Introduction

This is a bibliography of material on floating-point arithmetic that I came up with while doing research on a floating-point package of my own. I don’t claim it to be anywhere near complete. The material listed is only what I myself possess.

My main interest was in software based, binary floating-point arithmetic on a microprocessor, so you won’t find much material about the hardware used in floating-point arithmetic (e.g. adders, carry propagation schemes, higher radix
representation for multiplication and division, etc.) in this list. There is also not too much on non-binary floating-point arithmetic.

For most fields covered in this bibliography, the important or historically relevant articles should be included. There is also some material on integer arithmetic in this list as some of the methods used with integer arithmetic contain interesting ideas that may be useful in the realization of a floating-point arithmetic package.

Also, depending on the type of microprocessor used, one may need to implement integer multiplication and division for use in the floating-point package, so articles about this topic are included as well.

As I am German, there is a bit of material in German in this bibliography. However, English translations are provided for all non-English titles.

Thanks to the people who have helped me with previous versions of this document by sending me papers or additional references:

- Steven Sommars (sesv@research.bell-labs.com),
- Jim Kiernan (jmk@teak.cray.com),
- Warren Ferguson (ferguson@seas.smu.edu),
- Nhuan Doduc (ndoduc@framentec.fr),
- K. C. Ng (kwok.ng@eng.sun.com),
- Nelson H. F. Beebe (beebe@math.utah.edu).

Bibliography entries in the Books section are ordered alphabetically by author; ordering is by ascending year in the remaining sections.

[Warning: it has yet not been possible to bring this citation list up-to-date with the entries in the BibTeX bibliography.

Books, hardware oriented

[1656, 257, 1236, 1168, 3035, 3238, 1850, 803, 1117, 958, 1402, 805, 1289, 6627, 6628, 1497]

Books, software oriented or theory

[1223, 438, 441, 442, 103, 1365, 2323, 868, 1006, 328, 2875, 2364, 2892, 2201, 296, 497, 6485]

Books, machine specific

[2105, 3140, 3037, 2366, 1702, 1837, 2219, 1869, 2401]
1 Choice of base, floating point formats

1.1 Precision and Rounding

1.2 Determination of parameters of floating point arithmetic

1.3 IEEE standards for floating point arithmetic

1.4 Floating point arithmetic, general and implementation issues

1.5 Floating point packages

1.6 Floating point units
1.7 Test of floating point routines
[470, 1399, 1661, 1804, 1803, 1954, 1955, 1899, 2037, 2399, 2527, 2535, 2601, 2600, 2715, 2694, 2680, 2976]

2 Addition and Subtraction
[351, 1455]

2.1 Floating-point Summation
[301, 321, 338, 337, 538, 604, 642, 793, 1597, 2206, 2282]

2.2 Multiplication
[645, 1196, 1210, 1420, 1484, 1458, 1513, 1540, 1532, 1557, 1612, 1530, 1693]

2.3 Division
[187, 215, 201, 298, 324, 410, 975, 1020, 1259, 1348, 1506, 1582, 1561, 1545, 1705, 1824, 1949, 1928, 2317, 2704, 2650, 2890, 2940, 6649, 2872]

3 Elementary functions, general
[360, 372, 554, 615, 582, 1077, 1215, 1565, 1592, 1691, 1654, 1652, 1728, 1774, 6569, 1879, 1985, 2085, 2029, 2208, 6587, 2490, 2527, 2477, 3257, 2479, 2448, 2625, 2776, 2589, 2738, 2739, 2618, 3290, 3258]

3.1 Elementary functions, CORDIC and related algorithms
[170, 171, 225, 240, 349, 493, 520, 624, 616, 632, 697, 816, 1024, 1040, 1243, 1396, 1634, 1831, 1643, 1745, 1897, 2090, 2311, 2241, 2471, 2497, 2644, 2736, 2933, 2928, 3052, 2992, 3038]

3.2 Elementary functions, function approximation
[217, 218, 453, 590, 731, 730, 941, 979, 1115, 1934, 2226, 2118, 2613, 2710, 2711]

3.2.1 Polynomial evaluation
[235, 255, 280, 398, 1017, 1179, 2281]
3.3 Square root, general
[1038, 1139, 1424, 1537, 1588, 2495, 2605]

3.3.1 Square root, bit-oriented, iterative, and table methods of computation
[104, 134, 335, 980, 966, 1104, 1299, 1351, 1318, 1478, 1759, 1856, 1768, 1821, 1905, 1886, 1940, 1980, 2070, 2109, 2184, 2320, 2464, 2637, 2962]

3.3.2 Square root, Newton’s method
[139, 256, 278, 350, 323, 319, 359, 423, 399, 483, 488, 502, 564, 553, 547, 549, 667, 1275, 1265, 1343, 1522, 2264, 2942, 2870]

3.4 Sine and Cosine
[160, 1024, 976, 981, 1128, 1344, 1485, 1602, 1601, 1700, 1787, 1887, 2051, 2162, 2536, 2884, 2881, 2805, 2903, 2998]

3.5 Logarithm
[135, 247, 307, 655, 956, 1067, 1249, 1471, 2038, 2039, 2537, 2662]

3.6 Exponential function
[122, 383, 1135, 1307, 1460, 1683, 1781, 2400, 2538, 2925]

3.7 Arctangent
[124, 140, 185]

3.8 Other transcendental functions
[469, 580, 141, 982, 341, 251, 336, 2031, 1110, 2786, 2978]

4 Binary-decimal conversion
[169, 153, 200, 447, 544, 649, 1118, 1241, 1242, 1350, 1590, 1644, 1936, 1909, 2439, 2531, 2455, 2782]
5 BCD arithmetic
[639, 690, 740, 741, 742, 743, 744, 745, 746, 1328, 1435, 1640, 1578, 1971, 2574, 2883]

6 Multiple precision arithmetic
[268, 306, 384, 400, 598, 583, 911, 960, 1055, 1054, 1215, 1296, 1375, 1483, 2731, 2716, 2957, 3177]

7 Conferences on computer arithmetic
[6510, 6520, 6524, 6533, 6536, 6548, 6566, 6567, 6608, 6638, 6646, 6640, 6672]

8 Additional contributions from Nelson H. F. Beebe

Title word cross-reference

#26 [5349].

\((2^n)^m\) [3710]. \((10^a - 1)/9\) [1910]. \((2^n)\) [4251, 4272, 4453, 4462, 4369].
\((2^n + 1)\) [1037, 4684, 3822]. \((2^n - 1)\) [4885]. \((2^n - 1, 2^n + 1, 2^n + 1)\) [6089]. \((2^n + 1)\) [5913]. \((2^n + 1)\) [5376, 4046]. \((2m)\) [4334]. \((2n + 3)\) [6311]. \((2n - (2p + 1))\) [4738]. \((d, r)\) [752]. \((\mathbb{R})\) [2831]. \((p)\) [4251, 4334]. \((x + y)\) * \((x - y)\) [6404]. \(-2\)
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[706, 163, 184, 907, 763]. \(-\infty < n < +\infty \) [122, 140]. 0 [5488]. 0 < N < 1 [141]. 0 \div 0 [664]. S1 [3655]. 1 [4868, 4244, 5027, 5489, 3610, 2096]. 1,000,000 [585]. 1/\sqrt{\pi} [5624]. 10 [500, 5847]. 116 [3930]. 128 [4744]. 15 [500]. 16 [2434, 4091, 3983]. 17 \times 69 [2971]. 2 [963, 4203, 1983, 5524, 3151, 3903, 585, 5878, 402, 4244, 4886, 3206, 3379, 1695, 3388, 3064, 3395, 5463, 3410, 500, 297, 3597, 3729, 4350, 3610, 4971, 3284, 4822]. 2,576,980,370,000 [5490]. 22n + 1 [2077]. 256 [4337]. 27 [405]. 2 + (n+1) + 1 [3880]. 2n++1 - 1 [5861]. 2n++2 - 1 [5861]. 22q [5851]. 2n - 1 [2728]. 2k [4382, 4875, 5356, 4914, 4922]. 2k + 1 [827]. 2k-1 [4382]. 2m [4454]. 2n [1507, 5631, 3880]. 2n+1 [3880, 4868, 5568, 4360]. 2n++1 - 1 [6301]. 2n++k [6301]. 2n - (2n++2 + 1) [5207]. 2N - 1 [2910, 4717, 6301, 4118, 3880]. 2N++k [5581]. 2N + 3 [5851]. 2N + 1 [6001]. 2 \times 2 [5755]. 3 [353, 4870, 4085, 402, 3945, 4108, 3950, 4006, 4760, 297, 6032, 4027, 6373, 4189, 4820]. 3 - j [274]. 32 [3896, 4337]. 3 \times 3 [2423]. 4 [3880, 4217, 4556, 2451, 2452, 402, 3349, 5573, 5381, 4282, 4612, 2873, 3983, 3985, 2737, 2924, 1866, 3443, 3447]. $49,959$ [3622]. 5 [5851, 4694]. 54 \times 54 [3402]. 6 - j [274]. 64 \times 64 [2209]. 8 [405, 3363, 3983, 3410]. 84 [283]. $85,000$ [4051, 4052]. 88,062,000 [500]. 8 x 8 [4971]. 9 - j [274]. < [6040]. > [6040]. 0, 1 [5027]. 0 [4257]. 2 [5586]. 4 [2722]. 5 [3809]. c [112]. th [112]. TM [4524]. A(N + C) [1844]. a + b [3556]. ab + cd [5926]. A - T [3976]. arctan Z [124]. H - T [6142]. C + AB^2 [4182]. c/\sqrt{a^2 + b^2} [6096]. CLP(R) [2851]. cos^{-1} [3052]. cosN [160]. cos x [349]. cot^{-1} x [349]. d [4500, 5359, 3716]. e [431]. e^n [122]. e^x [383]. \eta [3391]. \eta T [5117]. exp(x) [1307]. exp x [349]. G_a [771]. GF(2)[x] [5703]. GF(2^m) [3404, 4669, 4287, 5879, 4552, 5293, 4789, 5707]. GF(2n) [4105]. GF(p^n) [4548]. H [5044]. I^2L [3160]. \infty [4893]. K [5300, 4203, 5757, 2038, 5836, 6142, 5795]. k < m [6142]. L [4244]. L^2 [5124]. L^\infty [5123]. l_2 [5889]. ln(x) [1471]. ln x [349]. log n [1179]. log Z [124]. LU [6329]. M [4728, 160, 4041, 2555, 2559, 2568, 2841, 5201, 549, 6142]. M^E \mod N [2703]. \Phi_0^n [4133]. \Phi_0^\infty [5533]. \Phi_{2n}^\infty [5533]. Z [3971]. GF(2) [5176, 1627]. GF(2^{2}) [5987]. GF(2^{2^m}) [3833]. GF(2^{2^m}) [5987]. GF(2^k) [4843, 3682, 4803]. GF(2^{2^m}) [5340, 4569, 4861, 3785, 4425, 5016, 3499, 4431, 3796, 5368, 2821, 2822, 3666, 4748, 5176, 5045, 4611, 4285, 4910, 2358, 5294, 4502, 4642, 4790, 5298, 3121, 4812, 4817, 4668, 2239]. GF(2^m) [4874]. GF(p) [2012]. GF(p^n) [3406]. GF(p^k) [4544]. GF(q^n) [4592]. MEICIPT [258]. \mu [1371, 4754, 4792, 2240]. \mu P [1549, 1942]. N [3875, 770, 2262, 2265, 140, 141, 160, 4473, 4945, 4808, 5795, 5535, 4067, 5889, 1244, 3540]. n^{k\text{max}} [1122]. N' = -N_0^{-1} \mod W [4161]. N \ge 32 [5694]. n \log(n) [6255]. n \times n [3063]. O(1) [6175]. O(n) [1147, 3352, 1487]. O(n^2) [2704, 2705]. O(n \log n) [6299]. Arcosx [185]. Arcsin [185]. Arcantan [185]. modp [1849]. P [6291, 4533, 1991, 1085, 854, 1001, 1573, 4176, 4520, 3272]. p^k [6407]. \pi [1568, 2164, 2165, 4499, 244, 5490, 1628, 431]. p \times p [4478, 4621]. q [5626]. q^{m} - n [1566]. Q [5950]. Q [3520, 2985, 1544, 1552, 6209, 5694]. r = m^n [1383]. r^a [4826]. r^b - 1 [4826]. r^c + 1 [4826]. \{r^n - 2, r^n - 1, r^n\} [5167]. r \ge 8 [5694]. s [4764]. sin(BIG) [5106]. sin^{-1} [3052]. sin\ P [4764]. sin x [349]. \sqrt{a^2 + b^2} [6096]. \sqrt{x} [1424]. \sqrt{a/b} [3757]. \sqrt{x^2 + y^2} [3524]. T [6341]. tan^{-1} x [349]. \theta (\log N) [2284]. \times [3976, 3827, 4040]. w [4629].
\[X \approx 1483, 2818, 423. \]
\[x^2 + ny^2 \approx 3622. \]
\[x^n \approx 5818, 3230. \]
\[y \approx 4313. \]
\[Z \approx 5198. \]
\[Z^2 \approx 4913. \]

-2 [962].
-approximations [5123, 5124].
-ary [2841, 4041]. -b [3402].

.NET [4948].

/m [4754]. /spl [4754].

0.18-CMOS [5620]. '00 [6747, 6752, 2470]. '01 [6761]. '03 [6790]. '04 [6798, 6806]. '07 [6841, 6847, 6849, 6854]. '08 [6858, 2956, 5245].

6.7-MFLOPS [2372, 2374]. 60 [573, 546, 384]. 600 [3895]. 600-MHz [3895]. 6000 [3304, 2465, 2490, 2494, 1192, 3286]. 6000/7000 [994, 1192]. 600MHz [3987]. 6000 [3895]. 600-MHz [3895]. 6000/7000 [994, 1192]. 600MHz [3987].

= [2725, 2726, 3266, 6507].
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6821, 6846, 6860, 6868, 1089, 6321, 3684, 4913, 3217, 1578, 4480, 4481, 4486, 2499, 2503, 1186, 6023, 6782, 3592, 1715, 6754, 5624, 1863, 6715, 4808, 2749, 6417, 6827, 6673, 2561, 5715, 908, 4202, 2583, 1218, 4087, 2299, 2631, 6633, 3191, 3192, 2650, 5757, 1177, 4608, 6109, 5767, 2688, 3239, 5777, 2719, 3998, 2522, 3083, 2528, 2923, 3608, 6153, 1415, 1416, 4377, 2240.

Application-Oriented [1186]. Application-Specific [6874, 6788, 6832, 6805, 6846, 6860, 6782, 6754, 6715, 6417, 6827, 6673, 6821, 6868, 2561, 6153]. Applications [4830, 6043, 6662, 6687, 6717, 4197, 1510, 5718, 6830, 6844, 4548, 5247, 6771, 1653, 913, 1891, 5967, 6788, 6832, 6805, 6846, 6860, 6782, 6754, 6715, 6417, 6827, 6673, 6821, 6868, 2561, 6153].

Applications

Approached

Approximate [2320, 3230, 2710, 4006, 2903, 3634, 4888, 5161, 3534, 2356, 5063, 2942]. Approximation

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

2731, 3851, 4653, 5487, 2217, 6437, 3728, 5074, 6438, 958, 1402, 2733, 752, 5075, 5076, 4514, 677, 621, 892 [Arithmetic].

893, 1403, 1404, 5404, 4517, 4023, 806, 503, 1122, 1123, 1288, 1299, 1626, 1859, 6627, 6628, 3107, 6671, 6672, 6895, 6896, 6897, 6904, 4176, 2399, 2400, 2537, 2538, 2925, 756, 1491, 1629, 1865, 1866, 6902, 4805, 384, 560, 3270, 4355, 428, 899, 1030, 1125, 4808, 461, 561, 679, 3438, 6417, 6629, 1633, 5411, 3440, 5092, 5313, 5229, 6157, 1495, 4970, 5414, 3743, 4811, 2229, 2230, 2231, 2409, 2410, 6418, 901, 130, 1413, 1636, 4362, 3281, 5096, 5494, 6380, 1130, 1131, 1497, 1417, 1418, 386, 3863, 3613, 2935, 3746, 1032, 4368, 960, 248, 4039, 4370 [Arithmetic].

1364, 4748, 595, 2167, 489, 2861, 2843, 1178, 1572, 2169, 2480, 5450, 6211, 1003, 1370, 6765, 5591, 601, 2481, 2666, 5179, 3817, 5678, 5049, 5183, 2349, 2851, 3818, 5823, 4130, 4756, 5454, 5767, 4409, 3042, 4292, 4711, 5188, 5278, 5386, 5682, 327, 4472, 4473, 3693, 3694, 494, 539, 2353, 1692, 5189, 5709, 1576, 3048, 6331, 1007, 1929, 2678, 212, 1261, 1695, 2864, 605, 652, 3556, 653, 542, 2180, 4763, 5459, 543, 6335, 5922, 2683, 4925, 419, 6482, 332, 333, 448, 724, 794, 939, 1008, 1009, 5056, 3699, 6472, 3062, 2360, 5829, 294, 660, 5391, 5916, 5197, 3562 [Arithmetic].

5393, 1267, 1933, 5463, 5202, 3227, 5833, 1699, 2498, 4308, 5692, 5067, 942, 4628, 2189, 3068, 3, 1106, 1182, 2376, 4631, 3239, 548, 5062, 3990, 4780, 2502, 1387, 1599, 5696, 4152, 4940, 3073, 4154, 5468, 663, 3711, 3712, 3713, 3995, 4156, 4634, 2505, 2506, 5209, 665, 947, 3714, 2508, 2198, 2509, 3248, 799, 3250, 1276, 4787, 1476, 2899, 3582, 3583, 5210, 800, 5296, 188, 4943, 5841, 4328, 2900, 3252, 1192, 1945, 1613, 6349, 5475, 5476, 2071, 4504, 4505,

Additional Contributions from Nelson H. F. Beebe
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 25

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

1813, 3388, 4486, 6224, 6341, 662, 5217, 1122, 5793, 5102, 5795, 2255, 3476,
3639, 3903, 4072, 4576, 2986, 3786, 989, 2460, 3944, 1802, 2855, 5770, 3697,
3565, 3239, 5079, 5306, 367, 3126, 3127]. Circuitry [1927, 2344, 115]. Circuits
[1306, 5369, 3870, 6746, 674, 1986, 3479, 1222, 6875, 5436, 2996, 4085, 227,
4248, 6734, 6721, 6592, 6610, 6635, 6736, 6748, 6819, 6820,
6836, 6849, 6870, 5586, 3777, 3373, 6562, 4919, 1577, 207, 241, 32, 36, 5403, 2733, 6512, 6034, 5229, 5414,
3279, 1131, 3863, 6660, 6614, 6685, 6709, 6744, 4983, 4216, 1524, 3481, 5011,
3785, 5263, 2813, 4431, 4592, 5819, 4120, 3209, 3810, 5672, 3380, 2178, 2864,
2684, 4483, 4484, 1182, 3575, 2707, 5296, 1119, 5215, 2917, 752, 3852, 4357.
Circulant [6209]. Circular [4053, 4835, 2649, 4346]. Cirencester [6800].
CIRM [6706]. City [6493, 6500, 6488, 6482, 6743]. Civic [6567]. CIVP [5225].
Reviews [6238]. Clara [6662, 6898]. Clarity [4600]. Class [5340, 4861, 3492, 1539, 700, 5371, 3520, 1091, 3212, 4285, 4290, 241, 5207, 3835, 1844,
144, 2723, 3591, 349, 171, 520, 3622, 2130, 5015, 5351, 2822, 3006, 207, 3034,
[6096, 4879]. Classification [4452]. classifier [2755]. Claude [3098]. Clean
[1319, 1332]. Cleaning [4718]. Clenshaw [4395, 1012]. Cleve [3393, 3562,
5830, 5831, 6132, 6133, 6134, 6338, 6339]. Climate [6319, 6139, 6247, 6335].
Clipper™ [2309]. Clock [3730, 4062, 5880, 3274]. clocked [3110]. Clocking
Co-design [5827]. Co-processed [1937]. Co-processor [1515, 2362, 1877, 1878, 5856, 3763, 3368, 2927, 6620].
Coded [6816]. Coded [686, 5970, 1544, 1552, 5038, 1098, 3218, 1431, 5028, 4122].
Coders [3638, 3095, 3096, 3434, 3607]. coders [2300]. Codes
[1311, 1510, 767, 1046, 176, 772, 773, 5431, 633, 5970, 6070, 6187, 1544, 4244,
156, 362, 1522, 1098, 550, 1393, 1844, 2067, 2069, 1852, 5847, 901, 1213, 5323,
1983, 207, 5164, 5165, 1359, 1360, 1464, 3040, 4131, 5051, 2353, 2189, 2508,
5213, 4371, 4372, 2556]. CodeBreaker [5838]. Co-design [4750]. Coding
[152, 3772, 4260, 180, 6327, 6468, 5696, 167, 4969, 4190, 1989, 56, 57, 58, 59,
60, 61, 4751, 4903, 2845, 3687, 3974, 6706, 2922, 2232]. Codings [5043, 4845].
Coefficient [4367, 1988, 3204, 855, 3068, 2771]. Coefficients [2979, 979, 4246,
2104, 5540, 3786, 4468, 2387, 1202]. Cohesive [1898]. Coimbatore [6863].
COIN [128]. coins [3]. Collected [6477, 6478, 6479, 6481, 6483, 6484, 3098].
Collection [5740]. College [6506, 6598, 3604]. Collision [5004, 5906]. Colloqui-
um [6689, 6622]. Colorado [6760, 6832, 6633, 6532, 6809, 6539, 6705, 6739].
es [1719]. Complex [3450, 3624, 3874, 3625, 4542, 5321, 5509, 5510, 2959, 3141, 2786, 5649, 970, 1985, 5966, 3767, 2976, 2794, 1225, 1448, 1534, 3644,
complex

[2342, 2345, 2666, 5279, 1929, 2042, 1939, 4784, 5485, 2909, 957, 1715, 4955, 3105, 168, 4346, 4972, 3862, 5418, 5495, 4816, 2548, 2758, 5238, 4984, 5033, 246]

Complex-Number

[3767, 3443].

complexities

[1599].

Complexity

[5639, 815, 3905, 5137, 4237, 4422, 5149, 5150, 6193, 5371, 3543, 5676, 4290, 4145, 3831, 2056, 5779, 4641, 5298, 5212, 3598, 5498, 2770, 5797, 823, 912, 2583, 4855, 6097, 2307, 3942, 4449, 1086, 1356, 2469, 5578, 3367, 3955, 4742, 4743, 5273, 3676, 6638, 3681, 1806, 2656, 122, 140, 141, 160, 5382, 5673, 2662, 1922, 2846, 932, 6704, 5593, 863, 6217, 5683, 493].

Computational

[6866, 6756, 6247, 1806, 1474, 1273, 4323, 4495, 4783, 6489, 6490, 2203, 6539, 5298, 553, 615, 6541, 5784, 166, 3843, 803, 1618, 1849, 6795, 956, 383, 752, 2918, 677, 805, 5488, 2736, 1028, 192, 6755, 3742, 5412, 1296, 4971, 6380, 386, 6883, 194, 5794, 4044, 6041, 2958, 4393, 5648, 5718, 3144, 4846, 1746, 3883, 2117, 974, 1145, 6523, 3768, 2265, 3769, 4559, 4066, 1896, 3158, 3337, 4573, 4711, 4076, 3786, 2283, 67, 5015, 5351, 3921, 2290, 6557, 6679, 4591, 1160, 1233, 1611, 1679, 1249, 788, 1167, 5755, 2472, 6582, 2028, 2657, 4280, 6549].

