A Bibliography of Publications on Floating-Point Arithmetic

Norbert Juffa
2445 Mission College Blvd.
Santa Clara, CA 95054
USA
Tel: +1-408-727-1885
FAX: +1-408-727-1265
E-mail: juffa@ira.uka.de (Internet)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

18 October 2019
Version 3.575

Introduction

This is a bibliography of material on floating-point arithmetic that I came up with while doing research on a floating-point package of my own. I don’t claim it to be anywhere near complete. The material listed is only what I myself possess.

My main interest was in software based, binary floating-point arithmetic on a microprocessor, so you won’t find much material about the hardware used in floating-point arithmetic (e.g. adders, carry propagation schemes, higher radix
representation for multiplication and division, etc.) in this list. There is also not too much on non-binary floating-point arithmetic.

For most fields covered in this bibliography, the important or historically relevant articles should be included. There is also some material on integer arithmetic in this list as some of the methods used with integer arithmetic contain interesting ideas that may be useful in the realization of a floating-point arithmetic package.

Also, depending on the type of microprocessor used, one may need to implement integer multiplication and division for use in the floating-point package, so articles about this topic are included as well.

As I am German, there is a bit of material in German in this bibliography. However, English translations are provided for all non-English titles.

Thanks to the people who have helped me with previous versions of this document by sending me papers or additional references:

- Steven Sommars (sesv@research.bell-labs.com),
- Jim Kiernan (jmk@teak.cray.com),
- Warren Ferguson (ferguson@seas.smu.edu),
- Nhuad Doduc (ndoduc@framentec.fr),
- K. C. Ng (kwok.ng@eng.sun.com),
- Nelson H. F. Beebe (beebe@math.utah.edu).

Bibliography entries in the Books section are ordered alphabetically by author; ordering is by ascending year in the remaining sections.

Warning: it has yet not been possible to bring this citation list up-to-date with the entries in the BibTeX

Books, hardware oriented

[1618, 248, 1205, 1140, 2972, 3174, 1813, 777, 1089, 930, 1372, 779, 1258, 6067, 6068, 1464]

Books, software oriented or theory

[1192, 427, 430, 431, 96, 1335, 2278, 840, 978, 318, 2816, 2319, 2832, 2161, 287, 483, 6080]

Books, machine specific

[2066, 3077, 2974, 2321, 1665, 1800, 2179, 1832, 2356]
1 Choice of base, floating point formats

1.1 Precision and Rounding

1.2 Determination of parameters of floating point arithmetic

1.3 IEEE standards for floating point arithmetic

1.4 Floating point arithmetic, general and implementation issues

1.5 Floating point packages

1.6 Floating point units
1.7 Test of floating point routines
\[457, 1369, 1623, 1767, 1766, 1916, 1917, 1861, 1999, 2354, 2477, 2485, 2549, 2548, 2661, 2640, 2626, 2915\]

2 Addition and Subtraction
\[341, 1422\]

2.1 Floating-point Summation
\[292, 311, 328, 327, 524, 588, 626, 768, 1561, 2166, 2237\]

2.2 Multiplication
\[629, 1167, 1179, 1390, 1451, 1425, 1478, 1504, 1496, 1521, 1575, 1494, 1656\]

2.3 Division
\[179, 206, 192, 289, 314, 399, 947, 992, 1228, 1317, 1472, 1546, 1525, 1509, 1668, 1787, 1911, 1890, 2272, 2650, 2596, 2830, 2879, 6240, 2813\]

3 Elementary functions, general
\[350, 362, 539, 599, 567, 1049, 1184, 1529, 1556, 1654, 1616, 1614, 1691, 1737, 6163, 1841, 1947, 2046, 1991, 2168, 6181, 2442, 2477, 2429, 3193, 2431, 2400, 2571, 2720, 2538, 2684, 2566, 3226, 3194\]

3.1 Elementary functions, CORDIC and related algorithms
\[162, 163, 217, 231, 339, 479, 506, 608, 600, 616, 680, 790, 996, 1012, 1212, 1366, 1397, 1794, 1605, 1708, 1859, 2051, 2266, 2198, 2423, 2449, 2590, 2682, 2872, 2867, 2989, 2931, 2975\]

3.2 Elementary functions, function approximation
\[208, 209, 441, 574, 710, 709, 913, 951, 1087, 1896, 2186, 2079, 2561, 2656, 2657\]

3.2.1 Polynomial evaluation
\[226, 246, 271, 387, 989, 1150, 2236\]
3.3 Square root, general
[1010, 1111, 1394, 1501, 1552, 2447, 2553]

3.3.1 Square root, bit-oriented, iterative, and table methods of computation
[97, 126, 325, 938, 1076, 1268, 1359, 1320, 1287, 1341, 1445, 1722, 1819, 1731, 1784, 1867, 1848, 1931, 1902, 1942, 1982, 2031, 2070, 2144, 2275, 2459, 2416, 2583, 2901]

3.3.2 Square root, Newton’s method
[131, 247, 269, 340, 313, 309, 349, 412, 388, 470, 475, 488, 549, 538, 532, 534, 651, 1244, 1234, 1312, 1487, 2221, 2881, 2811]

3.4 Sine and Cosine
[152, 996, 948, 953, 1100, 1313, 1452, 1566, 1563, 1663, 1750, 1849, 2013, 2123, 2486, 2824, 2821, 2749, 2843, 2937]

3.5 Logarithm
[127, 238, 298, 639, 928, 1039, 1218, 1438, 2000, 2001, 2487, 2608]

3.6 Exponential function
[114, 372, 1107, 1276, 1427, 1646, 1744, 2355, 2488, 2864]

3.7 Arctangent
[116, 132, 177]

3.8 Other transcendental functions
[456, 565, 133, 954, 331, 242, 326, 1993, 1082, 2730, 2917]

4 Binary-decimal conversion
[161, 145, 191, 436, 530, 633, 1090, 1210, 1211, 1319, 1554, 1606, 1898, 1871, 2392, 2481, 2407, 2726]
5 BCD ARITHMETIC

5 BCD arithmetic

[623, 673, 719, 720, 721, 722, 723, 724, 725, 1297, 1402, 1603, 1542, 1933, 2523, 2823]

6 Multiple precision arithmetic

[259, 297, 373, 389, 582, 568, 883, 932, 1027, 1026, 1184, 1265, 1345, 1450, 2677, 2662, 2896, 3114]

7 Conferences on computer arithmetic

[6105, 6115, 6119, 6127, 6130, 6142, 6160, 6161, 6201, 6229, 6237, 6231, 6261]

8 Additional contributions from Nelson H. F. Beebe

Title word cross-reference

#26 [5255].

\((2^n)^m\) [3640]. \((10^{31} - 1)/9\) [1872]. \((2^n)\) [4170, 4191, 4370, 4379, 4287]. \((2^n + 1)\) [1009, 4599, 3748]. \((2^n - 1)\) [4799]. \((2^n-2\)) [5788]. \((2^n \pm 1)\) [5281, 3969]. \((2m)\) [4252]. \((2n - (2p \pm 1))\) [4653]. \((d, r)\) [731]. \((\mathcal{R})\) [2775]. \((p)\) [4170, 4252]. \(-2\) [689, 155, 176, 879, 741]. \(-\infty < n < +\infty\)
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

.NET [4862].

/m [4669]. /spl [4669].

0.18-CMOS [5517]. '00 [6336, 2422]. '01 [6349]. '03 [6378]. '04 [6386, 6394]. '07 [6428, 6434, 6436, 6441]. '08 [6445, 2895, 5156].

1 [187, 3397, 3270, 2745, 197, 517, 3135, 3901, 4226, 1088, 5517, 1830, 3704].

11i [4720]. 11th [6347, 6244, 6261, 3044]. 120B [1047]. 128-bit [3949].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

= [2671, 2672, 3202, 6102].

Additional Contributions from Nelson H. F. Beebe

8

adder-based [2966, 2967, 2968, 2969]. adder/subtractor [4677, 5501].

Adders [5743, 4120, 559, 5429, 2911, 3987, 5242, 801, 5456, 1970, 5445, 5177, 5281, 4038, 4812, 3886, 4193, 5866, 4968, 1897, 2655, 3646, 4089, 4256, 5142, 4278, 1104, 1115, 1404, 2219, 2537, 3697, 3828, 2598, 1796, 4545, 3916, 3187, 5001, 2359, 4275, 4577]. Additive [1768]. Adding [1297, 3250, 2212, 3705].

Addition/Subtraction [3986, 5652, 4528, 3696, 4475]. additional [3224]. additions [3459, 3311, 1833]. Additive [4333, 4828, 5499, 444, 3441, 1563].

Advanced [3683, 4162, 5073, 3300, 6434, 4377, 6178, 6294, 6328, 6339, 6367, 6381, 6397, 3324, 3334, 5303, 6245, 6234, 1448, 2176, 864, 5007, 4285, 1709, 6419, 1927, 6354, 6412]. Advances [6071, 6082, 1144]. Advancing [2216].

8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

13

algorism [4484, 956]. Algorithm [1605, 5019, 1606, 1179, 3796, 4749, 2898,
3078, 3560, 3688, 1703, 3400, 2901, 672, 5028, 1287, 746, 1402, 1944, 5234,
1026, 1711, 4765, 3407, 1407, 5432, 3570, 753, 5436, 1717, 2092, 5044, 3819,
2225, 1953, 947, 1722, 2738, 4923, 2232, 1728, 2931, 3839, 5449, 1042, 1732, 389,
3849, 4640, 5270, 3288, 4651, 3451, 3598, 3865, 4363, 3867, 4027, 4028, 2266,
2590, 1519, 4803, 5470, 5472, 686, 3303, 902, 5283, 1983, 5485, 1532, 1770, 5087,
3148, 2608, 766, 5655, 5786, 3312, 280, 5091, 5092, 3896, 2306, 4828, 977, 5358,
[2145, 5112, 2448, 5870, 6009, 1554, 1794, 4229, 2647, 2823, 4231, 1440, 1561,
2650, 2651, 3508, 5728, 4698, 5508, 1082, 855, 2031, 856, 717, 4424, 1164, 1911,
5386, 5734, 338, 3658, 3947, 3045, 3951, 4266, 4878, 1591, 5885, 417, 4274, 2693,
3370, 2047, 449, 5317, 5523, 5600, 5682, 548, 3546, 1392, 213, 3066, 3381, 4896,
4100, 2508, 1607, 556, 2065, 1936, 4594, 6023, 3399, 3689, 5024, 5990, 3257, 1486,
1617, 4611, 2538, 2539, 3261, 4916, 3088, 2545, 2390, 3817, 3417, 3270, 5441,
3574, 3273, 3097, 4153, 4154, 3709, 3710, 5919, 3428, 2933, 426, 4495, 4497, 3844,
3429, 1128, 5066, 4642]. algorithm [2107, 5561, 5455, 5923, 1867, 3723, 4022,
3117, 3293, 3294, 4026, 471, 472, 2589, 3868, 3728, 5647, 4520, 4810, 2283, 692,
5487, 2605, 2606, 4954, 2432, 2609, 5573, 4381, 3314, 4384, 4385, 3477, 3622,
4831, 2802, 2137, 5579, 527, 4680, 704, 1660, 2812, 4683, 4840, 1788, 913, 5190,
5722, 2649, 5588, 3006, 5301, 2652, 2830, 1804, 2831, 2333, 4552, 2024, 2465,
4415, 4558, 4706, 927, 992, 3195, 3037, 3532, 3366, 1819, 3367, 2482, 260, 1824,
2683, 2863, 4879, 4575, 5216, 5217, 4097, 3051, 608, 2368, 3059, 3220, 4582, 5221,
4893, 3230, 4738, 2896, 1944, 1116, 2093, 2915, 2916, 2917, 2918, 350, 5764].
Algorithm [1045, 1129, 4791, 5263, 393, 3853, 468, 5999, 518, 1982, 3513, 5210,
237, 2677, 3776, 4258, 5403]. algorithm-based [2137, 3366, 3059, 3220, 3230].
Algorithmen [2278, 2123, 2449, 1597, 2191]. Algorithmes [4487, 5101, 4161,
2629]. Algorithmic [5557, 3736, 220, 3505, 2668]. algorithmics [4297].
algorithmique [4297]. Algorithms [786, 1933, 3973, 3974, 669, 1702, 3687,
790, 614, 941, 6403, 3083, 5159, 5422, 5908, 1184, 1290, 5163, 5165, 242, 2918,
5914, 3702, 4481, 1032, 5551, 2743, 4335, 4336, 4487, 3102, 4337, 3576, 5761,
952, 953, 954, 1039, 5173, 2935, 3843, 4002, 4929, 1965, 2244, 5262, 2937, 428,
3586, 683, 761, 810, 1426, 5770, 5269, 816, 4939, 2416, 6446, 4025, 4177, 3454,
4362, 3455, 3727, 1428, 1326, 1430, 3133, 4517, 4518, 2960, 5477, 2423, 2961,
5856, 2278, 2123, 4039, 765, 478, 1335, 3738, 6467, 2972, 4372, 3149, 4195,
580, 5571, 5093, 2796, 1437, 3897, 2981, 2799, 3155, 6294, 6412]. Algorithms
[978, 3486, 1541, 1784, 635, 1542, 639, 1543, 6191, 4217, 4837, 4396, 3159, 408,
322, 437, 326, 3493, 4223, 2449, 3633, 1238, 3636, 3174, 1355, 3640, 1358, 4072,
1359, 1668, 5729, 2662, 3645, 6246, 5730, 5672, 5673, 6234, 4422, 716, 2341,
3355, 857, 660, 3530, 339, 3946, 1256, 2483, 2684, 5521, 5599, 2867, 870, 2695,
3670, 1597, 2191, 5320, 3218, 1387, 3226, 4895, 5153, 506, 3069, 1011, 3398,
5692, 4312, 4760, 4129, 4912, 5830, 5906, 6199, 2541, 2091, 3698, 1856, 382,
3826, 1724, 1123, 2557, 2923, 3274, 4626, 2097, 1733, 3105, 4494, 194, 4931,
4934, 5773, 5998, 6224, 3859]. algorithms [5464, 1218, 3129, 5081, 1878,
687, 2784, 4197, 2296, 2977, 4386, 1652, 2307, 3624, 1653, 1779, 1539, 5360,


Algorithmus [1942, 350, 1902, 1445].

Alignment [5668, 3691, 3753].

alignments [1817].

all-one [4769].

Allerton [6089].

Alley [3451].

allgemeine [1022, 1134].

allgemeiner [1267].

Allocatable [3323, 3334].

allocation [4354, 4398, 4400, 4275, 3210].

Alloy [5582, 5719].

Almost [6073, 2170, 4831].

Alpha [2847, 3245, 2746, 3360, 3200].

also [2824].

Alternanten [709].

Alternate [4234].

alternating [3483].

Alternative [1198, 891, 528, 4446].

Alternatives [4120, 1068, 2990, 4409, 4523].

Alto [6311, 6297].

ALU [4114, 5227, 5411, 1988, 1799, 1559, 5519, 1929, 1695, 2714].

ALUs [2058].

always [5821].

am [2489].

Am25S05 [572].

Am29027 [2154].

Am29050 [2154].

Am29027 [2154].

Am9511A [1295].

Am9511A/Am9512 [1295].

Am9512 [1189, 1295].

ambiguity [4742].

AMD [3871, 3755, 3912, 3765, 3766, 3926, 4084].

AMD-K7™ [3912, 3766].

AMD® [3751].

ameliorating [967].

amélioration [4129].

America [21].

American [1935, 6138, 6077, 2725].

Among [1145, 3907].

amount [3857].

Amounts [3582, 3715, 3840].

amplifier [2112].

Amplifiers [156].

Amplifying [1615].

Amsterdam [6431].

AN-Codes [4163].

Anaheim [6170, 6196, 6222].

Analog [423, 88, 4014, 3443, 112, 113, 199, 90, 201, 404, 335, 3927, 107, 123, 3968, 4560, 3869, 638, 4707, 1585, 3538, 2197].

Analog-To-Digital [3968, 4014, 4650, 3538].

Analogue [502, 991, 3065].

analogue-to-digital [3065].

Analyse [5437, 34, 6102].

Analyses [4168, 3735, 2685].

Analysis [555, 2061, 6121, 125, 4112, 1700, 4907, 6278, 6024, 4126, 5907, 3255, 143, 5432, 5239, 2219, 2541, 5436, 1491, 2546, 1300, 947, 6253, 5837, 3704, 2236, 757, 4643, 6152, 89, 5457, 4647, 5562, 2763, 2945, 102, 4363, 2112, 3871, 360, 3134, 6175, 2776, 5854, 2274, 361, 577, 2597, 2779, 688, 1064, 974, 363, 5945, 3620, 768, 5494, 5866, 6049, 2619, 1073, 5964, 4218, 321, 845, 415, 5796, 5113, 2638, 1795, 705, 773, 4688, 2825, 984, 1561, 3917, 917, 1080, 1803, 4700, 5510, 1444, 2667, 654, 5123, 5515, 2342, 4090, 726, 32, 36, 3526, 2852, 3363, 998, 1256, 2684, 6078].

analysis [914, 2822, 3005, 3643, 4075, 919, 2155, 2157, 334, 1083, 4243, 2468, 5878, 5676, 3767, 775, 3032, 3033, 3198, 3358, 993, 4986, 1452, 3203, 3536, 2181, 1821, 341, 3663, 3664, 4267, 1099, 6206, 2696, 3052, 1170, 664, 735, 2869, 5397, 1601, 6137, 1106, 2503, 3677, 1713, 6232].

Analysis-Based [4700].

Analytic [3251, 6109, 6109].

Analytical [1620, 5454, 163, 14, 4964, 13, 6007].
Approaching
Approved
Approximate
Approximated
Approximating
Approximation
Approximationen
Apr
Aptitude
Arabia
Arabic
arb
tarifere
Arbitrarily
Arbitrary
Arbitrary-Precision
Arbor
Architect
Architectural
Architecture
Architecture
Arcsin
Arctan
Arctangent
Area
Area-Efficient
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Area-Optimal

Area-Time

Area/Performance

Arenaire

Argument

Arguments

Ariane

arifmetiki

ARITH

ARITH-15

ARITH-16

ARITH-17

ARITH9

Arithmetic

Arithmetic

Arithmetic

Arithmetic
Arithmetic
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8

19

408, 6077, 322, 323, 437, 704, 769, 911, 980, 981, 4969, 3629, 2999, 2315, 5719, 285, 644, 5296, 5107, 5108, 3494, 5298, 1236, 1895, 5365, 5113, 3164, 5723, 1662, 2450, 5586, 914, 4543, 2149, 3005, 3, 1078, 1153, 2331, 4546, 3175, 533, 4975, 3914, 4695, 2454, 1357, 1563, 5590, 5971, 4071, 4854, 3010, 4073, 5370, 647, 3641, 3642, 3643, 3919, 4075, 4549, 2457, 2458, 5120, 649, 919, 3644, 2460, 2158, 2461, 3184, 774, 3186, 1245, 4702, 1443, 2839, 3514.

arithmetic

[322, 3515, 5121, 5203, 180, 4857, 5731, 4246, 2840, 3188, 1163, 1907, 1576, 6056, 5377, 5378, 2032, 4420, 4421, 5392, 994, 995, 1678, 1914, 1915, 1093, 3661, 4991, 2681, 2858, 604, 1375, 4262, 4716, 4263, 1376, 1920, 4264, 290, 4719, 416, 5392, 1379, 2044, 2184, 2865, 2866, 782, 5393, 3207, 1261, 3955, 4098, 490, 2694, 1262, 2358, 3052, 3783, 4275, 3542, 2188].

Arithmetic-Based

[6024].

Arithmetic-Friendly

[6041].

Arithmetic-Geometric

[1614, 3482, 3808].

arithmetic-level

[4, 40, 468, 5571, 5655, 5786, 5962, 4166, 364].

Arithmetick

[1, 37].

arithm´etico-g´eom´etrique

[3808].

Arithmetics

[167, 5263, 4175, 5498, 4393, 3760, 2836, 185, 1176, 1838, 1017, 1113, 1283, 4121, 5252, 4791, 767, 830, 698, 702, 1351, 2461, 5512, 1677].

Arithmetik

[1022, 826, 368, 1382, 936, 937, 1403, 1973, 694, 2800, 930, 2189, 2190, 2191, 2364, 2365, 1389].

arithmetik

[594].

Arithmetikroutinen

[1598].

Arithm´etique

[4671, 1899, 650, 4298, 4129, 3264, 4161, 5101, 4297, 4318, 919].

arithmetiques

[4601, 5178, 2629].

Arithmetische

[2278].

arithmetischen

[1782].

Arithmos

[4143].

arithmometer

[119].

Array

[2212].

Array-A

[787, 1476, 613, 672, 746, 676, 6266, 6279, 2912, 3263, 1298, 1490, 1498, 1305, 1047, 1506, 760, 4804, 1141, 5472, 2272, 1331, 3149, 766, 3479, 1346, 586, 587, 634, 1348, 2994, 597, 1158, 2028, 1574, 1674, 869, 2695, 6262, 1105, 1836, 2377, 2068, 2521, 3262, 2095, 2555, 2742, 233, 4516, 2298, 4206, 3622, 4212, 1895, 2330, 2827, 596, 2169, 3364, 1595, 1465].

Array-Like

[787].

Arrays

[6385, 6402, 1110, 1720, 805, 5702, 3107, 2578, 1062, 3893, 2796, 5715, 2983, 3316, 908, 3233, 592, 1564, 2023, 2666, 5389, 6371, 2564, 2288, 2984, 3334, 3366, 4101, 3059, 3220].

Arrondi

[4487].

Arsenal

[239].

arsenide

[3087].

Art

[6175, 2161, 2835, 5808, 1102, 6112].

Article

[1396].

Articles

[47].

Artificial

[37].

artificially

[5440].

ary

[2784, 3965].

ASIC

[6376, 6420, 6409, 6415, 6460, 6433, 6454].

Asia

[6324].

