A Bibliography of Publications on Hashing Algorithms

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

22 November 2019
Version 2.303

Title word cross-reference

#2 [Cer85].
10 [GLM+10]. 11 [SY11]. 2 [EAA+16, GG92, HD72]. 2n [QG89, QG90].
3 [CBA94, Fly92, GG92, GKM94, LMJC07, LDY+16, WSSO12]. 5/8 [Sch11]. $\mathbf{862m}$
[Nic17]. 64 [LK16]. * [LNS93]. ^ [Omi88, Omi89a]. MT [HRB13]. 2
c [SWQ+14]. d [FPS17, PRM16]. f [LG78]. H^2 [DRS12]. H_2A [CBB05]. K
[Yuv75, APV07, CL85, CC91, CLC92, DKRT15, Die96, FPS17, Gui78, HC14, LLG+17, PT10a, PT16, RRS07, SS90b]. L
[OOB12]. L_p [CJ19, HFF+17]. SL2(F2n)
[SGGB00]. N [BRM+09, BS91b, BS91a, CM01, Gir87, Ven86, WS93, War14, Coh97, Coh98, LHC05, QG89, QG90]. $O(1)$ [FKS84].
O(log log n) [MN90]. O(log W) [LS07b].
O(N) [HG77, MN90]. p^n [Ack74]. π
[FFGL10]. q [OWZ14]. SL2 [MT16]. Z/p
[Mue04].

-approximate [SWQ+14]. -ary
[CC91, CLC92, Gui78, RRS07]. -Bit
[QG89, QG90, LK16, LK11]. -Body
[WS93, War14]. -codes [Bie95]. -dimension
[LHC05]. -dimensional [Yuv75].
-Functions [OOB12]. -gram
[Coh98, Ven86]. -Grams [Coh97, BRM+09].
-Hash [BS91b, BS91a]. -Independence
[PT16, PT10a]. -mer [HC14]. -min-wise
[FPS17]. -Nearest [CL5]. -partitions
[DKRT15]. -Pipeline [PRM16]. -probe
[SS90b]. -Round [GLM+10, SY11]. -tree
[Omi89a, Lyo83]. -trees [CM01].
1976 [Jen76]. 1979 [Ng79]. 7th
[ARA94, Bar83, CHK06, USE00b, Win78].

[CP87]. 1988 [AM88a]. 1989
[ACM89a, BV89, BF89, Bra90, QV89, CP91c].

7-13 [ACJT07]. 1990 [AKF90, A+90,
Dam90a, Dam91, IEE90, MV91c, SP90]. 1991
[ACM91a, Dav91, Fei91, HL91, IEE91a,
IRM93, ACM91c]. 1992
[Bri92, BW92, FNY92, IEE92a, KLT92,
Rue93, SZ93, Yua92]. 1993 [Ano93c, BRW93,
BJ93, CP87]. 1994 [ACM84a]. 1995
[IEE95, Lev95, QG95]. 1996
[Lak96]. 1999 [Wie99].

A. [Pro94]. Aarhus
[Dam90a, Dam91, NS82]. ability [DLM07].
abolishing [DS10]. Abstract [DP08,
EjKMP80, Lum73, SW87, THS97].
Abstraction [CL83, DL06, Hii88, LPSW03].
abstraction-safe [LPSW03]. Academic
[Cer85]. ACCEL [HKL04]. ACCEL-RATE
[HKL04]. accelerate [GK12b]. Accelerated
[Kri89, MW09, MWC12]. Accelerating
[HAK+16, TT82]. Acceleration [JM02].
Accelerator [FM91, TLLL09]. Access
[Ast80, BDPSN97, BM76, CF89a, Cla77,
Dum56, FNPS79, Fal85b, F+03, FP89b,
FKS84, GG74, HB89a, HB92, KR86b,
KR86a, KM88b, LK84, Lit84, LL86, LMR02,
MY79, Mul72, Ols69, Pet57, SD85, SDKR87,
SHRD09, Tra63, VB00, XHZ+19, YL04,
And88, Bay73b, CS93a, FPSS05, HB89b,
KFG15, Lar88b, Lin63, MBK00, Mil95,
ML95, RT89, TKT+89, ZO13]. access-pattern-driven [ZO13]. Accessed
[Ols69]. Accesses [Pan05]. Accessing
[Cha88, Ore83, FK89]. accommodation
[HOT2]. Accountable [XHZ+19].
Accumulated [Ny96]. accumulating
[ZHW01]. Accumulators
[CHK08, PTT16, CHK012]. Accuracy
[YWH09, HKL07]. Accurate
[PCV94, SL16, NTW09, TYSK10].
Achieving [Lar88b, Lyo85]. ACM
[ACM94d, ??69, ACM75c, ACM75b,
ACM75a, ACM76, ACM77b, LFP82,
ACM82, ACM83b, ACM84b, ACM85b,
ACM85a, ACM86b, ACM86a, ACM87,
ACM88a, ACM88b, ACM89b, ACM89a,
ACM89c, SDA90, ACM90, ACM91c,
ACM91d, ACM91a, ACM91c, ACM91e,
ACM96, ACM97a, ACM97b, ACM98,
ACM01, ACM02, ACM03a, ACM04, ACM05,
ACM07, ACM08a, ACM08b, ACM11,
ACM12, Ano92, BP92, BJ93, CLM89,
FMA02, GMJ90, Van10, HF13, IEE02,
Jen76, Kar98, LL08, Mat09, Nav85, Rie89,
ACM77a, Shm00, SW94b, Sto92, YR87,
ACM81, ACM91b, BV99, Lie81].
ACM-SIAM [ACM94d, SDA90, SDA91,
ACM97a, ACM05, ACM08a, Kar98].
ACM-SIGMOD [Nav85, Lie81, ACM81].
cross [SF88]. Action [BFR87]. Active
[GHJ+93, EVF06]. Actor [TCP+17]. Ad
[DPH08, JLH08, Cha12]. Ad-Hoc
[JLH08]. Ada [BCS89, ST86, Tro06, Wol84].
AdaBoost [LLZ10]. Adaptable [NHS84].
Adapted [RJK97]. Adaptive
[Ahn86, Ahn87, BK90, CBB05, CS02, Gri98,
HT88, IGA05, KR91, KL08, LB02, ORS09,
OL92, ST93, TC04, ZG9a, Zel91, GZ99,
HAK+16, LJ+13, LMLC14, TB91].
Adaptive-Hash [OL91, OL92]. add [FJ13],
add-rotate-xor [FJ13]. Addendum
[CV85]. addition [FJ13]. Additional
[LY72]. Additive [MBB12]. Address
[HP63, Jai89, Jai92a, Jai92b, Jaixx, LYD71,
Lum73, PK87, SR63, Tam85, TK85, Wil96,
LY72, MLP07, MPL09, RW07.

Addressable [RSK17, Koh80, BB07].

Addressed [SVCC01]. Addressing [Bay74, Bra84a, Bra86, Buc63, Fab74, Fel87, Gon77, Gon80, JC88a, Joh61, Kno71, Kno88, KR97, KRJ+80, Lit80, Litxxa, LH03b, LH03a, Mot84, MC86, Pet57, RJK79, SS62, Som99, Tra63, CKW93, Lin63, NK16, TT81, Van05, van73]. Adelaide [Bar83].

Adjusting [Pag85, Wog89]. Administration [Fis87]. Addressing [Bra85]. Advanced [Ano93d, CE95, HDCM11, Hsi83]. Advances [Buc82, AFK90, Bel00, Bra90, Bri92, CR83a, CP87, Cop95a, Cop95b, Dam90a, Dam91, Dav91, De 95, Fei91, Fra04, GG95, He94, IRM93, JB94, LC06, MV91c, PSN95, QV95, Ruc93, SP90, SZ93, Sho95, Sto93, Van06, Wie99, Yun02].

Advantage [WSSO12]. Adversaries [LN93]. Advisor [Cer85]. Aegean [Rei88, Rei88]. Aeronautical [KCF84].

Aeronautics [Fis87]. Aeronautical [KCF84]. AES [ABO+17, BOY11, BOS11, GK98, Sasi11, JNPP14]. AES-like [JNPP14]. affects [HL05]. Again [DRS12]. Against [DL17, ASBdS16, JL14, JG95, MSP12, Sho00b]. Age [Cro98]. Agent [BSH12, DF01]. Aggregation [BLL16, PT10b]. Agreement [GB10, YLSZ19].

Agrometeorological [WM93]. Ahead [Meh90, Moh93]. AID [Dost87b]. Airport [ICD88, ICD90]. Akron [Fis87]. al. [SPLHCB14]. Alaska [IE01].

Albuquerque [ACM75c, ACM75a, IE91a]. Algebra [Bra84b, KTM083b, KTMo83c, EB91, FP89a]. Algebraic [ACM94d, EjKMP80, Jen76, Lak96, Lev95, Mar71, Ng79, WX01, vdHvH12, BF08, GS89, LS06, Pon87, Coh94, AAGG16]. Algebra [CT96]. Algol [FR69]. Algol-Based [FR69].

Algorithm [ANS97, ANS05, AKS78, ABH+73, AEMR09, BH90, BI87, Bou12, Boy98, CS85a, jCPB+12, CdM89, CW09, CT12, Coh98, CHM92a, CHM92b, CM93, Dev93, DCM18, FL73, FFPV84, FCHD88, FCHD89, FCH92, Fro81, Get01, Han90, HCKW90, HR96, HW08, HG77, HC13, Jea97, JRPK07, KMM+06, KRRJ07, Leb87, LLL11, LLW10, MXL+12, Man12, MHB90, MV01, MH00, NP91, OGG4a, OOG17, OL91, Omi91, OL92, Pop94, PCY95, Pes96, Pit87, PVM97, Reg82, SS01, Sol93, Spe92, Sta99, TRN86, TTY93, Toy93, TSP+11, WGO0, WWZ09, WZJS10, WS93, WVT90, Wil97, Wil71, WDYT91, WYT93, WL12, ZG09a, ZJM94b, ZPS00, ZPS93a, AS89, AT18, AGJA06, ATAK07, CLS95, CLW98, DHPK97, FH79, FHC89, Gai82, GBY90, HLL18b, HL94, ISO97, ISHH87, JMM+18, Kim99, LEHN02, MCO1, MKSi98, OT98, PCV94].

algorithm [SB95, SM94, Slob2b, WM93, War14, Wie86, YCJ12, ZJM94a, ZJM94c, ZPS93b, ACZ16, Sta94, TK91].

Algorithmen [Meh77, Meh86, Wir75, Wir83, Zel91].

Algorithmics [Mat93]. Algorithms [ACM94d, ACM91c, ACM97a, ACM05, ACM08a, ANS97, AHU83, Al06, Ano95a, AT90, AT94, AT95, AT91, BS97, Bur76b, CPF19, CV86, CRR18, CT96, DG85a, DG85b,(FH79, FHC89, Gai82, GBY90, HLL18b, HL94, ISO97, ISHH87, JMM+18, Kim99, LEHN02, MCO1, MKSi98, OT98, PCV94].
HKNW07, JDW09, KAN09, KAR98, KER92, KHA95, MPL09, MOL90a, MOL90b, MMSY94, NM02b, PBGV89, QM98, REI88, RLM87, RG89, Riv74a, SD98d, Sch91a, Sed83a, SG72, Vit82a, Vit01, SDA90, SDA91, A+90, AIOW11, CT10, DSZ07, EF12, FS09, FB92, HM08.

Algorithmus [BI87].

Alignment [BF11, BRM99, LPT12].

Alignments [BDD10].

All-in-one [SV18].

All-or-Nothing [SRY99].

Alley [Boy98, Get01, Jen97, Pes96, Wil97].

Allocating [CC91, TC93].

Allocation [CC87, CLC92, Du86, MJBD11, YCRY93, vdP72, vdP73, DW05, DW07, LCRY93, OOK+10, van73].

Allocations [ABKU99, PG95].

Allowable [Blo70].

Almost [BKST18, BM99].

Almost-Minimum [BM99].

Almost-Universal [BKST18].

Alpha [WM19].

Alternative [EMM07, HBL+10, IH95, SDA91, LS15].

Alternatives [GD87].

American [CHK06].

Among [CC91, GP08, KW94].

amortize [KM07].

amortized [ANS09].

Amplification [BBR88].

Amsterdam [AW89, CP87].

Analogue [Cai84].

Analyses [CS87].

Analysis [AP93, Ano95c, AD11, AM07, BYSP98, BR502, BRSS10, BM89, BM90a, BF08, CF92, CL85, CC87, Cha88, CLNY06, CN08, CV83a, CV84, Che84a, Che84b, CV85, CK94, CS93b, CDW+19, DR11, FC87a, FPV98, FM09, FMM11, GKG12, GL73, GB90, GKG1, GKG2, GLG+02, GS76, Gu76a, Gu76b, GS78, Gu78, Gur73, HMBN07, Hac93, Has72, Knt10, Lar80a, Lar80c, Lar82b, Lar83, Lar84, Lar85c, LCK11, Lev00, Lew82, LW97, LPP91, LPP92, LM93c, LUM73, MK11, MCW78, MM09, MY80, Men82, MP12, Mol90a, Mol90b, NM02a, NCFK11, NAK+15, Omi91, Pit87, PVM94, PV91, Pre93, PB85, RM88, Ram88b, Ram89a, Reg85, Reg88, Riv74b, SS62, Sch79b, SB93, SA97, Vek85, VP96, VP98, Vit80b, Vit80c, Vit83, VC87, WB90, Yao80, de 69, BGKZ12, BZZ12].

analysis [CK89, DS09a, DM03, DK12, GLC08, GM77, Gui76c, LLA15, LM88, MJ08, MS13, MSV87, PS08, Pro94, QM98, RAD15, SS90b, SLC+07, Sed83a, SGK09, WL07, ZBB+06].

Analyti [Pro94].

Analytical [Bat81, WTN07].

Analytics [LMD+12, WZY+18].

analyze [FJ13].

Analyzer [CRdPHF12].

Analyzing [Kue82b, PV97].

Anchorage [IEE01].

Anderen [DS84a].

Anfänger [Sch76].
KCB81, LC06, Lit77b, LLW10, Ngu06, Pip79, QV89, QG95, Rog95, Rog99, Rue93, Sas11, Sch01b, SZ93, SvEB84, Web72, WC94, Yao91, vW94, AT90, CKB83a, CO82a, De 95, GQ95, Kan90, QJ97, SRRL98, Zob70a, Zob70b.

Applications
[AT93, BKST18, BG07, Bur81, CZLC12a, CZLC12b, CK15, CJ19, DR06, Deb03, DK02, DK15, DadH92, DR09, Fel50, FM85, HK12b, IEE80a, IEE95, KMM +06, Kna89, Lev89, LDY +16, LK93, MK11, Pon87, RP91, Rey14, RNT90, Ter87, TZ12, TS76, TS84, Val15, Vau06, Wee12, WV79, WVT90, YZ00, AG10, ARA94, BZL +15, DFMR15, HKNW07, KKP92, LLC89, LK11, LG78, MJ08, MV91a, NY89b, NY89a, NX90, NW07, PW08, PSN95, RRS07, Shi17, SS16, Sie89, Ano92].

Applied
[CS93b, GNP05].

Applying
[Cer87, Cer88, CHY93, CLYY95, CHY97].

Approach
[BH93, CCH09, CK12, DL79, DC94, JV16, LT09, LQH18, MY80, RH95, Sch79a, SR98, SK98, Tsa96, ZO93, BJ07, BCCL10, DAC +13, GS89, JHL +15, NW07, PGV93e, PGV94, QZD +18, QD02, TK199].

APPROX
[DJRRZ06, DJNR09].

Approximate
[AEP18, A06, CCH09, CLP17, DP08, DHL +94, DHL +02, Hac93, HC14, MW09, RSK17, AI08, DC94, HFZ +15, L06, LCH +14, MBKS07, Rôn07, SWQ +14].

Approximately
[DT14, Ind01].

Approximating
[ASW87, Pob86].

Approximation
[DJRRZ06, AGJA06, DJRRZ06, DJNR09].

Approximative
[MYS12, APRICOD].

April
[ZO13].

April
[ACM75b, ACM81, ACM84b, Ano83, Ano94, CP87, Col93, Dav91, ICD91, ICD03, IEE01, Joy93, Lie81, QV89, SM12, USE90, WGM88].

arbitrary
[GHK +12, Arbor].

Arbres
[Kar82].

Architectural
[GLS17].

Architecture
[BCH87, HCJC06, Hsi83, Jou85, KP81, KCR11, KTMo83a, MK11, WG94, XBH06, ZHB06, ABO +17, BOY11, HLH13, LMP +08, MBK00, RG89].

Architecture-conscious
[ZHB06].

Architectures
[ACM91c, BRW93, DR92, Kie85, MKAA17, MKASJ18, RNT90, Bis12, BMQ98, GK05, HDCM11, adHM93, LLA15, NW07, PJM88, PJBM90, Rei88].

archival
[QD02].

Area
[DD15, ABO +17, BOY11, Lar84].

Area-Efficient
[DD15].

areas
[JY14].

ARES
[IEE05, MS05].

ARTH
[IEE05, MS05].

Arithmetic
[Die96, Ers58a, GSC01, HSK88, IEE05, MS05, ISO97].

Arizona
[Go92].

Arlington
[ACM94d].

Arrangement
[Riv76, Riv78].

Arrangements
[Yao85a, Yao95, Wee88].

Array
[Cob94, He87, YLB90, SV15b].

Arrays
[BGS96, CP91a, Gra94a, LPWW06, RS77, Ros77, CP91b, CLS18, RS75, Taj89].

Art
[Knu73, Knu75, Pref97b, Ruc15, PGV93c].

Artificial
[Kak93, ARA94, LLC89, BCR04].

ary
[C91, CLC92, Gui76c, Gui78, Gui78, RRS07].

ASCII
[HF91].

ASI
[Ano95c].

ASIACRYPT
[IRM93, LC06, PSN95].

ASIC
[MKAA17].

ask
[Gre95].

Aspects
[AH03, SS89a].

Assembly
[ASW07].

Assessment
[THY +18, DMP09].

Assignment
[LL92, Wil71].

Assignments
[Yao91].

Associated
[Sim98].

Association
[Chr84, Dam93, Dam94, Sim98].

Astronomical
[Gui89].

Asymmetric
[CLP17, BR94, CFN18].

Asymptotic
Asynchronous [KFG15, PAKR93].
Atlanta [ACM83a, ACM83b, USE00a].
Atlantic [Fre90, GMJ90, IEE84].
ATM [SMS91].
Atom [LC12].
Atomic [LMR02].
Attack [CJP12, CMP07, JLH08, KK06, Pey15, PGV90a, Sho00b, WW09, WFW12, ZF06, BSU12, CJP15, JG95, PGV93a, PGV93b, SXL16].
Attacking [CP95b].
Attacks [ABD16, BPBBLP12, Bih08, BKP09, CY06, DKS14, DL17, HKKK10, HRS16, JN10, KLP98, KV12, LK94, KKMS10, LLJ15, MRST10, MNS12, Sa12, SY11, Sas11, WYY05d, ZF06, BSU12, ITP14, KL95, KHK10, LS07a, MSP12, WYY05a, WS13].
Attribute [CS83b, CS87, GK94, GK95, HYH93, KG95, RSSD90, RL74, ASW87, HR93].
Attribute-Based [ZZM17].
Auction [SKM01].
Audio [MV01, YTJ06].
Audit [SK99, Ano93a].
Auditing [LRY15, DMB19, GB17].
Aufteilungs [vM39].
Aug [BD88].
Augmented [ZLC18].
August [ACM79, LFP82, ABA93, AW89, A+90, Bel00, Bri92, BW92, CRS83a, CGO86, Cop95a, Cop95b, DSS84, DSZ07, DJRZ06, DJNR09, Fra04, Gill77, GSW98, HH93, IEE95, Jen76, MK89, MDS90, PV85, PK95, RK99, Ros74, Riv90, Sho05, Sti93, WPY90, Wie99, JWS991, Yua92, Wu02].
AUSCRYPT [SP90, SZ93].
Austin [ACM87, ACM88a, ARA94, Nav85, USE00b].
Australia [Bar83, SP90, SZ93, DG96, MDS90, PSN95].
Australian [Bar83].
Autonome [Kui92, ICD93].
Authorial [Pet83, Dos78a].
Authenticated [Yas97].
Authentication [KV09, PTT16, Sar10, YLSZ19, BSNP96b, GL06].
Authentication [Abi12, AS96, BCK96a, BCK96b, BKST18, BAN89, CJP12, DCM18, EPR99, FIP02a, GI12, GBL94, HMB07, HCPISB12, JRPK07, JK11, KKRJ07, MRW89, NR12, PGV93f, QJJ97, RWSN07, Rog95, Rog99, Sho06, TW07, Tsu92a, WC81, WDF12, WS03, YY07, ACP10, CBB05, CJ10, HL12, KJ94, Kra94, KCL03, Ku04, KCC05, LLH02, LKY04, LW04, MS09, OCGD11, SPM17, Sta99, Sti91, Sti94b, SV06, Tsa08, Tsu92b, YRY04].
Auto [Lit77a].
Auto-structure [Lit77a].
Automata [ACM82, IEE74, LP04, LK93, MMC01, AGK+10, ADG+08, AMS09, ACJT07, dBvL80, CIM+05, Kui92, NS08, Pat90].
Automated [DGM89, ZZ83, Cer85].
Automated [DGM89, ZZ83, Cer85].
Automatic [GT80, Zam80, SB07].
Automation [IEE11a].
Automaton [DGV93, LLL11, MZ98, TLL07, TLL09].
automaton-matching [TLL09].
Automorphism [PYW13].
AutoPlacer [PRR15].
Auxiliary [DL12, FXWW17].
Availability [Eng94, ADF12, DFMR15].
Average [Bra84a, Bra85, Bra86, Gon77, Kut10, Reg81, TW91, MT16, THS97].
average-case [Mic02].
avoid [Pat94].
Aware [MZL19, PG17, BB07, HFZ+15, HFF+17, NDMR08].
awareness [Li10].
Awesome [Knu19].
AWOC [Rei88].

B [BD84, FK89, Omi88, Omi89a].
B-Trees [BD84, FK89].
Back [DSSW90a, DSSW90b].
Backoff [SHR09].
Backtracking [WKB07, YDS09].
Backward [CPP08, LLL11].
Backyard [ANS10].
Balance [IK92].
Balanced [AG10, ABKU99, DW05, DW07, Lep98, LB07, Oto86, Oto88b, PBS0, WZ12, FP82, TLL18].
Balancing [HC13, KJC11, Omi91, RSR12, RK01, Top92, TP95, ZJM94a, ZJM94b, ZJM94c, DSD95, SX08, WL07, WTN09, XCC09].
Balatonfured [Rue93].
Balls [CRSW11, CRSW13].
Bally [IEE84].
Baltimore [ACM90, FNY92, IEE02].
Band [Meh86, Sol93].
Band-Join [Sol93].
Bands [KCF84].
bandwidth [AS09].
BANG
[THS97]. **Banked** [vdBGLGL+16]. **Banská Bystrica** [Rov90]. **Barbara** [Bel00, Bri92, CRS83a, Cop95a, Cop95b, Fra04, Sho05, Sti93, Wie99, Yun02]. **Barcelona** [DJRZ06, CTC90, LSC91]. **Barreto** [FT12]. **Barrier** [MPST16]. **Base** [BCH87, CRdPHF12, Chr84, EE86, FM85, Gho77, Gho86, ISK+93, McP79, YBQZ17, Zam80, Mar75, Mar77, WLLG08]. **Based** [AK98, Abi12, AP08, Aum09, AS16, Bal96, BG92, Ben98, BDM+12, BHH+15, BRS02, BCS09, BRSS10, BI12, Buc82, Bur83b, Bur83c, But17, CCF04, CFP19, CSS83b, Cha84b, CS87, CW91, CdM89, CdM90, CW09, CTZD11, CZLC12a, CZLC12b, CZLC14, CT12, CDW+19, CadHS00, DGV93, Dae95, DK09, DFM85, DGM+93, HH09, FH69, FFGOG07, GI12, GSC01, Gri98, GK08, GH07, HMNB07, Hal12, HDMC09, HHL10, HW08, HCPLSB12, HLC10, Hill13, HRS16, HBG+17, HM19, JXY07, JTOT09, JK11, KSSS86, KM09, KV09, KL87, KKR07, KJC11, KMV10, KTM083b, KW12, KP96, KP97, KR79, KRJ+80, KK85, Kume89a, KKT91, LM93a, LYY+18, LYX+19, LW88, LM07, LMJC07, LLZ10, LLL09, LH05, LLLC17, LRY+15, LXL+19, LG87, LTS90, MLD94, MKF+16]. **Based** [MCF17, MP12, Mi85, MKAA17, NIS15, NCFK11, NNA12, NB13, OL89, OSR10, PFM+99, PTT16, PC85, PHG12, PRZ99, PSZ18, Pre97a, RGNMPM12, RTK12, Rey14, RWSN07, RNR13, RL74, RK91, SD85, SKR87, Sch01b, Sch07b, Sch81, SBS16, SC90b, SC90a, SC90c, SK98, Sho06, SKC07, SSS05, SVCC01, Sun15, TZW11, TGGF10, TZ12, TY91, TP15, UOS9, WWZ09, WSSO12, XBH06, XHZ+19, YNW+09, YSW+11, WL12, YY07, YTJ06, YD86a, ZJ09, ZWH17, ZMM17, ZQS12, ZLC+12, vMG12, Adi88, Ay14, ASM17, ACP10, AAGG16, BSNP96b, BLC12, BCR04, BC06, BDS09, Bur83a, Cha12, CML+13, CCHK08, CJ12, CJ15, CLW98, CJS86, DG85a, DS09a, DW08, GB17, GL06, GLO8, GZ09, HLL18b, HLL18a, HAK+16, HCJC06, HC11, HLMW93, HMW94, HW88, HL03, JFDF09, JL14, JBWK11, JG95]. **Based** [KI94, KJ09a, KST99, Kor08, Kra94, KCL03, Ku04, KCC05, KSC11, KSC12, LM93b, LDM92, LGW11, LND08, LACJ18, LLJ15, LMPW15, MS09, Mei95, MZ198, MS13, MHT+13, Mul92, MFES04, MJ14, NS16a, OT89, PCK95, Par18, PPB16, PW06, PBGV89, PGV91, PGV93e, PGV94, QZD+18, RP95, SPLHCB14, SV94b, SV95, SGK09, SX08, SRRL98, Sim98, SA17, TWL+18, Tsa08, TD93, UYI10, UHT95, VD05, Wil14, WY02, XLZC14, YC12, YSL05, YL79, YZ16, YD86b, ZDI+15, FH96, TLLL18]. **Basée** [LG78]. **Bases** [ABB93, VLD82, AW89, AAC+01, BD88, BDS88, BJZ94, CGO86, DSS84, GON83, Hi78a, Hi78b, Ker75, LT08, LSC91, MSD90, PV85, ST83a, ST83b, Yua92, Yao78, LT80]. **Basics** [Dre17a]. **Basis** [BT12a, MW95, CHL07]. **Batch** [Lyo79]. **Batched** [Pw85, SG76b]. **Bayesian** [CSSP15, OGBA14, PKSB18, RH95, SP12]. **BC** [ACM05, LL08]. **BDDs** [MJT+02]. **Be** [Yao81, CP91c, GMW90, Sch91a, Sim98]. **Beach** [PD19, RNT90]. **Bearbeitung** [Koe72]. **Beaverton** [ODB89]. **Behavior** [Lev00, Sav90, TTY93]. **Beijing** [An093c, Yan10]. **Beitrag** [BI87]. **Belgium** [BW92, VQ89, Vd90, PG93c]. **Bell** [Lam70]. **belt** [BDPV06]. **belt-and-mill** [BDPV06]. **Bemerkung** [Ek74a]. **Benchmarked** [MKAA17]. **Benefits** [Bur79]. **Bergen** [Ytr06]. **Berkeley** [ACM86b, DJNR09, IEE06, IEE13]. **Berlin** [AH03, Yao78]. **beschränktes** [Wen92]. **Bereitschaftswahrscheinlichkeiten** [VM39]. **BESM** [Ers58b]. **better** [Mit17]. **Between** [Bra84a, Bra86, KCF84, Bra85, CCL91, GHW07, LC13, Omi89a, Sar11]. **Bewertung**
[LB]J02. **Building** [AÖD19, BC06, HKL07, Mítt17, PV95, RMB11, WHS+07, Pvo95].
Built [Win84]. **Burden** [Oak98]. **burst** [AZ10]. **Bushy** [CHY93]. **Business** [Bra88].
Bystrica [Rov90]. **bytecodes** [SUH86]. **Byzantine** [HGR07].
C [Pla98, USE90, ÁCZ16, Blu95, Eug90, GBY91, Pro89, Sed90, Sed92, Sou92, Tay89].
C/C [Pla98]. **CA** [ACM03a, ACM08a, ACM11, DJNR09, IEE13, Joy03, Cop95a].
Cache [Ask05, PWYZ10, PWYZ14, Pro18, PSS09, SBS16, SKC07, YNW+09, YT16, ZH18, AZ10, BFCJ+12, CCHK08, HSMB91, KSC11, KSC12, MKZ12, QM98].
Cache-Partitioned [MZK12]. **Cache-tries** [Pro18]. **Caches** [SBS16, SVCC01].
Caching [DB12, KM92, Rey14, WBWV16, XBH06, BCR10, Cha12, HL05, KLL+97, KSB+99, She96, WZ12, WY00, WY02, ZO13].
CAD [KI94, Bar97]. **CAD-based** [KI94]. **Cake** [CHSC18].
California [ACM82, ACM86b, ACM07, Bel00, Bri92, CRS83a, Cop95b, Fra04, ICD86, ICD87, ICD88, ICD90, IEE11b, Kar98, Shm00, Sho95, St93, Sto92, USE90, Wic99, Yun02, Col93, IEE88a, IEE06]. **California/Special** [ACM82]. **Call** [HLC10]. **Cambridge** [ACM86a, BV89, Gol96, JBJ94, Kil95, And94].
CAN [SP88]. **Camera** [BH93]. **CAMSure** [RSK17]. **Can** [CP91c, Dam93, Pal92, Sim98, Dam94, GMW90, Schw91a].
Canada [ACM02, ACM05, ACM08b, AFK90, DSZ07, JY14, LL08, Lev95, Yua92]. **Canadian** [CCC89]. **Candidates** [ABM+12].
Canonical [DNV81]. **canonizing** [FGFK10]. **Canterbury** [Oxb86].
Capabilities [RS12, Tra63]. **Capability** [Fab74, Wan84]. **Capability-Based** [Fab74].
Capacity [KK85, Tan83, HO72]. **Cape** [IEE05, MS05]. **Cardinalities** [GGR04].
Cardinality [BHIM12, GLLL17, HM03, NTW09]. **Cards** [Ku04]. **Carlo** [BF83, Rey14].
Carolina [ACM91c]. **Carry** [GK08, FJ13, LK16]. **Carry-Less** [GK08, LK16]. **carry-truncated** [FJ13].
Carter [Gar80]. **Cartesian** [Du86].
Cascade [KZ84, RSK12]. **Cascaded** [Jou04]. **Cascading** [Wan14]. **Case** [ANS09, ANS10, AR17, DMV04, DS09c, Ell85b, F+03, FKS84, HBL+10, Kut10, Lar82a, YLB90, BG94, FPSS05, Lar81, Mic02, MT16, SKD15]. **Case/average** [Mic02]. **Cash** [Bac01]. **Casino** [IEE84].
Cassandra [EH17]. **Catalonia** [LSC91]. **Catalunya** [CTC90]. **Categorization** [MBBS12]. **Categorized** [LL+17].
Cathedral [IEE88a]. **Cauchy** [TI12]. **Caution** [Mul91]. **Cayley** [GM18, Zém94].
CBC [BBKN01, BBKN12]. **CCA** [CZLC14]. **CCA-Secure** [CZLC14]. **Cell** [Mil99, Fag01, Sun93]. **Cells** [JCK+18, WH83]. **Cellular** [DG1993, MZ198]. **Center** [ACM91b]. **Cert** [FS87, IEE90, Rie89]. **Centers** [SWTX18].
Centric [LT12, SPSP16, WBWV16, XHZ+19, AK09]. **Century** [ACM91b]. **Certain** [Cyr84, van94].
Certificate [MFES04]. **Certificates** [LK07].
Chain [EAA+16, JLH08, LAKW07, LHC05, SKM01, YZ00, YSEL09, Yang18]. **Chains** [BT12a, FL04, Jan08, Ngu06, YKLH10, ZQSH12, HL94, JFDF09]. **Challenge** [GJM02]. **Chaining** [BBP88, Cha94, CPP08, DMM05, GSC01, Joh61, Yue82b, MJBD11, Rag93, VC85, CBB05, Kno84, KTL89, KFG15, Lar84, PW06, TT81, TT86, TLL18, Yue82a, Yue82b]. **Chains** [BT12a, FL04, Jan08, Ngu06, YKLH10, ZQSH12, HL94, JFDF09]. **challenge** [GJM02]. **challenges** [BVF12, GMJ02]. **Challenging** [MSP12].
Chameleon [BR14, GZX14, PWY+13, LGW11, CTZD11, Moh11, Zha07].
Champion [KI94]. Change [DHK+15].
changeable [HYLT99]. Changes [Dan13].
Changing [Lit78, Litxxb]. Channel
[GO07, RWSN07, MS09]. channels
[SNW06, Wu05]. chaos [McN03]. Chaotic
[Sch01a, YY07]. CHAP [HDCM09].
Character [Dav73, YkWY83, Sab94].
Characteristics [Bay74, YkWY83, Sab94].
Characterizing [LH03a, RTK12, VZ12].
checker [Wie86]. Checking
[Hea72, IJK13, AD08, Wil96]. Checkpoint
[LACJ18]. Checkpoint-Restart [LACJ18].
Checkpoints [FRB11]. checks [SB07].
checksums [GKKT10]. Chemical
[WK078, ZBB+06]. Chennai [RRR99].
Chicago [ACM88b, ABM06, BL88, IEE82,
Lom93, IEE80a]. Chile [BJZ94, CHK06].
China [Ano83, HL91, IEE11a, LC06, Yan10].
Chinese [CS85b, YkWY83]. Chinesizing
[Zou85]. Chip [MJBDD11, Mot84, YNW+09].
Chisel [HCJC06]. Cho [SPLHCB14].
Choices [FP10, DKRT16, KM08].
Choosing [KLSY07]. chopMD [CN08].
Chord [KLSY07]. Chosen [CS02, Sh00b].
Churn [LMSM09, LMSM12, WNT07].
Churn-Resilient [LMSM09, LMSM12].
Cichelli [BF83, Cie08a, GS90, J080]. CICS
[Bra88]. CIKM [FNY92]. Cincinnati
[BD08]. CIoT [ZLZ18]. Cipher
[And91, BR802, Dae95, eLnnL07, NCFK11,
QG89, QG90, WSSO12, GLC08, HL03,
ISO97, RS14, YL97]. Cipher-Based
[NCFK11]. Ciphers
[BBKN01, BBKN12, Fil02, KP96, LM93a,
Pre97a, Roe94, SDMS12, SDMS15, Zhe90,
DS09a, HLMW93, HXMW94, Lai92, LM93b,
PGV93e, PGV94, RP95, Roe95].
Ciphertext [CS02, Sh00b]. Circuit
[NRW90, Ste82]. Circuitry [Cai84].
Circuits [DLT98, MD05, GHK+12, Mil98].
Cirencester [Boy95, Far93]. City [VLD82,
Fre90, GMJ90, IE84, IE99, JBWK11].
Class [CMW38, DadH90, DS09c, MCW78,
AAG16, DM11, Eng90]. Classes
[ACZ16, CW77a, CW77b, CW79, KW12,
Mul91, Sie04, WC79, van94, Bie95, DS09b,
Sar80, Sie89]. Classification [GCMG15,
HSPZ08, McK89a, PT11b, SY08, And93,
CKKK09, IG94, LS07b, McK89b, XLZC14].
classifications [LZ06]. Classifier
[GK95, KG95]. Clause [CJ86, Llo81]. Claw
[BHT98, BHT97]. Claw-Free
[BHT98, BHT97]. Client [DR92, TC04].
Client-Server [DR92], client-side [TC04].
Climbing [CL95]. Clocked [LN93]. clone
[Kos14, LG13]. closed [SS89a, SS90a].
Closest [Val15, DHKP97, TYSK10].
closest-pair [DHKP97]. Closure
[CdM89, CdM90, GC90]. cloth
[TWL+18, TWL+18]. Cloud
[LRY+15, Mir17, DMB19, GB17, HLL18b].
Cluster [SKC07, KSC11, KSC12, TC04].
Clustered [Rot89]. Clustering
[AI89, Bel70, Bel72, Bel83, BBS90, CdM89,
CdM90, Gui75, Gui78, KBG18, Mac95,
MN81, PKSB18, SPSP16, AOD19, Gui76c,
NH74, SX08]. Clustering/hashing [AI89].
Clusters [TY03]. Cluster [MBBS12]. CLV
[CF99a]. CM [PW94]. CM-5 [PW94].
CMAC [CG92]. CNF [BHIMM12]. Co
[ZWCL10, HLH13]. Co-processing [HLH13].
Coalesced
[CV83b, CV84, Che84a, Che84b, CV85,
CV86, Jan08, MS88b, Pa82, Pit87, Vit81a,
Vit82b, Vit83, VC87, CV83a, PY88, Vit80a].
Coalescing
[Vit80b, Vit80c, Kno84, SSU+13].
coalescing-lowering [SSU+13]. Coast
[SZ93]. COBOL [Bra88, Zou85]. Cod
[IEE05, MS05]. Codasyl [Gra86]. Code
[BK70, Bel70, Bel72, Bel83, MBM68, CLD82,
Chu90, DC81, DL80, Eck74a, FIP02a,
Gon81, KKKR07, Lam70, LB02, Mau83,
Mit73, SV15a, Sun15, CD84a, CLS95, CI95,
Mau68, Mer72, MF82]. Coded [Bay73c].
coding [Lit77a]. Codes [BKST18, BGS96, Bie97, CLP17, Fal85a, Har97, Irbax, JPC07, KP96, KP97, KGJO18, LQH18, SVCC01, TW07, BJKS93, BJKS94, Bie97, Fal86, Fal88, FM89, GKH+, Gob75, IG94, Kri89, Mi98, Sti91, Sti94b, VT14, Far93, Bie95].
codification [FDL86]. Coding [Blo70, Boo74, Bur77, Bur78, Bur79, CJ86, DA12, Dav73, Dos78a, FH69, Gon77, HP63, HJ75, HG77, Kam74, Lit77b, Mar64, Mar71, Pip79, SD55, SDRK87, Sta73, Web72, Boy95, Bur76a, Coh94, DVS+, DVS+14, Far93, LG78, Riv74a, Sab94, SDR83b, Sch97, Ytr06, HJ75].

