A Bibliography of Publications on Hashing Algorithms

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
02 January 2019
Version 2.278

Title word cross-reference

#2 [Cer85].

10 [GLM+10]. 11 [SY11]. 2
[EA+16, GG92, HD72]. 2n [QG89, QG90].
3 [CBA94, Fly92, GG92, GK94, LMJC07,
LDY+16, WSSO12]. 5/8 [Sch11]. $\textbf{862m}$
[Nic17]. 64 [LK16]. * [LNS93]. $^+$
[Omi88, Omi89a]. \textit{MT} [HRB13]. 2
[AK98, QJ97]. A [Lyo83]. A* [MD97]. A2
[Bie95]. a [ABC+16]. b [LK11]. B+ [TB91].
c [SWQ+14]. d [PRM16]. f [LG78]. H2
[DRS12]. K [Yuv75, APV07, CL85, CC91,
CLC92, DKRT15, Die96, Gui78, HC14,
LLG+17, PT10a, PT16, RRS07, SS90b]. L
[OOB12]. l_p [HFF+17]. SL\textsubscript{2}(F2n) [SGGB00]. N
[BS91b, BS91a, CM01, Gir87, Ven86, WS93,
War14, Coh97, Coh98, LHC05, QG89, QG90].
O(1) [FKS84]. O(\log \log n) [MN90].
O(\log W) [LS07b]. O(N) [HG77, MN90]. pn
[Ack74]. π [FFGL10]. q [OWZ14]. SL\textsubscript{2}
[MT16]. Z/p [Mue04].

-approximate [SWQ+14]. -ary
[CC91, CLC92, Gui78, RRS07]. -Bit
[QG89, QG90, LK16, LK11]. -Body
[WS93, War14]. -codes [Bie95]. -dimension
[LHC05]. -dimensional [Yuv75].
-Functions [OOB12]. -gram
[Coh98, Ven86]. -Grams [Coh97]. -Hash
[BS91b, BS91a]. -Independence
[PT16, PT10a]. -mer [Coh97]. -Nearest
[CL85]. -partitions [DKRT15]. -Pipeline
[PRM16]. -probe [SS90b]. -Round
[GLM+10, SY11]. -tree [Omi89a, Lyo83].
-trees [CM01]. -verarbeitung [Nie75].
-wise [Die96].
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Year</th>
<th>Event</th>
<th>Year</th>
<th>Event</th>
<th>Year</th>
<th>Event</th>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>[Shm00, ZC12].</td>
<td>2001</td>
<td>[ACM01, AAC+01].</td>
<td>2002</td>
<td>[ACM02].</td>
<td>2003</td>
<td>[ACM03a, ACM03b, Deb03].</td>
<td>2004</td>
<td>[ACM04].</td>
</tr>
<tr>
<td>2011</td>
<td>[Van10, LCK11].</td>
<td>20th</td>
<td>[AH03, Bel00, EF12, WGM88, BJZ94].</td>
<td>21-January</td>
<td>[USE91].</td>
<td>21st</td>
<td>[ACM91b, IEE80b, JY14].</td>
<td>22nd</td>
<td>[AiNOW11, Yun02].</td>
</tr>
<tr>
<td>29th</td>
<td>[IEE88c].</td>
<td>29th</td>
<td>[IEE88c].</td>
<td>23rd</td>
<td>[IEE82].</td>
<td>256</td>
<td>[AKY13, CMP07, MAK+12, Sch11].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54th</td>
<td>[IEE13].</td>
<td>3rd</td>
<td>[Jáj90, LS89, Rei88, TWW77, Wol93, ACM91c].</td>
<td>30th</td>
<td>[IEE89].</td>
<td>30-Mar</td>
<td>[Rei88].</td>
<td>36th</td>
<td>[AMS+09].</td>
</tr>
<tr>
<td>45</td>
<td>[Pro94].</td>
<td>47th</td>
<td>[IEE06].</td>
<td>35th</td>
<td>[ADG+08, Gol94].</td>
<td>36th</td>
<td>[AMS+09].</td>
<td>39th</td>
<td>[ACH79].</td>
</tr>
<tr>
<td>5-Independent</td>
<td>[TZ12].</td>
<td>512</td>
<td>[GLM+10].</td>
<td>51st</td>
<td>[IEE10].</td>
<td>52nd</td>
<td>[IEE11b].</td>
<td>54th</td>
<td>[IEE13].</td>
</tr>
<tr>
<td>5th</td>
<td>[BRW93, Boy95].</td>
<td>68110a</td>
<td>[Sar80].</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please note that the table is a representation of the year, event, and some references.
accommodation [HO72]. Accumulated [Nyb96]. accumulating [ZHW01].

Accumulators [CHKO08, PTT16, CHKO12]. Accuracy [YWH09, HKL07]. Accurate [PCV94, SL16, NTW09, TYSK10].

Achieving [Lar88b, Lyo85]. ACM [ACM94d, ??69, ACM75c, ACM75b, ACM75a, ACM76, ACM77b, LFP82, ACM82, ACM83b, ACM84b, ACM85b, ACM85a, ACM86b, ACM86a, ACM87, ACM88a, ACM88b, ACM89b, ACM89a, ACM89c, SDA90, ACM90, ACM91c, ACM91d, ACM91a, SDA91, ACM91e, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM04, ACM05, ACM07, ACM08a, ACM08b, ACM11, ACM12, Ano92, BIP92, BJ93, CLM89, FMA02, GMJ90, Van10, HF13, IEE02, Jen76, Kar98, LL08, Mat09, Nav85, Rie89, ACM77a, Shm00, SW94b, Sto92, YR87, ACM81, ACM91b, BV89, Lie81].

Fab74, Fel87, Gon77, Gon80, JC88a, Joh61, Kno71, Kno88, KR79, KR+80, Lit80, Litxza, LH03b, LH03a, Mot84, MC86, Pet57, RJK79, SS62, SD76, Som99, Tra63, CKW93, Linf63, NK16, TTT81, Wan05, van73.

Adelaide [Bar83]. Adjusting [Pag85, Wog89]. Administration [Fis87]. Adressing [Bra85]. Advanced [Ano93d, CE95, HDCM11, Hsi83]. Advances [Buc82, AFK90, Bel00, Bra90, Bri92, CRS83a, CP87, Cop95a, Cop95b, Dam90a, Dam91, Dav91, De95, Fei91, Fra04, GQ95, Hel94, IRM93, JBJ94, LC06, MV91c, PNS95, QV95, QR95, Reo93, SP90, SZ93, Sho05, Sti93, Vau06, Wie99, Yun02]. Advantage [WSSO12]. Adversaries [LN93]. Advisor [Cer85]. Aegean [Rei88, Rei88]. Aeronautical [KCF84]. Aeronautics [Fis87]. Aerospace [Fis87, IEE94b]. AES [ABO+17, BOY11, B¨OS11, GK08, Sas11, JNPP14]. AES-like [JNPP14]. affects [HL05]. Again [DRS12]. Against [DL17, ASBdS16, JL14, JG95, MSP12, Sho00b]. Age [Cro98]. Agent [BˇSH12, DF01]. Aggregation [BJL16, PT10b]. Agreement [GB10]. Agrometeorological [WM93]. Ahead [Moh90, Moh93]. AID [Dos78b]. Airport [ICD88, ICD90]. Akron [Fis87]. al. [SPLHCB14]. Alaska [IEE01].

Albuquerque [ACM75c, ACM75a, IEE91a]. Algebra [Bra84b, KTMo83b, KTMo83c, EBD91, FPB94a]. Algebraic [ACM94b, Ej8KMP00, Jen76, Lak96, Lev95, Mar71, Ng79, WX01, vHvH12, BOF8, GS89, LS06, Pon87, Coh94, AAGG16]. Algebras [CT96]. Algo [FR69]. Algol-Based [FR69]. Algorithm [ANS97, ANS05, AKS78, ABH+73, AEMR09, BH90, BIS7, Bou12, Boy98, CS85a, jCPB+12, CDM89, CW09, CT12, Coh98, CHM92a, CHM92b, CM93, Dev93, FL73, FFPV84, FCHD88, FCHD89, FCH92, Fro81, Get01, Han90, HCKW90, HR96, HW08, HG77, HC13, Jen97, JRPK07, KMM+06, KKRJ07, Leb87, LLL11, LLW10, MXL+12, Man12, MHB90, MV01, MH00, NP91, OG94a, OOB17, OL91, Omi91, OL92, Pap94, PCY95, Pes96, Pit87, PVM97, Reg82, SS01, Soi93, Sp82, Sta99, TRN86, TTY93, Toy93, TSP+11, WGO0, WWZ09, WZJS10, WS93, WVT90, Wil97, Wil71, WDTY91, WY93, WL12, ZG90a, ZJM94b, ZPS90, ZPS93a, AS89, AT18, AGJA06, ATAK97, CLS95, CLW98, DHKP97, FI79, FHC89, Gai82, GBY90, HLL18, HL94, IS097, ISHY88, JWM+18, Km99, LEHN02, MM01, MKSiA98, OT98, PCV94, SB95]. algorithm [SM94, SII02b, WM93, War14, Wie86, ZJM94a, ZJM94c, ZPS93b, ACZ16, Sta94, TK199]. Algorithms [Meh77, Meh86, Wir75, Wir83, Zel91].

Algorithms [Mat93]. Algorithms [ACM94d, ACM91c, ACM97a, ACM05, ACM08a, ANS97, AHSU3, AIO6, Ano95a, iA91, iA94, AT90, AT93, AT91, BS97, Bur76b, CV86, CRR18, CT96, DG85a, DG85b, Dev86, DS97, FM96, FW09, FM85, Ger86a, Ger86b, Gon84, GBY91, GI77, Gra88, Gra89, GC95, GK81, Gu76a, Gu76b, GG08, GSB94, Har88, HS78, HL91, KR81, LLLC17, LS90, Lom93, LTS90, LH03b, Mac95, MF92, MLD94, MXL, Matt90, MS88a, MO92a, OG94b, OL93, PS93, Pip94, Pre97a, PB85, QS97, PQ90, Reg85, Riv74b, RNR13, Sam76, SD98c, SD98a, Sed38b, Sed88, Sed90, Sed92, Sed93, SD76, SG88, SK98, Shm00, TR02, TY91, V81b, VC85, Wal88, WFHC92, Wie87b, Wir86, XCKC09, Yen91, ZG90b, AIO8, BMS+17, BMQ98, Cra85, DG96, DNRZ06, DNR09, DC94, EVF06, FJ13].
Algorithmus [BI87]. Alignment [BFMP11, LPT12]. All-or-Nothing [SRY99]. Alley [Boy98, Get01, Jen97, Pes96, Wil97].

Alignment [BFMP11, LPT12]. Alignments [BDD+10].

All-or-Nothing [SRY99]. Alley [Boy98, Get01, Jen97, Pes96, Wil97].

Allocating [CC91, TC93]. Allocation [CC87, CLC92, Du86, YCRY93, vdP72, vdP73, DW07, LCRY93, OOK+10, van73].

Allocations [ABKU99, PG95].

Allowable [Blo70]. Almost [BKST18, BM99, CKB83b, DW03, YCRY93, vdP72, vdP73, Du86, YCRY93, OOK+10, van73].

Almost-Minimum [BM99]. Almost-Universal [BKST18].

Alpha [WM19]. Alternative [EMM07, IH95, SD89b, LS15]. Alternatives [GD87].

American [CHK06]. Among [CC91, GP08, KW94]. amortize [KM07]. amortized [ANS09].

Amplification [BBR88]. Amsterdam [AW89, CP87]. Analogue [Cai84].

Analyses [CS87]. Analysis [AP93, Ano95c, AD11, AM07, BYS98, BR92, BRSS01, BM99, BM00, BF08, CF92, CL85, CC87, Cha88, CLNY06, CN08, CV83a, CV84, Che84a, Che84b, CV85, CK94, CS93b, DR11, FC87a, FPV98, FM09, FM11, GK12a, GL73, GBY90, GK81, GK82, GLG+02, GS76, Gui76a, Gui76b, GS78, Gui78, Gur73, HMN07, Hac93, Has92, Kut10, Lar90a, Lar90c, Lar92b, Lar93, Lar94, Lar95c, LCK11, Lev00, Lew92, LWW00, LPP91, LPP92, LM93c, Lurm73, MK11, MCW78, MM0709, MY80, Men82, MP12, Mol90a, Mol90b, NM02a, NCFK11, NAK+15, Omi91, Pit87, PV94, Prc93, PB85, RM88, Ram88b, Ram89a, Reg85, Reg88, Riv74b, SS62, Sch79b, SB93, SA97, Vek85, VP96, VP98, Vit80b, Vit80c, Vit680, VCS78, WB90, Yao80, de 69, BGKZ12, BZZ12, CK93, DM03].

Analysis [DK12, GLC08, GM77, Gui76c, LLA15, LM88, MJ08, MS13, MSV87, PS08, Pro94, QM98, RAD15, S89a, SL+07, Sed83a, SGK09, WL07, ZBB+06]. Analyti [Pro94].

Analytical [Bat81, WTN07]. Analytics [LMD+12]. analyze [FJ13]. Analyzer [CRdPHF12]. Analyzing [Kue82b, PVM97].

Anchorage [IEE01]. Anderen [DS84a].

Anfänger [Sch76]. Angeles [ACM82, BD88, ICD86, ICD87, ICD88, ICD90]. Ann [ACM81, Bai81, Bor81, Lie81]. annotated [Pon87]. Announcement [DLH09, KS12, Nat92]. Announcing [SBK+17].

Annual [ACM75c, ACM75a, ACM76, ACM77b, ACM84b, ACM85a, ACM86b, ACM88b, ACM89c, SDA90, ACM90, ACM91c, ACM91d, SDA91, ACM91e, ACM97a, ACM01, ACM02, ACM05, ACM07, ACM08a, ACM08b, AH03, Ano93d, BV89, BIP92, Bri92, Cop95a, Cop95b, EF12, Fra04, Gol94, IE94, IE95, IE96, IE98, IE99, IE00, IE01, IE10, IE11b, IE13, Kna89, Mat09, ACM77a, Shm00, Sh05, Shi93, USE00a, YR87, Yum02, ACM94d, ACM91a, ACM96, ACM97b, ACM98, Bel00, DT87, FS09, HM08, IE85a, IE92a, IE95, IE01, Kar98, Rie89, Wie99].

anonymization [RW07]. Anonymous [CZLC12a, ZJ09]. Anti [NT01].

Anti-persistence [NT01]. Antonio [ACM91b]. Anwendungen [Lut88]. Any [LP15, HR07, Lev89]. Anzahl [Dos78a].

Application [BKMP09, Cer81, CKB83b, Cha88, CP87, Dam90a, Dam91, Dav91, FFQG07, GK76, HP63, Hel94, IRM93, Jou04, KTMo83a, KCB81, LC06, Lit77b, LLW10, Ngu06, Pip79, QQ95, QQ95, Rg90, Rg99, Rue93, Sas11, Sch01b, SZ93, SVB84, Web72, WC94, Yao91, vW94, AT90, CKB83a, CO82a, De 95, GQ95, Kan90, QJ97, SRL98, Zob70a, Zob70b].

Applications [AT93, BKST18, BG07, Bur81, CZLC12a, CZLC12b, CK15, DR06, Deb03, DK02, DK15, Dav92, DR09, Fel50, FM85, HK12b, IE80a, IE95, KMM+06, Kna89, Lev89, LD+16, LK93, MK11, Pon87, RP91, Rey14,
RNT90, Ter87, TZ12, TS76, TS84, Val15, Vau06, Wee12, WC79, WVT90, YZ00, AG10, ARA94, BZL+15, DFMR15, HKNW07, KKP92, LLC89, LK11, LG78, MJ08, MV91a, NY89b, NY89a, NN90, NW07, PW08, PNS95, RSS07, Shi17, SS16, Sie89, Ano92.

Applied [CS93b, GNP05].

Applying [Cer87, Cer88, CHY93, CLYY95, CHY97].

Approach [BH93, CCH09, CK12, DL79, DC94, JV16, LT09, LQH18, MY80, RH95, Sch79a, SR89, SK98, MJ08, MV91a, NY89b, NY89a, NN90, NW07, PW08, PSN95, RRS07, Shi17, SS16, Sie89, Ano92].

APPROX [DJRZ06, DJNR09].

Approximate [AEP18, AI06, CCH09, CLP17, DP08, DHL+94, DHL+02, Ha93, HC14, MW09, AI08, DC94, HFZ+15, LNZ06, LCH+14, MBKS07, Ron07, SWQ+14].

Approximately [DT14, Ind01].

Approximating [ASW87, Pob86].

Approximation [DJRZ06, AIA06, DJRZ06, DJNR09].

Approximative [MYS12].

APRICOD [Z013].

April [ACM75b, ACM81, ACM84b, Ano83, Ano94, CP87, Col93, Dav91, ICD91, ICD93, IEE01, Joy93, Lie81, QV89, SM12, USE90, WGM88].

arbitrary [GHK+12].

Arbor [ACM81, Bai88, Bor88, Lie81].

Arbres [Kar82].

Architectural [GSL17].

Architecture [BCH87, HCJC06, Hsi83, Jou85, KP81, KCR11, KTMo83a, MK11, XBJ06, ZBH06, ABO+17, BOY11, HLH13, LMP+08, MBK00, RG89].

Architecture-conscious [ZBH06].

Architectures [ACM91c, BRW93, DR92, Kie85, MKAA17, RNT90, Bis12, BMQ98, GK05, HDMCI11, adHM93, LLA15, NW07, PJM88, PJB90, Rei88].

archival [QD02].

Area [DD15, ABO+17, BOY11, Lar84].

Area-Efficient [DD15].

aries [YJ14].

ARES [HF83].

Arguments [Yao83, ABM+12].

ARIES [Moh90, Moh93].

ARIES/LHS [Moh90, Moh93].

ARIRANG [HKK10].

Arising [FS82].

ARITH [IEE05, MS05].

ARITH-17 [IEE05, MS05].

Arithmetic [Die96, Ers58a, GSC01, HSK88, IEE05, MS05, ISO97].

Arizona [Gol92].

Arlington [ACM94d].

Arrangement [Riv76, Riv78].

Arrangements [Yao85a, Yao95, Wee88].

Array [Coh94, He87, YLB90, SV15b].

Arrays [BG96, CP91a, Gra94a, LPW006, RS77, Ros77, CP91b, RS75, Tay89].

Art [Knu73, Knu75, Pre97b, PG93].

Artificial [Kak93, ARA94, LLC89, BCR04].

ary [CC91, CLC92, Gui76c, Gui78, WGM88].

ASCII [HF91].

ASI [Ano95c].

ASIACRYPT [IRM93, LC06, PSN95].

ASIC [MKA17].

Aspects [AH03, SS89a].

Assembly [ASW07].

Assessment [THY+18, DMP09].

Assignment [LL92, Wil71].

Assignments [Yao91].

Assisted [Wil96].

associated [Sar10, FDL86, SB95].

Association [CL05, CT12, DTS87, PCY95, TGGF10, HC02, HC07].

Associative [Bur76a, Bur77, DW83a, DD15, Dos87b, FM91, FR69, HNS84, KHW91a, KRW9, Ouk83, RY94, WB87, dW83b, HDMCI11, KHW91b, Koe72, YIAS89].

Assoziativer [GN80, Koe72].

Assumptions [Chr84, Dam93, Dam94, Sim98].

Astronomical [Gui89].

Asymmetric [CLP17, BR94].

Asymptotic [IK92, Pro94, WL07].

Asynchronous [KFG15, PAKR93].

Atlanta [ACM83a, ACM83b, USE00a].

Atlantic [Fre90, GMJ90, IEE84].

ATM [SMS91].

Atom [LC12].

Atomic [LMR02].

Attack [CJP12, CMP07, JLH08, KK06, Pey15, PG90a, Sho00b, WW99, WFW+12, ZF06, BSU12, CJP15, JG95, PG93a, PG93b, SXL16].

Attacking [CP95b].

attacks [ABD+16, BBPBL12, Bili08, BKMP09, CY06, DKH07, DDS14, DL17, HKK10, HRS16, JL14, KNR10, KLP98, KVK12, LC94, KKMS10, LLJ15, MRST10, MNS12,
Attribute [CS83b, CS87, GK94, GK95, HYH93, KG95, RSSL90, RL74, ZZM17, ASW87, HR93].
Attribute-Based [ZZM17]. attributes [HM03].
Attribute-Based Auction [ZZM17].
Attribute-Based Audio [MV01, YTJ06].
Audit [SK99, Ano93a].
Auditing [LRY15, GB17],
Aufteilungs [vM39].
Aufteilungs-Aug [BD88].
Augmented [ZLC18],
Augmented Aug [BD84, FK89, Omi88, Omi89a].
B-Trees [BD84, FK89].
Back [DSSW90a, DSSW90b].
Backoff [SHRD09].
Backtracking [WKBA07, YD85].
Backward [CPP08, LLL11].
Balance [IK92].
Balancing [HC13, KJC11, Omi91, RRS12, RK91,
Top92, TP95, ZMJ94a, ZMJ94b, ZMJ94c, DSD95, SX08, WL07, WTN09, XCCK09].
Balatonfured [Rue93].
Balls [CRSW11, CRSW13].
Bally [IEE84].
Baltimore [ACM90, FNY92, IEE02].
Band [Meh86, Sol93].
Band-Join [Sol93].
Bands [KCF84].
bandwidth [AS09].
BANG [THS97].
Banked [vdBGLGL+16].
Banska [Rov90].
Barbara [Bel00, Bri92, CRS83a, Cop95a, Cop95b,
Fra04, Sh05, St93, W99, Yun02].
Barcelona [DJRZ06, CTC90, LSC91].
Barreto [FT12].
Barrier [MPST16].
Base [BCH87, CRdPHF12, Chr84, E86, FM85,
Gho77, Gho86, ISK+93, McC79, YBQZ17,
Zam80, Mar75, Mar77, WLLG08].
Based [AK98, Abi12, AP08, Aum09, AS16, Bal96,
BG92, Ben98, BDM+12, BH+15, BRS02,
BCS09, BRSS10, BI12, Bue82, Bur83b,
Bur83c, But17, CCF04, CS83b, Cha84b,
Based [NCFK11, NNA12, NXB13, OL89, OSR10, PFM+09, PTT16, PCY95, PHG12, PRZ99, Pre97a, RGNPM12, RTK12, Rey14, RWSn07, RNR13, RL74, RK91, SD85, SDKR87, Sch01b, Sch79b, SBS16, SC90b, SC90c, SK08, Sh06, SK07, SS05, SVCC01, Sun15, TWZW11, TGGF10, TZ12, TY91, TP15, TKP07, U09, WW09, WSS012, XBH06, YNW+07, WSY+11, WL12, YY07, YTJ06, YD86a, ZJ09, ZWH17, ZM17, ZQS12, ZLC+12, vG12, Adi88, AY14, ASM17, ACP10, AAGG16, BSNP96b, BLC12, BCR04, BC06, BDS09, Bur53a, Cha12, CML+13, CCHK08, CPJ12, CJP15, CLW01, CJ86, DG85a, DHW08, GB17, GL06, GLC08, GZ99, HLL18, HAK+16, HCJC06, HC11, HLMW93, HXMW94, HW88, HL03, JFDF09, JL14, JBWK11, JK95, KI94, KR09a, KST99, Kor8, Kra94, KCL02, Kuo4, KCC05, KSC11, KSC12, LM93b].

Based [LDM92, LWG11, LND08, LC18, LLJ15, LPMP15, MS09, Me95, MZ98, MS13, MHT+13, Mul92, MFES04, MJ14, NS16a, OT89, PCK95, PPB16, PBGV89, PGV91, PGV93c, PGV94, QZD+18, RP95, SPLHC14, SV94b, SV95, SG09, SX08, SRRL98, Sim98, SA17, TD93, UIY10, UHT95, VD05, Wil14, WY02, XLZC14, YSL05, YL97, YZ16, YD86b, ZDI+15, FH96, TLLL18].

basée [LG78]. Bases [ABB93, VLD82, AW89, AAC+01, BD88, BDS88, BJZ94, CGO86, DSS84, Gon83, Hll78a, Hll78b, Ker75, LT80, LSC91, MDS90, PV85, ST83a, ST83b, Ya92, Ya78, LT80]. Basics [Dre17a]. Basis [BT12a, MW95, CHL07]. Batch [Lyo79]. Batched [Paw85, SG76b].

Bayesian [CSSP15, OGAB14, RH95, SP12]. BC [ACM05, LL08]. BDDs [MJT+02]. Be [Yao81, CP91c, GMW90, Sch91a, Sim98]. Beach [PD91, RNT90]. Bearbeitung [Koe72]. Beaverton [ODB89]. Behavior [Lev00, S90, TY93]. Beijing [Ano93c, Yan10]. Beitrag [BI87]. Belgium [BW92, QV89, Vid90, PGV93c]. Bell [Lam70]. belt [BDP06]. belt-and-mill [BDP06]. Bemerkung [Eck74a].

Besetzungswahrscheinlichkeiten [VM93]. BESM [Ers58b]. better [Mit17]. Between [Bra84a, Bra86, KCF84, Bra85, CCL91, GHW07, LC13, Omi89a, Sar11]. Bewertung [Hil82]. beyond [BL12, JW+17].

BF-Based [WL12]. bias [NN90]. biased [TSY98]. bibliography [Pon87, Sab94].

Bicliques [LLW10]. Bid [SKM01].

Bidirectional [Cle84]. Big [LRY+15, PSSC17, LL13, SA17].

BigDecimal [Sun02]. Bijective [Oka88, SS15]. billion [STS+13, ZBB+06].

billion-vertex [ZBB+06]. Binary [CLP17, DGG16, D86, Fr082, GRZ93, HSPZ08, LQH18, TY0015, de 69, FP82, LMSF89, LPWM15]. Binary-Relational [Fr082]. Bins [CRS11, CRS13, DW05, DW07].

biological [BW89]. Biometric [FFG07, MS12, YY07]. biomolecule [FDL86]. Bipartite [Kut06]. birthday
Bel00, Bri92, CRS83a, Cop95b, Fra04, ICD86, ICD87, ICD88, ICD90, IEE11b, Kar98, Shm00, Sho05, Sti93, Sto92, USE90, Wie99, Yun02, Col93, IEE88a, IEE06.

Sar11, SKP15, SBK⁺17, Van92, WS13].
Collision-Free
[BM97, HM96, Rus92, Rus93, Rus95, SHRD09, BG93, HCJC06, PBGV99, Vau92, Vau93, ZBB⁺06, BGC93, Van92].
Collision-Mitigation [SHF⁺17].
Collision-Resistant
[BR97, BK12, CHKO08, IKO05, CHKO12].
Collisionful
[BPSN97, Gon95, Li95, BSNP96b, BSNP96c].
Collisions
[Ano95a, BI87, BT94a, BT94b, CY06, DBGV93, GIS05, GL73, HR04, IP08, IP11, Pat95, VNP10, WFLY04, WYY05b, WYY05c, DV07, Gon95, Li95, Pat94, RVPV02, Sim98].
Colloquium
[AGK⁺10, dBvL80, Kui92, NS82, Pat90, ADG⁺08, AMSM⁺09, ACJT07, CIM⁺05].
Colony
[ACM83a, ACM83b].
Colorado
[ACM77b, ACM79, ACM85a].
Colored
[Ros12].
coloring
[HK83].
Columbia
[ACM08b].
Column
[DLM07].
ComBack
[WKBA07].
Combination
[Qui83, TYZO15, US09].
Combinational
[MJT⁺02].
Combinatorial
[BK07b, DD11, DT75, KP94, Sti94a, van94, DJRZ06, DJNR09, HKLS12, MN99, Sed83a].
Combinatorics
[Wil85b].
Combined
[KHK15, ZC77].
Combiner
[HS08].
Combiners
[FL08, FLP08, FLP14, Mit12].
Combining
[GSCO1, TW07, NM02b].
Come
[PM89].
Command
[CBA94, Gai82].
Comment
[Ban77, FL73, Lam70, Pro94].
Comments
[AA79b, AA79a, BM68, CTZD11, Piw85, TY91, Gb90].
Commitment
[HM96, HR07].
Commitments
[ACP09, LP15, Wee07].
Committee
[IEE84].
Common
[DM90, GPGO16, ESR14].
Commonwealth
[Rie89].
Communication
[KM88b, Ako93c, HO72, KK96].
Communications
[IJW89, GZX14, Sch01a, ACM94a, IEE92a, IEE01].
Communities
[ACM04].
Community
[RMB11].
Commutative
[CLS12].
Compact
[Cle84, CD84b, DCW91, KRJ09b, Kui84, Oto88b, QP16, vDV12, JCC00].
compactage
[LG78].
Compacte
[Kar82].
Compaction
[HC87, Rag93, WKBA07, SD95].
compactly
[VNC07].
Comparison
[Cra85, DTS75, GLG⁺02, Hil78a, Hil78b].
Comparator
[Bur84, Bur82].
compare
[BVF12].
compare-by-hash
[BVF12].
Comparision
[CHS⁺18, EK93, GGO80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QC⁺81, RHL91, SDK91, TK96, RH90, TT86].
comparisons
[FDL86, Rön07].
COMPCON
[IEE88a].
compensated
[ZRL⁺08].
Competition
[Bur08, Bou12, jCPB⁺12, TSP⁺11].
compilation
[HF13, SF88].
compile
[MP90].
compile-time
[MP90].
Compiler
[ACM79, Dit76, Wil96, Sag85b].
Compilerbau
[Wal74].
Compiling
[DM81].
Complete
[SDW14, Die90, GvR08, Rad92].
Completion
[ZWH17].
Complex
[KM92, Mar64, MW95, Sch90b, SD90b, SD90a, War86, WS76, TD93].
Complexities
[GK76].
Complexity
[Adi88, Dam93, GHK91a, GHK91b, CTC90, KVK12, LLW10, Mai83, Mai92, MNT90, Mor83a, NRW90, SSS88, VSV86, YSEL09, BSU12, CKM14, MNT93, Mi99, Pag01, SS90b, Sun93].
Component
[BFMP11, Cha88, MW09, SY08, SA97, US09, SGK09].
component-based
[SGK09].
Components
[de 69].
Composed
[EGH⁺12, YkWY83].
Composite
[Oto85a, RL89].
composites
[GPGO16].
Composition
[Sho00a].
Compositions
[SS16].
Compound
[DH00].
comprehensive
[NM02b].
Compress
[BBD09a, LT09].
Compressed
[GO15, JL14, BLC12, Ind13, Mil95].
Compressing
[WM94, WMB99, MP16].
Compression
[BC08, CW91, HKY12, Lis07, LG78, RT87a,
GLM$^{+}$10, SMS91, SM08, SM12, AGJA06, BD82, CKW93, FS08, GSS01, Li10, Sab94].

compression-oriented [CKW93].

COMPASAC [IEE80a, IEE95, Kna89].

Comput [Sar80].

Computability [ACM82].

Computation [ACM84b, AINOW11, CH91, CHI94, DJRZ06, IEE11a, Jaoj90, Jen76, Lkht96, Lev95, Ng79, Rk91, Tani85, Z093, ZLC$^{+}$12, vdhvH12, Fis87, MYS12, Ano93d].

Computational [CCC89, Cer83, LYW$^{+}$18, MNT90, Sab94, Wil00, de69, Dam94, GvR08, IKOS08, MNT93, Sch92b].

Computations [GK12b].

Compute [Bra84a, Bra85, Bra86, Tro92].

Computed [TT81, TT86].

Computer [IJW89, ACM91b, AFI63, AFI69, AH03, iA91, iA94, Bar83, BCH87, Bor81, DS97, Ell82, Gol94, GT63, HS78, IEE76, IEE80b, IEE82, IEE84, IEE85a, IEE88c, IEE88a, IEE88b, IEE91b, IEE92b, IEE95, IEE99, IEE05, IEE06, IEE07, IEE10, IEE11b, IEE13, Jai89, Jai92a, Jai92b, Jaixx, Jou85, KCF84, KO90, Kna89, Knt73, Knut74, Knu75, Kon10, Leb87, LC86b, LC95, LL83, Mar78, Mst05, Rkr99, Rjk79, Rie89, Rov90, Sk99, Wai88, Wil85b, Win78, ZZ83, ACM94c, Ano93c, Don91, Er86, FP89a, GK05, GBL94, HCF95, IEE92a, IEE01, ML07p, Mo92b, OTr89, RG89, TW77v, Lr94, ACM94a, Ano93a, PGV93c].

Computer-Recognized [RJK79].

Computers [FHMU85, MK93, PDR90, Rad83, SB93, RFB87, Deb03].

Computing [ACM75c, ACM75a, ACM76, ACM77b, ACM84b, ACM85a, ACM86b, ACM88b, ACM89c, ACM90, ACM91e, ACM96, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM04, ACM07, ACM08b, ACM11, ACM12, Bai81, DT87, IEE94c, Kkrr07, Klt92, Lck11, Ram87, Re88, Tro95, AFK90, GKh$^{+}$12, GB17, GC90, Lvd$^{+}$11, MN99, Bai81, GT80, Rie89, ACM77a, WGM88].

Concatenated [CD84a, DC81, HS08].

Concatenation [BJKS93, BJKS94].

Concept [Kie85, Lun73, Ter87].

Concepts [KTM083b, VL94].

Conceptual [FZ87].

Concise [PT12b].

Concomitant [MWC12].

Concurrency [Ell82a, Ell87, Ell88, Fk98, Gg74, Hsm95, Kmn98b, Kmn98a, Lsv89, Mol90, Mol93, OA89, SDK91, GT16, MB80].

Concurrent [AR16, Clp13, Chaa88, Chs$^{+}$18, Ell83, Hyh89, Hyh93, Hyh93, Hty90, Kmn90, MSD16, MSSWP90, Omias8, Omias9a, PBB012, SDW14, SGG88, CCL91, MMC01, TMW10].

Condensation [CT96].

Conditionally [ACP09].

Conditions [IK005, IH95, Rus92, Rus93, Rus95, BDPV14].

Conference [ACM81, ACM85a, ACM91b, PDI91, ACM94c, ACM04, AF169, ABB93, AFK90, Vld82, Ano89, Aw98, AAc$^{+}$91, AOV$^{+}$99, AA86, Bai81, Bd88, Bar83, Bsd88, Bs89, Bhp92, Bnl00, Bz94, Brw93, Bl88, Bor81, Boy95, Brr92, Bzh3, Ccc89, Cgg86, Clm89, Cop95b, Dss84, Far93, Fny92, Fma02, Fra04, Gm90, Gol92, Gsw98, Hb93, Iee80a, Iee85b, Icd86, Icd87, Iee88a, Iee88d, Icd88, Iee88b, Ctc90, Icd90, Icd91, Icd93, Iee94c, Iee95, Iee02, Iee11a, Ir93, Jbj94, Jou85, Jjy14, Joy03, Ker75, Kna89, Klt92, Lc06, Las1, Lck11, L1e8, Ls89, Ls89, Lt80, Lsc91, Lom93, Mk98, Md90, Mzh85, Oxb86, Pn85, Pk89, Qg95, Rkr99, Rie89, Rk89, Rnt90, Sch82a, St83a, St83b, Sp90, Sh05, Sw94b, Sc77, St93, St92, Sm08, Sm12, Use91, Use00a, Use00b].

