Title word cross-reference

#2 [Cer85].
1 [PPS21]. 10 [GLM10]. 11 [SY11]. 2
[EAA+16, GG92, HD72]. 2n [QG89, QG90].
3 [CBA94, Fly92, GG92, GKY94, LMJC07, LKY+16, SYW+20, WSSO12]. 5/8 [Sch11].
862m [Nic17]. 64 [LK16]. * [LNS93]. *
[Omi88, Omi89a]. \[MT\] [HRB13]. 2
c [SWQ+14]. d [FPS17, PRM16]. f [LG78].
GL\[^2\](F\[^p\]). [TNS20]. H\[^2\] [DRS12]. H\[^2\]\[^A\]
[CBB05]. K [Yuv75, APV07, CL85, CC91, CCLC92, DKRT15, Die96, EFMRRK+20, FPS17, Gui78, HC14, LLG+17, PT10a, PT16, PNPC20, RRS07, SS90b]. L [OOB12].
L\[^p\] [CJ19, HFF+17]. SL2(F\[^p\]). [SGGB00]. N
[BRM+09, BS91b, BS91a, CM01, Gir87,
Ven86, WS93, War14, Coh97, Coh98, LHC05, QG89, QG90]. O(1) [FKS84]. O(log log n)
[MN90]. O(log W) [LS07b]. O(N)
[HG77, MN90]. p\[^n\] [Ack74]. \(\pi\) [FFGL10]. q
[OWZ14]. SL2 [MT16]. Z/p [Mue04].

-approximate [SWQ+14]. -ary
[CC91, CLC92, Gui78, RRS07]. -Bit
[QG89, QG90, LK16, LK11]. -Body
[WS93, War14]. -codes [Bie95]. -dimension
[LHC05]. -dimensional [Yuv75].
-Functions [OOB12]. -gram
[Coh98, Ven86]. -Grams [Coh97, BRM+09].
-Hash [BS91b, BS91a]. -Independence
[PT16, PT10a]. -mer [HC14, PNPC20].
-min-wise [FPS17]. -Nearest [CL85].
-partitions [DKRT15]. -Pipeline [PRM16].
-probe [SS90b]. -Round [GLM+10, SY11].
-tree [Omi89a, Lyso3]. -trees [CM01].
-verarbeitung [Nie75]. -wise [Die96].

0 [BCJ15, ITP14, NSS+06, WYY05d]. '07 [ACM07]. '08 [ACM08b].

1 [AMSM+09, AAE+14, BCJ15, Con17, DR06, JRPK07, KKRJ07, KRJ09b, KJS17, Nat95, SKP15, WYY05a, WYY05b, WYY05c]. '10 [Ano10]. 100 [BLC12]. 100-Gb [BLC12]. 100-Gb/s [BLC12].

180 [Nat95]. 180-1 [Ano95b, Nat95]. 180-4 [Dan13].

1974 [ACM94a, ACM94b, ABM06, HL91, ICD86, Sch82a, KI94, Yu92]. 3 [PW94]. 5-Independent [TZ12]. 512

2 [BH86, GT63, KMOV8, LS15, ST86, SK05].

HT88, IGA05, KR91, KL08, LBjO2, OL91, OL92, ST93, TC04, ZG90a, Zel91, GZ99, HAK+16, LYZ+13, LMLC14, TB91.

Adaptive-Hash [OL91, OL92], add [FJ13].

add-rotate-xor [FJ13].

Addendum [CV85].

addition [FJ13].

Addaptive Hash [OL91, OL92].

Add-rotate-xor [FJ13].
Algorithmus [BI87].
Alignment [BFMP11, BRM +10, LPT12].
Alignments [BDD +10].
All-in-one [SV18].
All-or-Nothing [SRY99].
Alley [Boy98, Get97, Jen97, Pes96, Wil97].
Allocating [CC91, TC93].
Allocation [CC87, CLC92, Du86, MJBDD11, Nak21, YCRY93, vdP72, vdP73, DW05, DW07, LCRY93, OOK+10, van73].
Allocation-Based [Nak21].
Allowable [Blo70].
Almost [BKST18, BM99, CKB83b, DW03, YSELO9, CKB83a, Duc08, IIL17].
Almost-Minimum [BM99].
Almost-Universal [BKST18].
Alpha [WM19].
Alternative [EMM07, HBL+10, IH95, SD89b, LS15].
Alternatives [GD87].
American [CHK06].
Among [CC91, GP08, KW94].
Amortized [AN059].
Amplification [BBR88].
Amsterdam [AW89, CP87, CP88].
Analogue [Cai84, DSGKS20].
Analyses [CS87].
Analysis [AP93, Ano95c, AD11, AM07, BYSP98, BRS02, BRSS10, BM89, BM90a, BF08, CF92, CL85, CC87, Cha88, CLNYO6, CN08, CV83a, CV84, Che84a, Che84b, CV85, CK94, CS93b, CDW+19, DR11, FC87a, FPV98, FMM09, FMM11, GRBCC19, GK12a, GL73, GBY90, GK81, GK82, GL+02, GS76, Gui76a, Gui76b, GS78, Gui78, Gur73, HMNB07, Has93, Has72, Kut10, Lar80a, Lar80c, Lar82b, Lar83, Lar84, Lar85c, LCK11, Lev00, Lew82, LWWQ08, LPP91, LPP92, LM93c, Lum73, MK11, MCW78, MMTM09, MY80, Men82, MP12, Mol90a, Mol90b, NM02a, NCFK11, NAK+15, Omi91, Pit87, PVM94, PV19, Pre93, PB85, RM88, Ram88b, Ram89a, Reg85, Reg88, Riv74b, SS62, Sch79b, SYW+20, SB93, SA97, Vek85, VP96, VP98, Vit80b, Vit80c, Vit83, VC87, WB90, Yao80].
Analysis [de 69, Ati20, BGGK12, BZZ12, CK89, DS09a, DM03, DK12, GLC08, GM77, Gui76c, KZ19, LL01, LM88, MJ08, MS13, MSV87, PS08, Pro94, QM98, RAD15, SSA00, SLC+07, Sed83a, SGK09, WL07, ZBB+06].
Analyti [Pro94].
Analytical [Bat81, DOP+14, WTN07].
Analytics [LMD+12, WZY+18].
analyze [FJ13].
Analyzer [CRdPHF12].
Analyzing [Kue82b, PVM97].
anchor [FKI+21, SZ+20].
Anchorage [IEE01].
AnchorHash [MBV+21].
Anderen [DS84a].
Anfänger [Sch76].
Angeles [ACM82, BD88, ICD86, ICD87, ICD88, ICD90].
Ann [ACM81, Bai81, Bor81, Lie81].
annotated [Pon87].
Announcement [DLH09, KS12, Nat92].
Announcing [SBK+17].
Annual [AC75c, AC75a, AC76, AC77b, ACM84b, ACM84a, ACM85a, ACM86b, ACM88b, ACM89c, SDA90, ACM90, ACM91c, ACM91d, SDA91, ACM91e, ACM97a, ACM102, ACM103, ACM05, ACM07, ACM08a, ACM08b, AH03, Ano93d, Ano10, BV89, BNP92, Bri92, Bri93, Cop95a, Cop95b, EF12, Fra04, Gol94, IEE74, IEE76, IEE80b, IEE82, IEE88c, IEE89, CTC90, IE91b, IE92b, IE99, IEE06, IEE07, IEE10, IEE11b, IEE13, Kna89,
Mat09, ACM77a, Shm00, Sho05, Sti93, Sti94c, USE00a, YR87, Yun02, ACM94d, ACM91a, ACM96, ACM97b, ACM98, Bel00, DT87, FS09, HM08, IEE85a, IEE92a, IEE95, IEE01, Kar08, Rie89, Wie99.
anonymization [RW07]. Anonymous [CZLC12a, ZJ09].
Anonymous [CZLC12a, ZJ09]. Anti [NT01].
Anti-persistence [NT01]. Anti-persistence [NT01].
Antonio [ACM91b]. Anwendungen [Lut88]. Any [LP15, HR07, Lev89]. Anzahl [Dos78a].
Application [AT93, BKST18, BG07, Bur81, CZLC12a, CZLC12b, CK15, CJ19, DR06, Deb03, DK02, DK15, Dadh92, DR09, Fel50, FM85, HK12b, IEE80a, IEE95, KMM+06, Kna89, Lev89, LD+16, LK93, MK11, PPS21, Pon87, RP91, Rey14, RNT90, Ter87, TZ12, TS76, TS84, Val15, Van06, Wei12, WC79, WVT90, YZ00, AG10, ARA94, BZL+15, BDK16, DFM15, HKNW07, KKP92, KZ19, LCC89, LK11, LG78, MJ08, MV91a, NY89b, NYS9a, NN90, NW07, PW08, PSN95, RRS07, Shi17, SS16, Sie89, ZYWM02, Ano92]. Applied [CS93b, GNP05]. Applying [Cer87, Cer88, CHY93, CLYY95, CHY97].
Approach [BH93, CCHO9, CK12, DL79, DC94, JV16, LT09, LQH18, MY80, RH95, Sch79a, SR98, SK89, Tsu96, ZO93, BJ07, BCC10, DAC+13, GS89, JHL+15, NW07, PGV93e, PGV94, QZ+18, QD02, TK99]. APPROX [DJHR06, DJNR09].
Approximate [AE98, Al06, CCH09, CLP17, DP08, DHL+94, DHL+02, Hac93, HC14, MW09, RSK17, AI08, DC94, HFZ+15, LZ06, LCH+14, LWWK20, MBKS07, Rö07, SWQ+14]. Approximately [DT14, Ind01]. Approximating [ASW87, Pob86].
Approximation [DJHR06, AGJA06, DJHR06, DJNR09]. Approximative [MYS12]. APPLICON [ZO13]. April [ACM75b, ACM81, ACM84b, Ano83, Ano94, CP87, CP88, Co93, Dav91, ICD91, ICD93, IEE01, Joy03, Lie81, QV89, QV90, SM12, USE90, WGM88]. AquaHash [Rog19a]. arbitrary [GHK+12]. Arbor [ACM81, Bai81, Bor81, Lie81]. Arbres [Kar82]. Architecting [LLL+16].
Architectural [GSL17]. Architecture [BCH7, HCJC06, Hsi83, Jou85, KP81, KCR11, KTMo83a, MK11, WG94, XBH06, ZHB06, ABO+17, BOY11, HLH13, LMP+08, MBK00, RG89]. Architecture-conscious [ZHB06]. Architectures [ACM91c, BRW93, KR92, Kie85, LC20, MA1A17, MA2S18, RNT90, Bis12, BMQ98, GKO5, HDMC11, adHMR93, LL15, NW07, PJM88, PJBM90, Rei88]. archival [QD02]. Area [DD15, ABO+17, BOY11, Lar84].
Area-Efficient [DD15]. areas [JY14]. ARES [IH83]. Argon2 [BDK16]. Argon2i [AB17]. Arguments [Yao83, ABM+12].
ARIES [Moh90, Moh93]. ARIES/LHS [Moh90, Moh93]. ARIRANG [HKKK10]. Arising [FS82]. ARITH [IEE05, MS05].
ARITH-17 [IEE05, MS05]. Arithmetic [Die96, Ers58a, GSC01, HSK88, IEE05, MS05, ISO97]. Arizona [Go92]. Arlington [ACM94d]. Arrangement [Riv76, Riv78].
Arrangements [Yao85a, Yao95, Wei88]. Array [Cob94, He87, YLB90, SV15b]. Arrays [BGS96, CP91a, Gra94a, LPWW06, RS77, RS78, CP91b, CLS18, RS75, Tay89]. Art [Kum73, Kum75, Pre97b, Ruc15, PGV93c].
Artificial [Kar93, ARA94, LC89, BCR04]. ary [CC91, CLC92, Gui76c, Gui78, RRS07]. ASCII [HF91]. ASI [An95c]. ASIACRYPT [IRM93, LC06, PSN95].
ASIC [MKAA17], ask [Gre95], Aspects [AH03, SS89a], Assembly [ASW07], Assessment [THY+18, DMP09], Assignment [LL92, Wi71], Assignments [Yao91], Assisted [Wil96], Associated [Sar10, FDL86, SB95], Association [CL05, CT12, DT87, PCY95, TGGF10, HC02, HC07], Associative [Bur76a, Bur77, DW83a, DD15, Dos78b, FM91, FR69, HNS84, KHW91a, KR79, Ou83, Riv74b, WB87, dW83b, HDCM11, KHW91b, Koe72, YIAS89], Assoziativer [GN80, Koe72], Assumptions [Chr84, Dam93, Dam94, Sim98], Astronomical [Gui89], Asymmetric [CLP17, BR94, CFN18], Asymptotic [CLS18, IK92, Ati20, Pro94, WL07], Asynchronous [KFG15, PAKR93], Atlanta [ACM83a, ACM83b, USE00a], Atlantic [Fre90, GMJ90, IEE84], ATM [SMS91], Atom [LC12], Atomic [LMR02], Attack [CJP12, CMP07, JHL08, KK06, Pey15, PGV90a, Sho00b, WW09, WFW+12, ZF06, Ano09b, BS12, CJP15, JG95, PGV93a, PGV93b, XLI16], Attacks [CP95b], Authenticate [YAS07], Authenticated [KV09, PTT16, Sar10, YLSZ19, BSNP96b, GL06], Authentication [Abi12, Alb21, AS96, BCK96a, BCK96b, BKST8, BAN89, CJP12, DCM18, EPR99, FIP02a, GI12, GBL94, HMNB07, HCPLSB12, JRPK07, JK11, KKRJ07, MRW89, MR20, PGV93f, QJ97, RWSN07, Rog95, Rog99, Sho06, TW07, Tsu92a, WC81, WDP+12, WS03, YY07, ACP10, CB05, CJ15, HL12, Kra94, Kra95, KLC03, Ku04, KCC05, LLH02, LKY04, MS09, OCDG11, SPJHCB14, Sta99, Sti91, Sti94b, SV06, Tsu08, Tsu92b, YRY04], Authenticity [Sch01b, ADL12], Auto [EFRMK+20, Lit77a], Auto-structuration [Lit77a], Auto-tuned [EFRMK+20], Automata [ACM82, IEE74, LP04, LK93, MMC01, AGK+10, ADG+08, AMSM+09, ACJT07, dBV80, CIM+05, Kui92, NS82, Pat90], Automated [DGM89, ZZ83, Cer85], Automatic [GT80, Zam80, SB07], Automation [IEE11a], Automaton [DG93, LLL11, MZI98, TLL07, TLL09], automaton-matching [TLL09], Automorphism [PWY+13, autonomous [SZO+20], AutoPlacer [PRRR15], Auxiliary [DL12, FXW17], Availability [Eng94, ADL12, DFR15], Average [Bra84a, Bra85, Bra86, Gou77, Kut10, Reg81, TW91, MT16, THS97], average-case
avoid [Pat94]. Aware [CJKK19, HNKO20, JLL+20, MZL+19, PG17, BB07, HFZ+15, HFF+17, NDMR08].
awareness [Li10]. Awesome [Knu19].
AWOC [Rei88].
B [BD84, FK89, Omi88, Omi89a]. B-Trees [BD84, FK89].
Back [DSSW90a, DSSW90b]. Backoff [SHRD09]. Backtracking [WKBA90, YD85].
Backward [CPP08, LLL11]. Backyard [ANS10].
Balance [IK92]. Balanced [AG10, ABKU99, DW05, DW07, Lep98, LB07, Otto86, Otto88b, PB80, WZ12, FP82, TLLL18].
Balancing [HC13, KJC11, Nak21, RRS12, RK91, Top93, RL74, RK91, SD95, SX08, WL07, WTN09, XCCK09].
Balatonfured [Rue93]. Balloon [AB17, BCGS16].
Balls [CRSW11, CRSW13]. Bally [IEE84].
Banked [vdBGLGL+16]. Banska [Rom90]. Barbara [Bel00, Bri92, Bri93, CRS83a, Cop95a, Cop95b, Fra04, Sho05, Sti93, Sti94c, Wie99, Yun02].
Barcelona [DJRZ06, CTC90, LSC91]. Barreto [FT12].
barrier [MPST16]. Base [BCH87, CrdPHF12, Chr84, EE86, FM85, Gho77, Gho86, ISK+93, McC79, YBQZ17, Zam80, Mar75, Mar77, WLL00].
Based [AK98, Abi12, Alb21, AP08, Aum99, AS16, Bal96, BG92, Ben98, BDM+12, BHH+15, BR802, BC509, BRSS10, BI12, Buc82, Bur83b, Bur83c, But17, CCF04, CFP19, CS83b, Cha84b, CS87, CW91, CdM89, CdM90, CW09, CTZD11, CZLC12a, CZLC12b, CZLC14, CT12, CDW+19, CadHS00, DGV93, Dae95, DK09, DG85b, DL17, DF01, DR11, DB12, EK93, Fab74, FL04, FR09, FRB11, FH69, FFGOG07, GGY+19, GRBCC19, GO07, GI12, GSC01, Gri98, GK08, GH07, HMNB07, Hal12, HDMC09, HHL10, HNKO20, HW08, HWZP18, HCPLSB12, HLC10, Hui13, HRS16, HBG+17, HM19, JXY07, JTOT09, JK11, KSSS86, KM09, KV09, KL87, KKRJ07, KJC11, KMV10, KTM083b, KW12, KP96, KR79, KRJ+80, KK85, Kume89, KKT91, LYY+18, LXY+19, LW88, LMC07, LMJC07, LLDZ18, LLZ10, LLL09, LHC05]. Based [LLLC17, LRY+15, LXL+19, LG78, LTS00, LCM+20, MLD94, MKF+16, MCF17, MP12, Mi85, MKAA17, NIS15, NCFK11, Nak21, NNA12, NXB13, OL89, OSR10, PFM+09, PTT16, PCY95, PHG12, PRZ99, PSZ18, Pre97a, RNQPM12, RIK12, Rey14, RWSN07, RR13, RL74, RK91, SD95, SK08, Sho06, SKC07, SSS05, SVCC01, Sun15, TWWZ11, TGFF10, TZ12, TY91, TP15, TK07, US09, WWZ09, WSSO12, XBH06, XHZ+19, YNW+09, YSW+11, WL12, YY07, YTJ06, YD68a, ZJ09, ZWH17, ZZM17, ZQSH12, ZLC+12, vMG12, Adi88, AY14, AS17, AC10, AAGG16, BSNP96b, BLC12, BLY20, BCR04, BC06, BDS09, Bur83a, Cha12, CML+13, CCHK08, CJ12, CJ15, CLW98, CJ86, DG85a, DS09a, DHW08, GB17, GL06, GLC08, GZ99, HLL18b, HLL18a]. based [HAK+16, HCJ06, HC11, HLMW93, HXMW94, HW88, HL03, JFD09, JL14, JBWK11, JG95, KR90a, KST99, Kor08, Kra94, KLC03, Ku04, KCC05, KSC11, KSC12, LMB93b, LDM92, LWG11, LND08, LAC18, LL15, LSZ+21, LMPW15, MSZ+20, MS09, Mei95, MZ10, MS13, MHT+13, Mu92, MFES04, MJ14, NADY20, NS16a, OT89, PCK95, Par18, PBP16, PL21, PW06, PBGV89, PGV91, PGV93e, PGV94, QZD+18, RP95, SPLHCB14, SN19, SV94b, SV95, SE21, SGK09, SX08, SRRL98, Sm98, SA17, SZO+20, TKH20, TWL+18, Tsa08, TD93, UYI10, UHT95, VD05, Wi14, WY02,
Boolean [AN96, ÁCZ16]. booting [LC95].
Bordeaux [AGK+10]. Boston [ACM84a].
bottleneck [MBK00]. Boulder [ACM77b].
Bound [Ari94, SG16, Sun91, Sun93, vT14].
boundaries [SS15]. Boundary [KSSS86].
Bound [DS84a, LL86, Lom83, Lom88, MN90, GHK+12, RM88, TB91].
bounded-depth [GHK+12]. Bounds [BGS96, Cha94, CV08, DKM+88, GadHW96, Gon77, KM86, KM88a, KVK12, MNP08, OZW14, Woe91, Woe95, Yu08, AZ10, AZ12, CCHK08, GHK+12, Rad92]. Box [BRs02, Rja12, SV94b, BZZ12, SV95].
braids [LMP+08]. Branch [LBJ02].
Branches [DGGL16]. Branching [FS82].
breaking [DK94, MPST16]. Brent [FL73].
Bridging [ACM04]. Brief [DLH09, KS12].
Brighton [Dav91]. Brisbane [DG96, MDS90].
British [ACM08b, Oxb86]. Broad [PACT09].
Broad-Phase [PACT09]. Broadband [SMS91]. Broadcast [YSW+11, GBL94, SNW06].
Broadcasting [KCF84, OCDG11]. Broken [CP91c].
Broker [TGL+97]. browser [NM02b].
Bucket [CSS2, Dev86, Jol97, Kab87, KNT89, KO90, Lyo85, QCH+81, Rog95, Rog99, Tam81, TYZ05, Tra63, YD86b]. Bucketing [Pab92]. Buckets [Hac93, JV16, VP96, VP98, KH12]. Buffer [LBJ02]. Building [AÖD19, BC06, HKL07, Mit17, PV95, RMB11, WHS+07, Pv095].
Bushy [CHY93]. Business [Bra88, Luh58].
Bystrica [Rov90]. bytecodes [SUH86].
Byzantine [HGR07].

C [Pla98, USE90, ÁCZ16, Bhn95, Eng90, GBY91, Pro89, Sed90, Sed92, Sun92, Tay89].
C/C [Pla98]. CA [ACM03a, ACM08a, ACM11, DJNR09, IEE13, Joy03, Cop95a].
Cache
[Ask05, CGLC20, PWYZ10, PWYZ14, Pro18, PSS09, SBS16, SKC07, YNW+09, YT16, ZH18, AZ10, BFCJ+12, CCHK08, HSMB91, KSC11, KSC12, MZH12, QM98, WLC20].
Cache-
[PPS09]. Cache-Conscious
[ASK05]. Cache-Oblivious
[PWYZ14, PWYZ10]. Cache-Optimized
[ZH18]. cache-partitioned [MZH12].
Cache-tries [Pro18]. Caches [SBS16, SVCC01]. Caching [DB12, KM92, Rey14, WBBW16, XBH06, BCR10, Cha12, HL05, KLL+97, KSB+99, She06, WZ12, WY00, WY02, ZO13]. CAD [KI94, Bar97]. CAD-based [KI94]. Cake [CHSC18]. California [ACM82, ACM86b, ACM07, An010, Bel00, Bri92, Bri93, CRS83a, Cop95b, Fra04, ICD86, ICD87, ICD88, ICD90, IEE11b, Kar98, Shm00, Sho95, Sti93, Sti94c, Sto92, USE90, Wie99, Yun02, Col93, IEE88a, IEE06].
California/Special [ACM82]. Call [HLC10]. Cambridge [ACM86a, BV89, Gol96, JB94, Kil05, An94].
CAMELOT [SPB88]. Camera [BH93]. CAMsure [RSK17].
Can [CP91c, Dam93, Pal92, Sim98, Dam94, GMW90, Sch91a]. Canada [ACM02, ACM05, ACM08b, AFK90, DSZ07a, DSZ07b, YJ14, LL08, Lev95, Yu02].
Canadian [CCC89]. candidates [ABM+12].
Canonical [DVN81]. canonicalizing [FGFK10].
Canterbury [Oxb86].
Capabilities [RS12, Tra63]. Capability
[Fab74, Wan84]. Capability-Based [Fab74].
Capacity [KK85, Tan83, HO72]. Cape [IEE05, MS05].
cardinalities [GGR04].
Cardinality
[BBHMM12, GLLL17, HM03, NTW09].
Cards [Ke04]. Carlo [BF83, Rey14].
Carolina [ACM91c]. Carry
[GM08, FJ13, LK16]. Carry-Less
[GM08, LK16]. carry-truncated [FJ13].
Carter [Sar80]. Cartesian [Du86].
Cascade [KZ84, RTK12]. Cascaded [Jou04]. Cascading [Wan14]. Case [ANS09, ANS10, AR17, DMV04, DS09c, Ell85b, F+03, FKS84, HBL+10, Kut10, Lar82a, YLB90, BGG94, FPSS05, Lar81, Mic02, MT16, SKD15]. case/average [Mic02]. cash [Bac01]. Casino [IEE84].
Choosing [KLSY07]. chopMD [CN08]. Chord [KLSY07]. Chosen [CS02, Sho00b]. Churn [LMS09, LMS12, WTN07]. Churn-Resilient [LMS12]. Class [CMW83, DDW90, DS09c, MCW78, AAGG16, DM11, Lio90, SN19]. Classes [ACZ16, CW77a, CW77b, CW79, CW12, Mul91, Sie04, WC79, van94, Bie95, DS09b].
Sar80, Sie89]. **Classification** [GCMG15, HSPZ08, McK89a, PT11b, SY08, And93, CKKK09, IG94, LS07b, McK89b, XLZC14]. **classifications** [LZ06]. **Classifier** [GCMG15, HSPZ08, McK89a, PT11b, SY08, And93, CKKK09, IG94, LS07b, McK89b, XLZC14]. **Classifier-side** [TC04]. **Climbing** [CL95]. **Clocked** [LN93]. **clone** [Kos14, LG13]. **closed** [SS89a, SS90a]. **Closest** [Val15, DHKP97, TYSK10]. **closest-pair** [DHKP97]. **Closing** [PNPC20]. **Closure** [CdM89, CdM90, GC90]. **cloth** [TWL+18, TWL+18]. **Cloud** [HNKO20, HWZP18, LRY+15, Mir17, Nak21, DMB19, GB17, HLL18b, Szo+20]. **cloud-RANs** [Szo+20]. **Cluster** [SKC07, KSC11, KSC12, TC04]. **Clustered** [Rot89]. **Clustering** [AII89, Bel70, Bel72, Bel83, BBS90, CdM89, CdM00, Gui75, Gui78, KGB18, Mac95, MNY81, PKSB18, SPSP16, AOD19, Gui76c, NH74, SX08]. **Clustering/hashing** [AII89]. **Clusters** [TY03]. **Clutter** [MBBS12]. **CLV** [CF89a]. **CM** [PW94]. **CM-5** [PW94]. **CMAC** [CG92]. **CNF** [BHMM12]. **CNN** [SYW+20]. **co-processing** [HLH13]. **Coalesced** [CV84, CV85, Che84a, Che84b, CV85, CV66, Jan08, MS88b, Pal92, Pit87, Vit81a, Vit82b, Vit83, VC87, CV83a, PY88, Vit80a]. **Coalescing** [Vit80b, Vit80c, Kno84, Ssu+13]. **coalescing-lowering** [Ssu+13]. **Coast** [SZ93]. **COBOL** [Bra88, Zou85]. **Cod** [IE05, MS05]. **Codosyl** [Gra86]. **Code** [BK70, Bel70, Bel72, Bel83, BMB06, CLD82, Chu90, DC81, DL80, Eck74a, FIP02a, Gon81, KKRJ07, Lam70, LBJ02, Mau83, Mit73, SV15a, Sun15, CDS84a, CLS95, Cli95, Mau86, Mer72, MF82]. **Coded** [Bay73c]. **codering** [Lit77a]. **Codes** [BKST18, BGS96, Bie97, CLP17, Fal85a, Har97, Irbxx, JP07, KP96, KP97, KGJ018, LQH18, SVCC01, TW07, BJKS93, BJKS94, Bou85, Fal86, Fal88, FM89, GHK+12, Gob75, IG94, Kir89, Mil98, Sti91, Sti94b, vT14, Far93, Bie95]. **codification** [FDL86]. **Coding** [Blo70, Boo74, Bur77, Bur78, Bur79, CJ86, DA12, Dav73, Dos78a, FH96, Gon77, HP63, HJ75, HG77, Kamb4, Lit77b, Mar64, Mar71, Pip79, SD85, SDKR87, Sta73, Web72, Boy95a, Boy95b, Bur76a, Coh94, DVS+14, Far93, LG78, Riv74a, Sab94, SDR83b, Sch79b, Mkl21, Ytr06, HJ75]. **Coefficient** [KKN12]. **coherency** [FWG18]. **Coherent** [GLHL11]. **Coin** [CLP13]. **Coins** [HR04, Ros12]. **Collaboration** [JXY07]. **Collaborative** [ADOAH19, YW00]. **Collecting** [FW76, FW77]. **Collection** [AG93, LXL+19, TR02, UIY10]. **Collections** [BBD+82, BBD+86, LRY78, LRY80, DTM+18, SV15b]. **College** [Jaj90]. **collide** [GNP05]. **Collision** [Ask05, BG93, BR97, BM97, BK12, BKMP09, CHKO08, CJC+09, Dam87, HM96, HHL10, HCJC06, Iko05, IT93, IH95, KKT91, MS09, MNS12, Men12, M12, Mo100, Mo191, MC86, NSS+06, Pey15, PACT09, PBGV89, PGV90b, PGV91, Rus92, Rus93, Rus95, Sam81, SY11, SHR09, SFH+17, Van92, Vau93, WYY05a, WYY05d, SNS+13, YB95, ZBB+06, vW94, AKY13, BGG93, BF08, CHKO12, Con17, Gih91, IPT14, KdIT89, Men17, MT16, PGV93g, Sar11, SKP15, SBK+17, TWL+18, Van92, WS13]. **Collision-Free** [BM97, HM96, Rus92, Rus93, Rus95, SHR09, BG93, HCJC06, PBGV89, Vau92, Vau93, ZBB+06, BG93, Van92]. **Collision-Mitigation** [SHF+17]. **Collision-Resistant** [SHF+17]. **Collisionful** [BR97, BK12, CHKO08, Iko05, CHKO12]. **Collisions** [Ano95a, Bie87, BT94a, BT94b, CY06, DBGV93, GISO5, GL73, HR04, IP08,
IP11, LCL+, Pat95, VNP10, WFLY04, WYY05b, WYY05c, DV07, Gon95, Li95, Pat94, RVPV02, Sim98. Colloquium [AGK+10, dBvL80, Ki92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].

Columbia [AGK+, dBvL80, Kui92, NS82, Pat90, ADG+, AMSM+, ACJT07, CIM+05]. Colony [ACM83a, ACM83b].

Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM79, ACM85a]. Colored [Ros12]. Coloring [HK83].
Computational [CCC89, Cer83, LYW, MNT90, Sab94, Wil00, de 69, Dam94, GV08, IKOS98, MNT93, Sch82].

Computations [FHL, GK12].

Computes [Bra84, Bra85, Bra86, Tro92].

Computer [IJW99, ACM91, AFI63, AFI69, AH03, iA91, iA94, Bar83, BCH87, Bor81, DS97, Ell82, Gol94, GT63, HS78, IEE76, IEE80b, IEE86a, IEE88a, IEE88b, IEE91b, IEE92b, IEE95, IEE99, IEE05, IEE06, IEE07, IEE10, IEE11b, IEE13, Iai91, Iai92a, Iai92b, Iaixx, Jou85, KCF84, KO90, Kna89, Kn93, Kn97, Kn95, Kon10, Leb87, LC86b, LC95, LL83, Mar75, Mar77, MS05, RRR99, RJK97, Rie88, Rov90, Ruc15, SK99, Wal88, Wil85b, Win78, ZZ83, ACM94c, Ano93c, Don91, Er86, FP89a, GK05, GBL94, HCF95, IEE92a, IEE01, MLP07, Mo92b, OT89, RG89, TWW77, vL94, ACM94a, Ano93a, PGV93].

Computer-Recognized [RJK79].

Computers [FHMU85, MK93, PSR90, Rad83, SB93, RFB97, Deb03].

Computing [ACM75c, ACM75a, ACM76, ACM77b, ACM84b, ACM85a, ACM86b, ACM88b, ACM89c, ACM90, ACM91e, ACM96, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM04, ACM07, ACM08b, ACM11, ACM12, Bai81, DT87, IEE94c, KKRJ07, KLT92, LCK11, Ram87, Rei88, Tro95, AKF90, GHK+12, GB17, GC90, LVD+11, MN99, Pri95, Bai81, GT80, Rei89, ACM77a, WGM88].

Concatenated [CD84a, DC81, HS08]. concatenation [BJKS93, BJKS94].

Concept [Kie85, Lun73, Ter87, Ano99b]. Concepts [KTM083b, vL94].

Conceptual [FZ87].

Concise [PT12b]. Concomitant [MWC12].

Concrete [GKP89, GKP94]. Concurrency [Ell85a, Ell87, Ell88, FK89, GG74, HSM95, Kum89b, Kum89a, LS89, Moh90, Moh93, OA89, SDK91, GT16, MTB00].

Concurrent [AR16, CLP13, Cha88, CHS+18, CHSC18, Ell83, HYH98, HYH93, HY86, HTY90, Kum90, MSD16, MSD19, MSSWP90, Omi88, Omi89a, PBB012, SDW14, SG88, CCL91, MMC01, MRL+19, Pro18, TMW10].

Condensation [CT96]. Condensers [ATS99]. Conditionally [ACP09].

Conditions [IKO05, IH95, Rus92, Rus93, Rus95, BDPV14]. Conference [ACM81, ACM85a, ACM91b, PDI91, ACM94c, ACM04, AFI69, ABB93, AKF90, VLD82, Ano89, AW89, AAC+01, AOV+99, AA86, Bai81, BD88, Bar83, BDS88, BV89, BIP92, Bel00, BJ94, BRW93, BL88, Bor81, Boy95a, Bri92, Bri93, BJ93, CCC98, CGO86, CLM89, Cop95b, DSS84, Far93, FNY92, FMA02, Fra04, Fre90, GMJ90, Gol92, GSW98, HB93, IEE80a, IEE85b, ICD86, ICD87, IEE88a, IEE88d, ICD88, IE88b, CTC90, ICD90, ICD91, ICD93, IEE94c, IE95, IEE02, IEE11a, IRR93, JBJ94, Jou85, JY14, Jou90, Ker75, Kna89, KLT92, LC06, Las87, LCK11, Lie81, LS89, LT80, LSC91, Lom93, MK98, MSD90, Mo92b, Nav85, Oxb86, PV85, PK89, QG95, RRR99, Rie89, RK92, RNT90, Sch82a, ST83a, ST83b, SP90, Sh005, SW94b, SC77, St93, St94c, St95, Sto92, SM08, SM12, USE91]. Conference [USE00a, USE00b, Vau90, Vid90, W990, IWSS91, Yan10, Yao78, Yao92, Ynm02, ACM94a, ARA94, Ano83, Ano93a, Ano93c, Boy95b, CE95, Cop95a, DG96, DT87, Deb03, HF13, IEE94a, IE94b, IEE01, Ki05, PNSN95, SW94a, TW77, USE90, Wie99, ??99, ACM75c, ACM76, ACM77b, LFP82, ACM91d, AFI63, YR87].

Confidence [DGD02]. Configurable [vBGLGL+16]. configurations [CL09a].

Confinement [NS16b]. Confirmation [MOI90, MOI91]. Congress [Gil77, Ros74].

Conjecture [KPS92]. Conjunctive [Stu5].

Connected [OL89, TY91, OT89].

Connection [And88, BM90b, Mic02, KK96, RH92].
Connections [LK07]. Conscious [Ask05, ZHB06]. Consed [BJM14].

Consequences [Woe06a]. Consideration [CJP12, CJP15]. Considerations [SM02, Wri88, PW06]. Consing [AG93].

Consistency [LWZ+18, SDZ21]. Consistent [KLL+97, MVB+21, Nak21, Sun15, ZWY21, KSB+99, LDK12, WL07].

Consonant [Wan05]. Constant [ANS10, BM99, F+03, LP15, PP08, PPR09, Sie04, DW05, DW07, FPPS05, GMW90, IKOS08, MV91a, OP03, PPR07, Pro18].

Constant-Round [LP15]. Constant-Time [Sie04, Pro18]. Constrained [RAL07]. Constraints [BHIMM12, NNA12, Ati20].

Construct [CDMP05, Han17, SGY11]. Constructing [CS85a, Cha86b, CFYT94, FFPV84, FCH92, HM12, Lis07, RS08, SS80, YD85, SL88].

Construction [ACM79, AN96, BCK96b, BBKN01, EFMbK+20, Els84, IT93, KR01, Kut10, PV92, SP91, SSaS01, Sar10, Sch01a, BGKZ12, BDPV08, CML+13, CL09b, Woe06a].

Constructions [AHV98, BBKN12, BRS02, Bla00, DA12, Jou04, SG16, WX01, GPV08, LS06, MyT08, NN90, VZ12, WC07].

Constructive [CLS18]. Container [Hej89]. Containers [Ben98, LAC18].

containment [KZ19]. Content [GH07, Hin20, Koh80, MHT+13, RSK17, WDP+12, YTJ06, MJ14, TLLL09, XCCK09, ZO13, BB07].

Content-Addressable [Hin20, Koh80, BB07].

Content-Based [YTJ06, MHT+13, MJ14]. Contention [CadHS00, DG93, DG94].

Continuous [Coh98, PAPV08, GGR04, NW07].

continuous-discrete [NW07]. Control [BDPSNG97, CBA94, CLS3, HLC10, JXY07, Kum89a, Moh90, Moh93, SDK91, XHZ+19, Ano93a, Ano93c, FK89, GJR79, H072, Kum89b, MTB00, YL04]. Controlled [LRLW89, LRLH91, Mul81, WY02, CBA94].

Controlling [LK07]. convened [Ano83]. Convention [ACM91b, Rie89]. Conversion [Omi88, Omi89a, Sab94]. Converting [MV91a].

convolution [OS14]. Convolutional [DHT+19, WWG+18]. Cool [EMM07]. cooperation [JFD09].

Cooperative [XBH06]. Copenhagen [BIP92, FS09]. Copies [RSSD99b, RSSD90, RSSD92, CWC10].

coprocessor [TLLL07]. Copy [LP15, MHT+13, YCJ12]. Coq [BJM14].

Core [Kil01, MyT08, NN90, VZ12, CBA94]. Controlled [LRLH91, Mul81, WY02, CBA94].

Correct [SS88b, CE95]. Correcting [BGS96, Har97, FM89, GHK+12, Mil88, MF82].

Correction [Bur84, KR79, RJK79, Ven84, Zam80]. correctness [AR21, MMC01].

Correlation [TGG10]. Correlations [Val15].

Correspondence [PH73]. Corresponding [AOAAK20]. Corrigendum [AA79b].

Corruption [DD11, DJSN09]. Corruption-Localizing [DJSN09].

cosmological [War14]. Cost [BM97, BBS90, CJP12, FCHD88, FCHD89, GI12, HMNB07, Kut10, LYW+18, Lyo83, PF88, CZ14, CJP15, VBW94].

cost/performance [VBW94]. Costs [HR96]. could [PES+12]. Counter [GRBCC19, LMP+08, MKASJ18, NS16b, Bac02].

