A Bibliography of Publications on Hashing Algorithms

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org,
bbeebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

08 January 2019
Version 2.279

Title word cross-reference

#2 [Cer85].

10 [GLM+10], 11 [SY11]. 2
[EAA+16, GG92, HD72]. 2n [QG89, QG90].
3 [CBA94, Fly92, GG92, GK94, LMJC07,
LDY+16, WSSO12]. 5/8 [Sch11]. $\$62m
[Nic17]. 64 [LK16]. * [LNS93]. +
[Omi88, Omi89a]. $\* [HRB13], 2
[Bie95]. $^\alpha$ [ABC+16]. b [LK11]. B^+ [TB91].
c [SWQ+14]. d [PRM16]. f [LG78]. H^2
[DRS12]. K [Yuv75, APV07, CL85, CC91,
CLC92, DKRT15, Die96, Gui78, HC14,
LLG+17, PT10a, PT16, RRS07, SS90b]. L
[OOB12]. t_p [HFF+17]. $SL_2(F_2^n)$ [SGGB00]. N
[BS91b, BS91a, CM01, Gir87, Ven86, WS93,
War14, Coh97, Coh98, LHC05, QG89, QG90].
$O(1)$ [FKS84]. $O(\log \log n)$ [MN90].
$O(\log W)$ [LS07b]. $O(N)$ [HG77, MN90]. p^n
[Ack74]. π [FFGL10]. q [OWZ14]. SL_2
[MT16]. Z/p [Mue04].

-approximate [SWQ+14]. -ary
[CC91, CLC92, Gui78, RRS07]. -Bit
[QG89, QG90, LK16, LK11]. -Body
[WS93, War14]. -codes [Bie95]. -dimension
[LHC05]. -dimensional [Yuv75].
-Functions [OOB12]. -gram
[Coh98, Ven86]. -Grams [Coh97]. -Hash
[BS91b, BS91a]. -Independence
[PT16, PT10a]. -mer [Coh97]. -Nearest
[CL85]. -partitions [DKRT15]. -Pipeline
[PRM16]. -probe [SS90b]. -Round
[GLM+10, SY11]. -tree [Omi89a, Lyo83].
-trees [CM01]. -verarbeitung [Nie75].
-wise [Die96].
0 [BCJ15, ITP14, NSS10, WYY05d]. '07 [ACM07]. '08 [ACM08b].

accommodation [HO72]. Accumulated [NY96]. accumulating [ZHW01].
Accumulators
[CHK08, PTT16, CHK12]. Accuracy
[YWH09, HKL07]. Accurate
[PCV94, SL16, NTW09, TYSK10]. Achieving
[Lar88b, Lyo85]. ACM
[ACM94d, ??69, ACM75c, ACM75b, ACM75a, ACM76, ACM77b, LF1P82, ACM82, ACM83b, ACM84b, ACM85b, ACM85a, ACM86b, ACM86a, ACM87, ACM88a, ACM88b, ACM89b, ACM89a, ACM89c, SDA90, ACM90, ACM91c, ACM91d, ACM91a, SDA91, ACM91e, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM04, ACM05, ACM07, ACM08a, ACM08b, ACM11, ACM12, Ano92, BIP92, BJ93, CLM89, FMA02, GMJ90, Van10, IE02, Jen76, Kar98, LL08, Mat09, Nav85, Rie89, ACM77a, Shm00, SW94b, Sto92, YR87, ACM81, ACM91b, BV89, Lio81].
ACM-SIAM [ACM94d, SDA90, SDA91, ACM97a, ACM05, ACM08a, Kar98].
ACM-SIGMOD [Nav85, Lie81, ACM81]. across [SF88]. Action [BFR87]. Active
[GHJ83, EVF06]. Actor [TCP17]. Ad
[DPH08, JLH08, Cha12]. Ad-Hoc
[JLH08]. Ada
[BCS99, ST86, Tro06, W084]. AdaBoost
[LLZ10]. Adaptable
[NHS84]. Adapted
[RJK79]. Adaptive
[An86, Ahn87, BK90, CS02, Gri98, HT88, IGA05, KR91, KL08, BLD02, OL91, OL92, ST93, TC04, ZG90a, Zer91, GZ99, HAK16, LYJ13, LMLC14, TB91]. Adaptive-Hash
[OL91, OL92]. add [FJ13]. add-rotate-xor
[FJ13]. Addendum
[CV85]. addition
[FJ13]. Additional
[LY72]. Additive
[MBBS12]. Address
[HP63, Jai89, Jai92a, Jai92b, Jaixx, LYD71, Lum73, PK87, SR63, Tam85, TK85, Wil96, LY72, MLP07, MPL09, RW07]. addressable
[Koh80, BB07]. Addressed
[SVCC01]. Addressing
[Bar74, Bra84a, Bra86, Buc63,
Fab74, Fel87, Gon77, Gon80, JC88a, Joh61, Kno71, Kno88, KR79, KRJ+80, Lit80, Litxx8a, LH03b, LH03a, Mot84, MSc86, Pet57, RJ79, SS62, SD76, Som99, Tra63, CKW93, Lin63, NK16, TT81, Wan05, van73.

Adelaide [Bar83]. Adjusting [Pag85, Wog89]. Administration [Fis87]. Adressing [Bra85]. Advanced [Ano93d, CE95, HDCM11, Hsi83]. Advances [Buc82, AFK90, Bel00, Bra90, Bri92, CRS83a, CP87, Cop95a, Cop95b, Dam90a, Dam91, Dav91, De 95, Fei91, Fra04, GQ95, Hel94, IRM93, JBJ94, LC06, MV91c, PSN95, QV89, QG95, Rue93, SP90, SZ93, Sho05, Sti93, Van06, Wie99, Yun02].

Advantage [WSSO12]. Adversaries [LN93]. Advisor [Cer85]. Aegean [Rei88, Rei88]. Aeronautical [KCF84]. Aeronautics [Fis87]. Aerospace [Fis87, IEE94b]. AES [ABO+17, BOY11, B¨OS11, GK08, Sas11, JNPP14]. AES-like [JNPP14]. affects [HL05]. Again [DRS12]. Against [DL17, ASBD16, JL14, JG95, MSP12, Sho06]. Age [Cro98]. Agent [BˇSH12, DF01]. Aggregation [BJL16, PT10b]. Agreement [GB10].

agrometeorological [WM93]. Ahead [Moh90, Moh93]. AID [Dos78b]. Airport [ICD88, ICD90]. Akron [Fis87]. al. [SPLHCB14]. Alaska [IEE01].

Albuquerque [ACM75c, ACM75a, IEE91a]. Algebra [Bra84b, KTMO83b, KTMO83c, EBB91, FPB99a]. Algebraic [ACM94b, Ejk80, Jen76, Lak96, Lev95, Mar71, Ng79, WX01, dvH12, BF08, GS89, LS06, Pon87, Coh94, AAGG16]. Algebras [CT96].

Algot [FR69]. Algot-Based [FR69].

Algorithm [ANS97, ANS05, AKS78, ABH+73, AEMR09, BH90, BS87, Bou12, Boy98, CS88a, jCPB+12, CDM89, CW09, CT12, Cohl98, CHM92a, CHM92b, CM93, Dev93, FL73, FFPV84, FCHD88, FCHD89, FCH92, Fro81, Get01, Han90, HCKW90, HR96, HW08, HG77, HC13, Jen97, JRPK07, KMM+06, KKRJ07, Leb87, LLL11, LLLW10, MXL+12, Man12, MHB90, MV01, MH00, NP91, OGG94a, OOB17, OL91, Omi91, OL92, Pap94, PCY95, Pes96, Pit87, PVM97, Reg82, SS01, Sol93, Spe92, Sta99, TRN86, TTY93, Toy93, TSP+11, WG00, WWZ09, WZJS10, WS93, WVT90, Wil97, Wil71, WLDY91, WYT93, WL12, ZG90a, ZMJ94b, ZPS90, ZPS93a, AS89, AT18, AGJA06, ATAKS07, CLS95, CLW98, DHPK97, FH79, FHC89, Gai82, GBY90, HLL18, HL94, IS097, ISHY88, JW+18, Kim99, LEHN02, MCM01, MKSiA98, OT89, PCY94, SB95]. algorithm [SM94, Sill02b, WM93, War14, Wie86, ZMJ94a, ZMJ94c, ZPS93b, ACZ16, Sta94, TK199]. Algorithmen [Meh77, Meh86, Wir75, Wir83, Zel91].

