A Bibliography of Publications on Floating-Point Arithmetic

Norbert Juffa
2445 Mission College Blvd.
Santa Clara, CA 95054
USA
Tel: +1-408-727-1885
FAX: +1-408-727-1265
E-mail: juffa@ira.uka.de (Internet)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

09 September 2017
Version 3.504

Introduction

This is a bibliography of material on floating-point arithmetic that I came up with while doing research on a floating-point package of my own. I don’t claim it to be anywhere near complete. The material listed is only what I myself possess.

My main interest was in software based, binary floating-point arithmetic on a microprocessor, so you won’t find much material about the hardware used in floating-point arithmetic (e.g. adders, carry propagation schemes, higher radix...
representation for multiplication and division, etc.) in this list. There is also not too much on non-binary floating-point arithmetic.

For most fields covered in this bibliography, the important or historically relevant articles should be included. There is also some material on integer arithmetic in this list as some of the methods used with integer arithmetic contain interesting ideas that may be useful in the realization of a floating-point arithmetic package.

Also, depending on the type of microprocessor used, one may need to implement integer multiplication and division for use in the floating-point package, so articles about this topic are included as well.

As I am German, there is a bit of material in German in this bibliography. However, English translations are provided for all non-English titles.

Thanks to the people who have helped me with previous versions of this document by sending me papers or additional references:

- Steven Sommars (sesv@research.bell-labs.com),
- Jim Kiernan (jmk@teak.cray.com),
- Warren Ferguson (ferguson@seas.smu.edu),
- Nhuan Doduc (ndoduc@framentec.fr),
- K. C. Ng (kwok.ng@eng.sun.com),
- Nelson H. F. Beebe (beebe@math.utah.edu).

Bibliography entries in the Books section are ordered alphabetically by author; ordering is by ascending year in the remaining sections.

Warning: it has yet not been possible to bring this citation list up-to-date with the entries in the **Books**, hardware oriented

[1593, 236, 1182, 1117, 2942, 3140, 1787, 759, 1066, 911, 1348, 761, 1235, 2457, 2458, 1440]

Books, software oriented or theory

[1169, 412, 415, 88, 1312, 2251, 822, 957, 307, 2789, 2292, 2805, 2134, 276, 466, 250]

Books, machine specific

[2039, 3044, 2944, 2294, 1639, 1774, 2152, 1806, 2329]
1 Choice of base, floating point formats

1.1 Precision and Rounding

1.2 Determination of parameters of floating point arithmetic

1.3 IEEE standards for floating point arithmetic

1.4 Floating point arithmetic, general and implementation issues

1.5 Floating point packages

1.6 Floating point units
1.7 Test of floating point routines
[441, 1345, 1598, 1741, 1740, 1890, 1891, 1835, 1972, 2327, 2450, 2460, 2524,
2523, 2635, 2614, 2600, 2887]

2 Addition and Subtraction
[329, 1398]

2.1 Floating-point Summation
[281, 300, 317, 316, 507, 570, 608, 750, 1537, 2139, 2210]

2.2 Multiplication
[611, 1144, 1156, 1366, 1427, 1401, 1454, 1480, 1472, 1497, 1550, 1470, 1630]

2.3 Division
[168, 195, 181, 278, 303, 386, 928, 970, 1205, 1294, 1448, 1522, 1501, 1485, 1642,
1761, 1885, 1864, 2245, 2624, 2570, 2803, 2852, 5995, 2786]

3 Elementary functions, general
[338, 350, 522, 581, 550, 1027, 1161, 1505, 1532, 1628, 1591, 1589, 1665, 1711,
5919, 1815, 1920, 2019, 1964, 2141, 5937, 2415, 2450, 2402, 3159, 2404, 2373,
2545, 2694, 2513, 2658, 2540, 3192, 3160]

3.1 Elementary functions, CORDIC and related algorithms
[153, 154, 206, 220, 327, 462, 489, 590, 582, 598, 662, 772, 974, 990, 1190, 1343,
1572, 1768, 1580, 1682, 1833, 2024, 2239, 2171, 2396, 2422, 2564, 2656, 2845,
2840, 2959, 2902, 2945]

3.2 Elementary functions, function approximation
[197, 198, 425, 557, 692, 691, 894, 932, 1064, 1870, 2159, 2052, 2535, 2630, 2631]

3.2.1 Polynomial evaluation
[215, 234, 260, 375, 967, 1127, 2209]
3.3 Square root, general

[988, 1088, 1370, 1477, 1528, 2420, 2527]

3.3.1 Square root, bit-oriented, iterative, and table methods of computation

3.3.2 Square root, Newton’s method

[122, 235, 258, 328, 302, 298, 337, 398, 376, 453, 458, 471, 532, 521, 515, 517, 633, 1221, 1211, 1289, 1463, 2194, 2854, 2784]

3.4 Sine and Cosine

[143, 974, 929, 934, 1077, 1290, 1428, 1542, 1541, 1637, 1724, 1823, 1986, 2096, 2461, 2797, 2794, 2722, 2816, 2908]

3.5 Logarithm

[118, 226, 287, 621, 909, 1017, 1195, 1414, 1973, 1974, 2462, 2582]

3.6 Exponential function

[106, 360, 1084, 1253, 1403, 1620, 1718, 2328, 2463, 2837]

3.7 Arctangent

[108, 123, 166]

3.8 Other transcendental functions

4 Binary-decimal conversion

[152, 136, 180, 420, 513, 615, 1067, 1188, 1189, 1296, 1530, 1581, 1872, 1845, 2365, 2454, 2380, 2699]
5 BCD arithmetic

[605, 655, 701, 702, 703, 704, 705, 706, 707, 1274, 1378, 1578, 1518, 1907, 2498, 2796]

6 Multiple precision arithmetic

[247, 286, 361, 377, 564, 551, 865, 913, 1005, 1004, 1161, 1242, 1322, 1426, 2651, 2636, 2868, 3081]

7 Conferences on computer arithmetic

[5862, 5872, 5876, 5884, 5887, 5899, 5916, 5917, 5957, 5984, 5992, 5986, 6016]

8 Additional contributions from Nelson H. F. Beebe

Title word cross-reference

#26 [5189].

\((2^n)^m\) [3603]. \((10^{31} - 1)/9\) [1846]. \(2^n\) [4125, 4146, 4322, 4331, 4242]. \((2^n + 1)\) [987, 4545, 3708]. \((2^n - 1)\) [4713]. \((2^n 2^m 1)\) [5713]. \((2^n + 1)\) [526, 3924]. \((2m)\) [4207]. \((2^n - (2p \pm 1))\) [4599]. \((d, r)\) [713]. \((R)\) [2748]. \((p)\) [4125, 4207]. \(-2\) [671, 146, 165, 861, 723]. \(-\infty < n < +\infty\) [106, 123]. 0 [5322]. 0 < \(N < 1\)
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

.NET [4803].

/ [6144, 5980, 5997, 6014, 6125]. /m [4615]. / [3015]. /spl [4615].

0.18-CMOS [5448]. '00 [6091, 2395]. '01 [6104]. '03 [6133]. '04 [6141, 6149]. '07 [6183, 6189, 6191, 6196]. '08 [6200].

2 [2040, 2372, 1606, 4136, 3830, 4340, 3715, 4638, 467, 1884, 3331, 3905, 4524, 2666, 2848]. 2-D [3331]. 2-Digit [3956]. 2-dimensional [2823].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[1946]. 693 [2651]. 6th [6174, 5899, 6080, 6192, 6058, 6169, 6143].

719 [2868]. 722 [2888]. 73 [938]. 754 [3639, 5260, 2700, 4079, 3219, 5677, 3771, 4278, 5182, 3666, 4101, 4577, 1300, 5770, 1732, 1959, 3270, 5589, 5038, 4009, 4778, 4906, 2135, 1553, 4511, 3733, 5317, 1886, 1349, 3175, 5251, 5459].

= [2645, 2646, 3168, 5859].

5318, 5660, 3620, 3903, 3013, 3907, 4221, 4818, 1566, 5802, 403, 4229, 2667, 3335, 2020, 433, 5250, 5454, 5531, 5611, 531, 3508, 1368, 202, 3033, 3346, 4835, 4055, 2483, 1582, 539, 2038, 1909, 4541, 3364, 3650, 4963, 3223, 1462, 1592, 4557, 2513, 2514, 3227, 4855, 3055, 2520, 2363, 3777, 3382, 3235, 5373, 3536, 3238, 3064, 4108, 4109, 3670, 3671, 3393, 2904, 4444, 4446, 3804, 3394, 1105, 5004, 4588, 2080, 5492, 5387, 1841.

Algorithm [3684, 3977, 3084, 3258, 3259, 3981, 454, 455, 2563, 3827, 3689, 5577, 4468, 4754, 2256, 674, 5418, 2579, 2580, 4893, 2405, 2583, 5504, 4333, 3279, 3336, 4337, 3440, 3585, 4774, 2775, 2110, 5510, 510, 4626, 686, 1634, 2785, 4629, 4782, 1762, 894, 5124, 5648, 2623, 5519, 2975, 5234, 2626, 2803, 1778, 2804, 2306, 4500, 1997, 2438, 4367, 4506, 4652, 908, 970, 3161, 3005, 3494, 3331, 1793, 3332, 2455, 248, 1798, 2657, 2836, 4819, 4523, 5150, 5151, 4052, 3018, 590, 2341, 3026, 3186, 4530, 5155, 4832, 3196, 4684, 2868, 1917, 1909, 4541, 3364, 3650, 4963, 3223, 1462, 1592, 4557, 2513, 2514, 3227, 4855, 3055, 2520, 2363, 3777, 3382, 3235, 5373, 3536, 3238, 3064, 4108, 4109, 3670, 3671, 3393, 2904, 4444, 4446, 3804, 3394, 1105, 5004, 4588, 2080, 5492, 5387, 1841].

Algorithm [452, 501, 1955, 3476, 5144, 225, 2651, 3736, 4213, 5335].

Algorithm based [2110, 3331, 3026, 3186, 3196].

Algorithmen [2251, 2096, 2422, 1572, 2164].

Algorithmes [4436, 4116, 2603].

Algorithmic [5488, 3697, 209, 3468, 2642].

Algorithmique [4251].

Algorithms [768, 1907, 3928, 3929, 651, 1676, 3648, 772, 596, 922, 6158, 3050, 5093, 5354, 5810, 1161, 1267, 5097, 5099, 230, 2890, 3636, 4330, 1010, 5482, 2716, 4288, 4289, 4436, 3069, 4290, 3538, 5866, 934, 935, 3508, 1368, 202, 3033, 3346, 4835, 4055, 2483, 1582, 539, 2038, 1909, 4541, 3364, 3650, 4963, 3223, 1462, 1592, 4557, 2513, 2514, 3227, 4855, 3055, 2520, 2363, 3777, 3382, 3235, 5373, 3536, 3238, 3064, 4108, 4109, 3670, 3671, 3393, 2904, 4444, 4446, 3804, 3394, 1105, 5004, 4588, 2080, 5492, 5387, 1841].
[6066, 6052]. ALU [4069, 5161, 5343, 1961, 1773, 1535, 5450, 1903, 1669, 2688].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3946, 4427, 1098, 1099, 1170, 1279, 1598, 5553, 3787, 4984, 5183, 1927, 4717, 4996, 4432, 4718, 181, 1011, 182, 6077, 3060, 231, 1171, 1391, 3386, 4102, 5482, 4722, 5185, 2528, 2069, 5555, 552, 786, 4570, 1392, 3952, 5684, 5761, 4989, 787, 3538, 3542, 4114, 2901, 2725, 1837, 5272, 3801, 5106.

Arithmetic [4580, 1704, 1018, 2073, 2214, 5957, 4583, 101, 137, 159, 121, 3074, 5486, 3805, 1287, 1175, 605, 5275, 5691, 3276, 1484, 1028, 4118, 492, 340, 4717, 5183, 4096, 4432, 4718, 181, 1011, 182, 6077, 3060, 231, 1171, 1391, 3386, 4102, 5482, 4722, 5185, 2528, 2069, 5555, 552, 786, 4570, 1392, 3952, 5684, 5761, 4989, 787, 3538, 3542, 4114, 2901, 2725, 1837, 5272, 3801, 5106].

Arithmetic [855, 114, 1359, 1574, 4235, 3183, 4947, 5328, 1079, 1080, 1440, 1363, 363, 3748, 3507, 2847, 3636, 982, 4241, 913, 227, 3918, 4243, 2682, 914, 4246, 722, 1250, 1579, 861, 1810, 1811, 2032, 3510, 1251, 2691, 4532, 5376, 4569, 4390, 1244, 1358, 4536, 3752, 5464, 593, 1086, 1446, 5617, 6184, 3515, 3643, 5157, 3351,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

binary [5506, 4006, 1320, 1629, 192, 353, 2957, 4346, 4484, 625, 751, 3709, 5298, 1130, 2626, 3478, 4649, 1551, 5605, 2445, 1886, 5451, 2320, 1351, 1798, 3503, 5327, 5455, 3178, 3179, 2674, 3190, 5083, 5086, 4400, 4534, 4535].

Binary-Coded [324, 1484, 1492].

Binary-Coded-Decimal [4890, 1047].

Binary-BCD [1067].

Binary-Coded-Decimal [4890, 1047].

Binary-Decimal [2380].

Binary-Integer [5827].

Binary-128 [5400, 5495, 5781].

Binary-64 [5548, 5781, 5789].

Binary/Decimal [5827].

Binary128 [5400, 5495, 5781].

Binary64 [5548, 5781, 5789].

Binary/Decimal [5827].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Circuitry [1863, 2272, 100]. Circuits [1252, 5467, 3755, 6090, 652, 1921, 3376, 1168, 6216, 5272, 2906, 3962, 208, 4122, 6078, 6065, 5881, 5942, 5959, 5981, 5996, 6012, 6080, 6092, 6162, 6178, 6191, 6211, 5415, 3569, 3273, 5912, 4776, 1517, 1758, 390, 3286, 4016, 4627, 1526, 422, 2622, 5138, 2444, 29, 33, 5241, 2653, 5864, 5803, 5075, 5252, 3181, 1080, 3748, 6005, 5963, 6029, 6053, 6088, 4836, 4909, 1464, 3378, 4863, 3673, 5105, 2730, 4301, 4457, 5637, 3995, 3113, 3698, 5498, 3280, 2111, 2779, 2604, 4351, 4352, 1130, 3470, 2627, 5137, 1068, 5061, 2829, 713, 3737, 4230].

Cluster [2303]. Clusters [5799]. CMOS [3513, 5338, 2184, 5361, 2883, 3530, 2511, 2192, 3660, 3949, 2712, 2713, 2714, 1704, 2730, 2909, 2236, 3828, 2929, 2930, 3436, 2109, 3297, 3301, 2810, 4653, 3616, 3617, 5448, 4225, 3172, 3173, 1664, 2342, 3027, 2678, 2679, 3919, 4834].

codesign [5654]. codesigned [4611]. Coding [135, 3660, 4134, 161, 5521, 150, 4822, 4064, 1924, 52, 4612, 4761, 2761, 3580, 3857, 6050, 2834, 2165]. Codings [4895, 4706].

5915, 3773, 6103, 1095, 6020, 206, 5856, 1593, 6174, 6077, 4103, 5929, 2725, 788, 1019, 2214, 5957, 101, 137, 4297, 412, 236, 450, 378, 293, 875, 1030, 5896, 5200, 1400, 2383, 2548, 2549, 3402, 4303, 51, 606, 493, 1032, 4459, 342, 1111, 1186, 3683, 210, 5814, 1033, 1614, 1615, 2388, 3409, 4308, 294, 415, 5970, 6045

Computer [6116, 4134, 2240, 1197, 1951, 457, 1117, 5916, 1730, 1851, 6207, 5849, 5857, 5858, 5862, 5868, 5872, 5887, 5898, 5899, 5911, 5923, 5943, 5961, 5973, 5993, 5995, 6036, 6067, 6104, 6117, 6147, 6150, 6161, 6165, 6190, 6210, 6218, 6219, 6229, 3985, 298, 53, 1038, 4142, 5932, 5984, 2402, 806, 3274, 6039, 503, 106, 123, 124, 143, 2942, 3846, 6082, 3847, 4000, 4324, 5986, 6194, 5222, 240, 813, 885, 1317, 1862, 4329, 5118, 5583, 2585, 3579, 6057, 4764, 1514, 4160, 1206, 2278, 1319, 506, 3444, 6195, 4343, 2776, 5226, 1633, 1519, 4485, 5228, 394, 4017, 273, 125, 5296, 222, 6168, 6232, 5787, 1870, 3459, 4019, 2610, 6231, 573, 5914, 2615, 2793, 5651, 423, 4913, 1987, 3140, 1331, 2427, 4027, 5302, 90, 6203, 899, 6028, 96, 3306, 1546, 966, 518, 834, 1548, 1137, 1783, 1065, 5950, 3317, 1345, 4804, 2008, 6227, 430, 1787, 1557, 523, 841, 6154, 6074, 1348, 38, 976, 5865, 1235, 2457, 2458, 3012, 6016, 2327, 526, 5866, 853, 980, 1074, 2021, 5975, 1241, 6155, 2847, 5740, 5535, 436, 537, 1670, 3035, 489, 1244, 1358, 6184, 73, 3351, 252, 540, 995, 1090, 2494, 541, 485, 4271, 926, 204, 867, 1385, 6159, 1393, 1476, 1602, 1286, 4117

Computer-Oriented [5878]

Computers [6156, 5830, 5840, 176, 5927, 6128, 6172, 1451, 1261, 1384, 1271, 5939, 5956, 5967, 6062, 2727, 6056, 5197, 185, 186, 1182, 383, 160, 88, 104, 5923, 5943, 5973, 5995, 6011, 6067, 6147, 5912, 5776, 5817, 1314, 4325, 243, 144, 5226, 6071, 6084, 6095, 6110, 6123, 6137, 6202, 6213, 145, 828, 5129, 5844, 5889, 91, 92, 468, 1066, 6002, 6040, 1559, 1890, 1891, 5837, 130, 1443, 1675, 4433, 1393, 207, 660, 4735, 184, 1714, 609, 2233, 1299, 6117, 267, 460, 1043, 5038, 192, 271, 2975, 634, 635, 693, 5863, 901, 1133, 5892, 1792, 4049, 61, 3066, 1882]

Computing [5860, 6060, 6171, 6183, 6200, 6204, 57, 177, 5904, 3517, 6144, 5928, 36, 5992, 6032, 4264, 3525, 1382, 6159, 5554, 1697, 6077, 6206, 4104, 4111, 6132, 6022, 1937, 5382, 1711, 5199, 5492, 82, 3551, 2229, 5572, 295, 296, 3414, 5769, 457, 6024, 6091, 6189, 3984, 3104, 3106, 5411, 6228, 3994, 5026, 5286, 3437, 6107, 5504, 5782, 1752, 5820, 1757, 6195, 4343, 3282, 307, 4777, 1325, 5294, 2959, 5918, 623, 624, 685, 6196, 320, 5722, 3133, 3866, 5595, 5653, 5300, 4187, 5130, 3721, 6051, 6058, 6072, 6124, 6181, 6197, 2134, 2808, 1544, 2137, 5237, 5307, 196, 5314, 2144, 3485, 1346]

Cómpueto [4356]

...
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

digital [2875, 2876, 3527, 2188, 3052, 2061, 867, 333, 1165, 2193, 3057, 3058, 371, 3950, 1172, 4110, 3390, 1173, 604, 664, 5490, 70, 238, 1714, 2228, 609, 4596, 3082, 1114, 1844, 3257, 4317, 4318, 1301, 947, 1121, 1407, 1739, 1854, 948, 3109, 3272, 3110, 560, 418, 672, 3111, 2259, 267, 460, 1747, 1859, 2103, 2104, 2270, 810, 4001, 1749, 2406, 3119, 814, 886, 888, 463, 508, 614, 271, 620, 84, 1328, 318, 275, 2119, 4789, 399, 895, 516, 111, 146, 165, 1641, 1497, 2132, 3878, 1420, 1780, 1879, 634, 635, 693, 5863, 901, 1133, 2309, 2441, 2641, 2812, 757, 3154].

Digital-Filter [400]. digital-signal [2119]. Digital-to-Analog [1560]. Digits [487, 731, 1095, 2891, 74, 1481, 1706, 874, 877, 941, 1032, 4760, 3439, 5596, 194, 4364, 469, 3883, 762, 765, 3340, 3510, 2866, 3043, 3355, 3356, 3357, 3358, 3359, 3360, 69, 102, 3683, 103, 3563, 2098, 6, 2801, 4372, 5324, 1437, 2340, 4529].

Dijkstra [5969]. Dijon [6176]. Dilemma [4478]. Dimensional [285, 1676, 4113, 5199, 1052, 1531, 1800, 4824, 5663, 1918, 4115, 4455, 3447, 4789, 4633, 895, 5792, 2130, 1788, 2823, 2659, 3502, 2844].

direct-executing [1624]. Direct-Form [3213, 3119, 1328]. Directed [5122, 3876, 4032, 6135, 5602].

directional [2946]. Directions [6038, 4966]. DIS [1618, 2985]. Discovered [1371, 1435].

Discovery [5346]. Discrete [4540, 5196, 4772, 1767, 714, 1898, 4672, 2482, 736, 1697, 3807, 4115, 2554, 5507, 5125, 1778, 4037, 1900, 4526, 2842, 3030, 3031].

Distance [3799, 3855, 4771, 3721, 3481, 4244]. Distance-Calculation [3799]. Distillation [3756, 4835, 4634].

distinctions [2167]. Distributed [1584, 1273, 1465, 6091, 6118, 5508, 525, 5322, 4943, 1251, 2526,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[103]. Districts [5229].

Distributivity [1549].

distribuzione [103]. Districts [5229].

Dithering [3675, 6064, 2476].

Diversity [6196].

Divide [3753, 3352, 1919, 4975, 735, 3663, 2202, 5206, 5701, 4465, 303, 386, 1540, 3309, 4204, 5143, 585, 3330, 3495, 3496, 278, 532, 2033, 3207, 4091, 3786, 2416, 2781, 3310, 3880, 4375, 2853].

Divide-and-Conquer [5701].

Divide-and-Correct [735, 303, 386, 278].

Divide/Square [3330].

Dividends [5364].

divides [1401, 1294, 1501].

Divisibility [2699].

Divisible [385].

Division [2485, 4, 1448, 1449, 770, 3649, 1258, 774, 5477, 655, 4268, 1682, 3368, 5023, 5755, 1461, 25, 658, 5099, 5364, 735, 4978, 601, 3661, 3779, 928, 4430, 2891, 3059, 4719, 3793, 3242, 5188, 5686, 3545, 1481, 1706, 3072, 3073, 3954, 4442, 1938, 374, 448, 490, 3809, 380, 1485, 742, 2552, 5905, 3079, 2233, 1722, 5391, 3081, 3556, 5701, 5396, 3558, 4313, 3560, 3824, 3982, 4747, 4466, 3831, 3266, 668, 298, 5218, 5576, 3837, 3269, 3840, 3569, 3570, 214, 675, 5285, 4759, 4150, 240, 303, 504, 505, 563, 1513, 269, 3278, 4475, 5029, 5223, 21, 242].

division [3223, 2360, 4855, 3055, 3228, 2520, 2363, 3382, 4434, 2717, 2213, 2215, 2377, 2538, 2905, 4443, 4446, 4447, 2217, 3394, 3395, 3396, 2219, 183, 1940, 2546, 5006, 261, 3684, 3407, 3080, 3971, 4597, 1944, 3258, 3259, 3260, 3263, 3095, 3096, 3827, 3689, 3564, 1958, 2935, 2758, 3701, 352, 3850, 2948, 3854, 4341, 5121, 5293, 2775, 1975, 2411, 2956, 3590, 4346, 4484, 4846, 4487, 2601, 2602, 2962, 1761, 3710, 2607, 2787, 2971, 3128, 3129, 3294, 4177, 3711, 5648, 1984, 2792, 399, 3865, 3298, 3466, 3686, 4639, 4496, 2803, 4645, 4199, 4506, 97, 126, 3725, 3726, 970, 703, 3161].

division [2998, 2999, 3322, 4658, 3332, 3621, 2352, 2326, 248, 4049, 4050, 1073, 1354, 4937, 979, 2330, 3746, 4056, 4528, 4676, 4677, 1149, 2029, 2678, 2681, 4678, 4531, 4249, 4060, 1864, 218, 1642, 1366].

Division-and-accumulation [3558]. Division-Free [5623, 3080]. Division/Square [5533, 3646, 3850].

division/square-root [3646]. Divisionless [180, 170].

