A Bibliography of Publications on Floating-Point Arithmetic

Norbert Juffa
2445 Mission College Blvd.
Santa Clara, CA 95054
USA
Tel: +1-408-727-1885
FAX: +1-408-727-1265
E-mail: juffa@ira.uka.de (Internet)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

19 August 2024
Version 3.723

Introduction

This is a bibliography of material on floating-point arithmetic that I came up with while doing research on a floating-point package of my own. I don’t claim it to be anywhere near complete. The material listed is only what I myself possess.

My main interest was in software based, binary floating-point arithmetic on a microprocessor, so you won’t find much material about the hardware used in floating-point arithmetic (e.g. adders, carry propagation schemes, higher radix
representation for multiplication and division, etc.) in this list. There is also not too much on non-binary floating-point arithmetic.

For most fields covered in this bibliography, the important or historically relevant articles should be included. There is also some material on integer arithmetic in this list as some of the methods used with integer arithmetic contain interesting ideas that may be useful in the realization of a floating-point arithmetic package.

Also, depending on the type of microprocessor used, one may need to implement integer multiplication and division for use in the floating-point package, so articles about this topic are included as well.

As I am German, there is a bit of material in German in this bibliography. However, English translations are provided for all non-English titles.

Thanks to the people who have helped me with previous versions of this document by sending me papers or additional references:

- Steven Sommars (sesv@research.bell-labs.com),
- Jim Kiernan (jmk@teak.cray.com),
- Warren Ferguson (ferguson@seas.smu.edu),
- Nhuan Doduc (ndoduc@framentec.fr),
- K. C. Ng (kwok.ng@eng.sun.com),
- Nelson H. F. Beebe (beebe@math.utah.edu).

Bibliography entries in the Books section are ordered alphabetically by author; ordering is by ascending year in the remaining sections.

Warning: it has yet not been possible to bring this citation list up-to-date with the entries in the Bibliography entries in the **Books** section are ordered alphabetically by author; ordering is by ascending year in the remaining sections.

Books, hardware oriented

[1721, 281, 1286, 1216, 3113, 3318, 1916, 841, 1164, 1000, 1457, 843, 1343, 7294, 7295, 1557]

Books, software oriented or theory

[1273, 466, 469, 470, 119, 1420, 2395, 908, 1049, 352, 2954, 2436, 2971, 2272, 320, 527, 7148]

Books, machine specific

[2176, 3219, 3115, 2438, 1767, 1903, 2291, 1935, 2473]
1 CHOICE OF BASE, FLOATING POINT FORMATS

Journal Publications, Conference Papers, Technical Reports, Ph.D. Dissertations, Book Contributions, etc.

1 Choice of base, floating point formats

[498, 750, 752, 730, 893, 1141, 1131, 2036, 2269, 2393, 2546, 2773, 2787]

1.1 Precision and Rounding

[433, 558, 745, 847, 881, 896, 964, 1032, 1041, 1045, 1194, 1296, 1435, 1376, 1538, 1729, 2458, 2531, 2844, 3160, 3283]

1.2 Determination of parameters of floating point arithmetic

[686, 823, 1636, 2275, 2202]

1.3 IEEE standards for floating point arithmetic

[993, 1197, 1223, 1206, 1234, 1196, 1203, 1340, 1326, 1280, 1300, 1458, 1385, 1409, 1387, 1725, 1824, 1862, 1863, 1860, 2087, 2173, 2341, 2575, 3055]

1.4 Floating point arithmetic, general and implementation issues

[633, 719, 1014, 1035, 1083, 1095, 1094, 1236, 1238, 1210, 1274, 1266, 1475, 1493, 1992, 2012, 2218, 2219, 2374, 2448, 2351, 2530, 2774, 2775, 2703, 2772, 3013]

1.5 Floating point packages

[1287, 1700, 1679, 1773, 1731, 1884, 1849, 1885, 1967, 2080, 2102, 2205, 2300, 2301, 2302, 2481, 2482, 1352]

1.6 Floating point units

1.7 Test of floating point routines

2 Addition and Subtraction
[375, 1513]

2.1 Floating-point Summation
[325, 345, 362, 361, 570, 639, 677, 831, 1661, 2277, 2354]

2.2 Multiplication
[680, 1246, 1260, 1476, 1543, 1516, 1574, 1601, 1593, 1619, 1676, 1591, 1758]

2.3 Division
[209, 238, 223, 322, 348, 438, 1017, 1064, 1311, 1403, 1567, 1645, 1623, 1606, 1770, 1890, 2015, 1994, 2389, 2779, 2724, 2969, 3018, 7316, 2951]

3 Elementary functions, general
[384, 398, 586, 650, 615, 1122, 1265, 1656, 1756, 1719, 1717, 1794, 1840, 7235, 1945, 2051, 2155, 2098, 2279, 7254, 2562, 2599, 2549, 3337, 2551, 2520, 2699, 2852, 2663, 2814, 2815, 2692, 3370, 3338]

3.1 Elementary functions, CORDIC and related algorithms
[190, 191, 248, 264, 373, 523, 551, 659, 651, 667, 733, 855, 1068, 1084, 1293, 1451, 1699, 1897, 1708, 1811, 1963, 2160, 2383, 2312, 2543, 2569, 2718, 2812, 3012, 3007, 3130, 3070, 3116]

3.2 Elementary functions, function approximation
[240, 241, 481, 623, 768, 767, 983, 1021, 1162, 2000, 2052, 2612, 2687, 2785, 2786]

3.2.1 Polynomial evaluation
[259, 279, 304, 426, 1061, 1228, 2353]
3.3 Square root, general
[1082, 1187, 1481, 1598, 1651, 2567, 2679]

3.3.1 Square root, bit-oriented, iterative, and table methods of computation
[120, 153, 359, 1022, 1008, 1151, 1353, 1444, 1406, 1372, 1426, 1537, 1825, 1922,
1834, 1887, 1971, 1952, 2035, 1955, 2006, 2046, 2089, 2140, 2180, 2255, 2392,
2579, 2536, 2711, 3040]

3.3.2 Square root, Newton’s method
[158, 280, 302, 374, 347, 343, 383, 451, 427, 513, 518, 532, 596, 585, 579, 581,
702, 1328, 1317, 1397, 1583, 2335, 3020, 2949]

3.4 Sine and Cosine
[180, 1068, 1018, 1023, 1176, 1398, 1544, 1666, 1665, 1765, 1853, 1953, 2121,
2232, 2608, 2963, 2960, 2882, 2982, 3076]

3.5 Logarithm
[154, 271, 331, 690, 998, 1112, 1299, 2107, 2108, 2609, 2737]

3.6 Exponential function
[141, 409, 1183, 1361, 1518, 1748, 1847, 2472, 2610, 3004]

3.7 Arctangent
[143, 160, 207]

3.8 Other transcendental functions
[499, 613, 161, 1024, 365, 275, 360, 2100, 1157, 2862, 3056]

4 Binary-decimal conversion
[189, 173, 222, 475, 576, 684, 1165, 1291, 1292, 1405, 1654, 1709, 2002, 1975,
2511, 2603, 2527, 2858]
5 BCD arithmetic

[674, 726, 777, 778, 779, 780, 781, 782, 783, 1382, 1492, 1705, 1640, 2037, 2648, 2962]

6 Multiple precision arithmetic

[292, 330, 410, 428, 632, 616, 953, 1002, 1099, 1098, 1265, 1350, 1430, 1542, 2807, 2791, 3035, 3226]

7 Conferences on computer arithmetic

[7174, 7184, 7189, 7198, 7201, 7214, 7232, 7233, 7275, 7305, 7313, 7307, 7339]

8 Additional contributions from Nelson H. F. Beebe

Title word cross-reference

#26 [5495].

\[(2^n)^m\] [3800]. \((10^x - 1)/9\) [1976]. \((2^n)\) [4353, 4374, 4558, 4567, 4472]. \((2^n + 1)\) [1081, 4791, 3913]. \((2^n - 1)\) [5010]. \((2^n - 1, 2^n+p, 2^n+1)\) [6285]. \((2^n2^n)\) [6090]. \((2^n \pm 1)\) [5522, 4140]. \((2m)\) [4437]. \((2n + 3)\) [6541]. \((2n - (2p \pm 1))\) [4853]. \((a \cdot x) \cdot x?\) [6817]. \((d, r)\) [789]. \((M, p, k)\) [5813]. \((R)\) [2910]. \((p)\) [4353, 4437].
\[(x + y) \times (x - y) \] [6688]. \(-2 \) [743, 183, 206, 949, 801]. \(-\infty < n < +\infty \) [141, 160]. 0 [5641]. 0 \(< N < 1 \) [161]. 0 \(\neq 0 \) [699]. 1 [3742]. 1 [4990, 4346, 5155, 5642, 3697, 2166]. 1, 000, 000 [618]. \(1/\sqrt{x} \) [5784]. 1/t [2175]. 10 [530, 6021]. 116 [4022]. 128 [4859]. 15 [530]. 16 [2506, 4187, 4075]. 17 \(\times 69 \) [3049]. 20 [1005, 4304, 2049, 5678, 3231, 3994, 618, 6054, 430, 4346, 5011, 3286, 3462, 1760, 3472, 3142, 3479, 5616, 3494, 530, 321, 3684, 3819, 4453, 3697, 5099, 3364, 4943]. 2, 576, 980, 370, 000 [5643]. 22n + 1 [2147]. 256 [4440]. 27 [433]. 2n + 1 + 1 [3971]. 2n+1 - 1 [6036]. 2n+2 - 1 [6036]. 2^n [6026]. 2^n - 1 [2858]. 2^k [4845, 4998, 5502, 5039, 5047]. 2^k + 1 [866]. 2^{k-1} [4485]. 2^n [4559]. 2^n [1568, 6036, 3971]. 2n + 1 [3971, 4990, 5724, 4463]. 2n+1 - 1 [6531]. 2n+1 + k [6531]. 2n - (2^{n+1} - 1) [5342]. 2^N - 1 [2989, 4826, 6531, 4216, 3971]. 2^n - 3 [7033]. 2^n + 1 [6026]. 2^n + 3 [6026]. 2^n [6252]. 2^n [5921]. 3 [377, 4992, 4181, 430, 4037, 4205, 4042, 5031, 4876, 321, 6221, 4121, 6615, 4940, 4941]. 3 - j [296]. 32 [3987, 4440]. 3 \times 3 [2495]. 4 [3971, 4318, 4662, 2523, 2524, 430, 3431, 5729, 5528, 4385, 4718, 2952, 4075, 4077, 2813, 3527, 3532]. 8 [49.95] [3709]. 6 [5026, 4803]. 54 \times 54 [3486]. 6 - j [298]. 64 \times 64 [2280]. 8 [433, 3444, 4075, 3494]. 84 [307]. 88500 [4145, 4146]. 88602 [530]. 88654. 8 \times 8 [5099]. 9 - j [298]. 8 [6229]. 9 > [6229]. 0, 1 [5155]. 0 [4359]. 2 [5742]. 4 \times 8 [4593]. \epsilon [1159]. \epsilon [1159]. TM [4629]. \mu (N + C) [1910]. a + b [3641]. a + b + c [6312]. AB + CAB + C [6967]. ab + cd [6105]. ab + cd + c [7119]. a \cdot (x, x) [6871]. A \cdot T [4068]. arctan Z [143]. a \times b + c \cdot d [6312]. b \cdot \mu [6343, 7078]. C + AB^2 [4283]. [\sqrt{a^2 + b^2}] [6294]. CLP(R) [2930]. \cos^{-1} [3130]. \cos N [180]. \cos x [373]. \cot - x [373]. d [4696, 5505, 3806]. \Delta_0^2 [4944]. \epsilon [459]. \epsilon^n [141]. \epsilon^n [409]. \epsilon [3475]. \eta [5670]. \eta T [5247]. \exp(x) [1361]. \exp x [373]. f(x) = 0 [1222]. G_0 [809]. GF(2)[x] [5867]. GF(2^n) [4407, 4775, 4390, 6055, 4977, 5433, 4908, 5871]. GF(2^n) [4202]. GF(p^m) [4654]. H [5127]. I^2L [3240]. \infty [5018]. K [5441, 4304, 5923, 2107, 6009, 6334, 5965]. k < m [6343]. L [4346]. L^2 [5255]. L^3 [5254, 6997, l_2 [6065]. ln(x) [1529]. ln x [373]. log n [1228]. log Z [143]. LU [6806, 6563]. M [4840, 180, 4135, 2628, 2633, 2642, 2920, 5336, 581, 6343]. M^E \mod N [2777]. F_2[X] [7077]. f_m [4323]. F_{p^n} [5688]. R^n [6919]. Z^2 [4063, 5038]. GF(2) [5310, 1692]. GF(2)^2 [6168]. GF(2^m) [3924]. GF(2^n) [6168]. GF(2^k) [4965, 3771, 4923]. GF(2^m) [5485, 4675, 4983, 3876, 4529, 5144, 3584, 4553, 3887, 5144, 3775, 4863, 5310, 5173, 4717, 4388, 5035, 2430, 5434, 4607, 4748, 4909, 5438, 3200, 4283, 4938, 7474, 2310]. GF(2^n) [4997]. GF(p) [2081]. GF(p^m) [3490]. GF(p^k) [4650]. GF(q^n) [4698]. MECIPTI [282]. \mu [1426, 4869, 4911, 2311]. \mu P [1610, 2008]. N [3966, 808, 2335, 2336, 160, 161, 180, 4578, 5071, 4929, 5965, 5690, 4162, 6054, 4306, 1265, 1613, 6422, 5856]. r = n^{e(k)} [1438]. r^n [4948]. r^n - 1 [4948]. r^{c+1} [4948]. \{r^n - 2, r^{n-1}, r^n\} [5301].
$r \geq 8$ [5856]. s [4880]. $\sin(\text{BIG})$ [5236]. \sin^{-1} [3130]. $\sin N$ [180]. $\sin x$ [373]. $\sqrt{a^2 + b^2}$ [6294]. \sqrt{x} [1481]. $\sqrt{x/d}$ [3848]. $\sqrt{2}$ [7001]. \sqrt{x} [1307, 451]. $\sqrt{x+y^2}$ [5678]. T [6579]. $\tan^{-1} x$ [373]. $\theta(\log N)$ [2356]. \times [4068, 3918, 4134].

$\sin x$ [373]. $p(\frac{a^2}{b^2} + b^2)$ [6294]. $p(x)$ [1481]. $p(x/d)$ [3848]. x^n [5898, 3310]. $x^*(1/x) \neq 1$ [3248]. y [4416]. Z [5333].

.NET [6432, 5074].

/m [4869]. /spl [4869].

0.18-CMOS [5780]. 0.4.1rc [6433]. 0.80pJ [6567]. 0.80pJ/flop [6567]. '00 [7415, 7420, 2542]. '01 [7429]. '03 [7458]. '04 [7467, 7475]. '07 [7510, 7516, 7518, 7523]. '08 [7527, 3034, 5381].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 13

[1708, 5238, 1709, 1260, 3962, 4956, 6478, 3037, 3220, 3715, 3852, 1806, 3040, 725, 6869, 5247, 1372, 807, 1492, 2048, 5473, 6374, 6646, 6488, 6761, 1098, 1814, 3401, 4973, 3560, 1497, 5687, 3725, 814, 5691, 1820, 2201, 5264, 3985, 2341, 2059, 1017, 1825, 2871, 5138, 2349, 1831, 3070, 4005, 5705, 6400, 1115, 1835, 428, 4016, 4835, 6165, 5511, 3434, 4850, 3604, 3757, 4032, 4550, 4034, 4203, 4204, 6536, 2383, 2718, 1617, 5014, 5727, 5729, 740, 3450, 972, 5524, 2090, 5743, 1630, 1873, 5310, 3291, 2737, 828, 6914, 5931, 6088, 3460, 313, 5315, 5316, 4063, 2423, 5039, 1048, 5608]. Algorithm [2105, 569, 2107, 262, 640, 4728, 2113, 6925, 762, 2949, 1649, 1890, 2115, 2256, 5336, 2568, 6201, 6443, 1654, 1897, 4414, 2776, 2962, 4416, 1532, 1661, 2779, 2780, 3663, 6011, 7127, 4900, 5430, 5771, 1157, 2591, 6117, 4906, 923, 2140, 924, 7080, 775, 4613, 1243, 2015, 5637, 6019, 372, 3818, 4116, 3186, 4121, 4451, 5091, 1693, 6222, 456, 4459, 2824, 3521, 2156, 489, 5560, 5786, 5870, 5961, 595, 3701, 1478, 244, 3208, 3534, 5110, 4282, 2632, 1710, 603, 2174, 2040, 4785, 6479, 3552, 3853, 5243, 6373, 3402, 1582, 1720, 4805, 2663, 2664, 3406, 5131, 3231, 2671, 2509, 3983, 3570].

Algorithm [3415, 5696, 3729, 3418, 3240, 4335, 4336, 3873, 3874, 6269, 3581, 3072, 465, 4885, 4887, 4996, 4011, 3582, 1204, 5289, 4839, 2216, 5828, 5711, 6276, 1971, 3887, 4197, 3260, 3439, 3440, 4202, 2901, 514, 515, 2717, 4035, 3892, 5921, 4711, 5021, 2400, 748, 5745, 2734, 2735, 5169, 2552, 2738, 6698, 5841, 4569, 3462, 4572, 4573, 3630, 3781, 5042, 2939, 2248, 5847, 573, 4882, 761, 577, 1762, 2950, 4885, 5051, 1891, 983, 5421, 6005, 3308, 6336, 2778, 5856, 3147, 5544, 2781, 2969, 1907, 2970, 2450, 4743, 5429, 2132, 2585, 4604, 4749, 4910, 997, 1064, 3339, 3178, 3687, 3516, 1922, 3517, 2604, 293].

algorithm [1927, 2813, 3003, 5092, 4766, 5451, 5452, 4279, 3192, 4663, 659, 2485, 3201, 3364, 4773, 5457, 5107, 6025, 3374, 7132, 4945, 6663, 3035, 3553, 2048, 6761, 1192, 2202, 3054, 3055, 3056, 3057, 384, 6057, 1118, 1205, 5000, 5503, 432, 4020, 512, 6407, 564, 2089, 3668, 5444, 270, 2807, 3942, 4443, 5654, 6808].

algorithm-based [2248, 3516, 3201, 3364, 3374]. Algorithmen [4677, 5325, 4344, 2758]. Algorithmic [5101, 3796, 3318, 1440, 3800, 1443, 4252, 1444, 1770, 6012, 2791, 3805, 7322, 6014, 6830, 5951, 5952, 7310, 6950, 4611, 774, 2458, 3505, 5348, 925, 7083, 7084, 711, 3685, 373, 4115, 1341, 2605, 2814, 2815, 5784].

Algorithms [4560, 3292, 4379, 630, 5839, 5317, 2932, 1528, 4064, 3122, 2925, 3298, 7373, 7493, 1049, 6816, 3639, 1639, 1887, 686, 1640, 690, 1641, 4881, 7251, 7265, 4401, 5048, 4585, 3302, 447, 356, 476, 6706, 360, 3646, 5052, 4407, 2569, 3793, 7060, 4411, 1322, 3796, 3318, 1440, 3800, 1443, 4252, 1444, 1770, 6012, 2791, 3805, 7322, 6014, 6830, 5951, 5952, 7310, 6950, 4611, 774, 2458, 3505, 5348, 925, 7083, 7084, 711, 3685, 373, 4115, 1341, 2605, 2814, 2815, 5784].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5869, 3007, 939, 2826, 3831, 1699, 2302, 5563, 3362, 1473, 3370, 7131, 5109, 5378, 7133, 551, 3211, 1083, 3551, 5464, 5971. algorithms [4499, 4967, 4311, 5127, 6144, 6249, 6763, 6872, 7273, 2666, 2200, 221, 3862, 1960, 419, 3992, 1827, 1199, 2683, 3062, 3419, 4820, 2206, 1836, 3249, 4684, 6903, 3428, 225, 5146, 5149, 6067, 6404, 7300, 4026, 4704, 5721, 6907, 1299, 3272, 5304, 1982, 741, 2920, 4381, 2413, 3118, 4574, 1754, 2424, 3783, 830, 1755, 1882, 1637, 5610, 7407, 7418, 7434, 7447, 7461, 7478, 4069, 2563, 4730, 3133, 2758, 5050, 5185, 2435, 2567, 5187, 5422, 6445, 4080, 5857, 4082, 1422, 1663, 5621, 6208, 2268, 4901, 2454, 4604, 2593, 4092, 3932, 4612, 3168, 3169, 3507, 5350, 2464, 1784, 2023, 5214, 4764, 3002.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

7209, 216, 5229, 7509, 7171, 2847, 2848, 7134, 411, 2632, 2171, 5460, 1947, 2040, 3551, 495, 1488, 1089, 1189, 1368, 1807, 2847, 2848, 7134, 411, 2632, 2171, 5460, 1947, 2040, 3551, 495, 1488, 1089, 1189, 1368, 1807, 2181, 2499, 225, 465, 4687, 4996, 4011, 4691, 505, 3428, 3586, 225, 510, 6060, 5824, 5002, 5149, 2373, 2708, 7225, 3598, 2220, 308, 824, 2079, 1744, 3268, 3269, 5728.

Analysis [5304, 1982, 5730, 7181, 5921, 3282, 472, 3285, 6083, 628, 3286, 747, 1224, 519, 1225, 1226, 4381, 6428, 3776, 1882, 1637, 524, 571, 2248, 4240, 7054, 1647, 1648, 5538, 5051, 5333, 363, 403, 2442, 2118, 2956, 2957, 835, 3145, 984, 2961, 375, 3824, 3825, 4452, 1175, 7280, 2827, 3193, 1251, 715, 794, 3009, 5648, 1703, 3837, 1182, 2626, 3840, 6663, 1816, 7308].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Applications [1485, 2314, 5970, 3222, 1490, 4154, 7427, 7273, 5689, 2056, 5892, 2337, 1727, 3420, 3732, 6665, 2686, 6269, 1839, 2367, 5146, 4701, 4026, 5009, 6525, 4199, 5725, 7119, 5991, 6419, 3105, 3453, 748, 2417, 7335, 2934, 7249, 2560, 2944, 316, 4890, 4595, 3150, 2587, 5775, 7206, 5956, 3504, 3514, 2018, 790, 455, 17, 3192, 7325, 1351, 5790, 1704, 5375, 1975, 1700, 7171].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6338, 2141, 2832, 5115. **Arbitrary-accuracy** [6434]. **Arbitrary-Precision** [6297, 6545, 6189, 6314, 4116, 4483, 5992, 7053, 6338]. **Arbor** [7201, 735].

Architect [4389]. **Architectural** [7271, 4321, 5823, 4702, 1417, 5943, 2306].

Architecture [7191, 6856, 3958, 4780, 5572, 2493, 5117, 6366, 7193, 4956, 6138, 1369, 2655, 1816, 1100, 5259, 6148, 1820, 4671, 5133, 5487, 1019, 2879, 6263, 4984, 6900, 4175, 1517, 4353, 6277, 2710, 4028, 3602, 7288, 7369, 7441, 7558, 3262, 3263, 2381, 2222, 4362, 5302, 1856, 1216, 3097, 3274, 5158, 7289, 7304, 7443, 4244, 6822, 6935, 7292, 5948, 6011, 3318, 7288, 7304, 7443, 4208, 4708, 4709, 6293, 6416, 6421, 5743, 2094, 2918, 3621, 4219, 4559, 1422, 4562, 4564, 6086, 5315, 6186, 1312, 1881, 4231, 3299, 6329, 6335, 2951, 7350, 4244, 6822, 6935, 3318, 7292, 5948, 6011, 4259, 4900, 5428, 6945, 6717, 6117, 993, 4608, 2995, 7268, 1679, 6591, 4437, 6954].

Architectures [2805, 2987, 3510, 6725, 2151, 5217, 5361, 1467, 5786, 5961, 1469, 3363, 3365, 6228, 7103, 6734, 6848, 4775, 6736, 1083, 4491, 6475, 2638, 4785, 3899, 1810, 5814, 2663, 3231, 3053, 4167, 4675, 2349, 2064, 7221, 2369, 7018, 4845, 7019, 1972, 3596, 5519, 2223, 7169, 4710, 2724, 5408, 2229, 2230, 2397, 2398, 2404, 2548, 4221, 2738, 2414, 2415, 3905, 2243, 3777, 2422, 4876, 3913, 1760, 4877, 2561, 2756, 2757, 2254, 5421, 5617, 5060, 2572, 3660, 480, 2267, 4263, 3669, 6209, 2589, 2590, 1062, 7206, 5073, 2283, 5783, 3517, 935, 1339, 4762, 4766, 1788, 2297, 3200, 1704, 2164, 6025, 3377, 935, 1339, 4762, 4766, 1788, 2297, 3200, 1704, 2164, 6025, 3377, 4855].

Ariane [3542, 3779, 3631]. **Arithmetic** [7572, 2631, 1708, 6976, 850, 851, 1005, 1080, 1081, 1186, 1563, 6631, 2037, 4486, 5799, 3023, 7366, 3961, 6469, 5876, 1009, 1712, 2637, 3710, 3846, 4646, 5120, 5241, 5424, 5462, 5659, 6369, 6474, 5803, 3549, 3550, 3711, 3965, 4292, 377, 4293, 3712, 3850, 4297,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

7433, 5748, 635, 5930, 2417, 2741, 5314, 3908, 5840, 5177, 7121, 5318, 2421, 2930, 3909, 5996, 4228, 4871, 5607, 5936, 1, 4574, 3120, 4395, 4576, 5323, 5416, 5533, 5844, 351, 4577, 4578, 3782, 3783, 636, 524, 571, 2425, 1757, 5324, 5938, 1638.

arithmetic [3126, 6566, 1050, 1995, 2753, 234, 1313, 7123, 1760, 2943, 640, 687, 3641, 688, 574, 2251, 4879, 5612, 575, 6571, 6100, 2758, 5184, 5050, 447, 7145, 356, 357, 476, 761, 832, 981, 1052, 1053, 5185, 6704, 3789, 6705, 3140, 2432, 6002, 318, 695, 5338, 5331, 5332, 3647, 5540, 6928, 1319, 1999, 5616, 5337, 3307, 6006, 1764, 2570, 4411, 7125, 5854, 5767, 984, 4734, 2260, 3146, 5, 1153, 6936, 1232, 2448, 4737, 3319, 580, 5191, 4082, 4897, 2574, 1442, 1663, 5858, 4251, 5066, 3151, 4253, 5621, 698, 3801, 3802, 3803, 4087, 4255, 4740, 2577, 2578].

Array-Like [851]. Arrays [7466, 7483, 1186, 1823, 870, 5982, 3251, 7014, 2706, 1135, 6185, 4060, 2932, 5998, 3124, 3465, 978, 3473, 643, 1664, 2131, 2796, 5640, 7451, 6379, 2690, 2405, 3125, 3484, 3516, 4283, 3201, 3364].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Cases [3422, 2353, 5292, 4391, 4722, 5178, 5415, 5933, 4402, 4621, 5089, 5236, 6495, 4705, 3452, 4721, 4583, 4727, 4761, 5087]. Casting [6043, 7040, 2831].

Causes [6346, 6456, 3353, 1702]. Causing [5975].

Celeste [40]. celestial [40]. Cell [5683, 2891, 4022, 7304, 2389, 2911, 3180, 5569, 2676, 3736, 2892, 2724, 3280, 2415, 2749, 3183, 5055, 5065]. Cells [6630, 3433]. Cellular [5261, 5483, 1595, 2884, 4012, 1217, 4564, 637, 685, 938, 3407, 5411, 2582].

Center [333, 165]. Centered [6776]. central [3148, 3149]. Centre [7572, 7304, 7458, 7374, 4030, 7416, 27, 31, 5475, 1321, 930].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Computation [903, 6434, 5845, 523, 2936, 2937, 143, 1049, 758, 2562, 6098, 3138, 6575, 448, 4887, 1901, 1533, 1326, 4426, 4600, 4900, 7152, 1988, 2925, 974, 7248, 2097, 2732, 5602, 4383, 7335, 6560, 5041, 1638, 6330, 364, 1896, 5058, 2118, 7190, 4415, 986, 1327, 4743, 1535, 4604, 3159, 1241, 1333, 5956, 211, 3336, 2286, 2288, 5082, 5083, 4444, 4445, 4620, 131, 5553, 5095, 2825, 2478, 3196, 6023, 1471, 1472, 542, 2623, 544, 1937, 2637, 2652, 2569, 7525, 7326, 1794, 995].

Computationally [3628, 3190].

Computations [3535, 4488, 3221, 5124, 6040, 5388, 3563, 3729, 872, 1028, 4186, 4540, 5713, 6530, 1132, 1412, 3609, 4555, 3899, 5995, 3772, 894, 1044, 6697, 904, 1430, 6574, 7235, 5541, 5772, 2975, 4903, 6014, 2431, 4615, 5079, 6596, 5358, 848, 1348, 3370, 4289, 5464, 4655, 5891, 6150, 6779, 2066, 3880, 2690, 3740, 3886, 7371, 3904, 5837, 4224, 1140, 634, 5175, 5017, 756, 5334, 5335, 5419, 5540, 7205, 4910, 3940, 5210, 2621].

Compute [5887, 6374, 6526, 2985, 5988, 6939, 1907, 4263, 2802, 2984, 3178].

Compute-Bound [2985, 2802, 2984].

Computer [7191, 7143, 7149, 7156, 7158, 7159, 7163, 1563, 719, 1007, 7192, 7366, 1009, 7193, 2637, 7312, 3710, 3847, 5241, 5242, 5462, 5659, 5803, 3550, 1362, 326, 7244, 7313, 721, 853, 1188, 1364, 4651, 7454, 2643, 7512, 606, 6249, 6760, 5128, 3048, 7533, 3975, 5677, 7534, 5679, 6492, 7231, 246, 3979, 7428, 7569, 1194, 7343, 248, 7168, 1721, 7500, 7576, 7401, 4330, 7245, 2885, 872, 873, 1025, 1114, 2358, 7275, 136, 174, 4531, 466, 281, 509, 429, 1028, 337, 964, 1125, 7211, 5506, 1515, 2530, 2702, 2703, 3590, 4537, 4700, 5827, 62, 675, 555, 1128, 4701].