Algorithmics [Mat93]. Algorithms [ACM94d, ACM91c, ACM97a, ACM05, ACM08a, ANS97, AHU83, AI06, Ano95a, iA91, iA94, AT90, AT93, AT91, BS97, Bur76b, CV86, CRR18, CT96, DG85a, DG85b, Dev86, DS97, FM96, FW09, FM85, Ger86a, Ger86b, Gon84, GBY91, GI77, Gra88, Gra89, GC95, GKS, Gu76a, Gu76b, G80, GSB94, Har88, HS78, HL91, KR81, LLLC17, LS89, Lom93, LTS90, LH03b, Mac95, MF92, MLD94, MXL, Matt09, MS88a, MO92a, OG94b, OL89, PS93, Pip94, Pre97a, PB85, QG89, QG90, Reg85, Riv74b, RNR13, Sam76, SD98c, SD89a, Sed38b, Sed88, Sed90, Sed92, Sed93, SD76, SG88, SK98, Shm00, TR02, TY91, Vit81b, VC85, Wal88, WFC92, Wie87b, Wir86, XCC09, Yen91, ZG90b, AI08, BMS+17, BMQ98, Cra85, DG96, DRRZ06, DNR09, DC94, EVF06, FJ13].

algorithm [GK05, Gui76c, HK95, HKNW07, JMH02, Kan90, Kar98, KP92, Kha95, MPL09, Mol90a, Mol90b, MMSY94, NM02b, PBGV89, QM98, Rei88, RLM87, RG89, Riv74a, SD89d, Sch91a, Sed83a, SG72, Vit82a, Vit01, SDA90, SDA91, A+90, AIOW11, CT10, DSZ07, EF12, FS09, FBY92, HM08].
Algorithmus [BI87]. Alignment [BFMP11, LPT12]. Alignments [BDD\,+10].
All-or-Nothing [SRY99]. Alley [Boy98, Get01, Jen97, Pes96, Wil97].
Allocating [CC91, TC93]. Allocation [CC87, CLC92, Du86, YCRY93, vdP72, vdP73, DW95, DW07, LCRY93, OOK\,+10, van73]. Allocations [ABKU99, PG95].
Allowable [Blo70]. Almost [BKST18, BM99, CKB83b, DW03, YCRY93, vdP72, vdP73, Du86, YCRY93, OOK\,+10, van73]. Almost-Minimum [BM99]. Almost-Universal [BKST18].
Alpha [WM19]. Alternative [EMM07, IH95, Get01, Jen97, Pes96, Wil97]. Alternatives [CC87, CLC92, Du86, YCRY93, vdP72, vdP73, Du86, YCRY93, OOK\,+10, van73]. Allocate [CE95, LC95]. American [CHK06]. Among [CC91, GP08, KW94]. Amortizable [KM07]. Amortized [ANS09]. Amplification [BBR88]. Amsterdam [AW89, CP97]. Analogue [Cai84].
Analyses [CS87]. Analysis [AP93, Ano95c, AD11, AM07, BLY98, BR92, BRSS90, BM89, BM90a, BF08, CF92, CL85, CC87, Cha88, CLNY96, CN98, CV83, CV94, Che84a, Che84b, CV85, CK94, CS93b, DR11, FC87a, FPV98, FM09, FMM11, GK12a, GL73, GY90, GK81, GK82, GLG\,+02, GS76, Gui76a, Gui76b, GS78, Gui78, Gur73, HLR97, Hac93, Has92, Hut10, Lar90a, Lar90c, Lar92b, Lar93, Lar94, Lar95c, LCK11, Lev00, Lew2, LWW90, LPP91, LPP92, LM93c, Lum73, MK11, MCW78, MMNT90, MY90, Men82, MP12, Mol90a, Mol90b, NM02a, NCFK11, NAK\,+15, Omi91, Pit87, PV94, Pre93, PB85, RM88, Ram88b, Ram91, Reg85, Reg98, Riv74b, SS62, Sch79b, SB93, SA97, Vek85, VP96, VP98, Vit80b, Vit80c, Vit83, VC78, WB90, Yao90, de 69, BGKZ12, BZ12, CK89, DM03].
Application [BKMP09, Cer81, CKB83b, Cha88, CP97, Dam90a, Dam91, Dai91, FFGOG07, GK76, HP63, He94, IRM93, Jou04, KTM83a, KCB81, LC06, Lit77b, LLW10, Ngu06, Pip79, QV89, QG95, Rog95, Rog99, Rue93, Sas11, Sch01b, SZ93, StEB94, Web72, WC94, Yao91, vW94, AT90, CKB83a, CO82a, De 95, GQ95, Kan90, QJ97, SRL98, Zob70a, Zob70b].
Applications [AT93, BKST18, BG07, BfL81, CZLC12a, CZLC12b, CK15, DR06, Deb03, DK02, DK15, Dad92, DR90, FE55, FM85, HK12b, IE80a, IE95, KMM\,+06, Kna90, Lev89, LDY\,+16, LK93, MK11, Pon87, RP91, Rey14,
RNT90, Ter87, TZ12, TS76, TS84, Val15, Vau06, Wee12, WC79, WVT90, YZ00, AG10, ARA94, BZL+15, DFM15, HKNW07, KKP92, LLC89, LK11, LG78, MJ08, MV91a, NY89b, NY89a, NN90, NW07, PW08, PNS95, RRS07, Shi17, SS16, Sie89, Ano92.

Applied [CS93b, GNP05].

Applying [Cer87, Cer88, CHY93, CLYY95, CHY97].

Approach [BH93, CCH09, CK12, DL79, DC94, JV16, LT09, LQH18, MY80, RH95, Sch79a, SR89, SK98, MJ08, MV91a, NY89b, NY89a, NN90, NW07, PW08, PSN95, RRS07, Shi17, SS16, Sie89, Ano92].

APPROX [DJRZ06, DJNR09].

Approximate [AEP18, AI06, CCH09, CLP17, DP08, DHL+94, DHL+02, Hac93, HC14, MW09, AI08, DC94, HFZ+15, LQH18, MBK00, RG89].

Approximately [DT14, Ind01].

Approximating [ASW87, Pob86].

Approximation [DJRZ06, AGJA06, DJRZ06, DJNR09].

ARIRANG [HKKK10].

Asymmetry [IH83].

ASCII [HF91].

Asian [Ano95c].

ASIACRYPT [IRM93, LC06, PSN95].

ASIA [MKA17].

Aspect [AH03, SS89a].

Assembly [ASW07].

Assessment [THY+18, DMP09].

Assignment [LL92, WiL71].

Assisted [Wil96].

Assorter [GN80, Koe72].

Assumption [CH88, Cha93, Dam93, Dam94, Sim98].

Astrological [Gui89].

Atman [Yao85a, Yao95, WEE88].

Array [Cob94, He87, YLB90, SV15b].

Arrays [BGS96, CP91a, Gra94a, LPWW06, RS77, Ros77, CP91b, RS75, Tay89].

Art [Knu73, Knu75, Pre97b, PGV93c].

Artificial [Kak93, ARA94, LLC89, BCR04].

ary [CC91, CLC92, Gui76c, Gui78, RRS07].

ASCII [HF91].

ASIA [Ano95c].

ASIACRYPT [IRM93, LC06, PSN95].

ASS [MKA17].

Aspect [AH03, SS89a].

Assembly [ASW07].

Assessment [THY+18, DMP09].

Assignment [LL92, WiL71].

Assisted [Wil96].

Associational [GN80, Koe72].

Assumptions [Chr84, Dam93, Dan94, Sim98].

Astronomical [Gui89].

Asymmetric [CLP17, BR94].

Asymptotic [IK92, Pro94, WL07].

Asynchronous [KFG15, PAKR93].

Atlanta [ACM83a, ACM83b, USE00a].

Atlantic [Fre90, GJ90, IEE84].

ATM [SMS91].

Atom [LC12].

Atomic [LMR02].