Divisions [497, 221, 470, 709, 4020, 3025].

Divisionsalgorithmus [1642].

Divisionsverfahren [1682].

Divisor [497, 386, 3720, 470, 709, 481, 407, 4551, 2792, 4496].

Divisors [668, 3096].

DLLs [3009].

DMT [4538].

DNA
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Do [4422, 1307, 2886, 4111, 5635, 3252, 4142, 1221]. Documentation [5707, 522]. Documents [3644].

Does [5675, 2372]. Dog [3369]. Doing [1185, 1184].

Dokumentation [522].

Double-Precision [5171, 258, 302, 5642, 316, 317, 4911, 5317, 328, 3200, 5618, 4721, 626, 4663, 4567]. Double-residue [4945].

Draft [1098, 4096, 1175, 4758, 1058, 1132, 1349, 1656, 46, 2720, 2745, 3988, 1351, 4419, 1692, 2985]. draw [467].

drawing [2070, 4367]. Drexel [6138].

Due [4842, 1267, 3607, 2328, 2462, 2837, 2463, 3197].

Drivers [2889].

DS [4011, 4169, 4170, 3921].

DS-CDMA [3921].

DS-D [6105].

DSFUN90 [4700]. DSP [5338, 2487, 2173, 3761, 3932, 3651, 2186, 5366, 4423, 2886, 3240, 3539, 4113, 2371, 1839, 2222, 4302, 5637, 3421, 3839, 4611, 5712, 5777, 4619, 3860, 2784, 4632, 4787, 2978, 4195, 5444, 3483, 2990, 2319, 3329, 2826, 2827, 2324, 2325, 2326, 2662, 2663, 3015, 4674, 2853, 2170, 2203].

Dual [4403, 5161, 4300, 3413, 3693, 3853, 4476, 5227, 4181, 3049, 4866, 3959, 3396, 2087, 3436, 3590, 2293, 5319, 2341, 3751]. Dual-Pass [3693].

Dual-Path [4476]. dual-port [2293]. Dual-precision [4866]. Dual-Purpose [5161].

dual-rail [3590]. Dualmaschinen [521].

Due [101, 159, 5590, 2973, 4659, 854].

Duo [4871]. Duodecimal [35]. Duplicate [5735].

Durbin [1100].

Durch [1705, 1905]. Durchführung [27]. during [2550].

Dutch [156]. Dynamic [659, 5586, 2422, 4953, 5478, 3654, 3939, 2517, 3949, 4144, 2583, 3590, 2973, 3919].

dynamic-range [2517].

Dynamically [1692, 2066, 2912]. Dynamics [3060, 3459, 5240, 5740, 5476, 5181, 5371, 4729].

dynamischer [2422]. Dysan [1553].

dyscalculia [4795].
Exponentials [598, 1718, 2950, 706]. Exponentiation [3767, 4987, 3538, 5385, 5488, 5204, 3253, 3419, 4146, 3575, 5725, 694, 5057, 3634, 3746, 1368, 5556, 4083, 440, 3670, 4733, 3810, 4002, 2836, 5084, 5086]. Exponents [3870, 4933].

Export [3549]. Expressing [2141]. Expression [2961]. Expressions [4539, 657, 730, 5370, 2901, 2735, 5655, 638, 1789, 1438, 1086, 5372, 5269, 5729].

Extended [286, 4998, 4999, 2556, 2394, 5774, 2252, 3577, 5035, 5488, 5204, 3253, 3419, 4146, 3575, 5725, 694, 5057, 3634, 3746, 1368, 5556, 4083, 440, 3670, 4733, 3810, 4002, 2836, 5084, 5086].

Extended-Range [1347]. Extending [1374, 4965, 551, 3547, 5720, 1763, 4085]. Extension [1156, 4066, 3648, 2501, 3665, 1604, 5393, 4886, 4887, 5214, 3573, 2576, 688, 832, 2983, 2133, 3885, 1806, 1359, 4072, 5271, 663, 4649, 2318].

Exports [4846, 4074, 1912, 5172, 5766, 4911, 424, 5598, 2982, 2003, 3334, 1865, 4825].

Extending [1347]. Extentions [4349]. External [3288]. Extra [3408].

Extraction [655, 122, 40, 568, 616, 5047, 5611, 3407, 1061]. Extractor [2557]. Extracts [2432, 1289].

Factor [4958, 1693, 2656, 1846, 2590, 1329]. Factor-2 [4958]. Factorial [2740]. Factorial-Base [2740].

Fact [3498]. Factoring [2348, 1912, 5172, 5766, 4911, 424, 5598, 2982, 2003, 3334, 1865, 4825].

Failure [3354, 1407, 3583, 2706, 3441, 2955]. Failure [1937, 5717, 2074].

Family [2348, 4545, 1458, 1459, 2506, 5097, 5100, 1704, 5386, 5388, 4599, 2928, 3098, 3099, 3845, 4148, 1520, 4042, 3620, 5076, 4248, 2352, 5096, 5637, 5933, 2413, 2780, 3171, 3188].

Extremal [4346, 4484]. Extreme [2333, 1912, 5172, 5766, 4911, 424, 5598, 2982, 2003, 3334, 1865, 4825]. Exponents [3870, 4933].
1420, 1780, 1879, 2309, 2441, 2641, 2812, 757, 2814, 1788, 5607, 973, 4810, 2151, 4048, 1658, 3631, 1667, 1809, 2478, 2347, 2690, 3065. **FINAC** [101].

Final [2970, 3381]. **Financial** [5474]. **Find** [998, 2735, 5478, 5233]. **Finding** [3353, 4418, 4095, 497, 2246, 4343, 5825, 470, 709, 5615, 366, 779, 866, 4337, 2595, 4219, 1705]. **fine** [3076]. **fine-grain** [3076]. **Fingers** [10, 133]. **Finite** [4847, 5164, 5349, 5172, 3374, 3375, 4293, 4125, 5207, 3976, 3272, 1512, 1746, 4760, 5287, 4164, 622, 1208, 1521, 1759, 2967, 4631, 1531, 3462, 5126, 4183, 1339, 1135, 5658, 4207, 1786, 4241, 4394, 2688, 5617, 4414, 4969, 1686, 2367, 5187, 3673, 4301, 1110, 2738, 2739, 2915, 2087, 1302, 4883, 947, 4470, 3699, 4893, 567, 684, 2286, 4908, 754, 3469, 2306, 2449, 3327, 2659, 2341, 3025, 2343, 4829, 3750, 3751, 4393, 4395, 4679, 1625. **finite-element** [2659]. **Finite-Field** [5164, 5126, 5187]. **Finite-Precision** [4241, 684, 4829]. **Finite-state** [5349]. **FIR** [1681, 3940, 5375, 4571, 2205, 3401, 3261, 2762, 4013, 1052, 4182, 1889, 3908, 3747, 4391, 4238, 3065]. **Fire** [42]. **Firmware** [3594, 1510, 831].

Firmware-Oriented [3594]. **First** [5904, 156, 4990, 6022, 6056, 3867, 5868, 6024, 6079, 503, 1048, 3296, 194, 1779, 55, 15, 18, 46, 868, 6115, 207, 5979, 3555, 3563, 6202, 323, 1060, 4198, 6052, 3014, 2018, 3631, 2844, 523]. **first**-[3631]. **first-in** [3014]. **first-order** [2844]. **first-out** [3014]. **Fischer** [2333]. **Fisher**man [6135]. **Fists** [133]. **Five** [4783, 1585, 1585]. **five-moduli** [1585]. **fixe** [2603]. **Fixed** [2483, 4255, 5338, 3350, 5536, 1909, 1262, 2515, 1691, 2885, 3778, 4561, 1940, 3681, 342, 3975, 3688, 668, 5409, 5410, 3114, 1041, 3702, 3852, 4163, 5643, 824, 1050, 5446, 152, 434, 5248, 5331, 5682, 5089, 1158, 1680, 4554, 2514, 5550, 664, 4587, 878, 2554, 3092, 3093, 2565, 3096, 5019, 3421, 2247, 1855, 460, 4001, 5782, 614, 891, 2603, 2969, 3595, 2298, 5125, 2795, 5050, 2132, 3154, 4652, 5607, 4379, 4659, 3165, 4522, 3908, 112, 1667, 478, 479, 2165, 2476]. **Fixed-** [2515, 5409, 5410, 5331, 2603]. **Fixed-Integer** [668]. **Fixed-Point** [4255, 5536, 3681, 3688, 3114, 3702, 4163, 5446, 434, 5682, 2483, 1909, 2885, 1940, 5089, 1680, 5550, 664, 4587, 878, 2554, 3092, 3093, 1855, 4001, 5782, 614, 2969, 2298, 5125, 2795, 3154, 4652, 5607, 4379, 4659, 3165, 4522, 3908, 2476]. **fixed-precision** [2165]. **Fixed-Rate** [5643]. **Fixed-Size** [1691, 3852]. **Fixed-Slash** [1041, 824, 1050]. **Fixed-Width** [5248, 3595]. **Fixed-Word-Length** [342]. **flag** [5149]. **flagged** [4711]. **flags** [4932]. **Flap** [5242]. **flash** [4918]. **Flaw** [3232, 3312, 3207, 3164]. **FLECKmarks** [3386]. **flerformat** [1610]. **Flex** [1928]. **Flex/32** [1928]. **flexibility** [3023]. **Flexible** [5197, 5491, 4326, 1756, 628, 4513, 2676, 4294]. **flexible** [1756]. **Fließkomma** [2162, 2163, 2164, 2337, 2338, 1365]. **Fließkommapakets** [2163]. **Flight** [3583, 3441]. **flip** [5590]. **Float** [1978, 2307, 5464, 4874, 4745, 5664, 3151]. **float-float** [4874]. **float-point** [5664]. **float-Precision** [3151]. **float.h** [2634, 2436]. **FLOATing** [5301, 1908, 4260, 3752, 5465, 1906, 4402, 4690, 4959, 5466, 5667, 5744, 5260, 4256, 4403, 3641, 2035, 2036, 4691, 176, 367, 3756, 5338, 1373, 2696, 2697, 2698, 2860, 2861, 2863, 2864, 3038, 3039, 3040, 3042, 3353, 4407, 4843, 4845, 5671, 5340, 5341, 5472, 5473, 1817, 132, 1674, 5541, 4073, 2177, 4701, 1259, 1679, 3212, 5622, 923, 3213, 3214, 3763, 3933, 3934, 3935, 1819, 4266, 2183,
3167, 3495, 3496, 2150, 5608, 3168, 5733, 5734, 1890, 1891, 1562, 1563, 2830,
5609, 2454, 4660, 4929, 4930, 4931, 4932, 5145, 5146, 5147, 5148, 5149, 2655,
2831, 761, 1230, 1349, 1350, 1656, 5242, 4660, 4917, 3739, 4817, 1232, 2154, 3903.

Floating [1895, 5529, 4048, 5801, 3741, 1657, 5244, 2328, 2462, 2463, 2837,
4820, 4821, 1556, 5245, 1660, 4938, 5071, 3334, 4666, 5736, 3910, 5614, 2479, 722,
1249, 2855, 1579, 3344, 5087, 5462, 3923, 860, 1812, 5616, 4835].

Floating [5258, 5335, 4836, 5088, 4956, 5377, 5556, 4390, 4055, 1808, 2037, 3200, 5089,
593, 2695, 1813, 1814, 3754, 1446, 5337, 2859, 3515, 3643, 5157, 5158, 5745, 5670,
649, 252, 2349, 2487, 2865, 3041, 3205, 3206, 3207, 4259, 2350, 991, 921,
5342, 1671, 2173, 1672, 1673, 1254, 2175, 1450, 1910, 2176, 4541, 3931, 1375,
2352, 2704, 2872, 5264, 5544, 1912, 1260, 1678, 2044, 2353, 2045, 5545, 4076,
1914, 2180, 2495, 3048, 2874, 2181, 4079, 4965, 4966, 997, 2046, 1262, 2184, 5478,
4544, 2354, 1091, 4850, 3860, 3653, 926, 4551, 2053, 927, 1094, 5480, 3052, 4711, 3371,
1686, 2055, 2508, 1824, 1269, 3225, 1270, 4557, 4712, 2513, 3054, 333, 1464, 3656,
4715, 1689, 1924, 2517, 3533, 3658, 5550, 1272, 1594, 2065, 2195, 4278, 5179,
3776, 3777, 2886, 5625, 4559, 4560, 3780, 1468, 5181, 5371, 3947, 2525, 1009,
1831, 3786, 4433, 4285, 371, 5184, 3235, 5373, 2201, 2712, 2713, 2714, 3666,
3792, 3063, 2529, 5102, 5103, 1172, 2531, 5628, 5378, 2894, 2720, 3067, 3239,
4291, 4438, 4572, 5684, 3795, 2896, 207].

Floating [4576, 4864, 4988, 4112, 872, 4294, 5271, 4866, 2371, 4992, 2372, 4725, 2206, 3953, 2724, 4993, 2070, 443, 1605, 1606, 2726, 3978, 1103, 4995, 4867, 5191, 663, 1021, 4731, 3958, 3959,
4448, 4449, 5274, 1397, 1838, 2218, 1608, 1839, 740, 449, 3547, 1105, 5001, 938,
2732, 2222, 4587, 4545, 5489, 4546, 237, 2909, 3078, 4458, 4590, 2910, 2381,
556, 794, 939, 1109, 1179, 1610, 3250, 2734, 2911, 940, 2550, 1714, 5201, 1715,
2385, 1716, 5387, 2228, 4593, 4594, 1717, 5109, 5636, 5697, 1183, 2229, 209,
141, 3682, 2233, 1721, 4126, 4596, 3683, 2387, 3818, 2913, 3819, 3408].

Floating [5494, 3820, 4309, 4461, 2736, 2737, 3410, 2916, 3256, 3411, 1188, 1298, 1114,
1844, 3412, 2084, 3257, 1299, 3087, 2923, 3825, 2085, 4317, 2741, 2390, 2924,
2559, 5014, 1616, 2743, 5399, 1950, 5400, 456, 746, 1116, 2241, 5402, 612,
2243, 1119, 1734, 1618, 3103, 3422, 4885, 4886, 4888, 5214, 2088, 2089, 3829,
3421, 1037, 1120, 1737, 2244, 4467, 5574, 2746, 5409, 5410, 1502, 3106, 5638,
5773, 5815, 161, 1954, 3425, 2092, 2751, 2934, 3107, 2094, 2253, 2254, 1958,
1959, 3270, 3428, 3429, 3992, 5415, 4469, 2754, 3109, 3272, 3431, 3110, 560, 418,
672, 2257, 2258, 2259, 2260].

Floating [1124, 2099, 1963, 1510, 267, 460, 4610, 4611, 2581, 1125, 1126, 2264, 2266, 2267, 1623, 1745, 1412, 1624, 5286, 3436,
3700, 4152, 2946, 3117, 4614, 5288, 2763, 3276, 5027, 749, 812, 884, 1863, 4001,
4615, 2406, 3119, 814, 886, 2765, 2105, 2106, 5586, 3703, 5503, 4901, 5782, 680,
8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

48

2588, 2767, 2948, 4334, 5506, 5641, 5588, 4618, 3584, 4166, 4340, 306, 4342,
3706, 4619, 463, 508, 5292, 1629, 5038, 3443, 5293, 5590, 1516, 4008, 5645,
4621, 2111, 958, 1865, 1207, 2779, 3450, 510, 571, 682, 683, 353, 619, 620, 511,
5646, 2113, 4623, 1866, 1867, 891, 823, 2957, 1326, 2416, 4346, 4484]. floating
[5718, 2960, 2115, 1980, 2603, 4781, 2116, 5040, 2966, 1523, 1524, 1525, 626,
893, 2418, 5432, 5514, 3291, 5042, 4629, 4782, 5044, 5045, 5046, 5123, 5231,
2419, 1869, 3711, 4784, 5124, 275, 1765, 2119, 2293, 2296, 2609, 3460, 5649,
2791, 831, 2299, 2300, 895, 4021, 3134, 4491, 2123, 2974, 5790, 3135, 3136, 3717,
2304, 3602, 4638, 3141, 516, 4639, 5050, 5520, 5792, 424, 4023, 2976, 2977, 5051,
5234, 5729, 5521, 896, 4026, 3874, 4029, 5437, 689, 897, 3605, 3875, 4497, 3148,
4642, 1220, 1874, 5438, 2127, 167, 631, 900, 2128, 2804, 2129, 3606, 2131, 2434,
3150, 465, 3310]. floating [2132, 5828, 2438, 2638, 2811, 4647, 2135, 3153, 3878,
5441, 2309, 2441, 2641, 2442, 2443, 1645, 2000, 1225, 835, 836, 4798, 903, 467,
1138, 1139, 1226, 637, 968, 2813, 969, 3154, 1551, 427, 4652, 3314, 697, 5600,
5309, 5310, 5523, 5797, 5444, 3725, 3726, 3882, 1229, 4653, 4373, 1784, 2988,
5445, 5313, 908, 2814, 2315, 3727, 5314, 3483, 3157, 700, 1883, 2143, 2446, 2006,
4654, 5659, 640, 641, 2999, 3616, 3893, 4511, 5239, 2317, 3730, 4212, 4657, 4658,
5448, 3732, 3488, 2645, 2646, 2817, 2647, 3164, 3004, 2148, 3490, 3618, 4379,
840, 3005, 3323, 1886, 3324, 971]. floating [3734, 4925, 3900, 4213, 3619, 2324,
1561, 1792, 2829, 4381, 2151, 1070, 2325, 2326, 4214, 4215, 4383, 4812, 4813,
4814, 4933, 4934, 5063, 5064, 5065, 5066, 1655, 1351, 247, 1352, 1894, 4519,
3499, 3905, 329, 279, 4521, 763, 2662, 2663, 3014, 3015, 4819, 1799, 3500, 112,
1355, 1658, 1801, 2157, 1805, 1659, 2838, 4937, 5826, 2839, 1569, 764, 3171,
4225, 4667, 977, 3173, 1238, 3911, 4053, 1662, 3502, 1663, 1570, 1807, 3914,
4054, 1899, 854, 4670, 4671, 646, 717, 3503, 1664, 2469, 2334, 2336, 4231, 4232,
1901, 4945, 1243, 2673, 2025, 435, 3023, 2339, 767, 3747, 2342, 2842]. floating
[4528, 4676, 4946, 5082, 5458, 2343, 1666, 1576, 1247, 1667, 478, 479, 480, 2027,
2165, 4829, 718, 2344, 2345, 1151, 249, 1577, 2028, 3029, 3190, 1809, 1441, 2167,
2346, 1248, 2475, 1669, 1442, 4679, 4952, 5257, 5460, 859, 2478, 3919, 4058, 4680,
4681, 5461, 534, 720, 2685, 155, 2687, 2168, 2347, 2689, 2690, 3032, 3638, 4954,
4685, 4686, 4837, 4839, 4400, 4534, 4535, 2170, 4860, 2203, 2532, 1148, 1603,
3692, 4617, 1755, 3457, 3016, 2162, 2163, 2164, 2337, 2338, 1365, 5270, 906].
floating- [5089, 5550]. Floating-Point [1908, 3752, 4402, 4690, 4959, 5466,
5260, 4403, 4691, 3756, 4407, 4845, 5340, 5341, 5472, 5473, 5541, 4701, 3213,
3763, 3933, 3934, 3935, 1819, 4266, 2183, 2355, 3526, 5352, 777, 925, 1000, 1916,
2501, 2707, 4970, 5354, 5546, 5675, 5676, 3221, 3222, 1919, 5677, 2357, 1920,
656, 2189, 5548, 5754, 1162, 1163, 1268, 4089, 3370, 5171, 205, 781, 5363, 3053,
3226, 4854, 2511, 1463, 5267, 2515, 3376, 4094, 5174, 5481, 1166, 5811, 659, 1277,
1388, 1597, 2198, 2888, 3781, 5758, 3783, 1099, 1170, 1598, 5553, 3663, 3787,
4857, 4984, 5182, 5183, 2711, 4097, 3233, 3234, 3385, 1928]. Floating-Point
[4102, 2369, 4104, 4570, 551, 5558, 5559, 4865, 4114, 1835, 1932, 5762, 3675,
1604, 2725, 2727, 5106, 445, 4296, 4997, 5193, 3244, 3803, 3957, 1708, 2076,
1174, 1396, 3963, 2078, 4734, 5487, 1175, 2079, 2731, 4298, 5383, 3549, 1840,
5199, 792, 3815, 795, 1180, 2548, 2549, 5108, 5571, 1293, 1488, 4123, 4306, 5204,


8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Floating-Point

Floating-Point

Floating-Point

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Prozessoren [1246]. Gleitkomma-Prozessors [2464]. Gleitkomma-
und [2773]. Gleitkommaarithmetik [1755]. Gleitkommadarstellung
[700]. Gleitkommaformat [1505]. Gleitkommaprozessor [1660, 3016].
Gleitkommarechnern [2233]. Gleitkommazahlen [1000, 1845, 1963, 2117].
Gleitpunktalgorithmen [2931]. Gleitpunktrastern [1920]. Global [3367,
3390, 1118, 5994, 3434, 4349, 3471, 3479, 5552, 5010]. Globally [3486].
GLOBECOM [5994]. GLSVLSI [6141, 6199]. GMICRO [2099]. GMP
[4267, 4849, 4060, 4955, 5004]. gmp-based [5004]. GMRES [4735, 5197].
GNB [5532]. GNU [4595, 3262, 5781, 3890]. Goals [1588]. Gödel
[3089]. Godfather [966]. Goldschmidt [3954, 4446, 3966, 5285, 5439].
Golem [903]. Golub [1763]. Good [4071, 3936, 3667, 1711, 2794, 3792].
Gordon [2534]. got [4561]. GPU [5679, 5381, 5639, 5300]. GPUMP
[5334]. GPUs [5345, 5181, 5371, 5763, 5515, 5459, 5742, 5334].
graceful [5657]. Gradient [86, 5305, 4557, 4712, 4908, 2785]. Gradual
[4692, 4869, 1026, 4750, 2276, 1327]. Gradual-Underflow [4692]. Grain
[4326, 4229, 3076]. gram [5367, 538, 5199, 4737, 4530]. Grand [6150].
Granularity [5801]. Graph [4354, 2507, 3533, 467]. Graphical [4795].
Graphics [5273, 3984, 4764, 4343, 5296, 2424, 5130, 4874, 5399, 3829,
2585, 2273, 2955, 4621, 2418, 4680, 4681]. Graphs [1122]. Great [6141,
6199, 6069, 6085, 18]. greater [3124]. Greatest [5346, 497, 709]. Greece
[6164, 6198, 6069, 6085, 18]. Grundlagen [1774, 917, 918, 885]. grundlegende
[2944]. GSFAP [5325]. Guarantee [1084]. Guaranteed [5370, 4722, 3462,
2452, 5050, 4643, 3018, 4954]. guaranteed-accurate [4954]. Guard
[877, 941, 4760]. Guest [5471, 5359, 4000, 5222, 5651, 4804]. Guide
[1266, 1170, 1279, 5843, 2086, 1797, 3629, 4227, 4668, 3177, 1737, 1229,
1895, 1561, 1895, 2662, 2663, 2664, 4343]. guidebook [4942]. guided [5550].
Guidelines [351]. guides [2968, 2155].

Hadamard [2599]. Hadoop [5322]. Hoffmen [969]. Hague [6131, 6065].
HAKMEM [607]. HAL [4181]. Half [5415, 3589, 6023, 945, 3730]. Half-
Adder [3589]. half-century [6023]. Half-Precision [5415]. half-word
[945]. Hall [190]. Hall-Effect [190]. Halstead [2133]. halves [3744].
Halving [4846, 4949]. Hamada [2560]. Hamburg [6028]. Hamming
[2003, 3474, 5085]. Hand [932]. Handbook [5808, 930, 2719, 3075, 307,
5299, 1358, 1025, 4459, 2661]. handbooks [80]. handing [3988]. Handle
[5226]. Handlers [3935]. Handling [3069, 1103, 1949, 3256, 3411, 1404, 3094,
3987, 3104, 2753, 4009, 3133, 2491, 4976, 2895, 3083, 3691, 3422, 3692, 1249].
hands [5283, 4611]. hands-on [5283]. Hannover [1373]. Happen [3936].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Hardware [986, 1154, 5263, 4540, 3531, 3941, 549, 870, 1391, 4987, 5187, 5104, 2904, 4296, 5107, 5486, 2908, 3814, 3404, 5767, 3982, 5401, 1499, 948, 2945, 216, 5505, 4335, 4772, 4773, 4343, 621, 3448, 829, 2621, 3869, 4027, 6000, 5824, 4651, 1343, 4371, 3482, 2993, 3160, 3320, 3484, 2997, 3487, 4510, 2648, 974, 4216, 4221, 4818, 1356, 5073, 5074, 5453, 4235, 4527, 5255, 5331, 3192, 1084, 4399, 5598, 5158, 3929, 994, 4083, 2672, 3020, 4116, 1707, 4297, 5906, 4456, 3078, 4874, 945, 2746, 4754, 5282].