Conference [Vau06, Vid90, Wpy90, Iwss91, Yan10, Yaw78, Yaw02, Yaw02, ACM94a, ARA94, Ano83, Ano93a, Ano93c, Ce93, Cop95a, Dg96, DT87, Deb03, Hf13, Iee92a, Iee94a, Iee94b, Iee01, Kir05, Psn95, Sw94a, Tww77, Use90, Wie99, ?769, ACM75c, ACM76, ACM77b, Lfp82, ACM91d, Afi63, Yr87].

Confidence [Dgd02].

Configurable [vdBGL16].
configurations [CL09a]. Confinement [NS16b]. Confirmation [MOI90, MOI91].
Congress [Gin77, Ros74]. Conjecture [KP892]. Conjunctive [Stu85]. Connected [OL89, TY91, OT89]. Connection [And88, BM90b, Mic02, KK96, RH92].
Connections [LK07]. Conscious [Ask05, ZHB06].
consequences [LK07]. Consequences [Woe06b]. Consideration [CJP12, CJP15]. Considerations [SM02, Wri83]. Consideration [CJP12, CJP15].
considered [BJM14]. Convened [Ano83].
Convention [ACM91b, Rie89]. Conversion [Omi88, Omi89a, Sab94]. Converting [MV91a]. convolution [OS14].
convolutional [WWG+13]. Cool [EMM07]. cooperation [JFDF09]. Cooperative [XBI06]. Copenhagen [BIP92, FS09].
Copies [RSSD90b, RSSD90, RSSD92, CWC10].
coprocessor [TLL07]. copy [MHT+13].
coordinated [LK07].
cooperating [LK07].
Cool [EMM07].
cooperation [JFDF09]. Cooperative [XBI06].
Correspondence [PH73]. Corrigendum [AA79b]. Corruption [DD11, DJSN09].
Corruption-Localizing [DJSN09].
Cost [BM97, BBS90, CJP12, FCHD88, FCHD89, GI12, HMNB07, Kut10, LYW+18, Lyo83, PF88, CZ14, CJP15, VBW94].
cost/performance [VBW94]. Costs [HR96]. could [PES+12]. Counter [LMP+08, NS16b, Bac02].
Countermeasure [LAKW07, MMT09].
Counting [Fla83b, FM85, McK89a, WVT90, DLM07, EVF06, McK89b, RKK14].
Criterion [Sun15]. critical [NM10]. Cross
[GRZ93, MLHK17, WB90, QZD +18]. Cross-Modal [MLHK17]. cross-platform [QZD +18]. Cryptanalysis [Aum09, BS91a, Bih08, BCJ15, BHT98, BP09, DGV93, Da95, Go07, GIMS11, HPC02, JNPP14, Knu92, LP16, LKY04, MR07, NXB13, GLM +10, SPLIHCB14, SV94b, Wag00, WSSO12, WYW14, AP11, BS91b, BS91c, BHT97, CV05, RP95, SV95]. CRYPTO [Bel00, Bra90, Bri92, CRS83a, Cop95a, Dam90a, DGV93, Da95, DDF +07, Dav91, DY90, DY91, Go07, Hel94, MKAA17, Pre93, PGV93d, Pre94b, PBD97, Pre99, Pre94c, QV89, QG95, RRS06, Rja12, RS08, Rue93, SS01, Sch91b, Sch93a, SZ93, SGGY11, Sti06, TSP +11, Van06, NY89b, NY89a, RAL07, Sch93b, YZ16].

Cryptography

[Ans97, Ans05, Acz16, BD08, DK15, IKOS08, Ytr06, BGG94, BBD09b, Far93, GNP05, JY14, Kil05, PGV93c, Wol93, Boy95, DG96]. Cryptology

[Bri92, CRS83a, Cop95a, Dam90a, Da91, Fei91, Fra04, He94, IRM93, LC06, MV91c, QV89, Rue93, SF90, SZ93, Sti93, Van06, Bel00, Bra90, Cop95a, Cop95b, Dam91, De 95, GQ95, Joy05, PSN95, QG95, Sho05, Wie99, Ynt02]. Cryptosystem

[Jun87, KKT91]. Cryptosystems

[Oka88, Wee11]. CS2 [NM02b]. CT [Joy03]. CT-RSA [Joy03]. Cube

[OL89, TY91, OT89]. cube-connected [OT89]. CubeHash

[AD11, BP09, BKMP09, KKMS10]. Cuckoo

[ANS09, ANS10, ADW12, ADW14, BHKN13, DM03, DS09b, DMR11, FPS13, FMM09, FMM11, KMW08, KMW10, Kut10, Mit09, NSW08, PR01, PR04, Pag06, PRM16, PS12, SHF +17, TK07, DS09a, KM07, Kut06, DK12]. Cumulative [LPW06]. CUPID [KS89a]. Curve

[ANS05, MSTA17, OOB12, TK17]. Curves

[BGH12, FT12, WX01, BGH +13, FSV09, FFS +13, Far14, GZ99, LS06]. Cyclic

[DH84]. Cycling

[Far93]. Cyclic

[DH84]. Cycling

[Far93]. Cumulative

[LPWW06]. Cryptography

[ANS97, ANS05, ´ACZ16, BD08, DK02, DK15, Ytr06, BGG94, BBD09b, Far93, GNP05, JY14, Kil05, PGV93c, Wol93, Boy95, DG96]. Cryptology

[Ans97, Ans05, Acz16, BD08, DK15, IKOS08, Ytr06, BGG94, BBD09b, Far93, GNP05, JY14, Kil05, PGV93c, Wol93, Boy95, DG96]. Czechoslovakia [Rov90].

D [CBA94, EAA +16, Fly92, GG92, GK94, LMJC07, LDY +16, WSSO12]. D-Based

[WSSO12]. d’Acces

[ACM98, IEE95, USE91]. Damgård

[DGV93, Pat95, CDMP05, Gib90, Mir01]. Darmstadt [TWW77]. Darstellung

[Koe72]. Dartmouth [An093]. Data

[ACM81, ACM82, ABB93, AHU83, ABM06, AHS92, VLD82, An08a, An08b, AW89, AAC +01, AN85, ADF12, BC08, BD88, BDDS98, BJ97, BJM94, BF97, BL88, Boy98, BM14, BJ93, CLS12, CJC +09, Chr84, CG06, CLM89, DA12, DSS84, DT87, DSZ97, DP08, Dre17b, EJKMP80, Eld84, Ell83, Ell85b, Ell82, Fed88, FM85, Flo77, FB87, FBY92, FMA02, GMJ90, Gh77, Gho86, GCMG15, Gol92, Gon83, Gon84, GBY91, Gri74, Har71b, Har73, He91, Hil78a, Hil78b, HZ86, Hil88, HSS4, IEE85b, ICD86, ICD87, ICD88, ICD90, ICD91, ICD93, IH83, IABV15, JL14, Ker75, KP81, KS12, Kru84, KHH89, Lie81, LT85, LRY78, LRY80, Lit89, Lit84, LL87, LS89, LRY +15, LT80, LSC91, Lom93, LG78, LMR02, MLHK17, Mar75, Mar77, McC79, MSD90, MEC +14, Nav85]. Data

[NR12, PSSC17, PRR15, PV85, PW94, RNR13, Rout09, RK91, Sar10, Sch01a, SDW14, ST83a, ST83b, SW86, SW94b, Ste82, Sto92, SM08, SM12, SW87, Tan83, TC93, TY03, TA81, TA86, TGGF10, TS85, TGL +97, Top92, Toy86, TS76, TS84, VL87, Wal88, WPKK94, WS76, WH83, Win90a, Wir86, WDTY91, WY93, Wu85, YDT83]
YSW⁺11, YLB90, Yua92, Zam80, ZO93, AK09, BR75, BZZ12, BVF12, BGG12, BPT10, CLW98, CRS83b, Col93, CH09, FP89a, FVS12, GB17, Ged14, GP08, HC11, HF91, HSMB91, HF13, IGA95, IL90, Kak83, Kan91, Kan93, KRJ09a, Koe72, LNS96, MSK96, MV08, NT01, NM02b, OS88, SLC⁺07, SB07, She06, Shi17, SE89, SW94a, SA17, TKT⁺89, VL97, Vit01, WM93, WTZ⁺13, Wil78, Wil85a, Yao78, YLC⁺09, Yu92, YG10, ZKR08, ZLL⁺07].

Data [ACM75b, ACM84b, ACM85b, ACM86a, ACM88a, ACM89b, ACM89a, AA86, Bab79, BG92, DCW91, DKO⁺84b, DKO⁺84c, DKO84a, DGG⁺86, DGS⁺90a, DGS⁺90b, DGS⁺90c, DNV81, DT91b, GD87, HSMB91, HF13, IH83, KGJG12, Kie85, Kim80, KL87, KTMo83a, KU90, Kue84b, Kum89a, LC86a, LL08, Llo81, Ouk83, SD89b, SD90a, SD90b, SD90c, SD90d, Sha86, She89, SD91, St088, Tan83, Toy86, Ull82, WVT90, WVT90, Wir87, Wir83, OK80, Koe72].

Data-flow [DGG⁺86, Ger86a, Ger86b, Gra94c].

Datalog [GST90].

Datasets [OGAB14, BZL⁺15, HAKM15, LRU14, Mil95].

datastructure [Bit86].

dateiorganisation [Nie75, Vie89].

dateistrukturen [Fri86].

Datenbanke [Lut88, Nee79, St088, Vie89].

Datenbanksystemen [Lut88, Nee79, St088, Vie89].

datenorganisationen [Olb89].

Datenstrukturen [DF77, LS85, Mehl86, Nol82b, Oll89, Wir75, Wir83, OK80, Koe72].

Datenverarbeitung [Lut88].

Dawning [Cro98].

Dayton [IEE94b].

DBG [BFG⁺95].

DBJ [ZJM94a, ZJM94b, ZJM94c].

Dbms [KR86b, Gra86, KR86a, KP81].

DC [ACM84b, BJ93, Fis87].

DCC [SM08, SM12].

DDH [Dev93].

de-amortize [KM07].

De-amortized [ANS09].

De-duplication [BC08].

Dealing [Bre91, Vit01].

Deauville [BF89].

December [PDI91, And94, AiNOW11, Boy95, Bar93, HL91, IEE88b, LC06, RRR99, SZ93, Yan10].

Decentralized [LB07].

Decision [Eng94, CWW90, QP16].

decision-trees [QP16].

Declustering [FM89].

Decomposition [NS16a, Spe92].

Decompositions [GO15].

Decoupled [RKLC⁺11].

Decoy [MA18].

decryption [GBL94].

Dedicated [HKY12, ISO97, ISO04, NM02a, Pre94a].

Deductive [Llo81, TRN86, SSW94].

deduplication [BF12].

Deep [CLYY92, CLYY95, ZZLZ18, WWG⁺18].

defective [Hui90].

Deferred [Gr177, Vek85].

Defined [YD84].

definition [FY92].

Definitions [DCW91].

del [ACM82].

Delay [NDMR08].

Deletion [AHS92, CV86, GG80, IG77, KV91, MV88, TW91, VV86, Vit81b, Vit82a, MSV87].

Deletions [CF92, Knu77, KHK12].

denial [Bac02].

Denmark [BIP92, Dama90a, Dam91, FS90, NS82].
Density [KD92]. Denver [ACM79, ACM85a]. Dependencies [CS83a].

dependencies [SGK90]. Dependent [DT875, Sch01a, SAT75, NMS+08]. depth [GHK+12]. Derandomization [AN96].

derived [HB89a, HB92, HBS9b]. Descent [DM81]. Description [FC87a]. Descriptor [FLF11]. Descriptors [MBBS12, RLT83, SD85, Wu84].

design [Adi88, AS82, AR16, Bat80, BMQ98, Bur84, CKB83b, CS83a, C885c, CS85b, CS86, CC91, Che84a, Che84b, CCHK08, DGV93, Dae95, Dam90b, Dam93, DLT98, D90, DY91, DHK+15, DNV81, Dev93, DM90, Die07, DT91b, EE86, GDA10, GSI+82, GT93, Gro86, Jag91, JP07, KTM083b, Kru84, LT09, LLA15, OVY94b, PS93, PGV90b, Pre93, Pre94a, QM98, Rad83, RLM87, SD89b, UI70, VC87, We83, Wie87a, XNS+13, YNKM89, Bur82, CE95, CKB81, CKB83a, CCL91, CZ14, Dam94, Lai92, MAK+12, Mol90a, Mol90b, OVY94a, PGV93g].

designing [GM91, Lin96, Mor83a, Zhe90, DC94, MPL09]. designs [Bat82, BR14, Bur75b, CC88a].

destaging [NKT88]. Detecting [GAS+16, OTKH11, CWC10, MF82].

detection [CH12, CJC+09, Kue84b, LQZH14, MKAA17, PACT09, TWZW11, TP15, Zam80, ZC77, FNP09, FES09, Kos14, LG13, MHT+13].

determination [Kri89]. Determine [ZF06].

determining [Bee83, Mar71].

deterministic [HMP01, MNS07, TLLL07, BK07a, FFS+13, HXLX13, Mil98, Ru90].

deuclidean [BN85]. Develop [TC93].

development [BV89, BIP92, CN07, Hli88, McS82, SSS05, Vid90, Web72, YR87].

developments [Ano95a, Lar85a]. Devices [HJK15, Sam81, YY07]. DFG [MO92a].

dha [AKY13]. DHA-256 [AKY13]. DHT [RCF11, SX08, UPV11]. DHTs [CQW08].

diagonal [PVM94]. diagonalization [Lia95]. diced [Nic17]. Dichotomy [HW08].

dicing [Kon10]. dictionaries [DP06, DW05, DW07, GJM02, HMP01, M8K96, MN90, Mil98, RRS07, Ru90, Wen92].

dictionaries [DP06]. Dictionary [CS82, DA93, D82, D877b, Mk89a, Rad83, Die90, DWH08, Mc89b, R907, Sun91, Sun93].

diego [AM03a, ACM07, St092]. Differences [Gri98].

different [LH03b, BW89, Jan05, KS88a].

differentiability [DRS12]. Differential [AS82, BS91b, BS91a, BS91c, CH94, Da95, KKMS10, MMT09, AGJA06, IT14, RP95].

difficulty [SKD15, SL88]. Diffusion [SDMS12, SDMS15]. Digest [IEE88a].

digital [ANS05, BDS09, Cai84, Cip93, Fox91, GK12a, GT63, LM95, Mek83, Oka88, Oto85a, PW93, PGV93f, Reg81, Rou90, Rul93, Ano99, Ano13].

digram [Wil79].

dimacs [GJM02]. Dimension [CT96, LHC05].

dimensional [AI06, GIM99, YWH09, AI08].

direct [DS84, Kno84, RB81, VC85, Bay73b, KdIT89, Mad80, TT81].

direct-access [Bay73b]. Direct-chaining [Kno84].

directories [YY01]. Directory [Gri74, KS88b, KS88c, Oto84, Oto88a, PADHY93, AP93, Pro94, TSH97].

disc [CC87, CLC92, CF89b].

disclosure [GBK01]. Discovery [LK10, PKW09, ZO13].

discrete [ACM94d, SDA90, SDA91, ACM97a, ACM05, ACM08a, Gib91, Kar98, Li15, MLHK17, Mat09, SSL+18, Shm00, vW94, NW07].

discretionary [BDPSNG97]. Discretized [RNR13]. Discriminant [SY08].

discrimination [CP95a]. Discriminative [OSR10, HXLX13].

discs [CF89a, CF89b].

discussed [Gre95]. Discussion [BRR88].

dish [SKC07] disjoint [AAB+92]. Disk [BGF88, Cha88, Du86, Gra94a, ML95, TC93],
Bak09]. Extensions [CSSP15, Heu87].
External [AS89, AGMT11, GL82, GL88, Gra94a, GT63, JP08, LR85, LRY78, LRY80, Vit01, Woe06b, RT89, RB91].
External-Memory [AGMT11].
Extractable [AGMT09, CZLC12b, CZLC14, Wee11].
Extracting [HZ86]. Extraction [FC87b, KKN12, LDY16, ZLY12].
Extremely [Sie04].
FA [CKW09]. Face [KGJG12].
Facchgesprach [Lut88]. Facility [VL87, FF90, VL97]. Factoring [CTZD11].
Factorization [FS82]. Failure [Ano95a]. Fallen [HCPLSB12]. false [CVR14].
Families [ADW12, ADW14, BW88, Bla00, CRSW11, CRSW13, FCH92, LK16, McC79, Bosxx, HKL04, LS15, Sna87]. Fault [AAB+92, DSS90a, DSS90b, MA17, HGR07]. Fault-tolerant [DSS90b, HGR07]. FCD [ISO97]. FCSRs [BDM+12].
Feature [BS91b, BS91a]. feasibility [CKM14]. Feature [LMT07, NS16a, Som99, TWZ11, Fly92, MHT+13]. Feature-Based [TWZ11]. Features [MS12, MBBS12, PKW90, SSA01, TH98, Tsa96, Tsa94].
Families
[ADW12, ADW14, BW88, Bla00, CRSW11, CRSW13, FCH92, LK16, Ind00, LK16, McC79, Bosxx, HKL04, LS15, Sna87].
Fast [ASM17, CRSW11, CRSW13, FCH92, LK16, McC79, Bosxx, HKL04, LS15, Sna87]. Fault [AAB+92, DSS90a, DSS90b, MA17, HGR07]. Fault-tolerant [DSS90b, HGR07]. FCD [ISO97]. FCSRs [BDM+12].
Features [MS12, MBBS12, PKW90, SSA01, TH98, Tsa96, Tsa94].
Families
[ADW12, ADW14, BW88, Bla00, CRSW11, CRSW13, FCH92, LK16, Ind00, LK16, McC79, Bosxx, HKL04, LS15, Sna87].
Fast [ASM17, CRSW11, CRSW13, FCH92, LK16, McC79, Bosxx, HKL04, LS15, Sna87]. Fault [AAB+92, DSS90a, DSS90b, MA17, HGR07]. Fault-tolerant [DSS90b, HGR07]. FCD [ISO97]. FCSRs [BDM+12].
Features [MS12, MBBS12, PKW90, SSA01, TH98, Tsa96, Tsa94].
Families
[ADW12, ADW14, BW88, Bla00, CRSW11, CRSW13, FCH92, LK16, Ind00, LK16, McC79, Bosxx, HKL04, LS15, Sna87].
RM88, SG72, VBW94, YD86b, van73. Files [AS82, ANT85, BM76, BH85, Bra84a, Bra86, CC87, CS87, CC91, CLC92, CL95, Cla77, CS93b, Du86, FNPS79, Fel87, Gri74, HB89a, HB92, Lar81, Lar82a, Lar85a, LR96a, LCML94, Lit79b, LYD71, MY79, Mil85, Oto85a, Piw85, RSSD89a, Reg82, Rot89, SG76b, TK88, ZRT91, Bra85, CS93a, CCL91, HB89b, LNS93, LY72, ORX90, Omi89a, RB91, TC83]. Files [AS82, ANT85, BM76, BH85, Bra84a, Bra86, CC87, CS87, CC91, CLC92, CL95, Cla77, CS93b, Du86, FNPS79, Fel87, Gri74, HB89a, HB92, Lar81, Lar82a, Lar85a, LR96a, LCML94, Lit79b, LYD71, MY79, Mil85, Oto85a, Piw85, RSSD89a, Reg82, Rot89, SG76b, TK88, ZRT91, Bra85, CS93a, CCL91, HB89b, LNS93, LY72, ORX90, Omi89a, RB91, TC83]. Filing [FC87a, DH84]. Filter [CCH09, Kaw15, MK11, LZ06, RKK14, RK15]. Filtered [Ahn93]. Filtering [KRML09, MK12, RCF11, YG10]. Filters [CHY93, CHY97, Kie85, LYW+18, Ram89b, DKT06, HKI07, HKLS12, HXLX13, ISO97, PSS09]. Final [MO92a]. Financial [ANS05]. Find [Hol13, Lan06, Pat94]. Finding [CBK83, Cer85, Cer87, Cer88, Coh98, CH99, CM93, DR06, FCHD88, FCHD89, HK86, HG77, HR04, KH84, SH92, SH94, Sim98, Val15, WY05b, WY05c, Yuv75, FHC89, MI84]. Fine [KLSV12]. Fine-grained [KLSV12]. Fingerprint [JOT09, LMC07, LMJC07]. Fingerprinting [Rou09]. Finite [Gri98, HJ96, Ram88a, WX01, FH15, KKH12, LS06, LK93]. FIPS [Dan13, Ano93b, Ano95b, NIS93, Nat95]. Firewalls [Kal01]. First [ACM89c, SDA90, PDI91, BBD09b, adHMR93, PM89, DLM07, Fis87, SBK+17]. First-order [DL07]. Fisher [SY08]. Fit [Cip93]. Fitted [ZWT+14]. Fixed [GB10, RS08]. Fixed-Key [RS08]. Fixed-Parameter [GB10]. FL [ACM91a, HB93]. Flash [BFCJ+12]. Flash/Trie [BLC12]. FLATS [GS182]. Flexible [SR95, SPB88, BCC10]. Flight [Fis87]. floor [Sch82b]. Florence [IEE92a, ST83a, ST83b]. Florida [ACM91d, IEE88b, RNT90, PID91, Kna89]. Flow [NS16b, SL16, HKL04, LDK12, LMP+08]. Flow-level [LDK12]. Flows [EVF06]. Fly [BK88]. FM [KCF84]. FOCS [IEE06, IEE07]. FODO [LS89, Lom93]. Function [LG78]. Fontainebleau [PDI91]. Footprints [KSSS86, HW88]. Forbidden [CL09a]. Force [CJP12, CJP15, LS07a]. Forensic [BFP11, DR11, PS08]. Forensics [DA12, JL14, Rou09, SK99]. Forest [KP92]. Forgery [CY06]. fork [ALS10, CMP07]. FORK-256 [CMP07]. Fork-join [ALS10]. Format [Aum09, HZ86]. Formalization [MMC01]. Formats [GIS05]. Formatted [LYD71, LY72]. Formula [GK76, Ram97]. Forrealization [FM96]. Forth [Gre95]. FORTRAN [FDL86, JCC88b]. Forward [CPP08]. Forwarding [YBQZ17, YBQZ18, BB07, HDCM11]. Foundation [SXL08]. Foundations [Ano85a, BCFW09, Gol94, IEE76, IEE80b, IEE82, IEE85a, IEE88b, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, IEE13, LT85, Roy90, Win78, HKNW07, LS89, Lom93, RRR99]. Four [Gra88, Gra89, SD89c, SD89a, HM03, SD89d]. Fourier [Ind13, BH93]. Fourteenth [BD88]. Fourth [ACM85b, ACM02, ICD88, KLT92, Las87, Yao78, GSW98]. FowlerNollVo [VFN91]. Foxtrot [MK12]. FP [PHG12]. FPGA [DLT98, KMM+06, MXL+12, MAK+12, TP15, TK07, WZJS10]. FPGA-Based [TK07]. FPGAs [DD15, MMMT09, SK05]. Fractal [Ano95c, YSEL09]. Fractals [HCF95]. Fragmentation [Sac86]. Frameproof [vT14]. Framework [BJL16, BKM09, DGV93, FFGL09, GST90, EH17, FFGL10, GL06, PCK95, UHT95]. Framingham [Ker75]. France [AGK+10, BF89, Jou85, LS89, Ng79, QG95, GQ95, vdHvH12]. Francisco [ACM75b, ACM08a, DT87, IEE88a, Joy03, Kar98, Shm00, USE90]. Frankfurt [CE95]. Fredman [KM86]. Fredman-Komlos
Free [AR16, BM97, BB07, BHT98, CLNY06, CTZD11, Dam87, HM96, HZ86, KKK91, LFD17, MO190, MO191, Ram89b, Rus92, Rus93, Rus95, SHRD09, BGKZ12, BGG93, BGT97, Gib91, Gob75, HCJCO6, MJ14, NK01, PBGV89, SS15, Van92, Van92, Van93, ZBB+06, ZL12, SS06].

Fujiyoshida [IRM93]. Full [AC74, Bur75a, CMP07, Cor00, Day70, DOP05, KK12, KK18, LT12, Mue04, GLM+10, San76, WYY05b, WYY05c, YSW+11, ZKR08, NH74, RCF11, SKP15].

Full-Text [YSW+11, RCF11]. Function [Abi12, ÁVZ11, Aum09, AMP14, BPSN97, BF83, BDM+12, BS94b, BS94a, BKST18, BR502, Bla95, BKL+11, BDF97, CP91c, Cer81, CKBS3b, CN08, Coh94, CBA94, CMP07, CO82b, CDMP05, DBGV93, DGV93, Dae95, DC98b, Dat88, DL80, FLS+10, GIS05, Gei95, Gei96, GSC01, GIMS11, HPC02, Har97, Hol13, HLC10, JP07, Kall01, KJ09b, KCB81, Kra82, Kuhl84, KKT91, LWQWQ8, LP15, Lis07, LIO0, LG78, MR07, MRST10, MNS12, MIO89, NS16a, Ot084, PV92, PHL01, PHG12, PBD97, GLM+10, RB01, Sch11, Sch90a, Sch91b, SGY11, Sta06a, TC93, TTY93, WW09, WSSO12, Win83, Win84, Woll84, WFW+12, YD84, Yan05, WL12, ZWW+12, AKY13, ACP10, AB96, AMP15, ABO+17, AP11, BGKZ12, BNN+10, BDPV06, BDPV12, BOY11, BS94c, BW89, CKBS3a, CK94, DF89, FSP2, Gib91].

function [HR07, Han17, HL03, ITP14, LW04, Lia95, LWG11, MJ08, Mer90a, MZI98, Mit17, NS09, Pat94, Pat95, PVCQ08, QJ97, RS14, SB14, SS92, Sch82b, SRL98, SHA97, SXL16, VNP10, VFN91, WS13, WYW14, YL97, YZ16]. Functional [LFP82, GMP95, ZKR08, Jon85]. Functions [AHV98, AFK83, AFK84, AN96, ACZ16, AA79b, AA79a, And91, ABD+16, Ano95a, AEMR09, AR17, AM07, AP08, BSNP96a, BDPSN97, BCK96a, BCK96b, BRI14, BBD+82, BDD+86, BG99, Bila08, BSD09, BRSS10, BCFW09, BK12, Bol79, BPZ07, BHT98, BH86, Bui79, Can97, CW77a, CW77b, CW79, CMW83, CBK83, Cer85, CKB85, CB95, Cer87, Cer88, CS88a, CS88b, CS85c, CS85b, CS85a, CS86, Cha86b, CS87, CLNY06, CLG09, CK15, Chi91, Cici80a, Cic80b, CE70, Coh97, CH94, CHM92a, CHM92b, CM93, DGV93, Dam87, Dam90b, DDD+07, DK07, DY90, DY91, RTS05, HU09, GMPP92, Die07, DGK12, EK93, EPR99, Fil02, FL08, FLP08, FLP14, FFLG09, FCHD88, FCHD89, FCD90, FCD91, FCH92, FCD92a, FK84, GO07, Get01, Gir87, GH91a, GH91b].

Functions [GLG+02, GKK80, HRR+10, Hal12, HM12, HJ96, HKY12, HS08, HK12b, HR04, Ind01, IT93, JGO0, Jae81, Jen97, Jom04, JD12, KH84, KK06, Kno75, KP96, KL98, KV12, LM93a, LK94, LT09, LM95, Lis07, LH03a, LLG12, Mai92, MWCH92, MWC78, Mar64, Meh82, MP12, Mer90b, M10, MRW89, M102, MO190, MO191, Moh11, Mul91, NIS15, NM02a, NCF11, NP99, NR12, NAK+15, OBO12, Otk91, PG99, PWY+13, PBB0, PQ98, PQ99, PW93, PGG09, PGG09, PG92, Pre93, PG93d, PG93f, Pre94a, PV95, Pre97a, Pre97b, Pre99, PQ98, QC89, QC90, RP91, RR08, RWSN07, Rla12, Roe94, RS08, Rui93, SP91, Sag84, Sag85a, SDMS12, SDMS15, San76, SS01, SS84, Sch91a, SRY99, Sho00a, Sho00b, Sie04, Ser18, SVD18, SDT75, Spr77].

Functions [ST06, Ty83, Tvo92, Tro95, Uli70, Uli72, WFLY04, Wee12, WCT79, WC81, WKO78, YD85, Zem91, Zha90, Zhe90, Zhe91].
functions

functions-based [HC11].

Fundamental [LYD71, LY72].

Further [Lit85, Sar15, DM03].

Fusion [Wil00].

Fuzzy [LMC07, LMJC07, LI92, HC14].

Gallery [BFR87].

Galois [HJ96].

game [Zob70a, Zob70b].

Gamma [DGS+90b, DGS+90a, GD87, DGG+86].

Garbage [AG93, FW76, FW77, UIY10].

gates [GHK+12].

Gb/s [BLC12].

GBDD [YTHC97].

GCM [Saa12].

gene [McN03].

Gene [TGGF10].

General [Chi91, Chi94, DR06, ISO97, LW88, LQH18, LHC05, Lun73, MSD16, Sch91a, Sim98].

general-purpose [Sch91a].

Generalised [CC87, KK99, LPW96].

Generalized [HB94, KVK12, LI80, SK88, Sev74, HK10].

generalizing [AMP12].

Generate [HSR+01].

Generated [LMC07].

Generating [Bla95, CT96, CHM92a, CHM92b, Get01, Jae81, Sag84, FP82, GRF11, MFK+06].

Generation [GRZ93, LL92, MS12, She91, SSS05, Wan14, BK07a, BK88, CCA+12, CT10, KKP92, Mo92b].

Generator [Ano86, BK12, Cai84, Gui89, Sag85a, Sch90a, ZF06, Aam03, CLS95, HC11, SS92, TSY98, VZ12].

Generators [MWCH92, NAK+15, SP91, BK07a, CP13].

Generic [DL17, DOP05, MP12, Sar10].

Genetic [FFGOG07, HSIR02, CV05].

Genomic [CCH09].

Geo [TZYO15, ZWH17].

Geo-Tagged [ZWH17].

Geographic [RRS12].

GeoHash [BSH12].

Geometric [Bar97, BG92, Bie97, BM90b, CO82a, GPA97, HB89c, HB94, KGJG12, LW88, LMC07, LMJC07, MV02, PW94, RH92, RH95, RW97, SA97, Tsa94, Tsa96, WPKK94, War86, WR97, BJKS93, BJKS94, GG92, JBWK11, LG96, MN99, MMG10, WC94].

geometries [FH15].

Geometry [CCC89, Wil00].

Georgia [USE00a, ACM83a, ACM83b].

German [Zel91, BJMM94a, BI87, Eck74a, HJ75, Koe72, Sta73, Wen92, vM39].

Germany [AH03, BRW93, HM08, adHMR93, Yao78, CE95].

Gestion [Lit77b].

Get [Eug90].

GHASH [Saa12].

GI [Lut88, TWW77].

GI-Fachgespräch [Lut88].

Gigabytes [WMB94, WMB99].

Girths [Zem91].

Give [AT93, AT90].

Global [CLP13, Cli95, DL79, LPSW03, MD97].

Globally [HSW88].

GLUON [BDM+12].

GNU [Wil14].

Go [Bur06].

Goddard [Fis87].

Goes [Cip93].

Gold [SZ93].

gone [Nic17].

Gong [BPSN97].

Good [Bur92, Hol13, JP07, Lom88, Mit02, ADM+97, Kon93].

Goodyear [Fis87].

GORDION [EE86].

gossiping [GHW07].

GOST [WYW14].

GPERF [Sch90a, SS92].

GPU [ASA+09, FRB11, HLH13, LL15].

GPUs [CZL12, vdBGLGL+16].

GRAB [Les88].