Asian

[6270].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Begründung [904]. Behavior [4746, 813, 5603, 812, 5718]. Behavioral
[3717, 4118, 3842]. behaviour [2473, 2493]. Behind [5342, 3287]. Behrooz
[3574, 3359]. Benchmark
[5837, 1637, 1767, 1648, 1661, 1630, 1631, 1633, 3421].
Benutzerhandbuch [1382]. Berechnung
[3479, 2308, 2982]. Bergman [4430]. Berichtigung
[6118, 6150, 6356]. Berlin/Wendisch
[6118]. Berlin/Wendisch-Rietz
[6118]. Bernstein [5347, 5971]. Bertinoro [6419]. Beschreibung
[2489]. Besieg{s} [4808]. besonderer [1597]. Bessel [5275]. Best
[5635, 2561, 470, 532, 2166, 551, 3240, 441]. bester [470]. Bestimmung
[470]. Beta
[4271, 4272, 4717]. Betriebssystem
[224]. better [2082, 4049]. Between
[3801, 3896, 6133, 550, 5617, 5831, 4917, 3994, 6330, 5029, 622, 3593, 3601, 4227, 178, 3649, 5738, 3098]. Beyer
[486]. Beyond
[1621, 5925, 2113, 1789, 1356, 3056, 5396, 1939, 4554]. BF16
[6061]. bfloat16
[6000, 6059, 6061]. Bhubaneswar
[6425]. Bi
[1092, 929]. Bi-Imaginary
[1092, 929]. Biased
[1735]. Bibliography
[5416, 1346, 859, 547, 4942, 653, 920, 1156]. BiCGstab
[3362]. BiCMOS
[3443, 3121]. BID
[4880]. BIDEC
[128]. biennial
[6153, 6137]. Bifurcation
[3510]. Big
[1426, 5846, 3725, 6006, 5362]. BigDecimal
[4615, 4434]. BigNum
[4988, 4989]. bilinear
[1563]. billing
[5183]. Billion
[3587]. Bimodal
[5655]. binäres [3193]. binärer [1871]. Binary
[2599, 2784, 2432, 2297, 5575, 4051, 1343, 1655, 203, 365, 2987, 4394, 4536, 643, 769, 3749, 5366, 1153, 6010, 2652, 3515, 4703, 1576, 5676, 2472, 1912, 5520, 2347, 1375, 1824, 3541, 5395, 5524, 3212, 3213, 2700, 3224, 5148, 5151, 4448, 4586, 4587]. Binary-BCD
[1090].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Components

Componentwise

Composite

Composite-Field

Composition

Compostela

Compound

Compressed

Compression

Compression/Decompression

Compressors

Comprising

COMPSAC

Comput

Computable

Computation

Computationally

Compute

Computed

Computer

Computations

Computation-Bound

Computed

Computer
Computer-Aided [4537, 5295, 407, 4062, 284, 134, 5363, 233, 6413, 6480, 5869, 1896, 3496, 4064, 2636, 6476, 591, 6158, 2641, 2820, 5725, 439, 4974, 2014, 3174, 1354, 2454, 4072, 5370, 98, 6218, 6448, 918, 6273, 104, 3341, 1571, 988, 535, 852, 1573, 1160, 5808, 1809, 1088, 6194, 3309, 6284, 520, 114, 132, 133, 152, 2972, 3887, 6327, 3888, 4045, 4372, 6231, 6439, 5288, 252, 831, 904, 1340, 1888, 4377, 5184, 5653, 2611, 3616, 6302, 4820, 1538, 4205, 1229, 2305, 1342, 523, 3481, 6440, 4391, 2803, 5292, 1659, 1543].

Computer-Arithmetik [936, 937].

Computer-Oriented [6121].

Computes [3896, 1546].

Computing [6103, 6305, 6416, 6428, 6445, 6449, 61, 4590, 188, 6147, 3555, 6389, 6172, 39, 6237, 6277, 4311, 3563, 84, 1406, 6404, 5624, 1723, 6322, 6451, 4149, 4156, 6377, 2929, 6267, 1964, 5450, 1737, 5265, 5561, 89, 3589, 2256, 5642, 306, 307, 5999, 3450, 5850, 474, 6269, 6336, 6434, 4029, 3136, 3138, 5480, 5934, 6473, 4039, 5941, 5088, 5535, 3474, 6352, 5573, 5864, 1778, 5956, 1783, 6440, 4391, 3317, 318, 4834, 1348, 5361, 2989, 6162, 641, 642, 703, 6441, 331, 5797, 3167, 3910, 5666, 5727, 5368, 4232, 5196, 3761, 6296, 6303, 6317, 6369, 6426, 6442, 2161, 2835, 1568, 2164].

Concerning [908].

Concordia [6107].

Concurrent [5230, 1738, 5845, 5462, 2308, 5663, 5968, 1564, 5670,
1749, 1385, 1386. Condition [3626, 3830, 1635, 967, 4294]. Conditional
[1308, 689, 3334, 183, 5005, 502]. Conditional-Sum [689]. Conditioned
[2669, 2035, 4368, 164, 165]. Conditions [1199, 963, 3889, 1574, 4319, 1053].
conducted [6113]. Conference [6103, 6116, 6180, 6181, 6197, 6208, 6334,
6387, 6401, 6416, 6081, 6088, 6090, 6091, 6095, 6223, 6235, 6089, 6122, 6147,
6210, 6252, 6306, 6335, 6373, 6388, 6417, 6418, 6431, 6300, 6289, 6346, 6347,
6159, 6118, 6266, 6279, 6460, 6183, 6200, 6211, 6307, 6375, 6253, 6451, 6376,
6420, 6207, 4634, 6123, 6184, 6301, 6150, 2556, 6185, 6323, 6310, 6452, 6202,
6100, 6111, 6124, 6140, 6154, 6155, 6161, 6166, 6167, 6186, 6187, 6205, 6217,
6226, 6228, 6239, 6240, 6241, 6255, 6256, 6269, 6281, 6291, 6312, 6313, 6324,
6325, 6336, 6337, 6338, 6349, 6351, 6362, 6378, 6379, 6392, 6393, 6394,
6396, 6407, 6409, 6422, 6434, 6435]. Conference [6437, 6453, 6454, 6455, 6463,
6464, 6465, 6466, 6189, 6175, 6112, 6473, 6243, 6244, 6229, 6156, 6190, 6271,
6178, 6294, 6191, 6316, 6329, 6340, 6355, 6368, 6382, 6447, 6458, 6162, 6424,
6192, 6144, 6145, 6157, 6168, 6425, 6441, 6272, 6158, 6146, 6133, 6468, 6370,
6459, 6332, 540, 6443, 6200, 6247, 6285, 6136, 6341, 6342, 6357, 6414, 6304,
6195, 6221, 6249, 6415, 6372, 6165, 6202, 6400, 6170, 6207, 6274, 6298, 6333,
6098, 6117, 6114, 6173, 6151, 6311, 6408, 6433, 6456, 6440, 6295, 6297,
6164, 6137, 6196, 6222, 6075, 6301, 6316, 6329, 6340, 6447, 6458]. Configurable
[4533, 4413, 5245, 4053, 4975, 3787]. configurations [4326]. Conformance
[2895, 5156]. Conforming [5142]. conforms [4066]. Congress
[6449, 6264, 6321, 6360, 6096, 6462, 6127, 6366, 6094, 6273, 6135, 6083, 6093,
6391]. conjecture [4616]. Conjugate [5373, 5127, 4969, 4551, 3942, 3943].
conjugate-pair-moduli [3943]. conjunction [6144, 6157]. connect [3175].
Connected [3263, 1567, 2377]. connection [622, 2529, 2639]. Connectionist
[3093]. connectivity [6338]. Conquer [3387, 5776, 4249, 2678, 3924].
Consecutive [398]. Consequences [824]. Conservative [5082]. Consideration
[1472, 5096, 987]. Considerations [6026, 2408, 1522, 1881, 2314, 4733].
considered [5094]. Considering [2825]. Consistencies [3822]. Consistent
[5560]. Consisting [1147]. Constant [5438, 5053, 2581, 5077, 3889, 5942,
1777, 2991, 4868, 4845, 3026, 2682, 2700, 4729, 4285, 4468, 4473, 3579, 2616,
6007, 5143, 2686]. Constant-Current [2581]. constant-factor-redundant-
CORDIC [2616]. Constants [1847, 2528, 4764, 5160, 5165, 5432, 3853, 3016,
5886, 5979, 3378, 5552, 4606, 5476, 420]. Constrained [4021, 637, 5393, 5527].
Constraint [5610, 5701, 4448, 4586]. Constraints [4744, 5020, 583, 4219, 4909,
4587]. constructed [1182]. Constructing [5435, 2797, 4718]. construction
[2766, 4189, 2624, 4418, 3767]. Constructions [4340]. constructive
[4762, 2434, 4385, 3050]. Constructively [2168]. Consumption [4310, 2911].
[6166]. Continued [24, 625, 5770, 277, 3609, 1772, 5786, 4210, 402, 526,
1528, 3363, 208, 209, 238, 871, 1002, 1097, 1724, 5178, 5300, 713, 181, 5218,
2495]. Continued-Fraction [3363, 238]. continues [5178]. Continuous
[574, 5805, 1764, 4420, 6076]. Continuous-Digit [5805]. Continuum [6358].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 34

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

319, 1084, 990, 5381, 722, 601, 5310, 5392, 4721, 5395, 5524, 2367, 5147, 5398.

Decimal-Based [5641, 5522, 5174, 5138, 5139].

Decimal-Binary [135, 2407].

Decimal-Floating-Point [4943].

decimal-point [722].

Decimal-to-Binary [128, 234, 1210, 1211, 365].

Decimal/Hexadecimal [2480].

decimal64 [5501, 5617, 5297, 5185, 4963].

Décimales [1084].

Decimals [570, 37, 5082, 5289, 235, 1591].

decimation [3126].

Decimation-in-time [3126].

Decision [4111, 3947, 5298, 4713].

Decisions [4808, 1873, 1226].

decNumber [4919, 5046].

Decodable [4163].

Decoded [5321].

Decoder [5972, 3949].

decoders [3943].

Decoding [4310, 523, 4308, 1226, 4050, 4964, 4692, 1922, 4289].

decomposable [3835].

Decomposition [2956, 2272, 3145, 1783, 5103, 4966, 321, 4234, 714, 3523, 2848, 733, 2388, 4648, 2302, 437, 3197].

Decompositions [5080, 926].

Decompression [3519].

Decreasing [3837, 2342].

decryption [3415].

DECSYSTEM [1314, 888].

DECsystem-10 [888].

DECsystem-10/20 [888].

DECSYSTEM-20 [1314].

Dedicated [2845, 2672, 2844].

dedication [5606].

dédié [2672].

Deep [5987, 6038, 6044, 5944, 6061, 6017].

Defect [6259, 1681, 2691].

defect-tolerant [2691].

Defektberechnung [2449].

defense [2733].

deficiencies [1633].

defined [4769, 4936].

Defining [3326].

definite [249].

Definition [510, 6003, 4817, 4844, 3259, 2250, 1147, 4666, 5879, 15].

Definitions [1460].

Degeneracies [3325].

Degeneracy [3192].

Degradation [4823, 5731].

Degradation [4823, 5731].

Degrades [3605].

Degree [5534, 5419, 4140, 1565, 4588, 5064, 5975].

Dekker [4912].

Delaunay [3529].

Delay [3568, 2537, 3413, 3699, 5260, 5706, 3901, 4711, 4542, 4545, 3224, 5529].

Delay-based [5706].

Delay-optimized [4711].

Delay-power [3413].

delayed [5030, 4053].

Delays [2753].

Delhi [6225].

Delight [5683, 6384, 4391].

delimited [4990].

Delimiting [2882, 2711].

deliver [3056].

delivers [2073, 2386].

Delivery [6263].

della [111].

Delta [3414, 3815].

Delta-sigma [3414, 3815].

Demmel [4640].

demodulator [3414].

Demonstration [4807, 3408, 72].

Denmark [6142].

denoising [5441].

dénominateurs [5178].

Denominator [5724, 5300].

denominators [5178].

denormal [5609].

Denormalization [3665, 3857, 3860].

Denormalized [1303, 1130, 4801, 3753, 3938, 4562, 3224, 5529].

Denormal [5721, 5817].

Dense [5373, 5672, 5673].

Densely [4330, 4951].

Densely-Packed-Decimal [4951].

densities [2792].

Density [4356, 4513].

Denver [6294, 6326, 6397, 6195].

Department [6069, 6109].

Depend [4165].

Dependable [6267].

dependant [5529].

Dependence [5096, 5732].

Dependent [4931, 3610, 4887, 822].

depending [3830].

Depends [5685].

Depth [3795, 5339, 3288, 2648, 5308, 4748, 6027, 5171, 5567, 5126].

Depth-3 [5308, 5126].

deren [1134, 2974].

Derivation [5201, 2856, 2827].

Derivative [5347, 5649, 910].

Derivatives [338, 5791].

Descent [1612, 2576].

Describe [3323].

Describing [3864].

Description [4625, 4117, 95, 764, 1147, 849].

Design [6208, 6387, 611, 1468, 5223, 5330, 4903, 6335, 3799, 4113, 500, 501, 4120, 5693, 4123, 42, 2381, 2075, 2215, 3811, 4136, 5036, 4472, 4609, 3408, 1407, 1618, 3087, 345, 4771, 2220, 2389, 4139, 5833, 5242, 5041, 5244, 4772, 1029, 3699, 6419, 1625, 2921, 1727, 300, 2922, 4927, 5254, 6390, 2401, 2932, 2100, 4638, 3584, 1310, 1506, 1050, 5451, 5452.
Design [6281, 6291, 6312, 6349, 6350, 6351, 6356, 6362, 6392, 6395, 6422, 6423, 6435, 6437, 6455, 6466, 1524, 5281, 1527, 3875, 3139, 4036, 5484, 4952, 1331, 1435, 2604, 6467, 4374, 4668, 5355, 4377, 5943, 1994, 834, 5492, 5787, 2978, 4206, 5575, 4387, 5096, 5097, 5098, 1068, 1780, 5866, 5956, 6049, 1230, 4055, 5662, 908, 2439, 3321, 5104, 4968, 2141, 2314, 5796, 2446, 2814, 3632, 6009, 6054, 1353, 5666, 5727, 3168, 3332, 3337, 3501, 3637, 3638, 4546, 4975, 707, 6448, 2460, 2655, 4240, 4409, 6331, 6245, 5372, 2664, 5198, 4702, 2666, 3187, 4414, 5877, 1365, 1574, 1367, 5593, 3354, 3355, 4709, 4090]. Design [4256, 6398, 1674, 5519, 3361, 929, 1816, 1372, 4262, 4572, 5521, 3953, 4268, 4269, 5000, 2866, 544, 2691, 1923, 5138, 5139, 2357, 2048, 2049, 5394, 1927, 2190, 3056, 4439, 3218, 5397, 3060, 736, 3063, 3064, 1466, 933, 4104, 5152, 4584, 5326, 1393, 2060, 2558, 3069, 4594, 557, 1613, 2078, 52, 4608, 1409, 2219, 2222, 382, 5699, 2232, 4003, 2568, 4162, 573, 812, 960, 5706, 2761, 2940, 2412, 3599, 2112, 2585, 2419, 1977, 4516, 2591, 1754, 968, 2277, 4037, 5349, 3146, 3885, 1534, 2607, 4523, 3618, 3744, 2306, 3623, 3624, 2630, 4839, 644, 2445, 2316, 3163, 2817, 2149, 1078, 3170]. Design[3176, 3177, 2152, 987, 3507, 713, 4706, 3020, 3350, 3520, 6399, 3657, 6297, 4716, 6108, 3952, 3668, 2368, 3374, 4446, 4736, 4740, 2230, 6405, 903, 6078].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8

39

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Eigenvectors [2678].
Eleventh [2256, 6156, 6107].
Eighth [6276, 6155].
Eignung [1597].
Ein- [2365].
Einbettung [1267], einem [1529].
einfach [1668].
einfacher [1691].
Einführung [2974].
Einige [1157].
einem [1529].
einfach [1668].
einfacher [1691].
Einf¨uhrung [2974].
einige [772, 350].
einplatinenrechner [1973].
eins [502].
Eisenstein [3577].
eispack [2954, 3123].
elastic [2291, 2293].
electric [1600].
Electrical [8, 6140, 6463, 2439, 6400, 42, 5642].
´Electrique [2439].
electro [6123, 6184, 6144, 6168, 6123].
electro/80 [6123, 6123].
electro/83 [6144].
electro/86 [6168].
electro/88 [6184].
elastic [2291, 2293].
Electrologica [5355].
electromagnetic [3774].
Electronic [124, 3388, 673, 109, 6423, 6283, 113, 114, 132, 152, 82, 45, 370, 485, 6400, 123, 212, 66, 263, 52, 383, 889, 95, 56, 155, 83, 55, 3438, 1089].
elastic/mechanical [3388].
electronically [2713].
electronic/mechanical [3388].
electrons [62].
Elektronik [240].
el¨e¨onentens [3808, 4487].
erelementaren [599, 1597].
erelementarer [350].
el¨e¨onenten [4921, 4487, 4181].
el¨e¨onentalen [4921, 4487, 4181].
Eleventh [6275, 6263].
elicit [3772].
Eliminate [1130, 1007, 1108, 3239, 1188, 1351].
Eliminating [2059, 3722].
Elimination [3251, 5562, 3152, 5587, 5410, 1704, 1710, 2605, 1449, 1376, 1821, 1920].
Elephant [5394].
Elliptic [5222, 5404, 4106, 5539, 4110, 5988, 4460, 5024, 5418, 5767, 4164, 4363, 4192, 2993, 4221, 4401, 4540, 4231, 4403, 4544, 4234, 4243, 4705, 4251, 4422, 1812, 5387, 3658, 3698, 4026, 6010, 3197, 5010].
Elusive [4391, 5203].
ELXSI [1592].
Email [3334].
Embedded [6334, 5921, 6411, 6422, 6437, 6466, 3742, 5787, 2816, 5587, 5594, 2379, 3690, 5991, 4924, 4673, 4406, 3763, 5211, 5212, 5214, 5393].
Embedding [957, 1267].
Emergence [529].
Emerging [6337, 6399, 6430].
emphasis [6380].
Empirical [1051, 6179, 5362].
Employing [688, 5294, 5792, 1274, 578, 914, 2374].
empty [3287].
emulate [3188].
Emulation [4456, 5159, 3256, 4880, 1114, 3555].
Enable [3334, 3921, 3753].
Enabled [4349, 5859, 5950].
Enclosing [3546, 1187].
Enclosure [6237, 3419, 3510, 4360, 6353, 4230, 5505].
Encoded [1702, 4104, 872, 2698, 3053].
encoder [2181].
Encoding [5045, 5249, 4330, 4483, 3145, 5788, 1545, 2388, 1094, 4880, 425, 2848, 4295].
Encodings [5769, 5643, 3921, 4881].
Encryption [3587, 4248, 3129].
End [5775, 3794, 1426, 5774, 3443, 2197].
end-points [3794].
ENDGame [6051].
Endlicher [772].
Endomorphism [4907, 5996].
Endomorphisms [4164, 4407].
Energy [5743, 5605, 5260, 5451, 5705, 5932, 5665, 4545, 5119, 4572, 3386, 4648, 5642, 2673].
Energy-
Examining [591]. Example [5332, 4144, 667, 4912, 1149, 285, 5379].
Examples [8, 764, 2783]. Exascale [5624, 5630, 5699]. ExBLAS [5780].
Exploration [5242, 5639, 5872, 4709, 4734, 4975]. Exploring [3657, 5435]. Expm1 [2488, 2864]. Exponent [5232, 5658, 2882, 1937, 2792, 4673, 3175, 5738, 2711].
Exponential [5327, 5910, 217, 1855, 3996, 5918, 1427, 4017, 3453, 1875, 1646, 5950, 4963, 5185, 4698, 2355, 2485, 5682, 1107, 3811, 561, 4151, 4512, 4631, 4642, 3595, 172, 3320, 2649, 4553, 376], exponentially [1936]. Exponentials [616, 1744, 2980, 724]. Exponentiation [3807, 5048, 3576, 5453, 5557, 6065, 3288, 3455, 4191, 3612, 5954, 5800, 712, 5122, 3673, 3786, 1392, 5626, 4128, 456, 3709, 4789, 3850, 4047, 6015, 2863, 5149, 5151].
exponents [3914, 4994]. Export [3587]. Expressing [2168]. Expression [2991]. Expressions [4592, 675, 748, 5438, 2930, 2762, 5729, 656, 1815, 1462, 1109, 5440, 5336, 5804].
Extant [371]. Extended [2725, 297, 5060, 5061, 2582, 2421, 5856, 5937, 2279, 3614, 5097, 5870, 3184, 1371, 932, 667, 1013, 940, 957, 3859, 2971, 582, 4387, 5584, 4687, 1252, 4994, 2696, 4620]. extended-precision [667, 3859, 582].
Extended-Range [371]. Extending [1398, 5026, 568, 3585, 5795, 1789, 4130].
Extension [1179, 4111, 3687, 2526, 3704, 1629, 5638, 5462, 4947, 4948, 4949, 5279, 3611, 2602, 706, 850, 3015, 2160, 3929, 1832, 1383, 4117, 5338, 681, 4703, 2345].
Faithful [4116, 5792, 2101]. Fall [6081, 6091]. Falls [6377]. Family [2375, 4599, 1482, 1483, 2531, 5166, 1730, 5454, 4565, 2957, 3131, 3886, 4193, 1544, 3156, 4087, 3658, 5141, 4293, 2379, 5162, 5709, 6177, 2440, 2807, 3205, 3222].
Fast [4834, 2995, 4540, 2448, 6007, 5503, 5798, 5799, 4973, 5114, 1077, 850, 4230, 4403, 4544, 5589, 2650, 2651, 3640, 3914, 5118, 4855, 3645, 4414, 4245, 4555, 1575, 2031, 5208, 5305, 5376, 1450, 1090, 4710, 2344, 4256, 6015, 3034, 2345, 2347, 2480, 2483, 1590, 2045, 1000, 5736, 3212, 3213, 5983, 785, 291, 2707, 2879, 3225, 3226, 3377, 5010, 5148, 5149, 5739, 2709, 5686, 4293, 5015, 5016, 2720, 4620, 4100, 4727, 2057, 5984, 742, 2886, 2379, 882, 5548, 1406, 1950, 3273, 4629, 2750, 2927, 3710, 3838, 4342, 3848, 4642, 4507, 2107, 1636, 5269, 1867, 4023, 3117, 1138, 1214, 4026, 5277, 3125].
Fast2Sum [5830, 5908]. Faster [1845, 4476, 2923, 3102, 95, 5065, 5264, 4164, 5464, 5351, 6048, 4234, 1816, 2701, 5814, 5821, 2563, 2872]. Fastest [424, 2892].
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

3147, 1064, 3742, 5944, 3457, 2508, 1936, 2913, 1967, 5944, 5154, 1706, 5620, 682, 4641, 897, 2580, 3125, 3126, 2591, 3129, 5081, 3457, 2274, 1881, 477, 4046, 5864, 632, 910, 2629, 2999, 3632, 2325, 5191, 2822, 5115, 2159, 3188, 4706, 5678, 4427, 4713, 3199, 4574, 3952, 120, 1693, 495, 496, 2192, 2501.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

2651, 5193, 1899, 593, 1240, 2455, 2153, 5728, 650, 4079, 5729, 2658, 2659, 3013, 5303, 4700, 5372, 5198, 599, 6011, 2163, 2164, 1159, 3571, 5877, 2165, 923, 3019, 2166, 4419, 2167, 2669, 4860, 5206, 5207, 5375, 5197, 5745, 13769, 1451, 3928, 1369, 1672, 4709, 4864, 4256, 4564, 4865, 5516, 4867, 2845, 5385, 5595, 3528, 2346, 182, 2846, 2677.

Floating-point [2852, 3039, 3040, 3201, 3533, 3534, 2177, 5679, 5809, 5810, 6058, 1916, 2857, 2481, 4714, 1373, 1374, 1682, 5309, 4877, 1255, 5598, 1683, 5311, 2355, 2487, 2488, 2864, 1380, 5312, 1686, 3369, 4720, 5812, 3954, 545, 3206, 5735, 5137, 1923, 784, 5313, 2693, 3370, 2695, 3209, 5978, 660, 3672, 3054, 5889, 2190, 1383, 1599, 2496, 4889, 5008, 5145, 5146, 5321, 5322, 5399, 1269, 1929, 2874, 186, 3061, 2193, 5011, 2504, 740, 2882, 1604, 5152, 3968, 6064, 4896, 5325, 5403, 4897, 5153, 5017, 5445, 5626, 4438, 4307, 4302, 2062, 2063, 379, 3075, 1843, 4118, 2214, 1482, 1483, 1615, 5035.

Floating-point [4607, 4766, 2386, 5991, 2543, 2544, 5695, 5753, 1411, 1721, 2094, 1956, 3574, 5050, 4492, 1309, 4501, 2406, 2253, 274, 3592, 4938, 2073, 2211, 5547, 4598, 4911, 2213, 2077, 2523, 3908, 1710, 4129, 4601, 4912, 5906, 3565, 2078, 5033, 5333, 4132, 945, 4605, 2080, 946, 1117, 5549, 3085, 4767, 2082, 6030, 1292, 3259, 4768, 1488, 4771, 1951, 2542, 3697, 4325, 3817, 3820, 1492, 5247, 5439, 1857, 3826, 4484, 5250, 2228, 2739, 2740, 2741, 3832, 5168, 5169, 2557, 5446, 2922, 4338, 3835, 2924, 218, 4630, 4925, 5049, 4157, 891, 4341, 4927, 4781, 2233, 3998, 2751, 5055, 459, 1630, 1631, 5057, 681, 1043, 4004, 1864, 1633, 1865, 758, 465, 5063, 959, 5920].