Hardware-Based [5622, 3192]. Hardware-Oriented [2621, 4489]. hardware/microcode [1203]. hardware/firmware [1707].

High [1967, 3278, 4764, 678, 107, 191, 3856, 4341, 1046, 3587, 506, 1360, 2407, 2777, 3282, 192, 1517, 1758, 309, 2601, 2604, 1868, 961, 4351, 3861, 1529, 3297, 3464, 4792, 1772, 3303, 4024, 3470, 166, 4362, 4363, 4500, 4797, 5304, 2810, 633, 2308, 904, 5305, 5524, 429, 583, 3885, 3614, 3889, 2995, 2996, 3731, 3895, 4806, 1557, 2647, 644, 975, 65, 1234, 1796, 1798, 2016, 1800, 3909, 4224, 1569, 851, 5056, 2521, 5326, 5077, 4233, 1078, 1079, 856, 1152, 1082, 168, 2853, 4678, 4950, 4059, 1251, 2993, 3346, 1369, 2033, 3066, 56, 3036, 594, 3041, 3466, 1672, 1673]. high [5620, 4541, 2040, 993, 2046, 2048, 4421, 3373, 2191, 1826, 333, 4715, 2362,
Hybrid-mode [5670]. Hyderabad [6177]. Hydra [522, 522]. Hydrodynamic [5778].

Hydrodynamics [5838]. Hyper [4168]. Hyper-systolic [4168]. Hyperbolic [200, 3080, 161, 707]. hypercube [2084].

Hypercubes [2729, 2769]. Hyperelliptic [4359, 3720, 4248]. Hypergeometric [1752].

IEEE [1468, 2198, 2888, 3663, 3787, 4857, 4984, 5182, 5183, 3235, 3236, 3236, 3668, 3688, 4101, 3952, 2533, 6131, 6175, 5477, 5190, 3546, 3803, 3957, 3958, 3959, 4447, 1396, 3960, 3963, 4116, 2545, 2381, 5006, 2553, 2387, 1949, 5941, 4879, 1300, 5770, 1119, 5881, 5898, 5910, 5917, 1733, 5923, 5942, 5943, 5959, 5961, 5973, 5981, 5995, 5406, 4466, 4137, 1504, 1202, 1959, 3270, 3428, 3566, 4889, 4890, 3847, 4614, 6057, 6026, 4902, 3175, 5199, 5959, 1629, 5038, 3443, 2282, 2410, 4009, 4778, 4906, 2117, 5230, 5432, 3291, 3456, 3457, 2293, 4021, 3134, 3869, 4187, 4356, 2428, 3874, 3148, 2628, 6086, 6051, 3150, 3306, 4647].

IEEE [2135, 1548, 1551, 3725, 3726, 2988, 2314, 4511, 3730, 4045, 4211, 4512, 4657, 4658, 4086, 3733, 6214, 1647, 5317, 1886, 6154, 2150, 5067, 1230, 1349, 1351, 6097, 2328, 2462, 2463, 2837, 1356, 4940, 6059, 1569, 5074, 3175, 5251, 5077, 1903, 6005, 5459, 1669, 5963, 6053, 6088].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5025, 5031, 5035, 899, 3722, 5089, 2486, 1015, 1283, 4112, 5762, 2232, 1721, 3819, 1124, 2127, 5528, 3341, 4681.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

level-1 [5456]. Level-Index [2409, 2774, 3444, 1988, 2197, 4923].

Leverage [5911]. Levinson [1100]. lexically [1381]. Lexicographic [1746, 2311].

L’Extraction [1061]. LIA [4755, 2718, 2985]. LIA-1 [2718].

LIBM [4721, 4909, 5618, 4166, 4340, 4568, 4724, 4666]. Libmcr [4663]. Libraries [499, 565, 2600, 5354, 368, 369, 4104, 5185, 4440, 4734, 1024, 1106, 2731, 2545, 4595, 3970, 1850, 1735, 5639, 387, 4335, 4770, 899, 2805, 3151, 3609, 4202, 3313, 2146, 2147, 4248, 4585, 5456, 3919].

Leverage [5911]. Levinson [1100]. lexically [1381]. Lexicographic [1746, 2311].

Leverage [5911]. Levinson [1100]. lexically [1381]. Lexicographic [1746, 2311].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

 logarithmetic-exponential [3285].
 Logarithms [118, 780, 598, 2582, 240, 621, 222, 909, 1195, 5782, 706].
 Logic [916, 987, 6031, 773, 922, 6173, 6186, 6130, 783, 259, 1171, 236, 4118, 294,
 4037, 6019, 6208, 5020, 1411, 4343, 4365, 426, 519, 3608, 4039, 6223, 6073,
 2816, 4513, 4378, 5450, 172, 911, 1348, 2016, 4938, 851, 6127, 5616, 6102,
 3949, 3860, 5494, 4141, 4620, 3602, 4036, 701, 703, 704, 705, 706, 1899,
 3499, 4940, 3504, 5849, 5831]. Logical [1007, 1613, 4694, 48, 2277, 2281, 1539].
 LogiCORE [4952, 5257]. Logics [6101]. Logik [911]. Logistic [5614].
 Logo [1644]. London [5925, 34]. Long [4714, 2522, 4460, 5396, 385, 5714, 3448,
 3449, 4193, 762, 3909, 3541, 2542, 4310, 5420, 2439, 2648, 5449, 5527, 5333].
 long-term [2439]. Look [5563, 3681, 1613, 3976, 3255, 4788, 4913, 1988,
 4196, 3628, 4939, 724, 2513, 3812, 5212, 3740, 2018, 4683]. Look-Ahead [4939].
 Look-Up [1613, 3976, 4788, 1988, 4196, 3628, 3255, 2513, 3812, 3740, 4683].
 Lookahead [4939]. Lookup [3942, 3277, 1871, 4953, 2512, 1770]. LookUp [5196, 3809, 4762, 4172, 4779, 5430, 1990, 1991, 3613, 1428, 909, 2657, 3657,
 3252, 3827, 4602, 3144, 3145, 3873, 2980, 1905]. Loop [3203, 2931, 5124, 2028].
 Loops [3053, 4365]. LORIA [6172]. Loss [1398, 5303, 1397, 1838]. Lossless [5487, 4822, 2165, 3502].
 Lost [733, 5496]. L¨osung [1477, 4250, 4533].
 Louis [17, 5929]. Louisiana [5941, 6069, 6154]. Louisville [5910].
 Low [2695, 4695, 4696, 1257, 1676, 543, 4556, 4713, 4558, 3660, 4982, 4983, 3802,
 3394, 3968, 1293, 3682, 5390, 3559, 4748, 5400, 5495, 3828, 4470, 3699, 5582,
 4768, 4164, 4013, 5592, 3863, 3864, 4357, 4357, 4034, 4195, 6086, 5599, 5304, 4504, 4505, 4650, 4799, 5139, 3885, 4656, 5447, 585, 5318, 5660, 5735,
 5244, 2840, 415, 4288, 3750, 5617, 5628, 2739, 5399, 3689, 5217, 3701, 4474, 5426,
 3590, 4789, 2122, 3469, 5437, 3604, 2433, 2814, 972, 4935, 2469, 3751, 4678].
 Low-Complexity [5139, 3699, 4768, 3751, 4678]. Low-Cost [1257, 1676, 3559, 5495, 5592, 5304, 585, 5735, 855, 1293, 5399, 2122, 2433, 972]. Low-dimensional [4633].
 Low-frequency [2695]. Low-Latency [5318]. low-level [2469]. Low-Power [3458].
 Low-Weight [4982, 4983]. Lower [1818, 3855, 3458, 5138, 5621, 4313, 5137, 2660]. LP [3458]. LS [1753].
 LSA [4223]. LSB [5216]. LSI [1089, 1393, 1299, 1217, 1142, 1152]. LSI-11 [1393, 1299].
 LU [4594]. Lubbock [5917]. LUCAS [1534, 1360, 591]. Luigi [5537].

 Machine [57, 1449, 117, 2356, 37, 2066, 182, 931, 1392, 3813, 4738, 798, 296, 3822, 2925,
 3090, 40, 21, 2964, 1344, 1143, 5240, 587, 912, 1367, 3507, 251, 36, 370, 371, 70,
 1723, 2748, 11, 682, 3455, 5514, 2014, 586, 1805, 1239, 2673, 2339, 3747, 2504,
 2613]. Machine-Checked [3822]. machine-independent [682]. Machines [6144, 5474, 6032, 1267, 3548, 6051, 6058, 6072, 6124, 6181, 6197, 4385, 4086,
2474, 5859, 1269, 1710, 6023, 6146, 3427, 2598, 5836, 5885, 6003, 1667, 6023, 295.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Method [3095, 502, 5022, 352, 2950, 2595, 4169, 2411, 4628, 2117, 5233, 2792, 754, 514, 3468, 4029, 4643, 4647, 969, 1425, 5825, 3163, 4379, 4214, 4215, 4383, 4812, 4813, 4814, 4933, 4219, 4664, 3627, 3911, 2665, 3182, 364, 3196, 5522].

Methodologies [5888, 6000].

Methodology [2073, 4304, 4380].

Methods [3753, 177, 5992, 483, 484, 655, 1587, 5875, 86, 737, 786, 1479, 375, 2910, 876, 608, 1185, 1612, 3559, 5010, 3416, 5015, 6105, 3266, 3433, 806, 5284, 4149, 6107, 386, 953, 2786, 2789, 2292, 145, 3862, 1533, 2802, 5824, 5844, 633, 3479, 127, 520, 4208, 1067, 3486, 6198, 2653, 5065, 5066, 278, 2656, 5975, 1240, 365, 1578, 4241, 4105, 4723, 5089, 3640, 6041, 4063, 2035, 2036, 3363, 1914, 2180, 779, 866, 5955, 6174, 5908, 3817, 1184, 3683, 211, 667, 1843, 5212, 5404, 2567, 3182, 364, 3196, 5522].

methods [2596, 272, 5949, 4489, 6111, 4915, 2128, 2434, 1877, 97, 126, 5309, 5310, 3327, 6052, 3018, 646, 717, 155, 5333, 1148, 1477, 1066].

Metric [25].

Metrics [3366].

Metropolis [295, 469].

Metropolitan [6166].

Mexico [5982, 6206].

Mflop [2203, 2109, 2138, 2342].

Mflops [2078, 2359, 2511, 2731, 2929, 2930, 2257, 2258, 2264, 2265, 2266, 2267, 2615, 2299, 2300, 2301, 2302, 2321, 2078, 2732].

MHz [2183, 2184, 3780, 3984, 3450, 2290, 3309, 3310, 2319, 3344].

Miami [6075].

Michigan [5887, 6013, 6085].

Micro [1907, 3207, 2201, 1476, 1602, 5067, 1264, 1286, 1523, 3500, 5972, 5883].

micro-computer [1286].

Micro-optimization [2201].

micro-power [3500].

micro-programmable [1523].

Micro/mini [1476, 1602].

Micro/Minicomputers [907].

Microarchitecture [1674, 4546, 2221, 5427, 2065, 5972, 4377].

microcode [1203, 3882].

Microcoding [1151].

Microcomputer [1102, 1510, 1630, 1886, 1901].

Microcomputers [988, 1253, 1414, 2796, 1643, 556, 939, 1412, 1631, 1603, 1572].

Microcomputing [2251].

Microcontroller [2136, 2043].

microcontrollers [5441].

Microelectronics [6212, 6220, 5945].

Micrografx [3023].

micropipeline [3749].

Microprocessor [1156, 1370, 2196, 3946, 5374, 1477, 1837, 5906, 2557, 2917, 5000, 5882, 5406, 2263, 2768, 1045, 1866, 2297, 4632, 4787, 2615, 2793, 3867, 3715, 2138, 3885, 5154, 5376, 2867, 1375, 3211, 4554, 1269, 1298, 2924, 2243, 3425, 2262, 2763, 2414, 2287, 2289, 3868, 4493, 1645, 1551, 3157, 2647, 3493, 3619, 3905, 1238, 3176, 3945, 1318].

Microprocessor-Based [1045, 1645, 1238].

Microprocessors [1463, 2370, 3965, 5255, 4297, 890, 1223].

Microprogrammable [801, 1251].

Microprogrammed [938, 1213, 649, 1761, 1238].

Microprogramming [5883, 5972].

Microsecond [100].

Microsoft [2447].

MicroVAX [1887].

Midcon [5913].

Midcon/84 [5913].

Midpoint [4597].

Midpoints [5413].

Midwest [6216, 6012, 6163, 5864].

MIEL [6220].

might [2397].

Migration [3203].

Mikrorechentechnik [2251].

Mikrorechner [1603, 1572].

Mikrorechnerprozeduren [1477].

Mikrorechnersystemen [1630].

Military [1384, 5947, 6127].

millennium [6065].

million [3043,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 70

4545, 5356, 729, 599, 783, 5632, 5196, 4460, 4743, 5398, 5216, 1201, 3993, 5713, 4772, 4779, 5053, 2806, 3307, 3308, 1782, 148, 5306, 4514, 4388, 4233, 914, 3924, 2484, 3760, 4578, 4726, 4733, 1191, 3708, 1778, 4998, 4372, 2822, 5323, 2480.
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[135x586]number [1739, 2091, 1854, 2751, 2934, 2095, 948, 214, 802, 3997, 2574, 2936, 2937, 2938, 2939, 267, 189, 2269, 2761, 2947, 1747, 1858, 1859, 1860, 1861, 2103, 2104, 2270, 2271, 2762, 2585, 2764, 2273, 2586, 2274, 3581, 3704, 3857, 4005, 4003, 1626, 2592, 2775, 4010, 4011, 4012, 4169, 4170, 4171, 4344, 4622, 3860, 4013, 5510, 2283, 1977, 511, 5429, 5295, 1634, 3709, 5233, 4789, 193, 4182, 4490, 2303, 3137, 3138, 2799, 2800, 3872, 4024, 4025, 2979, 3144, 3145, 357, 3146, 3305, 1641, 1778, 4919, 5793, 4191, 4192, 4499, 2806, 2807, 3308, 3475, 465, 4036, 2308, 2440, 4037].

[5873, 2034, 5465, 5878, 6041, 437, 6113, 6033, 2704, 2872, 5807, 3525, 6055, 5355, 1587, 5267, 659, 1097, 5680, 6008, 5867, 1281, 737, 3069, 4111, 5560, 5485, 3389, 1479, 3801, 1710, 1108, 556, 939, 51, 71, 3403, 3551, 5698, 2229, 5493, 5699, 2914, 211, 667, 1843, 62, 4130, 142, 3418, 4315, 4133, 1035, 1404, 63, 1500, 5931, 4320, 349, 1409, 3698, 4753, 3994, 5117, 2404, 2945, 351, 885, 5778, 5714, 388, 1627, 163, 164, 1519, 393, 272, 5918, 2789, 4187, 1219, 2134, 2808, 2809, 1134, 5980, 967, 5656, 5059, 1233, 5837, 3018, 5962, 5975, 4672, 1574, 3916, 858, 983].

Numerical [5859, 362, 3640, 3036, 989, 5621, 1683, 370, 1601, 2895, 4727, 451, 3550, 4873, 264, 94, 744, 1945, 1116, 4136, 4885, 348, 3102, 5869, 2252, 417, 3843, 2260, 5507, 1515, 2603, 752, 5044, 5232, 627, 1220, 2434, 323, 1060, 4198, 758, 4517, 4811, 3498, 1147, 3637, 155, 482, 5909, 1725, 692, 5894].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 79

80387

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Decompression [3482]. Dekker [4851]. Divider [2903, 1903, 2234].
floating [2095]. hardware [4611]. Hexadecimal [2453]. IDCT [3346].
IEC [3691, 2745, 1618, 3103, 3692, 4136, 4885, 4886, 4887, 4888, 4755].
Mechanical [3353]. Micro [5901, 5902, 5913, 5924]. Minicomputers [1907].
Model [2312]. multi-function [3142, 3143]. NS32081 [1886].
output [3144, 3145, 1248]. overflow [5033]. Performance [3330, 3206, 3944, 3834].
Power [5789]. Radix [1036]. range [4053]. Scalar [5417, 2094, 2253, 2254].
Selector [4256]. shifter [2289]. SIAM [5931]. SIGDA [6140, 6157].
SIMD [4720]. software [5645, 6203]. Square [2282, 3330, 5533, 3850]. square-root [3646]. Squarer [4146, 4002]. sub [3394].
Subtraction [3941, 5822, 4476, 3657, 4424]. subtractor [4623, 5432]. Taipei [5960].
Pentanomials [4916, 4507]. Pentium [3207, 4408, 3230, 3231, 3534, 3662, 3495, 3249, 3252, 3292, 3311, 3312, 3164, 3170, 3011]. Pentium4 [4469].
Pentium(R) [4546]. Pentium(R)-4 [4143]. penultimate [4491]. Percentages [1101, 397].
8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

82

Point [1732, 1733, 1952, 1953, 4887, 5406, 2929, 2930, 3984, 3101, 297, 1735,
4884, 5279, 5706, 2747, 5575, 2931, 5218, 5411, 5413, 5576, 5578, 4139, 3693,
5219, 1199, 1504, 1122, 2249, 5774, 212, 1505, 5581, 5775, 299, 1123, 1202, 1307,
1856, 2753, 3566, 3694, 3695, 3991, 4140, 4321, 4603, 4604, 4752, 5115, 4143,
3568, 670, 673, 5021, 1741, 5417, 2400, 1622, 805, 949, 5023, 3114, 5220, 4147,
747, 3999, 3275, 2265, 2760, 5026, 5500, 4151, 3576, 676, 808, 953, 677, 5584,
3118, 3702, 5712, 5777, 4900, 1514, 5715, 4767, 1969, 2587, 2589, 2768, 5505,
5779, 4335, 4770, 5780, 4163, 1413, 388, 5034]. Point [5035, 5783, 1044, 1971,
4904, 5643, 750, 819, 1322, 507, 5424, 5784, 3122, 2773, 2109, 2282, 2593, 4630,
2410, 570, 617, 2412, 5592, 1518, 2600, 1520, 5511, 4345, 464, 513, 3591, 354,
2417, 1051, 4173, 1868, 3289, 2967, 5296, 4174, 5230, 5041, 3593, 396, 317, 4176,
4353, 2290, 1415, 1635, 572, 1766, 1982, 2120, 2294, 2295, 2972, 4785, 5299,
5788, 1053, 2612, 4181, 2301, 2302, 5594, 829, 4791, 5595, 5653, 3597, 4912,
5049, 3299, 2621, 3869, 3464, 3465, 3467, 3600, 3601, 4794, 2424, 2798, 5597,
4187, 2624, 2625, 5127, 1873, 575, 964, 1217, 2428, 2126, 4189, 4359, 4031].
Point [1058, 1132, 1219, 5598, 5654, 1993, 632, 4034, 4195, 5655, 2632, 2633,
2982, 3473, 5236, 2636, 2809, 1644, 2437, 2984, 4646, 5304, 5132, 5133, 2136,
902, 2137, 1136, 3480, 5794, 2138, 904, 2987, 2139, 4371, 5305, 2140, 2643, 4801,
5140, 5141, 5307, 5603, 4039, 1424, 1553, 400, 1554, 5446, 3729, 4803, 1427,
3884, 2447, 1345, 1646, 4655, 4805, 2146, 3892, 4211, 4512, 4806, 5447, 4378,
4808, 2818, 1647, 5317, 5526, 2448, 3491, 2319, 171, 2819, 1887, 5450, 1559, 2651,
2825, 3007, 3008, 3009, 3167, 3495, 3496, 2150, 5608, 3168, 5733, 5734, 1890,
1891, 1562, 2830, 5609, 2454, 4660, 761, 1230]. Point [1349, 1350, 1656, 5242,
3738, 3739, 4817, 1232, 3903, 5529, 3741, 1657, 5244, 2328, 2462, 2463, 2837,
4820, 4821, 1356, 5245, 1660, 4938, 5071, 3334, 4666, 5736, 3910, 528, 3172, 4228,
5661, 978, 5072, 1897, 766, 5246, 2667, 3335, 2669, 3175, 1241, 434, 4822, 5531,
3633, 3021, 5806, 2163, 3745, 174, 5827, 1359, 1574, 2471, 4828, 4947, 5080, 5081,
5254, 5255, 5328, 5331, 1439, 1246, 1903, 5459, 2846, 2847, 5613, 175, 3028, 2166,
4057, 5741, 1668, 4241, 4950, 2479, 722, 2855, 1579, 3344, 5087, 5462, 3923, 860,
1812, 5616, 4835, 5258, 5335, 4836, 5088, 4956, 5377, 5556, 5682, 4390, 4055].
point [2037, 4260, 3200, 5089, 593, 2695, 2483, 1813, 1814, 3754, 1446, 4256,
5337, 2859, 2035, 2036, 3515, 3643, 5157, 367, 5158, 3350, 5745, 5670, 649, 252,
2349, 2487, 2865, 3041, 3042, 3205, 3206, 3207, 3208, 4259, 2350, 991, 921, 1817,
1909, 5342, 1671, 2173, 1672, 1673, 1254, 2175, 1450, 1910, 2176, 4541, 3931,
4073, 1375, 2352, 2704, 2872, 5264, 5544, 1912, 1158, 1260, 1678, 2044, 2353,
2045, 1680, 5545, 4076, 1914, 2180, 2495, 3048, 2874, 2181, 4079, 4965, 4966,
997, 2046, 1262, 2184, 5478, 4544, 2354, 1091, 4850, 3652, 2049, 2185, 2186,
2050, 2187, 2498]. point [2499, 2880, 1684, 4084, 4272, 4415, 4547, 4548, 4851,
4969, 3527, 1458, 1459, 1588, 255, 2051, 1590, 597, 4972, 5266, 4087, 3653, 926,
4551, 4974, 2053, 927, 1094, 4553, 4710, 5480, 3052, 4711, 3371, 2359, 1686,
4554, 2055, 2508, 1824, 1269, 3225, 1270, 4557, 4712, 2513, 3054, 333, 1464,
2514, 3656, 4715, 1689, 1924, 2517, 3533, 3658, 5550, 1272, 1594, 2065, 2518,
2519, 5624, 5679, 2195, 2885, 4278, 5179, 3776, 3777, 2886, 5625, 4559, 4560,
3780, 1387, 1468, 1695, 2067, 5181, 5371, 3947, 2525, 1009, 1831, 3786, 4433,


8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3164, 3004, 5607, 2148, 3490, 3618, 4379, 4659, 840, 3165, 3005, 3323, 1886],
point [3324, 2012, 971, 3734, 4925, 1429, 2321, 711, 3900, 4213, 3619, 2324,
1561, 1792, 2829, 4381, 1563, 2151, 1070, 2325, 2326, 4214, 4215, 4383, 4812,
4813, 4814, 4929, 4930, 4931, 4932, 4933, 4934, 5063, 5064, 5065, 5066, 5145,
5146, 5147, 5148, 5149, 2655, 2831, 1655, 1351, 2154, 247, 1352, 1894, 1895,
4519, 3499, 3905, 3323, 2012, 971, 3734, 4925, 1429, 2321, 711, 3900, 4213, 3619,
2324, 1561, 1792, 2829, 4381, 1563, 2151, 1070, 2325, 2326, 4214, 4215, 4383, 4812,
4813, 4814, 4929, 4930, 4931, 4932, 4933, 4934, 5063, 5064, 5065, 5066, 5145,
5146, 5147, 5148, 5149, 2655, 2831, 1655, 1351, 2154, 247, 1352, 1894, 1895,
4519, 3499, 3905, 3323, 2012, 971, 3734, 4925, 1429, 2321, 711, 3900, 4213, 3619,
2324, 1561, 1792, 2829, 4381, 1563, 2151, 1070, 2325, 2326, 4214, 4215, 4383, 4812,
4813, 4814, 4929, 4930, 4931, 4932, 4933, 4934, 5063, 5064, 5065, 5066, 5145,
5146, 5147, 5148, 5149, 2655, 2831, 1655, 1351, 2154, 247, 1352, 1894, 1895,
4519, 3499, 3905, 3323, 2012, 971, 3734, 4925, 1429, 2321, 711, 3900, 4213, 3619,
2324, 1561, 1792, 2829, 4381, 1563, 2151, 1070, 2325, 2326, 4214, 4215, 4383, 4812,
4813, 4814, 4929, 4930, 4931, 4932, 4933, 4934, 5063, 5064, 5065, 5066, 5145,
5146, 5147, 5148, 5149, 2655, 2831, 1655, 1351, 2154, 247, 1352, 1894, 1895,
4519, 3499, 3905, 3323, 2012, 971, 3734, 4925, 1429, 2321, 711, 3900, 4213, 3619,
2324, 1561, 1792, 2829, 4381, 1563, 2151, 1070, 2325, 2326, 4214, 4215, 4383, 4812,
4813, 4814, 4929, 4930, 4931, 4932, 4933, 4934, 5063, 5064, 5065, 5066, 5145,
5146, 5147, 5148, 5149, 2655, 2831, 1655, 1351, 2154, 247, 1352, 1894, 1895,
4519, 3499, 3905, 3323, 2012, 971, 3734, 4925, 1429, 2321, 711, 3900, 4213, 3619,
2324, 1561, 1792, 2829, 4381, 1563, 2151, 1070, 2325, 2326, 4214, 4215, 4383, 4812,
4813, 4814, 4929, 4930, 4931, 4932, 4933, 4934, 5063, 5064, 5065, 5066, 5145,
5146, 5147, 5148, 5149, 2655, 2831, 1655, 1351, 2154, 247, 1352, 1894, 1895,
4519, 3499, 3905, 3323, 2012, 971, 3734, 4925, 1429, 2321, 711, 3900, 4213, 3619,
2324, 1561, 1792, 2829, 4381, 1563, 2151, 1070, 2325, 2326, 4214, 4215, 4383, 4812,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5248, 4826, 5087, 3939, 3940, 4556, 3378, 3950, 5628, 5688, 3802, 4444, 3394, 554, 1183, 3682, 5572, 3971, 4597, 5395, 3689, 2758, 3701, 4013, 3590, 4789, 3865, 4494, 4357, 5437, 4658, 3500, 4053, 2465, 2467, 3023, 4238, 3187. Power-Delay [3530, 4490]. Power-Efficient [5176, 5248, 5087, 5688]. power-series [2758].

