 3896, 6311, 1647, 1648, 5049, 6816, 7058, 7060, 2874, 5708, 2901, 394, 6668, 3896, 6311, 1647, 1648, 5049, 6816, 7058, 7060, 2371, 6999, 393, 5537].

Problem-Solving [1983]. Problems [602, 6354, 2502, 3987, 617, 7125, 1843, 2704, 179, 2377, 6999, 393, 5537].

Proceedings [7127, 7145, 7151, 7231, 7232, 7242, 7359, 7373, 7456, 7103, 7097, 7153, 7244, 7289, 7345, 7374, 7273, 7398, 7316, 7360, 7459, 7339, 7386, 7191, 7143, 7246, 7304, 7346, 7415, 7305, 7291, 4825, 7235, 7171, 7476, 7260, 7185, 7534, 7218, 7098, 7192, 7144, 7156, 7161, 7172, 7174, 7199, 7220, 7221, 7239, 7251, 7261, 7262, 7263, 7276, 7277, 7278, 7292, 7294, 7307, 7308, 7352, 7375, 7377, 7389, 7391, 7405, 7433, 7476, 7480, 7537, 7544, 7206, 7321, 7157, 7265, 7358, 7175, 7223, 7332, 7158, 7309, 7295, 7406, 7296, 7637, 7378, 7407, 7421, 7438, 7354, 7408, 7105, 7195, 7310, 7190, 7396, 7133, 7281, 7282, 7164].

Processing [1708, 6835, 3021, 6954, 7289, 7345, 7249, 1573, 3551, 7215, 6477, 301, 2663, 6860, 4511, 3572, 6987, 5582, 2208, 3422, 882, 1742, 6776, 3081, 6515, 563, 7249, 7198, 7264, 7293, 7404, 7418, 7435, 7437, 3096, 3097, 4202, 4141, 6671, 3101, 6405, 1134, 3612, 2545, 1139, 4713, 7223, 7158, 7333, 7453, 7024, 6308, 5325, 7122, 145, 915, 6912, 2124, 6922, 3669, 7270, 1540, 4753, 6929, 7057, 7371, 2984, 7297, 6580, 3178, 1171, 6827, 7539, 5951, 3214, 2177, 1088, 2644, 7328, 2332, 2335, 3861, 6642, 2679, 4677, 7291, 4992, 7124, 2366, 5701, 5973, 2369, 1610, 3080, 6509, 3255]. processing [6392, 5009, 3257, 4034, 6670, 2722, 3277, 1302, 1039, 7111, 3451, 2235, 2920, 1987, 1870, 1989, 1991, 2412, 2924, 4866, 2932, 7209, 7367, 7378, 7394, 7407, 7421, 7438, 2558, 2942, 2563,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

7121, 2964, 4592, 3146, 3147, 2261, 7311, 2585, 838, 5767, 5198, 2804, 4107, 3511, 2018, 6582, 3003, 1347, 7240, 7285, 3196, 1795, 1177, 2486, 2832, 1704, 4282, 4939, 2848, 2849, 2682.

7211, 2964, 4592, 3146, 3147, 2261, 7311, 2585, 838, 5767, 5198, 2804, 4107, 3511, 2018, 6582, 3003, 1347, 7240, 7285, 3196, 1795, 1177, 2486, 2832, 1704, 4282, 4939, 2848, 2849, 2682.

Profession [4703]. Professor [159]. Profile [5881]. profiles [5896]. Profiling [6648]. Program [3383, 6224, 6729, 6841, 2495, 1092, 1506, 6532, 3287, 566, 2548, 5530, 2781, 4911, 6587, 1075, 3836, 5874, 5800, 6634, 3980, 1597, 1730, 282, 1516, 1298, 2714, 7500, 4366, 2233, 2234, 1225, 4222, 5987, 1645, 5181, 3914, 985, 706, 6204, 3344, 292, 1254, 5110]. Programmable [7426, 7443, 7430, 7459, 7473, 7415, 3248, 7419, 7497, 6171, 3122, 3462,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Radix [2039, 5568, 3961, 4144, 1568, 545, 852, 3219, 855, 5959, 4630, 6361, 6362, 6855, 6977, 1581, 5677, 2504, 1957, 5476, 1613, 5008, 7083, 1617, 1132, 2087, 5721, 5300, 6402, 6165, 6167, 2391, 1423, 3112, 6070, 630, 5916, 5917, 3458, 4382, 4715, 5312, 4061, 6685, 1883, 6302, 7022, 3464, 3469, 1146, 5531, 358, 3302, 4069, 2566, 4072, 5756, 1438, 643, 3792, 5335, 3485, 646, 5425, 4391, 3492, 1774, 2138, 267, 3812, 4437, 5074, 1918, 932, 3816, 1785, 6708, 1932, 1933, 4120, 4450].

Radix [4451, 1174, 2155, 6007, 5862, 3524, 543, 3529, 6947, 600, 801, 1004, 3845, 950, 460, 3220, 4301, 1713, 4307, 4315, 2508, 3991, 423, 2522, 3071, 2359, 3579, 3428, 7000, 3441, 2384, 2226, 2911, 3102, 3279, 889, 2733, 2925, 2927, 4055, 3459, 1760, 2433, 2760, 2950, 3140, 3476, 4403, 4074, 2776, 5846, 4081, 4246, 4247, 4736, 4596, 4740, 4741, 2975, 5436, 3166, 3167, 3169, 3170, 5075, 3514, 2811, 3001, 1172, 3832, 5561, 5642, 2840, 1746].

Radix [1568, 2504, 1725, 1824, 6040, 2521, 1605, 1613, 5008, 4382, 4715, 4391, 4437, 1932, 4450, 6007, 3524, 3529, 4301, 4315, 3991, 2522, 3428, 3441, 3459, 1760, 3476, 4074, 2811, 3001]. Radix-10 [5312]. Radix-16 [733, 5756, 5862].

recompilation [4988]. Recompiling [6148]. ReConFig [7495].
Reconfigurable [3708, 3970, 6367, 1821, 7495, 7403, 3447, 4559, 4582, 6696, 5767, 6575, 4456, 5644, 4470, 4772, 5953, 5375, 5887, 6981, 5869, 4151, 4307, 4507, 2212, 4393, 5418, 2261, 4607]. reconfiguration [6042, 4549].
Recompiling [4988]. ReConFig [7495]. Reconfigurable [3708, 3970, 6367, 1821, 7495, 7403, 3447, 4559, 4582, 6696, 5767, 6575, 4456, 5644, 4470, 4772, 5953, 5375, 5887, 6981, 5869, 4151, 4307, 4507, 2212, 4393, 5418, 2261, 4607]. reconfiguration [6042, 4549].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3969, 2195, 4506, 4801, 6857, 1957, 220, 3860, 6378, 177, 226, 337, 6048, 884, 1404, 1742, 253, 5007, 5712, 229, 4850, 5298, 1617, 1523, 1625, 1134, 1135, 1418, 1631, 1871, 7010, 3452, 749, 827, 3767, 287, 905, 4234, 4578, 2425, 5325, 5180, 3133, 317, 1649, 1764, 918, 2775, 4591, 1904, 2124, 1906, 6920, 2782, 2130, 2971, 3154, 3489, 1673, 583, 1911, 454, 484, 2146, 2018, 5078, 712, 2603, 455, 6208.

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3968, 3969, 4313, 5193, 6707, 1710, 4659. Reverse-Carry [4313]. Reversed
[2104, 2243]. Reversible [5302, 5163, 5931, 5996, 5214, 5215, 7090, 5216].
reversion [2243]. Review [1483, 3706, 4142, 4143, 21, 4665, 4320, 509, 388,
Revised [7530, 7417, 7541, 7488, 7516, 7519, 3897, 7539, 5838, 2796].
Revision [3865, 6524, 7028, 6188]. Revisions [4751]. Revisit [5877]. Revisited
[3224, 279, 1121, 2372, 4848, 4576, 5059, 4263, 4917, 5085, 4399, 6062,
4886]. Revisiting [4712, 5173, 5174]. Revolution [1533, 1662]. rewriter [5899].
Rewriting [6814, 5362, 3358]. REXX [1728]. Reykjavík [7519].
Rezension [4849]. RF2P [7040]. Rhine [7303]. RHW [4470]. Rhyne [2465].
Richard [509, 7483, 5864, 5865]. Richardson [384, 384, 6647]. Richardson-
Algorithmus [384]. Rietz [7147]. Robertson [7293, 7437]. Ring [3044, 176, 7061, 6944, 1826, 4710, 2030].
Ring-LWE [6944]. Rings [3792, 7102, 1261, 3573, 2596]. Ripple [5676]. Ripple-Carry
[5676]. RISC [6470, 2535, 2540, 2560, 2564, 6953, 6622, 6964, 6738, 6853, 2654,
6637, 4661, 2336, 6891, 6892, 2924, 7014, 6551, 7024, 6899, 6900, 6901, 3296, 2252, 6559, 2951, 2439, 3915,
7036, 7040, 7041, 3148, 7043, 6100, 7045, 6810, 2274, 6703, 7062, 1546, 2604,
6595, 6822, 6938, 6939, 3363, 2623, 7075, 6945, 6716, 6830, 3352]. RISC-Based
[4699]. RISC-V [6470, 6622, 6964, 6738, 6853, 6637, 7067, 6830, 6772, 6773,
6891, 6892, 7014, 6551, 7024, 6999, 6900, 6901, 6595, 7036, 7041, 7043, 6810,
6703, 6595, 6822, 6939, 7075, 6945, 6716, 6830]. RISC-V-Based
[7045, 6938, 7062]. RISC-V3 [6810]. RISCs [1546, 2633, 3341]. Rise [6272].
Rising [6775]. Risk [7059]. RLS [2630, 2040, 5419]. RLWE [6615]. RLWE-Based
[6615]. RN [4964, 4863, 5025, 5168]. RN-coding [4863, 5025]. RN-Codings
[5168, 4964]. RNC [7458]. RNC3 [7346]. RNC5 [7413]. RNC6
[7425]. RNS [5815, 6194, 7064, 4946, 5235, 4639, 5792, 3702, 3850, 4783, 5462,
5873, 6021, 6124, 6849, 6127, 4658, 3988, 4511, 4667, 6488, 5091, 4816, 3417,
6874, 3871, 4696, 2354, 4177, 5701, 5813, 4016, 4535, 6507, 3754, 4029, 4917,
4545, 6270, 6515, 3268, 3269, 3889, 7010, 3109, 2412, 6300, 4411, 4080, 6099,
5339, 2794, 4600, 1536, 7053, 5077, 2460, 4109, 5349, 6707, 4273, 1932, 3828,
4765, 7072, 5104, 6010]. RNS-based [7010, 5792, 4535, 7053, 4177]. RNS-to-weighted
[4109]. Road [2671]. Robert [43]. Robust [5799, 6991, 2934, 6903, 6429, 5340, 6574, 3162, 3680, 3513, 6963, 6754, 3868,
3871, 4822, 4048, 6578, 3679, 3813, 3530, 2935]. Robustes [2934, 2935].
Robustness [6724, 6237, 2377, 4910, 6130, 5814]. Rochester [7178, 4124].
Rocket [6710]. Roessler [3702]. Roger [2475]. Role [853, 2876, 7227, 4619].
roll [3034]. roll-up [3034]. ROM [7381, 3235, 5723, 1135, 2239, 2240, 896,
3160, 3500]. ROM-based [2240]. ROM-less [5723]. ROM-Rounding
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[2178, 5381, 6630, 6744, 4969, 5382, 6239, 1111, 5969, 6768, 6769, 2525, 6655, 6051, 3747, 6061, 1855, 6402, 5524, 5825, 4382, 6681, 6296, 3775, 6175, 6298, 2931, 450, 3164, 3335, 6110, 1348, 2850, 5955, 6854, 4795, 4976, 6971, 6972, 6973, 7079, 6245, 4807, 4982, 5577, 4330, 5283, 7002, 7003, 7084, 7085, 2092, 5596, 5597, 634, 3907, 4225, 6896, 636, 2430, 4729, 4250, 788, 4919, 4812, 5266].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[135x681]8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

7393, 7482, 7194, 7226, 7189, 7311, 7439, 7441, 7539, 7131.

Signal-to-noise [1065].

Signaling [4630, 4631].

Signalling [5379].

Signals [3387, 7216, 7234, 7245, 7340, 1134, 7355, 7368, 7379, 7395, 7408, 7422, 7490, 7502, 7531, 7283, 7324, 3882].

Signed [6847, 377, 219, 1365, 664, 1819, 4318, 671, 5704, 5517, 4208, 6070, 4065, 2574, 3324, 489, 593, 3951, 2504, 4662, 4158, 3149, 5193, 3667, 2465, 5372].

Signed-Digit [219, 1365, 1819, 4318, 4208, 6070, 4065, 2574, 3324, 489, 593, 3951, 2504, 4662, 4158, 3149, 5193].

Signed-LSB [5517].

Signed-Number [671].

Significance [859, 1013, 1513, 283, 1747, 761, 832, 1053, 793, 1512, 1968, 178, 981, 1052, 787, 2612, 2613, 941].

Significand [5556].

significands [4021].

Significant [3032, 5378, 461, 5879, 55, 554, 54, 346, 7019, 162, 5932, 5616, 237, 847, 3951, 90, 2504, 4662, 4158, 5710, 4059, 3149, 5193, 3667, 2465, 5372].

Significant-digit [318].

Signs [3711, 3871].

SIGNUM [7145, 538].

SIGPLAN [7242, 7428].

SIKE [6651, 6767, 6537].

Silicon [5306, 6981, 2271].

SIMD [4289, 6122, 4782, 5670, 4976, 4981, 4336, 6771, 3584, 6995, 5718, 5821, 6699, 7048, 5549, 4282, 7075, 6211, 6341].

Similar [1699, 942].

Simple [857, 4793, 1267, 1376, 1602, 5496, 2888, 1517, 4537, 4547, 6520, 4550, 5164, 2548, 441, 572, 2760, 6192, 121, 1770, 649, 1452, 1794, 4654, 2677, 118, 5400, 1971, 6082, 2950, 452, 3190].

Simpler [4690, 4830].

Simplification [2838].

Simplified [5007, 5037, 1353, 3910].

simplify [4490].

Simplifying [3485].

simulated [5287, 7012, 759].

Simulating [6989, 6518].

Simulation [7398, 6471, 5810, 3576, 334, 2885, 5709, 635, 2936, 3650, 7166, 3159, 6331, 5722, 1943, 1944, 3563, 3059, 746, 1224, 1527, 1752, 4384, 5926, 980, 5342, 1449, 1934, 3004, 795, 353].

Simulation-Based [5709].

Simulations [6173, 6323, 5545, 6455, 5883, 5481, 5687, 6253, 6781, 4575].

Simulator [880, 3273, 1446, 879].

Simulink [5766, 3329].

Simulink-based [5766].

Simultaneous [4285, 6378, 1207, 253, 3602, 6416, 4608, 5241, 5722, 4251, 4446].

Sin [231, 1765, 2120, 536].

Sin/Cos [1765, 536].

Sine [1953, 1018, 1853, 4031, 2950, 1068, 2810, 2606, 952, 3277, 4722, 2961, 4245, 2120].

Sine-Cosine [1068].

sine/cosine [952, 3277, 4245].

sines [1398].

Singapore [7534, 7541, 7543, 7437, 7532, 7437].

Single [6953, 3214, 4294, 3711, 3047, 1270, 3413, 4819, 6145, 7081, 2080, 7006, 3893, 2095, 3452, 5026, 5828, 6411, 6172, 6295, 5319, 2932, 5751, 1149, 1655, 5062, 1673, 708, 3945, 6720, 6721, 4958, 1956, 5682, 2870, 2871, 2872, 4336, 2882, 625, 1867, 2922, 2239, 2240, 3777, 3630, 5925, 1760, 4875, 3783, 5611, 2257, 2271, 3677, 3175, 2602, 1928, 3526, 2849].

Single- [3893].

Single-Board [2080].

single-channel [2240].

single-chip [2870, 2871, 2872, 1928].

Single-Multiplier [4294].

Single-Precision [3711, 5319, 5062, 2932, 4875, 3677, 3175].

single-rail [3783].

single-term [5682].

Singular [3732, 4339, 3094, 1886, 4169, 4412].

singularity [5152].
2450, 3666, 6195, 2134, 652, 1066, 85, 3689, 4921, 1927, 1177, 4935, 2848, 2849].

Square [3956, 4636, 3532, 1008, 1187, 1082, 1482, 3532, 1008, 1187, 1082, 1482, 3015, 3017, 3018, 5785, 4477, 4942, 4284, 6834, 2046, 1426].

Square-Root [4953, 153, 3233, 2071, 1282, 4382, 1639, 1583, 1207, 1887, 702, 3898, 3461, 2253, 2035, 4165, 2888, 4082, 2131, 3015, 3017, 3018, 5785, 4477, 4942, 4284, 6834, 2046, 1426].