GRACE
Graduate [Ano93d]. Graduate [Ano93d]. Graduate [Ano93d]. Graduate [Ano93d].
Gram [Coh97]. Granular [PAKR93, KLSV12]. Gram [Ven86, Coh98].
Grams [Coh97]. Granular [PAKR93, KLSV12]. Gram [Ven86, Coh98].
Graph [Ari94, BMQ98, Hal12, MD97, MBBS12, NRW90, TI12, YkWY83, BPT10, CML+13, CLL+14, Kor08, Mol90a, Mol90b, WLLG08, vL94].
Graph-Based [Hal12, JBWK11].
Graph-Entropy [Ari94].
graph-structured [BPT10, WLLG08].
Graph-theoretic [vL94].
Graphic [LLLC17].
Graphics [Leb87, RKLC+11].
Graphischen [Lut88].
Graphs [CLG09, HMWC94, KPS92, Knu98, Zem91, AD08, AAB+92, AS07, DW03, HK83, Kut06, LL13, Z’em94].
Gray [CLD82, Fal85a, DL80, Fal86, Fal88].
Greece [ACM01, AMSM+09, Rei88].
Greedy [WTZ+13, AGJA06].
Greenbelt [Fis87].
Groups [HM12, LLW10, PWY+13, Reg82, CFYT94].
growing [KW94].
Guangdong [Oto88a, Rey14].
Guangdong [IEE11a].
Guaranteeing [LK84].
Guess and Determine [ZF06].
Guess [Fox91, DLM07, RW97].
Guide [AS82, SD76].
Guess-and-Determine [ZF06].
Guaranteeing [HC13].
Guess [ZF06].
CZLC12a, CLS12, CZLC12b, CZLC14, CN07, Chi91, Chi94, CJP12, Cie80a, Cie80b, Cip93, Cle84, CD84b, Cob94, CBA94, Coh98, CRR18, CS82, CY06, CMP07, CS93b, Cor00, Cor02, CDM05, CS02, CHM92a, CHM92b, CM93, DBGV93, DGV93, Dae95, DK90, Dam87, Dam90b, DDF+07, Dan13, Dav73, DG93, DG94, DK07, DY90, DY91, DG85b, DHK+15, Dev99, DAC+13, DadH90, DGMP92, Die07, DS09b, DL17, DOP05, DRS12, DF01, DC81, Dos78a, DB12, DJS80, DHJS83]. Hash

[DGKK12, Eck74a, Eck74b, EAA+16, EK93, EMM07, EH12, EPR99, FIP93, FIP02b, FL04, FLS+10, FLF11, FRB11, FFPV84, Fil02, FL08, FLP08, FFL14, FFG09, FB87, F+03, FCHD88, FCHD89, FCDH90, FCDH91, FCH92, FHCD92a, FKS4, G007, G012a, GIS05, Gei95, Gei96, GHR99, Ger96a, Ger96b, Get01, Gir87, GI12, GSC01, GKH91a, GKH91b, Gon77, Gon81, GLS91, Gra93a, Gra93b, Gra94a, GLS94, GBC98, Gra99, GIMS11, GLG+02, GK95, G008, HMNB07, HHR+10, HP78, Hal12, HPC02, HM12, HDMC09, Har97, HHL10, HCJC06, HW08, HC11, He91, HJ96, HCPPLS12, HJ75, HG77, Hii82, HS08, HK12b, Hol13, HKKK10, Hop68b, HD72, HCY94, HCQ17, HCY97, HR04, HC13, HLC10, Hii13, HRS16, HCQ17, ISO04, IK02, IG77, IC94, IP08, Ind01, Irbxx, IABV15]. Hash

[IT93, IL90, JO80, Jen97, JRPK07, JLH08, JL14, JXY07, Jou04, JD12, JK11, JP07, KG95, KMM+06, KK12, KK18, Kal01, Kam74, KHK12, KHK15, KH84, K094, KR91, KK06, KKW99, K101, KKR07, KR09b, KJC11, KKC12, KM10, KTM03a, KTM03b, KNT89, K090, KTN92, KW12, Kno71, KdlT89, KP96, KLP98, KR79, KR+80, KK55, KV12, KCB1, Kra82, Kue82b, Kue84b, Ku84, KKT91, LFD17, LK07, LM93a, LM93b, LK94, LYY+18, Lam70, Lan06, LT12, Lar81, Lar82a, Lar85a, Lar88a, LAKW07, LMJC07, LK10, LMSM09, LT09, LM95, Lev00, LLO09, LÖON01, LHC05, LWQW08, Lip02, Lis07, Lit89, Lit77a, Lit77b, LC96, LRY+15, LR96b, LL85, LB07, LAC18, LTS90, LH03a, LLG12, LMR02, Lyo85, MXL+12, MD05, Mai92, MSTA17, MWCH92, MS12, MS02, MT11, MCW78]. Hash

[Mar64, Mar71, ML94, ML75, Mau83, Mc79, MKF+16, MCF17, MK89a, Meh82, Me95, MR07, MRS10, MNS12, MP12, Mer72, Mer90b, Mi85, Mir01, MRW9, Mit12, MW95, Mit02, MIO90, MO91, Moh11, Mot84, MKAA17, Mue04, MJ+02, Mul91, Mul92, MC86, Nat92, NIS93, Nat95, NIS15, NM02a, NCFK11, NK78, NNA12, NS16a, NP99, NSW09, Ngu06, NTY12, NR12, NRB13, NY85, NAK+15, OL91, Omi88, OL89, Omi91, OL92, Ore83, Oto86, Pau09, Pag85, APV08, PWY+13, PCL93a, PV92, PFM+09, PTT16, PCY95, PHL01, PLKS07, PV07, PHP12, PBD95, PG95, PR98, PRZ9, PW93, Pip94, Pla98, PGV90a, PGV90b, PGV92, Pre93, PGV93d, PGV93e, PGV93f, Pre94a, PGV94, PV95, PBD97, Pre97a, Pre97b, Pre99, Prep94, Prep98, QQ09, QQ89]. Hash

[Q090, Ram88a, RR06, RR08, GLM+10, RSS12, RJK79, Rev14, RWS07, RS12, RG89, RB01, RHM09, Riv76, Riv78, Rja12, RNR13, Roe94, RS08, RMB11, Ros60, Ros7, Rot97, RK91, Rul93, SPF9, Sag85a, SDMS12, SDMS15, SD78, Sam81, SS91, Sch11, SS80, SS88, Sch90a, Sch91a, Sch91b, Sch93a, SV94b, Sch79b, SBS16, SG16, SY71, SW91, SX08, SY99, SK89, Sho00a, Sho00b, Sie4, SM02, SK05, SVEB84, Sol93, Som99, SPSP16, Spe92, Sta94, Sta06a, Sta06b, SK01, Szy82, Szy85, TT10, TR02, TY91, Top92, TP95, Toy93, TNL92, Tsn92a, TSP+11, Van92, Vau92, Vau93, VB00, WX01, WFLY04, WLLG08, WW09, WZJS10, WSS012, WBW16, Web72, Wec11, WC79, WC81, WKB07, Wns83, Wns84, WKO78, Woe06b, WDT91, WYT93, Wls84,
WFW+12, XNS+13, XBH06]. **Hash**
[YNW+09, Yam85, YD84, YD85, Yam05, YSW+11, YT16, Yao95, YSL05, WL12, YLB90, Yen91, YZ00, YCR93, YY07, YY11, YSEL09, YKL10, ZG0a, ZG0b, Ze91, Zem91, Zem94, Zha07, ZLY+12, ZMZ17, ZJM94a, ZJM94b, ZJM94c, ZQS012, Zha90, ZM91, ZL03, ZLC+12, ZWW+12, vW94, van94, vdBGL16, vdVL12, AY14, AAB+92, ATAKS07, AKY13, ACP10, ADM+99, AG10, And93, AB96, AMP12, AMP15, AAG16, AZ10, ABO+17, AP11, BGG12, BSN96b, BSN96c, Bak09, BAT03, BLC12, BLP+14, BNN+10, BJ07, BD92, BV13, BCR04, BFCJ+12, BDPV06, BOY11, BJKS93, BJKS94, Bie95, BS94c, BSU12, Bra09, BHT93, BM01, BGG12, Bur76a, CMR98, CTR14, CKB81, CKB83a, CK89, CD84a, CAGM07, CHS+18, CCHK08, CJP15, CM01, CLW98, CL09a, CL09b, DK94, DF99, DW03, DS90a, ESR14, FXW17, FJ13]. **hash**
[FFGL10, FPSS05, FHC89, FHC92b, Fr81, FH15, GB17, GKKT10, Gil91, G94, Gob75, GPGO16, Gon95, GLC08, GML79, GML12, HK86, Han17, HLL18, HAK+16, HLL13, HC14, HLMW93, HMW94, HKK13, HS88, HKW05, HULT99, HL03, HX13, ISO07, ITIP14, JPDF09, JHL+15, JCC00, JG95, KKP+17, Kha95, KST99, KL05, KRT07, KHK10, Kra95, Kri89, KCL03, Ku04, KCC05, LS07a, LLH02, LKY04, LW04, LL13, LMSG12, LPSW03, L95, LVD+11, LW11, LS06, LC13, CY97, LG78, LEH92, LLJ15, Mad80, MB010, MCM01, MS16, MV08, MS09, MJ08, Mau68, MC98b, Mer90a, MZK12, M92, MZ98, MV08, Mit17, MA15, MFS16, MF82, MS13, MSP12, MSY94, MT16, MFES04, Nae95, NY98b, NY98a, NK16, NTW09, ORX90, OS14, Omi98a, OT98, OS10, PCL93b, PCK95, Pat94, Pat95, PCV94, PPB16]. **hash** [PVCQ08, PGV93a, PGV91, PGV93b, PGV93g, Pre94b, PvO95, PSS09, QP16, QJ97, Ram87, RP95, Riv74a, RS14, Roe95, Rn07, SB95, SB97, SPLHC14, SB14, Sar13, Sar80, SS90b, SS92, SV95, ST85, SH94, SS06, SRL98, Sie98, Sim98, SHA97, SP89, SV15a, SV15b, SD95, SXL16, SV06, TC04, TZ94a, TMW10, Tsu92b, TMB02, UHT95, VD05, VNP10, VF91, Wag00, WM93, WS13, WY14, Wie86, Wil03, Wil14, Woe06a, Wog99, WY02, WTN07, WTN09, XCX09, XLZ14, YTHC97, YL97, YY04, YZ16, ZG05, ZBB+06, ZHW01, vT14, HGH+12, BMJ94b, BMJ94a, DBGV93, FIP02a, HJ75, KKL+09, Sta73, TLL18, WC07, WWZ09, ZW05, Sch93b]. **hash** [PSS09]. **Hash-and-Sign** [CK12, GHR99, PV07]. **hash-array** [SV15b]. **Hash-base** [WLL08]. **Hash-Based** [AS16, BHH+15, But17, CdM89, CdM90, DK09, DG85b, DL17, DF01, FR11, GI12, HCP12, Hub13, HRS16, HBG+17, JK11, KM09, KJC11, KMK10, KSK5, LLL10, LT90, MDF16, MCF17, MMK17, NLC13, OFM+09, PCY95, PRZ99, RNR13, RK91, SBS16, TY91, YSW+11, YY07, Adl88, DBS90, CJJ12, DG85a, HC16, SOX8, YS10, BLC12, CJ15, CW98, HAK+16, KCL03, Ku04, KCC05, M092, OT98, PCK95, PPB16, SPLHC14, UHT95, TLL18]. **Hash-Bucket** [CS12]. **Hash-CBC** [BBKN01, BBKN12]. **Hash-code-techniken** [Mer72]. **Hash-Coded** [Bay73c]. **Hash-coding** [Lit77a]. **Hash-Coding** [Bur77, Der78a, HJ75, Lit77b, Mar64, Sch79b, Bur76a, LG78, Riv74a, HJ75]. **Hash-consed** [BJM14]. **Hash-consing** [AG93]. **Hash-Function** [BF83, BRS02, ACP10]. **Hash-Functions** [Gir87, QG89, QG90, ISO97, ISO04]. **Hash-Join** [Gra99, NDA12, GKO5, RG89]. **Hash-Join-Algorithmen** [Zel91]. **Hash-Joins** [LR96c]. **Hash-Join** [Omi91]. **Hash-Key** [MW95]. **Hash-Lookup** [CN07].
Hash-Only [EH12]. Hash-Partitioned [Ger86a, NKT88, SW91, Ger86b].
Hash-Routing [WBVV16, SPSP16].
Hash-Search [WW09]. Hash-semijoin [CCY91]. Hash-Sequential [BJMM94b, BJMM94a].
Hash-Structured [CS93b]. Hash-Table [BI87].
hash-values [GS94]. Hash-Tabellen [LMSM09, LMSM12].
Hash-Tables [DAC + 13].
HAShCache [PG17]. Hashcash [Bac02].
Hashcodingverfahren [Sta73]. Hashed [GJR79, GG74, HYKS08, KS12, LI80, MF92, Mul72, SVCC01, VL87, VL97, WS93, WM19, And88, GMW90, HSMB91, Ken73, War14].
Hashedcubes [PSSC17]. Hashes [BC08, Saa12, Sch01b, Sch01a, Wan14, GvR08, GP08, GNP05]. hashfunctions [PBGV89]. Hashiguchi [LP04].
Hashimoto [SSa01]. Hashing [CLC06, CV83b, CV84, Che84a, Che84b, CV86, CW09, CTZD11, CW09, Chi93, CT12, CJC*09, CK94, Chu91, Chu92, CV08, CKW09, CE70, Coh97, CO82b, CHK85, CH94, CG79, DA12, CadH500, DW83a, DC98a, DKRT15, Dam93, DLT98, DPH08, Dat88, DD11, vSDW74b, DS84a, DGD02, DTS75, DL79, Dev93, DMV04, DJSN09, DadH90, DadH92, DMK+94, Die96, DH01, DS09b, DMR11, DY08, Dit91, Dod82, DHL+94, DHL+02, DLH09, DSSW90a, DR11, Dre17b, Dre17c, DL80, DT91a, DT91b, DT75, Dun90a, Dun90b, Ell83, Ell85a, Ell87, Ell88, ED88, FNP97, Fan85a, FM96, Far14, Fel87, FNS92, Fla81, FS82, Fla83a, FPV98, Flo87, FPS13, FT12, FFGOC07, FM09, FMM11, Für88, GSS01, GL73, GM91, GM94, Gadh96, GM98, GIM99, Gon80, GL82, GL88, GRZ93, GK76, GI77].
Hashing [GT80, Gra86, GPY94b, Gre95, Gri77, Gri79, GT93, GPA97, Gui75, GS76, Gu76a, Gui76b, GS78, Gu78, GG80, GH07, GZ14, Gur73, HB98a, HB92, Ha93, HSP08, HT01, HR14, HM96, HK12a, Ham02, Har71a, HCF95, Hea82, Hea72, HB98c, HB94, adH90, adH93, Hel89, HT08, HNS84, HSM95, HKY12, HY89, HY93, Hol87, HC87, HT88, HY86, HTY90, HWS88, IJK13, IK05, IH95, Jac92, Jae92, Jag91, Jai89, Jai92a, Jai92b, Jaixx, Jan08, JV16, JP08, JTOT09, Joh97, Kab87, KU88, KKN12, KV09, KGJ12, Kay85, Kau15, Kel93, KR86b, KR86a, KV91, KMW08, KMW10, KZ84, Kno75, KP97, KMS86, Kon10, KMM88a, KP94, Kri84, KS86, KS87a, KS87b, KS88b, KS98b, KR01, Kum89a, Kum90, Kut10, LW88, Lar78, Lar80a, Lar80b, Lar80c, Lar82b, Lar82c, Lar82d].
Hashing [Pal92, Pan05, PB80, Pap94, PV07, PT12a, PH73, Pea90, Pea91, Per73, Pes96, Pet13, PS93, PQ98, PQ99, PKW09, Pip79, Pit87, PM89, PVM94, PVM97, PT11b, PRM16, PS93, PACT09, PF85, PADHY93, PW94, Qui83, RT87a, Ram88b, RL89, RP91, RR92, Ram92, RL82, RL1T3, RSD84, RSD85, RSSD89a, RSSD89b, RSSD90, RSSD92, Ram97, RGNPM12, RLH91, Reg81, Reg82, Reg88, RSS12, RH92, RH95, Rw97, Rob86, Rog95, Rog99, RS75, RS77, Ros77, Rou09, RT87b, Rus92, Rus93, Rus95, SDR38a, SNBC98, SnC05, Sag84, SY11, Sas11, SG76a, Sav90, Sav91, Sch79a, SD90b, SD90a, Sch91b, Sch93a, Sch81, SY91, SR89, SWP90, SB93, SSL+18, SY08, Sho96, SR01, SSS05, SIT77, Spr77, SHRD09].

Hashing [SGGB00, Sti94a, Stu85, Sun15, SHF+17, SA97, Tam81, Tam82, TC93, TL95, TWZ11, TYZ15, THY+18, TI12, TW07, TK85, TI2Z, TTY93, T924b, T938, Tor84, TK07, Tro92, Tro95, Tsa96, Us90, U970, Ul71, UV84, VV86, Vek85, VP96, VP98, Vit80b, Vit80c, Vit81b, Vit81a, Vit82b, Vit83, VC87, WG00, WPPK94, War86, WFHC92, Wee07, Wee12, WPS+12, WZ916, WFT12, WP10, WPD+12, W930, Wil96, Wil00, Wi79, Wil71, Win90b, Win90a, Woe01, WR97, W930, Wu84, YDT83, YW109, Yao80, Yao85a, Yao85b, Yao91, Yao91, Yao92, Y989, YTJ06, YBQZ18, YGC+12, YD98a, ZPS90, ZPS93a, Z918, dW83b, vSl4W7a, vMG12, AT18, ASM17, ASA+99, ADM+97, AI08, AI89, AT90, BGG93, BL89, BGP+13, BBPV11, BD82, BGG94, BDVP14, BMQ98, Boo72, Bosxx, BT89, BCC10, Bur05, Bur82].

Hashing-Based [LMLC14, LLA15, LWXS18, LM88, LH04, LMPW15, LJ+17, ML15, MIGA18, MI84, ML94, MNT93, MPL07, MPL90, MV91a, MC89, MMG10, MP16, Men17, Mil95, Mil98, MYS12, MKSIA98, Mol90a, Mol90b, MSV87, Nil94, OP03, OYV94a, OS88, Pag01, PR04, PWY10, PBJM88, PBM90, PCM15, PT11a, PT13, PY88, Pon87, Pro94, QM98, QZD+18, Ram89a, RT89, RB91, R987, R979, RL90, RAD15, Sab94, Sar11, SP12, SS89a, SS90a, Sch93b, ST93, SH92, SL88, SSS16, Sll02b, Sna87, Sta99, Sti91, Sti94b, Sun91, STS+13, TB91, Tho00, Tho17, TK17, TK99, Tsa94, TLL07, TD93, Vak85, Vio05, Vit80a, Vit82a, Wan05, WL07, Wee88, W949, WY00, WVG+18, XMC11, ZW10L, ZL12, ZWT+14, ZPS93b, ZLZ+18, ZHC+13, Zob70a, Zob70b, ZHB06, BJMM94a, JMM10, KSS86].

Hashing [SV94a, SKC07, SA17, CV85].

Hashing-Based [LMLC07].

HashMap [Oak98].

Hasnmet [Fah80].

Hashtabellen [Kue82a, Kue82b].

Hashtable [Oak98, Bee83].

Hashtag [RTK12].
Hashverfahrens [Dos78a]. HAVAL [WFLY04, ZPS90, ZPS93a, ZPS93b]. HAVAL-128 [WFLY04]. Hawaii [Deb03, SC77]. HCC [Har97]. HDDs [HGH +12]. Head [ACM91c]. Heap [FW76, FW77]. Heaps [CCA+12]. Heavy [TP15, Ind13]. Hebrew [Sch82a]. Hecke [CT96]. Hedge [Sho00b]. Height [Dev99, Reg81, THS97]. Heights [Jen76]. Heinz [adHMR93]. Held [J´aj90, Fis87]. Help [PVM97]. Helper [ALS10]. Herding [KK06, BSU12]. Here [Bur06]. Hershey [ACM76]. Hersonissos [ACM01]. hesitate [Gre95]. Hessian [Far14]. Heterogeneity [PG17, WSZ+16, GDA10, Kha95, SX08]. Heterogeneity-Aware [PG17]. Heterogeneous [PG17, WSZ+16, GDA10, Kha95, SX08]. Heuristics [Omi89b]. Hidden [Leb87]. Hide [Can97]. Hiding [MMMT09, MV01, Wee07, HR07]. Hierarchical [PACT09, TK88, VL87, GP08, VL97]. Hierarchy [Wil71]. High [ACM04, AS09, AEP18, AI06, ASBdS16, CT96, DGG+86, DadH92, DS97, Flo87, GIM99, HSM95, IEE94c, KMM+06, KGV10, LC11, LPT12, MCK99a, MCK99b, OT91, PS90, RSDK90, RW07, Røn97, She91, TK88, Tho13, TP15, WZS10, XLZC14, YNKM89, YW90, AI08, BCL10, EVF06, HKL07, Inc81, MV91a, MAK+12, MA15, RFB97, SLC+07, Shi17, Sie92, SWQ+14, SXL08, TYSK10, TLL10, XMLC11]. High-bandwidth [AS09]. High-Dimensional [AEP18, TYSK10]. High-error [Røn07]. High-Performance [DS97, Flo87, IEE94c, She91, Shi17]. High-Speed [KMM+06, KGV10, MCK99a, YNKM89, MCK99b, RW07, EVF06, SLC+07, SXL08, TLL10, XMLC11]. High-Throughput [LPT12, XLZC14, MAK+12]. HighEnd [LVD+11]. Higher [HKKK13, DH84]. higher-order [DH84]. Highly [BCS09, KHW91a, Mat93, PAKR93, KHW91b, ZLL+07]. Highly-Associative [KHW91a, KHW91b]. Highly-Efficient [BCS09]. Hill [IEE88a]. Hilton [ACM91c, PD91, ICD88, ICD90, IEE90, IEE01]. Histogram [Gra93b, MNY81, PCK95, UHT95]. Histogram-Driven [Gra93b]. History [BG07, MNS07, NSW08, Reg82, NT01]. History-Independent [BG07, MNS07, NSW08]. Hitter [TP15]. hitters [Ind13]. HMAC [FIP02a, BCK96b, CY06, DR12, MAK+12, RR08, Sta99]. Hmap [YTHC97]. Hoc [DPH08, JLH08, Cha12]. Hole [JLH08]. Holographic [BGS88]. Homepage [GCMG15]. Homomorphic [KKN12, CZL12, MT16]. Honolulu [Deb03]. Hood [CLM85, Cel86, CLM86, DMV04]. Hop [RHM09, MA15]. Hopscotch [HST08]. hostile [LC95]. hot [KLL+97]. Hotel [ACM75b, ACM82, ACM83a, ACM83b, ACM85a, ACM87, ICD86, ICD87, IEE88a, IEE88d, IEE90, Kna89, Nav85]. Hough [HB99c, HB94]. House [IEE80a]. Houston [IEE76, IEE94a]. Houthalen [QV89]. Hover [EH12]. HTM [CCW+17]. HTML [UCFL08]. HTTP [DB12]. Human [Bor81, TCW+13]. humanities [Bai81]. Hungary [Rue93]. Hwang [KCL03]. Hyatt [Kna89]. Hybrid [BM89, BM90a, Gra93a, Gra93b, Gra94a, KNT89, HGH+12, LLL11, Sch79a, TYZO15, PCV94, TT81]. Hybrid-Hash [BM89, BM90a]. Hypercube [OL91, OL92]. hyperelliptic [FFS+13]. hypergraph [KKP+17]. Hypergraphs [FP10, HMWC94, Rad92]. I/O [MMC01, Vit85]. IB [CZL14]. IBE [Zha07]. IBM [Dit76, Dit76, MS02]. IBM/360 [Dit76, Dit76]. ICALP [AGK+10, ADG+08, AMSM+09, ACJT07, CIM+05]. ICCI [AFK90, KLT92]. ICDT [AA86]. Iceland [ADG+08]. ICICTA
IEEE/ACM [ACM04], IFIP [Gil77, Ros74]. Igniting [ACM03b]. II [BS91c, Sch93a, Sch93b, Van92, Vau93]. III [Nol82b, OK80, Sed83a]. Illinois [ACM88b, ABM06, BL88, Lom93]. im [DS84a, Wal74]. Image [Ano95c, BFMP11, BS94a, BI12, DR11, GPA97, GH07, HW08, LK10, LQZH14, Li15, LOON01, LC12, LYJ+13, MV02, OSR10, RGNMPM12, SB97, TWZW11, THY+18, U509, WP10, WDP+12, ZWH17, HC11, LMLC14, Mit12, SB95, TCW+13]. image-keyword [LMLC14]. Images [FLF11, MNY81, PKW09, RT81, SsaS01, WMB94, WMB99, GG92, LMLC14].

Imaging [FHMU85], Imai [PGV90a, PGV93a, PGV93b]. imbalance [WZ12]. immutable [SV15b]. Impact [GD87]. imperative [NMS+08]. Imperfect [Ven84]. Implement [CL83].

Implementation [BCS89, BS94b, BGDW95, Dat88, DF89, DKO+84b, DKO+84c, DKO84a, DKO+84d, Dee82, Dev93, Dit76, DT75, EE86, EjKMP80, FO90, GG86b, GT93, Gro86, Har71a, Hek89, ISK+93, JD12, Kah92, KMM+06, KU88, KM92, KR86b, KR86a, KKRJ07, KRJ09b, KTN92, LK84, Lit79b, LPP92, NM02a, PRM16, SDR83a, She91, SK05, Ste82, TGL+97, TNKT92, VL87, BDP+12, BS94c, BW92, DHWO8, DM11, EBD91, GN80, GMJ02, Inc81, IIL17, KU86, KKL+09, McD77, MZI98, MFES04, Tai79, DiT76].

Implementations [GLG+02, Vit82b, WPKK94, WJZS10, DMP09, RAL07].

Implemented [CMW83].

Implementierungstechniken [Nee79].

Implementing [Bab79, Blu95, BJM14, GHJ+93, Gra86, Jun87, KHW91a, KH91b, Lin96, Llo81, LB07, VL97]. Implications [Chr84, CHS+18, RAD15]. Implicit [OS88, Kor08]. Impossibility [BCS09, HM12]. Improve [LBK02, BM01].

Improved [Ari94, BvT13, BMB68, Bih08, Bre91, CN08, DDS14, DL17, FB87, HSM95, HW88, JNNP14, KM86, Kut10, LW04, KKMS10, LH04, Mau83, Mic02, Mul72, NSS+06, PS12, Rad92, RP95, SS80, SD95, TK17, UIY10, WM19, GM77, Mau68, War14, ZW05].

Improvement [CH94, Fe87, RGNMPM12]. Improvements [CTZD11, Lev00, Nam86].

Improving [ATAKS07, AVZ11, BDS88, CHY93, CHY97, CAGM07, Cla77, DB12, GCMG15, JHL+15, MS12, RT87b, Sch82a, TCP+17, YWH09, ZGG05]. Impure [Dec82]. In-Bucket [TYZ015].

In-Memory [CCW+17, ZHW01]. In-Network [WBVW16]. Inaccessible [HHR+10]. Inadequacy [GY91]. Includes [FW76, FW77]. Including [DGV93, KL95].

Incoming [LK07]. Incompatibilities [KCF84]. Incorporating [CBA94].

Increased [PRM16, MSP12]. Increment [Ban77, Luc72, RKK14]. Incremental [BGG94, CT12, FRB11, GSC01, ISHY88, UIY10]. Incrementality [BM97]. incrementalization [SB07]. Indeed [Yas07]. Indentify [KCF84].

Independence [KW12, PPR09, PT16, Tho13, DT14, PPR07, PT10a]. Independent [BG07, CCJ91, DGD02, DTS75, Die96].
Ind01, MNS07, NSW08, TZ12, Han17, NT01. Independently [AU79]. Index [BM89, BM90a, Buc82, Bur83b, Bur83c, DS84a, GPY94b, LC86a, Lom83, OL89, Oto85b, Qui83, TY91, Wil79, Bur83a, Fro81, GPY94a, HM03, LCH +14, McD77, SWQ +14]. Index-Based [OL89, TY91]. indexable [RRS07]. Indexed [Chu91, Chu92, KHT89, Mul72, GB17, Tay89, WM93, TKI99]. indexed-hash [WM93]. Indexed-Sequential [Mul72]. Indexes [Les88, Omi89b, Pip94, FVS12]. Indexing [CJ86, Dum56, KGJG12, Li15, Llo81, Per73, SE89, Tor84, Wil79, WMB94, WMB99, YWH09, CW10, Fly92, LG96, MIGA18, MMG10]. India [RRR99]. Indiana [Van10]. indicator [YD84]. Indices [LR99, Val87]. Indifferentiability [CN08, LLG12, MPST16, BGZ12, BDPV08, GLC08]. Indifferentiable [BGH12, CLNY06, FFS+13, FT12, BGH +13]. Indirect [Bal96, DGGL16, Jol61]. Indirectly [Ols69]. Individual [Jan05, Jan08, Vio05]. Induced [de 69]. industrial [PGV93c, ARA94]. Industry [ANS05]. inaccessible [FSP13, PS12, CV83a, Jan05, Kou93, PY88]. inside-out [AP11]. Insight [CQW08, IEE02]. Installation [LAJK12]. instance [FS08]. instantaneously [DV07]. Instantiated [RR08]. Institute [Ahn93]. Instruction [BOS11, SS83]. instrumentation [Ano83]. Integer [Ano86, Die96, MV90, MV91b, Woe91]. integers [BCS89, Han17]. Integrated [DGKK12, PG17, NM02b]. integrating [ATAKS07]. Integrity [CLS12, Sch01b, Sch01a, Wil96]. Intel [JHL +15]. Intellectual [DGKK12, IEE88]. Intelligence [Kak93, ARA94, LLC89]. Intelligent [IEE11a, LJW +17]. intensive [Shi17]. inter [Kos14]. inter-system [Kos14]. Interacting [LLW10]. Interaction [ZLY +12, Bor81]. Interactive [CBK83, Cer85, CBK85, Dam93, Dam94, Dos78b, GK94, HR14, KG95, MS09, OVY94a, OVY94b, Rad83, Wei07, RWSN07, RW73, TCW +13, MS09]. Interconnection [Fah80]. Interest [ACM82, DT87, OSR10]. interesting [VNC07]. Interface [Vit85, WGM88, Bor81]. Interfaces [DCW91]. interleaved [RH09]. Internal [GL82, GL88, ITP14, LC88, Wil59]. International [ACM81, IJW89, PDH91, ACM94b, ACM11, ACM12, AGK +10, ABG93, ABM06, AFK90, ARA94, VLD82, Ano93, Ano93c, AW98, AAC +01, A +90, AINOW11, AOY +99, AA86, Bai81, BD88, BDS88, BV98, BIP92, Bcl00, Bcl00...
International [Sti93, Sto92, Vau06, Vid90, WY90, IWS91, Yan10, Yao78, Ytr06, YR87, Yu92, Yua92, Yun02, vL94, vdHvH12, ADG08, AMSM09, ACJT07, Bir07, CIM05, Cop95a, Deb03, Gol96, HKNW07, HF13, Wie99, IEE11a, Sch82a].

Internet [Ano95d, ATAKS07, HLC10, MCF17, McN03, She96, SXLL08, ZNPM16].

Johnson-type [SG16]. Join [Adi88, AT91, BM89, BM90a, CS83a, CHY97, DG85a, DG85b, FP89b, Gra93a, Gra93b, Gra94a, Gra94b, Gra99, HR96, KR91, KKKW99, KL87, KNT89, KHT89, KO90, KTN92, LR99, LDM92, LTS90, MLD94, MLxx, M88a, NKT88, NNA12, NP91, OL91, OL89, Omi89b, OL92, PAPV08, PG95, Pip94, RK91, SD89c, SD89a, SD90b, SD90a, Sha86, SM87, Sol93, Spec92, TR02, TY91, Top92, TP95, Toy93, Val87, WYT93, YN+99, Yam85, ZG90a, ZG90b, Zel91, ZJM94a, ZJM94b, ZJM94c, ZO93, ALS10, BMS+17, CAGM07, CyWM91, G05, ISO97, Kha95, KKL+09, LNS11, LEHN02, MMSY94, MUL92, OT89, PCK95, PCV94, RLM87, RG89, SD90d, SM94, SA17, SP89, TL93, UHT95, WL07, NNA12].
Joining [NP91]. Joins [CLYY92, CLYY95, DG93, DG94, DNSS92, GBC98, Gra86, HCY94, HCY97, LR99, LR96b, NNA12, PCL93a, SC90b, SC90a, SC90c, WMYT91, YCRY93, AKN12, BATO13, BLP14, HLH13, JHL15, LCRY93, ML95, PCL93b].

Joint [IWW89, AFI63, AF96, MO92a, IEE92a, IEE01, ZC12].

Jose [ACM11].

Juan [IEE91b]. Judy [Sil92a].

July [IWW89, ACM91c, ACM94b, ACM01, AGK10, ADG08, AMSM09, AN05c, ACJT07, DBVL80, CIM10, DLH79, DL06, GMP95, GJR79, Inc81].

June [ACM84a, ACM03a, ACM07, ACM11, ABM06, BDS88, BV97, BIP92, BRW93, BL88, BF97, FRA90, Van10, HF13, IEE95, LL08, MS95, NG97, RE98, Sch92a, St92a, Vau06, VL94].

Just [Yas07].

JVM [SV15b]. k-ary [Gui76c]. Karlsruhe [HM08]. Karp [GBY90]. Karp-Rabin [GBY90].

Katapayadi [Ram97].

Katholieke [BB89b]. KD [KHT89]. KD-Tree [KHT89]. KDL [PSR90]. KDL-RAM [PSR90].

Kecskemet [BDPV09, BPDV12, DDS14, LAL15, MS95, BPD12].

KEM [CLC14]. Kent [Oxb86]. Kerkyra [Rei88].

Kernel [CSS15, Le90, ZLY12]. Key [ANS97, ANS05, iA91, BD82, Bo079, Boo74, CSS89b, CC87, CC91, CCLC92, CTZD11, CY06, CG90, CS02, DMY97, DL12, Doss93, EAA16, GG98a, GI79, GG90, HB99b, HB99a, HM12, IG79, JH97, KM09, KVK90, KRS95, KRS86, LAK90, LCM94, Lin63, LDY71, LUM73, Men12, MW95, NTY12, PRRR15, RSSD98, RSD92, Ro86, RSO8, SY11, SR63, SSS05, St99, Yao95, Yub82, ZQSH12, And88, BSN96b, CCL91, GL06, GBL94, LW04, LND08, LY72, ML94, Men17, NM02b, Oka88, SD95, Sar11, Shi17].

Key-Exposure [CTZD11]. Key-Recovery [CY06]. Key-Sequential [HB89a, HB89b].

Key-to-Address [LYD71, Lum73, SR63, LY72]. Key-Value [PRRR15, Shi17].

Keyed [Ako95a, BSN96a, KK07, Gon95, Li95, SV06, FIP02a].

Keyed-Hash [KJKR07, FIP02a]. Keying [BCK96a].

Keypoints [MMG10]. Keys [Gon80, Gur74, Oth88, JH90, LMC07, LL87, Oto95a, PBB80, Riv76, Riv78, SD78, She78, Yao95a, FP82, GMW90, Wan05].

Keyword [WW90, LMLC14, ZLC18]. Keywords [Coh98].

Khafre [BS91c]. Kinetic [Rey14].

Kingdom [JB94, ACM94b]. KLIP [GTM63]. Knapsack [CP91c, JG95, Pat94].

Knowledge [BDS98, BCR97, CRdPHF12, Dam93, ISK93, OY94b, Dam94, FNY92, OY94a].

Known [SY11]. Known-Key [SY11].

Knoxville [IEE94c]. Knuth [DM90].

KICD91. Kollisionsstrategien [BI87].

Kolmogorov [CG92, Sch91b]. Komlos [KMS85].

Ky [Rie89]. Kyoto [CGR90, Got93, IEE95b, L895].

L [Sar80]. Label [LQ18]. labeling [TCW13, YSL05].

LaMansion [Nav85]. lamp [McN03].

Landau [SV06]. Landmark [NNA12].

Landmark-Join [NNA12]. Landsat [NMY12]. language [LG78]. Language [Cer81, CK83b, Dit76, FR69, GHJ93, GT63, GG96b, Har85, ISK93, KCB81, LG78, Wil95, BW92, CP95a, CKB83a, Lev89, YIAS98, YBL89].

Languages [ACM91d, DBVL80, BR93, CL83, CKB85, IEE84, Jou85, KU92, NS92, Pat90, ACM91a, AGK10, ADG08, AMSM09, ACJT07, CMB10, DLH79, DL06, GMP95, GJR79, IN81].

LAPI [MS02]. Laplacian [ZWCL10].

Large [ABB93, VLD82, AW99, AAO91, AOY99, BD89, BH85, BCR97, BJC94, BI12, CKB85, CML13, COG86, Chu90, CMB98, DSS04].
Large-Grained [PAKR93].

Large-Scale [GLLL17, Li15, MEK +14, SHF +17, YGC +12, CML +13, Kos14, SXLL08, FES09, Shi17].

Last [PM89].

Last-Come-First-Served [PM89].

Latency [Sam81, SL16, WY00, KLSV12, LDK12, ZGG05].

Latency-sensitive [WY00].

Later [Roe95].

Latin [CHK06, DMPP06, CHK06].

Lattices [KV09, LYY +18, GPV08].

Lava [McN03].

Laws [AK09].

Layer [YSEL09].

Layered [Man12, ZC12].

Layers [SDMS12, SDMS15].

Lazy [AHS92, BJMM94b, BJMM94a, CF92, Hug85, KV91, MV88, VV86, MSV87].

LCCR [Cer85].

LCFS [PVM97].

Leakage [NTY12, ZM99].

Leakage-Resilience [NTY12].

leakage [NTY12].

Least-Cost [OG94b].

Lecture [Dev86].

LEDA [MN99].

Lee [KCL03].

Leisurability [Kue82a, Kue82b].

Leitmotiv [Kah92].

Lemmas [GK76].

Lemmatized [DS84b].

Length [Dit91, Gon81, KLP94, LK94, Lit91, MF92, Men12, Mit73, PHL01, Pea90, Pea91, Sav90, Sav91, ZPS90, ZPS93a, GS94, KL95, LL15, Men17, ZPS93b].

Lengths [Bra84a, Bra85, Bra86].

Less [DH01, GK08, KHK12, LK16].

Lett [Pro94].

Letter [BMB68, CS85c, CS85b, Cha85, CL86, Cha86a, CW91, CO82b, JC88a, TL95, Tro95, Wan05].

Letter-Oriented [CS85c, Cha86a, JC88a, TL95, CL86, CW91, Wan05].

Leuven [BBD09b, BW92, PGV93c].

Level [CJC +09, BGG12, DAC +13, HL94, Inc81, LDK12, MTB00, SDR83b, TK99].

level-set [BGG12].

Levelled [Kue82a, Kue82b].

Leitmotiv [Kah92].

Lemmas [GK76].

Lemmatized [DS84b].