Computer [7381, 5031, 1636, 4389, 1312, 2422, 1427, 569, 3466, 3634, 7522, 4580, 2940, 5534, 1761, 1641, 4728, 5537, 446, 4242, 317, 162, 5614, 266, 7494, 7568, 6198, 6929, 5420, 2000, 3649, 4244, 2765, 7564, 642, 7230, 2770, 2959, 6008, 478, 5190, 6937, 2122, 3318, 1439, 2574, 4252, 5621, 121, 7292, 7531, 988, 7351, 129, 3491, 6585, 1672,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

7105, 6658, 6771, 6423, 6699, 6435, 6709, 6934, 6726, 6497, 6709, 7062, 6464.

3331, 4603, 6451, 6210, 1450, 1675, 6946, 6947, 1452, 5862, 3504, 3505, 4914, 4271, 4441, 7479, 1777, 5782, 3511, 999, 1919, 1457, 4447, 4763, 5784, 4123, 4453, 4454, 5218, 3006, 591, 2822, 7098, 2027, 5363, 5364, 2474, 2157, 2158, 5645, 6616, 2031, 2301, 6731, 3198, 4628, 3362, 5648, 3202, 795, 3205, 3206, 1560, 1003, 4286, 5232, 5377, 4775, 6735, 6970, 5569, 1479, 2169, 6776, 2684, 3211, 4785, 604, 1716, 2188, 58, 4801, 1499, 2333, 2337, 419, 5979, 2349, 4177, 2694, 4345, 621, 879, 1030, 5987, 2894, 3080, 2532]. design [6405, 3758, 2221, 2713, 2539, 2084, 4707, 2719, 1857, 1038, 2394, 4213, 4215, 5598, 3289, 4052, 1632, 2736, 4714, 3777, 3909, 2423, 3782, 3783, 2759, 5050, 695, 2565, 2433, 3306, 2955, 2260, 1153, 3314, 3320, 3321, 2263, 1059, 3661, 771, 4910, 3161, 3500, 3675, 7480, 3817, 7376, 4921, 7177, 4122, 3829, 2485, 3526, 4635, 4942, 6025, 4947, 2347, 7486, 1000, 7146]. Designed [6468, 1964, 1868, 6000].

One diminished-digit

Form [3391, 3295, 1436]. Directed [5418, 4088, 4257, 7133, 7460, 5952].
Discovery [5666]. Discrete [4784, 5502, 5039, 1896, 790, 2028, 4932, 2630, 815, 1826, 4014, 4343, 2708, 5844, 5422, 1907, 4263, 2030, 4769, 3009, 3205, 3206, 6971, 6521].
Discretely [174]. Discriminant [5473, 5251]. Discussion [5678, 9, 10, 58, 544]. Discussions [18, 105, 52, 36, 26, 86, 30, 94, 5475].
dish [6115]. disk [5730]. displays [2206]. Dissecting [6543]. Dissipation [4104, 4157, 4169, 4917]. Distance [4005, 4063, 5038, 3927, 3673, 4474].
Distance-Calculation [4005]. Distillation [3962, 5110, 4890]. distinctions [2306]. Distributed [1712, 1381, 1586, 7415, 7443, 5845, 589, 5641, 5222, 1359, 2678, 5699, 2912, 1760, 6208, 4275, 1787, 5454, 849, 4468, 2487, 4477].
divides [1516, 1403, 1623]. Dividing [6673]. Divisibility [2858]. Divide [437]. Division [2634, 7108, 6, 1567, 1568, 852, 6984, 3852, 1366, 857, 5809, 726, 4502, 1081, 6999, 3556, 5974, 728, 3228, 3401, 6649, 6873, 7000, 6146, 1581, 32, 729, 5392, 5687, 814, 5259, 670, 3864, 3985, 1017, 4671, 3058, 3235, 4983, 3999, 3422, 5493, 6054, 7009, 3738, 1602, 1835, 3249, 3250, 4008, 4173, 4683, 2071, 6401, 424, 507, 552, 4016, 431, 1606, 822, 305, 6520, 2706, 6064, 3256, 2377, 1851, 5717, 3752, 7115, 4193, 6072, 5722, 3755, 4359, 3757, 4032, 4203, 5014, 4709, 4039, 3447, 3448, 740, 6029, 343, 5524, 5920, 4045, 3451, 4048, 7035, 3766, 3767, 6548].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

division

Division-and-accumulation
Division/Square
Divisionless
Divisions
Divisor
Divisors
DivSqrt
DLFloat
DLLs
DMT
DNA
DNA-based
DNN
DNNs
DNA-based
Document
Documentation
Documents
Does
Domain
Domains
Domestic
dominated
don't
done
données
does
Dog
Doing
Dojo
Dokumentation
Dollars
Domain
Domains
Domestic
Donald
done
données
Down
downloadable
Downloadable
drawing [2926, 4604]. Dream [60]. Dreixel [7463]. Drift [921, 922]. Driven
[5117, 1375, 6557, 6192, 3805, 2472, 2609, 3004, 2534, 2610, 3375]. Drivers

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 49

4452, 6351, 1175, 4128, 2850, 2851, 3374, 7132, 4142, 6663, 3241.

Evaluation [4950, 2036, 1082, 1361, 7108, 6478, 297, 6482, 728, 953, 5813, 248, 5693, 5893, 1383, 2674, 5983, 2520, 279, 733, 872, 873, 1025, 1113, 304, 426, 466, 1122, 736, 7021, 3436, 2715, 3445, 6413, 6683, 6075, 3578, 5924, 6298, 259, 6554, 399, 439, 1228, 5316, 7044, 5324, 690, 1529, 3132, 3136, 6575, 3915, 4731, 5765, 3309, 763, 836, 916, 6938, 1443, 6337, 1061, 6345, 1542, 1914, 5076, 6127, 1176, 1183, 2852, 4521, 551, 2180, 4499, 4652, 4653, 862, 954, 6996, 7109, 5389, 1818, 2870, 4823, 2882, 3065, 6157, 2208, 1396, 1512, 6789, 4834, 4839, 5509].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 51

5211, 2827, 4814]. extended-precision [720, 6150, 4026, 632]. Extended-
Range [1456]. Extending [1486, 5245, 616, 3740, 6312, 6102, 1892, 4312].
Extensible [6228]. Extension [1260, 4293, 3851, 6987, 2651, 3868,
6512, 1732, 5911, 6904, 7114, 5719, 5162, 5163, 5164, 5520, 3770, 2731, 6914,
764, 918, 6823, 3156, 2271, 4098, 1935, 1469, 7104, 4299, 6658, 5585, 734,
4907, 2462, 4925]. Extensions [5121, 4301, 2043, 5477, 6167, 5188, 480,
5948, 3154, 2139, 3520, 7100, 1995, 5100]. Extent [1553, 17]. Extentions
[4586]. External [6757, 3473]. Extra [2177, 4857, 5137]. Extra-Precise
[4857, 5137]. Extracting [13, 36, 7071, 1444, 5084, 6852]. Extraction
[726, 158, 49, 637, 685, 5336, 4074, 5961, 3595, 4030, 1159]. Extractor
[2711]. Extracts [2579, 1397]. Extrapolation [6554, 3308, 6663]. extremal
[4583, 4727]. Extreme [2477, 2078].

F [5475]. F00F [3865]. F77 [3473]. F90 [3473]. Face [6933]. Face-off
[6933]. Facilities [4171, 826]. Facility [2102]. fact [3691]. Factor
[5238, 1822, 2812, 1976, 2745, 1437]. Factor-2 [5238]. Factorial
[2900]. factorising [603]. Factorization [6563, 5948, 6011, 2824, 6130, 4705, 2116, 3333, 4758, 5795]. Factorizations
[7129]. Factors
[6979, 2070, 6099, 2210]. fact
[3691]. Factorial-Base [2900]. FacMath [2514]. Fast
[4485, 6631, 6854, 3535, 4288, 4646, 5801, 377, 219, 3851, 5244, 6139, 2180,
6986, 3042, 3043, 5670, 3225, 3855, 2048, 6763, 1717, 6252, 2050, 953, 6648,
5683, 1583, 2335, 2336, 4321, 5482, 1383, 1587, 6657, 6658, 6659, 1018, 3991,
6505, 1594, 1828, 3060, 3238, 2680, 5491, 3240, 5395, 5897, 4522, 4523, 4821,
5902, 3420, 4003, 1831, 6397, 3070, 7009, 2522, 4997, 3425, 4180, 820, 4016, 6061,
1606, 3742, 1842, 1517, 1847, 1612, 556, 2077, 5516, 3888, 5294, 3604, 3756, 5593,
4853, 3606, 3608, 2715, 1299, 6536, 3445, 3272, 4035, 6414, 6291, 3448, 6177, 309,
5924, 4219]. Fast [4373, 2549, 2732, 1421, 3291, 3771, 1635, 3905, 5839, 6700,
1880, 5323, 5533, 1048, 5180, 1885, 2108, 5045, 3136, 4731, 2568, 6200, 6441,
5765, 7061, 6106, 6107, 7674, 5189, 5338, 1152, 918, 3655, 4415, 4592, 4735, 5857,
2779, 2780, 3800, 4082, 6581, 5342, 5067, 3805, 2794, 4603, 4906, 4430, 4746,
1676, 2140, 5442, 5548, 5627, 5861, 4096, 1542, 1165, 4915, 2461, 4441, 6459,
6592, 3175, 2742, 2464, 2602, 2605, 5026, 1182, 1692, 2154, 1072, 6021, 6461, 3356,
3357, 6362, 6844, 6963, 849, 324, 2839, 3018, 3369, 3370, 3529, 5228, 2166, 5373,
5374, 6024, 2841, 5965, 4478, 5233, 5234, 2852, 4814]. Fast [5269, 4282, 4933,
6363, 802, 3025, 2498, 952, 5811, 1496, 6379, 2055, 6772, 3418, 4823, 2883, 3066,
3874, 4004, 4529, 4015, 4839, 4979, 2216, 1739, 5509, 1971, 6405, 6406, 4198,
3260, 1214, 1295, 4202, 5518, 3268, 1410, 7027, 7028, 7118, 1619, 5304, 3613,

8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

55

5735, 6293, 5524, 5738, 5740, 5920, 5922, 6294, 6420, 4042, 4367, 3896, 5525,
1303, 1626, 1221, 2393, 6182, 6298, 6691, 255, 6300, 1627, 5925, 6183, 626,
344, 1223, 1307, 1416, 1986, 2233, 2915, 3763, 3897, 3898, 4214, 4368, 4557,
4857, 4858, 5019, 5409, 4371, 3765, 742, 745, 3286, 7035, 5306, 3287]. Floating
[1870, 5744, 2547, 6549, 1750, 890, 1041, 258, 2548, 3290, 5528, 827, 4222, 3458,
2409, 2922, 2923, 1138, 5311, 5312, 5836, 4380, 3772, 750, 751, 893, 1987, 4563,
895, 1045, 752, 6085, 5838, 5929, 3294, 6556, 6557, 6915, 6916, 6305, 6306,
4568, 4870, 6697, 6089, 6186, 6309, 6311, 5176, 1636, 6092, 5034, 2103, 349,
2419, 2742, 2744, 2931, 6188, 4571, 4872, 5037, 6189, 6314, 6559, 5753, 5754,
6811, 1528, 440, 5320, 5321, 7044, 7046, 6193, 1141, 6435, 2105, 5180, 5998,
6436, 831, 904, 1430, 570, 5755, 6194, 3298, 2936, 2937, 2247, 2426, 6322, 6565,
2748, 1889, 4886, 2557, 94, 6567, 1759]. Floating [639, 686, 2559, 5940, 3642,
979, 6439, 1640, 2755, 7052, 1642, 6196, 3129, 5848, 6815, 4582, 525, 576, 910,
1147, 3787, 5762, 402, 2564, 1148, 4402, 6925, 6328, 1998, 6329, 3474, 3138,
5614, 4403, 7056, 7124, 982, 2255, 5539, 5330, 3790, 449, 6003, 6004, 6332, 6333,
6334, 6576, 6577, 362, 2434, 5541, 1531, 1763, 6199, 641, 1895, 2117, 2258, 2438,
2439, 3143, 5055, 5618, 6201, 6442, 1437, 3918, 1151, 2118, 2767, 7066, 4410,
2445, 2446, 6444, 6580, 6710, 5943, 915, 5062, 5944, 6010, 3794, 5189, 5338,
7065, 3484, 2776, 4081, 3654, 3656, 3658, 3797, 3798, 4080, 5065]. Floating
[2571, 2964, 2572, 5946, 4417, 2779, 2780, 5424, 7068, 2003, 644, 1058, 1324,
2575, 2264, 4256, 6207, 645, 6716, 1156, 1234, 1326, 5948, 6011, 5622, 2128,
7073, 701, 4259, 4425, 6012, 2268, 2787, 2788, 3154, 2007, 6585, 5546, 837, 2791,
2975, 1772, 6116, 2584, 3157, 4903, 5623, 5431, 5432, 2008, 6449, 6450, 2274, 991,
2978, 2275, 1238, 3672, 921, 922, 6210, 2276, 993, 3160, 2277, 4608, 5624, 2278,
6212, 2799, 5072, 5440, 5441, 5626, 5953, 4265, 6719, 6455, 1540, 6346, 1679,
453, 1680, 6347, 3934, 3935, 5074, 1543, 4097, 2596, 1454, 1775, 4914, 5076, 5348,
2284, 4105, 4271, 4441, 4755, 5077]. Floating [5779, 7083, 4615, 5079, 2985,
1685, 7088, 1776, 5636, 5865, 2597, 3683, 4918, 2463, 269, 212, 2148, 2986, 2017,
5782, 1546, 2465, 787, 1686, 2807, 2992, 3180, 3181, 3182, 3345, 3688, 3689, 2289,
5958, 6220, 6955, 7094, 3346, 6121, 6122, 6597, 2020, 2021, 1689, 1690, 2997,
5959, 2603, 4919, 5207, 5208, 5209, 5210, 5445, 5446, 5447, 5448, 5449, 2811,
2998, 843, 1338, 1458, 1459, 1785, 5552, 3944, 3945, 5090, 1340, 2293, 4116, 2025,
5868, 4274, 6221, 3947, 1786, 5554, 2472, 2609, 2610, 3004, 5093, 5094, 1465,
5555, 6727, 1789, 5217, 5361, 3520, 4926, 6124, 6610, 4124, 592, 3350, 4458].
Floating [6353, 7097, 6020, 7098, 6460, 1072, 5362, 2027, 3830, 848, 5363, 5556,
2824, 3192, 3521, 2826, 6729, 3353, 6354, 2828, 2829, 1349, 5097, 1075, 5557,
5870, 3698, 1350, 3833, 3195, 6226, 6461, 6462, 2301, 3951, 215, 6362, 1469,
1701, 2619, 1702, 5103, 5226, 5370, 5371, 5564, 5565, 5647, 5650, 6464, 1556,
1354, 1471, 1472, 1473, 1474, 3955, 2033, 5791, 7101, 2034, 3013, 3014, 5963,
216, 3203, 2304, 6228, 2838, 4284, 6129, 134, 1797, 5229, 5964, 2627, 799, 1357,
3021, 1706, 3532, 5377, 5794, 4139, 948, 1941, 6734, 6848, 6849, 5966, 6625,
5110, 5568, 5654, 5111, 5378, 5235, 6627, 5584, 5701]. Floating [5898, 4627,
6357, 4282, 1937, 2173, 3378, 5379, 662, 2853, 1943, 1944, 6466, 3960, 1564,
5657, 6230, 3025, 3708, 3845, 5459, 5460, 6030, 6133, 6031, 720, 296, 1485, 2494,


8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

56

2636, 3031, 3216, 3383, 3384, 3385, 3386, 4491, 6368, 6475, 6476, 6981, 2495,
1085, 1010, 5662, 1800, 2314, 1801, 1802, 1362, 2316, 1569, 1570, 2041, 2317,
4785, 6137, 4148, 1487, 2498, 2863, 3039, 5574, 5884, 2043, 1368, 1807, 2181,
2499, 2182, 5885, 4303, 2045, 2321, 6986, 2645, 3223, 3041, 2322, 4306, 5245,
5246, 1091, 2183, 1370, 2325, 5810, 4790, 2500, 1190, 5126, 3855, 2326]. floating
[6247, 2327, 2187, 2648, 2649, 3047, 1813, 4311, 4506, 4656, 4793, 4794, 4795,
5127, 5249, 5973, 6249, 3720, 1716, 299, 2188, 666, 5252, 5576, 4314, 3856, 1015,
4798, 5387, 5577, 6994, 6995, 7110, 2189, 1016, 1193, 6377, 5814, 6650, 3228,
4975, 3559, 1815, 2191, 2658, 7111, 6379, 1954, 6495, 1377, 6496, 3404, 6256,
1378, 4805, 4976, 2663, 3230, 379, 1585, 6381, 3859, 4979, 1818, 2056, 2667,
3726, 3861, 5892, 1380, 1722, 2201, 2337, 4512, 5484, 3982, 3983, 5976, 4807,
4808, 3986, 1589, 5486, 5694, 6150, 4165, 2676, 1104, 1961, 3992, 4674, 4519,
421, 5489, 3415, 5696, 2344]. floating [2872, 2873, 2874, 3869, 3998, 3239,
6266, 2681, 6267, 5396, 5397, 959, 1276, 2683, 6391, 5979, 5702, 3061, 2880,
3243, 3419, 4525, 4679, 4820, 6154, 6052, 4001, 3063, 249, 4824, 5140, 5270,
4339, 961, 4528, 5585, 6665, 5142, 2518, 5275, 2519, 4989, 2350, 4172, 2884,
5276, 2206, 502, 1733, 1734, 2886, 5985, 4004, 1202, 5278, 5143, 5497, 734, 1116,
4995, 4177, 4178, 6903, 4689, 4690, 5588, 1512, 1968, 2362, 1736, 1969, 819,
508, 3740, 1204, 5285, 1029, 6272, 2892, 2366, 4838, 6670, 4696, 5824, 4697,
282, 3078, 3255, 4699, 4841, 3079, 2528, 621, 879, 1030, 1208, 1283]. floating
[1739, 3431, 2894, 3080, 1031, 2704, 1843, 5507, 1844, 2532, 1845, 5711, 2372,
4844, 4845, 1846, 5403, 5989, 6066, 6521, 1287, 2373, 252, 178, 3885, 2377, 1850,
4354, 4848, 3886, 2534, 4025, 6677, 6678, 3082, 4026, 5007, 3596, 5830, 7023,
4027, 4543, 4703, 6525, 2896, 2897, 3598, 6408, 3085, 3437, 3599, 1291, 1407,
1213, 1974, 3601, 2220, 3438, 1408, 1297, 3263, 3092, 4033, 2221, 4551, 2902,
2537, 3093, 2713, 5298, 5299, 1744, 2905, 6413, 6538, 6683, 5725, 2084, 5726,
516, 826, 1215, 2385, 5728, 681, 2387, 1218, 1863, 1746, 3278, 3611, 5161, 5162,
5164, 5520, 2224, 2225, 4037, 4554, 3610]. floating [1133, 1219, 1866, 2388,
4710, 5918, 2908, 4556, 5736, 5737, 1624, 3281, 5991, 6180, 6295, 6296, 6419,
201, 2088, 3614, 5992, 6423, 2228, 2913, 3104, 3282, 5993, 2230, 2397, 2398,
2231, 3105, 2092, 2093, 3452, 3617, 3618, 4213, 4215, 5596, 5742, 4712, 2917,
3284, 3454, 3620, 3285, 6083, 628, 473, 744, 2401, 2402, 2403, 2404, 746, 747,
1224, 2237, 2097, 1632, 311, 520, 4864, 4865, 2736, 1225, 1226, 2408, 2410, 2411,
1751, 1874, 1527, 1752, 5603, 6806, 3626, 3904, 4381, 3117, 3293, 4868, 5605,
2926, 3459, 5313, 829, 897, 973, 1993, 4225, 5930, 6087, 4869, 2553]. floating
[3295, 899, 975, 2928, 7041, 2243, 2244, 5932, 6428, 6308, 3907, 3908, 5840,
5177, 7121, 6191, 755, 2743, 2930, 3119, 4570, 5843, 6093, 5996, 5936, 4873,
3780, 4395, 4576, 351, 4578, 3911, 4874, 524, 571, 5609, 1757, 5324, 3633, 5610,
5938, 1638, 5326, 5327, 4233, 6000, 4876, 6566, 2249, 1050, 1995, 1313, 2943,
3640, 573, 640, 757, 758, 401, 688, 689, 574, 6001, 2251, 4878, 1996, 1997, 980,
909, 3128, 1434, 2563, 4583, 4727, 6100, 3131, 2253, 2114, 2758, 5049, 2254,
5329, 3137, 6704, 7055, 1646, 1647, 1648, 695, 2565, 5763, 5851, 3476, 5331,
4885, 5051, 5333, 5334, 5335, 5419, 5540]. floating [6928, 2566, 1999, 3917,
5054, 5421, 319, 1894, 2257, 2437, 2440, 2764, 3650, 6006, 2956, 2957, 917,


8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

58

1975, 970, 6534, 2540, 2714, 2904, 6173, 6290, 1300, 5302, 5831, 3891, 1131,
6176, 1618, 6539, 1860, 1861, 1862, 2086, 2087, 6540, 7030, 5163, 5732, 6685,
3098, 3099, 4205, 342, 5594, 6080, 5919, 5524, 5738, 5740, 5920, 5922, 6294, 6420,
4367, 3896, 5525, 1221, 6182, 6298, 6691, 1627, 5925, 6183, 344, 1223, 1307, 1416,
1986, 2915, 3763, 3897, 3898, 4214, 4368, 4557, 4857, 4858, 5019, 5409, 4371,
3765, 742, 745, 7035, 5306, 1870, 2547, 6549, 890, 1041, 3290]. Floating-Point
[5528, 827, 2409, 2923, 5311, 5312, 5836, 3772, 750, 751, 893, 1045, 5929, 3294,
6556, 6557, 6915, 6916, 6306, 6186, 6311, 6092, 5034, 2744, 6188, 4872, 5037,
6189, 6314, 6559, 5753, 5754, 1528, 440, 5320, 5321, 7044, 7046, 2105, 5180,
5998, 831, 904, 1430, 570, 5755, 6194, 3298, 2936, 2937, 2247, 2426, 6322, 2748,
4886, 2557, 6567, 639, 686, 2559, 5940, 6439, 1640, 2755, 7052, 5848, 6815, 4582,
525, 576, 1148, 3474, 5614, 4403, 7056, 7124, 982, 5539, 5330, 2434, 5541, 1763,
6199, 641, 1895, 2117, 2258, 2438, 2439, 3143, 5055, 5618, 6201, 6442, 1151, 2767,
2445, 2446]. Floating-Point [6444, 6580, 6710, 915, 5062, 5189, 5338, 2776,
4081, 3656, 3658, 3797, 2964, 5946, 2779, 2780, 5424, 7068, 2003, 644, 1324, 2575,
2264, 6716, 6011, 7073, 701, 4259, 6012, 2787, 2788, 3154, 6585, 5546, 4903, 5623,
5431, 5432, 6450, 2274, 2275, 1238, 3672, 921, 922, 6210, 2276, 993, 3160, 2277,
4608, 2278, 2799, 5072, 5440, 5441, 5626, 5953, 6719, 6455, 1680, 6347, 3935,
1543, 4097, 1454, 1775, 4914, 5076, 5348, 4441, 4755, 5077, 5779, 7083, 5079,
2985, 7088, 5636, 5865, 3683, 2463, 212, 2986, 2807, 2992, 3180, 3181, 3345, 3688,
3689, 2289, 5958, 6220, 6955, 7094, 6121, 6122, 6597, 2020]. Floating-Point
[2997, 2603, 4919, 1458, 1459, 1785, 5552, 5090, 1340, 5868, 1786, 5554, 2472,
2609, 2610, 3004, 1465, 5555, 6727, 1789, 3520, 4926, 6124, 6610, 4124, 592, 3350,
6353, 6020, 7098, 5362, 2027, 848, 5556, 2824, 3521, 2826, 6729, 3353, 6354, 5870,
3833, 3195, 6226, 6462, 2301, 215, 1469, 1701, 2619, 5103, 5226, 5370, 5371, 5564,
5565, 5650, 1354, 2033, 3014, 216, 3203, 2304, 6228, 5229, 2627, 799, 3021, 1706,
5377, 4139, 6848, 6849, 6625, 5110, 5568, 5654, 5111, 5378, 5235, 6627, 5701,
5898, 4627, 6357, 4492, 6976, 4487, 2171, 2172, 416, 3217, 1947, 4300, 6484, 2328,
6991, 6992, 1578, 1579]. Floating-point [1718, 5255, 6491, 4800, 4974, 2505,
6380, 2668, 2669, 2670, 5975, 6043, 1501, 1824, 2203, 2062, 3729, 5271, 4682,
1394, 4691, 2526, 2370, 307, 3748, 5153, 1296, 5519, 1298, 3894, 7031, 4210, 4209,
4042, 3286, 258, 2922, 4563, 895, 6085, 6305, 4568, 4870, 6697, 2419, 6811, 6435,
1759, 3642, 979, 3129, 6925, 6328, 2255, 3918, 2118, 2572, 5622, 2007, 2008, 6212,
3934, 4271, 4918, 2148, 2465, 2293, 2025, 4274, 6221, 7097, 3830, 5363, 3192,
2828, 2829, 1075, 3698, 1350, 6461, 1471, 1472, 1473, 1474, 5964, 6734, 5584,
1937, 2173, 3378, 2853, 3960, 1564, 6230, 5460, 6133, 720, 1485, 2636]. floatingpoint [3031, 3383, 3384, 3385, 4491, 6368, 6475, 2495, 1085, 5662, 1800, 2314,
1801, 1802, 6137, 4148, 2863, 3039, 5574, 5884, 5885, 2321, 6986, 2645, 2322,
4306, 5245, 5246, 2183, 2325, 5810, 4790, 5126, 2327, 2187, 2648, 3047, 1813,
4311, 4793, 4794, 5127, 5973, 6249, 3720, 2188, 5252, 5576, 4314, 1015, 4798,
5387, 5577, 6994, 6995, 2189, 1016, 1193, 6377, 5814, 6650, 3228, 4975, 2191,
7111, 6495, 1377, 3404, 4976, 1585, 6381, 4979, 2056, 2667, 3861, 4512, 3983,
3986, 1589, 5486, 5694, 6150, 1961, 3992, 4674, 5489, 2344, 2872, 2873, 2874,
3998, 6267, 5396, 5397, 2683]. floating-point [6391, 5702, 3061, 4525, 4001,



Floating-Point [1215, 5728, 2387, 1218, 1863, 1746, 3611, 5162, 5164, 5520, 2224, 2225, 4037, 1133, 1219, 1866, 4710, 5918, 2908, 5736, 5737, 1624, 5991, 6180, 6295, 6296, 6419, 5992, 2230, 2397, 3284, 3454, 3285, 628, 473, 744, 2401, 2402, 2403, 2404, 4864, 2736, 2408, 2410, 2411, 1527, 1752, 5603, 6806, 3626, 3904, 4868, 5605, 3459, 829, 897, 973, 4225, 5930, 6087, 4869, 2553, 3295, 7041, 2243, 2244, 5932, 6428, 6308, 3907, 3908, 5840, 6191, 755, 2743, 2956, 2957, 7062, 2443, 2444, 984, 4246, 4734, 2261, 3146, 6204, 3314, 3923, 6939, 4895, 5339, 5857, 6206, 480, 4248, 3148, 5340, 5544, 5858, 985, 5769, 986, 3802, 4087, 7071, 4740, 4898, 5770, 2265, 700, 989, 2266, 2970, 3804].

GAMM-IMACS

Additional Contributions From Nelson H. F. Beebe

Gaps [6290]. Gate [7466, 7483, 3251, 1042, 6185, 3124, 3465, 5640, 7451, 2826, 3125]. gatelfield [1702]. Gates [1778, 5551, 5351]. gating [4156, 6056].

gauge [2385]. Gauss [5662, 5475, 6266, 5284, 1630, 3623, 3135, 1693, 4933].

Gaussian [6135, 1807, 1813, 5135, 6159, 5715, 5829, 2734, 6586, 6950, 7080, 1541, 1461, 1924, 2024, 2030].

gave [6135, 1807, 1813, 5135, 6159, 5715, 5829, 2734, 6586, 6950, 7080, 2826, 3125].

General-Purpose [2671, 5295, 4878, 2431, 1530, 2432, 2257, 4746, 4285, 2311, 2684, 4933, 1210].

General [7365, 1807, 1813, 5135, 6159, 5715, 5829, 2734, 6586, 6950, 7080, 1541, 1461, 1924, 2024, 2030].

gave [6135, 1807, 1813, 5135, 6159, 5715, 5829, 2734, 6586, 6950, 7080, 2826, 3125].

Generalized [548, 1371, 1959, 6523, 2107, 1886, 2576, 581, 2137, 4109, 5094, 4458, 3699, 815, 6505, 5169, 2925, 3151, 1913, 2594, 4923, 4125, 4637, 4777, 6809].

Generators [5296, 7347, 749, 1905, 4430, 6124, 1467, 2479, 1352, 603, 2498, 300, 2671, 5295, 4878, 2431, 1530, 2432, 2257, 4746, 4285, 2311, 2684, 4933, 1210].

General-Purpose [5296, 7347, 749, 1905, 4430, 6124, 1467, 2479, 1352, 603, 2498, 300, 2671, 5295, 4878, 2431, 1530, 2432, 2257, 4746, 4285, 2311, 2684, 4933, 1210].

Generation [7572, 4640, 2312, 6245, 5383, 3724, 4320, 5693, 4819, 4994, 2215, 6519, 6169, 6278, 7574, 7581, 7583, 557, 6998, 2538, 7460, 6292, 7033, 343, 5597, 398, 4724, 5611, 4402, 982, 115, 4591, 5765, 2776, 4088, 4257, 5640, 6610, 1555, 1353, 5455, 717, 5229, 2646, 2200, 1727, 4001, 3432, 6677, 5999, 1759, 2563, 3919, 3659, 3152, 3675, 4934, 849, 3366, 2164, 3375, 4637, 4777].

Generative [6798, 7025]. Generator [6382, 5912, 6416, 6542, 6708, 6835, 3684, 6626, 1084, 952, 2676, 6417, 4873, 3680, 3177, 5583].

Generators [5798, 6042, 914, 2784, 6593, 3841, 4485, 3728, 3594].

Geometric [1717, 3403, 4527, 2379, 3655, 3302, 3164, 3683, 3974, 4314, 4051, 4224, 4383, 2741, 5041, 5329, 4411, 3336, 3682, 3816].