Collaboration [JXY07]. Collaborative [ADOAH19, WY00]. Collecting [FW76, FW77]. Collection [AG93, LXL+19, TR02, UIY10]. Collections [BBD+82, BBD+86, LRY78, LRY80, SV19].

College [Jaj90]. collide [GNP05]. Collision [Ask05, BG93, BR97, BM97, BK12, BKMP09, CHKO08, CJC+, Dam87, HM96, HHL10, HCJC06, IKO05, IT93, IH95, KKT91, MS09, MNS12, Men12, Mit12, MO90, MO91, MC86, NS+, Ny19, Pey15, PACT09, PBGV89, PGV90b, PGV91, Rus92, Rus93, Sam85, SY11, SHRD09, SHF+, SHF++17, Vau92, Vau93, WYY05, WWWY05d, XNS+, YB95, ZBB+, vW94, AKY13, BGG93, BF08, CHKO12, Gib91, ITP14, KdlT89, Men17, MT16, PGV93g, Sar11, SKP15, SBK+, TWL+, Van92, WS13].

Collision-Free [BM97, HM96, Rus92, Rus93, Rus95, SHRD09, BG93, HCJC06, PBGV89, Vau92, Vau93, ZBB+, BG93, Van92]. Collision-Mitigation [SHF+] . Collision-Resistant [BR97, BK12, CHKO08, IKO05, CHKO12].

Collisionful [BPSN97, Gon95, Li95, BSNP96b, BSNP96c]. Collisions [Ano95a, BI87, BT94a, BT94b, CY06, DBGV93, GIS05, GL73, HR04, IP08, IP11, Pat95, VNP10, WFLY04, WYY05b, WYY05c, DV07, Gon95, Li95, Pat94, RVPV02, Sim98]. Colloquium [AGK+, dBvL80, Ku92, NS82, Pat90, ADG++, AMS+, ACJ+07, CIM+05].

Combinatorics [Wil85]. Combined [HK15, Z77]. Combiner [HS85]. Combiners [FL08, FL08, FL14, Mit12]. Combining [GSC01, TW07, NM02].

Come [PM89]. Command [CBA94, Gai82]. Comment [Ban77, FL73, Lam70, Pro94]. Comments [AA79b, AA79a, BMB68, CTZD11, Piw85, TY91, Gib90].

Commitment [HM96, HR07]. Commitments [ACP09, LP15, Wee07]. Committee [IEE84]. Common [DM90, GPGO16, ESR14].

Commonwealth [Rie89]. Communication [KM88b, Ano93c, H072, KK96]. Communications [IJW89, GZX14, Sch01a, ACM94a, IEE92a, IEE01]. communities [ACM04]. Community [RMB11].

Commutative [CLS12]. Compact [Cle84, CD84b, DCW91, DHT+19, KRJ09b, Kul84, LYX+, Otto88b, QP16, vdVL12, JCC00]. compactage [LG78]. Compacte [Kar82].

Compaction [HC87, Rag93, WKBA07, SD95]. compactly [VNC07]. comparison [LG78]. Comparative [Cra85, DTS75, GLG+02, Hiil78a, Hiil78b]. Comparator [Bur84, Bur82]. compare [BVF12]. compare-by-hash [BVF12]. Comparing [MRL+19]. Comparison...
[CHS ^18, EK93, GG80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QCH ^81, RLH91, SDK91, Tro95, KK96, RLH90, TT86].

comparisons [FDL86, Rö07].

COMPCON [IEE88a].

Competitions [FDL86, Rö07].

compilation [ZRL ^08].

Competition [Bur08, Bou12, jCPB ^12, TSP ^11].

compile [HF13, SF88].

Compiler [ACM79, Dit76, Wil96, Sag85b].

Compilerbau [Wal74].

Compiling [DM81].

Complete [SDW14, Die90, GvR08, Rad92].

Completion [ZWH17].

Complexes [GK76].

Complexity [Adi88, Dam93, GHK91a, GHK91b, CTC90, KVK12, LLW10, Mai83, Mai92, MNT90, Mor83a, NRW90, SS88, VV86, YSEL09, BSU12, CKM14, MNT93, Mi99, Pag01, SS90b, Sun93].

Component [BFMP11, Cha88, MW09, SA97, US09, SGK09].

Component-based [SGK09].

Components [de 69].

Composed [GHC ^+12, YKWHY83].

Composite [Oto85a, RL89].

composites [GP0G016].

Composition [Sho00a].

Compositions [SS16].

Compound [MH00].

comprehensive [NM02b].

Compress [WMB99, MP16].

Compressing [WMB99, MP16].

Compression [BC08, CW91, HKY12, LJJ, Lis07, LG78, RT87a, GLM ^+10, SMS91, SM89, SM12, AGJA06, BGD82, CKW93, FS08, GSS01, Li01, Sab94].

compression-oriented [CKW93].

COMPSAC [IEE80a, IEE85, Knu89].

Comput [Sar80].

Computability [ACM82].

Computation [ACM94b, AiNOW11, Cha91, Cha94, DJRZ06, IEE11a, Jaj90, Jen76, Lak96, Lev95, Ng79, RK91, Tam85, ZO93, ZLC ^+12, vdHVH12, Fis87, MY012, Ane93d].

Computational [CCC89, Caz83, LYW ^+18, MNT90, Sab94, Wil00, de 69, Dam94, GvR08, IKOS08, MNT93, Sch82b].

computations [FHL ^+19, GKI ^12b].

Computer [Bra84a, Bra85, Bra86, Tro92].

Computed [TT81, TT86].

Computer [IJW89, ACM91b, AFI63, AFI69, AH03, iA91, iA94, Bar83, BCH87, Bor81, DS97, Ell82, Gol94, GTH63, HTH78, IEE76, IE80b, IE80a, IE82, IE84, IE85a, IE88c, IE88a, IE88b, IE89, IE91b, IE92b, IE95, IE99, IE05, IE06, IE07, IE10, IE11b, IE13, Jai89, Jai92a, Jai92b, Jaixx, Jou85, KCEF84, KO90, Knu89, Km73, Km74, Km75, Kon10, Leb87, LC86b, LC95, LL83, Mar75, Mar77, MS05, RRH99, RJK79, Rie89, Rover, Ruc15, SK99, Wai88, Wst85b, Win78, ZZ83, ACM94c, Ane93c, Don91, Er86, FP89a, GKO5, GL94, HC89, IE92a, IE00, MLP07, Mo92b, OT89, RG89, TW77, vL94, ACM94a, Ane93a, PGV93c].

Computer-Recognized [RJK79].

Computers [FHMU85, MK93, PSR90, Rad83, SB93, RFB97, Deb03].

Computing [ACM75c, ACM75a, ACM76, ACM77b, ACM84b, ACM85a, ACM86b, ACM88b, ACM89c, ACM90, ACM91e, ACM96, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM04, ACM08b, ACM11, ACM12, BAI81, DFT87, IE99c, KKKR97, LKT92, LCK11, Ram87, Rei88, Tro95, AFK90, GHK ^+12, GI17, GC90, LVD ^+11, MN09, BAI81, GT80, Rie89, ACM77a, WGM88].

Concatenated [CD84a, DC81, HS80].

concatenation [BJK93, BJK94].

Concept [Kie85, Lumi73, Ter87].

Concepts [KTM98, VhL94].

Conceptual [FZ87].

Concise [PT12b].

Concomitant [MWC12].

Concurrency [Elli85a, Ei87, Ell88, FKG99, GG74, HSM95, Kum89b, Kum69a, LS98, Moh90, Moh93, OA89, SDK91, GT66, MBT90].

Concurrent [AR16, CLP13, Cha88, CHS ^+18, CHSC18, Ell83, HY89, HY93, HY86, HTY90, Kum90, MDS16, MSD19, MSSWP90, Omi88].
Condensation [CT96]. Condensers [ATS19]. Conditionally [ACP09]. Conditions [IKO05, IH95, Rus92, Rus93, Rus95, BDPV14]. Conference [ACM81, ACM85a, ACM91b, PDI91, ACM94c, AFI69, ABB93, AFK90, VLD82, Ane98, AW98, AAC+01, AOV+99, AA86, Bai81, BD88, Bar83, BDS88, BV89, BIP92, Bel00, BJZ94, BRW93, BL88, Bor81, Boy95, Bri92, BJ93, CCC89, CGO86, CLM89, Cop95b, DSS84, Far93, FNY92, FMA02, Fra04, Fre90, GMJ90, Gal92, GSW98, HB93, IEE80a, IEE85b, ICD86, ICD87, IEE88a, IEE88d, ICD88, IEE88b, CTC90, ICD90, ICD91, ICD93, IEE94c, IEE95, IEE02, IEE11a, IRM93, JB94, Jou85, JY14, Joy03, Ker75, Kna89, KLT92, LC06, Las87, LCK11, Lie81, LS89, LT80, LSC91, Lom93, MK89, MSD90, Mo92b, Nav85, Oxh86, PV85, PK91, QG95, RRR99, Rie89, RK90, RNT90, Sch82a, ST83a, ST83b, SP90, Sho83, SW94b, SC77, Sti93, Sto92, SM08, SM12, USE91, USE00a, USE00b]. Conference [Vau06, Vid90, WPM90, IWSS91, Yau10, Yau98, Yau92, Yun02, ACM94a, ARA94, Ano83, Ano93a, Ano93c, CE95, Cop95a, DG96, DT87, Deb03, HF13, IEE92a, IEE94a, IEE94b, Kil05, PK91, SW94a, TW97, USE90, Wie99, ??69, ACM75c, ACM76, ACM77b, LFP82, ACM91d, AF163, YR87]. Confidence [DG02]. Configurable [vdBGLGL+16]. configurations [CL09a]. Confine [NS16b]. Confirmation [MO190, MO91]. Congress [Gil77a, Ros74]. Conjecture [KPS92]. Conjugative [Stu85]. Connected [OL98, YR91, OT99]. Connection [And88, BM90b, Mic92, KK96, RH92]. Connections [LK07]. Conscious [Ask05, ZHBO6]. Consed [BJM14]. consequences [Woe06a]. Consideration [CJP12, CJP15]. Considerations [SM02, Wri83, PW06]. consing [AG93]. Consistency [LW7+18]. Consistent [KLL+97, Sun15, KSB+99, LDK12, WL07]. consonant [Wan05]. Constant [ANS10, BM99, F+03, LP15, MII85, PP08, PPR09, Sie04, DW05, DW07, FPSS05, GM90, IKO98, MV91a, OP03, PPR07, Pro18]. Constant-Round [LP15]. Constant-Time [Sie04, Pro18]. constrained [RAL07]. Constraints [BHIM12, NNA12]. Construct [CDM95, Han17, SBY11]. Constructing [CS85a, Cha86b, CFYT94, FFPV84, FCH92, HM12, Lis07, RS08, SS08, YD85, SL88]. Construction [ACM79, AN96, BCK96b, BBKN01, ELd84, IT93, KR01, Kut10, PV92, SP91, Ssa01, Sar10, Sch01a, BGKZ12, BDPV08, CML+13, CL09b, Woe06a]. Constructions [AHV98, BBKN12, BRS02, Bla00, DA12, Jou04, SG16, WX01, GPV08, LS06, Myt08, NN90, VZ12, WC07]. constructive [CLS18]. Container [Hej89]. Containers [Ben98, LACJ18]. Content [GH07, Koh80, MHT+13, RSK17, WDP+12, YTJ06, MJ14, TLL10, XCC09, ZO13, BB07]. Content-Addressable [RKK17, Koh80, BB07]. Content-Based [YTJ06, MHT+13, MJ14]. Contention [CadHS00, DG93, DG94]. Continuous [Coh98, PAPV08, GGR04, NW07]. continuous-discrete [NW07]. Control [BDPSN97, CBA94, CL83, HLC10, JXY07, KSM89, Moh90, Moh93, SDK91, XHZ+19, Ano93a, Ano93c, FK89, GJR79, HTO72, KSM89b, MTB00, YL04]. Controlled [LRLW89, LRLH91, MII81, WY02, CBA94]. Controlling [LK07]. convened [Ano83]. Convention [ACM91b, Re98]. Conversion [Omi88, Omi89a, Sab94]. Converting [MV91a]. convolution [OS14]. Convolutional [DHT+19, WWG+18]. Cool [EMM07]. cooperation [JFD09]. Cooperative [XBH06]. Copenhagen [BIP92, FS09]. Copies
[RSSD89b, RSSD90, RSSD92, CWC10].

coprocessor [TLLL07].

copy [MHT+13, YCJ12].

Core [Kil01, SvEB84, AKN12, BATÔ13, CZL12, KKL+09, Nae95].

cores [BMS+17].

Corfu [Rei88].

Corporation [Fis87].

Corps [RMB11].

correct [CE95, CE95].

Correcting [BGS96, Har97, FM89, GHK+12, Mil98, MF82].

Correction [Bur84, KR79, RJK79, Ven84, Zam80].

correctness [MMC01].

Correlation [TGGF10].

Correlations [Val15].

Correspondence [PH73].

Corrigendum [AA79b].

Corruption [DD11, DJSN09].

Correction-Localizing [DJSN09].

cosmological [War14].

Cost [BM97, BBS90, CJP12, FCHD88, FCHD89, GI12, HMN07, Kut10, LYW+18, Lyo83, PFS8, C14J, CJP15, VBW94].

cost/performance [VBW94].

Correlation [HR96].

could [PES+12].

Counter [LMP+08].

Countermeasure [LAKW07, MMHT09].

Counters [WLWZ19].

Counting [Fla83b, FM85, Mck89a, WVT90, DLM07, EVF06, McK89b, KKL14].

coupled [HLH13].

Coverage [IKJ+13].

covering [CLS18, Rad92].

CoveringLSH [Pag18].

CPHASH [MKZ12].

CCHR [WBWV16].

CPU [HLH13].

CPUs [KKL+09].

CR [LACJ18].

Cracking [GAS+16].

CRAY [DS97].

creating [Sag85b].

creation [FVS12].

Credentail [YLSZ19].

credit [JFDF09].

credit-based [JFDF09].

Crete [ACM01].

Criss [GRZ93].

Criss-Cross [GRZ93].

Criteria [Adi88, AI89].

Criterion [Sun15].

critical [NM10].

Cross [GRZ93, LWZ+18, MLHK17, WB90, QZD+18].

Cross-Media [LWZ+18].

Cross-Modal [MLHK17].

Cross-platform [QZD+18].

Cryptanalysis [Aum09, BS91a, Bih08, BCJ15, BHT98, BP09, DGV93, Dae95, GO07, GIMS11, HPC02, JNPP14, Kn92, LP16, LKY04, MR07, Mon19, NxB13, GLM+10, SPLHCB14, SV94b, Wag00, WSSO12, WYW14, AP11, BS91b, BS91c, BHT97, CV05, R95, SV95].

Cryptanalytic [CJMS19].

CRYPTO [Bel00, Bra90, Bri92, CRS83a, Cop95b, Fei91, Fra04, MV91c, Sho95, Sti93, Wie99, Yun02, CP91c].

Crypto'91 [DBGV93].

Cryptography [HSIR02].

Cryptographer [Joy03].

Cryptographic [ARH+18, BDPN97, BCR04, BD11, BDP97, Bur06, JCPB+12, CLG09, CP87, DA12, DC98b, Dam90a, Dam91, DF7+07, Dav91, DY90, DY91, GO07, He94, MKAA17, PTT16, Pre93, PGV93d, Pre94b, PBD97, Pre99, Pre94c, QV89, QG95, RRS06, Rja12, RS08, R93, SS01, Sch91b, Sch93a, S93, SGY11, Sto6, TSP+11, Van06, AY14, ABO+17, BNN+10, BD92, BOY11, CP13, De95, ESR14, GPV08, GS94, GQ95, IN89, KR19, Mic02, NY89b, NY99a, RAL07, Sch93b, ZY16].

Cryptographically [PGV92, Aam03].

Cryptosystem [Sun97, KKT91].

Cryptosystems [Oka88, Wee11].

CS2 [NM02b].

CT [Joy03].

CT-RSA [Joy03].

Cube [OL89, TY91, OT89].

cube-connected [OT89].

CubeHash [AD11, BP09, BKMP09, KKM10].

Cuckoo [ANS09, ANS10, ADW12, ADW14, BHNK13, BHKN19, DM03, DS09c, DMR11, FPS13, FMM09, FMM11, KMW08, KMW10, Kut10, Mit09, NSW08, PR01, PR04, Pag06, PRM16, PS12, SHF+17, TK07, DS09b, KM07, Kut06, DK12].

Cumulative
[LPWW06]. **CUPID** [KS89a]. Curve
[ANS05, MSTA17, OOB12, TK17]. Curves
[BGH12, FT12, WX01, BGH+E, BP18, FSV09, FFS+E, Far14, GZ99, LS06]. Cycle
[MJBD11]. **Cyclic** [DH84]. Cycling
[ANS05, MSTA17, OOB12, TK17]. Curves
[BGH12, FT12, WX01, BGH+E, BP18, FSV09, FFS+E, Far14, GZ99, LS06]. Cycle
[MJBD11]. **Cyclic** [DH84]. Cycling
[ANS05, MSTA17, OOB12, TK17]. Curves
[BGH12, FT12, WX01, BGH+E, BP18, FSV09, FFS+E, Far14, GZ99, LS06]. Cycle
[MJBD11].

Czechoslovakia
[ACC86]. cyphers
[Far93].

Czechoslovakia
[ACC86]. cyphers
[Far93].
Datalog [GST90]. Datasets [OGAB14, WZY+18, BZL+15, HAKM15, LRU14, Mil95]. datastructure [Biit86].

Dateiorganisation [Nie75, Wie89].

Dateistrukturen [Fri86]. Datenbanken [Lut88, Nee79, Stu82, Wie89].

Datenbankmaschine [Pet83].

Datenbanksystemen [Kue83, Kue84a].

Datenorganisationen [Oll89].

Datenstrukturen [DF77, LS85, Meh86, Nol82b, Oll89, Wir75, Wir83, OK80, Koe72].

Datenverarbeitung [Lut88].

Dawning [Cro98].

Dayton [IEE94b]. DB2 [BFG+95].

DBJ [ZJM94a, ZJM94b, ZJM94c]. Dbms [KR86b, Gra86, KR86a, KP81].

DC [ACM84b, B393, Fis87]. DCC

SM08, SM12].

DCT [TLZL16]. DDH [Dev93].

de-amortize [KM07].

De-amortized [ANS09]. De-duplication [BC08].

Dealing [Bre91, Vit01]. Deauville [BF89].

December [PDI91, And94, AiNOW11, Boy95, Far93, HL91, IEE88b, LC06, RRR99, SZ93, Yan10].

Decentralized [LB07].

Decision [Eng94, CKKW00, QP16]. decision-trees [QP16].

De-clustering [FM89].

Decomposition [NS16a, Spe92].

Decompositions [GO15].

Decoupled [RKLC+11].

Decoy [MIGA18].

decryption [GRL94].

Dedicated [HLY12, ISO97, ISO04, NM02a, Pre94a].

Deductive [Lio81, TRN86, SSW94].

Deduplication [ZH+19, BVF12].

Deep [CLYY92, CLYY95, CDW+19, DHT+19, ZZZZ18, WWG+18]. defective [Hui90].

Deferred [Gri77, Vek85].

Defined [YD84].

definition [FY92].

Definitions [DCW91].

del [ACM82].

Delay [NDRM09].

Deletion [AHI92, CV86, GGO80, IG77, KV91, MV88, TW91, VV86, Vit81b, Vit82a, MSV87].

Deletions [CF92, Kmt77, PV19, KHK12].

denial [Bac02].

Denmark [BIF92, Dam90a, Dam91, FS09, NS82].

density [KD92].

Denver [ACM79, ACM85a].

Dependencies [CS83a].

Dependency [SGK09].

Dependent [DT85, Sch01a, SDT75, NMS+08].

depth [GHK+12].

Derandomization [AN96].

Derived [HBR99a, HB92, HB89b].

Descent [DM81].

Description [FC87a].

Descriptors [FLF11].

Design [BRM+09, MBBS12, RLT83, SD85, Wa84].

Design [Adi88, AS82, AR16, Bat80, BMQ98, Bur84, CKB83b, CS83a, CS85c, CS85b, CS86, CCJ91, Che84a, Che84b, CCHK08, DGV93, Dae95, Dan90b, Dam93, DLT98, DY90, DY91, DHK+15, DNV81, DS09a, Dev93, DM90, Die97, DT91b, EE86, GDA10, GSF+12, GT93, Gro86, Jag91, JP07, KTM083b, Kru84, LT09, LCLX19, LA15, OVF94b, PS93, PGV90b, Pre93, Pre94a, QM98, Rad83, RLM87, SD89b, UI70, VC87, Wie83, Wie87a, XNS+13, YNKM89, Bur82, CE95, CCK81, CKB83a, CCL91, CZ14, Dan94, DMB19, Lai92, MAK+12, Mol09a, Mol90b, OVF94a, PGV93g].

Designing [GM91, Lin96, Mor83a, Zhe90, DC94, MPL09].

Designs [Bat82, BR14, Bur75b, CC88a].

Destaging [NK78].

Detect [WLZ19].

Detecting [GAS+16, OTH11, WC10, MF82].

Detection [ADOAH19, CH12, CJC+09, Kue84b, LQZH14, MKA17, MKAS18, PAC09, TWZL11, TP15, Tam80, ZC77, FNP09, FES09, Kos14, LG13, MHT+13, YCJ12, ZLY+13].

determination [Kri89].

Determine [ZF06].

Determining [Bee83, Mar71].

Deterministic [HMP01, MNS07, TLLL07, BK07a, FFS+13, HXL13, Mil98, Ru08].

Deutsche [BN85].

Develop [TC93].

Development [BV89, BIP92, CN07, Hl88, McIs82, SS05, Vd90, Web72, YR87].

Developments [An95a, KR19, Lar85a].

Devices [HKK15, Sam81, YY07].

DFF [MO92a].

DHA [AKY13].

DHA-256 [AKY13].

DHT

[RCF11, SX08, UPV11].

DHTs [CQW08].
Division [Eck74a, GL73, Gra88, Gra89].
DLIN [CK12], DM [KL95]. Do
[Bur06, HSR +01, HR04]. Document
[ANT85, DGM89, LR96a, Wil79, KRML09].
Documentation [DM90]. Documents
[WWZ09, WMB99, ZWCL10, WLLG08].
Domain [BR06, Cor00, Cor20, DOP05,
KK12, KK18, LT12, LLG12, PG95, RS12,
SY11, SPSP16, ZNP16]. Donald
[Ruc15]. Donnees [Kar82, LG78]. Don’t
[BFCJ +12, YT16, BCR10]. Dortmund
[Lut88]. Double
[Boo72, Bur05, CdM90, GS76, GS78, KLP98,
LK94, LM93c, MB03, Men12, OOB17, Pa92,
Tho13, Yao85a, KL95, LM88, LLJ15, Men17,
Mo90a, Mo90b]. Double-Linked [Pa92].
Down [LRY +15, PT11b, ZLC +12]. DPA
[LRY +15]. Draft [MCF17]. DRAM
[KHK15, WLWZ19]. DRAMCache [PG17].
drive [BC06]. Driven
[Gar93b, Ven86, TKT +89, ZO13]. DSS
[Ano09, Ano13]. Dual
[CDW +19, MNS12, Wee12, BR75, MJ08].
Dual-Stream [MNS12], Dublin [ABB93].
Dumping [Fro81], d’une [LG78].
Duplicate [LK10, LQZH14, MD97, TW91].
Duplicates [Bre91]. duplication [BC08].
durch [Hill2], DWT [THY +18]. Dynamic
[AL86, AH92, BGDW95, CS91, CR89,
CBAA94, DGGL16, Dev93, DKM +88, DadH90,
DKM +91, DKM +94, ED88, FNP879,
FHL +19, FS82, GT93, adH90, Kaw85, Kie85,
KNT89, Kou93, KS86, KS87a, KS87b,
KSC11, KSC12, Lar78, Lar88a, Lar88b,
LC88, LRY +15, MS12, MS02, Mul84a,
Mul84b, Mul85, NKT88, OG44a, Ore83,
Oto85b, Ou83a, OS83b, PLKS07,
PG95, RZ90, RT89, RL82, RSSD89a, Reg81,
Rob86, Sch79b, Sch81, SSS05, TT10, Vek85,
Wan14, YD84, YLSZ19, YBQZ17, YD86a,
YD86b, ZRT91, ZJM94a, ZJM94b, ZJM94c,
ZO93, CS93a, DMP06, DHW08, FRS94,
FF90, Fro81, HKLS12, HR93, KD92, Lev89,
Lin96, Mil98, YG10, SKC07]. Dynamically
[Lit78, Litxxb]. dynamicis [DMPP06].
Dynamiques [Kar82]. Dynamischen
[DS84a]. Dynamischer [Hill2].

E-HASH [HGH +12], early
[CV83a, CKW00, PY88]. early-insertion
[CV83a, PY88]. Easier [Bur81, Eag90].
Easily [CMW83]. Eat [CHSC18]. ECDSA
[AN05]. ECHO [BOY11, Sch11].
ECHO-256 [Sch11]. EdBT [JB94]. Edge
[XHZ +19, QZD +18]. Edge-Based
[XHZ +19]. Edinburgh [AOV +99]. Edit
[NN12, TK88]. editing [Koe72]. Edition
[BFG95]. Editor [Fox91, BM86].
Editors [RW97]. Education [LC86b].
Effect [KNT89, Mac95, Mai92]. Effective
[FCHD88, FCHD89, HW08, PCY95,
WDYT91, MA15]. effects [QM98].
Efficiency [DB12, Leb87, PVCQ08, Ul72,
KST99, PT10b]. Efficient
[AD08, ASWD18, ASBdS16, ASW07, Ast80,
AEMR09, ADW12, ADW14, BR14, BCOS9,
BOS11, BFP07, CFP91, CKB85, CLS12,
DDF +07, DD15, DGM89, FES90, F +03,
FRS94, GGY +19, GM79, Gon83, GR93,
Gri77, HT01, HM12, HDCM09, HHL10,
HLC10, IN89, JD +19, JD12, KU88, KR81,
KLadH93, KL96, KKRJ07, KKC11, KS12,
KS86, KS87a, KS87b, Kue48b, HG +12,
LW88, LCLX19, LWG11, LXL +19,
MZD +18, MP16, MJBD11, MEK +14,
MH00, MO92a, MKASJ18, MJT +02, Mu85,
NN90, OOK +10, Pag99, PAKR93, PAPF08,
Pan05, Qui83, RT81, RFB97, Ré92, Ros06,
Ros07, Sac86, SDMS15, Sch91b, Sch93a,
SL16, SGGY11, SVEB84, SPSP16, SKM01,
TY03, TYZ15, TYSK10, TW07, TS85, TGL +97,
Tsa08, VL87, Vt85, WY055d, WWZ09,
Woe06b, XHZ +19, YSW +11, YBQZ18,
YG +12, BL +14, BZL +15, BT93].
efficient [CML +13, CZ14, CLW98, DS09a,
FNP09, FSPS05, Gai82, HKL04, HCJC06,
adHMR93, ILL17, KU86, Lin96, LCH +14,
LLA15, MSK96, NTW09, ODC11, PK95,
PBBO12, PSS09, RCF11, SSW94, Sch93b, SX08, Shi17, SV15a, UHT95, VL97, Wie86, WTN09, XLZC14, ZWT+14, SV18.

Efficiently [AP08, Kim99].

Effiziente [Meh77, Meh86].

eigenvalue [JWM+18].

Eight [Van10].

Eighteenth [ACM86b, ACM91d, ACM91a].

Eighth [ACM76, ACM89b, ACM89a, ACM97a, VLD82, ACM96, Gol92].

Einfuehrung [Nol82b].

 Einschrittcompilers [Dit76].

Elastic [Hac93].

Elections [EH12].

Electronic [Cip93].

electronics [IEE94b].

elements [IG94].

Eleventh [ACM87, IEE92a].

Eliminate [BT94a, BT94b].

Eliminating [Bel70, Bel72, Bel83, NH74].

elision [NM10].

Embedded [SVCC01, vMG12, Hui90, TLLL07, TLLL09, UIY10].

Embedding [CLP17].

Embeddings [AEP18].

EMD [BR06].

Emde [Wil00].

Emergence [Fox91].

Empirical [DMP09].

Employing [Per73].

Emulated [EK93].

Emulations [Kel93, Kel96].

en-route [YG10].

enabled [GYW+19, HDCM09, LCLX19, SMZ18, TT10, SLC+07].

Encapsulation [HM12].

Encipherment [BM76].

Encoding [Ano95c, KP94, Will97, CVR14, RRS07].

Encodings [BHIMM12].

Encrypted [GYW+19, Kaw15].

Encryption [CS02, DC98a, Kal93, NTY12, PRZ99, Sar10, ZMZ17, ZHZ+19, And94, BR94, Bir07, Gol96, GBL94, Sab94, ZCZQ19].

Energy [AS16, KYS05, HGH+12, YSW+11, CZ14].

Energy-Efficient [GHG+12].

Energy-Harvesting [AS16].

Engine [YNKM89, BC06, NM02b, PES+12, SSW94].

Engineer [Jac92].

Engineering [Gol92, Got83, ICD86, ICD87, ICD88, ICD90, ICD91, ICD93, Lew82, Wal88, ARA94, Ano93c, IEE94a, Yu92, Ano89].

England [ACM94b, Pat90].

English [CS82, Dit76, Wan05].

Enhance [Lit84, CZ14].

Enhanced [RS12, LG96].

Enhancement [HMNB07].

Enhancements [Gra93a, EnRUPT [IP11], ensemble [ZNP16]].

Entire [FDL86, Nic17].

entity [ZLC+18].

Entropy [Ari94, ATS19, HHR+10, KM88b, NRW90, CKKK09, MV08].

Entry [YLB90].

Environment [DGM89, MLD94, MLxx, MS88a, RS92, RL74, SD89c, SD89a, SSS05, ZG90b, Kha95, ZQD+18, SD89d, TM82].

Environments [ZG90a, GDA10, RCF11].

EOS [BP94].

EPGAs [YTHC97].

Equality [TD93, WC81, AD08, GRF11, ZCZQ19].

equalization [PCK95, UHT95].

Equations [Aum09].

Equirjoin [SW91].

Equiprobable [PB80].

Equivalence [Mar71, de 69].

erasure [AAGG18].

Erasure [KGJØ18].

Ergife [IEE88d].

Erlang [TCP+17].

Erratum [FW77].

Error [BG96, Har97, Kue84b, Mil98, MKASJ18, RJK79, WLWZ19, FM89, GHK+12, Ron07].

Error-Correcting [BG96, GHK+12].

Error-Correction [RJK79].

Errors [Blo70, Zam80, MF82].

ErsatzPasswords [GAS+16].

ESA [EF12, FS09, HM08].

ESAT [PGV93c].

courses [BC39].

Establishment [DL12].

estimate [Ron07].

estimated [Nic17].

Estimating [Leb87, MBKS07].

Estimation [GLL17, LJ13, TGGF10, TZ12, HKL04, LNS11, LDK12, TW09].

estimators [HYKS08].

eTCR [HKKK13, RWSN07].

Ethernet [KCR11].

Etude [Mek83, LG78].

Euclidean [SWQ+14].

Euler [Cha84b].

EUROCRYPT

[CP87, Dam90, Dam91, Dav91, De 95, GQ95, Hel94, QV89, QG95, Rue93, Vau06].

Europe [BRW93].

European [EF12, FS09, HM08].

EUROSAM [Ng79].

Evaluating [HAKM15, RS92].

Evaluation [Adi88, BGDW95, CRSW11, CRSW13,
Chr84, Fla81, Fla83a, Gra93b, Gra93c, Gri77, HNS84, KTN92, LCLX19, LLL09, MXL+12, ML86, MLxx, MS88a, NMX19, Pag99, SD89c, SD89a, SC90b, SC90a, SC90c, Sth85, TNKT92, Web72, Woo89, YNKM89, CHS+18, GDA10, RLM87, SD89d, TMB02.

Eve [AAE+14]. Even [Boxxx, Th00].

Event [Mc89a, McK89b, ZLY+13]. Every [Kil01]. Everything [KTN92, MLD94, TNKT92]. evolution [PGV93c]. Evolutionary [DLT98].

Exact [Cor00, Ram88a, Vio05, Lia95]. Examining [Wil00]. Example [FHMU85].

Exactable [NIS15]. Extended [DP08, HBG+17, Ter87, YNKM89, YD84, YTHC97]. Extenders [RS12].

Extensible [BG92, Gra94c, He89, Kum90, Rém92, KR88, SS06, BP94]. Extension [BR06, CDW+19, Lit77a, LLG12, PSZ18, SGM11, WH83, BK90, SFA+19].

Extensions [CSSP15, Heu87]. External [AS89, AGMT11, GL82, GL88, Gra94a, GT63, JNP08, LR85, LRY78, LRY90, Vit01, Woe06b, RT89, RB91]. External-Memory [AGMT11].

Extractable [ACP09, CZL12b, CZLC14, Woe11]. Extracting [HZ86]. Extraction [FC87b, KKN12, LSY+16, ZLY+12].

Extremely [Sie04].

Extended [DP08, HBG+17, Ter87, YNKM89, YD84, YTHC97]. Extenders [RS12].

Extensible [BG92, Gra94c, He89, Kum90, Rém92, KR88, SS06, BP94]. Extension [BR06, CDW+19, Lit77a, LLG12, PSZ18, SGM11, WH83, BK90, SFA+19].

Extensions [CSSP15, Heu87]. External [AS89, AGMT11, GL82, GL88, Gra94a, GT63, JNP08, LR85, LRY78, LRY90, Vit01, Woe06b, RT89, RB91]. External-Memory [AGMT11].

Extractable [ACP09, CZL12b, CZLC14, Woe11]. Extracting [HZ86]. Extraction [FC87b, KKN12, LSY+16, ZLY+12].

Extremely [Sie04].

FA [CKW09]. Face [KGJG12].

Fachgespräch [Lut88]. Facility [VL87, FF90, VL97]. Factor [CFP19].

Factoring [CTZD11]. Factorization [FS82]. Failure [Ano95a].

Families [ADW12, ADW14, BW98, Bla00, CRSW11, CRSW13, FK84, HHL10, SG16, WX01, AG10, BJ07, BvT13, BJKS93, BJKS94, CRS38b, CL09a, CL09b, CLS18, CDH19, FH15, GW94, LS06, LC13, MvT08, WC07, Woe06a, vT14].

Family [BDM+12, BKST18, FLS+10, GKP08, Ind01, IT93, MWC92, MWHC96, SK05, ACP10, AMP12, BDPV12, FPS17, KRT07, Sht13, SRR98]. Fast
Faster
[ASM17, CRSW11, CRSW13, FCH92, LK16, McC79, Bosxx, HLK04, LS15, Sna87].

Fault
[AAB+92, DSSW90a, DSSW90b, MKAA17, HGR07]. Faulty
[DSSW90b, HGR07].

Feature-Based
[TWZW11]. Features
[DHT+19, MS12, MBBS12, PKW09, SsaS01, THY+18, Tsa96, Tsa94, ZLY+13].

February
[Bar83].

February
[AH03, Gol96, Gol92, IEE84, IC86, IC87, IEE88a, IC90, IEE94a, KI94, Kn05, Rie89, USE0b, Wol93, Yu92].

Federal
[Dan13]. fehlerbehandlung [Kue84a], fehlererkennung [Kue83]. Feistel [SY11]. Fencing [TYZO15].

