Introduction

This is a bibliography of material on floating-point arithmetic that I came up with while doing research on a floating-point package of my own. I don’t claim it to be anywhere near complete. The material listed is only what I myself possess.

My main interest was in software based, binary floating-point arithmetic on a microprocessor, so you won’t find much material about the hardware used in floating-point arithmetic (e.g. adders, carry propagation schemes, higher radix...
representation for multiplication and division, etc.) in this list. There is also not too much on non-binary floating-point arithmetic.

For most fields covered in this bibliography, the important or historically relevant articles should be included. There is also some material on integer arithmetic in this list as some of the methods used with integer arithmetic contain interesting ideas that may be useful in the realization of a floating-point arithmetic package.

Also, depending on the type of microprocessor used, one may need to implement integer multiplication and division for use in the floating-point package, so articles about this topic are included as well.

As I am German, there is a bit of material in German in this bibliography. However, English translations are provided for all non-English titles.

Thanks to the people who have helped me with previous versions of this document by sending me papers or additional references:

- Steven Sommars (sesv@research.bell-labs.com),
- Jim Kiernan (jmk@teak.cray.com),
- Warren Ferguson (ferguson@seas.smu.edu),
- Nhuan Doduc (ndoduc@framentec.fr),
- K. C. Ng (kwok.ng@eng.sun.com),
- Nelson H. F. Beebe (beebe@math.utah.edu).

Bibliography entries in the Books section are ordered alphabetically by author; ordering is by ascending year in the remaining sections.

Warning: it has yet not been possible to bring this citation list up-to-date with the entries in the Bibliography.

Books, hardware oriented

[1619, 248, 1206, 1141, 2975, 3177, 1814, 778, 1090, 931, 1373, 780, 1259, 6238, 6239, 1465]

Books, software oriented or theory

[1193, 427, 430, 431, 96, 1336, 2279, 841, 979, 318, 2818, 2320, 2835, 2162, 287, 483, 6098]

Books, machine specific

[2067, 3080, 2977, 2322, 1666, 1801, 2180, 1833, 2357]
Journal Publications, Conference Papers, Technical Reports, Ph.D. Dissertations, Book Contributions, etc.

1 Choice of base, floating point formats

[455, 694, 695, 677, 674, 827, 1068, 1059, 1933, 2159, 2277, 2427, 2646, 2660]

1.1 Precision and Rounding

[394, 512, 691, 784, 815, 830, 895, 963, 1119, 1216, 1351, 1292, 1447, 1627, 2172, 2342, 2412, 2714, 3022, 3143]

1.2 Determination of parameters of floating point arithmetic

[635, 762, 1539, 2165, 2094]

1.3 IEEE standards for floating point arithmetic

[924, 1122, 1147, 1131, 1156, 1121, 1128, 1256, 1243, 1244, 1200, 1220, 1374, 1301, 1324, 1303, 1623, 1722, 1760, 1761, 1981, 2065, 2226, 2456, 2919]

1.4 Floating point arithmetic, general and implementation issues

[583, 666, 945, 966, 1012, 1024, 1023, 1158, 1160, 1135, 1194, 1186, 1390, 1404, 1889, 1909, 2110, 2111, 2258, 2332, 2427, 2417, 2647, 2648, 2577, 2645, 2876]

1.5 Floating point packages

[1207, 1599, 1579, 1672, 1629, 1782, 1747, 1783, 1864, 1974, 1996, 2097, 2190, 2191, 2192, 2365, 2366, 1268]

1.6 Floating point units

[379, 1079, 1238, 1198, 1247, 1270, 1240, 1265, 1190, 1233, 1241, 1409, 1449, 1408, 1442, 1464, 1563, 1481, 1483, 1484, 1580, 1514, 1511, 1518, 1545, 1614, 1521, 1687, 1674, 1614, 1656, 1684, 1616, 1695, 1905, 1867, 1895, 1861, 1914, 1853, 1846, 1847, 2022, 1976, 2046, 2137, 2166, 2196, 2142, 2168, 2143, 2076, 2106, 2209, 2154, 2107, 2178, 2347, 2293, 2294, 2318, 2211, 2329, 2291, 2288, 2203, 2310, 2349, 2249, 2212, 2330, 2217, 2447, 2383, 2402, 2442, 2397, 2376, 2445, 2428, 2419, 2538, 2643, 2606, 2823, 2741, 2807, 2962, 2913, 3052, 3209]
1.7 Test of floating point routines

2 Addition and Subtraction

2.1 Floating-point Summation

2.2 Multiplication

2.3 Division

3 Elementary functions, general

3.1 Elementary functions, CORDIC and related algorithms

3.2 Elementary functions, function approximation

3.2.1 Polynomial evaluation
3.3 Square root, general
[1011, 1112, 1395, 1502, 1553, 2448, 2555]

3.3.1 Square root, bit-oriented, iterative, and table methods of computation
[97, 126, 325, 939, 1077, 1269, 1360, 1321, 1288, 1342, 1446, 1723, 1820, 1732, 1785, 1868, 1849, 1932, 1852, 1903, 1943, 1983, 2032, 2071, 2145, 2276, 2460, 2417, 2585, 2904]

3.3.2 Square root, Newton’s method
[131, 247, 269, 340, 313, 309, 349, 412, 388, 470, 475, 488, 549, 538, 532, 534, 651, 1245, 1235, 1313, 1488, 2222, 2884, 2813]

3.4 Sine and Cosine
[152, 997, 949, 954, 1101, 1314, 1453, 1567, 1566, 1664, 1751, 1850, 2014, 2124, 2488, 2827, 2824, 2751, 2846, 2940]

3.5 Logarithm

3.6 Exponential function
[114, 372, 1108, 1277, 1428, 1647, 1745, 2356, 2490, 2867]

3.7 Arctangent
[116, 132, 177]

3.8 Other transcendental functions
[456, 565, 133, 955, 331, 242, 326, 1994, 1083, 2732, 2920]

4 Binary-decimal conversion
5 BCD arithmetic

[623, 673, 719, 720, 721, 722, 723, 724, 725, 1298, 1403, 1604, 1543, 1934, 2525, 2826]

6 Multiple precision arithmetic

[259, 297, 373, 389, 582, 568, 884, 933, 1028, 1027, 1185, 1346, 1451, 2679, 2664, 2899, 3117]

7 Conferences on computer arithmetic

[6123, 6133, 6137, 6145, 6148, 6160, 6178, 6179, 6219, 6249, 6257, 6251, 6282]

8 Additional contributions from Nelson H. F. Beebe

Title word cross-reference

#26 [5263].

\((2^n)^m\) [3643]. \((10^{31} - 1)/9\) [1873]. \((2^m)\) [4176, 4197, 4376, 4385, 4293]. \((2^n + 1)\) [1010, 4606, 3752]. \((2^n - 1)\) [4806]. \((2^n21)\) [5797]. \((2^n \pm 1)\) [5290, 3974]. \((2^n)\) [4258]. \((2n - (2p \pm 1))\) [4660]. \((d, r)\) [731]. \((R)\) [2777]. \((p)\) [4176, 4258]. \(-2\) [689, 155, 176, 880, 742]. \(-\infty \leq n \leq +\infty\)
-Coordinate [4237]. -count [6073]. -D [5435, 4012, 4034, 3146, 5893, 3955, 4892, 2058].

.NET [4869].

/m [4676]. /spl [4676].

0.18-CMOS [5526]. '00 [6357, 2423]. '01 [6370]. '03 [6399]. '04 [6407, 6415]. '07 [6449, 6455, 6457, 6462]. '08 [6466, 2898, 5164].

1 [187, 3400, 3273, 2747, 197, 517, 3138, 3905, 4232, 1089, 5526, 1831, 3708].
1-GHz [4232, 5526]. 1-Output [5131]. 1.0 [3709]. 1.5 [5415]. 10 [5493].
11i [4727]. 11th [6368, 6264, 6282, 3047]. 120B [1048]. 128-bit [3953].
13th [6396, 6144, 6323, 6294, 6448, 3688, 3619]. 14-Port [3756]. 14th [6285, 6367, 6398, 6447, 6348].
16BST [1715, 1631, 1632, 1634, 1638, 1649, 1662, 1671, 1588]. 16F/400 [850].
16th [6439, 6430, 4468, 6395, 6436]. 17 [254]. 17-Bit [597, 596]. 1788 [6065].
18th [6465, 6454, 6450, 5244]. 18th-Century [5244]. 1945 [54]. 1947 [6087].
1999 [6345, 6346, 6351, 6353]. 19th [6471, 6443]. 1st [6330].

7600 [678]. 77 [1115, 3857, 1248]. 780 [1933, 1475, 1701]. 786 [3780]. '79 [6136, 6138]. 7th [6140, 6438, 6178, 6207].

= [2673, 2674, 3205, 6242].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Approaches [1015, 3185]. Approaching [2075].

Approved [6061]. Approximate [5699, 5832, 5842, 5258, 129, 1052, 5931, 5936, 3609, 6064, 5965, 6068, 639, 5973, 1552, 5805, 5931, 3609, 6064, 5965, 6068, 639, 5973, 1552, 5805, 6081, 3987, 249, 3131, 3954].

Approximationen [470]. Approximations [1179, 952, 1963, 2099, 2568, 1836, 2864, 1267, 388, 574, 3304, 6064, 5965, 3609, 5931, 3609, 6064, 5965, 6068, 639, 5973, 1552, 5805, 5931, 3609, 6064, 5965, 6068, 639, 5973, 1552, 5805, 6081, 3987, 249, 3131, 3954].

Apr [6061]. April [6121, 6215, 6407, 6106, 6410, 6298, 6380, 6177, 6442, 5043, 4935, 5265, 3877, 3878, 637, 4548, 986, 441, 1369, 3198, 3948, 2709]. Aptitude [1598]. Arabia [2735].

Area [3554, 2909, 5625, 3093, 3094, 2394, 5926, 5456, 5856, 1971, 4040, 4197, 3905, 1898, 4858, 1568, 5981, 2037, 2041, 3368, 3536, 3537, 4043, 6081, 5992,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[980, 1892, 2626, 203, 1231, 1659, 2808, 589, 636, 3491, 637, 528, 2141, 4685, 5371, 529, 6070, 2631, 4846, 408, 6095, 322, 323, 437, 704, 770, 912, 981, 982, 4976, 3632, 3002, 2316, 5728, 285, 644, 5305, 5115, 5116, 3497, 5307, 1237, 1896, 5374, 5121, 3167, 5732, 1663, 2451, 5595, 915, 4550, 2150, 3008, 3, 1079, 1154, 2322, 4553, 3178, 533, 4982, 3918, 4702, 2455, 1358, 1564, 5599, 4077, 4861, 3013, 4079, 3644, 3645, 3646, 3923, 4081, 4556, 2458, 2459, 5128, 649, 920, 3647, 2461, 2159, 2462, 3187, 775, 3189, 1246]. arithmetic
Axiomatization [3026, 584]. Axiomatizations [1839, 2462]. AXP [3363].

BCD-based [5188]. BCD-floating-point [1686]. BDDs [4916]. Be
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[919, 2895, 4484, 1969, 1216, 2425, 823, 6014, 3]. Beach [6341, 6406, 6423, 6489].

Beamforming [2973, 2302, 2331]. Beauty [6231]. Because [6042, 6046].

bedingte [502]. beach [2109]. Before [6071, 5244, 27, 1730, 1911, 78].

Begründung [905]. Behavior [4753, 814, 5612, 813, 5727]. Behavioral [3721, 4124, 3846].

Behavioral [3721, 4124, 3846]. Because [6042, 6046].

Benchmark [2548, 2125, 2895, 3466].

Benefits [4842, 4974, 2372, 1397].

Benford [5048, 5337, 3555, 5425, 5426, 5341, 1025, 5269, 4652, 4799, 4358, 4949, 4826, 4964, 4054, 1361, 4245, 5210, 5520, 2171, 2172, 726, 665, 1385, 609].

Beregner [1245]. Berger [3482, 2309, 2985].

Berlin/Wendisch [6136].

Berlin/Wendisch-Rietz [6136].

Benjamin [6381, 6387].

Belgium [6269].

beliebige [1994]. beliebig [599].

Belgium [6269].

besonderer [1598]. Bessel [5284].

Besieged [4815]. besonderer [1598]. Bessel [5284].

Benign [6381, 6387].

Beijing [6381, 6387].

Being [2454].

Beispiel [2491].

Beispielen [2603].

Belgium [6269].

behind [502].

Bedingte [502].

Bench [2562, 61, 79, 5482].

Benchmark [5846, 1638, 1768, 1649, 1662, 1671, 1588, 4337, 1631, 1632, 1634, 3424].

Benjamin [6381, 6387].

Behrooz [3978, 3979].

Belfast [6368, 6480].

Belgium [6269].

beliebige [1994]. beliebig [599].

Berlin/Wendisch [6136].

Berlin/Wendisch-Rietz [6136].

Bernstein [5356, 5980].

Bertinoro [6440].

Beschreibung [2491].

Besieged [4815].

Besieged [4815].

Betriebssystems [224].

Better [5644, 2563, 470, 532, 2167, 551, 3243, 441].

Bayer [486].

Beyond [1622, 5934, 2114, 1790, 1357, 3059, 5405, 5340, 1940, 4561].

BF16 [6082].

Bhubaneswar [6446].

Bi [1093, 930]. Bi-Imaginary [1093, 930].

BiCGstab [3365].

BiCMOS [3446, 3124].

BID [4887].

BIDEC [128].

Biennal [6171, 6155].

Betriebssystem [539].

Between [3805, 5632, 4934, 6151, 537, 3521, 550, 5626, 5840, 4924, 3999, 4637, 5058, 4362, 3596, 4423, 178, 3652, 5747, 3101].

BI [1622, 5934, 2114, 1790, 1357, 3059, 5405, 5340, 1940, 4561].

BF16 [6082].

Bifurcation [3513].

BiCGstab [3365].

Biharmonic [4724].

Bi [1093, 930]. Bi-Imaginary [1093, 930].

Biased [1736].

Bibliography [5425, 1347, 860, 547, 1991, 1157].

BiCGstab [3365].

BiCMOS [3446, 3124].

BID [4887].

BIDEC [128].

biennial [6171, 6155].

Bifurcation [3513].

Big [1427, 5855, 3729, 6015, 5371].

BigDecimal [4622, 4441].

BigNum [4995, 4996].

bilinear [1564].

billing [5191].

Billion [3590].

Bimodular [5664].

binary [2601, 2786, 2433, 2298, 5584, 4057, 5210]
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ments [936, 943, 747, 5557, 1189, 619, 758, 761, 1875, 2774, 3148, 767, 400, 5583, 401, 909, 1075, 3642, 3510, 1668, 714, 1455, 862, 2351, 733, 184, 498].

Common [2516, 514, 3728, 5809, 3520, 1681, 3283, 3789, 2710]. common-multiplicand [6024, 5159]. commonality [3161].

Communication [5701, 6440, 6259, 4248, 4990, 2557, 2112, 4371, 4062, 4063, 4222, 3971, 4451, 4452]. Communications [6277, 6417, 4421, 2123, 6455]. Community [5575, 6411].

Complement [1477, 672, 747, 1726, 148, 572, 812, 4018, 1142, 1771, 767, 6065, 5500, 1343, 844, 117, 847, 3649, 100, 4092, 1168, 4884, 5142, 4288, 932, 3965, 4767, 4609, 3091, 2228, 3428, 3299, 1329, 1330, 4066, 2474, 5687, 730, 5156].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[3763, 1805, 4564, 4711, 4865, 4725, 5226, 5325, 3794, 3795, 4739, 2886]. Compliant [3917, 5537, 5108, 3769, 3770]. Compliant [5996, 3424, 3587, 3496, 4096, 4890, 4331, 4008, 4072, 3171, 3774]. cumpling [3682]. Compo-

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Based [4827, 2843]. Core [4749, 5756, 4939, 5683, 5891, 5027, 3570, 4478, 5763, 5649, 2255, 2579, 3888, 6070, 2338, 5523].

Cores [4904, 6086, 5346, 5346].

Corfu [6464].

Cork [6478].

Corena [5863, 5806].

Corner [6284, 3567, 3330, 3497, 5975, 5976, 6071, 6072, 5729, 5730].

Corners [6077, 3049].

Corporation [967, 644].

Correct [5242, 754, 4494, 4797, 510, 314, 399, 4213, 4538, 3344, 6265, 5890, 1673, 289, 5334, 5830, 5914, 5071, 5599, 2156, 4907, 4627].

Correcting [671, 168, 751, 1517, 1071, 535, 4473, 2297, 2720, 2721].

Correction [1472, 1610, 746, 559, 5240, 618, 5847, 464, 1329, 688, 1769, 1652, 827, 3344, 6265, 5890, 1673, 289, 5334, 5830, 5914, 5071, 5599, 2156, 4907, 4627].

Correcting [671, 168, 751, 1517, 1071, 535, 4473, 2297, 2720, 2721].

Correct [1472, 1610, 746, 559, 5240, 618, 5847, 464, 1329, 688, 1769, 1652, 827, 3344, 6265, 5890, 1673, 289, 5334, 5830, 5914, 5071, 5599, 2156, 4907, 4627].

Correcting [671, 168, 751, 1517, 1071, 535, 4473, 2297, 2720, 2721].

Corners [6077, 3049].

Corporation [967, 644].

Correct [5242, 754, 4494, 4797, 510, 314, 399, 4213, 4538, 3344, 6265, 5890, 1673, 289, 5334, 5830, 5914, 5071, 5599, 2156, 4907, 4627].
[4716, 4871, 5315, 236, 138, 2482, 489, 4887, 4888, 161, 5146, 5147, 5322, 5331, 5374, 5013, 5149, 5326, 5403, 5609, 5989, 5992, 3220, 4737, 4896, 5153, 5154, 5330, 5331, 5022, 1007, 5232, 425, 2575, 5715, 5275, 1210, 5470, 4954, 4956, 5288, 5291, 519, 2126, 4668, 5110, 5111, 365, 319, 1085, 991, 5390, 722, 601, 5319, 5401, 4728, 5404, 5533, 2368, 5155, 5407].