Square-Root-X [1482, 1552]. Square-Rooting [1583, 1207, 1887, 702, 3898, 3461, 2253, 2035, 4165, 2888, 4082, 2131, 3015]. square-roots [3963, 1891].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 124

6298, 1528, 570, 6306, 3639, 2249, 1318, 6088, 835, 5185, 1661, 5069, 5437, 5438, 5439, 5543, 1075, 6603, 658, 5107, 5563, 5648, 2193, 2194, 116, 4522, 6140, 5275, 1116, 4522, 6140, 5275, 1116, 6882, 3586, 5818, 6053, 6999, 3090, 1624, 3898, 6292, 5831, 3461, 3633, 757, 758, 5839, 3647, 6092, 6093, 578, 3145, 5539, 2264, 1063, 5621, 5850, 1351.

Summations [3787, 6759, 6542, 5337, 6339].

Summen [1094, 2097, 835].

Summer [7301, 7295, 7240, 7196].

Summierungsverfahren [578].

Summing [372, 465].

Sums [5956, 6121, 1094, 5381, 6239, 1600, 5524, 5825, 831, 1651, 450, 4151, 100, 4369, 2097, 5596, 1993, 2414, 573, 835, 5196, 2013, 2593, 5636, 5230].

Sumsets [5201].

Sun [2025].

sunity [5172].

super [2193, 2194].

superaccumulators [6092, 6093].

Superblock [5387].

Supercalculators [2285].

supercomputer [3214, 2644, 2684, 4989, 5003, 1972, 5192].

Supercomputers [2316, 2803, 1490, 6097].

Supercomputing [7213, 7232, 7457, 7221, 7263, 2750, 7224, 7380, 7233, 6161, 2404, 6442, 2914].

Supercomputing-Japan [2914].

Superefficient [1593].

superelliptic [4530].

superhighway [7318].

Supermicro [1848].

Superscalar [3096, 3097, 2742, 3915, 4094, 2995, 4443, 3983, 3429, 2740, 2741, 3322].

Superset [3968, 4800].

Supersingular [5664].

superscalar [2823].

SVD [2054, 2197, 2743, 2823].

SVE [6753, 6859].

Svoboda [3913].

sW [6551].

Sweden [7352].

Swiss [108, 7376, 7332, 1455, 7343].

SWT [1688].

Sydney [7222].

Sylvester [4300].

Symbol [6464, 402].

Symbolic [4287, 7474, 2195, 3726, 4335, 4010, 4183, 7347, 7332, 2765, 7150, 7423, 38, 42, 6107, 6108, 6581, 7383, 7286, 7513, 3568, 619, 6661, 2384, 2117, 2955, 6320, 1541, 4479, 7150].

Symbolic-Algebraic [4183].

symbolically [4834].

Symbolics [1926].

Symbols [2945, 298].

Symmetric [6612, 1831, 5912, 1418, 749, 827, 4375, 2936, 5043, 5179, 5629, 3808, 3810, 4096, 4270, 4111, 5198].

Symmetrical [4616].

symmetrically [2834].

symmetries [4517].

symmetrizer [2927].

Symplectic [4110, 4755].

Symposia [7358].

Symposium [1652, 7167, 7323].

Symposium [7132, 7151, 7301, 7313, 7359, 7384, 7426, 7427, 7443, 7470, 7487, 7325, 7326, 7271, 7153, 2635, 3707, 3844, 7430, 7273, 7315, 721, 1188, 1364, 7398, 4648, 7414, 7472, 7444, 7474, 7494, 3976, 7388, 7529, 7536, 7361, 7505, 1114, 2356, 7235, 7306, 7171, 7347, 7462, 7098, 7192, 1859, 7130, 7144, 7156, 7161, 7174, 7237, 7238, 7261, 7274, 7294, 7308, 7320, 7353, 7365, 7376, 7390, 7520].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

...
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

2862, 5246, 4968, 7080, 6634, 4314, 6856, 3719, 4658, 4972, 4154, 6242, 4974, 4662, 3859, 4509, 3231, 3232, 3564, 3565, 3978, 3567, 2338, 6642, 5481, 5687, 2674, 3988, 4667, 3991, 6489, 6862, 1826, 1962, 3412, 4166, 2343, 5132, 3571, 5691, 6374, 5486, 2679.

using 3312, 3313, 3483, 3656, 580, 5188, 5758, 4894, 4591, 3658, 3150, 3321, 3322, 3487, 3798, 6805, 1769, 6920, 3492, 2131, 2271, 2450, 4260, 6808, 4743, 7049, 6198, 5622, 5623, 5939, 5853, 3159, 708, 3498, 6331, 4609, 3331, 1917, 1167, 5944, 2460, 5773, 2986, 1066, 2019, 2991, 2992, 2288, 4918, 5210, 4273, 1462, 1549, 4762, 5357, 1934, 6594, 5638, 1346, 5217, 1175, 5450, 2030, 2297, 5640, 5777, 4766, 5096, 3831, 3832, 3949, 3950, 2483, 4933, 412, 5101, 2163, 2834, 2488, 2837, 3015, 5225, 3203, 3204, 3954, 4627, 4628, 5371, 5227, 4630, 4631, 4939, 5229, 194, 7338, 5785, 2845, 3205, 4811.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

2097, 6894, 7015, 6076, 5982, 6547, 6313, 6562, 1765, 4412, 5337, 5064, 5765, 6578, 6342, 4479, 6722, 6502.

References

Leibniz:1703:EAB

[1] G.-W. Leibniz. Explication de l’Arithmétique binaire. (French) [Explanation of binary arithmetic]. Mémoires de mathématique et de physique de l’Académie royale des sciences, ??(??):85–89, ???. URL https://hal.archives-ouvertes.fr/ads-00104781/document. Leibniz is often credited with the invention of the binary number system, but there is other work from his era, and detailed analysis of Leibniz’s use of binary numbers. See [390, 511, 622, 1229, 1399, 6256, 6936, 7077].

Pelicano:1712:APQ

Colson:1726:SAN

REFERENCES

Barrow:1924:QDD

Smith:1924:FPA

Karpinski:1925:HA

Cajori:1926:BRB

Smith:1926:FGC

Cajori:1927:EAP

J:1930:RPRb

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[61] H.-J. Dreyer and A. Walther. Der Rechenautomat Ipm. Entwicklung Mathematischer Instrumente in Deutschland 1939 bis 1945. (German) [The Ipm calculator. The development of mathematical instruments in Germany 1939–1945]. Bericht A3, Institut für Praktische Mathematik, Technische Hochschule, Darmstadt, West Germany, August 19, 1946. Reprinted in [7163, §3.3]. Translated by Mr. and Mrs. P. Jones.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

in the service of technology. Experience with the Zuse-calculator Z4],
volume 45 of Arbeitsgemeinschaft für Forschung des Landes Nordrhein-
Westfalen. Heft. Westdeutscher Verlag, Cologne and Opladen, West

multiplication. *IRE Transactions on Electronic Computers*, EC-5(3):140,
September 1956. CODEN IRELAO. ISSN 0367-9950. URL http://
_ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5219936.

[126] Francis Begnaud Hildebrand. *Introduction to Numerical Analysis*.

Jr., R. L. Bivins, J. V. Caulfield, I. Kral, A. F. Malnberg, G. T.
McKinley, and R. E. Williamson. MANIAC II. Report LA-2083, Los
Alamos Scientific Laboratory, Los Alamos, NM, USA, October 1, 1956.
54 pp. URL https://sgp.fas.org/othergov/doe/lanl/lib-www/la-
pubs/00320765.pdf.

.jsp?tp=&arnumber=5219789.

[129] Robert Perkins. EASIAC, A pseudo-computer. *Journal of the
Association for Computing Machinery*, 3(2):65–72, April 1956. CODEN
JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

CODEN IRELAO. ISSN 0367-9950.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[159] Franz Hammer. Nicht Pascal sondern der Tübinger Professor Wilhelm Schickard erfand die Rechenmaschine!. (German) [Not Pascal, but
the Tübingen professor William Schickard, invented the calculator].

Büromarkt, 20(??):1023–1025, 1958. ISSN 0007-3148.

REFERENCES

12, May 1958. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

\[\text{Tocher:1958:TMD}\]

\[\text{Wadey:1958:TSR}\]

\[\text{Ashenhurst:1959:UFP}\]

\[\text{Buchholz:1959:FFC}\]

\[\text{Carr:1959:EAF}\]

\[\text{Carr:1959:PC}\]

\[\text{Daggett:1959:DBC}\]

REFERENCES

REFERENCES

[201] B. A. Jensen. Coding instructions for floating point trigonometric, inverse trigonometric hyperbolic and exponential functions. Group report
30G-0009, Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA, USA, 1960. 7 pp.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lake:1962:LEH

Lynch:1962:WBD

MacSorley:1962:RBA

McGee:1962:BM

Meggitt:1962:PDP

Metze:1962:CBD

Mitchell:1962:CMD

REFERENCES

[364] Ramon E. Moore. Automatic local coordinate transformations to reduce the growth of error bounds in interval computation of solutions of

Morrison:1965:MCC

Nathan:1965:CM

&arnumber=4038406.

Penney:1965:BSC

Ralston:1965:FCN

Riordan:1965:UAT

&arnumber=4038346.

Ross:1965:RTE

Schreiber:1965:BRB

REFERENCES

[373] W. H. Specker. A class of algorithms for \(\ln x \), \(\exp x \), \(\sin x \), \(\cos x \), \(\tan^{-1} x \), and \(\cot^{-1} x \). *IEEE Transactions on Electronic Computers*, EC-14(1):85–86, February 1965. CODEN IEECA8. ISSN 0367-7508. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4038361.

REFERENCES

REFERENCES

REFERENCES

[397] W. Kahan. 7094 II system support for numerical analysis. SHARE Secretary Distribution 159, C4537, 1966.

REFERENCES

REFERENCES

REFERENCES

DeRegt:1967:NRA

Ferrari:1967:DMU

Fike:1967:LER

Fike:1967:MEP

Fike:1967:RAO

Filho:1967:AGF

Forsythe:1967:CSL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Summary Report 866, Mathematics Research Center, University of
Wisconsin, Madison, Madison, WI, USA, April 1968.

April 1969. CODEN IEESAM. ISSN 1939-9340.

[496] D. K. Banerji and J. A. Brzozowski. Sign detection in residue
number systems. IEEE Transactions on Computers, C-18(4):313–320,
April 1969. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
tp=&arnumber=1671251;

Regnecentralen, Copenhagen, Denmark, June 1969. 85 pp. URL http://
/bitsavers.org/pdf/regnecentralen/RC_4000_Reference_Manual

of the Association for Computing Machinery, 12(10):560–561, October
1969. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317
(electronic).

FJCC ’69 [7119], pages 701–706. LCCN ????

REFERENCES

REFERENCES

Shea:1969:NDN

Sterbenz:1969:OSA

Svoboda:1969:DAS

Troelstra:1969:EA

Turner:1969:CSI

Turner:1969:DSC

Turner:1969:IOC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1970. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See addendum [762].

[Thornton:1970:DCC]

[Tienari:1970:SMR]

[Tung:1970:SDD]

[Usow:1970:CB]

[Waksman:1970:WAI]

Yohe:1970:ACB

Yohe:1970:BPF

Yong:1970:GBA

Zohar:1970:NRC

Zuse:1970:CML

Abdelmalek:1971:REA

Alway:1971:GFA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kahan:1971:SEA

Kan:1971:EAD

Kingsbury:1971:DFU

Krishnamurthy:1971:CTW

Krishnamurthy:1971:EIR

Kuki:1971:FEP

Kuki:1971:MFS
REFERENCES

Mathematical Software Symposium held at Purdue University, Lafayette, Indiana, USA, April 1–3, 1970.

REFERENCES

REFERENCES

Abdelmagid:1972:DFP

Ahmad:1972:ISH

Bandyopadhyay:1972:IAM

Banerji:1972:TAR

Brakefield:1972:OFP

Chen:1972:ACE

REFERENCES

REFERENCES

REFERENCES

Loevenbruck:1972:CNR

Majithia:1972:CAE

Malcolm:1972:ARP

Mandelbaum:1972:ECR

Manos:1972:CCA

REFERENCES

[703] Randell:1972:ATO

[704] Randell:1972:ODC

[705] Richman:1972:AEA

[707] Rohl:1972:NCA

Wirth:1972:PCG

Young:1972:SNM

Aird:1973:SUM

Anjoorian:1973:EME

Atkins:1973:PCA

Avizienis:1973:AAE

Barna:1973:ICD

REFERENCES

REFERENCES

REFERENCES

[771] James E. Robertson and Kishor S. Trivedi. The status of investigations into computer hardware design based on the use of continued

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Zacher:1973:HDG

Zohar:1973:DCR

Agrawal:1974:NCL

Banerji:1974:NIM

Banerji:1974:URA

Barsi:1974:EDC

REFERENCES

REFERENCES

REFERENCES

Fateman:1974:PMP

Fettweis:1974:PFP

Fischer:1974:FLI

Fischer:1974:FPP

Gardiner:1974:CAI

Gentleman:1974:MAR

Hildebrand:1974:INA

REFERENCES

[831] Seppo Linna. Analysis of some known methods of improving the accuracy of floating-point sums. *BIT (Nordisk tidskrift*
REFERENCES

Metropolis:1974:SAA

Miller:1974:CCN

Moon:1974:MRM

Neumaier:1974:REV

Newbery:1974:EAP

Prezas:1974:FPA

Rauscher:1974:MUX

REFERENCES

[Brent:1975:FMP]

[Brubaker:1975:MUL]

[Caprani:1975:REF]

[Chen:1975:SER]

[Chinal:1975:MA]

[Chinal:1975:LMA]

REFERENCES

Cobb:1975:IPS

DeMori:1975:MMM

Deverell:1975:PIA

Elias:1975:UCS

Ercegovac:1975:GMEa

Ercegovac:1975:GMEb

Fawcett:1975:MCR

REFERENCES

[875] Caxton Foster, Edward Riseman, Fred Stockton, and Conrad Wogrin. CHARGOGGAGGGMANCHAUGAGGGAUGGCHAUBUNAGUNGA-
arithmetic/arith3/papers/ARITH3_Foster.pdf. IEEE order number CH1017-3C.

lab.com/arithmetic/arith3/papers/ARITH3_Gabrielian.pdf. IEEE order number CH1017-3C.

stamp/stamp.jsp?tp=&arnumber=1672710.

REFERENCES

REFERENCES

lab.com/arithmetic/arith3/papers/ARITH3_Kornerup.pdf. IEEE order number CH1017-3C.

REFERENCES

[933] Charles Stephenson. Case study of the pipelined arithmetic unit for the TI Advanced Scientific Computer. In IEEE SCA ’75 [7134],
REFERENCES

Yamashita:1975:EEF

Yuen:1975:FPR

Yuen:1975:NBA

Asai:1976:RRC

Assmus:1976:NFS

Baker:1976:SFB

Brent:1976:FMP
REFERENCES

[Brent:1976:MPZ]

[Carter:1976:ANT]

[Cohen:1976:EFD]

[Davies:1976:IPS]

[DEC:1976:DHM]

[DeSandre:1976:FPF]

[Detlefsen:1976:CRN]

REFERENCES

Conference on the state of the art in numerical analysis, 12 April 1976, University of York, England, UK.

REFERENCES

REFERENCES

Egbert:1977:PCAc

Ercegovac:1977:GHO

Evans:1977:AAT

Feldman:1977:EEA

Forsythe:1977:CMM

Frenckner:1977:MFP

Ginsberg:1977:NID

Myron Ginsberg. Numerical influences on the design of floating-point arithmetic for microcomputers. Technical report CS 7708, Department
References

of Computer Science, Southern Methodist University, Dallas, TX, USA, 1977. 72 pp.

REFERENCES

REFERENCES

Maag:1977:SRE

Merzbach:1977:GSF

Metropolis:1977:MSA

Metropolis:1977:SAP

Mitra:1977:CDI

Ninke:1977:SRB

REFERENCES

REFERENCES

43, March 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

[1088] Baraniecka:1978:DTR

[1089] Barciss:1978:PEA

[1091] BellHowellCo:1978:BHF
Bell and Howell Co and Apple Computer, Inc. *[Bell and Howell floating point Basic programming reference manual]*. Bell and Howell, Audio-Visual Products Division, Chicago, IL, USA, 1978. xiii + 168 pp.

REFERENCES

[1106] F. D. Crary and J. M. Yohe. The Augment precompiler as a tool for the development of special purpose arithmetic packages. MRC Technical
Summary 1892, Mathematics Research Center, University of Wisconsin, Madison, Madison, WI, USA, 1978.

REFERENCES

REFERENCES

REFERENCES

[1195] I-Ngo Chen and R. Willoner. An $O(n)$ parallel multiplier with bit-sequential input and output. *IEEE Transactions on Computers*, C-

REFERENCES

[1224] Jan Kent. *The theoretical and practical study of floating point instructions: Consisting of Theoretical definition, analysis and
comparison of floating point instruction, and procedures for the description and simulation of floating point instructions. Dr. Avhandling, Universitetet i Oslo, Oslo, Norway, 1979.