Fft
[BGG93, BG93, DBGV93, Sch91b, Sch93a, Sch93b, SV94a, Van92, Van92, Van93].

Fft-Hash
[DBGV93, Sch93b, Sch93a, Van92].

Fft-Hash-II
[Vau93, Vau92].

Fft-Hashing
[SV94a, Sch91b].

Fgs
[KM09].

Fichier
[Lit77a]. Fields
[AU79, HJ96, WX01, LS06].

Fifteenth
[AW98].

Fifty
[Kon10]. File
[BGF88, Bat80, Bat82, BCH87, Buc63, Bur75b, CS83b, CR89a, CE70, DS84b, DGM89, DT91a, DT91b, FCH93, FZ87, GGY+19, GIS05, GG74, Gro86, HP63, Har88, KK85, KS88b, KS88c, Lari8c, Lari8d, LK84, Lar85c, L80, Lit80, Litxxa, Lom88, Lun73, MF92, McI63, MI85, MK93, NS84, Ols69, Omi88, Ore83, PSR90, RL89, RSD89b, RSD90, RSD92, RSD95, Rot89, Sal88, SS62, Sch91b, Sch81, SWTX18, Tha88, Wie83, Wie87a, Wri83, WB03, YD86a, vdP72, vdP83, BY89, BR75, Bra88, CC88a, DFC+13, FES09, Inc81, Kou93, Omi89a, RM88, SG72, VBW94, YD86b, van73]. Files
[AS82, ANT85, BM76, BH85, Bra84a, Bra86, CC87, CS87, CC91, CL92, CL95, Cla77, CS93b, Du86, FCH93, F94, GI97, HB89a, H89b, H92, Lar81, Lar82a, Lar85a, L96b, LCML94, Lit79b, LYD71, MY79, MI85, Oto85a, Piw85, RSD89a, R92, Rot89, SG76b, TK88, ZRT91, Bra85, CS93a, CCL91, HB89b, LNS93, LY72, ORX90, Omi89a, RB91, TC83].

Filing
[FC87a, DH84]. filling [GZ99]. Filter
[CCH09, Kau15, MK11, LZ06, RKK14, RK15]. Filtered
[Ahn93]. filtering
[KMRL09, MK12, RCCL11, YG10].

Filters
[CH93, CHY7, Kue85, LYW+18, Ram89b, DKT06, HLK07, HKLS12, HXLX13, ISO97, PSS09].

Final
[MO92a]. Financial
[ANS05].

Find
[Hol13, Lan06, Pat94]. Finding
[CBK83, Cer85, CBK85, Cer87, Cer88, Coh98, CH09, CM93, DR06, FCH88, FCD89, HK86, HG77, HR04, KH84, SH92, SH94, Sim98, Val15, WYY05b, WYY05c, Yuv75, FHC89, MI84]. Fine
[KLSV12].
fine-grained [KLSV12]. Fingerprint [JTOTO9, LMC07, LMJC07].
Fingerprinting [Rou09]. Finite [Gri98, HJ96, Ram88a, WX01, FH15, KHK12, LS06, LK93, FIPS [Dan13, Ano93b, Ano95b, NIS93, Nat95].
Firewalls [Kal01]. First [ACM89c, SDA90, PDI91, BBD09b, FNY92, adHMR93, PM89, DLM07, Fis87, SBK17].
First-order [ACM89c, SDA90, PDI91, BBD09b, FNY92, adHMR93, PM89, DLM07, Fis87, SBK17].
First-order [ACM89c, SDA90, PDI91, BBD09b, FNY92, adHMR93, PM89, DLM07, Fis87, SBK17].
Fitted [ZWT14]. Fixed [GB10, RS08]. Fixed-Key [RS08]. Fixed-Parameter [GB10].
FL [ACM91a, HB93]. FlashTrie [BLC12]. FLATS [GSI82]. Flexible [SR95, SPB88, ZHW19, BCCL10].
Flexible-resizing [ZHW19]. Flight [Fis87]. flex [BFCJ12]. FlashTrie [BLC12]. FLATS [GSI82].
Flexible [SR95, SPB88, ZHW19, BCCL10]. Flexible-resizing [ZHW19]. Flight [Fis87]. flex [BFCJ12]. FlashTrie [BLC12]. FLATS [GSI82].
Flexible [SR95, SPB88, ZHW19, BCCL10]. Flexible-resizing [ZHW19]. Flight [Fis87]. flex [BFCJ12]. FlashTrie [BLC12]. FLATS [GSI82].
Flexible [SR95, SPB88, ZHW19, BCCL10]. Flexible-resizing [ZHW19]. Flight [Fis87]. flex [BFCJ12]. FlashTrie [BLC12]. FLATS [GSI82].
Flexible [SR95, SPB88, ZHW19, BCCL10]. Flexible-resizing [ZHW19]. Flight [Fis87]. flex [BFCJ12]. FlashTrie [BLC12]. FLATS [GSI82].
Flexible [SR95, SPB88, ZHW19, BCCL10]. Flexible-resizing [ZHW19]. Flight [Fis87]. flex [BFCJ12]. FlashTrie [BLC12]. FLATS [GSI82].
Full-Text [YSW⁺11, RCF11]. Function
[Abi12, ÁVZ11, Aum09, AMPH14, BPSN97, BF83, BDM⁺12, BS94b, BS94a, BKST18, BRS02, Bla95, BKL⁺11, BDP97, CP91c, Cer81, CKB83b, CN08, Cob94, CBA94, CMP07, CO82b, CDMPO5, DBGV93, DGV93, Dae95, DC98b, DLT98, Dat88, DL80, FLS⁺10, GIS05, Gei95, Gei96, GSC01, GIMS11, HPC02, Har97, Hol13, HLC10, JP07, Kal01, KJ09b, KC81, Kra82, Kul84, KKT91, LJF19, LWWQ08, LP15, Lis07, LGS78, MR07, MRST10, MNS12, MIO89, NS16a, Oto84, PV92, PBD97, GLM⁺10, RB01, Sch90a, Sch91b, SGY11, Sta06a, TC93, TTY93, WW09, WSSO12, Win83, Win84, Woh94, WFW⁺12, YD84, Yan05, WL12, ZWW⁺12, AKY13, ACP10, AB96, AMP15, AB⁺17, AP11, BGKZ12, BNN⁺10, BDPVO, BDPV12, BOY11, BS94c, BW99, CK83a, CK89, DK94, DF89, DMB19].

Function [FP82, GM18, Gib91, HR07, Han17, HL03, ITP14, LW04, Lia95, LGW11, MJ08, Mer90a, MZI98, Mit17, Mon19, NSW90, Pat94, Pat95, PWCQ08, QJ97, RS14, SB14, SS92, Sch82b, SRRL98, SHA97, SXL16, Tsa08, VNP10, VF911, WS13, WY14, YL97, YZ16].

Functional [LFP82, GMP95, SV18, ZKR08, Jou85].

Functions [AHV98, AFK83, AFK84, AN96, ASWD18, ACZ16, AA79b, AA79a, And91, AB⁺16, Ano95a, AERM09, AR17, AM07, AP08, BSNP96a, BPSNCG97, BCK96a, BCK96b, BR14, BBD⁺82, BBD⁺86, BGS96, Bih08, BCS90, BRSS10, BCW90, BK12, Bo17, BP07, BHT98, BH66, Bur78, BDM19, Can97, CW77a, CW77b, CW79, CMWS83, CBK83, Cer95, CBK85, CBK89, Cer87, Cer88, CS83a, CS83b, CS85c, CS85b, CS85a, CS86, Cha86b, C87, CLNY06, CLGO09, CK15, Chi91, Chi94, Cie80a, Cie80b, CE70, Ceh97, CH94, CHM92a, CHM92b, CM93, DGV93, Dam87, Dam90b, DDF⁺07, DK07, DY90, DY91, DTS75, Dadd90, DGM12, Dic07, DGKK12, EK93, EPR99, Fil02, FL08, FLP08, FL14, FFGL09, FCHD88, FCHD89, FCHD90, FCDH91, FCH92, FHC92a, FK84, GO07, Get01, Gir87, GHK91a].

Functions [GHK91b, GLG⁺02, GK08, HHR⁺10, Hal12, HM12, HJ96, HKY12, HS08, HK12b, HR04, Ind01, IT93, JO80, Jae81, Jen97, Jou04, JD12, KHS4, KK06, Kno75, KP96, KLP98, KVK12, LM93a, LK94, LT09, LM95, Lis07, LH03a, LLG12, Mal92, MWCH92, MCW78, Mar64, Moh82, MP12, Mer90b, Mir01, MRW89, Mit02, MO190, MO191, Moh11, Mul91, NIS15, NM02a, NCFK11, NP99, NR12, NAK⁺15, OBO12, Otk91, Pag99, PWY⁺13, PB80, PQ98, PQ99, PW93, PGV90a, PGV90b, PGV92, Pre93, PGV93d, PGV93f, Pre94a, PV95, Pre97a, Pre97b, Pre99, Pre94c, QG89, QG90, RP91, RR08, RWSN07, Rja12, Roe94, RS08, Rul93, SP91, Sag84, Sag85a, SDMS12, SDMS15, San76, SS01, SS88, Sch91a, SRY99, Sho00a, Sho00b, Sie04, SvEB84, SDET75].

Functions [Spr77, Sti06, Tv83, Tro92, Tro95, Ull70, Ull72, WFLY04, Wee12, WC79, WC81, WK078, YD85, Zern91, Zha07, Zhe90, ZMI91, vW94, van94, vdBGLGL⁺16, AY14, AAB⁺12, ADM⁺99, AG10, And93, AMP12, AAG16, BSNP96b, BSNP96c, BD02, BCR04, BDPV07, BDP11, BJKS93, BJKS94, BSU12, Bra09, BHT97, BM01, CMR98, CN18, CKB81, CCHK08, DS09a, DW03, ESR14, FPS17, FFGL10, FHC9, FHC92b, GKK10, Ged14, GW94, GPO16, Gon95, GLC08, GKL12, HK96, HC11, HLMW93, HXMW94, HKK13, HSK88, HYLT99, HL12, Hug85, ISO97, ISO04, JCC00, JG95, KST99, KL95, KRT07, KHK10, Kra95, Kri89, LS07a, LM93b, LLH02, LKY04, L95, Li10, LC13, MS09, Mei95, Mic02, MV08, MS13, MHP12, MT16, Mul92, Nae95, NY89b, NY98a, OS14, OS10, PW08, PW06, Pob86].
functions [PGV93a, PGV91, PGV93b, PGV93e, PGV93g, Pre94b, PGV94, PvO95, RB91, RFB97, RZ97, RP95, Roe95, Sar90, SS90b, ST85, SH92, SH94, SL88, SS16, SIE89, Sim98, SVO6, Tz94a, Tsu92a, Tsu92b, VD05, XCCK09, YL04, YRY04, Zém94, ZW05, ZBB+06, ZDI+15, RRS06].

functions-based [HC11].

Fundamental [LYD71, LY72].

Fundamentals [HS78, HS84].

Further [Lit85, Sar15, DM03].

Fusion [Wil00].

Fuzzy [LMC07, LMJC07, LII92, HC14].

G2 [BP18].

Gallery [BFR87].

Galois [HJ96].

game [Zob70a, Zob70b].

Gamma [DGS+90b, DGS+90a, GD87, DGG+86].

Gap [ATS19].

Garbage [AG93, FW76, FW77, UIY10].

gates [GHK+12].

Gb/s [BLC12].

GBDD [YTHC97].

GCM [Saa12].

geeks [McN03].

Gene [TGGF10].

General [Chi91, Chi94, DR06, ISO97, LW88, LQH18, LHC05, Lum73, Msd19, MSD10, Sch91a, Sim98].

general-purpose [Sch91a].

Generalised [CC87, KKW99, LPWW06].

Generalized [HB94, VKV12, LI80, SK88, Sev74, KHK10].

generalizing [AMP12].

Generate [HSR+01].

Generated [LMC07].

Generating [Bla95, CT96, CHM92a, CHM92b, Get01, Jae91, Sag84, FP82, GRF11, MFK+06].

Generation [GRZ93, LL92, MS12, She91, SS05, Wen14, BK07a, BK88, CCA+12, CT10, KKP92, Mo92b].

Generator [Ano86, BK12, Cai94, Gui98, Sag85a, Sch90a, ZF06, Aam03, CLS95, HCl1, SS92, TSY98, VZ12].

Generators [MWCH92, NAK+15, SP91, Bk07a, CP13].

Generic [DL17, DOP05, MP12, Sar10].

Genetic [FFGOG07, HSI02, CV05].

Genomic [CCH09].

Geo [TYZO15, ZWH17].

Geo-Fencing [TYZO15].

Geo-Tagged [ZWH17].

Geographic [RRS12].

GeoHash [BSh12].

Geometric [Bar97, BG92, Bie97, BM90b, CO82a, GPA97, HB89c, HB94, KGJG12, LW88, LMC07, LMCJ07, MV02, PW94, RH92, RH95, RW97, SA97, Tsa94, Tsa96, WPKK94, War86, WR97, BJKS93, BJKS94, GG92, JWK11, LG96, MN99, MMG10, WC94].

geometries [FHJ5].

Geometry [CCS89, Wil00].

Georgia [USE00a, ACM83a, ACM83b].

German [Zel91, BJMM94a, BI87, Eck74a, HJ75, Koe72, Sta73, Wen92, VM39].

Germany [AH03, BRW93, HM08, adHMR93, Yao78, CE95].

Gestion [Lit77b].

Get [Eug90].

GHASH [Saa12].

GI [Lut88, TWW77].

GI-Fachgespräch [Lut88].

Gigabytes [WMB99].

Girths [Zem91].

Give [AT93, AT90].

Globally [HSW88].

GLUON [BDM+12].

gMig [MZD+18].

GNU [Wil14].

Go [Bur06].

Goddard [Fis87].

Goes [Cip93].

Gold [SZ93].

gone [Nie17].

Gong [BPSN97].

Good [Bur92, Hol13, JP07, Lom88, Mit02, ADM+97, Kou93].

Goodyear [Fis87].

GORDION [EE86].

gossiping [GHW07].

GOST [LJF19, WYW14].

GPERF [Sah90a, SS92].

GPU [ASA+09, FRB11, HLH13, LLA15, MZD+18, TWL+18].

GPU-based [TWL+18].

GPUs [CZL12, vdBGLGL+16].

GRAB [Les88].

GRACE [KTM083b, KTMO83c, KNT89, KTN92].

Graduate [Ano93d].

Grained [PAK93, KLSV12].

Gram [Ven86, Coh98].

Grams [BRM+09, Coh97].

granular [CLS12].

Graph [Ari94, BMQ98, Hal12, HM93, JWK11, KMM88b, MD97, MBBS12, NRW90, T12, Ykk83, BPT10, CML+13, CLR+14, FHL+19, Kor08, Mol90a, Mol90b, WLLG08, vL94].

Graph-Based [Hal12, JWK11].

Graph-Entropy [Ari94].

graph-structured [BPT10, WLLG08].

Graph-theoretic [vL94].

Graphic
DHK+15, Dev99, DAC+13, DadH90, DGMF92, Die07, DS09c, DCM18, DL17, DOP05, DR99, DF01]. **Hash** [DC81, Dos78a, DMB19, DB12, DS08, DJS83, DGKK12, Eck74a, Eck74b, EAA+16, EK93, EMM07, EH12, EPR99, FIP93, FIP02b, FL04, FLS+10, FLF11, FRB11, FFPV84, Fil02, FL08, FLF08, FLR14, FFG109, FB87, F+03, FCHD88, FCHD89, FCDH90, FCDDH91, FCH92, FHCDD92a, FK54, GK05, G007, GK12a, GIS50, Gei95, Gei96, GHR99, Ger86a, Ger86b, Get01, Gir87, G12, GSC01, GHK91a, GHK91b, Gon77, Gon81, GLS91, Gra93a, Gra93b, Gra94a, GLS94, GBC98, Gra99, GIMS11, GLG+02, GK94, GK95, GK08, HMBN07, HHR+10, HP78, Hal12, HPC02, HMBN10, Har97, HHL10, HCJC06, HW08, HC94, HHC10, HHi13, HRS16, HBG+17, ISO04, IK92, IGG7].

Hash [HE81, Dos78a, DMB19, DB12, DS08, DJS83, DGKK12, Eck74a, Eck74b, EAA+16, EK93, EMM07, EH12, EPR99, FIP93, FIP02b, FL04, FLS+10, FLF11, FRB11, FFPV84, Fil02, FL08, FLF08, FLR14, FFG109, FB87, F+03, FCHD88, FCHD89, FCDH90, FCDDH91, FCH92, FHCDD92a, FK54, GK05, G007, GK12a, GIS50, Gei95, Gei96, GHR99, Ger86a, Ger86b, Get01, Gir87, G12, GSC01, GHK91a, GHK91b, Gon77, Gon81, GLS91, Gra93a, Gra93b, Gra94a, GLS94, GBC98, Gra99, GIMS11, GLG+02, GK94, GK95, GK08, HMBN07, HHR+10, HP78, Hal12, HPC02, HMBN10, Har97, HHL10, HCJC06, HW08, HC94, HHC10, HHi13, HRS16, HBG+17, ISO04, IK92, IGG7].
Hash-Routing [WBWV16, SPSP16].
Hash-Search [WWZ09]. Hash-semijoin [CCY91].
Hash-Sequential [Lit89, IL90]. Hash-Speicherung [BJMM94b, BJMM94a].
Hash-Structured [CS93b]. Hash-Tabellen [BI87].
hash-tries [SV18]. hash-values [GS94]. Hash-Verfahren [BJMM94b, BJMM94a].
Hash-Tabellen [BI87]. Hash-Tables [LMSM09, LMSM12].
Hash-Verfahren [Hil82]. Hash/Table [DAC+13]. HASHCache [PG17]. Hashcash [Bac02].
Hashcodingverfahren [Sta73]. Hashed [GJR79, GG74, HYKS08, KS12, Lit91, Mul92, Mul92, SVCC01, VL87, WS93, WM19, And88, GMW90, HSMB91, Ken73, War14].
Hashedcubes [PSSC17]. Hashes [BC08, Saa12, Sch01b, Sch01a, Wan14, GP98, GP80, GPA97].
hashfunctions [PBGV89]. Hashiguchi [LP04]. Hashimoto [SSa01]. Hashing [ACP09, AHN86, AHN87, AHN93, AKS78, AAE+14, Ald87, Ald88, AHS92, AP93, AAA79a, AAT98, ANS09, ANS10, Ari94, ABH+73, AT93, ASW07, Ast80, AS96, AC74, Atk75, ADW12, ADW14, BYSP98, Balm, Balo5, BH90, BP97, Bar97, BG93, BH91, BK84, BR97, BM97, BHMIM2, BJMM94b, BB+82, BBD+86, BH13, BHM13, BHN19, Bie97, Bin96, Bla95, BGS07, BOS11, BGV96, BM90b, B12, BK07b, BT90, BT94a, BT94b, BK90, BT12b, BH86, B184, BP18, Bur92, Bur76b, Bur81, Bur84, BC90, C91a, CHK08, CH12, CLM85, CLM86, CF92, CSSP15, CLD92, CS83a, CS83b, CHa84b, CHa84c, CS85c, CS85b, CS85a, Chas85, CSL86, Chas86a, Chas86b, CS87, CS87, CS88b, CJC91, CW91, CC91, CLC92].
Hashing [CL05, CL05, C06, CV93b, CV94, Che84a, Che84b, CV94, CW09, CTZD11, CZ17, CKPT19, Chi93, CT12, CJC+09, CK94, Chu91, Chu92, CV08, CKW09, CE70, Coh97, CO82b, CHK95, CH94, CG79, DA12, CDW+19, CadH500, DW83a, DC98a, DK15, Dan93, DLT98, DPH08, Dat88, DD11, dS74b, DS84a, DGD02, DTS75, DL79, Dev93, DMV04, DJSN09, DadH90, DadH92, D1494, Di96, DH01, DS09c, DMR11, D108, Dit91, D082, DHL+94, DHL+02, DLH09, DSSW90a, DR11, Dref17b, Dref17c, DL80, DT91a, DT91b, DT75, Dn89a, Dn89b, Ell93, Ell85a, Ell87, Ell99, ED88, NPNS79, Fa85a, FM96, Fur14, Fe87, FNS92, FGK10, Fl481, FS82, Fl38a, FPV98, F087, F013, FT12, FFG07, FMM09, FM11, F088, GSS01, GL73, GM91, GM94, CadHW96, GM98, GM99].
Hashing [Hil82]. Hash/Table [DAC+13]. HASHCache [PG17]. Hashcash [Bac02]. Hashcodingverfahren [Sta73].
MK11, MNT90, MB03, MBBS12, MV88, MV90, MV91b, MV90, MH90, MSSWP90, Men82, Men12, Mey93, MV01, MV02, Mit73, Mit09, MH00, Moh90, Moh93, MNP08, MWC12, Mul84a, Mul81, Mul84b, Mul85, MS88b, NS8W08, NR90, Ni83, Nyb96, OWZ14, OTKH11, OC94a, OG94b, OOB12, OOB17, OVV94b, Ort91, Oto84, Oto85a.

Hashing

[Oto88b, Oto88a, OT91, OSR10, Ouk83, OS83a, OA89, OS83b, PR01, Pag06, PP08, PWYZ14, Pag18, Pal92, Pan05, PB80, Pap94, PV07, PT12a, PH73, Pea90, Pea91, Per73, Pes96, Pet13, PS93, PQ98, PQ99, PKW09, Pip79, Pit87, PM89, PVM94, PVM97, PV19, PT11b, PRM16, PKSB18, PS12, FACT09, PF85, PADHY93, PW94, Qu83, RT87a, Ram88b, RL89, RP91, RR92, Ram92, RL82, RLT3, RSD84, RSD89a, RSD89b, RSD90, RSD92, Ram97, RGNMPM12, RLH91, Reg81, Reg82, Reg88, RRS12, RH92, RH95, RW97, Rob86, Rog95, Rog99, RS75, RS77, Ros77, Rosu09, RT87b, Rus92, Rus93, Rus95, SDR83a, SNBC98, SnC05, Sag84, SY11, Sas11, SG76a, Sav90, Sav91, Sch79a, SD90b, SD90a, Sch91b, Sch93a].

Hashing

[Sch81, SMZ18, SY91, SR89, SPW90, SB93, SSL+18, SY08, Sh96, SR01, SSS05, SDT75, Spr77, SHD90, SGGB00, Sti94a, Stu85, Sun15, SH+17, SA97, Tam82, Tk88, TC93, TL95, TZWZ11, TYZ015, THY+18, TI12, TW07, TK85, TZ12, TTY93, TYZ94b, TV83, Tor84, TK07, Tro92, Tro95, Ts96, US99, UI70, UI72, VV84, VV86, VP96, VP98, Vit80b, Vit80c, Vit81b, Vit81a, Vit82b, Vit83, VC87, WG00, WPKK94, War86, WFHC92, Wee07, Wee12, WPS+12, WSZ+16, WFT12, WP01, WDP+12, WS03, Wil96, Wil90, Wil79, Will1, Win90b, Win90a, Wo89, WR97, WZ93, Wu84, YDT83, YW90H, Yao80, Yao85a, Yao85b, Yao91, Yas07, YB95, YTFJ06, YBQZ18, YGC+12, YD86a, ZPS90, ZPS93a, ZH18, ZHW19, dW83b, vdSdW74a, vMG12, AT18, ASM17, ASA+09, ADM+97, AI08, AI89].

Hashing

[AT90, BGG93, BL89, BGH+13, BBPV11, BD82, BGG94, BDPV14, BMQ98, Boo72, Bosxx, BT89, BCCL10, Bur05, Bur82, BMLLC+19, CP91b, CP95a, CKKO12, CS93a, CW93, CJMS19, CP95b, CV83a, CCL91, CHL07, CLL+14, CWZ10, CKKK09, CZL12, CR89, CP13, CO82a, CHM97, Cze98, Dan94, DM03, DKM+88, DCM+91, DHW08, DSO9b, D92, DLH13, DSSW90b, DK12, D+18, Duc08, DM11, EH17, EBD91, Fal86, FWG18, FSV09, FFS+13, FNSS88, GLHL11, G92, Gh90, GW94, GM77, GLJ11, GS89, GFR11, GPY94a, GZ99, Gu86c, Gu89b, HBCM11, HJL07, HR93, H93, HM93, HMW94, HL05, HC02, Hua85, HFZ+15, HFF+17, Hui90, IMRV97, Ind13, IIL17, Jan05, JWM+18, JWBK11, Kan90, KYS05, KLL+97, KSB+99, KU6, KL96, KR88, KK96, Km99, KM07, KM08, KM10, KR19, Kost14].

Hashing

[KD92, Kou93, Kra94, KR06, Kum89b, Kut06, KSC11, KSC12, LG96, Lar84, LNS11, LH06, LK16, Lev89, LK11, LOZ12, Lin96, LS96, LNS93, LY+13, LMLC14, LL15, LWXS18, LM88, LH04, LMPW15, LJW+17, ML15, MIGA18, MI84, ML94, MNT93, MLP07, MLP90, MV91a, MC89, MMG10, MP16, Men17, Mil95, Mil98, MYC12, MKS98, Mol90a, Mol90b, MSV78, Ni94, NMX19, OP03, OVV94a, OS88, Pag01, PR04, PWYZ10, PJM88, PJB90, PCM15, PT11a, PT13, PY88, Pon87, Pr94, QM98, QZ+18, Ram89a, RT89, RB91, RBF97, RZ97, RH90, RAD15, Sab94, Sar11, SP12, SS89a, SS90a, Sch93b, ST93, SH92, SL88, SS16, Sti92b, Sna87, Sta99, Sti94b, Sun91, STS+13, TLZL16, TB91, Th00, Tho17, TK17, TIK99, Tsa94, TLLL07, TD93].

Hashing

[Vak85, Vio05, Vit80a, Vit82a, Wan05, WL07, Wee88, Wee05, WC94, WY00, WGW+18, XMLC11, YCJ12, Zha19, ZWCL10, ZL12, ...
ZWT+14, ZPS93b, ZZLZ18, ZHC+13,
Zob70a, Zob70b, ZBibo06, BJMM94a, JMH02,
KS88c, SV94a, SKC07, SA17, CV85).

Hashing-Based [LMC07]. HashMap
[Oak98]. Hashtabellen
[Kue82a, Kue82b]. Hashtag
[RTK12, KGJØ18]. Hashverfahrens
[KL98]. Haskell
[MRL+19]. HAVAL
[WFLY04, ZPS90, ZPS93a, ZPS93b].
HAVAL-128
[WFLY04]. Hawaii
[De03, SC77]. HCC
[Har97]. HDDs
[HGH+12]. Head
[ACM91c]. Heaps
[CCA+12]. Heavy
[TP15, Ind13]. Hebrew
[Sch82a]. Hecke
[CT96]. Hedge
[Sho00b]. Height
[Dev99, Reg81, THS97]. Heights
[MMMT09, MV01, Wee07, HR07]. Heuristic
[Omi89b]. Hidden
[Leb87]. Hide
[IIE90, IEE01]. Hiding
[MMMT09, MV01, Wee07, HR07]. Hierarchical
[FWG18, PACT09, TK88, VL87, GP08, VL97]. Hierarchical
[Wil71, YL04]. High
[ACM04, AS09, AEPE18, AI06, ASBdS16, CT96, DGG+86, DadH92, DS97, Flo87, GIM99, HSM95, IEE94e, KMM+06, KMV10, LCK11, LPT12, McK99a, McK99b, OMI91, PSS90, RSDS90, RW07, Ron07, She91, TK88, Tho13, TP15, WZJS10, XLZC14, YNKM89, YW09, ZH09, AI08, BCC1L10, EVF06, HKL07, Inc81, MV91a, MAK+12, MA15, RFB97, SL+07, Shi17, Sie99, SWQ+14, SXL08, TYSK10, TLLL07, XMLC11].

High-bandwidth [AS09].
High-Dimensional [AEP18, TYSK10].
High-error [Ron07]. High-Performance
[DS97, Flo87, IEE94e, She91, ZHW19, Shi17].

High-Speed [KMM+06, KMV10, McK99a, YNKM89, McK99b, RW07, EVF06, SLC+07, SXL08, TLLL07, XMLC11].

High-Throughput
[LPT12, XLZC14, MAK+12]. HighEnd
[LVD+11]. Higher
[HKKK13, DH84].
higher-order [DH84]. Highly
[BCS09, KHW91a, Mat93, PAKR93, KHW91b, ZLL+07]. Highly-Associative
[KHW91a, KHW91b]. Highly-Efficient
[BCS09]. Hill
[IEE90a, IEE90b, IEE91a, IEE92].

Histogram
[Gra93b, MNY81, PCK95, UHT95].
Histogram-Driven [Gra93b]. History
[BG07, MNS07, NSW08, Reg82, NT01].

History-Independent
[BCS09, MNS07, NSW08]. Hitter
[TP15]. hiters
[Ind13]. HMAC
[FIP02a, BCK96b, CY06, DRS12, MAK+12, RR08, Sta99].

Hmap
[YTHC97]. Hoc
[DPH08, JLH08, Cha12]. Hole
[JLH08].

Holographic [BGF88]. Homepage
[GCMG15]. Homomorphic
[CFN18, KKN12, CZL12, MT16]. Honolulu
[De03]. Hood
[CLM85, Cel86, CLM86, DMV04, PV19].

Hop
[RHM09, MA15]. Hopscotch
[HST08]. hostile
[LC95]. hot
[KL+97]. Hotel
[ACM75b, ACM82, ACM83a, ACM83b, ACM85a, ACM87, ICD86, ICD87, IEE90, IE99d, IE99a, IE99b, IE99c, IE99d, Nav85].

Hough
[HB89c, HB94]. House
[IEE96, IEE94a, IEE95]. Houthalen
[QV89].

Hover
[EH12]. HTM
[CCW08]. HTML
[UCFL08]. HTTP
[DB12]. Human
[Bor81, TCW+13]. humanities
[Bai81].

Hungary
[Rue93]. Hwang
[KL03]. Hyatt
[Kna89]. Hybrid
[BM89, BM90a, CB05, Gra93a, Gra93b, Gra94a, KNT89, HGH+12, LLL11, Sch79a, TYZO15, PCV94, TT81].

Hybrid-Hash
[BM89, BM90a]. Hypercube
[OL91, OL92]. hyperelliptic
[FFS+13]. hypergraph
[KKP+17]. Hypergraphs
I-cloth [TWL+18]. I/O [MMC01, Vit85].

IBM [Dit76, Dit76, MS02]. IBM /360

[FP10, HMWC94, Rad92].

IFA [AGK+10, ADG+08, AAMS+09, ACJT07, CIM+05]. ICI [AKF90, KLT92]. ICIDT [AA86]. Iceland [ADG+08]. ICICTA [IEE11a]. Icon [GG86b, GT93]. iconic [WC94]. ID [ZJ09].

ID-Based [ZJ09]. Idea [Gra94b, HL03, WPS+12]. Ideal [Lis07]. identical [Lia95]. Identification

[MV01, ST86, CJP12, CJP15, GS94, IG94, LWG11, WWG+18].

Identifier [BˇSH12, Sev74]. Identifiers [DB12, Wil59]. Identifying [ASW18]. Identity [CZLC12a, CZLC12b, CZLC14, KM92, LY+19]. Identity-Based

[CZLC12a, CZLC12b, CZLC14, KM92, LY+19]. IEC [ISO04]. IEEE

[ACM04, Co93, IEE80a, IEE88a, IEE92a, IEE01, IEE05, IEE06, IEE07, IEE10, IEE11b, IEE13, MS05, IEE84, Van10].

IEEE /ACM [ACM04]. IFIP

[Gil77, Ros74]. Igniting [ACM03b]. II [BS91c, Sch93a, Sch93b, Van92, Vau92, Vau93]. III [Nol82b, Oks80, Sed83a]. Illinois

[ACM88b, ABM06, BL88, Lom93]. im

[DS84a, Wal74]. Image

[Ano95c, BFMP11, BS94a, BI12, DCM18, DHT+19, DR11, GPA97, GH07, HW08, LK10, LQZH14, Li15, LÒON01, LC12, LY+13, MV02, OSR10, RGNPM12, SB97, TWZW11, THY+18, US09, WP10, WDP+12, ZWH17, HC11, LMLC14, Mit12, SB95, TCW+13, TLZL16]. image-keyword

[LMLC14]. Images

[FLF11, MNY81, PKW09, RT81, SsaS01, WMB09, GG92, LMLC14]. Imaging

[FHMU85]. Imai

[PGV90a, PGV93a, PGV93b]. imbalance [WZ12]. immutable [SV15b]. Impact

[GD87]. imperative [NMS+08]. Imperfect

[Ven84]. Implement [CL83].

Implementation

[BCS89, BS94b, BGDW95, Dat88, DF89, DKO+84b, DKO+84c, DKO+84d, Dee82, Dev93, Dit76, DT75, EE86, EjKMP80, FW09, GG86b, GT93, Gro86, Har71a, Hek89, ISK+93, JD12, Kahl92, KMM+06, KU88, KM92, KR86b, KR86a, KKRJ07, KRJ09b, KTN92, LK84, Lit79b, LPP92, NM02a, PRM16, SDR83a, She91, SK05, Ste82, TGL+97, TNK92, VL87, BDP+12, BS94c, BW92, DS09a, DHW08, DM11, EBD91, GN80, GJM02, Inc81, IIL17, KU86, KKL+09, McD77, MZJ98, MFES04, Tsi79, Dit76].

Implementations [GL+02, Vit82b, WPKK94, WJZS10, DMP09, RAL07].

Implemented [CMW83, MRL+19].

Implementierungstechniken [Nee79].

Implementing [Bab79, Blu95, BJM14, GHJ+93, Gra86, Jun87, KHW91a, KHW91b, Lin96, Llo81, LB07, VL97]. Implications

[Chr84, CHS+18, RAD15]. Implicit

[OS88, Kor08]. Impossibility

[BCS09, HM12]. Improve [LB702, BM01].

Improved [Art94, BT13, BMD68, Bip08, Bre91, CN08, DDS14, DL17, FB87, HSM95, HW88, JNPP14, KM86, Kut10, LW04, LJF19, KKMS10, LH04, Man83, Mic02, Mul72, NSS+06, PS12, Rad92, RP95, SSS0, SD95, TK17, U1Y10, WM19, GM77, Mau68, War14, ZW05].

Improvement

[CH94, Fel87, RGNPM12]. Improvements

[CTZD11, Lev00, Nam86]. Improving

[ATAKS07, AVZ11, BDS88, CHY93, CYH97, CAGM07, Cla77, DB12, GCMG15, JHL+15, MS12, RT87b, Sch82a, TCP+17, YWH09, ZGG05].

Impure

[Dec82]. In-Bucket [TYZO15].

In-Memory

[CCW+17, MZL+19, ZWH01].

