Introduction

This is a bibliography of material on floating-point arithmetic that I came up with while doing research on a floating-point package of my own. I don’t claim it to be anywhere near complete. The material listed is only what I myself possess.

My main interest was in software based, binary floating-point arithmetic on a microprocessor, so you won’t find much material about the hardware used in floating-point arithmetic (e.g. adders, carry propagation schemes, higher radix
representation for multiplication and division, etc.) in this list. There is also not too much on non-binary floating-point arithmetic.

For most fields covered in this bibliography, the important or historically relevant articles should be included. There is also some material on integer arithmetic in this list as some of the methods used with integer arithmetic contain interesting ideas that may be useful in the realization of a floating-point arithmetic package.

Also, depending on the type of microprocessor used, one may need to implement integer multiplication and division for use in the floating-point package, so articles about this topic are included as well.

As I am German, there is a bit of material in German in this bibliography. However, English translations are provided for all non-English titles.

Thanks to the people who have helped me with previous versions of this document by sending me papers or additional references:

- Steven Sommars (sesv@research.bell-labs.com),
- Jim Kiernan (jmk@teak.cray.com),
- Warren Ferguson (ferguson@seas.smu.edu),
- Nhuan Doduc (ndoduc@framentec.fr),
- K. C. Ng (kwok.ng@eng.sun.com),
- Nelson H. F. Beebe (beebe@math.utah.edu).

Bibliography entries in the Books section are ordered alphabetically by author; ordering is by ascending year in the remaining sections.

[Warning: it has yet not been possible to bring this citation list up-to-date with the entries in the Bibliography entries in the Books section are ordered alphabetically by author; ordering is by ascending year in the remaining sections.

Books, hardware oriented

[1721, 281, 1286, 1216, 3111, 3315, 1916, 841, 1164, 1000, 1457, 843, 1343, 7218, 7219, 1557]

Books, software oriented or theory

[1273, 466, 469, 470, 119, 1420, 2393, 908, 1049, 352, 2952, 2434, 2969, 2270, 320, 527, 7072]

Books, machine specific

[2175, 3217, 3113, 2436, 1767, 1903, 2289, 1935, 2471]
1 CHOICE OF BASE, FLOATING POINT FORMATS

Journal Publications, Conference Papers, Technical Reports, Ph.D. Dissertations, Book Contributions, etc.

1 Choice of base, floating point formats

[498, 750, 752, 730, 893, 1141, 1131, 2036, 2267, 2391, 2544, 2771, 2785]

1.1 Precision and Rounding

[433, 558, 745, 837, 881, 896, 946, 1032, 1041, 1045, 1194, 1296, 1435, 1376, 1538, 1729, 2280, 2456, 2529, 2842, 3158, 3280]

1.2 Determination of parameters of floating point arithmetic

[686, 823, 1636, 2273, 2201]

1.3 IEEE standards for floating point arithmetic

[993, 1197, 1223, 1206, 1234, 1196, 1203, 1340, 1326, 1327, 1280, 1300, 1458, 1385, 1409, 1387, 1725, 1824, 1862, 1863, 1860, 2087, 2172, 2339, 2573, 3053]

1.4 Floating point arithmetic, general and implementation issues

[633, 719, 1014, 1035, 1083, 1095, 1094, 1236, 1238, 1210, 1274, 1266, 1475, 1493, 1992, 2012, 2217, 2218, 2372, 2446, 2349, 2528, 2772, 2773, 2701, 2770, 3011]

1.5 Floating point packages

[1287, 1700, 1679, 1773, 1731, 1884, 1849, 1885, 1967, 2080, 2102, 2204, 2298, 2299, 2300, 2479, 2480, 1352]

1.6 Floating point units

1.7 Test of floating point routines

2 Addition and Subtraction
[375, 1513]

2.1 Floating-point Summation
[325, 345, 362, 361, 570, 639, 677, 831, 1661, 2275, 2352]

2.2 Multiplication
[680, 1246, 1260, 1476, 1543, 1516, 1574, 1601, 1593, 1619, 1676, 1591, 1758]

2.3 Division
[209, 238, 223, 322, 348, 438, 1017, 1064, 1311, 1403, 1567, 1645, 1623, 1606, 1770, 1890, 2015, 1994, 2387, 2777, 2722, 2967, 3016, 7240, 2949]

3 Elementary functions, general
[384, 398, 586, 650, 615, 1122, 1265, 1627, 1656, 1756, 1719, 1717, 1794, 1840, 7159, 1945, 2051, 2154, 2098, 2277, 7178, 2560, 2597, 2547, 3334, 2549, 2518, 2697, 2850, 2661, 2812, 2813, 2690, 3367, 3335]

3.1 Elementary functions, CORDIC and related algorithms
[190, 191, 248, 264, 373, 523, 551, 659, 651, 667, 733, 855, 1068, 1084, 1293, 1451, 1699, 1897, 1708, 1811, 1963, 2159, 2381, 2310, 2541, 2567, 2716, 2810, 3010, 3005, 3128, 3068, 3114]

3.2 Elementary functions, function approximation
[240, 241, 481, 623, 768, 767, 983, 1021, 1162, 2000, 2052, 2610, 2685, 2783, 2784]

3.2.1 Polynomial evaluation
[259, 279, 304, 426, 1061, 1228, 2351]
3.3 Square root, general
[1082, 1187, 1481, 1598, 1651, 2565, 2677]

3.3.1 Square root, bit-oriented, iterative, and table methods of computation
[120, 153, 359, 1022, 1008, 1151, 1353, 1444, 1406, 1372, 1426, 1537, 1825, 1922, 1834, 1887, 1971, 1952, 2006, 2046, 2089, 2139, 2179, 2253, 2390, 2577, 2534, 2709, 3038]

3.3.2 Square root, Newton’s method

3.4 Sine and Cosine
[180, 1068, 1018, 1023, 1176, 1398, 1544, 1666, 1665, 1765, 1853, 1953, 2120, 2231, 2606, 2961, 2958, 2880, 2980, 3074]

3.5 Logarithm
[154, 271, 331, 690, 998, 1112, 1299, 1529, 2107, 2108, 2607, 2735]

3.6 Exponential function
[141, 409, 1183, 1361, 1518, 1748, 1847, 2470, 2608, 3002]

3.7 Arctangent
[143, 160, 207]

3.8 Other transcendental functions
[499, 613, 161, 1024, 365, 275, 360, 2100, 1157, 2860, 3054]

4 Binary-decimal conversion
5 BCD arithmetic
[674, 726, 777, 778, 779, 780, 781, 782, 783, 1382, 1492, 1705, 1640, 2037, 2646, 2960]

6 Multiple precision arithmetic
[292, 330, 410, 428, 632, 616, 953, 1002, 1099, 1098, 1265, 1350, 1430, 1542, 2805, 2789, 3033, 3224]

7 Conferences on computer arithmetic
[7098, 7108, 7113, 7122, 7125, 7138, 7156, 7157, 7199, 7229, 7237, 7231, 7263]

8 Additional contributions from Nelson H. F. Beebe

Title word cross-reference

#26 [5487].

(2^n)^m [3796]. (10^{31} - 1)/9 [1976]. (2^n) [4349, 4370, 4553, 4562, 4468]. (2^n + 1) [1081, 4785, 3909]. (2^n - 1) [5004]. (2^n - 1, 2^{n+p}, 2^n + 1) [6266]. (2^n 2^m) [6072]. (2^n + 1) [5514, 4136]. (2^n) [4433]. (2^n + 3) [6521]. (2^n - (2p + 1)) [4847]. (a \cdot x) \cdot x? [6794]. (d, r) [789]. (M, p, k) [5800]. (R) [2908]. (p) [4349, 4433].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

\[r \geq 8 \quad [5843]. \quad s \quad [4874]. \quad \sin(BIG) \quad [5230]. \quad \sin^{-1} \quad [3128]. \quad \sin N \quad [180]. \quad \sin x \quad [373]. \quad \sqrt{a^2 + b^2} \quad [6274]. \quad \sqrt{x} \quad [1481]. \quad \sqrt{x/d} \quad [3844]. \quad \sqrt{2} \quad [6968]. \quad \sqrt{x} \quad [1307, 451]. \quad \sqrt{x^2 + y^2} \quad [5669]. \quad T \quad [6559]. \quad \tan^{-1} x \quad [373]. \quad \theta \log N \quad [2354]. \quad x \quad [4064, 3914, 4130]. \quad w \quad [4730]. \quad X \quad [1542, 2893]. \quad x^2 + ny^2 \quad [3706]. \quad x^n \quad [5972, 3307]. \quad y \quad [4412]. \quad Z \quad [5327]. \]

-2 \quad [1004]. \quad -adic \quad [1130, 1044, 1635, 2059, 894]. \quad -approximations \quad [5248, 5249]. \quad -ary \quad [5249]. \quad -body \quad [4573, 4923]. \quad -circulant \quad [6402]. \quad -Coordinate \quad [4412]. \quad -count \quad [6559]. \quad -D \quad [5669, 4177, 4201, 3283, 6203, 4117, 5093, 3361, 2165]. \quad -Depth \quad [3431]. \quad -Digit \quad [433]. \quad -Dimensional \quad [5497, 2049, 4691]. \quad -Fold \quad [5435]. \quad -Friendly \quad [5800]. \quad -function \quad [5166]. \quad -gram \quad [5680]. \quad -Matrix \quad [4834]. \quad -Moduli \quad [6008, 3967, 4657, 4797]. \quad -Norms \quad [6047]. \quad -Order \quad [3602]. \quad -Partition \quad [5991]. \quad -Real \quad [4938]. \quad -select \quad [4158]. \quad -sets \quad [3061]. \quad -spaces \quad [4874]. \quad -th \quad [5908, 3802, 5773, 2334]. \quad -transform \quad [5327]. \quad -Vectors \quad [6047].

.NET \quad [6412, 5068].

/ \quad m \quad [4863]. \quad /spl \quad [4863].

0.18-CMOS \quad [5767]. \quad 0.4.1rc \quad [6413]. \quad 0.80pJ \quad [6547]. \quad 0.80pJ/flop \quad [6547].

'00 \quad [7339, 7344, 2540]. \quad '01 \quad [7353]. \quad '03 \quad [7382]. \quad '04 \quad [7391, 7399]. \quad '07 \quad [7434, 7440, 7442, 7447]. \quad '08 \quad [7451, 3032, 5375].

1 \quad [217, 3547, 6633, 3412, 2876, 228, 63, 65, 67, 563, 3275, 6665, 4064, 4406, 1163, 5767, 1933, 3864]. \quad 1-GHz \quad [6633, 4406, 5767]. \quad 1-Output \quad [5341]. \quad 1.0 \quad [3865]. \quad 1.24Tflop \quad [6547]. \quad 1.24Tflop/sW \quad [6547]. \quad 1.5 \quad [5649]. \quad 10 \quad [5731]. \quad 10-ka \quad [5731]. \quad 10-ka/cm \quad [5731]. \quad 10/20 \quad [958]. \quad 100 \quad [2889, 2890]. \quad 100-MFLOPS \quad [2889, 2890]. \quad 1014 \quad [6738]. \quad 1057 \quad [1981]. \quad 10858 \quad [1746]. \quad 10967 \quad [4360, 5155].

10967-1 \quad [3275]. \quad 10967-2 \quad [4360]. \quad 10967-3 \quad [5155]. \quad 10th \quad [7149, 7483, 7231, 7360, 7367, 737, 7130, 2763]. \quad '11 \quad [7478, 1110, 1391, 1507, 1408, 1312]. \quad 11-bit \quad [4005].

11/780 \quad [2036, 1569, 1570, 1803, 1019]. \quad 116 \quad [270]. \quad 1164/WTL \quad [2033]. \quad 11i \quad [4920]. \quad 11th \quad [7351, 7244, 7262, 7263, 3183]. \quad 120B \quad [1120]. \quad 128-bit \quad [6314, 4115].

12th \quad [7394, 7460, 7105, 7286, 3454, 7446]. \quad 13 \quad [4319, 2090]. \quad 132-Bit \quad [342].

13th \quad [7379, 7121, 7305, 7275, 7433, 3843, 3771, 7503]. \quad 14-Port \quad [3914]. \quad 14th \quad [7266, 7350, 7381, 7432, 7344, 7330]. \quad 15 \quad [2766]. \quad 15-bit \quad [4451]. \quad 15B \quad [4120]. \quad 15C \quad [1629].

15th \quad [7169, 7440, 7105, 7448, 7352, 7398]. \quad 16-19 \quad [7069]. \quad 16-b \quad [6448].

16-bit \quad [4530, 6673, 6688, 7034, 6831, 3023, 1260, 1601, 4989, 3076, 1759, 6313, 1476]. \quad 16-bit-Multiplikation \quad [1476]. \quad 16-by-8-bit \quad [1645].

16-Digit \quad [5361]. \quad 160-ns \quad [2835]. \quad 160-Word \quad [3914]. \quad 1620 \quad [255]. \quad 164 \quad [1815]. \quad 167 \quad [3491, 3529]. \quad 16BST \quad [1817, 1733, 1734, 1736, 1740, 1750, 1763, 1772].

16F/400 \quad [917]. \quad 16th \quad [7423, 7414, 4646, 7378, 7420]. \quad 17 \quad [287, 838]. \quad 17-Bit \quad [648, 647]. \quad 1788 \quad [6535]. \quad 1788-2015 \quad [6061]. \quad 17th \quad [7485, 7425, 7341, 7415, 7418].

'18 \quad [7496, 562]. \quad 18-21 \quad [7431]. \quad 18.Mai \quad [1484]. \quad 18th \quad [7450, 7439, 7445, 5467].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

80960KB [2242], 80b [2443], 80h [1295], 80's [7120], 814 [4439], 8231A [4140], 826 [6383], '83 [7141], 83587 [2512], '84 [7150], 842 [4994], '85 [7155, 480], '86 [7163], 86T.M [3913], 871 [5438], '88 [7184, 7185, 7188, 2305], '89 [7196, 7203], 89/\textsc{ti} [4452, 4453], 8s [765], 8th [7208, 7408, 7317, 7170, 5616], 9 [516, 695], 9-11 [7436], 9.4 [6811], '90 [7206, 7215, 7230, 4295, 3385, 4954, 4955, 2675, 3481, 4439, 3829], 908 [5645], 90nm [4786], '91 [7227, 7230, 416, 395], '92 [7236, 7239, 7242, 7250, 4452, 4453], '93 [7253], '94 [7265, 7266, 7275], '95 [7282, 3842, 4452, 4746], 954 [6039], '96 [7296, 7300], 96-bit [2255], 97 [3707], '98 [7313, 7321, 3959, 7311], 980A [1015], '99 [7326, 7327, 7328], 9th [7199, 7474, 7431, 7133, 2356].

\begin{itemize}
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

428, 4012, 4829, 6147, 5503, 3431, 4844, 3601, 3753, 4028, 4546, 4030, 4199, 4200, 6516, 2381, 2716, 1617, 5008, 5716, 5718, 740, 3447, 972, 5516, 2090, 5732, 1630, 1873, 5304, 3288, 2735, 828, 6887, 5915, 6070, 3437, 313, 5309, 5310, 4059, 2421, 5033, 1048, 5599.

Algorithm [2105, 569, 2107, 262, 640, 4723, 2113, 6898, 762, 2947, 1649, 1890, 2115, 2254, 5330, 2566, 6183, 6423, 1654, 1897, 4410, 2774, 2960, 4412, 1532, 1661, 2777, 2778, 3660, 5993, 4894, 5424, 5758, 1157, 2589, 6099, 4900, 923, 2139, 924, 775, 4608, 1243, 2015, 5628, 6001, 372, 3814, 4112, 3184, 4117, 4447, 5085, 1693, 6204, 456, 4455, 2822, 3518, 2155, 489, 5552, 5773, 5857, 5945, 595, 3698, 1478, 244, 3206, 3531, 5104, 4278, 2630, 1710, 603, 2173, 2040, 4780, 6459, 3549, 3849, 5237, 6353, 3399, 1582, 1720, 4799, 2661, 2662, 3403, 5125, 3229, 2669, 2507, 3979, 3567, 3412, 5686, 3726.

algorithm [3415, 3238, 4331, 4332, 3869, 3870, 6251, 3578, 3070, 465, 4680, 4682, 4900, 4007, 3579, 1204, 5283, 4833, 2215, 5815, 5700, 6257, 4900, 923, 775, 4608, 1243, 2015, 5628, 6001, 372, 3814, 4112, 3184, 4117, 4447, 5085, 1693, 6204, 456, 4455, 2822, 3518, 2155, 489, 5552, 5773, 5857, 5945, 595, 3698, 1478, 244, 3206, 3531, 5104, 4278, 2630, 1710, 603, 2173, 2040, 4780, 6459, 3549, 3849, 5237, 6353, 3399, 1582, 1720, 4799, 2661, 2662, 3403, 5125, 3229, 2669, 2507, 3979, 3567, 3412, 5686, 3726.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

741, 2918, 4377, 2411, 3116, 4569, 1754, 2422, 3779, 830, 1755, 1882, 1637, 5601, 7331, 7342, 7358, 7371, 7385, 7402, 4065, 2561, 4725, 3131, 2756, 5044, 5179, 2433, 2565, 5181, 5416, 6425, 4076, 5844, 4078, 1442, 1663, 5612, 6190, 2266, 4895, 2452, 4599, 2591, 4088, 3928, 4607, 3166, 3167, 3504, 5344, 2462, 1784, 2023, 5208, 4759, 3000, 1073, 2823, 3191, 492, 1703. algorithms [4932, 5370, 3018, 4940, 2345, 2046, 7175, 7189, 357, 2006, 1061, 1537, 4663].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

747, 1224, 519, 1225, 1226, 4377, 6408, 3772, 1882, 1637, 524, 2246, 4236, 1647, 1648, 5530, 5045, 5327, 363, 403, 2440, 2117, 2954, 2955, 835, 3143, 984, 2959, 3144, 3339, 5039, 3929, 840, 3171, 3172, 3339, 3505, 1065, 5197, 1546, 3344, 3688, 2291, 1924, 375, 3820, 3821, 4448, 1175, 7204, 2825, 3194, 1251, 715, 794, 3007, 5639, 1703, 3833, 1182, 2624, 3836, 6643, 1816, 7232.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6431, 1539, 372, 2289, 1553, 6934, 7095, 6606, 4811, 7265, 6946, 1185, 3022.

applications [1485, 2312, 5954, 3220, 1490, 4150, 7351, 7197, 5679, 2056, 5878, 2335, 1727, 3417, 3729, 6645, 2684, 6251, 1839, 2365, 5140, 4696, 4022, 5003, 6505, 4195, 5714, 7050, 5974, 6399, 3103, 3450, 748, 2415, 7259, 2932, 7173, 2558, 2942, 316, 4884, 4590, 3148, 2585, 5762, 7130, 5940, 3501, 3511, 2018, 790, 455, 17, 3190, 7249, 1351, 5777, 1704, 5369, 1975, 1700, 7095].

Applied [7266, 7143, 548, 1194, 3562, 6380, 1128, 7426, 5003, 7486, 7069, 5341, 7161, 7503, 2045, 2319, 2710, 3613, 7426, 7396, 7483].

Approaching [2183].

Approved [6520].

Approach [6730, 6017, 4145, 3392, 4312, 1723, 1103, 5261, 3574, 6492, 5276, 6496, 5809, 1840, 5698, 736, 6152, 5509, 1723, 7293, 7365, 7482, 6513, 5399, 3887, 5514, 5590, 1137, 7139, 1992, 6899, 1438, 1154, 7216, 4421, 2130, 1450, 3162, 3678, 6341, 5560, 3376, 3377, 1079, 1184, 2177, 2044, 1269, 2932, 7173, 2558, 2942, 316, 4884, 4590, 3148, 2585, 5762, 7130, 5940, 3501, 3511, 2018, 790, 455, 17, 3190, 7249, 1351, 5777, 1704, 5369, 1975, 1700, 7095].
3271, 5152, 7213, 7228, 7367, 4204, 4703, 4704, 6273, 6396, 6401, 5732, 2094, 2916, 3618, 4215, 4554, 1422, 4557, 4559, 6068, 5309, 6168, 1312, 1881, 4227, 3296, 6309, 6315, 2949, 7274, 4240, 6799, 6907, 3315, 7216, 5932, 5993, 4255, 4894, 5422, 6917, 6695, 6099, 993, 4603, 2993, 7192, 1679, 6571, 4433, 6926.

Architecture [2803, 2985, 3507, 6703, 2150, 5211, 5355, 1467, 5773, 5945, 1469, 3360, 3362, 7040, 6711, 4770, 6713, 1083, 4487, 6455, 2636, 4780, 3386, 1810, 5801, 2661, 3229, 3051, 4163, 4670, 2347, 2064, 7145, 2367, 4839, 1972, 3593, 5511, 2222, 7093, 4705, 2722, 5402, 2228, 2229, 2395, 2396, 2402, 2546, 4217, 2736, 2412, 2413, 3901, 2241, 3773, 2420, 4870, 3909, 1760, 4871, 2559, 2754, 2755, 2252, 5415, 5608, 5054, 2570, 3657, 480, 2265, 4259, 3666, 6191, 2587, 2588, 1062, 7130, 5067, 2281, 5770, 3514, 935, 1339, 4757, 4761, 1788, 2295, 3198, 1704, 2163, 6007, 3374, 4849, 2109, 2248, Arcsin [161]. Arctan [160, 651]. Arctangent [1630, 3277].

Asia [7327]. Asian [7272]. ASIC [7236, 7361, 7419, 5133, 7256, 7327, 5515, 3181, 3017]. ASICON [7419]. ASICs [7327, 3850].
Aspekte [1236, 1885]. Aspen [7278]. ASPLOS [7195]. ASPLOS-III [7195].
Assembler [4452]. Assembly [1507, 1400, 3287, 3454, 3520, 3014, 1733, 2818]. Asserting [4536]. Assertion [6347, 6430].
Assertions [3395, 3737]. Assessing [6635, 6144, 3910, 4066]. Assessment [7303, 2914, 6075]. ASSETS [7406].
assignment [2568]. Assimilations [286]. Assistance [4205, 4720]. Assistant [7002, 5119, 5934].
Assisted [3646, 6110, 1705, 4131, 4133, 4630]. Associate [1904]. Associated [5677, 106, 4407, 2968].
Association [7134, 1331]. Associative [2874, 6372, 6007, 2124, 3660, 1682, 4617, 2281, 2979]. Assurance [7165].
Asymmetric [5256, 6492, 5024, 4404, 5626]. asymptotic [4965, 3575, 818, 2013]. Asymptotically [6274, 5228, 6624].
Asynchronous [1375, 5627, 5852, 3428, 3310, 4613]. AT&T [2214, 3091]. AT-based [2265]. Atan2 [6031]. Atanasoff [4045, 5630].
Atari [2067]. Athens [7097]. Athlon [4261]. Atkin [5163]. Atlanta [7266, 7208, 7501, 7176]. Atlantic [7080, 7087, 7069].
Audio [2921, 3881, 977]. Auditorium [7314]. AUGMENT [1264, 1097, 1106]. Augmented [5669, 729, 822, 6433, 6736].
Augmenting [2723, 2314]. August [7091, 7134, 7280, 7423, 7437, 7292, 7351, 7438, 7364, 7469, 7494, 7381, 7088, 7270, 7311, 7314, 7316, 7327, 7413, 7461, 7370, 7297, 7342, 7358, 7385, 7402, 7417, 7190, 7085, 7275, 7128, 7403, 7387, 7347, 7249, 7433, 4045].
Australian [7186]. Austria [7155]. Auswahl [1236]. Auswertungsalgorithmen [1061]. Author [4486, 4640, 5234, 5455, 6215, 6720, 6834, 772, 6579]. Auto [6501, 4184, 7041].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 23

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Basel [7220, 2579]. Bases [5459, 6732, 6844, 548, 549, 549, 6128, 6141, 5277, 4562, 5604, 6083, 530, 597, 5129, 4029, 2222, 3797, 4740, 5624, 3176, 3355, 3953].

Basic [3546, 5793, 6352, 1266, 1500, 512, 6279, 4378, 633, 5027, 3635, 1146, 289, 6902, 2137, 1161, 5999, 5100, 1193, 5737, 755, 2809, 2996, 4916, 1085, 1010, 2582, 1336, 2594, 1091, 4499, 1727, 4457].

Basiserweiterung [3154]. Basiswahl [750, 751, 893].

BCD-based [5402]. BCD-floating-point [1788]. BDDs [5117].

Because [6479, 6493]. bedingte [547]. Bedot [6983].

Behavior [4947, 4336, 880, 5860, 6645, 6765, 879, 5983]. Behavioral [3877, 4296, 4005].

beliebig [2100]. beliebig [2051]. beliebiger [650]. Bell [2684, 75, 98, 571]. bench [3506].

Benchmark [6134, 1740, 1870, 1750, 1763, 1772, 1689, 4514, 1733, 1734, 1736, 3571]. Benchmarks [2670, 2232, 3029, 3613].

Benefit [6608, 1490]. Benefits [6743, 6744, 5040, 5176, 2486, 1483].

Benford [5254, 5563, 3704, 5659, 5660, 5677, 1096, 5266, 5493, 4836, 4995, 4535, 5151, 5024, 5166, 4223, 1445, 4420, 5429, 5761, 2279, 2280, 784, 716, 1470, 660].

Benutzerhandbuch [1468].

Berechnung [1811, 1094, 384, 2097, 585, 650, 1627, 1794]. beregnern [1328]. berekenen [491].

Berger [3629, 2423, 3121]. Bergman [4614]. Berichtigung [893, 357].

Berekeley [1378, 2106, 2244]. Berlin [7111, 7114, 7427, 7360].

Beschreibung [2609]. Besieged [5013].

besonderer [1699]. Bessel [5508]. Best [5894, 2685, 513, 579, 2275, 598, 3381, 6886, 481].

Better [6320, 7034, 2190, 4224].

Between [3963, 5881, 5162, 4059, 5032, 7128, 584, 3670, 597, 4787, 5875, 6127, 5126, 4164, 4818, 5265, 5138, 673, 3748, 3756, 3305, 4408, 208, 3805, 6005, 3239].

Beyer [530]. Beyond [1724, 6151, 6260, 2221, 1892, 1441, 3196, 5638, 5566, 2043, 4740]. BF16 [6913, 6597]. Bfloat [6808]. bfloat16 [6510, 6389, 6706, 6395, 6527, 6754, 6578, 6597, 6602, 6473].

