A Bibliography of Publications on Floating-Point Arithmetic

Norbert Juffa
2445 Mission College Blvd.
Santa Clara, CA 95054
USA
Tel: +1-408-727-1885
FAX: +1-408-727-1265
E-mail: juffa@ira.uka.de (Internet)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

23 December 2023
Version 3.695

Introduction

This is a bibliography of material on floating-point arithmetic that I came up with while doing research on a floating-point package of my own. I don’t claim it to be anywhere near complete. The material listed is only what I myself possess.

My main interest was in software based, binary floating-point arithmetic on a microprocessor, so you won’t find much material about the hardware used in floating-point arithmetic (e.g. adders, carry propagation schemes, higher radix
representation for multiplication and division, etc.) in this list. There is also not too much on non-binary floating-point arithmetic.

For most fields covered in this bibliography, the important or historically relevant articles should be included. There is also some material on integer arithmetic in this list as some of the methods used with integer arithmetic contain interesting ideas that may be useful in the realization of a floating-point arithmetic package.

Also, depending on the type of microprocessor used, one may need to implement integer multiplication and division for use in the floating-point package, so articles about this topic are included as well.

As I am German, there is a bit of material in German in this bibliography. However, English translations are provided for all non-English titles.

Thanks to the people who have helped me with previous versions of this document by sending me papers or additional references:

- Steven Sommars (sesv@research.bell-labs.com),
- Jim Kiernan (jmk@teak.cray.com),
- Warren Ferguson (ferguson@seas.smu.edu),
- Nhuan Doduc (ndoduc@framentec.fr),
- K. C. Ng (kwok.ng@eng.sun.com),
- Nelson H. F. Beebe (beebe@math.utah.edu).

Bibliography entries in the Books section are ordered alphabetically by author; ordering is by ascending year in the remaining sections.

Warning: it has yet not been possible to bring this citation list up-to-date with the entries in the bibliography.

Books, hardware oriented

[1686, 272, 1263, 1194, 3075, 3278, 1881, 826, 1143, 984, 1431, 828, 1317, 7142, 7143, 1526]

Books, software oriented or theory

[1250, 457, 460, 461, 113, 1394, 2357, 893, 1032, 343, 2915, 2398, 2932, 2235, 311, 517, 6997]

Books, machine specific

[2140, 3180, 3077, 2400, 1732, 1868, 2253, 1900, 2435]
1 CHOICE OF BASE, FLOATING POINT FORMATS

Journal Publications, Conference Papers, Technical Reports, Ph.D. Dissertations, Book Contributions, etc.

1 Choice of base, floating point formats

1.1 Precision and Rounding

1.2 Determination of parameters of floating point arithmetic

1.3 IEEE standards for floating point arithmetic

1.4 Floating point arithmetic, general and implementation issues

1.5 Floating point packages

1.6 Floating point units
1.7 Test of floating point routines
[490, 1428, 1691, 1835, 1834, 1985, 1986, 1930, 2071, 2433, 2561, 2569, 2637, 2636, 2752, 2731, 2717, 3016]

2 Addition and Subtraction
[366, 1484]

2.1 Floating-point Summation
[316, 336, 353, 352, 559, 625, 663, 816, 1627, 2240, 2316]

2.2 Multiplication
[666, 1223, 1237, 1449, 1513, 1487, 1542, 1569, 1561, 1587, 1591, 1574, 1735, 1855, 1980, 2119, 1959, 2351, 2686, 2930, 2980, 7164, 2912]

2.3 Division
[201, 229, 215, 313, 339, 429, 1001, 1046, 1287, 1377, 1535, 1612, 1591, 1574, 1735, 1855, 1980, 1959, 2351, 2741, 2686, 2930, 2980, 7164, 2912]

3 Elementary functions, general
[375, 389, 575, 636, 603, 1103, 1242, 1595, 1622, 1721, 1684, 1682, 1759, 1805, 7083, 1910, 2016, 2119, 2063, 2242, 7102, 2524, 2561, 2511, 3297, 2513, 2482, 2661, 2814, 2625, 2776, 2777, 2654, 3330, 3298]

3.1 Elementary functions, CORDIC and related algorithms
[182, 183, 239, 255, 364, 513, 540, 645, 637, 653, 718, 840, 1050, 1066, 1270, 1425, 1664, 1862, 1673, 1776, 1928, 2124, 2345, 2274, 2505, 2531, 2680, 2774, 2973, 2968, 3092, 3032, 3078]

3.2 Elementary functions, function approximation

3.2.1 Polynomial evaluation
[250, 270, 295, 417, 1043, 1205, 2315]
3.3 Square root, general
[1064, 1165, 1453, 1566, 1618, 2529, 2641]

3.3.1 Square root, bit-oriented, iterative, and table methods of computation

3.3.2 Square root, Newton’s method
[151, 271, 293, 365, 338, 334, 374, 442, 418, 503, 508, 522, 585, 574, 568, 570, 688, 1303, 1293, 1371, 1551, 2297, 2982, 2910]

3.4 Sine and Cosine
[172, 1050, 1002, 1007, 1154, 1372, 1514, 1632, 1631, 1730, 1818, 1918, 2085, 2196, 2570, 2924, 2911, 2843, 2943, 3038]

3.5 Logarithm
[147, 262, 322, 676, 982, 1093, 1276, 1500, 2072, 2073, 2571, 2699]

3.6 Exponential function
[134, 400, 1161, 1335, 1489, 1713, 1812, 2434, 2572, 2965]

3.7 Arctangent
[136, 152, 199]

3.8 Other transcendental functions
[489, 601, 153, 1008, 356, 266, 351, 2065, 1136, 2824, 3018]

4 Binary-decimal conversion
[181, 165, 214, 466, 565, 670, 1144, 1268, 1269, 1379, 1620, 1674, 1967, 1940, 2473, 2565, 2489, 2820]
5 BCD arithmetic

[660, 711, 762, 763, 764, 765, 766, 767, 768, 1356, 1464, 1670, 1608, 2002, 2610, 2923]

6 Multiple precision arithmetic

[283, 321, 401, 419, 619, 604, 937, 986, 1081, 1404, 1512, 2769, 2753, 2997, 3187]

7 Conferences on computer arithmetic

[7023, 7033, 7038, 7047, 7050, 7062, 7080, 7081, 7123, 7153, 7161, 7155, 7187]

8 Additional contributions from Nelson H. F. Beebe

Title word cross-reference

#26 [5440].

\((2^n)^m\) [3755]. \((10^{31} - 1)/9\) [1941]. \((2^n)\) [4306, 4327, 4509, 4518, 4424]. \((2^n + 1)\) [1063, 4741, 3867]. \((2^n - 1)\) [4802]. \((2^n - 1, 2^{n+p}, 2^n + 1)\) [6214]. \((2^n)^2\) [6021]. \((2^n \pm 1)\) [5467, 4094]. \((2m)\) [4389]. \((2n + 3)\) [6467]. \((2n - (2p \pm 1))\) [4802]. \((a \cdot x) \cdot x\) [6734]. \((d, r)\) [774]. \((M, p, k)\) [5751]. \((R)\) [2871]. \((p)\) [4306, 4389].
(x + y) * (x - y) [6613]. $-2 \{728, 175, 198, 933, 786\}. \ -\infty < n < +\infty \{134, 152\}. 0 \{5584\}. 0 < N < 1 \{153\}. 0 \div 0 \{685\}. $1 \{3699\}. 1 \{4939, 4299, 5103, 5585, 3654, 2130\}. 1, 000, 000 \{606\}. 1/\sqrt{3} [5722]. 1/t [2139]. 10 \{520, 5952\}. 116 \{3976\}. 128 \{4808\}. 15 \{520\}. 16 \{2468, 4141, 4029\}. 17 \times 9 \{3011\}. 2 \{989, 4257, 2014, 5621, 3192, 3948, 606, 5985, 421, 4299, 4960, 3246, 3421, 1725, 3430, 3104, 3437, 5559, 3452, 520, 312, 3641, 3774, 4405, 3654, 5047, 3324, 4892\}. 2, 576, 980, 370, 000 \{5856\}. 22n + 1 \{2111\}. 256 \{4392\}. 27 \{424\}. 2^n + 1 + 1 \{3925\}. 2^{2n+1} - 1 \{5967\}. 2^q - 1 \{2820\}. 2^k \{4437, 4947, 5447, 4988, 4996\}. 2^k + 1 \{851\}. 2^{k+1} \{4437\}. 2^n \{5410\}. 2^n \{1536, 5967, 3929\}. 2^n + 1 \{3925, 4939, 5665, 4415\}. 2^{n+1} - 1 \{6457\}. 2^{n+k} \{6457\}. 2^n - (2^n - 1) \{5290\}. 2^N - 1 \{2950, 4776, 6457, 4170, 3925\}. 2^n + 1 \{5957\}. 2^n + 1 \{5957\}. 2^n + 1 \{6182\}. 2 \times 2 \{5856\}. 3 \{368, 4941, 4135, 421, 3991, 4159, 3996, 4980, 4825, 312, 6151, 4075, 6541, 4889, 4890\}. 3 - j \{289\}. 32 \{3941, 4392\}. 3 \times 3 \{2457\}. 4 \{3925, 4271, 4613, 2485, 2486, 421, 3391, 5670, 5473, 4337, 4669, 2913, 4029, 4031, 2775, 2964, 1897, 3485, 3490\}. $94.95 \{3666\}. 5 \{5957, 4753\}. 54 \times 54 \{3444\}. 6 - j \{289\}. 64 \times 64 \{2243\}. 8 \{424, 3404, 4029, 3452\}. 84 \{298\}. $85.00 \{4099, 4100\}. 88062 \{520\}. 8k \{6771\}. 8 \times 8 \{5047\}. 9 - j \{289\}. < \{6159\}. > \{6159\}. 0 \{4312\}. 2 \{5683\}. 5 \{2760\}. 5 \{3854\}. 5 \{2760\}. 5 \{3854\}. 5 \{3854\}. $\{1138\}. 10 \{6819\}. 20 \{7309\}. LN \{3868\}. ln(x) \{1500\}. 5 \{1198\}. log(n) \{1205\}. log(z) \{136\}. LU \{6724, 6489\}. M \{4790, 172, 4089, 2590, 2595, 2604, 2681, 5284, 570, 6270\}. M^E \{2740\}. F_2(x) \{6960\}. f_2 \{4186\}. F_{5,m} \{5630\}. F_{27,m} \{5630\}. R^n \{6832\}. Z^2 \{4017, 4987\}. GF(2) \{5258, 1657\}. GF(2)^2 \{6098\}. GF(2)^m \{4194, 3727, 4872\}. GF(2^{m+1}) \{5430, 4626, 4932, 3830, 4481, 5092, 3712, 3847, 3841, 5459, 2859, 2860, 3711, 4812, 5258, 5121, 4668, 4540, 4984, 2392, 5382, 4588, 4959, 4898, 5386, 3161, 4236, 4887, 4725, 2272\}. GF(2^n) \{4946\}. GF(p) \{2046\}. GF(p^m) \{3448\}. GF(p^m) \{4061\}. GF(q^n) \{4649\}. MECIPTI \{273\}. $\mu \{1400, 4818, 4860, 2273\}. \mu P \{1578, 1973\}. N \{3920, 793, 2297, 2298, 152, 153, 172, 4529, 5020, 4878, 5898, 5632, 4116, 5996, 1271, 3583\}. n_{10} \{1138\}. N_0^2 = -N_0^2 \{3414\}. N \geq 32 \{5794\}. n \log(n) \{6406\}. n \times n \{3103\}. O(1) \{6306\}. O(n) \{1173, 3394, 1516\}. O(n^2) \{2741, 2742\}. O(n \log n) \{6454\}. \Omega \{4874\}. Arcosz \{199\}. Arcsinz \{199\}. Arctanz \{199\}. arctan \{199\}. modp \{1880\}. P \{6445, 4590, 2024, 1111, 879, 1027, 1603, 6961, 4230, 4576, 3312\}. p^k \{6621\}. \pi \{1598, 2198, 2199, 4555, 259, 5586, 1658, 450\}. p \times p \{4534, 4678\}. q \{5724\}. qm \times n \{1596\}. QR \{6060\}. R \{3563, 3025, 1573, 1581, 6349, 5794\}. r = m^k \{1412\}. r^n \{4897\}. r^k - 1 \{4897\}. r^k + 1 \{4897\}. \{r^m = 2, r^m - 1, r^n\} \{5249\}. r \geq 8 \{5794\}. s \{4829\}. sin(BIG) \{5184\}. sin^{-1} \{3092\}. sinN \{172\}. sin x \{364\}.
\sqrt{a^2 + b^2} [6222]. \sqrt{x} [1453]. \sqrt{x/d} [3802]. \sqrt{2} [6907]. \sqrt{x} [1283, 442].
\sqrt{x^2 + y^2} [5621]. T [6055]. \tan^{-1} x [364]. \theta (\log N) [2318]. \times [4022, 3872, 4088].
w [4686]. X [1512, 2856]. x^2 + ny^2 [3666]. x^n [5921, 3270]. y [4368]. Z [5281].

-2 [988]. -adic [1111, 1027, 1603, 2024, 879]. -approximations [5202, 5203].

.NET [6359, 5023].

/m [4818]. /spl [4818].

0.18-CMOS [5718]. 0.4.1rc [6360]. 0.80pJ [6493]. 0.80pJ/flop [6493].
'00 [7262, 7267, 2504]. '01 [7276]. '03 [7305]. '04 [7314, 7322]. '07 [7357, 7363, 7365, 7370]. '08 [7374, 2996, 5329].

1 [209, 3508, 6579, 3375, 2839, 220, 63, 65, 67, 552, 3238, 6611, 4022, 4362, 1142, 5718, 1898, 3822].
1-GHz [6579, 4362, 5718]. 1-Output [5295]. 1.0 [3823]. 1.24Tflop [6493]. 1.24Tflop/sW [6493]. 1.5 [5601]. 10 [5683].
10967-1 [3238]. 10967-2 [4317]. 10967-3 [5109]. 16th [7073, 7406, 7155, 7283, 7296, 27, 7055, 2727].
'11 [7401, 1091, 1365, 1479, 1382, 1288]. 11-bit [4860].
11th [7274, 7168, 7186, 7187, 3147]. 120B [1101]. 128-bit [6261, 4073].
12th [7317, 7383, 7030, 7210, 3416, 7369]. 13 [4276, 2055]. 132-Bit [333].
16-Bit [4486, 6619, 6633, 6971, 6771, 2987, 1237, 1569, 4944, 3040, 1724, 6260, 1449]. 16-bit [1578].
16F/400 [902]. 16th [7346, 7337, 4602, 7031, 7343]. 17 [278, 823]. 17-Bit [634, 633].
1788 [6481]. 1788-2015 [6010]. 17th [7408, 7348, 7264, 7388, 7341].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

4 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

4.4ns [3444].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

The text contains a list of page numbers and section titles. Here is a summary of the content:

algorithm [3201, 4288, 4289, 3827, 3828, 6199, 3539, 3034, 456, 4636, 4638, 4945, 3965, 3540, 1182, 5237, 4789, 2180, 5766, 5652, 6205, 1936, 3841, 4151, 3220, 3399, 3400, 4156, 2862, 504, 505, 2679, 3989, 3846, 5856, 4662, 4970, 2362, 733, 5686, 2696, 2697, 5117, 2514, 2700, 6623, 5779, 4520, 3421, 4523, 4524, 3588, 3737, 4991, 2900, 2211, 5785, 562, 4831, 746, 566, 1727, 2911, 4834, 5000, 1856, 967, 5369, 5936, 3268, 6263, 2740, 5794, 3109, 5489, 2743, 2930, 1872, 2931, 2412, 4694, 5377, 2096, 2547, 4555, 4700, 4859, 981, 1046, 3299, 3140, 3644, 3474, 1887, 3475, 2566, 284, 1892, 2775, 2964].

algorithm [5041, 4717, 5399, 5400, 4232, 3154, 6390, 645, 2447, 3162, 3324, 4724, 5404, 5055, 5956, 3334, 4894, 6589, 2997, 3511, 2013, 6862, 1170, 2166, 3016, 3017, 3018, 3019, 375, 5988, 1099, 1183, 4949, 5448, 423, 3974, 502, 6334, 553, 2054, 3625, 5992, 261, 2769, 3896, 4395, 5597, 6726].

Algorithmen [2357, 2196, 2531, 1664, 2264].

Algorithmes [4628, 5273, 4297, 2720].

Algorithmic [5761, 7350, 3854, 243, 3617, 2760].

Algorithmics [6950, 4434, 5036].

Algorithmique [5036, 4434].

Algorithms [835, 2002, 6558, 4099, 4100, 707, 1770, 3805, 840, 651, 995, 6785, 7331, 3186, 5332, 5617, 6181, 1242, 3019, 6190, 3820, 4622, 1086, 5754, 2837, 4474, 4475, 4628, 3206, 4476, 5885, 1006, 1007, 1008, 1093, 6813, 5349, 3036, 3964, 4130, 6441, 5092, 2036, 2323, 6705, 6706, 5447, 3038, 458, 3698, 721, 808, 862, 6597, 1488, 5995, 5454, 868, 4147, 5102, 2498, 7375, 4155, 4313, 3565, 4501, 3566, 3845, 1490, 1386, 1492, 3236, 4162, 4659, 4660, 3062, 3063, 5675, 2505, 3064, 6112, 6616, 2357, 2196, 4171, 812, 511, 1394, 3856, 7398, 512, 6261, 3075].

Algorithms [4511, 3252, 4331, 617, 5777, 5265, 2893, 1499, 4018, 3084, 2896, 3258, 7220, 7340, 1032, 6733, 3597, 1607, 1852, 672, 1608, 676, 1609, 4830, 7099, 7113, 4353, 4997, 4536, 3262, 438, 347, 467, 351, 3604, 5001, 4359, 2531, 3748, 6946, 4363, 1297, 3751, 3278, 1414, 3755, 1417, 4206, 1418, 1735, 5943, 2753, 3760, 7170, 5945, 6747, 5884, 5855, 7158, 6862, 4562, 759, 2420, 3463, 5296, 910, 697, 3642, 364, 4069, 1315, 2567, 2776, 2777, 5722, 5806, 2906, 923, 2788, 3786, 1664, 2264, 5508, 3322, 1446, 3330, 5057, 5326, 540, 3172, 1065, 3509, 5411, 5904, 4451, 4916, 4264, 5075, 6074].

algorithms [6179, 6684, 6789, 7121, 2628, 2164, 3186, 1925, 410, 3946, 1792, 1177, 2645, 3024, 3379, 4770, 2170, 1801, 3209, 4635, 6817, 3388, 217, 5094, 5097, 5998, 6331, 7148, 3980, 4655, 5662, 1276, 3232, 5252, 1947, 726, 2881, 4333, 2375, 3080, 4520, 1719, 2386, 3739, 815, 1720, 1847, 1605, 5553, 7254, 7265, 7281, 7294, 7308, 7325, 4023, 2525, 4681, 3095, 2720, 4999, 5133, 2397, 2529, 5135, 5370, 6372, 4034, 5795, 4036, 1416, 1629, 5564, 6138, 2231, 4850, 2416, 4555, 2555, 4046, 3886, 4563, 3130, 3131, 3465, 5298, 2426, 1749, 1988, 5162, 4715, 2963, 1055, 2787, 3155, 482, 1668, 4887, 5324].

algorithms [2982, 4895, 2309, 2011, 7099, 7113, 348, 1971, 1043, 1507, 4619].

Algorithms [2011, 375, 1971, 1507].

Alignment [5879, 3809, 3873].

alignments
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5127, 15, 6130, 6368]. **Analytics** [6339]. **Analyzed** [6619, 678, 679, 680, 745]. **Analyzer** [304]. **analyzers** [2334]. **Analyzing** [2346, 6746]. **Anatomy** [3454]. **Anchored** [6420, 6249]. **Ancient** [5745, 6416, 588]. **Andrews** [7270]. **Angeles** [6987]. **Angewandte** [7049, 7048]. **Angle** [2345]. **Angles** [4166]. **angular** [82]. **ANL** [430]. **Ann** [7050, 7183]. **Anniversary** [7194]. **Annotated** [5618, 1212]. **Announcements** [3800]. **Annual** [7040, 7189, 7201, 7246, 7357, 7374, 7147, 7006, 7042, 7132, 7317, 7359, 2037, 7049, 7106, 7138, 7162, 7334, 7197, 7229, 7296, 7355, 7371, 7327, 7268, 7016, 7021, 7271, 7058, 7093, 7018, 7046, 7317, 7355, 7371, 7154, 7353]. **Annuities** [4215]. **Anomalies** [1834]. **Anomalous** [39]. **ANOVA** [5573]. **ANR** [6318]. **ANSI** [6432, 1825, 1826, 4041]. **ANSI/IEEE** [6432, 1825, 1826]. **Answer** [1327]. **Anti** [51]. **Anti-Aircraft** [51]. **Anticipation** [4390, 4998]. **Anticipator** [5509, 4633, 2499]. **anticipators** [6028]. **anticipatory** [3754, 3649]. **Antikythera** [5845]. **antilogarithmic** [4589, 5425]. **Antitrust** [5305]. **Anton** [5495]. **Antonio** [7154]. **ANTS** [7350]. **ANTS-VII** [7350]. **Anwendungen** [1940]. **Anwendungsgebiete** [1456]. **anwendungsorientierten** [1213]. **Any** [5635, 6547, 6402, 4459, 4460, 4322]. **Anyway** [6651]. **AOP** [4509, 4812]. **AP** [1101, 7250]. **AP-120B** [1101]. **AP-ASIC** [7250]. **Apache** [5584]. **APL** [685]. **APMathLib** [4436]. **App** [6296]. **Apparatus** [600, 4292, 3958, 6228, 6492, 3809, 3978, 3840, 3981, 3708, 3873, 2083, 3653, 3328]. **Appearance** [3843]. **Apple** [4471, 5279, 1140]. **APPLESOFT** [994, 1067, 1311]. **Applicability** [1673, 6306]. **Application** [5405, 3919, 4252, 6571, 844, 997, 6410, 3518, 7192, 7205, 7391, 6583, 7178, 40, 6587, 3953, 4284, 4771, 7303, 7348, 3537, 499, 3214, 4155, 6461, 552, 3405, 7152, 7321, 7362, 7376, 7385, 1115, 6480, 3729, 4987, 3257, 1608, 4536, 4537, 4542, 2533, 2537, 6374, 1213, 6141, 7297, 3636, 1746, 7269, 5722, 1894, 7230, 4878, 2787, 6652, 7343, 7188, 6910, 2597, 5816, 934, 6175, 4256, 2619, 1245, 6817, 4137, 2333, 2667, 7148, 3231, 3232, 2686, 5858, 1203, 4665, 6236, 5869, 6275, 3279, 5880, 2757, 4044, 2556, 3123, 2562, 5036, 2963, 3652, 6828, 1444, 1445, 4432, 2273]. **Application-Oriented** [1213]. **Application-Specific** [6571, 7391, 7303, 7348, 7321, 7362, 7376, 7297, 7269, 7230, 6652, 7433, 7188, 7337, 7385, 6910, 2597, 6282]. **Applications** [6770, 6889, 4901, 6162, 7177, 7202, 7232, 4251, 4447, 1539, 5819, 7346, 7360, 4605, 5331, 7286, 1683, 939, 1922, 6077, 7302, 6581, 6313, 6795, 3533, 3690, 3956, 4294, 5645, 2649, 6913, 6814, 2173, 3386, 6328, 5988, 6710, 296, 1706, 1813, 6918, 546, 5102, 4309, 4311, 6715, 7235, 1277, 1383, 1585, 7029, 7045, 7126, 7384, 1282, 5113, 6723, 7218, 5256, 4326, 2884, 5119, 1119, 5361, 303, 7111, 6482, 6486, 6846, 6935, 5783, 4551, 1406, 4829, 6255, 6635, 4842, 7199, 2093, 3759, 4377, 5148, 7066, 6378, 1509, 363, 2253, 1522, 6874, 7020, 6552, 4767, 7189, 6886, 1163, 2986]. **Applied** [7190, 7067, 537, 1172, 3523, 6327, 1109, 7349, 4958, 7409, 6994,
1937, 3554, 5464, 2187, 7018, 4661, 2686, 5356, 2193, 2194, 2359, 2360, 2366,
2510, 4175, 2700, 2376, 2377, 3589, 2206, 3733, 4825, 3867, 1725, 4826,
2523, 2718, 2719, 2217, 5369, 5560, 5009, 2534, 3618, 2700, 2376, 2377, 3859,
2206, 3733, 2384, 4825, 3867, 1725, 4826, 2523, 2718, 2719, 2217, 5369, 5560,
5009, 2534, 3618, 2700, 2376, 2377, 3859, 2206, 3733, 2384, 4825, 3867, 1725,
2523, 2718, 2719, 2217, 5369, 5560, 5009, 2534, 3618, 2700, 2376, 2377, 3859,
2206, 3733, 2384, 4825, 3867, 1725, 4826, 2523, 2718, 2719, 2217, 5369, 5560,
5009, 2534, 3618, 2700, 2376, 2377, 3859, 2206, 3733, 2384, 4825, 3867, 1725,
2523, 2718, 2719, 2217, 5369, 5560, 5009, 2534, 3618, 2700, 2376, 2377, 3859,
150, 6816, 6441, 3211, 5759, 3966, 1369, 1255, 6705, 6706, 6914, 946, 1181, 12, 1803, 4135, 4136, 6916, 7015, 241, 1702, 5447, 6443, 272, 499, 3389, 3543, 3037, 1256, 660, 5535, 5990, 5536, 1573, 1104, 4299, 4885, 543, 378, 948, 5450, 5451, 808.