In-Network

[WBWV16], Inaccessible

[HHR+10]. Inadequacy [GY91]. Includes

[FW76, FW77]. Including [DGV93, KL95]. Incoming [LK07]. Incompatibilities

[KCF84]. Incorporating [CBA94].
Increased [PRM16, MSP12]. Increment [Ban77, Luc72, RKK14]. Incremental [BGG94, CT12, FRB11, GSC01, ISHY88, PW06, TWL+18, UIY10]. Incrementality [BM97]. incrementalization [SB07]. Indeed [Yas07]. Identify [KCF84]. Independence [KW12, PPR99, PT16, Tho13, DT14, PPR07, PT10a]. Independent [BG07, CCJ91, DGD02, DTS75, Die96, Ind01, MNS07, NSW08, TZ12, FPS17, Han17, NT01]. Independently [AU79]. Index [BM89, BM90a, Buc82, Bur83b, Bur83c, DSS84a, GPY94b, LC86a, Lom83, MZL919, OL89, Oto85b, Qui83, TY91, Wil79, ZHW19, Bur83a, Fro81, GPY94a, HM03, LCH14, McD77, SWQ14]. Index-Based [OL89, TY91]. indexable [RRS07]. Indexed [Chu91, Chu92, KHT89, Mul72, Tay89, WM93, TK99]. indexed-hash [WM93]. Indexed-Sequential [Mul72]. Indexes [Les88, Omi89b, Pip94, FVS12]. Indexing [CJ86, Dumin66, KGJG12, Li15, Llo81, Per73, SE89, Tor84, Wil79, WMB99, YWH09, CXLK19, CW10, Fly92, LG96, MIGA18, MMG10]. India [RRR99]. Indian [Van10]. Indicators [Er86]. Indices [LR99, Val87]. Indifferentiability [CN08, LLG12, MPST16, BGKZ12, BDPV08, GLC08]. Indifferentiable [BGH12, CLNY06, FFS13, FT12, BGH13]. Indirect [Baf96, DGGL16, Joh61]. Indirectly [Ols69]. Individual [Jan05, Jan08, Vio05]. Induced [de 69]. industrial [PGV93c, AR94]. Industry [ANS05]. Infeasibility [FS08]. Infinite [GKH91a, GKH91b, LII92, Bra09]. Influence [RTK12]. INCOM [IEE01, IEE92a]. Inform [Pro94]. informal [CK89]. Informatics [CHK06]. Informatik [Nol82a, Nol82b, OK80]. Information [PDJ91, BV89, BIP92, Can97, Cha84a, Dan13, DSSW90a, Ell82, FC87b, FH69, FCDH90, FCDH91, GPY94b, ISO97, ISO04, KLT92, KM86, KM88a, LC06, LX19, MV01, MNS07, PGV93f, SKC07, SPSP16, SC77, Sta06b, Sun15, Vid90, WBWV16, XHZ+19, Yan10, YR87, YBQZ17, AFR90, DSSW90b, GPY94a, KSC11, KSC12, SG72, SXLL08, FNY92, FBY92, Gil77, Ros74]. Information-Based [SKC07, KSC11, KSC12]. Information-Centric [SPSP16, WBWV16]. Information-Theoretic [Sun15, SXLL08]. Informix [Ger95]. Infrastructure [MJ14]. Infrastructure-free [MJ14]. ingestion [CXLK19]. Ingres [Sne92]. inheritance [DMP09]. Inhibiting [GAS16]. Initial [vdP72]. Initiative [MO92a]. Injection [NCFK11]. Inner [PWY13]. Innesbrook [IEE88b]. Innovation [ACM03b]. Innovative [OG94b]. Input [AB12, Sab94]. Insecurity [DOP05]. insensitive [CyWM91]. inserting [Gup89]. Insertion [FPS13, PS12, CV83a, Jan05, Kou93, PY88]. inside-out [AP11]. Insight [CQW08, IEE02]. Installation [LAKW07]. instance [FS08]. instantaneously [DV07]. Instantiated [RR08]. Institute [Ano93d]. Instruction [BOS11, SS83]. instrumentation [Ano83]. Integer [Ano86, Die96, MV90, MV91b, Woe01, Woe05]. integers [BCS89, Han17]. Integral [LJF19]. Integrated [DGKK12, PG17, NM02b]. integrating [ATAKS07]. Integrity [CLS12, Sch01b, Sch01a, Wil96]. Intel [JHL15]. Intellectual [DGKK12, IEE88a]. Intelligence [Kak93, AR94, LLC89]. Intelligent [IEE11a, LJW17]. intensify [HL12]. intensive [Shi17]. inter [Kos14]. inter-system [Kos14]. Interacting [LLW10]. Interaction [ZLY12, Bor81]. Interactive [CBK83, Cer85, CBK85, Dam93, Dam94, Dss78b, GK94, GK95, HR14, KG95, MS09, Ovy94a, Ovy94b, Rad83, Wee07, RWSN07, ...

J [Sar80]. January [ACM91d, ACM91a, ACM91a, ACM05, ACM08a, Kar98, Mat09, SP90, Shm00, USE91]. Japan [IJW89]. A+90. AIWON11, CGO86, GOS83, IEIE85b, IIR93, Mo92b, Ano94, De 95, IEE88d, IEE92a]. Item [WYD+18]. items [Bay73b, CH09]. Itemsets [BMLLC+19]. Iterated [Jon04, KV12, HLMW93, HXMW94, KHK10]. iterations [OS10]. Iterative [MV02, SXLL16]. IV [Far93, Sil02a]. IWDM [BF89].
KR91, KKW99, KL87, KNT89, KHT89, KO90, KTN92, LR99, LDM92, LTS90, MLD94, MLxx, MS88a, NKT88, NNA12, NP91, OL91, OL89, Omi89b, OL92, PAVP08, PG95, Pip94, RK91, SD89c, SD90b, SD90a, Sha86, SM87, Sol93, Spe92, TR02, TY91, Top92, TP95, Toy93, TNKT92, Val87, WYT93, YNW+09, Yum85, ZG90a, ZG90b, Ze91, ZJM94a, ZJM94b, ZJM94c, ZO93, ALS10, BMS+17, CAGM07, CyWM91, GK05, ISO97, Kha95, KKL+09, LNS11, LEHN02, MMSY94, Mul92, OT89, PCK95, PCV94, RLM94, RGL94, SA17, SP89, TL93, UHT95, WL07, NNA12.

Joining [NP91]. Joins [CLYY92, CLYY95, DG93, DG94, DNSS92, GBC98, Gra86, HCY94, HCY97, LR99, LR96b, NNA12, PCL93a, SC90b, SC90a, SC90c, WDYT91, YCR93, AKN12, BAT013, BLP+14, HLH13, JHL+15, LCRY93, ML95, PCL93b].

Kernel [CSSP15, Lev00, ZLY+12]. Key [ANS97, ANS05, iA91, BD82, Bol79, Boo74, CS83b, CC87, CS87, CCR91, CLC92, CTZD11, CY06, CG79, CS02, Dam87, DL12, Dos78a, EAA+16, GG86a, Gni79, GG80, GYW+19, HB89b, HB89a, HM12, IG77, Joh97, KM09, KV90, KR86b, KR86a, LYX+19, LAKW07, LCM94, Lin63, LD71, Lum73, MZL+19, Men12, MW95, NTY12, PRRR15, RSSD89b, RSD92, Rob86, RS80, SY11, SR63, SS05, Sta99, YLSZ19, Yao95, Yub82, ZQSH12, And88, BSNP96b, CCL91, GL06, GBL94, LW04, LND08, LY72, ML94, Men17, NM02b, Oka88, SD85, Sar11, Shi17, ZCZQ19].

Key-Exposure [CTZD11]. Key-Recovery [CY06]. Key-Sequential [HB89a, HB89b]. Key-to-Address [LYD71, Lum73, SR63, LY72]. Key-Value [PRRR15, Shi17].

Keyed [Ano95a, BSNP96a, KKRJ07, Got95, Li95, SV06, FIP02a]. Keyed-Hash [KKRJ07, FIP02a]. Keying [BCK96a]. keypoints [MMG10]. Keys [Gon80, Gur73, JC88a, Joh61, KR01, LMJC07, LL87, Oto85a, PB80, Riv76, Riv78, SD78, She78, Yao84, CFN18, FP82, GMW90, Wan05].

Keyword [WWZ09, LMLC14, ZLC+18]. Keywords [Coh98]. Khaire [BS91c].

Kinetic [Rey14]. Kingdom [BJ94, ACM94b]. KLIPA [GT63].

Knapsack [CP91c, JG95, Pat94].

Knowledge [BDS88, BHC87, CLP13, CRdPHF12, Dam93, ISK+93, OVOY94b, Dam94, FNY92, OVOY94a].

Known [SY11]. Known-Key [SY11].

Knoxville [IEE94c]. Knuth [DM90, Rue15]. Kobe [ICD91]. Kollisionsstrategien [BI87]. Kolmogorov [CG92, Sch01b].

Komlos [KM86]. KV [LCLX19]. KY [Rie89].

Kyoto [CGO86, Got83, IEE85b, LT85].

L [Sar80]. Label [LQH18]. labeling [TCW+13, YSL05]. Lam [Wag00].
LaMansion [Nav85]. lamp [McN03].
Landau [SV06]. Landmark [NNA12].
Landmark-Join [NNA12]. Landsat [MNY81]. language [LG78].
Landau [SV06]. Landmark [NNA12]. Landmark-Join [NNA12].
Landsat [MNY81]. langage [LG78].
Languages [ACM91d, dBvL80, BRW93, CL83, Cra85, IEE84, Jou85, NS82, Pat90, ACM91a, AGK+10, ADG+08, AMSM+09, ACJT07, CIM+05, DLH+79, DL06, GMP95, GJR79, Inc81].
LAPI [MS02].
Laplacian [ZWCL10].
Large [ABB93, VLD82, AW89, AAC+01, AOY+99, BD88, BH85, BCH87, BJZ94, BI12, CKB85, CML+13, CG086, Chu90, Coh98, DSS84, DS09c, Dos78a, DT91a, DT91b, FM91, Fe87, FHD92a, FMU85, GGY+19, GLLI17, Gra92, Gra93c, Grit74, GSW98, HB93a, HB92, Hi78a, Hi78b, Ker75, KCR11, KRRH84, KKS5, Kos14, LM95, Li15, LT80, LSC91, LYD71, MSDS90, MKE+14, MWC12, OGAB14, PAKR93, PV85, ST83a, ST83b, Sha86, SHF+17, SXLL08, Tan83, Win90a, XNS+13, YWH09, Yua92, YGC+12, Zam80, Zen91, BZL+15, BT89, CFY94, FWG18, FES09, FHD92b, GC95, HB93b, LK93, LY72, MK96, Shi17, TBC+05, Yao78, YMI89, Zha19]. Large-Grained [PAKR93].
Large-Scale [GGY+19, GLLI17, Li15, MKE+14, SHF+17, YGC+12, CML+13, Kos14, SXLL08, FES09, Shi17, Zha19].
Last [PM89, KR19].
Least [OG94b].
Lecture [Dev86].
LEDA [MN99].
Lee [KCL03]. Leistungsanalyse [Kue82a, Kue82b]. Leitmotiv [Kah92].
Lemmas [GK76]. Lemmatized [DS84b].
Length [BGM86, GL82, GL88, SS90a, W92].
Less [DH01, GK08, KHK12, KL16].
Letter [BMB08, CSS5c, CSS5b, Cha85, CL86, Cha86a, CW91, CO82b, JC88a, TL95, Tro95, Wan05].
Letter-Oriented [CSS5c, Cha86a, JC88a, TL95, CL86, CW91, Wan05].
Leuven [BBD09b, BW92, PGV93c].
Level [CJC+09, ZWH19, BGG12, DAC+13, HL94, Inc81, LD12, MTB00, SDR83b, TK199].
level-set [BGG12]. Levelled [LY+15].
leverage [IEE88a]. leverage/COMPCON [IEE88a].
Lexical [CRdPHF12, ISEHY88]. lexically [FF90]. lexicographic [BMILC+19].
Lexicon [CKB81, CKB83b, CKB83a]. Lexicons [CKB85]. LFSR [DS09a, Kae94].
LFSR-based [Kae94]. LH [LNS93]. LH* [LNS96]. LHLf [ZL12].
light [ARH+18]. Lightweight [AHINP12, AhMNP13, BDM+12, BKL+11, HKY12].
Line [ASS82, Bry84, FFG07, HO72, IABV15, Leb87, SS83, Tsa96, BBKN12, HL10, KRRH84, RW73, Tsa94].
Line-Oriented [Bry84]. Line-Rate
[IABV15]. line/Off [HHL10]. Linear
[Ald88, ADM+99, ATT98, Ano95a, AD11, BYS98, Ban77, BK70, BGS96, BW98,
CFP19, Cle84, CL09a, CM93, Da95, Ell85a,
Ell87, FPV98, HB89a, HB92, HH85, HYH93,
HT90, HSW88, Jak85, JV16, Kno88, Knu19,
Knu98, Kor08, KD92, Lar80b, Lar80c, Lar82b,
Lar82c, Lar82d, Lar85b, Lar85c, Lar88b,
Larxx, KKMS10, Lit79b, Lit80, Litxxa, Luc72,
Lyo78a, MSSWP90, MY80, Moh90, Moh93,
Mul81, Omi88, OGAB14, OT91, OSS93a,
OA89, OS83b, PPR07, PPR09, PT16, Pet13,
PK87, PVM97, RSD84, RSD85, RSS89a,
RS92, RLH91, Reg82, Rob86, RT87b,
SDR83a, SPW90, TW91, TZ12, Toy93, VP96,
VP98, WVT90, YD86a, Ald87, AD1+97,
BJ07, Bou95, HB89b, HCF95, Jan05, LNS93,
MTB00, MMC01, ML94, Omi89a, OP03,
OS88, PT10a, RLH90, Sar13, SS16]. linear
[TMB02, Vio05, ZL12]. Linear-density
[KD92]. Linear-Time
[WVT90, Kor08]. Linearizability
[SDW14]. Linearization
[BKMP09]. Linearizing
[Oto88a]. Lingg
[McC79]. Linguistics
[Cer83]. link
[BR75]. Linked
[Fel87, Pal92, ZLLD18, ZKR08]. Linkless
[CJC+09]. links
[EVF06]. Linux
[USE00a, Lev00, LACJ18]. Lisbon
[CIM+05]. Lisp
[LPP82, Hek89, Nam86, FH96, GSI+82]. Lisp-Based
[FH96]. List
[McI82, Ter87]. Lists
[BH86, HK87, LLC89, Lyo79, MY79,
Kno84, ST85, SS06]. literate
[Sab94]. little
[DMPP06, PES+12]. Live
[MZD+18]. Ljubljana
[EF12]. LLE
[TLZL16]. Load
[HC13, IK92, KJC11, LRLW89, LRL91,
Omi91, RRS12, RK91, Top92, TP95, WL07,
KL08, SX80, TLLL18, WZ12, WTN90,
XCC09]. load-balanced
[LLL18]. Load-balancing
[WL07, XCC09]. Loading
[vdp72]. Local
[MD97, MNY81, MJT+02, PKW99, RT81, SY08, BGG12].
Locality
[BT12b, CSSP15, CKPT19, Ch191,
Ch193, Ch194, IMR97, KBG18, Kaw15,
MZL+19, MNP08, OWZ14, OTKH11, Pag18,
AT18, HAK+16, HFZ+15, HFF+17, LNS11,
LWX18, LJW+17, QZD+18, SP12, STS+13,
SA17]. Locality-Aware
[MZL+19]. Locality-Preserving
[Ch91, Ch93, Ch94, IMR97]. Locality-Sensitive
[BT12b, OWZ14, Pag18,
HFZ+15, HFF+17, QZD+18, STS+13, SA17]. Localizing
[DD11, DJSN09]. Locally
[KS88a, Oto88b]. Locating
[WL12]. Location
[CCF04, TY03, ZWH17]. Location-Based
[ZWH17]. Lock
[AR16, NM10, ZLL18, NK16, Pro18, ZL12, SS06]. Lock-Free
[AR16, ZLL18, NK16, Pro18, ZL12, SS06]. locks
[ALS10]. Loftus
[Hel94]. log
[FHC89]. logarithm
[Gib91]. Logarithms
[vW94]. Logging
[Moh90, Moh93]. Logic
[AR16, BM87, BAN99, Cra85, IE84, Las87,
kDC94, BW92, DLM07, YIAS89]. Logical
[CMP08]. Logs
[SK99]. LOKI
[BS91c, Knu92]. Long
[Mit12]. Longest
[DKT06, GON81, PT12b]. Look
[CP91b, Sna87, AY14, CP91a]. look-up
[AY14]. Lookup
[CN07, HDCM09,
Jai89, Jai92a, Jai92b, Jainxx, Pri71, She78,
SWTX18, Tro06, YBQZ18, BLC12,
HXLX13, Mad80, MSK96, MPL07, MPL90,
MA15, PT12b, WTZ+13, WTN07, ZGG05]. Lookups
[Pan05, BM01, IG0A5]. Loss
[ATS19, FC87b]. Lossy
[PW08, Wee12]. Louisiana
[ACM91e, ACM97a]. Louisville
[Rie89]. Low
[GI12, HMBN07, HGR07,
Les88, LWW+18, PSSC17, TBC+05,
ABO+17, BOY11, CZ14, HM03, MA15]. Low-area
[ABO+17, BOY11]. Low-Cost
[GI12, HMBN07]. Low-overhead
[HGR07]. Lower
[DKM+94, GadHW96, Gon77,
MNP08, OWZ14, Yao83, DKM+88,
DKM+91, Sun91, Sun93]. lowering
[SSU+13]. LR
[HC87]. LSH
[AT18, AÖD19, CKM14, CK15, LCH+14,
LJW+17, ZNP16]. LSH-Preserving
[CK15]. Lucifer
[BS91c]. Luxembourg
[Bir07]. LXCloud
[LACJ18]. LXCloud-CR
Lymphocytic [SSaS01]. Lyra2 [ASBdS16].

[38]
Monte [BF83, Rey14]. Monterey [Col93]. Montgomery [WS03]. Montréal [ACM02, CCC89, JY14, Lev95].
Morphological [CRdPHF12]. Moscow [Ers58b]. Most [AT93, AT90, ESRI14].
Motion [CBA94, Cli95]. Motivating [She06]. move [KM10]. Moving [Lep98, SR01]. MPEG4 [KM09].
MPHF [Zou85]. MR [Pro94, Sar80]. MRE [SNBC98, SnC05]. MS [JC88b].
MS-DOS [JC88b]. MTAC [GT80]. Muenster [Dit76]. Multi [AP93, BAT˝O13, BˇSH12, BR06, CS83b, CC87, CS87, Cha88, CHY97, CLS12, CJC+09, Coh84, FL08, FLP08, FLP14, GPY94a, GPY94b, HYH98, HYH93, HRS16, KR86b, KR86a, KL87, L¨OON01, LRY+15, MHT90, MNY81, Ngu06, PADHY93, RSSD90, SD85, SMZ18, VB00, WFT12, IMRV97, LS07b]. multithread [CC88a]. multigrand [GZ99]. multihop [ADF12]. Multikey [DL80, KR88, NHS84, SDKR87, VV84].
multi-label [CML+13, LMLC14]. Multilevel [BK90, DT91a, DT91b, Gri98, LZL88]. Multimaps [AGMT11]. multimatch [XLZC14]. Multimedia [Fox91, HLC10, ISK+93, LH18, LZ16, RZ90, SSL+18, ZH+13]. multimodal [MHT+13]. Multi-permutations [SV94b, SV95]. Multiple [Abi12, AS96, BP97, Bol79, CS83b, CC87, CC87, CC91, CJC92, CYY95, FBB87, FP10, GKR94, GKR95, HDMC09, HHL10, HCY94, KG95, KKC12, HGH+12, LCML94, LOY00, LLLC17, MK11, MB03, Mit02, RSSD98b, RSSD99, RSSD92, SM87, Tra63, WB87, BM01, CCL91, DH84, DMP09, HKS12, XCKK09].
Multi-Attribute [GK95, KG95]. Multiple-Collision [HHL10]. Multiple-Key [Bol79, RSSD98b, RSSD92]. multiple-set [HKLS12]. multiple-valued [DH84]. Multiplication [AN96, GKO8, Woe01, Bis12, Woe05].
multiplications [LK16]. Multiprocessor [DG85a, DG85b, Ger86a, Ger86b, KTN92, 41
MLxx, Omi91, RS92, SD89b, SD89c, SD89a, Sch90b, SD90b, SD90a, TNKT92, ZJM94b, SD89d, ZJM94a, ZJM94c.

Multiprocessors [Bor84, LTS90].

Multiview [LWZ+18, SSL+18]. Munich [BRW93, Münster [Dit76], MuR [LRY+15], MuR-DPA [LRY+15]. Mutual [CJP12, GI12, CJP15, FF90, SPLHC14].

N [Sar80, FHC89, ISO97]. n-bit [ISO97].

Naehrig [FT12]. name [WTZ+13]. named [WTZ+13]. Names [ABC+16, Dos78a].

Nancy [Jou85]. Nanowire [Rey14]. NASA [Fis87], Nashville [ACM94a]. National [??69, Fis87, Oxh86, Ano83, IEE94b].

Native [SFA+19]. NATO [Ano95c].

Natural [Cer81, CKB83b, Har85, KCB81, LG78, YMI89, CKB83a]. naturel [LG78].

NC [IEE89]. Near [AI06, AI08, BT89, DD15, LQZH14, GJM02, SB97, Yuv75].

Near-Associative [DD15].

Near-Duplicate [LQZH14]. Near-Optimal [AI06, AI08]. Near-perfect [BT89, SB97].

Nearest [AEP18, A106, CL85, KBG18, MW09, PACT09, SY08, AI08, CW93, FH79, FHZ15, JDW+19, LCH+14, SQW+14, TYSK10].

nearest-neighbor [FH79]. Nearly [HT01, FP82, MV91a]. nearly-constant [MV91a].

Necessary [IH95, Rus92, Rus93, Rus95]. Need [HR04].

Negative [DDF+07, SB95]. Negatives [Paf18].

Neighbor [AEP18, AI06, CL85, KBG18, MW09, PCM15, PACT09, SY08, AI08, CW93, FH79, GJM02, HFA+15, JDW+19, LCH+14, SQW+14, TYSK10].

Neighbor-sensitive [PCM15].

Neighborhood [DHL+94, DHL+02, D+92, SG72, ZLY+13].

neighbours [Yuv75]. Neither [CP91a, CP91b]. neophytes [Gre95].

Nested [HBL+10, FK89, MMC01, TMB02].

netflow [LDK12]. Netherlands [dBlvLS0, CP87, vL94, AW89].

Network [HCJC06, HLC10, JL14, KHK15, MK11, PLKS07, Ven86, WBV16, YBQZ18, AS09, CVR14, DFMR15, Die90, FVS12, KL08, RAL07, TLLL07]. Networking [ACM04, LCK11, LZ16, WBV16, WTZ+13].

Networks [DK09, DPH08, Jai89, Jai92a, Jai92b, Jaixx, JH08, Kak93, Kul84, LDY+16, MJBD11, PLKS07, SY94b, SPSP16, SMS91, TGGF10, XHZ+19, ZQSH12, AK09, AD12, BCCL10, Cha12, GBL94, LG13, LND08, MLP07, PEM+12, SV95, SX08, TBC+05, WHS+07, WWG+18, YG10, ZBB+06, BB07, CT10].

nearer [BI87].

Neural [Kak93, WWG+18].

Nevada [IEE10, AF109]. Next [DCW91, She91, CCA+12, CT10, KKP92].

Next-Generation [She91, CCA+12, KKP92].

Niagara [AFK90].

NiceHash [Nic17]. NIDS [KJC11, TK07].

NIDS/NIIPS [TK07].

Nineteenth [ACM08a, IEE95]. Ninth [ACM77b, NS82, ACM77a, ACM97b, Kar98, ICD93, ST83b].

NIIPS [TK07].

NIST [Bou12, RRS06].

Nixdorf [adHMR93].

NJ [GM90].

NL [DSS17].

NMAC [CY06, RR08].

NMAC/HMAC [RR08].

No [AKS78, CP91a, KR01, CP91b, GBL94, Pro94, Sar80]. node [LG13, THS07, WL07].

Nodes [BGF88, RAL07].

Non [BCFW09, Boo74, FNS88, K86, K87b, LT12, LS96, RWSN07, SD78, SA97, TSY08, ZH18, NY14, Ald87, CCA+12, ESRI14, FP82, MLP07, MP16, PBBO12, Sar15, SXL16, Lut88].

Non-biased [TSY98]. non-blocking [PBBO12].

non-compressing [MP16].

non-cryptographic [AY14, ESRI14].
Non-expansive [LS96]. Non-interactive [RWSN07]. non-iterative [SXL16].
Non-malleable [BCFW09]. Non-oblivious [FNSS88]. Non-programmable [LT12].
Non-Uniform [KS86, Ald87]. Non-Unique [Boo74, SD78].
Non-Volatile [ZH18, CCA +12].
Nonchalantly [Gre95]. Nonclustered [Omi89b]. noncontinuous [ZO13].
Nonlinear [MLHK17, LC13]. Nonoblivious [FNSS88].
Nonstationary [WB90]. NonStop [Eng94]. Nonuniform [Ald88, KS89b, PK87].
nonuniformly [MPL09]. Nonvolatile [ZHZ +99].
Noordwijkhout [dBvL80]. NOrec [DSS10].
Norm [Aum09, HFF +17].
Normalization [RGNMPM12]. Norway [Hel94, Ytr06, Ano95c].
Nostradamus [KK06]. Notary [Clip93].
Notation [FGFK10]. Note [Bob75, CC91, Dit91, GSi05, Gei95, Gei96, Gur73, Lit91, Pea91, Sav91, SVCC01, Ul72, Yao80, Bay73b, FH79, Sar80].
Notes [Dev86]. Nothing [SD98c, SD98a, SRY99, SD89d]. Nouvelle [Lit97a].
Novel [DMC18, DR11, LYY +18, LYX +19, cLMl07, NW07, PHG12, YSW +11, YLSZ19, ZMM17, HLL18b, LMP +08].
November [ACM87, ACM94a, ACM03b, ACM04, AFI69, FNY92, Go94, adHMR93, IEE82, IEE88d, IEE89, IEE90, IEE91a, IEE93, IEE02, IRM93, LCK11, PSN05, ST83a, ST83b]. NP [FS08].
Nroff [Hol87]. NTRUSign [ZJ09]. NTRUSign-Based [ZJ09].
Number [An86, Bat75, Dos78a, Gui89, WL12, Aam03, ASW87, BK07a, CP13, HC11, Hu82, KW94, TSY98]. numbering [Cli95, DM11, VNC07]. Numbers [BJMM94b, BJMM94a, Coh98, HSR +01, OG94a, MFK +06, OS10]. Numerals [Hol87]. NV [CCA +12]. NV-Heaps [CCA +12]. NY [ACM12, GSW98, Mat09, IEE80b, IEE88c].
O [FHC89, MMC01, Vit85]. OBDD [Woe01, Woe05]. OBDD-Size [Woe01, Woe05]. Object [BDPSNG97, ISK +95, LDM92, TR02, DMP09, DM11]. Objects [Bar97, BS94b, KM92, SR01, BS94c, CCA +12, GP08, TD93]. Oblivious [Cha94, GM98, HK12a, PWYZ14, SS88, CHL07, FNS88, PWYZ10, SS90b].
Observations [Bal96, BS94a]. obstacles [HM93]. obtain [Vit80a]. Occupation [vM39].
October [ACM85a, Ano93a, Ano93c, BD08, CE95, IEE74, IEE76, IEE80a, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, IEE13, Jä90, Lom93, Mo92b, S83a, ST83b, USE00a]. Octree [CJC +09]. ODBF [ODB89]. odyssey [IEE01]. off [CJMS19, GW94, Sar11].
Off-line [HHL10]. Office [DM89, FC87].
Offline [GAS +16]. Offs [ASBdS16, Blo70].
offset [HLL18b]. OFL [GMP95]. OH [BD08, IEE94b]. Ohio [Fis87]. OHLCAP [HMNB07].
On-line/Off-line [HHL10]. Once [MNS07].
One [BCFW09, DGV93, Dit76, GK08, HHR +10, HYLT99, JLH08, HGH +12, LK84, Lar88b].
One-access [Lar88b].
One-Hop [RHM09].
One-Pass [LMD +12].
One-Step [Dit76].
One-Time [LAKW07, Moh11, PWY +13, Par18].
One-Way [BCFW09, DGV93, GK08, HHR +10, JLH08, LP15, Roe94, Rui93, Sch91a, Sho00a, Tsu92a, Wee07, Win83, Win84, Yat07, YZ00, ZPS90, Zhe90, ZMI91, ZPS93a, CMR98, Gih91, HR07, HL03, IEE92a, KST99, KM10, LW04, Mer90a, MZI98, NY89b, NY89a, Roe95, Sim98, SV18, STS +13, Tsa08, Tsu92b, YL04, ZW05, ZPS93b, HMBN07].

Online [BBKN01, Dos78b, FXWW17, Ger95, Kue83a, Kue84a, Mir17, Si09, TP15, PES +12].
Online-fehlerbehandlung [Kue84a].
Online-fehlererkennung [Kue83].
Only [EH12, MT11, NM10].
Ontario [KLT92].
Open [AMP15, Bra84a, Bra85, Bra86, Fdl87, Gon77, Gon80, Kno71, Kno88, LH03b, LH03a, Mnt09, MC86, SS80, NK16, NMX19, TT81, van73].
Open-Addressing [Gon77, Gon80].
Operating [AMC87].
Operation [CLS12, PHG12, AS89].
Operationen [Nee79].
Operations [ANS10, Bra48b, Ell83, Ers58a, Gir87, He87, HYH89, HYH93, HY86, HTY90, Kno90, Kut10, MSSWP90, SG76a, Wu85, JMH02, Pro18].
Opportunistic [LDK12].
Optical [CF89a, Vit85, CF89b, FWWG18].
OPTIK [GT16].
Optimal [AU79, AIs06, Bat80, Bat82, BR94, BBP88, BW98, BMRV02, CC88a, Cha84a, CHM92a, CHM92b, DA93, FC87b, FP89b, HR93, HRB13, Jag91, KK12, KK18, KP92, Kri84, LL92, LCML94, LIP02, MLP07, Men12, Men17, Mor83a, OWZ14, PP08, RR92, Riv76, Riv78, Tro06, Yao85a, Yao85b, Yao95, YCR93, YSELR09, AI08, GSS01, LCRY93].
Optimality [Bol79, CLC92, JP08].
optimally [Woe06a].
Optimizingfragen [Wal74].
Optimistic [GT16].
Optimization [ODB89, AR17, CG92, Kie85, Kim80, MXL +12, Mir17, MWC12, TVs83, XNS +13, YNW +09, Yu82, DJRZ06, DJNR09, Loh89, MP90].
Optimized [ARH +18, CV14, EPR99, MZD +18, ZH18].
Optimizer [ML86].
Optimizing [DGGL16, LOY00, MBK00, PF88, SW91, SV15b, WL12, TCW +13, WTN07].
Optimum [VC85, vdP72, vdP73, van73, Vit80a].
OR-parallel [Cra85].
Oracle [GHR99, LT12].
Oracles [Can97].
Order [FCDH90, FCDH91, GG86a, HB92, HM12, HSW88, Oto88a, Ouk83, Rob86, Tam81, AKY13, BMLLC +19, DH84, DLM07, HKKK13].
Order-Preserving [GG86a, Ouk83].
Ordered [AK74, CS83a, Cha84b, Cha84c, CS86, Cha86b, CC88b, MY79, MN90, SH92, SH94, SS06, JMH02].
Ordering [Lyo78a, GM79, Sab94].
Oregon [IEE93, ACM85b, CLM89].
Organisation [Lit77a, Wie87a].
Organizations [CF89a, Sch79b, Sch81, Toy86, YD86a].
Organizing [FLF11].
Orientability [BP10].
Orientation [BH93].
Oriented [BDPSNG97, Bry84, CS85c, CS85b, Cha85, Cha86a, CO82b, DCW91, ISK +93, JC88a, Kie85, LDM92, PV92, TL95, TR02, Tro95,
Jag91, Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Larxx, LK10, Mor83a, PF88, RLT83, RSD85, RSSD89a, RSSD90b, RSSD90, RSSD92, TGGF10, YD86a, CC88a, Fal88, Hua85, Riv74a, SDR83b, SNW06, YD86b.

Partial-Domain [Cor02].

Partial-Match [AU79, Bur75b, Bur76b, Bur78, Bur79, Jag91, RLT83, RSSD90, RSSD92, RSSD89a, RSSD92b, Hua85, Riv74a].

Partial-Relation [PF88].

Partially [PCL93a, PCL93b].

particles [Lia95].

Partition [LKI10, LC96, WZ12].

Partitioned [Ger86a, LR96a, NKT88, SW91, Ger86b, HKL07, MZK12].

partitioner [KKP+17].

Partitioning [Bre91, Ged14, PFM+09, SBS16, WBWV16, ZRT91, vM39, CKKK00, EH17, HAK+16, Kim99, LL13, PCK95, SKD15, UHT95, AP11].

partitions [DKRT15].

Partly [OTKH11].

PASCAL [Dit76, Hil88, HS84, Dit76, GBY91, Hej89, Sch76, TA81, TA86].

Paso [ACM97b].

Pass [LMD+12, OGAB14, YDT83].

Passbits [MB03, Bur05].

Passed [Gra94b].

passive [RW07].

Password [ASBdS16, GAS+16, JK11, KV09, WG00, BSNP96b, CJMS19, GL06, KCL03, Ku04, KCC05, NMX19, Par18].

Password-Based [KV09, BSNP96b, GL06].

Pastry [Her07].

Patch [BI12, BZL+15].

PatchTable [BZL+15].

Path [GO15, CVR14, CHL07, VNC07].

Paths [Kul04, AAB+92, VNC07].

Patricia [KS12].

Pattern [A94, BT94a, BT94b, CG79, Fre90, Gri79, IEE88d, KR81, TK07, CLS95, ISHY88, Kim99, Sch91a, ZO13, YIAS89].

Pattern-Matching [KR81].

Patterns [BH85, CLC06, HSPZ08, OTHK11, SK98, BCCL10, KRML09].

pauco [DMP06].

Pay [LHC05].

Pay-Word [LHC05].

payment [LHC05].

PCPs [FS08].

PDE [GZ99].

PDEs [Gri98].

Pebbled [Dev99, CM01].

Peer [CCF04, JXY07, KLSY07, KS12, LMSM09, SM02, LMSM12, WHS+07].

Peer-To-Peer [PFM+09, CCF04, JXY07, KS12, LMSM09, SM02, LMSM12, WHS+07].

Peers [RMB11].

Pennsylvania [ACM76, LFP82, ACM96, HB93, IE92b].

Pentium [BGV96, Bosxx].

Pepsi [Ano83].

peptides [MIGA18].

Per-Flow [NS16b, SL16, HKL04, LMP+08].

Perceptual [DCM18, LC12, MV01, MV02, NS16a, RGNMMP12, SB14, THY+18, WDP+12].

Perfect [AN96, AA79a, AA94, BHMIM12, BBD+82, BBD+86, BS94b, BSN4a, BW98, Bla00, Bla95, BPZ07, BT90, BT94a, BT94b, BH86, Bur92, BC90, Cer81, CKB83b, CBK83, Cer85, CKB85, CKB85, Cer87, Cer88, CLD82, CS83a, Cha84b, Cha84c, CS85c, CS85b, Cha85, CS86, CL86, Cha86b, CC88b, CC91, CW91, CL05, CLC06, CT12, CJ+90, CR83b, Cie80a, Cie80b, CO82b, CHK85, CHM92a, CHM92b, CM93, CM97, Dat88, DKM+94, DH01, Die07, DJS80, DHJS83, Duc08, DM11, FM96, FCHD88, FCHD89, FCIR90, FCHD91, FCH92, FHCD92a, FK84, FH15, Get01, GHK91a, GHK91b, HT01, J080, J81, JD12, KH84, KM86, KM88a, KCB81, Kra82, KP94, LR85, LH06, LLLC17, Mai92, MW92, MWHC96, MHD82, NRW90, Nil94, OG94a, OG94b, PAP99, PV92, PG95, Pes96].

Perfectly [CMR98].

Performance [ACM04, AP93, ANS09, BM89, BM90a].

\textbf{Picture} [BS94b, BS94c]. \textbf{pilfered} [Nic17]. \textbf{pipe} [MPST16]. \textbf{Pipeline} [PRM16].

\textbf{Pipelined} [CLYY92, He87, HCY94, MD05, MS88a, RS92, YCR93, ISHY88, LCRY93, RLM87, XLZC14]. \textbf{pipelines} [AS09, RKLC+11]. \textbf{Pipelining} [CLYY95].

\textbf{Pittsburgh} [LF82, ACM04, IEE92b]. \textbf{PKC'98} [HP02, HKKK10]. \textbf{PKC98-Hash} [HKKK10]. \textbf{PKM} [LTL18a, Zha07]. \textbf{PKI} [YY01]. \textbf{Place} [Dos78a, IEE84]. \textbf{Placement} [MEK+14, PRRR15, BPT10]. \textbf{Plagiarism} [CH12]. \textbf{Plains} [IEE88c]. \textbf{plane} [AII89].

\textbf{Pointer-Based} [SC90b, SC90a, SC90c, LDM92]. \textbf{Points} [AT93, Bat80, Bat82, AII89, AT90]. \textbf{Poisson} [Pob86, PVM94]. \textbf{Poland} [ACJ707, Win78]. \textbf{polices} [Jan05]. \textbf{Policy} [GGY+19, DG96]. \textbf{Politecnica} [CTC90]. \textbf{Polling} [LIXL+19]. \textbf{Polling-Based} [LXL+19]. \textbf{Poly} [DNS17]. \textbf{polylog} [DLM07]. \textbf{Polynomial} [DGMP92, FS82, Saa85, Saan76, WSSO12, Win90b, Bis12, GPGO16, Kak83]. \textbf{Polynomial-Advantage} [WSS021].

\textbf{Polynomials} [DY08, OS10, Sar11]. \textbf{PolyR} [KR01]. \textbf{Poools} [Woo89]. \textbf{POPL} [ACM91a]. \textbf{Popular} [CLNY06, RO80]. \textbf{Portable} [Hek89]. \textbf{Portland} [ACM85b, CL89, IEE85a, IEE93].

\textbf{Portugal} [CIM05]. \textbf{positives} [CVR14]. \textbf{Post} [BBD09b, MKAA17, BBD09b, BD08]. \textbf{Post-Quantum} [BBD09b, MKAA17, BD08, BBD09b]. \textbf{Postal} [Dos78a, poster] [ZL12].

\textbf{Postortsnamen} [Dos78a]. \textbf{Postprocessing} [Knu73a].
ACM94b, ACM04, ACM12, Ano85a, ODB89, AW89, Bar83, BV89, BRW93, BL88, CRS83a, CGO86, DSS84, Gil77, Got83, ICD87, CTC90, IEE02, Jäj90, Jon85, KLT92, Lak96, LCK11, Lev95, LSC91, Ros74, WGM88, YR87, Yua92, vdhvH12, ACM81, ACM91b, ACM07, ACM08b, ADG+08, AMSM+09, Ano83, AAC86, Deb03, Fis87, Van10, HL91, HF13, IEE02, Jen76, Mo92b, SM12, USE90, Win78, ACM94d, ??69, ACM75a, ACM79, ACM82, ACM83a, ACM83b, ACM84a, ACM84b, ACM85a, ACM86a, ACM87, ACM88b, ACM89b, IJW89, ACM90, PDI91, SDA91, ACM91e, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM08a, ACM11, AFI63, ABB93, ABM06, AH93, Ano92, AAC+01, A+90, AkNOW11, A099, ACM81, ACM91d, ACM91a, ADG+08, AMSM+09, ACJT07, BD88, BDS88, BIP92, BF89, Bor81, Bri92, BD08, BJ93, CP87, CLM89, Col93, CHK06.