POWER2 [3036, 3087, 3165, 3188, 3086]. Power3 [372x610].

POWER6 [4994, 4844]. POWER7 [5352, 5281]. Powering [4196, 4644, 3740, 5611, 4500].

Powers [5632, 739, 5026, 2, 1457, 5697, 5286, 5649]. pp [176, 1372, 186].

Pre-computations [5549]. Pre-processing [5385]. pre-scaling [3250].

Prediction-Based [547]. Predictive [3969, 5079]. Predictors [42, 3908].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 87

6112, 6169, 6059, 6098, 5920, 5951, 6004, 6155, 5894, 5937, 5965, 6030, 6099, 6172, 6144, 6032, 6158, 6144, 6099, 6172, 6144, 6032, 6158, 6169, 6102, 6187, 6205, 5929, 5886, 5868, 6011, 6037, 6067]. Proceedings [6069, 6081, 6105, 6135, 6151, 6164, 6165, 6166, 6178, 6229, 5869, 6039, 5986, 6194, 6049, 6137, 5918, 5876, 6179, 6168, 6058, 6072, 6197, 6223, 6125, 6227, 6153, 6059, 6096, 6182, 6018, 6217, 6162, 5999, 6017].

producer [4491]. produced [3015]. producing [4028]. Product [6018, 727, 5674, 5097, 3660, 1275, 2893, 4730, 4592, 5204, 4597, 5220, 3115, 1769, 4636, 4637, 4793, 1344, 1790, 5608, 2474, 3348, 5163, 5098, 1828, 3378, 2715, 2898,

R [218, 469, 2323, 2238], R.O.C. [5960], R/3000 [2238], r0p2 [4260], R1994 [1953], R2000 [1960], R3000 [2506, 2647], R3010 [2140, 2647], R4000 [2917], R63 [242], R65 [293, 294], R65-22 [293], R65-54 [294], R67 [391], R67-41 [391], Rabat [4580], racehorses [2372], Racine [1061], radar [3776], Radian [1542], Radici [3724], radio [4318, 4398], Radisson [6141], Radius [5816], Radix [1908, 5263, 3758, 3930, 1449, 483, 770, 3046, 772, 5622, 4706, 1461, 5362, 2360, 1827, 5176, 1597, 1695, 3059, 182, 233, 5379, 5188, 5686, 662, 1481, 2216, 2376, 3073, 1938, 1484, 5388, 1492, 4744, 1495, 1953, 5403, 5018, 5772, 2249, 1315, 2943, 562, 5584, 3278, 4156, 4475, 5029, 3856, 1754, 5820, 3282, 3287, 1049, 5227, 313, 3128, 3861, 2421, 3863, 5435, 1330, 574, 3598, 5049, 3303, 577, 5131, 3309, 3310, 2003, 223, 3617, 4210, 4806, 1789, 845, 3621, 1656, 1803, 1804, 3909, 4223, 4224, 1075, 2070, 5662, 588, 5533, 3340, 481, 3344, 536, 723, 915, 3646, 862, 407, 3047], radix [4077, 1585, 4083, 4091, 3788, 373, 2377, 2905, 2217, 3394, 3250, 3263, 2242, 2091, 2751, 2934, 3107, 804, 2580, 2764, 2766, 3850, 3279, 1632, 2291, 2607, 2787, 2971, 3294, 4177, 3865, 2623, 5519, 3872, 4024, 4025, 4496, 4362, 4500, 4501, 2811, 2995, 2998, 2999, 4807, 3332, 2657, 2836, 1073, 3635, 5256, 5329, 2684, 1618], Radix [1449, 2360, 1597, 1695, 4744, 4156, 4475, 3309, 4210, 1803, 4223, 5662, 3340, 3344, 4077, 4091, 3788, 2377, 3250, 3263, 3279, 1632, 3294, 3865, 2657, 2836], Radix-10 [5029], Radix-16 [662, 5435, 5533], Radix-2 [3046, 772, 4706, 5131, 5519, 3310], radix-dependent [804], Radix-Independent [1908, 1953, 5772, 1636, 1618], Radizierverfahren [2117, 1905], Rail [2016, 3590], RAND [69, 5067], Random [339, 5023, 5640, 5786, 1981, 2118, 85, 828, 4076, 69, 3535, 3795, 3992, 3153, 700, 3488, 3004, 5323], randomization [3606], Randomized [5630, 4355], Randomness [2063, 5272, 5105, 3605], Range [229, 5166, 4709, 2564, 5408, 5708, 505, 563, 4477, 4788, 524, 1347, 3206, 2517, 3062, 3238, 4108, 4109, 4313, 5038, 2973, 3156, 4231, 4232, 4945, 3919, 482, 4535], Range-Addressable [4788], range-independent [4231, 4232], Range-Reduction [4709], Range-Transformation [505, 563], Ranging [3969], rank [745], rank-frequency [745], Raphson [3786, 5632, 3966, 3108, 4894, 5293, 2606, 2786, 3127, 398, 2803, 3161, 4676, 4828, 5081], Rapid [3768, 182, 28, 298, 218, 4498, 1428, 202, 1269], rapid-approximation [1269], rapide [3768], Rapidly [2246], RAS [4181], rask [1610], raster [2070], Rate [444, 5643, 962, 628, 1082, 333, 4169, 4622, 3316, 3176, 2532], Rates [789, 4642], Ratio [3053, 3922, 3379, 1944, 2333], ration [971], Rational [2052, 376, 1295, 1036, 1304, 2751, 2934, 1856, 2404, 1316, 1625, 1965, 2268, 1208, 1759, 4017, 1527, 5650, 515, 3152, 1340, 198, 2682, 1579, 3754, 1115, 1192, 1302, 3832, 3833, 1512, 2102, 2405, 5233, 3316, 5150, 5151], Rational/Radix [1036], Rationale [2207, 4887], Rationally [1709], Rationalis [1521, 1476, 1602], Ratios [598], ray [2673], Rayleigh [4903, 4010], RDSP [4423], Re [2901, 3299, 3706], re-evaluation [3706], Re-ordering [2901], Reach [3232], Read [780, 2365, 1775, 4559, 4560, 3338], Read-Only
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[4401, 1906, 178, 771, 5541, 5379, 1494, 2249, 4760, 5419, 5500, 1319, 615, 2429, 3149, 1423, 4385, 5613, 2855, 2507, 2536, 1836, 1936, 3107, 802, 2618, 167, 1784, 2685, 2603].

8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

95

5508, 2772, 5509, 3281, 2282, 1517, 3287, 2784, 2606, 5047, 1053, 5435, 5518,
3714, 515, 3302, 1416, 4917, 1876, 517, 4363, 5131, 3309, 1544, 1421, 5139, 2004].
Root [521, 5604, 639, 582, 4376, 3487, 3330, 3495, 3496, 3619, 328, 4221, 1435,
200, 5530, 5454, 5611, 131, 1245, 4828, 5533, 532, 2474, 4948, 535, 3925, 2033,
3639, 366, 5469, 3646, 4077, 4849, 1264, 3528, 4091, 1382, 1688, 544, 3055, 3228,
3944, 3786, 869, 1476, 1602, 2213, 2215, 2216, 2376, 2538, 3072, 4443, 4582,
2217, 1841, 1297, 3407, 3971, 4597, 5395, 3977, 3978, 2922, 3263, 558, 3828,
5404, 3564, 2570, 3105, 1956, 2935, 3701, 2766, 3850, 4475, 2948, 3854, 3279,
3440, 3584, 3585, 2954, 2777, 2595, 2284, 3590, 2416, 2601, 2602, 2781, 2962,
2785, 2291, 2607, 2971]. root [3294, 193, 5125, 3865, 3868, 4639, 1221, 1875,
4643, 3310, 1061, 4367, 3725, 3726, 3882, 4375, 705, 2997, 2999, 3322, 2325,
2326, 5148, 246, 151, 4049, 1354, 4051, 4937, 4052, 5152, 59, 64, 4231, 4528,
2853, 5463, 4249, 4684, 4060, 1915, 1705]. Root-Finding [1705]. Rooting
[1088, 1463, 1020, 1108, 2389, 89, 1758, 314, 633, 3373, 3774, 2364, 3788, 3949,
2730, 3423, 2256, 3698, 3280, 2117, 2420, 3873, 1997, 1905, 2850, 2851]. Roots
[4401, 3347, 5475, 14, 486, 487, 1000, 730, 5358, 5362, 1822, 733, 598, 1696, 3784,
43, 3664, 1477, 933, 1178, 5207, 3416, 298, 2246, 5411, 2248, 4605, 24, 1318, 568,
616, 2599, 1211, 1528, 4631, 907, 469, 149, 1786, 3888, 3889, 4388, 173, 1902, 721,
3760, 2043, 1164, 1382, 5268, 1830, 2527, 4562, 1836, 235, 1289, 3975, 4746, 5010,
3832, 3833, 3430, 4893, 4154, 4337, 1321, 1762, 3126, 4915, 1336, 1778, 4921,
3724, 170, 5825, 3493, 1793, 3174, 2854, 2432, 20]. Rostock [6063]. Rotation
[3930, 1937, 2552, 3559, 2927, 5416, 2074, 5387, 5114]. Rotation/Vectoring
[3930]. Rotations [3542, 3559, 4055, 249]. Rotator [3209, 2532]. Rotators
[4361]. rotten [2619, 2620]. Round [538, 543, 781, 1100, 232, 5762, 796, 4307,
5769, 5404, 418, 5419, 5500, 163, 164, 2593, 270, 4173, 1985, 5733, 5734, 3908,
1807, 3335, 3914, 4054, 1083, 1086, 2035, 1462, 867, 3790, 372, 4563, 4564, 872,
3550, 5005, 878, 5768, 5113, 5117, 1627, 1753, 2113, 965, 2128, 3734, 1893].
Round-Off [543, 232, 796, 163, 164, 2593, 270, 3335, 538, 781, 1100, 5762,
5404, 418, 5733, 5734, 3908, 1807, 3914, 4054, 1083, 1086, 2035, 1462, 867, 3790,
372, 4563, 4564, 3550, 878, 5113, 5117, 1627, 1753, 2113, 2128, 3734, 1893].
round-off-errors [5005]. Round-to-Nearest [5769, 5419, 5500]. Round-up
[4307]. Rounded [2042, 5093, 4708, 5094, 1016, 5631, 2380, 5696, 1726, 5221,
5499, 4156, 3582, 5780, 2770, 397, 2993, 3160, 5736, 1240, 2694, 5618, 4551,
4552, 4562, 4721, 5269, 4106, 4107, 1958, 5286, 566, 3705, 4004, 2288, 4489,
4028, 712, 4663, 4567]. Rounder [3591]. Rounding [3758, 4071, 5673, 4265,
3048, 5093, 5358, 5362, 5481, 1595, 2890, 3535, 5372, 5554, 1698, 3063, 4436,
1101, 5630, 3544, 3676, 3800, 3073, 3803, 3957, 3247, 138, 4734, 5690, 4589,
5491, 4737, 1852, 3831, 5279, 1855, 3108, 4889, 5416, 3115, 5285, 811, 953, 4330,
3278, 4157, 817, 5224, 2276, 4162, 4479, 4770, 4771, 818, 1413, 819, 5716, 4179,
5122, 3861, 3461, 573, 1769, 1131, 4640, 3876, 4032, 5439, 3478, 905, 5140, 5141,
2314, 1228, 3322, 840, 171, 4515, 4047, 2453, 1233, 5452, 1661, 5074, 5453, 60,
3744, 434, 5251, 5080, 2843, 250, 592, 2686, 5258, 915, 3646, 4538, 1913, 4270].
rounding [4550, 3772, 4711, 1464, 3235, 4112, 3390, 1703, 5192, 2213, 2728,
2905, 4447, 3960, 3679, 5001, 4870, 5006, 2229, 2568, 4137, 804, 2573, 2946,


3117, 3276, 1749, 3850, 3703, 3851, 3120, 887, 958, 5593, 4015, 5823, 4346, 4484, 1328, 4177, 5232, 963, 5521, 3874, 4029, 900, 4362, 4647, 5522, 5237, 5601, 5602, 5311, 5316, 2992, 2317, 4517, 2153, 3906, 4665, 5150, 5151, 3017, 2465, 2466, 2467, 1147, 2023, 1243, 2844, 3345, 4566, 5557, 2468, 754, 404, 341.

Roundoff \[2476, 2478, 2689, 2690, 3196, 3065\]. Roundoff-error \[2969\]. Rounds \[1985\]. Rower \[3996\]. Royal \[5995, 5947\]. RPC \[252\]. RPQ \[1617\]. RRNS \[5802\]. RS \[3206\]. RS/6000 \[3206\]. RSA \[4542, 3380, 4426, 3096, 4184, 3002, 2835, 3915, 4236, 4399\]. RT \[1851\]. RTL \[4571, 5075\]. RTL-level \[4571\]. Rule \[4549, 1619, 4187, 4416, 2724, 803, 804, 2107, 5428, 3625\]. Rules \[5, 4343, 3479, 5367, 2242\]. Ruminations \[3991, 3992\]. Run \[5041\]. Run-Time \[5041\]. Rundungsfehleranalyse \[754\]. Runs \[4155\]. runtime \[6135\]. Russian \[2704, 2550, 267, 2113, 1524, 465, 969, 435\]. Rye \[5923, 5943\].
2675, 3642, 3646, 485, 2377, 3812, 3250, 2231, 1855, 4645, 2010, 4380, 2455, 3743.
Scalings [3758]. SCAN [6077, 6195, 6042, 6184, 2488, 4351, 5997, 5975].
SCAN-98 [6077]. Scanning [2335]. Schaltkreisen [2464].
Schaltungen [1066]. Schaltungsanordnung [1963]. scheduling [2569].
Scheme [4689, 1255, 545, 1937, 4739, 4876, 4743, 5279, 3108, 3572, 1313, 811, 4476, 388, 217, 2830, 975, 1084, 4064, 2074, 3812, 3816, 4740, 5013, 5014, 3432, 2264, 2266, 2956, 5797, 4396, 4397, 3197, 4579, 3697, 2642].
Schemes [288, 1473, 4999, 504, 563, 830, 1773, 5597, 5236, 594, 3351, 3381, 1298, 1131, 3144, 3145, 3922].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

1564, 1571, 4404, 2700, 3048, 3975, 3095, 1626, 614, 5793, 4809, 2336]. sign-
magnitude [614, 2336]. Sign/Logarithm [1848, 850, 1564, 2700]. Signal
[6007, 3042, 6061, 6143, 3221, 5938, 6061, 6143, 6149, 6151, 2933, 3426, 5946, 6049,
6167, 5039, 2424, 2126, 5989, 971, 3007, 2150, 1072, 6004, 1251, 2695, 2041, 994,
3527, 3052, 4439, 3674, 6009, 2732, 5490, 2227, 3082, 3527, 2570, 3105, 1198,
948, 3272, 2759, 1747, 1859, 1861, 2270, 4001, 2771, 5933, 6083, 6094, 6109,
6122, 6136, 6152, 2413, 2780, 2119, 4358, 1997, 2132, 2440, 2988, 5445, 2650,
3897, 1888, 3014, 2838, 1078, 2676, 1577, 2346, 2532]. Signal-to-noise [971].
signaling [4396, 4397]. Signalling [5091]. Signals [3212, 5939, 5956, 5967,
6056, 1038, 6071, 6084, 6095, 6110, 6123, 6137, 6202, 6213, 6002, 6040, 3682].
Signed [331, 178, 1257, 595, 1690, 4094, 602, 5388, 5216, 3989, 3859, 2429,
3149, 433, 529, 3748, 2360, 4424, 3943, 2979, 4919, 3478, 2323, 5085]. Signed-Digit
[178, 1257, 1690, 4094, 3989, 3859, 2429, 3149, 433, 529, 3748, 2323, 5085].
Signed-LSB [5216]. Signed-Number [602]. Significance [776, 924, 1398, 238, 1619, 686,
751, 900, 1397, 1838, 141, 892, 959, 711, 2466, 2467, 854]. Significand [5251].
significands [3817]. Significant [408, 45, 492, 44, 301, 125, 5596, 5303, 194,
765, 3510, 3683, 274, 2801, 1437]. significant-digit [274]. Signs [3521, 3671].
SIGNUM [5873, 477]. SIGPLAN [5964, 6142]. Silicon [5024, 2135].
SIMD [4065, 4541, 5356, 4715, 4112, 3399, 5400, 5495, 5244, 4058, 5805].
Similar [1572]. Simple [774, 4549, 1163, 1268, 1481, 2737, 5195, 2730, 1402, 4306, 4316, 4319, 4891, 2403, 389, 509, 2607, 5792, 90, 1642, 580, 1344, 1665, 4416, 2527, 87, 5109, 1841, 5716, 2787, 399, 3018]. Simpler
[4452, 4585]. Simplification [2682]. Simplified [4743, 4773, 1245, 3708].
simplify [4261]. Simplifying [3303]. simulated [5005, 684]. Simulation
[6113, 5485, 3391, 290, 2727, 5391, 567, 2774, 3463, 5892, 2988, 5450, 1813, 1814,
3378, 2894, 1124, 1412, 1624, 4158, 5591, 891, 5056, 1341, 1805, 2839, 718, 308].
Simulation-Based [5391]. Simulations [5778, 5240, 5552, 5181, 5371, 4342].
Simulator [795, 3101, 1338, 3704]. Simulink [5444, 3154]. Simulink-based
[5444]. Simultaneous [4061, 1108, 210, 3416, 4374, 4964, 5404, 4029, 4219].
Sin [2096, 1637, 1986, 475]. Sin/Cos [1637, 475]. Sine [1823, 929, 1724,
3826, 2816, 974, 2656, 2461, 864, 3105, 4482, 2797, 4023, 1986]. Sine-Cosine
[974]. sine/cosine [864, 3105, 4023]. sines [1290]. Singapore [6151, 6151].
Single [3041, 4070, 3521, 2882, 1166, 3236, 4574, 1946, 3693, 1961, 3273,
4762, 5777, 5036, 2771, 5430, 1052, 1531, 4794, 1547, 639, 3742, 4700, 1826,
5366, 2712, 2713, 2714, 4112, 2724, 558, 1738, 2761, 2103, 2104, 3584, 3443,
5590, 1632, 4623, 3590, 5298, 2121, 2135, 3488, 3004, 2455, 1799, 3342, 2693].
[2712, 2713, 2714, 1799]. Single-Multiplier [4070]. Single-Precision
[3521, 5036, 4794, 2771, 4623, 3488, 3004]. single-rail [3590]. single-term [5366].
Singular [3542, 4114, 2927, 1757, 3953, 4185]. singularity [4879]. Sinks
[5639]. SIPE [5587]. SIPS’02 [6119]. Sites [3644]. Six [5262, 3232, 4783].
sixteen [3]. Sixth [5846, 6026, 6123, 1548, 6015, 6004, 5860, 6002]. Size
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Standards
Standardization
Standardfunktionen
Stanford
Squaw
Squarers
Square-Rooting
Square-Root
Square-Rooting
Stabilitätsatzes
STTEST
Stabilized
Stabilizing
Stack
Stacking
Stages
Staggered
stair
Stairway
Standard
Standard-Cell
Standardfunktionen
Standardization
Standardized
Standards
Standpoint
Stanford
Sulla [102, 103]. Sum [3514, 1285, 3246, 671, 4613, 1985, 4636, 4637, 4793, 632, 2983, 4509, 172, 3335, 856, 5268, 4498, 246]. Sum-of-Squares [4613].

summability [3182]. Summand [1046]. summary [2119]. Summation [5667, 5744, 3756, 543, 4437, 4573, 5559, 5683, 2210, 3244, 4452, 4585, 4586, 876, 608, 3994, 674, 5780, 1413, 507, 570, 3452, 2113, 1212, 5720, 754, 4911, 1537, 4801, 5140, 5141, 5142, 5238, 981, 589, 4835, 5258, 5335, 2058, 2059, 4291, 4995, 1021, 3401, 5492, 5698, 2923, 1502, 3698, 5504, 3280, 3446, 682, 683, 5512, 3460, 5723, 5724, 514, 2975, 5234, 2128, 969, 5308, 5523, 1243].