Geometrical [599]. géométrique [3974]. Geometry [7353, 7399, 7424, 4821, 3075, 4042, 5525, 5031, 4913, 7144, 3857, 3586, 2432, 7374, 4285].

Georg [1051]. George [44]. Georgia [7342, 7284, 7577, 7252]. German [2377, 2097, 547, 61, 2695, 390, 159, 3101, 1136, 3456, 751, 1229, 3463, 907, 2937, 835, 578, 3156, 1334, 107, 776, 653, 1166, 7207, 7363, 124, 800, 4481, 4776, 35, 273, 1468].

Germany [7365, 7366, 7313, 7387, 7528, 7503, 7402, 7486, 7433, 7199, 7436, 7351, 5475, 61, 7465, 7405, 7442, 7522, 7557, 7553].

Gets [1949, 6732, 5834]. Getting [2525, 2746, 4580]. gewisser [1811].

GF [4276, 3800, 4567, 6519, 4353, 4221, 4374, 4558, 4559, 4375, 2734, 4437,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 65

Umwandlung
Hexadecimal-BCD
HGCD-D
Heuristics
High-Order
Heterogeneous
Heslington
High-Performance
3169
Heterogeneous
Hessington
Hessenberg
heterodyne
Heterogeneity
Hierarchical [6512, 4222, 7100, 7132, Hierarchy [4944, High [7384, 7497, 2631, 851, 1186, 3555, 5572, 5573, 2038, 3964, 4147, 1571, 4148, 2861, 4498, 4902, 5808, 5882, 6033, 3366, 4788, 1576, 6758, 1812, 4310, 5671, 1094, 2048, 6872, 2867, 6376, 6873, 6494, 3559, 5476, 5684, 3724, 4320, 729, 3980, 1585, 3858, 5975, 669, 4806, 6877, 1825, 4514, 3572, 3994, 3235, 6262, 6156, 2676, 5069, 1596, 4680, 3421, 3068, 3581, 5587, 5705, 3250, 125, 2071, 1395, 1396, 1511, 3253, 4182, 5706, 6789, 5503, 1840, 822, 4699, 93, 1517, 5712, 6063, 1402, 4354, 200, 339, 340, 5916, 4548, 4707, 5015, 1132, 1745, 1980, 2541, 7577, 2224, 4205, 5734, 3449.
high [5759, 2558, 50, 2945, 3137, 7145, 2565, 4406, 2958, 1153, 3314, 3799, 4736, 2778, 5856, 4084, 4250, 4739, 3152, 5344, 5770, 2580, 4744, 2585, 4904, 2008, 95, 3669, 1062, 1678, 5627, 3171, 3172, 1066, 2996, 5084, 1784, 3692, 1172, 3354, 5648, 6622, 2620, 2850, 3375, 2684, 2051, 2569.
High-Bandwidth [6873, High-Dimensional [6325, 6666]. High-end [1517, high-frequency [4861]. High-Level [1094, 6156, 1511, 4182, 7057, 993, 6730, 4148, 6872, 6432, 4588, 1696, 1062, 6355]. High-Order [2048, 3572, 1054, 3168, 3169]. High-Performance [7384, 1571, 5684, 3724, 4320, 3858, 4806, 5503, 5015, 4205, 6181, 5063, 5623, 5450, 6354, 5366, 5561, 5645, 6965, 6966, 6789,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Additional Contributions from Nelson H. F. Beebe

Information [3846, 3227, 301, 7164, 3081, 7536, 3894, 7477, 4210, 5520, 5732, 6685, 1631, 7198, 7507, 7161, 7162, 5622, 7252, 6239, 6650, 7358, 2753, 5956, 5085, 5209, 5445, 5446, 5447, 5448, 5449, 1746, 3278, 3895, 4364, 5161, 7151, 7161, 7351, 7536, 3227, 301, 7164, 3081, 7536, 3894, 7477, 4210, 5520, 5732, 6685, 1631, 7198, 7507, 7161, 7162, 5622, 7252, 6239, 6650, 7358, 2753, 5956, 5085, 5209, 5445, 5446, 5447, 5448, 5449, 1746, 3278, 3895, 4364, 5161, 7151, 7161, 7351].

Informed [6818, 1942]. Ingénierie [3153]. ingenuity [4404].

Inherent [6742, 903, 355, 1660, 4529]. Inheritable [3649]. Inherited [6343].

Initial [4489, 385, 7165, 179, 3447, 3448, 902, 4078, 2360, 2523, 3743, 137, 138, 3761, 3339].

Initialized [3473]. iniziali [137, 138].

Injecting [5798]. Injection [5370]. Injection-Based [5370]. Inlining [4767].

Inn [7233].

Inner [1383, 3603, 6684, 5922, 5528, 1898, 1452, 1919, 595, 3065, 3107, 3108, 3110, 1920, 1697, 491, 2621].

Innocuous [3427, 6017]. innovation [7523]. innovations [3198]. Innovative [7169].

Input [6999, 1195, 1594, 1608, 6520, 7022, 753, 1904, 1547, 537, 2482, 1176, 1356, 1800, 2343, 1276, 1213, 1974, 3438, 5999, 2759, 3322, 3323].

Inquiry [3542, 3631]. Insecure [4466].

insertion [4895]. Insight [7445, 5375]. Insights [5171].

Insignificant [6004]. Insomniacs [5174].

Inspired [7532, 5788]. Instabilities [700].

Instinct [6856].

Institut [7199]. Institute [7342]. Instruction [6856, 4289, 4488, 6365, 2672, 5585, 5911, 6904, 1849, 2351, 2547, 5310, 5317, 5321, 988, 3928, 5379, 2635, 6475, 1110, 1391, 4339, 6393, 6397, 6158, 2376, 1850, 4026, 1224, 2265, 7077, 5867, 3528, 4941, 6518].

Instruction-Level [5321]. instruction-set [5379].

Instruments [61, 1015, 3189]. Insurance [33]. Integer [2634, 7108, 6984, 5382, 3040, 6481, 5124, 1951, 3046, 5248, 1814, 5387, 6996, 2331, 1817, 1955, 5392, 6502, 6043, 1821, 6385, 222, 4167, 3867, 224, 2346, 6390, 5897, 1021, 6053, 7009, 3071, 5587, 5705, 2889, 5502, 385, 5504, 4350, 5148, 5402, 5914, 4702, 6167, 6794, 6072, 6528, 6679, 2536, 3604, 3441, 740, 5739, 6548, 5527, 5311, 5312, 5351, 5752, 5935, 5040, 2108, 2109, 2250, 6573, 6579, 6818, 145, 3487, 2121, 3489, 4419, 1905, 7073, 4901, 1669, 2133, 6337, 1774, 2592, 4429, 6210, 2140, 6455, 6950, 7080, 3935, 4269, 7084, 4757, 2147, 588, 5091, 5093, 5217, 5361, 6839].

Integer [5363, 5364, 5785, 6223, 6356, 5099, 3361, 1253, 1076, 3530, 5653, 5818, 2180, 4790, 5814, 2657, 2193, 4160, 6505, 5395, 6894, 2206, 820, 3586, 5288, 2700, 2893, 2368, 5289, 6066, 4541, 4705, 6527, 7117, 3091, 5161, 2405, 5603, 4225, 5999, 4233, 2750, 4729, 7053, 5851, 6928, 6005, 6006, 7075, 1668, 6338, 2804, 3687, 5086, 2999, 4448, 4629, 5652, 3278].

Integer-Division [6548]. Integerarithmetik [2121].

Integers [6865, 18, 549, 811, 5263, 5264, 3057, 877, 6673, 5722, 3889, 4373, 3638, 3639, 2112, 1146, 6197, 5764, 1768, 4423, 1667, 4601, 7076, 530, 2015, 3948, 5563, 2305, 3209, 3376, 2320, 1826, 871, 3256, 5609, 5615, 5199, 2030, 4769].

integrable [4411]. Integral [547, 333, 1349, 282]. Integral-Ungleichun [547]. Integrals
[ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE]

integrands [5155]. Integrate [6921].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Kind [6905]. Kingdom [7276]. Kingdom [7379]. Kit [2304, 2821].
Know [4329, 6775, 2821, 3014, 2]. Knowledge [5798].
Known [6998, 5908, 831, 4798]. Knuth [1505, 6119, 3839].
Kobe [7488].
Koblitz [5842, 5380, 5121, 5398, 4355].
Kolloquium [1484]. Komma [107]. komplexe [2051, 2100].
Kong [7458]. Können [1136]. Konrad [1379].
Konverter [3346]. Konvertierung [1975]. Konvertierungsroutinen [2481].
Konvolutionssumme [3156].
Korea [7403, 7509]. Koren [4668].
Krivine [6568, 6341].
Krylov [3551, 6903, 4273]. Kulisch [1671, 1672].
Kummer [6933]. Kutta [7112].
kvadratroden [1328].
KY [7457]. Kyoto [7575, 3192].

L [1483, 6764, 1671, 4785, 4979, 4992, 2389, 5043]. L-U [2389].
Laboratory [7137, 3550, 4093, 5105]. Lafayette [7330, 7393, 7480].
Lagrange [5122]. Lahey [3846]. Lake [7517, 7539]. Lakes [7467, 7526, 7393, 7409].
lambda [7123]. lambda-calculus [7123].
Lancaster [7280].
Lanczos [4018, 5185]. Land [6320].
Language [7282, 7468, 2857, 1101, 1728, 1389, 4327, 4328, 4329, 1511, 4186, 4348, 1400, 3747, 3265, 826, 2907, 3418, 6504, 3692, 5093, 5708, 5528, 6565, 3658, 5430, 5771, 5637, 6019, 3007, 6970, 4800, 3233, 3234, 6266, 5523, 4717, 4568, 4870, 5049, 5767, 3657, 3923, 3936].
Latency [7108, 4956, 4957, 3969, 3049, 4974, 6649, 6873, 5708, 5528, 6565, 3658, 5430, 5771, 5637, 6019, 3007, 6970, 4800, 3233, 3234, 6266, 5523, 4717, 4568, 4870, 5049, 5767, 3657, 3923, 3936].
Large-Number [25]. Large-Scale [7137, 5704, 1412, 1530, 6830, 3645, 7206].
Leaves [6504]. learn [3618]. Learned [3497]. learners [5066]. Learning
LEMA [5067]. L’empire [3593].

Look-Ahead [5218].

Look-Up [1742, 4196, 5059, 2123, 4426, 3827, 3436, 2663, 4019, 3946, 4943].

Lookahead [4159, 3460, 2001, 5232, 2662, 1899].

Looking [6563].

Lookup [5502, 4016, 6075, 5029, 5047, 5761, 2125, 2126, 6345, 3811, 1544, 998, 2814, 2815, 3860, 3433, 4035, 4856, 3322, 3323, 4085, 3152, 2035].

Lookup-Table-Based [6075].

Loop [3381, 3100, 7012, 5421, 2164, 3101].

Loops [3229, 4602].

LORIA [7498].

Losing [7087].

Loss [1513, 5622, 1512, 1968].

Lossless [5822, 7043, 7046, 5097, 2303, 3695].

Lossy [6495].

Lost [812, 5832, 6344].

L¨osung [1598, 4481, 4776].

Lottery [7087].

Louis [21, 7245].

Louisiana [7258, 7393, 7480].

Louisville [7226].

Lubbock [7233].

LUCAS [1658, 1470, 660].

Luigi [5877].

Luminy [7374].

LWE [7089, 6967].

LX [563].

LX-1 [563].

Lyapunov [6023].

Lyon [7453, 7368, 7564].

LZA [2537].

M [24, 3264, 4221, 4869, 4911].

M.I.R.A.C.L. [2285].

M68000 [1578, 1579].

MA [7467, 7573, 7271, 7158, 7194, 7257, 7538, 7240].

mac [4970, 5972, 6501, 6887, 7003, 5825, 6421, 6911, 5939, 6819, 4259, 6951, 4119, 4943, 2319].

MACHAR [2202].

Machin [4604].

Machine-Checked [4029].

Machine-Efficient [6997].

machine-independent [757].

Machinery [105, 86, 94, 7137].

Machines [7470, 5806, 7355, 1375, 81, 3741, 7029, 448, 7375, 7382, 7396, 7449, 7508, 7524, 77, 4622, 4313, 29, 40, 636, 72, 6104, 95,
Macro [4546, 3183]. Macro-Model [4546]. Macrocell [5256, 3918, 3841].
Macrocellular [869]. Macromodule [773]. Macros [1591]. Macsyma
[1076, 134, 3777]. Magnification [2160]. Magnitude [1090, 1871, 288, 583,
5352, 2883, 1878, 683, 2480]. Magnum [2625]. mail [3742]. main [378, 800].
[3512]. Major [6161, 3817]. Majority [4346, 6177, 6812]. Majority-Logic-
Decodable [4346]. majors [2811, 2998]. Make [6392, 5996, 5973, 1330, 3702].
[4171, 6513, 6897, 7015, 410, 3477]. Makuhari [7415]. malicious [6230]. Malo
[7253]. man [1328, 3938, 5639]. management [3038, 1696]. Managing
[127, 245]. Manifest [6768]. Manipulating [6691, 1238, 2378, 1332].
Manipulation [7190, 1070]. Manipulations [5296, 6188]. Manitoba
[2373, 7234]. Manticore [6988, 6848]. Mantissa [6675, 2282, 1794, 2928,
3319, 4898, 776, 1780, 941]. mantissas [2013, 2281, 2595]. Mantisse
[776]. Mantis [1794]. Manual [4492, 1946, 2176, 497, 2655, 301, 1273,
224, 958, 2067, 4659, 69, 3086, 1621, 1864, 1865, 834, 1895, 2117, 2258,
2438, 2439, 2441, 2995, 2987, 3510, 2151, 4456, 1467, 3363, 1477, 1085,
1010, 1091, 1380, 2514, 1133, 1219, 1525, 2114, 2946, 1894, 2437, 2440, 1161].
Many [6680, 437, 6549, 6044, 1624, 777, 5233]. many-core [6044]. Many-Term
[6680, 6549]. Map [5994, 5964, 3862, 3198]. MAPLD [7452]. Maple
[7335, 5416, 2867, 4971, 5394, 3600, 5344, 6949, 7378]. MAPM [4432].
March [1483, 7284, 7330, 7211, 7574, 7581, 7583, 7388, 7196, 7213, 7227, 7233,
7358, 7460, 7486, 7306, 7409, 7506, 7235, 7436, 7410, 7182, 7552, 7337, 7208].
[6230, 5669]. marks [2029]. Marriott [7409, 7377]. Marseille [7190]. Maryland
[7482, 7170, 7417, 3691, 721, 7170]. mashinnoi [1245]. mask
[4637, 4777]. Masking [3395, 2167]. MasPar [3550]. Massachusetts
[7167, 7424, 7279, 7291, 7316, 7317, 7491, 7494, 7422]. Massey [3084, 4607].
Massive [5802, 6282]. Massively [2502, 2887, 4181, 7347, 5599, 3511, 2645,
2646, 3253, 4183, 2981, 4912, 2347, 3242]. massively-parallel [2645, 4183,
2981]. master [7485]. Mastrovito [6317, 4117]. matched [909]. Matching
[2766, 4154]. Materialiensammlung [1484]. Math [5117, 6366, 6473, 3713,
3716, 1095, 1719, 3727, 3413, 3414, 3573, 553, 2526, 3742, 6905, 2529, 2083,
3089, 3090, 2090, 439, 4392, 6439, 2755, 2252, 4584, 1998, 3138, 5420, 3484,
3329, 2135, 4432, 7079, 2599, 2020, 2021, 5205, 5206, 2291, 3348, 2154, 6020,
3203, 3702, 5468, 2505, 2660, 4993, 2693, 2697, 4710, 2008, 1330, 1688, 1921,
3204, 7135, 6953]. Math-who [3089]. math.h [6753, 3631, 6431]. math.h
[7199, 4780, 1481, 4954, 5121]. Mathematica
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Mathematicians [7446, 4030]. Mathematics [7342, 7219, 7469, 4498, 5807, 7330, 6774, 3738, 2373, 7562, 1629, 4213, 4215, 6555, 7234, 7162, 2138, 7182, 2800, 7237, 2032, 2622, 7579, 718, 2308, 7171, 1377, 1839, 7346, 7472, 3616, 2753, 7145, 4074, 7199, 7324, 1796, 6851, 7346, 339, 340].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Multiple
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

N 8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 87

Multiply-by-Three [875]. multiply/addr [1704]. Multiplying [1587, 3523, 2309, 3376, 4685, 3368].

Multiply-by-Three [875]. multiply/addr [1704]. Multiplying [1587, 3523, 2309, 3376, 4685, 3368].

Multiply-by-Three [875]. multiply/addr [1704]. Multiplying [1587, 3523, 2309, 3376, 4685, 3368].

Multiply-by-Three [875]. multiply/addr [1704]. Multiplying [1587, 3523, 2309, 3376, 4685, 3368].

Multiply-by-Three [875]. multiply/addr [1704]. Multiplying [1587, 3523, 2309, 3376, 4685, 3368].

Multiply-by-Three [875]. multiply/addr [1704]. Multiplying [1587, 3523, 2309, 3376, 4685, 3368].

Multiply-by-Three [875]. multiply/addr [1704]. Multiplying [1587, 3523, 2309, 3376, 4685, 3368].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

918, 3485, 2777, 1439, 3489, 3320, 3321, 4418, 4594, 2576, 4088, 4257, 987, 1155, 766, 1906, 3327, 3156, 3492, 1673, 6826, 1911, 6828, 1539, 5862, 708, 454, 484, 6217, 3337, 1916, 531, 785, 2147, 2295, 5869, 938, 2028, 1250, 6612, 2829, 2158, 6361, 5647, 3527, 3018, 706, 4636.

Number [597, 3021, 7171, 2630, 3208, 3379, 3380, 4948, 4949, 4485, 1710, 4291, 4644, 3538, 2638, 2315, 3850, 4649, 5880, 4782, 4642, 3579, 2178, 1088, 1261, 1488, 2043, 4154, 3854, 5576, 6254, 3976, 3722, 4661, 937, 1247, 5359, 3947, 2471, 2295, 5869, 938, 2028, 1250, 6612, 2829, 2158, 6361, 5647, 3527, 3018, 706, 4636.

number [2700, 2893, 2368, 3883, 5588, 226, 2369, 2371, 2705, 252, 1034, 1209, 2375, 2376, 1168, 6723, 4619, 4622, 2605, 937, 1247, 5359, 3947, 2471, 2295, 5869, 938, 2028, 1250, 6612, 2829, 2158, 6361, 5647, 3527, 3018, 706, 4636.

Number-Theoretic Numbers [7453, 7498, 664, 1012, 4153, 39, 5124, 1492, 1492, 1094, 6374, 2503, 550, 5889, 6145, 3558, 6499, 6500, 7386, 4510, 1382, 2511, 6657, 331, 1388, 1107, 1828, 1829, 4331, 156, 6783, 4827, 6514, 672, 1206, 4836, 7465, 55, 877, 1515, 3744, 6673, 54, 3747, 6170, 7022, 2710, 558, 559, 41, 1211, 2536, 6796, 1975, 2540, 2714, 2904, 6174, 6176, 4206, 342, 5919, 6184, 6301, 4561, 7039, 1635, 6085, 260, 1528, 5534, 638, 685, 5848, 6570, 446, 2947, 4403, 2255, 3477, 6003, 115, 6007, 7059, 1151, 2779, 2780, 367, 4601, 1448, 3806, 1238, 6831, 185, 3934, 4913, 2147].

Numbers [6595, 2603, 4919, 5358, 3823, 3521, 1698, 3359, 6464, 6732, 1470, 1256, 5965, 948, 1078, 4944, 6778, 5238, 3960, 6133, 3384, 4967, 2326, 3559, 4902, 6379, 5689, 5131, 2668, 2669, 2670, 5894, 4807, 4808, 2343, 5585, 2833, 5275, 3734, 2688, 2689, 2698, 2367, 137, 1403, 2373, 307, 2378, 1614, 6071, 4543, 4703, 5404, 1214, 1295, 138, 6172, 3271, 681, 1623, 256, 2097, 2735, 2920, 4866, 5028, 3459, 5313, 1993, 2928, 6308, 4062, 5609, 6566, 2251, 6196, 3129, 1634, 2946, 1318, 3645, 3478, 3303, 363, 5617, 2764, 3650, 8, 4741, 4258,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Optimale [750, 751, 893, 107].

Optimalen [1493].

Optimaler [1210, 1061, 1789, 1352].

Optimisation [4838].

Optimised [4423].

Optimistic [5306].

Optimization [3555, 6880, 6156, 6664, 7460, 3624, 6303, 6916, 977, 4586, 3487, 4595, 3152, 6823, 6583, 3671, 5778, 3686, 5562, 2662, 2344, 2683, 3881, 4009, 2704, 5007, 6799, 5598, 2403, 7062, 5339, 3334, 6018, 6218, 7086, 7460].

Optimizations [3967, 3430, 4184, 6185, 4608, 4476, 4658, 5767, 6204].

optimize [5840, 6351].

Optimized [4780, 3706, 6478, 6667, 6900, 5591, 4194, 6549, 6190, 6315, 6097, 2766, 6443, 6579, 7126, 7067, 7068, 5948, 7089, 5636, 6841, 3659, 5768, 4916, 3241].

Optimizing [5397, 6160, 508, 2364, 1848, 6277, 5990, 5300, 2554, 5036, 3300, 4891, 5197, 3348, 6839, 3241].

Optimum [851, 3536, 333, 5173, 2158, 2727].

Options [966, 1032, 2135, 2311].

Optoelectronic [4181, 6943, 3782].

Oracle [6973].

Oracle-free [6973].

Orbit [2586].

Orbits [7038].

Order [2631, 7354, 2048, 7426, 3572, 4822, 93, 3605, 4367, 1643, 1054, 6933, 2964, 3671, 1912, 4097, 4101, 6596, 2992, 74, 3041, 6375, 2349, 249, 3085, 5295, 3619, 1436, 4732, 3801, 4497, 4274, 3830, 3011, 3528, 2626].

Ordered [1259, 5849].

Ordering [2277, 3069, 2927].

Ordinary [7165, 179, 4078, 5151, 6681, 364].

ordinateur [3153].

Ordinateurs [486, 4505, 5812, 6254].

Ordnance [7137].

Orecan [7534, 7576, 7236].

Oregone [7213, 7531, 6601, 4453, 1507, 1129, 1743, 2535, 3957, 4542, 206].

organizations [1852].

organized [7164, 7161].

Organizing [6821, 6889].

Organalist [1321, 1166, 1466].

orientation [6206].

Oriented [7192, 3989, 1025, 5280, 6668, 4207, 3791, 2949, 2776, 1236, 4473, 1995, 4732, 846, 3829].

origin [400].

original [3970, 3296].

Origins [5715, 5829, 7175, 7203, 703, 704, 769, 990, 1235].

Orlando [7526, 7311, 7261, 7264, 7523, 7208].

Orleans [7299, 7258, 7213].

Orthogonal [2143, 372, 4499, 3576, 3875, 4633, 4634].

Orthogonality [1524, 2808].

Orthogonalization [4380, 5002].

Orthonormal [3756].

OS/360 [562, 504, 439].

Oscillations [1054, 1276, 3743, 744, 1436].

oscillator [2853].

Osnovy [1245].

OSR [3981].

osservati [137].

Other [622, 1399, 1135, 6574, 3656, 3797, 7144, 4213, 4215, 235, 2773, 3322, 3323, 4113, 3918].

otsenochnoi [2323].

Our [14, 7287, 4721].

Out-of-Order [4367, 4097].

out-of-order-execution [3528].

Outer [3603, 4109].

outline [3992, 4634].

Output [1195, 1608, 5347, 1547, 537, 2482, 1878, 319, 3322, 3323, 6342, 1356].

Outputs [697].

Over-Redundant [6054, 3306, 3305, 3819].

Over-Relaxation [314].

Over-the-air [4552].

Over/Underflow [344].

overestimation [5345].

Overflow-Free
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

97

Place [7212, 7317, 6116, 3260]. placement [3536]. Places [1630]. plain
[2586]. Planning [246, 63, 64, 65, 66, 67, 68]. PLAs [1180]. Platform
[4646, 5776, 4623]. platforms [5191]. PLAUs [7059]. Plaza [7238]. pLiner
Point [2039, 6982, 3958, 2631, 5797, 2036, 6468, 4640, 4951, 5239, 5798, 6027,
6132, 6632, 4486, 5570, 4641, 3843, 6855, 6978, 4489, 4952, 217, 3962, 5658,
6231, 6470, 6979, 6232, 5876, 1484, 2854, 2855, 2856, 3026, 3027, 3028, 3029,
3030, 3213, 3214, 3215, 3541, 4646, 5118, 5120, 6032, 6367, 6369, 6638, 6980,
5802, 5660, 5661, 5804, 5805, 169, 1803, 5121, 5881, 6753, 2318, 4962, 1367,
1808, 3390, 5972, 1012, 3391, 3392, 3969, 4150, 4151, 4152, 1949, 4500, 2324,
4307, 1950, 4787, 6756, 1576, 2501, 3719, 5672, 860, 1014, 1094, 2047, 2651,
2866, 4507, 4508, 5250]. Point [5470, 5674, 5886, 6038, 6039, 6040, 6374, 6646,
6759, 3398, 3399, 3400, 2050, 6041, 2503, 2051, 727, 2330, 5889, 6145, 1266,
1267, 1376, 4316, 6378, 6649, 7000, 3558, 6494, 5476, 247, 864, 5686, 171, 3229,
3405, 1497, 1498, 5390, 5130, 6653, 2661, 1583, 5578, 2665, 3564, 4321, 5479,
5815, 6876, 1270, 6258, 6385, 3984, 1724, 2511, 730, 1196, 1385, 1502, 1725,
2341, 3055, 3987, 6149, 3989, 1197, 1198, 1274, 1387, 1726, 5895, 3866, 3993,
5133, 5265, 5487, 5488, 2871, 4324, 3413, 3414, 3573, 2061, 3416, 6156, 6152,
3574, 3868, 3870, 4329, 6775, 2346, 2515, 2516, 6662, 3999, 4000, 4331]. Point
[2205, 4818, 616, 2348, 2881, 3244, 4338, 4524, 4526, 4678, 4821, 5901, 5902,
6050, 6780, 6155, 1964, 6895, 5273, 1731, 5141, 6511, 5398, 3735, 4342, 6897,
6783, 1965, 2065, 501, 6158, 3878, 1732, 2885, 2887, 1967, 5400, 504, 1833, 6399,
6901, 6668, 4530, 5281, 5499, 3424, 3739, 4010, 4176, 3251, 5500, 1837, 6161,
2212, 1278, 6786, 6787, 962, 1511, 3425, 1203, 6516, 1513, 6162, 5589, 4182,
7014, 2214, 6517, 4999, 5822, 1279, 2215, 2891, 6273, 4532, 2699, 5707, 4347,
3254, 3742, 227, 228, 1607, 1970, 5505, 823, 877, 4022, 880, 1284, 6792, 1740,
2702, 2703, 4700, 965, 5402]. Point [5914, 6274, 6672, 966, 1032, 3884, 1402,
1609, 6673, 4351, 4540, 5510, 306, 677, 2218, 2219, 2374, 1848, 1849, 4188, 7021,
5716, 5717, 2709, 6169, 6278, 6279, 6280, 6283, 6794, 7114, 4849, 341, 969, 391,
392, 3435, 4029, 4191, 4192, 5293, 3888, 6526, 2536, 1035, 3602, 3087, 6796,
5593, 1615, 1975, 435, 6680, 4360, 970, 6534, 2538, 5723, 2540, 2714, 2904, 6173,
6682, 6290, 1300, 1409, 5302, 5831, 3891, 1131, 6176, 1618, 5158, 6539, 1860,
1861, 1862, 2086, 2087, 6540, 7030, 5163, 5732, 6685, 3098, 3099, 4205, 3276,
342, 1864, 5160, 6292, 5594, 6080, 2909, 5919]. Point [3100, 3101, 5735, 6293,
5524, 5738, 5740, 5920, 5922, 6294, 6420, 4367, 3896, 5525, 1303, 1626, 1221,
2393, 6182, 6298, 6691, 255, 6300, 1627, 5925, 6183, 344, 1223, 1307, 1416, 1986,
2233, 2915, 3763, 3897, 3898, 4214, 4368, 4557, 4857, 4858, 5019, 5409, 4371,
3765, 742, 745, 7035, 5306, 1870, 5744, 2547, 6549, 1750, 890, 1041, 5308, 3290,
5528, 4375, 827, 4222, 3458, 2409, 2923, 5311, 5312, 5836, 4380, 3772, 750, 751,
893, 1045, 752, 5838, 5929, 3294, 3906, 6556, 6557, 6915, 6916, 6306, 6089, 6186,


8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

98

6309, 6311, 5176, 6430, 1636, 6092, 5034, 2103, 2742, 2744, 2931, 5842, 6188].
Point [4571, 4872, 5037, 6189, 6314, 6559, 5753, 5754, 4392, 1528, 440, 5320,
5321, 7044, 7046, 6193, 1141, 2105, 5180, 5998, 6436, 831, 904, 1430, 570, 5755,
6194, 3298, 2936, 2937, 2247, 2426, 6322, 6565, 2748, 4886, 2557, 6567, 639, 686,
2559, 5940, 6439, 1640, 2755, 7052, 1642, 5848, 6815, 4582, 525, 576, 3787, 402,
2564, 1148, 4402, 1998, 6329, 3474, 3138, 5614, 4403, 6440, 7056, 7124, 982, 5539,
5330, 3790, 449, 6003, 6004, 6332, 6333, 6334, 6576, 6577, 362, 4405, 4590, 2434,
5541, 1531, 1763, 6199, 641, 1895, 2117, 2258, 2438, 2439, 3143, 5055, 5618, 6201,
6442, 1151, 2767]. Point [7066, 4410, 2445, 2446, 6444, 6580, 6710, 5943, 915,
5062, 5944, 6010, 3794, 5189, 5338, 7065, 3484, 2776, 4081, 3654, 3656, 3658,
3797, 3798, 5065, 2571, 2964, 5946, 4417, 2779, 2780, 5424, 7068, 2003, 644,
1058, 1324, 2575, 2264, 4419, 4596, 4256, 6207, 6716, 1156, 1234, 1326, 5948,
6011, 2128, 7073, 701, 4259, 4425, 6012, 2787, 2788, 3154, 3665, 6585, 5546,
2791, 2975, 1772, 2584, 3157, 4903, 5623, 5431, 5432, 6449, 6450, 2274, 991,
2275, 1238, 3672, 921, 922, 6210, 2276, 993, 3160, 2277, 4608, 5624, 2278, 2799,
5072, 5440, 5441, 5626, 5953, 4265, 6719, 6455, 1540, 6346, 1679, 453, 1680].
Point [6347, 5778, 3935, 5074, 1543, 4097, 2596, 1454, 1775, 4914, 5076, 5348,
2284, 4105, 4441, 4755, 5077, 5779, 7083, 4615, 5079, 2985, 7088, 1776, 5636,
5865, 2597, 3683, 2463, 269, 212, 2986, 2017, 5782, 1686, 2807, 2992, 3180, 3181,
3182, 3345, 3688, 3689, 2289, 5958, 6220, 6955, 7094, 3346, 6121, 6122, 6597,
2020, 2021, 1689, 2997, 5959, 2603, 4919, 843, 1338, 1458, 1459, 1785, 5552,
3944, 3945, 5090, 1340, 4116, 5868, 3947, 1786, 5554, 2472, 2609, 2610, 3004,
5093, 5094, 1465, 5555, 6727, 1789, 5217, 5361, 6609, 3520, 4926, 6124, 6610,
4124, 592, 3350, 4458, 6353, 6020, 7098]. Point [6460, 1072, 5362, 2027, 848,
5556, 2824, 3521, 2826, 6729, 3353, 6354, 1349, 490, 5097, 5870, 6615, 3833, 3195,
6226, 6462, 2301, 3951, 6731, 215, 6362, 1469, 1701, 2619, 5103, 5226, 5370, 5371,
5564, 5565, 5647, 5650, 6464, 1556, 1354, 2033, 5791, 7101, 3013, 3014, 5963,
216, 3203, 2304, 6228, 4284, 6129, 1797, 4471, 5229, 2627, 799, 3021, 1706, 3532,
5377, 5794, 4139, 948, 1941, 6848, 6849, 5966, 6625, 5110, 5568, 5654, 5111, 5378,
5235, 6627, 5701, 5898, 6049, 6778, 4627, 6357, 4282, 2173, 4492, 3378, 5379, 662,
2853, 2632, 1943, 1944, 6466, 6976, 3960, 1564, 4487, 5657, 6230, 3025]. point
[2171, 2172, 3708, 3845, 5459, 416, 5460, 3538, 6030, 6133, 6031, 720, 296, 1485,
2494, 2636, 3031, 3216, 3217, 3383, 3384, 3385, 3386, 4491, 6368, 6475, 6476,
6981, 2495, 1085, 1010, 1947, 2040, 5662, 1800, 2314, 1801, 1802, 1362, 2316,
1569, 1570, 2041, 2317, 4785, 6137, 4148, 4300, 1487, 2498, 2863, 3039, 5574,
5884, 2043, 1262, 1368, 1807, 2181, 2499, 2182, 1809, 5885, 4303, 2045, 2321,
6986, 2645, 3223, 3041, 2322, 4306, 5245, 5246, 1091, 2183, 1370, 2325, 5810,
4790, 2500, 1190, 5126, 3855, 2186, 2326, 6247, 6484, 2327, 2187, 2328, 2648,
2649, 3047]. point [1813, 4311, 4506, 4656, 4793, 4794, 4795, 5127, 5249, 5973,
6249, 6991, 3720, 6992, 1578, 1579, 1716, 299, 2188, 1718, 666, 5252, 5576, 4314,
3856, 1015, 4798, 5255, 5387, 5577, 6994, 6995, 7110, 2189, 1016, 1193, 6491,
4800, 4974, 6377, 5814, 6650, 3228, 4975, 3559, 2505, 1815, 4801, 2191, 2658,
7111, 6379, 6380, 1954, 6495, 1377, 6496, 3404, 6256, 1378, 4805, 4976, 2663,
3230, 379, 1585, 2664, 6381, 3859, 4979, 1818, 2056, 2667, 3726, 3861, 5892,


8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

1380, 1722, 2201, 2668, 2669, 2670, 5975, 6043, 2337, 3052, 4512, 5484, 3892, 3053, 3983, 5976, 4807, 4808, 3986, 1501, 1589, 1824.