Decimal-Based [5650, 5531, 5182, 5146, 5147]. Decimal-Binary [128, 234, 1211, 1212, 365]. Decimal-Floating-Point [4950].
decimal64 [5510, 5626, 5306, 5193, 4970]. Décimales [1085]. Decimals [570, 37, 5090, 5298, 235, 1592].
decNumber [4926, 5054]. Decodable [4169]. Decoded [5330]. Decoder [5981, 3953].
decreasing [3841, 2343]. decryption [3418]. DECSYSTEM [1315, 889].
degeneracies [3328]. Degeneracy [3195]. Degradation [4830, 5740].
delay-power [3416]. delayed [5038, 4059]. Delays [2755]. Delhi [6245].
dénominateurs [5186]. Denominator [5733, 5309]. denominators [5186].
densities [2794]. Density [4362, 4520]. Denver [6315, 6349, 6418, 6213].
depending [3834]. Depends [5694]. Depth [3799, 5348, 3291, 2650, 5317, 4755, 6036, 5179, 5576, 5134]. Depth-3 [5317, 5134].
Descent [1613, 2578]. Describe [3326]. Describing [3868].
Description [4632, 4123, 95, 765, 1148, 850]. Design [6226, 6408, 611, 1469, 1469].
5231, 5339, 4910, 6356, 3803, 4119, 500, 501, 4126, 42, 2382, 2076, 2216, 3815, 4142, 5044, 4479, 4616, 3411, 1408, 1619, 3090, 345, 4778, 2221, 2390, 4145, 5842, 5250, 5049, 5252, 4779, 1031, 5460, 5461, 5648, 3590, 2941, 5777, 3859, 814, 3288, 4018, 1743, 5931, 1316, 1206, 816, 354, 4657, 395, 5468, 1210, 429, 3601, 3869, 6055, 1874, 4371, 5476, 5477, 4811, 5087, 5478, 5573, 473, 1141, 6220, 6110, 6185, 6205, 6223, 6235, 6245, 6260, 6276.

Design [6302, 6312, 6333, 6370, 6371, 6372, 6383, 6413, 6416, 6443, 6444, 6456, 6458, 6476, 6487, 1525, 5290, 1528, 3879, 3142, 4041, 5493, 4959, 1332, 1436, 2606, 6488, 4380, 4675, 5364, 4383, 5952, 1995, 835, 5501, 5796, 2981, 4212, 5584, 4393, 5104, 5105, 5106, 1069, 1781, 5875, 5965, 6068, 1231, 4061, 5671, 909, 2440, 3324, 5112, 4975, 2142, 2315, 5805, 2447, 2816, 3635, 6018, 6073, 1354, 5675, 5736, 3171, 3335, 3340, 3504, 3640, 3641, 4553, 4982, 707, 6469, 2461, 2657, 4246, 4416, 6352, 6265, 5381, 2402, 2935, 2101, 4645, 3587, 1311, 1507, 1051, 5460, 5461, 5648, 3590, 2941, 5777, 3859, 814, 3288, 4018, 1743, 5931, 1316, 1206, 816, 354, 4657, 395, 5468, 1210, 429, 3601, 3869, 6055, 1874, 4371, 5476, 5477, 4811, 5087, 5478, 5573, 473, 1141, 6220, 6110, 6185, 6205, 6223, 6235, 6245, 6260, 6276].

Design [6302, 6312, 6333, 6370, 6371, 6372, 6383, 6413, 6416, 6443, 6444, 6456, 6458, 6476, 6487, 1525, 5290, 1528, 3879, 3142, 4041, 5493, 4959, 1332, 1436, 2606, 6488, 4380, 4675, 5364, 4383, 5952, 1995, 835, 5501, 5796, 2981, 4212, 5584, 4393, 5104, 5105, 5106, 1069, 1781, 5875, 5965, 6068, 1231, 4061, 5671, 909, 2440, 3324, 5112, 4975, 2142, 2315, 5805, 2447, 2816, 3635, 6018, 6073, 1354, 5675, 5736, 3171, 3335, 3340, 3504, 3640, 3641, 4553, 4982, 707, 6469, 2461, 2657, 4246, 4416, 6352, 6265, 5381, 2402, 2935, 2101, 4645, 3587, 1311, 1507, 1051, 5460, 5461, 5648, 3590, 2941, 5777, 3859, 814, 3288, 4018, 1743, 5931, 1316, 1206, 816, 354, 4657, 395, 5468, 1210, 429, 3601, 3869, 6055, 1874, 4371, 5476, 5477, 4811, 5087, 5478, 5573, 473, 1141, 6220, 6110, 6185, 6205, 6223, 6235, 6245, 6260, 6276].

Desirable [566, 1059, 1140].

DESIRE [1437].

Desk [673, 98].

Desk-Calculator [98].

Desynchronize [5538].

Details [1709].

Detect [5059].

Detectable [2044].

Detecting [1281, 168, 4652, 5899, 5000, 2368].

Detection [5027, 5621, 5833, 454, 792, 746, 5238, 750, 3281, 5854, 3114, 4173, 5471, 1333, 1534, 1769, 834, 254, 255, 5672, 5114, 2020, 2832, 1565, 5679, 4248, 3649, 2031, 4259, 4094, 2485, 1095, 5894, 1597, 5989, 874, 875, 5622, 5623, 2082, 1036, 1037, 5646, 1197, 1129, 4940, 2586, 4948, 3131, 225, 5665, 1653, 2390, 2620, 5885, 4875, 2864, 2715].

detective [5102].

Determined [2898, 5164, 2094].

Determining [983, 654, 714, 733, 3596, 1345, 2141].

Deterministic [5575, 717, 4584].

Deutschland [54].

Developed [1629].

Developers [4816, 4278].

Developing [794, 2383, 2775, 6294].

Development [6134, 6284, 3404, 3087, 6166, 1034, 1960, 2625, 2990, 2143, 2030, 5389, 3035, 5535, 6084, 1609, 2382, 1716, 54, 2942, 2775, 3001, 4853, 2856, 2857, 6126, 240, 1270].

Developments [789, 4445, 79, 6343].

Deviates [154].

Device [11, 2983, 2087, 1601].

Devices

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3284, 2939, 4175, 5936, 3729, 1058, 4186, 5789, 5491, 1223, 5950, 828, 974, 5795, 4833, 4834, 1438, 2799, 3498, 2637, 3501, 4231, 5594, 5982, 3027, 4263, 2497, 3972, 5334, 5412, 4302, 265, 4768, 2526, 5557, 3812, 4325, 4921, 5266, 3436, 3153, 5498, 5499, 5098, 3896, 5722, 5668, 4391, 4392, 4837, 5802, 5307, 3500, 4853, 1663, 5807, 5808, 4592. Exactly [3197, 4079, 2189].

Exploit [4420, 1166]. Exploitation [4778]. Exploiting [3072, 5619, 4514, 2296, 4968, 4969, 5105, 3021, 3773, 417, 4109, 3645].

Exploration [5250, 5648, 5881, 4716, 4741, 4982]. Exploring [3660, 5444].

Export [3590]. Expr [3972]. Expressing [2169]. Expression [2994]. Expressions [4599, 675, 749, 5447, 2933, 2764, 5738, 656, 1816, 1463, 1110, 5449, 5345, 5813].

Extant [371]. Extended [2727, 297, 5068, 5069, 2584, 2422, 5865, 5946, 2280, 3617, 5105, 5879, 3187, 1372, 933, 667, 1014, 941, 958, 3863, 2974, 582, 4393, 5593, 4694, 1253, 5001, 2698, 4627].

Extended-precision [667, 3863, 582].

Extended-Range [372].

Extension [1180, 4117, 3691, 2528, 3708, 1630, 5647, 5471, 4954, 4955, 4956, 5288, 3614, 2604, 706, 851, 3018, 2161, 3933, 1833, 1384, 4123, 5347, 681, 4796, 3854, 4053, 6024, 2866, 5157, 5159].

Exponent [5240, 5667, 2885, 1938, 2794, 4680, 3178, 5747, 2713]. Exponential [5336, 5919, 217, 1856, 4001, 5927, 1428, 4022, 3456, 1876, 1647, 5599, 4970, 5193, 4705, 2356, 2487, 5691, 1108, 3815, 561, 4157, 4158, 4638, 4649, 3598, 172, 3323, 2651, 4560, 376]. exponentially [1937].

Exponentials [616, 1745, 2983, 724]. Exponentiation [3811, 5056, 3579, 5462, 5566, 5278, 3291, 3458, 4197, 3615, 5963, 5809, 712, 5130, 3677, 3790, 1393, 5635, 4134, 456, 3713, 4796, 3854, 4053, 6024, 2866, 5157, 5159].

Exponents [3918, 5001].

Extant [371]. Extended [2727, 297, 5068, 5069, 2584, 2422, 5865, 5946, 2280, 3617, 5105, 5879, 3187, 1372, 933, 667, 1014, 941, 958, 3863, 2974, 582, 4393, 5593, 4694, 1253, 5001, 2698, 4627].

Extended-precision [667, 3863, 582].

Extended-Range [372].

Extension [1180, 4117, 3691, 2528, 3708, 1630, 5647, 5471, 4954, 4955, 4956, 5288, 3614, 2604, 706, 851, 3018, 2161, 3933, 1833, 1384, 4123, 5347, 681, 4796, 3854, 4053, 6024, 2866, 5157, 5159].

Exhaustive [5996, 3444].

Extra [2068, 4664, 4929].

Extra-Precise [4664, 4929].

Extra-Range [3326].
Fast2Sum [5839, 5917].

Fastest [5027]. Factorial [2769]. Factorial-Base [2769]. factorising [556].

Factors [1965, 5801, 2102].

Factors [3446].

Failing [4061, 4451]. Fail [6042]. Failure [3392, 1432, 3626, 2735, 3481, 2988].

Fais [366]. Fairmont [6415].

faithful [4122, 4323, 5100, 4247, 5214, 5215, 3356, 3653, 4119]. Faithfully [5711, 5780, 5821].

Fall [6099, 6109]. Falls [6398].

Family [2376, 4006, 1483, 1484, 2533, 5171, 5174, 1731, 5463, 5465, 4660, 2960, 3134, 3890, 4199, 1545, 3159, 4093, 3661, 5149, 4299, 2380, 5170, 5718, 6195, 2441, 2809, 3208, 3225].

Fan [2026]. Fan-In [2026]. FAQ [4766]. FasMath [2396]. Fast [4306, 3385, 4112, 4463, 5547, 343, 189, 3691, 5033, 5834, 2071, 2906, 2907, 5427, 3086, 3695, 1945, 1615, 5918, 1947, 884, 5438, 1488, 2222, 4145, 5251, 1299, 1491, 949, 3829, 1498, 1972, 5294, 3098, 2556, 5260, 3100, 5175, 5634, 4341, 4342, 4634, 5638, 3278, 3841, 1729, 2934, 2403, 4795, 3283, 4011, 3853, 5776, 1510, 3590, 1740, 1427, 1745, 5116, 5117, 5284, 3728, 5079, 3454, 3600, 5354, 4660, 3456, 3458, 2589, 1292, 3302, 3132, 3872, 5941, 3304, 5681, 276, 5659, 4046, 4196, 2430, 2605, 1337, 3151, 3615, 1538, 3745, 5580, 1778, 5107, 5300, 978, 4972, 1783, 2002].

Fast [4841, 2998, 4547, 2449, 6016, 5512, 5807, 5808, 4980, 5122, 1078, 851, 4236, 4410, 4551, 5598, 2652, 2653, 3643, 3918, 5126, 4862, 3648, 4421, 4521, 4562, 1576, 2032, 5216, 5314, 5385, 1451, 1091, 4717, 2345, 4262, 6024, 3037, 2326, 2348, 2482, 2485, 1591, 2046, 1001, 5745, 3215, 3216, 5992, 786, 291, 2709, 2882, 3228, 3229, 3380, 5018, 5156, 5157, 5748, 2711, 5695, 4299, 5029, 5024, 2722, 4027, 4106, 4734, 2058, 5993, 743, 2889, 2380, 883, 5557, 1407, 1951, 3276, 4636, 2752, 2930, 3714, 3842, 4348, 3852, 4649, 4514, 2108, 1637, 5277, 1868, 4028, 3120, 1139, 1215, 4031, 5286, 3128]. fast [1325, 1522, 5089, 3463, 5188, 1991, 2607, 2980, 5499, 4053, 5194, 840, 2623, 4542, 842, 1548, 2814, 3753, 3176, 3508, 4074, 5885, 2158, 2025, 1247, 1672, 990, 3530, 3659, 2350, 3945, 1818, 3370, 5004, 5319, 3208, 4103, 3787, 5534, 497, 1108, 1467, 4531, 4111, 4465, 1300, 2124, 1891, 2145, 1669, 1903, 3520, 602, 1391, 1932].

Fast2Sum [5839, 5917]. Faster [1846, 4483, 2926, 3105, 95, 5073, 5272, 4170, 5473, 5360, 6067, 4240, 1817, 2703, 5823, 5830, 2565, 2875].

Fastest [424, 2895].

FastRTS [4442]. Fault [5621, 3257, 2096, 4016, 5854, 5472, 2965, 6280, 3183, 3184, 2024, 1095, 2059, 4454, 5833, 2069, 2906, 2907, 3438, 2586, 4371, 2138, 2829, 3367, 3369, 3062, 3232, 2715, 3233].

Fault-Masking [2059].

Fault-Tolerant [5472, 2024, 4016, 3183, 3184, 2906, 2907, 3438, 4371, 3367, 3062].

faults [3114]. FCC [3590]. FCCM [6410, 6463, 6390, 6447].

Fclass [4375]. FCT [6136]. FDIV [3421, 3269, 3350]. FDLIBM [3006]. FDTD [4726].

Feasibility [2401, 1065, 1074, 4428, 2587]. Feasible [3478]. Feature [223, 5575, 3059].

Features [4842, 4974, 4232, 2729, 2897, 344, 3303, 2280].

featuring [6284].

February [6406, 6423, 6274, 6142, 6173, 6204, 6335, 6313, 6250, 6420, 6392, 6319, 3960].

Federation [6114, 6111].

Feedback [2913, 684, 5525, 6401, 2434, 91, 3002, 4703, 3383]. feedback-directed [6401].

First [6165, 167, 5059, 6288, 6322, 3730, 6129, 6290, 6345, 520, 1072, 3334, 205, 1806, 59, 17, 20, 50, 887, 6381, 218, 6244, 3596, 3604, 6468, 334, 1084, 4249, 6318.
3050, 2046, 3673, 2874, 540]. first- [3673]. first-in [3050]. first-order [2874].
first-out [3050]. Fischler [2361]. Fisherman [6401]. Fists [142]. Fitting
[338]. Five [4848, 1611, 3290]. five-moduli [1611]. fix [5995, 6052]. fixe
[2631]. Fixed [2510, 4307, 5415, 3388, 5614, 1937, 1286, 2542, 1718, 2916,
3822, 4622, 800, 1968, 3724, 354, 5937, 4025, 3731, 5942, 686, 5487, 5488,
3150, 1065, 3746, 5953, 3897, 4214, 5724, 843, 1074, 5524, 161, 450, 5324,
5408, 5766, 5162, 1182, 1707, 4615, 2541, 5629, 682, 4648, 898, 2582, 3128,
3129, 2593, 3132, 5089, 3460, 2275, 1882, 477, 4052, 5873, 632, 911, 2631, 3002,
3635, 2326, 5199, 2852, 5123, 2160, 3191, 4713, 5687, 4434, 4720, 3202, 4581,
3956, 120, 1694, 495, 496, 2193, 2503]. Fixed- [2542, 5487, 5488, 5408, 2631].
Fixed-Integer [686]. Fixed- Point [4307, 5614, 3724, 5937, 3731, 5942,
3150, 3746, 4214, 5524, 450, 5766, 2510, 1937, 2916, 1968, 5953, 5162, 1707,
5629, 682, 4648, 898, 2582, 3128, 3129, 1882, 4052, 5873, 632, 3002, 2326,
5199, 2852, 3191, 4713, 5687, 4434, 4720, 3202, 4581, 3956, 2503]. fixed-
precision [2193]. Fixed-Rate [5724]. Fixed-Size [1718, 3897]. Fixed-Slash
[1065, 843, 1074]. Fixed-Width [5324, 3635]. Fixed-Word-Length
[354]. fixing [5899]. flag [5223]. flagged [4774]. flags [5000]. Flap
[5318]. flash [4986]. Flaw [3270, 3350, 3244, 3201]. FLECKmarks [3424].
flerformat [1637]. Flex [1956]. Flex/32 [1956]. flexibility [3059]. Flexible
[5271, 6049, 5569, 5942, 4380, 1783, 646, 4572, 2704, 4347]. flexiblen [1783].
Fleißkomma [2190, 2191, 2192, 2365, 2366, 1390]. Fleißkommapakets [2191]. Flight
[3623, 3481]. flip [5670]. Float [2006, 2335, 5542, 5993, 4942, 4808, 5747,
6052, 3188]. Float-Fix [6052]. float- float [4942]. float-point [5747]. float-
Precision [3188]. float-to-string [5993]. float.h [2622, 2464]. FLOATing
[5378, 1936, 4313, 3796, 5543, 1933, 4457, 4751, 5028, 5544, 5750, 5829, 5336,
4308, 4458, 3684, 2063, 2064, 4310, 4752, 187, 379, 3800, 5415, 5900, 5901,
1398, 2724, 2725, 2726, 2890, 2891, 2892, 2893, 2894, 3074, 3075, 3076, 3078,
3391, 4463, 4911, 4913, 5754, 5994, 5996, 5417, 5418, 5550, 5551, 1844, 141,
1701, 5169, 4124, 2205, 4762, 1283, 1706, 3249, 5702, 943, 3250, 3251, 3807,
3983, 3984, 3985, 1846, 4319, 2211, 4131, 1847, 1481, 2383, 2077, 3567, 5429,
796, 945, 1023, 1944, 2215, 2528, 2736, 4326, 4327, 5039, 5431, 5624, 5758,
5759, 3257, 3258, 1483, 1484]. Floating [3259, 1947, 1616, 5760, 2385, 1948, 674,
2217, 5043, 5626, 5840, 84, 1186, 1187, 1292, 6037, 4414, 4614, 4773, 3408, 6039,
2387, 5245, 216, 6000, 800, 5440, 143, 3089, 3263, 1408, 1409, 5171, 4922, 2538,
1488, 5343, 2542, 3414, 4145, 5248, 5559, 1190, 2545, 2546, 5704, 5762, 5922,
2917, 3822, 1622, 2393, 677, 1112, 1301, 1412, 1413, 1623, 1722, 2095, 2226,
2919, 3825, 5844, 3827, 1122, 1123, 1194, 1303, 1624, 5632, 3706, 3831, 4925,
5053, 5256, 5257, 2740, 4148, 4622, 3271, 3272, 3423, 1956, 1957, 3274, 3577,
5846, 3424, 3708, 3710, 4153, 2230, 2397, 3837, 3838, 4155, 2097]. Floating
[4631, 568, 2232, 2750, 3104, 4162, 4343, 4345, 4495, 4634, 5637, 5638, 5848,
1861, 5058, 4499, 5060, 4933, 6045, 3583, 4165, 1862, 1960, 458, 5850, 3718,
1630, 1730, 2754, 2756, 1864, 5180, 461, 1310, 1731, 4349, 5067, 5267, 3282,
3587, 3847, 4007, 3110, 5268, 1735, 4508, 2104, 1198, 893, 1412, 3283, 1128,
6048, 1423, 4509,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5552, 4013, 760, 2106, 4797, 5565, 1199, 2107, 2760, 4351, 2573, 5460, 2407, 3113, 3590, 196, 197, 1511, 1867, 5273, 762, 811, 3859, 5568, 814, 1204, 1638, 2254, 2576, 2577, 4517, 896, 5182, 5650, 5930, 897, 963, 1317, 1513, 4174, 4359, 5278.