REFERENCES

vanHulzen:1979:NMS

Wichmann:1979:ID

Wichmann:1979:PCG

Wilbanks:1979:MFI

Winnigstad:1979:ULC

Yohe:1979:INA

Agrawal:1980:NBA

Albrecht:1980:RAO

REFERENCES

REFERENCES

Johannes:1980:DSE

Johnson:1980:DQS

Jullien:1980:IMM

Kahan:1980:HCE

Kahan:1980:SPI

Kleinsteiber:1980:IHM

Kulisch:1980:AOI

REFERENCES

REFERENCES

1221–1230, October 1980. CODEN MCMPAF. ISSN 0025-5718 (print),
1088-6842 (electronic).

[1318] N. Metropolis. Summation of imprecise numbers. Computers and
ISSN 0898-1221 (print), 1873-7668 (electronic).

Newsletter, 15(2):30, June 1980. CODEN SNEWD6. ISSN 0163-5778
(print), 1558-0237 (electronic).

[7155], pages 108–109. ISBN ???. LCCN ???

Schickard, 1592–1635: Astronom, Geograph, Orientalist, Erfinder der
140, June 1980. CODEN JHSAA2. ISSN 0021-8286 (print), 1753-8556
(electronic).

Alefeld and Grigorieff [7152], pages 121–129. CODEN COSPDM. ISBN
0-387-81566-X. ISSN 0344-8029. LCCN QA297 .F84. In cooperation
with R. Albrecht, U. Kulisch, and F. Stummel.

'80 [7153], pages 174–181. CODEN CANED2. ISSN 0163-5964 (print),
1943-5851 (electronic).

arithmetic. In Electro '80 [7154], pages 18/4/1–8. LCCN TK 7801 E375
1980.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ciminiera:1981:AAF

Ciminiera:1981:FAM

Cody:1981:APF

Cohen:1981:CAU

Coonen:1981:EIG

Coonen:1981:UDN

Curley:1981:PPN

Ganesan:1981:GSC

Glaser:1981:HBO

Gorin:1981:IDA

Gorji-Sinaki:1981:DDS

Gosling:1981:CSH

Grappel:1981:RDB

Gregory:1981:RAR

REFERENCES

[1418] Saroj Kaushik and R. K. Arora. Sign detection in the symmetric residue number system. In IEEE CA5 '81 [7161], pages 146–150. LCCN QA 76.6
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:1982:ARBf

Anonymous:1982:MKF

Anonymous:1982:NPAa

Arnold:1982:EPS

Bairstow:1982:FPP

Baraniecki:1982:QEL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Feldstein:1982:EPI

Feldstein:1982:LSF

Fulton:1982:BJB

Gerrity:1982:CRR

Goodrich:1982:VEP

Gordon:1982:BFS

Hantler:1982:ESS

Hull:1982:PCE

REFERENCES

REFERENCES

Samsen:1982:AFP

Sasaki:1982:EGE

Sasaki:1982:PFM

Schatte:1982:FPF

Sewell:1982:RLT

Sheldon:1982:ICP

Sippel:1982:FRI

[1547] H. J. Sips. Comments on “An $O(n)$ Parallel Multiplier with Bit-
Sequential Input and Output”. *IEEE Transactions on Computers*, C-31
(4):325–327, April 1982. CODEN ITCOB4. ISSN 0018-9340 (print),
stamp.jsp?tp=&arnumber=1676000.

1982. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
.tp=&arnumber=1676085.

[1549] Chung-I Tan and B. McInnis. Adaptive digital control implemented
using residue number systems. *IEEE Transactions on Automatic
xpl/tocresult.jsp?isnumber=24189. See comments [1769].

ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

ieee.org/stamp/stamp.jsp?tp=&arnumber=1676036.

IEEE Micro, 2(4):5, October/December 1982. CODEN IEMIDZ. ISSN
0272-1732 (print), 1937-4143 (electronic).

[1553] Leonardo Torres y Quevedo. Essays on automatics — its definitions —
thoretical extent of its applications (1914). In Randell [7163], pages
1982.

REFERENCES

[1570] David B. Aspinwall and Yale N. Patt. Modifications to the VAX-11/780 microarchitecture to support IEEE floating point arithmetic. *ACM*
REFERENCES

REFERENCES

REFERENCES

Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1983. CODEN ????? ISSN ????.

Chamrad:1983:FFP

Chan:1983:ACS

Chang:1983:HSN

Chow:1983:PDA

Ciminiera:1983:FIM

Cloutier:1983:PAR

REFERENCES

REFERENCES

Davison:1983:HSD

Demsny:1983:MMC

Dietrich:1983:VQF

Donthi:1983:BSM

Dubrulle:1983:CNM

Dyer:1983:ZRP

Ercegovac:1983:HRD

REFERENCES

Ferguson:1983:DTE

Fraenkel:1983:SN

Gaitanis:1983:NPC

Galand:1983:FD

Gavrielov:1983:CSF

Gnanasekaran:1983:BSI

REFERENCES

REFERENCES

technical level. Not an instruction set reference, but does contain instruction timing tables. See also [1865].

Irwin:1983:NLD

James:1983:RDB

Jankowski:1983:NFS

Jenkins:1983:DEC

Johnsen:1983:IFP

Jung:1983:BRR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Quinn:1983:EPR

Rall:1983:BRB

Rall:1983:CAT

Ramachandran:1983:SRE

Rao:1983:ICS

Robertson:1983:CDM

REFERENCES

REFERENCES

References

[1702] Edmund John Walsh. Floating gatefield effect transistor operating point changes: causes, characterization, and effect on electric field measurement by the device. Thesis (M.S.), Boston University, Boston, MA, USA, 1983. v + 121 pp.

[1704] Bertrand Jeffery Williams. A bit-serial floating point multiply/add architecture for signal processing applications. Electrical engineering thesis (M.S.), Texas A&M University, College Station, TX, USA, 1983. x + 97 pp.

REFERENCES

[1725] William J. Cody, Jr., Jerome T. Coonen, David M. Gay, K. Hanson, David Hough, W. Kahan, R. Karpinski, John F. Palmer, F. N. Ris, and

Coonen:1984:CPS

Corliss:1984:AGT

Cowlishaw:1984:DRL

Demmel:1984:URN

Demsky:1984:MMC

Dietrich:1984:FPR

Duncan:1984:FSF

REFERENCES

[1741] Robert Todd Gregory and E. V. Krishnamurthy. *Methods and Applications of Error-Free Computation*. Texts and monographs in

Christopher B. Jones. A significance rule for multiple-precision arithmetic. *ACM Transactions on Mathematical Software*, 10(1):97–107,
REFERENCES

March 1984. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

[1769] Soo-Chang Pei and Kuo-Chih Ho. Comments on “Adaptive digital control implemented using residue number systems”. *IEEE*
REFERENCES

Pfenninger:1984:DES

Pountain:1984:PM

Prince:1984:SFP

Rauchwerk:1984:MBF

Regener:1984:MID

Schryer:1984:DCF

Shahan:1984:MIF

REFERENCES

Woo:1984:AMC

Zuse:1984:CML

Aridgides:1985:EIQ

Armstrong:1985:PLHa

Armstrong:1985:PLHb

Aspinwall:1985:RVM

Auzinger:1985:AAR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hull:1985:NT

Hull:1985:PRV

Hunter:1985:III

Hurson:1985:SMU

Hwang:1985:MEC

Hwang:1985:SIS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>
and 80287 are. A valuable reference for instruction definitions. See also [1621, 1767].

Klatte:1985:ASS

Kobayashi:1985:MTC

Koopman:1985:FFP

Kornerup:1985:FPL

Krishnan:1985:CDS

Kurokawa:1985:PT

REFERENCES

Lohninger:1985:GF

Lorenz:1985:AIP

Luk:1985:PMC

Majerski:1985:SRA

Matula:1985:FPR

ME:1985:FPS

Mithani:1985:ASN

REFERENCES

REFERENCES

REFERENCES

April 1985. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1977] Mark Hill, Susan Eggers, Jim Larus, George Taylor, Glenn Adams, B. K. Bose, Garth Gibson, Paul Hansen, Jon Keller, Shing Kong, Corinna Lee,
References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Spafford:1986:RASa

Spafford:1986:RASb

Stewart:1986:CNC

Strobach:1986:NFL

Stummel:1986:SOP

Sun:1986:FPG

Thun:1986:RNS

Truong:1986:TCD

Twaddell:1986:HPM

Vaccaro:1986:SDF

Verma:1986:DEF

Deepak Verma. Design of an efficient floating point vector coprocessor of an advanced microcomputer system. Thesis (M.S.), Department of Computer Engineering and Science, Case Western Reserve University, Cleveland, OH 44106, USA, 1986. viii + 121 pp.

Waterhouse:1986:TMW

REFERENCES

Boisvert:1987:AAH

Bose:1987:DAR

Bose:1987:FMD

Braune:1987:HSF

Breuer:1987:NMR

Carter:1987:SAT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2081] Bertrand Hochet, Patrice Quinton, and Yves Robert. Systolic solution of linear systems over GF(p) with partial pivoting. In Irwin and
REFERENCES

REFERENCES

[2101] Shigeo Kuninobu, Tamotsu Nishiyama, Hisakazu Edamatsu, Takashi Taniguchi, and Naofumi Takagi. Design of high speed MOS multiplier and divider using redundant binary representation. In Irwin and
REFERENCES

REFERENCES

REFERENCES

[2142] Isaac D. Scherson and Yiming Ma. Vector computations on orthogonal memory access multiprocessor system. In Irwin and Stefanelli

REFERENCES

Turner:1987:DDI

Umeo:1987:DTO

Ushio:1987:CRE

Vachss:1987:CMF

Vitek:1987:EFA

Wang:1987:EEF

WeitekCorporation:1987:WFP

[2177] S. Bandyopadhyay, G. A. Jullien, and A. Sengupta. A systolic array for fault tolerant digital signal processing using a residue number system...

REFERENCES

REFERENCES

REFERENCES

Thesis (M.S.), Department of Computer Science, Ball State University, Muncie, IN 47306, USA, 1988. ix + 206 pp.

REFERENCES

Fitzpatrick:1988:PVF

Fuccio:1988:DAS

Gibson:1988:GBA

Grehan:1988:BBL

Grehan:1988:FPCa

Grehan:1988:FPCb

Helminen:1988:AFP

REFERENCES

[2234] Yasumasa Kanada. *Vectorization of multiple-precision arithmetic program and 201,326,000 decimal digits of π calculation*. In *Proceedings
REFERENCES

Kida:1988:FPP

Kirchner:1988:AAV

Knuth:1988:FM

Kornerup:1988:LAU

Krishnan:1988:IRN

Krishnan:1988:SCR

REFERENCES

REFERENCES

Nakamura:1988:SCP

Nikolos:1988:EDT

Normand:1988:PSP

Oklobdzija:1988:IAV

Papadourakis:1988:VDP

Papamichalis:1988:TFP

Perlman:1988:AFP

REFERENCES

Rajanala:1988:ISP

Randal:1988:FPC

Razaz:1988:TPM

Ries:1988:MFP

Robertazzi:1988:BOF

Rowen:1988:MRF

Roylance:1988:EMS

Santoro:1988:PIA

Schatte:1988:ASC

Schatte:1988:MDC

Scherson:1988:MOA

Schwarz:1988:CLI

Scott:1988:CMM

Shepherd:1988:LEC

Simon:1988:SP

REFERENCES

Voelzke:1988:FSAc

Weyland:1988:LCS

Wilson:1988:FPS

Wilson:1988:NDP

Wilson:1988:NFP

Wollard:1988:TSS

Young:1988:SNMa

Yuen:1988:IFP

REFERENCES

REFERENCES

[2335] Patty Chinn. The design, implementation, and applications of an ACT8837 floating point processor in an image processing hardware
REFERENCES

REFERENCES

[2347] A. M. Dennis, C. B. Marshall, and I. A. Burgess. Algorithm and architecture design for the implementation of high order FIR filters using the residue number system. In *IEE Colloquium on Signal Processing Applications of Finite Field Mathematics, 1 June 1989*, pages 1/1–1/5. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Goel:1989:RTA

Goldberg:1989:FCS

Gonnella:1989:ACF

Gordon:1989:RDF

Grassmann:1989:PAR

Grehan:1989:FPR

Griffin:1989:ESR

REFERENCES

Griffin:1989:RNS

Groeger:1989:DRG

Guyot:1989:JLM

Hoffmann:1989:PAR

Hohne:1989:PHP

Hollingsworth:1989:CPI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kohn:1989:TM

Komori:1989:FPE

Komori:1989:MBFa

Komori:1989:MBFb

Komori:1989:MFP

Kornerup:1989:ERB

REFERENCES

Lo:1989:CED

Lu:1989:VMI

Malarkey:1989:RNS

Mansour:1989:CAS

Mastrovito:1989:VDM

REFERENCES

REFERENCES

[2443] T. Nakayama, S. Kojima, H. Harigai, H. Igarashi, K. Tamada, and T. Toba. An 80b, 6.7 MFLOPS floating-point processor with
REFERENCES

Vector/Matrix instructions. In Wuorinen [7241], pages 52–53, 289.

REFERENCES

Ramamoorthy:1989:HSA

Rao:1989:RNF

Ray:1989:MCA

Rishe:1989:LEN

Robbins:1989:CXM

Saffari:1989:PDW

Santoro:1989:RAI

REFERENCES

Sasaki:1989:AAD

Schwarz:1989:IIP

Scott:1989:FRM

Shenoy:1989:FBE

Shimazu:1989:MFP

Sinha:1989:FPA

Skavantzos:1989:DFC

Smith:1989:CSB

Spaderna:1989:IFP

Stearns:1989:SFD

Stearns:1989:SFP

Tang:1989:TCA

REFERENCES

Vassiliadis:1989:GPO

Vassiliadis:1989:SMF

Voelzke:1989:FSAa

Voelzke:1989:FSAb

Vulchanov:1989:SCR

Wagner:1989:EDD

Wang:1989:ADF

REFERENCES

REFERENCES

and implementation of a high speed residue number system correlator for
ultrasonic time domain blood flow measurement. In IEEE International
Symposium on Circuits and Systems, 1–3 May 1990, volume 4, pages
2893–2896. IEEE Computer Society Press, 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 1990. CODEN ???? ISSN ????.

[2507] W. A. Chren, Jr. A new residue number system division
29, ???? 1990. CODEN CMAPDK. ISSN 0898-1221 (print), 1873-

Transactions on Computers, 39(10):1220–1231, October 1990. CODEN
ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://

ISBN 0-89791-364-7. ISSN 0362-1340 (print), 1523-2867 (print), 1558-
proceedings/pldi/93542/p92-clinger/. See also output algorithms
in [2548, 2601, 3555, 3955, 4916].

[2510] B. Codenotti, G. Lotti, and F. Romani. Area-time trade-offs for matrix-
vector multiplication. Journal of Parallel and Distributed Computing, 8
(1):52–59, January 1990. CODEN JPDCER. ISSN 0743-7315 (print),
1096-0848 (electronic).

[2511] Michel Cosnard, Jean Duprat, and Yves Robert. Systolic
triangularization over finite fields. Journal of Parallel and Distributed

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Matula:1990:HPD

McCloud:1990:FPU

Mills:1990:DIH

Montoye:1990:DIR

Montuschi:1990:SSR

Morita:1990:FMM

Mueller:1990:HCA

[2567] Volker Müller. Hochgenaue CORDIC-Algorithmen für reelle Standardfunktionen mittels dynamischer Defektberechnung

REFERENCES

[2588] L. Rauchwerger and P. M. Farmwald. A multiple floating point
coprocessor architecture. In IEEE [7250], pages 216–222. ISBN 0-8186-
2124-9. LCCN ????? IEEE catalog no. 90TH0341-8.

SJNAAM. ISSN 0036-1429 (print), 1095-7170 (electronic).

SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic).

[2591] Thomas Harvey Rowan. *Functional stability analysis of numerical
algorithms*. Ph.D. thesis, University of Texas at Austin, Austin, TX,
USA, May 1990. xii + 206 pp. URL https://search.proquest.com/
pqdtglobal/docview/303865032.

[2592] H. Sam and A. Gupta. A generalized multibit recoding of two’s
complement binary numbers and its proof with application in multiplier
August 1990. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
0p=&arnumber=57039.

