Introduction

This is a bibliography of material on floating-point arithmetic that I came up with while doing research on a floating-point package of my own. I don’t claim it to be anywhere near complete. The material listed is only what I myself possess.

My main interest was in software based, binary floating-point arithmetic on a microprocessor, so you won’t find much material about the hardware used in floating-point arithmetic (e.g. adders, carry propagation schemes, higher radix
representation for multiplication and division, etc.) in this list. There is also not too much on non-binary floating-point arithmetic.

For most fields covered in this bibliography, the important or historically relevant articles should be included. There is also some material on integer arithmetic in this list as some of the methods used with integer arithmetic contain interesting ideas that may be useful in the realization of a floating-point arithmetic package.

Also, depending on the type of microprocessor used, one may need to implement integer multiplication and division for use in the floating-point package, so articles about this topic are included as well.

As I am German, there is a bit of material in German in this bibliography. However, English translations are provided for all non-English titles.

Thanks to the people who have helped me with previous versions of this document by sending me papers or additional references:

- Steven Sommars (sesv@research.bell-labs.com),
- Jim Kiernan (jmk@teak.cray.com),
- Warren Ferguson (ferguson@seas.smu.edu),
- Nhuan Doduc (ndoduc@framentec.fr),
- K. C. Ng (kwok.ng@eng.sun.com),
- Nelson H. F. Beebe (beebe@math.utah.edu).

Bibliography entries in the Books section are ordered alphabetically by author; ordering is by ascending year in the remaining sections.

Warning: it has yet not been possible to bring this citation list up-to-date with the entries in the Bibliography.
Journal Publications, Conference Papers, Technical Reports, Ph.D. Dissertations, Book Contributions, etc.

1 Choice of base, floating point formats

[468, 713, 715, 694, 691, 852, 1094, 1085, 1966, 2195, 2316, 2469, 2693, 2707]

1.1 Precision and Rounding

[405, 526, 708, 808, 840, 855, 921, 989, 997, 1001, 1242, 1377, 1318, 1476, 1660, 2208, 2381, 2454, 2763, 3076, 3197]

1.2 Determination of parameters of floating point arithmetic

[651, 785, 1570, 2201, 2129]

1.3 IEEE standards for floating point arithmetic

[950, 1148, 1173, 1157, 1182, 1147, 1154, 1282, 1269, 1270, 1226, 1246, 1400, 1327, 1350, 1329, 1656, 1754, 1792, 1793, 1790, 2015, 2100, 2265, 2498, 2971]

1.4 Floating point arithmetic, general and implementation issues

[599, 683, 971, 992, 1038, 1050, 1049, 1184, 1186, 1161, 1220, 1212, 1416, 1433, 1922, 1942, 2145, 2146, 2297, 2371, 2274, 2453, 2694, 2695, 2624, 2692, 2928]

1.5 Floating point packages

[1233, 1631, 1611, 1704, 1662, 1814, 1779, 1815, 1897, 2008, 2030, 2132, 2226, 2227, 2228, 2404, 2405, 1294]

1.6 Floating point units

[390, 1105, 1264, 1224, 1273, 1296, 1266, 1291, 1216, 1259, 1267, 1438, 1478, 1437, 1471, 1493, 1594, 1511, 1513, 1514, 1612, 1545, 1542, 1549, 1576, 1647, 1552, 1719, 1706, 1647, 1688, 1716, 1649, 1727, 1938, 1900, 1928, 1894, 1947, 1886, 1879, 1880, 2056, 2010, 2081, 2173, 2202, 2234, 2178, 2204, 2179, 2111, 2141, 2247, 2190, 2142, 2214, 2386, 2332, 2333, 2357, 2249, 2368, 2330, 2327, 2241, 2349, 2388, 2288, 2250, 2369, 2255, 2489, 2424, 2444, 2484, 2439, 2416, 2487, 2470, 2461, 2582, 2690, 2653, 2875, 2790, 2858, 3015, 2965, 3106, 3264]
1.7 Test of floating point routines
[470, 1396, 1657, 1800, 1799, 1950, 1951, 1895, 2034, 2522, 2530, 2596, 2595, 2710, 2689, 2675, 2970]

2 Addition and Subtraction
[351, 1452]

2.1 Floating-point Summation
[301, 321, 338, 337, 538, 604, 642, 793, 1593, 2203, 2277]

2.2 Multiplication
[645, 1194, 1206, 1417, 1481, 1455, 1509, 1536, 1528, 1553, 1608, 1526, 1689]

2.3 Division
[187, 215, 201, 298, 410, 974, 1019, 1255, 1344, 1503, 1578, 1557, 1541, 1701, 1820, 1945, 1924, 2312, 2699, 2645, 2885, 2934, 6593, 2867]

3 Elementary functions, general
[360, 372, 554, 615, 582, 1076, 1211, 1561, 1588, 1687, 1650, 1648, 1724, 1770, 6513, 1875, 1981, 2082, 2026, 2205, 6531, 2485, 2522, 2472, 3251, 2474, 2443, 2620, 2771, 2584, 2733, 2734, 2613, 3284, 3252]

3.1 Elementary functions, CORDIC and related algorithms
[170, 171, 225, 240, 349, 493, 520, 624, 616, 632, 697, 815, 1023, 1039, 1239, 1393, 1630, 1827, 1639, 1741, 1893, 2087, 2306, 2237, 2466, 2492, 2639, 2731, 2927, 2922, 3046, 2986, 3032]

3.2 Elementary functions, function approximation
[217, 218, 453, 590, 731, 730, 940, 978, 1114, 1930, 2223, 2115, 2608, 2705, 2706]

3.2.1 Polynomial evaluation
[235, 255, 280, 398, 1016, 1177, 2276]
3.3 Square root, general
[1037, 1138, 1421, 1533, 1584, 2490, 2600]

3.3.1 Square root, bit-oriented, iterative, and table methods of computation

3.3.2 Square root, Newton’s method
[139, 256, 278, 350, 323, 319, 359, 423, 399, 483, 488, 502, 564, 553, 547, 549, 667, 1271, 1261, 1339, 1518, 2260, 2936, 2865]

3.4 Sine and Cosine
[160, 1023, 975, 980, 1127, 1340, 1482, 1598, 1597, 1696, 1783, 1883, 2048, 2159, 2531, 2879, 2876, 2800, 2898, 2992]

3.5 Logarithm
[135, 247, 307, 655, 955, 1066, 1245, 1468, 2035, 2036, 2532, 2657]

3.6 Exponential function
[122, 383, 1134, 1303, 1457, 1679, 1777, 2395, 2533, 2919]

3.7 Arctangent
[124, 140, 185]

3.8 Other transcendental functions
[469, 580, 141, 981, 341, 251, 336, 2028, 1109, 2781, 2972]

4 Binary-decimal conversion
[169, 153, 200, 447, 544, 649, 1117, 1237, 1238, 1346, 1586, 1640, 1932, 1905, 2434, 2526, 2450, 2777]
5 BCD arithmetic

[639, 690, 740, 741, 742, 743, 744, 745, 746, 1324, 1432, 1636, 1574, 1967, 2569, 2878]

6 Multiple precision arithmetic

[268, 306, 384, 400, 598, 583, 910, 959, 1054, 1053, 1211, 1292, 1372, 1480, 2726, 2711, 2951, 3171]

7 Conferences on computer arithmetic

[6454, 6464, 6468, 6477, 6480, 6492, 6510, 6511, 6552, 6582, 6590, 6584, 6616]

8 Additional contributions from Nelson H. F. Beebe

Title word cross-reference

#26 [5342].

\[(2^n)^m \] [3705]. \((10^{x_1} - 1)/9 \] [1906]. \((2^m) \] [4245, 4266, 4447, 4456, 4363]. \((2^n + 1) \] [1036, 4678, 3816]. \((2^n - 1) \] [4879]. \((2^n - 1, 2^{n+p}, 2^n + 1) \] [6082]. \((2^n+1) \] [5907]. \((2^n \pm 1) \] [5369, 4040]. \((2m) \] [4328]. \((2n + 3) \] [6303]. \((2n - (2p \pm 1)) \] [4732]. \((d,r) \] [752]. \((R) \] [2826]. \((p) \] [4245, 4328]. \((x+y) * (x-y) \] [6394]. \(-2 \]
X [1480, 2813, 423]. \(x^2 + ny^2 \) [3617]. \(x^n \) [5812, 3224]. \(y \) [4307]. \(Z \) [5191]. \(Z^2 \) [4907].

.NET [4942].

/m [4748]. /spl [4748].

0.18-CMOS [5614]. '00 [6691, 6696, 2465]. '01 [6705]. '03 [6734]. '04 [6742, 6750]. '07 [6784, 6790, 6792, 6797]. '08 [6801, 2950, 5238].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

= [2720, 2721, 3260, 6451].

abnormal [5849]. Abotec [3095]. Absolute [3305, 3306, 2681, 2177, 404].
Abstract [5422, 4430, 5452, 5188, 5638, 2826, 2039, 5684, 4766, 2899].
abstraction [5322, 5662, 1272]. abstraction-based [5322]. Abstracts [607, 6697].
Abu [381]. Acadiana [6669]. Accelerate [6340, 6081, 4467].
Accelerated [4882, 5334, 5533]. Accelerating [5854, 4684, 3767, 5542, 5979, 4128, 6399, 6122, 5606].
Acceleration [6391, 6203]. Accelerator [5856, 6252, 5525, 5561, 6096, 6113, 2178, 6213, 5892, 4784, 6363, 6168, 2191].
Accelerators [6308, 6217, 4658, 5138, 3410]. Acceptance [3394].
Access [2070, 4974, 3311, 4470, 4524]. Accessibility [6757]. Account [1].
Accumulate [6265, 4856, 6185, 6200, 5783, 3727, 6409, 4394, 6323, 3576].
Accumulated [1309, 542, 933]. Accumulation [6056, 1984, 1888, 159, 5753, 5994, 5165, 5753, 5902, 5390, 4317, 68, 425, 1026, 3612, 5645, 3638, 3661, 5586, 541, 5387, 2684, 82, 5299]. accumulations [4128].
Accumulator [3761, 4651, 6032, 355, 2615, 988, 3226, 5615, 5696, 4653].
accurate [4620, 2874, 4622, 5925, 4143, 2073, 4388, 5078, 2920, 2758, 5308, 5097, 1049]. Accurately [3467, 6263, 2434, 5577, 4901, 2526, 4793, 6264, 6060, 4692, 4693, 5449, 5473]. ACE [902, 4971]. achieved [2938]. Achieving [5848, 5245, 5523, 6072, 1770, 4626, 5691].
Algebraicznych [429].

1987, 974, 1755, 2789, 5004, 2272, 1761, 2986, 3908, 5543, 6183, 1069, 1765, 400, 1053, 1744, 4845, 3469, 1437, 5526, 3633, 776, 5530, 1753, 2128, 5126, 3888, 2317, 2045, 6469, 5690, 2886, 1610, 5066, 4657, 429. Algebraic-integer [229].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

700, 785, 836, 6388, 1456, 5882, 5356, 842, 5020, 2459, 6802, 4098, 4252, 3516, 4439, 3517, 3794, 1458, 1353, 1460, 3190, 4596, 4597, 3016, 3017, 5572, 2466, 3018, 5993, 2318, 2159, 4113, 789, 491, 1362, 3805, 6824, 492, 6396, 3029, 4449, 3206, 4270, 596, 5671, 5175, 2848.

Algorithms [1467, 3966, 3038, 2851, 3212, 6649, 6768, 1005, 3548, 1573, 1817, 651, 1574, 655, 1575, 6542, 4292, 4917, 4474, 3216, 419, 332, 448, 336, 3555, 4298, 2492, 3698, 4302, 1265, 3701, 3016, 3017, 5572, 2466, 3018, 5993, 2318, 2159, 4113, 789, 491, 1362, 3805, 6824, 492, 6396, 3029, 4449, 3206, 4270, 596, 5671, 5175, 2848].

Algorithm [3162, 4572, 203, 5012, 5015, 5885, 6186, 6577, 3928, 4592, 5559, 1245, 3186, 5163, 1912, 704, 2836, 4272, 2336, 3034, 4463, 1685, 2347, 3584, 792, 1686, 1812, 1571, 5450, 6683, 6694, 6710, 6723, 6753, 3971, 2486, 4618, 3049, 2678, 4919, 5050, 2358, 2490, 5052, 5277, 6218, 3982, 5689, 3984, 3314, 1595, 5461, 6014, 2194, 2377, 4493, 2516, 3994, 3835, 4501, 3084, 3085, 3417, 5207, 2387, 1714, 1953, 5078, 4652, 2917, 1028, 2744, 3109, 463, 1634, 4811, 5233, 2936, 4818, 2270, 1976, 333, 1936, 1016, 1475, 4556].

Algorithmus [1976, 360, 1936, 1475].

Alignment [5770, 3758, 3822].

alignments [1850].

all-one [4849].

Allerton [6438].

Alley [3513].

allgemeine [1049, 1161].

allgemeiner [1294].

Allocatable [3383, 3394].

Allocation [4431, 1225, 6311, 6167, 918, 3268].

Alloy [5682, 5823].

Almost [6422, 2207, 4911].

Alpha [2902, 3303, 2797, 3420, 3258]. also [2879].

Alternate [4310]. alternating [3545].

Alternative [1225, 6311, 6167, 918, 542, 4524].

Alternatives [4195, 1095, 3047, 4487, 4602].

Alto [6666, 6652].

ALU [4189, 5314, 5502, 2023, 1832, 1591, 5616, 1903, 1728, 2765].

ALUs [2094].

always [5946]. am [2534].

Am25S05 [588].

Am29000 [2191].

Am29027 [2191].

Am29050 [2495].

Am29C327 [2241].

Am9511A [1322].

Am9511A/Am9512 [1322].

Am9512 [1216, 1322]. ambiguity [4821].

AMD [6282, 3940, 3824, 3982, 3834, 3835, 3996, 4159].

AMD-K7™ [3982, 3835].

AMD5 [3820]. ameliorating [994]. amélioration [4204].

America [21].

American [1969, 6488, 6426, 2776].

Amherst [6845].

Among [1172, 3977]. amount [3926].

Amounts [3045, 3782, 3909].

amplifier [2148].

Amplifiers [164].

Amplifying [1649].

Amsterdam [6787, 6848].

AN-Codes [4238].

Anaheim [6520, 6547, 6575].

Analog [434, 95, 4086, 3505, 120, 121, 208, 97, 210, 415, 345, 3997, 114, 131, 4039, 2808, 4729, 3938, 654, 4786, 1618, 3600, 2236].

Analog-To-Digital [4039, 4086, 4729, 3600].

Analyticrechenschaltung [516].

analogue [516].

Amplifier [516, 1018, 3122]. analogue-to-digital [3122].

Analyse [5531, 34, 6451].

Analyses [4243, 3802, 2735].

Analysis [570, 2097, 6471, 133, 4187, 1733, 4987, 6633, 6249, 4201, 6250, 6052, 3313, 6381, 151, 5526, 5326, 1519, 2258, 2587, 5530, 1523, 2593, 1327, 974, 6007, 5964, 3771, 6275, 2276, 6181, 780, 4722, 6502, 96, 5551, 4726, 5553, 5661, 2814, 3001, 6294, 6295, 109, 4440, 2148, 3940, 370, 3191, 6525, 2827, 5990, 2314, 371, 593, 2646, 2830, 705, 1091, 1001, 373, 6100, 3685, 793, 5590, 6003.
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Architecture 3279, 6032, 4663, 6408, 1038, 4382, 6243, 2559, 4673, 3303, 1740, 5646, 2584, 3145, 2969, 4563, 2272, 1993, 6499, 2292, 4727, 1902, 3505, 5366, 2150, 6449, 4598, 2645, 5265, 2156, 2157, 2320, 2321, 2327, 2471, 4117, 2658, 2337, 2338, 3808, 2169, 3683, 2345, 4754, 3816, 1691, 4755, 2484, 2676, 2677, 2180, 5276, 5457, 4928, 2495, 3568, 452, 2193, 4157, 3576, 2512, 2513, 1017, 6485, 4941, 2209, 5617, 3427, 893, 1281, 4650, 4654, 1718, 2222, 3115, 1635, 2091, 3291, 4734, 2037, 2176, 6674.

Architecture 6689, 5636, 5949, 5317, 3872, 6759, 4542, 5510, 2962, 4213, 6817, 4855, 6732, 6776, 5971, 5880, 3659, 4091, 5565, 2307, 6706, 6749, 6765, 6789, 6803, 6811, 5567, 5572, 4447, 4604, 6105, 2848, 3038, 2851, 6649, 6768, 1587, 3705, 3985, 5285, 6599, 6339, 6587, 6726, 4006, 6344, 5477, 2901, 2076, 5782, 6698, 6659, 6416, 6771, 4361, 5942, 1878, 2567, 6768, 2119, 5863, 4557, 2279, 4742, 3969, 6683, 6694, 6710, 6723, 6737, 6753, 3049, 2678, 3827, 4145, 3066, 2189, 5661, 4783, 2387, 2908, 2909, 2735, 4807, 4662, 2760, 2761.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[54, 979, 980, 981, 1066, 99, 105, 5931, 884, 245, 3429, 6050, 102, 89, 3095, 51].

Calculators [690, 978, 92]. calculator [25, 34]. calculs [34, 3069]. Calgary
[5123, 5331, 1530, 2802, 3914, 1168, 4453, 602, 650, 896, 3320, 5268, 2505]. Cent
[3424]. Certain [11, 1741, 773, 697, 4872, 73, 3050, 341, 4310, 4311, 556, 520, 52].
411, 5674, 412, 935, 1101, 3704, 3569, 1700, 735, 1484, 888, 2390, 754, 192, 512].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Additional Contributions from Nelson H. F. Beebe

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Computer

32

Computer

32

Computer

32

Computer

32

Computer

32
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6614, 3728, 4021, 4342, 5938, 1958, 6144, 2225, 170, 220, 5235, 5727, 6605, 6642, 6785, 6488, 6243, 5853, 6050, 52, 1519, 3146, 4406, 4560, 5738, 2137, 2806, 6500, 3166, 4584, 587, 80, 56, 57, 58, 59, 60, 61, 5812, 5884, 5886, 3928, 6777, 4092, 3939, 3028, 5035, 6709, 4281, 792, 5679, 2864, 6426, 659, 339, 4138, 5827, 451, 5604, 1600, 2061, 4499, 3418, 2391, 5212, 5213, 75, 2406, 3856, 3115, 249.

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

DCT/IDCT [3443]. DDA [1101, 926]. DDC [1617]. DDFUN90 [4832].
de-normalized [4452]. Deadly [6211]. Dealing [47]. Debate [5082].
debugging [6058, 646, 4469]. December [6560, 6806, 6744, 6759, 6808,
6809, 6735, 6752, 6476, 6670, 6781, 6519]. Decidability [4998]. Deciding
[5662]. Decimal [5102, 457, 4788, 4944, 5394, 245, 146, 2525, 503, 5259,
4996, 578, 825, 5327, 5647, 1324, 1328, 1525, 4999, 5127, 5335, 5336, 136,
4216, 4217, 4407, 4561, 4562, 4854, 177, 202, 5063, 6063, 5129, 153, 3642,
5137, 471, 4420, 4574, 4866, 5141, 5258, 5346, 5347, 5431, 637, 639, 5976,
2450, 5259, 5743, 5355, 5881, 2456, 1346, 5745, 5362, 1237, 1238, 1905,
3796, 5024, 5029, 5162, 5368, 1249, 2155, 3946, 4892, 4894, 236, 1097,
237, 376, 99, 5054, 2878, 2703, 950, 243, 1477, 5693, 802, 1116]. Decimal
[1614, 457, 4788, 4944, 5394, 245, 146, 2525, 503, 4960, 4961, 169, 5220,
5221, 5401, 5619, 3433, 5087, 5223, 5405, 5406, 5485, 5700, 6149, 6152,
3275, 4809, 4969, 5227, 5228, 5409, 5410, 5096, 1033, 5311, 6243, 1734,
5248, 5328, 436, 2622, 5810, 5354, 1236, 5556, 5028, 5030, 5367, 5370,
533, 2161, 2162, 4740, 5184, 5185, 375, 329, 1111, 1017, 5472, 743, 617,
5398, 5483, 4800, 5486, 5621, 2407, 5229, 5489]. Decimal-Based [5743, 5619,
5259, 5220, 5221]. Decimal-Binary [136, 243, 1237, 1238, 375]. Decimal/Hexadecimal
[2525]. decimal64 [5597, 5718, 5385, 5270, 5044]. D´ecimales [1111]. Decimals
[585, 37, 5164, 5377, 244, 1624]. decimation [3183]. decimation-in-time [3183].
Decision [4186, 4017, 5322, 3519, 3968, 5386, 4792]. Decisions [4888, 1907,
1253]. decNumber [5000, 5128]. Decodable [4238]. Decoded [5409]. Decoder
[6133, 4019]. decoders [4013]. Decoding [4386, 537, 4384, 1043, 2279,
4125, 5045, 4771, 1956, 4365]. decomposable [3904]. Decomposition [3012,
2312, 3202, 1816, 5185, 5047, 331, 4310, 735, 3585, 2903, 754, 2430,
4727, 2342, 448, 3255, 5077]. Decompositions [5162, 953]. Decompression
[3581]. Decreasing [3906, 2382]. decryption [3477]. DECSYSTEM [1341, 915].
DECsystem-10 [915]. DECsystem-10/20 [915]. DECSYSTEM-20 [1341]. Dedicated
[2900, 2721, 2899]. Dedication [5707]. dédié [2721]. Deductive [5797]. Deep
[6236, 6237, 6159, 6262, 6287, 6306, 6099, 6399, 6332, 5929, 6220, 6367,
[2741]. Defektberechnung [2492]. defense [2784]. deficiencies [1667]. defined
[4849, 5017]. Defining [3386]. Define [6377, 258]. Definiteness [6016].
Definition [524, 6196, 4897, 4924, 3317, 2290, 710, 1174, 4745, 6018, 15].
Definitions [1490]. Degeneracies [3385]. Degeneracy [3250]. Degradation
[4903, 5835]. Grades [3670]. Degree [5631, 5511, 4215, 1597, 4667, 5146,
6128, 6139]. Dekker [4993, 6398]. Delaunay [3591]. Delay [3631, 2583,
3475, 3766, 5347, 5810, 3970, 4790, 4621, 4624, 3282, 5626]. Delay-based
Delays [2804]. Delhi [6578]. Delight [5786, 6740, 4469]. delimited [5071].
Delimiting [2937, 2762]. deliver [3113]. delivers [2109, 2428]. Delivery
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Desynchronize [5626]. Details [1741]. Detect [5133]. Detectable [2079].
1963, 1420, 6165, 2128, 5428, 4717, 4587, 3343, 5343, 2301, 6288, 2816, 4753, 4261, 4600, 5675, 5591, 2857, 2175, 98, 3228, 2893, 2063, 5298, 5411, 2756.

Dividers [6378, 5418, 770, 5960, 3358, 6210, 3541, 2055, 4827, 4083, 3039, 2505, 4019, 1863, 5488].

Dividing [1455, 1344, 1557].

Divisibility [2777].

Divisible [409].

Division [2555, 4, 1503, 1504, 813, 3755, 1308, 817, 5643, 690, 4392, 1741, 3465, 5798, 692, 6382, 5959, 1516, 27, 693, 5249, 5526, 776, 5121, 635, 3767, 3888, 974, 4559, 2974, 3149, 4855, 3902, 3335, 5341, 5872, 3046, 1537, 1765, 3162, 3163, 4071, 4571, 2000, 6184, 397, 477, 521, 3918, 403, 1541, 784, 6284, 2627, 5882, 3169, 2300, 6288, 2816, 4735, 4261, 4600, 5675, 5591, 2857, 2175, 98, 3228, 2893, 2063, 5298, 5411, 2756].

Division [409].

Division [5778, 3170].

Division/Square [5702, 3751, 3960].

Division/Square-root [3751].

Divisionless [200, 189].

Divisions [528, 241, 501, 748, 4140, 3115].

Divisionsalgorithmus [1701].

Divisionsverfahren [1741].

Divisor [528, 410, 3892, 501, 748, 512, 432, 4684, 2874, 4627].

Divisors [703, 3186].

DLLfloat [6236].

DLLs [3098].

DMT [4670].

DNA [4443].

DNA-based [4443].

DNS [5157, 5158].

Do [4551, 1357, 4231, 5811, 3345, 3021, 4262, 1271].

Document [6008].

Documentation [5898, 554].

Documents [3749].

Does [5858, 2442].

Dog [3466].

Doing [1234].

Dokumentation [554].

Dollars [6403].

Domain [522, 1750, 3585, 2431, 3170, 2314, 3255, 3843].

Domains [5188, 5683, 3255].

Domestic [220].

dominated [3757].

Donald [5932].

done [2467].

dombes [2678].

Don’t [2040].

Dot [5856, 5247, 5331, 2976, 4725, 6305, 6308, 3205, 6096, 4769, 4970, 4932, 6337, 5782, 6024, 5123, 2793, 3638, 5566, 2652, 5585, 5761, 5692, 5230, 5308].