Length [Dit91, Gon81, KLP94, LK94, Lit91, MF92, Men12, Mit73, PHL01, Pea90, Pea91, Sav90, Sav91, ZPS90, ZPS93a, GS94, KL95, LL15, Men17, ZPS93b].

Linear [Sl92, Sl93].

Linear-density [KD92].
Linearizability [WVT90, Kor08].
Linked [Fei87, Pa92, ZKR08]. Linking [Bob75]. Linkless [CJC+09]. links [EVF06].
Linux [USE00a, Lev00, LACJ18]. Lisbon [CIM+05]. Lisp [LFP82, He89, Nam86, FH96, GSI+82].
Lisp-Based [FH96]. List [McI82, Ter87]. Lists [BH86, HK87, LLC89, Lyo79, MV79, Kno84, ST85, SS06]. literate [Sab94]. little [DMPP06, PES+12]. Ljubljana [EF12].
Load [HC13, IK92, KJC11, LRLW89, LRLH91, Omi91, IRS12, RK91, Top92, TP95, WL07, KL08, SX08, TLL18, WZ12, WTN09, XCCK09]. load-balanced [TLL18]. Load-balancing [WL07, XCC09]. Loading [vdP72]. Local [MD97, MNY81, MJT+02, PKW09, RT81, SY08, BGG12]. Locality [BT12b, CSSP15, Chi91, Chi93, Chi94, IMRV97, Kaw15, MNP08, OWZ14, OTHK11, AT18, HAK+16, HFZ+15, HFF+17, LNS11, LWX18, LW+17, QZD+18, SP12, STS+13, SA17].
Locality-Preserving [Chi91, Chi93, Chi94, IMRV97].
Locality-Sensitive [BT12b, OWZ14, HFZ+15, HFF+17, QZD+18, STS+13, SA17].
Localizing [DD11, DSJN09]. Locally [KS88a, Oto88b]. Locating [WL12]. Location [CCF04, TY03, ZWH17].
Location-Based [ZWH17]. Lock [AR16, NM10, NK16, ZL12, SS06].
Lock-Free [AR16, NK16, ZL12, SS06]. locks [ALS10]. Lofthus [Hel94]. log [FHC89]. logarithm [Gib91]. Logarithm [vW94]. Logging [Moh00, Moh93]. Logic [AR16, BM87, BAN89, Cra85, EIE84, Las87, dKC94, BW92, DLM07, YIAS89]. Logical [CPP08]. Logs [SK99]. LOKI [BS91, Km92]. London [Ano93a]. Long [Mit12]. Longest [DKT06, Gon81, PT12b]. Look [CP91b, Sna87, AY14, CP91a]. look-up [AY14]. Lookup [CN07, HDCM09, Jai89, Jai92a, Jai92b, Jai9x, Pri71, She78, Tro06, YBQZ18, BLC12, HXLX13, Mad80, MSK06, MLP07, MLP09, MA15, PT12b, WZT+13, WTN07, ZGG05]. Lookups [Pa90, BM01, IGA05]. Loss [FC87b]. Lossy [PW08, Wue12]. Louisiana [ACM91c, ACM97a].
Louisville [Rie89].
Low [GI12, HMB07, HGR07, Les88, LYW+18, PSSC17, TBC+05, ABO+17, BOY11, CZ14, HM03, MA15]. low-area [ABO+17, BOY11]. Low-Cost [GI12, MMN07]. Low-overhead [HGR07].
Lower [DKM+94, Gadi96, Gou97, MNP08, OWZ14, Yao83, DKM+88, DKM+91, Sun91, Sun93]. lowering [SS+13]. LR [HC87]. LSH [AT18, CKM14, CK15, LCH+14, LW+17, ZNP16].
LSH-Preserving [CK15]. Lucifer [BS91c].
Luxembourg [Bir07]. LXCloud [LACJ18]. LXCloud-CR [LACJ18]. Lymphocytic [SSSa01]. Lyra2 [ASBd16].
M [Sar80]. MA [ACM84a, Ker75, Kil05, CP91b, ACM86a, CP91a]. MAC [PV95, PvO95, Pre97a, SRR98, SY99, Egu90].
Machine [And88, CCJ91, DGG+86, DGS+90b, DGS+90a, GD87, GSI+82, Hsi83, KLlad93, KLM96, KTM03a, KTM03b, KTM03c, Tan83, EBD91, Vax85, BM90b, KK96, RH92].
Machine-Independent [CCJ91].
Machinery [DT77]. Machines [BF89, adH93, Mey93, SD89b, Sch90b, SD90b, SD90a, TR02, CHS+18]. MACs [DL17, GO07, PV95, PO05, Pre97b, Saa12].
Made [Cic80b, PV07]. Madison [FMA02].
Magnetic [Wri83]. MAHT [CrPhF12].
Main [AP93, CEF95, CrPhF12, DKO+84b, DKO+84c, DKO84b, KR91, KL87, KLM85, Kum89a, LC86a, SPW90, Sha86, TPF95, AK12, AP92, BAT013, DKO+84d, JHL+15, Pro94]. Main-Memory [KR91, BAT013]. Maintaining [Woe06b].
Maintenance
[Buc82, Bur83b, Bur83c, Oto85b, Bur83a].
Making
[BR97, Cob94, Hel91, LT09, CCA+12].
Malicious
[AAE+14, malleable
[BCFW09].
Malo
[BM, QG95].
Management
[ACM75b, ACM81, ACM82, ABM06, BL88, BJ93, BC90, CLM89, DT87, EE86, Fl077, FMA02, GM90, Gho77, Gho86, ISK+93, KM09, LC86a, Lie81, McC79, MKF+16, Nav85, SW94b, SC77, Sto92, ZZ83, ZQSH12, DAC+13, FNY92, FR994, HF13, SW94a, WM93]. Manager
[Pro89].
Managing
[WMB94, WMB99, WYT93]. MANETs
[JFD90]. Manipulation
[GT76, Ng79, Pon87]. Manual
[RWS07, Sil02a]. Manuscript
[FLF11]. Many
[BGF88, CLZ12, JWM+18, Lia95]. many-body
[BCFW09]. Many-core
[ACM82]. Map
[GZ93, LFD17, Som99]. Maple
[PVM97]. mapped
[SV15b]. mapper
[YTHC97]. Mapping
[Oto84, WH83, YD85]. Mappings
(OS83a, OS83b]. MapReduce
[LMD+12]. maps
[HC14, JBWK11]. March
[ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM91b, AH03, Bir07, CHK06, Deb03, IEE88a, IE11a, JB94, RNT90, SM08, TWW77, Ytr06]. marching
[ZRL+08]. Marina
[ACM82]. markerless
[JBWK11]. Markets
[Mir71, Markov]. Marseille
[Ng79]. marshalling
[LPSW03]. Maryland
[ACM90, FNY92, Jaj90]. Marz
[Lat88]. Mass
[Col93]. Massachusetts
[BV89, IEE05, MS05]. massive
[HAK15, LRU14, Vit01, XCC09]. Massively
[AKN12, Jaj90, MK93, RH92, YLB90, Yen91, CLZ12, Fis87]. Massively-Parallel
[MK93]. Match
[AU79, Bur75b, Bur76b, Bur76c, Bur78, Bur79, CL82, Chn90, Jag91, Mor83a, RLT83, RSD85, RSS90, RSS92, YD86a, AT18, CC88a, Fal88, Hua85, RSS89a, RSS89b, Riv74a, SDR83b, YD86b].
Matches
[Dav73, PRK98]. Matching
[iA94, BH85, CCH90, CG79, Gri79, Han90, HCKW90, HW08, KSS886, KR81, KPS92, LLLC17, RH92, RH95, TK07, ASM71, CLS95, CWC10, DKT06, DC94, GBY90, HC14, HW88, ISY88, KF92, KSS9a, Kim99, MHT+13, PT12b, Sch91a, TKT+89, TLLL07, TLLL09, XML11]. Materialized
[BM90, BM90a]. materials
[SE89]. math
[McN03]. Mathematica
[Naj92]. Mathematical
[BC39, LG78, LII92, NAK+15, Sed83a, GT80, Rov90, Win78].
Mathematics
[FH96, GK81, GK82, Knu74]. mathématique
[LG78]. Matrices
[ASW07]. Matrix
[AN96, Atk75, BH90, vSDW74b, vSdW74a, BT90, CFYT94, JCC00]. Matsumoto
[PGV93a, PGV90a, PGV93b]. Max-Poly
[DSS17]. maxima
[M184]. Maximizing
[KHK15]. Maximum
[AHS92, GB10, KV91, MV88, Pet13, CKKK09]. Maximums
[MNY81]. maxmin
[AI89]. May
[ACM75c, ACM75a, ACM76, ACM77b, ACM81, ACM84b, ACM86b, ACM88b, ACM89c, ACM90, ACM91e, ACM94c, ACM96, ACM97b, ACM98, ACM02, ACM08b, ACM12, AFK90, ARA94, BAI81, Bor81, BJ93, Dam90a, Dam91, DRT87, De 95, FIP93, GMJ90, GQ95, He94, IEE85b, IEE94b, IEE94c, KLT92, Lie81, LT85, Nav85, PV93c, QG95, Rue93, SW94b, SW94a, Vat06]. McGill
[CCC94]. MD
[FIS87, IEE02, PV95]. MDx
[P95]. MDx-family
[SRRL98]. MDx-MAC
[PV95]. MDx
[Ano95a, WFLY04]. MD5
[WFLY04, WJS810]. MD6
[BKMP09]. MDC
[LS15]. MDC-2
[LS15]. MDS
[TW07]. MDx
[PV95, SRRL98].
Min-Hash [LK10]. min-hashes [GP08].
min-hashing [CWC10]. Min-Wise [Ind01].
Min/Max [DSS17]. Min/Max-Poly [DSS17].
Minimal [BPZ07, BH86, CKB83b, CKB83a, CS83, Cha84b, Cha84c, CS85c, CS85b, Cha85, CS86, CL86, Cha86b, CC88b, CT12, Cic80a, Cic80b, CO82b, CHM92a, CHMR92b, CM93, DH01, Die07, FCDH90, FCDH91, FCH92, FHC92a, GH91a, GH91b, HT01, Irbxx, JO80, Jae81, JD12, KH86, MWCH92, Pag99, PV92, Pes96, Sag84, Sag85a, ST85, TW91, Tro92, Tro95, Win90b, Win90a, BBPVI, FHC89, FHC92b, HK86, SH92, SH94, TK19].
Minimean [Yao95]. Minimization [YY01].
minimized [CVR14]. Minimizing [CCY91].
Minimum [BM99]. Mining [CL05, CLC06, CT12, HC02, JL14, LRU14, PCY95, PKW90, SK98, YGC + 12, HC07, Nic17].
Minneapolis [SW94b, SW94a]. Minnesota [SW94b].
Minor [Gri77]. Minus [NXB13].
Mix-Compress-Mix [LT09]. Mixed [LMLC14]. Mixing [Cai84, LMPW15].
MJH [LS15]. ML [Ano92]. MN [SW94a].
Mobile [DF01, KKRJ07, KRJ09b, YG07, HKW05, QZD + 18, ZC12]. Modal [MLHK17, WSZ + 16]. Mode [PHG12, Wan05].
Model [BG80, Bat81, BG82, CLP13, GadHW96, IJK13, ISK + 93, KSSS86, KSF84, LW88, LT12, NY85, Ram88a, RH92, RH95, Sev74, VC85, WYD + 18, Web72, Gv08, GMP95, HW88, LMSF89, MB00, Sun91, TMB02]. Model-Based [KSSS86, LW88, HW88].
Modeling [BY89, LIW10, ACM94c, PCV94].
Modellisation [Lit77b]. Modelle [Kue82a, Kue82b]. Models [AT91, GHJ + 93, Kue82b, SK88]. Modern [Ram97, Ros06, Ros07, Bis12, BMQ98, DLH + 79, GK05, KKL + 09]. Modes [AR17, LLG12, SY11, Sas11, WPS + 12, BDPV14]. Modified [HPC02, KGGJ12, Kaw85].
Modula [Fel88, SW86, SW87, BH86, ST86, Sed93].
Modula-2 [Fel88, SW86, SW87, BH86, ST86].
Modular [GSC01, LT09, ISO97, Me95]. Module [KRJ09b].
Modulo [CS87, CLC92, Gir87, Kak83]. Modulo-Gir87. Modulus [PV92]. molecular [IG94].
Moment [TZ12]. Monitoring [SS83, SL + 07]. monotone [BBPVI].
Monte [BF83, Rey14]. Monterey [Col93].
Montgomery [WS03]. Montréal [ACM02, CCC89, YJ14, Lev95].
Morphological [CRdPHF12]. Moscow [Ers58b]. Most [AT93, AT90, ESR14].
MS [JC88b]. MS-DOS [JC88b]. MTAC [GT80]. Muenster [Dit76].
Multi [AP93, BATÔ13, BSH12, BR06, CS83b, CC87, CS87, Cha88, CHY97, CLS12, CJC+, Coh84, FL08, FLP08, FLP14, GPY94a, GPY94b, HY89, HY93, HRS16, KR86b, KR86a, KL87, LÖON01, LRY + 15, MB00, MNY81, Ngu06, PADHY93, RSD09, SD85, VB00, WSY + 16, YNW + 09, YLB90, ZJ09, AKN12, Ano83, CLC + 14, HR93, HL94, KKL + 09, LJW + 17, Pro94, Sar13, TL93, XMLC11].
Multi-Agent [BSH12]. Multi-Attribute [CS83b, CS87, HY89, RSD90, HR93].
Multi-core [BATÔ13, AKN12, KKL + 09].
Multi-Dimensional [HY89, MNY81, Ngu06, XMLC11].
Multi-Directory [PADHY93, AP93, Pro94].
Multi-Disc [CC87]. Multi-Disk [Cha88].
Multi-Entry [YLB90]. Multi-granular
multi-graph [GK95, FGK95].
Multiple-Attribute [GK95, FGK95].
Multiple-Collision [HHL10].
Multiple-Key [Boi79, RSSD89b, RSSD92].
multiple-set [HKL12]. multiple-valued [DH84]. Multiplication
[AN96, GKh80, Woe01, Bis12].
multiplications [LK16]. Multiprocessor
[DG85a, DG85b, Ger86a, Ger86b, KTN92, MLxx, Omi91, RS92, SD89b, SD89c, SD89a, Sch90b, SD90b, SD90a, TNKT92, ZJM94b, SD89d, ZJM94a, ZJM94c].
Multiprocessors [Bor84, LTS90].
multiquene [Has72]. Multiset
[MSTA17, CP95a]. multisets
[Bu86, NTW09, RR07]. multisignature
[Oka88]. Multitimer [Bur84, Bur82].
multithreaded [GK05]. Multithreading
[Cro98, MIGA18]. Mutiuser
[ZG90a, ZG90b]. Multivariate
[AM07, OS10]. Multivariate [DY08].
Multiview [SSL18]. Munich [BRW93].
Masurer [Die78]. MuR [LYR15].
Mun-DPA [LYR15]. Mutual
[CJP12, GH2, CJP15, FF90, SPLHC14].

N [Sar90, FHC89, ISO97]. n-bit [ISO97].
Naehrig [FT12]. name [WTZ13]. named
[WTZ13]. Names [ABC16, Dos78a].
Nancy [Jon85]. Nanowire [Rey14]. NASA
[Fis87]. Nashville [ACM94c]. National
[??69, Fis87, Oxb86, Ano83, IEE94b].
NATO [Ano95c]. Natural [Cer81, KCB83b, Har85, KCB81, LG78, YMI89, KCB83a].
naturel [LG78]. NC [IEE98]. Near
[AI06, AI08, BT89, DD15, LQZH14, GJM02, SB97, Yuv75]. Near-Associative [DD15].
Near-Duplicate [LQZH14]. Near-Optimal
[AI06, AI08]. Near-perfect [BT89, SB97].
Nearest [AE18, AI06, CLS5, MW09, PACT09, SY08, AI08, CW93, FHZ9, HFZ15, LCH14, SWQ14, TYSK10].

nearly-constant
Necessary [IH95, Rus92, Rus93, Rus95]. Need [HR04].
Negative [DFD+97, SB95]. Neighbor [AEP18, AI06, CL58, MW99, PCM15, PACT09, SY08, AI08, CW93, FHT9, GMJ02, HFZ+15, LCH+14, SWQ+14, TYSK10].
Neighbor-sensitive [PCM15]. Neighborhood [DHL+94, DHL+02, D+92, SG72].
neighbors [Yuv75]. Neither [CP91a, CP91b]. neophytes [Gre95].
nested [FK89, MMC10, TMB02]. netflow [LDK12]. Netherlands [dBvL80, CP87, vL94, AW89].
Networking [ACM04, LCK11, LZ16, WBWV16, WTZ+13]. Networks [DK09, DPH8, Jia98, Jia92a, Jia92b, Jiaxx, JL80, MW99, KSLU4].
neuer [BI87]. Neural [Kak93, WWG+18]. Nevada [IEE10, AFR19]. Next [DCW09, She91, CCA+12, CT10, KKP92].
Nineteenth [ACM08a, IE95]. Ninth [ACM77b, NS82, ACM77a, ACM97b, Kar98, IC95, ST83b]. NIPS [TK07]. NIST [Bou12, RRS06]. Nixdorf [adHMR93]. NJ [GMJ90]. NL [DSS17]. NMAC [CY06, RRO8]. NMAC/HMAC [RR08]. No [AKS87, CP91a, KR01, CP91b, GBL94, Pro91a, Sar90]. node [LG13, THS97, WL07]. Nodes [BGF88, RAL07]. Non [BCF09, Boo74, FNS988, KS86, KS87b, LT12, LS96, RWSN07, SD78, SA97, TSY98, ZH18, AY14, Ald87, CCA+12, ESR14, FP82, MLP07, MP16, PBB012, Sar15, SX16, LR88]. Non-biased [TSY98]. non-blocking [PBB012]. non-compressing [MP16].
non-cryptographic [AY14, ESR14]. Non-expansive [LS96]. Non-interactive [RWSN07]. non-iterative [SXL16].
Noordwijkerhout [dBvL80]. NOrec [DSS10]. Norm [Aum09, HFF17].
Neutralization [RGNMPM12]. Norway [Hel94, Ytr06, Ano95]. NoSQL [EH17].
Nostradamus [KK06]. Notary [Cip93]. Note [Bob75, CC91, Dit91, GIS05, Gei95, Gei96, Gur73, C01, U172, YAO80, Bay73b, FH79, Sar80]. Notes [Dev86]. Nothing [SD99c, SDR99, SRY99, SD99d]. Nouvelle [Lit79a]. Novel [DR11, LYY+18, cLM07, NW07, PHG12, YSW+W, ZZM17, HLL18, LMP+08].
November [ACM87, ACM94, ACM03, ACM04, AF169, FNY92, Go94, adHMR93, IE82, IE88d, IE89, IE90, IE91a, IE93, IE02, IRR93, LCK11, PS95, ST83a, ST83b]. NP [FS08]. Noroff [Hol87]. NTRUSign [ZJ09]. NTRUSign-Based [ZJ09]. Number
[Ano86, Bat75, Dos78a, Gui89, WL12, Aam03, ASW87, BK07a, CP13, HC11, Hua82, KW94, TSY98]. **numbering**

[Cli95, DM11, VNC07]. **Numbers**

[BJMM94b, BJMM94a, Coh98, HSR+, OG94a, OS10]. **Numerals**

[Hol87]. **NV** [CCA+, NV-Heaps]**NY**

[ACM12, GSW98, Mat09, IEE80b, IEE88c]. **O**

[FHC89, MMC01, Vit85]. **OBDD**

[BJMM94b, BJMM94a, Coh98, HSR+, OG94a, OS10]. **OBDD-Size**

[AC12, GSW98, Mat09, IEE80b, IEE88c]. **O**

[FHC89, MMC01, Vit85]. **OBDD-Size**

[AC12, GSW98, Mat09, IEE80b, IEE88c]. **O**

[FHC89, MMC01, Vit85]. **OBDD-Size**

[AC12, GSW98, Mat09, IEE80b, IEE88c]. **O**

[FHC89, MMC01, Vit85]. **OBDD-Size**

[AC12, GSW98, Mat09, IEE80b, IEE88c]. **O**

[FHC89, MMC01, Vit85]. **OBDD-Size**

[AC12, GSW98, Mat09, IEE80b, IEE88c]. **O**
paradox [RK15]. Parallel
[ACM91c, PD191, And88, Ao93d, AERM09, AR17, AT91, BFG+95, BH91, Bis12, BRW93, Bor84, Bur81, CdM89, CdM90, Chi91, Chi94, CT96, DNS92, DA93, DS97, GST90, GM94, GM08, G177, Gra94c, GZ99, GC90, HB93, HNS84, HC07, HCY97, IG77, Ján90, Ku86, Kr91, KJ11, KÖ90, KT92, LLLC17, LPP91, LPP92, MD97, MLD94, MV90, MV91b, Mat93, MK89, Mil85, MK93, NM02a, PAKR93, Pap94, PK89, PRM16, PSR90, PW94, Rag93, Ram9b, RS92, RH92, RC94, RK91, RNT90, SK01, SD89c, SD89a, SV94a, SPW90, SV93, SK98, SA17, TR02, TK85, Top92, TP95, TNKT92, WPY90, WP91, WS93, WYT93, Woos99, Wu85, IWS91, YLB90, Yen91, YB95, ZWH97, ZO93, dKC94, vW94, vdVL12, parallel
[CyWM91, Cra85, Don91, Fis87, GLHL11, HK95, KP92, MV91a, MP90, Mol90a, Mol90b, OT89, PCK95, RLM87, SK88, SD89c, STS+13, TL93, UHT95, War14, adHMR93, KL95]. parallel-DM [KL95]. parallelism [ASM17, Ged14, MMSY94]. parallelizable [MP16]. Parallelizing [GK12b, WDYT91]. Parameter
[AU79, Bur75b, Bur76b, Bur76c, Bur78, Bur79, Can97, CLD82, Chn90, CY06, Cor02, Jag91, Lar80b, Lar80c, Lar82b, Lar82c, Lar82l, Larxx, LK110, Mor83a, PF88, RLT83, RSD5, RSSD89a, RSSD89b, RSSD90, RSSD92, TGGF10, YD86a, CC88a, Fa88, Hua85, Riv74a, SDR83b, SNW06, YD86b]. Partial-Domain [Cor02]. Partial-Match
[AU79, Bur75b, Bur76b, Bur78, Bur79, Jag91, RLT83, RSSD90, RSSD92, RSSD9a, RSSD9b, Hua85, Riv74a]. Partial-Relation [PF88]. Partially
[PCL93a, PCL93b]. particles [Lia95]. Partition [LKI10, LC96, WZ12]. Partitioned [Ger86a, LR96a, NKT88, SW91, Ger86b, HKL07, MZK12]. partitioner [KKP+17]. Partitioning
[Bre91, Ged14, PFM+09, SRS16, WBWV16, ZRT91, vM39, CCKK09, CKKW00, EH17, HAK+16, Kim90, LL13, PCK95, SKD15, UHT95, AP11]. partitions [DKRT15]. Partly [OTKH11]. PASCAL
[Dir76, Hill88, HS84, Dir76, GBY91, Hej89, Sch76, TA81, TA86]. Paso [ACM78b]. Pass
[LMD+12, OGAB14, YDT83]. Passbits
[MB03, Bur05]. Passed [Gra94b]. passive
[RW07]. Password
[ASBD16, GAS+16, JK11, KV09, WGO0, BSNP96b, GL06, KCL03, Ku14, KCC05]. Password-Based
[KV09, BSNP96b, GL06]. Pastry [Her07]. Patch [BI12, BZL+15]. PatchTable
[BLZ+15]. Path
[GO15, CVR14, CHL07, VNC07]. Paths
[Kul84, AAB+92, VNC07]. Patricia
[KS12]. Pattern
[iA94, BT94a, BT94b, CG79, Fre90, Gri79, IEE88d, KR81, TK07, CL95, ISHY98, Kim90, Schd1a, ZO13, YIA98]. Pattern-Matching
[KR81]. Patterns
[BH85, CLC06, HSPZ08, OTKH11, SK98, BCCL10, KRM09]. paucow [DMPP06]. Pay
[LHC05]. Pay-Word
[LHC05]. payment
[LHC05]. PCPs
[FS08]. PDE
[GZ99]. PDEs
[Gri98]. Pebbled
[Dev99, CM01]. Peer
[CCF04, JXY07, KLSY07, KS12, LMSM09, PFM+09, SM02, LMSM12, WSH+07]. Peer-To-Peer
[PFM+09, CCF04, JXY07, KS12, LMSM09, SM02, LMSM12, WSH+07]. Peers
[RMB11]. Pennsylvania
[ACM76, LFP82, ACM96, HB93, IEE92b].
Pentium [BGV96, Bosxx]. Peoples [Ano83]. peptides [MGA18]. Per-Flow [NS16b, SL16, HKL04, LMP+08]. Perceptual [LC12, MV01, MV02, NS16a, RGNPM12, SB14, THY+18, WDP+12]. Perfect [AN96, AA79b, AA79a, Ari94, BHIMM12, BBD+82, BBD+86, BS94b, BS94a, BW98, Bila00, Bila95, BPZ07, BT90, BT94a, BT94b, BH86, Bur92, BC90, Cer81, CKB83b, CBK83, Cer85, CKB85, CBK85, Cer87, Cer88, CLD82, CS83a, Cha84b, Cha84c, CS85c, CS85b, Cha85, CS86, CL86, Cha86b, CC88b, CCJ91, CW91, CL05, CLC06, CT12, CJ+99, CR583b, Cic80a, Cic80b, CO82b, CHK85, CHM92a, CHM92b, CM93, CHM97, Dat88, DKM+94, DH01, Die07, DJS80, DJH83, Do89, DM11, FM96, FCH88, FCH90, FCH91, FCH92, FHC92a, FKS4, FH15, Get01, GKH91a, GKH91b, HT01, JO80, Jae81, JD12, KHD8, KM86, KM88a, KCB81, Kra82, KP94, LR85, LH06, LLLC17, Ma92, MWCH92, MWHC96, Meh82, NRW90, Nil94, OG94a, OG94b, Pag99, PV92, PG95, Pes96].

Perfect [RL89, RP91, Ram92, SB95, Sag84, Sag85a, Sch90a, SvEB84, Spr77, Tro92, Tro95, WX01, Win90b, Win90a, Wol84, YDT83, YD84, YD85, AAB+92, AG10, BJ07, BBPV11, BS94c, BT95, CBK81, CBK83a, CK89, CL09h, Cze98, DKT94, DKT95, DKT96, DKM+91, DHW08, FCH89, FCH92b, G89, H8k6, Han17, HM93, JWM+18, Lia95, LC13, MV08, M195, Pag01, RB91, SB97, SS92, ST85, SH92, SH94, SL88, Sil02b, TK99, XMCL11, WC07]. Perfectly [CMR98]. Performance [ACM04, AP93, ANS09, BM89, BM90a, Brel91, Bur83c, CL85, CS87, CS87, Chr84, CH94, DGG+86, DR92, DadH92, DS97, Don91, ESIJ14, FC87a, Fla81, Fla83a, Flo87, GD87, Gra88, Gra89, Gra93a, Gra93b, Gri74, Hac93, HSMB91, HC13, IEE94c, IG77, KS89a, Kha95, KK96, KTN92, Kue82b, Kum90, Lar80c, Lar81, Lar82a, Lar82b, Lar85c, LCK11, LLL09, LMSF89, Lit84, Lit85, Lon88, LYD71, Lun73, Lyo83, MXL+12, Mac95, ML86, ML94, MY79, Mil85, Mul85, NM02a, NP99, Omi91, Omi92, PB80, Pro94, Ram89b, RZ97, RSSD90, RLH90, RLH91, Role94, Roe95, RT87b, SD85, SD89c, SD89a, Sch79b, SC90b, SC90a, SC90c, She91, TNKT92, TM96, Tym96, Vit83, Yen91, YB95, BM98, BW89, CAGM07, CF89b, HM03, Kon93, LLA15, LY72, MA15].

Pittsburgh [LFP82, ACM04, IEE92b].
PKC’98 [HPCC02, HKKK10], PKC98-Hash [HKKK10]. PKE [Zha07]. PKI [YY01].
Place [Dos78a, IEE84]. Placement [MEK+14, PRRR15, BPT10]. Plagiarism [CH12]. Plains [IEE88c]. plane [AII89].
Principal [Cha88, MW09, SA97, US09].

Principle [Dam90b, FDL86, Gib90].

Principles [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM87, ACM88a, ACM89b, ACM91a, ACM91d, ACM91a, DK02, DK15, Van10, HF13, LL08, Pre94a, Ull82, Wai88, Zhe90, KKP92, Sta06b].

Print [Cip93].

Priority [AFK83, AFK84, RT87b, GJM02].

Privacy [Ano95d, BJL16, BBR88, GZX14, QZD].

Privacy-Preserving [BJL16, GZX14, QZD].

Probabilistic [Bla00, BK07b, Fla83b, FM85, Pit87, Sch91a, Tsa96, WVT90, Yao83, CMR98, SD95].

Probabilities [Ald88, PRK98, vM39, Ald87].

Probability [Fel50, Gon80, LL83, NY85, Ram88a, MV91a, NN90, Nil94, Ram87, Sar11].

Probe [AA79b, AA79a, Gon81, OT91, Spr77, LJW +17, Mil99, Pag01, SS88, SS90b, Sun93].

Probes [Lyo85, Ros06, Ros07].

Probing [Ald88, BBS90, Clc84, FPV98, JV16, Km98, Lar85b, Lyo78a, MY80, PPR09, PT16, Pet13, PK87, PVMM7, SL16, TZ12, VP96, VP98, Ald87, Jan05, LJW +17, PPR07, PT10a, Ram89a, Vio05].

Problem [DSS17, DM90, GB10, HP63, Hop68b, Mit73, NAK +15, Val15, BC06, DHKP97, HCF95, LP04, Loh89, Sun91, Sun93].

problem-based [BC06].

Problems [DJRZ06, FHMU85, Yub82, ZO93, AMP15, CP95a, CO82a, JWM +18, WZ12].

Proceedings [ACM84a, ACM88a, ACM91a, ACM91b, ACM91c, ACM04, ACM12, Ano85a, ODB89, AW89, Bar83, BV89, BRW93, BL88, CRS83a, CGO86, DSS84, Gil77, Got83, ICD87, CTC90, IEE02, Jaj90, Jon85, KLT92, Lak96, LCK11, Lev95, LSC91, Ros74, WGM88, YR87, Yua92, vvhH12, ACM81, ACM91b, ACM07, ACM08b, ADG +08, AMSM +09, Ano83, AAS6, Deb03, Fis87, Van10, HL91, HF13, IEE01, Jen76, Mo92b, SM12, USE90, Win78, ACM94d, 769, ACM75a, ACM79, ACM82, ACM83a, ACM83b, ACM84b, ACM85b, ACM85a, ACM86b, ACM86a, ACM87, ACM88b, ACM89b, JW89, ACM89c, SDA90, ACM90, PDI91, SDA91, ACM91c, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM08a, ACM11, AF63,ABB3, ABM06, AH03, Ano92, AAC +01, A +90, AIOW11, AOY +99, BD88, BDS88, BIP92, BF89, Bor81, Bri92, BD08, BJ93, CP87, CLM89, Col93, CHK06].

Proceedings [Dav91, DT87, DSZ07, EF12, Fei91, FMA02, Fra04, Fre90, GM90, Go94, GSW98, HB93, He94, IEEE09a, IEEE09b].

Proceedings/Ninth [ICD93].

Proceedings/Seventh [ICD91].

Proceedings/Third [ICD87].

Proceedings/Second [ICD87].

Proceedings/Process [FS82, Pro94].

Processes [WB90].

Processing [APV07, BG92, CCM +17, Dan13, Els84, GST90, Ger86a, Ger86b, Gil77, GSVL1, Gra92, Gra94c, HB93, Har85, IJ10, IJW06, IABV08, Pip94, PK89, RK89, SB90, Sch90b, SD90a, Sha91, So93, SPB88, Spe92, Tha88, Toy86, WPY90, YJWS91, YKYY83, BZZ12, Bra88, CP95a, CEEK00, Ged14, GC90, HLH13, Kan91, Kan93, LCL99, RAD15, Ros74].
Sab94, SK88, WLLG08, YMI89, Yu92].

Processor [Adi88, KL87, SM87, YCRY93, ISH’91, LCRY93, TLLL07, YNW’09].

Processors [Pap94, Ros06, Ros07, Wil59, JHL’15, KL89, KW94, TLLL09, YIAS89].

Producing [DV08, RPV02, Win83].

Product [Du86, YGC’12, OS14].

Productive [Bor81].

Profile [SSU’13].

Profile-guided [SSU’13].

Profiling [VNC07].

Program [Hil88, Kru84, Mai83, Mai92, Meh82, SS80, BZZ12].

Programmable [HM12, HK12b, LT12].

Programmer [Cro98].

Programmiersprache [Dit76].

Programming [LFP82, ACM91d, dBvL80, BM87, BGS96, Dit76, Dun89a, Ers58a, Ers58b, GG86b, Har71b, Har73, IE84, Jou85, Knut73, Knut75, Kui92, Mau68, N882, Pat90, SSS05, dK94, ACM91a, AGK’10, ADG’08, ALS10, AMSM’09, ACJT07, BW92, CIM’05, DLH’79, Er86, Sab94, TMW10, YIAS89, BW92, Las87].

Programs [AR16, Hea72, PAKR93, Ers58b, FDL86, MP90, NMS’08], progress [Wol93].

progressive [XMLC11].

Progressively [DVS’14].

Project [DGS’90b, DGS’09a, Tro92, NM02b].

Projecting [AT93, AT90].

Projection [Bur78, SPW90, AS89].

Projective [ACP90, HK12a, KV09, FH15].

PROLOG [CJ86, Bor84, Coh84].

Proof [CZLC12a, CZLC14, Cor02, LYY’18, LT12, SDW14, ZM17, DLM07],

proofing [CHL07].

Proofs [CZLC12b, CS02, KK12, KK18, NTY12, WG09, Wee11, Li10].

Propagating [DSSW90a, CML’13, DSSW90b].

Properties [Bal05, Bol79, CS83b, CLC92, Lit85, RS12, TS85, WS76, ZMI91, GW94].

Property [BR06, DGK12, FLP14, Rja12, SRY99, Ter87, FL98, FLP08], proposal [LLJ15].

Proposed [CP91c, HPC02].

Protecting [LMJC07].

Protection [DF01, DGK12].

[LLW10, ZLY’12].

Protein-Protein [ZLY’12].

Protocol [Nie95a, BT12a, Dam93, GI12, HMN07, HCPLSB12, HLC10, JRPK07, JK11, OYV94b, TY03, CJP15, Dam94, GB17, LW04, OYV94a, SPLHCB14, CJP12, JL14].

Protocols [LLL09, SDK91, KLL’97].

Provable [ANS09].

Provably [DY90, DY91, HM96, JP07, LM95, Sho96, IN89, SXL16].

Provably-Secure [DY90, DY91, HM96].

Provide [Sch01b].

Providing [IEE07].

Proving [KL08, KW94, TLLL09, YIAS89].

proxies [TC04].

proximity [SX08].

Proxy [ZJ09].

Pruning [CT12, MD97, HC02].

Pseudo [DW83a, FL11, FWF’12, dW83b, MFK’06, PVCQ08, TSY98, WS13].