Computational

[6866, 6756, 1806, 1474, 1273, 4323, 4495, 4783, 6489, 6490, 2203, 6539, 5298, 553, 615, 6541, 5784, 166, 3843, 803, 1618, 1849, 6795, 956, 383, 752, 2918, 677, 805, 5488, 2736, 1028, 192, 6755, 3742, 5412, 1296, 4971, 6380, 386, 6883, 194, 5794, 4044, 6041, 2958, 4393, 5648, 5718, 3144, 4846, 1746, 3883, 2117, 974, 1145, 6523, 3768, 2265, 3769, 4559, 4066, 1896, 3158, 3337, 4573, 4711, 4076, 3786, 2283, 67, 5015, 5351, 3921, 2290, 6557, 6679, 4591, 1160, 1233, 1611, 1679, 1249, 788, 1167, 5755, 2472, 6582, 2028, 2657, 4280, 6549].

complex-arithmetic

[2342, 2345, 2666, 5279, 1929, 2042, 1939, 4784, 5485, 2909, 957, 1715, 4955, 3105, 168, 4346, 4972, 3862, 5418, 5495, 4816, 2548, 2758, 5238, 4984, 5033, 246].

complex

[2342, 2345, 2666, 5279, 1929, 2042, 1939, 4784, 5485, 2909, 957, 1715, 4955, 3105, 168, 4346, 4972, 3862, 5418, 5495, 4816, 2548, 2758, 5238, 4984, 5033, 246].

complex

[2342, 2345, 2666, 5279, 1929, 2042, 1939, 4784, 5485, 2909, 957, 1715, 4955, 3105, 168, 4346, 4972, 3862, 5418, 5495, 4816, 2548, 2758, 5238, 4984, 5033, 246].

complex

[2342, 2345, 2666, 5279, 1929, 2042, 1939, 4784, 5485, 2909, 957, 1715, 4955, 3105, 168, 4346, 4972, 3862, 5418, 5495, 4816, 2548, 2758, 5238, 4984, 5033, 246].

complex

[2342, 2345, 2666, 5279, 1929, 2042, 1939, 4784, 5485, 2909, 957, 1715, 4955, 3105, 168, 4346, 4972, 3862, 5418, 5495, 4816, 2548, 2758, 5238, 4984, 5033, 246].

Computers [948, 1185, 6541, 1855, 4175, 71, 3162, 1946]. **Computing** [6508, 6716, 6828, 6841, 6858, 6863, 6162, 66, 4675, 196, 6553, 3623, 6248, 6801, 6578, 39, 6646, 6688, 4394, 1433, 3631, 6260, 5863, 90, 1439, 6816, 5731, 6275, 1760, 6733, 6865, 4230, 4237, 6789, 2990, 6189, 6678, 2002, 5550, 1774, 5359, 5666, 96, 3658, 2301, 5750, 315, 316, 317, 6197, 3518, 5992, 487, 6680, 6747, 6847, 4108, 6884, 3199, 3201, 5582, 6096, 6889, 4119, 6103, 5177, 5450, 3542, 6764, 5679, 6008, 1815, 6118, 1820, 6853, 4475, 3383, 328, 4920, 1378, 5458, 3052, 6568, 657, 658, 723, 6656, 3172, 4590, 587, 80, 56, 57, 58, 59, 60, 61, 5818, 5890, 5892, 3934, 6833, 4098, 3945, 3034, 5041, 6765, 4287, 792, 5685, 6482, 659, 339, 4144, 5833, 451, 5610, 1604, 2064, 4505, 3424, 2396, 5219, 5220, 75, 2411, 3862, 3121, 249].

Cómputo [4488].

Concepts [3005, 2327, 4708, 1443, 2473, 4948]. Concerning [936].

Conditional-Sum [706]. Conditioned [2723, 2674, 4451, 172, 173]. Conditions [1230, 991, 3964, 1611, 4402, 1081, 6424]. conducted [6518]. Conference [6508, 6521, 6586, 6587, 6604, 6615, 6745, 6799, 6813, 6828, 6486, 6493, 6495, 6496, 6500, 6632, 6644, 6494, 6528, 6553, 6617, 6662, 6717, 6746, 6785, 6800, 6829, 6830, 6844, 6711, 6700, 6758, 6759, 6565, 6523, 6891, 6677, 6690, 6874, 6589, 6607, 6618, 6718, 6787, 6663, 6865, 6788, 6832, 6678, 4719, 6529, 6590, 6712, 6556, 2301, 6903, 6591, 6734, 6721, 6866, 6609, 6505, 6516, 6530, 6546, 6540, 6561, 6567, 6572, 6573, 6592, 6593, 6612, 6624, 6635, 6637, 6648, 6649, 6650, 6665, 6666, 6680, 6692, 6702, 6723, 6724, 6735, 6736, 6747, 6748, 6749, 6761, 6763, 7744, 7777, 6790, 6791, 6804, 6805, 6806, 6808, 6819, 6821].

Conference [6835, 6847, 6848, 6850, 6860, 6867, 6868, 6869, 6877, 6878, 6879, 6880, 6595, 6884, 6581, 6517, 6889, 6652, 6653, 6638, 6562, 6906, 6596, 6682, 6584, 6705, 6598, 6727, 6740, 6751, 6767, 6780, 6794, 6861, 6872, 6901, 6568, 6837, 6599, 6550, 6551, 6563, 6744, 6838, 6584, 6683, 6564, 6552, 6539, 6882, 6782, 6873, 6743, 555, 6856, 6670, 6666, 6696, 6542, 6753, 6754, 6360, 6769, 6826, 6715, 6602, 6658, 6827, 6847, 6574, 6761, 6763, 6812, 6576, 6614, 6865, 6709, 6744, 6503, 6522, 6519, 6579, 6557, 6559, 6722, 6820, 6846, 6870, 6853, 6706, 6752, 6708, 6570, 6543, 6603, 6631, 6526, 6480, 6712]. Conference [6727, 6740, 6751, 6861, 6872, 6901]. Confidence [6437]. Configurable [4618, 4497, 6039, 5339, 4134, 5062, 3862]. configurations [4409]. Conformance [2956, 5245]. Conforming [4742]. Conforms [4147]. Congress [6863, 6675,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Converters [4092, 5169, 865, 5193, 5055, 6415, 3794, 2654, 4150, 4162].
Converting [1703, 2512, 2123, 3663, 533, 4791].
Convertor [2775].
Convertors [2921].
Converts [1644, 3306, 1590].
Conveyor [2775].
Convertor [2921].
Convertors [224].
Convers [317].
Convex [3468, 3914, 285, 3201, 2322].
Conveyors [3810, 3380].
Convolution [4941, 3078, 2067, 2964, 2965, 2580, 3244, 3245].
Convolution-Type [2067].
Convolutional [6181, 6193, 6317, 6318, 6106].
Coprozessoren [3037, 3037].
Copyright [6046, 6446, 6359].
Coq [4997, 5520, 6058].
CORDIC [2497, 3009, 3307, 4053, 4835, 1987, 2128, 1897, 153, 2992, 3496, 5903, 5555, 3176, 1243, 3010, 3181, 3942, 4739, 2643, 2311, 2644, 3018, 5587, 3038, 3685, 4906, 2347, 2670, 3972, 2352, 3390, 1831, 2900, 5618, 5845, 2736, 2928, 5412, 5706, 1634, 170, 3449, 2275, 2610, 2471, 3052, 2090].
CORDIC-Algorithmen [2497].
Core [4827, 5860, 5019, 5783, 6028, 6353, 6370, 5108, 3635, 4555, 5869, 5748, 2299, 2631, 3959, 6335, 2382, 5617].
Cores [6258, 4983, 6196, 6443, 5433, 5433].
Corfu [6856].
Cork [6871].
Cornean [599, 5926].
Corner [6674, 3632, 3393, 3562, 6132, 6133, 6134, 6338, 6339, 5830, 5831].
Corners [6355, 3109].
Correct [5328, 6171, 776, 4571, 4876, 524, 324, 410, 4288, 4616, 3407, 6654, 6027, 1709, 298, 5420, 5953, 6057, 5152, 5696, 2195, 4986, 4705].
Correcting [688, 176, 773, 152, 1098, 550, 4550, 2341, 2774, 2775].
Correction [1505, 1647, 767, 574, 5326, 634, 5972, 477, 1359, 705, 1805, 1688, 853, 860, 6434, 4283, 539, 3547, 666, 1609, 1280, 2069, 3089, 2533, 6033, 3116, 4814, 509, 4183, 759, 2986, 1227, 3537, 2845, 3040, 3967, 3974, 652, 3069, 1718, 2532, 2922, 4372].
Corrections [4069, 1125, 711].
Correctly [5248, 6455, 4691, 4850, 5249, 5524, 6062, 4232, 4233, 2455, 6397, 6205, 5382, 5673, 4282, 3689, 4130, 6006, 6114, 3088, 2776, 5798, 4690, 4701, 4863, 5990, 2023, 5450, 3819, 4802, 4706].
Correctly-Rounded [6455, 6062, 5382, 4802].
Correctness [3775, 3901, 1449, 3164, 4145, 3716, 3163, 3338, 1248, 5452, 6113, 6216, 671, 4002].
Corrigenda [3133].
Corrigendum [2628, 1245, 2021, 2185, 1956].
Corum [6746].
Cos [1700, 2162, 506].
cosimulation [5062].
cosin [2051].
Cosine [3942, 2051, 1024, 2736, 2536, 219, 910, 3922, 4241, 1787, 3188, 3200, 4619, 4149, 4163, 3126, 3127].
Cosines [46, 1344].
Cost [1311, 1739, 4064, 4067, 5874, 5411, 4088, 3667, 5570, 5669, 3950, 4742, 6317, 5771, 2896, 5470, 619, 6414, 5943, 901, 1347, 5569, 4741, 2189, 2508, 2065, 3416, 2725, 1022].

d’algorithmes [4210]. Dallas [6510, 6639, 6599, 6563]. Dangerous [4172].
Developers

Dezimalrechner

Deziders

Designing

Designs

DFU

Dialvran

Diagnostics

DFT

Differential

Differently

Difficult

Difficulty

Dig

Digest

Digit
displaced 1494, 2412, 4666, 3461, 3462, 3463, 79, 118, 3795, 119, 3671, 2164, 2165, 6, 2888, 4504, 5490, 2956, 5245, 518, 772, 1146, 2980, 86, 1541, 1769, 921, 924, 990, 1083, 4902, 3544, 1346.

Dijkstra [6620]. Dijon [6833]. Dilemma [5956, 4615].

Additional Contributions from Nelson H. F. Beebe

8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

55

4463, 4755, 6408, 2347, 6435, 1694, 3557, 937, 3051, 6128, 2184, 3827, 2048, 2500,
5469, 1941, 1942, 6024, 3843, 4171]. Floating-point [4798, 2078, 2393, 2221,
1959, 4174, 6032, 3740, 5227, 3114, 2752, 2753, 1031, 3611, 1296, 6239, 1415,
1416, 1417, 1418, 5794, 5434, 1871, 2103, 3298, 2777, 3869, 1504, 6041, 5318,
5953, 684, 1428, 2562, 2953, 3303, 3304, 3305, 4388, 6166, 6251, 2423, 1041, 5508,
1734, 2243, 1735, 1736, 5957, 4054, 2787, 2961, 5426, 5720, 5721, 2250, 2571,
2251, 4205, 5115, 5116, 2112, 2254, 5650, 4683, 4998, 2256, 2116, 2574, 2969,
1747, 4210, 4686, 4999, 5803, 6058, 3633, 2117, 5122, 5428, 4213, 973, 4690,
5251, 2119, 974, 1145, 6173, 5652, 3148, 4853, 2121, 6268, 1323, 3323, 4854].
floating-point [1524, 6177, 4857, 1989, 2593, 3770, 4408, 3892, 3895, 1528,
5341, 5539, 1895, 3901, 4568, 5344, 2272, 2795, 2796, 2797, 3907, 6075, 5260,
5261, 2609, 6182, 5546, 2983, 4421, 3910, 2985, 226, 4715, 5012, 5138, 4238, 919,
4424, 5014, 4867, 2278, 4076, 2807, 5144, 472, 1668, 1669, 5146, 698, 1071, 4082,
1902, 1671, 1903, 781, 478, 5152, 987, 6079, 2815, 2294, 4726, 6396, 4590, 4593,
4729, 3001, 589, 839, 988, 1160, 1233, 1674, 3349, 2817, 3002, 1777, 5361, 1778,
2460, 1779, 5555, 4732, 4733, 5818, 5890, 1237, 228, 158, 1784, 4252, 4735, 3511,
5668, 3935, 4439, 4597]. floating-point [2819, 2820, 3356, 3514, 1352, 1165,
1908, 3357, 3183, 4447, 2465, 5164, 5165, 1679, 6202, 6308, 6401, 5569, 2015,
5570, 1167, 5572, 2315, 1170, 1797, 1681, 3526, 5034, 5036, 5374, 2154, 2155,
3945, 1088, 1171, 1800, 4604, 5752, 2829, 5580, 5581, 1562, 5820, 5998, 6097,
6206, 2160, 2325, 2326, 3027, 2023, 2024, 3370, 3532, 3533, 4115, 4117, 5586,
4606, 2838, 3204, 3372, 3205, 594, 445, 707, 2329, 2330, 2331, 2332, 4749, 2661,
2336, 2338, 2339, 1469, 1687, 5450, 3541, 3813, 4753, 5452, 3376, 791, 857, 931,
4127, 5910, 4754, 2481, 3215, 2172, 2173, 5764, 6214, 6109, 3816, 3817, 5678].
floating-point [6008, 718, 2668, 2851, 3041, 4465, 5916, 5823, 5767, 4757, 4292,
4471, 4473, 3820, 4758, 494, 539, 5456, 1692, 5189, 5457, 5769, 1576, 4134, 5827,
4760, 6331, 1007, 1929, 541, 605, 720, 721, 375, 653, 542, 5828, 4762, 1930, 1931,
1379, 5922, 2182, 2045, 2683, 4924, 5194, 1584, 1585, 660, 2493, 5603, 5689, 3392,
5196, 4768, 4926, 5198, 5199, 5200, 5281, 5393, 2494, 1933, 3826, 4928, 5283,
1828, 2186, 2365, 2368, 2689, 3565, 5833, 2877, 2878, 2371, 2372, 942, 4147, 4628,
2190, 3068, 6017, 3234, 3832, 4778, 5204, 5695, 6019, 452, 4149, 3070, 5205, 5396,
5696, 943, 5609, 944, 3712, 3995]. floating-point [4634, 4781, 5610, 2194, 665,
947, 2195, 2891, 3714, 2198, 2509, 3248, 2513, 2718, 2898, 4786, 3998, 1279, 881,
882, 4943, 1190, 1191, 1280, 671, 1018, 2900, 3252, 1613, 4791, 3415, 736, 5780,
5475, 5476, 5698, 6026, 5616, 3840, 1283, 4792, 4505, 1847, 5617, 5479, 955, 2901,
2387, 3842, 5480, 739, 1947, 2210, 4793, 5844, 674, 675, 3094, 3724, 4013, 4648,
5401, 3845, 4339, 4796, 4797, 3847, 3593, 2725, 2726, 2904, 2905, 3099, 2215,
3595, 3726, 4511, 1950, 3849, 4020, 4340, 6414, 3727, 2917, 2218, 1121, 2397,
2398, 4341, 4342, 4515, 5219, 5220, 1718, 1405, 268, 1406, 1958]. floating-point
[4656, 4025, 351, 4658, 807, 2743, 2744, 3110, 4965, 128, 1409, 1721, 1864, 1868,
2926, 6150, 1631, 3269, 4352, 4806, 3271, 1292, 4179, 1725, 1632, 1870, 4034,
4180, 1963, 900, 6153, 4809, 4810, 680, 757, 2406, 2408, 4358, 4359, 5094, 1297,
2091, 2411, 811, 3862, 4665, 4815, 5095, 5236, 5630, 6038, 1729, 1638, 2232,
4976, 758, 2416, 1205, 270, 3125, 1872, 2235, 1302, 1732, 1500, 4818, 5101, 5419,


8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Gauss [5508, 5330, 6074, 5151, 1568, 3538, 3057, 1628, 4812]. Gaussian [5955, 5330, 6074, 5151, 1568, 3538, 3057, 1628, 4812].

GCC [6472]. GCD [1748, 2636, 3024, 2706]. GCCM [5958]. GDR [6523].

Global [3470, 3493, 487, 1169, 6648, 3539, 3576, 3584, 5729, 5161].

Globally [3591].

GLOBECOM [6648].

GLSVLSI [6798, 6857].

GMICRO [2166].

GMP [4397, 4997, 4186, 5104, 5155].

gmp-based [5155].

GMRES [4877, 5357].

GNB [5707].

GNU [4734, 3362, 6007, 6115, 4010].

Goals [1651].

Gödel [3185].

Godfather [1016].

Godson [5530].

Goldschmidt [4077, 4581, 4089, 5449, 5611].

Golem [950].

Golub [1826].

Good [4197, 4059, 3779, 1774, 2881, 6279, 3907].

Gordon [2612].

got [4700].

GPFP [2572].

GPU [6258, 5868, 5549, 6190, 6196, 6432, 5821, 6323, 5466].

GPUMixer [6323].

GPUMP [5500].

GPUs [6386, 6043, 5511, 5341, 5539, 5979, 6124, 5690, 5289, 5631, 5950, 5500].

graceful [5841].

Gradient [101, 5471, 4696, 4854, 5056, 2871].

Gradual [4831, 5017, 1076, 4892, 2348, 1380].

Gradual-Underflow [4831].

Grain [4457, 4356, 3172].

grained [6214].

gram [5535, 6432, 570, 5799, 4879, 4667].

Grand [6807].

Granularity [6032].

Graph [4486, 2583, 3639, 498].

Graphic [4450].

Graphical [6334, 4940].

Graphics [6043, 2565, 5437, 4108, 4906, 4475, 5461, 2499, 5289, 5022, 5569, 3945, 6403, 2665, 2345, 3048, 4760, 2493, 4819, 4820].

Graphs [768, 1173].

Great [6798, 6857, 5989, 6725, 6741, 20].

Greene [6821, 6856, 6827].

GreenWaves [6411].

Grenoble [6771, 6900, 6640, 2690].

grids [3608].

Gröbner [5480, 3100].

Gronwal [516].

Gronwall [516].

großer [618].

Group [6674, 3755, 6619, 5350, 6497, 6639, 1719, 6478, 2404, 2578].

Grouped [4017].

Grouped-moduli [4017].

Groups [3835, 961].

Grove [6687, 6589, 6607, 6618, 6712, 6562, 6727, 6740, 6751, 6767, 6780, 6794, 6861, 6872, 6901, 6656, 6696].

Growth [6168, 340].

gruboi [2252].

Grundlagen [1837, 964, 965, 932].

grundlegende [3037].

GSFAP [5491].

Guarantee [1135].

Guaranteed [5538, 4864, 3567, 5259, 5204, 4782, 3114, 5103].

Guaranteed-accurate [5103].

Guard [924, 990, 4902].

Guest [4932, 5643, 5525, 6265, 4125, 5383, 5855, 4949].

Guide [1320, 1224, 1333, 5657, 2152, 1860, 3738, 4354, 4807, 3275, 6751, 6767, 6780, 6794, 6861, 6872, 6901, 6656, 6696].

Handbook [6056, 977, 2802, 3171, 328, 5465, 6223, 1412, 1075, 4595, 2742].

handbooks [94].

handling [4112].

Handle [5387, 6182].

Handlers [4058].

Handling [3165, 1154, 2014, 3356, 3514, 1461, 3190, 4111, 3199, 2836, 4135, 3231, 2567, 5126, 2984, 3179, 3803, 3526, 3804, 1303].

Hands [5447, 4750].

Hands-on [5447].

Hannover [1427].

Happen [4059].

Happened [5709].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3235, 3236, 2053, 3238, 5776, 1937, 1271, 2058, 3407, 4498, 2068, 5937, 5471, 4330, 456, 4005, 4951, 4018, 3727, 1626, 1859, 5704, 4175, 2400, 2537, 2538, 2925, 1865, 1868, 2926, 5087, 6368, 4356, 1200, 2750, 1293, 2751, 6377, 3285, 4044, 2554, 1873, 4046, 5545, 1298, 5503, 5508, 1508, 4680, 1882, 2119, 3887, 4695, 1442, 2436, 2266, 4561, 4411, 3904, 2798, 4074, 5261, 2277, 5347, 5657, 3491, 3784, 4716, 3649, 5144, 2994, 3922, 1156, 2291, 5155, 3000, 3504, 3349, 5157, 2460, 5555, 6633, 1784, 4735, 2462, 3796, 6198.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8

4467, 5051, 4928, 4637, 4643, 2209, 1714, 2737, 4031, 680, 757, 4817, 4979, 4377.

Jump [5282]. Jumps [3655]. June [6674, 6686, 6731, 6756, 6841, 6632, 6645, 6757, 6786, 6864, 6760, 6619, 6905, 6515, 6788, 6559, 6475, 6566, 6548, 6702, 6822, 6889, 6653, 6640, 6852, 6906, 6668, 6825, 2690, 6894, 6525, 6706, 6654, 6655, 6552, 555, 3107, 6671, 6672, 6904, 6902, 6570, 6543, 6615]. Just [5013, 4700].

Livermore [135x192] [6318, 2702, 5491, 1483].
literate
[6290, 2498].
load
3769, 4064, 4559, 5969, 3336, 4575, 5012, 5575, 3042, 3217, 4490, 2192, 4822.
LLL-Reduction
[4277].
Liquid
[3568].
Linearer
[3212].
Array
6329, 414, 3400, 4941, 2063, 5842, 5614, 6148, 4016, 4173, 5309, 6368, 3741, 1033, 39, 5801, 4546, 1998, 3789, 6088, 6195, 4441, 484, 485, 532, 6405, 6457, 1364, 3967, 5049, 4287, 4293, 5682, 5393, 5284, 1599, 5206, 5287, 3244, 3245, 3714, 5781, 5782, 1482, 3430, 4513, 3114, 2930, 904, 1134, 4378, 4670, 4719. Linear-Array
[3212].
Linear-System
[4828].
Linear-Time
[4119].
Linear/Linear
[5746].
Lineariser
[4378, 4670].
linearization
[1575].
Lines
[249].
Ling
[5336].
Linger
[3353].
link
[4297, 3615].
Linkage
[6684].
linked
[2498].
Linz
[6565].
Liquid
[3568].
Lisbon
[6787].
LISP
[6587, 1438, 1715, 1752, 2753, 1421, 3344, 3585, 3603, 1860, 3860, 2764].
List
[6448].
listing
[1823].
Lists
[6290, 2498].
literate
[4198].
literate-programming
[4198].
Live
[6250].
Livermore
[2677].
living
[6870].
Ljubljana
[6501].
LLL
[4277].
Lifting-Based
[6087].
Light
[3655, 3665, 4095, 5903].
Lightweight
[5746, 5652, 3781].
Like
[813, 862, 3700, 4927, 3389, 6458, 4114, 5621, 5070, 1715].
Likelihood
[4779, 4849].
Limit
[2963, 6271, 707, 859, 933, 1943, 1431, 6272, 3357, 6406, 3215, 5489, 2932].
Limit-cycle
[707].
Limitation
[1560, 5535, 638].
Limitations
[1596].
Limited
[3952, 413, 540, 3067, 2960, 5341, 5539, 4578].
Limiting
[843].
Limits
[5658].
Line
[3142, 3315, 2810, 1070, 2002, 2139, 1346, 3181, 6720, 1560, 872, 1473, 1385, 1596, 1391, 4324, 2082, 4029, 4350, 898, 1126, 2086, 2750, 1417, 1418, 1874, 2098, 6035, 2258, 5966, 2136, 2283, 2809, 1670, 2140, 782, 4588, 1550, 2306, 2169, 4753, 2352, 3383, 4480, 2360, 3227, 4154, 4638, 4499, 4797, 2528, 1029, 2402, 2749, 1415, 1416, 1638].
line-drawing
[4499].
Linear
[3212].
Linear-System
[4828].
Linear-Time
[4119].
Linear/Linear
[5746].
Lineariser
[4378, 4670].
linearization
[1575].
Lines
[249].
Ling
[5336].
Linger
[3353].
link
[4297, 3615].
Linkage
[6684].
linked
[2498].
Linz
[6565].
Liquid
[3568].
Lisbon
[6787].
LISP
[6587, 1438, 1715, 1752, 2753, 1421, 3344, 3585, 3603, 1860, 3860, 2764].
List
[6448].
listing
[1823].
Lists
[6290, 2498].
literate
[4198].
literate-programming
[4198].
Live
[6250].
Livermore
[2677].
living
[6870].
Ljubljana
[6501].
LLL
[4277].
4640, 4599, 5969, 3336, 4575, 5012, 5575, 3042, 3217, 4490, 2192, 4822].
load
[3253].
Local
[708, 3389, 4409, 5662, 340, 2377].
Log
[6318, 2702, 5491, 1483].
Log-Depth
[2702].
Logarithm
[1429, 250, 307, 5356,
1912, 4107, 1683, 6003, 6112, 4914, 2038, 2039, 4783, 6022, 616, 896, 1626, 2535, 2537, 5791, 1135, 5640, 2783, 576, 719, 6130, 1841, 4494, 4960, 5405, 3295, 4706].