Proceedings [Dav91, DT87, DSZ07, EF12, Fe91, FMA02, Fra04, Fre90, GMJ90, Gol94, GSW98, HB93, He94, IEE80a, IEE85b, ICD88, ICD90, IEE90, IEE91b, IEE91a, ICD91, IEE92b, IEE92a, ICD93, IEE93, IEE94c, IEE95, IEE01, IEE05, IEE07, IEE10, IEE11b, IEE13, IRM93, Joy03, Kar98, Ker75, Kna89, Kui92, LC06, Las87, LLO8, LT85, LS89, Lom93, Mat90, MK89, MV91c, MS85, Nav85, Ox86, Pat90, PK89, QV89, RRR90, Rov90, Rue93, ACM77a, SZ93, Shm00, SW94b, SC77, Sti93, Sto92, USE91, USE00a, USE00b, Vau06, Vid90, WPP90, IWSS91, Yan10, Yun02, AGK+10, AFK90, ACF70, Be100, BJZ94, Bra90, BW92, CIM+05, Cop95b, Dam90a, Dam91, DMRZ96, DJNR99, F509, G096, HM08, adHMM93, HKNW07, IEE11a, JB94, Kii05, Lut88, QG95, Rei88, SP90, Sho05, SM08].

proceedings [Wie99, vl94].

Proceedings/Ninth [ICD93].

Proceedings/Seventh [ICD91].

Processing [APV07, BG92, CCW+17, Dan13, Elds84, GST90, Ger86a, Ger86b, Gil77, GLS17, Gra92, Gra94c, HB93, Har85, HJC06, IABV15, KMW10, LLLL17, LC96, MK89, MS88a, Omi89b, PAPV08, Pip94, PK89, RK89, Sac86, Sch90b, SD90b, SD90a, Sha86, Sol93, SP88, Spe92, Tha88, Toy86, WPP90, IWSS91, YKYM83, BZZ12, Bra88, CP95a, CCKW00, Gec14, GC90, HLH13, Kan91, Kan93, LLC89, RAD15, Rs74, Sab94, SK88, SP89, WLLG08, YMI89, Yua92].

Processor [ADI88, KL87, SM87, YC93, ISH+91, LCR93, TLL07, YNW+09].

Processors [Pap94, Ros06, Ros07, Wil59, JHL+15, KL08, KW94, TLL09, YIAS89].

Producing [DV07, RVPV02, Win83].

Product [Du86, YGC+12, OS14].

Productive [Bor81].

Profile [SSU+13].

Profile-guided [SSU+13].

profiling [VNC07]. Program [Hil88, Knu84, Mai83, Mai92, Mch82, SS08, BZZ12].

Programmable

[HM12, HK12b, CFN18, LT12].

Programmer [Cro98].

Programmiersprache [Bit76].

Programming [LFP82, ACM91d, dBvL80, BM87, BGS96, Dit76, Dun89a, Ers58a, Ers58b, GG86b, Har71b, Har73, IEE84, Jon85, Knu73, Knu75, Knu92, LI9, Mau68, NS82, Pat90, Ruc15, SSS05, dK94, ACM91a, AGK+10, ADG+08, ALS10, AMSM+09, ACJT07, BW92, CIM+05, DLH+79, Er86, Sab94, TMW10, YIAS89, BW92, Las87].

Programs [AR16, Hea72, PAKR93, Ers58b, FDL86, MP90, NMS+08].

progress [Wol93].

progressive [XML11].

Progressively [DVS+14]. Project

[DGXS+90b, DGS+90a, Tro92, NMO2b].

Projecting [AT93, AT90].

Projection [Bur78, SPW90, AS89].

Projective [ACP99, HK12a, KV09, Wee12, FH15].

PROLOG [CJ86, Bor84, Coh84].

Proof [CZLC12a, CZLC14, Cor02, LY+18].
LYX+19, LT12, SDW14, ZZM17, DLM07, HLL18a, ZCZQ19. Proofing [CHL07].
Proofs [CZLC12b, CS02, KK12, KK18, NTY12, WG00, Wei11, Li10]. Propagation [DSSW90a, CML+13, DSSW09b].
Properties [Bal05, Bol79, CS83b, CLC92, Lit85, RS12, TS85, ZMI91, GW94]. Property [BR06, DGKK12, FLP14, Rja12, SRY99, Ter87, FL08, FLP08].
Proposition [LLJ15]. Proposed [CP91c, HPC02]. Protecting [LMJC07]. Protection [DF01, DGKK12].
Protein [LLW10, ZLY+12]. Protein-Protein [ZLY+12]. Protocol [Ano95a, BT12a, Dam93, CHL07, CS83b, CLC92, Lit85, RS12, TS85, WS76, ZMI91, GW94].
Protocols [LLL09, SDK91, KLL+97]. Provable [ANS09]. Provably [DY90, DY91, HM95, Sho96, IN89, SXL16].
Provably-Secure [DY90, DY91, HM95]. Provably-Secure [DY90, DY91, HM95].
Purpose [Chi91, Chi94, Sch91a]. \textbf{putting} [Col93].
pyramid [MHT+13]. QC [JY14]. Quadratic
[Ark74, AC74, Bat75, Bel70, Bel72, Bel83, BI87, Bur75a, Day70, Eck74b, HD72, Lam70, Rad70, NH74].\textbf{quadratischen} [BI87].
Quality [THY+18, YWH09, GW94]. quality-size [GW94]. Quantification [GC95]. Quantile [KS87b, KS89b].
Quantitative [YWH09, YGC+12]. Quantum [BBD09b, BHT97, BHT98, MKAA17, BD08, BBD09b]. Quark
[AHMN012, AHMN13]. Quasi
[Cze98, LLW10, MD05]. Quasi-Bicliques
[LLW10]. Quasi-perfect [Cze98].
Quasi-Pipelined [MD05]. Quaternary
[KP96]. \textbf{Québec} [ACM02]. Queensland
[SZ93]. Queries [APV07, Bur75b, CLD82, Cha84a, CHY97, DHL+94, DHL+02, GST90, GYF+19, KS12, LCM94, LOY00, LLG+17, LB07, ML86, PAPV08, PF88, SD09b, SD90a, SW91, Sol93, Stu85, BZL+15, DH84, Fal88, HYKS08, HAKM15, HAK+16, HR93, HF91, Hua85, LL13, MKBS07, SQW+14, TL93, Wil78, Wil85a]. Query [ODB89, BC92, FB87, Ger86a, Ger86b, Gra92, Gra93c, Gra94c, HLC10, HFZ+15, HFF+17, Kie85, Kim80, LC96, MS88a, Sac86, SD98b, Sch90b, Spe92, TS85, Toy86, CCY91, CJKK00, DSD95, GMP95, LYJ+13, LMLC14, Loh89, RAD15, SP89, WLLG08, YLC+09, Yu92].\textbf{query-adaptive} [LYJ+13]. Query-aware [HFZ+15, HFF+17]. Querying
[CN07, LÖON01, TT10, AK09, NDMR08]. Questions [Mit09]. Queue
[KV91, MV88, KM07]. queueing [MSV87]. Queues [AFK83, AFK84, WSL89, GJM02]. quick [FDL86]. QuikFind [Cha91].
Quotient
[BK70, Bel70, Bel72, Bel83, Bur75a, Lam70]. r [KKT91, LJJF19, WYW14]. \textbf{R*} [ML86].

\textbf{Purpose}
Reduits [Kar82]. Redundancy [Bur79, CQW08, FES09, MSS96].
Redundant [KR79, KRJ+80, RJK79, Som99].
Reference [THY+18], refined [DVS+14].
refinement [CKW93, ZDI+15]. Region [FB87, OSR10, KHH89].
Regions [JCK+18].
Registration [GPA97, JBWK11, Par18].
Regression [OGAB14, TGGF10].
Regular [CKW09, CH94, IIL17, MSP12].
Regularized [TGGF10].
Rehashable [LBJ02]. Rehashed [Bin96, Kno88].
Rehashing [Kel93, Kel96, Mad80]. Related [Eck74b, Mit09, BSU12, GMJ02].
Relation [Kmu74, PF88, de 69, GC90, MC89].
Relational [Bab79, Bra84b, FP89b, Fra82, Gra88, Gra89, He87, Hen87, IHS3, KR86b, KR86a, KP81, Kim80, KTM083b, KTM083c, M88a, PF88, Wu85, Yam85, YNM89, AS89, EBD91, IS89, SR89].
Relationalen [Nes79, Pet83]. Relations [KHT89, NP91, SW93, PCK95, UHT95].
Reliable [BH91, DGMP92, MKASJ18, RHM09, DHPK97, ZLL+07, ZC12].
Reliably [TCP+17], relieving [KLL+97].
Remaps [CRR18]. Remark [MRW89, Eck74a]. Remote [LC95, YY07, HL12, LLH02]. Removal [Leb87]. Rendering [War86, ZRL+08].
Rendezvous [EH17]. Reorganisation [Bat80]. Reorganization [Bat82, Reg82, Szy82, Szy85, SI09].
Reorganizing [JCK+18]. Repair [Bar97, BRM10]. Repairing [ZJ09].
Repeated [Lar80a]. Repetitions [YGC+12]. Replacement [Jak85, JCK+18].
replay [BRM10]. Replica [CCF04, LRY+15]. Replication [LMSM09, LMSM12, UIY10, WY02].
Republic [Ano83, HL91]. Reputable [RMB11]. Required [PT16, PT10a].
Requirements [BD92, NW09]. Rescue [YY01]. Research [BV89, BIP92, IEE89, cLmL07, Rad70, SVCC01, Vi90, CE95, Wolo39, Yu92, YR87].
Researcher [GCMG15]. Reserved [ST86, Tro06, Wol84, Zou85, ST85].
Residue [Ar168, KKT91, Mue04, Rad70]. Resilience [NTY12]. Resilient [ASW18, BGS96, LMSM09, WTN09, ZZM17, LMSM12]. Resistance [Mit12, BF08, MSP12]. Resistant [BR97, BK12, CHKO08, IK05, PV90b, CHKO12, KHK12, PV91, PV93g, MS09].
resisting [SXL16]. Resizable [Boy98]. resizing [ZH919]. Resolution [Ask05, CadHS00, MC86, YB95, KdIT89].
Responsible [IH83]. Responsive [DG93, DG94]. Responsiveness [BDS88, Sch82a]. Restart [LACJ18].
Restklassenhash [Eck74a]. Results [AN09, Bur83c, DR06, DRS12, Jv86, RR08, CV05, LY72]. RETCON [BRM10]. retention [ZLL+07]. Retrieval [AN09, Bur83c, DR06, DRS12, Jv86, RR08, CV05, LY72].
Riv74b, RT87b, TS85, Vid90, WH83, Wil79, WK78, YDT83, YWH09, YR87, YTJ06, YD86a, ZWH17, Bur76a, CCL91, CJP15, DSSW90b, Gob75, GPY94a, LYJ+13, ML94, RT89, Riv74a, SDR83b, WC94, YD86b, Zha19, ZZLZ18.
Retrieving [SG72].
Retrieving [AA79b, AA79a, Spr77].
Return [Wil96].
Reusing [ZHS94].
Reversible [DR11, SLC+07]. Revised [Ytr06, BK07a, Bir07, JY14]. Revisited [AHS92, BYSP98, CDMP05, FLP08, GL91, GL94, HR96, HK87, KK12, KK18, KVK12, BATÖ13, Ham02, KKL+09, LP04].
Revising [HLH13, Yu18].
Revocation [Wee11, MFES04]. Reykjavik [ADG+08]. RFID [CJP15, CJP12, FW09, GI12, GLLL17, HCPLS12, JRP07, LLL09, LLG+17, LX+19, SPLHCB14].
Rigorous [GLLL17]. RIMS [Got83].
Rinda [ISH+91].
Ring [GGY+19, OL89, TY91]. Ring-Based [GGY+19]. Rings [HJ96]. RIPEMD [BDP97, LP16, MNS12, PBD97, WFLY04, WW09]. RIPEMD-128 [LP16, MNS12].
RIPEMD-160 [BDP97, PBD97]. ripple [LEHN02]. risks [DS09b]. RITS [GB17].
RKA [LLL18a]. RNA [BDD+10]. Road [BDP09, HR04].
Robin [CLM85, Cel86, CLM96, DMR04, PV19].
Robust [BFMP11, FLP08, FLP14, KMW08, KMW10, KO90, Li15, LDY+16, MMG10, MV01, MV02, OCGD11, TLZL16, WDP+12, CWC10, EAA+16, YCJ12].
Rockefeller [IEE90]. Roma [AAC+01]. Roman [Hol87].
Rotated [US09]. Rotation [Bla99, PQ98, PQ99].
Rotation-Symmetric [PQ98, PQ99].
Routing [ABC+16, BT12a, WBWW16, Cha12, HLL18b, PT10b, SPSP16, TC04, TBC+05, WY02]. routing-based [WY02].
rows [CDH19, FH15]. RSA [Joy03, Ano95a, Jun87]. Rule [BG92, Han90, HCKW90]. Rule-Based [BG92]. rulebase [CKKK09]. Rules [CL05, CT12, PC95, HC02, HC07].
runtime [OOK+10]. Russia [Van06]. Ryu [KCC05].
Scalable [CKKK09, DPH08, GLJ11, IEE94c, LMD+12, MZL+19, MD97, MEK+14, PRRR15, PSZ18, PW94, SSL+18, SKC07, SWTX18, TMW10, WPKK94, WSS+16, CLL+14, KKP+17, KYS05, KSC11, KSC12, LNS96, LEHN02, NK16, PT12b, SB14, TLL09, VB94, KCR11, NTW09].

Scale [BI12, GGY+19, GLLL17, Li15, MEK+14, MWC12, NS16a, SHF+17, YGC+12, CML+13, FES09, Kos14, Shi17, SXLL08, Zha19, ZNPM16].

Scale-Invariant [NS16a].

Scaling [AK09, LL13, TCP+17, FHL+19, PES+12, YSL05].

SCALLA [LMD+12].

scanner [ISHY88].

Scanning [Bur81, LLL11].

Scatter [Ban77, BMB68, Bre73, Day70, FL73, FW76, FW77, Luc72, Lyo78b, Mal77, Mau83, Mor68, Mor83b, Mau68].

Scenes [War86].

Schanuel [KPS92].

schedules [GK12b].

Scheduling [Lyo79, TL93].

Scheme [AK98, BP97, Bur84, CLD82, Cha84b, Cha84c, Cha85, CL86, Cha86a, Cha86b, CC88b, CCJ91, CW91, Dat88, DJS80, DHJS83, Fuh80, Hul13, JLH08, KJC11, LW88, LAR88b, LHC05, XNB13, Oto85a, Oto85b, PVM94, PACT09, SGBK00, SHF+17, TC93, VV84, Vit81a, YSW+11, YY07, ZJ09, ZQSH12, ZH18, Bur82, CB05, CW93, CKW93, CP95b, DF89, EAA+16, HJ12, HL03, HFF+17, KL03, KU04, KCC05, LLH02, LKY04, LWG11, MMG10, Oka88, SDR85b, Tsa08, WZ12, YRY04, YG10, ZW05, ZC12, FF90].

Schemes [BDS09, CL05, CLC06, Cor02, Dam87, DSS17, ED88, HH96, HDCM09, HHL10, Jai89, Jai92a, Jai92b, Jaixx, Kall01, KM09, LM95, LRY78, LRY80, MY80, MKAS18, Ng06, Ouk83, PWY+13, FF88, RL82, RS77, SDR83a, TL95, CMJS19, CQW08, DH84, GS94, HDCM11, HSB91, IN89, KK96, KM10, ML94, NMX19, OS88, RS75, SNW06, ZHS94].

Schluesselwoern [Dos78a].

Schnellen [Kue84a].

Schnorr [DBGV93, NSW09].

Sci [Sar80].

Science [ACM91b, AH03, Bar83, Gol94, Got83, IEE76, IEE80b, IEE82, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, IEE13, Knu74, Kon10, LC86b, LL83, RRR99, Rie89, Rov90, Wal88, WGM88, Wll85b, Win78, TWW77, vl94, AT18].

science/3rd [TWW77].

Sciences [SC77].

scientific [Fis87].

Scope [CL83, GJR79].

Scopus [AT18].

Scotland [AOV+99].

Scratchpad [vdBGLGL+16].

SDC [K090].

SE [Sun02, HLL18a].

Sealed [SKM01].

Sealed-Bid [SKM01].

Search [Ack74, iA91, Ban77, BM76, Boo74, Bra84a, Bra85, Bra86, Cer81, CKB83b, CKB85, Cha91, CLP17, CS82, Eck74b, GIM99, HH85, KCB81, Kra82, Kut10, LL85, Luc72, MD97, MW09, Mue04, NSS+06, Pal92, PACT09, Reg81, RSK17, SD78, Sun76, Sev74, SGBK00, WY05a, WZ93, ZW05, ZC12, FF90].

Searches [LL87, Lyo85, GJM02, KHH89].

Searching [Bay74, BS97, Bur75a, CL85, CS82, Dav73, Day70, Dos78b, Fla81, FS82, Flo83a, Flo87, Gon81, Gon83, Knu73, Knu75, Lam70, Mai83, Mcl63, Mhe84, Ouk83, Piw85, RT81, Ram89b, RC94, SG76b, TT82, WIE87b, WB87, YJ06, Yub82, CW93, CLW98, ISH+91, Mol90a, Mol90b, PHT3].

Seattle [ACM89c, LCK11, KCR11].

Seaweed [NDMR08].

Second [ACM83b, ACM90, SDA91, AKY13, ABD+16, Ano93d, BD08, Kii05, Mit12, TZ12, ABM+12, IEE88b, TSP+11].

Second-Preimage [ABD+16].

Secondary [Bel70, Bel72, Bel83, Fel87, FP89b, Gui75].
Secrecy [BKST18].
Secret [HR04, LMJC07, LPWW06, SNW06, Par18, ZHS94].
sections [NM10].
Secure [AHV98, Ano93b, Ano95b, BT12a, CZLC14, CS02, Dan13, DK07, DY90, DY91, DR11, FIP93, FFGL09, GHR99, GZX14, HM96, HR04, JTOT09, JK11, KMM+06, KP97, LM95, LRy+15, MAKA17, NIS93, Nat95, NR12, PLKS07, PV07, PGV92, Rei03, RSK17, SK99, Sho06, Sta06a, Win84, XHZ+19, Yas07, YY07, Zhe90, ZHZ+19, Aam03, FFGL10, GM18, GBL94, HLL18a, IN89, JFD09, Sim98, SXL16, YRY04, ZC12, ANS97, Ano02, Ano08, Ano12, Bou12, FIP02b, Nat92, Sta94].
Security [AK98, Abi12, And94, ASBdS16, CLNY06, CN08, Cor00, Cor02, FW09, GK12a, HMNB07, HLMW93, HXMW94, ISO97, ISO04, KK12, KK18, KI01, LC06, LT12, LLL9, MP12, Men12, NAK+15, PW06, RS12, SM02, WC00, WPS+12, Yan10, ZXL19, ACM94a, ACP10, ABM+12, AN93a, BGKZ12, Kaks83, LC95, Men17, MPT16, PGV93c, SF88, Sta06b, UPV11].
Segmented [CLYY92, CLYY95].
Segments [Bor84].
Sekundaerspeichers [Pet83].
select [FNY92].
selectable [BSNP96c, Gon95, Li95].
Selected [SC77, Ytr06, Bir07, Bor81, YJ14, YJ14].
Selecting [MHB90, Sou92].
Selection [DC81, FFGO07, Hea82, MS12, OGAB14, TYZO15, CD84a, HYKS08, Dos78a].
Selectivity [HHT85, Pag85, PRR15, SS83, Som99, TY03, Wil96, Wog98, ZF06, AO19, TK199].
Self-Adjusting [Pag85, Wog89].
Self-checking [Wil96].
self-clustering [AOD19].
Self-Indexed [IK199].
Self-Monitoring [SS83].
Self-Organizing [HH85, Som99, TY03].
Self-Shrinking [ZF06].
Self-Tuning [PRR15].
Semantic [CDW+19, LI15, LWZ+18, LL13, MB00].
Semantics [IH83].
Semi [CBK83, CLL+14].
Semi-Interactive [CBK83].
Semi-supervised [CLL+14].
semijoin [CCY91].
Semite [LI92].
Semitic [Ind13].
Sensitivity [BT12b, CSSP15, CKTP19, KBG18, Kav15, MNP08, OWZ14, OTHK11, Pag18, AT18, FWG18, HZ+15, HFF+17, LNS11, LWXS18, LW+17, PC15, QZD+18, SP12, STS+13, WY00, SA17].
Sensor [DK09, LDY+16, PLKS07, ZQS12, AK09, ADF12, LG13, LND08, RAL07, YG10].
Sensors [DL12, DVS+14].
Sentence [CH12].
Sentences [Ven86].
sentiment [ZZLZ18].
Separate [Kue82b, Mul81, Kue82a].
Separating [FK84, SG16, BvT13, LS06, vT14].
Separators [Lar88b, Moh90, Moh93, CS93a].
Sept [BD88, Jou85].
September [VLD82, AAC+01, AOV+99, AA86, BJ94, EF12, FS09, Fis87, HM08, HKNW07, Ker75, Kna89, LSC91, Vid90, Win78, Yao78].
Sequence [BC08, FP89b, Gon81, HG77, LPT12, LL85, MS88b, BJ07, CLW98, Wog98].
Sequences [Som99, KS88a, QJ97].
sequencing [KRML09].
Sequential [AD85, BCCL10, CT96, GSB94, HB89a, KKC12, Lit89, Mul72, Ore83, Piw85, SK98, SG76b, BDPV14, HB89b, IL90].
Series [BJL16].
Served [PM89].
Server [DR92, GSL17, GBC98, Gra99, VB00, Tsa08].
Server-Side [GSL17].
Servers [SKC07, KSC11, KSC12].
Serves [Ano95d].
Service [CCF04, SWTX18, Bac02, BPT10, QZD+18, TLLL18].
Services [ANS05, Ano85b, HLC10].
Session [HLC10].
Set [BSC11, HK18, PSZ18, SG76a, WC81, YD85, BGG12, GGR04, HYKS08, HPCM11, HKLS12, HM03, MI84, SA17].
set-expression [GG04].
Set-Oriented [Kie85].
set-valued [HM03].
SetI [BFR87].
Sets [AA79b, AA79a, GHK91a, GHK91b, GT93, Lit89, PBDD95, Ram92, Spr77, Win90a, BT89, BT93, FP82, IL90].
[RAD15]. seven-dimensional [RAD15].
Seventeen[th] [LC86b, LSC91, Rie89].
Seventh [ACM75c, ACM75a, ACM88a, dBvL80, LL08, AAC+01, ICD91]. several
[DLH+79, Kan90]. SHA
[ANS97, Bou12, TSP+11, AAE+14, ABM+12, BCJ15, jCPB+12, DR06, GLG+02, JRPK07, KKJ10, KRJ09b, MAK+12, NI515, NSS+06, SK05, Sta94, SKP15, WYY05a, WYY05b, WYY05c]. SHA-0 [BCJ15, NSS+06, WYY05d]. SHA-1 [ANS97, AAE+14, BCJ15, DR06, JRPK07, KRK10, SKP15, WYY05a, WYY05b, WYY05c]. SHA-2 [SK05]. SHA-256 [MAK+12]. SHA-3 [Ano08, BCJ15, NSS+06, GLG+02]. SHA-512 [GLG+02]. SHA1 [SBK+17]. Shading [ZDI+15]. Shading-based [ZDI+15]. Shanghai [Ano83, LC06]. Shape [SR89]. Shared [Bor84, CadHS00, DadH92, EK93, adH93, KBG18, KU88, KTN92, LTS90, MLD94, MLxx, Mey93, Omi91, PG17, SD89c, SD89a, TR02, TNKT92, VB00, Vit81a, WB03, YNW+09, Don91, GLJ11, Kan91, Kan93, KU86, MSS+96, Par18, SD89d]. Shared-Disk [WB03]. Shared-Everything [KTN92, ML94, TNKT92]. Shared-Memory [MLxx, TR02, Vit81a, Bor84]. Shared-Nothing [SD98c, SD98a, SD98d].
shares [ZH94]. Sharing [LPW06, KL08, KD92, SNW06, YD89b, ZHS94]. SHA-vite [GLM+10]. SHA-vite-3-512 [GLM+10]. Shell [Rei03]. Shenzhen [IEE11a]. Sheraton [ACM75b]. Sheraton-Palace [ACM75b]. Shop [Sii02a]. Short [AB12, CW90, CDW+19, DK09, Lyo79, NR12, MT16, SV15a]. Short-Input [AB12]. Short-Output [NR12]. Short-Time [CW90]. Shorter [Hui13, PPB16]. Should [Yao81]. Shoup [Mir01]. Showcase [USE00a]. Shrinking [ZF06]. SHS [Ano08, Ano12, NIS93, Nat92]. SIAM [ACM94d, SDA90, SDA91, ACM97a, ACM05, ACM08a, Kan98, Mat09, Shm00]. Siche[r] [BN85]. Side [GO07, GSL17, TC04]. SIFT [MMG10]. SIGACT [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM89a, Van10, LL08]. SIGACT-SIGMOD [ACM83a, ACM83b, ACM85b, ACM86a]. SIGACT-SIGMOD-SIGART [ACM88a, ACM89b, ACM89a]. SIGAL [A+90]. SIGART [ACM88a, ACM89b, ACM89a, Van10, LL08]. SIGCSE [LC86b]. SIGIR [BIP92, YR87, BV89]. SIGMOD [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM89a, BJ93, CLM89, FMA02, GMJ90, Van10, HF13, LL08, Nav85, SW94b, Sto92, ACM81, ACM84a, BL88, HF13, Lel81, SW94a]. SIGMOD-SIGACT-SIGART [Van10, LL08]. SIGMOD/PODS [HF13]. SIGMOD/PODS'13 [HF13]. Sign [CK12, GHR99, PV07, GK12a]. Signal [Cai84]. Signature [ANS05, ANo09, ANo13, BDS09, CS91, Cor02, Dam07, FC87a, FC87b, HHL10, Hui13, Kal01, LL96a, LM95, LL92, NXB13, PWY+13, RZ90, RR92, ZRT91, Z09, CR89, ZW05]. Signed [Sch01, ZDI+15]. significant [BCCL10]. signing [BBG94]. SIGPLAN [ACM79]. Silbentrennung [BN85]. SIMD [AT91, RG89]. SIMD-MIMD [RG89]. Similar [RC94]. similarities [UCFL08]. Similarity [GIM99, HCF95, LNS11, LÖÖN01, NNA12, TWZ911, WSZ+16, YTJ06, CLL+14, GP08, HYK08, SP12, SA17, STS+13, ZWT+14]. Simple [BPZ07, Cic80b, DH01, DS09c,
GM94, GM98, IT93, KM08, Lom88, PSSC17, PT12a, Ram92, Sar10, Tho13, CLS95, DKRT16, DW03, DS9b, DLM07, MV08, PT11a, SKD15, SF88. Simplicity [Rag93]. Simplifies [OVY94b, OVY94a]. Simplify [Dam93, Dam94]. simplifying [VZ12]. Simulating [adH93, Mey93]. Simulation [EK93, Hil82, Hui90, KLadH93, KLM96, KHW91a, YkWy83, KHW91b, TWL+18, War14, DS84a]. Simulation-Based [EK93]. Simulations [CadHS00, DadH92, Lep98, Rey14, MSS96]. Simultaneously [LOY00]. Sindhi [SSS05]. Singapore [DSS84]. Single [AKS78, AA79b, AA79a, CS93a, CC88b, GIS05, Lar82c, Lar82d, Lar85c, Men12, MJBD11, OT91, Spr77, YDTS83, YSEL09, Men17, MA15, RT89]. Single-Cycle [MJBD11]. Single-File [Lar82c, Lar82d, Lar85c]. Single-Hop [MA15]. Single-Layer [YSEL09]. Single-Pass [YDT83]. Single-Probe [OT91]. Singular [NS16a]. Sinkhole [JL14]. Sinnentsprechende [BN85]. Sintering [Rey14]. SipHash [AB12]. sites [OOK+10]. Sixteenth [ACM84b, ACM05]. Sixth [BF89, ICD90, GJM02, LT80]. Size [Ack74, AHS92, Bat75, CKW09, Dev99, FK84, HD72, Joh97, Kab87, KV91, KNT89, MV88, Meh82, Sam76, Wil79, Woe01, Bee83, CM01, DW05, DW07, GW94, Han17, LNS11, Sar11, Woe05]. SK [LCH+14]. Skein [AEMR09, FLS+10, KN10]. Skeleton [LDY+16]. Sketch [BI12, TP15]. sketches [NTW09, SLC+07]. Sketching [Id13]. Skew [Bre91, CyWM91, DNSS92, KO90, RK91, Top92, WDTY91, WYTY93, ZO93]. Skip [AS07, Coh98, BCR10]. SL2 [CP95b, TZ94b]. Slack [APE18]. SLCA [WWZ09, ZLC+12]. SLCA-Based [WWZ09]. Slicing [Kon10, MEK+14]. SLISCP [ARH+18]. SLISCP-light [ARH+18]. Sloth [LW17]. Slovenia [EF12]. SM3 [MXL+12, WS13, ZWW+12]. Small [FMHU85, Ind01, Jol97, KR01, NN90, NY85, YLC+09, YBQZ17, MP16, Sag85b]. Small-bias [NN90]. Smaller [CRSW11, CRSW13]. Smalltalk [SUH86]. Smart [Ku04]. Smartcards [JK11]. Smoke [ZRL+08]. Smooth [ACP09, HK12a, KV09, LYY+18]. snapshots [PBBO12]. Snefru [Bih08, BS91c]. Snowbird [SM08, SM12]. SOAR [SUH86]. Social [KKP+17, ZWH17, PES+12, ZZLZ18]. Societies [IEE92a, IEE01]. Society [IEE80a, IEE84, IEE88a]. Soft [DGKK12]. Softswitches [LLL18]. Software [Ano85b, DT75, Eld84, FMHU85, GN80, GD87, Got83, IEE92a, IEE95, Kna89, Lew82, MZZ+18, Mil87, NP99, RRR99, Sch01b, SBS16, Wil88, And94, Bir07, Gol96, Mer90a, SGK09]. Software-implementation [GN80]. Solution [DM90, Hop68b, Mit73, WSZ+16, HCF95, HL94]. Solvability [BF83]. solve [CP95a, WZ12]. solved [Loh89]. solver [GZ99]. Solvers [DK07]. solving [SWQ+14]. Some [Bay73a, CV85, Gb90, Gr74, Lar85a, Mit09, MO190, MO191, Nam86, Sti06, Wrr83, BSU12, GLC08, Inc81]. Sonographic [Ssa01]. Sophisticated [BPBBL12]. Sort [GLS91, Gra94b, GLS94, KKL+09, KTMO83b, OOB17, Tr02, AKN12, BATÖ13]. Sort-Hash [TR02]. sort-merge [AKN12]. Sort-Merge-Join [Gra94b]. Sorted [Yao81, YL90]. Sortieren [Meh86]. Sorting [BS97, DS97, Gra94a, Gup89, Knu73, Km75, MV90, MV91b, Meh84, ASW87, CTKW00, IS+91, Kan90]. Sound [GvR08, KCF84, SDW14, BDPV14]. Source [KP94, CBB05, Cha12, HC11, NMX19]. soure-based [Cha12]. Sources [CV08]. South [ACM91c]. SPA [ACM91c]. Space [Bal05, Bl07, BPS07, BM99, CH94, DH01, Fis87, F+03, FPSS05, HT01, JD12, PP08, SvEB84, TW91, YY01, BD82, CF89b,
DMPP06, GZ99, Kou93, MN90, OP03, PSS90, Sie89, SWQ+14, TYSK10, WHS+07, Yu75.

Space-Efficient [BPZ07, JD12, PSS09].

space-filling [GZ99]. Space/Time [Blo70].

Stockholm [PV85, Ros74].

Storage

[ACM04, Bay74, BMB68, Bre73, Col93, Day70, FL73, Fel87, FB87, FP98b, Fro82, GL82, GL88, HCJC06, Knu71, HG89, LCLX19, LRY15, MSK96, Mal77, Mau83, MEK14, Mor68, Mor83b, Mul81, Mul85, Omi88, OT91, OS83a, OS83b, Pet57, Sam81, SHF17, TY03, TS85, Tra63, WZY18, WH83, Wil71, WK07, WB87, YDT83, vdP72, vdP73, AY14, AK09, CRS83b, DMB19, HGR07, YSL05, YMI89, van73].

storage-efficiency [PT10b].

Storage-efficient [HCJC06, MSK96].

Store [DW83a, MZL19, dW83b, SFA19, Shi17, BP94].

Stores [Bry84, GYW19, PRRR15].

Storing [AL86, FKS84, MNS07, Ros77, TY79].

Stouffer [ACM87].

Strategies [iA91, iA94, BI87, GYW19, PRRR15].

Strategy [CdM90, LMSM09, LC96, NKT88, TA86, TA86, TGL97, TS76, TS84, VL87, WS76, WK07, Wir86, YLB90, ZLLD18, BY99, CRS83b, FP98a, GJ90, Har73, HM03, Ine81, IGA05, Koe72, Lin96, MTB00, NT01, NM02b, OS88, She06, VL97, Vit01, Wil78, Wil85a, ZKR08].

Structuring [Bay73a].

Studies [Ano93d, GT80, GG80, Yub82].

Study [AR17, BF83, BK07b, Cha84c, Cha85, Cra85, DTS75, DJ80, DL88, Ell85b, Gri74, Hil78a, Hil78b, LC86a, LG78, LY72, Wee88, WTN07].

style [UCFL08].

Sub [WZY18].

Sub-Datasets [WZY18].

Substring [ZLY12, WLL08].

sublinear [CFN18].

Subquadratic [Val15].

subscribe [MJ14].

Subscripts [Atk75, vdSDW74b, vdSdW74a].

subset [IN89, Mon19].

Subspace [KRJ80, Sch11].

Substring [Boo73, Har71a, MKSA98].

Subsystem [HLC10].

subtype [Duc08].

subtyping [DL06].

Succinct [ANS10, DP08, RRS07, FS08, SH92, SH94].

Suchen [Meh86].

Suffice [ADW12, ADW14].

Sufficient [BDPV14, IK05, IH95, Rus92].