1380, 1722, 2201, 2668, 2669, 2670, 5975, 6043, 2337, 3052, 4512, 5484, 3892, 3053, 3983, 5976, 4807, 4808, 3986, 1501, 1589, 1824.

1380, 1722, 2201, 2668, 2669, 2670, 5975, 6043, 2337, 3052, 4512, 5484, 3892, 3053, 3983, 5976, 4807, 4808, 3986, 1501, 1589, 1824.

1380, 1722, 2201, 2668, 2669, 2670, 5975, 6043, 2337, 3052, 4512, 5484, 3892, 3053, 3983, 5976, 4807, 4808, 3986, 1501, 1589, 1824.

1380, 1722, 2201, 2668, 2669, 2670, 5975, 6043, 2337, 3052, 4512, 5484, 3892, 3053, 3983, 5976, 4807, 4808, 3986, 1501, 1589, 1824.

1380, 1722, 2201, 2668, 2669, 2670, 5975, 6043, 2337, 3052, 4512, 5484, 3892, 3053, 3983, 5976, 4807, 4808, 3986, 1501, 1589, 1824.

1380, 1722, 2201, 2668, 2669, 2670, 5975, 6043, 2337, 3052, 4512, 5484, 3892, 3053, 3983, 5976, 4807, 4808, 3986, 1501, 1589, 1824.

1380, 1722, 2201, 2668, 2669, 2670, 5975, 6043, 2337, 3052, 4512, 5484, 3892, 3053, 3983, 5976, 4807, 4808, 3986, 1501, 1589, 1824.

1380, 1722, 2201, 2668, 2669, 2670, 5975, 6043, 2337, 3052, 4512, 5484, 3892, 3053, 3983, 5976, 4807, 4808, 3986, 1501, 1589, 1824.

1380, 1722, 2201, 2668, 2669, 2670, 5975, 6043, 2337, 3052, 4512, 5484, 3892, 3053, 3983, 5976, 4807, 4808, 3986, 1501, 1589, 1824.

1380, 1722, 2201, 2668, 2669, 2670, 5975, 6043, 2337, 3052, 4512, 5484, 3892, 3053, 3983, 5976, 4807, 4808, 3986, 1501, 1589, 1824.

1380, 1722, 2201, 2668, 2669, 2670, 5975, 6043, 2337, 3052, 4512, 5484, 3892, 3053, 3983, 5976, 4807, 4808, 3986, 1501, 1589, 1824.
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

point [2797, 2978, 2589, 2266, 2970, 2267, 3804, 7074, 2268, 2269, 2581, 3328, 2007, 526, 7075, 3495, 2270, 837, 7136, 2585, 2793, 2977, 4904, 2008, 2273, 3331, 4090, 5773, 2453, 2588].

point [3940, 5203, 1546, 2465, 787, 4113, 4443, 6722, 3817, 2468, 1688, 1921, 2996, 4618, 1690, 2290, 1169, 2469, 2470, 4444, 4445, 4620, 5084, 5085, 5086, 5207, 5208, 5209, 5210, 5211, 5212, 5353, 5354, 5355, 5356, 5445, 5446, 5447, 5448, 5449, 2811, 2998, 2459, 3933, 3934, 5633, 3675, 3335, 776, 2013, 2281, 2595, 2142, 7082, 4912, 6018, 780, 709, 710, 3172, 3814, 4106, 4754, 5549, 3936, 4271, 4442, 4916, 4917, 5780, 3938, 3680, 2801, 2802, 2983, 2984, 2803, 1685, 3342, 483, 4910, 926, 3343, 3178, 3508, 2016, 3509, 2148, 1065.

point [4281, 2029, 941, 6355, 2828, 2829, 4930, 4931, 715, 794, 3696, 1075, 5557, 1793, 2617, 2478, 2480, 3698, 4461, 4462, 1350, 2031, 6461, 5224, 1351, 2831, 2161, 492, 2483, 849, 1702, 3953, 2486, 3009, 4771, 4936, 5225, 5372, 5790, 6023, 2163, 2487, 1795, 1471, 1472, 1473, 1474, 1703, 1355, 1796, 540, 541, 542, 3955, 2163, 2303, 5104, 795, 2034, 2488, 2489, 1255, 294, 1704, 2164, 3204, 3368, 1938, 1559, 2306, 2838, 2490, 1356, 2623, 2624, 4132, 5228, 1798, 1560, 4939, 5231, 5567, 5792, 5964, 947, 2626, 4134, 4285, 4940, 4941, 7104, 5793, 598, 797, 1357, 2843, 6968, 194, 2845].

Point-Targeted [6901].

Point/Target [6901].

Point/Integer [2346].

Point/logarithmic [2296].

Pointers [3484].

Points [2051, 5813, 5740, 3665, 3960, 6996, 3647].

Poisoning [6855].

Poland [7430, 7579].

Polar [6623].

Polish [457].

Pollard [2116].

Polyhedra [4005].

Polyhedron [3603, 4031].

Polymath [1321].

Polymorphic [901].

Polynomapproximation [768].

Polynome [1061].

polynomial [3022, 1252, 4594].

Polynomials [5969, 6478, 4796, 420, 4322, 4003, 5983, 5280, 304, 6168, 1228, 3136, 766, 1456, 241, 2162, 4657, 4977, 5397, 4823, 6397, 6157, 1510, 1126, 1738, 4846, 5403, 1037, 6413, 6538, 6683, 259, 284, 4573, 1429, 6336, 6445, 2786, 5775, 6348, 192, 193, 4479, 6048, 768, 1061].

Polyphase
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Portland [7534, 7576, 7277, 7584, 7236]. Porto [7512, 7552]. Portugal [7455]. PosAx [6909]. PosAx-O [6909]. Posit [6977, 6742, 6651, 6652, 6497, 6382, 6655, 6386, 6657, 6659, 6877, 6878, 6887, 7003, 7010, 6900, 6902, 7017, 6792, 6279, 6280, 6281, 6798, 6412, 6909, 6416, 6542, 6802, 7034, 6911, 6807, 7040, 6430, 6699, 6432, 7043, 7047, 6564, 6813, 7050, 6921, 6922, 6923, 6924, 6708, 6819, 6931, 6932, 7057, 7058, 7059, 7060, 6712, 6713, 6822, 6938, 7067, 7069, 6945, 6948, 6591, 6826, 6827, 6831, 6948, 6591, 6833, 6834, 6952, 6720, 6835, 7091, 6954, 6957, 6727, 6611, 6840, 6612, 6845, 6964, 6733, 6626, 6735, 6850, 7105, 6972, 6613, 6771, 6905, 6417, 6709, 7090, 6805, 6717, 6728].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Proceedings [7420, 7182, 7293, 7268, 7463, 7525, 7176, 7338, 7339, 7573, 7178, 7297, 7296, 7209, 7553, 7182, 7293, 7268, 7463, 7525, 7176, 7338, 7339, 7573, 7178, 7297, 7296, 7209, 7553, 7171, 7252, 7467, 1979, 7510, 7527, 7299, 7532, 7365, 7366, 7342, 7210, 7312, 7454, 7512, 7368, 7187, 7428, 7357, 7544, 7440, 7576, 7535, 7456, 7222, 7164, 7502, 7402, 7389, 7226, 7134, 7370, 7404, 7416, 7442, 7458, 7459, 7474, 7475, 7486, 7489, 7504, 7515, 7519, 7549, 7550, 7262, 7151, 7306, 7406, 7381, 7250, 7264, 7215, 7263, 7372, 7198, 7349, 7335, 7446, 7336, 7407, 7418, 7447, 7461, 7478, 7394, 7448, 7145, 7235, 7350, 7230, 7436, 7173, 7321, 7322, 7204].

Proceedings [7420, 7182, 7293, 7268, 7463, 7525, 7176, 7338, 7339, 7573, 7178, 7297, 7296, 7209, 7553, 7171, 7252, 7467, 1979, 7510, 7527, 7299, 7532, 7365, 7366, 7342, 7210, 7312, 7454, 7512, 7368, 7187, 7428, 7357, 7544, 7440, 7576, 7535, 7456, 7222, 7164, 7502, 7402, 7389, 7226, 7134, 7370, 7404, 7416, 7442, 7458, 7459, 7474, 7475, 7486, 7489, 7504, 7515, 7519, 7549, 7550, 7262, 7151, 7306, 7406, 7381, 7250, 7264, 7215, 7263, 7372, 7198, 7349, 7335, 7446, 7336, 7407, 7418, 7447, 7461, 7478, 7394, 7448, 7145, 7235, 7350, 7230, 7436, 7173, 7321, 7322, 7204].
1410, 516, 2408, 2410, 2411, 3262, 2741, 2423, 2427, 2562, 3128, 2563, 1646, 1999, 2257, 2437, 3164, 4615, 6353, 97, 151, 1558, 6224, 5973, 1593, 6264, 4991, 7012, 5824, 3437, 3599, 3452, 2234, 5606, 2554, 6829, 6018, 3367, 3895.

Programmierzeichen [1094]. **Programmierende** [888]. **programm** [5184]. **Programmiersprachen** [1094]. **Programmierung** [3115, 3115]. **Programm** [7185, 7254, 7271, 7282, 7468, 2857, 2631, 6246, 7367, 6989, 1094, 172, 4329, 157, 4182, 6058, 3587, 4186, 1400, 3265, 3894, 4210, 5520, 6298, 1524, 2725, 4370, 5599, 3115, 1312, 7188, 6438, 4234, 6323, 445, 3301, 2953, 2954, 2771, 3155, 7204, 6119, 7128, 2921, 3184, 3833, 942, 2619, 325, 4471, 493, 6229, 3963, 4299, 1091, 300, 1507, 6272, 2906, 5162, 5163, 5164, 7248, 2404, 2422, 316, 2760, 2570, 1161, 486, 488, 147, 1248, 5095, 3367, 3016, 3373, 7378, 3895]. **Programmpaketes** [1885]. **Programms** [6753, 2860, 3035, 1714, 1373, 5250, 5470, 5675, 6038, 6043, 2674, 2675, 7005, 6897, 6273, 7037, 2436, 642, 5855, 4434, 3164, 4615, 6353, 97, 151, 1558, 6224, 5973, 1593, 6264, 4991, 7012, 5824, 3437, 3599, 3452, 2234, 5606, 2554, 6829, 6018, 5444, 2292, 6351, 6973]. **Progress**
2087, 5729, 5303, 6418, 6179, 6811, 2393, 3114, 6084, 630, 5929, 5930, 3461, 4385, 4718, 5315, 4064, 6701, 1883, 6318, 7048, 3467, 3472, 1146, 3222, 4304, 1713, 4310, 4318, 2510, 3994, 423, 2524, 3073, 2361, 3582, 3431, 7024, 3444, 2386, 2227, 2913, 3104, 3282, 889, 2735, 2927, 2929, 4058, 3462, 1760, 2435, 2762, 2952, 3142, 3479, 4077, 2778, 5856, 4084, 4249, 4250, 4739, 4599, 4743, 4744, 2977, 5439, 3168, 3169, 3171, 3172, 5078, 3517, 2813, 3003, 1172, 3835, 5566, 5648, 2842, 1746, 1568, 2506, 1725, 1824, 6054, 2523, 1605, 1613, 5011, 4385, 4718, 3494, 4440, 1932, 4453, 6021, 3527, 3532, 4304, 4318, 3994, 2524, 3431, 3444, 3462, 1760, 3479, 4077, 2813, 3003.

2357, 2359, 2360, 2523, 2690, 3249, 4684, 4830, 2361, 1971, 1406, 3595, 4190, 4850, 4704, 5721, 4197, 4198, 4030, 3091, 3444, 625, 739, 4036, 5730, 3761, 2724.

root [3280, 2090, 3106, 3287, 3905, 2929, 4077, 4080, 4895, 1328, 2005, 4899, 3495, 1668, 1159, 4604, 3931, 3932, 4094, 6456, 4612, 781, 3170, 3172, 3507, 2469, 2470, 5448, 291, 188, 4275, 1463, 4277, 5453, 5216, 4279, 78, 84, 4461, 6463, 4771, 3019, 5795, 4480, 4945, 4287, 2046, 1834, 6025].

Root-Finding [1834].

Rooting [1187, 1583, 1115, 1207, 2536, 120, 1887, 359, 702, 3561, 3980, 2510, 3994, 4168, 2890, 3612, 2400, 3901, 3464, 2255, 2567, 4085, 2132, 2035, 3017].

Roots [4639, 3535, 5807, 18, 548, 549, 1094, 809, 5678, 5684, 1952, 812, 3561, 3980, 2510, 3994, 4168, 2890, 3612, 2400, 3901, 3464, 2255, 2567, 4085, 2132, 2035, 3017].

Ropes [5471].

Rostock [7387].

Rotation [4147, 2070, 2706, 3756, 3096, 5743, 2210, 5711, 5408].

Rotation/Vectoring [4147].

Rotations [3735, 6283, 3756, 4282, 6763, 294].

Rotator [3387, 2684].

Rotators [4598].

Rotten [2774, 2775].

Round [602, 6870, 6250, 6759, 608, 864, 1199, 277, 6158, 7112, 881, 4541, 6173, 6174, 5730, 473, 5747, 5836, 5933, 204, 205, 2748, 314, 6098, 6325, 4402, 6013, 6121, 6122, 6597, 4122, 6353, 1936, 3521, 4128, 4281, 1182, 1185, 2171, 1582, 955, 3996, 422, 4811, 4812, 961, 3743, 5290, 967, 6172, 5407, 5411, 1755, 1882, 2251, 3308, 1059, 2266, 3940, 2023, 2120].

Round-Off [6870, 608, 277, 7112, 881, 204, 205, 2748, 314, 6325, 6597, 6533, 3521, 602, 6250, 864, 1199, 6158, 5730, 473, 6121, 6122, 4122, 1936, 3521, 4128, 4281, 1182, 1185, 2171, 1582, 955, 3996, 422, 4811, 4812, 961, 3743, 5290, 967, 6172, 5407, 5411, 1755, 1882, 2251, 3308, 1059, 2266, 3940, 2023, 2120].

Rounded [6870, 608, 277, 7112, 881, 204, 205, 2748, 314, 6325, 6597, 6533, 3521, 602, 6250, 864, 1199, 6158, 5730, 473, 6121, 6122, 4122, 1936, 3521, 4128, 4281, 1182, 1185, 2171, 1582, 955, 3996, 422, 4811, 4812, 961, 3743, 5290, 967, 6172, 5407, 5411, 1755, 1882, 2251, 3308, 1059, 2266, 3940, 2023, 2120].

Round-To-Odd [4541].

Rounding [5784, 1790, 5364, 5785, 79, 3950, 490, 5561, 6462, 5370, 3010, 7148, 4815, 5269].
of the document as if you were reading it naturally.
[4302, 4714, 4267, 4270, 5106, 4133]. Saturation [1054, 4269, 4915, 4669].
Saudi [2865]. Savage [1733, 1734, 1736, 1740, 1750, 1763, 1772, 1689].
Savart [7082]. Save [4522, 4523, 6153, 335, 5281, 753, 3141, 2784, 3569, 2877, 4337, 2886, 4686, 5915, 1167, 5781, 5866, 4460]. Saving [4580]. SC’06 [7479].
Scalar [1945, 5380, 4288, 6469, 5121, 2650, 5891, 5511, 4550, 5744, 6011, 4734, 4416, 4592, 4735, 4436, 4611, 4478, 5243, 5244, 3394, 6395, 2230, 2397, 2398, 2099, 1993, 2416, 6209, 3005, 5228, 6486, 4869]. Scalars [4611, 4879].
Scanning [2479]. SCG’01 [7424]. Schaltkreisen [2611]. Schaltungen [1164]. Schaltungsanordnung [2097]. scheduling [2723]. Scheme [4950, 7108, 1363, 6870, 610, 2070, 5004, 5152, 7115, 5010, 5594, 3283, 3769, 1421, 896, 4719, 440, 261, 2997, 1069, 6359, 1183, 4291, 2210, 4019, 4023, 5005, 7019, 5298, 5299, 3622, 2408, 2410, 3127, 6215, 4633, 4634, 3375, 4827, 3900, 2798, 4132].
Second-Generation 8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 117

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

593, 6841, 3954, 90, 2506, 4665, 4161, 5718, 4062, 3151, 5196, 3670, 2467, 5375.
Signed-Digit [219, 1365, 1819, 4321, 4211, 6084, 4068, 2576, 3327, 489, 593, 3954, 2506, 4665, 4161, 3151, 5196].
Signed-LSB [5522].
Signed-Number [671].
Significance [859, 1013, 1513, 283, 1747, 761, 832, 1053, 793, 1512, 1968, 178, 981, 1052, 787, 2614, 2615, 941].
Significand [5561].
significands [4024].
Significant [3034, 5381, 461, 5890, 55, 554, 54, 346, 7045, 162, 5945, 5622, 237, 847, 3703, 3886, 318, 2967, 1554].
significant-digit [318].
Signs [3714, 3874].
SIGNUM [7185, 538].
SIGPLAN [7282, 7468].
SIKE [6667, 6785, 6553].
Silicon [5309, 7004, 2273].
SIMD [4292, 6136, 4785, 5676, 4979, 5698, 4984, 4339, 6789, 3587, 7019, 5726, 5831, 6716, 7076, 5554, 4285, 7104, 6225, 6357].
Similar [1699, 942].
Simple [857, 4796, 1267, 1376, 1602, 2524, 5501, 2890, 1517, 4540, 4550, 6536, 4553, 5167, 2550, 441, 572, 2762, 6206, 121, 1770, 649, 1452, 1794, 4657, 2679, 118, 5403, 1971, 6096, 2952, 452, 3192].
simpler [4693, 4833].
simplification [2840].
simplified [5010, 5040, 1353, 3913].
simplify [4493].
simplifying [3488].
simulated [5290, 7038, 759].
simulating [7013, 6534].
simulation [7438, 6487, 5820, 3579, 334, 2887, 5717, 635, 2938, 3653, 7006, 3161, 6347, 5782, 1943, 1944, 3566, 3061, 746, 1224, 1527, 1752, 4387, 5939, 980, 5345, 1449, 1934, 3006, 795, 353].
simulation-based [5717].
simulations [5926, 6187, 6339, 5550, 6471, 5894, 5486, 5694, 6267, 6799, 4578].
simulator [880, 3276, 1446, 879].
simulink [5776, 3332].
simulink-based [5776].
simultaneous [4288, 6394, 1207, 253, 3416, 4822, 6159, 7113, 2080, 7032, 3896, 2095, 3455, 5029, 5838, 6427, 6186, 6311, 5322, 2934, 5761, 1149, 1655, 5065, 1673, 708, 3948, 6738, 6739, 4961, 1956, 5689, 2872, 2873, 2874, 4339, 2884, 625, 1867, 2924, 2241, 2242, 3780, 3633, 5938, 1760, 4878, 3786, 5617, 2259, 2273, 3680, 3177, 2604, 1928, 3529, 251].
single-[3896].
single-board [2080].
single-channel [2242].
single-chip [2872, 2873, 2874, 1928].
single-multiplier [4297].
single-precision [3714, 5322, 5065, 2934, 4878, 3680, 3177].
single-rail [3786].
single-term [5689].
singular [3735, 4342, 3096, 1886, 4172, 4415].
singularity [5155].
sink [6516].
sinking [6627].
sinks [3596, 1408].
slash [1138, 910, 1147, 1888, 2461].
slave [1950].
sleef [6721].
SLI [3549, 2936, 2937, 3126, 2475, 2827, 3193, 3522].
SLI-Arithmetik [2936, 2937].
slice [1401, 1954, 1255].
sliced [5680, 4431].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

1077, 495, 547, 3578, 4199, 1755, 1637, 833, 2593, 946. Stabilized [103].

Stabilizing [4898]. Stable [5030, 1228, 2612, 888, 889]. Stack [1033, 1285].

Stacked [6221]. Stacking [6221]. stage [5979]. Stages [4180, 3494, 3495, 1933, 2836].

Staggered [5469, 3506]. stairs' [2955]. Stairway [3704].

Standardized [4368]. Standards [5118, 2673, 5160, 3939, 6727, 2300, 1501, 2203, 1757, 3473].

Standpoint [389]. Stanford [7390, 7250]. STAP [5762].

Start [5045]. Starting [280, 383, 2761, 579, 3679, 532, 596, 5170, 451, 3170].

Std [2039, 6506, 6540]. Steady [6929]. Steamboat [7501].

Steering [6240, 6749, 6861, 6606]. Stein [1017]. Stencil [6596]. Stengle [6568, 6341].

Step [6250, 6762, 1075, 92, 3107, 3108, 3109, 3110, 1697]. step-by-step [92].

Stocks [4261]. STOIC [1685]. Stokes [3565, 3582, 4130]. stopping [415].

Storage [865, 5506, 7577, 286, 144, 5915, 3343]. Storage-Efficient [865].

Strawman [4673]. Stream [6713, 6834, 6245]. Stream-Based [6834, 6713].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 126

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

1521, 971, 7160, 7213, 7277, 7278, 7334, 7404, 7416, 7430, 7444, 7474,
7488, 7489, 7490, 7492, 7504, 7505, 7516, 7519, 7538, 7540, 7550, 5732,
6685, 1864, 4555, 682, 743, 3624, 5168, 7228, 6913, 1137, 1423, 1875, 5604

Systems [752, 5839, 5931, 3906, 5032, 5176, 287, 1142, 5756, 7336, 6563, 5328,
7395, 7408, 7419, 7435, 7448, 7462, 7530, 7542, 7571, 1147, 1888, 5048, 4241,
4883, 4242, 2954, 3480, 6820, 2771, 918, 3485, 2964, 3318, 1439, 2576, 3327,
3156, 3492, 5200, 1673, 7828, 3502, 7450, 3678, 1916, 2145, 3681, 4109, 7323,
3013, 1077, 796, 3208, 5378, 1004, 3379, 3380, 4948, 6975, 2040, 2315, 3850, 4782,
45, 1487, 3552, 2180, 1263, 2642, 1810, 2328, 5576, 3976, 1815].

[278x527]systems

[6380, 2197, 955, 5257, 2668, 2669,
2670, 2671, 4667, 4515, 4516, 4667, 4515, 4516, 1826, 5139, 3736, 1836, 1277, 7221, 386, 2695,
2696, 2698, 2700, 3588, 226, 336, 2528, 5290, 2964, 5327, 3009, 6023, 1559, 946, 1182, 4136, 4776, 1942, 1251, 1758, 1236, 1935, 800].

Systolic [2042, 5467, 1814, 2194, 2195, 3051, 5259, 2513, 4983, 2691, 7014, 2706,
3887, 2081, 2389, 4559, 2405, 3292, 4060, 4388, 3135, 7126, 2127, 2131, 2796,
1914, 3180, 1697, 2158, 3199, 5871, 2166, 1953, 2178, 2204, 4675, 2681, 2877,
3064, 2690, 2898, 1857, 4221, 2415, 2739, 4717, 4226, 4390, 4509, 5035, 4397,
1999, 2966, 2263, 4264, 3514, 2030, 3200, 4283, 4938, 4774, 2310, 2684].

Szabo [509].

Szeged [7401].

T [6680, 929, 6229, 2220, 6443, 6839].

T-count [6443, 6839].

T-depth [6839].

T-Series [220].

T. [929, 2467].

T800 [3079, 2082].

T9000 [2733].

Tabellenzugriff [2035].

Table [6241, 6640, 6750, 6862, 5813, 1581, 52,
4823, 4016, 2534, 1742, 4196, 3436, 6075, 24, 4378, 5029, 4401, 5047, 4073, 2123,
2125, 2126, 4426, 3805, 3674, 3811, 1544, 998, 4114, 3827, 6607, 4272, 2609,
2610, 2814, 2815, 3004, 1705, 2035, 3375, 4332, 4987, 5818, 6509, 2663, 5494,
3433, 4035, 101, 4856, 2952, 4732, 3322, 3323, 4085, 3152, 3946, 6136, 4721].

Table-assisted [1705].

Table-Based [5813, 4196, 4073, 5818, 6509, 4823, 4732].

Table-Driven [3805, 2472, 2609, 3004, 2534, 2610].

Table-Lookup

[2814, 2815, 3152].

Tables [1719, 3237, 54, 7048, 5059, 3922, 5954, 6345,
3162, 3503, 3810, 4099, 4920, 5088, 4521, 3860, 6518, 2555, 409, 4943].

tabular [5826].

tackles [1969].

Tagging [6779].

Taylor [7571, 7539].

Tails [5926].

Taipei [7278, 7476, 7540].

Taiwan [7278, 7540, 7476].

take [3385].

Taken [10].

Takes [3412, 2319].

Taking [18, 6039, 3966, 188].

Tale [3477, 3344, 3478].

Talk [6070, 6091, 6116, 5596].
Theories [7263, 2271, 5625, 7325]. théorique [17]. Theory [7172, 7510, 7527, 5573, 7157, 4959, 7244, 3733, 4002, 1026, 337, 1125, 41, 1211, 4029, 7528, 7388, 7276, 5413, 7188, 525, 7157, 955, 2507, 2201, 2203, 1839, 7300, 5404, 7503, 4365, 2924, 3118, 1425, 5323, 5533, 3641, 290, 986, 7374, 1907, 3001, 1172, 7147].

Tolerant [6147, 6661, 5720, 3103, 6318, 2131, 6451, 6962, 6975, 2178, 3042, 3043, 4185, 3588, 4552, 2965, 3324, 3325, 3514, 2822, 3829, 3201, 3364].