Floating-point [2759, 2249, 4641, 4506, 4644, 2939, 573, 812, 960, 1132, 1202, 1636, 3285, 2761, 2940, 1740, 5267, 1741, 2412, 1742, 5455, 4547, 4648, 5708, 5772, 1206, 220, 150, 1747, 4171, 4650, 3443, 5563, 3860, 4356, 4513, 2763, 2764, 3291, 3446, 1321, 1137, 1870, 3292, 3120, 3464, 2417, 5075, 5076, 1642, 6002, 6042, 5468, 1977, 5469, 1139, 5741, 2270, 1142, 1760, 1644, 3458, 4947, 4949, 5279, 2115, 2116, 3870, 1060, 1143, 1763, 4519, 5644, 2773, 5478, 5479, 1526, 5710, 5855, 5935, 2121, 2280, 2281, 2964, 1985, 1986, 3305, 3464, 3465, 4037, 5484, 4521, 2781, 3141, 3307, 3142].

Floating-point [578, 434, 690, 2284, 2285, 2286, 4664, 2607, 2291, 2293, 2294, 1436, 1650, 5353, 3473, 3740, 4668, 5355, 3311, 767, 830, 903, 4046, 4669, 2433, 3152, 2132, 2133, 5656, 6004, 5947, 3743, 5572, 5864, 698, 2614, 2794, 2978, 4382, 5713, 5659, 4672, 4211, 4388, 4390, 3746, 4673, 480, 525, 5359, 1655, 5100, 5360, 5661, 1540, 4053, 5717, 4675, 6050, 979, 1891, 527, 589, 700, 701, 365, 637, 528, 5718, 4677, 1892, 1893, 1349, 5793, 2142, 2007, 2629, 4838, 5105, 1548, 1549, 644, 2445, 5501, 5583, 3326, 5107, 4683, 4840, 5109, 5110, 5111, 5189, 5298, 2446, 1895, 3751, 4842, 5190, 1791].

Floating-point [2146, 2320, 2323, 2635, 3497, 5723, 2818, 2326, 2327, 914, 4066, 4543, 2150, 3005, 5873, 3170, 3757, 4693,
5115, 5589, 5875, 440, 4068, 3007, 5116, 5301, 5590, 915, 5506, 916, 3642, 3919, 4549, 4696, 5507, 2154, 649, 919, 2155, 2831, 3644, 2158, 2461, 3184, 2465, 2664, 2838, 4701, 3922, 1248, 853, 854, 4857, 1161, 1162, 1249, 655, 990, 2840, 3188, 1576, 4706, 3349, 715, 5671, 5377, 5378, 5592, 5880, 5513, 3765, 1252, 4707, 4421, 1810, 5514, 927, 284, 2342, 3767, 5382, 718, 1909, 2170, 4708, 5733, 658, 659, 3031, 3654, 3937, 4563, 5306, 3770, 4257, 4711, 4712, 3772.

[135, 383] floating-point
[3525, 2671, 2672, 2844, 3036, 2175, 3527, 3656, 4427, 1912, 3774, 3944, 4258, 3657, 2856, 2178, 1093, 2552, 2535, 4259, 4260, 4431, 5130, 5131, 1681, 1375, 259, 1376, 1920, 4571, 3949, 341, 4573, 781, 2688, 2689, 3047, 4879, 120, 1379, 1684, 1827, 1831, 2865, 5977, 1594, 3205, 4270, 4721, 3207, 1261, 4098, 1688, 1595, 1833, 3958, 4099, 1925, 872, 4724, 4725, 664, 735, 2361, 2363, 4276, 4277, 5006, 1266, 2052, 2366, 785, 3787, 4580, 4730, 5007, 5147, 5527, 5890, 1692, 1601, 2192, 4890, 736, 2371, 1174, 261, 3062, 1835, 2194, 1271, 1695, 1466, 4733, 5013, 5324, 5529, 877, 2503].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 56

2075, 4472, 3408, 2218, 1852, 345, 4771, 2389, 2232, 2398, 5054, 2934, 2244, 135x144
2060, 3099, 60, 3069, 612, 3074, 3685, 1698, 1699, 5691, 4594, 2067, 1015, 2073, 874, 1175, 1105, 1694, 2880, 4732, 5011, 4104, 1274, 2719, 3381, 1393, 2043, 1826, 3953, 4269, 1594, 869, 5978, 5141, 5318, 5394, 5142, 4278, 1101, 1102, 3933, 3027, 3028, 3771, 3939, 4865, 1582, 2673, 662, 997, 70, 1257, 1822, 1824, 1894, 982, 4399, 3904, 1553, 3332, 3501, 4851, 1798, 3338, 4069, 3507, 177, 4410, 3624, 523, 1343, 4052, 5959, 2804, 3317, 203, 1541, 1784, 320, 5962, 2627, 2630, 1535, 2973, 521, 5784, 5942, 1994, 3313, 4820, 696, 115, 202, 3897, 4389, 1069, 3624, 523, 1343, 4052, 5959, 2804, 3317, 203, 1541, 1784, 320, 5962, 2627, 2630, 1894, 982, 4399, 3904, 1553, 3332, 3501, 4851, 1798, 3338, 4069, 3507, 177, 4410, 4411, 4552, 4856, 5372, 2837, 63, 651, 2335, 923, 5373, 5593, 445, 601, 3929, 3652, 3933, 3027, 3028, 3771, 3939, 4865, 1582, 2673, 662, 997, 70, 1257, 1822, 1824, 2043, 1826, 3953, 4269, 1594, 869, 5978, 5141, 5318, 5394, 5142, 4278, 1101, 1102, 874, 1175, 1105, 1694, 2880, 4732, 5011, 4104, 1274, 2719, 3381, 1393, 2060, 3099, 60, 3069, 612, 3074, 3685, 1698, 1699, 5691, 4594, 2067, 1015, 2073, 2075, 4472, 3408, 2218, 1852, 345, 4771, 2389, 2232, 2398, 5054, 2934, 2244,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

2568, 2246, 4791, 5920, 4507, 4647, 4648, 3859, 3293, 3294, 2768, 2263, 2269, 2116, 3870, 5583, 1221, 1880, 4661, 1887, 3891, 5575, 4672, 907, 2618, 4214, 4392, 4676, 2806, 5497, 2438, 44, 2808, 2996, 6077, 2445, 4222, 2819, 1078, 3639, 4545, 2649, 5588, 3916, 4070, 4548, 3011, 5120, 5507, 2460, 4553, 2465, 4701, 1904, 77, 3514, 990, 1577, 5376, 3030, 3031, 994, 2856, 4872, 1681, 3537, 1096, 3210, 5397.

High [2497, 2718, 3231, 2558, 1947, 2449].

High-Accuracy [1876, 1879, 5937, 1582, 1709, 1681, 1947, 2449].

High-Dimensional [5962].

High-end [1426].

High-frequency [4661].

High-Level [5962].

High-Order [1944, 3419, 982, 3027, 3028].

Highlights [3382, 4755, 4596, 6029, 1059, 3608, 5959, 5545, 5611, 5746, 2497].

High-Radix [5330, 3092, 2973, 3897, 3338, 4865, 3953, 4269, 4128, 4069, 4410, 4552, 3027, 3028, 2269, 2649, 3916, 4070, 4548, 4553, 3030, 3031, 1096].

High-Performance [6305, 1475, 5430, 3569, 4138, 3694, 4612, 5263, 4804, 4029, 4851, 5372, 5978, 5141, 5318, 5394, 4516, 2115, 4389, 3099, 3069, 5691, 4947, 4771, 4647, 4648, 3859, 2808, 3170, 4545].

high-period [5054].

High-Precision [3382, 4755, 4596, 6029, 1059, 3608, 5959, 5545, 5611, 5746, 2497].

High-Speed [787, 1110, 1281, 5237, 676, 618, 4327, 243, 1499, 101, 5769, 1316, 171, 5643, 4577, 3302, 4612, 4647, 4648, 3859, 2808, 3170, 4545].

High-speed [997, 1102].

High-Throughput [5329, 4820].

high/variable [2218].

Higher [6276, 421, 500, 788, 5693, 6346, 1485, 2391, 1505, 2276, 2793, 5294, 2448, 5665, 2030, 1809, 1098, 1925, 498, 2945, 2778, 2963, 2318, 4866, 3674].

Higher-Order [6276, 2945].

Higher-Radix [1505, 498, 421].

Highlights [970].

Highly [4589, 2383, 5247, 5439, 1738, 4019, 474, 2443, 3783, 2091, 1749, 4550, 1385, 1386].

Hilfe [350, 29].

Hilton [6263, 6167, 6187, 6203, 6338].

Hindi [371].

Hisab [371].

Histogram [5125].

Historical [5295, 5807, 485].

History [788, 6288, 74, 19, 4030, 2594, 3883, 18, 2810, 2360, 5636, 1971].

HMFPCC [5744].

Hobbit [2953].

Hochgenaue [1947, 2449].

Hogenauer [3719].

höheren [1022].

HOL [4301, 5327, 3259, 3260, 3289, 3595, 4017, 5781].

HOL95 [6276].

Holiday [6161].

Homogeneous [1868, 5105].

Hong [6378].

Hood [6012].

Hopped [4446].

Horizon [2185].

Horizontal [1952, 2427].

Horner [4467, 4603, 2236, 4795, 4796, 4937, 5092, 5497, 5880].

Hot [3699, 4327, 6311, 3413, 3414, 3415, 3815, 4328].

Hotel [6385, 6386, 6100, 6141, 6556, 6626, 6228, 6240, 6241, 6314, 6338, 6394, 6395, 6396, 6126, 6459, 6357, 6298].

Hough [687].

Hour [3465].

House [6114, 6154].

Householder [2589].

Houston [6139].

Howard [3956].

Howell [1019].

HP [1531, 4211, 4388, 2002, 2139, 4576, 4720].

HP-15C [1531].

HP-UX [4211, 4388, 4576, 4720].

HPC [5448].

HSD [3901].

HSD-1 [3901].

HUB [5889].

Huffman [4189].

Huge [6035, 2821].

Hull [3450, 3864, 3138].

Hulls [3400, 2797].

human [6456].

Hundred [4322, 3996].

Hungary [6322].

Hurts [3733, 3734, 2424].

Hvordan [1244].

Hyatt [6205, 6217].

Hybrid [5222].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

5404, 5744, 1707, 5828, 5836, 5916, 5463, 3880, 5494, 3901, 3183, 5734, 2184, 4282, 5531, 4584, 5325, 5620, 3828, 384, 5468, 2300, 2612, 4060, 1827. **Hybrid-mode** [5744]. **Hyderabad** [6422]. **Hydra** [539, 539]. **Hydrodynamic** [5860]. **Hydromodernics** [6079]. **Hyper** [4213]. **Hyper-systolic** [4213]. **Hyperbolic** [5973, 211, 3113, 172, 725]. **hypercube** [2111]. **Hypercubes** [2756, 2796]. **Hyperelliptic** [4407, 3760, 4293]. **Hypergeometric** [1778].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Loops
Loop
Lookup
Lost

Look-Ahead
4974, 2015, 4241, 3666, 5000, 742, 2538, 3852, 5277, 6005, 3780, 2045, 4737.

long-term
3486, 4238, 780, 3953, 3579, 2568, 4357, 5489, 2466, 2674, 5518, 5596, 5401.

Lossless

Low-

Low-

London

Log

Logarithmic

long-term [2466].

Look [5633, 3720, 1639, 4021, 3290, 4847, 4974, 2015, 4241, 3666, 5000, 742, 2538, 3852, 5277, 6005, 3780, 2045, 4737].

Look-Ahead [5000].

Look-Up [1639, 4021, 4847, 2015, 4241, 3666, 2390, 2538, 3852, 3780, 4737].

Lookahead [3987, 3312, 1897, 5014, 2537, 1796].

Lookup [5262, 3849, 4818, 4217, 4836, 5499, 2017, 2018, 5973, 3651, 1452, 928, 2684, 3696, 3287, 3868, 4656, 3178, 3179, 3917, 3011, 1931].

Loop [3237, 2960, 5190, 2055].

Loops [3086, 4413].

LORIA [6417].

Lost [1422, 5371, 1421, 1864].

Lossless [556, 4883, 2192, 3540].

lossy [6030].

Lost [751, 5565].

Lösung [1501, 4296, 4585].

Louis [19, 6173].

Louisiana [6185, 6314, 6399].

Louisville [6154].

Low [2721, 4749, 4750, 1250, 1702, 5911, 560, 4610, 4769, 4612, 3699, 5043, 5044, 5052, 3842, 3429, 4013, 1316, 3721, 5459, 3597, 4804, 5469, 5564, 3869, 4522, 3739, 5652, 5942, 4824, 4209, 4058, 5663, 3907, 3908, 3909, 4687, 4233, 4405, 4079, 4240, 6331, 5670, 5372, 4556, 4557, 4704, 4858, 5205, 3929, 4710, 5516, 603, 5386, 5734, 5811, 5311, 2867, 873, 4283, 3790, 5688, 5699, 2766, 5468, 3728, 5282, 3741, 4526, 5495, 3627, 4848, 2149, 3506, 5506, 3641, 2460, 2841, 994, 4996, 2494, 3791, 4732].

Low-Complexity [5205, 3739, 4824, 3791, 4732].

Low-Cost [1280, 1702, 5052, 3597, 5564, 5663, 5372, 603, 5811, 873, 1316, 5468, 2149, 460, 994].

Low-dimensional [4687].

Low-frequency [2721].

Low-Latency [5386].

Low-level
Low-Power [4612, 4804, 5652, 3907, 3908, 4233, 6331, 3929, 4710, 5516, 5311, 4610, 3842, 3429, 3909, 3741, 4848, 5506].

Lower [1844, 3495, 5204, 5692, 4360, 5203, 2686].

LS [4268].

LSB [1779].

LSA [4268].

LSB [5281].

LU [4618].

Lubbock [6161].

LUCA'S [1558, 1384, 609].

Luigi [5606].

Luminy [6295].

LX [517].

LX-1 [517].

Lyapunov [5738].

Lyon [6373, 6289, 6476].

LZA [2417].

M [22, 3121, 4043, 4669, 4707].

M.I.R.A.C.L. [2174].

M68000 [1482, 1483].

MA [6386, 6197, 6090, 6123, 6184, 6454, 6168].

MAC [4763, 5693, 5559, 5662, 4079, 3949, 4737, 2205].

MACHER [2093].

Machine [61, 5987, 1473, 126, 2383, 40, 2093, 193, 950, 1416, 3853, 4794, 816, 307, 3862, 2954, 3429, 2994, 1367, 1166, 5307, 1749, 2775, 13, 700, 3492, 5583, 2041, 604, 1831, 1262, 2699, 2366, 3787, 2529, 2639].

Machine-Checked [3862].

machine-independent [700].

Machines [25, 34, 58, 77, 1163, 3358, 451, 29, 538].

Macintosh [3077, 2770].

MacLISP [771].

Macro [4359, 3042].

Macro-Model [4359].

Macrocell [5036, 3752, 3678].

Macrocellular [804].

macromodule [715].

Macros [1494].

Macsyma [892].

Mactaggart [2738].

MAD [2520].

Madison [6113].

Madrid [6418].

magic [3587].

main [344].

Mainframe [5220].

Mainly [8].

Mainstream [3587, 2405].

Maintaining [3362].

major [3657].

Majority [4163, 5852].

Majority-Logic-Decodable [4163].

majors [2681, 2858].

Make [5994, 5137, 126, 2383, 40, 2093, 193, 950, 1416, 3853, 4794, 816, 307, 3862, 2954, 3429, 2994, 1367, 1166, 5307, 1749, 2775, 13, 700, 3492, 5583, 2041, 604, 1831, 1262, 2699, 2366, 3787, 2529, 2639].

Machine-Checked [3862].

machine-independent [700].

Machines [84, 6069].

Macromodule [715].

Map [5711, 5685, 3698, 3056].

MAPLD [6372].

Maple [6258, 5186, 3447, 5120, 6299].

MAPM [4247].

Mapping [2907, 541, 4895].

Mappings [405].

March [1396, 6210, 6253, 6139, 6309, 6125, 6141, 6155, 6161, 6280, 6380, 6405, 6230, 6330, 6424, 6163, 6356, 6331, 6113, 6468, 6260, 6136].

Mark [1830].

Market [3334, 1892, 3205].

Marketing [4037].

Markov [5417].

Masking [3251, 2058].

Perfect [1508]. Nearest [5850, 5488, 5509, 5207, 5304, 5672]. Nears [3587].
nbst [538]. Necessary [4319, 3889, 708, 4098]. Need [1611, 1330, 5133, 3672, 5642].
Needed [1207, 3334, 3339, 487, 727, 4982]. Needle [4035]. Needle-like [4035].
needs [2949, 2950]. Neergaard [486]. Negabinary [742, 1008, 1177, 1275, 1286].
Negabinary-Binary [1177]. Negative [786, 753, 385, 245, 1338, 580, 595, 4412, 716, 717, 5134, 121, 606, 553, 4333, 5498, 119].
Net [3587]. Netherlands [6431, 6254, 6310, 6244, 6376]. Nets [546, 2053].
Network [6305, 6038, 1535, 4194, 5944, 5795, 3553, 3682, 4736]. Networking [6416].
Networks [6403, 1030, 756, 804, 2754, 3278, 1524, 6045, 844, 6059, 2084, 2913, 3848, 2584, 3664, 2717, 6017].
Neue [1397]. Neuenahr [6163]. Neumann [6172, 5918, 624, 5562, 5927, 3603, 520, 210, 6072, 6073, 6074, 6076, 6078, 6079].
Neural [6038, 6045, 4194, 5944, 6059, 6017, 2913, 3350, 2717].
Neuroprocessors [5687]. Nevada [6198, 6403, 6081, 6091]. Never [5444].
News [3587, 2502]. Newton [3384, 5990, 4596, 751, 3826, 5704, 4011, 4652, 4802, 3140, 3144, 475, 4955, 5360, 1234, 2632, 2813, 3161, 412, 532, 2830, 534, 5975, 3195, 488, 3955, 4273, 6062, 4730, 4889, 5146, 3231].
Next [5925, 5348, 5220, 2521, 3286, 6310, 2445, 3222]. Next-Generation [5348, 5220]. Nice [2236]. Nicholas [466].
nodes [2552, 5963]. Noise [1401, 3255, 747, 5560, 2581, 3151, 730, 2852, 3565, 622, 682, 758, 3115, 3445, 2781, 3143, 2286, 1148, 1149, 828, 2433, 2336, 2468, 775, 524, 993, 3608, 2301, 495, 496, 497, 2501, 2503, 2374]. noise-tolerant [3668].
noises [3669]. nombres [3440, 6102]. Non [343, 788, 5638, 462, 1204, 4518, 1533, 3471, 1228, 5955, 4051, 6009, 3337, 5511, 5885, 163, 4892, 1701, 1182, 5440, 4333, 3103, 3104, 5558, 4936, 3722, 2771, 3139, 3477, 3622, 2492].
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

additional contributions from Nelson H. F. Beebe

80

_ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

4655, 4198, 5881, 3524, 3662, 6063, 4288, 3984, 3847, 3029, 4428, 4571, 3665, 3059, 4448, 4586._

Operations [5020, 4, 5987, 3396, 5543, 4757, 4908, 5230, 84, 168, 3086, 3827, 4773, 1955, 5628, 109, 170, 130, 352, 4646, 4168, 468, 5466, 5939, 1062, 2427, 5488, 1227, 4820, 1782, 153, 5294, 5188, 256, 5795, 3502, 3637, 98, 442, 99, 444, 4566, 5598, 2695, 3059, 4448, 4586._

Optimisation [3402, 6380, 3471, 5942, 907, 4397, 3337, 4406, 3011, 3516, 5515, 3531, 5319, 2537, 2228, 2557, 3717, 3842, 2576, 5349, 2286, 5115, 3190, 5733, 5883, 6380].

Optimizations [3801, 3284, 4010, 4419, 4291, 4468, 5873]. optimize [5572, 5977].

Ordering [2166, 2309, 2791]. Ordinary [151, 3910, 4936, 336]. ordinateur [3012].

Ordinateurs [446, 4318]. Ordinance [6069]. Oregon [6450, 6164].

Organization [6141, 6448, 4268, 1417, 1056, 1640, 1641, 2415, 3444, 4355, 176].

organizations [1749]. organized [6096, 6093]. orientation [5875]. Oriented [6121, 3823, 955, 4031, 3631, 2811, 2647, 1157, 4288, 1891, 4541, 782, 3668].

origin [364]. original [3804, 3153]. Origins [5562, 6132, 652, 653, 711, 6106, 920, 1156]. Orlando [6444, 6235, 6188, 6441, 6136]. Orleans [6223, 6185, 6141].

Orthogonal [2034, 338, 4312, 3423, 3711, 4444, 4445].

Other [1062, 3502, 3637, 6076, 4037, 2644, 3178, 3179, 3944, 3056]. otsenochnoi [2209]. Our [12, 6213, 4530]. Out-of-Order [4184, 3928]. out-of-order-
Perfectly

Pentium(R)

Peculiar

pattern

Pat

Parallelizable

Parameter

Parameterisable

parameters

parametrisable

Paranoia

parasitic

paranitary

Park

Parliament

Par[...]

Parallelism

Parallelization

Parallel-array

Parallel-Prefix

Parallel-Verarbeitung

Parallelism

Parallelizable

Parallelization

Parameter

Parameterisable

Parameters

parametric

Paralysis

Paris

Part

Partition

Partitioned

Partitioning

Partitioning

Partitioned

Parallelogram

Partition

Pascal

Particular

Particularly

Partition

Part[...]

Pascal

Pass

pass-transistor

passion

Pass

Pat

Patentees

Path

Paths

Patriot

pattern

patterns

Paul

PBHD

PC

PC/AT

PC/AT-based

PC/XT

PC/AT-based

PC/XT/AT

PCE

PCs

PC/AT

PC/XT/AT

PCE

PC/AT

Part

Paso

PASCA[...]

PASCAL-SC

Paso

Pass

Pass

Pat[...]

Path

Path[...]

Paths

Patriot

pattern

patterns

Paul

PBHD

PC

PC/AT

PC

PC/AT-based

PC/AT

PC/XT/AT

PCE

PC/AT

Part

Paso

PASCA[...]

PASCAL-SC

Paso

Pass

Pass

Pat[...]

Path

Path[...]

Paths

Patriot

pattern

patterns

Paul

PBHD

PC

PC/AT

PC/AT-based

PC/XT/AT

PCE

PC/AT
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

85

Point [1277, 2202, 1474, 1937, 2203, 4594, 3976, 4118, 1399, 2379, 2731, 2900, 5331, 5613, 1939, 1181, 1283, 1704, 2071, 2380, 2072, 1706, 5614, 1941, 2207, 2520, 3081, 2902, 2208, 4124, 5026, 5027, 1019, 2073, 1285, 2211, 5547, 4598, 2381, 1114, 4911, 3691, 2076, 2212, 2077, 2214, 2523, 2524, 2908, 1710, 4129, 4319, 4466, 4601, 4602, 4912, 5030, 5906, 3655, 1482, 1483, 1613, 266, 2078, 1615, 5033, 5333, 4132, 3692, 945, 4605, 5035, 2080, 946, 1117, 4607, 4766, 5549, 3085, 4767, 3406, 2386, 1712, 4608, 2082, 2533, 5991, 1850, 6030, 1292, 6031, 3259, 5912, 1293.