[She06].
Rus93, Rus95. suffix [BGKZ12, Kos14]. suffix-free-prefix-free [BGKZ12]. suitable [MJZ19]. sum [IN89, Mon19]. summaries [KM08]. Summary [DLH+79]. Sums [HJ96, RRS07]. Super [Aoe95d, HLL18a, KO90]. Super-strong [HLL18a]. Supercomputing [ACM04, IEE90, IEE91a, IEE93, Kha95]. Superimposed [CJ86, FH69, SD85, SDKR87, SDR83b]. superior [PT10b]. Supervised [CLL+14]. Supplement [SC77, Ruc15]. Supplementary [PLKS07]. Support [CN07, Eng94, GSI17, KJC11, SK99, YCY93, CZ14, CKKW00, JMH02, KLSV12, LCRY93]. Supporting [CLS12]. SURF [JC12]. Surface [Les87, LDY+16]. surprising [SKD15]. Surrogate [BCH87]. Surrogates [Dee82]. Survey [CZ17, CJ19, Kal93, Sev74, Mi99, RAL07, UPV11]. SUSE [PT10b]. Sweden [Ros74]. Switching [IEE74]. Switzerland [HKNW07, Lak96]. Systematic [ȘSsA01]. Systems [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM87, ACM88a, ACM89b, ACM89a, ACM89c, SDA90, ACM90, ACM91c, ACM91d, SDA91, ACM91e, ACM94b, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM07, ACM08a, ACM08b, ACM11, ACM12, AH03, A+90, AiNOW11, BW92, Col93, CHK06, EF12, Gol94, Van10, adHMR93, HL91, HF13, IEE74, IEE76, IEE80b, IEE82, IEE84, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE05, IEE06, IEE07, IEE10, IEE11b, IEE13, JÁJ90, Jen76, Lak96, LL08, Lev95, LC86b, Mat09, MS05, Ng79, ACM77a, Shm00, WGM88, Win78, Wol93, vdHvH12, ACM91a, FS09, Fis87, HM08, HKNW07, Kar98, IEE82]. Symmsac [Jan76]. Synchronization [Oak98]. synchronizing [ML95]. Syndicate [HM19]. Syndrome [vMG12]. Syndrome-Based [vMG12]. synergy [GHW07]. Synonym [QCH+81]. synopses [YL+09]. Syntactic [Ven86]. synthesis [Sab94]. synthetic [GLC08, PGV93e, PGV94]. Syracuse [IEE80b]. System [ASWD18, BGF88, BG92, CBK83, Cer85, CBK85, CRLC12a, CRLC14, CBA94, CJE6, DNV81, EE86, FH69, GRZ93, Gra94c, He87, ISK+93, JXY07, KL87, Koc72, KRD+80, HGH+12, LXY+19, Mil85, MK93, MFK+06, PRZ99, PSR90, Sar80, SBS16, SPB88, SS77, TC93, YKYY83, ZMM17, ZS+09, CZ14, GB017, HLL18a, Kos14, MFES04, WM93, YFw89, ZCZQ19]. Switching [IEE74]. Switzerland [HKNW07, Lak96]. Symbol [CL83, Bat65, GJR79]. Symbolic [ACM94b, CLD82, DL80, FH96, Jen76, Lak96, Lev95, Ng79, vdHvH12, GvR08, Kan91, Kan93, Ng79]. Symbols [Wil59]. Symmetric [FW09, Fil02, HC13, NHS84, Oto85b, PQ98, PQ99, QG89, QG90, Ro94]. Symmetry [KTN92]. Symposia [Got83]. Symposium [ACM94d, ACM75c, ACM75a, ACM76, ACM77b, ACM79, FLP82, ACM82, ACM83a, ACM83b, ACM84b, ACM85b, ACM86b, ACM86a, ACM87, ACM88a, ACM88b, ACM89b, ACM89a, ACM89c, SDA90, ACM90, ACM91c, ACM91d, SDA91, ACM91e, ACM94b, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM07, ACM08a, ACM08b, ACM11, ACM12, AH03, A+90, AiNOW11, BW92, Col93, CHK06, EF12, Gol94, Van10, adHMR93, HL91, HF13, IEE74, IEE76, IEE80b, IEE82, IEE84, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE05, IEE06, IEE07, IEE10, IEE11b, IEE13, JÁJ90, Jen76, Lak96, LL08, Lev95, LC86b, Mat09, MS05, Ng79, ACM77a, Shm00, WGM88, Win78, Wol93, vdHvH12, ACM91a, FS09, Fis87, HM08, HKNW07, Kar98, IEE82]. Symsac [Jan76]. Synchronization [Oak98]. synchronizing [ML95]. Syndicate [HM19]. Syndrome [vMG12]. Syndrome-Based [vMG12]. synergy [GHW07]. Synonym [QCH+81]. synopses [YL+09]. Syntactic [Ven86]. synthesis [Sab94]. synthetic [GLC08, PGV93e, PGV94]. Syracuse [IEE80b]. System [ASWD18, BGF88, BG92, CBK83, Cer85, CBK85, CRLC12a, CRLC14, CBA94, CJE6, DNV81, EE86, FH69, GRZ93, Gra94c, He87, ISK+93, JXY07, KL87, Koc72, KRD+80, HGH+12, LXY+19, Mil85, MK93, MFK+06, PRZ99, PSR90, Sar80, SBS16, SPB88, SS77, TC93, YKYY83, ZMM17, ZS+09, CZ14, GB017, HLL18a, Kos14, MFES04, WM93, YFw89, ZCZQ19]. Systematic [ȘSsA01]. Systems [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM87, ACM88a, ACM89b, ACM89a, PD91, And91, ANT85, BS12, Bor81, Cer81, CS83b, CC87, Col93, DKO+84b, DKO+84c, DKO84a, Dum56, DGGK12, Ell82, Fox91, FS84, GGY+19, GI12, GLL17, Gro86, Van10, Han90, HCKW90, Han88, HBL+10, HF13, Kim80, KS12, KCB81, Kue84b, Kum89a, LYY+18, LC86a, LL08, LGG+17, LXL+19, Loo81, Man12, MEK+14, Mor83a, Ouk83, PF+09, PG17, Sha86, She91, SHF+17, SWTX18, Toy86, Ull82, Web72, WB03, Yam85, YLB90, ZJM94b, ZH18, dKCN94, ACM94c, AKN12, ARA94, DKO+84d, DAC+13, FS79a, FES09, GPGO16, KPK92, Lia95, Mo92b, RW07, SK88, SGK90, SP89, TL93, UIY10, WZ12, WTN07, ZGG05, ZJM94a, ZJM94c, SC77, Sto88]. Systolic [EBD91, PJM88, PBM90].
T3D [DS97]. Tabellen [BI87]. Table [AR16]. Table/urn [Ram87]. Tabled [AR16]. Tables [Ack74, APV07, AK74, Ask05, Ban77, BM87, Bay73c, Bay73a, BPBBLP12, Ben98, BI87, CRdPHF12, Cle84, CD84b, EMM07, FFPV84, F+03, GT93, HP78, Hop68b, HC87, HC13, IK92, Jv86, KHK15, Kue82b, Kue84b, LK07, Lar88a, LMS09, LC88, Lit96b, LB07, Luc72, LMR02, Lyo78b, MSD19, MS02, Mit02, MC86, NY85, Pag85, PAPV08, PY92, PTT16, PBDD95, Pla98, Qui83, Ram88a, RRS12, RH09, RMB11, SD78, Sch79a, SS80, SM02, TT10, Woe06b, Yao81, Yao95, Bat65, CH87, CS82, CT96, Dod82, HCS7, KM92, Lit79a, Man68, McK89a, RZ90, Ran97, SDW14, She78, TK88, Wan84, Yam85, CCY91, GM77, Kan90, KK96, MIGA18, McK89b, Pro94, Sac86, Sag85b. Techniques [Bay73a, Bih08, Bre73, CP87, C17, Dam90a, Dam91, Dav91, DKO+84b, DKO+84c, DKO84a, DL79, Dun89a, Dun89b, Fel87, Gra92, Gra93c, Gui74, Gui75, Hel94, KMOV10, Kue84b, LDM92, LYD71, Mal77, Mor68, Mor83b, MC86, Pri71, QV89, QG95, RHL91, Ruo93, SD85, SDKR87, SZ93, She91, SPSP16, Sta73, Sti94a, Vau06, YI06, BF08, De 95, DKO+84d, DJRZ06, DJNR09, QG95, ISO97, ISO04, LY72, PH73, RLH90, SXLL08, UPV11, YSL05. Technology [IEE11a, RRR99, ISO97, ISO04, JB94]. teil [Pei82]. Telettraffic [CS93b]. Tempe [Go92, Yu92]. Template [LMC07]. Templates [JT09]. Temporal [GY91, WYD+18, CW10, FXW71, MHT+13]. temporaries [Ken73]. TENCON [Ano93c]. Tennessee [IEE94c]. Tenth [DSS84, SC77, YR87]. Terabytes [IEE02]. term [KP92]. termination [Er86]. Terms [Wil79, ZWMT10, vT14]. ternary [Bon95]. Tertiary [Gui75]. Test [Har71a, RT87a, Sav90, DUC08, ZCZQ19]. Testbed [SDK91]. Testing [Boo73, DD11, Fil02, Sam76, WM19, AY14, HKL12, TD93]. Tetris [GSS01]. Tetris-Hashing [GSS01]. Tex [ACM91b].
Texas [ACM91b, ACM97b, ACM98, IEE76, USE00b, ACM88a, IEE95, Nav85]. Text [Bur81, Coh98, CDW+19, DS84b, Dit91, Fal55b, Gon83, HZ86, Lit91, Pea90, Pea91, Sav91, TTS82, Ven84, YSW+11, Gob75, HC07, Ram89b, RCF11, Sab94, ZZZL18, ZHW01].

textes [LG78]. Texts [LG78]. Textual [BH85, MLHK17]. Texture [HSPZ08, ŠSSaS01]. th [KKT91]. Their [CZLC12b, CK15, CJ19, Deb03, Gra88, Gra89, Hen87, HK12b, NR12, RNT90, SRT75, WSC81, AG10, adHMR93, NY89b, NY89a, PW08, Pob86, Sei89].

Theorem [Cha84b, CG92, HR14, Kno88, vL94]. Theoretic [Sun15, HM93, SXLL08]. Theoretical [ACM75c, ACM75a, ACM76, ACM77b, ACM82, ACM84b, ACM86b, ACM88b, ACM90, ACM91e, ACM96, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM07, ACM08b, ACM11, ACM12, AA86, BBPV11, CP87, CS93b, Dam90a, Dam91, Dav91, Fel50, HP63, Hel94, IEE74, CTC90,IRM93, KM86, KM88a, KGJO18, LC06, LL83, Mir17, Pip79, QV89, QG95, Rue93, ACM77a, SZ93, Sti06, Vau06, Yan10, De 95, GQ95, Hua82, ISO97, Kil05, PSN05, Kil05]. There [AKS78].

Throughput [KHK15, LPT12, PRM16, TP15, WZJS10, MAK+12, XLZC14]. Thyroiditis [ŠSaS01]. Tiger [AB96, MR07]. Tight [Cha94, CV08, GHK+12, vT14]. Tightly [Mul81, DW05, DW07]. Tillich [Gei95, Gei96, GIMS11, PVCQ08]. Time [ASBdS16, BJL16, Bl070, Bre73, BM99, CW09, Cip93, Cla77, CM93, DadH90, F+03, FSP13, FKS84, GK76, Gra94b, Jak85, Kab87, LAKW07, Lip02, Lyo83, Moh11, NJ83, NS16b, PP08, PSSC17, PWY+13, PS12, Sa85a, SL16, Sie04, TW91, Val15, WVT90, Win90b, AV14, ASA+00, CJMS19, CCY91, DSD95, FPSS05, FSV12, GB17, GM90, Han17, Kor08, Man12, MV91a, MN90, MP90, OP03, Par18, Pro18, Sie89, ZRL+08].

Traceback [JL14, SXLL08]. Tracing [SS91a]. Track [Joy03]. Tracking [GGR04, LLL11, UCFL08, FXWW17, ML15, OOK+10]. Tractability [GB10]. Trade [ASBdS16, Bl070, CJMS19, GW94, Sar11].
trade-off [CJMS19, GW94, Sar11]. Trade-Offs [ASBdS16, Blo70]. tradeoff [Sie89]. Tradeoffs [SD89b, SD90b, SD90a]. Traditional [EMM07].

Transaction [TLLL18, HKL04, MA15, TBC05].

Traffic [TLLL18, HKL04, MA15, TBC05].

Traditional [EMM07].

Traffic [TLLL18, HKL04, MA15, TBC05].

Traffic [TLLL18, HKL04, MA15, TBC05].
YY07, YBQZ18, AÖD19, BSNP96b, BLC12, BK07a, BF08, BT90, BGG12, CKB81, CHL07, CKKK09, CP13, CT96, DS09a, DMP06, DKT06, DS09b, DSSW90b, EH17, FaI86, FM89, Fly92, GKKT10, GG92, Ger86a, Gob75, GBL94, HDCM11, HKL07, HKLS12, HC14, Hil88, HC02, HW88, HXLX13, ISO97, JFDF09, JLH08, JL14, JCC00, JBWK11, JMH02, Ken73, Kim99, Kos14, Ku04, LG96, LLH02, LKY04, LW04, LNS11, LDK12, LK16, MMC01, McK99b, MGG10, MP16, Mue04, Okaj88, PCK95, RSSD89a, RSSD89b, RGNMPM12, R¨on07, SB95, Sar11, S10+13, Tho17, UHT95, YTHC97, YL04, YRY04, ZGG05, ZW05, ZLY13, ZRL08.

Utah [SM08, Nam86, SM12]. utentibus [DMPP06]. Utilisation [OT91]. Utilization [PS12, Wil71, CF89b]. Utilizing [KK85]. Utrecht [vL94]. UUID [BˇSH12]. V [PHL01]. v1.4.0 [Sun02]. VA [ACM94d, ACM94a]. Valdivia [CHK06]. Validation [ML86]. valuation [JDW+19]. Value [DG002, GIS05, Gra99, GYW+19, MZL+19, NS16a, PRRR15, PRK98, CI95, MK12, Mi95, Shi17]. valued [DH84, HM03]. values [ASW87, GS94, SB95]. Vancouver [ACM05, LL08, Yu92]. Variable [Dit01, Lit91, MF92, Mar64, OGBA14, PH01, Pea90, Pea91, Sam76, Sav90, Sav91, ZPS90, ZPS93a, RKK14, ZPS93b].

Versa [Hol13]. Versatile [CBA94]. Version [Coh84, HPC02, JXY07, Kt01, Lar82c, Lar82d, Lar85c, W94, CM98, GM18]. Versions [HSR+01, CV05]. Versus [BD84, CF89b, DSS17, GLS91, SVB08]. vertex [ZBB+06]. Verwaltung [Pet83]. verwaltungsdaten [Pei82]. Very [ABB93, VLD82, AW89, AAC+01, AOV+99, BD88, BCH7, BJ294, CGO86, Chu90, DSS84, DT91a, DT91b, G083, GSW98, HB89a, HB92, Hi87a, Hi87b, Ker75, KR79, KS87a, KS87b, LT80, LSC91, MDS90, PV85, ST83a, ST83b, Y092, DC94, HB89b, KS89b, VLD82, AW89, CGO86, DSS84, LSC91, MDS90, PV85, Y092, Yua92]. VHAM [Lit77b]. Via [GH07, YT06, BHK13, BHK19, BDPV09, BJKS93, BJKS94, CFRN18, Die96, EPR99, GIM99, HHR+10, Ind13, KM86, KM88a, Lep98, LCLX19, LC12, PT11b, PKSB18, SD90b, SD90a, TYZO15, TLZL16, TMW10, W1e11, W0e11, W0e15, ZCZ19].

Rei88, AS89, EBD91, Führ88. VMPC
[Sar15]. VMS [JC88b]. Vocabularies
[Wil79, LK93, ZHW01]. Vocabulary
[KRRH84, LLZ10, YWH09, YMI89].
Vocabulary-Based [LLZ10]. Voice
[SMS91]. Volatile [ZH18, CCA +12].
Volcano [Gra94c]. volumes [Ruc15].
volumetric [ZDI +15]. Vorschläge
[Kue83]. Vortex [GK08]. Vowel
[Wan05]. Vowel-consonant [Wan05].
VPN [KMM +06]. vs [BATÖ13, GLS94, KKL +09, Oak98].
Vulnerability [BPBBLP12].
WADS [DSZ07]. Wait [LFD17]. Wait-Free
[LFD17]. Walk [FMM09, FMM11, BCR10].
wallet [Nic17]. Warehouse [ZZ83].
Warwick [Pat90]. Was [HJ75].
Washington [ACM84b, ACM89c, BJ93, Fis87].
Watermarking [DR11, WDP +12]. Wave
[LC12]. Wavelet [GH07]. Way
[BCFW09, DGV93, DDMM05, GK08,
HHRR +10, JLH08, LP15, Mcc79, Mer90b,
Roe94, Rul93, SP91, Sch91a, Sh00a, Tsu92a,
Wee07, Win83, Win84, YZ00, Zhe90, CMR98,
Gib01, HR07, HYLT99, HL03, KST99, LW04,
LHC05, Mec90, MZ98, NY98, NY98a,
Sim98, SP99, Tsa08, Tsn92b, YL04, ZW05,
ZPS90, ZMJ91, ZPS93a, ZPS93b, HMNB07].
WCC [Ytr06]. WDDL [MMMT09]. Weak
[CFP19, HS08, Lis07, PV07]. Weaknesses
[BPSN97, DS09c, KCL03, KCC05, SGGB00].
web [KSC11, KSC12, NMX19, AT18,
KLL +97, KSB +99, NM02b, Sch01b, SKC07,
TC04, UCFL08, WY00, WY02, XBH06].
Web-Based [Sch01b]. webcam [McN03].
Wegman [Sar80]. Weight [LR96a, LL92].
Weighted [LR96a]. Weighted
[Ban77, Luc72, THY +18, Yao91, YZ00].
Weighting [DSS17]. West [Yao78]. WG
[vL94]. WHAM [LPT12]. Wheels
[VL87, VL97]. Where [Burt06, SW91].
Which [FW76, FW77]. WHIRLPOOL
[RB01, Sasa11, Sta06a]. Whirlwind
[BNN +10]. White [BZZ12, IEE88c]. whole
[Pat95]. whom [LC95]. Whose [Gra94b].
WI [FMA02]. Wide [KLL +97, MPST16].
Wien [Kui92]. Will [DCW91]. Winner
[Bon12]. Winter [USE91]. Wireless
[DK09, DPH08, LDY +16, PLKS07, SHRD09,
YSW +11, ZQSH12, AK09, ADF12, Cha12,
LG13, LNO08, YG10]. Wise
[Ind01, Die96, FPS17]. within [Bay73b].
Without
[GHR99, PV19, SL16, ASW87, BK84,
BRM10, CP95a, Dam93, Dam94, Die96,
Ják85, KS88b, KS88c, Ku04, LW04, Mul81,
Pag18, Par18, Reg82, SUH86, Tsa08, ZW05].
Witnesses [AN96]. Wollongong [PSN95].
Word [BH86, FLF11, KRJ +80, LHC05,
BT89, Han17, ST85]. Words
[Chn90, DM90, Do87, KR79, KRRH84,
MH00, ST86, Tro06, Wol84, Zou85]. work
[Col93, MV08]. Working [Cer85, CE95].
works [Gre95, LWXS18]. Workshop
[IIJW89, ABM06, ODB89, Ano92, BBD09b,
BF89, BD08, CP87, Dam90a, Dam91, Dav91, De 5, DSZ07, DJRZ06, DJNR09, GQ95,
He94, QV89, RRS06, Rei88, Rue93, SZ93,
Ytro6, VL94, And94, Bir07, Coh94, Gol96,
KI94, YU92, Ano94, Heu87]. World
[Ano93a, Drec17c, IEE92a, LC95, KLL +97].
worm [FNP09, CF89b]. Worst
[ANS09, ANS10, DMV04, F +03, FSK84,
Lar81, Lar82a, FSPS05, Mic02, MT16].
Worst-Case [ANS09, ANS10, DMV04,
Lar82a, Lar81, Mic02]. worst-case/average-case [Mic02].
Wörterbücher [Wen92]. Write
[Moh90, Moh93, MNS07, ZH18, ZH +19].
Write-Ahead [Moh90, Moh93].
Write-Friendly [ZH18]. Write-Once
[MNS07]. Wroclaw [ACJ70]. WSN
[DL12]. WSNs [YSZ19]. Wyner
[DVS +14].
REFERENCES

x [PvO95], X9.30 [ANS97], X9.30-2 [ANS97], X9.62 [ANS05], Xeon [JHL+15].

XML
[CN07, KRML09, MK12, WLLG08, WWZ09].

XMSS [HRB13, HBG+17]. xor [FJ13, CCHK08, ML07, VD05, vdBGLGL+16].

XOR-based [CCHK08, VD05]. XPS [Ger95]. XRDB [YNKM89]. XSB [SSW94].

XTEA [CV05].

XML [CN07, KRML09, MK12, WLLG08, WWZ09].

XMSS [HRB13, HBG+17]. xor [FJ13, CCHK08, ML07, VD05, vdBGLGL+16].

XOR-based [CCHK08, VD05]. XPS [Ger95]. XRDB [YNKM89]. XSB [SSW94].

XTEA [CV05].

year [Roe95]. Years [Kon10, IEE01, KR19]. Yi [Wag00]. Yi-Lam [Wag00]. Ynot [NMS+08]. Yokohana [AiNOW11]. Yoo [KCC05]. Yoon [KCC05]. York [ACM12, GSW98, HF13, IEE90, IEE99, Mat09, IEE90, Jen76]. Yorktown [Jen76].

YY [Nat92].

Zahlen [BJMM94b, BJMM94a]. Zakopane [Win78]. Zeiteffizienten [Kue83]. Zemor [Gei95, Gei96, GIMS11, PVCQ08]. Zero [CLP13, Dam93, OVV94b, Dam94, OVV94a].

Zero-Knowledge [CLP13, Dam93, OVV94b, Dam94, OVV94a]. Zheng [PGV90a, PGV93a, PGV93b]. Zheng-Matsumoto-Imai [PGV90a, PGV93a, PGV93b]. Zipper [LWWQ08]. Ziv [DVS+14]. Zonning [GRZ93].

Zugriffsooperationen [Pei82]. zugriffsverfahren [Stu82]. zum [Eck74a]. zur [Koe72, Kue83, Kue84a, Pet83]. Zurich [HKNOw07, Lak96].

References

ACM:1969:PAN

Asano:1990:ISS

Anderson:1979:CPH

Anderson:1979:CCP

Ausiello:1986:IIC

Giorgio Ausiello and Paolo Atzeni, editors. ICDT ’86:
Ajtai:1992:FTG

Apers:2001:PTS

Albertini:2014:MHE

Anshel:2016:CHF

Aamodt:2003:CSP

Anderson:1996:TFN
REFERENCES

Aumasson:2012:SFS

Agrawal:1993:ICV

Ahmed:2016:RN

Andreeva:2016:NSP

Arnold:1973:UHA

REFERENCES

cember 1973. CODEN IBM-
TAA. ISSN 0018-8689.

[Abi12] Aysajan Abidin. On secu-
rity of universal hash func-
tion based multiple authen-
tication. Lecture Notes in
CS, 7618:303–310, 2012. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/
10.1007/978-3-642-34129-
8_27.

[ABKU99] Yossi Azar, Andrei Z.
Broder, Anna R. Karlin, and
Eli Upfal. Balanced al-
llocations. SIAM Journal
on Computing, 29(1):180–
200, February 1999. CO-
DEN SMJCAT. ISSN 0097-
5397 (print), 1095-7111 (elec-
tronic). URL http://epubs.siam.org/sam-bin/
dbq/article/28849.

Bonez, and Stefan Manegold,
editors. Proceedings of the 2nd International Work-
shop on Data Management
on New Hardware: 2006,
Chicago, Illinois, June 25–
York, NY 10036, USA, 2006.
ISBN 1-59593-466-9. LCCN
URL http://portal.acm.
org/toc.cfm?id=1140402.

[ABM12] Elena Andreeva, Andrey
Bogdanov, Bart Mennink,
Bart Preneel, and Christian
Rechberger. On security ar-
gouments of the sec-
dround SHA-3 candidates.
International Journal of In-
formation Security, 11(2):
103–120, April 2012. CO-
DEN ???? ISSN 1615-
5262 (print), 1615-5270 (elec-
springer.com/article/10.
1007/s10207-012-0156-7.

[At:2017:LAU] Nuray At, Jean-Luc Beuchat,
Eiji Okamoto, Ismail San,
and Teppei Yamazaki. A
low-area unified hardware
architecture for the AES
and the cryptographic hash
function Grostl. Journal of Parallel and Dis-
tributed Computing, 106(??):
106–120, August 2017. CO-
DEN JPDCER. ISSN
0743-7315 (print), 1096-0848
(electronic). URL http:
//www.sciencedirect.com/
science/article/pii/S0743731517300485.

Boehme, Nathaniel Rochester,
and Arthur L. Samuel. The year is uncertain (??).
Amdahl originated the idea
of open addressing with linear probing, which was
later independently rediscovered and published [Ers58b].
The term ‘open addressing’ was apparently first used in [Pet57] [see [Kno75, page 274]], 1953.

[ACM:1976:CRE] Conference Record of the Eighth Annual ACM Sympo-
REFERENCES

REFERENCES

ACM:1984:SPA

ACM:1984:PSA

ACM:1985:RCM

ACM:1985:PFA

ACM:1986:PFA

ACM:1986:PEA

ACM:1987:PEA

ACM:1988:PPS

REFERENCES

[ACM89c] ACM:1990:PTS

[ACM90] ACM:1990:PPE

REFERENCES

ACM:1991:AAS

ACM:1991:CRE

ACM:1991:PTT

ACM:1994:CCS

ACM:1994:IP1

ACM:1994:MMC

ACM-SIAM:1994:ASD

ACM:1997:PEA

ACM:1997:PTN

ACM:1998:PTA

ACM:2001:PAA

ACM:2002:PTF

ACM:2003:PTF

ACM:2003:SII

REFERENCES

NY 10036, USA and 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2003. ISBN 1-58113-695-1. LCCN ????.

REFERENCES

Abdalla:2009:SPH

Alomair:2010:PPS

Alvarez-Cubero:2016:AVL

Ahrens:1985:SRS

Adams:2008:ENE

Ashur:2011:LAR

REFERENCES

Anagnostopoulos:2018:RES

AFIPS:1963:PSJ

AFIPS:1969:ACP

Ajtai:1983:HFP

Ajtai:1984:HFP

Akl:1990:ACI

Appel:1993:HCG

REFERENCES

REFERENCES

Andoni:2006:NOH

[AI06]

Andoni:2008:NOH

[AI08]

Asano:1989:CPP

[AII89]
Tetsuo Asano, H. Imai, and K. Imai. Clustering/hashing points in the plane with maxmin criteria. In CCCG '89 [CCC89], page 15. ISBN ???? LCCN ????

Asano:2011:ACI

Amble:1974:OHT

[AK74]
Abdukhalikov:1998:SHS

Ahn:2009:SLD

Albutiu:2012:MPS

Ajtai:1978:TNF

AlTawy:2013:SOC

Aho:1986:SDS

Alfred V. Aho and David Lee. Storing a dynamic sparse table. *Annual Symposium on Foundations of
REFERENCES

REFERENCES

Albers:2009:ALP

Alon:1996:DWB

Anderson:1988:PHK

Anderson:1991:TFC

Anderson:1993:CHF

Anderson:1994:FSE

Anonymous:1983:MPM

Anonymous:1985:PFD

Anonymous:1985:SS

Anonymous:1986:IRN

Anonymous:1989:TIC

Anonymous:1992:PAW

Anonymous:1993:CSA

Anonymous:1993:FSH

Anonymous:1993:TCC

Anonymous:1993:SAD
[Ano93d] Anonymous, editor. *The Second Annual Dartmouth Institute on Advanced Graduate Studies in Parallel Computation*, Dartmouth College (??), Hanover, NH, USA, June 1993. ISBN ?? LCCN ?? I have been unable to locate this reference in several major libraries, including Dartmoth’s, sigh…

Anonymous:1994:WAM

Anonymous:1995:AUC

Anonymous:1995:FSH

Anonymous:1995:NAF

Anonymous:1995:SHS

Anonymous:1996:RF
Anonymous:2002:SHS

Anonymous:2008:SHS

Anonymous:2009:DSS

Anonymous:2012:SHS

Anonymous:2013:DSS

ANSI:1997:AXP

REFERENCES

ANSI:2005:AXP

Arbitman:2009:ACH

Arbitman:2010:BCH

Arnaurov:1985:ODF

Aluc:2019:BSC

Atkinson:1999:PTF

[AOV+99] Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and
REFERENCES

[AR16] Miguel Areias and Ricardo Rocha. A lock-free hash trie design for concurrent...

Atighehchi:2017:OTM

Anger:1994:IEA

Arikan:1994:IGE

Aghili:1982:PGD

REFERENCES

Ewerton R. Andrade, Marcos A. Simplicio, Paulo S. L. M. Barreto, and Paulo C. F. dos Santos. Lyra2: Efficient password hashing with high security against time-

[AT90] Tetsuo Asano and T. Tokuyama. Algorithms for projecting points to give the most uniform distribution with application to hashing. In Asano et al. [A+90], pages 300–309.
REFERENCES

Azadegan:1991:PJA

Asano:1993:APP

Abdulhayoglu:2018:ULS

Al-Talib:2007:IMS

Atkinson:1975:HMS

Aviv:2019:ELG

Ang:1998:TLH

C. H. Ang, S. T. Tan, and T. C. Tan. Tried lin-

Aho:1979:OPM

Aumasson:2009:CHF

Alvarez:2011:IME

Apers:1989:VLD

Ahmad:2014:RTN

Askitis:2010:RSH

[AZ10] Nikolas Askitis and Justin

REFERENCES

Bandypadhyay:1977:CWI

Burrows:1989:LAa

Barter:1983:ACS

C. J. Barter, editor. Australian Computer Science Conference. Proceedings of the 7th Conference (Adelaide, Australia, Feb. 6–8, 1983). University of Adelaide, Computer Science Department, Adelaide, South Australia, Australia, 1983. Published as Australian Computer Science Communications; vol 6, no. 1.

Barequet:1997:UGH

Batson:1965:OST

Batagelj:1975:QHM

Batory:1980:OFD

Batory:1981:AMP

REFERENCES

[Batory:1982:OFD]

[Balkesen:2013:MCM]

[Bays:1973:STS]

[Bays:1973:NWC]

[Bays:1973:RHC]

[Bayer:1974:SCM]
REFERENCES

REFERENCES

Bellare:2012:LCH

Bernstein:1988:OCE

Belazzougui:2011:TPM

Bennett:1988:PAP

Bollobas:1990:CDC

Ball:1939:MRE

[BC39] W. W. Rouse (Walter William Rouse) Ball and H. S. M. (Harold Scott MacDonald [“Donald”]) Coxeter. Mathematical recreations and essays. Macmillan Publishing Company, New York, NY, USA, 11th edition, 1939. 45 pp. LCCN QA95 .B3 1939. According to Knuth [Knuth73, p. 507], this is one of two papers that first discuss the birthday paradox: “if 23 or more people are present in the same room, chances are good that two of them will have the same month and day of birth! In other words, if we select a random function which maps 23 keys into a table of size
365, the probability that no two keys map into the same location is only 0.4927 (less than one-half). The discovery is credited to unpublished work of H. Davenport (1927). See also [vM39].

Eli Biham, Rafi Chen, and Antoine Joux. Crypt-

Bellare:1996:KHF

Bellare:1996:MAU

Bedau:2004:CHF

Barr:2010:TCS

Bardin:1989:IUI

Black:2009:IHE

Bell:1982:KSC

REFERENCES

Khushboo Bussi, Dhananjay Dey, P. R. Mishra, and...

Baraani-Dastjerdi:1997:UCH

Bertoni:2006:RBM

Bertoni:2007:SF

Bertoni:2011:CSF

Bertoni:2012:KIO

Bosselaers:1997:RCH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Baritaud:1993:FHCa

Bellare:1994:ICC

Brun:2012:LLS

Barthe:2012:VIH

Barthe:2013:VIH

Bagheri:2012:SFP

REFERENCES

REFERENCES

REFERENCES

Braibant:2014:IRA

Benouamer:1994:HST

Benouamer:1994:HLN

Bocca:1994:ICV

Bell:1970:LQH

Bechtold:1984:UEH

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[BM99]</td>
<td>Andrej Brodnik and J. Ian</td>
</tr>
</tbody>
</table>
REFERENCES

Broder:2001:UMH

Beyer:1968:LEC

Beyer:1968:LEC

Beyer:1968:LEC

Broder:2001:UMH

Beyer:1968:LEC

Barthels:2017:DJA

Barth:1985:SSS

Barreto:2010:WNC

Bobrow:1975:NHL

Boolour:1979:OPM

Bookstein:1972:DH

Bookstein:1973:HST

Bookstein:1974:HCN

Abraham Bookstein. Hash coding with a non-unique search key. Journal of the

REFERENCES

REFERENCES

Budroni:2018:HGB

Ben-Porat:2012:VHH

Bakhtiari:1997:WGC

Buehrer:2010:DPS

Botelho:2007:SSE

Banerjee:1975:DLD

Bellare:1994:OAEa

REFERENCES

Bellare:1997:CRH

Bellare:2006:MPP

Bellare:2014:CCH

Bradley:1984:UMD

James Bradley. Use of mean distance between overflow records to compute average search lengths in hash files with open addressing. Technical Report 84/154/12, University of Calgary, May 1984. ?? pp. (email parin@cpsc.ucalgary.ca).

Bratbergsengen:1984:HMR

Bradley:1985:UMD

Bradley:1986:UMD

J. Bradley. Use of mean distance between overflow records to compute average search lengths in hash

REFERENCES

Bauer:2009:FSA

Blundell:2010:RTR

Black:2002:BBA

Bode:1993:PPA

Bode, Arndt, Mike Reeves, and Gottfried Wolf, editors. PARLE ’93, Parallel Architectures and Languages Europe: 5th International PARLE Conference, Munich, Germany, June 14–17, 1993, Proceedings. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London,
REFERENCES

REFERENCES

Balkic:2012:GUI

Blackburn:2012:CHA

Brain:1989:NPH

Brain:1990:PHU

Bakhtiar:1996:KHF

Bakhtiar:1996:PBA

Bakhtiar:1996:SCH

REFERENCES

REFERENCES

REFERENCES

Burkowski:1981:PHH

Burkowski:1984:CHH

Burk:1992:HGP

Burkhard:2005:DHP

REFERENCES

REFERENCES

Breen:1989:HFP

Bruynooghe:1992:PLI

Barnes:2015:PEP

Bao:2012:WBS

REFERENCES

REFERENCES

Burnaby, BC, Canada, 1983. ?? pp. (email library@cs.sfu.ca).

REFERENCES

[Chen:2017:FMT] Haibo Chen, Rong Chen, Xingda Wei, Jiaxin Shi,

Chen:1991:HNT

Chen:1991:HNT

Chang:1984:CHC

Cleary:1984:FCR

Colbourn:2019:DHF

Cheiney:1989:PTC

Cheiney:1990:PST

Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damgård revisited:

Cui:2019:STA

Camurati:1995:CHD

Coffman:1970:FSU

Cercone:1981:PHFa

Cercone:1983:CL

REFERENCES

[CFP19] Domenico Cantone, Simone Faro, and Arianna Pavone. Linear and efficient string matching algorithms based on weak factor recognition.
Cooperman:1994:CPR

Cowan:1979:HKR

Cotter:1992:CTK

Chu:1986:VLD

Cousin:1994:PIS

Cormode:2009:FFI

Ceglarek:2012:FPD

REFERENCES

[Cha84c] C. C. Chang. The study of an ordered minimal perfect hashing scheme. *Communications of the Association for Computing Machinery*, 27(4):384–387, April 1984. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). The English translation of Ref. 6 of this paper appears in [Hu82]; that book contains the fundamental prime number functions needed for the ordered minimal perfect hash functions described here.

[Cha91] Rob Chapman. QuikFind string search. *Forth Dimension*...
REFERENCES

Chaudhuri:1994:TBO

Chang:2012:HCM

Chen:1984:DACa
[Che84a] Wen-Chin Chen. *The Design and Analysis of Coalesced Hashing*. PhD thesis, Department of Computer Science, Brown University, Providence, RI, USA, November 1984. ?? pp. See also [Che84b].

Chen:1984:DACb

Chin:1991:LPH

Chin:1993:LPH
[Chi93] Andrew Chin. Locality-preserving hashing. In Anonymous [Ano93d], pages 87–98. ISBN ?? LCCN ?? I have been unable to locate this reference in several major libraries, including Dartmouth’s, sigh….

Chin:1994:LPHb

Cormack:1985:PPH
Camacho:2012:SAC

Chen:2007:TPB

Czech:1992:OAGa

Czech:1997:PH

Christodoulakis:1984:ICA

Chen:2018:YCE

Chen:2018:CHT

Chen:2018:YCE

Chen:2018:CHT

Chen:2018:YCE

Chen:1993:AHF

Chen:1997:AHF

Cichelli:1980:CMP

[R. J. Cichelli. On Cichelli’s minimal perfect hash functions method. *Communications of the Association for Computing Machinery*, 23(12):728–729, December 1980. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This is the author’s response to the comments in [JO80] about [Cic80b]. See also [Sag85a].

Cichelli:1980:MPH

Caires:2005:ALP

REFERENCES

Cipra:1993:ETS

Colomb:1986:CIS

Cormode:2019:STA

Choi:2009:DSC

Chang:2019:CTM

Cho:2012:CBF
Jung-Sik Cho, Young-Sik Jeong, and Sang Oh Park. Consideration on the brute-force attack cost and retrieval cost: a hash-based

See cryptanalysis [SPLHCB14].

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>151</th>
</tr>
</thead>
</table>

Cleary:1984:CHT

Charles:2009:CHF

Click:1995:GCM

Cheng:2014:SSM

Celis:1985:RHH

Celis:1986:RHHb

[CLM86] P. Celis, P. Å. Larson, and J. I. Munro. Robin Hood hashing. Technical Report CS-86-14, Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, April 1986. ?? pp. See also [Cel86].
REFERENCES

REFERENCES

Colbourn:2018:ACM

Chu:1998:EHB

Chen:1992:USR

Chen:1995:ASR
Ming-Syan Chen, Mingling Lo, Philip S. Yu, and Honesty C. Young. Applying segmented right-deep trees to pipelining multiple hash joins. *IEEE Transactions on Knowledge and Data Engineering*, 7(4):656–??, August 1, 1995. CODEN ITKEEEH. ISSN 1041-4347.

Czech:1993:LTA

Christophi:2001:DSR
REFERENCES

Chen:2013:LSM

Contini:2007:EFA

Canetti:1998:POW

Carter:1983:CEI

[CO82a] Douglas Comer and Michael J. O’Donnell. Geometric prob-

Cook:1982:LOM

Coburn:1994:ISH

Cohen:1984:MSP

Cohen:1994:ACF

Cohen:1997:RHF

Cohen:1998:GHS

REFERENCES

cgi-bin/fulltext?ID=10050312&PLACEBO=IE.pdf.