Tools [6978, 6760, 6654, 7223, 7430, 6610, 6730, 4013, 2721, 3347, 2820, 4580].
toolset [4330]. Tool [5248, 5652]. Tool’n’Half [5671]. ToolTalk [4860].
Top [6474]. Topics [53, 7144]. topological [5287]. Topologies [5343, 6361].
Tracking [3254, 6627, 4011, 4013, 6669, 7016, 4874]. Trade [6498, 1609, 4042, 633, 6217, 3241, 6974, 2512, 4170, 5399, 2433, 4733]. Trading [7003].
Trade-Off [633, 6498, 4042, 3241, 1308]. Trade-Offs [6217, 6974, 2512, 4170, 4737, 3835]. Tradeoff [6328, 3809, 4162]. Tradeoffs [5586, 3116, 4412, 3688, 3689, 4628, 4771, 3382, 1716, 5399, 4733].
Training [6468, 6871, 7003, 6390, 6798, 6547, 6564, 6813, 6702, 6331, 7065, 6941, 7072, 6827, 7093, 6464, 6846, 6737, 6726].
Transforms [6901, 1305, 1152, 2630, 1261, 815, 2055, 3576, 3875, 3615, 1988, 1990, 906, 909, 5220, 4934, 4769, 4648]. Transistor [2407, 3486, 1702].
Trig [2451, 3187, 783]. Trigger [6916, 7041]. Trigonometric [5813, 1026, 3076, 6904, 4192, 139, 1665, 1666, 6345, 1544, 3513, 190, 2882, 2534, 201, 5703]. Trimming [1963]. Trinomial [4965].
True [1572, 60, 6799]. Truncated [6765, 2059, 6268, 5982, 5710, 6550, 7122, 5200, 3167, 4104, 5960, 4120, 4628, 4770, 4935, 5102, 4284, 4469, 2844, 4659, 7117]. Truncation [345, 3769, 370, 325, 1004, 3402, 422, 3578, 1878, 683, 6614].

Tübinger [159, 7363]. Tukey [6648]. Tunable [6444, 6580, 6018, 5081].

Tung [3916]. Tuning [6650, 6256, 6557, 5950, 6832, 7012, 6521, 6212, 7014].

Tunnel [276]. Turbo [3115, 3115]. turbulence [5298, 5299]. Turin [7321].

Turing [6543, 7485, 1854, 703]. Turku [5538]. Turns [6438].

Tutorial [5017, 4737, 6476, 6393, 4043, 4045, 4046, 1161]. TVM [7104]. Twelfth [7466].

Twenty [7256, 7274, 7285, 7227, 7350, 7323, 7364]. Twenty-eighth [7227].

Twenty-fourth [7285]. Twenty-Ninth [7364]. Twenty-second [7256, 7274].

Twenty-seventh [7350]. Twenty-sixth [7323]. Twin [5796]. Twin-Float [5796].

Two [3032, 3218, 1086, 1805, 1572, 725, 807, 810, 7002, 221, 3862, 331, 1603, 620, 878, 4187, 883, 4355, 7022, 6536, 1217, 1873, 630, 828, 5750, 3296, 1755, 911, 1149, 3477, 1655, 4089, 3665, 53, 123, 1913, 1165, 4267, 5551, 3344, 5352, 5090, 5359, 5641, 168, 5099, 4467, 6022, 1001, 4319, 3970, 4967, 4795, 2343, 3578, 4685, 3758, 3442, 3478, 5060, 984, 6206, 2268, 5199, 5630, 2594, 1917, 5957, 5351, 788, 4111, 5212, 3011, 3020].

two-digit [5060]. Two-Dimensional [1805, 1149, 1655, 5099, 6022, 984, 6206, 2268, 1917, 3011].

two-input [7022]. Two-Layer [7002]. Two-level [4111]. Two-Point [3665].

Two-Way [630, 5630]. Two’s [1828, 1246]. Two’s-Complement [1828, 1246]. TX [7431, 7266].

Type [6135, 6645, 3967, 6485, 3081, 6524, 106, 255, 6695, 892, 7040, 4567, 2766, 5546, 482, 2137, 588, 3345, 5871, 5257, 5910, 6422, 4717, 3127, 72, 5543, 108, 4450, 6480, 6416, 6432].

Type-2 [6480]. Type-2-Based [6645]. Type-3 [6416]. Typed [3081].

Types [5025, 3638, 3182, 3038, 1509, 4349, 2894, 3080, 2773, 6960].

Tyson [7341].

UCBTEST [3452]. Ugly [3870, 6507, 3908]. UK [7426, 7427, 7569, 7543, 7241].

ulfjack [6467]. ulfjack/ryu [6467]. Ulp [5761, 5056, 4142]. ulps [6994, 6995, 6261].

Ulrich [1671]. ultimate [4816, 4988]. Ultimately [5442, 5548].

Ultra [2038, 5979, 6784, 1509, 1510, 6711, 6581, 6726, 1342, 6961, 6734, 6974, 4635].

Ultra-arithmetic [1509, 1510]. Ultra-efficient [6734, 6974].

Ultra-Low-Power [6961, 5979, 6784]. Ultra-wideband [4635].

Ultra-efficiency [6848]. ultrasonic [2334, 2508]. ultrasonics [1781].

UltraSPARC [3432]. ultrawide [4134]. UMFS [483].

Unary [5931, 1901, 6951]. Unbalanced [5671, 5652].

Unbiased [5271, 6320, 6402, 4824, 3191].

Unbiasedness [6876]. Uncertain [5525, 6229].

Uncertainty [3681, 6623, 5257]. Unconstrained [4586, 6272].

Uncoupled [6736]. Uncovered [5534]. Undebuggable [5409].

Undefined [5873].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 135

VAX-11 [2036, 1569, 1570, 1803, 1110, 1019, 1391, 1312].

VAX-11/780 [2036, 1569, 1570, 1803, 1019].

Vector [4492, 1945, 6028, 3381, 6366, 3216, 3393, 6987, 1092, 2651, 2866, 6653, 3995, 6887, 970, 7029, 4205, 5744, 5528, 2096, 6914, 1883, 5055, 2446, 6710, 1657, 7073, 2143, 4098, 2149, 2422, 1326, 1327, 1465, 4894, 970, 7029, 4205, 5744, 5528, 2096, 6914, 1883, 5055, 2446, 6710, 1657, 7073, 2143, 4098, 2149, 2422, 1326, 1327, 1465, 4894, 970, 7029, 4205, 5744, 5528, 2096, 6914, 1883, 5055, 2446, 6710, 1657, 7073, 2143, 4098, 2149, 2422, 1326, 1327, 1465].

Vector-Arithmetic [3350, 3351].

Vector-Reduction [1883].

Vector/Matrix [2446, 2443, 2444, 2445].

Vector/Scalar [5744, 2230, 2397, 2398].

Vector/SIMD [4984].

Vectoring [3964, 4147, 3774, 4282].

vectorizable [6379].

Vectorization [6231, 2235, 2236, 5043, 5126, 6093].

Vectorized [6987, 6992, 6877, 6721, 6397, 5788].

Verification [4640, 4951, 3564, 3861, 7330, 732, 6273, 4021, 5512, 5717, 3435, 4191, 4192, 4193, 5293, 4371, 5526, 7035, 3766, 6807, 3462, 6001, 2252, 6573, 6574, 3646, 4407, 5853, 2575, 6450, 6016, 4091, 5628, 5629, 4265, 5954, 6947, 4613, 5779, 4448, 5365, 6360, 4130, 3705, 7328, 4290, 5973, 3726, 7500, 5985, 3753, 4704, 5153, 4365, 4037, 4675, 3350, 3394, 3854, 3047, 5474, 6874, 6658, 2512, 2678, 2369, 1972, 1852, 3260, 4037, 6910, 2230, 2397, 2398, 3901, 2238, 3464, 6095, 3309, 2443, 2444, 2468, 4765, 3351, 2031, 2445].

Verified [3555, 5472, 6040, 3603, 7112, 4018, 3603, 6621, 7053, 6928, 6338, 1937].

Verifying [5570, 6481, 3570, 3985, 3754, 6188, 6204, 4081, 6249, 4218, 5334, 5335, 5419].

Verilog [4921].

VeriTracer [6381].

verlassen [1136].

VERROU [6162].

vers [5114].

versa [2193, 401].

versatile [6772].

Verteilung [776].

vertex [5725].

Vertices [5505].

verwendeten [2302].

Very [3964, 4147, 6847, 5469, 4158, 3073, 3250, 386, 1516, 5749, 3461, 4058, 2950, 4072, 3848, 3860, 4665, 1624, 5934, 3477, 4406, 5652].

Very-High [3964, 4147, 3250, 3461, 4406].

VFloat [5650, 5620].

VFP9 [4492].

VFP9-S [4492].

VHDL [4819, 4681, 5140, 3758, 2736, 4878, 5770, 5782].

VI [7331, 7373, 7552, 782, 7147, 7325].

Via [5281, 1207, 5071, 1190, 5579, 6502, 4672, 4981, 2680, 3062, 3245, 464, 3576, 5143, 5497, 4686, 5500, 508, 6272, 6677, 5515, 3091, 6541, 5738, 6543, 4372, 7036, 2097, 6916, 7041, 6090, 5996, 6563, 6329, 6578, 1765, 4415, 5340, 5067, 5775, 6594, 6358, 4482, 6740, 6518].

vice [2193, 401].

Victoria [7527, 7333].

Video [494, 6945, 5220, 5745].

View [3385, 3236, 1650, 2517, 3377].

VII [7503, 783].

VIIIfx [5611].

Villa [7246].

VIP [6367, 6450].

Virginia [7341].

Virgule [2559, 2003, 701, 4794, 2214, 2758, 989].

Virtex [4502, 4771].

Virtex-II [4502].

virtual [7580, 7582].

Visibility [3484].

Vision [6465].

Visual [3139].

visualization

References

REFERENCES

REFERENCES

REFERENCES

December 1924. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

REFERENCES

533–535, November 1932. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

REFERENCES

[61] H.-J. Dreyer and A. Walther. Der Rechenautomat Ipm. Entwicklung Mathematischer Instrumente in Deutschland 1939 bis 1945. (German) [The Ipm calculator. The development of mathematical instruments in Germany 1939–1945]. Bericht A3, Institut für Praktische Mathematik, Technische Hochschule, Darmstadt, West Germany, August 19, 1946. Reprinted in [7203, §3.3]. Translated by Mr. and Mrs. P. Jones.
REFERENCES

REFERENCES

REFERENCES

Tukey:1949:TRA

Stifler:1950:HSC

Harrison:1950:BDC

Wilkes:1950:E

Worsley:1950:ED

Anonymous:1951:R

Booth:1951:SBM

REFERENCES

REFERENCES

[105] R. A. Brooker and D. J. Wheeler. Floating operations on the EDSAC (in automatic computing machinery; discussions). *Mathematical Tables*
REFERENCES

and Other Aids to Computation, 7(41):37–47, January 1953. CODEN MTTCAS. ISSN 0891-6837 (print), 2326-4853 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[159] Franz Hammer. Nicht Pascal sondern der Tübinger Professor Wilhelm Schickard erfand die Rechenmaschine!. (German) [Not Pascal, but the Tübingen professor William Schickard, invented the calculator!]. *Büromarkt*, 20(??):1023–1025, ???. 1958. ISSN 0007-3148.

Metropolis:1958:SDC

Robertson:1958:NCDa

Robertson:1958:NCDb

Schmid:1958:TFQ

Sisson:1958:IDR

Tocher:1958:TMD

Wadey:1958:TSR

REFERENCES

REFERENCES

REFERENCES

[211] Diran Sarafyan. Divisionless computation of square roots through continued squaring. *Communications of the Association for Computing
REFERENCES

REFERENCES

REFERENCES

References

REFERENCES

REFERENCES

March 1962. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Deiters:1965:ODD

Dodd:1965:RSB

Earle:1965:LCS

Garner:1965:NSA

Garner:1965:RID

Hammel:1965:RLC

Hammer:1965:BRBa
REFERENCES

April 1965. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

REFERENCES

Metropolis:1965:AIE

Metropolis:1965:AUA

Metropolis:1965:BAU

Metropolis:1965:RCU

Metze:1965:MSR

Miller:1965:ASF

Moller:1965:NQD

REFERENCES

Moller:1965:QDP

Moore:1965:AACa

Moore:1965:AACb

Morrison:1965:MCC

Nathan:1965:CM

Penney:1965:BSC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[397] W. Kahan. 7094 II system support for numerical analysis. SHARE Secretary Distribution 159, C4537, 1966.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fike:1967:MEP

Fike:1967:RAO

Filho:1967:AGF

Forsythe:1967:CSL

Freeman:1967:CMS

Freiman:1967:CDU

Friedland:1967:AAV
REFERENCES

REFERENCES

REFERENCES

REFERENCES

1968. CODEN NUMMA7. ISSN 0029-599X (print), 0945-3245 (electronic).

205

REFERENCES

Ross:1968:UMF

Sasaki:1968:BIA

Schmookler:1968:HSB

Scott:1968:OET

Smith:1968:CC

Stuart:1968:FP

Tung:1968:DAS

REFERENCES

Brown:1969:CB

Clark:1969:SCE

Cody:1969:PTF

Duke:1969:DFP

Duncan:1969:FFA

Dunworth:1969:ECB

Ehrman:1969:SFP

Fenstad:1969:NSM
REFERENCES

209

Fenwick:1969:BMO

Ferrari:1969:CDM

Field:1969:OFP

Flores:1969:BRB

Froberg:1969:INA

Glaser:1969:HMN

Hammersley:1969:NAP

[512] P. Hammersley. Note on Algorithm 34: Procedures for the basic arithmetical

Holzwarth:1969:VBB

Howell:1969:ASLa

Howell:1969:ASLb

Huey:1969:DFP

Huttenhoff:1969:AUC

King:1969:LEN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Beyer:1970:SSD

Brent:1970:ABN

deLugish:1970:CAA

Flynn:1970:DFI

Forsythe:1970:PCW

Gardiner:1970:SDA

REFERENCES

REFERENCES

REFERENCES

[575] David W. Matula. The emergence of computational arithmetic as a component of the computer science curriculum. *SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education)*, 2(3):41–44,
REFERENCES

November 1970. CODEN SIGSD3. ISSN 0097-8418 (print), 2331-3927 (electronic).

REFERENCES

REFERENCES

usow:1970:cb

waksman:1970:wai

wilson:1970:osa

yohe:1970:acb

yohe:1970:bpf

yong:1970:gba

zohar:1970:nrc

zuse:1970:cm1

REFERENCES

REFERENCES

CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).
ACM Algorithm 414.

REFERENCES

[651] B. P. Sarkar and E. V. Krishnamurthy. Economic pseudodivision processes for obtaining square
REFERENCES

REFERENCES

REFERENCES

Pichat:1972:CSA

Ramamoorthy:1972:SPI

Randell:1972:ATO

Randell:1972:ODC

Richman:1972:AEA

Ripley:1972:PFP

Rohl:1972:NCA

REFERENCES

CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Erkio:1973:EAV

Fettweis:1973:RNA

Gelenbe:1973:UAE

Green:1973:NTF

Hamming:1973:NMS

REFERENCES

378–380, August 1973. CODEN ITADAS. ISSN 0018-9278 (print), 1558-
2582 (electronic).

[789] Philip M. Spira. Computation times of arithmetic and Boolean functions
in \((d, r)\) circuits. *IEEE Transactions on Computers*, C-22(6):552–555,
June 1973. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
papers/ARITH2_Spira.pdf.

The SRA computer science series. Science Research Associates, Chicago,

627, June 1973. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
papers/ARITH2_Sureshchander.pdf. See [772].

stamp/stamp.jsp?tp=&arnumber=1672310.

practiced on a floating-point system. *Memoirs of the Faculty of Science,
Kyushu Imperial University. Series A, Mathematics = Kyushu Teikoku
Daigaku Rigakubu kiyo*, 27:23–64, 1973. CODEN MFKAAF. ISSN 0373-
6385 (print), 1883-2172 (electronic).
REFERENCES

REFERENCES

Agrawal:1974:NCL

Banerji:1974:NIM

Banerji:1974:URA

Barsi:1974:EDC

Bauer:1974:CGR

Blankenship:1974:CTC

REFERENCES

REFERENCES

[827] Eisuke Kinoshita, Hideo Kosako, and Yoshiaki Kojima. Floating-point arithmetic algorithms in the symmetric residue number system. IEEE

Kroft:1974:CTC

Kulisch:1974:PCC

Ling:1974:CSA

Linnainmaa:1974:ASK

Metropolis:1974:SAA

Miller:1974:CCN

REFERENCES

REFERENCES

REFERENCES

Caprani:1975:REF

Chen:1975:SER

Chinal:1975:LMA

Chinal:1975:MA

Cobb:1975:IPS

DeMori:1975:MMM

REFERENCES

George:1975:ARR

Gibson:1975:SCT

Ginsberg:1975:DUFa
Myron Ginsberg and Dennis J. Frailey. The design and use of a floating-point (software) simulator for testing the arithmetic behavior of mathematical software. Technical report CP 74028, Department of Computer Science, Institute of Technology, Southern Methodist University, Dallas, 1975. 26 pp.

Ginsberg:1975:DUFb

Goodman:1975:REP

Goyal:1975:DAE

Grant:1975:TAS
J. A. Grant and G. D. Hitchins. Two algorithms for the solution of polynomial
REFERENCES

REFERENCES

REFERENCES

[914] Richard E. Nance and Claude Overstreet, Jr. Implementation of Fortran random number generators on computers with one’s complement
REFERENCES

REFERENCES

[928] Bruce D. Shriver and Peter Kornerup. The UNRAU — a Unified Numeric Representation Arithmetic Unit. In IEEE SCA ’75 [7174], pages
REFERENCES

Svoboda:1975:SCA

Swartzlander:1975:SLN

Toma:1975:CLA

Trivedi:1975:LAD

Trivedi:1975:UCF

Tzaferos:1975:EBD

Konstantina Tzaferos. Error bounds due to index of significance specifications in floating-point operations with encoded mantissa lengths. Thesis (M.S.), California State University, Chico, Chico, CA, USA, 1975. vi + 43 pp.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[977] David Lipschutz. Optimization of a practical system for high fidelity
digital audio. Thesis (M.S.), Massachusetts Institute of Technology.
Dept. of Electrical Engineering and Computer Science, Cambridge, MA,

[978] J. C. Majithia. Some comments concerning design of pipeline
1134, November 1976. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-
9956 (electronic).

microprocessors. Technical report, Lawrence Livermore Laboratory,
University of California/Livermore; National Technical Information

[980] Ralph Martinez. A *semi-portable simulation system using both fixed and
floating point derivative blocks*. Thesis (Ph.D. - electrical engineering),

LA-UR-76-661;CONF-760428-1, Los Alamos Scientific Laboratory, Los
Alamos, NM, USA, January 1, 1976. URL http://www.osti.gov/energycitations/
product.biblio.jsp?osti_id=7189580&query_id=0. Presented at the
Conference on the state of the art in numerical analysis, 12 April 1976,
University of York, England, UK.

[982] Webb Miller and David L. Spooner. Automatic generation of floating-
223–226, September 1976. CODEN IESEDJ. ISSN 0098-5589 (print),
stamp.jsp?arnumber=1702369.

CMPJA6. ISSN 0010-4620 (print), 1460-2067 (electronic).

REFERENCES

REFERENCES

Zohar:1976:RTR

Agrawal:1977:CNB

Albrecht:1977:GC

Albrecht:1977:GCA

Alexander:1977:SRR

Anonymous:1977:CAF

AppleComputer:1977:ARM

REFERENCES

October ??, 1977. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1106] F. D. Crary and J. M. Yohe. The Augment precompiler as a tool for the development of special purpose arithmetic packages. MRC Technical
Summary 1892, Mathematics Research Center, University of Wisconsin, Madison, Madison, WI, USA, 1978.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1153] G. P. O’Leary. The design of a high-speed arithmetic processor. In COMPSAC ’78 [7183], pages 175–176. LCCN ????.

REFERENCES

REFERENCES

[1195] I-Ngo Chen and R. Willoner. An $O(n)$ parallel multiplier with bit-sequential input and output. *IEEE Transactions on Computers*, C-
REFERENCES

REFERENCES

REFERENCES

[1224] Jan Kent. *The theoretical and practical study of floating point instructions: Consisting of Theoretical definition, analysis and
comparison of floating point instruction, and procedures for the description and simulation of floating point instructions. Dr. Avhandling, Universitetet i Oslo, Oslo, Norway, 1979.

Kolze:1979:BFP

Kolze:1979:SNA

Kornerup:1979:NRA

Kusterer:1979:SEP

Lautz:1979:JLD

Lee:1979:AFN

REFERENCES

REFERENCES

REFERENCES

Ambikairajah:1980:TPM

Baraniecka:1980:RNS

Bareiss:1980:RED

Barsi:1980:ECC

Brent:1980:AIB

Brent:1980:UAE
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Waser:1980:EGP

Watkins:1980:MFU

Wong:1980:IOF

Yohe:1980:FPE

Yohe:1980:PSI

Zeman:1980:HSM

Agrawal:1981:NAM

Andrews:1981:EFM
REFERENCES

Arnold:1981:PFP

Arora:1981:CSR

Atkins:1981:FIS

Avizienis:1981:LCR

Banerji:1981:HSD

Barlow:1981:DAA

Earnest Allan Cariker. A rapid-approximation floating-point mathematics package for the INTEL 8080 microprocessor. Computing science thesis (M.S.), Texas A&M University, College Station, TX, USA, 1981. viii + 152 pp.

REFERENCES

REFERENCES

REFERENCES

[1418] Saroj Kaushik and R. K. Arora. Sign detection in the symmetric residue number system. In IEEE CA5 '81 [7201], pages 146–150. LCCN QA 76.6
REFERENCES

Kielbasinski:1981:IRL

Knuth:1981:SA

Kobayashi:1981:FMO

Kogge:1981:APC

Koren:1981:CPN

Kornerup:1981:IRA

Kulisch:1981:CAT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:1982:ARBf

Anonymous:1982:MKF

Anonymous:1982:NPAa

Arnold:1982:EPS

Bairstow:1982:FPP

Baraniecki:1982:QEL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Korn:1982:EDF

Leuprecht:1982:PAR

McCormick:1982:EFM

McPherson:1982:LSG

Monroe:1982:FFP

Oklobdzija:1982:LSR

Samsen:1982:AFP

Sasaki:1982:EGE

Sasaki:1982:PFM

Schatte:1982:FPF

Sewell:1982:RLT

Sheldon:1982:ICP

Sippel:1982:FRI

REFERENCES

REFERENCES

REFERENCES

[1570] David B. Aspinwall and Yale N. Patt. Modifications to the VAX-11/780 microarchitecture to support IEEE floating point arithmetic. *ACM
REFERENCES

Avizienis:1983:AAE

Bandeira:1983:TCA

Banerji:1983:RPF

Baxter:1983:CRS

Bayoumi:1983:MVI

REFERENCES

REFERENCES

Chamrad:1983:FFP

Chan:1983:ACS

Chang:1983:HSN

Chow:1983:PDA

Ciminiera:1983:FIM

Cloutier:1983:PAR

REFERENCES

REFERENCES

REFERENCES

Ferguson:1983:DTE

Fraenkel:1983:SN

Gaitanis:1983:NPC

Galand:1983:FD

Gavrielov:1983:CSF

Gnanasekaran:1983:BSI

REFERENCES

technical level. Not an instruction set reference, but does contain
instruction timing tables. See also [1865].

[1622] Mary Jane Irwin and Robert Michael Owens. Numerical limitation on
the design of digit on-line networks. In IEEE SCA6 ’83 [7214], pages
156–161. ISBN 0-8186-4476-1 (paperback), 0-8186-8476-3 (hardcover),
0-8186-6476-2 (microfiche), 0-8186-0034-9 (hardcover). LCCN QA 76.9
IEEE Computer Society order number 476.

Electronics, 56(22):163–165, November 1983. ISSN 0883-4989.

[1624] M. Jankowski, A. Smoktunowicz, and H. Woźniakowski. A
note on floating-point summation of very many terms. Elektron.

[1625] W. K. Jenkins. The design of error checkers for self-checking residue
number arithmetic. IEEE Transactions on Computers, C-32(4):388–
396, April 1983. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
 tp=&arnumber=1676240; http://ieeexplore.ieee.org/xpl/
RecentIssue.jsp?punumber=12;

[1626] K. Johnsen. An IEEE floating point arithmetic implementation. In
IEEE SCA6 ’83 [7214], pages 130–135. ISBN 0-8186-4476-1 (paperback),
0-8186-8476-3 (hardcover), 0-8186-6476-2 (microfiche), 0-8186-0034-9
(hardcover). LCCN QA 76.9 C62 S95 1983. URL http://www.acsel-
catalog number 83CH1892-9. IEEE Computer Society order number 476.

[1627] C. Jung. Berechnung der reellen und reellintervallwertigen Standard-
funktionen mit maximaler Genauigkeit in einem hexadezimalen
Gleitkommaformat [English: Computation of the Real and Real Interval
Valued Standard Functions with Maximal Accuracy in a Hexadecimal
REFERENCES

Kahan:1983:M

Kahan:1983:MWS

Kanada:1983:CDP

Kaushik:1983:SDN

Kirk:1983:MFP

Kobayashi:1983:AHS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1702] Edmund John Walsh. Floating gatefield effect transistor operating point changes: causes, characterization, and effect on electric field measurement by the device. Thesis (M.S.), Boston University, Boston, MA, USA, 1983. v + 121 pp.

[1704] Bertrand Jeffery Williams. A bit-serial floating point multiply/add architecture for signal processing applications. Electrical engineering thesis (M.S.), Texas A&M University, College Station, TX, USA, 1983. x + 97 pp.

REFERENCES

William J. Cody, Jr., Jerome T. Coonen, David M. Gay, K. Hanson, David Hough, W. Kahan, R. Karpinski, John F. Palmer, F. N. Ris, and

REFERENCES

[1741] Robert Todd Gregory and E. V. Krishnamurthy. Methods and Applications of Error-Free Computation. Texts and monographs in

March 1984. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Miller:1984:ILA

Moran:1984:SST

Munzel:1984:RAE

Murray:1984:SFA

OliverWhiteheadQuintet:1984:FN

Palmer:1984:P

Parker:1984:CCS

Pei:1984:CAD
[1769] Soo-Chang Pei and Kuo-Chih Ho. Comments on “Adaptive digital control implemented using residue number systems”. *IEEE

Pfenninger:1984:DES

Pountain:1984:PM

Prince:1984:SFP

Rauchwerk:1984:MBF

Regener:1984:MID

Schryer:1984:DCF

Shahan:1984:MIF
394

REFERENCES

Shen:1984:DET

Shively:1984:CTG

Sips:1984:BSA

Smoktunowicz:1984:BCI

Soderstrand:1984:AQL

Soderstrand:1984:PRR

REFERENCES

REFERENCES

Trivedi:1984:DVF

Truong:1984:FPP

Uya:1984:CFP

vonGudenberg:1984:BMG

Ware:1984:CMC

Wehmeyer:1984:EFF

Wolrich:1984:HPF

REFERENCES

REFERENCES

Bittner:1985:WPD

Bleher:1985:AHA

Bohte:1985:GEF

Brent:1985:SAI

Burton:1985:SFE

REFERENCES

REFERENCES

Ciminiera:1985:ESP

Cody:1985:PRW

Conover:1985:AHS

Cozzens:1985:CDF

Cuyt:1985:REA

Dadda:1985:FMT

REFERENCES

Enzmann:1985:WDS

Ercegovac:1985:DAP

Ercegovac:1985:DSH

Fandrianto:1985:VFP

Ferguson:1985:RBA

Froberg:1985:NMT

Gal:1985:CEF

Gannon:1985:SPH

Gnanasekaran:1985:FSP

Gomez:1985:PFA

Goodman:1985:REF

Gooley:1985:DFM

Graham:1985:IFF

REFERENCES

Grappel:1985:FSC

Gridley:1985:IPS

Gross:1985:FPA

Gross:1985:SIF

Gudenberg:1985:CID

Hack:1985:RPS

Helyer:1985:SCC
REFERENCES

Hull:1985:NT

Hull:1985:PRV

Hunter:1985:III

Hurson:1985:SMU

Hwang:1985:MEC

Hwang:1985:SIS

REFERENCES

and 80287 are. A valuable reference for instruction definitions. See also [1621, 1767].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

April 1985. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic).

REFERENCES

Sreedharan:1985:ASS

Stewart:1985:NCD

Stummel:1985:FEA

Swartzlander:1985:AHS

Symbolics:1985:RGS

Takagi:1985:HSV

Takeda:1985:SCB

Zadrozny:1985:AFP

Zorpette:1985:BBN

Adams:1986:FSSa

Adams:1986:FSSb

Agarwal:1986:NSV

Apple:1986:ANM

REFERENCES

REFERENCES

Crowell:1986:ECU

Curtis:1986:CPL

Desrosiers:1986:CFP

DuCroz:1986:FFP

Dutka:1986:SRT

Dutta:1986:IMF

Feldstein:1986:OUS

Ferro:1986:DTF

[1977] Mark Hill, Susan Eggers, Jim Larus, George Taylor, Glenn Adams, B. K. Bose, Garth Gibson, Paul Hansen, Jon Keller, Shing Kong, Corinna Lee,

REFERENCES

Kabal:1986:PFP

Kahan:1986:RAF

Kreithen:1986:FPC

Krishnan:1986:CCN

Krishnan:1986:CDS

Krishnan:1986:ICN

REFERENCES

Pfenninger:1986:SQA

Porter:1986:FPM

Quong:1986:FP1

Ramnarayan:1986:LCL

Rhyne:1986:SBS

Robertson:1986:NQD

Rump:1986:SER

R. Thun. On residue number system decoding. Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Processing],

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2081] Bertrand Hochet, Patrice Quinton, and Yves Robert. Systolic solution of linear systems over GF(p) with partial pivoting. In Irwin and
REFERENCES

Homewood:1987:ITT

HP:1987:IPH

Hu:1987:CDT

Hull:1987:TIC

IEEE:1987:ISB

IEEE:1987:RIS

REFERENCES

[2101] Shigeo Kuninobu, Tamotsu Nishiyama, Hisakazu Edamatsu, Takashi Taniguchi, and Naofumi Takagi. Design of high speed MOS multiplier and divider using redundant binary representation. In Irwin and
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Reddy:1987:STF

Redinbo:1987:PCT

Rehmer:1987:DIM

Robertson:1987:EDC

Rolfe:1987:FIS

Rysavy:1987:MSC

REFERENCES

REFERENCES

REFERENCES

[2162] Kai Hwang, H. C. Wang, and Z. Xu. Evaluating elementary functions with Chebyshev polynomials on pipeline nets. In Irwin and Stefanelli
REFERENCES

Weitek Corporation:1987:WFP

Williams:1987:FPL

Williams:1987:STC

Wu:1987:FDS

Wu:1987:TRF

Zaccone:1987:ENP

Zurawski:1987:DHS

[Aberth:1988:PNA]

[Alt:1988:FEP]

[Alt:1988:FPE]

[AMD:1988:IFP]

[An:1988:CRE]

[Anderson:1988:MRE]

[Apple:1988:ANM]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Papamichalis:1988:TFP

Perlman:1988:AFP

Pichat:1988:APC

Pier:1988:IPA

Pitas:1988:FPE

Plauger:1988:PFP

Prandolini:1988:VIB

REFERENCES

Voelzke:1988:FSAa

Voelzke:1988:FSAb

Voelzke:1988:FSAc

Weyland:1988:LCS

Wilson:1988:FPS

Wilson:1988:NDP

Wilson:1988:NFP

Wollard:1988:TSS

REFERENCES

REFERENCES

REFERENCES

[2348] J. Demmel. On floating point errors in Cholesky. LAPACK Working Note 14, Department of Computer Science, University
REFERENCES

A. M. Dennis, C. B. Marshall, and I. A. Burgess. Algorithm and architecture design for the implementation of high order FIR filters using the residue number system. In *IEE Colloquium on Signal Processing Applications of Finite Field Mathematics, 1 June 1989*, pages 1/1–1/5. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???. ISSN ???