Floating [273, 1514, 274, 626, 2110, 2111, 2258, 1746, 1747, 4019, 5468, 5469, 2583, 5934, 3595, 900, 356, 3292, 3598, 3866, 4022, 4023, 4945, 5078, 3728, 6053, 3118, 2417, 966, 967, 3452, 2576, 2577, 4517, 896, 5182, 5650, 5930, 897, 963, 1317, 1513, 4174, 4359, 5278].

Floating [223, 5948, 1530, 5660, 5866, 576, 310, 1147, 1226, 1331, 1883, 2782, 3607, 3737, 3738, 4041, 4191, 4375, 4664, 4665, 4815, 5189, 5468, 5469, 2583, 5934, 3595, 900, 356, 3292, 3598, 3866, 4022, 4023, 4945, 5078, 3728, 6053, 3118, 2417, 966, 967, 3452, 2576, 2577, 4517, 896, 5182, 5650, 5930, 897, 963, 1317, 1513, 4174, 4359, 5278].

Floating [2310, 5968, 2621, 1658, 588, 635, 2445, 1075, 6072, 3492, 910, 6015, 1543, 2628, 1545, 5876, 2991, 5589, 4400, 481, 530, 843, 1074, 3631, 5509, 366, 2445, 1075, 4224, 5974, 1895, 3327, 3000, 5372, 4225, 913, 2145, 5306, 5114, 3633, 410, 5729, 5795, 5976, 6071, 6072, 328, 2318, 1440, 1662, 590, 1793, 2010, 2148, 2322, 2123, 3005, 4850, 5376, 5879, 6017, 1353, 3756, 1077, 2011, 2640, 4232, 2329, 2330, 6074, 5674, 848, 4857, 5675, 5736, 3637, 4980, 5122, 3337, 2649, 3917, 3504, 3505, 3707, 3641, 3916, 4860, 2452, 2828, 2453, 5677, 4238, 2652, 2653]. Floating [5201, 1900, 593, 987, 1241, 2456, 2154, 4082, 594, 1082, 1156, 1243, 5678, 5737, 5380, 2021, 650, 4085, 4246, 5738, 2158, 2660, 2661, 3016, 1904, 2861, 780, 1254, 1374, 1375, 1683, 5318, 3782, 3783, 4884, 1256, 2182, 3951, 1922, 5607, 4099, 5893, 3785, 1684, 5320, 2356, 2489, 2490, 2867, 4887, 4888, 1381, 5321, 1687, 5007, 5144, 3372, 4727, 5821, 3958, 545, 3209, 4279, 5744, 6025, 1001, 5145, 1924, 3673, 785, 5146, 5322, 2695, 3054, 3373, 2697, 3212, 5987, 2699, 1265, 4890, 1004, 5323, 5609, 3546, 1266, 3676]. Floating [3057, 5898, 2191, 3789, 185, 5992, 1384, 1600, 2498, 1601, 4896, 5016, 5153, 5154, 5330, 5331, 5405, 5408, 6026, 1464, 1270, 1386, 1387, 1388, 3973, 1930, 5537, 1931, 2876, 2877, 5693, 186, 3064, 2194, 2708, 4108, 5826, 1695, 5019, 5694, 2506, 741, 1273,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

2885, 1605, 3382, 5160, 5540, 3973, 879, 1839, 5696, 6085, 4903, 5334, 5412, 4904, 5161, 5025, 5635, 4445, 4106, 1835, 2065, 3237, 5162, 611, 2723, 1840, 1841, 3798, 1471, 5414, 2889, 3556, 3686, 5231, 5232, 5830, 5753, 667, 263, 2377, 2514, 2895, 3077, 3242, 3243, 3244, 3245, 4312, 5995, 6030, 6031, 2378.

floating [1014, 941, 5419, 1698, 2201, 1699, 1700, 1278, 2203, 1475, 1938, 2204, 4601, 3981, 1400, 2380, 2733, 2903, 5340, 5622, 1940, 1284, 1705, 2072, 2381, 2073, 5629, 1296, 1620, 2093, 2223, 4331, 5253, 3820, 3821, 5705, 4620, 4621, 1493, 5255, 5448, 3997, 2552, 1032, 1858, 3830, 4491, 4338, 383, 5258, 3273, 5450, 2229, 2743, 2709, 3836, 3099, 2557, 5176, 5177, 890, 1196, 2559, 5708, 5455, 2925, 2749, 3103, 3277, 4344, 4496, 4633, 5768, 3839, 2927, 218, 4637, 4932, 5057, 4163, 892, 4347, 4934, 2399, 5062, 2400, 4788, 2234, 4003, 2753, 5063, 2098, 459, 1631, 1632, 2755, 3842, 1127, 5065, 4935, 5265, 681, 1044, 4794, 4008, 4009, 4506, 5350, 1422, 1865, 2246, 1634, 1866].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 51

5959, 5799, 4830, 2617, 5870, 4833, 5871, 5961, 1438, 401, 5104, 5105, 1999, 4972, 5724, 769, 838, 1346, 524, 5502, 5875, 3158, 2802, 2137, 2310, 5968, 2621, 4691, 2438, 588, 635, 2440, 5672.

Floating-Point [6015, 1543, 2628, 5589, 4400, 481, 530, 1075, 3237, 5372, 4225, 913, 5306, 5114, 2318, 1662, 590, 1793, 2010, 2148, 2322, 2323, 3005, 4850, 5376, 5879, 6017, 1077, 2640, 2329, 2330, 6074, 848, 4857, 4980, 5122, 2649, 3917, 3505, 3507, 3640, 2828, 5677, 2652, 2653, 5201, 1900, 593, 1241, 2456, 2154, 5737, 650, 4085, 5738, 2660, 2661, 3016, 6075, 5312, 4707, 5381, 5206, 5207, 6020, 2164, 2165, 1160, 3520, 5886, 2166, 924, 3022, 2167, 4426, 2168, 2671, 4867, 5214, 5215, 5384, 5635, 1580, 5983, 3773, 1452, 3932, 1370, 1673, 4716, 4871, 4262, 4571, 4872, 5525, 4874, 2848, 5394, 5604.

Floating-Point [3531, 2347, 182, 2849, 2679, 2855, 3042, 3043, 3204, 3536, 3537, 2175, 5888, 5818, 5819, 6078, 1917, 2860, 2483, 4721, 1374, 1375, 1683, 5318, 4884, 1256, 5607, 1684, 5320, 2356, 2489, 2490, 2867, 1381, 5321, 1687, 3372, 4727, 5821, 3958, 545, 3209, 5688, 1256, 1930, 2877, 186, 3064, 2194, 5019, 2506, 741, 2885, 1605, 5160, 3973, 6085, 4903, 534, 5142, 4904, 5161, 5025, 5454, 4445, 4313, 4308, 2063, 2064, 1384, 1600, 2498, 4896, 5016, 5153, 5154, 5330, 5331, 5408, 1270, 1930, 2877, 186, 3064, 2194, 5019, 2506, 741, 2885, 1605, 5160, 3973, 6085, 4903, 534, 5142, 4904, 5161, 5025, 5454, 4445, 4313, 4308, 2063, 2064, 1384, 1600, 2498, 4896, 5016, 5153, 5154, 5330, 5331, 5408, 1270, 1930, 2877, 186, 3064, 2194, 5019, 2506, 741, 2885, 1605, 5160, 3973, 6085, 4903, 534, 5142, 4904, 5161, 5025, 5454, 4445, 4313, 4308, 2063, 2064, 1384, 1600, 2498, 4896, 5016, 5153, 5154, 5330, 5331, 5408, 1270, 1930, 2877, 186, 3064, 2194, 5019, 2506, 741, 2885, 1605, 5160, 3973, 6085, 4903, 534, 5142, 4904, 5161, 5025, 5454, 4445, 4313, 4308, 2063, 2064, 379, 3078, 2942, 573, 813, 961, 1133, 1203, 1637, 3288, 2763, 2943, 1741, 5275, 1742, 2413, 1743, 5464, 4654, 4655, 5717, 5781, 1207, 220, 150, 1748, 4177, 4657, 3446, 5572, 3864, 4362, 4520, 2765, 2766, 3294, 3449, 1322, 1138, 1871, 3295, 3123, 4370, 2418, 5083, 5084, 1643, 6011, 6059, 5477, 1978, 5478, 1140, 5480, 2271, 1143, 1761, 1645, 3461, 4954, 4956, 5288, 216, 211, 3874, 1061, 1144, 1764, 4526, 5655, 2775, 5487, 5488, 1527, 5719, 5864, 5944, 2122, 2281, 2282, 2967, 1986, 1987, 3308, 3467, 3468, 4042, 5493, 4528]. Floating-point [2783, 3144, 3310, 3145, 578, 434, 690, 2285, 2286, 2287, 2288, 4671, 2609, 2292, 2294, 2295, 1437, 1651, 5362, 3476, 3744, 4675, 5364, 3314, 768, 831, 904, 4052, 4676, 2434, 3155, 2133, 2134, 5665, 6013, 5956, 3747, 5581, 5873, 698, 2616, 2796, 2981, 4388, 5722,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 56

2802, 694, 2491, 1270]. Gleitkomma-Arithmetik [827, 694]. Gleitkomma-
Prozessoren [1270]. Gleitkomma-Prozessors [2491]. Gleitkomma-
und [2802]. Gleitkommaarithmetik [1782]. Gleitkommadarstellung
[718]. Gleitkommaformat [1530]. Gleitkommaprozessor [1687, 3052].
Gleit punktalgorithmen [2963]. Gleit punktrastern [1948]. Global [3405,
3428, 474, 1142, 6259, 3474, 4404, 3511, 3519, 5631, 5080]. Globally [3526].
GLOBECOM [6259]. GLSVLSI [6407, 6465]. GMICRO [2127]. GMP
[4320, 4917, 4111, 5024, 5074]. gmp-based [5074]. GMRES [4798, 5271].
GNB [5610]. GNU [4656, 3300, 5872, 5962, 3938]. Goals [1614]. Gödel
[3125]. Godfather [989]. Goldschmidt [4004, 4504, 4016, 5361, 5517]. Golem
[923]. Golub [1790]. Good [4122, 3986, 3710, 1738, 2824, 3836]. Gordon
[2562]. got [4622]. GPPF [2523]. GPU [5762, 5458, 5720, 6066, 5377].
GPUMixer [6066]. GPUMP [5411]. GPUs [5901, 5422, 5255, 5448,
5851, 5970, 5593, 5204, 5537, 5827, 5411]. graceful [5740]. Gradient
[94, 5382, 4618, 4775, 4976, 2814]. Gradual [4753, 4937, 1049, 4813,
2304, 1351]. Gradual-Underflow [4753]. Grain [4380, 4280, 3112]. grained [6013].
gram [5444, 555, 5699, 4800, 4589]. Grand [6416]. Granularity [5893]. Graph
[4409, 2534, 3574, 484]. Graphic [4373]. Graphical [4861]. Graphics
[5901, 5349, 4034, 4827, 4398, 5372, 2452, 5204, 4942, 5477, 3874,
2613, 2301, 2988, 4682, 2446, 4741, 4742]. Graphs [1146]. Great
[6407, 6465, 5857, 6335, 6351, 20]. greater [3161]. Greatest [5423, 514, 487, 727]. Greece
[6430, 6464, 6436]. Grenoble [6380, 6251, 2638]. grids [3543]. Gröbner
Group [6284, 3687, 6230, 5264, 6110, 6250, 1683, 6091, 2360, 2529]. Grouped
[3945]. Grouped-moduli [3945]. Groups [3704, 934]. Grove [6297, 6201,
6218, 6229, 6322, 6174, 6337, 6350, 6361, 6376, 6389, 6403, 6468,
6479, 6267, 6306]. Growth [5997, 330]. gruboi [2210]. Grundlagen
[1801, 937, 938, 905]. grundlegende [2977]. GSFAP [5402]. Guarantee
[1108]. Guaranteed [5447, 4755, 3502, 2481, 5123, 4704, 3054, 5023].
guaranteed-accurate [5023]. Guard [897, 963, 4823]. Guest [4853, 5549, 5436,
6038, 4050, 5297, 5734, 4870]. Guide [1290, 1194, 1303, 5562, 2114, 1824,
3671, 4278, 4729, 3214, 1764, 1253, 1587, 1922, 2690, 2691, 2692, 4398].
[5857].

Highlights [372], höhere[n 1023]. HOL [4307, 5363, 3262, 3263, 3292, 3958, 4022, 5790].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Just [4933, 4622].

4064, 5672, 3911, 3912, 4694, 4239, 4412, 4085, 4246, 6352, 5679, 6075, 5381, 4563, 4564, 4711, 4865, 5213, 3933, 4717, 5525, 603, 5395, 5743, 5820, 5320, 2870, 874, 4289, 3794, 5697, 5708, 2768, 5477, 3732, 5291, 3745, 4533, 5504, 3630, 4855, 2150, 3509, 5515, 3644, 2461, 2844, 995, 5004, 2496, 3795, 4739]. Low-
Complexity [5213, 3743, 4831, 3795, 4739]. Low-Cost [1281, 1703, 5060, 3600, 5573, 5672, 5381, 603, 5820, 874, 1317, 5477, 2150, 2461, 995]. Low-
dimensional [4694]. Low-Frequency [2723]. Low-Latency [5395]. Low-
level [2496]. Low-Power [4619, 4811, 6062, 5661, 3911, 3912, 4239, 6352, 3933, 4717, 5525, 5320, 4617, 3846, 3432, 3913, 3745, 4855, 5515]. Low-

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Non-Restoring [6018, 3340, 789, 1229, 3480, 3625].
non-significant [3726].
Non-Smooth [3474].
Non-standard [462].
non-strict [2773].
Non-traditional [4899].
Non-Underflow [1205].
Nonbinary [1816].
nonsignificant [3726].
Non-Smooth [3474].
Non-standard [462].
non-strict [2773].
Non-traditional [4899].
Non-Underflow [1205].
Norfolk [6281].
Norfolk/92 [6263].
Nonlinear [3427, 684, 3305, 3474, 2813, 3526, 3549, 4292, 3627, 701, 5116, 877].
nonrectangular [3200].
nonrecursive [2131].
nonredundant [3787].
Nonrestoring [793, 1486, 619, 586, 598, 1269, 1788, 993, 3033].
Nonscalar [1816].
nonspeculative [5470].
Nordsieck [401].
Nord-2B [594].
Nord-2B [594].
Northcon [6263].
Northcon/92 [6263].
Northwest [6162, 6186].
Northwest-83 [6162].
Norm [1021, 3955, 6008].
normalsie [4167].
normality [5388].
Normalization [1954, 897, 963, 399, 1908, 1838, 2060, 1489, 1730, 3861, 1515, 3544].
Normalized [150, 1156, 1372, 3264, 278, 4381, 437].
Normalizing [5930, 2945, 5505].
Norms [5435, 5251, 5780].
normwise [5643].
Norwegian [1637].
Notation [4493, 5815, 1252, 278, 5305].
notations [4609].
notch [2825].
Note [936, 3804, 241, 192, 244, 101, 147, 131, 899, 468, 307, 514, 67, 308, 689, 327, 6, 551, 1569, 3649, 656, 660, 1821, 1919, 2876, 5826, 4297, 880, 4138, 93, 2749, 4363, 1871, 1527, 3486, 699, 3053, 64, 1172].
Notes [167, 617, 46, 30, 24, 309, 2274, 3877, 3607, 26, 177, 1569, 687, 3467, 5103].
Nothing [1985, 3887].
note [5904].
Notwendigkeit [368].
Novel [744, 4128, 809, 3129, 2598, 1999, 5977, 3920, 4076, 2668, 3517, 4426, 5008, 5009, 5150, 5748, 4461, 5772, 2804, 5375, 5685, 4578, 4739].
November [6216, 6355, 6437, 6099, 6109, 6356, 6132, 6201, 6218, 6229, 6322, 6203, 6123, 6129, 6206, 6247, 6302, 6386, 6144, 6174, 6336, 6337, 6361, 6376, 6389, 6403, 6468, 6479, 6149, 6163, 6306, 6318, 6188, 6214, 6242, 4691].
Number [4975, 4400, 640, 1074, 1786, 4403, 2997, 2812, 284, 1551, 3333, 4854, 847, 3758, 1078, 851, 3338, 2650, 1355, 3342, 3179, 3180, 4239, 4412, 2457, 3924, 4083, 918, 1081, 708, 1804, 3186, 3018, 3345, 1573, 1809, 1448, 5602, 657, 415, 444, 5891, 3196, 1814, 487, 727, 2039, 1093, 4437, 4440, 2485, 869, 1169, 5142, 3785, 2355, 2184, 5608, 870, 1925, 1170, 2699, 2050, 5991, 5405, 3378, 2882, 4901, 738, 4454,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

550, 2885, 6120, 2509, 3069, 3239, 4748, 4749, 4036, 1608, 4115, 4461, 3388,
2516, 2202, 3690, 4466, 5618, 4598, 3402, 5998, 2069, 1017, 1181, 1401, 1940.

number [1942, 2208, 1183, 3083, 3084, 1708, 1845, 2906, 2907, 1611, 3987, 3694,
5342, 3576, 1724, 4000, 1886, 1887, 1888, 2131, 2132, 2298, 2299, 2791, 2613,
2793, 2301, 2614, 2302, 3621, 3748, 4076, 4971, 2620, 2804, 4061, 4062, 4063, 4220, 4221, 4222, 4399, 4683, 3906, 4064, 5588, 2311, 2005, 528,
5507, 5371, 1661, 3753, 4853, 5309, 4855, 204, 4233, 4549, 2331, 3174, 3175,
2829, 2830, 3920, 4075, 4076, 3013, 3181, 3812, 369, 3183, 3184, 3343, 1668,
1805, 4987, 5885, 4242, 4243, 4558, 2836, 2837, 3346, 3515, 482, 4087. number
2704, 2709, 3066, 3067, 3230, 3231, 3969, 3970, 3971, 4295, 4296, 4451, 4452,
4453, 2711, 2712, 2713, 4743, 499, 2886, 2720, 2721, 4617. Number-Theoretic
[3924, 4083]. Numbers [6394, 6438, 613, 943, 3986, 33, 1403, 1023, 2385, 505,
5620, 5840, 3408, 6042, 6043, 6328, 4329, 1298, 2393, 298, 1304, 1035, 1726, 1727,
4155, 129, 4640, 621, 1131, 49, 811, 1425, 48, 3594, 2584, 512, 513, 35, 1136, 2417,
1872, 2421, 2588, 2771, 5859, 5860, 4035, 308, 5654, 567, 5949, 4379, 1538, 5793,
227, 1438, 5301, 587, 583, 407, 2812, 4225, 2145, 3330, 5729, 9, 5733, 1077,
2652, 2653, 333, 4419, 1364, 3649, 1160, 157, 3772, 2039, 6077, 2483, 4721, 5141,
3666, 3733, 1597, 3218, 6026, 1385, 1176, 609, 5955, 879, 1007, 5027, 3798. numbers

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

4126, 672, 4129, 6424, 3405, 1287, 3255, 747, 2384, 675, 1714, 6217, 1120, 5445, 3266, 3993, 5049, 4779, 5254, 1424, 1201, 1202, 812, 5649, 1740, 4653, 5778, 5652, 5282, 4181, 2589, 3127, 1520, 4372, 474, 6290, 6384, 5289, 6494, 5660, 5866, 4043, 2428, 4046, 3613, 5359, 3893, 4674, 767, 4382, 5958, 5797, 4210, 2798, 4215, 1438, 3625, 4218, 4057, 2802, 1784, 117, 2643, 2823, 848, 5735.