Dot-Product [6308, 3205, 6337].

dot-products [5566].
Double [4529, 4209, 4686, 5324, 4554, 278, 4565, 3484, 3641, 3905, 5971, 6182, 3340, 6388, 5358, 4098, 4252, 3361, 5573, 6088, 6093, 5167, 323, 6313, 5378, 4282, 4610, 5818, 5178, 327, 5917, 2355, 337, 338, 5684, 5053, 4628, 4489, 5837, 673, 5476, 350, 1863, 1027, 5088, 5788, 6411, 3292, 5792, 4832, 4833, 4835, 5419, 4065, 4206, 4683, 5723, 4563, 4857, 4226, 4227, 2275, 591, 5370, 4902, 4912, 5766, 660, 5457, 1274, 5617, 4796, 5080, 3283, 5092, 2547, 4699, 4700].
draw [498]. drawing [2133, 4493]. Drexel [6739].
drift [880, 881]. Driven [4983, 1317, 6315, 3710, 2395, 2532, 2919, 2457, 2533, 3289].
Drivers [2972]. Driving [6505]. DS [4131, 4289, 4290, 4036]. DS-CDMA [4036].
DSD [6706]. DSFUN90 [4833]. DSL [6345]. DSL-Based [6345].
DSP [5497, 2557, 2239, 3870, 4049, 3757, 2252, 5528, 4552, 3333, 3640, 4233, 2441, 1899, 2289, 4426, 5813, 3519, 3021, 3949, 4744, 5906, 5996, 4752, 3971, 2865, 4765, 4925, 3066, 4316, 5610, 6138, 3582, 3079, 2386, 3424, 2908, 2909, 2391, 2392, 2393, 2738, 2739, 3105, 4807, 2935, 2236, 5427, 2270].
DPS [4418, 3791, 2380]. Dual [4529, 5314, 4424, 3511, 6088, 3799, 3963, 4607, 5382, 4301, 3139, 5008, 4076, 3493, 2150, 3535, 3692, 2360, 5478, 2408, 3860]. Dual-mode [6088].
Dual-Purpose [5314]. dual-rail [3692]. Dualmaschinen [553].
Due [117, 178, 5763, 3061, 4792, 899]. Duisburg [6678, 6796].
Dummy [3383, 2766].
d’un [1933]. Dundee [6503, 6487]. d’une [666].
Duo [5013]. Duodecimal [38]. Duplicate [5936]. Durbin [1150].
durch [1764, 1965]. Durchfuhrung [29].
During [6094, 2625]. Dutch [175]. Dynamic [6251, 694, 5758, 2492, 5096, 6375, 5644, 3760, 4056, 2588, 4066, 4264, 2658, 3092, 3061, 4034].
dynamic-range [2588]. Dynamical [6253, 4917, 6327, 4618].
dynamically [1751, 2129, 2997].
Dynamics [3150, 3558, 5395, 5941, 5642, 5334, 5533, 4865].
dynamischer [2492]. Dysan [1611].
dyscalculia [4934].

E-commerce [3650]. E-mail [3650]. E29 [2950, 5238].
E29-08 [2950, 5238]. Eagle [6685]. Earliest [21, 381]. Early [1311, 2964, 1321, 3691, 5592, 1397, 5738, 4864, 4493, 1466].
Early-Normalizing [5592].
earth [5911, 6143]. EASIAC [111]. easier [4694]. Easily [1538, 1707].
Easily-Testable [1538].

ECC [5720, 6325]. ECCTD [6553]. Echtzeitanwendungen [3106]. ECM [6086].
elementarer [360]. Elementary [1875, 2237, 5417, 2953, 3135, 815, 2781, 1645, 1648, 1981, 1211, 4213, 582, 1219, 2970, 1332, 4417, 2274, 697, 4072, 360, 1076, 1770, 2620, 1085, 3184, 5752, 5899, 2019, 2472, 372, 2474, 2028, 4282, 4610, 5818, 2034, 328, 655, 4134, 871, 6213, 2492, 3560, 3698, 5052, 2697, 945, 3710, 554, 615, 3082, 3252, 4000, 217, 1283, 2394, 2733, 2734, 2082, 504, 1630, 2089, 3284, 2771, 5539, 520, 1294, 1724, 1039, 5792, 3877, 822, 911, 4060, 4857, 3152, 3331, 5131, 1338, 1166, 5027, 5177, 5762, 4466, 653, 2485, 4614, 1826, 3231, 3081, 3598, 4796, 4652, 624, 3283, 3439].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

2814, 3172, 3001, 367, 5814, 6198, 3529, 4264, 2336, 3370, 6316, 3961, 5820, 5913, 6119, 5387, 3222, 3061, 1012, 1014, 943, 946, 82, 1474, 5691, 3714, 4792, 885, 3843, 4507, 1120, 2217, 4168, 1026, 1866, 1197, 6031, 429. errors [1638, 3442, 2766, 2767, 6412, 2538, 178]. Erweiterungen [1865]. escalator [1912].

eServer [4723, 4503]. especially [2339]. Essais [15]. Essays [3071, 1490, 15].

ESSCIRC [6678, 6665]. Essential [2149]. Estimate [453, 5605, 4667].

Estimates [1145, 920, 1076, 1082, 2028, 5680, 512, 432, 3899, 6102, 6316, 3045, 3554, 5067, 1403, 1854, 4661, 6634]. Estimating [2119, 2966, 5264].

Euro [6843, 3645, 3782, 3909, 6589, 6444, 6843]. Euro-Par [6843, 6444, 6483].

Euro-Par'96 [6644]. EUROCAL [6509]. EUROMICRO [6754, 6706, 6668].

Europe [6761, 6597, 6712, 6570]. European [6509, 4063, 6622, 6678, 6665, 6553, 6609, 6540, 6602, 4062]. EUROSAM [6469]. EUSIPCO [6540, 6602].

Evaluating [614, 2038]. Even [1879, 6414, 4469, 5701]. Even-Type [5701]. Event [6609]. Ever [1602]. Every [2803, 2623, 2624, 4588, 2929]. Everybody [4222].

Exact [2960, 4990, 5856, 4202, 5513, 4208, 6056, 3316, 4694, 4224, 3910, 3339, 2991, 4244, 6079, 3792, 1084, 4255, 5894, 5578, 1249, 6096, 853, 1000, 5905, 4906, 4907, 1467, 2849, 6321, 3557, 2684, 3560, 4300, 5685, 6136, 3081, 4333, 2540, 4038, 5413, 5494, 4372, 274, 4840, 2570, 5645, 3877, 4396, 4995, 5345, 3495, 3207, 5585, 5586, 2672, 5981, 5761, 4462, 4463, 4910, 5916, 5386, 5359, 4926, 1695, 5921, 5922, 6346, 4664]. Exactly [3252, 4148, 2225]. examine [3610].

ExBLAS [5894, 5895]. Exception [3159, 1458, 3184, 4105, 3193, 2831, 3225, 2562, 2978, 3173, 3797, 3520, 3798, 4106, 1299]. Exception-Handling [2831].

Exceptions [2011, 5715, 3311, 1153, 3350, 3508, 2152]. Excess [5907]. Exception [6246, 1602]. execute [4551].

executing [1683, 4008]. Execution [2951, 4259, 1815, 3838, 1498, 390,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Field-Oriented [6386]. Field-Programmable [6741, 6758, 6745, 6774, 6731, 6735, 5480, 6727, 5008, 3786, 6703].

8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

53

5827, 2872, 2873, 876, 2366, 2367]. floating [941, 4141, 3226, 4622, 2187, 3062,
6010, 3227, 3228, 3826, 2371, 3704, 4771, 3233, 548, 4772, 5197, 5689, 6012, 452,
4143, 3064, 3065, 5198, 5389, 5927, 5690, 942, 4146, 3988, 4149, 5603, 728, 943,
3707, 3989, 4628, 3240, 4775, 1270, 1934, 5604, 2191, 186, 665, 946, 2192, 2886,
2193, 3709, 2195, 2504, 3242, 496, 3405, 2196, 6417, 2508, 2713, 2893, 4780, 2199,
3245, 3992, 5607, 2376, 2511, 2716, 2512, 2513, 1704, 2063, 1275, 880, 881, 4937,
949, 498, 1188, 1189, 1276, 671, 1017, 2895, 1018, 3246, 1609, 455, 4785, 3409,
736, 5774, 5468, 5469, 5692, 6019, 5610, 3834, 3835, 3996]. floating [1279, 4786,
4499, 1843, 3077, 92, 5611, 5472, 6226, 954, 2896, 2382, 3836, 5473, 3582, 3249,
739, 1943, 2207, 2518, 2069, 4787, 5838, 674, 675, 3088, 3719, 4007, 4642, 5394,
2384, 3839, 4333, 4790, 4791, 5614, 3841, 3587, 2720, 2721, 2899, 2722, 3256,
3093, 2212, 3589, 3721, 4505, 885, 3094, 3418, 1946, 3419, 1020, 3843, 5067, 4014,
4334, 6403, 3722, 2391, 1619, 1851, 2911, 4507, 2215, 1120, 2392, 2393, 4335,
4336, 4509, 4952, 4953, 4954, 5075, 5076, 5210, 5211, 5212, 5213, 1714, 1402,
268, 1403, 1954, 4650, 3599, 4019, 351, 299, 4652, 806, 2738, 2739, 3104, 3105].
floating [4959, 1858, 3600, 128, 1406, 1717, 1860, 2221, 1864, 1718, 2920, 5080,
6142, 2921, 1627, 807, 3263, 4346, 4800, 1026, 3265, 1288, 4025, 4173, 1721, 3602,
3603, 1722, 1628, 1866, 4028, 4174, 1959, 899, 6145, 4803, 4804, 680, 757, 3604,
1723, 2539, 2401, 2403, 4352, 4353, 1961, 5088, 1293, 2750, 2088, 463, 3113,
2406, 810, 3856, 2409, 2924, 4659, 4809, 5089, 5229, 5624, 6031, 2410, 1725,
1634, 1297, 1726, 509, 510, 511, 2090, 2229, 4970, 758, 2411, 2412, 1201, 270,
1635, 2091, 3119, 3282, 1868, 1496, 2231, 2413, 1298, 2545, 4032, 1728, 1497,
4812, 5095, 5412, 5626, 904]. floating [2548, 4034, 4178, 4813, 4814, 5627,
566, 760, 2762, 174, 2764, 2234, 2414, 2766, 2767, 3122, 3743, 5097, 4818, 4819,
4978, 4980, 4526, 4665, 4666, 2236, 6412, 5002, 2270, 2605, 1198, 6252, 1662,
3798, 4750, 1814, 3556, 3106, 2226, 2227, 2228, 2404, 2405, 1416, 5426, 952].
floating- [5236, 5721]. Floating-Point [1969, 3861, 4528, 4823, 5102, 5632,
5415, 4529, 4824, 3865, 6238, 6036, 4534, 4986, 6157, 6159, 6379, 5499, 5500,
5638, 5639, 5711, 6413, 4834, 3305, 3872, 4050, 4051, 4052, 1879, 4390, 2249,
2424, 3627, 5512, 820, 971, 1049, 1977, 2572, 2785, 5113, 5514, 5716, 5857, 5858,
5859, 6163, 6414, 3313, 3314, 1980, 5860, 2426, 1981, 691, 2255, 5718, 5958,
1212, 1213, 1318, 4209, 6166, 6382, 3467, 6259, 5324, 224, 824, 5525, 3143, 3318,
4996, 2582, 1518, 5422, 2586, 3473, 4214, 5327, 5647, 1216, 6059, 694, 1327, 1442,
1656, 2265, 2971, 3890, 5962, 3892, 1149, 1220, 1657, 5724]. Floating-Point
[3769, 3896, 4999, 5127, 5335, 5336, 2789, 4217, 3326, 3327, 3482, 1989, 1990,
5968, 5964, 4222, 2438, 2439, 4224, 4703, 583, 5730, 5731, 5868, 5134, 5007, 6275,
4234, 1895, 1994, 5970, 3781, 1663, 2803, 2805, 5257, 474, 6386, 4420, 5141, 5346,
3337, 3912, 4074, 1767, 5973, 2139, 1224, 1450, 5974, 4080, 2141, 6281, 4870,
5654, 1225, 2142, 2809, 4422, 5545, 3650, 1900, 5352, 836, 3924, 839, 1230, 2623,
2624, 4588, 5259, 5743, 6073, 6389, 1343, 1544, 6390, 4243, 4430, 5357, 282, 2145,
2146, 2297, 1779, 4086, 5555, 926, 365, 366, 5152, 3791, 2459, 5435]. FloatingPoint [1905, 927, 6296, 2463, 2635, 2820, 5984, 1246, 5161, 5663, 3794, 1085,
5987, 1552, 6301, 1790, 1791, 1792, 2014, 2015, 6302, 5029, 5570, 6393, 3014,
3015, 4102, 318, 5436, 5897, 5747, 5371, 5576, 5578, 5748, 5750, 6089, 6199, 4259,


8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Floating-Point

[412, 5178, 5179, 2033, 5046, 5819, 793, 863, 1372, 538, 5589, 6003, 3212, 2852, 2853, 2173, 2349, 6115, 2668, 4763, 2480, 604, 651, 2482, 5765, 6212, 1574, 2675, 5680, 4471, 495, 544, 1101, 3384, 5454, 4294, 939, 5385, 5188, 2357, 1694, 606, 1825, 2044, 2184, 2361, 2362, 3059, 4923, 5458, 6007, 6215, 1103, 2687, 2368, 2369, 6217, 6334, 874, 4930, 5054, 5196, 2900, 5476, 5695, 3590, 2386, 190, 2901, 2726, 2907, 3096, 3097, 3259, 3595, 3596, 2214, 1933, 609, 1267, 2498, 2190, 5832, 666, 4154, 5833, 2707, 2708, 3070, 6338, 5391, 4779, 5463, 5284, 5285, 6222, 2200, 2201, 1186, 3579, 6015, 2202, 950, 3076].

Floating-Point

[2203, 4497, 2204, 2718, 4940, 5292, 5293, 5466, 5777, 6401, 1612, 6138, 3838, 1481, 3998, 1396, 1705, 4788, 4944, 4332, 4643, 4945, 5613, 4947, 2900, 5476, 5695, 3590, 2386, 190, 2901, 2726, 2907, 3096, 3097, 3259, 3595, 3596, 2214, 1933, 609, 1267, 2498, 2190, 5832, 666, 4154, 5833, 2707, 2708, 3070, 6338, 5391, 4779, 5463, 5284, 5285, 6222, 2200, 2201, 1186, 3579, 6015, 2202, 950, 3076].

Floating-Point

[2203, 4497, 2204, 2718, 4940, 5292, 5293, 5466, 5777, 6401, 1612, 6138, 3838, 1481, 3998, 1396, 1705, 4788, 4944, 4332, 4643, 4945, 5613, 4947, 2900, 5476, 5695, 3590, 2386, 190, 2901, 2726, 2907, 3096, 3097, 3259, 3595, 3596, 2214, 1933, 609, 1267, 2498, 2190, 5832, 666, 4154, 5833, 2707, 2708, 3070, 6338, 5391, 4779, 5463, 5284, 5285, 6222, 2200, 2201, 1186, 3579, 6015, 2202, 950, 3076].

Floating-Point

[2203, 4497, 2204, 2718, 4940, 5292, 5293, 5466, 5777, 6401, 1612, 6138, 3838, 1481, 3998, 1396, 1705, 4788, 4944, 4332, 4643, 4945, 5613, 4947, 2900, 5476, 5695, 3590, 2386, 190, 2901, 2726, 2907, 3096, 3097, 3259, 3595, 3596, 2214, 1933, 609, 1267, 2498, 2190, 5832, 666, 4154, 5833, 2707, 2708, 3070, 6338, 5391, 4779, 5463, 5284, 5285, 6222, 2200, 2201, 1186, 3579, 6015, 2202, 950, 3076].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

56

1482, 6402, 3845, 1950, 1951, 217, 247, 1023, 4016, 2530, 2531, 2733, 2734, 6422, 3103, 5405, 1630, 1127, 2089, 3608, 3610, 6410, 6411, 2771, 4411, 1294, 1724, 5792, 5117, 1144, 2578, 576, 4060, 4857, 3774, 3330, 3152, 3331, 5651, 2278, 4865, 1338, 4721, 2294, 2626, 6075, 2457, 3170, 1166, 4256, 5027, 180, 5171, 601, 718, 4124, 5177, 5762, 4466, 3690, 329, 653, 2485, 3046, 4473, 1826, 3221, 5052, 2689, 3231, 5690, 3067]. **functions** [2705, 1938, 5289, 1393, 746, 3081, 4334, 1851, 2077, 752, 4796, 4655, 5938, 624, 3283, 3439, 4979, 4699, 5002, 5427, 5728, 1741, 2405]. **Fundamental** [6263, 931]. **Fundamentals** [6471, 6467]. **Funktionen** [360, 615, 1630, 1561]. **Further** [4564, 922, 5749, 747, 1741, 321]. **Fused** [6250, 4842, 5320, 4846, 6056, 4214, 5332, 5018, 2461, 5161, 6197, 3799, 6308, 4273, 5178, 5179, 5180, 3038, 5592, 4317, 5391, 5463, 5284, 5285, 4643, 5782, 6024, 5783, 5698, 6025, 6152, 6374, 4376, 4394, 4686, 4876, 3928, 4881, 4885, 4457, 4749, 3969, 4918, 4622, 3066, 5472, 4650, 4807]. **Fused-mac** [4842]. **Fused-Multiply-Add** [6197, 4885, 5472]. **Fused-Multiply-Add-Type** [5391]. **Fusion** [3295, 4154, 6239, 5821]. **Fusul** [381]. **Futile** [4737]. **Future** [2243, 5266, 451, 5431]. **Fuzzy** [5416, 4380, 4824, 3652, 1179, 4878, 5166]. **FVG** [1663]. **G4** [4409, 3719]. **G5** [3981, 4006, 4007]. **GaAs** [3625, 3328, 3329]. **GAF** [2597]. **Gain** [5940]. **Gal** [4794, 4955]. **Galinhas** [6825]. **Galley** [374]. **Gallium** [3144]. **Galois** [216, 4424, 5978, 3051, 4298, 3705, 3827, 3984, 4170]. **Galois-Enhanced** [3051]. **Galois/Counter** [5978]. **Galt** [6504]. **Galveston** [6749]. **Gamble** [4151, 5524]. **Games** [6428]. **GAMM** [6796, 6641, 6590, 6709, 1200]. **GAMM-IMACS** [6709]. **Gamma** [2595, 400, 4334, 573]. **gap** [4803]. **GAP9** [6400]. **GAPP** [2654]. **Gappa** [5253, 5539]. **Gate** [6741, 6758, 3164, 998, 3040, 3375, 5480, 6727, 2745, 3041]. **gatematrix** [1633]. **Gates** [1708, 5396, 5028]. **gating** [4056, 5874]. **gauge** [2308]. **Gauss** [5501, 5323, 6067, 5144, 1564, 3532, 3051, 1624, 4806]. **Gaussian** [5948, 1737, 1743, 5001, 5553, 5661, 2654, 6339, 1479, 1403, 1854, 1954, 1960]. **GCD** [1744, 2631, 3018, 2701]. **GCM** [5978]. **GDR** [6467]. **Gem** [5342]. **gems** [2560]. **Genaue** [1049, 4372, 4664]. **genauer** [1724]. **Genauigkeit** [1561, 2025, 1161, 615, 1294]. **Gene** [4851, 4864, 4912]. **Gene/L** [4851, 4864, 4912]. **General** [272, 5420, 1049, 4854, 831, 832, 982, 5547, 5155, 6624, 712, 1835, 4321, 5937, 1408, 2402, 1294, 571, 2421, 276, 2592, 5154, 4756, 2354, 2355, 2183, 4634, 4178, 2236, 2605, 4806, 1161]. **General-Purpose** [5155, 6624, 5937, 2421, 2354, 2236]. **generalisation** [2143]. **Generalization** [1442, 5771, 516, 1524, 2714]. **Generalized** [517, 1313, 1889, 6286, 2035, 1816, 2499, 549, 2064, 4010, 4961, 4349, 3607, 777, 6269, 5035, 2841, 3067, 1843, 2517, 4797, 4025, 4526, 4665]. **Generate** [6386, 2442, 3926]. **generated** [2442, 3370, 4816]. **generates** [1340]. **Generating** [4696, 4697, 436, 6390, 2035, 2043, 2182, 162, 2506, 3732, 564, 1923, 2339, 4954]. **Generation** [4528, 2237, 5240, 3632, 4213, 5532, 4704, 4866, 2142, 6283, 6077, 6846, 2461, 6736, 6087, 319, 5438, 372, 4612, 5451, 4293, 939, 99, 4480, 5599, 2696, 3990, 4152, 5480, 6361, 1492, 1295, 5307, 5093, 2567, 2127, 1658, 3904, 3344, 5820,
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

HDL [4795]. Header [2709]. health [5206]. Heap [5508]. Heaps [4240].
heard [4535]. hearing [4928]. Heat [182, 31]. Heaven [3612]. Held
[6561, 6419, 6641, 6642, 6467, 6463, 4713, 6500, 6577, 6503, 6778, 6793, 6823,
6525, 6461, 6542, 6512, 6481, 6426, 6478, 6650, 6614, 6458, 6573, 6487, 6529].
Helical [4998]. Helmholtz [1978]. Help [774, 5386]. Hénon [5815].
Hensel [1390, 3836, 2551]. Herbgind [6137]. Herbie [6158]. Hermite
[3980]. Hermite-Obreschkoff [3890]. Hermitian [3111]. Herz [2400].
Herz-Fischler [2400]. Heslington [6461]. Hessenberg [4722]. heterodyne
[4949]. Heterogeneous [3626, 5737, 5912, 5503, 5604, 2911]. Hewlett [2149].
Hex [4006, 3300, 1932]. Hex-BCD-Umwandlung [1932]. Hexadecimal
[433, 1561, 2525, 646, 533, 1932]. Hexadecimal-BCD [1932]. hexadecimale
Hierarchical [6276, 4118]. High [6660, 6772, 812, 1137, 3444, 5417, 5418,
1968, 3867, 4047, 1506, 4048, 2780, 4388, 4834, 5642, 5712, 5852, 1308, 4675,
1511, 1742, 4203, 5511, 1049, 1978, 6164, 6259, 3468, 5324, 5523, 3632, 4213,
693, 3883, 1520, 3761, 5799, 634, 4691, 1755, 4404, 3481, 3897, 3149, 6063,
5043, 5453, 5081, 1343, 4246, 179, 315, 316, 5475, 4438, 4595, 4884, 1086, 1676,
1910, 2464, 2151, 4102, 5572, 3361, 5573, 5370, 1913, 5992, 6092, 4112, 3528, 647].
High
[5033, 3022, 3673, 3203, 4892, 998, 1567, 3030, 5901, 535, 5902, 6097, 2029, 3372,
4900, 6207, 716, 123, 211, 3966, 4466, 1096, 3689, 537, 1370, 4127, 6115, 2857,
3777, 212, 1573, 1817, 330, 6118, 2676, 2679, 1928, 1009, 4477, 3974, 1585, 3392,
3563, 4931, 1831, 3398, 4144, 3569, 185, 4488, 4889, 4631, 4936, 5463, 2892, 68,
667, 2375, 950, 5464, 5693, 457, 617, 3999, 3717, 4003, 3084, 3858, 4049, 4009,
4945, 1615, 6344, 2722, 678, 1024, 75, 5302, 1284, 1855, 1857, 2079, 1859, 4023,
4345, 1627, 896, 6144, 6406, 6148, 5223, 5406, 5485, 5224, 4354, 1128, 1129].
Hight
[901, 1202, 1132, 1727, 2935, 4811, 5093, 4179, 1301, 2770, 3443, 1420,
2096, 3156, 65, 3126, 628, 3131, 3751, 1731, 1732, 5794, 4673, 2103, 5853, 1042,
2109, 2111, 4550, 3470, 2257, 1886, 355, 4851, 2431, 2272, 2441, 6385, 5136, 2989,
2284, 2615, 2286, 4871, 6072, 4585, 4726, 4727, 3928, 6288, 3352, 3353, 2819,
2303, 2309, 2152, 3939, 5989, 1248, 1914, 4740, 1921, 3960, 5675, 4751, 934, 2667,
4289, 4470, 4755, 2859, 5593, 2481, 44, 2861, 3053, 6426, 2488, 4297, 2874, 1105,
3228, 3704, 4624, 2698, 5688, 3986, 4145, 4627, 3068, 5202, 5604, 2503, 4632,
2508, 4780]. high
[1938, 82, 3576, 1017, 1610, 5467, 3087, 3088, 1021, 2911, 4952,
1714, 3599, 1123, 6145, 3268, 5488, 6371, 2542, 2769, 3229, 2605, 1981, 2492].
High-Accuracy
[1910, 1913, 6092, 1615, 1742, 1714, 1981, 2492]. High-
Dimensional [6118, 6385]. High-end [4156]. high-frequency
[4740]. High-
Level [1049, 5968, 1450, 4080, 950, 6406, 4048, 4477, 1627, 1017, 6145].
High-
Order [1978, 3481, 1009, 3084, 3085]. High-Performance [6660, 1506,
5523, 3632, 4213, 3761, 4691, 5350, 4884, 4102, 5992, 4931, 5463, 5302, 6144,
5223, 5406, 5485, 4595, 2151, 4466, 6148, 3156, 3126, 5794, 4673, 5853, 4851,
4726, 4727, 3928, 2861, 3228, 4624]. high-period [5136]. High-
Precision
[3444, 4834, 4675, 6259, 1086, 3673, 6115, 5642, 5712, 5852, 6385, 2542]. High-
Radix [5418, 3149, 3030, 5901, 3966, 3398, 4945, 4023, 4345, 4203, 4144, 4488, 4631, 3084, 3085, 2309, 2698, 3986, 4145, 4627, 4632, 3087, 3088, 1123].

high-rate [4289, 4755, 2605]. High-resolution [4246]. High-Speed [812, 1137, 1308, 5324, 693, 634, 4404, 252, 1531, 108, 5881, 1343, 179, 5745, 5572, 3361, 4112, 647, 5033, 4892, 998, 1567, 535, 123, 211, 1096, 537, 4127, 1573, 1817, 330, 1831, 4489, 4936, 68, 667, 3999, 3717, 4003, 3840, 4009, 1615, 678, 2079, 896, 5229, 901, 5093, 1123, 1420, 2096, 1520, 3490, 4438, 3203, 3689, 1370, 212, 2679, 3569, 2892, 2375, 75, 1857, 1128, 4811, 2770, 1731, 1732, 2111, 2284, 3352, 3353, 1248, 1914, 1921, 4751, 2667, 4470, 1105, 3704, 2503, 2508, 4780, 1938, 82, 3576, 1021, 3599].