Bhubaneswar
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

4971, 5471, 4800, 3412, 4670, 4166, 4983, 1967, 1601, 3069, 4989, 4991]. bit
[2364, 4832, 3076, 4018, 4694, 3586, 1403, 1610, 3429, 307, 4537, 5001, 6506,
5149, 2711, 6776, 3443, 6986, 1623, 2399, 2400, 2545, 3899, 2404, 2734, 2406,
2407, 2408, 2409, 2238, 2550, 2924, 4712, 5170, 5171, 5029, 2421, 5922, 6547,
1759, 2556, 2557, 1996, 4578, 4722, 1645, 7004, 2431, 5838, 6313, 6314, 6900,
2255, 2768, 3309, 2259, 6906, 3269, 5333, 1442, 4250, 3233, 1907, 647, 5427, 3666,
4902, 4905, 4906, 2465, 4444, 4115, 3187, 1928, 3004, 4120, 4921, 3949, 2484,
6444, 1476, 2033, 1255, 1704, 2834, 3202, 3952, 3953, 5949, 2308, 1942]. bit-
complexity [1442]. bit-flip [5922]. Bit-Level [6037, 2875, 4582, 4787, 5838].
Bit-Manipulations [6170]. bit-map [3196]. Bit-Parallel [5477, 5506, 4384,
5187, 5428, 5432, 5153, 2979, 4625, 4971, 4991, 3899, 5029, 3666, 3952, 3953].
Bit-Pipelined [2410, 2238, 2550]. bit-reproducible [5954]. Bit-Sequential
[1195, 2010, 1547, 1779, 1548, 2185, 2465]. Bit-Serial [4972, 1608, 4349, 5506,
4553, 2099, 5033, 4586, 2896, 3272, 2189, 3586, 4906, 3004, 1704, 2308]. bit-slice
[1954, 1255]. Bit-Sliced [5671, 4427]. bit-true [6776]. bit-vector [5466]. Bit-
Width [5739, 4832, 5333]. Bits [4945, 4148, 430, 433, 2557, 5927, 6324, 1942].
bitwise [6076, 6911]. Bivariate [5727, 6139, 5408]. bivariées [5408]. BKM
[3035, 3218]. Blackfin [4641]. blame [6194]. BLAS [4499, 6009, 6114, 6122,
6241, 5890, 5964, 6136, 6372, 6867, 6059, 6060, 6665, 6666, 4570, 6309, 5839,
5755, 4924, 5775, 6593]. BLAS1 [6534]. BLAST [4193, 4194, 4939]. Bledy
[2500]. Block [6956, 3388, 6463, 3978, 4834, 4218, 1225, 6071, 3787, 7014, 2288,
1787, 3029, 4799, 4970, 2660, 2516, 4007, 1204, 3103, 3451, 3617, 4859, 1226,
4879, 5045, 580, 2268, 4086, 1065, 2485, 1938]. Block-Floating-Point
[4128, 3451, 3617, 4859, 580]. Block-Level [6956]. Blocked [6138]. Blocklength
[2628]. Blocks [6279, 6902, 6327, 6937, 5371, 6941, 5027, 980, 5820]. blood
[2332, 2506]. Bloomington [7284]. Blue [3739, 4973, 4986, 5037]. BlueGene
[4780]. BlueGene/L [4780]. blur [2304]. BN [668]. BNS [2412]. Board
[3539, 2080, 2309, 3628]. boards [1997]. body [4573, 4923]. Boltzmann
[4617]. Bombelli [3926]. Bonas [7246]. Book [3706, 4141, 4142, 21, 4663, 509,
[6517, 6777]. Bookshelf [4575]. Boolean [6589, 2655, 334, 353, 996, 789].
Boost [3964, 2524, 6879, 2007]. Boosting [4068, 4402]. boot [3496]. Booth
[7048, 3379, 1260, 4820, 6163, 6298, 3466, 3921, 4592, 6918, 924, 5096, 4282].
borrow-save [2884]. Boston [7091, 7195, 7391, 7082, 7181, 7241, 7462,
7164, 7346]. both [6238, 980]. Boulder [7128]. Bound [951, 5638, 6280,
4059, 3645, 3668, 5431, 2983, 4648, 3718, 4543, 5173, 2800, 2982, 4138, 2815].
Boundary [5524, 3662]. Boundled [3957, 5578, 3324, 2132, 5117, 5393].
Bounding [6847, 5571, 3463, 3631, 3904, 3915]. Bounds [6450, 5953, 3388,
3389, 4014, 6056, 5907, 6274, 6279, 3768, 3291, 4380, 6303, 6548, 6177, 6902,
3649, 4074, 478, 5994, 6321, 585, 6193, 6569, 848, 4462, 798, 5229, 7289, 5955,
4495, 5658, 3039, 1948, 5246, 4805, 4806, 5574, 5131, 6877, 6981, 5974, 6162,
6275, 6399, 3900, 5831, 1638, 364, 6316, 4734, 5430, 1334, 6197, 4753, 2024, 7035,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Calculators [726, 1021, 4372, 4274, 3460, 107].
calculer [29, 40, 108].
calculs [40, 3151].
calculus [7052].
Calgary [7471].
calibrating [4842].
Calif [7194].
California [737, 7390, 7407, 7434, 7253, 7180, 7198, 7209, 7199, 7093, 7226, 7283, 7314, 7368, 7487, 7152, 3771, 7305, 7342, 7359, 7372, 7454, 7141, 7492, 7234, 7247, 7288, 7375, 7222, 7394, 7279, 7304, 7062, 7151, 7353, 7441, 7319, 7332, 7433, 7386, 7466, 7495, 7299, 7306, 7320, 7373, 7432, 7448, 7374].
Call [5235, 5236, 5456, 5650].
Call-for-Papers [5456].
called [5].
calls [1190].
CalmRISC32 [4363].
calorimeter [3593].
Cambridge [7203, 7215, 7240, 7233].
CAML [2944].
Can [5563, 4334, 1040, 1136, 2544, 2965, 3382, 5113, 4662, 2074, 1296, 3103, 3615, 6418].
Canada [7277, 7451, 7134, 7309, 7136, 7228, 7399, 7439, 7318, 3183, 7438].
Canadian [7471].
Cancellation [5879, 4322, 994, 3930, 6371, 5916, 2965, 3929].
Cancun [7459].
Canonic [3572].
Canonical [1548, 2918, 3899, 5369].
Can't [6493].
Cantilever [3760].
capabilities [1846, 2739].
Capability [1565, 2866, 6895, 6896, 1372, 2939, 1996].
Cape [7415, 7418].
CARM [7033].
Carnegie [7102].
Carnegie-Mellon [7102].
carriers [150].
carry [377, 6955, 4312, 5673, 233, 286, 144, 3139, 2001, 3324, 2782, 5759, 4909, 5212, 2875, 4333, 2520, 4681, 2725, 1899, 5067, 1167, 5768, 5853, 2474, 4456].
carry-aware [6955].
carry-free [5067].
carry-look-ahead [802].
carry-look-ahead [802].
carry-propagate [2520].
carry-look-ahead [802].
carry-propagate [2520].
carry-propagation [377, 233].
carry-save [4518, 4519, 6135, 335, 5275, 3139, 2782, 3566, 2875, 4333, 4681, 1167, 5768, 5853].
carry-save-adders [4456].
carry-select [5743].
carry-skip [2075, 2331, 2660, 2725, 2474].
carry-save [4518, 4519, 6135, 335, 5275, 3139, 2782, 3566, 2875, 4333, 4681, 1167, 5768, 5853].
cascade [366, 477, 2899, 2401, 2330].
cascade-correlation [2899].
cascaded [3457].
cascades [1780].
cascading [370, 1778].
CASCON'98 [7318].
Case [4289, 6653, 3768, 1438, 3484, 4261, 1452, 2803, 933, 4442, 6109, 3359, 6112, 3221, 4516, 4684, 3900, 5596, 5983, 6696, 4448, 6335, 3370].
cases [3419, 2351, 5286, 4387, 4717, 5172, 5409, 5917, 4398, 4616, 5083, 5230, 6475, 4700, 3449, 4716, 4578, 4722, 4756, 5081].
casting [6025, 6991, 2829].
castle [7452].
catastrophic [4322].
categorical [7111].
cauchy [3052].
caused [1755, 700].
causes [6326, 6436, 3350, 1702].
causing [5959].
CAV [7457].
caveats [5684, 5478].
CCD [1526, 2111].
CCECE [7471].
CD [7345].
CD-ROM [7345].
CDC [624, 302, 731, 554, 636, 1242, 1345, 717].
CDC-3600 [302].
CDMA [5150, 4231, 4232, 4233, 4394, 4395, 4576, 4871, 4132].
ce. [2080].
Celebration [7447].
CELEFUNT [3052].
céleste [40].
celestial [40].
cell [5673, 2889, 4018, 7228, 2387, 2909, 3178, 5561, 2674, 3733, 2890, 2722, 3277, 2413, 2747, 3181, 5049, 5059].
cells [6610, 3430].
cephalic [5255, 5475, 1595, 2882, 4008, 1217, 4559, 637, 685, 938, 3404, 5405, 2580].
cent [333, 165].
center [7207, 7421, 719, 7157, 7294, 7340, 7412, 7464, 7479, 7139, 7106].
tered [6753]. central [3146, 3147]. Centre [7496, 7228, 7382, 7298, 7095].
centric [7464]. centuries [1159]. Century [7396, 7270, 4026, 7340, 27, 31,
5467, 1321, 930]. CEQRNS [3511]. CERN [624]. Certain [13, 1811, 811,
733, 4995, 83, 3132, 365, 4415, 4416, 588, 551, 1268, 465, 1396, 225, 1867,
3449, 5164, 3163, 2611, 2612, 2613, 1703]. Certificate [6080]. Certification
[5574, 5771, 594, 5245, 5408, 5178, 538]. Certified [5474, 6303, 6548, 5752, 6321,
4805, 4806, 5323]. Certifying [5390, 5690]. CFloat16 [6953]. CFloat8 [6053].
CFT77 [2419]. CG [3637, 3786, 2614]. CG-Like [3786]. CG-S [2614]. CGO
[5660, 6159, 324, 5759, 3830, 6375, 619, 3948]. Chaitin [4919]. Challenge
[4378, 408]. Challenges [7223, 7313, 7271, 6073, 5554, 5869, 7443]. chance
[3474]. changes [1702, 3008]. Changing [6757, 7223]. Channel [6484, 4401,
4585, 4587, 4730, 4662, 2240]. Channels [6831, 6702, 2630, 3773, 5173, 4231,
4232, 4628]. Chaos [6479, 6493, 6502, 3702, 6480, 2572]. Chaotic [6467, 2158,
6989, 6005]. Chapter [1616]. Character [1768, 1905, 6455]. Characteristic
[5116, 5241, 5661, 5951]. Characteristics [3720, 614, 730, 503, 395, 1636,
2273, 1843, 5719, 1882, 2023]. Characterization [3704, 1702]. characterizations
[3304]. Characters [877]. Charge [4975, 3205, 4667, 4941]. Charge-balancing
[3205]. charge-integrating [4941]. CHARGOGAGGOG-
GMANCHAUGAGOGGCHABAUNAGUNGAMAUG [875]. Charles
[21, 235, 3659]. Chasing [3739]. chasm [5821]. Chebyshev [513, 6226,
116, 623, 6393, 6518, 5730, 2104, 5599, 688, 1056, 1057, 2610, 2161, 1077].
Check [810, 6025, 3629, 6193, 166, 2049, 3121, 699, 5343]. Checked [4025,
412, 3937, 3927, 3928, 4090]. checker [1713]. Checkers [1625, 6080, 2226,
2258, 2578]. Checking [3561, 6137, 5713, 1625, 2092, 5742, 121, 482, 6919, 936,
5376, 3568, 6034, 229, 1523, 2226, 2258]. Checksum [2966, 3513]. chemistry
[3613]. Chen [929]. Chengdu [7472]. Chester [7163]. Chi [2115, 2254].
Chicago [7107, 7104, 7069]. child [4854]. child-engineering [4854]. Children
[7395]. China [7364, 7472, 7361, 7419, 5675]. Chinese [4637, 5483,
2532, 2403, 400, 599]. Chip [1270, 2060, 1964, 1402, 1293, 3264, 1883, 6420,
1776, 2017, 6705, 4455, 2027, 4469, 3352, 2634, 3214, 3382, 2503, 1956, 2870,
2871, 2872, 2516, 2692, 3593, 2402, 1760, 2251, 2761, 2257, 4906, 1928, 1795,
2164, 3833, 4941, 2345]. Chip-Set [1402, 2516]. Chiplet [6711, 6825]. Chips
[6349, 1833, 7479, 6419, 1330, 2851, 2524, 7314, 2134, 2029, 1798]. Chisel
[6813]. Chisel-based [6813]. Choice [498, 170, 1519, 750, 751, 893, 1236, 282,
5089]. Choices [3399, 3813]. Cholesky [2346, 3330, 6112]. Choose [6242]. Choos-
Ciphers [5897]. Circuit [7081, 377, 3576, 732, 875, 3431, 2084, 7200, 6524,
2097, 1879, 3469, 4586, 6423, 6559, 697, 5347, 1170, 6816, 5947, 5226, 5949, 2324,
3558, 3723, 3990, 4164, 4677, 3062, 3873, 1031, 2530, 4032, 1868, 2932, 5923,
3782, 3647, 3316, 5203, 5441, 291, 3203, 3204]. Circuitry [1993, 2414, 133].
Circuits [1360, 5786, 3957, 7338, 723, 2053, 3561, 1272, 7469, 5578, 3072,
4177, 250, 4346, 7326, 7313, 7119, 7183, 7201, 7226, 7241, 7258, 7328, 7340,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

complex

complex-string

complex-string

complexary

complex-string

complex-string
8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

33

1472, 542, 2621, 544, 1937, 2635, 2650, 1627, 2567, 7449, 7250, 1794, 995]. Computational [7277, 7323, 7348, 6451, 854, 806, 3562, 3407, 4815, 5277, 3073, 389,
2388, 5517, 5301, 3625, 1142, 833, 1655, 2962, 1538, 4907, 3682, 7449, 5948, 7046,
3853, 1500, 4321, 4675, 4687, 3583, 7270, 2910, 575, 7102, 7302, 7502]. Computationally [3625, 3188]. Computations [3532, 4484, 3219, 5118, 6022, 5382,
3560, 3726, 872, 1025, 1028, 4182, 4536, 5702, 6510, 1132, 1412, 3606, 4551,
3895, 5977, 3768, 894, 1044, 6676, 904, 1430, 6554, 7159, 5533, 5759, 2973,
4897, 5996, 2142, 4610, 5073, 6576, 5352, 848, 1348, 3367, 4285, 5458, 4650,
5877, 6132, 6756, 2066, 3876, 2688, 3737, 3882, 7295, 3900, 5824, 4220, 1140,
634, 5169, 5918, 756, 5328, 5329, 5413, 5532, 7129, 4904, 3936, 5204, 2619].
Compute [5874, 6354, 6506, 2983, 5971, 6911, 1907, 4259, 2800, 2982, 3176].
Compute-Bound [2983, 2800, 2982]. Computed [2806, 2264]. Computer
[7115, 7067, 7073, 7080, 7082, 7083, 7087, 1563, 719, 1007, 7116, 7290, 1009,
7117, 2635, 7236, 3707, 3843, 5235, 5236, 5456, 5650, 5790, 3547, 1362, 326,
7168, 7237, 721, 853, 1188, 1364, 4646, 7378, 2641, 7436, 606, 6231, 6737, 5122,
3046, 7457, 3971, 5668, 7458, 5670, 6472, 7155, 246, 3975, 7352, 7493, 1194,
7267, 248, 7092, 1721, 7424, 7500, 7325, 4326, 7169, 2883, 872, 873, 1025, 1114,
2356, 7199, 136, 174, 4527, 466, 281, 509, 429, 1028, 337, 964, 1125, 7135, 5498,
1515, 2528, 2700, 2701, 3587, 4533, 4695, 5814, 62, 675, 555, 1128, 4696]. Computer [389, 1210, 1289, 3882, 253, 6151, 6260, 5002, 1129, 1743, 2533, 3594,
4538, 338, 469, 470, 7212, 7293, 7365, 7482, 435, 6269, 4358, 2382, 1301, 2085,
517, 1216, 7156, 1859, 1981, 7460, 7084, 7093, 7094, 7098, 7104, 7108, 7125,
7137, 7138, 7151, 7163, 7184, 7203, 7215, 7238, 7240, 7283, 7315, 7353, 7355,
7366, 7397, 7400, 7411, 7415, 7441, 7463, 7471, 7472, 7484, 7504, 7506, 4202,
7170, 343, 6781, 71, 1134, 4366, 7172, 7229, 2547, 891, 3454, 7286, 566, 141,
160, 161, 180, 3111, 4050, 7330, 4051, 4219, 4555, 7231, 7445, 5522, 285, 898,
974, 1425, 1992, 4560, 5407, 5912, 2738, 3771, 7305]. Computer [5025, 1636,
4385, 1312, 2420, 1427, 569, 3463, 3631, 7446, 4575, 2938, 5526, 1761, 1641,
4723, 5529, 446, 4238, 317, 162, 5605, 266, 7418, 7492, 6180, 6901, 5414, 2000,
3646, 4240, 2763, 7488, 642, 7154, 2768, 2957, 5990, 478, 5184, 6909, 2121, 3315,
1439, 2572, 4248, 5612, 121, 7216, 7455, 988, 7275, 129, 3488, 6565, 1672, 1060,
582, 920, 1674, 1239, 6567, 6101, 1912, 6569, 1163, 7192, 3499, 1454, 5069, 2143,
7481, 486, 1916, 1684, 587, 927, 7404, 7322, 1457, 47, 1070, 6931, 7101, 1343,
7218, 7219, 3183, 7262, 7263, 7489, 7490, 7491, 7499, 7036, 2469]. Computer
[590, 7497, 591, 7102, 940, 1074, 1173, 2156, 7220, 1349, 7405, 3012, 6110, 97,
151, 1558, 717, 5861, 5862, 6445, 493, 601, 1799, 3208, 6971, 551, 1352, 1468,
7435, 98, 3536, 296, 604, 1089, 1189, 2642, 605, 547, 4501, 1015, 6236, 955, 1499,
7409, 959, 1507, 1597, 1730, 1394, 4341, 1029, 1839, 282, 2368, 283, 2374, 3754,
516, 2225, 3613, 2544, 259, 284, 1046, 7357, 3779, 4869, 5746, 353, 575, 695,
2563, 4400, 5415, 2954, 3659, 146, 183, 206, 2579, 1535, 992, 771, 709, 2798,
5630, 6700, 1688, 7300, 2809, 2996, 2997, 4915, 935, 1339, 455, 147, 2814, 2616].
computer [2621, 1560, 797, 3374, 1006, 1007, 5799, 497, 3588, 2080, 7232, 1538,
1000, 933, 4141, 4142, 4663, 1671]. Computer-Aided [7283, 7353, 7400, 7300].
Computer-Arithmetik [1006, 1007]. Computer-Oriented [7116]. Com-


8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

34

puters [7406, 135, 7063, 7074, 217, 7167, 7377, 7422, 1571, 1369, 1490, 6467,
5672, 1498, 6479, 1379, 7180, 7198, 7209, 7310, 6493, 2885, 7304, 5495, 4830,
7389, 227, 228, 1286, 6502, 434, 200, 624, 119, 139, 7163, 7184, 7215, 7240, 7257,
7315, 7397, 7152, 6166, 6281, 1422, 4556, 288, 181, 5526, 7319, 7332, 7343, 7359,
7372, 7386, 7454, 7466, 7495, 182, 914, 479, 5420, 7079, 7099, 7127, 122, 123, 529,
1164, 7247, 7288, 1686, 2020, 2021, 7070, 167, 1561, 1804, 6480, 4669, 1507, 249,
731, 4994, 226, 1843, 678, 2375, 1408, 7366, 311, 520, 1140, 3903, 5318, 234, 315,
3145]. computers [703, 704, 769, 990, 1235, 7130, 1921, 4271, 80, 3240, 2012].
Computes [4059, 1645]. Computing [7096, 7308, 7421, 7434, 7451, 7456, 6344,
75, 4776, 218, 7143, 3707, 6452, 6723, 7394, 7168, 45, 7237, 7279, 4494, 6352,
1490, 3715, 6464, 6466, 6020, 105, 1496, 6854, 7409, 5882, 6483, 1826, 6864,
7325, 7459, 4327, 4334, 7381, 3066, 6378, 7269, 2070, 5695, 1840, 5497, 5815,
112, 3742, 2371, 5901, 6051, 339, 340, 341, 6387, 86, 3600, 6772, 6156, 517, 7271,
7339, 7440, 7501, 4201, 7480, 3276, 3278, 5727, 6274, 7483, 4213, 6282, 5305,
5306, 5594, 3624, 7356, 5828, 7051, 6173, 1881, 6298, 1886, 7446, 4575, 3464, 352,
94, 5039, 1433, 5602, 3128, 7158, 692, 693, 760]. Computing [5046, 7191, 7447,
365, 6087, 6685, 7013, 3308, 4074, 5928, 5992, 5610, 4413, 6562, 6914, 5421, 3923,
7299, 7306, 7320, 7373, 7432, 7448, 2270, 2972, 1669, 2273, 6567, 5539, 5617, 239,
5624, 2280, 6923, 3674, 1455, 7261, 3819, 4117, 4447, 6107, 2028, 6334, 2297, 190,
6936, 243, 6711, 6825, 5372, 5646, 5884, 6971, 7252, 7290, 7435, 7134, 6455, 6016,
6230, 58, 1584, 3230, 4512, 4667, 5895, 2209, 2886, 7146, 3250, 386, 4691, 619, 92,
63, 64, 65, 66, 67, 68, 5972, 6048, 4022, 7426, 4191, 4033, 6276, 3110, 5163, 7357,
6992, 4386, 830, 5834, 2946, 7069]. computing [694, 363, 4239, 5988, 479, 5757,
1668, 2133, 4605, 3505, 2466, 5349, 5350, 85, 2481, 3949, 3198, 6824, 6940, 273].
Concise [6550, 7013, 6330]. Concordia [7100]. Concurrent [5461, 1841, 6148,
5708, 2423, 5924, 6315, 1664, 5933, 1852, 1471, 1472]. Condition [3781, 3992,
1738, 1037, 4475]. Conditional [6368, 1393, 743, 6682, 3481, 213, 5217, 547].
Conditional-Sum [743]. Conditioned [2797, 2143, 4551, 192, 193]. Conditions [1280, 1033, 4052, 1675, 4502, 1126, 6717]. conducted [7106]. Conference [7096, 7109, 7177, 7178, 7195, 7206, 7337, 7392, 7406, 7421, 7496, 7073,
7080, 7082, 7083, 7087, 7223, 7235, 7081, 7117, 7143, 7208, 7253, 7309, 7338,
7377, 7393, 7422, 7423, 7437, 7303, 7457, 7292, 7350, 7351, 7155, 7111, 7485,
7268, 7281, 7468, 7180, 7198, 7209, 7310, 7379, 7254, 7459, 7380, 7425, 7269,
4822, 7118, 7181, 7304, 7146, 7389, 2371, 7498, 7505, 7507, 7182, 7326, 7313,
7460, 7200, 7093, 7104, 7119, 7136, 7150, 7151, 7157, 7162, 7163, 7183, 7184,
7203, 7215, 7226, 7228, 7239, 7240, 7241, 7256, 7257, 7271, 7283, 7294, 7315,
7316, 7327, 7328, 7339, 7340, 7341, 7353, 7355, 7366, 7369, 7382, 7383]. Conference [7397, 7398, 7399, 7401, 7412, 7414, 7428, 7440, 7441, 7443, 7453, 7461,
7462, 7463, 7471, 7472, 7473, 7474, 7501, 7186, 7480, 7171, 7105, 7483, 7243,
7244, 7229, 7152, 7502, 7187, 7273, 7174, 7297, 7175, 7189, 7319, 7332, 7343,
7359, 7372, 7386, 7454, 7466, 7495, 7158, 7430, 7190, 7140, 7141, 7153, 7164,
7431, 7447, 7274, 7154, 7142, 7128, 7476, 7374, 7467, 7335, 587, 7449, 7261,


ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Convergent [2173, 3675, 3633]. convergents [5400]. Converging [3445, 2388, 3504].

Conversation [1165, 1172, 2002]. Converters [4184, 5297, 905, 5322, 5177, 6702, 3881, 2727, 4245, 4258].

Convertor [819, 3690, 4451, 3205, 2848]. Convertors [2998]. converts [1709, 3383, 1654].

Convergent [2173, 3675, 3633]. convergents [5400]. Converging [3445, 2388, 3504].

Convergent [2173, 3675, 3633]. convergents [5400]. Converging [3445, 2388, 3504].

Convergent [2173, 3675, 3633]. convergents [5400]. Converging [3445, 2388, 3504].

Convergent [2173, 3675, 3633]. convergents [5400]. Converging [3445, 2388, 3504].

Convergent [2173, 3675, 3633]. convergents [5400]. Converging [3445, 2388, 3504].

Convergent [2173, 3675, 3633]. convergents [5400]. Converging [3445, 2388, 3504].

Convergent [2173, 3675, 3633]. convergents [5400]. Converging [3445, 2388, 3504].

Convergent [2173, 3675, 3633]. convergents [5400]. Converging [3445, 2388, 3504].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Additional Contributions from Nelson H. F. Beebe

6862, 6863, 198, 224, 6133, 6244, 5261, 173, 3731, 5270, 501, 4526, 4861, 4988, 5275, 5395, 5491, 5492, 5580, 672, 674, 6146, 2525, 5396, 5900, 5500, 6045, 2531, 1405, 4843, 5902, 3747, 86, 5507, 1291, 1292, 1975, 3889, 5152, 5157, 5297, 5513, 1303, 2227, 4040, 5160, 5732, 1630, 4856, 5017, 5019, 260, 1144, 261.

Decimal [94, 402, 6555, 115, 5183, 2960, 2781, 993, 267, 1539, 5849, 841, 1164, 1683, 485, 4908, 5070, 5541, 269, 166, 2600, 533, 5087, 5088, 189, 5357, 5358, 5548, 5772, 3520, 5217, 5360, 5556, 5557, 134, 3835, 5226, 1078, 5454, 6455, 1804, 5569, 5385, 5472, 464, 2699, 5970, 5499, 1290, 5707, 5156, 5158, 5512, 5515, 565, 2233, 2234, 4855, 5320, 5321, 401, 353, 6310, 1159, 1062, 5623, 780, 652, 6928, 5545, 5634, 4921, 7056, 5637, 5774, 2482, 5366, 5640.

Decimal-Based [5900, 5772, 5396, 5357, 5358].

Decimal-Binary [173, 2525].

Decimal-Floating-Point [5152].

decimal-point [780].

Decimal-to-Binary [155, 4843, 267, 1291, 1292, 401].

Decimal/Hexadecimal [2600].

dec2numNumber [5128, 5260].

Décimales [1159].

Decimals [618, 43, 5299, 5523, 268, 1693].

decimation [3266].

Decimation [3266].

decimation-in-time [3266].

Decision [4289, 5533, 4112, 5466, 3607, 4062, 5532, 4912].

Decisions [5013, 1977, 1308].

Decoder [7048, 6322, 4115].

Decoders [4108].

Decoding [4492, 6980, 6509, 6674, 569, 4489, 1088, 2354, 4226, 5173, 4888, 2026, 4470].

Decoding-Free [6980].

Decodings [6903].

Decomposable [3997].

Decomposition [3094, 2387, 3285, 1886, 5321, 5175, 355, 4415, 772, 3675, 2986, 791, 2505, 4839, 6783, 2417, 476, 3338, 5207].

Decompositions [5297, 996].

Decompression [6868, 3671].

Decreasing [3999, 2457].

decryption [3565].

DECSYSTEM [1400, 958].

DECsystem-10 [958].

DECsystem-10/20 [958].

DECSYSTEM-20 [1400].

Dedicated [2983, 2800, 2982].

Dedication [5864].

dédié [2800].

Deductive [5957].

Deep [6448, 7044, 6449, 6349, 6477, 6478, 6366, 6637, 6639, 6855, 6856, 6868, 6505, 6504, 6983, 6527, 6285, 6410, 6786, 6679, 6998, 6544, 6790, 6681, 6558, 6914, 6097, 6915, 6428, 6804, 6807, 6933, 6597, 6606, 6714, 7042, 6638, 6748, 6403, 6678, 6415, 6687, 6906, 6477, 6687, 7011, 6444].

Deep-dish [6097].

Defect [7260, 1784, 2820].

defect-tolerant [2820].

Defektberechnung [2567].

defense [2863, 1566, 1644].

deficiencies [1736].

defined [4971, 5145].

Defining [3473].

Define [6608, 282].

Definiteness [6193].

Definition [2343, 555, 6395, 5022, 5050, 3401, 2365, 747, 1224, 4860, 6195, 17].

Definitions [6859, 1553].

Degeneracies [3472].

Degeneracy [3333].

Degradation [5028, 5997].

Degrees [3760].

Degree [5784, 5662, 4318, 1665, 4774, 5281, 6316, 6328].

Dekker [6785, 5121, 6654, 6677].

Delaunay [3681].

Delay [3720, 2660, 3563, 3859, 5492, 5970, 6988, 4064, 6693, 4910, 4728, 4731, 3365, 5779].

Delay-based [5970].

Delay-optimized [4910].

Delay-power [3563].

delayed [5243, 4229].

Delays [2884].

Delhi [7225].

Delight [5946, 7388, 4575].

delimited [5201].

Delimiting [3019, 2841].

deliver [3196].

delivers [2182, 2503].

Delivery [7265].

della [138].

Delta [3564, 3977].

Delta-sigma [3564, 3977].

Demmel [4829].

Demonstration [5012, 3558, 88].

Denmark [7138].

denoising [5686].

dénominateurs [5400].

Denominator [5989].
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

efficient

Efficiently

Efficiently-Computable

Effort

Egypt

Eidetic

Eigensolvers

Eigenvalue

eigenvalues

Eigenvectors

Eighteenth

Eighth

Ein-

Einbettung

einem

einfach

einfacher

Einige

Einiger

Einplatinenrechner

eins

Eisenstein

Eispack

elastic

electric

Electrical

d’Electrique

Electro

Electro/80

Electro/83

Electro/86

Electro/88

Electrologica

electromagnetic

Electronic

electronic

Electronics

Elf

elicited

Eliminate

Eliminating

Elimination

ELU

Elusive

ELXSI

Email
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ERL [4833]. Errata [1387, 231]. Erratum [1108, 922, 5445]. erreurs [989].
Error-Bounding [3463, 3631].
Error-Correcting [1613, 1144, 582]. Error-Checking [482]. Error-Coded [722, 3295].
Error-Correcting [1613, 1144, 582]. Error-Detectable [2151]. Error-Detecting [1365].
EXHIBITION [7136, 7382]. EXISTENCE [437, 5326, 5281, 5145, 7131].
EXISTING [6645]. EXIT [3496]. EX-PAN [6797]. EXPANDED [1523].
EXPANDING [2716]. EXPANSION [1820, 6046, 6562, 2620, 976]. EXPANSIONS [548, 3868, 3995, 3996, 6164, 6548, 6183, 6103, 6104, 6577, 242, 6132, 5975, 146].
EXPERIENCE [3715, 1653, 124]. EXPERIENCES [1559]. EXPERT [3067, 5251].
EXPLAINING [667, 1847, 3119, 782]. EXPONENTIAL [5562, 6235, 248, 1959, 4166, 6250, 609, 4329, 4330, 4819, 4833, 3750, 201, 7051, 3467, 2776, 4739, 413, 5576].
EXPLANATION [5563, 5493, 4378, 956, 1].
explicit [6232, 5497, 6402, 6526, 6534, 6570, 1698, 4691].
EXPLOIT [4597, 124]. EXPLOITATION [4973]. EXPLOITING [3209, 5868, 6119, 6366, 4692, 2410, 5170, 5171, 5315, 3157, 3931, 456, 4281, 3798].
EXPLORATION [6460, 6852, 5473, 6641, 5898, 6996, 6185, 4908, 4934, 5185].
EXPLORATIONS [6644]. EXPLORING [6882, 6797, 3813, 5680].
EXPONENT [5463, 5741, 5919, 6690, 3019, 2041, 2926, 4868, 3316, 6005, 2841].
EXPERIMENT [2066, 2618]. EXPERIMENTAL [327, 4494, 6854, 179, 6512, 590, 149, 1637, 7069, 339, 340].
EXPERT [3067, 5251]. EXPLAINING [1037, 4420].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

52

finite-moduli [6196, 5941, 4611, 4912, 3340, 4760, 4118, 147, 1796, 540, 541, 2301, 2622, 6030].

5 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

53

Fixed-Point-Arithmetic

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6189, 645, 6694, 1156, 1234, 1326, 5932, 5993, 5613, 2127, 7020, 701, 4255, 4421, 5612, 2274, 993, 3158, 2275, 6194, 2797, 5066, 5434, 5435, 5617, 5937, 4261, 6697, 6435, 1540, 6326, 1679, 453, 1680, 6327, 3930, 3931, 5068, 1454, 1775, 4908, 5070, 5342, 2282, 4101, 4267, 4437, 4750, 5071, 5766, 4610, 5073, 2983, 1776, 5627, 5852, 2595, 3680.