Pseudo-Associative [DW83a, dW83b].

pseudo-collision [WS13].

pseudo-random [MF’06].

pseudo-randomness [PVCQ08].

Pseudo-structural [FL11].

Pseudochaining [HP78].

Pseudodiversity [VZ12].

Pseudorandom [BK12, NAK’15, OS10, SP91, Aam03, CP13, VZ12].

PUB [Nat95, FIP93, NIS93].

Public [ANS97, ANS05, BBR88, CLP13, Cip93, CS02, Dam87, HR04, LRY’15, NTY12, LW17, Oka88].

Public-Coin [CLP13].

Public-Key [CS02, NTY12, Oka88].

Publication [Nat92].

publish [MJ14].

publish/subscribe [MJ14].

Puerto [IEE91b].

Purpose [Chi91, Chi94, Sch91a].

putting [Col93].

pyramid [MHT’13].

QC [JY14].

Quadratic [Ack74, AC74, Bat75, Bel70, Bel72, Bel83, BI87, Bel75a, Day70, Eck74b, HD72, Lam70, Rad70, NH74].

quadratischen [BLS7].

Quality [THY’18, YW09, GW4].

quality-size [GW94].

Quantification [GC95].

Quantile [KS87b, KS89a].

Quantitative [Hea82].

quantities [Bee83].

Quantization [YW09, YGC’12].

Quantum [BB09b, BHT97, BHT98, MKAA17, BD08, BB09b].

Quark
Quasi-Bicliques \cite{LLW10}. Quasi-perfect \cite{Cze98}. Quasi-Pipelined \cite{MD05}. Quaternary \cite{KP96}. Québec \cite{ACM02}. Queensland \cite{SZ93}. Queries
\cite{APV07, Bur75b, CLD82, Cha84a, CHY97, DHL+94, DHL+02, GST90, KS12, LCML94, LOY00, LGF+17, LB07, ML86, PAPV08, PF88, SD90b, SD90a, SW91, Sol93, Stu85, BZL+15, DHL84, Fa88, HYK08, HAKM15, HAK+16, HR93, Hua85, LL13, MBKS07, SWQ+14, TLD+03, Wil78, Wil85a].
Query \cite{ODB89, BG92, FB87, Ger86a, Ger86b, Gra92, Gra93c, Gra94c, HLC10, HFZ+15, HFF+17, Kie85, Kim80, LC96, MS88a, Sac86, SD89b, Sch90b, Spe92, TS85, Toy86, CCY91, CKKW00, DSD95, GMP95, LSYJ+13, LMLC14, Loh89, RAD15, SP89, WLGO8, YLC+13, Yu92].
query-adaptive \cite{LYJ+13].
Query-aware \cite{HFZ+15, HFF+17].
Querying \cite{CN07, LÖON01, TT10, AK09, NDMR08].
Questions \cite{Mit09].
Queue \cite{KV91, MV88, KM07].
queuing \cite{MSV87].
Queues \cite{AFK83, AFK84, Woo89, GJM02].
quick \cite{FDL86].
QuikFind \cite{Cha91].
Quotient \cite{BK70, Bel70, Bel72, Bel83, Bur75a, Lam70].
r \cite{KKT91, WYW14].
R* \cite{ML86].
r-th \cite{KKT91].
Rabin \cite{FH79, GBS90].
radio \cite{CJP12, CJP15].
radio-frequency \cite{CJP12, CJP15].
RadioGatün \cite{BDPV06, BDPV09, BF08].
Radisson \cite{LCML94}. Radix \cite{FB87, Lin63, SKD15].
Radon \cite{GH07, RGNP12}.
Ragged \cite{Ros77].
RAM \cite{PSR90}. RAMA \cite{MK93].
Ramanujan \cite{SV06].
RANDOM \cite{DJRZ06, DJNR09, AD85, Ano86, BH90, Bay73c, BM90b, Fre90, GBY90, GBS90, Ger86a, Ger86b, Gra92, Gra93c, Gra94c, HLC10, HFZ+15, HFF+17, Kie85, Kim80, LC96, MS88a, Sac86, SD89b, Sch90b, Spe92, TS85, Toy86, CCY91, CKKW00, DSD95, GMP95, LSYJ+13, LMLC14, Loh89, RAD15, SP89, WLGO8, YLC+13, Yu92].
RBCDs \cite{Woe06a}. RC4 \cite{IP08, RS14, Sar15}. RC4-like \cite{RS14].
RC4A \cite{Sar15].
Rdbm \cite{Pei82, Pet83].
Rdbm-verwaltungsdaten \cite{Pei82].
RDF \cite{HAKM15, LL13].
RDMA \cite{CCW+17}. re \cite{WWG+18}. re-identification \cite{WWG+18].
Reactive \cite{BT12a}. Read \cite{MT11, NM10].
Read-Only \cite{MT11, NM10].
Readings \cite{Sto88].
Real \cite{ASA+09, Ano96, DadH90, Dre17c, FVS12, Lyo83, Man12, NS16b, PSSC17, ZRL+08, LY14].
Real-Time \cite{LYo83, NS16b, PSSC17, ASA+09, FVS12, Man12, ZRL+08, LY14].
Realizing \cite{Can97, PBDD95, Rui93].
Reallocation \cite{Bay73c}. Reasoning \cite{BMM14}. Reassignment \cite{DDMM05}. Rebound \cite{KR79, MRST10}. Rechenanlage \cite{Dit76].
Reciprocal \cite{CS85a, Cha86a, Jae81].
Recognition \cite{BM90b, Fre90, GBS90, GKL95, IEE88d, KG95, KR79, KR81, KRRH84, LW88, PW94, ŠSaS01, SR98, SA97, WPKK94, Fly92, GG92, LG96].
Recognized [RJK79]. Recommendation [BK07a, WYD+18, QZD+18].
Reconfigurable [PJB90].
Reconstruction [BT12b, T+83, Ven84].
Record [ACM75c, ACM76, ACM94, LFP82, KS86, KS87a, KS87b, ACM94d].
Records [Bra84a, Bra85, Bra86, MF92, Ols09, Rém92, SD78, DDS10]. Recovery [AS82, CY06, Moh90, Moh93].
Recreations [BC39]. Recurrence [MC89]. recursion [FF90]. Recursive [Coh97, DM81, Gra93b, RSD84, RSD85, RS92, SDMS12, SDMS15, ATAKS07, CL09b].
Recyclable [NS16b]. Redesigning [AZ10]. REDOC [BS91c]. REDOC-II [BS91c]. Reduce [CKW09]. Reduced [AD11, BM97, BCJ15, DDS14, HSR+01, HKKK10, KR10, MRS10, MNS12, THY+18, WFW+12, ZW+12, AKY13, CV05, ITP14, MS13, WS13].
Reduced-Reference [THY+18]. Reduced-Round [AD11, CV05, ITP14]. Reducing [Bre73, DSD95, Kab87, Mal77, N183].
Reduction [Bla95, Ken73, LT12, MT16]. Reduction-Centric [LT12]. Reductions [BHK13]. Reducts [Wan14]. Reducts [Kar82]. Redundancy [Bur79, CQW08, FES09, MS96].
Regularized [TGGF10]. Rehashable [LB02]. Rehashed [Bin96, Kno88].
Rehashing [Ke93, Ke96, Mad80]. Related [Eck74b, Mit09, BSU12, GJM02]. Relation [Knm74, PF88, de 69, GC90, MC99].
Relational [Bab79, Bra84b, FP89b, Fro82, Gra88, Gra89, Heu87, IH83, KR86b, KR86a, KP81, Kim80, KTMOS3b, KTMOS3c, MS88a, PF88, Wu85, Yam85, YNK89, AS89, EBD91, ISH+91, KR88, SP89].
Resistant [Mit12, BF08, MSP12].
Resisting [SXL16].
Resizable [Boy98].
Resolution [Ask05, CadHS00, MC86, YB95, KdlT89].
Resort [PDI91, IEE88b].
Resource [DB12, TL93].
Response [DSD95].
Responsible [IH83].
Responsive [DG93, DG94].
Responsiveness [BDS88, Sch82a].
Restart [LACJ18].
Restklassenhash [Eck74a].
Results [ANS09, Bur83c, DR06, DRS12, Jv86, RR08, CV05, LY72].
RETCON [BRM10].
Retrieve [SG72].
Retrieving [AA79b, AA79a, Spr77].
Return [Wil96].
Reusing [ZHS94].
Reversable [DR11, SLC+07].
Revised [Ytr06, BK07a, Bir07, JY14].
Revisited [AHS92, BYSP98, CDMP05, FLP08, GLS91, GLS94, HR96, HK12, KK12, KVK12, BATÔ13, Ham02, KKL+09, LP04].
Revisiting [DHK+15, HLH13].
Revocation [Wen11, MFES04].
Reykjavik [ADG+08].
RFID [CJP15, CJP12, FW09, GI12].
RGLL17, HCPLSB12, JRPK07, LLL09, LLG+17, SPLHCB14].
Rhode [IEE07].
Rhodes [AMSM+09].
Rico [IEE91b].
riding [BB07].
riding-aware [BB07].
Right [CLYY92, CLYY95].
Right-Deep [CLYY92, CLYY95].
rigid [SA97].
Rigorous [GLLL17].
RIMS [Got83].
Rinda [ISH+91].
Ring [OL89, TY91].
Rings [HJ96].
RIPEMD [BDP97, LP16, MNS12, PBD97, WFLY04, WW09].
RIPEMD-128 [LP16, MNS12].
RIPEMD-160 [BDP97, PBD97].
ripple [LEHN02].
risks [DS09a].
RTS [GB17].
RNA [BDD+10].
Road [BDP09, HR04].
Robin [CLM85, Cll86, CLM86, DMV04].
Robust [BFMP11, FLP08, FLP14, KMW08, KMW10, KO90, Li15, LDY+16, MMM10, MV01, MV02, OCGD11, WDF+12, WCF10, AAA+16].
Rockefeller [IEE90].
Roma [AAC+01].
Roman [Hol87].
Rome [AA86, IEE88d, Wol93].
Root [LAKW07, TLLL07].
root-hashing [TLLL07].
Roots [Mue94].
rotate [FJ13].
Rotated [US09].
Rotation [Bla95, PQ98, PQ99].
Rotation-Symmetric [PQ98, PQ99].
Rotational [KNR10].
Rotationally [HSPZ08].
Round [AD11, jCPB+12, DDS14, HSR+01, LP15, PT11b, GLM+10, SY11, TSP+11, WFW+12, ABM+12, CV05, IPT14].
Round-Down [PT11b].
Round-Reduced [DDS14, WFW+12].
Rounds [K08, HSIR02, Sch11].
Route [ABC+16, DF01, BLC12, YG10].
Router [JL14, KLSV12].
routers [ATAKS07, PT12b].
Routine [Hea82].
Routing [ABC+16, BT12a, WBWV16, Cha12, HLL18, PT10b, SPS16, TC04, TBC+05, WY02].
routing-based [WY02].
rows [FH15].
RSA [Joy03, Ano95a, Jun87].
Rule [BG92, Han90, HCKW90].
Rule-Based [BG92].
rulebase [CKKK09].
Rules [CL05, CT12, PCY95, HC02, HC07].
runtime [OOK+10].
Russia [Vau06].
Ryu [KCC05].
[KTN92]. SAC [JY14, HSR+01]. safe [CCA+12, LPSW03, Lin96]. SAGA [HKNW07]. Saint [GQ95, QG95].

Saint-Malo [GQ95, QG95]. Salency [FXWW17]. SAMOSA [PHG12]. Sampler [Mil87]. samples [HYKS08]. Sampling [AD85, Jak85, WM19, BZZ12, CyWM91, ORX90, RKLC+11, ZGG05]. San [ACM75b, ACM91b, ACM03a, ACM07, ACM08a, ACMI11, DT87, IEE88a, IEE91b, Joy03, Kar98, Shm00, Sto92, USE90].

Sandwich [Yas07]. Santa [Bel00, Bri92, CRS83a, Cop95a, Cop95b, Fra04, Gol94, Sho05, Sti93, Wie99, Yun02].

Santiago [BJZ94]. sat [DK07, MS13]. SAT-based [MS13]. Satzuebergreifende [Nee79].

SC'11 [LCK11]. SC2002 [IEE02]. SC2003 [MAC03b].

Scalability [DR92, Eng94, TCP+17, ATAKS07]. Scalable [CKKK09, DPH08, GLJ11, IEE94c, LMD+12, MD97, MEK+14, PRRR15, PW94, SSL+18, SKC07, TMW10, WPKK94, W SZ+16, CLL+14, KKP+17, KYS05, KSC11, KSC12, LN96, LEH02, NK16, PT12b, SB14, TLLL09, VBW94, KCR11, NTW09].

Scale [BI12, GLLL17, Li15, MEK+14, MWC12, NS16a, SHF+17, YGC+12, CML+13, FES09, Kos14, Shi17, SXLL08, ZNP16].

Scale-Invariant [NS16a]. Scaling [AK99, LL13, TCP+17, PES+12, YSL05].

SCALLA [LMD+12]. scanner [ISHY88].

Scanning [Bur81, LLL11]. Scatter [Ban77, BMB68, Bre73, Day70, FL73, FW76, FW77, Luc72, Lyo86b, Ma77, Mau83, Mor86, Mor83b, Mau86].

Scenes [War86].

Schemet [KPS92]. schedules [GK12b].

Scheduling [Ly97, TL93].

SCAK88, BP97, Bur84, CLD82, Cha84b, Cha84c, Cha85, CL86, Cha86a, Cha86b, CC88b, CC91, CW91, Dat88, DJSS08, DHJSS83, Fuh80, Hül13, JHL08, KJC11, LW88, Lar88b, LHC05, N XB13, Oto85a, Oto85b, PVM94, PACT09, SGGB00, SHF+17, TC93, VV84, Vit81a, YSW+11, YY07, ZJ09, ZQSH12, ZH18, Bur82, CW93, CKW93, CP95b, DF89, EAA+16, HL03, HFF+17, KCL03, Ku04, KCC05, LLH02, LKY04, LWG11, MMG10, Oka88, SDR83b, WZ12, YRY04, YG10, ZW05, ZC12, FF90].

Schemes [BDS09, CL05, CLC06, Cor02, Dam87, DSS17, ED88, HM96, HDCM09, HHL10, Jai89, Jai92a, Jai92b, Jaixx, Kal01, KM09, LM95, LRY78, LRY80, MY80, Ngu06, Ouk83, PWY+13, PF88, RL82, RS77, SDR83a, TL95, CQWO8, DHB4, GSH4, HDM11, HSMB91, IN89, KK06, KM10, ML94, OS88, RS75, SNW06, ZHS94].

Schluesselwoertern [Dos78a]. Schnellen [Kue84a]. Schnorr [DBGV93, NSW09].

Science [ACM91b, AH03, Bar83, Gol94, Got83, IEE76, IEE80b, IEE82, IEE85a, IEE88c, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, IEE13, Kmt74, Kon10, LC86b, LL83, RRR99, Ror89, Rov90, Wsch88, GMW88, Wsh85b, Win78, TW77, vL94, AT18].

scientific [Fis87]. Scope [CL83, GJR79].

scopedia [FF90]. Scopus [AT18]. Scotland [AOV99]. Scratchpad [vdBGLGL+16].

SDC [KO90]. SE [Sun02]. Sealed [SKM01].

Sealed-Bid [SKM01]. Search [Ack74, iA91, Ban77, BM76, Boo74, Bra84a, Bra85, Bra86, Cerv1, CBK83b, CBK85, Cha91, CLP17, CS82, Eck74b, GIM99, HH85, KCB81, Kra82, Kut10, LL85, Luc72, MD97, MW09, Mue04, NS+06, Pal92, PACT09, Reg81, SD78, San76, Sse74, SGG88, SSL+18, Tam85, TYZO15, TK99, Ven86, Vit83, WYY05d, WWZ09, Wsz+16, Xns+13, YSW+11, ZLC+12, vW94, AP92, BC06, CBK83a, CK99, CML+14, FP82, GP08, HZ+15, Kor08, KW94, Lin96, LCH+14, MKSIA98, MT16, NM02b, NH74, PY88, Rön07, SP12, STS+13, TYSK10, WYY05a, WZ93, ZWT+14, ZLC+18,
ZHC+13, ZNPM16, WWZ09]. Searches
[LL87, Lyo85, GJM02, KHH89]. Searching
[Bay74, BS07, Bur75a, CL85, CS82, Dav73, Day70, Dos78b, Fla81, FS82, Fla83a, Flo87, Gon81, Gon83, Gum73, Kun76, Lam70, Mai83, McI63, Meb84, Ouk83, Piw85, RT81, Ram89b, RC94, SG76b, TT82, Wie87b, WB87, YT96, Yub82, CW98, ISH*91, Mol90a, Mol90b, PH73]. Seattle
[ACM89c, LCK11, KCR11]. Seaweed
[NDMR08]. Second
[ACM83b, ACM90, SDA91, AKY13, ABD+16, Ano93d, BDO8, Kil05, Mit12, TZ12, ABM+12, IEE88b, TSP+11]. Second-Preimage [ABD+16]. Secondary
[Bel70, Bel72, Bel83, Fei87, FP89b, Gui75, Joh61, NH74, YMI89]. Secrecy
[BKST18]. Secret
[HR04, LMJC07, LPWW06, SNW06, ZHS94]. sections [NM10]. Secure
[AHV98, Ano93b, Ano95b, BT12a, CZL14, CS02, Dan13, DK07, DY90, DY91, DR11, FIP93, FFG10, GHR99, GZ14, HM96, HR04, JIOT09, JK11, KMM+06, KP97, LM95, LRY+15, MKA17, NIS93, Nat95, NR12, PLKS07, PV07, PGV92, SK99, Sho96, Sta06a, Win84, Yas07, YV07, Zhe90, Aam03, FFG10, GLB94, IN89, JDFD09, Sim88, SXL16, YVR04, ZC12, ANS97, Ano02, Ano08, Ano12, Bou12, FIP02b, Nat92, Sta94]. Security
[AK98, Abi12, And94, ASBdS16, CLNY06, CN08, Cor00, Cor02, FW09, GO12, HMNB07, HLMW93, HXMW94, ISO97, ISO04, KK12, KK81, LC06, LT12, LLL09, MP12, Men12, NAK+15, RS12, SM02, WGO0, WPS+12, Yun10, ACM94a, ACP10, ABM+12, AMP15, Ano93a, BGKZ12, Kak83, Lai92, LC95, Men17, MPST16, PGV93c, SF88, Sta06b, UPV11]. Segmented [CLYY92, CLYY95]. Segments
[Bor84]. Sekundaerspeichers [Pet83]. select [FNY92]. selectable
[BSNP96c, Gon95, Li95]. Selected
[SC77, Ytr06, Bir07, Bor81, JY14, JY14]. Selecting [HR04, LKY15, MS12, OGB14, TYZ015, CD84a, HYK508, Dos78a]. selectivity [HYK508, MBK07]. Selects
[Bou12]. Self [HH85, Pag85, PRR15, SS83, Som99, TY03, Wov89, ZF06, TK99]. Self-Adjusting
[Pat85, Wov89]. Self-checking [Wi96]. Self-Indexed
[T99]. Self-Monitoring [SS83]. Self-Organizing
[HH85, Som99, TY03]. Self-Shrinking [ZF06]. Self-Tuning
[PRR15]. Semantic
[Li15, LL13, MTB00]. Semantics
[CCY91]. Semite
[LI92]. Semite-Infinite
[LI92]. sensing [Ind13]. Sensitive
[BT12b, CSSP15, Kuw15, MNP08, OZ14, OTK11, AT18, HFM+15, HFF+17, LNS11, LWXS18, LJW+17, PCM15, QZD+18, SP12, STS+13, W000, SA17]. Sensor
[DK09, LDY+16, PLKS07, QSH12, AK90, ADF12, LG13, LND08, RAL07, YG10]. Sensors
[DL12, DVS+14]. Sentence
[CH12]. Sentences
[Ven86]. sentiment
[ZZLZ18]. Separate
[Kue82b, Mul81, Kue82a]. Separating
[FK84, SG16, BvT13, LS06, vT14]. Separators
[Lar88b, Mol90, Mol93, CS93a]. Sept
[BD88, Jou85]. September
[VLD82, AAC+01, AOV+99, AA86, BJZ94, EF12, FS09, Fis87, HM80, HKNW07, Ker75, Kna89, LSC91, V090, W017, Y018]. Sequence
[BC08, FP89b, Gon81, HG77, LPT12, LL85, MS88b, BJO7, CLW98, W089]. Sequences
[S099, KS88a, Q197]. sequencing
[KRML09]. Sequential
[AD85, BCC10, CT96, GSB94, HB89a, KKC12, Lit89, Mul72, Ore83, Piw85, SK98, SG76b, BDPV14, HBB99, IB90]. Series
[BJL16]. Served
[PM89]. Server
[DR92, GSL17, GBC98, Gra99, VB00].
Server-Side [GSL17]. Servers [SKC07, KSC11, KSC12]. Serves [Ano95d]. Service [CCF04, Bac02, BPT10, QZD+18, TLLL18]. Services [ANS05, Ano85b, HLC10]. Session [HLC10]. Set [BÖS11, Kie85, SG76a, WC81, YD85, BGG12, GGR04, HYKS08, HDCM11, HKLS12, HM03, MI84, SA17].

set-expression [GGR04]. Set-Oriented [Kie85]. set-valued [HM03]. Setl [BFR87]. Sets [AA79b, AA79a, GHK91a, GHK91b, GT93, Lit89, PBDD95, Ram92, Spr77, Win90a, BT89, BT93, FP82, IL90]. seven [RAD15]. seven-dimensional [RAD15]. Seventeenth [LC86b, LSC91, Rie89]. Seventh [ACM75c, ACM75a, ACM88a, dBvL80, LL08, AAC+01, ICD91]. SHA [ANS97, Bou12, TSP+11, AAE+14, BCJ15, jCPB+12, DR06, GLG+02, JRPK07, KKKR07, KR09, MA+12, NIS15, NSS+06, SK05, Sta94, SKP15, WYY05a, WYY05d, WYY05b, WYY05c].

SHA-0 [BCJ15, NSS+06, WYY05d]. SHA-1 [ANS97, AAE+14, BCJ15, DR06, JRPK07, KKKR07, KR09, MA+12, NIS15, NSS+06, SK05, Sta94, SKP15, WYY05a, WYY05b, WYY05c, GLG+02]. SHA-2 [SK05]. SHA-256 [MA+12]. SHA-3 [Bou12, TSP+11, ABM+12, jCPB+12, NIS15]. SHA-512 [GLG+02]. SHA1 [SBK+17]. Shading [ZDI+15]. Shading-based [ZDI+15]. Shanghai [Ano83, LC06]. Shape [SR89]. Shared [Bor84, CadHS00, DadH92, EK93, adH93, KU88, KTN92, LTS90, MLD94, MLxx, Mey93, Omi91, PG17, SD98, SD99a, TR02, TTNK92, VB00, Vit81a, WB03, YNW+09, Don91, GLJ11, Kan91, Kan93, KU86, MSS96, SD894]. Shared-Disk [WB03].

Shared-Everything [KTN92, MLD94, TTNK92]. Shared-Memory [MLxx, TR02, Vit81a, Bor84]. Shared-Nothing [SD89c, SD89a, SD89d]. shares [ZHS94]. Sharing [LPWW06, KL08, KD92, SNW06, YD86b, ZHS94]. SHA-vite [GLM+10]. SHA-vite-3-512 [GLM+10]. Shenzhen [IEE11a]. Sheraton [ACM75b]. Sheraton-Palace [ACM75b]. Shop [Si02a]. Short [AB12, CW09, DK09, Lyo79, NR12, MT16, SV15a]. Short-Output [NR12]. Short-Time [CW09]. Shorter [Hull13, PB16]. Should [Yao81]. Shoup [Mir01]. Showcase [USE00a]. Shrinking [ZF06]. SHS [Ano08, Ano12, NIS93, Nat92]. SIAM [ACM94d, SDA90, SDA91, ACM97a, ACM05, ACM08a, Kar98, Mat09, Shm00]. Sichere [BN85]. Side [GO07, GSL17, TC04]. SIFT [MMG10]. SIGACT [ACM82]. ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM89a, Van10, LL08]. SIGACT-SIGMOD [ACM83a, ACM83b, ACM85b, ACM86a]. SIGACT-SIGMOD-SIGART [ACM88a, ACM89b, ACM89a]. SIGAL [A+90]. SIGART [ACM88a, ACM89b, ACM89a, Van10, LL08]. SIGCSE [LC86b]. SIGIR [BIP92, YR87, BV89]. SIGMOD [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM89a, BJ93, CLM89, FMA02, GM90, Van10, HF13, LL08, Nav85, SW94b, Sto92, ACM81, ACM84a, BL88, HF13, Lie81, SW94a]. SIGMOD-SIGACT-SIGART [Van10, LL08]. SIGMOD/PODS [HF13]. SIGMOD/PODS’13 [HF13]. Sign [CK12, GHR99, PV07, GK12a]. Signal [Cai84]. Signature [ANS05, Ano90, Ano13, BDD09, CS91, Cor02, Dan87, FC87a, FC87b, HHL10, Hull13, Kal10, LR96a, LM95, LL92, XB13, PWY+13, RZ90, RR92, ZRT91, Z09, CR89, ZW05]. Signatured [SS83]. Signatures [AS16, BHH+15, But17, CK12, DK09, FL04, FFGOG07, GK12a, GHR99, Hull13, HRS16, HBG+17, MKF+16, MCF17, Moh11].
MKAA17, PW93, PGV93f, RR92, Rul93, TTS2, NSW09, PPB16, ST93]. Signed [Sch01b, ZDI+15]. significant [BCCL10]. signing [BG94]. SIGPLAN [ACM79].

Silbentrennung [BN85]. SIMD [AT91, RG89]. SIMD-MIMD [RG89]. Similar [RC94]. similarities [UCFL08].

Similarity [GIM99, HCF95, LÖON01, NNA12, TWZW11, WSZ+16, YTJ06, CLL+14, GP08, HYK08, SP12, SA17, STS+13, ZWT+14].
Simple [BPZ07, Cic80b, DH01, DS09b, GM94, GM98, IT93, KM08, Lom88, PSSC17, PT11a, Ram92, Sar10, Tho13, CLS05, DKR16, DW03, DS09a, GM08, KM08, Lom88, PSSC17, PT11a, Ram92, Sar10, Tho13, CLS05, DKR16, DW03, DS09a, DLM07, MV08, PT11a, SKD15, SF88]. Simplifying [VZ12].

Simulating [adH93, Mey93]. Simulation [EK93, Hil82, Hui90, KLadH93, KLM96, KHW91a, YkWY83, KHW91b, War14, DS84a]. Simulation-Based [EK93].

Simulations [CadHS00, DadH92, Lep98, Rey14, MSS96]. Simultaneously [LOY00]. Sindhi [SSS05].

Singapore [DSS84]. Single [AKS78, AA79b, AAG93a, CC88b, GIS05, Lar82c, Lar82d, Lar85c, Men12, OT91, Spr77, YDTS83, YSELO9, Men17, MA15, RT89]. Single-File [Lar82c, Lar82d, Lar85c]. single-hop [MA15]. Single-Layer [YSELO9].

Sinnentsprechende [BN85]. Sintering [Rey14]. SipHash [AB12]. sites [OOK+10].

Sixteenth [ACM84b, ACM05]. Sixth [BF89, ICD90, GMJ02, LT80]. Size [Ack74, AHS92, Bat75, CKW09, Dev99, Dod82, FK84, HD72, Joh97, Kab87, KV91, KNT89, MV88, Meh82, Sam76, Wl79, Woe01, Bee83, CM01, DW05, DW07, GW94, Han17, LNS11, Sar11]. SK [LCH+14]. Skein [AEMR09, FLS+10, KNR10]. Skeleton [LDY+16]. Sketch [BI12, TP15]. sketches [NTW09, SLC+07]. Sketching [Ind13].

Skein [AEMR09, FLS+10, KNR10]. Site [OOK+10]. Sites [OOK+10].

Skeleton [LDY+16]. Skeleton [LDY+16]. Sites [OOK+10]. Sites [OOK+10].
ASW87, CKKW00, ISH+91, Kan90. Sound [GvR08, KCF84, SDW14, BDPV14]. Source [KP94, Cha12, HC11]. source-based [Cha12]. Sources [CV08]. South [ACM91c].

SPAA [ACM91c], Space [Bal05, Blo70, BPZ07, BM99, CH94, DH01, Fis87, F+03, FPSS05, HT01, JD12, PP08, SvEB84, TW91, Y+01, BD82, CF89b, DMPP06, GZ99, Kou93, MN90, OP03, PSS09, S+09, SWQ+14, TYSK10, W+07, Yuv75].

Space-Efficient [BPZ07, JD12, PSS09]. space-filling [GZ99]. Space/Time [Blo70]. spaces [IMRV97, NN90]. Spain [DJRZ06, LSC91, CTC90]. spam [LZ06, UCFL08]. SPARQL [HAKM15, HAK+16]. Sparse [AL86, ASW07, vdSDW74b, FKS84, Gri98, Gri77, KKK12, RT81, TY97, ZHC+13, vdSSdW74a, Bis12, BT90, BT93, CML+13, JCC00, CW91, Ind13]. Spatial [LR96b, SS88, WY+18, DLN+18, LH06, SS90b, ZBB+06, ZLC+18]. spatio [CWC10, DMPP06, FXWW17].

spatio-temporal [CWC10, FXWW17]. speaking [LC95]. Special [ACM82, DT87, Dos78a, GIS05, MO92a]. specialization [SV15a]. Specialized [Bab79, ISH+91]. Specific [RTK12]. Specifications [Nat92]. Specified [AU79].

Specifying [GHI+93]. Spectral [KKC12, Li15, WFT12, WB90, ZWT+14]. Speech [CW09, RJK79]. Speed [FP89a, KMM+06, KMV10, McEK99a, PSSR90, TK88, YNM89, BCC10, EVF06, McEK99b, MS996, RW07, SLC+07, SXLLO8, TLLLO7, XMLC11]. Speeding [FH96].

Speercher [GN80]. Speichertechniken [LSS85]. Speicherung [BJMM94b, BJMM94a]. Speicherverfahren [DS84a]. Spelling [CS82, Mcl82, Rad83, Zam80, MF82, Wie86]. speziellen [Dos78a]. SPHINC5 [BHH+15].

Stereo-Warehouse [ZZ83]. stimulating [JFDF09]. STL [Ben98]. STM [DSS10].

STOC [ACM07, ACM08b]. STOC’12 [ACM12]. Stochastic [HKNW07]. stock [She06]. Stockholm [PV85, Ros74].

Storage [ACM04, Bay74, BMB68, Bre73, Col93, Day70, FL73, FB87, FP89b, Fro82, GL82, GL88, HCJC06, Kno71, HGH+12, LCK11, Les88, LRY+15, MK96, Mal77, Mau83, MEK+14, Mor68, Mor83b, Mul81, Mul85, Om88, OT91, OS83a, OS83b, Pet57, Sam81, SHF+17, TY03, TS85, Tra63, WH83, Wil71, WKO78, WB87, YDT83, vdP72, vdP73, Ay14, AK09, CR83b, HGR07, Mau86, MSS96, PT10b, QD02, YSL05, YMI88, van73]. storage-efficiency [PT10b]. Storage-efficient [HCJC06, MSK96]. Store [DW83a, dW83b, Shi17, BP94]. Stores [Bry84, PRRR15]. Storing [AL86, FKS84, dW83b, Shi17, BP94].

Stouffer [ACM87]. Strategies [iA91, iA94, BI87, Dai95, Die97, adH90, adH93, KL87, KHT89, MD97, Mey93, MNS07, Tro95, YB95].

Stream [CN07, STS+13, YSW+11, FVS12, ZC12]. streamlining [DSS10]. Streams [Coh98, SS83, YGG+12, CH90, GGR04, SLC+07, YL+09]. street [Sim98].

Strength [HS08, FH15, Ken73]. Stretching [BVF12]. String [iA94, Ask05, BI85, Bur84, CCH09, Cha91, Dav73, KL14, LLLC17, NNA12, TK88, Tay89, TTS8, ASM17, AZ10, Bur82, DC94, GBY90, Kim99, MBKS07, ZR97, XMLC11].

String-indexed [Tay89]. string-pattern [Kim99]. Strings [BS97, Dit91, FM96, Lit91, Pca90, Pca91, RC94, Sav90, Sav91, Eug90].

Strong [CHK08, CHK12, JRPK07, Ku04]. strong-password [Ku04]. Strongly [BG07, LK14, Tho00]. Structural [TWZW11, Wil96, ZMI91, FLF11, MK12, ZBB+06]. structuration [Lit77a].

Structure [AHS92, CK12, CJC+09, DGM89, DT91a, DT91b, FL11, FL77, FB87, GHK91a, GHK91b, CTC90, KS12, NIS84, Omi88, SG88, WH83, WR83, BR75, BGG12, IC94, KRJ09a, KHH98, LNS96, LRY+14, MCM01, MSK96, SB07, TMB02, YDB08].

Structure-Preserving [CK12]. Structured [CS93b, GDA10, Piw85, SG76b, SM87, WWG+18, BPT10, GHW07, WHS+07, WLLG08].

Structures [AHU83, BDD+10, BFR87, Boy98, BJM14, CE70, Coh84, DSZ07, DP08, Ell85b, Ell82, Fel88, FZ87, FBY92, Fon84, GBY91, Gri74, Har88, Har71b, HS84, Kru84, LCS6a, LRY78, LRY80, Lit84, MO92a, RW73, Sal88, SDW14, SW86, Ste92, Ste82, SW87, TA81, TA86, TGL+97, TS76, TS84, VL87, WS76, WKO78, Wir86, YLB90, BY89, CR83b, FP89a, GMJ02, Har73, HM03, In81, IGA05, Koe72, Lin96, MTB00, NT01, NM02b, OS88, She06, VLB97, Vit01, Wil78, Wil85a, ZK08].

Structuring [Bay73a]. Studies [Ano93d, GT80, GS80, Yub82]. Study [AR17, BF83, BK07b, Cha84c, Cha85, Cra85, DTS75, DJS80, DHJS83, Ell85b, Gis74, Hil78a, Hil78b, LC86a, LG78, LYD71, TL95, YLB90, HM03, LY72, Wlee88, WTN07]. style [UCFL08].

Subgraph [ZLY+12, WLLG08]. Subgraphs [ZLY+12, WLLG08].

Subquadratic [Va15]. subscribe [MJ14].

Subscripts [Atk75, vdSDW74b, vdSDW74a].

subset [IN89]. Subspace [KRC+08, Sch11].

Substring [Boo73, Har71a, MKSA19].

Subsystem [HL10]. subtype [Duc08].

subtyping [DL06]. Succinct [ANS10, DP08, RR87, FS08, HS92, SH94].

Suchen [Meh86]. Suffice [ADW12, ADW14]. Sufficiency [NY85].

Sufficient [BDPV14, IK05, IH95, Rus92].
HLC10, IABV15, JL14, JXY07, JMH02, JD12, KG95, Kno71, LMJC07, Lev00, Lit80, Litxxa, LACJ18, Loo85, Mai83, Mai92, MT11, ML75, Mue04, Mjt+02, Pri71, Pro89, Rey14, Riv76, Riv87, San76, San81, San92, Szy82, Szy85, TY79, Tro06, VB00, YD84, YT16, YLB90, vdVL12, AY14, AZ10, BCR10, Bay73b, BGG12, Fro81, GSS01, HXLX13, KdlT89, MZK12, MA15, NK16, NH74, PH73, Ram87, SB95, SB97, WTN07, ZGG05.