High-Speed [1024, 1129].

High-Throughput [5417, 4900, 6344].

high/variable [2257].

Higher [6631, 432, 514, 813, 5796, 6702, 1516, 2433, 1537, 6292, 2316, 2845, 5382, 2491, 5767, 2066, 1842, 1125, 1959, 512, 2993, 3001, 2829, 3020, 2358, 4946, 3740].

Higher-Order [6631, 3001].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[Illinois [6463, 6549, 6510, 6426]. ILUT [5591]. ILUT-based [5591].

implementation [3177, 3935, 3356, 5989, 5575, 5706, 5169, 1815, 3542, 3375]. Implementation [3216, 3053, 1582, 1102, 5456, 3698, 873, 1588, 4304, 4305, 3229, 3230, 2050, 3232, 5770, 1933, 1267, 2055, 3401, 4492, 2065, 5464, 4324, 456, 3999, 4945, 4012, 3722, 1622, 1855, 5698, 4169, 2395, 2532, 2533, 2919, 1861, 1864, 2920, 5081, 6360, 4350, 1196, 2745, 1289, 2746, 6309, 3279, 4038, 2549, 1869, 4040, 5539, 1294, 5490, 5501, 1505, 4674, 1878, 2116, 3881, 4689, 1439, 2431, 2262, 4555, 4405, 3898, 2793, 4068, 5254, 2272, 5340, 5651, 3485, 3778, 4710, 3646, 5137, 2988, 3916, 1155, 2286, 5148, 2994, 3498, 3343, 5150, 2455, 5549, 6577, 1780, 4729, 2457, 3790, 6190, 4095].

Implemented [3313, 823, 850, 6150, 3628, 1984, 1700, 2199, 1404, 1486, 4812]. Implementierung [1161, 1689, 1815, 1294]. Implementing [6380, 4995, 3767, 3184, 2466, 3564, 2383, 5069, 5070, 3727, 2082, 6148, 3435, 1203, 576, 6071, 2478, 2188, 1272].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

[5825]. Insomniacs [5040]. Inspired [6806, 5622]. Instabilities [665].
insanity [5714, 5910]. installation [1944]. Instantaneous [9, 2148].
Instead [1192, 1808, 5938]. Institut [6478]. Institute [6619].
Instruction [4182, 4379, 6155, 5428, 5740, 1779, 2304, 2470, 5169, 5175, 5179,
945, 3831, 5236, 2556, 6243, 1064, 1333, 4232, 6176, 6180, 5970, 6282,
2299, 1780, 3928, 1174, 2191, 5697, 3438, 4814, 4818, 4666].
Instruction-Level [5179].
instruction-set [5236].
Instruments [16, 518, 773, 5125, 5126, 2973, 836, 6390,
5560, 3792, 4265, 3547, 3548, 2040, 1099, 6005, 5598, 1609, 4314, 1599, 4490, 500,
1945, 3851, 5408, 3124, 3290, 2245, 1756, 3169, 5449, 5455, 5063, 1960, 4657].
integrable [4302]. Integral [516, 309, 1291, 258]. Integral-Ungleichun
[516]. Integrals [5879, 3536, 6385, 1451]. integrands [5021].
Integrated [5497, 6690, 4670, 687, 3463, 2425, 1982, 6579, 6594, 6792, 1366, 2170, 1809,
1130, 4218, 988, 2455, 1798, 2346, 2180, 2391].
Integrating [3009, 1375, 5604, 6693, 4819].
Integration [6052, 1752, 3910, 72, 4253, 73, 6626, 412, 182, 68, 6404, 894, 4568, 258, 80, 82, 2062, 4014, 174].
Integrations [5908, 2509].
Integrator [55, 3500]. Integrity [1683, 940, 6746].
INTEL [1319, 936, 4983, 6156, 4984, 5708, 1427, 1886, 5724, 4559, 5335,
6282, 3650, 5013, 5979, 6076, 1786, 4598, 1563, 5665, 2169, 2170, 1259, 5275,
1013, 1266, 2388, 6403, 2216, 5697, 2234].
Intellectual [6505].
Intelligence [5544, 6292, 6400].
IntfrM] [4679]. Intensive [1649, 6256, 6121, 3106].
Inter [1035, 6293, 6516].
Inter-Continental [6516].
Inter-Modulo [6293].
Inter-relationships [1035].
interaction [5470].
Interactions [3870].
Interactive [1683, 940, 6746].
Interchangeability [1035].
interconnected [5611].
Interest [6583, 47].
Interface [1052, 1210, 6489, 6805, 2152, 942].
Interfaces [3657, 3011, 5367].
Interfacing [3104].
Interior [4362].
Interlaced [5975].
Interleaved [1086, 5441, 3211, 3036].
interlock [2119].
Intermediate [4823, 5102, 3970, 3991, 3658, 4002].
Internal [3446, 3303, 5881, 5745, 3588, 2914, 1773, 2484, 2764].
Internal-Newton-
Method [3446].
internals [3088].
Internation [6627].
International [6530, 6548, 6741, 6577, 6578, 6641, 6642, 2558, 6606, 6631, 3618, 6661,
6744, 6590, 6714, 6633, 4539, 6759, 6774, 6787, 6715, 6444, 6702, 6703, 6788, 6834, 6621, 6634, 6817, 6731, 6775, 6716, 6607, 6677, 6808, 6818, 6732, 6843, 6733, 6756, 6624, 6636, 6637, 6667, 6680, 6681, 6691, 6692, 6705, 6707, 6718, 6719, 6734, 6735, 6736, 6748, 6749, 6750, 6751, 6752, 6763, 6765, 6778, 6789, 6790, 6791, 6793, 6794, 6803, 6811, 6812, 6821, 6822, 6823, 6832, 6597, 6582

International [6848, 6648, 6626, 6722, 6613, 6796, 6542, 6481, 6781, 6442, 6469, 6478, 6712, 6453, 6599, 3074, 5465, 6673, 6726, 6739, 6816, 6687, 6799, 6697, 6698, 6699, 6713, 6845, 6659, 6699, 6727, 6771, 6728, 6617, 6756, 6603, 6826, 6604, 6558, 6629, 6653, 6688, 6783, 6501, 6647, 6709, 6650, 6696, 6652, 6689, 6792, 6810, 6674].

6597, 6584, 6795, 6848, 6612, 6769, 2685, 6837, 6469, 6598, 6599, 6496, 555, 3101, 6615, 6616, 6847, 6845, 6514, 6487, 6559. Just [5007, 4694].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Matrix-Vector \[5847, 2435, 5912\]. Matrixproblemen \[1277\]. Maui \[6697\]. MAX \[4992\]. Maximal \[1749, 833, 1561, 4964, 5017, 2025, 1724\]. maximaler \[1561, 2025\]. Maximally \[1724\]. Maximization \[101\]. Maximum \[3616, 3748, 820, 971, 1078, 5548, 1781, 735, 754, 5789, 4843, 5812, 5884, 3357, 1923, 5827, 453, 5210\]. maximum-redundancy \[3357\]. Maxwell \[5972\]. May \[6452, 6470, 6800, 6801, 6439, 6444, 6472, 685, 6786, 6775, 4713, 6473, 6534, 6501, 6450, 6480, 6554, 6555, 6579, 6581, 6594, 6637, 6681, 6692, 6693, 6750, 6763, 6794, 6813, 6820, 6822, 6836, 6539, 6524, 6432, 6518, 6478, 6696, 6673, 6515, 6604, 3957\]. MB \[2296\]. MC \[2184, 2362\]. MC68000 \[1946\]. MC68000/NS32081 \[1946\]. MC68881 \[1647, 1649, 1552, 2042, 1824, 1825, 2044, 2361, 2363, 1706\]. MC68881/MC68882 \[2042, 2044, 2363, 2361\]. MC68882 \[3214, 2042, 2044, 2361, 2363\]. MC8810 \[2858\]. MC88100 \[2364\]. MCALIB \[5876\]. McClellan \[2032\]. McGee \[347\]. McLaughlin \[6171, 6286\]. McLean \[6563, 6565\]. MCM \[3438\]. MCMC \[6113\]. MD \[6721, 6560\]. Mean \[1648, 402, 5548, 3544, 2400, 1877, 3877, 2006, 3826, 1014\]. Means \[1324, 360, 120, 2492, 245, 1965, 1294, 3863, 792, 4302, 3726\]. measure \[844, 3, 671, 1200\]. Measurement \[1905, 6664, 6693, 2201, 1631, 2431, 7, 1633\]. Measurements \[1733, 8, 2259, 4864\]. Measuring \[3483, 3151, 5876, 5984, 3078, 6031\]. mécanique \[34\]. Mechanical \[3450, 5515, 10, 3679, 5931, 4502, 34, 5738\]. mechanically \[4205, 3820, 3834, 3835, 3996\]. mechanically-checked \[3834\]. Mechanics \[6714, 31, 6421, 34, 249\]. Mechanik \[6479, 249\]. Mechanism \[4186, 6312, 42, 1237, 5738\]. Mechanizing \[3672\]. Medford \[6700\]. Media \[3767, 4604, 4612, 4867\]. Medical \[6588\]. Medicine \[6535, 6521\]. medieval \[983\]. Medium \[4988, 5899, 717, 5939\]. Medium-Precision \[5899\]. Meeting \[6618, 6563, 6479, 6570, 6488, 3668\]. Meets \[4388\]. Megacycle \[130, 115\]. megaflops \[4138\]. mehrfacher \[1049\]. mein \[569, 1729\]. Melbourne \[6477, 6780\]. Mélia \[6774\]. Mellon \[6458\]. member \[3263\]. Members \[6042, 409\]. Memoing \[3767\]. Memoization \[4824\]. memorandum \[133\]. Memorial \[6666, 6686\]. Memories \[5558, 2083\]. Memory \[823, 3143, 4093, 6200, 3211, 6399, 5055, 4623, 1834, 6343, 2070, 1192, 5707, 2599, 4748, 3036, 1944, 4169, 5306, 3435, 2542, 2550\]. Memory-Efficient \[6343\]. Merged \[1122, 1286\]. Meridien \[6505\]. Meritus \[6752\]. Mersenne \[5516\]. Mesh \[3321, 3362, 4270, 1599, 3591, 4054, 1412, 1413\]. Mesh-Connected \[3321, 1599\]. Meßdatenverarbeitung \[1631\]. meßtechnische \[1905\]. Messy \[2604\]. Meteorology \[6428\]. Method \[570, 3446, 1504, 765, 1308, 134, 135, 3464, 2251, 2115, 5243, 575, 774, 579, 1324, 200, 279, 1894, 6069, 5737, 2276, 3907, 831, 332, 982, 30, 397, 477, 24, 139, 3929, 3658, 3512, 645, 483, 2306, 5990, 2315, 3197, 5267, 26, 488, 5442, 324, 43, 1816, 290, 4914, 1261, 1822, 4479, 341, 5920, 607, 3822, 2046, 3980, 5830, 4481, 4623, 1011, 4311, 1835, 105, 549, 5605, 735, 166, 3586, 4008, 1482, 5209,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

4794, 4955, 502, 4015, 754, 5937, 4349, 192, 3604, 3607, 4030, 3282, 1965, 1032, 567, 1498, 5634, 5946, 6243, 4670, 1042, 5864, 5656, 2622. method
[2625, 1773, 1081, 3170, 4882, 3357, 6419, 3185, 533, 5166, 374, 3037, 6323, 2670, 4289, 2481, 4761, 2181, 5388, 3222, 2874, 797, 546, 3567, 4149, 4776, 4780, 1018, 1479, 6139, 3255, 4505, 4335, 4336, 4509, 4952, 4953, 4954, 5075, 4340, 4797, 3731, 4025, 2741, 3274, 387, 3288, 5691]. Methodist
3114, 3740, 5231, 4973, 4818. **Modular-Multiplication** [2491]. **modulation** [4116, 4035]. **Modulator** [114, 3884]. **Module** [3749, 4751, 1067, 2611, 2349, 3394, 3079, 4330, 4333, 4197, 2254, 1217, 2282, 2861, 4639, 5623]. **Modules** [1510, 4390, 3394, 4751, 3246]. **Moduli** [5845, 5855, 3874, 6286, 1673, 4732, 6082, 6293, 5160, 877, 5209, 4357, 3293, 3294, 4820, 1209, 1644, 4550, 4688, 5120, 3894, 4558, 2843, 4630, 1839, 1939, 4948, 4011, 4012, 4013, 2754]. **Modulo** [4527, 4678, 5516, 6054, 770, 633, 826, 5808, 5349, 4590, 4879, 6293, 5562, 5369, 6303, 1251, 4112, 4908, 5482, 2888, 3402, 3403, 1841, 165, 5465, 4645, 4514, 4354, 6370, 960, 4040, 2554, 3869, 4711, 4862, 4869, 1240, 3816, 1837, 4629, 4498, 2904, 5482, 2550]. **Modulo** [5369, 6303, 5907, 4908, 770]. **Modulus** [3947, 2023, 958, 4376, 1892, 2385, 2225, 2543, 2753]. **modulus/multi** [3234, 3235]. **M¨oglichkeiten** [1689]. **Molecular** [31, 5395, 4865]. **Møller** [3222]. **moment** [4210]. **Moments** [1720]. **Monica** [6552, 6464]. **Monitoring** [1159, 1229, 1230, 304, 5540]. **monodromy** [5800]. **Monte** [5723, 5870, 5967, 5876, 6419, 3707, 3708, 3989, 4150, 4151, 5220, 5627]. **Monte-Carlo** [5627]. **Monterey** [6741, 6758, 6727]. **Montgomery** [4911, 4181, 3623, 3756, 4837, 5713, 6161, 3876, 4203, 5530, 5961, 5126, 6170, 5864, 6064, 6171, 6172, 5004, 2988, 5010, 3919, 5547, 5655, 5361, 5557, 4880, 5565, 5567, 3365, 4115, 5441, 4458, 4904, 4759, 4761, 5830, 3823, 4305, 4626, 4307, 4481, 6219, 4774, 4312, 4313, 4155, 6225, 4160, 4941, 6227, 5933, 6023, 5477, 4654, 4350, 4357, 5701, 4363, 4521]. **Montgomery-Based** [5701]. **Montgomery-Form** [4307, 4481]. **Montgomery-Like** [3823]. **Monticello** [6438]. **Montpellier** [6690, 6795]. **Montreal** [6750, 6485, 6456, 6451, 6789]. **Morocco** [4713]. **Morphable** [4401]. **MORUS** [6373]. **MOS** [1547, 2029, 2185, 1725]. **Most** [4984, 433, 5026, 4469, 5177, 2883, 6403]. **Motion** [4998, 2625]. **Motivations** [4494, 4495]. **Motorola** [2416, 2417, 1348, 3356, 1609, 2081]. **Motors** [6386]. **Moursund** [399]. **movies** [5583]. **moving** [6597]. **moyenne** [3877]. **MP** [3459, 1053, 1143, 2883, 6403]. **MP-1** [3459]. **MP/Model** [2379]. **MPCS** [6624]. **MPEG** [4384, 4386, 4019]. **MPEG-1** [4384]. **MPEG-2** [4019]. **MPEG1** [4771]. **MPEG1/2** [4771]. **MPFI** [4494, 4495]. **MPFR** [5855]. **MRI** [4441]. **MS** [2680]. **MS-DOS** [2680]. **MSB** [3391]. **MSB-First** [3391]. **MP** [1214]. **MR** [5855]. **MRC** [1067]. **MRRNS** [2754]. **MSB** [2680]. **MS-DOS** [2680]. **MSB** [3391]. **MSB-First** [3391]. **mu** [3178]. **Much** [4434]. **Multi** [1041, 5951, 1511, 5720, 3767, 2975, 3639, 4233, 1335, 2990, 5742, 481, 2815, 6195, 1363, 5049, 1834, 3571, 6133, 6021, 1613, 2209, 2211, 5694, 5400, 3857, 5863, 2273, 5874, 6288, 1808, 2679, 5456, 4928, 3234, 3235, 3105, 5231]. **multi** [5863]. **Multi-base** [5720]. **Multi-Core** [6021, 5742]. **Multi-Dimensional** [4233, 4928]. **Multi-Exponentiation** [114]. **Multi-function** [3234, 3235]. **Multi-Input** [1834, 2679]. **Multi-Intervals** [3571]. **Multi-Modular** [3234, 3235]. **Multi-Operand** [1041, 1335, 1363, 4521].
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

\[3650\]. Netherlands [6787, 6608, 6665, 6597, 6848, 6732]. Nets [561, 2089].

Network [6660, 6287, 1567, 4269, 6099, 6399, 5918, 6409, 3616, 2968, 3917, 2633, 3688, 3730, 2768, 6233].

Neue [1424].

Neuenahr [6513].

Neumann [6522, 6069, 640, 5553, 5661, 6079, 3668, 534, 6421, 6422, 6423, 6425, 6427, 6428].

Neural [6237, 6258, 6262, 6173, 6309, 6310, 4269, 6099, 6399, 6349, 6233, 6409, 3410, 2768].

Neuromorphic [6213].

Neuroprocessors [5790].

Nevada [6549, 6759, 6430, 6440].

Never [5538].

Neville [6384].

New-Generation [5451].

Newcomb [5288].

Newest [2231, 3263].

Newman [2736].

News [3650, 6395, 2547].

Newton [3446, 6162, 4675, 774, 3895, 5808, 1556, 6309, 6409, 2968, 3410, 2768].

Newtonian [1638].

Newtonlike [1429, 3313, 770, 5658, 2630, 3208, 751, 2907, 3628, 638, 699, 781, 3172, 3507, 2833, 3200, 1175, 1176, 854, 2476, 2376, 2511, 2716, 800, 2896, 1020, 3734, 2401, 509, 510, 511, 2546, 2548, 2414].

noise-tolerant [3734].

nodes [2599, 6119].

Noise [1429, 3313, 770, 5658, 2630, 3208, 751, 3907, 3628, 638, 699, 781, 3172, 3507, 2833, 3200, 2326, 1175, 1176, 854, 2476, 2376, 2511, 2716, 800, 2896, 1020, 3734, 2401, 509, 510, 511, 2546, 2548, 2414].

Non-Analytical [171].

Non-binary [4126, 3196].

Non-Computable [5017].

Non-Coprime [6216, 3397, 813, 1255, 3539, 3687, 6141, 2537].

Non-Numerical [5534].

Non-Overshooting [1231].

Non-Pairwise-Prime [1209].

Non-Recursive [6110].

Non-Restoring [6216, 3397, 813, 1255, 3539, 3687].

Non-Significant [3789].

Non-Smooth [3533].

Non-Standard [475].

Non-Strict [2822].

Non-Traditional [4972].

Non-Volatile [6399].

Non-Additive [1848].

Non-Adjacent [2619].

Nonlinear [6287, 2486, 2868, 3533, 2865, 3585, 3609, 4369, 3689, 721, 5190, 903].

Nonreciprocal [3255].

Nonredundant [3852].

Nonrestoring [817, 1516, 635, 602, 614, 1295, 1820, 1019, 3087].

Nonscalar [729].

Nonspeculative [5556].

Nonstandard [1741, 1203].

Nonsupersingular [3050].

Norfolk [6614].

Normal [1047, 4021, 6189].

Normal [1429, 5520, 5071, 5143, 4456, 5454, 6127, 162, 4304, 4158, 4321, 6339, 5001, 3487, 2150, 3806, 4605, 3690, 4142, 4633, 4634, 4636, 4782, 4938, 4341, 2535, 2536, 2537, 2408].

normalisée [4236].

normality [5470].

Normalization [1987, 923, 989, 410, 1941, 1870, 2095, 1520, 1762, 3926, 1546, 3604].
8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

83

4116, 2649, 3023, 3024, 3025, 3026, 287, 209, 2336, 2840, 3034, 1806, 1918, 1919,
1920, 1921, 2167, 2168, 2337, 2338, 2841, 2660, 2843, 2340, 2661, 2341, 3683,
3812, 3968, 4125, 5045, 1685, 2667, 2855, 4130, 4131, 4132, 4289, 4290, 4291,
4470, 4755, 3971, 4133, 5679, 2350, 2039, 542, 5594, 5452, 1693, 3818, 4926,
5388, 4928, 213, 4303, 4621, 2370, 3229, 3230, 2881, 2882, 3986, 4144, 4145,
3067, 3236, 3237, 379, 3238, 3239, 3400, 1700, 1837, 5061, 6014, 4312, 4313].
number [4630, 2888, 2889, 3403, 3574, 496, 4156, 2375, 2510, 4157, 1474, 1839,
1939, 2377, 1391, 4320, 498, 4498, 2382, 3836, 5614, 4948, 3587, 1847, 3093, 2073,
5617, 2389, 2725, 2905, 3844, 4011, 4012, 4013, 956, 1021, 1022, 1618, 1711, 1712,
1948, 1949, 4949, 2908, 2909, 4506, 2915, 168, 2527, 2916, 299, 1404, 1486, 3428,
3601, 1860, 2221, 1956, 5084, 2741, 3734, 1126, 4962, 3108, 4028, 4174, 2747,
3604, 1960, 3270, 3271, 3272, 5226, 129, 4359, 2753, 2758, 3120, 3121, 3285, 3286,
4035, 4036, 4037, 4365, 4366, 4522, 4523, 4524, 2760, 2761, 2762, 4815, 513, 2938,
2769, 2770]. Number [4689]. Number-Theoretic [3990, 4152]. Numbers
[6729, 6773, 629, 969, 4053, 33, 4990, 1432, 1049, 6163, 2426, 519, 5718, 5958,
3467, 6263, 6264, 6662, 4400, 1324, 2434, 307, 1330, 1061, 1758, 1759, 4224, 137,
4712, 6278, 637, 1157, 49, 836, 1454, 3652, 6390, 48, 3655, 5981, 2631, 526, 527,
35, 1162, 2459, 1905, 2463, 2635, 2820, 5985, 5987, 4103, 318, 5747, 5995, 6095,
4450, 1569, 5902, 236, 1467, 5380, 603, 650, 5680, 6326, 418, 2863, 4294, 2181,
3387, 5824, 99, 5828, 1103, 2699, 2700, 343, 4490, 1390, 3711, 1186, 165, 3837,
2074, 6347, 2526, 4793, 5215, 3728, 3431, 1629, 3273, 6233, 1411]. Numbers
[1202, 625, 5789, 905, 1033, 5101, 3863, 5946, 3298, 4839, 2251, 3468, 6167, 5528,
4997, 2589, 2590, 2591, 5723, 4692, 4693, 2267, 5428, 2801, 5136, 3642, 2609,
2610, 2619, 2290, 118, 1344, 2296, 283, 2301, 5888, 4433, 4591, 5261, 1165, 1241,
119, 5983, 3185, 646, 1557, 232, 2025, 2655, 2836, 4745, 4897, 3370, 5171, 1923,
2844, 6102, 3964, 5449, 6323, 2177, 6004, 3045, 1376, 2862, 1262, 3554, 3388,
3217, 339, 5457, 2684, 3559, 6, 4629, 4153, 4315, 1275, 1018, 2517, 2069, 618, 675,
4008, 4641, 2719, 4333, 5478, 3099, 2914, 806, 5303, 5304, 5938, 3852, 810, 4810].
numbers [2229, 3282, 5097]. numeral [5384]. Numerals [835, 5384, 917].
Numeration [1539, 83, 2619]. numeri [118, 119]. Numeric [2562, 1515,
3342, 851, 999, 544, 1259, 2864, 2693, 1266, 1268, 1471, 2378, 887, 1617, 1865,
2396, 2427, 5534, 2287, 3658, 3350, 3508, 2666, 1264, 6128, 1594]. Numerical
[6465, 2097, 5631, 6471, 6641, 4531, 4669, 466, 6714, 5853, 6633, 2782, 2955,
5952, 3626, 6655, 5515, 6052, 1646, 6262, 5422, 5424, 694, 1147, 5863, 6607, 6459,
1331, 778, 5865, 3159, 4231, 5732, 5652, 3486, 1535, 3910, 1769, 1158, 586, 589,
987, 55, 81, 3500, 6502, 3653, 5885, 6186, 2296, 5553, 5661, 5887, 2999, 230, 702,
1903, 72, 4250, 159, 3516, 4439, 109, 4253, 1085, 1458, 73, 1556, 6525, 4445, 371,
1463, 3802, 4889, 4113, 5268, 2474, 3032, 373, 931, 5997, 5908, 412, 1686, 182,
183, 1575, 417, 292, 3973, 6512, 2870, 4308, 1269, 2198, 2890, 2891, 1184, 6483].
Numerical [1016, 5834, 6131, 5206, 1283, 6427, 3108, 6557, 3737, 6144, 6573,
4805, 1632, 4030, 903, 1032, 682, 2233, 6451, 4370, 385, 65, 3745, 3126, 1038,
5795, 4540, 1742, 6058, 393, 6065, 6068, 1660, 2978, 4863, 480, 5878, 3651,
1080, 1669, 5015, 4096, 284, 786, 2007, 1166, 4256, 5027, 370, 3191, 6461,
2319, 444, 3953, 2327, 5676, 1571, 5381, 6327, 2678, 795, 5191, 5387, 661,


1270, 2504, 344, 1110, 4319, 2516, 801, 4648, 4950, 4951, 3598, 1197, 3742, 174, 513, 6503, 1784, 731, 6487; numerically [5938]. Numerik [1833, 2396]. Numerik-Prozessoren [1833], numéric [2720, 6451], numériques [2678]. Numerische [731], numerischen [931, 1865], numerischer [1184, 1016]. Nuprl [2824]. NVIDIA [5972, 5207, 5625].