Counter-Terrorism [GRBCC19].

Countermeasure [LAKW07, MMMT09]. Counters [WLWZ19]. Counting [Fla83b, FM85, McK89a, WVT90, DLM07, EVF06, McK89b, RKK14].

Coupled [HLH13]. course [PGV93c]. Couvrants [Kar82]. Coverage [LIK13]. covering [CLS18, Rad92].

CoveringLSH [Pag18].

Cracking [GAS+16]. CRAY [DS97].

creating [Sag85b]. creation [FVS12].
Credential [YLSZ19]. credit [JFDF09]. credit-based [JFDF09]. Crete [ACM01]. Criss [GRZ93]. Criss-Cross [GRZ93]. Criteria [Adi88, AII89]. Criterion [Sun15]. critical [NM10]. Cross [CJN20, GRZ93, LWZ+18, MLHK17, WB90, ZWY21, QZD+18]. Cross-Media [LWZ+18]. Cross-Modal [MLHK17, CJN20, ZWY21]. Cross-Platform [QZD+18]. Cryptanalysis [Aum09, BS91a, Bik90, BCJ15, BHT98, BP09, DGV93, Dae95, GIMS11, HPC02, JNP14, Km92, LP16, LKY04, MR07, Mon19, NXB13, GLM+10, SPLHCB14, SV94b, Wago0, WSSO12, WYW14, AP11, BS91b, BS91c, BHT97, CV05, RP95, SV95]. Cryptanalytic [CJMS19]. CRYPTO [Bel00, Bra90, Bri92, Bri93, CRSS3a, Cop95b, Fei91, Fra04, MV91c, Sho05, Sti93, Sti94c, Wie09, Yun02, Hi05, CP91c]. Cryptographer [Joy03]. Cryptographic [ARH+18, BDPSNG97, BCR04, BP11, BDP97, Bur06, jCPB+12, CLG09, CP87, CP88, DA12, DC98b, Dam90a, Dam91, DDF+07, Dav91, DY90, DY91, GO07, Hel94, MKAAA17, PTT16, Pre93, PV93d, Pre94b, PBD97, Pre99, Pre94c, QV89, QV90, QG95, RR506, Rja12, RS08, Rue93, SS01, Sch91b, Sch93a, SZ93, SYG11, Sti06, TSP+11, Vau06, Ay14, ABO+17, BNN+10, BD92, BOY11, CP13, De 95, ESR14, GPV08, GS94, GQ95, IN89, KR19, KTDB20, Mic02, NY89b, NY89a, RL07, Sch93b, Sch93c, ZY16]. Cryptographically [PGV92, Aam03]. Cryptography [ANS97, ANS05, ACZ16, AG18, BD08, DK02, DK15, IKOS08, She17, Woll93b, Ytr06, BGG94, BBD99b, Far93, GP05, JY14, KL15, Kil05, PGV93c, Woll93a, Boy95a, Boy95b, DG96]. Cryptology [Bri92, Bri93, CRSS3a, CP87, Dam90a, Dav91, Fei91, Fra04, Hel94, IRM93, LC06, MV91c, QV89, Ru93, SP90, SZ93, Sti93, Sti94c, Vau06, Bel00, Bra90, CP88, Cop95a, Cop95b, Dam91, De 95, GQ95, Joy03, PSN95, QV90, QG95, Sho05, Wie99, Yun02]. Cryptosystem [Jun87, KKT91]. Cryptosystems [Oka88, Wee1]. CS2 [NM02b]. CT [Joy03]. CT-RSA [Joy03]. Cube [OL89, TY91, OT89]. cube-connected [OT89]. CubeHash [AD11, BP90, BKMP09, KKM10]. Cuckoo [ANS09, ANS10, ADW12, ADW14, BHK13, BHK19, DM03, D90c, DMR11, FPS13, FMM09, FMM11, KMW08, KMW10, Kut10, Mit09, NSW08, PR01, PR04, Pag06, PRM16, PS12, SHF+17, TK07, DS09b, KM07, Kut06, DK12]. Cumulative [LPWW06]. CUPID [KS9a]. Curve [ANS05, MSTA17, OOB12, TK17]. Curves [BGH12, FT12, Sche17, WX01, BG+13, BP18, CSD20, FSV09, FFS+13, Far14, GZ99, LS06]. Cyber [LS+21]. Cyber-physical [LS+21]. Cycle [MJB11]. Cyclic [DH84]. Cycling [Saa12]. cyphers [Far93]. Czechoslovakia [Rov90]. D [CBA94, EAA+16, Fly92, GC92, GK94, LMJ07, LDY+16, FPS21, SYW+20, WSSO12]. D-Based [WSSO12]. d’Acces [Lit77b, Kar82, Lit77a]. d’Adresse [Lit79a]. Dallas [ACM98, IEE95, USE91]. Damgard [DG93, Pat95, CDMP05, Gib90, Mir01]. Dana [Ano10]. Darmstadt [TW77]. Darstellung [Koe72]. Dartmouth [Ano93d]. Dash [LHWL20]. Data [ACM81, ACM82, ABB93, AHU83, ABM06, ADOAH19, AHS92, VLDS2, Ano85a, Ano89, AW89, AAC+01, ANTS85, AD12, BC08, BD88, BDS88, BJL16, BCH87, BJZ94, BFR87, BL88, Boy89, BJM14, BJ93, CLS12, CGLC20, CJC+09, Chr84, CGO86, CLM89, DA12, DSS84, DT87, DSZ07a, DSZ07b, DP08, Dre17b, EjKMP80, Eld84, Eli83].
[Lut88]. Double
[Boo72, Bur05, CdM90, GS76, GS78, KLP98, LK94, LM93c, MB03, Men12, OOB17, Pal92, Tho13, Yao85a, KL95, LM88, LLJ15, Men17, Mol90a, Mol90b]. Double-Linked [Pal92].
Down [LRy+15, PT11b, ZLC+12]. DPA [LRy+15]. Draft [MCF17]. DRAM
[CJKK99, KHK15, WLWZ19]. DRAMCache [PG17]. drive [BC06].
Driven [Gra93b, Ven86, TKT+89, ZO13]. DSS [Ano09a, Ano13]. Dual
[CDW+19, MNS12, Wee12, BR75, MJ08]. Dual-Stream [MNS12]. Dublin [ABB93].
Dumping [Fro81]. d’une [LG78]. Duplicate [LKI10, LQZH14, MD97, TW91].
Duplicates [Bre91]. duplication [BC08, PL21]. durch [Hil82]. DWT
[THY+18]. Dynamic
[AL86, AHS92, BGDW95, CS91, CR89, CBA94, DGGL16, Dev93, DKM+88, DadH90, DKM+91, DKM+94, ED88, FNPST9, FHL+19, FS82, GT93, adH90, Kaw85, Kie85, KNT89, Kout93, KS86, KS87a, KS87b, KSC11, KSC12, Lar78, Lar88a, Lar88b, LC88, LRY+15, LHWL21, MSW19, MS12, MS02, Mul84a, Mul84b, Mul85, NKT88, OG94a, Ore83, Oto85b, Ouk83, OS83a, OS83b, PLKST07, PG95, RZ90, RT89, RL82, RSSD89a, Reg81, Rob86, Ros21, Sch79b, Sch81, SSS05, TT10, Vek85, Wan14, YD84, YLSZ19, YBQZ17, YD86a, YD86b, ZRT91, ZJM94a, ZJM94b, ZJM94c, ZO93, CS93a, DTM+18, DMPP06, DHW08, FRS94, FF90, Fro81, HKL12, HR93, KD92, Lev89, Lin96, Mil98, YG10, SKC07]. Dynamically
[Lit78, Litxxb]. dynamicis [DMPP06]. Dynamiques [Kar82]. Dynamischen
[DS84a]. Dynamischer [Hil82].

E-HASH [GHG+12]. early
[CV83a, CKKW00, PY88]. early-insertion
[CV83a, PY88]. Easier [Bor81, Eug90]. Easily [CMW83]. Eat [CHSC18]. ECDSA
[ANS05]. ECHO [BOY11, Sch11].

ECHO-256 [Sch11]. EDBT [JB94]. Edge
[XHZ+19, QZD+18]. Edge-Based
[XHZ+19]. Edinburgh [AOV+99]. Edit
[NAI12, TK88]. editing [Koe72]. Edition
[BFG+95]. Editor [BMB68, Fox91].
Editors [RW97]. Education [LC86b].
Effect [KNT89, Mac95, Mai92]. Effective
[FCH88, FCH98, HW08, PCY95, WDYT91, MA15]. effects [QM98].
Efficiency [DB12, Leb87, PVQC08, Ull72, AR21, KST99, PT10b, WLC20]. Efficient
[AD08, ASWD18, ASBdS16, ASW07, Ast80, AEMR09, ADW12, ADW14, BR14, BCS09, BOS11, BPZ07, CFP19, CKB85, CLS12, DDF+07, DD15, DGM89, FES09, F+03, FR94, GGY+19, GM79, Gan83, GRZ93, Gri77, HT01, HM12, HDM09, HHL10, HLC10, IN89, JDW+19, JD12, KU88, KR81, KLadH93, KLM96, KKRJ07, KJC11, KS12, KS86, KS87a, KS87b, Kue84b, HGH+12, LW88, LCLX19, LWG11, LXL+19, LH20, MZD+18, MSW19, MP16, MJBD11, MEK+14, MH00, MO92a, MKASJ18, MJT+02, Mul85, NN90, OOK+10, Pag99, PAKR93, PAPV08, Pan05, PL21, Qui83, RT81, RFB97, Rém92, Ros06, Ros07, Sac86, SDMS15, Sch91b, Sch93a, SL16, SGY11, SS88b, SwEB84, SPSS16, SKM01, TY03, TYZO15, TYSK10, TW07, TS85, TGL+07, Ts08, VL87, Vit85, WYY05d, WWZ9, Woe06b, XHZ+19, YSW+11, YBQZ18].
Efficient
[YGC+12, ZWY21, BLP+14, BZL+15, BT93, CML+13, CJ14, CLW98, D809a, FNP09, FSSS05, Gai82, HKL04, HCJC06, adHMR93, ILL17, KU86, Lin96, LCH+14, LLA15, MSZ+20, MSK96, NADY20, NTW09, OCGD11, PCK95, PBB012, PSS09, RCF11, SSW94, Sch93b, Sch93c, SX08, Shi17, SV15a, UHT95, VL97, Wie86, WTN09, XLZC14, ZWT+14, SV18].
Efficiently [AP08, Kim99]. Effiziente
[Meh77, Meh86]. eigenvalue [JWM+18].
Eight [Van10]. Eighteenth
[ACM86b, ACM91d, ACM91a]. Eighth
Einführung [Nol82b].

Eisenhutcompilers [Dit76].

Elastic [Hac93]. ELECTRICAL ELEMENTS [IG94].

Eleventh ACM87, IEE92a. ELEVENTH

ELFs [Zha19b]. Eliminate [BT94a, BT94b].

Eliminating [Bel70, Bel72, Bel83, NH74]. elision [NM10].

Elliptic [BGH12, Gri98, MSTA17, OOB12, She17, BGH +13, FSV09, FFS +13, TK17, ANS05].

Embedded [SVCC01, vMG12, Hui90, TLLL07, TLLL09, UIY10]. Embedding [CLP17]. Embeddings [AEP18]. EMD [BR06]. Ende [Wil00]. Emergence [Fox91].

Empirical [DMP09]. Employing [Per73]. Emulated [EK93]. Emulations [Kel93, Kel96].

en-route [YG10]. Enabled [Alb21, BZZ12]. Enabling [GYW +19, HDCM09, LCLX19, SMZ18, TT10, SLC +07].

Encapsulation [HM12]. Enciphering [MKASJ18]. Encipherment [BM76].

Encoding [Ano95c, KP94, Wil79, CVR14, RRS07].

Encodings [BHIMM12]. Encrypted [GYW +19, HWZP18, Kaw15]. Encryption [AG18, CS02, DC98a, Kal93, NTY12, PPP21, PRZ99, Sar10, ZZN17, ZHZ +19, And94, BR94, Bir07, Gol96, GBL94, Sab94, ZCZQ19].

Energy [AS16, KYS05, HGH +12, YSW +11, CZ14]. Energy-Efficient [HGH +12].

Energy-Harvesting [AS16]. Engine [YNKM89, BC06, NM02b, PES +12, SSW94].

Engineer [Jae92]. Engineering [Gol92, Got83, ICD86, ICD87, ICD88, ICD90, ICD91, ICD93, Lew82, Wal88, ARA94, Ano93c, IEE94a, Yu92, Ano89].

enhancing [AGBR19]. EnRUPT [IP11].

Enterprise [Rei03, FES09]. Enterprises [KCR11].

docking [FDL86, Nic17]. docking entity [ZLC +18].

Entropy [Ah94, ATS19, HHR +10, KM88b, NRW90, CKKK09, MV08]. Entry [YLB90].

Environment [DGMR89, MLD94, MLxx, MS88a, RS92, RL74, SD89c, SD89a, SS05, ZG90b, Kha95, QD +18, SD89d, TMB02].

Environments [ZG90a, GDA10, RCF11].

EOS [BP94]. EPGAs [YTHC97].

equality [TD93, WC81, AD08, GRF11, ZCZQ19].

equalization [PCK95, UHT95]. Equations [Aum09].

Equtainment [SW91]. Equiprobable [PB80]. Equivalence [Mar71, de 69].

erasure [AAGG19].

Ergife [IEE88d]. Erlang [TCP +17].

Erratum [FW77]. Error [BGS96, Har97, Kue84b, Mil98, MKASJ18, RJK79, WLWZ19, FM89, GHK +12, Ron07].

Error-Correcting [BGS96, GHK +12].

Error-Correction [RJK79]. Errors [Blo70, Zam80, MF82].

ErsatzPasswords [GAS +16].

ESA [EF12, FS09, HM08].

ESAT [PGV93c].

ESS [MH76].

ESS [MH76].

Establishment [DL12].

estimation [Nic17]. Estimating [Leb87, MBKS07].

Estimation [GLLL17, IJK13, TGGF10, TZ12, HKL04, LNS11, LDK12, NTW09].

estimators [HYKS08].

ETCR [HKKK13, RWSN07].

Ethernet [KCR11].

Erdos [Mek83, LG78].

Euclidean [SWQ +14]. Euler [Cha84b].

EUROCRYPT [CP87, CP88, Dam90a, Dam91, Dav91, De 95, GQ95, He94, QV89, QV90, QG95, Rue93, Vau06].

Europe [BRW93].

European [EF12, FS09, HM08].

EUROSAM [Ng79]. Evaluating [HAKM15, MPP14, RS92]. Evaluation [Adi88, BGDW95, CRSW11, CRSW13, Chr84, Fla81, Fla83a, Gra93b, Gra93c, Gri77, HNS84, KTN92, LCLX19, LLL09, MXL +12, ML86, MLxx, MS88a, NMX19,
Sar13, SRRL98]. Fast

[AKS78, AP92, AB12, BH91, BRM+09, BS97, BS94b, BS94a, BGV96, BT12b, CH12, CS85a, CCW+17, CWC96, CRR18, CS82, CKN18, DC98a, FFGL09, FKI+21, GM91, GM94, GM98, GC95, GK94, GK95, GO15, Gui89, HK95, HKL12, HW08, HXLX13, KG95, Ke96, KP97, KLP98, KR79, KR01, KRL09, LQZH14, LM95, LK14, LR99, LZ06, Lit91, LS06, LCL, MZI98, MPST16, PV09, Sag5b, SP12].

Fast [Sie89, SV15b, TKH20, Tho00, TLLL09, WWG+18, YTHC97, YZ16, ZHC+13, And94, Bir07, Gol94]. Faster [ASM17, CRSW11, CRSW13, FCH92, LK16, Mcc79, Bosxx, HKL04, LS15, Sna87].

Feature-Based [TWZW11]. Features [DHT+19, LLDZ18, MS12, MBBS12, PKW09, SSA01, THY+18, TSA96, TSA92, ZLY+13].

Feb [Bar83]. February [AH03, Ano10, Gol96, Gol92, IE82, ICD86, ICD87, IEE88a, ICD88, ICD90, IEE94a, KI94, KI05, RIE99, USE00b, Wol93a, Wol93b, Yu92].

Federal [Dan13]. fehlerbehandlung [Kue84a]. fehlererkennung [Kue83].

Feistel [SY11]. Fencing [TYZO15]. few [CDH19]. FFT [BGG93, BG93, DBGV93, Sch91b, Sch93a, Sch93b, Sch93c, SV94a, Van92, Vau92, Vau93]. FFT-Hash [DBGV93, Sch93b, Sch93c, Sch93a, Van92].

FFT-Hash-II [Van93, Vau92]. FFT-Hashing [SV94a, Sch91b]. FGS [KM09]. Fichier [Lit77a]. Fields [AU79, HJ96, WX01, LS06]. Fifteenth [AW89]. Fifth [ACM86a, ACM03a, Bai81, Mo92b, Oxb86, ACM94d, AOV+99, GMC02, TCT90, Mo92b]. Fifty [Kon10]. File [BGF88, Bat80, Bat82, BCH87, Buc63, Bur75b, CS83b, CF92a, CE70, DS84b, DGM89, DT91a, DT91b, FC87a, FZ87, GGY+19, GIS05, GG74, Gro86, HP63, Har88, Kk5, KS86b, KS86c, Lar82c, Lar82d, LK84, Lar85c, Li80, Lit80, Litxxa, Lom88, Lum73, MF92, McI63, Mi85, MK93, NHS84, Ols69, Omi88, Ore83, PS90, RL89, RSSD89b, RSSD90, RSSD92, Reg85, RL74, Sal88, SS62, Sch79b, Sch81, SWTX18, Tha88, Wie83, Wie87a, Wir83, WB03, YD66a, vdP72, vdP73, BY89, BR75, Bra88, CC88a, DAC+13, FES09, Inc81, Koo93, Omi89a, RM88, SG72, WBV94, YD66b, Van73].

Files [AS82, AN85, BM76, BH85, Bra84a, Bra86, CS87, CS91, CLC92, CL95, Cla77, CS93b, Du86, FNS79, Fel87, Gff74, HB89a, HB92, Lar81, Lar82a, Lar85a, LR96a, LCM94, Lit79b, LLY17, MY79, Mi85, Oto85a, Piw85, RSD89a, Reg82, Rot89, SG76b, TK88, ZRT91, Bra85, CS93a, CCL91, Con17, HB89b, LNS93, LY72, NADY20, ORX90, Omi89a, RB91, TC83].

Filing [FC87a, DH84]. Filing [GZ99]. Filter [CCH09, Kaw15, MK11, LZ06, RKK14, RK15]. Filtered [Ahn93]. filtering [RML09, MK12, RCF11, YG10].

Filters [CHY93, CHY97, Kie85, LYY17, Ram89b, DKT06, Hkk07, HXX13, ISO97, PSS09]. Final [MO92a]. Financial [ANS05]. Find [Hol13, Lan06, Pat94]. Finding [CBK83, Cer85, CBK85, Cer87, Cer88, Coh98, CH09, CM93, DR06, FCD88, FCD89, HK86, HG77, HR04, KH84, SH92].
Fujiyoshida [IRM93]. Full
[AC74, Bur75a, CMP07, Cor00, Day70, DOP05, KK12, KK18, LP16, LT12, LLL+16, MZD+18, Mue04, GLM+10, San76, WYY05b, WYY05c, YSW+11, ZKR08, NH74, RCF11, SKP15, QXL+20].

Full-Stack [LLL+16]. Full-Text [YSW+11, RCF11].

Function

[Abi12, AVZ11, Aum09, AMPH14, BPSN97, BF83, BDM+12, BS94b, BS94a, BKST18, BRS02, Bla95, BKL+11, BDP97, CP91c, Cer81, CKB83b, CN08, CBA94, CMP07, CO82b, CDMP05, DBGV93, DGV93, Dae95, DGV93, DLT98, Dat88, DL80, FLS+10, GIS05, Gei95, Gei96, GSC01, GIMS11, HPC02, Hol93, HLC10, JP07, Kal01, KJ09b, KCB81, Kra82, Ku84, KKT91, LJF19, LWQ08, LP15, Lis07, Li80, LG87, MRST10, MZD+18, MZD+18, Mue04, GLM+10, NH74, RCF11, SKP15, QXL+20, RB01, Sch11, Sch90a, Sch91b, SGY11, Sta06a, TC93, TTY93, WW09, WSO12, Win83, Win84, Wol84, WFW+12, YD84, Yan05, WL12, ZWW+12, AKY13, ACP10, AB96, AMP15, ABO+17, AP11, BGKZ12, BNN+10, BDPV06, BDPV12, BOY11, BS94c, BW89, CKB83a, CK9, Con17, DK94].

function

[DF89, DMB19, FP82, GM18, Gib91, HR07, Han17, H03, ITP14, KTB20, LW04, Lia95, LWG11, MJ08, Mer90a, MZ9, Mit17, Mon19, NSW09, Pat94, Pat95, PL21, PVOQ08, Q97, RS14, SB14, SS92, Sch82b, SRL98, SHA97, SXL16, Tsa08, VN10, VF91, WS13, WYW14, YL97, YZ16].

function-based [PL21].

Functional

[LFP82, GMP95, SV18, ZKR08, Jou15].

Functions

[AHV98, AFK83, AFK84, AN96, ASW18, ACZ16, AA79b, AA79a, And91, AB+16, An95a, AEMR09, AR17, AM07, AP08, BSNP96a, BDPSNC97, BCK96a, BCK96b, BR14, BBD+82, BBD+86, BGS96, Bih08, BCS09, BRSS10, BCFW09, BK12, Bol79, BPZ07, BHT98, BH86, Bur78, BDM+19, Can97, CW77a, CW77b, CW79, CMW83, CKB83, Cer85, CKB85, CKB95, Cer87, Cer88, CS83a, CS83b, CS85c, CS85b, CS85a, CS86, Cha86b, CS87, CLNY06, CLG90, CK15, Chi91, Chi94, Cic80a, Cic80b, CE70, Coh97, CH94, CHM92a, CHM92b, CM93, DGV93, Dam87, Dam90b, DDF+07, DK07, DY90, DY91, DTS75, Dar90, DGM92, Die07, DGKK12, EK93, EPR99, Eil02, FL08, FLP08, FLP14, FFGL09, FCHD88, FCHD89, FCDH90, FCDH91, FCH92, FHCD92a, FK84, GO07, Get01, Gir87, GHK91a].

Functions

[GHK91b, GLG+02, GKO8, HHR+10, Hal12, HM12, HJ96, HKY12, HS08, HK12b, HR04, Ind01, IT93, JO80, Jae81, Jen97, Jou04, JD12, KH84, KK06, Kno75, KP96, KLP98, KV12, L93a, L94, LT09, LM95, Lis07, LH03a, LLG12, Ma92, MWCH92, MCW78, Mar64, Meh82, MP12, Mer90b, Mir0, MRW89, Mit02, MO90, MO91, Moh11, Mu91, NIS15, NM02a, NCFK11, NP99, NR12, NAK+15, OOB12, Ott91, Pag99, PW+13, PB80, PQ8, PQ99, PW93, PVO0a, PVO0b, PVO9, Pre93, PG93, PG93d, PG93f, Pre94a, PV95, Pre97a, Pre97b, Pre99, Pre94c, QG89, QG90, RP91, RR08, RWS07, Rja12, Roe94, RS08, Rui93, SP91, Sag84, Sag85a, SDMS12, SDMS15, San76, SS01, SS88a, Sch91a, SY90, Sh90a, Sho00b, Sie04, SvEB84, SD75].

Functions

[Spr77, Str07, TNS20, TV83, Tro92, Tro95, U070, U072, WFLY04, Wei12, WC79, WC81, WKO78, Y85, Zem91, Zha07, Zhe90, ZM91, vw94, van94, vdBGL+16, AY14, AAB+92, ADM+99, AG10, And93, AMP12, AAAG16, Ati20, BSNP96b, BSNP96c, BD92, BCR04, BDPV07, BDP11, BJ99, BJ99, BK16, BSU12, BGCS16, Bra99, BHT97, BM01, CMR98, CDS20, CN18, CK81, CCH08, DS09a, DW03, ESR14, FPS17, FFGL10, FH89, FHCD92b, GKK10, Ged14, GW94, GPGO16, Gen95, GLC08,}
functions [NY89a, OS14, OS10, PW08, PW06, Pob86, PGV93a, PGV91, PGV93e, PGV93g, Pre94b, PGV94, PvO95, RB91, RFB97, RZ97, RP95, Roe95, Sar80, SS90b, ST85, SH92, SH94, SL88, SS16, Sie89, Sim98, SV06, TZ94a, Tsu92a, Tsu92b, VD05, XCC09, YL04, YRY04, Z’em94, ZW05, ZBB+06, ZDI+15, RRS06].

functions-based [HC11].

Fundamental [LYD71, LY72].

Fundamentals [HS78, HS84].

Further [Lit85, Sar15, Ano09b, DM03].

Future [SP21].

Fusion [Wil00].

Future [BP18].

G2 [BP18].

Gallery [BFR87].

Galois [HIJ96].

game [Zob70a, Zob70b].

Gamma [DGS+90b, DGS+90a, GD87, DG+86].

Gap [ATS19, PNPC20].

Garbage [AG93, FW76, FW77, UIY10].

Gates [GHK+12].

GBD [YTHC97].

GCM [Saa12].

geeks [McN03].

Gen [LYD71, LY72].

Gen [Lut88, TWW77].

GI-Fachgespräch [Lut88].

Gigabytes [WMB94, WMB99].

Girths [Zem91].

Give [AT93, AT90].

Global [CLP13, C195, DL79, LPSW03, MD97].

Globally [HLSW88].

GLUON [BD+12].

gMig [MZD+18].

GNU [Wil14].

Go [Bur06].

Goddard [Fis87].

Goes [Cip93].

Gold [SZ93].

gone [Nic17].

Gong [BPSN97].

Good [Bur92, Hol13, JP07, Lom88, Mit02, AD+97, Kou93].

Goodyear [Fis87].

GORDION [EE86].

gossiping [GHW07].

GPU [ASA+09, FRB11, HLH13, LC20, LLA15, MZD+18, TWL+18].

GPU-based
BS91a, Bih08, BRS02, BCS09, BRSS10, BWP08, Bla00, BM89, BM90a, Blö70, Bob75, BKL+11, BI87, BCFW09, BK12, Boo74, BDP97, BPZ07, BT12a, Bou12, Bra84a, Bra85, Bra86, BMJ14, BHT98. **Hash** [BW98, Bre91, BDS09, Bur77, Bur78, Bur79, Bur06, Bur08, BDM19, But17, CCF04, CP91c, Can97, CLP13, CRdPHF12, CW77a, CW77b, CW79, CMW83, CDS20, CRSW11, CRSW13, Cer81, CKB83b, CBK83, Cer85, CKB85, CBK85, Cer87, Cer88, C991, CBB05, CLNY06, CN08, CCH09, Cha12, jCPB+12, CLG09, CK12, CDMS9, CDm90, CCY91, CLYY92, CHY93, CY97, CZLC12a, CLS12, CZLC12b, CZLC14, CHSC18, CN07, Chi91, Chi94, CJP12, Cic80a, Cic80b, Cis93, Cle84b, Cob94, CBA94, Coh98, CRR18, CS82, CY06, CMP07, CS93b, Cor00, Cor02, CDMP05, CS02, CHM92a, CHM92b, CM93, DS9K20, DBGV93, DGV93, Dae95, DK09, Dam87, Dam90b, DDF+07, Dan13, Dav73, DG93, DG94, DK07, DY90, DY91, DG85a, DG85b, DHK+15, Dev99, DAC+13, Dadi90, DGMP92, Die97, DS90c]. **Hash** [DCM18, DL17, DOP05, DR12, DF01, DC81, Dso78a, DMB19, DB12, DJ80, DHJ83, DGK12, Eck4a, Eck4b, EAA+16, EK93, EMM07, EH12, EPR99, FF93, FF02b, FAK21, FL04, FLS+10, FLF11, FRB11, FFPV84, Fil02, FL08, FLP08, FLP14, FFGL09, FB87, F+03, FCH88, FCH89, FCDH91, FCD92, FCH92, FK84, GRBC19, GK05, GO07, GK12a, Gis05, Ge95, Ge96, GH99, Ger86a, Ger86b, Get01, Gir87, GI12, GSC01, GKH91a, GKH91b, Gon77, Gon81, GLS01, Gra93a, Gra93b, Gra94a, GLS94, GBC98, Gra99, GIMS01, Gre21, GLG+02, GK94, GK95, GLB21, GK08, HMN807, HHR+10, HP78, Hal12, HPC02, HM12, HDM09,Har97, HHHL10, HCJC06, HW08, HC11, Hel91, HJ96, HCPB121, HJ75, HG77, Hl82, HS08, HK12b, Hol13, HKKK10, Hop68b, HD72, HCY94]. **Hash** [H97, HR04, HC13, HLC10, Hü13, HRS16, HBG+17, ISO04, IK92, IG77, IG94, IP08, Ind01, Irbxx, IABV15, IT93, IL90, JO80, Jen97, JRPK07, JLI08, JIY07, Jou04, JD12, JK11, JP07, KG95, KMM+06, KK12, KK18, Kal01, Kam74, KHK12, KHK15, KH84, KM09, KR91, KK06, KKK99, Kl01, KKRJ07, KJ90b, JKC11, KK01, KM10, KT03a, KTMO03b, KNT89, K90, KTN92, K12, Kno71, KdLT89, KP96, KLP08, KR79, KRR+80, KK85, KVK12, KC81, Kra82, Kue82b, Kue84b, Klu84, KKT91, KDF17, KLI07, LM93a, LM93b, LK94, LYY+18, LYX+19, Lam70, Lam06, LT12, Lar81, Lar82a, Lar85a, Lar88a, LAKW07, LMJ10, LKI10, LMSM09, LT09, LM95, Lev00, LCF19, LLL09, LO01, LCH05, LW1Q08, LYA19, Lip02, Lis07, Lit89, Lit77a, Lit77b, LC96, LRY+15, LCL+20]. **Hash** [LR96b, LL85, LB07, LAC18, LTS90, LHDL21, LH03a, LLG12, LMR02, Lyo85, M XL+12, MD05, MSD19, Ma18, MSTA17, MWCH92, MS12, MS02, MPP14, MT11, MCW87, Mar64, Mar71, MLD94, ML75, Mau83, McC97, MFK+16, MCF17, MK98a, Mh82, Me95, MR07, MRS10, MNS12, MV+21, MP12, Mer72, Me90b, Mi85, Mir01, MRW97, Mit12, MW05, Mit02, MIO89, MIO10, MO16, Moh11, Mot84, MKKA17, MKAS18, Muc04, MJT+02, Mul91, Mul92, MC86, Nat92, NS93, Nat95, NS15, NM02a, NCF11, NK88, NNA12, NS16a, NP99, NSW09, Ngu06, NT12, NR12, NXB13, NY85, N+15, OL91, Omi88, OL89, Omi91, OL92, Ore83, Oto86, Pag99, Pag85, PAPV08, PW+13, PCL93a, PV92, PPS21, PFM+09, PTT16, PCY95, PH10l, PLK07, PV07, PHG12, PB9D05, PG95]. **Hash** [PRK98, PRZ99, PW93, Pip94, Pla98, PG90a, PG90b, PG92, Pre93, PG93d, PG93e, PG93f, Pre94a, PG94, PV95, PBD97, Pre97a, Pre97b, Pre99, Pre94c.
DK09, DG85b, DL17, DF01, FRB11, GRBCC19, GI12, HCPLSB12, Hül13, HR84, HBG'17, JK11, KM09, KJC11, KM10, KK85, LLL09, LTB90, HÜL94, MFK'16, MCF17, MKAA17, NXB13, OL89, PFM'09, PRZ99, RNR13, RK91, SBS16, TY91, YSW'11, Adi88, BDS09, CJP12, DG85a, HCJC06, SX08, YSL05, BLC12, BLY20, CJP15, CLW98, HAK'16, KCL03, Ku04, KCC05, MSZ'20, Mul92, OT89, PCK95, PPB16, SPLHCB14, SE21, UHT95, TLLL18.

Hash-Bucket [CS82]. Hash-CBC [BBKN01, BBKN12]. Hash-chaining [CBB05]. Hash-code-techniken [Mer72]. Hash-Coded [Bay73c]. Hash-codering [Lit77a]. Hash-Coding [Bay73c]. Hash-consed [BJM14]. Hash-consing [AG93]. Hash-Cons-Hash [MKASJ18]. Hash-Function [BF83, BRS02, ACP10]. Hash-Functions [Gir87, QG89, QG90, ISO97, ISO04]. Hash-Join [Gra99, NNA12, GKO5, RG89]. Hash-Join-Algorithmen [Zel91]. Hash-Joins [LR96b]. Hash-Jpoin [Omi91]. Hash-Key [MW95]. Hash-Lookup [CN07]. Hash-Only [EH12]. Hash-Partitioned [Ger86a, NKT88, SW91, Ger86b]. Hash-Partitioning [Ger86a, NKT88, SW91, Ger86b]. Hash-Routing [WBWV16, SPSP16]. Hash-Search [WWZ90]. Hash-semijoin [CCY91]. Hash-Sequential [Lit89, IL90]. Hash-Speicherung [BJMM94b, BJMM94a]. Hash-Structured [CS93b]. Hash-Tabellen [B187]. Hash-Tables [LMSM09, LMSM12]. Hash-tree [BLY20]. hash-tries [SV18]. hash-values [GS94]. Hash-verfahren [Hül82]. Hash/Table [DAC+13]. HashCache [PG17]. Hashcash [Bac02]. Hashcodingverfahren [Sta73]. Hashedcubes [PSSC17]. Hashes [BC08, Saa12, Sch01b, Sch01a, Wan14, GvR08, GP08, GNP05]. hashfunctions [PBGV89]. HashGraph [Gre21]. Hashiguchi [LP04]. Hashimoto [SSa01]. Hashing [ACP09, AK98, Ahn86, Ahn87, Ahn93, AKS78, AAE+14, Albl01, Ald87, Ald88, AHS92, AB17, AP93, AA79b, AA79a, AI06, AsBdS16, AT98, ANS09, ANS10, Ar91, ABH+73, AT93, ASW'07, Ast80, AS96, AC74, Atk75, ADW12, ADW14, BSYSP98, Bal96, Bal05, BH90, BP97, Bar97, BG93, BGH12, BH91, BK84, BR97, BM97, BHIMM12, BJMM94b, BBD+82, BBD+86, BHK813, BHHK819, Bie97, Bin96, Bla95, BG07, Bal79, BÖS11, BVG96, BM90b, BJ12, BK07b, BT90, BT94a, Bra84b, BT94b, BK90, BT12b, BH86, Bry84, BP18, Bur92, Bur76b, Bur81, Bur84, BC90, CP91a, CHKO08, CHU2, CLM85, Ce86, CLM86, CF92, CSP15, CLD82, CS85a, CS85b, CS85c, CS85d, CS85e, CS85f, CS85g, CS85h, CS85i, CS85j, CS85k, CS85l, CS85m, CS85n, CS85o, CS85p, CS85q, CS85r, CS85s, CS85t, CS85u, CS85v, CS85w, CS85x, CS85y, CS85z, CS86, CL86, Cla86a, Cha86b, CC87, CC88b, CC88c, CC88e, CW91]. Hashing [CC91, CLC92, CL95, CL05, CLC06, CV83b, CV84, Che84a, Che84b, CV86, CW09, CTZD11, CJN20, CZ17, CKPT19, Ch19, CT12, CJC'09, CKJK19, CK94, Chin91, Chin92, CV08, CKW09, CE70, Cole97, CO82b, CH85, CH94, CG79, DA12, CDW'19, CadHS00, DW83a, DC98a, DKRT15, Dam93, DLT98, DPH08, Dat88, DD11, vdSDW74b, DS84a, DGO02, DTS75, DL79, Dev93, DMV04, DJSN09, DadH90, DadH92, DKK+94, Die96, DH01, DS00c, DMR11, DSY08, Dit91, Dods82, DHL'+94, DHL'+02, DLH09, DSSW90a, DR11, Dreh7b, Dreh7c, DL80, DT91a, DT91b, DT75, Dun89a, Dun89b, EFRK'20, Ell83, Ell85a, Ell87, Ell88, ED88, FNPS79, Fal85a, FM96, Far14, Fel87, FSSN92, FGFK10, Fla81, FSB2, Fla83a, FP19, Flo87, FSP13, FT12, FFG07, FMM09, FMM11, Für88, GSS01, GL73].
Hashing

[GM91, GM94, GadHW96, GM98, GIM99, Gon80, GL82, GL88, GRZ93, GK76, G177, GT80, Gra86, GPY94b, Gre95, Gri77, Gri79, GT93, GPA97, Gui75, GS76, Gui76a, Gui76b, GS78, Gui78, GG80, GO7, GZX14, Gur73, HB89a, HB92, Hac93, HSFZ08, HT01, HR14, HM96, HK12a, Har71a, HCF95, Hea82, Hea72, HB88c, HB94, adH90, adH93, Hel89, HST08, HNS84, HSM95, HKY12, HYH89, HYH93, Hol87, HCS7, HY86, HTY90, HSW88, IJK13, IKO05, IH95, Jac92, Jae81, Jag91, Jai92a, Jai92b, Jaixx, Jan08, JV16, JP08, JTOT09, Jol97, JCK18, Kab87, KBG18, KUS88, KDN12, KV09, KGJ12, Kav85, Kav15, Kel93, KR86b, KR86a, KV91, KMW08, KMW10, KZ84, Kn075, KP97, Kn9u19, KM86, Kon10, KM88a, KP94, Kri84, KS86, KS87a, KS87b, KS88b].

Hashing

[KS89b, KR01, Kum89a, Kum90, Kut10, LW88, Lar78, Lar80a, Lar80b, Lar80c, Lar82h, Lar82c, Lar82d, Lar83, LR85, Lar85b, Lar85c, Lar88b, Larxx, Leb87, LMC07, LK14, Lep98, LC20, LC88, cLmL07, Li15, LCLX19, LCM94, Lia95, LZZ10, LLL11, LLLC17, LRY78, LRY80, LN93, Lit91, LI08, Lit78, Lit79b, Lit80, Lit81, Lit85, LZL88, LSV89, LRLW89, LRLH91, Litxxa, Litxxb, LC12, LC21, LWZ+18, LH20, Lom83, LP991, LP992, LM93c, LH30b, LSZ+21, Lyo78a, Lyo83, MLHK17, Mac95, MD97, MSW19, MWC96, Man12, MK11, MNT90, MB03, MBBS12, MV88, MV90, MV91b, MW90, MBH90, MSSWP90, Men82, Men12, Mey93, MV01, MV02, Mit73, Mit90, MH00, Moh90, Moh93, MN90, MWC12, Mul84a, Mul81, Mul84b, Mul85, MS88b, Nak21, NS90, NR90, NS8, Nyh96, OWZ14, OTKH11].