Logarithmic [5951, 3625, 4542, 4836, 4837, 5321, 5509, 5510, 6253, 6389, 1742, 225, 5334, 5653, 1893, 3986, 4068, 4069, 5139, 4239, 1067, 5440, 6317, 488, 5760, 1813, 4613, 3972, 6218, 5053, 4477, 3396, 4933, 4315, 549, 6028, 247, 5790, 2223, 2244, 2424, 3759, 4543, 5716, 1741, 1988, 4715, 2621, 2622, 4727, 6405, 6457, 3204, 505, 2665, 5681, 2351, 3386, 542, 4934, 1947, 2221, 1864, 2224, 5233].

logarithmic-exponential [3386]. logarithmischer [2621].

Logical [2945, 1057, 1677, 4833, 52, 2349, 2353, 1599]. logiciel [3328]. LogiCORE [5101, 5419]. Logics [6758].

Lost [774, 5670, 6143]. Lösung [1537, 4378, 4670]. Louis [19, 6579].

Louisiana [6591, 6725, 6811]. Louisville [6560]. Low [2777, 4834, 4835, 1311, 1739, 6391, 6063, 575, 4695, 6270, 4855, 4697, 3772, 5132, 5133, 6074, 5141, 3917, 3497, 6191, 4091, 1347, 3794, 5560, 3667, 6304, 4890, 5570, 5669, 3944, 5999, 6312, 4607, 3812, 5760, 6104, 4910, 4290, 4139, 5771, 3983, 3984, 3985, 6411, 4772, 4315, 4489, 4160, 4322, 6742, 5779, 6346, 5470, 4641, 4642, 4789, 4944, 5298, 4005, 4795, 5619, 619, 5484, 5845, 5943, 5406, 2928, 901, 4365, 3865, 6420, 5797, 5809, 6431, 2822, 5569, 3801, 5377, 3814, 4611, 5597, 3963, 4214, 5374, 5609, 3711, 2508, 2901, 1022, 5084, 2544, 3866, 4817]. Low-Complexity [5298, 3812, 4910, 3866, 4817].

Low-Cost [1311, 1739, 5141, 3667, 5669, 5771, 5470, 619, 5943, 901, 1347, 5569, 2189, 2508, 1022]. Low-dimensional [4772].

LUCAS [1594, 1414, 625]. Luigi [5713]. Luminy [6706]. LX [531]. LX-1
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[531]. Lyapunov [5849]. Lyon [6785, 6700, 6894]. LZA [2465].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3882, 4209, 6428, 5536, 5968, 5133, 6178, 5870, 6071, 6179, 6180, 5010,
2994, 6462, 5016, 3925, 5553, 5661, 5368, 5563, 4886, 5571, 5573, 3371, 4121,
5448, 4464, 4910, 4765, 4767, 5836, 3829, 4311, 4632, 4313, 4487, 6227, 4780,
4318, 4319, 4161, 5937, 6233, 4166, 4947, 6235, 5940, 6030, 5484, 4660, 4356,
4363, 5707, 4527, Montgomery-Based [5707], Montgomery-Form [4313, 4487],
Montgomery-Like [3829], Monticello [6746], Montpellier [6494], Morocco [4719],
Morphable [4407], MORUS [6381], MOS [1551, 2032, 2188, 1729], MR [2685],
MS-DOS [2685], MSI [3397], MSB-First [3397], much [3184], Much [2022, 5069],
Mouraud [399], Movies [5589], moving [6653], moyenne [3883], MP [3465, 1054, 1144, 1320, 4734, 2477], MP-1 [3465], MP/Model [2384], mpc [5352], mpcheck [4985], MPCS [6680], MPEG [4390, 4392, 4025],
MPFI [4500, 4501], MPFR [4876, 5152, 4093, 4912, 6007, 6115, 4769, 4986],
MPFUN [3768], MPI [3755], MPPA [6093], MPPA-256 [6093], MQRNS [1925],
MR [1245], MRC [5861], MRI [4447], MRRNS [2759], MS [2685], MS-DOX [2685],
MSB [3397], MSB-First [3397], mul [3184], Much [2022, 5069], Mulders [4440],
Multi [1042, 5958, 1515, 5726, 3773, 2981, 3644, 4239, 1339, 2996, 5748, 481, 2820, 6203, 1366, 5055, 1838, 6471, 3577, 6141, 6028, 1617, 2212, 2214, 5700, 5407, 3863, 5869, 2278, 5880, 6296, 1812, 2684, 5463, 4934, 3240, 3241, 3111, 5238], multi- [5869], Multi-Base [5726], Multi-Core [6028, 5748], Multi-Dimensional [4239, 4934], Multi-Exponentiation [3644, 5238], Multi-fault [5958], multi-FPGA [5463], multi-function [3240, 3241], Multi-Input [1838, 2684], Multi-Intervals [3577], Multi-Length [481], Multi-Media [3773], multi-modulus [3240, 3241], multi-modulus/multi-function [3240, 3241], Multi-Operand [1042, 1339, 1366, 2820, 5055, 1617, 2212, 5407, 5880], Multi-output [6141, 1812], Multi-Parallel [2981], multi-port [3111], Multi-Precision [2214, 6203, 5700, 6296], multi-purpose [2278], Multi-User [1515], Multi-Value [2996, 3863], Multibit [5694, 2522], Multibyte [6042, 1901], multicarrier [4122, 4136, 4138, 4476], Multichip [3085], Multicomputer [1993, 5092, 5313], Multicore [5536, 5950, 5617], Multidigit [4933, 232], Multidimensional [4933, 777, 2914, 2915], Multidoubling [4333], Multiformat [5938, 1674], Multifunction [4937, 3991, 5234], Multigrid [114], Multilinear [5297], Multimedia [4836, 4830, 4998, 6808, 6823, 4004, 4650], MultiModuli [4826], Multinomials [4828], Multipath [2054, 2055, 2709, 4170], Multipartite [4904, 4231, 4417, 4865], Multipath [4528], Multiprocessor [2953], Multiple [6245, 1505, 274, 2958, 4844, 1317, 6260, 1050, 822, 823, 911, 912, 1054, 1055, 1144, 1214, 5728, 357, 358, 4071, 201, 1062, 4418, 4419, 5547, 5549, 4876, 5151, 1232, 4734, 3177, 408, 4889, 5168, 6693, 6737, 6851, 4451, 5821, 1682, 6315, 1805, 1468, 5675, 5676, 4912, 1097, 537, 3550, 375, 725, 4484, 2498, 5929, 2704, 2705, 2889, 187, 215, 2382, 3414, 1483, 6729, 1848, 4649, 749, 2731, 3851, 4653, 5075, 5076, 298, 2533, 2922, 4659,
[135x681]8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

4731, 6087, 5026, 5166, 3701, 5929, 4629, 729, 2407, 3446, 5511, 5533, 5890, 4146, 2737]. **Multiplicative** [969, 4861, 5814, 4254, 4922, 5921, 6135, 5839, 6347, 3431, 6378, 576, 1063, 1064, 4582, 5157, 1550, 3879, 4398, 3767, 1147, 5130, 5338, 5340, 5257, 177, 3335, 5970, 1534, 1764, 5972, 473, 2993, 6462, 397, 477, 95, 402, 5982, 1456, 4430, 588, 1547, 1776, 4091, 5266, 926, 4251, 5560, 4886, 5371, 4738, 5568, 3187, 120, 4890, 285, 1254, 121, 5039, 999, 208, 4272, 5449, 3212, 4457, 97, 210, 4610, 5909, 288, 2032, 4290, 6117, 110, 3387, 415, 871, 2361, 5392, 1103, 88, 6341, 5285, 342, 449, 662, 5064, 945, 613, 164, 1603, 1845, 1944, 552, 5699, 5212, 4334, 145, 3725, 5619, 6352, 5701, 1712, 2077].

Multiplier [1502, 5951, 4535, 5425, 1505, 3874, 434, 305, 434, 1511, 3879, 4398, 3767, 1147, 5130, 5338, 5340, 5257, 177, 3335, 5970, 1534, 1764, 5972, 473, 2993, 6462, 397, 477, 95, 402, 5982, 1456, 4430, 588, 1547, 1776, 4091, 5266, 926, 4251, 5560, 4886, 5371, 4738, 5568, 3187, 120, 4890, 285, 1254, 121, 5039, 999, 208, 4272, 5449, 3212, 4457, 97, 210, 4610, 5909, 288, 2032, 4290, 6117, 110, 3387, 415, 871, 2361, 5392, 1103, 88, 6341, 5285, 342, 449, 662, 5064, 945, 613, 164, 1603, 1845, 1944, 552, 5699, 5212, 4334, 145, 3725, 5619, 6352, 5701, 1712, 2077].

Multiplier [1487, 3854, 1488, 4657, 755, 2082, 5406, 1490, 1491, 1630, 4351, 5408, 6439, 300, 5707, 5498, 3443, 131, 1967, 2096, 4369, 4185, 3447, 3298, 764, 5503, 3451, 2559, 2119, 3150, 4585, 3334, 2807, 5880, 4082, 4874, 4083, 638, 3000, 1779, 2306, 2821, 3006, 4103, 3184, 2467, 4601, 1791, 3944, 5377, 3209, 4746, 4458, 4611, 2345, 4128, 4464, 2855, 2672, 2041, 3555, 4762, 2684, 3059, 2876, 2188, 3232, 3402, 3574, 3833, 3575, 3994, 612, 4502, 5785, 2522, 2209, 3255, 3094, 2395, 3105, 5077, 4024, 4437, 1727, 2938, 2939, 1732, 4525, 4526, 4527, 2771, 2239].

Multiplier-Accumulator [3767, 4657].

Multiplier-Based [4398].

Multiplier-Dividers [5425].

Multiplier-Dividers [5425].

Multiplier/Squarer [4272, 4128].

Multiplikationsprogramme [1693].

Multiply [5853, 1972, 6258, 5327, 1984, 2971, 4852, 6063, 6273, 5339, 4802, 835, 6193, 5024, 4887, 2466, 6454, 5168, 6205, 6208, 3805, 5176, 4279, 716, 717, 5175, 5186, 5187, 3044, 5598, 3072, 1600, 5398, 5470, 5291, 5292, 4945, 4649, 619, 5789, 3732, 6032, 3439, 6160, 6382, 6421, 2099, 4382, 3303, 4400, 2258, 4692, 2975, 1532, 1540, 4882, 3934, 4450, 1557, 3527, 4891, 4463, 4755, 3975, 5827, 5920, 2866, 4924, 4628, 3582, 5479, 4656, 4659, 4813, 1639, 2941].

Multiply-Accumulate [4862, 6193, 3732, 6421].

multiply-accumulator [4659].

Multiply-Add [6258, 5327, 4852, 5339, 2466, 5168, 3805, 4279, 3044, 5598, 5470, 5291, 5292, 4945, 4649, 6032, 6382, 4887, 3072, 2258, 4692, 2975, 3934, 4450, 4663, 3975, 5827, 4924, 4628, 4813].

Multiply-Add-Fused [5185, 5186, 5187, 4755, 4656].

Multiply/Addition [1972].

Multiply-Additions [3527].

multiply-adds [5920].

Multiply-by-Three [835].

multiply/add [1639].

Multiplying
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

2774, 2775. Number [4695]. Number-Theoretic [3996, 4158]. Numbers
[6785, 6829, 629, 970, 4059, 33, 4996, 1435, 1050, 6171, 2431, 519, 5724, 5965,
3473, 6271, 6272, 6718, 4406, 1328, 2439, 307, 1334, 1062, 1762, 1763, 4230, 137,
4718, 6286, 637, 1158, 49, 837, 1457, 3657, 6399, 48, 3660, 5988, 2636, 526, 527,
35, 1163, 2464, 1909, 2468, 2825, 5992, 5994, 4109, 318, 5753, 6002, 6102,
4456, 1573, 5908, 5965, 5966, 5967, 5968, 6334, 418, 2868, 4300, 2184,
3393, 5830, 99, 5834, 1104, 2704, 2705, 343, 4496, 1393, 3716, 1188, 165, 3843,
2077, 6355, 2531, 4799, 5222, 3733, 3437, 1633, 3279, 6241, 6419.

typrő [4695]. Numbers [6785, 6829, 629, 970, 4059, 33, 4996, 1435, 1050, 6171, 2431, 519, 5724, 5965,
3473, 6271, 6272, 6718, 4406, 1328, 2439, 307, 1334, 1062, 1762, 1763, 4230, 137,
4718, 6286, 637, 1158, 49, 837, 1457, 3657, 6399, 48, 3660, 5988, 2636, 526, 527,
35, 1163, 2464, 1909, 2468, 2825, 5992, 5994, 4109, 318, 5753, 6002, 6102,
4456, 1573, 5908, 5965, 5966, 5967, 5968, 6334, 418, 2868, 4300, 2184,
3393, 5830, 99, 5834, 1104, 2704, 2705, 343, 4496, 1393, 3716, 1188, 165, 3843,
2077, 6355, 2531, 4799, 5222, 3733, 3437, 1633, 3279, 6241, 6419.

\[\text{Number-Theoretic} [3996, 4158]. \] Numbers
[6785, 6829, 629, 970, 4059, 33, 4996, 1435, 1050, 6171, 2431, 519, 5724, 5965,
3473, 6271, 6272, 6718, 4406, 1328, 2439, 307, 1334, 1062, 1762, 1763, 4230, 137,
4718, 6286, 637, 1158, 49, 837, 1457, 3657, 6399, 48, 3660, 5988, 2636, 526, 527,
35, 1163, 2464, 1909, 2468, 2825, 5992, 5994, 4109, 318, 5753, 6002, 6102,
4456, 1573, 5908, 5965, 5966, 5967, 5968, 6334, 418, 2868, 4300, 2184,
3393, 5830, 99, 5834, 1104, 2704, 2705, 343, 4496, 1393, 3716, 1188, 165, 3843,
2077, 6355, 2531, 4799, 5222, 3733, 3437, 1633, 3279, 6241, 6419.

\[\text{Number} [4695]. \] Number-Theoretic [3996, 4158]. Numbers
[6785, 6829, 629, 970, 4059, 33, 4996, 1435, 1050, 6171, 2431, 519, 5724, 5965,
3473, 6271, 6272, 6718, 4406, 1328, 2439, 307, 1334, 1062, 1762, 1763, 4230, 137,
4718, 6286, 637, 1158, 49, 837, 1457, 3657, 6399, 48, 3660, 5988, 2636, 526, 527,
35, 1163, 2464, 1909, 2468, 2825, 5992, 5994, 4109, 318, 5753, 6002, 6102,
4456, 1573, 5908, 5965, 5966, 5967, 5968, 6334, 418, 2868, 4300, 2184,
3393, 5830, 99, 5834, 1104, 2704, 2705, 343, 4496, 1393, 3716, 1188, 165, 3843,
2077, 6355, 2531, 4799, 5222, 3733, 3437, 1633, 3279, 6241, 6419.
[5081, 4658, 1198, 5086, 2751, 900, 2544, 3610, 4358, 6038, 3284, 4038, 1732].
Operator [4828, 4497, 1298, 2904, 5101, 5419]. Operatorkonzepts [1298].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

90

5865, 6171, 6455, 6426, 3318]. Point [3319, 3320, 1984, 5866, 2431, 1985, 691,
2259, 5724, 5965, 1216, 1217, 1322, 4215, 6174, 6391, 3473, 6267, 5331, 224,
825, 5531, 151, 3149, 3324, 1440, 1441, 5254, 5002, 2587, 1522, 5429, 2591, 3479,
4220, 5334, 5653, 1220, 6066, 3893, 1659, 2439, 694, 1148, 1331, 1445, 1660,
2269, 2977, 3896, 5969, 3898, 1149, 1150, 1224, 1333, 1661, 5730, 3775, 3902,
5005, 5134, 5342, 5343, 2794, 4223, 3332, 3333, 3488, 1993, 3335, 5975, 5971,
3489, 3777, 3779, 4228, 2274, 2443, 2444, 3908, 3909, 4230, 2135, 4709, 583,
2276, 2804, 3164, 4237, 4420, 4422, 4572, 4712, 5736, 5737, 5874, 6430]. Point
[5974, 1898, 5141, 1666, 5013, 6283, 5262, 3648, 4240, 1899, 1997, 471, 5977,
3787, 1667, 2808, 2810, 1901, 5264, 474, 1767, 6190, 6395, 4426, 5148, 5353, 3343,
3652, 3918, 4080, 3170, 5354, 1771, 5980, 2142, 1228, 920, 1453, 3344, 1155, 6288,
1455, 5981, 4086, 2144, 6289, 4876, 5660, 1229, 2145, 2814, 4428, 2625, 5551,
4245, 3173, 3655, 205, 206, 1546, 1904, 5359, 785, 837, 3930, 840, 1234, 1675,
2628, 2629, 4594, 923, 5266, 5749, 6080, 6398, 924, 990, 3793, 1347, 1548, 6399,
4249, 4436, 5364, 282, 642, 2148, 2149, 2302, 1782, 1783, 4092, 5560, 5561, 2635].
Point [6084, 6087, 317, 927, 365, 366, 3354, 3937, 4095, 4096, 5159, 3797, 6297,
2464, 993, 3517, 3009, 5442, 1553, 1909, 407, 6473, 4258, 928, 6304, 2466, 5567,
2468, 2640, 2825, 5991, 6454, 1250, 1354, 5168, 5669, 3800, 1086, 5994, 1556,
5030, 6309, 1794, 1795, 1796, 2017, 2018, 6310, 5035, 5576, 6402, 3020, 3021,
4108, 3196, 318, 1798, 5032, 6094, 5443, 5903, 2830, 5753, 3022, 3023, 5579,
6095, 5378, 5582, 5584, 5754, 5756, 6096, 6207, 4265, 3805, 5379, 1253, 1564,
1173, 2321, 6000, 6099, 6460, 231, 6101, 1565, 5759, 6001, 320, 1174, 1256,
1361, 1920, 2836, 3674, 3806, 3807]. Point [4116, 4266, 4452, 4742, 4743, 4894,
5273, 4269, 3676, 705, 708, 5172, 1804, 5588, 2475, 6316, 1685, 850, 998, 5174,
3210, 5381, 4273, 789, 4124, 3375, 2337, 2844, 5177, 5674, 4277, 3683, 713,
714, 853, 1002, 715, 5676, 5762, 3214, 3815, 6323, 6107, 5912, 6003, 6110, 6112,
5048, 1574, 5915, 4909, 2034, 2667, 2669, 2852, 5680, 6005, 4466, 4912, 6006,
6114, 6325, 4289, 1470, 412, 5185, 5186, 6009, 1095, 2036, 5052, 5825, 793, 864,
1375, 538, 5595, 6010, 3218, 2857, 2858, 2176, 2354, 6122, 6330, 2673, 4769,
2485, 604, 651, 2487, 5771, 6220, 1578, 2680, 1580, 5686, 4477, 495]. Point
[544, 3698, 376, 2492, 1102, 4299, 1932, 6129, 3390, 3060, 5461, 4300, 6221,
940, 5392, 5195, 3700, 421, 5830, 5831, 6132, 6133, 6134, 6338, 6339, 338, 4302,
4485, 2362, 1472, 1698, 606, 1829, 2047, 2187, 2366, 2367, 3065, 4929, 5465,
6014, 6223, 1104, 2692, 4307, 2373, 2374, 6225, 6342, 6466, 5773, 875, 4936,
5774, 5837, 3704, 5060, 5203, 3400, 2701, 3989, 3569, 3570, 3572, 3707, 3708,
4939, 2499, 2885, 5776, 4314, 2704, 2705, 5286, 1937, 609, 1014, 1271, 2503, 2193,
4316, 4491, 4157, 6020, 6471, 1109, 1184, 1273, 5778, 5838, 2058, 666, 4160, 4322,
5839, 2712, 2713, 3076, 3578]. Point [6346, 5398, 2716, 2896, 1707, 2512, 3079,
4785, 5470, 5291, 5292, 6229, 6230, 2203, 949, 2204, 1188, 3585, 6022, 2205, 951,
3082, 2206, 4503, 5471, 2207, 2723, 4946, 5299, 5300, 5473, 5783, 4165, 6412,
1481, 6145, 1615, 425, 1616, 6146, 5618, 3844, 4948, 1484, 4004, 2524, 1399,
1709, 4794, 4950, 2213, 4012, 4338, 4649, 4951, 5619, 4510, 4953, 2906, 1710,
5483, 5701, 2525, 3596, 2391, 245, 190, 2907, 1951, 5622, 1621, 2731, 2913, 3102,
3103, 3104, 3265, 3601, 3602, 2217, 5788, 6031, 3266, 5941, 5942, 6356, 1954,