Parallel [4702, 1359, 3511, 4984, 6266, 5209, 5739, 4563, 100, 6152, 4566, 5213, 6153, 3028, 4095, 3526, 3033, 3657, 6353, 2478, 2849, 6281, 1455, 1677, 3364, 662, 5401, 5149, 5403, 5404, 3221, 1105, 3549, 3967, 4110, 3232, 3069, 2058, 2522, 2523, 6310, 1116, 1405, 4776, 2092, 5631, 3743, 4533, 4831, 1659, 5371, 2444, 2149, 3174, 3175, 3508, 3009, 3509, 2802, 1784, 117, 2643, 2823, 848, 5735.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Plus [5836, 5667, 1664, 4277, 4278]. Plus-Minus [5836].
Processeur [2106, 2440, 1900]. Processing [1606, 2887, 6273, 6327, 6409, 1478, 3404, 6200, 268, 2542, 4333, 3425, 5349, 2101, 3283, 816, 1640, 2946, 6055, 517, 6233, 6784, 6248, 6277, 6385, 6399, 6415, 6417, 2961, 2962, 4034, 3977, 2965, 1062, 3465, 2428, 1066, 4532, 6208, 6145, 6315, 6433, 5970, 5112, 6112, 118, 848, 2018, 3520, 1449, 4572, 6353, 2849, 6281, 3042, 1096, 5694, 3077, 2069, 1017, 2523, 6310, 2221, 2223, 3704, 2557, 4497, 6275, 5529, 4794, 6114, 2252, 5462, 5715, 2255, 1514, 2945, 3118, 4808, 3120, 3874, 2598, 3140, 1222, 970, 6101, 3310, 2127, 2788, 1884, 1774, 1886, 1888, 2998, 2792, 4676, 2800].

processing [6195, 6349, 6360, 6375, 6388, 6402, 6418, 2441, 2809, 2446, 6111, 2830, 4413, 3010, 3011, 2153, 6294, 2468, 5523, 4991, 2678, 3945, 3367, 1915, 6079, 2868, 1263, 6224, 6269, 3059, 1693, 1102, 2372, 2704, 1017, 2523, 6310, 2221, 2223, 3704, 2557, 4497, 6275, 4794, 6114, 2252, 5462, 5715, 2255, 1514, 2945, 3118, 4808, 3120, 3874, 2598, 3140, 1222, 970, 6101, 3310, 2127, 2788, 1884, 1774, 1886, 1888, 2998, 2792, 4676, 2800].

Processor [3797, 1610, 4463, 6029, 3249, 2211, 1847, 1481, 4607, 1944, 1950, 2538, 1190, 3266, 1719, 1297, 1490, 1720, 1860, 2230, 1306, 3584, 458, 2402, 1048, 2249, 2107, 2760, 3113, 4939, 1746, 1747, 1213, 1518, 2265, 4661, 5481, 4037, 1328, 5941, 5487, 5292, 5490, 3879, 3884, 5357, 820, 2060, 2293, 2615, 2617, 4211, 2137, 2440, 1349, 5370, 1233, 3327, 2318, 4850, 3756, 1556, 2329, 1557, 4860, 2452, 1240, 2154, 3511, 442, 1159, 3651, 4090, 1449, 1580, 3359, 3525, 2349, 1817, 2178, 3046, 1827, 2184, 1833, 3052, 1382, 1265, 5155, 1106, 2506, 1275, 2723, 1840, 1841, 2889, 5753, 2377, 4912, 2378].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

2126, 1149, 4052, 5727, 1547, 3755, 916, 655, 5892, 3206, 259, 1174, 4906.

Programmable [6406, 6423, 6410, 6439, 6452, 6396, 3110, 6400, 6474, 2986, 6319, 6324, 6390, 6447, 6463, 6489, 3042, 5398, 6392, 6393, 5617, 4934, 3723, 2264, 5477, 2987, 1548, 2151, 4744, 6368].

Programmed [3119, 83].

Programmer [3813, 3271, 3272, 3423, 3111, 1763, 822, 3488, 3489, 3001, 2183, 4442, 3214, 2398, 1922].

Programmer-controlled [822].

Programmiersprachen [1023].

Programmierung [2977, 2977].

Programming [6134, 6199, 6215, 6226, 6408, 2727, 5913, 6309, 1023, 144, 4153, 130, 4013, 5774, 3437, 4017, 1315, 3125, 3734, 4038, 5288, 5946, 1434, 4193, 5359, 2977, 1230, 6014, 5969, 406, 3161, 2817, 2818, 2644, 3017, 6151, 5817, 2180, 3046, 3676, 2498, 292, 4292, 452, 3801, 4123, 1020, 267, 1418, 5929, 2773, 4954, 4955, 4956, 6194, 2288, 2306, 2451, 1087, 446, 448, 120, 4889, 3226, 2879, 3232, 6320, 3735].

Programmpaketes [1783].

Programs [2730, 2899, 1612, 1289, 5039, 5432, 5762, 2550, 2551, 2320, 591, 5596, 4255, 3026, 4433, 5896, 1497, 4790, 5567, 3294, 3449, 3308, 2125, 5365, 2455, 5742, 5218, 2181, 5986].

Progress [2529, 4837].

Progressions [398, 4994].

Projection [1433].

Proofs [1670].

Proofs [4320, 5040, 4646, 4647, 510, 4194, 4528, 2431, 5596, 857, 2363, 4917, 4919, 5038, 2775, 5364, 2624, 2626, 3755, 4864, 3769, 3770, 3930, 2474, 928, 4111].

Proven [5242, 4628].

Prover [6380, 4045].

Provider [5222].

Providing [6297, 5431, 5463, 3823, 3706, 5072, 2215, 3420, 4945, 5960].

Provess [1833, 2460].

Provesses [104].

Provesses [2491].

PRP [484].

Pruning [3156].

Pseudo [1709, 383, 892, 231, 92, 104, 3444, 5083, 5084, 3168].

Pseudo-Computer [104].

Pseudo-Division [1709].

Pseudo-Divisionsverfahren [1709].

Pseudo-Divisionsverfahren [1709].

Pseudo-exhaustive [3444].

Pseudo-operations [383].

Pseudo-Random [92].

Pseudo-round [892].

Pseudo-spectral [5083, 5084].

Pseudodivision [600].

Pseudoduplication [3114].

Pseudoinverse [661].

Pseudorandom [2714, 4306, 786].

Pseudorandom-

4 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

\[3764, 3951, 373, 3052, 4889, 5020, 3972, 2506, 3798, 3690, 4958, 4921, 2535, 2537, 2221, 347, 3426, 3715, 3720, 4798, 4511, 2125, 585, 5098, 5956, 5722, 4391, 1345, 2141, 5876, 5802, 4846, 3495, 4853, 2672, 5226, 2497, 1102, 1974]\].

5456, 1519, 2277, 4823, 5497, 5578, 1343, 633, 2457, 3186, 5980, 1448, 4440, 5693, 2885, 2534, 2564, 1863, 1964, 3142, 821, 2646, 178, 1811, 2713, 2631.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[5842, 6018, 3340, 789, 1229, 3480, 3625]. Restricted [3337, 4487]. Result [4751, 5028, 1486, 6274, 6272, 3004, 3332, 3757]. Resultant [3772, 3244].
Rigorous [5922, 4013, 5947, 3914, 4256, 5387, 5818, 5819, 6078, 3553, 5386].
Rijndael [4254]. Rin [6277, 6417]. Ring [2910, 148, 1724, 4529, 1927].
Rings [3638, 6092, 1181, 3426, 2478]. Ripple [5438]. Ripple-Carry [5438].
RISC [2418, 2423, 2443, 2447, 2533, 4481, 2224, 2207, 2260, 4519, 2419, 2411, 2114, 2266, 2900, 3133, 3134, 1988, 2784, 3471, 2285, 2286, 2792, 3159, 2144, 2817, 2325, 3756, 3012, 2166, 1454, 2486, 3225, 2504, 3214]. RISC-Based [4519].
RNC [6438]. RNC3 [6328]. RNC5 [6394]. RNS [5568, 5885, 4749, 5027, 4459, 5548, 3563, 3693, 4602, 5236, 5621, 5756, 5833, 5836, 4478, 3829, 4333, 4487, 5452, 4632, 3278, 3714, 2240, 4011, 5462, 5566, 3856, 4357, 6051, 3601, 3869, 4029, 4367, 6055, 3131, 3132, 3732, 2973, 2298, 5963, 4235, 3919, 5814, 5126, 2668, 4421, 1445, 4875, 2346, 3947, 5135, 4101, 1830, 3674, 4584, 4900, 5748].
RNS-Based [5458, 4357, 4011]. RNS-to-weighted [3947].
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3875, 3876, 3304, 6062, 1983, 3885, 3611, 313, 475, 152, 4822, 3315, 43, 3316, 4207, 5586, 2801, 5587, 3319, 2310, 1542, 3325, 2813, 2634, 5120, 6018, 1077, 5513, 5596, 3758, 532, 3340, 1441, 4985, 1903, 534, 4418, 5205, 3347, 1569.

Root [1446, 5213, 2032, 538, 5684, 657, 600, 4431, 3527, 3368, 3536, 3537, 3660, 340, 4272, 1460, 211, 5608, 5532, 5691, 140, 1269, 4906, 5611, 549, 2501, 5017, 552, 3975, 2061, 3682, 378, 5547, 3689, 4128, 5999, 4917, 1288, 3569, 4142, 1407, 1715, 561, 3091, 3265, 3994, 3830, 888, 1501, 1628, 2241, 2243, 2244, 2404, 2566, 3108, 4501, 4643, 2245, 1868, 1321, 3445, 4021, 4658, 5473, 4027, 4028, 3867, 2954, 3301, 575, 3873, 5482, 3605, 2598, 3140, 1984, 2968, 3147, 3745, 2795, 3895, 4534, 2981, 3899, 3317, 3480, 3624, 3625, 2987, 2806, 2623, 2312, 3630, 2444, 2629, 2630, 2810].

5147, 5531, 65, 3788, 450, 5327, 5153, 2873, 6098, 610, 2714, 5334, 935, 6080].
rounding [3689, 4598, 1941, 4470, 4323, 4611, 3816, 4774, 1489, 3273, 4163,
3428, 1730, 5266, 2241, 2757, 2937, 4505, 4010, 3722, 5071, 4938, 5076, 2257,
1217, 2596, 4188, 823, 2601, 2979, 3153, 3314, 1776, 3895, 3747, 3896, 3156,
907, 980, 5673, 4066, 5972, 4401, 4543, 1352, 4228, 5308, 4236, 986, 5599,
3922, 4080, 920, 4417, 4560, 4708, 5600, 5313, 5681, 5682, 5388, 5393, 3027,
2345, 4576, 2181, 3954, 4726, 5224, 5225, 3053, 2492, 2493, 2494, 1171, 2051,
1267, 2874, 3383, 4627, 5636, 2495, 773, 418, 353]. Rounding-Exact [1438].
Rounding-Off [147, 65, 5756]. Roundings [1179, 741, 3578, 2333]. Roundoff
[3401, 5997, 1182, 1283, 1706, 1402, 3258, 3568, 2535, 5170, 755, 2915, 678, 3848,
682, 2582, 67, 3448, 358, 5089, 3608, 4665, 3470, 691, 3154, 840, 5969, 3002, 846,
2467, 2337, 5980, 414, 3035, 3036, 2854, 2855, 3668, 545, 784, 450, 3223, 4589,
497, 3552, 2375, 3681, 1008, 1109, 2510, 2200, 2066, 1937, 1707, 4138, 1618,
1951, 1189, 2541, 3264, 2916, 1855, 622, 759, 3118, 2948, 357, 3128, 3129, 2275,
2783, 3146, 4195, 2287, 822, 829, 2434, 3620, 1998, 632, 4847, 2326, 1353, 3007,
2825, 3646, 4081, 2469, 2609, 776, 5888, 2844, 3652, 2481, 4099, 3667, 4273,
1000, 3673, 2302]. roundoff [495, 496, 376, 3703, 2053, 2055, 2717, 2718, 3233, 3101].
Roundoff-error [3002]. Rounds [2013]. Routine [939, 1488, 2957, 3126,
310, 313, 340, 492, 1715, 1505, 1313, 1318, 1321, 1526]. Routinen [1629].
Routines [565, 2920, 1629, 387, 5271, 1880, 1778, 922, 1599, 1115, 2386, 4798,
RPC [263], RPQ [1644], RRNS [5894], RS [3243], RS/6000 [3243], RSA
[4602, 3418, 4484, 3132, 4235, 3037, 2865, 3963, 4287, 4454]. RT [1878]. RTL
[4632, 5148]. RTL-level [4632]. Rule [4610, 1646, 4238, 450, 4474, 2753,
822, 823, 2135, 5506, 3667]. Rules [5, 5627, 4398, 3519, 5444, 3867, 2270].
Rundungsfehleranalyse [773]. Runs [4206]. runtime [6401]. Russian
[2733, 2578, 278, 2141, 1549, 482, 992, 451]. Rust [6037]. Ryū [5993]. Rye
[6185, 6205].
Additional Contributions from Nelson H. F. Beebe

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5868, 5959, 5106, 2800, 5508, 1076, 1556, 4860, 1573, 657, 3786, 4761, 1853, 5443, 2741, 2742, 2743, 4163, 2753, 575, 1765, 2790, 2131, 2132, 3624, 3483, 5670, 1659, 4684, 3630, 5375, 2149, 2163, 3528, 3039, 2484, 1826, 3380, 2721.

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 114

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Additional Contributions from Nelson H. F. Beebe

8

References

REFERENCES

REFERENCES

REFERENCES

[29] K. Zuse. Verfahren zur selbsttätigen Durchführung von Rechnungen mit Hilfe von Rechenmaschinen. (German) [Procedure for automatic
execution of calculations by calculating machines]. German patent
application Z23624., April 11, 1936. Reprinted in [6150, §4.1].

646, December 1937. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-
0972 (electronic).

[31] Robert A. Millikan, Duane E. Roller, and Earnest C. Watson. *Mechanics,
Molecular Physics, Heat, and Sound*. The MIT Press, Cambridge, MA,
1937. ??? pp. See Appendix: Significant Figures and Notations by
Powers of Ten.

[32] Claude Elwood Shannon. A symbolic analysis of relay and
switching circuits. Master of Science, Department of Electrical
Engineering, MIT, Cambridge, MA, USA, August 10, 1937. 72
pp. URL http://dspace.mit.edu/bitstream/handle/1721.1/11173/

[33] Frank Benford. The law of anomalous numbers. *Proceedings
CODEN PAPCAA. ISSN 0003-049X (print), 2326-9243 (electronic).
URL http://links.jstor.org/sici?sici=0003-049X%2819380331%2978%3A4%3C551%3ATLOAN%3E2.0.CO%3B2-G.

calculer et aux calculs de la mécanique céleste*. (French) [On mechanical
analysis. Application to calculating machines and to calculation in
France, 1938. Extracts reprinted in [6150, §2.7]. Translated by Mr. R.
Basu.

Introduction to the Theory of Numbers*. Oxford University Press, Walton

REFERENCES

REFERENCES

[54] H.-J. Dreyer and A. Walther. Der Rechenautomat Ipm. Entwicklung Mathematischer Instrumente in Deutschland 1939 bis 1945. (German) [The Ipm calculator. The development of mathematical instruments in Germany 1939–1945]. Bericht A3, Institut für Praktische Mathematik, Technische Hochschule, Darmstadt, West Germany, August 19, 1946. Reprinted in [6150, §3.3]. Translated by Mr. and Mrs. P. Jones.

Turing:1948:REM

Williams:1948:EDC

Hartree:1949:NSR

Huskey:1949:PCP

Tukey:1949:TRA

Stifler:1950:HSC

Wilkes:1950:E

Worsley:1950:ED

REFERENCES

REFERENCES

REFERENCES

[95] W. J. (Wallace John) Eckert and Rebecca Bradley Jones. Faster, faster; a simple description of a giant electronic calculator and the problems it

REFERENCES

REFERENCES

REFERENCES

REFERENCES

218–222, July 1958. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic).