5767, 874, 4930, 5768, 5831, 3699, 5054, 3983, 3563, 3564, 3566, 3702, 3703, 4933, 2494, 2880, 5770, 4308, 2699, 2700, 5279, 1933, 609, 1013, 1267, 2498, 2190, 4310, 4485, 4151, 6013, 5772, 5832, 2055, 666, 4154, 4316, 5833, 2707, 2708, 3070, 3572, 6338, 5391, 2711, 2891, 1703, 2507, 3073.

Point [4779, 5463, 5284, 5285, 6221, 6222, 2200, 948, 2201, 1186, 3579, 6015, 2202, 950, 3076, 2203, 4497, 5464, 2204, 2718, 4940, 5292, 5293, 5466, 5777, 4159, 6401, 1478, 6137, 1611, 425, 1612, 6138, 5612, 3838, 4942, 1481, 3998, 2519, 1396, 1705, 4788, 4944, 2210, 4006, 4332, 4643, 4945, 5613, 4504, 4947, 2900, 3096, 3097, 3098, 3259, 3572, 6338, 5391, 2711, 2891, 1703, 2507, 3073.

Point [4677, 2423, 1141, 4992, 3758, 2112, 2251, 2252, 2113, 2253, 2569, 2570, 2963, 1743, 4204, 4396, 4544, 4680, 4681, 4993, 5112, 5797, 6051, 3628, 1513, 1514, 1647, 275, 2114, 1649, 631, 5115, 5421, 4207, 3759, 972, 4684, 5117, 5244, 2116, 973, 1144, 6256, 4866, 4846, 6165, 5646, 3142, 4847, 3468, 2428, 1745, 4687, 2118, 2579, 6167, 6168, 1884, 6260, 1319, 6261, 3317, 6057, 1320, 4690, 4848, 2584, 3144, 355, 1520, 2585, 6169, 3762, 4851, 1748, 1985, 2588, 3634, 3764, 3721, 1322, 1653, 2128, 2589, 2590, 5799, 5862, 2202, 2968, 4402, 5332, 3885, 2969, 3886, 5800, 4692].

Point [4693, 3889, 1441, 1524, 1754, 2130, 5334, 5533, 4064, 2597, 1058, 1891, 3895, 4562, 4409, 4991, 5337, 3328, 5535, 3637, 2268, 2790, 2791, 2792, 3772, 3901, 3153, 6067, 2602, 6068, 5253, 5254, 916, 1222, 2604, 6174, 5803, 5540, 2977, 2798, 3157, 3332, 4415, 4567, 4705, 5966, 5870, 3904, 2979, 226, 4709, 5006, 5131, 5132, 4232, 4570, 918, 4418, 5428, 5008, 2441, 5136, 2442, 4861, 2273, 4070, 2802, 5137, 2133, 472, 1664, 1665, 1762, 2804, 3907, 1153, 1336, 5139, 5009, 5344, 698, 1070, 4867, 4075, 4076, 4577, 4578, 5431, 4579, 1451, 1898, 2285, 1667, 4580, 1899, 699, 781].

Point [478, 783, 3648, 1155, 5145, 986, 2002, 6072, 2810, 2289, 4720, 2449, 6387, 4584, 5656, 4585, 258, 2994, 3168, 4587, 4723, 5657, 2995, 2451, 589, 838, 987, 1159, 1229, 1670, 3343, 2293, 2812, 2996, 988, 2625, 1773, 5354, 924, 1774, 2455, 1775,
5549, 2295, 4726, 4727, 1776, 5260, 5884, 1233, 1545, 228, 158, 283, 2629, 3788, 2300, 1780, 4246, 4729, 3789, 2457, 3927, 2998, 3928, 3656, 3505, 5662, 3929, 4433, 4591, 6288, 3660, 5019, 2814, 2815, 3172, 3507, 4092, 6190, 993, 3001, 3508, 1237, 1348, 1488, 1164, 1904, 3510, 2147, 3351, 1349, 1242.

point [3177, 3008, 3935, 2148, 3356, 5366, 4441, 2819, 2460, 3009, 1244, 2634, 5157, 5158, 1675, 2821, 6194, 6300, 6392, 5563, 3182, 3183, 2012, 5564, 486, 2640, 788, 1166, 2308, 5566, 646, 2310, 3797, 1169, 1793, 1677, 3192, 3520, 6198, 993, 3001, 3529, 3199, 5900, 594, 445, 707, 2324].

point [2325, 3200, 3201, 2326, 2327, 709, 710, 1174, 234, 4893, 2471, 2163, 2025, 1566, 2842, 3551, 653, 654, 936, 542, 5822, 2177, 4756, 1926, 1927, 937, 868, 3044, 6004, 3045, 1376, 2486, 4472, 4615, 5596, 5916, 3047, 2179, 2042, 6121, 2678, 4918, 2180, 5187, 3053, 1579, 3056, 1580, 1581, 660, 2488, 2181, 5597, 5683, 3386, 5189, 4762, 4920, 5191, 5192, 5193, 524, 5386, 2489, 1929, 3820, 4922, 5276, 295, 1824, 2183, 2360, 2363, 2365, 2684, 3559, 5827, 3821, 2045, 2872, 2873, 876, 5460, 5277, 2366, 2367, 941, 4141, 3226, 4622, 2877, 2187, 3062, 610, 3227, 3228].

point [3826, 3982, 2371, 3704, 4771, 2495, 3233, 548, 4772, 5197, 5689, 6012, 452, 4143, 3064, 3065, 5198, 5389, 5927, 5690, 942, 4146, 3988, 4149, 5603, 728, 943, 3707, 3989, 4628, 3240, 4775, 610, 1270, 1934, 5604, 5462, 2191, 186, 665, 946, 2192, 2886, 2193, 3709, 2194, 2195, 2504, 3242, 1937, 496, 3405, 2196, 799, 6417, 2508, 2713, 2893, 4780, 1938, 2199, 3245, 3992, 5607, 2376, 2511, 2716, 2894, 2512, 2513, 1704, 2063, 1275, 880, 881, 4937, 949, 498, 1188, 1189, 1276, 671, 1017, 2895, 1018, 3246, 1609, 455, 4785, 3409, 736, 5774, 6017, 5468, 5469, 5692, 6019, 5610, 3834, 3835].

point [3996, 1279, 4786, 4499, 1843, 3077, 92, 5611, 5472, 6226, 954, 2896, 2382, 3836, 3837, 5473, 3582, 3249, 739, 1943, 2207, 2518, 2069, 4787, 5838, 743, 674, 675, 3088, 3719, 4007, 4642, 5394, 3839, 4165, 4333, 4790, 4791, 5614, 3841, 3587, 2720, 2721, 2899, 2722, 1616, 3256, 3093, 5781, 2212, 3589, 3721, 4505, 4792, 885, 3257, 3094, 3418, 1946, 3419, 2075, 1020, 3843, 5067, 1483, 2388, 750, 4014, 4334, 6403, 3722, 2391, 1619, 1851, 2911, 4507, 1621, 2215, 1120, 2392, 2393, 4335, 4336, 4509, 4952, 4953, 4954, 5071, 5072, 5073, 5074, 5075, 5076, 5210, 5211, 5212, 5213].

point [5297, 5298, 5299, 5300, 5301, 2730, 2913, 1714, 1402, 2218, 268, 1403, 1954, 1955, 4650, 3599, 4019, 351, 299, 4168, 4652, 806, 2738, 2739, 3104, 3105, 6025, 4959, 1858, 3000, 4653, 4022, 128, 1406, 1717, 1860, 2221, 1864, 1718, 2920, 5080, 6142, 2921, 1627, 807, 3263,
8

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

93

[3126, 3177, 3257, 3280, 3176]. Power3T M [3862]. POWER6 [5138, 4985].
POWER7 [5512, 5438]. Powering [4317, 4777, 3849, 5785, 4631]. PowerPC
[4966, 3134, 3176, 3013, 3188, 3523, 3213, 3999, 3258, 3263, 3279]. Powers
[5808, 780, 5170, 6370, 2, 1512, 5884, 5443, 5827]. pp [195, 1423, 206].
PR [6403]. Pracniques [321, 329]. Practical [4186, 1503, 6413, 3626,
3830, 2505, 3293, 3294, 1174, 934, 4926]. practicality [3814]. Practically
[6341, 1480, 5840, 2559]. Practice [6828, 2950, 5238, 6802, 6468, 1604, 2130,
983, 1367, 5181, 5379, 2371, 6139, 1603]. practiced [680, 757]. Prague
[6664, 6779, 6810]. Praxis [6468]. Pre [5720, 5547, 3343]. Pre-computations
[5720]. Pre-processing [5547]. pre-scaling [3343]. Precimonious [5774].
Precise [2097, 3745, 2574, 5879, 3515, 3941, 4736, 6326, 3248, 4950, 4951, 4357,
5003, 2152, 6010, 5303, 5304, 4274, 4120]. Precision [6377, 5631, 5944, 3444,
4529, 6237, 3749, 1426, 3622, 4834, 6249, 4675, 6250, 6251, 691, 821, 910, 1052,
1053, 1054, 1143, 1210, 4844, 5242, 5518, 6056, 6259, 5324, 5245, 6262, 3471,
3472, 356, 5531, 6265, 6266, 6383, 5532, 5722, 6059, 1523, 278, 1328, 1525, 5725,
201, 3329, 6173, 4412, 4413, 4565, 583, 4417, 3334, 5430, 5543, 6182, 5973, 919,
400, 4870, 5144, 5434, 6388, 4243, 4430, 5551, 4728, 842, 6391, 6292, 4252, 6191,
6296, 6297, 6193, 8, 2149, 3936, 4100, 4101, 4733, 4883, 5161, 1458, 1785, 1909,
73, 1086, 3190, 318, 4445, 3193, 3361, 5573, 6088, 5899, 6091]. Precision [6305,
5993, 6092, 1678, 3946, 5580, 3673, 6307, 323, 5442, 1684, 1805, 4896, 4898, 5444,
3679, 324, 5670, 5996, 6105, 5378, 2031, 4282, 4610, 4906, 5999, 6107, 5818, 5178,
5180, 6002, 1372, 6113, 3375, 2479, 6399, 3544, 6115, 4763, 2037, 2176, 4134, 656,
1258, 1818, 5595, 5918, 725, 6124, 6125, 6126, 6331, 337, 338, 3059, 5684, 6007,
5767, 3225, 5053, 1265, 4933, 2699, 2700, 185, 4489, 187, 6338, 2711, 3243, 215,
4494, 4495, 670, 733, 4323, 3408, 5836, 6134, 6343, 673, 1480, 1844, 4330, 3415,
4162, 2210, 2211, 5476, 2726, 3097, 3845, 4647, 5069, 5070, 298, 5397, 4017].
Precision [5302, 350, 5399, 169, 1863, 4023, 5218, 6361, 1027, 1292, 5940, 5090,
5487, 5490, 5625, 4362, 959, 5788, 5943, 431, 6374, 6409, 5493, 6410, 6411, 6375,
6123, 5939, 6147, 4565, 3292, 684, 5792, 967, 274, 2952, 4387, 5642, 5712, 5852,
5419, 4838, 6252, 3877, 4055, 4205, 4206, 4543, 822, 911, 5421, 4685, 3468, 2257,
3762, 1217, 357, 358, 5723, 5334, 5533, 4065, 4409, 4857, 3775, 4068, 6068, 4226,
4227, 1992, 1532, 1661, 5008, 2983, 5737, 6385, 1995, 3784, 3911, 4572, 698, 4076,
3166, 5145, 4585, 5744, 3928, 6081, 6187, 6188, 1236, 3658, 6288, 7, 5157, 5158].
precision [591, 408, 788, 1459, 2641, 844, 6195, 5566, 1797, 5815, 2021, 2161,
2162, 3022, 1360, 1568, 2658, 5669, 598, 6206, 5176, 5675, 5761, 5762, 3686,
4464, 327, 2850, 3542, 375, 722, 4756, 4614, 5381, 6327, 4919, 2864, 5050, 545,
2355, 660, 4476, 4477, 4478, 5826, 2493, 5460, 4768, 4627, 4628, 4155, 1272,
5063, 2199, 1274, 6130, 1190, 1941, 5774, 6017, 5467, 2068, 5471, 3077, 5838,
4639, 674, 3254, 3414, 2383, 5694, 3587, 3093, 3589, 3721, 3422, 4334, 268,
5078, 4796, 4169, 4959, 5483, 4653, 5080, 6143, 4173, 4352, 4353, 1293, 2406,
5089, 5843, 6031, 2542, 2229, 4970, 2411]. precision [2545, 3283, 3439, 3289,
4374, 4981, 4699, 4700, 3877, 4206, 5183, 3069, 4374, 272, 1476]. Precision-


8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

Proceedings [6462, 6570, 6545, 6739, 6799, 6456, 6615, 6616, 6845, 6458, 6574, 6573, 6826, 6529, 6742, 6772, 6784, 6801, 6576, 6806, 6641, 6642, 6619, 6488, 6589, 6730, 6864, 6467, 6704, 6634, 6817, 616, 608, 6732, 6500, 6445, 6777, 6678, 1545, 6504, 6555, 6591, 6466, 6809, 6718, 6734, 6735, 6749, 6750, 6761, 6764, 6778, 6789, 6793, 6822, 6823, 6539, 6432, 6583, 6682, 6657, 6528, 6796, 6541, 6685, 6781, 6797, 6442, 6586, 6478, 6628, 6650, 6686, 6651, 6725, 5465, 6755, 6652, 6698, 6713, 6770, 6659, 6699, 6514, 6546, 6602, 6756, 6487, 6531, 6560, 6630, 6700, 6773, 6745, 6632, 6759, 6787].

Proceedings [6703, 6788, 6807, 6834, 6523, 6479, 6846, 6460, 6610, 6637, 6667, 6681, 6706, 6736, 6752, 6765, 6766, 6767, 6779, 6833, 6461, 6639, 6584, 6795, 6499, 6738, 6512, 6468, 6780, 6769, 6658, 6672, 6798, 6825, 6726, 6830, 6754, 6687, 6614, 6967, 6603, 6783, 6618, 6819, 6763, 6597, 6617].

Procesach [429]. Process [3920, 179, 5580, 80, 4873, 3409]. Processes [253, 240, 68, 616, 70, 171, 469, 429, 226, 82, 5203, 675, 806, 1197, 363].

Process [2141, 2482, 1933]. Processing [1639, 2939, 6606, 6611, 6744, 1508, 3463, 6532, 6258, 277, 2586, 4404, 3484, 5430, 2136, 3338, 841, 1673, 2999, 6293, 531, 6566, 6516, 6581, 6610, 6720, 6734, 6750, 6752, 3014, 3015, 4102, 4044, 3019, 6200, 1088, 3524, 2470, 1092, 4604, 6540, 477, 6649, 6768, 6117, 5186, 6443, 126, 874, 2052, 3579, 6587, 1478, 4644, 6687, 2901, 6614, 3096, 1122, 5788, 3131, 2104, 1043, 2567, 6644, 2259, 2262, 3767, 2602, 4568, 6608, 4867, 6445, 2291, 5547, 5810, 2294, 1545, 2998, 6288, 3172, 6190, 4881, 3837, 3939, 2645, 3194, 1248, 996, 6432, 3366, 2163, 2383, 1917, 1806, 1919, 1921].

[337, 2842, 4748, 2850, 6527, 6683, 6694, 6710, 6723, 6737, 6753, 2483, 2860, 2488, 6442, 2882, 4484, 3064, 3065, 2189, 6628, 2510, 5611, 5065, 2725, 4011, 3424, 1948, 6349, 2920, 1289, 6557, 6602, 3113, 1725, 1128, 2411, 2753, 1635, 4178, 4815, 2769, 2770, 2605].

processor [4985, 2418, 2239, 1304, 2241, 2952, 1427, 2421, 3308, 2109, 2250, 3757, 972, 4056, 1745, 1884, 2125, 2584, 1748, 5721, 1322, 2262, 5392, 1217, 3889, 2131, 2790, 2791, 2323, 3330, 2273, 4867, 783, 2140, 2810, 5657, 2622, 1670, 1750, 2303, 2634, 2305, 5563, 2102, 1351, 486, 2331, 2333, 2334, 3535, 2661, 2663, 2346, 3688, 2350, 2485, 3044, 2486, 1579, 1929, 2183, 2360, 3223, 2366, 1264, 2187, 2370, 1105, 3233, 4143, 1268, 5603, 728, 2191, 2059, 2196,
processor, processors, produce, producing, productivity, Products, Programmable, Programs, Progress, Project
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

2866, 2358, 2682, 3058, 3389, 6214, 213, 5277, 4772, 1271, 1935, 4776, 3405, 2935, 5629, 4371, 4817, 4180, 1976, 1764]. root-extraction [3932].

Root-Finding [1764]. Rooting [1138, 1518, 1069, 1158, 2459, 104, 1817, 335, 667, 3470, 3883, 2433, 3897, 4066, 2808, 3521, 2323, 3804, 3374, 2181, 2490, 3987, 2059, 1965, 2323, 2932, 2933].

Roots [4527, 3444, 5641, 16, 517, 518, 1049, 771, 5518, 5523, 1882, 774, 632, 1755, 3893, 46, 3770, 1533, 979, 1228, 5360, 3514, 319, 2313, 5576, 2315, 4738, 26, 1368, 602, 650, 2674, 1261, 1584, 4764, 953, 500, 166, 1845, 4002, 4003, 3103, 4514, 192, 1962, 761, 3869, 2106, 1214, 3528, 5035, 4120, 4274, 4462, 1371, 1821, 3217, 3976, 5057, 1386, 1837, 5063, 3833, 189, 6139, 3593, 1852, 3266, 2936, 2502, 22]. Rostock [6663].

Rotation [4047, 1999, 2627, 3662, 3012, 5581, 2137, 5549, 5265]. Rotation/Vectoring [4047].

Rotations [3643, 6080, 3662, 4175, 270]. Rotator [3301, 2605].

Rounder [3693]. Rounding [3867, 4191, 5854, 4389, 3138, 768, 5241, 5518, 5523, 5647, 1654, 2973, 3636, 5534, 5725, 1757, 3153, 4565, 1151, 5805, 3645, 3782, 3909, 3163, 3912, 4074, 3340, 155, 4870, 5876, 4722, 5658, 4873, 6295, 1912, 3941, 5436, 1915, 3197, 5031, 5581, 3205, 5442, 855, 1001, 4455, 3372, 4277, 861, 5378, 2343, 4282, 4610, 4906, 4907, 862, 1467, 863, 5913, 4299, 5273, 3974, 3560, 607, 1828, 1181, 4737, 3990, 4152, 5605, 1602, 47, 3577, 951, 5837, 6016, 5292, 5293, 2381, 1278, 3417, 885, 190, 4646, 4167, 2525, 1283, 5618, 1720, 5221, 5619, 70, 3853, 462, 5046, 6232, 5227, 2925, 6429].

Rounding [626, 2763, 5413, 961, 6384, 6364, 3751, 4670, 1974, 4541, 4394, 4683, 3881, 4847, 1520, 3328, 4232, 3487, 1762, 5345, 2280, 2896, 2989, 4576, 4077, 3785, 5145, 5012, 5150, 2296, 1243, 2643, 4257, 848, 2648, 3033, 3207, 3370, 1808, 3960, 3811, 3961, 3210, 933, 1006, 5766, 4135, 6119, 4472, 4615, 1378, 4297, 5387, 4306, 1012, 5690, 3988, 4149, 946, 4488, 4632, 4780, 5691, 5392, 5775, 5776, 5470, 5475, 3081, 2384, 4648, 2217, 4020, 4798, 5303, 5304, 3107, 2533, 2536, 2537, 1197, 2086, 1293, 2926, 1638, 3442, 4042, 4699, 5729, 2538, 797, 429, 363].