Point [4611, 4768, 2538, 3087, 345, 1488, 2539, 3695, 4771, 1715, 1951, 2542, 3571, 3697, 5620, 1295, 1619, 2092, 2543, 2544, 5695, 5753, 2222, 2913, 4325, 5245, 3816, 2914, 3817, 5696, 4613, 4614, 3820, 1411, 1492, 1721, 2094, 5247, 5439, 3992, 2550, 1031, 1857, 3826, 4484, 4332, 383, 1956, 5250, 5441, 3574, 2228, 2739, 2740, 2741, 3705, 3832, 3096, 2555, 5168, 5169, 889, 1195, 2557, 5699, 5446, 2922, 2747, 3100, 3274, 4338, 4489, 4626, 5759, 3835, 2924, 218, 4630, 4925, 5049, 5050, 4157, 4492, 891, 4341, 5388, 4927, 2398, 5054, 2399, 4781, 2233, 3998, 2751, 5055, 2097, 459].

Point [1630, 1631, 1729, 2753, 3838, 1126, 1309, 5057, 4928, 5257, 681, 1043, 4787, 4003, 4004, 4499, 4500, 5341, 4501, 1421, 1864, 2245, 1633, 4502, 1865, 682, 758, 465, 759, 3858, 1128, 5063, 959, 1967, 5920, 2759, 2249, 4641, 2406, 4506, 5558, 4507, 249, 2938, 3111, 4509, 4644, 5559, 2939, 2408, 573, 812, 960, 1132, 1202, 1636, 3285, 2253, 2761, 2940, 961, 2576, 1740, 5267, 897, 1741, 2412, 1742, 5455, 2255, 4647, 4648, 1743, 5175, 5708, 5772, 1206, 1513, 2256, 220, 150, 274, 2580, 3721, 2260, 1747, 4171, 4650, 3722, 2414, 3858, 2942, 3859, 3592, 3443, 5563].

Point [3860, 4356, 4513, 3595, 4938, 2763, 2764, 3115, 3445, 4020, 966, 2945, 3291, 3446, 1210, 1321, 4801, 1137, 1870, 3448, 2111, 3292, 1322, 1215, 3120, 2952, 3866, 2112, 3297, 5278, 4364, 2768, 2417, 2953, 1217, 2585, 5075, 5076, 1642, 2770, 6002, 6042, 5648, 3125, 3126, 1977, 5469, 473, 2591, 764, 1139, 2268, 5471, 630, 2270, 3730, 1142, 1760, 1644, 3135, 3458, 4033, 4946, 4947, 4949, 5279, 2115, 2116, 3870, 4367, 5081, 3457, 1060, 4032, 1143, 1763, 2271, 4519, 5644, 2773, 5478, 5479, 1526, 3138, 5710, 5855, 5935, 2274, 172, 1981, 3835, 3461, 2119, 2778, 2963, 3139, 2121, 2280, 2821, 2122].

Point [2964, 1881, 576, 1985, 1986, 3305, 3464, 3465, 4037, 5438, 4521, 2781, 3141, 3307, 3467, 3142, 578, 434, 690, 2284, 2285, 3143, 3144, 2286, 2287, 1147, 4813, 2428, 2126, 1900, 1534, 278, 477, 4664, 4665, 2607, 1148, 1149, 2291, 2293, 2294, 2786, 1649, 1771, 1436, 1650, 5353, 3473, 3740, 4197, 2976, 3150, 1883, 4668, 5355, 4375, 828, 2790, 3311, 5089, 767, 830, 903, 1889, 5784, 4046, 4669, 2433, 3152, 382, 905, 2792, 2132, 2133, 5944, 5656, 6004, 4380, 4670, 5947, 3743, 5572, 4962, 5864, 315, 698, 2302, 2614,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Polynomials [5690, 4603, 4140, 3837, 5703, 271, 5847, 1150, 2995, 708, 1371, 209, 2053, 4467, 4769, 5169, 4629, 5840, 1419, 1053, 1635, 5175, 967, 6002, 6042, 226, 251, 4385, 1344, 2657, 5512, 5975, 164, 165, 4294, 710, 989].

Polyphase [2226, 4610].

Pope [947].

Port [6167, 3752, 2320, 3048, 1046].

Portability [2745, 6110].

Portable [2729, 5904, 1020, 2915, 2917, 950, 1045, 1129, 4247, 4250, 1599, 932, 1273, 4299, 3678, 1608, 5691, 2550, 5853, 910, 3919, 3036].

Portland [6450, 6203, 6164].

Porto [6430, 6468].

Portugal [6375].

Posit [5926].

Position [5828].

Position-Residues [5828].

Positional [5296].

Positive [245, 1338, 118, 659, 781].

Positive-Integer [118].

Possibilities [1542, 1656].

Possible [373, 5095, 2155, 551].

possibly [4466].

Post [5560, 4780, 465, 6440, 4622].

post-proceedings [6440].

Post-tabular [5560].

Post-ultimate [4780, 4622].

Postcorrection [792, 598].

Postcorrections [619].

Posteriori [3427, 784, 5874, 1920].

Postscaled [4217].

Postshifts [1451].

Postsmoothing [2539].

Potential [4343, 3547].

Potentially [4281].

pour [4487, 2629].

pow [5290].

Power [4310, 1482, 1483, 2911, 3568, 5242, 4612, 3699, 565, 4013, 5459, 4359, 4363, 4804, 5652, 5942, 5578, 3907, 3908, 4542, 5872, 4849, 4233, 4079, 4240, 6331, 5372, 4251, 5974, 5881, 3929, 3935, 4710, 5516, 209, 3666, 5311, 5315, 4887, 5152, 3984, 3985, 4610, 3413, 3995, 5699, 5763, 3842, 4495, 3429, 571, 1206, 3721, 5642, 4016, 4651, 5464, 3728, 2785, 3741, 4058, 3627, 4848, 3909, 4546, 4405, 5506, 4712, 3538, 4098, 2490, 2492, 3056, 4283, 3221].

Power-Delay [3568, 4542].

Power-Efficient [5242, 5974, 5315, 5152, 5763].

power-series [2785].

POWER2 [3069, 3120, 3199, 3222, 3119].

Power3 [3793].

POWER6 [5056, 4905].

POWER7 [5420, 5348].

powering [4241, 4698, 3780, 5682, 4552].

PowerPC [4886, 3077, 3119, 2957, 3131, 3461, 3156, 3929, 3200, 3205, 3221].

Powers [5704, 757, 5088, 6062, 2, 1481, 5772, 5353, 5723].

pp [187, 1396, 197].

Pracniques [311, 319].

Practical [4111, 1472, 3563, 3761, 2462, 3235, 3236, 1147, 907, 4846].

practicality [3746].

Practically [6056, 1450, 5735, 2514].

Practice [6470, 2895, 5156, 6446, 6119, 1571, 2094, 956, 1340, 5099, 5291, 2331, 5975, 1370].

practiced [664, 735].

Prague [6309, 6423, 6453].

Praxis [6119].

Pre [5619, 5453, 3285].

Pre-computations [5619].

Pre-processing [5453].

pre-scaling [3285].

Precimonious [5671].

Precise [2061, 3679, 2528, 5767, 3453, 3872, 4657, 3190, 4870, 4871, 4281, 4922, 2116, 5873, 5216, 5217, 4199].

Precision [5534, 5819, 3382, 4451, 3683, 1398, 3559, 4755, 6024, 4596, 674, 796, 883, 1025, 1026, 1027, 1116, 1183, 4764, 5160, 5426, 5911, 6029, 5237, 5161, 3409, 3410, 346, 5437, 5438, 5621, 5913, 1491, 269, 1301, 1493, 5624, 192, 3271, 4335, 4336, 4487, 508, 4340, 3276, 5340, 5449, 892, 389, 4790, 5062, 5344, 4168, 4353, 5457, 4649, 816, 4177, 6000, 5930, 8, 2113, 3867, 4027, 4028, 4654, 4803, 5079, 1428, 1752, 1875, 68, 1059, 3133, 308, 4368, 3136, 3302, 5783, 5936, 5856, 5937, 1645, 3877, 5484, 3608, 313, 5352, 1651, 1772, 4816, 4818, 5354, 3614,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Problem-Solving [1879].

Problems [555, 5988, 2385, 569, 1740, 2578, 151, 2262, 4368, 5284, 3475, 3510, 1569, 2035, 3530, 4273, 3544, 5986, 5613, 5547, 256, 56, 2576, 1522, 1764, 1653, 58, 1250, 1577, 3955, 3958, 4099, 1385, 1386, 3099, 4391, 6131].
Procedure [5747, 68, 5499, 1076, 3334, 5235, 2286, 700, 5298, 3050, 29].

Procedures [4111, 1708, 468, 3323, 3334, 4694, 1157, 2164, 537, 373, 239, 1147].
Proceedings [6383, 6443, 6107, 6261, 6109, 6221, 6469, 6102, 6179, 6348, 6428, 6445, 6223, 6449, 6286, 6287, 6264, 6138, 6236, 6734, 6430, 6289, 6118, 6348, 6279, 6460, 6360, 6451, 6376, 6150, 6096, 6421, 6323, 6310, 6154, 6204, 6238, 6291, 6325, 6337, 6362, 6378, 6379, 6393, 6394, 6405, 6408, 6422, 6433, 6437, 6465, 6466, 6189, 6083, 6290, 6327, 6302, 6178, 6440, 6330, 6425, 6441, 6093, 6233, 6128, 6273, 6295, 6331, 6296, 6369, 6420, 5374, 6399, 6297, 6342, 6357, 6414, 6304, 6343, 6164, 6195, 6249, 600, 6137, 681, 6209, 6275, 6344, 6417, 6389, 6277, 6403, 6431, 6437, 6432, 6450, 6173, 6129, 6111, 6256].

Proceedings [6282, 6312, 6314, 6326, 6350, 6380, 6396, 6409, 6410, 6411, 6423, 6474, 6118, 6212, 6231, 6439, 6294, 6382, 6162, 6119, 6424, 6143, 6303, 6317, 6442, 6468, 6370, 6472, 6398, 6332, 6260, 6341, 6427, 6263, 6462, 6407, 6244, 6262].
Processeur [2105, 2439, 1899]. Processing [1605, 2884, 6252, 6306, 6388, 1477, 3401, 6182, 628, 2540, 4327, 3422, 5340, 2100, 3280, 815, 1639, 2943, 6041, 517, 6215, 6166, 6228, 6256, 6364, 6378, 6394, 6396, 2958, 2959, 4029, 3972, 2962, 1061, 3462, 2427, 1065, 4525, 6190, 6127, 6294, 6412, 5961, 5104, 6094, 118, 847, 2017, 3517, 6234, 1448, 4565, 6332, 2846, 6260, 3039, 1095, 5605, 3074, 2068, 1016, 2521, 6289, 2220, 2222, 3700, 2555, 4490, 6254, 4787, 6096, 2251, 5453, 5706, 2254, 1513, 2942, 3115, 4801, 3117, 3870, 2596, 3137, 1221, 969, 6083, 3307, 2126, 2786, 1883, 1773, 1885, 1887, 2297, 2790, 4669, 2798]. Processing [6177, 6328, 6339, 6354, 6367, 6381, 6397, 2440, 2507, 2445, 6093, 2827, 4406, 3007, 3008, 2152, 6273, 2467, 5514, 4984, 2676, 3941, 3364, 1914, 6059, 2865, 1262, 6206, 6249, 3056, 1692, 1101, 2371, 2702, 1602, 4103, 4736, 2718, 2719, 2558].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

processing-in-memory [4669]. processing-in-wire [5706]. Processor
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Radix-16 [580, 5504, 5602]. Radix-10 [3079, 790, 4760, 5197, 5588, 3345].

Radix-4 [5254, 2243, 5956, 5114, 2047, 3367]. Radix-64 [2838]. Radix-8 [5430, 3162, 3345, 3655, 5323].

Radix-4 [5254, 2243, 5956, 5114, 2047, 3367]. Radix-8 [5430, 3162, 3345, 3655, 5323].

Range [241, 5232, 4765, 2590, 5477, 5783, 522, 581, 4529, 4847, 541, 1371, 3240, 2542, 3095, 3273, 4153, 4154, 4360, 5100, 3004, 3190, 4098, 4276, 4277, 5006, 3964, 499, 4587]. Range-Addressable [4847]. range-independent [4276, 4277].

Range-Reduction [4765]. Range-Transformation [522, 581].

Ranged [5285]. Ranging [4014]. rank [763]. rank-frequency [763].

Ranker [6020]. Ranks [6020]. Raphson [3826, 5704, 4011, 3140, 3144, 4955, 5360, 2632, 2813, 3161, 412, 2830, 3195, 6062, 4730, 4889, 5146].

Rapid [3808, 193, 30, 309, 229, 4550, 1452, 213, 1292]. rapid-approximation [1292].

Rapidly [2273]. RAS [4226]. rask [1636]. raster [2097].

Rate [460, 5715, 983, 646, 1105, 345, 4214, 4676, 3351, 3210, 2558]. Rates [807, 4696].

Ratio [3086, 3967, 3414, 1971, 2360]. ration [993].

Rational [2079, 388, 1318, 1059, 1327, 2778, 2963, 1882, 2431, 1339, 1651, 1992, 2295, 1231, 1785, 4602, 1551, 5724, 532, 3186, 1363, 209, 2708, 1604, 3794, 5923, 1138, 1214, 1325, 3873, 3874, 1536, 2129, 2432, 5300, 3351, 5216, 5217].

Rational/Radix [1059].

Rationale [2234, 4948]. Rationally [1735]. Rational [1545, 1500, 1627].

RDSP [4474]. Re [2930, 3334, 3746]. re-evaluation [3746].

Reordering [2930]. Reach [3267]. Read [798, 2392, 1801, 4613, 4614, 3373].

Read-Only [798, 1801, 3373]. Reading [5645, 42].

REAL-Arithmetik [1973].

Real/Complex [3556, 5227, 5411]. Realisation [1157, 1899]. Realisierung [1157, 1403].

Realisierungen [1397]. Realistic [1186, 1291, 1049, 946].

Realization [3845, 219, 1137, 1870, 533, 3922, 4768, 1765, 1880, 969, 4058, 4840, 1164, 1403].

Realizations [414, 2199, 1016, 4664, 3649, 495, 496, 4890, 4733]. realized [3085, 3142, 828, 480, 525, 3188, 3677].

RealLib [5090]. really [4473].
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Residue

Residue-number-arithmetic

Residue-number-system-based

Residues

Resist

Resistance

Resistant

Resistor

Resistors

Resizable

Resolution

Resort

Resource

Resource-constrained

Resource-Efficient

Resource

Respect

Response

Rest

Restorable

Restoring

Results

Retaining

Retrofitting

Retrospective

Return

reusable

reveal

revealing

Reverse

Reverse-Carry

Reversed

reversion

Review

Retaining

Retrofitting

Retrospective

Return

reusable

reveal

revealing

Reverse

Reverse-Carry

Reversed

reversion

Review
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Seminar [6446, 6131]. Seminumerical [478, 1335, 3738]. send [1091].
sensor [3964]. Seoul [6324, 6427]. Separate [5496, 117, 3175]. Sept [6436].
September [6287, 6252, 6276, 6306, 6373, 6358, 6346, 6118, 6375, 6420, 6201,
6150, 6462, 6232, 6202, 6100, 6140, 6217, 6325, 6336, 6350, 6351, 6362, 6393,
6395, 6411, 6453, 6229, 6353, 6440, 6162, 6192, 6157, 6273, 6398, 6459, 6332,
6150, 6462, 6323, 6202, 6100, 6140, 6217, 6325, 6336, 6350, 6351, 6362, 6393,
6395, 6411, 6453, 6229, 6353, 6440, 6162, 6192, 6157, 6273, 6398, 6459, 6332,
6443, 6400, 6102]. sequel [2646]. Sequence [51, 2342]. Sequences [398, 403,
5807, 5511, 780, 6021, 3661, 2881]. Sequential [1119, 1502, 3566, 1427, 1646,
403, 1906, 1454, 1676, 1681, 1455, 2076, 4557, 4858, 2350]. Serbia [6465]. Serial
[1938, 559, 503, 3694, 4770, 5041, 1720, 1034, 1497, 1725, 1726, 4775, 5762, 146,
5997, 1511, 1739, 815, 4170, 5273, 4370, 1992, 4958, 4379, 5946, 316, 4828, 843,
5968, 4402, 3331, 778, 734, 4279, 1004, 2015, 2515, 100, 2227, 4485, 2555, 3436,
5706, 2765, 3132, 4381, 4073, 4703, 4708, 2176, 2866, 1385, 1386, 1602, 2196].
sequential-data [2176]. serial-input [2227]. Serial-Parallel [1720, 1739, 2057].
Series [3793, 2549, 3419, 5918, 5927, 2134, 705, 984, 5591, 338, 209, 4312, 93,
1624, 426, 4016, 4651, 5464, 2785, 3483, 985, 4423, 3536, 2111, 966]. Server
[5348, 3654, 2777]. servers [5487, 3792]. services [5183]. Servo [2373]. ses
[15]. Sessions [6123, 6184, 6146, 6145, 6157, 6136, 5657, 6382, 6272, 1756].
Set [5740, 4303, 3407, 2546, 4486, 2743, 3276, 5761, 5638, 5263, 1316, 1746, 2264,
5078, 836, 977, 1574, 373, 4884, 5154, 4107, 6021, 502, 4316, 4472, 2388, 4480,
1037, 1306, 5338, 2398, 4791, 2259, 1747, 3863, 3162, 4702, 4868, 1692, 4735].
set-ups [502]. Sets [1178, 6041, 823, 1072, 918, 2831, 4981, 3940, 4987,
6072, 5320, 3235, 2356, 1187, 6030, 5038, 2924, 4645, 585, 5099, 5291, 3163,
5190, 2352, 5997, 4296, 4585]. Setters [5132]. SEU [2673]. Seven [4841].
Seven-Term [4841]. seventeenth [6344, 862]. Seventeenth-Century
[862]. Seventh [6401, 6382, 6272, 1756]. Several [2961, 1321, 1157].
severe [1864]. Sexagesimal [5806]. SFM [6419]. SFQ [5484]. Shallow
[2653]. Shanghai [6357, 6414]. Shannon [3035]. SHARE [363]. Shared
[1965, 3456, 3322, 2244, 4011, 3741, 3895, 4574, 2497]. Sharing [88]. Sharp
[5855]. sheet [2897]. shelf [4344]. Sheraton [6141, 6228]. shi [6321].
Shift [1032, 756, 391, 684, 1136, 3149, 983, 603, 465, 3857, 2987]. Shifted
[4929, 4977, 3857]. shifter [2346]. Shifters [2020, 4409]. Shifting [1222].
Shiftrix [320]. Shifts [917, 1080, 3753]. Shop [3978, 3979, 3980, 3981]. Short
[4449, 1, 5465, 309, 2273, 2787, 5491, 177, 1568, 3201, 5817, 4357, 3320, 4065].
Shortcut [928]. Shortest [3782]. Shorthand [1251]. shot [2502]. Should
[4147, 2752, 2939, 2574, 2575, 4510, 822, 3323, 918, 2874]. Shrivennham
[6191]. shutter [5506]. shuttle [658]. SIAM [6224, 1214, 6260, 6175, 3603].
sic [4397, 3770]. Sichere [1908]. Side [4221, 4401, 4403, 4544, 4477].
Side-Channel [4221, 4401, 4477]. Siècles [1084]. Sierra [4271]. Sieve
[5632, 3754, 5599, 5755]. SIGACCESS [6401]. SIGAda [6263]. SIGDA
[6385, 6402]. SIGForth [6230]. sigma [3414, 3815]. Sign [5019, 1398,
454, 791, 3810, 3278, 1874, 1984, 1332, 1533, 2019, 5207, 868, 1589, 1596,
4452, 2727, 3081, 4020, 3128, 1652, 632, 5876, 4868, 2633]. sign-magnitude
[632, 2363]. Sign/Logarithm [1874, 668, 1589, 2727]. Signal [6252, 3075,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[3248, 3255, 5834, 1717, 5242, 5060, 5639, 5276, 823, 5872, 5666, 2852, 3674, 3565, 4342, 3143, 4664, 3617, 4975, 1227, 1263, 4679]. Spain [6374, 6418].

Space-Efficient [5666]. Space-Time [1717]. Space/time [3674]. spacecraft [2576]. Spaces [2852, 3674, 3565, 4342, 3143, 4664, 3617, 4975, 2336, 658, 4093, 2506, 5242, 5060, 5639, 5276, 823, 5872, 5666, 2852, 3674, 3565, 4342, 3143, 4664, 3617, 4975, 1227, 1263, 4679].

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Square [3608, 313, 475, 3737, 4815, 3312, 3313, 4201, 4527, 97, 5577, 2799, 3315, 5578, 3316, 2309, 1541, 1784, 586, 634, 2626, 3222, 325, 2811, 2144, 1552, 3160, 2632, 4865, 6009, 1076, 5191, 5504, 5587, 3754, 532, 3337, 1440, 4978, 1902, 4411, 3344, 1568, 651, 1445, 5205, 2031, 538, 926, 5675, 486, 657, 158, 600, 4424, 1812, 3932, 3933, 3524, 3365, 3533, 3534, 3657, 340, 4266, 1459, 211, 5599, 3046, 4436, 184, 2693, 3208, 140, 1268, 4889, 5602, 1928, 5009, 1931, 739, 552, 3970, 2060, 3678, 5588, 3800, 4122, 4910, 1287, 3566, 1983, 2283, 3466, 2965, 3144, 4954, 3741, 2793, 3891, 2978, 3895, 3314, 3477, 3621, 3622, 2984, 2980, 261, 3111, 3351, 1819, 2352, 2353, 5214, 258, 160, 4094, 1378, 4096, 4998, 4097, 64, 69, 4276, 4580, 2877, 2878, 2880, 2881, 5532, 4295, 4738, 4105, 1942, 1341.

Square-Root [4749, 126, 3092, 1965, 1201, 4201, 1541, 1076, 1902, 3533, 3534, 140, 552, 1867, 3137, 4527, 5191, 3685, 1320, 3442, 4022, 4023, 4024, 4802, 5072, 2951, 3298, 575, 3869, 3602, 2596, 3873, 3874, 1983, 2283, 3466, 2965, 3144, 4954, 3741, 2793, 3891, 2978, 3895, 3314, 3477, 3621, 3622, 2984, 2980, 261, 3111, 3351, 1819, 2352, 2353, 5214, 258, 160, 4094, 1378, 4096, 4998, 4097, 64, 69, 4276, 4580, 2877, 2878, 2880, 2881, 5532, 4295, 4738, 4105, 1942, 1341].

Square-Root-X [1395, 1459].

Square-Rooting [1487, 1131, 1784, 651, 3737, 3315, 2144, 1951, 3994, 2757, 3917, 2024, 2877, 2878].

Squares [555, 1726, 2578, 4659, 4667, 634, 591, 1575, 4561, 2065, 1843, 258, 1919].

Squaring [5042, 1427, 4799, 5273, 1646, 4376, 5294, 5968, 4238, 3067, 3232, 2757, 4206, 181].

Squarer [4770, 107, 4282, 4729, 4888, 3961, 3132].

Squares [555, 1726, 2578, 4659, 4667, 634, 591, 1575, 4561, 2065, 1843, 258, 1919].

Squaw [4635, 6455].

SQUID [2581].

ST [6180, 6173, 6433].

ST100 [4686, 4845].