Attacks [ABD+16, BPPB+12, Bii08, BKMP09, CY06, DK07, DDS14, DL17, HSKK10, HRS16, JL14, KNR10, KLP98, KVK12, LK94, KKMS10, LLJ15, MRST10, MNS12,]
Saa12, SY11, SAS11, WYY05d, ZWW+12, BSU12, ITP14, KL95, KH910, LS07a, MSP12, WYY05a, WS13. **Attribute** [CS83b, CS87, GK94, GK95, HYH93, KG95, RSSD90, RL74, ZWM17, ASW87, HR93]. **Attribute-Based** [ZWM17]. **attributes** [HM03]. **Audit** [SKM01]. **Audio** [MV01, YTJ06]. **Auditng** [vM39]. **Aufteilung** [vM39]. **Aug** [BD88]. **Augmented** [ZLC+18]. **August** [ACM79, LP82, AW99, A+90, Bel00, Bri92, BW92, CRSSA, CG086, C95a, C95b, DSS84, DSZ07, DJRZ06, DJNR09, Fra04, Gil77, GSW98, HB93, IEE95, Jen76, JY14, MK89, MDA90, P88, P90, Sh05, Sti93, W90, Wie99, IWS91, Yua92, Yun02]. **AUSCRYPT** [SP90, SZ93]. **Austin** [ACM87, ACM88a, ARA94, Nav85, USE00b]. **Australia** [Bar83, SP90, SZ93, DG96, MDS90, PSN95]. **Australian** [Bar83]. **Austria** [Kui92, ICD93]. **Auswahl** [Pet83, D87a]. **Authenticate** [Yas07]. **Authenticated** [KV09, PTT16, Sar10, BSN96b, GL06]. **Authentication** [Abi12, AS96, BCK66a, BCK66b, BKST18, BAN89, CJP12, EPR99, FIP02a, GI92, GBL94, HMBN07, HCPLS12, JRK97, JK11, KTKR07, MRW98, NR12, PGV93f, QJ97, RWSN07, Rog95, Rog99, Sho96, TW07, T92a, WC81, WDP+12, W90, YY07, ACP10, CJP15, Kra94, Kra95, KCL03, Ku04, KCC05, LLH02, LKY04, LW04, MS09, OCG11, SPLHCB14, Sta99, St91, St94b, SV06, Tr92b, YRY04]. **Authenticity** [Sch01b, AD12]. **Auto** [Lit77a]. **Auto-structuration** [Lit77a]. **Automata** [ACM82, IEE74, LP04, LK93, MMC01, AGK+10, ADG+08, AMSM+09, ACJT07, dBL80, CIM+05, Kui92, NS82, Pat90]. **Automated** [DGM89, ZZ83, Cer85]. **Automatic** [GT80, Zam80, SB07]. **Automation** [IEE11a]. **Automaton** [DGV93, LLL11, MZ98, TLL07, TLL09]. **automaton-matching** [TLL09]. **Automorphism** [PWW+13]. **AutoPlacer** [PRRR15]. **Auxiliary** [DL12, FXW17]. **Availability** [Eng94, ADF12, DFM15]. **Average** [Bra84a, Bra85, Bra86, Go77, Kut10, Reg81, TW91, MT16, TH97]. **average-case** [Mic02]. **avoid** [Pat94]. **Aware** [PG17, BB07, HFF+15, HFF+17, NDMR08]. **awareness** [Li10]. **AWOC** [Re88]. **B** [BD84, FK89, Omi88, Omi9a]. **B-Trees** [BD84, FK89]. **Back** [DSSW90a, DSSW90b]. **Backoff** [SHRD09]. **Backtracking** [WKBA07, YD85]. **Backward** [CPP08, LLL11]. **Backyard** [ANS10]. **Balance** [IK92]. **Balanced** [AG10, ABKU99, DW05, DW07, Lep98, LB07, Oto86, Oto88, PB80, WZ12, FP82, TLL18]. **Balancing** [HC13, KJC11, Omi91, RRS12, RK91, Top92, TP95, ZJM94a, ZJM94b, ZJM94c, DSD95, SX08, WL07, WTN90, XCC09]. **Balatonfured** [Rue93]. **Balls** [CRSW11, CRSW13]. **Bally** [IEE84]. **Baltimore** [ACM90, FNY92, IEE02]. **Band** [Meh86, Sol93]. **Band-join** [Sol93]. **Bands** [KCF84]. **bandwidth** [AS09]. **BANG** [THS97]. **Banked** [vdBGL16]. **Banska** [Rov90]. **Barbara** [Bel00, Bri92, CRSSA, C95a, C95b, Fra04, Sho05, Sti93, Wie99, Yun02]. **Barcelona** [DJRZ06, CTC90, LSC91]. **Barreto** [FT12]. **barrier** [MPST16]. **Base** [BCH87, CRdPHF12, Chr84, E86, FM85, Gho77, Gho86, ISK+93, McC79, YBQZ17, Zam80, Mar75, Mar77, WLLG08]. **Based** [AK98, Abi12, AP08, Aum09, AS16, Bal96, BG92, Ben98, BDM+12, BHH+15, BR02, BCS09, BRSS10, BI12, Buc82, Bur83b, Bur83c].
Based [NCFK11, NNA12, NXB13, OL89, Osr10, PFM+09, Ptt16, PCy95, PhG12, Prz99, Pre97a, RgNpm12, Rtk12, Rey14, Rwsn07, Rnr13, Rl74, Rk91, Sd85, Sdkr87, Sch01b, Sch79b, Scl16, Sc90b, Sc90a, Sc90c, Sk98, Sh06, Sc07, Sss05, Svcc01, Sun15, Twzw11, Tggf10, Tz12, Ty91, Tp15, Tk07, Us09, Wwz09, Wss012, Bxh06, Ynww+07, Ysw+11, Wl12, Yy07, Yj06, Yd86a, Zj09, Zwh17, Zz17, Qzsh12, Zlc+12, Vmg12, Adi88, Ay14, Asm17, Acp10, Aagg16, Bsn96b, Blc12, BCR04, Bc06, Bds09, Bur83a, Cha12, Clm+13, Chkh08, Cj1p12, Cj1p15, Clw98, CJ86, Dg85a, Dhw08, Gb17, Gl06, Glc08, Gz99, Hll18, Hak+16, HcjC06, Hc11, Hlwm93, Hxwm94, Hw88, Hl03, Jfdf09, Jl14, Jbww11, Jg95, K94, Krj09a, Kst99, Kor8, Kral4, Kc13, Ku04, Kc05, Ksc11, Kc12, Mz93b].

Based [LdM92, Lwg11, Lnd08, Lacj18, Ll15, Lmpw15, Mso9, Me95, Mz98, Ms13, Mht+13, Mu92, Mfes04, Mj14, Ns16a, Ot89, Pck95, Ppb16, Pbgv89, Pg91, Pvg93c, Pvg94, Qzd+18, Rp95, Splhcb14, Sv94b, Sv95, Sgo9, Sx08, Srrl98, Sim98, Sa17, Td93, Uiy10, Uht95, Vd05, Wl14, Wy02, Xlzc14, Ysl05, Yl97, Yz16, Yd86b, Zdi+15, Fh96, Tlll18].

Bases [Aab93, Vld82, Aw89, Aac+01, Bd88, Bds88, Bjz94, Cgo86, Dss84, Gs87a, Hl77b, Ker75, Lt80, Lsc91, Msds90, Pv85, St83a, St83b, Yua92, Yao78, Lt80].

Bayesian [css15, Ogab14, Rh95, Sp12].

BC [Acm05, Ll08].

BDs [Mjt+02].

Be [Yao81, Cp91c, Gm90, Sch91a, Sim98].

Beach [Pdh91, Rnt90].

Bearbeitung [Koe72, Beaverton [odb89], Behavior [Lev00, Sav90, Tty93], Beijing [Aio93c, Yan10].

Beitrag [Bil87].

Belgium [Bw92, Qv89, Vd90, Pg93c].

Bell [Yao81, Cp91c, Gm90, Sch91a, Sim98].

Berkeley [Ac86b, Djnr09, Iee06, Iee13].

Beschränkt [Wen92].

Bewertung [Hi82].

Beyond [Bc12, Ljw+17].

BF-Based [Wl12].

Bias [Nn90].

Biased [Tsy98].

Bibliography [Pon87, Sab94].

Bicliques [Ll10].

Bidirectional [Cle84].

Big [Lry+15, Pcc17, Ll13, Sa17].

BigDecimal [Sun02].

Bijective [Oka88, Ss15].

Billion [Sts+13, Zbb+06].

Billion-Vertex [Zbb+06].

Binary [Clp17, Dggl16, Du86, Frs82, Grz93, Hsp08, Lq18, Tyzo15, De 69, Fp82, Lmsf89, Lmpw15].

Binary-Relational [Frs82].

Bins [Crsw11, Crsw13, Dw05, Dw07].

Biological [Bw89].

Biometric [Ffog07, Ms12, Yy07].

Biomolecule [Fdl86].

Bipartite [Kut06].

Birthday
Bit [Blu95, Kil01, QG89, QG90, SP91, ASM17, BK07a, ISO97, CK16, LK16, MJ08, MIO89, TK199].

BLAKE [AMPH14, VNP10]. Blind [FL04]. Block [BRS02, Chu90, CV08, KP96, KLP98, LM93a, LK94, Men12, Pre97a, QG89, QG90, SDMS12, SDMS15, Zhe90, GLC08, HLMW93, HXMW94, ISO97, KL95, Lai92, LM93b, Men17, PGV93e, PGV94, RP95, Roe95, YL97].

Block-Cipher-Based [BRS02, GLC08]. Blockchain [Dre17a]. Blockcipher [AP08, BCS09, BRSS10, HKY12, CHU90, CV08, KP96, KLP98, LM93a, LK94, Men12, Pre97a, QG89, QG90, SDMS12, SDMS15, Zhe90, GLC08, HLMW93, HXMW94, ISO97, KL95, Lai92, LM93b, Men17, PGV93e, PGV94, RP95, Roe95, YL97].

Blockcipher-Based [AP08, BCS09, LLJ15]. Blockciphers [RS08, PGV91].

blocking [PBBO12]. Bloom [DKT06, HKL07, HKL07, HXLM13, LYW+18, MK11, PSS09, Ram89b, RKK14, RK15].

Blockcipher-Related [AP08, BCS09, LLJ15].

Blockcipher-Based [AP08, BCS09, LLJ15].

Blockciphers [RS08, PGV91].

blocking [PBBO12]. Bloom [DKT06, HKL07, HKLS12, HXLM13, LYW+18, MK11, PSS09, Ram89b, RKK14, RK15].

Blockcipher-Related [AP08, BCS09, LLJ15].

Blockcipher-Based [AP08, BCS09, LLJ15].