Self-Checked [386]. Self-Checking [5562, 1559, 894, 2154, 2186]. Self-
self-test [3925, 3832]. self-testing [2503, 2063]. Self-Timed [4059, 3382,
3964, 3838, 3144, 3692, 2092, 2756]. self-timing [2755]. Self-Validating
[3584, 6573, 2504, 5627]. Semantics [2570, 5860, 3771, 5257, 1463]. Semi
[1972, 3934, 5909, 6369, 2504, 5627]. Semi-Automatic [5909, 6369]. Semi-
Semi-Systolic [1972, 5701]. Semiannual [6563]. Semidefinite [6092, 6116].
Seminar [6802, 6481]. Seminumerical [491, 1362, 3805, 492]. send [1118].
Sensitive [5546]. sensitivities [2766]. Sensitivity [5876, 4196, 699, 854, 1012].
sensor [4034]. Seoul [6679, 6783]. Separate [5592, 125, 3233]. Sept [6792].
September [6642, 6606, 6631, 6661, 6729, 6714, 6702, 6467, 6731, 6776,
6552, 6500, 6819, 6678, 6553, 6449, 6490, 6508, 6808, 6691, 6706, 6707,
6718, 6479, 6751, 6767, 6810, 6582, 6709, 6796, 6512, 6543, 6507, 6628,
6754, 6816, 6799, 6756, 6451]. sequel [2695]. Sequence [51, 2382]. Sequences
[409, 414, 5931, 5608, 805, 6243, 3726, 2936]. Sequential [1146, 1534, 3649,
1457, 1709, 1485, 2112, 4636, 4938, 2390]. Serbia [6822]. Serial [1972, 574,
517, 3761, 4850, 5123, 1753, 1061, 1529, 1758, 1759, 4855, 5873, 154,
1614, 1533, 1772, 841, 4245, 5361, 4447, 2027, 5039, 4456, 6101, 326,
4908, 870, 6127, 4480, 3391, 803, 755, 3432, 4355, 1031, 2093, 2561,
2117, 2267, 4563, 2602, 3498, 5810, 2816, 3189, 4458, 4148, 4782, 4787,
2213, 2921, 1412, 1413, 1635, 2235]. serial-data [2213]. serial-input [2267].
Serial-Parallel [1753, 1772, 2093]. Series [3862, 6048, 2956, 3481, 6069,
6079, 2171, 726, 1011, 5691, 348, 100, 1658, 437, 4088, 4730, 5559,
2837, 3545, 1012, 4501, 3598, 2147, 993]. Server [5438, 3719, 2582]. servers
[5583, 3861]. serv [15]. Sessions [6473, 6534, 6494, 6495, 6507, 6518, 6486,
6520, 5947, 6547]. Set [5845, 4379, 6155, 5855, 3469, 2593, 4564, 2794,
3334, 5382, 5740, 5350, 1343, 1779, 6082, 2304, 5160, 862, 1004, 1607,
384, 4964, 5236, 4182, 6243, 516, 4393, 4550, 2430, 4558, 1064, 1333,
5428, 2441, 6176, 4871, 2299, 1780, 3932, 3219, 4781, 4948, 1725, 4814].
set-ups [516]. sets [1205, 6286, 6293, 849, 1099, 945, 2886, 5062, 4010,
5068, 6421, 5408, 3293, 3294, 1214, 6260, 5120, 2979, 4724, 601, 5181,
5379, 3220, 5276, 2372, 5697, 4372]. Setters [5214]. Setup [5522].
SEU [2722]. Seven [4921]. Seven-Term [4921]. seventeenth [6700, 889].
Seventeenth-Century [889]. Seventh [6757, 6738, 6627, 1789]. Several
[3018, 1348, 792, 1184]. severe [1898]. Sexagesimal [5930]. SFM [6775].
SFQ [5580]. Shallow [2702]. Shanghai [6713, 6770]. Shannon [3092]. SHARE
[373]. Shared [2000, 3518, 3382, 2284, 4083, 3808, 3964, 4653, 2542]. Sharing
[95, 6185]. Sharp [5991, 6316, 4042]. sheet [4421]. Sheraton
[6491, 6581]. shi [6676]. Shift [1059, 779, 402, 701, 1163, 3206, 1010, 619,
6273, 478, 3926, 3044]. Shift-And-Add [6273]. Shifted [5010, 5058, 3926].
shifter [2356]. Shifters [2055, 4487]. Shifting [1249]. Shiftrix [330]. Shifts
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 110

...
speed
speedy
speeds
speedup
speedups
speeding
Speed
codings
Speeding
Speedup
squares
Square
Square-root
Square-Root
Springs
Sprinklers
Springs
spring
spells
spelling
spelling
splitting
Split
Split-Path
Slider
Spline
Sponsor
Sponsors
Sprache
Sprache
Sprache
Sponsor
Sprachen
Spoke
Speedup
Sprach
Sprache
sprach
speech
speaking
speaking
SPEE
SPEEE
SPUR
SPUR
SPU

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6186, 2814, 5676, 5277, 2518, 3112, 3322. stochastique [3322]. Stock
[3538, 1602]. STOIC [1616]. Stokes [3474, 3561, 4030]. stopping [389].
Storage [825, 5353, 262, 125, 5744, 3257]. Storage-Efficient [825]. Stored
[2420, 2990, 5436]. Stored-Carry [2990]. story [5176]. Strader [2390].
[1954, 2822]. strikes [6228]. string [6153, 4054, 592, 1819]. Strings [1699, 794].
Sub [3341, 3494, 3491, 2305, 592]. sub-language [592]. Sub-Nanosecond
[3341, 3494]. Subcommittee [6441]. subdivision [6162]. Sublinear
[5135, 5255, 5674]. Subnormal [4903, 5849]. Subprograms [4393, 599]. Subquadratic
[5142, 5143, 5364, 4797]. Subroutine [135, 2129, 1073, 1910, 1777, 508]. Subroutines
[683, 5684, 2205, 1495, 470, 455, 128, 1533]. Subsets [3394]. subspace [3460, 3729]. Substitution
[2123, 2309]. subsystem [2262, 2488]. Subtracting [3893]. Subtraction
[765, 4397, 4398, 4058, 5430, 1452, 5794, 4607, 4911, 1380, 2066, 426, 4385, 3763, 4553, 1451, 1898, 3726].
Subtraction-free [4911]. subtractions [3370]. Subtractive [3555, 3425, 2392, 2393, 3373]. Subtractor
[5573, 5082, 4756, 5597]. Subtyping [4241]. Subword [4725, 4746]. Subword-Parallel
[4725, 4746]. Succeeding [3394]. Success [3553]. Successful [4984, 5026]. Successful
[1764, 290]. successor [5392]. Such [6340]. Suck [6285]. Suddenly [6405]. Sufficient
[3958, 4396]. Suggestion [909, 4732, 285, 678, 300]. suggestions [1925]. Suitable
[5988, 5169, 5501, 3174, 2337, 653]. Suite [5964, 2034, 2172, 3364]. Suits [6400].
sukzessive [1764]. Sulla [118, 119]. Sum [3615, 1335, 3339, 706, 4746, 2047, 4769, 4770, 4932, 666, 3072, 4640, 191, 3431, 6149, 901, 5423, 5912, 4629, 267].
Sum-of-Squares [4746]. summability [3274]. Summand [1096]. Summary
[47, 2183]. Summation [5846, 5945, 6376, 3865, 6259, 575, 824, 4566, 4706, 5731, 5869, 2277, 3337, 4581, 4718, 4719, 922, 642, 4113, 711, 5999, 6107, 1467, 538, 6115, 604, 3551, 2177, 1262, 5918, 797, 5053, 1593, 4940, 5292, 5293, 5294, 5393, 1030, 6368, 623, 4976, 5413, 5494, 2121, 2122, 100, 4415, 5966, 5139, 1070, 3498, 5660, 5885, 3008, 1558, 3804, 6102, 5673, 3374, 3545, 720, 721, 5681, 3559, 5921, 5922, 546, 3063, 5389, 2192, 1018, 5467, 5692, 1293]. Summations
[3695, 6316, 5198, 6145]. Summen [1049, 2025, 797]. Summer [6618, 6612, 6557, 6514]. Summierungsverfahren [546]. Summing [348, 437]. Sums
ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6142, 6145, 5624. Synthesisable [5118]. synthesizable [4756]. Synthesized
[5415]. Synthesizing [5746, 2127]. System [4822, 5495, 5845, 390, 6438, 2239,
1426, 4536, 4830, 4831, 5314, 5502, 5503, 6245, 6380, 222, 93, 3302, 4836, 1508,
1510, 5955, 4397, 4398, 1649, 27, 198, 5536, 2791, 5648, 5540, 6274, 3484, 3641,
3905, 4233, 6177, 1996, 1152, 2990, 359, 5349, 3167, 157, 5880, 590, 1673, 229,
926, 4879, 440, 5558, 5160, 1086, 369, 1676, 2465, 3187, 6751, 3019, 1088, 371,
1359, 1565, 3367, 712, 789, 181, 5754, 599, 5908, 3685, 1003, 1178, 4607, 3966,
4909, 1375, 6325, 5186, 5049, 4471, 1101, 3051, 265, 334, 1582, 4480, 6627, 4927,
2687, 3392, 3564, 2697, 4309, 1267, 1836, 343. System [440, 2290].

system [4470, 4755]. system-definition [2290]. System-Level [3019, 5540].
System/370 [1676, 1875, 1055, 928, 2030]. System/390 [2791, 2792, 2790].
System/6000 [2465, 3187, 2460, 2485, 2489, 3280]. Systematic [5806, 72,
5262, 5045, 1380, 2882, 3234, 3235, 4780, 1392, 2908, 2909, 3293, 3294, 5662,
2481, 2511]. Systematizations [5323]. Systeme [1865]. Systemen [1184].

Systems [6548, 6689, 1035, 1424, 6690, 3619, 3620, 3755, 4194, 467, 630, 765,
816, 688, 767, 1045, 1511, 1313, 4202, 6253, 691, 3141, 277, 6817, 1749, 6533,
6551, 6562, 5530, 6775, 3892, 2438, 2439, 6818, 1334, 5730, 6732, 3486, 6776,
2985, 6656, 833, 1154, 401, 1539, 3920, 835, 4722, 6073, 4428, 843, 159, 6297,
2009, 5984, 5159, 1460, 928, 6441, 6491, 6554, 6555, 6611, 6624, 6680, 6692, 6706,
6720, 6749, 6763, 6764, 6765, 6767, 6778, 6779, 6793, 6803, 6811, 6813,
6823, 5570, 6393, 1794, 4445, 467, 706, 3533, 5034, 6506, 1090, 1365, 1805, 5444,
715, 5671, 5757, 3809, 4901, 5042, 263]. Systems [1095, 5590, 6613, 6321, 5186,
8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 116

Tick [2927]. tidal [3299]. Ties [6414]. Tight [6093, 5602, 4627, 5618, 3629, 3610].

Time-Division [110, 145]. Time-Division [110, 145].

Time-Optimum [2085].

Today [1192, 1430, 3105]. Todd [315, 316].

ToonTalk [4739]. Top [6242].

Topics [47, 6425]. topological [5146]. Topologies [5201, 6151]. Topology [5789].

Toronto [6488, 6661, 6563, 6490, 6581, 6670]. Total [5076]. totally [2186].

Tour [3171]. Tower [4712]. Towers [6581, 6693]. Town [6517, 6537, 6579].

TPHOLs [6702]. TPUs [6371]. TR [3798, 5367, 5029]. TR2 [3797]. tracer [6169, 5603]. Traces [3451]. Tracking [3167, 6375, 3913, 3915, 4752].

Trade [6262, 1544, 3944, 599, 6021, 3155, 2435, 4068, 1253, 4625, 3740]. Trade-Off [599, 6262, 3944, 3155, 1253]. Trade-Offs [6021, 2435, 4068, 4625, 3740].

Tradeoffs [6242]. Trans [2018]. Transactions [6497]. transceiver [5022].

Transcendental [2613, 360, 3930, 2026, 493, 3378, 1588, 4016, 5405, 4796].
Transcendental-Function [493]. Transcendentals [5362, 3684, 3813, 4981].
two-level [4012]. Two-Point [3572]. Two-Way [596, 5470]. Two's [1758, 1194]. Two's-Complement [1758, 1194]. TX [6707, 6543]. Type [5948, 3870, 2959, 2979, 4456, 2686, 5391, 454, 2064, 556, 3259, 5701, 5119, 5739, 6201, 4605, 3043, 63, 5388, 4341]. Typed [2997]. Types [4894, 3547, 3098, 2954, 1448, 4241, 2812, 2996, 2693]. Tyson [6618].

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE

6025, 428, 5091, 5093, 4033, 960, 5628, 1420, 5725, 5310, 5316, 2112, 3881, 5803, 4232, 5008, 4075, 3166, 5810, 2998, 2652, 3812, 3969, 4918, 3220, 4772, 4146, 5835, 5611, 3257, 956.

unity

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 122

8 ADDITIONAL CONTRIBUTIONS FROM NELSON H. F. BEEBE 125

[6321, 2062, 2380]. Working [6618, 3749, 6655, 5343, 481, 6483, 1715, 2798].

workmen [4295]. Works [6421, 6422, 6423, 6425, 6427, 46483, 1715, 2798].

Workshop [6660, 6631, 6715, 6620, 6459, 6733, 6598, 6599, 5465, 6608, 6441, 6567, 6476, 6647].

Workshops [6843, 2062, 2380]. World [6806, 6619, 1050, 6628, 6485, 6576, 3927].

Worst [5151, 3678, 4282, 4610, 5044, 5270, 4510, 4649, 4956, 4343, 5940, 5100, 3807, 4609].

Worst-Case [3678, 5940]. would [1430]. Writing [3774, 2610, 5747].

WTL3170/3171 [2424]. Wuppertal [6642]. Wurzeln [1049, 2502]. Wurzelziehen [1764].
References

REFERENCES

REFERENCES

[29] K. Zuse. Verfahren zur selbsttätigen Durchführung von Rechnungen mit Hilfe von Rechenmaschinen. (German) [Procedure for automatic
execution of calculations by calculating machines]. German patent application Z23624., April 11, 1936. Reprinted in [6482, §4.1].

REFERENCES

REFERENCES

[54] H.-J. Dreyer and A. Walther. Der Rechenautomat Ipm. Entwicklung Mathematischer Instrumente in Deutschland 1939 bis 1945. (German) [The Ipm calculator. The development of mathematical instruments in Germany 1939–1945]. Bericht A3, Institut für Praktische Mathematik, Technische Hochschule, Darmstadt, West Germany, August 19, 1946. Reprinted in [6482, §3.3]. Translated by Mr. and Mrs. P. Jones.

REFERENCES

REFERENCES

REFERENCES

138

REFERENCES

1955. CODEN MTTCAS. ISSN 0891-6837 (print), 2326-4853 (electronic).

REFERENCES

REFERENCES

Alt:1957:EDC

Ercoli:1957:EDO

Gini:1957:SFD

Herzel:1957:SDD

Howe:1957:TRA

Kalbfell:1957:EAM

Kogbetliantz:1957:CEN

REFERENCES

REFERENCES

[145] Hermann Schmid. A transistorized four-quadrant time-division multiplier with an accuracy of 0.1 per cent. IRE Transactions on
Sisson:1958:IDR

Tocher:1958:TMD

Wadey:1958:TSR

Ashenhurst:1959:UFP

Buchholz:1959:FFC

Carr:1959:EAF

Carr:1959:PC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1876. URL http://ed-thelen.org/comp-hist/IBM-7030-Planning-McJones.pdf. This important book is the primary description of the influential IBM 7030 Stretch computer, written by its architects.

REFERENCES

March 1962. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

Sierra:1962:FDP

Smith:1962:ACDa

Spielberg:1962:PCF

Wynn:1962:AAP

Zuse:1962:ERE

K. Zuse. Entwicklungs-Entwicklung von der Rechengeräte-Entwicklung von der Mechanik zur Elektronik. (German) [lines of development of computing equipment development from mechanics to electronics]. In W. Hoffman, editor, Digitale Informationswandler, pages 508–532. Vieweg & Sohn, GmbH, Braunschweig, West Germany, 1962. Reprinted in [6482, §4.3]. Translated by Mr. and Mrs. P. Jones.

Bemer:1963:NRT

Clenshaw:1963:ASF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Deiters:1965:ODD

Dodd:1965:RSB

Earle:1965:LCS

Garner:1965:NSA

H. L. Garner. Number systems and arithmetic. In Alt et al. [6431], pages 131–194. ISSN 0065-2458. LCCN QA76 .A3.

Garner:1965:RID

Hammel:1965:RLC

Hammer:1965:BRBa

REFERENCES

April 1965. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[371] W. Kahan. 7094 II system support for numerical analysis. SHARE Secretary Distribution 159, C4537, 1966.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Winograd:1967:TRP

Yarbrough:1967:PCC

Atkins:1968:HRD

Azen:1968:DMS

Azgapetian:1968:CAP

Brennan:1968:FTA

Dietmeyer:1968:GPI

Elliott:1968:EAA

Fike:1968:CEM

Fraser:1968:AUA

Harman:1968:ADI

Hart:1968:CAa

Hart:1968:CAb

IBM:1968:ISP
REFERENCES

Howell:1970:SLE

Kailas:1970:AMC

Knuth:1970:VNF

Krishnamurthy:1970:OIS

Krishnamurthy:1970:RTT

Ling:1970:HSC

Linz:1970:AFP

Liu:1970:CEA

Long:1970:LAS

Malcolm:1970:AFA

Marasa:1970:AAE

Matula:1970:ECA

Matula:1970:FFP

Mifsud:1970:MDA

REFERENCES

1970. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See addendum [725].

Nickel:1970:KBS

Ninomiya:1970:BRS

Oppenheim:1970:RDF

Phillips:1970:GLE

Rao:1970:BEC

Rao:1970:BLR

Robertson:1970:CBM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kingsbury:1971:DFU

Krishnamurthy:1971:CTW

Krishnamurthy:1971:EIR

Kuki:1971:FEP

Kuki:1971:MFS

Kulisch:1971:AAR

Kupka:1971:SRA

REFERENCES

References

[616] B. P. Sarkar and E. V. Krishnamurthy. Economic pseudodivision processes for obtaining square

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cappa:1973:AIA

Cody:1973:SDN

Dorr:1973:REC

Du:1973:CSS

Ercegovac:1973:REC

Erkio:1973:EAV

REFERENCES

REFERENCES

Kinoshita:1973:GDS

Kreifelts:1973:OBF

Kreifelts:1973:OBG

Kuki:1973:SSA

Larson:1973:HSM

Larson:1973:MSM

Lee:1973:SFP

REFERENCES

REFERENCES

[739] Peter Schatte. Zur Verteilung der Mantisse in der Gleitkommadarstellung einer Zufallsgröße. (German) [distribution of the mantissa in the floating-
REFERENCES

REFERENCES

Singh:1973:MOA

Sites:1973:FPS

Sjoding:1973:NVR

Spira:1973:CTA

Stone:1973:DMS

Sureshchander:1973:CDM

Swartzlander:1973:QSM

Tanny:1973:SSA

Urabe:1973:CEA

Wiatrowski:1973:DFP

Yau:1973:ECR

Yohe:1973:FFPa

Yohe:1973:IBS

Yohe:1973:RFP

REFERENCES

Zohar:1973:DCR

Agrawal:1974:NCL

Banerji:1974:NIM

Banerji:1974:URA

Barsi:1974:EDC

Bauer:1974:CGR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[809] Nai-Kuan Tsao. Some a posteriori error bounds in floating-point computations. *Journal of the Association for Computing Machinery*,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lemeire:1975:CEI

Linnainmaa:1975:TAS

Lipovski:1975:RND

Liu:1975:REF

Lorez:1975:BGB

REFERENCES

REFERENCES

[NSC:1975:IFP]

[OKeefe:1975:NFB]

[Phillips:1975:BC]

[Rao:1975:TIS]

[Reiser:1975:EDFa]

REFERENCES

[916] Giovanni De Sandre, Angelo Subrizi, and Franco Bretty. Fixed point to floating point conversion in an electronic computer. US Patent
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Frenckner:1977:MFP

Ginsberg:1977:NID

Goldsmith:1977:ICF

Goodman:1977:EGD

Goodwin:1977:CUO

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Brent:1978:FMP

Case:1978:AIS

Chow:1978:LDR

Cohen:1978:MAI

Coonen:1978:SPS

Corsini:1978:USM

Crary:1978:APT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Svoboda:1978:ACF

Swartzlander:1978:MAS

Tan:1978:TIH

Trivedi:1978:CUC

Trivedi:1978:HRL

Tseng:1978:EAF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1206] E. Ambikairajah and M. J. Carey. Technique for performing multiplication on a 16-bit microprocessor using an extension of Booth’s

REFERENCES

REFERENCES

REFERENCES

Johannes:1980:DSE

Johnson:1980:DQS

Jullien:1980:IMM

Kahan:1980:SPI

Kleinsteiber:1980:IHM

Kulisch:1980:AOI

Lemaire:1980:INR

Levy:1980:CPA

REFERENCES

Oberaigner:1980:AMG

Palmer:1980:IND

Palmer:1980:LIN

Palmer:1980:UND

Payne:1980:VFPa

Payne:1980:VFPb

Pedersen:1980:HBM

Purtilo:1980:IAP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1319] Earnest Allan Cariker. A rapid-approximation floating-point mathematics package for the INTEL 8080 microprocessor. Computing science thesis (M.S.), Texas A&M University, College Station, TX, USA, 1981. viii + 152 pp.

[1345] R. T. Gregory. Residue arithmetic with rational operands. In IEEE CA5 ’81 [6480], pages 144–145. LCCN QA 76.6 S985t
REFERENCES

Saroj Kaushik and R. K. Arora. Sign detection in the symmetric residue number system. In IEEE CA5 ’81 [6480], pages 146–150. LCCN QA 76.6

Kielbasinski:1981:IRL

Kitajima:1981:MS

Knuth:1981:SA

Kobayashi:1981:FMO

Kogge:1981:APC

Koren:1981:CPN

Kornerup:1981:IRA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:1982:MKF

Anonymous:1982:NPAa

Arnold:1982:EPS

Bairstow:1982:FPP

Baraniecki:1982:QEL

Barnes:1982:RNI

Bernhard:1982:CCS

REFERENCES

[1446] T. J. Dekker. Program correctness and machine arithmetic. In Paul C. Messina and Almerico Murli, editors, Problems and Methodologies in Mathematical Software Production, volume 142 of Lecture Notes in

DeSautels:1982:ALP

Epstein:1982:UAF

Epstein:1982:UAI

Fateman:1982:HLL

Feldstein:1982:EPI

Feldstein:1982:LSF

Fulton:1982:BJB

REFERENCES

[1461] W. Jenkins. Failure resistant digital filters based on residue number system product codes. In *IEEE International Conference on Acoustics,
REFERENCES

Speech, and Signal Processing, ICASSP ’82, pages 60–63. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1982. CODEN ???? ISSN ????

Jenkins:1982:RNS

Kahan:1982:NOS

Katzan:1982:IAA

Kerkhoff:1982:LDM

Korn:1982:EDF

Leuprecht:1982:PAR

McCormick:1982:EFM

Monroe:1982:FFP

Oklobdzija:1982:LSR

Palmer:1982:VRN

Phillips:1982:BC

Rall:1982:ACA

Ramnarayan:1982:AER

REFERENCES

REFERENCES

Schatte:1982:FPF

Sewell:1982:RLT

Sippel:1982:FRI

Sips:1982:CPM

Strader:1982:CBS

Tan:1982:ADC

Taylor:1982:ARM

REFERENCES

REFERENCES

Aspinwall:1983:IIF

Avizienis:1983:AAE

Bandeira:1983:TCA

Banerji:1983:RPF

Baxter:1983:CRS

Bayoumi:1983:MVI

Bhat:1983:HPF

Blakley:1983:MAI

Boney:1983:FPPa

Boney:1983:FPPb

Brown:1983:NEA

Bushard:1983:MTS

REFERENCES

REFERENCES

Dao:1983:QCA

Davis:1983:HSD

Demsky:1983:MMC

Dietrich:1983:VQF

Donthi:1983:BSM

Dubrulle:1983:CNM

REFERENCES

REFERENCES

[1554] Windell F. Ingram, N. (Narayanswamy) Radhakrishnan, and Deborah F. Dent. Accuracy considerations when using some minicomputers for scientific and engineering problems. Technical report, U.S. Army Engineer Waterways Experiment Station; available from National

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ohlsson:1983:MML

Ong:1983:CAS

Owens:1983:TRI

Ozawa:1983:AIK

Palmer:1983:VSN

Pan:1983:ALC
REFERENCES

356

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Edmund John Walsh. Floating gatefield effect transistor operating point changes: causes, characterization, and effect on electric field measurement by the device. Thesis (M.S.), Boston University, Boston, MA, USA, 1983. v + 121 pp.

Bertrand Jeffery Williams. A bit-serial floating point multiply/add architecture for signal processing applications. Electrical engineering thesis (M.S.), Texas A&M University, College Station, TX, USA, 1983. x + 97 pp.
REFERENCES

REFERENCES

Anonymous:1984:CPD

Bell:1984:RMR

Black:1984:NIS

Bollen:1984:NSD

Boney:1984:GTD

Borwein:1984:AGM

Braddock:1984:ASP

REFERENCES

REFERENCES

REFERENCES

In IEEE International Conference on Acoustics, Speech, and Signal Processing: ICASSP ’84, pages 571–574. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1984. CODEN ???? ISSN ????

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Aridgides:1985:EIQ

Armstrong:1985:PLHa

Armstrong:1985:PLHb

Aspinwall:1985:RVM

Auzinger:1985:AAR

Avizienis:1985:AAO

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1778] Curt Gridley. Improving the performance of scientific applications on a supermicro using a custom floating point processor and an optimizing

REFERENCES

IEEE:1985:ASI

IEEE:1985:ISBa

IEEE:1985:ISBb

Intel:1985:FPL

Intel:1985:PRM

REFERENCES 386

Kobayashi:1985:MTC

Koopman:1985:FFP

Kornerup:1985:FPL

Krishnan:1985:CDS

Kurokawa:1985:PT

Kwan:1985:MOW

Lorenz:1985:AIP

Luk:1985:PMC

Majerski:1985:SRA

Matula:1985:FPR

ME:1985:FPS

Mithani:1985:ASN

Modi:1985:AIS

Moharir:1985:ESG

Montgomery:1985:MMT

Motorola:1985:MFC

Motorola:1985:MFP

Muller:1985:DBC

Naseem:1985:MCA

Neumaier:1985:IPR

SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

for wideband acousto-optic spectrum analysis. In Bruce Ronald McAvoy,
editor, *IEEE 1985 Ultrasonics Symposium: proceedings, October 16–18,
1985, Cathedral Hill Hotel, Van Ness at Geary, San Francisco, CA*, pages
385–390. IEEE Computer Society Press, 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 1985. CODEN ???? ISSN ???? LCCN

[1837] Rene Caupolican Peralta. *Three results in number theory and
cryptography: a new algorithm to compute square roots modulo a
prime number; On the bit complexity of the discrete logarithm; A
framework for the study of cryptoprotocols*. Thesis (Ph.D.), Department
of Computer Science, University of California, Berkeley, Berkeley, CA,
USA, December 1985. 52 pp.

[1838] Ralph A. Raimi. The first digit phenomenon again. *Proceedings of the
PAPCAA. ISSN 0003-049X (print), 2326-9243 (electronic). URL http:
//www.jstor.org/stable/986989. This paper contains strong criticism
of a derivation of Benford’s Law [1098].

system recursive digital filters. *IEEE Transactions on Circuits and
xpl/tocresult.jsp?isnumber=23567.