Arithmetic [3975, 3701, 5918, 865, 6597, 2492, 2664, 2665, 3548, 4489, 4651, 5765, 5350, 6203, 54, 1109, 1017, 1262, 3838, 5453, 1375, 1263, 6705, 6706, 6914, 946, 1181, 12, 1803, 4135, 4136, 6916, 7015, 241, 1702, 5447, 6443, 272, 499, 3389, 3543, 3037, 1256, 660, 5535, 5990, 5536, 1573, 1104, 4299, 4885, 543, 378, 948, 5450, 5451, 808].
3482, 5170, 5402, 5313, 6286, 1524, 5046, 5507, 3788, 4881, 2262, 2263, 2264, 2443, 2444, 6653, 927, 142, 1442, 1666, 4417, 3321, 5174, 5590, 6549, 1156, 1157, 1526, 1446, 1447, 403, 3908, 3657, 2975, 3791, 1058, 4423, 986, 263, 6655, 6879, 4087, 4425, 2802, 987, 4428, 784, 1332, 1671, 933, 1904, 1905, 2132, 3660, 1333, 2811, 4726, 676, 6539, 4578, 3321, 5174, 5590, 6549, 1156, 1157, 1526, 1446, 1447, 403, 3908, 3657, 2975, 3791, 1058, 4423, 986, 263, 6655, 6879. Arithmetic [4087, 4425, 2802, 987, 4428, 784, 1332, 1671, 933, 1904, 1905, 2132, 3660, 1333, 2811, 4726, 676, 6539, 4578, 3321, 5174, 5590, 6549, 1156, 1157, 1526, 1446, 1447, 403, 3908, 3657, 2975, 3791, 1058, 4423, 986, 263, 6655, 6879].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[5623, 2836, 5916, 5986, 5992, 4646, 735, 736, 878, 4015, 6262, 4365, 5141, 3762, 4218, 4382, 4698, 6512, 475, 1666, 5056, 588, 4626, 3542, 3556, 3857, 4688, 3740, 1861, 4838, 4201, 139, 4697, 4699, 4856, 4857, 5019, 4402, 2447, 4581].

Between [3921, 5831, 5116, 4017, 4987, 7053, 573, 3630, 586, 4743, 5825, 6075, 5080, 4122, 4774, 5219, 5092, 659, 3708, 3716, 3268, 4364, 200, 3764, 5954, 3202].

BiCMOS [3554, 3224]. BID [5042]. BIDEC [148]. Biennial [7057, 7073].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Binary-Coded [6422, 5631, 1926, 6324, 5846, 5233, 217, 5452, 1268, 1269, 3053, 1276, 1828, 4319, 3242, 3575, 2878, 2690, 2881, 2514, 2376, 1206, 5781, 1, 4185, 1402, 1722, 226, 392, 3090, 4534, 4678, 680, 817, 3869, 5560, 1209, 6373, 2743, 3627, 6139, 4856, 1643, 5888, 2556, 1981, 5721, 2426, 6808, 1434, 1892, 3653, 5589, 5725, 6544, 3316, 3317, 2794, 3328, 5321, 5324, 785, 4588, 4728, 4729, 6769].

Binary-Coded-Decimal [5114, 1124].

Binary-Decimal [2489].

Binary-Integer [5042].

binary-residue [3869, 3316, 3317].

Binary-Ternary [5405, 5599, 6071].

Binary-to-Decimal [2820, 5907, 148, 216, 1379, 252].

Binary-to-Multidigit [5008].

Binary/Decimal [6289].

Binary128 [5667, 5769, 6120, 6242], binary64 [6923, 5825, 6120, 6242, 6133].

BinFPE [6828].

Biography [4226, 5582].

Biologically [5899].

Biophysically [5381].

Biopolitics [6768].

Biot [6963].

Bipartite [4907, 5358, 3461, 3768, 4053].

Bipolar [2904].

Biquad [1843].

Biquinary [795].

Biresidue [571].

Birmingham [7166, 7095].

Birthday [7135].

bis [61].

Bisection [3205, 6487, 3656, 3204, 3379].

bisection-like [3379].

BIST [4719].

BIT [209, 220, 3674, 3011, 5623, 4927, 1173, 5430, 3941, 4932, 2838, 1567, 5986, 4486, 1576, 6446, 4306, 5459, 2859, 5244, 6922, 3235, 333, 5107, 2056, 4509, 6619, 2064, 2374, 4518, 5691, 4340, 6118, 4988, 558, 4538, 2396, 4542, 3872, 680, 817, 3869, 5560, 1209, 6373, 2743, 3627, 6139, 4856, 1643, 5888, 2556, 1981, 5721, 2426, 6808, 1434, 1892, 3653, 5589, 5725, 6544, 3316, 3317, 2794, 3328, 5321, 5324, 785, 4588, 4728, 4729, 6769].

bit [2328, 4788, 3040, 3976, 4650, 3547, 1377, 1578, 3392, 298, 4493, 4956, 4652, 5103, 2675, 6717, 3406, 6924, 1591, 2363, 2364, 2509, 3857, 2368, 2698, 2370, 2371, 2372, 2373, 2203, 2514, 2887, 4668, 5124, 5125, 4984, 2385, 5871, 6493, 1724, 2520, 2521, 1961, 4534, 4678, 1612, 6941, 2395, 5789, 6260, 6261, 6840, 2220, 2732, 3272, 2224, 6846, 2533, 5287, 1416, 4208, 3286, 1872, 633, 5381, 3626, 4857, 4860, 4861, 2429, 4400, 4073, 3151, 1893, 2907, 4078, 4876, 3907, 2448, 6391, 1449, 1998, 1232, 1669, 2798, 3165, 3910, 3911, 5898, 2272, 1907].

bit-
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 27

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

2599, 7160, 3667, 3801, 5189, 5409, 5602, 5741, 3508, 1336, 317, 7092, 7123, 129, 166, 4483, 457, 272, 499, 420, 1012, 328, 948, 1106, 7059, 5451, 1486, 2492, 2664, 2665, 3548, 4489, 4651, 5765, 62, 661, 544, 1109, 4652, 380.

Computer [7420, 580, 7027, 924, 1056, 1151, 2121, 7144, 1323, 7328, 2975, 6058, 93, 144, 1527, 5811, 5812, 6392, 483, 590, 1764, 3171, 6910, 540, 1326, 1441, 7358, 94, 3497, 287, 593, 1071, 1167, 2066, 594, 536, 4457, 999, 6184, 939, 471, 7332, 943, 1479, 1565, 1695, 1368, 4298, 1013, 1804, 273, 2322, 724, 2378, 3714, 506, 2190, 3574, 2508, 250, 275, 1029, 7280, 3739, 4824, 5697, 344, 564, 681, 2527, 4356, 5369, 2917, 139, 175, 198, 2543, 1505, 976, 756, 695, 2762, 5582, 6645, 1653, 7223, 2773, 2959, 2960, 4870, 919, 1313, 446, 140, 2778, 2580, 2585, 1529, 782.

computer [3337, 990, 991, 5750, 487, 3549, 2045, 7156, 1508, 984, 917, 4099, 4100, 4619, 1637].

Computing [7027, 7276, 7323, 7223].

Computers [690, 754, 974, 1212, 7055, 1886, 4229, 78, 3203, 1977].

Computers [4017, 1612].

Computing [7021, 7231, 7344, 7357, 7374, 7379, 6291, 73, 4732, 210, 7067, 3667, 6399, 6667, 7317, 7092, 45, 7161, 7203, 4450, 6299, 1462, 3675, 6411, 6413, 5969, 100, 1468, 6794, 7332, 5832, 6429, 1791, 6804, 7248, 7382, 4284, 4291, 7304, 3030, 6325, 7193, 2035, 5647, 1805, 5450, 5766, 106, 3702, 2335, 5851, 6000, 330, 331, 332, 6334, 3561, 6713, 6104, 507, 7195, 7262, 7363, 7424, 4159, 7403, 3239,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Design [1194, 7124, 7009, 7087, 7108, 7127, 7139, 7149, 7164, 7180, 7207, 7217, 7238, 7276, 7277, 7278, 7289, 7318, 6325, 6913, 2483, 3033, 2173, 4782, 6816, 3696, 1369, 1571, 1104, 5648, 5649, 5848, 3699, 3040, 5993, 3976, 865, 3391, 4141, 1810, 6204, 1375, 1263, 867, 380, 4798, 425, 5657, 1267, 459, 3713, 3986, 6457, 1942, 4504, 5665, 5666, 4964, 5250, 5667, 5769, 506].

Designed [6395, 1929, 1833, 5931].

Designs [5349, 5536, 4484, 4793, 5856, 6349, 5373, 1511].

Determinability [5771, 760, 4719, 6920, 6764]. deterministic-stochastic [6764].

Determination [503, 1604, 3446, 1740, 577, 3930, 5671].

Determine [2996, 5329, 2166].

Determining [1036, 691, 757, 776, 3708, 1403, 2214].

Determinism [5334, 6187].

Deterministic [5771, 760, 4719, 6920, 6764].

Desire [1498].

Desk [711, 115].

Desk-Calculator [115].

Desynchronizel [5730].

Detect [5220].

Detectable [2116].

Detecting [1339, 188, 4792, 6482, 6157, 6662, 6582, 5158, 2446].

Detection [5186, 6404, 5820, 6068, 486, 841, 790, 6407, 6785, 5414, 795, 3383, 6096, 3215, 4303, 5660, 1392, 1599, 1836, 6828, 885, 278, 6932, 279, 5873, 5278, 2091, 2929, 1630, 5882, 4379, 3761, 2103, 4390, 4223, 2567, 1148, 6152, 1663, 6286, 927, 928, 5821, 5822, 2154, 1089, 1090, 5846, 1254, 1182, 5096, 2674, 5104, 3231, 248, 5866, 1719, 2387, 2709, 6138, 5029, 2962, 2807].

Detect [5677, 4593, 5678].

Determinant [3953, 2831].

Determinants [3671, 3828, 5856, 6349, 5373, 1511].

Determine [2996, 5329, 2166].

Determining [1036, 691, 757, 776, 3708, 1403, 2214].

Development [7034, 7189, 3512, 3188, 5525, 7068, 1087, 2030, 2714, 3090, 2216, 2102, 5574, 3125, 5727, 6549, 3489, 1676, 2462, 1783,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Developments

Deviates

Device

Dezimalrechner

DFE

DFT

DFU

Dhahran

Diagnostic

Diagnostics

Differential

Differentiation

differently

Difficult

Difficulty

Digital

Digital-Filter

digital-signal
[220]. Digital-to-analog [162]. Digits [2996, 5329, 538, 795, 1172, 3020, 95, 1570, 1800, 947, 950, 1016, 1109, 4976, 3587, 5878, 228, 4552, 520, 4049, 829, 832, 3485, 3660, 2994, 3179, 3501, 3502, 3503, 3504, 3505, 3506. 88, 130, 3840, 131, 3716, 2198, 2199, 8, 2928, 4560, 5586, 1523, 2446, 4723).

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

4147, 6003, 5663, 3711, 4312, 3713, 3986, 4157, 4963, 4660, 3993, 3407, 3408, 725, 6221, 334, 5469, 5855, 3999, 3411, 4002, 3722, 3723, 6474, 248, 4510, 734, 5360.

Division [5545, 5687, 4975, 4331, 276, 339, 556, 557, 618, 1603, 304, 3420, 4669, 5263, 5476, 25, 278, 1287, 1845, 1031, 121, 1719, 2070, 2896, 5784, 6936, 3986, 6221, 334, 5469, 5855, 3999, 3411, 4002, 3722, 3723, 6474, 248, 4510, 734, 5360]. Division [5545, 5687, 4975, 4331, 276, 339, 556, 557, 618, 1603, 304, 3420, 4669, 5263, 5476, 25, 278, 1287, 1845, 1031, 121, 1719, 2070, 2896, 5784, 6936, 3986, 6221, 334, 5469, 5855, 3999, 3411, 4002, 3722, 3723, 6474, 248, 4510, 734, 5360].

Division [4405, 6756, 159, 206, 923, 1152, 2120, 480, 582, 6153, 6283, 2439, 6156, 2969, 3789, 5809, 985, 532, 235, 2267, 6059, 2978, 2979, 2980, 6550, 5182, 5756, 3795, 649, 2597, 3802, 934, 451, 3510, 1069, 4748, 6903, 3362, 2468, 5079, 3192, 3367, 4114, 2633, 2471, 3528, 932, 4662, 4970, 3689, 5840, 3247, 2882, 3859, 391, 4012, 3081, 4016, 4528, 5365, 5553, 2900, 2074, 2520]. division [3089, 3742, 4534, 4678, 4680, 4681, 2718, 2719, 3095, 566, 1855, 5558, 6840, 2724, 2913, 3104, 3265, 3266, 3437, 4358, 3871, 5936, 5875, 2083, 2919, 443, 4031, 3441, 3615, 4034, 4844, 4690, 2930, 4851, 4381, 4800, 123, 155, 3885, 3886, 1046, 764, 3299, 3133, 3134, 3465, 4866, 6645, 3475, 3774, 2431, 2432, 1959, 253, 1735, 1449].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

F [5420]. **F00F** [3819]. **F77** [3431]. **F90** [3431]. **Face** [6845]. **Face-off** [6845]. **Facilities** [4125, 811]. **Facility** [2067]. **fact** [3648]. **Factor** [5186, 1787, 2774, 1941, 2707, 1411]. **Factor-2** [5186]. **Factorial** [2861]. **Factorial-Base** [2861]. **factorising** [592]. **Factorization** [6489, 5881, 5942, 2786, 6060, 4656, 3293, 4709, 5733]. **Factors** [6891, 2035, 6030, 2174]. **factor** [3554]. **fading** [4189, 4584]. **Fail** [6425]. **Failure** [3500, 1493, 3735, 2827, 3589, 3088]. **Fairchild** [393]. **Fairmont** [7322]. **Faithful** [4251, 4456, 5264, 4378, 5388, 5389, 3461, 3765, 4248]. **Faithfully** [5915, 5996, 6006, 6622, 6054]. **Fall** [6998, 7008]. **fallback** [6947]. **Falls** [7304]. **Family** [2455, 4741, 1546, 1547, 2618, 5338, 5341, 1798, 5651, 5653, 4802, 3059, 3234, 4007, 4329, 1610, 3259, 4222, 3773, 5314, 4430, 2460, 5337, 5922, 7097, 2522, 2905, 3309, 3326]. **famous** [6645]. **Fan** [2097]. **Fan-In** [2097]. **Fans** [6755].

FAQ [4915, 6798, 6799, 6800, 6801, 6802, 6803]. **FasMath** [2476]. **Fast** [4437, 6557, 6771, 3493, 4241, 4597, 5739, 368, 211, 3805, 5192, 6069, 2144, 6896, 3004, 3005, 5613, 3186, 3809, 2013, 6684, 1682, 6182, 2015, 937, 6574, 5625, 1551, 2297, 2298, 4274, 5427, 1357, 1555, 6583, 6584, 6585, 1002, 3945, 6431, 1562, 1793, 3022, 3199, 2642, 5436, 3201, 5343, 5833, 4474, 4475, 4771, 5838, 3380, 3957, 1796, 6324, 3032, 6912, 2484, 4946, 3385, 4134, 805, 3970, 5992, 1574, 3699, 1807, 1488, 1812, 1580, 545, 2042, 5461, 3842, 5242, 3562, 3712, 5538, 4802, 3564, 3566, 2677, 1276, 6462, 3405, 3232, 3989, 6349, 6219, 3408, 6107, 300, 5859, 4173]. **Fast** [4326, 2511, 2694, 1395, 3251, 3727, 1603, 3859, 5777, 6625, 1845, 5271, 5478, 1031, 5128, 1850, 2073, 4994, 3098, 4682, 2530, 6130, 6368, 5703, 6947, 6036, 6037, 6637, 5137, 5286, 1131, 903, 3613, 4367, 4543, 4686, 5795, 2741, 2742, 3755, 4036, 6507, 5290, 5016, 3760, 2756, 4554, 4855, 4382, 4797, 1642, 2104, 5390, 543, 5570, 4050, 1512, 1144, 4864, 2423, 4393, 6386, 6518, 3137, 2424, 2426, 2564, 2567, 4072, 1657, 2118, 1054, 5952, 6388, 3316, 3317, 6289, 6761, 6875, 834, 315, 2801, 2980, 3329, 3330, 3487, 5176, 2130, 5321, 5322, 5955, 2803, 5898, 4430, 5181, 5182, 2814, 4764, 5217]. **Fast** [4235, 4882, 6290, 787, 2987, 2460, 936, 5749, 1468, 6306, 2020, 6693, 3378, 4773, 2844, 3028, 3828, 3958, 4481, 3969, 4789, 4648, 2180, 1704, 5454, 1936, 6332,
Filters [1461, 3351, 3352, 3359, 6792, 4769, 727, 5861, 885, 6955, 6535, 6287, 6653, 1061, 1162, 1533, 2275, 1912, 1460, 6896, 3003, 1775, 3677, 2291, 3811, 3189, 2161, 4111, 4754, 1246, 4123, 1253, 4290, 2311, 3536, 1254, 659, 720, 3837, 1191, 1939, 4504, 1022, 1493, 1833, 2353, 1949, 3244, 3245, 464, 729, 3246, 2365, 2204, 3108, 569, 6136, 4044, 1506, 1874, 1974, 2415, 2550, 2759, 2939, 824, 2941, 1882, 5890, 1049, 5030, 2252, 4228, 1752, 3785, 1761, 1903, 2588, 2453, 2810, 3202].

[5397]. flagged [4924]. flags [5158]. Flap [5497]. flash [5143]. Flaw
[3372, 3455, 3345, 3302]. FLECKmarks [5352]. flerformat [1704]. Flex
[2026]. Flex/32 [2026]. FlexBlock [6951]. flexibility [3159]. Flexible [5448,
6445, 6708, 6709, 5764, 6220, 4513, 1850, 6951, 683, 4707, 2796, 6659, 4480].
flexiblen [1850]. Flexxkomma [6375]. Fließkomma [2262, 2263, 2264, 2443,
2444, 1448]. Fließkomma-Arithmetik [2262, 2263, 2264, 2443, 2444, 1448].
Fließkommapakets [2263]. Flight [3735, 3589]. flip [5871]. Float
[2077, 2444, 1448]. Fließkomma-Arithmetik
[1850]. flexiblen
[6445, 6708, 6709, 5764, 6220, 4513, 1850, 6951, 683, 4707, 2796, 6659, 4480].
flexiblen
[2026]. Flex/32
[2026]. FlexBlock [6951]. flexibility
[3159]. Flexible
[5448, 6445, 6708, 6709, 5764, 6220, 4513, 1850, 6951, 683, 4707, 2796, 6659, 4480].
57 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[5774, 3728, 735, 736, 878, 1028, 5863, 3254, 6482, 6483, 6828, 6829, 6234, 6116, 6239, 6023, 4983, 2706, 6118, 4821, 4986, 6119, 2388, 2407, 2408, 6371, 6506, 663, 900, 5011, 5137, 5286, 2738, 4035]. Floating-Point

[3614, 3616, 3752, 2925, 5879, 2741, 2742, 5372, 6954, 1968, 630, 1299, 2537, 2227, 6639, 5942, 6957, 687, 4213, 5943, 2749, 2750, 3116, 6511, 5491, 5500, 5656, 5379, 5380, 6377, 2237, 2238, 1215, 3629, 6140, 2239, 977, 3122, 2240, 4559, 2241, 2761, 5021, 5388, 5389, 5569, 5886, 6642, 6382, 1646, 6274, 3889, 1513, 4051, 1428, 1740, 4863, 5025, 5296, 4393, 4706, 5026, 5717, 5028, 2946, 6967, 5579, 5802, 3640, 2425, 204, 2947, 2769, 2953, 3142, 3143, 3305, 3645, 3646, 2251, 5891, 6150, 6867, 6051, 6052, 6523, 1985, 2958, 2565, 4868, 1432, 1433, 1750, 5497, 5039, 1314, 5805, 1751, 5499, 2434]. Floating-Point

[2571, 2572, 2965, 1439, 5500, 6649, 1754, 3478, 4875, 6054, 4078, 581, 3310, 6280, 5951, 6974, 5310, 1992, 833, 5501, 2786, 3479, 2788, 6651, 3313, 6281, 5807, 3788, 3157, 6156, 6389, 2263, 207, 1442, 1666, 2581, 5051, 5174, 5318, 5319, 5509, 5510, 5593, 1328, 1998, 2975, 208, 3164, 2266, 6158, 5177, 2589, 784, 2983, 1671, 5325, 4093, 6765, 6766, 6551, 5058, 5513, 5597, 5059, 5326, 5183, 6553, 5642, 5834, 4578, 6284, 4444, 6888, 4439, 2135, 2136, 407, 3178, 1912, 4253, 6411, 2290, 6900, 6901, 1546, 1547, 1683, 5203, 6417, 4750, 4923, 2467, 6307, 2630, 2631, 2632, 5908, 5974]. Floating-point

[1766, 1767, 6067, 4102, 2825, 3001, 5519, 5821, 5822, 2283, 6896, 2607, 2284, 6529, 5193, 5194, 2147, 2027, 5748, 5464, 1275, 3848, 6924, 4164, 4163, 3996, 3246, 249, 2883, 4514, 880, 6016, 6233, 4519, 4819, 6622, 2381, 6729, 6362, 1724, 3600, 963, 3091, 6838, 6255, 2218, 3872, 2082, 2534, 5565, 1972, 1973, 6142, 3888, 4225, 4867, 2112, 2427, 2255, 1990, 4228, 6151, 3785, 5311, 3154, 2790, 1057, 3655, 1324, 6388, 1444, 1445, 1446, 1447, 5897, 6656, 5529, 1902, 2137, 3338, 2815, 3914, 1533, 6160, 5407, 6063, 705, 1457, 2598, 2993, 3343, 3344, 3345, 4443, 6295, 6402, 2457, 1067, 5605, 1765, 227]. floating-point

[2166, 1766, 1767, 6067, 4102, 2825, 3001, 5519, 5821, 5822, 2283, 6896, 2607, 2284, 4529, 5193, 5194, 2147, 2027, 5748, 4740, 5074, 2289, 2151, 2610, 3009, 1778, 4264, 4743, 4744, 5075, 5906, 6179, 3677, 2152, 5200, 5521, 4267, 999, 4748, 5355, 5522, 6903, 2153, 1000, 1171, 6304, 5752, 6576, 3189, 4924, 2155, 6421, 1351, 3364, 4925, 1553, 6308, 4928, 2021, 2629, 3815, 4464, 3937, 3940, 1557, 5431, 5636, 6080, 1926, 3946, 4625, 5434, 2306, 2833, 2834, 2835, 3952, 6197, 5344, 5345, 2645, 6318, 5643, 3023, 4477, 3955, 3025, 240, 4774, 5088, 5218, 4292, 945, 4880, 5090, 4938, 2312]. floating-point
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Fold Fonctionnelle Fonctions Forces Forcing Forensic Foreword

Formal Formalisation Formalization Formally Formally-Proved Formally-Verified Formats Format formler formelles

Formulas Formulated Formulation Formulations Forslag Forsythe Fort

forthcoming FORTRAN FORTRAN/77

Fortran-90 FORTRAN/77 Furth Foundations foundation

Four Four-Quadrant Fourier Fourth Fourth ANR FP-ANR FP-Arithmetic GP

FPGA FPC FPChecker fp16 found
Frequency-hopped
2521, 2720, 5132, 1968, 687, 973, 1138, 5036, 17, 4434, 4435, 5062
4264, 4266, 4457, 4744, 5750, 6184, 3369, 29, 40, 4628, 5354, 5362, 4183, 4820, 1,

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

1188, 636, 1326]. Gene [4928, 4941, 4992]. Gene/L [4928, 4941, 4992].

General [287, 5520, 1076, 4931, 5976, 6798, 857, 858, 1009, 5650, 5244, 7195, 734, 1870, 4382, 6054, 1440, 2441, 1326, 592, 2460, 291, 2633, 5243, 4827, 2393, 2394, 2220, 4697, 4238, 2273, 2646, 4882, 1188]. General-Purpose [5244, 7195, 6054, 2460, 2393, 2273].

Generalisation [2180]. Generalize [4828].

Generating [6676, 6784, 4761, 4762, 455, 6599, 2072, 2080, 2219, 174, 6943, 2545, 585, 1958, 2378, 5035].

Generation [7419, 4591, 2274, 6175, 5331, 3681, 4273, 5635, 4769, 4943, 2179, 6445, 6099, 7421, 7428, 7430, 546, 6821, 2500, 7307, 6220, 334, 5541, 389, 4675, 5554, 4354, 966, 109, 4542, 5703, 2738, 4042, 4211, 5583, 6536, 1524, 1327, 5403, 5177, 2608, 2164, 1692, 3955, 3392, 6603, 5930, 1724, 3873, 3617, 3114, 3632, 4883, 834, 3326, 2128, 3335, 4588, 4728].

Generative [6716, 6922].

Generator [6309, 5848, 6343, 6468, 6631, 6752, 3552].

Generic [4284, 2313, 4316, 4821, 4986, 2746, 6519, 3795, 4437, 3685, 3552].

Genus [4308].