Table-Based [HLC10].

Tabled [AR16].

Tables [Ack74, APV07, AK74, Ask05, Ban77, BM87, Bay73c, Bay73a, BPBBLP12, Ben98, BI87, CRdPHF12, Cle84, CD84b, EMM07, FFPV84, F03, GT93, HP78, Hop68b, HC87, HC13, Ik92, Jv86, KHK15, Kue82b, Kue84b, Lt07, Luc72, LMSM09, LC88, Lit79b, LB07, Luc78b, MS02, Mit02, MC86, Nyt5, PAG85, PAPV08, PV92, PTT16, PBDD95, Pla98, Qui83, Ram88a, RRS2, RM09, RMB11, SD78, Sch79a, SS80, SM02, TT10, Woe06b, Yao81, Yao95, Bat65, CHS+18, Fly92, FPSS05, FR99, Gmt9, GJR79, HKW05, KHK12, LMSM12, LVD+11, Mad80, MSD16, PT10b, PT12b, QP16, SS06, Ta97, TBC+05, TMW10, Wil03, Wil14, Wog89, WTN09, XLZC14, YTHC97, ZHW01].

Tabulation [KW12, PT12a, TZ12, Tho17].

Tabulation-Based [KW12, TZ12].

Tabulative [GT80].

Tag [JRPK07, ZWH17, CJP15, SPLHCB14, CJP12].

Tagged [ZWH17].

Tamper [CHL07].

Tamper-proofing [CHL07].

Tampering [TWZ11, PS08].

Tangle [AVZ11].

Tape [SvEB84, ML95].

Target [LB702, Mit12, HRS16, MIGA18].

Taxonomy [CZ17].

TBE [Zha07].

TBE/IBE [Zha07].

TCC [Kil05].

Tcl [USE00b].

Tcl/2k [USE00b].

Tcl/Tk [USE00b].

TEA [CV05, HSR+01, HSIR02].

Teams [GBC98, KK99].

Technical [IEE84, LC86b, Mit17, SE89].

techniken [Mer72].

Technique [AP93, Boo73, CL85, CS82, CT96, Dod82, Hc87, KM92, Lit97, Man68, Mck9a, RZ90, Ram97, SDW14, She78, TK88, Wan84, Yaa85, Ccy91, GM77, Kan90, Kk96, MIGA18, McK89b, Pro94, Sac68, Sag85b].

Techniques [Bay73a, Bi98, Bre73, CP87, CZ17, Dan90a, Dan91, Dav91, DKO+84b, DKO+84c, DKO84a, DL79, Dun89a, Dun89b, Fel87, Gra92, Gra93c, Gui75, Gui78, Hel94, Kmv10, Kue84b, LDM92, Lyd71, Mal77, Mor68, Mor83b, MC86, Pri71, QV89, Qc95, RLH91, Rue93, SD85, SDKR87, Sz93, She91, SpS16, Sta73, Sti94a, Vau06, Ytj06, Bf08, De 95, DKO+84d, DJRZ06, DJNR09, Gq95, ISO97, ISO04, Ly72, Ph73, Rl90, Sxll08, Upv11, Ysl05].

Technology [IEE11a, Rrr99, ISO97, ISO04, JB94].

Teletreffen [CS93b].

Template [Go92, Yu92].

Templates [JT09].

Temporal [Gy91, Wyd+18, Cwc10, Fxw17, Mht+13].

temporaries [Ken73].

TENCON [Ano93c].

Tennessee [IEE94c].

Tenth [Dss84, Sc77, Yr87].

Terabytes [IEE02].

term [Kp92].

termination [Er86].

Terms [Wil79, Zwcl10, Vt14].

ternary [Bou95].

Tertiary [Gui75].

Test [Har71a, Rr87a, Sav90, Duc08].

Testbed [SDK91].

Testing [Boo73, Dd11, Fil02, San76, Wm19, Ay14, HklS12, Td93].

Tetris [Gss01].

Tetris-Hashing [Gss01].

Tex [ACM91b].

Texas [ACM91b, ACM97b, ACM98, Iee76, USE00b, ACM88a, Iee95, Nav85].

Text [Bur81, Coh98, Ds84b, Dit91, Fa19, Gon83, Hz86, Lit91, Pea90, Pea91, Sav91, Tt82, Ven84, Ysw+11, Gob75, Hco7, Ram89b, Rcf11, Sab94, Zlz18, Zhw01].

textes [Lg78].

Texts [Lg78].

Textual [Bh85, Mlhl17].

Texture [Hsp08, Ssa01].

th [Kkt91].

Their
[CZLC12b, CK15, Deb03, Gra88, Gra89, Heu87, HK12b, NR12, RNT90, SDT75, WCS1, AG10, adHM9R93, NY89b, NY89a, PWO8, Pob86, Sie89]. **Theorem** [Cha84b, CG92, HR14, Kno88, Sho00a]. **Theoretic** [Sun15, HM93, SXLL08, TZ94a, vL94]. **Theoretical** [AH03, CHK06, RRR99, TWW77].

[ACM75c, ACM75a, ACM76, ACM77b, ACM82, ACM84b, ACM86b, ACM88b, ACM89c, ACM90, ACM91e, ACM96, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM07, ACM08b, ACM11, ACM12, AA86, BBPV11, CP87, CS93b, Dam90a, Dam91, Dav91, Fel50, HP63, Hel94, IEE74, CTC90, IRR93, KM86, KM88a, LC06, LL83, Mir17, Pip79, QV89, QG95, Rue93, ACM77a, SZ93, Sti06, Van06, Yan10, De 95, GQ95, Hua82, ISO97, Kil05, PSN95, Kil05]. **There** [AKS78].

[RW73]. things [SKD15]. Think [DCW91].

Threaded [VB00]. Threads [Lep98]. Three [Ano95a, MLxx, MP12, SP89, Tro95, FH15]. Three-way [SP89]. Threshold [Wec11].

Throughput [KHK15, LPT12, PRM16, TP15, WZS10, MAK+12, XLZC14]. Thyroiditis [SStS01]. Tiger [AB96, MR07]. Tight [Cha94, CV08, GHK+12, vT14].

Tightly [Mul81, DW05, DW07]. Tillich [Gei95, Gei96, GIMS11, PVCQ08]. Time [ASBDs16, BJL16, Bl0, Bre73, BM99, CW09, Cip93, Cla77, CM93, DadH90, F+03, FPS13, FKS84, GJ76, Gra94b, Jak85, Kab87, LAKW07, Lip02, Lyo83, Moh11, NI83, NS16b, PP08, PSSC17, PWY+13, PS12, Sag85a, SL16, Sie04, TW91, Val15, WVT90, Win90b, AY14, ASA+09, CCY91, DSD95, FPSS05, FVS12, GB17, GMW90, Han17, Kor08, Man12, MV91a, MN90, MP90, OP03, Sie89, ZRL+08].

Time-Memory [ASBDs16]. Time-Series [BJL16]. time-space [Sie89].

Time-Stamping [Cip93, Lip02]. Timer [VL87, VL97]. Times [Mal77, SD78, PY88]. Timestamps [GY91]. Timing [VL87, VL97]. Tiny [GW94, OWZ14, SWQ+14]. title [Dit76].

Tk [USE00b]. TN [ACM94c]. Tokyo [IWW89, A+90, Mo92b]. Tolerant [DSSW90a, AAB+92, DSSW90b, HGR07].

Topic-Specific [RTK12]. Topics [Joy03].

Topology [RHM09]. Toronto [Gil77, KLT92]. torrent [Bak09]. Towers [ICD88, ICD90]. TPM [WYP+18].

Traceback [JL14, SXLL08]. Tracing [SS89b]. Track [Joy03]. Tracking [GGR04, LLL11, UCFL08, FXWW17, ML15, OOK+10]. Tractability [GB10]. Trade [ASBDs16, Bl0, GW94, Sar11]. trade-off [GW94, Sar11]. Trade-Offs [ASBDs16, Bl0]. traeoff [Sie89].

Tradeoffs [SD89b, SD90b, SD90a].

Traditional [EMM07]. Traffic [TLLL18, HKL04, MA15, TBC+05]. tragen [BJMM94b, BJMM94a]. Transaction [CCW+17, SPB88, MB00, SSU+13, TM02, Yu92].

transactional [BRM10, SSU+13]. transactions [FK89, MMC01, SSU+13]. Transfer [HK12a]. Transform [BR06, GH07, HB89c, HB94, LC12, LYD71, NS16a, PVM94, 398].
RGNMPM12, LY72, Pob86, Ind13].
Transform-Based [RGNMPM12]. Transformation [Lum73, NXB13, SR63, Lin63, PT10b]. Transformations [GG86a]. Transitive [CdM89, CdM90, GC90]. Translated [WSZ+10]. Transformation [Lum73, NXB13, SR63, Lin63, PT10b]. Transforms [Zha07]. Transitive [CdM89, CdM90, GC90]. Translated [WSZ+10]. Translation [BCR10, TK85]. Translators [DGGL16]. Trapdoor [HHL10, Wee12, LWG11, PW08]. Trapdoors [GPV08]. Traversal [CLC06, Lip02, YSEL09]. Tree [And91, AR17, BT12b, FB87, GadHW96, KHT89, Lip02, LRY++15, LB07, Lyo83, Omi88, Oto86, Piw85, SD89b, SG76b, SM87, WS93, Wil00, BDPV14, BPT10, CLS95, DSD95, GB17, HLL18, KW94, LAA15, MFES04, Omi89a, THS97, War14].
Tree-Structured [Piw85, BPT10]. Trees [BM76, BD84, BBP88, CLYY92, CHY93, CLYY95, CN07, CD84b, DCW91, Dev99, LQZH14, Reg81, She78, VV84, Wil00, AD08, Bra09, CM01, FP82, FK89, KLL++97, Kos14, Lev89, QP16, RRS07, TB91, BD84]. Trends [Rie89].
Triangle [IEE89, JTOT09]. triangular [GPGO16]. Trick [DR09]. Trie [AR16, Bur76b, Bur77, CCH09, Fia81, FS82, Fia83a, KS12, Lit81, Lit85, LSL88, LSV89, LRLW89, LRLH91, Oto88b, Reg88, Tv83, AZ10, BLC12, Bur76a]. Trie- [KS12]. Tried [ATT98]. Tries [BT94a, BT94b, GO15, Tam81, PBBO12, SV15a, SV15b]. Trigram [Wil79]. triple [LWG11]. triple-trapdoor [LWG11]. Trondheim [Ano95c]. truncated [FJ13]. Truncating [So93]. Truncation [Wil79]. Trusted [KRRJ07, KRRJ09b].
Trustworthy [EH12, LW17]. trx [LW17].
Tsunami [CZL12]. Tulip [XBI06]. Tuning [KNT89, PRRR15, Tym96, Vitos8a]. tuple [WHS+++07]. Turbo [Hej89]. TV [YG++12]. Tweaking [Zha07]. tweets [STS+++13].
Twelfth [BV89, CG086, Col93]. Twentieth [ACM88b, IEE01, Mat09]. Twenty [ACM89c, ACM90, ACM91e, AAC+++01, AOV++99, Van10, GSW98, LL08, ACM96, ACM97b, IEE01]. Twenty-Eight [Van10]. twenty-eighth [ACM96]. Twenty-fifth [AOV+++99]. Twenty-fourth [GSW98]. twenty-ninth [ACM97b]. Twenty-Seventh [LL08, AAC+++01]. twig [KRML09]. Twisted [PT13, DT14]. TWISTER [FFGL10, FFGL09]. Twitter [RTK12]. Two [DDMM05, DAC+++13, HK12a, HSIR02, JVv6, KSSS86, Leb87, LMPW15, Lyo85, ML15, Pan05, Pip94, PGV90a, TC93, CCL91, DKRT16, GP08, Li10, MS09, McN03, PGV93a, PGV93b, QZD+++18, SDR83b].
Two-Way [DDMM05]. TWOBLOCK [Yan05]. TX [USE91, ACM87, AR894, IE894a]. Type [KPS92, KRJO9a, SF88, SG16]. Type-based [KRJO9a]. Type-Graphs [KPS92]. Types [E]KMP80, Hej89, SW87, Wal88, LPSW03, NMS+++08]. TYPHOON [HKW05]. typing [DMP09].

Unified [JV16, Mu84a, Mu84b, ABO+++17, BOY11]. Uniform [ABH+++73, AT93, Gui89, Kie85, KS86, KS87b, Lar83, Leb87, LQZH14, LPP91, LPP92, Mal77, OP03, PP08, PCK95, Ruz08, UHT95, Yao85b, Ald87, AT90, MC89, Rad92]. Uniform-Grid [Leb87]. uniformly
Unifying [BG80, BG82]. Unique [Boo74, DLH09, DLH13, SD78, ASW87].
Unique [Kah92]. Unit [BC90, HO72].
Units [LLLC17, WB87, SF88]. Universal [Abi12, AS96, BKST18, Bie97, Bra09, CW77a, CW77b, CW79, CS02, DadH90, DadH92, Die96, DS09b, EPR99, F¨ur88, GC95, HHR+10, HJ96, Kil01, KR01, LKM94, MCGW90, Nae95, NYY98, NYY99, NR12, Ram88b, Sar80, Sho96, Sho00a, Sie04, Sti91, Sti94a, Sti94b, Woe01, van94, ACP10, Bie95, DS09a, IIL17, KYS05, KL96, KR06, LC13, MNT93, Sar11, Sar13, Sie89, Tho00, Woe06a]. universality [SS89a]. universe [Bra09, Wen92]. Universes [DS09b]. Universitat [CTC90, Dit76]. Universiteit [BBD09b]. University [ACM81, IJW89, CCC89, CRS83a, HB93, IEE74, Jaj90, Lie81, Oxb86, Pat90, Sch82a, Dit76]. universum [Wen92]. UNIX [SY91, WG00]. Unlabeled [GCMG15]. unleash [McN03]. Unlimp [Kah92]. unsigned [BCS89]. Unstructured [Gon83, PFM+09]. Unsupervised [PKW09]. Untersuchung [Stu85, GS94, Sch91a]. Used [Stu85, GS94, Sch91a]. USENIX [USE91, USE00b, USE90]. User [RTK12, YY07, Bor81, DFMR15, LLH02, LKY04, YRY04]. Using [ANS97, ASW07, BDPSNC97, Bar97, BCK96b, Bor84, B ´OS11, BM90b, BI12, BT94a, BT94b, BM01, BT12b, CP95a, CrdPhf12, CKB85, CdM89, CdM90, CLYY92, CCW+17, CJC+09, Cle84, CD84b, CE70, CRR18, CY06, DLT98, Dav73, DK07, Dod82, D ´L12, DSSW90a, DGKK12, Fal85a, FLF11, FRB11, FJ13, Ger86b, Gir87, Gini79, GPA97, GAS+16, Hart97, HG77, HNS84, HKY12, JRPK07, JTOT09, JD12, KK97, KSSS86, KM07, LAKW07, LQZH14, LR99, LMD+12, Lumin73, MS02, MBB512, MN81, McK91a, MH00, Moh91, Moh93, MJT+02, Mul72, NKT88, NIS3, OTHK11, OG94a, Omi93b, PAPV08, PLKS07, PKW09, PF88, PW94, QG89, QG90, RLS9, RLT83, RSD85, RSSD92, Rev14, Rob86, SD78, SS83, SRY99, Sho00b, SW86, SK05, Som99, SA7, SKM01, TK88, TC93]. Using [TA81, TA86, TGGF10, TK85, TS85, Ts86, US09, VV84, WPKK94, Wan14, WDP+12, Wil96, Wil79, WM19, YY07, YBQZ18, BSNP96b, BLC12, BK07a, BF08, BT90, BGG12, CKB81, CHL07, CKKK09, CP13, CT96, DMPP06, DKT06, DSS09a, DSSW90b, EH17, Fal86, FM89, Fly92, GKK10, GG92, Ger86a, Gob75, GBL94, HDMC11, HKL07, HKS12, HC14, Hil88, HC02, HW88, HXLL13, ISO97, JDFD09, JLH08, JF1, JCC00, JBWK11, JM92, Ken73, Kim99, Kos14, Ku04, LG96, LLH02, LKY04, LW04, LNS11, LDK12, LK16, MMC01, Mck89b, MMG10, MPI6, Mue04, Oka88, PCK95, RSSD90a, RSDS99b, RGNPPM12, R ´on07, SB95, Sar01, STS+13, Tho17, UHT95, YTHC97, YRY04, ZGG05, ZW05, ZRL+08]. Utah [SM08, Nam86, SM12]. utensibus [DMPP06]. Utilisation [OT91]. Utilization [PS12, Wil71, CF89b]. Utilizing [KK85]. Utrecht [vL94]. UUID [BSH12].
HHR+10, JLH08, LP15, McC79, Mer90b, Roe94, Rul93, SP91, Sch91a, Sho00a, Tsu92a, Wee07, Win83, Win84, YZ00, Zhe90, CMR98, Gib91, HR07, HYLT99, HLO3, KST99, LW04, LHC05, Mer90a, MZI98, NY89b, NY89a, Sim98, SP98, Tsu92b, ZW05, ZPS90, ZMI91, ZPS93a, ZPS93b, HMNB07.
WCC [Ytr06]. WDDL [MMMT09]. Weak [HS08, Lis07, PV07]. Weaknesses [BPSN97, DS09b, KCL03, KCC05, SGGB00].

Web [KSC11, KSC12, AT18, KLL97, KSB99, NM02b, Sch01b, SKC07, TC04, UCFL08, WY00, WY02, XBH06].
Web-Based [Sch01b]. webcam [McN03]. Wegman [Sar80]. Weight [LR96a, LL92]. Weight-Partitioned [LR96a]. Weighted [Ban77, Luc72, THY18, Yao91, YZ00].

Weighting [DSS17]. West [Yao78]. Where [Bur06, SW91]. Which [FW76, FW77]. WHIRLPOOL [RB01, Sas11, Sta09]. Whirlwind [Sar80].

XML [CN07, KRML09, MW98, WWZ09]. XMS [HRB13, HBG17]. XOR [FJ13, CCHK08, MLP07, VD05, vdBGLGL16]. XOR-based [CCHK08, VD05]. XPS [Ger95]. XRDB [YNK89]. XSB [SSW94]. XTEA [CV05].

year [Roe95]. Years [Kon10, IEE01]. Yi [Wag00]. Yi-Lam [Wag00]. Ynot [NMS08]. Yoo [KCC05].

Zahlen [BJMM94b, BJMM94a]. Zakopane [Win78]. Zeitefizienten [Kue83]. Zemor [Gei95, Gei96, GIMS11, PVCQ08]. Zero [CLP13, Dam93, OY94b, Dam94, OVY94a].

Zero-Knowledge [CLP13, Dam93, OY94b, Dam94, OY94a]. Zheng [PGV90a, PGV93a, PGV93b]. Zheng-Matsumoto-Imai [PGV90a, PGV93a, PGV93b]. Zipper [LWWQ08]. Ziv [DVS14]. Zoning [GRZ93].
Zugriffsoperationen [Pei82]. zugriffsverfahren [Stu82]. zum [Eck74a]. zur [Koe72, Kue83, Kue84a, Pet83]. Zurich [HKNW07, Lak96].

References

ACM:1969:PAN

Asano:1990:ISS

Anderson:1979:CCP

Anderson:1979:CPH

Ajtai:1992:FTG

Apers:2001:PTS

Peter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotta-giri Ramamohanarao, and

Albertini:2014:MHE

Anshel:2016:CHF

Aumasson:2012:SFS

REFERENCES

[Ars58b] Gene M. Amdahl, Elaine M. Boehme, Nathaniel Rochester, and Arthur L. Samuel. ???. The year is uncertain (???). Amdahl originated the idea of open addressing with linear probing, which was later independently rediscovered and published [Ers58b]. The term ‘open addressing’ was apparently first used in [Pet57] [see [Kno75, page 274][, 1953.

Acknowledgements

ACM:1975:PNA

ACM:1977:DUO

ACM:1979:PSS

ACM:1981:ASI

ACM:1982:SPD

ACM:1983:PAS

ACM:1983:PSA

ACM:1984:SPA

ACM:1984:PSA

REFERENCES

[ACM89a] ACM, editor. PODS ’89. Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on

ACM:1989:PEA

ACM:1989:PTF

ACM:1990:PTS

ACM:1991:PPE

ACM:1991:ACS

ACM:1991:AAS

ACM:1991:CRE

Conference record of the Eighteenth Annual ACM Symposium on Principles of Programming Languages: papers presented at the symposium, Orlando, Florida,
REFERENCES

REFERENCES

ACM:2005:PSA

ACM:2007:SPA

ACM:2008:PNA

ACM:2008:SPA

ACM:2011:PAI

ACM:2012:SPA

Abdalla:2009:SPH

Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hashing for conditionally extractable commitments. Lec-
Alomair:2010:PPS

Alvarez-Cubero:2016:AVL

Ahrens:1985:SRS

Adams:2008:ENE

Ashur:2011:LAR

Ayday:2012:DAA

Aceto:2008:ALPa

Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, ed-

Heide:1990:DHS

Heide:1993:HSS

Heide:1993:PAE

Alon:1997:LHG

REFERENCES

[Ajta1:1983:HFP]

[Ajta1:1984:HFP]

[Akl:1990:ACI]

[Agarw:2006:AGA]

[Appel:1993:HCG]

[Alon:2010:BFP]

[Abram:2010:ALP]
Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors. *Automata,

Ahn:1986:AH

Ahn:1987:AH

Ahn:1993:FH

Aldous:1992:MSD

Aho:1983:DSA

Aiello:1998:NCS

Andoni:2006:NOH

Andoni:2008:NOH
Tetsuo Asano, H. Imai, and K. Imai. Clustering/hashing points in the plane with maxmin criteria. In CCCG '89 [CCC89], page 15. ISBN ???? LCCN ????

Joon Ahn and Bhaskar Krishnamachari. Scaling laws for data-centric storage and

Albutiu:2012:MPS

Ajtai:1978:TNF

AlTawy:2013:SOC

Aho:1986:SDS

Aldous:1987:HLP

Aldous:1988:HLP

Agrawal:2010:HLF

(print), 1523-2867 (print),
1558-1160 (electronic).

[And93]

[And88]

[And91]

[Ano83]

REFERENCES

[Ano86] Anon:1986:IRN

Anonymous, editor. The Second Annual Dartmouth Institute on Advanced Graduate Studies in Parallel Computation. Dartmouth College (?), Hanover, NH, USA, June 1993. ISBN ?? LCCN ?? I have been unable to locate this reference in several major libraries, including Dartmouth's, sigh...
REFERENCES

Anonymous:1994:WAM

Anonymous:1995:AUC

Anonymous:1995:FSH

Anonymous:1995:NAF

Anonymous:1995:SHS

Anonymous:1996:RF

Anonymous:2002:SHS

Anonymous:2008:SHS

Anonymous:2009:DSS

Anonymous:2012:SHS

Anonymous:2013:DSS

ANSI:1997:AXP

ANSI:2005:AXP

Arbitman:2009:ACH

Arbitman:2010:BCH

Arnaurov:1985:ODF

Atkinson:1999:PTF

Analyti:1992:FSM

Analyti:1993:PAM

Aumasson:2008:HED
Jean-Philippe Aumasson and Raphael C.-W. Phan. How (not) to efficiently dither blockcipher-based hash functions? Lecture Notes in
REFERENCES

Arikan:1994:IGE

Aghili:1982:PGD

Abdelguerfi:1989:EVA

Atici:1996:UHM

Aspnes:2007:SG

Agrawal:2009:HBN

Aysu:2016:PMH

REFERENCES

Asano:1990:APP

Azadegan:1991:PJA

Asano:1993:APP

Abdulhayoglu:2018:ULS

Al-Talib:2007:IMS

Atkinson:1975:HMS

Ang:1998:TLH

REFERENCES

[AZ10] Nikolas Askitis and Justin Zobel. Redesigning the string hash table, burst trie, and BST to exploit cache. ACM
REFERENCES

REFERENCES

Bandypadhyay:1977:CWI

Burrows:1989:LAa

Barter:1983:ACS

[C. J. Barter, editor. Australian Computer Science Conference. Proceedings of the 7th Conference (Adelaide, Australia, Feb. 6–8, 1983). University of Adelaide, Computer Science Department, Adelaide, South Australia, Australia, 1983. Published as Australian Computer Science Communications; vol 6, no. 1.]

Barequet:1997:UGH

Batson:1965:OST

Batagelj:1975:QHM

[Vladimir Batagelj. Quadratic hash method when the table size is not a prime number. Communications of the Association for Computing Machinery, 18(4):216–217, April 1975. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).]

Batory:1980:OFD

Batory:1981:AMP

REFERENCES

Bohm:2007:FRA

Berman:1982:CFP

Berman:1986:CFP

Belazzougui:2009:HDC

Bernstein:2009:PQC

Bellare:2001:OCH

REFERENCES

[Ball:1939:MRE] W. W. Rouse (Walter William Rouse) Ball and H. S. M. (Harold Scott MacDonald ["Donald"]) Coxeter. *Mathematical recreations and essays*. Macmillan Publishing Company, New York, NY, USA, 11th edition, 1939. 45 pp. LCCN QA95 .B3 1939. According to Knuth [Knuth73, p. 507], this is one of two papers that first discuss the birthday paradox: “if 23 or more people are present in the same room, chances are good that two of them will have the same month and day of birth! In other words, if we select a random function which maps 23 keys into a table of size
365, the probability that no two keys map into the same location is only 0.4927 (less than one-half). The discovery is credited to unpublished work of H. Davenport (1927). See also [vM39].

Eli Biham, Rafi Chen, and Antoine Joux. Crypt-

Bellare:1996:KHF

Bellare:1996:MAU

Bedau:2004:CHF

Barr:2010:TCS

Bardin:1989:IUI

Black:2009:IHE

Bell:1982:KSC

REFERENCES

0010-4620 (print), 1460-2067 (electronic).

Bell:1984:HTV

Bancilhon:1988:PFI

Bauspiess:1992:RCH

Buchmann:2008:PQC

Blin:2010:ARS

Berger:2012:GFL

Bosselaers:1997:RCH

Antoon Bosselaers, Hans Dobbertin, and Bart Pre-

REFERENCES

Bell:1970:QQM

Bell:1972:QQM

Bell:1983:QQM

Bellare:2000:ACC

Benzinger:1998:SCB

Bell:1983:MCS

Boral:1989:DMS
REFERENCES

Bouillaguet:2008:ACR

Bender:2012:DTH

Batory:1982:UMP

Barn:1995:ODP

Battiat:2011:RFH

Boeker:1987:SAG
REFERENCES

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]

[Baritaud:1993:FHCb]
REFERENCES

REFERENCES

[109

[Ben-Haim:2012:PHC]

Yael Ben-Haim, Alexander Ivrii, Oded Margalit, and Arie Matsliah. Perfect hashing and CNF encodings of cardinality constraints. Lecture Notes in
REFERENCES

REFERENCES

[BJ93] Peter Buneman and Sushil Jajodia, editors. Proceedings of the 1993 ACM SIGMOD International Conference on

Benouamer:1994:HLN

Bocca:1994:ICV

Bell:1970:LQH

Bechtold:1984:UEH

Brassard:1988:GRP

Broder:1990:MAH

Barker:2007:RRN

[JK07a] Elaine Barker and John Kelsey. Recommendation for random number generation using deterministic random bit generators (revised). National Institute for Standards and Technology, Gaithersburg, MD 20899-8900, USA,

[Barkley:1989:PRH] Ronald E. Barkley and
REFERENCES

[B] Bando:2012:FBG

Barber:2014:MEH

Bayer:1976:EST

J. Barklund and H. Millroth. Hash tables in logic programming. In Lassez
REFERENCES

[BMB68] J. D. Beyer, W. D. Maurer, and Frank K. Bamberger. Letter to the Edi-

[BN85] Wilhelm Barth and Heinrich Nirschl. Sichere Sin

REFERENCES

Bolour:1979:OPM

Bookstein:1972:DH

Bookstein:1973:HST

Bookstein:1974:HCN

Borman:1981:PSP

Borgwardt:1984:PPU

Bosselaers:19xx:EFH

REFERENCES

REFERENCES

Banerjee:1975:DLD

Bellare:1994:OAEd

Bellare:1997:CRH

Bellare:2006:MPP

Bellare:2014:CCH

Bradley:1984:UMD

James Bradley. Use of mean distance between overflow records to compute average search lengths in hash files with open addressing. Technical Report 84/154/12, University of Calgary, May 1984. ?? pp. (email parin@cpsc.ucalgary.ca).
Bratbergsengen:1984:HMR

Bradley:1985:UMD

Bradley:1986:UMD

Bradley:1988:BFP

Brassard:1990:ACC

Brass:2009:UHF

Brent:1973:RRT

[Bre73] Richard P. Brent. Reducing
the retrieval time of scatter storage techniques. *Communications of the Association for Computing Machinery*, 16 (2):105–109, February 1973. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Modification of open addressing with double hashing to reduce the average number of probes for a successful search.

Bremers:1991:HPP

Brickell:1992:ACC

Blundell:2010:RTR

Black:2002:BBA

Black:2010:ABB

REFERENCES

Bode:1993:PPA

Bryant:1984:EHL

Biham:1991:DCFa

Biham:1991:DCFb

Biham:1991:DCS

Bhatia:1994:FPH

Bhatia:1994:FIP

Bhatia:1994:FIP

References

[Bakhtiari:1996:KHF]

[Bakhtiari:1996:PBA]

REFERENCES

Brain:1990:PHU

Briggs:1993:ERS

Brain:1994:UTE

Bouabana-Tebibel:2012:HCB

Brown:2012:FPT

Buchholz:1963:FOA

Buckhart:1982:AII
Walter A. Buckhart. Advances in interpolation-based

Burkhard:1975:FTQ

Burkhard:1975:PMQ

Burkhard:1976:ART

Burkhard:1978:PMH

REFERENCES

REFERENCES

Burk:1992:HGP

Burkhard:2005:DHP

Burr:2006:CHS

Butin:2017:HBS

Belkin:1989:SPT

Barreto:2012:HCS
REFERENCES

130

Bazrafshan:2013:IBS

Breen:1989:HFP

Bruynooghe:1992:PLI

Blackburn:1998:OLP

Baeza-Yates:1989:MSF

Barnes:2015:PEP
REFERENCES

0730-0301 (print), 1557-7368 (electronic).

REFERENCES

REFERENCES

Christodoulakis:1989:FOA

Christodoulakis:1989:RPV

Celis:1992:AHL

Cooperman:1994:CPR

Cowan:1979:HKR

Cotter:1992:CTK

Chu:1986:VLD

Cousin:1994:PIS
REFERENCES

REFERENCES

DEN ISI/BC. ISSN 0020-0255 (print), 1872-6291 (electronic).

Chang:1986:SCO

Chang:1988:APC

Chapman:1991:QSS

Chaudhuri:1994:TBO

Chang:2012:HCM

Chen:1984:DACa
Wen-Chin Chen. *The Design and Analysis of Coalesced Hashing*. PhD thesis, Department of Computer Science, Brown University, Providence, RI, USA, November 1984. ?? pp. See also [Che84b].

Chen:1984:DACb

Chin:1991:LPH
REFERENCES

Chin:1993:LPH
[Chi93] Andrew Chin. Locality-preserving hashing. In Anonymous [Ano93d], pages 87–98. ISBN ?? LCCN ?? I have been unable to locate this reference in several major libraries, including Dartmoth's, sigh.

Chin:1994:LPHb

Cormack:1985:PPH

Correa:2006:LTI

Camacho:2008:SAC

Camacho:2012:SAC

Chen:2007:TPB
Hsiang-Yang Chen, Ting-

Chung:1992:IEH

Chen:1993:AHF

Chen:1997:AHF

Cichelli:1980:CMP

R. J. Cichelli. On Cichelli’s minimal perfect hash functions method. *Communications of the Association for Computing Machinery*, 23(12):728–729, December 1980. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This is the author’s response to the comments in [JO80] about [Cic80b]. See also [Sag85a].

Cichelli:1980:MPH

REFERENCES

[Cho:2015:CBF] Jung-Sik Cho, Young-Sik Jeong, and Sang Oh Park. Consideration on the brute-force attack cost and re-

Chierichetti:2015:LPF

Cercone:1983:MAMa

Cercone:1983:MAM

Cercone:1985:ESL

Chierichetti:2014:CLF

Chang:1993:RCO

REFERENCES

Coetser:2009:REH

Cook:1983:STA

Chang:1985:PAK

Chang:1986:LOM

Chang:1995:CHE

Chang:2005:PHS

Colbourn:2009:LHF

REFERENCES

Chang:1982:SGC

Chang:1992:OPD

Chang:2006:PHS

Chang:2009:CHF
REFERENCES

[CLNY06] Donghoon Chang, Sangjin Lee, Mridul Nandi, and Moti Yung. Indifferentiable security analysis of popular hash

Canetti:2013:PCC

Chiu:2017:AAS

Chen:1995:STP

Chen:2012:EDI

Chu:1998:EHB

Chen:1992:USR

REFERENCES

org/pubs/citations/proceedings/stoc/276698/p131-canetti/. ACM order number 508980.

Carter:1983:CEI

Cheng:2007:DHL

Chang:2008:IIS

Comer:1982:GPA

Cook:1982:LOM

Coburn:1994:ISH

Cohen:1984:MSP

REFERENCES

REFERENCES

Coron:2000:ESF

Coron:2002:SPP

Chaum:1987:ACE

Cai:1991:MNH

Cai:1991:LMN

REFERENCES

Crammond:1985:CSU

Carreras-Riudavets:2012:MAU

Cromwell:1998:PBD

Collom:2018:FMM

Chaum:1983:ACP

Chung:1983:PSR

Celis:2011:BBS
REFERENCES

REFERENCES

[CSS93a] Cesarini:1993:SAH

[CS97] Cooper:1993:TTA

[CS02] Cramer:2002:UHP

Cooperman:1996:NSP

Cormode:2010:ANG

Chiu:2012:IMA

IEEE:1990:FAS

Chen:2011:CIK

Chen:1983:AEI

REFERENCES

CODEN SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic).

Chen:1983:NVC

Chen:1984:ANV

Chen:1985:AAS

Chen:1986:DAC

Castro:2005:NRG

Chung:2008:TBH

Carrea:2014:OHN

REFERENCES

Carter:1977:UCHa

Carter:1977:UCHb

Carter:1979:UCH

Chang:1991:LOP

Chang:1993:HON

Chen:2009:SHA

Chiu:2010:FMH

Contini:2006:FPK
Scott Contini and Yiqun Lisa Yin. Forgery and partial key-recovery attacks on HMAC

[Chen:2012:IBE] Yu Chen, Zongyang Zhang,

Chen:2014:CSI

Dolev:1992:NPH

Dietzfelbinger:1993:OPD

Dietzfelbinger:1990:NUC

REFERENCES

Dietzfelbinger:1992:HPU

Daemen:1995:HFC

Damgaard:1987:CFH

Damgaard:1990:ACE

Damgaard:1990:DPH

Damgaard:1991:ACE

I. B. Damgård, editor. Advances in cryptology — EU-

REFERENCES

Day:1970:FTQ

Drechsler:2012:IEH

Daemen:1993:CSH

Bakker:1980:ALP

Dorng:1981:CHC

Du:1994:ADV

Daemen:1998:FHS

REFERENCES

[DD11]
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

REFERENCES

Science Department, Boulder, CO, USA, 1993. ?? pp.