8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

91

1955, 1624, 2918, 5789, 2531, 4799, 805, 1284, 1403, 1404, 1719, 5404]. Point
[3853, 3854, 4963, 1286, 4023, 5704, 3856, 1720, 5406, 2400, 2537, 2538, 2925,
4966, 4967, 1410, 5407, 1723, 5087, 5225, 6368, 3436, 4805, 5944, 6369, 4030,
560, 3270, 4355, 5846, 6238, 1028, 5226, 1961, 810, 5408, 2748, 3437, 2750, 6416,
3273, 6152, 1295, 462, 4969, 5706, 6373, 3743, 3117, 6037, 6240, 2230, 3860,
6418, 193, 6160, 1413, 1636, 2546, 4975, 5096, 5234, 5235, 5416, 5417, 5494,
5497, 6241, 1496, 1300, 1967, 5631, 2934, 2935, 5793, 194, 3124, 2233, 6039,
4183, 5949, 1731, 4368, 5099, 2554, 762, 2943, 1641, 3447, 5241, 5634, 4045,
906, 1875, 5796, 6382, 4982, 5420, 5501, 4983, 5242]. Point [5105, 6383, 5545,
5733, 5873, 4522, 6155, 4181, 2103, 4389, 3298, 5243, 627, 2777, 2558, 1877,
1878, 6242, 3869, 1504, 4384, 5503, 6041, 2947, 2101, 2102, 3621, 3754, 5317,
390, 5318, 3453, 5855, 5953, 5856, 684, 272, 1428, 2422, 2562, 2953, 3137, 3138,
3303, 3304, 3305, 3306, 4388, 6166, 6251, 6252, 2423, 1041, 968, 1881, 1974,
5508, 1734, 2243, 1735, 1736, 1308, 2245, 1508, 1509, 1975, 2246, 4679, 5957,
4054, 4199, 1430, 2426, 2787, 2961, 5426, 5720, 1977, 1212, 1314, 1741, 2110,
2427, 2111, 1743, 5721, 4202, 1979, 2250, 2571, 3144, 2963, 2251, 4205]. point
[5115, 5116, 1047, 2112, 1316, 2254, 5650, 4683, 2428, 1142, 4998, 3764, 2115,
2255, 2256, 2116, 2257, 2574, 2575, 2969, 1747, 4210, 4402, 4550, 4686, 4687,
4999, 5119, 5803, 6058, 3633, 1517, 1518, 1651, 275, 2117, 1653, 631, 5122, 5428,
4213, 3765, 973, 4690, 5124, 5251, 2119, 974, 1145, 6264, 4692, 4852, 6173, 5652,
3148, 4853, 3474, 2433, 1749, 4693, 2121, 2584, 6175, 6176, 1888, 6268, 1323,
6269, 3323, 6064, 1324, 4696, 4854, 2589, 3150, 355, 1524, 2590, 6177, 3768,
4857, 1752, 1989, 2593, 3639, 3770, 5727, 1326, 1657, 2131, 2594, 2595, 2596,
5805, 5868, 2266, 2974]. point [4408, 5339, 3891, 2975, 3892, 5806, 4698, 4699,
3895, 1444, 1528, 1758, 2133, 5341, 5539, 4070, 2602, 1059, 1895, 3901, 4568,
4415, 394, 1994, 5344, 3334, 5541, 3642, 2272, 2795, 2796, 2797, 3778, 3907,
3159, 6074, 2607, 6075, 5260, 5261, 917, 1226, 2609, 6182, 5809, 5546, 2983,
2803, 3163, 3338, 4421, 4573, 4711, 5973, 5876, 3910, 2985, 226, 4715, 5012,
5138, 5139, 4238, 4576, 919, 4424, 5435, 5014, 2446, 5143, 2447, 4867, 2278,
4076, 2807, 5144, 2136, 472, 1668, 1669, 1766, 2809, 3913, 1154, 1340, 5146,
5015, 5351, 698, 1071, 4873, 4081, 4082, 4583, 4584, 5438, 4585, 1454]. point
[1902, 2290, 1671, 4586, 1903, 699, 781, 478, 783, 3653, 1156, 5152, 987, 2005,
6079, 2815, 2294, 4726, 2454, 6396, 4590, 5662, 4591, 258, 3000, 3174, 4593,
4729, 5663, 3001, 2456, 589, 839, 988, 1160, 1233, 1674, 3349, 2298, 2817, 3002,
989, 2630, 1777, 5361, 925, 1778, 2460, 1779, 5555, 2300, 4732, 4733, 1780, 5267,
5818, 5890, 1237, 1549, 2301, 228, 158, 283, 2634, 3794, 2305, 1784, 4252, 4735,
3795, 2462, 3933, 3004, 3934, 3661, 3511, 5668, 3935, 4439, 4597, 6296, 3665,
5025, 2819, 2820, 3178, 3513, 4098, 6198, 994, 3007, 3356, 3514, 1241, 1352].
point [4887, 1165, 1908, 3516, 2150, 3357, 1353, 1246, 3183, 3014, 3941, 2151,
3362, 5373, 4447, 2824, 2465, 3015, 1248, 2639, 5164, 5165, 1679, 2826, 6202,
6308, 6401, 5569, 3188, 3189, 2015, 5570, 486, 2645, 788, 1167, 2313, 5572, 646,
2315, 3803, 1170, 1797, 1681, 3198, 3526, 4112, 5033, 5034, 5036, 5374, 2154,
2155, 3945, 4450, 5170, 3525, 1088, 4111, 1171, 1800, 2316, 4604, 5752, 2829,
5580, 5581, 1562, 3201, 5820, 5998, 6097, 6206, 2319, 180, 2019, 3950, 3529, 6210,


8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Proceedings [6759, 6845, 6864, 6891, 6676, 6579, 6535, 6903, 6516, 6666, 6693, 6723, 6725, 6737, 6762, 6808, 6821, 6822, 6823, 6836, 6890, 6517, 6695, 6640, 6852, 6705, 6794, 6568, 6524, 6837, 6825, 6714, 6728, 6855, 6882, 6782, 6810, 6743, 6670, 6753, 6659, 6840, 6674, 6876, 6834, 6819, 6653, 6673].

processor [3868, 1647, 4540, 6250, 3310, 2253, 1884, 1515, 4685, 1981, 1987, 2587, 1220, 3327, 1755, 1327, 1525, 1756, 1897, 2274, 1336, 3649, 471, 2449, 1075, 2293, 2145, 2814, 3173, 5019, 1782, 1783, 1243, 1553, 6473, 2309, 4739, 5573, 4111, 1358, 6093, 5580, 5378, 5583, 3950, 3955, 5445, 846, 2658, 2337, 2667, 2669, 4286, 2176, 2487, 1378, 5458, 1263, 3390, 2362, 4929, 3827, 1591, 2373, 6411, 1592, 4939, 2499, 1270, 2193, 3576, 454, 1187, 3718, 4165, 1481, 1616, 3422, 3590, 2393, 1853, 2217, 3106, 1863, 2223, 1869, 3112, 1411, 1295, 5236, 1133, 2554, 1305, 2777, 1877, 1878, 2947, 5856, 1428].

Processor-T [6473]. Processors [4386, 6163, 515, 3319, 6677, 6690, 6874, 2591, 5730, 5342, 6788, 6832, 1771, 5748, 5162, 3018, 3019, 3194, 6593, 6612, 6624, 6649, 6723, 6804, 6805, 6821, 6846, 6860, 6868, 3020, 3021, 1362, 2027, 5447, 3038, 854, 1001, 1376, 4618, 3219, 6466, 3991, 6022, 4327, 4168, 6782, 2907, 1713, 4343, 6754, 6758, 6827, 6673, 1496, 6155, 2571, 1434, 4683, 3633,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

proposes [6149].

4669, 5796, 5242, 5733, 5715, 4060, 4209, 4405, 2143, 4293, 5283, 2192, 4505.

reconfiguration [5880, 4448]. Record [6589, 6529, 6590, 4049, 6648, 6652, 6562, 6861, 6872, 6550, 6563, 6574, 2631, 6542, 6576, 6508, 6644, 6522, 6618, 6712, 6722, 6740, 6751, 6767, 6901, 6656, 6696, 6603, 6631].

Relapse [530, 5904]. Reliable [4385, 6733, 978, 3681, 3218, 4769, 5473, 5947, 6158, 6418, 4188, 4224, 2798, 2332, 4126, 4280, 5454, 4344, 3118, 5849, 6859]. Remainder [4536, 4682, 3775, 4565, 4602, 5611, 5330, 2305, 6326, 4633, 2387, 4358].

remainder [4536, 2333]. Remains [6387, 512, 432, 3064, 3395].

Remark [1144, 1157, 6197, 1380, 3581, 3585, 462, 3395].

Remarkable [4225]. Remarks [226, 310, 321, 727, 807].

Remote [2833]. Removing [4681, 3391, 4155].

Renaissance [3763].

rencontres [6706].

Rennes [6874, 6810].

Reno [6605].

Repairing [6436].

Reprinted [3745]. Reprint [155].

ReproBLAS [5960, 5739]. Reproducibility [5738, 5874, 5658, 4256, 6004, 5840, 5859, 6065, 5869, 4102, 5917]. Reproducible [5852, 5853, 5952, 6385, 5960, 6267, 6067, 5736, 5737, 5739, 5810, 5875, 5901, 6122, 5930, 6376, 5800, 5973, 6183].

Republic [6720, 6867, 6836]. Required [585, 320, 5449, 1095, 352, 430, 4633].

Requirements [978, 3615].

Research [6871, 6549, 6107, 2037, 6654, 6518, 6348, 4373, 6507, 1878, 133, 1657, 5666, 3179, 2015, 2019, 5679, 6584, 1631]. residual [1858, 1958].

Residues [4521, 1633, 386, 3863, 4041, 4042, 4530, 4980, 759, 4531, 1873, 2557, 3129, 3299, 3300, 4826, 1645, 4190, 4538, 3453, 2564, 3467, 6169, 2107, 1043, 1044, 1431, 1213, 3143, 1744, 1882, 2964, 2965, 1648, 4060, 3763, 1983, 3885, 3635, 4556, 4694, 2123, 2127, 4063, 5003, 4558, 5127, 2263, 2436, 2594, 2595, 2596, 2597, 2437, 3153, 3154, 3481, 3482, 3483, 3890, 4561, 4411, 2134, 1760, 1896, 4073,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Rotation [4053, 2002, 2632, 3667, 3018, 5587, 2140, 5555, 5272].

Rotation/Vectoring [4053].

Rotations [3648, 6087, 3667, 4181, 270]. Rotator [3307, 2610].

Rotators [4493].

rotten [2699, 2700].

Round [575, 6059, 6455, 4850, 5249, 6062, 1066, 5812, 2455, 6397, 5898, 1789, 6205, 5382, 4282, 6408, 3689, 6006, 6114, 2854, 422, 3088, 3258, 5944, 1294, 2776, 5798, 4690, 6067, 4701, 4863, 5432, 4232, 4233, 2023, 5450, 607, 3819, 4130, 2360, 4626, 4154, 751, 4802, 4706].

Rounder [3698].

Rounding [3873, 4197, 5860, 4395, 3144, 768, 5248, 5524, 5529, 5653, 1658, 2979, 3641, 5540, 5731, 1761, 3159, 4571, 1152, 5811, 3560, 3788, 3915, 3169, 3918, 4080, 3346, 155, 4876, 5882, 4728, 5664, 4879, 6303, 1916, 3947, 5443, 1919, 3203, 5037, 5587, 3211, 5449, 856, 1002, 4461, 3378, 4283, 862, 5385, 2348, 4288, 4616, 4912, 4913, 863, 1470, 864, 5919, 4305, 5280, 3989, 3566, 607, 1832, 1183, 4779, 3996, 4158, 5611, 1606, 47, 3583, 952, 5843, 6023, 5299, 5300, 2386, 1282, 3423, 886, 190, 4652, 4173, 2530, 1287, 5624, 1724, 5228, 5625, 70, 3859, 462, 5413, 6240, 5234, 2931, 6485].

Rounding [626, 2768, 5420, 962, 6393, 6372, 3757, 4676, 1978, 4547, 4400, 4689, 3887, 4853, 1524, 3334, 4238, 3493, 1766, 5532, 2285, 8811, 2995, 4582, 4083, 3791, 5152, 5018, 5157, 2301, 1247, 2648, 4263, 849, 2653, 3039, 3213, 3376, 1812, 3966, 3817, 3967, 3216, 934, 1007, 5772, 4141, 6126, 4478, 4621, 6472, 1381, 4303, 5394, 4312, 1013, 5696, 3994, 4155, 947, 4494, 4638, 4786, 5697, 5399, 5781, 5782, 5477, 5482, 3087, 2389, 4654, 2220, 4026, 4804, 5310, 5311, 3113, 2540, 2541, 2542, 1201, 2089, 1297, 2932, 1642, 3448, 4048, 4705, 5735, 2543, 797, 429, 363].

Rounding-Exact [1470].

Rounding-Off [155, 70, 5860].

Rounding [1209, 762, 3643, 2377].

Roundoff [3466, 6168, 1212, 1313, 1742, 1432, 3319, 3633, 2554, 5253, 777, 2973, 695, 3919, 699, 2634, 72, 3513, 368, 5170, 3675, 4743, 3535, 708, 3214, 866, 6329, 6123, 6332, 3062, 873, 2514, 2381, 6140, 425, 3095, 3996, 2912, 2913, 3735, 560, 809, 462, 3284, 4667, 511, 3617, 2419, 3794, 1035, 1136, 2558, 2242, 2104, 1974, 1743, 4213, 1655, 1988, 1219, 2590, 3325,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 106

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

4300, 1614, 3741, 4532, 4671, 4672, 484, 485, 5206, 5615, 2227, 6710, 1202.

Sumsets
1947, 2523, 5489, 5103
5382, 5673, 793, 1588, 422, 4060, 4270, 2028, 1927, 2344, 541, 797, 5069,
Sum-of-Squares
191, 3437, 6157, 902, 5430, 5918, 4635, 267
Summer
summability
[3655, 3586]. Strongly [2854]. Structural [452]. Structurally [2127].
Structure [225, 636, 696, 1775, 842, 5824, 5938, 2733, 4361, 5415, 4103, 2846,
1094, 379, 4643, 1851, 3749, 1330]. Structured [1986, 1898, 4654]. Structures
[813, 819, 2578, 4410, 5356, 1357, 6111, 4922, 1383, 1595, 1395, 6353, 2913, 1200,
5127, 3910, 4444, 855, 3400, 2901, 753, 2229]. struggle [6816]. strukturelle
[2539]. Strukturen [2229]. Studies [6558, 159, 802, 756, 5950, 783]. Study
[4192, 518, 6095, 3480, 474, 5661, 1079, 156, 6399, 6314, 998, 715, 125, 3403,
4165, 1397, 2729, 892, 2747, 3282, 3144, 275, 3148, 2592, 529, 3357, 2639,
1175, 5452, 722, 5828, 5459, 1841, 674, 299, 6153, 174, 3293, 1937]. Stupid
[5864]. Sub [3347, 3500, 3497, 2310, 592]. sub-language [592]. Sub-
Nanosecond [3347, 3500]. Subcommittee [6497]. subdivision [6170].
Sublinear [5142, 5262, 5680]. Subnormal [4909, 5855]. Subprograms
[4399, 599]. Subquadratic [5149, 5150, 5371, 4803]. Subroutine [135, 2132,
1074, 1914, 1781, 508]. Subroutines [683, 5690, 2208, 1498, 470, 455, 128,
1537]. Subsets [3400]. subspace [3466, 3734]. Substitution [2126, 2314].
system [2266, 2493]. Subtracting [3899]. Subtraction [765, 4403, 4404,
4064, 5437, 1455, 5760, 4613, 4917, 1383, 2069, 426, 4391, 3769, 4559, 1454,
1902, 3731]. Subtraction-free [4917]. subtractions [3376]. Subtractive
[3561, 3431, 2397, 2398, 3379]. Subtractor [5579, 5088, 6441, 4762, 5603].
Subtyping [4247]. Subword [4731, 4752]. Subword-Parallel [4731, 4752].
Succeeding [3400]. Success [3559]. Successful [4909, 5032]. Successive
[1768, 290]. successor [5399]. Such [6348]. Suck [6293]. Suddenly
[6416]. Sufficient [3964, 4402]. Suggestion [910, 4738, 285, 678, 300].
suggestions [1929]. Suitable [5995, 5176, 5508, 3180, 2342, 653]. Suite
[5971, 2037, 2175, 3370]. Suits [6411]. sukzessive [1768]. Sulla
[118, 119]. Sum
[3620, 1339, 3345, 706, 4752, 2050, 4775, 4776, 4938, 666, 3078, 4646,
191, 3437, 6157, 902, 5430, 5918, 4635, 267]. Sum-of-Squares [4752].
summability [3280]. Summand [1097]. Summary [47, 2186]. Summation
[5852, 5952, 6385, 3871, 6207, 575, 825, 4572, 4712, 5737, 5875, 2282, 3343,
4587, 4724, 4725, 923, 642, 4119, 711, 6006, 6114, 1470, 538, 6122, 6045,
3577, 2180, 1266, 5924, 797, 5059, 1597, 4946, 5209, 5300, 5301, 5400, 1031,
6376, 623, 4982, 5420, 5501, 2124, 2125, 100, 4421, 5973, 5146, 1071,
3504, 5666, 5891, 3014, 1562, 3810, 6109, 5679, 3380, 3551, 720, 721, 5687,
3565, 5927, 5928, 546, 3069, 5396, 2195, 1019, 5474, 5698, 1297]. Summations
[3700, 6324, 5205, 6153]. Summen [1050, 2028, 797]. Summer
[6674, 6668, 6613, 6570]. Summierungsverfahren
[546]. Summing [348, 437]. Sums [5799, 5955, 1050, 5248, 6062, 1599,
5382, 5673, 793, 1588, 422, 4060, 4270, 2028, 1927, 2344, 541, 797, 5069,
1947, 2523, 5489, 5103]. Sumsets [5074]. Sun [1959]. sunity [5047].
super [2124, 2125]. superaccumulators [5927, 5928]. Superblock [5254].
supercomputer [3137, 2572, 2612, 4870, 4883, 1906, 5066]. Supercomputers
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3123, 6660, 2934, 1033, 759, 3129, 5242, 962, 3299, 3300, 4826, 1974, 2244, 3759, 4676, 39, 1430, 3467, 2109, 1213, 2568, 1744, 2257, 5428, 3885, 1749, 6176, 2127, 913, 5126, 2594, 2595, 2596, 2597, 4561, 4411, 4412. Systems [1760, 5011, 3649, 1770, 1227, 6555, 2621, 2622, 4087, 2624, 2626, 3503, 204, 312, 2456, 5156, 2298, 2631, 4595, 992, 1161, 3360, 4448, 2645, 2315, 1800, 996, 1359, 1360, 3026, 3372, 3535, 233, 1364, 3029, 3030, 3031, 3032, 2341, 2845, 1810, 1922, 1923, 1924, 2171, 2343, 2665, 2848, 5049, 1689, 4759, 4138, 4297, 542, 5600, 4624, 1264, 2685, 5196, 1824, 5197, 3824, 5284, 4308, 661, 2375, 2886, 5204, 5206, 5287, 3073, 379, 3244, 3245, 3406, 4781, 1704, 5067, 6021, 4319, 3714, 2893, 2894, 3409, 3580, 4162, 3838, 2065, 2382, 1394, 1191, 1280, 5615, 5781, 5782, 4505, 5617.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Way [4004]. Threshold [227, 999, 6465, 5541, 3610]. thresholding [3417].
Throughput [5424, 6172, 6104, 6108, 4906, 5471, 6352, 1133, 3476, 3269].
throughputs [6290]. Thumb [4314]. Thyrite [97]. TI [892, 3110, 4353, 4354].
Tick [2933]. tidal [3305]. Ties [6426]. Tight [6100, 5608, 6463, 5624, 3615].
Time-Division [110, 145]. time-domain [3849]. Time-Optimum [2088].
Time-Sharing [95]. time-varying [2558, 1974]. Timed [4065, 3388, 3889, 3150, 3510, 3970, 3697, 2095, 2761].
timer [5609]. Tissue [752, 1433]. Timing [3837, 5855, 2760].
tiny [5742]. Titan [2729]. Title [6053, 6054, 6450, 6451, 6367].
TM [4005]. TMR [4089]. TMS [3210].
TMS320 [6583, 2199, 2743, 2744].
TMS32010 [2078]. TMS32020 [1994]. TMS320C30 [3050, 2193].
TMS320C3x [3738, 4807]. TMS320C67x [4519].
TMS34082 [2742, 2745]. TMS390C602A [2443, 2444].
Today [1194, 1433, 3111]. Todd [315, 316]. Toepplitz [5371]. together [553].
Tokyo [6572, 6533, 6791]. Tolerance [3318, 3518, 3939, 6669, 2134, 3653, 2177, 3432, 3294].
Tolerant [5967, 6469, 5564, 3025, 6198, 3189, 5679, 3064, 3395, 2875, 1833, 3849, 6414, 6150, 2756, 3745, 5849, 1129, 4821].
Tolerating [6274]. Tomography [1288].
Tompkins [315, 316]. tonal [3].
Tool [1575, 2745, 3111]. Toolbox [6248, 3388, 3889, 3150, 3510, 3970, 3697, 2095, 2761].
Toolkit [2829]. Tools [4229].
Toolset [4229]. Toom [5118, 5499].
Toom’n’Half [5517]. ToonTalk [4745].
Top [6250]. Topics [47, 6481].
topological [5153]. Topologies [5208, 6159].
Topology [5795]. Toronto [6544, 6717, 6619, 6546, 6637, 6726].
Total [5082]. totally [2189].
Tour [3177]. Tower [4718]. Towers [6637, 6749].
Town [6573, 6593, 6635]. TPHOLs [6758]. TPUS [6379].
TR [3804, 5374, 5035]. TR2 [3803]. tracer [6177, 5609].
Traces [3457]. Tracking [3173, 6383, 3919, 3921, 4758].
Trade [6270, 1548, 3950, 599, 6028, 3161, 2440, 4074, 1257, 4631, 3745].
Trade-Off [509, 6270, 3950, 3161, 1257].
Trade-Offs [6028, 2440, 4074, 4631, 3745].
Tradeoff [6128, 3719, 4067].
Tradeoffs [5436, 3038, 4309, 3601, 3602, 4523, 4665, 3302, 1651, 5263, 2361, 4627].
Traditional [4978, 4309]. Trailing [1146, 921, 1083, 3334].
Trailing-1 [3334].
Training [6244, 6181, 6314, 6410, 6131, 6241, 6442, 6421].
Trans [2021]. Transactions [6553]. transceiver [5028].
Transcendental [2618, 360, 3936, 2029, 493, 3384, 1592, 4022, 5412, 4802].
Transcendental-Function [493]. Transcendentals [5369, 3689, 3819, 4987].
Transcription [773, 5989]. Transfer [4165, 1938, 3840]. Transform [2641, 1193, 1028, 1962, 2947, 1760, 3922, 4241, 3180, 3188, 2319, 2035, 3386, 1931, 5198, 2197, 4787, 4163, 1964, 3280, 511, 3126, 3127, 6390]. Transformation...
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[4900, 3553, 3104, 2960, 1451, 4247, 2817, 3002, 2698]. Tyson [6674].
3160, 5259, 5260, 2609, 3910, 2277, 5880, 3790, 3917, 4241, 3923, 5153, 4089, 3792, 4730, 3504, 3175, 2634, 2462, 4599, 5025, 2819, 6298, 1165, 1908, 4105, 5027, 3941, 2308, 591, 484, 485, 532, 2153, 1355]. using [5572, 1356, 2314, 3944, 1558, 1801, 3528, 1465, 1918, 5821, 997, 3207, 4607, 3209, 595, 3810, 2661, 1810, 1922, 1923, 1924, 2170, 2846, 2665, 1812, 4611, 3688, 3411, 2062, 2202, 2380, 4163, 4640, 6024, 5475, 5476, 5782, 3083, 673, 3417, 6146, 4507, 3254, 1851, 1119, 5787, 2390, 5623, 2909, 1022, 1953, 2914, 2915, 2218, 4801].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 125

References

REFERENCES

REFERENCES

[29] K. Zuse. Verfahren zur selbsttätigen Durchführung von Rechnungen mit Hilfe von Rechenmaschinen. (German) [Procedure for automatic
execution of calculations by calculating machines]. German patent application Z236244., April 11, 1936. Reprinted in [6538, §4.1].

REFERENCES

REFERENCES

[54] H.-J. Dreyer and A. Walther. Der Rechenautomat Ipm. Entwicklung Mathematischer Instrumente in Deutschland 1939 bis 1945. (German) [The Ipm calculator. The development of mathematical instruments in Germany 1939–1945]. Bericht A3, Institut für Praktische Mathematik, Technische Hochschule, Darmstadt, West Germany, August 19, 1946. Reprinted in [6538, §3.3]. Translated by Mr. and Mrs. P. Jones.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1955. CODEN MTTCAS. ISSN 0891-6837 (print), 2326-4853 (electronic).

REFERENCES

Alt:1957:EDC

Ercoli:1957:EDO

Gini:1957:SFD

Herzel:1957:SDD

Howe:1957:TRA

Kalbfell:1957:EAM

Kogbetliantz:1957:CEN

REFERENCES

REFERENCES

145

Weibel:1957:EAM

Wilkes:1957:PPE

Anonymous:1958:ARM

Bemer:1958:MMS

Bemer:1958:SMC

Couleur:1958:BBD

Delury:1958:CAN

[145] Hermann Schmid. A transistorized four-quadrant time-division multiplier with an accuracy of 0.1 per cent. *IRE Transactions on
REFERENCES

Tocher:1958:TMD

Wadey:1958:TSR

Ashenhurst:1959:UFP

Buchholz:1959:FFC

Carr:1959:EAF

Carr:1959:PC

[152] John W. Carr III. Programming and coding. In Eugene M. Grabbe, Simon Ramo, and Dean E. Wooldridge, editors, Handbook of
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1876. URL http://ed-thelen.org/comp-hist/IBM-7030-Planning-McJones.pdf. This important book is the primary description of the influential IBM 7030 Stretch computer, written by its architects.