Blockciphers [RS08, PGV91].

blocking [PBBO12]. Bloom [DKT06, HKL07, HKLS12, HXLM13, LYW+18, MK11, PSS09, Ram89b, RKK14, RK15].

Blockcipher-Related [AP08, BCS09, LLJ15].

Blockcipher-Based [AP08, BCS09, LLJ15].

Blockciphers [RS08, PGV91].

blocking [PBBO12]. Bloom [DKT06, HKL07, HKLS12, HXLM13, LYW+18, MK11, PSS09, Ram89b, RKK14, RK15].

Blockcipher-Related [AP08, BCS09, LLJ15].

Blockcipher-Based [AP08, BCS09, LLJ15].

Blockciphers [RS08, PGV91].

blocking [PBBO12]. Bloom [DKT06, HKL07, HKLS12, HXLM13, LYW+18, MK11, PSS09, Ram89b, RKK14, RK15].

Blockcipher-Related [AP08, BCS09, LLJ15].

Blockcipher-Based [AP08, BCS09, LLJ15].

Blockciphers [RS08, PGV91].

blocking [PBBO12]. Bloom [DKT06, HKL07, HKLS12, HXLM13, LYW+18, MK11, PSS09, Ram89b, RKK14, RK15].

Blockcipher-Related [AP08, BCS09, LLJ15].

Blockcipher-Based [AP08, BCS09, LLJ15].

Blockciphers [RS08, PGV91].

blocking [PBBO12]. Bloom [DKT06, HKL07, HKLS12, HXLM13, LYW+18, MK11, PSS09, Ram89b, RKK14, RK15].

Blockcipher-Related [AP08, BCS09, LLJ15].

Blockcipher-Based [AP08, BCS09, LLJ15].
Bel00, Bri92, CRS83a, Cop95b, Fra04, ICD86, ICD87, ICD88, ICD90, IEE11b, Kar98, Shm00, Sho05, Sti93, Sto92, USE90, Wie99, Yun02, Col93, IEE88a, IEE06.
Sar11, SKP15, SBK+17, Van92, WS13].
Collision-Free
[BM97, HM96, Rus92, Rus93, Rus95,
SHPD09, BG93, HCJ06, PBGV89, Vau92,
Vau93, ZBB+06, BGG93, Van92].
Collision-Mitigation [SHF+17].
Collision-Resistant
[BK12, CHKO08, IKO05, CHKO12].
Collisionful
[BPSN97, Gon95, Li95, BSNP96b, BSNP96c].
Collisions
[Ano95a, BI87, BT94a, BT94b,
CY06, DBGV93, GIS05, GL73, HR04, IP08,
IP11, Pat95, VNP10, WFLY04, WYY05b,
WYY05c, DVO7, Gon95, Li95, Pat94,
RVPV02, Sim98].
Colloquium
[AGK+10, dBvL80, Kui92, NS82, Pat90,
ADG+08, AMSM+09, ACJT07, CIM+05].
Colony
[ACM83a, ACM83b].
Colorado
[ACM77b, ACM79, ACM85a].
Colored
[Ros12].
coloring
[HK83].
Columbia
[ACM08b].
column
[DLM07].
ComBack
[WKBA07].
Combination
[Qui83, TYZ015, US09].
Combination
[MJT+02].

Combination
[BK07b, DD11, DT75, KP94, Sti94a, van94,
DJRZ06, DJNR09, HKLS12, MN99, Sed83a].
Combinatorics
[Wil85b].
Combined
[KHK15, ZC77].
Combiner
[H508].
Combiners
[FL08, FLP08, FLP14, Mit12].
Combining
[GSC01, TW07, NM02b].
Come
[PM89].
Command
[CBNA94, Gai82].
Comment
[Ban77, FL73, Lam70, Pro94].
Comments
[AA79b, AA79a, BMB68,
CTZD11, Piw85, TY91, Gib90].
Commitment
[HM96, HR07].
Commitments
[ACP09, LP15, Wee07].
Committee
[IEE84].
Common
[DM90, GPG016, ESR14].
Commonwealth
[Rie89].
Communication
[KM88b, A9o9c, HO72, KK96].
Communications
[IJW99, GZK14, Sch01a,
ACM94a, IEE92a, IEE01].
Communities
[ACM04].
Communtative
[CLS12].
Compact
[Cle84, CD84b, DCW91, KRJ09b, Ku84,
Oto88b, QP16, vdVL12, JCC00].
compactage
[LG78].
Compacte
[Kar82].
Compaction
[HC87, Rag93, WKBA07, SD95].
Comparitively
[VNC07].
Comparison
[Cha58, DTS75, GLG+02, Hill78a, Hill78b].
Comparator
[Bur84, Bur82].
compare
[BVF12].
compare-by-hash
[BVF12].

Comparitive
[Cha58, DTS75, GLG+02, Hill78a, Hill78b].
Comparative
[Cha58, DTS75, GLG+02, Hill78a, Hill78b].
Comparators
[Bur84, Bur82].
compare
[BVF12].
compare-by-hash
[BVF12].

Comparative
[Cha58, DTS75, GLG+02, Hill78a, Hill78b].
Comparative
[Cha58, DTS75, GLG+02, Hill78a, Hill78b].
Comparators
[Bur84, Bur82].
compare
[BVF12].
compare-by-hash
[BVF12].

Comparative
[Cha58, DTS75, GLG+02, Hill78a, Hill78b].
Comparative
[Cha58, DTS75, GLG+02, Hill78a, Hill78b].
Comparators
[Bur84, Bur82].
compare
[BVF12].
compare-by-hash
[BVF12].

Comparative
[Cha58, DTS75, GLG+02, Hill78a, Hill78b].
Comparative
[Cha58, DTS75, GLG+02, Hill78a, Hill78b].
Comparators
[Bur84, Bur82].
compare
[BVF12].
compare-by-hash
[BVF12].

Comparative
[Cha58, DTS75, GLG+02, Hill78a, Hill78b].
Comparative
[Cha58, DTS75, GLG+02, Hill78a, Hill78b].
Comparators
[Bur84, Bur82].
compare
[BVF12].
compare-by-hash
[BVF12].

Comparative
[Cha58, DTS75, GLG+02, Hill78a, Hill78b].
Comparative
[Cha58, DTS75, GLG+02, Hill78a, Hill78b].
Comparators
[Bur84, Bur82].
compare
[BVF12].
compare-by-hash
[BVF12].
GLM+10, SMS91, SM08, SM12, AGJA06, BD82, CKW93, FS08, GSS01, Li10, Sab94. compression-oriented [CKW93].

COMPSAC [IEE80a, IEE95, Kna89].

Comput [Sar80]. Computability [ACM82], [IEE80a, IEE95, Kna89].

Computers [FHMU85, MK93, PSR90, Ra83, SB93, RFB97, Deb03].

Computing [ACM75c, ACM75a, ACM76, ACM77b, ACM84b, ACM85a, ACM86b, ACM88b, ACM89c, ACM90, ACM91e, ACM96, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM04, ACM07, ACM08b, ACM11, ACM12, Bai81, DT87, IEE94c, KKKR07, KLT92, LCK11, Ram87, Rei88, Tro95, AFK90, GHK+12, GB17, GC90, LVD+11, MN99, Bai81, GT80, Rie89, ACM77a, WGM88]. Concatenated [CD84a, DC81, HS08].

Concatenation [BJKS93, BJKS94].

Conference [Vau06, Vid90, IWSS91, Yan10, Yao78, Yua92, Yun02, ARA94, Ano83, Ano93a, Ano93c, CE95, Cop95a, DG96, Deb03, HF13, IEE92a, IEE94a, IEE94b, IE01, Kii05, PSN95, SW94a, TW97, USE90, USE90a, USE00b].

Concepts [Kie85, Lnu73, Ter87].

Conceptual [FZ87].

Concise [PT12b].

Concomitant [MWC12].

Concurrency [AR16, CLP13, Cha88, CHS+18, Ell83, HYH89, HYH93, HY86, HTY90, Kna89, MSD16, MSSWP90, Omi88, Omi89a, PBB012, SDW14, SG88, CL91, MM01, TMW10].

Condensation [CT96].

Conditionally [ACP90].

Conference [Vau06, Vid90, IWSS91, Yan10, Yao78, Yua92, Yun02, ARA94, Ano83, Ano93a, Ano93c, CE95, Cop95a, DG96, Deb03, HF13, IEE92a, IEE94a, IEE94b, IE01, Kii05, PSN95, SW94a, TW97, USE90, USE90a, USE00b].

Conference [Vau06, Vid90, IWSS91, Yan10, Yao78, Yua92, Yun02, ARA94, Ano83, Ano93a, Ano93c, CE95, Cop95a, DG96, Deb03, HF13, IEE92a, IEE94a, IEE94b, IE01, Kii05, PSN95, SW94a, TW97, USE90, Wic99, ?769, ACM75c, ACM76, ACM77b, LFP82, ACM91d, AFI63, YR87].

Confidence [GD02].

Configurable [vdBGLGL+16].