Geometric [1682, 3363, 4479, 2341, 3593, 3262, 3126, 3640, 3928, 4267, 4005, 4178, 4335, 2703, 4990, 5277, 4363, 3296, 3639, 3771].

Geometry [7201, 7246, 7271, 4771, 3037, 3996, 6993, 3811, 3544, 2394, 7221, 4238].

George [44].

Georgia [7190, 7132, 7424, 7100].

German [2339, 2062, 536, 61, 2657, 381, 3063, 736, 1206, 892, 2898, 820, 567, 3118, 1309, 102, 761, 639, 785, 4433, 4727, 35, 264, 1441].

Germany [7212, 7213, 7161, 7234, 7375, 7350, 7249, 7333, 7250, 7048, 7283, 7199, 5420, 61, 7312, 7252, 7289, 7369, 7404, 7400].

Gers [7170].

Gesamtart [1441].

Geschichte [785].

Gesellschaft [7049].

Get [6366, 2155, 3559, 6265, 2450].

Gewisser [1776].

GF [4230, 3755, 4518, 6445, 4306, 4175, 4327, 4509, 4510, 4328, 2696, 4389, 4424].

G F L O P S [3991, 4159].

Ghz [5601, 6579, 4362, 5718].

Giant [112].

Giants [1463].

Gigabyte [6728].

Gigaflops [2616, 2730].

Given [1297, 5488, 7128].

Givens [6084, 2668].

Gives [5305].

Giving [2099].

Glasses [5707].

Glassey [5431, 5636].

Gleichungssysteme [4433, 4727].

Gleitkomma [878, 2897, 2898, 735, 736, 2573, 1328].

Gleitkomma-Arithmetik [878, 735, 736].

Gleitkomma-Prozessoren [1328].

Gleitkomma-Prozessoren [2898].

Gleitkommaarithmetik [878, 735, 736].

Gleitkommandarstellung [761].

Gleitkommaformat [1595].

Gleitkommaprozessor [1754, 3152].

Gleitkommarechnern [2339].

Gleitkommazahlern [1076, 1940, 2062, 2218].

Gleitpunktalgorithmen [3062, 3063].

Gleitpunktstern [2016].

Glitch [6645].

Global [3513, 3536, 507, 1195, 7163, 3582, 4537, 3620, 3628, 5830, 5243].

Globally [6902, 3635].

GLOBECOM [7163].

GLSVLSI [7314, 7373].

GMICRO [2200].

GMP [4453, 5073, 4240, 5182, 5237].

Gmp-based [5237].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6794, 1790, 4466, 3530, 3948, 3196, 6192, 6086, 267, 5640, 1564, 4631, 3381, 3030, 3539, 5532, 5646, 3210, 118, 2036, 1369, 1370, 1482, 3213, 4136, 5647, 6707, 5448, 1805, 807, 4650, 90, 1488, 5653, 5994, 1376, 4307, 192, 330, 331, 5852, 4500, 4658, 4964, 1113, 1710, 1945, 2503, 7424, 2188, 4159, 5675, 3409, 5676.

High [5468, 1948, 6111, 6226, 4170, 3577, 668, 5115, 3068, 3723, 3249, 4972, 1025, 1601, 3076, 6015, 556, 6827, 6016, 6231, 2066, 3420, 4980, 6356, 738, 135, 225, 6359, 6930, 4018, 4528, 1123, 3739, 558, 1402, 6936, 4650, 90, 1488, 5653, 5994, 1376, 4307, 192, 330, 331, 5852, 4500, 4658, 4964, 1113, 1710, 1945, 2503, 7424, 2188, 4159, 5675, 3409, 5676].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[7048]. Institute [7190]. Instruction [6773, 4242, 4440, 6292, 2634, 5530, 5847, 6818, 1814, 2343, 2509, 5258, 5265, 5269, 972, 3882, 5327, 2597, 6402, 1091, 1365, 4292, 6320, 6324, 6088, 6444, 2338, 1815, 3980, 1201, 2228, 6960, 5804, 3486, 4890, 6444]. Instruction-Level [5269]. instruction-set [5327].

[4495, 4654]. Inverting [90, 72]. Investigating [6554, 6213]. Investigation
[6663, 3100, 3894, 318, 2825, 3001, 5487]. investigations [756]. Invisible
[4900]. Invitation [1496, 1714]. Invited [4787, 4850, 4862, 7319]. Involved
[6574]. involving [5527, 3623, 3624, 5159]. IoT [6708, 6709, 6634]. IP
[6578, 6519, 6536]. Ipm [61, 61]. Ipojuca [7309]. Ireland [7274, 7390, 7388].
iRRAM [4361]. Irrational [537, 1997]. Irreducible [5430, 5141, 5107, 4701].
Irregular [6751, 6864, 6964, 6965, 6966]. ISA [6452, 6788, 6044]. ISAAC
[7247, 28]. ISAs [6826]. ISCAS [7335, 7263]. ISIC [7365]. ISMVL [7244].
ISMVL'07 [7367]. Isn't [542, 2512, 3122, 3659]. ISO [3848, 2868, 1711, 3849,
5463, 4971, 6629, 2450]. ISO-Pascal [2450]. ISO/IEC [2868, 1711, 3238,
3849, 4317, 5109, 5110, 5111, 5112, 5465, 6610, 4971]. ISO/IEC/IEEE [5673].
ISO/IEC/TR2 [3848]. Isogeny [6415]. Isogeny-Based [6415]. Isolating
[4656, 6604]. isolation [6300, 5401, 5178, 2807]. ISPAN [7331]. Israel
[4619]. ISSAC [7174, 7234, 7219, 7310, 7270, 7400]. ISSCC [7107]. Issue
[5189, 4778, 3975, 6217, 4320, 4009, 4177, 5024, 6766, 2190, 5007, 6381]. Issues
[4732, 1768, 3573, 1391, 6629, 3612, 3752, 3881, 5945, 4271, 5874, 3458, 2951,
4065, 4399]. ISVLSI [7359, 7334, 7327]. Italia [3884]. Italian [130, 131, 3884].
Italy [7347, 7094, 7184, 7051, 7169, 7188, 7257, 3884]. Itanium [4443, 4468,
4622, 4162, 4163, 4659, 4660, 4334, 4347, 4527, 4677, 4718, 4875]. Itanium-2
[4527]. Itanium-Based [4875, 4468]. Iterated [233, 1545, 4917, 5997, 5037].
Iterating [2078]. Iteration [4738, 1092, 5917, 541, 4801, 2072, 568, 3613,
6547, 5051, 5319, 6300, 597, 941, 5671, 5924, 3104, 3437, 1970, 4848, 76, 4885].
Iterations [1185, 1259, 2912, 2980, 4149, 5118, 4569, 2801, 930, 1160].
Iterative [649, 6061, 320, 650, 1347, 6906, 714, 1358, 1555, 1084, 3820, 268,
855, 271, 807, 151, 867, 952, 2352, 2354, 1393, 6476, 876, 556, 618, 1603, 3419,
5124, 6361, 4184, 624, 6628, 440, 629, 6739, 2090, 688, 6047, 3635, 5717, 5499,
6152, 4410, 6974, 1322, 5724, 5894, 5725, 183, 5595, 2135, 2136, 5085, 240, 6332,
6333, 3570, 3577, 5125, 4523, 1207, 5003, 4694, 6746, 4700, 2243, 1745, 2775,
4079, 701, 779, 4887, 5055, 4432]. IV [408, 409, 551, 1093, 7111, 765, 6993, 7085].
IX [7254].
July [7101, 7102, 7189, 7212, 7190, 7345, 7226, 7380, 7361, 7416, 7205, 7391,
7073, 7350, 6987, 7337, 7362, 7376, 7385, 7388, 7403, 3416, 7210, 7219, 3731,
7228, 7254, 7294, 7099, 7113, 7415, 7078, 7221, 7158, 7297, 7404, 3147, 7186,
7187, 7269, 7230, 7434, 7400, 1496, 4081]. Jump [5368]. Jumps [3699]. June
[7189, 7201, 7246, 7271, 7147, 7160, 7272, 7301, 7380, 7381, 7275, 7134,
7423, 7028, 7303, 7073, 6987, 7080, 7062, 7217, 7338, 7427, 7406, 7168, 7155,
7368, 7425, 7183, 7341, 2727, 7411, 7039, 7221, 7169, 7170, 7066, 576, 3147,
7186, 7187, 7422, 7420, 7084, 7057, 7130]. Just [5089, 6910, 4759].
K5 [3426, 4048]. K6 [3992, 3875]. K6-2 [3992, 3875]. K7 [3885].
K7TM [4034, 3886]. Købe [7393]. kA/cm [5683].
Kahan [567, 5418, 6101, 5856, 1627, 3892, 3893, 3793]. Kalman [2275, 6955,
2589]. Kalray [6219]. KaratSaber [6977]. Karatsuba [4636, 6602, 6353, 6244,
5551, 5002, 6977, 4095]. Karatsuba-Based [5551]. Karatsuba-Like [5002, 6602].
Kentucky [7074]. Kernels [2946, 2764, 2945]. Key [5517, 3805, 6341, 4326,
4510, 6479, 6637, 3755, 5801, 4137, 3740, 4036, 2934]. Key-Exchange [6637]. keying
[3090]. Keynote [5819, 2635, 5845, 6001, 6713, 6046, 6064]. Kharosthi [5483].
Kleine [1309]. Knot [753]. Knotenpolyominoen [753]. Know [4282, 2846, 2664,
2651, 2975, 2]. Knowledge [5736]. Known [5844, 816, 4748]. Knuth [1477, 6049].
Kobe [7335]. Koblitz [5780, 5328, 5046, 5346, 4308]. Kolloquium [1456].
Komm [102]. komplexe [2016, 2065]. Kong [7305]. Konrad [1353].
konverter [3306]. Konvertierung [1940]. Konvertierungsroutein [2443].
Konvolutionssumme [3118]. Korea [7250, 7356]. Koren [4619]. Krivine
[6494, 6268]. Krylov [3509, 6817, 4227]. Kulisch [1637, 1638]. Kummer
[6845]. kvadratroden [1303]. KY [7304]. Kyoto [7422, 3154].

L [1455, 6685, 1637, 4736, 4928, 4941, 2351, 4992]. L-U [2351]. L.
[24, 1638]. l.s.d [2121]. label [2993]. Laboratories [73, 94, 2714].
Laboratory [6986, 3508, 4047, 5053]. Ladder [6628, 880, 6373]. Lafayette
[7178, 7240, 7327]. Lagrange [5070]. Lahey [3800]. Lake [7364, 7386].
Lakes [7314, 7373, 7240, 7256]. lambda [6983]. lambda-calculus [6983].
Lancaster [7128]. Lanczos [3972, 5133]. Land [6247]. Language [7130,
7315, 2819, 2593, 1693, 1363, 4280, 4241, 4282, 1482, 4140, 4301, 1374, 3704,
3225, 811, 2868, 4161, 2687, 4971, 3854, 1026, 1619, 926, 3917, 6402, 994, 5632,
1479, 1698, 2867, 5110, 5111, 5112, 5465, 613, 2880, 1498, 1717, 5550, 2539,
2540, 2098, 2760, 1748, 2782, 1661, 2977, 3238, 4317, 5109, 3120]. Languages
[7119, 7214, 1181, 4136, 3043, 4323, 4188, 5383, 7053, 977, 3788, 7071, 243, 2181,
3848, 3849, 4164, 5465, 7096, 3261, 1044, 5044, 3327, 1076, 7304]. LAPACK
[2841, 6807, 6256]. Large [6986, 1539, 6784, 843, 6573, 4112, 5430, 5837, 5645,
2850, 2672, 5240, 4150, 1386, 4324, 6232, 25, 2073, 3603, 5016, 1633, 6264,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

logarithmic-exponential

London [7416, 7089, 43]. Long [3361, 4927, 2635, 4653, 5663, 428, 6022, 3596, 3597, 6841, 4375, 829, 4077, 3691, 2656, 4496, 5689, 2766, 5719, 5803, 5595].

Long-term [2548]. longer [6366].

L¨osung [1566, 4433, 4727]. Lottery [6966]. Louis [21, 7093]. Louisiana [7106, 7240, 7327].

Louisville [7074]. Low [2815, 4905, 4906, 1339, 1770, 6677, 6788, 6575, 6790, 6189, 596, 4754, 6424, 4926, 4756, 3817, 5211, 5212, 6909, 6196, 5221, 5439, 3963, 6816, 3540, 6914, 6329, 4141, 1376, 3839, 6918, 5657, 6919, 3712, 6460, 4964, 5667, 5769, 3990, 6111, 6470, 6926, 4664, 3857, 5861, 6231, 6830, 4984, 4345, 6932, 4192, 5873, 6945, 4029, 4030, 4031, 6634, 6635, 4838, 4370, 4545, 6956, 4213, 4377, 2757, 5882, 6511, 5566, 6744, 4698, 4699, 4857, 5019, 5348, 4050, 4052, 4864, 5457, 640, 5580, 5950, 6522, 6053, 5499, 2968, 6873, 927, 6875, 4420, 3910, 6881, 6658, 6882, 4589, 5900, 5912].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

multipliers [3977, 5096, 2860, 2187, 3235, 5107]

multiplies [1487].

Multiplikation [1788, 639, 1449].

Multiplikationsprogramme [1723]. Multiply [5959, 2003, 6410, 5417, 2015, 3011, 4923, 6185, 6310, 6427, 5429, 6720, 6635, 6863, 640, 5892, 3777, 6151, 6551, 6552, 6659, 2133, 4437, 3343, 4456, 2291, 4750, 3015, 3980, 4506, 4519, 4021, 5931, 4998, 4685, 3626, 5575, 4961, 3112, 2291, 4750, 4961, 4606, 4519, 4021, 5931, 4998, 4685, 3626, 5575, 4713, 4716, 4883, 1669, 2981].

Multiply-Accumulate [4933, 6329, 6720, 6635, 6863, 3777, 6552, 6659].

multiply-accumulator [4716].

Multiply-Add [6410, 5417, 4923, 5429, 2500, 5250, 3407, 3850, 4334, 3084, 5696, 5566, 5379, 5380, 5020, 6859, 6863, 4706, 640, 5892, 3777, 6151, 6551, 6552, 6659, 2133, 4437, 3343, 4456, 2291, 4750, 3015, 1561, 1569, 4954, 3980, 4506, 1587, 3570, 4965, 4519, 4021, 5931, 6028, 2906, 4998, 4685, 3626, 5575, 4713, 4716, 4883, 1669, 2981].

Multiply-Add-Fused [5268, 5269, 5270, 4819, 4713].

Multiplication [6399, 2822, 2823, 2997, 3348, 6579, 4119, 5655, 6003, 6216, 6007, 3571, 6246, 5279, 1739, 3763, 3949, 5443, 3079, 3253, 4178, 4335, 2075, 5889, 5392, 2423].

Multiprocessor [2677, 2107, 1687, 5139, 5728].

Multiprocessors [3341, 1823, 2582]. multIPULPly [6703], multipurpose [2457], Multispeculative [6083].

Multistep [2382].

MultiTitan [2029, 2193].

multivalued [3201].

Multivariable [1119].

Multivariate [2882, 3888, 6263, 6372, 3887].

Munich [7333, 7400].

muP [2488].

My [5810, 3171, 6028].

mystery [2114].
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 87

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

4927, 599, 212, 1252, 1563, 5754, 5435, 6436, 3533, 3690, 3956, 4294, 6321, 3832, 1719, 3383, 6200, 3036, 5447, 423, 169, 327, 328, 6819, 5993, 869, 1707, 244, 2041, 4959, 5661, 549, 1190, 1269, 7375, 6337, 5249, 1585, 6106, 6347, 1593, 1115, 1116, 1282, 3721, 194, 337, 1392, 1599, 3415, 734, 812, 6619, 6826, 195].

Number [6351, 1117, 1397, 1840, 5547, 5861, 737, 5777, 5865, 25, 1030, 1207, 4670, 278, 6728, 4018, 4989, 890, 6490, 6731, 6938, 5276, 5131, 4533, 677, 1127, 1853, 4536, 3097, 6839, 2908, 308, 1616, 3438, 5008, 899, 3874, 1131, 903, 3443, 2739, 1413, 3447, 3280, 3281, 4370, 4545, 2538, 4042, 4211, 971, 1134, 751, 1871, 4536, 328, 6819, 5993, 869, 1707, 244, 2041, 4959, 5661, 549, 1190, 1269, 7375, 6337, 5249, 1585, 6106, 6347, 1593, 1115, 1116, 1282, 3721, 194, 337, 1392, 1599, 3415, 734, 812, 6619, 6826, 195].

Number [4082, 4234, 2790, 3653, 1995, 3316, 3317, 3318, 5317, 141, 4420, 2796, 2801, 3166, 3167, 3331, 3332, 4089, 4090, 4091, 4426, 4427, 4584, 4585, 4586, 2803, 2804, 2805, 4891, 533, 785, 2984, 2812, 2813, 6769, 4754].

Number-Theoretic [4042, 4211]. Numbers [7300, 7345, 650, 996, 4107, 39, 5072, 1464, 1076, 6301, 2465, 539, 5825, 6075, 3516, 6425, 6426, 7233, 4462, 1356, 2473, 6583, 322, 1362, 1088, 1793, 1794, 4284, 149, 6702, 4777, 6440, 6440, 656, 1184, 4786, 7312, 55, 862, 1486, 3701, 6599, 54, 3704, 6100, 6919, 2672, 547, 548, 41, 1189, 2498, 6714, 1940, 2502, 2676, 2865, 6104, 6106, 4160, 333, 5854, 6114, 6229, 4512, 1603, 6016, 251, 1499, 5479, 624, 671, 5786, 6496, 437, 2908, 4355, 2218, 3435, 5934, 109, 5938, 6945, 1130, 2741, 2742, 358, 4552, 1422, 3761, 1215, 6748, 177,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

2759, 2939, 2551, 2552, 1738, 2100, 1307, 906, 907, 5018, 6746, 976, 518, 1217, 1218, 1308, 692, 1044, 2940, 1045, 3292, 1643, 474, 4859, 3457, 758, 5883, 6142, 3123, 102, 5715, 5575, 6383, 981, 2941, 2421, 3887, 3888, 5576, 3632, 3295, 761, 1978, 2244, 2557, 2106, 6963, 4861, 5949, 765, 696, 3134, 3769, 4060, 4705, 5494, 3890, 4225, 4394, 474, 4859, 3457, 758, 5883, 6142, 5571.

point [5572, 5798, 6145, 5714, 3885, 3886, 4048, 1311, 4860, 4561, 1878, 3123, 102, 5715, 5575, 6383, 981, 2941, 2421, 3887, 3888, 5576, 3632, 3295, 761, 1978, 2244, 2557, 2106, 6963, 4861, 5949, 765, 696, 3134, 3769, 4060, 4705, 5494, 3890, 4225, 4394, 474, 4859, 3457, 758, 5883, 6142, 5571].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Proceedings [7203, 7331, 7360, 7380, 7274, 7361, 7381, 7408, 7191, 7093, 7049, 7430, 7029, 7181, 7208, 7238, 7240, 7252, 7277, 7307, 7324, 7337, 7338, 7339, 7352, 7407, 7030, 7210, 7155, 7368, 7220, 7309, 7082, 7038, 7353, 7341, 7229, 7243, 7371, 7399, 7297, 7404, 7326, 7258, 7185, 7268, 7174, 7366, 7189, 7393, 7350, 7335, 7427, 7429, 7168, 7188].

Proceedings [448].

Process [3972, 192, 5683, 6884, 89, 4951, 3457].

Processes [268, 255, 75, 183, 6997, 448, 240, 91, 5293, 696, 830, 1228, 379].

Processeur [2178, 2521, 1968].

Processing [1673, 6770, 2985, 6889, 7177, 7232, 7316, 1541, 3512, 7103, 6419, 292, 2627, 6795, 4466, 3533, 6913, 552, 7185, 7268, 7174, 7356, 7189, 7393, 7350, 7335, 7345, 7427, 7429, 7168, 7188].

Processing-in-memory [4818].

Processing-in-wire [5919].

Processor [1900, 3152, 1440, 1323, 5320, 6876, 1159, 2589, 6766, 1333, 2815, 1908, 1909, 2987, 5962, 1457, 2456, 5067, 2263, 1247, 3308, 1786, 1355, 1554, 1787, 1928, 2308, 1364, 3693, 491, 6812, 2483, 1101, 2327, 2179, 2852, 3214, 5095, 1813, 1814, 1270, 1583, 6605, 2433, 4803, 5670, 4163, 1387, 6219, 5677, 6204, 5680, 3996, 4001, 5471, 5541, 871, 2695, 2371, 6928, 2704, 2706, 4341, 2210, 6493, 2521, 1407, 5554, 1291, 3432, 2396, 5004, 3872, 1621, 2407, 6634, 1622, 5014, 6953, 2533, 6954, 1298, 2227, 2549, 823, 5715, 5154, 2768, 4064, 3472, 1983, 6524, 2966, 1321, 7128, 7173, 3159, 1760, 1155, 2450, 2796, 1669, 4238, 4891, 2812, 2813, 2646].

Processor-T [6605].

Processors [4441, 6292, 6667, 535, 3359, 7192, 7205, 7391, 2627, 6795, 5831, 5432, 7303, 7348, 1802, 5849, 5244, 3058, 3059, 3234, 7108, 7127, 7139, 7164, 7336, 7351, 7362, 7366, 7396, 7397, 7110, 7000, 7154, 7253, 7228, 7098, 7369, 7112, 7099, 7113, 7256, 7354, 7370, 7010, 7157, 7048, 7199, 7221, 7257, 7222, 7296, 7355, 5568, 7327, 7223, 7269, 7284, 7342, 7230, 7270, 7084, 7117, 7173, 7228, 7102, 7131, 7201, 7271, 7345, 7317].
produce [6831, 4685]. produced [3151]. producing [4207].

Product [7189, 790, 5968, 6572, 6185, 5338, 3817, 1357, 3022, 4943, 4793, 5455, 6600, 4800, 6605, 6922, 6471, 6475, 5473, 3251, 6230, 6935, 1863, 4841, 4842, 5013, 6510, 1426, 1884, 5891, 6150, 6646, 6878, 2584, 3494, 1457, 5413, 5339, 1923, 3524, 2836, 3027, 3534, 6817, 3978, 4496, 1493, 3069, 3070, 3071, 3072, 3080, 5689, 5869, 3617, 5798, 773, 1885, 2966, 1662, 5179, 5512, 5404]. Product-Based [6978].

Production [7051, 6747]. productivity [7283]. Products [1076, 2612, 866, 2493, 546, 6609, 5857, 4375, 584, 5749, 3687, 5669, 2062, 2694, 1958, 2378, 5690, 3263, 6145, 2792, 3156, 2583].

Propagate [6700, 6701, 2484]. Propagation [368, 5818, 5832, 1105, 1261, 385, 887, 225, 196, 197, 3287, 404, 2135, 2136, 6067, 1177, 6595, 6916, 1186, 1260, 7238, 7320, 7321, 7337, 7362, 7376, 7385, 3060, 3061, 1391, 2061, 5543, 3078, 879, 1027, 1405, 4675, 3259, 6633, 4037, 6140, 4382, 6747, 4222, 7297, 2947, 1744, 4398, 7269, 7230, 7433, 7188, 1525, 6284, 2607, 1463, 4740, 3677, 6302, 3189, 1553, 5330, 2640, 3380, 5533, 3398, 7289, 3069, 3070, 3071, 3072, 2201, 4179, 2380, 6026, 4840, 3280, 3281, 4697, 3150, 1756, 2268, 4238, 2271, 1328].
Properly [1820, 876]. Properties [709, 4459, 4460, 4745, 2465, 808, 672, 3607, 4370, 2232, 2936, 688, 1875, 2138, 804, 1388, 1389, 2191, 4815, 4977, 626, 3470, 2453].

Properties [709, 4459, 4460, 4745, 2465, 808, 672, 3607, 4370, 2232, 2936, 688, 1875, 2138, 804, 1388, 1389, 2191, 4815, 4977, 626, 3470, 2453].

Proposal [2828, 3009, 4611, 3822, 4768, 1184, 2048, 3715, 3721, 1135, 1211, 1969, 2539, 2540, 4863, 3277, 772, 2450, 1704].

Proposes [6277].

PRO VI [2094]. Prozessor [1900, 2541]. Prozessoren [122].

Publication [1946, 2504]. Publications [5611, 24].

Public [3805, 4276, 6341, 4326, 4510, 3755, 5801, 4137, 4036, 2934].

Punkte [2016]. punto [4544].

Public-Key [3805, 6341, 4326, 4510, 3755, 5801, 4137, 4036].

Public-Key [3805, 6341, 4326, 4510, 3755, 5801, 4137, 4036].

Publicity [3345]. Published [23]. Publisher [3159]. Publisher's [6169]. Pulse [683, 1765].

Punke [2016]. punto [4544].

Public [3805, 4276, 6341, 4326, 4510, 3755, 5801, 4137, 4036].

Public [3805, 4276, 6341, 4326, 4510, 3755, 5801, 4137, 4036].

publication [1946, 2504]. Publications [5611, 24].

Public [3805, 4276, 6341, 4326, 4510, 3755, 5801, 4137, 4036].

Publishing [23]. Publisher [3159]. Publisher's [6169]. Pulse [683, 1765].

Public-Key [3805, 6341, 4326, 4510, 3755, 5801, 4137, 4036].

Publication [1946, 2504]. Publications [5611, 24].