[1840] T. R. N. Rao and Kasem Vathanvit. A class of $A(N + C)$ codes and
REFERENCES

Reed:1985:VRM

Rump:1985:HOC

Salomon:1985:TGF

Schaeffer:1985:SPE

Schroof:1985:ECF

REFERENCES

REFERENCES

Thies:1985:NPE

Tsuji:1985:REF

vonGudenberg:1985:FPC

Williamson:1985:NAB

Yun:1985:BPS

Zaccone:1985:INR

REFERENCES

Zadrozny:1985:AFP

Zorpette:1985:BBN

Adams:1986:FSSa

Adams:1986:FSSb

Agarwal:1986:NSV

Apple:1986:ANM

REFERENCES

REFERENCES

[1907] Mark Hill, Susan Eggers, Jim Larus, George Taylor, Glenn Adams, B. K. Bose, Garth Gibson, Paul Hansen, Jon Keller, Shing Kong, Corinna Lee,

REFERENCES

REFERENCES

References

Pfenninger:1986:SQA

Porter:1986:FPM

Quong:1986:FP1

Ramnarayan:1986:LCL

Rhyne:1986:SBS

Robertson:1986:NQD

Rump:1986:SER

REFERENCES

Deepak Verma. Design of an efficient floating point vector coprocessor of an advanced microcomputer system. Thesis (M.S.), Department of Computer Engineering and Science, Case Western Reserve University, Cleveland, OH 44106, USA, 1986. viii + 121 pp.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Han:1987:FAE

Herz-Fischler:1987:MHD

Hildebrand:1987:INA

Himmeroeder:1987:CKC

Hochet:1987:SSL

Homewood:1987:ITT

HP:1987:IPH

Hu:1987:CDT

Hull:1987:TIC

IEEE:1987:ISB

IEEE:1987:RIS

Jensen:1987:CIS

Johnson:1987:AES

REFERENCES

REFERENCES

Makarenko:1987:VMM

Manzoul:1987:QCN

Mariella:1987:IDF

Mays:1987:IDA

McMusersmanual:1987:MMF

Monahan:1987:AGC

Motorola:1987:MMF

Mutrie:1987:FEA

REFERENCES

REFERENCES

Papachristou:1987:ATL

Parhami:1987:CTL

Parhami:1987:SUC

Peng:1987:ISM

Perlmutter:1987:A

Pfeiffer:1987:ADP

Piuri:1987:FTS

REFERENCES

REFERENCES

Sharma:1987:ATE

Shenoy:1987:AST

Shyu:1987:CIM

Simar:1987:FPA

Smith:1987:SAE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gibson:1988:GBA

Grehan:1988:BBL

Grehan:1988:FPCa

Grehan:1988:FPCb

Helminen:1988:AFP

Ho:1988:ADI

Holt:1988:BR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Thesis (M.S.), Oregon State University, Corvallis, OR, USA, 1988. 77 pp.

REFERENCES

REFERENCES

QA76.5 .S894 1988. Two volumes. Available from IEEE Service Center (Catalog number 88CH2617-9), Piscataway, NJ, USA.

REFERENCES

Wilson:1988:FPS

Wilson:1988:NFP

Wollard:1988:TSS

Young:1988:SNMa

Yuen:1988:IFP

Zhou:1988:NBS

Zoicas:1988:PBG

Ahmed:1989:EEF

Amit:1989:MRE

Arison:1989:SAN

Arnold:1989:RLN

Ashton:1989:AFP

Azmi:1989:TFP

Bailey:1989:FPA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2272] A. M. Dennis, C. B. Marshall, and I. A. Burgess. Algorithm and architecture design for the implementation of high order FIR filters using the residue number system. In IEE Colloquium on Signal Processing Applications of Finite Field Mathematics, 1 June 1989, pages I/1–I/5. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989. CODEN ????. ISSN ????.

REFERENCES

REFERENCES

REFERENCES

Grassmann:1989:PAR

Grehan:1989:FPR

Griffin:1989:ESR

Griffin:1989:RNS

Groeger:1989:DRG

[2300] Detlef Gröger. Zur Division mit Rest auf Gleitkommarechnern. (German) [on division with remainder on floating point computers]. Mathematische Semesterberichte, 36(1):106–111, 1989. ISSN 0720-728X.

Guyot:1989:JLM

Hoffmann:1989:PAR

REFERENCES

REFERENCES

REFERENCES

Kahan:1989:PCA

Kak:1989:BAS

Kaneko:1989:VRM

Kaneko:1989:VRP

Kawarai:1989:OPM

Kawasaki:1989:FPV

Koc:1989:SAI

REFERENCES

REFERENCES

[2347] H. Lin and H. J. Sips. On-line CORDIC algorithms. In Ercegovac and
Swartzlander, Jr. [6552], pages 26–33. ISBN 0-8186-8963-3 (case), 0-8186-
catalog no. 89CH2757-3.

detection in arithmetic and logical operations using Berger codes. In
Ercegovac and Swartzlander, Jr. [6552], pages 233–240. ISBN 0-8186-
8963-3 (case), 0-8186-5963-7 (microfiche). LCCN QA 76.9 C62 S95
ARITH9_Lo.pdf. IEEE catalog no. 89CH2757-3.

multiplication/division/square root. In IEEE ICCD ’89 [6556], pages
366–368. ISBN 0-8186-1971-6 (paper), 0-8186-5971-8 (microfiche), 0-
89CH2794-6.

[2350] E. C. Malarkey, G. E. Marx, J. D. Fogarty, D. Mergerian, H. K. Hahn,
J. C. Bradley, P. R. Beaudet, and R. Fenton. Residue-number-system-
based optical adaptive processor. In IEEE Military Communications
IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 1989. CODEN ???? ISSN ????

[2351] Y. Mansour, B. Schieber, and P. Tiwari. The complexity of
approximating the square root. In 30th Annual Symposium on
Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 1989. CODEN ???? ISSN ????

ISSN 0141-9331 (print), 1872-9436 (electronic).
REFERENCES

Mastrovito:1989:VDM

Maytal:1989:DCG

Milenkovic:1989:DPG

Milutinovic:1989:MSD

Molnar:1989:MBF

Montuschi:1989:EIH

Moshier:1989:MPM
REFERENCES

Motorola:1989:DIF

Motorola:1989:FPC

Motorola:1989:MFP

Motorola:1989:MMF

Motorola:1989:MRM

Mulcahy:1989:FPR

Nakayama:1989:BMF

Nakayama:1989:FCV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chen:1990:DIH

Chren:1990:NRN

Ciminiera:1990:HRS

Clinger:1990:HRF

Codenotti:1990:ATT

REFERENCES

REFERENCES

Gibson:1990:CII

Glass:1990:MC

Goldberg:1990:CA

Goodman:1990:SMR

Goodreau:1990:DIF

Gries:1990:BDO

Gu:1990:TIT

Hamacher:1990:CO
REFERENCES

Hiroshi Horiguchi. Floating-point numbers and real numbers. *Advances in software science and technology*, 1(??):157–??, 1990. ISSN 1044-7997.

used in\TeX for converting between decimal and scaled fixed-point binary
values, and for guaranteeing a minimum number of digits in the decimal
representation. See also [2434, 4693] for decimal to binary conversion,
[2526, 4793] for binary to decimal conversion, and [2456] for an alternate
proof of Knuth’s algorithm.

[2474] I. Koren and O. Zinaty. Evaluating elementary functions in a numerical
coprocessor based on rational approximations. \textit{IEEE Transactions on
Computers}, C-39(8):1030–1037, August 1990. CODEN ITCOB4. ISSN
0018-9340 (print), 1557-9956 (electronic).

[2475] Peter Kornerup and David W. Matula. An algorithm for redundant
binary bit-pipelined rational arithmetic. \textit{IEEE Transactions on

[2476] T. Laakso, B. Zeng, I. Hartimo, and Y. Neuvo. Reduction of floating-
point roundoff noise in recursive digital filters with error feedback. In \textit{IEEE International Conference on Systems Engineering, 1990}, pages
244–247. IEEE Computer Society Press, 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 1990. CODEN ???. ISSN ???.

1523-2867 (print), 1558-1160 (electronic). URL \url{http://www.acm.org:80/pubs/citations/proceedings/pldi/93542/p102-lee/}.

arithmetic. \textit{SIAM Journal on Numerical Analysis}, 27(5):1295–1304,
MacDonald:1990:IFP

Mandelbaum:1990:SMD

MangaEbongue:1990:PBV

Mar:1990:DSP

Margulis:1990:IMI

Markstein:1990:CEF

Matula:1990:HPD

D. Matula. Highly parallel divide and square root algorithms for a new generation floating point processor. In Ullrich [6573], page ?? ISBN ???. LCCN ???
REFERENCES

REFERENCES

REFERENCES

Quach:1990:IAH

Quinn:1990:REL

Ramamoorthy:1990:MRN

Rao:1990:SAA

Rauchwerger:1990:MFPa

Rauchwerger:1990:MFPb

Reemtsen:1990:MFR

REFERENCES

1. Table 5 (page 124):
 insert k <-- 0 after assertion, and also delete k <-- 0 from Table 6.

2. Table 9 (page 125):
 for -1:USER!(""");
 substitute -1:USER!("0");
 and delete the comment.

3. Table 10 (page 125):
 for fill(-k, "0")
 substitute fill(-k-1, "0")
REFERENCES

REFERENCES

REFERENCES

Yager:1990:SNM

Yang:1990:PRN

Yeh:1990:RTI

Yoon:1990:MTP

Zarowski:1990:AMH

Zelniker:1990:PBD

Adali:1991:FPR

REFERENCES

REFERENCES

Beebe:1991:ASR

Bohlender:1991:DFP

Bohlender:1991:SEF

Bohlender:1991:SPH

Bohlender:1991:VEI

Boughton:1991:CSG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2613] Warren E. Ferguson, Jr. and Tom Brightman. Accurate and monotone approximations of some transcendental functions. In Kornerup and

REFERENCES

REFERENCES

REFERENCES

Lyashenko:1991:PAR

Lynch:1991:RCA

Lyons:1991:FMF

REFERENCES

Mundie:1991:OOR

Mutrie:1991:TSS

Myczkowski:1991:SMA

Nagal:1991:PEM

Nakano:1991:MBM

Nelson:1991:SPM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Tsubokawa:1991:FEA

Tu:1991:ALA

Tu:1991:GAI

Turner:1991:IAE

Umemura:1991:FNL

Umemura:1991:FPN

Vassiliadis:1991:HWM

REFERENCES

REFERENCES

REFERENCES

Yokoo:1991:OUF

Yoshida:1991:PRT

Yu:1991:FCF

Zelniker:1991:RCF

Zeng:1991:AFP

Zeng:1991:ARR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hasan:1992:MCL

Hegeman:1992:AF

Hoff:1992:FCH

Horiguchi:1992:FNR

[2820] Hiroshi Horiguchi and Tsutomu Tayama. Floating-point numbers and real numbers II. Advances in software science and technology, 3(??): 151–156, 1992. ISSN 1044-7997.

Hoyt:1992:MFP

Hudak:1992:RPL

IFIF:1992:CVD

REFERENCES

Jackson:1992:DTF

Jacobson:1992:ETF

Jaffar:1992:AMC

Jain:1992:AEA

James:1992:DRC

Johnstone:1992:RNA

Kahan:1992:ARL

REFERENCES

REFERENCES

[2851] K. J. R. Liu and E. Frantzeskakis. Qrd-based square root free and division free algorithms and architectures. In Workshop on VLSI Signal
REFERENCES

Lozier:1992:RPC

Lozier:1992:RPV

Lozier:1992:SLI

Lu:1992:NDA

Lynch:1992:FCA

Lynch:1992:HSD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2919] Ping Tak Peter Tang. Table-driven implementation of the Expm1 function in IEEE floating-point arithmetic. *ACM Transactions on Mathematical
REFERENCES

REFERENCES

[2934] D. Wong and M. Flynn. Fast division using accurate quotient approximations to reduce the number of iterations. IEEE Transactions
REFERENCES

552

REFERENCES

Alqeisi:1993:FPF

Anonymous:1993:FPa

Anonymous:1993:FPb

Anonymous:1993:FPc

Anonymous:1993:FPd

Anonymous:1993:FPe

Anonymous:1993:FSB

[2947] Anonymous. The “fastest system on the block” label must be qualified with new multiplatform, floating-point benchmarks. PC Week, 10(22): 85–??, June 1993. ISSN 0740-1604.

Anonymous:1993:SRT

REFERENCES

REFERENCES

REFERENCES

Callaway:1993:EPC

Chang:1993:REP

Choi:1993:FPR

Chu:1993:FPA

Cody:1993:ACP

Cody:1993:AFS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gibbons:1993:FMW

Goldberg:1993:DFP

Gudeman:1993:RTI

Gupta:1993:NPF

Hammer:1993:PXN

Hasan:1993:MMO

Hatzinakos:1993:AFP

REFERENCES

Heinrich:1993:MRM

Hekstra:1993:FPC

Hemkumar:1993:ECM

Hendtlass:1993:MNIa

Hendtlass:1993:MNIb

Higginbotham:1993:ISR

Higham:1993:AFP

REFERENCES

Holler:1993:IFP

Hopkins:1993:CEM

Horning:1993:SUM

Hu:1993:EIS

IBM:1993:IPA

Ide:1993:CFP

0898-1221 (print), 1873-7668 (electronic).

[3021] Chwen-Jye Ju. What can block floating-point arithmetic do for DSP
LCCN ????. Two volumes.

USA, June 1993. 20 pp.

[3023] S. W. Kim, T. Stouraitis, and A. Skavantzos. Full adder-based inner
product step processors for residue and quadratic residue number
systems. In IEEE International Symposium on Circuits and Systems,
Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 1993. CODEN ???? ISSN ????

[3024] Seon Wook Kim, T. Stouraitis, and A. Skavantzos. Full adder-based
inner product step processors for residue and quadratic residue number
systems. In IEEE International Symposium on Circuits and Systems,
ISCAS ’93, 3–6 May 1993, pages 1821–1824. IEEE Computer Society
Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
1993. CODEN ???? ISSN ????

[3025] S. W. Kim, T. Stouraitis, and A. Skavantzos. Full adder-based inner
product step processors for residue and quadratic residue number
systems. In IEEE International Symposium on Circuits and Systems,
Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 1993. CODEN ???? ISSN ????

[3026] Seon Wook Kim, T. Stouraitis, and A. Skavantzos. Full adder-based
inner product step processors for residue and quadratic residue number
systems. In IEEE International Symposium on Circuits and Systems,
ISCAS ’93, 3–6 May 1993, pages 1821–1824. IEEE Computer Society
Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
1993. CODEN ???? ISSN ????
REFERENCES

REFERENCES

[Krandick:1993:EMF]

[Krishna:1993:TFA]

[Lee:1993:DAE]

[Lewis:1993:ALA]

[Lindsley:1993:DME]

REFERENCES

Linzer:1993:IEF

Lo:1993:BCP

Louie:1993:DRD

Louie:1993:DRS

Lozier:1993:UGF

Mandelbaum:1993:SRS

REFERENCES

Mikami:1993:RER

Montuschi:1993:CSM

Montuschi:1993:RIT

Motteler:1993:APF

Ng:1993:FV

Nguyen:1993:LDR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Shirayanagi:1993:MCM

Shute:1993:AAB

Smith:1993:PFC

Smith:1993:VFP

Smith:1993:WDF

Soulas:1993:AMC

Subramaniam:1993:PPP

Swartzlander:1993:FSC

[3105] Inside technology today 32-bit floating point multi-port DSP / produced by Texas Instruments. VHS format. High-speed, multi-port DSPs can be used in parallel processing applications to really enhance computation time and power. A popular 6-port floating point DSP and high speed design integration and applications are described in this tape., 1993. 1 videocassette.

REFERENCES

Tsuji:1993:FNS

Turner:1993:CSA

Vassiliadis:1993:CHW

Veselic:1993:FPH

Vignes:1993:SAR

Vornberger:1993:BBM

[3113] Cal Vornberger. Beyond bit maps: Multiple floating objects deliver new power and flexibility to bit-map image processing. Micrografx Picture Publisher 4.0 and Fractal Design Painter X2 feature object layers and

REFERENCES

Anonymous:1994:C

Anonymous:1994:FPa

Anonymous:1994:FPb

Anonymous:1994:FPc

Anonymous:1994:SCSa

Anonymous:1994:SPF

Anonymous:1994:SRT

Apple:1994:IMP
REFERENCES

REFERENCES

H. Gander, M. Vincze, and J. P. Prenninger. Application of a floating point digital signal processor to the control of a laser tracking
REFERENCES

[3171] Per Brinch Hansen. Multiple-length division revisited: a tour of the minefield. Software—Practice and Experience, 24(6):579–601, June 1994. CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic). This paper derives an algorithm for division of long integers, and implements it as a literate program, although without identifier cross-references. See comment about another division algorithm [3347].

Hauser:1994:PEH

Hegland:1994:SSP

Hemkumar:1994:RLC

Hester:1994:PPP

Hicks:1994:PFU

Hilker:1994:NMM

Hill:1994:GPL

REFERENCES

REFERENCES

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1994. CODEN ????. ISSN ????.

REFERENCES

[3299] Anonymous. Micro view — what lessons can chip makers and their customers take from the Pentium floating-point divide flaw and the

REFERENCES

REFERENCES

REFERENCES

[3331] Marc Daumas, Christophe Mazenc, Xavier Merrheim, and Jean-Michel Muller. Modular range reduction: a new algorithm for fast and

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ke:1995:SFQ

Knowles:1995:FSC

Koko:1995:FP

Kubota:1995:DRE

Kwan:1995:CII

Lang:1995:VHR

[3372] Tomás Lang and Paolo Montuschi. Very-high radix combined division and square root with prescaling and selection by rounding. In

Lynch:1995:KTF

Lyu:1995:RBB

Mandelbaum:1995:DUL

Martel:1995:DSO

Matsubara:1995:NBS

REFERENCES

REFERENCES

REFERENCES

Schulte:1995:DAV

- branch and bound algorithms for global optimization,
- constraint propagation,
- solution sets of linear systems,
- hardware and software systems for interval computations, and
- fuzzy logic.

Actual applications described in the book include:

- economic input-output models,
- quality control in manufacturing design,
- a computer-assisted proof in quantum mechanics,
- medical expert systems,
- and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1996. CODEN ???. ISSN ???

Vijayanand Jaganaathan Angarai. Number representation schemes for energy efficient computer arithmetic. Thesis (M.S.), University of Texas at Dallas, Dallas, TX, USA, 1996. ix + 57 pp.

REFERENCES

REFERENCES

This paper offers a significantly faster algorithm than that of [2526], together with a correctness proof and an implementation in Scheme. See also [2434, 3861, 4793, 4693].

[Burnikel:1996:HPF]

[3468] Christoph Burnikel and Jochen König. High precision floating point numbers in LEDA. Report MPI I 96 1 002, Max-Planck-Institut für Informatik, Saarbrücken, Germany, 1996. 7 pp.

[Candev:1996:AIA]

[Cappuccino:1996:DDH]

[Chaitin-Chatelin:1996:FPA]

[Chaitin-Chatelin:1996:LFP]

[Chen:1996:VAC]

REFERENCES

REFERENCES

Dimitrova:1996:NAS

Djebarri:1996:GAS

Dobner:1996:AAD

Dobronets:1996:PEE

El-Guibaly:1996:HSC

Farag:1996:LPR

Feldstein:1996:OUM

REFERENCES

REFERENCES

URL http://spiedigitallibrary.org/proceedings/resource/2/psisdg/2846/1.

[3505] G. M. Haller and D. R. Freytag. Analog floating-point BiCMOS sampling chip and architecture of the BaBar CsI calorimeter front-end electronics system at the SLAC B-factory. IEEE Transactions on Nuclear Science,

REFERENCES

[3540] Jacques-Louis Lions, Mauro Balduccini, Yvan Choquer, Remy Hergott, Bernard Humbert, and Eric Lefort. Ariane 5 Flight 501 failure, report by the Inquiry Board. Technical report, European Space Agency, Paris, France, 1996. URL http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html. From the foreword: “On 4 June 1996, the maiden flight of the Ariane 5 launcher ended in a failure. Only about 40 seconds after initiation of the flight sequence, at an altitude of about 3700 m, the launcher veered off its flight path, broke up and exploded. Engineers from the Ariane 5 project teams of CNES and Industry immediately started to investigate the failure.” From the report: “The internal SRI software exception was caused during execution of a data conversion from 64-bit floating point to 16-bit signed integer value. The floating point number which was converted had a value greater than what could be represented by a 16-bit signed integer. This resulted in an Operand Error. The data conversion instructions (in Ada code) were not protected from causing an Operand Error, although other conversions of comparable variables in the same place in the code were protected.”.

REFERENCES

[3564] Stuart F. Oberman and Michael J. Flynn. Implementing division and other floating-point operations: a system perspective. In Alefeld

Oberman:1996:RDL

Oberman:1996:VLP

Oklobdzija:1996:MSO

Paar:1996:NAP

Parhami:1996:CHS

Park:1996:PAG

REFERENCES

REFERENCES

[Ratz:1996:BRS]

[Reid:1996:RFF]

[Rump:1996:DBR]

[Sarma:1996:HRT]

[Saunders:1996:TGF]

[Schulte:1996:HDI]

[Schulte:1996:PAS]

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Vassilladis:1996:ARA

Venners:1996:FPA

Vrahatis:1996:GBM

Werner:1996:CIW

Wiethoff:1996:PAE

Williams:1996:TMF

[3610] K. B. Williams. Testing math functions: When requirements are tight, we must carefully examine all potential sources of error. Make sure your math library isn’t the weak link in the chain. *C/C++ Users Journal*, 14 (12):49–54, 58–65, December 1996. CODEN CCUJEX. ISSN 1075-2838. Describes a package that extends the Cody-Waite-Plauger work on the ELEFUNT package for the testing of the elementary functions, including the inverse hyperbolic functions, cube root, and Bessel functions of the first and second kinds. The C++ package implements 192-bit extended precision versions of all of the functions, so that accurate results are available for comparison with the normal double-precision results.

Zachary:1996:ESD

REFERENCES

REFERENCES

REFERENCES

processors. *IEEE transactions on circuits and systems. 2, Analog and
ICSPE5. ISSN 1057-7130 (print), 1558-125X (electronic).

[Bshouty:1997:TBA]

[3629] Nader H. Bshouty, Yishay Mansour, Baruch Schieber, and Prasoon
Tiwari. A tight bound for approximating the square root. *Information
IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

[Burgess:1997:SUR]

[3630] Neil Burgess. Scaled and unscaled residue number system to binary
conversion techniques using the core function. In Lang et al. [6657],
1063-6889. LCCN QA76.9.C62 S95 1997. URL http://www.acsel-
lab.com/arithmetic/arith13/papers/ARITH13_Burgess.pdf. IEEE
Computer Society order number PR07846. IEEE Order Plan catalog
number 97CB36091.

[Callaway:1997:PDC]

characteristics of CMOS multipliers. In Lang et al. [6657], pages
26–33. ISBN 0-8186-7846-1, 0-8186-7847-X, 0-8186-7848-8. ISSN
1063-6889. LCCN QA76.9.C62 S95 1997. URL http://www.acsel-
lab.com/arithmetic/arith13/papers/ARITH13_Callaway.pdf. IEEE
Computer Society order number PR07846. IEEE Order Plan catalog
number 97CB36091.

[Cao:1997:HPH]

[3632] Jun Cao and Belle W. Y. Wei. High-performance hardware for function
generation. In Lang et al. [6657], pages 184–189. ISBN 0-8186-7846-
1, 0-8186-7847-X, 0-8186-7848-8. ISSN 1063-6889. LCCN QA76.9.C62
Computer Society order number PR07846. IEEE Order Plan catalog
number 97CB36091.

[Cena:1997:QCA]

[3633] Gianluca Cena, Paolo Montuschi, Luigi Ciminiera, and Andrea Sanna.
A Q-coder algorithm with carry free addition. In Lang et al. [6657], page
282. ISBN 0-8186-7846-1, 0-8186-7847-X, 0-8186-7848-8. ISSN 1063-
arithmetic/arith13/papers/ARITH13_Cena.pdf. IEEE Computer
Society order number PR07846. IEEE Order Plan catalog number
97CB36091.

REFERENCES

REFERENCES

Harris:1997:SDA

Harrison:1997:FPV

Hasan:1997:DA

Hekstra:1997:FRL

Hiasat:1997:DIR

Hix:1997:CTV

REFERENCES

REFERENCES

Kako:1997:PEF

Kapur:1997:MVA

Karp:1997:HPD

Khinchin:1997:CF

King:1997:DDT

Kinoshita:1997:RAE

REFERENCES

[3685] Gérard Le Lann. An analysis of the Ariane 5 Flight 501 failure — a system engineering perspective. In Proceedings of the International Conference and Workshop on Engineering of Computer-Based Systems, pages 339–346. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1997. URL http://ieeexplore.ieee.org/document/581900/. From the article: “The SRI S/W exception was raised during a conversion from a 64-bit floating point number F to a 16-bit signed integer number. F had a value greater than what can be represented by a 16-bit signed integer, which caused an Operand Error (data conversion — in Ada code — was not protected, for the reason that a maximum workload target of 80% had been set.
for the SRI computer). ... The value of BH was much higher than expected because the early part of the trajectory of Ariane 5 differs from that of Ariane 4, which results in considerably higher horizontal velocity values."

REFERENCES

REFERENCES

Mukherjee:1997:DTM

Muller:1997:EFA

Nielsen:1997:PPF

Nielsen:1997:RRR

Oberman:1997:DAI

[3709] Brad Pierce. Applications of randomization to floating-point arithmetic and to linear systems solution. Thesis (Ph.D.), Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA, 1997.