REFERENCES

Volder:1959:CTC

Wensley:1959:CNA

Wilkinson:1959:EZIa

Wilkinson:1959:EZIb

Young:1959:SSM

Bockstaele:1960:NFA

Brown:1960:EDC

REFERENCES

REFERENCES

[204] Morton Nadler. Division and square root in the quater-imaginary number system. Communications of the Association for Computing Machinery,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Knuth:1962:EPC

Lake:1962:LEH

Lynch:1962:WBD

MacSorley:1962:RBA

McGee:1962:BM

Meggitt:1962:PDP

Metze:1962:CBD

REFERENCES

Zuse:1962:ERE

Bemer:1963:NRT

Clenshaw:1963:ASF

Daly:1963:HSA

Descloux:1963:NRE

Dietmeyer:1963:CPN

Eisman:1963:PER

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Garner:1965:RID

Hammel:1965:RLC

Hammer:1965:BRBa

Hamming:1965:NLB

Ikebe:1965:NTP

James:1965:GSR

REFERENCES

REFERENCES

W. H. Specker. A class of algorithms for \(\ln x, \exp x, \sin x, \cos x, \tan^{-1}x, \) and \(\cot^{-1}x. \) IEEE Transactions on Electronic Computers, EC-14(1): 85–86, February 1965. CODEN IEECA8. ISSN 0367-7508. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4038361.

REFERENCES

REFERENCES

IBM:1966:ISM

Isaacson:1966:ANM

Kahan:1966:ISS

[361] W. Kahan. 7094 II system support for numerical analysis. SHARE Secretary Distribution 159, C4537, 1966.

Kogbetliantz:1966:GEF

Kuki:1966:EGS

Lam:1966:COG

Mancino:1966:MPF

Mazor:1966:FSI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[420] Lynn Yarbrough. Precision calculations of e and π constants. Communications of the Association for Computing Machinery, 10(9):537, September 1967. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

King:1969:LEN

Kirsch:1969:ACA

Knight:1969:FPS

Knuth:1969:SA

Linhardt:1969:DDT

Liu:1969:EAD

Matula:1969:TAM

REFERENCES

REFERENCES

REFERENCES

Hornbuckle:1970:LMA

Howell:1970:SLE

Kailas:1970:AMC

Knuth:1970:VNF

Krishnamurthy:1970:OIS

Krishnamurthy:1970:RTT

Ling:1970:HSC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bataille:1971:GCW

Berg:1971:SAO

Caprani:1971:ILR

Chen:1971:BAU

Chen:1971:BMS

Chen:1971:DNC

Chen:1971:EAA

Clark:1971:SCP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

From Douglas Priest: (Douglas.Priest@eng.sun.com) writing in Usenet newsgroup sci.math.num-analysis on 13 Sep 1994 16:04:56 GMT: “... An iterative algorithm for computing a protracted sum to working precision by repeatedly applying the sum-and-roundoff method.”.

REFERENCES

http://www3.oup.co.uk/computer_journal/hdb/Volume_15/
Issue_01/tiff/14.tif.

Volume_15/Issue_02/tiff/116.tif.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Sankar:1973:DDA

Schatte:1973:VMG

Schmid:1973:BLIa

Schmid:1973:BLIb

Schmid:1973:BLIc

Schmid:1973:BLId

Schmid:1973:BLVa

Schmid:1973:BLVb

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[770] N. Metropolis and Gian-Carlo Rota. Significance arithmetic—on the algebra of binary strings. In *Studies in numerical analysis (papers in
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[813] Myron Ginsberg and Dennis J. Frailey. The design and use of a floating-point (software) simulator for testing the arithmetic behavior of mathematical software. Technical report CP 74028, Department
REFERENCES

of Computer Science, Institute of Technology, Southern Methodist University, Dallas, 1975. 26 pp.

REFERENCES

[825] R. Klatte and Ch. Ullrich. Consequences of a properly implemented computer arithmetic

REFERENCES

[838] Seppo Linna. Towards accurate statistical estimation of rounding errors in floating-point computations. BIT (Nordisk tidskrift...

REFERENCES

REFERENCES

Sterbenz:1975:UA

Stone:1975:ICA

Svoboda:1975:SCA

Swartzlander:1975:SLN

Toma:1975:CLA

Trivedi:1975:LAD

Trivedi:1975:UCF

Yuen:1975:NBA

Asai:1976:RRC

Assmus:1976:NFS

Baker:1976:SFB

Brent:1976:FMP

Brent:1976:MPZ

Carter:1976:ANT

REFERENCES

Ni:1976:EAT

Paoni:1976:PF1

Parker:1976:STR

Patel:1976:ASB

Paul:1976:SEF

Pichat:1976:CEE

Randell:1976:ODC

REFERENCES

Bauer:1977:CFP

Bivins:1977:SAA

Bohlender:1977:FPC

Brinkmann:1977:FPT

Brown:1977:MSI

Collins:1977:APS

Colquhoun:1977:FAS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ris:1977:UDF

Rjabko:1977:AHM

Sanyal:1977:AND

Simmons:1977:SRA

Soderstrand:1977:HSL

Soderstrand:1977:MRN

Steer:1977:DHS

REFERENCES

REFERENCES

BellHowellCo:1978:BHF

Blue:1978:PFP

Boehmer:1978:TAF

Bohlender:1978:GBM

Boney:1978:MRW

Brady:1978:MBL

Brent:1978:AIB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1079] G. P. O’Leary. The design of a high-speed arithmetic processor. In COMPSAC ’78 [6132], pages 175–176. LCCN ????.

a variable number of shifts per cycle. *The Computer Journal*, 21(3):246–
252, August 1978. CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067
http://www3.oup.co.uk/computer_journal/hdb/Volume_21/Issue_03/tiff/246.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_21/Issue_03/tiff/247.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_21/Issue_03/tiff/248.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_21/Issue_03/tiff/249.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_21/Issue_03/tiff/250.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_21/Issue_03/tiff/251.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_21/Issue_03/tiff/252.tif.

Technical report, Digital Equipment Corporation, Maynard, MA, USA,

0018-9340 (print), 1557-9956 (electronic).

[1084] Anthony Ralston and Philip Rabinowitz. *A first course in numerical
analysis*. International series in pure and applied mathematics. McGraw-

[1085] Roshdi Rashed. L’extraction de la racine $n^{\text{ème}}$ et l’invention
des fractions décimales (XIe–XIIe siècles). (French) [The extraction
of the n^{th} root and the invention of decimal fractions (11th–12th
centuries)]. *Archive for History of Exact Sciences*, 18(3):191–243,
September 1978. CODEN AHESAN. ISSN 0003-9519 (print), 1432-

[1093] Arunas G. Sleikys and Algirdas Avižienis. A modified bi-imaginary number systems. In IEEE SCA '78 [6133], pages 48–55. ISSN 1063-
REFERENCES

Sripad:1978:QEF

Svoboda:1978:ACF

Swartzlander:1978:MAS

Tan:1978:TIIH

Trivedi:1978:CUC

Trivedi:1978:HRL

Tseng:1978:EAF

REFERENCES

In IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '78, pages 800–803. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1978. CODEN ???. ISSN ???.

[1108] Celia Wrathall and Tien Chi Chen. Convergence guarantee and improvements for a fast hardware exponential and logarithm evaluation

REFERENCES

REFERENCES

REFERENCES

[1145] W. Jenkins. Recent advances in residue number techniques for recursive
0096-3518. URL http://ieeexplore.ieee.org/xpl/tocresult.jsp?
isnumber=26137.

Reducibility among floating-point graphs. *Journal of the Association for
Computing Machinery*, 26(4):739–760, October 1979. CODEN JACOAH.
ISSN 0004-5411 (print), 1557-735X (electronic).

ACM SIGNUM Newsletter, 14(3S (Special issue)):13–21, October 1979.
CODEN SNEWD6. ISSN 0163-5778 (print), 1558-0237 (electronic).

[1148] Jan Kent. *The theoretical and practical study of floating point
instructions: Consisting of Theoretical definition, analysis and
comparison of floating point instruction, and procedures for the
description and simulation of floating point instructions*. Dr. Avhandling,
Universitetet i Oslo, Oslo, Norway, 1979.

[1149] Thomas Joseph Kolze. Block floating point FFT statistical noise analysis
program. Technical report CSR-79-2, Dept. of Electrical Engineering,
University of Missouri–Rolla, Rolla, MO, USA, 1979. vii + 180 pp.

[1150] Thomas Joseph Kolze. Statistical noise analysis of a block floating point
FFT and an example application. Electrical engineering thesis (M.S.),
University of Missouri–Rolla, Rolla, MO, USA, 1979. viii + 88 pp.

[1151] Roland Kusterer and Manfred Reimer. Stable evaluation of polynomials
1979. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842
(electronic).

REFERENCES

REFERENCES

REFERENCES

Wichmann:1979:ID

Wichmann:1979:PCG

Wilbanks:1979:MFI

Winnigstad:1979:ULC

Yohe:1979:INA

Agrawal:1980:NBA

Albrecht:1980:RAO

Ambikairajah:1980:TPM

[1180] E. Ambikairajah and M. J. Carey. Technique for performing multiplication on a 16-bit microprocessor using an extension of Booth’s

REFERENCES

[1198] L. Farrell. 8232: a peripheral for floating-point arithmetic. In IEEE MICRO '80 [6143], pages 13–18. LCCN QA76.5.P74.

REFERENCES

REFERENCES

[Farmwald:1981:HBE]

[Fredette:1981:RES]

[1319] R. T. Gregory. Residue arithmetic with rational operands. In IEEE CA5 ’81 [6148], pages 144–145. LCCN QA 76.6 S985t
REFERENCES

REFERENCES

[1333] Saroj Kaushik and R. K. Arora. Sign detection in the symmetric residue number system. In IEEE CA5 '81 [6148], pages 146–150. LCCN QA 76.6

REFERENCES

[1348] Svetoslav Markov. On an interval arithmetic and its applications. In IEEE CA5 ’81 [6148], pages 274–278. LCCN QA 76.6 S985t
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:1982:MKF

Arnold:1982:EPS

Bairstow:1982:FPP

Baraniecki:1982:QEL

Barnes:1982:RNI

Bohannan:1982:MAP

Bohlender:1982:ROA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dao:1983:QCA

Davis:1983:HSD

Demsky:1983:MMC

Dietrich:1983:VQF

Donthi:1983:BSM

Dubrulle:1983:CNM

Dyer:1983:ZRP

Ercegovac:1983:HRD

Ferguson:1983:DTE

Fraenkel:1983:SN

Gaitanis:1983:NPC

Galand:1983:FD

REFERENCES

REFERENCES

[1523] Windell F. Ingram, N. (Narayanswamy) Radhakrishnan, and Deborah F. Dent. Accuracy considerations when using some minicomputers for scientific and engineering problems. Technical report, U.S. Army Engineer Waterways Experiment Station; available from National

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1601] Edmund John Walsh. Floating gatefield effect transistor operating point changes: causes, characterization, and effect on electric field measurement by the device. Thesis (M.S.), Boston University, Boston, MA, USA, 1983. v + 121 pp.

[1603] Bertrand Jeffery Williams. A bit-serial floating point multiply/add architecture for signal processing applications. Electrical engineering thesis (M.S.), Texas A&M University, College Station, TX, USA, 1983. x + 97 pp.

Abruzzo:1984:ACA

Agrawal:1984:ACB

Alia:1984:VAD

Ancona:1984:PET

Anonymous:1984:CPD

Bell:1984:RMR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Munzel:1984:RAE

Murray:1984:SFA

OliverWhiteheadQuintet:1984:FN

Palmer:1984:P

Parker:1984:CCS

Pei:1984:CAD

Pfenninger:1984:DES

REFERENCES

REFERENCES

Barlow:1985:PEA

Barlow:1985:RED

Barnes:1985:SFP

Bayoumi:1985:HVA

Bittner:1985:WPD

Bleher:1985:AHA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gomez:1985:PFA

Goodman:1985:REF

Gooley:1985:DFM

Graham:1985:IFF

Grappel:1985:FSC

Gridley:1985:IPS

Gross:1985:FPA

Gross:1985:SIF

REFERENCES

was published in the January 1980 issue of IEEE Computer, together with several companion articles [1301, 1304, 1194, 1303, 1324, 1375, 1376]. Available from the IEEE Service Center, Piscataway, NJ, USA.

REFERENCES

Street, Suite 300, Silver Spring, MD 20910, USA, 1985. CODEN ????. ISSN ????.

REFERENCES

Ohhashi:1985:HSC

Oklobdzija:1985:SOS

Palmer:1985:MGN

Papachristou:1985:MIR

Parker:1985:GCI

Pellegrino:1985:RNS

REFERENCES

Peralta:1985:TRN

Raimi:1985:FDP

Ramnarayan:1985:LMR

Rao:1985:CCC

Reed:1985:VRM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Campbell:1986:NSR

Campbell:1986:SS

Cao:1986:BFP

Cathey:1986:LEI

Chadha:1986:IHP

Chakraborti:1986:IMR

Chowdary:1986:APR

Clenshaw:1986:GEL

REFERENCES

REFERENCES

REFERENCES

[1890] Ulrich Kulisch. Circuitry for generating scalar products and sums of floating point numbers with maximum accuracy. US Patent 4622650,

REFERENCES

[1913] Pankaj N. Shukla. An implementation on a MC68000/NS32081 microcomputer of binary floating-point arithmetic based on the IEEE

Simcoe:1986:MFP

Soderstrand:1986:RNS

Soderstrand:1986:VIM

Spafford:1986:RASa

Spafford:1986:RASb

Stewart:1986:CNC

REFERENCES

Ahmad:1987:IDA

Anonymous:1987:MAU

ANSI:1987:AIS

Ardalan:1987:FPR

Azmi:1987:FPS

Balsara:1987:SSS

Baranyk:1987:EBP

REFERENCES

Cosnard:1987:FAC

Crockett:1987:PFF

Crowell:1987:FPA

Demmel:1987:EAA

Dion:1987:MFA

DuCroz:1987:DFP

REFERENCES

[1975] Bertrand Hochet, Patrice Quinton, and Yves Robert. Systolic solution of linear systems over GF(p) with partial pivoting. In Irwin and
REFERENCES

[1995] Shigeo Kuninobu, Tamotsu Nishiyama, Hisakazu Edamatsu, Takashi Taniguchi, and Naofumi Takagi. Design of high speed MOS multiplier and divider using redundant binary representation. In Irwin and

Lange:1987:ITA

Leavitt:1987:APF

Lien:1987:RCI

Lin:1987:NFP

Liu:1987:BEF

Lo:1987:HGA

REFERENCES

REFERENCES

wu:1987:FDS

Wu:1987:TRF

Zaccone:1987:ENP

Zurawski:1987:DHS

Aberth:1988:PNA

Alt:1988:FEP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2173] Isaac D. Scherson and Smil Ruhman. Multi-operand arithmetic in a partitioned associative architecture. Journal of Parallel and Distributed...
REFERENCES

REFERENCES

pages 1423–1426. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1988. CODEN ????? ISSN ????

Stouratis:1988:FPL

Sun:1988:PG

Taylor:1988:BLN

Taylor:1988:HFP

Thistle:1988:PAH

Trefethen:1988:PSP

Tsao:1988:AST

REFERENCES

Venkaiah:1988:CMS

Voelzke:1988:FSAa

Voelzke:1988:FSAb

Voelzke:1988:FSAc

Weyland:1988:LCS

Wilson:1988:FPS

Wilson:1988:NFP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2233] A. M. Dennis, C. B. Marshall, and I. A. Burgess. Algorithm and architecture design for the implementation of high order FIR filters using the residue number system. In IEE Colloquium on Signal Processing Applications of Finite Field Mathematics, 1 June 1989, pages 1/1–1/5. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????

REFERENCES

REFERENCES

Ercegovac:1989:IMC

Ercegovac:1989:RSR

Fandrianto:1989:AHS

Feldstein:1989:NAP

Fowler:1989:AHS

REFERENCES

[2255] J. Gonnella and J. Periard. The application of core functions to residue number system signal processing. In *IEEE Military Communications*
REFERENCES

Gordon:1989:RDF

Grassmann:1989:PAR

Grehan:1989:FPR

Griffin:1989:ESR

Griffin:1989:RNS

Groeger:1989:DRG

REFERENCES

REFERENCES

Joslin:1989:EPN

Jouppi:1989:UVSa

Jouppi:1989:UVSb

Kahan:1989:PCA

Kak:1989:BAS

Kaneko:1989:VRM

Kaneko:1989:VRP

REFERENCES

[2299] R. Krishnan. An efficient systolic array VLSI cell architecture for the implementation of transversal filter based on the quadratic residue

Kulisch:1989:CGS

Lai:1989:HNS

Langston:1989:DBT

Lee:1989:FIR

Lee:1989:MGR

Lee:1989:QCC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Pennsylvania State University, Dept. of Computer Science, University Park, PA, USA, April 1990. 9 pp. Supported by the Air Force Office of Scientific Research. Supported by the National Science Foundation. Supported by the Office of Naval Research.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2431] Donald E. Knuth. A simple program whose proof isn’t. In Feijen et al. [6231], chapter 27, pages 233–242. ISBN 0-387-97299-4, 1-4612-8792-8 (print), 1-4612-4476-5 (online). ISSN 0172-603X. LCCN QA76 .B326 1990. Reprinted in [6488, Chapter 11]. This paper discusses the algorithm used in \TeX for converting between decimal and scaled fixed-point binary values, and for guaranteeing a minimum number of digits in the decimal representation. See also [2393, 4621] for decimal to binary conversion, [2483, 4721] for binary to decimal conversion, and [2414] for an alternate proof of Knuth’s algorithm.
Koren:1990:EEF

Kornerup:1990:ARB

Laakso:1990:RFP

Lee:1990:OPC

Ling:1990:AIM

Lozier:1990:CPL

MacDonald:1990:IFP

D. Matula. Highly parallel divide and square root algorithms for a new generation floating point processor. In Ullrich [6240], page ?? ISBN ???? LCCN ????

Mills:1990:DIH

Montoye:1990:DIR

Montuschi:1990:SSR

Morita:1990:FMM

Mueller:1990:HCA

Murthy:1990:MPA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1. Table 5 (page 124):
 insert k <-- 0 after assertion, and also delete k <-- 0 from Table 6.