Floating

Floating

[6446, 3956, 1564, 5648, 6212, 3023, 3705, 3841, 4543, 5454, 6012, 6115, 6013, 720, 296, 1485, 2492, 2634, 3029, 3214, 3380, 3381, 3382, 3383, 4487, 6348, 6455, 6456, 6953, 2493, 1085, 1010, 5653, 1800, 2312, 1801, 1802, 1362, 2314, 1569, 1570, 2041, 2315, 4780, 6119, 4144, 1487, 2496, 2861, 3037, 5566, 5871, 2043, 1368, 1807, 2180, 2497, 2181, 5872, 4299, 2045, 2319, 6957, 2643, 3221, 3039, 2230, 4302, 5239, 5240, 1091, 2182, 1370, 2323, 5797, 4784, 2498, 1190, 5120, 3851, 2324, 6229, 2325, 2186, 2646, 2647, 3045, 1813, 4307, 4502, 4651, 4787, 4788, 4789.

Floating

[5121, 5243, 5957, 6231, 3717, 1716, 299, 2187, 666, 5246, 5568, 4310, 3852, 1015, 4792, 5381, 5569, 6964, 7046, 2188, 1016, 1193, 6357, 5801, 6630, 3226, 4969, 3556, 1815, 2190, 2656, 6359, 1954, 6475, 1377, 6476, 3401, 6283, 1378, 4799, 4970, 2661, 3228, 379, 1585, 6361, 3855, 4973, 1818, 2056, 2665, 3723, 3857, 5878, 1380, 1722, 2000, 2335, 4508, 5476, 3978, 3979, 5960, 4801, 4802, 3982, 1589, 5478, 5684, 4161, 2674, 1104, 1961, 3988, 4669, 4515, 4581, 3412, 5868, 2342, 2870, 2871, 2872, 3865, 3994, 3237, 6248, 2679, 6249, 5390, 5391, 959, 1276, 2681, 6371.

Floating

[5963, 5691, 3059, 2878, 3241, 3416, 4521, 4674, 4814, 6136, 6034, 3997, 3061, 249, 4818, 5134, 5264, 4335, 961, 4524, 5877, 6645, 5136, 5269, 5217, 4983, 3434, 2822, 5220, 2205, 502, 1733, 1734, 2884, 4000, 1202, 5272, 5137, 5489, 734, 1116, 4989, 4173, 4174, 6877, 4684, 4685, 5580, 1512, 1968, 2360, 1736, 1609, 819, 508, 3737, 1204, 5279, 1029, 6254, 2890, 2364, 4832, 6650, 4691, 5811, 4692, 282, 3070, 3252, 3204, 4835, 3077, 2526, 621, 879, 1030, 1283, 1739, 3428, 2892, 3078, 1031, 3120, 702, 1728, 1844, 5499, 1844, 2530, 1845, 5700, 2370, 4838, 4839, 1846].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6106, 6590, 4120, 592, 3347, 6333, 6002, 7037, 5356, 2027, 848, 5548, 2822, 3518, 2824, 6706, 3350, 6334, 5857, 3829, 3193, 6208, 6442, 2299, 215, 1469, 1701, 2617, 5097, 5220, 5364, 5365, 5556, 5557, 5641, 1354, 2033, 3012, 216, 3201, 2302, 6210, 5223, 2625, 799, 3019, 1706, 5371, 4135, 6825, 6826, 6605, 5104, 5560, 5645, 5105, 5372, 5229, 6607, 5690, 5884, 4622, 6337, 4488, 6948, 4483, 2170, 2171, 416, 3215, 1947, 4296, 6464, 2326, 6961, 6962, 1578, 1579, 1718, 5249, 6471, 4794, 4968, 2503, 6360, 2666, 2667, 2668, 5375, 5454, 6115, 720, 1485, 2634, 3029, 3380, 3381, 3382, 4487, 6348, 6455, 2493, 1085, 5653]. Floating-point

[5959, 6025, 1501, 1824, 2202, 2062, 3726, 5265, 4677, 1394, 4686, 2524, 2368, 307, 3745, 5147, 1296, 5511, 1298, 3890, 6986, 4206, 4205, 4038, 3283, 258, 2920, 4558, 895, 6067, 6285, 4563, 4864, 6676, 2417, 6788, 6415, 1759, 3639, 979, 3127, 6898, 6308, 2253, 3914, 2117, 2570, 5613, 2007, 2008, 6194, 3930, 4267, 4912, 2147, 2463, 2291, 2025, 4270, 6203, 3826, 5357, 3190, 2826, 1075, 3695, 1350, 6441, 1471, 1472, 1473, 1474, 5948, 6711, 5576, 1937, 2172, 3375, 2851, 3956, 1564, 6212, 5454, 6115, 720, 1485, 2634, 3029, 3380, 3381, 3382, 4487, 6348, 6455, 1800, 2312, 1801, 1802, 6119, 4144, 2861, 3037, 5566, 5871, 5872, 2319, 6957, 2643, 2320, 4302, 5239, 5240, 2182, 2323, 5797, 4784, 5120, 2325, 2186, 2464, 3045, 1813, 4307, 4787, 4788, 5121, 5957, 6231, 3717, 2187, 5246, 5568, 4310, 1015, 4792, 5381, 5569, 6964, 2188, 1016, 1193, 6357, 5801, 6630, 3226, 4969, 2190, 6475, 1377, 3401, 4970, 1585, 6361, 4973, 2056, 2665, 3857, 4508, 3979, 3982, 1589, 5478, 5684, 6132, 4983, 4869, 5481, 2132, 2870, 2871, 2872, 3994, 6249, 5390, 5391, 2681, 6371, 5691, 3059, 4521, 3997, 3061, 249, 4818, 5134, 5264, 4335, 961, 4524, 5136]. Floating-point

[4705, 5903, 2906, 5725, 5726, 1624, 5974, 6162, 6275, 6276, 6399, 2229, 2395, 2396, 3103, 2092, 2093, 3449, 3614, 3615, 4209, 4211, 5731, 4707, 2915, 3281, 3451, 3282, 628, 473, 744, 2399, 2400, 2401, 2402, 4858, 2734, 2406, 2408, 2409, 1527, 1752, 5594, 6783, 3623, 3900, 4862, 5596, 3456, 829, 897, 973, 4221, 5914, 6069, 4803, 2551, 3292, 6992, 2241, 2242, 5916, 6408, 6288, 3903, 3904, 5827, 6173, 755, 2741, 2928, 3117, 4565, 6075, 5978, 5920, 4867, 4391, 4571, 4573, 3907, 4868, 524, 571, 5600, 1757, 5318, 5601, 5922, 1638, 4229, 5982, 4870, 6546, 1050, 1995, 573, 640, 757, 758]. Floating-point

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6371, 4524, 4684, 2530, 3748, 520, 6678, 5027, 4879, 319, 5213, 1627, 2253, 3334

Formats [6213, 6952, 5122, 6478, 6652, 6155, 6156, 6986, 4364, 6673, 2921, 6565, 5068, 2594, 7030, 6701, 6455, 6953, 6906, 2100]. formula [6236, 4478]. formelles [4788, 5799].

FPGAs [7279, 7459, 7299, 7320, 3023, 6955, 5566, 6627, 6742, 6963, 5381, 5693, 6143, 6499, 4838, 4839, 6388, 5585, 6272, 5733, 4862, 6068, 6284, 6406, 6168, 6289, 6291, 3776, 4573, 3907, 5744, 3630, 5749, 6799, 6564, 4735, 4627, 5341, 6701, 5208, 5444, 5211, 5355, 6106, 7056, 4925, 4766, 5777, 5781, 4940, 5575, 5576, 5808, 6489]. FPGen [4635]. FPL [7437, 7351, 7461, 7423, 7379, 4598].

French [7115, 7177, 7117, 7377, 7422, 7363, 7457, 7292, 7485, 7281, 7310, 7494, 7147, 7426, 2763, 7488, 7114, 7298, 7246, 7468, 7231, 7445, 7403].

Francisco [7093, 7151, 7183, 7282, 7384, 7141, 7301, 7336].

Fraud [4836]. Fraudulent [5266]. Fray [3739]. Free [5958, 3722, 6253, 2704, 1288, 1741, 6980, 6534, 2933, 6543, 1054, 1766, 5429, 1695, 3827, 5093, 3019, 547, 1962, 6248, 1209, 3254, 4859, 5411, 5036, 7052, 1434, 5931, 6092, 6187, 5334, 5536, 5067, 4118, 4764, 4931, 3361, 2841, 6945].

Freiburg [7329, 7366, 7123]. Freie [421x479].

Friendly [5800, 5808, 6504, 6511, 5087]. Frobenius [5115, 3858]. front [3593, 2309, 6219, 6722]. front-end [3593].

FT [6947]. FT-EALU [6947].

Fujitsu [3842]. Fukuoka [7435, 7324, 7321]. Fukuoka-shi [7324]. Full [3105, 3106, 3107, 3108, 6927, 3837, 4781, 5121, 2900, 4058, 4612, 7345, 3571]. Fully [2885, 4178, 5500, 1617, 5316, 5059, 1660, 6618, 4872]. Fully-Pipelined [5059].

Function [2310, 5562, 297, 3963, 6228, 6462, 1714, 5380, 5800, 6356, 248, 3721, 4316, 5879, 6639, 1503, 2672, 2673, 3054, 1018, 4812, 4816, 5891, 732, 2518, 426, 428, 6878, 6651, 5286, 4187, 5508, 3433, 4027, 3603, 6057, 1979, 6272, 6534, 439, 633, 5172, 5409, 5979, 3294, 523, 2106, 2244, 6420, 2774, 988, 5062, 3807, 3809, 2980, 5083, 4110, 2470, 2607, 2608, 3002, 6106, 2154, 2159, 6600, 5096, 6004, 2620, 3367, 2838, 5690, 551, 4943, 5232, 1084, 862, 954, 4654, 6964, 6965, 7045, 3973, 3719, 4666, 500, 2674, 2681, 4329, 4330, 4817, 5264, 2880, 2881, 3244, 3245, 1509, 5145, 3750, 4191, 6984]. function [4036, 4037, 5166]. Fully-Pipelined [5059].

Functional [7178, 1943, 1944, 809, 552, 6152, 395, 2557, 3652, 2591, 1162, 996, 3209, 5139, 2904, 5983]. Functions [1945, 4775, 5564, 5111, 1082, 1361, 4948, 854, 6730, 3035, 3218, 855, 2860, 6352, 3964, 4145, 1811, 860, 1014, 4964, 1717, 2051, 953, 1265, 6255, 1266, 6655, 6024, 5682, 275, 1959, 615, 1273, 2399, 3052, 3053, 5573, 2344, 1390, 4672, 334, 2349, 1023, 1024, 1112, 733, 872, 873, 1025, 1113, 4170, 2690, 466, 384, 3074, 1122, 6043, 1840, 7047, 623, 6654, 679, 4024, 4188, 4190, 3884, 4030, 1131, 3267, 1858, 3606, 6987, 3446, 5729, 5909, 6064, 1627, 2091, 3621, 1526, 2547, 3622, 398, 2098, 2549, 2100, 4380, 6074, 4387, 4717, 1756, 908, 1049, 3632, 3465, 352, 690, 4235].

Functions [6177, 7175, 1529, 360, 365, 2434, 2567, 3648, 3789, 6685, 1765, 1656, 3481, 6910, 1901, 2775, 6562, 1665, 1666, 3801, 2449, 1238, 1332, 4900, 6192, 320, 527, 586, 650, 996, 4431, 7025, 6325, 3334, 3164, 3335, 4095, 1544, 6699, 3938, 2020, 2021, 240, 271, 1068, 4111, 2605, 2606, 2812, 2813, 7065, 3185, 5552, 1699, 1176, 2161, 3997, 3699, 6715, 6716, 2850, 4517, 1352, 1794, 5952, 3970, 5247, 5249, 1193, 2655, 4796, 609, 4157, 197, 4979, 3867, 3414, 3236, 3415, 5806, 2353, 4987, 1396, 251,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3150, 3672, 4928, 849, 3363, 2163, 3372, 4632, 4772. Generative [6775, 6983].

Generator [6362, 5898, 6396, 6522, 6686, 6812, 6681, 6666, 1084, 952, 2674, 6397, 3677, 3175, 5575]. Generators [5785, 6024, 914, 2782, 6573, 3837, 4481, 3725, 3591].

Generic [6956, 4327, 2349, 4359, 4866, 5031, 2137]. genetic [5686, 2681].

geneva [7340]. Genus [4351]. Geograph [1321, 1166, 1466].

Geographer [1166]. Geometric [1717, 3400, 4523, 2377, 3632, 3299, 3162, 3680, 3970, 4220, 4379, 4310, 4047, 4379, 2739, 5035, 5323, 4407, 3333, 3679, 3812].

Geometrical [509]. géométrique [3970]. Geometry [7277, 7323, 7348, 4815, 3073, 4038, 5517, 5025, 4907, 7068, 3853, 3583, 2430, 3333, 3679, 3812].

Geschichte [800]. Gesellschaft [7124]. Get [6419, 2190, 3598, 6318, 2486].

Gesamte [1468].

GF [4272, 3796, 4562, 6499, 4349, 4217, 4370, 4553, 4554, 4371, 2732, 4433, 4468]. GFLOPS [4033, 4201].

Ghz [5649, 6633, 4406, 5767]. giant [118].

Gigabyte [6787]. gigaflops [2652, 2766].

Given [1322, 5535, 7204].

Givens [6740, 2704].

giving [2134].

glasses [5756].

glassy [5478, 5684].

Gleichungssysteme [4477, 4771]. gleitendem [107].

Gleitkomma [893, 2934, 2935, 750, 751, 2609, 1354].

Gleitkomma-Arithmetik [893, 750, 751].

Gleitkomma-Prozessoren [1354].

Gleitkomma-Prozessors [2609].

Gleitkomma- und [2934].

GleitkommaArithmetik [1884].

Gleitkommandarstellung [776].

Gleitkommaformat [1627].

Gleitkommaprozessor [1789, 3188].

Gleitkommarechnern [2375].

Gleitkommazahlen [1094, 1975, 2097, 2253].

Gleitpunktalgorithmen [3098, 3099].

Gleitpunktrastern [2051].

Gleitpunktalgorithmen [3098, 3099].

Gleitpunktalgorithm [2051].

Gleitpunktrastern [2051].

Global [3552, 3575, 1217, 7239, 3621, 4581, 3660, 3668, 5880, 5289].

Globally [6963, 3675].

GLOBECOM [7239].

GLSVLSI [7391, 7450].

GMICRO [2235].

GMP [4497, 5119, 4283, 5228, 5283].

gmp-based [5283].

GMRES [4994, 5495].

GNB [5858].

GNU [4841, 3440, 6172, 6295, 4099, 5646].

Goals [1716].

Gödel [3262].

Godfather [1060].

Godson [5675].

Goldschmidt [4004, 4169, 4682, 4990, 4181, 5592, 5735, 4875, 5191, 5423, 5758].

Golem [992].

Golub [1892].

Good [4294, 4149, 3866, 1840, 2958, 6487, 3994, 6320].

Gordon [2684].

got [4803].

GPP [2644].

GPU [6463, 6025, 6132, 5694, 6379, 6386, 6774, 6523, 5976, 6536, 6537, 6888, 6995, 5610].

GPU-FPX [6995].

GPU-Mixer [6537].

GPUMP [5644].

GPUs [6608, 6214, 5656, 5478, 5684, 6142, 6883, 6889, 6174, 6995, 7000, 6304, 5839, 7015, 7025, 6598, 5778, 7039, 6112, 5644].

graceful [5997].

Gradient [117, 6872, 5615, 4799, 4970, 5179, 2948].

Gradual [4947, 5139, 1121, 5011, 2418, 1435].

Gradual-Underflow [4947].

Grain [4557, 7012, 4455, 3250].

grained [6408].

gram [5680, 6774, 602, 5953, 4996, 4768].

Grand [7400].

Granularity [6203].

Graph [4586, 2655, 3723, 528].

Graphic [4550].

Graphical [6550, 5060].
Graphics [6214, 2637, 5579, 4201, 6666, 5025, 4575, 5605, 2569, 5421, 5144, 5714, 4033, 6665, 2738, 2415, 3124, 4870, 2563, 4934, 4935], Grads [806, 6857, 1221, 6924, 7028]. Great [7391, 7450, 6153, 7317, 7333, 22], greater [3298], Greatest [5657, 560, 531, 785]. Greece [7414, 7449, 7420], GreenWaves [6689]. Greenwood [28], Grenoble [7363, 7457, 7494, 7231, 2763], grids [3692], Gröbner [5624, 3176], Groebner [4029], Gronwall [547], großer [653], Group [7265, 3842, 6952, 7210, 5488, 7084, 6986, 7230, 1785, 7065, 2474, 2650], Grouped [4106], Grouped-moduli [4106], Groups, Grove [7278, 7180, 7198, 7209, 7312, 7343, 7359, 7372, 7386, 7454, 7466, 7495, 7247, 7288], Growth [6350, 364], Gruboi [2321], Grundlagen [1903, 1006, 1007, 974], grundlegende [3113], GSFAP [5635], Guarantee [1183], Guaranteed [5683, 4980, 3649, 2599, 5333, 4893, 3190, 5227], guarenteed-accurate [5227], Guard [966, 1032, 5021], Guarding [6770], Guest [5052, 6909, 5790, 5670, 6472, 4219, 5522, 5990, 5069], Guide [6833, 6954, 1374, 1274, 1387, 5806, 2221, 7013, 1926, 3824, 4453, 4922, 3352, 6953, 6207, 1866, 1336, 1688, 2025, 2817, 2818, 2819, 4575], Guided [5878], Guidelines [399], guides [3137, 2292], gun [2490], Gustafson [6153], H [417, 418, 388, 339, 340, 562, 995], H.F.D. [5166], Hacker [6528, 7388, 5946, 4575], Hadamard [2752], Haffmen [1063], Hague [7380, 7313], HAKMEM [676], HAL [4406], halblogarithmischer [2693], Half [6389, 6515, 5731, 3781, 6312, 6557, 6700, 6609, 7270, 6265, 6385, 1036, 3932, 6313], Half-Adder [3781], half-century [7270], half-complex [6099], Half-Precision [5731, 6312, 6385], half-word [1036], Hall [232], Hall-Effect [232], Halstead [2269], halting [4919], halves [3946], Halving [5115, 5222], Hamada [2712], Hamburg [7275], Hamming [2138, 4606, 5369], Hamper [6451], Hand [1021, 3659], Handbook [6228, 1019, 2877, 3249, 352, 5609, 6422, 1468, 1120, 4696, 2816], Handbooks [110], Handled [1306], Hannding [4206], Handle [5526, 6371], Handlers [4148], Handling [3243, 6867, 1202, 2083, 3434, 3596, 1519, 3267, 4205, 3276, 2913, 4230, 3308, 2639, 5251, 3060, 3256, 3890, 3608, 3891, 1357], Hands [5590, 4859]. Hands-on [5590], Hannover [1484], Happen [4149], Happened [5860], Har [6168, 6291, 4398, 2828, 3192, 5836], Hard-wired [2828, 3192], Hardest [5917, 6080], Hardest-to-Round [5917, 6080], Hardness [5393, 5578], Hardness-Randomness [5578, 5393], Hardware [6946, 1080, 1258, 6611, 6949, 5565, 6347, 6349, 6729, 4779, 3035, 3218, 6352, 5565, 6848, 5241, 6019, 3969, 6229, 2648, 6962, 3721, 6362, 4154, 614, 6860, 958, 1505, 5262, 5484, 5392, 3070, 1025, 5274, 4526, 5395, 6876, 5808, 3074, 4017, 6978, 3589, 6150, 6504, 4199, 4200, 4358, 5716, 6985, 1621, 6395, 6522, 1039, 6529, 6282, 3114, 260, 6890, 5829, 4566, 6788, 5033, 5034, 4575, 690, 6987, 4580, 6555, 915, 2774, 4077, 4248, 7455, 6427, 7245, 6317, 6430, 6099, 4903, 1451, 4003, 3671, 3164, 3335, 5030, 3673, 3168, 3676, 4748, 7028, 7029, 7031, 2802, 6812, 7032, 6926, 6929, 1068, 4442], Hardware
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 66

High-Accuracy [2556, 50, 2943, 3135, 7069, 2563, 4402, 2956, 1153, 3311, 3795, 4731, 2776, 5843, 4080, 4246, 4734, 3150, 5338, 5737, 2578, 4739, 2583, 4898, 2008, 95, 3666, 1062, 2618, 5618, 3169, 3170, 1172, 1066, 3689, 1057, 1784, 3689, 1172, 6335, 3351, 5639, 6602, 2618, 2848, 3372, 2682, 2051, 2567.] High-Accuracy [1980, 1983, 6278, 6923, 1684, 6935, 1812, 1784, 2051, 2567].

High-Bandwidth [6850]. High-Bandwidth [6350, 6646]. High-end [1517]. High-frequency [4855]. High-Level [1094, 6138, 1511, 4178, 7006, 993, 6707, 4144, 6849, 6412, 4583, 1066, 1062, 6335]. High-Order [2048, 3569, 1054, 3166, 3167]. High-Performance [7308, 1571, 5674, 3721, 4316, 3854, 4800, 5495, 5009, 4201, 6163, 5057, 5614, 5444, 6334, 5360, 5553, 5636, 6937, 6938, 6766, 4702, 2223, 4572, 6338, 3240, 3209, 5954, 4780, 6016, 4973, 4838, 4839, 4022, 2943, 3311, 4731]. high-period [5269]. High-Precision [3532, 4956, 4782, 6474, 1132, 3763, 6302, 5795, 5869, 6015, 6646, 2618]. High-Radix [5565, 3233, 3112, 6066, 4060, 3485, 5071, 4149, 4590, 6492, 4306, 4245, 4594, 4738, 3166, 3167, 2384, 2776, 4080, 4246, 4734, 4739, 3169, 3170, 1172].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Implementation [6289, 6074, 6292, 5829, 6412, 5979, 3776, 5033, 4120, 5744, 1758, 1885, 3630, 3462, 6972, 3076, 6877, 4010, 1204, 2361, 5283, 3076, 3586, 3428, 5285, 2530, 5700, 7224, 1850, 4842, 2546, 2732, 2240, 2413, 829, 897, 973, 4863, 5308, 2417, 4058, 3459, 5920, 4570, 2104, 5411, 3123, 4065, 5746, 3638, 5749, 6684, 1762, 2563, 2433, 5189, 5181, 2956, 3311, 4076, 3149, 3319, 3320, 4083, 2268, 2791, 2793, 1677, 5433, 4910, 1167, 2016, 5770, 2462, 1546, 2988, 2019, 2288, 5854, 5634, 1172, 2152, 5213, 846, 4275, 7056, 1175, 2473, 4464, 5558, 2834, 4473, 4476, 2682].

Implementations [5651, 5652, 5791, 5792, 3223, 6481, 5387, 4672, 6648, 4348, 3746, 3749, 4557, 6412, 3122, 7297, 7417, 4580, 4071, 3792, 1902, 4247, 4085, 5424, 7234, 6570, 3173, 3512, 3685, 3686, 2606, 3519, 4125, 4623, 6710, 3206, 6031, 4672, 1261, 3039, 2655, 4158, 4164, 5390, 3246, 3425, 3439, 2727, 5307, 3292, 6293, 6411, 3627, 3777, 1757, 7331, 7342, 7358, 7371, 7385, 7402, 4086, 2592, 4748, 3813, 5075, 3218, 4928, 3007, 4934, 4283].

Implemented [3396, 863, 891, 7024, 6340, 3717, 2055, 1769, 2271, 1462, 1549, 4933].

Implementierung [1210, 1758, 1885, 1352].

Implementing [6623, 5123, 5569, 3860, 6392, 3267, 2541, 3653, 2458, 5199, 5200, 3818, 2154, 6338, 3522, 1257, 609, 6253, 2553, 2260, 1329].

Implements [2008].

Implicants [464].

Implications [1511, 2156, 4622, 2814].

Implicit [1698, 4868].

Implicit-Explicit [1698].

Importance [6076].

important [3834].

Imprecise [3696, 1318, 6093].

Improbability [3895].

Improve [4354, 5691, 4195, 5169, 5074].

Improved [6113, 4490, 6462, 6468, 6738, 1194, 5802, 6483, 198, 5267, 6147, 1128, 5505, 468, 5005, 4542, 5907, 4371, 5163, 5406, 1311, 4397, 4876, 5606, 5751, 4726, 477, 579, 4416, 3330, 6197, 5197, 166, 5942, 3814, 6815, 4111, 5636, 1705, 2840, 1940, 4660, 3595, 2733, 2583, 2145, 1687, 5202, 4939].

Improvement [6635, 5132, 2350, 5492, 6155, 6782, 6305, 3314, 6092, 1661, 6696, 4936, 4307, 5043].

Improvements [3534, 1183, 4328, 3231, 3232, 6251, 2005, 3677].

Improves [6879, 1610, 1406].

Improving [2633, 5656, 6121, 3227, 5252, 6246, 4004, 4169, 5988, 337, 4999, 5146, 1848, 4357, 1744, 5513, 6287, 6788, 831, 4395, 5175, 4065, 317, 7018, 6322, 6703, 6443, 6821, 2617, 5373, 4152, 2191, 5388, 6094].

impulse [1038, 2485, 4630].

IMS [2082].

IMTC [7341].

IMTC/2000 [7341].

In-and-out [475].

In-Memory [6972, 6993].

In-Order [4363].

In-place [3257].

In-Situ [6681].

Include [1469].

Including [4413, 2526, 3254].

Inclusion [3622].

Inclusions [4027, 3602, 3624].

Inclusive [6918].

Incompletely [2365].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5579, 5694, 2887, 5494, 385, 5496, 5396, 5900, 4697, 6149, 6771, 6054, 6508, 2534, 3601, 3438, 740, 5728, 6528, 5519, 5305, 5306, 5523, 5741, 5919, 5034, 2108, 2109, 2248, 6553, 6559, 6795, 145, 3484, 2120, 3486, 4415, 1905, 7020, 4895, 1669, 2132, 6317, 1774, 2590, 4425, 6192, 2139, 6435, 6922, 3931, 4265, 4752, 2146, 588, 5085, 5087, 5211, 5355, 6816, 5357, 5358, 5772, 6205, 6336.

Integer [5093, 3358, 1253, 1076, 3527, 5644, 5805, 2179, 4784, 5801, 2655, 2192, 4156, 6485, 5389, 2205, 820, 3583, 5282, 2698, 2891, 2366, 5283, 6048, 4537, 4700, 3089, 5155, 2403, 5594, 4221, 5981, 4229, 2748, 4724, 7003, 5838, 6900, 5987, 5988, 7022, 1668, 6318, 2802, 3684, 5080, 2997, 4444, 4624, 5643, 3275].

Integer-Division [6528].

Integerarithmetik [2120].

Integral [547, 333, 1349, 282].

Integral-Ungleichungen [547].

Integrals [6043, 1306, 3624, 6646, 1512, 3623].

Integrands [5149].

Integrate [6894].

Integrated [5649, 7338, 4777, 723, 3551, 2500, 2053, 7226, 7241, 7442, 1424, 2242, 1879, 1179, 4321, 1031, 2530, 1868, 2421, 2252, 2466].

Integrated-Circuit [1879].

Integrating [3091, 1433, 5757, 7341, 4941].

Integration [6232, 1822, 4003, 624, 82, 4357, 83, 7273, 440, 204, 77, 6702, 936, 4675, 282, 92, 95, 2134, 4109, 194].

Integrations [6073, 2584].

Integrator [62, 3588].

Integrity [4461, 3634].

INTEL [1377, 979, 5111, 6346, 5112, 5865, 1487, 1956, 5881, 4666, 5479, 6973, 6498, 3739, 5141, 6149, 6258, 6659, 1856, 4705, 1629, 5820, 2241, 2242, 1315, 5414, 1058, 1323, 2463, 6700, 2289, 5854, 3833, 2307].

Inteligent [7151].

Intelligence [5695, 6510, 6689, 6709].

Intelligence(R) [4786, 5518].

Intensive [1718, 6471, 6308, 3188, 6826].

Inter [1080, 6511, 7162].

Inter-Continental [7162].

Inter-Modulo [6511].

Inter-relationships [1080].

interaction [5621].

Interactions [3963].

Interactive [1752, 1150, 983, 7395].

Interchangeability [1080].

interconnected [5764].

Interest [7230, 53].

Interface [1097, 1264, 7135, 7455, 2224, 985].

Interfaces [3746, 3093, 5512].

Interfacing [3186].

Interim [6952, 6986].

Interior [4467].

Interior-Point [4467].

Interlaced [6145].

Interleaved [1132, 5591, 3294, 6682, 3118].

interlock [2191].

Intermediate [4945, 5233, 4843, 4064, 4085, 3748, 5027].

Internal [3534, 3386, 6045, 5902, 6899, 3678, 2997, 1843, 2559, 2843].

Internal-Newton-Method [3534].

internals [3170].

Internation [7274].

International [7177, 7195, 7390, 7406, 7407, 7289, 7290, 2635, 7253, 7278, 3707, 7309, 7393, 7237, 7362, 7280, 4646, 7408, 7423, 7437, 7363, 7457, 7292, 7350, 7351, 7438, 7485, 7268, 7281, 7468, 7379, 7424, 7364, 7254, 7325, 7459, 7469, 7380, 7494, 7381, 7425, 7146, 7088, 7470, 7311, 7505, 7507, 7182, 7452, 7312, 7460, 7093, 7104, 7119, 7136, 7137, 7151, 7162, 7163, 7183, 7184, 7201, 7202, 7203, 7215, 7225, 7228, 7240, 7271, 7283, 7284, 7315, 7328, 7329, 7339, 7340, 7353, 7355, 7366, 7367, 7382, 7383, 7384, 7397, 7398, 7399, 7400, 7401, 7412, 7414, 7428, 7439, 7440, 7441, 7443, 7444, 7453, 7462, 7463, 7464, 7472, 7473, 7474].