Containers [Ben98, LACJ18]. Content [GH07, Koh80, MHT+13, WDP+12, YTJ06, MJ14, TLL09, XCCK09, ZO13, BB07]. Content-addressable [Koh80, BB07]. Content-Based [YTJ06, MHT+13, MJ14]. Contention [CadHS00, DG93, DG94]. Continuous [Coh98, PAPV08, GGR04, NW07].

continuous-discrete [NW07]. Control [BDPSN97, CBA94, CLS3, HLC10, JXY07, Kuma99a, Moh90, Moh93, SDK91, Ano93a, Ano93c, FK89, GJR79, HO72, Kum99b, MTB00]. Controlled [LRLW89, LRLH91, Mul81, WY02, CBA94].

Controlling [LK07]. convened [Ano83]. Convention [ACM91b, Rie89]. Conversion [Omi88, Omi89a, Sab94]. Converting [MV91a]. convolution [OS14].

convolutional [WWG+18]. Cool [EMM07]. cooperation [JFD09]. Cooperative [XH06]. Copenhagen [BIP92, FS09]. Copies [RSSD99b, RSSD90, RSSD92, CWC10].

coprocessor [TLL07]. copy [KHT+13]. Core [Kii01, SVE84, AKN12, BATO13, CZL12, KKL+99, Nae95]. cores [BMS+17]. Corfu [Rei88].

Corporation [Fis87]. Corps [RBM11]. correct [CE95, CE95]. Correcting [BGS96, Har97, FM89, GHK+12, Mii89, MF82].

Correction [Bur84, KR79, RJK79, Ven84, Zam80]. correctness [MMC01]. Correlation [TGGF10]. Correlations [Val15].

Correspondence [PH73]. Corrigendum [AA79b]. Corruption [DD11, DJSN09]. Corruption-Localizing [DJSN09].

cosmological [War14]. Cost [BM97, BBS90, CJP12, FCHD88, FCHD89, GI12, HMNB07, Kut10, LW+18, Lyo83, PF88, CZ14, CJP15, VB94].

cost/performance [VB94]. Costs [HR96]. could [PES+12]. Counter [LMP+08, NS16b, Bach02].

Countermeasure [LAKW07, MMT09].

Counting [Fla83b, FM85, Mcas89a, WVT90, DLM07, EVF06, Mcas89b, RKK14]. coupled [HLH13]. course [PGV93c].

Criss [GRZ93]. Criss-Cross [GRZ93]. Criteria [Adi88, AI89].

Criterion [Sun15].

Cross
Cross-Modal [MLHK17]. cross-platform [QZD18].

Cryptanalysis
[Aum09, BS91a, Bih08, BCJ15, BHT98, BP09, DGV93, Dae95, GO07, GIMS11, HP02, JNPP14, Knu92, LP16, LKY04, MR07, NXB13, GLM+10, SPLHCB14, SV94b, Wag00, WSSO12, WYW14, AP11, BS91b, BS91c, BHT97, CV05, RP95, SV95].

CRYPTO [Bel00, Bra90, Bri92, CRS83a, Cop95a, Dam90a, Dam91, DDF07, Dav91, DY90, DY91, GO07, Hel94, MKAA17, Pre93, PGV93d, Pre94b, PBD97, Pre99, Pre94c, QV89, QG95, RRS06, Rja12, RS08, Rue93, SS01, Sch91b, Sch93a, SZ93, SGGY11, Sta06, TSP+11, Van06, ABO+17, BNN+10, BD02, BOY11, CP13, De 95, ESR14, GPV08, GS94, GQ95, IN89, Mic02, NY89b, NY89a, RAL07, Sch93b, YZ16].

Cryptographically [PGV92, Aum03].

Cryptography
[BDPSNG97, BCR04, BD92, Bur06, CPB+12, CLG09, CP87, DA12, DC98b, Dam90a, Dam91, DFG+07, Dav91, DY90, DY91, GO07, Hel94, MKAA17, PTT16, Pre93, VG93d, Pre94b, PBD97, Pre99, Pre94c, QV89, QG95, RRS06, Rja12, RS08, Rue93, SS01, Sch91b, Sch93a, SZ93, SGGY11, Sta06, TSP+11, Van06, ABO+17, BNN+10, BD02, BOY11, CP13, De 95, ESR14, GPV08, GS94, GQ95, IN89, Mic02, NY89b, NY89a, RAL07, Sch93b, YZ16].

Cryptography
[ANS97, ANS05, ACZ16, BD08, DK15, IKOS08, Yt06, BGG94, BBD09b, Fei93, GNP05, JY14, Kil05, PV93c, Wol93, Boy95, DG96].

Cryptology
[BR92, CRS83a, CP87, Dam90a, Dav91, Fei91, Fra04, Hel94, IRM93, LC06, MV91c, QV89, Rue93, SP90, SZ93, Sta93, Van06, Bel00, Bra90, Cop95a, Cop95b, Dam91, De 95, GQ95, Joy05, PSN95, QG95, Sho05, Wie99, Yun02].

Cryptosystem
[Jun87, KKT91].

Cyphers
[Far93].

Czechoslovakia
[Rov90].

CT
[Joy03].

Cubic
[ANN09, ANS10, ADW12, ADW14, BHKN13, DM03, DS09b, DMR11, FPS13, FMM09, FMM11, KMW08, KMW10, Kut10, Mit09, NS08, PR01, PR04, Pag06, PRM16, PS12, SHF+17, TK07, DS09a, KM07, Kut06, DK12].

Cumulative
[LPW06].

Curve
[ANS05, MSTA17, OOB12, TK17].

Curves
[BGH12, FT12, WX01, BGH+13, FV09, FFS+13, Far14, GZ99, LS06].

Cyclic
[DH84].

Cryptography
[ANS97, ANS05, ACZ16, BD08, DK02, DK15, IKOS08, Ytr06, BGG94, BBD09b, Far93, GNP05, JY14, Kil05, PV93c, Wol93, Boy95, DG96].

Cryptology
[BR92, CRS83a, CP87, Dam90a, Dav91, Fei91, Fra04, Hel94, IRM93, LC06, MV91c, QV89, Rue93, SP90, SZ93, Sta93, Van06, Bel00, Bra90, Cop95a, Cop95b, Dam91, De 95, GQ95, Joy05, PSN95, QG95, Sho05, Wie99, Yun02].

Cryptosystem
[Jun87, KKT91].

Cyphers
[Far93].

Czechoslovakia
[Rov90].

D
[CB94, EAA+16, Fly92, GG92, GK94].

D-Based
[WSS012].

d'Adressage
[Lit77a].

Darmstadt
[TWW77].

Darstellung
[Koc72].

Dartmouth
[Ano93d].

Data
[ACM81, ACM82, ABB93, AHU83, ABM06, AHS92, VLD82, Ano85a, Ano89, AW89, AAC+01, ANT85, ADF12, BC08, BD88, BDS88, BJL16, BCH78, BJ94, BF87, BL88, Boy98, BM14, BJ93, CLS12, CJC+09, Chr84, CGO86, CLM89, DA12, DSS84, DT87, DSZ07, DP08, Drel7b, EJKMP80, Eld84, Ell83, Ell85b, Ell82, Fei88, Fm85, Flo77, FB87, FBY92, FMA02, GMJ90, Gh077, Gho86, GCGM15, Gol92, Gon83, Gon84, GY91, Gri74, Har71b, Har73, Hef91, Hli78a, Hli78b, HZ86, Hli88, HS84, IEE85b, ICD86, ICD87, ICD88, ICD90, ICD91, ICD93, IH83, IABV15, JL14, Ker75, KP81, KS12, Kru84, KHH89, Lih91, LT85, LRY78, LRY80, Lit89, Lit84, LS87, LRS9, LRY+15, LT80, LSC91, Lom93, LG87, LMR02, MLHK17, Mar75, Mar77, McC79, MDS90, MEK+14, Nav85].

Data
[NR12, PSSC17, PRRR15, VP95, PW94, RNR13, Rot09, RK91, Sar10, Sch01a, SDW14, ST83a, ST83b, SW86, SW94b, Ste82, St092, SM08, SM12, SW87, Tan83, TC93, TY03, TA81, TA86, TGGF10, TS85, TGL+97, Top92, Toy86, TS76, TS84, VL87, Wal88, WPKK94, WS76, WH83, Win90a, Wir86, WDTY91, WYT93, Wu85, YDT83,
[BIP92, Dam90a, Dam91, FS09, NS82]. density [KD92].

[ACM79, ACM85a]. Dependencies [CS83a].

[SGK09]. Dependence

[DTSS75, Sch01a, SdT75, NMS+08]. depth [GHK+12]. Derandomization [AN96].

Derived [HB89a, HB92, HB89b]. Descent [DM81].

[ACM79, ACM85a]. Description [FC87a]. Descriptor [FLF11].