Hashing

[OG94a, OG94b, OOB12, OOB17, OYV94b, Otk91, Oto84, Oto85a, Oto88b, Oto88a, OT91, OS10, Ouks83a, OS83a, OA89, OS83b, PR01, Pag06, PP08, PWYZ14, Pag18, Pal92, Pan05, PB80, Pap94, PV07, PT12a, PH73, Pea90, Pea91, Per73, Pes96, Pet13, PNP20, PS93, PQ98, PQ99, PKW09, Pip79, Pit87, PM98, PVM94, PVM97, PV19, PT11b, PRM16, PKSS18, PS12, PACT09, PF85, PADHY93, PW94, Qui83, RT87a, Ram88b, RL98, RP91, RR92, Ram92, RL82, RLT83, RSD84, RSD85, RSDS89a, RSDS89b, RSDS90, RSDS92, Ram97, RGNMPM12, RLH91, Reg81, Reg82, Reg88, RRS12, RH92, RR95, RW97, Rob86, Rog95, Rog99, Rog19a, Rgs19b, Rss77, Ros77, Rou09, RT87b, Rus92, Rus93, Rus95, SDR83a, SNBC98, SnC05].

Hashing

[Sag84, SY11, Sas11, SG76a, Sav90, Sav91, Sch79a, SD00b, SD90a, Sch91b, Sch93a, Sch18, SMZ18, SY91, SR89, SPW90, SYW+20, SB93, SSL+18, SHZ+20, SY08, Sho96, SR01, SOS50, SFTD75, Spr77, SHRD90, SGB00, Sti94a, Stu85, Sun15, SHF+17, SA97, Tam81, Tam82, TK88, TC93, TL95, TWZ11, TYZO15, THY+18, TZY+20, T112, TW07, TK85, TZ12, TTY93, TZ94b, Ty83, Tor84, TK07, Tro92, Tro95, Ts96, US09, Ull70, Ull72, VV84, VH86, Vek85, VP96, VP98, Vit80b, Vit80c, Vit81b, Vit81a, Vit82b, Vit83, VC87, WG00, WPKK94, War86, WFHC92, Wec07, Wec12, WPS+12, WSZ+16, WFT12, WP10, WDP+12, WS03, Witer96, Wire90, Wire92, Wir09, WR97, WZ93, Wsu4, YD83, YWH09, Yao80, Yao85a, Yao85b, Yao91, Yas07, YB95, YT06, YBQZ18, YGC+12].

Hashing

[YP86a, ZYW21, ZZLZ21, ZPS90, ZPS93a, ZHW21, ZLC+20, ZH18, ZHW9, dW83, vSD7W4a, vMG12, AT18, ASM17, ASA+09, ADM+97, AI08, AI98, AT90, BGG93, BL89, BGH+13, BBPV11, BD82, BGG94, BDPV14, BDK16, BMQ98, BCGS16, Bef02, Bosxx, BT89, BCLL10, Bur05, Bur82, BMLC+19, CP91b, CP95a, CHKKO12, CS93a, CW93, CMJS91, CP95b, CV83a, CCL91, CHL07, CCL+14, CWC10, CKKK99, CCL91, CR98, CP13, CO82a, CHM97, Cze98, Dam94, DM03, DOP+14, DKM+88, DKM+91, DHW08, DS90b, D+92,
DLH13, DSSW90b, DK12, DLN+18, Duc08, DM11, EH17, EBD91, Fal86, FWG18, FSV09, FFS+13, FNSS88, FKI+21, GLHL11, GG92, GDGK20, Gib90, GW94, GM77, GLJ11, GS89, GRF11, GMC78, Gui76c, Gup89, HB89b, HCC [Har97].

Hashing

[DLN+18], HAVAL
[DVY03, ZPS90, ZPS93a, ZPS93b].

HAVAL-128 [DVY04].

Hawaii

[Deb03, SC77].

HCC

[Har97].

HDDs

[HH+12].

Head [ACM91c].

Heap

[FW76, FW77].

Heaps [CCA+12].

Heavy

[TP15, Ind13].

Hebrew

[Sch82a].

Hecke

[CT96].

Hedge

[SH00b].

Height

[TP15, Ind13].

Heights [Jen76].

Heinz

[adHMR93].

Held

[Jaj90, Fis87].

Help

[PVM97].

Helper [ALS10].

Herding

[KK06, BSU12].

Here

[Bur06].

Hershey

[ACM76].

Hersonissos [ACM01].

hesitate

[Gre95].

Hessian

[Far14].

Heterogeneity

[PG17, WB03].

Heterogeneity-Aware

[PG17].

Heterogeneous

[HNKO20, PG17, WSZ+16, GDA10, Kha95, SX08, SV18].

Heuristics

[Omi89b].

Hidden

[Leb87].

Hide

[Can97].

Hiding

[MMMT09, MV01, Wee07, HR07].

Hierarchical

[FWG18, PACT09, TK88, VL87, GP08, VL97].

Hierarchy

[Wil71, YL04].

High [ACM04, AS09, AEP18, AI06, ASBdS16, CT96, DGG+86, DadH92, DS97, Flo87, GIM99, HSM95, IEE94c, KMM+06, KMV10, LCK11, LPT12, McK89a, McK89b, OT91, PSR90, RSSD90, RW07, Ron07, She91, TK88, Tho13, TP15, MKL21, WJS10, XLZC14, YNKM89, YWH09, ZHW19, AI08, BCCl10, EVF06, HKL07, Inc81, MV91a, MAK+12, MA15, RFB97, SLC+07, Shi17, She91, SWQ+14, SXL08, TYSK10, TLL07, XMlC11].

High-bandwidth [AS09].

High-Dimensional [AEP18, TYSK10].

High-error [Ron07].

High-Performance

[DS97, Flo87, IEE94c, She91, MKL21, ZHW19, Shi17].

High-Speed

[KMM+06, KV910, Mck89a, YNKM89, McK89b, RW07, EVF06, SLC+07, SXL08, TLL07, XMlC11].

High-Throughput

[TP12, XLZC14, MA15].

HighEnd

[LVD+11].

Higher [HKKK13, DH84].

higher-order [DH84].

Highly
Highly-Associative

Highly-Efficient

Hill [IEE88a]. Hilton [ACM91c, PDI91, ICD89, ICD90, IEE90, IEE01].

Histogram [Gra93b, MNY81, PCK95, UHT95].

Histogram-Driven [Gra93b]. History [BG07, MNS07, NW08, Reg82, NT01].

History-Independent [BG07, MNS07, NW08]. Hitter [TP15].

History-Independent [BG07, MNS07, NW08].

Histogram [Gra93b, MNY81, PCK95, UHT95].

Histogram-Driven [Gra93b].

Hill [IEE88a]. Hilton [ACM91c, PDI91, ICD89, ICD90, IEE90, IEE01].

IB [DCM18, DHT+19, DR11, GPA97, GH07, HW08, LKI10, LQZH14, Li15, LöON15, LC12, LY+13, LH20, MV02, OSR10, RGMPM12, SB97, THY+18, US09, WP10, WDP+12, ZWH17, ZZLZ21, HC11, LMLC14, Mit12, SB95, TCW+13, TLZL16].

Implementation [BCS89, BS94b, BGDW95, Dat88, DF89, DKO+84b, DKO+84c, DKO+84d, IBM/360].

Implementation [BCS89, BS94b, BGDW95, Dat88, DF89, DKO+84b, DKO+84c, DKO+84d, IBM/360].

Implementation [BCS89, BS94b, BGDW95, Dat88, DF89, DKO+84b, DKO+84c, DKO+84d, IBM/360].

Implementation [BCS89, BS94b, BGDW95, Dat88, DF89, DKO+84b, DKO+84c, DKO+84d, IBM/360].

Implementation [BCS89, BS94b, BGDW95, Dat88, DF89, DKO+84b, DKO+84c, DKO+84d, IBM/360].
Implementations [GLG+02, Vit82b, WPKK94, WZJS10, DMP09, RAL07].

Implemented [CMW83, MRL+19].

Implementierungstechniken [Nee79].

Implementing [Bab79, Blu95, BJM14, GHJ+93, Gra86, Jun87, KHW91a, KHW91b, Lin96, Llo81, LB07, VL97].

Implications [Chr84, CHS+18, RAD15].

Implicit [OS88, Kor08].

Impossibility [BCS09, HM12].

Improved [LJF17, UIY10].

Implementation [Dee82, Dev93, Dit76, DT75, EES86, EjKMP80, FW09, GG86b, GT93, Gro86, Har71a, Heo89, ISK+93, JD12, Kahl92, KMM+06, KU88, KM92, KR86b, KR86a, KKRJ07, KJ09b, KTN92, LK84, Lit79b, LPP92, NM02a, PRM16, SDR83a, She91, SK05, Ste82, TGL+97, TNKT92, VL87, BDF+12, BS94c, BW92, DS09a, DHW08, DM11, EBD91, GN80, GJM02, Inc81, IIL17, KU86, KKL+09, McD77, MZI98, MFES04, Tai79, MKL21, Dit76].

Incrementality [BM97].

Incremental [BGG94, CT12, FrB11, GSC01, ISHY88, PW06, TWL+18, UIY10].

Induced [Yas07].

Identify [KCF84].

Independence [KW12, PRP09, PT16, Tho13, DT14, PPR07, PT10a].

Induced [BG07, CCJ91, DGD02, DTS75, Die96, Ind01, MNS07, NSW08, TIZ12, BCGS16, FPK17, Han17, NT01].

Independently [AU79].

Index [BM89, BM90a, Buc82, Bur83b, Bur83c, DS84a, GPY94b, LC86a, Lom83, MZL+19, OL89, Oto85b, Qui83, TY91, Wil79, ZHW19, Bur83a, Fro81, GY94a, HM03, KZ19, LCH+14, McD77, SWQ+14].

Index-Based [OL89, TY91].

Indexed [Chu91, Chu92, KHT89, Mul72, GB17, SN19, Tay89, WM93, TKI99].

indexed-hash [WM93].

Indexed-Sequential [Mul72].

Indexes [Les88, Omi89b, Pip94, FVS12, HCV+21].

Indexing [CJ86, Dum56, KGJG12, Li15, Bre91, CN08, DDS14, DL17, FB87, HSM95, HW88, JNFP14, KM86, Kut10, LW04, LJF19, KKM810, LH04, Mau83, Mic02, Mul72, NSS+06, Nk21, PS12, Rad92, RP95, SS80, SD95, TK17, UIY10, WM19, GM77, Mau86, War14, ZW05].

Improvement [CH04, Fei87, LCM+20, RGNMP12].

Improvements [CTZD11, Lev00, Nam86].

Improving [ATAK07, ÁVZ11, BDD88, CHY93, CHY97, CAGM07, Cla77, DB12, GCMG15, JHL+15, KZ19, MS12, RT87b, Sch82a, TCP+17, YW09, ZGG05].

In-hand [Dee82].

In-Bucket [TYZO15].

In-Memory [CCW+17, JLL+20, MZL+19, QXL+20, ZHW01, WLC20].

In-Network [WBWV16].

Inadequacy [GY91].

Includes [FW76, FW77].

Including [DGV93, KL95].

Incoming [LK07].

Incompatibilities [KCF84].

Incorporating [CBA94].

Increased [PRM16, MSP12].

Increment [Ban77, Luc72, RKK14].

Incremental [BGG94, CT12, FrB11, GSC01, ISHY88, PW06, TWL+18, UIY10].

Incrementalization [SB07].

Infeasibility [FS08].

Infinite [GHK91a, GHK91b, LII92, Bra09].

Infinity [Hil05].

Influence [RTK12].

INFOCOM [IEE01, IEE92a].

Inform [Pro94].

Informal [CK89].

Informatics [CHK06].

Informatic [Nol82a, Nol82b, OH80].

Information [PD19, BV89, BIP92, Can97, Cha84a, Dan13, DSSW90a, EL82, FC87b, FH69,
FCDH90, FCDH91, GPY94b, ISO97, ISO04, KLT92, KM86, KM88a, LC06, LXL+19, MV01, MNS07, PGV93f, SKC07, SPSP16, SC77, Sta06b, Sun15, Vid90, WBWV16, XHZ+19, Yan10, YR87, YBQZ17, AFK90, DSSW90b, GPY94a, KSC11, KSC12, SG72, SXLL08, FNY92, FBY92, Gil77, Ros74.

Information-Based
[SKC07, KSC11, KSC12].

Information-Centric
[SPSP16, WBWV16].

Information-Theoretic
[Sun15, SXLL08].

Informix
[Ger95].

Infrastructure
[MJ14, Nak21].

Infrastructure-free
[MJ14].

Ingestion
[CXLK19].

Ingres
[Sne92].

Inheritance
[DMP09].

Inhibiting
[GSa96].

Initial
[vdP72].

Initiative
[MO92a].

Inner
[PWY+13].

Innesbrook
[IEE88b].

Innovation
[ACM03b].

Innovative
[OG94b].

Input
[AB12, Sab94].

Insecurity
[DMP09].

Insecure
[CyWM91].

Inserting
[Gup89].

Insertion
[FPS13, PS12, CV83a, Jan05, Kou93, PY88].

Inside-out
[AP11].

Insight
[CQW08, IEE02].

Installation
[LAKW07].

Instance
[FS08].

Instantaneously
[DV07].

Instantiated
[RR08].

Institute
[Ano93d].

Instruction
[BOS11, SSS83].

Instrumentation
[Ano83].

Integer
[Ano86, Die96, MV90, MV91b, Woe01, Woe05].

Integers
[BCS89, Han17].

Integral
[LJF19, Rog19b].

Integrated
[DGKK12, PG17, NM02b].

Integrating
[ATAKS07].

Integrative
[LLDZ18].

Integrity
[CLS12, Sch01b, Sch01a, Wil96].

Intel
[JHL+15].

Intellectual
[DGKK12, IEE88a].

Intelligence
[Kak93, Luk58, ARA94, LLC89].

Intelligent
[IEE11a, LJW+17].

Intensify
[HL12].

Intensive
[Shi17].

Inter
[Kos14].

Inter-system
[Kos14].

Interacting
[LLW10].

Interaction
[ZLY+12, Bor81].

Interactive
[CBK83, Cer85, CBK85, Dam93, Dam94, Dos78b, Gk94, GK95, HR14, KG95, MS09, OVV94a, OVV94b, Rad83, Wec07, RWS07, RW73, TCW+13, TWL+18, MS09].

Interconnection
[Fah80].

Interest
[ACM82, DT87, OSR10].

Interesting
[VNC07].

Interface
[Vit85, WGM88, Bor81].

Interfaces
[DCW91].

Interleaved
[RH90].

Internal
[GL82, GL88, ITP14, LC88, Wil59].

International
[ACM81, IJW89, PJ91, ACM94b, ACM11, ACM12, AGK+10, ABB93, ABM06, AFK90, ARA94, VLD82, Ano89, Ano93c, AW98, AAC+01, A+90, AINOW11, AOV+99, AA86, Bai81, BD88, BSS88, BV98, BIP92, Be100, BBD09b, BJZ94, BRW93, BL88, BF89, Brie92, Bri93, BW92, BD08, BJ93, CGO86, CLM89, Cop95b, DG96, DSS84, DSS07a, DSZ07b, DJRZ06, DJN90, FNY92, FMA02, Fra04, Fre90, GMJ90, Gd92, GSW98, H93, HL91, IEE80a, IEE84, IEE85b, ICD87, IEE88a, IEE88d, ICD88, IEE88b, ICD90, ICD91, ICD93, IEE94a, IEE95, IRM93, JB94, JY14, Ker75, Kna89, KLT92, Kui92, LC06, Lak96, Las87, LCK11, Lev95, Lie81, LS89, LT80, LSC91, Lom93, MK89, MSDS90, Mo92b, Nav85, Ng97, Pat90, PSN95, PV85, PK89, QG95, RK98, RNT90, ST98a, ST98b, SP90, Sho05, SW94b].

International
[SW94a, SC77, Sti93, Sti94c, Stof92, Vau06, Vid90, WPT90, JWS99, Yan10, Yao78, Yt90, YR87, Yu92, Yuan92, Yum02, vL94, vdHv12, ADG+08, AMSM+09, ACJT07, Bir07, CICM+05, Cop95a, Deb03, Go96, HKNW07, HF13, Wie99, ICD86, IEE11a, Sch82a].

Internet
[ATAKS07, Ano95d, HLC10, MCF17, MCn03, She06, SXLL08, ZNP16].

Internet-Draft
[MCF17].

Internet-scale
[ZNP16].

Interpolation
[Bue82, Bur83a, Bur83b, Bur83c, Wu84, FWG18].

Interpolation-Based
[Bue82, Bur83b, Bur83c, Bur83a].

Interpretation
[Fy92, GVR08].

Interpreter
[CBA94, Gai82].
interprocessor [KK96]. Interrogating [HLC10]. Interrogating-Call [HLC10].
Intersection [PSZ18]. Interval [GY91, Lip02, BL89]. Intractable [IT93, IH95]. Intrinsics [Rog19a].
Introduction [AG18, Cob94, DK02, DK15, Fel50, Fox91, Har85, Hu89, KL15, RW97, TS76, TS84].
Invariance [SvEB84]. Invariant [HSPZ08, LH20, NS16a, Fly92, SB07]. Inverse [CPP08, HCF95]. Inversion [DK07].
Inversions [Pat95]. Inverted [Les88, HC02, McD77]. IoT [Alb21, Cho21, HLL18b, NADY20].
IoT-Enabled [Alb21]. IP [BLC12, BM01, HPCM09, IGA05, JL14, MPL09, RW07, SXLL08]. IPSec [KMM06+].
IPv4 [PT12b]. IPv6 [PT12b]. Ireland [Rei88, IEE07]. Iris [MMG10]. Irreversible [ANS97]. ISA [HL91].
Isolated [MMMT09]. Israel [Sch82a, BCS88]. Israeli [Coh94]. ISSAC [ACM94b, Lak96, Lev95, vdHv12]. Issued [LG78]. Issues [MP90, LMSF98, LG78, Yu92]. Italian [FFPV84]. Italy [AAC+01, AAS6, ST83a, ST83b, Anc04, De 95, IEE88d, IEE92a].
Item [WYD+18]. Items [Bay73b, CH09]. Itemsets [BMLLC19]. Iterated [Jou04, KVK12, HLWM93, HXMW94, KHK10].
iterations [O510]. Iterative [MV02, PNPC20, SX16]. IV [Far93, Sil02a]. IWDM [BF89].
J [Sar80]. January [ACM91d, ACM91a, ACM97a, ACM05, ACM08a, Kar98, Mat09, SP90, Shm00, USE91]. Japan [IJW89, A+90, AIANOW11, CG06, Got83, IEE85b, IRM93, Mot92b, IEE85b, ICD91, LT85]. Java [Sun02, CHL07, LBJ02, NM10, OOK+10, SB07, SS05, Tym96]. JEqualityGen [GRF11]. JERIM [MJ08]. JERIM-320 [MJ08]. Jersey [Fre90, IEE84]. Jersey-sponsored [IEE84]. Jerusalem [BDD88, Sch92a]. Johnson [SG16].
Johnson-type [SG16]. Join [Adi88, AT91, BM89, BM90a, CS83a, CHY97, DG85a, DG85b, FP89b, Gra93a, Gra93b, Gra94a, Gra94b, Gra99, HR96, KR91, KKW99, KL87, KNT99, KHT89, K090, KTN92, LR99, LDM92, LTS90, MLD94, MLXX, MS88a, NKT88, NNA12, NP91, OL91, OL89, Omi99b, OL92, PAPV08, PG95, Pip94, RK91, SD89c, SD89a, SD90b, SD90a, Sha86, SM87, Sol93, Spe92, TR02, TY91, Top92, TP95, Tov93, TNKT92, Val87, WYTT93, YNN0+09, Yam85, ZG90a, ZG90b, Ze91, ZJM94a, ZJM94b, ZJM94c, ZO93, ALS10, BMS+17, CAGM07, CYWM91, GK05, ISO97, Kha95, KKL0+09, LNS11, LEHN02, MMSY94, Mul92, OT99, PCK95, PCV94, RLMS87, RG98, SD89d, SM94, SA17, SP89, TL93, UHT95, WL07, NNA12]. Joining [NP91]. Joins [CLYY92, CLYY95, DG93, DG94, DNSS92, GBC98, Gra86, HCY94, HCY97, LR99, LR96b, NNA12, PCL93a, SC90b, SC90a, SC90c, WDTY91, YCRY93, AKN12, BAT013, BLP+14, HL13, JHL+15, LCRY93, ML95, PCL93b]. Joint [IJW89, AF163, AF169, MO99a, IE92a, IE901, ZC12]. Jose [ACM11]. JPEG [ZC12]. JPEG-2000 [ZC12]. Jpoin [Omi91]. Juan [IEE91b]. Judy [Sil02a].
July [IJW89, ACM91c, ACM94b, ACM01, AGK+10, ADG+08, AMSM+99, Ano95c, ACJT07, dBVl80, CIM+05, Coh94, DG96, CTC90, Kui92, Lak96, Lev95, NS82, Oxb86, Pat90, Rei88, vdHv12]. June [ACM84a, ACM03a, ACM07, ACM11, ABM06, BCS88, BV99, BIP92, BRW93, BL88, BF89, FAMA02, Fre90, Van10, HF13, IEE05, LL08, LS89, MS05, Ng79, Rei88, Sch92a, Sto92, Vau06, VL94]. Just [Yas07]. JVM [SV15b].

k-ary [Gui76c]. Karlsruhe [HM08]. Karp
Karp-Rabin [GBY90]. Katapayadi [Ram97]. Katholieke [BBD09b]. KD [KHT89]. KD-Tree [KHT89]. KDL [PSR90]. KDL-RAM [PSR90]. Keccak [BDPV09, BDPV12, DDS14, LA15, LS13, BDP +12]. KEM [CZLC14]. Kent [Oxb86]. Kerkyra [Rei88]. Kernel [CSSP15, Lev00, ZLY +12]. Key [ANS97, ANS05, IA91, BD82, Bol79, Boo74, CS83b, CC87, CS87, CC91, CLC92, CTZD11, CY06, CG79, CS02, Dam87, DL12, Dos78a, EAA +16, GG86a, Gri79, GG80, GWY +19, HB89b, HB89a, HM12, IG77, JLL +20, Jok97, KM09, KV00, KR86b, KR86a, LYX +19, LAKW07, LLL +16, LCM94, Li63, LCM +20, LDY71, Lum73, MZL +19, Men12, MW95, NTY12, PRR15, QXL +20, RSSD9b, RSSD92, Rob86, RS08, SY11, SR63, SSS05, SD21, Sta99, YLSZ19, Yao95, Yub82, ZQS91, And88, BSNP96b, CCL91, CGL06, GBL94, LW04, LND08, LY72, ML94, Men17, NM02b, Oka88, SD85, Sar11, SN19, Shi17. WLC20, ZCZQ19.

Key-Exposure [CTZD11]. key-node [SN19]. Key-Recov [CY06]. Key-Sequential [HB89a, HB89b]. Key-to-Address [LDY71, Lum73, SR63, LY72]. Key-Value [PRR15, Shi17]. Keyed [An95a, BSNP96a, KKRJ07, Gon95, Li95, SV06, FIP02a]. Keyed-Hash [KKRJ07, FIP02a]. Keying [BCK96a]. keypoints [MMG10]. Keys [Gon80, Gur73, JC88a, Jok91, KR01, LMJC07, LL87, Oto85a, PB80, Riv76, Riv78, SD78, She78, Yao85a, CFN18, FP82, GMW90, Wan05].

L [Sar80]. Label [LQH18, ZWY21]. labeling [TCW +13, YSL05]. Lam [Wag00]. LaMansion [Nav85], lamp [McN03]. Landau [SV06]. Landmark [NNA12]. Landmark-Join [NNA12]. Landsat [MNY81]. langage [LG78]. Language [Cer81, CKB83b, Dit76, Fr69, GHJ +93, GT63, GG6b, Har85, ISK +93, KCB81, LG78, Wil59, BW92, CP96a, CK93a, Lev89, YIAS89, YM89].

Languages [ACM91d, dBV80, BRW93, CL83, Cra85, IEE84, Jou85, Kui92, Pat90, ACM91a, AGK +10, ADG +08, AMSM +09, ACJT07, CIM +20, DTM +18, DLH +79, DL06, GMP95, GJR79, Inc81]. LAPI [MS02]. Laplacian [ZWCL10]. Large [ABB93, VLD82, AW89, AAC +01, AOV +99, BD88, BH85, BCH87, BJZ94, BI12, CKB85, CML +13, CG06b, Har85, ISK +93, KCB81, LG78, Wil59, BW92, CP96a, CK93a, Lev89, YIAS89, YM89].

Large-Grained [PAKR93]. Large-Scale [GG +19, GL11, Li15, MEK +14, SHF +17, YGC +12, ZTBC05, Yao78, YIAS89, ZH91a]. Large-Grained [PAKR93]. Large-Scale [GG +19, GL11, Li15, MEK +14, SHF +17, YGC +12, ZTBC05, Yao78, YIAS89, ZH91a].

Landau [SV06]. Language [Cer81, CKB83b, Dit76, Fr69, GHJ +93, GT63, GG6b, Har85, ISK +93, KCB81, LG78, Wil59, BW92, CP96a, CK93a, Lev89, YIAS89, YM89].

Laplacian [ZWCL10]. Large [ABB93, VLD82, AW89, AAC +01, AOV +99, BD88, BH85, BCH87, BJZ94, BI12, CKB85, CML +13, CG06b, Har85, ISK +93, KCB81, LG78, Wil59, BW92, CP96a, CK93a, Lev89, YIAS89, YM89].

Large-Grained [PAKR93]. Large-Scale [GG +19, GL11, Li15, MEK +14, SHF +17, YGC +12, ZTBC05, Yao78, YIAS89, ZH91a]. Large-Grained [PAKR93]. Large-Scale [GG +19, GL11, Li15, MEK +14, SHF +17, YGC +12, ZTBC05, Yao78, YIAS89, ZH91a].
Kos14, SXLL08, FES09, Shi17, Zha19a.

Last [PM89, KR19].

Last-Come-First-Served [PM89].

Latency [QXL+20, Sam81, SL16, WY00, KLSV12, LDK12, ZGG05].

Latency-sensitive [WY00].

Latin [CHK06, DMPP06, CHK06].

Lattices [KV09, LYY+18, LYX+19, GPV08].

Lava [McN03].

Laws [AK09].

Layer [YSEL09].

Layered [Man12, ZC12].

Layers [SDMS12, SDMS15].

Lazy [AHS92, BJMM94b, BJMM94a, CF92, Hug85, KV91, MV88, VV86, MSV87].

LCCR [Cer85].

LCFS [PVM97].

Leakage [NTY12, ZZM17].

Leakage-Resilience [NTY12].

Leakage-Resilient [ZZM17].

lean [SV15b].

Learn [McC79].

Learning [GK94, GK95, KG95, KKC12, KRJ+80, LQH18, LLZ10, Val15, Wan88, BC06, SZO+20].

Least [OG94b].

Lecture [Dev86].

LEDA [MN99].

Lee [KCL03].

Leftover [DSGKS20].

Leistungsanalyse [Kue82a, Kue82b].

Leitmotiv [Kah92].

Lemma [DSGKS20].

Lemmas [GK76].

Lemmatized [DS84b].

Length [Dit91, Gon81, KLP98, LK94, Lan95, Men12, Mit73, PHL01, Pea90, Pea91, Sav90, Sav91, ZPS90, ZPS93a, GS94, KL95, LLJ15, Men17, ZPS93b].

Lengths [Bra84a, Bra85, Bra86].

Less [DHO1, GKO8, KHK12, LK16].

Lett [Pro94].

Letter [BMB68, CS85c, CS85b, Cha85, CL86, Cha86a, CW91, CO82b, JC88a, TL95, Tro95, Wan05].

Letter-Oriented [CS85c, Cha86a, JC88a, TL95, CL86, CW91, Wan05].

Leuven [BD09b, BW92, PGV93c].

Level [CJC+09, ZHW19, BG12, DAC+13, HL94, Inc81, LDK12, MBT00, SDR83b, TK19].

level-set [BG12].

lever [IEE88a].

levy [IEE88a].

Lexical [CRdPHF12, ISHY88].

lexically [FF90].

lexicographic [BMLLC+19].

Lexicon [CKB81, CKB83b, CKB83a].

Lexicons [CKB85].

LFSR [DS09a, Kra94].

LFSR-based [Kra94].

Light [LNS93].

Lightweight [AHMNP12, AHMNP13, BDM+12, BK+11, HKY12, Che21].

Limited [GL12, GL88, S90a, Wen92].

limitedness [LP04].

Limits [KST99, MMSY94, BVF12].

Line [AS82, Bry84, FFGOG07, H072, IABV15, Leb87, SS83, Tsa96, BBBK12, HHL10, KRRH84, RW73, Tsa94].

Line-Oriented [Bry84].

Line-Rate [IABV15].

Linear [Ald88, ADM*99, AT98, AN95a, AD11, BYPS98, Ban77, BK70, BS96, BW98, CPF19, Cle84, CL09a, CM93, Dae95, Ell85a, Ell87, FPV98, HB89a, HB92, HH85, HYH93, HTY90, HS88, Jak85, JV16, Kno88, Knu98, Kor08, KD92, Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Lar85b, Lar85c, Lar88b, Larxx, KKM10, Lit79b, Lit80, Litxxa, Luc72, Loy78a, MSSWP90, MY80, Moh90, Moh93, Mul81, Omi88, OGAB14, OT91, OS83a, Oa89, OS83b, PPR07, PPR09, PT16, Pet13, PK87, PVM97, RSD84, RSD85, RSS89a, RSS92, RLH91, Reg82, Rob86, RT87b, SDR83a, SP90, TW91, TZ12, Toy93, VP96, VP98, WVT90, YD86a, Ald87, ADM+97, BJ07, Bot95, HB89b, HCF95, Jan05, LNS93, MBT00, MCM01, ML94, Omi89a, OP03, OS88, PT10a, RLH90, Sar13, SS16].

Linearizable [BKMP09].

Linearization [Oto88a].

Lingo [McC79].

Linguistics [Cer83].

link [BR75].

Linked [Fel87, Pal92, ZLLD18, ZRK08].

Linking [Bob75].

Linkless [CJC+09].

links [EV06].

Linux [USE00a, Lev00, LACJ18].

Lisbon [CIM+05].

Lisp
Lisp-Based [FH96]. List [McI82, Ter87]. Lists [BH86, HK87, LLC89, Lyo79, MY79, Kno84, ST85, SS06]. literate [Sab94]. little [DMPP06, PES+12]. Live [MZD+18].

Ljubljana [EF12]. LLE [TLZL16]. Load [HC13, IK92, KJC11, LRLW89, LRLH91, Omi91, RR92, Rk91, Top92, TP95, WL07, KL08, SX08, TLLL18, WZ12, WTN09, XCKK09]. load-balanced [TLLL18]. Load-balancing [WL07, XCKK09]. Loading [vdP72].

Locality [BT12b, CSSP15, CKP19, CH19, CH93, CH94, EFMKR+20, HNH020, IMRV97, KGB18, Kav15, MZL+19, MN08, OWZ14, OTHK11, PG18, ZHW21, AT18, GDGK20, HAK+16, HFZ+15, HFF+17, LNS11, LWXS18, LJW+17, QZD+18, SP12, STS+13, SA17]. Locality-Aware [HNK020, MZL+19]. Locality-Preserving [CH19, CH93, CH94, IMRV97].

Locality-Sensitive [BT12b, OWZ14, PG18, ZHW21, EFMKR+20, HFZ+15, HFF+17, QZD+18, STS+13, SA17]. Localizing [DD11, DJSN09]. Locally [KSS+88a, Oto88b].

Locating [WL12]. Location [CCF04, TY03, ZWH17]. Location-Based [ZWH17]. Lock [AR16, NM10, ZLLD18, AR21, NK16, Pro18, ZL12, SS06].

Lock-Free [AR16, ZLLD18, AR21, NK16, Pro18, ZL12, SS06]. locks [ALS10]. Lofthus [Hel94]. log [FHC89]. logarithm [Gib91].

Look [CP91b, Sna87, AY14, CP91a]. look-up [AY14]. Lookup [CN07, HDCM09, Jai89, Jai92a, Jai92b, Jaixx, Pri71, She78, SWTX18, Tro06, YBQZ18, BLC12, HXLX13, Mad80, MSK96, MLP07, MPL09, MA15, PT12b, WTZ+13, WTN07, ZGC05].

Lookups [Pan05, BM01, IGA05]. Loss [ATS19, FC87b]. Lossy [PW08, Wee12].

Louisiana [ACM91e, ACM97a]. Louisville [Rie89]. Low [GI12, HNM07, HGR07, Les88, LYW+18, PSSC17, QXL+20, TBC+05, ABO+17, BOY11, CZ14, HM03, MA15]. low-area [ABO+17, BOY11]. Low-Cost [GI12, HNM07]. Low-overhead [HGR07].

Lower [DKM+94, GadHW96, Gont77, MN08, OWZ14, Yao83, DKM+88, DKM+91, Sun91, Sun93].

Lowering [SSU+13]. LR [HC87]. LSH [AT18, AÖD19, CKM14, CK15, LCH+14, LJW+17, ZNP16]. LSH-Preserving [CK15]. Lucifer [BS91c]. Luhn [Ste18].

M [Sar80]. MA [ACM84a, Ker75, Kil05, CP91b, ACM86a, CP91a]. MAC [HHL18a, PV95, Pov95, Pre97a, SRRL98, SRY99, Eog90]. Machine [And88, CCJ91, DGG+86, DGS+90b, DGS+90a, GD87, GSI+82, Hsi83, KLadH93, KLM96, KTM08a, KTM08b, KTMO83c, Tan83, EBD91, Vak85, BM90b, KK96, RH92].

Machine-Independent [CCJ91]. Machinery [DT87]. Machines [BF89, adH93, Mey93, SD89b, Sch90b, SD90b, SD90a, TR02, CHS+18]. MACs [DL17, GO07, PV95, Pre97b, Saa12]. Made [Cic80b, PV07]. Madison [FMA02].

Magic [Hin20, Zha19b]. Magnetic [Wri83]. MAHT [CrDPhF12]. Main [AP93, CE95, CRdPHF12, DKO+84b, DKO+84c, DKO84a, KR91, KL87, KK85, Kmu89a, LC86a, SPW90, Sha86, TP95, ZHK+19, ANK12, AP92, BATÖ13, DKO+84d, JHL+15, Pro94].

Main-Memory [KR91, BATÖ13]. Maintaining [Woe06b]. Maintenance
[Buc82, Bur83b, Bur83c, Oto85b, Bur83a].

Making

[BR97, Cob94, Hel91, LT09, CCA12].

Malicious [AAE14, malleable [BCFW09].

Malicious [AAE14, malleable [BCFW09].

Malware [ASWD18, LLDZ18, NADY20].

Management

[ACM75b, ACM81, ACM82, ABM06, BL88, BJ93, BC90, CLGC20, CLM89, DT87, EE86, Flo77, FMA02, GGY19, GMJ90, Gh077, Gho86, ISK93, JLL12, KM90, LC86a, Lie81, MC79, MKF16, NA85, SW94b, SC77, St092, ZS83, ZQSH12, DAC13, FNY92, FR94, HF13, SW94a, WM93].

Manager [Pro89].

Managing [WMB94, WMB99, WYT93].

MANETs [Alb21, JFDF09].

Manipulation [GK76, Ng79, Pon87].

Manual [RWSN07, Sil02a, WG94].

Manuscript [FLF11].

Many [BGF88, CZL12, JWM18, Lia95, SV18].

many-body [JWM18, Lia95].

many-core [CZL12].

Map [GRZ93, LFD17, PPS21, Som99, AR21].

Maple [PVM97].

mapped [SV15b].

mapper [YTHC97].

Mapping

[Oto84, WH83, YD85].

Mappings

[OS83a, OS83b].

MapReduce [LMD12].

maps [HC14, JBBW11, SV18].

March

[ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM91a, AH03, Ano10, Bir07, CHK06, Deb03, IEE88a, IEE11a, JB94, RNT90, SM08, TW777, Ytr06].

marching [ZRL08].

Marina [ACM82].

markerless [JBBW11].

Markets [Mir17].

Markov

[HL94].

Marseille [Ng79].

marshalling [LPSW03].

Maryland

[ACM90, FNY92, Jàg90].

Marz [Lut88].

Mass [Co93].

Massachusetts

[BV89, IEE05, MS05].

Massive

[SMZ18, HAKM15, LRU14, Vit01, XCCK09].

Massively [AKN12, Jàg90, MK93, RH92, YLB90, Yen91, CZL12, Fis87].

Massively-Parallel [MK93].

Master

[LYX19].

Match

[AU79, Bur75b, Bur76b, Bur76c, Bur78, Bur79, CLD82, Chu90, Jag91, Mor83a, RLT83, RSD85, RSD90, RSD92, YD86a, AT18, CC88a, FA88, Hua85, RSD89a, RSD89b, Riv74a, SDR83b, YD86b].

Matches [Dav73, PRK98].

Matching

[iA94, BH85, CFP19, CCH09, CG79, Gri79, Han90, HCKW90, HW08, KSSS86, KR81, KPS92, LLLC17, RH92, RH95, TK07, ASM17, CLS95, CW10, DKT06, DC94, GBY90, HC14, HW88, IY988, KP92, KS89a, Kim99, MHT13, PT12b, Sch91a, TKT+89, TLLL07, TLLL09, XMLC11].

Matchings [CKN18].

Materialized

[BM89, BM90a].

materials [SE89].

math [McN03].

Mathematica [Jac92].

Mathematical

[BC39, LG78, LH92, NAK+15, Sed83a, Hil05, GT80, RV09, Win78].

Mathematics

[FGF96, GKP90].

Matrices

[ASW07].

Matrix

[AN96, AII89].

MD [Fis87, IEE02, PVO95].

MD-x [PVO95].

MD4 [Ano95a, WFLY04].