International [7501, 7483, 7424, 7229, 7502, 7296, 7273, 7370, 7260, 7446, 7189, 7126, 7431, 7085, 7114, 7123, 7360, 7097, 7246, 3156, 5616, 7321,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE
6248, 5515, 4712, 4563, 4864, 5043, 5754, 3654, 3919, 3932. Latin [2].
Lattice [6017, 5604, 4616, 5083, 2173, 4799, 4970, 5571, 2383, 1982, 1882,
4883, 3144, 4756, 2023, 2489, 3836]. Lattice-Based [6017]. Lattices [6305].
Lauderdale [7367]. Launches [6349]. Law [39, 1096, 4223, 2280, 5351,
5680, 825, 3756, 4236, 5055, 5846, 2279, 5563, 3704, 5659, 5660, 5254, 5266,
5493, 4836, 4995, 4535, 5151, 5024, 5166, 1445, 5761, 784, 716, 1470, 660].
Lawrence [6434]. Laws [5024, 5055, 4420, 4344]. Layer [6969, 4888]. layers
[3196]. Layout [3442, 1801, 1802, 1191, 1494]. Lazy [3042, 3878, 3785, 6082].
LCAS [2724, 2912]. LPCP [7381]. lead [5000]. Leading [2535, 5021, 5043,
3795, 2793, 4434, 3689, 5556, 4677, 3882, 6079, 1554, 4767]. Leading-Zero
[5556, 2535, 3795, 389]. leads [4022]. Leak [6296]. leakproof [3036]. Leaks
[6484]. learn [3615]. Learned [3494]. learners [5060]. Learning [6448, 6349,
6856, 6874, 6881, 2899, 6527, 6529, 1633, 6410, 6679, 6998, 6558, 6910, 6428,
6807, 6808, 6933, 6706, 6597, 6606, 7042, 6050, 2901, 6403, 6678, 6415, 6878,
6911, 7021, 7011]. Least [602, 2704, 642, 2822, 2173, 1947, 3966, 2023]. least-
Lebenswerk [601, 1799]. Lecture [4831, 3614, 3759, 4895, 4907, 741, 3758].
Lectures [3560, 2684, 3688, 7204, 7424]. led [2863]. LEDA [3400, 3556].
Ledley [262]. Left [5009, 4207, 6543, 5528, 1555, 4702, 5018]. Left-
Looking [6543]. Left-to-Right [5009, 4207, 5528, 4702, 5018]. legacy
[5779]. Legendre [5967, 5278, 6662, 1630, 1456, 1693]. Leibniz
[390, 3460, 800, 390, 1229, 3460, 6086, 96, 6931, 800]. leibnizisches [1229].
leichte [547]. leistungsfähiger [1758]. LEMA [5598]. L’empire [3590]. lengte
[539]. Length [4154, 174, 1124, 389, 512, 1130, 3136, 708, 6589, 592, 3019,
2041, 6227, 3224, 4660, 5476, 1725, 1824, 673, 625, 6776, 3281, 3451, 520,
4583, 4584, 5415, 3664, 539, 2830, 4933, 2841, 1794]. lengths [941]. Less
[2860, 5815, 5828, 4680, 1619, 5720]. Lessons [3494, 3382]. Let [3598]. Letter
[3710, 3713, 1955, 420, 199, 425, 347, 284, 260, 2284, 212, 374, 716, 427, 1686].
leur [29]. leurs [29]. Leuven [7453]. Level [6956, 1094, 3561, 2058, 2337, 6138,
6037, 6141, 1511, 4178, 6665, 3101, 5311, 5315, 2554, 2936, 3463, 3631, 1653,
7006, 2122, 993, 6707, 6593, 4144, 4787, 6849, 3568, 2338, 2875, 4813, 5691,
2692, 3075, 6882, 6412, 5388, 4582, 4583, 5185, 5064, 1062, 3927, 5195, 4107,
4444, 1696, 2611, 2612, 2613, 6335, 2615, 5775, 4130]. level-1 [5775]. Level-
Index [2058, 2554, 2936, 3463, 3631, 2122, 2337, 2388, 5195]. Leverage [7151].
Leveraging [6510, 7038]. Levinson [1199]. lexically [1495]. Lexicographic
[1875, 2453]. L’Extraction [1159]. LIA [5016, 2876, 3156]. LIA-1 [2876].
LibEFT [6253]. libm [6160, 4979, 5180, 5952, 4391, 4571, 4810, 4982, 4920].
Libmcr [4916]. Libraries [6954, 6743, 6744, 562, 633, 2753, 5454, 3959,
4047, 6540]. Library [6111, 719, 6228, 4496, 5665, 417, 418, 4327, 5482,
6644, 4676, 6143, 6975, 6497, 4993, 1118, 1119, 1205, 2889, 2697, 4841, 4185,
1980, 6060, 1864, 6666, 5976, 6278, 439, 4566, 4866, 5031, 6793, 988, 2969,
3326, 3803, 4428, 3495, 7025, 6697, 2282, 2283, 2595, 6699, 2597, 4619, 4920,
2154, 4923, 5641, 1558, 1002, 5644, 4480, 5952, 6618, 5462, 4784, 2658, 6749,
2674, 5128, 5260, 4979, 5134, 5490, 6253, 5279, 2890, 1133, 1219, 1866, 4705,
5401, 4047, 3110, 632, 755, 5918, 4391, 4571, 5410, 4721, 4579, 7003, 5338, 1773, 6318, 5940, 1688, 4916, 147, 5219, 3699, 4948, 4963, 4655, 4880, 4600].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5041, 5336, 2970, 3489, 3490, 1911, 185, 5616, 4752, 4620, 4459, 6601, 1003, 4136, 2631, 3962, 4984, 4992, 1294, 3909, 1907, 4736, 4604, 2987, 5633, 2626, 5514, 6521, 6072, 5033, 808. Modulo [5514, 6521, 6072, 5033, 808].

Molecular [37, 5542, 4987]. Møller [3305]. moment [4313]. Moments [1790].

Monica [7199, 7108]. Monitoring [1208, 1283, 1284, 328, 5691]. monodromy [5960].

Monolithic [1786, 1556, 1177]. Monotone [2068, 2206, 2690, 1268].

Monotonicity [7005, 7053]. Monte [5880, 6034, 6137, 6040, 7062, 3798, 3799, 4083, 4251, 4252, 5363, 5780]. Monte-Carlo [5780].

Monterey [7390, 7407, 7375]. Monterey [7390, 7407, 7375]. Montgomery [5036, 6831, 4284, 3712, 3849, 4959, 5870, 6351, 3969, 4306, 6741, 5681, 6130, 5258, 6368, 6369, 5132, 3070, 6647, 5138, 4013, 5698, 5810, 5506, 5708, 5005, 5716, 5718, 3450, 4215, 5591, 4564, 5029, 4876, 4878, 6905, 5991, 3916, 7055, 4410, 4733, 4412, 4587, 6426, 4891, 4417, 4418, 4256, 6099, 6434, 4262, 5067, 6437, 6102, 6201, 5628, 4761, 4455, 4462, 5858, 4468, 4627, 6942]. Montgomery-Based [5858].

Montgomery-Form [4412, 4587]. Montgomery-Like [3916].

Monte Carlo [5036, 4284, 3712, 3849, 4959, 5870, 6351, 3969, 4306, 6741, 5681, 6130, 5258, 6368, 6369, 5132, 3070, 6647, 5138, 4013, 5698, 5810, 5506, 5708, 5005, 5716, 5718, 3450, 4215, 5591, 4564, 5029, 4876, 4878, 6905, 5991, 3916, 7055, 4410, 4733, 4412, 4587, 6426, 4891, 4417, 4418, 4256, 6099, 6434, 4262, 5067, 6437, 6102, 6201, 5628, 4761, 4455, 4462, 5858, 4468, 4627, 6942]. Montgomery-Based [5858].

Montgomery-Form [4412, 4587]. Montgomery-Like [3916]. Monticello [7081]. Montpellier [7338, 7445].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Multiplication/division [4706, 5015]. Multiplication/Division/Square [2424]. Multiplications [3996, 6141, 4837, 6264, 5148, 5294, 3787, 6090, 4730, 6914, 766, 2477, 3527, 5656, 5678, 6048, 4241, 2811].

8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

89

1135, 1305, 3761, 202, 346, 1418, 1631, 3452, 5162, 749, 827, 6673, 6886, 203].
Number [6404, 1137, 1423, 1875, 5595, 5911, 752, 5826, 5915, 25, 1047, 1230,
4714, 287, 6787, 4060, 5034, 905, 684, 6544, 6790, 7001, 5322, 5177, 4577, 691,
1147, 1888, 4580, 3133, 6899, 2945, 317, 1649, 3477, 5053, 914, 3916, 1152,
918, 3482, 2775, 1439, 3486, 3317, 3318, 4414, 4589, 2574, 4084, 4253, 987,
1155, 766, 1906, 3324, 3154, 3489, 1673, 6803, 1911, 6805, 1539, 5849, 708, 454,
484, 6199, 3334, 1916, 531, 785, 2146, 7034, 1168, 6701, 4614, 4617, 2603, 937,
1247, 5353, 3943, 2469, 2293, 5856, 938, 2028, 1250, 6592, 2827, 2157, 6341,
5638, 3524, 3016, 5102, 796, 4631]. Number [597, 3019, 7095, 2628, 3206,
3376, 3377, 4942, 4943, 4481, 1710, 4287, 4639, 3535, 2636, 2313, 3846, 4644,
5867, 4777, 6227, 3549, 6351, 2177, 1088, 1261, 1488, 2043, 2045, 2319, 1263,
3220, 3221, 1810, 1948, 3040, 3041, 1713, 4150, 3850, 5568, 6236, 3972, 3719,
4656, 4657, 4797, 2192, 2196, 4153, 4505, 955, 2055, 4659, 5252, 2332, 2506,
2666, 2667, 2668, 2669, 2507, 3231, 3232, 3563, 3564, 3565, 3977, 4662, 3725,
4511, 6028, 1826, 4165, 5688, 1108, 1109, 4333, 2347, 2881, 3064, 3244, 3245,
3573, 3729, 3871, 3733, 3873, 1277, 4010, 4339, 2693, 2694, 4013, 4179, 2365].
number [2698, 2891, 2366, 3879, 3585, 226, 2367, 2369, 2703, 252, 1034,
1209, 2373, 2374, 1291, 5006, 7427, 3436, 3437, 3438, 3439, 2378, 4548,
625, 5150, 5714, 1410, 2717, 3888, 6397, 4362, 1038, 1220, 1302, 1414, 1415,
1522, 1523, 1868, 2226, 1984, 2911, 3102, 2230, 1039, 257, 887, 4216, 2727,
3105, 3106, 3107, 3108, 311, 231, 2411, 2922, 3116, 1876, 1988, 1989, 1990,
1991, 2239, 2240, 2412, 2413, 2923, 2738, 2925, 2415, 2739, 2416, 1229, 3773,
3905, 4062, 4226, 5173, 1754, 2745, 2937, 4231, 4232, 4233, 4394, 4395, 4396,
4576, 4871, 4065, 4234, 5834, 2425, 2111, 574, 5747, 5603, 1762]. number
[3911, 5052, 5535, 6687, 5054, 7010, 236, 4408, 4728, 2445, 3312, 3313, 2963,
2964, 4080, 4245, 4246, 3149, 3319, 3320, 405, 3321, 3322, 3487, 1769, 1907, 5190,
6190, 4417, 4418, 4737, 2970, 2971, 3490, 3664, 526, 7022, 4258, 2450, 2585, 4259,
1536, 1909, 2009, 2452, 1449, 4425, 528, 4604, 2457, 3929, 5767, 5074, 3677, 1917,
3175, 2145, 5770, 2464, 2804, 2988, 3937, 4106, 4107, 4108, 999, 1066, 1067, 1687,
1781, 1782, 2018, 2019, 5075, 2991, 2992, 4612, 2998, 188, 2602, 2999, 323, 1462,
1549, 3515, 3691, 1930, 2294, 2026, 5214, 2820, 3825, 1175, 5089, 3190]. number
[4124, 4277, 2826, 3693, 2030, 3353, 3354, 3355, 5363, 148, 4464, 2832, 2837,
3203, 3204, 3368, 3369, 4131, 4132, 4133, 4470, 4471, 4628, 4629, 4630, 2839,
2840, 2841, 4936, 544, 800, 3020, 2848, 2849, 6829, 4798]. Number-Theoretic
[4084, 4253]. Numbers [7377, 7422, 664, 1012, 4149, 39, 5118, 1492, 1094,
6354, 2501, 550, 5875, 6127, 3555, 6479, 6480, 7310, 4506, 1382, 2509, 6637, 331,
1388, 1107, 1828, 1829, 4327, 156, 6760, 4821, 6494, 672, 1206, 4830, 7389, 55,
877, 1515, 3741, 6653, 54, 3744, 6152, 6980, 2708, 558, 559, 41, 1211, 2534, 6773,
1975, 2538, 2712, 2902, 6156, 6158, 4202, 342, 5904, 6166, 6281, 4556, 6990, 1635,
6067, 260, 1528, 5526, 638, 685, 5835, 6550, 446, 2945, 4399, 2253, 3474, 5985,
115, 5989, 7008, 1151, 2777, 2778, 367, 4596, 1448, 3802, 1238, 6808, 185, 3930,
4907, 2146]. Numbers [6575, 2601, 4913, 5352, 3819, 3518, 1698, 3356, 6444,
6709, 1470, 1256, 660, 5949, 948, 1078, 4938, 6755, 5232, 3956, 6115, 3381, 4961,
2324, 3556, 4796, 6359, 5679, 5125, 2666, 2667, 2668, 5880, 4801, 4802, 2341,


8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

O [6882, 3240]. **Oak** [7103]. **Obey** [5660, 660]. **Object** [6312, 3659, 5437, 3196]. **Object-Relational** [5437]. **Objectives** [633]. **objects** [4583, 4584, 3196]. **Obreschkoff** [4074]. **observed** [137]. **Obsolete** [3470]. **Obtaining** [5880, 5170, 5748, 5994, 651, 1843, 5171]. **OCAPI** [2708]. **Occurring** [4995]. **OCP** [7004]. **Oct** [7220]. **Octal** [267]. **October** [7406, 7435, 7235, 7253, 7237, 7362, 7180, 7198, 7255, 7108, 7163, 7184, 7203, 7238, 7240, 7315, 7368, 7397, 7441, 7463, 7243, 7122, 7260, 7332, 7343, 7495, 7447, 7247, 7288, 7361, 7419, 7193, 7264, 7176]. **Octocore** [5602]. **Octonary** [930]. **Octuple** [4515]. **Octuple-precision** [4515]. **Odd** [5378, 1275, 5995, 1918, 4791]. **Odd-Valued** [1275]. **oddification** [4489]. **odds** [2798]. **ODE** [5534]. **odor** [2683]. **OFDM** [5725, 5726]. **Off** [6847, 608, 277, 1111, 175, 881, 633, 204, 205, 2746, 314].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3287, 5520, 4371, 827, 4218, 3455, 2407, 2921, 5305, 5306, 5823, 4376, 3768, 750, 751, 893, 1045, 752, 5913, 3291, 3902, 6536, 6537, 6888, 6889, 6286, 6071, 6168, 6289, 6291, 5170, 6410, 1636, 6074, 5028, 2103, 2740, 2742, 2929, 5829, 6170, 4566, 4866, 5031, 6171, 6294, 6539, 4388, 1528, 440, 5314.

Point [5315, 6995, 6997, 6175, 1141, 2105, 5174, 5980, 6416, 831, 904, 1430, 570, 5742, 6176, 3295, 2934, 2935, 2245, 2424, 6302, 6545, 2746, 4880, 2555, 6547, 639, 686, 2557, 5924, 6419, 1640, 2753, 7002, 1642, 5835, 6792, 4577, 525, 576, 3783, 402, 2562, 1148, 4398, 1998, 6309, 3471, 3136, 5605, 4399, 6420, 7005, 7053, 982, 5531, 5324, 3786, 449, 5985, 5986, 6312, 6313, 6314, 5656, 5657, 362, 4401, 4585, 2432, 5533, 1531, 1763, 6181, 641, 1895, 2116, 2256, 2436, 2437, 3141, 5049, 5609, 6183, 6422, 1151, 2765, 7015, 4406, 2443, 2444, 6424, 6560, 6688, 5927, 915, 5056, 5928].

Point [5992, 3790, 5183, 5332, 7014, 3481, 2774, 4077, 3651, 3653, 3655, 3657, 3793, 3794, 5059, 2569, 2962, 5930, 4413, 2777, 2778, 5418, 5609, 6170, 4566, 4866, 5031, 6171, 6294, 6539, 4388, 1528, 440, 5314.

Point [4101, 4437, 4750, 5071, 5766, 4610, 5073, 2983, 1776, 5627, 5852, 2595, 3680, 2461, 269, 212, 2984, 2017, 5769, 1686, 2805, 2909, 3178, 3179, 3180, 3342, 3685, 3686, 2287, 5942, 6202, 6927, 6440, 2299, 3947, 6708, 215, 6342, 1469, 1701, 2617, 5097, 5220, 5364, 5365, 5556, 5557, 5638, 5641, 4644, 1556, 3033, 5778, 7039, 3011, 3012, 5947, 216, 3201, 2302, 6210, 4280, 6111, 1797, 4476, 2263, 2625, 799, 3019, 1706, 3529, 5371, 5781, 4135, 948, 1941, 6825, 6826, 5950, 6605, 5104, 5560, 5645, 5105, 5372, 5229, 6607, 5690, 5884, 6031, 6755, 4622, 6337, 4278, 2172, 4488, 3375, 5373, 602, 2851, 2630, 1943, 1944, 6446, 6948, 3956, 1564, 4483, 5648, 6212, 3023, 2170, 2171, 3705, 3841, 6543, 416, 5454, 3535, 6012, 6105, 6013, 720, 296, 1485].

Point [2492, 2634, 3029, 3214, 3215, 3380, 3381, 3382, 3383, 4487, 6348, 6455, 6456, 6953, 2493, 1085, 1010, 1947, 2040, 5653, 1800, 2312, 1801, 1802, 1362, 2314, 1569, 1570, 2041, 2315, 4780, 6119, 4144, 4296, 1487, 2496, 2861, 3037, 5566, 5871, 2043, 1262, 1368, 1807, 2180, 2497, 2181, 1809, 5872, 4299, 2045, 2319, 6957, 2643, 3221, 3039, 2302, 4302, 5239, 5240, 1091, 2182, 1370, 2323, 5797, 4784, 4298, 1941, 6825, 6826, 5950, 6605, 5104, 5560, 5645, 5105, 5372, 5229, 6607, 5690, 5884, 6031, 6755, 4622, 6337, 4278, 2172, 4488, 3375, 5373, 602, 2851, 2630, 1943, 1944, 6446, 6948, 3956, 1564, 4483, 5648, 6212, 3023, 2170, 2171, 3705, 3841, 6543, 416, 5454, 3535, 6012, 6105, 6013, 720, 296, 1485].

Point [1716, 299, 2187, 1718, 666, 5246, 5568, 4310, 3852, 1015, 4792, 5249, 5381, 5569, 6964, 7046, 2188, 1016, 1193, 6471, 4794, 4968, 6357, 5801, 6630, 3226, 4969, 3556, 2503, 1815, 4795, 2190,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Pre-computations [5877]. Pre-processing [5698]. pre-scaling [3428].
Precimionous [5934]. Precise [2169, 3838, 2651, 6043, 4035, 4851, 6550, 3331, 5076, 5077, 4462, 5311, 2224, 6186, 5445, 5446, 4379, 4220]. precisie [491].
Precision [6608, 5784, 6948, 6113, 3532, 4636, 6449, 3842, 1486, 3711, 4956, 6462, 4782, 6848, 6463, 6465, 2865, 727, 861, 953, 1097, 1098, 1099, 1192, 1264, 4966, 5379, 5669, 6743, 6744, 6237, 6474, 5468, 5382, 6478, 3559, 3560, 380, 5082, 6481, 6482, 1101, 6634, 5863, 5879, 6240, 6635, 1588, 302, 1386, 1590, 5882, 223, 6970, 3413, 6370, 4518, 4519, 4672, 6644, 616, 4523, 3418, 6872, 6973, 5579, 5694, 6379, 6143, 962, 428, 6976, 4993, 5278, 5280, 5584, 7047, 6651, 4347, 4536, 5702, 4841, 883, 6655, 6979, 6980, 4843, 6981, 6510, 4356, 6389, 6514, 6515, 6391, 10, 2221, 4030, 4199].
Precison [4200, 4848, 5008, 5296, 1519, 1855, 1979, 83, 1132, 3273, 342, 6987, 4551, 6666, 3276, 3446, 5724, 6273, 6064, 6277, 6525, 6164, 6278, 1747, 4040, 5731, 3763, 6528, 347, 5592, 1753, 1875, 5021, 5023, 5595, 3769, 348, 5825, 6168, 6291, 5524, 6679, 2103, 4387, 4717, 4866, 5031, 6171, 6294, 5979, 5314, 5316, 6175, 1430, 6300, 3462, 2554, 6681, 3632, 6302, 4880, 2109, 2248, 4235, 6791, 6792, 691, 1314, 1888, 5748, 6084, 6311, 762, 6312, 6313, 6314, 6557, 361, 302, 3141, 5839, 6183, 7012, 6688, 5927, 3308, 6690, 6691, 5182, 5059, 2777, 2778, 207, 7020, 4595, 209, 6565].
Pre-Scalable [6811, 6924]. precision-specific [6209]. precision/range [4276].
Additional Contributions from Nelson H. F. Beebe

Proceedings

| Proceedings | 7106, 7217, 7192, 7387, 7449, 7100, 7262, 7263, 7497, 7102, 7221, 7220, 7133, 7477, 7095, 7176, 7391, 7421, 7434, 7451, 7223, 7456, 7289, 7290, 7266, 7154, 7360, 7097, 7245, 7246, 7128, 7344, 7069, 7159, 7274, 7154, 7360, 7097, 7245, 7246, 7128, 7344 |
| Proceedings | 7279, 7408, 7437, 7457, 7351, 7438, 7458, 7485, 7267, 7169, 7124, 7507, 7104, 7257, 7284, 7315, 7317, 7329, 7354, 7384, 7401, 7414, 7415, 7416, 7429, 7484, 7105, 7286, 7231, 7445, 7297, 7386, 7158, 7113, 7430, 7418, 7306, 7320, 7448, 7374, 7481, 7403, 7335, 7261, 7345, 7250, 7433, 7265, 7470, 7427, 7412, 7504, 7506, 7244, 7264 |

Procesach

Procesach	457
Procesach	4014, 200, 5731, 6944, 92, 4996, 3496
Procesach	277, 264, 75, 79, 191, 7072, 457, 249, 95, 5339, 710, 845, 1251, 388
Procesach	1708, 6830, 3021, 6949, 7253, 7309, 7393, 1573, 3551, 7179, 6473, 301, 2663, 6855, 4510, 3572, 6974, 5579, 2208, 3422, 882, 1742, 6771, 3081, 6511, 563, 7213, 7162, 7228, 7257, 7368, 7382, 7399, 7401, 3096, 3097, 4201, 4140, 6666, 3101, 6401, 1134, 3612, 2545, 1139, 4711, 7187, 7122, 7297, 7417, 7001, 6304, 5322, 7086, 145, 915, 6907, 2124, 6917, 3669, 7234, 1540, 4751, 6924, 7027, 7335, 2984, 7261, 6576, 3178, 1171, 6822, 7503, 5948, 3214, 2177, 1088, 2644, 7292, 2332, 2335, 3860, 6638, 2679, 4675, 7255, 4989, 7088, 2366, 5698, 5970, 2369, 1610, 3080, 6505, 3255
Procesach	6388, 5006, 3257, 4033, 6665, 2722, 3277, 1302, 1039, 6907, 3451, 2235, 2924, 4863, 2932, 7173, 7331, 7342, 7358, 7371, 7385, 7402, 2584, 2924, 2563, 7085, 2964, 4590, 3146, 3147, 2261, 7275, 2585, 838, 5764, 5195, 2804, 4106, 3511, 2018, 6578, 3003, 1347, 7204, 7249, 3196, 1795, 1177, 2486, 2832, 1704, 4281, 4936, 2848, 2849, 2682
Procesach	6401
Procesach	4863, 4863, 4863, 4863, 4863
Procesach	6948, 3955, 1712, 4641, 6454, 3387, 2322, 1950, 1576, 4786, 2047, 6633, 2054, 2659, 1270, 3405, 1821, 1381, 5860, 1822, 1963, 2344, 1390, 3733, 501, 6872, 2519, 1120, 2363, 2214, 2889, 3251, 5141, 1848, 1849, 1293, 1615, 6659, 2379, 4848, 5718, 4205, 1413, 6271, 5725, 6779, 5516, 5728, 4038, 4043, 5518, 5588, 886, 2731, 2407, 6991, 2740, 2742, 4385, 2245, 6547, 2557, 1433, 5602, 1315, 3471, 2432, 5049, 3914, 1655, 2443, 6689, 1656, 5059, 7016, 2569, 7017, 1323, 2262, 3660, 7019, 7020, 6917, 482, 1237, 3804, 4261, 1540, 1680, 3503, 3674, 6811, 7027, 2463, 1919, 2287, 3182, 1929, 2293
Procesach	1935, 3188, 1467, 1349, 5366, 6936, 1181, 2625, 6826, 1359, 2851, 1943, 1944, 3023, 6013, 1485, 2492, 5113, 2493, 2312, 1362, 2314, 3034, 1487, 2496, 3391, 2182, 2323, 3850, 1015, 4152, 1815, 1954, 2197, 2661, 1818, 5878, 1380, 2335, 5476, 1271, 3982, 2203, 2870, 2871, 2872, 3414, 2348, 4989, 821, 2212, 2890, 6879, 5812, 2699, 1739, 1850, 2378, 2711, 2380, 5714, 2084, 1410, 516, 2406, 2408, 2409, 3623, 2739, 2741, 2421, 3778, 2425, 2560, 3126, 2561
1646, 1999, 2255, 2435, 3306, 2441, 1153, 3316, 4244, 1320, 2259, 2445, 1153, 3316, 4244, 1325, 5756, 765, 2263, 2131, 2268, 2271, 3928, 3159, 5764.

processor

[2979, 3337, 4609, 5541, 1685, 3339, 1920, 3513, 2466, 1928, 1930, 2294, 1934, 1788, 3004, 2295, 1792, 1697, 2484, 3199, 3361, 795, 1255, 3525, 1559, 2488, 6940, 2345, 2213, 1123, 2577, 1789].

Processor-T

Processor-based [6940].

Processors [4485, 6345, 6723, 546, 3396, 7268, 7281, 7468, 2663, 6855, 5881, 5479, 7380, 7425, 1837, 5899, 5460, 5895, 1958, 3563, 2873, 3063, 3573, 6877, 4020, 4540, 1522, 3105, 3106, 3107, 3108, 3094, 3095, 3271, 7184, 7203, 7215, 7240, 7315, 7397, 7398, 7414, 7439, 7453, 7462, 3096, 3097, 1417, 2096, 5590, 3114, 894, 1044, 1431, 4719, 3296, 6688, 4079, 6192, 4426, 7374, 2984, 1779, 4442, 7346, 7307, 7420, 7264, 1556, 6337, 2643, 1491, 4784, 3717, 6355, 3226, 1585, 5880, 2676, 3417, 5580, 3435, 7366, 3105, 3106, 3107, 3108, 2236, 4221, 2416, 6077, 4885, 3317, 3318, 4741, 3186, 1791, 2304, 4281, 2307, 1354].

produce [6891, 4729]. produced [3187]. producing [4249].

Product-Based [6938].

Profession [4701]. Professor [159]. Profile [5878]. Profile-guided [5878].

Programs [6730, 2858, 3033, 1714, 1373, 5244, 5666, 6020, 6025, 2672, 2673, 2434, 642, 5842, 4430, 3162, 4610, 6333, 97, 151, 1558, 6206, 5957, 1593, 6246, 4985, 5811, 3434, 3596, 3449, 2232, 5597, 2552, 6806, 6000, 5438, 2290, 6331, 6945].

Progress [2650, 5033]. Progressions [437, 5198]. progressive [3515, 3692].

Project [3839, 3426, 3582, 399, 2106, 5, 3794, 1452, 7192, 6925, 1345, 1944.

Quadratic

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

106

Quadratic-like

Polynomial

Queries

Quadratwurzel-Algorithmus

Quadratwurzelfunktion

Quadratlithon

Quadruple

quadruple-precision

Quality

Qualifying

Quality-Efficient

Quantitative

Quantizations

Quantized

Quantum

Quantum-Dot

quantum-dots

Quarter

Quartus

Quasi

Quasi-Pipelined

quasi-systolic

quasi-unity

Quasigroup

quaternion

quaternion-imaginary

Quaternion

Quaternions

Quibit

Que

Quebec

Query

Questions

Qui

Quick

Quickly

Quickhull

quirk

Quixilica

Quotient

Quotient-difference

Quotients

QuPAT

Quad-Double

Quadrant

Quadratic

Quadratic-like

Quadratic-Polynomial

Quadrature

Quadratwurzel

Quadratwurzelfunktion

Quadratlithon

Quadruple

quadruple-precision

Quality

Qualifying

Quality-Efficient

Quantitative

Quantizations

Quantized

Quantum

Quantum-Dot

quantum-dots

Quarter

Quartus

Quasi

Quasi-Pipelined

quasi-systolic

quasi-unity

Quasigroup

quaternion

quaternion-imaginary

Quaternion

Quaternions

Quibit

Que

Quebec

Query

Questions

Qui

Quick

Quickly

Quickhull

quirk

Quixilica

Quotient

Quotient-difference

Quotients

QuPAT

R

R.O.C.

r0p2

R1994

R2000

R3000

R3010

R4000

R63

R65

R65-22

R65-54

R67

R67-41

Rabat

racehorses

racetrack

Racine

racing

radar

Radian

Radical

Radici

Radio

Radisson

Radius

Radix

R2039

R565

R630

R680

R733

R2521

R2524

R2701

R5005

R7049

R1617

R1322

R2087

R5718

R5297

R6398

R6161

R6163

R2391

R1423

R3112

R6066

R630

R5913

R5914

R3458

R4381

R3509

R4060

R6680

R6298

R6999

R3464

R3409

R1146

R5528

R3302

R4068

R2566

R4071

R5753

R1438

R643

R3791

R5332

R3485

R646

R5422

R3491

R3492

R1774
2138, 267, 3811, 4436, 5071, 1918, 932, 3815, 1785, 6703, 1932, 1933, 4119, 4449.