Dennis:1989:AAD

Dowling:1989:MVF

Dritz:1989:RPS

Dunham:1989:ICA

Dunham:1989:PAH

Dunham:1989:S

Jean Duprat, Yves Herreros, and Jean-Michel Muller. Some results about on-line computation of functions. In Ercegovac
REFERENCES

Elleithy:1989:ARA

Ercegovac:1989:FRD

Ercegovac:1989:FSC

Ercegovac:1989:IMC

Ercegovac:1989:RSR

REFERENCES

D. Gamberger. Incompletely specified numbers in the residue number system-definition and applications. In Ercegovac and Swartzlander,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Motorola:1989:DIF

Motorola:1989:FPC

Motorola:1989:MFP

Motorola:1989:MMF

Motorola:1989:MRM

Mulcahy:1989:FPR

Nakayama:1989:BMF

Nakayama:1989:FCV

T. Nakayama, H. Harigai, S. Kojima, H. Kaneko, H. Igarashi, T. Toba, Y. Yamagami, and Y. Yano. A 6.7-MFLOPS floating-point coprocessor
REFERENCES

Nakayama:1989:MFPa

Nakayama:1989:MFPb

Nowacki:1989:ABQ

Ochs:1989:TPF

Petkovsek:1989:CDS

Pincin:1989:NAM

REFERENCES

Santoro:1989:RAI

Sasaki:1989:AAD

Schwarz:1989:IIP

Scott:1989:FRM

Shenoy:1989:FBE

Shimazu:1989:MFP

Sinha:1989:FPA

REFERENCES

Wang:1989:ADF

Wang:1989:MBC

Wichmann:1989:SPI

Wichmann:1989:TFS

Wittman:1989:SCU

Zeng:1989:RNP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2569] Volker Müller. Hochgenaue CORDIC-Algorithmen für reelle Standardfunktionen mittels dynamischer Defektberechnung

Parhami:1990:GSD

Payne:1990:PLCa

Payne:1990:PLCb

Peter:1990:PZW

Piestrak:1990:DHS

Popov:1990:AFA

Preparata:1990:PCD

REFERENCES

REFERENCES

1. Table 5 (page 124):
insert $k \leftarrow 0$ after assertion, and also delete $k \leftarrow 0$ from Table 6.

2. Table 9 (page 125):
 for
 substitute
 and delete the comment.

3. Table 10 (page 125):
 for
 substitute

REFERENCES

97(9):836–839, November 1990. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

Anonymous:1991:FDC

Anonymous:1991:SIS

Arambepola:1991:CVA

Arvo:1991:GGI

Balsara:1991:DSM

Barrenechea:1991:NEH

Barsi:1991:MAB

Bartholomew-Biggs:1991:AST

REFERENCES

REFERENCES

[2657] R. E. Bryant. On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer

REFERENCES

[2676] A. Compan, P. Debaud, V. Delorme, J. A. François, H. Mehrez, and F. Pecheux. GAF: a portable standard-cell floating point adder generator using the CXgen function library. Microprocessing and
REFERENCES

REFERENCES

REFERENCES

[2713] Ian Holmes. A feasibility study into the design of a 64-bit floating point processor. Thesis (M.Sc. in Electronics), University of Southampton, Department of Electronics and Computer Science, Southampton, UK, 1991.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

645–653, October 1991. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

REFERENCES

REFERENCES

REFERENCES

[2839] Derek C. Wong and Michael J. Flynn. Fast division using accurate quotient approximations to reduce the number of iterations. In Kornerup

[2845] Tsung Lun Yu and William B. Ribbens. A floating-point coprocessor for fault detection and isolation in electronically controlled internal

REFERENCES

REFERENCES

Dao-Trong:1992:SIS

DaoTrong:1992:SIS

Daumas:1992:BIR

Davarakis:1992:PPA

Dawid:1992:BSC

Dawson:1992:RLS

DEC:1992:AAH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2904] Hiroshi Horiguchi and Tsutomu Tayama. Floating-point numbers and real numbers II. Advances in software science and technology, 3(?): 151–156, 1992. ISSN 1044-7997.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2935] K. J. R. Liu and E. Frantzeskakis. Qrd-based square root free and division free algorithms and architectures. In *Workshop on VLSI Signal*
REFERENCES

Lozier:1992:RPC

Lozier:1992:RPV

Lozier:1992:SLI

Lu:1992:NDA

Lynch:1992:FCA

Lynch:1992:HSD

REFERENCES

REFERENCES

568

URL http://www.acm.org:80/pubs/citations/proceedings/issac/
143242/p284-mutrie/. ACM order number: 505920.

Mutrie:1992:TSS

analysis*. Thesis (Ph.D.), University of Waterloo, Waterloo, ON, Canada,

Nakano:1992:AHS

[2958] H. Nakano, M. Nakajima, Y. Nakakura, T. Yoshida, Y. Goi, Y. Nakai,
R. Segawa, and T. Kishida. An accurate, high speed implementation
division by the quasi-unity divisor method. *IFIP Transactions.
Information Processing 92. IFIP 12th World Computer Congress.

Nakano:1992:FPB

[2959] H. Nakano, M. Nakajima, Y. Nakakura, T. Yoshida, Y. Goi, Y. Nakai,
R. Segawa, T. Kishida, and H. Kadota. An 80-FLOPS (peak) 64-
b microprocessor for parallel computer. *IEEE Journal of Solid-State
(print), 1558-173X (electronic).

Ng:1992:ARH

[2960] K. C. Ng. Argument reduction for huge arguments: Good to the last bit.
pdf. Work in progress.

Nishimura:1992:FPR

[2961] S. Nishimura. A fixed-point roundoff error analysis of adaptive notch
filters. In *Proceedings of the 35th Midwest Symposium on Circuits and
Systems, 1992*, volume 1, pages 373–376. IEEE Computer Society Press,
1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1992.
CODEN ???? ISSN ????

Obaidat:1992:DMA

[2962] Mohammad S. Obaidat and Saleh A. Bleha. A decimal multiplication
algorithm for microcomputers. *Computers and Electrical Engineering,
(print), 1879-0755 (electronic).

REFERENCES

[2990] A. Skavantzos and N. Mitash. Theory and implementation issues of the 2-dimensional polynomial residue number system. In IEEE Southeastcon
REFERENCES

REFERENCES

Werter:1992:SLC

[3011] M. J. Werter. Suppression of limit cycles in the first-order two-
dimensional direct form digital filter with a controlled rounding
June 1992. CODEN ITPRED. ISSN 1053-587X (print), 1941-0476
(electronic).

Wesner:1992:TS

1992. ISSN 0720-4442, 0941-777x , 0943-5409.

Wichmann:1992:NUF

[3013] Brian A. Wichmann. A note on the use of floating point in
CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067 (electronic).

Wichmann:1992:SFW

should know about floating-point arithmetic”. *ACM Computing Surveys*,
24(3):319, September 1992. CODEN CMSVAN. ISSN 0360-0300 (print),
1557-7341 (electronic). See [2703, 2702, 2885].

Wilkes:1992:E

14(4):49–56, October–December 1992. CODEN IAHCEX. ISSN 1058-
6180 (print), 1934-1547 (electronic).

Wilt:1992:ALP

[3016] Nicholas Wilt. Assembly language programming for the 80*87. *Dr.
CODEN DDJOEB. ISSN 1044-789X.

Wong:1992:DSR

[3017] W. F. Wong and E. Goto. Division and square-rooting using a split
CODEN ELLEAK. ISSN 0013-5194 (print), 1350-911X (electronic).

Anonymous:1993:FSB

Anonymous. The “fastest system on the block” label must be qualified with new multiplatform, floating-point benchmarks. *PC Week*, 10(22): 85–??, June 1993. ISSN 0740-1604.

Anonymous:1993:SRT

Asprey:1993:PFP

ASTM:1993:AES

Bailey:1993:AMT

Bailey:1993:MPM

Bajard:1993:BNH

REFERENCES

Baker:1993:SLR

Bakhrakh:1993:NIF

Barrera:1993:IBS

Bauer:1993:LCB

Beckmann:1993:FFTa

REFERENCES

REFERENCES

Briggs:1993:XBM

Callaway:1993:EPC

Chang:1993:REP

Choi:1993:FPR

Chu:1993:FPA

REFERENCES

REFERENCES

[3071] David Eisig, Josh Rotstain, and Israel Koren. The design of a 64-bit integer multiplier/divider unit. In Swartzlander, Jr. et al. [7339], pages
REFERENCES

171–178. ISBN 0-7803-1401-8 (softbound), 0-8186-3862-1 (casebound), 0-
8186-3861-3 (microfiche). ISSN 0018-9340 (print), 1557-9956 (electronic).
LCCN QA 76.9 C62 S95 1993. URL http://www.acsel-lab.com/
on Computers 43(8), 1994.

[3072] S. E. Eldridge and C. D. Walter. Hardware implementation of
Montgomery’s modular multiplication algorithm. IEEE Transactions
on Computers, 42(6):693–699, June 1993. CODEN ITCOB4. ISSN 0018-
org/stamp/stamp.jsp?tp=&arnumber=277287.

[3073] Miloš D. Ercegovac, Tomás Lang, and Paolo Montuschi. Very
high radix division with selection by rounding and prescaling. In
Swartzlander, Jr. et al. [7339], pages 112–119. ISBN 0-7803-1401-
8 (softbound), 0-8186-3862-1 (casebound), 0-8186-3861-3 (microfiche).
ISSN 0018-9340 (print), 1557-9956 (electronic). LCCN QA 76.9 C62
papers/ARITH11_Ercegovac.pdf. IEEE Transactions on Computers
43(8), 1994.

the multioperand addition in the binary stored-carry number system.
In Swartzlander, Jr. et al. [7339], pages 194–201. ISBN 0-7803-1401-
8 (softbound), 0-8186-3862-1 (casebound), 0-8186-3861-3 (microfiche).
ISSN 0018-9340 (print), 1557-9956 (electronic). LCCN QA 76.9 C62
papers/ARITH11_Etiemble.pdf. IEEE Transactions on Computers
43(8), 1994.

[3075] Steven Fortune and Christopher J. Van Wyk. Efficient exact arithmetic
for computational geometry. In ACM, editor, Proceedings of the 9th ACM
Symposium on Computational Geometry, May 19–21, 1993, San Diego,
REFERENCES

REFERENCES

REFERENCES

Hendtlass:1993:MNIa

Hendtlass:1993:MNIb

Higginbotham:1993:ISR

Higham:1993:AFP

Holler:1993:IFP

Hopkins:1993:CEM

Horning:1993:SUM

Hu:1993:EIS

REFERENCES

Kortemeyer:1993:CPT

Kota:1993:NAH

Krandick:1993:EMF

Krishna:1993:TFA

Lee:1993:DAE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Pugh:1993:FPC

Reid:1993:LIA

Richardson:1993:ETR

Ris:1993:WFP

Samani:1993:SVP

Sarma:1993:MAR

REFERENCES

REFERENCES

Soulas:1993:AMC

Subramaniam:1993:PPP

Swartzlander:1993:FSC

Takagi:1993:MMA

Thompson:1993:CCQ

TI:1993:ITC

[3189] Inside technology today 32-bit floating point multi-port DSP / produced by Texas Instruments. VHS format. High-speed, multi-port DSPs can be used in parallel processing applications to really enhance computation time and power. A popular 6-port floating point DSP and high speed design integration and applications are described in this tape., 1993. 1 videocassette.

REFERENCES

Weste:1993:PCV

Williams:1993:BFM

Williams:1993:FM

Wrzyszcz:1993:DDCa

Wrzyszcz:1993:DDCb

Zeng:1993:CFA

REFERENCES

Zuras:1993:SML

Zuse:1993:CML

Agarwal:1994:EFP

Anonymous:1994:C

Anonymous:1994:FPa

Anonymous:1994:FPb

REFERENCES

Anonymous:1994:FPc

Anonymous:1994:SCSa

Anonymous:1994:SPF

Anonymous:1994:SRT

Apple:1994:IMP

Bajard:1994:BNH

Bajard:1994:SOL

REFERENCES

Barsi:1994:TOM

Bartolucci:1994:REC

Bauer:1994:MDS

Bewick:1994:FMA

BrinchHansen:1994:MLD

Brosol:1994:ISD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Montuschi:1994:DUN

Montuschi:1994:RDO

Montuschi:1994:RDS

Muller:1994:SCF

Murofushi:1994:RBR

Nakamura:1994:EPV

Narayanaswami:1994:AE

Nedialkov:1994:PCE

Niescier:1994:DIC

Novak:1994:AFP

Oberman:1994:DIH

Oh:1994:IPDa

Oh:1994:IPDb

Ohta:1994:INP

REFERENCES

REFERENCES

adders. In IEEE [7348], pages 227–232. ISBN 0-8186-6690-0. LCCN ????.
IEEE catalog no. 94TH8016.

[3332] Edward D. Robe. SIMULINK modules that emulate digital controllers
realized with fixed-point or floating-point arithmetic. Thesis (M.S.), Ohio
University, Athens, OH, USA, June 1994. v + 130 pp.

[3333] Edward Rothberg and Robert Schreiber. Improved load distribution
in parallel sparse Cholesky factorization. Technical report, Research
Institute for Advanced Computer Science, NASA Ames Research Center;
National Technical Information Service, distributor, Moffett Field, CA,

Journal of Computational and Applied Mathematics, 53(3):341–351,
August 30, 1994. CODEN JCAMDI. ISSN 0377-0427 (print), 1879-
article/pii/0377042794900620.

[3335] Jonathan T. Schaffer. A floating point multiplier for a superscalar
microprocessor. Thesis (M.S.), North Carolina State University, Raleigh,

[3336] Peter Schorn. Degeneracy in geometric computation and the
CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067 (electronic).
URL http://www3.oup.co.uk/computer_journal/Volume_37/Issue_
01/Vol37_01.body.html#AbstractSchorn.

[3337] H. Schoss. Intervall Standardfunktionen für das binäre IEEE
Zahlenformat [English: Interval Standard Functions for the Binary IEEE
Number Format]. Diplomarbeit, Institut für angewandte Mathematik,
Schulte:1994:HDE

Schulte:1994:OIA

Schulte:1994:VIA

Schwandt:1994:IAD

Sharangpani:1994:SAF

Shippy:1994:PFD

Smith:1994:PAT

REFERENCES

Vuillemin:1994:CN

Walker:1994:SMA

Walters:1994:CTR

Wang:1994:MQF

Weaver:1994:SAM

Wei:1994:REF

REFERENCES

REFERENCES

[3385] Anonymous. Micro view — what lessons can chip makers and their customers take from the Pentium floating-point divide flaw and the

Anonymous:1995:PCH

Antelo:1995:RCR

Bailey:1995:FBM

Bannon:1995:IAA

Baron:1995:FPP

Bauer:1995:AEB

REFERENCES

Boley:1995:FPF

Bomar:1995:RNA

Booker:1995:FER

BrinchHansen:1995:LDA

Burgess:1995:COT

Burnikel:1995:EGC

Carreno:1995:IIF

REFERENCES

REFERENCES

REFERENCES

Espelid:1995:FPS

Fateman:1995:FFP

Ferguson:1995:ECS

Figueroa:1995:WDR

Flynn:1995:ADA

Flynn:1995:SPT

Fried:1995:PON

Gluss:1995:DIA

Greenley:1995:UNG

Halfhill:1995:TBP

Hamano:1995:DCA

REFERENCES

Harrison:1995:FPV

Hassler:1995:FET

Hauser:1995:HFE

Helsley:1995:SZL

Hiasat:1995:HSDa

Hiasat:1995:HSDb

Hitz:1995:IDR

REFERENCES

[3456] Friedrich Wilhelm Kistermann. Die Rechentechnik um 1600 und Wilhelm Schickards Rechenmaschine. (German) [The calculating technique of 1600 and Wilhelm Schickard’s calculator]. In Seck [7363], pages 241–272. ISBN 3-7995-3235-8. ISSN 0340-6857. LCCN ????. DM 76.00, sfr 76.00, S 600.00.

REFERENCES

Kwan:1995:CII

Lang:1995:VHR

Leeser:1995:VSR

Lehmann:1995:SLE

[3463] N. Joachim Lehmann. Schickard und Leibniz als Erfinder von rechenmaschinen. (German) [Schickard and Leibniz, the inventors of calculators]. In Seck [7363], pages 273–286. ISBN 3-7995-3235-8. ISSN 0340-6857. LCCN ???. DM 76.00, sfr 76.00, $ 600.00.

Liu:1995:SRV

Louie:1995:VPS

Lozier:1995:EBL

Lynch:1995:HRL

Lynch:1995:KTF

Lyu:1995:RBB

Mandelbaum:1995:DUL

REFERENCES

REFERENCES

OGara:1995:SET

Ohi:1995:RCN

Ohkubo:1995:CBM

OLeary:1995:NRI

Orup:1995:SQD

REFERENCES

REFERENCES

[3501] S. J. Sangwine and D. A. Riach. Colour image thresholding at pixel rate using rational arithmetic hardware. In Fifth International Conference
REFERENCES

Sanyal:1995:CAS

Sarma:1995:FBR

Schulte:1995:DAV

• branch and bound algorithms for global optimization,
• constraint propagation,
• solution sets of linear systems,
• hardware and software systems for interval computations, and
• fuzzy logic.

Actual applications described in the book include:

• economic input-output models,
• quality control in manufacturing design,
• a computer-assisted proof in quantum mechanics,
• medical expert systems,
• and others.
A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

[3508] N. Shirazi, A. Walters, and P. Athanas. Quantitative analysis of floating point arithmetic on FPGA based custom computing machines. In
REFERENCES

Tsuji:1995:ASF

Turner:1995:PSI

Ueda:1995:DMA

VanDrunen:1995:ARA

Vinnakota:1995:IMS

Wang:1995:NDT

Wei:1995:CNM

REFERENCES

Zhou:1995:HSD

Ahrendt:1996:FHC

Al-Twaijry:1996:OPR

Alefeld:1996:EII

Andraos:1996:FPU

Angarai:1996:NRS

Vijayanand Jaganaatham Angarai. Number representation schemes for energy efficient computer arithmetic. Thesis (M.S.), University of Texas at Dallas, Dallas, TX, USA, 1996. ix + 57 pp.

Anonymous:1996:DC

REFERENCES

Anonymous:1996:SROf

Anuta:1996:BLA

Anuta:1996:MMC

Arioli:1996:REA

Bajard:1996:NED

Barber:1996:QAC

[3559] Christoph Burnikel and Jochen Könemann. High precision floating point numbers in LEDA. Report MPI I 96 1 002, Max-Planck-Institut für Informatik, Saarbrücken, Germany, 1996. 7 pp.
Candev:1996:AIA

Cappuccino:1996:DDH

Chaitin-Chatelin:1996:FPA

Chaitin-Chatelin:1996:LFP

Chen:1996:VAC

Chesneaux:1996:CSS

Chren:1996:DPP

REFERENCES

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1996. CODEN ???? ISSN ????

Chren:1996:DSD

Chren:1996:RDU

Ciminiera:1996:CSM

Clarke:1996:VSD

Clarke:1996:WLS

REFERENCES

Dobner:1996:AAD

Dobronets:1996:PEE

El-Guibaly:1996:HSC

Farag:1996:LPR

Feldstein:1996:OUM

Fenn:1996:MDD

Flynn:1996:SPT

[3585] Michael J. Flynn, Stuart Oberman, Steve Fu, Hesham Al-Twaijry, Kevin Nowka, Gary Bewick, Eric Schwarz, and Nhon Quach. The SNAP
REFERENCES

REFERENCES

Gudenberg:1996:HSI

Guedj:1996:EN

Gupta:1996:AAG

Guyot:1996:STD

Haller:1996:AFP

Hamacher:1996:CO

[3598] F. Hartwig and A. Lacroix. Roundoff noise analysis on the basis of an improved floating point error model. In IEEE International Symposium
REFERENCES

Hauser:1996:HFE

Heck:1996:IM

Hecker:1996:LGF

Heikes:1996:DFP

Heindl:1996:MVC

Heinrich:1996:AAF

REFERENCES

Herzberger:1996:OCC

Hickey:1996:FSP

Higham:1996:ASN

Hong:1996:NMM

Hyvoenen:1996:SCE

Inacio:1996:DDF

ISO:1996:TRF

REFERENCES

REFERENCES

REFERENCES

Industry immediately started to investigate the failure. From the report: “The internal SRI software exception was caused during execution of a data conversion from 64-bit floating point to 16-bit signed integer value. The floating point number which was converted had a value greater than what could be represented by a 16-bit signed integer. This resulted in an Operand Error. The data conversion instructions (in Ada code) were not protected from causing an Operand Error, although other conversions of comparable variables in the same place in the code were protected.”.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Shokin:1996:IPI

Sinclair:1996:ORS

Singer:1996:EAP

Soderquist:1996:AFT

Soderquist:1996:APT

Steele:1996:EL

Stewart:1996:ANA

REFERENCES

Suzuki:1996:LZA

Tan:1996:MPF

Tatsaki:1996:AIC

Trott:1996:AWL

Urano:1996:MAN

Vassilladis:1996:ARA

[3702] K. B. Williams. Testing math functions: When requirements are tight, we must carefully examine all potential sources of error. Make sure your math library isn’t the weak link in the chain. *C/C++ Users Journal*, 14 (12):49–54, 58–65, December 1996. CODEN CCUJEX. ISSN 1075-2838. Describes a package that extends the Cody-Waite-Plauger work on the ELEFUNT package for the testing of the elementary functions, including the inverse hyperbolic functions, cube root, and Bessel functions of the first and second kinds. The C++ package implements 192-bit extended precision versions of all of the functions, so that accurate results are available for comparison with the normal double-precision results.

Al-Twaijry:1997:APo

Althaus:1997:MNF

Anonymous:1997:BRPk

Anonymous:1997:SIS

REFERENCES

[3713] Martin Atkinson-Barr. Letter to the Editor: Pentium II math bug. Dr. Dobb’s Journal of Software Tools, 22(10):10, October 1997. CODEN DDJOEB. ISSN 1044-789X. Identifies himself as the “Mr. X” cited in [3727], and provides more the background on the discovery of the Pentium FIST (floating-point to integer store) instruction.

REFERENCES

Baker:1997:LEP

Beaumont-Smith:1997:GBA

Blackford:1997:PEN

Blinn:1997:JBC

Bomar:1997:RNA

REFERENCES

REFERENCES

REFERENCES

Computer Society order number PR07846. IEEE Order Plan catalog number 97CB36091.

Hiasat:1997:DIR

Hix:1997:CTV

Holmes:1997:CAP

Irmay:1997:RBZ

Ito:1997:EIA

Kahan:1997:JNL

REFERENCES

REFERENCES

[3774] Tomás Lang and Elisardo Antelo. CORDIC vectoring with arbitrary
target value. In Lang et al. [7381], pages 108–115. ISBN 0-8186-7846-
1, 0-8186-7847-X, 0-8186-7848-8. ISSN 1063-6889. LCCN QA76.9.C62
PR07846. IEEE Order Plan catalog number 97CB36091.

[3775] Tomás Lang, Jean-Michel Muller, and Naofumi Takagi. Foreword: 13th
IEEE Symposium on Computer Arithmetic, July 6–9, 1997, Asilomar,
California, USA. In Lang et al. [7381], page viii. ISBN 0-8186-7846-
1, 0-8186-7847-X, 0-8186-7848-8. ISSN 1063-6889. LCCN QA76.9.C62
preface.pdf. IEEE Computer Society order number PR07846. IEEE
Order Plan catalog number 97CB36091.

[3776] Choong Ho Lee, M. Kawamata, and T. Higuchi. State-space approach
IEEE International Symposium on Circuits and Systems: ISCAS ’97,
Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
1997. CODEN ?? ?? ISSN ?? ?

[3777] Inseop Lee and W. K. Jenkins. VLSI design for an adaptive equalizer
using a residue number system architecture for magnetic channels. In
Proceedings of the 40th Midwest Symposium on Circuits and Systems,
Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1997. CODEN ?? ?? ISSN ?? ?

[3778] Vincent Lefèvre, Jean-Michel Muller, and Arnaud Tisserand. Towards
correctly rounded transcendentals. In Lang et al. [7381], pages 132–139.
ISBN 0-8186-7846-1, 0-8186-7847-X, 0-8186-7848-8. ISSN 1063-
REFERENCES

[3779] Gérard Le Lann. An analysis of the Ariane 5 Flight 501 failure — a system engineering perspective. In Proceedings of the International Conference and Workshop on Engineering of Computer-Based Systems, pages 339–346. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1997. URL http://ieeexplore.ieee.org/document/581900/. From the article: “The SRI S/W exception was raised during a conversion from a 64-bit floating point number F to a 16-bit signed integer number. F had a value greater than what can be represented by a 16-bit signed integer, which caused an Operand Error (data conversion — in Ada code — was not protected, for the reason that a maximum workload target of 80% had been set for the SRI computer). ... The value of BH was much higher than expected because the early part of the trajectory of Ariane 5 differs from that of Ariane 4, which results in considerably higher horizontal velocity values.”.

REFERENCES

REFERENCES

REFERENCES

[3804] Brad Pierce. *Applications of randomization to floating-point arithmetic and to linear systems solution*. Thesis (Ph.D.), Department of Computer
Science, University of California, Los Angeles, Los Angeles, CA, USA, 1997.

REFERENCES

REFERENCES

Aberbour:1998:PMF

Aberth:1998:PNM

Al-Twaijry:1998:SPB

Al-Twaijry:1998:TSE

Althaus:1998:MNF

Anonymous:1998:ANO

Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. *ACM Fortran Forum*, 17(3):1–2, December 1998. CODEN ????? ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1998:PIS

Antelo:1998:CVH

Appel:1998:MCI

Arnold:1998:ACT

Bailey:1998:OEF

Daniel V. Bailey and Christof Paar. Optimal extension fields for fast arithmetic in public-key algorithms. *Lecture Notes in Computer Science,*
REFERENCES

REFERENCES

REFERENCES

[3870] Joseph D. Darcy. Evolving Java’s floating point support: The good, the bad, and the ugly. In MacKay and Johnson [7394], page ?? LCCN TK
REFERENCES

Darcy:1998:WRI

Daumas:1998:ELM

Dimitrov:1998:AME

Dimitrov:1998:FRR

Dimitrov:1998:RNS

Drolet:1998:NRE

REFERENCES

LCCN ???? CHF 104; US$72.00. URL http://webstore.ansi.org/
ansidocstore/product.asp?sku=ISO%2FIEC+TR+15580%3A1998;
http://www.iso.ch/cate/d28230.html. Available in English only.

[3896] R. M. Jessani and M. Putrino. Comparison of single- and dual-
pass multiply-add fused floating-point units. IEEE Transactions on
Computers, 47(9):927–937, September 1998. CODEN ITCOB4. ISSN
ieee.org/stamp/stamp.jsp?tp=&arnumber=713312.

[3897] W. Kahan and Joseph D. Darcy. How Java's floating-point hurts
everyone everywhere. Technical report, Department of Mathematics and
Department of Electrical Engineering and Computer Science, University
of California, Berkeley, Berkeley, CA, USA, June 18, 1998. 80
pp. URL http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf;

cs.ucsb.edu/conferences/java98/papers/javahurt.pdf. Possibly
unpublished, except electronically.

[3899] W. Kahan. The improbability of probabilistic error analyses for
numerical computations. Technical report, Department of Mathematics
and Department of Electrical Engineering and Computer Science,
University of California, Berkeley, Berkeley, CA, USA, June 10, 1998.

[3900] Richard Kelsey, William Clinger, and Jonathan Rees. Revised5 report on
the algorithmic language Scheme. ACM SIGPLAN Notices, 33(9):26–76,
September 1998. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867
(print), 1558-1160 (electronic). With H. Abelson, N. I. Adams, IV, D.
H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman, R. Halstead, C.
Hanson, C. T. Haynes, E. Kohlbecker, D. Oxley, K. M. Pitman, G. J.

REFERENCES

McCullough:1998:ARS

Mohan:1998:EFC

Montalvo:1998:NST

Moore:1998:MCP

Murabayashi:1998:WBP

Naffziger:1998:MAB

REFERENCES

REFERENCES

REFERENCES

Walter:1998:EUD

Walters:1998:SFF

Wei:1998:RAC

Weiss:1998:FPM

Wu:1998:LCB

Wu:1998:NLC

Abbott:1999:ASS

REFERENCES

and Kornerup [7406], pages 35–43. ISBN 0-7803-5609-8, 0-7695-
0116-8, 0-7695-0118-4. ISSN 1063-6889. LCCN QA76.6.S887 1999.
URL http://euler.ecs.umass.edu/paper/final/paper-163.pdf;
http://euler.ecs.umass.edu/paper/final/paper-163.ps;
Number PR00116. IEEE Order Plan Catalog Number 99CB36336.

[3970] Nico Fritz Benschop. Multiplier for the multiplication of at least two
figures in an original format. US Patent number 5,923,888., July 13,

for the 4-moduli superset \(\{2^n - 1, 2^n, 2^n + 1, 2^(n+1) + 1\} \). In
Koren and Kornerup [7406], pages 168–175. ISBN 0-7803-5609-8, 0-
URL http://euler.ecs.umass.edu/paper/final/paper-137.pdf;
http://euler.ecs.umass.edu/paper/final/paper-137.ps;
Order Plan Catalog Number 99CB36336.

[3972] M. Bhardwaj, T. Srikanthan, and C. T. Clarke. VLSI costs of
arithmetic parallelism: a residue reverse conversion perspective. In
Koren and Kornerup [7406], pages 176–185. ISBN 0-7803-5609-8, 0-
http://euler.ecs.umass.edu/paper/final/paper-138.ps;
Order Plan Catalog Number 99CB36336.