MD5 [Ano95b, For09, WFLY04, WJS10].
[BKMP09]. MDC [LS15]. MDC-2 [LS15]. MDS [TW07]. MDx [PV95, SRRL98]. MDx-family [SRRL98]. MDx-MAC [PV95]. Me [Lan06]. Mean [Bra84a, Bra85, Bra86]. Means [Bab79]. measure [Bac02]. Measurement [NS16b, SL16, YGS+19, LMP+08, RW07, ACM94c]. measurements [KLSV12]. Measures [MY79]. Mechanism [DGD02, Kum89a, Cha12, HKL04, JFDF09, SF88]. Mechanisms [DF01, Sev74]. Media [LWZ+18, CBB05, ZO13]. media-streaming [CBB05]. Median [HSPZ08, She78]. Medical [FHMU85, GPA97]. Meet [Sas11]. Meet-in-the-Middle [Sas11]. Meeting [ACM84a]. Mehfs [Du86]. Mehrfachattribut [Stu82]. Mehrfachattribut-zugriffsverfahren [Stu82]. Mehrschlussenzugriff [Fri86]. Membership [BM99, DP08, HKLS12, Pag01]. MemGuard [CZ14]. memo [Hug85]. memo-functions [Hug85]. Mémoires [Lit77b, Lit79a]. Memories [DD15, KHW09a, MNS07, Sha86, vdBGLGL+16, CCHK08, CCA+12, Hui90, KHW91b, Koh80, Lin63, RH90]. Memory [AP93, ASBdS16, AGMT11, BLP+14, BC90, CRdPHF12, CCW+17, CadHS00, DG93, DG94, DKO+84b, DKO+84c, DKO84a, DHK+15, DadH92, Dum56, EK93, adH93, HNS84, JP08, JLL+20, JCK+18, KHK15, KU88, KLM96, KR91, KL87, KK85, Kum89a, LC86a, LTS90, LHWL21, LSZ+21, MΖ+19, MLxx, Mey93, Omi91, PSSC17, Pan05, PG95, PS12, PGV90b, QXL+20, RSK17, Ros21, RL74, SPW90, SS88b, TR02, TP95, Vit81a, Wil71, Woe06b, Wri83, YBQZ18, ZH18, ZHZ+19, AS09, AKN12, AP92, BATÔ13, BDK16, Bor84, CJSM19, CZ14, DKO+84d, Don91, GLJ11, HDMC11, HKL04, HCW+21, JHL+15, KU86, KFG15, LHWL20, MSZ+20, MBK00, MSS96, PGV93g, Pro94, Shi17, SG72, SV15a, TKT+89, Vit01, WLC20, XLZC14, YIAS89, ZHW01]. Memory-Contension [DG93, DG94]. Memory-Efficient [YBQZ18, BLP+14, Shi17, XLZC14]. Memory-hard [LSZ+21, BDK16]. mer [HC14, PNPC20]. Merge [Gra94b, Gra99, AKN12]. Merge-Join [Gra99]. merging [SSU+13]. Merkle [Bak09, CDMP05, GB17, LRY+15, Mir01, MFES04]. Merkle-Damg˚ard [Mir01]. Mesh [CRR18]. Mesh-to-Mesh [CRR18]. Message [AVZ11, BCK96a, CRR96b, EPR99, FIP02a, HK12a, KKRJ07, MRW89, NCFK11, RWSN07, Rog93, Rog99, She96, TC83, Tsu92a, Tsu92b, WS03, Yas07, GKH12, Kra95, MS09, Sta99, SV06]. Metabase [KP81]. Metadata [GGY+19, SWTX18, DAC+13]. MetaFlow [SWTX18]. Metagenomic [PKSB18, KZ19]. Method [AA79b, AA79a, Ari68, Bat75, Bel70, Bel72, Bel83, CS91, CC87, CLC92, CPP08, CLS12, Cic80a, Dos78a, DT75, FNPS79, HD72, JO80, Jae81, Joh61, KR86b, KR86a, KNT89, KO90, KRJ+80, Lam70, LK84, LPT12, LL86, LL87, Mal77, MNY81, Mci63, Moh90, Moh93, Mu72, NKTT88, NIS3, PG95, Per73, Rum92, RJK79, RT87b, SD85, Sag84, SG76a, SS62, SR63, SS05, Spr77, SHRD09, Ven84, WKB07, Wu85, YD85, Zou85, BGG12, HW88, Kan91, Kan93, LP04, MI84, MF82, MFK+06, NH74, Vit80a, WLLG08, Woe06a, Zob70a, Zob70b]. Methode [Kar82]. Méthodes [Lit77b]. Methodologie [Lit77a]. methodologies [CE95]. Methodology [Hea82, JGM02]. Methods [AS16, Bay74, Bla00, Bra84b, CSSP15, CF89a, Eck74b, Fal85b, FC87a, GRI98, HB89a, HB92, Kab87, Lit84, Lum73, MWHC96, ML75, MV02, Pip94, QCH+81, SDKR87, SM87, TK88, CE95, CLS18, GRF11, HB89b, Lev89, Mul92, RAD15]. Metric [Bal05, TWZW11]. Mexico
[ACM75c, ACM75a, VLD82, IEE91a, Gol94].
move [KM10]. Moving [Lep98, SR01]. MPEG4 [KM09]. MPH [Zou85]. MR [Pro94, Sar80]. MRD [SNBC98, SnC05]. MS [JC88b]. MS-DOS [JC88b]. MTAC [GT80]. Muenster [Di76]. Multi [AP93, BATÔ13, BSH12, BR06, CS83b, CC87, CS87, Cha88, CHY97, CLS12, CJC*09, Coh84, FL08, FLP08, FLP14, GPY94a, GPY94b, HYH89, HYH93, HRS16, KR86b, KR86a, KL87, LÖON01, LRY+15, LCM+20, MTB00, MNY81, Ngu06, PADHY93, RSSID90, SD85, SMZ18, VB00, WSZ+16, YNW+09, YLB90, ZJ09, ZHW21, ZLC+20, AKN12, Ano83, CLL+14, HR93, HL94, KKL+09, LJW+17, Pro94, Sar13, SV18, TL93, Tsa08, XML11].

Multi-Agent [BSH12]. Multi-Attribute [CS83b, CS87, HYH93, RSSID90, HR93]. Multi-core [BATÔ13, AKN12, KKL+09]. Multi-Dimensional [HYH89, MNY81, Ngu06, XML11].

multi-probe [LJW+17]. Multi-Processor [KL87, YNW+09]. Multi-Property [FLP14, FL08, FLP08].

multi-server [Tsa08]. Multi-Stage [LCM+20]. Multi-target [HRS16].

Multi-Threaded [VB00]. Multi-Threading [SMZ18]. Multi-Version [Coh84]. Multiattribute [CLD82, Fal85a, Fal86, Rot89]. Multicast [DPH08, TW07, ATAKS07, CBB05].

Multicollision [KHK10, KVK12]. Multicollisions [Hal12, Jou04].

Multicomputer [BGF88, OL91, OL92]. Multicomputers [OL89, TY91, HSMB91].

multicomputer [CHS+18]. multidatabase [DSD95].

Multidimensional [Co94, Hua85, HSW88, KS86, KS87a, KS87b, KS89b, LOY00, Oto84, Oto85a, Oto86, OS83a, OA89, OS83b, Stu85, Toy93, WFT12, IMRV97, LS07b]. multidiagram [CC88a]. multihop [ADF12]. Multikey [DL80, KR88, NHS84, SDKR87, VV84].

multilabel [CML+13, LMLC14].

Multilevel [BK90, DT91a, DT91b, Gri98, LSL88].

Multimaps [AGMT11]. multimatch [XLZC14]. Multimedia [CJN20, Fox91, HLC10, ISK+93, LQH18, LZ16, RZ90, SSL+18, ZLC+20, ZHC+13].

multimodal [MHT+13].

Multipermutations [SV94b, SV95].

Multiple [Abi12, AS96, BP97, Bol79, CS83b, CC87, CS87, CC91, CLC92, CLYY95, FB87, FP10, GK94, GK95, HDMC09, HHL10, HZWP18, HCY94, KG95, KKC12, GGH+12, LCM84, LOY00, LLLL17, MK11, MB03, Mit02, RSSID9b, RSSID90, RSSID92, SM87, Tra63, WB87, BM01, CCL91, DH84, DMP09, HKS12, XCCK09].

Multiple-Attribute [GK95, KG95].

Multiple-Collision [HHL10].

Multiple-Key [Bo79, RSSID9b, RSSID92]. multiple-set [HKS12]. multiple-valued [DH84].

Multiplication [AN96, GK08, Woe01, Bis12, Woe05].

multiplications [LK16]. Multiprocessor [DG85a, DG85b, Ger86a, Ger86b, KTRN92, Mlx]. Omi91, RS92, SD89b, SD89c, SD89a, Sc90b, SD90b, SD90a, TNK92, ZJM94b, SD98d, ZJM94a, ZJM94c].

Multiprocessors [Bor84, LSG90].

multiqueue [Has72]. Multiset
[MSTA17, CP95a]. multisets
[Bü86, NTW09, RRS07]. multisignature
[Oka88]. Multispectral [DCM18].
Multi-term [Bur84, Bur82]. multithreaded
[KG05]. Multithreading [Cro98, MIGA18].
Multiuser [ZG90a, ZG90b]. Multivariate
[AM07, OS10]. Multivariates [DY08].
Multiview [LWZ+18, SLL+18]. Munich
[BRW93]. Münster [Dit76].
MuR [LRY+15]. MuR-DPA [LRY+15].
Mutual [CJP12, GI12, CJP15, FF90, SPLHC14].
N [Sar80, FHC89, ISO97]. n-bit [ISO97].
Naehrig [FT12]. name [WTZ+13]. named
[WTZ+13]. Names [ABC+16, Dos78a].
Nancy [Jou85]. Nanowire [Rey14]. NASA
[Fis87]. Nashville [ACM94e]. National
[769, Fis87, Oxb86, Ano83, IEE94b].
Native [SFA+19]. NATO [Ano95c].
Natural [Cer81, CKB83b, Har85, KCB81,
LG78, YMI89, CKB83a]. naturel [LG78].
NC [IEE89]. NDN [TKH20]. NDSS
[Ano10]. Near [AI06, AI08, BT89, DD15,
LQZ14, GJM02, SB97, Yuv75].
Near-Associative [DD15].
Near-Duplicate [LQZ14]. Near-Optimal
[AI06, AI08]. Near-perfect [BT89, SB97].
Nearest [AAP18, AI06, CL85, KGB18,
MW09, PACT09, SY08, AI08, CW93, FH79,
HFZ+15, JDW+19, LCH+14, LWWK20,
SWQ+14, TYSK10, MKL21].
nearpest-neighbor [FH79]. Nearly
[HT01, FP82, MV91a]. nearly-constant
[MV91a]. Necessary
[IIH95, Rus92, Rus93, Rus95]. Need [HR04].
Negative [DDF+07, SB95]. Negatives
[Pag18]. Neighbor
[AEP18, AI06, CL85, KGB18, MW09,
PCM15, PACT09, SY08, AI08, CW93, FH79,
GJM02, HFZ+15, JDW+19, LCH+14,
LWWK20, SWQ+14, TYSK10, MKL21].
Neighbor-sensitive [PCM15].
Neighborhood
[DHL+94, DHL+02, D+92, SG72, ZLY+13].
nighbours [Yuv75]. Neither
[CP91a, CP91b]. neophytes [Gre95].
Nested [HBL+10, FK89, MCC01, TMB02].
etflow [LDK12]. Netherlands
[DBvL80, CP87, CP88, vL94, AW89].
Network [Ano10, HCJC06, HLC10, JLI4,
KHK15, MK11, PLKS07, Vei86, WBWV16,
YBQZ18, AS09, CVR14, Che21, DFMR15,
Die90, FVS12, KL08, RAL07, TLLL07].
Networking [ACM04, LCK11, LK16,
WBWV16, WTZ+13]. Networks
[CGLC20, DK09, DPH08, Jai89, Jai92a,
Jai92b, Jai93, JLH08, Jai93, Kul84,
LDV+16, MJBD11, PLKS07, SV94b,
SPSP16, SMS91, TGGF10, XHZ+19,
ZQSH12, AK09, AD12, BCC10, Cha12,
GDG20, GBL94, LG13, LNO8, MLP07,
PES+12, SV95, SX08, TBC+05, WHS+07,
WWG+18, YG10, ZBB+06, BB07, CT10].
neuer [BI87]. Neural [Kak93, WWG+18].
Nevada [IEE10, AF19]. Next
[DCW91, She91, CCA+12, CT10, KKP92].
Next-Generation
[She91, CCA+12, KKP92]. Niagara
[AFK90]. NiceHash [Nic17]. NIDS
[KJC11, TK07]. NIDS/NIPS [TK07].
Nineteenth [ACM08a, IEE95]. Ninth
[ACM77b, NS82, ACM77a, ACM97b, Kar98,
ICD93, ST83b]. NIPS [TK07]. NIST
[Bon12, RRS06]. Nixdorf [adHMR93]. NJ
[GMJ90]. NL [DSS17]. NMAC
[CY06, RR08]. NMAC/HMAC [RR08].
NMF [TCY+20]. NN [EFMRK+20]. No
[AKS78, CP91a, KR01, CP91b, GBL94,
Pro94, Sar80]. Node
[YLZ20, LG13, SN19, THS97, WL07].
Nodes [BGF88, RAL07]. Non
[BCFW09, Boo74, FNS88, KS86, KS87b,
LT12, LS96, RWSN07, SD78, SA97, TSY98,
ZH18, AY14, AI08, Ati20, CCA+12,
ESRI14, FP82, MSZ+20, MLP07, MP16,
PBB012, Sar15, XL16, Lu88].
non-asymptotic [Ati20]. Non-biased
[TSY98]. non-blocking [PBB012].
non-compressing [MP16].
non-cryptographic [AY14, ESRI14].
Non-expansive [LS96]. Non-interactive [RWSN07]. non-iterative [SXL16].
Non-malleable [BCFW09]. Non-oblivious [FNSS88]. Non-programmable [LT12].
non-random [FP82], non-randoness [Sar15]. Non-rigid [SA97]. Non-standard [Lut88].
Non-Uniform [KS86, Ald87]. non-uniformly [MLP07]. Non-Unique [Boo74, SD78].
Non-Unique [RWSN07]. Non-iterative [SXL16]. Non-malleable [BCFW09]. Non-oblivious [FNSS88].
Non-Uniform [KS86, Ald87]. non-uniformly [MLP07]. Non-Unique [Boo74, SD78].
Non-Unique [RWSN07]. Non-iterative [SXL16]. Non-malleable [BCFW09]. Non-oblivious [FNSS88].
nonchalantly [Gre95]. Nonclustered [Omi89b]. noncontinuous [ZO13].
nondestructive [AD08]. Nonlinear [MLHK17, LC13]. Non-malleable [LP15].
nonnumeric [JMH02]. Nonoblivious [FNSS92]. Nonstationary [WB90].
NonStop [Eng94]. Nonuniform [Ald88, KS89a, PK87].
nonuniformly [MPL09]. Nonvolatile [ZH+19]. Noro [BD08, IEE94b].
Normalizing [RGNMPM12]. Norway [Hel94, Ytr06, Ano95c]. NoSQL [EH17].
Nostradamus [KK06]. Notary [Cip93].
Notation [FGFK10]. Not [Bob75, CC91, Dit91, GIS05, Gei95, Gei96, Gur73, Lit91, Pea91, Sav91, SVCC01, Ull72, Yao80, Bay73b, FH79, Sar80]. Notes [Dev86]. Nothing [SD89c, SD89a, SRY99, SD89d]. Nouvelle [Lit79a]. Novel [DCM18, DR11, LYY+18, LY+19, cLmL07, LCM+20, LST+21, NW07, PHG12, YSW+11, YLSZ19, ZZM17, ZYWM20, AR21, HLL18b, LMP+08].
November [ACM87, ACM94a, ACM03b, ACM04, AFI69, FNY92, Gol94, adHMR93, EIE82, IEE84d, IEE89, IEE90, IEE91a, IEE93, IEE02, IRM93, LCK11, PSN95, ST83a, ST83b]. NP [FS08]. Nroff [Hol87]. NTRUSign [ZJ09]. NTRUSign-Based [ZJ09]. Number [Ano86, Bat75, Dos78a, Gui89, WL12, Aam03, ASW87, BK07a, CP13, HC11, Hua82, KW94, TSY98]. numbering [Cli95, DM11, VNC07]. Numbers [BJMM94b, BJMM94a, Coh98, HSR+01, OG94a, MFK+06, OS10].
Observations [Bal96, Stio6]. obstacles [HM93]. obtain [Vit80a]. Occupation [Vit93]. Occurrences [ZC77]. Occurring [She78]. OCR [Wan84]. Oct [IEE80b, WS93, War14]. Oct-Tree [WS93, War14]. October [ACM85a, Ano93a, Ano93c, BD08, CE95, IEE74, IEE76, IEE80a, IEE85a, IEE88c, IEE93, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, IEE13, J Job90, Lom93, Mo92b, ST83a, ST83b, USE00a]. Octree [CJC+09]. ODBF [ODB89]. odyssey [IEE01]. off [CJMS19, GW94, Sar11].
Off-line [HHL10]. Office [DG89, FC87a].
[HHL10]. **One [MNS07].**

Once [MNS07].

[BDFW99, DG93, Dit76, G80, HHR10, HYLT99, JLH08, HGH+12, LK84, Lar88b, LAKW07, LOZ12, LMD+12, LHC05, LP15, Lyo85, Mer90b, Moh11, OGBA14, PWY+13, Par18, RHM09, Roe94, Ru93, SP91, Sch91a, Sho00a, T92a, Wee07, Win83, Win84, Yas07, YZ00, ZPS90, Zhe90, ZMI91, ZPS93a, CM98, Gib91, HR70, HL03, IEE92a, KST99, KM10, LW04, Mer90a, MZI98, NY98b, NY98a, Roe95, Sim98, SV18, STS+13, Tsao88, Tsu92b, YL04, ZW05, ZPS93b, HMNB07].

One-access [Lar88b].

[LBK20, RHM09].

One-Hop [RHM09].

One-Pass [LMD+12].

[DJ86, Dit76].

One-Step [Dit76].

One-Time [LAKW07, Moh11, PWY+13, Par18].

**One-Way [BCFW99, DG93, GK08, HHR+10, JLH08, LMD+12, LHC05, LP15, Lyo85, Mer90b, Moh11, OGBA14, PWY+13, Par18, RHM09, Roe94, Ru93, SP91, Sch91a, Sho00a, T92a, Wee07, Win83, Win84, Yas07, YZ00, ZPS90, Zhe90, ZMI91, ZPS93a, CM98, Gib91, HR70, HL03, IEE92a, KST99, KM10, LW04, Mer90a, MZI98, NY98a, NY98b, Roe95, Sim98, SV18, STS+13, Tsao08, Tsu92b, YL04, ZW05, ZPS93b, HMNB07].

One-way [Lar88b].

[LBK20, RHM09].

One-Hop [RHM09].

One-Pass [LMD+12].

One-Step [Dit76].

One-Time [LAKW07, Moh11, PWY+13, Par18].

**One-Way [BCFW99, DG93, GK08, HHR+10, JLH08, LP15, Roe94, Ru93, Sch91a, Sho00a, T92a, Wee07, Win83, Win84, YZ00, Zhe90, HYLT99, LHC05, ZPS90, ZMI91, ZPS93a, CM98, HR70, HL03, KST99, LW04, Mer90a, MZI98, NY98b, NY98a, Sim98, Tsao88, Tsu92b, YL04, ZW05, ZPS93b, HMNB07].

**Online [BBKN01, Dos78b, FXWW17, Ger95, Kue83, Kue84a, Mir17, TF15, PES+12].

Online-fehlerbehandlung [Kue84a].

Online-fehlererkennung [Kue83].

Only [EH12, MT11, NM10].

Ontario [KLT92].

Open [AMP15, Bra84a, Bra85, Bra86, Fel87, Gon77, Gon80, Knø71, Kno88, L903b, L903a, Mir09, MC86, SS80, NK16, NMX19, TS81, van73].

Open-Addressing [Gon77, Gon80].

Operating [ACM87].

Operation [CLS12, K87, PHG12, A89].

Operationen [Nee79].

Operations [ANS10, Bra84b, Ell83, Ers58a, FAFK21, Gir87, He87, HY98, HY93, HY86, HY90, Kumm90, Kutt10, MSSWP90, SG76a, Wu85, JMH02, Pro18].

Opportunistic [LDK12].

OPS5 [KS98].

Optical [CF89a, Vit85, CF89b, FWG18].

OPTIK [GT16].

Optimal [AU79, Al06, Bat80, Bat82, BR94, BBP88, BW98, BMRV92, CCA8a, Cha84a, CM92a, CM92b, DA93, FC87b, FP89b, HR93, HRB13, Jag91, KK12, KK92, Kri84, LL92, CLM94, Lip02, MLP07, Men12, Men17, Mor83a, OWZ14, P08, RR92, RV76, RV78, Tro06, Y05a, Y05b, Y095, YCR93, YSEL90, A08, GSS01, LC93].

Optimality [Bo79, CL92, JP08].

optimally [Woe06a].

Optimierung [Wal74].

Optimistic [GT16, SDZ21].

Optimistically [GL21, Z21].

Optimization [AOAKKO, ODB89, AR17, BG92, Kie85, Kim80, MXL+12, Mir17, MWC12, Tv83, NS+13, YNW+09, Yub82, Djrzo6, Djn09, L09, M90].

Optimum [VC85, vdP72, vdP73, van73, Vit80a].

OR-parallel [Cra85].

Oracle [GH99, LT12].

Oracles [Can97].

Order [FCDH90, FCDH91, GGG86a, HB92, HM12, HSW88, Oto88a, Ouk83, Rob86, T81, AKY13, BMLC19, DH84, DLM07, HKKK13, Pri95].

Order-Preserving [GG86a, Ouk83].

Ordered [AK74, CS83a, Cha84b, Cha84c, CS86, Cha86b, CC88b, MY79, MN90, SH92, SH94, SS06, JMH02].

Ordering [L078a, GM79, Mab94].

Ordinal [ZZL21].

Ordinal-Preserving [ZZL21].

Oregon [IEE93, ACM85b, CLM89].

Organisation [Lit77a, Wies7a].

Organization [ACM75b, AN85a, AN85b, ARM85, AN85a, B93, B95, DS84b, G97, G98, IEE85b, K85, L84, LT85, LL80, LS89, LM88, L93, Mar75, Mar77, Obs69, QCH+81, R89, RL74, Th88, TS85, W83, W85, BR75, Bat65, IL90, K093, RM88, VB94].
Organizations
[CF89a, Sch79b, Sch81, Toy86, YD86a].
Organized [FLF11]. Organizing [HH85, Som99, TY03]. Orientability [FP10]. Orientation [BH93]. Oriented [BDPSNG97, Bry84, CS85c, CS85b, Cha85, Cha86a, CO82b, DCW91, ISK+93, JC88a, Kie85, LDM92, PV92, TL95, TR02, Tro95, CL86, CW91, CW93, CKW93, DMP09, DM11, Wan05]. Orlando [ACM91d, ACM91a, Kna89]. Orleans [ACM91e, ACM97a, IEE74]. Orthogonal [BGS96, LCML94, CCL91, Wil78, Wil85a]. Oscar [GDA10]. OT [PSZ18]. Othello [ACM94b]. Other [PV19, Saa12, Bee83, BKD16]. OTS [Hil13].

Outbreak [FNP09]. Outfit [Nic17]. Outlier [GDGK20]. Overflow [Bra84a, Bra85, Bra86, Hop68b, Lar85b, Mul72, Mul81, NY85, Sam76, Sch79a, Tam82, Tor84, Bay73b, CS93a, KD92, Kou93, Ram87, YD86b]. Outreach-Handling [Lar85b]. Overhead [Les88, HGR07, IKOS08, MA15]. overheads [SSU+13]. Overlapping [MJT+02]. Overlay [PFM+09, GDA10, TBC+05]. overlays [GHW07]. Overview [PGV92, Ros12, WR97, BFG+95, BD+12]. ownership [DSS10, LWG11]. Oxford [ACM94b].

Palmer [IE80a]. PANAMA [DC98a, DV07, RVPV02, BDP09, DC98b]. Paper [Cer85, Pro94, SV15a, ZL12]. Papers [ACM75c, ACM76, ACM77b, LFP82, LC86b, SC77, ACM79, ACM91d, Bai81, Bor81, GM02, IE88a, Ytr06, Bir07, FNY92, JY14].

Paradiseos [JWM+18]. Paradigm [BM97, CS02]. paradox [RK15]. Parallel [ACM91c, PDI91, And88, Ano93d, AEMR09, AR17, AT91, BFG+95, BH91, Bis12, BRW93, Bor84, Bur81, Cm89, Cm90, Ch91, Ch94, CT96, DNSS92, D93, D97, GST90, GM94, GM98, GI77, Gra94c, GZ99, GC90, HB93, HNS84, HC07, HCY94, HCY97, IG77, Jy90, Ku86, Ku88, KR91, JKL11, KR19, KO90, KTN92, LC20, LL17, LP91, LPP92, MD97, MLD94, MV90, MV91b, Mat93, MK89, Mil85, MK93, NM02a, PAK93, Pap94, PK89, PRM16, PSR90, PW94, Rag93, Ram89b, RS92, RH92, RC94, RK89, RNT90, RK91, SS01, SD89c, SD89a, SV94a, SPW90, SS88b, SB93, SK98, SA17, TR02, TK85, Top92, TP95, TKN92, WPPK94, WS93, WY93, Wso98, Wus85, Iw89, YLB90, Yen91, IB95, ZWH17, ZO93, dK94, vW94, vdVL12, ALS10]. parallel [AKN12, ASA+99, Ati20, CZL12, CyWM91, Cra85, Domin, FH19, Fis87, GLHL11, HK95, KP92, MV91a, MP90, Mol90a, Mol90b, OT89, PCK95, RLM87, SK88, SD89d, STS+13, TL93, UHT95, War14, adHMR93, KL95]. parallel-DM [KL95]. parallelism [ASM17, Ged14, MMSY94]. parallelizable [MP16]. Parallelization [DTM+18]. Parallelizing [GK12b, WTY79].

Parameter [CC88b, GB10].
parameterization [SS15]. Parameterized [SS89b]. Parameters [HRB13, HYLT99].
[LS89, Coh94]. Parities [Val15]. Park [IEE84, IEE89, J90]. PARLE [BRW93].
Parser [HC87]. parsing [Tai79]. Part [ANS97, Bor81, ISO97, ISO04, MBBS12,
Sed83a, ADG +08, AMSM +09, KMV10, Wil03]. Part-Graph [MBBS12]. Partial
[AU79, Bur75b, Bur76b, Bur76c, Bur78, Bur79, Can97, CLD82, Clu90, CY06, Cor02,
Jag91, Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Larxx, LKI10, Mor83a, PF88,
RLT83, RSD85, RSSD89a, RSSD89b, RSSD90, RSSD92, TGGF10, YLZ20, YD86a,
CC88a, Fal88, Hua85, Hui85, Hua85, Pri95, Riv74a, SDR83b, SNW06, YD86b]. Partial-Domain
[Cor02]. Partial-Match [AU79, Bur75b, Bur76b, Bur78, Bur79, Jag91, RLT83, RSSD90, RSSD92,
RSSD89a, RSSD89b, Hua85, Riv74a].
Partial-Relation [PF88]. Partially
[PCL93a, PCL93b]. particles [Lia95]. Partition
[LKI10, LC96, WZ12]. Partitioned
[Ger86a, LR96a, NKT88, SW91, Ger86b, HKL07, MKZ12]. partitioner
[KKP +17]. Partitioning
[Bre91, Ged14, PFm +09, SBS16, WBBV16, ZRT91, VM39, CKK09, CKW00, EH17,
HAK +16, Kim99, LL13, LWKK20, PCK95, SKD15, UHT95, AP11]. partitions
[DKRT15]. Partly [OTKH11]. PASCAL
[Dir76, Hls88, HSS4, Dit76, GBY91, He89, Sch76, TA81, TA86]. Paso [ACM97b]. Pass
[LMD +12, OGBA14, YDT83]. Passbits
[MB03, Bur05]. Passed [Gra94b]. passive
[RW07]. Password [ASBdS16, GAS +16, JK11, KV09, LSZ21, WG00, BSNP96b,
BDK16, CJMS19, GL06, KJS17, KCL03, Ku04, KCC05, NMX19, Par18].
Password-Based [KV09, BSNP96b, GL06]. Pastry
[Her07]. Patch [BI12, BZL +15]. PatchTable
[BZL +15]. Path
[GO15, CVR14, CHL07, VNC07]. Paths
[Kul84, AAB +92, VNC07]. Patricia [KS12]. Pattern
[iA94, BT94a, BT94b, CG79, Fre90, Gri79, IEE88d, KR81, TK07, CLS95,
ISH88, Kim99, SCh91a, ZO13, YIAS89]. Pattern-Matching [KR81]. Patterns
[BH85, CLC06, HSPZ08, OTHK11, SK98, BCGS16, BCL10, KRM109]. paucano
[DMPP06]. Pay [LHC05]. Pay-Word
[LHC05]. payment [LHC05]. PCA [BLY20]. PCPs [FS08]. PDE [GZ99]. PDEs [Gri98].
PDF [Con17]. Pebbled [Dev99, CM01]. Peer
[CCF04, JXY07, KLSY07, KS12, LMSM09, PFM +09, SM02, LMSM12, WHS +07]. Peer-To-Peer
[PFM +09, CCF04, JXY07, KS12, LMSM09, SM02, LMSM12, WHS +07]. Peers
[RMB11]. Pennsylvania
[ACM76, LFP82, ACM96, HB93, IEE92b]. Pentium
[BGV96, Bosxx]. Peoples
[An083]. peptides [MIA18]. Per-Flow
[NS16b, SL16, YGS +19, HKL04, LMP +08]. Perceptual
[DCM18, LC12, MV01, MV02, NS16a, RN18M12, SB14, THY +18, WDP +12]. Perfect
[AN96, AA79b, AA79a, Ari94, BHIMM12, BBD +82, BBD +86, BS94b, BS94a,
BW98, Bld00, Bla05, BPZ07, BT90, BT94a, BT94b, BRI86, Bur92, BC90, Cer81,
CKB83b, CKB83c, CK85, CBK85, CBK85, Cer87, Cer88, CLD82, CS83a, Cha84b,
Cha84c, CS85c, CS85b, Cha85, CS86, CL86, Cha86b, CS88b, CCL91, CW91, CL12,
CLC06, CT12, CJG +09, CRS83b, Cie80a, Cie80b, CO82b, CKH85, CKN18, CHM92a,
CHM92b, CM93, CHM97, Dat88, DTM +94, DH01, Die07, DJS00, DJS08, DUC08,
DM11, FM96, FCHD88, FCHD89, FCHD90, FCHD91, FCHD92a, FKS4, FHK15,
Get01, GHK91a, GHK91b, HT01, J080, Jae81, JD12, KH84, KM86, KM88a, KCB81,
Kra82, KP94, LR85, LH06, LLC17, Ma92, MWCH92, MWCH96, Mhs82, NRW90,
Nil94, OG94a, OG94b, Pag99, PV92, PG95].
Perfect
[Pres96, RL89, RP91, Ram92, Rog92b, SB95,
Sag84, Sag85a, Sch90a, SvEB84, Spr77,
Tro92, Tro95, WX01, Win90b, Win90a,
Wol84, YDT83, YD84, YD85, AAB+92,
AG10, BJ07, BBPV11, BS94c, BT89, CKB81,
CKB83a, CK89, CL09b, CLS18, Cze98,
DF89, DKB+88, DKB+91, DHW88, FHC89,
FHC92b, GS89, HK86, Han17, HM93,
JWM+18, Lia95, LC13, MvT08, Mil95, Mil98,
Pag01, RB91, SB97, SS92, ST85, SH92, SH94,
SL88, Si02b, TKI99, XMLC11, WC07].

Perfectly [CMR98]. Performance
[ACM04, AP93, ANS09, BM90a, Bre91, Bur83c, CL85, CC87, CS87, Chr84,
CH94, DGG+86, DR92, DadH92, DS97,
Don91, ESR114, FC87a, Fla81, Fla83a, Flo87,
GD87, Gra88, Gra93a, Gra93b, Gri74,
Hac93, HSMB91, HC13, IE94c, IG77,
KS89a, Kh95, KK96, KNT92, Kue82b,
Kum90, Lar80c, Lar81, Lar82a, Lar82b,
Lar85c, LCK11, LCLX19, LLL09, LMSF89,
Lit84, Lit85, Lon88, LCM+20, LYD71,
Lum73, Lyo83, MBL+12, Mac95, ML86,
ML94, MY79, Ml85, Mul85, NM02a, NP99,
Omi91, Pa92, PB80, Pro94, Ram89b, RZ97,
RSSD90, RLH90, RLH91, Roe94, Roe95,
RT87b, SD85, SD89c, SD89a, Sch9b, SC90b,
SC90a, SC90c, She91, TNK92, TM902,
Tym96, Vit83, Yen91, YB95, BMQ98, BW89,
CAGM07, CF89b, HM03, Kou93, LLA15].

Performance [LY72, MRL+19, MA15,
RF897, SK20, SS89a, SS89d, Shi17, Sie89,
MKL21, VW94, Vit80a, WL07, WT07,
XCCK90, Yu18, ZHW19]. Performances
[Mek83]. Performed [Wil71]. Performing
[FP989]. Period [AC74, Eck74b].

Periodicity [HG77]. Permutation [DLH09,
HSR+01, NIS15, PHG12, Sch01a, CFY94,
DLH13, HK95, KST99, LOZ12, LMPW15].

Permutation-Based
[NIS15, PHG12, KST99]. Permutations
[ARH+18, JNP14, MP12, Wee07, BK88].

Persistence [NT01]. Persistent
[HCW+21, KM92, LHWL21, Ros21, ZHW19,
CDA+12, LHWL20]. person [WWG+18].

Personal [Rad83]. Personalized
[WYD+18]. Perspective
[ACM85a, CSS15, Ros21, Wil00, Zuk21,
LWXS18, Mit17]. Pert [Kul84]. Perceiving
[Wir83]. Perugia [De 95]. Peter [Ste18].

Petersburg [Vau06]. Peterson [Kno88].

PGV [BRS02, BRSS10]. Phase
[DHK+15, PACT09]. PHash [Shi17]. PhD
[HF13]. Phi [JHL+15]. Philadelphia
[ACM89b, ACM89a, ACM96]. Phoenix
[ACM03b]. Photomosaic [US09]. PHP
[GL17]. Phrase [JD12]. Phylogenetic
[BT12b]. Physical [BG80, Bt81, BG82,
DT91b, DGK12, LSZ+21]. Picture
[BS94b, BS94c]. pilfered [Nic17]. pipe
[MPST16]. Pipeline [PRM16]. Pipelined
[CLY92, Hec87, HCY94, MD05, MS88a,
RS92, YCR93, ISHY88, LCR93, RLM87,
XLZC14]. pipelines [AS09, RKCL11].

Pipelining [CLY95]. Pittsburgh
[LFP82, ACM04, IEE92b]. PKC’98
[HPC02, HKKK10]. PKC’98-Hash
[HKKK10]. PKE [HL18a, Zha07]. PKI
[YY01]. Place [Dos78a, IEE84]. Placement
[MEK+14, PRR15, BPT10]. Plagiarism
[CH12]. Plains [IEE88e]. plane [AI89].

Platform
[ADOAH19, LMD+12, LLL+16, Sun02,
TCP+17, FNP09, MN99, QZD+18, ZLL+07].
Platforms [AS16, NMX19]. Play [But17].

playing [Zob70a, Zob70b]. PLILP [BW92].
PLOP [KS88b, KS88e]. PLOP-Hashing
[KS88c, KS88b]. PL5 [TGGF10]. PODS
[HF13, ACM88a, ACM98a]. PODS’08
[LL08]. PODS’10 [Van10]. PODS’13
[HF13]. Point [BL89, TK17]. Pointer
[LM92, SC90b, SC90a, SC90c, SVCC01].