Radix [4450, 1174, 2155, 6003, 657, 5859, 3524, 543, 3529, 6942, 600, 801, 1004, 3844, 950, 460, 3220, 4300, 1713, 4306, 4314, 2508, 3990, 423, 2522, 3071, 2359, 3579, 3428, 6982, 3441, 3990, 2522, 3428, 3441, 3459, 1760, 3476, 4073, 2776, 5843, 4080, 4245, 4246, 4734, 4594, 4738, 4739, 2975, 5433, 3166, 3167, 3169, 3170, 5072, 3514, 2811, 3001, 1172, 3831, 5558, 5639, 2840, 1746].

Radix-10 [5309].

Radix-16 [733, 5753, 5859].

Radix-2 [3219, 855, 4961, 5422, 5843, 3492].

Radix-4 [5485, 2358, 7049, 6298, 5332, 2155, 3514].

Radix-64 [6357, 6358, 6850, 6967, 2975].

Radix-8 [5674, 6163, 3302, 3492, 3811, 5433, 5558].

Radix-dependent [889].

Radix-Independent [2039, 2087, 6161, 1785, 1746].

Radizierverfahren [2253, 2035].

Rail [2151, 3782].

RAIVE [6075].

RAND [91, 5351, 1566].

Random [385, 6653, 5302, 5977, 6179, 2115, 2254, 115, 914, 4299, 91, 3725, 3997, 5269, 3328, 776, 3077, 3175, 5633]. Randomization [6490, 3800].

Randomized [6484, 5965, 5046, 4457].

Randomness [6344, 2198, 5578, 5393, 3798].

Range [2629, 274, 5463, 4967, 6392, 2716, 5723, 6064, 568, 631, 4715, 5053, 588, 1456, 3381, 2665, 3236, 3415, 4331, 4332, 5434, 5318, 3143, 3331, 4276, 4457, 4458, 5218, 4130, 544, 4773].

Range-Addressable [5053].

range-independent [4457, 4458].

Range-Reduction [4967].

Range-Transformation [568, 631].

Ranged [5519].

Ranging [4184].

rank [825].

rank-frequency [825].

Ranker [6454].

Ranks [6454].

Raphson [3988, 5968, 4181, 5975, 3280, 3284, 5164, 5601, 2759, 2949, 3301, 451, 5926, 2967, 6803, 3336, 6821, 6601, 4930, 5097, 5365, 3528]. Rapid [3970, 224, 36, 343, 262, 7016, 4547, 1544, 244, 1377]. rapid-approximation [1377]. rapide [3970].

Rapid [3970, 224, 36, 343, 262, 7016, 4547, 1544, 244, 1377].

Rapidly [2388].

Rare [6914].

RAS [4406].

rask [1739].

raster [2205].

Rate [503, 5980, 1055, 697, 1181, 379, 4394, 4871, 3498, 3351, 2682].

Rates [874, 4892].

Ratio [3227, 4133, 3564, 2078, 2475]. ration [1065].

Rational [2052, 5380, 6356, 427, 1404, 1132, 1413, 2911, 3102, 1986, 2549, 1424, 1753, 2099, 2410, 1314, 1888, 4238, 1650, 5989, 579, 3327, 1448, 4900, 241, 2838, 1706, 3956, 221, 425, 251, 6257, 1214, 1295, 1411, 4036, 4037, 1227, 1634, 2238, 2550, 5335, 4895, 3498, 1248, 5445, 5446, 5804].

Rational/Radix [1132].

Rationale [2349, 5157].

Rationally [1838].

Rationals [1643, 1597, 1730].

Ratios [667].

Rayleigh [5173, 4231].

RC [497].

RC-4000 [497].

RDSP [4659].

Re [3067, 3481, 3907]. re-evaluation [3907]. Re-ordering [3067].

Reach [3409].

Read [863, 2509, 1904, 4801, 4802, 3522].

Read-Only [863, 1904, 3522].

Reading [5904, 48].

Readings [606].

readyreckoner [31].

Real [3021, 7377, 7422, 3708, 3709, 5457, 5654, 329, 6958, 4305, 1095, 2051, 2052, 4311, 6128, 7310, 4506, 1588, 6854, 2672, 5482, 2880, 4003, 5495, 4830, 7389, 1515, 2367, 968, 3743, 6152, 6980, 2076, 3885, 7452, 2538, 2712, 2902, 6156, 563, 4359, 7416, 1627, 4556, 2100, 6070, 446, 2952, 2567, 5839, 5840, 7008, 3922, 6808, 4907, 6703, 4112, 410, 3188, 5089, 5224, 2625, 4938, 6947, 3956, 3846,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5621, 5626, 3163, 2459, 4755, 2290, 5081, 4116, 4918, 5445, 5446, 3189, 2611].
rounding [2612, 2613, 1251, 2158, 1351, 3009, 1707, 3530, 4138, 4808, 5886, 2614, 835, 457, 388]. Rounding-Exact [1528]. Rounding-Off [175, 79, 6017].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

SMURF [2838]. Simulated [5284, 6989, 759]. Simulating [6975, 6514].

Simulation [7362, 6467, 5807, 3576, 334, 2885, 5706, 635, 2936, 3650, 7130, 3159, 6327, 5769, 1943, 1944, 3563, 3059, 746, 1224, 1517, 2533, 5923, 5980, 5339, 1439, 3004, 795, 353. Simulation-Based [5706]. Simulations [6169, 6319, 5542, 6451, 5880, 5478, 5684, 6249, 6776, 4573].

Simulator [880, 3273, 1446, 879]. Simulink [5763, 3329]. Simulink-based [5763]. Simultaneous [4284, 6374, 1207, 253, 3602, 6412, 4606, 5238, 5719, 4250, 4445].

Sin [2231, 1765, 2120, 536]. Sin/Cos [1765, 536]. Sine [1953, 1018, 1853, 4030, 2980, 1068, 2810, 2606, 952, 3277, 4720, 2961, 4244, 2120].

Sine/Cosine [1068]. sine/cosine [952, 3277, 4244]. sines [1398]. Singapore [7498, 7505, 7507, 7401, 7496, 7401].

Single [6948, 3214, 4293, 3711, 3047, 1270, 3413, 4816, 6141, 7047, 2080, 6987, 3892, 2095, 3452, 5023, 5825, 6407, 6168, 6291, 5316, 2932, 5748, 1149, 1655, 5059, 1673, 708, 3944, 6715, 6716, 4955, 1956, 5679, 2870, 2871, 2872, 4335, 2882, 625, 1867, 2922, 2239, 2240, 3776, 3630, 5922, 1760, 4872, 3782, 5608, 2257, 2271, 3677, 3175, 2602, 1928, 3526, 2849].

Sizes [5694]. Skalarprodukten [2097]. Skalierung [547]. Skewed [6976].

SLI [3546, 2934, 2935, 3124, 2473, 2825, 3191, 3519]. SLI-Arithmetik [2934, 2935].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

121

Square [2388, 972, 5727, 5728, 6524, 1304, 2089, 2390, 4044, 4853, 30, 3763,
347, 518, 3897, 5020, 3457, 3458, 4381, 4713, 120, 5832, 2933, 3461, 5833, 6999,
3462, 2424, 1639, 1887, 637, 685, 2752, 4875, 3469, 6553, 359, 2947, 2253, 1651,
3300, 2759, 4881, 6423, 1151, 5416, 5753, 5842, 3916, 579, 3484, 1532, 5188, 2006,
4595, 5424, 3491, 1669, 702, 6695, 1537, 5432, 2139, 585, 996, 5938, 530, 708,
186, 651, 4608, 1915, 4097, 4098, 3676, 3512, 3685, 3686, 3813, 374, 4447, 1552,
242, 5856, 3185, 4620, 214, 2822, 3349, 168, 6821, 1353, 5097, 5859, 2032, 596].
Square [2620, 5221, 2035, 6710, 798, 599, 6007, 4137, 2168, 3837, 5788, 3962,
4300, 5119, 1372, 6740, 6849, 3718, 4314, 1268, 1496, 3558, 3976, 1817, 609, 3229,
3404, 5571, 4158, 2508, 1960, 3988, 3990, 4164, 4804, 957, 1597, 1730, 1966, 2355,
2357, 2358, 2521, 2688, 3246, 4679, 4824, 2359, 2888, 1397, 1406, 3592, 4186,
4844, 4699, 5710, 4191, 4193, 4194, 5007, 5289, 3089, 3441, 625, 739, 4032, 3757,
2722, 4036, 4037, 6276, 2090, 2398, 3616, 3104, 3284, 5163, 3901, 2927, 4054,
3117, 4058, 3459, 3627, 3776, 3777, 3123, 2939, 2748, 2426, 3782, 2561, 2754,
2755, 2943, 3131, 2948]. square [1891, 2433, 2565, 2760, 3140, 3476, 6182, 6421,
4070, 236, 4073, 4076, 4889, 5186, 1059, 4081, 1328, 1444, 1907, 2005, 4893, 3492,
2131, 1668, 5193, 4599, 3926, 3927, 3928, 4090, 211, 4607, 781, 3168, 3170, 3504,
3683, 1922, 2467, 2468, 5442, 291, 188, 4271, 1463, 4273, 5210, 4275, 78, 84,
4457, 6443, 4766, 3015, 3017, 3018, 5782, 4476, 4939, 4283, 6829, 2046, 1426].
Square-Root [4950, 153, 3233, 2071, 1282, 4381, 1639, 1151, 2006, 6695,
3685, 3686, 168, 599, 1971, 3277, 4713, 5416, 3844, 1406, 3592, 4193, 4194,
3441, 4032, 2722, 3901, 4058, 2948, 4893, 4599, 4273, 78, 84, 4939, 2046].
Square-Root-X [1482, 1552]. Square-Rooting [1583, 1207, 1887, 702, 3897,
3461, 2253, 2035, 4164, 2888, 4081, 2131, 3015]. square-roots [3962, 1891].
Squared [333]. Squarer [333, 4370, 6563, 4468, 4222, 4625, 4627]. Squarers
[4972, 132, 4463, 4929, 5096, 4127, 3272]. Squares [602, 1829, 2704, 4853,
4861, 685, 642, 1676, 4747, 2173, 1947, 100, 291, 2023]. Squaring [610,
5256, 1518, 5004, 5506, 1748, 4559, 5528, 6315, 4419, 3207, 3373, 2338, 2888,
4386, 211, 6102]. Squaw [7441, 7463]. Squeezing [6515]. SQUID [2707].
SRT [3476, 3399, 4314, 3567, 3981, 3749, 3441, 3448, 4365, 3762, 4710, 5020,
6999, 3125, 4725, 5042, 3131, 3140, 3918, 4087, 5938, 1933, 2834]. SRTEST
[4365]. SSEC [1530]. St [7177, 7169, 7347]. ST100 [4882, 5051]. ST231
[5516, 5728]. Stabilität [1061]. Stabilitätsatzes [547]. Stability [6121, 1715,
6631, 3562, 1111, 1207, 4354, 3604, 4545, 7018, 2973, 1061, 5941, 1077, 495,
547, 3575, 4195, 1755, 1637, 833, 2591, 946]. Stabilized [103]. Stabilizing
[4892]. Stable [5024, 1228, 2610, 888, 889]. Stack [1033, 1285]. Stacked
[6203]. Stacking [6203]. stage [5963]. Stages [4176, 3491, 3492, 1933, 2834].
Staggered [5463, 3503]. stairs’ [2953]. Stairway [3701]. Standard
[2039, 2855, 3032, 5375, 3959, 3965, 1949, 1811, 1714, 2649, 2328, 4655, 5673,
3402, 1196, 1385, 1502, 1725, 1824, 2339, 3053, 1197, 1198, 1274, 1387, 1726,
3989, 3413, 6134, 6757, 2349, 1732, 5394, 5488, 1511, 1203, 1279, 2697, 4018,
3755, 1300, 1409, 6517, 6777, 6519, 1860, 1861, 1862, 2086, 2087, 6061, 6520,
24, 1627, 1223, 1307, 1416, 2093, 3614, 3759, 4552, 3481, 5418, 6916, 1058,
6189, 1156, 1234, 4431, 7025, 3334, 1776, 6699, 1338, 1458, 1459, 1340, 1465,


8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5156, 5158, 5512, 4705, 472, 3149, 1062, 5541, 2284, 5202, 5366. supported
[6460, 402]. Symbolic [4286, 7438, 2195, 4334, 4009, 4182, 7311, 7296, 2765, 7114, 7387, 38, 42, 6103, 6104, 6577, 7347, 7250, 7477, 3568, 619, 6657, 2384, 2117, 2955, 6316, 1541, 4478, 7114]. Symbolic-Algebraic
[7096, 7115, 7265, 7277, 7323, 7348, 7390, 7391, 7407, 7434, 7451, 7289, 7290, 7235, 7117, 2635, 3707, 3843, 7394, 7237, 7279, 721, 1188, 1364, 7362, 4646, 7378, 7436, 7408, 7438, 7458, 3975, 7352, 7493, 7500, 7325, 7469, 1114, 2356, 7199, 7270, 7135, 7311, 7426, 7062, 7156, 1859, 7094, 7098, 7108, 7120, 7125, 7138, 7201, 7202, 7225, 7238, 7258, 7272, 7284, 7317, 7329, 7340, 7354, 7367, 7384, 7400, 7411, 7412, 7413, 7415, 7442, 7444, 7464, 7487, 7504, 7506, 7170, 3454, 7286, 4050, 7330, 7231, 7445, 7296, 3771, 7305, 7259, 7446, 7333, 7113, 7069, 7159, 7418, 7492, 2763, 7488, 7114, 7123, 7360, 7097]. Symposium
[7337, 1564, 6962, 4664, 6138, 5133, 878, 3442, 4586, 7006, 2148, 6707, 5947, 5100, 5561, 4144, 4296, 3973, 3231, 3232, 3877, 4005, 3075, 4583, 6331, 6335, 5777, 6945]. Synthesis-time [6962]. Synthesizable [5250]. synthesizable
8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

125

System [2765, 3479, 3653, 2775, 4414, 1324, 1906, 6915, 367, 586, 1163, 5849,
454, 484, 2142, 5541, 7403, 2146, 2597, 7345, 6929, 4614, 4440, 4441, 4615, 5078,
5079, 5080, 5205, 937, 1247, 5353, 3943, 2293, 1250, 6592, 6341, 3358, 6709,
3698, 134, 2838, 5102, 4631, 1706, 2628, 1710, 4287, 4639, 3535, 296, 3029, 2636,
4644, 5867, 2041, 2315, 6227, 6351, 2177, 1088, 1261, 1488, 2045, 2319, 3222,
1948, 3040, 3041, 1713, 4150, 3850, 2498, 2863, 6231, 3719, 4657, 4797, 2192,
4153, 4505, 4798, 3401, 2055, 4659, 5252, 2332, 2506, 2665, 1722, 2507, 3231,
3232, 3563, 3564, 3565, 3977]. system [2676, 422, 4165, 2872, 5688, 1108, 1109,
4333, 2347, 2881, 3064, 3244, 3245, 3573, 3729, 3871, 4685, 4010, 4339, 4013,
4179, 2365, 2891, 2366, 3879, 2367, 2369, 1846, 2373, 2374, 6265, 3593, 561,
3436, 3437, 2378, 5150, 2903, 5714, 1410, 3888, 5512, 2386, 101, 2906, 6160,
4362, 1522, 1523, 1984, 2230, 1039, 472, 4216, 5405, 2727, 231, 4859, 1527, 3116,
1991, 2239, 2412, 2923, 4863, 2415, 2739, 2416, 1229, 3773, 3905, 4392, 4062,
4226, 5173, 977, 6076, 2937, 4231, 4232, 4233, 4394, 4395, 4576, 4871, 4065,
4234, 5834, 2425, 980, 3137, 1762, 5607, 6687, 5054, 2955, 236, 4408]. system
[4728, 5, 3312, 3313, 2964, 4080, 4245, 4246, 183, 206, 4417, 4737, 526, 2450,
2585, 4259, 1536, 1909, 2009, 4425, 1240, 2140, 4604, 4906, 4103, 5074, 1917,
2145, 5770, 2804, 2988, 3937, 4107, 999, 1687, 1781, 1782, 2018, 2019, 5075, 2991,
2992, 4612, 3344, 5202, 5443, 323, 3822, 4919, 3515, 3691, 1930, 2294, 2026, 5214,
2820, 3825, 1175, 715, 794, 2031, 3355, 5363, 4464, 5776, 2832, 3203, 3204, 3368,
3369, 4131, 4132, 4133, 4470, 4471, 4628, 4629, 4630, 2839, 2840, 2626, 4936, 800,
3020, 6829, 480, 1945, 1100, 417, 418, 2870, 383, 391, 392, 2535, 471]. System
[681, 971, 2102, 2560, 2564, 1441, 3317, 3318, 4589, 187, 6332, 537, 3363, 4629].
system-based [4576, 4871]. system-definition [2365]. System-Level
[3101, 5691]. System/360 [416, 395, 480, 417, 418, 383, 391, 392, 681,
1441, 537, 471]. System/370 [1745, 1945, 1100, 971, 2102]. System/390
[2871, 2872, 2870]. System/6000 [2540, 3270, 2535, 2560, 2564, 3363].
Systematic [5966, 82, 5399, 5173, 1438, 2964, 3317, 3318, 4898, 1450, 2991,
2992, 3376, 3377, 5817, 2556, 2586]. Systematizations [5467]. Systeme
[1935]. Systemen [1236]. Systems [7195, 7337, 1080, 6831, 7044, 1484, 7338,
3708, 3709, 4491, 6843, 3848, 4297, 496, 665, 803, 856, 724, 805, 1090, 1576,
1371, 4305, 6467, 727, 3225, 301, 7468, 1819, 7180, 7198, 7209, 5681, 7424, 3985,
2513, 2514, 7469, 1392, 5887, 7380, 3574, 7425, 3067, 6252, 7304, 874, 1203,
429, 1604, 4014, 876, 4834, 511, 6255, 4534, 884, 179, 6515, 2081, 6155, 5294,
1521, 971, 7084, 7137, 7201, 7202, 7258, 7271, 7328, 7340, 7354, 7368, 7398,
7412, 7413, 7414, 7416, 7428, 7429, 7439, 7443, 7453, 7462, 7464, 7474, 5721,
6664, 1864, 4551, 682, 743, 3621, 5162, 7152, 6886, 1137, 1423, 1875, 5595].
Systems [752, 5826, 5915, 3902, 5026, 5170, 287, 1142, 5743, 7260, 6543, 5322,
7319, 7332, 7343, 7359, 7372, 7386, 7454, 7466, 7495, 1147, 1888, 5042, 4237,
4877, 4238, 2952, 3477, 6797, 2769, 918, 3482, 2962, 3315, 1439, 2574, 3324,
3154, 3489, 5194, 1673, 6805, 406, 6807, 7130, 7192, 3499, 7374, 3675, 1916,
2144, 3678, 4105, 7247, 7288, 4269, 1168, 2603, 7100, 7346, 2604, 7307, 4920,
2028, 3827, 7420, 5359, 1557, 243, 3200, 7251, 3011, 1077, 796, 3206, 5372, 1004,
3376, 3377, 4942, 6947, 2040, 2313, 3846, 4777, 45, 1487, 3549, 2179, 1263, 2640,


8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Systolic [2042, 5461, 1814, 2193, 2194, 3049, 5253, 2511, 4977, 2689, 6976, 2704, 3883, 2081, 2387, 4554, 2403, 3289, 4056, 4384, 3133, 7055, 2126, 2130, 1914, 3178, 1697, 2157, 3197, 5858, 2165, 1939, 2177, 2203, 4670, 2679, 2875, 3062, 2688, 2896, 1857, 4217, 2413, 2737, 4712, 4222, 4386, 4564, 5029, 4393, 1999, 2964, 2261, 2462, 3511, 4279, 4932, 4769, 2308, 2682].

counts [6091]. tables [7447, 7447].

data [6637, 6289, 5039, 1157].

tools [2641, 2032, 2620, 1711, 2642, 4687].

targets [1458, 1460, 1338].

targets [339, 340].

tech. [1483].

technical [4488, 3842, 2657, 7084, 7119, 7120, 7183, 3608, 7276, 7202, 7283, 4239, 2255, 917, 7205, 7301, 7336, 343, 207].

technique [126, 224, 616, 6923, 190, 4639, 4308, 90, 3064, 2721, 3284, 2726, 2097, 3453, 2430, 452, 4731,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[5578, 3114, 4408, 3685, 3686, 4623, 4766, 3379, 1716, 5393, 2431, 4728].
Trading [6970]. Traditional [5100, 4408]. Trailing [1194, 963, 1128, 3412].
Addional Contributions from Nelson H. F. Beebe

8 Additional Contributions from Nelson H. F. Beebe

1590, 3983, 6864, 276, 4978, 5485, 3069, 5579, 6876, 431, 5696, 1970, 4018, 1401, 1402, 389, 5296, 5715, 5818, 517, 3096, 3097, 4201, 4140, 3444, 4038, 2545, 5520, 1043, 1424, 1753, 2099, 4861, 901, 5309, 5523, 3294, 5314, 5315, 5316, 6998, 5833, 6547, 7001, 5924, 2250, 402, 2562, 5049, 4406, 5753, 6688, 6690, 6691, 5059, 6694, 5993, 5937, 4039, 1454, 4101, 4751, 6572, 6924, 7027, 5769, 5942, 6202, 933, 3347, 5356, 5358, 6342, 149, 5364, 5859, 5048, 6606, 6714, 2168, 662, 6947, 416].

Unit [3844, 1801, 1802, 4780, 2496, 2643, 2320, 4314, 4795, 4973, 609, 4508, 5476, 3051, 4819, 4694, 4835, 5812, 3077, 1845, 1610, 5006, 3260, 2355, 3091, 1857, 4033, 4550, 3611, 2399, 2400, 3244, 2235, 1634, 2211, 4882, 2924, 4863, 4054, 3117, 3118, 6415, 4868, 1313, 5923, 3782, 2252, 3135, 695, 2564, 2950, 3301, 7054, 3310, 3146, 3147, 837, 838, 992, 2977, 2011, 6195, 3407, 5623, 4906, 3810, 4102, 2801, 5204, 5306, 5348, 1464, 3348, 2472, 1347, 5549, 5780, 928].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 133

[838].

References

[1] G.-W. Leibniz. Explication de l’Arithmétique binaire. (French) [Explanation of binary arithmetic]. Mémoires de mathématique et de physique de l’Académie royale des sciences, ?(?):85–89, ???? 1703. URL https://hal.archives-ouvertes.fr/ads-00104781/document. Leibniz is often credited with the invention of the binary number system, but there is other work from his era, and detailed analysis of Leibniz’s use of binary numbers. See [390, 511, 622, 1229, 1399, 6252, 6931, 7043].

REFERENCES

REFERENCES

September 1897. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

REFERENCES

REFERENCES

REFERENCES

[61] H.-J. Dreyer and A. Walther. Der Rechenautomat Ipm. Entwicklung Mathematischer Instrumente in Deutschland 1939 bis 1945. (German) [The Ipm calculator. The development of mathematical instruments in Germany 1939–1945]. Bericht A3, Institut für Praktische Mathematik, Technische Hochschule, Darmstadt, West Germany, August 19, 1946. Reprinted in [7127, §3.3]. Translated by Mr. and Mrs. P. Jones.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Stiefel:1953:MCA

Backus:1954:ISS

Burroughs:1954:DH

Freeman:1954:TSA

Gorn:1954:AAC

Kovach:1954:AMU

REFERENCES

REFERENCES

REFERENCES

Paolo Ercoli and Roberto Vacca. Errors due to overflow in arithmetic operations particularly as regards FINAC electronic computer. *Journal
of the Association for Computing Machinery, 4(4):450–455, October 1957. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic). See letter [199].

REFERENCES

REFERENCES

REFERENCES

6, August 1958. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

[159] Franz Hammer. Nicht Pascal sondern der Tübinger Professor Wilhelm Schickard erfand die Rechenmaschine!. (German) [Not Pascal, but the Tübingen professor William Schickard, invented the calculator!]. *Büromarkt*, 20(??):1023–1025, ????. 1958. ISSN 0007-3148.

REFERENCES

[179] Peter Henrici. Theoretical and experimental studies on the accumulation of error in the numerical solution of initial value problems for systems
of ordinary differential equations. In ????, editor, Proceedings of the
International Conference on Information Processing, UNESCO, pages
36–43. ????, ????, 1959. LCCN ????

[180] E. G. Kogbetliantz. Computation of \(\sin N \), \(\cos N \), and \(M \)th root
of \(N \) using an electronic computer. IBM Journal of Research and
Development, 3(2):147–152, April 1959. CODEN IBMJAE. ISSN 0018-
8646 (print), 2151-8556 (electronic).

a modified reflected binary code. IRE Transactions on Electronic
&arnumber=5222057.

deviates on digital computers. Journal of the Association for Computing
Machinery, 6(3):376–383, July 1959. CODEN JACOAH. ISSN 0004-5411
(print), 1557-735X (electronic).

[184] Paul E. Pfeiffer. A four-quadrant multiplier using triangular waves,
diodes, resistors, and operational amplifiers. IRE Transactions on
.jsp?tp=&arnumber=5219526.

[185] Jerome Rothstein. Residues of binary numbers modulo three. IRE
Transactions on Electronic Computers, EC-8(2):229, June 1959. CODEN
IRELAO. ISSN 0367-9950. URL http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=5219529.

[186] Diran Sarafyan. A new method of computation of square roots without
using division. Communications of the Association for Computing
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[214] J. F. Traub. Comments on a recent paper ["A New Method of Computation of Square Roots Without Using Division"]. *Communications of the Association for Computing Machinery*, 3(2):86,
February 1960. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See [186].

REFERENCES

Clarkson:1961:DMI

Cox:1961:NMP

Croy:1961:RTM

Freiman:1961:SAC

Garner:1961:RNS

Garwick:1961:AFP

Garwick:1961:RAF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lindamood:1963:MCO

Metropolis:1963:BOU

Mood:1963:ITS

Stern:1963:CSR

Stroud:1963:MPF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

474, August 1964. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[364] Ramon E. Moore. Automatic local coordinate transformations to reduce the growth of error bounds in interval computation of solutions of
ordinary differential equations. In Rall [7077], chapter 2, pages 103–140. URL http://interval.louisiana.edu/Moores_early_papers/Moore_in_Rall_V2.pdf. Proceedings of an advanced seminar conducted by the Mathematics Research Center, United States Army, at the University of Wisconsin, Madison, October 5–7, 1964.

Smith:1965:ASO

Specker:1965:CAL

Swarztrauber:1965:LED

Sweeney:1965:AFP

Winograd:1965:TRP

Arango:1966:FCP

Brooker:1966:MFA

REFERENCES

REFERENCES

REFERENCES

[397] W. Kahan. 7094 II system support for numerical analysis. SHARE Secretary Distribution 159, C4537, 1966.

REFERENCES

REFERENCES

REFERENCES

References

REFERENCES

References

Tomasulo:1967:EAE

Wilkinson:1967:BZW

Winograd:1967:TRP

Yarbrough:1967:PCC

Atkins:1968:HRD

Azen:1968:DMS

Azgapetian:1968:CAP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Knuth:ACP69-2

Linhardt:1969:DDT

Liu:1969:EAD

Matula:1969:TAM

Posnov:1969:FPR

Rice:1969:AFV

Rigby:1969:DFP

Rosen:1969:ECH

S:1969:BRQ

Shea:1969:NDN

Sterbenz:1969:OSA

Svoboda:1969:DAS

Troelstra:1969:EA

Turner:1969:CSI

Turner:1969:DSC

Turner:1969:IOC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Howell:1970:SLE

Kailas:1970:AMC

Knuth:1970:VNF

Krishnamurthy:1970:OIS

Krishnamurthy:1970:RTT

Ling:1970:HSC

Linz:1970:AFP
REFERENCES

REFERENCES

1970. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See addendum [762].

Yohe:1970:ACB

Yohe:1970:BPF

Yong:1970:GBA

Zohar:1970:NRC

Zuse:1970:CML

Abdelmalek:1971:REA

Alway:1971:GFA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mathematical Software Symposium held at Purdue University, Lafayette, Indiana, USA, April 1–3, 1970.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Green:1973:NTF

Hamming:1973:NMS

Hwang:1973:RRS

Jacobsohn:1973:CDA

Kahan:1973:IAL

REFERENCES

Kreifelts:1973:OBF

[English: Optimal Choice of Basis for a Floating-Point Arithmetic].
Computing: Archiv für informatik und numerik, 11(??):353–363, ????
1973. CODEN CMPTA2. ISSN 0010-485X (print), 1436-5057
(electronic).

Kreifelts:1973:OBG

(German) [Optimal choice of basis for a floating-point arithmetic].
December 1973. CODEN CMPTA2. ISSN 0010-485X (print), 1436-5057
(electronic). See correction [893].

Kuki:1973:SSA

[752] H. Kuki and W. J. Cody. A statistical study of the accuracy of
floating point number systems. Communications of the Association for
ISSN 0001-0782 (print), 1557-7317 (electronic).

Larson:1973:HSM

CODEN IBMTAA. ISSN 0018-8689.