REFERENCES

Rice:1997:MDB

Sanz-Gonzalez:1997:TBR

Sarma:1997:FIR

Schulte:1997:AFA

Schulte:1997:HSR

Schulte:1997:SBT

[3718] Michael J. Schulte and James E. Stine. Symmetric bipartite tables for accurate function approximation. In Lang et al. [6657], pages 175–
REFERENCES

REFERENCES

Szabo:1997:REAb

Taborn:1997:DSM

Takagi:1997:GPO

TI:1997:TUG

Tomabechi:1997:WOD

Tsai:1997:FPR

REFERENCES

REFERENCES

Woehr:1997:CWK

Zeng:1997:REA

Aberbour:1998:PMF

Aberth:1998:PNM

Al-Twaijry:1998:SPB

REFERENCES

[3749] Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. *ACM Fortran Forum*, 17(3):1–2, December 1998. CODEN ????? ISSN 1061-7264 (print), 1931-1311 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ercegovac:1998:BSO

Fiore:1998:LR

Garcia:1998:PHC

Gordon:1998:CLF

Grisoni-Busca:1998:LPF

Grushin:1998:CMA

Guo:1998:SAI

REFERENCES

[3797] IEC.

[3802] W. Kahan. The improbability of probabilistic error analyses for numerical computations. Technical report, Department of Mathematics
REFERENCES

Kelsey:1998:RRA

Kiranon:1998:SRV

Knuth:1998:SA

Koc:1998:LCB

Kramer:1998:PWC

Kuhlmann:1998:FLP

REFERENCES

LPT:1998:SC

Ma:1998:SAM

McCullough:1998:ARS

Mohan:1998:EFC

Montalvo:1998:NST

Moore:1998:MCP

REFERENCES

REFERENCES

URL http://www.onr.com/user/russ/david/k7-div-sqrt.html. See journal article [3835].

Stelling:1998:OCP

Stine:1998:CIFa

Stine:1998:CIFb

Takagi:1998:PTL

Takashi:1998:FPN

Thorup:1998:FIS

Ulman:1998:HPF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Jullien:1999:HDP

Kahan:1999:SRD

Kaplan:1999:JVA

Kaplan:1999:NNH

REFERENCES

Karamcheti:1999:CLR

Kern:1999:FVH

Knowles:1999:FA

Koren:1999:FIS

Koren:1999:ITS

[3958] Peter Kornerup. Necessary and sufficient conditions for parallel, constant
time conversion and addition. In Koren and Kornerup [6682], pages 152–
final/paper-103.ps; http://www.acsel-
lab.com/arithmetic/arith14/papers/ARITH14_Kornerup.pdf. IEEE
Computer Society Order Number PR00116. IEEE Order Plan Catalog
Number 99CB36336.

SIGSAM Bulletin (ACM Special Interest Group on Symbolic and
Algebraic Manipulation), 33(3):17, September 1999. CODEN SIGSBZ.
ISSN 0163-5824 (print), 1557-9492 (electronic).

[3960] T. Lang and P. Montuschi. Very high radix square root with prescaling
and rounding and a combined division/square root unit. IEEE
Transactions on Computers, 48(8):827–841, August 1999. CODEN
ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
l ieexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=795124.

[3961] Ph. Langlois and F. Nativel. When automatic linear correction of
rounding errors is exact. Comptes Rendus des Séances de l'Académie
CASMEI. ISSN 0249-6291. See erratum, p. 829, in same volume.

[3962] Sung-Woo Lee, Hyun-Sung Kim, Jung-Joon Kim, Tae-Guem Kim,
and Kee-Young Yoo. Efficient fixed-size systolic arrays for the
modular multiplication. Lecture Notes in Computer Science, 1627:
442–??, 1999. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349
series/0558/bibs/1627/16270442.htm; http://link.springer-

[3963] Chang-Hyi Lee and Jong-In Lim. A new aspect of dual basis for
efficient field arithmetic. Lecture Notes in Computer Science, 1560:
12–28, 1999. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349

[3969] D. Lopez, J. Llosa, E. Ayguade, and M. Valero. Impact on performance of fused multiply-add units in aggressive VLIW architectures. In Shiratori...

Lue:1999:ADE

Mahesh:1999:IAE

McCullough:1999:ARS

McCullough:1999:NRE

Montuschi:1999:BVH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Schulte:1999:ESO

Schulte:1999:HSI

Schulte:1999:IEG

Schulte:1999:RPD

Schwarz:1999:GFPa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wires:1999:CUT

Wong:1999:OFP

Yadav:1999:PSF

Yang:1999:CIS

Yang:1999:RNSa

Yang:1999:RNSb

Yang:1999:RST

Yap:1999:REI

Yuan:1999:FPA

Zimmermann:1999:EVI

Zimmermann:1999:KSR

Ziv:1999:SUR

REFERENCES

[4043] Record, page various, 19xx. Floating Point Systems, Portland, OR, USA.

[4044] Intel. Intel 8231A Arithmetic Processing Unit. Intel Corp, San Jose, CA, USA, 19xx. URL http://www.datasheetarchive.com/pdf-datasheets/Datasheets-14/DSA-276911.html. From the datasheet (p. 3-5): “The mantissa is expressed as a 24-bit (fractional) value; the exponent is expressed as a two’s complement 7-bit value having the range -64 to $+63$. The most significant bit is the sign of the mantissa ($0 =$ positive, $1 =$ negative), for a total of 32 bits. The binary point is assumed to be [to] the left of the most significant mantissa bit (bit 23). All floating-point data values must be normalized. Bit 23 must be equal to 1, except for the value zero, which is represented by all zeros. The range of values that can be represented in this format is $\pm (2.7 \cdot 10^{\pm 9.2 \times 10^{18}})$ and zero.”.

REFERENCES

REFERENCES

Coleman:2000:CAE

Collins:2000:MFP

Constantinides:2000:MPR

Corsonello:2000:PCB

DAmora:2000:RPD

REFERENCES

REFERENCES

Hasan:2000:FP1

Hasan:2000:LTB

Hassibi:2000:ESR

Hassibi:2000:FSR

He:2000:UAA

Hiasat:2000:NES
REFERENCES

REFERENCES

Kim:2000:PSA

Kobayashi:2000:HBF

Koren:2000:GEI

Krishnan:2000:PEM

Kum:2000:ACO

Lee:2000:LSM

REFERENCES

Leemis:2000:SDS

Lefevre:2000:CRF

Liew:2000:IDR

Lin:2000:NBP

Lopez:2000:HSS
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Schulte:2000:PSM

Seidel:2000:DIC

Seife:2000:ZBD

Sleijpen:2000:DER

Swider:2000:FPR

Takahashi:2000:IMP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

759

Bickerstaff:2001:ACC

Blanck:2001:ERA

Blum:2001:HRM

Boldo:2001:FAP

Boldo:2001:MVT

REFERENCES

[4208] Keith Briggs and Yannis Smaragdakis. XR — exact real arithmetic. World-Wide Web document and software package., March 01, 2001. URL http://www.btexact.com/people/briggsk2/XR.html. From the overview: “This is an implementation of exact (or constructive) real arithmetic, as an alternative to multiple-precision floating-point (MPFP). An important distinction is that in MPFP one sets the precision before starting a computation, and then one cannot be sure of the final result. Interval arithmetic is an improvement on this, but still not an ideal solution because if the final interval is larger than desired, there is no simple way to restart the computation at higher precision. By contrast, in XR no precision level is set in advance, and no computation takes place until a final request takes place for some output. Despite this, programming with XR is no different from MPFP, except for the declaration of critical variables as type ‘XR’.

The main aim is to produce a usably efficient implementation, which can be easily interfaced with existing C++ code. This contrasts with previous implementations in functional languages (Haskell, Miranda etc.), which, although theoretically important, seem to be rather too slow for real use.

This code is designed as an add-on to Victor Shoup’s arbitrary-precision arithmetic package NTL, and implements a new type XR, to complement NTL’s ZZ and RR integer and real types.

Bryant:2001:VAC

Burgess:2001:DIR

Busaba:2001:IZD

Cao:2001:HPA

Chen:2001:ADF

Coppersmith:2001:FSS

Darcy:2001:WEU

Daumas:2001:CVP

Daumas:2001:GLF

deDinechin:2001:SIM

Defour:2001:CREa

Defour:2001:CREb

[4227] David Defour, Florida de Dinechin, and Jean-Michel Muller. Correctly rounded exponential function in double precision arithmetic. In Luk
REFERENCES

Defour:2001:NRRa

Defour:2001:NRRb

DelRe:2001:IDF

Demmel:2001:CAF

Dhong:2001:ACR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[4255] Namhyun Hur and James H. Davenport. A generic root operation
for exact real arithmetic. *Lecture Notes in Computer Science*, 2064:
82–??, 2001. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349
series/0558/bibs/2064/20640082.htm; http://link.springer-

[4256] ISO.
ISO/IEC
10967-2: Information technology — Language independent arithmetic
— Part 2: Elementary numerical functions. International Organization
x + 177 pp. LCCN ???? URL http://standards.iso.org/ittf/
zip; http://www.iso.ch/cate/d24427.html.

In Boulton and Jackson [6702], pages 239–254. ISBN 3-540-42525-X
(paperback). ISSN 0302-9743 (print), 1611-3349 (electronic). LCCN
publications/online/0046/b239.pdf.

(5):39–41, December 2001. CODEN IEPTDF. ISSN 0278-6648 (print),
1558-1772 (electronic).

[4259] Cheol-Ho Jeong, Woo-Chan Park, Tack-Don Han, Sang-Woo Kim, and
Moon-Key Lee. In-order issue out-of-order execution floating-point
coprocessor for CalmRISC32. In Burgess and Ciminiera [6704], pages
arithmetic/arith15/papers/ARITH15_Jeong.pdf. IEEE order no.
PR01150.

report, Mathematics Department and Electrical Engineering and
Computer Science Department, University of California, Berkeley,
REFERENCES

Kahan:2001:SFP

Kahan:2001:WVT

Kaivola:2001:PEL

Kao:2001:MRE

Khachatrian:2001:FMI

REFERENCES

Lemieux:2001:FPM

Leone:2001:NLC

Lester:2001:ECF

Li:2001:LLF

Li:2001:PMM

Lippert:2001:HSM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Yu:2001:DID

Zhang:2001:FSM

Zhang:2001:NCP

Zheng:2001:ARE

Zielke:2001:GLL

Zimmermann:2001:AAC

[4373] Paul Zimmermann. De l’algorithmique à l’arithmétique via le calcul formel. (French) [From algorithmics to arithmetic via symbolic calculation]. Technical report, Département de formation doctorale en
REFERENCES

Zimmermann:2001:APA

Ziv:2001:APM

Agarwal:2002:FPN

Akbarpour:2002:FCS

Akkas:2002:CIF

REFERENCES

Akkas:2002:ISE

Alvarez:2002:IRF

Anonymous:2002:AIVf

Anonymous:2002:OFP

ARM:2002:VVF

Arnold:2002:AOS

M. G. Arnold. Avoiding oddification to simplify MPEG-1 decoding with LNS. In 2002 IEEE Workshop on Multimedia Signal Processing, pages 125–129. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2002. CODEN ???? ISSN ????

Arnold:2002:ICL

Arnold:2002:RPC

Bailey:2002:AAP

Bailey:2002:HPC

Barrio:2002:REB

Belanovic:2002:LPF

Bertot:2002:PGS

REFERENCES

REFERENCES

REFERENCES

Conway:2002:NOH

Conway:2002:SRI

Cornea:2002:SCI

Cowlishaw:2002:DPD

Cowlishaw:2002:TB

Crandall:2002:OPF

REFERENCES

[4416] J. Demmel, Plamen Koev, and Ben Diament. The complexity of accurate floating point computation. In Li [6722], pages 672 (vol. 1) + 832 (vol.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hanrot:2002:LNM

Heckmann:2002:CLF

Helms:2002:IPM

Hertling:2002:LBR

Hiasat:2002:HSR

Higham:2002:ASN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Paul:2002:BB

Pillmeier:2002:DAB

Pineiro:2002:HRL

Pineiro:2002:HSD

Puchta:2002:RNN

REFERENCES

[4506] D. Soudris, M. Dasygenis, K. Mitroglou, K. Tatas, and A. Thanailakis. A full adder based methodology for scaling operation in residue number system. In 9th International Conference on Electronics, Circuits and

REFERENCES

[4513] Texas Instruments, Dallas, TX, USA. *TMS320C67x FastRTS Library Programmer’s Reference (SPRU100A)*, October 2002. URL http://focus.ti.com/lit/ug/spru100a/spru100a.pdf. The FastRTS library is a collection of 26 optimized floating-point math functions for the TMS320C67x device. This source code library includes C-callable (ANSI-C-language compatible) optimized versions of the floating-point math functions included in previous run-time-support libraries.

REFERENCES

Wu:2002:BPF

Wu:2002:FFM

Wu:2002:MMS

Yang:2002:RNSa

Yang:2002:RNSb

Yang:2002:RNSc

[4524] Lie-Liang Yang and L. Hanzo. Residue number system assisted fast frequency-hopped synchronous ultra-wideband spread-spectrum
REFERENCES

Agou:2003:SPR

REFERENCES

Akkas:2003:QPD

Al-Radadi:2003:RSD

Altman:2003:RAN

Ammar:2003:NDH

Anonymous:2003:AI

Anonymous:2003:FFP

REFERENCES

Arnold:2003:FFT

Arnold:2003:ILN

Bajard:2003:EMG

Bajard:2003:FII

REFERENCES

Barrio:2003:NEL

Barrio:2003:URE

Bertoni:2003:EAA

Boldo:2003:FPC

Boldo:2003:RCT

REFERENCES

Bin Cao, T. Srikanthan, and Chip-Hong Chang. Design of a high speed reverse converter for a new 4-moduli set residue number system. In
REFERENCES

REFERENCES

REFERENCES

Daneshbeh:2003:UBS

Daumas:2003:FRR

Defour:2003:FEA

Demmel:2003:AEF

Demmel:2003:CAF

REFERENCES

REFERENCES

REFERENCES

Fernandez:2003:FPA

Fousse:2003:AST

Frougny:2003:LMR

Gansner:2003:SMB

Gavrilova:2003:ESC

Geddes:2003:EFH

Geiselmann:2003:RRD

W. Geiselmann and R. Steinwandt. A redundant representation of GF(q^n) for designing arithmetic circuits. *IEEE Transactions on
REFERENCES

Gerwig:2003:HPF

Goldberg:2003:WEC

Grabmeier:2003:CAH

Grossschadl:2003:ASL

Hanrot:2003:DRF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

number PR01894. Selected papers republished in *IEEE Transactions on Computers*, **54**(3) (2005) [4943].

REFERENCES

Muller:2003:SRS

Nannarelli:2003:PDT

Nievergelt:2003:SFM

Okeya:2003:WNM

Oklobdzija:2003:EDE

Oklobdzija:2003:TDP

ORourke:2003:ANM

Parhami:2003:TUB

Paschalakis:2003:DPF

Percival:2003:RMM

REFERENCES

REFERENCES

REFERENCES

Engineering Department of the University of Kentucky, Lexington, KY, USA.

REFERENCES

REFERENCES

[4667] S. Abbasbandy and M. A. Fariborzi Araghi. The use of the stochastic arithmetic to estimate the value of interpolation polynomial with
REFERENCES

REFERENCES

Bachega:2004:HPS

[4673] L. Bachega, Siddhartha Chatterjee, K. A. Dockser, J. A. Gunnels,
Manish Gupta, F. G. Gustavson, C. A. Lapkowski, G. K. Liu, M. P.
Mendell, C. D. Wait, and T. J. C. Ward. A high-performance
SIMD floating point unit for BlueGene/L: architecture, compilation,
Conference on Parallel Architecture and Compilation Techniques, 29
Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2004.

Bajard:2004:FRI

ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL

Bernstein:2004:RRH

[4675] Daniel J. Bernstein. Removing redundancy in high-precision
Newton iteration. Technical report, Department of Mathematics,
Statistics, and Computer Science (M/C 249), The University of
Illinois at Chicago, Chicago, IL 60607-7045, March 9, 2004. 2
pp. URL http://cr.yp.to/fastnewton.html; http://cr.yp.to/
fastnewton/fastnewton-20040309.pdf. See also [4731].

Bernstein:2004:SRT

[4676] Daniel J. Bernstein. Scaled remainder trees. Report, University of
Sydney, Sydney, NSW, Australia, April 20, 2004. URL http://
cr.yp.to/arith/scaledmod-20040820.pdf. Draft for Mathematics of
Computation, but never published in that journal.

Bertin:2004:FPL

[4677] C. Bertin, Nicolas Brisebarre, B. Dupont de Dinechin, C.-P. Jeannerod,
C. Monat, Jean-Michel Muller, S. Raina, and A. Tisserand. A floating-
point library for integer processors. Research Report RR2004-37, École
Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France, July 2004.
2 + 11 pp. URL http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/

Beuchat:2004:FMM

[4678] Jean-Luc Beuchat. A family of modulo \((2^n + 1)\) multipliers. Research
Report RR2004-39, École Normale Supérieure de Lyon, 69364 Lyon
REFERENCES

REFERENCES

REFERENCES

Chirca:2004:SLP

Clinger:2004:HRF

Clinger:2004:RHR

Cowlishaw:2004:FFE

Croot:2004:ACC

Daumas:2004:GFCa

REFERENCES

[4709] Jérémie Detrey and Florent de Dinechin. A tool for unbiased comparison between logarithmic and floating-point arithmetic. Research Report RR2004-31, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07,
REFERENCES

REFERENCES

[4727] G. Govindu, S. Choi, V. Prasanna, V. Daga, S. Gangadharpalli, and V. Sridhar. A high-performance and energy-efficient architecture for

Granlund:2004:GMG

Groza:2004:DIS

Hanrot:2004:MPA

Hanrot:2004:NIR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ogasawara:2004:OPO

Ogita:2004:ASDa

Ogita:2004:ASDb

Olausson:2004:RFP

Ortiz:2004:SPI

Pace:2004:ERL

REFERENCES

[4786] M. Sadaghdar, K. Iniewski, and M. Syrzycki. 11-bit floating-point pipelined analog to digital converter in 0.18µ m CMOS. In *Canadian
REFERENCES

REFERENCES

Catalog Number: 04CH37568.

Steele:2004:RHP

floating-point numbers accurately. ACM SIGPLAN Notices, 39(4):372–
389, April 2004. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867
(print), 1558-1160 (electronic). Best of PLDI 1979–1999. Reprint of, and
retrospective on, [2526].

Stehle:2004:GAT

double.txt; http://www.loria.fr/~stehle/downloads/sincos-
double.txt; http://www.loria.fr/~stehle/IMPROVEDGAL.html.

Stine:2004:DCA

[4795] James E. Stine. Digital computer arithmetic datapath design using
Verilog HDL. Kluwer Academic Publishers Group, Norwell, MA, USA,
enhancements/fy0820/2003064036-d.html; http://www.loc.
gov/catdir/enhancements/fy0820/2003064036-t.html.

Sun:2004:LBR

[4796] Sun Microsystems, Inc. Libmcr 0.9 beta: a reference correctly-rounded
library of basic double-precision transcendental elementary functions.
com/download/products.xml?id=41797765.

Sunar:2004:GMC

[4797] B. Sunar. A generalized method for constructing subquadratic
complexity GF(2^k) multipliers. IEEE Transactions on Computers, 53(9):
1097–1105, September 2004. CODEN ITCOB4. ISSN 0018-9340 (print),
1557-9956 (electronic).

Sypniewski:2004:IAU

underflow rounding standard on the speed of FDTD modeling. In 2004
IEEE MTT-S International Microwave Symposium Digest. 6–11 June
REFERENCES

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2004. CODEN ????. ISSN ????.

REFERENCES

[4829] Elisardo Antelo and Julio Villalba. Low latency pipelined circular CORDIC. In Montuschi and Schwarz [6769], page ?? ISBN 0-7695-
REFERENCES

REFERENCES

[Bajard:2005:AOP]

[Bajard:2005:PMM]

[Beebe:2005:MPA]

[Beuchat:2005:MAR]

[Blanck:2005:EEC]

[Boehm:2005:CRJ]

[Boldo:2005:SFC]
REFERENCES

268, April 2005. CODEN ISPLEM. ISSN 1070-9908 (print), 1558-2361 (electronic).

Chang:2005:LCB

Chaniotakis:2005:LNB

Chatterjee:2005:DEH

Choi:2005:PPA

Cotofana:2005:ARA

REFERENCES

S. %3B+Lageweg%2C+C.%3B+Vassiliadis%2C+S.;
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=30205&

Daramy-Loirat:2005:CLL

Daumas:2005:GPU

deDinechin:2005:MTM

deDinechin:2005:TPU

Dou:2005:BFP

Efstathiou:2005:EDM

REFERENCES

REFERENCES

Fan:2005:FBP

Fit-Florea:2005:ABE

Fousse:2005:MMP

Fraysse:2005:ASG

Giles:2005:BLN

Giraud:2005:REA

REFERENCES

REFERENCES

REFERENCES

Karlsson:2005:IIL

Kenney:2005:HSM

Khabbazian:2005:NMA

Klarer:2005:DTC

Kornerup:2005:DSS

REFERENCES

2C+E.; http://ieeexplore.ieee.org/xpls/abs_all.jsp?
isnumber=30205&arnumber=1388199&count=13&index=10; http:/
/ieeexplore.ieee.org/xpls/references.jsp?arnumber=1388199.

Langlois:2005:STS

[4901] P. Langlois and N. Louvet. Solving triangular systems more accurately
and efficiently. Research Report RR2005-02, Équipe de Recherche DALI,
Laboratoire LP2A, Université de Perpignan, Via Domitia, Perpignan,

Lauter:2005:BBB

[4902] Christoph Quirin Lauter. Basic building blocks for a triple-double
67 + i pp. URL http://hal.inria.fr/inria-00070314; https://
hal.inria.fr/inria-00070314/document.

Lawlor:2005:PDP

[4903] Orion Lawlor, Hari Govind, Isaac Dooley, Michael Breitenfeld, and
Laxmikant Kale. Performance degradation in the presence of subnormal
floating-point values. World-Wide Web slides from the Workshop on
Operating System Interfaces in High Performance Applications 2005,
html/.

Lee:2005:LCB

Low-complexity bit-parallel systolic Montgomery multipliers for special
classes of GF(2^m). IEEE Transactions on Computers, 54(9):1061–1070,
September 2005. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
tp=&arnumber=1471668.

Lee:2005:OHF

1531, December 2005. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-
9956 (electronic).

Lefèvre:2005:GMP

[4906] Vincent Lefèvre. The generic multiple-precision floating-point addition
with exact rounding (as in the MPFR library). arXiv.org, ???(??):??, May
REFERENCES

REFERENCES

final/paper-149.pdf.

final/paper-112.pdf.

final/paper-160.pdf.

44106.

ieeexplore.ieee.org/servlet/opac?punumber=10726. IEEE Catalog Number 05TH8820.

Nguyen:2005:FPL

Oberman:2005:HPA

Ogita:2005:ASD

Oh:2005:FPS

Pareto:2005:GAL

Phatak:2005:FMR

Pineiro:2005:HSF

[4936] Jose-Alejandro Piñeiro, Stuart F. Oberman, Jean-Michel Muller, and Javier D. Bruguera. High-speed function approximation using a minimax
REFERENCES

REFERENCES

Sax:2005:FPN

Schulte:2005:GEI

Schulte:2005:PED

Seidel:2005:HRI

Seidel:2005:SRR

Serebrenik:2005:TFP

REFERENCES

Steele:2005:SMG

Stehle:2005:GAT

Stehle:2005:SWC

Stine:2005:CTC

Takagi:2005:HAI

Takahashi:2005:AMP

Tang:2005:BBI

Tang:2005:GBE

Tsuiki:2005:RNC

Usevitch:2005:JCL

Verdonk:2005:BSI

Wahid:2005:EFC

Wait:2005:IPF

REFERENCES

Yatskiv:2005:MAB

Zeydel:2005:EMA

Zhu:2005:NDA

Zhuo:2005:DSF

Zimmermann:2005:EBC

Zimmermann:2005:MPT

REFERENCES

[4987] Roberto M. Avanzi, Clemens Heuberger, and Helmut Prodinger. Scalar multiplication on Koblitz curves using

REFERENCES

REFERENCES

REFERENCES

[5006] Jérémie Detrey and Florent de Dinechin. FPLibrary. A VHDL library of parametrisable floating-point and LNS operators for FPGA. Web site and source code., 2006. URL http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/. The FPLibrary has been superceded by the FloPoCo project [5426].

[5012] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Dependent rounding and its applications to approximation

[5017] Daniel S. Graça, Ning Zhong, and Jorge Buescu. The ordinary differential equation defined by a computable function whose maximal interval of existence is non-computable. In Anonymous [6773], page ?? ISBN ???? LCCN ????

REFERENCES

Harrison:2006:FPV

Hars:2006:MIA

Hill:2006:QUB

How:2006:RRN

Hurlimann:2006:BLB

IBM:2006:PDF

REFERENCES

REFERENCES

[5044] Vincent Lefèvre, Damien Stehlé, and Paul Zimmermann. Worst cases for the exponential function in the IEEE 754r decimal64 format.