ST231 [5283, 5481].

Stabilität [989].

Stabilitätssatzes [502].

Stable [4819, 1150, 2186, 821, 822].

Stack [6180, 6173, 6433].

Stacking [5884].

Staggered [5232, 3356].

stair [2817].

Stairway [3549].

4563, 1912, 1375, 4719, 3223, 4747]. **Standard** [5987, 4008, 4505, 3494, 2455, 2832, 3017, 3647, 5132]. **Standard-** [1529]. **Standard-Cell** [5429, 5326, 2550]. **Standardfunktionen** [1708, 1947, 1993, 2449, 539, 3193, 1267, 1691, 1708]. **Standardization** [5437, 4624, 5089, 3334, 4438, 2680]. **Standardized** [1562]. **State** [6470, 3248, 3255, 6323, 6310, 6124, 6125, 6186, 6175, 3617, 3565, 6112, 3143, 4664, 2336, 1162, 1249, 2479, 4093, 2503]. **State-Space** [3255, 2852, 3617, 3565, 3143, 4664, 4093, 2503]. **Statement** [3237]. **States** [6126]. **Static** [4612, 677, 4328, 3433, 4168, 4934, 5457, 4673, 4700, 3627, 5109, 6427]. **statistic** [3967]. **Statistical** [4590, 504, 2918, 194, 48, 3727, 1149, 695, 837, 3198, 4247, 545, 6138, 2541, 111, 1148, 3153, 916, 3643, 4075]. **Statistici** [111]. **Statistics** [666, 380, 6139, 516, 4391, 1706, 2945, 257, 2490, 2491, 2492]. **Status** [5256, 3604, 2477, 3464, 713, 4873, 4992, 5211, 5212, 5213, 5214, 5215]. **Std** [1935, 6034, 6043]. **Steamboat** [6420]. **Steering** [5900]. **Stein** [947]. **Stengle** [5971]. **Step** [5907, 1003, 75, 2966, 2967, 2967, 2968, 1003]. **step-by-step** [75]. **Steps** [4163, 5585, 249, 2633]. **Stepwise** [5140]. **Sterbenz** [925]. **Sticky** [3980, 3575, 4074]. **sticky-bit** [4074]. **still** [2077]. **stingy** [2453]. **Stinks** [2579]. **STOC** [6428, 6445]. **Stochastic** [2062, 4593, 5560, 5458, 4678, 4679, 2155, 5733, 5883, 4726, 4588, 4325, 5773, 5998, 5197, 2473, 3055, 3264]. **stochastic** [3264]. **Stock** [3476, 1569]. **STOIC** [1583]. **Stokes** [3412, 3499, 3960]. **stopping** [378]. **Storage** [800, 5266, 253, 117, 5642, 3199]. **Storage-Efficient** [800]. **Stored** [2935, 5346]. **Stored-Carry** [2935]. **story** [5094]. **Strader** [2350]. **Straight** [5887]. **Straight-Line** [5887]. **Strasbourg** [6279]. **Strassen** [5449, 5066]. **Strategies** [5946, 3321, 3984]. **Strawman** [4483]. **Streamed** [5076]. **streaming** [5514]. streamlines [1692]. Streams [5978, 5403]. **Strength** [4566, 3378]. **Stretch** [215]. **Strict** [1920, 2771]. **string** [5984, 3982, 576, 1786]. **Strings** [1666, 769]. **Strong** [3587, 3518]. **Strongly** [2797]. **Structural** [440]. **Structurally** [2088]. **Structure** [217, 620, 679, 1738, 815, 5714, 5807, 2679, 4729, 5382, 4024, 2879, 1066, 369, 4558, 1814, 3677, 1299]. **Structured** [1948, 1860, 4569]. **Structures** [787, 793, 2527, 4327, 5262, 1326, 5949, 4836, 1353, 1559, 1359, 2852, 1169, 5038, 3835, 4361, 828, 3334, 2841, 732, 2189]. **struggle** [6404]. **strukturelle** [2489]. **Strukturen** [2189]. **Studies** [6152, 151, 776, 5818, 759]. **Study** [4111, 504, 3412, 461, 5557, 1051, 148, 6044, 970, 695, 117, 3337, 4084, 1367, 2675, 864, 2692, 3218, 3081, 266, 3085, 2541, 515, 3292, 2585, 1147, 5355, 702, 5718, 5362, 1804, 658, 290, 166, 3229, 1899]. **Stupid** [5749]. **Sub** [3283, 3432, 3429, 2265, 576]. **sub-language** [576]. **Sub-Nanosecond** [3283, 3432]. **Subcommittee** [6092]. **subdivision** [5990]. **Sublinear** [5053, 5170, 5574]. **Subnormal** [4823]. **Subprograms** [4316, 583]. **Subquadratic** [5060, 5061, 5270, 4718]. **Subroutine** [127, 2093, 1046, 1876, 1744, 494]. **Subroutines** [666, 5584, 2168, 457, 443, 120, 1501]. **Subsets** [3334]. **subspace** [3398, 3663].
Substitution [2087, 2269]. subsystem [2222, 2445]. Subtracting [3824].
Subtraction [743, 4320, 4321, 3986, 5340, 1422, 5652, 4528, 4831, 1353, 2030, 415, 4309, 3696, 4475, 1421, 1864, 3661]. Subtraction-free [4831].
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[1674, 6399, 2040, 1915, 2352, 2353, 1824, 1458, 1688, 1595, 3060, 4584, 3969].
VMX [5056]. voice [1951]. Vol [1396, 5541, 5542, 6177, 6094, 6272]. Volta
[6331]. Voltage [438, 3869]. Volume [5556, 3130, 4187, 4305, 6072, 6073, 6074,
6076, 6078, 6079]. volumes [5808]. Voronoi [4506, 5265]. vortex [2897].
VRML [3587]. vs [5848, 288, 4725].

W [6213, 1570, 1571, 486, 337, 418]. W. [687]. WADAS [6263].
Wafer [1719, 6271]. Waiting [1165]. Wakamatsu [6332]. Wallace [5400].
Walls [1396]. Wanted [5841]. Warn [6035]. Warsaw [6350]. was [558].
Washing [2661]. Washington [6103, 6263, 6147, 6243, 6367, 6221, 6461].
wastewater [5121]. watchers [2661]. Waterloo [6432]. Watson [6143].
Wave [175, 3332, 3241, 1195, 1775, 775]. Waveguide [1550]. wavelet [4578].
wavelets [3540]. Waves [156]. Way [580, 3928, 4783, 3349, 5379]. weak
[3547]. weakly [3791]. weather [5067, 6051]. Weierstrass [3545]. Weight
[5043, 5044, 4422, 4813, 3153, 3, 5150]. weighted [1607, 3775, 3943]. Weights
Wendisch-Retz [6118]. Wescon [6170, 6196, 6222, 6117]. Wescon/86
[6170]. Wescon/88 [6196]. Wescon/90 [6222]. West [6145]. West-83
[6145]. Westin [6241]. WFTA [2180]. WG [6300]. WG14 [4947, 4948, 4949].
Wharf [6380]. whether [1985]. which [3857]. while [5161]. White
[6208]. who [2949, 2950, 5388]. Whose [2430, 5724, 4936, 5300]. Wide
[5232, 3855, 2626, 4509, 5100]. Wideband [1803, 4446]. wider [5567]. Width
[5491, 4544, 5315, 4641, 3632, 5115]. Width- [4544]. Wiener [5191]. Wigner
Willard [1570]. William [5848, 3772, 3773, 3676]. Wilson [229]. Win
[4076]. windowed [1930, 3165]. Windows [3041, 2631, 2998, 3349]. Windsor
[3044, 6261]. Winnipeg [2256]. Winograd [2997, 1164, 548]. Winter [6221].
wire [5706]. Wired [228, 2698, 3053]. Wired-In [228]. wireless [4675, 4392].
Wiring [1089]. Wisconsin [6113]. wise [664, 735]. Wisely [5914]. Within
[373, 5989, 3774, 5215]. Without [675, 1032, 5843, 2109, 2110, 4939, 3881,
4657, 1790, 5371, 158, 863, 4997, 184, 4317, 5619, 3416, 4783, 2243, 2402,
2403, 3878, 3000, 4080, 4993, 3370, 3224]. Wizard [5507]. Wizard-based [5507].
wonglediff [4783]. Wooley [5315]. Word [3411, 3986, 3418, 1622, 1721, 146,
354, 5938, 3752, 5386, 4475, 622, 966, 3141, 3307, 477, 4858, 4733]. Word-
Based [5386]. Word-Length [3986, 4475]. Word-length-independent
[1622, 1721]. Word-Level [3411, 3418, 4858]. Wordlengths [4855]. Words
[2810]. work [2340]. Working [6263, 3683, 6300, 5256, 468, 6133, 1682, 2747].
workmen [4220]. Works [210, 6072, 6073, 6074, 6076, 6078, 6079]. Workshop
[6305, 6276, 6359, 6265, 6110, 6377, 6224, 6309, 6141, 6363, 6364, 6411, 6423,
6258, 6259, 6233, 6331, 6245, 6246, 5374, 6254, 6092, 6216, 6126, 6292].
workshops [6230]. Workstation [2587, 3240, 1883, 2156, 1921, 3205].
workstations [1893]. World [6449, 6264, 1023, 6273, 6135, 6223, 3858].
Worst [5009, 3613, 4207, 4531, 4963, 5185, 4432, 4570, 4876, 4267, 5815,
5018, 3740, 4530]. Worst-Case [3613, 5815]. Writing [3707, 2563, 5645].

References

Colson:1726:SAN

Babbage:1837:MPC

REFERENCES

Reprinted in [6132, §2.1.], December 1837.

REFERENCES

December 1924. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

REFERENCES

533–535, November 1932. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[54] H.-J. Dreyer and A. Walther. Der Rechenautomat Ipm. Entwicklung Mathematischer Instrumente in Deutschland 1939 bis 1945. (German) [The Ipm calculator. The development of mathematical instruments in Germany 1939–1945]. Bericht A3, Institut für Praktische Mathematik, Technische Hochschule, Darmstadt, West Germany, August 19, 1946. Reprinted in [6132, §3.3]. Translated by Mr. and Mrs. P. Jones.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

References

REFERENCES

REFERENCES

Kalbfell:1957:EAM

Kogbetliantz:1957:CEN

Lehman:1957:HSD

Luke:1957:CLZ

Metze:1957:SPO

Murphy:1957:PIA

REFERENCES

REFERENCES

January 1958. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

141] Robert L. Ashenhurst and Nicholas Metropolis. Unnormalized floating point arithmetic. *Journal of the Association for Computing Machinery*,

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Morton Nadler. Division and square root in the quater-imaginary number system. *Communications of the Association for Computing Machinery*, 1961.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Knuth:1962:EPC

Lake:1962:LEH

Lynch:1962:WBD

MacSorley:1962:RBA

McGee:1962:BM

Meggitt:1962:PDP

Metze:1962:CBD
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

McCracken:1964:NMF

Merrill:1964:IDC

Miller:1964:ESD

Moss:1964:RDC

Rice:1964:AFV

Santos:1964:BVB

Stein:1964:DCM
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Specker:1965:CAL

Swarztrauber:1965:LED

Sweeney:1965:AFP

Winograd:1965:TRP

Arango:1966:FCP

Brooker:1966:MFA

REFERENCES

REFERENCES

REFERENCES

[361] W. Kahan. 7094 II system support for numerical analysis. SHARE Secretary Distribution 159, C4537, 1966.

REFERENCES

REFERENCES

REFERENCES

Szabo:1967:RAA

Tomasulo:1967:EAE

Wilkinson:1967:ZW

Winograd:1967:TRP

Yarbrough:1967:PCC

Atkins:1968:HRD

Azen:1968:DMS

REFERENCES

Hart:1968:CAa

Hart:1968:CAb

IBM:1968:ISP

Kahan:1968:ISS

Kaneko:1968:PSA

Matula:1968:BCT

Matula:1968:C

Metropolis:1968:ANA

REFERENCES

REFERENCES

Ehrman:1969:SFP

Fenstad:1969:NSM

Fenwick:1969:BMO

Ferrari:1969:CDM

Field:1969:OFP

Flores:1969:BRB

Froberg:1969:INA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hornbuckle:1970:LMA

Howell:1970:SLE

Kailas:1970:AMC

Knuth:1970:VNF

Krishnamurthy:1970:OIS

Krishnamurthy:1970:RTT

Ling:1970:HSC

REFERENCES

REFERENCES

Rothmaier:1970:BQN

Rothmaier:1970:DSB

Shively:1970:PFI

Sikdar:1970:DMM

Svoboda:1970:ADC

Taub:1970:ECS

REFERENCES

REFERENCES

REFERENCES

[Bataille:1971:GCW]

[Berg:1971:SAO]

[Caprani:1971:ILR]

[Chen:1971:BAU]

[Chen:1971:BMS]

[Chen:1971:DNC]

[Chen:1971:EAA]

[Clark:1971:SCP]

Cody:1971:DHC

Cody:1971:SEF

Dekker:1971:FPT

DeLong:1971:UPA

Dutka:1971:SRD

Gentleman:1971:OMC

Ghest:1971:TCD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Brakefield:1972:OFP

Chen:1972:ACE

Chiang:1972:NAB

Chien:1972:ECH

Chinal:1972:SCP

DeMori:1972:PSS

REFERENCES

Metropolis:1972:ABCc

Miller:1972:DFD

Neely:1972:CSN

Oberman:1972:FRM

Paris:1972:MA

Pettus:1972:IDC

Phillips:1972:ICF

Pichat:1972:CSA

REFERENCES

210

(print), 0945-3245 (electronic). From Douglas Priest: (Douglas.Priest@eng.sun.com) writing in Usenet newsgroup sci.math.num-analysis on 13 Sep 1994 16:04:56 GMT: “... An iterative algorithm for computing a protracted sum to working precision by repeatedly applying the sum-and-roundoff method.”.

REFERENCES

http://www3.oup.co.uk/computer_journal/hdb/Volume_15/Issue_01/tiff/14.tif.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Pittnauer:1973:NPK

Randell:1973:ODC

Richman:1973:VPE

Robertson:1973:SIC

Roy:1973:ARC

Rubinfield:1973:FM

Sankar:1973:AAN

REFERENCES

REFERENCES

Yohe:1973:IBS

Yohe:1973:RFP

Zohar:1973:DCR

Agrawal:1974:NCL

Banerji:1974:NIM

Banerji:1974:URA

Barsi:1974:EDC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

lab.com/arithmetics/arith3/papers/ARITH3_Kornerup.pdf. IEEE order number CH1017-3C.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1134, November 1976. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

Paoni:1976:PFI

Parker:1976:STR

Patel:1976:ASB

Paul:1976:SEF

Pichat:1976:CEE

Randell:1976:ODC

[921] Roy Rankin and Steve Wozniak. Floating point routines for the 6502. Dr. Dobb’s Journal of Software Tools, 1(??):17–19, August 1976. CODEN

Rankin:1976:FPR

[Riesel:1976:FPU]

[Ris:1976:UDF]

[Rosser:1976:CRE]

[Rowland:1976:BRB]

[Rudeanu:1976:SRF]

[Sanderson:1976:PCT]

[Shi:1976:SLC]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[990] Frederic N. Ris. A unified decimal floating-point architecture for the
support of high-level languages. *ACM SIGPLAN Notices*, 12(9):60–70,
September 1977. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867
(print), 1558-1160 (electronic).

summation of floating point numbers. (Russian). *Diskret. Analiz*, 30:

[993] David Michael Simmons. Signal-to-noise ration analysis of block floating
point FFTS. Electrical engineering thesis (M.S.), University of Missouri–

residue number arithmetic. *Proceedings of the IEEE*, 65(7):1065–1067,
July 1977. CODEN IEEPAD. ISSN 0018-9219 (print), 1558-2256

[995] M. A. Soderstrand and E. L. Fields. Multipliers for residue-number-
17, 1977. CODEN ELLEAK. ISSN 0013-5194 (print), 1350-911X

functions. *IEEE Transactions on Computers*, C-26(12):1283–1286,
December 1977. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
(electronic).
Stenzel:1977:CHS

Stoutemyer:1977:AEA

Thong:1977:ARE

Tran-Thong:1977:FPF

Trivedi:1977:LAD

Trivedi:1977:UCF

Ushijima:1977:SEP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Crary:1978:APT

Dadda:1978:MAB

Debnath:1978:EMO

Debnath:1978:MOD

DEC-ES:1978:VIS

Diamond:1978:SRI

Egbert:1978:PCA

Ercegovac:1978:AME

Ercegovac:1978:FIS

Ercegovac:1978:LSR

Espelid:1978:FPS

FloatingPointSystems:1978:P

Fox:1978:AFP

Fox:1978:PMS

REFERENCES

268

REFERENCES

Good:1978:CMA

Goodman:1978:ITD

Hamacher:1978:CO

Horspool:1978:EAU

Hull:1978:DFP

Hwang:1978:IRR

Intel:1978:FAL

REFERENCES

REFERENCES

REFERENCES

[1078] G. P. O’Leary. The design of a high-speed arithmetic processor. In COMPSAC ’78 [6114], pages 175–176. LCCN ????.

[1092] Arunas G. Sleikys and Algirdas Avižienis. A modified bi-imaginary number systems. In IEEE SCA ’78 [6115], pages 48–55. ISSN 1063-
REFERENCES

B. Tseng, W. Miller, G. Jullien, J. Soltis, and A. Baraniecka. An error analysis of a FFT implementation using the residue number system.
REFERENCES

[1107] Celia Wrathall and Tien Chi Chen. Convergence guarantee and improvements for a fast hardware exponential and logarithm evaluation

Abu-El-Haija:1979:AER

Aggarwal:1979:REM

Agrawal:1979:HSA

Alt:1979:SRD

Atkins:1979:FSC

Barlow:1979:PEA

Biddulph:1979:MFC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[C. N. Winnigstad. Using LSI to crunch numbers at high speed: An overview. In Anonymous [6117], page ?? CODEN WCREDI. ISSN 1044-6036, 0083-8837. LCCN TK7800. 17 volumes.

[E. Ambikairajah and M. J. Carey. Technique for performing multiplication on a 16-bit microprocessor using an extension of Booth’s...

REFERENCES

L. Farrell. 8232: a peripheral for floating-point arithmetic. In IEEE MICRO ’80 [6125], pages 13–18. LCCN QA76.5 .P74.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Barlow:1981:DAA

Barlow:1981:PEA

Bashe:1981:AIE

Benjamin:1981:FPF

Bhuyan:1981:MAP

Bice:1981:AAS

Blikle:1981:CTI

REFERENCES

[1292] Earnest Allan Cariker. A rapid-approximation floating-point mathematics package for the INTEL 8080 microprocessor. Computing science thesis (M.S.), Texas A&M University, College Station, TX, USA, 1981. viii + 152 pp.

REFERENCES

REFERENCES

[1318] R. T. Gregory. Residue arithmetic with rational operands. In IEEE CA5 '81 [6130], pages 144–145. LCCN QA 76.6 S985t

Griffiths:1981:BDC

Grote:1981:CIS

Hazlerig:1981:CES

Hendra:1981:FPS

Hough:1981:API

Huang:1981:IFD

Hwang:1981:CFF
REFERENCES

[1332] Saroj Kaushik and R. K. Arora. Sign detection in the symmetric residue number system. In IEEE CA5 '81 [6130], pages 146–150. LCCN QA 76.6
REFERENCES

REFERENCES

[1347] Svetoslav Markov. On an interval arithmetic and its applications. In IEEE CA5 ’81 [6130], pages 274–278. LCCN QA 76.6 S985t

REFERENCES

REFERENCES

Stummel:1981:PAM

Tan:1981:ADC

Taylor:1981:CHD

Taylor:1981:FPR

Taylor:1981:VHP

Tyner:1981:GDP

vonGudenberg:1981:GAP

Wehringer:1981:SBM

Weinreb:1981:LMM

Willoner:1981:AME

Zurawski:1981:DHS

Andrews:1982:MMS

Andrews:1982:SRX

Anonymous:1982:ARBf

Anonymous:1982:MKF

Arnold:1982:EPS

Bairstow:1982:FPP

Baraniecki:1982:QEL

Barnes:1982:RNI

Bohannan:1982:MAP

Bohlender:1982:ROA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Samsen:1982:AFP

Sasaki:1982:EGE

Sasaki:1982:PFM

Schatte:1982:FPF

Sewell:1982:RLT

Sippel:1982:FRI

Sips:1982:CPM

Strader:1982:CBS

Tan:1982:ADC

Taylor:1982:ARM

Taylor:1982:VRA

Teachey:1982:SRX

TorresyQuevedo:1982:EAD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gavrielov:1983:CSF

Gnanasekaran:1983:BSI

Gosling:1983:STF

Grappel:1983:FPP

Grnarov:1983:LMN

Guibas:1983:FBA

Windell F. Ingram, N. (Narayanswamy) Radhakrishnan, and Deborah F. Dent. Accuracy considerations when using some minicomputers for scientific and engineering problems. Technical report, U.S. Army Engineer Waterways Experiment Station; available from National...
REFERENCES

REFERENCES

Lozier:1983:UFP

Majerski:1983:SRA

Maric:1983:PBC

Markov:1983:NAF

Martin:1983:FPS

Matula:1983:OPF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Eugene Howard Spafford. A report on the accuracy of PRIME computers’ floating point software and hardware and the SWT math library user’s guide. GIT-ICS 83/09, School of Information and Computer Science, Georgia Institute of Technology, Atlanta, GA, USA, 1983. v + 57 pp.

REFERENCES

Vogt:1983:AFM

Wallis:1983:AFP

Walsh:1983:FGE

[1600] Edmund John Walsh. Floating gatefield effect transistor operating point changes: causes, characterization, and effect on electric field measurement by the device. Thesis (M.S.), Boston University, Boston, MA, USA, 1983. v + 121 pp.

Watanuki:1983:EAC

Williams:1983:BFP

[1602] Bertrand Jeffery Williams. A bit-serial floating point multiply/add architecture for signal processing applications. Electrical engineering thesis (M.S.), Texas A&M University, College Station, TX, USA, 1983. x + 97 pp.

Wingert:1983:ITA

Yoshida:1983:FPR

REFERENCES

Cheng:1984:FPC

Clarke:1984:AAR

Clenshaw:1984:BFP

Cody:1984:PRW

Coonen:1984:CPS

Corliss:1984:AGT

Cowlishaw:1984:DRL

REFERENCES

REFERENCES

Kawabata:1984:SFP

Koopman:1984:FFP

Korn:1984:ISD

Kornerup:1984:CFP

Lin:1984:DSD

Ling:1984:NAS

Longo:1984:CFU

REFERENCES

REFERENCES

REFERENCES

Uya:1984:CFP

vonGudenberg:1984:BMG

Ware:1984:CMC

Wehmeyer:1984:EFF

Wolrich:1984:HPF

Woo:1984:AMC

Zuse:1984:CML

Aridgides:1985:EIQ

A. Aridgides and D. Morgan. Effects of input quantization in floating-point digital pulse compression. *IEEE Transactions on Acoustics, Speech,
REFERENCES

Armstrong:1985:PLHa

Armstrong:1985:PLHb

Aspinwall:1985:RVM

Auzinger:1985:AAR

Avizienis:1985:AAO

Bannur:1985:VIS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

eigenvalue problem. In Hwang [6160], pages 338–342. ISBN 0-8186-
0632-0 (paperback), 0-8186-8632-4 (hard), 0-8186-4632-2 (microfiche).
catalog number 85CH2146-9. IEEE Computer Society order number 632.

[1729] C. B. Dunham. Floating point with rounding before normalization. In
Meek and van Rees [6162], pages 91–102. ISBN 0-919628-46-X. LCCN
QA1 C75.