2. Table 9 (page 125):
 for -1:USER!("");
 substitute -1:USER!("0");
 and delete the comment.

3. Table 10 (page 125):
 for fill(-k, "0")
 substitute fill(-k-1, "0")

[2485] Jenn-Dong Sun and H. Krishna. Fast algorithms for multiple errors detection and correction in redundant residue number systems. In Conference Record Twenty-Fourth Asilomar Conference on Signals,
REFERENCES

Tabak:1990:RS

Tang:1990:AET

Tang:1990:SSI

Tang:1990:TDIa

Tang:1990:TDIb

Teetz:1990:SNS
REFERENCES

[2605] Andreas Knöfel. Fast hardware units for the computation of accurate dot products. In Kornerup and Matula [6251], pages 70–74. ISBN 0-

Kurokawa:1991:CGU

Lai:1991:HNS

Lee:1991:FPPa

Lee:1991:FPPb

Lee:1991:FPPc

Lee:1991:SCF

REFERENCES

Marcus:1991:HSR

Markstein:1991:WFF

McQuillan:1991:HPV

McQuillan:1991:VAM

Mehrez:1991:AVP

REFERENCES

REFERENCES

Plauger:1991:AF

Plauger:1991:FPA

Plauger:1991:FPP

Plauger:1991:HTF

Plauger:1991:WW

Plauger:1991:WW

REFERENCES

REFERENCES

REFERENCES

Tsang:1991:SDC

Tsubokawa:1991:FEA

Tu:1991:ALA

Tu:1991:GAI

Turner:1991:IAE

Umemura:1991:FPN

REFERENCES

Yassine:1991:IMR

Yokoo:1991:OUF

Yoshida:1991:PRT

Yu:1991:FCF

Zelniker:1991:RCF

Zeng:1991:AFP

REFERENCES

Anonymous:1992:FPb

Anonymous:1992:FPc

ANSI:ftn92

Arazi:1992:BDC

Arnold:1992:AFI

Bailey:1992:ATF

Bailey:1992:PHP

Baker:1992:LCE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2771] Hiroshi Horiguchi and Tsutomu Tayama. Floating-point numbers and real numbers II. Advances in software science and technology, 3(??):151–156, 1992. ISSN 1044-7997.

REFERENCES

REFERENCES

REFERENCES

Lozier:1992:RPC

Lozier:1992:SLI

Lu:1992:NDA

Lynch:1992:FCA

Lynch:1992:HSD

Maguire:1992:MD

Makhdumi:1992:CCS

[2808] Shazia Makhdumi. Comparison of current switch bipolar circuits for high performance floating point arithmetic. Thesis (M.S.), Massachusetts

REFERENCES

[2822] H. Nakano, M. Nakajima, Y. Nakakura, T. Yoshida, Y. Goi, Y. Nakai, R. Segawa, and T. Kishida. An accurate, high speed implementation...
REFERENCES

Nakano:1992:FPB

Ng:1992:ARH

Nishimura:1992:FPR

Obaidat:1992:DMA

Ochs:1992:SIR

Okada:1992:AQE

Orton:1992:NFT

Paliouras:1992:SDP

Pan:1992:CWU

Park:1992:MED

Parker:1992:OVN

Pichat:1992:SFR

Plauger:1992:SCL

REFERENCES

REFERENCES

[2849] Ray Simar, Jr., Peter Koeppen, Jerald Leach, Steve Marshall, Dave Francis, Greg Mekras, Jeffrey Rosenstrauch, and Scott Anderson. Floating-point processors join forces in parallel processing architectures.
REFERENCES

[Takagi:1992:MMH]

[Takagi:1992:RMM]

[Tang:1992:TDI]

[Teufel:1992:IFP]

Thirumalaiswamy:1992:DSB

Timmermann:1992:LLT

Vowels:1992:D

Wang:1992:RAF

Weber-Wulff:1992:REC

Werter:1992:SLC

Wesner:1992:TS

Wichmann:1992:NUF

REFERENCES

Anonymous:1993:FPa

Anonymous:1993:FPb

Anonymous:1993:FPc

Anonymous:1993:FPd

Anonymous:1993:FPe

Anonymous:1993:FSB
[2895] Anonymous. The “fastest system on the block” label must be qualified with new multiplatform, floating-point benchmarks. PC Week, 10(22): 85–??, June 1993. ISSN 0740-1604.

Anonymous:1993:SRT

Asprey:1993:PFP

ASTM:1993:AES
[2898] ASTM. ASTM E29-08: Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications. ASTM
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Duncan:1993:CES

Duprat:1993:CAN

Eisig:1993:DBI

Eldridge:1993:HIM

Ercegovac:1993:VHR

Etiemble:1993:AMV

REFERENCES

REFERENCES

547

[2951] Nariankadu D. Hemkumar and Joseph R. Cavallaro. Efficient complex matrix transformations with CORDIC. In Swartzlander,
REFERENCES

Hendtlass:1993:MNIa

Hendtlass:1993:MNIb

Higginbotham:1993:ISR

Higham:1993:AFP

Holler:1993:IFP

Hopkins:1993:CEM

Horning:1993:SUM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Street, Suite 300, Silver Spring, MD 20910, USA, 1993. CODEN ???? ISSN ????

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Inside technology today 32-bit floating point multi-port DSP / produced by Texas Instruments. VHS format. High-speed, multi-port DSPs can be used in parallel processing applications to really enhance computation time and power. A popular 6-port floating point DSP and high speed design integration and applications are described in this tape, 1993. 1 videocassette.

REFERENCES

8 (softbound), 0-8186-3862-1 (casebound), 0-8186-3861-3 (microfiche).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES 574

CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic). This paper derives an algorithm for division of long integers, and implements it as a literate program, although without identifier cross-references.

Hartwig:1994:FPA

Hauser:1994:PEH

Hegland:1994:SSP

Hemkumar:1994:RLC

Hester:1994:PPP

Hicks:1994:PFU

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Parker:1994:FTLa

Parker:1994:FTLb

Patankar:1994:SHA

Phatak:1994:HSD

Popova:1994:EIA

Prince:1994:TFM

Pritchard:1994:RAR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Vuillemin:1994:CN

Walker:1994:SMA

Walters:1994:CTR

Wang:1994:MQR

Weaver:1994:SMI

Wei:1994:REF

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1994. CODEN ????. ISSN ????.

residue number system”. *IEEE Transactions on Signal Processing*,
42(8):2190–2191, August 1994. CODEN ITPRED. ISSN 1053-587X
xpl/tocresult.jsp?isnumber=7453.

[3232] C. K. Yuen and M. D. Feng. Parallel multiplication: a case study in
1994. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print),
1558-1160 (electronic).

[3233] Qihong Zhang and J. H. Kim. An efficient method to reduce roundoff
error in matrix multiplication with algorithm-based fault tolerance. In
???? IEEE catalog no. 94CH3412-4.

[3234] M. Zhang, J. G. Delgado-Frias, and S. Vassiliadis. Table driven
CODEN ICDTEA. ISSN 1350-2387 (print), 1359-7027 (electronic).

ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

[3236] K. Zuse. Past and present view on computer architecture. *IFIP
Information Processing '94 IFIP 13th World Computer Congress.

[3237] M. Aagaard and C. Seger. The formal verification of a pipelined double-
precision IEEE floating-point multiplier. In IEEE [6302], pages 7–10.
Press order number PR07213.
Abdallah:1995:SASa

Abdallah:1995:SASb

Al-Mouhamed:1995:ELF

Altwaijry:1995:PAT

Anonymous:1995:FEF

Anonymous:1995:INM

Anonymous:1995:MW

[3244] Anonymous. Micro view — what lessons can chip makers and their customers take from the Pentium floating-point divide flaw and the

Anonymous:1995:PCH

Antelo:1995:RCR

Bailey:1995:FBM

Bannon:1995:IAA

Baron:1995:FPP

Bauer:1995:AEB

REFERENCES

REFERENCES

REFERENCES

[3276] Marc Daumas, Christophe Mazenc, Xavier Merrheim, and Jean-Michel Muller. Modular range reduction: a new algorithm for fast and

REFERENCES

REFERENCES

Gluss:1995:DIA

Greenley:1995:UNG

Halfhill:1995:TBP

Hamano:1995:DCA

Harrison:1995:FPV

Hassler:1995:FET

[3293] Hannes Hassler and Naofumi Takagi. Function evaluation by table look-up and addition. In Knowles and McAllister [6305], pages 10–
REFERENCES 601

REFERENCES

Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1995. CODEN ????. ISSN ????

REFERENCES

REFERENCES

Mandelbaum:1995:DUL

Martel:1995:DSO

Matsubara:1995:NBS

Meissner:1995:EAD

Metafas:1995:FAC

Michelucci:1995:ARD

REFERENCES

REFERENCES

Orup:1995:SQD

Owens:1995:RNC

Parker:1995:MUP

Popova:1995:FCI

Posch:1995:MRRa

Posch:1995:MRRb

REFERENCES

REFERENCES

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:
REFERENCES

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

Schulte:1995:HDA

Schulte:1995:PSI

REFERENCES

Schwarz:1995:RQC

Shirazi:1995:QAF

Sigvartsen:1995:TBF

Sites:1995:AAA

Siu:1995:TMP

Sleijpen:1995:MCP

Smith:1995:CFA
REFERENCES

REFERENCES

Wong:1995:FEE

Wu:1995:SRM

Yu:1995:MRF

Zaytoun:1995:SFR

Zhou:1995:HSD

Ahrendt:1996:FHC

[3389] Vijayanand Jaganaathan Angarai. Number representation schemes for energy efficient computer arithmetic. Thesis (M.S.), University of Texas at Dallas, Dallas, TX, USA, 1996. ix + 57 pp.

[3393] Anonymous. The Square Root of 3 to one million digits, volume 628 of Project Gutenberg. Project Gutenberg, P.O. Box 2782, Champaign, IL
REFERENCES

Anonymous:1996:SROb

Anonymous:1996:SROc

Anonymous:1996:SROd

Anonymous:1996:SROe

Anonymous:1996:SROf

Anuta:1996:BLA

REFERENCES

REFERENCES

Bockenfeld:1996:TNT

Burger:1996:PFP

Burnikel:1996:HPF

[3409] Christoph Burnikel and Jochen K"onemann. High precision floating point numbers in LEDA. Report MPI I 96 1 002, Max-Planck-Institut f"ur Informatik, Saarbr"ucken, Germany, 1996. 7 pp.

Candev:1996:AIA

Cappuccino:1996:DDH

Chaitin-Chatelin:1996:FPA

REFERENCES

REFERENCES

Farag:1996:LPR

Feldstein:1996:OUM

Fenn:1996:MDD

Flynn:1996:SPT

Fortune:1996:SAY

Ganesan:1996:CSM

REFERENCES

Hecker:1996:LGF

Heikes:1996:DFP

Heindl:1996:MVC

Heinrich:1996:AAF

Herzberger:1996:OCC

Hickey:1996:FSP

Higham:1996:ASN

REFERENCES

REFERENCES

Jullien:1996:VDS

Kahan:1996:BEC

Kahan:1996:LNS

Kahan:1996:WCY

Kalantari:1996:HOI

Kalliojarvi:1996:REB

Kane:1996:PRA

REFERENCES

[3478] V. Kreinovich, A. Lakeyev, and J. Rohn. Computational complexity of interval algebraic problems: Some are feasible and some are computationally intractable — a survey. In Alefeld et al. [6308], pages
REFERENCES

[3481] Jacques-Louis Lions, Mauro Balduccini, Yvan Choquer, Remy Hergott, Bernard Humbert, and Eric Lefort. Ariane 5 Flight 501 failure, report by the Inquiry Board. Technical report, European Space Agency, Paris, France, 1996. URL http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html. From the foreword: “On 4 June 1996, the maiden flight of the Ariane 5 launcher ended in a failure. Only about 40 seconds after initiation of the flight sequence, at an altitude of about 3700 m, the launcher veered off its flight path, broke up and exploded. Engineers from the Ariane 5 project teams of CNES and Industry immediately started to investigate the failure.” From the report: “The internal SRI software exception was caused during execution of a data conversion from 64-bit floating point to 16-bit signed integer value. The floating point number which was converted had a value greater than what could be represented by a 16-bit signed integer. This resulted in an Operand Error. The data conversion instructions (in Ada code) were not protected from causing an Operand Error, although other conversions of comparable variables in the same place in the code were protected.”

REFERENCES

[3503] A. Nonnenmacher and D. A. Mlynski. Liquid crystal simulation using automatic differentiation and interval arithmetic. In Alefeld et al. [6308],
REFERENCES

Oberman:1996:DIH

Oberman:1996:IDO

Oberman:1996:RDL

Oberman:1996:VLP

Oklobdzija:1996:MSO

Paar:1996:NAP

Parhami:1996:CHS

Park:1996:PAG

Petunin:1996:UMI

Plum:1996:ETP

Popova:1996:IOI

Posch:1996:DRN

640

REFERENCES

REFERENCES

[3550] K. B. Williams. Testing math functions: When requirements are tight, we must carefully examine all potential sources of error. Make sure your
math library isn’t the weak link in the chain. *C/C++ Users Journal*, 14 (12):49–54, 58–65, December 1996. CODEN CCUJEX. ISSN 1075-2838. Describes a package that extends the Cody-Waite-Plauger work on the ELEFUNT package for the testing of the elementary functions, including the inverse hyperbolic functions, cube root, and Bessel functions of the first and second kinds. The C++ package implements 192-bit extended precision versions of all of the functions, so that accurate results are available for comparison with the normal double-precision results.

Zachary:1996:ESD

Zachary:1996:SHA

Zgliczynski:1996:RVC

Al-Twaijry:1997:APO

Allaart:1997:ISC

Althaus:1997:MNF

Anonymous:1997:BRPk

Anonymous:1997:SIS

Aoki:1997:RCR

Arnold:1997:ACT

Atkinson-Barr:1997:LEP

Martin Atkinson-Barr. Letter to the Editor: Pentium II math bug. *Dr. Dobb’s Journal of Software Tools*, 22(10):10, October 1997. CODEN DDJOEB. ISSN 1044-789X. Identifies himself as the “Mr. X” cited in [3575], and provides more the background on the discovery of the Pentium FIST (floating-point to integer store) instruction.
REFERENCES

REFERENCES

REFERENCES

Cena:1997:QCA

Chen:1997:PEG

Collins:1997:IPI

Compagner:1997:RER

Cuyt:1997:FPV

Daumas:1997:VRD

Dimitrov:1997:AME

Dimitrov:1997:ERN

Dimitrov:1997:TAD

Doring:1997:DAL

Drmac:1997:1JR

Drolshagen:1997:PES

REFERENCES

Intel to design NDRAM. battle over net telephony. vendors seek fast modems. US permits export of strong encryption. E-commerce nears $1 billion. chasing the blue light. personal E-mail use will soar.

[3597] David L. Harris, Stuart F. Oberman, and Mark A. Horowitz. SRT division architectures and implementations. In Lang et al. [6323], pages
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3623] Gérard Le Lann. An analysis of the Ariane 5 Flight 501 failure — a system engineering perspective. In Proceedings of the International Conference and Workshop on Engineering of Computer-Based Systems, pages 339–346. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1997. URL http://ieeexplore.ieee.org/document/581900/. From the article: “The SRI S/W exception was raised during a conversion from a 64-bit floating point number F to a 16-bit signed integer number. F had a value greater than what can be represented by a 16-bit signed integer, which caused an Operand Error (data conversion — in Ada code — was not protected, for the reason that a maximum workload target of 80% had been set for the SRI computer). ... The value of BH was much higher than expected because the early part of the trajectory of Ariane 5 differs from
that of Ariane 4, which results in considerably higher horizontal velocity values.”.

Matsubara:1997:LPZ

Matula:1997:PPF

Michelucci:1997:LA

Mizukami:1997:AFP

MRaihi:1997:XFO

[3634] David M’Raïhi, David Naccache, Jacques Stern, and Serge Vaudenay. XMX: a firmware-oriented block cipher based on modular multiplications. Lecture Notes in Computer Science, 1267:
Mukherjee:1997:DTM

Muller:1997:EFA

Nielsen:1997:PPF

Nielsen:1997:RRR

Oberman:1997:DAI

Oberman:1997:DID

Oberman:1997:SPD

Oklobdzija:1997:CLZ

Paar:1997:FAA

Parker:1997:MAU

REFERENCES

Parker:1997:MCAa

Parker:1997:MCAb

Pierce:1997:ARF

Brad Pierce. Applications of randomization to floating-point arithmetic and to linear systems solution. Thesis (Ph.D.), Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA, 1997.

Priest:1997:FTD

Rederlechner:1997:NCP

Reppy:1997:EAH

REFERENCES

[3656] Michael J. Schulte and James E. Stine. Symmetric bipartite tables for accurate function approximation. In Lang et al. [6323], pages 175–
REFERENCES

REFERENCES

Szabo:1997:REAb

Taborn:1997:DSM

Takagi:1997:GPO

TI:1997:TUG

Tomabechi:1997:WOD

Tsai:1997:FPR

REFERENCES

REFERENCES

[3687] Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. *ACM Fortran Forum*, 17(3):1–2, December 1998. CODEN ???? ISSN 1061-7264 (print), 1931-1311 (electronic).

REFERENCES

Bronnimann:1998:IAY

Chang:1998:HPD

Chatterjee:1998:MMP

Chen:1998:PCL

Chen:1998:VFP

Cheon:1998:TEA

REFERENCES

[3709] Joseph D. Darcy. Borneo 1.0: adding IEEE 754 floating point support to Java. Master of Science, Plan II, University of California, Berkeley, Dept. of Electrical Engineering and Computer Sciences, Berkeley, CA,
REFERENCES

REFERENCES

REFERENCES

[Kiranon:1998:SRV]

[Knuth:1998:SA]

[Kuhlmann:1998:FLP]

REFERENCES

Oberman:1998:ATK

Oberman:1998:MCS

Oberman:1998:RML

Paar:1998:EMA

Paul:1998:CBR

Paulus:1998:CRI

Sasaki:1998:ACE

Sasaki:1998:CEM

Sastry:1998:EIF

Seidel:1998:HHL

Severance:1998:IOM

REFERENCES

REFERENCES

REFERENCES

Walter:1998:EUD

Walters:1998:SFF

Wei:1998:RAC

Weiss:1998:FPM

Wu:1998:LCB

Wu:1998:NLC

Abbott:1999:ASS

Anonymous:1999:SLH

Antelo:1999:VRC

Aoki:1999:RCA

Bach:1999:NTS

Batten:1999:IBO

Batten:1999:IFB

Beaumont-Smith:1999:RLI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hiasat:1999:SCV

Hirn:1999:GBI

Hormigo:1999:ISC

Hung:1999:FDA

Hyogo:1999:LVF

Ide:1999:GFP

N. Ide, M. Hirano, Y. Endo, S. Yoshioka, H. Murakami, A. Kunimatsu, T. Sato, T. Kamei, T. Okada, and M. Suzuki. 2.44 GFLOPS 300MHz...