Pointer-Based
[SC90b, SC90a, SC90c, LDM92]. Points
[AT93, Bt80, Bt82, AII89, AT90]. Poisson
[Pob86, PVM94]. Poland [ACJ07, Win78].

policies [Jan05]. Policy [GGY+19, DG96].
[Ald88, PRK98, vM39, Ald87]. **Probability** [Fel50, Gon80, LL83, NY85, Ram88a, ZZZ21, MV91a, NN90, Nil94, Ram87, Sar11]. **Probe** [AA79b, AA79a, Gon81, BBS90, Cle84, FPV98, JV16, Knu98, Lar85b, Lyo78a, MY80, PPR09, PT16, Pet13, PK87, PVM97, PV19, SL16, TZ12, VP96, VP98, Ald87, Jan05, LJW+17, Mil99, Pag01, SS88a, SS90b, Sun93]. **Probes** [Lyo85, Ros06, Ros07]. **Probing** [AA79b, AA79a, Gon81, OT91, Spr77, LJW+17, Mil99, Pag01, SS88a, SS90b, Sun93]. **Problem** [DSS17, DM90, GB10, HP63, Hop68b, Mit73, NAK+15, Val15, BC06, DHKP97, HCF95, LP04, Loh89, Mon19, Sun91, Sun93]. **problem-based** [BC06]. **Problems** [DJRZ06, FHMU85, Yub82, ZO93, AMP15, CP95a, JWM+18, WZ12]. **Proceedings** [ACM84a, ACM88a, ACM91a, ACM94b, ACM04, ACM12, ANO85a, ODB89, AW89, Bar83, BV89, BRW93, BL88, CRS83a, CGO86, DSS84, GI77, Got83, ICD87, CTC90, IEE02, Jaj90, Jou85, KLT92, Lak96, LCK11, Lev95, LSC91, Ros74, WGM88, YR87, Yua92, vdHVH12, ACM81, ACM91b, ACM07, ACM08b, ADG+08, AMS+09, Abo83, AA86, Deb03, Fis87, Van10, HL91, HF13, IEE01, Jen76, Mo92b, SM12, USE90, Win78, Woi93b, ACM94d, ?69, ACM75a, ACM79, ACM82, ACM83a, ACM83b, ACM84b, ACM85b, ACM85a, ACM86b, ACM86a, ACM87, ACM88b, ACM90, LIW89, ACM89c, SDA90, ACM90, PDI91, SDA91, ACM91e, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM08a, ACM11, AF63, ABB93, ABM06, AH03, Ano92, AAC+01, A+90, AinNOW11, AOV+99, BDS8, BDS88, BIP92, BF89, Bor81, Brie92, Brie93, BD08, BJ93, CP87, CLM89]. **Proceedings** [Col93, CHK06, Dav91, DT87, DSZ07a, DSZ07b, EF12, Fei91, FMA02, Fra04, Fre90, GM90, Go94, GSW98, HB93, He94, IEE80a, IEE85b, ICD88, ICD90, IEE90, IEE91b, IEE91a, ICD91, IEE92b, IEE92a, ICD93, IEE93, IEE94c, IEE95, IEE01, IEE05, IEE07, IEE10, IEE11b, IEE13, IRR93, Joy03, Kar98, Ker75, Kna89, Kui92, LC06, Las87, LL08, LT85, LS89, Lom93, Mat09, MK98, MV91c, MS05, Nav85, Oxb86, Pat90, PK89, QV89, RRR99, RK99, Rov90, Rue93, ACM77a, SZ93, Shm00, SW94b, SC77, Sti93, Sti94c, Sto92, USE91, USE00a, USE00b, Van06, Vid90, WP90, YW99, YW99, Yan10, Yun02, AKG+10, AKF90, ACJT07, Bel00, BJ94, Boy95b, Bra90, BW92, CIM+05, CP98, Cop95b, Dam90a, Dam91, DJRZ06, DJNR09, FS09, Go96, HM08, adHMR93, HKNW07, IEE11a, JBJ94, KF05]. **proceedings** [Lut88, QV90, QG95, Rei88, SP90, Sho05, SM08, Wie99, vL94]. **Proceedings/Ninth** [ICD93]. **Proceedings/Seventh** [ICD91]. **Proceedings/Third** [ICD87]. **Process** [FS82, Pro94]. **Processes** [WB90]. **Processing** [APV07, BG92, CCW+17, Dan13, Eld84, GST90, Ger86a, Ger86b, Gil77, GSL17, Gra92, Gra94c, HB93, Har85, HCJC06, IABV15, KMV10, LLLC17, LC96, MK99, MS88a, Omi98b, PAV98, Pip94, PK89, RK89, Sac86, Sch90b, SD90a, Sha86, Sol93, SPB88, Spe92, Tha88, Toy86, WP90, YS91, YK93, BZZ12, Bra90, CP95a, CKKKW00, Ged14, GC90, HLH13, Kan91, Kan93, LCC99, RAD15, Ros74, Sab94, SK88, SP99, WLLG08, YMI89, Yu02]. **Processor** [Adi88, KL87, SM87, YCRY93, ISH+91, LC93, TLLL07, YNW+09]. **Processors** [Pap94, Ros06, Ros07, Wi59, JHL+15, KL08, KW94, TLLL09, YIAS89]. **Producing** [DV07, RVPV02, Win83]. **Product** [Du86, YGC+12, OS14]. **Productive** [Bor81]. **Profile** [SSU+13]. **Profile-guided** [SSU+13]. **profiling** [VNC07]. **Program** [Hil88, Kru84, Mai83, Mai92, Meh82, SS80, BZZ12]. **Programmable** [HM12, HK12b, CFN18, LT12].
Programmer [Cro98]. Programmiersprache [Dit76].

Programming [LFP82, ACM91d, dBvL80, BM87, BGS96, Dit76, Dun89a, Ers58a, Ers58b, GG86b, Har71b, Har73, IEE84, Jou85, Knu73, Knm75, Kui92, Lf92, Mau68, NS82, Pat90, Ruc15, SSS05, dKC94, ACM91a, AGK+10, ADG+08, ALS10, AMSM+09, ACJT07, BW92, CIm+05, DLH+79, Er86, Sab94, TMW10, YIAS89, BW92, Las87]. Programs [AR16, Hea72, PAKR93, SS88b, Ers58b, FDL86, MP90, NMS+08].

Progressive [XMLC11]. Progressively [DVS+14]. Project [DBG+90b, DGS+90a, Tro92, NM02b].

Projecting [AT93, AT90]. Projection [Bur78, SPW90, AS89]. Projective [ACP09, HK12a, KV09, Wec12, FH15].

PROLOG [CJ86, Bor84, Coh84]. Proof [Ano99b, CZLC12b, CZLC14, Cor02, LYY+18, LYY+19, LT12, SDW14, ZM17, DLM07, HLL18a, ZCZQ19, ZYWM20].

proofing [CHL07]. Proofs [CZLC12b, CS02, KK12, KK18, NTY12, WGO0, Wec11, Li10]. Propagation [DSSW90a, CML+13, DSSW90b].

Properties [Bal05, Bol79, CS83b, CLC92, Lit85, RS12, TS85, WS76, ZMB91, GW94].

Property [BR06, DGKK12, FLP14, Rja12, SRY99, Ter87, FL08, FLP08]. proposed [CP91c, HPC02].

protected [AGBR19]. Protecting [LMJC07]. Protection [DF01, DGKK12, SP21].

Protein [LLW10, ZLY+12]. Protein-Protein [ZLY+12]. Protocol [Ano99a, BT12a, Dam93, GI12, HMB07, HCP11S2, HLC10, JRPK07, KJ11, OVV94b, TY93, YLSZ19, CJP15, Dam94, GB17, LW04, OVV94a, SPLHCB14, CJP12, JL14].

Protocols [LLL09, SDK91, KLL+97].

Provable [ANS09]. Provably [BCGS16, DY90, DY91, HM96, JP07, LM95, Sho96, IN89, XSL16]. Provably-Secure [DY90, DY91, HM96]. Provide [Sch01b].

Providence [IEE07]. Proving [Kil01, WS76]. proxies [TC04]. Proximity [MPS14, SX08]. Proxy [ZJ09]. Pruning [CT12, MD97, HC02].

Pseudo [DW83a, FLF11, WFD+12, dW83b, MFT+06, PVCQ08, TSY98, WS12].

Pseudochoaining [HP78]. pseudoentropy [VZ12]. Pseudorandom [BK12, NAK+15, OS10, SP91, Aam03, CP13, VZ12]. PUB [Nat95, FIP93, NIS93].

Public [ANS97, ANS05, BBR88, CLP13, Cip93, CS02, Dam87, HR04, LYY+19, LRY+15, NTY12, ZCZQ19, CFN18, LW17, Oka88].

putting [Col93]. pyramid [MHT+13].

QC [JY14]. Quadratic [Ack74, AC74, Bat75, Bel70, Bel72, Bel83, BI87, Bur75a, Day70, Eck74b, HD72, Lam70, Rad70, NH74, Pri95].

quadratische [BI87]. Quality [THY+18, YWH09, GW94].

quality-size [GW94]. Quantification [GC95]. Quantile [KS87b, KS89b].

Quantitative [Hea82]. quantities [Bee83]. Quantization [YWH09, YGC+12].

Quantum [BBB99b, BHT97, BHT98, MKAA17, SE21, BD08, BBB09]. Quark [AHMNP12, AHMNP13].

Quark [Cze98, LLW10, MD05]. Quasi-Bicliques [LLW10]. Quasi-perfect [Cze98].

Quasi-Pipelined [MD05]. Quaternary [KP96]. Québec [ACM02]. Queensland [SZ93]. Queries [APV07, Bur75b, CLD82].
Cha84a, CHY97, DHL+94, DHL+02, GST90, GYW+19, KS12, LCM94, LOY00, LLG+17, LB07, ML86, MPP08, PF88, SD90b, SD90a, SW91, Sol93, Stu95, BZL+15, DH84, Fal88, HYKS08, HAKM15, HAK+16, HR93, HF91, Hua85, LL13, MBKS07, SWQ+14, TL93, Wil78, Wil85a. **Query** [ODB89, BG92, FB87, Ger86a, Ger86b, Gra92, Gra93c, Gra94c, HLC10, HFZ+15, HFF+17, Kie85, Kim80, LC96, MS88a, Sac86, SD89b, Sch90b, Spe92, TS85, Toy86, CCY91, CKKW00, DSD95, GMP95, LYJ+13, LMLC14, Loh89, RAD15, SP89, WLLG08, YLC+09, Yu92]. **query-adaptive** [LYJ+13]. **Query-aware** [HFZ+15, HFF+17]. **Querying** [CN07, ŁOON01, TT10, AK90, NDMR08]. **Questions** [Mit09]. **Queue** [KV91, MV88, KM07]. **queueing** [MSV87]. **Queues** [AFK83, AFK84, Woo89, GJM02]. **quick** [FDL86]. **QuikFind** [Cha91]. **Quotient** [BK70, Bel70, Bel72, Bel83, Bur75a, Lam70]. r [KKT91, LJF19, WYW14]. **R*** [ML86]. r-th [KKT91]. **Rabin** [FH79, GBY90]. race [Hil05]. **radio** [CJP12, CJP15]. **radio-frequency** [CJP12, CJP15]. **RadioGatún** [BDPV06, BDPV09, BF08]. **Radisson** [ACM85a]. **Radix** [FB87, Lin63, SKD15]. **Radon** [GH07, RGNMPM12]. **Ragged** [Ros77]. **RAM** [PSR90]. **RAMA** [MK93]. **Ramanujan** [SV06]. **RANDOM** [DJRZ06, DJNR09, AD85, Ano96, BH90, BM76, BBS90, Can97, Cha84a, Cla77, Dev99, Die96, Dum56, EAA+16, FP10, FMM09, FMIN11, GHR99, Gui89, HSR+01, JTOT09, KLSY07, KM88b, LT12, MY79, Mil95, MEK+14, ORX90, Oh69, Ore83, Pet57, PV19, Sie04, Tra63, Yao91, de 69, BR75, BK07a, BK88, CM01, DW03, FP82, GW94, HC11, JCC00, KLL+97, Kut06, Lin63, MYS12, MFK+06, Ram89a, TSY98, WL07, ZGG05]. **Random-Access** [MY79, Pet57, Tra63]. **Random-Walk** [FMM09, FMM11]. **Randomization** [GSB94, DJRZ06, DJNR09]. **Randomize** [GK12a]. **Randomize-Hash-then-Sign** [GK12a]. **Randomized** [APE18, KR81, LQZH14, Mat93, YWH09, DHKP97, MS996]. **randomly** [RH90]. **Randomness** [AY14, Knu77, Vit81b, LW17, PVCQ08, Sar15, SS90a, Vit82a]. **Range** [ACM85a, LCML94, LB07, CCL91, Fal88, HR93, Wil85a]. **Rank** [TC93]. **Ranking** [LR96a]. **RANS** [SZO+20]. **RANSAC** [FWG18]. **Rapid** [CG79, Dum56, Bri79, PT11b, WKO78]. **Rapidly** [Dav73]. **Rate** [CJJK19, IABV15, KL95, HKL04]. **Raton** [HB93]. **raw** [CXLK19]. **Ray** [ACM82, SS88b, ZRL+08]. **RBIBDs** [Woe06a]. **RC4** [IP08, RS14, Sar15, ZY16]. **RC4-Hash** [IP08]. **RC4-like** [RS14]. **RC4A** [Sar15]. **Rdbm** [Pei82, Pet83]. **Rdbm-verwaltungsdaten** [Pei82]. **RDF** [ÄOD19, HAKM15, LL13]. **RDMA** [CCW+17]. **re** [Par18, WWG+18]. **re-identification** [WWG+18]. **re-registration** [Par18]. **Reactive** [BT12a]. **Read** [MT11, NM10]. **Read-Only** [MT11, NM10]. **Reading** [LYDA19]. **Readings** [Sto88]. **Real** [ASA+09, Ano96, DadH90, Drez17c, FVS12, LHWW1, Lys83, Man12, NS16b, PSSC17, Ros21, ZRL+08, Ay14]. **Real-Time** [Lys83, NS16b, PSSC17, ASA+09, FVS12, Man12, ZRL+08, Ay14]. **Realizing** [Can97, PBDD95, Rul93]. **Realization** [Bay73c]. **Reasoning** [BJM14]. **Reassignment** [DDMM05]. **Rebound** [KNR10, MRST10]. **Rechenanlage** [Dit76]. **Reciprocal** [CS85a, Cha86a, Jae81]. **Recognition** [BM90b, CFPL9, Fre90, GKH94, GKH95, IEE88d, KG95, KRJ+80, KRRH84, LW88, PW94, SSAS01, SR89, SA97, WPPKK94, Fly92, GGH92, LG96]. **Recognized** [RJK79]. **Recommendation**
Yu92, YR87. Researcher [GCMG15].

Researchers [Con17]. Reserved [ST86, Tro06, Wol84, Zou85, ST85].

Residue [Ari68, KKT91, Mue04, Rad70].

Resilience [NTY12]. Resilient [ASWD18, BGS96, LMSM09, WTN09, ZMM17, LMSM12]. Resistance [Mit12, BF08, MSP12]. Resistant [BR97, BK12, CHKO08, IKO95, PGV90b, CHKO12, KHK12, PGV91, PGV93g, MS09].

resisting [SXL16]. Resizable [Boy98].

resizing [ZHW19]. Resolution [Ask05, CadHS00, MC86, YB95, KdlT89].

Resort [PDI91, IEE88b]. Resource [DB12, HM19, TL93]. response [DSD95].

Responsible [IH83]. Responsive [DG93, DG94]. Responsiveness [BDS88, Sch82a]. Restart [LACJ18].

Restklassenhash [Eck74a]. Results [ANS09, Bur83c, DR06, DRS12, Jv86, RR08, CV05, LY72]. RETCON [BRM10].

Retention [CJKK19, ZLL+07]. Retrieval [AU79, ANT85, BV89, BIP92, BI12, Bre73, Bur76b, Bur76c, Bur77, Cha84a, CJN20, CJP12, CF98b, Ch690, DS84b, DP08, DHT+19, DSSW90a, DGM89, FH69, FCDH90, FCDH91, FB92, GPY94b, Frbxx, Kab87, Kno71, KL84, Lar68b, LQH18, Mal77, MH00, Mor83a, NIS3, OT91, RLT83, RSD85, RSSD89a, RSSD90b, RSSD90, RSSD92, Riv74b, RT87b, SHZ+20, TS85, Vid90, WH83, Wii79, WKO78, YDT83, YWH09, YR87, YTJ06, YDS6a, ZWH17, ZYW21, ZZZ21, ZLC+20, Bur76a, CCL91, CJP15, DSSW90b, Gob75, GPY94a, LYJ+13, ML94, RT89, Riv74a, SDR83b, WC94, YDS6b, Zha19a, ZZZ18]. retrieve [SG72]. Retrieving [AA79b, AA79a, Spr77]. Return [Wi96]. Reusing [ZSH94].

Reversable [DR11, SLC+07]. Revised [SZO+20, Ytr06, BK07a, Bir07, JY14].

Revisited [AHS92, BYSP98, CDMP05, FLP08, GLS91, GLS94, HR96, HK87, KK12, KK18, KV12, AN20, BATÖ13, Ham02, KKL+09, LP04].

Revisiting [DKH+15, HLH13, Yu18].

Revocation [Wen11, MFES04]. Reykjavik [ADG+08]. RFID [CJP15, CJP12, FW09, GI12, GLLL17, HCPLSB12, JRPK07, LLL09, LLG+17, LXL+19, LCL+20, SPLHB14].

RFIDs [LYDA19]. Rhode [IEE07].

Rhodes [AMSM+09]. Rich [GYW+19].

Rigorous [GLLL17]. RIMS [Got83].

Rinda [ISH+91]. Ring [DGSK20, GGY+19, OL89, TY91].

Ring-Based [GGY+19]. Rings [HJ96].

RNA [BDD+10]. Road [BDPV09, HR04].

Robin [CLM85, Cel86, CLM86, DMV04, PV19].

Robust [BFMP11, CJN20, FLP08, FLP14, KMW08, KMW10, KO90, Li16, LDY+16, MMG10, MV01, MV02, OCDG11, TLZL16, WDP+12, WC10, EAAI+16, YC12].

Rockefeller [IEE90]. Roma [AAC+01].

Roman [Hol87]. Rome [AA86, IEE88d, Wol93b, Wol93a]. Root [LAKW07, TLLL07]. root-hashing [TLLL07].

Roots [Mue04]. rotate [FJ13].

Rotated [US09]. Rotation [Bla95, PQ98, PQ99].

Rotation-Symmetric [PQ98, PQ99].

Rotational [KNR10]. Rotationally [HSPZ08]. Round [AD11, jCPB+12, DDS14, HSR+01, LP15, PT11b, GLM+10, SY11, TSP+11, WFW+12, ABM+12, CV05, ITP14]. Round-Down [PT11b]. Round-Reduced [DDS14, WFW+12]. Rounds [GK08, HSIR02, Sch11].

Route
Router [JL14, KLSV12], routers [ATAKS07, PT12b, TKH20], Routine [Hea82], Routing [ABC +16, BT12a, WBWV16, Cha12, HLL18b, PT10b, SPSP16, TC04, TBC +05, WY02], routing-based [WY02], rows [CDH19, FH15], RSA [Joy03, Ano95a, Jun87], Rule [BG92, Han90, HCKW90], Rule-Based [BG92], rulebase [CKKK09], Rules [CL05, CT12, PCY95, HC02, HC07], runtime [OOK+10], Russia [Vau06], Ryu [KCC05], s [PES+12, BLC12], S. [Pro94], S81 [KTN92], SAC [YJ14, HSR0+11], safe [CCA +12, LPSW03, Lin96], SAGA [HKNW07], Saint [GGQ5, QG95], Saint-Malo [GGQ5, QG95], saliency [FXWW17], same [Con17], SAMOSA [PHG12], Sampler [Mil87], Samplers [CJ19], samples [HYKS08], Sampling [AD5, Jak85, WM19, BZZ12, CyWM91, ORX90, RKLC+11, ZGG05], San [ACM75b, ACM91b, ACM03a, ACM07, ACM08a, ACM11, Ano10, DT87, IEE88a, IEE91b, Joy03, Kar98, Shm00, Sto92, USE90], Sandwich [Yas07], Santa [Bel00, Bri92, Bri93, CRS83a, Cop95a, Cop95b, Fra04, Gol94, Sho95, Sti93, Sti94c, Wie99, Yun02], Santiago [BHZ94], SAP [SFA+19], sat [DK07, MS13], SAT-based [MS13], Satzuebergrifendes [Nee79], says [Nic17], SC+11 [LCK11], SC2002 [IEE02], SC2003 [ACM03b], Scalability [DK92, Eng94, TCP+17, ATAKS07], Scalable [CKKK09, DPH08, GLJ11, Gre21, IEE94c, LMD+12, MZL+19, MD97, MVB+21, MEK+14, PRRR15, PSZ18, PW94, SSL+18, SKC07, SWTX18, TMW10, WPKK94, WSZ+16, YLZ20, ZLC+20, CLL+14, KKP+17, KYS05, KSC11, KSC12, LNS96, LHWL20, LEHN02, NK16, PT12b, SB14, SE21, TLLL09, VBW94, KCR11, NTW09], Scale [BI12, GGY+19, GLLL17, Li15, MEK+14, WC12, NS16a, SHF+17, YGC+12, ZZL221, CML+13, FES09, Kos14, Shi17, SXLL08, Zha19a, ZNPM16], Scale-Invariant [NS16a], Scaling [AK09, LL13, LHWL21, Ros21, TCP+17, FHL+19, PES+12, YSL05], SCALLA [LMD+12], scanner [ISHY88], Scanning [Bur81, LLL11], Scatter [Ban77, BMB68, Bre73, Day70, FL73, FW76, FW77, Luc72, Lyo78b, Mal77, Mal83, Mor68, Mor83b, Mal86], SCENES [War86], Schmuel [KPS02], schedules [GK12b], Scheduling [Lyo79, TL93], Scheme [AK98, Alb21, BP97, Bur84, CLD82, Cha84b, Cha84c, Cha85, CL86, Cha86a, Cha86b, CC88b, CC91, CW91, CGLC20, Dat88, DJSS08, Fahl80, Hall13, JLH08, KJIC11, LW88, Lht88b, LHC05, LSZ+21, NXX13, Oto85a, Oto85b, PPS21, PVM94, PACT09, SGGB00, SHF+17, TC93, VV84, Vit81a, YSW+11, YY07, ZJ09, ZQSH12, ZH18, Bur82, CBB05, CW93, CKW93, CP95b, Cho21, DF89, EAA+16, HL12, HL03, HFF+17, KCL03, Ku04, KCC05, LLH02, LKY04, LWG11, MSZ+20, MGG10, Oka88, SDR83b, Tsao90, WZ12, YRY04, YG10, ZW05, ZC12, FF90], SCHEMES [BDS09, CL05, CLC06, Cor02, Dam87, DSS17, ED88, HM96, HDM09, HHL10, Jai89, Jai92a, Jai92b, Jaixx, Kal01, KM09, LM5, LRY78, LRY80, MY80, MKASJ18, Ngu06, Ouk83, PWY+13, PF88, RL82, RS77, SDR83a, TL55, CMS19, CQW08, DH84, GS94, HDMC11, HSMB91, IN89, KK96, KM10, ML94, NMX9, OS88, RS75, SNW06, ZHS94], SCHEMEN [BDS09, CL05, CLC06, Cor02, Dam87, DSS17, ED88, HM96, HDM09, HHL10, Jai89, Jai92a, Jai92b, Jaixx, Kal01, KM09, LM5, LRY78, LRY80, MY80, MKASJ18, Ngu06, Ouk83, PWY+13, PF88, RL82, RS77, SDR83a, TL55, CMS19, CQW08, DH84, GS94, HDMC11, HSMB91, IN89, KK96, KM10, ML94, NMX9, OS88, RS75, SNW06, ZHS94], Schluesselwoertern [Dos78a], Schnellen [Kue84a], SCHNORR [DBG93, NSW09], SCIENCE [ACM91b, AH03, Bar83, Gol94, Got83, IEE76, IEE80b, IEE82, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b,
IEE13, Knu74, Kon10, LC86b, LL83, RRR99, Rie89, Rov90, Wal88, WGM88, Wil85b, Win78, TW77, vL94, AT18. Science/3rd [TW77]. Sciences [SC77]. Scientific [Fis87]. Scope [CL83, GJR79]. Scoped [FF90]. Scopus [AT18]. Scoring [NADY20]. Scotland [AOV+99]. Scratchpad [vdBGLGL+16]. SDC [KO90]. SE [Sun02, HLL18a]. Sealed [SKM01]. Sealed-Bid [SKM01]. Search [Ack74, iA91, Ban77, BM76, Boo74, Bra84a, Bra85, Bra86, Cer81, CKB83b, CKB85, Cha91, CLP17, CS82, Eck74b, GIM99, HWZP18, HH85, KCB81, Kra82, Kut10, LL85, Luc72, MD97, MW09, Mue04, NSS+06, Pal92, PACT90, Reg81, RSK17, SD78, San76, Sev74, SG76b, TL94, HLL18a, IN89, JFDF09, Sim98, SXL16, YRY04, ZC12, Ano08, Ano12, FIP02b, Nat92, Sta94]. Security [AK98, Abi12, And94, ASBdS16, CLNY06, CN08, Cor00, Cor02, FW06, GKI2a, HMNB07, HLMW93, HXMW94, ISO97, ISO04, KK12, KK18, Kil01, LC06, LT12, LLL09, MP12, Men12, MKAA17, NS97, Nat95, NR12, PLKS07, PV07, PGV92, Rei03, RSK17, SK99, Sho96, Sta06a, Win84, ZHZ+19, YAS07, YYY07, Zhe90, ZHZ+19, Anm03, FFGL10, GM18, GBL94, IN89, JFDF09, Sim98, SXL16, YRY04, ZC12, ANS97, Ano02, Ano08, Ano12, Bou12, FIP02b, Nat92, Sta94]. Secure [AHV98, AOAAK20, Alb21, Ano93b, Ano95b, BT12a, CZLC14, CS02, Dan13, DK07, DY90, DY91, DR11, FIP93, FFGL09, GHR99, GZX14, HM96, HR04, JTOT09, JK11, KM+06, KP97, LM95, LRY+15, MKAA17, NIS93, Nat95, NR12, PLKS07, PV07, PGV92, Rei03, RSK17, SK99, Sho96, Sta06a, Win84, ZHZ+19, YAS07, YYY07, Zhe90, ZHZ+19, Anm03, FFGL10, GM18, GBL94, HLL18a, IN89, JFDF09, Sim98, SXL16, YRY04, ZC12, ANS97, Ano02, Ano08, Ano12, Bou12, FIP02b, Nat92, Sta94]. Security [AK98, Abi12, And94, ASBdS16, CLNY06, CN08, Cor00, Cor02, FW06, GKI2a, HMNB07, HLMW93, HXMW94, ISO97, ISO04, KK12, KK18, Kil01, LC06, LT12, LLL09, MP12, Men12, NAK+15, PW06, RS12, SK20, SM02, WG00, WPS+12, Yan10, ZXL19, ACM94a, ACP10, ABM+12, AMP15, Ano93a, AGBR19, BGKZ12, Kak83, Lai92, LC95, Men17, MST16, PGV93c, SF88, Sta06b, UPV11]. Seed [PNP20]. Segmented [CLYY92, CLYY95]. Segments [Bor84]. Sekundaerspeichers [Pet83]. select [FNY92]. selectable [BSNP96c, Gon95, Li95]. Selected [SC77, Ytr06, Bir07, Bor81, JY14, JY14]. Selecting [MHB90, Sou92]. Selection [DC81, FFGOG07, Hea82, MS12, OGBA14, TYZ05, CD84a, HYK08, Dos78a]. Selective [DHT+19, LYDA19]. selectivity [HYK08, MBKS07]. Selects [Bou12]. Self [HH85, Pag85, PRR15, SS83, Som99, Ty03, Wil96, Wog89, ZF06, AOD19, TKI99]. Self-Adjusting [Pag85, Wog89]. Self-checking [Wil96]. self-clustering [AOD19]. Self-Indexed [TKI99]. Self-Monitoring [SS83]. Self-Organizing [HH85, Som99, Ty03]. Self-Shrinking [ZF06]. Self-Tuning [PRR15]. Semantic [CDW+19, Li15, LWZ+18, ZZZ21, LL13, MTB00]. Semantics [H83]. Semi [CBK83, CCL+14]. Semi-Interactive [CBK83]. Semi-supervised [CCL+14].
semijoin [CCY91]. Semite [LII92].

Semite-Infinite [LII92]. Sensing [Ind13].

Sensitive [BT12b, CSSP15, CKPT19, KBG18, Kaw15, MNP08, OWZ14, OTKH11, Pag18, ZHW21, AT18, EFMRK+20, FWG18, GDGK20, HFGZ+17, HFF+17, LNS11, LWXS18, LJW+17, PCM15, QZD+18, SP12, STS+13, WY00, SA17].

Sensor [DK09, LDY+16, PLKS07, ZQSH12, ZHW21, AK09, ADf12, GDGK20, LG13, LND08, RAL07, YG10].

Sentences [DL12, DVS+14].

Sentence [CH12].

Sentences [Ven86].

sentiment [ZZLZ18].

Separate [Kue82b, Mul81, Moli93, CS93a].

Separators [Lar88b, Moh90, Moh93, CS93a].

Sept [BD88, Jou85].

September [VLD82, AAC+01, AOV+99, AA86, BJZ94, EF12, FS09, Fis87, HM08, HKNW07, Ker75, Kna89, LSC91, Vid90, Win90, Yao78].

Sequence [BC08, FP99b, Gou81, HG77, LPT12, LL85, MS88b, BJ07, CLW98, Wog89].

Sequences [Som99, KS88a, QJ97].

Sequences [KRML09].

Sequencing [AD85, BCCL10, CT96, GSB94, HB99a, KKC12, Lit89, Mul72, Ore83, Piw85, SK98, SG76b, BDPV14, HB99b, IL90].

Series [BJL16].

Serious [AG18].

Served [PM89].

Server [DR92, GSL17, GBC98, Gra99, LL+16, VB00, Tsa08].

Server-Side [GSL17].

Servers [HWZP18, SKC07, KSC11, KSC12].

Serves [A095d].

Service [CCF04, SWTX18, Bac02, BPT10, QZD+18, TLLL18].

Services [AN505, Ano85b, HLC10].

Session [HLC10].

Set [BÖS11, Kie85, PSZ18, SG76a, WC81, YD85, BGG12, GGR04, HYKSO8, HDCM11, HKLS12, HM03, MI84, SA17].

set-expression [GGR04].

Set-Oriented [Kie85].

set-valued [HM03].

Seth [BFR87].

Sets [AA79b, AA79a, GHK91a, GHK91b, GT93, Lit89, PBDD95, Ram92, Spr77, Win90a, BT89, BT93, FP82, IL90].

seven [RAD15].

seven-dimensional [RAD15].

Seventeenth [LC86b, LSC91, Rie89].

Seventh [ACM75c, ACM75a, ACM88a, dBvL80, LL08, AAC+01, ICD91].

several [DLH+79, Kan90].

SHA [ANS97, Bou12, TSP+11, AAE+14, ABM+12, BCJ15, jCPB+12, Con17, DR06, GLG+02, JRPK07, KKRJ07, KR09b, KS17, MAK+12, NIS15, NS+06, PPS21, SK05, Sta94, SKP15, WYY05a, WYY05d, WYY05b, WYY05c].

SHA-0 [BCJ15, NS+06, WYY05d].

SHA-1 [ANS97, AAE+14, BCJ15, Con17, DR06, JRPK07, KKRJ07, KR09b, KS17, SKP15, WYY05a, WYY05b, WYY05c, GLG+02].

SHA-2 [SK05].

SHA-256 [ACS+12, PPS21].

SHA-3 [ACS+12, PPS21].

SHA-512 [SK05].

SHA1 [Con17, SBK+17].

Shading [ZDI+15].

Shading-based [ZDI+15].

Shanghai [A083, LC06].

Shape [SR89, SYW+20].

Share [SS88b].

Shared [Bor84, CadHS00, DadH92, EK93, adH93, KBG18, KU88, KTN92, LTS90, ML994, ML9xx, Mey93, Omi91, PG17, SD89c, SD89a, TR02, TNKT92, VB00, VIt81a, WB03, YN+09, Don91, GLJ11, Kan91, Kan93, KU86, MSS96, Par18, SD99d].

Shared-Disk [WB03].

Shared-Everything [KTN92, ML994, TNKT92].

Shared-Memory [ML9xx, TR02, VIt81a, Bor84].

Shared-Nothing [SD89c, SD89a, SD89d].

shares [ZH94].

Sharing [LPWW06, KL08, KD92, SNW06, YD86b, ZHS94].

SHA vite [GLM+10].

SHA vitez-512 [GLM+10].

Shell [Rei03].

Shenzhen [IEE11a].

Sheraton [ACM75b].

Sheraton-Palace [ACM75b].

Shop [Slo02a].

Short [AB12, CW09, CDW+19, DK09, Lyo79, NR12, MT16, SY15a].

Short-Input [AB12].

Short-Output [NR12].

Short-Time [CW09].

Shorter [Hü13, PPB16].

Should [Yao81].

Shoup [Mir01].

Showcase
Shrinking [ZF06]. SIM [Ano08, Avo12, NIS93, Nat92]. SHS [ACM94d, SDA90, SDA91, ACM97a, ACM05, ACM08a, Kar98, Mat09, Shm00].

Similarity-Preserving [SHZ +20]. Simple [BPZ07, Cie80b, DH01, DS09c, GM94, GM98, IT93, KM08, Lom98, LSSC17, PT12a, Ram92, Sar10, Tho13, CL95, DKRT16, DW03, DS09b, DLM07, MV08, PT11a, Pri95, SKD15, SF88].

Simplifying [OVY94b, OVY94a]. Simplify [Dam93, Dam94]. simplifying [VZ12]. Simulating [adH93, Mey93].

Simulation [EK93, Hi82, Hui90, KladH93, KLM96, KHW91a, YkWY83, KHW91b, TWL +18, War14, DS09a].

Simulation-Based [EK93]. Simulations [CadH50, DadH92, Lep98, Rey14, MSS96]. Simultaneously [LOY00]. Sindhi [SSS05].

Sine [PPS21]. Singapore [DSS84]. Single [AKS78, AA79b, AA79a, CS93a, CC88b, GIS05, Lar82c, Lar82d, Lar85c, LLL +16, Men12, MJBD11, OT91, Spr77, YDT83, YSEL09, Men17, MA15, RT89].

Sinnentsprechende [BN85]. Sintering [Rey14].

Sixteenth [ACM84b, ACM05]. Sixth [BF89, ICD90, GJM02, LT80]. Size [Ack74, AHS92, Bat75, CKW90, Dev99, Dod82, FKS4, HD72, Joh97, Kab87, KV91, KNT89, MV88, MS06, Wi87, Woe01, Bee83, CM01, DWM07, GW94, Han17, LNS11, Sar11, Woe05].

Sixth [ACM84b, ACM05]. Sixth [BF89, ICD90, GJM02, LT80]. Size [Ack74, AHS92, Bat75, CKW90, Dev99, Dod82, FKS4, HD72, Joh97, Kab87, KV91, KNT89, MV88, MS06, Wi87, Woe01, Bee83, CM01, DWM07, GW94, Han17, LNS11, Sar11, Woe05].

SK [LCH +14]. Skein [AEMR09, FLS +10, NKR10]. Skeleton [LDT +16]. Sketch [BI12, TP15, YGS +19].

Skew [Ind13]. Simhash [LLDZ18]. Simhash-Based [LLDZ18]. Similar [RC94]. similarities [UCFL08]. Similarity [GIM99, HCF95, LNS11, LÖON01, NADY20, NMA12, SHZ +20, TWWZ11, WSZ +16, YTJ06, CLL +14, GPO8, HYS08, SP12, SA17, STS +13, ZWT +14].
Top92, WDYT91, WYT93, ZO93. Skip
[AS07, Coh98, BCR10]. SL2
[CP95b, TZ94b]. Slack [AEP18], SLCA
[WWZ09, ZLC +12]. SLCA-Based
[WWZ09]. Slicing [Kon10, MEK +14].
SLISC [ARH +18], SLISC-light
[ARH +18]. sloth [LW17]. Slovenia [EF12].
SM3 [MXL +12, WS13, ZWW +12]. Small
[FHMU85, Ind01, Joh97, KR01, NN90,
NY85, YLC +09, YBQZ17, MP16, Sag85b].
Small-bias [NN90]. Smaller
[CRSW11, CRSW13]. Smalltalk [SUH86].
Smart [Ku04]. Smartcards [JK11]. smoke
[ZRL +08]. Smooth
[ACP09, HK12a, KV09, NY85, YLC +09, YBQZ17, MP16, Sag85b].
Snapshots [PBBO12]. Snefru
[BS91c, Bih08]. Snowbird [SM08, SM12].
Society [IEE92a, IEE84, IEE88a].
Social [KKP +17, ZWH17, PES +12, ZZLZ18].
Softswitches [TLLL18]. Software
[Ano85b, DT75, Eld84, FHMU85, GN80,
GD87, Got83, IEE80a, IEE95, Kna89,
Lew82, MZD +18, Mil87, MW95, NP99,
RRR99, Sch01b, SBS16, Wal88, And94,
Bir07, Gol96, Mer90a, SGK09, TKH20].
Software-implementation [GN80].
Solution [DM90, Hop68b, Mit73, WSZ +16,
HC95, HL94]. Solvability [BF83]. solve
[CP95a, WZ12]. solved [Loh89]. solver
[GZ99]. Solvers [DK07]. solving [SWQ +14].
Some [Bay73a, CV85, Gib90, Gri74, Lar85a,
Mit09, MO190, MO91, Nam86, Sti06, Wri83,
BSU12, GLC08, Inc81]. Sonographic
[SSaS01]. Sophisticated [BPBBPL12]. Sort
[GLS91, Gra94b, GLS94, KKL +09,
KTMO83b, OOB17, TR02, AKN12,
BATÖ13]. Sort-Hash [TR02]. sort-merge
[AKN12]. Sort-Merge-Join [Gra94b].
Sorted [Yao81, YLB90]. Sortieren [Meh86].
Sorting [BS97, DS97, Gra94a, Gup89,
Knu73, Knu75, MV90, MV91b, Meh84,
AS87, CKKW00, ISH +91, Kan90]. Sound
[GvR08, KCF84, SDW14, BDPV14]. Source
[KP94, CBB05, Cha12, HC11, NMX19]. source-based
[Cha12]. Sources [CV08]. South [ACM91c]. SPAA [ACM91c]. Space
[Bal05, Blo70, BPZ07, BM99, CH94, DH01,
Fis87, F +03, FPSS05, HT01, JD12, MSW19,
PP08, SwEB84, TW91, YL01, BD82,
BCGS16, CF89b, DMPP06, GZ99, Kom93,
MN90, OP03, PSS09, Sie89, SWQ +14,
TYSK10, WHS +07, Yuv75].
Space-Efficient [BPZ07, JD12, PSS09].
space-filling [GZ99]. space-hard
[BCGS16]. Space/Time [Bl070]. Spaced
[PNP20], spaces [IMRV97, NN90]. Spain
[DJZ06, LSC91, CTC90]. Spam
[ADOAH19, LZ06, UCFL08]. Spamdoop
[ADOAH19]. SPARQL [WG94]. SPARS
[HAK15, HAK +16]. Sparse
[AL86, ASW07, vSDW74b, KFS84, Gre21,
Gri98, Gri77, KKN12, RT81, TY79,
ZHC +13, vSDW74a, Bis12, BT90, BT93,
CML +13, JCC00, CW91, Ind13]. Spatial
[LR96b, SS88a, SYW +20, WYD +18,
DLN +18, LH06, SS90b, ZBB +06, ZLC +18].
spatio [CWC10, DMPP06, FXWW17].
spatio-temporal [CWC10, FXWW17].
speaking [LC95]. Special
[ACM82, DT87, Dos78a, GIS05, MO92a].
specialization [SV15a]. Specialized
[Bab79, I99 +1]. Specific
[RTK12, ARH +18, JDW +19].
Specifications [Nat92]. Specified [AU79].
Specifying [GHJ +93]. Spectral
[KKC12, Li15, WFT12, WB90, ZWT +14].
Speech [CW09, RJK79]. Speed
[FP89a, KMM +06, KM10, McK89a,
PSR90, TK88, WZ +18, YNK89,
BCCL10, EVF06, MKK89, MSS96, RW07,
SLC +07, SXLL08, TTLLO7, XMLC11].
Speeding [FH96]. Speicher [GN80].
Speicherstrukturen [Kue84a].
Speichertechniken [LS85]. Speicherung
[BJMM94b, BJMM94a].
Speicherungsstrukturen [Kue83].
Speicherverfahren [DS84a]. Spelling [CS82, Mcl82, Rad83, Zam80, MF82, Wie86]. speziellen [Dos78a]. SPHINCS [BHHT+15].

Spiral [CK94, Mul85]. Split [LL85, MS88b, SS06, Sla78, Wog89].

Split-ordered [SS06]. splits [BY89].

Splittable [CP13]. Splitting [DR90, RT87b, Vek85]. Spoken [KRRH84].