In Hwang [6160], pages 101–109. ISBN 0-8186-0632-0 (paperback), 0-
8186-8632-4 (hard), 0-8186-4632-2 (microfiche). LCCN QA76.9.C62 S95
Society order number 632.

[1731] K. Enzmann. Wurzelziehen durch sukzessive Approximation [English:
CODEN EKRKAR. ISSN 0013-5658.

[1732] M. D. Ercegovac and T. Lang. A division algorithm with prediction
(paperback), 0-8186-8632-4 (hard), 0-8186-4632-2 (microfiche). LCCN

[1733] Miloš D. Ercegovac and Tomáš Lang. Digital systems and hardware/
URL http://www.loc.gov/catdir/bios/wiley043/84021983.html;

REFERENCES

was published in the January 1980 issue of IEEE Computer, together with several companion articles [1300, 1303, 1193, 1302, 1323, 1374, 1375]. Available from the IEEE Service Center, Piscataway, NJ, USA.

REFERENCES

Street, Suite 300, Silver Spring, MD 20910, USA, 1985. CODEN ???? ISSN ????

REFERENCES

Kornerup:1985:FPL

Krishnan:1985:CDS

Kurokawa:1985:PT

Kwan:1985:MOW

Lang:1985:ICL

Li:1985:FCD

REFERENCES

REFERENCES

REFERENCES

Ohhashi:1985:HSC

Oklobdzija:1985:SOS

Palmer:1985:MGN

Papachristou:1985:MIR

Parker:1985:GCI

Pellegrino:1985:RNS

Peralta:1985:TRN

Raimi:1985:FDP

Ramnarayan:1985:LMR

Rao:1985:CCC

Reed:1985:VRM

REFERENCES

REFERENCES

[1822] Earl Swartzlander, Jr. and John Eldon. Arithmetic for high speed
FFT implementation. In Hwang [6160], pages 223–230. ISBN 0-8186-
0632-0 (paperback), 0-8186-8632-4 (hard), 0-8186-4632-2 (microfiche).
arithmetic/arith7/papers/ARITH7_Swartzlander_Eldon.pdf. IEEE
catalog number 85CH2146-9. IEEE Computer Society order number 632.

[1823] Symbolics, Inc., Cambridge, MA, USA. Reference Guide to Symbolics-

algorithm with a redundant binary addition tree. IEEE Transactions on
Computers, C-34(9):789–796, 1985. CODEN ITCOB4. ISSN 0018-9340
(print), 1557-9956 (electronic).

986–992, October 1985. CODEN IJSCBC. ISSN 0018-9200 (print), 1558-
173X (electronic).

[1826] Kenji Taniguchi. Three dimensional IC’s and application to high speed
image processor. In Hwang [6160], pages 216–222. ISBN 0-8186-
0632-0 (paperback), 0-8186-8632-4 (hard), 0-8186-4632-2 (microfiche).
arithmetic/arith7/papers/ARITH7_Taniguchi.pdf. IEEE catalog
number 85CH2146-9. IEEE Computer Society order number 632.

CODEN ICSYBT. ISSN 0098-4094 (print), 1558-1276 (electronic).

[1828] Fred J. Taylor. A more efficient residue arithmetic implementation of the
FFT. In Hwang [6160], pages 243–250. ISBN 0-8186-0632-0 (paperback),
REFERENCES

Taylor:1985:RFU

Taylor:1985:RSD

Tesnow:1985:IDS

Thies:1985:NPE

Tsui:1985:REF

vonGudenberg:1985:FPC

REFERENCES

Williamson:1985:NAB

Yun:1985:BPS

Zaccone:1985:INR

Zadrozny:1985:AFP

Adams:1986:FSSa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1889] Ulrich Kulisch. Circuitry for generating scalar products and sums of floating point numbers with maximum accuracy. US Patent 4622650,
REFERENCES

REFERENCES

[1912] Pankaj N. Shukla. An implementation on a MC68000/NS32081 microcomputer of binary floating-point arithmetic based on the IEEE

REFERENCES

REFERENCES

Cosnard:1987:FAC

Crockett:1987:PFF

Crowell:1987:FPA

Demmel:1987:EAA

Dion:1987:MFA

DuCroz:1987:DFP

REFERENCES

REFERENCES

[1974] Bertrand Hochet, Patrice Quinton, and Yves Robert. Systolic solution of linear systems over GF(p) with partial pivoting. In Irwin and
REFERENCES

REFERENCES

REFERENCES

[1994] Shigeo Kuninobu, Tamotsu Nishiyama, Hisakazu Edamatsu, Takashi Taniguchi, and Naofumi Takagi. Design of high speed MOS multiplier and divider using redundant binary representation. In Irwin and
REFERENCES

Lange:1987:ITA

Leavitt:1987:APF

Lien:1987:RCI

Lin:1987:NFP

Liu:1987:BEF

Lo:1987:HGA

REFERENCES

Motorola:1987:MMF

Mutrie:1987:FEA

Nakano:1987:MAD

Nelsen:1987:PSR

Obermaier:1987:SCI

Olver:1987:CCA

Olver:1987:ILI

REFERENCES

REFERENCES

REFERENCES

Schumacher:1987:CAI

Sharma:1987:ATE

Shenoy:1987:AST

Shyu:1987:CIM

Simar:1987:FPA

Smith:1987:SAE

REFERENCES

REFERENCES

REFERENCES

LCCN ????

REFERENCES

REFERENCES

[2172] Isaac D. Scherson and Smil Ruhman. Multi-operand arithmetic in a partitioned associative architecture. Journal of Parallel and Distributed
REFERENCES

Stouraitis:1988:FPL

Sun:1988:PG

Taylor:1988:BLN

Taylor:1988:HFP

Thistle:1988:PAH

Trefethen:1988:PSP

Tsao:1988:AST

REFERENCES

REFERENCES

Yuen:1988:IFP

Zhou:1988:NBS

Zoicas:1988:PBG

Ahmed:1989:EEF

Amit:1989:MRE

Arison:1989:SAN

Arnold:1989:RLN

REFERENCES

REFERENCES

[2232] A. M. Dennis, C. B. Marshall, and I. A. Burgess. Algorithm and architecture design for the implementation of high order FIR filters using the residue number system. In IEE Colloquium on Signal Processing Applications of Finite Field Mathematics, 1 June 1989, pages 1/1–1/5. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????

REFERENCES

REFERENCES

REFERENCES

[2254] J. Gonnella and J. Periard. The application of core functions to residue number system signal processing. In IEEE Military Communications
REFERENCES

Gordon:1989:RDF

Grassmann:1989:PAR

Grehan:1989:FPR

Griffin:1989:ESR

Griffin:1989:RNS

Groger:1989:DRG

[2260] Detlef Gröger. Zur Division mit Rest auf Gleitkommarechnern. (German) [on division with remainder on floating point computers]. Mathematische Semesterberichte, 36(1):106–111, 1989. ISSN 0720-728X.

REFERENCES

Husby:1989:FPE

Hwang:1989:OAU

IEC:1989:IBF

Intwala:1989:BFP

Jain:1989:SLU

REFERENCES

Joslin:1989:EPN

Jouppi:1989:UVSa

Jouppi:1989:UVSb

Kahan:1989:PCA

Kak:1989:BAS

Kaneko:1989:VRM

Kaneko:1989:VRP

REFERENCES

[2298] R. Krishnan. An efficient systolic array VLSI cell architecture for the implementation of transversal filter based on the quadratic residue

REFERENCES

REFERENCES

REFERENCES

[Nakayama:1989:BMF]

[Nakayama:1989:FCV]

[Nakayama:1989:MFPa]

[Nakayama:1989:MFPb]

[Nowacki:1989:ABQ]

REFERENCES

REFERENCES

Robbins:1989:CXM

Saffari:1989:PDW

Santoro:1989:RAI

Sasaki:1989:AAD

Schwarz:1989:IIP

Scott:1989:FRM

Shenoy:1989:FBE

REFERENCES

Pennsylvania State University, Dept. of Computer Science, University Park, PA, USA, April 1990. 9 pp. Supported by the Air Force Office of Scientific Research. Supported by the National Science Foundation. Supported by the Office of Naval Research.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

tp=&arnumber=57041.

REFERENCES

[2430] Donald E. Knuth. A simple program whose proof isn’t. In Feijen et al. [6213], chapter 27, pages 233–242. ISBN 0-387-97299-4, 1-4612-8792-8 (print), 1-4612-4476-5 (online). ISSN 0172-603X. LCCN QA76 .B326 1990. Reprinted in [6467, Chapter 11]. This paper discusses the algorithm used in \TeX for converting between decimal and scaled fixed-point binary values, and for guaranteeing a minimum number of digits in the decimal representation. See also [2392, 4614] for decimal to binary conversion, [2481, 4714] for binary to decimal conversion, and [2413] for an alternate proof of Knuth’s algorithm.

REFERENCES

Mandelbaum:1990:SMD

MangaEbongue:1990:PBV

Mar:1990:DSP

Margulis:1990:IMI

Markstein:1990:CEF

Matula:1990:HPD

McCloud:1990:FPU

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1. Table 5 (page 124):
 insert k <-- 0 after assertion, and also delete k <-- 0 from Table 6.

2. Table 9 (page 125):
 for -1:USER!(""); substitute -1:USER!("0"); and delete the comment.

3. Table 10 (page 125):
 for fill(-k, "0") substitute fill(-k-1, "0")

REFERENCES

arithmetic computations of complex inner products. *IEEE Transactions
iee.org/stamp/stamp.jsp?tp=&arnumber=57045.

[2499] Eric Wingler. The teaching of mathematics: An infinite product
expansion for the square root function. *American Mathematical Monthly,*
97(9):836–839, November 1990. CODEN AMMYAE. ISSN 0002-9890
(print), 1930-0972 (electronic).

[2500] Kar pang Wong. The precision of floating point computation in digital
computer. Thesis (M.S. in Computer Science), University of Wisconsin,

[2501] P. W. Wong. Quantization noise, fixed-point multiplicative roundoff
Processing*, 38(2):286–300, February 1990. CODEN IETABA. ISSN
0096-3518.

Magazine*, 15(13):172–175, December 1990. CODEN BYTEDJ. ISSN
0360-5280 (print), 1082-7838 (electronical).

[2503] George Chia-Jin Yang. A parametric roundoff noise analysis of second-
order state-space digital filters with floating-point arithmetic. Thesis
(M.S.), University of Tennessee, Knoxville, Knoxville, TN, USA, 1990.
vii + 67 pp.

with a floating-point processor DSP32. *IEEE Transactions on Industrial
Electronics*, 37(1):13–18, February 1990. CODEN ITIED6. ISSN 0278-
0046 (print), 1557-9948 (electronic).
REFERENCES

Anido:1991:IDI

Anonymous:1991:FDC

Anonymous:1991:SIS

Arambepola:1991:CVA

Balsara:1991:DSM

Barrenechea:1991:NEH

Barsi:1991:MAB

Bartholomew-Biggs:1991:AST

BartholomewBiggs:1991:AST

Bartoloni:1991:MFU

Beal:1991:GAP

Beebe:1991:ASR

Bohlender:1991:DFP

Bohlender:1991:SEF

REFERENCES

S95 1991. URL http://www.acsel-lab.com/arithmetic/arith10/papers/ARITH10_Bohlender.pdf. See [4466] for some special cases that this paper may have overlooked.

Bohlender:1991:SPH

Bohlender:1991:VEI

Boughton:1991:CSG

Briggs:1991:PCF

Bromley:1991:FAT

Brunner:1991:VAR

Bruss:1991:RMF

REFERENCES

Chang:1991:PLA

Chassaing:1991:DSP

Chatelin:1991:AAA

Chen:1991:BDR

Chiang:1991:FNR

Chiang:1991:FPNb

REFERENCES

[2550] A. Compan, P. Debaud, V. Delorme, J. A. François, H. Mehrez, and F. Pecheux. GAF: a portable standard-cell floating point adder generator using the CXgen function library. Microprocessing and

Demmel:1991:OIA

Dongarra:1991:GBP

Dunham:1991:ABA

Duprat:1991:NRR

Duprat:1991:WND

Ercegovac:1991:MPM

REFERENCES

[2571] Shmuel Gal and Boris Bachelis. An accurate elementary mathematical library for the IEEE floating point standard. *ACM Transactions on
REFERENCES

ISSN 0098-3500 (print), 1557-7295 (electronic).

Holmes:1991:FSD

Horiguchi:1991:HFN

Horiguchi:1991:PEP

Hough:1991:TBC

Hsiao:1991:CHA

Hu:1991:ERC

Hui:1991:DFD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Sparmann:1991:SBT

Squire:1991:ANS

Steidley:1991:FPA

Takagi:1991:RCM

Takagi:1991:RMM

Tang:1991:TLA

Taylor:1991:TFA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Duprat:1992:DOF

Duprat:1992:SPF

Ercegovac:1992:FRC

Fagin:1992:LIM

Filanovsky:1992:SCA

Fujii:1992:FCL

Fujii:1992:FPC

REFERENCES

[2769] Hiroshi Horiguchi and Tsutomu Tayama. Floating-point numbers and real numbers II. *Advances in software science and technology*, 3(?):151–156, 1992. ISSN 1044-7997.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Nishimura:1992:FPR

Obaidat:1992:DMA

Ochs:1992:SIR

Okada:1992:AQE

Orton:1992:NFT

Paliouras:1992:SDP

Pan:1992:CWU

REFERENCES

7 (case), 0-8186-3160-0 (paper), 0-8186-3161-9 (microfiche). LCCN TK 5102.5 A78 1992. Two volumes.

REFERENCES

Skavantzos:1992:TII

Skeel:1992:REP

Smith:1992:FPR

Soudris:1992:SDAa

Soudris:1992:SDAb

SPARC:1992:SAM

Sparmann:1992:DHQ
Srinivas:1992:SFV

Steidley:1992:FPA

Stetter:1992:ICR

Stouraitis:1992:ECR

Sun:1992:CTA

Takagi:1992:MMH

Takagi:1992:RMM

REFERENCES

REFERENCES

Anonymous:1993:FPa

Anonymous:1993:FPb

Anonymous:1993:FPc

Anonymous:1993:FPd

Anonymous:1993:FPe

Anonymous:1993:FPf

Anonymous:1993:FPg

Anonymous:1993:FPh
Anonymous:1993:FSB

Anonymous:1993:SRT

Asprey:1993:PFP

ASTM:1993:AES

Bailey:1993:AMT

Bailey:1993:MPM

Bajard:1993:BNH

Baker:1993:SLR

Bakhrakh:1993:NIF

Barrera:1993:IBS

Bauer:1993:LCB

Beckmann:1993:FFTa

Beckmann:1993:FTb

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2938] Mohsen Geraminejad. Design and implementation of a 16-bit CMOS floating point multiplier. Research paper (M.S.), Department of
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Linzer:1993:IEF

Lo:1993:BCP

Louie:1993:DRD

Louie:1993:DRS

Lozier:1993:UGF

Mandelbaum:1993:SRS

REFERENCES

REFERENCES

North:1993:FPA

Ozawa:1993:SAE

Pan:1993:TFVa

Pan:1993:TFVb

Panneerselvam:1993:MAF

Parhami:1993:IAS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Inside technology today 32-bit floating point multi-port DSP / produced by Texas Instruments. VHS format. High-speed, multi-port DSPs can be used in parallel processing applications to really enhance computation time and power. A popular 6-port floating point DSP and high speed design integration and applications are described in this tape., 1993. 1 videocassette.

REFERENCES

[3056] Cal Vornberger. Beyond bit maps: Multiple floating objects deliver new power and flexibility to bit-map image processing. Micrografx Picture Publisher 4.0 and Fractal Design Painter X2 feature object layers and

Walter:1993:SMM

Wang:1993:SAC

Wei:1993:CTA

Weste:1993:PCV

Williams:1993:BFM

Williams:1993:FM

Wrzyszcz:1993:DDCa

REFERENCES

1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1993.
CODEN ???? ISSN ????

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dimauro:1994:DFNb

Ercegovac:1994:DSR

Ercegovac:1994:VHR

Fagin:1994:FPG

Farquhar:1994:MPH

FiallosAguilar:1994:HPA

Gander:1994:AFP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hung:1994:FRD

IBM:1994:IRS

IBM:1994:OA

Ienne:1994:BSM

Ignatowski:1994:CNA

Isaacson:1994:ANM

ISO:1994:IIIa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Rothberg:1994:ILD

Schaefer:1994:POU

Schaffer:1994:FPM

Schorn:1994:DGC

Schoss:1994:ISF

Schulte:1994:HDE

Schulte:1994:OIA

REFERENCES

REFERENCES

[3216] W. J. Walker. A summability method for the arithmetic Fourier transform. BIT (Nordisk
REFERENCES

REFERENCES

White:1994:PNG

Wichmann:1994:CSP

Williams:1994:MAM

Wong:1994:FEE

Wong:1994:FHB

Yang:1994:NIPa

Yang:1994:NIPb

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3274] James W. Demmel, Inderjit Dhillon, and Huan Ren. On the correctness of some bisection-like parallel eigenvalue algorithms in floating point
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Houelle:1995:AFL

Hunt:1995:APF

Ito:1995:EIA

Jain:1995:HSD

Jang:1995:OSA

Kahan:1995:TSD

Kahan:1995:USP

Kaliski:1995:MIA

Kalliojarvi:1995:FWL

Ke:1995:SFQ

Knowles:1995:FSC

REFERENCES

Matsubara:1995:NBS

Meissner:1995:EAD

[3323] Loren P. Meissner. From the Editor: Allocatable dummy argument arrays; how should Fortran Standards describe arithmetic? are external procedures obsolete?; when are local variables initialized in F77 and F90? ACM Fortran Forum, 14(3):1–3, September 1995. CODEN ????? ISSN 1061-7264 (print), 1931-1311 (electronic).

Metafas:1995:FAC

Michelucci:1995:ARD

Miner:1995:DIF

Moler:1995:CCT

[3327] Cleve B. Moler. Cleve’s corner: a tale of two numbers: With the Pentium, there is a very small chance of making a very large error. Technical note,
REFERENCES

REFERENCES

(J. Arjun Prabhu and Gregory B. Zyner. 167 MHz radix-8 floating point divide and square root using overlapped radix-2 stages. In Knowles and McAllister [6284], pages xvi + 252. ISBN 0-8186-7089-4
REFERENCES

610

REFERENCES

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of
the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

Schulte:1995:HDA

Schulte:1995:PSI

Schwarz:1995:RQC

Shirazi:1995:QAF

REFERENCES

Vinnakota:1995:IMS

Wang:1995:NDT

Wei:1995:CNM

Williams:1995:SBA

Wong:1995:FEE

Wu:1995:SRM

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Yu:1995:MRF

Zaytoun:1995:SFR

Zhou:1995:HSD

Ahrendt:1996:FHC

Al-Twaijry:1996:OPR

Alefeld:1996:EI1

REFERENCES

[3386] Vijayanand Jaganaathan Angarai. Number representation schemes for energy efficient computer arithmetic. Thesis (M.S.), University of Texas at Dallas, Dallas, TX, USA, 1996. ix + 57 pp.

REFERENCES

Anonymous:1996:SROc

Anonymous:1996:SROd

Anonymous:1996:SROe

Anonymous:1996:SROf

Anuta:1996:BLA

Anuta:1996:MMC

Arioli:1996:REA

REFERENCES

Bajard:1996:NED

Barber:1996:QAC

Berlejung:1996:PSM

Berner:1996:PMV

Blum:1996:RPD

Bockenfeld:1996:TNT

REFERENCES

[Burger:1996:PFP]

[Burnikel:1996:HPF]
Christoph Burnikel and Jochen Könemann. High precision floating point numbers in LEDA. Report MPI I 96 1 002, Max-Planck-Institut für Informatik, Saarbrücken, Germany, 1996. 7 pp.

[Candev:1996:AIA]

[Cappuccino:1996:DDH]

[Chaitin-Chatelin:1996:FPA]

[Chaitin-Chatelin:1996:LFP]

[Chen:1996:VAC]
Y.-A. Chen, E. Clarke, P.-H. Ho, Y. Hoskote, T. Kam, M. Khaira, J. O. Leary, and X. Zhao. Verification of all circuits in a floating-point unit using word-level model checking. Lecture Notes in Computer Science,

REFERENCES

REFERENCES

[3443] G. M. Haller and D. R. Freytag. Analog floating-point BiCMOS sampling chip and architecture of the BaBar CsI calorimeter front-end electronics system at the SLAC B-factory. IEEE Transactions on Nuclear Science,

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3471] R. B. Kearfott. Treating non-smooth functions as smooth functions in
global optimization and nonlinear systems solvers. In Alefeld et al. [6287],

[3472] M. Koeber. Inclusion of the inverse of a functions in n variables. In

Kroesen, T. Pham, and A. Olesin. A dual execution pipelined floating-
point CMOS processor. In Wuorinen [6298], pages 358–359. ISBN
0-7803-3137-0 (casebound), 0-7803-3136-2 (softbound), 0-7803-3138-9

principal value integrals. In Alefeld et al. [6287], pages 45–51. ISBN
3-05-501737-4. ISSN 0138-3019. LCCN QA76.95 .I575 1995.

[3475] V. Kreinovich, A. Lakeyev, and J. Rohn. Computational complexity
of interval algebraic problems: Some are feasible and some are
computationally intractable — a survey. In Alefeld et al. [6287], pages

[3476] Eduardo Ley. On the peculiar distribution of the U.S. stock indexes’
CODEN ASTAAJ. ISSN 0003-1305 (print), 1537-2731 (electronic). URL

[3477] Yamin Li and Wanming Chu. A new non-restoring square root algorithm
and its VLSI implementations. In *Proceedings of the IEEE International
Street, Suite 300, Silver Spring, MD 20910, USA, 1996. CODEN ????
ISSN ????
Jacques-Louis Lions, Mauro Balduccini, Yvan Choquer, Remy Hergott, Bernard Humbert, and Eric Lefort. Ariane 5 Flight 501 failure, report by the Inquiry Board. Technical report, European Space Agency, Paris, France, 1996. URL http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html. From the foreword: “On 4 June 1996, the maiden flight of the Ariane 5 launcher ended in a failure. Only about 40 seconds after initiation of the flight sequence, at an altitude of about 3700 m, the launcher veered off its flight path, broke up and exploded. Engineers from the Ariane 5 project teams of CNES and Industry immediately started to investigate the failure.” From the report: “The internal SRI software exception was caused during execution of a data conversion from 64-bit floating point to 16-bit signed integer value. The floating point number which was converted had a value greater than what could be represented by a 16-bit signed integer. This resulted in an Operand Error. The data conversion instructions (in Ada code) were not protected from causing an Operand Error, although other conversions of comparable variables in the same place in the code were protected.”.

REFERENCES

[3502] Stuart F. Oberman and Michael J. Flynn. Implementing division and other floating-point operations: a system perspective. In Alefeld

Oberman:1996:RDL

Oberman:1996:VLP

Oklobdzija:1996:MSO

Paar:1996:NAP

Parhami:1996:CHS

Park:1996:PAG

REFERENCES

Engineering. 26–29 May 1996, volume 1, pages 294–297. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1996. CODEN ???? ISSN ????

[3523] H. Schwandt. Globally convergent iterative domain decomposition
methods for the parallel solution of a class of nonlinear systems of
ISSN 0138-3019. LCCN QA76.95 .I575 1995.