[2593] Peter Schatte. On the stochastic behaviour of the floating point mantissas

[2594] James Schimandle. Microsoft BASIC’s and C’s floating point formats. *C

8(8):121–??, August 1990. ISSN 0898-9788.
REFERENCES

1. Table 5 (page 124):
insert k <-- 0 after assertion, and also delete k <-- 0 from Table 6.

2. Table 9 (page 125):
 for -1:USER!(""); substitute -1:USER!("0"); and delete the comment.

3. Table 10 (page 125):
 for fill(-k, "0")
 substitute fill(-k+1, "0")

97(9):836–839, November 1990. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

Anonymous:1991:FDC

Anonymous:1991:SIS

Arambepola:1991:CVA

Arvo:1991:GGI

Balsara:1991:DSM

Barrenechea:1991:NEH

Barsi:1991:MAB

Bartholomew-Biggs:1991:AST

REFERENCES

[2655] R. E. Bryant. On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer
References

REFERENCES

Chang:1991:PLA

Chassaing:1991:DSP

Chatelin:1991:AAA

Chen:1991:BDR

Chiang:1991:FN

Chiang:1991:FPNa

Chiang:1991:FPNb
REFERENCES

[2674] A. Compan, P. Debaud, V. Delorme, J. A. François, H. Mehrez, and F. Pecheux. GAF: a portable standard-cell floating point adder generator using the CXgen function library. Microprocessing and
REFERENCES

Counihan:1991:F

Cox:1991:TSS

Crenshaw:1991:SRS

Davida:1991:FPA

Davies:1991:FPS

Davis:1991:CC

Deb:1991:BFF

deLange:1991:DIF

Demmel:1991:OIA

Dongarra:1991:GBP

Dunham:1991:ABA

Duprat:1991:NRR

Duprat:1991:WND

Ercegovac:1991:MPM

Even:1991:SMM

Ferguson:1991:AMA

Ferguson:1991:SMC

Fleurkens:1991:HLD

Fossmeier:1991:ALH

Fossmeier:1991:ALS

Foster:1991:PM

Golubev:1991:FPM

Gonnella:1991:ACF

Gotze:1991:SRD

Griffin:1991:REA

Grcar:1991:IAS

Gusev:1991:NCS

Guyot:1991:OAV

[2711] Ian Holmes. A feasibility study into the design of a 64-bit floating point processor. Thesis (M.Sc. in Electronics), University of Southampton, Department of Electronics and Computer Science, Southampton, UK, 1991.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Nakano:1991:MBM

Nelson:1991:SPM

Ochs:1991:NRU

Ochs:1991:NTR

Ochs:1991:RF

Ochs:1991:SRF

OGrady:1991:HOA

Okabe:1991:LDC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wigley:1991:FMR

Wigley:1991:SMR

Williams:1991:NBC

Williams:1991:ZOS

Winter:1991:FPA

Wong:1991:FDU

[2837] Derek C. Wong and Michael J. Flynn. Fast division using accurate quotient approximations to reduce the number of iterations. In Kornerup
REFERENCES

and Matula [7267], pages 191–201. ISBN 0-8186-9151-4 (case), 0-8186-
6151-8 (microfiche), 0-7803-0187-0 (library binding). LCCN QA76.9.C62

Yan:1991:RFA

[2838] Tak W. Yan. A rational function arithmetic and simplification system
in Common Lisp. SIGSAM Bulletin (ACM Special Interest Group
CODEN SIGSBZ. ISSN 0163-5824 (print), 1557-9492 (electronic).

Yassine:1991:FAB

[2839] H. M. Yassine. Fast arithmetic based on residue number system
architectures. In IEEE International Symposium on Circuits and
Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 1991. CODEN ???? ISSN ????

Yassine:1991:IMR

residue number system architectures. Circuits, Devices and Systems,
ISSN ???? URL http://ieeexplore.ieee.org/xpl/tocresult.jsp?
isnumber=2864.

Yokoo:1991:OUF

[2841] Hidetoshi Yokoo. Overflow/underflow-free floating-point number
0-8186-6151-8 (microfiche), 0-7803-0187-0 (library binding). LCCN
arithmetic/papers/ARITH10_Yokoo.pdf. IEEE catalog no. 91CH3015-5.

Yoshida:1991:PRT

truncated multipliers. IEEE Transactions on Computers, 40(9):1065–
1067, September 1991. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-
jsp?tp=&arnumber=83650.

Yu:1991:FCF

[2843] Tsung Lun Yu and William B. Ribbens. A floating-point coprocessor
for fault detection and isolation in electronically controlled internal

REFERENCES

REFERENCES

Bailey:1992:ATF

Bailey:1992:PHP

Baker:1992:LCE

Bakhrakh:1992:NIF

Bewick:1992:BMU

Blair:1992:PMD

Bohlender:1992:PAF
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hoff:1992:FCH

Hohfeld:1992:PRN

Horiguchi:1992:FNR

[2902] Hiroshi Horiguchi and Tsutomu Tayama. Floating-point numbers and real numbers II. Advances in software science and technology, 3(??):151–156, 1992. ISSN 1044-7997.

Hoyt:1992:MFP

Hudak:1992:RPL

IFIF:1992:CVD

REFERENCES

K. J. R. Liu and E. Frantzeskakis. Qrd-based square root free and division free algorithms and architectures. In *Workshop on VLSI Signal
REFERENCES

Lozier:1992:RPC

Lynch:1992:HSD
REFERENCES

REFERENCES

Mutrie:1992:TSS

Nakano:1992:AHS

Nakano:1992:FPB

Ng:1992:ARH

Nishimura:1992:FPR

Obaidat:1992:DMA

REFERENCES

REFERENCES

[2988] A. Skavantzos and N. Mitash. Theory and implementation issues of the 2-dimensional polynomial residue number system. In *IEEE Southeastcon*
REFERENCES

Skeel:1992:REP

Smith:1992:FPR

Soudris:1992:SDAa

Soudris:1992:SDAb

SPARC:1992:SAM

Sparmann:1992:DHQ

REFERENCES

Werter:1992:SLC

Wesner:1992:TS

Wichmann:1992:NUF

Wichmann:1992:SFW

Wilkes:1992:E

Wilt:1992:ALP

Wong:1992:DSR

REFERENCES

Anonymous:1993:FSB

Anonymous:1993:SRT

Asprey:1993:PFP

ASTM:1993:AES

Bailey:1993:AMT

Bailey:1993:MPM

Bajard:1993:BNH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

David Eisig, Josh Rotstain, and Israel Koren. The design of a 64-bit integer multiplier/divider unit. In Swartzlander, Jr. et al. [7299], pages
REFERENCES

Eldridge:1993:HIM

Ercegovac:1993:VHR

Etiemble:1993:AMV

Fortune:1993:EEA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1993. CODEN ???? ISSN ????

REFERENCES

REFERENCES

REFERENCES

Street, Suite 300, Silver Spring, MD 20910, USA, 1993. CODEN ????
ISSN ????

Lozier:1993:UGF

SLI arithmetic. In Swartzlander, Jr. et al. [7299], pages 10–17.
ISBN 0-7803-1401-8 (softbound), 0-8186-3862-1 (casebound),
0-8186-3861-3 (microfiche). ISSN 0018-9340 (print), 1557-9956
(electronic). LCCN QA 76.9 C62 S95 1993. URL http://www.acsel-

Mandelbaum:1993:SRS

ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://

Maryoung:1993:DBP

receiver with a floating point processor TMS320C30. Thesis (M.S.),
California State University, Long Beach, Long Beach, CA, USA, 1993.
xi + 265 pp.

Masotti:1993:FNE

ISSN 0010-4485 (print), 1879-2685 (electronic).

Mazenc:1993:CFU

[3128] Christophe Mazenc, Xavier Merrheim, and Jean-Michel Muller.
Computing functions \cos^{-1} and \sin^{-1} using CORDIC. *IEEE Transactions on
ieee.org/stamp/stamp.jsp?tp=&arnumber=192222.

McClellan:1993:AFP

[3129] Scott McClellan. Alternatives to floating point representation. Honors
paper 4, United States Naval Academy Honors Paper. Dept. of
REFERENCES

REFERENCES

REFERENCES

Panneerselvam:1993:MAF

Parhami:1993:IAS

Parker:1993:OHS

Pichat:1993:IDC

Plauger:1993:FCE

Plauger:1993:PPiC

Posch:1993:BKR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3187] Inside technology today 32-bit floating point multi-port DSP / produced by Texas Instruments. VHS format. High-speed, multi-port DSPs can be used in parallel processing applications to really enhance computation time and power. A popular 6-port floating point DSP and high speed design integration and applications are described in this tape., 1993. 1 videocassette.

Weste:1993:PCV

Williams:1993:BFM

Williams:1993:FM

[3202] Al Williams. 32-bit floating-point math. Dr. Dobb’s Journal of Software Tools, 18(6):70, 72, 74, 76, 80, June 1993. CODEN DDJOEB. ISSN 1044-789X.

Wrzyszcz:1993:DDCa

Wrzyszcz:1993:DDCb

Zeng:1993:CFA

Zhang:1993:EAP

REFERENCES

Zuras:1993:SML

Zuse:1993:CML

Agarwal:1994:EFP

Anonymous:1994:C

Anonymous:1994:FPa

Anonymous:1994:FPb

REFERENCES

Anonymous:1994:FPc

Anonymous:1994:SCSa

Anonymous:1994:SPF

Anonymous:1994:SRT

Apple:1994:IMP

Bajard:1994:BNH

Bajard:1994:SOL

REFERENCES

Bull:1994:SFF

Carr:1994:IRM

Chandramouli:1994:DSP

Chen:1994:EDU

Chesneaux:1994:ERS

Chren:1994:ALIa

Chren:1994:ALIb

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3269] Ching Yu Hung and Behrooz Parhami. Fast RNS division algorithms for fixed divisors with application to RSA encryption. *Information*
REFERENCES

REFERENCES

730–739, November 1994. CODEN ICSPE5. ISSN 1057-7130 (print), 1558-125X (electronic).

REFERENCES

Lo:1994:RFP

May:1994:PAS

McGrath:1994:OMC

Meek:1994:PLT

Mehlhorn:1994:IGA

Montgomery:1994:SRP

Montuschi:1994:DUN

REFERENCES

Montuschi:1994:RDO

Montuschi:1994:RDS

Muller:1994:SCF

Murofushi:1994:RBR

Nakamura:1994:EPV

Narayanaswami:1994:AE

Nedialkov:1994:PCE

REFERENCES

Ooyama:1994:CSC

Paliouras:1994:SDMa

Paliouras:1994:SDMb

Parhami:1994:OTLa

Parhami:1994:OTLb

Parker:1994:FTLa

and Systems, ISCAS '94, 2 June 1994, volume 2, pages 441–444. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1994. CODEN ???. ISSN ???

Parker:1994:FTLb

Patankar:1994:SHA

Phatak:1994:HSD

Popova:1994:EIA

Prince:1994:TFM

Pritchard:1994:RAR

Rajski:1994:DRP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Antelo:1995:RCR

Bailey:1995:FBM

Bannon:1995:IAA

Baron:1995:FPP

Bauer:1995:AEB

Bauer:1995:ARE

REFERENCES

[3415] Marc Daumas, Christophe Mazenc, Xavier Merrheim, and Jean-Michel Muller. Modular range reduction: a new algorithm for fast and

Demmel:1995:CSB

DiClaudio:1995:FCR

Doman:1995:SAP

Doran:1995:SCD

Ercegovac:1995:SDC

REFERENCES

REFERENCES

REFERENCES

[3445] Masayuki Ito, Naofumi Takagi, and Shuzo Yajima. Efficient initial approximation and fast converging methods for division and square

[3451] Kari Kalliojärvi. Finite word length effects in floating-point and block-floating-point digital signal processing systems. Avhandling (doktorgrad),

[3453] Friedrich Wilhelm Kistermann. Die Rechentechnik um 1600 und Wilhelm Schickards Rechenmaschine. (German) [The calculating technique of 1600 and Wilhelm Schickard’s calculator]. In Seck [7323], pages 241–272. ISBN 3-7995-3235-8. ISSN 0340-6857. LCCN ???? DM 76.00, sfr 76.00, S 600.00.

[3457] Hercule Kwan, Robert Leonard Nelson, Jr., and Earl E. Swartzlander, Jr. Cascaded implementation of an iterative inverse-square-root algorithm,
REFERENCES

[3460] N. Joachim Lehmann. Schickard und Leibniz als Erfinder von rechenmaschinen. (German) [Schickard and Leibniz, the inventors of calculators]. In Seck [7323], pages 273–286. ISBN 3-7995-3235-8. ISSN 0340-6857. LCCN ???? DM 76.00, sfr 76.00, S 600.00.

Matsubara:1995:NBS

Meissner:1995:EAD

Metafas:1995:FAC

Michelucci:1995:ARD

Miner:1995:DIF

Moler:1995:CCT

[3474] Cleve B. Moler. Cleve’s corner: a tale of two numbers: With the Pentium, there is a very small chance of making a very large error. Technical note, The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA,
REFERENCES

REFERENCES

REFERENCES

Pratt:1995:APB

Price:1995:PFF

Rogers:1995:UMP

Rubenking:1995:UNI

Sammut:1995:AUD

Sangwine:1995:CIT

Sanyal:1995:CAS

Sarma:1995:FBR

Schulte:1995:DAV

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of
REFERENCES

the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

REFERENCES

REFERENCES

Srinivas:1995:FRD

Tatsaki:1995:ICB

Thimbleby:1995:NCW

Thomas:1995:IFC

Tsuji:1995:ASF

REFERENCES

REFERENCES

Wong:1995:FEE

Wu:1995:SRM

Ypma:1995:HDN

Yu:1995:MRF

Zaytoun:1995:SFR

Zhou:1995:HSD

Ahrendt:1996:FHC

Al-Twaijry:1996:OPR

Alefeld:1996:EII

Andraos:1996:FPU

Angarai:1996:NRS

[3536] Vijayanand Jaganaathan Angarai. Number representation schemes for energy efficient computer arithmetic. Thesis (M.S.), University of Texas at Dallas, Dallas, TX, USA, 1996. ix + 57 pp.

Anonymous:1996:DC

Anonymous:1996:FPF

REFERENCES

REFERENCES

Cappuccino:1996:DDH

Chaitin-Chatelin:1996:FPA

Chaitin-Chatelin:1996:LFP

Chen:1996:VAC

Chesneaux:1996:CSS

Chren:1996:DPP

Chren:1996:DSD

[3564] W. A. Chren, Jr. Delta-sigma demodulator with large oversampling ratio using the one-hot residue number system. In *IEEE International
REFERENCES

Symposium on Circuits and Systems. ISCAS ’96, Connecting the World,
Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
1996. CODEN ???? ISSN ????

Chren:1996:RDU

[3565] W. A. Chren, Jr. and C. H. Brogdon. RSA decryption using the one-hot
residue number system. In IEEE 39th Midwest symposium on Circuits
Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
1996. CODEN ???? ISSN ????

Ciminiera:1996:CSM

without final addition. IEEE Transactions on Computers, 45(9):1050–
1055, September 1996. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-
jsp?tp=&arnumber=537128.

Clarke:1996:VSD

[3567] E. M. Clarke, S. M. German, and X. Zhao. Verifying the SRT division
algorithm using theorem proving techniques. Lecture Notes in Computer
Science, 1102:111–??, 1996. CODEN LNCSD9. ISSN 0302-9743 (print),
1611-3349 (electronic).

Clarke:1996:WLS

[3568] E. M. Clarke, M. Khaira, and X. Zhao. Word-level symbolic model
checking: avoiding the Pentium FDIV error. In IEEE [7330], pages
645–648. ISBN 0-7803-3294-6 (casebound), 0-7803-3364-0 (softbound),
0-7803-3295-4 (microfiche), 0-89791-779-0 (ACM). LCCN TA174 .D46
rke/p645-clarke.pdf; http://www.acm.org/
pubs/citations/proceedings/dac/240518/p645-clarke/; http://
www.acm.org/pubs/contents/proceedings/dac/240518/. ACM
order number 47796. IEEE catalog number 96CH35932.

Corliss:1996:VPE

[3569] G. F. Corliss and R. Rihm. Validating an A priori enclosure using high-
order Taylor series. In Alefeld et al. [7326], pages 228–238. ISBN 3-05-
501737-4. ISSN 0138-3019. LCCN QA76.95 .I575 1995.

REFERENCES

REFERENCES

Gudenberg:1996:HSI

Guedj:1996:EN

Gupta:1996:AAG

Guyot:1996:STD

Haller:1996:AFP

Hamacher:1996:CO

Hartwig:1996:RNA

[3595] F. Hartwig and A. Lacroix. Roundoff noise analysis on the basis of an improved floating point error model. In IEEE International Symposium
REFERENCES

Hauser:1996:HFE

Heck:1996:IM

Hecker:1996:LGF

Heikes:1996:DFP

Heindl:1996:MVC

Heinrich:1996:AAF

Ito:1996:SRI

Jayasuriya:1996:MAU

Jessani:1996:FPU

Jullien:1996:VDS

Kahan:1996:BEC

Kahan:1996:LNS

Kahan:1996:WCY

REFERENCES

Industry immediately started to investigate the failure.” From the report: “The internal SRI software exception was caused during execution of a data conversion from 64-bit floating point to 16-bit signed integer value. The floating point number which was converted had a value greater than what could be represented by a 16-bit signed integer. This resulted in an Operand Error. The data conversion instructions (in Ada code) were not protected from causing an Operand Error, although other conversions of comparable variables in the same place in the code were protected.”.