Larson:1973:MSM

Bulletin, ??(?):2055, December 1973. CODEN IBMTAA. ISSN 0018-
8689.

Lee:1973:SFP

[755] Keng Ho Lee. Survey of floating-point software arithmetics and
basic library mathematical functions. Thesis (Ph.D.), Glasgow University,

Majithia:1973:NBL

IEEPAD. ISSN 0018-9219 (print), 1558-2256 (electronic).

[771] James E. Robertson and Kishor S. Trivedi. The status of investigations into computer hardware design based on the use of continued

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Metropolis:1974:SAA

Miller:1974:CCN

Moon:1974:MRM

Neumaier:1974:REV

Newbery:1974:EAP

Prezas:1974:FPA

Rauscher:1974:MUX
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Foster:1975:CNM

Gabrielian:1975:FSN

George:1975:ARR

Gibson:1975:SCT

Ginsberg:1975:DUFa

Myron Ginsberg and Dennis J. Frailey. The design and use of a floating-point (software) simulator for testing the arithmetic behavior of mathematical software. Technical report CP 74028, Department of Computer Science, Institute of Technology, Southern Methodist University, Dallas, 1975. 26 pp.

Ginsberg:1975:DUFb

REFERENCES

Kehl:1975:MMA

Keir:1975:CNR

Keir:1975:PCR

Keir:1975:SSR

Kent:1975:CSU

Klatte:1975:CPI

Kornerup:1975:UND

REFERENCES

REFERENCES

[933] Charles Stephenson. Case study of the pipelined arithmetic unit for the TI Advanced Scientific Computer. In IEEE SCA ’75 [7098],

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lacroix:1976:LCF

Linnainmaa:1976:TEA

Lipschutz:1976:OPS

Majithia:1976:SCC

Maples:1976:FPI

Martinez:1976:SSS

Metropolis:1976:MSA

REFERENCES

Conference on the state of the art in numerical analysis, 12 April 1976, University of York, England, UK.

REFERENCES

REFERENCES

Brown:1977:MSI

Collins:1977:APS

Colquhoun:1977:FAS

DEC:1977:VAH

Dekker:1977:MRR

Derenzo:1977:AHC

Egbert:1977:PCAa

Egbert:1977:PCAb

REFERENCES

[1030] Myron Ginsberg. Numerical influences on the design of floating-point arithmetic for microcomputers. Technical report CS 7708, Department
REFERENCES

of Computer Science, Southern Methodist University, Dallas, TX, USA, 1977. 72 pp.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

43, March 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

Yuen:1977:NRD

Abu-El-Haija:1978:AER

Agrawal:1978:AIR

Agrawal:1978:MAL

Andrews:1978:EFM

Andrews:1978:IAN

Andrews:1978:UEF

REFERENCES

[1106] F. D. Crary and J. M. Yohe. The Augment precompiler as a tool for the development of special purpose arithmetic packages. MRC Technical
Summary 1892, Mathematics Research Center, University of Wisconsin, Madison, Madison, WI, USA, 1978.

Ercegovac:1978:FIS

Ercegovac:1978:LSR

Espelid:1978:FPS

FloatingPointSystems:1978:P

Fox:1978:AFP

Fox:1978:PMS

FPS:1978:AAP

REFERENCES

arith4/papers/ARITH4_Matula_Kornerup.pdf. IEEE catalog no. 78CH1412-6C.

REFERENCES

REFERENCES

REFERENCES

I-Ngo Chen and R. Willoner. An $O(n)$ parallel multiplier with bit-sequential input and output. *IEEE Transactions on Computers*, C-

REFERENCES

[1224] Jan Kent. *The theoretical and practical study of floating point instructions: Consisting of Theoretical definition, analysis and
comparison of floating point instruction, and procedures for the description and simulation of floating point instructions. Dr. Avhandling, Universitetet i Oslo, Oslo, Norway, 1979.

REFERENCES

Arnold:1981:PFP

Arora:1981:CSR

Atkins:1981:FIS

Avizienis:1981:LCR

Banerji:1981:HSD

Barlow:1981:DAA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1418] Saroj Kaushik and R. K. Arora. Sign detection in the symmetric residue number system. In IEEE CA5 ’81 [7125], pages 146–150. LCCN QA 76.6

REFERENCES

Maron:1981:IAP

Matsui:1981:OUF

Miller:1981:RGU

Mitra:1981:CRA

Munson:1981:FPR

Nguyen:1981:SAD

Ong:1981:TQC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:1982:ARBf

Anonymous:1982:MKF

Anonymous:1982:NPAa

Arnold:1982:EPS

Bairstow:1982:FPP

Baraniecki:1982:QEL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Samsen:1982:AFP

Sasaki:1982:EGE

Sasaki:1982:PFM

Schatte:1982:FPF

Sewell:1982:RLT

Sheldon:1982:ICP

Sippel:1982:FRI

Sips:1982:CPM

Strader:1982:CBS

Tan:1982:ADC

Taylor:1982:ARM

Taylor:1982:VRA

Teachey:1982:SRX

TorresyQuevedo:1982:EAD

REFERENCES

[1570] David B. Aspinwall and Yale N. Patt. Modifications to the VAX-11/780 microarchitecture to support IEEE floating point arithmetic. *ACM*
REFERENCES

REFERENCES

REFERENCES

Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1983. CODEN ???? ISSN ????

REFERENCES

REFERENCES

Ferguson:1983:DTE

Fraenkel:1983:SN

Gaitanis:1983:NPC

Galand:1983:FD

Gavrielov:1983:CSF

Gnanasekaran:1983:BSI

technical level. Not an instruction set reference, but does contain instruction timing tables. See also [1865].

Irwin:1983:NLD

James:1983:RDB

Jankowski:1983:NFS

Jenkins:1983:DEC

Johnsen:1983:IFP

Jung:1983:BRR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Seidensticker:1983:CFH

Shah:1983:FPP

Smith:1983:FPA

Soderstrand:1983:IRN

Spafford:1983:RAP

Speiser:1983:SFP

Springer:1983:FP

[1702] Edmund John Walsh. Floating gatefield effect transistor operating point changes: causes, characterization, and effect on electric field measurement by the device. Thesis (M.S.), Boston University, Boston, MA, USA, 1983. v + 121 pp.

[1704] Bertrand Jeffery Williams. A bit-serial floating point multiply/add architecture for signal processing applications. Electrical engineering thesis (M.S.), Texas A&M University, College Station, TX, USA, 1983. x + 97 pp.

REFERENCES

366, July 1984. CODEN SIREAD. ISSN 0036-1445 (print), 1095-7200 (electronic).

[1725] William J. Cody, Jr., Jerome T. Coonen, David M. Gay, K. Hanson, David Hough, W. Kahan, R. Karpinski, John F. Palmer, F. N. Ris, and

REFERENCES

[1741] Robert Todd Gregory and E. V. Krishnamurthy. Methods and Applications of Error-Free Computation. Texts and monographs in
REFERENCES

REFERENCES

March 1984. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

[1769] Soo-Chang Pei and Kuo-Chih Ho. Comments on “Adaptive digital control implemented using residue number systems”. *IEEE

Pfenninger:1984:DES

Pountain:1984:PM

Prince:1984:SFP

Rauchwerk:1984:MBF

Regener:1984:MID

Schryer:1984:DCF

Shahan:1984:MIF

References

REFERENCES

REFERENCES

Trivedi:1984:DVF

Truong:1984:FPP

Uya:1984:CFP

vonGudenberg:1984:BMG

Ware:1984:CMC

Wehmeyer:1984:EFF

Wolrich:1984:HPF
REFERENCES

REFERENCES

[1822] Edward T. Chow and Dan I. Moldovan. Prime factor DFT parallel processor using wafer scale integration. In Hwang [7156],
REFERENCES

Ciminiera:1985:ESP

Cody:1985:PRW

Conover:1985:AHS

Cozzens:1985:DFM

Cuyt:1985:REA

Dadda:1985:FMT
REFERENCES

REFERENCES

IEEE:1985:AIS

IEEE:1985:ASI

IEEE:1985:ISBa

IEEE:1985:ISBb

Intel:1985:FPL

Intel:1985:PRM

and 80287 are. A valuable reference for instruction definitions. See also [1621, 1767].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Papachristou:1985:MIR

Parker:1985:GCI

Pellegrino:1985:RNS

Peralta:1985:TRN

Raimi:1985:FDP

Ramnarayan:1985:LMR

REFERENCES

April 1985. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Crowell:1986:ECU

Curtis:1986:CPL

Desrosiers:1986:CFP

DuCroz:1986:FFP

Dutka:1986:SRT

Dutta:1986:IMF

Feldstein:1986:OUS

Ferro:1986:DTF

REFERENCES

[1977] Mark Hill, Susan Eggers, Jim Larus, George Taylor, Glenn Adams, B. K. Bose, Garth Gibson, Paul Hansen, Jon Keller, Shing Kong, Corinna Lee,

REFERENCES

REFERENCES

REFERENCES

Pfenninger:1986:SQA

Porter:1986:FPM

Quong:1986:FP1

Ramnarayan:1986:LCL

Rhyne:1986:SBS

Robertson:1986:NQD

Rump:1986:SER

REFERENCES

Spafford:1986:RASa

Spafford:1986:RASb

Stewart:1986:CNC

Strobach:1986:NFL

Stummel:1986:SOP

Sun:1986:FPG

Thun:1986:RNS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2081] Bertrand Hochet, Patrice Quinton, and Yves Robert. Systolic solution of linear systems over GF(p) with partial pivoting. In Irwin and

REFERENCES

[2101] Shigeo Kuninobu, Tamotsu Nishiyama, Hisakazu Edamatsu, Takashi Taniguchi, and Naofumi Takagi. Design of high speed MOS multiplier and divider using redundant binary representation. In Irwin and
REFERENCES

REFERENCES

REFERENCES

[2142] Isaac D. Scherson and Yiming Ma. Vector computations on orthogonal memory access multiprocessor system. In Irwin and Stefanelli

Schumacher:1987:CAI

Sharma:1987:ATE

Shenoy:1987:AST

Shyu:1987:CIM

Simar:1987:FPA

Smith:1987:SAE

Spangler:1987:RMM

Sun:1987:SAM

Takagi:1987:LED

Taylor:1987:RAI

Thompson:1987:FME

Thompson:1987:IEF

Tu:1987:RLD

REFERENCES

Umeo:1987:DTO

Ushio:1987:CRE

Vachss:1987:CMF

Vitek:1987:EFA

Wang:1987:EEF

WeitekCorporation:1987:WFP

Williams:1987:FPL

Williams:1987:STC

Wu:1987:FDS

Wu:1987:TRF

Zaccone:1987:ENP

Zurawski:1987:DHS

Aberth:1988:PNA

REFERENCES

REFERENCES

REFERENCES

Fitzpatrick:1988:PVF

Fuccio:1988:DAS

Gibson:1988:GBA

Grehan:1988:BBL

Grehan:1988:FPCa

Grehan:1988:FPCb

Helminen:1988:AFP

REFERENCES

REFERENCES

[2234] Yasumasa Kanada. *Vectorization of multiple-precision arithmetic program and 201,326,000 decimal digits of π calculation*. In *Proceedings
REFERENCES

Kida:1988:FPP

Kirchner:1988:AAV

Knuth:1988:FM

Kornerup:1988:LAU

Krishnan:1988:IRN

Krishnan:1988:SCR

REFERENCES

REFERENCES 465

REFERENCES

Voelzke:1988:FSAc

Weyland:1988:LCS

Wilson:1988:FPS

Wilson:1988:NDP

Wilson:1988:NFP

Wollard:1988:TSS

Young:1988:SNMa

Yuen:1988:IFP

REFERENCES

REFERENCES

[2335] Patty Chinn. The design, implementation, and applications of an ACT8837 floating point processor in an image processing hardware

[2347] A. M. Dennis, C. B. Marshall, and I. A. Burgess. Algorithm and architecture design for the implementation of high order FIR filters using the residue number system. In *IEE Colloquium on Signal Processing Applications of Finite Field Mathematics, 1 June 1989*, pages 1/1–1/5. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????
REFERENCES 476

REFERENCES

REFERENCES

REFERENCES

Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????

REFERENCES

REFERENCES

[Hoshi:1989:RPV]

[Hu:1989:ARM]

[Huck:1989:ACA]

[Husby:1989:FPE]

[Hwang:1989:OAU]

[IEC:1989:IBF]

REFERENCES

Jones:1989:EDC

Jorke:1989:AAM

Joslin:1989:EPN

Jouppi:1989:UVSa

Jouppi:1989:UVSb

Kahan:1989:PCA

Kak:1989:BAS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2443] T. Nakayama, S. Kojima, H. Harigai, H. Igarashi, K. Tamada, and T. Toba. An 80b, 6.7 MFLOPS floating-point processor with
REFERENCES

REFERENCES

 IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver
 Spring, MD 20910, USA, 1989. CODEN ????. ISSN ???.

 In *IEEE International Symposium on Circuits and Systems, 8–11 May
 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN
 ????. ISSN ???.

[2452] G. A. Ray. Multiple core algorithms for residue number systems. In
 *Proceedings of the 32nd Midwest Symposium on Circuits and Systems,
 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN
 ????. ISSN ???.

[2453] Naphtali Rishe. Lexicographic encoding of numeric data fields. In
 Ercegovac and Swartzlander, Jr. [7199], pages 241–246. ISBN 0-8186-
 8963-3 (case), 0-8186-5963-7 (microfiche). LCCN QA 76.9 C62 S95
 ARITH9_Rishe.pdf. IEEE catalog no. 89CH2757-3.

 Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
 C72 R63 1989.

 December 1989. CODEN BYTEDJ. ISSN 0360-5280 (print), 1082-7838
 (electronic).

 for IEEE multipliers. In *Ercegovac and Swartzlander, Jr. [7199]*, pages
REFERENCES

Sasaki:1989:AAD

Schwarz:1989:IIP

Scott:1989:FRM

Shenoy:1989:FBE

Shimazu:1989:MFP

Sinha:1989:FPA

Sit:1989:MFP

374–379. ISBN 0-8186-1971-6 (paper), 0-8186-5971-8 (microfiche), 0-
89CH2794-6.

catalog number 89CH2794-6.

Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????

REFERENCES

REFERENCES

Vassiliadis:1989:GPO

Vassiliadis:1989:SMF

Voelzke:1989:FSAa

Voelzke:1989:FSAb

Vulchanov:1989:SCR

Wagner:1989:EDD

Wang:1989:ADF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2538] Hiroshi Horiguchi. Floating-point numbers and real numbers. Advances in software science and technology, 1(??):157–??, 1990. ISSN 1044-7997.

REFERENCES

[2567] Volker Müller. Hochgenaue CORDIC-Algorithmen für reelle Standardfunktionen mittels dynamischer Defektberechnung

Parhami:1990:GSD

Payne:1990:PLCa

Payne:1990:PLCb

Peter:1990:PZW

Piestrak:1990:DHS

Popov:1990:AFA

Preparata:1990:PCD

REFERENCES

REFERENCES

REFERENCES

1. Table 5 (page 124):
insert $k \leftarrow 0$ after assertion, and also delete $k \leftarrow 0$ from Table 6.

2. Table 9 (page 125):

 for $-1:$USER!"";
 substitute $-1:$USER!"0";
 and delete the comment.

3. Table 10 (page 125):

 for $\text{fill}(-k, "0")$
 substitute $\text{fill}(-k+1, "0")$

REFERENCES

REFERENCES

97(9):836–839, November 1990. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

REFERENCES

REFERENCES

[2655] R. E. Bryant. On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer

REFERENCES

[2674] A. Compan, P. Debaud, V. Delorme, J. A. François, H. Mehrez, and F. Pecheux. GAF: a portable standard-cell floating point adder generator using the CXgen function library. Microprocessing and
REFERENCES

Demmel:1991:OIA

Dongarra:1991:GBP

Dunham:1991:ABA

Duprat:1991:NRR

Duprat:1991:WND

Ercegovac:1991:MPM

Golubev:1991:FPM

Gonella:1991:ACF

Gotze:1991:SRD

Griffin:1991:REA

Griffin:1991:REA

Gusev:1991:NCS

Guyot:1991:OAV

REFERENCES

[2711] Ian Holmes. A feasibility study into the design of a 64-bit floating point processor. Thesis (M.Sc. in Electronics), University of Southampton, Department of Electronics and Computer Science, Southampton, UK, 1991.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Marcus:1991:HSR]

[Markstein:1991:WFF]

[McQuillan:1991:HPV]

REFERENCES

REFERENCES

REFERENCES

Orup:1991:HRH

Ozawa:1991:FND

Ozawa:1991:FOD

Parikh:1991:RBE

Paterson:1991:SMC

Paxson:1991:PTI

REFERENCES

REFERENCES

REFERENCES

645–653, October 1991. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

REFERENCES

Takagi:1991:RMM

Tang:1991:TLAa

Tang:1991:TLAb

Taylor:1991:TFA

teRiele:1991:NLB

TI:1991:TDH

TI:1991:TFDa
REFERENCES

REFERENCES

REFERENCES

Wigley:1991:FMR

Wigley:1991:SMR

Williams:1991:NBC

Williams:1991:ZOS

Winter:1991:FPA

Wong:1991:FDU

[2837] Derek C. Wong and Michael J. Flynn. Fast division using accurate quotient approximations to reduce the number of iterations. In Kornerup

Yan:1991:RFA

Yassine:1991:FAB

Yassine:1991:IMR

Yokoo:1991:OUF

Yoshida:1991:PRT

Yu:1991:FCF

[2843] Tsung Lun Yu and William B. Ribbens. A floating-point coprocessor for fault detection and isolation in electronically controlled internal

REFERENCES

Dao-Trong:1992:SIS

DaoTrong:1992:SIS

Daumas:1992:BIR

Davarakis:1992:PPA

Dawid:1992:BSC

Dawson:1992:RLS

DEC:1992:AAH

REFERENCES

REFERENCES

Hoff:1992:FCH

Hohfeld:1992:PRN

Horiguchi:1992:FNR

[2902] Hiroshi Horiguchi and Tsutomu Tayama. Floating-point numbers and real numbers II. Advances in software science and technology, 3(??): 151–156, 1992. ISSN 1044-7997.

Hoyt:1992:MFP

Hudak:1992:RPL

IFIF:1992:CVD

REFERENCES 559

[2906] P. B. Jackson. Developing a toolkit for floating-point hardware in the
Nuprl proof development system. In Prinetto and Camurati [7245], pages

ISSN 1047-5974 (print), 1097-1610 (electronic). URL

[2908] Joxan Jaffar, Peter J. Stuckey, Spiro Michaylov, and Roland
H. C. Yap. An abstract machine for CLP(R). *ACM SIGPLAN
0-89791-475-9. ISSN 0362-1340 (print), 1523-2867 (print), 1558-
proceedings/pldi/143095/p128-jaffar/.

(M.S.), University of Missouri, Columbia, Columbia, MO, USA, 1992. vi
+ 183 pp.

[2911] P. Johnstone and F. E. Petry. Rational number approximation in higher
radix floating point systems. In IEEE [7242], pages 501–504 vol.2.

[2912] W. Kahan. Analysis and refutation of the LCAS. *ACM SIGPLAN
(print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

REFERENCES

[2933] K. J. R. Liu and E. Frantzeskakis. Qrd-based square root free and division free algorithms and architectures. In Workshop on VLSI Signal
Lozier:1992:RPC

Lozier:1992:RPV

Lozier:1992:SLI

Lu:1992:NDA

Lynch:1992:FCA

Lynch:1992:HSD

REFERENCES

Mutrie:1992:TSS

Nakano:1992:AHS

Nakano:1992:FPB

Ng:1992:ARH

Nishimura:1992:FPR

Obaidat:1992:DMA

REFERENCES

Pichat:1992:SFR

Plauger:1992:SCL

Posch:1992:MRR

Posch:1992:RNS

Priest:1992:PFP

Quach:1992:HSA

[2988] A. Skavantzos and N. Mitash. Theory and implementation issues of the 2-dimensional polynomial residue number system. In *IEEE Southeastcon*
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:1993:FSB

Anonymous. The “fastest system on the block” label must be qualified with new multiplatform, floating-point benchmarks. *PC Week*, 10(22): 85–??, June 1993. ISSN 0740-1604.

Anonymous:1993:SRT

Asprey:1993:PFP

ASTM:1993:AES

Bailey:1993:AMT

Bailey:1993:MPM

Bajard:1993:BNH

REFERENCES

Baker:1993:SLR

Bakhrakh:1993:NIF

Barrera:1993:IBS

Bauer:1993:LCB

Beckmann:1993:FFTa

REFERENCES

REFERENCES

Daumas:1993:DFV

Delgado:1993:DSP

Demmel:1993:FNA

Desaulniers:1993:BEA

DiClaudio:1993:SRR

[3069] David Eisig, Josh Rotstain, and Israel Koren. The design of a 64-bit integer multiplier/divider unit. In Swartzlander, Jr. et al. [7263], pages
REFERENCES

584

171–178. ISBN 0-7803-1401-8 (softbound), 0-8186-3862-1 (casebound), 0-
8186-3861-3 (microfiche). ISSN 0018-9340 (print), 1557-9956 (electronic).
LCCN QA 76.9 C62 S95 1993. URL http://www.acsel-lab.com/
on Computers 43(8), 1994.

Eldridge:1993:HIM

S. E. Eldridge and C. D. Walter. Hardware implementation of
Montgomery’s modular multiplication algorithm. IEEE Transactions on
Computers, 42(6):693–699, June 1993. CODEN ITCOB4. ISSN 0018-
org/stamp/stamp.jsp?tp=&arnumber=277287.

Ercegovac:1993:VHR

Miloš D. Ercegovac, Tomáš Lang, and Paolo Montuschi. Very
high radix division with selection by rounding and prescaling. In
Swartzlander, Jr. et al. [7263], pages 112–119. ISBN 0-7803-1401-
8 (softbound), 0-8186-3862-1 (casebound), 0-8186-3861-3 (microfiche).
ISSN 0018-9340 (print), 1557-9956 (electronic). LCCN QA 76.9 C62
papers/ARITH11_Ercegovac.pdf. IEEE Transactions on Computers
43(8), 1994.

Etiemble:1993:AMV

D. Etiemble and K. Navi. Algorithms and multi-valued circuits for
the multioperand addition in the binary stored-carry number system.
In Swartzlander, Jr. et al. [7263], pages 194–201. ISBN 0-7803-1401-
8 (softbound), 0-8186-3862-1 (casebound), 0-8186-3861-3 (microfiche).
ISSN 0018-9340 (print), 1557-9956 (electronic). LCCN QA 76.9 C62
papers/ARITH11_Etiemble.pdf. IEEE Transactions on Computers
43(8), 1994.

Fortune:1993:EEA

Steven Fortune and Christopher J. Van Wyk. Efficient exact arithmetic
for computational geometry. In ACM, editor, Proceedings of the 9th ACM
Symposium on Computational Geometry, May 19–21, 1993, San Diego,
Fowkes:1993:HEA

Fox:1993:HLS

Geraminejad:1993:DIC

Gibbons:1993:FMW

Goldberg:1993:DFP

Gudeman:1993:RTI

Gupta:1993:NPF

REFERENCES

REFERENCES

IBM:1993:IPA

Ide:1993:CFP

Ide:1993:MCF

Jahn:1993:LIF

Jahn:1993:SIG

Jebelean:1993:CSG

REFERENCES 589

Kim:1993:FABc

Kim:1993:FABd

Kirsch:1993:ABU

Klatte:1993:CXC

Koren:1993:CAA

Kornerup:1993:HRM

REFERENCES

Kortemeyer:1993:CPT

Kota:1993:NAH

Krandick:1993:EMF

Krishna:1993:TFA

Lee:1993:DAE

REFERENCES

REFERENCES

Street, Suite 300, Silver Spring, MD 20910, USA, 1993. CODEN ????
ISSN ????

Lozier:1993:UGF

Mandelbaum:1993:SRS

Maryoung:1993:DBP

Masotti:1993:FNE

Mazenc:1993:CFU

McClellan:1993:AFP

REFERENCES

REFERENCES

REFERENCES

Pugh:1993:FPC

Reid:1993:LIA

Richardson:1993:ETR

Ris:1993:WFP

Samani:1993:SVP

Sarma:1993:MAR

Scannell:1993:DMM

Schorn:1993:AAR

Schulte:1993:ERC

Schulte:1993:PHD

M. J. Schulte and E. E. Swartzlander, Jr. Parallel hardware designs for correctly rounded elementary functions. In Corliss and Kearfott [7254], pages 65–87 (or 65–88??). ISBN ???? ISSN 0135-4868. LCCN ????

Schulte:1993:TMC

Schwarz:1993:HRAa

Schwarz:1993:HRAb

REFERENCES

Schwarz:1993:HSA

Schwarz:1993:PHR

Schwarz:1993:UFM

Shanbhag:1993:REAa

Shanbhag:1993:REAb

Shand:1993:FIR

REFERENCES

Inside technology today 32-bit floating point multi-port DSP / produced by Texas Instruments. VHS format. High-speed, multi-port DSPs can be used in parallel processing applications to really enhance computation time and power. A popular 6-port floating point DSP and high speed design integration and applications are described in this tape., 1993. 1 videocassette.

Weste:1993:PCV

Williams:1993:BFM

Williams:1993:FM

Wrzyszcz:1993:DDCa

Wrzyszcz:1993:DDCb

Zeng:1993:CFA

Zhang:1993:EAP

REFERENCES

Zuras:1993:SML

Zuse:1993:CML

Agarwal:1994:EFP

Anonymous:1994:C

Anonymous:1994:FPa

Anonymous:1994:FPb

REFERENCES

References

REFERENCES

Cortadella:1994:HRD

Dallaway:1994:DAC

DasSarma:1994:MAR

Daumas:1994:FAR

Daumas:1994:RFP

De:1994:FPA

delaSerna:1994:TBF

REFERENCES

REFERENCES

REFERENCES

[3269] Ching Yu Hung and Behrooz Parhami. Fast RNS division algorithms for fixed divisors with application to RSA encryption. *Information*
REFERENCES

REFERENCES

Jackson:1994:PCE
http://www.cs.toronto.edu/pub/reports/na/prec.except.ps.Z.

Jain:1994:SRR

Jaromczyk:1994:CCH

Johnstone:1994:DAN

Kabuo:1994:ARS

Kalliojarvi:1994:RCW

REFERENCES

730–739, November 1994. CODEN ICSPE5. ISSN 1057-7130 (print),
1558-125X (electronic).

CODEN CMPTA2. ISSN 0010-485X (print), 1436-5057 (electronic).

[3289] P. Kornerup. A systolic, linear-array multiplier for a class of
right-shift algorithms. IEEE Transactions on Computers, 43(8):892–898,
August 1994. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956

[3290] W. Krandick and J. R. Johnson. Efficient multiprecision floating point
multiplication with exact rounding. In Calmet [7267], pages 207–?? ISBN
???? LCCN ????

IEEE transactions on circuits and systems. 2, Analog and digital signal
(print), 1558-125X (electronic).

cycles in floating-point implementations of direct-form recursive digital
filters. IEEE transactions on circuits and systems. 2, Analog and digital
signal processing, 41(4):308–313, April 1994. CODEN ICSPE5. ISSN
1057-7130 (print), 1558-125X (electronic).

[3293] C. Ledoux and J. F. Grandin. Two original weight pruning methods
based on statistical tests and rounding techniques. Vision, Image
CODEN ???? ISSN ????

[3294] D. M. Lewis. Interleaved memory function interpolators with application
to an accurate LNS arithmetic unit. IEEE Transactions on Computers,
43(8):974–982, August 1994. CODEN ITCOB4. ISSN 0018-9340 (print),
Lo:1994:RFP

May:1994:PAS

McGrath:1994:OMC

Meek:1994:PLT

Mehlhorn:1994:IGA

Montgomery:1994:SRP

Montuschi:1994:DUN

November 1994. CODEN ICDTEA. ISSN 1350-2387 (print), 1359-7027 (electronic).

REFERENCES

[Niescier:1994:DIC]

[Novak:1994:AFP]

[Oberman:1994:DIH]

[Oh:1994:IPDa]

[Oh:1994:IPDb]

[Omondi:1994:CAS]

REFERENCES

REFERENCES

Parker:1994:FTLb

Patankar:1994:SHA

Phatak:1994:HSD

Popova:1994:EIA

Prince:1994:TFM

Pritchard:1994:RAR

Rajski:1994:DRP

REFERENCES

Schulte:1994:OIA

Schulte:1994:VIA

Schwandt:1994:IAD

Sharangpani:1994:SAF

Shippy:1994:PFD

Smith:1994:PAT

Smith:1994:SFT

REFERENCES

Solhaug:1994:FDK

Srivastava:1994:ASB

Stockman:1994:OMM

Thompson:1994:PSN

Timmermann:1994:CFP

Timmermann:1994:CFV

Turner:1994:SRM
REFERENCES

REFERENCES

Walker:1994:SMA

Walters:1994:CTR

Wang:1994:MQF

Weaver:1994:SAM

Wei:1994:REF

Weiss:1994:PPP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3415] Marc Daumas, Christophe Mazenc, Xavier Merrheim, and Jean-Michel Muller. Modular range reduction: a new algorithm for fast and

Demmel:1995:CSB

DiClaudio:1995:FCR

Doman:1995:SAP

Doran:1995:SCD

Ercegovac:1995:SDC

REFERENCES

REFERENCES

REFERENCES

[3445] Masayuki Ito, Naofumi Takagi, and Shuzo Yajima. Efficient initial approximation and fast converging methods for division and square
REFERENCES

[3451] Kari Kalliojärvi. Finite word length effects in floating-point and block-floating-point digital signal processing systems. Avhandling (doktorgrad),
REFERENCES

[3453] Friedrich Wilhelm Kistermann. Die Rechentechnik um 1600 und Wilhelm Schickards Rechenmaschine. (German) [The calculating technique of 1600 and Wilhelm Schickard’s calculator]. In Seck [7287], pages 241–272. ISBN 3-7995-3235-8. ISSN 0340-6857. LCCN ???? DM 76.00, sfr 76.00, S 600.00.