Descriptors [MBBS12, RLT83, SD85, Wu84]. Design

[Adi88, AS82, AR16, Bat80, BMQ98, Bur84, CKB83b, CS83a, CS85c, CS85b, CS86, CCJ91, Che84a, Che84b, CCHK08, DGV93, Dae95, Dam90b, Dam93, DLT98, DY90, DY91, DHK+15, DNV81, Dev93, DM90, Die07, DT91b, EE86, GDA10, GSI+82, GT93, Gro86, Jag91, JP07, KTM083b, Kru84, LT09, LLA15, OVEY94b, PS93, PGV90b, Pre93, Pre94a, QM98, Rad83, RLM87, SD89b, Ull70, VC87, Wie83, Wie87a, XNS+13, YNKM89, Bur82, CE95, CKB81, CKB83a, CCL91, C1Z14, Dam94, Lai92, MAK+12, Mol90a, Mol90b, OVEY94a, PGV93g).

Designing [GM91, Lin96, Mor83a, Zhe90, DC94, MPL09]. Designs [Bat82, BR14, Bur75b, CC88a]. Destaging [NKT88].

Detecting [GAS+16, OTKH11, CWC10, MF82].

Detection [CH12, CJ+99, Kue84b, LQZH14, MKAA17, PACT09, TWZW11, TP15, Zam80, ZCT77, FNP09, FES09, Kos14, LG13, MHT+13].

determination [Kri89]. Determine [ZF06]. Determining [Bee83, Mar71].

Deterministic [HMPO1, MNS07, TLLL07, BK07a, FFS+13, HXLX13, Mil98, Ruž08].

Deutsche [BN85]. Develop [TC93].

Development [BV89, BIP92, CN07, Hil88, Mci82, SSS05, Vid90, Web72, YR87].

Developments [Ano95a, Lara85]. Devices

[KHK15, Sam81, YY07]. DFG [MO92a].

DHA [AKY13]. DHA-256 [AKY13]. DHT [RCF11, SX08, UPV11]. DHTs [CQW08].

Diagonal [PVM94]. diagonalization [Lia95]. diced [Nic17]. Dichotomy [HW08].

Dicing [Kon10]. dictionaries [DMPP06, DW05, DW07, GJM02, HMP01, MSK96, MN90, Mil98, RRS07, Ruž08, Wen92].

dictionaries [DMPP06]. Dictionary

[CS82, DA93, Doo82, Doo78b, Mick99a, Rad83, Die90, DHHW08, Mick99b, Rön07, Sun91, Sun93].

Diego [ACM03a, ACM07, Sto92]. Differences [Gri98]. Different [HL03b, BW89, Jan05, KS88a].

Differentiability [DRS12]. Differential

[AS82, BS91b, BS91a, BS91c, CH94, Dae95, KKMS10, MMMT09, AGJA06, ITP14, RP95]. difficulty [SKD15, SL88].

Diffusion [SDMS12, SDMS15]. Digest [IEEE88a].

Digital [ANS05, BDS09, Cal84, Cip93, Fox91, GK12a, GT63, LM95, Mel83, Oka88, Oto85a, PW93, PGV93f, Reg81, Ron99, Rub93, Ano90, Ano13].

Digraph [W179].

DIMACS [GJM02]. Dimension

[CT96, LHC05]. Dimensional

[AE18, HYH89, KSSS86, Leb87, LOY00, MNY81, Ngu06, ML15, RAD15, SWQ+14, TYSK10, XMLC11, Yuv75].

Dimensioning [BP97]. Dimensions

[AI06, GIM99, YHW09, AI08]. Direct

[DS84b, Kno84, RB91, VCS85, Bay73b, KdlT89, Mad80, TT81]. direct-access

[Bay73b]. Direct-chaining [Kno84].

Directories [YY01]. Directory

[Gri74, KSSS86, KSS8c, Oto84, Oto88a, PADHY93, AP93, Pro94, TSH97].

Disc [CC87, CLC92, CF89b]. Discovery

[KL10, PKW09, ZO13]. Discrete

[ACM94d, SDA90, SDA91, ACM97a, ACM05, ACM08a, Gib91, Kar89, Li15, MLHK17, Mat09, SSL+18, Shin00, vVW94, NW07].

Discretionary [BDPSN97], Discretized

[RNR13]. Discriminant [SY08].

discrimination [CP95a]. Discriminative

[OSR10, HXLX13]. Discs [CF89a, CF89b]. discussed [Gre95]. Discussion [BRR88].