Lo:1996:CBC

Louca:1996:IIS

Lozier:1996:EBL

Luther:1996:CAG

MacDonald:1996:NSS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Engineering. 26–29 May 1996, volume 1, pages 294–297. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1996. CODEN ???? ISSN ????

REFERENCES

REFERENCES

REFERENCES

Suzuki:1996:LZA

Tan:1996:MPF

Tatsaki:1996:AIC

Trott:1996:AWL

Urano:1996:MAN

Vassilladis:1996:ARA

REFERENCES

[3699] K. B. Williams. Testing math functions: When requirements are tight, we must carefully examine all potential sources of error. Make sure your math library isn’t the weak link in the chain. *C/C++ Users Journal*, 14(12):49–54, 58–65, December 1996. CODEN CCUJEX. ISSN 1075-2838. Describes a package that extends the Cody-Waite-Plauger work on the ELEFUNT package for the testing of the elementary functions, including the inverse hyperbolic functions, cube root, and Bessel functions of the first and second kinds. The C++ package implements 192-bit extended precision versions of all of the functions, so that accurate results are available for comparison with the normal double-precision results.

REFERENCES

[3710] Martin Atkinson-Barr. Letter to the Editor: Pentium II math bug. Dr. Dobb’s Journal of Software Tools, 22(10):10, October 1997. CODEN DDJOEB. ISSN 1044-789X. Identifies himself as the “Mr. X” cited in [3724], and provides more the background on the discovery of the Pentium FIST (floating-point to integer store) instruction.

REFERENCES

Baker:1997:LEP

Beaumont-Smith:1997:GBA

Blackford:1997:PEN

Blinn:1997:JBC

Bomar:1997:RNA

REFERENCES

Bshouty:1997:TBA

Burgess:1997:SUR

Callaway:1997:PDC

Cao:1997:HPH

Cena:1997:QCA

[3729] V. Dimitrov, G. A. Jullien, and W. C. Miller. Eisenstein residue number system with applications to DSP. In *Proceedings of the 40th Midwest

REFERENCES

Even:1997:DIC

Fitzpatrick:1997:EBE

Frougny:1997:FAS

Garber:1997:NBB

Garjanov:1997:CRE

REFERENCES

Computer Society order number PR07846. IEEE Order Plan catalog number 97CB36091.

Hiasat:1997:DIR

Hix:1997:CTV

Holmes:1997:CAP

Irmay:1997:RBZ

Ito:1997:EIA

Kahan:1997:JNL

REFERENCES

REFERENCES

LeLann:1997:AAF

[3776] Gérard Le Lann. An analysis of the Ariane 5 Flight 501 failure — a system engineering perspective. In Proceedings of the International Conference and Workshop on Engineering of Computer-Based Systems, pages 339–346. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1997. URL http://ieeexplore.ieee.org/document/581900/. From the article: “The SRI S/W exception was raised during a conversion from a 64-bit floating point number F to a 16-bit signed integer number. F had a value greater than what can be represented by a 16-bit signed integer, which caused an Operand Error (data conversion — in Ada code — was not protected, for the reason that a maximum workload target of 80% had been set for the SRI computer). ... The value of BH was much higher than expected because the early part of the trajectory of Ariane 5 differs from that of Ariane 4, which results in considerably higher horizontal velocity values.”.

Li:1997:ISP

Li:1997:PAI

Lin:1997:DOA

REFERENCES

REFERENCES

[3801] Brad Pierce. *Applications of randomization to floating-point arithmetic and to linear systems solution*. Thesis (Ph.D.), Department of Computer
Science, University of California, Los Angeles, Los Angeles, CA, USA, 1997.

Schulte:1997:AFA

Schulte:1997:HSR

Schulte:1997:SBT

Schwarz:1997:CFP

Schwarz:1997:RCM

arithmetic and fast robust geometric predicates. *Discrete and
cmu.edu/~quake/robust.html.

[3814] Peter Soderquist and Miriam Leeser. Division and square root: Choosing
the right implementation: Exploring the major design choices for
microprocessor implementations of floating-point division and square
computer.org/mi/books/mi1997/pdf/m4056.pdf.

[3815] Jerome A. Solinas. An improved algorithm for arithmetic on a family
??, 1997. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349
series/0558/bibs/1294/12940357.htm; http://link.springer-

over-redundant quotient selection. *IEEE Transactions on Computers*, 46
(1):85–92, January 1997. CODEN ITCOB4. ISSN 0018-9340 (print),
stamp.jsp?tp=&arnumber=559806.

[3817] Mircea R. Stan. Synchronous up/down counter with clock period
independent of counter size. In Lang et al. [7341], pages 274–281. ISBN
0-8186-7846-1, 0-8186-7847-X, 0-8186-7848-8. ISSN 1063-6889. LCCN
arith13/papers/ARITH13_Stan.pdf. IEEE Computer Society order
number PR07846. IEEE Order Plan catalog number 97CB3609I.

[3818] M. Stanković, J. Madić, and P. Stanimirović. Addition, subtraction and
multiplication of sequences of fractions by means of residue arithmetic
ISSN 0205-3217.
Stelling:1997:IMA

Strzebonski:1997:CFC

Szabo:1997:REAb

Taborn:1997:DSM

Takagi:1997:GPO

REFERENCES

[3825] Texas Instruments, Post Office box 655303, Dallas, TX 75265, USA.

Tomabechi:1997:WOD

[3826] N. Tomabechi. WSI oriented design for noise-tolerant systems based on
the residue number system. In Proceedings of 1997 IEEE International
Symposium on Circuits and Systems, ISCAS '97, 9–12 June 1997,
volume 4, pages 2733–2736. IEEE Computer Society Press, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA, 1997. CODEN ????
ISSN ????

Tsai:1997:FPR

[3827] Chimin Tsai. Floating-point roundoff noises of first- and second-order
sections in parallel form digital filters. IEEE transactions on circuits
and systems. 2, Analog and digital signal processing, 44(9):774–779,
September 1997. CODEN ICSPE5. ISSN 1057-7130 (print), 1558-125X
(electronic).

Turner:1997:FFR

[3828] Peter R. Turner. Fraction-free RNS algorithms for solving linear
systems. In Lang et al. [7341], pages 218–224. ISBN 0-8186-7846-1,
0-8186-7847-X, 0-8186-7848-8. ISSN 1063-6889. LCCN QA76.9.C62
papers/ARITH13_Turner.pdf. IEEE Computer Society order number
PR07846. IEEE Order Plan catalog number 97CB36091.

Ueberhuber:1997:NCM

[3829] Christoph W. Ueberhuber. Numerical Computation: Methods, Software,
and Analysis. Springer-Verlag, Berlin, Germany / Heidelberg, Germany /
London, UK / etc., 1997. ISBN 3-540-62058-3 (vol. 1: softcover), 3-540-
62057-5 (vol. 2: softcover), 3-642-59118-3 (e-book). xvi + 474 (vol. 1),
xvi + 495 (vol. 2) pp. LCCN QA297 .U2413 1997. US$44.95 (vol. 1),
US$49.95 (vol. 2).

Verschaeren:1997:NPF

[3830] Dennis Verschaeren, Annie Cuyt, and Brigitte Verdonk. On the need
for predictable floating-point arithmetic in the programming languages
Fortran 90 and C/C++. ACM SIGPLAN Notices, 32(3):57–64, March
1997. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print),
1558-1160 (electronic).

Anonymous:1998:ANO

[3843] Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. ACM Fortran Forum, 17(3):1–2, December 1998. CODEN???? ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1998:PIS

Antelo:1998:CVH

Appel:1998:MCI

Arnold:1998:ACT

Bailey:1998:OEF

[3848] Daniel V. Bailey and Christof Paar. Optimal extension fields for fast arithmetic in public-key algorithms. Lecture Notes in Computer Science,
REFERENCES

REFERENCES

[3867] Joseph D. Darcy. Evolving Java’s floating point support: The good, the bad, and the ugly. In MacKay and Johnson [7354], page ?? LCCN TK
Darcy:1998:WRI

Daumas:1998:ELM

Dimitrov:1998:AME

Dimitrov:1998:FRR

Dimitrov:1998:RNS

Drolet:1998:NRE

Hill:1998:FDP

Huertgen:1998:TFP

Hussein:1998:LPA

IBM:1998:DAI

IEC:1998:IITa

ISO:1998:IITc

REFERENCES

McCullough:1998:ARS

Mohan:1998:EFC

Montalvo:1998:NST

Moore:1998:MCP

Murabayashi:1998:WBP

Naffziger:1998:MAB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Burgess:1999:FIS]

[Cappuccino:1999:HSS]

[Chren:1999:DSM]

[Christensen:1999:BFP]

[Chung:1999:RAC]

[Cilio:1999:FPF]

Cucker:1999:CED

Cuyt:1999:UR

Darcy:1999:JEF

Daumas:1999:DFP

Daumas:1999:MFP
REFERENCES

Fernandez:1999:NID

Fiore:1999:PMU

Flynn:1999:FDA

Freking:1999:MMM

Frommer:1999:VEB

Garcia:1999:LSS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lue:1999:ADE

Mahesh:1999:IAE

McCullough:1999:ARS

McCullough:1999:NRE

Montuschi:1999:BVH

REFERENCES

Muller:1999:FRT

Muroi:1999:ESR

Nannarelli:1999:LPDb

Nannarelli:1999:LPR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Computer Society Order Number PR00116. IEEE Order Plan Catalog Number 99CB36336.

Schulte:1999:AEF

Schulte:1999:CSI

Schulte:1999:ESO

Schulte:1999:HSI

Schulte:1999:IEG
REFERENCES

Schulte:1999:RPD

Schwarz:1999:GFPa

Schwarz:1999:GFPb

Schwarz:1999:MSE

Seidel:1999:HSR

Shary:1999:OEG

REFERENCES

Tanskanen:1999:REF

Tenca:1999:DHR

Thompson:1999:BPF

Tisseur:1999:NMF

Tropp:1999:HAI

REFERENCES

[4140] Record, page various, 19xx. Floating Point Systems, Portland, OR, USA.

[4141] Intel. Intel 8231A Arithmetic Processing Unit. Intel Corp, San Jose, CA, USA, 19xx. URL http://www.datasheetarchive.com/pdf-datasheets/Datasheets-14/DSA-276911.html. From the datasheet (p. 3-5): “The mantissa is expressed as a 24-bit (fractional) value; the exponent is expressed as a two’s complement 7-bit value having the range −64 to +63. The most significant bit is the sign of the mantissa (0 = positive, 1 = negative), for a total of 32 bits. The binary point is assumed to be [to] the left of the most significant mantissa bit (bit 23). All floating-point data values must be normalized. Bit 23 must be equal to 1, except for the value zero, which is represented by all zeros. The range of values that can be represented in this format is ±(2.7−10...9.2 × 10^{18}) and zero.”.
REFERENCES

REFERENCES

REFERENCES

FigueroadelCid:2000:RFF

Freking:2000:MMR

Fu:2000:CPO

Gallagher:2000:FTN

Gay:2000:SAC

Goldovsky:2000:DIL

REFERENCES

REFERENCES

Harrison:2000:HOM

Hasan:2000:FPI

Hasan:2000:LTB

Hassibi:2000:ESR

Hassibi:2000:FSR

He:2000:UAA

[4196] Yun He and Chris H. Q. Ding. Using accurate arithmetics to improve numerical reproducibility and stability in parallel applications. In
Hiasat:2000:NES

Hida:2000:QDA

Higuchi:2000:FAA

Hormigo:2000:HAVa

Hormigo:2000:HAVb

Ide:2000:GMF

[4202] Nobuhiro Ide, Masashi Hirano, Yukio Endo, Shin ichi Yoshioka, Hiroaki Murakami, Atsushi Kunimatsu, Toshinori Sato, Takayuki Kamei, Toyoshi Okada, and Masakazu Suzuki. 2.44 GFLOPS 300-MHz...

REFERENCES

REFERENCES

REFERENCES

Lin:2000:NBP

Lopez:2000:HSS

Luo:2000:API

Maclaren:2000:IEH

Madhukumar:2000:DPR

Sangho Oh, Chang Han Kim, Jongin Lim, and Dong Hyeon Cheon. Efficient normal basis multipliers in composite fields. *IEEE Transactions
REFERENCES

REFERENCES

Poitras:2000:EHF

Premkumar:2000:CLB

Ramirez:2000:NAC

Reyhani-Masoleh:2000:ENB

Russinoff:2000:CSF

Department, University of Saarland, Saarbrücken, Germany, 2000. xii + 188 pp.

Seife:2000:ZBD

Sleijpen:2000:DER

Swider:2000:FPR

Takahashi:2000:IMP

Talahmeh:2000:ADR

Tchoumatchenko:2000:FBS

REFERENCES

REFERENCES

A&oum;mmar:2001:SIC

Aoki:2001:ECA

Armando:2001:PEM

Arnold:2001:ACL

Arnold:2001:DFL

Arnold:2001:PLA

Barraud:2001:SAR

Bashagha:2001:NRS

Beaumont-Smith:2001:PPA

Beebe:2001:IFP

Berg:2001:FVV

Bickerstaff:2001:ACC

REFERENCES

[4312] Keith Briggs and Yannis Smaragdakis. XR — exact real arithmetic. World Wide Web document and software package., March 01, 2001. URL http://www.btexact.com/people/briggsk2/XR.html. From the overview: “This is an implementation of exact (or constructive) real arithmetic, as an alternative to multiple-precision floating-point (MPFP). An important distinction is that in MPFP one sets the precision before starting a computation, and then one cannot be sure of the final result. Interval arithmetic is an improvement on this, but still not an ideal solution because if the final interval is larger than desired, there is no simple way to restart the computation at higher precision. By contrast, in XR no precision level is set in advance, and no computation takes place until a final request takes place for some output. Despite this, programming with XR is no different from MPFP, except for the declaration of critical variables as type ‘XR’.

The main aim is to produce a usably efficient implementation, which can be easily interfaced with existing C++ code. This contrasts with previous implementations in functional languages (Haskell, Miranda etc.), which, although theoretically important, seem to be rather too slow for real use.

This code is designed as an add-on to Victor Shoup’s arbitrary-precision arithmetic package NTL, and implements a new type XR, to complement NTL’s ZZ and RR integer and real types.

REFERENCES

Daumas:2001:CVP

Daumas:2001:GLF

deDinechin:2001:SIM

Defour:2001:CREa

Defour:2001:CREb
REFERENCES

REFERENCES

gamedeveloper.com/design/instant-replay-building-a-game-engine-with-reproducible-behavior#close-modal.

[Dimitrov:2001:UMD]

[Drmac:2001:AQS]

[Fernandez:2001:IOD]

[Flynn:2001:ACA]

[Galan-Simon:2001:MLD]

Gowland:2001:SEA

Grossschadl:2001:BSU

Groza:2001:HRF

Gunther:2001:SAK

Hasan:2001:ECM

Hayes:2001:TB

[4365] W. Kahan. Names for standardized floating-point formats. Technical report, Mathematics Department and Electrical Engineering and Computer Science Department, University of California, Berkeley,
REFERENCES

REFERENCES

REFERENCES

[4382] Tomás Lang and Elisardo Antelo. Correctly rounded reciprocal square-root by digit recurrence and radix-4 implementation. In
REFERENCES

Langlois:2001:ALC

Laurent:2001:UFV

Lee:2001:BPS

Lee:2001:CAP

Lee:2001:DLS

Lefevre:2001:WCC

Lemieux:2001:FPM

Leone:2001:NLC

Lester:2001:ECF

Li:2001:LLF

Li:2001:PMM

REFERENCES

REFERENCES

[4410] Ning:2001:ESI

REFERENCES 811

REFERENCES

REFERENCES

Yu:2001:DID

Zhang:2001:FSM

Zhang:2001:NCP

Zheng:2001:ARE

Zielke:2001:GLL

Zimmermann:2001:AAC

Paul Zimmermann. De l’algorithmique à l’arithmétique via le calcul formel. (French) [From algorithms to arithmetic via symbolic calculation]. Technical report, Département de formation doctorale en
REFERENCES

Zimmermann:2001:APA

Ziv:2001:APM

Agarwal:2002:FPN

Akbarpour:2002:FCS

Akkas:2002:CIF
REFERENCES

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2002. CODEN ???? ISSN ????

Arnold:2002:LNS

Arnold:2002:RPC

Bailey:2002:AAP

Bailey:2002:HPC

Barrio:2002:REB

Belanovic:2002:LPF

REFERENCES

Bertot:2002:PGS

Beuchat:2002:SMB

Blackford:2002:USB

Boldo:2002:FRF

Boldo:2002:IAO

822

REFERENCES

REFERENCES

Kulisch:2002:RNZ

Kwon:2002:EBS

Lang:2002:FPF

Lee:2002:DSS

Lee:2002:PFP

Leeser:2002:LPH

[4579] Rudolf Matousek, Milan Tichý, Zdenek Pohl, Jirí Kadlec, Chris Softley, and Nick Coleman. Logarithmic number system and floating-point

Molina:2002:MPC

Moller:2002:PEC

Motegi:2002:EGG

Okeya:2002:FSM

Overton:2002:CNC

ISBN 970-32-0086-9. xii + 123 pp. Con un teorema, una regla empírica y ciento un ejercicios. [Including one theorem, one rule of thumb and one hundred and one exercises], Translated from the 2001 English original by Alejandro Casares Maldonado.