REFERENCES

March 1962. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

170

REFERENCES

REFERENCES

April 1965. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[371] W. Kahan. 7094 II system support for numerical analysis. SHARE Secretary Distribution 159, C4537, 1966.

REFERENCES

October 1966. CODEN IEEPAD. ISSN 0018-9219 (print), 1558-2256 (electronic).

REFERENCES

REFERENCES

D. G. Moursund. Optimal starting values for Newton–Raphson
calculation of \sqrt{x}. *Communications of the Association for Computing
Machinery*, 10(7):430–432, July 1967. CODEN CACMA2. ISSN 0001-
0782 (print), 1557-7317 (electronic).

Salil K. Nandi and E. V. Krishnamurthy. A simple technique for digital
division. *Communications of the Association for Computing Machinery*,
10(5):299–301, May 1967. CODEN CACMA2. ISSN 0001-0782 (print),
1557-7317 (electronic).

I. W. Sandberg. Floating-point-roundoff accumulation in digital-filter

Akio Sasaki. Addition and subtraction in the residue number
system. *IEEE Transactions on Electronic Computers*, EC-16
(2):157–164, April 1967. CODEN IEECA8. ISSN 0367-
arnumber=4039023; http://ieeexplore.ieee.org/xpl/
org/xpl/tocresult.jsp?isnumber=4039015.

Nicholas S. Szabó and Richard I. Tanaka. *Residue arithmetic and its
applications to computer technology*. McGraw-Hill series in information
+ 236 pp. LCCN QA247.35 .S95.

R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic
1967. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic).

[Rounding errors in algebraic Processes]. PWW, Warszawa, Poland,
1967. ???? pp. Polish translation of [6485].
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fenwick:1969:BMO

Ferrari:1969:CDM

Field:1969:OFP

Flores:1969:BRB

Froberg:1969:INA

Hammersley:1969:NAP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1970. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See addendum [725].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

B. P. Sarkar and E. V. Krishnamurthy. Economic pseudodivision processes for obtaining square
REFERENCES

REFERENCES

REFERENCES

Fenwick:1972:BRD

Fettweis:1972:CBM

Franklin:1972:ZDA

Goldstine:1972:CPN

Gosper:1972:HCF

Gregory:1972:CFP

Gregory:1972:URA

REFERENCES

REFERENCES

Malcolm:1972:ARP

Mandelbaum:1972:ECR

Manos:1972:CCA

Maple:1972:FPA

Marino:1972:NAA

Matula:1972:NTF

Metropolis:1972:ABCa

REFERENCES

REFERENCES

Avizienis:1973:AAE

Barna:1973:ICD

Barsi:1973:ECP

Baugh:1973:TCP

Besslich:1973:MDS

Brent:1973:PAV

Brent:1973:PEA

R. Brent, D. Kuck, and K. Maruyama. The parallel evaluation of arithmetic expressions without division. *IEEE Transactions on...*
REFERENCES

REFERENCES

REFERENCES

Kinoshita:1973:GDS

Kreifelts:1973:OBF

Kreifelts:1973:OBG

Kuki:1973:SSA

Larson:1973:HSM

Larson:1973:MSM

Lee:1973:SFP

REFERENCES

[739] Peter Schatte. Zur Verteilung der Mantisse in der Gleitkommdarstellung einer Zufallsgröße. (German) distribution of the mantissa in the floating-
REFERENCES

Schmid:1973:BLIa

Schmid:1973:BLIb

Schmid:1973:BLIc

Schmid:1973:BLId

Schmid:1973:BLVa

Schmid:1973:BLVb

Schmid:1973:BLVc

Sentance:1973:FAB

Shea:1973:NDN

REFERENCES

Tanny:1973:SSA

Urabe:1973:CEA

Wiatrowski:1973:DFP

Yau:1973:ECR

Yohe:1973:FFPa

Yohe:1973:IBS

Yohe:1973:RFP

REFERENCES

REFERENCES

Smith:1975:SCO

Soule:1975:AAB

Stephenson:1975:CSP

Sterbenz:1975:UA

Stone:1975:ICA

Svoboda:1975:SCA

Swartzlander:1975:SLN

Toma:1975:CLA

Trivedi:1975:LAD

Trivedi:1975:UCF

Tzaferos:1975:EBD

Wakerly:1975:DUM

Weinberger:1975:HSZ

REFERENCES

[917] Giovanni De Sandre, Angelo Subrizi, and Franco Brettì. Fixed point to floating point conversion in an electronic computer. US Patent

Martinez:1976:SSS

Metropolis:1976:MSA

Miller:1976:AGF

Mohn:1976:IPA

Ni:1976:EAT

Paoni:1976:PFI

Parker:1976:STR

REFERENCES

REFERENCES

REFERENCES

Egbert:1977:PCAa

Egbert:1977:PCAb

Egbert:1977:PCAc

Ercegovac:1977:GHO

Evans:1977:AAT

Feldman:1977:EEA

Forsythe:1977:CMM

REFERENCES

REFERENCES

REFERENCES

43, March 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

McCrea:1978:CFP

Mitra:1978:ITD

Murphy:1978:SRP

Nussabaumer:1978:FMN

OLeary:1978:DHS

Olver:1978:NAE

Patel:1978:ASB

REFERENCES

REFERENCES

REFERENCES

University, Pittsburgh, PA, USA, 1979. 20 pp. URL http://books.google.com/books?id=mutgGwAACAAJ.

REFERENCES

REFERENCES

REFERENCES

[1172] W. Jenkins. Recent advances in residue number techniques for recursive
0096-3518. URL http://ieeexplore.ieee.org/xpl/tocresult.jsp?
isnumber=26137.

Reducibility among floating-point graphs. *Journal of the Association for
Computing Machinery*, 26(4):739–760, October 1979. CODEN JACOAH.
ISSN 0004-5411 (print), 1557-735X (electronic).

ACM SIGNUM Newsletter, 14(3S (Special issue)):13–21, October 1979.
CODEN SNEWD6. ISSN 0163-5778 (print), 1558-0237 (electronic).

[1175] Jan Kent. *The theoretical and practical study of floating point
instructions: Consisting of Theoretical definition, analysis and
comparison of floating point instruction, and procedures for the
description and simulation of floating point instructions*. Dr. Avhandling,
Universitetet i Oslo, Oslo, Norway, 1979.

[1176] Thomas Joseph Kolze. Block floating point FFT statistical noise analysis
program. Technical report CSR-79-2, Dept. of Electrical Engineering,
University of Missouri–Rolla, Rolla, MO, USA, 1979. vii + 180 pp.

FFT and an example application. Electrical engineering thesis (M.S.),
University of Missouri–Rolla, Rolla, MO, USA, 1979. viii + 88 pp.

Newsletter*, 10(2):28, June 1979. CODEN SIGMDJ. ISSN 0163-
1218004. See [1198, 1199].
REFERENCES

REFERENCES

REFERENCES

[1213] Ferruccio Barsi and Piero Maestrini. Error codes constructed in residue number systems with non-pairwise-prime moduli. *Information and
REFERENCES

REFERENCES

[1228] L. Farrell. 8232: a peripheral for floating-point arithmetic. In IEEE MICRO '80 [6531], pages 13–18. LCCN QA76.5 .P74.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kahan:1980:SPI

Kleinsteiber:1980:IHM

Kulisch:1980:AOI

Lemaire:1980:INR

Levy:1980:CPA

Macke:1980:DMF

Matula:1980:FFP

REFERENCES

REFERENCES

REFERENCES

Stone:1980:TFP

Stummel:1980:REA

Swartzlander:1980:AUH

Swartzlander:1980:CA

Swartzlander:1980:MA

Thornton:1980:CP

Ting:1980:MCU

REFERENCES

REFERENCES

Arnold:1981:PFP

Arora:1981:CSR

Atkins:1981:FIS

Avizienis:1981:LCR

Banerji:1981:HSD

Barlow:1981:DAA

REFERENCES

REFERENCES

Brown:1981:SRM

Cariker:1981:RFM

Cary:1981:BFP

Ceruzzi:1981:ECK

Cheng:1981:AAF

Chow:1981:PDA

Chroust:1981:MAD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1358] Mary Jane Irwin and Dwight R. Smith. A rational arithmetic processor. In IEEE CA5 ’81 [6536], pages 241–245. LCCN QA 76.6 S985t
Jenkins:1981:CSP

Jenkins:1981:SPC

Kahan:1981:WDW

Karplus:1981:ASI

Kaushik:1981:SDS

Kielbasinski:1981:IRL

REFERENCES

[1372] P. Ligomenides and R. Newcomb. Complement representations in the Fibonacci computer. In IEEE CA5 '81 [6536], pages 6–9. LCCN QA 76.6

REFERENCES

REFERENCES

Taylor:1981:CHD

Taylor:1981:FPR

Taylor:1981:VHP

Tyner:1981:GDP

vonGudenberg:1981:GAP

Walker:1981:EMA

Washington:1981:BLF

[1422] Robert Willoner and I-Ngo Chen. An algorithm for modular exponentiation. In IEEE CA5 ’81 [6536], pages 135–138. LCCN QA 76.6
REFERENCES

330

REFERENCES

Bairstow:1982:FPP

Baraniecki:1982:QEL

Barnes:1982:RNI

Bernhard:1982:CCS

Bernhard:1982:GSP

Bohannan:1982:MAP

Bohlender:1982:ROA

REFERENCES

REFERENCES

Oklobdzija:1982:LSR

Palmer:1982:VRN

Phillips:1982:BC

Rall:1982:ACA

Ramnarayan:1982:AER

Rix:1982:UQA

Rump:1982:CR

Sacks-Davis:1982:ARN

Samsen:1982:AFP

Sasaki:1982:EGE

Sasaki:1982:PFM

Schatte:1982:FPF

Sewell:1982:RLT

Sippel:1982:FRI

Sips:1982:CPM

Strader:1982:CBS

Tan:1982:ADC

Taylor:1982:ARM

Taylor:1982:VRA

Teachey:1982:SRX

TorresyQuevedo:1982:EAD

REFERENCES

REFERENCES

REFERENCES

Chamrad:1983:FFP

Chan:1983:ACS

Chang:1983:HSN

Chow:1983:PDA

Ciminiera:1983:FIM

Cloutier:1983:PAR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Preparata:1983:MCA

Prosser:1983:NCS

Prosser:1983:SNN

Quinn:1983:EPR

Rall:1983:BRB

Rall:1983:CAT

Ramachandran:1983:SRE

REFERENCES

Wallis:1983:AFP

Walsh:1983:FGE

[1637] Edmund John Walsh. Floating gatefield effect transistor operating point changes: causes, characterization, and effect on electric field measurement by the device. Thesis (M.S.), Boston University, Boston, MA, USA, 1983. v + 121 pp.

Watanuki:1983:EAC

Williams:1983:BFP

[1639] Bertrand Jeffery Williams. A bit-serial floating point multiply/add architecture for signal processing applications. Electrical engineering thesis (M.S.), Texas A&M University, College Station, TX, USA, 1983. x + 97 pp.

Wingert:1983:ITA

Yoshida:1983:FPR

REFERENCES

REFERENCES

Street, Suite 300, Silver Spring, MD 20910, USA, 1984. CODEN ????
ISSN ????

Black:1984:NIS

Bollen:1984:NSD

Boney:1984:GTD

Borwein:1984:AGM

Braddock:1984:ASP

Butterfield:1984:MT

Caraiscos:1984:REA

Cavanagh:1984:DCA

Cheng:1984:FPC

Clarke:1984:AAR

Clenshaw:1984:BFP

Cody:1984:PRW

Coonen:1984:CPS

Corliss:1984:AGT

REFERENCES

REFERENCES

was published in the January 1980 issue of IEEE Computer, together with several companion articles [1331, 1334, 1224, 1333, 1354, 1404, 1405]. Available from the IEEE Service Center, Piscataway, NJ, USA.

Street, Suite 300, Silver Spring, MD 20910, USA, 1985. CODEN ????. ISSN ????

Kahan:1985:AIA

Karpinski:1985:PFP

Kaushik:1985:MEC

Klatte:1985:ASS

Kobayashi:1985:MTC

Koopman:1985:FFP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Swartzlander:1985:AHS

Symbolics:1985:RGS

Takagi:1985:HSV

Takeda:1985:SCB

Taniguchi:1985:TDI

Taylor:1985:HFP

Taylor:1985:MER
REFERENCES

REFERENCES

REFERENCES

103–107, January 1986. CODEN ICSYBT. ISSN 0098-4094 (print), 1558-1276 (electronic).

REFERENCES

Heath:1986:NRD

Henning:1986:KBD

Higginbotham:1986:AF

Hill:1986:DDS

Hongyuan:1986:CSL

Hull:1986:VPE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Deepak Verma. Design of an efficient floating point vector coprocessor of an advanced microcomputer system. Thesis (M.S.), Department of Computer Engineering and Science, Case Western Reserve University, Cleveland, OH 44106, USA, 1986. viii + 121 pp.

REFERENCES

[1984] B. K. Bose, L. Pei, G. S. Taylor, and D. A. Patterson. Fast multiply and divide for a VLSI floating-point unit. In Irwin and...

REFERENCES

REFERENCES

REFERENCES

Jensen:1987:CIS

Johnson:1987:AES

Johnson:1987:CES

Kahan:1987:BCC

Kahan:1987:CWF

Kahan:1987:DPI

Kane:1987:MRR

Maenner:1987:FIB

Magenheimer:1987:IMD

Makarenko:1987:VMM

Manzoul:1987:QCN

Mariella:1987:IDF

Mays:1987:IDA

McMusersmanual:1987:MMF

Monahan:1987:AGC

REFERENCES

CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See also [2021, 2185].

Motorola:1987:MMF

Mutrie:1987:FEA

Nakano:1987:MAD

Nelsen:1987:PSR

Obermaier:1987:SCI

Olver:1987:CCA

Olver:1987:ILI

REFERENCES

REFERENCES

Pfeiffer:1987:ADP

Piuri:1987:FTS

Prado:1987:FSR

Purdy:1987:IDL

Rall:1987:ISC

Rauch:1987:MCH

Reddy:1987:STF

[2073] Isaac D. Scherson and Yiming Ma. Vector computations on orthogonal memory access multiprocessor system. In Irwin and Stefanelli
REFERENCES

REFERENCES

Turner:1987:DDI

Umeo:1987:DTO

Ushio:1987:CRE

Vachss:1987:CMF

Vitek:1987:EFA

Wang:1987:EEF

WeitekCorporation:1987:WFP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kida:1988:FPP

Kirchner:1988:AAV

Knuth:1988:FM

Kornerup:1988:LAU

Krishnan:1988:IRN

Krishnan:1988:SCR

Lai:1988:FAI

[2180] Saulyus Marchyula˘ıtis. Summation of real numbers in arithmetic with a floating point. A probability approach to determining the variance of

M. A. Pichat. All possible computed results in correct floating-point summation. stochastic methods in round-off error analysis. *Mathematics...*

Pitas:1988:FPE

Plauger:1988:PFP

Prandolini:1988:VIB

Prather:1988:CET

Press:1988:NRC

REFERENCES

Schatte:1988:ASC

Schatte:1988:MDC

Scherson:1988:MOA

Schwarz:1988:CLI

Scott:1988:CMM

Shepherd:1988:LEC

Smith:1988:ASD

Sohie:1988:DSP

[2218] S. Sridharan and G. Dickman. Block floating-point implementation of
digital filters using the DSP56000. *Microprocessors and Microsystems*,
12(6):299–308, August 1988. CODEN MIMID5. ISSN 0141-9331 (print),
1872-9436 (electronic).

[2219] Richard Startz. *8087/80287/80387 for the IBM PC and Compatibles:*
Applications and Programming with Intel's Math Coprocessors. Robert

88., 1988 International Conference on.* 11–14 April 1988, volume 3,
pages 1423–1426. IEEE Computer Society Press, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 1988. CODEN ???? ISSN
????

[2221] Thanos Stouraitis and Fred J. Taylor. Floating-point to logarithmic
encoder error analysis. *IEEE Transactions on Computers*, 37(7):858–
863, July 1988. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
(electronic).

[2222] *Programmer's guides.* Mountain View, CA, USA, 1988. 12 volumes in 1
case.

190–199, 1988. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
(electronic).

[2224] Fred J. Taylor. Hybrid floating point/logarithmic number system

Weyland:1988:LCS

Weyland:1988:LCS

Wilson:1988:FPS

Wilson:1988:NDF

Wilson:1988:NFP

Wollard:1988:TSS

Young:1988:SNMa

Yuen:1988:IFP

REFERENCES

Zoicas:1988:PBG

Ahmed:1989:EEF

Amit:1989:MRE

Arison:1989:SAN

Arnold:1989:RLN

Ashton:1989:AFTP

Azmi:1989:TFP

REFERENCES

Bailey:1989:FPA

Baran:1989:MST

Bardin:1989:IUI

Barrett:1989:FMA

Bedard:1989:WFD

Beliankov:1989:NPO

Benschneider:1989:MUP

REFERENCES

REFERENCES

REFERENCES

[2277] A. M. Dennis, C. B. Marshall, and I. A. Burgess. Algorithm and architecture design for the implementation of high order FIR filters using the residue number system. In IEE Colloquium on Signal Processing Applications of Finite Field Mathematics, 1 June 1989, pages 1/1–1/5. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ????. ISSN ????

REFERENCES

REFERENCES

M. D. Ercegovac and T. Lang. Implementation of module combining
multiplication, division, and square root. In IEEE International
Symposium on Circuits and Systems, 8–11 May 1989, volume 1, pages
150–153. IEEE Computer Society Press, 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 1989. CODEN ????. ISSN ????.

Miloš D. Ercegovac and Tomas Lang. Radix-4 square root without initial
PLA. In Ercegovac and Swartzlander, Jr. [6608], pages 162–168. ISBN 0-
8186-8963-3 (case), 0-8186-5963-7 (microfiche). LCCN QA 76.9 C62 S95

Jan Fandrianto. Algorithms for high-speed shared radix 8 division and
radix 8 square root. In Ercegovac and Swartzlander, Jr. [6608], pages
68–75. ISBN 0-8186-8963-3 (case), 0-8186-5963-7 (microfiche). LCCN
QA 76.9 C62 S95 1989. URL http://www.acsel-lab.com/arithmetic/
arith9/papers/ARITH9_Fandrianto.pdf. IEEE catalog no. 89CH2757-
3.

Alan Feldstein and Richard H. Goodman. Some aspects of floating point

D. L. Fowler and J. E. Smith. An accurate, high speed
implementation of division by reciprocal approximation. In Ercegovac
and Swartzlander, Jr. [6608], pages 60–67. ISBN 0-8186-8963-
3 (case), 0-8186-5963-7 (microfiche). LCCN QA 76.9 C62 S95
ARITH9_Fowler.pdf. IEEE catalog no. 89CH2757-3.

224, ???? 1989. CODEN BYTEDJ. ISSN 0360-5280 (print), 1082-7838
(electronic).
REFERENCES

[2299] J. Gonnella and J. Periard. The application of core functions to residue number system signal processing. In *IEEE Military Communications*
REFERENCES

[2305] Detlef Gröger. Zur Division mit Rest auf Gleitkommarechnern. (German) [on division with remainder on floating point computers]. Mathematische Semesterberichte, 36(1):106–111, 1989. ISSN 0720-728X.

REFERENCES

REFERENCES

463

Joslin:1989:EPN

Jouppi:1989:UVSa

Jouppi:1989:UVSb

Kahan:1989:PCA

Kak:1989:BAS

Kaneko:1989:VRM

Kaneko:1989:VRP

REFERENCES

[2343] R. Krishnan. An efficient systolic array VLSI cell architecture for the implementation of transversal filter based on the quadratic residue

REFERENCES

REFERENCES

Petkovsek:1989:CDS

Pincin:1989:NAM

Prince:1989:FTF

Ramamoorthy:1989:HSA

Rao:1989:RNF

Ray:1989:MCA

Rishe:1989:LEN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

This paper presents an alternate proof of Knuth's algorithm [2478] for conversion between decimal and fixed-point binary numbers.

Gu:1990:TIT

Hamacher:1990:CO

Hashemian:1990:SRA

Hokenek:1990:LZA

Hokenek:1990:SGR

Hong:1990:DTP

[2468] Hiroshi Horiguchi. Floating-point numbers and real numbers. Advances in software science and technology, 1(??):157–??, 1990. ISSN 1044-7997.

[2478] Donald E. Knuth. A simple program whose proof isn’t. In Feijen et al. [6620], chapter 27, pages 233–242. ISBN 0-387-97299-4, 1-4612-8792-8 (print), 1-4612-4476-5 (online). ISSN 0172-603X. LCCN QA76 .B326 1990. Reprinted in [6881, Chapter 11]. This paper discusses the algorithm used in \(\TeX \) for converting between decimal and scaled fixed-point binary values, and for guaranteeing a minimum number of digits in the decimal representation. See also [2439, 4699] for decimal to binary conversion, [2531, 4799] for binary to decimal conversion, and [2461] for an alternate proof of Knuth’s algorithm.

REFERENCES

REFERENCES

REFERENCES

[2509] Wladimir Popov. On the axiomatizations of floating-point arithmetics. contributions to computer arithmetic and self-validating numerical

REFERENCES

intrepid pre-SIGPLAN 90 conference implementation of what is stated in the paper revealed 3 mistakes:

1. Table 5 (page 124):
 insert $k \leftarrow 0$ after assertion, and also delete $k \leftarrow 0$ from Table 6.

2. Table 9 (page 125):
 for -1:USER!("")
 substitute -1:USER!"0")
 and delete the comment.

3. Table 10 (page 125):
 for fill(-k, "0")
 substitute fill(-k-1, "0")

REFERENCES

REFERENCES

REFERENCES 496

97(9):836–839, November 1990. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

Wong:1990:PFP

Wong:1990:QNF

Yager:1990:SNM

Yang:1990:PRN

Yeh:1990:RTI

Yoon:1990:MTP

Zarowski:1990:AMH
REFERENCES

REFERENCES

sciencedirect.com/science/article/pii/S037704279190071Q.

Arambepola:1991:CVA

[2564] B. Arambepola. Common VLSI architecture for a practically useful
residue number system. In IEEE International Symposium on Circuits
Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1991. CODEN ???? ISSN ????

Arvo:1991:GGI

science/book/9780080507545.

Balsara:1991:DSM

[2566] Poras T. Balsara, Robert M. Owens, and Mary Jane Irwin. Digit serial
162, February 1991. CODEN JPDCER. ISSN 0743-7315 (print), 1096-
0848 (electronic).

Barrenechea:1991:NEH

Barsi:1991:MAB

[2568] Ferruccio Barsi. Mod m arithmetic in binary systems. Information
Processing Letters, 40(6):303–309, 1991. CODEN IFPLAT. ISSN 0020-
0190 (print), 1872-6119 (electronic).

Bartholomew-Biggs:1991:AST

[2569] M. C. Bartholomew-Biggs. Ada software for teaching modern computer
SNEWD6. ISSN 0163-5778 (print), 1558-0237 (electronic).

BartholomewBiggs:1991:AST

[2570] M. C. Bartholomew-Biggs. Ada software for teaching modern computer
SNEWD6. ISSN 0163-5778 (print), 1558-0237 (electronic).