DISH [SKC07]. disjoint [AAB+92]. Disk
disk-based
[ML95].
Disk-tape
[ML95].
Disks
[CC91, Vit85, CCL91].
Disorder
[LL86, Lom88, RM88, TB91].
Displace
[BBD09a, Pag99].
Displacement
[Pet13].
Displacements
[Jan08, Jan05, Vio05].
disorder
[BBD09a, Pag99].
displaying
[Koe72].
Dissemination
[RHM09, RCF11].
Distance
[Bra84a, Bra85, Bra86, NNA12, LP04, MYS12, TB91].
Distances
[Bal96].
distinguisher
[Sch11].
distinguishers
[SY11, AP11].
distinguishing
[HSR+01].
distribute
[Die90].
Distributed
[PD91, APV07, BMS+17, CCF04, DPH08, Dev93, Ell83, Ell85b, GSB94, adH93, HC13, HLC10, IK92, JXY07, Kladh93, KLM96, LK07, LMSM09, LC96, LB07, LAC18, LMR02, ML86, MS02, MT11, Mey93, MK12, NTV09, PRRR15, PapV08, PP85, RHM09, RMB11, SPW90, SW91, SDK91, SM02, SP88, Spe92, TT10, TP95, TCP+17, VBW94, Wil03, Byv12, BPT10, CCY91, DL06, DAC+13, HKW05, ISO97, KKP+17, KLL+97, Kha95, Kou93, LMSM12, LVD+11, LNS93, LNS96, ML07, MPL09, MA15, SP89, WZ12, WTN07, WTN09, XLZC14, ZGG05, ZLL+07, ZO13].
Distributing
[KW94].
Distribution
[AT93, BB90, CM01, DTS75, EAA+16, LMC07, PK87, RR92, Sch01b, SDT75, AT90, GBL94, Vio05, XCC09].
Distribution-Dependent
[DTS75, SDT75].
Distribution-Independent
[DTS75].
Distributions
[KS86, KS87a, KS87b, KS89b, RTK12].
Distributive
[NP91].
Dither
[AP08].
DITTO
[SB07].
Diverses
[LG78].
Divisible
[FL04].
Division
[Eck74a, GL73, Gra88, Gra89].
DLIN
[CK12].
DM
[KL95].
Do
[Bur06, HSR+01, HR04].
Document
[ANT85, DGM89, LR96a, Wil79, KRML90].
Documentation
[DM90].
Documents
[WWZ09, WMB94, WMB99, ZWCL10, WLLG08].
Domain
[BR06, Cor00, Cor02, DOP05, KK12, KK18, LT12, LLG12, PG95, RS12, SGG11, SPSP16, ZNPM16].
Donnees
[Kar82, LG78].
Don’t
[BFCJ+12, YT16, BCR10].
Dortmund
[Lut88].
Double
[Bo072, Bur05, CDM90, GS76, GS78, KLP98, LK94, LM93c, MBO3, Men12, OOB17, Pal92, Tho13, Yao85a, KL95, LM88, LL15, Men17, Mol90a, Mol90b].
Double-Linked
[Pal92].
Down
[LRY+15, PT11b, ZLC+12].
DPA
[LRY+15].
Draft
[MCF17].
DRAM
[KHK15].
DRAMCache
[PG17].
drive
[BC06].
Driven
[Gra93b, Ven86, TK+89, ZO13].
DSS
[Ano09, Ano13].
Dual
[MNS12, Wee12, BR75, MJ08].
Dual-Stream
[MNS12].
Dublin
[ABB93].
Dumping
[Fro81].
d’une
[LG78].
Duplicate
[LKI10, LQZH14, MD97, TW91].
Duplicates
[Bre91], duplication
[BC08].
durch
[Hil82].
DWT
[THY+18].
Dynamic
[AL86, AHS92, BGDM95, CS91, CR89, CBA94, DGGL16, Dev93, DKM+88, DadH90, DKM+91, DKM+94, ED88, FNP79, FS82, GT93, adH90, Kaw85, Kie85, KNT89, Kou93, KS86, KS87a, KS87b, KSC11, KSC12, LAR8, LAR8a, LAR8b, LC88, LRY+15, MS12, MS02, Mul84a, Mul84b, Mul85, NKT88, OG94a, Ore83, Oto85b, Ouk83, OS83a, OS83b, PLKS07, PG95, RZ90, RT98, RL82, RSSD89a, Reg81, Rob86, Sch79b, Sch81, SSS00, TT10, Vek85, Wan14, YD84, YBQZ17, YD86a, YD86b, ZRT91, ZMJ94a, ZMJ94b, ZMJ94c, Z093, CS93a, DMPP06, DHW08, FRS94, FF90, Fro81, HKLS12, HR93, KBR92, Lev89, Lin96, Mil98, YGL10, SKC07].
Dynamically
[Lit78, Litxxb], dynamics
[DMPP06].
Dynamiques
[Kar82].
Dynamischen
[DS84a].
Dynamischer
[Hil82].
E-HASH
[HGH+12].
early
[CV83a, CKKW00, PY88]. early-insertion
[CV83a, PY88]. Easier [Bor81, Egl90].
Easily [CMW83]. ECDSA [ANS05].
ECHO [BOY11, Sch11]. ECHO-256
[Sch11]. EDBT [JB94]. edge [QZD+18].
Edinburgh [AVO99]. Edit
[NNA12, TK88]. editing [Koe72].
Editors [RW97]. Education [ACM86b].
effective [KNT89, Mac95, Mai92].
effective [FCHD88, FCHD89, HW08, PCY95,
WDYT91, MA15]. effects [QM98].
efficiency [DB12, Leb87, PVCQ08, Ull72,
KST99, PTI0b]. Efficient
[AD08, ASBdS16, ASW07, Ast80, AEMR09,
ADW12, ADW14, BR14, BC809, BOS11,
BZP07, CKBS5, CLS12, DDF+07, DD15,
DGMS9, FES09, F+03, FRS94, GM79,
Gon83, GRS93, Grit77, HT01, HM12,
HDMC09, HHL10, HLC10, IN89, JD12,
KU88, KR81, KladH93, KL96, KKRJ07,
KJC11, KS12, KS86, KS87a, KS87b, KS89b,
Kue84b, HGH+12, LW88, LWG11, MP16,
MEK+14, MH00, MO92a, MJT+02, Mul85,
NN90, OOK+10, PAG99, PAK93, PAVP08,
Pan05, Qu83, RT81, RFB97, Rem92, Ros06,
Ros07, Sac86, SDMS15, Sch91b, Sch93a,
SL16, SGY11, SVEB84, SPS16, SKM01,
TY93, TYZO15, TYSK10, TW07, TS85,
TGL+97, VLS7, Vit85, WYY05d, WZW09,
Woe06b, YSW11, YBQZ18, YGC12+
BLP+14, BZL+15, BT93, CML+13, CJ14,
CLJ89, FNP09, FPPS05, Gai82, HHL04,
HCJ06, adHMR93, ILL17, KU86].
efficient [Lin96, LCH+14, LL15, MSK96, NTW09,
OCG11, PCK95, PBBO12, PPS09, RFC11,
SSW94, Sch93b, SX08, Shi17, SV15a, UHT95,
VL97,Wie86, WTN09, XLZC14, ZWT+14].
efficiently [AP08, Kim99]. Effiziente
[Meh77, Meh86]. eigenvalue [JWM+18].
Eight [Van10]. Eighteenth
[ACM86b, ACM91d, ACM91a]. Eighth
[ACM76, ACM89b, ACM89a, ACM97a,
VLD82, ACM96, Go92]. Einfuehrung
[No182b]. Einschrittcompilers [Dit76].
Elastic [Hac93]. Elections [EH12].
Electronic [Cip93]. electronics [IEEE94b].
elements [IG94]. Eleventh
[ACM87, IEEE92a]. Eliminate
[BT94a, BT94b]. Eliminating
[Bel70, Bil72, Bel83, NH74]. elision [NM10].
Elliptic [BGH12, GRL98, MSTA17, OOB12,
BGH+13, FSVO9, FFS+13, TK17, ANS05].
Embedded [SVCC01, VMG12, Hui90,
TLL07, TLL09, UIY10]. Embedding
[CLP17]. Embeddings [AE18]. EDM
[BR06]. Emde [Wil00]. Emergence [Fox91].
Empirical [DMP09]. Employing [Per73].
Emulated [EK93]. Emulations
[Kel93, Kel96]. en-route [YG10]. enabled
[BZZ12]. Enabling
[HDCM08, TT10, SLC+07]. Encapsulation
[HM12]. Encipherment [BM76]. Encoding
[An095c, KP94, Wil79, VCR14, RSS07].
Encodings [BHMM12]. Encrypted
[Kaw15]. Encryption [CS02, DC98a, Kal93,
NTY12, PRZ99, Sar10, ZMM17, And94,
BR94, Bir07, GoL96, GBL94, Sab94]. Energy
[AS16, KYS05, HGH+12, YSW+11, CZ14].
Energy-Efficient [HGH+12].
Energy-Harvesting [AS16]. Engine
[YNKM89, BC06, NM02b, PES+12, SSW94].
Engineer [Jac92]. Engineering
[GoL92, Got86, ICD87, ICD88,
ICD90, ICD91, Lew82, Wal88],
ARA94, An093c, IEE94a, Yu92, An093].
England [ACM94b, Pat96]. English
[CS82, Dit76, Wat05]. Enhance
[Lit84, CZ14]. Enhanced [RS12, LG96].
Enhancements [HMNB07]. Enhancements
[Gr13a]. EnRUPT [IP11]. ensemble
[ZNPM16]. Ensure [Sch1a]. enterprise
[ES09]. Enterprises [KCR11]. entire
[FDL86, Nic17]. entity [ZLC+18]. Entropy
[Ari84, HHR+10, KM88b, NRW90, CKKK09,
MV08]. Entry [YL90]. Environment
[DGMS89, ML94, MLxx, MS88a, RS92,
RL74, SD89c, SD89a, SSS05, ZG90b, Kha95].
QZD$^+$, SD89d, TMB02. Environments [ZG90a, GDA10, RFC11]. EOS [BP94].

EPGAs [YTHC97]. Equality [TD93, WC81, AD08, GRF11]. equalization [PCK95, UHT95]. Equations [Aum09].

Equijoin [SW91]. Equiprobable [PB80]. Equivalence [Mar71, de 69].

eraser TM [AAGG16]. Ergife [IEE88d]. Erlang [TCP + 17].

Erratum [FW77]. Error [BG96, Har97, Kue84b, Mi98, RJK79, FM89, GHK$^+$, R"on07]. Error-Correcting [BGS96, GHK$^+$, Error-Correction [RJK79]. Errors [Blo70, Zam80, MF82].

ErsatzPasswords [GAS$^+$, ESA [EF12, FS09, HM08]. ESAT [PGV93c].

eSSays [BC39]. Establishment [DL12].

estimate [R"on07]. estimated [Nic17].

Estimating [Leb87, MKS07]. Estimation [GLL17, IJK13, TGF10, TZ12, HKL04, LNS11, LDK12, NTW09]. estimators [HYK508]. eTCR [HKKK13, RWSN07].

Ethernet [KCR11]. Etude [Mek83, LG78].

Euclidean [SWQ$^+$]. Euler [Cha84b].

EUROCRYPT [CP87, Dam90a, Dam91, Dav91, De 95, GQ95, He94, QV89, QG95, Rue93, Van06].

Europe [BRW93]. European [EF12, FS09, HM08]. EUROSAM [Ng79].

Evaluating [HAKM15, RS92]. Evaluation [Ade88, BGW95, CRSW11, CRSW13, Chr84, Fla81, Fls83a, Gra93b, Gra93c, Gri77, HNS84, KTN92, LLL09, MXL$^+$, ML86, MLxx, MS88a, Pag99, SD89c, SD89a, SC90b, SC90a, SC90c, Stu85, TNKT92, Web72, Woo89, YNKM89, CHS$^+$, GDA10, RLM87, SD89d, TMB02].

Even [Boxx, Tho00]. Event [McK89a, McK99b]. Every [Kil01].

Everything [KTN92, ML94, TNKT92].

Evolution [PGV93c]. Evolutionary [DLT98].

Exact [Cor00, Ram88a, Vi05, Lia95]. Examining [Wil00]. Example [FHMU85]. Exceed [Pal92]. Except [OWZ14].

Exchange [KV09, BSNP96b, GL06, LW04]. Exclusive [DNL$^+$].

Execution [CLYY92, CHY93, CHY97, Cra85, GHJ$^+$93, GM98, Hea72, HCY94, HCY97, KL87, PAKR93, Wu85, GMP95].

Exhibit [Gu75, Gu78, Gu76c]. existence [WC07, Woe06a]. Existing [LYD71, LY72].

Expandable [Kno71]. Expander [CLG09].

Expanders [BK0, Tho13]. expanding [FNY92]. Expandable [CL95]. Expansion [AVZ11, Gri87, Maa92]. Expansions [Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Larxx, RSSD89a]. expansive [LS96].

Expectation [GM91]. Expected [Gon81, Lar81, Lar82a]. Experimental [ANS09, JHL$^+$]. Experiments [KL96, Wil79]. explicit [ARA94]. Explicit [ADW12, ADW14, Bla00, CL83, LS06, Mt08, WX01, GJR79]. exploit [AZ10].

exploitation [MAK$^+$]. Exploiting [Bre91, CCKW00, GHW07, MSS96, MV08, HAK$^+$]. Exploration [CH94, PSSC17].

Exploring [LVD$^+$]. Exponent [Ano95a].

Exponential [DS84a, HJ96, Lom83, LH04, SHA97].

Exponentiation [Kak83]. Exposure [CTZD11]. Expression [BBP88, CKW09, Gri77, GGR04].

Expressions [Hol87, Mar71]. Extendable [NIS15]. Extendable-Output [NIS15].