Sponge [ARH+18, BDVP07, AMP12, BDVP08, BDP11, BDPV12].

Sponge-specific [ARH+18]. sponget [BKL+11]. spongy [RS14]. sponsored [Fis87, HB93, IEE84]. spots [KLL+97].

SQL [Bra88, Eng94, GBC98, Gra99].

Square [ACM83a, ACM83b, EPR99].

Squares [OG94b]. squaring [Mei95].

SRAM [KHK15]. SRAM/DRAM [KHK15]. SRS [SWQ+14]. SSD [HG+12].

SSPIN [Coh94]. St [Van06]. Stability [CW90]. stable [HF91]. Stack [Bor84, KHW91a, LLL+16, KHW91b].

STACS [AH03]. Stage [LCM+20, QZD+18].

STAIRS [RCF11]. stamped [GB17].

Stamping [Cip93, Lip02, SL16]. Standard [Ano93b, Ano95b, Ano08, Ano09a, Ano12, Ano13, Dan13, FIP93, LXY+19, NIS93, Nat95, NIS15, SK05, CV83a, GvR08, Nam86, Ano02, Dan13, FIP02b, Nat92, Pla98, Lut88].

Standards [Bur06, Fox91, Kal93]. Stash [ADW12, ADW14, KMW08, KMW10].

State [But17, CH94, HB93, MKF+16, Pre97b, Pre99, Wol93b, vdp73, ATAKSO7, HL94, PGV93c, Wol93a]. Stateful [NTY12, Ged14]. Stateless [BHH+15, MKAA17, NTY12].

Stateless/Stateful [NTY12]. Static [AA79b, AA79a, LCS8, Ram92, Spr77, DMP09]. Statistical [Fil02, HZ86, Sav90, TTY93, LZ06, MJ08].

Statistically [HR97, Wee07].

steady-state [HL94]. Steering [TLLL18].

Step [Dit76, ZWW+12, AKY13, WS13].

Step-Reduced [ZWW+12, WS13]. Steps [HKKK10]. Stereo [ZZ83].

Stereo-Warehouse [ZZ83]. stimulating [JFDF09]. STL [Ben98]. STM [DSS10].

STOC [ACM07, ACM08b]. STOC’12 [ACM12]. Stochastic [HKNW07]. stock [She06].

Stockholm [PV85, Ros74].

Storage [ACM04, Bay74, BMB68, Bre73, Col93, Day70, FL73, Fel87, FB87, FP89b, Fro82, GL82, GL88, HJCJ06, HKO20, Hin20, Kno71, HG+12, LCK11, Les88, LCLX19, LR+15, MKS96, Mal77, Mau83, MEK+14, Mor68, Mor83b, Mul81, Mul85, Omi88, OT91, OS83a, OS83b, Pet57, Sam81, SHF+17, TY03, TS85, Tra63, WYZ+18, WH83, Wil71, WKO78, WBS87, YDT83, YLZ20, vdP72, vdP73, AY14, AK09, CRS83b, DMB19, HGR07, Mau68, MSS96, PT10b, QD02, YLS05, YMI89, van73].

storage-efficiency [PT10b].

Storage-efficient [HCJ06, MKS96]. Store [DW83a, LLL+16, LCM+20, MZ+19, QXL+20, dW83b, SFA+19, Shi17, BP94].

Stores [Bry84, GY+19, JLL+20, PRRR15, SDZ21, WLC20]. Storing [AL86, FKS84, MNS07, Ros77, TY79].

Stouffer [ACM87]. Strategies [iA91, iA94, BIS87, Dae95, Die07, adH90, adH93, KL87, KHT89, MD97, Mey93, MNS07, Tr095, YB95].

Strategy [CdM90, LMSM09, LC96, NKT88, RS92, GC90, LMSM12]. Stream [DC98a, cLmL07, MNS12, NCFK11, TW07, TS85, DS09a, Ged14, MV08, OCDG11, RS14, Tan83].

Streaming [CN07, STS+13, YSW+11, YGS+19, CBB05, FVS12, ZC12].

streamlining [DSS10]. Streams [Col98, SS83, YGC+12, BMLLC+19, CH09, GGR04, SLC+07, YLC+09]. street [Sim98].

Strength [HS08, FH15, Ken73]. Stretching
String [iA94, Ask05, BRM+09, BH85, Bur84, CFP19, CCH09, Cha91, Dav73, LRK14, LLLC17, NNA12, TK88, Tay89, TTS2, ASM17, AZ10, Bur82, DC94, GBY90, Kim99, MBKS07, RZ97, XMLC11]. String-indexed [Tay89]. Strong [Kim99]. Strings [BS97, Dit91, FM96, GLB21, Lit91, Pea90, Pea91, RC94, Sav90, Sav91, Zulk21, Eurg90]. Strongly [CHKO08, CHKO12, JRPK07, HLL18a, Ku04]. Strong-password [Ku04]. Structural [BRM+09, TWZW11, Wil96, ZMI91, FLF11, MK12, ZBB+06]. Strong-password [Lit77a]. Structure [AHS92, CK12, CJ+09, DGM89, DT91a, DT91b, FLF11, Flo77, FB87, GHK91a, GHK91b, Grec21, CTC90, KS12, NHS84, Omi88, SG88, Wh83, Wri83, ZWH19, Br75, BGG12, IG94, KIRJ09a, KHH89, LNS96, LCH+14, MMC01, MSK96, SB07, TMB02, YD86b]. Structure-Preserving [CK12]. Structured [CS93b, GDA10, Nak21, Piw85, SG76b, SM87, WWG+18, BPT10, GHW07, WHS+07, WLLG08]. Structures [Ahu83, BDD+10, BFR87, Boy98, BJM14, CE70, Coh84, DSZ07a, DSZ07b, DP08, Ell85b, Ell82, Fe88, FZ87, FB92, Fro82, Gom84, GBY91, Giri74, Har88, Har71b, HSS84, Kru84, LC86a, LR78, LR80, Lit84, MO92a, RW73, Sall88, SDW14, SW86, Snee92, Ste82, SW87, TA81, TA86, TGL+97, TS76, TS84, VL87, WS76, WKOT87, Wr86, YLB90, ZLLD18, BY89, CR83b, FP89a, GJ02, Har73, HM03, Inc81, IGA05, Koe72, Lin96, MT80, NT01, NO02b, OS88, Sshe06, VL97, Vit01, Wil78, Wil85a, ZKR08]. Structuring [Bay73a]. Studies [Ano93d, GT80, GG80, Yub82]. Study [AR17, BF83, BK07b, Cha84c, Cha85, Cra85, DTS75, DJS80, DJHS83, Ell85b, Giri74, Hil78b, Hil78a, LC86a, LG78, LYD71, TL95, YLB90, HM03, LY72, Wee88, WTN07]. style [UCFL08]. Sub [WZY+18, Pri95]. Sub-Datasets [WZY+18]. sub-quadratic [Pri95]. Subgraph [ZLY+12, WLLG08]. sublinear [CFN18]. Subquadratic [Val15]. subscribe [MJ14]. Subscripts [Atk75, vdSDW74b, vdSdW74a]. Subspace [KRJ+80, Sch11]. Substring [Boo73, Har71a, MKSiA98]. Subsystem [HLC10]. subtype [Duc08]. subtyping [DL06]. Succinct [ANS10, DP08, RRS07, FS08, SH02, SH94]. Suchen [Meh86]. Suffice [ADW12, ADW14]. Sufficiency [NY85]. Sufficient [BDPV14, IK00, IH95, Rus92, Rus93, Rus95]. suffix [BGKZ12, Kos14]. suffix-free-prefix-free [BGKZ12]. Suitable [PPS21, MZI98]. sum [IN89, Mon19]. summaries [KM08]. Summary [DLH+79]. Sum [HJ96, RRS07]. Super [Ano95d, HLL18a, KO90]. Super-strong [HLL18a]. supercomputers [GLJ11]. Supercomputing [ACM04, IEE90, IEE91a, IEE93, Kha95]. Superimposed [CJ86, FHC95, SDKR87, SDR83b]. superior [PT10b]. Superjoin [TRN86]. superspecial [CDS20]. Supertree [GB10]. supervised [LLL+14]. Supplement [SC77, Ruc15]. Supplementary [PLKS07]. Support [CN07, Eng94, GSL17, KJC11, SK99, YCR93, CZ14, CJKW00, JMH02, KLV12, LCRY93]. Supporting [CLS12]. SURF [YCJ12]. Surface [Leb87, LDR+16]. surprising [SKD15]. Surrogate [BCH78]. Surrogates [Dec82]. Surveillance [PPS21]. Survey [CZ17, C19, Kal93, Sev74, Mil99, RAL07, UPV11]. SUS [PT10b]. Sweden [Ros74]. Switching [IEE74]. Switzerland [HKNW07, Lak96]. Sydney [SP90]. Symbol [CL83, Bat65, GJR79]. Symbolic [ACM94b, CLD82, DL80, FH96, Jen76, Lak96, Lev95, Nq79, vdHvH12, Iv08, Kan91, Kan93, Ng79]. Symbols [Wil59]. Symmetric
[FW09, Fil02, HC13, NHS84, Oto85b, PQ98, PQ99, QG89, QG90, Roe94, SK20].

Symmetry [KTN92]. Sympoisa [Got83]. Symposium [ACM94d, ACM75c, ACM75a, ACM76, ACM77b, ACM79, LFP82, ACM82, ACM83a, ACM83b, ACM84b, ACM85b, ACM86b, ACM86a, ACM87, ACM88a, ACM88b, ACM89a, ACM89c, SDA90, ACM90, ACM91c, ACM91d, SDA91, ACM91e, ACM94b, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM08a, ACM08b, ACM11, ACM12, Ano10, A+90, AinOW11, Col93, CHK06, EF12, Gol94, Van10, adHMR93, HL91, HF13, IEE74, IEE76, IEE80b, IEE82, IEE84, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE10, IE11b, IEE09, IEE09, IEE11a, Ják90, Jen76, Lak96, LL08, Lev95, LC86b, Mat09, MS05, Ng79, ACM77a, Shm00, WGM88, Win78, Wol93a, Wol93b, vdHvH12, ACM91a, FS09, Fis87, HM08, HKNW07, Kar98, IEE82].

Symposium [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM87, ACM88a, ACM89a, ACM91a, ACM91b, ACM91c, ACM91d, SDA91, ACM91e, ACM94b, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM07, ACM08a, ACM08b, ACM11, ACM12, Ano10, A+90, AinOW11, BW92, Col93, CHK06, EH12, Gol94, Van10, adHMR93, HL91, HF13, IEE74, IEE76, IEE80b, IEE82, IEE84, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE05, IEE06, IEE07, IEE10, IE11b, IEE13, Ják90, Jen76, Lak96, LL08, Lev95, LC86b, Mat09, MS05, Ng79, ACM77a, Shm00, WGM88, Win78, Wol93a, Wol93b, vdHvH12, ACM91a, FS09, Fis87, HM08, HKNW07, Kar98, IEE82].

Symposium [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM87, ACM88a, ACM89a, ACM91a, ACM91b, ACM91c, ACM91d, SDA91, ACM91e, ACM94b, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM07, ACM08a, ACM08b, ACM11, ACM12, Ano10, A+90, AinOW11, BW92, Col93, CHK06, EF12, Gol94, Van10, adHMR93, HL91, HF13, IEE74, IEE76, IEE80b, IEE82, IEE84, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE05, IEE06, IEE07, IEE10, IEE11b, IEE13, Ják90, Jen76, Lak96, LL08, Lev95, LC86b, Mat09, MS05, Ng79, ACM77a, Shm00, WGM88, Win78, Wol93a, Wol93b, vdHvH12, ACM91a, FS09, Fis87, HM08, HKNW07, Kar98, IEE82].
LC88, Lit79b, LB07, LHWL21, Luc72, LMR02, Lyo78b, MSD19, MS02, MPP14, Mit02, MC86, NY85, Pag85, PAVP08, PV92, PTT16, PBDD95, Pla98, Qui83, Ram88a, RRS12, RH09, RMB11, Ros21, SD78, Sch79a, SS80, SM02, TT10, Woe06b, Yao81, Yao95, Zulk21, Bat65, Fl92, FPSS05, FRS94, GM79, GJR79, HKW05, KHK12, LMSM12, LVD11, Mad80, MSD16, MRL+19, PT10b, PT12b, QP16, SS06, Tai79, TKH20, TBC05, Tso15, Wil03, Wil14, Wog89, WTN09, XLZC14, YTHC97, ZHW01.

Tabulation [KW12, PT12a, TZ12, Tho13, DT14, DKRT16, PT11a, PT13, Tho17].

Tabulation-Based [KW12, TZ12].

Tabulative [GT80].

Tag [JRPK07, ZWH17, CJP15, HLL18a, SPLHCB14, CJP12].

tag-based [HLL18a].

tagged [GT80].

tables [LCL+20].

Taipei [HL91].

Tamed [NXB13].

Tampa [IEE88b].

Tamper [CHL07].

Tamper-proofing [CHL07].

Tampering [TWZW11, PS08].

Tangle [AVZ11].

Tape [SvEB84, ML95].

Target [LB02, Mit12, HRS16, MIGA18].

Tash [LYDA19].

task [JDW+19].

task-specific [JDW+19].

Taxonomy [CZ17].

TBE [Zha07].

TBE/IBE [Zha07].

TCC [Kil05].

Tcl [USE00b].

Tcl/2k [USE00b].

Tcl/Tk [USE00b].

TEA [CV05, HSR+01, HSR02].

Teams [GBC98, KKW99].

Technical [IEE84, LC86b, Ros21, Zulk21, Mit17, SE89].

techniken [Mer72].

Technique [AP93, Boo73, CL85, CS82, CT96, Dod82, CH87, KM92, Liu79a, Mau86, Mck89a, RZ90, Ram97, SDW14, She78, TK88, Wan84, Yam85, CCY91, GM77, Kan90, KK96, MIGA18, McK89b, Pro94, Sac86, Sag85b, MKL21].

Techniques [AOUA12, Bay73a, Bih08, Bre73, CP87, CP88, CZ17, Dam90a, Dam91, Dav91, DKO+84b, DKO+84c, DKO84a, DL79, Dun89a, Dun89b, Fel87, Gra92, Gra93c, Gui75, Gui78, Hel94, KVM10, Kue84b, LC20, LDM92, LYD71, Mal77, Mor68, Mor83b, MC86, Pri71, QV89, QV90, QG95, RHL91, Rue93, SD55, SDKR87, SZ93, She91, SPSP16, Sta73, Sty94a, Vau06, YJ706, BF08, De 95, DKO+84d, DJRZ06, DJNR09, GQ95, ISO91, ISO4, LY72, PH73, RHL90, SXL08, UV11, YSL05].

Technology [EIE11a, RRR99, IS097, ISO04, JB94].

Teil [Pie82].

Teletraffic [CS93b].

Temple [Go92, Yu92].

Template [LMC07, SP21, SK20].

Templates [JTOT09, AGBR19].

Temporal [GV91, SHZ+20, WYD+18, CWC10, FXWW17, MHT+13].

temporaries [Ken73].

TENCAP [Ano93c].

Tennessee [IEE94c].

Tenth [DSS84, SC77, YR87].

Terabytes [IEE02].

term [KP92].

termination [Er86].

Terms [Wil79, ZWCL10, t14].

tenary [Bon95, KTDB20].

Terrorism [GRBCC19].

Tertiary [ZWH17].

Test [Har71a, RT87a, Sav90, Duc08, ZCZQ19].

Testbed [SDK91].

Testing [Boo73, DD11, Fil02, Sam76, WM19, AY14, HKS12, TD93].

Tetris [DS84a, SC77, YR87].

Tetris-Hashing [DS84a].

Texas [ACM91b, ACM97b, ACM98, IEE76, USE00b, ACM88a, IEE95, Nav85].

Text [Bur81, Cnh89, CDW+19, DS84b, Dit91, Fal85b, Gon83, HZ86, Lit91, Pea90, Pea91, Sav91, TT82, Ven84, YSW+11, Goh75, HC07, Ram89b, RCF11, Sab94, ZZLZ18, ZHW01].

textes [LG78].

texts [LG78].

Textual [BH85, MLHK17].

Texture [HSP08, SsS01].

th [KKT91].

Their [CZLC12b, CK15, CJ19, Deb03, Gra88, Gra89, Hen87, HK12b, NR12, RNT90, SDT75, WC81, AG10, adHMR93, NY89b, NY89a, PW08, Pob86, SIE89].

Theorem [Cha84b, CG92, HR14, Kno88, Sho00a].

Theoretic [Sun15, HM93, SXL08, TZ94a, vL94].

Theoretical [AH03, CHK06, RRR99, TW77].
Transitive [CdM89, CdM90, GC90].
Translated [WSZ+16]. Translation
[BCR10, TK85]. Translators [DGGL16].
Trapdoor [HHL10, Wee12, LWG11, PW08].
Trapdoors [GPV08]. Traversal
[CLC06, Lip02, YSEL09]. Tree [And91,
AR17, BT12b, FB87, GadHW96, KHT89,
Lip02, L+15, LB07, Lyo83, Omi88, Oto86,
Piw85, SD89b, SG76b, SM87, WS93, Wil00,
Ati20, BLY20, BDPV14, BPT10, CLS95,
DS95, GB17, HLL18b, KW94, LLA15,
MFES04, Omi89a, THS97, War14].
Tree-Structured [Piw85, BPT10].
Trees [BM76, BBP88, CLYY92, CHY93,
CLYY95, CN07, CD84b, DCW91, Dev99,
LQZH14, Reg81, She78, SV84, Wil00,
Bra09, CM01, FP82, FK89, KLL+97, Kos14,
Lev89, QP16, RRS07, TB91, BD84]. Trends
[Rie89]. Triangle [IEE89, JTOT09].
triangular [GPGO16]. Trick [DR09]. Trie
[AR16, Bur76b, Bur77, CCHO9, Flas81, FS82,
Fla83, Ks12, Lit81, LIt85, LZL88, LSV89,
LR1W89, LR1H91, Oto88b, Reg88, Ttv83,
AR21, AZ10, BLC12, Bur76a]. Trie- [KS12].
Tried [ATT98]. Trivia
[BT94a, BT94b, GO15, Tam81, PBBO12,
Pro18, SV15a, SV15b, SV18]. trigger
[ZLY+13]. Trigram [Wii97]. triple
Troika [KTDB20]. Trondheim [Ano95c].
truncated [FJ13]. Truncating [Sol93].
Truncation [Wii79]. Trusted
[KKJ907, KJ909b]. Trustworthy
[EH12, LW17]. trx [LW17]. Tsunami
[CLZ12]. Tulip [XBH06]. Tunable
[AéD19]. Tunable-LSH [AéD19]. tuned
[EFMRK+20]. Tuning
[KNT89, PRRR15, Tym96, Vit80a]. tuple
[WSH+07]. Turbo [Hej89]. TV [YGC+12].
Tweakable [MKASJ18]. Tweaking
[Zha07]. tweets [STS+13]. Twelfth
[BV89, CG08, Co93]. Twentieth
[ACM88b, IEE01, Mat09]. Twenty
[ACM89c, ACM90, ACM91e, AAC+01,
AOV+99, Van10, GSW98, LL08, ACM96,
ACM97b, IEE01]. Twenty-Eight [Van10].
twenty-eighth [ACM96]. Twenty-fifth
[AOV+99]. Twenty-fourth [GSW98].
twenty-ninth [ACM97b].
Twenty-Seventh [LL08, AAC+01]. twig
[KRL09]. Twisted [PT13, DT14].
TWISTER [FFGL10, FFGL09]. Twitter
[RTK12]. Two [DDMM05, DAC+13, HK12a,
HSIR02, Jv86, KSSS86, LEB87, LMPW15,
Lyo85, ML15, Pan05, Pip94, PGV90a, TC93,
CCL91, Con17, DKRT16, GP08, Li00, MS09,
McN03, PGV93a, PGV93b, QZD+18,
SDR83b, MKL21], two-bit [MKL21].
two-channel [MS09]. Two-Dimensional
[KSSS86, LEB87]. Two-Disk [TC93].
Two-level [DAC+13]. Two-Message
[HK12a]. Two-permutation-based
[LMPW15]. two-stage [QZD+18].
Two-Way [DDMM05]. TWOBLOCK
[van05]. TX
[USE91, ACM87, ARA94, IEE94a]. Type
[KPS92, KRJ09a, TNS20, SF88, SG16, SV18].
Type-based [KRJ09a]. Type-Graphs
[KPS92]. type-heterogeneous [SV18].
Types [EjKMP80, Rog99, SW87,
Wal88, LPSW03, NMS+08]. TYPHOON
[HKW05]. typing [DMP09].
Überlegungen [Kue84a]. Uebersicht
[Mer72]. UK
[AOV+99, Boy95b, Dav91, Gol96]. UL
[DSS17]. Ultra
[QXL+20, WZJS10, YBQZ18]. Ultra-Fast
[YBQZ18]. Ultra-Low-Latency [QXL+20].
uncertain [BZZ12]. Undergraduate
[Tro92]. Undergraduates [Pag06].
Understanding [Dun89a, Dun89b].
Unequal [Gon80]. Unequal-Probability
[Gon80]. unicast [ATAKS07]. unicorn
[LW17]. Unification [Bütt86, Cra85].
Unified
[JV16, Mul84a, Mul84b, ABO+17, BOY11].
[ABH+73, AT93, Gui89, Kie85, KS86, KS87b, Lar83, Leb87, LQZ94, LPP91, LPP92, Mal77, OP03, PP08, PCK95, Ruz08, UHT95, Yao85b, Ald87, AT90, MC89, Rad92].

Uniform-Grid [Leb87]. Uniformly [MLP07]. Unifying [BG80, BG82]. Unique [BG80, BG82]. Unique [Boo74, DLH09, DLH13, SD78, ASW87]. Uniqueness [Kah92]. Unit [BC90, HO72]. United [ACM94b, JB94].

Universal [Abi12, AS96, BKST18, Bie97, Bra09, CW77a, CW77b, CW79, CJKK91, CS02, DadH00, DadH92, Die96, D99c, EPR99, Fur88, GC95, HHR+10, HJ96, JCK+18, Kil01, KR01, LK14, MNT90, MCW78, Mul91, Nae95, NYS98b, NY99a, NP99, NR12, Ram88b, Sar80, Sho96, Sho00a, Sie04, Sti91, Sti94a, Sti94b, Woe01, van94, ACP10, B99b, IIL17, KY95, KL96, KR06, LC13, LMT93, Sar11, Sar13, Sie98, Woe05, Woe06a].

Universality [SS89a]. Universe [Bra09, Wen92]. Universes [DS09c]. Universitat [CTC90, Dit76]. Universiteit [BBD09b]. University [ACM81, IJW89, CCC89, CR88a, HB93, IEE74, J´aj90, Lie81, Oxb86, Pat90, Sch82a, Dit76, SF88].

URAL [GT63]. URAL-2 [GT63]. URLs [AY14]. urrn [Ram87].

[ACM03a, ACM07, BD88, Bel00, Bri92, Bri93, BD08, Cop95b, Deb03, DJNR09, FNY92, Fra04, Fre90, Van10, GSW98, Joy03, Ker75, Kil05, Lom93, Sho05, Sti93, Sti94c, Wie99, Yun02, ACM94d, ACM11, ACM12, FMA02, HF13, ICD86, ICD87, ICD88, IEE88b, ICD90, IEE01, IEE02, IEE05, IEE10, IEE11b, IEE13, MS05, USE91, USE00a, USE00b].

Usability [BDS88, Sch82a]. Use [ACM75b, AT18, Bal05, BK84, B81, Bra84a, Bra85, Bra86, BC90, Gur73, NR12, Rad70, W81, er, adHMR93, RK15, Vak85, YAS89].

Used [Stu85, GS94, Sch91a]. USENIX [USE91, USE00b, USE90]. User [RTK12, YY07, Bor81, DFM15, HL12, LLH02, LKY04, YRY04].

Using [ANS97, ASW07, BDPSNC97, Bar97, BRM+09, BCK96b, Bor84, B¨OS11, BM90b, BI12, BT94a, BT94b, BM01, BT12b, BMLC+19, CP95a, CRdPHF92, CKB95, CdM89, CdM90, CLL92, CCW+17, CJC+09, CKK91, Cle84, CD84b, C70, CRR18, CY06, DLT98, DK07, D98b, D12, DSS90a, DGK91, EFM95+20, Fal85a, FLF11, FBB11, FJ13, GBBCC19, Ger86b, G87, Gre21, Gri77, GPA97, GAS8+16, Har97, HG77, HNS84, H91, JRK07, JTO90, J912, JK11, Kab87, KSSS86, KM07, LK07, LAK90, LQZH14, LR99, LMD+12, Lum73, MS02, MPP14, MBSS12, MN81, Mck89a, MH00, Moh90, Moh93, MJT+02, Mul72, NKT88, N93, OTHK11, OGC94a, Omi89b, PAPV08, PPS21, PLK07, PKW09, PF88, PW94, Q98, Q90, RLS9, RLT83, RSD95, RSD92, Rey14, Rob86, SD78, SS83].

Using [SRY99, Sho00b, SW86, SK05, Som99, SA97, SKM01, TK88, TC93, TA81, TA86, TGG90, TK85, TSS9, Tsa96, US09, VV84, WPK94, Wan14, WLWZ19, WDP+12, W96, Wil79, WM19, YY07, YBQ18, A¨OD19, BSN96b, BLC12, BK07a, BF08, BT90, BG12, CDS20, CKB81, CHL07, CJKK90, CP13, CT96, DS09a, DMP06, DKT06, DS09b, DSS90b, EH17, Fal86, FM89, Fly92, GKT10, GG92, Ger86a, GDGK20, Gob75, GBL94, HDM11, HK70, HKL12, HC14, Hil88, HC02, HW88, HXX13, ISO97]
XML
[CN07, KRML09, MK12, WLLG08, WWZ09]. XMLSS [HRB13, HBG+17]. xor [FJ13, CCHK08, MLP07, VD05, vdBGLGL+16]. XOR-based [CCHK08, VD05]. XPS [Ger95]. XRDB [YNKM89]. XSB [SSW94]. XOR [CV05].
Yi [Wag00]. Yi-Lam [Wag00]. Ynot [NMS+08]. Yokohama [AIOW11]. Yoo [KCC05]. Yoon [KCC05]. York [ACM12, GSW98, HF13, IEE90, IEE99, Mat09, IEE90, Jen76]. Yorktown [Jen76]. YY [Nat92].
Zahlen [BJMM94b, BJMM94a]. Zakopane [Win78]. Zeiteffizienten [Kue83]. Zemor [Gei95, Gei96, GIMS11, PVCQ08, TNS20].

References

Asano:1990:ISS [AA86] Tetsuo Asano et al., edi-

Ausiello:1986:IIC Giorgio Ausiello and Paolo Atzeni, editors. ICDT ’86:

REFERENCES

9743 (print), 1611-3349 (electronic). URL http://www.springerlink.com/link.asp?id=fx0261047446n36;

Aumasson:2012:SFS

Alwen:2017:TPA

Agrawal:1993:ICV

Ahmed:2016:RN

Andreeva:2016:NSP

REFERENCES

[ABRS53] Gene M. Amdahl, Elaine M. Boehme, Nathaniel Rochester and Arthur L. Samuel. ???. The year is uncertain (???). Amdahl originated the idea of open addressing with linear probing, which was later independently rediscovered and published [Ers58b]. The term ‘open addressing’ was apparently first used in [Pet57] [see [Kno75, page 274].], 1953.

[ACM75b] Data: Its Use, Organization

[ACM:1975:CRS]

[ACM:1976:CRE]

[ACM:1977:CRN]

[ACM:1981:ASI]

[ACM:1982:SPD]

REFERENCES

REFERENCES

ACM:1987:PEA

ACM:1988:PPS

ACM:1988:PTA

ACM:1989:PPS

ACM:1989:PTF

ACM:1990:PTS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Adams:2008:ENE

Ashur:2011:LAR

Ayday:2012:DAA

Aceto:2008:ALPa

Heide:1990:DHS

Heide:1993:HSS

[adHMR93] Friedhelm Meyer auf der Heide, B. Monien, and

Heide:1993:PAE

REFERENCES

Aumuller:2014:EEH

Atighehchi:2009:EPA

Anagnostopoulos:2018:RES

AFIPS:1963:PSJ

AFIPS:1969:ACP

Ajtai:1983:HFP

Ajtai:1984:HFP

Akl:1990:ACI

REFERENCES

[AGK+10] Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors. Automata, languages and programming:
Angelino:2011:EMM

Alt:2003:SAS

Aumasson:2012:QLH

Ahn:1986:AH

Ahn:1987:AH

Ahn:1993:FH

Aho:1983:DSA

Aldous:1992:MSD

Aiello:1998:NCS

Andoni:2006:NOH

Andoni:2008:NOH
88

REFERENCES

[AK09] Joon Ahn and Bhaskar Krishnamachari. Scaling laws for data-centric storage and

Abdukhalikov:1998:SHS

Ahm:2009:SLD

Albutiu:2012:MPS

Albeshri:2021:IHB

Aldous:1987:HLP

Aldous:1988:HLP

Agrawal:2010:HLF

Aumasson:2007:AMH

Aumasson:2014:HFB

Andreeva:2012:PFG

Andreeva:2015:OPH

Albers:2009:ALP

Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris Nikoletseas, and Wolfgang Thomas, editors. \textit{Automata, languages and programming: 36th international colloquium, ICALP 2009, Rhodes, Greece, July 5–12, 2009; proceedings, part 1}, volume 5555 of \textit{Lecture Notes in Computer Science}. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 2009. ISBN 3-642-02926-4. ISSN

REFERENCES

Anonymous:1983:MPM
Anonymous, editor. Mi-
conex ’83: proceedings of
a multi-national instrumen-
tation conference convened
in Shanghai, Peoples Repub-
lic of China, April 12–16,
1983. ISA, Research Trian-
gle Park, NC, USA, 1983.
ISBN 0-87664-739-5. LCCN
TA165.M52 1983. Two vol-
umes.

Anonymous:1985:PFD
Anonymous. Proceedings —
foundations of data organi-
zation. In Proceedings —
Foundations of Data Organi-
zation. Organizing Com-
mittee of the Int Conference on
Foundations of Data Organ-
zation, Jpn, 1985. Kyoto
Sangyo Univ. Computer Sci-
ence Inst, Kyoto, Jpn.

Anonymous:1985:SS
Anonymous. Software and
services. ComputerWorld, 19
CODEN CMPWAB. ISSN
0010-4841.

Anon:1986:IRN
Anon. Integer random num-
ber generator. IBM Technical
Disclosure Bulletin, 28(11):
4869–??, April 1986. CO-
DEN IBMTAA. ISSN 0018-
8689.

Anonymous:1989:TIC
Anonymous, editor. Third
International Conference on
Data Engineering, volume
48(2) of Information sci-
ences. IEEE Computer Soci-
ety Press, 1109 Spring Street,
Suite 300, Silver Spring, MD
20910, USA, July 1989. CO-
DEN ISIJBC. ISSN 0020-
0255 (print), 1872-6291 (elec-
tronic).

Anonymous:1992:PAW
Anonymous ???, editor. Pro-
cedings of the 1992 ACM
Workshop on ML and its Ap-
lications. ACM Press, New
York, NY 10036, USA, June

Anonymous:1993:CSA
Anonymous, editor. Com-
puter security, audit and
control: 10th World con-
ference — October 1993,
London, PROCEEDINGS OF
COMPSEC INTERNATIONAL
1993; 10th. Elsevier Ad-
vanced Technology,
Oxford, UK, 1993. ISBN 1-
85617-211-2. LCCN ????.

Anonymous:1993:FSH
Anonymous. FIPS 180, Se-
cure Hash Standard. NIST,
US Department of Com-
merce, Washington, DC,
USA, May 1993.

Anonymous:1993:TCC
Anonymous, editor. TEN-
CON ’93: computer, commu-
REFERENCES

[Ano93d] Anonymous, editor. The Second Annual Dartmouth Institute on Advanced Graduate Studies in Parallel Computation. Dartmouth College (??), Hanover, NH, USA, June 1993. ISBN ?? LCCN ?? I have been unable to locate this reference in several major libraries, including Dartmoth’s, sigh.…

REFERENCES

Anonymous:2008:SHS

Anonymous:2009:DSS

Anonymous:2009:PCA

Anonymous:2010:NDS

Anonymous:2012:SHS

Anonymous:2013:DSS
REFERENCES

[AAAK20] Zeyad A. Al-Odat, Mazhar Ali, Assad Abbas, and
REFERENCES

Aluç:2019:BSC

Atkinson:1999:PTF

Aumasson:2008:HED

Aumasson:2011:CHF

Analyti:1992:FSM

Aumasson:2011:CHF

Analyti:1992:FSM

Ariwasa:1968:RHM

Arikan:1994:IGE

Aghili:1982:PGD

Abdelguerfi:1989:EVA

Atici:1996:UHM

Aspnes:2007:SG

Agrawal:2009:HBN

Aysu:2016:PMH [Ask05]

Al-Ssulami:2017:FSM [ASM17]

Astrahan:1987:ANU [ASW87]

M. M. Astrahan, M. Schkolnick, and K. Y. Whang. Approximating the number of unique values of an attribute without sorting. Information
Aspnas:2007:EAS

Alrabaee:2018:FRE

Asano:1990:APP

Azadegan:1991:PJA

Asano:1993:APP

Abdulhayoglu:2018:ULS

Al-Talib:2007:IMS

S. A. Al-Talib, B. M. Ali,

REFERENCES

References

REFERENCES

Barequet:1997:UGH

Batson:1965:OST

Batagelj:1975:QHM

Bat80

Bat81

Bat82

Bat85

Bat86

Bat87

Bat88

Bat89

Bat90

Bat91

Bat92

Bat93

Bat94

Bat95

Bat96

Bat97

Bat98

Bat99

Bays:1973:STS
REFERENCES

REFERENCES

Belazzougui:2009:HDC

Belazzougui:2011:TPM

Bernstein:2001:OCH

Bernstein:2012:LCH

Bernstein:1988:OCE

Belazzougui:2011:TPM

[BBPV11] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Theory and

[Ball:1939:MRE] W. W. Rouse (Walter William Rouse) Ball and H. S. M. (Harold Scott MacDonald [“Donald”]) Coxeter. *Mathematical recreations and essays*. Macmillan Publishing Company, New York, NY, USA, 11th edition, 1939. 45 pp. LCCN QA95 .B3 1939. According to Knuth [Knu73, p. 507], this is one of two papers that first discuss the birthday paradox: “if 23 or more people are present in the same room, chances are good that two of them will have the same month and day of birth! In other words, if we select a random function which maps 23 keys into a table of size 365, the probability that no two keys map into the same location is only 0.4927 (less than one-half).” The discovery is credited to unpublished work of H. Davenport (1927). See also [vM39].

[Balachandran:2008:SHC] S. Balachandran and C. Con-

REFERENCES

Bellare:1996:MAU

Bedau:2004:CHF

Barr:2010:TCS

Bardin:1989:UUI

Black:2009:IHE

Bell:1982:KSC

Bell:1984:HTV

Bancilhon:1988:PFI
Francois Bancilhon and David J. DeWitt, editors.

Berger:2012:GFL

Bertoni:2012:KIO

Baraani-Dastjerdi:1997:UCH

Baraani-Dastjerdi:1997:UCH

Bertoni:2011:CSF

Bertoni:2006:RBM
REFERENCES

noekeon.org/. Presented at the Second Cryptographic Hash Workshop, Santa Barbara, August 2006.

Bertoni:2007:SF

Bertoni:2008:ISC

Bertoni:2009:RPK

Bertoni:2012:KSF

Bertoni:2014:SCS

Bertoni:2009:RPK

Bertoni:2014:SCS

Beeri:1988:PTI

REFERENCES

REFERENCES

Benzinger:1998:SCB

Bell:1983:MCS

Boral:1989:DMS

Bouillaguet:2008:ACR

Bender:2012:DTH

Barn:1995:ODP

Battiato:2011:RFH
REFERENCES

Boeker:1987:SAG

Batory:1980:UMP

Batory:1982:UMP

Becker:1992:RBO

Baritaud:1993:FHCb

Blelloch:2007:SHI

Broadbery:1995:IDE
REFERENCES

[BGKZ12] Nasour Bagheri, Praveen
REFERENCES

Bierbrauer:1996:OAR

Bierbrauer:1996:OAR

Bosselaers:1996:FHP

Bosselaers:1996:FHP

Berkovich:1985:MSP

Bruckner:1986:MPH

Banieqbal:1990:RMH

Bast:1991:FRP

Ban-Hashemi:1993:FAC

Bernstein:2015:SPS

Ben-Haim:2012:PHC

Berman:2013:HPR

Brassard:1997:QCH

Brassard:1998:QCH

Bohm:1987:BQK

Alexander Böhm and Jannis Iliadis. Ein Beitrag
zu den quadratischen Kol-
losionssstrategien in Hash-
Tabellen—Ein neuer Al-
gorithmus. (German) [on
quadratic strategies for han-
dling collisions in hash tables — a new algorithm]. Ange-
wandte Informatik, 29(3):
111–118, March 1987. CO-
DEN AWIFA7.

Bozas:2012:LSS
Konstantinos Bozas and
Ebroul Izquierdo. Large
scale sketch based image re-
trieval using patch hash-
ing. Lecture Notes in CS,
7431:210–219, 2012. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/
10.1007/978-3-642-33179-
4_21.

Bierbrauer:1995:CUH
J. Bierbrauer. A^2-codes
from universal hash classes.
In Guillou and Quisquater
[GQ95], pages 311–318.
ISBN 3-540-54909-4. ISSN
0302-9743 (print), 1611-
3349 (electronic). LCCN
[Bin96]
QA76.9.A25 C794 1995. URL
com/link/service/series/
0558/bibs/0921/09210311.
htm; http://link.springer-
y.com/link/service/series/
0558/papers/0921/09210311.
pdf.

Bierbrauer:1997:UHG
Jürgen Bierbrauer. Uni-
versal hashing and geometric codes. Designs, Codes,
and Cryptography, 11(3):
207–221, July 1997. CO-
DEN DCCREC. ISSN
0925-1022 (print), 1573-7586
(electronic). URL http:
//www.ekap.nl/oasis.htm/
131331.

Biham:2008:NTC
Eli Biham. New tech-
niques for cryptanalysis of
hash functions and improved
attacks on Snefru. Lecture
Notes in CS, 5086:
444–461, 2008. CODEN
LNCSD9. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/content/pdf/
10.1007/978-3-540-71039-
4_28.