Paliouras:2002:LPC

Paliouras:2002:OLO

Park:2002:SPM

Paul:2002:BB

Pillmeier:2002:DAB

Pineiro:2002:HRL

REFERENCES

REFERENCES

[4621] Texas Instruments, Dallas, TX, USA. *TMS320C67x FastRTS Library Programmer’s Reference (SPRU100A)*, October 2002. URL http://focus.ti.com/lit/ug/spru100a/spru100a.pdf. The FastRTS library is a collection of 26 optimized floating-point math functions for the TMS320C67x device. This source code library includes C-callable (ANSI-C-language compatible) optimized versions of the floating-point math functions included in previous run-time-support libraries.

REFERENCES

Walters:2002:DTU

Winkler:2002:SVU

Wu:2002:BPF

Wu:2002:FFM

Wu:2002:MMS

Yang:2002:RNSb

Yang:2002:RNSc

Yen:2002:RSR

Ziv:2002:SGM

Abed:2003:VIL

REFERENCES

[4636] Simon Joseph Agou, Marc Deléglise, and Jean-Louis Nicolas. Short
polynomial representations for square roots modulo \(p \). Designs, Codes,

[4637] Merav Aharoni, Sigal Asaf, Laurent Fournier, Anatoly Koifman, and
Raviv Nagel. FPgen — a test generation framework for datapath floating-
point verification. In Proceedings of the Eighth IEEE International High-
Level Design Validation and Test Workshop, 12–14 November, 2003
(HLDVT03), pages 17–22. IEEE Computer Society Press, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA, November 2003.
8873; http://www.haifa.ibm.com/projects/verification/fpgen;

[4638] A. Akkas and M. J. Schulte. A quadruple precision and dual double
Symposium on Digital System Design, Antalya, Turkey, September
"ahakkas/publications/quadruple_multiplier.pdf;

Theorem II (CRT II). Computers and Mathematics with Applications,
sciencedirect.com/science/article/pii/S089812210390191X.

[4640] Micah Altman and Michael P. McDonald. Replication with attention
ISSN 1047-1987 (print), 1476-4989 (electronic).
Ammar:2003:NDH

Anonymous:2003:A1

Anonymous:2003:FFP

Anonymous:2003:RHP

Arnold:2003:FFT

Arnold:2003:ILN

REFERENCES

REFERENCES

[4656] Nicolas Brisebarre and Jean-Michel Muller. Finding the “truncated” polynomial that is closest to a function. Research Report 4787, INRIA Rhone-Alpes, ZIRST, 655 Avenue de l’Europe, Montbonnot, 38334 Saint Ismier cedex,
Brown:2003:DPA

Burgess:2003:SRN

Cao:2003:DHS

Chaudhuri:2003:DAO

Chaves:2003:RRD

REFERENCES

REFERENCES

[4691] Christiane Frougny and Athasit Surarerks. On-line multiplication in real and complex base. In Bajard and Schulte [7414], pages
REFERENCES

[4697] David Goldberg. What every computer scientist should know about floating-point

Huang:2003:HPL

Intel:2003:DSR

Intel:2003:NID

Iordache:2003:OFP

Kaihara:2003:VAM

Kaivola:2003:PEL

Katti:2003:LCM

Koren:2003:SCA

Kornerup:2003:RSQ

Krithivasan:2003:MAM

Kwon:2003:LCL

[4714] Soonhak Kwon. A low complexity and a low latency bit parallel systolic multiplier over GF(2^m) using an optimal normal basis of type II. In Bajard and Schulte [7414], pages 196–202. ISBN 0-7695-1894-X. ISSN 1063-6889. LCCN QA76.6
REFERENCES

REFERENCES

REFERENCES

number PR01894. Selected papers republished in *IEEE Transactions on Computers, 54*(3) (2005) [5072].

REFERENCES

Paschalakis:2003:DPF

Percival:2003:RMM

Phillips:2003:SRR

Pineiro:2003:HRI

Pineiro:2003:LHR

REFERENCES

Reyhani-Masoleh:2003:EMB

Reyhani-Masoleh:2003:FNB

Reyhani-Masoleh:2003:LCB

Reyhani-Masoleh:2003:LCS

Rice:2003:NIS

REFERENCES

REFERENCES

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2003. ISBN ???? LCCN ????

[Senthilvelan:2003:FAL]

[Sheldon:2003:SRI]

[Singer:2003:REP]

[Smith:2003:UMP]

REFERENCES

REFERENCES

[4773] Gerhard Zielke and Volker Drygalla. Genau Lösung linearer Gleichungssysteme. (German) [Exact solution of linear systems of equations]. *Mitteilungen der Gesellschaft f
REFERENCES

REFERENCES

Altman:2004:NIS

Assimakopoulos:2004:IRM

Astola:2004:FAE

Avot-Chotin:2004:HID

Bachega:2004:HPS

Bajard:2004:FRI

REFERENCES

873

REFERENCES

deDinechin:2004:C

deDinechin:2004:FCR

deDinechin:2004:PCR

deDinechin:2004:PCR

deFigueiredo:2004:AAC

REFERENCES

REFERENCES

Frougny:2004:ICR

Fuchssteiner:2004:ILN

Gaffar:2004:UBW

Gebali:2004:EAF

Gemignani:2004:REA

Gerwig:2004:IEZ

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Nguyen:2004:LDL

Nievergelt:2004:AAP

Ogasawara:2004:OPO

Ogita:2004:ASDa

Ogita:2004:ASDb

Olausson:2004:RFP
REFERENCES

REFERENCES

REFERENCES

Schulte:2004:LPC

Seidel:2004:DOI

Seidel:2004:LIF

Shi:2004:FPF

Steele:2004:RHP

Stehle:2004:GAT

REFERENCES

Stine:2004:DCA

Sun:2004:LBR

Sunar:2004:GMC

Sypniewski:2004:IAU

Tadaki:2004:ECH

[4923] James W. Thomas, Jon P. Okada, Peter Markstein, and Ren-Cang Li. The \texttt{Libm} library and floating-point arithmetic in HP-UX for Itanium-based systems: Updated for HP-UX 11i v2. Technical report,

Thomas:2004:LLF

vonzurGathen:2004:FAG

Voronenko:2004:AGI

Walters:2004:TSC

Wang:2004:DFP

Weaver:2004:MFD

Wu:2004:HSL

REFERENCES

Wu:2004:ORF

Yang:2004:EEP

Yang:2004:PFE

Yoon:2004:IPT

Zhang:2004:PBL

Zheng:2004:HRN

REFERENCES

Forschungsbericht Nr. 04-8.

Zhu:2004:ISR

Zhuo:2004:SMA

Zimmerman:2004:DCI

Abdallah:2005:MRN

Abtahi:2005:CFR

Adharapurapu:2005:LSO

Aharoni:2005:SCI

Alvarez:2005:FMF

Anonymous:2005:HAP

Anonymous:2005:TMF

Antelo:2005:DRD

Antelo:2005:LLD

Antelo:2005:LLP

[4954] Elisardo Antelo and Julio Villalba. Low latency pipelined circular CORDIC. In Montuschi and Schwarz [7454], page ?? ISBN 0-7695-
REFERENCES

Arnold:2005:BIR

Arnold:2005:RLN

Bailey:2005:DFDa

Bailey:2005:DFDb

Bailey:2005:HPF

Bailey:2005:QDD
REFERENCES

REFERENCES

268, April 2005. CODEN ISPLEM. ISSN 1070-9908 (print), 1558-2361 (electronic).

Chang:2005:LCB

Chaniotakis:2005:LNB

Chatterjee:2005:DEH

Choi:2005:PPA

Cotofana:2005:ARA

REFERENCES

REFERENCES

REFERENCES

Eggert:2005:PEN

Eleftheriou:2005:SFF

Enenkel:2005:CMF

Erle:2005:DME

Etiemble:2005:CBF

Giles:2005:BLN

REFERENCES

909

Giraud:2005:REA

Glusker:2005:TCM

Graillat:2005:CHS

Graillat:2005:ICH

Guizzo:2005:IRS

Haijun:2005:ROT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Pareto:2005:GAL

Phatak:2005:FMR

Pineiro:2005:HSF

Revol:2005:TMF

Reyhani-Masoleh:2005:LCW

Robison:2005:BUD

Rump:2005:AFP

Savas:2005:CFA

Sax:2005:FPN

Schulte:2005:GEI

Schulte:2005:PED

Seidel:2005:HRI

Seidel:2005:SRR

Serebrenik:2005:TFP

Setiaarif:2005:NMS

Soderstrand:2005:RNS

Sofroniou:2005:PNC

Sofronioua:2005:PNC

Steele:2005:SME

Steele:2005:SMF

Steele:2005:SMG

Stehle:2004:ARR

Stehle:2005:GAT

Stehle:2005:SWC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5111] Paul Zimmermann. MPFR: vers un calcul flottant correct ? (French) [MPFR: Towards correct floating-point arithmetic?]. Online interactive report., LORIA/INRIA Lorraine, Bâtiment A, Technopôle de Nancy-Brabois, 615 rue du jardin botanique, F-54602 Villers-lès-Nancy Cedex,

Bajard:2006:AOF

Bartzis:2006:EBB

Bernal:2006:IRD

Bertot:2006:PGS

Bik:2006:MVF

Boldo:2006:PFF

REFERENCES

Bonten:2006:ACF

Briggs:2006:IER

Castellanos:2006:BDF

Chang:2006:DAR

Choi:2006:DCB

Cornea:2006:SII

Cowlishaw:2006:DCL

REFERENCES

[5137] Jérémie Detrey and Florent de Dinechin. FPLibrary. A VHDL library of parametrizable floating-point and LNS operators for FPGA. Web site and source code., 2006. URL http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/. The FPLibrary has been superceded by the FloPoCo project [5578].
REFERENCES

Dietz:2006:FPC

Diniz:2006:DFP

Enge:2006:CCP

Fan:2006:RBM

Feldstein:2006:GTO

Gandhi:2006:DRA

Gochman:2006:IIC

[5144] Simcha Gochman, Avi Mendelson, Alon Naveh, and Efraim Rotem. Introduction to Intel Core Duo processor architecture. *Intel
REFERENCES

Gok:2006:IMO

Goubault:2006:SAN

Graa:2006:IFF

Graca:2006:ODE

[5148] Daniel S. Gra¸ca, Ning Zhong, and Jorge Buescu. The ordinary differential equation defined by a computable function whose maximal interval of existence is non-computable. In Anonymous [7458], page ?? ISBN ???. LCCN ???.

Graillat:2006:ICH

Harrison:2006:FPV

REFERENCES

REFERENCES

REFERENCES

[5176] T. H. Liew, Lie-Liang Yang, and L. Hanzo. Systematic redundant residue number system codes: analytical upper bound and iterative decoding

[Lindstrom:2006:FEC]

[Mahalingam:2006:IAM]

[Marques:2006:BIF]

[Maslenikowa:2006:DFB]

[Melquiond:2006:AIC]

REFERENCES

REFERENCES

 REFERENCES

[5230] Yong-Kang Zhu and Wayne Hayes. Fast, guaranteed-accurate sums of
many floating-point numbers. In Anonymous [7458], page ?? ISBN ???.
LCCN ???.

[5231] Paul Zimmermann. Asymptotically fast division for GMP. Technical
report, LORIA/INRIA Lorraine, Bâtiment A, Technopôle de Nancy-
Brabois, 615 rue du jardin botanique, F-54602 Villers-lès-Nancy Cedex,
papers/invert.pdf.

[5232] Paul Zimmermann, Richard Brent, and Colin Percival. Errors bounds on
complex floating-point multiplication. Technical report, LORIA/INRIA
Lorraine, Bâtiment A, Technopôle de Nancy-Brabois, 615 rue du jardin

[5233] Paul Zimmermann. Worst cases for sin(BIG). World-Wide Web slides.,
November 2, 2006. URL http://www.loria.fr/~zimmerma/talks/
sinbig.pdf.

[5234] Paul Zimmermann and Bruce Dodson. 20 years of ECM. In Hess et al.
[7463], pages 525–541. ISBN 3-540-36075-1 (paperback). ISSN 0302-9743
/members.loria.fr/PZimmermann/papers/40760525.pdf.

[5235] M. Abtahi and P. Siy. The factor-2 sign detection algorithm using
a core function for RNS numbers. Computers and Mathematics
sciencedirect.com/science/article/pii/S0898122107001150.

on the intermediate result of decimal floating-point operations. In
Kornerup and Muller [7481], pages 38–45. ISBN 0-7695-2854-6. ISSN
1063-6889. LCCN QA76.9.C62. URL http://www.lirmm.fr/arith18/
papers/aharoni-DecimalConstraints.pdf.
REFERENCES

[5244] Jean-Luc Beuchat, Masaaki Shirase, Tsuyoshi Takagi, and Eiji Okamoto. An algorithm for the η^T pairing calculation in characteristic three and

REFERENCES

REFERENCES

REFERENCES

[5283] Laurent Fousse. Multiple-precision correctly rounded Newton–Cotes quadrature. RAIRO. Informatique théorique et applications :=
REFERENCES

REFERENCES

REFERENCES

\texttt{Hosseinzadeh:2007:NMS}

\texttt{Huang:2007:NAM}

\texttt{Iguchi:2007:DRC}

\texttt{Ihsberner:2007:REA}

\texttt{James:2007:QAD}

\texttt{Kapre:2007:OPF}

\texttt{Kechagias:2007:CME}

[5304] P. S. Kechagias and Basil K. Papadopoulos. Computational method to evaluate fuzzy arithmetic operations. \textit{Applied Mathematics and
REFERENCES

[5310] V. V. Kuliamin. Standardization and testing of implementations of mathematical functions in floating point numbers. Programming and Computer Software; translation of Programmirovaniye (Moscow, USSR)
REFERENCES

[5323] Shawn D. Lundvall, Eric M. Schwarz, Ronald M. Smith, Sr., and Phil C. Yeh. Composition of decimal floating point data, and methods therefor.
Lundvall:2007:DDF

Maslennikov:2007:DFB

Melquiond:2007:FCF

Mine:2007:RAD

Mitchell:2007:MFP

Miyajima:2007:ETS

Saldamli:2007:SME

Saqib:2007:CAI

Schulte:2007:FPD

Scott:2007:NHC

Shams:2007:EHA

Shpilka:2007:IDA

Sousa:2007:EMM

Steele:2007:CSP

Steele:2007:CUC

Steele:2007:MSCa

Steele:2007:MSCb

Stern:2007:MLA

Stoutemyer:2007:UCN

Swartzlander:2007:NTC

REFERENCES

Ahmadi:2008:PFS

ASTM:2008:AES

Bapst:2008:SIO

Beuchat:2008:AGM

Boldo:2008:EFC

Brisebarre:2008:CRM

REFERENCES

Brisebarre:2008:EME

Brisebarre:2008:IFP

Buttari:2008:UMP

Carnicer:2008:REP

Castaldo:2008:RFP

REFERENCES

http://comjnl.oxfordjournals.org/cgi/content/full/51/4/470;

http://comjnl.oxfordjournals.org/cgi/content/full/51/5/585;

[5394] Florent De Dinechin and Christoph Quirin Lauter. Optimizing polynomials for floating-point implementation. arXiv.org. ??(??):1–12,
REFERENCES

REFERENCES

Lefevre:2008:WCE

Li:2008:MLB

Liu:2008:FIM

Melquiond:2008:DRA

Monniaux:2008:PVF

Moore:2008:IMB

Morris:2008:PLC

REFERENCES

REFERENCES

REFERENCES

Ravikumar:2008:BND

Raz:2008:EFL

Raz:2008:LBS

Rodriguez-Henriquez:2008:LCB

Rump:2008:AFPb

REFERENCES

REFERENCES

[5466] Frithjof Blomquist, Werner Hofschuster, and Walter Krämer. A modified staggered correction arithmetic with enhanced accuracy and very wide
REFERENCES

[Boldo:2009:FVA]

[Boldo:2009:KAC]

[Bryant:2009:ABD]

[Bullynck:2009:MAB]

[Burtscher:2009:FHS]

[Cenk:2009:PMF]

[5472] Murat Cenk, Çetin Kaya Koç, and Ferruh Özbudak. Polynomial multiplication over finite fields using field extensions and interpolation. In
REFERENCES

Chabert:2009:PEA

Chen:2009:BDF

Chen:2009:NDA

Cheng:2009:DSE

Chevillard:2009:CFC

Cho:2009:AMD
REFERENCES

David Aldous and Tung Phan. When can one test an explanation? compare and contras Benford’s Law and the fuzzy CLT. The American Statistician, 64(3):221–227, August 2010. CODEN ASTAAJ. ISSN 0003-1305 (print), 1537-2731 (electronic).