REFERENCES

[Du:1989:EFS]

[DGMP92]

[DGV93]

[DH84]
Dietzfelbinger:2001:SMP

Dietzfelbinger:1997:RRA

Dolev:1994:NPH

Dolev:2002:NPH

Dietzfelbinger:2008:DIB

Dietzfelbinger:1997:RRA

Dolev:1994:NPH

implementation based on dynamic perfect hashing.

Dietzfelbinger:1990:HDD

Dietzfelbinger:1996:UHW

Dietzfelbinger:2007:DSM

Dittmer:1976:IEP

Dittmer:1991:NFH

[Die91] I. Dittmer. Note on fast hashing of variable length text strings. Communications of the Association for Computing Machinery, 34(11):118, November 1991. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Points out that Pearson’s hashing algorithm [Pea90] was discovered fourteen years earlier by this author [Dit76]. See also
comments in [Sav91, Lit91, Pea91].

Dinur:2009:ARC

Diaz:2006:ARC

Diaz:2006:ARC

REFERENCES

REFERENCES

Jacques Chassin de Ker
gommeaux and Philippe Cog
denet. Parallel logic pro-
gramming systems. ACM
Computing Surveys, 26(3):
CODEN CMSVAN. ISSN
0360-0300 (print), 1557-
7341 (electronic). URL
http://www.acm.org/pubs/
toc/Abstracts/0360-0300/
185453.html.

M. Dietzfelbinger, A. Kar
lin, K. Mehlhorn, F. Meyer
auf der Heide, H. Rohnert,
and Robert E. Tarjan. Dynamic
perfect hashing: Upper and
lower bounds. In IEEE-
FOCS’88 [IEE88c], pages
524–531. ISBN 0-8186-0877-
3 (paperback), 0-8186-4877-
5 (microfiche), 0-8186-8877-7
(hardcover). LCCN QA 76

M. Dietzfelbinger, A. Kar
lin, K. Mehlhorn, F. Meyer
auf der Heide, H. Rohnert,
and Robert E. Tarjan. Dynamic
perfect hashing: upper and
lower bounds. Technical
Report CS-TR-310-91, De-
partment of Computer Sci-
ence, Princeton University,
Princeton, NJ, USA, March

Martin Dietzfelbinger, Anna
Karlin, Kurt Mehlhorn,
Friedhelm Meyer auf der
Heide, Hans Rohnert, and
Robert E. Tarjan. Dynamic
perfect hashing: Upper and
lower bounds. SIAM Jour-
nal on Computing, 23(4):
738–761, ???. 1994. CO-
DEN SMJCAT. ISSN 0097-
5397 (print), 1095-7111 (elec-
tronic).

D. J. DeWitt, R. H. Katz,
and F. Olken. Implementation
techniques for main memory
database systems. Technical
report, University of Wiscon-
sin–Madison, Madison, WI,
USA, 1984. ?? pp.

D. J. DeWitt, R. Katz,
F. Olken, L. Shapiro, M. Stone-
braker, and D. Wood. Imple-
mentation techniques for
main memory database sys-
tems. In Proc. ACM SIG-
MOD Conf, page 1. ACM
Press, New York, NY 10036,
USA, June 1984.

Dharmapurikar:2006:LP [DL06] Pierre-Malo Denielou and James J. Leifer. Abstrac-
REFERENCES

Dong:2012:UAS

Dinur:2017:IGA

DeRemer:1979:SCS

Dolev:2009:BAU

Dolev:2013:UPH

Durand:2007:SPP

Duan:2018:EGS

Weiwei Duan, Jianxin Luo,

Damiani:1998:EDH

Davie:1981:RDC

Diby:1990:DDK

Devroye:2003:CHF

Ducournau:2011:PCH

Ducournau:2009:EAO

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Demaine:2006:DDP
E. D. Demaine, F. Meyer auf der Heide, R. Pagh, and M. Pătraşcu. De dictio-
nariis dynamicis pauco spat
tio utentibus. (latin) [On
dynamic dictionaries using
little space]. In Correa
et al. [CHK06], pages 349–
361. CODEN LNCS9D.
ISBN 3-540-32755-X (soft-
cover). ISSN 0302-9743
(print), 1611-3349 (elec-
tronic). LCCN ???. URL
http://www.springerlink.
com/content/978-3-540-
32756-1.

Dietzfelbinger:2011:CHP
Martin Dietzfelbinger, Michael
Mitzenmacher, and Michael
Rink. Cuckoo hashing with
pages. Lecture Notes in CS,
6942:615–627, 2011. CO-
DEN LNCS9D. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/
10.1007/978-3-642-23719-
5_52.

DeWitt:1992:PSH
David J. DeWitt, Jeffrey F. Naughton, Dono-
van A. Schneider, and S. Se-
shadri. Practical skew han-
dling in parallel joins. Tech-
nical Report TR 1098, Com-
puter Sciences Department,
University of Wisconsin-

Deen:1981:DCD
S. M. Deen, D. Nikodem, and
A. Vashishta. Design of a canoni-
cal database system (PRECI).
The Computer Journal,
24(3):200–
the Association for Com-
puting Machinery,
25(6):
368–370, June 1982. CO-
DEN CACMA2. ISSN 0001-
0782 (print), 1557-7317 (elec-
tronic).

Dodds:1982:PRD
D. J. Dodds. Pracniques:
Reducing dictionary size
by using a hashing tech-
nique. Communications of
the Association for Com-
puting Machinery,
25(6):
368–370, June 1982. CO-
DEN CACMA2. ISSN 0001-
0782 (print), 1557-7317 (elec-
tronic).

Donovan:1991:PSM
Kevin Donovan. Performance
of shared memory in a para-
de computer. IEEE
Transactions on Parallel and
REFERENCES

[DR06] Christophe De Cannière and Christian Rechberger. Find-

Dietzfelbinger:2009:AST

Doyoddorj:2011:NSI

Drescher:2017:BB

Drescher:2017:HD

Drescher:2017:HRW

Dodis:2012:HHA

REFERENCES

Umeshwar Dayal, G. Schlageter and Lim Huat Seng, editors. Very Large Data Bases: Proceedings: Tenth International Conference on Very Large Data Bases, Singapore, August 27–31, 1984. Very
REFERENCES

Large Data Bases Endowment, Saratoga, CA, USA, 1984.

REFERENCES

in open literature on hashing. First use of hashing by taking the modulus of division by a prime number. Mentions chaining for collision handling, but not open addressing. See [Ers58b] for the latter.

[DV05] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionaries with tightly packed constant size bins. In Caires et al. [CIM^+05], pages 166–178. ISBN 3-540-27580-0. LCCN ????

[acm03a] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionaries with tightly packed constant size bins. In Caires et al. [CIM^+05], pages 166–178. ISBN 3-540-27580-0. LCCN ????
REFERENCES

Dietzfelbinger:2007:BAD

DeSantis:1990:DPS

Eydaie:2016:HCR

Elleithy:1991:VIS

Ecker:1974:BRG

A. Ecker. Eine Bemerkung zum Restklassenhash. (German) [Remark on the di-
REFERENCES

REFERENCES

Engelmann:1993:SBC

Elder:1984:CDP

Ellzey:1982:DSC

Ellis:1985:CLH

Ellis:1985:DDS

Ellis:1987:CLH

Ellis:1988:CEH

REFERENCES

Erlingsson:2007:CPA

Englert:1994:NSS

Etzel:1999:SHF

Er:1986:UTI

Ershov:1958:PAO

Ershov:1958:PPB

addressing. See [ABRS53, Dum56]. English translation in [Ers58a].

Estebanez:2014:PMC

Eugenides:1990:ESM

Estan:2006:BAC

Fotakis:2003:SEH

Fabry:1974:CBA

Fahlman:1980:HIS

Faloutsos:1985:MHU

C. Faloutsos. Multiattribute hashing using gray codes. *ACM Computing Surveys*, 17 (1):??, March 1985. CODEN CMSVAN. ISSN 0360-0300 (print), 1557-7341 (elec-
REFERENCES

Farrell:1993:CCC

Farashahi:2014:HHC

Fontayne:1987:MSR

Frakes:1992:IRD

Faloutsos:1987:DPA

Faloutsos:1987:OSE

Fox:1991:OPM

Fox:1992:FAC

Fox:1988:MCE

REFERENCES

[FCHD89]

[Fos89]

[Fos89]

[Fei91]

[Fel50]

[Fel87]

[Fel88]

[FFS99]

DEN COLADA. ISSN 0096-0551 (print), 1873-6742 (electronic).

Fleischmann:2009:TFS

Fleischmann:2010:TFS

Freire:2007:BHB

Figini:1984:ACH

Farashahi:2013:IDH

Files:1969:IRS

REFERENCES

[Fortune:1979:NRN]

[Fateman:1996:SLB]

[Fuji-Hara:2015:PHF]

[Fox:1989:LAF]

[Fox:1992:MPH]
Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and Amjad M. Daoud. Minimal perfect hash functions for large databases. *Communications of the Association for Computing Machinery*, 35(1):105–121, January 1992. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This is the first published algorithm for computing minimal perfect hash functions for lists of millions of words; previous algorithms were computationally infeasible for more than a few hundred words.

[Fox:1992:MPH]
lished algorithm for computing minimal perfect hash functions for lists of millions of words; previous algorithms were computationally infeasible for more than a few hundred words.

Frieder:1985:LSP

Filiol:2002:NST

FIPS:1993:SHS

FIPS:2002:KHM

FIPS:2002:SHS

Fischer:1987:FMP

REFERENCES

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with $O(1)$ worst case access time. *Journal of the Association for Computing Machinery*, 31(3):538–544, July 1984. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic). Extends the work of Tarjan and Yao [TY79], using a two-level data structure, the first containing pointers to the second, and the second containing blocks accessible by a perfect hashing function.

Flajolet:1981:PEE

Flajolet:1983:PEE

Flajolet:1983:PC

Fernandez:2011:HWS

Flores:1977:DSM

Floyd:1987:HHP

Fischlin:2008:RMP

Fischlin:2014:RMP

Ferguson:2010:SHF

Flynn:1992:ORU

Flajolet:1985:PCA

Faloutsos:1989:DUE

Faudemay:1991:AAL

Farach:1996:PHS
DEN LNCS9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Franklin:2002:PAS

Frieze:2009:ARW

REFERENCES 201

REFERENCES

Ferreira:2011:LHB

Freeman:1990:ICP

Friemel:1986:DM

Frost:1981:ADI

Frost:1982:BRS
Discusses the dynamic hashing scheme used by ASDAS, under development at Strathclyde University.

Pierre-Alain Fouque and Mehdi Tibouchi. Indifferentiable hashing to Barreto–Naehrig curves. *Lec-
REFERENCES

Fuerer:1988:UHV

Fusco:2012:RTC

Friedman:1976:GCH

Friedman:1977:EGC

Daniel P. Friedman and David S. Wise. Erratum: “Garbage Collecting a Heap Which Includes a Scatter Table”. Information Processing Letters, 6(2):72, April ??, 1977. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic). See [FW76].

Feldhofer:2009:HIS

Fang:2017:OHT

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Pages/Publication Details</th>
</tr>
</thead>
</table>
REFERENCES

Gong:1994:AKD

Gonnet:1990:AKR

Gonnet:1991:HAD

Guh:1990:PPS

Graefe:1995:FAU

Gollapalli:2015:IRH

Sujatha Das Gollapalli, Cornelia Caragea, Prasenjit Mitra, and C. Lee Giles. Im-

Bob Gerber. Informix online XPS. *SIGMOD Record*
REFERENCES

(Ganguly:2004:TSE) Sumit Ganguly, Minos Garefalakis, and Rajeev Rastogi. Tracking set-expression cardinalities over continuous update streams. VLDB Journal: Very Large Data

references

GionisIM99.html. Also known as VLDB’99.

Grassl:2011:CTZ

Girault:1987:HFU

Gebhardt:2005:NPV

Goldwasser:2002:DSN

Graham:1979:HST

Goto:1976:HLT

REFERENCES

Greene:1981:MAA

Greene:1982:MAA

Grewe:1994:ILM

Grewe:1995:ILM

Garcia:2005:HJA

Gueron:2008:VNF

Gauravaram:2012:SAR

REFERENCES

Grembowski:2002:CAH

Garcia:2011:CPH

Goodman:2011:SHS

Gong:2017:TMR

Rehak:2008:IAD

Graefe:1991:SVH

Graefe:1994:SVH

Gonnet:1977:AIH
G. Gonnet and I. Munro. The analysis of an improved hashing technique. In ACM-TOC'77 [ACM77b], pages 113–121.

Gonnet:1979:EOH

Gil:1991:FHP

Gil:1994:SFP

Gil:1998:SFP

Garcia-Molina:1990:ASI

Gardarin:1995:OFE

Gil:1990:AKC
REFERENCES

Gall:1980:SIA

Gutmann:2005:WHC

Gauravaram:2007:USC

Grossi:2015:FCT

Goble:1975:FTR

Golshani:1992:EIC

REFERENCES

Goldwasser:1994:P

Gollmann:1996:FSE

Gonnet:1980:OAH

Gonnet:1981:ELL

Gonnet:1983:UDB

Gonnet:1984:HAD

Gonnet:1977:ALB

Gonnet:1980:OAH
REFERENCES

REFERENCES

Greene:1994:MIHb

Guillou:1995:ACE

Gray:1986:IJH

Graefe:1989:RDF

Graefe:1992:QPT

Graefe:1993:PEHa

Graefe:1993:PEHb

REFERENCES

[M. L. Griss. Hashing—the key to rapid pattern matching. Technical Report UUCS-
REFERENCES

Griebel:1998:ASG

Grosshans:1986:FSD

Gopal:1993:CCH

Guibas:1976:ADH

Guibas:1978:ADH

Gori:1989:AAC

Girault:1994:LCH

Gupta:1994:RSD

Rajiv Gupta, Scott A. Smolka, and Shaji Bhaskar. On randomization in sequen-

Goi:2001:IHF

Goto:1982:DLM

Gupta:1998:PTF

REFERENCES

QA76.9.D3 I559 1998. Also known as VLDB.

[Gui78] Leo J. Guibas. The analysis of hashing techniques that exhibit k-ary clustering. *Journal of the Association for Computing Machinery*, 25
REFERENCES

Guinier:1989:FUA

Gupta:1989:SHI

Gurski:1973:NAK

Garcia:2008:SCC

Goldreich:1994:TFF

Gadia:1991:IIT

Griebel:1999:PMA

Guo:2014:CHS

[GZX14] Song Guo, Deze Zeng, and Yang Xiang. Chameleon hashing for secure and...

[Han17] Yijie Han. Construct a perfect word hash function in time independent of the size of integers. Information Processing Letters, 128
REFERENCES

Malcolm C. Harrison. Data Structures and Programming. Courant Institute of Mathematical Sciences, New York University, New York, NY, USA, April 1971. xii + 381 pp. LCCN QA76.5 .H37. See also [Har73].

Hachem:1989:KAM

Hecker:1989:IGH

Hachem:1992:NOP

Hariri:1993:PIC

Hecker:1994:GHG

Hulsing:2017:XEH

Horspool:1987:HCT

REFERENCES

Holt:2002:MAR

Holt:2007:PMA

Hedayatpour:2011:HFB

Hsiao:2013:SLB

Healy:2014:AKM

Hart:1995:SHC

Hasan:2006:CSE
Jahangir Hasan, Srihari Cadambi, Venkatta Jakkula, and Srimat Chakradhar. Chisel: a storage-efficient, collision-free hash-based network processing architec-
REFERENCE

DEN CANED2. ISSN 0163-
5964 (print), 1943-5851 (elec-
tronic).

Hanson:1990:PMAb

[HCKW90] Eric N. Hanson, Moez Chaabouni, Chang-Ho Kim, and Yu-Wang Wang. A predi-
cate matching algorithm for database rule systems. SIG-
MOD Record (ACM Special Interest Group on Man-
agement of Data), 19(2):271–280, June 1990. CO-
DEN SRECD8. ISSN 0163-
5808 (print), 1943-5835 (elec-
acm.org/pubs/articles/
proceedings/mod/93597/
pdf; http://www.acm.
org/pubs/citations/proceedings/
mod/93597/p271-hanson/.

Hernandez-Castro:2012:AFH

[HCPLSB12] Julio Cesar Hernandez-
Castro, Pedro Peris-Lopez, Masoumeh Safkhani, and Na-
sour Bagheri. Another fallen hash-based RFID authentica-
tion protocol. Lecture Notes in CS, 7322:29–37, 2012. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/chapter/10.
1007/978-3-642-30955-7_4/.

Hsiao:1994:PEM

DEN SRECDS8. ISSN 0163-
5808 (print), 1943-5835 (elec-
tronic).

Hsiao:1997:PEH

DEN ITDSEO. ISSN 1045-
9219 (print), 1558-2183 (elec-
computer.org/td/books/
tpds/td1997/l0872abs.htm.

Hopgood:1972:QHM

[HD72] F. R. A. Hopgood and J. Davenport. The quadratic hash method when the ta-
DEN CMPJA6. ISSN 0010-4620 (print), 1460-2067 (elec-
tronic). URL http://www3.oup.co.uk/computer_
journal/hdb/Volume_15/
Issue_04/150314.sgm.abs.
html; http://www3.oup.
REFERENCES

co.uk/computer_journal/hdb/Volume_15/Issue_04/tiff/314.tif; http://www3.oup.co.uk/computer_journal/hdb/Volume_15/Issue_04/tiff/315.tif. See correspondence [PH73].

REFERENCES

[Heller:1989:EH]

[Heller:1991:MHY]

[Helleseth:1994:ACE]

[Herbert:2007:WHP]

[Heuer:1987:WRD]

[Herrin:1991:ADF]

[Hull:2013:SPC]

[Huang:2017:QAL]
Qiang Huang, Jianlin Feng, Qiong Fang, Wilfred Ng, and Wei Wang. Query-aware locality-sensitive hashing scheme for l_p norm. *VLDB Journal: Very Large*
Huang:2015:QAL

Hikita:1977:AFP

Lai:2009:CCD

Hendricks:2007:LOB

Hester:1985:SOL

Harn:2010:ELL

Haitner:2010:UOW

Iftach Haitner, Thomas Holenstein, Omer Reingold, Salil Vadhan, and Hoeteck Wee. Universal one-way hash

Hill:1978:CSVa

Hill:1978:CSVb

Hildebrandt:1982:VBD

Hille:1988:DAP

Herschel:1975:WHC

Helleseth:1996:UHF

Hopcroft:1983:HCG

Haggard:1986:FMP
Gary Haggard and Kevin Karplus. Finding mini-
imal perfect hash functions. In Little and Cas-
[LC86b], pages 191–
193. ISBN 0-89791-178-
4. LCCN QA76.27.A79 v.18
no.1. US$28.00.

[HK87] Micha Hofri and Alan G.
Konheim. Padded lists
revisited. SIAM Journal
on Computing, 16(6):1073–
1114, December 1987. CO-
DEN SMJCAT. ISSN 0097-
5397 (print), 1095-7111 (elec-
tronic).

[HK95] Torben Hagerup and Jörg
Keller. Fast parallel permuta-
tion algorithms. Parallel
Processing Letters, 5(2):139–
148, June 1995. CODEN
PPLTEE. ISSN 0129-6264
(print), 1793-642X (elec-
tronic).

[HKKK10] Deukjo Hong, Bonwook Koo,
Woo-Hwan Kim, and Dae-
sung Kwon. Preimage
attacks on reduced steps
of ARIRANG and PKC98-
hash. Lecture Notes in CS,
5984:315–331, 2010. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/10.1007/978-3-642-14423-
3_21.

[HKKK13] Deukjo Hong, Dong-Chan
Kim, Woo-Hwan Kim, and
Jongsung Kim. Higher or-
der eTCR hash functions.
Computers and Mathematics
with Applications, 65
CODEN CMAPDK. ISSN
0898-1221 (print), 1873-7668
(electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S0898122112000430.
REFERENCES

Hsu:1991:IAI

Horton:1994:MLS

Hsu:2003:NCS

Heileman:2005:HCA

Huang:2010:DHT

He:2013:RCP

Han:2018:NRA

Hohl:1993:SIH

Havas:1993:GTO

Halevi:1996:PPS

Helmer:2003:PSF

Halperin:2008:AEA

Hanaoka:2012:ICE

Ha:2007:SAE

Hagerup:2001:DD

Havas:1994:GHH

Hiraki:1984:EAM

REFERENCES

[HR93] Evan P. Harris and Kottagiri Ramamohanarao. Optimal dynamic multi-attribute hashing for range queries. BIT (Nordisk tidskrift for
REFERENCES

Harris:1996:JAC

Evan_P_.html; http://

Hsiao:2004:FCP

Haitner:2007:SHC

Haitner:2014:NIH

Hulsing:2013:OPX

REFERENCES

[**Hulsing:2016:MMT**]

[**Horowitz:1978:FCA**]

[**Horowitz:1984:FDS**]

[**Hoch:2008:SCH**]

[**Hsiao:1983:ADM**]

[**Hernandez:2002:GCT**]

[**Hoshi:1988:AHF**]
REFERENCES

[Hafiane:2008:RIH] Andreas Hutflesz, Hans-Werner Six, and Peter Wid-

REFERENCES

REFERENCES

Ho:1989:COM

Ho:1993:COM

Hadjieleftheriou:2008:HSS

Hsieh:1999:OWH

Hill:1986:ESD

Aoe:1991:CAK

Aoe:1994:CAS

Istvan:2015:HTL

[Zsolt István, Gustavo Alonso, Michaela Blott, and Kees Vissers. A hash table for in-memory data processing. *ACM Transactions on Reconfig-

[ICD93] Proceedings/Ninth International Conference on Data Engineering, April 19–23,
REFERENCES

IEEE, editor. 15th Annual Symposium on Switching and Automata Theory, October 14-16, 1974, the University of New Orleans. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1974.

IEEE:1976:ASF

1980, ASF IEEE:1980:ASF

1984, ISL IEEE:1984:ISL

1985, FOC IEEE:1985:FOC

26th annual Symposium on
REFERENCES

REFERENCES

IEEE:1992:PAS

IEEE:1993:PSP

IEEE:1994:DEI

IEEE:1994:NAE

IEEE:1994:PSH

IEEE:1995:PNA

IEEE:1999:ASF

IEEE:2002:STI

IEEE:2005:PIIS

IEEE:2006:AIS

IEEE Computer Society Order Number P2720.

REFERENCES

Computer Society order number P?????

REFERENCES

ACM:1989:PIJ

Ichiyoshi:1992:ALB

Ishai:2005:SCC

Ishai:2008:CCC

Ivanov:1990:HSO

Indyk:1997:LPH

Impagliazzo:1989:ECS

[IN89] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as secure as subset sum. An-
REFERENCES

Inoue:1991:RRD

Itano:1988:IPM

Ishikawa:1993:MLI

ISO:1997:ITS

ISO:2004:IIIb

ISO. *ISO/IEC 10118-

G. Jaeschke. Reciprocal hashing: a method for generating minimal perfect hashing functions. *Communications of the Association for Computing Machinery*, 24(12):829–833, December 1981. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Hash functions, for a key x in a set S of positive integers, of the form $h(x) = (C/(Dx+E)) \mod N$ are considered. Though the existence of h is guaranteed, the scheme suffers from many practical problems because of exhaustive nature of the search for h.

dress lookup in computer networks. Technical Report
DEC-TR-593, Digital Equipment Corporation, February

Jain:1992:CHSa

R. Jain. A comparison of hashing schemes for
17 pp. URL http://
www.cis.ohio-state.edu/~
jain/papers/hash_ps.htm.

Jain:1992:CHSb

R. Jain. A comparison
of hashing schemes for ad-
dress lookup in computer
Comm., 40(10):1570–1573,
October 1, 1992. CO-
DEN IECMBT. ISSN 0090-
6778 (print), 1558-0857 (elec-
tronic). URL http://
www.cis.ohio-state.edu/
"jain/papers/hash_ieee_2col.htm.

Jain:19xx:CHS

Raj Jain. A comparison
of hashing schemes for ad-
dress lookup in computer
DEC-TR-566, Digital Equip-
ment Corporation, 19xx. ?? pp. URL jain%erlang.dec@
décwrl.dec.com.

Jaja:1990:SFM

Joseph Jáája, editor. The 3rd
Symposium on the Frontiers
of Massively Parallel Compu-
tation: Proceedings, Held at
the University of Maryland,
College Park, Maryland, Oc-
tober 8–10, 1990. IEEE Com-
puter Society Press, 1109
Spring Street, Suite 300, Sil-
ver Spring, MD 20910, USA,
LCCN QA76.58 .S95 1990.

Jakobsson:1985:SRL

Matti Jakobsson. Sampling
without replacement in linear
time. The Computer Journal,
CODEN CMPJA6. ISSN
0010-4620 (print), 1460-2067
(electronic).

Janson:2005:IDL

Svante Janson. Individual
displacements for linear
probing hashing with differ-
ent insertion policies. ACM
Transactions on Algorithms,
CODEN ????? ISSN 1549-
6325 (print), 1549-6333 (elec-
tronic).

Janson:2008:IDH

Svante Janson. Individual
displacements in hash-
ing with coalesced chains.
Combinatorics, Probability
and Computing, 17(6):799–
814, November 2008. CO-
DEN CPCOFG. ISSN 0963-
5483 (print), 1469-2163 (elec-
tronic).
References

Jarke:1994:ADT

Jiang:2011:GBM

Jones:1988:FTV

Jiang:2000:CSM

Chang:2012:TRR

REFERENCES

Junczys-Dowmunt:2012:SEP

Jenks:1976:SPA

Jenkins:1997:AAH

Joux:1995:PAA

Jha:2015:IMM

Jung:2011:SHB

Hyunhee Jung and Hyun Sung Kim. Secure hash-based

See [Boy98] for comparison with a related algorithm.

Janzadeh:2009:SCB

Jenks:1976:SPA [JFDF09]

Junczys-Dowmunt:2012:SEP [JD12]

Jeong:2014:ITP

Jeong:2008:PBH

Jovanov:2002:ANO

Jean:2014:ICA

Jovanov:2002:ANO

G. Jaeschke and G. Osterburg. On Cichelli’s minimal perfect hash functions method. Communications of the Association for Computing Machinery, 23(12):728–729, December 1980. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This letter to the editor contains comments on [Cie80b], together with a response from R. J. Cichelli [Cie80a].
REFERENCES

[Johnson:1961:ICM]

[Johansson:1997:BHS]

[Jouannaud:1985:FPL]

[Joux:2004:MIH]

[Joyce:2003:TCC]

[Jutla:2007:PGC]
Jensen:2008:OEM

Jeon:2007:SAP

Jin:2009:SMB

Jung:1987:IRC

Jacobs:1986:TRT

Janson:2016:UAL

Jia:2018:PPH

Kabe:1987:RRT

Kahrs:1992:UUL

Kak:1983:EMP

Kak:1993:NNA

Kaliski:1993:SES
Kaliski:2001:HFF

Kaman:1974:HC

Kanada:1991:MVP

Kanada:1993:MVP

Karlsson:1982:ACR

Karloff:1998:PNA

REFERENCES

Kawagoe:1985:MDH

Kawamoto:2015:LSH

Krause:1981:PHF
Max Krause, Nick Cercone, and John Boates. Perfect hash function search with application to natural language systems. Technical Report CMPT TR 81-6, Simon Fraser University, 1981. ?? pp. (email library@cs.sfu.ca).

Ku:2005:WYR

Koushik:1992:LDH
Murlidhar Koushik and George Diehr. Linear-

Knott:1989:HTC

Keller:1993:HRP

Keller:1996:FRP

Kennedy:1973:RSU

Kerr:1975:PIC

Kocberber:2015:AMA

Kak:1995:ILM

Kaushik:2012:MGH

Vandana Dixit Kaushik, Amit K. Gupta, Umarani

[KHT89] M. Kitsuregawa, L. Harada, and M. Takagi. *Join strate-

Kim:1991:ISSa

Kim:1991:ISSb

Kak:1994:CVW

Kiessling:1985:DFU

Kiltz:2001:PPS

Kilian:2005:TCS

Kim:1980:QOR

Kim:1999:NSP

Kim:2011:EHB

Kojima:1985:HFO

Khan:1996:PCI

Kelsey:2006:HHF

Kakvi:2012:OSP

REFERENCES

Kabiljo:2017:SHP

Kim:2007:EIK

Kurosawa:1991:CFH

Kemper:1999:GHT

Kim:1987:ESJ

Knudsen:1995:NAA

L. R. Knudsen and X. Lai. New attacks on all double block length hash functions of hash rate 1, including the parallel-DM. In De Santis [De 95], pages 410–418. ISBN 3-540-60176-7. ISSN 0302-9743 (print), 1611-3349 (elect-
REFERENCES

Katajainen:1996:EUH

Jyrki Katajainen and Michael Lykke. Experiments with universal hashing. DIKU Report 96/8, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark, ????. 1996.

Kencl:2008:ALS

Karp:1993:EPS

Knudsen:1998:AFD

Karger:1997:CHR

Karp:1996:EPS

Karger:1997:CHR

Kompella:2012:RSF

King:2007:CRP

Koczkodaj:1992:IPF

Koerner:1986:IFB

Korner:1988:NBP

Korner:1988:RAC

Kato:1992:PCI

REFERENCES

Knott:1984:DCC

Knott:1988:LOA

Khovratovich:2010:RRA

Kitsuregawa:1989:EBS

Knuth:1973:ACP

Koehler:1972:SDB

Kohonen:1980:CAM

Konheim:2010:HCS

Korf:2008:LTD

Koschke:2014:LSI

Koushik:1993:DHD

Kilov:1981:DMA

Kh. I. Kilov and I. A. Popova. Data metabase architecture for relational DBMS. Programming and
REFERENCES

Computer Software; translation of Programmirovanie, (Moscow, USSR) Plenum, 7 (1):??, February 1981. CODEN PCSODA. ISSN 0361-7688 (print), 1608-3261 (electronic).

Kedem:1992:OPA

Krichevskii:1994:CSE

Knudsen:1996:HFB

Knudsen:1997:FSH

Katzenelson:1992:TMT

Kohonen:1979:VFA

REFERENCES

REFERENCES

Krause:1982:PHF

Krawczyk:1994:LBH

Krawczyk:1995:NHF

Krichevsky:1984:OH

Krichevskii:1989:ADC

Kohonen:1980:TWR

Kawaguchi:2009:TBD

Kim:2009:CIS

REFERENCES

Kwon:2009:FXD

Kohonen:1984:ORS

Knudsen:2007:GFH

Kruse:1984:DSP

Kriegel:1987:MDH

Kriegel:1987:MDQ

Kriegel:1987:MDQ
REFERENCES

David Karger, Alex Sherman, Andy Berkheimer, Bill

Kwak:2011:DIB

Kwak:2012:DIB

Kalvin:1986:TDM

Kim:1999:LEO

Kitsuregawa:1983:AHD

Kitsuregawa:1983:GRA

Masaru Kitsuregawa, Hidehiko Tanaka, and Tohru Moto-Oka. GRACE: Relational algebra machine based

REFERENCES

Kuespert:1983:VZO

Kuespert:1984:USO

Kuespert:1984:EED

Kuich:1992:ALP

Kulkarni:1984:CHF

Kumar:1989:CCM

Kumar:1989:CCE

Kumar:1990:COE

REFERENCES

[Kroll:1994:DST] Brigitte Kröll and Peter Widmayer. Distributing a search tree among a growing num-

[Lai:1992:DSB] Xuejia Lai. On the design and security of block ciphers. Hartung-Gorre Verlag, Konstanz, Switzerland, 1992. ISBN 3-89191-573-X. xii + 108 pp. LCCN ???. This is the author’s Ph.D. dissertation. “Secret-key block ciphers are the subject of this work. The design and security of block ciphers, together with their application in hashing techniques, are considered. In particular, iterated block ciphers that are based on iterating a weak round function several times are considered. Four basic constructions for the round function of an iterated cipher are studied.”.

REFERENCES

[Lar78]

Lee:2007:CFRa

[Lar80a]

Lamport:1970:CBQ

[Lar80b]

Landau:2006:FMH

[Lar81]

Larson:1978:DH

[Reg85]

Larson:1978:DH

[Lar80a]

Larson:1980:ARH

[Lar80b]

Larson:1980:LHP

[Lar80c]

Larson:1981:EWC

[Lar81]

Larson:1981:EWC

REFERENCES

Larson:1982:EWC

Larson:1982:PAL

Larson:1982:SFVa

Larson:1982:SFVb

Larson:1983:AUH

Larson:1984:AHC

Larson:1985:HFS

Larson:1985:LHO

Larson:1985:PAS

Larson:1988:DHT

Larson:1988:LHS

Larson:19xx:LHP

Lassez:1987:PFI

Lopes:2007:IRQ

Li:2002:RBA

Lehman:1986:SIS

[lehman:1986:sis] T. J. Lehman and M. J. Carey. A study of index...

[LC88] Ted G. Lewis and Curtis R. Cook. Hashing for dynamic and static internal tables. Computer, 21(10):45–57 (or 45–56??), October 1988. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic). The authors survey the classical hashing function approach to information retrieval and show how general hashing techniques exchange speed for memory. It is a tutorial paper that covers, among other topics, dynamic and static hash tables, perfect hashing, and minimal perfect hashing.

[LC12] Fang Liu and Lee-Ming Cheng. Perceptual image hashing via wave atom transform. Lecture Notes in CS,
Liu:2013:RBP

Liu:2014:SLE

Lathrop:2011:SPI

Liang:1994:OMK

Lo:1993:OPA

Lee:2012:OFL

REFERENCES

Lieuwen:1992:PBJ

Liu:2016:TRS

Lebedev:1987:EEU

Lesk:1988:GII

Levy:1989:LPT

Levelt:1995:IP1

Lever:2000:LKH

Lewis:1982:SEA

Laborde:2017:WFH

Lamiroy:1996:ROI
<table>
<thead>
<tr>
<th>REFERENCES</th>
<th></th>
</tr>
</thead>
</table>
Li:2010:PAP

Li:2015:RDS

Liang:1995:PHF

Lien:1981:AIC

Luhandjula:1992:FSI

Lin:1953:xxx

Lin:1963:KAR

Lindner:1996:DSH

Lipmaa:2002:OHT

Liskov:2007:CIH

Litwin:1977:ASD

Litwin:1977:MDP

Litwin:1978:VHD

Litwin:1979:HVN

Litwin:1979:LVH

Litwin:1980:LHN

Litwin:1981:TH

Litwin:1984:DAM

Litwin:1985:THF

Witold Litwin. Trie hashing: Further properties and

[Lit89]

[Lit91]

James Litsios. Note on fast hashing of variable length text strings. *Communications of the Association for Computing Machinery*, 34(11):118–120, November 1991. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Suggests a simple extension of Pearson’s hashing algorithm [Pea90] that supports non-character data. See also comments in [Dit91, Sav91, Pea91], and early work in [Dit76].