[3524] Eric M. Schwarz and Michael J. Flynn. Hardware starting approximation
method and its application to the square root operation. *IEEE
ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://

[3525] F. Sezgin. Some improvements for a random number generator with
single-precision floating-point arithmetic. *Computers and Geosciences*,
22(4):453–455, May 1996. CODEN CGEODT, CGOSDN. ISSN 0098-
3004 (print), 1873-7803 (electronic).

internal uncertainty. In Alefeld et al. [6287], pages 118–132. ISBN 3-05-
501737-4. ISSN 0138-3019. LCCN QA76.95 .I575 1995.

arithmetic and fast robust geometric predicates. Report CMU-CS-
96-140, Department of Computer Science, Carnegie-Mellon University,

predicates. In *Proceedings of the 12th Annual ACM Symposium on
Computational Geometry*, pages 141–150. ACM Press, New York, NY
10036, USA, 1996. URL http://www.cs.cmu.edu/afs/cs/project/

and Delaunay triangulator. *Lecture Notes in Computer Science*, 1148:
203–222, 1996. CODEN LNCSD9. ISBN 3-540-61785-X (softcover), 3-

[3547] K. B. Williams. Testing math functions: When requirements are tight, we must carefully examine all potential sources of error. Make sure your math library isn’t the weak link in the chain. *C/C++ Users Journal*, 14 (12):49–54, 58–65, December 1996. CODEN CCUJEX. ISSN 1075-2838. Describes a package that extends the Cody-Waite-Plauger work on the ELEFUNT package for the testing of the elementary functions, including the inverse hyperbolic functions, cube root, and Bessel functions of the first and second kinds. The C++ package implements 192-bit extended precision versions of all of the functions, so that accurate results are available for comparison with the normal double-precision results.

REFERENCES

[3558] Martin Atkinson-Barr. Letter to the Editor: Pentium II math bug. Dr. Dobb’s Journal of Software Tools, 22(10):10, October 1997. CODEN DDJOEB. ISSN 1044-789X. Identifies himself as the “Mr. X” cited in [3572], and provides more the background on the discovery of the Pentium FIST (floating-point to integer store) instruction.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

 (print), 1095-7200 (electronic). URL http://epubs.siam.org/sam-
 bin/dbq/article/29395; http://www-math.mit.edu/~edelman/
 homepage/papers/pentiumbug.pdf;

[3584] Guy Even and Wolfgang Paul. On the design of IEEE compliant
floating point units. In Lang et al. [6302], pages 54–63. ISBN 0-
8186-7846-1, 0-8186-7847-X, 0-8186-7848-8. ISSN 1063-6889. LCCN
arith13/papers/ARITH13_Even.pdf. IEEE Computer Society order
number PR07846. IEEE Order Plan catalog number 97CB36091.

[3585] P. Fitzpatrick. Extending backward error assertions to tolerance of
large errors in floating point computations. IEEE Transactions on
Computers, 46(4):505–510, April 1997. CODEN ITCOB4. ISSN 0018-
org/stamp/stamp.jsp?tp=&arnumber=588072.

In Lang et al. [6302], pages 260–265. ISBN 0-8186-7846-1, 0-
8186-7847-X, 0-8186-7848-8. ISSN 1063-6889. LCCN QA76.9.C62
papers/ARITH13_Frougny.pdf. IEEE Computer Society order
number PR07846. IEEE Order Plan catalog number 97CB36091.

[3587] Lee Garber. News briefs: Binary version could bring VRML into the
mainstream. FCC jumps into Internet fray. Java and floating-point math.
Intel to design NDRAM. battle over net telephony. vendors seek fast
modems. US permits export of strong encryption. E-commerce nears $1
billion. chasing the blue light. personal E-mail use will soar. Computer,
30(4):25–27, April 1997. CODEN CPTRB4. ISSN 0018-9162 (print),
1558-0814 (electronic).

[3588] A. E. Garjanov. Controlled round-off error oscillations for initial value
Conference on Control of Oscillations and Chaos, 1997, volume 2, pages
333–334. IEEE Computer Society Press, 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 1997. CODEN ???? ISSN ????
REFERENCES

REFERENCES

Hasan:1997:DA

Hekstra:1997:FRL

Hiasat:1997:DIR

Hix:1997:CTV

Holmes:1997:CAP

Irmay:1997:RBZ

REFERENCES

REFERENCES

REFERENCES

653

[3618] Inseop Lee and W. K. Jenkins. VLSI design for an adaptive equalizer using a residue number system architecture for magnetic channels. In
REFERENCES

[3620] Gérard Le Lann. An analysis of the Ariane 5 Flight 501 failure — a system engineering perspective. In Proceedings of the International Conference and Workshop on Engineering of Computer-Based Systems, pages 339–346. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1997. URL http://ieeexplore.ieee.org/document/581900/. From the article: “The SRI S/W exception was raised during a conversion from a 64-bit floating point number F to a 16-bit signed integer number. F had a value greater than what can be represented by a 16-bit signed integer, which caused an Operand Error (data conversion — in Ada code — was not protected, for the reason that a maximum workload target of 80% had been set for the SRI computer). . . . The value of BH was much higher than expected because the early part of the trajectory of Ariane 5 differs from that of Ariane 4, which results in considerably higher horizontal velocity values.”.

Lin:1997:DOA

Lin:1997:HSN

Lu:1997:SMK

Lutz:1997:HAF

Matsubara:1997:LPZ

Matula:1997:PPF

[3628] David W. Matula and Asger Munk Nielsen. Pipelined packet-forwarding floating point: I. foundations and a rounder. In Lang et al. [6302], pages
REFERENCES

REFERENCES

Nielsen:1997:PPF

Nielsen:1997:RRR

Oberman:1997:DAI

Oberman:1997:DID

Oberman:1997:SPD

REFERENCES

[3644] Brad Pierce. Applications of randomization to floating-point arithmetic and to linear systems solution. Thesis (Ph.D.), Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA, 1997.

Sarma:1997:FIR

Schulte:1997:AFA

Schulte:1997:HSR

Schulte:1997:SBT

Schwarz:1997:CFP

Schwarz:1997:RCM

Shewchuk:1997:APF

Soderquist:1997:DSR

Solinas:1997:IAA

Srinivas:1997:RDR

Stan:1997:SUC

REFERENCES

REFERENCES

[3683] Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. *ACM Fortran Forum*, 17(3):1–2, December 1998. CODEN???? ISSN 1061-7264 (print), 1931-1311 (electronic).

[3690] M. Bhargwaj and B. Ljusdanin. The Renaissance — a residue number system based vector co-processor for DSP dominated embedded ASICs.
REFERENCES

Crenshaw:1998:ISR

Darcy:1998:APE

Darcy:1998:BAI

Darcy:1998:EJF

Darcy:1998:WRI

Daumas:1998:ELM

Dimitrov:1998:AME

REFERENCES

REFERENCES

REFERENCES

Grisoni-Busca:1998:LPF

Grushin:1998:CMA

Guo:1998:SAI

Hars:1998:FCC

Heckmann:1998:ABI

Hill:1998:FDP

Huertgen:1998:TFP

[3727] F. Huertgen, H. Meyr, and M. Willems. Transformation of floating-point into fixed-point algorithms by interpolation applying a statistical
approach. In Anonymous [6306], pages 630–634. LCCN TK5102.5. Two volumes.

[3733] W. Kahan and Joseph D. Darcy. How Java’s floating-point hurts everyone everywhere. Technical report, Department of Mathematics and
REFERENCES

Kahan:1998:HJFb

Kahan:1998:IPE

Kelsey:1998:RRA

Kiranon:1998:SRV

Knuth:1998:SA

Koc:1998:LCB

REFERENCES

Kramer:1998:PWC

Kuhlmann:1998:FLP

Labrosse:1998:FPA

Langlois:1998:RBR

Lee:1998:DRN

Lefevre:1998:TCR
REFERENCES

Paul:1998:CBR

Paulus:1998:CRI

Pena:1998:CDI

Peuto:1998:ITM

Rajski:1998:ABS

Rivolo:1998:CDR

Russinoff:1998:MCPa

REFERENCES

URL http://www.onr.com/user/russ/david/k7-div-sqrt.html. See journal article [3766].

REFERENCES

Upton:1998:RH

Vogt:1998:FPP

Walter:1998:EUD

Walters:1998:SFF

Wei:1998:RAC

Weiss:1998:FPM

Wu:1998:LCB

REFERENCES

[Abbott:1999:ASS]

[Agarwal:1999:SAM]

[Ait-Ameur:1999:RRE]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Heindl:1999:RIH

Hiasat:1999:SCV

Hirn:1999:GBI

Hormigo:1999:ISC

Hung:1999:FDA

Hyogo:1999:LVF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lue:1999:ADE

Mahesh:1999:IAE

McCullough:1999:NRE

Montuschi:1999:BVH

REFERENCES

REFERENCES

http://euler.ecs.umass.edu/paper/final/paper-149.ps;

Ralev:1999:RBF

Ruess:1999:MVS

Rugina:1999:APD

Rump:1999:IIL

Russinoff:1999:MCP

Saed:1999:ASA

REFERENCES

REFERENCES

Stine:1999:STA

Story:1999:NAI

Strzebonski:1999:RPD

Sunar:1999:MMA

Suzuoki:1999:MBC

REFERENCES

REFERENCES

REFERENCES

[3971] Record, page various, 19xx. Floating Point Systems, Portland, OR, USA.

[3972] Intel. Intel 8231A Arithmetic Processing Unit. Intel Corp, San Jose, CA, USA, 19xx. URL http://www datasheetarchive com/pdf- datasheets/Datasheets-14/DSA-276911.html. From the datasheet (p. 3–5): “The mantissa is expressed as a 24-bit (fractional) value; the exponent is expressed as a two’s complement 7-bit value having the range \(-64\) to \(+63\). The most significant bit is the sign of the mantissa \((0 = \text{positive}, 1 = \text{negative})\), for a total of 32 bits. The binary point is assumed to be [to] the left of the most significant mantissa bit (bit 23). All floating-point data values must be normalized. Bit 23 must be equal to 1, except for the value zero, which is represented by all zeros. The range of values that can be represented in this format is \(\pm(2.7^{-10} \ldots \times 9.2 \times 10^{18})\) and zero.”.
REFERENCES

Anonymous:2000:BRCd

Anonymous:2000:BRCg

Antelo:2000:VHR

Baidas:2000:HLF

Batten:2000:NAD

Becker:2000:JSE

Becker:2000:JSF

Becker:2000:JST

Becker:2000:JSWb

Bertossi:2000:RNS

Boldo:2000:QDP

Brooks:2000:VBC

Cardarilli:2000:RPD

REFERENCES

REFERENCES

Constantinides:2000:MPR

Corsonello:2000:PCB

DAmora:2000:RPD

Daumas:2000:EIT

Delves:2000:MU1

Drmac:2000:AQS

REFERENCES

REFERENCES

[4009] W. L. Freking and K. K. Parhi. Modular multiplication in the residue number system with application to massively-parallel public-key cryptography systems. In Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, 2000,
REFERENCES

volume 2, pages 1339–1343. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2000. CODEN ????
ISSN ????

Hassibi:2000:FSR

Hassibi:2000:ESR

Hiasat:2000:NES

Hida:2000:QDA

Higuchi:2000:FAA

Hormigo:2000:HAVa
REFERENCES

Hornigo:2000:HAVb

Ide:2000:GMF

Ifrah:2000:UHN

Imajo:2000:CSB

Intel:2000:IPF

ISO:2000:FSI

REFERENCES

REFERENCES

Kawamura:2000:CRA

Keller:2000:ARR

Kim:2000:PSA

Kobayashi:2000:HBF

Koren:2000:GEI

Kum:2000:ACO

[4046] Ki-II Kum, Ji-yang Kang, and Wonyong Sung. AUTOSCALER for C: an optimizing floating-point to integer C program converter for fixed-point

Lee:2000:LSM

Lee:2000:LSM

Leemis:2000:SDS

Lefevre:2000:CRF

Liew:2000:IDR

Lin:2000:NBP
Lopez:2000:HSS

Luo:2000:API

Maclaren:2000:IEH

Madhukumar:2000:DPR

Madhukumar:2000:PRN

Madhukumar:2000:RNS

Mahesh:2000:LPR

Markstein:2000:IEF

Maryska:2000:SCR

McKenzie:2000:ACP

Mencer:2000:RAU

Moreira:2000:FMJ

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Akishita:2001:FSS

Akkas:2001:ISE

Alefeld:2001:SAM

Ammar:2001:SIC

Aoki:2001:ECA

REFERENCES

REFERENCES

REFERENCES

[4129] Sylvie Boldo. Formalisation, amélioration et preuves d’algorithmes en arithmétique flottante. (French) [formalization, improvement, and

[4133] Keith Briggs and Yannis Smaragdakis. XR — exact real arithmetic. World-Wide Web document and software package., March 01, 2001. URL http://www.btexact.com/people/briggsk2/XR.html. From the overview: “This is an implementation of exact (or constructive) real arithmetic, as an alternative to multiple-precision floating-point (MPFP). An important distinction is that in MPFP one sets the precision before starting a computation, and then one cannot be sure of the final result. Interval arithmetic is an improvement on this, but still not an ideal solution because if the final interval is larger than desired, there is no simple way to restart the computation at higher precision. By contrast, in XR no precision level is set in advance, and no computation takes place until a final request takes place for some output. Despite this, programming with XR is no different from MPFP, except for the declaration of critical variables as type ‘XR’.”
The main aim is to produce a usably efficient implementation, which can be easily interfaced with existing C++ code. This contrasts with previous implementations in functional languages (Haskell, Miranda etc.), which, although theoretically important, seem to be rather too slow for real use.

This code is designed as an add-on to Victor Shoup’s arbitrary-precision arithmetic package NTL, and implements a new type XR, to complement NTL’s ZZ and RR integer and real types.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[4181] ISO.

REFERENCES

REFERENCES

Khachatrian:2001:FMI

Kim:2001:AEE

King:2001:IIE

Knowles:2001:FA

Koc-Sahan:2001:STA

REFERENCES

REFERENCES

REFERENCES

McFearin:2001:GAH

Michel:2001:SCF

Mobley:2001:ICW

Moller:2001:SEC

Montuschi:2001:BVH

Morioka:2001:TEV

[4223] Sumio Morioka, Yasunao Katayama, and Toshiyuki Yamane. Towards efficient verification of arithmetic algorithms over Galois fields $GF(2^m)$. Lecture Notes in Computer Science, 2102:465–477,

REFERENCES

REFERENCES

Seidel:2001:EAB

Smith:2001:AFS

Steele:2001:SMFa

Steele:2001:SMFb

Stine:2001:CIH

Stine:2001:DIA

REFERENCES

765

URL http://wwwlib.umi.com/dissertations/fullcit/9995540;

Stoffel:2001:VIM

Sun:2001:NSM

Sunar:2001:EON

Takagi:2001:HAC

Tasche:2001:WAC

Tenca:2001:DRL

REFERENCES

REFERENCES

Zimmermann:2001:AAC

Zimmermann:2001:APA

Ziv:2001:APM

Agarwal:2002:FPN

Akbarpour:2002:FCS

Akkas:2002:CIF

Akkas:2002:ISE

Alvarez:2002:IRF

Anonymous:2002:AIVf

Anonymous:2002:OFP

ARM:2002:VVF

Arnold:2002:AOS

M. G. Arnold. Avoiding oddification to simplify MPEG-1 decoding with LNS. In 2002 IEEE Workshop on Multimedia Signal Processing, pages
REFERENCES

125–129. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2002. CODEN ???? ISSN ????

Arnold:2002:ICL

Arnold:2002:RPC

Bailey:2002:HPC

Barrio:2002:REB

Belanovic:2002:LPF

Bertot:2002:PGS

REFERENCES

Beuchat:2002:SMB

Blackford:2002:USB

Boldo:2002:FRF

Boldo:2002:IAO

Boldo:2002:NSC

[4325] R. Chotin and H. Mehrez. A floating-point unit using stochastic arithmetic compliant with the IEEE-754 standard. In 9th International
REFERENCES

Conway:2002:NOH

Conway:2002:SRI

Cornea:2002:SCI

Cowlishaw:2002:DPD

Cowlishaw:2002:TB

Crandall:2002:OPF

[4339] J. Demmel, Plamen Koev, and Ben Diament. The complexity of accurate floating point computation. In Li [6366], pages 672 (vol. 1) + 832 (vol.
REFERENCES

Devillers:2002:FPE

Dido:2002:FFP

Elia:2002:ISC

Erle:2002:PSD

Etiemble:2002:CAH

Gaffar:2002:ACF

REFERENCES

Hanrot:2002:LNzM

Heckmann:2002:CLF

Helms:2002:IPM

Hertling:2002:LBR

Hiasat:2002:HSR

Higham:2002:ASN

REFERENCES

REFERENCES

Krygowski:2002:FPM

Ku:2002:NPA

Kulisch:2002:AAD

Kulisch:2002:RNZ

Kwon:2002:EBS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
Madhukumar:2002:RNS

Matousek:2002:LNS

Matula:2002:PTP

McCluskey:2002:MLF

McIlhenny:2002:CNL

Messine:2002:EAA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Stakhov:2002:BTP

Steele:2002:SMF

Stehle:2002:WCL

Stoianov:2002:AAB

Sun:2002:BJP

TI:2002:TFL

[4435] Texas Instruments, Dallas, TX, USA. *TMS320C67x FastRTS Library Programmer’s Reference (SPRU100A)*, October 2002. URL http://focus.ti.com/lit/ug/spru100a/spru100a.pdf. The FastRTS library is a collection of 26 optimized floating-point math functions for the TMS320C67x device. This source code library includes C-callable (ANSI-C-language compatible) optimized versions of the floating-point math functions included in previous run-time-support libraries.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bajard:2003:EMG

Bajard:2003:FII

Barrio:2003:NEL

Barrio:2003:URE

REFERENCES

REFERENCES

M. Ciet, M. Neve, E. Peeters, and J.-J. Quisquater. Parallel FPGA implementation of RSA with residue number systems — can side-channel threats be avoided? In MWSCAS '03. Proceedings of the 46th IEEE International Midwest Symposium on Circuits and Systems, volume 2, pages 806–810. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2003. CODEN ???? ISSN ????.

Cornea:2003:DSR

Cotofana:2003:CAR

Cowlishaw:2003:DAE

Cowlishaw:2003:DFP

Daneshbeh:2003:UBS

REFERENCES

REFERENCES

[4504] Christiane Frougny and Athasit Surarerks. On-line multiplication in real and complex base. In Bajard and Schulte [6374], pages
REFERENCES

Gansner:2003:SMB

Gavrilova:2003:ESC

Geddes:2003:EFH

Geiselmann:2003:RRD

Gerwig:2003:HPF

Goldberg:2003:WEC

[4510] David Goldberg. What every computer scientist should know about floating-point

Grabmeier:2003:CAH

Grossschadl:2003:ASL

Hanrot:2003:DRF

Harrison:2003:ICC

Holmes:2003:PTC

REFERENCES

[4521] Roope Kaivola and Katherine Kohatsu. Proof engineering in the large: formal verification of Pentium(R)4 floating-point divider. International
REFERENCES

REFERENCES

Society order number PR01894. Selected papers republished in *IEEE Transactions on Computers*, 54(3) (2005) [4863].

REFERENCES

REFERENCES

REFERENCES

Schonfelder:2003:VPA

Schulte:2003:CMS

Schwarz:2003:HID

Schwarz:2003:PRI

Seidel:2003:MPI

Senthilvelan:2003:FAL

REFERENCES

Damien Stehlé, Vincent Lefèvre, and Paul Zimmermann. Worst cases and lattice reduction. In Bajard and Schulte [6374], pages
REFERENCES

Sun:2003:NAF

Suvakovic:2003:EEA

Swider:2003:EEF

Tan:2003:MPF

Tenca:2003:SAM

Thomas:2003:IMF

REFERENCES

coverage of, and clever algorithms for, integer arithmetic operations that are fundamental for implementing hardware floating-arithmetic and software multiple-precision arithmetic.

REFERENCES

Ziv:2003:SRC

Abbasbandy:2004:USA

Akutin:2004:HOM

Altman:2004:NIS

Assimakopoulos:2004:IRM
REFERENCES

REFERENCES

REFERENCES

REFERENCES
REFERENCES

Ercegovac:2004:CSRa

Ercegovac:2004:CSRb

Ercegovac:2004:DA

Ercegovac:2004:DCD

Fousse:2004:AST

Fousse:2004:FPD

Gaffar:2004:UBW

Gebali:2004:EAF

Gemignani:2004:REA

Gerwig:2004:IEZ

Geyer:2004:DFD

Gok:2004:DSP

[4651] Guillaume Hanrot, Michel Quercia, and Paul Zimmermann. The middle product algorithm I. speeding up the division and square root of power series. Applicable algebra in engineering, communication and computing,
REFERENCES

Hanrot:2004:NIR

Hiasat:2004:SFR

Hormigo:2004:CPV

IBM:2004:ZAP

Jeong:2004:CEP

REFERENCES

REFERENCES

REFERENCES

[4705] Joseph Riley and Michael J. Schulte. A hardware accelerator for elliptic curve cryptography over GF(2^m). *International Journal of
REFERENCES

REFERENCES

Sun Microsystems, Inc. Libmcr 0.9 beta: a reference correctly-rounded library of basic double-precision transcendental elementary functions.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

M. G. Arnold and J. Ruan. Bipartite implementation of the residue logarithmic number system. In Luk [6412], page ?? CODEN PSISDG. ISBN ?? ISSN 0277-786X (print), 1996-756X (electronic). LCCN ???. Accepted for publication.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Daramy-Loirat:2005:CLL

Daumas:2005:GPU

deDinechin:2005:MTM

deDinechin:2005:TPU

REFERENCES

857

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[4838] Xiao-Lu Mei. Leading zero anticipation for latency improvement in floating-point fused multiply-add units. In Tang et al. [6414], pages
REFERENCES

[4855] Dhananjay Phatak and Tom Goff. Fast modular reduction for large wordlengths via one linear and one cyclic convolution. In Montuschi and

Pineiro:2005:HSF

Revol:2005:TMF

Reyhani-Masoleh:2005:LCW

Robison:2005:BUD

Rump:2005:AFP

Siegfried M. Rump, Takeshi Ogita, and Shin’ichi Oishi. Accurate floating-point summation. Technical Report 05.12, Faculty for Information- and Communication Sciences, Hamburg University of
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Takahashi:2005:AMP

Tang:2005:BBI

Tang:2005:GBE

Tsuiki:2005:RNC

Usevitch:2005:JCL

Verdonk:2005:BSI

Wahid:2005:EFC

Khan Wahid, Vassil Dimitrov, and Graham Jullien. Error-free computation of 8×8 2-D DCT and IDCT using two-dimensional algebraic

[4892] Zhaojun Wo and Israel Koren. Synthesis of saturating counters using traditional and non-traditional basic counters. In Montuschi and Schwarz

REFERENCES

Zimmermann:2005:MVC

Zimmermann:2005:WTA

Zimmermann:2005:XXX

Anderson:2006:AMF

Anonymous:2006:IFPa

Anonymous:2006:IFPb

REFERENCES

Anonymous:2006:RSI

Avanzi:2006:SMK

Bajard:2006:AOF

Bartzis:2006:EBB

Bertot:2006:PGS
REFERENCES

Bik:2006:MVF

Boldo:2006:PFF

Bonten:2006:ACF

Briggs:2006:IER

Castellanos:2006:BDF

Chang:2006:DAR

Choi:2006:DCB

[4925] Jérémie Detrey and Florent de Dinechin. FPLibrary. A VHDL library of parametrizable floating-point and LNS operators for FPGA. Web site and source code., 2006. URL http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/. The FPLibrary has been superseded by the FloPoCo project [5337].

[4936] Daniel S. Graça, Ning Zhong, and Jorge Buescu. The ordinary differential equation defined by a computable function whose maximal interval of existence is non-computable. In Anonymous [6417], page ?? ISBN ???? LCCN ????