Pseudoinverse [698]. Pseudorandom [2806, 4437, 834]. pseudorandom-number [4437].

PSI [1336]. psudo [1979].

Public-key [3805, 4276, 6341, 4326, 4510, 3755, 5801, 4137, 4036, 2934].

Pulse [683, 1765].

Punkte [2016]. punto [4544].

Pulse [683, 1765].

Public Key [3805, 6341, 4326, 4510, 3755, 5801, 4137, 4036].

Public [3805, 4276, 6341, 4326, 4510, 3755, 5801, 4137, 4036].

Public [3805, 4276, 6341, 4326, 4510, 3755, 5801, 4137, 4036].

Publication [1946, 2504]. Publications [5611, 24].

Publicity [3345]. Published [23]. Publisher [3159]. Publisher's [6169]. Pulse [683, 1765].

Punke [2016]. punto [4544].

Public-System [1946, 2504]. Publications [5611, 24].

Pseudoinverse [698]. Pseudorandom [2806, 4437, 834]. pseudorandom-number [4437].

PSI [1336]. psudo [1979].

Public-key [3805, 4276, 6341, 4326, 4510, 3755, 5801, 4137, 4036, 2934].

Pulse [683, 1765].

Punkte [2016]. punto [4544].

Pulse [683, 1765].
Quadruple-precision
Qualifying
Quality-Efficient
Quantitative
Quantization
Quantized
Quantum
Quartic
Quartus
Quasi
Quasi-Pipelined
Quasi-Serial
quasi-systolic
quasi-unity
quasigroup
quater
quater-imaginary
Quaternary
Quaternion
Qubit
Quebec
Queen
Queries
Query
Question
Quotient
quotient-difference
Quotients
Quire
quirk
Quixilica
Quotient
R1994
R2000
R3000
R3010
R4000
R65
R65-22
R65-54
R67
R67-41
Racing
Radian
Radical
Radici
Radio
Radisson
Radius
Radix
Rabat
racehorses
racetrack
Radix-

Randomization [6436, 3759]. Randomness [6291, 2163, 5531, 3757]. Range [2593, 265, 516, 4671, 5008, 577, 1430, 3344, 2938, 6245, 5286, 2120, 3475, 4233, 4413, 4414, 5172, 4088, 533, 4729].

8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

109

4846, 6959, 3290, 761, 5151, 2960, 2963, 834, 4582, 5323]. Representations
[4590, 2001, 211, 839, 5818, 6796, 5644, 1584, 2355, 4976, 5688, 5774, 1401,
670, 6494, 2538, 3287, 6268, 1509, 4573, 5896, 2983, 6067, 2619, 2650, 1931,
856, 2034, 3242, 872, 6831, 2735, 200, 1878, 2805, 2720]. Represented [256].
Representing [3043, 5158]. represents [5397]. Reprint [167]. ReproBLAS
[6070, 5840]. Reproducibility [6786, 5839, 5981, 5758, 4311, 6117, 5945, 5965,
6187, 5975, 4153, 6025]. Reproducible [5958, 5959, 6062, 6558, 6070, 6302,
6420, 6189, 5837, 5838, 5840, 5913, 5982, 4293, 6009, 6249, 6039, 6852, 6545,
5903, 6084, 6319]. Republic [7235, 7384, 7352]. Required [4799, 549, 3244,
5545, 1121, 367, 449, 4690]. Requirement [429]. Requirements [1004, 3659].
Research [7388, 7063, 6234, 2071, 7169, 7031, 6513, 4428, 7020, 1909, 145,
1687, 5766, 4956, 3219, 2049, 2053, 5779, 7098, 1661]. réseaux [5036]. residual
[1889, 1989]. Residue [5957, 6771, 4907, 4908, 6404, 6569, 1337, 1339, 3806,
4254, 4914, 6676, 486, 593, 651, 788, 789, 841, 1340, 1541, 1238, 709, 790, 1072,
1543, 3926, 2160, 4461, 4754, 6792, 1922, 212, 3817, 6321, 169, 218, 328, 5993,
869, 1378, 1707, 244, 4959, 5661, 221, 4802, 5249, 1585, 1494, 1593, 1115, 1116,
1392, 1599, 1836, 3415, 734, 812, 3726, 278, 890, 4191, 4532, 2389, 5276, 5131,
3097, 308, 1616, 1729, 903, 2739, 4545, 1869, 2089, 1871, 6855, 2746, 2095, 2934,
3118, 3450, 1639, 572, 1876, 445, 475, 2111, 1983, 5030, 698, 2567, 446, 6152,
1519, 1520]. Residue [1660, 1896, 1993, 1227, 4577, 1663, 403, 3908, 4089,
4090, 4586, 5056, 781, 4587, 1904, 2592, 3169, 3339, 3340, 4897, 1675, 4244,
4595, 3496, 2600, 6175, 3510, 6298, 2142, 1069, 1070, 1460, 1240, 3183, 1775,
1913, 3004, 3005, 1678, 4108, 3808, 2014, 3930, 3679, 4613, 4753, 2157, 2161,
4111, 5079, 4615, 5206, 2296, 2470, 2630, 2631, 2632, 2633, 2471, 3194, 3195,
3524, 3525, 3526, 3935, 4618, 4467, 2168, 1791, 1927, 4123, 5640, 1089, 1090,
4290, 2311, 3026, 2844, 3028, 3207, 3208, 3534, 3689, 3829, 3693, 3831, 1254,
3968, 4296, 3971, 4137, 2329, 2662, 2854, 2330, 3837, 3546, 2331]. residue
[2333, 2667, 664, 1018, 2337, 2338, 3399, 3400, 3401, 3402, 2342, 4504, 5104,
504, 505, 553, 1384, 2681, 3231, 3846, 1022, 1198, 1279, 1388, 1389, 1493, 1833,
2191, 1949, 2195, 1023, 3580, 248, 4174, 2690, 2691, 3069, 3070, 3071, 3072,
2697, 2375, 2885, 3080, 1841, 1953, 1954, 1955, 1956, 2204, 2205, 2376, 2377,
2886, 6352, 2888, 2380, 3733, 3863, 4020, 4184, 5127, 1719, 2709, 2900, 4189,
4190, 4350, 4351, 4352, 4826, 4023, 4192, 673, 1208, 1727, 3869, 4364, 4684,
2409, 3275, 3276, 2926, 2927, 4038, 4203, 4204, 3282, 3283, 3284, 3285, 3448,
1734, 5144, 6138, 4373, 4374, 4693, 2933]. residue [3451, 3624, 516, 4216, 2414,
2549, 4217, 1506, 1874, 1974, 2416, 1423, 4381, 5029, 1882, 2110, 2428, 2768,
2951, 3895, 4064, 4065, 4066, 1048, 1049, 1652, 1746, 1747, 1984, 2954, 2955,
4568, 3776, 2961, 2566, 2962, 314, 1436, 1518, 3476, 3651, 1438, 2117, 1991, 5168,
2784, 3784, 1153, 3903, 1995, 2261, 5172, 3316, 3317, 3318, 4420, 2583, 2796,
3166, 3167, 3331, 3332, 4091, 4426, 4427, 4584, 4585, 2803, 2804, 4891, 2984,
2812, 2813, 3280, 3281, 499]. residue-number-arithmetic [1049]. Residuenumber-system-based [2389]. residue-to-binary [4753, 2690]. Residues
[6072, 5467, 6467, 6021, 177]. Resilience [6430]. Resilient [6710, 6886].
Resist [4502]. Resistance [4541]. Resistant [6243, 1493]. Resistor [630].


8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

111

[5119, 4916]. RNC [7345]. RNC3 [7233]. RNC5 [7300]. RNC’6 [7312].
RNS [5763, 6138, 6970, 4898, 5186, 4593, 5740, 3672, 3807, 4737, 5412, 5820,
5966, 6068, 6784, 6071, 4612, 3945, 4466, 4621, 6430, 5640, 4769, 3380, 6809,
3828, 6438, 2318, 4134, 5650, 5761, 3973, 4490, 6449, 3713, 3986, 4154, 4500,
6214, 6457, 3231, 3232, 3846, 3073, 2376, 6243, 4366, 4037, 6043, 5290, 2758,
4554, 1506, 5029, 2424, 4066, 5300, 6647, 4230, 1897, 3786, 4719, 5055, 5955].
RNS-Based [5740, 4490, 4134]. RNS-to-weighted [4066]. Road [2635].
Robert [43]. Robot [6392]. Robust [5747, 2897, 6838, 6372, 5291, 6516, 3126,
3640, 3474, 6896, 6693, 3825, 3828, 4775, 4005, 6520, 3639, 3771, 3491, 2898].
Robuste [2897, 2898]. Robustness [6663, 6181, 2341, 4862, 6074, 5762].
Role [838, 2839, 7115, 4573]. roll [2998]. roll-up [2998]. ROM [7268,
3198, 5672, 1116, 2204, 2205, 881, 3124, 3461]. ROM-based [2205]. ROMless [5672]. ROM-Rounding [881]. Roman [5483, 944]. Romanian
[412, 273]. Romberg [887, 6589]. Romberg-Like [887]. Rooms [3416]. Root
[3913, 992, 13, 1064, 1454, 2994, 3179, 3501, 3502, 3503, 3504, 3505, 3506, 4905,
935, 1771, 3002, 2609, 146, 265, 4453, 711, 5970, 6683, 6575, 6790, 6906, 5204,
1920, 2297, 2302, 293, 3820, 4622, 3196, 294, 2308, 324, 606, 3962, 4127, 4128,
4779, 5227, 36, 2036, 6328, 374, 423, 1259, 26, 2668, 151, 2856, 5457, 2673, 3562,
503, 6462, 1820, 4316, 4162, 4659, 4660, 3992, 3993, 3408, 6470, 2054, 4002,
3723, 338, 508, 172, 4975, 3419, 49, 3420, 4337, 5783, 2896, 5784, 6936, 3423,
2388, 1607, 4830, 3430, 6499, 2910, 2723, 5284, 6370, 1130, 5704, 5793]. Root
[3874, 568, 3445, 1502, 5142, 1971, 570, 4551, 5376, 5378, 3452, 1635, 6640, 1507,
5386, 2104, 574, 5887, 694, 6273, 637, 4564, 3636, 3473, 3645, 3646, 3772, 365,
4403, 1521, 233, 5806, 5724, 5894, 160, 6761, 1327, 5051, 5809, 585, 2584, 5175,
6655, 588, 4095, 2133, 3795, 406, 5739, 3802, 4257, 6300, 5073, 1346, 6684, 3678,
4271, 1468, 1782, 597, 2298, 3192, 3367, 4116, 3946, 941, 1565, 1695, 2319, 2321,
2322, 2485, 2652, 3209, 4635, 4780, 2323, 1936, 1380, 3553, 4144, 4800, 4655,
5662, 4151, 4152, 3984, 3053, 3404, 612, 724, 3990, 5671, 3717, 2686, 3240]. root
[2055, 3068, 3247, 3859, 2890, 4012, 4669, 3081, 4016, 3421, 3588, 3736, 3737,
3087, 2902, 2712, 2390, 3742, 2525, 2718, 2719, 2906, 3095, 2911, 2397, 2724,
3104, 3437, 6130, 6368, 227, 5370, 4031, 4034, 4844, 1303, 1970, 4848, 3453,
1634, 1138, 4555, 3885, 3886, 4048, 6383, 4563, 766, 3132, 3134, 3465, 2431,
2432, 5396, 282, 180, 4229, 1437, 4231, 5164, 4232, 5401, 76, 82, 4413, 6390,
4722, 2981, 5733, 4432, 4894, 4240, 2011, 1799, 5956]. root-extraction [3984].
Root-Finding [1799]. Rooting [1165, 1551, 1096, 1185, 2498, 114, 1852, 350,
688, 3519, 3934, 2472, 3948, 4122, 2851, 3570, 2362, 3855, 3422, 2218, 2529, 4039,
2096, 2000, 2978, 2979]. Roots [4590, 3493, 5745, 18, 537, 538, 1076, 794, 5621,
5626, 1917, 797, 653, 1790, 3944, 52, 3821, 1566, 1006, 271, 1259, 5458, 3563,
334, 2352, 5679, 2354, 4808, 30, 1400, 623, 671, 2716, 1293, 1618, 4836, 980, 520,
178, 1880, 4055, 4056, 3149, 4576, 206, 1997, 783, 3920, 2144, 6789, 1245, 1468,
5524, 1925, 2641, 4760, 1931, 1371, 4149, 4962, 5243, 3994, 3995, 6224, 3577,
5117, 4178, 4335, 4524, 1403, 1856, 3263, 4028, 5140, 1418, 1872, 5147, 3884,
203, 6275, 3643, 1887, 3312, 2982, 6769, 2541, 24]. Rostock [7234]. Rotation


[8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Rotation/Vectoring

Rotations

Rotator

Rotten

Round

Round-Off

Round-Off-Errors

Round-to-Nearest

Round-to-Nearest-Ties-to-Even

Round-to-Nearest-Ties-to-Zero

Round-To-Odd

Round-up

Rounded

Rounder

Rounding

Roundoff

Roundoff-Errors

Roundoff-Exact

Roundoff-Off

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 114

881, 4670, 431, 252, 2958, 1051, 6286, 1161, 4244, 3973, 3977, 4954, 5246, 5247, 3580, 2370, 2372, 3089, 6145, 4584, 4585, 3335, 4777, 3854, 2760, 4086.[
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

420, 5450, 868, 171, 2046, 888, 4032, 3635, 4063, 1059, 45, 1780, 3700, 4647, 550, 1832, 2700, 2207, 5280, 5487, 3759, 5884, 5885, 4711, 930, 5178, 4433, 4727, 888, 6489, 4032, 3635, 4063, 1059, 45, 1780, 3700, 4647, 550, 1832, 2700, 2207, 5280, 5487, 3759, 5884, 5885, 4711, 930, 5178, 4433, 4727.

Solutions [3944, 4275, 3610, 4084, 5407, 3027, 355, 3154]. Solved [6387, 3088].

Solver [3523, 5988, 1806, 3621, 5398, 1657, 2640, 6196, 5003, 6861]. Solvers [6554, 3582, 4227, 6213, 6332, 6333, 5162], solves [112, 1887].

Solving [4900, 5187, 6066, 1680, 1366, 3535, 4790, 2668, 244, 6461, 553, 1948, 4981, 4355, 1644, 3786, 4728, 4729, 4787, 6606, 504, 505, 5289, 5713, 2260, 7225, 1229].

Spain [7301, 7346]. Spanish [1808]. SPARC [2621, 2634, 3392, 2704, 2705, 2706, 2115, 3323, 2463, 2477, 2478]. SPARC64 [3486, 5554]. SPARC64(R) [4362]. Sparseness [5960, 6815].

Spectral [6316, 5294, 5246, 5247]. Spectrum [1871, 2674, 3107, 4586]. Speculation [3020, 3196]. Speculative [6026, 5931, 5171]. Speech [7086, 7152, 7305, 7322, 3831, 5104]. Speed [836, 1164, 1340, 6679, 5421, 714, 655, 1790, 4466, 267, 1564, 118, 2036, 807, 1575, 5994, 1376, 192, 330, 331, 5852, 5664, 5466, 5675, 3409, 4170, 668, 5115, 4972, 1025, 1601, 556, 6827, 6016, 6481, 2066, 738, 739, 135, 225, 1123, 558, 4186, 1607, 1852, 4193, 345, 1963, 1866, 971, 1134, 4551, 5017, 75, 688, 5799, 1510, 476, 4052,
spread-spectrum

Sprachbeschreibung

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6390, 4722, 2978, 2979, 2981, 2982, 5733, 4432, 4894, 4240, 6769, 2011, 1400].

Square-Root-X [1454, 1521]. Square-Rooting [1551, 1185, 1852, 688, 3855, 3422, 2218, 2000, 4122, 2851, 4039, 2096, 2978, 2979]. square-roots [3920, 1856]. Squared [324]. Squarer [324, 4327, 6509, 4424, 4180, 4581, 4583].

Squarers [4927, 125, 4419, 4884, 5050, 4085, 3235]. Squares [591, 1794, 2668, 4808, 4816, 671, 628, 1642, 4703, 2138, 1912, 282, 1988].

Squaring [598, 5210, 1489, 4959, 5459, 1713, 4515, 5481, 6262, 4375, 3170, 3336, 2302, 2851, 4342, 203, 6050]. Squaw [7364, 7386]. Squeezing [6461]. SQUID [2671].

SRT [3437, 3362, 4271, 3528, 3939, 3709, 3404, 3411, 4322, 3722, 4666, 4975, 6936, 3089, 4681, 4997, 3095, 3104, 3876, 4045, 5887, 1898, 2798].

Standardfunktionen [1776, 2016, 2065, 2531, 575, 3297, 1326, 1759, 1776]. Standardization [5634, 4768, 5261, 3442, 4578, 2772]. Standardized [4321].

Standards [5066, 2635, 5108, 3893, 6649, 2262, 1473, 2167, 1722, 3431].

State-Space [3359, 2953, 3732, 3677, 3246, 4813, 4228, 2588]. Statement [3341].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 121

[5441, 3719, 2561, 3575, 6025, 756, 5034, 5157, 5393, 5394, 5395, 5396, 5397].
Stock [3587, 1636]. Stocks [4215]. STOIC [1650]. Stokes [3523, 3610, 4084].
Storage [850, 5451, 7424, 277, 137, 5851, 3303]. Storage-Efficient [850].
Stored [2459, 3036, 5539]. Stored-Carry [3036].
Stream [6636, 6751, 6175]. Stream-Based [6751, 6636]. streaming [5715]. streamlined [2228].
Sub [3389, 3543, 3540, 2344, 613]. sub-language [613]. Sub-Nanosecond [3389, 3543].
Subcommittee [7009]. subdivision [6300].
Subsets [3442]. subspace [3509, 6817, 3779].
Substitution [2160, 2348]. subsystem [2299, 2527].
Subtracting [3944]. Subtraction [788, 4459, 4460, 6901, 4112, 5532, 1484, 5561, 4670, 4991, 1412, 2103, 445, 6866, 4446, 3814, 4616, 1483, 1933, 3776].
Subtraction-free [4991]. subtractions [3418].
Subtractor [5676, 6343, 5166, 6760, 4827, 5701].
Subtyping [4302]. Subword [4793, 4816]. Subword-Parallel [4793, 4816]. Succeeding [3442].
Suitability [6826]. Suitable [6107, 5258, 6967, 5605, 3220, 2376, 674].
Suite
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

2784, 3784, 1153, 701, 779, 1996, 3318, 5317, 4420, 5727, 2796, 3166, 3167, 3331, 3332, 4089, 4090, 4091, 4426, 4427, 4584, 4585, 4586, 2803, 2804, 2590, 4891, 785, 2984, 6769, 471, 1910, 1082, 408, 409, 2833, 374, 382, 383, 2499, 462.

System [667, 955, 2067, 2524, 2528, 1415, 3280, 3281, 4545, 179, 6279, 527, 3326, 4585].

System-based [4532, 4826].

System-definition [2329].

System-Level [3065, 5643].

System/370 [1710, 1910, 1082, 955, 2067].

System/390 [2834, 2835, 2833].

System/6000 [2504, 3233, 2499, 2524, 2528, 3326].

Systematic [5915, 80, 5353, 5127, 1412, 2927, 3280, 3281, 4853, 1424, 2954, 2955, 3339, 3340, 5768, 2520, 2550].

Systematizations [5420].

Systeme [1900].

Systemen [1213].

systems [6307, 2161, 939, 5205, 2630, 2631, 2632, 2633, 4618, 4467, 4468, 1791, 5087, 3693, 1801, 1254, 7069, 377, 2657, 2658, 4137, 2660, 2662, 3546, 218, 327, 2490, 5238, 2332, 2667, 4652, 1018, 1187, 3401, 4504, 2681, 2349, 1831, 1022, 1388, 1389, 2874, 3066, 3443, 2925, 3278, 1413, 2538, 3287, 3118, 3450, 5148, 1639, 6745, 397, 6747, 7055, 7116, 3460, 7297, 3635, 1881, 2109, 3688, 4063, 7171, 7211, 4227, 1146, 2567, 7025, 7269, 2568, 7230, 4875, 1993, 3786, 7343, 5313, 1526, 234, 3163, 7175, 2974, 1059, 781, 3169, 5326, 988, 3339, 3340, 4897, 6887, 2005, 2277, 3804, 4733, 45, 1459, 3510, 2144, 1240, 2604, 1775, 2290, 5521, 3930, 1780].

Systems [737, 5777, 5865, 3860, 4981, 5124, 278, 1122, 5694, 7184, 6489, 5276, 7242, 7255, 7266, 7282, 7295, 7309, 7377, 7389, 7418, 1127, 1853, 4997, 4195, 4832, 4196, 2915, 3438, 6737, 2733, 903, 3443, 2925, 3278, 1413, 2538, 3287, 3118, 3450, 5148, 1639, 6745, 397, 6747, 7055, 7116, 3460, 7297, 3635, 1881, 2109, 3688, 4063, 7171, 7211, 4227, 1146, 2567, 7025, 7269, 2568, 7230, 4875, 1993, 3786, 7343, 5313, 1526, 234, 3163, 7175, 2974, 1059, 781, 3169, 5326, 988, 3339, 3340, 4897, 6887, 2005, 2277, 3804, 4733, 45, 1459, 3510, 2144, 1240, 2604, 1775, 2290, 5521, 3930, 1780].

Supported by the Open Library of Unesco. Szabo [499].

Szeged [7248].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[3582]. Treatment [1257, 197, 5000, 5293]. Tree [5353, 4378, 3224, 1892].
Trees [4739, 6815, 2893, 3494, 5339, 5478, 4255, 2916].
Trench [1177]. Trends [6722, 4880, 197, 5293, 4378].
Treviso [19]. tria [2]. Trial [1858]. Triangle [5824, 4166, 6838, 3148, 3641].
Triangular [4981, 176, 1947, 5271, 5478, 2260].
Triangularization [1358, 2475]. Triangularizations [2929]. Triangulator [3641].
Tribofacci [6349]. Trick [3515]. Tricks [3676, 1577]. Triadiagonal [4995, 1530, 2640, 981].
Trig [2413, 3149, 768]. Trigger [6829, 6929].
Trigonometric [5751, 1007, 1008, 3038, 6818, 4146, 132, 1631, 1632, 6272, 1514, 3471, 182, 2843, 2496, 193, 5835].
Trimming [1928]. Trinomial [4914]. Trinomials [6244, 5386, 4946, 5107, 4071].
trivariate [5150]. trivial [3121]. TRON [2366, 7116]. True [1540, 60, 6717].
Truncated [6086, 2024, 6198, 5915, 5651, 4676, 5148, 3129, 4058, 5893, 4074, 4579, 4721, 4884, 5050, 4237, 4421, 2806, 4610].
Truncation [336, 3725, 361, 316, 988, 3362, 413, 3536, 1843, 669, 6540]. trust [2508]. Trusted [6772, 1273]. Truth [1707, 3393, 4657]. Truth-Table [1707].
Tung [3870]. Tuning [6576, 6188, 6483, 5883, 6749, 6447, 6142, 6978].
Tunnel [267]. Turbo [3077, 3077]. turbulence [5246, 5247]. Turin [7169].
Turing [6469, 7332, 1819, 689]. Turku [5483]. Turns [6365]. Tutorial [4966, 4688, 6403, 6320, 3997, 3999, 4000, 1140].
TVM [6978]. Twelfth [7313]. Twenty [7104, 7122, 7133, 7075, 7198, 7171, 7211]. Twenty-eighth [7075].
Two [2994, 3179, 1068, 1770, 1540, 710, 792, 795, 6908, 213, 3816, 322, 1571, 608, 863, 4141, 868, 4308, 6919, 6462, 1195, 1838, 617, 813, 5691, 3256, 1720, 896, 1129, 3435, 1621, 4043, 3622, 53, 117, 1878, 1144, 4221, 5496, 3304, 5300, 5039, 5307, 5584, 160, 5047, 4419, 5953, 985, 4085, 5250, 4916, 4745, 2305, 3566, 4636, 3714, 3402, 3436, 5009, 968, 6136, 2231, 5147, 5573, 2556, 1882, 5890, 5299, 773, 4065, 5160, 2972, 2982]. two-digit [5009].
Two's [1793, 1223]. Two's-Complement [1793, 1223]. TX [7278, 7114]. Type [6065, 6571, 3921, 6412, 3043, 6450, 101, 246, 6620, 877, 6929, 4518, 2728, 5491, 473, 2101, 577, 3305, 5808, 5205, 5846, 6349, 4668, 3089, 70, 5488, 4402, 6407, 6343, 6359].
Type-2 [6407]. Type-2-Based [6571]. Type-3 [6343]. Typed [3043]. Types [4974, 3596, 3144, 3000, 1480, 4302, 2855, 3042, 2735, 6872]. Tyson [7189].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

719, 1267, 2682, 1393, 5869, 5369, 1976, 3123, 761, 3300, 3462, 5173, 2805.

Vectoring [3918, 4101, 3730, 4235]. vectorizable [6306]. Vectorization [6901, 6794, 6644, 6324, 5726]. Vectorized [6901, 6794, 6644, 6324, 5726].