[3973] Thomas Blum and Christoph Paar. Montgomery modular exponentiation
on reconfigurable hardware. In Koren and Kornerup [7406], pages 70–
final/paper-133.pdf; http://euler.ecs.umass.edu/paper/
final/paper-133.ps; http://www.acsel-lab.com/arithmetic/

REFERENCES

REFERENCES

REFERENCES

Richard E. Crandall and Jason Klivington. Vector implementation of multiprecision arithmetic. Report, Advanced Computation Group, Apple
REFERENCES

REFERENCES

REFERENCES

REFERENCES

RESOURCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kornerup:1999:NSC

Krick:1999:AN

Lang:1999:VHR

Langlois:1999:WAL

Lee:1999:EFS

Lee:1999:NAD

Lue:1999:ADE

Mahesh:1999:IAE

McCullough:1999:ARS

McCullough:1999:NRE

Montuschi:1999:BVH

Muller:1999:FRT

Muroi:1999:ESR

Nannarelli:1999:LPDa

Nannarelli:1999:LPDb

Nannarelli:1999:LPR
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Computer Society Order Number PR00116. IEEE Order Plan Catalog Number 99CB36336.

REFERENCES

REFERENCES

REFERENCES

Tanskanen:1999:REF

Tenca:1999:DHR

Thompson:1999:BPF

Tisseur:1999:NMF

Tropp:1999:HAI

REFERENCES

[4143] Record, page various, 19xx. Floating Point Systems, Portland, OR, USA.

[4144] Intel. Intel 8231A Arithmetic Processing Unit. Intel Corp, San Jose, CA, USA, 19xx. URL http://www.datasheetarchive.com/pdf-datasheets/Datasheets-14/DSA-276911.html. From the datasheet (p. 3-5): “The mantissa is expressed as a 24-bit (fractional) value; the exponent is expressed as a two’s complement 7-bit value having the range −64 to +63. The most significant bit is the sign of the mantissa (0 = positive, 1 = negative), for a total of 32 bits. The binary point is assumed to be [to] the left of the most significant mantissa bit (bit 23). All floating-point data values must be normalized. Bit 23 must be equal to 1, except for the value zero, which is represented by all zeros. The range of values that can be represented in this format is ±(2.7\(^{-10}\)…9.2 \times 10^{18}) and zero.”.
Anonymous:2000:BRCd

Anonymous:2000:BRCg

Antelo:2000:VHR

Baidas:2000:HLF

Batten:2000:NAD

Becker:2000:JSE

Becker:2000:JSF

Chen:2000:PCV

Cheng:2000:STC

Cheng:2000:TID

Cherri:2000:PCC

Chu:2000:CPT

Coleman:2000:AEL

Coleman:2000:CAE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

 REFERENCES

Harrison:2000:HOM

Hasan:2000:FPI

Hasan:2000:LTB

Hassibi:2000:ESR

Hassibi:2000:FSR

He:2000:UAA

[4199] Yun He and Chris H. Q. Ding. Using accurate arithmetics to improve numerical reproducibility and stability in parallel applications. In
REFERENCES

[4205] Nobuhiro Ide, Masashi Hirano, Yukio Endo, Shin ichi Yoshioka, Hiroaki Murakami, Atsushi Kunimatsu, Toshinori Sato, Takayuki Kamei, Toyoshi Okada, and Masakazu Suzuki. 2.44 GFLOPS 300-MHz

Ifrah:2000:UHN

Imajo:2000:CSB

Intel:2000:DSR

Intel:2000:IPF

ISO:2000:FSI

Joye:2000:OLR

REFERENCES

REFERENCES

Precise: Efficient multiprecision evaluation of algebraic roots and predicates for reliable geometric computations. Technical Report TR00
008, Department of Computer Science, University of North Carolina,
Chapel Hill, NC, USA, 2000. URL http://citeseer.nj.nec.com/
krishnan00precise.html.

[4225] Ki-Il Kum, Jiyang Kang, and Wonyong Sung. AUTOSCALER for C: an
optimizing floating-point to integer C program converter for fixed-point
digital signal processors. IEEE transactions on circuits and systems.
CODEN ICSPE5. ISSN 1057-7130 (print), 1558-125X (electronic).

[4226] Keon-Jik Lee and Kee-Young Yoo. Linear systolic multiplier/squarer
for fast exponentiation. Information Processing Letters, 76(3):105–111,
December 15, 2000. CODEN IFPLAT. ISSN 0020-0190 (print),

[4227] Lawrence M. Leemis, Bruce W. Schmeiser, and Diane L. Evans. Survival
distributions satisfying Benford’s law. The American Statistician, 54(4):
236–??, November 2000. CODEN ASTAAJ. ISSN 0003-1305 (print),
tas/Leemis.htm.

[4228] V. D. Lefèvre and Jean-Michel Muller. Correctly rounded functions for
better arithmetic. In Conference Record of the Thirty-Fourth Asilomar
Conference on Signals, Systems and Computers, 2000, volume 2, pages
875–878. IEEE Computer Society Press, 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 2000. CODEN ????? ISSN ?????

[4229] Vincent Lefèvre. Moyens arithmétiques pour un calcul fiable. (French)
[Arithmetic means for reliable calculation]. Ph.D. dissertation, École
Normale Supérieure de Lyon, Lyon, France, 2000. 148 pp. URL https:
REFERENCES

REFERENCES

REFERENCES

[4247] Sangho Oh, Chang Han Kim, Jongin Lim, and Dong Hyeon Cheon. Efficient normal basis multipliers in composite fields. IEEE Transactions

Nielsen:2000:ICF
REFERENCES

Park:2000:ESR

Parker:2000:MCAa

Parker:2000:MCAb

Parks:2000:NTT

Philippens:2000:CNJ

Pillai:2000:LPA

REFERENCES

Savas:2000:MMI

Schulte:2000:CUT

Schulte:2000:FVP

Schulte:2000:IMO

Schulte:2000:PSM

Seidel:2000:DIC

Department, University of Saarland, Saarbrücken, Germany, 2000. xii + 188 pp.

Seife:2000:ZBD

Sleijpen:2000:DER

Swider:2000:FPR

Takahashi:2000:IMP

Talahmeh:2000:ADR

Tchoumatchenko:2000:FBS

Thimbleby:2000:CNB

Tommiska:2000:AEI

Tong:2000:RPO

Tsuji:2000:REO

vanderKolk:2000:FPV

Wang:2000:NSA

Wires:2000:VCT

REFERENCES

REFERENCES

REFERENCES

161. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2001. CODEN ???? ISSN ????

Barraud:2001:SAR

Bashagha:2001:NRS

Beaumont-Smith:2001:PPA

Beebe:2001:IFP

Berg:2001:FVV

Bickerstaff:2001:ACC

REFERENCES

Breyer:2001:NGE

Briggs:2001:XER

[4315] Keith Briggs and Yannis Smaragdakis. XR — exact real arithmetic. World-Wide Web document and software package., March 01, 2001. URL http://www.btexact.com/people/briggsk2/XR.html. From the overview: “This is an implementation of exact (or constructive) real arithmetic, as an alternative to multiple-precision floating-point (MPFP). An important distinction is that in MPFP one sets the precision before starting a computation, and then one cannot be sure of the final result. Interval arithmetic is an improvement on this, but still not an ideal solution because if the final interval is larger than desired, there is no simple way to restart the computation at higher precision. By contrast, in XR no precision level is set in advance, and no computation takes place until a final request takes place for some output. Despite this, programming with XR is no different from MPFP, except for the declaration of critical variables as type ‘XR’.

The main aim is to produce a usably efficient implementation, which can be easily interfaced with existing C++ code. This contrasts with previous implementations in functional languages (Haskell, Miranda etc.), which, although theoretically important, seem to be rather too slow for real use.

This code is designed as an add-on to Victor Shoup’s arbitrary-precision arithmetic package NTL, and implements a new type XR, to complement NTL’s ZZ and RR integer and real types.

Bruguera:2001:URC

Bryant:2001:VAC

REFERENCES

REFERENCES

validated proofs of a toolset for adaptable arithmetic. Research report
4095, Institut National de Recherche en Informatique et en Automatique,

[4331] Marc Daumas, Laurence Rideau, and Laurent Théry. A generic
library for floating-point numbers and its application to exact
computing. Lecture Notes in Computer Science, 2152:169–184,
2001. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349
series/0558/bibs/2152/21520169.htm; http://link.springer-
ny.com/link/service/series/0558/papers/2152/21520169.pdf;
https://hal.archives-ouvertes.fr/hal-00157285.

[4332] Florent de Dinechin and Arnaud Tisserand. Some improvements on
multipartite table methods. In Burgess and Ciminiera [7428], pages
arithmetic/arithmetic15/papers/ARITH15_Dinechin.pdf. IEEE order no.
PR01150.

[4333] David Defour, Florent de Dinechin, and Jean-Michel Muller. Correctly
rounded exponential function in double precision arithmetic. Rapport
de recherche RR-4231, INRIA Rhone-Alpes, ZIRST, 655 Avenue de
l’Europe, Montbonnot. 38334 Saint Ismier cedex, France, July 2001. URL

[4334] David Defour, Florida de Dinechin, and Jean-Michel Muller. Correctly
rounded exponential function in double precision arithmetic. In Luk
[7434], pages 156–167. CODEN PSISDG. ISBN 0-8194-4188-0. ISSN
0277-786X (print), 1996-756X (electronic). LCCN TK5102.5 .A332
DetailPaper&ProductId=448644&coden=PSISDG.
REFERENCES

REFERENCES

He:2001:UAA

Hesse:2001:DUT

Hida:2001:AQD

Hlavacs:2001:IAN

Hsu:2001:CAS

REFERENCES

[4368] W. Kahan. Names for standardized floating-point formats. Technical report, Mathematics Department and Electrical Engineering and Computer Science Department, University of California, Berkeley,
REFERENCES

REFERENCES

[4385] Tomáš Lang and Elisardo Antelo. Correctly rounded reciprocal square-root by digit recurrence and radix-4 implementation. In
REFERENCES

Lippert:2001:HSM

Madhukumar:2001:EMH

Madhukumar:2001:IBE

Madhukumar:2001:IIR

Matula:2001:ITL

McFearin:2001:GAH

REFERENCES

Michel:2001:SCF

Mobley:2001:ICW

Moller:2001:SEC

Montuschi:2001:BVH

Morioka:2001:TEV

MRaihi:2001:ACR

NOTES ON THE HISTORICAL DEVELOPMENT OF CALCULUS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Stoffel:2001:VIM

Sun:2001:NSM

Sunar:2001:EON

Takagi:2001:HAC

Tasche:2001:WAC

Tenca:2001:DRL

REFERENCES

Verdonk:2001:PRIa

Verdonk:2001:PRIb

Vergos:2001:HSP

Visavakul:2001:DSS

Walter:2001:DIH

Walter:2001:PBM

Walters:2001:CUT

Wang:2001:LPF

Wires:2001:FRR

Wirthlin:2001:ECC

REFERENCES

REFERENCES

[4482] Paul Zimmermann. De l’algorithmique à l’arithmétique via le calcul formel. (French) [From algorithmics to arithmetic via symbolic calculation]. Technical report, Département de formation doctorale en
REFERENCES

REFERENCES

Akkas:2002:ISE

Alvarez:2002:IRF

Anonymous:2002:AIVf

Anonymous:2002:OFP

ARM:2002:VVF

Arnold:2002:AOS

Arnold:2002:ICL

REFERENCES

823

Presented in 2002 at the “Forum des jeunes mathématiciennes et des jeunes informaticiennes”.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kulisch:2002:RNZ

Kwon:2002:EBS

Lang:2002:FPF

Lee:2002:DSS

Lee:2002:PFP

Leeser:2002:LPH

REFERENCES

Rudolf Matousek, Milan Tichý, Zdenek Pohl, Jirí Kadlec, Chris Softley, and Nick Coleman. Logarithmic number system and floating-point

Matula:2002:PTP

McCluskey:2002:MLF

McIlhenny:2002:CNL

Messine:2002:EAA

Molina:2002:BLA

Molina:2002:HLS

Molina:2002:MPC

Moller:2002:PEC

Motegi:2002:EGG

Okeya:2002:FSM

Overton:2002:CNC

REFERENCES

ISBN 970-32-0086-9. xii + 123 pp. Con un teorema, una regla empírica y ciento un ejercicios. [Including one theorem, one rule of thumb and one hundred and one exercises], Translated from the 2001 English original by Alejandro Casares Maldonado.

REFERENCES

Pineiro:2002:HSD

Puchta:2002:RNN

Ramasubramanian:2002:ACL

Ramirez:2002:FRF

Reid-Green:2002:TEA

REFERENCES

[4624] Texas Instruments, Dallas, TX, USA. *TMS320C67x FastRTS Library Programmer’s Reference (SPRU100A)*, October 2002. URL http://focus.ti.com/lit/ug/spru100a/spru100a.pdf. The FastRTS library is a collection of 26 optimized floating-point math functions for the TMS320C67x device. This source code library includes C-callable (ANSI-C-language compatible) optimized versions of the floating-point math functions included in previous run-time-support libraries.

Walters:2002:DTU

Winkler:2002:SVU

Wu:2002:BPF

Wu:2002:FFM

Wu:2002:MMS

Yang:2002:RNSa

Yang:2002:RNSb

Yang:2002:RNSc

Yen:2002:RSR

Ziv:2002:SGM

Abed:2003:VIL
REFERENCES

Ammar:2003:NDH

Anonymous:2003:A1

Anonymous:2003:FFP

Anonymous:2003:RHP

Arnold:2003:FFT

Arnold:2003:ILN

[4659] Nicolas Brisebarre and Jean-Michel Muller. Finding the “truncated” polynomial that is closest to a function. Research Report 4787, INRIA Rhone-Alpes, ZIRST, 655 Avenue de l’Europe, Montbonnot, 38334 Saint Ismier cedex,
REFERENCES

Brown:2003:DPA

Burgess:2003:SRN

Cao:2003:DHS

Chaudhuri:2003:DAO

Chaves:2003:RRD

REFERENCES

[4676] Marc Daumas and David W. Matula. Further reducing the redundancy of a notation over a minimally redundant digit set. Journal of VLSI
REFERENCES

REFERENCES

REFERENCES

[4694] Christiane Frougny and Athasit Surarerks. On-line multiplication in real and complex base. In Bajard and Schulte [7454], pages

[4700] David Goldberg. What every computer scientist should know about floating-point
REFERENCES

REFERENCES

[4717] Soonhak Kwon. A low complexity and a low latency bit parallel systolic multiplier over GF(2^m) using an optimal normal basis of type II. In Bajard and Schulte [7454], pages 196–202. ISBN 0-7695-1894-X. ISSN 1063-6889. LCCN QA76.6
REFERENCES

Lang:2003:RRS

[Tomás Lang and Elisardo Antelo. Radix-4 reciprocal square-root and
its combination with division and square root. *IEEE Transactions on
Computers*, 52(9):1100–1114, September 2003. CODEN ITCOB4. ISSN
ieee.org/stamp/stamp.jsp?tp=&arnumber=1228508]

Lee:2003:DPL

[B. Lee and N. Burgess. A dual-path logarithmic number system addition/
subtraction scheme for FPGA. In Cheung et al. [7455], pages 808–817.
CODEN LNCSD9. ISBN 3-540-40822-3 (softcover). ISSN 0302-9743
issn=0302-9743&volume=2778; http://www.springerlink.com/

Lefèvre:2003:FRR

[Vincent Lefèvre and Jean-Michel Muller. On-the-fly range reduction.
CODEN JVSPED. ISSN 0922-5773 (print), 1573-109x (electronic).

Lefèvre:2003:TMD

[Vincent Lefèvre and Jean-Michel Muller. The Table Maker’s Dilemma:
our search for worst cases. World-Wide Web software project archive.,
muller/Intro-to-TMD.htm]

Lefèvre:2003:WCC

[Vincent Lefèvre and Jean-Michel Muller. Worst cases for
correct rounding for the elementary functions in double precision.
Technical report, INRIA, Projet Spaces, LORIA, Campus Scientifique,
B.P. 239, 54506 Vandoeuvre-lès-Nancy Cedex, France, August
TMDworstcases.pdf]

REFERENCES

number PR01894. Selected papers republished in *IEEE Transactions on Computers*, 54(3) (2005) [5075].

NIEVERGELT:2003:SF

OKEYA:2003:WN

OKLOBDZIJA:2003:EDE

OKLOBDZIJA:2003:TDP

ORourke:2003:AN

PARHAMI:2003:TUB

[4739] B. Parhami. Tight upper bounds on the minimum precision required of the divisor and the partial remainder in high-radix division. IEEE
Paschalakis:2003:DPF

Percival:2003:RMM

Phillips:2003:SRR

Pineiro:2003:HRI

Pineiro:2003:LHR

REFERENCES

REFERENCES

REFERENCES

[4776] Gerhard Zielke and Volker Drygalla. Genaue Lösung linearer Gleichungssysteme. (German) [Exact solution of linear systems of equations]. Mitteilungen der Gesellschaft f

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ercegovac:2004:CSRb

Ercegovac:2004:DA

Ercegovac:2004:DCD

Fousse:2004:AST

Fousse:2004:CPE

REFERENCES

GNUP MP development began in 1991. Earlier versions are 1.0 (8-Aug-1991), 2.0 (24-Apr-1996), 3.0 (17-Apr-2000), and 4.0 (1-Dec-2001).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Schulte:2004:LPC

Seidel:2004:DOI

Seidel:2004:LIF

Shi:2004:FPF

Steele:2004:RHP

Stehle:2004:GAT

REFERENCES

Stine:2004:DCA

Sun:2004:LBR

Sunar:2004:GMC

Sypniewski:2004:IAU

Tadaki:2004:ECH

Thomas:2004:LLF

von zur Gathen:2004:FAG

Voronenko:2004:AGI

Walters:2004:TSC

Wang:2004:DFP

Weaver:2004:MFD

Wu:2004:HSL

REFERENCES

Forschungsbericht Nr. 04-8.

Zhu:2004:ISR

Zhuo:2004:SMA

Zimmerman:2004:DCI

Abdallah:2005:MRN

Abtahi:2005:CFR

Adharapurapu:2005:LSO

Aharoni:2005:SCI

Alvarez:2005:FMF

Anonymous:2005:HAP

Anonymous:2005:TMF

Antelo:2005:DRD

Antelo:2005:LLD

Antelo:2005:LLP

[4957] Elisardo Antelo and Julio Villalba. Low latency pipelined circular CORDIC. In Montuschi and Schwarz [7494], page ?? ISBN 0-7695-

Arnold:2005:BIR

Arnold:2005:RLN

Bailey:2005:DFDa

Bailey:2005:DFDb

Bailey:2005:HPF

Bailey:2005:QDD

REFERENCES

Bowman:2005:AVS

Brisebarre:2005:CRM

Brisebarre:2005:NRR

Bruguera:2005:FPF

Burgess:2005:PRI

Chakraborty:2005:BFP

REFERENCES

Cowlishaw:2005:GDA

Daneshbeh:2005:CUB

Danysh:2005:AIV

REFERENCES

Eggert:2005:PEN

Eleftheriou:2005:SFF

Enenkel:2005:CMF

Erle:2005:DME

Etiemble:2005:CBF

of Economics, University of Victoria, Victoria, BC, Canada, May 2005.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5042] Róbert Lórencz and Josef Hlaváč. Subtraction-free Almost Montgomery
Inverse algorithm. *Information Processing Letters*, 94(1):11–14, April 15,
2005. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

techniques for the Blue Gene/L double FPU. *IBM Journal of Research
and Development*, 49(2/3):437–446, ???. 2005. CODEN IBMJAE. ISSN

final/paper-149.pdf.

final/paper-112.pdf.

[5046] Osni A. Marques, E. Jason Riedy, and Christof Vömel. Benefits of IEEE-
754 features in modern symmetric tridiagonal eigensolvers. LAPACK
Working Note 172, Computer Science Division, University of California,
Berkeley, Berkeley, CA, USA, September 30, 2005. 22 pp. URL
http://www.netlib.org/lapack/lawnspdf/lawn172.pdf. Also issued

[5047] David Matula, Alex Fit-Florea, and Mitchell Thornton. Table lookup
structures for multiplicative inverses modulo 2^k. In Montuschi and

[5048] Mark McCann and Nicholas Pippenger. SRT division algorithms as
December 2005. CODEN SMJCAT. ISSN 0097-5397 (print), 1095-7111

Menissier-Morain:2005:APR

Mitra:2005:BFP

Mitzenmacher:2005:PCI

Montgomery:2005:FSS

REFERENCES

REFERENCES

Pareto:2005:GAL

Phatak:2005:FMR

Pineiro:2005:HSF

Revol:2005:TMF

Reyhani-Masoleh:2005:LCW

REFERENCES

REFERENCES

Stine:2005:CTC

Takagi:2005:HAI

Takahashi:2005:AMP

Tang:2005:BBI

Tang:2005:GBE

REFERENCES

REFERENCES

[5114] Paul Zimmermann. MPFR: vers un calcul flottant correct ? (French) [MPFR: Towards correct floating-point arithmetic?]. Online interactive report., LORIA/INRIA Lorraine, Bâtiment A, Technopôle de Nancy-Brabois, 615 rue du jardin botanique, F-54602 Villers-lès-Nancy Cedex,
REFERENCES

Zimmermann:2005:WTA

Zimmermann:2005:XXX

Anderson:2006:AMF

Anonymous:2006:IFPa

Anonymous:2006:IFPb

Anonymous:2006:RSI

Avanzi:2006:SMK

REFERENCES

Bajard:2006:AOF

Bartzis:2006:EBB

Bernal:2006:IRD

Bertot:2006:PGS

Bik:2006:MVF

Boldo:2006:PFF

REFERENCES

Bonten:2006:ACF

Briggs:2006:IER

Castellanos:2006:BDF

Chang:2006:DAR

Choi:2006:DCB

Cornea:2006:SII

Cowlishaw:2006:DCL

REFERENCES

[5140] Jérémie Detrey and Florent de Dinechin. FPLibrary. A VHDL library of parametrised floating-point and LNS operators for FPGA. Web site and source code., 2006. URL http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/. The FPLibrary has been superceded by the FloPoCo project [5583].

[5147] Simcha Gochman, Avi Mendelson, Alon Naveh, and Efraim Rotem. Introduction to Intel Core Duo processor architecture. Intel
REFERENCES

[5151] Daniel S. Graça, Ning Zhong, and Jorge Buescu. The ordinary differential equation defined by a computable function whose maximal interval of existence is non-computable. In Anonymous [7498], page ?? ISBN ???? LCCN ????

REFERENCES

REFERENCES

REFERENCES

[5179] T. H. Liew, Lie-Liang Yang, and L. Hanzo. Systematic redundant residue number system codes: analytical upper bound and iterative decoding

Lindstrom:2006:FEC

Mahalingam:2006:IAM

Marques:2006:BIF

Maslennikowa:2006:DFB

Melquiond:2006:AIC

REFERENCES

Michael Parks. Unifying tests for square root. In Anonymous [7498], page ?? ISBN ???? LCCN ????

REFERENCES

Qian:2006:HMP

Rajagopal:2006:TOA

Shen:2006:TAS

Shou:2006:MAA

Singh:2006:IEE

Solymosi:2006:APS

REFERENCES

945

REFERENCES

Anonymous:2007:AI

Anonymous:2007:CPSa

Anonymous:2007:CPSb

Balasubramaniam:2007:ECS

Balasubramaniam:2007:FSS

Beebe:2007:ETM

Beebe:2007:NDF

Beuchat:2007:ANP
[5247] Jean-Luc Beuchat, Masaaki Shirase, Tsuyoshi Takagi, and Eiji Okamoto. An algorithm for the \(\eta\)\(T\) pairing calculation in characteristic three and

Bodrato:2007:IPM

Boldo:2007:FPD

Boldo:2007:FVF

Boldo:2007:PCA

Brent:2007:EBC

Brisebarre:2007:CRA

REFERENCES

REFERENCES

REFERENCES

[5286] Laurent Fousse. Multiple-precision correctly rounded Newton–Cotes quadrature. RAIRO. Informatique théorique et applications :=
REFERENCES

[Frommer:2007:PEZ]

[Furer:2007:FIM]

[Gaudry:2007:GBI]

[Goel:2007:RMS]

[Goldberg:2007:FIP]

[Hanrot:2007:WCP]

[Harrison:2007:FPV]
0948-6968. URL http://www.jucs.org/jucs_13_5/floating_point_verification.

Hasenplaug:2007:FMR

Hernandez:2007:MPO

Hilewitz:2007:PAB

Holmes:2007:BA

Homann:2007:IFPa

Homann:2007:IFPb

Hosangadi:2007:AMO

[5300] Anup Hosangadi, Farzan Fallah, and Ryan Kastner. Algebraic methods for optimizing constant multiplications in linear systems. *Journal of...
Hosseinzadeh:2007:NMS

Huang:2007:NAM

Iguchi:2007:DRC

Ihsberner:2007:REA

James:2007:QAD

Kapre:2007:OPF

Kechagias:2007:CME

Khabbazian:2007:DPC

Knowles:2007:RSE

Kobayashi:2007:AIG

Kornerup:2007:CIPa

Kornerup:2007:CIPb

Kuliamin:2007:STI

[5313] V. V. Kuliamin. Standardization and testing of implementations of mathematical functions in floating point numbers. *Programming and Computer Software; translation of Programmirovaniye (Moscow, USSR)*
References

Lambov:2007:REI

Lang:2007:RDR

Langlois:2007:HEF

Langlois:2007:MIL

Laurie:2007:VPA

Lefevre:2007:SNP

Li:2007:DDP

Li:2007:DEF

Li:2007:DFP

Li:2007:FAT

Lopez:2007:EIF

Louvet:2007:ACA

Lundvall:2007:CDF

[5326] Shawn D. Lundvall, Eric M. Schwarz, Ronald M. Smith, Sr., and Phil C. Yeh. Composition of decimal floating point data, and methods therefor.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5379] Tor M. Aamodt and Paul Chow. Compile-time and instruction-set methods for improving floating- to fixed-point conversion accuracy. *ACM...*
REFERENCES

REFERENCES

REFERENCES

[5397] Florent De Dinechin and Christoph Quirin Lauter. Optimizing polynomials for floating-point implementation. arXiv.org. ??(??):1–12,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5469] Frithjof Blomquist, Werner Hofschuster, and Walter Krämer. A modified staggered correction arithmetic with enhanced accuracy and very wide

[Boldo:2009:CCG]

[Boldo:2009:FRC]

[Boldo:2009:FVA]

[Boldo:2009:KAC]

[Bryant:2009:ABD]

[Bullynck:2009:MAB]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Minchola:2009:FID

Monniaux:2009:UFPa

Monniaux:2009:UFPb

Mosbach:2009:QPI

Murakami:2009:CFT

Pan:2009:NEF

VanDenDries:2009:AC

Vazquez:2009:CDT

Vazquez:2009:HPS

Verma:2009:CAO

Vuillemin:2009:EDS

Wang:2009:DFP

REFERENCES

[5571] David Aldous and Tung Phan. When can one test an explanation? compare and contras Benford’s Law and the fuzzy CLT. *The American
REFERENCES

Alimohammad:2010:UAA

Amin:2010:HRM

Banescu:2010:MFP

Block:2010:GEB

Brent:2010:PAV

Brisebarre:2010:IDF

REFERENCES

Chapoutot:2010:ISN

Cheng:2010:BSS

Chevillard:2010:SED

Cuyt:2010:VSF

Daumas:2010:CBE

deDinechin:2010:FGA

[5583] Florent de Dinechin and Bogdan Pasca. FloPoCo: generator of arithmetic cores (Floating-Point Cores, but not only) for FPGAs (but not only). Web site and source code., August 10, 2010.

REFERENCES

Fu:2010:FDO

Ghazi:2010:WHU

Hemmert:2010:FEF

Jaberipur:2010:RDF

Jiang:2010:AEP

Kahan:2010:PUC

REFERENCES

Loitsch:2010:PFP

Louvet:2010:NRA

Maruyama:2010:SVN

Mathews:2010:AOE

Mehrotra:2010:SLR

Meyer:2010:CGT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2011:CPSa

Antelo:2011:IIFa

Antelo:2011:IIFb

Arias-Garcia:2011:SFI

Arnold:2011:RCL

Arnold:2011:TQC

Badin:2011:IAM

REFERENCES

[5672] Maarten Boersma, Michael Kroner, Christophe Layer, Petra Leber, Silvia M. Muller, and Kerstin Schelm. The POWER7 binary floating-

Boldo:2011:EAE

Boldo:2011:FUL

Boldo:2011:FVN

Bos:2011:ESA

Brent:2011:MCA

Brisebarre:2011:APS

Nicolas Brisebarre, Mioara Joldes, Peter Kornerup, Érik Martin-Dorel, and Jean-Michel Muller. Augmented precision square roots and 2-D norms, and discussion on correctly rounding $\sqrt{x^2 + y^2}$. In Schwarz

REFERENCES

1017

Calamia:2011:CGG

Carlough:2011:IZD

Cavagnino:2011:AAD

Cenk:2011:EM

Chakraborty:2011:CBS

Chang:2011:CGR

REFERENCES

Curran:2011:ZSM

Daisaka:2011:GMS

Das:2011:HSR

deDinechin:2011:A0Y

deDinechin:2011:CFP

DelVento:2011:SLM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

References

Jeannerod:2011:HSF

Jeannerod:2011:MEP

Jiang:2011:AEP

Kainuma:2011:DIC

Kaivani:2011:DCR

REFERENCES

[5750] Fabrizio Lamberti, Nikos Andrikos, Elisardo Antelo, and Paolo Montuschi. Reducing the computation time in (short bit-width) two's

Liu:2011:ILC

Lutz:2011:FMA

Malone:2011:FBI

Masakova:2011:ANS

Matula:2011:PLP

Mauer:2011:FPS
Minchola:2011:FID

Moller:2011:IDI

Mouilleron:2011:AGF

Nannarelli:2011:RCD

Nguyen:2011:FSA

Ozaki:2011:TEE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5823] Filippo Gandino, Fabrizio Lamberti, Gianluca Paravati, Jean-Claude Bajard, and Paolo Montuschi. An algorithmic and architectural study on
REFERENCES

REFERENCES

REFERENCES

REFERENCES

arXiv.org, ??(??):1–45, January 28, 2012. CODEN ???? ISSN ???? URL

[5849] J. D. McCalpin. Is “ordered summation” a hard problem to speed up?
Web
2012/02/15/is-ordered-summation-a-hard-problem-to-speed-up/.