Coleman:1993:PTI

Coppersmith:1995:ACA

Coppersmith:1995:ACC

Coron:2000:ESF

Coron:2002:SPP

Jean-Sébastien Coron. Security proof for partial-domain hash signature schemes. In Yung [Yun02], pages 613–626. CODEN LNCSD9. ISBN 3-540-44050-X (pa-
REFERENCES

Koen Claessen and Michael H. Palka. Splittable pseudorandom number generators using cryptographic hashing. SIGPLAN Notices, 48

Koen Claessen and Michael H. Palka. Splittable pseudorandom number generators using cryptographic hashing. SIGPLAN Notices, 48

Gerald Collom, Colin Redman, and Robert W. Robey.

Chang:1983:DOM

Chang:1983:PMF

Chung:1983:PSR

Celis:2011:BBS

REFERENCES

CODEN PCCCDU. ISSN 0732-6181.

Chang:1985:FAC

Chang:1985:DLO

Chang:1985:DLM

Chang:1986:DOM

Chang:1987:PAM

Cesarini:1991:DHM

Cesarini:1993:SAH
REFERENCES

REFERENCES

REFERENCES

CASTRO:2005:NRG

CHUNG:2008:TBH

CARREA:2014:OHN

CARTER:1977:UCHA

CARTER:1977:UCHB

CARTER:1979:UCH

CHANG:1991:LOP

REFERENCES

[Chandramouli:2019:FFI] Badrish Chandramouli, Dong Xie, Yinan Li, and Donald Kossmann. FishStore:
REFERENCES

REFERENCES

Dietzfelbinger:1993:OPD

Crescenzo:2012:DFC

Diaz:2013:TLH

Dietzfelbinger:1990:NUC

Dietzfelbinger:1992:HPU

Daemen:1995:HFC

[Dam94] Ivan B. Damgård. Interactive hashing can simplify zero-knowledge protocol design without computational

Dang:2013:CFI

Datta:1988:IPH

Davison:1973:RSC

Davies:1991:ACE

Day:1970:FTQ

Drechsler:2012:IEH

REFERENCES

10.1007/978-3-642-32808-4_33.

[DC98a]

[DC98b] Kaimeng Ding, Shiping Chen, and Fan Meng. A novel perceptual hash algo-

deBalbine:1969:CAR

DeSantis:1995:ACE

Debnath:2003:CTA

Deen:1982:IIS

Devroye:1986:LNB

Devine:1993:DID

Devroye:1999:HSR

REFERENCES

REFERENCES

REFERENCES

[Dietzfelbinger:2008:DIB] Martin Dietzfelbinger, Martin Hühne, and Christoph
REFERENCES

Dietzfelbinger:1990:HDD

Dietzfelbinger:1996:UHW

Dietzfelbinger:2007:DSM

Dittmer:1976:IEP

Dittmer:1991:NFH

I. Dittmer. Note on fast hashing of variable length text strings. *Communications of the Association for Computing Machinery*, 34(11):118, November 1991. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Points out that Pearson’s hashing algorithm [Pea90] was discovered fourteen years earlier by...
this author [Dit76]. See also comments in [Sav91, Lit91, Pea91].

Dinur:2009:ARC

Diaz:2006:ARC

Du:1980:SNP

DiCrescenzo:2009:CLH

REFERENCES

Jacques Chassin de Ker
gommeaux and Philippe
Codognet. Parallel logic pro-
gramming systems. ACM
Computing Surveys, 26(3):
CODEN CMSVAN. ISSN
0360-0300 (print), 1557-
7341 (electronic). URL
http://www.acm.org/pubs/
toc/Abstracts/0360-0300/
185453.html.

M. Dietzfelbinger, A. Kar-
lin, K. Mehlhorn, F. Meyer
auf der Heide, H. Rohnert,
and Robert E. Tarjan. Dy-
namic perfect hashing: Upper and
lower bounds. In IEEE-
FOCS’88 [IEE88c], pages
524–531. ISBN 0-8186-0877-
3 (paperback), 0-8186-4877-
5 (microfiche), 0-8186-8877-7
(hardcover). LCCN QA 76

D. J. DeWitt, R. Katz,
F. Olken, L. Shapiro, M. Stone-
braker, and D. Wood. Im-
plementation techniques for
main memory database sys-
tems. In Proc. ACM SIG-
MOD Conf, page 1. ACM
Press, New York, NY 10036,
USA, June 1984.

[DDMB19] Nikolaos Doukas, Oleksandr P. Markovskyi, and Nikolaos G. Bardis. Hash function design for cloud

Ducournau:2009:EAO

[DMP09]

Demaine:2006:DDP

Dietzfelbinger:2011:CHP

Devroye:2004:WCR

DeWitt:1992:PSH

Deen:1981:DCD

REFERENCES

[Dod82]

[Don91]

[DOP05]

[Dos78a]

[Dos78b]

[DP08]

[DPH08]
Saumitra M. Das, Himabindu Pucha, and Y. Charlie Hu. Distributed hashing for scalable multicast in wireless ad hoc networks. *IEEE Transactions on Parallel and
References

Delis:1992:PSC

DeCanniere:2006:FSC

Dietzfelbinger:2009:AST

Doyoddorj:2011:NSI

Drescher:2017:BB

Drescher:2017:HD

REFERENCES

REFERENCES

REFERENCES

Dehne:2007:PAI

Du:1991:MEH

Du:1991:PDD

Dahlgaard:2014:AMI

Dubost:1975:SIN

Dayal:1987:PAC

Deutscher:1975:CSD

Du:1986:DAM

Ducournau:2008:PHA

Dumey:1956:IRR

Duncan:1989:PPU

Duncan:1989:UHT

Daemen:2007:PCP

Deligiannis:2014:PRW

REFERENCES

DaSilva:1983:PAS

daSilva:1983:PSH

Dietzfelbinger:2003:ARG

Dietzfelbinger:2007:BAD

DeSantis:1990:DPS

DeSantis:1991:DPS

Ding:2008:MPH

; http://www.tuilmenau.de/fakia/mdpapers.html.
Ehdaie:2016:HCR

Eger:1986:PSQ

Elleithy:1991:VIS

Ecker:1974:BRG

Ecker:1974:PSQ

Enbody:1988:DHS

Ege:1986: DIG

Epstein:2012:AEA

REFERENCES

M. C. Er. The use of termination indicators in computer programming. The Computer Journal, 29(5):430–433, October 1986. CO-
REFERENCES

Ershov:1958:PAO

Ershov:1958:PPB

Estebanez:2014:PMC

Eugenides:1990:ESM

Estan:2006:BAC

Fotakis:2003:SEH

D. Fotakis et al. Space efficient hash tables with worst case constant access time. In Alt and Habib [AH03], pages 271–283. CODEN LNCSD9. ISBN 3-540-00623-0 (softcover). ISSN 0302-9743 (print), 1611-
REFERENCES

REFERENCES

REFERENCES

[Fel1987] Leonardo Felician. Linked hashing: an improvement of open addressing techniques for large secondary storage files. Information system,
REFERENCES

Farashahi:2013:IDH

Fisteus:2010:HCN

Files:1969:IRS

Fortune:1979:NRN

Fateman:1996:SLB

Fuji-Hara:2015:PHF

REFERENCES

[FHCD92a] Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and Amjad M. Daoud. Minimal perfect hash functions for large databases. *Communications of the Association for Computing Machinery*, 35(1):105–121, January 1992. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This is the first published algorithm for computing minimal perfect hash functions for lists of millions of words; previous algorithms were computationally infeasible for more than a few hundred words.

[FHCD92b] Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and Amjad M. Daoud. Practical minimal perfect hash functions for large databases. *Communications of the Association for Computing Machinery*, 35(1):105–121, January 1992. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). URL http://www.acm.org/pubs/toc/Abstracts/0001-0782/129623.html. This is the first published algorithm for computing minimal perfect hash functions for lists of millions of words; previous algorithms were computationally infeasible for more than a few hundred words.

REFERENCES

REFERENCES

Fredman:1984:SST

Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1) worst case access time. *Journal of the Association for Computing Machinery*, 31(3):538–544, July 1984. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic). Extends the work of Tarjan and Yao [TY79], using a two-level data structure, the first containing pointers to the second, and the second containing blocks accessible by a perfect hashing function.

Feldman:1973:CBS

Fan:2004:DBS

Fischlin:2008:MPP

Flajolet:1981:PEE

Flajolet:1983:PEE

Flajolet:1983:PC

Fernandez:2011:HWS

Flores:1977:DSM

Floyd:1987:HHP

Fischlin:2008:RMP

Fischlin:2014:RMP

Ferguson:2010:SHF

REFERENCES

info/sites/default/files/skein1.3.pdf.

REFERENCES

REFERENCES

REFERENCES

Fotakis:2005:SEH

Flajolet:1998:ALP

Feldman:1969:ABA

Franklin:2004:ACC

Ferreira:2011:LHB

REFERENCES

springer.com/content/pdf/10.1007/978-3-642-24449-0_31.

Freeman:1990:ICP

Friemel:1986:DM

Frost:1981:ADI

Frost:1982:BRS
Discusses the dynamic hashing scheme used by ASDAS.
under development at Strathclyde University.

Fraenkel:1994:EMD

Flajolet:1982:BPA

Fortnow:2008:IIC

Fiat:2009:AEA

Farashahi:2009:HEC

Fouque:2012:IHB

Fuerer:1988:UHV

M. Fuerer. Universal hashing in VLSI. In Reif [Rei88], pages 312–318. ISBN 0-387-96818-0. LCCN TK7874
REFERENCES

Fusco:2012:RTC

Friedman:1976:GCH

Friedman:1977:EGC

Feldhofer:2009:HIS

Fan:2018:HCS

Fang:2017:OHT
REFERENCES

[GBC98] Goetz Graefe, Ross Bunker, and Shaun Cooper. Hash joins and hash teams in Mi-
REFERENCES

Gong:1994:AKD

Gonnet:1990:AKR

Gonnet:1991:HAD

Guh:1990:PPS

Graefe:1995:FAU

Gollapalli:2015:IRH
Sujatha Das Gollapalli, Cornelia Caragea, Prasenjit Mitra, and C. Lee Giles. Im-

[Bob Gerber. *Informix online XPS*. *SIGMOD Record*]

Gettys:2001:AAG

Groner:1974:CHF

Gunji:1980:SHC

Garg:1986:OPK

Griswold:1986:IIP

Gavrila:1992:ORI

Ganguly:2004:TSE

[Sumit Ganguly, Minos Garofalakis, and Rajeev Rastogi. Tracking set-expression cardinalities over continuous update streams. VLDB Journal: Very Large Data

Gao:2019:ERB

Guo:2007:CBI

Ghandeharizadeh:1993:ILS

Goldsmith:1991:SCIa

Goldsmith:1991:SCIb

Gal:2012:TBC

REFERENCES

Ghosh:1977:DBO

Ghosh:1986:DBO

Gennaro:1999:SHS

Ghodsi:2007:ESB

Goto:1977:PHA

Godor:2012:HBM

Gibson:1990:SCD

Gibson:1991:DLH
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Graefe:1991:SVH

Graefe:1994:SVH

Gonnet:1977:AIH
G. Gonnet and I. Munro. The analysis of an improved hashing technique. In *ACM-TOC'77* [ACM77b], pages 113–121.

Gonnet:1979:EOH

Gil:1991:FHP

Gil:1994:SFP

Gil:1998:SFP

Ghaffari:2018:MSV

Garcia-Molina:1990:ASI
REFERENCES

REFERENCES

20, February 1975. CO-
DEN CMPJA6. ISSN
0010-4620 (print), 1460-2067
(electronic). URL http:
/comjnl.oxfordjournals.
org/content/18/1/18.full.
pdf+html; http://www3.
oup.co.uk/computer_journal/
hdb/Volume_18/Issue_01/
tiff/18.tif; http://
www3.oup.co.uk/computer_-
journal/hdb/Volume_18/
Issue_01/tiff/19.tif;
http://www3.oup.co.uk/
computer_journal/hdb/Volume_18/
Issue_01/tiff/20.tif.

Forouzan Golshani, editor.
Eighth International Con-
ference on Data Engineer-
ing: February 2–3, 1992,
Tempe, Arizona. IEEE Com-
puter Society Press, 1109
Spring Street, Suite 300,
Silverse Springs, MD 20910,
USA, 1992. ISBN 0-
8186-2545-7 (paper) 0-8186-
2546-5 (microfiche) 0-8186-
2547-3 (hardcover). LCCN

Shafi Goldwasser, editor.
Proceedings: 35th Annual
Symposium on Foundations
of Computer Science, No-
ember 20–22, 1994, Santa Fe,
New Mexico. IEEE Com-
puter Society Press, 1109
Spring Street, Suite 300, Sil-
ver Springs, MD 20910, USA,
1994. CODEN ASFPDV.
ISBN 0-8186-6582-3. ISSN
0272-5428. LCCN QA 76
S979 1994. IEEE catalog
number 94CH35717. IEEE
Computer Society Press Or-
der Number 6580-02.

Dieter Gollmann, editor. Fast
software encryption: third in-
ternational workshop Cam-
bridge, UK, February 21–
23, 1996: proceedings, vol-
ume 1039 of Lecture Notes
in Computer Science. Spring-
er-Verlag, Berlin, Germany /
Heidelberg, Germany / Lon-
don, UK / etc., 1996. CO-
DEN LNCSD9. ISBN 3-540-
60865-6 (paperback). ISSN
0302-9743 (print), 1611-
3349 (electronic). LCCN

Gaston H. Gonnet. Average
lower bounds for open-
addressing hash coding. In
Proceedings of a Conference
on Theoretical Computer Sci-
ence, page ?? ????, 1977. Is this [TWW77]????

Gaston H. Gonnet. Open-
addressing hashing with uneval-probability keys.
Journal of Computer and
System Sciences, 21(??):??,
1980. CODEN JCSSSBM.
ISSN 0022-0000 (print),
1090-2724 (electronic).
REFERENCES

Gonnet:1981:ELL

Gonnet:1983:UDB

Gonnet:1984:HAD

Gong:1995:CKH

Goto:1983:RSS

Gollapudi:2008:PTM

Gueziec:1997:MIR

REFERENCES

Gomez-Perez:2016:CCT

Gentry:2008:THL

Greene:1994:MIHa

Greene:1994:MIHb

Guillou:1995:ACE

Gray:1986:IJH

Graefe:1988:RDF

Graefe:1989:RDF

REFERENCES

X. Gregg. Hashing Forth: It’s a topic discussed so nonchalantly that neophytes hesitate to ask how it works. *Forth Dimensions*, 17(4):13–??, 1995. CODEN FODMD5. ISSN 0884-0822.
Grech:2011:JGE

Grimson:1974:PSS

Griss:1977:EEE
Martin L. Griss. Efficient expression evaluation in sparse minor expansion, using hashing and deferred evaluation. In Sprague and Chattergy [SC77], pages 169–172. LCCN ??

Griss:1979:HKR

Griebel:1998:ASG

Grosshans:1986:FSD

Gopal:1993:CCH

Guibas:1976:ADH

Guibas:1978:ADH
REFERENCES

Gori:1989:AAC

Girault:1994:LCH

Gupta:1994:RSD

Gori:2001:IHF

Goto:1982:DLM

Gope:2017:ASS

Galli:2001:THO

[N. Galli, B. Seybold, and K. Simon. Tetris-hashing or optimal table compression.
REFERENCES

Ganguly:1990:FPP

Gupta:1998:PTF

Greniewski:1963:ELK

Goto:1980:SHM

Griswold:1993:DID

Guerraoui:2016:OCO

Guibas:1975:HTE

Guibas:1976:AHAa

Guibas:1976:AHAb

Guibas:1976:AHAc
Leo J. Guibas. The analysis of hashing algorithms that exhibit k-ary clustering. In IEEE-FOCS’76 [IEE76], pages 183–196.

Guibas:1978:AHT

Guinier:1989:FUA

Goldreich:1994:TFF
O. Goldreich and A. Wigderson. Tiny families of functions with random properties: a quality-size trade-off for hashing. *Proceedings of
the ... annual ACM Sym-
posium on Theory of Com-
puting, 26(?):574–??, 1994.
ISSN 0737-8017.

Shashi K. Gadia and Chuen-
Sing Yeung. Inadequacy of
interval timestamps in tem-
poral databases. *Information
CODEN ISIJBC. ISSN 0020-
0255 (print), 1872-6291 (elec-
tronic).

[GY91]

[GYW+19]
Y. Guo, X. Yuan, X. Wang,
C. Wang, B. Li, and X. Jia.
Enabling encrypted rich
queries in distributed key-
value stores. *IEEE Trans-
pactions on Parallel and Dis-
tributed Systems*, 30(6):1283–
1297, June 2019. CODEN
ITDSEO. ISSN 1045-
9219 (print), 1558-2183 (elec-
tronic).

[Guo:2019:EER]

[Hac93]
Nabil I. Hachem. An ap-
proximate analysis of the per-
formance of extendible hash-
ing with elastic buckets. *In-
formation Processing Letters*,
CODEN IFPLAT. ISSN
0020-0190 (print), 1872-6119
(electronic).

[Hacem:1993:AAP]

[Harbi:2016:ASQ]
Razen Harbi, Ibrahim Ab-
delaziz, Panos Kalnis, Nikos
Mamoulis, Yasser Ebrahim,
and Majed Sahli. Accelerat-
ing SPARQL queries by
exploiting hash-based loca-
ality and adaptive partition-
ing. *VLDB Journal: Very
Large Data Bases*, 25(3):355–
380, June 2016. CODEN
VLDBFR. ISSN 1066-8888
(print), 0949-877X (elec-
tronic).

[Harbi:2015:ESQ]

[HAK+16]

[Griebl:1999:PMA]
M. Griebel and G. Zum-
busch. Parallel multigrid
in an adaptive PDE solver
based on hashing and space-
filling curves. *Parallel Com-
puting*, 25(7):827–843, July
1999. CODEN PACOEJ.
ISSN 0167-8191 (print),
1872-7336 (electronic).

[Harbi:2015:ESQ]

[Song Guo, Deze Zeng, and
Yang Xiang. Chameleon
hashing for secure and
privacy-preserving vehicu-
lar communications. *IEEE
Transactions on Parallel
and Distributed Systems*,
25(11):2794–2803, Novem-
ber 2014. CODEN ITD-
SEO. ISSN 1045-9219
(print), 1558-2183 (elec-
computer.org/csdl/trans/
td/2014/11/06654169-abs.
html.

[Hac93]

[Harbi:2015:ESQ]

[Harbi:2015:ESQ]

[Razen Harbi, Ibrahim Ab-
delaziz, Panos Kalnis, and
Nikos Mamoulis. Evaluat-

[Harbi:2015:ESQ]

[Harbi:2015:ESQ]
ing SPARQL queries on massive RDF datasets. Proceedings of the VLDB Endowment, 8(12):1848–1851, August 2015. CODEN VLDBFR. ISSN 2150-8097.

LCCN QA76.9.I58 H37 1985. US$27.95. Hashing is discussed in Part II.

REFERENCES

Hecker:1994:GHG

Hulsing:2017:XEH

Hoang:2010:CAN

Horspool:1987:HCT

Holt:2002:MAR

Holt:2007:PMA

Hedayatpour:2011:HFB

Hsiao:2013:SLB

Healy:2014:AKM

Hart:1995:SCH

Hasan:2006:CSE

Hanson:1990:PMAb

Hernandez-Castro:2012:AFH

He:1987:PAS

Healey:1972:CEP

Headrick:1982:HRS

Hejlsberg:1989:COT

CODEN DDJOEB. ISSN 1044-789X.

Hekmatpour:1989:LP1

Heller:1989:EH

Heller:1991:MHY

Helleseth:1994:ACE

[Lai:2009:CCD] Jiao Hui, Xiongzi Ge, Xiaoxia Huang, Yi Liu, and

Hildebrandt:1982:VBD

Hille:1988:DAP

Herschel:1975:WHC

Helleseth:1996:UHF

Hopcroft:1983:HCG

Haggard:1986:FMP

Hofri:1987:PLR

Hagerup:1995:FPP

REFERENCES

REFERENCES

Hsu:2003:NCS

Heileman:2005:HCA

Hsieh:2012:EHF

Huang:2010:DHT

He:2013:RCP

REFERENCES

[247]
me=790.

[Hiraki:1984:EAM]

[Hashida:1972:LAC]

[Holub:1987:NHE]

[Han:2002:CMV]
Daewan Han, Sangwoo Park, and Seongtaek Chee. Cryptanalysis of the modified version of the hash function

[Hopgood:1968:xxx]

[Hopgood:1968:STO]

[Hanan:1963:ACT]

[Halatsis:1978:PHT]

[Hol13]
Harris:1993:ODM

Harris:1996:JAC

Hsiao:2004:FCP

Haitner:2007:SHC

Haitner:2014:NHI

REFERENCES

REFERENCES

Hoshi:1988:AHF

Hirano:1995:IEH

Hiranandani:1991:PHC

Hafiane:2008:RIH

Hernandez:2001:DTR
REFERENCES

Hohl:1994:SIH

Hsu:1986:COE

Ho:1989:COM

Ho:1993:COM

Hadjieleftheriou:2008:HSS

Hsieh:1999:OWH

Hill:1986:ESD

Aoe:1991:CAK

REFERENCES

Aoe:1994:CAS

Istvan:2015:HTL

IEEE:1986:ICD

IEEE:1987:DEP

IEEE:1988:PFI

IEEE:1990:PSI

[ICD90] *Proceedings, Sixth International Conference on Data Engineering: February 5–9, 1990, Los Angeles Airport Hilton and Towers, Los Angeles, California, USA*. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1990. ISBN 0-8186-2025-0 (paperback), 0-8186-9025-9 (hardcover), 0-8186-
REFERENCES

[IEE76]

[ICD91]

[ICD93]

IEEE, editor. 15th Annual Symposium on Switching and Automata Theory, October 14–16, 1974, the University of New Orleans. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1974.

[IEE74]

[IEEE:1976:ASF]

[IEEE80a]

[IEEE80b]

REFERENCES

Silver Spring, MD 20910, USA, 1982. LCCN QA76.6 .S95 1982.

REFERENCES

IEEE:1988:ICP

IEEE:1989:ASF

IEEE:1990:PSN

IEEE:1991:PAS

IEEE:1991:PAS
REFERENCES

|---|---|

IEEE:2006:AIS

IEEE:2007:PAI

IEEE:2011:ICI

IEEE:2011:PIA

IEEE:2013:PIA

Ida:1977:PPH

Ihlenfeldt:1994:HCl

Ioannidis:2005:ADS

Ichikawa:1983:ARD

Itoh:1995:ANS

Ivanchykhin:2017:RAU

Ikeda:2013:CEM

Ichiyoshi:1992:ALB

Ishai:2005:SCC

Ishai:2008:CCC

Ivanov:1990:HSO

Indyk:1997:LPH

Impagliazzo:1989:ECS

Ince:1981:IFS

Indyk:2001:SAM

Indyk:2013:SHH

Indesteege:2008:CRH

Indesteege:2011:PCE

ISO and IEC 10118. *Information technology — Se-

ISO:2004:IIIb

are considered. Though the existence of \(h \) is guaranteed, the scheme suffers from many practical problems because of exhaustive nature of the search for \(h \).

Jagannathan:1991:OPM

Jain:1989:CHS

Jain:1992:CHSa

Jain:1992:CHSb

Jakobsson:1985:SRL

Janson:2005:IDL

Svante Janson. Individual displacements for linear probing hashing with different insertion policies. *ACM Transactions on Algorithms,*

is much better at producing uniform key distributions than others commonly used, yet remains acceptably fast. See [Boy98] for comparison with a related algorithm.

Janzadeh:2009:SCB

Joux:1995:PAA

Jha:2015:IMM

Jung:2011:SHB

Jeong:2014:ITP

Jeong:2008:PBH

Jovanov:2002:ANO

Jean:2014:ICA

Jaeschke:1980:CMP

G. Jaeschke and G. Osterburg. On Cichelli’s minimal perfect hash functions method. *Communications of the Association for Computing Machinery*, 23(12):728–729, December 1980. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This letter to the editor contains comments on [Cic80b], together with a response from R. J. Cichelli [Cic80a].

Johnson:1961:ICM

Johansson:1997:BHS

Jouannaud:1985:FPL

Joux:2004:MIH

REFERENCES

Zhe Jin, Andrew Beng Jin Teoh, Thian Song Ong, and Connie Tee. Secure minutiae-based fingerprint templates using random triangle hashing. Lecture Notes in CS,
REFERENCES

REFERENCES

Kabe:1987:RRT

Kaliski:2001:HFF

Kahrs:1992:UUL

Kak:1983:EMP

Kaman:1974:HC

Kanada:1990:VTH

Kaliski:1993:SES

Kanada:1991:MVP

[102x644]Kanada:1993:MVP

Kanada:1991:MVP

Kanada:1993:MVP

Kawagoe:1985:MDH

Kawamoto:2015:LSH

Kanj:2018:SNN

Krause:1981:PHF

[KCB81] Max Krause, Nick Cercone, and John Boates. Perfect
hash function search with application to natural language systems. Technical Report CMPT TR 81-6, Simon Fraser University, 1981. ?? pp. (email library@cs.sfu.ca).

Ku:2005:WYR

Kirk:1984:CMI

Ku:2003:WLL

Koushik:1992:LDH

Knott:1989:HTC

Keller:1993:HRP

Joerg Keller. Hashing and rehashing in PRAM emulations. In *Proceedings of the 3rd Workshop on Parallel Al-
Keller:1996:FRP

Kennedy:1973:RSU

Kerr:1975:PIC

Kocberber:2015:AMA

Kak:1995:ILM

Kaushik:2012:MGH

Kralevska:2018:HEC

Karplus:1984:FMP

K. Karplus and G. Haggard. Finding minimal perfect hash functions. Technical
REFERENCES

Report 84-637, Cornell University, September 1984. ?? pp. (email lmc@cs.cornell.edu).

Khan:1995:PDH

Kuo:1989:DSF

Kortelainen:2010:MAG

Kanizo:2015:MTH

Kitsuregawa:1989:JSK

Kim:1991:ISSa

[Kim99] Sun Kim. A new string-

Kim:2011:EHB

[KK12]

Kojima:1985:HFO

Khan:1996:PCI

Kelsey:2006:HHF

Kakvi:2012:OSP

Kakvi:2018:OSP

REFERENCES

Kim:2012:SSL

Kim:2009:SVH

Lioma:2008:AHT

Kaski:2012:HHS

Kobiljo:2017:SHP
Kim:2007:EIK

Kurosawa:1991:CFH

Kemper:1999:GHT

Kim:1987:ESJ

Knudsen:1995:NAA

Katajainen:1996:EUH

[KL96] Jyrki Katajainen and Michael Lykke. Experiments with universal hashing. DIKU Report 96/8, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark, 1996.

Kencl:2008:ALS

[LK08] Lukas Kencl and Jean-Yves Le Boudec. Adaptive load

Karp:1993:EPS

Karp:1996:EPS

Knudsen:1998:AFD

Karger:1997:CHR

Kompella:2012:RSF

REFERENCES

REFERENCES

Adam Kirsch, Michael Mitzenmacher, and Udi Wieder.

REFERENCES

http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/273.tif;[KNR10]
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/274.tif;[KNR10]
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/275.tif;[KNR10]
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/276.tif;[KNR10]
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/277.tif;[KNR10]
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/278.tif

Section 3, “A history of hashing schemes”, and the lengthy bibliography, are recommended and useful resources.

[Knott:1984:DCC][Knu73]

[Knott:1988:LOA]

[Knuth:1973:ACP][Knu73]

[Knuth:1974:CSR][Knu74]

Khovratovich:2010:RRA

Kitsuregawa:1989:EBS

Knuth:1973:ACP
REFERENCES

REFERENCES

(SDC). In McLeod et al. [MSDS90], page 210. ISBN 1-55860-149-X. LCCN ???

Koehler:1972:SDB

Kohonen:1980:CAM

Konheim:2010:HCS

Korf:2008:LTD

Koschke:2014:LSI

Koushik:1993:DHD

Kilov:1981:DMA

Kh. I. Kilov and I. A. Popova. Data metabase architecture for relational DBMS. *Programming and
REFERENCES

Computer Software: translation of Programmirovaniye, (Moscow, USSR) Plenum, 7 (1):??, February 1981. CODEN PCSODA. ISSN 0361-7688 (print), 1608-3261 (electronic).

Kedem:1992:OPA

Krichevskii:1994:CSE

Knudsen:1996:HFB

Katzenelson:1992:TMT

Kohonen:1979:VFA

Kishore:2019:PCH

Krause:1982:PHF

Krawczyk:1994:LBH

Krawczyk:1995:NHF

Krichevsky:1984:OH

Krichevskii:1989:ADC

Kohonen:1980:TWR

Kawaguchi:2009:TBD

Kim:2009:CIS

Kwon:2009:FXD

Kohonen:1984:ORS

Knudsen:2007:GFH

Kruse:1984:DSP

Kriegel:1986:EMD

Kriegel:1987:MDH

H. P. Kriegel and B. Seeger. Multidimensional dynamic hashing is very efficient for nonuniform record distributions. In ICDE’87 [ICD87],
REFERENCES

Kriegel:1987:MDQ

Korner:1988:LDS

Kriegel:1988:PHGa

Kriegel:1988:PHGb

Kelly:1989:POM

Kriegel:1989:MQH

Kniesburges:2012:BAH

Kitsuregawa:1983:AHD

Kitsuregawa:1983:GRA

Kitsuregawa:1983:RAM

Kitsuregawa:1992:PGH

Ku:2004:HBS

Karlin:1986:PHE

Karlin:1988:PHE

Kuespert:1982:MLHa

Kumar:1990:COE

Kutzelnigg:2006:BRG

Kutzelnigg:2010:IVC

Kenyon:1991:MQS

Katz:2009:SPH

Kortelainen:2012:GIH

REFERENCES

Kroll:1994:DST
Brigitte Kröll and Peter Widmayer. Distributing a search tree among a growing number of processors. SIGMOD Record (ACM Special Interest Group on Management of Data), 23(2):265-276, June 1994. CODEN SREC68. ISSN 0163-5808 (print), 1943-5835 (electronic).

Klassen:2012:ITB

Kaps:2005:ESU

Kjellberg:1984:CH

Louati:2018:LCT

Lai:1992:DSB
Xuejia Lai. On the design and security of block ciphers. Hartung-Gorre Verlag, Konstanz, Switzerland, 1992. ISBN 3-89191-573-X. xii + 108 pp. LCCN ???. This is the author’s Ph.D. dissertation. “Secret-key block ciphers are the subject of this work. The design and security of block ciphers, together with their application in hashing techniques, are considered. In particular, iterated block ciphers that are based on iterating a weak round function several times are considered. Four basic
constructions for the round function of an iterated cipher are studied.”.

REFERENCES

REFERENCES

Larson:1985:PAS

Larson:1988:DHT

Larson:1988:LHS

Larson:19xx:LHP

Lassez:1987:PFI

Lopes:2007:IRQ

Li:2002:RBA
REFERENCES

[LC88] Ted G. Lewis and Curtis R. Cook. Hashing for dynamic and static internal tables. Computer, 21(10):45–57 (or 45–56??), October 1988. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic). The authors survey the classical hashing function approach to information retrieval and show how general hashing techniques exchange speed for memory. It is a tutorial paper that covers, among other topics, dynamic and static hash tables, perfect hashing, and minimal perfect hashing.

REFERENCES

[Lo:1993:OPA] Ming-Ling Lo, Ming-Syan Chen, C. V. Ravishankar,

Lee:2012:OFL

Lieuwen:1992:PBJ

Luo:2002:SHR

Liu:2016:TRS

Lebedev:1987:EEU

Luo:2002:SHR

Leppänen:1998:BPS

REFERENCES

Lesk:1988:GII

Michael Lesk. GRAB—

 inverted indexes with low storage overhead. Computing

 Systems, 1(3):207–220, Summer 1988. CODEN CM-

 SYE2. ISSN 0895-6340.

Levy:1989:LPT

G. Levy. A language for

 the P-any trees — applica-

 tions to the dynamic virtual

 hashing methods. In Litwin

 and Schek [LS89], page ??

 ISBN 0-387-51295-0. LCCN

Levelt:1995:IPI

A. H. M. Levelt, editor. IS-

 SAC '95: Proceedings of the

 1995 International Sympo-

 sium on Symbolic and Alge-

 braic Computation: July 10–

 12, 1995, Montréal, Canada,

 ISSAC -PROCEEDINGS-

 1995. ACM Press, New York,

 NY 10036, USA, 1995. ISBN

 0-89791-699-9. LCCN QA

 76.95 I59 1995. ACM order

 number: 505950.

Lever:2000:LKH

Chuck Lever. Linux kernel

 hash table behavior: Analysis

 and improvements. In USENIX

 [USE00a], page ??

 ISBN 1-880446-17-0. LCCN

 ???. URL http://www.

 usenix.org/publications/

 library/proceedings/als2000/

 lever.html.

Lewis:1982:SEA

T. G. Lewis. Software Engi-

 neering: Analysis and Veri-

 fication. Reston Publishing

 Co. Inc., Reston, VA, USA,

 x + 470 pp. LCCN QA76.6

 L477 1982. US$21.95. Hash-

 ing is covered in Chapters 4–

 7.

Laborde:2017:WFH

Pierre Laborde, Steven Feld-

 man, and Damian Dechev. A

 wait-free hash map. Inter-

 national Journal of Par-

 allel Programming, 45(3):

 421–448, June 2017. CO-

 DEN IJPPE5. ISSN 0885-

 7458 (print), 1573-7640 (elec-

 tronic).

ACM:1982:CRA

Conference Record of the

 1982 ACM Symposium on

 Lisp and Functional Pro-

 gramming: Papers Present-

 ed at the Symposium, Pitts-

 burgh, Pennsylvania, August

 15–18, 1982. ACM Press,

 New York, NY 10036, USA,

 August 1982. ISBN 0-89791-

 082-6. LCCN QA76.73.L23

 A26 1982. US$26.00. The pa-

 pers were not formally refer-

 eed but were accepted on the

 bases of extended abstracts.

Louis-Gavet:1978:DAI

Guy Louis-Gavet. Diverses

 applications issues d’une fonc-

 tion f de compactage basée sur une étude

REFERENCES

Litvinov:1980:GHF

Li:1995:CKH

Li:2010:PAP

Li:2015:RDS

Liang:1995:PHF

Lien:1981:AIC

Luhandjula:1992:FSI

Lin:1953:xxx

[Lin53] A. D. Lin. ??? The year is uncertain (???). Extends
with an alternative overflow handling technique using “degenerate addresses” [Knu73, p. 541]., 1953.

W. Litwin. Linear virtual hashing: a new tool for files

Li:2019:IID

Lv:2017:IPL

Larson:1984:FOI

Lucchesi:1993:AFA

Lai:1994:ADB

Lagutin:2007:CIC

Li:2011:TAB

Ping Li and Arnd Christian König. Theory and applications of b-bit minwise hashing. Communications
REFERENCES

of the Association for Computing Machinery, 54(8):101–109, August 2011. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

REFERENCES

Litwin:1987:NMF

Leng:1992:OWA

Lenzerini:2008:PTS

Lee:2013:SQB

Lowden:2015:DPA

Leung:1989:LPA

REFERENCES

Luo:2012:IDE

Liu:2017:TQC

Lee:2002:RUA

Luo:2015:ADL

Lim:2009:SPE

Lin:2011:HAB

Lin:2017:PHB
Cheng-Hung Lin, Jin-Cheng Li, Chen-Hsiung Liu, and Shih-Chieh Chang. Perfect hashing based parallel algorithms for multiple string

Lloyd:1981:ICI

Liu:2010:MPI

Liang:2010:LVB

Lueker:1988:MAD

Lai:1993:HFBa

Lai:1993:HFBb

Lueker:1993:MAD

[LMPW15] Atul Luykx, Bart Mennink, Bart Preneel, and Laura Winnen. Two-permutation-

REFERENCES

Lin:2001:EHM

Liang:2000:OMD

Li:2012:OPH

Leung:2004:LPD

Lin:2015:CRN

Huijia Lin and Rafael Pass. Constant-round nonmalleable commitments from any one-way function. *Journal of the Association for Com-
puting Machinery, 62(1):5–5:??, February 2015. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

Li:2018:LLP

Lei:2014:FND

Larson:1985:EPH

Lee:1996:DRW

Lo:1996:SHJ

Li:1999:FJU

Litwin:1991:THC

W. A. Litwin, N. Roussopoulos, G. Levy, and W. Hong. Trie hashing with controlled

Litwin:1989:THC

Leskovec:2014:MMD

Liu:2015:MDT

Lipton:1978:EHS

Lipton:1980:EHS

Lange:1985:DS

[LT90] H. Lu, K. L. Tan, and M. C. Shan. Hash-based join algorithms for multiprocessors with shared memory. In McLeod et al. [MSDS90],
Luccio:1972:WIL

Luhn:1953:xxx

Hans Peter Luhn. ??? Internal IBM memo that first suggested the idea of hashing, and one of the first applications of linked linear lists. Luhn is also the inventor of KWIC indexing, in 1960 [Knu73, p. 437]. See also [Lin53], January 1953.