Leibniz:1703:EAB

[1] G.-W. Leibniz. Explication de l’Arithmétique binaire. (French) [Explanation of binary arithmetic]. Mémoires de mathématique et de physique de l’Académie royale des sciences, ??(??):85–89, ???? 1703. URL https://hal.archives-ouvertes.fr/ads-00104781/document. Leibniz is often credited with the invention of the binary number system, but there is other work from his era, and detailed analysis of Leibniz’s use of binary numbers. See [381, 501, 610, 1206, 1373, 6200, 6871, 6980].

Pelicano:1712:APQ

Colson:1726:SAN

REFERENCES

REFERENCES

REFERENCES

Sciences Pures et Appliquées, ??(??):601–611, November 15, 1915. ISSN 0370-7431. Reprinted in [7052, §2.5]. Translated by Mr. R. Basu.

Barrow:1924:QDD

Smith:1924:FPA

Karpinski:1925:HA

Cajori:1926:BRB

Smith:1926:FGC

Cajori:1927:EAP

J:1930:RPRb

REFERENCES

LeVita:1936:ALI

Phillips:1936:BC

Zuse:1936:VSD

Escott:1937:QDN

Millikan:1937:MMP

Shannon:1937:SAR

Benford:1938:LAN

REFERENCES

REFERENCES

REFERENCES

[61] H.-J. Dreyer and A. Walther. Der Rechenautomat Ipm. Entwicklung Mathematischer Instrumente in Deutschland 1939 bis 1945. (German) [The Ipm calculator. The development of mathematical instruments in Germany 1939–1945]. Bericht A3, Institut für Praktische Mathematik,
REFERENCES

Technische Hochschule, Darmstadt, West Germany, August 19, 1946. Reprinted in [7052, §3.3]. Translated by Mr. and Mrs. P. Jones.

Goldstine:1946:ENI

Goldstine:1947:PCPa

Goldstine:1947:PCPb

Goldstine:1947:PCPc

Goldstine:1947:PCPd

Goldstine:1947:PCPe

REFERENCES

REFERENCES

REFERENCES

Goldstine:1951:NIM

Rademacher:1951:AEP

Shirley:1951:BNB

Wilkes:1951:PPE

Andrews:1952:RBL

Davis:1952:ARS
REFERENCES

REFERENCES

474, August 1964. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

REFERENCES

REFERENCES

REFERENCES

[355] Ramon E. Moore. Automatic local coordinate transformations to reduce the growth of error bounds in interval computation of solutions of
ordinary differential equations. In Rall [7002], chapter 2, pages 103–140. URL http://interval.louisiana.edu/Moores_early_papers/Moore_in_Rall_V2.pdf. Proceedings of an advanced seminar conducted by the Mathematics Research Center, United States Army, at the University of Wisconsin, Madison, October 5–7, 1964.

[364] W. H. Specker. A class of algorithms for \(\ln x \), \(\exp x \), \(\sin x \), \(\cos x \), \(\tan^{-1} x \), and \(\cot^{-1} x \). *IEEE Transactions on Electronic Computers*, EC-14(1):85–86, February 1965. CODEN IEECA8. ISSN 0367-7508. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4038361.

REFERENCES

REFERENCES

[388] W. Kahan. 7094 II system support for numerical analysis. SHARE Secretary Distribution 159, C4537, 1966.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Tomasulo:1967:EAE

Wilkinson:1967:BZW

Winograd:1967:TRP

Yarbrough:1967:PCC

Atkins:1968:HRD

Azen:1968:DMS

Azgapetian:1968:CAP

REFERENCES

REFERENCES

Anonymous:1969:VPD

Babuska:1969:NSM

Banerji:1969:SDR

BrinchHansen:1969:RCR

Brown:1969:CB

Clark:1969:SCE

Cody:1969:PTF

Duke:1969:DFP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES 208

Weinstein:1969:CCR

Weinstein:1969:CRN

Weinstein:1969:RNF

Whipple:1969:CHR

Young:1969:SCN

Atkins:1970:DAU

Avizienis:1970:UAB

[535] Algirdas Avižienis and Chin Tung. A universal arithmetic building element (ABE) and design

Behringer:1970:BFI

Beyer:1970:GST

Beyer:1970:SSD

Brent:1970:ABN

deLugish:1970:CAA

REFERENCES

REFERENCES

REFERENCES

[567] K. Nickel. Das Kahan–Babuškasche Summierungsverfahren in Triplex-ALGOL 60. (German) [The Kahan–Babuška summation method in

REFERENCES

Yohe:1970:BPF

Yong:1970:GBA

Zohar:1970:NRC

Zuse:1970:CML

Abdelmalek:1971:REA

Alway:1971:GFA

Banerji:1971:RAC

Based on the proceedings of the Mathematical Software Symposium held at Purdue University, Lafayette, Indiana, USA, April 1–3, 1970.

REFERENCES

REFERENCES

[637] B. P. Sarkar and E. V. Krishnamurthy. Economic pseudodivision processes for obtaining square
REFERENCES

REFERENCES

REFERENCES

[672] Michael A. Malcolm. Algoritms to reveal properties of floating-
point arithmetic. *Communications of the Association for Computing
0001-0782 (print), 1557-7317 (electronic). See also [808].

approximations to some elementary functions suitable for evaluation
with floating-point arithmetic. NASA Technical Note TN D-
6698, NASA, Washington, DC, USA, March 1972. iii + 68
pp. URL http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.
gov/19720010958_1972010958.pdf.

[675] Christopher Marion Maple. A floating point analog to digital and digital
to analog converter. Thesis (B.S.), Massachusetts Institute of Technology.

[676] D. Marino. New algorithms for the approximate evaluation in hardware
of binary logarithms and elementary functions. *IEEE Transactions on
Computers*, 21(12):1416–1421, December 1972. CODEN ITCOB4. ISSN
0018-9340 (print), 1557-9956 (electronic).

[677] David W. Matula. Number theoretic foundations of finite precision
LCCN QA297 .A67.

72-783; CONF-720916–2, Los Alamos Scientific Laboratory, Los Alamos,
jsp?osti_id=4647144&query_id=0.
REFERENCES

Metropolis:1972:ABCb

Metropolis:1972:ABCc

Miller:1972:DFD

Neely:1972:CSN

Oberman:1972:FRM

Paris:1972:MA

Pettus:1972:IDC

Phillips:1972:ICF
REFERENCES

REFERENCES

REFERENCES

Avizienis:1973:AAE

Barna:1973:ICD

Barsi:1973:ECP

Baugh:1973:TCP

Besslich:1973:MDS

Brent:1973:PAV

Brent:1973:PEA
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mifsud:1973:AMP

Newbery:1973:EAF

OKeefe:1973:RBE

Parker:1973:DHF

Paterson:1973:NNM

Pittnauer:1973:AA

Pittnauer:1973:NPK

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Banerji:1974:URA

Barsi:1974:EDC

Bauer:1974:CGR

Blankenship:1974:CTC

Boyes:1974:BNS

Brent:1974:FEP
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[864] Myron Ginsberg and Dennis J. Frailey. The design and use of a floating-point (software) simulator for testing the arithmetic behavior of mathematical software. Technical report CP 74028, Department
REFERENCES

of Computer Science, Institute of Technology, Southern Methodist University, Dallas, 1975. 26 pp.

Ginsberg:1975:DUFb

Goodman:1975:REP

Goyal:1975:DAE

Grant:1975:TAS

Gregory:1975:BCR

REFERENCES

Hunter:1975:QMP

Kehl:1975:MMA

Keir:1975:CNR

Keir:1975:PCR

Keir:1975:SSR

Kent:1975:CSU

Klatte:1975:CPI

[876] R. Klatte and Ch. Ullrich. Consequences of a properly implemented computer arithmetic

[889] Seppo Linnainmaa. Towards accurate statistical estimation of rounding errors in floating-point computations. BIT (Nordisk tidskrift

Lipovski:1975:RND

Liu:1975:REF

Lorez:1975:BGB

Martinson:1975:DMF

Matula:1975:FSF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Conference on the state of the art in numerical analysis, 12 April 1976, University of York, England, UK.

REFERENCES

REFERENCES

CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCE

Anonymous:1977:CAF

AppleComputer:1977:ARM

Barak:1977:MAT

Bauer:1977:CFP

Bivins:1977:SAA

Bohlender:1977:FPC

Brinkmann:1977:FPT

REFERENCES

REFERENCES

[1014] Myron Ginsberg. Numerical influences on the design of floating-point arithmetic for microcomputers. Technical report CS 7708, Department
REFERENCES

of Computer Science, Southern Methodist University, Dallas, TX, USA, 1977. 72 pp.

Goldsmith:1977:ICF

Goodman:1977:EGD

Goodwin:1977:CUO

Gregory:1977:BCR

Hashizume:1977:FPA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Science, University of Ottawa, Ottawa, ON, Canada K1N 6N5, 1978. 7 pp. URL http://books.google.com/books?id=q8fBIwAACAAJ.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

The authors extend prior work on correctness of sums of rounded percentages [441], and criticize biased rounding practices in [39].

REFERENCES

Ginsberg:1979:MFE
Myron Ginsberg. Monitoring floating-point error propagation in scientific computation. Technical report CSE 7910, Department of Computer Science and Engineering, Southern Methodist University, Dallas, TX, USA, 1979. 32 pp.

Gregory:1979:EFC

Gruener:1979:ARD

Hardy:1979:ITN

Hastings:1979:SMM

Heath:1979:RDF

Hehner:1979:NRR

Hull:1979:DFP

Hwang:1979:CAP

Hwang:1979:GMT

IEEE:1979:PIF

IntelCorporation:1979:FAL

Jenkins:1979:RAR

Johnson:1979:RAF

Kahan:1979:PFP

vanHulzen:1979:NMS

Wichmann:1979:ID

Wichmann:1979:PCG

Wilbanks:1979:MFI

Winnigstad:1979:ULC

C. N. Winnigstad. Using LSI to crunch numbers at high speed: An overview. In Anonymous [7035], page ?? CODEN WCREDI. ISSN 1044-6036, 0083-8837. LCCN TK7800. 17 volumes.

Yohe:1979:INA

Agrawal:1980:NBA

Albrecht:1980:RAO

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

October 1980. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

REFERENCES

[1302] Mary Payne and Dileep Bhandarkar. VAX floating point: a solid foundation for numerical computation. ACM SIGARCH Computer

REFERENCES

REFERENCES

REFERENCES

Yohe:1980:FPE

Yohe:1980:PSI

Zeman:1980:HSM

Agrawal:1981:NAM

Andrews:1981:EFM

Arnold:1981:PFP

Arora:1981:CSR

REFERENCES

REFERENCES

[1366] James Demmel. Effects of underflow on solving linear systems. In IEEE CA5 ’81 [7050], pages 113–119. LCCN QA 76.6 S985t
REFERENCES

[1374] Ralph E. Gorin. Introduction to DECSYSTEM-20 Assembly Language Programming. Digital Press, 12 Crosby Drive, Bedford, MA 01730, USA,
REFERENCES

REFERENCES

REFERENCES

Jenkins:1981:SPC

Kahan:1981:WDW

Karplus:1981:ASI

Kaushik:1981:SDS

Kielbasinski:1981:IRL

Knuth:1981:SA

REFERENCES

REFERENCES

REFERENCES

Spaniol:1981:CAL

Stevenson:1981:ITP

Stevenson:1981:PSBa

Stevenson:1981:PSBb

Stummel:1981:PAM

Tan:1981:ADC

Taylor:1981:CHD

REFERENCES

Andrews:1982:MMS

Andrews:1982:SRX

Anonymous:1982:ARBf

Anonymous:1982:MKF

Anonymous:1982:NPAa

Arnold:1982:EPS

Bairstow:1982:FPP

Baraniecki:1982:QEL

Barnes:1982:RNI

Bernhard:1982:CCS

Bernhard:1982:GSP

Bohannan:1982:MAP

Bohlender:1982:ROA

Brent:1982:RLP

Brooks:1982:OCL

Burr:1982:CCR

Cassola:1982:FPA

Cassola:1982:FPM

Cavanagh:1982:DCA

Cody:1982:BCC

Cody:1982:FPM

Cody:1982:GPI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

http://www3.oup.co.uk/computer_journal/hdb/Volume_25/Issue_03/tiff/316.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_25/Issue_03/tiff/317.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_25/Issue_03/tiff/318.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_25/Issue_03/tiff/319.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_25/Issue_03/tiff/320.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_25/Issue_03/tiff/321.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_25/Issue_03/tiff/322.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_25/Issue_03/tiff/323.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_25/Issue_03/tiff/324.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_25/Issue_03/tiff/325.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_25/Issue_03/tiff/326.tif.

REFERENCES

REFERENCES

REFERENCES

Chang:1983:HSN

Chow:1983:PDA

Ciminiera:1983:FIM

Cloutier:1983:PAR

Cody:1983:GPI

Cohen:1983:CCP

REFERENCES

REFERENCES

REFERENCES

[1573] N. Gaitanis and C. Halatsis. Near-perfect codes for binary-coded radix-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Rao:1983:ICS

Robertson:1983:CDM

Robison:1983:USF

Rosenblum:1983:IIS

Rump:1983:SAP

Sand:1983:DIP

REFERENCES

REFERENCES

Spafford:1983:RAP

Speiser:1983:SFP

Springer:1983:FP

Swartzlander:1983:SLA

Takefuji:1983:FMS

Tamura:1983:CDB

Taylor:1983:AE

Taylor:1983:OFR

Thomas:1983:HLM

Tseng:1983:FIP

Ulman:1983:SDI

Voelz:1983:CAE

Vogt:1983:AFM

Wallis:1983:AFP

[1666] Peter J. L. Wallis. Ada floating-point arithmetic as a basis for portable numerical software. In IEEE SCA6 ’83 [7062], pages 79–
REFERENCES

[Walsh:1983:FGE]

[1667] Edmund John Walsh. Floating gatefield effect transistor operating point changes: causes, characterization, and effect on electric field measurement by the device. Thesis (M.S.), Boston University, Boston, MA, USA, 1983. v + 121 pp.

[Watanuki:1983:EAC]

[Williams:1983:BFP]

[1669] Bertrand Jeffery Williams. A bit-serial floating point multiply/add architecture for signal processing applications. Electrical engineering thesis (M.S.), Texas A&M University, College Station, TX, USA, 1983. x + 97 pp.

[Wingert:1983:ITA]

[Yoshida:1983:FPR]

[Ypma:1983:ERE]

REFERENCES

[1679] Cheryl M. Black, Robert P. Burton, and Thomas M. Miller. The need for an industry standard of accuracy for elementary-function

REFERENCES

REFERENCES

REFERENCES

[1709] Hitoshi Honma and Masahiko Sagawa. Improving the accuracy and error analysis in floating-point FFT computation. Electronics and

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Conover:1985:AHS

Cozzens:1985:CDF

Cuyt:1985:REA

Dadda:1985:FMT

Dadda:1985:SBN

DeMori:1985:DRP

REFERENCES

[1808] Gustavo Rodríguez Gómez and David Carrasco Villareal. Problems in floating-point arithmetic, and a method for obtaining internal

REFERENCES

REFERENCES

[1846] Xiaobo Li and Lionel M. Ni. A pipeline architecture for computing cumulative hypergeometric distributions. In Hwang
REFERENCES

Majerski:1985:SRA

Matula:1985:FPR

ME:1985:FPS

Mithani:1985:ASN

Modi:1985:AIS

Moharir:1985:ESG

Montgomery:1985:MMT

Motorola:1985:MFC

REFERENCES

REFERENCES

REFERENCES

Symbolics:1985:RGS

Takagi:1985:HSV

Takeda:1985:SCB

Taniguchi:1985:TDI

Taylor:1985:HFP

Taylor:1985:MER

Taylor:1985:RFU

Taylor:1985:RSD

Tesnow:1985:IDS

Thies:1985:NPE

Tsuji:1985:REF

vonGudenberg:1985:FPC

REFERENCES

ACM Special Interest Group on Symbolic and Algebraic Manipulation (SIGSAM) and by the Symbolic and Algebraic Manipulation Group in Europe (SAME) — Vol. 2, pref. Contents: v. 1. Invited lectures — v. 2. Research contributions.

Williamson:1985:NAB

Yun:1985:BPS

Zaccone:1985:INR

Zadrozny:1985:AFP

Zorpette:1985:BBN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Semba:1986:ADL

Shukla:1986:IMN

Simcoe:1986:MFP

Soderstrand:1986:RNS

Soderstrand:1986:VIM

Spafford:1985:RASa

Spafford:1986:RASb
REFERENCES

REFERENCES

REFERENCES

Baranyk:1987:EBP

Barrett:1987:FAR

Barrett:1987:FMA

Boettner:1987:QA

Bohlender:1987:DFP

Boisvert:1987:AAH

Bose:1987:DAR

Bose:1987:FMD

[2015] B. K. Bose, L. Pei, G. S. Taylor, and D. A. Patterson. Fast multiply and divide for a VLSI floating-point unit. In Irwin and

Braune:1987:HSF

Breuer:1987:NMR

Carter:1987:SAT

Cavallaro:1987:CAS

Chandra:1987:ACR

Chen:1987:MFP

REFERENCES

REFERENCES

Herz-Fischler:1987:MHD

Hildebrand:1987:INA

Himmeroeder:1987:CKC

Hochet:1987:SSL

Homewood:1987:ITT

HP:1987:IPH

Hu:1987:CDT

REFERENCES

REFERENCES

REFERENCES

434

[2064] Peter Kornerup and David W. Matula. A bit-serial arithmetic unit
for rational arithmetic. In Irwin and Stefanelli [7094], pages 204–211.
ISBN 0-8186-0774-2 (paperback), 0-8186-4774-4 (microfiche), 0-8186-
8774-6 (case). LCCN QA 76.9 C62 S95 1987. URL http://www.acsel-

[2065] W. Krämer. Inverse Standardfunktionen für reelle und komplexe
Intervallargumente mit a priori Fehlerabschätzungen für beliebige
Datenformate [English: Inverse Elementary Functions for Real and
Complex Interval Arguments with A-Priori Error Estimates for Arbitrary
Data Formats]. Dissertation, Universität Karlsruhe, Karlsruhe,

[2066] Shigeo Kuninobu, Tamotsu Nishiyama, Hisakazu Edamatsu, Takashi
Taniguchi, and Naofumi Takagi. Design of high speed MOS multiplier
and divider using redundant binary representation. In Irwin and
Stefanelli [7094], pages 80–86. ISBN 0-8186-0774-2 (paperback), 0-8186-
4774-4 (microfiche), 0-8186-8774-6 (case). LCCN QA 76.9 C62 S95
ARITH8_Kuninobu_Nishiyama_Edamatsu_Taniguchi_Takagi.pdf.

[2067] Eberhard Lange. Implementation and test of the ACRITH facility in
a System/370. IEEE Transactions on Computers, C-36(9):1088–1096,
September 1987. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-
jsp?tp=&arnumber=5009539.

[2068] Randal Leavitt. Adjustable precision floating point arithmetic in
CODEN AALREE5. ISSN 1094-3641 (print), 1557-9476 (electronic).

[2069] B. Lien and G. Tang. Reversed Chebyshev implementation of McClellan
transform and its roundoff error. IEEE Transactions on Acoustics,
IETABA. ISSN 0096-3518.
REFERENCES

REFERENCES

REFERENCES

Rall:1987:ISC

Rauch:1987:MCH

Reddy:1987:STF

Redinbo:1987:PCT

Rehmer:1987:DIM

Robertson:1987:EDC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fam:1988:ECM

Farnum:1988:CSF

Fiske:1988:RAP

Fitzpatrick:1988:PVF

Fuccio:1988:DAS

Gibson:1988:GBA

Grehan:1988:BBL

REFERENCES

Kahaner:1988:BRP

Kanada:1988:VMA

Kanada:1988:VMP

Kida:1988:FPP

Kirchner:1988:AAV

Knuth:1988:FM

Kornerup:1988:LAU

REFERENCES

[2211] Franklin T. Luk and Haesun Park. An analysis of algorithm-based fault
tolerance techniques. *Journal of Parallel and Distributed Computing*, 5
(2):172–184, April 1988. CODEN JPDCER. ISSN 0743-7315 (print),
1096-0848 (electronic).

[2212] Chung nan Lyu. Pipelined floating point divider with built-in testing
90 pp.

Integer multiplication and division on the HP Precision Architecture.
ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

[2214] Saulyus Marchyula˘ıtis. Summation of real numbers in arithmetic with
a floating point. A probability approach to determining the variance of
absolute round-off error. (Russian). *Statist. Problemy Upravleniya*, 82:

[2215] P. M. Maurer. Design verification of the WE 32106 math accelerator
0740-7475 (print), 1558-1918 (electronic).

the CVAX floating-point chip. *Digital Technical Journal*, ??(7):109–120,
August 1988. CODEN DTJOEL. ISSN 0898-901X.

[2217] C. Melear. An integrated floating point unit for a RISC architecture. In
Wescon [7118], pages 1.2/1–8. ISBN ????. LCCN ????

Gleitkommanzahlen im IEEE-Format [English: Fast Square-rooting
method for Floating-point Numbers in IEEE Format]. *Elektronik*, 8:
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Suite 300, Silver Spring, MD 20910, USA, 1988. CODEN ???. ISSN ???.

Voelzke:1988:FSAa

Voelzke:1988:FSAb

Voelzke:1988:FSAc

Weyland:1988:LCS

Wilson:1988:FPS

Wilson:1988:NDP

Wilson:1988:NFP

REFERENCES

REFERENCES

May 1989. CODEN IESEDJ. ISSN 0098-5589 (print), 1939-3520 (electronic).

REFERENCES

In *IEEE International Symposium on Circuits and Systems, 8–11 May 1989*, volume 1, pages 208–211. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????

REFERENCES

Demmel:1989:FPE

[2311] A. M. Dennis, C. B. Marshall, and I. A. Burgess. Algorithm and architecture design for the implementation of high order FIR filters using the residue number system. In IEE Colloquium on Signal Processing Applications of Finite Field Mathematics, 1 June 1989, pages 1/1–1/5. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????

Dennis:1989:AAD

Dowling:1989:MVF

Dritz:1989:RPS

Dunham:1989:ICA

REFERENCES

REFERENCES

Symposium on Circuits and Systems, 8–11 May 1989, volume 1, pages 150–153. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????

REFERENCES

REFERENCES

Husby:1989:FPE

Hwang:1989:OAU

IEC:1989:IBF

Intwala:1989:BFP

Jain:1989:SLU

Jamieson:1989:SNR

REFERENCES

This work generalizes the Pythagorean sums in [1568, 1618].

Jenkins:1989:AFP

Johnson:1989:IMA

Johnstone:1989:HRF

Jones:1989:EDC

Jorke:1989:AAM

Joslin:1989:EPN

Jouppi:1989:UVSa

Jouppi:1989:UVSb

Kahan:1989:PCA

Kak:1989:BAS

Kaneko:1989:VRM

Kaneko:1989:VRP

Kawarai:1989:OPM

REFERENCES

Conference on. 23–26 May 1989, volume 2, pages 884–887. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???. ISSN ???.

Kawasaki:1989:FPV

Koc:1989:SAI

Kohn:1989:ISM

Kohn:1989:TM

Komori:1989:FPE

Komori:1989:MBFa

REFERENCES

[2377] R. Krishnan. An efficient systolic array VLSI cell architecture for the implementation of transversal filter based on the quadratic residue number systems. In International Conference on Acoustics, Speech, and
REFERENCES

Kulisch:1989:CGS

Lai:1989:HNS

Langston:1989:DBT

Lee:1989:FIR

Lee:1989:MGR

Lee:1989:QCC

REFERENCES

Mansour:1989:CAS

Mastrovito:1989:VDM

Maytal:1989:DCG

Milenkovic:1989:DPG

Milutinovic:1989:MSD

Molnar:1989:MBF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wittman:1989:SCU

Zeng:1989:RNP

Zorpette:1989:PGD

Alsup:1990:MFA

Anonymous:1990:MUF

Ansari:1990:MBF

Arnold:1990:RLA

Aspray:1990:BBS

REFERENCES 494

REFERENCES

REFERENCES

This paper presents an alternate proof of Knuth’s algorithm [2512] for conversion between decimal and fixed-point binary numbers.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2543] Wladimir Popov. On the axiomatizations of floating-point arithmetics. contributions to computer arithmetic and self-validating numerical

Preparata:1990:PCD

Prince:1990:GST

Pugh:1990:CBF

Quach:1990:IAH

Quinn:1990:REL

Ramamoorthy:1990:MRN

Rao:1990:SAA
REFERENCES

Rauchwerger:1990:MFPa

Rauchwerger:1990:MFPb

Reemtsen:1990:MFR

Reif:1990:OSI

Rowan:1990:FSA

Sam:1990:GMR

Schatte:1990:SBF

Schimandle:1990:MBC

intrepid pre-SIGPLAN 90 conference implementation of what is stated in the paper revealed 3 mistakes:

1. Table 5 (page 124):
 insert k <-- 0 after assertion, and also delete k <-- 0 from Table 6.

2. Table 9 (page 125):
 for -1:USER!(""),
 substitute -1:USER!("0");
 and delete the comment.

3. Table 10 (page 125):
 for fill(-k, "0")
 substitute fill(-k-1, "0")

REFERENCES

REFERENCES

REFERENCES

Barsi:1991:MAB

Bartholomew-Biggs:1991:AST

BartholomewBiggs:1991:AST

Bartoloni:1991:MFU

Beal:1991:GAP

Beebe:1991:ASR

Bohlender:1991:DFP

REFERENCES

REFERENCES

REFERENCES

[2650] Jean Duprat, Yvan Herreros, and Sylvanus Kla. New redundant representations of complex numbers and vectors. In Kornerup and

REFERENCES

REFERENCES

[2675] Ian Holmes. A feasibility study into the design of a 64-bit floating point processor. Thesis (M.Sc. in Electronics), University of Southampton, Department of Electronics and Computer Science, Southampton, UK, 1991.