Florent de Dinechin and Bogdan Pasca. FloPoCo: generator of arithmetic cores (Floating-Point Cores, but not only) for FPGAs (but not only). Web site and source code., August 10, 2010.

REFERENCES

REFERENCES

REFERENCES

[5604] Nicolas Louvet, Jean-Michel Muller, and Adrien Panhaleux. Newton–Raphson algorithms for floating-point division using an FMA. In
REFERENCES

REFERENCES

Qi:2010:DLC

Roldao:2010:HTF

Rummer:2010:IPI

Rump:2010:ARC

Rump:2010:FHP

Rump:2010:VMRa

Rump:2010:VMRb

REFERENCES

REFERENCES

[5655] Elisardo Antelo, editor. Industrial Implementations of Floating-Point Units, volume 2. IEEE Computer Society Press, 1109 Spring Street,
REFERENCES

Beebe:2011:BPAb

Berger:2011:FSM

Beuchat:2011:FAP

Bodrato:2011:HDT

Boersma:2011:PBF

Boldo:2011:EAE

Boldo:2011:FUL

[5668] Sylvie Boldo and Guillaume Melquiond. Flocq: a unified library for proving floating-point algorithms in Coq. In Schwarz and Oklobdzija

Billy Bob Brumley and Dan Page. Bit-sliced binary normal basis multiplication. In Schwarz and Oklobdzija [7517], pages 205–212.
REFERENCES

[Bruventsov:2011:TCS]

[Burgess:2011:FRC]

[Butts:2011:RDR]

[Calamia:2011:CGG]

[Carlough:2011:IZD]

[Cavagnino:2011:AAD]
REFERENCES

[5686] Sylvain Chevillard. Automatic generation of code for the evaluation of constant expressions at any precision with a guaranteed error bound.
REFERENCES

Colberg:2011:HAS

Corless:2011:RCA

Cui:2011:TDB

Curran:2011:ZSM

Das:2011:HSR

deDinechin:2011:AOY

[5692] Florent de Dinechin. The arithmetic operators you will never see in a microprocessor. In Schwarz and Oklobdzija [7517], pages 189–190.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES
REFERENCES

REFERENCES

Vestias:2011:IDM

Vigliar:2011:MFB

Wang:2011:DFB

Wang:2011:RCM

Whitehead:2011:PPF

Xu:2011:DLF

References

REFERENCES

REFERENCES

REFERENCES

[5813] Filippo Gandino, Fabrizio Lamberti, Gianluca Paravati, Jean-Claude Bajard, and Paolo Montuschi. An algorithmic and architectural study on
REFERENCES

REFERENCES

Haller:2012:DFP

Huang:2012:LCB

Hyman:2012:LF

Katranov:2012:DRN

Koiran:2012:ACC

Kornerup:2012:CCR

Kornerup:2012:FPA

[5826] Peter Kornerup, Jean-Michel Muller, and Adrien Panhaleux. Floating-point arithmetic on round-to-nearest representations. arXiv.org, ??(??):
REFERENCES

REFERENCES

REFERENCES

REFERENCES

1045

[5861] Zhen Wang and Shuqin Fan. Efficient Montgomery-based semi-systolic multiplier for even-type GNB of GF(2^m). IEEE Transactions on
Wang:2012:RCC

Wang:2012:UBW

Yan:2012:RBC

Yan:2012:RMC

Anguita:2013:EES

Anonymous:2013:DML

REFERENCES

REFERENCES

REFERENCES

[5882] Sylvain Chevillard and Marc Mezzarobba. Multiple-precision evaluation
of the Airy Ai function with reduced cancellation. In IEEE [7520], pages
2013.

[5883] Mathew A. Cleveland, Thomas A. Brunner, Nicholas A. Gentile, and
Jeffrey A. Keasler. Obtaining identical results with double precision
global accuracy on different numbers of processors in parallel particle
Monte Carlo simulations. Journal of Computational Physics, 251(?):?
223–236, October 15, 2013. CODEN JCTPAH. ISSN 0021-9991
science/article/pii/S0021999113004075.

[5884] Martyn Corden. Differences in floating-point arithmetic between Intel
Xeon processors and the Intel Xeon Phi coprocessor. Report, Intel Corporation, Santa Clara,

[5885] Marius Cornea. Precision, accuracy, and rounding error propagation in
ISSN 1063-6889. LCCN QA76.9.C62 S95 2013.

[5886] Anindya De, Piyush P. Kurur, Chandan Saha, and Ramprasad
Saptharishi. Fast integer multiplication using modular arithmetic. SIAM
ISSN 0097-5397 (print), 1095-7111 (electronic).

[5887] Florent de Dinechin, Pedro Echeverría, Marisa López-Vallejo, and
Bogdan Pasca. Floating-point exponentiation units for reconfigurable
computing. ACM Transactions on Reconfigurable Technology and
Systems, 6(1):4:1–4:??, May 2013. CODEN ???? ISSN 1936-7406 (print),
1936-7414 (electronic).
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5966]</td>
<td>Alberto A. Del Barrio, Nader Bagherzadeh, and Román Hermida. Ultra-low-power adder stage design for exascale floating point units. ACM</td>
</tr>
</tbody>
</table>
REFERENCES

Demmel:2014:THS

Doerr:2014:RRP

Drane:2014:SCF

Du:2014:AEP

Dumas:2014:NRI

Gilani:2014:EEP

Gladstein:2014:DBP

REFERENCES

REFERENCES

Joldes:2014:SSH

Korzen:2014:PPP

Leeser:2014:MIR

Lei:2014:FIS

Lindstrom:2014:FRC

Long:2014:SIF

REFERENCES

Muller:2014:MRE

Murakami:2014:CRN

Nannarelli:2014:GEI

Neto:2014:PUP

Nguyen:2014:RED

Pedram:2014:AAF

Piso:2014:OAE

REFERENCES

REFERENCES

Ahrens:2015:ERF

Ahrens:2015:RPM

Aktan:2015:MEA

Andrysco:2015:SFP

Aneesh:2015:HHM

Anonymous:2015:EFP

Bailey:2015:HPA

Bailey:2015:NRH

Bajard:2015:RAA

Bankas:2015:NMA

Biancolin:2015:HAE

Boldo:2015:FVP

[6025] Sylvie Boldo. Stupid is as stupid does: Taking the square root of
the square of a floating-point number. Electronic Notes in Theoretical

[6026] Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume
Melquiond. Verified compilation of floating-point computations. Journal
JAREEW. ISSN 0168-7433 (print), 1573-0670 (electronic). URL http://
link.springer.com/article/10.1007/s10817-014-9317-x.

[6027] Martin Brain, Cesare Tinelli, Philipp Rumenner, and Thomas Wahl. An
automatable formal semantics for IEEE-754 floating-point arithmetic.
In Muller et al. [7524], pages 160–167. ISBN 1-4799-8665-8, 1-4799-
8663-1. ISSN 1063-6889. LCCN QA76.9.C62 S95 2015. URL http://
ieeexplore.ieee.org/servlet/opac?punumber=7193754.

[6028] Nicolas Brunie, Florent de Dinechin, Olga Kupriianova, and Christoph
[7524], pages 66–73. ISBN 1-4799-8665-8, 1-4799-8663-1. ISSN 1063-
org/servlet/opac?punumber=7193754.

[6029] Wei-Fan Chiang, Ganesh Gopalakrishnan, and Zvonimir Rakamarić.
Unsafe floating-point to unsigned integer casting check for GPU
programs. Electronic Notes in Theoretical Computer Science, 317
(??):1–12, November 18, 2015. ISSN 1571-0661. URL http://
formalverification.cs.utah.edu/papers/nsv15-unsafe-
fp2ui.pdf; http://nsv2015.informatik.uni-freiburg.de/. Also
presented at NSV 2015: 8th International Workshop on Numerical
Software Verification 2015, Seattle, WA, USA.

[6030] Sylvain Collange, David Defour, Stef Graillat, and Roman Iakymchuk.
Numerical reproducibility for the parallel reduction on multi-
and many-core architectures. Parallel Computing, 49(??):83–97,
November 2015. CODEN PACOEJ. ISSN 0167-8191 (print), 1872-
article/pii/S0167819115001155.

[6034] Florent de Dinechin. On fixed-point hardware polynomials. Technical report, INSA, CITI Lab, Université de Lyon, Lyon, France, October 2015. URL https://hal.inria.fr/hal-01214739.

[6038] Christophe Denis, Pablo De Oliveira Castro, and Eric Petit. Verificarlo: checking floating point accuracy through Monte Carlo arithmetic.
Dietz:2015:UIO

Ebergen:2015:RDA

El-Razouk:2015:NBL

Elsayed:2015:NPE

Flocke:2015:AAE

Frechtling:2015:MMS

REFERENCES

[6045] Terry Froggatt. An error in the Ada universal arithmetic package. *ACM SIGAda Ada Letters*, 35(2):14, August 2015. CODEN AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic). See [1737]. The 32-year-old error is a test with digit t that has *if* ($t > \text{BASE}$), but the operator should instead be \geq.

[6051] Stef Graillat, Christoph Lauter, Ping Tak Peter Tang, Naoya Yamanaka, and Shin’ichi Oishi. Efficient calculations of faithfully rounded l_2-norms

REFERENCES

IEEE:2015:ISI

Jacobsen:2015:PFP

Johansson:2015:ADR

Johansson:2015:EIE

Kamm:2015:SFP

Kornerup:2015:RHR

REFERENCES

REFERENCES

REFERENCES

[6089] A. Momeni, Jie Han, P. Montuschi, and F. Lombardi. Design and analysis of approximate compressors for multiplication. IEEE Transactions on
REFERENCES

Morar:2015:RMT

Muller:2015:ECC

Neal:2015:FESa

Neal:2015:FESb

Negre:2015:EME

Nguyen:2015:RTS

Ozaki:2015:IEF
Katsuhisa Ozaki, Takeshi Ogita, and Shin’ichi Oishi. Improvement of error-free splitting for accurate matrix multiplication. *Journal of
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6118] Peter Ahrens, Hong Diep Nguyen, and James Demmel. Efficient reproducible floating point summation and BLAS. Report UCB/EECS-2016-121, EECS Department, UC Berkeley, Berkeley, CA, USA, June 18, 2016. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html.

REFERENCES

Avenel:2016:STM

Bagnara:2016:EBF

Bajard:2016:MFA

Ballard:2016:INS

BEBOP:2016:RRB

Bigou:2016:BTP

REFERENCES

[6145] Hayssam El-Razouk and Arash Reyhani-Masoleh. New architectures for digit-level single, hybrid-double, hybrid-triple field multiplications and

REFERENCES

[6158] David Hopkins. Will my numbers add up correctly if I round them? The Mathematical Gazette, 100(549):396–409, November
The probability that rounding after fixed-point summation of \(n \) terms gives the same result as summation of rounded terms is given by

\[
p(n) = \frac{2}{\pi} \int_0^\infty \frac{\sin(x)}{x} x^{n+1} dx,
\]

and that function is always a rational number. Its values are

\[
p(n) = 1, 3/4, 2/3, 115/192, 11/20, 5887/11520, 151/315, 259723/573440, \ldots
\]

for \(n = 1 \) to 8.

Hormigo:2016:MIW

Hormigo:2016:NFC

Hsu:2016:TPE

Hunhold:2016:UNF

Jaberipur:2016:FFC

REFERENCES

REFERENCES

Montuschi:2016:MCA

Morancho:2016:UAF

Moroz:2016:FCI

Muller:2016:NMA

Munshi:2016:OCS

Nannarelli:2016:PPS

REFERENCES

Ozaki:2016:EFT

Ozaki:2016:SFP

Paulk:2016:IFP

Phatak:2016:NDA

Rashidi:2016:HSH

Revy:2016:ADF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6245] Chemseddine Chohra, Philippe Langlois, and David Parello. Reproducible, accurately rounded and efficient BLAS. In Desprez et al. [7530], pages 609–620. ISBN 3-319-58943-1 (e-book), 3-319-58943-1 (hardcover). LCCN QA76.9.E94; QA76.758TK.

REFERENCES

[6267] Oscar Gustafsson, Erik Bertilsson, Johannes Klasson, and Carl Ingemarsson. Approximate Neumann series or exact matrix inversion

REFERENCES

REFERENCES

[6283] Mioara Joldes, Jean-Michel Muller, and Valentina Popescu. Tight and rigorous error bounds for basic building blocks of double-word arithmetic.
REFERENCES

[6284] Alan A. Jorgensen. Apparatus for calculating and retaining a bound on error during floating point operations and methods thereof. US Patent 9,817,662., November 14, 2017. URL https://patents.google.com/patent/US9817662B2/; https://tinyurl.com/y7ctbsez. This patent, filed 23 October 2016, was issued despite substantial prior art that should have resulted in its rejection: see [6444]. The inventor does not appear to have published in the area of floating-point arithmetic (apart from this entry, none by him can be found in this bibliography). The only literature references in the patent are [5416, 2701, 5838, 5612].

[6308] Nicholas Malaya, Shuai Che, Joseph L. Greathouse, Rene van Oostrum, and Michael J. Schulte. Accelerating matrix processing with GPUs. In

Martins:2017:AIR

Mascarenhas:2017:ERE

Mazahir:2017:PEA

Medhat:2017:MPE

Merchant:2017:ABL

REFERENCES

[6325] Alexandre Rocca, Victor Magron, and Thao Dang. Certified roundoff error bounds using Bernstein expansions and sparse Krivine–Stengle...
REFERENCES

Rovers:2017:IPP

Rump:2017:IPK

Russell:2017:LBR

Saint-Genies:2017:ELT

Sanchez-Stern:2017:FRC

Sano:2017:FBS

[6343] Alvaro Vázquez and Elisardo Antelo. A sum error detection scheme for decimal arithmetic. In Burgess et al. [7529], pages 172–179. ISBN 1-5386-
REFERENCES

[6356] Moritz Bärthel, Jochen Rust, and Steffen Paul. Hardware implementation of basic arithmetics and elementary functions for unum
REFERENCES

REFERENCES

[6367] Jianyu Chen and Zaid Al-Ars. A matrix-multiply unit for posits in reconfigurable logic using (OPEN)CAPI. In ACM [7532], pages 1–5.

[6375] David Defour. FP-ANR: A representation format to handle floating-point cancellation at run-time. In Tenca and Takagi [7533], pages 76–
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6408] Ignaz Kohlbecker. The slide number format. In ACM [7532], pages 1–6.

[6420] Peter Lindstrom, Scott Lloyd, and Jeffrey Hittinger. Universal coding
of the reals: Alternatives to IEEE floating point. In ACM [7532], pages
1–14.

[6421] Weiqiang Liu, Jing Li, Tao Xu, Chenghua Wang, Paolo Montuschi, and
Fabrizio Lombardi. Combining restoring array and logarithmic dividers
into an approximate hybrid design. In Tenca and Takagi [7533], pages 92–
98. ISBN 1-5386-2612-8 (USB), 1-5386-2665-9. ISSN 2576-2265. LCCN
QA76.9.C62. IEEE catalog number CFP18121-USB.

disasters and how bad programming can be deadly. Interesting Engineering
com/when-bad-programming-turns-deadly.

[6423] Sergio Marchese. AI chips must get the floating-point math right: Formal
verification of FPUs is no longer a prerogative of big companies spending

[6424] Mantas Mikaitis, David R. Lester, Delong Shang, Steve Furber, Gengting
Liu, Jim Garside, Stefan Scholze, Sebastian Höppner, and Andreas
Dixius. Approximate fixed-point elementary function accelerator for the
SpiNNaker-2 neuromorphic chip. In Tenca and Takagi [7533], pages 37–
44. ISBN 1-5386-2612-8 (USB), 1-5386-2665-9. ISSN 2576-2265. LCCN
QA76.9.C62. IEEE catalog number CFP18121-USB.

[6425] Leonid V. Moroz, Cezary J. Walczyk, Andriy Hrynchyshyn, Vijay
Holimath, and Jan L. Cieśliński. Fast calculation of inverse
square root with the use of magic constant — analytical approach.
Applied Mathematics and Computation, 316(??):245–255, January
1, 2018. CODEN AMHCBQ. ISSN 0096-3003 (print), 1873-
article/pii/S0096300317305763.
REFERENCES

[6438] Francisco Rodríguez-Henríquez and Erkay Savas. Special issue in honor of Peter Lawrence Montgomery. Journal of Cryptographic Engineering,

[6444] Tiffany Trader. Inventor claims to have solved floating point error problem. HPC Web site., January 17, 2018. URL https://www.hpcwire.com/2018/01/17/inventor-claims-solved-floating-point-error-problem/. From the HPC editor: “After this article was published, a number of readers raised concerns about the originality of Jorgensen’s techniques, noting the existence of prior art going back years.
Specifically, there is precedent in John Gustafson’s work on unums and interval arithmetic both at Sun and in his 2015 book, *The End of Error*, which was published 19 months before Jorgensen’s patent application was filed.