SWT [1561]. Sydney [5945]. Sylvester [4076]. Symbol [354]. Symbolic [4063, 6187, 2060, 3536, 4111, 3806, 3967, 6063, 6048, 2612, 5877, 6138, 29, 6111, 5861, 6051, 6058, 6072, 6124, 6181]. Symposium [6197, 834, 1548, 5950,
Tabellenzugriff

Szeged 2538, 2738, 1728, 3998, 2271, 2584, 4474, 4002, 4161, 4333, 4768, 4168, 1869, 3007, 1570, 2022, 3024, 5532, 1810, 2030, 2041, 2068, 4434, 2529, 2717, 2897, 3178, 3179, 113, 2842, 5664, 1441, 858, 1083, 3921, 1148, 1920, 1630, 1134, 1806, 1353, 1432, 5325.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Tabellenzugriff

Szeged 2538, 2738, 1728, 3998, 2271, 2584, 4474, 4002, 4161, 4333, 4768, 4168, 1869, 3007, 1570, 2022, 3024, 5532, 1810, 2030, 2041, 2068, 4434, 2529, 2717, 2897, 2538, 2738, 1728, 3998, 2271, 2584, 4474, 4002, 4161, 4333, 4768, 4168, 1869, 2800, 2125, 2320, 3329, 1900, 3025, 4056, 4678, 4531, 2169, 2532]. Szabo [450]. Szeged [6077].
TC [4131, 3847]. TC2 [5890, 6055]. TC2/WG [6055]. TCCA [5858].
TDC [5448]. Teaching [2493, 1902, 2474, 1583, 2494, 4451]. Tech. [1372].
Techniques [284, 3779, 3391, 1854, 505, 191, 305, 2412, 2285, 4788, 1771, 1536, 2640, 324, 639, 3482, 2652, 5452, 130, 1898, 994, 2051, 3529, 4976, 3382, 558, 384, 1950, 1121, 2095, 5282, 2274, 4158, 3120, 4775, 2110, 4008, 2605, 3709, 2974, 2799, 3478, 430, 3178, 3179, 4860].
techniques/floating [384, 1950, 1121, 2095, 5282, 2274, 4158, 3120, 4775, 2110, 4008, 2605, 3709, 2974, 2799, 3478, 430, 3178, 3179, 4860]. Technologies
[1491, 5911, 6185, 6035, 6092, 6211]. Technology [3642, 6019, 5966, 6007, 6061, 4546, 1851, 2395, 3097, 6207, 5960, 6093, 6134, 6219, 6038, 6180, 3715, 1773, 1535, 6028, 3064, 2236, 3691, 6192, 1618, 3103, 3692, 3988, 4136, 4885, 5214, 5406, 2598, 2121, 2124, 2135, 402, 3014, 3015, 450]. Teeth [1113]. Teil
[5156, 5336, 922, 5750, 5842, 4738, 666, 4382, 3064, 411]. Terry [35]. Test
[4402, 5466, 5261, 4693, 486, 4549, 5369, 2524, 2887, 2889, 345, 6025, 6160, 3269, 1968, 5224, 1972, 2108, 2412, 3876, 4032, 5135, 2137, 1345, 2653, 4950, 4079, 4416, 3816, 3406, 3554, 2562, 4141, 4158, 893, 5043, 4648, 3723, 2647, 3324, 3331, 2465, 2466, 2467, 3922, 4838, 4400, 4534, 5557]. Testability
[4142]. Texas [5896, 5862, 5917, 6067, 6229, 6047, 5985, 5913, 926, 6148, 3015].
Textbook [3644]. th [5579, 5047, 517, 3608, 4545, 2194, 143]. Their
[1154, 4266, 5582, 826, 1549, 3492, 2658, 4390, 3207, 23, 1836, 3082, 5214, 2246, 1753, 822, 637, 4045, 2320, 714, 1893, 2835, 4940, 3018]. them [5768]. Theorem
[4404, 6031, 6114, 6101, 3779, 419, 4187, 4376, 485, 2187, 3382, 4877, 5323].
Theorems [4480]. Theoretic
[1201, 622, 1054, 3876, 4032, 1157, 1858, 1860, 4941]. Theoretical
[142, 4153, 3721, 1436, 1124, 13]. Theorie
[5876, 5859]. Theories
[5946, 2133, 5306, 6004]. théorique [13]. Theory
[5860, 6183, 6200, 5263, 5846, 4698, 5928, 3540, 3796, 936, 293, 1030, 32, 1112, 3822, 6201, 6064, 5958, 5118, 464, 5876, 273, 5296, 2304, 1545, 1546, 2823, 2327, 5831, 5832, 5837, 5859, 2858, 3516, 5875, 867, 2361, 2065, 2067, 1710, 5979, 5110, 4137, 2761, 2947, 1317, 5037, 5225, 3451, 245, 897, 6050, 1778, 2834, 1073, 5838].
there [3292]. Things
[3936]. Third
[5953, 5992, 6033, 4129, 6025, 6084, 6213, 3483, 201, 6217, 5985, 6114, 834, 6127]. Thirteenth
[6157]. Thirty
[6056, 6071, 6084, 6095, 6110, 6123, 6137]. Thirty-Fifth
[6110]. Thirty-First
[6056]. Thirty-Fourth
[6095]. Thirty-Second
[6071]. Thirty-Seventh
[6137]. Thirty-Third
[6084]. Thomas
[5900, 4738]. Thomson

V [3841, 2238, 6013, 705, 5837]. V/sub [2238]. v1.4.0 [4386]. v2 [4666]. V 3.0 [4952]. V.5.0 [5257]. VA [6015]. vacuum [41]. Vail [6103].

Valid [4273, 2737, 1247]. Validating [3384, 3485, 5975, 4672, 2434, 5461]. Validity [5118, 5583].

VAX [1906, 1450, 1674, 206, 1015, 930, 1283, 206, 2728, 1219, 1220, 1356]. VAX-11 [1906, 1450, 1674, 1015, 930, 1283, 1206].

Values [1452, 3823, 4767, 2606, 3065, 3555, 4894, 4185, 4934, 5064]. VAMP [4080]. Vancouver [6030, 6023]. Variable [3644, 206, 137, 3826, 3982, 3983, 4600, 1034, 1726, 1849, 3101, 303, 5032, 3281, 5301, 3467, 898, 1057, 3877, 5439, 694, 1140, 4209, 4508, 3320, 4042, 5032, 2566, 1310, 5588, 5124, 1881, 2988, 700, 3162, 3319, 3319, 4946, 2685].

Verified [3367, 5167, 5546, 5676, 5185, 3797, 3811,

REFERENCES

779, 866, 1172, 3257, 2390, 4330, 3590, 4781, 2971, 3294, 3602, 3499, 2679. zero-
finding [779, 866]. zero-input [1172, 3257]. zero-overhead [3590, 2679].
Zero-Sum [856]. Zeros [5619, 1026, 4155, 3508, 4441, 5002, 5109, 946, 5404,
1875, 4219]. zieht [2432]. Zilog [1493, 1554]. Zimmermann [5535]. zip
[1669]. Zipf [5348, 5367, 4120, 745, 3563, 4790, 4194, 2133]. ZipfAllocation
[1373]. Zur [754, 1682, 1477, 453, 1963, 1756, 27, 228, 2233, 700]. Zurich
[6048, 6059]. Zuse [1271].

References

REFERENCES

[27] K. Zuse. Verfahren zur selbsttätigen Durchführung von Rechnungen mit Hilfe von Rechenmaschinen. (German) [Procedure for automatic
execution of calculations by calculating machines]. German patent
application Z23624., April 11, 1936. Reprinted in [5889, §4.1].

646, December 1937. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-
0972 (electronic).

[29] Claude Elwood Shannon. A symbolic analysis of relay and
switching circuits. Master of Science, Department of Electrical
Engineering, MIT, Cambridge, MA, USA, August 10, 1937. 72
pp. URL http://dspace.mit.edu/bitstream/handle/1721.1/11173/

CODEN PAPCAA. ISSN 0003-049X (print), 2326-9243 (electronic).
URL http://links.jstor.org/sici?sici=0003-049X%2819380331%
2978%3A4%3C551%3ATLOAN%3E2.0.CO%3B2-G.

calculer et aux calculs de la mécanique céleste* (French) [On mechanical
analysis. Application to calculating machines and to calculation in
France, 1938. Extracts reprinted in [5889, §2.7]. Translated by Mr. R.
Basu.

Introduction to the Theory of Numbers*. Oxford University Press, Walton

Transactions of the American Institute of Electrical Engineers, 57(??):
713–723, December 1938. CODEN TAAEA5. ISSN 0096-3860.

[34] Robert Jager and Boyd C. Patterson. The artificial arithmetick in

REFERENCES

121

REFERENCES

[50] H.-J. Dreyer and A. Walther. Der Rechenautomat Ipn. Entwicklung Mathematischer Instrumente in Deutschland 1939 bis 1945. (German) [The Ipm calculator. The development of mathematical instruments in Germany 1939–1945]. Bericht A3, Institut für Praktische Mathematik, Technische Hochschule, Darmstadt, West Germany, August 19, 1946. Reprinted in [5889, §3.3]. Translated by Mr. and Mrs. P. Jones.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

References

REFERENCES

REFERENCES

REFERENCES

[137] Paolo Ercoli and Roberto Vacca. Binary arithmetic for discretely variable word length in a serial computer. *Communications of the Association for
REFERENCES

Garner:1959:RMS

Gray:1959:NFP

Henrici:1959:TES

Kogbetliantz:1959:CSC

Lucal:1959:AOD

Harold M. Lucal. Arithmetic operations for digital computers using a modified reflected binary code. *IRE Transactions on Electronic
REFERENCES

Muller:1959:CMG

Pawlak:1959:EDC

Pfeiffer:1959:FQM

Rothstein:1959:RBN

Sarafyan:1959:NMC

Sheridan:1959:ATC

Strachey:1959:TSR

REFERENCES

REFERENCES

[164] Arnold N. Lowan. On the propagation of round-off errors in the numerical

[165] Z. Pawlak. The organization of a digital computer based on the ‘−2’

[166] I. E. Perlin and J. R. Garrett. High precision calculation of
Arcsinx, Arccosx, and Arctanx (in Technical Notes and Short Papers).
MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic).

Communications of the Association for Computing Machinery, 3, 1960.
CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

Communications of the Association for Computing Machinery, 3(12):
652–654, December 1960. CODEN CACMA2. ISSN 0001-0782 (print),
1557-7317 (electronic).

ISSN 0065-2458. LCCN QA76 .A3.

[170] Diran Sarafyan. Divisionless computation of square roots through
continued squaring. *Communications of the Association for Computing
Machinery*, 3(5):319–321, May 1960. CODEN CACMA2. ISSN 0001-
0782 (print), 1557-7317 (electronic).

[171] Roland Silver. Letter to the Editor: Rounding in floating-point
arithmetic. *Communications of the Association for Computing
Machinery*, 3(12):A9, December 1960. CODEN CACMA2. ISSN 0001-
0782 (print), 1557-7317 (electronic).

REFERENCES

REFERENCES

[193] Morton Nadler. Division and square root in the quater-imaginary number system. Communications of the Association for Computing Machinery,
REFERENCES

Thacher:1961:ISR

Weik:1961:TSD

Wilson:1961:ARB

Ashenhurst:1962:MIA

Buchholz:1962:PCS

Campbell:1962:FPO

Cantor:1962:LEF

REFERENCES

Wallace:1964:SFM

Wolfe:1964:RTE

Ashenhurst:1965:EEC

Ashenhurst:1965:EIU

Ashenhurst:1965:TAE

Atrubin:1965:ODR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Swarztrauber:1965:LED

Sweeney:1965:AFP

Winograd:1965:TRP

Arango:1966:FCP

Brooker:1966:MFA

REFERENCES

Chang:1966:DHR

Chartres:1966:ACP

Clark:1966:CMP

Clark:1966:MPA

Fike:1966:SAS

Filippi:1966:BEE

Flehinger:1966:PRI

REFERENCES

[349] W. Kahan. 7094 II system support for numerical analysis. SHARE Secretary Distribution 159, C4537, 1966.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Computing Machinery, 10(7):430–432, July 1967. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

Nandi:1967:STD

Sandberg:1967:FPR

Sasaki:1967:ASR

Szabo:1967:RAA

Tomasulo:1967:EAE

Wilkinson:1967:ZBW

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[434] Minoru Urabe. Roundoff error distribution in fixed-point multiplication and a remark about the rounding rule. SIAM Journal on Numerical
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Matula:1969:TAM

Posnov:1969:FPR

Rice:1969:AFV

Rigby:1969:DFP

Rosen:1969:ECH

S:1969:BRQ

Shea:1969:NDN

Sterbenz:1969:OSA

REFERENCES

April 1969. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic).

REFERENCES

REFERENCES

REFERENCES

Good:1970:CIA

Habibi:1970:FM

Hamming:1970:DN

Hansen:1970:APN

Harris:1970:NND

Harvey:1970:SSP

Hillstrom:1970:PSF

Hornbuckle:1970:LMA

Howell:1970:SLE

Kailas:1970:AMC

Knuth:1970:VNF

Krishnamurthy:1970:OIS

Krishnamurthy:1970:RTT

Ling:1970:HSC

REFERENCES

[514] K. Nickel. Das Kahan–Babuškasche Summierungsverfahren in Triplex-
ALGOL 60. (German) [The Kahan–Babuška summation method in
Triplex-ALGOL 60]. *Zeitschrift für Angewandte Mathematik und
Mechanik*, 50:369–373, 1970. CODEN ZAMMAX. ISSN 0044-2267
(print), 1521-4001 (electronic).

Ninomiya:1970:BRS

[515] Ichizo Ninomiya. Best rational starting approximations and improved
(110):391–404, April 1970. CODEN MCMPAF. ISSN 0025-5718 (print),
1088-6842 (electronic).

Oppenheim:1970:RDF

arithmetic. *IEEE Transactions on Audio and Electroacoustics*, 18(2):

Phillips:1970:GLE

April 1970. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842
(electronic).

Rao:1970:BEC

ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1671530.

Rao:1970:BLR

magnitude index. *IEEE Transactions on Computers*, C-19(8):752–757,
August 1970. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
papers/ARITH1_Rao.pdf.

Robertson:1970:CBM

[520] J. E. Robertson. The correspondence between methods of digital
division and multiplier recoding procedures. *IEEE Transactions on
REFERENCES

REFERENCES

Yohe:1970:BPF

Yong:1970:GBA

Zohar:1970:NRC

Zuse:1970:CML

Abdelmalek:1971:REA

Alway:1971:GFA

Banerji:1971:RAC

REFERENCES

Bataille:1971:GCW

Berg:1971:SAO

Caprani:1971:ILR

Chen:1971:BAU

Chen:1971:BMS

Chen:1971:DNC

Chen:1971:EAA

Clark:1971:SCP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[584] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. (German) [Fast multiplication of large numbers]. *Computing: Archives fur
REFERENCES

Shepherd:1971:RSL

Stein:1971:IMA

Stein:1971:SMA

Wadel:1971:CNR

Walker:1971:BS

Walther:1971:UAE

Wlodarski:1971:FLN

REFERENCES

REFERENCES

[604] A. Fettweis. On the connection between multiplier word length limitation and roundoff noise in digital filters. *IEEE Transactions on Circuits and
REFERENCES

Franklin:1972:ZDA

Goldstine:1972:CPN

Gosper:1972:HCF

Gregory:1972:CFP

Gregory:1972:URA

Hallin:1972:PAF

Heising:1972:MM

IBM:1972:ISR
International Business Machines Corporation. *IBM System/360 reference data: direct evaluation of floating point numbers in hexadecimal:*

[619] Paul Manos and L. Richard Turner. Constrained Chebyshev approximations to some elementary functions suitable for evaluation
REFERENCES

Maple:1972:FPA

Marino:1972:NAA

Matula:1972:NTF

Metropolis:1972:ABCa

Metropolis:1972:ABCb

Metropolis:1972:ABCc

Miller:1972:DFD

Schulenberg:1972:RSS

Schurmann:1972:MEA

Shaham:1972:NDA

Stallings:1972:CPM

Stefanelli:1972:SHS

Tung:1972:A

Urabae:1972:CEA

Varian:1972:LEB

REFERENCES

Dorr:1973:REC

Du:1973:CSS

Ercegovac:1973:REC

Erkio:1973:EAV

Fettweis:1973:RNA

Gelenbe:1973:UAE

Green:1973:NTF

REFERENCES

Kaneko:1973:LCO

Kaneko:1973:LRE

Kielbasinski:1973:SAC

Kinoshita:1973:GDS

Kreifelts:1973:OBF

Kuki:1973:SSA

Larson:1973:HSM

REFERENCES

REFERENCES

REFERENCES

Zohar:1973:DCR

Agrawal:1974:NCL

Banerji:1974:NIM

Banerji:1974:URA

Barsi:1974:EDC

Blankenship:1974:CTC

REFERENCES

REFERENCES

Kulisch:1974:PCC

Linnainmaa:1974:ASK

Metropolis:1974:SAA

Miller:1974:CCN

Moon:1974:MRM

Neumaier:1974:REV

Newbery:1974:EAP

References

Thompson:1974:IUF

Tsao:1974:DSD

Tsao:1974:SPE

Walker:1974:FGU

Agrawal:1975:AAN

Agrawal:1975:OAL

Atkins:1975:HRN
REFERENCES

REFERENCES

Brent:1975:FMP

Brent:1975:MZM

Brubaker:1975:MUL

Caprani:1975:REF

Chen:1975:SER

Chinal:1975:LMA

REFERENCES

REFERENCES

Grant:1975:TAS

Gregory:1975:BCR

Hunter:1975:QMP

Kehl:1975:MMA

Keir:1975:CNR

REFERENCES

REFERENCES

Nelson:1975:PPF

Newbery:1975:PES

NSC:1975:IFP

O'Keefe:1975:NFB

Phillips:1975:BC

Rao:1975:TIS
REFERENCES

[842] Bruce D. Shriver and Peter Kornerup. The UNRAU — a Unified Numeric Representation Arithmetic Unit. In IEEE SCA ’75 [5862], pages

Svoboda:1975:SCA

Swartzlander:1975:SLN

Toma:1975:CLA

Trivedi:1975:LAD

Trivedi:1975:UCF

Tzaferos:1975:EBD

Wakerly:1975:DUM

REFERENCES

REFERENCES

REFERENCES

March 1976. various pp. Also published as Stanford Artificial Intelligence Laboratory Operating Note 75, November 1976.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

precision arithmetic package and library with Fortran precompiler. *ACM
CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).
URL http://www.acm.org/pubs/citations/journals/toms/1976-2-
3/p209-lozier/.

[914] S. S. Yau and J. Chung. On the design of modulo arithmetic units based
November 1976. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
.tp=&arnumber=1674555.

ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
.ieeeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1674634.

[916] D. P. Agrawal. Comments on “A Note on Base-2 Arithmetic Logic”.
ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
.ieeeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1674869. See
[861].

[917] Rudolf Albrecht and Ulrich Kulisch. *Grundlagen der Computer-
Arithmetik*. Computing: Supplementum; 1 Computing (Springer-
0-387-81410-8. viii + 150 pp. LCCN ????

[918] R. Albrecht and U. Kulisch, editors. *Grundlagen der Computer-
Arithmetik* [English: *Foundations of Computer Arithmetic*]. Springer-
Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
Artikel stellen eine Auswahl von Vortragen dar, die auf einer vom 4.
bis 8. August 1975 im ’Mathematischen Forschungsinstitut Oberwolfach’
stattgefundenen Tagung gehalten wurden.
REFERENCES

REFERENCES

REFERENCES

ISSN 0010-485X (print), 1436-5057 (electronic).

REFERENCES

REFERENCES

Kulisch:1977:MFC

Lee:1977:FNS

Ligomenides:1977:SSF

Maag:1977:SRE

Metropolis:1977:MSA

Metropolis:1977:SAP

REFERENCES

Stenzel:1977:CHS

Stoutemyer:1977:AEA

Thong:1977:ARE

Tran-Thong:1977:FPF

Trivedi:1977:LAD

Trivedi:1977:UCF

Ushijima:1977:SEP

REFERENCES

BellHowellCo:1978:BHF

Blue:1978:PFP

Boehmer:1978:TAF

Bohlender:1978:GBM

Boney:1978:MRW

Brady:1978:MBL

Brent:1978:AIB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

McCrea:1978:CFP

Mitra:1978:ITD

Murphy:1978:SRP

Nussabaumer:1978:FMN

OLeary:1978:DHS

[1055] G. P. O'Leary. The design of a high-speed arithmetic processor. In COMPSAC '78 [5871], pages 175–176. LCCN ????.

Olver:1978:NAE

Patel:1978:ASB

Payne:1978:DPF

Preston:1978:NAT

Ralston:1978:FCN

Rashed:1978:LRI

Reuter:1978:SEU

Richardson:1978:ATB

Ruckdeschel:1978:FA

Russell:1978:CCS

Schmid:1978:EDS

Schreiber:1978:TMF

Shen:1978:CSA

Slekys:1978:MBI

Sripad:1978:QEF

A. Sripad and D. Snyder. Quantization errors in floating-point arithmetic. *IEEE Transactions on Acoustics, Speech, and Signal
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1156] E. Ambikairajah and M. J. Carey. Technique for performing multiplication on a 16-bit microprocessor using an extension of Booth’s...
REFERENCES

Brown:1980:SRM

Burmeister:1980:OIE

Chang:1980:CAE

Cheng:1980:ASC

Chow:1980:VPP

Cluley:1980:DCB

Cody:1980:SME

Coonen:1980:IGP

REFERENCES

[1174] L. Farrell. 8232: a peripheral for floating-point arithmetic. In IEEE MICRO ’80 [5882], pages 13–18. LCCN QA76.5 .P74.

REFERENCES

REFERENCES

[1199] J. D. Johannes, C. Dennis Pegden, and F. E. Petry. Decimal shifting for an exact floating point representation. *Computers and Electrical*
REFERENCES

REFERENCES

REFERENCES

Waldecker:1980:NSR

Waser:1980:EGP

Watkins:1980:MFU

Wong:1980:IOF

Yohe:1980:FPE

Yohe:1980:PSI

Zeman:1980:HSM

Agrawal:1981:NAM
REFERENCES

REFERENCES

REFERENCES

Brent:1981:MUG

Bridge:1981:AAA

Brown:1981:SRM

Cariker:1981:RFM

Cary:1981:BFP

Ceruzzi:1981:ECK

Cheng:1981:AAF

REFERENCES

arithmetic PFFT processor. In IEEE CA5 '81 [5887], pages 198–
206. LCCN QA 76.6 S985t 1981. URL http://www.acsel-lab.com/
arithmetic/arith5/papers/ARITH5_Chow_Vranesic_Yen.pdf. IEEE
catalog number 81CH1630-C.

[1274] G. Chroust. Method of adding decimal numbers by means of binary
1981. CODEN IBMTAA. ISSN 0018-8689.

[1275] L. Ciminiera and A. Serra. Arithmetic array for fast inner product
evaluation. In IEEE CA5 '81 [5887], pages 207–214. LCCN QA 76.6 S985t
ARITH5_Ciminiera_Serra.pdf. IEEE catalog number 81CH1630-C.

[1276] L. Ciminiera, A. Serra, and A. Valenzano. Fast and Accurate Matrix
Triangularization Using an Iterative Structure. In IEEE CA5 '81 [5887],
pages 215–221. LCCN QA 76.6 S985t 1981. URL http://www.acsel-
lab.com/arithmetic/arith5/papers/ARITH5_Ciminiera_Serra_
Valenzano.pdf. IEEE catalog number 81CH1630-C.

(print), 1558-0814 (electronic). See [1731, 1732].

arithmetic unit for clean decimal arithmetic and controlled precision.
In IEEE CA5 '81 [5887], pages 106–112. LCCN QA 76.6 S985t
ARITH5_Cohen_Hamacher_Bull.pdf. IEEE catalog number 81CH1630-
C.

[1279] Jerome T. Coonen. Errata: An implementation guide to a proposed
CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic). See
[1170, 1731, 1732].
REFERENCES

REFERENCES

[1295] R. T. Gregory. Residue arithmetic with rational operands. In IEEE CA5 '81 [5887], pages 144–145. LCCN QA 76.6 S985t
REFERENCES

REFERENCES

[1309] Saroj Kaushik and R. K. Arora. Sign detection in the symmetric residue number system. In IEEE CA5 '81 [5887], pages 146–150. LCCN QA 76.6

 REFERENCES

[1324] Svetoslav Markov. On an interval arithmetic and its applications. In IEEE CA5 ’81 [5887], pages 274–278. LCCN QA 76.6 S985t

REFERENCES

REFERENCES

Willoner:1981:AME

Zurawski:1981:DHS

Andrews:1982:MMS

Andrews:1982:SRX

Anonymous:1982:ARBf

Anonymous:1982:MKF

Arnold:1982:EPS

REFERENCES

REFERENCES

REFERENCES

[1425] T. Sasaki and H. Murao. Efficient Gaussian elimination method for symbolic determinants and linear systems. ACM Transactions...
REFERENCES

REFERENCES

Taylor:1982:ARM

Taylor:1982:VRA

Teachey:1982:SRX

TorresyQuevedo:1982:EAD

Turner:1982:DLS

Velasevic:1982:RLC

0-8186-4476-1 (paperback), 0-8186-8476-3 (hardcover), 0-8186-6476-2
(microfiche), 0-8186-0034-9 (hardcover). LCCN QA 76.9 C62 S95
ARITH6_Agrawal_Pathak_Swain_Agrawal.pdf. IEEE catalog number
83CH1892-9. IEEE Computer Society order number 476.

ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
/ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1676232.

[1446] Masami Akamine and Tatsuo Higuchi. Synthesis of minimum
quantization error digital filters using floating-point arithmetic.
ECOJAL. ISSN 0424-8368.

correction capability. In IEEE SCA6 ’83 [5899], pages 44–51. ISBN
0-8186-4476-1 (paperback), 0-8186-8476-3 (hardcover), 0-8186-6476-
2 (microfiche), 0-8186-0034-9 (hardcover). LCCN QA 76.9 C62 S95
papers/ARITH6_Annaratone_Stefanelli.pdf. IEEE catalog number
83CH1892-9. IEEE Computer Society order number 476.

[1448] H. Asai. A consideration of a practical implementation for a new
convergence division. Information Processing Letters, 17(5):273–281,
December 1983. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119
(electronic).