REFERENCES

[2696] Cetin K. Koc and Sarath N. Arachchige. A fast algorithm for Gaussian elimination over GF(2) and its implementation on the GAPP. *Journal of

Koc:1991:IAM

Kohprasert:1991:FAC

Kostopoulos:1991:ACB

Kramer:1991:EFA

Kuhnel:1991:OPS

Kurokawa:1991:CGU

Lai:1991:HNS

F.-S. Lai and C.-F. E. Wu. A hybrid number system processor with geometric and complex arithmetic capabilities. IEEE Transactions on
REFERENCES

Lee:1991:FPPa

Lee:1991:FPPb

Lee:1991:FPPc

Lee:1991:SCF

Letcher:1991:GNC

Lo:1991:BHS

REFERENCES

REFERENCES

REFERENCES

Ochs:1991:NTR

Ochs:1991:RF

Ochs:1991:SRF

OGrady:1991:HOA

Okabe:1991:LDC

Orup:1991:HRH

Ozawa:1991:FND

REFERENCES

Plauger:1991:FPA

Plauger:1991:FPP

Plauger:1991:HTF

Plauger:1991:WW

Priest:1991:AAP

Pugh:1991:TFV

Quach:1991:DIS

Quach:1991:FIR
REFERENCES

REFERENCES

Tsang:1991:SDC

Tsubokawa:1991:FEA

Tu:1991:ALA

Tu:1991:GAI

Turner:1991:IAE

Umemura:1991:FNL

REFERENCES

Yassine:1991:IMR

Yokoo:1991:OUF

Yoshida:1991:PRT

Yu:1991:FCF

Zelniker:1991:RCF

Zeng:1991:AFP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Horiguchi:1992:FNR

Horiguchi, Hiroshi, and Tsutomu Tayama. Floating-point numbers and real numbers II. *Advances in software science and technology*, 3(??): 151–156, 1992. ISSN 1044-7997.

Hoyt:1992:MFP

Hoyt, Brian S. The Macintosh floating point arithmetic visualization system. Thesis (M.S.–Electrical Engineering), Bucknell University, Lewisburg, PA, USA, 1992. ix + 88 pp. Supervised by Richard J. Zaccone. Describes the design, development, implementation, and use of MacFavs (Macintosh Floating point arithmetic visualization system). MacFavs uses simulation, visual displays, and animations to allow students to see actual machine representations of floating point numbers.

Hudak:1992:RPL

IFIF:1992:CVD

Jackson:1992:DTF

Jacobson:1992:ETF

REFERENCES

REFERENCES

Lozier:1992:SLI

Lu:1992:NDA

Lynch:1992:FCA

Lynch:1992:HSD

Maguire:1992:MD

Makhdumi:1992:CCS

Mar:1992:DSP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Barrera:1993:IBS

Bauer:1993:LCB

Beckmann:1993:FFTa

Beckmann:1993:FFTb

Benouamer:1993:LEA

Bickerstaff:1993:RAM

K’Andrea C. Bickerstaff, Michael J. Schulte, and Earl E. Swartzlander, Jr. Reduced area multipliers. In Wah and Dadda [7188], pages 478–489.

REFERENCES

Chang:1993:REP

Choi:1993:FPR

Chu:1993:FPA

Cody:1993:ACP

Cody:1993:AFS

Cody:1993:ASE

REFERENCES

REFERENCES

REFERENCES

Etiemble:1993:AMV

Fortune:1993:EEA

Fowkes:1993:HEA

Fox:1993:HLS

Geraminejad:1993:DIC

Gibbons:1993:FMW

REFERENCES

REFERENCES

REFERENCES

Jahn:1993:LIF

Jahn:1993:SIG

Jebelean:1993:CSG

Jenkins:1993:CSL

Johnstone:1993:RNA

Ju:1993:WCB

REFERENCES

[3079] Werner Krandick and Jeremy R. Johnson. Efficient multiprecision floating point multiplication with optimal directional rounding. In

REFERENCES

California State University, Long Beach, Long Beach, CA, USA, 1993. xi + 265 pp.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ris:1993:WFP

Samani:1993:SVP

Sarma:1993:MAR

Scannell:1993:DMM

Schorn:1993:AAR

Schulte:1993:ERC
REFERENCES

REFERENCES

Takagi:1993:MMA

Thompson:1993:CCQ

TI:1993:ITC

TI:1993:ITT

Inside technology today 32-bit floating point multi-port DSP / produced by Texas Instruments. VHS format. High-speed, multi-port DSPs can be used in parallel processing applications to really enhance computation time and power. A popular 6-port floating point DSP and high speed design integration and applications are described in this tape., 1993. 1 videocassette.

Timmermann:1993:GFR

Tiwari:1993:NCP

REFERENCES

Anonymous:1994:C

Anonymous:1994:FPa

Anonymous:1994:FPb

Anonymous:1994:FPc

Anonymous:1994:SCSa

Anonymous:1994:SPF

Anonymous:1994:SRT

Apple:1994:IMP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3218] F. Hartwig and A. Lacroix. Floating point addition errors and their effect on the roundoff noise in digital signal processing. In IEEE International

See correction [3173], and improved analysis, tightened bounds, and exhibition of worst cases for complex square roots [6224].

Hung:1994:ASD

Hung:1994:FRD

IBM:1994:IRS

IBM:1994:OA

Ienne:1994:BSM

Ignatowski:1994:CNA

REFERENCES

REFERENCES

REFERENCES

Kawahito:1994:HSA

Kim:1994:FPF

Kobbelt:1994:FDP

Kornerup:1994:SLA

Krandick:1994:EMF
W. Krandick and J. R. Johnson. Efficient multiprecision floating point multiplication with exact rounding. In Calmet [7191], pages 207–?? ISBN ???? LCCN ????

Laakso:1994:BFP

Laakso:1994:ELC
REFERENCES

Ledoux:1994:TOW

Lewis:1994:IMF

Lo:1994:RFP

May:1994:PAS

McGrath:1994:OMC

Meek:1994:PLT

Mehlhorn:1994:IGA

REFERENCES

REFERENCES

III/237–III/240. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1994. CODEN ????. ISSN ????

Parhami:1994:OTLb

Parker:1994:FTLa

Parker:1994:FTLb

Patankar:1994:SHA

Phatak:1994:HSD

Popova:1994:EIA

Prince:1994:TFM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Aagaard:1995:FVP

Abdallah:1995:SASa

Abdallah:1995:SASb

Al-Mouhamed:1995:ELF

Altwaijry:1995:PAT

Anonymous:1995:FEF

Anonymous:1995:INM

Anonymous:1995:MVW

Anonymous:1995:PCH

Antelo:1995:RCR

Bailey:1995:FBM

Bannon:1995:IAA

Baron:1995:FPP

REFERENCES

REFERENCES

Bierman:1995:FAI

Boley:1995:FPF

Bomar:1995:RNA

Booker:1995:FER

BrinchHansen:1995:LDA

Burgess:1995:COT

Burnikel:1995:EGC

[3363] Christoph Burnikel, Jochen Konemann, Kurt Mehlhorn, Stefan Naher, Stefan Schirra, and Christian Uhrig. Exact geometric computation in
REFERENCES

[3369] Jean-Marie Chesneaux. L’arithmétique stochastique et le logiciel CADNA. (French) [Stochastic arithmetic and CADNA software].

[Coe:1995:CAP]

[Coe:1995:IPF]

[Coe:1995:ITS]

[Crenshaw:1995:PTFa]

[Crenshaw:1995:PTFb]

[Cui:1995:GIFa]

[Cui:1995:GIFb]

REFERENCES

REFERENCES

[3393] Tom R. Halfhill. The truth behind the Pentium bug: How often do the five empty cells in the Pentium’s FPU lookup table spell miscalculation?
REFERENCES

Hamano:1995:DCA

Harrison:1995:FPV

Hassler:1995:FET

Hauser:1995:HFE

Helsley:1995:SZL

Hiasat:1995:HSDa

REFERENCES

Hiasat:1995:HSDb

Hitz:1995:IDR

Ho:1995:CFF

Ho:1995:FPI

Hobson:1995:EMR

Houelle:1995:AFL

REFERENCES

REFERENCES

Kubota:1995:DRE

[3418] K. Kubota. On distribution of rounding errors generated in additions
and subtractions of floating-point numbers. Transactions of the Japan
ISSN 0917-2246.

Kwan:1995:CII

Cascaded implementation of an iterative inverse-square-root algorithm,
with overflow lookahead. In Knowles and McAllister [7210], pages 115–
122. ISBN 0-8186-7089-4 (paperback), 0-8186-7089-4 (case), 0-8186-7149-
1 (microfiche), 0-8186-7089-4 (softbound), 0-7803-2949-X (casebound).
LCCN QA 76.9 C62 S95 1995. URL http://www.acsel-lab.com/

Lang:1995:VHR

[3420] Tomás Lang and Paolo Montuschi. Very-high radix combined division
and square root with prescaling and selection by rounding. In
(paperback), 0-8186-7089-4 (case), 0-8186-7149-1 (microfiche), 0-8186-
7089-4 (softbound), 0-7803-2949-X (casebound). LCCN QA 76.9 C62
papers/ARITH12_Lang.pdf.

Leeser:1995:VSR

algorithm and implementation. In Proceedings of the IEEE International
Conference on Computer Design: VLSI in Computers and Processors,
ICCD ’95, pages 526–531. IEEE Computer Society Press, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA, 1995. CODEN ????
ISSN ????

Liu:1995:SRV

conveyors. IEEE Proceedings on Circuits, Devices and Systems [see also
IEEE Proceedings G- Circuits, Devices and Systems], 142(4):223–226,
August 1995. CODEN ????. ISSN ????

Louie:1995:VPS

square root implementation for field programmable gate arrays.
CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3459] S. J. Sangwine and D. A. Riach. Colour image thresholding at pixel rate using rational arithmetic hardware. In Fifth International Conference
REFERENCES

Sanyal:1995:CAS

Sarma:1995:FBR

Schulte:1995:DAV

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.
A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

N. Shirazi, A. Walters, and P. Athanas. Quantitative analysis of floating point arithmetic on FPGA based custom computing machines. In
REFERENCES

[Wong:1995:FEE]

[Wu:1995:SRM]

[Ypma:1995:HDN]

[Yu:1995:MRF]

[Zaytoun:1995:SFR]

Zhou:1995:HSD

Ahrendt:1996:FHC

Al-Twaijry:1996:OPR

Alefeld:1996:EII

Andraos:1996:FPU

Angarai:1996:NRS

[3497] Vijayanand Jaganaatthan Angarai. Number representation schemes for energy efficient computer arithmetic. Thesis (M.S.), University of Texas at Dallas, Dallas, TX, USA, 1996. ix + 57 pp.

Anonymous:1996:DC

Anonymous:1996:FPF

Anonymous:1996:IBT

Anonymous:1996:SROa

Anonymous:1996:SROb

Anonymous:1996:SROc

Anonymous:1996:SROd

Anonymous:1996:SROe
REFERENCES

Anonymous:1996:SROf

Anuta:1996:BLA

Anuta:1996:MMC

Arioli:1996:REA

Bajard:1996:NED

Barber:1996:QAC

[3512] H. M. E. Berlejung. Processing software metrics in an integrated
development environment for Pascal-XSC. In Alefeld et al. [7213], pages

et al. [7213], pages 200–206. ISBN 3-05-501737-4. ISSN 0138-3019. LCCN
QA76.95 .I575 1995.

CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).
URL http://http.cs.berkeley.edu/~blum/pentium.ps; http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=494097.

Journal*, 14(3):39–41, March 1996. CODEN CCUJEX. ISSN 1075-
2838. Implements a small table-driven square root function in C, using
exclusively integer operations.

numbers quickly and accurately. *ACM SIGPLAN Notices*, 31(5):
108–116, May 1996. CODEN SINODQ. ISSN 0362-1340 (print),
1523-2867 (print), 1558-1160 (electronic). URL http://www.acm.org:
80/pubs/citations/proceedings/pldi/231379/p108-burger/.
This paper offers a significantly faster algorithm than that of [2565], together
with a correctness proof and an implementation in Scheme. See also
[2473, 3912, 4868, 4758].

[3517] Christoph Burnikel and Jochen Könemann. High precision floating point
numbers in LEDA. Report MPI I 96 1 002, Max-Planck-Institut für
Informatik, Saarbrücken, Germany, 1996. 7 pp.

REFERENCES

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1996. CODEN ????. ISSN ????

REFERENCES

REFERENCES

[3543] Michael J. Flynn, Stuart Oberman, Steve Fu, Hesham Al-Twaijry, Kevin Nowka, Gary Bewick, Eric Schwarz, and Nhon Quach. The SNAP
REFERENCES

Fortune:1996:SAY

Ganesan:1996:CSM

Garg:1996:FTP

Gibb:1996:FFI

Goldberg:1996:CA

Goldstine:1996:ENI

REFERENCES

REFERENCES

Hauser:1996:HFE

Heck:1996:IM

Hecker:1996:LGF

Heikes:1996:DFP

Heindl:1996:MVC

Heinrich:1996:AAF

REFERENCES

REFERENCES

Industry immediately started to investigate the failure.” From the report: “The internal SRI software exception was caused during execution of a data conversion from 64-bit floating point to 16-bit signed integer value. The floating point number which was converted had a value greater than what could be represented by a 16-bit signed integer. This resulted in an Operand Error. The data conversion instructions (in Ada code) were not protected from causing an Operand Error, although other conversions of comparable variables in the same place in the code were protected.”

Lo:1996:CBC

Louca:1996:IIS

Lozier:1996:EBL

Luther:1996:CAG

MacDonald:1996:NSS

REFERENCES

REFERENCES

Muller:1996:TER

Nakao:1996:GEB

Nonnenmacher:1996:LCS

Oberman:1996:DIH

Oberman:1996:FIR

Oberman:1996:IDO

Oberman:1996:RDL

REFERENCES

REFERENCES

[3635] H. Schwandt. Globally convergent iterative domain decomposition methods for the parallel solution of a class of nonlinear systems of

REFERENCES

[3659] K. B. Williams. Testing math functions: When requirements are tight, we must carefully examine all potential sources of error. Make sure your math library isn’t the weak link in the chain. *C/C++ Users Journal*, 14 (12):49–54, 58–65, December 1996. CODEN CCUJEX. ISSN 1075-2838. Describes a package that extends the Cody-Waite-Plauger work on the ELEFUNT package for the testing of the elementary functions, including the inverse hyperbolic functions, cube root, and Bessel functions of the first and second kinds. The C++ package implements 192-bit extended precision versions of all of the functions, so that accurate results are available for comparison with the normal double-precision results.

REFERENCES

Aoki:1997:RCR

Arnold:1997:ACT

Atkinson-Barr:1997:LEP

[3670] Martin Atkinson-Barr. Letter to the Editor: Pentium II math bug. Dr. Dobb’s Journal of Software Tools, 22(10):10, October 1997. CODEN DDJOEB. ISSN 1044-789X. Identifies himself as the “Mr. X” cited in [3684], and provides more the background on the discovery of the Pentium FIST (floating-point to integer store) instruction.

Avnaim:1997:ESD

Bajard:1997:RMM

REFERENCES

Chen:1997:PEG

Collins:1997:IPI

Compagner:1997:RER

Cuyt:1997:FPV

Daumas:1997:VRD

Dimitrov:1997:AME

Dimitrov:1997:ERN

REFERENCES

IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 1997. CODEN ???? ISSN ????

Dimitrov:1997:TAD

for a double-base number system. In Lang et al. [7228], pages 44–
53. ISBN 0-8186-7846-1, 0-8186-7847-X, 0-8186-7848-8. ISSN 1063-
arithmetic/arithmetic/papers/ARITH13_Dimitrov_theory.pdf. IEEE
Computer Society order number PR07846. IEEE Order Plan catalog
number 97CB36091.

Doring:1997:DAL

[3691] Andreas Döring and Wolfgang J. Paul. Decimal adjustment of long
numbers in constant time. Information Processing Letters, 62(3):161–
163, June 4, 1997. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119
(electronic).

Drmac:1997:IJR

[3692] Zlatko Drmač. Implementation of Jacobi rotations for accurate singular
value computation in floating point arithmetic. SIAM Journal on
siam.org/sam-bin/dbq/article/26509.

Drolshagen:1997:PES

the standard cell implementation of residue number systems. In IEEE
International Conference on Application-Specific Systems, Architectures
Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1997. CODEN ???? ISSN ????

EC:1997:IER

[3694] European Commission. The Introduction of the Euro and the Rounding
of Currency Amounts. European Commission Directorate General II

Edelman:1997:MPD

[3695] Alan Edelman. The mathematics of the Pentium division bug. SIAM
Even:1997:DIC

Fitzpatrick:1997:EBE

Frougny:1997:FAS

Garber:1997:NBB

Garjanov:1997:CRE

REFERENCES

REFERENCES

REFERENCES

Society order number PR07846. IEEE Order Plan catalog number 97CB36091.

REFERENCES

[3725] E. J. King and E. E. Swartzlander, Jr. Data-dependent truncation scheme for parallel multipliers. In Fargues and Hippenstiel
REFERENCES

Kinoshita:1997:RAE

Koc:1997:FSE

Kramer:1997:PWC

Kravchenko:1997:AEP

Lang:1997:CVA

REFERENCES

From the article: “The SRI S/W exception was raised during a conversion from a 64-bit floating point number F to a 16-bit signed integer number. F had a value greater than what can be represented by a 16-bit signed integer, which caused an Operand Error (data conversion — in Ada code — was not protected, for the reason that a maximum workload target of 80% had been set for the SRI computer). . . . The value of BH was much higher than expected because the early part of the trajectory of Ariane 5 differs from that of Ariane 4, which results in considerably higher horizontal velocity values.”.

REFERENCES

MRaihi:1997:XFO

Mukherjee:1997:DTM

Muller:1997:EFA

Nielsen:1997:PPF

Nielsen:1997:RRR

REFERENCES

Parker:1997:MAU

Parker:1997:MCAa

Parker:1997:MCAb

Pierce:1997:ARF

[3759] Brad Pierce. Applications of randomization to floating-point arithmetic and to linear systems solution. Thesis (Ph.D.), Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA, 1997.

Priest:1997:FTD

Reuderlehner:1997:NCP

REFERENCES

Schulte:1997:SBT

Schwarz:1997:CFP

Schwarz:1997:RCM

Shewchuk:1997:APF

Soderquist:1997:DSR

REFERENCES

REFERENCES

Wilkes:1997:AE

Williams:1997:IPC

Woehr:1997:CWK

Zeng:1997:REA

Aberbour:1998:PMF

Aberth:1998:PNM

REFERENCES

Al-Twaijry:1998:SPB

Al-Twaijry:1998:TSE

Althaus:1998:MNF

Anonymous:1998:ANO

[3800] Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. *ACM Fortran Forum*, 17(3):1–2, December 1998. CODEN ????? ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1998:PIS

REFERENCES

REFERENCES

Chatterjee:1998:MMP

Chen:1998:PCL

Chen:1998:VFP

Cheon:1998:TEA

Chren:1998:OHR

Citron:1998:AMM

Collins:1998:PFB

REFERENCES

Grisoni-Busca:1998:LPF

Grushin:1998:CMA

Guo:1998:SAI

Hars:1998:FCC

Heckmann:1998:ABI

Hill:1998:FDP

Huertgen:1998:TFP

[3845] F. Huertgen, H. Meyr, and M. Willems. Transformation of floating-point into fixed-point algorithms by interpolation applying a statistical
REFERENCES

approach. In Anonymous [7232], pages 630–634. LCCN TK5102.5. Two volumes.

W. Kahan and Joseph D. Darcy. How Java’s floating-point hurts everyone everywhere. Technical report, Department of Mathematics and
REFERENCES

W. Kiranon and N. Kumprasert. Square-rooting and vector summation circuits using current conveyors. Circuits, Devices and Systems, IEE Proceedings [see also IEE Proceedings G- Circuits, Devices and Systems], 145(2):139, April 1998. CODEN ???? ISSN ????

REFERENCES

711

REFERENCES

Montalvo:1998:NST

Moore:1998:MCP

Murabayashi:1998:WBP

Naffziger:1998:MAB

Nguyen:1998:MLS

Oberman:1998:ATK

Oberman:1998:MCS

[3884] M. T. Rivolo and A. Simi. Il calcolo delle radici quadrate e cubiche in Italia da Fibonacci a Bombelli. (Italian) [The calculation
of square and cube roots in Italy from Fibonacci to Bombelli].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Weiss:1998:FPM

Wu:1998:LCB

Wu:1998:NLC

Abbott:1999:ASS

Agarwal:1999:SAM

REFERENCES

Ait-Ameur:1999:RRE

Allender:1999:BDA

Anderson:1999:DAF

Anonymous:1999:SLH

Antelo:1999:VRC

REFERENCES

[3925] M. Bhardwaj, T. Srikanthan, and C. T. Clarke. A reverse converter for the 4-moduli superset \{2^n – 1, 2^n, 2^n + 1, 2^{n+1} + 1\}. In
REFERENCES

REFERENCES

http://euler.ecs.umass.edu/paper/final/brentr.ps;
http://www.acsel-lab.com/arithmetic/arith14/
papers/ARITH14_Brent.pdf. IEEE Computer Society Order Number
PR00116. IEEE Order Plan Catalog Number 99CB36336.

Bronnimann:1999:SDR

Sign determination in residue number systems. *Theoretical Computer
com/cas/tree/store/tcs/sub/1999/210/1/2931.pdf.

Bui:1999:DSI

function. In *1999 IEEE Canadian Conference on Electrical and
Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1999. CODEN ???. ISSN ???.

Burgess:1999:EIR

[3932] N. Burgess and S. Knowles. Efficient implementation of rounding
units. In *Conference Record of the Thirty-Third Asilomar Conference
IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 1999. CODEN ???. ISSN ???.

Burgess:1999:FIS

[3933] Neil Burgess and Luigi Ciminiera. Fifteenth IEEE Symposium on
Computer Arithmetic: Foreword. In Koren and Kornerup [7253],
page ix. ISBN 0-7803-5609-8, 0-7695-0116-8, 0-7695-0118-4. ISSN 1063-
arithmetic/arith15/papers/ARITH15_contents.pdf;
http://www.acsel-lab.com/arithmetic/arith15/papers/ARITH15_
foreword.pdf; http://www.acsel-
lab.com/arithmetic/arith15/papers/ARITH15_preface.pdf. IEEE
Computer Society Order Number PR00116. IEEE Order Plan Catalog
Number 99CB36336.

Cappuccino:1999:HSS

self-timed pipelined datapath for square rooting. *Circuits, Devices and
Systems, IEE Proceedings [see also IEE Proceedings G- Circuits, Devices
REFERENCES

REFERENCES

Collavizza:1999:CPC

Connors:1999:SOF

Constales:1999:PSS

Conway:1999:FCM

Cornea-Hasegan:1999:CPO

REFERENCES

REFERENCES

Eweda:1999:REA

Farid:1999:RCA

Fateman:1999:SEN

Fernandez:1999:NID

Fiore:1999:PMU

Flynn:1999:FDA

Patrick Hung, Hossam Fahmy, Oskar Mencer, and Michael J. Flynn. Fast division algorithm with a small lookup table. In IEEE, editor, Asilomar
REFERENCES

Freking:1999:MMM

Frommer:1999:VEB

Garcia:1999:LSS

Gay:1999:SAF

German:1999:ISI

REFERENCES

REFERENCES

Hirn:1999:GBI

Hormigo:1999:ISC

Hung:1999:FDA

Hyogo:1999:LVF

Ide:1999:GFP

Iordache:1999:ARS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mahesh:1999:IAE

McCullough:1999:ARS

McCullough:1999:NRE

Montuschi:1999:BVH

Muller:1999:FRT

REFERENCES

Oberman:1999:FPD

Oleary:1999:FVI

Paar:1999:FAP

Paliouras:1999:MAR

Paliouras:1999:NHR

REFERENCES

Ruess:1999:MVS

Rugina:1999:APD

Rump:1999:IIL

Russinoff:1999:MCP

Saed:1999:ASA
REFERENCES

SanGregory:1999:FLP

Scherer:1999:OTW

Schmookler:1999:LPH

Schulte:1999:AEF

Schulte:1999:CSI

REFERENCES

REFERENCES

http://euler.ecs.umass.edu/paper/final/paper-112.ps;

REFERENCES

REFERENCES

Tenca:1999:DHR

Thompson:1999:BPF

Tisseur:1999:NMF

Tropp:1999:HAI

Tropp:1999:NRI

Tsuji:1999:REO

Walter:1999:MTI

REFERENCES

[4097] Record, page various, 19xx. Floating Point Systems, Portland, OR, USA.

[4098] Intel. Intel 8231A Arithmetic Processing Unit. Intel Corp., San Jose, CA, USA, 19xx. URL http://www.datasheetarchive.com/pdf-datasheets/Datasheets-14/DSA-276911.html. From the datasheet (p. 3-5): “The mantissa is expressed as a 24-bit (fractional) value; the exponent is expressed as a two's complement 7-bit value having the range −64 to +63. The most significant bit is the sign of the mantissa (0 = positive, 1 = negative), for a total of 32 bits. The binary point is assumed to be [to] the left of the most significant mantissa bit (bit 23). All floating-point data values must be normalized. Bit 23 must be equal to 1, except for the value zero, which is represented by all zeros. The range of values that can be represented in this format is \(\pm(2.7 \times 10^{18})\) and zero.”.