Villalba-Moreno:2018:FHF

Villalba-Moreno:2018:URH

Walczyk:2018:IAF

Wang:2018:TDN

Yang:2018:OMP

REFERENCES

Anonymous:2019:RMV

Anonymous:2019:SOL

Anonymous:2019:UFP

Anonymous:2019:YAF

Arnold:2019:UOD

Arzelier:2019:EAE

Bailey:2019:AM

Barthel:2019:SAM
Moritz Bärthel, Pascal Seidel, Jochen Rust, and Steffen Paul. SORN arithmetic for MIMO symbol detection — exploration of the Type-2 unum format. In 2019 17th IEEE International New Circuits and
REFERENCES

Andrea Bocco, Yves Durand, and Florent de Dinechin. SMURF: Scalar Multiple-precision Unum RISC-V Floating-point accelerator for scientific...
comparing. In Gustafson and Dimitrov [7534], pages 1:1–1:8. ISBN 1-4503-7139-6. LCCN ???. URL https://hal.inria.fr/hal-02087098.

Boghosian:2019:NPS

Borges:2019:IAH

Bos:2019:ACI

Bright:2019:CEN

Brown:2019:RCF

Bruguera:2019:GEI

Burgess:2019:BPN

Neil Burgess, Jelena Milanovic, Nigel Stephens, Konstantinos Monachopoulos, and David Mansell. Bfloat16 processing for neural

[Burgess:2019:HPA]

[Cappello:2019:UCL]

[Carlough:2019:DBF]

[Carmichael:2019:DPD]

[Carmichael:2019:PET]

[Caygill:2019:DCF]

[6483] Rebecca Caygill. Digital computers fail to accurately model chaos because of fundamental numbers limit. University College London

REFERENCES

[6497] Peter Dockrill. Computers are making huge mistakes because they can’t understand chaos, scientists warn. ScienceAlert Web site, September 27,
REFERENCES 1146

2019. URL https://www.sciencealert.com/computers-are-making-
huge-mistakes-because-they-can-t-understand-chaos-
scientists-warn. See [6471].

REFERENCES

[6512] David Harvey and Joris Van Der Hoeven. Integer multiplication in time $O(n \log n)$. Report hal-02070778, School of Mathematics and Statistics, University of New South Wales, and CNRS, Laboratoire d’informatique, École polytechnique, Sydney, NSW 2052, Australia and 91128 Palaiseau, France, March 18, 2019. URL https://hal.archives-ouvertes.fr/hal-02070778/document.

REFERENCES

IEEE-754:2019:ISF

IEEE:2019:PDA

Jaberipur:2019:MPP

Jaiswal:2019:PHP

Jia:2019:DNT

Jiang:2019:LPU

Johannsson:2019:FAP

Jugade:2019:MEE

[6530] Chaitanya Jugade, Deepak Ingole, Dayaram Sonawane, Michal Kvasnica, and John Gustafson. A memory-efficient explicit model predictive control
Kalamkar:2019:SBD

Katajainen:2019:HMP

Kaul:2019:OFF

Kim:2019:CEI

Kim:2019:EMA

REFERENCES

1152

[6551] Stefan Mach, Fabian Schuiki, Florian Zaruba, and Luca Benini. A 0.80pJ/flop, 1.24Tflop/sW 8-to-64 bit transprecision floating-point unit for a 64 bit RISC-V processor in 22nm FD-SOI. In IEEE, editor, 2019 IFIP/IEEE 27th International Conference on Very Large Scale Integration (VLSI-SoC), pages 95–98. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2019.

REFERENCES

REFERENCES

[6578] Benjamin Sherman, Jesse Michel, and Michael Carbin. Sound and robust solid modeling via exact real arithmetic and continuity. *Proceedings of
REFERENCES

REFERENCES

REFERENCES

[6597] Laurens van Dam, Johan Peltenburg, Zaid Al-Ars, and H. Peter Hofstee. An accelerator for posit arithmetic targeting posit level 1 BLAS routines and Pair-HMM. In Gustafson and Dimitrov [7534], pages 5:1–5:10. ISBN 1-4503-7139-6. LCCN ????.

[6612] Ahmad Abdelfattah, Stan Tomov, and Jack Dongarra. Investigating the benefit of FP16-enabled mixed-precision solvers for symmetric positive definite matrices using GPUs. In Krzhizhanovskaya et al. [7538], pages

REFERENCES

1168

[6651] Rami Elkhatib, Reza Azorderakhsh, and Mehran Mozaffari-Kermani. Highly optimized Montgomery multiplier for SIKE primes on FPGA. In

REFERENCES

[6663] David Harvey and Joris van der Hoeven. Integer multiplication in time $O(n \log n)$. Report hal-02070778, School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia, November 28, 2020. 45 pp. URL https://hal.science/hal-02070778v2.

[6664] Brian Hickmann, Jieasheng Chen, Michael Rotzin, Andrew Yang, Maciej Urbanski, and Sasikanth Avancha. Intel Nervana Neural Network Processor-T (NNP-T) fused floating point many-term dot product. In

REFERENCES

REFERENCES

Lauter:2020:FSA

Lindstrom:2020:VRC

Luo:2020:ADN

Marquer:2020:HLI

Meurant:2020:PFM

Mikaitis:2020:IRG

REFERENCES

[6702] SEGGER

REFERENCES

REFERENCES

Anonymous:2021:IPA

Anonymous:2021:PCA

Anonymous:2021:SA

Anonymous:2021:SCA

Anonymous:2021:TC

Anonymous:2021:TP

Ashmawy:2021:FHI

Bagnara:2021:PAV

Bailey:2021:PMN

1182

REFERENCES

REFERENCES

REFERENCES

[6784] Sandra Jean, Aneesh Raveendran, A. David Selvakumar, Gagandeep Kaur, Shankar G Dharani, Shashikala Gunderao Pattanshetty, and

[6799] Jean-Michel Muller. $a \cdot (x \cdot x)$ or $(a \cdot x) \cdot x$?. In IEEE [7540], pages 17–24. ISBN 1-66542-293-9 (print), 1-66544-648-X (e-book). LCCN ????.

Nimish Shah, Laura Isabel Galindez Olascoaga, Shirui Zhao, Wannes Meert, and Marian Verhelst. 9.4 PIU: a 248GOPS/W stream-based

Shekhawat:2021:HGP

SmallPositHDL:2021:CBS

Sohier:2021:CIS

Soylu:2021:IAC

Thapliyal:2021:QCD

Tiwari:2021:PCP

Ahmadpour:2022:BMM

Alder:2022:FPU

AMD:2022:AIM

Anonymous:2022:AI

Anonymous:2022:C

Anonymous:2022:PCA

Anonymous:2022:SA

Anonymous:2022:SCA

REFERENCES

REFERENCES

Berlin, Germany / Heidelberg, Germany / London, UK / etc., 2022.

[6858] Chuangtao Chen, Weikang Qian, Mohsen Imani, Xunzhao Yin, and Cheng Zhuo. PAM: a piecewise-linearly-approximated floating-point

Cococcioni:2022:ERO

Cococcioni:2022:LPP

Cococcioni:2022:SRR

Coward:2022:ADO

Cowlishaw:2022:DAFa

Cowlishaw:2022:DAFb

REFERENCES

REFERENCES

REFERENCES

Microelectronics (ICM), pages 50–53. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2022.

Essam:2022:DIL

Evstigneev:2022:CSD

Gao:2022:TFI

Genkina:2022:PNK

Greuet:2022:QAM

REFERENCES

REFERENCES

Lindstrom:2022:MUC

Liu:2022:DUA

Mallasen:2022:CCR

Mallasen:2022:POSa

Mallasen:2022:POSb

Mathis:2022:IHP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2022.

REFERENCES

REFERENCES

[6964] Eric Bavier, Nicholas Knight, Hugues de Lassus Saint-Geniès, and Eric Love. Vectorized nonlinear functions with the RISC-V vector extension. In IEEE [7544], pages 127–130. LCCN ?????

[6971] Nicolas Brisebarre, Jean-Michel Muller, and Joris Picot. Error in ulps of the multiplication or division by a correctly-rounded function or constant
in binary floating-point arithmetic. *IEEE Transactions on Emerging Topics in Computing, ??(??):1–11, 2023. ISSN 2168-6750 (print), 2376-4562 (electronic).*

[Brisebarre:2023:EUMb]

[6972] Nicolas Brisebarre, Jean-Michel Muller, and Joris Picot. Error in ulps of the multiplication or division by a correctly-rounded function or constant in binary floating-point arithmetic. In IEEE [7544], page 88. LCCN ???? Published in “IEEE Transactions on Emerging Topics in Computing, Volume: 11, Issue: 4, 01 October–December 2023” and orally presented at ARITH 2023.

[Brisebarre:2023:IPC]

[Brisebarre:2023:TME]

[Brisebarre:2023:TSK]

[Brthel:2023:FTI]

[Bruguera:2023:RFP]

REFERENCES

[6982] David Defour and Franck Vedrine. Chromatic analysis of numerical programs. In IEEE [7544], pages 97–100. LCCN ?????

[6984] Orégane Desrentes, Benoît Dupont de Dinechin, and Florent de Dinechin. Exact fused dot product add operators. In IEEE [7544], pages 151–158. LCCN ?????

REFERENCES

[6991] Oliver Flatt and Pavel Panchekha. Making interval arithmetic robust to overflow. In IEEE [7544], pages 44–47. LCCN ????.

[6994] Danila Gorodecky and Leonel Sousa. Scalable architecture of constant division on FPGA. In IEEE [7544], pages 16–23. LCCN ????.

REFERENCES

[7005] IEEE. IEEE Working Group P3109 interim report on 8-bit binary floating-point formats. Web document, November 24,
Innocente:2023:AMF

Jaberipur:2023:MMF

K:2023:DEE

Kapoor:2023:FVF

Kavvozanos:2023:IRL

Kellison:2023:LLF

Klwer:2023:POC

REFERENCES

[7013] Bharath Krishna. Rounding numbers in the financial domain! Web site, January 1, 2023. URL https://www.foundingminds.com/rounding-numbers-in-the-financial-domain/. Includes important mention of financial regulatory sites, with this text taken verbatim from the article, because such information may be hard to find elsewhere: * International Financial Reporting Standards (IFRS): IFRS is a set of accounting standards developed by the International Accounting Standards Board (IASB). It includes guidelines on rounding financial numbers in financial statements, such as the requirement to round amounts to the nearest whole number or the nearest multiple of 10; * Generally Accepted Accounting Principles (GAAP): GAAP is a set of accounting standards used in the United States. It includes similar guidelines on rounding financial numbers as IFRS and requires that any rounding errors should be immaterial and insignificant. * International Organization for Standardization (ISO): ISO has a standard for Rounding off numerical values, which is ISO 80000-1:2009. It provides guidelines on rounding numerical values in general and not specific to the finance domain, but it’s widely used in financial systems. * The Federal Reserve Board (FRB): The FRB, the central banking system of the United States, has guidelines on rounding financial numbers for bank reporting and financial statement preparation. * The European Central Bank (ECB): The ECB, the central banking system of the European Union, has similar guidelines on rounding financial numbers as the FRB.

Livesay:2023:AFF

Malathi:2023:DRV

Mansfield:2023:MSR

Martin-Dorel:2023:EFP

Melquiond:2023:WFV

Micikevicius:2023:OBF

REFERENCES

REFERENCES

[7044] Bogdan Pasca and Martin Langhammer. Extracting low-precision floating-point adders from embedded hard FP DSP blocks on FPGAs. In IEEE [7544], pages 139–142. LCCN ???

REFERENCES

[7048] Pengchang Ren, Reiji Suda, and Vorapong Suppakitpaisarn. Efficient additions and Montgomery reductions of large integers for SIMD. In IEEE [7544], pages 48–59. LCCN ????

REFERENCES

Seo:2023:DPHa

Seo:2023:DPHb

Shah:2023:DPU

Shah:2023:EEI

Shah:2023:IWR

Shah:2023:SDR

REFERENCES

[7066] Jongwook Sohn, David K. Dean, Eric Quintana, and Wing Shek Wong. Enhanced floating-point multiply-add with full denormal support. In IEEE [7544], pages 143–150. LCCN ????
REFERENCES

[7069] Styliani Tompazi and Georgios Karakonstantis. AI-based timing error modelling: a case study on a pipelined floating-point core. In IEEE [7544], page 110. LCCN ???.

REFERENCES

Wong:2023:KNS

Yang:2023:ATF

Zhang:2023:EAP

Zlatopolski:2023:PAV

Alsuhli:2024:NSD

Brisebarre:2024:CRE

REFERENCES

la Recherche Scientifique and others, Paris, France, February 23, 2024. 29 pp. URL https://hal.science/hal-04474530.

Brogi:2024:FPP

Gladman:2024:AMF

Haider:2024:DRA

Harris:2024:UDS

Hubrecht:2024:TCR

[7085] Tom Hubrecht, Claude-Pierre Jeannerod, and Jean-Michel Muller. Useful applications of correctly-rounded operators of the form \(ab+cd+e\). Report hal-04461089, DI-ENS (Département d’informatique — ENS Paris) and
REFERENCES

Université de Lyon, Paris, France and Lyon France, February 16, 2024. URL https://inria.hal.science/hal-04461089.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[7158] Simon Hugh Lavington, editor. *Information Processing 80: Proceedings of IFIP Congress 80, Tokyo, Japan, October 6–9, 1980, Melbourne,*

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[7200] Electro/86 and Mini/Micro Northeast Conference Record: Sessions Presented at Electro/86 and Mini/Micro Northeast-86, Boston, MA, May
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

CUG:1990:PSC

Feijen:1990:BOB

Hennessy:1990:CAQ

IEE:1990:ICV

IEEE:1990:MMM

IEEE:1990:PII

Patterson:1990:CAQ

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:1992:IIC

IEEE:1992:PIC

IEEE:1992:PIS

Ju:j:1992:NCR

Katwijk:1992:AMT

Prinetto:1992:CHD

REFERENCES

Quinton:1992:APV

Singh:1992:CRT

Turing:1992:PM

Vandewalle:1992:SPV

Wang:1992:PII

White:1992:IIS

REFERENCES

REFERENCES

Lee:1993:MCM

Lombardi:1993:PII

Sincovec:1993:PSS

Swartzlander:1993:PSC

REFERENCES

REFERENCES

REFERENCES

[7316] D. (Dimitur) Bainov and Valery Covachev, editors. *Proceedings of the Third International Colloquium on Numerical Analysis: Plovdiv,
REFERENCES

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>
REFERENCES

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

REFERENCES

REFERENCES

REFERENCES

ACM:1998:AWJ

Chesneaux:1998:PCR

Gloor:1998:IPI

Holub:1998:ILW

Huijsing:1998:EPE

IEEE:1998:HCC
REFERENCES

IEEE:1998:IIC

IEEE:1998:IOM

IEEE:1998:PGL

MacKay:1998:PCT

Matthews:1998:CRT

Pocatek:1998:PIS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2001:JJ

Boulton:2001:TPH

Brebner:2001:FLA

Burgess:2001:ISC

IEEE:2001:IP1
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

(apart from the nine-page Chapter 15), it has extensive coverage of, and clever algorithms for, integer arithmetic operations that are fundamental for implementing hardware floating-arithmetic and software multiple-precision arithmetic.

REFERENCES

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2004. ISBN 0-7695-2230-0. LCCN ????

REFERENCES

IEEE:2004:PJC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[7464] IEEE, editor. *19th International Conference on VLSI Design: held jointly with the 5th International Conference on Embedded Systems*
REFERENCES

IEEE:2006:PIW

Menezes:2006:PAS

Mohanty:2006:IIC

Pocek:2006:FAI

Yi:2006:SAI

REFERENCES

REFERENCES

REFERENCES

Luther:2007:GII

Morales:2007:TRT

Pocek:2007:PAI

Simos:2007:CMS

ACM:2008:GPA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2010. ISBN 1-4244-5376-3. LCCN ????

REFERENCES

Duato, Diana Franklin, David Goldberg, Norman P. Jouppi, Sheng Li, Naveen Muralimanohar, Gregory D. Peterson, Timothy M. Pinkston, Parthasarathy Ranganathan, David A. Wood, and Amr Zaky.

Jonasson:2012:APSb

IEEE:2013:PIS

Butler:2015:FMS

Higham:2015:PCA

IEEE:2015:ISS

IEEE, editor. *2015 IEEE Symposium on Security and Privacy (SP 2015) San Jose, California, USA, 18–20 May 2015*. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
REFERENCES

Muller:2015:ISC

Swartzlander:2015:CAa

Swartzlander:2015:CAb

Swartzlander:2015:CAc

Montuschi:2016:ISC

Burgess:2017:ISC

REFERENCES

REFERENCES

REFERENCES