[1449] Hitohisa Asai and C. K. Cheng. Speeding up an overrelaxation method
doing division in radix-2n machine. Communications of the Association for
Computing Machinery, 26(3):216–220, 1983. CODEN CACMA2. ISSN
0001-0782 (print), 1557-7317 (electronic).
Aspinwall:1983:IIF

Avizienis:1983:AAE

Bandeira:1983:TCA

Banerji:1983:RPF

Baxter:1983:CRS

Bayoumi:1983:MVI

Bhat:1983:HPF

Blakley:1983:MAI

Boney:1983:FPPa

Boney:1983:FPPb

Brown:1983:NEA

Bushard:1983:MTS

REFERENCES

REFERENCES

REFERENCES

Ferguson:1983:DTE

Fraenkel:1983:SN

Gaitanis:1983:NPC

Galand:1983:FD

Gavrielov:1983:CSF

Gnanasekaran:1983:BSI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Preparata:1983:MCA

Prosser:1983:SNN

Rall:1983:BRB

Rall:1983:CAT

Ramachandran:1983:SRE

Rao:1983:ICS

REFERENCES

REFERENCES

[1558] Kamalesh Ramanlal Shah. Floating point processor for STOIC instrumentation. Thesis (M.S. in Engineering), University of Texas at Austin, Austin, TX, USA, 1983. xi + 188 pp.

Thomas:1983:HLM

Tseng:1983:FIP

Ulman:1983:SDI

Voelz:1983:CAE

Vogt:1983:AFM

Wallis:1983:AFP

[1575] Edmund John Walsh. Floating gate field effect transistor operating point changes: causes, characterization, and effect on electric field measurement by the device. Thesis (M.S.), Boston University, Boston, MA, USA, 1983. v + 121 pp.

[1577] Bertrand Jeffery Williams. A bit-serial floating point multiply/add architecture for signal processing applications. Electrical engineering thesis (M.S.), Texas A&M University, College Station, TX, USA, 1983. x + 97 pp.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Goldberg:1984:LVS

Gregory:1984:MAE

Guest:1984:RNS

Hamacher:1984:CO

Hamacher:1984:COE

Honma:1984:IAE

IBM:1984:ISR

[1617] IBM Corporation. IBM System/370 RPQ. high accuracy arithmetic. Technical report SA22-7093-0, IBM Corporation, San Jose, CA, USA,

[1625] Peter Kornerup and David W. Matula. Correction to “Finite Precision Rational Arithmetic: An Arithmetic Unit”. *IEEE Transactions on

these processors. A must for serious assembly language coding of the 8087 and 80287 chips. See also [1736].

REFERENCES

REFERENCES

Tricker:1984:ERM

Trivedi:1984:DVF

Truong:1984:FPP

Uya:1984:CFP

vonGudenberg:1984:BMG

Ware:1984:CMC

Wehmeyer:1984:EFF

Wolrich:1984:HPF

REFERENCES

REFERENCES

REFERENCES

Bittner:1985:WPD

Bleher:1985:AHA

Bohte:1985:GEF

Brent:1985:SAI

Burton:1985:SFE

Cantoni:1985:PPA

REFERENCES

Cathey:1985:ISR

Chen:1985:FPP

Chen:1985:MRS

Cheng:1985:APF

Chiarulli:1985:DDR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

PAPCAA. ISSN 0003-049X (print), 2326-9243 (electronic). URL http://www.jstor.org/stable/986989. This paper contains strong criticism of a derivation of Benford’s Law [1048].

Ramnarayan:1985:LMR

Rao:1985:CCC

Reed:1985:VRM

Rump:1985:HOC

Salomon:1985:TGF

REFERENCES

[1804] George S. Taylor. Radix 16 SRT dividers with overlapped quotient selection stages: a 225 nanosecond double precision divider for the
REFERENCES

REFERENCES

[1838] Alan Feldstein and Peter Turner. Overflow, underflow, and severe loss of significance in floating-point addition and subtraction. *IMA Journal of*
Ferro:1986:DTF

Gavrielov:1986:NFP

Grappel:1986:SRA

Gustafson:1986:AHV

Hamming:1986:NMS

Heath:1986:NRD

Henning:1986:KBD

Payne:1986:PTF

Petkovic:1986:SIS

Pfenninger:1986:SQA

Porter:1986:FPM

Quong:1986:FPI

Ramnarayan:1986:LCL

Rhyne:1986:SBS

[1881] James Evans Robertson. Normalization and quotient digit selection for a
variable precision arithmetic unit. Report UIUCDCS-R-86-1229, Dept. of
Computer Science, University of Illinois at Urbana-Champaign, Urbana,

CODEN INSKDW. ISSN 0170-6012 (print), 1432-122X (electronic).

[1883] Peter Schatte. On the asymptotic logarithmic distribution of the floating-
MTMNAQ. ISSN 0025-584X.

performance before and after the installation of memory pseudo-banking.
NASA contractor report NASA CR-177462, National Aeronautics and
Space Administration, Ames Research Center; National Technical
Information Service, distributor, Moffett Field, CA, USA, 1986. ?????
pp.

[1885] I. Semba. An algorithm for division of large integers. Journal of

[1886] Pankaj N. Shukla. An implementation on a MC68000/NS32081
microcomputer of binary floating-point arithmetic based on the IEEE
754 standard. Thesis (M.S.), Michigan Technological University, 1400
Townsend Drive, Houghton, MI 49931-1295, USA, 1986. vii + 166 pp.

Wheeler. The MicroVAX 78132 floating point chip. In IEEE ICCD ’86

Taylor, editors. Residue number system arithmetic: modern applications
REFERENCES

Soderstrand:1986:VIM

Spafford:1986:RASa

Spafford:1986:RASb

Stewart:1986:CNC

Strobach:1986:NFL

Stummel:1986:SOP

REFERENCES

[1895] Sun:1986:FPG

[1900] Vaccaro:1986:SDF

Deepak Verma. Design of an efficient floating point vector coprocessor of an advanced microcomputer system. Thesis (M.S.), Department of
Waterhouse:1986:TMW

Weitek:1986:WSW

Wichmann:1986:FPI

Wollenberg:1986:SRD

Agrawal:1987:CEF

Ahmad:1987:IDA

ANSI:1987:AIS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kirchner:1987:SVS

Koopman:1987:TF

Kornerup:1987:BSA

Kraemer:1987:ISF

Kuninobu:1987:DHS

Lange:1987:ITA

REFERENCES

REFERENCES

REFERENCES

Parhami:1987:CTL

Parhami:1987:SUC

Peng:1987:ISM

Perlmutter:1987:A

Pfeiffer:1987:ADP

Piuri:1987:FTS

REFERENCES

Rolfe:1987:FIS

Rysavy:1987:MSC

Scheidt:1987:DFP

Scherson:1987:VCO

Schumacher:1987:CAI

Sharma:1987:ATE

REFERENCES

REFERENCES

REFERENCES

Zaccone:1987:ENP

Zurawski:1987:DHS

Aberth:1988:PNA

Alt:1988:FEP

Alt:1988:FPE

AMD:1988:IFP

An:1988:CRE

REFERENCES

REFERENCES

Cosentino:1988:FTS

Davila:1988:FPA

Duerksen:1988:CAP

Dunham:1988:PMA

Duprat:1988:HPE

Ercegovac:1988:LAD

Ercegovac:1988:LSC

REFERENCES

REFERENCES

Kahaner:1988:BRP

Kanada:1988:VMP

Kida:1988:FPP

Kirchner:1988:AAV

Knuth:1988:FM

Kornerup:1988:LAU

Kornerup:1988:LAU

Krishnan:1988:IRN

REFERENCES

[2119] Motorola, Inc., Phoenix, AZ, USA. 96-bit general purpose floating-point

[2120] Motorola, Inc.Staff. MC 68881 and 68882 Floating-Point Coprocessor
User’s Manual. Prentice-Hall, Upper Saddle River, NJ 07458, USA,

MOS technology. IEEE Transactions on Computers, 37(3):274–282,
March 1988. CODEN ITCOBY4. ISSN 0018-9340 (print), 1557-9956
 tp=&arnumber=2164.

of totally self-checking checkers for all low-cost arithmetic codes.
ITCOCY4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://

[2123] J. M. Normand. Percola: a special purpose programmable 64-bit floating-
1145/55364.55370.

[2124] Vojin G. Oklobdzija and Earl R. Barnes. On implementing addition in
716–728, December 1988. CODEN JPDCER. ISSN 0743-7315 (print),
1096-0848 (electronic).

[2125] G. M. Papadourakis and J. Condorodis. A VLSI design of processing
element for reconfigurable systolic architectures based on LNS. In 1988
International Conference on Acoustics, Speech, and Signal Processing:
Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1988. CODEN ????. ISSN ????
Papamichalis:1988:TFP

Perlman:1988:AFP

Pichat:1988:APC

Pier:1988:IPA

Pitas:1988:FPE

Plauger:1988:PFP

Prandolini:1988:VIB

Prather:1988:CET

REFERENCES

[2148] Roger Shepherd and Charles Farnum. Letter to the Editor: Compiler support for floating-point computation. *Software—Practice and

Smith:1988:ASD

Sohie:1988:DSP

Sridharan:1988:BFP

Startz:1988:IPC

Stasinski:1988:MRE

Stouraitis:1988:FPL

Sun:1988:PG

REFERENCES

Voelzke:1988:FSAb

Voelzke:1988:FSAc

Weyland:1988:LCS

Wilson:1988:FPS

Wilson:1988:NFP

Yuen:1988:IFP

Zhou:1988:NBS

Zoicas:1988:PBG

[2170] A. Zoicas, K. Grohe, and C. Kellerhoff. PC based general-purpose floating-point DSP μPD77230 board with various analog front end
options and application software packages. In Lacoume et al. [5946],

[Blecher:1989:MCA]

[Boddie:1989:FDC]

[Bohlender:1989:FST]

[Brackert:1989:DLM]

[Brightman:1989:ASF]

[Buell:1989:MIA]

REFERENCES

REFERENCES

[2204] J. Demmel. On floating point errors in Cholesky. LAPACK Working Note 14, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, October
20.5 A. M. Dennis, C. B. Marshall, and I. A. Burgess. Algorithm and architecture design for the implementation of high order FIR filters using the residue number system. In *IEEE Colloquium on Signal Processing Applications of Finite Field Mathematics*, 1 June 1989, pages 1/1–1/5. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ????. ISSN ???.

20.11 Jean Duprat, Yves Herreros, and Jean-Michel Muller. Some results about on-line computation of functions. In Ercegovac...

REFERENCES

[Fandrianto:1989:AHS]

[Feldstein:1989:NAP]

[Fowler:1989:AHS]

[Fried:1989:ONC]

[Fu:1989:PMI]

[Fujiyama:1989:FD]

[2223] D. Gamberger. Incompletely specified numbers in the residue number system-definition and applications. In Ercegovac and Swartzlander,
REFERENCES

Games:1989:AIQ

Goel:1989:RTA

Goldberg:1989:FCS

Gonnella:1989:ACF

Gordon:1989:RDF

Grassmann:1989:PAR

[2229] Winfried K. Grassmann. A probabilistic analysis of rounding errors of floating point numbers. eighteenth manitoba conference on numerical

[2233] Detlef Gröger. Zur Division mit Rest auf Gleitkommarechnern. (German) [on division with remainder on floating point computers]. Mathematische Semesterberichte, 36(1):106–111, 1989. ISSN 0720-728X.

Hollingsworth:1989:CPI

Hoshi:1989:RPV

Hu:1989:ARM

Huck:1989:ACA

Husby:1989:FPE

Hwang:1989:OAU

REFERENCES

IEC:1989:IBF

Intwala:1989:BFP

Jain:1989:SLU

Jamieson:1989:SNR

Jenkins:1989:AFP

REFERENCES

REFERENCES

REFERENCES

Kohn:1989:ISM

Kohn:1989:TM

Komori:1989:FPE

Komori:1989:MBFa

Komori:1989:MBFb

Komori:1989:MFP

REFERENCES

REFERENCES

REFERENCES

Motorola:1989:DIF

Motorola:1989:FPC

Motorola:1989:MFP

Motorola:1989:MMF

Motorola:1989:MMF

Mulcahy:1989:FPR

Nakayama:1989:BMF

Nakayama:1989:FCV

REFERENCES

REFERENCES

REFERENCES

Tang:1989:TCA

Tang:1989:TDI

Thies:1989:PXA

Tu:1989:DLD

Turner:1989:SIS

Turrini:1989:OGD

Unguru:1989:BRB

REFERENCES

REFERENCES

[2355] Mark Birman, Allen Samuels, George Chu, Chuk Ting, Larry Hu, John McLeod, and John Barnes. Developing the WTL3170/3171 Sparc

REFERENCES

REFERENCES

[Dewar:1990:MPV]

[Dixon:1990:HPB]

[Dotzel:1990:DMG]

[Dunham:1990:FFE]

[Edenfield:1990:PPD]

[Ercegovac:1990:FMC]

[Ercegovac:1990:RSR]

Goodreau:1990:DIF

Gries:1990:BDO

Gu:1990:TIT

Hamacher:1990:CO

Hashemian:1990:SRA

Hokenek:1990:LZA

Hokenek:1990:SGR

[2403] Donald E. Knuth. A simple program whose proof isn’t. In Feijen et al. [5969], chapter 27, pages 233–242. ISBN 0-387-97299-4. LCCN QA76 .B326 1990. Reprinted in [6222, Chapter 11]. This paper discusses the algorithm used in TeX for converting between decimal and scaled fixed-point binary values, and for guaranteeing a minimum number of digits in the decimal representation. See also [2365, 4560] for decimal to binary conversion, [2454, 4660] for binary to decimal conversion, and [2386] for an alternate proof of Knuth’s algorithm.

REFERENCES

244–247. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1990. CODEN ????. ISSN ????

REFERENCES

REFERENCES

REFERENCES

1. Table 5 (page 124):
insert $k \leftarrow 0$ after assertion, and also delete $k \leftarrow 0$ from Table 6.

2. Table 9 (page 125):
 for -1:USER!("");
 substitute -1:USER!("0");
 and delete the comment.

3. Table 10 (page 125):
 for $\text{fill}(-k, "0")$
 substitute $\text{fill}(-k-1, "0")$

REFERENCES

REFERENCES

Anonymous:1991:FDC

Anonymous:1991:SIS

Arambepola:1991:CVA

Balsara:1991:DSM

Barrenechea:1991:NEH

Barsi:1991:MAB

Bartholomew-Biggs:1991:AST

BartholomewBiggs:1991:AST

REFERENCES

Bohlender:1991:VEI

Boughton:1991:CSG

Briggs:1991:PCF

Bromley:1991:FAT

Brunner:1991:VAR

Bruss:1991:RMF

Bryant:1991:CVI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2540] Warren E. Ferguson, Jr. and Tom Brightman. Accurate and monotone approximations of some transcendental functions. In Kornerup and

REFERENCES

REFERENCES

[2587] Roland L. Lee, Alex Y. Kwok, and Fayé A. Briggs. The floating point performance of a superscalar SPARC processor. *ACM SIGARCH*
REFERENCES

Lee:1991:FPPb

Lee:1991:FPPc

Lee:1991:SCF

Letcher:1991:GNC

Lo:1991:BHS

Lyashenko:1991:PAR

REFERENCES

REFERENCES

ACM order number 415913. IEEE Computer Society Press order number 2158. IEEE catalog number 91CH3058-5.

REFERENCES

Myczkowski:1991:SMA

Nagal:1991:PEM

Nakano:1991:MBM

Nelson:1991:SPM

Ochs:1991:NRU

Ochs:1991:NTR

Ochs:1991:RF

REFERENCES

REFERENCES

Rees:1991:RRA

Rump:1991:CAI

Scott:1991:MCS

Seznec:1991:OCE

Seznec:1991:OFP

Shaeffer:1991:HEP

Shand:1991:HSL

REFERENCES

19(1):106–113, March 1991. CODEN CANED2. ISSN 0163-5964 (print),
1943-5851 (electronic).

Supercomputers—Titan, A Case Study. Academic Press, New York, NY,

system [digital signal processing]. IEEE Transactions on Signal
ieee.org/xpl/tocresult.jsp?isnumber=2656.

point multiple-precision arithmetic. ACM Transactions on Mathematical
Software, 17(2):273–283, June 1991. CODEN ACMSCU. ISSN 0098-

eigenvectors computed by divide and conquer techniques. SIAM Journal
SJNAAM. ISSN 0036-1429 (print), 1095-7170 (electronic). Pages 1759–
1761 discuss implementation of useful primitives for higher-precision
arithmetic: DPAdd2(), DPAdd3(), DPDiv().

Ph.D. thesis, Computer Science Department, University of Saarland,

(print), 1557-9476 (electronic).

REFERENCES

Wigley:1991:FMR

Wigley:1991:SMR

Williams:1991:NBC

Williams:1991:ZOS

Winter:1991:FPA

Wong:1991:FDU

[2681] Derek C. Wong and Michael J. Flynn. Fast division using accurate quotient approximations to reduce the number of iterations. In Kornerup

Yan:1991:RFA

Yassine:1991:FAB

Yassine:1991:IMR

Yokoo:1991:OUF

Yoshida:1991:PRT

Yu:1991:FCF

[2687] Tsung Lun Yu and William B. Ribbens. A floating-point coprocessor for fault detection and isolation in electronically controlled internal

Bailey:1992:PHP

Baker:1992:LCE

Bakhrakh:1992:NIF

Bewick:1992:BMU

Blair:1992:PMD

Bohlender:1992:PAF

Brosigol:1992:ADA
REFERENCES

CODEN MIMID5. ISSN 0141-9331 (print), 1872-9436 (electronic).

fast numbers comparison in the residue number system.
CODEN MMICDT. ISSN 0165-6074 (print), 1878-7061 (electronic).

[2724] Sihai Du. Cellular automata based floating-point adder and multiplier
with a single transition rule. Thesis (M.S.C.E.), Wright State University,

should know about floating-point arithmetic”.
CODEN CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic). See [2549, 2548, 2847].

[2727] J. Duprat and M. Fiallos Aguilar. On the simulation of pipelining of
fully digit on-line floating-point adder networks on massively parallel
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).
REFERENCES

REFERENCES

Zaccone. Describes the design, development, implementation, and use of MacFavs (Macintosh Floating point arithmetic visualization system). MacFavs uses simulation, visual displays, and animations to allow students to see actual machine representations of floating point numbers.

REFERENCES

0-8186-3110-4 (paper), 0-8186-3111-2 (microfiche), 0-8186-3112-0 (case).

(M.S.), University of Missouri, Columbia, Columbia, MO, USA, 1992. vi
+ 183 pp.

[2751] P. Johnstone and F. E. Petry. Rational number approximation in higher
radix floating point systems. In IEEE [5997], pages 501–504 vol.2. ISBN
0-7803-0494-2. LCCN ???? Two volumes. IEEE catalog no. 92CH3094-0.

[2752] W. Kahan. Analysis and refutation of the LCAS. ACM SIGPLAN
(print), 1523-2867 (print), 1558-1160 (electronic).

[2753] W. Kahan. Floating-point exception-handling. Manuscript, July 31,

[2754] K. Kalliojarvi and Y. Neuvo. Distribution of roundoff noise in binary
floating-point addition. In White [6005], pages 1796–1799. ISBN 0-7803-
0593-0. LCCN ???? Six volumes. IEEE catalog no. 92CH3139-3.

[2755] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice-Hall,

[2756] Rudi Klatte, Ulrich Kulisch, Michael Neaga, Dietmar Ratz, and
Christian Ullrich. PASCAL-XSC: language reference with examples.
Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London,
x + 344 pp. LCCN QA76.73.P2 P4213 1992. DM 64.00. Translated by
G. F. Corliss and others.

[2757] Çetin K. Koç and Ching-Yu Hung. Adaptive m-ary segmentation
and canonical recoding algorithms for multiplication of large binary

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2819] Ray Simar, Jr., Peter Koeppen, Jerald Leach, Steve Marshall, Dave Francis, Greg Mekras, Jeffrey Rosenstrauch, and Scott Anderson. Floating-point processors join forces in parallel processing architectures.
REFERENCES

REFERENCES

REFERENCES

Sun:1992:CTA

Takagi:1992:MMH

Takagi:1992:RMM

Tang:1992:TDI

Teufel:1992:IFP

REFERENCES

REFERENCES

REFERENCES

[Bailey:1993:MPM]

[Bajard:1993:BNH]

[Baker:1993:SLR]

[Bakhrakh:1993:NIF]

[Barrera:1993:IBS]

[Bauer:1993:LCB]

Beckmann:1993:FFT

Benouamer:1993:LE

Bickerstaff:1993:RAM

Bizzan:1993:IMA

REFERENCES

International Joint Conference on Neural Networks. IJCNN ’93-Nagoya, volume 2, pages 1947–1950. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1993. CODEN ???? ISSN ????

REFERENCES

DiClaudio:1993:SRR

DiLecce:1993:CES

Dimauro:1993:NTF

Dittmer:1993:EUC

Duncan:1993:CES

Duprat:1993:CAN

Eisig:1993:DBI

REFERENCES

REFERENCES

REFERENCES

[2946] Werner Krandick and Jeremy R. Johnson. Efficient multiprecision floating point multiplication with optimal directional rounding. In

REFERENCES

California State University, Long Beach, Long Beach, CA, USA, 1993. xi + 265 pp.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3015] Inside technology today 32-bit floating point multi-port DSP / produced by Texas Instruments. VHS format. High-speed, multi-port DSPs can be used in parallel processing applications to really enhance computation time and power. A popular 6-port floating point DSP and high speed design integration and applications are described in this tape., 1993. 1 videocassette.

REFERENCES

[3029] Al Williams. 32-bit floating-point math. Dr. Dobb’s Journal of Software Tools, 18(6):70, 72, 74, 76, 80, June 1993. CODEN DDJOEB. ISSN 1044-789X.

Anonymous:1994:SCSa

Anonymous:1994:SPF

Anonymous:1994:SRT

Apple:1994:IMP

Bajard:1994:BNH

Bajard:1994:SOL

Barsi:1994:TOM

Bartolucci:1994:REC

Bauer:1994:MDS

Bewick:1994:FMA

Brosgol:1994:ISD

Bull:1994:SFF

Carr:1994:IRM

Chandramouli:1994:DSP

Chen:1994:EDU

Sau-Gee Chen and Chieh-Chih Li. Efficient designs of unified 2’s complement division and square root algorithm and architecture.
REFERENCES

[3068] James Demmel, Inderjit Dhillon, and Huan Ren. On the correctness of parallel bisection in floating point. LAPACK Working Note 70, Department of Computer Science, University of Tennessee, Knoxville,

[3074] B. Fagin and C. Renard. Field programmable gate arrays and floating point arithmetic. *IEEE Transactions on Very Large Scale Integration*
REFERENCES

Farquhar:1994:MPH

FiallosAguilar:1994:HPA

Gander:1994:AFP

Gerber:1994:DPH

Granlund:1994:DII

Hahn:1994:UDF

Hansen:1994:MLD

Hartwig:1994:FPA

Hauser:1994:PEH

Hegland:1994:SSP

Hemkumar:1994:RLC

Hester:1994:PPP

Hicks:1994:PFU

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Edward D. Robe. SIMULINK modules that emulate digital controllers realized with fixed-point or floating-point arithmetic. Thesis (M.S.), Ohio University, Athens, OH, USA, June 1994. v + 130 pp.
REFERENCES

Schulte:1994:VIA

Schwandt:1994:IAD

Sharangpani:1994:SAF

Shippy:1994:PFD

Smith:1994:PAT

Smith:1994:SFT

Solhaug:1994:FDK

REFERENCES

REFERENCES

1994. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[3202] M. Abdallah and A. Skavantzos. A systematic approach for selecting practical moduli sets for residue number systems. In Proceedings of
REFERENCES

the Twenty-Seventh Southeastern Symposium on System Theory, 12–14 March 1995, pages 445–449. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1995. CODEN ???. ISSN ???.