REFERENCES

[4127] Miloš D. Ercegovac, Laurent Imbert, David W. Matula, Jean-Michel Muller, and Guoheng Wei. Improving Goldschmidt division, square root,
REFERENCES

Ercegovac:2000:RSR

Eskritt:2000:DDF

Even:2000:CTR

Even:2000:DIC

Even:2000:DPI

REFERENCES

REFERENCES

volume 2, pages 1339–1343. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2000. CODEN ???. ISSN ???.

REFERENCES

volume 5, pages 4253–4258. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2000. CODEN ???? ISSN ????

Hasan:2000:LTB

Hassibi:2000:ESR

Hassibi:2000:FSR

He:2000:UAA

Hiasat:2000:NES

Hida:2000:QDA

REFERENCES

REFERENCES

ISACEM. ISSN 0733-8716 (print), 1558-0008 (electronic). URL http://
.ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=19376.

[4175] Hyun-Sung Kim, Sung-Woo Lee, and Kee-Young Yoo. Partitioned
systolic architecture for modular multiplication in GF (2 m).
Information Processing Letters, 76(3):135–139, December 15,
2000. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119
27/30/abstract.html;

[4176] Shiro Kobayashi and Gerhard P. Fettweis. A hierarchical block-floating-
February 2000. CODEN JVSPED. ISSN 0922-5773 (print), 1573-109x
(electronic).

[4177] Israel Koren and Peter Kornerup. Guest Editors’ introduction: Special
issue on computer arithmetic. *IEEE Transactions on Computers*,
49(7):625–627, July 2000. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-
jsp?tp=&arnumber=863030.

Precise: Efficient multiprecision evaluation of algebraic roots and
predicates for reliable geometric computations. Technical Report TR00
008, Department of Computer Science, University of North Carolina,
Chapel Hill, NC, USA, 2000. URL http://citeseer.nj.nec.com/
krishnan00precise.html.

[4179] Ki-Il Kum, Jiyang Kang, and Wonyong Sung. AUTOSCALER for C: an
optimizing floating-point to integer C program converter for fixed-point
digital signal processors. *IEEE transactions on circuits and systems.
CODEN ICSPE5. ISSN 1057-7130 (print), 1558-125X (electronic).

[4180] Keon-Jik Lee and Kee-Young Yoo. Linear systolic multiplier/squarer
for fast exponentiation. *Information Processing Letters*, 76(3):105–111,
REFERENCES

Leemis:2000:SDS

Lefevre:2000:CRF

Lefevre:2000:MAP

Liew:2000:IDR

Lin:2000:NBP

Lopez:2000:HSS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Atlamazoglou:2001:ALP

Baidas:2001:FPB

Bajard:2001:MMB

Balzola:2001:DAP

Barraud:2001:SAR

Bashagha:2001:NRS

REFERENCES

Beaumont-Smith:2001:PPA

Beebe:2001:IFP

Berg:2001:FVV

Bickerstaff:2001:ACC

Blanck:2001:ERA

Blum:2001:HRM

REFERENCES

[4268] Keith Briggs and Yannis Smaragdakis. XR — exact real arithmetic. World-Wide Web document and software package., March 01, 2001. URL http://www.btexact.com/people/briggsk2/XR.html. From the overview: “This is an implementation of exact (or constructive) real arithmetic, as an alternative to multiple-precision floating-point (MPFP). An important distinction is that in MPFP one sets the precision before starting a computation, and then one cannot be sure of the final
result. Interval arithmetic is an improvement on this, but still not an ideal solution because if the final interval is larger than desired, there is no simple way to restart the computation at higher precision. By contrast, in XR no precision level is set in advance, and no computation takes place until a final request takes place for some output. Despite this, programming with XR is no different from MPFP, except for the declaration of critical variables as type ‘XR’.

The main aim is to produce a usably efficient implementation, which can be easily interfaced with existing C++ code. This contrasts with previous implementations in functional languages (Haskell, Miranda etc.), which, although theoretically important, seem to be rather too slow for real use.

This code is designed as an add-on to Victor Shoup’s arbitrary-precision arithmetic package NTL, and implements a new type XR, to complement NTL’s ZZ and RR integer and real types.

Bruguera:2001:URC

Bryant:2001:VAC

Burgess:2001:DIR

Busaba:2001:IZD

REFERENCES

REFERENCES

Defour:2001:CREa

Defour:2001:CREb

Defour:2001:NRRa

Defour:2001:NRRb

REFERENCES

Fernandez:2001:IOD

Finot-Moreau:2001:PAU

Flynn:2001:ACA

Galan-Simon:2001:MLD

Gallant:2001:FPM

Gelbukh:2001:ZHL

REFERENCES

[4313] Yozo Hida, Xiaoye S. Li, and David H. Bailey. Algorithms for quad-double precision floating point arithmetic. In Burgess
REFERENCES

and Ciminiera [7275], pages 155–162. ISBN 0-7695-1150-3; 0-

Hlavacs:2001:IAN

[4314] H. Hlavacs and C. W. Ueberhuber. Improving the accuracy of
numerical integration. Technical report TR 2001-06, Aurora: Advanced
Models, Applications and Software Systems for High Performance
Computing, European Centre for Parallel Computing at Vienna
Nordbergstraße 15/C/3, A-1090 Vienna, Austria, 2001. i + 14
auroratr2001-06.ps.gz; http://citeseer.ist.psu.edu/hlavacs01improving.html.

Hsu:2001:CAS

Hardware. CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, FL
UK£59.99.

Hur:2001:GRO

[4316] Namhyun Hur and James H. Davenport. A generic root operation
for exact real arithmetic. Lecture Notes in Computer Science, 2064:
82–??, 2001. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349
series/0558/bibs/2064/20640082.htm; http://link.springer-

ISO:2001:IIIc

[4317] ISO. ISO/IEC
10967-2: Information technology — Language independent arithmetic —
Part 2: Elementary numerical functions. International Organization
x + 177 pp. LCCN ????? URL http://standards.iso.org/ittf/

Jacobi:2001:FVT

In Boulton and Jackson [7273], pages 239–254. ISBN 3-540-42525-X
(paperback). ISSN 0302-9743 (print), 1611-3349 (electronic). LCCN

REFERENCES

Koc-Sahan:2001:STA

Kosaraju:2001:MAM

Koy:2001:SLRb

Kramer:2001:AFE

Kreinovich:2001:INB

Krishnan:2001:PEM

Shankar Krishnan, Mark Foskey, Tim Culver, John Keyser, and Dinesh Manocha. PRECISE: efficient multiprecision evaluation of algebraic roots

REFERENCES

[4348] Keqin Li and V. Y. Pan. Parallel matrix multiplication on a linear
array with a reconfigurable pipelined bus system. \textit{IEEE Transactions

[4349] Th. Lippert, N. Petkov, P. Palazzari, and K. Schilling. Hyper-
systolic matrix multiplication. \textit{Parallel Computing}, 27(6):737–759,
May 2001. CODEN PACOEJ. ISSN 0167-8191 (print), 1872-7336

[4350] A. S. Madhukumar and F. Chin. An efficient method for high-rate data
transmission using residue number system based DS–CDMA. In \textit{12th
IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications, 2001}, volume 1, pages C–1–C–5. IEEE Computer
Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 2001. CODEN ???? ISSN ????

[4351] A. S. Madhukumar and F. Chin. Improving bandwidth efficiency for a
residue number system based DS–CDMA system. In \textit{VTC 2001 Fall.
IEEE VTS 54th Vehicular Technology Conference}, volume 1, pages 247–
251. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 2001. CODEN ???? ISSN ????

[4352] A. S. Madhukumar and F. Chin. Incorporating incremental redundancy
and link adaptation in communication systems using residue number

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

711

Anonymous:2002:OFP

ARM:2002:VVF

Arnold:2002:AOS

ARM:2002:LNS

Arnold:2002:RPC

Bailey:2002:AAP

Bailey:2002:APP

David H. Bailey, Yozo Hida, Xiaoye S. Li, and Brandon Thompson. ARPREC: An arbitrary precision computation package. Technical
REFERENCES

REFERENCES

[4460] Sylvie Boldo and Marc Daumas. Properties of the subtraction valid for any floating point system. In Rance Cleaveland and Hubert Garavel,

Cardarilli:2002:RNS

Chesneaux:2002:FRN

Chiricescu:2002:MM

Chotin:2002:FPU

Col:2002:ALC

REFERENCES

[4473] Florent de Dinechin and Jérémie Detrey. Multipartite tables in JBits for the evaluation of functions on FPGA’s. In IEEE [7290], pages 154–
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lee:2002:PFP

Leeser:2002:LPH

Leong:2002:IMM

Lester:2002:CAF

Lester:2002:UPV

Li:2002:DIT

REFERENCES

Li:2002:LLF

Liddicoat:2002:HPA

Lienhart:2002:UFP

Loh:2002:RER

Lutz:2002:BGB

REFERENCES

REFERENCES

Paul:2002:BB

Pillmeier:2002:DAB

Pineiro:2002:HRL

Pineiro:2002:HSD

Puchta:2002:RNN

Ramasubramanian:2002:ACL

REFERENCES

Roesler:2002:NOH

Saed:2002:NSC

Sahin:2002:FFP

Sakai:2002:AES

Sawada:2002:FVD

Sawada:2002:MVS

Schwarz:2002:MIE

Serebrenik:2002:TLP

Shi:2002:SMF

Soudris:2002:FAB

Spiteri:2002:PPA

[4575] Texas Instruments, Dallas, TX, USA. *TMS320C67x FastRTS Library Programmer’s Reference (SPRU100A)*. October 2002. URL http://focus.ti.com/lit/ug/spru100a/spru100a.pdf. The FastRTS library is a collection of 26 optimized floating-point math functions for the TMS320C67x device. This source code library includes C-callable (ANSI-C-language compatible) optimized versions of the floating-point math functions included in previous run-time-support libraries.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Boullis:2003:SOH]

[Brisebarre:2003:FTP]

[Brown:2003:DPA]

[Burgess:2003:SRN]

[Cao:2003:DHS]

[Chaudhuri:2003:DAO]
Ranjan Chaudhuri. Do the arithmetic operations really execute in constant time? *SIGCSE Bulletin*

M. Ciet, M. Neve, E. Peeters, and J.-J. Quisquater. Parallel FPGA implementation of RSA with residue number systems — can side-channel threats be avoided? In *MWSCAS '03. Proceedings of the 46th IEEE International Midwest Symposium on Circuits and Systems*, volume 2, pages 806–810. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2003. CODEN ???? ISSN ????

REFERENCES

[4631] R. G. Deshmukh and Hatim Ghazi Zaini. High performance signal processing through computational enhancement and hardware
REFERENCES

REFERENCES

[4649] W. Geiselmann and R. Steinwandt. A redundant representation of GF(q^n) for designing arithmetic circuits. *IEEE Transactions on
REFERENCES

REFERENCES

Harrison:2003:FVS

Harrison:2003:ICC

Holmes:2003:PTC

Huang:2003:HPL

Intel:2003:DSR

Intel:2003:NID
REFERENCES

REFERENCES

REFERENCES

number PR01894. Selected papers republished in *IEEE Transactions on Computers*, 54(3) (2005) [5024].

[4682] Peter L. Montgomery Kirsten Eisenträger, Kristin Lauter. Fast elliptic curve arithmetic and improved Weil pairing evaluation. *Lecture Notes in
Muller:2003:SRS

Nannarelli:2003:PDT

Nievergelt:2003:SFM

Okeya:2003:WNM

Oklobdzija:2003:EDE

REFERENCES

REFERENCES

REFERENCES

Reyhani-Masoleh:2003:LCS

Rice:2003:NIS

Rodriguez-Henriquez:2003:PMB

Schonfelder:2003:VPA

Schulte:2003:CMS

REFERENCES

REFERENCES

Engineering Department of the University of Kentucky, Lexington, KY, USA.

REFERENCES

[4725] Z. Yan and D. V. Sarwate. New systolic architectures for inversion and
division in $GF(2^m)$. *IEEE Transactions on Computers*, 52(11):1514–
1519, November 2003. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-
jsp?tp=&arnumber=1244950.

[4726] Chang N. Zhang and Hua Li. Design of reconfigurable VLSI architecture
460, July 2003. CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067
(electronic). URL http://www3.oup.co.uk/computer_journal/hdb/
Volume_46/Issue_04/460449.sgm.abs.html;
http://www3.oup.co.uk/computer_journal/hdb/Volume_46/Issue_
04/pdf/460449.pdf.

[4727] Gerhard Zielke and Volker Drygalla. Genaue Lösung linearer
Gleichungssysteme. (German) [Exact solution of linear systems of
journals/alphabeticIndex/2250/.

constraint for test generation of binary floating point add operation.
CODEN TCSDIQ. ISSN 0304-3975 (print), 1879-2294 (electronic). Real
numbers and computers (Schloss Dagstuhl, 2000).

[4729] Abraham Ziv, Merav Aharoni, and Sigal Asaf. Solving range constraints
for binary floating-point instructions. In Bajard and Schulte [7301],
opac?punumber=8582; http://www.dec.usc.es/arith16/.
IEEE Computer Society order number PR01894. Selected papers republished
in *IEEE Transactions on Computers*, 54(3) (2005) [5024].

arithmetic to estimate the value of interpolation polynomial with

REFERENCES

Nicolas Brisebarre, Jean-Michel Muller, and Saurabh Kumar Raina. Accelerating correctly rounded floating-point division when the divisor...

Brisebarre:2004:CRM

Bruguera:2004:DDF

Busaba:2004:DFP

Cagnard:2004:ABF

Cao:2004:DRB

Cardarilli:2004:LPI

[4754] G. C. Cardarilli, A. Del Re, A. Nannarelli, and M. Re. Low-power implementation of polyphase filters in Quadratic Residue Number

[4773] Jérémie Detrey and Florent de Dinechin. Table-based polynomials for fast hardware function evaluation. Research Report November 2004,

Ercegovac:2004:CSRa

Ercegovac:2004:CSRb

Ercegovac:2004:DA

Ercegovac:2004:DCD

Fousse:2004:AST

Fousse:2004:CPE

REFERENCES

REFERENCES

REFERENCES

Kornerup:2004:RCN

Krithivasan:2004:SPM

Krueger:2004:DLI

Kwon:2004:SMI

Lang:2004:FPM

Lefevre:2004:AFF

Lefevre:2004:GMP

Leyva:2004:GHS

Lin:2004:SFP

Lu:2004:ALC

Lutz:2004:NFP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Schulte:2004:LPC

Seidel:2004:DOI

Seidel:2004:LIF

Shi:2004:FPF

Steele:2004:RHP

Stehle:2004:GAT

REFERENCES

REFERENCES

Zhu:2004:ISR

Zhuo:2004:SMA

Zimmerman:2004:DCI

Abdallah:2005:MRN

Abtahi:2005:CFR

Adharapurapu:2005:LSO

Aharoni:2005:SCI

Alvarez:2005:FMF

Anonymous:2005:HAP

Anonymous:2005:TMF

Antelo:2005:DRD

Antelo:2005:LLD

Antelo:2005:LLP

Elisardo Antelo and Julio Villalba. Low latency pipelined circular CORDIC. In Montuschi and Schwarz [7341], page ?? ISBN 0-7695-

Arnold:2005:BIR

Arnold:2005:RLN

Bailey:2005:DFDa

Bailey:2005:DFDb

Bailey:2005:HPF

Bailey:2005:QDD

REFERENCES

Bajard:2005:AOP

Bajard:2005:PMM

Beebe:2005:MPA

Beuchat:2005:MAR

Blanck:2005:EEC

Boehm:2005:CRJ

Boldo:2005:SFC

Bowman:2005:AVS

Brisebarre:2005:CRM

Brisebarre:2005:NRR

Bruguera:2005:FPF

Burgess:2005:PRI

Chakraborty:2005:BFP
REFERENCES

268, April 2005. CODEN ISPLEM. ISSN 1070-9908 (print), 1558-2361 (electronic).

REFERENCES

Cowlishaw:2005:GDA

Daneshbeh:2005:CUB

Danysh:2005:AIV

REFERENCES

REFERENCES

Giraud:2005:REA

Glusker:2005:TCM

Graillat:2005:CHS

Graillat:2005:ICH

Guizzo:2005:IRS

Haijun:2005:ROT

Huang:2005:EMP

Huang:2005:HPL

Jacobi:2005:AFV

Kahan:2005:BTG

Kahan:2005:DP

REFERENCES

REFERENCES

References

REFERENCES

Mei:2005:LZA

Menissier-Morain:2005:APR

Mitra:2005:BFP

Mitzenmacher:2005:PCI

Montgomery:2005:FSS

REFERENCES

REFERENCES

REFERENCES

[Sofronioua:2005:PNC]

Steele:2005:SME

S Steele:2005:SMF

Steele:2005:SMG

Stehle:2004:ARR

Stehle:2005:GAT

polito.it/final/paper-152.pdf.

Stehle:2005:SWC

Damien Stehlé, Vincent Lefèvre, and Paul Zimmermann. Searching worst cases of a one-variable function using lattice reduction. IEEE
Stine:2005:CTC

Takagi:2005:HAI

Takahashi:2005:AMP

Tang:2005:BBI

Tang:2005:GBE

REFERENCES

Zeydel:2005:EMA

Zhu:2005:NDA

Zhuo:2005:DSF

Zimmermann:2005:EBC

Zimmermann:2005:MPT

Zimmermann:2005:MVC

REFERENCES

[5063] Zimmermann:2005:WTA

[5064] Zimmermann:2005:XXX

Bajard:2006:AOF

Bartzis:2006:EBB

Bernal:2006:IRD

Bertot:2006:PGS

Bik:2006:MVF

Boldo:2006:PFF

REFERENCES

REFERENCES

[5088] Jérémie Detrey and Florent de Dinechin. FPLibrary. A VHDL library of parametrizable floating-point and LNS operators for FPGA. Web site and source code., 2006. URL http://www.ens-lyon.fr/LIP/ArenaireWare/FPLibrary/. The FPLibrary has been superceded by the FloPoCo project [5528].
REFERENCES

Dietz:2006:FPC

Diniz:2006:DFP

Enge:2006:CCP

Fan:2006:RBM

Feldstein:2006:GTO

Gandhi:2006:DRA

Gochman:2006:IIC

[5095] Simcha Gochman, Avi Mendelson, Alon Naveh, and Efraim Rotem. Introduction to Intel Core Duo processor architecture. *Intel

[5099] Daniel S. Graça, Ning Zhong, and Jorge Buescu. The ordinary differential equation defined by a computable function whose maximal interval of existence is non-computable. In Anonymous [7345], page ?? ISBN ???? LCCN ????

REFERENCES

Kushner:2006:I

Lang:2006:SRI

Langou:2006:EPBa

Langou:2006:EPBb

Lefevre:2006:WCE

Liew:2006:SRR

[5127] T. H. Liew, Lie-Liang Yang, and L. Hanzo. Systematic redundant residue number system codes: analytical upper bound and iterative decoding

REFERENCES

REFERENCES

Qian:2006:HMP

Rajagopal:2006:TOA

Shen:2006:TAS

Shou:2006:MAA

Singh:2006:IEE

Solymosi:2006:APS

REFERENCES

Steele:2006:TOC

Strzebonski:2006:CAD

Strzodka:2006:PMP

Taylor:2006:IAI

Thakkar:2006:PDP

Thapliyal:2006:CIF

Thapliyal:2006:DNR

Thapliyal:2006:NBA

REFERENCES

Toivonen:2006:VFF

Trott:2006:MGN

VanMeter:2006:DAQ

Vazquez:2006:CSD

Villalba:2006:DRM

Wang:2006:ACV

Wang:2006:PAN

REFERENCES

REFERENCES

Anonymous:2007:AI

Anonymous:2007:CPSa

Anonymous:2007:CPSb

Balasubramaniam:2007:ECS

Balasubramaniam:2007:FSS

Beebe:2007:ETM

Beebe:2007:NDF

Beuchat:2007:ANP

[5195] Jean-Luc Beuchat, Masaaki Shirase, Tsuyoshi Takagi, and Eiji Okamoto. An algorithm for the \(\eta_T \) pairing calculation in characteristic three and

Bodrato:2007:IPM

Bodrato:2007:FPD

Boldo:2007:FVF

Boldo:2007:PCA

Brent:2007:EBC

Brisebarre:2007:CRA

REFERENCES

REFERENCES

Cho:2007:BBL

Cho:2007:SPM

Chung:2007:ASF

Chung:2007:LWP

Chung:2007:MRA

Cornea:2007:SII

Cowlishaw:2007:DCL

REFERENCES

REFERENCES

[5234] Laurent Fousse. Multiple-precision correctly rounded Newton–Cotes quadrature. RAIRO. Informatique théorique et applications :=
REFERENCES

Frommer:2007:PEZ

Furer:2007:FIM

Gaudry:2007:GBI

Goel:2007:RMS

Goldberg:2007:FIP

Hanrot:2007:WCP

Harrison:2007:FPV

REFERENCES

0948-6968. URL http://www.jucs.org/jucs_13_5/floating_point_verification.

REFERENCES

Hosseinzadeh:2007:NMS

Huang:2007:NAM

Iguchi:2007:DRC

Ihsberner:2007:REA

James:2007:QAD

Kapre:2007:OPF

Kechagias:2007:CME

[5255] P. S. Kechagias and Basil K. Papadopoulos. Computational method to evaluate fuzzy arithmetic operations. Applied Mathematics and
Khabbazian:2007:DPC

Knowles:2007:RSE

Kobayashi:2007:AIG

Kornerup:2007:CIPa

Kornerup:2007:CIPb

Kuliamin:2007:STI

V. V. Kuliamin. Standardization and testing of implementations of mathematical functions in floating point numbers. *Programming and Computer Software; translation of Programmirovaniye (Moscow, USSR)*
Lambov:2007:REI

Lang:2007:RDR

Langlois:2007:HEF

Langlois:2007:MIL

Laurie:2007:VPA

Lefevre:2007:SNP

REFERENCES

[5274] Shawn D. Lundvall, Eric M. Schwarz, Ronald M. Smith, Sr., and Phil C. Yeh. Composition of decimal floating point data, and methods therefor.
REFERENCES

Lundvall:2007:DDF

Maslennikow:2007:DFB

Melquiond:2007:FCF

Mine:2007:RAD

Mitchell:2007:MFP

Miyajima:2007:ETS

REFERENCES

Saldamli:2007:SME

Saqib:2007:CAI

Schulte:2007:FPD

Scott:2007:NHC

Shams:2007:EHA

Shpilka:2007:IDA

Shpilka:2007:IDA

REFERENCES

REFERENCES

REFERENCES

Brisebarre:2008:EME

Brisebarre:2008:IFP

Buttari:2008:UMP

Carnicer:2008:REP

Castaldo:2008:RFP

REFERENCES

http://comjnl.oxfordjournals.org/cgi/content/full/51/4/470;

http://comjnl.oxfordjournals.org/cgi/content/full/51/5/585;

[5345] Florent De Dinechin and Christoph Quirin Lauter. Optimizing polynomials for floating-point implementation. arXiv.org, ??(?):1–12,
Dimitrov:2008:PSP

Dvir:2008:HRT

Edmonson:2008:ISS

Erle:2008:AHD

Gonzalez-Navarro:2008:BID

Graillat:2008:ASZ

Hardy:2008:ITN

Homma:2008:SAD

Jager:2008:DAD

Jezequel:2008:CLE

Jimeno:2008:BBA

Kahan:2008:BFU

REFERENCES

REFERENCES

REFERENCES

Piso:2008:FOS

Piso:2008:NRA

Quinnell:2008:BFP

Quinnell:2008:FPF

Rahaman:2008:CTB

Rahaman:2008:DRT

Ravikumar:2008:BND

Raz:2008:EFL

Raz:2008:LBS

Rodriguez-Henriquez:2008:LCB

Ruiz:2008:EIR

Rump:2008:AFPa

Rump:2008:AFPb

REFERENCES

Sun:2008:HPM

Thill:2008:EMP

Thill:2008:MPR

Tsigaridas:2008:CRR

VanMeter:2008:ADM

Webb:2008:IZN

REFERENCES

REFERENCES

Chabert:2009:PEA

Chen:2009:BDF

Chen:2009:NDA

Cheng:2009:DSE

Chevillard:2009:CFC

Cho:2009:AMD

Chouliaras:2009:CLF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Furer:2009:FIM

Gavrilova:2009:ESC

Gentle:2009:CSA

Gonzalez-Navarro:2009:CDB

Gorgin:2009:FRD

Graillat:2009:AAV

REFERENCES

REFERENCES

REFERENCES

David Monniaux. On using floating-point computations to help an exact linear arithmetic decision procedure. In Bouajjani and Maler [7380],
REFERENCES

REFERENCES

Verma:2009:CAO

Vuillemin:2009:EDS

Wang:2009:DFP

Wang:2009:HDD

Wang:2009:RCD

XILINX:2009:XLF

Zhu:2009:CRH

Zimmermann:2009:DSS

Akbarpour:2010:VSI

Aldous:2010:WCO

David Aldous and Tung Phan. When can one test an explanation? compare and contrast Benford’s Law and the fuzzy CLT. *The American Statistician*, 64(3):221–227, August 2010. CODEN ASTAAJ. ISSN 0003-1305 (print), 1537-2731 (electronic).