[3457] Hercule Kwan, Robert Leonard Nelson, Jr., and Earl E. Swartzlander, Jr. Cascaded implementation of an iterative inverse-square-root algorithm,

[3460] N. Joachim Lehmann. Schickard und Leibniz als Erfinder von rechenmaschinen. (German) [Schickard and Leibniz, the inventors of calculators]. In Seck [7287], pages 273–286. ISBN 3-7995-3235-8. ISSN 0340-6857. LCCN ???. DM 76.00, sfr 76.00, S 600.00.

REFERENCES

[3474] Cleve B. Moler. Cleve’s corner: a tale of two numbers: With the Pentium, there is a very small chance of making a very large error. Technical note, The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA,

REFERENCES

References

REFERENCES

• branch and bound algorithms for global optimization,
• constraint propagation,
• solution sets of linear systems,
• hardware and software systems for interval computations, and
• fuzzy logic.

Actual applications described in the book include:

• economic input-output models,
• quality control in manufacturing design,
• a computer-assisted proof in quantum mechanics,
• medical expert systems,
• and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of
REFERENCES

the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.kluwer.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

Schulte:1995:HDA

Schulte:1995:PSI

Schwarz:1995:RQC

Shirazi:1995:QAF

REFERENCES

REFERENCES

REFERENCES

Wong:1995:FEE

Wu:1995:SRM

Ypma:1995:HDN

Yu:1995:MRF

Zaytoun:1995:SFR

Zhou:1995:HSD

REFERENCES

[3536] Vijayanand Jaganaathan Angarai. Number representation schemes for energy efficient computer arithmetic. Thesis (M.S.), University of Texas at Dallas, Dallas, TX, USA, 1996. ix + 57 pp.

REFERENCES

REFERENCES

REFERENCES

[3564] W. A. Chren, Jr. Delta-sigma demodulator with large oversampling ratio using the one-hot residue number system. In *IEEE International...*
REFERENCES

Ciminiera:1996:CSM

Clarke:1996:VSD

Clarke:1996:WLS

Corliss:1996:VPE

REFERENCES

Crenshaw:1996:PTF

Darcy:1996:FMF

Dimitrov:1996:NCD

Dimitrov:1996:RNS

Dimitrova:1996:NAS

Djebarri:1996:GAS

REFERENCES

REFERENCES

Fortune:1996:SAY

Ganesan:1996:CSM

Garg:1996:FTP

Gibb:1996:FF1

Goldberg:1996:CA

Goldstine:1996:ENI

REFERENCES

Hauser:1996:HFE

Heck:1996:IM

Hecker:1996:LGF

Heikes:1996:DFP

Heindl:1996:MVC

Heinrich:1996:AAF

Ito:1996:SRI

Jayasuriya:1996:MAU

Jessani:1996:FPU

Jullien:1996:VDS

Kahan:1996:BEC

Kahan:1996:LNSS

Kahan:1996:WCY

REFERENCES

REFERENCES

Kowaleski:1996:DEP

Kraemer:1996:CNI

Kreinovich:1996:CCI

Ley:1996:PDU

Li:1996:NNR

Lions:1996:AFF

Industry immediately started to investigate the failure. From the report: “The internal SRI software exception was caused during execution of a data conversion from 64-bit floating point to 16-bit signed integer value. The floating point number which was converted had a value greater than what could be represented by a 16-bit signed integer. This resulted in an Operand Error. The data conversion instructions (in Ada code) were not protected from causing an Operand Error, although other conversions of comparable variables in the same place in the code were protected.”

REFERENCES

Muller:1996:TER

Nakao:1996:GEB

Nonnenmacher:1996:LCS

Oberman:1996:DIH

Oberman:1996:FIR

Oberman:1996:IDO

Oberman:1996:RDL

REFERENCES

REFERENCES

REFERENCES

Engineering. 26–29 May 1996, volume 1, pages 294–297. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1996. CODEN ???? ISSN ????.

REFERENCES

REFERENCES

REFERENCES

[Suzuki:1996:LZA]

[Tan:1996:MPF]

[Tatsaki:1996:AIC]

[Trott:1996:AWL]

[Urano:1996:MAN]

[Vassiladis:1996:ARA]

[3699] K. B. Williams. Testing math functions: When requirements are tight, we must carefully examine all potential sources of error. Make sure your math library isn’t the weak link in the chain. *C/C++ Users Journal*, 14(12):49–54, 58–65, December 1996. CODEN CCUJEX. ISSN 1075-2838. Describes a package that extends the Cody-Waite-Plauger work on the ELEFUNT package for the testing of the elementary functions, including the inverse hyperbolic functions, cube root, and Bessel functions of the first and second kinds. The C++ package implements 192-bit extended precision versions of all of the functions, so that accurate results are available for comparison with the normal double-precision results.

[3710] Martin Atkinson-Barr. Letter to the Editor: Pentium II math bug. Dr. Dobb’s Journal of Software Tools, 22(10):10, October 1997. CODEN DDJOEB. ISSN 1044-789X. Identifies himself as the “Mr. X” cited in [3724], and provides more the background on the discovery of the Pentium FIST (floating-point to integer store) instruction.

REFERENCES

Baker:1997:LEP

Beaumont-Smith:1997:GBA

Blackford:1997:PEN

Blinn:1997:JBC

Bomar:1997:RNA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Society order number PR07846. IEEE Order Plan catalog number 97CB36091.

Hix:1997:CTV

Holmes:1997:CAP

Irmay:1997:RBZ

Ito:1997:EIA

Kahan:1997:JNL

Kahan:1997:LNS

[3765] E. J. King and E. E. Swartzlander, Jr. Data-dependent truncation scheme for parallel multipliers. In Fargues and Hippenstiel
Kinoshita:1997:RAE

Koc:1997:FSE

Kramer:1997:PWC

Kravchenko:1997:AEP

Lang:1997:CVA

REFERENCES

Lang:1997:FIS

Lee:1997:SSA

Lee:1997:VDA

Lefevre:1997:TCR

LeLann:1997:AAF

Conference and Workshop on Engineering of Computer-Based Systems, pages 339–346. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1997. URL http://ieeexplore.ieee.org/document/581900/. From the article: “The SRI S/W exception was raised during a conversion from a 64-bit floating point number F to a 16-bit signed integer number. F had a value greater than what can be represented by a 16-bit signed integer, which caused an Operand Error (data conversion — in Ada code — was not protected, for the reason that a maximum workload target of 80% had been set for the SRI computer). . . . The value of BH was much higher than expected because the early part of the trajectory of Ariane 5 differs from that of Ariane 4, which results in considerably higher horizontal velocity values.”.

REFERENCES

Lu:1997:SMK

Lutz:1997:HAF

Matsubara:1997:LPZ

Matula:1997:PPF

McClain:1997:EC

Michelucci:1997:LA

REFERENCES

REFERENCES

REFERENCES

[3800] Brad Pierce. Applications of randomization to floating-point arithmetic and to linear systems solution. Thesis (Ph.D.), Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA, 1997.

[3807] M. J. Schulte and James E. Stine. Accurate function approximations by symmetric table lookup and addition. In Thiele et al. [7307], pages

REFERENCES

Computer Society order number PR07846. IEEE Order Plan catalog number 97CB36091.

REFERENCES

REFERENCES

[3842] Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic;
REFERENCES

Anonymous:1998:PIS

Antelo:1998:CVH

Appel:1998:MCI

Arnold:1998:ACT

Bailey:1998:OEF

REFERENCES

[Chang:1998:HPD]

[Chatterjee:1998:MMP]

[Chen:1998:PCL]

[Chen:1998:VFP]

[Chen:1998:TEA]

[Chren:1998:OHR]

REFERENCES

[3866] Joseph D. Darcy. Evolving Java’s floating point support: The good, the bad, and the ugly. In MacKay and Johnson [7318], page ?? LCCN TK
Darcy:1998:WRI

Dumas:1998:ELM

Dimitrov:1998:AME

Dimitrov:1998:FRR

Dimitrov:1998:RNS

Drolet:1998:NRE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Knuth:1998:SA

Koc:1998:LCB

Kramer:1998:PWC

Kuhlmann:1998:FLP

Labrosse:1998:FPA

McCullough:1998:ARS

Mohan:1998:EFC

Montalvo:1998:NST

Moore:1998:MCP

Murabayashi:1998:WBP

Naffziger:1998:MAB

REFERENCES

Severance:1998:SII

Simons:1998:IFP

Skavantzos:1998:ERW

Smith:1998:AMP

Stelling:1998:OCP

Stine:1998:CIFa

REFERENCES

[3965] A. Beaumont-Smith, N. Burgess, S. Lefrere, and C. C. Lim. Reduced latency IEEE floating-point standard adder architectures. In Koren
REFERENCES

REFERENCES

Boldo:1999:CRE

Brent:1999:CAP

Bronnimann:1999:SDR

Bui:1999:DSI

Burgess:1999:EIR

REFERENCES

REFERENCES

REFERENCES

Cucker:1999:CED

Cuyt:1999:UR

Darcy:1999:JEF

Daumas:1999:DFP

Daumas:1999:MFP

REFERENCES

REFERENCES

Heindl:1999:RIH

Hiasat:1999:SCV

Hirn:1999:GBI

Hormigo:1999:ISC

Hung:1999:FDA

Hyogo:1999:LVF

REFERENCES

Iordache:1999:ARS

Iordache:1999:IPR

Jamieson:1999:NRF

Jamieson:1999:RFA

Jeong:1999:CPT

REFERENCES

REFERENCES

Kornerup:1999:NSC

Krick:1999:AN

Lang:1999:VHR

Langlois:1999:WAL

Lee:1999:EFS

Lee:1999:NAD

REFERENCES

Lue:1999:ADE

Mahesh:1999:IAE

McCullough:1999:ARS

McCullough:1999:NRE

Montuschi:1999:BVH

REFERENCES

Muller:1999:FRT

Muroi:1999:ESR

Nannarelli:1999:LPDa

Nannarelli:1999:LPDb

Nannarelli:1999:LPR

REFERENCES

749

REFERENCES

Computer Society Order Number PR00116. IEEE Order Plan Catalog Number 99CB36336.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Yadav:1999:PSF

Yang:1999:CIS

Yang:1999:RNSa

Yang:1999:RNSb

Yang:1999:RST

Yap:1999:REI

Yuan:1999:FPA

[4139] *Record*, page various, 19xx. Floating Point Systems, Portland, OR, USA.

[4140] Intel. *Intel 8231A Arithmetic Processing Unit*. Intel Corp, San Jose, CA, USA, 19xx. URL http://www.datasheetarchive.com/pdf-datasheets/Datasheets-14/DSA-276911.html. From the datasheet (p. 3-5): “The mantissa is expressed as a 24-bit (fractional) value; the exponent is expressed as a two’s complement 7-bit value having the range \(-64\) to \(+63\). The most significant bit is the sign of the mantissa (0 = positive, 1 = negative), for a total of 32 bits. The binary point is assumed to be \([0\text{ to }\pm]\) the left of the most significant mantissa bit (bit 23). All floating-point data values must be normalized. Bit 23 must be equal to 1, except for the value zero, which is represented by all zeros. The range of values that can be represented in this format is \(\pm(2.7^{-10}\ldots9.2 \times 10^{18})\) and zero.”.
Anonymous:2000:BRCd

Anonymous:2000:BRCg

Antelo:2000:VHR

Baidas:2000:HLF

Batten:2000:NAD

Becker:2000:JSE

Becker:2000:JSF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[4195] Yun He and Chris H. Q. Ding. Using accurate arithmetics to improve numerical reproducibility and stability in parallel applications. In
REFERENCES

Hiasat:2000:NES

Hida:2000:QDA

Higuchi:2000:FAA

Hormigo:2000:HAVa

Hormigo:2000:HAVb

Ide:2000:GMF

[4201] Nobuhiro Ide, Masashi Hirano, Yukio Endo, Shin ichi Yoshioka, Hiroaki Murakami, Atsushi Kunimatsu, Toshinori Sato, Takayuki Kamei, Toyoshi Okada, and Masakazu Suzuki. 2.44 GFLOPS 300-MHz

REFERENCES

REFERENCES

REFERENCES

884–888. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2000. CODEN ???? ISSN ????

Madhukumar:2000:PRN

Madhukumar:2000:RNS

Mahesh:2000:LPR

Markstein:2000:IEF

Maryska:2000:SCR

McKenzie:2000:ACP

REFERENCES

Mencer:2000:RAU

Moreira:2000:FMJ

Mueller:2000:CAC

Mulders:2000:SMD

Nielsen:2000:ICF

Oh:2000:ENB

[4243] Sangho Oh, Chang Han Kim, Jongin Lim, and Dong Hyeon Cheon. Efficient normal basis multipliers in composite fields. IEEE Transactions
REFERENCES

REFERENCES

REFERENCES

Department, University of Saarland, Saarbrücken, Germany, 2000. xii + 188 pp.

REFERENCES

REFERENCES

161. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2001. CODEN ???? ISSN ????

Arnold:2001:SMQ

Arnold:2001:UFR

Atlamazoglou:2001:ALP

Baidas:2001:FPB

Bajard:2001:MMB

Balzola:2001:DAP

Barraud:2001:SAR

Bashagha:2001:NRS

Beaumont-Smith:2001:PPA

Beebe:2001:IFP

Berg:2001:FVV

Bickerstaff:2001:ACC

REFERENCES

[4311] Keith Briggs and Yannis Smaragdakis. XR — exact real arithmetic. World-Wide Web document and software package., March 01, 2001. URL http://www.btexact.com/people/briggsk2/XR.html. From the overview: “This is an implementation of exact (or constructive) real arithmetic, as an alternative to multiple-precision floating-point (MPFP). An important distinction is that in MPFP one sets the precision before starting a computation, and then one cannot be sure of the final result. Interval arithmetic is an improvement on this, but still not an ideal solution because if the final interval is larger than desired, there is no simple way to restart the computation at higher precision. By contrast, in XR no precision level is set in advance, and no computation takes place until a final request takes place for some output. Despite this, programming with XR is no different from MPFP, except for the declaration of critical variables as type ‘XR’.

The main aim is to produce a usably efficient implementation, which can be easily interfaced with existing C++ code. This contrasts with previous implementations in functional languages (Haskell, Miranda etc.), which, although theoretically important, seem to be rather too slow for real use.

This code is designed as an add-on to Victor Shoup’s arbitrary-precision arithmetic package NTL, and implements a new type XR, to complement NTL’s ZZ and RR integer and real types.

REFERENCES

REFERENCES

REFERENCES

gamedeveloper.com/design/instant-replay-building-a-game-engine-with-reproducible-behavior#close-modal.

Gallant:2001:FPM

Gelbukh:2001:ZHL

Gil:2001:SAT

Gok:2001:EIM

Goubault:2001:SAP

[4364] W. Kahan. Names for standardized floating-point formats. Technical report, Mathematics Department and Electrical Engineering and Computer Science Department, University of California, Berkeley,
REFERENCES

REFERENCES

Koy:2001:SLRb

Kramer:2001:AFE

Kreinovich:2001:INB

Krishnan:2001:PEM

Lang:2001:BRZ

[4381] Tomás Lang and Elisardo Antelo. Correctly rounded reciprocal square-root by digit recurrence and radix-4 implementation. In
REFERENCES

REFERENCES

Michel:2001:SCF

Mobley:2001:ICW

Moller:2001:SEC

Montuschi:2001:BVH

Morioka:2001:TEV

MRaihi:2001:ACR

REFERENCES

Muller:2001:IEA

Nai:2001:GHS

Nakamura:2001:AAA

Nannarelli:2001:TBR

Ning:2001:ESI

REFERENCES

REFERENCES

REFERENCES

Rinfret:2001:BSI

Ring:2001:MPA

Rudra:2001:ERE

Rugina:2001:RUD

Rump:2001:RPS

Sakai:2001:PMS
Yasuyuki Sakai and Kouichi Sakurai. On the power of multidoubling in speeding up elliptic scalar multiplication. *Lecture Notes in Computer Science*, 2259:268–??, 2001. CODEN LNCS89. ISSN 0302-9743 (print),
REFERENCES

Savas:2001:SUM

Schmookler:2001:LZA

Schonfelder:2001:VPA

Seidel:2001:BMR

Seidel:2001:DFI
Seidel:2001:EAB

Smith:2001:AFS

Steele:2001:SMFa

Steele:2001:SMFb

Stine:2001:CIH

Stine:2001:DIA

Stoffel:2001:VIM

Sun:2001:NSM

Sunar:2001:EON

Takagi:2001:HAC

Tasche:2001:WAC

Tenca:2001:DRL

REFERENCES

REFERENCES

[4478] Paul Zimmermann. De l’algorithmique à l’arithmétique via le calcul formel. (French) [From algorithmics to arithmetic via symbolic calculation]. Technical report, Département de formation doctorale en
REFERENCES

REFERENCES

REFERENCES

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2002. CODEN ???? ISSN ????

Arnold:2002:LNS

Arnold:2002:RPC

Bailey:2002:AAP

Bailey:2002:HPC

Barrio:2002:REB

Bertot:2002:PGS

Beuchat:2002:SMB

Blackford:2002:USB

Boldo:2002:FRF

Boldo:2002:IAO

REFERENCES

hundred and one exercises], Translated from the 2001 English original by Alejandro Casares Maldonado.

Paliouras:2002:LPC

Paliouras:2002:OLO

Park:2002:SPM

Paul:2002:BB

Pillmeier:2002:DAB

Pineiro:2002:HRL

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2002. CODEN ????. ISSN ???.

Pineiro:2002:HSD

Puchta:2002:RNN

Ramasubramanian:2002:ACL

Ramirez:2002:FRF

Reid-Green:2002:TEA

REFERENCES

[4605] Ibrahim Sahin, Clay S. Gloster, and Christopher Doss. Feasibility of floating-point arithmetic in reconfigurable computing systems. In
Sakai:2002:AES

Sawada:2002:FVD

Sawada:2002:MVS

Schwarz:2002:MIE

Serebrenik:2002:TLP

Stoianov:2002:AAB

Sun:2002:BJP

TI:2002:TFL

[4619] Texas Instruments, Dallas, TX, USA. TMS320C67x FastRTS Library Programmer’s Reference (SPRU100A), October 2002. URL http://focus.ti.com/lit/ug/spru100a/spru100a.pdf. The FastRTS library is a collection of 26 optimized floating-point math functions for the TMS320C67x device. This source code library includes C-callable (ANSI-C-language compatible) optimized versions of the floating-point math functions included in previous run-time-support libraries.

Tornaria:2002:SRM

Turner:2002:RPS

vanEmden:2002:NDI

Aharoni:2003:FTG

Akkas:2003:QPD

Al-Radadi:2003:RSD

Altman:2003:RAN

Ammar:2003:NDH

REFERENCES

Anonymous:2003:AI

Anonymous:2003:FFP

Anonymous:2003:RHP

Arnold:2003:FFT

Arnold:2003:ILN

REFERENCES

Bajard:2003:EMG

Bajard:2003:FII

Barrio:2003:NEL

Barrio:2003:URE

Bertoni:2003:EAA

[4654] Nicolas Brisebarre and Jean-Michel Muller. Finding the “truncated” polynomial that is closest to a function. Research Report 4787, INRIA Rhone-Alpes, ZIRST, 655 Avenue de l’Europe, Montbonnot, 38334 Saint Ismier cedex,
REFERENCES

REFERENCES

REFERENCES

[4689] Christiane Frougny and Athasit Surarerks. On-line multiplication in real and complex base. In Bajard and Schulte [7378], pages
REFERENCES

Gansner:2003:SMB

Gavrilo:2003:ESC

Geddes:2003:EFH

Geiselmann:2003:RRD

Gerwig:2003:HPF

Goldberg:2003:WEC

[4695] David Goldberg. What every computer scientist should know about floating-point
REFERENCES

Huang:2003:HPL

Intel:2003:DSR

Intel:2003:NID

Iordache:2003:OFP

Kaihara:2003:VAM

REFERENCES

[4712] Soonhak Kwon. A low complexity and a low latency bit parallel systolic multiplier over GF(2^m) using an optimal normal basis of type II. In Bajard and Schulte [7378], pages 196–202. ISBN 0-7695-1894-X. ISSN 1063-6889. LCCN QA76.6
REFERENCES

859

REFERENCES

number PR01894. Selected papers republished in *IEEE Transactions on Computers*, **54**(3) (2005) [5069].

REFERENCES

Nievergelt:2003:SFM

Okeya:2003:WNM

Oklobdzija:2003:EDE

Oklobdzija:2003:TDP

ORourke:2003:ANM

Parhami:2003:TUB

Paschalakis:2003:DPF

Percival:2003:RMM

Phillips:2003:SRR

Pineiro:2003:HRI

Pineiro:2003:LHR

REFERENCES

REFERENCES

REFERENCES

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2003. ISBN ???? LCCN ????

The 14th workshop on Languages and Compilers for Parallel Computing, LCPC 2001, was organized and hosted by the Electrical and Computer Engineering Department of the University of Kentucky, Lexington, KY, USA.

Warren:2003:DLD

Wei:2003:REE

Yan:2003:NSA

Zhang:2003:DRV

Zielke:2003:GLL

[4771] Gerhard Zielke and Volker Drygalla. Genaue Lösung linearer Gleichungssysteme. (German) [Exact solution of linear systems of equations]. Mitteilungen der Gesellschaft f
Ziv:2003:SGM

Ziv:2003:SRC

Abbasbandy:2004:USA

Akutin:2004:HOM
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2004.

Chirca:2004:SLP

Clinger:2004:HRF

Clinger:2004:RHR

Cowlishaw:2004:FFE

Croot:2004:ACC

Daumas:2004:GFCa

Daumas:2004:GFCb
[4806] Marc Daumas and Guillaume Melquiond. Generating formally certified bounds on values and round-off errors. In Frougny et al. [7389], pages
REFERENCES

DELRE:2004:TAG

DEMMEL:2004:AEA

DEMMEL:2004:FAF

DETREY:2004:SOF

DETREY:2004:TBP

DETREY:2004:TUC

[4818] Jérémie Detrey and Florent de Dinechin. A tool for unbiased comparison between logarithmic and floating-point arithmetic. Research Report RR2004-31, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07,
REFERENCES

REFERENCES

[4836] Christina Lynn Geyer and Patricia Pepple Williamson. Detecting fraud in data sets using Benford’s Law. Communications in Statistics:
REFERENCES

versions are 1.0 (8-Aug-1991), 2.0 (24-Apr-1996), 3.0 (17-Apr-2000), and 4.0 (1-Dec-2001).

REFERENCES

REFERENCES

REFERENCES

Ortiz:2004:SPI

Pace:2004:ERL

Page:2004:PCA

Paul:2004:SMR

Petkovic:2004:GCS

Pineiro:2004:AAL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Stine:2004:DCA

Sun:2004:LBR

Sunar:2004:GMC

Sypniewski:2004:IAU

Tadaki:2004:ECH

Thomas:2004:LLF

von zur Gathen: 2004: FAG

Voronenko: 2004: AGI

Walters: 2004: TSC

Wang: 2004: DFP

Weaver: 2004: MFD

Wu: 2004: HSL

REFERENCES

Forschungsbericht Nr. 04-8.

Aharoni:2005:SCI

Alvarez:2005:FMF

Anonymous:2005:HAP

Anonymous:2005:TMF

Antelo:2005:DRD

Antelo:2005:LLD

Antelo:2005:LLP

Elisardo Antelo and Julio Villalba. Low latency pipelined circular CORDIC. In Montuschi and Schwarz [7418], page ?? ISBN 0-7695-
REFERENCES

REFERENCES

REFERENCES

268, April 2005. CODEN ISPLEM. ISSN 1070-9908 (print), 1558-2361 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mei:2005:LZA

Menissier-Morain:2005:APR

Mitra:2005:BFP

Mitzenmacher:2005:PCI

Montgomery:2005:FSS

REFERENCES

REFERENCES

Muscedere:2005:LPT

Nguyen:2005:FPL

Oberman:2005:HPA

Ogita:2005:ASD

Oh:2005:FPS

Pareto:2005:GAL

Phatak:2005:FMR

Pineiro:2005:HSF

Revol:2005:TMF

Reyhani-Masoleh:2005:LCW

REFERENCES

Sofronioua:2005:PNC

Steele:2005:SME

Steele:2005:SMF

Steele:2005:SMG

Stehle:2004:ARR

Stehle:2005:GAT

Stehle:2005:SWC

Stine:2005:CTC

Takagi:2005:HAI

Takahashi:2005:AMP

Tang:2005:BBI

Tang:2005:GBE

Walters:2005:EFA

Wang:2005:DFPa

Whidborne:2005:OCF

Wilkinson:2005:PAN

Wo:2005:SSC

Yang:2005:IMM

[5102] V. Yatskiv and N. Yatskiv. Multiple access on the basis of residue number system transformation. In Proceedings of The Third Workshop 2005
REFERENCES

Zeydel:2005:EMA

Zhu:2005:NDA

Zhuo:2005:DSF

Zimmermann:2005:EBC

Zimmermann:2005:MPT

Zimmermann:2005:MVC

[5108] Paul Zimmermann. MPFR: vers un calcul flottant correct ? (French) [MPFR: Towards correct floating-point arithmetic?]. Online interactive report., LORIA/INRIA Lorraine, Bâtiment A, Technopôle de Nancy-Brabois, 615 rue du jardin botanique, F-54602 Villers-lès-Nancy Cedex,

REFERENCES

REFERENCES

Bonten:2006:ACF

Briggs:2006:IER

Castellanos:2006:BDF

Chang:2006:DAR

Choi:2006:DCB

Cornea:2006:SII

Cowlishaw:2006:DCL

REFERENCES

[5134] Jérémie Detrey and Florent de Dinechin. FPLibrary. A VHDL library of parametrisable floating-point and LNS operators for FPGA. Web site and source code., 2006. URL http://www.ens-lyon.fr/LIP/ArenaireWare/FPLibrary/. The FPLibrary has been superceded by the FloPoCo project [5575].
REFERENCES

[5141] Simcha Gochman, Avi Mendelson, Alon Naveh, and Efraim Rotem. Introduction to Intel Core Duo processor architecture. Intel
REFERENCES

[5145] Daniel S. Graça, Ning Zhong, and Jorge Buescu. The ordinary differential equation defined by a computable function whose maximal interval of existence is non-computable. In Anonymous [7422], page ?? ISBN ???? LCCN ????

REFERENCES

[5173] T. H. Liew, Lie-Liang Yang, and L. Hanzo. Systematic redundant residue number system codes: analytical upper bound and iterative decoding

REFERENCES

Michael Parks. Unifying tests for square root. In Anonymous [7422], page ?? ISBN ???? LCCN ????

REFERENCES

Toivonen:2006:VFF

Trott:2006:MGN

VanMeter:2006:DAQ

Vazquez:2006:CSD

Villalba:2006:DRM

Wang:2006:ACV

Wang:2006:PAN

REFERENCES

 REFERENCES

REFERENCES

[5241] Jean-Luc Beuchat, Masaaki Shirase, Tsuyoshi Takagi, and Eiji Okamoto. An algorithm for the η_T pairing calculation in characteristic three and

Bodrato:2007:IPM

Boldo:2007:FPD

Boldo:2007:FVF

Boldo:2007:PCA

Brent:2007:EBC

Brisebarre:2007:CRA

REFERENCES

REFERENCES

REFERENCES

[5280] Laurent Fousse. Multiple-precision correctly rounded Newton–Cotes quadrature. *RAIRO. Informatique théorique et applications* :=
REFERENCES

REFERENCES

0948-6968. URL http://www.jucs.org/jucs_13_5/floating_point_verification.

Hernandez:2007:MPO

Hilewitz:2007:PAB

Holmes:2007:BA

Homann:2007:IFPa

Homann:2007:IFPb

Hosangadi:2007:AMO

REFERENCES

[5301] P. S. Kechagias and Basil K. Papadopoulos. Computational method to evaluate fuzzy arithmetic operations. Applied Mathematics and

Khabbazian:2007:DPC

Knowles:2007:RSE

Kobayashi:2007:AIG

Kornerup:2007:CIPA

Kornerup:2007:CIPb

Kuliamin:2007:STI

[5307] V. V. Kuliamin. Standardization and testing of implementations of mathematical functions in floating point numbers. Programming and Computer Software; translation of Programmirovaniye (Moscow, USSR)
REFERENCES

[5320] Shawn D. Lundvall, Eric M. Schwarz, Ronald M. Smith, Sr., and Phil C. Yeh. Composition of decimal floating point data, and methods therefor.
REFERENCES

Maslennikow:2007:DFB

Melquiond:2007:FCF

Mine:2007:RAD

Mitchell:2007:MFP

Miyajima:2007:ETS

Monniaux:2007:AZT

Monniaux:2007:PVFa

Monniaux:2007:PVFb

Montuschi:2007:DDA

Muller-Olm:2007:AMA

Nikmehr:2007:FRF

 Osborne:2007:AAG

Saldamli:2007:SME

Saqib:2007:CAI

Schulte:2007:FPD

Scott:2007:NHC

Shams:2007:EHA

Shpilka:2007:IDA

Sousa:2007:EMM

Steele:2007:CSP

Steele:2007:CUC

Steele:2007:MSCa

Steele:2007:MSCb

Stern:2007:MLA

Stoutemyer:2007:UCN

Swartzlander:2007:NTC

REFERENCES

Vazquez:2007:NFH

Veeramachaneni:2007:NHS

Voronenko:2007:MMC

Vouzis:2007:MCL

Wang:2007:DFPa

Wang:2007:DFPb

Wang:2007:PSD

REFERENCES

Ahmadi:2008:PFS

ASTM:2008:AES

Bapst:2008:SIO

Beuchat:2008:AGM

Boldo:2008:EFC

Brisebarre:2008:CRM

REFERENCES

REFERENCES

[5391] Florent De Dinechin and Christoph Quirin Lauter. Optimizing polynomials for floating-point implementation. arXiv.org. ??(??):1–12,
REFERENCES

REFERENCES

REFERENCES

Piso:2008:FOS

Piso:2008:NRA

Quinnell:2008:BFP

Quinnell:2008:FPF

Rahaman:2008:CTB

Rahaman:2008:DRT

REFERENCES

Ravikumar:2008:BND

Raz:2008:EFL

Raz:2008:LBS

Rodriguez-Henriquez:2008:LCB

Ruiz:2008:EIR

Rump:2008:AFPa

Rump:2008:AFPb

REFERENCES

REFERENCES

[5463] Frithjof Blomquist, Werner Hofschuster, and Walter Krämer. A modified staggered correction arithmetic with enhanced accuracy and very wide
B到场:2009:FVA

B到场:2009:KAC

B到场:2009:ABD

B到场:2009:MAB

B到场:2009:FHS

B到场:2009:PMF

[5469] Murat Cenk, Çetin Kaya Koç, and Ferruh Özbudak. Polynomial multiplication over finite fields using field extensions and interpolation. In
REFERENCES

[5559] XILINX.