Al-Mouhamed:1995:ELF

Altwaijry:1995:PAT

Anonymous:1995:FEF

Anonymous:1995:INM

Anonymous:1995:MVW

Anonymous:1995:PCH

Antelo:1995:RCR

REFERENCES

584

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3252] Tom R. Halfhill. The truth behind the Pentium bug: How often do the five empty cells in the Pentium’s FPU lookup table spell miscalculation?
REFERENCES

Hamano:1995:DCA

Harrison:1995:FPV

Hassler:1995:FET

Hauser:1995:HFE

Helsley:1995:SZL

Hiasat:1995:HSDa

REFERENCES

REFERENCES

Hunt:1995:APF

Ito:1995:EIA

Jain:1995:HSD

Jang:1995:OSA

Kahan:1995:TSD

Kahan:1995:USP

REFERENCES

Cascaded implementation of an iterative inverse-square-root algorithm,
with overflow lookahead. In Knowles and McAllister [6039], pages 115–122.
(microfiche), 0-8186-7089-4 (softbound), 0-7803-2949-X (casebound).
LCCN QA 76.9 C62 S95 1995. URL http://www.acsel-lab.com/

[3278] Tomás Lang and Paolo Montuschi. Very-high radix combined division
and square root with prescaling and selection by rounding. In
(paperback), 0-8186-7089-4 (case), 0-8186-7149-1 (microfiche), 0-8186-
7089-4 (softbound), 0-7803-2949-X (casebound). LCCN QA 76.9 C62
papers/ARITH12_Lang.pdf.

algorithm and implementation. In Proceedings of the IEEE International
Conference on Computer Design: VLSI in Computers and Processors,
ICCD ’95, pages 526–531. IEEE Computer Society Press, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA, 1995. CODEN ???
ISSN ???

conveyors. IEE Proceedings on Circuits, Devices and Systems [see also
IEE Proceedings G- Circuits, Devices and Systems], 142(4):223–226,
August 1995. CODEN ???. ISSN ???

square root implementation for field programmable gate arrays.
CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).
issn=0920-8542&volume=9&issue=3&page=315;
REFERENCES

[3287] Gensoh Matsubara, Nobuhiro Ide, Haruyuki Tago, Seigo Suzuki, and Nobuyuki Goto. 30-ns 55-b shared radix 2 division and square root

REFERENCES

[3305] M. G. Parker and M. Benaissa. GF(p^m) multiplication using polynomial residue number systems. IEEE transactions on circuits and systems.

REFERENCES

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or
The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

Schulte:1995:HDA

Schulte:1995:PSI

Schwarz:1995:RQC

Shirazi:1995:QAF

Sigvartsen:1995:TBF

Sites:1995:AAA

REFERENCES

REFERENCES

REFERENCES

[3351] Vijayanand Jaganaathan Angarai. Number representation schemes for energy efficient computer arithmetic. Thesis (M.S.), University of Texas at Dallas, Dallas, TX, USA, 1996. ix + 57 pp.
Anonymous:1996:DC

Anonymous:1996:FPF

Anonymous:1996:IBT

Anonymous:1996:SROa

Anonymous:1996:SROb

Anonymous:1996:SROc

Anonymous:1996:SROd
Anonymous:1996:SROe

Anonymous:1996:SROf

Anuta:1996:BLA

Anuta:1996:MMC

Arioli:1996:REA

Bajard:1996:NED

REFERENCES

REFERENCES

[3371] Christoph Burnikel and Jochen K"onemann. High precision floating point numbers in LEDA. Report MPI I 96 1 002, Max-Planck-Institut f"ur Informatik, Saarbr"ucken, Germany, 1996. 7 pp.

REFERENCES

Corliss:1996:VPE

Crenshaw:1996:PTF

Darcy:1996:FMF

Dimitrov:1996:NCD

Dimitrov:1996:RNS

Dimitrova:1996:NAS

S. T. J. Fenn, M. Benaissa, and D. Taylor. GF(2^m) multiplication and division over the dual basis. IEEE Transactions on Computers, 45(3):
REFERENCES

Goldberg:1996:CA

Goldstine:1996:ENI

Gudenberg:1996:HSI

Guedj:1996:EN

Gupta:1996:AAG

Guyot:1996:STD

Haller:1996:AFP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kowaleski:1996:DEP

Kraemer:1996:CNI

Kreinovich:1996:CCI

Ley:1996:PDU

Li:1996:NNR

Lions:1996:AFF

Industry immediately started to investigate the failure. From the report: “The internal SRI software exception was caused during execution of a data conversion from 64-bit floating point to 16-bit signed integer value. The floating point number which was converted had a value greater than what could be represented by a 16-bit signed integer. This resulted in an Operand Error. The data conversion instructions (in Ada code) were not protected from causing an Operand Error, although other conversions of comparable variables in the same place in the code were protected.”

REFERENCES

REFERENCES

Oklobdzija:1996:MSO

Paar:1996:NAP

Parhami:1996:CHS

Park:1996:PAG

Petunin:1996:UMI

Plum:1996:ETP

REFERENCES

Rump:1996:DBR

Sarma:1996:HRT

Saunders:1996:TGF

Schulte:1996:HDI

Schulte:1996:PAS

Schwandt:1996:GCI

Schwarz:1996:HSA

Sezgin:1996:SIR

Shary:1996:NAA

Shewchuk:1996:APF

Shewchuk:1996:RAF

Shokin:1996:IPI

Sinclair:1996:ORS

Singer:1996:EAP
Soderquist:1996:AFT

Soderquist:1996:APT

Steele:1996:EL

Stewart:1996:ANA

Suzuki:1996:LZA

Tan:1996:MPF

Wiethoff:1996:PAE

Williams:1996:TMF

[3509] K. B. Williams. Testing math functions: When requirements are tight, we must carefully examine all potential sources of error. Make sure your math library isn’t the weak link in the chain. C/C++ Users Journal, 14 (12):49–54, 58–65, December 1996. CODEN CCUJEX. ISSN 1075-2838. Describes a package that extends the Cody-Waite-Plauger work on the ELEFUNT package for the testing of the elementary functions, including the inverse hyperbolic functions, cube root, and Bessel functions of the first and second kinds. The C++ package implements 192-bit extended precision versions of all of the functions, so that accurate results are available for comparison with the normal double-precision results.

Zachary:1996:ESD

Zachary:1996:SHA

Zgliczynski:1996:RVC

Al-Twaijry:1997:APO

Allaart:1997:ISC

REFERENCES

Atkinson-Barr:1997:LEP

[3520] Martin Atkinson-Barr. Letter to the Editor: Pentium II math bug. Dr. Dobb’s Journal of Software Tools, 22(10):10, October 1997. CODEN DDJOEB. ISSN 1044-789X. Identifies himself as the “Mr. X” cited in [3534], and provides more the background on the discovery of the Pentium FIST (floating-point to integer store) instruction.

Avnaim:1997:ESD

Bajard:1997:RMM

Baker:1997:LEP

Beaumont-Smith:1997:GBA

REFERENCES

[3530] Thomas K. Callaway and Earl E. Swartzlander, Jr. Power-delay characteristics of CMOS multipliers. In Lang et al. [6057], pages
REFERENCES

REFERENCES

[3560] Ahmad A. Hiasat and Hoda S. Abdel-Aty-Zohdy. Design and implementation of an RNS division algorithm. In Lang et al. [6057], pages...
REFERENCES

[3566] W. Kahan. Lecture notes on the status of IEEE Standard 754 for Binary Floating-Point Arithmetic. World-Wide Web document, October 1,

REFERENCES

[3582] Vincent Lefèvre, Jean-Michel Muller, and Arnaud Tisserand. Towards correctly rounded transcendentals. In Lang et al. [6057], pages 132–
Gérard Le Lann. An analysis of the Ariane 5 Flight 501 failure — a system engineering perspective. In Proceedings of the International Conference and Workshop on Engineering of Computer-Based Systems, pages 339–346. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1997. URL http://ieeexplore.ieee.org/document/581900/. From the article: “The SRI S/W exception was raised during a conversion from a 64-bit floating point number F to a 16-bit signed integer number. F had a value greater than what can be represented by a 16-bit signed integer, which caused an Operand Error (data conversion — in Ada code — was not protected, for the reason that a maximum workload target of 80% had been set for the SRI computer). . . . The value of BH was much higher than expected because the early part of the trajectory of Ariane 5 differs from that of Ariane 4, which results in considerably higher horizontal velocity values.”.

REFERENCES

REFERENCES

Nielsen:1997:RRR

Oberman:1997:DAI

Oberman:1997:DID

Oberman:1997:SPD

Oklobdzija:1997:CLZ

[3606] Brad Pierce. Applications of randomization to floating-point arithmetic and to linear systems solution. Thesis (Ph.D.), Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA, 1997.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Suite 300, Silver Spring, MD 20910, USA, 1997. CODEN ???? ISSN ????

REFERENCES

REFERENCES

REFERENCES

[3644] Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. *ACM Fortran Forum*, 17(3):1–2, December 1998. CODEN ????? ISSN 1061-7264 (print), 1931-1311 (electronic).

REFERENCES

REFERENCES

[3667] Joseph D. Darcy. Evolving Java’s floating point support: The good, the bad, and the ugly. In MacKay and Johnson [6070], page ?? LCCN TK
REFERENCES

A. Drolshagen, C. C. Sekhar, and W. Anheier. A residue number
arithmetic based circuit for pipelined computation of autocorrelation
coefficients of speech signal. In Eleventh International Conference on
Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
1998. CODEN ???. ISSN ???.

Rezso Dunay, Istvan Kollar, and Bernard Widrow. Dithering for floating-
point number representation. In Holub and Smid [6064], pages 0–1–9–12.
huzSzpubszSzstaffszSzkozarzSzpapierzSzditherws.ps.gz/
dunay98dithering.ps.gz;

European Commission Directorate General II. The introduction of
the euro and the rounding of currency amounts. II/28/99-EN Euro
Papers 22, European Commission, March 1998. 32 pp. DGII/C-4-SP(99)
European Commission.

Ioannis Z. Emiris, Victor Y. Pan, and Yanqiang Yu. Modular arithmetic
for linear algebra computations in the real field. Journal of Symbolic
Computation, 26(1):71–87, July 1998. CODEN JSYCEH. ISSN 0747-
7171 (print), 1095-855X (electronic).

M. Ercegovac, D. Kirovski, G. Mustafa, and M. Potkonjak. Behavioral
synthesis optimization using multiple precision arithmetic. In Proceedings
of the 1998 IEEE International Conference on Acoustics, Speech, and
3113–3116. IEEE Computer Society Press, 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 1998. CODEN ???. ISSN ???.

P. D. Fiore. Lazy rounding. In IEEE Workshop on Signal Processing
1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1998.
CODEN ???. ISSN ???.

REFERENCES

Hill:1998:FDP

Huertgen:1998:TFP

Hussein:1998:LPA

IBM:1998:DAI

IEC:1998:IITa

ISO:1998:IITc

REFERENCES

Moore:1998:MCP

Murabayashi:1998:WBP

Naffziger:1998:MAB

Nguyen:1998:MLS

Oberman:1998:ATK

Oberman:1998:MCS

[3724] M. T. Rivolo and A. Simi. Il calcolo delle radici quadrate e cubiche in Italia da Fibonacci a Bombelli. (Italian) [The calculation
of square and cube roots in Italy from Fibonacci to Bombelli].
Archive for History of Exact Sciences, 52(2):161–193, February

doing a register-transfer-level specification of the AMD K7 floating-point
URL http://www.onr.com/user/russ/david/k7-div-sqrt.html. See
journal article [3726].

of the floating point multiplication, division and square root algorithms
of the AMD-K7TM processor. *LMS Journal of Computation and
Mathematics*, 1:148–200, 1998. CODEN ???? ISSN 1461-
www.onr.com/user/russ/david/k7-div-sqrt.ps. Appendices A and
B available to subscribers electronically (http://www.lms.ac.uk/jcm/1/lms98001/appendix-a/ and
http://www.lms.ac.uk/jcm/1/lms98001/appendix-b/).

[3727] Tateaki Sasaki and Satoshi Yamaguchi. An analysis of cancellation
error in multivariate Hensel construction with floating-point number
???? URL http://www.acm.org/pubs/citations/proceedings/
issac/281508/pl-sasaki/.

[3728] Tateaki Sasaki and Tomoyuki Sato. Cancellation errors in multivariate
resultant computation with floating-point numbers. *SIGSAM Bulletin
(ACM Special Interest Group on Symbolic and Algebraic Manipulation)*,
32(4):13–20, December 1998. CODEN SIGSBZ. ISSN 0163-5824 (print),
1557-9492 (electronic).

Exploiting idle floating-point resources for integer execution. *ACM
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Weiss:1998:FPM

Wu:1998:LCB

Wu:1998:NLC

Abbott:1999:ASS

Agarwal:1999:SAM

REFERENCES

[3765] M. Bhardwaj, T. Srikanthan, and C. T. Clarke. A reverse converter for the 4-moduli superset \(\{2^n - 1, 2^n, 2^n + 1, 2^{(n+1)} + 1\} \). In

Bhardwaj:1999:VCA

Blum:1999:MME

Boldo:1999:CRE

Brent:1999:CAP

REFERENCES

http://euler.ecs.umass.edu/paper/final/brentr.ps;

[Bronnimann:1999:SDR]

[Bui:1999:DSI]

[Burgess:1999:EIR]

[Burgess:1999:FIS]

[Cappuccino:1999:HSS]
REFERENCES

REFERENCES

collavizza:1999:CPC

connors:1999:SOF

constales:1999:PSS

conway:1999:FCM

cornea-hasegan:1999:CPO

REFERENCES

Computer Society Order Number PR00116. IEEE Order Plan Catalog Number 99CB36336.

[3787] Marius

DAUMAS:1999:DFP

Daumas:1999:DFP

DAUMAS:1999:MFP

Daumas:1999:MFP

DENIS:1999:URG

Denise:1999:URG

DIMITROV:1999:TAD

Dimitrov:1999:TAD

DIMITROVA:1999:VCF

Dimitrova:1999:VCF

DYKE-LEWIS:1999:MAP

Dyke-Lewis:1999:MAP

DYLLONG:1999:ADC

Dyllong:1999:ADC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kornerup:1999:NSC

Krick:1999:AN

Lang:1999:VHR

Langlois:1999:WAL

Lee:1999:EFS

Lee:1999:NAD

Chang-Hyi Lee and Jong-In Lim. A new aspect of dual basis for efficient field arithmetic. Lecture Notes in Computer Science, 1560:12–28, 1999. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349
REFERENCES

REFERENCES

REFERENCES

Computer Society Order Number PR00116. IEEE Order Plan Catalog Number 99CB36336.

REFERENCES

REFERENCES

Computer Society Order Number PR00116. IEEE Order Plan Catalog Number 99CB36336.

REFERENCES

volume 2, pages 1317–1321. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1999. CODEN ????
ISSN ????

Tenca:1999:DHR

Thompson:1999:BPF

Tisseur:1999:NMF

Tropp:1999:HAI

Tropp:1999:NRI

Tsuji:1999:REO

Walter:1999:MTI

Watanabe:1999:NVM

Wires:1999:CUT

Yadav:1999:PSF

Yang:1999:CIS

Yang:1999:RNSa

Yang:1999:RNSb

REFERENCES

[3927] Intel. *Intel 8231A Arithmetic Processing Unit*. Intel Corp, San Jose, CA, USA, 19xx. URL http://www.datasheetarchive.com/pdf-datasheets/Datasheets-14/DSA-276911.html. From the datasheet (p. 3-5): “The mantissa is expressed as a 24-bit (fractional) value; the exponent is expressed as a two’s complement 7-bit value having the range
−64 to +63. The most significant bit is the sign of the mantissa (0 = positive, 1 = negative), for a total of 32 bits. The binary point is assumed to be to the left of the most significant mantissa bit (bit 23). All floating-point data values must be normalized. Bit 23 must be equal to 1, except for the value zero, which is represented by all zeros. The range of values that can be represented in this format is \(\pm (2.7^{-10} \ldots 9.2 \times 10^{18}) \) and zero.”.

Anonymous:2000:BRCd

Anonymous:2000:BRCg

Antelo:2000:VHR

Baidas:2000:HLF

Batten:2000:NAD

REFERENCES

REFERENCES

Collins:2000:MFP

Constantinides:2000:MPR

Corsonello:2000:PCB

DAmora:2000:RPD

Daumas:2000:EIT

REFERENCES

Delves:2000:MUI

Drmac:2000:AQS

Ercegovac:2000:IGD

Ercegovac:2000:RSR

Eskritt:2000:DDF

Even:2000:CTR

REFERENCES

REFERENCES

Freking:2000:MMR

Fu:2000:CPO

Gallagher:2000:FTN

Gay:2000:SAC

Goldovsky:2000:DIL

Groza:2000:FPA

REFERENCES

Hormigo:2000:HAVa

Hormigo:2000:HAVb

Ide:2000:GMF

Ifrah:2000:UHN

Imajo:2000:CSB

Intel:2000:IPF

REFERENCES

REFERENCES

REFERENCES

Kum:2000:ACO

Lee:2000:LSM

Leemis:2000:SDS

Lefevre:2000:CRF

Liew:2000:IDR

Lin:2000:NBP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Zimmermann:2000:PGF

Akishita:2001:FSS

Akkas:2001:ISE

Alefeld:2001:SAM

Ammar:2001:SIC

Aoki:2001:ECA

REFERENCES

REFERENCES

[4088] Keith Briggs and Yannis Smaragdakis. XR — exact real arithmetic. World-Wide Web document and software package., March 01, 2001. URL http://www.btexact.com/people/briggsk2/XR.html. From the overview: “This is an implementation of exact (or constructive) real arithmetic, as an alternative to multiple-precision floating-point (MPFP). An important distinction is that in MPFP one sets the precision before starting a computation, and then one cannot be sure of the final
result. Interval arithmetic is an improvement on this, but still not an ideal solution because if the final interval is larger than desired, there is no simple way to restart the computation at higher precision. By contrast, in XR no precision level is set in advance, and no computation takes place until a final request takes place for some output. Despite this, programming with XR is no different from MPFP, except for the declaration of critical variables as type ‘XR’.

The main aim is to produce a usably efficient implementation, which can be easily interfaced with existing C++ code. This contrasts with previous implementations in functional languages (Haskell, Miranda etc.), which, although theoretically important, seem to be rather too slow for real use.

This code is designed as an add-on to Victor Shoup’s arbitrary-precision arithmetic package NTL, and implements a new type XR, to complement NTL’s ZZ and RR integer and real types.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

on Electronics, Circuits and Systems, ICECS 2001, volume 1, pages 433–436. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2001. CODEN ????. ISSN ????

Finot-Moreau:2001:PAU

Flynn:2001:ACA

Galan-Simon:2001:MLD

Gallant:2001:FPM

Gelbukh:2001:ZHL

Gil:2001:SAT

REFERENCES

[4132] Yozo Hida, Xiaoye S. Li, and David H. Bailey. Algorithms for quad-double precision floating point arithmetic. In Burgess
REFERENCES

Hlavacs:2001:IAN

Hsu:2001:CAS

Hur:2001:GRO

ISO:2001:IIIc

Jacobi:2001:FVT

REFERENCES

Koc-Sahan:2001:STA

Kosaraju:2001:MAM

Koy:2001:SLRb

Kramer:2001:AFE

Kreinovich:2001:INB

Krishnan:2001:PEM

Shankar Krishnan, Mark Foskey, Tim Culver, John Keyser, and Dinesh Manocha. PRECISE: efficient multiprecision evaluation of algebraic roots

REFERENCES

REFERENCES

[4171] A. S. Madhukumar and F. Chin. Incorporating incremental redundancy and link adaptation in communication systems using residue number

Matula:2001:ITL

McFearin:2001:GAH

Michel:2001:SCF

Mobley:2001:ICW

Moller:2001:SEC

Montuschi:2001:BVH

REFERENCES

REFERENCES

Paliouras:2001:LPP

Park:2001:ADI

Park:2001:IMM

Phillips:2001:MMM

Phillips:2001:MRN

REFERENCES

REFERENCES

REFERENCES

REFERENCES 754

Arithmetic, and Validated Numerics and Interval 2000, the International Conference on Interval Methods in Science and Engineering were jointly held in Karlsruhe, September 19–22, 2000.

REFERENCES

Um:2001:OAC

Verdonk:2001:PRIa

Verdonk:2001:PRIb

Vergos:2001:HSP

Visavakul:2001:DSS

REFERENCES

[4240] Michael J. Wirthlin and Brian McMurtrey. Efficient constant coefficient multiplication using advanced FPGA architectures. *Lecture Notes in
REFERENCES

REFERENCES

[4251] Paul Zimmermann. De l’algorithmique à l’arithmétique via le calcul formel. (French) [From algorithmics to arithmetic via symbolic calculation]. Technical report, Département de formation doctorale en informatique. École doctorale IAEM Lorraine, UFR STMIA, Bâtiment
REFERENCES

Zimmermann:2001:APA

Ziv:2001:APM

Agarwal:2002:FPN

Akbarpour:2002:FCS

Akkas:2002:CIF

REFERENCES

REFERENCES

catalog number PR01712.

[4264] David H. Bailey, David Broadhurst, Yozo Hida, Xiaoye S. Li, and
Brandon Thompson. High performance computing meets experimental
mathematics. In IEEE [6120], page ?? ISBN 0-7695-1524-X. LCCN ????

[4265] Roberto Barrio. Rounding error bounds for the Clenshaw and
Forsythe algorithms for the evaluation of orthogonal polynomial series.
Journal of Computational and Applied Mathematics, 138(2):185–204,
January 15, 2002. CODEN JCAMDI. ISSN 0377-0427 (print), 1879-
article/pii/S037704270100382X.

[4266] Pavle Belanovic and Miriam Leeser. A library of parameterized floating-
point modules and their use. Lecture Notes in Computer Science, 2438:
657–666, 2002. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349
series/0558/bibs/2438/24380657.htm; http://link.springer-

[4267] Yves Bertot, Nicolas Magaud, and Paul Zimmermann. A proof of
GMP square root. Journal of Automated Reasoning, 29(3–4):225–252,
September 2002. CODEN JAREEW. ISSN 0168-7433 (print), 1573-0670
3A1021987403425.

[4268] Jean-Luc Beuchat and Arnaud Tisserand. Small multiplier-based
multiplication and division operators for virtex-II devices. Lecture Notes
in Computer Science, 2438:513–??, 2002. CODEN LNCSD9. ISSN 0302-
com/link/service/series/0558/bibs/2438/24380513.htm;
http://link.springer-ny.com/link/service/series/0558/
papers/2438/24380513.pdf.

[4269] L. Susan Blackford, James Demmel, Jack Dongarra, Iain Duff, Sven
Hammarling, Greg Henry, Michael Heroux, Linda Kaufman, Andrew

[Boldo:2002:FRF]

[Boldo:2002:IAO]

[Boldo:2002:NSC]

[Boldo:2002:PSVa]

[Boldo:2002:PSVb]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

LCCN TK5102.5 A78 2002. UK£265.00. Two volumes. IEEE catalog number 02CH37387.

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
computation of reciprocal, division, square root, and inverse square
2002. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
 tp=&arnumber=1146704.

[4364] Jan-Christoph Puchta. Representation of numbers with negative digits
fq.math.ca/Scanned/40-1/puchta1.pdf.

[4365] Narasimhan Ramasubramanian, Ram Subramanian, and Santosh
Pande. Automatic compilation of loops to exploit operator
parallelism on configurable arithmetic logic units. *IEEE Transactions
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).
URL http://dlib.computer.org/td/books/td2002/pdf/l0045.pdf;

FPL-based communications receiver design and implementation. *Lecture
Notes in Computer Science*, 2438:472–??, 2002. CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349 (electronic). URL http://link.springer-
ny.com/link/service/series/0558/bibs/2438/24380472.htm;
http://link.springer-ny.com/link/service/series/0558/
papers/2438/24380472.pdf.

[4367] Keith S. Reid-Green. Three early algorithms: [Bresenham’s line-drawing
algorithm; a square-root algorithm; Machin’s algorithm: computation
2002. CODEN IAHCEX. ISSN 1058-6180 (print), 1934-1547 (electronic).
URL http://csdl.computer.org/dl/mags/an/2002/04/a4010.htm;

Ibrahim Sahin, Clay S. Gloster, and Christopher Doss. Feasibility of floating-point arithmetic in reconfigurable computing systems. In
REFERENCES

Vladimirova and Katz [6127], page ?? LCCN ???. URL http://klabs.org/richcontent/MAPLDCon00/Abstracts/sahin_a.txt.

Stoianov:2002:AAB

Sun:2002:BJP

TI:2002:TFL

Texas Instruments, Dallas, TX, USA. *TMS320C67x FastRTS Library Programmer’s Reference (SPRU100A)*, October 2002. URL http://focus.ti.com/lit/ug/spru100a/spru100a.pdf. The FastRTS library is a collection of 26 optimized floating-point math functions for the TMS320C67x device. This source code library includes C-callable (ANSI-C-language compatible) optimized versions of the floating-point math functions included in previous run-time-support libraries.