Iordache:1999:ARS

Iordache:1999:IPR

Jamieson:1999:NRF

Jamieson:1999:RFA

Jeong:1999:CPT

Jones:1999:BAT

REFERENCES

REFERENCES

Muroi:1999:ESR

Nannarelli:1999:LPDa

Nannarelli:1999:LPDb

Nannarelli:1999:LPR

Nedialkov:1999:IHO

Northrop:1999:GM

REFERENCES

Ruess:1999:MVS

Rugina:1999:APD

Rump:1999:IIL

Russinoff:1999:MCP

Saed:1999:ASA

Scherer:1999:OTW

REFERENCES

REFERENCES

Schulte:1999:IEG

Schulte:1999:RPD

Schwarz:1999:GFPa

Schwarz:1999:GFPb

Schwarz:1999:MSE

REFERENCES

Takagi:1999:DRA

Tanskanen:1999:REF

Tenca:1999:DHR

Thompson:1999:BPF

Tisseur:1999:NMF

REFERENCES

Yadav:1999:PSF

Yang:1999:CIS

Yang:1999:RNSa

Yang:1999:RNSb

Yang:1999:RST

Yap:1999:REI

REFERENCES

[3976] Record, page various, 19xx. Floating Point Systems, Portland, OR, USA.

[3977] Intel. Intel 8231A Arithmetic Processing Unit. Intel Corp, San Jose, CA, USA, 19xx. URL http://www.datasheetarchive.com/pdf-datasheets/Datasheets-14/DSA-276911.html. From the datasheet (p. 3-5): “The mantissa is expressed as a 24-bit (fractional) value; the exponent is expressed as a two’s complement 7-bit value having the range −64 to +63. The most significant bit is the sign of the mantissa (0 = positive, 1 = negative), for a total of 32 bits. The binary point is assumed to be [to] the left of the most significant mantissa bit (bit 23). All floating-point data values must be normalized. Bit 23 must be equal to 1, except for the value zero, which is represented by all zeros. The range of values that can be represented in this format is \(±(2.7^{−10} \ldots 9.2 \times 10^{18})\) and zero.”.
REFERENCES

REFERENCES

Ercegovac:2000:IGD

Ercegovac:2000:RSR

Eskritt:2000:DDF

Even:2000:CTR

Even:2000:DIC

Even:2000:DP1

[4014] W. L. Freking and K. K. Parhi. Modular multiplication in the residue number system with application to massively-parallel public-key cryptography systems. In Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, 2000,
REFERENCES

volume 2, pages 1339–1343. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2000. CODEN ????, ISSN ????

Gallagher:2000:FTN

Gay:2000:SAC

Goldovsky:2000:DIL

Groza:2000:FPA

Hanrot:2000:ML

REFERENCES

REFERENCES

2000 IEEE International Conference on Acoustics, Speech, and Signal
IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 2000. CODEN ???? ISSN ????

[4028] B. Hassibi. A fast square-root implementation for BLAST. In Conference
Record of the Thirty-Fourth Asilomar Conference on Signals, Systems
Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 2000. CODEN ???? ISSN ????

[4029] A. A. Hiasat. New efficient structure for a modular multiplier for
RNS. IEEE Transactions on Computers, 49(2):170–174, February
2000. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
tp=&arnumber=833113.

[4030] Yozo Hida, Xiaoye S. Li, and David H. Bailey. Quad-double arithmetic:
Algorithms, implementation, and application. Technical report 46996,
Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA
94720, October 30, 2000. 28 pp. URL http://www.cs.berkeley.edu/~
yozo/papers/LBNL-46996.ps.gz.

[4031] Akira Higuchi and Naofumi Takagi. A fast addition algorithm for elliptic
curve arithmetic in GF(2^n) using projective coordinates. Information
elsevier.nl/gej-ng/10/23/20/67/27/25/abstract.html;

[4032] J. Hormigo, J. Villalba, and M. Schulte. A hardware algorithm for
variable-precision division. In ?????, editor, Proceedings of the 4th
Conference on Real Numbers and Computers, Dagstuhl, Germany, April,
Hormigo:2000:HAVb

Ide:2000:GMF

Ifrah:2000:UHN

Imajo:2000:CSB

Intel:2000:IPF

ISO:2000:FSI

REFERENCES

Joye:2000:OLR

Kahan:2000:MAA

Kahan:2000:RDFa

Kahan:2000:RDFb

Kalampoukas:2000:HSP

Kao:2000:LTA

[4080] Woo-Chan Park, Tack-Don Han, and Shin-Dug Kim. Efficient simultaneous rounding method removing sticky-bit from critical path

Parker:2000:MCAa

Parker:2000:MCAb

Parks:2000:NTT

Philippsen:2000:CNJ

Pillai:2000:LPA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Yeh:2000:HSB

Zimmermann:2000:PGF

Akishita:2001:FSS

Akkas:2001:ISE

Alefeld:2001:SAM

Ammar:2001:SIC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

overview: “This is an implementation of exact (or constructive) real arithmetic, as an alternative to multiple-precision floating-point (MPFP). An important distinction is that in MPFP one sets the precision before starting a computation, and then one cannot be sure of the final result. Interval arithmetic is an improvement on this, but still not an ideal solution because if the final interval is larger than desired, there is no simple way to restart the computation at higher precision. By contrast, in XR no precision level is set in advance, and no computation takes place until a final request takes place for some output. Despite this, programming with XR is no different from MPFP, except for the declaration of critical variables as type ‘XR’.

The main aim is to produce a usably efficient implementation, which can be easily interfaced with existing C++ code. This contrasts with previous implementations in functional languages (Haskell, Miranda etc.), which, although theoretically important, seem to be rather too slow for real use.

This code is designed as an add-on to Victor Shoup’s arbitrary-precision arithmetic package NTL, and implements a new type XR, to complement NTL’s ZZ and RR integer and real types.

[4143] Fadi Y. Busaba, Christopher A. Krygowski, Wen H. Li, Eric M. Schwarz, and Steven R. Carlough. The IBM z900 decimal arithmetic unit. In
REFERENCES

REFERENCES

REFERENCES

[4183] Yozo Hida, Xiaoye S. Li, and David H. Bailey. Algorithms for quad-double precision floating point arithmetic. In Burgess

Hlavacs:2001:IAN

Hsu:2001:CAS

Hur:2001:GRO

ISO:2001:IIIc

Jacobi:2001:FVT

REFERENCES

Jamil:2001:CBN

Jeong:2001:OIO

Kahan:2001:NSF

Kahan:2001:SFP

Kahan:2001:WVT

Kaivola:2001:PEL

REFERENCES

REFERENCES

Koc-Sahan:2001:STA

Kosaraju:2001:MAM

Koy:2001:SLRb

Kramer:2001:AFE

Kreinovich:2001:INB

Krishnan:2001:PEM

[4205] Shankar Krishnan, Mark Foskey, Tim Culver, John Keyser, and Dinesh Manocha. PRECISE: efficient multiprecision evaluation of algebraic roots...

REFERENCES

[4222] A. S. Madhukumar and F. Chin. Incorporating incremental redundancy and link adaptation in communication systems using residue number

REFERENCES

REFERENCES

Street, Suite 300, Silver Spring, MD 20910, USA, 2001. CODEN ???? ISSN ????

[4238] Michael L. Overton. Numerical Computing with IEEE Floating Point Arithmetic, Including One Theorem, One Rule of Thumb, and One Hundred and One Exercises. Society for Industrial and
REFERENCES

Paliouras:2001:LPP

Park:2001:ADI

Park:2001:IMM

Phillips:2001:MMM

Phillips:2001:MRN

REFERENCES

REFERENCES

REFERENCES

Seidel:2001:DFI

Seidel:2001:EAB

Smith:2001:AFS

Steele:2001:SMFa

Steele:2001:SMFb

Stine:2001:CIH

Arithmetic, and Validated Numerics and Interval 2000, the International Conference on Interval Methods in Science and Engineering were jointly held in Karlsruhe, September 19–22, 2000.

REFERENCES

Um:2001:OAC

Verdonk:2001:PRIa

Verdonk:2001:PRIb

Vergos:2001:HSP

Visavakul:2001:DSS

REFERENCES

REFERENCES

Zimmermann:2001:AAC

Zimmermann:2001:APA

Ziv:2001:APM

Agarwal:2002:FPN

Akbarpour:2002:FCS

REFERENCES

REFERENCES

125–129. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2002. CODEN ???? ISSN ????

Arnold:2002:ICL

Arnold:2002:RPC

Bailey:2002:HPC

Barrio:2002:REB

Belanovic:2002:LPF

Bertot:2002:PGS

Beuchat:2002:SMB

Blackford:2002:USB

Boldo:2002:FRF

Boldo:2002:IAO

Boldo:2002:NSC

REFERENCES

[4331] R. Chotin and H. Mehrez. A floating-point unit using stochastic arithmetic compliant with the IEEE-754 standard. In 9th International
REFERENCES

Col:2002:ALC

Conway:2002:NOH

Conway:2002:SRI

Cornea:2002:SCI

Cowlishaw:2002:DPD

Cowlishaw:2002:TB

Crandall:2002:OPF

[4345] J. Demmel, Plamen Koev, and Ben Diament. The complexity of accurate floating point computation. In Li [6387], pages 672 (vol. 1) + 832 (vol.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Motegi:2002:EGG

Okeya:2002:FSM

Overton:2002:CNC

Paliouras:2002:LPC

Paliouras:2002:OLO

REFERENCES

Sawada:2002:FVD

Sawada:2002:MVS

Schwarz:2002:MIE

Serebrenik:2002:TLP

Shi:2002:SMF

Soudris:2002:FAB

[4435] D. Soudris, M. Dasygenis, K. Mitroglou, K. Tatas, and A. Thanailakis. A full adder based methodology for scaling operation in residue number system. In 9th International Conference on Electronics, Circuits and
REFERENCES

[4442] Texas Instruments, Dallas, TX, USA. *TMS320C67x FastRTS Library Programmer’s Reference (SPRU100A)*, October 2002. URL http://focus.ti.com/lit/ug/spru100a/spru100a.pdf. The FastRTS library is a collection of 26 optimized floating-point math functions for the TMS320C67x device. This source code library includes C-callable (ANSI-C-language compatible) optimized versions of the floating-point math functions included in previous run-time-support libraries.

REFERENCES

Wu:2002:BPF

Wu:2002:FFM

Wu:2002:MMS

Yang:2002:RNSa

Yang:2002:RNSb

Yang:2002:RNSc

[4453] Lie-Liang Yang and L. Hanzo. Residue number system assisted fast frequency-hopped synchronous ultra-wideband spread-spectrum

Yen:2002:RSR

Ziv:2002:SGM

Agou:2003:SPR

Aharoni:2003:FTG

Akkas:2003:QPD

REFERENCES

Arnold:2003:FFT

Arnold:2003:ILN

Bajard:2003:EMG

Bajard:2003:FII

Barrio:2003:NEL

Barrio:2003:URE

Bertoni:2003:EAA

Boldo:2003:FPC

Boldo:2003:RCT

Boldo:2003:STQ

Boullis:2003:SOH

Brisebarre:2003:FTP

Brown:2003:DPA

Burgess:2003:SRN

Cao:2003:DHS

September 2003. CODEN SIGNDM. ISSN 0163-5700 (print), 1943-5827 (electronic). See [2975, 4378].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[4515] W. Geiselmann and R. Steinwandt. A redundant representation of $GF(q^n)$ for designing arithmetic circuits. *IEEE Transactions on*
REFERENCES

Gerwig:2003:HPF

Goldberg:2003:WEC

Grabmeier:2003:CAH

Grossschadl:2003:ASL

Hanrot:2003:DRF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

0304-3975 (print), 1879-2294 (electronic). Real numbers and computers (Schloss Dagstuhl, 2000).

REFERENCES

number PR01894. Selected papers republished in *IEEE Transactions on Computers*, 54(3) (2005) [4870].

Pineiro:2003:LHR

Reyhani-Masoleh:2003:EMB

Reyhani-Masoleh:2003:FNB

Reyhani-Masoleh:2003:LCB

Reyhani-Masoleh:2003:LCS

Rice:2003:NIS

REFERENCES

REFERENCES

Society order number PR01894. Selected papers republished in *IEEE Transactions on Computers*, 54(3) (2005) [4870].

REFERENCES

REFERENCES

Altman:2004:NIS

Assimakopoulos:2004:IRM

Astola:2004:FAE

Avot-Chotin:2004:HID

Bachega:2004:HPS

Bajard:2004:FRI
REFERENCES

REFERENCES

REFERENCES

REFERENCES

deDinechin:2004:PCR

deDinechin:2004:TPU

deFigueiredo:2004:AAC

defour:2004:PSM

deRe:2004:TAG

deDemmel:2004:AEA

REFERENCES

REFERENCES

Kwon:2004:SMI

Lang:2004:FPM

Lefevre:2004:AFF

Leyva:2004:GHS

Lin:2004:SFP

Lu:2004:ALC

REFERENCES

Lutz:2004:NFP

Madhukumar:2004:EAR

Marcus:2004:FSS

Markov:2004:SAA

Markov:2004:SAS

REFERENCES

REFERENCES

Pineiro:2004:AAL

Priest:2004:ESC

Putot:2004:SAB

Quach:2004:SIR

Radecka:2004:DVT

Reyhani-Masoleh:2004:EDS

Reyhani-Masoleh:2004:LCB

Riley:2004:HAE

Roy:2004:ACF

Sadaghdar:2004:BFP

Schimmler:2004:BSF

Schulte:2004:DED

Schulte:2004:LPC

REFERENCES

Tsoi:2004:ALA

Underwood:2004:CGC

Underwood:2004:FVC

Vignes:2004:DSA

von zur Gathen:2004:FAG

Voronenko:2004:AGI

REFERENCES

Walters:2004:TSC

Wang:2004:DFP

Weaver:2004:MFD

Wu:2004:HSL

Wu:2004:ORF

Yang:2004:EEP

REFERENCES

Anonymous:2005:TMF

Antelo:2005:DRD

Antelo:2005:LLD

Antelo:2005:LLP

Arnold:2005:BIR

Arnold:2005:RLN

Bailey:2005:DFDa

REFERENCES

REFERENCES

REFERENCES

CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic). URL

[4779] Youngmoon Choi and Earl Swartzlander. Parallel prefix adder design
with matrix representation. In Montuschi and Schwarz [6434], page ??
arith17.polito.it/final/paper-107.pdf.

[4780] Sorin Cotofana, Casper Lageweg, and Stamatis Vassiliadis. Addition
related arithmetic operations via controlled transport of charge. IEEE Transactions on Computers,
54(3):243–256, March 2005. CODEN ITCOB4. ISSN 0018-9340 (print),
tc/2005/03/t0243abs.htm; http://csdl.computer.org/dl/trans/tc/2005/03/t0243.htm;
ie15/12/30205/01388190.pdf?isnumber=30205&prod=JNL&arnumber=1388190&arStt=+243&ared=+256&arAuthor=Cotofana%2C+S.%3B+Lageweg%2C+C.%3B+Vassiliadis%2C+S.;

iii + 63 pp. URL http://www2.hursley.ibm.com/decimal/decarith.pdf;

serial systolic architectures for multiplicative inversion and division over
CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL
http://csdl.computer.org/comp/trans/tc/2005/03/t0370abs.htm;
http://csdl.computer.org/dl/trans/tc/2005/03/t0370.htm;
http://csdl.computer.org/dl/trans/tc/2005/03/t0370.pdf;
REFERENCES

REFERENCES

Kahan:2005:FPA

Kahan:2005:OQD

Kaihara:2005:HAM

Karlsson:2005:IIL

Kenney:2005:HSM

Khabbazian:2005:NMA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Seidel:2005:SRR

Serebrenik:2005:TFP

Setiaarif:2005:NMS

Soderstrand:2005:RNS

Sofroniou:2005:PNC

Sofronioua:2005:PNC

REFERENCES

REFERENCES

REFERENCES

Wo:2005:SSC

Yang:2005:IMM

Yatskiv:2005:MAB

Zeydel:2005:EMA

Zhu:2005:NDA

Zhuo:2005:DSF

REFERENCES

Choi:2006:DCB

Cornea:2006:SII

Cowlishaw:2006:DCL

Dahab:2006:SMU

deDinechin:2006:STP

Demmel:2006:EBE

Deng:2006:IMM

Jérémie Detrey and Florent de Dinechin. FPLibrary. A VHDL library of parameterisable floating-point and LNS operators for FPGA. Web site and source code., 2006. URL http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/. The FPLibrary has been superseded by the FloPoCo project [5346].

REFERENCES

[4943] Daniel S. Graça, Ning Zhong, and Jorge Buescu. The ordinary differential equation defined by a computable function whose maximal interval of
existence is non-computable. In Anonymous [6438], page ?? ISBN ???
LCCN ???

REFERENCES

REFERENCES

[4969] Julie Langou, Julien Langou, Piotr Luszczek, Jakub Kurzak, Alfredo Buttari, and Jack Dongarra. Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revisiting iterative
REFERENCES

refinement for linear systems). In ACM [6437], page ?? ISBN 0-7695-2700-0. LCCN ????? Contains one CD-ROM.