REFERENCES

[2610] Alfons A. J. de Lange and Ed F. Deprettere. Design and implementation of a floating-point quasi-systolic general purpose CORDIC rotator for high-rate parallel data and signal processing. In Kornerup and
REFERENCES

Demmel:1991:OIA

Dongarra:1991:GBP

Dunham:1991:ABA

Duprat:1991:NRR

Duprat:1991:WND

Ercegovac:1991:MPM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2657] Andreas Knöfel. Fast hardware units for the computation of accurate dot products. In Kornerup and Matula [6640], pages 70–74. ISBN 0-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Nelson:1991:SPM

Ochs:1991:NRU

Ochs:1991:NTR

Ochs:1991:RF

Ochs:1991:SRF

OGrady:1991:HOA

Okabe:1991:LDC

REFERENCES

REFERENCES

Plauger:1991:AF

Plauger:1991:FPA

Plauger:1991:FPP

Plauger:1991:HTF

Plauger:1991:WW

Plauger:1991:WW

Pugh:1991:TFV

REFERENCES

REFERENCES

Umemura:1991:FNL

Umemura:1991:FPN

Vassiliadis:1991:HWM

Vishin:1991:FPP

Vuillemin:1991:CTA

Walter:1991:FMM

Wigley:1991:FMR

REFERENCES

Wigley:1991:SMR

Williams:1991:NBC

Williams:1991:ZOS

Winter:1991:FPA

Wong:1991:FDU

[2764] Tak W. Yan. A rational function arithmetic and simplification system in Common Lisp. SIGSAM Bulletin (ACM Special Interest Group
REFERENCES

REFERENCES

December 1991. CODEN ICSYBT. ISSN 0098-4094 (print), 1558-1276 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Daumas:1992:BIR

Davarakis:1992:PPA

Dawid:1992:BSC

Dawson:1992:RLS

DEC:1992:AAH

Demmel:1992:LWN

Demmel:1992:SFP

REFERENCES

REFERENCES

Fagin:1992:LIM

Filanovsky:1992:SCA

Fujii:1992:FCL

Fujii:1992:FPC

Gamberger:1992:IIM

Goldberg:1992:DFD

Gray:1992:UMF

REFERENCES

[2825] Hiroshi Horiguchi and Tsutomu Tayama. Floating-point numbers and real numbers II. Advances in software science and technology, 3(??):151–156, 1992. ISSN 1044-7997.

Zaccone. Describes the design, development, implementation, and use of MacFavs (Macintosh Floating point arithmetic visualization system). MacFavs uses simulation, visual displays, and animations to allow students to see actual machine representations of floating point numbers.

Hudak:1992:RPL

IFIF:1992:CVD

Jackson:1992:DTF

Jacobson:1992:ETF

Jaffar:1992:AMC

Jain:1992:AEA

REFERENCES

0-8186-3110-4 (paper), 0-8186-3111-2 (microfiche), 0-8186-3112-0 (case).

REFERENCES

x + 344 pp. LCCN QA76.73.P2 P4213 1992. DM 64.00. Translated by G. F. Corliss and others.

REFERENCES

Kubosawa:1992:BFP

Kutuso:1992:EMO

Lacroix:1992:DDM

Lang:1992:HRS

Lee:1992:ACR

Lee:1992:FPP

Leighton:1992:IPA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2880] H. Nakano, M. Nakajima, Y. Nakakura, T. Yoshida, Y. Goi, Y. Nakai, R. Segawa, T. Kishida, and H. Kadota. An 80-FLOPS (peak) 64-
REFERENCES

Ng:1992:ARH

Nishimura:1992:FPR

Obaidat:1992:DMA

Ochs:1992:SIR

Okada:1992:AQE

Orton:1992:NFT

Paliouras:1992:SDP

REFERENCES

REFERENCES

Skavantzos:1992:DCM

Skavantzos:1992:NMM

Skavantzos:1992:TII

Skeel:1992:REP

Smith:1992:FPR

Soudris:1992:SDAa

REFERENCES

[2922] J.-D. Sun and H. Krishna. A coding theory approach to error control in redundant residue number systems. II. multiple error detection and correction. IEEE transactions on circuits and systems. 2, Analog
REFERENCES

REFERENCES

REFERENCES

Wilt:1992:ALP
[2937] Nicholas Wilt. Assembly language programming for the 80*87. Dr.
 CODEN DDJOEB. ISSN 1044-789X.

Wong:1992:DSR
[2938] W. F. Wong and E. Goto. Division and square-rooting using a split
 CODEN ELLEAK. ISSN 0013-5194 (print), 1350-911X (electronic).

Wong:1992:DSU
[2939] W. F. Wong and E. Goto. Division and square-rooting using a split
 ELLEAK. ISSN 0013-5194 (print), 1350-911X (electronic).

Wong:1992:FDU
 approximations to reduce the number of iterations. IEEE Transactions
 iee.org/stamp/stamp.jsp?tp=&arnumber=156541.

Woods:1992:HPD
 High performance DSP ASIC for multiply, divide and square root. In
 Proceedings of Fifth Annual IEEE International ASIC Conference and
 Street, Suite 300, Silver Spring, MD 20910, USA, 1992. CODEN ????
 ISSN ????.

Yeyios:1992:TSA
[2942] A. K. Yeyios. On two sequences of algorithms for approximating square
 72, June 1992. CODEN JCAMDL. ISSN 0377-0427 (print), 1879-1778
 (electronic).

Yokoo:1992:OUF
[2943] H. Yokoo. Overflow/underflow-free floating-point number
 representations with self-delimiting variable-length exponent field. IEEE
REFERENCES

Zelniker:1992:RMC

Alam:1993:RTO

Albrecht:1993:VNT

Alqeisi:1993:FPF

Anonymous:1993:FPa

Anonymous:1993:FPb

REFERENCES

[2953] Anonymous. The “fastest system on the block” label must be qualified with new multiplatform, floating-point benchmarks. PC Week, 10(22): 85–??, June 1993. ISSN 0740-1604.

REFERENCES

Baker:1993:SLR

Bakhrakh:1993:NIF

Barrera:1993:IBS

Bauer:1993:LCB

REFERENCES

Beckmann:1993:FFTa

Beckmann:1993:FFTb

Benouamer:1993:LEA

Bickerstaff:1993:RAM

Bizzan:1993:IMA

REFERENCES

International Joint Conference on Neural Networks. IJCNN ’93-Nagoya, volume 2, pages 1947–1950. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1993. CODEN ???? ISSN ????

REFERENCES

CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

CODEN IEESAM. ISSN 0018-9235 (print), 1939-9340 (electronic).

[3000] Mohsen Geraminejad. Design and implementation of a 16-bit CMOS floating point multiplier.
Research paper (M.S.), Department of Electrical Engineering, Southern Illinois University at Carbondale,
Carbondale, IL, USA, 1993. vii + 54 pp.

of the T800 transputer floating-point unit. In John Hosking, editor,
Proceedings of the 13th New Zealand Computer Society Conference:
Applying the future today, Aotea Centre, Auckland, 18–20 August 1993,
ISBN 0-9597657-6-X; 0-9597657-5-1. LCCN ????

[3002] David Goldberg. The design of floating-point data types. Technical
report CSL-93-3, Xerox Corp., Palo Alto Research Center, Palo Alto,

[3003] David Gudeman. Representing type information in dynamically typed languages. Technical report TR 93-27, Department of Computer Science,
The University of Arizona, Tucson, AZ 85721, USA, October 1993. 40 pp.
REFERENCES

Hendtlass:1993:MNIa

Hendtlass:1993:MNIb

Higginbotham:1993:ISR

Higham:1993:AFP

Holler:1993:IFP

Hopkins:1993:CEM

Horning:1993:SUM
REFERENCES

Kim:1993:FABb

Kim:1993:FABc

Kim:1993:FABd

Kirsch:1993:ABU

Klatte:1993:CXC

REFERENCES

569

Louie:1993:DRS

Lozier:1993:UGF

Mandelbaum:1993:SRS

Maryoung:1993:DBP

Masotti:1993:FNE

Mazenc:1993:CFU

[3052] Christophe Mazenc, Xavier Merrheim, and Jean-Michel Muller. Computing functions \cos^{-1} and \sin^{-1} using Cordic. IEEE Transactions
REFERENCES

REFERENCES

Merrheim:1993:FEP

Mesfin:1993:IHP

Metzger:1993:IFR

MicrosoftCorporation:1993:PGM

Mikami:1993:RER

Montuschi:1993:CSM

REFERENCES

Pan:1993:TFVb

Panneerselvam:1993:MAF

Parhami:1993:IAS

Parker:1993:OHS

Pichat:1993:IDC

Plauger:1993:FCE

Plauger:1993:PPlIc

Posch:1993:BKR

Pugh:1993:FPC

Reid:1993:LIA

Richardson:1993:ETR

Ris:1993:WFP

Samani:1993:SVP

REFERENCES

Shand:1993:FIR

Shannon:1993:CES

Sharp:1993:PRN

Shirayanagi:1993:MCM

Shute:1993:AAB

Smith:1993:PFC

[3111] Inside technology today 32-bit floating point multi-port DSP / produced by Texas Instruments. VHS format. High-speed, multi-port DSPs can be used in parallel processing applications to really enhance computation time and power. A popular 6-port floating point DSP and high speed design integration and applications are described in this tape., 1993. 1 videocassette.

REFERENCES

Weste:1993:PCV

Williams:1993:BFM

Williams:1993:FM

Wrzyszcz:1993:DDCa

Wrzyszcz:1993:DDCb

Zeng:1993:CFA

Zhang:1993:EAP

REFERENCES

Zuras:1993:SML

Zuse:1993:CML

Agarwal:1994:EFP

Anonymous:1994:C

Anonymous:1994:FPa

Anonymous:1994:FPb

Anonymous:1994:FPc

Anonymous:1994:SCSa

Anonymous:1994:SPF

Anonymous:1994:SRT

Apple:1994:IMP

Bajard:1994:BNH

Bajard:1994:SOL

Barsi:1994:TOM
REFERENCES

Bartolucci:1994:REC

Bauer:1994:MDS

Bewick:1994:FMA

Brosgol:1994:ISD

Bull:1994:SFF

Carr:1994:IRM

Chandramouli:1994:DSP

Chen:1994:EDU

Sau-Gee Chen and Chieh-Chih Li. Efficient designs of unified 2's complement division and square root algorithm and architecture.
REFERENCES

[3164] James Demmel, Inderjit Dhillon, and Huan Ren. On the correctness of parallel bisection in floating point. LAPACK Working Note 70, Department of Computer Science, University of Tennessee, Knoxville,
REFERENCES

Knoxville, TN 37996, USA, March 1994. URL http://www.netlib.org/lapack/lawns/lawn70.ps;

[3170] B. Fagin and C. Renard. Field programmable gate arrays and floating point arithmetic. *IEEE Transactions on Very Large Scale Integration*
Farquhar:1994:MPH

FiallosAguilar:1994:HPA

Gander:1994:AFP

Gerber:1994:DPH

Granlund:1994:DII

Hahn:1994:UDF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

McGrath:1994:OMC

Meek:1994:PLT

Mehlhorn:1994:IGA

Montgomery:1994:SRP

Montuschi:1994:DUN

Montuschi:1994:RDO

Montuschi:1994:RDS

Muller:1994:SCF

Murofushi:1994:RBR

Nakamura:1994:EPV

Narayanaswami:1994:AE

Nedialkov:1994:PCE

Niescier:1994:DIC

Novak:1994:AFP

Oberman:1994:DIH

REFERENCES

REFERENCES

[3261] Hartmut Schwandt. An interval arithmetic domain decomposition method for a class of elliptic PDEs on nonrectangular domains.
REFERENCES

vanSomeren:1994:ARC

Vinnakota:1994:FCTa

Vinnakota:1994:FCTb

Vinnakota:1994:SBR

Vuillemin:1994:CN

Walker:1994:SMA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

March 1995, pages 445–449. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1995. CODEN ????? ISSN ?????

REFERENCES

REFERENCES

REFERENCES 614

Cheng:1995:PBS

Chesneau:x1995:LAL

Coe:1995:CAP

Coe:1995:IPF

Coe:1995:ITS

[3338] James W. Demmel, Inderjit Dhillon, and Huan Ren. On the correctness of some bisection-like parallel eigenvalue algorithms in floating point

REFERENCES

Ferguson:1995:ECS

Figueroa:1995:WDR

Flynn:1995:SPT

Fried:1995:PON

Gluss:1995:DIA

Greenley:1995:UNG

REFERENCES

REFERENCES

[3366] Ito:1995:EIA

REFERENCES

Loren P. Meissner. From the Editor: Allocatable dummy argument arrays; how should Fortran Standards describe arithmetic? are external procedures obsolete?; when are local variables initialized in F77 and F90? *ACM Fortran Forum*, 14(3):1–3, September 1995. CODEN ???? ISSN 1061-7264 (print), 1931-1311 (electronic).

REFERENCES

REFERENCES

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:
REFERENCES

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

Schulte:1995:HDA

Schulte:1995:PSI
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wei:1995:CNM

Williams:1995:SBA

Wong:1995:FEE

Wu:1995:SRM

Yu:1995:MRF

Zaytoun:1995:SFR

Zhou:1995:HSD

[3449] Feng Zhou and Peter Kornerup. High speed DCT/IDCT using a pipelined CORDIC algorithm. In Knowles and McAllister [6695],
REFERENCES

Ahrendt:1996:FHC

Al-Twaijry:1996:OPR

Alefeld:1996:EII

Andraos:1996:FPU

Angarai:1996:NRS

[3454] Vijayanand Jaganaathan Angarai. Number representation schemes for energy efficient computer arithmetic. Thesis (M.S.), University of Texas at Dallas, Dallas, TX, USA, 1996. ix + 57 pp.

Anonymous:1996:DC

REFERENCES

[3463] Anonymous. *The Square Root of 10 to one million digits*, volume 635 of *Project Gutenberg*. Project Gutenberg, P.O. Box 2782, Champaign, IL
REFERENCES

REFERENCES

[3474] Christoph Burnikel and Jochen Könemann. High precision floating point numbers in LEDA. Report MPI I 96 1 002, Max-Planck-Institut für Informatik, Saarbrücken, Germany, 1996. 7 pp.

REFERENCES

[3482] W. A. Chren, Jr. Delta-sigma demodulator with large oversampling ratio using the one-hot residue number system. In *IEEE International
REFERENCES

REFERENCES

[3513] F. Hartwig and A. Lacroix. Roundoff noise analysis on the basis of an improved floating point error model. In IEEE International Symposium
REFERENCES

REFERENCES

REFERENCES

Kowaleski:1996:DEP

Kraemer:1996:CNI

Kreinovich:1996:CCI

Ley:1996:PDU

Li:1996:NNR

Lions:1996:AFF

Industry immediately started to investigate the failure.” From the report: “The internal SRI software exception was caused during execution of a data conversion from 64-bit floating point to 16-bit signed integer value. The floating point number which was converted had a value greater than what could be represented by a 16-bit signed integer. This resulted in an Operand Error. The data conversion instructions (in Ada code) were not protected from causing an Operand Error, although other conversions of comparable variables in the same place in the code were protected.”.

Lo:1996:CBC

Louca:1996:IIS

Lozier:1996:EBL

Luther:1996:CAG

MacDonald:1996:NSS

REFERENCES

REFERENCES

REFERENCES 654

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3615] K. B. Williams. Testing math functions: When requirements are tight, we must carefully examine all potential sources of error. Make sure your math library isn’t the weak link in the chain. *C/C++ Users Journal*, 14 (12):49–54, 58–65, December 1996. CODEN CCUJEX. ISSN 1075-2838. Describes a package that extends the Cody-Waite-Plauger work on the ELEFUNT package for the testing of the elementary functions, including the inverse hyperbolic functions, cube root, and Bessel functions of the first and second kinds. The C++ package implements 192-bit extended precision versions of all of the functions, so that accurate results are available for comparison with the normal double-precision results.

REFERENCES

[3626] Martin Atkinson-Barr. Letter to the Editor: Pentium II math bug. Dr. Dobb’s Journal of Software Tools, 22(10):10, October 1997. CODEN DDJOEB. ISSN 1044-789X. Identifies himself as the “Mr. X” cited in [3640], and provides more the background on the discovery of the Pentium FIST (floating-point to integer store) instruction.

REFERENCES

Beaumont-Smith:1997:GBA

Blackford:1997:PEN

Blinn:1997:JBC

Bomar:1997:RNA

Bshouty:1997:TBA

Burgess:1997:SUR

Doring:1997:DAL

Drmac:1997:IJR

Drolshagen:1997:PES

EC:1997:IER

Edelman:1997:MPD

Even:1997:DIC

REFERENCES

Karp:1997:HPD

Khinchin:1997:CF

King:1997:DDT

Kinoshita:1997:RAE

Koc:1997:FSE

Kramer:1997:PWC

REFERENCES

[3688] Inseop Lee and W. K. Jenkins. VLSI design for an adaptive equalizer using a residue number system architecture for magnetic channels. In
REFERENCES

[3690] Gérard Le Lann. An analysis of the Ariane 5 Flight 501 failure — a system engineering perspective. In Proceedings of the International Conference and Workshop on Engineering of Computer-Based Systems, pages 339–346. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1997. URL http://ieeexplore.ieee.org/document/581900/. From the article: “The SRI S/W exception was raised during a conversion from a 64-bit floating point number F to a 16-bit signed integer number. F had a value greater than what can be represented by a 16-bit signed integer, which caused an Operand Error (data conversion — in Ada code — was not protected, for the reason that a maximum workload target of 80% had been set for the SRI computer). . . . The value of BH was much higher than expected because the early part of the trajectory of Ariane 5 differs from that of Ariane 4, which results in considerably higher horizontal velocity values.”.

REFERENCES

1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1997.
CODEN ???? ISSN ????

[3698] David W. Matula and Asger Munk Nielsen. Pipelined packet-forwarding floating point: I. foundations and a rounder. In Lang et al. [6713], pages

REFERENCES

Computer Society order number PR07846. IEEE Order Plan catalog number 97CB36091.

Oklobdzija:1997:CLZ

Paar:1997:FAA

Parker:1997:MAU

Parker:1997:MCAa

Parker:1997:MCAb

REFERENCES

REFERENCES

REFERENCES

Shewchuk:1997:APF

Soderquist:1997:DSR

Solinas:1997:IAA

Srinivas:1997:RDR

Stan:1997:SUC

REFERENCES

[3737] Naofumi Takagi. Generating a power of an operand by a table look-up and a multiplication. In Lang et al. [6713], pages 126–131. ISBN
REFERENCES

REFERENCES

REFERENCES

[3755] Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. *ACM Fortran Forum*, 17(3):1–2, December 1998. CODEN ????? ISSN 1061-7264 (print), 1931-1311 (electronic).

REFERENCES

REFERENCES

 Bronnimann:1998:IAY

 Chang:1998:HPD

 Chatterjee:1998:MMP

 Chen:1998:PCL

 Chen:1998:VFP

 Cheon:1998:TEA

[3772] W. A. Chren. One-hot residue coding for low delay power product
CMOS design. *IEEE Transactions on Circuits and Systems*, 45(3):303–
313, March 1998. CODEN ICSYBT. ISSN 0098-4094 (print), 1558-1276
(electronic).

[3773] Daniel Citron, Dror Feitelson, and Larry Rudolph. Accelerating
multi-media processing by implementing memoing in multiplication and
CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-
proceedings/asplos/291069/p252-citron/.

[3774] Robert R. Collins. The Pentium F00F bug. *Dr. Dobb’s Journal of

[3775] Marius Cornea-Hasegan. Proving the IEEE correctness of iterative
floating-point square root, divide, and remainder algorithms. *Intel
technology/itj/q21998/articles/art_3.htm; http://

to Java Floating Point Semantics, Revision 1*. Technical report, Java
Grande Numerics Working Group, August 7, 1998. 18 pp. URL http:/

[3778] Joseph D. Darcy. Borneo 1.0: adding IEEE 754 floating point support
to Java. Master of Science, Plan II, University of California, Berkeley,
Dept. of Electrical Engineering and Computer Sciences, Berkeley, CA,
REFERENCES

[Darcy:1998:EJF

[Darcy:1998:WRI

[Daumas:1998:ELM

[Dimitrov:1998:AME

[Dimitrov:1998:FRR

[Dimitrov:1998:RNS

REFERENCES

REFERENCES

ISO:1998:IIIC

Jessani:1998:CSD

Kahan:1998:HJFa

Kahan:1998:HJFb

Kahan:1998:IPE

Kelsey:1998:RRA

emulation of a logarithmic floating-point representation. Programming
support is provided by a drop-in module for the GNU C compiler,
gcc, and user-callable library support is available for several commercial
compilers.

[3822] Yutai Ma. A simplified architecture for modulo \((2^n + 1)\) multiplication.

[3824] P. V. Ananda Mohan. Evaluation of fast conversion techniques for binary-
residue number systems. *Circuits and Systems I: Fundamental Theory
and Applications, IEEE Transactions on [see also Circuits and Systems
I: Regular Papers, IEEE Transactions on]*, 45(10):1107–1109, October
xpl/tocresult.jsp?isnumber=15711.

jsp?tp=&arnumber=713319.

[3827] F. Murabayashi, T. Yamauchi, R. Yamagata, and T. Shimizu. A 400MHz 160-word \(\times\) 64-bit 14-port floating-point register file macrocell for a

[3841] David M. Russinoff. A mechanically checked proof of IEEE compliance of the floating point multiplication, division and square root algorithms

Stine:1998:CIFa

Stine:1998:CIFb

Takagi:1998:PTL

Takashi:1998:FPN

Thorup:1998:FIS

Ulman:1998:HPF

Upton:1998:RH

REFERENCES

Abbott:1999:ASS

Agarwal:1999:SAM

Ait-Ameur:1999:RRE

Allender:1999:BDA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES 716

Hiasat:1999:SCV

Hirn:1999:GBI

Hormigo:1999:ISC

Hung:1999:FDA

Hyogo:1999:LVF

Ide:1999:GFP

Iordache:1999:ARS

Iordache:1999:IPR

Jamieson:1999:NRF

Jamieson:1999:RFA

Jeong:1999:CPT

Jones:1999:BAT

REFERENCES

REFERENCES

Knowles:1999:FA

Koren:1999:FIS

Koren:1999:ITS

Kornerup:1999:NSC

REFERENCES

720

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Computers, 1999, volume 2, pages 1345–1350. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1999. CODEN ???? ISSN ????

A/D converter. In Hosticka et al. [6734], pages 170–173. ISBN 2-86332-

[4031] F. Tisseur. Newton’s method in floating point arithmetic and iterative
refinement of generalized eigenvalue problems. Numerical analysis
report 346-XY/N-1, Manchester Centre for Computational Mathematics,
Manchester, UK, August 1999.

Computer Oral History Collection, Smithsonian Institution Press,

[4033] Henry S. Tropp and Jean Sammett. Nat Rochester interview: July 24,
1973. Computer Oral History Collection, Smithsonian Institution Press,
1999. Article No. 75.

[4034] K. Tsuji. Round-off error of optimal control problems in floating-point
number systems. In Begehr et al. [6732], pages 929–944. ISBN 0-7923-

[4035] Colin D. Walter. Moduli for testing implementations of the RSA
cryptosystem. In Koren and Kornerup [6738], pages 78–85. ISBN 0-7803-
5609-8, 0-7695-0116-8, 0-7695-0118-4. ISSN 1063-6889. LCCN QA76.6
.S887 1999. URL http://euler.ecs.umass.edu/paper/final/paper-
130.pdf; http://euler.ecs.umass.edu/paper/final/paper-
130.ps; http://www.acsel-lab.com/arithmetic/arith14/
papers/ARITH14_Walter.pdf. IEEE Computer Society Order Number
PR00116. IEEE Order Plan Catalog Number 99CB36336.