Tornaria:2002:SRM

Turner:2002:RPS

vanEmden:2002:NDI

REFERENCES

Akkas:2003:QPD

Al-Radadi:2003:RSD

Ammar:2003:NDH

Anonymous:2003:AI

Anonymous:2003:FFP

[4407] Anonymous. Fast floating-point arithmetic emulation on the Blackfin processor platform. Engineer To Engineer Note EE-185, Analog Devices,
REFERENCES

papers republished in *IEEE Transactions on Computers*, **54**(3) (2005) [4804].

REFERENCES

REFERENCES

Computer Society order number PR01894. Selected papers republished in *IEEE Transactions on Computers*, **54**(3) (2005) [4804].

REFERENCES

DiBrino:2003:FPP

Ercegovac:2003:CDP

Ercegovac:2003:DRA

Erdem:2003:LRV

Erle:2003:DMC

Even:2003:PEA

number PR01894. Selected papers republished in *IEEE Transactions on Computers*, **54**(3) (2005) [4804].

REFERENCES

REFERENCES

[Intel:2003:DSR]

[Intel:2003:NID]

[Iordache:2003:OFP]

[Kaihara:2003:VAM]

[Kaivola:2003:PEL]

[Katti:2003:LCM]

REFERENCES

Markstein:2003:ASC

Markstein:2003:FQP

Matula:2003:BFM

Matula:2003:CAA

Matula:2003:PID

REFERENCES

[4492] Katsuyuki Okeya and Tsuyoshi Takagi. The width-w NAF method provides small memory and fast elliptic scalar multiplications secure against side channel attacks. Lecture Notes in Computer Science, 2612:

Percival:2003:RMM

Phillips:2003:SRR

Pineiro:2003:HRI

Pineiro:2003:LHR

Reyhani-Masoleh:2003:EMB

REFERENCES

REFERENCES

Damien Stehlé, Vincent Lefêvre, and Paul Zimmermann. Worst cases and lattice reduction. In Bajard and Schulte [6129], pages…
REFERENCES

Sun:2003:NAF

Suvakovic:2003:EEA

Swider:2003:EEF

Tan:2003:MPF

Tenca:2003:SAM

Thomas:2003:IMF

REFERENCES

coverage of, and clever algorithms for, integer arithmetic operations that are fundamental for implementing hardware floating-arithmetic and software multiple-precision arithmetic.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>
REFERENCES

Boggs:2004:MIP

Boldo:2004:PFA

Boldo:2004:PTC

Boldo:2004:STQ

Boldo:2004:WDR

Brisebarre:2004:ACR

REFERENCES

REFERENCES

Chirca:2004:SLP

Clinger:2004:HRF

Clinger:2004:RHR

Cowlishaw:2004:FFE

Croot:2004:ACC

Daumas:2004:GFCa

[4576] Jérémie Detrey and Florent de Dinechin. A tool for unbiased comparison between logarithmic and floating-point arithmetic. Research Report RR2004-31, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07,
REFERENCES

REFERENCES

REFERENCES

[4594] G. Govindu, S. Choi, V. Prasanna, V. Daga, S. Gangadharapalli, and V. Sridhar. A high-performance and energy-efficient architecture for
REFERENCES

REFERENCES

Hiasat:2004:SFR

Hormigo:2004:CPV

IBM:2004:ZAP

Jeong:2004:CEP

Kahan:2004:CFP

Kahan:2004:HFM

REFERENCES

REFERENCES

Marcus:2004:FSS

Markov:2004:SAA

Markov:2004:SAS

McIvor:2004:IMM

McKenzie:2004:ACP

McLaughlin:2004:NFM

REFERENCES

REFERENCES

[4653] M. Sadaghdar, K. Iniewski, and M. Syrzycki. 11-bit floating-point pipelined analog to digital converter in 0.18µm CMOS. In *Canadian

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2004. CODEN ???? ISSN ????

Thomas:2004:LLF

Thompson:2004:BDF

TI:2004:TUG

Tsoi:2004:ALA

Underwood:2004:CGC

Underwood:2004:FVC
REFERENCES

REFERENCES

REFERENCES

May 2004, volume 2, pages II–789–92. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2004. CODEN ???? ISSN ????

Zhu:2004:ISR

Zhuo:2004:SMA

Zimmerman:2004:DCI

Abdallah:2005:MRN

Abtahi:2005:CFR

Adharapurapu:2005:LSO

Aharoni:2005:SCI

Alvarez:2005:FMF

Anonymous:2005:HAP

Anonymous:2005:TMF

Antelo:2005:DRD

Antelo:2005:LLD

Antelo:2005:LLP

Elisardo Antelo and Julio Villalba. Low latency pipelined circular CORDIC. In Montuschi and Schwarz [6168], page ?? ISBN 0-7695-
REFERENCES 837

Arnold:2005:BIR

Arnold:2005:RLN

Bailey:2005:DFDa

Bailey:2005:DFDb

Bailey:2005:HPF

Bailey:2005:QDD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lawlor:2005:PDP

Lee:2005:LCB

Lee:2005:OHH

Lefevre:2005:GMP

Lefevre:2005:NRD

Li:2005:HIA

Li:2005:NBI

Lorencz:2005:SFA

Lorenz:2005:VTB

Macchetti:2005:QPH

Markstein:2005:FSM

Marques:2005:BIF

Matula:2005:TLS

David Matula, Alex Fit-Florea, and Mitchell Thornton. Table lookup structures for multiplicative inverses modulo 2^k. In Montuschi and
REFERENCES

REFERENCES

[4789] Roberto Muscedere, Vassil Dimitrov, Graham Jullien, and William Miller. A low-power two-digit multi-dimensional logarithmic number...
system filterbank architecture for a digital hearing aid. *EURASIP J.

CTPHAF. ISSN 0010-7514 (print), 1366-5812 (electronic).

0302-9743 (print), 1611-3349 (electronic).

[4792] Stuart Oberman and Michael Siu. A high-performance area-efficient
multifunction interpolator. In Montuschi and Schwarz [6168], page ??
arith17.polito.it/final/paper-164.pdf.

1988, November 2005. CODEN SJOCE3. ISSN 1064-8275 (print),
article/60181.

Michael, H. Nishikawa, Y. Totsuka, T. Namatame, N. Yano, T. Machida,
and S. H. Dhong. A fully-pipelined single-precision floating point unit
in the synergistic processor element of a CELL processor. In 2005
Symposium on VLSI Circuits, June 16–18th, 2005, Rhiya Royal Hotel
Kyoto, Kyoto, Japan, page ?? IEEE Computer Society Press, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2005. ISBN
???? LCCN ????? URL http://www.vlsisymposium.org/circuits/
technical.html. Paper 2.4.

[4795] Lena Pareto. Graphical arithmetic for learners with dyscalculia. In ACM
[6156], pages 214–215. ISBN 1-59593-159-7. LCCN ?????

REFERENCES

REFERENCES

Takahashi:2005:AMP

Tang:2005:BBI

Tang:2005:GBE

Usevitch:2005:JCL

Verdonk:2005:BSI

Wahid:2005:EFC

REFERENCES

REFERENCES

[4838] Paul Zimmermann, Nathalie Revol, and Patrick Pélissier. mpcheck: a program to...

Zimmermann:2005:MVC

Zimmermann:2005:WTA

Zimmermann:2005:XXX

Anderson:2006:AMF

Anonymous:2006:IFPa

Anonymous:2006:IFPb

Anonymous:2006:RSI

REFERENCES

REFERENCES

References

[4864] Jérémie Detrey and Florent de Dinechin. FPLibrary. A VHDL library of parametrizable floating-point and LNS operators for FPGA. Web site and source code., 2006. URL http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/. The FPLibrary has been superseded by the FloPoCo project [5270].

[4870] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Dependent rounding and its applications to approximation

Gochman:2006:IIC

Gok:2006:IMO

Goubault:2006:SAN

Graa:2006:IFF

Graca:2006:ODE

[4875] Daniel S. Graça, Ning Zhong, and Jorge Buescu. The ordinary differential equation defined by a computable function whose maximal interval of existence is non-computable. In Anonymous [6172], page ?? ISBN ???. LCCN ???.

Graillat:2006:ICH

REFERENCES

Harrison:2006:FPV

Hars:2006:MIA

Hill:2006:QUB

How:2006:RRN

Hurlimann:2006:BLB

IBM:2006:PDF

REFERENCES

REFERENCES

[4902] Vincent Lefèvre, Damien Stehlé, and Paul Zimmermann. Worst cases for the exponential function in the IEEE 754r decimal64 format.
REFERENCES

Liew:2006:SRR

Lindstrom:2006:FEC

Mahalingam:2006:IAM

Marques:2006:BIF

Maslennikowa:2006:DFB

REFERENCES

Suite 300, Silver Spring, MD 20910, USA, 2006. CODEN???? ISSN????

Meurant:2006:LCG

Muller:2006:CLA

Muller:2006:EFA

Nievergelt:2006:EPD

Nikmehr:2006:FDF

OLeary:2006:CMA

Ou:2006:DSE

Ozban:2006:NMA

Park:2006:EBP

Parks:2006:UTS

Perry:2006:BSF

Persson:2006:RCA

Pryce:2006:IAC

Qian:2006:HMP

REFERENCES

REFERENCES

REFERENCES

VanMeter:2006:DAQ

Vazquez:2006:CSD

Villalba:2006:DRM

Wang:2006:ACV

Wang:2006:PAN

Wires:2006:RRS

Wong:2006:FES

REFERENCES

[4977] R. Chaves and L. Sousa. Improving residue number system multiplication with more balanced moduli sets and enhanced modular arithmetic

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kobayashi:2007:AIG

Kornerup:2007:CIP

Kuliamin:2007:STI

Lambov:2007:REI

Lang:2007:RDR

Langlois:2007:HEF

Langlois:2007:MIL

Philippe Langlois and Nicolas Louvet. More instruction level parallelism explains the actual

REFERENCES

REFERENCES

Steele:2007:CSP

Steele:2007:CUC

Steele:2007:MSCa

Steele:2007:MSCb

Stern:2007:MLA

Stoutemyer:2007:UCN

Swartzlander:2007:NTC

Tang:2007:MMU

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5120] Xin Li, Marc Moreno Maza, Raqeeb Rasheed, and Éric Schost. The modpn library: bringing fast polynomial arithmetic into MAPLE. ACM

Liu:2008:FIM

Melquiond:2008:DRA

Monniaux:2008:PVF

Morris:2008:PLC

Nakamori:2008:SRA

Namin:2008:NFF

P754:2008:ISF

REFERENCES

REFERENCES

REFERENCES

Steele:2008:FPSc

Thill:2008:EMP

Thill:2008:MPR

Tsigaridas:2008:CRR

VanMeter:2008:ADM

Webb:2008:IZN

Yamanaka:2008:PAA

[5169] Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer Strichman, and Bryan Brady. An abstraction-based

REFERENCES

[5188] P. Dormiani, M. D. Ercegovac, and J.-M. Muller. Design and implementation of a radix-4 complex division unit with prescaling. In
IEEE [6209], pages 83–90. ISBN 0-7695-3732-4. ISSN 1063-6862. LCCN ????

Duff:2009:GMA

Edmonson:2009:IIS

Enge:2009:CCP

Enge:2009:MLM

Erle:2009:DFP

Fahmy:2009:EDI

REFERENCES

[5201] Sonia Gonzalez-Navarro, Alberto Nannarelli, Michael J. Schulte, and Charles Tsen. A combined decimal and binary floating-point divider. In
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

References

1063-6889. LCCN QA76.6 S887 2009. URL http://www.ac.usc.es/arith19/.

REFERENCES

Chapoutot:2010:ISN

Cheng:2010:BSS

Daumas:2010:CBE

deDinechin:2010:FGA

Florent de Dinechin and Bogdan Pasca. FloPoCo: generator of arithmetic cores (Floating-Point Cores, but not only) for FPGAs (but not only). Web site and source code., August 10, 2010.

Digeser:2010:ISE

Dvir:2010:HRT

Emmart:2010:HPI

REFERENCES

Peter Kornerup, Christoph Lauter, Vincent Lefèvre, Nicolas Louvet, and Jean-Michel Muller. Computing correctly rounded integer powers in

REFERENCES

[5304] Zichu Qi, Qi Guo, Ge Zhang, Xiangku Li, and Weiwu Hu. Design of low-cost high-performance floating-point fused multiply-add with reduced

Roldao:2010:HTF

Rumer:2010:IP1

Rump:2010:ARC

Rump:2010:FHP

Rump:2010:VMRa

Rump:2010:VMRb

REFERENCES

Takahashi:2010:PIM

Tichy:2010:GAF

Vazquez:2010:IDH

Vestias:2010:PDM

Wang:2010:AOB

Wang:2010:DAH

Wang:2010:SHD

REFERENCES

Wang:2010:VVP

Waters:2010:RCW

Zanoni:2010:ITC

Zhao:2010:GMP

Zhu:2010:AOE

Adikari:2011:HBT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chen:2011:TSA

Chevillard:2011:AGC

Colberg:2011:HAS

Corless:2011:RCA

Cui:2011:TDB

Curran:2011:ZSM

[5374] Brian W. Curran, Lee E. Eisen, Eric M. Schwarz, Pak kin Mak, James Warnock, Patrick J. Meaney, and Michael Fee. The zEnterprise 196

REFERENCES

Gorgin:2011:FHR

Graillat:2011:SAM

Gupta:2011:LPP

Guralnik:2011:SBV

Han:2011:NDS

Hariri:2011:CED

REFERENCES

Haron:2011:RRN

Harvey:2011:FAS

Harvey:2011:SDL

Holanda:2011:FBA

Hong:2011:EOS

Hsiao:2011:DLC

[5399] Shen-Fu Hsiao, Chan-Feng Chiu, and Chia-Sheng Wen. Design of a low-cost floating-point programmable vertex processor for mobile

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5436] Katsuhisa Ozaki, Takeshi Ogita, and Shin’ichi Oishi. Tight and efficient enclosure of matrix multiplication by using optimized BLAS. Numerical
REFERENCES

REFERENCES

Romanovski:2011:ASS

Rupp:2011:SBF

Samman:2011:RSP

Sarbishei:2011:FPA

Seidel:2011:FVI

Seo:2011:GDP

REFERENCES

Siegel:2011:LAL

Singh:2011:VEF

Singha:2011:NAF

Tang:2011:TCT

Tsen:2011:HDB

Vazquez:2011:CIA

Vestias:2011:IDM

Vigliar:2011:MFB

Wang:2011:DFB

Wang:2011:RCM

Whitehead:2011:PPF

Xu:2011:DLF

REFERENCES

REFERENCES

Fan:2012:EHI

Fout:2012:APB

Gandino:2012:AAS

Gazeau:2012:NLM

Ghosh:2012:FPR

Giessing:2012:FRB

Goossens:2012:CTS

Grcar:2012:JNA

Haller:2012:DFP

Huang:2012:LCB

Hyman:2012:LF

Katranov:2012:DRN

Koiran:2012:ACC

Kornerup:2012:CCR

REFERENCES

Lee:2012:DHP

Li:2012:ENE

Liedel:2012:SDC

Liu:2012:PED

Maitra:2012:NAC

Masotti:2012:FPN

REFERENCES

Neron:2012:FPS

Oudjida:2012:NHR

Ozaki:2012:FAF

Panhaleux:2012:CFP

Rodriguez:2012:RRE

Rump:2012:EEF

REFERENCES

REFERENCES

REFERENCES

Nguyen:2013:SED

Nikolajsen:2013:FSD

Ould-Bachir:2013:SAS

Pedram:2013:FPA

Pontarelli:2013:LCC

Rubio-Gonzalez:2013:PTA

[5607] Tao Shen and Zhugang Yuan. Stability criterion for a class of fixed-point digital filters using two’s complement arithmetic.
Sohn:2013:IAF

Srinivasan:2013:SPF

Sullivan:2013:TLA

Vazquez:2013:IAA

Warren:2013:HD

Wiebe:2013:FPR

Yabuki:2013:DPC

[5614] Michiro Yabuki and Takashi Tsuchiya. Double precision computation of the logistic map depends on computational modes of the floating-point

REFERENCES

REFERENCES

REFERENCES

REFERENCES

986

REFERENCES

REFERENCES

Shukla:2014:LLH

Toronto:2014:PAF

Vazquez:2014:FRM

Wang:2014:CFA

Wang:2014:RBR

Yao:2014:NRP

Ahmadifar:2015:NRN

Ahrens:2015:ERF

Ahrens:2015:RPM

Aktan:2015:MEA

Aneesh:2015:HHM

Anonymous:2015:EFP

Bailey:2015:HPA

Bajard:2015:RAA

Jean-Claude Bajard, Julien Eynard, Nabil Merkiche, and Thomas Plantard. RNS arithmetic approach in lattice-based cryptography: Accelerating the “rounding-off” core procedure. In Muller et al. [6231],
REFERENCES

presented at NSV 2015: 8th International Workshop on Numerical Software Verification 2015, Seattle, WA, USA.

REFERENCES

[5691] Terry Froggatt. An error in the Ada universal arithmetic package. *ACM SIGADA Ada Letters*, 35(2):14, August 2015. CODEN AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic). See [1609]. The 32-year-old error is a test with digit \(t\) that has \(if (t > BASE)\), but the operator should instead be \(>=\).

[5692] Toshio Fukushima. Precise and fast computation of elliptic integrals and functions. In Muller et al. [6231], pages 50–57. ISBN 1-4799-8665-8,

REFERENCES

REFERENCES

[5713] Seyed Hamed Fatemi Langroudi and Ghassem Jaberipur. Modulo-

REFERENCES

Nguyen:2015:RTS

Ozaki:2015:IEF

Palmer:2015:MBI

Panchekha:2015:AIA

Parhami:2015:DAN

Proust:2015:KTC

[5744] P. Ahrens, H. D. Nguyen, and J. Demmel. Efficient reproducible floating point summation and BLAS. Report UCB/EECS-2016-121, EECS Department, UC Berkeley, Berkeley, CA, USA, June 18,

Karim Bigou and Arnaud Tisserand. Hybrid position-residues number system. In Montuschi et al. [6232], pages 126–133. ISBN 1-5090-1615-
REFERENCES

REFERENCES

[5764] Carlos Garcia-Vega, Sonia Gonzalez-Navarro, Pedro Balboa-La Chica, and Julio Villalba-Moreno. Decimal multiformat online addition. *IEEE
REFERENCES

[5768] David Hopkins. Will my numbers add up correctly if I round them? The Mathematical Gazette, 100(549):396–409, November 2016. CODEN MAGAAS. ISSN 0025-5572 (print), 2056-6328 (electronic). URL https://www.cambridge.org/core/product/88F5753DFE9FODDEAD1F2652B0F8B22. The probability that rounding after fixed-point summation of n terms gives the same result as summation of rounded terms is given by \(p(n) = \frac{2}{\pi} \int_0^\infty (\sin(x)/x)^{n+1} \, dx \), and that function is always a rational number. Its values are \(p(n) = 1, 3/4, 2/3, 115/192, 11/20, 5887/11520, 151/315, 259723/573440, \ldots \) for \(n = 1 \) to 8.

REFERENCES

REFERENCES

REFERENCES

Ugurdag:2016:ECC

vanderHoeven:2016:ESL

vanderHoeven:2016:MSA

Villalba-Moreno:2016:DRF

Ballard:2016:INS

Beebe:2017:MFC

Boehm:2017:SDC

Boldo:2017:RFA

Chiang:2017:RFP

Dai:2017:ATE

Gorantla:2017:DAC

Gustafson:2017:BFP

Jeannerod:2017:EBC

REFERENCES

1015

REFERENCES

REFERENCES

REFERENCES

REFERENCES

AFIPS:1969:ACPb

Morrell:1969:IPP

Morrell:1970:IPP

AFIPS:1971:ACP

Freiman:1971:PIC

Rice:1971:MS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1980. ISBN ????? LCCN ????

IEEE:1980:PMA

Johnson:1980:MPA

Lavington:1980:IPP

Nickel:1980:IMP

GAMM:1981:PAM

IEEE:1981:PSC

REFERENCES

REFERENCES

REFERENCES

Kulisch:1983:NAS

Mini-Micro:1983:MMN

Mini-Micro:1983:MMW

Ranocchia:1983:RFA

Anonymous:1984:TFA

Cowell:1984:SDM

Evanczuk:1984:MSS

REFERENCES

REFERENCES

[5924] *Electro/86 and Mini/Micro Northeast Conference Record: Sessions Presented at Electro/86 and Mini/Micro Northeast-86, Boston, MA, May*
REFERENCES

[5938] Robert W. Brodersen and Howard S. Moscovitz, editors. VLSI Signal Processing, III. IEEE Computer Society Press, 1109 Spring Street, Suite
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[IEEE:1992:IIC]

[IEEE:1992:PIS]

[IEEE:1992:PIS]

[Juj:1992:NCR]

[Katwijk:1992:AMT]
REFERENCES

1043

REFERENCES

REFERENCES

REFERENCES

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1993. ISBN 0-8186-3492-8, 0-8186-3491-X. LCCN TK5102.5.

REFERENCES

REFERENCES

ACM:1995:PEA

Anonymous:1995:HEI

Athanas:1995:PIS

Bainov:1995:PTI

Cappello:1995:ICA

IEEE:1995:DPC

REFERENCES

Kearfott:1996:AIcA

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.kluweronline.com, or
REFERENCES

The information on the Interval Computations homepage is basically a
mirror image of the Kluwer one (the only difference is that the fonts are fancier).

[LakshmanYN:1996:IP1]

International Symposium on Symbolic and Algebraic Computation, July
24–26, 1996, Zurich, Switzerland. ACM Press, New York, NY 10036,

[Luk:1996:PSC]

Advanced
Signal Processing Algorithms, Architectures, and Implementations VI,
6–8 August, 1996, Denver, Colorado, volume 2846. Society of Photo-
optical Instrumentation Engineers (SPIE), Bellingham, WA, USA, 1996.
org/proceedings/resource/2/psisdg/2846/1.

[Pellikaan:1996:AGC]

[6050] R. Pellikaan, M. Perret, and S. G. Vladut, editors. Arithmetic, geometry,
and coding theory: proceedings of the international conference held at
Centre international de rencontres mathématiques (CIRM), Luminy,

[Pocek:1996:ISF]

on FPGAs for Custom Computing Machines: proceedings, April 17–
19, 1996, Napa Valley, California. IEEE Computer Society Press,
1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1996.
ieeexplore.ieee.org/servlet/opac?punumber=4230. IEEE catalog
number 96TB100063.

[Srivas:1996:FMC]

[6052] Mandayam Srivas and Albert Camilleri, editors. Formal methods in
computer-aided design: first international conference, FMCAD ’96, Palo
Alto, CA, USA, November 6–8, 1996: proceedings, volume 1166 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany /
REFERENCES

REFERENCES

Computer Society order number PR07846. IEEE Order Plan catalog number 97CB36091.

REFERENCES

REFERENCES

REFERENCES

[6087] Norio Shiratori and Dhabaleswar Panda, editors. Proceedings, 1999 International Conference on Parallel Processing: Aizu-Wakamatsu City,
REFERENCES

Luk:2000:PSA

Matthews:2000:CRT

Sprague:2000:PAH

Swartzlander:2000:IIC

Traverso:2000:IAU

REFERENCES

REFERENCES

REFERENCES

IEEE:2002:IWS

IEEE:2002:STI

Li:2002:PIC

Luk:2002:PSA

Matthews:2002:PTS

Pocenk:2002:FAI

REFERENCES

IEEE:2003:IICb

IEEE:2003:PCI

Luk:2003:PSA

Matthews:2003:PTS

Senda:2003:IPI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6184] Götz Alefeld, Mitsuihiro T. Nakao, and Siegfried M. Rump, editors. *Scientific computing, computer arithmetic, and validated numerics:
(SCAN 2004) [Fukuoka, Japan, October 4–8, 2004], volume 199(2) of Journal of computational and applied mathematics. Elsevier, Amsterdam, The Netherlands, February 15, 2007. CODEN JCAMDI. ISSN 0771-050X; 0377-0427. LCCN ???

Becker:2007:EVT

Bertels:2007:PIC

Brown:2007:PIS

IEEE:2007:ACP

IEEE:2007:API

REFERENCES

Morales:2007:TRT

Pocek:2007:PAI

Simos:2007:CMS

ACM:2008:GPA

ACM:2008:SPA

REFERENCES

REFERENCES

IEEE:2009:PDR

Matthews:2009:CRF

Sezer:2009:IIS

Charot:2010:API

Delgado-Frias:2010:IIM

REFERENCES

Fukuda:2010:MSI

IEEE:2010:CCE

IEEE:2010:ICC

IEEE:2010:ICM

IEEE:2010:ICV

REFERENCES

REFERENCES