Lum:1973:GPA

Lutterbach:1988:NSD

Li:2011:EDH

Lamdan:1988:GHG

Lee:2004:IAK

REFERENCES

OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

Lenstra:2017:TPR

Lin:2011:EVO

Wu:1991:PIC

Lin:2008:AZH

Lu:2018:WLS

Liu:2018:MCM
R. Liu, S. Wei, Y. Zhao, Z. Zhu, and J. Wang. Multiview cross-media hashing with semantic consistency. IEEE MultiMedia, 25(2):71–86, April/Junie 2018. CODEN IEMUE4. ISSN 1070-
REFERENCES

986x (print), 1941-0166 (electronic).

Liu:2019:EPB

Lum:1972:ARK

Lum:1971:KAT

Liu:2013:IRQ

Lyon:1978:HLP

Lyon:1978:PST

Lyon:1979:BSS

REFERENCES

CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

computer.org/csdl/mags/mu/2016/03/mmu2016030075-abs.html.

Litwin:1988:MTH

Monnerat:2015:ESH

Macii:1995:ECP

Maddison:1980:FLH

Mairson:1983:PCS

Mairson:1992:ETE

Michail:2012:EHT

Harris E. Michail, George S. Athanasiou, Vasilis Kefalouras, George Theodoridis, and Costas E. Goutis. On the exploitation of a high-throughput SHA-256 FPGA design for HMAC. *ACM*
Mallach:1977:SST

Mandelbrod:2012:LHA

Martin:1964:HCF

Martin:1971:DEA

Martin:1975:CDB

Martin:1977:CDB

Matias:1993:HPR

Mathieu:2009:PTA

REFERENCES

Maurer:1968:PTI

Maurer:1983:IHC

Martini:2003:DHM

Munro:1986:TCR

J. Ian Munro and Pedro

Marton:2012:OCC

Manegold:2000:ODA

Mazeika:2007:ESA

REFERENCES

REFERENCES

McIlroy:1982:DSL

McKenney:1989:HSEa

McKenney:1989:HSEb

McNichol:2003:HTM

Markowsky:1978:AUC

Mahapatra:1997:SGL

Macchetti:2005:QPH

Mehlhorn:1977:EA

Mehlhorn:1982:PSP

Mehlhorn:1984:SS

Mehlhorn:1986:DEA

Meijer:1995:HFB

Mekouar:1983:EPD

Miranda:2014:RSE

Mendelson:1982:AEH

Mennink:2012:OCS

Y. Manolopoulos and N. Fistas. Algorithms for a hashed file with variable-length records. *Information*
REFERENCES

Munoz:2004:CRS

Mueller:2006:SMG

Mochizuki:2000:ERA

McKenzie:1990:SHA

Mou:2013:CBC

Machii:1984:HMF

Micciancio:2002:ICH

[Mir01] Ilya Mironov. Hash functions: From Merkle-Damgård
Mirrokni:2017:OOM

Mitra:1973:SHP

Mitzenmacher:2002:GHT

Mitzenmacher:2009:SOQ

Mittelbach:2012:HCS

Mitzenmacher:2017:BBH

Mathew:2008:JBH

Muthusamy:2014:IFC

Michelogiannakis:2011:PCE

Mukherjee:2002:ECV

McAuliffe:1989:PIC

Miller:1993:RFS

Manoharan:2011:PAM

REFERENCES

Manolopoulos:1994:PLH
[ML94]

Myllymaki:1995:DTJ
[ML95]

Martin:1994:PHB
[MLD94]

Ma:2017:NDC
[MLHK17]

Martinez:2007:OXH
[MLP07]
REFERENCES

Madria:2001:FCC

Mehrotra:2010:RII

McEvoy:2009:IWH

Mourad:1994:LPH

Mehlhorn:1990:BOD

Mehlhorn:1999:LPC

Motwani:2008:LBL

Rajeev Motwani, Assaf Naor, and Rina Panigrahy. Lower bounds on locality sensitive

REFERENCES

[Moto-oka:1992:FGC]

[Mohan:1990:ACC]

[Mohan:1993:ACC]

[Mohassel:2011:OTS]

[Miyaguchi:1990:CSH]

[Miyaguchi:1991:CSH]

1984. CODEN DGSKAR. ISSN 0366-9092.

Midkiff:1990:ICO

Mennink:2012:HFB

Mennink:2016:EPH

Martinez:2009:DFN

Moody:2016:ISF

Mendel:2007:CTH

MedeirosDuarte:2019:CPC

Rodrigo Medeiros Duarte, André Rauber Du Bois,

REFERENCES

Dennis McLeod, Ron Sacks-Davis, and Hans Schek, editors. *Very Large Data Bases: 16th International Conference on Very Large Data Bases, August 13–16, 1990, Brisbane, Australia*. Morgan Kaufmann Publishers, San

Mullin:1985:SSE

Mullin:1991:CUC

Mullin:1992:HFH

Mathieu:1988:MQS

Matias:1990:PHI

Matias:1991:CHP

Matias:1991:PHI

Menezes:1991:ACC

1990, at the University of California, Santa Barbara.

Mihcak:2001:PAH

Mihcak:2002:NIG

Mitzenmacher:2008:WSH

Martirosyan:2008:ECP

Mittermeir:1995:AVS

Matsushita:2009:PCH

REFERENCES

Mu:2012:ALS

Majewski:1992:FGM

Majewski:1996:FPH

Ma:2012:HPO

Mendelson:1979:PMO

Mendelson:1980:NAA
Mimaroglu:2012:ADC

Ma:2018:GEG

Mihaljevic:1998:CAB

Mihaljevic:1998:UHF
M. Naeslund. Universal hash functions and hard core bits. In Guillou and Quisquater [GQ95], pages 356–366. ISBN 3-540-59409-4. ISSN 0302-9743 (print), 1611-
Nuida:2015:MPS

Namba:1986:SIU

NIST:1992:PYA

NIST:1995:FPSb

Navathe:1985:PAI

Nakano:2011:AMI

Narayanan:2008:DAQ

Dushyanth Narayanan, Austin Donnelly, Richard Mortier,

[NH74]

[Nec79]

[Ng79]

[NI83]

[Ngu06]

[Nhi74]

[NHS84]

[Shaun Nichols. NiceHash diced up by hackers, thousands of Bitcoin]

[Nic17]

Newhall:2002:CPC

Nakaike:2010:LER

Nanevski:2008:YDT

Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau, and Lars Birkedal. Ynot: dependent types for imperative programs. *SIGPLAN No-

Ntantogian:2019:EPH

Naor:1990:SPS

Narita:2012:LJH

Noltemeier:1982:I

Noltemeier:1982:IIE

Negri:1991:DJN

Nevelsteen:1999:SPU

Nguyen:2012:SOU

Newman:1990:PHG

Nielsen:1982:ALP

Neelima:2016:PHF

Arambam Neelima and Kh Manglem Singh. Perceptual

Nguyen:2012:LRS

Naor:2007:NAP

Nie:2013:CHB

Norton:1985:PMO

Naor:1989:UOW

Naor:1989:UOH

Nyberg:1996:FAH

Ouksel:1989:CML

Oaks:1998:BSH

Olagunju:1994:DPH

Olagunju:1994:ILS

Oligieri:2011:REA

Anonymous:1989:DQO

Ordonez:2014:BVS

Oberschelp:1980:IID

REFERENCES

Okamoto:1988:DMS

Omiecinski:1989:HBI

Omiecinski:1991:AHJ

Omiecinski:1992:AHJ

Ollmert:1989:DD

Olsen:1969:RRF

Charles A. Olsen. Random access file organization for indirectly accessed records. In ?? [??69], pages 539–549. LCCN ?? Discusses practical considerations in the design of external scatter tables.

Omiecinski:1988:CSS

Omiecinski:1989:CFC

REFERENCES

REFERENCES

Pagli:1985:SAH

Pagh:1999:HDE

Pagh:2001:CPC

Pagh:2006:CHU

Pagh:2018:CLS

PAKR93

Pal:1992:SPD

Panigrahy:2005:EHL

Papadopoulos:1994:NHA

REFERENCES

Parallel Algorithms and Applications, 4(3–4):223–237, November 1994. CODEN PAAPEC. ISSN 1063-7192. URL http://www.informaworld.com/smpp/content~content=a777314733. This is a plagiarized article. See http://www.sics.se/europar95/plagiarism.html for details. The original work from which the material in this paper was stolen is due to Thomas J. Sheffler and Randal E. Bryant, CMU report MCU-CS-92-172.

Palma:2008:EPC

Park:2018:OTP

Paterson:1990:ALP

Patarin:1994:HFA

Patarin:1995:CID

Papadimitriou:1980:PBH

Christos H. Papadimitriou and Philip A. Bernstein. On the performance of balanced hashing functions when the
keys are not equiprobable. ACM Transactions on Programming Languages and Systems, 2(1):77–89, January 1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Purdom:1985:AA

Prokopec:2012:CTE

Preneel:1997:CHF

Pepper:1995:RSH

Preneel:1989:CHB

Park:1995:UPR

Pang:1993:PPHa
H. Pang, M. Carey, and M. Livny. Partially pre-

Pang:1993:PPHb

Park:2015:NSH

Patel:1994:AMH

CODEN ???. ISSN 0163-5999 (print), 1557-9484 (electronic).

Park:1995:EHB

ACM:1991:PFI

Pearson:1990:FHV

REFERENCES

http://www.acm.org/pubs/toc/Abstracts/0001-0782/78978.html. See [Dit76, Dit91, Lit91, Pea91, Sav91].

Pearson:1991:NFH

Peiler:1982:ZRV

Perry:1973:IME

Pescio:1996:AAM

Pujol:2012:LEC

Peterson:1957:ARA

Petersen:1983:AVV

D. Petersen. Auswahl eines verfahrens zur verwaltung des sekundaerspeichers der
REFERENCES

Petersson:2013:MDL

Peyrin:2015:CAG

Pramanik:1985:DH

Pramanik:1988:OCR

Papadakis:2009:HBO

Perrizo:1995:DDV

Patil:2017:HHA

Preneel:1990:ATH

B. Preneel, R. Govaerts, and J. Vandewalle. An attack on two hash functions by zheng-matsumoto-imai. In Seberry and Pieprzyk [SP90],

 REFERENCES

REFERENCES

Pippenger:1979:ACT

Pippolini:1994:JIH

Pittel:1987:PAC

Piwowarski:1985:CBS

Panneerselvam:1990:RSA

Panneerselvam:1988:NAS
G. Panneerselvam, G. A. Jullien, and W. C. Miller. New architectures for systolic hashing. In PROCEEDINGS — INTERNATIONAL CONFERENCE ON SYS-
REFERENCES

Pflug:1987:LPN

Plachy:1989:PIC

Popic:2018:FMB

Pineda:2009:UOD

Plauger:1998:SCCk

Park:2007:SDN

Poblete:1989:LCF

Poblete:1986:AFT

Ponder:1987:AHA

Pagh:2008:UHC

Perea:2016:SHB

Pagh:2007:LPC

Pagh:2009:LPC

REFERENCES

Prenel:1994:CHF

Prenel:1997:HFM

Prenel:1997:MHF

Prenel:1999:SCH

Price:1971:TLT

Peyravian:1998:PHV

Pontarelli:2016:PDP

Provenzano:1989:HTM

Prodinger:1994:ACP

REFERENCES

REFERENCES

Pramanik:1990:HSK

Putze:2009:CHS

Pahins:2017:HSL

Pinkas:2018:SPS

Patrascu:2010:IRL

Pong:2010:SSS

Fong Pong and Nian-Feng Tzeng. SUSE: superior storage-efficiency for routing tables through prefix

Patrascu:2011:PST

Pong:2011:HRP

Patrascu:2012:PST

Pong:2012:CLT

Patrascu:2013:TTH

Papamanthou:2016:AHF

REFERENCES

Pirotte:1985:VLD

Panti:1992:MOH

Preneel:1995:MBF

Pasini:2007:HSW

Poblete:2019:ARH

Petit:2008:EPR

Poblete:1994:AHS

Poblete:1997:ALL

Preneel:1995:MMB

Piper:1993:DSH

Prasanna:1994:SDP

Phan:2006:SCI

Peikert:2008:LTF

Pan:2013:CHF

Ping Pan, Licheng Wang, Yixian Yang, Yuankun Guan, Lihua Wang, and Chengqian Xu. Chameleon hash functions and one-time signature schemes from inner automorphism groups. *Fundamenta Informaticae*, 126(1):103–119, January 2013. CODEN FUMAAJ. ISSN 0169-2968 (print), 1875-8681 (electronic).

Pagh:2010:COH

Pagh:2014:COH

Pittel:1988:STE

Quittner:1981:CSH

Quinlan:2002:VNA

Quisquater:1989:BHF

Quisquater:1990:BHF

Jean-Jacques Quisquater and Marc Girault. 2^n-bit hash-

Quisquater:1995:ACE

Quisquater:1997:ASS

Quisquater:1989:ACE

Jean-Jacques Quisquater and Joos Vandewalle, editors. Advances in Cryptology–EUROCRYPT ’89: Workshop on the Theory and Ap-

[Ram89b] M. V. Ramakrishna. Practical performance of Bloom filters and parallel free-text searching. Communications of the Association for Computing Machinery, 32(10):1237–1239, October 1989. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Computing Reviews: “This short communication deals with a special kind of hash function called ‘Bloom filters.’ These filters are used, for example, to search a differential file containing updates to a main file.”.

[Ram97] Anand V. Raman. The Katapayadi formula and

[Ramakrishna:1991:DPH]

[Rijmen:2001:WHF]

[Rigoutsos:1994:SPS]

[Rao:2011:STE]

[Regnier:1981:AHT]

[Regnier:1982:LHG]

[Regnier:1985:AGF]
REFERENCES

Regnier:1988:THA

Rei88

Reif:1988:AWC

Reyes:2014:FKM

Ramakrishna:1997:EHH

Ramirez-Gutierrez:2012:IRT

Kelsey A. Ramirez-Gutierrez, Mariko Nakano-Miyatake, and Hector M. Perez-Meana.

RFB97

RG9]

Richter:1989:HJA

RGNMPM12

Reid:2003:SSE

Ramirez-Gutierrez:2012:IRI

Raghavan:1990:RIM

Rigoutsos:1992:MPM

Rigoutsos:1995:BAM

Isidore Rigoutsos and Robert Hummel. A Bayesian approach to model matching with geometric hashing.

Risson:2009:TDR

Riehl:1989:CTS

Rivest:1974:HCA

Rivest:1974:AAR

Ronald L. Rivest. Analysis of associative retrieval

REFERENCES

Rottenstreich:2015:BPW

Rottenstreich:2014:VIC

Ragan-Kelley:2011:DSG

Rothnie:1974:ABF

Ramamohanarao:1982:DHS

Ramakrishna:1989:FOU

Rathi:1990:PCE

REFERENCES

[RNT13] Rachel N. Robey, David Nicholas, and Robert W. Robey. Hash-based algo-

Rishe:1990:PIC

Robinson:1986:OPL

Roe:1994:PSC

Roe:1995:PBC

Rogaway:1995:BHA

Rogaway:1999:BHA

Rönnblom:2007:HEA

Johan Rönnblom. High-error approximate dictionary

Rosenfeld:1974:IPP

Rosenberg:1977:SRA

Ross:2006:EHP

Ross:2007:EHP

Rosenfeld:2012:OCC

Rotem:1989:CMH

Roussev:2009:HDF

ska Bystrica, Czechoslovakia, August 27–31, 1990: Proceed-
ings, volume 452 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Germany / Heidelberg, Germany / Lon-

[RP91] M. V. Ramakrishna and G. A. Portice. Perfect hash-
ing functions for hardware applications. In ICDE’91 [ICD91],
page 464. ISBN 0-8186-2138-9 (paper), 0-8186-
6138-0 (microfiche), 0-8186-
9138-7 (hardcover). LCCN

[RP95] V. Rijmen and B. Preneel. Improved characteris-
tics for differential cryptanalysis of hash functions
CODEN LNCS9. ISSN
0302-9743 (print), 1611-3349
(electronic).

[RR92] M. V. Ramakrishna and E. A. Ramos. Optimal dis-
tribution of signatures in signature hashing. IEEE Trans-
actions on Knowledge and Data Engineering, 4(1):83–
88, February 1, 1992. CODEN ITKEEH. ISSN 1041-
4347.

[RR08] C. Rechberger and V. Rij-
men. New results on NMAC/
HMAC when instantiated
with popular hash functions. J.UCS: Journal of Universal
Computer Science, 14(3):
347–376, ????. 2008. CODEN ????. ISSN 0948-
6968. URL http://www.
jucs.org/jucs_14_3/new_
results_on_nmac.

[RRR99] V. Raman, C. Pandu Ran-
gan, and R. Ramamujam, editors. Foundations of Software
Technology and Theoretical Computer Science: 19th
Conference, Chennai, India, December 13–15, 1999: Proceed-
ings, volume 1738 of Lecture Notes in Computer Science.
Springer-Ver-
lag, Berlin, Germany / Hei-
delberg, Germany / Lon-
don, UK / etc., 1999. CODEN LNCS9. ISBN 3-540-
66836-5 (softcover). ISSN
0302-9743 (print), 1611-
3349 (electronic). LCCN
com/link/service/series/
0558/tocs/t1738.htm;
http://www.springerlink.
com/content/978-3-540-
66836-7; http://www.
REFERENCES

A. L. Rosenberg and Larry J. Stockmeyer. Hashing schemes for extendible arrays. In *ACM-TOC’75* [ACM75c], pages 159–166.

Phillip Rogaway and John Steinberger. Constructing cryptographic hash functions from fixed-key block-

Reyhanitabar:2012:CHD

Rivest:2014:SSR

Ramamohanarao:1984:RLH

Ramamohanarao:1985:PMR

Riazi:2017:CSC

Ramamohanarao:1989:PMRa

Ramamohanarao:1989:PMRb

K. Ramamohanarao, J. Shepherd, and R. Sacks-Davis.
of the 1st Intern. Symposium on Database Systems for Advanced Applications, Seoul,
Korea, page ?? ??, ???, April 1989.

Ruckert:2015:MSS

Rueppel:1993:ACE

Ruland:1993:RDS

REFERENCES

Sager:1984:NMG

Sager:1985:PTG

Sager:1985:TCS

Salzberg:1988:FS

Samson:1981:HTC

Santoro:1976:FTS

Sarwate:1980:NUC

REFERENCES

ISSN 0001-0782 (print), 1557-7317 (electronic). Suggests an improvement to Pearson’s hashing algorithm [Pea90] that avoids secondary clustering. Exhibits a key set for which Pearson’s algorithm produces alarming clustering. See also comments in [Dit91, Lit91, Pea91], and early work in [Dit76].

Sheffler:1993:AHP

Sabharwal:1995:PHT

Sabharwal:1997:IDN

Shankar:2007:DAI

Saikia:2014:PHF

Stevens:2017:AFS

Scolari:2016:SCP

Alberto Scolari, Davide Bartolini, and Marco Domenici.

Scholl:1981:NFO

Scheuermann:1982:PSI

Schmitt:1982:CPF

Schmidt:1990:GPH

Schneider:1990:CQP

Schneier:1991:OWH

Bruce Schneier. One-way hash functions: Probabilistic algorithms can be used for general-purpose pattern matching. *Dr. Dobbs Journal*, 16(9):148–151, September 1, 1991. CODEN DDJOEB. ISSN 1044-789X.

Schnorr:1991:FHE

Schnorr:1993:FHIa

Schnorr:1993:FHIb

[Sacs-Dav85] Ron Sacks-Davis. Performance of a multi-key access method based on descriptors and superimposed coding techniques. *Information system*, 10(4):391–403, 1985. CODEN INSY-D6. ISSN 0306-4379 (print), 1873-6076 (electronic). Hashing algorithm used to create descriptors for file indexing; this extends the author’s earlier work [SD83b].
REFERENCES

Schneider:1989:PEFc

Schneider:1989:DTA

Schneider:1989:PEFa

Schneider:1989:PEFb

Schneider:1990:TPCb

[SD90a] D. Schneider and D. DeWitt. Tradeoffs in processing complex join queries via hashing in multiprocessor database machines. In McLeod et al. [MSDS90], page 469. ISBN 1-55860-149-X. LCCN ??

Schneider:1990:TPCa

Stern:1995:IPV

REFERENCES

ACM:1990:PFA

ACM:1991:PSA

Shih:1991:CDC

Sacks-Davis:1987:MAM

Sacks-Davis:1983:ILH

Sacks-Davis:1983:TLS

[SDR83b] R. Sacks-Davis and K. Ramamohanarao. A two level

Sajadieh:2012:RDL

Sajadieh:2015:ERD

Sacks-Davis:1983:ILH

REFERENCES

Shneiderman:1976:BSS

Shasha:1988:CSS

Shangguan:2016:SHF

Steinwandt:2000:WHS

Sharma:2009:DAC

Shaolan:2011:EDE

[SGY11] Zhang Shaolan, Xing Guobo,

Seiden:1992:FSO

Seiden:1994:FSO

Shapiro:1986:JPD

Sha:1986:JPD

Smith:1997:EHF

Sheil:1978:MST

Shekita:1991:HPF

Sher:2006:MDS

David B. Sher. Motivating data structures with caching Internet stock data. SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education), 38(3):344, September 2006. CODEN SIGSD3. ISSN 0097-
REFERENCES

REFERENCES

Shoup:2005:ACC

Starzetz:2009:HBC

Sockut:2009:ORD

Siegel:1989:UCF

Siegel:2004:UCE

Silverstein:2002:JIS

Silverstein:2002:PPH

Simon:1998:FCO

Sakti:1988:GPP

Shintani:1998:MAS

Schneier:1999:SAL

Sklavos:2005:ISH

Schweller:2007:RSE

Shultz:1987:TSM

Shin:1994:NJA

Sit:2002:SCP

Storer:2008:DDC

Storer:2012:DDC

REFERENCES

[SP90] Soloviev:1993:THA

[SP91] Somervuo:1999:RHA

[SPB88] Seberry:1990:ACA

[SPS12] Satuluri:2012:BLS

A. Z. Spector, R. F. Pausch, and G. Brueill. CAMELOT: a flexible, distributed transaction pro-

Spetka:1992:DAD

Safkhani:2014:CCA

Sprugnoli:1977:PHF

Severance:1990:DLH

C. Severance, S. Pramanik, and P. Wolberg. Distributed linear hashing and parallel projection in main memory databases. In McLeod et al. [MSDS90], page 674. ISBN 1-55860-149-X. LCCN ???

Schay:1963:MKA

REFERENCES

REFERENCES

Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free extensible hash tables.
REFERENCES

Smith:2015:BPF

Shpilrain:2016:CLF

Sara:2001:SCT

Shen:2018:MDH

Soomro:2005:DDH

Stipic:2013:PGT

REFERENCES

December 2013. CODEN ????. ISSN 1544-3566 (print), 1544-3973 (electronic).

Sagonas:1994:XED

Schkolnick:1983:ICV

Schkolnick:1983:NIC

934613-15-X. LCCN QA 76.9 D3 I61 1983.

Sebesta:1985:MPH

Sebesta:1986:FIA

Schweitz:1993:AHS

Stahl:1973:HGH

Stallings:1994:SSH

Stallings:1999:HAK

Stallings:2006:WSH

Stamp:2006:ISP

Stinson:1991:UHA

Stinson:1993:ACC

Stinson:1994:CTU

[Sti94a] D. R. Stinson. Combinatorial techniques for universal hash-

Jan Sturc. Multidimensional hashing used for conjunctive

Steindorfer:2015:CSM

Steindorfer:2015:OHA

Steindorfer:2018:MOA

Stanca:2001:HAC

Slot:1984:TVC

C. Slot and P. van Emde Boas. On tape versus core: An application of space efficient perfect hash functions to the invariance of space. In ACM-TOC’84 [ACM84b], pages 391–400.

Sincovec:1986:DSU

Stubbs:1987:DSA

REFERENCES

Shasha:1991:OEQ

Dennis Shasha and Tsong-Li Wang. Optimizing equi-join queries in distributed databases where relations are hash-partitioned. *ACM Transactions on Database Systems*, 16(2):279–??, June 1, 1991. CODEN ATDSD3. ISSN 0362-5915 (print), 1557-4644 (electronic).

Snodgrass:1994:SIC

Sun:2014:SSA

Sun:2018:MSM

Shen:2008:HBP

REFERENCES

Su:2016:PSN

Sung:2008:LSI

Seltzer:1991:NHP

Shibata:2008:LFD

Sasaki:2011:KKD

Seberry:1993:ACA

Szymanski:1982:HTR

[Sym82] Thomas G. Szymanski. Hash

Taylor:1989:SIA

Tharp:1991:TBD

Tang:2005:LTO

Tsichritzis:1983:MF

Tang:1993:URH

Tang:2004:AHR

Trinder:2017:SRI

Phil Trinder, Natalia Chechina, Nikolaos Papaspyrou, Konstantinos Sagonas, Simon Thompson, Stephen Adams, Stavros Aronis, Robert Baker, Eva Bihari, Olivier Boudeville, Francesco Cesarini, Maurizio Di Stefano, Sverker Eriksson, Viktória Fördöös, Amir Ghaffari, Aggelos Giansios, Rickard Green, Csaba Hoch, David

REFERENCES

[Tumbaishat:2002:PEL] Malik Ayed Tubaishat, Sanjay Kumar Madria, and
REFERENCES

Da Tong and Viktor Prasanna. High throughput sketch
REFERENCES

Taniar:2002:PSH

Trainiter:1963:ARA

Thom:1986:SAD

Trono:1992:UPC

Trono:1995:CTS

Trono:2006:OTL

Tremblay:1976:IDS

J. P. Tremblay and P. G. Sorenson. *An Introduction to
REFERENCES

LCCN QA76.9.D35 .T73.

Round2_Report_NISTIR_7764.pdf

Tsudik:1992:MAOa

Tsudik:1992:MAOb

Thomlinson:1998:NBP

Tsai:1986:CCC

Talia:2010:EDQ

Tian:1993:NHF
REFERENCES

[Tv83] Leen Torenvliet and P. van Emde Boas. The reconstruction and optimization of trie hashing functions. In Schkolnick and Thanos [ST83a], pages 142–156. CODEN VLDBDP.

REFERENCES

ISSN 0001-0782 (print), 1557-7317 (electronic). See also [FKS84].

REFERENCES

Thorup:2012:TBI

Urvoy:2008:TWS

Ung:1995:UPR

Ugawa:2010:IRB

Ullman:1970:DHF

Ullman:1972:NEH

Ullman:1982:PDS

Urdaneta:2011:SDS

[UPV11] Guido Urdaneta, Guillaume Pierre, and Maarten Van

Uchiyama:2009:RIB

USENIX:1990:UCC

USENIX:1991:PWU

USENIX:2000:PAL

USENIX:2000:PUT

Vakhshoori:1985:UHD

Valduriez:1987:JI

Valiant:2015:FCS

VanderPool:1973:OSAb

Vandery:1992:FHN

VanTrung:1994:CCC

Vaudenay:1992:FHI

Vaudenay:1993:FHI

Vaudenay:2006:ACE

REFERENCES

Vckovski:2000:MTS

Vingralek:1994:DFO

Vitter:1985:OAM

Vitter:1987:DAC

Vandierendonck:2005:XBH

VandenBraak:2016:CXH

REFERENCES

vanderHoeven:2012:IP1

vanderPool:1972:OSA

vanderPool:1973:OSAa

DeVilliers:1974:HSS

vanderVegt:2012:PCH

Veklerov:1985:ADH

Ventae:1984:FTR

Olli Ventae. *Fast Text Reconstruction Method for the Correction of Imperfect Text.* IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD
REFERENCES

[Vo:1991:FHF]

[Vid90]

[Ventae:1986:GDS]

[Vo:1991:FHF]

[Vid90]

[Vidick:1990:PIC]

[Vio05]

[Vit80a]

[Vitter:1980:ACHb]

[Vit80b]

[Vitter:1980:ACHb]

[Vit80c]

[Vitter:1980:TCH]

[Vitter:1980:ACHa]

[Vit81a]

[Vitter:1981:SMS]

REFERENCES

[452]

0190 (print), 1872-6119 (electronic).

Vitter:1981:DAH

Vitter:1982:DAH

Vitter:1982:ICH

Vitter:1983:ASP

Vitter:1985:EIO

Vitter:2001:EMA

Varghese:1987:HHT

vanLeeuwen:1994:GTC

Varghese:1997:HHT

Anonymous:1982:VLD

vonMises:1939:ABG

R. von Mises. Über Aufteilungs- und Besetzungswahrscheinlichkeiten. (German) [on partitioning and occupation probabilities]. Istanbul Üniversitesi Fen Fakültesi Mecmuasi, 4(??):145–163, 1939. See also [BC39].

vonMaurich:2012:ESB

Vaswani:2007:PPP

Kapil Vaswani, Aditya V. Nori, and Trishul M. Chilimbi. Preferential path profiling:

[vW94] P. C. van Oorschot and M. J. Wiener. Parallel collision search with application

REFERENCES

September 1, 1994. CO-
DEN PRLEDG. ISSN 0167-
8655 (print), 1872-7344 (elec-
tronic).

Robert A. Walker, II and
Charles J. Colbourn. Per-
fected Hash families: construc-
tions and existence. Journal
of Mathematical Cryptology,
???? ISSN 1862-2976 (print),
1862-2984 (electronic).

Li Weng, Rony Darazi, Bart
Preneel, Benoît Macq, and
Ann Dooms. Robust image
content authentication using
perceptual hashing and wa-
termarking. Lecture Notes in
CS, 7674:315–326, 2012. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/
10.1007/978-3-642-34778-
8_29.

J. L. Wolf, D. M. Dias, P. S.
Yu, and J. Turek. An effec-
tive algorithm for paralleliz-
ing hash joins in the presence
of data skew. In ICDE’91
[ICD91], page 200. ISBN 0-
8186-2138-9 (paper), 0-8186-
6138-0 (microfiche), 0-8186-
9138-7 (hardcover). LCCN

D. A. Webb. The Develop-
ment and Application of an
Evaluation Model for Hash
Coding Systems. Ph.d. thesis,
Syracuse University, Syra-
cuse, NY, USA, August 1972.

Bob P. Weems. A study of
page arrangements for exten-
dible hashing. Information
Processing Letters, 27
(5):245–248, April 1988. CO-
DEN IFPLAT. ISSN 0020-
0190 (print), 1872-6119 (elec-
tronic).

Hoeteck Wee. One-way per-
mutations, interactive hash-
ing and statistically hid-
ing commitments. Lecture
Notes in CS, 4392: 419–433,
2007. CODEN LNCSD9. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/content/pdf/
10.1007/978-3-540-70936-
7_23.

Hoeteck Wee. Threshold
and revocation cryptosys-
tems via extractable hash
proofs. Lecture Notes in CS,
6632:589–609, 2011. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/

M. Wenzel. Wörterbücher für ein beschränktes universum. (German) [Dictionaries for a limited universe]. Diplomarbeit, Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany, ????. 1992.

REFERENCES

Wagner:2000:PSU

Wegman:1988:CSS

Weide:1983:MCE

Wiederhold:1983:FOD

Wiener:1986:EVH
REFERENCES

Wiederhold:1987:FOD

Wiedermann:1987:SA

Wiederhold:1989:DD

Wiener:1999:ACC

Williams:1959:HII

Williams:1971:SUM

Willard:1978:NDS

Willett:1979:DRE

Peter Willett. Document retrieval experiments using indexing vocabularies of varying size — 2. hashing, truncation, digram and trigram encoding of index terms. Journal of Documentation, 35
Willard:1985:NDS
Dan E. Willard. New data structures for orthogonal range queries. *SIAM Journal on Computing*, 14 (1):232–253, February 1985. CODEN SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic). This paper, together with an earlier report [Wil78], present seven data structures for orthogonal range queries which are more efficient than earlier data structures used for this purpose, such as box array hashing.

Williamson:1985:CCS

Wildner:1996:CAS

Wild:1997:AAB

Wild:2000:ECG

Wiley:2003:DHT

Winkowski:1978:SMF
J. Winkowski, editor. *Mathematical Foundations of Com-
REFERENCES

Winternitz:1983:POW

Winternitz:1984:SOH

Winters:1990:MPHb

Winters:1990:MPHa

Wirth:1975:AD

Wirth:1983:AD

Wirth:1986:ADS

Westergaard:2007:CME

REFERENCES

Wipke:1978:HFR

Wang:2007:LBP

Wang:2009:NTV

Wang:2019:DDD

Wang:1993:IHA

Wang:2019:IAT
REFERENCES

REFERENCES

[WPS++12] Lei Wei, Thomas Peyrin, Przemysław Sokólowski, San Ling, Josef Pieprzyk, and
REFERENCES

Ying Wei, Yangqiu Song, Yi Zhen, Bo Liu, and Qiang Yang. Heterogeneous translated hashing: a scalable solution towards multi-modal similarity search. ACM Transactions on Knowledge Discovery from Data (TKDD), 10(4):36:1–36:??, July 2016. CODEN ????. ISSN 1556-4681 (print), 1556-472X (electronic).

Wu:2009:REL

Wang:2013:GNL

Wu:1985:DOM

Wu:2005:HC

Whang:1990:LTP

Wang:2009:PAH

Gaoli Wang and Shaohui Wang. Preimage attack

[WYD+18] Weiqing Wang, Hongzhi Yin, Xingzhong Du, Quoc Viet Hung Nguyen, and Xiaofang Zhou. TPM: a temporal personalized model for spatial item recommenda-
REFERENCES

Wolf:1993:PHJ

Wang:2014:CGR

Wang:2005:CSA

Wang:2005:FCFa

Wang:2005:FCFb

Wang:2005:ECS

Woodruff:1993:HVT

D. L. Woodruff and E. Zemel. Hashing vectors for tabu

Wang:2012:BPS

Wang:2010:UHT

Xia:2009:APL

Xue:2019:SEA

Yao:1980:NAE

Yao:1981:STS

Yao:1983:LBP

Yao:1985:OAK

Yao:1985:UHO

Yao:1991:WRA

Yao:1995:MOK

Yasuda:2007:SIS

REFERENCES

[474]

Yen:1995:PHC

Yu:2017:FSD

Yu:2018:MEU

Yang:2012:RHA

Yo:1993:OPA

Yang:1984:DPH

Yang:1985:BMC

W. P. Yang and M. W. Du. A backtracking method for constructing perfect hash functions from a set of mapping functions. BIT
Yuen:1986:DFO

Yuen:1986:DFS

Yang:1983:SPH

Yen:1991:MPH

Yu:2010:DRF

Yuan:2012:EMR

Yasuda:1989:PAM

Yum:2010:FVH

Yao:1983:SSG

Yi:1997:NHF

Yang:2004:ACH

Yen:1990:HTS

Yi:2009:SSG

Yi:2009:SSG

Yang:2019:NAK

Yokoyama:1989:NLP

Yamane:1989:DEH

Yadan:2009:HJO

Yu:1987:RDI

Yoon:2004:SUA

Yum:2009:SLF

[Dae Hyun Yum, Jae Woo Seo, Sungwook Eom, and Pil Joong Lee. Single-layer fractal hash chain traversal with almost optimal complexity. *Lecture Notes in
REFERENCES

Yang:1997:HFM

Yang:2011:NHB

Yu:2006:SST

Ytrehus:2006:LFN
REFERENCES

Yu:1992:IWR

Yu:2018:RHT

Yuan:1992:VLD

Yuba:1982:SOP

Yung:2002:ACC

Yuval:1975:FNN

Yang:2009:ILV

Young:2001:HRS

Yu:2016:NFC

Zamora:1980:ADC

Zhang:2006:CFS

Zhu:2012:JLS

Zeng:2019:PKE

Zollhofer:2015:SBR

REFERENCES

[ZH18]
REFERENCES

td/2018/05/08186236-abs.html.

[102x681]Zhang:2007:TTI

[102x681]Zhai:2019:DVP

[Zhu:2013:SHF]

[102x681]Zheng:1990:PDS

[Zobel:2001:MHT]

[Zuo:2019:LHH]

Pengfei Zuo, Yu Hua, and Jie Wu. Level hashing: a high-performance and flexible-resizing persistent hashing
Zuo:2019:WDH

Zhao:1994:DDBa

Zhang:2009:IBR

Zhao:1994:DDBb

Zhao:1994:DDBc

REFERENCES

Dongxiang Zhang, Yuchen Li, Xin Cao, Jie Shao, and Heng Tao Shen. Augmented keyword search on spatial entity databases. *VLDB Journal: Very Large Data Bases*, 27(2):225–244, April 2018. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

Yijia Zhang, Hongfei Lin, Zhihao Yang, Jian Wang, and Yanpeng Li. Hash subgraph pairwise kernel for protein-protein interaction extraction. *IEEE/ACM Transactions on Computational Biology and Bioinfor-

REFERENCES

ICCA Journal, 13(2):69–73, ???? 1970. ISSN 0920-234X.

Zou:1985:MMC

Zheng:1990:HOW

Zheng:1993:HOWa

Zheng:1993:HOWb

Zhao:2012:HCB

Zhou:2008:RTS

Zezula:1991:DPS

Zhou:2018:DSH

Zhang:2017:NLR