[LK84]

[Litxxa]

[Litwin:19xx:VHD]

[LJW+17]

Lucchesi:1993:AFA

Lai:1994:ADB

Lagutin:2007:CIC

Li:2011:TAB

Lemire:2014:SUS

Lemire:2016:FBU

Lee:2010:PMH

Lee:2004:CUA

Louchard:1983:PTC

Lodi:1985:SSH

Litwin:1986:BDA

Litwin:1987:NMF

Leng:1992:OWA

Lenzerini:2008:PTS

Maurizio Lenzerini and Domenico Lembo, editors. *Proceedings of the Twenty-Seventh*
ACM SIGMOD-SIGACT-
SIGART Symposium on
Principles of Database Sys-
tems: PODS’08, Vancouver,
BC, Canada, June 9–11,
2008. ACM Press, New York,
NY 10036, USA, 2008. ISBN
1-59593-685-X. LCCN ????

Lee:2013:SQB

Kisung Lee and Ling Liu.
Scaling queries over big RDF
graphs with semantic hash
partitioning. Proceedings
of the VLDB Endowment,
6(14):1894–1905, September
2013. CODEN ???? ISSN
2150-8097.

Lowden:2015:DPA

Jason Lowden, Marcin Lukowia-
and Sonia Lopez Alarcon.
Design and performance
analysis of efficient Keccak
tree hashing on GPU archi-
tectures. Journal of Com-
puter Security, 23(5):541–
562, 2015. CODEN JCSIET.
ISSN 0926-227X (print),
1875-8924 (electronic).

Leung:1989:LPA

K. S. Leung, K. H. Lee,
and S. M. Cheang. Lists
processing for artificial in-
telligence applications.
Microprocessing and Micropro-
gramming, 26(4):271–287,
December 1989. CODEN
MMICDT. ISSN 0165-
6074 (print), 1878-7061 (elec-
tronic).

Luo:2012:IDE

Yiyuan Luo, Xuejia Lai, and
Zheng Gong. Indifferen-
tiability of domain exten-
sion modes for hash func-
tions. Lecture Notes in CS,
7222:138–155, 2012. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/chapter/10.
1007/978-3-642-32298-3_-
10/.

Liu:2017:TQC

Xiulong Liu, Keqiu Li, Song
Guo, Alex X. Liu, Peng Li,
Kun Wang, Jie Wu, Xiulong
Liu, Keqiu Li, Song Guo,
Alex X. Liu, Peng Li, Kun
Wang, and Jie Wu. Top-k
queries for categorized RFID
systems. IEEE/ACM Trans-
actions on Networking, 25
CODEN IEANEP. ISSN
1063-6692 (print), 1558-2566
(electronic).

Lee:2002:RUA

Cheng-Chi Lee, Li-Hua Li,
and Min-Shiang Hwang. A
remote user authentication
scheme using hash functions.
Operating Systems Review,
CODEN OSRED8. ISSN
0163-5980 (print), 1943-586X
(electronic).

Luo:2015:ADL

Yiyuan Luo, Xuejia Lai, and
Tiejun Jia. Attacks on a dou-

REFERENCES

Lueker:1988:MAD

Lai:1993:HFBa

Lai:1993:HFBb

Lueker:1993:MAD

Leighton:1995:LPF

Lee:2007:FDF

Li:2012:SPS

Lee:2007:PSK

Sungju Lee, Daesung Moon, Seunghwan Jung, and Yongwha Chung. Protecting se-

Liu:2014:MIK

Lyu:2008:CBN

Luykx:2015:TPB

Lynch:2002:ADA

Lin:1989:PIB

Legtchenko:2009:CRR

DEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://link.springer.com/content/pdf/10.1007/978-3-642-05118-0_34.

Legtchenko:2012:RCR

Lipton:1993:CAH

Liu:2008:GBK

Litwin:1993:LLH

Litwin:1996:LSD

Lee:2011:SJS

REFERENCES

REFERENCES

Li:2012:OPH

Landelle:2016:CFR

Luccio:1991:APU

Luccio:1992:AIP

REFERENCES

Leifer:2003:GAS

Li:2012:WHT

Long:2006:GCA

Li:2018:LLP

Lei:2014:FND

Larson:1985:EPH

Lee:1996:DRW

References

Lo:1996:SHJ

Li:1999:FJU

Litwin:1991:THC

Litwin:1989:THC

Leskovec:2014:MMD

Lipton:1978:EHS

[R78] R. J. Lipton, A. Rosenberg, and A. C. Yao. External hashing schemes for col-

[L89] Lipton:1980:EHS

[L96] Linial:1996:NEH

[L06] Liu:2006:ECS

REFERENCES

References

314

dations of Data Organization: May 21–24, 1985, Kyoto, Japan. FODO’85, Computer Science Institute, Kyoto Sangyo University, Kyoto, Japan, 1985.

[Luc72]

Lehmann:2009:MDH

[LT09]

Larangeira:2012:RCN

[LT12]

Lu:1990:HBJ

[Lu90]

Luccio:1972:WIL

[Luh53]

Luhn:1953:xxx

Hans Peter Luhn. Internal IBM memo that first suggested the idea of hashing, and one of the first applications of linked linear lists. Luhn is also the inventor of KWIC indexing, in 1960 [Knuth, p. 437]. See also [Lin53], January 1953.

[Lum73]

Lum:1973:GPA

[Lum73]

Lutterbach:1988:NSD

Herbert Lutterbach, editor. *Non-standard Datenbanken fuer Anwendungen*

REFERENCES

REFERENCES

Litwin:1988:MTH

Monnerat:2015:ESH

Macii:1995:ECP

Maddison:1980:FLH

Mairson:1983:PCS

Mairson:1992:ETE

Michail:2012:EHT

Harris E. Michail, George S. Athanasiou, Vasilis Kelloureas, George Theodoridis, and Costas E. Goutis. On

Mallach:1977:SST

Mandelbrod:2012:LHA

Martin:1971:DEA

Martin:1975:CDB

Martin:1977:CDB

Matias:1993:HPR

Mathieu:2009:PTA

Maurer:1968:PTI

Maurer:1983:IHC

Martini:2003:DHM

Martini:2003:DHM

Manegold:2000:ODA

Mazeika:2007:ESA

REFERENCES

ISSN 0362-5915 (print), 1557-4644 (electronic).

References

Communications of the Association for Computing Machinery, 6(3):101, 1963. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

McIlroy:1982:DSL

McKenney:1989:HSEa

McKenney:1989:HSEb

McNichol:2003:HTM

Markowsky:1978:AUC

Mahapatra:1997:SGL

Macchetti:2005:QPH

Mehlhorn:1977:EA

Mehlhorn:1982:PSP

Mehlhorn:1984:SS

Mehlhorn:1986:DEA

Meijer:1995:HFB

Mekouar:1983:EPD

Miranda:2014:RSE

Mendelson:1982:AEH

Mennink:2012:OCS

Bart Mennink. Optimal collision security in double block
REFERENCES

Mennink:2017:OCS

Mergenthaler:1972:HCT

Merkle:1990:FSO

Merkle:1990:OWH

MeyerAufDerHeide:1993:HSS

Mor:1982:HCM

REFERENCES

[Mic02] Daniele Micciancio. Improved cryptographic hash

Maabreh:2018:MHT

Miller:1985:PHF

Miller:1987:STS

Miller:1995:RAC

Miltersen:1998:ECC

Miltersen:1999:CPC

Miyaguchi:1989:NHF

S. Miyaguchi, M. Iwata, and K. Ohta. New 128-bit
hash function. In IJWCC’89 [IJW89], pages 279–288.
LCCN TK5105.5 .I574 1989.

com/link/service/series/0558/bibs/2045/20450166.

CODEN ????? ISSN 0163-5999 (print), 1557-9484 (electronic).

CODEN IFCNA4. ISSN 0019-9958 (print), 1878-2981 (electronic).

2002_05/hash.txt.

CODEN LNCSD9. ISBN 3-642-04127-2. ISSN 0302-9743 (print), 1611-3349 (electronic). LCCN QA76.9.A43
E83 2009. URL http://www.springerlink.com/
content/xmk215105743x3p9/.

[Mit12] Arno Mittelbach. Hash combiners for second pre-image resistance, target collision resistance and pre-image
springer.com/content/pdf/
10.1007/978-3-642-32928-9_29.

for Computing Machinery*, 60(7):93, July 2017. CODEN CACMA2. ISSN 0001-

Iris Miliaraki and Manolis Koubarakis. FoXtrot: Distributed structural and value XML filtering. ACM Trans-
REFERENCES

actions on the Web (TWEB),

Mozaffari-Kermani:2017:FDA

McGrew:2016:SMH

Mochizuki:1998:SSA

Maurer:1975:HTM

Mackert:1986:ROV

Manolopoulos:1994:PLH

Myllymaki:1995:DTJ

REFERENCES

McEvoy:2009:IWH

Mourad:1994:LPH

Mehlhorn:1999:LPC

Mehlhorn:1990:BOD

Mehlhorn:1999:LPC

Motwani:2008:LBL

Moran:2007:DHI

weizmann.ac.il/~naor/PAPERS/writeonce.pdf.

Mendel:2012:CAR

Mansour:1990:CCU

Mansour:1993:CCU

Matsumoto:1981:NCM

Monien:1992:DSE

Moto-oka:1992:FGC

REFERENCES

Mohan:1990:ACC

Mohan:1993:ACC

Mohassel:2011:OTS

Miyaguchi:1991:CSH

Molodowitch:1990:ADAa

Molodowitch:1990:ADAb
REFERENCES

[Mor68] Robert Morris. Scatter storage techniques. *Communications of the Association for Computing Machinery*, 11(1):38–44, January 1968. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Influential survey of the subject of hashing, and first introduction of random probing with secondary clustering. Appears to be the first publication where the word ‘hashing’ appeared, although it was in common use at the time. Knuth [Knu73, p. 542] found only one earlier printed use of the word, in a 1961 unpublished memorandum by W. W. Peterson.

Martinez:2009:DFN

Moody:2016:ISF

Mendel:2010:RAR

Mitchell:1989:RHF

Mikkilineni:1988:ERJ

Murthy:1988:SSC

Malard:2002:DDH

Montuschi:2005:PIS

Mashatan:2009:ITC

Makrushin:2012:IRB

Morawiecki:2013:SBP

Maier:2016:CHT
Tobias Maier, Peter Sanders, and Roman Dementiev. Concurrent hash tables: fast and general?(!). SIGPLAN No-
REFERENCES

McCleod:1990:VLD

Malhotra:1996:SED

Mouha:2012:CIR

MeyeraufderHeide:1996:ESR

Meichun:1990:COL

Maitin-Shepard:2017:ECM

Morrison:1987:QAH
John A. Morrison, Larry A. Shepp, and Christopher J.

...

Mullen:1984:UDH

Mullin:1984:UDH

Mullin:1985:SSE

Mullin:1991:CUC

Mullin:1992:HFH

Mathieu:1988:MQS

Matias:1990:PHI

Matias:1991:CHP

Matias:1991:PHI

REFERENCES

REFERENCES

Matsushita:2009:PCH

Mu:2012:ALS

Majewski:1992:FGM

Ma:2012:HPO

Majewski:1996:FPH

Mendelson:1979:PMO
H. Mendelson and U. Yechiali. Performance measures for ordered lists in random-access files. *Journal of the Asso-
REFERENCES

Mendelson:1980:NAA

Mimaroglu:2012:ADC

Mihaljevic:1998:CAB

Naeslund:1995:UHF

Mizrahi:2015:MPS

Koji Nuida, Takuro Abe,

V. Neeb. Implementierungstechniken fuer satzuebergreifende operationen in rela-
REFERENCES

344

REFERENCES

[Newhall:2002:CPC] Tia Newhall and Lisa Mee- den. A comprehensive project for CS2: combining key data structures and algorithms into an integrated Web browser and search engine. SIGCSE Bul-
REFERENCES

[Nakaike:2010:LER]

[Nanevski:2008:YDT]

[Naor:1990:SPS]

[Narita:2012:LJH]

[Noltemeier:1982:I]

[Noltemeier:1982:IIE]

[Negri:1991:DJN]

REFERENCES

Naor:2008:HIC

Neven:2009:HFR

Naor:2001:APH

Ntarmos:2009:DHS

Nguyen:2012:LRS

Naor:2007:NAP

Nie:2013:CHB

Norton:1985:PMO

Naor:1989:UOW

Naor:1989:UOH

Nyberg:1996:FAH

Ouksel:1989:CML

Oaks:1998:BSH

Oligeri:2011:REA

REFERENCES

Anonymous:1989:DQO

Olagunju:1994:DPH

Olagunju:1994:ILS

Ordenez:2014:BVS

Oberschelp:1980:IID

Okamoto:1988:DMS

Omicinski:1989:HBI

Omicinski:1991:AHJ

E. Omicinski and E. T. Lin. The adaptive-hash join algorithm for a hypercube multicomputer. Technical report, School of Information

Omiecinski:1992:AHJ [Omi89a]

Ollmert:1989:DD [Oll89]

Olsen:1969:RRF [Ols69]

Charles A. Olsen. Random access file organization for indirectly accessed records. In ?? [??69], pages 539–549. LCCN ?? Discusses practical considerations in the design of external scatter tables.

Omiecinski:1988:CSS [Omi89b]

Omiecinski:1991:PAL [Omi91]

Omar:2012:HEC [OOB12]

REFERENCES

Omar:2017:DHS

Odaira:2010:ERT

Ostlin:2003:UHC

Orenstein:1983:DHF

Jack A. Orenstein. A dynamic hash file for random and sequential accessing. In Schkolnick and Thanos [ST83a], pages 132–141. CODEN VLDBDP.

Olken:1990:RSH

Ouksel:1983:SMM

Ouskel:1983:SMM

Koichi Ogawara, Yasufumi Tanabe, Ryo Kurazume, and Tsutomu Hasegawa. Detecting frequent patterns in video using partly locality sensitive

Otoo:1984:MFD

Otoo:1985:MDH

Otoo:1985:SDI

Otoo:1986:BME

Otoo:1988:LDG

Otoo:1988:LBC

Ouksel:1983:OPD

Ostrovsky:1994:IHSa

REFERENCES

This is a plagiarized article. See http://www.sics.se/europar95/plagiarism.html for details. The original work from which the material in this paper was stolen is due to Thomas J. Sheffler and Randal E. Bryant, CMU report MCU-CS-92-172.

REFERENCES

10.1007/978-3-540-85451-7_67.

Paterson:1990:ALP

Patrarin:1994:HFA

Patrarin:1995:CID

Papadimitriou:1980:PBH

Purdom:1985:AA

Prokopec:2012:CTE

Preneel:1997:CHF

rsa.com/pub/cryptobytes/crypto3n2.pdf.

Pang:1993:PPHa

Pang:1993:PPHb

Park:2015:NSSH

Patel:1994:AMH

Jignesh M. Patel, Michael J. Carey, and Mary K. Vernon. Accurate modeling of

[PCY95]

[PDI91]

[Pea90]

[Pea91]

[Pei82]

[Per73]
Pescio:1996:AAM

Pujol:2012:LEC

Peterson:1957:ARA

Petersen:1983:AVV

Petersson:2013:MDL

Peyrin:2015:CAG

Pramanik:1985:DH

Pramanik:1988:OCR

Papadakis:2009:HBO

Perrizo:1995:DDV

[Preneel:1990:ATH]

Preneel:1991:CRH

[Preneel:1990:PMD]

Preneel:1992:CSH

[Preneel:1990:ATH]

Preneel:1993:ATH

[Preneel:1990:ATH]

REFERENCES

Preneel:1994:HFB

Pawson:1973:CHT

Paul:2012:NPB

Pittel:1987:PAC

Park:2001:VNH

Pippenger:1979:ACT

Pippolini:1994:JIH

Piwowarski:1985:CBS

Panneerselvam:1990:RSA

Panneerselvam:1988:NAS

Pflug:1987:LPN

Plachy:1989:PIC

REFERENCES

Three volumes.

Pineda:2009:UOD

PKW09

Plauger:1998:SCCk

Pla98

Poblete:1989:LCF

Pob86

Park:2007:SDN

PLKS07

Ponder:1987:AHA

Pon87

Pagh:2008:UHC

PP08
Pereira:2016:SHB

Pagh:2007:LPC

Pagh:2009:LPC

Pieprzyk:1999:RSF

Pieprzyk:1998:RSF

Pagh:2001:CH

Pagh:2004:CH

REFERENCES

C. E. Price. Table lookup techniques. ACM Computing Surveys, 3(2):49–64, June 1971. CODEN CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic).[Pri71]

Price:1971:TLT

Peyravian:1998:PHV
1998. CODEN CPSEDU. ISSN 0167-4048.

REFERENCES

[Pahins:2017:HSL]

Pong:2010:SSS

Patrascu:2011:PST

Pong:2012:CLT

Patrascu:2013:TTH

Patrascu:2016:IRL

Mihai Pătrașcu and Mikkel Thorup. On the \(k\)-independence required by linear probing and minwise independence. *ACM Transactions on Algorithms*, 12 (1):8:1–8:??, February 2016. CODEN ???? ISSN 1549-
REFERENCES

6325 (print), 1549-6333 (electronic).

Papamanthou:2016:AHT

Pirotte:1985:VLD

Pasini:2007:HSW

Petit:2008:EPR

Poblete:1994:AHS
P. V. Poblete, A. Viola, and J. I. Munro. The analysis of a hashing scheme by the diagonal Poisson transform. *Lecture Notes in

Poblete:1997:ALL

Prasanna:1994:SDP

Preneel:1995:MMB

Piper:1993:DSH

Peikert:2008:LTF

Pang:2013:CHF

Ping Pan, Licheng Wang, Yixian Yang, Yuanju Gan, Lihua Wang, and Chengqian Xu. Chameleon hash functions and one-time signature schemes from inner automorphism groups. *Fundamenta Informaticae*, 126(1):103–119, January 2013. CODEN FUMAAJ. ISSN 0169-2968 (print), 1875-8681 (electronic).

Pagh:2010:COH

REFERENCES

Quisquater:1997:ASS

Quisquater:1989:ACE

Qi:2018:TSL

Lianyong Qi, Xuyun Zhang, Wanchun Dou, Chunhua Hu, Chi Yang, and Jinjun Chen. A two-stage locality-sensitive hashing based approach for privacy-preserving mobile service recommendation in cross-platform edge environment. Future Generation
REFERENCES

M. V. Ramakrishna and Paulo S. L. M. Barreto. The WHIRLPOOL hash function. World-Wide Web doc-

Computing Reviews: “This short communication deals with a special kind of hash function called ‘Bloom filters.’ These filters are used, for example, to search a differential file containing updates to a main file.”.
 REFERENCES

REFERENCES

[Riv78] Ronald L. Rivest. Optimal arrangement of keys in a hash table. Journal of
the Association for Computing Machinery, 25(2):200–209, April 1978. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic). See [Yao85a].

REFERENCES

Rothnie:1974:ABF

Ramamohanarao:1982:DHS

Ramakrishna:1989:FOU

Rathi:1990:PCE

Rathi:1991:PCE

Richardson:1987:DEP

Ramamohanarao:1983:PMR

[RLT83] K. Ramamohanarao, John W.

REFERENCES

Roe:1994:PSC

Roe:1995:PBC

Rogaway:1995:BHA

Rogaway:1999:BHA

http://link.springer.de/link/service/journals/00145/papers/12n2p91.pdf;
http://link.springer.de/link/service/journals/00145/papers/12n2p91.tex

Ronnblom:2007:HEA

Rosenfeld:1974:IPP

Rosenberg:1977:SRA

Ross:2006:EHP

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Ramakrishna:1992:ODS

Rechberger:2008:NRM

Raman:1999:FSI

Rechberger:2006:NMC

Raman:2007:SID

REFERENCES

Ramamohanarao:1984:RLH

Ramamohanarao:1985:PMR

Ramamohanarao:1989:PMRa

Ramamohanarao:1989:PMRb

Ramamohanarao:1990:MAH

Ramamohanarao:1992:PRU

Raghavan:1981:ELS

Raite:1987:PTC

Ruchte:1987:LHP

Ramakrishna:1989:DEH

Rattanaritnont:2012:CTS

Rueppel:1993:ACE

Ruland:1993:RDS

Russell:1992:NSC

[Rus92] Alexander Russell. Neces-

[RVPV02] V. Rijmen, B. Van Rompay, B. Preneel, and J. Vandewalle. Producing collisions for PANAMA. Lecture Notes

[Rijmen:2002:PCP]
Références

REFERENCES

REFERENCES

Sasaki:2011:MMP

Savoy:1990:SBF

Savoy:1991:NFH

Sheffler:1993:AHP

Sabharwal:1995:PHT

Sabharwal:1997:IDN

Shankar:2007:DAI

Ajeet Shankar and Rastislav Bodik. DITTO: automatic incrementalization of data structure invariant checks (in Java). SIGPLAN Notices, 42(6):310–319, June 2007. CODEN SINODQ. ISSN 0362-1340 (print), 1523-
Saikia:2014:PHF

Stevens:2017:AFS

Scolari:2016:SCP

REFERENCES

Schauer:1976:PA

Scheuermann:1979:OHH

Scholl:1979:PAN

Scholl:1981:NFO

Scheuermann:1982:PSI

Schmitt:1982:CPF

Schmidt:1990:GPH

Schneider:1990:CQP

Schneier:1991:OWH
Bruce Schneier. One-way hash functions: Probabilistic algorithms can be used for general-purpose pattern
matching. *Dr. Dobbs Journal*, 16(9):148–151, September 1, 1991. CODEN DDJOEB. ISSN 1044-789X.

Schnorr:1991:FHE

Schnorr:1993:FHIIa

Schnorr:1993:FHIIb

Scharinger:2001:CDD

Scharinger:2001:ASK

Schlaffer:2011:SDR

Severance:1976:PGA

D. G. Severance and R. A. Duhne. A practitioner’s guide to addressing algorithms. *Communications of
REFERENCES

Samson:1978:STU

Sacks-Davis:1985:PMK

Ron Sacks-Davis. Performance of a multi-key access method based on descriptors and superimposed coding techniques. Information Systems, 10(4):391–403, 1985. CODEN INSYD6. ISSN 0306-4379 (print), 1873-6076 (electronic). Hashing algorithm used to create descriptors for file indexing; this extends the author’s earlier work [SDR83b].

Schneider:1989:DTA

Schneider:1989:PEFa

Schneider:1989:PEFb

mod/67544/p110-schneider/1 Also published in [CLM89].

Schneider:1990:TPCb

[DSD90a] D. Schneider and D. DeWitt. Tradeoffs in processing complex join queries via hashing in multiprocessor database machines. In McLeod et al. [MSDS90], page 469. ISBN 1-55860-149-X. LCCN ???

Schneider:1990:TPCa

Stern:1995:IPV

Sacks-Davis:1987:MAM

Sajadieh:2012:RDL

References

Sajadieh:2015:ERD

[SDMS15]

Sacks-Davis:1983:ILH

[SDR83a]

Sacks-Davis:1983:TLS

[SDR83b]

Sorenson:1975:DDH

[SDT75]

Sacks-Davis:1983:ILH

[SDW14]

Smith:1989:ITD

[Sed83a]

Sedgewick:1983:MAC
R. Sedgewick. Part III. math-

1972. CODEN IJCAIH. ISSN 0091-7036.

[SGK09] Arun Sharma, P. S. Grover,

REFERENCES

REFERENCES

[Sie04] Alan Siegel. On universal classes of extremely

Silverstein:2002:JIS

Silverstein:2002:PPH

Simon:1998:FCO

Sakti:1988:GPP

Shintani:1998:MAS

Schneier:1999:SAL

REFERENCES

Sklavos:2005:ISH

Sohn:2007:DDI

Suzuki:2001:ESB

Stevens:2015:FCF

Shang:1988:DCP

REFERENCES

Sriram:1991:VPC

Snader:1987:LIF

Safavi-naini:2005:MH

Snellen:1992:ITS

Safavi-Naini:2006:SSS

REFERENCES

[384x256] [SPB88] A. Z. Spector, R. F. Pausch, and G. Brueill. CAMELOT: a flexible, distributed transaction pro-
REFERENCES

REFERENCES

REFERENCES

Schmidt:1988:SCO

Schmidt:1989:AUP

Sequin:1989:PRT

Schmidt:1990:ACH

Schmidt:1990:SCO

Schmidt:1992:GPH

Sarkar:2001:PAE

Shalev:2006:SOL

[SS06] Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free extensible hash tables.
REFERENCES

REFERENCES

December 2013. CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).

Sagonas:1994:XED

Schkolnick:1983:ICV
Mario Schkolnick and C. Thanos, editors. 9th International Conference on Very Large Data Bases: Florence, Italy, October 31–November 2, 1983. Very Large Data Bases Endowment, Saratoga, CA, USA, 1983.

Schkolnick:1983:NIC

Sebesta:1985:MPH

Sebesta:1986:FIA

Schweitz:1993:AHS

Stahl:1973:HGH
Stallings:1994:SSH

Stallings:1999:HAK

Stallings:2006:WSH

Stamp:2006:ISP

Stewart:1982:DSV

Stinson:1991:UHA

Stinson:1993:ACC

Stinson:1994:CTU

[D. R. Stinson. Combinatorial techniques for universal hash-
Stinson:1994:UHA

Stinson:2006:SOT

Stonebraker:1988:RDS

Sundaram:2013:SSS

Stumm:1982:UMZ

Sturc:1985:MHU

Jan Sturc. Multidimensional hashing used for conjunctive

Samples:1986:SSB

Sun:2015:CCH

Schorr:1994:PFH

Schorr:1994:BBC

Schorr:1995:BBC

Suganya:2006:LRK

A. Suganya and N. Vijayarangan. Landau–Ramanujan.

C. Slot and P. van Emde Boas. On tape versus core: An application of space efficient perfect hash functions to the invariance of space. In ACM-TOC’84 [ACM84b], pages 391–400.

Dennis Shasha and Tsong-Li Wang. Optimizing equi-join queries in distributed databases where relations are hash-partitioned. *ACM Transactions on Database Systems*, 16(2):279–??, June 1, 1991. CODEN ATDS3.
REFERENCES

ISSN 0362-5915 (print), 1557-4644 (electronic).

Snodgrass:1994:SIC

Snodgrass:1994:PAS

Sun:2014:SSA

Shen:2008:HBP

Su:2016:PSN

Sung:2008:LSI

Seltzer:1991:NHP

Shibata:2008:LFD

Sasaki:2011:KKD

Seberry:1993:ACA

Szymanski:1982:HTR

Szymanski:1985:HTR

Tenenbaum:1981:DSU
REFERENCES

Tenenbaum:1986:DSU

Tai:1979:IPT

Tamminen:1981:OPE

Tamminen:1982:EHO

Tamminen:1985:SAC

Tanaka:1983:DSD

Taylor:1989:SIA

Tharp:1991:TBD
REFERENCES

Tang:2005:LTO

[TCW+13] Jinhui Tang, Qiang Chen, Meng Wang, Shuicheng Yan, Tat-Seng Chua, and Ramesh Jain. Towards optimizing human labeling for interac-

Turau:1993:ETC

Terashima:1987:EPL

Tenenhaus:2010:GAN

Tharp:1988:FOP

Thorup:2000:ESU

REFERENCES

[TK88] Eiichi Tanaka and Atsuko Kogawara. High speed string edit methods using hierarchi-
Tran:2007:FBC

Tibouchi:2017:IEC

Torres:1999:SIS

Takata:1989:MMM

Tan:1993:RSM

Tang:1995:SLO

Tseng:2007:DHS

Tseng:2009:FSA

Thai:2018:TLB

Tubaishat:2002:PEL

Triplett:2010:SCH

Tsudaka:1992:PHJ
Toptsis:1992:LBP

Torn:1984:HOI

Toyama:1986:DOQ

Toyama:1993:JAM

Tout:1995:DLB

Tong:2015:HTS

Taniar:2002:PSH

Trainiter:1963:ARA

REFERENCES

0004-5411 (print), 1557-735X (electronic).

REFERENCES

G. Tsukik, 1999: MADOa

Alan L. Tharp and Kuo- Chung Tai. The practicality of text signatures for
REFERENCES

[Tv83] Leen Torenvliet and P. van Emde Boas. The reconstruction and optimization of trie hashing functions. In Schkolnick and Thanos [ST83a], pages 142–156. CODEN VLDBDP.

[TWW77] H. G. Tzschach, Helmut Waldschmidt, and Hermann K.-G. Walter, editors. *Theoretical computer science/3rd GI conference*, Darmstadt,

Tillich:1994:GHT

Tillich:1994:HS

Thurup:2012:TBI

Ung:1995:UPR

Ugawa:2010:IRB

Ullman:1970:DHF

REFERENCES

Ullman:1972:NEH

Ullman:1982:PDS

Urdaneta:2011:SDS

Uchiyama:2009:RIB

USENIX:1990:UCC

USENIX:1991:PWU

USENIX:2000:PAL

USENIX:2000:PUT
USENIX, editor. Proceedings of the 7th USENIX Tcl/Tk Conference (Tcl/2k): February 14–18, 2000, Austin,
REFERENCES

Vakhshoori:1985:UHD

Valduriez:1987:JI

Valiant:2015:FCS

vanderPool:1973:OSAb

Vandery:1992:FHN

vanTrung:1994:CCC

Gucht:2010:PHE

Jeffrey Scott Vitter and Wen-Chin Chen. The Design and Analysis of Coalesced Hashing. Oxford University
REFERENCES

Vandierendonck:2005:XBH

vandenBraak:2016:CXH

vanderHoeven:2012:IPi

vanderPool:1972:OSa

vanderPool:1973:OSAa

DeVilliers:1974:HSS

DeVilliers:1974:HSS

J. S. Vitter. Tuning the coalesced hashing method to obtain optimum performance.
In IEEE-FOCS’80 [IEE80b], pages 238–247.

REFERENCES

439

vonMises:1939:ABG

vonMaurich:2012:ESB

Vaswani:2007:PPP

Vidali:2010:CVB

Viola:1996:ALP

Viola:1998:ALP

vanTrung:2014:TBF

Valduriez:1984:MHS

VanWyk:1986:CHL

vanOorschot:1994:PCS

Vadhan:2012:CPS

Wagner:2000:CYL

Waldschmidt:1974:OIC

Walker:1988:CSP

Wang:1984:NOT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wiener:1986:EVH

Wiederhold:1987:FOD

Wiedermann:1987:SA

Wiederhold:1989:DD

Wiener:1999:ACC

Michael Wiener, editor. *Advances in cryptology —

Williams:1959:HII

Williams:1971:SUM

Willard:1978:NDS

Dan E. Willard. New data structures for orthogonal queries. Technical Report TR-22-78, Centre for Re-

[Wil79] Dan E. Willard. New data structures for orthogonal range queries. *SIAM Journal on Computing*, 14(1):232–253, February 1985. CODEN SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic). This paper, together with an earlier report [Wil78], present seven data structures for orthogonal range queries which are more efficient than earlier data structures used for this purpose, such as box array hashing.

REFERENCES

Winkowski:1978:SMF

Winternitz:1983:POW

Winternitz:1984:SOH

Winters:1990:MPHb

Winters:1990:MPHa

Wirth:1975:AD

Wirth:1983:AD

Wirth:1986:ADS

Westergaard:2007:CME

Wipke:1978:HFR

Wang:2007:LBP

Yau:2009:NTV

Wang:2008:HBS

Wang:1993:IHA

Wyman:2019:IAT

REFERENCES

Wogulis:1989:SAS

Wolverton:1984:PHF

Wolfowicz:1993:SPR

Wood:1989:PQP

Weng:2010:IHV

Wang:1994:SDP

Wei:2012:SIV

Lei Wei, Thomas Peyrin, Przemyslaw Sokolowski, San Ling, Josef Pieprzyk, and Huaxiong Wang. On the (in)security of IDEA in various hashing modes. *Lecture Notes in CS*, 7549:
REFERENCES

Ying Wei, Yangqiu Song, Yi Zhen, Bo Liu, and Qiang Yang. Heterogeneous translated hashing: a scalable solution towards multi-modal similarity search. ACM Transactions on Knowledge Discovery from Data (TKDD), 10(4):36:1–36:??, July 2016. CODEN ???? ISSN 1556-4681 (print), 1556-472X (electronic).

[Wu:2009:REL]

[Wang:2013:GNL]

[Wu:1985:DOM]

[Whang:1990:LTP]

[Wu:2018:SDH]

Lin Wu, Yang Wang, Zongyuan Ge, Qichang Hu, and Xue

[Wang:2012:BPS]

REFERENCES

6, November 2012. CODEN SFENDP. ISSN 0163-5948 (print), 1943-5843 (electronic).

[XNS+13] Xin Xin, Abhishek Nagar, Gaurav Srivastava, Zhu Li, Felix Fernandes, and Aggelos K. Katsaggelos. Large

REFERENCES

[253–264, June 1985. CO- DEN JOALDV. ISSN 0196- 6774 (print), 1090-2678 (electroni- c).]

Yao:1985:UHO

Yao:1991:WRA

Yao:1995:MOK

Yasuda:2007:SIS

Yen:1995:PHC

Yu:2017:FSD

Yu:2018:MEU

Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang.

Yo:1993:OPA

Yang:1984:DPH

Yang:1985:BMC

Yang:1983:SPH

Yuen:1986:DFO

[YSEL09] Dae Hyun Yum, Jae Woo Seo, Sungwook Eom, and Pil Joong Lee. Single-layer fractal hash chain traversal

[YSL05]

[Yang:2011:NHB]

[YTJ06]

[Ytrehus:2006:LFN]

[Yao:2005:HBL]

[Yang:1997:HFM]

[Yu:2006:SST]

Yu:1992:IWR

Yuan:1992:VLD

Yuba:1982:SOP

Yung:2002:ACC

Yuval:1975:FNN

G. Yuval. Finding near neighbours in \(K \)-dimensional space. Information Processing Letters, 3(4):113–114, March ??, 1975. CODEN IFPLAT. ISSN 0020-
Yang:2009:ILV

Young:2001:HRS

Yoon:2007:SCH

Yen:2000:WOW

Yu:2016:NFC

Zamora:1980:ADC

REFERENCES

[466]

51–57, January 1980. CODEN AISJB6. ISSN 0002-8231 (print), 1097-4571 (electronic).

Zhang:2006:CFS

Zobrist:1977:DCO

Zhu:2012:JLS

Zollhofer:2015:SBR

Zeller:1991:AHJ

Zemor:1994:HFG

Zemor:1991:HFC

Gilles Zémor. Hash functions and Cayley graphs. *Designs, Codes, and Cryptogra-
Zhang:2006:NGD

Zeller:1990:AHJ

Zeller:1990:HJA

Zhang:2005:ILL

Zuo:2018:WFC

Zhang:2007:TTI

Zukowski:2006:ACH

REFERENCES

Zhu:2013:SHF

Zheng:1990:PDS

Zheng:1994:RSS

Zobel:2001:MHT

Zhao:1994:DDBa

Zhao:1994:DDBb

X. Zhao, R. G. Johnson, and N. J. Martin. DBJ — a dynamic balancing hash join algorithm in multiprocessor database systems. In

Zhang:2009:IBR

REFERENCES

Zhao:1994:DDBc

Zee:2008:FFV

Zhang:2012:AKS

Dongxiang Zhang, Yuchen Li, Xin Cao, Jie Shao, and Heng Tao Shen. Augmented keyword search on spatial entity databases. VLDB Journal: Very Large Data Bases, 27(2):225–244, April 2018. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

Zhang:2007:BHR

Zhang:2012:LLF

Zhou:2012:TSC

Zhao:2013:AAP

Zobrist:1970:NHMa

Zobrist:1970:NHMb

Zou:1985:MMC
REFERENCES

[ZZM17] Leyou Zhang, Jingxia Zhang, and Yi Mu. Novel leakage-