[5850] Aleksandar Milicevic and Daniel Jackson. Preventing arithmetic
overflows in Alloy. *Lecture Notes in Computer Science*, 7316:108–121,
URL http://link.springer.com/content/pdf/10.1007/978-3-642-
30885-7_8.

[5851] Antoine Miné. Abstract domains for bit-level machine integer and
floating-point operations. In Gudmund Grov, editor, *WING’12 — 4th
International Workshop on Invariant Generation, held on June 30, 2012
in Manchester, UK*, page 16. Elsevier, Amsterdam, The Netherlands,
2012.

[5852] Daichi Mukunoki and Daisuke Takahashi. Performance comparison
of double, triple and quadruple precision real and complex BLAS
subroutines on GPUs (extended abstract). In ???, editor, *ATIP ’12:
Proceedings of the ATIP/A*CRC Workshop on Accelerator Technologies
for High-Performance Computing: Does Asia Lead the Way?,* pages 788–
LCCN ????

[5853] Norbert Th. Müller and Christian Uhrhan. Some steps into verification
of exact real arithmetic. *Lecture Notes in Computer Science*, 7226:
168–173, 2012. CODEN LNCS?D9. ISSN 0302-9743 (print), 1611-
1007/978-3-642-28891-3_17/.

[5871] Zhen Wang and Shuqin Fan. Efficient Montgomery-based semi-systolic multiplier for even-type GNB of GF(2m). *IEEE Transactions on
REFERENCES

Wang:2012:RCC

Wang:2012:UBW

Yan:2012:RBC

Yan:2012:RMC

Anguita:2013:EES

Anonymous:2013:DML

Anonymous:2013:IOF

Antao:2013:CFA

Arnold:2013:DLN

Bagnara:2013:EBF

Bailey:2013:KHP

Bajard:2013:FDR

Bao:2013:FDI

REFERENCES

REFERENCES

REFERENCES

Jaffer:2013:EAR

Jeannerod:2013:CAC

Jeannerod:2013:FAK

Jeannerod:2013:IEB

Jiang:2013:AED

Jiang:2013:AFE

REFERENCES

REFERENCES

REFERENCES

Nguyen:2013:SED

Nikolajsen:2013:FSD

Ould-Bachir:2013:SAS

Ozaki:2013:GEF

Pedram:2013:FPA

Pontarelli:2013:LCC

Rubio-Gonzalez:2013:PTA
REFERENCES

Rump:2013:ASDa

Rump:2013:ASDb

Rupley:2013:FPU

Russinoff:2013:CFV

Saha:2013:PAF

SaiToh:2013:ZCL

REFERENCES

28th International Parallel and Distributed Processing Symposium, pages 1235–1244. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2014.

[5976] Ali Osman Çibikdiken and Kemal Aydin. Computation of the monodromy matrix in floating point arithmetic with the Wilkinson

REFERENCES

1065

REFERENCES

REFERENCES

Lei:2014:FIS

Lindstrom:2014:FRC

Long:2014:SIF

Lupon:2014:SHS

Marche:2014:VFB

Milicevic:2014:PAO

REFERENCES

[6023] PengFei Wang and JianPing Li. On the relation between reliable computation time, float-point precision and the Lyapunov exponent in

Andrysco:2015:SFP

Aneesh:2015:HHM

Anonymous:2015:EFP

Bailey:2015:HPA

Bailey:2015:NRH

Bajard:2015:RAA
REFERENCES

[6048] Florent de Dinechin. On fixed-point hardware polynomials. Technical report, INSA, CITI Lab, Université de Lyon, Lyon, France, October 2015. URL https://hal.inria.fr/hal-01214739.

REFERENCES

[6059] Terry Froggatt. An error in the Ada universal arithmetic package. \textit{ACM SIGADA Ada Letters}, 35(2):14, August 2015. CODEN AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic). See [1737]. The 32-year-old error is a test with digit \(t \) that has \texttt{if (t > BASE)}, but the operator should instead be \texttt{>=}.

[6062] Benoît Gérard, Jean-Gabriel Kammerer, and Nabil Merkiche. Contributions to the design of residue number system architectures.

REFERENCES

REFERENCES

REFERENCES

[6088] Petr Kůrka. The exact real arithmetical algorithm in binary continued fractions. In Muller et al. [7564], pages 168–175. ISBN 1-4799-8665-8,
REFERENCES

REFERENCES

Liu:2015:SSS

Lu:2015:REP

Lutz:2015:OLZ

Martin-Dorel:2015:FVC

Matula:2015:MDE

McCleeary:2015:LAA

[6100] Ryan McCleeary, Martin Brain, and Aaron Stump. A lazy approach to adaptive exact real arithmetic using floating-point operations. ACM

Neal:2015:FESb

Negre:2015:EME

Nguyen:2015:RTS

Ozaki:2015:IEF

Palmer:2015:MBI

Panchekha:2015:AIA

Parhami:2015:DAN

[Patil:2015:OFP]

[Peep:2015:DDP]

[Proust:2015:KTC]

[Renardy:2015:HIM]

[Roegel:2015:MCA]

[Ruckert:2015:MSS]
Martin Ruckert. The MMIX supplement: supplement to The Art of Computer Programming, volumes 1, 2, 3 by Donald E. Knuth. Addison-Wesley, Reading, MA, USA, 2015. ISBN 0-13-399231-4 (paperback),
REFERENCES

[6125] Lloyd N. Trefethen. Computing numerically with functions instead of numbers. Communications of the Association for Computing Machinery,
REFERENCES

REFERENCES

[6132] Peter Ahrens, Hong Diep Nguyen, and James Demmel. Efficient reproducible floating point summation and BLAS. Report UCB/EECS-2016-121, EECS Department, UC Berkeley, Berkeley, CA, USA, June 18, 2016. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html.

REFERENCES

REFERENCES

Cui:2016:PDM

Damouche:2016:TSB

DelBarrio:2016:PCS

Demmel:2016:ERF

Denis:2016:VCF

DHollander:2016:HLS

REFERENCES

Fritz:2016:IPM

Garcia-Vega:2016:DMO

Garrido:2016:CIN

Geran:2016:CBC

Gueron:2016:ABI

Gueron:2016:HIA

Gustafson:2016:BFP

[6172] David Hopkins. Will my numbers add up correctly if I round them? *The Mathematical Gazette*, 100(549):396–409, November 2016. CODEN MAGAAS. ISSN 0025-5572 (print), 2056-6328 (electronic). URL https://www.cambridge.org/core/product/88F5753DFE9F0DDDEAD1F2552B0F8B22. The probability that rounding after fixed-point summation of n terms gives the same result as summation of rounded terms is given by $p(n) = (2/\pi) \int_{0}^{\infty} (\sin(x)/x)^{n+1} dx$, and that function is always a rational number. Its values are $p(n) = 1, 3/4, 2/3, 115/192, 11/20, 5887/11520, 151/315, 259723/573440, \ldots$ for $n = 1$ to 8.

REFERENCES
1095

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2017:C

Anonymous:2017:CN

Anonymous:2017:F

Anonymous:2017:FC

Anonymous:2017:PCM

Anonymous:2017:PI

Anonymous:2017:SC

Anonymous:2017:TC

Anonymous:2017:TP

Anonymous:2017:TPI

Aurentz:2017:CCS

B:2017:GML

Beebe:2017:MFC

REFERENCES

[6253] Nicolas Brisebarre, Guillaume Hanrot, and Olivier Robert. Exponential sums and correctly-rounded functions. IEEE Transactions on

Chemseddine Chohra, Philippe Langlois, and David Parello. Reproducible, accurately rounded and efficient BLAS.
In Desprez et al. [7570], pages 609–620. ISBN 3-319-58943-1 (e-book), 3-319-58943-1 (hardcover). LCCN QA76.9.E94; QA76.758TK.

REFERENCES

REFERENCES

2017/02/john-gustafson-presents-beyond-floating-point-next-generation-computer-arithmetic.

REFERENCES

REFERENCES

[6300] Alan A. Jorgensen. Apparatus for calculating and retaining a bound on error during floating point operations and methods thereof. US Patent 9,817,662., November 14, 2017. URL https://patents.google.com/patent/US9817662B2/; https://tinyurl.com/y7ctbsez. This patent, filed 23 October 2016, was issued despite substantial prior art that should have resulted in its rejection: see [6460]. The inventor does not appear to have published in the area of floating-point arithmetic.
The only literature references in the patent are [5419, 2703, 5848, 5618].

Mazahir:2017:PEA

Medhat:2017:MPE

Merchant:2017:ABL

Mian:2017:HPC

Micikevicius:2017:MPT

REFERENCES

[6343] Siegfried M. Rump. IEEE754 precision-k base-β arithmetic inherited by precision-m base-β arithmetic for $k < m$. ACM Transactions
REFERENCES

Anonymous:2018:OLA

Babuska:2018:REG

Bajard:2018:MRW

Barthel:2018:HIB

Becker:2018:NOS

Boldo:2018:FPA

[6374] Sylvie Boldo, Florian Faissole, and Vincent Tourneur. A formally-proved algorithm to compute the correct average of decimal floating-point

[6383] Jianyu Chen and Zaid Al-Ars. A matrix-multiply unit for posits in reconfigurable logic using (OPEN)CAPI. In ACM [7572], pages 1–5.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6424] Ignaz Kohlbecker. The slide number format. In ACM [7572], pages 1–6.

REFERENCES

REFERENCES

[6439] Sergio Marchese. AI chips must get the floating-point math right: Formal verification of FPUs is no longer a prerogative of big companies spending big bucks. Web site., September 27, 2018.

Reddy:2018:DAD

Reyhani-Masoleh:2018:NAR

Riedy:2018:AAO

Rodriguez-Henriquez:2018:SIH

Saadat:2018:MBM

Sanchez-Stern:2018:FRC

[6456] Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tatlock. Finding root causes of floating point error. *ACM SIGPLAN*
REFERENCES

[6460] Tiffany Trader. Inventor claims to have solved floating point error problem. HPC Web site., January 17, 2018. URL https://www.hpcwire.com/2018/01/17/inventor-claims-solved-floating-point-error-problem/. From the HPC editor: “After this article was published, a number of readers raised concerns about the originality of Jorgensen’s techniques, noting the existence of prior art going back years. Specifically, there is precedent in John Gustafson’s work on unums and interval arithmetic both at Sun and in his 2015 book, The End of Error, which was published 19 months before Jorgensen’s patent application was filed.”.

REFERENCES

Agrawal:2019:DBF

Anderson:2019:SAM

Andrlon:2019:OBF

Anonymous:2019:CPC

Anonymous:2019:MCT

Anonymous:2019:RMV

Anonymous:2019:SOL

Anonymous:2019:UFP

REFERENCES

[6482] R. Bellal, E. Lamini, H. Belbachir, S. Tagzout, and A. Belouchrani. Improved affine arithmetic-based precision analysis for polynomial

REFERENCES

Cappello:2019:UCL

Carlough:2019:DBF

Carmichael:2019:DPD

Carmichael:2019:PET

Caygill:2019:DCF

Caygill:2019:NLH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6528] David Harvey and Joris Van Der Hoeven. Integer multiplication in time $O(n \log n)$. Report hal-02070778, School of Mathematics and Statistics, University of New South Wales, and CNRS, Laboratoire d’informatique, École polytechnique, Sydney, NSW 2052, Australia and 91128 Palaiseau, France, March 18, 2019. URL https://hal.archives-ouvertes.fr/hal-02070778/document.

REFERENCES

A2815–A2835, ???? 2019. CODEN SJOCE3. ISSN 1064-8275 (print), 1095-7197 (electronic).

REFERENCES

[6547] Dhiraj D. Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee, Sasikanth Avancha, Dharma Teja
REFERENCES

Kaul:2019:OFF

Kim:2019:CEI

Kim:2019:EMA

Klower:2019:PAF

Kostic:2019:UNV

REFERENCES

[6567] Stefan Mach, Fabian Schuiki, Florian Zaruba, and Luca Benini. A 0.80pJ/flop, 1.24Tflop/sW 8-to-64 bit transprecision floating-point unit for a 64 bit RISC-V processor in 22nm FD-SOI. In IEEE, editor, 2019 IFIP/IEEE 27th International Conference on Very Large Scale Integration (VLSI-SoC), pages 95–98. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2019.

[6572] B. D. McCullough, Taha Mokfi, and Mahsa Almacenjad. Wilkinson’s tests and SQL packages. SIGMOD Record (ACM Special Interest Group
REFERENCES

1158

Melquiond:2019:FVS

Melquiond:2019:NVN

Mian:2019:CAE

Moler:2019:CCF

Moler:2019:CCV

Moriai:2019:PPD

Munoz-Coreas:2019:QCD

REFERENCES

[6613] Laurens van Dam, Johan Peltenburg, Zaid Al-Ars, and H. Peter Hofstee. An accelerator for posit arithmetic targeting posit level 1 BLAS routines and Pair-HMM. In Gustafson and Dimitrov [7574], pages 5:1–5:10. ISBN 1-4503-7139-6. LCCN ????.

Venkatachalam:2019:DAA

Verheyde:2019:BDD

Villa:2019:NDB

Villalba-Moreno:2019:RSU

Volkova:2019:SAI

Walther:2019:VNR

Wang:2019:BSH

Wang:2019:PAA

Ye:2019:NCA

Zhang:2019:EMP

Zhang:2019:EPM

Zorn:2019:SPD

Abdelfattah:2020:IBF

Abdelfattah:2020:MMB

[6629] Ahmad Abdelfattah, Stanimire Tomov, and Jack Dongarra. Matrix multiplication on batches of small matrices in half and half-complex

Anonymous:2020:AI

Anonymous:2020:ALR

Anonymous:2020:RVE

Anonymous:2020:SA

Anonymous:2020:TC

Anonymous:2020:TPa

Anonymous:2020:TPb

Arnold:2020:IRL

REFERENCES

REFERENCES

REFERENCES

Cococcioni:2020:FAH

Cococcioni:2020:FDN

Cococcioni:2020:NPB

Cornea:2020:FA

Coward:2020:ADS

REFERENCES

[6679] David Harvey and Joris van der Hoeven. Integer multiplication in time $O(n \log n)$. Report hal-02070778, School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia, November 28, 2020. 45 pp. URL https://hal.science/hal-02070778v2.

[6681] Michael Hopkins, Mantas Mikaitis, Dave R. Lester, and Steve Furber. Stochastic rounding and reduced-precision fixed-point arithmetic for

REFERENCES

REFERENCES

Knobbe:2020:CRS

Koc:2020:AIM

Lange:2020:FRF

Lange:2020:NDF

Langroudi:2020:APP

Lauter:2020:FSA

[6700] Christoph Lauter and Anastasia Volkova. A framework for semi-automatic precision and accuracy analysis for fast and rigorous deep

Lindstrom:2020:VRC

Luo:2020:ADN

Marquer:2020:HLI

Meurant:2020:PFM

Mikaitis:2020:IRG

Mikaitis:2020:SRA

REFERENCES

[6719] SEGGER

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2021.

REFERENCES

[6766] Emeric Brun, David Defour, Pablo de Oliveira Castro, Matei Istoan, Davide Mancusi, Eric Petit, and Alan Vaquet. A study of the effects

[Brun:2021:SEBb]

[Brunei:2021:MAE]

[Ciocirlan:2021:AEPa]

[Ciocirlan:2021:AEPb]

[Cococcioni:2021:VPO]

[Coladon:2021:MFR]

REFERENCES

REFERENCES

[6793] Ganesh Gopalakrishnan, Ignacio Laguna, Ang Li, Pavel Panchekha, Cindy Rubio-González, and Zachary Tatlock. Guarding numerics

REFERENCES

[6817] Jean-Michel Muller. $a \cdot (x \cdot x)$ or $(a \cdot x) \cdot x$?. In IEEE [7580], pages 17–24. ISBN 1-66542-293-9 (print), 1-66544-648-X (e-book). LCCN ???
REFERENCES

Plantard:2021:EWSb

Rao:2021:PND

Raposo:2021:PTD

Reichenbach:2021:RVR

Revy:2021:AIF

Rodriguez:2021:DLS

Romanov:2021:APB

REFERENCES

REFERENCES

Anonymous:2022:C

Anonymous:2022:PCA

Anonymous:2022:SA

Anonymous:2022:SCA

Anonymous:2022:TC

Anonymous:2022:TP

Anonymous:2022:TPI

Aoki:2022:EWS

Arnold:2022:TQL

Bajard:2022:GVL
REFERENCES

REFERENCES

Cryptographic Engineering, 12(1):95–105, April 2022. CODEN ????

[6875] Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Alberto
Namarelli, Massimo Petricca, and Marco Re. Design space
exploration based methodology for residue number system digital filters
implementation. *IEEE Transactions on Emerging Topics in Computing*,
10(1):186–198, January/March 2022. ISSN 2168-6750 (print), 2376-4562
(electronic).

[6876] Chuangtao Chen, Weikang Qian, Mohsen Imani, Xunzhao Yin, and
Cheng Zhuo. PAM: a piecewise-linearly-approximated floating-point
multiplier with unbiasedness and configurability. *IEEE Transactions on
Computers*, 71(10):2473–2486, October 2022. CODEN ITCOB4. ISSN
0018-9340 (print), 1557-9956 (electronic).

Saponara. Experimental results of vectorized posit-based DNNs on a
real ARM SVE high performance computing machine. In *Applications
in Electronics Pervading Industry, Environment and Society*, pages 61–
68. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London,

Saponara. A lightweight posit processing unit for RISC-V processors
in deep neural network applications. *IEEE Transactions on Emerging
Topics in Computing*, 10(4):1898–1908, October/December 2022. ISSN
2168-6750 (print), 2376-4562 (electronic).

[6879] Marco Cococcioni, Federico Rossi, Emanuele Ruffaldi, and Sergio
Saponara. Small reals representations for deep learning at the edge:
a comparison. In *Next Generation Arithmetic: Third International
Conference, CoNGA 2022, Singapore, March 1–3, 2022, Revised Selected
Papers* [7581], pages 117–133. ISBN 3-031-09778-5, 3-031-09779-3
(e-book). ISSN 0302-9743 (print), 1611-3349 (electronic). LCCN
QA76.9.C62.
Coward:2022:ADO

Cowlishaw:2022:DAFa

Cowlishaw:2022:DAFb

Cowlishaw:2022:DAFc

Cowlishaw:2022:DAFd

Cowlishaw:2022:DAFe

Cowlishaw:2022:DAFf

Crespo:2022:UPI

REFERENCES

REFERENCES

Higham:2022:MPA

Ho:2022:QNG

Immaneni:2022:PEO

Isupov:2022:MPS

Keerthi:2022:DIM

[6917] Hamed F. Langroudi, Vedant Karia, Tej Pandit, Becky Mashaido, and Dhireesha Kudithipudi. ACTION: Automated Hardware–Software
REFERENCES

Lim:2022:OPA

Lindstrom:2022:MUC

Liu:2022:DUA

Mallasen:2022:CCR

Mallasen:2022:POSa

REFERENCES

[6929] Paolo Montuschi, Jean-Michel Muller, and Florent de Dinechin. Computer arithmetic: Continuing a long and steady emergence.
REFERENCES

REFERENCES

[6942] Kangkyu Park, Seungkyu Choi, Yeongjae Choi, and Lee-Sup Kim. Rare computing: Removing redundant multiplications from sparse

Peng:2022:DNN

PWG:2022:SPA

Ramachandran:2022:PCP

Roy:2022:AAC

Russinoff:2022:FVC

S:2022:IRP

Sadeghimanesh:2022:SSN

Safieh:2022:ERA

Schober:2022:HAM

Shah:2022:DDP

Sibidanov:2022:CMP

Siddamshetty:2022:EHA

REFERENCES

Verma:2022:RVC

Walia:2022:FLP

Wang:2022:PNE

Waris:2022:AAR

Waris:2022:HPP

Xie:2022:EHI

REFERENCES

You:2022:RVP

Zacharelos:2022:ARM

Zhang:2022:HRD

Zhang:2022:SDF

Zolfagharinejad:2022:PPE

Zou:2022:OFR

REFERENCES

REFERENCES

REFERENCES

[6987] Eric Bavier, Nicholas Knight, Hugues de Lassus Saint-Geniès, and Eric Love. Vectorized nonlinear functions with the RISC-V vector extension. In IEEE [7584], pages 127–130. LCCN ????

[6995] Nicolas Brisebarre, Jean-Michel Muller, and Joris Picot. Error in ulps of the multiplication or division by a correctly-rounded function or constant in binary floating-point arithmetic. In IEEE [7584], page 88. LCCN ????. Published in “IEEE Transactions on Emerging Topics in Computing, Volume: 11, Issue: 4, 01 October–December 2023” and orally presented at ARITH 2023.

[6997] Nicolas Brisebarre and Silviu-Ioan Filip. Towards machine-efficient rational L^∞-approximations of mathematical functions. In IEEE [7584], pages 119–126. LCCN ????.

[6998] Nicolas Brisebarre, Jean-Michel Muller, and Joris Picot. Testing the sharpness of known error bounds on the Fast Fourier Transform. In IEEE [7584], pages 89–92. LCCN ???
REFERENCES

Defour:2023:CAN

[7005] David Defour and Franck Vedrine. Chromatic analysis of numerical programs. In IEEE [7584], pages 97–100. LCCN ????

deLamarliere:2023:SFP

Desrentes:2023:EFD

[7007] Orégane Desrentes, Benoît Dupont de Dinechin, and Florent de Dinechin. Exact fused dot product add operators. In IEEE [7584], pages 151–158. LCCN ????

Eckert:2023:EMM

Edamatsu:2023:FMP

Edavoor:2023:DAP

ElArar:2023:SRV

REFERENCES

[7012] Youssef Fakhreddine and Guillaume Revy. Using loop transformations for precision tuning in iterative programs. In IEEE [7584], pages 159–166. LCCN ????

[7015] Oliver Flatt and Pavel Panchekha. Making interval arithmetic robust to overflow. In IEEE [7584], pages 44–47. LCCN ????

[7018] Danila Gorodecky and Leonel Sousa. Scalable architecture of constant division on FPGA. In IEEE [7584], pages 16–23. LCCN ???

Hubrecht:2023:TCRa

Hubrecht:2023:TCRb

Hulsmeier:2023:HSH

IEEE:2023:MIS

IEEE:2023:UWG

Innocente:2023:AMF

[7033] Ghassem Jaberipur, Saeid Gorgin, Navid Ahamadian, and Jeong-A Lee. Modulo-\((2^q - 3)\) multiplication with fully modular partial product generation and reduction. In IEEE [7584], pages 68–75. LCCN ????

[7037] Ariel E. Kellison, Andrew W. Appel, Mohit Tekriwal, and David Bindel. LAProof: a library of formal proofs of accuracy and correctness for linear algebra programs. In IEEE [7584], pages 36–43. LCCN ????

standards developed by the International Accounting Standards Board (IASB). It includes guidelines on rounding financial numbers in financial statements, such as the requirement to round amounts to the nearest whole number or the nearest multiple of 10; * Generally Accepted Accounting Principles (GAAP): GAAP is a set of accounting standards used in the United States. It includes similar guidelines on rounding financial numbers as IFRS and requires that any rounding errors should be immaterial and insignificant. * International Organization for Standardization (ISO): ISO has a standard for Rounding off numerical values, which is ISO 80000-1:2009. It provides guidelines on rounding numerical values in general and not specific to the finance domain, but it’s widely used in financial systems. * The Federal Reserve Board (FRB): The FRB, the central banking system of the United States, has guidelines on rounding financial numbers for bank reporting and financial statement preparation. * The European Central Bank (ECB): The ECB, the central banking system of the European Union, has similar guidelines on rounding financial numbers as the FRB.

REFERENCES

Mikaitis:2023:MMT

Murillo:2023:GPB

Murillo:2023:HMP

Murillo:2023:PPL

Murillo:2023:SDA

Mushtak:2023:FNP

REFERENCES

[7071] Bogdan Pasca and Martin Langhammer. Extracting low-precision floating-point adders from embedded hard FP DSP blocks on FPGAs. In IEEE [7584], pages 139–142. LCCN ????

REFERENCES

[7076] Pengchang Ren, Reiji Suda, and Vorapong Suppakitpaisarn. Efficient additions and Montgomery reductions of large integers for SIMD. In IEEE [7584], pages 48–59. LCCN ????

REFERENCES

Shah:2023:IWR

Shah:2023:SDR

Shahbazi:2023:OHI

Sharma:2023:CQE

Shekhawat:2023:PPH

Shen:2023:CCA

[7094] Jongwook Sohn, David K. Dean, Eric Quintana, and Wing Shek Wong. Enhanced floating-point multiply-add with full denormal support. In IEEE [7584], pages 143–150. LCCN ???.

[7097] Styliani Tompazi and Georgios Karakonstantis. AI-based timing error modelling: a case study on a pipelined floating-point core. In IEEE [7584], page 110. LCCN ???.

[7099] Salim Ullah, Siva Satyendra Sahoo, and Akash Kumar. Designing resource-efficient hardware arithmetic for FPGA-based accelerators leveraging approximations and mixed quantizations. In Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing, pages
REFERENCES

[7119] Tom Hubrecht, Claude-Pierre Jeannerod, and Jean-Michel Muller. Useful applications of correctly-rounded operators of the form $ab+cd+e$. Report hal-04461089, DI-ENS (Département d’informatique — ENS Paris) and Université de Lyon, Paris, France and Lyon France, February 16, 2024. URL https://inria.hal.science/hal-04461089.

REFERENCES

REFERENCES

[7133] Paul Zimmermann. Note on the Veltkamp/Dekker algorithms with directed roundings. Report hal-04480440, Université de Lorraine, CNRS, Inria, LORIA, Metz, France, February 29, 2024. URL https://hal.inria.fr/hal-04480440.

REFERENCES

REFERENCES

AFIPS:1962:APS

Taub:1962:JNC

Metropolis:1963:PFS

Taub:1963:JNCa

Taub:1963:JNCb

Wilkinson:1963:REA

REFERENCES

REFERENCES

[7164] C. V. Freiman, J. E. Griffith, and J. L. Rosenfeld, editors. *Information processing 71: proceedings of IFIP Congress 71 organized
REFERENCES

REFERENCES

REFERENCES

1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1978. ISSN 1063-6889. IEEE catalog no. 78CH1412-6C.

ACM:1979:PSC

Anonymous:1979:WCR

Budach:1979:FCT

Linger:1979:SPT

Meinardus:1979:ATP

Ng:1979:SAC

REFERENCES

Lavington:1980:IPP

Nickel:1980:IMP

GAMM:1981:PAM

IEEE:1981:PSC

Messina:1982:PMM

Randell:1982:ODC

REFERENCES

Anonymous:1983:PSC

Gentle:1983:CSS

IEEE:1983:IEE

IEEE:1983:PII

IEEE:1983:PSC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[7265] J. C. Mason and M. G. Cox, editors. Algorithms for approximation II: based on the proceedings of the Second International Conference on Algorithms for Approximation, held at Royal Military College of Science,
REFERENCES

REFERENCES

REFERENCES

1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. ISBN ???? LCCN ???? IEEE catalog no. 89CH2631-0.

IEEE:1989:PII

Turner:1989:NAP

Wuorinen:1989:DTP

ACM:1990:PAS

ACM:1990:PDB

Anonymous:1990:PAN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:1991:VCA

Kaucher:1991:CAS

Koopman:1991:PST

Kornerup:1991:PIS

Meyer:1991:CAP

REFERENCES

Morris:1991:RWP

SPIE:1991:PSI

Alley:1992:CRI

Anonymous:1992:EAP

Atanassova:1992:CAE

IEEE:1992:ASF
REFERENCES

Prinetto:1992:CHD

Quinton:1992:APV

Singh:1992:CRT

Turing:1992:PM

Vandewalle:1992:SPV
REFERENCES

IEEE:1993:PEC

IEEE:1993:PIP

IEEE:1993:PMS

Lee:1993:MCM

Lombardi:1993:PII

Sincovec:1993:PSS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).
REFERENCES

REFERENCES

1285

Zachary:1996:ISP

Boisvert:1997:QNS

Fargues:1997:CRT

Lang:1997:ISC

Pocak:1997:PAI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Luk:1999:PSA

Matthews:1999:CRT

Mazumder:1999:NGL

Piuri:1999:IAV

Shiratori:1999:PIC

REFERENCES

REFERENCES

Luk:2000:PSA

Matthews:2000:CRT

Reynders:2000:IPI

Sprague:2000:PAH

Swartzlander:2000:IIC

Traverso:2000:IAU

REFERENCES

Anonymous:2001:JJ

Boulton:2001:TPH

Brebner:2001:FLA

Burgess:2001:ISC

REFERENCES

REFERENCES

Luk:2001:ASP

Matthews:2001:CRT

Oliveira:2001:FFM

Tang:2001:ICA

Babuska:2002:MMN

REFERENCES

code1296
code1296

code1296
code1296
code1296
code1296
code1296
code1296
code1296
code1296
code1296
code1296
code1296
code1296
code1296
code1296
code1296

code7439

REFERENCES

IEEE Computer Society Order Number PR01573.

REFERENCES

REFERENCES

IEEE:2003:IICb

IEEE:2003:PCI

Luk:2003:PST

Matthews:2003:PTS

Senda:2003:IPI

REFERENCES

REFERENCES

IEEE:2004:IIS

IEEE:2004:PJC

Luk:2004:ASP

Selvaraj:2004:PES

Smailagic:2004:ETV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hess:2006:ANT

IEEE:2006:ICV

IEEE:2006:PIW

Menezes:2006:PAS

Mohanty:2006:IIC

Pocek:2006:FAI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Simos:2007:CMS

ACM:2008:GPA

ACM:2008:SPA

Hertling:2008:RIR

IEEE:2008:ICA

REFERENCES

REFERENCES

IEEE:2009:PDR

Matthews:2009:CRF

Sezer:2009:IIS

Charot:2010:API

Delgado-Frias:2010:IIM

REFERENCES

REFERENCES

REFERENCES

IEEE:2015:ISS

Muller:2015:ISC

Swartzlander:2015:CAa

Swartzlander:2015:CAb

REFERENCES

Swartzlander:2015:CAc

Montuschi:2016:ISC

Burgess:2017:ISC

Desprez:2017:EPP

Matthews:2017:CRF

REFERENCES

REFERENCES

REFERENCES