[4036] Y. Watanabe, N. Yamamoto, and M. T. Nakao. A numerical verification
method of solutions for the Navier–Stokes equations. Reliable Computing
= Nadezhnye vychislennia, 5(3):347–357, 1999. CODEN RCOMF8. ISSN
1385-3139 (print), 1573-1340 (electronic).
REFERENCES

Wires:1999:CUT

Wong:1999:OFP

Yadav:1999:PSF

Yang:1999:CIS

Yang:1999:RNSa

Yang:1999:RNSb

REFERENCES

Yang:1999:RST

Yap:1999:REI

Yuan:1999:FPA

Zimmermann:1999:EVI

Zimmermann:1999:KSR

Ziv:1999:SUR

REFERENCES

[4049] Record, page various, 19xx. Floating Point Systems, Portland, OR, USA.

[4050] Intel. Intel 8231A Arithmetic Processing Unit. Intel Corp, San Jose, CA, USA, 19xx. URL http://www.datasheetarchive.com/pdf-datasheets/Datasheets-14/DSA-276911.html. From the datasheet (p. 3-5): “The mantissa is expressed as a 24-bit (fractional) value; the exponent is expressed as a two’s complement 7-bit value having the range −64 to +63. The most significant bit is the sign of the mantissa (0 = positive, 1 = negative), for a total of 32 bits. The binary point is assumed to be [to] the left of the most significant mantissa bit (bit 23). All floating-point data values must be normalized. Bit 23 must be equal to 1, except for the value zero, which is represented by all zeros. The range of values that can be represented in this format is ±(2.7×10^{-10} ... 9.2 × 10^{18}) and zero.”.

REFERENCES

REFERENCES

Coleman:2000:CAE

Collins:2000:MFP

Constantinides:2000:MPR

Corsonello:2000:PCB

DAmora:2000:RPD

Daumas:2000:EIT

Delves:2000:MU1

Drmac:2000:AQS

Ercegovac:2000:IGD

Ercegovac:2000:RSR

Eskritt:2000:DDF

REFERENCES

REFERENCES

Groza:2000:FPA

Hanrot:2000:ML

Hanrot:2000:SDS

Harrison:2000:FPV

Harrison:2000:FVF

Harrison:2000:HOM

Hasan:2000:FP1

Hasan:2000:LTB

Hassibi:2000:ESR

Hassibi:2000:FSR

He:2000:UAA

Hiasat:2000:NES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

755

Schulte:2000:PSM

Seidel:2000:DIC

Seife:2000:ZBD

Sleijpen:2000:DER

Swider:2000:FPR

Takahashi:2000:IMP

REFERENCES

[Talahmeh:2000:ADR]

[Tchoumatchenko:2000:FBS]

[Tommiska:2000:AEI]

[Tong:2000:RPO]

[Tsuji:2000:REO]

[vanderKolk:2000:FPV]

[Wang:2000:NSA]
REFERENCES

Yang:2000:EPG

Yeh:2000:HSB

Zimmermann:2000:PGF

Akishita:2001:FSS

REFERENCES

[4200] Jean-Claude Bajard, Laurent-Stephane Didier, and Peter Kornerup. Modular multiplication and base extensions in residue number systems.
REFERENCES

[4214] Keith Briggs and Yannis Smaragdakis. XR — exact real arithmetic. World-Wide Web document and software package., March 01, 2001. URL http://www.btexact.com/people/briggsk2/XR.html. From the overview: "This is an implementation of exact (or constructive) real arithmetic, as an alternative to multiple-precision floating-point (MPFP). An important distinction is that in MPFP one sets the precision before starting a computation, and then one cannot be sure of the final result. Interval arithmetic is an improvement on this, but still not an ideal solution because if the final interval is larger than desired, there is no simple way to restart the computation at higher precision. By contrast, in XR no precision level is set in advance, and no computation takes place until a final request takes place for some output. Despite this, programming with XR is no different from MPFP, except for the declaration of critical variables as type ‘XR’. The main aim is to produce a usably efficient implementation, which can be easily interfaced with existing C++ code. This contrasts with previous implementations in functional languages (Haskell, Miranda etc.), which, although theoretically important, seem to be rather too slow for real use. This code is designed as an add-on to Victor Shoup’s arbitrary-precision arithmetic package NTL, and implements a new type XR, to complement NTL’s ZZ and RR integer and real types.

Cowlishaw:2001:DAJ

Cowlishaw:2001:DFP

Cuyt:2001:ARI

Cuyt:2001:REC

Darcy:2001:BLH

Darcy:2001:DLS

REFERENCES

Darcy:2001:WEU

Daumas:2001:CVP

Daumas:2001:GLF

deDinechin:2001:SIM

Defour:2001:CREa

Defour:2001:CREb

[4233] David Defour, Florida de Dinechin, and Jean-Michel Muller. Correctly rounded exponential function in double precision arithmetic. In Luk

Defour:2001:NRRa

Defour:2001:NRRb

DelRe:2001:IDF

Demmel:2001:CAF

Dhong:2001:ACR

REFERENCES

REFERENCES

He:2001:UAA

Hesse:2001:DUT

Hida:2001:AQD

Hlavacs:2001:IAN

Hsu:2001:CAS

[4266] W. Kahan. Names for standardized floating-point formats. Technical report, Mathematics Department and Electrical Engineering and Computer Science Department, University of California, Berkeley,
REFERENCES

Henrik Koy and Claus Peter Schnorr. Segment LLL-reduction with floating point orthogonalization. Lecture Notes in Computer Science,
Kramer:2001:AFE

Kreinovich:2001:INB

Krishnan:2001:PEM

Lang:2001:BRZ

Lang:2001:CRR

Langlois:2001:ALC

Lee:2001:BPS

Lee:2001:CAP

Lee:2001:DLS

Lefevre:2001:WCC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Savas:2001:SUM

Schmookler:2001:LZA

Schonfelder:2001:VPA

Seidel:2001:BMR

Seidel:2001:DFI

Stoffel:2001:VIM

Sun:2001:NSM

Sunar:2001:EON

Takagi:2001:HAC

Tasche:2001:WAC

Tenca:2001:DRL

REFERENCES

REFERENCES

REFERENCES

[4379] Paul Zimmermann. De l’algorithmique à l’arithmétique via le calcul formel. (French) [From algorithmics to arithmetic via symbolic calculation]. Technical report, Département de formation doctorale en
REFERENCES

REFERENCES

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2002. CODEN ????? ISSN ????.

Arnold:2002:RPC

Bailey:2002:AAP

Bailey:2002:HPC

Barrio:2002:REB

Belanovic:2002:LPF

Bertot:2002:PGS

REFERENCES

Beuchat:2002:SMB

Blackford:2002:USB

Boldo:2002:FRF

Boldo:2002:IAO

Boldo:2002:NSC
REFERENCES

Boldo:2002:PSVa

Boldo:2002:PSVb

Cardarilli:2002:RNS

Chesneaux:2002:FRN

Chiricescu:2002:MM

Chotin:2002:FPU

REFERENCES

References

[4422] J. Demmel, Plamen Koev, and Ben Diament. The complexity of accurate floating point computation. In Li [6778], pages 672 (vol. 1) + 832 (vol.
REFERENCES

799

REFERENCES

REFERENCES

Hanrot:2002:LNM

Heckmann:2002:CLF

Helms:2002:IPM

Hertling:2002:LBR

Hiasat:2002:HSR

Higham:2002:ASN

REFERENCES

Kahan:2002:FPC

Kim:2002:BSA

Kim:2002:IDS

Koren:2002:CAA

Kornerup:2002:PRN

Koutroumpezis:2002:ADR

REFERENCES

Krygowski:2002:FPM

Ku:2002:NPA

Kulisch:2002:AAD

Kulisch:2002:RNZ

Kwon:2002:EBS
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[4512] D. Soudris, M. Dasygenis, K. Mitroglou, K. Tatas, and A. Thanailakis. A full adder based methodology for scaling operation in residue number system. In 9th International Conference on Electronics, Circuits and
REFERENCES

Systems, 2002, volume 3, pages 891–894. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2002. CODEN ???? ISSN ???

REFERENCES

[4519] Texas Instruments, Dallas, TX, USA. TMS320C67x FastRTS Library Programmer's Reference (SPRU100A), October 2002. URL http://focus.ti.com/lit/ug/spru100a/spru100a.pdf. The FastRTS library is a collection of 26 optimized floating-point math functions for the TMS320C67x device. This source code library includes C-callable (ANSI-C-language compatible) optimized versions of the floating-point math functions included in previous run-time-support libraries.

Wu:2002:BPF

Wu:2002:FFM

Wu:2002:MMS

Yang:2002:RNSa

Yang:2002:RNSb

Yang:2002:RNSc

[4530] Lie-Liang Yang and L. Hanzo. Residue number system assisted fast frequency-hopped synchronous ultra-wideband spread-spectrum

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[4592] W. Geiselmann and R. Steinwandt. A redundant representation of GF(q^n) for designing arithmetic circuits. IEEE Transactions on
Gerwig:2003:HPF

Goldberg:2003:WEC

Grabmeier:2003:CAH

Grossschadl:2003:ASL

Hanrot:2003:DRF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

number PR01894. Selected papers republished in *IEEE Transactions on Computers*, 54(3) (2005) [4949].

[4625] Peter L. Montgomery Kirsten Eisenträger, Kristin Lauter. Fast elliptic curve arithmetic and improved Weil pairing evaluation. *Lecture Notes in
REFERENCES

REFERENCES

REFERENCES

REYHANI-MASOLEH:2003:LCS

RICE:2003:NIS

RODRIGUEZ-HENRIQUEZ:2003:PMB

SCHONFELDER:2003:VPA

SCHULTE:2003:CMS

Engineering Department of the University of Kentucky, Lexington, KY, USA.

[Singer:2003:REP]

[Smith:2003:UMP]

[Sofroniou:2003:IFR]

[Stehle:2003:WCL]

[Sun:2003:NAF]

REFERENCES

842

Walters:2003:UTM

Wang:2003:TDF

Warren:2003:DLD

Wei:2003:REE

REFERENCES

[4673] S. Abbasbandy and M. A. Fariborzi Araghi. The use of the stochastic arithmetic to estimate the value of interpolation polynomial with

REFERENCES

[Bachega:2004:HPS]

[Bajard:2004:FRI]

[Bernstein:2004:RRH]

[Bernstein:2004:SRT]

[Bertin:2004:FPL]

[Beuchat:2004:FMM]
REFERENCES

Boggs:2004:MIP

Boldo:2004:PFA

Boldo:2004:PTC

Boldo:2004:STQ

Boldo:2004:WDR

Brisebarre:2004:ACR

REFERENCES

Chirca:2004:SLP

Clinger:2004:HRF

Clinger:2004:RHR

Cowlishaw:2004:FFE

Croot:2004:ACC

Daumas:2004:GFCa

REFERENCES

Jérémie Detrey and Florent de Dinechin. A tool for unbiased comparison between logarithmic and floating-point arithmetic. Research Report RR2004-31, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07,
REFERENCES

Doss:2004:FBI

Efstathiou:2004:MBM

Egner:2004:CTN

ElHajji:2004:SIL

Ercegovac:2004:CSRa

852

REFERENCES

REFERENCES

[4733] G. Govindu, S. Choi, V. Prasanna, V. Daga, S. Gangadharpalli, and V. Sridhar. A high-performance and energy-efficient architecture for

REFERENCES

REFERENCES

Leyva:2004:GHS

Lin:2004:SFP

Lu:2004:ALC

Lutz:2004:NFP

Madhukumar:2004:EAR

[4762] G. Marcus, P. Hinojosa, A. Avila, and J. Nolazco-Flores. A
fully synthesizable single-precision, floating-point adder/subtractor and
multiplier in VHDL for general and educational use. In Proceedings of the
Fifth IEEE International Caracas Conference on Devices, Circuits and
Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 2004.

[4763] Svetoslav Markov and Rene Alt. Stochastic arithmetic: Addition and
488, September 2004. CODEN ANMAEL. ISSN 0168-9274 (print), 1873-
5460 (electronic).

[4764] Svetoslav Markov, Rene Alt, and Jean-Luc Lamotte. Stochastic
4):275–284, December 2004. CODEN NUALEG. ISSN 1017-1398 (print),

[4765] C. McIvor, M. McLoone, and J. V. McCanny. Improved Montgomery
modular inverse algorithm. Electronics Letters, 40(18):1110–1112,
September 2, 2004. CODEN ELLEAK. ISSN 0013-5194 (print), 1350-

circuits and polynomial replacement systems. SIAM Journal on

[4767] Philip B. McLaughlin, Jr. New frameworks for Montgomery’s modular
multiplication method. Mathematics of Computation, 73(246):899–906,
April 2004. CODEN MCMPAF. ISSN 0025-5718 (paper), 1088-6842
5718-03-01543-6/home.html; http://www.ams.org/mcom/2004-
73-246/S0025-5718-03-01543-6/S0025-5718-03-01543-6.dvi;
REFERENCES

S0025-5718-03-01543-6.pdf; http://www.ams.org/mcom/2004-
73-246/S0025-5718-03-01543-6/S0025-5718-03-01543-6.ps;
S0025-5718-03-01543-6.tex.

[4768] A. Mitra and M. Chakraborty. The NLMS algorithm in block floating-
CODEN ISPLEM. ISSN 1070-9908 (print), 1558-2361 (electronic).

[4769] The MPFR Team. MPFR: The Multiple Precision Floating-Point

[4770] Siguna Müller. On the computation of square roots in finite
CODEN DCCREC. ISSN 0925-1022 (print), 1573-7586 (electronic). URL http://ipsapp008.kluweronline.com/IPS/

Division by constant for the ST100 DSP microprocessor. Research Report
RR2004-45, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07,

[4772] P. Nguyen and D. Stehle. Low-dimensional lattice basis reduction
revisited (extended abstract). Lecture Notes in Computer Science, 3076:
(print), 1611-3349 (electronic).

[4773] Yves Nievergelt. Analysis and applications of Priest’s distillation. ACM
CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

[4792] M. Sadaghdar, K. Iniewski, and M. Syrzycki. 11-bit floating-point pipelined analog to digital converter in 0.18 µm CMOS. In *Canadian*
REFERENCES

Schimmler:2004:BSF

Schulte:2004:DED

Schulte:2004:LPC

Seidel:2004:DOI

Seidel:2004:LIF

Shi:2004:FPF

REFERENCES

Catalog Number: 04CH37568.

REFERENCES

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2004. CODEN ???? ISSN ????

REFERENCES

Vignes:2004:DSA

von zur Gathen:2004:FAG

Voronenko:2004:AGI

Walters:2004:TSC

Wang:2004:DFP

Weaver:2004:MFD

870

Aharoni:2005:SCI

Alvarez:2005:FMF

Anonymous:2005:HAP

Anonymous:2005:TMF

Antelo:2005:DRD

Antelo:2005:LLD

Antelo:2005:LLP
Elisardo Antelo and Julio Villalba. Low latency pipelined circular CORDIC. In Montuschi and Schwarz [6825], page ?? ISBN 0-7695-

REFERENCES

REFERENCES

REFERENCES

268, April 2005. CODEN ISPLEM. ISSN 1070-9908 (print), 1558-2361 (electronic).

REFERENCES

S. %3B+ Lageweg %2C+ C. %3B+ Vassiliadis %2C+ S.;
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=30205&
arnumber=1388190&count=13&index=1; http://ieeexplore.
ieee.org/xpls/references.jsp?arnumber=1388190.

Cowlishaw:2005:GDA

Daneshbeh:2005:CUB

serial systolic architectures for multiplicative inversion and division over
CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL
htm; http://csdl.computer.org/dl/trans/tc/2005/03/t0370.
pdf?isnumber=30205&prod=JNL&arnumber=1388201&arSt=+370&
ared=+380&arAuthor=Daneshbeh%2CA.K.%3B+Hasan%2C+M.A.;
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=30205&
arnumber=1388201&count=13&index=12; http://ieeexplore.
ieee.org/xpls/references.jsp?arnumber=1388201.

Danysh:2005:AIV

[4862] Albert Danysh and Dimitri Tan. Architecture and implementation of a vector/SIMD
293, March 2005. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
03/t0284abs.htm; http://csdl.computer.org/dl/trans/tc/2005/
03/t0284.htm; http://ieeexplore.ieee.org/iel5/12/30205/01388193.
pdf?isnumber=30205&prod=JNL&arnumber=1388193&arSt=+284&ared=+293&arAuthor=Danysh%2C+A.%3B+Tan%2C+D.; http://ieeexplore.ieee.org/xpls/abs_all.jsp?
isnumber=30205&arnumber=1388193&count=13&index=4; http://
ieeexplore.ieee.org/xpls/references.jsp?arnumber=1388193.
REFERENCES

REFERENCES

Eggert:2005:PEN

Eleftheriou:2005:SFF

Enenkel:2005:CMF

Erle:2005:DME

Etiemble:2005:CBF

Fan:2005:FBP

Fit-Florea:2005:ABE

Fousse:2005:MMP

Fraysse:2005:ASG

Giles:2005:BLN

Giraud:2005:REA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Montgomery:2005:FSS

Morris:2005:FBF

Mueller:2005:VFP

Muller:2005:D

REFERENCES

[4942] Jose-Alejandro Piñeiro, Stuart F. Oberman, Jean-Michel Muller, and Javier D. Bruguera. High-speed function approximation using a minimax
REFERENCES

Revol:2005:TMF

Reyhani-Masoleh:2005:LCW

Robison:2005:BUD

Rump:2005:AFP

Savas:2005:CFA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

July 15, 2005. CODEN AMHCBQ. ISSN 0096-3003 (print), 1873-5649 (electronic).

REFERENCES

REFERENCES

[4993] Roberto M. Avanzi, Clemens Heuberger, and Helmut Prodinger. Scalar multiplication on Koblitz curves using

[4998] Aart J. C. Bik, Xinmin Tian, and Milind B. Girkar. Multimedia vectorization of floating-point MIN/MAX reductions. Concurrency and

REFERENCES

[5012] Jérémie Detrey and Florent de Dinechin. FPLibrary. A VHDL library of parametrisable floating-point and LNS operators for FPGA. Web site and source code., 2006. URL http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/. The FPLibrary has been superceded by the FloPoCo project [5433].

[5018] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Dependent rounding and its applications to approximation

[5023] Daniel S. Graça, Ning Zhong, and Jorge Buescu. The ordinary differential equation defined by a computable function whose maximal interval of existence is non-computable. In Anonymous [6829], page ?? ISBN ???? LCCN ????

REFERENCES

REFERENCES

REFERENCES

[5050] Vincent Lefèvre, Damien Stehlé, and Paul Zimmermann. Worst cases for the exponential function in the IEEE 754r decimal64 format.
REFERENCES

Liew:2006:SRR

Lindstrom:2006:FEC

Mahalingam:2006:IAM

Marques:2006:BIF

Maslennikowa:2006:DFB

REFERENCES

Suite 300, Silver Spring, MD 20910, USA, 2006. CODEN ????. ISSN ????.

5062 Jingzhao Ou and Viktor K. Prasanna. Design space exploration using arithmetic-level hardware–software cosimulation for configurable

REFERENCES

REFERENCES

REFERENCES

[5117] Jean-Luc Beuchat, Masaaki Shirase, Tsuyoshi Takagi, and Eiji Okamoto. An algorithm for the ηT pairing calculation in characteristic three and

[Bodrato:2007:IPM]

[Boldo:2007:FPD]

[Boldo:2007:FVF]

[Boldo:2007:PCA]

[Brent:2007:EBC]

[Brisebarre:2007:EPA]

REFERENCES

REFERENCES

REFERENCES

[5150] Haining Fan and M. Anwar Hasan. Subquadratic computational complexity schemes for extended binary field multiplication using

REFERENCES

CODEN ???. ISSN ???. URL http://arxiv.org/abs/0705.3144. Published in [5165].

Monniaux:2007:AZT

Monniaux:2007:PVFa

Monniaux:2007:PVFb

Montuschi:2007:DDA

 Muller-Olm:2007:AMA

Nikmehr:2007:FRF

REFERENCES

Osborne:2007:AAG

Pan:2007:EFS

Pan:2007:SAS

Patel:2007:FMA

Patil:2007:REE

REFERENCES

Vazquez:2007:NFH

Veeramachaneni:2007:NHS

Voronenko:2007:MMC

Vouzis:2007:MCL

Wang:2007:DFPa

Wang:2007:DFPb

Wang:2007:PSD

Ahmadi:2008:PFS

ASTM:2008:AES

Bapst:2008:SIO

Beuchat:2008:AGM

Boldo:2008:EFC

Brisebarre:2008:CRM

REFERENCES

References

[5261] Florent De Dinechin and Christoph Quirin Lauter. Optimizing polynomials for floating-point implementation. arXiv.org. ??(??):1–12,

REFERENCES

REFERENCES

REFERENCES

January 17, 2008. CODEN ELLEAK. ISSN 0013-5194 (print), 1350-911X (electronic).

REFERENCES

0-7381-5753-8 (paper), 0-7381-5752-X (electronic). 58 pp. LCCN

Pan:2008:SAL

[5287] V. Y. Pan, D. Grady, B. Murphy, G. Qian, R. E. Rosholt, and A. D.
CODEN TCSCDI. ISSN 0304-3975 (print), 1879-2294 (electronic).

Patterson:2008:AC

Patterson:2008:GCG

LCCN QA76.9.C643.

Pineiro:2008:RDD

radix-2 digit-by-digit architecture for cube root. IEEE Transactions on
Computers, 57(4):562–566, April 2008. CODEN ITCOB4. ISSN 0018-
org/stamp/stamp.jsp?tp=&arnumber=4407683.

Quinnell:2008:BFP

[5291] E. Quinnell, E. E. Swartzlander, and C. Lemonds. Bridge floating-
point fused multiply-add design. IEEE Transactions on Very Large Scale
ISSN 1063-8210 (print), 1557-9999 (electronic).

Quinnell:2008:FPF

multiply-add architectures. In Matthews [6861], pages 331–337. ISBN 1-
REFERENCES

Steele:2008:FPSc

Sun:2008:HPM

Thill:2008:EMP

Thill:2008:MPR

Tsigaridas:2008:CRR

VanMeter:2008:ADM

REFERENCES

Gilles Chabert and Luc Jaulin. A priori error analysis and spring arithmetic. SIAM Journal on Scientific Computing, 31(3):2214–2230,
REFERENCES

???? 2009. CODEN SJOCE3. ISSN 1064-8275 (print), 1095-7197 (electronic).

REFERENCES

REFERENCES

[5359] Marina L. Gavrilova. An explicit solution for computing the vertices of the Euclidean d-dimensional Voronoi diagram of spheres in a floating-

[5366] Elena Guralnik, Ariel J. Birnbaum, Anatoly Koyfman, and Av Kaplan. Implementation specific verification of divide and square root

Han:2009:ICS

Hariri:2009:BSB

Harrison:2009:DTB

Harrison:2009:FAB

Hasan:2009:SSC

Hinek:2009:ALS
REFERENCES

REFERENCES

REFERENCES

[5391] Frederic P. Miller, Agnes F. Vandome, and John McBrewster, editors. Roman Numerals: Roman numeral analysis, Roman arithmetic, Roman

REFERENCES

Preiss:2009:ACS

clockgating schemes for fused-multiply-add-type floating-point units. In
es/arithmetic/.

Rump:2009:CPS

[5399] Siegfried M. Rump, Paul Zimmermann, Sylvie Boldo, and Guillaume
Melquiond. Computing predecessor and successor in rounding to
CODEN BITTEL, NBITAB. ISSN 0006-3835 (print), 1572-9125
genre=article&issn=0006-3835&volume=49&issue=2&page=419.

Rump:2009:UFA

[5400] Siegfried M. Rump. Ultimately fast accurate summation. SIAM Journal
ISSN 1064-8275 (print), 1095-7197 (electronic).