June 2006. CODEN CSENFA. ISSN 1521-9615 (print), 1558-366X (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wires:2006:RRS

Wong:2006:FES

Xenoulis:2006:TAS

Xia:2006:RSI

XILINX:2006:XLF

You:2006:DDA

Anonymous:2007:CPSa

Anonymous:2007:CPSb

Balasubramaniam:2007:ECS

Balasubramaniam:2007:FSS

Beebe:2007:ETM

Beebe:2007:NDF

Beuchat:2007:ANP

Bodrato:2007:IPM

[5037] Marco Bodrato and Alberto Zanoni. Integer and polynomial multiplication: towards optimal Toom–Cook matrices. In Brown [6453],
REFERENCES

[5044] Neil Burgess and Chris N. Hinds. Design of the ARM VFP11 divide and square root synthesisable macrocell. In Kornerup and Muller [6460],

REFERENCES

[5057] Jeremie Detrey, Florent de Dinechin, and Xavier Pujol. Return of the hardware floating-point elementary function. In Kornerup and Muller
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Shawn D. Lundvall, Eric M. Schwarz, Ronald M. Smith, Sr., and Phil C. Yeh. Decomposition of decimal floating point data. US
REFERENCES

Maslennikow:2007:DFB

Melquiond:2007:FCF

Mine:2007:RAD

Mitchell:2007:MFP

Miyajima:2007:ETS

Monniaux:2007:AZT

REFERENCES

Pan:2007:EFS

Pan:2007:SAS

Patel:2007:FMA

Patil:2007:REE

Pearce:2007:MLH

Rauh:2007:ROI

REFERENCES

Voronenko:2007:MMC

Vouzis:2007:MCL

Wang:2007:DFPa

Wang:2007:DFPb

Wang:2007:PSD

Wu:2007:FBM

Wu:2007:FMM

REFERENCES

[Bapst:2008:SIO]

[Beuchat:2008:AGM]

[Boldo:2008:EFC]

[Brisebarre:2008:CRM]

[Buttari:2008:UMP]

[Carnicer:2008:REP]
REFERENCES

REFERENCES

REFERENCES

[5194] Xin Li, Marc Moreno Maza, Raqeeb Rasheed, and Éric Schost. The modpn library: bringing fast polynomial arithmetic into MAPLE. ACM
Liu:2008:FIM

Melquiond:2008:DRA

Monniaux:2008:PVF

Morris:2008:PLC

Nakamori:2008:SRA

Namin:2008:NFF

P754:2008:ISF

REFERENCES

REFERENCES

Steele:2008:FPSc

Thill:2008:EMP

Thill:2008:MPR

Tsigaridas:2008:CRR

VanMeter:2008:ADM

Webb:2008:IZN

Yamanaka:2008:PAA

REFERENCES

Barsi:2009:ECP

[5237] Ferruccio Barsi and Maria Cristina Pinotti. Error control by product
codes in arithmetic units. *International Journal of Parallel, Emergent*
ISSN 1744-5760 (print), 1744-5779 (electronic).

Bayat-Sarmadi:2009:CED

in finite-field arithmetic operations using pipelined and systolic
architectures. *IEEE Transactions on Computers*, 58(11):1553–1567,
November 2009. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
.tp=&arnumber=4815219.

Beebe:2009:NML

IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Blomquist:2009:MSC

staggered correction arithmetic with enhanced accuracy and very wide
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL
http://www.springerlink.com/content/k038294004403504/.

Boldo:2009:FVA

[5241] S. Boldo, M. Daumas, and Ren-Cang Li. Formally verified argument
reduction with a fused multiply-add. *IEEE Transactions on Computers*,
58(8):1139–1145, August 2009. CODEN ITCOB4. ISSN 0018-9340
stamp/stamp.jsp?tp=&arnumber=4711042.

Boldo:2009:KAC

last formally proven. *IEEE Transactions on Computers*, 58(2):220–225,
February 2009. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
(electronic). See [4664] for the original algorithm.

Bryant:2009:ABD

[5243] Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A.
Seshia, Ofer Strichman, and Bryan Brady. An abstraction-based

Bullynck:2009:MAB

Burtscher:2009:FHS

Cenk:2009:PMF

Chabert:2009:PEA

Chen:2009:BDF

Chen:2009:NDA

Cheng:2009:DSE

Chevillard:2009:CFC

Cho:2009:AMD

Chouliaras:2009:CLF

Cilardo:2009:EBP

Colberg:2009:HAS

[5262] P. Dormiani, M. D. Ercegovac, and J.-M. Muller. Design and implementation of a radix-4 complex division unit with prescaling. In
IEEE [6475], pages 83–90. ISBN 0-7695-3732-4. ISSN 1063-6862. LCCN ???

REFERENCES

[5275] Sonia Gonzalez-Navarro, Alberto Namnarelli, Michael J. Schulte, and Charles Tsen. A combined decimal and binary floating-point divider. In

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5313] Siegfried M. Rump, Paul Zimmermann, Sylvie Boldo, and Guillaume Melquiond. Computing predecessor and successor in rounding to

REFERENCES

REFERENCES

Vazquez:2009:HPS

Verma:2009:CAO

Vuillemin:2009:EDS

Wang:2009:DFP

Wang:2009:HDD

Wang:2009:RCD

XILINX:2009:XLF

[5333] XILINX. XILINX LogiCORE floating-point operator v5.0 product specification.
REFERENCES

REFERENCES

REFERENCES

[5346] Florent de Dinechin and Bogdan Pasca. FloPoCo: generator of arithmetic cores (Floating-Point Cores, but not only) for FPGAs (but not only). Web site and source code., August 10, 2010.

REFERENCES

[5364] F. E. J. Kruseman Aretz. Design and correctness proof of an emulation of the floating-point operations of the Electrologica X8: a case study.

Nickolls:2010:GCE

NURCL:2010:VNV

Parhami:2010:CAA

Pence:2010:OCF

Qi:2010:DLC

Roldao:2010:HTF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Badin:2011:IAM

Bailey:2011:GMD

Baudin:2011:EBC

Beebe:2011:BPAb

Berger:2011:FSM

Beuchat:2011:FAP

REFERENCES

[5440] Steven Carlough, Adam Collura, Silvia Mueller, and Michael Kroener. The IBM zEnterprise-196 decimal floating-point accelerator. In Schwarz
REFERENCES

Cavagnino:2011:AAD

Cenk:2011:EM

Chakraborty:2011:CBS

Chang:2011:CGR

Chen:2011:PIM

Chen:2011:TSA

Jianxun Chen, Yongzhong Huang, Shaozhong Guo, Shimiao Chen, and Wei Wang. Test standardization and analyse model of mathematical

[5458] Niall Emmart and Charles C. Weems. High precision integer multiplication with a GPU using Strassen’s algorithm with multiple
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kathiara:2011:AVS

Kim:2011:ZAS

Kornerup:2011:PAO

Kulisch:2011:EDP

Kulisch:2011:VFE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Antelo:2012:GEI

Antelo:2012:IIFa

Antelo:2012:IIFb

Aswal:2012:BFD

Bailey:2012:AIS

Bailey:2012:HPC

Baudin:2012:RCD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2012. URL https://hal.archives-ouvertes.fr/hal-00821667.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00737617;
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00737617/document.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

January 2013. CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).

[5631] Mathew A. Cleveland, Thomas A. Brunner, Nicholas A. Gentile, and Jeffrey A. Keasler. Obtaining identical results with double precision

[5637] James Demmel and Hong Diep Nguyen. Efficient reproducible floating-point reduction operations on large scale systems. *SIAM AN13*

REFERENCES

REFERENCES

Jiang:2013:AFE

Kadric:2013:APF

Kouretas:2013:LPL

Kulisch:2013:CAV

Kupriianova:2013:RCI

Kurka:2013:UAA

Lam:2013:DFP

REFERENCES

July 2013. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

[5679] Salvatore Pontarelli, Pedro Reviriego, Chris J. Bleakley, and Juan Antonio Maestro. Low complexity concurrent error detection for

Rubio-Gonzalez:2013:PTA

Rump:2013:ASDa

Rump:2013:ASDb

Rupley:2013:FPU

Russinoff:2013:CFV

Saha:2013:PAF

REFERENCES

REFERENCES

REFERENCES

Cibikdiken:2014:CMM

Darulova:2014:SCR

Darulova:2014:TCR

DelBarrio:2014:ULP

Demmel:2014:THS

Doerr:2014:RRP

Drane:2014:SCF

REFERENCES

REFERENCES

This paper provides a correction to the algorithm presented in [4810], and also supplies a complicated correctness proof.

REFERENCES

REFERENCES

[5751] Peter Ahrens. Reproducible parallel matrix-vector multiply. CS 267 final report, Department of Computer Science, University of California,
Aktan:2015:MEA

Aneesh:2015:HHM

Anonymous:2015:EFP

Bailey:2015:HPA

Bajard:2015:RAA

Biancolin:2015:HAE

REFERENCES

REFERENCES

REFERENCES

[5775] Terry Froggatt. An error in the Ada universal arithmetic package. ACM SIGADA Ada Letters, 35(2):14, August 2015. CODEN AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic). See [1635]. The 32-year-old error is a test with digit t that has if ($t > \text{BASE}$), but the operator should instead be \geq.

[5777] Benoît Gérard, Jean-Gabriel Kammerer, and Nabil Merkiche. Contributions to the design of residue number system architectures.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5822] Lloyd N. Trefethen. Computing numerically with functions instead of numbers. *Communications of the Association for Computing Machinery*, 58(10):91–97, October 2015. CODEN CACMA2. ISSN 0001-0782 (print),

P. Ahrens, H. D. Nguyen, and J. Demmel. Efficient reproducible floating point summation and BLAS. Report UCB/EECS-2016-121, EECS Department, UC Berkeley, Berkeley, CA, USA, June 18, 2016. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html.

[5842] Linbin Chen, Jie Han, Weiqiang Liu, and Fabrizio Lombardi. On the design of approximate restoring dividers for error-tolerant applications.

[5858] David Hopkins. Will my numbers add up correctly if I round them? The Mathematical Gazette, 100(549):396–409, November 2016. CODEN MAGAAS. ISSN 0025-5572 (print), 2056-6328 (electronic). URL https://www.cambridge.org/core/product/88F5753DFE9FDDDEA1F2552B0F8B22. The probability that rounding after fixed-point summation of n terms gives the same result as summation of rounded terms is given by $p(n) = \frac{2}{\pi} \int_0^{\infty} \frac{\sin(x)}{x} \frac{x}{x+n+1} \, dx$, and that function is always a rational number. Its values are $p(n) = 1, 3/4, 2/3, 115/192, 11/20, 5887/11520, 151/315, 259723/573440, \ldots$ for $n = 1$ to 8.

[5860] Laslo Hunhold. The Unum number format: Mathematical foundations, implementation and comparison to IEEE 754 floating-point numbers. Bachelorarbeit, Universität zu Köln, Köln, Germany, November 8, 2016.
 REFERENCES

REFERENCES

Nannarelli:2016:PPS

Notzli:2016:LVP

Ozaki:2016:EFT

Ozaki:2016:SFP

Phatak:2016:NDA

Revy:2016:ADF
REFERENCES

REFERENCES

[5899] Ran Wang, Daming Zou, Xinrui He, Yingfei Xiong, Lu Zhang, and Gang Huang. Detecting and fixing precision-specific operations for measuring

Anderson:2017:EMF

Angerd:2017:FAC

Anonymous:2017:AI

Anonymous:2017:C

Anonymous:2017:CN

Anonymous:2017:F

REFERENCES

Anonymous:2017:FC

Anonymous:2017:PCM

Anonymous:2017:PI

Anonymous:2017:SC

Anonymous:2017:TC

Anonymous:2017:TP

Anonymous:2017:TP1

REFERENCES

[5919] Nicolas Brisebarre, Guillaume Hanrot, and Olivier Robert. Exponential sums and correctly-rounded functions. IEEE Transactions on
REFERENCES

Brunie:2017:MFM

Carter:2017:PAO

Chiang:2017:RFP

Constantinides:2017:AAC

Cornea:2017:URE

Cui:2017:HPP

REFERENCES

[5944] Claude-Pierre Jeannerod, Peter Kornerup, Nicolas Louvet, and Jean-Michel Muller. Error bounds on complex floating-point multiplication

[5948] Alan A. Jorgensen. Apparatus for calculating and retaining a bound on error during floating point operations and methods thereof. US Patent 9,817,662., November 14, 2017. URL https://patents.google.com/patent/US9817662B2/; https://tinyurl.com/y7ctbsez. This patent, filed 23 October 2016, was issued despite substantial prior art that should have resulted in its rejection: see [6025]. The inventor does not appear to have published in the area of floating-point arithmetic (apart from this entry, none by him can be found in this bibliography). The only literature references in the patent are [5197, 2577, 5589, 5376].

REFERENCES

REFERENCES

REFERENCES

on *Embedded Computing Systems*, 16(5s):184:1–184:??, October 2017. CODEN ???. ISSN 1539-9087 (print), 1558-3465 (electronic).

Moler:2017:CCB

Moler:2017:CCH

Monfared:2017:NMI

Rafferty:2017:ELI

Rioual:2017:LSN

Rocca:2017:CRE

REFERENCES

Laurent Thévenoux, Philippe Langlois, and Matthieu Martel. Automatic source-to-source error compensation of floating-point programs: code synthesis to optimize accuracy and time. *Concurrency and Computation:
REFERENCES

Select any section from the References.

Canto-Navarro:2018:FPA

Costello:2018:MCT

Dai:2018:SAM

Demmel:2018:RBM

Doliskani:2018:SCR

REFERENCES

Ferguson:2018:DSM

Graillat:2018:NVC

Hanson:2018:RAM

Higham:2018:HPA

Higham:2018:UN

Hrycak:2018:ECP

REFERENCES

[6015] Sergio Marchese. AI chips must get the floating-point math right: Formal verification of FPUs is no longer a prerogative of big companies spending big bucks. Web site., September 27, 2018.

Seo:2018:FBM

Trader:2018:ICS

[6025] Tiffany Trader. Inventor claims to have solved floating point error problem. HPC Web site., January 17, 2018. URL https://www.hpcwire.com/2018/01/17/inventor-claims-solved-floating-point-error-problem/. From the HPC editor: “After this article was published, a number of readers raised concerns about the originality of Jorgensen’s techniques, noting the existence of prior art going back years. Specifically, there is precedent in John Gustafson’s work on unums and interval arithmetic both at Sun and in his 2015 book, The End of Error, which was published 19 months before Jorgensen’s patent application was filed.”.

Wang:2018:TDN

Anonymous:2019:CPC

Anonymous:2019:RMV

Anonymous:2019:SOL

Anonymous:2019:UFP

Anonymous:2019:YAF

Bailey:2019:AM

Bellal:2019:IAA

Boghosian:2019:NPS

Bos:2019:ACI

[6042] Rebecca Caygill. Digital computers fail to accurately model chaos because of fundamental numbers limit. University College London

[6054] David Harvey and Joris Van Der Hoeven. Integer multiplication in time $O(n \log n)$. Report hal-02070778, School of Mathematics and Statistics, University of New South Wales, and CNRS, Laboratoire d’informatique, École polytechnique, Sydney, NSW 2052, Australia and 91128 Palaiseau, France, March 18, 2019. URL https://hal.archives-ouvertes.fr/hal-02070778/document.

Lutz:2019:AMP

Maynard:2019:MPA

Moler:2019:CCF

Moler:2019:CCV

Munoz-Coreas:2019:QCD

Nannarelli:2019:TFP

REFERENCES

Pranesh:2019:LPF

Roughan:2019:PSS

Silver:2019:CCN

Solovyev:2019:REF

Stephens:2019:BPN

vanWyk:2019:RVT

Venkatachalam:2019:DAA

Verheyde:2019:BDD

Walther:2019:VNR

Wang:2019:PAA

Zhang:2019:EMP

QinetiQ:20xx:QFP

Anonymous:1948:PSL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1980. ISBN ???? LCCN ????

IEEE:1980:PMA

Johnson:1980:MPA

Lavington:1980:IPP

Nickel:1980:IMP

GAMM:1981:PAM

IEEE:1981:PSC

REFERENCES

REFERENCES

REFERENCES

IEEE catalog number 83CH1892-9. IEEE Computer Society order number 476.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Iserles:1987:SAN

Kaucher:1987:CAS

Lin:1987:DSP

Losleben:1987:ARV

Zunde:1987:EF1

ACM:1988:ICS

ACM:1988:PAC
REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEE:1989:EEC

IEEE:1989:IISa

IEEE:1989:ISV

IEEE:1989:PII

Turner:1989:NAP

Wuorinen:1989:DTP

REFERENCES

ACM:1990:PAS

ACM:1990:PDB

Anonymous:1990:PAN

Chen:1990:CRT

CUG:1990:PSC

Feijen:1990:BOB

Hennessy:1990:CAQ

Hennessy:1990:CAQ
REFERENCES

LCCN QA76.9.A73 P377 1990.

IEE:1990:ICV

IEE:1990:MMM

IEEE:1990:PII

LCCN QA76.9.A73 P377 1990.

Patterson:1990:CAQ

SHARE:1990:PSE

Swartzlander:1990:CAa

[6239] Earl E. Swartzlander, Jr. *Computer Arithmetic*, volume 2. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring,
REFERENCES

MD 20910, USA, 1990. ISBN 0-8186-8945-5. ix + 396 pp. LCCN QA76.9 .C62C66 1990. This is part of a two-volume collection of influential papers on the design of computer arithmetic. See also [6238].

REFERENCES

REFERENCES

REFERENCES

Street, Suite 300, Silver Spring, MD 20910, USA, 1992. ISBN 0-7803-0494-2. LCCN ???? Two volumes. IEEE catalog no. 92CH3094-0.

Juj:1992:NCR

Katwijk:1992:AMT

Prinetto:1992:CHD

Quinton:1992:APV

Singh:1992:CRT

REFERENCES

REFERENCES

1994, Georgia Institute of Technology, Atlanta, Georgia, USA. IMACS, Department of Computer Science, Rutgers University, New Brunswick, NJ, 1994. ISBN ???. LCCN ???. Three volumes.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

automatic result verification and of interval representation of data. Underlying topics include:

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:1998:HCC

IEEE:1998:IIC

IEEE:1998:IOM

IEEE:1998:PGL

MacKay:1998:PCT

Matthews:1998:CRT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Matthews:2000:CRT

Sprague:2000:PAH

Swartzlander:2000:IIC

Traverso:2000:IAU

ACM:2001:PSA

REFERENCES

REFERENCES

Kraemer:2001:SCV

Kulisch:2001:PAS

Luk:2001:ASP

Matthews:2001:CRT

REFERENCES

Oliveira:2001:FFM

Tang:2001:ICA

Babuska:2002:MMN

Borrione:2002:TII

REFERENCES

REFERENCES

Li:2002:PIC

Luk:2002:PSA

Matthews:2002:PTS

Pocek:2002:FAI

Schulte:2002:PII

REFERENCES

REFERENCES

IEEE:2003:PCI

Luk:2003:PSA

Matthews:2003:PTS

Senda:2003:IP1

Warren:2003:HD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:2005:PII

IEEE:2005:PIS

IEEE:2005:PWE

IEEE:2005:ASP

IEEE:2005:PIS

IEEE:2005:AIC

REFERENCES