Alimohammad:2010:UAA

Amin:2010:HRM

REFERENCES

REFERENCES

[5528] Florent de Dinechin and Bogdan Pasca. FloPoCo: generator of arithmetic cores (Floating-Point Cores, but not only) for FPGAs (but not only). Web site and source code., August 10, 2010.

Emmart:2010:HP1

Fahmy:2010:DFP

Fiedler:2010:GGF

Frey:2010:ABC

Fu:2010:FDO

Ghazi:2010:WHU

REFERENCES

[5549] Jean-Luc Lamotte, Jean-Marie Chesneaux, and Fabienne Jézéquel. CADNA_C: a version of CADNA for use with C or C++

REFERENCES

REFERENCES

REFERENCES

Shuster:2010:ECN

Smiley:2010:MWI

Smith:2010:AFA

Sze:2010:TQB

Szewczak:2010:LTR

Takahashi:2010:PIM

Tichy:2010:GAF

REFERENCES

Vazquez:2010:IDH

Vestias:2010:PDM

Wang:2010:AOB

Wang:2010:DAH

Wang:2010:SHD

Wang:2010:VVP

REFERENCES

REFERENCES

[5613] Jean-Luc Beuchat, Jeremie Detrey, Nicolas Estibals, Eiji Okamoto, and Francisco Rodriguez-Henriquez. Fast architectures for the η_T pairing over

[Bodrato:2011:HDT]

[Boersma:2011:PBF]

[Boldo:2011:EAE]

[Boldo:2011:FUL]

[Boldo:2011:FVN]

[Bos:2011:ESA]

[5632] Harry M. Chang. Constructing n-gram rules for natural language models through exploring the limitation of the Zipf-Mandelbrot
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kim:2011:ZAS

Kong:2011:GDM

Kornerup:2011:PAO

Kulisch:2011:EDP

Kulisch:2011:VFE

Lamberti:2011:RCT

REFERENCES

REFERENCES

REFERENCES

Sarbishei:2011:FPA

Seidel:2011:FVI

Seo:2011:GDP

Siegel:2011:LAL

Singh:2011:VEF

Singha:2011:NAF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fan:2012:EHI

Fout:2012:APB

Gandino:2012:AAS

Gazeau:2012:NLM

Ghosh:2012:FPR

Giessing:2012:FRB

Goldberg:2012:CA

REFERENCES

Goossens:2012:CTS

Grcar:2012:JNA

Haller:2012:DFP

Huang:2012:LCB

Hyman:2012:LF

Katranov:2012:DRN
REFERENCES

[5778] Philippe Langlois, Matthieu Martel, and Laurent Thévenoux. Automatic code transformation to optimize accuracy and speed in floating-point

REFERENCES

LCCN ???

Muller:2012:SSV

Nehmeier:2012:SHI

Neron:2012:FPS

Oudjida:2012:NHR

Ozaki:2012:FAF

Panhaleux:2012:CFP

REFERENCES

REFERENCES

Su:2012:IIN

Swartzlander:2012:FIF

Thome:2012:SRA

Vazquez:2012:RFP

Anonymous:2013:DML

Anonymous:2013:IOF

Antao:2013:CFA

Arnold:2013:DLN

Bagnara:2013:EBF

Bailey:2013:KHP

Bajard:2013:FDR

REFERENCES

REFERENCES

Galal:2013:FGD

Giorgi:2013:PMM

Gonzalez-Navarro:2013:BID

Gustafson:2013:UCN

Han:2013:HSP

Ioualalen:2013:SAF

REFERENCES

REFERENCES

Lefevre:2013:HRC

Lefevre:2013:SSI

Lei:2013:FIE

Lei:2013:VCI

Lowery:2013:RED

Maitra:2013:DSM

Maniatakos:2013:LCC

Michail Maniatakos, Prabhakar Kudva, Bruce M. Fleischer, and Yiorgos Makris. Low-cost concurrent error detection for floating-point unit (FPU) controllers. IEEE Transactions on Computers, 62(7):1376–1388,
REFERENCES

July 2013. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

REFERENCES

[5892] Suresh Srinivasan, Ketan Bhudiya, Rajaraman Ramanarayanan, P. Sahit Babu, Tiju Jacob, Sanu K. Mathew, Ram Krishnamurthy, and
REFERENCES

REFERENCES

Anonymous:2014:CLL

Area:2014:ACS

Arteaga:2014:DBR

Ballard:2014:CLB

BasiriM:2014:EHB

REFERENCES

1051

[5912] Alberto A. Del Barrio, Nader Bagherzadeh, and Román Hermida. Ultra-low-power adder stage design for exascale floating point units. ACM
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5938] Hiroshi Murakami. Calculation of rational numbers in an interval whose denominator is the smallest by using FP interval arithmetic. *ACM*

REFERENCES

REFERENCES

Ahrens:2015:RPM

Aktan:2015:MEA

Andrysco:2015:SFP

Aneesh:2015:HHM

Anonymous:2015:EFP

Bailey:2015:HPA

REFERENCES

REFERENCES

[5977] Nicholas Coxon. Montgomery’s method of polynomial selection for the number field sieve. Linear Algebra and its Applications, 485(??):
REFERENCES

[5979] Florent de Dinechin. On fixed-point hardware polynomials. Technical report, INSA, CITI Lab, Université de Lyon, Lyon, France, October 2015. URL https://hal.inria.fr/hal-01214739.

REFERENCES

[5990] Terry Froggatt. An error in the Ada universal arithmetic package. *ACM SIGADA Ada Letters*, 35(2):14, August 2015. CODEN AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic). See [1702]. The 32-year-old error is a test with digit t that has if (t > BASE), but the operator should instead be >=.

REFERENCES

October 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Fukushima:2015:PFCc

Gerard:2015:CDR

Gorgin:2015:CXH

Gouicem:2015:MMD

Graillat:2015:ECF

Graillat:2015:MRE

REFERENCES

Hsiao:2015:TSR

Hutter:2015:MMA

Iakymchuk:2015:EEB

Iakymchuk:2015:ERA

IEEE:2015:ISI

Jacobsen:2015:PFP

REFERENCES

8th International Workshop on Numerical Software Verification 2015, Seattle, WA, USA.

REFERENCES

REFERENCES

Liu:2015:IBI

Liu:2015:SSS

Lu:2015:REP

Lutz:2015:OLZ

Martin-Dorel:2015:FVC

Matula:2015:MDE

Peeper:2015:DDP

Proust:2015:KTC

Renardy:2015:HIM

Roegel:2015:MCA

Ruckert:2015:MSS

Seo:2015:MMS

REFERENCES

[6056] Joris van der Hoeven and Grégoire Lecerf. Faster FFTs in medium precision. In Muller et al. [7411], pages 75–82. ISBN 1-4799-8665-8,
REFERENCES

[6062] Peter Ahrens, Hong Diep Nguyen, and James Demmel. Efficient reproducible floating point summation and BLAS. Report UCB/EECS-2016-121, EECS Department, UC Berkeley, Berkeley, CA, USA, June 18, 2016. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html.
REFERENCES

[6069] Grey Ballard, Austin R. Benson, Alex Druinsky, Benjamin Lipshitz, and Oded Schwartz. Improving the numerical stability of fast matrix

BEBOP:2016:RRB

Bigou:2016:BTP

Bigou:2016:HPR

Biham:2016:BA

Boldo:2016:RFA

Brisebarre:2016:CBB

Dukhan:2016:WFP

El-Razouk:2016:NAD

Emmart:2016:OMM

Fang:2016:OSV

Fevotte:2016:VAF

Fritz:2016:IPM

REFERENCES

REFERENCES

[6102] David Hopkins. Will my numbers add up correctly if I round them? The Mathematical Gazette, 100(549):396–409, November 2016. CODEN MAGAAS. ISSN 0025-5572 (print), 2056-6328 (electronic). URL https://www.cambridge.org/core/product/88F5753DFE9F0DDDEAD1F2552B0F8B22. The probability that rounding after fixed-point summation of \(n \) terms gives the same result as summation of rounded terms is given by \(p(n) = \frac{2}{\pi} \int_0^\infty \frac{\sin(x)\,dx}{x} x^{n+1} \), and that function is always a rational number. Its values are \(p(n) = 1, 3/4, 2/3, 115/192, 11/20, 5887/11520, 151/315, 259723/573440, \ldots \) for \(n = 1 \) to 8.

REFERENCES

REFERENCES

1084

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Sayed:2016:WCR

Schaffner:2016:APT

Schkufza:2016:SPO

Seo:2016:HMR

Sohn:2016:FFP

Tada:2016:ESG

REFERENCES

Zhou:2016:PUH

Aliasgari:2017:SCH

Anderson:2017:EMF

Angerd:2017:FAC

Anonymous:2017:A1

Anonymous:2017:C

REFERENCES

REFERENCES

REFERENCES

[6184] Nicolas Brisebarre. *Un peu de théorie des nombres et de calcul formel au service de l’arithmétique des ordinateurs*. (French) [A little
REFERENCES

[Brunie:2017:MFM]

[Carter:2017:PAO]

[Chapp:2017:SIN]

[Chiang:2017:RFP]

[Chohra:2017:RAR]

[6189] Chemseddine Chohra, Philippe Langlois, and David Parello. Reproducible, accurately rounded and efficient BLAS. In Desprez et al. [7417], pages 609–620. ISBN 3-319-58943-1 (e-book), 3-319-58943-1 (hardcover). LCCN QA76.9.E94; QA76.758TK.

[Constantinides:2017:AAC]

REFERENCES

REFERENCES

[6203] Sonia Gonzalez-Navarro and Javier Hormigo. Normalizing or not normalizing? An open question for floating-point arithmetic in embedded

[6209] John Gustafson and Isaac Yonemoto. Beating floating point at its own game: Posit arithmetic. Report, A*STAR Computational Resources Centre and National University of Singapore (joint appointment) [JG],
REFERENCES

1098

REFERENCES

REFERENCES

[6228] Alan A. Jorgensen. Apparatus for calculating and retaining a bound on error during floating point operations and methods thereof. US Patent 9,817,662., November 14, 2017. URL https://patents.google.com/patent/US9817662B2/; https://tinyurl.com/y7ctbsez. This patent, filed 23 October 2016, was issued despite substantial prior art that should have resulted in its rejection: see [6387]. The inventor does not appear to have published in the area of floating-point arithmetic (apart from this entry, none by him can be found in this bibliography). The only literature references in the patent are [5367, 2665, 5786, 5561].

REFERENCES

1102

REFERENCES

[6244] Yin Li, Xingpo Ma, Yu Zhang, and Chuanda Qi. Mastrovito form of non-recursive Karatsuba multiplier for all trinomials. IEEE Transactions on

REFERENCES

Ueno:2017:BCF

Uguen:2017:BHL

Ugurdag:2017:HDS

vanderHoeven:2017:MPF

VanZee:2017:IHP

Vazquez:2017:SED

[6286] Alvaro Vázquez and Elisardo Antelo. A sum error detection scheme for decimal arithmetic. In Burgess et al. [7416], pages 172–179. ISBN 1-5386-
REFERENCES

Volkova:2017:RVD

Vzquez:2017:NSA

Wahba:2017:AEF

Adams:2018:RFF

Alaghi:2018:CR

Amanollahi:2018:ERD

REFERENCES

[6299] Moritz Bärthel, Jochen Rust, and Steffen Paul. Hardware implementation of basic arithmetics and elementary functions for unum

Becker:2018:NOS

Boldo:2018:FPA

Bradbury:2018:RSR

Brisebarre:2018:HTP

Bruguera:2018:PII

Bruguera:2018:RFP

[6310] Jianyu Chen and Zaid Al-Ars. A matrix-multiply unit for posits in reconfigurable logic using (OPEN)CAPI. In ACM [7419], pages 1–5.

REFERENCES

[6318] David Defour. FP-ANR: A representation format to handle floating-point cancellation at run-time. In Tenca and Takagi [7420], pages 76-

REFERENCES

Haidar:2018:DFE

Haidar:2018:HGT

Hanson:2018:RAM

Hasanikhah:2018:EIS

Higham:2018:HPA

REFERENCES

REFERENCES

[6351] Ignaz Kohlbecker. The slide number format. In ACM [7419], pages 1–6.

REFERENCES

Lindstrom:2018:UCR

Liu:2018:CRA

Loeffler:2018:WBP

Marchese:2018:ACM

[6366] Sergio Marchese. AI chips must get the floating-point math right: Formal verification of FPUs is no longer a prerogative of big companies spending big bucks. Web site., September 27, 2018.

Mikaitis:2018:AFP

Moroz:2018:FCI

REFERENCES

[6381] Francisco Rodríguez-Henríquez and Erkay Savas. Special issue in honor of Peter Lawrence Montgomery. Journal of Cryptographic Engineering,
REFERENCES

[6387] Tiffany Trader. Inventor claims to have solved floating point error problem. HPC Web site., January 17, 2018. URL https://www.hpcwire.com/2018/01/17/inventor-claims-solved-floating-point-error-problem/. From the HPC editor: “After this article was published, a number of readers raised concerns about the originality of Jorgensen’s techniques, noting the existence of prior art going back years.
Specifically, there is precedent in John Gustafson’s work on unums and interval arithmetic both at Sun and in his 2015 book, *The End of Error*, which was published 19 months before Jorgensen’s patent application was filed.

Villalba-Moreno:2018:FHF

Villalba-Moreno:2018:URH

Walczyk:2018:IAF

Wang:2018:TDN

Yang:2018:OMP

REFERENCES

REFERENCES

[6407] Moritz Bärthel, Pascal Seidel, Jochen Rust, and Steffen Paul. SORN arithmetic for MIMO symbol detection — exploration of the Type-2 unum format. In 2019 17th IEEE International New Circuits and
REFERENCES

Beame:2019:TVN

Bellal:2019:IAA

Blanchard:2019:MPB

Bocco:2019:BAF

Bocco:2019:DPN

Bocco:2019:SSM

[6413] Andrea Bocco, Yves Durand, and Florent de Dinechin. SMURF: Scalar Multiple-precision Unum RISC-V Floating-point accelerator for scientific
computing. In Gustafson and Dimitrov [7421], pages 1:1–1:8. ISBN 1-4503-7139-6. LCCN ???? URL https://hal.inria.fr/hal-02087098.

[Boghosian:2019:NPS]

[Bos:2019:ACI]

[Bright:2019:CEN]

[Brown:2019:RCF]

[Bruguera:2019:GEI]

[Burgess:2019:BNP]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6454] David Harvey and Joris Van Der Hoeven. Integer multiplication in time $O(n \log n)$. Report hal-02070778, School of Mathematics and Statistics, University of New South Wales, and CNRS, Laboratoire d’informatique, École polytechnique, Sydney, NSW 2052, Australia and 91128 Palaiseau, France, March 18, 2019. URL https://hal.archives-ouvertes.fr/hal-02070778/document.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6493] Stefan Mach, Fabian Schuiki, Florian Zaruba, and Luca Benini. A 0.80pJ/flop, 1.24Tflop/sW 8-to-64 bit transprecision floating-point unit for a 64 bit RISC-V processor in 22nm FD-SOI. In IEEE, editor, 2019 IFIP/IEEE 27th International Conference on Very Large Scale Integration (VLSI-SoC), pages 95–98. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2019.

[6498] B. D. McCullough, Taha Mokfi, and Mahsa Almaeenjad. Wilkinson’s tests and SQL packages. SIGMOD Record (ACM Special Interest Group

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6539] Laurens van Dam, Johan Peltenburg, Zaid Al-Ars, and H. Peter Hofstee. An accelerator for posit arithmetic targeting posit level 1 BLAS routines and Pair-HMM. In Gustafson and Dimitrov [7421], pages 5:1–5:10. ISBN 1-4503-7139-6. LCCN ????.

REFERENCES

Wang:2019:PAA

Ye:2019:NCA

Zhang:2019:EMP

Zhang:2019:EMB

Zorn:2019:SPD

Abdelfattah:2020:IBF

Abdelfattah:2020:MMB

[6555] Ahmad Abdelfattah, Stanimire Tomov, and Jack Dongarra. Matrix multiplication on batches of small matrices in half and half-complex

REFERENCES

REFERENCES

REFERENCES

Cococcioni:2020:FAH

Cococcioni:2020:FDN

Cococcioni:2020:NPB

Cornea:2020:FA

Coward:2020:ADS

Das:2020:SYR

[6588] Arnab Das, Ian Briggs, Ganesh Gopalakrishnan, Sriram Krishnamoorthy, and Pavel
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6613] Claude-Pierre Jeannerod. The relative accuracy of \((x + y) \times (x - y)\). *Journal of Computational and Applied Mathematics*, 369(??):Article
REFERENCES

REFERENCES

Nannarelli:2020:VPB

Nass:2020:GUL

Neves:2020:DFM

Neves:2020:RSB

Niasar:2020:FSA

Papachatzopoulos:2020:MDM

Payer:2020:SMF

Raveendran:2020:NPF

Saadat:2020:WWC

SEGGER:2020:SFP

Sharma:2020:CRV

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2020.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6734] Jean-Michel Muller. $a \cdot (x \cdot x)$ or $(a \cdot x) \cdot x$?. In IEEE [7427], pages 17–24. ISBN 1-66542-293-9 (print), 1-66544-648-X (e-book). LCCN ???.

REFERENCES

REFERENCES

Ahmadinejad:2022:EQE

Ahmadpour:2022:BMM

Alder:2022:FPU

AMD:2022:AIM

Anonymous:2022:AI

Anonymous:2022:C

Anonymous:2022:PCA

Anonymous:2022:SA

REFERENCES

[6786] Farah Benmouhoub, Pierre-Loic Garoche, and Matthieu Martel. An efficient summation algorithm for the accuracy, convergence and

BenSalem-Knapp:2022:BRE

Bertaccini:2022:MNE

Borges:2022:HLA

Bruguera:2022:LLH

Buhrow:2022:PMM

Cardarilli:2022:DSE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6819] Dina Genkina. Posits, a new kind of number, improves the math of AI: The first posit-based processor core gave a ten-thousandfold accuracy
References

Greuet:2022:QAM

Ho:2022:QNG

Immaneni:2022:PEO

Isupov:2022:MPS

Keerthi:2022:DIM

Kim:2022:EAM

REFERENCES

REFERENCES

Lim:2022:OPA

Lindstrom:2022:MUC

Liu:2022:DUA

Mallasen:2022:CCR

Mallasen:2022:POSa

Mallasen:2022:POSb

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2023:TDT

ARM:2023:ACA

Awais:2023:TOS

Bartels:2023:FFP

Belorgey:2023:MFE

Beutel:2023:PFA

REFERENCES

REFERENCES

[6923] Tom Hubrecht, Claude-Pierre Jeannerod, and Paul Zimmermann. Towards a correctly-rounded and fast power function in binary64
REFERENCES

[6929] Ignacio Laguna, Anh Tran, and Ganesh Gopalakrishnan. Finding inputs that trigger floating-point exceptions in heterogeneous computing via Bayesian optimization. Parallel Computing, 117(??):103042:1–103042:13,

Liu:2023:CHR

Livesay:2023:AFF

Malathi:2023:DRV

Martin-Dorel:2023:EFP

Melquiond:2023:WFV

Micikevicius:2023:OBF

REFERENCES

Nadalini:2023:RPF

Nadalini:2023:TWR

Nazareth:2023:CGN

Noh:2023:FFD

NVIDIA:2023:FP1

Oh:2023:RLR

REFERENCES

REFERENCES

Talpes:2023:MDT

Towhidy:2023:DIA

Ullah:2023:DRE

Whitehead:2023:FPI

Wong:2023:KNS

Yang:2023:ATF

Zhang:2023:EAP

Zlatopolski:2023:PAV

Alsuhli:2024:NSD

Brogi:2024:FPP

Mackie:2024:RFM

Anonymous:20xx:CMP

REFERENCES

REFERENCES

AFIPS:1962:APS

Taub:1962:JNC

Metropolis:1963:PFS

Taub:1963:JNCa

Taub:1963:JNCb

Wilkinson:1963:REA

REFERENCES

REFERENCES

1222

[7013] C. V. Freiman, J. E. Griffith, and J. L. Rosenfeld, editors. *Information processing 71: proceedings of IFIP Congress 71 organized
REFERENCES

REFERENCES

ACM:1974:CRS

Panagiotopoulos:1974:PCC

IEEE:1975:SCA

Randell:1975:ODC

Swamy:1975:PEM

Swartzlander:1976:CDD

Traub:1976:ACC

REFERENCES

REFERENCES

1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1978. ISSN 1063-6889. IEEE catalog no. 78CH1412-6C.

REFERENCES

REFERENCES

Lavington:1980:IPP

Nickel:1980:IMP

GAMM:1981:PAM

IEEE:1981:PSC

Messina:1982:PMM

Randell:1982:ODC

REFERENCEs

REFERENCES

IEEE:1983:IEE

IEEE:1983:PII

IEEE:1983:PSC

Kulisch:1983:NAS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[7088] *Electro/86 and Mini/Micro Northeast Conference Record: Sessions Presented at Electro/86 and Mini/Micro Northeast-86, Boston, MA, May*
REFERENCES

REFERENCES

ACM:1988:ICS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

SHARE:1990:PSE

Swartzlander:1990:CAa

Swartzlander:1990:CAb

Ullrich:1990:CCA

USENIX:1990:PWU

Wescon:1990:WCR

ASEE:1991:CCW

REFERENCES

REFERENCES

REFERENCES

Quinton:1992:APV

Singh:1992:CRT

Turing:1992:PM

Vandewalle:1992:SPV

Wang:1992:PII

White:1992:IIS

REFERENCES

Swartzlander:1993:SCA

Wah:1993:ICA

ACM:1994:AAW

Ames:1994:IPI

Calmet:1994:RWC

Cappello:1994:PIC

REFERENCES

REFERENCES

Pehrson:1994:IPP

Wuorinen:1994:IIS

ACM:1995:PEA

Anonymous:1995:HEI

Athanas:1995:PIS

Bainov:1995:PTI

[7204] D. (Dimitur) Bainov and Valery Covachev, editors. *Proceedings of the Third International Colloquium on Numerical Analysis: Plovdiv,
REFERENCES

IEEE:1995:DPC

IEEE:1995:IAI

IEEE:1995:ISM

Jain:1995:PET

REFERENCES

REFERENCES

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:
• economic input-output models,
• quality control in manufacturing design,
• a computer-assisted proof in quantum mechanics,
• medical expert systems,
• and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

• on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

[7221] R. Pellikaan, M. Perret, and S. G. Vladut, editors. Arithmetic, geometry, and coding theory: proceedings of the international conference held at Centre international de rencontres mathématiques (CIRM), Luminy,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:1998:IOM

IEEE:1998:PGL

MacKay:1998:PCT

Matthews:1998:CRT

Pocek:1998:PIS

Sasao:1998:ISM

[7244] Tsutomu Sasao and Bob Werner, editors. 28th International Symposium on Multiple-Valued Logic (ISMVL ’98), Fukuoka, Japan, May 26–29,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kraemer:2001:SCV

Kulisch:2001:PEM

Luk:2001:ASP

Matthews:2001:CRT

REFERENCES

Tang:2001:ICA

Babuska:2002:MMN

Borrione:2002:TIIW

Cohen:2002:MSP

REFERENCES

[Franklin:2002:PSA]

[Matthews:2002:PTS]

[Pocek:2002:FAI]

[Schulte:2002:PII]

[Trimberger:2002:FTA]
REFERENCES

Vladimirova:2002:TMA

Anonymous:2003:CRN

Bajard:2003:ISC

Cheung:2003:FPL

Deprettere:2003:IIC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

IEEE:2005:PII

IEEE:2005:PIS

IEEE:2005:PWE

Luk:2005:ASP

Montuschi:2005:PIS

Tang:2005:AIC

REFERENCES

REFERENCES

REFERENCES

[7358] Götz Alefeld, Mitsuhiro T. Nakao, and Siegfried M. Rump, editors. Scientific computing, computer arithmetic, and validated numerics: (SCAN 2004) [Fukuoka, Japan, October 4–8, 2004], volume 199(2) of Journal of computational and applied mathematics. Elsevier, Amsterdam,
REFERENCES

The Netherlands, February 15, 2007. CODEN JCAMDI. ISSN 0771-050X; 0377-0427. LCCN ????

[7364] IEEE, editor. 25th International Conference on Computer Design, 2007 (ICCD 2007), 7–10 October 2007, Resort at Squaw Creek, Lake Tahoe,
REFERENCES

IEEE:2007:ICI

IEEE:2007:ICV

IEEE:2007:IPI

Kornerup:2007:PIS

Luther:2007:GII

REFERENCES

REFERENCES

Hertling:2008:RIR

IEEE:2008:ICA

Matthews:2008:CRF

Patterson:2008:COD

Abraham:2009:WCN

REFERENCES

Bouajjani:2009:CAV

Bruguera:2009:PIS

Cumplido:2009:RPI

ICCIT:2009:ICC

IEEE:2009:ICF

REFERENCES

REFERENCES

REFERENCES

IEEE:2013:PIS

Butler:2015:FMS

Higham:2015:PCA

IEEE:2015:ISS

Muller:2015:ISC

REFERENCES

[7417] Frédéric Desprez, Pierre-François Dutot, Christos Kaklamanis, Loris Marchal, Korbinian Molitorisz, Laura Ricci, Vittorio Scarano, Miguel A.
REFERENCES

REFERENCES

REFERENCES