Schwarz:2009:DFP

floating-point support on the IBM System z10 processor. IBM Journal
CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic). URL

Shaw:2009:ASM

[5402] David E. Shaw. Anton: a specialized machine for millisecond-scale
molecular dynamics simulations of proteins. In Bruguera et al. [6864],
page 3. ISBN 0-7695-3670-0, 1-4244-4329-6. ISSN 1063-6889. LCCN

Shpilka:2009:IDA

[5403] Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two
multiplication gates. SIAM Journal on Computing, 38(6):2130–2161,
???? 2009. CODEN SMJCAT. ISSN 0097-5397 (print), 1095-7111
(electronic).

Stewart:2009:FMP

[5404] G. W. Stewart. Flap: a Matlab package for adjustable precision floating-
point arithmetic. Report, Department of Computer Science, University
REFERENCES

Amin:2010:HRM

Banescu:2010:MFP

Block:2010:GEB

Brent:2010:PAV

Chapoutot:2010:ISN

Cheng:2010:BSS
REFERENCES

[5433] Florent de Dinechin and Bogdan Pasca. FloPoCo: generator of arithmetic cores (Floating-Point Cores, but not only) for FPGAs (but not only). Web site and source code., August 10, 2010.

REFERENCES

Fahmy:2010:DFP

Frey:2010:ABC

Fu:2010:FDO

Ghazi:2010:WHU

Hemmert:2010:FEF

Jaberipur:2010:RDF

Kornerup:2010:CCR

Kornerup:2010:FPN

KrusemanAretz:2010:DCP

Lamotte:2010:CVC

Lefevre:2010:LTL

Lima:2010:KBA

Loitsch:2010:PFP

Louvet:2010:NRA

Maruyama:2010:SVN

Mathews:2010:AOE

Mehrotra:2010:SLR

Meyer:2010:CGT

REFERENCES

Schertz:2010:CM

Schneeweiss:2010:SAR

Sheikh:2010:OOA

Shieh:2010:WBM

Shuster:2010:ECN

Smiley:2010:MWI

REFERENCES

REFERENCES

REFERENCES

Baudin:2011:EBC

Beebe:2011:BPAb

Berger:2011:FSM

Beuchat:2011:FAP

Bodrato:2011:HDT

Boersma:2011:PBF

REFERENCES

REFERENCES

[5531] Steven Carlough, Adam Collura, Silvia Mueller, and Michael Kroener. The IBM zEnterprise-196 decimal floating-point accelerator. In Schwarz

REFERENCES

[5549] Niall Emmart and Charles C. Weems. High precision integer multiplication with a GPU using Strassen’s algorithm with multiple

REFERENCES

REFERENCES

Ibrahim:2011:PAA

Ikhile:2011:RBD

Ismail:2011:RLL

ISO:2011:III

Izsak:2011:CPM

Jaime:2011:HSA

REFERENCES

[5590] Peter Kornerup, Jean-Michel Muller, and Adrien Panhaleux. Performing arithmetic operations on round-to-nearest representations. *IEEE

REFERENCES

REFERENCES

Möller:2011:IDI

Mouilleron:2011:AGF

Nannarelli:2011:RCD

Nguyen:2011:FSA

Ozaki:2011:TEE

Park:2011:LPS

Daejin Park, Tag Gon Kim, Changmin Kim, and Sungho Kwak. A low-power sync processor with a floating-point timer and universal edge tracer for 3DTV active shutter glasses. In *2011 IEEE COOL Chips XIV: Yokohama Joho Bunka Center, Yokohama, Japan, April 20–22, 2011*

REFERENCES

Rupp:2011:SBF

Samman:2011:RSP

Sarbishei:2011:FPA

Seidel:2011:FVI

Seo:2011:GDP

Siegel:2011:LAL

REFERENCES

REFERENCES

REFERENCES

[5645] Elisardo Antelo. *Industrial Implementations of Floating-Point Units: Vol. 2*. IEEE Computer Society Press, 1109 Spring Street, Suite 300,
References

Aswal:2012:BFD

Abhilasha Aswal, M. Ganesh Perumal, and G. N. Srinivasa Prasanna.

Bailey:2012:AIS

Bailey:2012:HPC

Baudin:2012:RCD

Benz:2012:DPA

Bohlender:2012:CFE

REFERENCES

REFERENCES

REFERENCES

Goldberg:2012:CA

Goossens:2012:CTS

Grcar:2012:JNA

Haller:2012:DFP

Huang:2012:LCB

Hyman:2012:LF
REFERENCES

[5690] Daichi Mukunoki and Daisuke Takahashi. Performance comparison of double, triple and quadruple precision real and complex BLAS

REFERENCES

REFERENCES

REFERENCES

[5728] Sylvain Chevillard and Marc Mezzarobba. Multiple-precision evaluation of the Airy Ai function with reduced cancellation. In IEEE [6890], pages

[5734] Florent de Dinechin, Matei Istoan, and Guillaume Sergent. Fixed-point trigonometric functions on FPGAs. *ACM SIGARCH Computer
REFERENCES

REFERENCES

REFERENCES

Kurka:2013:UAA

Lam:2013:DFP

Lefevre:2013:HRC

Lefevre:2013:SSI

Lei:2013:FIE

Lei:2013:VCI

Lowery:2013:RED

REFERENCES

Ozaki:2013:GEF

Pedram:2013:FPA

Pontarelli:2013:LCC

Rubio-Gonzalez:2013:PTA

Rump:2013:ASDa

Rump:2013:ASDb

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Marche:2014:VFB

Milicevic:2014:PAO

Moler:2014:CCFa

Moler:2014:CCFb

Mukhopadhyay:2014:EMP

Muller:2014:MRE

Murakami:2014:CRN

[5834] Hiroshi Murakami. Calculation of rational numbers in an interval whose denominator is the smallest by using FP interval arithmetic. *ACM*

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chiang:2015:UFP

Collange:2015:NRP

Coxon:2015:MMP

Damouche:2015:TPC

deDinechin:2015:FPH

[5872] Florent de Dinechin. On fixed-point hardware polynomials. Technical report, INSA, CITI Lab, Université de Lyon, Lyon, France, October 2015. URL https://hal.inria.fr/hal-01214739.

deDinechin:2015:HIF

REFERENCES

REFERENCES

[5883] Terry Froggatt. An error in the Ada universal arithmetic package. *ACM SIGADA Ada Letters*, 35(2):14, August 2015. CODEN AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic). See [1672]. The 32-year-old error is a test with digit t that has if $(t > \text{BASE})$, but the operator should instead be \geq.

REFERENCES

[5893] John Gustafson. Keynote talk: The end of numerical error. In Muller et al. [6894], page 74. ISBN 1-4799-8665-8, 1-4799-8663-1. ISSN 1063-
REFERENCES

Hamming:2015:DN

Hart:2015:EDC

Higham:2015:MCT

Holzmann:2015:B

Hsiao:2015:TSR

Hutter:2015:MMA

Iakymchuk:2015:EEB

REFERENCES

Langroudi:2015:MPP

Laskar:2015:KTN

Lauter:2015:SAF

Lee:2015:RRA

Liu:2015:IBI

Liu:2015:SSS

REFERENCES

[5925] A. Momeni, Jie Han, P. Montuschi, and F. Lombardi. Design and analysis of approximate compressors for multiplication. *IEEE Transactions on
REFERENCES

REFERENCES

REFERENCES

[5944] David B. Thomas. A general-purpose method for faithfully rounded floating-point function approximation in FPGAs. In Muller et al. [6894],

Ahmed:2016:ILM

Ahrens:2016:ERF

[5952] Peter Ahrens, Hong Diep Nguyen, and James Demmel. Efficient reproducible floating point summation and BLAS. Report UCB/EECS-2016-121, EECS Department, UC Berkeley, Berkeley, CA, USA, June 18, 2016. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html.

Andrysco:2016:PFP

Anonymous:2016:KTS

Area:2016:ACS

Avenel:2016:STM

Bagnara:2016:EBF

[5957] Roberto Bagnara, Matthieu Carlier, Roberta Gori, and Arnaud Gotlieb. Exploiting binary floating-point representations for constraint

REFERENCES

[5970] Xiaoping Cui, Weiqiang Liu, Dong Wenwen, and Fabrizio Lombardi. A parallel decimal multiplier using hybrid binary coded decimal (BCD)

[5976] Peibing Du, Hao Jiang, Housen Li, Lizhi Cheng, and Canqun Yang. Accurate evaluation of bivariate polynomials. In Hong Shen, Yingpeng Sang, and Hui Tian, editors, Proceedings of the Seventeenth International Conference on Parallel and Distributed Computing, Applications and

Fritz:2016:IPM

Garcia-Vega:2016:DMO

Garrido:2016:CIN

Geran:2016:CBC

Gueron:2016:ABI

Gueron:2016:HIA

Gustafson:2016:RAC

REFERENCES

[5990] David Hopkins. Will my numbers add up correctly if I round them? The Mathematical Gazette, 100(549):396–409, November 2016. CODEN MAGAAS. ISSN 0025-5572 (print), 2056-6328 (electronic). URL https://www.cambridge.org/core/product/88F5753D8F0D8DEAD1F2552B0F8B22. The probability that rounding after fixed-point summation of \(n \) terms gives the same result as summation of rounded terms is given by \(p(n) = \frac{1}{\pi} \int_{0}^{\infty} \left(\frac{\sin(x)}{x} \right)^{n+1} dx \), and that function is always a rational number. Its values are \(p(n) = 1, 3/4, 2/3, 115/192, 11/20, 5887/11520, 151/315, 259723/573440, \ldots \) for \(n = 1 \) to 8.

[5994] Laslo Hunhold. The Unum number format: Mathematical foundations, implementation and comparison to IEEE 754 floating-point numbers. Bachelorarbeit, Universität zu Köln, Köln, Germany, November 8, 2016.
REFERENCES

Jaberipur:2016:FFC

Jaeger:2016:OHQ

Jeannerod:2016:RIE

Jeannerod:2016:SEB

Jiang:2016:ARB

Joldes:2016:AAE

Kadric:2016:APF

Kneusel:2016:NC

Langhammer:2016:SPN

Langlois:2016:RNR

Lee:2016:VBM

Lefevre:2016:CRA

Lefevre:2016:OBB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Schkufza:2016:SPO

Seo:2016:HMR

Sohn:2016:FFP

Tada:2016:ESG

Tay:2016:NIM

Ugurdag:2016:ECC

vanderHoeven:2016:ESL

vanderHoeven:2016:MSA

Villalba-Moreno:2016:DRF

Wang:2016:DFP

Wilson:2016:UAA

Zhou:2016:PUH

Aliasgari:2017:SCH

REFERENCES

REFERENCES

REFERENCES

[6061] Joppe W. Bos and Simon Friedberger. Fast arithmetic modulo $2^p r^q \pm 1$. In Burgess et al. [6899], pages 148–155. ISBN 1-5386-1966-0 (print), 1-
REFERENCES

[6067] Chemseddine Chohra, Philippe Langlois, and David Parello. Reproducible, accurately rounded and efficient BLAS. In Desprez et al. [6900], pages 609–620. ISBN 3-319-58943-1 (e-book), 3-319-58943-1 (hardcover). LCCN QA76.9.E94; QA76.758TK.
REFERENCES

Constantinides:2017:AAC

Cornea:2017:URE

Cui:2017:HPP

Dai:2017:ATE

Damouche:2017:INA

Darulova:2017:TCR

REFERENCES

[6086] Oscar Gustafsson, Erik Bertilsson, Johannes Klasson, and Carl Ingemarsson. Approximate Neumann series or exact matrix inversion

Alan A. Jorgensen. Apparatus for calculating and retaining a bound on error during floating point operations and methods thereof. US Patent 9,817,662., November 14, 2017. URL https://patents.google.com/patent/US9817662B2/; https://tinyurl.com/y7ctbsez. This patent, filed 23 October 2016, was issued despite substantial prior art that should have resulted in its rejection: see [6238]. The inventor does not appear to have published in the area of floating-point arithmetic (apart from this entry, none by him can be found in this bibliography). The only literature references in the patent are [5281, 2629, 5686, 5465].

REFERENCES

REFERENCES

Langhammer:2017:FPT

Langhammer:2017:QPA

Langhammer:2017:SPL

Lee:2017:APC

Lefevre:2017:CRA

Lefevre:2017:OBB

[6122] David Raymond Lutz and Christopher Neal Hinds. High-precision anchored accumulators for reproducible floating-point summation. In
REFERENCES

[6128] Ramy Medhat, Michael O. Lam, Barry L. Rountree, Borzoo Bonakdarpour, and Sebastian Fischmeister. Managing the performance/

REFERENCES

A new multiplicative inverse architecture in normal basis using novel
concurrent serial squaring and multiplication. In Burgess et al. [6899],
.ieeeexplore.ieee.org/servlet/opac?punumber=8019911.

[6136] Dai Numahata and Hiroshi Sekigawa. An algorithm for symbolic–
numeric sparse interpolation of multivariate polynomials whose degree
bounds are unknown. ACM Communications in Computer Algebra,
51 (1):18–20, March 2017. CODEN ???. ISSN 1932-2232 (print), 1932-2240
(electronic).

integer multiplication methods on hardware. IEEE Transactions on
Computers, 66(8):1369–1382, ???. 2017. CODEN ITCOB4. ISSN 0018-
.org/document/7869256/.

to get an efficient yet verified arbitrary-precision integer library. In
Andrei Paskevich and Thomas Wies, editors, Verified Software. Theories,
Tools, and Experiments: 9th International Conference, VSTTE 2017,
Heidelberg, Germany, July 22–23, 2017, Revised Selected Papers, volume
10712 of Lecture Notes in Computer Science, pages 84–101. Springer-Ver-
com/chapter/10.1007/978-3-319-72308-2_6.

[6139] Jean-Christophe Rioual. Large scale numerical simulations of the climate.
In Burgess et al. [6899], page 122. ISBN 1-5386-1966-0 (print), 1-
5386-1965-2, 1-5386-1964-4. ISSN 1063-6889. LCCN QA76.9.C62 S95
8019911.

[6140] Alexandre Rocca, Victor Magron, and Thao Dang. Certified roundoff
error bounds using Bernstein expansions and sparse Krivine–Stengle

Schleicher:2017:NMP

Serre:2017:OSL

Stoutemyer:2017:APC

Thevenoux:2017:ASS

Thornes:2017:USD

Ueno:2017:BCF

REFERENCES

REFERENCES

Anonymous:2018:HFF

Anonymous:2018:OLA

Babuska:2018:REG

Bajard:2018:MRW

Becker:2018:NOS

Boldo:2018:FPA

REFERENCES

REFERENCES

REFERENCES

[6190] Niall Emmart, Fangyu Zheng, and Charles Weems. Faster modular exponentiation using double precision floating point arithmetic on the
GPU. In Tenca and Takagi [6902], pages 130–137. ISBN 1-5386-2612-8 (USB), 1-5386-2665-9. ISSN 2576-2265. LCCN QA76.9.C62. IEEE catalog number CFP18121-USB.

Ferguson:2018:DSM

Garland:2018:LCM

Graillat:2018:NVC

Haidar:2018:DFE

Haidar:2018:HGT

[6196] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J. Higham. Harnessing GPU tensor cores for fast FP16 arithmetic to speed

[6202] Tomasz Hrycak and Sebastian Schmutzhard. Evaluation of Chebyshev polynomials by a three-term recurrence in floating-point arithmetic. BIT
REFERENCES

REFERENCES

REFERENCES

[6220] Sergio Marchese. AI chips must get the floating-point math right: Formal verification of FPUs is no longer a prerogative of big companies spending big bucks. Web site., September 27, 2018.

[6221] Mantas Mikaitis, David R. Lester, Delong Shang, Steve Furber, Gengting Liu, Jim Garside, Stefan Scholze, Sebastian Höppner, and Andreas

Oliveira:2018:MLB

Popescu:2018:FPN

Radford:2018:FIF

Ram:2018:FVF

Reyhani-Masoleh:2018:NAR

Riedy:2018:AAO

Rodriguez-Henriquez:2018:SIH

[6233] Francisco Rodríguez-Henríquez and Erkay Savas. Special issue in honor of Peter Lawrence Montgomery. *Journal of Cryptographic Engineering,*

[6238] Tiffany Trader. Inventor claims to have solved floating point error problem. HPC Web site., January 17, 2018. URL https://www.hpcwire.com/2018/01/17/inventor-claims-solved-floating-point-error-problem/. From the HPC editor: “After this article was published, a number of readers raised concerns about the originality of Jørgensen’s techniques, noting the existence of prior art going back years. Specifically, there is precedent in John Gustafson’s work on unums and interval arithmetic both at Sun and in his 2015 book, The End of Error, which was published 19 months before Jørgensen’s patent application was filed.”.
Villalba-Moreno:2018:FHF

Villalba-Moreno:2018:URH

Wang:2018:TDN

Adams:2019:RRP

Adams:2019:URP

Agrawal:2019:DBF

REFERENCES

Anonymous:2019:YAF

Arnold:2019:UOD

Arzelier:2019:EAE

Bailey:2019:AM

Beame:2019:TVN

Bellal:2019:IAA

Blanchard:2019:MPB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6299] David Harvey and Joris Van Der Hoeven. Integer multiplication in time $O(n \log n)$. Report hal-02070778, School of Mathematics and Statistics, University of New South Wales, and CNRS, Laboratoire d’informatique, École polytechnique, Sydney, NSW 2052, Australia and 91128 Palaiseau, France, March 18, 2019. URL https://hal.archives-ouvertes.fr/hal-02070778/document.

REFERENCES

REFERENCES

Johansson:2019:FAP

Kalamkar:2019:SBD

Katajainen:2019:HMP

Kaul:2019:OFF

Kim:2019:CEI

Kim:2019:EMA

Klower:2019:PAF

Kostic:2019:UNV

Kouya:2019:PEE

Kulisch:2019:MSI

Laguna:2019:GPD

Lange:2019:SEP

REFERENCES

REFERENCES

[6354] Benjamin Sherman, Jesse Michel, and Michael Carbin. Sound and robust solid modeling via exact real arithmetic and continuity. *Proceedings of*
REFERENCES

REFERENCES

Thomas:2019:CTG

Tiwari:2019:PPE

vanDam:2019:APA

[6371] Laurens van Dam, Johan Peltenburg, Zaid Al-Ars, and H. Peter Hofstee. An accelerator for posit arithmetic targeting posit level 1 BLAS routines and Pair-HMM. In Gustafson and Dimitrov [6903], pages 5:1–5:10. ISBN 1-4503-7139-6. LCCN ?????

vanWyk:2019:RVT

Vazquez:2019:NPT

Venkatachalam:2019:DAA

Verheyde:2019:BDD

Brisebarre:2020:EAS

Bruguera:2020:LLF

Cherubin:2020:TRP

deCamargo:2020:REA

Dolgov:2020:PCI

Erickson:2020:GNF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Marquer:2020:HLI

Elkhatib:2020:HOM

Niasar:2020:FSA

Bajard:2020:AFV

Papachatzopoulos:2020:MDM

Nannarelli:2020:VPB

Lauter:2020:FSA

Lindstrom:2020:VRC

Coward:2020:ADS

Defour:2020:CPM

Payer:2020:SMF

Mikaitis:2020:IRG

REFERENCES

1963. ix + 574 pp. LCCN ???? See also volumes I–II, IV–VI [6477, 6478, 6481, 6483, 6484].

REFERENCES

AFIPS:1967:ACP

Anonymous:1968:PSA

AFIPS:1969:ACPa

AFIPS:1969:ACPb

Morrell:1969:IPP

Morrell:1970:IPP

AFIPS:1971:ACP

REFERENCES

1132

REFERENCES

ACM:1974:CRS

Panagiotopoulos:1974:PCC

IEEE:1975:SCA

Randell:1975:ODC

Swamy:1975:PEM

Swartzlander:1976:CDD

Traub:1976:ACC

1134

REFERENCES

REFERENCES

REFERENCES

[6533] Simon Hugh Lavington, editor. Information Processing 80: Proceedings of IFIP Congress 80, Tokyo, Japan, October 6–9, 1980, Melbourne,
REFERENCES

[Nickel:1980:IMP]

[GAMM:1981:PAM]

[Messina:1982:PMM]

[Randell:1982:ODC]

[Reid:1982:RBN]

REFERENCES 1139

REFERENCES

REFERENCES

REFERENCES

REFERENCES

USENIX:1985:SCP

Vrdoljak:1985:ICA

IEEE:1986:III

IEEE:1986:PII

Mini-Micro:1986:EMM

Unicom:1986:SQA

Wescon:1986:WCR
REFERENCES

Losleben:1987:ARV

Zunde:1987:EFI

ACM:1988:ICS

ACM:1988:PAC

Brodersen:1988:VSP

Chen:1988:CRT

Electro:1988:ECR

REFERENCES

REFERENCES

REFERENCES

IEEE:1989:IISa

IEEE:1989:ISV

IEEE:1989:PII

Turner:1989:NAP

Wuorinen:1989:DTP

ACM:1990:PAS
REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:1991:VCA

Kaucher:1991:CAS

Koopman:1991:PST

Kornerup:1991:PIIS

Meyer:1991:CAP

REFERENCES

Morris:1991:RWP

SPIE:1991:PSI

Alley:1992:CRI

Anonymous:1992:EAP

Atanassova:1992:CAE

IEEE:1992:ASF

REFERENCES

IEEE:1992:GCG

IEEE:1992:IIC

IEEE:1992:PIC

IEEE:1992:PIS

Juji:1992:NCR

Katwick:1992:AMT

REFERENCES

Prinetto:1992:CHD

Quinton:1992:APV

Singh:1992:CRT

Turing:1992:PM

Vandewalle:1992:SPV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

• branch and bound algorithms for global optimization,
• constraint propagation,
• solution sets of linear systems,
• hardware and software systems for interval computations, and
• fuzzy logic.

Actual applications described in the book include:
• economic input-output models,
• quality control in manufacturing design,
• a computer-assisted proof in quantum mechanics,
• medical expert systems,
• and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

• on Kluwer homepage http://www.kluwer.nl, or
• on the Interval Computations homepage http://cs.utep.edu/
 interval-comp/main.html, in the “Books” section.

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

REFERENCES

Pellikaan:1996:AGC

Pocek:1996:ISF

Srivas:1996:FMC

Wuorinen:1996:DTP

Zachary:1996:ISP

REFERENCES

REFERENCES

REFERENCES

Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1998. ISBN ????. LCCN ????.

IEEE:1998:IIC

IEEE:1998:IOM

IEEE:1998:PGL

MacKay:1998:PCT

Matthews:1998:CRT

Poeck:1998:PIS

REFERENCES

Sasao:1998:ISM

Sohi:1998:YIS

ACM:1999:PFA

Begehr:1999:PSI

Csendes:1999:DRC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2001:JJ

Boulton:2001:TPH

Brebner:2001:FLA

Burgess:2001:ISC

IEEE:2001:IP1

REFERENCES

IEEE:2002:STI

Li:2002:PIC

Luk:2002:PSA

Matthews:2002:PTS

Pocek:2002:FAI

Schulte:2002:PII

REFERENCES

REFERENCES

Matthews:2003:PTS

Senda:2003:IPI

Warren:2003:HD

(apart from the nine-page Chapter 15), it has extensive coverage of, and clever algorithms for, integer arithmetic operations that are fundamental for implementing hardware floating-arithmetic and software multiple-precision arithmetic.

REFERENCES

[6884] John Impagliazzo and Eduard Proydakov, editors. Perspectives on Soviet and Russian Computing: First IFIP WG 9.7 Conference, SoRuCom
REFERENCES

IEEE:2013:PIS

Butler:2015:FMS

Higham:2015:PCA

IEEE:2015:ISS

Muller:2015:ISC
REFERENCES

[6900] Frédéric Desprez, Pierre-François Dutot, Christos Kaklamanis, Loris Marchal, Korbinian Molitorisz, Laura Ricci, Vittorio Scarano, Miguel A.