REFERENCES

REFERENCES

Cheng:2010:BSS

Chevillard:2010:SED

Cuyt:2010:VSF

Daumas:2010:CBE

deDinechin:2010:FGA

[5575] Florent de Dinechin and Bogdan Pasca. FloPoCo: generator of arithmetic cores (Floating-Point Cores, but not only) for FPGAs (but not only). Web site and source code., August 10, 2010.

deDinechin:2010:FPE

REFERENCES

Kirk:2010:PMP

Knezevic:2010:FIM

Kong:2010:RMR

Kornerup:2010:CCRb

Kornerup:2010:FPN

[5601] Nicolas Louvet, Jean-Michel Muller, and Adrien Panhaleux. Newton–Raphson algorithms for floating-point division using an FMA. In
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5627] Basit Riaz Sheikh and Rajit Manohar. An operand-optimized asynchronous IEEE 754 double-precision floating-point adder. In IEEE,
REFERENCES

REFERENCES

Wang:2010:SHD

Wang:2010:VVP

Waters:2010:RCW

Zanoni:2010:ITC

Zhao:2010:GMP

Zhu:2010:AOE
REFERENCES

[5652] Elisardo Antelo, editor. *Industrial Implementations of Floating-Point Units*, volume 2. IEEE Computer Society Press, 1109 Spring Street,
REFERENCES

Arias-Garcia:2011:SFI

Arnold:2011:RCL

Arnold:2011:TQC

Badin:2011:IAM

Bailey:2011:GMD

Baudin:2011:EBC

REFERENCES

[Boldo:2011:FVN]

[Bos:2011:ESA]

[Brent:2011:MCA]

[Brisebarre:2011:APS]

[Bruguera:2011:GEI]

[Brumley:2011:BSB]

REFERENCES

Brusentsov:2011:TCS

Burgess:2011:FRC

Butts:2011:RDR

Calamia:2011:CGG

Carlough:2011:IZD

Cavagnino:2011:AAD

REFERENCES

[5683] Sylvain Chevillard. Automatic generation of code for the evaluation of constant expressions at any precision with a guaranteed error bound.
REFERENCES

[5689] Florent de Dinechin. The arithmetic operators you will never see in a microprocessor. In Schwarz and Oklobdzija [7481], pages 189–190.
REFERENCES

[5810] Filippo Gandino, Fabrizio Lamberti, Gianluca Paravati, Jean-Claude Bajard, and Paolo Montuschi. An algorithmic and architectural study on
REFERENCES

Haller:2012:DFP

Huang:2012:LCB

Hyman:2012:LF

Katranov:2012:DRN

Koiran:2012:ACC

Kornerup:2012:CCR

Kornerup:2012:FPA

[5823] Peter Kornerup, Jean-Michel Muller, and Adrien Panhaleux. Floating-point arithmetic on round-to-nearest representations. arXiv.org. ??(??):

REFERENCES

REFERENCES

Masotti:2012:FPN

McCalpin:2012:OSH

Milicevic:2012:PAO

Mine:2012:ADB

Mukunoki:2012:PCD

Muller:2012:SSV

REFERENCES

[5858] Zhen Wang and Shuqin Fan. Efficient Montgomery-based semi-systolic multiplier for even-type GNB of GF(2^m). IEEE Transactions on

Anonymous:2013:IOF

Antao:2013:CFA

Arnold:2013:DLN

Bagnara:2013:EBF

Bailey:2013:KHP

Bajard:2013:FDR

Bao:2013:FDI

1523-2867 (print), 1558-1160 (electronic). OOPSLA ’13 conference proceedings.

[Barr:2013:ADF]

[Boldo:2013:FVC]

[Boldo:2013:HCA]

[Brisebarre:2013:CBB]

[Carter:2013:ESF]

[Chabrier:2013:FMB]

[Chen:2013:PGF]

REFERENCES

Giorgi:2013:PMM

Gonzalez-Navarro:2013:BID

Gustafson:2013:UCN

Han:2013:HSP

Ioualalen:2013:SAF

Jaffer:2013:EAR

Jeannerod:2013:CAC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Boldo:2014:DFV]

[Bouvier:2014:DFB]

[Chiang:2014:ESI]

[Cibikdiken:2014:CMM]

[Darulova:2014:SCR]

[Darulova:2014:TCR]

[5963] Alberto A. Del Barrio, Nader Bagherzadeh, and Román Hermida. Ultra-low-power adder stage design for exascale floating point units. ACM
REFERENCES

REFERENCES

REFERENCES

[5989] Hiroshi Murakami. Calculation of rational numbers in an interval whose denominator is the smallest by using FP interval arithmetic. *ACM*

REFERENCES

Ahrens:2015:RPM

Aktan:2015:MEA

Andrysco:2015:SFP

Aneesh:2015:HHM

Anonymous:2015:EFP

Bailey:2015:HPA

REFERENCES

Brain:2015:AFS

Brunie:2015:CGM

Chiang:2015:UFP

Collange:2015:NRP

Cowlishaw:2015:GDA

Coxon:2015:MMP

Florent de Dinechin. On fixed-point hardware polynomials. Technical report, INSA, CITI Lab, Université de Lyon, Lyon, France, October 2015. URL https://hal.inria.fr/hal-01214739.

REFERENCES

[6041] Terry Froggatt. An error in the Ada universal arithmetic package. *ACM SIGADA Ada Letters*, 35(2):14, August 2015. CODEN AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic). See [1737]. The 32-year-old error is a test with digit t that has if (t > BASE), but the operator should instead be =>.

REFERENCES

October 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Hsiao:2015:TSR

Hutter:2015:MMA

Iakymchuk:2015:EEB

Iakymchuk:2015:ERA

IEEE:2015:ISI

Jacobsen:2015:PFP

REFERENCES

8th International Workshop on Numerical Software Verification 2015, Seattle, WA, USA.

REFERENCES

Liu:2015:IBI

Liu:2015:SSS

Lu:2015:REP

Lutz:2015:OLZ

Martin-Dorel:2015:FVC

Matula:2015:MDE

McCleeary:2015:LAA

Meloni:2015:EDB

Michelogiannakis:2015:ESP

Momeni:2015:DAA

Morar:2015:RMT

Muller:2015:ECC

Neal:2015:FESa

[6088] Radford M. Neal. Fast exact summation using small and large superaccumulators. Report, Department of Statistical Sciences and Department of Computer Science, University of Toronto, Toronto, ON,

REFERENCES

REFERENCES

[6114] Peter Ahrens, Hong Diep Nguyen, and James Demmel. Efficient reproducible floating point summation and BLAS. Report UCB/EECS-2016-121, EECS Department, UC Berkeley, Berkeley, CA, USA, June 18, 2016. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html.

[6119] Roberto Bagnara, Matthieu Carlier, Roberta Gori, and Arnaud Gotlieb. Exploiting binary floating-point representations for constraint

REFERENCES

REFERENCES

James Demmel, Peter Ahrens, and Hong Diep Nguyen. Efficient reproducible floating point summation and BLAS. Technical Report UCB/EECS-2016-121, EECS Department, University of California, Berkeley, Berkeley, CA, USA, 2016. URL https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html.

REFERENCES

[6143] Xin Fang and Miriam Leeser. Open-source variable-precision floating-point library for major commercial FPGAs. *ACM Transactions on

Shay Gueron and Sanu Mathew. Hardware implementation of AES using area-optimal polynomials for composite-field representation \(GF(2^4)^2\) of
REFERENCES

[6154] David Hopkins. Will my numbers add up correctly if I round them? The Mathematical Gazette, 100(549):396–409, November 2016. CODEN MAGAAS. ISSN 0025-5572 (print), 2056-6328 (electronic). URL https://www.cambridge.org/core/product/88F57570DFF9F0DDDEC1F2552B0F8B22. The probability that rounding after fixed-point summation of n terms gives the same result as summation of rounded terms is given by p(n) = (2/π) ∫_0^∞ (sin(x)/x)^(n+1) dx, and that function is always a rational number. Its values are p(n) = 1, 3/4, 2/3, 115/192, 11/20, 5887/11520, 151/315, 259723/573440,... for n = 1 to 8.

REFERENCES

Lee:2016:VBM

Lefevre:2016:CRA

Lefevre:2016:OBB

LeMaire:2016:CFP

Li:2016:SDT

Lichtenau:2016:QPF

[6175] Cedric Lichtenau, Steven Carlough, and Silvia Melitta Mueller. Quad precision floating point on the IBM z13. In Montuschi et al. [7492], pages
REFERENCES

[6189] Mark Paulk and Lori Cameron. IEEE floating point standard. Computer, 49(6):10, June 2016. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-
REFERENCES

REFERENCES

Wang:2016:DFP

Wilson:2016:UAA

Zhou:2016:PUH

Aliasgari:2017:SCH

Anderson:2017:EMF

Angerd:2017:FAC

Anonymous:2017:AI
REFERENCES

Anonymous:2017:TC

Anonymous:2017:TP

Anonymous:2017:TPI

Aurentz:2017:CCS

B:2017:GML

Beebe:2017:MFC

[6235] Nicolas Brisebarre, Guillaume Hanrot, and Olivier Robert. Exponential sums and correctly-rounded functions. IEEE Transactions on
Brisebarre:2017:PTN

Brunie:2017:MFM

Carter:2017:PAO

Chapp:2017:SIN

Chiang:2017:RFP

Chohra:2017:RAR
Chemseddine Chohra, Philippe Langlois, and David Parello. Reproducible, accurately rounded and efficient BLAS.
In Desprez et al. [7494], pages 609–620. ISBN 3-319-58943-1 (e-book), 3-319-58943-1 (hardcover). LCCN QA76.9.E94: QA76.758TK.

Constantinides:2017:AAC

Cornea:2017:URE

Cui:2017:HPP

Dai:2017:ATE

Damouche:2017:INA

Darulova:2017:TCR

REFERENCES

REFERENCES

Istoan:2017:FFP

Jaiswal:2017:AEA

Jeannerod:2017:CRE

Jeannerod:2017:EBC

Jeannerod:2017:REC

Claude-Pierre Jeannerod and Jean-Michel Muller. On the relative error of computing complex square roots in floating-point arithmetic. In Michael B. Matthews, editor, 2017 51st Asilomar Conference on Signals,
REFERENCES

[6280] Alan A. Jorgensen. Apparatus for calculating and retaining a bound on error during floating point operations and methods thereof. US Patent 9,817,662., November 14, 2017. URL https://patents.google.com/patent/US9817662B2/; https://tinyurl.com/y7ctbsez. This patent, filed 23 October 2016, was issued despite substantial prior art that should have resulted in its rejection: see [6440]. The inventor does not appear to have published in the area of floating-point arithmetic (apart from this entry, none by him can be found in this bibliography). The only literature references in the patent are [5413, 2701, 5835, 5609].

REFERENCES

Langhammer:2017:FPT

Langhammer:2017:QPA

Langhammer:2017:SPL

Lauter:2017:ESI

Lee:2017:APC

Lefèvre:2017:CRA
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1117

Rioual:2017:LSN

Risse:2017:BEG

Rocca:2017:CRE

Rovers:2017:IPP

Rump:2017:IPK

Russell:2017:LBR

REFERENCES

[6331] Laurent Thévenoux, Philippe Langlois, and Matthieu Martel. Automatic source-to-source error compensation of floating-point programs: code

REFERENCES

REFERENCES

[6363] Jianyu Chen and Zaid Al-Ars. A matrix-multiply unit for posits in reconfigurable logic using (OPEN)CAPI. In ACM [7496], pages 1–5.

REFERENCES

[6375] Yssouf Dosso, Fabien Herbaut, Nicolas Méloni, and Pascal Véron. Euclidean addition chains scalar multiplication on curves with efficient

REFERENCES

REFERENCES

REFERENCES

Hutter:2018:FMP

Intel:2018:BHN

Jaiswal:2018:AGT

Jaiswal:2018:UNP

Jeangoudoux:2018:CRM

Jeannerod:2018:REF

REFERENCES

[6404] Ignaz Kohlbecker. The slide number format. In ACM [7496], pages 1–6.

[6406] Martin Kumm, Oscar Gustafsson, Florent de Dinechin, Johannes Kappauf, and Peter Zippf. Karatsuba with rectangular multipliers for...
REFERENCES

[6419] Sergio Marchese. AI chips must get the floating-point math right: Formal verification of FPUs is no longer a prerogative of big companies spending big bucks. Web site., September 27, 2018.
Mikaitis:2018:AFP

Moroz:2018:FCI

Muller:2018:HFP

Munoz-Coreas:2018:CQO

Nannarelli:2018:TFP

Numahata:2018:RAS

REFERENCES

REFERENCES

[6440] Tiffany Trader. Inventor claims to have solved floating point error problem. HPC Web site., January 17, 2018. URL https://www.hpcwire.com/2018/01/17/inventor-claims-solved-floating-point-error-problem/. From the HPC editor: “After this article was published, a number of readers raised concerns about the originality of Jorgensen’s techniques, noting the existence of prior art going back years. Specifically, there is precedent in John Gustafson’s work on unums and interval arithmetic both at Sun and in his 2015 book, *The End of Error*, which was published 19 months before Jorgensen’s patent application was filed.”.

REFERENCES

REFERENCES

[6470] Peter Bright. calc.exe is now open source; there’s surprising depth in its ancient code. The actual calculation engine is more than 20 years old.

[Brown:2019:RCF]

[Bruguera:2019:GEI]

[Burgess:2019:BPN]

[Burgess:2019:HPA]

[Cappello:2019:UCL]

[Carlough:2019:DBF]

Carmichael:2019:DPD

Carmichael:2019:PET

Caygill:2019:DCF

Caygill:2019:NLH

Chen:2019:EIR

Cheng:2019:TCI

REFERENCES

REFERENCES 1144

REFERENCES

REFERENCES

[D6508] David Harvey and Joris Van Der Hoeven. Integer multiplication in time $O(n \log n)$. Report hal-02070778, School of Mathematics and Statistics, University of New South Wales, and CNRS, Laboratoire d’informatique, École polytechnique, Sydney, NSW 2052, Australia and 91128 Palaiseau, France, March 18, 2019. URL https://hal.archives-ouvertes.fr/hal-02070778/document.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6547] Stefan Mach, Fabian Schuiki, Florian Zaruba, and Luca Benini. A 0.80pJ/flop, 1.24Tflop/sW 8-to-64 bit transprecision floating-point unit
for a 64 bit RISC-V processor in 22nm FD-SOI. In IEEE, editor, 2019 IFIP/IEEE 27th International Conference on Very Large Scale Integration (VLSI-SoC), pages 95–98. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2019.

Magron:2019:CRE

Martins:2019:HHR

Matula:2019:PCG

Maynard:2019:MPA

McCullough:2019:WTS

Melquiond:2019:FVS

Melquiond:2019:NVN

1155

REFERENCES

REFERENCES

Germany / Heidelberg, Germany / London, UK / etc., 2019. ISBN 3-030-27562-0. ISSN 0302-9743 (print), 1611-3349 (electronic).

REFERENCES

REFERENCES

[6593] Laurens van Dam, Johan Peltenburg, Zaid Al-Ars, and H. Peter Hofstee. An accelerator for posit arithmetic targeting posit level 1 BLAS routines and Pair-HMM. In Gustafson and Dimitrov [7498], pages 5:1–5:10. ISBN 1-4503-7139-6. LCCN ????.

REFERENCES

December 2019. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

REFERENCES

Anonymous:2020:RVE

Anonymous:2020:SA

Anonymous:2020:TC

Anonymous:2020:TPa

Anonymous:2020:TPb

Arnold:2020:IRL

Bajard:2020:AFV

Barthel:2020:ASA

1165

REFERENCES

REFERENCES

[Cococcioni:2020:NPB]

[Cornea:2020:FA]

[Coward:2020:ADS]

[Das:2020:SYR]

[deCamargo:2020:REA]

[Defour:2020:CPM]

REFERENCES

REFERENCES

the ACM/IEEE 42nd International Conference on Software Engineering.

REFERENCES

1726–1741, ???. 2020. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

[6670] Mioara Jolde¸s and Jean-Michel Muller. Algorithms for manipulating quaternions in floating-point arithmetic. In Cornea et al. [7500], pages
REFERENCES

Jugade:2020:FEM

Klarreich:2020:NMH

Klower:2020:NFE

Knobbe:2020:CRS

Koc:2020:AIM

Lange:2020:FRF

Lange:2020:NDF

Langroudi:2020:APP

Lauter:2020:FSA

Lindstrom:2020:VRC

Luo:2020:ADN

Marquer:2020:HLI

REFERENCES

GAP9 offers vectorized 2-bit and 4-bit fixed-point arithmetic, and 8-, 16-, and 32-bit floating-point arithmetic.

[6700] Ernie Smith. How a minor calculation error cost Intel half a billion dollars: How one of the most famous computer bugs of all time, the Intel Pentium floating-point division glitch, blew out of proportion into a PR crisis. Web site., September
REFERENCES

Sommer:2020:CAN

Sousa:2020:TIR

Stine:2020:AIV

Ternovoy:2020:CAF

ThoughtWorks:2020:PER

Turley:2020:WBA

REFERENCES

[6719] Ihsen Alouani, Anouar Ben Khalifa, Farhad Merchant, and Rainer Leupers. An investigation on inherent robustness of posit data

Anonymous:2021:AI

Anonymous:2021:CN

Anonymous:2021:FC

Anonymous:2021:IPA

Anonymous:2021:PCA

Anonymous:2021:SA

Anonymous:2021:SCA

Anonymous:2021:TC

Anonymous:2021:TP

REFERENCES

REFERENCES

[6743] Emeric Brun, David Defour, Pablo de Oliveira Castro, Matei Istoan, Davide Mancusi, Eric Petit, and Alan Vaquet. A study of the effects...

REFERENCES

REFERENCES

[6794] Jean-Michel Muller. $a \cdot (x \cdot x)$ or $(a \cdot x) \cdot x$?. In IEEE [7504], pages 17–24. ISBN 1-66542-293-9 (print), 1-66544-648-X (e-book). LCCN ???.
REFERENCES

REFERENCES

September 2021. ISSN 2168-6750 (print), 2376-4562 (electronic). See [6802].

REFERENCES

REFERENCES

REFERENCES

Coward:2022:ADO

Cowlishaw:2022:DAFa

Cowlishaw:2022:DAFb

Cowlishaw:2022:DAFc

Cowlishaw:2022:DAFd

Cowlishaw:2022:DACE

Cowlishaw:2022:DAFF

Crespo:2022:UPI

REFERENCES

REFERENCES

[6914] Kangkyu Park, Seungkyu Choi, Yeongjae Choi, and Lee-Sup Kim. Rare computing: Removing redundant multiplications from sparse

REFERENCES

Sadeghimanesh:2022:SSN

Safieh:2022:ERA

Schober:2022:HAM

Shah:2022:DDP

Sibidanov:2022:CMP

Siddamshetty:2022:EHA

Sohn:2022:EFP

Spiridonov:2022:ABE

Sravya:2022:HPN

Srivastava:2022:FSC

Strickland:2022:LBI

Tan:2022:SRT

Tortorella:2022:RCF
REFERENCES

Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2022.

Verma:2022:RVC

Walia:2022:FLP

Wang:2022:PNE

Waris:2022:AAR

Waris:2022:HPP

Xie:2022:EHI

REFERENCES

You:2022:RVP

Zacharelos:2022:ARM

Zhang:2022:HRD

Zhang:2022:SDF

Zolfagharinejad:2022:PPE

Zou:2022:OFR

REFERENCES

REFERENCES

Anonymous:2023:IWG

Anonymous:2023:TDT

ARM:2023:ACA

Awais:2023:TOS

Bahoo:2023:EEG

Bartels:2023:FFP

REFERENCES

Belorgey:2023:MFE

Beutel:2023:PFA

Blanchard:2023:NMD

Boldo:2023:FPA

Bommana:2023:DST

Bottcher:2023:TGO

REFERENCES

1273, May 2023. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

REFERENCES

REFERENCES

Filippas:2023:RPF

Fog:2023:FPE

Glint:2023:HSC

Gunaratne:2023:EUL

Gustafson:2023:DFT

Hallman:2023:PAD

REFERENCES

[6990] Bharath Krishna. Rounding numbers in the financial domain! Web site, January 1, 2023. URL https://www.foundingminds.com/rounding-numbers-in-the-financial-domain/. Includes important mention of financial regulatory sites, with this text taken verbatim from the article, because such information may be hard to find elsewhere: * International Financial Reporting Standards (IFRS): IFRS is a set of accounting standards developed by the International Accounting Standards Board (IASB). It includes guidelines on rounding financial numbers in financial statements, such as the requirement to round amounts to the nearest whole number or the nearest multiple of 10; * Generally Accepted Accounting Principles (GAAP): GAAP is a set of accounting standards used in the United States. It includes similar guidelines on rounding financial numbers as IFRS and requires that any rounding errors should be immaterial and insignificant. * International Organization for Standardization (ISO): ISO has a standard for Rounding off numerical values, which is ISO 80000-1:2009. It provides guidelines on rounding numerical values in general and not specific to the finance domain, but it’s widely used in financial systems. * The Federal Reserve Board (FRB): The FRB, the central banking system of the United States, has guidelines on rounding financial numbers for bank reporting and financial statement preparation. * The European Central Bank (ECB): The ECB, the central banking system of the European Union, has similar guidelines on rounding financial numbers as the FRB.

Laguna:2023:FIT

Leitersdorf:2023:AHT

Leong:2023:LFU

Li:2023:DEG

Li:2023:DSE

Li:2023:EEB
REFERENCES

REFERENCES

REFERENCES

[7033] Shiyu Shen, Hao Yang, Yu Liu, Zhe Liu, and Yunlei Zhao. CARM: CUDA-Accelerated RNS Multiplication in word-wise homomorphic
encryption schemes for Internet of Things. *IEEE Transactions on
Computers*, 72(7):1999–2010, July 2023. CODEN ITCOB4. ISSN 0018-
9340 (print), 1557-9956 (electronic).

[7034] Himeshi De Silva, Hongshi Tan, Nhut-Minh Ho, John L. Gustafson,
and Weng-Fai Wong. Towards a better 16-bit number representation
for training neural networks. In Gustafson et al. [7507], pages 114–133.
ISBN 3-031-32180-4. ISSN 0302-9743 (print), 1611-3349 (electronic).

URL https://hal.science/hal-03976898.

[7036] Emil Talpes, Debjit Das Sarma, Doug Williams, Sahil Arora,
Thomas Kunjan, Benjamin Floering, Ankit Jalote, Christopher Hsiong,
Chandrasekhar Poorna, Vaidehi Samant, John Sicilia, Anantha Kumar
Nivarti, Raghuvir Ramachandran, Tim Fischer, Ben Herzberg,
Bill McGee, Ganesh Venkataramanan, and Pete Banon. The
microarchitecture of DOJO, Tesla’s exa-scale computer. *IEEE Micro*, 43
(3):31–39, May/June 2023. CODEN IEMIDZ. ISSN 0272-1732 (print),
1937-4143 (electronic).

[7037] Ahmad Towhidy, Reza Omidi, and Karim Mohammadi. On the design
of iterative approximate floating-point multipliers. *IEEE Transactions
0018-9340 (print), 1557-9956 (electronic).

[7038] Salim Ullah, Siva Satyendra Sahoo, and Akash Kumar. Designing
resource-efficient hardware arithmetic for FPGA-based accelerators
leveraging approximations and mixed quantizations. In *Embedded
Machine Learning for Cyber-Physical, IoT, and Edge Computing*, pages
89–119. Springer-Verlag, Berlin, Germany / Heidelberg, Germany /

[7039] Nathan Whitehead and Alex Fit-florea. *Floating Point and IEEE 754
docs.nvidia.com/cuda/pdf/Floating_Point_on_NVIDIA_GPU.pdf.

REFERENCES

[7050] Tom Hubrecht, Claude-Pierre Jeannerod, and Jean-Michel Muller. Useful applications of correctly-rounded operators of the form \(ab + cd + e \). Report hal-04461089, DI-ENS (Département d’informatique — ENS Paris) and Université de Lyon, Paris, France and Lyon France, February 16, 2024. URL https://inria.hal.science/hal-04461089.

REFERENCES

REFERENCES

York, NY, USA, 1961. x + 654 pp. LCCN ????. See also volumes II–VI [7065, 7066, 7068, 7070, 7071].

the Mathematics Research Center, United States Army, at the University of Wisconsin, Madison, October 5–7, 1964.

REFERENCES

Morrell:1970:IPP

AFIPS:1971:ACP

Freiman:1971:PIC

Gear:1971:NIV

Rice:1971:MS

ACM:1972:PAA

Cardenas:1972:CS

REFERENCES

REFERENCES

Swamy:1975:PEM

Swartzlander:1976:CDD

Traub:1976:ACC

Cowell:1977:PMS

IEEE:1977:ICS

Jacobs:1977:SAN

REFERENCES

REFERENCES

REFERENCES

IEEE:1981:PSC

Messina:1982:PMM

Randell:1982:ODC

Reid:1982:RBN

Rodrigue:1982:AC

Ruschitzka:1982:IWC

REFERENCES

IEEE:1983:PII

IEEE:1983:PSC

Kulisch:1983:NAS

Mini-Micro:1983:MMN

Mini-Micro:1983:MMW

REFERENCES

[7149] D. F. Griffiths, editor. *Numerical analysis: Proceedings of the 10th Dundee biennial conference held at the University of Dundee, Scotland,
REFERENCES

IEEE:1984:CPI

IEEE:1984:ILD

Kirk:1984:CRE

Mini-Micro:1984:MMS

NCC:1984:ACP

Buchberger:1985:PEE

REFERENCES

[Hwang:1985:PSC]

[IEEE:1985:ERC]

[Meek:1985:PFM]

[Miranker:1985:ASC]

[USENIX:1985:SCP]

REFERENCES

REFERENCES

REFERENCES

REFERENCES
1254

REFERENCES

ACM:1990:PAS

ACM:1990:PDB

Anonymous:1990:PAN

Chen:1990:CRT

CUG:1990:PSC

Feijen:1990:BOB

REFERENCES

[7230] Philip J. Koopman, Jr., editor. The proceedings of the second and third annual workshops for the ACM Special Interest Group on Forth: SIGForth ’90, February 16–18, 1990, Dallas, Texas . . . SIGForth ’91,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[7276] John H. Wuorinen et al., editors. 1994 IEEE International Solid-State Circuits Conference Digest of Technical Papers. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,

IEEE:1995:IAI

IEEE:1995:ISM

Jain:1995:PET

Knowles:1995:PSC

Seck:1995:GWS

REFERENCES

IEEE:1996:DAC

Kearfott:1996:AICa

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of
the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

REFERENCES

REFERENCES

1273

REFERENCES

REFERENCES

REFERENCES

IEEE:1999:PII

Koren:1999:ISC

Luk:1999:PSA

Matthews:1999:CRT

Mazumder:1999:NGL

Piuri:1999:IAV

REFERENCES

REFERENCES

IEEE:2000:IPI

Luk:2000:PSA

Matthews:2000:CRT

Reynders:2000:IPI

Sprague:2000:PAH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Babuska:2002:MMN

Borrione:2002:TIW

Cohen:2002:MSP

Hennessy:2002:CAQ

IEEE:2002:IIC

REFERENCES

1284

IEEE:2002:IRA

IEEE:2002:IWS

IEEE:2002:STI

Li:2002:PIC

Luk:2002:PSA

Matthews:2002:PTS

REFERENCES

Pocek:2002:FAI

Schulte:2002:PII

Trimberger:2002:FTA

Vladimirova:2002:TMA

Anonymous:2003:CRN

REFERENCES

REFERENCES

IEEE:2003:IICa

IEEE:2003:IICb

IEEE:2003:PCI

Luk:2003:PSA

Matthews:2003:PTS

REFERENCES

Street, Suite 300, Silver Spring, MD 20910, USA, 2003. ISBN 0-7803-8104-1. LCCN ???? IEEE catalog number 03CH37493.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2006:PCR

Bertels:2006:FPI

Cimatti:2006:FMH

Dimopoulos:2006:IIC

REFERENCES

REFERENCES

REFERENCES

Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2007. ISBN 0-7695-2896-1. LCCN ????

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Delgado-Frias:2010:IIM

Fukuda:2010:MSI

IEEE:2010:CCE

IEEE:2010:ICC

IEEE:2010:ICM

REFERENCES

REFERENCES

Butler:2015:FMS

Higham:2015:PCA

IEEE:2015:ISS

Muller:2015:ISC

Swartzlander:2015:CAa

REFERENCES

REFERENCES

REFERENCES

Wyrzykowski:2020:PPA

IEEE:2021:ISC

Gustafson:2022:NGA

IEEE:2022:ISC

REFERENCES

Spring, MD 20910, USA, 2022. ISBN 1-66547-827-6, 1-66547-828-4. LCCN ????