Liew:2006:SRR

Lindstrom:2006:FEC

Mahalingam:2006:IAM

Marques:2006:BIF

Maslennikowa:2006:DFB

StDenis:2006:BMI

Steele:2006:FPM

Steele:2006:FPSa

Steele:2006:FPSb

Steele:2006:FPU

Steele:2006:SMP

Steele:2006:TOC

REFERENCES

REFERENCES

[5111] Marco Bodrato and Alberto Zanoni. Integer and polynomial multiplication: towards optimal Toom–Cook matrices. In Brown [6788],
REFERENCES

[518] Neil Burgess and Chris N. Hinds. Design of the ARM VFP11 divide and square root synthesisable macrocell. In Kornerup and Muller [6795],

REFERENCES

[5131] Jeremie Detrey, Florent de Dinechin, and Xavier Pujol. Return of the hardware floating-point elementary function. In Kornerup and Muller

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5185] Shawn D. Lundvall, Eric M. Schwarz, Ronald M. Smith, Sr., and Phil C. Yeh. Decomposition of decimal floating point data. US

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

 Buttari:2008:UMP

 Carnicer:2008:REP

 Castaldo:2008:RFP

 Castellanos:2008:CTD

 Cavagnino:2008:EAI

 Colon-Bonet:2008:MEF
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Thill:2008:EMP

Thill:2008:MPR

Tsigaridas:2008:CRR

VanMeter:2008:ADM

Webb:2008:IZN

Yamanaka:2008:PAA

Adikari:2009:HBT

REFERENCES

Amaricai:2009:DFP

Anderson:2009:PAD

Anonymous:2009:AI

Anonymous:2009:CPC

Arnold:2009:DPR

Bajard:2009:SRB

Barsi:2009:ECP

Bayat-Sarmadi:2009:CED

Beebe:2009:NML

Blomquist:2009:MSC

Boldo:2009:FVA

Boldo:2009:KAC

Bryant:2009:ABD

REFERENCES

REFERENCES

REFERENCES

[5341] P. Dormiani, M. D. Ercegovac, and Jean-Michel Muller. Design and implementation of a radix-4 complex division unit with prescaling. In
REFERENCES

IEEE [6811], pages 83–90. ISBN 0-7695-3732-4. ISSN 1063-6862. LCCN ????.

REFERENCES

[5354] Sonia Gonzalez-Navarro, Alberto Namarelli, Michael J. Schulte, and Charles Tsen. A combined decimal and binary floating-point divider. In
REFERENCES

Gorgin:2009:FRD

Graillat:2009:AAV

Graillat:2009:AFP

Gu:2009:SDB

Guralnik:2009:ISV

Han:2009:ICS

Hariri:2009:BSB

[A. Hariri and A. Reyhani-Masoleh. Bit-serial and bit-parallel Montgomery multiplication and squaring over GF(2^m). IEEE
REFERENCES

Harrison:2009:DTB

Harrison:2009:FAB

Hasan:2009:SSC

Hinek:2009:ALS

Ho:2009:FPF

ISO:2009:IIT

REFERENCES

REFERENCES

REFERENCES

[5392] Siegfried M. Rump, Paul Zimmermann, Sylvie Boldo, and Guillaume Melquiond. Computing predecessor and successor in rounding to

REFERENCES

XILINX. XILINX LogiCORE floating-point operator v5.0 product specification.
REFERENCES

Zhu:2009:CRH

Zimmermann:2009:DSS

Akbarpour:2010:VSI

Aldous:2010:WCO

Alimohammad:2010:UAA

Amin:2010:HRM

REFERENCES

[5426] Florent de Dinechin and Bogdan Pasca. FloPoCo: generator of arithmetic cores (Floating-Point Cores, but not only) for FPGAs (but not only). Web site and source code., August 10, 2010.

REFERENCES

Frey:2010:ABC

Fu:2010:FDO

Ghazi:2010:WHU

Hemmert:2010:FEF

Jaberipur:2010:RDF

Jiang:2010:AEP

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

ISSN 1936-7406 (print), 1936-7414 (electronic).

Sze:2010:TQB

[5481] Tsz-Wo Sze. The two quadrillionth bit of pi is 0 ! distributed
computation of pi with Apache Hadoop. In IEEE, editor, 2010 IEEE
Second International Conference on Cloud Computing Technology and
Science (CloudCom), page 727. IEEE Computer Society Press, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2010. ISBN
1-4244-9405-2. LCCN ????

Szewczak:2010:LTR

[5482] Zbigniew S. Szewczak. A limit theorem for random sums modulo
SPLTDC. ISSN 0167-7152. URL http://www.sciencedirect.com/
science/article/pii/S0167715210000106.

Takahashi:2010:PIM

[5483] Daisuke Takahashi. Parallel implementation of multiple-precision
arithmetic and 2,576,980,370,000 decimal digits of π calculation.
ISSN 0167-8191 (print), 1872-7336 (electronic).

Tichy:2010:GAF

[5484] Milan Tichy, Jan Schier, and David Gregg. GSFAP adaptive
filtering using log arithmetic for resource-constrained embedded systems.
February 2010. CODEN ???? ISSN 1539-9087 (print), 1558-3465
(electronic).

Vazquez:2010:IDH

[5485] A. Vazquez, E. Antelo, and P. Montuschi. Improved design of
high-performance parallel decimal multipliers. IEEE Transactions on
Computers, 59(5):679–693, 2010. CODEN ITCOB4. ISSN 0018-
org/stamp/stamp.jsp?tp=&arnumber=5313798.

Vestias:2010:PDM

[5486] M. P. Véstias and H. C. Neto. Parallel decimal multipliers using binary
multipliers. In Santos et al. [6825], pages 73–78. ISBN 1-4244-6309-2,
ieee.org/servlet/opac?punumber=5473892. IEEE Catalog Number
CFP1021B-PRT.
REFERENCES

Wang:2010:AOB

Wang:2010:DAH

Wang:2010:SHD

Wang:2010:VVP

Waters:2010:RCW

Zanoni:2010:ITC

Zhao:2010:GMP

REFERENCES

Elisardo Antelo, editor. Industrial Implementations of Floating-Point Units, volume 1. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2011. ISBN ???? ???? pp. LCCN ????

Baudin:2011:EBC

Beebe:2011:BPAb

Berger:2011:FSM

Beuchat:2011:FAP

Bodrato:2011:HDT

Boersma:2011:PBF

[5525] Steven Carlough, Adam Collura, Silvia Mueller, and Michael Kroener. The IBM zEnterprise-196 decimal floating-point accelerator. In Schwarz

Cavagnino:2011:AAD

Cenk:2011:EM

Chakraborty:2011:CBS

Chang:2011:CGR

Chen:2011:PIM

Chen:2011:TSA

Chevillard:2011:AGC

Colberg:2011:HAS

Corless:2011:RCA

Cui:2011:TDB

Curran:2011:ZSM

REFERENCES

[5543] Niall Emmart and Charles C. Weems. High precision integer multiplication with a GPU using Strassen’s algorithm with multiple
REFERENCES

Ibrahim:2011:PAA

Ikhile:2011:RBD

Ismail:2011:RLL

ISO:2011:III

Izsak:2011:CPM

Jaime:2011:HSA

REFERENCES

REFERENCES

[5584] Peter Kornerup, Jean-Michel Muller, and Adrien Panhaleux. Performing arithmetic operations on round-to-nearest representations. *IEEE*
REFERENCES

Kulisch:2011:EDP

Kulisch:2011:VFE

Lamberti:2011:RCT

Langhammer:2011:TFD

Lipetz:2011:SCC

Liu:2011:FAH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5633] Sedat Akleylek and Ferruh Ozbudak. Modified redundant representation for designing arithmetic circuits with small complexity. IEEE
REFERENCES

[5639] Elisardo Antelo. Industrial Implementations of Floating-Point Units: Vol. 2. IEEE Computer Society Press, 1109 Spring Street, Suite 300,

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[5684] Daichi Mukunoki and Daisuke Takahashi. Performance comparison of double, triple and quadruple precision real and complex BLAS

REFERENCES

1007

REFERENCES

REFERENCES

[5722] Sylvain Chevillard and Marc Mezzarobba. Multiple-precision evaluation of the Airy Ai function with reduced cancellation. In IEEE [6833], pages
REFERENCES

REFERENCES

REFERENCES

[5736] Nicholas J. Dingle and Nicholas J. Higham. Reducing the influence of tiny
normwise relative errors on performance profiles. *ACM Transactions on
ISSN 0098-3500 (print), 1557-7295 (electronic).

[5737] K. Doertel. Best known method: Avoid heterogeneous precision in
control flow calculations. Report, Intel Corporation, Santa Clara, CA,
USA, 2013. ???? pp.

early history of mechanical computing. In IEEE [6833], page 79. ISBN

[5739] Khaled ElWazeer, Kapil Anand, Aparna Kotha, Matthew Smithson,
and Rajeev Barua. Scalable variable and data type detection in a
CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160
(electronic).

[5740] Susanne Engels, Elif Bilge Kavun, Christof Paar, Tolga Yalcin, and
Hristina Mihajloska. A non-linear/linear instruction set extension for
ISSN 1063-6889. LCCN QA76.9.C62 S95 2013.

[5741] Sameh Galal, Ofer Shacham, John S. Brunhaver, Jing Pu, Artem
Vassiliev, and Mark Horowitz. FPU generator for design space

[5742] Pascal Giorgi, Laurent Imbert, and Thomas Izard. Parallel modular

integer decimal-based floating-point multiplication. *IEEE Transactions
REFERENCES

REFERENCES

REFERENCES

Tarek Ould-Bachir and Jean Pierre David. Self-alignment schemes for the implementation of addition-related floating-point operators. *ACM*

Rupley:2013:FPU

Russinoff:2013:CFV

Saha:2013:PAF

SaiToh:2013:ZCL

Shen:2013:SCC

Sohn:2013:IAF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Korzen:2014:PPP

Leeser:2014:MIR

Lei:2014:FIS

Lindstrom:2014:FRC

Long:2014:SIF

Lupon:2014:SHS

[5828] Hiroshi Murakami. Calculation of rational numbers in an interval whose denominator is the smallest by using FP interval arithmetic. *ACM

REFERENCES

REFERENCES

References

[5866] Florent de Dinechin. On fixed-point hardware polynomials. Technical report, INSA, CITI Lab, Université de Lyon, Lyon, France, October 2015. URL https://hal.inria.fr/hal-01214739.

Demmel:2015:CFP

Demmel:2015:PRS

Denis:2015:VCF

Dietz:2015:UIO

Ebergen:2015:RDA

El-Razouk:2015:NBL

Elsayed:2015:NPE

REFERENCES

[5877] Terry Froggatt. An error in the Ada universal arithmetic package. *ACM SIGADA Ada Letters*, 35(2):14, August 2015. CODEN AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic). See [1668]. The 32-year-old error is a test with digit t that has if ($t > \text{BASE}$), but the operator should instead be \geq.

REFERENCES

[5887] John Gustafson. Keynote talk: The end of numerical error. In Muller et al. [6837], page 74. ISBN 1-4799-8665-8, 1-4799-8663-1. ISSN 1063-
REFERENCES

REFERENCES

REFERENCES

[5907] Seyed Hamed Fatemi Langroudi and Ghassem Jaberipur. Modulo-
\(2^n q_1\) parallel prefix addition via excess-modulo encoding of residues. In Muller et al. [6837], pages 121–128. ISBN 1-4799-8665-8, 1-4799-
8663-1. ISSN 1063-6889. LCCN QA76.9.C62 S95 2015. URL http://
ieeexplore.ieee.org/servlet/opac?punumber=7193754.

[Laskar:2015:KTN]

integrations of the solar system. In Muller et al. [6837], page 104. ISBN
1-4799-8665-8, 1-4799-8663-1. ISSN 1063-6889. LCCN QA76.9.C62 S95
7193754. Abstract only.

[Lauter:2015:SAF]

[5909] Christoph Lauter and Marc Mezzarobba. Semi-automatic floating-point
implementation of special functions. In Muller et al. [6837], pages
58–65. ISBN 1-4799-8665-8, 1-4799-8663-1. ISSN 1063-6889. LCCN
opal?punumber=7193754.

[Lee:2015:RRA]

[5910] Wen-Chuan Lee, Tao Bao, Yunhui Zheng, Xiangyu Zhang, Keval
Vora, and Rajiv Gupta. RAIVE: runtime assessment of floating-point
instability by vectorization. ACM SIGPLAN Notices, 50(10):623–638,
October 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867
(print), 1558-1160 (electronic).

[Liu:2015:IBI]

[5911] L. Liu, S. Peng, C. Zhang, R. Li, B. Wang, C. Sun, Q. Liu, L. Dong, L. Li,
Y. Shi, Y. He, W. Zhao, and G. Yang. Importance of bitwise identical
reproducibility in earth system modeling and status report. Geoscientific
Model Development Discussions, 8(6):4375–4400, June 2015. ISSN 1991-
959X (print), 1991-9603 (electronic). URL https://www.geosci-model-
dev-discuss.net/gmd-2015-83/.

[Liu:2015:SSS]

[5912] Weifeng Liu and Brian Vinter. Speculative segmented sum for sparse
matrix-vector multiplication on heterogeneous processors. Parallel
Computing, 49(??):179–193, November 2015. CODEN PACOEJ. ISSN

[5919] A. Momeni, Jie Han, P. Montuschi, and F. Lombardi. Design and analysis of approximate compressors for multiplication. *IEEE Transactions on
REFERENCES

Computers, 64(4):984–994, April 2015. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

REFERENCES

Palmer:2015:MBI

Panchekha:2015:AIA

Parhami:2015:DAN

Peeper:2015:DDP

Proust:2015:KTC

Roegel:2015:MCA

Ruckert:2015:MSS

REFERENCES

[5938] Lloyd N. Trefethen. Computing numerically with functions instead of numbers. Communications of the Association for Computing Machinery, 58(10):91–97, October 2015. CODEN CACMA2. ISSN 0001-0782 (print),
REFERENCES

Ahrens:2016:ERF

Peter Ahrens, Hong Diep Nguyen, and James Demmel. Efficient reproducible floating point summation and BLAS. Report UCB/EECS-2016-121, EECS Department, UC Berkeley, Berkeley, CA, USA, June 18, 2016. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html.

Andrysco:2016:PFP

Anonymous:2016:KTS

Area:2016:ACS

Avenel:2016:STM

Bagnara:2016:EBF

Bajard:2016:MFA

[Ballard:2016:INS]

[BEBOP:2016:RRB]

[Bigou:2016:BTP]

[Bigou:2016:HPR]

[Biham:2016:BA]

[5964] Nasrine Damouche, Matthieu Martel, Pavel Panchekha, Jason Qiu, Alex Sanchez-Stern, and Zachary Tatlock. Toward a standard benchmark format and suite for floating-point analysis. Report ??, Université de

[5976] Carlos Garcia-Vega, Sonia Gonzalez-Navarro, Pedro Balboa-La Chica, and Julio Villalba-Moreno. Decimal multiformat online addition. IEEE

The probability that rounding after fixed-point summation of \(n \) terms gives the same result as summation of rounded terms is given by:

\[
p(n) = \left(\frac{2}{\pi} \right) \int_{0}^{\infty} \frac{\sin(x)}{x} x^{n+1} dx,
\]
and that function is always a rational number. Its values are:

- \(p(n) = 1, 3/4, 2/3, 115/192, 11/20, 5887/11520, 151/315, 259723/573440, \ldots \) for \(n = 1 \) to 8.

[Hopkins:2016:WMN]

[Hormigo:2016:MIW]

[Hormigo:2016:NFC]

[Hsu:2016:TPE]

[Hunhold:2016:UNF]

[Jaberipur:2016:FFC]

Ghassem Jaberipur, Behrooz Parhami, and Dariush Abedi. A formulation of fast carry chains suitable for efficient implementation with...

Jaeger:2016:OHQ

Jeannerod:2016:RIE

Jeannerod:2016:SEB

Jiang:2016:ARB

Joldes:2016:AAE

Kadric:2016:APF

Kneusel:2016:NC

REFERENCES

REFERENCES

Lichtenau:2016:QPF

Liu:2016:DAI

Mascarenhas:2016:FPN

Meloni:2016:RDR

Montuschi:2016:MCA

Muller:2016:NMA

Munshi:2016:OCS
REFERENCES

REFERENCES

REFERENCES

Anderson:2017:EMF

Angerd:2017:FAC

Anonymous:2017:A1

Anonymous:2017:C

Anonymous:2017:CN

Anonymous:2017:F

REFERENCES

[6054] Joppe W. Bos and Simon Friedberger. Fast arithmetic modulo $2^p \rho^q \pm 1$. In Burgess et al. [6842], pages 148–155. ISBN 1-5386-1966-0 (print), 1-

Brisebarre:2017:ESC

Brunie:2017:MFM

Carter:2017:PAO

Chapp:2017:SIN

Chiang:2017:RFP

Chohra:2017:RAR

Chemseddine Chohra, Philippe Langlois, and David Parello. Reproducible, accurately rounded and efficient BLAS. In Desprez et al. [6843], pages 609–620. ISBN 3-319-58943-1 (e-book), 3-319-58943-1 (hardcover). LCCN QA76.9.E94; QA76.758TK.
REFERENCES

[6079] Oscar Gustafsson, Erik Bertilsson, Johannes Klasson, and Carl Ingemarsson. Approximate Neumann series or exact matrix inversion

Gustafsson:2017:LBF

Haidar:2017:IHP

Hiasat:2017:ERS

Higham:2017:MG

Higham:2017:RMA

Hormigo:2017:ISI

[6094] Alan A. Jorgensen. Apparatus for calculating and retaining a bound on error during floating point operations and methods thereof. US Patent 9,817,662., November 14, 2017. URL https://patents.google.com/patent/US9817662B2/; https://tinyurl.com/y7ctbsez. This patent, filed 23 October 2016, was issued despite substantial prior art that should have resulted in its rejection: see [6230]. The inventor does not appear to have published in the area of floating-point arithmetic (apart from this entry, none by him can be found in this bibliography). The only literature references in the patent are [5274, 2624, 5680, 5458].

REFERENCES

REFERENCES

[6115] David Raymond Lutz and Christopher Neal Hinds. High-precision anchored accumulators for reproducible floating-point summation. In...
REFERENCES

[6121] Ramy Medhat, Michael O. Lam, Barry L. Rountree, Borzoo Bonakdarpour, and Sebastian Fischmeister. Managing the performance/

REFERENCES

[6133] Kenneth C. Rovers and Sam Elliott. On improving the performance per area of ASTC with a multi-output decoder. In Burgess et al. [6842], pages
REFERENCES

REFERENCES

[6159] Anonymous. OneSpin launches “app” for formal verification of floating-point hardware critical for machine learning and deep learning chips: Offers exhaustive coverage of floating-point arithmetic operations

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

5–8, January/June 2018. CODEN ???. ISSN 1556-6056 (print), 1556-6064 (electronic).

REFERENCES

[6212] Sergio Marchese. AI chips must get the floating-point math right: Formal verification of FPUs is no longer a prerogative of big companies spending big bucks. Web site., September 27, 2018.

REFERENCES

REFERENCES

REFERENCES

[6230] Tiffany Trader. Inventor claims to have solved floating point error problem. HPC Web site., January 17, 2018. URL https://www.hpcwire.com/2018/01/17/inventor-claims-solved-floating-point-error-problem/. From the HPC editor: “After this article was published, a number of readers raised concerns about the originality of Jorgensen’s techniques, noting the existence of prior art going back years. Specifically, there is precedent in John Gustafson’s work on unums and interval arithmetic both at Sun and in his 2015 book, *The End of Error*, which was published 19 months before Jorgensen’s patent application was filed.”

Villalba-Moreno:2018:URH

Wang:2018:TDN

Adams:2019:RRP

Adams:2019:URP

Agrawal:2019:DBF

Anderson:2019:SAM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6291] David Harvey and Joris Van Der Hoeven. Integer multiplication in time $O(n \log n)$. Report hal-02070778, School of Mathematics and Statistics, University of New South Wales, and CNRS, Laboratoire d’informatique, École polytechnique, Sydney, NSW 2052, Australia and 91128 Palaiseau, France, March 18, 2019. URL https://hal.archives-ouvertes.fr/hal-02070778/document.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[6363] Laurens van Dam, Johan Peltenburg, Zaid Al-Ars, and H. Peter Hofstee. An accelerator for posit arithmetic targeting posit level 1 BLAS routines and Pair-HMM. In Gustafson and Dimitrov [6846], pages 5:1–5:10. ISBN 1-4503-7139-6. LCCN ????.

REFERENCES

REFERENCES

References

REFERENCES

[6401] SEGGER Microcontroller. SEGGER floating-point library. Web site., January
REFERENCES

Shibata:2020:SPV

Smith:2020:HMC

Sousa:2020:TIR

Turley:2020:WBA

Uguen:2020:ASA

Volkova:2020:AAR

Zhang:2020:NAE

Zhang:2020:NFM

Zimmermann:2020:AMFa

Zimmermann:2020:AMFb

Zou:2020:DFP

Bagnara:2021:PAV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

the Mathematics Research Center, United States Army, at the University of Wisconsin, Madison, October 5–7, 1964.

REFERENCES

REFERENCES

IEEE:1972:ITS

Zaremba:1972:ANT

ACM:1974:CRS

Panagiotopoulos:1974:PCC

IEEE:1975:SCA

Randell:1975:ODC

Swamy:1975:PEM

REFERENCES

[6469] Edward W. Ng, editor. Symbolic and algebraic computation: EUROSAM ’79, an International Symposium on Symbolic and Algebraic
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mini-Micro:1984:MMS

NCC:1984:ACP

Buchberger:1985:PEE

Hwang:1985:PSC

IEEE:1985:ERC

REFERENCES

[6518] *Electro/86 and Mini/Micro Northeast Conference Record: Sessions Presented at Electro/86 and Mini/Micro Northeast-86, Boston, MA, May*
REFERENCES

REFERENCES

Kaucer:1987:CA

Lin:1987:DS

Losleben:1987:ARV

Zonde:1987:EFI

ACM:1988:ICS

ACM:1988:PAC

Brodersen:1988:VSP

[6532] Robert W. Brodersen and Howard S. Moscovitz, editors. VLSI Signal Processing, III. IEEE Computer Society Press, 1109 Spring Street, Suite
REFERENCES

Chen:1988:CRT

Electro:1988:ECR

Harris:1988:PAI

IEEE:1988:IIS

IEEE:1988:PII

IEEE:1988:PSN
REFERENCES

IEEE:1995:DPC

IEEE:1995:IAI

IEEE:1995:ISM

Jain:1995:PET

Knowles:1995:PSC

REFERENCES

IEEE:1996:DAC

Kearfott:1996:AICa

• branch and bound algorithms for global optimization,
• constraint propagation,
• solution sets of linear systems,
• hardware and software systems for interval computations, and
• fuzzy logic.

Actual applications described in the book include:

• economic input-output models,
• quality control in manufacturing design,
• a computer-assisted proof in quantum mechanics,
• medical expert systems,
• and others.

A realistic view of interval computations is taken: the articles indicate when and how overestimation and other challenges can be overcome. An introductory chapter explains the content of the papers in terminology accessible to mathematically literate graduate students. The style of
REFERENCES

the individual, refereed contributions has been made uniform and understandable, and there is an extensive book-wide index. Audience: Valuable to students and researchers interested in automatic result verification. Detailed information, including contents, contributors, and an order form can be found:

- on Kluwer homepage http://www.wkap.nl, or

The information on the Interval Computations homepage is basically a mirror image of the Kluwer one (the only difference is that the fonts are fancier).

LakshmanYN:1996:IPI

Luk:1996:PSC

Pellikaan:1996:AGC

Pocek:1996:ISF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Burgess:2001:ISC

IEEE:2001:IP1

IEEE:2001:PII

Kraemer:2001:SCV

REFERENCES

REFERENCES

REFERENCES

Pocek:2002:FAI

Schulte:2002:PII

Trimberger:2002:FTA

Vladimirova:2002:TMA

Anonymous:2003:CRN

REFERENCES

REFERENCES

The 14th workshop on Languages and Compilers for Parallel Computing, LCPC 2001, was organized and hosted by the Electrical and Computer Engineering Department of the University of Kentucky, Lexington, KY, USA.

REFERENCES

IEEE:2004:IIS

IEEE:2004:PJC

Luk:2004:ASP

Selvaraj:2004:PES

Smailagic:2004:ETV

REFERENCES

REFERENCES

IEEE:2005:ICS

IEEE:2005:IIS

IEEE:2005:MSC

IEEE:2005:PII

IEEE:2005:PIS

IEEE:2005:PWE

REFERENCES

REFERENCES

REFERENCES

IEEE:2006:ICV

IEEE:2006:PIW

Menezes:2006:PAS

Mohanty:2006:IIC

Pocek:2006:FAI

Yi:2006:SAI

REFERENCES

[6789] IEEE, editor. *ASAP 07: conference proceedings: IEEE 18th International Conference on Application-Specific Systems, Architectures,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2010. ISBN 1-4244-5376-3. LCCN ????

Duato, Diana Franklin, David Goldberg, Norman P. Jouppi, Sheng Li, Naveen Muralimanohar, Gregory D. Peterson, Timothy M. Pinkston, Parthasarathy Ranganathan, David A. Wood, and Amr Zaky.

Jonasson:2012:APSb

IEEE:2013:PIS

Butler:2015:FMS

Higham:2015:PCA

IEEE:2015:ISS

IEEE, editor. *2015 IEEE Symposium on Security and Privacy (SP 2015) San Jose, California, USA, 18–20 May 2015*. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
REFERENCES

REFERENCES

REFERENCES

Spring Street, Suite 300, Silver Spring, MD 20910, USA, June 2019. ISBN 1-72813-366-1. ISSN 1063-6889.