Binstock:1996:HR
Andrew Binstock. Hashing
rehashed. Dr. Dobbs Journal,
21(4):24–??, April 1, 1996.
CODEN DDJOEB. ISSN
1044-789X.

Belkin:1992:PAI
Nicholas Belkin, Peter Ing-
wersen, and Anneline Mark Pe-
jtersen, editors. Proceedings
of the 15th Annual Interna-
tional ACM SIGIR Confer-
ence on Research and Devel-
opment in Information Re-
trieval, Copenhagen, Den-
ACM Press, New York, NY
10036, USA, 1992. ISBN
0-89791-523-2 (paperback),
REFERENCES

- Biryukov:2007:FSE

- Biscani:2012:PSP
 Francesco Biscani. Parallel sparse polynomial multiplication on modern hardware architectures. In van der Hoeven and van Hoeij [vdHvH12], pages 83–90. ISBN 1-4503-1269-1. LCCN QA76.95 J59 2012.

- Buneman:1993:PAS

- Barwick:2007:SAL

- Bierbrauer:1993:FHF

- Bierbrauer:1994:FHF
REFERENCES

REFERENCES

Bechtold:1984:UEH

Brassard:1988:GRP

Broder:1990:MAH

Barker:2007:RRN

Bradford:2007:PSC

Boldyreva:2012:NPG

Bogdanov:2011:SLH

Brier:2009:LFC

Bibak:2018:AUH

Boral:1988:SIC

Barkley:1989:PRH

Blasius:1995:GRR

Blackburn:2000:PHF

Bando:2012:FBG

Bloom:1970:STT
Burton H. Bloom. Space/time trade-offs in hash cod-
REFERENCES

Barber:2014:MEH

Blustein:1995:IBV

Battulga:2020:HTP

Bayer:1976:EST

Barklund:1987:HTL

Blakeley:1989:JIM

Blakeley:1990:JIM

Bourdon:1990:ORU

[BM90a] Olivier Bourdon and Gérard Medioni. Object Recogni-
REFERENCES

Bellare:1997:NPC

[BMQ98] John R. Black, Jr., Charles U.

Beyer:1968:LEC

Bustio-Martinez:2019:UHL

[BMQ98] John R. Black, Jr., Charles U.

Black:1998:GHA

Beyer:1968:LEC

Buhrman:2002:BO

BNN+10

Bobrow:1975:NHL

Bolour:1979:OPM

REFERENCES

REFERENCES

Boukliev:1995:NTL

Boutin:2012:NSW

Boyd:1995:CCC

Boyd:1995:CCI

Boukliev:1995:NTL

[Boy95]

[Boy95a]

Boutin:2012:NSW

Boukliev:1995:NTL

[Boy95b]

[Boy98]

REFERENCES

CiteBeuchat:2011:LAU

CiteBiliris:1994:EEO

CiteBarbour:1997:DMH

CiteBrier:2009:CC

CiteBudroni:2018:HGB

CiteBen-Porat:2012:VHH

CiteBakhtiari:1997:WGC

Buehrer:2010:DPS

Botelho:2007:SSE

Banerjee:1975:DLD

Bellare:1994:OAEa

Bellare:1997:CRH

Bellare:2006:MPP
Mihir Bellare and Thomas Ristenpart. Multi-property-preserving hash domain extension and the EMD transform. Lecture Notes in CS, 4284:299–314, 2006. CODEN LNCS09. ISSN 0302-9743 (print), 1611-3349 (elec-

REFERENCES

Richard P. Brent. Reducing the retrieval time of scatter storage techniques. *Communications of the Association for Computing Machinery*, 16 (2):105–109, February 1973. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Modification of open addressing with double hashing to reduce the average number of probes for a successful search.

REFERENCES

Bauer:2009:FSA

Blundell:2010:RTR

Black:2002:BBA

Blundell:2010:ABB

Bode:1993:PPA
REFERENCES

Bryant:1984:EHL

Biham:1991:DCFb

Biham:1991:DCFa

Biham:1991:DCS

Bhatia:1994:FPH

Bhatia:1994:FIP

Bhatia:1994:FIP

Bentley:1997:FAS

REFERENCES

REFERENCES

Burkowski:1981:PHH

Burkowski:1982:HHS

Burkowski:1984:CHH

Burkhard:1992:HGP

Burkhard:2005:DHP

REFERENCES

[Burr:2006:CHS]

[Burr:2008:NHC]

[Buttner:1986:UDM]

[Butin:2017:HBS]

[Belkin:1989:SPT]

[Barreto:2012:HCS]

[Bazrafshan:2013:IBS]
REFERENCES

Breen:1989:HFP

Bruynooghe:1992:PLI

Blackburn:1998:OLP

Baeza-Yates:1989:MSF

Barnes:2015:PEP

Bao:2012:WBS

REFERENCES

[CBK83] Nick Cercone, John Boates, and Max Krause. A semi-interactive system for finding perfect hash functions. Technical report CMPT TR 83-4, Simon Fraser University,
B. Burnaby, BC, Canada, 1983.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malin-aud, and Prashant Puniya. Merkle-Damgård revisited:

Castryck:2020:HFS

Cui:2019:STA

Coffman:1970:FSU

Camurati:1995:CHD

Celis:1986:RHHa

REFERENCES

Dario Catalano, Dario Fiore, and Luca Nizzardo. Homomorphic signatures with sublinear public keys via asymmetric programmable hash

B. Cousin and J. Helary. Performance improvement of state space exploration by
REFERENCES

Cormode:2009:FFI

Ceglarek:2012:FPD

Chang:1984:OMP

Chang:1984:SOM
C. C. Chang. The study of an ordered minimal perfect hashing scheme. *Communications of the Association for Computing Machinery*, 27(4):384–387, April 1984. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). The English translation of Ref. 6 of this paper appears in [Hua82]; that book contains the fundamental prime number functions needed for the ordered minimal perfect hash functions described here.

Chang:1985:SLO

Chang:1986:LOR
C. C. Chang. Letter-oriented
REFERENCES

REFERENCES

Chin:1993:LPH

Andrew Chin. Locality-preserving hashing. In Anonymous [Ano93d], pages 87–98. ISBN ?? LCCN ?? I have been unable to locate this reference in several major libraries, including Dartmoth’s, sigh.

Chin:1994:LPHb

Cormack:1985:PPH

Correa:2006:LTI

Camacho:2008:SAC

Camacho:2012:SAC

Chen:2007:TPB

Hsiang-Yang Chen, Ting-

REFERENCES

REFERENCES

munications of the Association for Computing Machinery, 23(12):728–729, December 1980. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This is the author’s response to the comments in [JO80] about [Cic80b]. See also [Sag85a].

REFERENCES

[Choi:2009:DSC]

[Choi:2019:RDR]

[Chang:2019:CTM]

[Cheng:2020:RUC]

[Cho:2012:CBF]

[Cho:2015:CBF]
Jung-Sik Cho, Young-Sik Jeong, and Sang Oh Park. Consideration on the brute-force attack cost and retrieval cost: a hash-based radio-frequency identification...

Cercone:1989:IAP

Chu:1994:ASH

Chase:2012:NHS

Chierichetti:2015:LPF

Cercone:1981:LDU

Cercone:1983:MAMa

Cercone:1983:MAMb

Nick Cercone, Max Krause, and John Boates. Mini-
mal and almost minimal perfect hash function search with application to natural language lexicon design.

[CKB85]

[CKKK09]

REFERENCES

5397 (print), 1095-7111 (electronic).

REFERENCES

[CLE84] John G. Cleary. Compact hash tables using bidirec-

P. Celis, P. Á. Larson, and J. I. Munro. Robin Hood hashing. Technical Report CS-86-14, Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, April 1986. ?? pp. See also [Cel86].

Li:2007:RNH

Chang:2006:ISA

Canetti:2013:PCC

Chiu:2017:AAS

Chen:1995:STP

Chen:2012:EDI

Colbourn:2018:ACM

Ming-Syan Chen, Mingling Lo, Philip S. Yu, and Honesty C. Young. Applying segmented right-deep trees to pipelining multiple hash joins. *IEEE Transactions on Knowledge and Data Engineering*, 7(4):656–70, August 1, 1995. CODEN ITKEEH. ISSN 1041-4347.

Xiangyu Chen, Yadong Mu, Hairong Liu, Shuicheng Yan, Yong Rui, and Tat-Seng Chua. Large-scale multilabel propagation based on efficient sparse graph construction. *ACM Transactions on (...
REFERENCES

Cook:1982:LOM

Coburn:1994:ISH

Cohen:1984:MSP

Cohen:1994:ACF

Cohen:1997:RHF

Cohen:1998:GHS

Coleman:1993:PTI

Lucian Constantin. The SHA1 hash function is now completely unsafe: Researchers have achieved the first practical SHA-1 collision, generating two PDF files with the same signature. *ComputerWorld*, ?? (??):??, February 23, 2017. CODEN CMPWAB. ISSN 0010-4841. URL https://www.computerworld.com/article/3173616/the-sha1-hash-function-is-now-completely-unsafe.html.

REFERENCES

Coron:2002:SPP

Chaum:1987:ACE

Cai:1991:MNH

Cai:1991:LMN
REFERENCES

Crammond:1985:CSU

Carreras-Riudavets:2012:MAU

Cromwell:1998:PBD

Collom:2018:FMM

Chaum:1983:ACP

Chung:1983:PSR

Celis:2011:BBS

Chang:1987:PAM

Cesarini:1991:DHM

Cesarini:1993:SAH

Cooper:1993:TTA

Cramer:2002:UHP

Chakrabarti:2015:BPL
Cooperman:1996:NSP

IEEE:1990:FAS

Cormode:2010:ANG

Chen:2011:CIK

Chen:1983:AEI

Chiou:2012:IMA

IEEE:1990:FAS

Chen:1983:NVC

Chen:1984:ANV

Chen:1985:AAS

Chen:1986:DAC

Castro:2005:NRG

Chung:2008:TBH

Carrea:2014:OHN

[CXLK19] Badrish Chandramouli, Dong Xie, Yinan Li, and Donald Kossmann. FishStore:

Contini:2006:FPK

Cobb:1991:SIP

Chen:2014:MLC

Chi:2017:HTS

Czech:1998:QPH

Chu:2012:TMP

Chen:2012:AIB

Yu Chen, Zongyang Zhang, Dongdai Lin, and Zhenfu Cao. Anonymous identity-based hash proof system and its applications. Lecture Notes in CS, 7496:

REFERENCES

springer.com/article/10.1007/s11227-012-0801-y.

REFERENCES

REFERENCES

Davies:1991:ACE

Day:1970:FTQ

Drechsler:2012:IEH

Daemen:1993:CSH

Bakker:1980:ALP

Dorng:1981:CHC

Du:1994:ADV

M.-W. Du and S. C. Chang. Approach to designing very

Daemen:1998:FHS

Daemen:1998:PCF

Ding:2018:NPH

Darragh:1991:BCR

DeBonis:2011:CGT

Dhawan:2015:AEN

REFERENCES

Matteo Dell’Amico, Maurizio Filippone, Pietro Michiardi, and Yves Roudier. On user availability prediction and network applications.

DeWitt:1985:MHBa

DeWitt:1985:MHBb

Davison:1993:MCR

Davison:1994:MRH

Dawson:1996:CPA

Desmet:2002:IHC

DeWitt:1986:GHP

REFERENCES

Dantras:2016:OIB

Durvaux:2012:IPP

Du:1989:EFS

Dietzfelbinger:1992:PHF

DeWitt:1990:GDMb

DeWitt:1990:GDMa

Daemen:1993:FDO

Joan Daemen, Rene Govaerts, and Joos Vandewalle.

[DHK+15] Danny Dolev, Yuval Harari, Nathan Linial, Noam Nisan,

Dolev:2002:NPH

Do:2019:SDC

Dietzfelbinger:2008:DIB

Dietzfelbinger:1990:HDD

Dietzfelbinger:1996:UHW

Dietzfelbinger:2007:DSM

REFERENCES

[Dit91] I. Dittmer. Note on fast hashing of variable length text strings. Communications of the Association for Computing Machinery, 34(11):118, November 1991. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Points out that Pearson’s hashing algorithm [Pea90] was discovered fourteen years earlier by this author [Dit76]. See also comments in [Sav91, Lit91, Pea91].

Damgaard:1994:BAH

Delfs:2002:ICP

De:2007:IAS

Debapratim De and Abishek Kumarasubramanian. Inversion attacks on secure hash functions using sat solvers. Lecture Notes in
REFERENCES

Dietzfelbinger:1994:DPH

DeWitt:1984:ITMc

DeWitt:1984:ITMa

DeWitt:1984:ITMb

DeWitt:1984:ITMd

Dahlgaard:2015:HSP

Dahlgaard:2016:PTC

[Søren Dahlgaard, Mathias
REFERENCES

Dharmapurikar:2006:LPM

Devillers:1979:HTG

Du:1980:SGC

Denielou:2006:APS

Dong:2012:UAS

Dinur:2017:IGA

DeRemer:1979:SCS

Frank DeRemer, Philip Levy, Steve Hanson, Philip Jackson, Richard Jullig, and Tom Pittman. Summary of the characteristics of several ‘modern’ programming

Dolev:2009:BAU

Dolev:2013:UPH

Durand:2007:SPP

Duan:2018:EGS

Dami:1998:EDH

Davie:1981:RDC

REFERENCES

REFERENCES

Dietzfelbinger:2009:AST

Doyoddorj:2011:NSI

Drescher:2017:BB

Drescher:2017:HD

Drescher:2017:HRW

Dodis:2012:HHA
REFERENCES

Dertmann:1984:SBI

Devine:1984:DFO

Dixon:1997:HPS

Deepthi:2009:DIA

Dietzelbinger:2009:RUC

Dietzelbinger:2009:WCH

Du:1995:RMQ
5808 (print), 1943-5835 (electronic).

[DSZ07a] Frank Dehne, Jörg-Rüdiger Sack, and Norbert Zeh, editors. *Algorithms and Data Structures. 10th International Workshop, WADS*
REFERENCES

Dehne:2007:PAI

Dubost:1975:SIN

Dayal:1987:PAC

Du:1991:MEH

Du:1991:PDD

Dahlgaard:2014:AMI

Daloze:2018:PDL

Ducournau:2008:PHA

Deutscher:1975:CSD

Duncan:1989:PPU

Duncan:1989:UHT

REFERENCES

Daemen:2007:PCP

Deligiannis:2014:PRW

DaSilva:1983:PAS

daSilva:1983:PSH

Dietzfelbinger:2003:ARG

Dietzfelbinger:2005:BAD

Dietzfelbinger:2007:BAD

DeSantis:1990:DPS

[DY90] A. De Santis and M. Yung. On the design of provably-secure cryptographic hash
functions. In Damgård [Dam90a], pages 377–397.

DeSantis:1991:DPS
A. De Santis and M. Yung.

Ding:2008:MPH
Jintai Ding and Bo-Yin Yang.

Ehdaie:2016:HCR
Mohammad Ehdaie, Nikos Alexiou, Mahmoud Ahmadian, Mohammad Reza Aref, and Panos Papadimitratos.

Elleithy:1991:VIS
VLSI implementation of a systolic database machine for relational algebra and hashing. Integration, the VLSI journal, 11(2):169–??, April 1, 1991. CODEN IVJODL. ISSN 0167-9260.

Ecker:1974:BRG

Ecker:1974:PSQ

Enbody:1988:DHS
R. J. Enbody and H. C. Du.
REFERENCES

[EK93] Curd Engelmann and Jörg Keller. Simulation-based comparison of hash functions

Elder:1984:CDP

Ellzey:1982:DSC

Ellis:1983:EHC

Ellis:1985:CLH

Ellis:1985:DDS

Ellis:1987:CLH

Ellis:1988:CEH

Erlingsson:2007:CPA

Ulfar Erlingsson, Mark Manasse, and Frank McSherry. A cool and prac-

Englert:1994:NSS

Etzel:1999:SHF

Er:1986:UTI

Ershov:1958:PAO

Ershov:1958:PPB

Estebanez:2014:PMC

César Estébanez, Yago Saez,

Eugenides:1990:ESM

Estan:2006:BAC

Fotakis:2003:SEH

Fabry:1974:CBA

Fairouz:2021:HAH

Fahlman:1980:HIS

REFERENCES

REFERENCES

Franco:1990:TFL

Fleischmann:2009:TFS

Fleischmann:2010:TFS

Freire:2007:BHB

Figini:1984:ACH

Farashahi:2013:IDH

Fisteus:2010:HCN

Jesus Arias Fisteus, Nor-

Files:1969:IRS

Fortune:1979:NRN

Fateman:1996:SLB

Fuji-Hara:2015:PHF

Fox:1989:LAF

Fox:1992:MPH
Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and Amjad M. Daoud. Minimal perfect hash functions for large databases. *Communications of the Association for Computing Machinery*, 35(1):105–121, January 1992. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This is the first published algorithm for com-
puting minimal perfect hash functions for lists of millions of words; previous algorithms were computationally infeasible for more than a few hundred words.

[FHCD92b] Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and Amjad M. Daoud. Practical minimal perfect hash functions for large databases. Communications of the Association for Computing Machinery, 35(1):105–121, January 1992. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). URL http://www.acm.org/pubs/toc/Abstracts/0001-0782/129623.html. This is the first published algorithm for computing minimal perfect hash functions for lists of millions of words; previous algorithms were computationally infeasible for more than a few hundred words.

REFERENCES

Fredman:1984:SST
Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with $O(1)$ worst case access time. *Journal of the Association for Computing Machinery*, 31(3):538–544, July 1984. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic). Extends the work of Tarjan and Yao [TY79], using a two-level data structure, the first containing pointers to the second, and the second containing blocks accessible by a perfect hashing function.

Feldman:1973:CBS

Fan:2004:DBS

Flajolet:1981:PEE

Flajolet:1983:PEE

Flajolet:1983:PC
Fernandez:2011:HWS

Flores:1977:DSM

Floyd:1987:HHP

Fischlin:2008:RMP

Fischlin:2014:RMP

Ferguson:2010:SHF

Flynn:1992:ORU

REFERENCES

REFERENCES

REFERENCES

Fotakis:2005:SEH

Flajolet:1998:ALP

Franklin:2004:ACC

Ferreira:2011:LHB

Franklin:2004:ACC

Ferreira:2011:LHB

REFERENCES

Freeman:1990:ICP

Friemel:1986:DM

Frost:1981:ADI

Frost:1982:BRS

REFERENCES

Folk:1987:FSC

Gil:1996:TMH

Gait:1982:AEC

Gutierrez:2016:IDO

Guillemot:2010:FPT

Garg:2017:RMR

Graefe:1998:HJH

[GBC98] Goetz Graefe, Ross Bunker, and Shaun Cooper. Hash joins and hash teams in Mi-

Gong:1994:AKD

Gonnet:1990:AKR

Gonnet:1991:HAD

REFERENCES

D. M. Gavrila and F. C. A. Groen. 3D object recog-

Ganguly:2004:TSE

Gao:2019:ERB

Guo:2007:CBI

Ghandeharizadeh:1993:ILS

Goldsmith:1991:SCIa

Goldsmith:1991:SCIb

Gibson:1991:DLH

Gilchrist:1977:IPP

Gionis:1999:SSH

Grassl:2011:CTZ

Girault:1987:HFU

Gebhardt:2005:NPV

Goldwasser:2002:DSN

Michael H. Goldwasser, David S. Johnson, and Catherine C. McGeoch, editors. Data structures, near neighbor searches, and methodology: fifth and sixth DIMACS implementation..

REFERENCES

Gonnet:1982:EHL

Gonnet:1988:EHL

Gennaro:2006:FPB

Grembowski:2002:CAH

Gong:2008:SIA

Gubner:2021:OCH

REFERENCES

REFERENCES

[Gutmann:2005:WHC]

[Gauravaram:2007:USC]

[Grossi:2015:FCT]

[Goble:1975:FTR]

[Golshani:1992:EIC]

REFERENCES

Goto:1983:RSS

Gollapudi:2008:PTM

Gueziec:1997:MIR

Gomez-Perez:2016:CCT

Gentry:2008:THL

Greene:1994:MIHa

[Gra93c] Goetz Graefe. Query evaluation techniques for large

X. Gregg. Hashing Forth: It’s a topic discussed so nonchalantly that neophytes hesitate to ask how it works. *Forth Dimensions*, 17(4):13–??, 1995. CODEN FODMD5. ISSN 0884-0822.

Grimson:1974:PSS

Griss:1977:EEE

Griss:1979:HKR

Griebel:1998:ASG

Gopal:1993:CCH

Guibas:1976:ADH

Guibas:1978:ADH

Gori:1989:AAC
[102x681][GS89] M. Gori and G. Soda. An algebraic approach to Cichelli’s perfect hashing. BIT

Girault:1994:LCH

Gupta:1994:RSD

Goi:2001:IHF

Goto:1982:DLM

Gope:2017:ASS

Galli:2001:THO

REFERENCES

REFERENCES

Gust 1976. ?? pp. See [Gui76b].

[Gui76c] Leo J. Guibas. The analysis of hashing algorithms that exhibit k-ary clustering. In IEEE-FOCS’76 [IEE76], pages 183–196.

Garcia:2008:SCC

Goldreich:1994:TFF

Gadia:1991:IIT

Guo:2019:EER

Griebel:1999:PMA

Guo:2014:CHS

Hachem:1993:AAP

Harbi:2016:ASQ

Harbi:2015:ESQ

Malcolm C. Harrison. *Data Structures and Programming*. Courant Institute of Mathematical Sciences, New York University, New York, NY, USA, April 1971. xii + 381 pp. LCCN QA76.5 .H37. See also [Har73].

US$27.95. Hashing is discussed in Part II.

Harbron:1988:FSS

Harari:1997:HHF

Hashida:1972:AM

Hachem:1989:KSA

Hachem:1989:KAM

Hecker:1989:IGH

Hachem:1992:NOP

Hariri:1993:PIC

REFERENCES

Hecker:1994:GHG

Hulsing:2017:XEH

Hoang:2010:CAN

Horspool:1987:HCT

Holt:2002:MAR

Holt:2007:PMA

Hedayatpour:2011:HFB
S. Hedayatpour and S. Chuprat. Hash functions-based random number generator with image data source. In 2011...
REFERENCES

REFERENCES

Hu:2021:PMH

Hsiao:1994:PEM

Hsiao:1997:PEH

Hopgood:1972:QHM

Hanna:2009:CEE
Hanna:2011:AHS

He:1987:PAS

Healey:1972:CEP

Headrick:1982:HRS

Hejlsberg:1989:COT

Hekmatpour:1989:LP1

Heller:1989:EH

Heller:1991:MHY

Helleseth:1994:ACE

REFERENCES

[HG77] R. Hikita and E. Goto. An $O(N)$ algorithm for finding periodicity of a sequence using hash coding. In-

REFERENCES

REFERENCES

Haggard:1986:FMP

Hofri:1987:PLR

Hagerup:1995:FPP

Halevi:2012:SPH

Hofheinz:2012:PHF

Hong:2010:PAR

Hong:2013:HOE

Deukjo Hong, Dong-Chan Kim, Woo-Hwan Kim, and Jong-sup Kim. Higher order cTCR hash functions. Computers and Mathematics with Applications, 65 (9):1396–1402, May 2013. CODEN CMAPDK. ISSN 0898-1221 (print), 1873-7668
REFERENCES

Hao:2004:ARF

Hao:2007:BHA

Hao:2012:FDM

Hromkovic:2007:SAF

Hsiao:2005:TMD

Hirose:2012:CFU

Shoichi Hirose, Hidenori Kuwakado, and Hirotaka Yoshida. Compression functions using a dedicated block-

Huang:2010:DHT

He:2013:RCP

Han:2018:SSR

Huang:2010:DHT

Hohl:1993:SIH

Havas:1993:GTO

George Havas and Bohdan Majewski. Graph theoretic obstacles to perfect hashing. Congressus Numerantium, 98:81–??, 1993. ISSN 0384-9864.

Halevi:1996:PPS

S. Halevi and S. Micali. Practical and provably-secure commitment schemes from collision-free hashing. Lecture Notes in CS, 1109:
REFERENCES

[Ha:2007:SAE]
Hagerup:2001:DD

Havas:1994:GHH

Hassanzadeh-Nazarabadi:2020:DUL

Hiraki:1984:EAM

Hashida:1972:LAC

Holub:1987:NHE

Holden:2013:GHF

Hopgood:1968:xxx

REFERENCES

REFERENCES

Ellis Horowitz and Sartaj Sahni. Fundamentals of

REFERENCES

(Hafiane:2008:RIH)

(Hutflez:1988:GOP)

(Hsiao:1988:AH)

(Hagerup:2001:EMP)

REFERENCES

Hsu:1990:COL

Hua:1982:INT

Huang:1985:MEH

Hug85

Hui90

Hüll13

Hong:1988:IMB
Jiawei Hong and Haim Wolfson. Improved model-based matching method using foot-

Hadjieleftheriou:2008:HSS

Hsieh:1999:OWH

Hill:1986:ESD

Aoe:1991:CAK

Aoe:1994:CAS

Istvan:2015:HTL

IEEE:1986:ICD

[International Conference on Data Engineering (2nd), February 5–7, 1986, Bonaventure Hotel, Los Angeles, California, USA. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1986. ISBN 0-8186-0655-X (paperback), 0-8186-8655-3 (hardcover), 0-8186-4655-1]
REFERENCES

IEEE:1987:DEP

IEEE:1988:PFI

IEEE:1990:PSI

IEEE:1974:ASS
IEEE, editor. 15th Annual Symposium on Switching and Automata Theory, October 14–16, 1974, the University of New Orleans. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Sil-
IEEE:1976:ASF

IEEE:1980:PCI

IEEE:1980:ASF

IEEE:1982:SFC

IEEE:1984:ISL

IEEE:1985:FOC

IEEE:1985:PFD

[IIEEE85b] Proceedings: Foundations of Data Organization, Kyoto ’85, Japan, International Conference on Foundations of Data Organiza-
REFERENCES

IEEE:1991:PAS

IEEE:1991:PAS

IEEE:1993:PSP

REFERENCES

IEEE:2001:PII

IEEE:2002:STI

IEEE:2005:PIS

IEEE:2006:AIS

IEEE:2007:PAI

IEEE:2010:PIA

IEEE:2011:ICI

IEEE:2013:PIA

Ida:1977:PPH

Ihlenfeldt:1994:HIC
REFERENCES

Ioannidis:2005:ADS

Ichikawa:1983:ARD

Itoh:1995:ANS

Ivanchykhin:2017:RAU

Ikeda:2013:CEM

ACM:1989:PIJ

Ichiyoshi:1992:ALB

Ishai:2005:SCC

Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrov-

Indyk:2013:SHH

Indesteege:2008:CRH

Indesteege:2011:PCE

Irby:19xx:MRH

Imai:1993:ACA

Inoue:1991:RRD

REFERENCES

Itano:1988:IPM

Ishikawa:1993:MLI

ISO:1997:ITS

ISO:2004:IIIb

Itoh:1993:SCF

G. Jaeschke. Reciprocal hashing: a method for generating minimal perfect hashing functions. Communications of the Association for Computing Machinery, 24(12):829–833, December 1981. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Hash functions, for a key x in a set S of positive integers, of the form $h(x) = (C/(Dx+E)) \mod N$ are considered. Though the existence of h is guaranteed, the scheme suffers from many practical problems because of exhaustive nature of the search for h.

REFERENCES

Jain:19xx:CHS

Jaja:1990:SFM

Jakobsson:1985:SRL

Janson:2005:IDL

Jarke:1994:ADT

Jiang:2011:GBM
Xiaoyi Jiang, Klaus Broelemann, Steffen Wachenfeld, and Antonio Krüger. Graph-based markerless registration of city maps using ge-

Jan:1988:ALO

Jones:1988:FTV

Jiang:2000:CSM

Jun:2018:RBD

Chang:2012:TRR

Junczys-Dowmunt:2012:SEP

[JD12] Marcin Junczys-Dowmunt. A space-efficient phrase table implementation using

[JFD09]

Jia:2019:ETS

[JDW+19]

Jenks:1976:SPA

[Jen76]

Jenkins:1997:AAH

[JG95]

Jou:1997:AAA

[Jou:1995:PAA]

Jha:2015:IMM

REFERENCES

Jaeschke:1980:CMP

Johnson:1961:ICM

Johansson:1997:BHS

Joye:2003:TCC

REFERENCES

Jutla:2007:PGC

Jensen:2008:OEM

Jeon:2007:SAP

Jin:2009:SMB

Jung:1987:IRC

Jacobs:1986:TRT

Janson:2016:UAL
Svante Janson and Alfredo Viola. A unified approach to linear probing hashing with

Jia:2018:PPH

Jiang:2007:DHT

Kab:1987:RRT

Kahrs:1992:UUL

Kak:1983:EMP

Kak:1993:NNA
Kak:1993:NNA

Kaliski:1993:SES
Kaliski:1993:SES

Kaliski:2001:HFF
Kaliski:2001:HFF

Kaman:1974:HC
Kaman:1974:HC

Kanada:1990:VTH
Kanada:1990:VTH

Kanada:1991:MVP
Kanada:1991:MVP

Kanada:1993:MVP
Kanada:1993:MVP

Karlsson:1982:ACR
Karlsson:1982:ACR
K. Karlsson. *Les Arbres Couvrants Reduits: Une Methode D’acces Compacte Pour Don-

REFERENCES

REFERENCES

Kocberber:2015:AMA

Kak:1995:ILM

Kaushik:2012:MGH

Kralevska:2018:HEC

Karplus:1984:FMP

Khan:1995:PDH

Kuo:1989:DSF

Kortelainen:2010:MAG

[KGJ018] K. Kralevska, D. Gigoroski, R. E. Jensen, and
Kanizo:2010:HTF

Kanizo:2012:HTF

Kanizo:2015:MTH

Kitsuregawa:1989:JSK

Kim:1991:ISSa

Kim:1991:ISSb

Kak:1994:CVW

KieseIck:1985:DFU

Kim:2010:QOR

Kim:1980:QOR

Kim:1999:NSP

Kim:2011:EHB

Minchul Kim, Younghoon Jung, and Junghwan Song. A modified exhaustive search on a password system using SHA-1. International Journal of Information Security, 16(3):263–269, June 2017. CODEN ????. ISSN 1615-5262 (print), 1615-5270 (elec-
REFERENCES

[KKL+] Changkyu Kim, Tim Kaldewey,

Kaoru Kurosawa, Hirofumi Kasai, and Shigeo Tsujii.

Kemper:1999:GHT

Kim:1987:ESJ

Knudsen:1995:NAA

Katajainen:1996:EUH

Jyrki Katajainen and Michael Lykke. Experiments with universal hashing. DIKU Report 96/8, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark, ???? 1996.

Kencl:2008:ALS

Katz:2015:IMC

Karp:1993:EPS

R. Karp, M. Luby, and F. Meyer auf der Heide. Effi-
cient PRAM simulation on a
distributed memory machine.
Technical Report TR-93-040,
International Computer Sci-
ence Institute, Berkeley, CA,
USA, August 1993. ?? pp.

[KLL+97] David Karger, Eric Lehman,
Tom Leighton, Rina Pan-
grahay, Matthew Levine, and
Daniel Lewin. Consistent
hashing and random trees:
distributed caching proto-
cols for relieving hot spots
In ACM [ACM97b], pages
654–663. ISBN 0-89791-888-
6. LCCN QA76.5.A849
acm.org/pubs/articles/
proceedings/stoc/258533/
p654-karger/p654-karger.
pdf; http://www.acm.
.org/pubs/citations/proceedings/
stoc/258533/p654-karger/
. ACM order no. 508970.

Luby, and Friedhelm Meyer
auf der Heide. Efficient
PRAM simulation on a dis-
tributed memory machine.
Algorithmica, 16(4–5):517–
542, 1996. CODEN AL-
GOEJ. ISSN 0178-4617
(print), 1432-0541 (elec-
tronic).

and Bart Preneel. Attacks on
fast double block length hash
functions. Journal of Cryp-
tology, 11(1):59–72, Winter
1998. CODEN JOCREQ.
ISSN 0933-2790 (print),
1432-1378 (electronic). URL
http://link.springer.de/
link/service/journals/
00145/bibs/11n1p59.html;
http://link.springer.
de/link/service/journals/
00145/bibs/11n1p59.pdf;
http://link.springer.
de/link/service/journals/
00145/bibs/11n1p59.tex;
http://link.springer.
de/link/service/journals/
00145/tocs/01101.html.

[Kompella:2012:RSF] Ramana Rao Kompella, Kir-
ill Levchenko, Alex C. Sno-
eren, and George Vargh-
ese. Router support for
fine-grained latency measure-
ments. IEEE/ACM Transac-
tions on Networking, 20(3):
811–824, June 2012. CO-
DEN IEANEP. ISSN 1063-
6692 (print), 1558-2566 (elec-
tronic).

[King:2007:CRP] Valerie King, Scott Lewis,
Jared Saia, and Maxwell
Young. Choosing a random
peer in chord. Algorithmica,
CODEN ALGOEJ. ISSN
0178-4617 (print), 1432-
0541 (electronic). URL
http://www.springerlink.
com/openurl.asp?genre=
article&issn=0178-4617&
Koczkodaj:1992:IPF

Koerner:1986:IFB

Korner:1988:NBP

Korner:1988:RAC

Kato:1992:PCI

Kirsch:2007:UQA

REFERENCES

086-5. LCCN QA76 A43 2007. URL ????

Kirsch:2008:SSH

Karroumi:2009:HBK

Kirsch:2010:POM

Kakarountas:2006:HSF

Kirsch:2010:HBT

Kirsch:2008:MRH

REFERENCES

REFERENCES

http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/277.tif
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/278.tif

Also published in/as: Stanford University Report, 1975. Section 3, “A history of hashing schemes”, and the lengthy bibliography, are recommended and useful resources.

Knott:1984:DCC

Knott:1988:LOA

Khovratovich:2010:RRA

Kitsuregawa:1989:EBS

Knuth:1973:ACP

Knuth:1974:CSR

Knuth:1975:ACP

Knuth:1977:DPR

Knudsen:1992:CL

Knuth:1998:LPG

Knudsen:2019:LHA

Kitsuregawa:1990:BSP

Koehler:1972:SDB

Ch. Koehler. Ein System zur Darstellung und Bearbeitung Assoziativer Datenstrukturen. (German) [a system for displaying and edit-

[102x681]REFERENCES

Kohonen:1980:CAM

Konheim:2010:HCS

Koschke:2014:LSI

Koushik:1993:DHD

Kilov:1981:DMA

REFERENCES

Kedem:1992:OPA

Krichevskii:1994:CSE

Knudsen:1996:HFB

Knudsen:1997:FSH

Katzenelson:1992:TMT

Kohonen:1979:VFA

Karp:1981:ERP

REFERENCES

REFERENCES

Kwon:2009:FXD

Kohonen:1984:ORS

Knudsen:2007:GFH

Kriegel:1987:MDQ

Kruse:1984:DSP

REFERENCES

Karger:1999:WCC

Kwak:2011:DIB

Kwak:2012:DIB

Kalvin:1986:TDM

Kim:1999:LEO

Kolbl:2020:TTC

Kitsuregawa:1983:AHD

Kitsuregawa:1983:GRA

Kitsuregawa:1983:RAM

Kitsuregawa:1992:PGH

Kuespert:1982:MLHa

Karlin:1986:PHE

Karlin:1988:PHE

Ku:2004:HBS

Kuespert:1982:MLHa
Kuespert:1982:MLHb

Kuespert:1983:VZO

Kuespert:1984:USO

Kuespert:1984:EED

Kuich:1992:ALP

Kulkarni:1984:CHF

Kumar:1989:CCM

Kumar:1989:CCE

Kumar:1990:COE

Kutzelnigg:2006:BRG

Kutzelnigg:2010:IVC

Kenyon:1991:MQS

Katz:2009:SPH

Kortelainen:2012:GIH

Kroll:1994:DST

Klassen:2012:ITB

Kaps:2005:ESU

Kjellberg:1984:CH

Koslicki:2019:IMC

Louati:2018:LCT

Lai:1992:DSB

Xuejia Lai. *On the design and security of block ciphers*. Hartung-Gorre Ver-
lag, Konstanz, Switzerland, 1992. ISBN 3-89191-573-X. xii + 108 pp. LCCN ???. This is the author’s Ph.D. dissertation. “Secret-key block ciphers are the subject of this work. The design and security of block ciphers, together with their application in hashing techniques, are considered. In particular, iterated block ciphers that are based on iterating a weak round function several times are considered. Four basic constructions for the round function of an iterated cipher are studied.”.

[LB07] Nuno Lopes and Carlos Baquero. Implementing range queries with a decentralized balanced tree over distributed hash tables. Lecture Notes in CS, 4658:

Li:2002:RBA

Lehman:1986:SIS

Little:1986:PSS

Lewis:1988:HDS

Ted G. Lewis and Curtis R. Cook. Hashing for dynamic and static internal tables. Computer, 21(10):45–57 (or 45–56??), October 1988. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic). The authors survey the classical hashing function approach to information retrieval and show how general hashing techniques exchange speed for memory. It is a tutorial paper that covers, among other topics, dynamic and static hash tables, perfect hashing, and minimal perfect hashing.

Lomas:1995:RBH

Liu:1996:HPS

Lai:2006:ACA

Xuejia Lai and Kefei Chen, editors. Advances in Cryptology — ASIACRYPT 2006: 12th International Confer-

REFERENCES

Liu:2020:FAD

Li:2019:EEU

Lu:2020:NMS

Liang:1994:OMK

Lo:1993:OPA

Lee:2012:OFL

Lieuwen:1992:PBJ
Daniel F. Lieuwen, David J. DeWitt, and Manish Mehta.
REFERENCES

Liu:2016:TRS

Lebedev:1987:EEU

Luo:2002:SHR

Gang Luo, Curt J. Ellmann, Peter J. Haas, and Jeffrey F. Naughton. A scalable hash ripple join algorithm. In Franklin et al. [FMA02], pages 252–262. ISBN ???? LCCN ???? ACM order number 475020. [Luo02]

Leppänen:1998:BPS

Lesk:1988:GII

Levy:1989:LPT

Levelt:1995:IPI

Zhijun Li and Guang Gong. On the node clone detec-
REFERENCES

Luo:2003:COA

Luo:2003:CDO

Luo:2004:IEH

Lefebvre:2006:PSH

Liu:2020:EIH

Lin:2005:GPW

Lu:2020:DSH

REFERENCES

Lu:2021:SDH

Litvinov:1980:GHF

Li:1995:CKH

Li:2010:PAP

Li:2015:RDS

Liang:1995:PHF

Lien:1981:AIC

Luhandjula:1992:FSI

[M. K. Luhandjula, H. Ichihashi, and M. Inuiguchi.]