[4937] Stef Graillat, Philippe Langlois, and Nicolas Louvet. Improving the compensated Horner scheme with a fused multiply and add. In Haddad
REFERENCES

Harrison:2006:FPV

Hars:2006:MIA

Hill:2006:QUB

How:2006:RRN

Hurlimann:2006:BLB

IBM:2006:PDF

REFERENCES

REFERENCES

REFERENCES

[4963] Vincent Lefèvre, Damien Stehlé, and Paul Zimmermann. Worst cases for the exponential function in the IEEE 754r decimal164 format.

Liew:2006:SRR

Lindstrom:2006:FEC

Mahalingam:2006:IAM

Marques:2006:BIF

Maslennikowa:2006:DFB

REFERENCES

Suite 300, Silver Spring, MD 20910, USA, 2006. CODEN ???? ISSN ????

Muller:2006:CLA

Muller:2006:EFA

Nievergelt:2006:EPD

Nikmehr:2006:FDF

OLeary:2006:CMA

Ou:2006:DSE

REFERENCES

Rajagopal:2006:TOA

Shen:2006:TAS

Shou:2006:MAA

Singh:2006:IEE

Solymosi:2006:APS

StDenis:2006:BMH

REFERENCES

Steele:2006:FPM

Steele:2006:FPSa

Steele:2006:FPSb

Steele:2006:FPU

Steele:2006:SMP

Steele:2006:TOC

REFERENCES

REFERENCES

REFERENCES

[5016] Paul Zimmermann. Asymptotically fast division for GMP. Technical report, LORIA/INRIA Lorraine, Bâtiment A, Technopôle de Nancy-
REFERENCES

Zimmermann:2006:EBC

Zimmermann:2006:WC

Abtahi:2007:FSD

Aharoni:2007:SCI

Anonymous:2007:CPSa
Anonymous:2007:CPSb

Balasubramaniam:2007:ECS

Balasubramaniam:2007:FSS

Beebe:2007:ETM

Beebe:2007:NDF

Beuchat:2007:ANP

Bodrato:2007:IPM

REFERENCES

[5049] Jeremie Detrey, Florent de Dinechin, and Xavier Pujol. Return of the hardware floating-point elementary function. In Kornerup and Muller...
REFERENCES

Detrey:2007:TUC

Diekmann:2007:FDU

Dieter:2007:LCM

Dimitrov:2007:MCS

Doornik:2007:CHP

Duale:2007:DFP

Eisen:2007:IPA

REFERENCES

Harrison:2007:FPV

Hasenplaugh:2007:FMR

Hernandez:2007:MPO

Hilewitz:2007:PAB

Holmes:2007:BA

Homann:2007:IFPa

Homann:2007:IFPb

Hosangadi:2007:AMO

Hosseinzadeh:2007:NMS

Huang:2007:NAM

Iguchi:2007:DRC

Ihsberner:2007:REA

James:2007:QAD

Kapre:2007:OPF

REFERENCES

Kechagias:2007:CME

Khabbazian:2007:DPC

Knowles:2007:RSE

Kobayashi:2007:AIG

Kornerup:2007:CIP

Kuliamin:2007:STI

Lambov:2007:REI

REFERENCES

Lang:2007:RDR

Langlois:2007:HEF

Langlois:2007:MIL

Laurie:2007:VPA

Lefevre:2007:SNP

Li:2007:DDP

REFERENCES

[Li:2007:DEF]

[Li:2007:DFP]

[Li:2007:FAT]

[Lopez:2007:EIF]

[Louvet:2007:ACA]

[Lundvall:2007:CDF]

Shawn D. Lundvall, Eric M. Schwarz, Ronald M. Smith, Sr., and Phil C. Yeh. Decomposition of decimal floating point data. US

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Bapst:2008:SIO]

[Beuchat:2008:AGM]

[Boldo:2008:EFC]

[Brisebarre:2008:CRM]

[Buttari:2008:UMP]

[Carnicer:2008:REP]

REFERENCES

REFERENCES

Kahan:2008:BFU

Kaihara:2008:BMM

Khalid:2008:NRE

Kulisch:2008:CAV

Lefevre:2008:WCE

Li:2008:MLB

[5186] Xin Li, Marc Moreno Maza, Raqeeb Rasheed, and Éric Schost. The modpn library: bringing fast polynomial arithmetic into MAPLE. ACM

REFERENCES

Pan:2008:SAL

Patterson:2008:AC

Patterson:2008:GCG

Pineiro:2008:RDD

Quinnell:2008:BFP

Quinnell:2008:FPF

REFERENCES

Rump:2008:AFPb

Rump:2008:UFA

Russell:2008:BOR

Schreppers:2008:ACC

Steele:2008:FPA

Steele:2008:FPD

Steele:2008:FPSa

Steele:2008:FPSb

REFERENCES

REFERENCES

[5235] Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer Strichman, and Bryan Brady. An abstraction-based

[Bullynck:2009:MAB]

[Burtscher:2009:FHS]

[Cenk:2009:PMF]

[Chabert:2009:PEA]

[Chen:2009:BDF]

[Chen:2009:NDA]

REFERENCES

Cheng:2009:DSE

Chevillard:2009:CFC

Cho:2009:AMD

Chouliaras:2009:CLF

Cilardo:2009:EBP

Colberg:2009:HAS

REFERENCES

[5254] P. Dormiani, M. D. Ercegovac, and J.-M. Muller. Design and implementation of a radix-4 complex division unit with prescaling. In
REFERENCES

IEEE [6454], pages 83–90. ISBN 0-7695-3732-4. ISSN 1063-6862. LCCN ????

REFERENCES

[5267] Sonia Gonzalez-Navarro, Alberto Namarelli, Michael J. Schulte, and Charles Tsen. A combined decimal and binary floating-point divider. In

REFERENCES

Harrison:2009:DTB

Harrison:2009:FAB

Hasan:2009:SSC

Hinek:2009:ALS

Ho:2009:FPF

ISO:2009:IIT

REFERENCES

Martel:2009:PTN

Matula:2009:HRS

Mazor:2009:HPC

Miller:2009:RNR

Minchola:2009:FID

Monniaux:2009:UFP

REFERENCES

Mosbach:2009:QPI

Murakami:2009:CFT

Pan:2009:NEF

Papadantonakis:2009:PSA

Preiss:2009:ACS

Rump:2009:CPS

REFERENCES

Zimmermann:2009:DSS

Akbarpour:2010:VSI

Aldous:2010:WCO

Alimohammad:2010:UAA

Amin:2010:HRM

Banescu:2010:MFP

REFERENCES

[5337] Florent de Dinechin and Bogdan Pasca. FloPoCo: generator of arithmetic cores (Floating-Point Cores, but not only) for FPGAs (but not only). Web site and source code., August 10, 2010.

REFERENCES

REFERENCES

Jaberipur:2010:RDF

Jiang:2010:AEP

Kalla:2010:PIN

Kastner:2010:AOT

Kirk:2010:PMP

Knezevic:2010:FIM

Lefevre:2010:LTL

Lima:2010:KBA

Loitsch:2010:PFP

Louvet:2010:NRA

Maruyama:2010:SVN

Mathews:2010:AOE

REFERENCES

[5369] Northeastern University Reconfigurable Computing Laboratory. Vfloat: The Northeastern Variable precision FLOATing point library. Web
REFERENCES

947

REFERENCES

REFERENCES

Antelo:2011:IIFa

Antelo:2011:IIFb

Arias-Garcia:2011:SFI

Arnold:2011:RCL

Arnold:2011:TQC

Badin:2011:IAM

Bailey:2011:GMD

[5433] Murat Cenk and Ferruh Özbudak. Efficient multiplications in $\mathbb{F}_{5^{5n}}$ and $\mathbb{F}_{7^{7n}}$. *Journal of Computational and Applied Mathematics*, 236
REFERENCES

Colberg:2011:HAS

Corless:2011:RCA

Cui:2011:TDB

Curran:2011:ZSM

Das:2011:HSR

deDinechin:2011:AOU

REFERENCES

Huang:2011:LCB

Huang:2011:NHA

Huynh:2011:EAP

Ibrahim:2011:PAA

Ikhile:2011:RBD

Ismail:2011:RLL

REFERENCES

REFERENCES

REFERENCES

[5499] David W. Matula and Mihai T. Panu. A prescale-lookup-postscale additive procedure for obtaining a single precision ulp accurate
REFERENCES

Mauer:2011:FPS

Minchola:2011:FID

Moller:2011:IDI

Mouilleron:2011:AGF

Nannarelli:2011:RCD

Ozaki:2011:TEE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

2012. CODEN CSENFA. ISSN 1521-9615 (print), 1558-366X (electronic).

Fan:2012:EHI

Fout:2012:APB

Gandino:2012:AAS

Gazeau:2012:NLM

Ghosh:2012:FPR

Giessing:2012:FRB

REFERENCES

REFERENCES

REFERENCES

[5597] Chen Su and Haining Fan. Impact of Intel’s new instruction sets on software implementation of GF(2)[x] multiplication. *Information

[Thome:2012:SRA]

[Vazquez:2012:RFP]

[Wang:2012:EMB]

[Wang:2012:RCC]

[Wang:2012:UBW]

Yan:2012:RMC

Anguita:2013:EES

Anonymous:2013:DML

Anonymous:2013:IOF

Antao:2013:CFA

Arnold:2013:DLN

REFERENCES

Bagnara:2013:EBF

Bailey:2013:KHP

Bajard:2013:FDR

Bao:2013:FDI

Barr:2013:ADF

Boldo:2013:FVC

Boldo:2013:HCA

REFERENCES

[5623] Martyn Corden. Differences in floating-point arithmetic between Intel Xeon processors and the Intel Xeon Phi coprocessor. Report, Intel Corporation, Santa Clara,
REFERENCES

Cornea:2013:PAR

De:2013:FIM

dedinechin:2013:FPE

dedinechin:2013:ZRT

Demmel:2013:ERF

Demmel:2013:FRF

REFERENCES

REFERENCES
990

REFERENCES

REFERENCES

Kadric:2013:APF

Kouretas:2013:LPL

Kulisch:2013:CAV

Kupriianova:2013:RCI

Kurka:2013:UAA

Lam:2013:DFP

Lefevre:2013:HRC

REFERENCES

SaiToh:2013:ZCL

Shen:2013:SCC

Sohn:2013:IAF

Srinivasan:2013:SPF

Sullivan:2013:TLA

Vazquez:2013:IAA

Warren:2013:HD

REFERENCES

Ali Osman Çibikdiken and Kemal Aydin. Computation of the monodromy matrix in floating point arithmetic with the Wilkinson

 REFERENCES

REFERENCES

This paper provides a correction to the algorithm presented in [4803], and also supplies a complicated correctness proof.

Muller:2014:MRE

Murakami:2014:CRN

Nannarelli:2014:GEI

Neto:2014:PUP

Nguyen:2014:RED

Pedram:2014:AAF

REFERENCES

[5742] Peter Ahrens. Reproducible parallel matrix-vector multiply. CS 267 final report, Department of Computer Science, University of California,
REFERENCES

Berkeley,
edu/reproblas/docs/reports/PeterAhrensCS267FinalReport.pdf.

[5749] Sylvie Boldo. Stupid is as stupid does: Taking the square root of
the square of a floating-point number. *Electronic Notes in Theoretical

[5750] Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume
Melquiond. Verified compilation of floating-point computations. *Journal
JAREEW. ISSN 0168-7433 (print), 1573-0670 (electronic). URL http://
link.springer.com/article/10.1007/s10817-014-9317-x.

[5751] Martin Brain, Cesare Tinelli, Philipp Rüemmer, and Thomas Wahl. An
automatable formal semantics for IEEE-754 floating-point arithmetic.
In Muller et al. [6476], pages 160–167. ISBN 1-4799-8665-8, 1-4799-
8663-1. ISSN 1063-6889. LCCN QA76.9.C62 S95 2015. URL http://
ieeexplore.ieee.org/servlet/opac?punumber=7193754.

[5752] Nicolas Brunie, Florent de Dinechin, Olga Kupriianova, and Christoph
[6476], pages 66–73. ISBN 1-4799-8665-8, 1-4799-8663-1. ISSN 1063-
org/servlet/opac?punumber=7193754.

[5753] Wei-Fan Chiang, Ganesh Gopalakrishnan, and Zvonimir Rakamarić.
Unsafe floating-point to unsigned integer casting check for GPU
programs. *Electronic Notes in Theoretical Computer Science*, 317
(??):1–12, November 18, 2015. ISSN 1571-0661. URL http://
formalverification.cs.utah.edu/papers/nsv15-unsafe-
fp2ui.pdf; http://nsv2015.informatik.uni-freiburg.de/. Also
presented at NSV 2015: 8th International Workshop on Numerical
Software Verification 2015, Seattle, WA, USA.

[5754] Sylvain Collange, David Defour, Stef Graillat, and Roman Jakymchuk.
Numerical reproducibility for the parallel reduction on multi-
and many-core architectures. *Parallel Computing*, 49(??):83–97,
November 2015. CODEN PACOEJ. ISSN 0167-8191 (print), 1872-
article/pii/S0167819115001155.
REFERENCES

REFERENCES

[5766] Terry Froggatt. An error in the Ada universal arithmetic package. ACM SIGADA Ada Letters, 35(2):14, August 2015. CODEN AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic). See [1634]. The 32-year-old error is a test with digit t that has if ($t > \text{BASE}$), but the operator should instead be \geq.

[5768] Benoît Gérard, Jean-Gabriel Kammerer, and Nabil Merkiche. Contributions to the design of residue number system architectures.
REFERENCES

REFERENCES

REFERENCES

[5788] Seyed Hamed Fatemi Langroudi and Ghassem Jaberipur. Modulo-\((2^n2^1)\) parallel prefix addition via excess-modulo encoding of residues.

Laskar:2015:KTN

Lauter:2015:SAF

Lu:2015:REP

Matula:2015:MDE

McCleeary:2015:LAA

Meloni:2015:EDB

REFERENCES

REFERENCES

[5813] Lloyd N. Trefethen. Computing numerically with functions instead of numbers. *Communications of the Association for Computing Machinery*, 58(10):91–97, October 2015. CODEN CACMA2. ISSN 0001-0782 (print),

Ahrens:2016:ERF

Andrysco:2016:PFP

Anonymous:2016:KTS

Area:2016:ACS

Bajard:2016:MFA

Ballard:2016:INS

BEBOP:2016:RRB

REFERENCES

5833] Linbin Chen, Jie Han, Weiqiang Liu, and Fabrizio Lombardi. On the design of approximate restoring dividers for error-tolerant applications.
CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

[5849] David Hopkins. Will my numbers add up correctly if I round them? The Mathematical Gazette, 100(549):396–409, November 2016. CODEN MAGAAS. ISSN 0025-5572 (print), 2056-6328 (electronic). URL https://www.cambridge.org/core/product/88F5753D7F90DDDEAD1F2552B0F8B22. The probability that rounding after fixed-point summation of n terms gives the same result as summation of rounded terms is given by \(p(n) = \frac{1}{\pi} \int_0^\infty \frac{\sin(x)}{x} e^{-1} dx \), and that function is always a rational number. Its values are \(p(n) = 1, 3/4, 2/3, 115/192, 11/20, 5887/11520, 151/315, 259723/573440, \ldots \) for \(n = 1 \) to 8.

[5851] Laslo Hunhold. The Unum number format: Mathematical foundations, implementation and comparison to IEEE 754 floating-point numbers. Bachelorarbeit, Universität zu Köln, Köln, Germany, November 8, 2016.

REFERENCES

REFERENCES

Lichtenau:2016:QPF

Liu:2016:DAI

Mascarenhas:2016:FPN

Meloni:2016:RDR

Montuschi:2016:MCA

Muller:2016:NMA

Munshi:2016:OCS

REFERENCES

Rubio-Gonzalez:2016:FPP

Rump:2016:DUR

Rump:2016:IEB

Sayed:2016:WCR

Schaffner:2016:APT

Schkufza:2016:SPO

REFERENCES

[5890] Ran Wang, Daming Zou, Xinrui He, Yingfei Xiong, Lu Zhang, and Gang Huang. Detecting and fixing precision-specific operations for measuring

REFERENCES

REFERENCES

Brunie:2017:MFM

Carter:2017:PAO

Chiang:2017:RFP

Constantinides:2017:AAC

Cornea:2017:URE

Cui:2017:HPP

REFERENCES

REFERENCES

Hoeven:2017:MPF

Hormigo:2017:ISI

Ishii:2017:FMA

Istoan:2017:FFP

Jeannerod:2017:CRE

Jeannerod:2017:EBC

[5935] Claude-Pierre Jeannerod, Peter Kornerup, Nicolas Louvet, and Jean-Michel Muller. Error bounds on complex floating-point multiplication
REFERENCES

Alan A. Jorgensen. Apparatus for calculating and retaining a bound on error during floating point operations and methods thereof. US Patent 9,817,662., November 14, 2017. URL https://patents.google.com/patent/US9817662B2/; https://tinyurl.com/y7ctbsez. This patent, filed 23 October 2016, was issued despite substantial prior art that should have resulted in its rejection: see [6016]. The inventor does not appear to have published in the area of floating-point arithmetic (apart from this entry, none by him can be found in this bibliography). The only literature references in the patent are [5189, 2575, 5580, 5367].
REFERENCES

REFERENCES

[5965] Ramy Medhat, Michael O. Lam, Barry L. Rountree, Borzoo Bonakdarpour, and Sebastian Fischmeister. Managing the performance/error tradeoff of floating-point intensive applications. *ACM Transactions*
REFERENCES

Moler:2017:CCB

Moler:2017:CCH

Monfared:2017:NMI

Rafferty:2017:ELI

Rioual:2017:LSN

Rocca:2017:CRE

REFERENCES

Saint-Genies:2017:ELT

Sano:2017:FBS

Schleicher:2017:NMP

Serre:2017:OSL

Thevenoux:2017:ASS

[5977] Laurent Thévenoux, Philippe Langlois, and Matthieu Martel. Automatic source-to-source error compensation of floating-point programs: code synthesis to optimize accuracy and time. *Concurrency and Computation:
Practice and Experience, 29(7):??, April 10, 2017. CODEN CCPEBO.
ISSN 1532-0626 (print), 1532-0634 (electronic).

Ueno:2017:BCF
ISSN 1936-7406 (print), 1936-7414 (electronic).

Ugurdag:2017:HDS

Vazquez:2017:SED

Volkova:2017:RVD

Vzquez:2017:NSA

Wahba:2017:AEF
REFERENCES

Anonymous:2018:FVF

Anonymous:2018:HFF

Anonymous:2018:OLA

Babuska:2018:REG

Bajard:2018:MRW

Becker:2018:NOS

REFERENCES

Canto-Navarro:2018:FPA

Costello:2018:MCT

Dai:2018:SAM

Demmel:2018:RBM

Doliskani:2018:SCR

REFERENCES

REFERENCES

[6006] Sergio Marchese. AI chips must get the floating-point math right: Formal verification of FPUs is no longer a prerogative of big companies spending big bucks. Web site., September 27, 2018.

[6016] Tiffany Trader. Inventor claims to have solved floating point error problem. HPC Web site, January 17, 2018. URL https://www.hpcwire.com/2018/01/17/inventor-claims-solved-floating-point-error-problem/. From the HPC editor: “After this article was published, a number of readers raised concerns about the originality of Jorgensen’s techniques, noting the existence of prior art going back years. Specifically, there is precedent in John Gustafson’s work on unums and interval arithmetic both at Sun and in his 2015 book, *The End of Error*, which was published 19 months before Jorgensen’s patent application was filed.”.

Anonymous:2019:SOL

Anonymous:2019:UFP

Anonymous:2019:YAF

Bailey:2019:AM

Bellal:2019:IAA

Boghosian:2019:NPS

Bos:2019:ACI

REFERENCES

[6040] David Harvey and Joris Van Der Hoeven. Integer multiplication in time $O(n \log n)$. Report hal-02070778, School of Mathematics and Statistics,
REFERENCES

University of New South Wales, and CNRS, Laboratoire d’informatique, École polytechnique, Sydney, NSW 2052, Australia and 91128 Palaiseau, France, March 18, 2019. URL https://hal.archives-ouvertes.fr/hal-02070778/document.

Hiasat:2019:DRI

Hrycak:2019:AEC

IEEE:2019:PDA

Kalamkar:2019:SBD

Kim:2019:EMA

Kulisch:2019:MSI

REFERENCES

Moler:2019:CCV

Munoz-Coreas:2019:QCD

Nannarelli:2019:TFP

Roughan:2019:PSS

Silver:2019:CCN

Solovyev:2019:REF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

the Mathematics Research Center, United States Army, at the University of Wisconsin, Madison, October 5–7, 1964.

Wilkinson:1965:AEP

Ralston:1966:MMD

AFIPS:1967:ACP

Anonymous:1968:PSA

AFIPS:1969:ACPa

AFIPS:1969:ACPb

Morrell:1969:IPP

REFERENCES

AFIPS:1971:ACP

Freiman:1971:PIC

Rice:1971:MS

ACM:1972:PAA

Cardenas:1972:CS

IEEE:1972:IAD

REFERENCES

REFERENCES

REFERENCES

[6114] **COMPSAC:1978:CPC**

[6115] **IEEE:1978:PSC**

[6116] **ACM:1979:PSC**

[6117] **Anonymous:1979:WCR**

[6118] **Budach:1979:FCT**

[6119] **Meinardus:1979:ATP**

[6120] **Ng:1979:SAC**

*Edward W. Ng, editor. Symbolic and algebraic computation: EUROSAM ’79, an International Symposium on Symbolic and Algebraic
REFERENCES

REFERENCES

REFERENCES

[6157] Mini/Micro Southwest/84 Conference Record: Sessions Presented at Mini/Micro Southwest-84, Dallas, Texas, September 11–13, 1984, in

REFERENCES

Prinetto:1992:CHD

Quinton:1992:APV

Singh:1992:CRT

Turing:1992:PM

Vandewalle:1992:SPV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gautschi:1994:MCH

IEEE:1994:PFI

IEEE:1994:PTA

Lea:1994:PSA

Mudge:1994:PTS

Pehrson:1994:IPP

REFERENCES

IEEE:1996:DAC

Kearfott:1996:AICa

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of
REFERENCES

the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

LakshmanYN:1996:IP1

Luk:1996:PSC

Pellikaan:1996:AGC

Pocek:1996:ISF
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6353] Ulrich Kulisch, Rudolf Lohner, and Axel Facius, editors. *Perspectives on enclosure methods: GAMM-IMACS international symposium on scientific computing, computer arithmetic and validated numerics,*

REFERENCES

REFERENCES

REFERENCES

Cheung:2003:FPL

Deprettere:2003:IIC

REFERENCES

REFERENCES

IEEE:2004:IIS

IEEE:2004:PJC

Luk:2004:ASP

Selvaraj:2004:PES

Smailagic:2004:ETV

REFERENCES

REFERENCES

IEEE:2005:ICS

IEEE:2005:IIS

IEEE:2005:MSC

IEEE:2005:PII

IEEE:2005:PIS

REFERENCES

REFERENCES

IEEE:2006:ICV

IEEE:2006:PIW

Menezes:2006:PAS

Mohanty:2006:IIC

Pocek:2006:FAI

Yi:2006:SAI

REFERENCES

[6433] IEEE, editor. *ASAP 07: conference proceedings: IEEE 18th International Conference on Application-Specific Systems, Architectures,
REFERENCES

REFERENCES

REFERENCES

[6460] François Charot, Frank Hannig, Jürgen Teich, and Christophe Wolinski, editors. ASAP 2010: proceedings: 21st IEEE International Conference
REFERENCES

REFERENCES

REFERENCES