Lin:1953:xxx

A. D. Lin. ??? The year is uncertain (???. Extends [Luh53] with an alternative overflow handling technique using “degenerative addresses” [Knu73, p. 541]. 1953.

Lin:1963:KAR

Lindner:1996:DSH

Litmaa:2002:OHT

Liskov:2007:CIH

Litwin:1977:ASD

Litwin:1977:MDP

Litwin:1978:VHD

Litwin:1979:HVN

Litwin:1979:LVH

Litwin:1980:LHN

Litwin:1981:TH

Litwin:1984:DAM

Litwin:1985:THF

Litvinov:1989:HSO

Litsios:1991:NFH

Litwin:19xx:LHN

Large Data Bases, International Conference on Very Large Data Bases, ??(??): 212–223, ???? 19xx. CODEN VLDBDP. ACM (Order number 471800). Baltimore, Md.

Litwin:19xx:VHD

Li:2019:IID

Lv:2017:IPL

Larson:1984:FOI

Lucchesi:1993:AFA

Lai:1994:ADB

Lagutin:2007:CIC

Dmitrij Lagutin and Hannu H. Kari. Controlling incoming connections using certificates and distributed hash tables. Lecture Notes in CS,
REFERENCES

4712:455–467, 2007. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/
10.1007/978-3-540-74833-
5_38.

[KI10] Ping Li and Arnd Chris-
tian König. Theory and ap-
lications of b-bit minwise
hashing. Communications
of the Association for Com-
puling Machinery, 54(8):101–
109, August 2011. CO-
DEN CACMA2. ISSN 0001-
0782 (print), 1557-7317 (elec-
tronic).

[LK11] Daniel Lemire and Owen
Kaser. Strongly universal
string hashing is fast. The
Computer Journal, 57(11):
1624–1638, November 2014.
CODEN CMPJA6. ISSN
0010-4620 (print), 1460-2067
(electronic). URL http:
//comjnl.oxfordjournals.
org/content/57/11/1624.

[LKY04] Sung-Woon Lee, Hyun-Sung
Kim, and Kee-Young Yoo. Cryp-
tanalysis of a user au-
thentication scheme using
hash functions. Operating
28, January 2004. CODEN
OSRED8. ISSN 0163-5980
(print), 1943-586X (elec-
tronic).

[LK16] Daniel Lemire and Owen
Kaser. Faster 64-bit universal
hashing using carry-less mul-
tiplications. Journal of Cryp-
tographic Engineering, 6(3):
CODEN ????. ISSN 2190-
8508 (print), 2190-8516 (elec-
springer.com/accesspage/
article/10.1007/s13389-
015-0110-5; http://link.
springer.com/article/10.
1007/s13389-015-0110-5.

[LK10] David C. Lee, Qifa Ke, and
Michael Isard. Parti-
tion min-hash for par-
tial duplicate image discov-
ery. Lecture Notes in CS,
6311:648–662, 2010. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/
10.1007/978-3-642-15549-
9_47.

[LKI10] G. Louchard and G. La-
touche. Probability Theory
and Computer Science. Aca-
demic Press, New York, NY,
USA, 1983. ISBN 0-12-
LCCN QA274 .P76 1983.

sequence hash search. Inform-
ation Processing Letters, 20
Litwin:1986:BDA

Litwin:1987:NMF

Leng:1992:OWA

Lenzerini:2008:PTS

Lee:2013:SQB

Lowden:2015:DPA

REFERENCES

REFERENCES

[Lee:2007:PSK] Sungju Lee, Daesung Moon, Seunghwan Jung, and Yongwha Chung. Protecting se-

REFERENCES

DEN LNCS9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://link.springer.com/content/pdf/10.1007/978-3-642-05118-0_34.

Legtchenko:2012:RCR

Lipton:1993:CAH

Liu:2008:GBK

Litwin:1993:LLH

Litwin:1996:LSD

Lee:2011:SJS

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
Li:2012:OPH

Landelle:2016:CFR

Luccio:1991:APU

Luccio:1992:AIP

REFERENCES

Leifer:2003:GAS

Li:2012:WHT

Long:2006:GCA

Li:2018:LLP

Lei:2014:FND

Larson:1985:EPH

Lee:1996:DRW

REFERENCES

[LRY78] R. J. Lipton, A. Rosenberg, and A. C. Yao. External hashing schemes for col-

Lipton:1980:EHS

Liu:2015:MDT

Lange:1985:DS

Litwin:1989:FDO

Linial:1996:NEH

Liu:2006:ECS

Laccetti:2007:BFA

Lu:2007:MPC

Lee:2015:MFA

Lohman:1991:VLD

Litwin:1989:CTH

Luo:2021:NMH

Lochovsky:1980:SIC
[LT80] Frederick H. Lochovsky and ?. Taylor, editors. Sixth International Conference on Very Large Data Bases: reprinted from Very large data bases. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1980. ACM order no. 471800. IEEE catalog no. 80CH1534-7C. Long Beach order no. 322.

Lipski:1985:PFD

Lehmann:2009:MDH

Larangeira:2012:RCN

Lu:1990:HBJ

Luccio:1972:WIL

Luhn:1953:xxx
Hans Peter Luhn. Internal IBM memo that first suggested the idea of hashing, and one of the first applications of linked linear lists. Luhn is also the inventor of KWIC indexing, in 1960 [Knuth, p. 437]. See also [Lin53], January 1953.
REFERENCES

Lin:2011:EVO

Wu:1991:PIC

Lu:2020:VAN

Lin:2008:AZH

Lu:2018:WLS

Liu:2018:MCM
REFERENCES

Lyon:1978:PST

Lyon:1979:BSS

Lyon:1983:PCC

Lyon:1985:AHT

Lu:2018:LCC

Lai:2019:NIB

Lai:2018:NSH

Li:2006:FSS

REFERENCES

Matias:1993:HPR

Mathieu:2009:PTA

Maurer:1968:PTI

Maurer:1983:IHC

Martini:2003:DHM

Marton:2012:OCC

Manegold:2000:ODA

VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

Arturas Mazeika, Michael H. Böhlen, Nick Koudas, and Divesh Srivastava. Estimating the selectivity of approximate string queries.

J. Ian Munro and Pedro Celis. Techniques for Collision Resolution in Hash Tables with Open Addressing.

Thomas McMillan and William Collins. Recurrence relation in uniform hashing.

Gary McCarney. Learn the lingo and hash your way into faster data base management.

K. J. McDonell. An inverted index implementation.

McGrew:2017:IDH

McIlroy:1963:VMF

McIlroy:1982:DSL

McKenney:1989:HSEa

McKenney:1989:HSEb

McNichol:2003:HTM

Markowsky:1978:AUC

Mahapatra:1997:SGL

Macchetti:2005:QPH

Mehlhorn:1977:EA

Mehlhorn:1982:PSP

Mehlhorn:1984:SS

Mehlhorn:1986:DEA

Meijer:1995:HFB

Mekouar:1983:EPD

Miranda:2014:RSE

Mendelson:1982:AEH

Mennink:2012:OCS

Mennink:2017:OCS

Mergenthaler:1972:HCT

Merkle:1990:FSO

Merkle:1990:OWH

MeyerAufDerHeide:1993:HSS

Friedhelm Meyer Auf Der Heide. Hashing strategies for simulating shared memory on distributed memory

Mor:1982:HCM

Manolopoulos:1992:AHF

Munoz:2004:CRS

Mueller:2006:SMG

Mochizuki:2000:ERA

McKenzie:1990:SHA

Mou:2013:CBC

[MHT+13] Luntian Mou, Tiejun Huang, Yonghong Tian, Menglin Jiang, and Wen Gao. Content-based copy detection through multimodal feature representation and temporal pyramid matching. ACM Transactions on Multimedia Comput-
REFERENCES

Machii:1984:HMF

Micciancio:2002:ICH

Maabreh:2018:MHT

Miller:1985:PHF

Miller:1987:STS

Miller:1995:RAC

Miltersen:1998:ECC

Miltersen:1999:CPC

Miyaguchi:1989:NHF

Mironov:2001:HFM

Mirrokni:2017:OOM

Mitra:1973:SHP

Mitzenmacher:2002:GHT

Mitzenmacher:2009:SOQ

Mittelbach:2012:HCS

[Arno Mittelbach. Hash combiners for second pre-

Mitzenmacher:2017:BBH

Mathew:2008:JBH

Muthusamy:2014:IFC

Michelogiannakis:2011:PCE

Mukherjee:2002:ECV

McAuliffe:1989:PIC

Kevin P. McAuliffe and Peter M. Kogge, editors. Proceedings of the 1989 International Conference on Parallel Processing, August 8–12, 1989, volume 1. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
REFERENCES

REFERENCES

Mochizuki:1998:SSA

Maurer:1975:HTM

Mackert:1986:ROV

Manolopoulos:1994:PLH

Myllymaki:1995:DTJ

Martin:1994:PHB

Maurer:1975:HTM

Mackert:1986:ROV

Manolopoulos:1994:PLH

Myllymaki:1995:DTJ

Martin:1994:PHB

Maurer:1975:HTM

Mackert:1986:ROV

Manolopoulos:1994:PLH

Myllymaki:1995:DTJ

Martin:1994:PHB

[MMSY94] A. N. Mourad, R. J. T. Morris, A. Swami, and H. C. Young. Limits of parallelism in hash join algorithms. *Performance evaluation*, 20(1...
Mehlhorn:1990:BOD

Mehlhorn:1999:LPC

Motwani:2008:LBL

Mansour:1990:CCU

Moran:2007:DHI

Mendel:2012:CAR

Mansour:1990:CCU
REFERENCES

clustering. Appears to be the first publication where the word ‘hashing’ appeared, although it was in common use at the time. Knuth [Knu73, p. 542] found only one earlier printed use of the word, in a 1961 unpublished memorandum by W. W. Peterson.

Moran:1983:CDO

Morris:1983:SST

Motoyoshi:1984:HAC

Midkiff:1990:ICO

Mennink:2012:HFB

Mennink:2016:EPH

Martinez:2009:DFN

[MPL09] Christopher J. Martinez, Devang K. Pandya, and Weiming Lin. On designing fast nonuniformly distributed IP address lookup

Malensek:2014:EGG

Moody:2016:ISF

Mendel:2007:CTH

Mendel:2010:RAR

Mitchell:1989:RHF

Mikkilineni:1988:ERJ

Murthy:1988:SSC

Malard:2002:DDH

Montuschi:2005:PIS

Mashatan:2009:ITC

Makrushin:2012:IRB

Morawiecki:2013:SBP

Pawel Morawiecki and Marian Srebrny. A SAT-based

Maier:2016:CHT

Maier:2019:CHT

McCleod:1990:VLD

Malhotra:1996:SED

Mouha:2012:CIR

MeyeraufderHeide:1996:ESR

REFERENCES

3975 (print), 1879-2294 (electronic).

Meichun:1990:COL

Maitin-Shepard:2017:ECM

Morrison:1987:QAH

Maier:2019:DSE

Ma:2020:TDE

March:2011:ROD

Mullan:2016:HHF

[Ciaran Mullan and Boaz Tsaban. SL₂ homomorphic hash functions: worst case to average case reduction and short collision search. *Designs, Codes,

Madria:2000:MLT

Muehlbacher:2004:FHT

Mullin:1972:IIS

Mullin:1981:TCL

Mullin:1984:UDH

Mullin:1984:UDH

Mullin:1985:SSE

REFERENCES

0302-9743 (print), 1611-3349 (electronic). URL

REFERENCES

This paper claims the discovery of order-preserving perfect hashing methods that run in linear time.

Majewski:1996:FPH

Anitta Patience Namanya, Irfan U. Awan, Jules Pagna

Navathe:1985:PAI

Nakano:2011:AMI

Narayanan:2008:DAQ

Nguyen:2006:MDH

Nishihara:1974:FTQ

REFERENCES

REFERENCES

Nielsen:2016:SLF

Nakayama:1988:HPJ

Nakajima:2002:PAP

Nanevski:2008:YDT

Ntantogian:2019:EPH

[NMX19] Christoforos Ntantogian, Stefanos Malliaros, and Christos Xenakis. Evaluation of

REFERENCES

[Neven:2009:HFR] Gregory Neven, Nigel P. Smart, and Bogdan Warinschi. Hash function requirements for Schnorr sig-

Naor:2001:APH

Ntarmos:2009:DHS

Nguyen:2012:LRS

Naor:2007:NAP

Nie:2013:CHB

Norton:1985:PMO

Naor:1989:UOW

Naor:1989:UOH

Nyberg:1996:FAH

Ouksel:1989:CML

Oaks:1998:BSH

Oligeri:2011:REA

Anonymous:1989:DQO

Olagunju:1994:DPH

Olagunju:1994:ILS

Amos Olagunju and Rashaunda Gourdine. Innovative least squares algorithms for perfect hashing. Journal of the
REFERENCES

Ordonez:2014:BVS

Oberschelp:1980:IID

Okamoto:1988:DMS

Omiecinski:1989:HBI

Omicinski:1991:AHJ

Omicinski:1992:AHJ

Ollmert:1989:DD

Olsen:1969:RRF

Omiecinski:1988:CSS

Omiecinski:1989:CFC

Omiecinski:1989:HJP

Omiecinski:1991:PAL

Omar:2012:HEC

Omar:2017:DHS

Odaira:2010:ERT

Rei Odaira, Kazumori Ogata, Kiyokuni Kawachiya, Tamiya Onodera, and Toshio Nakatani. Efficient runtime tracking of

Ostlin:2003:UHC

Orenstein:1983:DHF

Jack A. Orenstein. A dynamic hash file for random and sequential accessing. In Schkolnick and Thanos [ST83a], pages 132–141. CODEN VLDBDP.

Olken:1990:RSH

Ouskel:1983:SMM

Ostafe:2010:PNH

Omar:2014:FHF

Sami Omar and Houssem Sabri. Fast hash functions and convolution product. *Journal of Mathematics*
Ou:2010:DIH

Ou:1991:HSU

Otk91

Otken:1991:HF

Otken:1985:MDH

Otoo:1984:MFD

Ekow J. Otoo. A mapping function for the directory of a multidimensional extendible hashing. In Dayal et al. [DSS84], pages 493–506.

Otoo:1985:MDH

Otoo:1986:BME

Ootto:1988:LDG

Ootto:1988:LBC

Ouksel:1983:OPD

Ostrovsky:1994:IHSa

Ostrovsky:1994:IHSb

ODonnell:2014:OLB

Oxborrow:1986:PFB

Pouchol:2009:HHS

Pramanik:1993:MDH

Pagli:1985:SAH

Pag:1999:HDE

Pag:2001:CPC

Pag:2006:CHU

Pag:2018:CLS
REFERENCES

This is a plagiarized article. See http://www.sics.se/europar95/plagiarism.html for details. The original work from which the material in this paper was stolen is due to Thomas J. Sheffler and Randal E. Bryant, CMU report MCU-CS-92-172.

[Pat90] Michael S. Paterson, editor. Automata, Languages, and Programming: 17th International Colloquium, War-
REFERENCES

\[\text{Patarin:1994:HFA}\]

\[\text{Patarin:1995:CID}\]

\[\text{Papadimitriou:1980:PBH}\]

\[\text{PB80}\]

ISSN 0164-0925 (print), 1558-4593 (electronic).

\[\text{PBD97}\]

\[\text{PBDD95}\]

REFERENCES

Pagneel:1989:CHB

Preneel:1995:UPR

Pang:1993:PPHa

Pang:1993:PPHb

Park:2015:NSH

Patel:1994:AMH

Park:1995:EHB

Jong Soo Park, Ming-Syan Chen, and Philip S. Yu.

[ACM:1991:PF1]

[PDI91]

[Pea90]

[Pea91]

[Pei82]

[Per73]

[Pes96]

[PES+12]

Josep M. Pujol, Vijay Erramilli, Georgos Siganos, Xiaoyuan Yang, Nikolaos

[Pey15]

Peterson:1957:ARA

[Pet57]

Petersen:1983:AVV

[Pet83]

Petersson:2013:MDL

[Pet13]

Peyrin:2015:CAG

[Pey15]

Petersson:2013:MDL

[PF85]

Pramanik:1988:OCR

[PF88]

Papadakis:2009:HBO

REFERENCES

Perrizo:1995:DDV

Patil:2017:HHA

Preneel:1990:ATH

Preneel:1990:PMD

Preneel:1991:CRH

Preneel:1992:CSH

Preneel:1993:ATH
B. Preneel, R. Govaerts, and J. Vandewalle. An attack on two hash functions by Zheng-Matsumoto-Imai. Lecture Notes in CS,
REFERENCES

388

A. J. D. Pawson and F. R. A. Hopgood. Correspondence: Hashing techniques for table searching. The Com-
Paul:2012:NPB

Park:2001:VNH

Pippenger:1979:ACT

Pippolini:1994:JIH

Pittel:1987:PAC

Piwowarski:1985:CBS

Panneerselvam:1990:RSA

Panneerselvam:1988:NAS

Pflug:1987:LPN

Plachy:1989:PIC

Popic:2018:FMB

REFERENCES

[Pla98] Patricio V. Plauger. Approx-

Ponder:1987:AHA

Pagh:2008:UHC

Pagh:2009:LPC

Panwar:2021:FES

REFERENCES

Preneel:1997:HFM

Preneel:1997:MHF

Preneel:1999:SCH

Price:1971:TLT

Pritchard:1995:SSQ

Peyravian:1998:PHV

Pontarelli:2016:PDP

Provenzano:1989:HTM

Prodinger:1994:ACP

Helmut Prodinger. An asymptotic comment on a paper by A. Analyti and S. Pramanik: “Performance analy-

Prokopec:2018:CTC

Paiva:2015:ASS

Peyravian:1999:HBE

Pieprzyk:1993:DHA

Pavlou:2008:FAD

Porat:2012:CHV

Pieprzyk:1995:ACA

Pramanik:1990:HSK

Putze:2009:CHS

Pinkas:2018:SPS

Patrascu:2010:IRL

Pong:2010:SSS

Patrascu:2011:PST

Pong:2011:HRP

Patrascu:2012:PST

Pong:2012:CLT

Patrascu:2013:TTH

Patrascu:2016:IRL

REFERENCES

6325 (print), 1549-6333 (electronic).

Papamanthou:2016:AHT

Pirotte:1985:VLD

Panti:1992:MOH

Preneel:1995:MBF

Pasini:2007:HSW

Poblete:2019:ARH

Peikert:2008:LTF

Pan:2013:CHF

Ping Pan, Licheng Wang, Yixian Yang, Yuanju Gan, Lihua Wang, and Chengqian Xu. Chameleon hash functions and one-time signature schemes from inner automorphism groups. *Fundamenta Informaticae*, 126(1):103–119, January 2013. CODEN FUMAAJ. ISSN 0169-2968 (print), 1875-8681 (electronic).

Pagh:2010:COH

Pagh:2014:COH

Pittel:1988:STE

Quittner:1981:CSH

Quinlan:2002:VNA

[Quisquater:1989:BHF]

[Quisquater:1990:BHF]

[Quisquater:1995:ACE]

[Quisquater:1997:ASS]

[Qi:1998:DAH]

[Qu:2016:CHT]

[QZD+18] Lianyong Qi, Xuyun Zhang, Wanchun Dou, Chunhua Hu, Chi Yang, and Jinjun Chen. A two-stage locality-sensitive hashing based approach for privacy-preserving mobile service recommendation in cross-platform edge environment. *Future Generation Computer Systems*, 88(??):
Radke:1970:UQR

Radue:1983:DIS

Radhakrishnan:1992:IBC

Richter:2015:SDA

Ragde:1993:PSC

Roman:2007:SCP

Ramakrishna:1987:CPH

0361-0926 (print), 1532-415X (electronic).

Ramakrishna:1988:EPM

Ramakrishna:1988:HPA

Ramakrishna:1989:ARP

Ramakrishna:1989:PPB

[Ram89b] M. V. Ramakrishna. Practical performance of Bloom filters and parallel free-text searching. *Communications of the Association for Computing Machinery*, 32(10):1237–1239, October 1989. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). *Computing Reviews*: “This short communication deals with a special kind of hash function called ‘Bloom filters.’ These filters are used, for example, to search a differential file containing updates to a main file.”.

Ramakrishna:1992:SPH

Ramakrishna:1997:KFM

[RB01] Vincent Rijmen and Paulo S. L. M. Barreto. The WHIRLPOOL hash function. World-Wide Web doc-
REFERENCES

Rigoutsos:1994:SPS

Rao:2011:STE

Regnier:1981:AHT

Regnier:1982:LHG

Regnier:1985:AGF

Regnier:1988:THA

Reif:1988:AWC

Reid:2003:SSE

[Rei03]

Remy:1992:ERE

[Rém92]

Reyes:2014:FKM

[Rey14]

Ramakrishna:1997:EHH

[RFB97]

Richter:1989:HJA

[RG89]

Ramirez-Gutierrez:2012:IRT

[RGNMPM12]

Raghavan:1990:RIM

[RH90]
REFERENCES

Computer Society Press order number 2056. IEEE catalog number 90CH2916-5.

Rigoutsos:1992:MPM

Rigoutsos:1995:BAM

Risson:2009:TDR

Riehl:1989:CTS

Rivest:1974:HCA

Rivest:1974:AAR

Rivest:1976:OAK

73, Massachusetts Institute of Technology, Computer Science Lab., Cambridge, Massachusetts, July 1976. ?? pp.

REFERENCES

REFERENCES

Robinson:1986:OPL

Roe:1994:PSC

Roe:1995:PBC

Rogaway:1999:BHA

Rogers:2019:AFH

Rogers:2019:FPH

Rönnblom:2007:HEA

Johan Rönnblom. High-error approximate dictionary search using estimate hash comparisons. Software—Practice and Experience,
REFERENCES

Rosenfeld:1974:IPP

Rosenberg:1977:SRA

Ross:2006:EHP

Ross:2007:EHP

Rosenfeld:2012:OCC

Ross:2021:TPS

Rotem:1989:CMH
REFERENCES

[RR90] ska Bystrica, Czechoslovakia, August 27–31, 1990: Pro-

[RR08] ceedings*, volume 452 of *Lec-

[RR05] C. Rechberger and V. Rij-

[RRR99] delberg, Germany / Lon-

REFERENCES

REFERENCES

Ramamohanarao:1989:PMRb

Ramamohanarao:1990:MAH

Ramamohanarao:1992:PRU

Raghavan:1981:ELS

Raite:1987:PTC

Ruchte:1987:LHP

Ramakrishna:1989:DEH

REFERENCES

Russell:1995:NSC

Ruzic:2008:UDD

Rijmen:2002:PCP

Rickman:1973:SIL

Rigoutsos:1997:GEI

Ramaswamy:2007:HSP

Reyhanitabar:2007:NIM

Rabitti:1990:DST

[RZ90] F. Rabitti and P. Zezula. A dynamic signature technique

Ramakrishna:1997:PPS

Sohrabi:2017:PSS

Saarinen:2012:CAG

Sabourin:1994:CCP

Sacco:1986:FTE

G. M. Sacco. Fragmentation:
REFERENCES

Samson:1976:TOA

Samson:1981:HTC

[Sav90] Jacques Savoy. Statistical behavior of fast hashing of variable length test strings. SI-
REFERENCES

Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, Yarik Markov, Alex Pe.

Shekita:1990:PEPa

Shekita:1990:PEPc

Schauer:1976:PA

Sheuermann:1979:OHH
Peter Scheuermann. Overflow handling in hashing tables: a hybrid approach. Information system, 4(3):183–194, ???. 1979. CODEN INSYD6. ISSN 0306-
REFERENCES

4379 (print), 1873-6076 (electronic).

[Sch91a] Bruce Schneier. One-way hash functions: Probabilistic algorithms can be used for general-purpose pattern matching. *Dr. Dobbs Journal*, 16(9):148–151, September 1, 1991. CODEN DDJOEB. ISSN 1044-789X.

REFERENCES

REFERENCES

Sacks-Davis:1985:PMK

[SD85] Ron Sacks-Davis. Performance of a multi-key access method based on descriptors and superimposed coding techniques. Information system, 10(4):391–403, 1985. CODEN INSYD6. ISSN 0306-4379 (print), 1873-6076 (electronic). Hashing algorithm used to create descriptors for file indexing; this extends the author’s earlier work [SDR83b].

Schneider:1989:PEFc

Schneider:1989:PEFb

Schneider:1989:PEFa

Schneider:1989:PEFb

Schneider:1990:TPCb

[SD90a] D. Schneider and D. DeWitt. Tradeoffs in processing complex join queries via hashing in multiprocessor database machines. In McLeod et al. [MSDS90], page 469. ISBN 1-55860-149-X. LCCN ???
REFERENCES

Schneider:1990:TPCa

Stern:1995:IPV

ACM:1990:PFA

ACM:1991:PSA

Shih:1991:CDC

Sacks-Davis:1987:MAM

Sajadieh:2012:RDL

Sajadieh:2015:ERD
[SDMS15] Mahdi Sajadieh, Mohammad Dakhilalian, Hamid Mala, and Pouyan Sepehrdad. Efficient recursive diffusion layers for block ciphers and
References

Sacks-Davis:1983:ILH

schemes. In Barter [Bar83], pages 27:1–27:10. Published as Australian Computer Sci-
ence Communications; vol 6, no. 1.

Sacks-Davis:1983:TLS

[SDR83b] R. Sacks-Davis and K. Ramamohanarao. A two level superimposed coding scheme
ISSN 0306-4379 (print), 1873-6076 (electronic). See [SD85].

Sorenson:1975:DDH

hashing functions and their characteristics. In 19 ACM *SIGMOD Conf. on the Man-
agement of Data*, King(ed), page ?? ACM Press, New York, NY 10036, USA, May
1975.

Schellhorn:2014:SCP

Gerhard Schellhorn, John Derrick, and Heike Wehrheim. A sound and complete proof
 technique for linearizability of concurrent data structures. *ACM Transactions on Compu-
(electronic).

Spirovsk:2021:OCC

K. Spirovsk, D. Didona, and W. Zwaenepoel. Optimistic causal consistency for geo-
replicated key–value stores. *IEEE Transactions on Parallel and Distributed Systems*,
32(3):527–542, March 2021. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183
(electronic).

Smith:1989:ITD

International Conference on Data and Knowledge Systems for Manufacturing and Engineer-
ing (Oct 16–18 1989: Gaithers-
bury, MD, USA), pages 12–18. IEEE Computer Society Press, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 1989. IEEE catalog number 89CH2806-8.
REFERENCES

REFERENCES

Sherkat:2019:NSE [SG76b]

Simon:1972:APN [SG88]

Sassa:1976:HMF [SG76a]

Shneiderman:1976:BSS

Shasha:1988:CSS

Shangguan:2016:SHF

Steinwandt:2000:WHS

Sharma:2009:DAC

Shaolan:2011:EDE

Seiden:1992:FSO

Seiden:1994:FSO

Shapiro:1986:JPD

REFERENCES

[Shi17] Hyotaek Shim. PHash: a memory-efficient, high-

REFERENCES

Sockut:2009:ORD

Siegel:1989:UCF

Siegel:2004:UCE

Silverstein:2002:JIS

REFERENCES

REFERENCES

Storer:2012:DDC

Sriram:1991:VPC

Scionti:2018:EMM

Sarkar:2019:CKN

Snader:1987:LIF

Safavi-naini:2005:MH

Snellen:1992:ITS

Safavi-Naini:2006:SSS

Soloviev:1993:THA

Somervuo:1999:RHA

Soukup:1992:SCL

Spetka:1989:THJ

Seberry:1990:ACA

Sadeghiyan:1991:COW

Satuluri:2012:BLS

Shaikh:2021:STB

Spector:1988:CFD

Spetka:1992:DAD

Safkhani:2014:CCA
See [CJP12].

Sprugnoli:1977:PHF
REFERENCES

0001-0782 (print), 1557-7317 (electronic). This is the first discussion on perfect hashing; describes heuristics for constructing perfect hash functions. See comments in [AA79a].

REFERENCES

REFERENCES

Schmidt:1990:ACH

Schmidt:1990:SCO

Schmidt:1992:GPH

Sarkar:2001:PAE

Shalev:2006:SOL

Smith:2015:BPF

Shpilrain:2016:CLF
Vladimir Shpilrain and Bianca Sosnovski. Compositions of linear functions and applications to hashing. Groups, Complexity, Cryptology, 8 (2):155–161, November 2016. CODEN ???? ISSN 1867-
REFERENCES

1144 (print), 1869-6104 (electronic).

[Schkolnick:1983:ICV] Mario Schkolnick and C. Thanos, editors. 9th International
REFERENCES

REFERENCES

REFERENCES

[Stu82] Gisela Stumm. Untersuchung zu mehrfachattribut-zugriffsv erfahren fuer datenbanken. Mas-
REFERENCES

Sun:2020:RRL

Szymanski:1985:HTR

Tenenbaum:1981:DSU

Szymanski:1986:DSU

Tai:1979:IPT

REFERENCES

Tang:1993:URH

Tang:2004:AHR

Trinder:2017:SRI

Tang:2013:TOH

Tang:2020:VHD

Turau:1993:ETC

Terashima:1987:EPL

Tenenhaus:2010:GAN

Tomasic:1997:DSE

Tharp:1988:FOP

Thorup:2000:ESU

Thorup:2013:STF

Thorup:2017:FPH

Taylor:1997:AHN

Tang:2018:PIH

Tao:2012:HCG

Thakkar:1985:VAT

Tanaka:1988:HSS

Tran:2007:FBC

[TK07] Thinh Ngoc Tran and Surin Kittitornkun. FPGA-based
REFERENCES

REFERENCES

Tong:2015:HTS

Taniar:2002:PSH

Trainiter:1963:ARA

Thom:1986:SAD

Trono:1992:UPC

John A. Trono. An undergraduate project to compute minimal perfect hashing functions. SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education), 24(3):??, 1992. CODEN SIGSD3. ISSN 0097-8418 (print), 2331-3927 (electronic).

Trono:1995:CTS

John A. Trono. A comparison of three strategies for computing letter oriented, minimal perfect hashing functions. SIGPLAN Notices, 30(4):29–35, April 1, 1995. CODEN SINODQ. ISSN 0362-1340 (print), 1558-1160 (electronic). This paper introduces a simple modification that produces dramatic speedups to the algorithms of Cichelli [Cic80b] and Cook and Oldehoeft [CO82b].

Trono:2006:OTL

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>

Domenico Talia and Paolo Trunfio. Enabling dynamic querying over distributed hash tables. Journal of Parallel and Dis-
REFERENCES

Tian:1993:NHF

Torenvliet:1983:ROT
[Tv83] Leen Torenvliet and P. van Emde Boas. The reconstruction and optimization of trie hashing functions. In Schkolnick and Thanos [ST83a], pages 142–156. CODEN VLDBDP.

Teuhola:1991:MSA

Tartary:2007:CPH

Tang:2018:CIC

Tschach:1977:TCS

Tang:2011:SFB
[TWZW11] Zhenjun Tang, Shuozhong Wang, Xinpeng Zhang, and Weimin Wei. Structural feature-based image hashing and similarity metric for tam-

[Tym96]

Tarjan:1979:SST

[TYSK10]

Tien:1991:CHB

[TYSK91]

Tang:2003:EDL

[TY03]

Tyma:1996:TJP

[TY91]

Tao:2010:EAN

[TYSK10]

Tang:2015:EGF

[TYSK15]

Tillich:1994:GHF

REFERENCES

Valduriez:1987:JI

Valiant:2015:FCS

van73

Vandery:1992:FHN

Vaudenay:1992:FHI

Vaudenay:1993:FHI

REFERENCES

REFERENCES

REFERENCES

CODEN ATDSD3. ISSN 0362-5915 (print), 1557-4644 (electronic).

Ventae:1984:FTR

Ventae:1986:GDS

Vo:1991:FHF

Vidick:1990:PIC

Viola:2005:EDI

Vitter:1980:TCH

Vitter:1980:ACHa

Vitter:1980:ACHb

REFERENCES

Vitter:1981:SMS

Vitter:1981:DAH

Vitter:1982:DAH

Vitter:1982:ICH

Vitter:1983:ASP

Vitter:1985:EIO

Vitter:2001:EMA

Varghese:1987:HHT

[VL87] George Varghese and Tony

R. von Mises. Über Aufteilungs- und Besetzungswahrscheinlichkeiten. (German) [on partitioning and occupation probabilities]. Istanbul Üniversitesi Fen Fakültesi Mecmuasi, 4 (??):145–163, 1939. See also [BC39].

REFERENCES

vanTrung:2014:TBF

Valduriez:1984:MHS

VanWyk:1986:CHL
REFERENCES

CODEN ALGOEJ, ISSN 0178-4617 (print), 1432-0541 (electronic).

vanOorschot:1994:PCS

Vadhan:2012:CPS

Wagner:2000:CYL

Waldschmidt:1974:OIC

Walker:1988:CSP

Wang:1984:NOT

Wang:2005:VCA

Wang:2014:DRG

REFERENCES

Warren:1986:GHR

Warren:2014:IPH

Wu:1987:ASM

White:1990:CSA

Wu:2003:HHS

Wang:2016:CNC

Wegman:19979:NCA

Wegman:1981:NHF

Wu:1994:AGH

Walker:2007:PHF

Weng:2012:RIC

Wolf:1991:EAP

Webb:1972:DAE

Weems:1988:SPA

Wee:2007:OWP

REFERENCES

Wiener:1986:EVH

Wiederhold:1987:FOD

Wiedermann:1987:SA

Wiederhold:1989:DD

Wiener:1999:ACC

Williams:1959:HI1

Williams:1971:SUM

Willard:1978:NDS

Dan E. Willard. New data structures for orthogonal queries. Technical Report TR-22-78, Centre for Research in Computing Technology, Harvard University,
Cambridge, MA, 1978. ?? pp. Published in [Wil85a].

Dan E. Willard. New data structures for orthogonal range queries. *SIAM Journal on Computing*, 14 (1):232–253, February 1985. CODEN SMJICAT. ISSN 0097-5397 (print), 1095-7111 (electronic). This paper, together with an earlier report [Wil78], present seven data structures for orthogonal range queries which are more efficient than earlier data structures used for this purpose, such as box array hashing.

Edscott Wilson García. GNU libdbb (disk-based hash ta-

Winkowski:1978:SMF

Winternitz:1983:POW

Winternitz:1984:SOH

Winters:1990:MPHa

Winters:1990:MPHb

Wirth:1975:AD

Wirth:1983:AD

Wirth:1986:ADS

REFERENCES

REFERENCES

Woelfel:2005:BOS

Woelfel:2006:CMO

Woelfel:2006:MEM

Wogulis:1989:SAS

Wolverton:1984:PHF

Wolfowicz:1993:SPR

Wolfowicz:1993:SPS
William Wolfowicz, editor. SPRC 93: proceedings of the 3rd Symposium of State

REFERENCES

Wright:1983:SFS

Wegbreit:1976:PPC

Warren:1993:PHO

Whiting:2003:MPH
REFERENCES

Wang:2013:PPC

Wang:2012:PAC

Wei:2016:HTH
Ying Wei, Yangqiu Song, Yi Zhen, Bo Liu, and Qiang Yang. Heterogeneous translated hashing: a scalable solution towards multi-modal similarity search. *ACM Transactions on Knowledge Discovery from Data (TKDD)*, 10(4):36:1–36:??, July 2016. CODEN ????

Wang:2013:GNL

Wu:2007:ASO

Wu:2009:REL
REFERENCES

Xin:2013:LVR

Yamane:1985:HJT

Yang:2005:TFN

Yang:2010:PII

Yao:1978:VLD

Yao:1980:NAE

Yao:1981:STS

Yao:1983:LBP

IEEE Service Cent. Piscataway, NJ, USA.

[YBQZ17] Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang. A fast, small, and dynamic forwarding information base. *ACM SIGMETRICS Perfor-
REFERENCES

Yu:2018:MEU

Yang:2012:RHA

Yo:1993:OPA

Yang:1984:DPH

Yang:1985:BMC

Yuen:1986:DFO

Yuen:1986:DFS

Tak-Sun Yuen and David Huang-Chang Du. Dynamic file structure for partial match retrieval based

Yang:1983:SPH

Yen:1991:MPH

Yu:2010:DRF

Yuan:2012:EMR

Yang:2019:DSA

Yasuda:1989:PAM

REFERENCES

Yum:2010:FVH

Yao:1983:SSG

Yi:2009:SSG

Yang:2019:NAK

Yen:1990:HTS

Yi:1997:NHF

YLSZ19

YL04

YL97

YL97

YL04

YKLH10

YkWY83

YL97

YL97

[YSEL09] Dae Hyun Yum, Jae Woo Seo, Sungwook Eom, and Pil Joong Lee. Single-layer fractal hash chain traversal with almost optimal complexity. Lecture Notes in...
REFERENCES

Yao:2005:HBL

Yang:2011:NHB

Yang:1997:HFM

Yu:2006:SST

Ytrehus:2006:LFN
REFERENCES

Zamora:1980:ADC

Zhang:2006:CFS

Zhu:2012:JLS

Zeng:2019:PKE

Zollhofer:2015:SBR

Zobrist:1977:DCO

REFERENCES

Zeller:1991:AHJ

Zemor:1991:HFG

Zeller:1990:AHJ

Zeller:1990:HJA

Zhang:2005:ILL

Zuo:2018:WFC

REFERENCES

Justin Zobel, Steffen Heinz, and Hugh E. Williams. In-memory hash tables for accumulating text vocabularies. Information Processing Letters, 80(6):271–277,

[XJZ94b] X. Zhao, R. G. Johnson, and N. J. Martin. DBJ—a dynamic balancing hash join algorithm in multiprocessor database systems. In Jarke et al. [JB94], pages
Zhao:1994:DDBc

Zee:2008:FFV

Zhang:2012:LLF

Zhou:2012:TSC

Zhang:2018:AKS

Dongxiang Zhang, Yuchen Li, Xin Cao, Jie Shao, and Heng Tao Shen. Augmented keyword search on spatial entity databases. VLDB Journal: Very Large Data Bases, 27(2):225–244, April 2018. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

Zhu:2020:FMM

Zhang:2007:BHR

Zhang:2018:LFT

Zhang:2012:HSP

Zhang:2013:BET

Zheng:1991:SPO

Zhu:2016:LEI

Zhou:1993:DAH

REFERENCES

507

Zhou:2008:RTS

Zezula:1991:DPS

Zukowski:2021:TPO

Zhang:2005:ISS

Zhang:2010:LCH

Zhang:2014:FFS

Yong-Dong Zhang, Yu Wang, Sheng Tang, Steven C. H.

REFERENCES