Extended [DP08, HBG$^+$, Ter87, YNKM89, YD84, YTHC97]. Extenders [RS12].

Extendible [BK84, Bly94, Chu91, Chu92, DT91a, DT91b, Ell83, Ell88, FNSP79, Fls81, Fls83a, Hac93, HSM95, HYH89, HY86, KR86b, KR86a, Kums99a, LOON01, Men82, MHO0, Ot08, Ot86, Ot88a, RL91, RSL, TMR81, Tam85, Yaa85, Kums89b, MKS98, RL90, RS75, Wee88].

Extending [CMP07, BJK94, S01, WKA07].

Extensible [BG92, Gra94c, He89, Kums90, R"em92, KR88, SS06, BP94].
[BR06, Lit77a, LLG12, SGY11, WH83, Bak09]. Extensions [CSSP15, Heu87].

External [AS89, AGMT11, GL82, GL88, Gra94a, GT63, JP08, LR85, LRY78, LRY80, Vit01, Woe06b, RT89, RB91].

External-Memory [AGMT11].

Extractable [ACP09, CZLC12b, CZLC14, Wee11].

Extracting [HZ86].

Extraction [FC87b, KKN12, LDY+W+16, ZLY+W+12].

Extremely [Sie04].

FA [CKW09].

Face [KGJG12].

Fachgespräch [Lut88].

Facility [VL87, FF90, VL97].

Factoring [CTZD11].

Factorization [FS82].

Factorization [FS82].

Failure [Ano95a].

Fairfax [ACM94a, WGM88].

Fake [Ano96, LAKW07].

Fall [AFI69].

Fallen [HCPLSB12].

Falls [AFK90].

false [CVR14].

Families [ADW12, ADW14, BW98, Bla00, CRSW11, CRSW13, FK84, HHL10, SG16, WX01, AG10, BJ07, BV’13, BJKS93, BJKS94, CRS83b, CL09a, CL09b, FH15, GW94, LS06, LC13, MV’T08, WC07, Woe06a, vT14].

Family [BDM+W+12, BKST18, FLS+W+10, GK08, Ind01, IT93, MWCH92, MWHC96, SK05, ACP10, AMP12, BDPV12, KRT07, Sar13, SRR198].

Fast [AKS78, AP’92, AB’12, BH91, BS97, BS94b, BS94a, BGG93, BG’93, DBGV93, Sch91b, Sch93a, SV94a, Van92, Vau92, Vau93].

FFT

FFT-Hash

FFT-Hash [DBGV93, Sch93b, Sch93a, Van92].

FFT-Hash-11 [Van93, Van92].

FFT-Hashing [SV94a, Sch91b].

FGS [KM09].

Fichier [Lit77a].

Fields

Fifteenth [AW89].

Fifth [ACM86a, ACM03a, Bai81, Mo92b, Oxb86, ACM94d, AOV+W+99, GJM02, CTC90, Mo92b].

Fifty [Kon10].

File [BGF88, Bat80, Bat82, BCH87, Buc63, Bur75b, CS83b, CF89a, CE70, DS84b, DGM89, DT91a, DT91b, FC87a, FZ87, GIS05, GG74, Gro86, HP63, Har88, KK85, KS88b, KS88c, Lar82c, Lar82d, LK84, Lar85c, LI80, Lit80, Litxxa, Lom88, Lun73, MF92, Md63, Mi85, MK93, NHS84, Ols69, Omi88, Ore83, PSR90, RL89, RSD89b, RSD90, RSD92, Reg85, RL74, Sal88, SS02, Sch79b, Sch81, Tha88, Wei83, Wie87a, Wri83, Wb03, YD66a, vdP72, vdP73, BY89, BR75, Bra88, CC88a, ...
DAC+13, FES09, Inc81, Kou93, Omi89a, RM88, SG72, VBW94, YD86b, van73. Files [AS82, ANT85, BM76, BH85, Bra84a, Bra86, CC87, CS87, CC91, CLC92, CL95, Cla77, CS93b, Du86, FNPS79, Fe187, Gri74, HB89a, HB92, Lar81, Lar82a, Lar85a, LR96a, LCML94, Lit79b, LYD71, MY79, Mil85, Oto85a, Piw85, RSSD89a, Reg82, Rot89, SG76b, TK88, ZRT91, Bra85, CS93a, CCL91, HB89b, LNS93, LY72, ORX90, Omi89a, RB91, TC83].

Files [AS82, ANT85, BM76, BH85, Bra84a, Bra86, CC87, CS87, CC91, CLC92, CL95, Cla77, CS93b, Du86, FNPS79, Fe187, Gri74, HB89a, HB92, Lar81, Lar82a, Lar85a, LR96a, LCML94, Lit79b, LYD71, MY79, Mil85, Oto85a, Piw85, RSSD89a, Reg82, Rot89, SG76b, TK88, ZRT91, Bra85, CS93a, CCL91, HB89b, LNS93, LY72, ORX90, Omi89a, RB91, TC83].

Filing [FC87a, DH84]. filing [GZ99]. Filter [CCH09, Kaw15, MK11, LZ06, RKK14, RK15]. Filtered [Ahn93]. filtering [KRML09, MK12, RCF11, YG10]. Filters [CHY93, CHY97, Kie85, LyW+18, Ram89b, DKTo6, HKLo7, HXLX13, ISO97, PSS09]. Final [MO92a]. Financial [ANS05]. Find [Hol13, Lan06, Pat94]. Finding [CBK83, Cer85, CBK85, Cer87, Cer88, Coh98, CH09, CM93, DR06, FCHD88, FCHD89, HK86, HG77, HR04, KH84, SH92, SH94, Sim98, Val15, WY05b, WY05c, Yuv75, FHC89, MI84]. fine [KLSV12]. fine-grained [KLSV12]. Fingerprint [JTOT09, LMC07, LMJC07]. Fingerprinting [Rou09]. Finite [Gri98, HJ96, Ram88a, WX01, Fhi15, KH12, LS06, LK12, FIPS].

Dan13, Ano93b, Ano95b, NIS93, Nat95]. Firewalls [Kal01]. First [ACM89c, SDA90, PD91, BBD09b, FNY92, adHMR93, PM89, DLM07, Fis87, SBK+17]. first-order [DLM07]. Fisher [SY08]. Fit [Cip93]. Fitted [ZWT+14]. Fixed [GB10, RS08]. Fixed-Key [RS08].

Fourier [Ind13, BH93]. Fourteenth [BD88]. Fourth [ACM85b, ACM02, IEE80a, KLT92, Las87, Yao78, GSW98]. FowlerNollVo [VFN91]. FoXtrot [MK12]. FP [PHG12]. FPGA [DLM98, KMM+06, LX+12, MUP+12, TP15, TK07, WZS10].

FPGA-Based [TK07]. FPAs [DZ15, MMMT09, SK05]. Fractal [Ano95c, YSEL09]. fractals [HCF95]. Fragmentation [Sac86]. framework [vT14]. Framework [BKL16, BKMP09, DGV93, FDD99, GST90, EH17, FFGL10, GL06, PCK95, UHT95].

Framingham [Ker75]. France [AGK+10, BF89, Jou85, LS89, Ng79, QG95, GQ95, vHvH12]. Francisco [ACM75b, ACM08a, DT87, IEE88a, Joy03, Kar98, Shm00, USE90]. Frankfurt [CE95].
Fredman [KM86]. Fredman-Komlos [KM86].
Free [AR16, BB07, BHT98, CLNY06, CTZD11, Dam87, HM96, HZ86, KKT91, LFD17, MOI90, MOI91, Ram89b, Rus92, Rus93, Rus95, SHRD09, BGKZ12, BGGC93, BG93, BHT97, Gib91, Gob75, HCJC06, MJ14, NK16, PBGV89, SS15, Van92, Vau92, Vau93, ZBB+06, ZL12, SS06].
Free-Form [HZ86]. Free-text [HZ86].
Free-form [Ram89b, Gob75]. Freestart [SKP15].
French [Coh94]. French-Israeli [Coh94].
Frequency [Lyo78a, TS85, CJP12, CJP15]. Frequent [OTKH11, CH09, BMLLC+19].
Frequently [She78]. Friendly [ZH18].
frontends [Sag85b]. Frontiers [Jáj90, Fis87].
Frontiers [Jáj90, Fis87]. FSE [Bir07].
FSpH [ZWT+14]. Fugue [AP11]. Fujiyoshida [IRM93].
Full [AC74, Bur75a, CMP07, Cor00, Day70, DOP05, KK12, KK18, LT12, Mue04, GLM+10, San76, WYY05b, WYY05c, YSWM+11, ZKR08, NH74, RCF11, SKP15].
Full-Text [YSWM+11, RCF11]. Function [Abi12, AVZ11, Aum09, AMPH14, BPSN97, BF83, BDM+12, BS94b, BS94a, BKST18, BR502, Bla95, BKL+11, BDP97, CP91c, Cer581, CKB53b, CN08, Cob94, CBA94, CMP07, CO82b, CDMP05, DBGV93, DGV93, Dae95, DG98b, DLT98, Dat88, DLS0, FLS+10, GIS05, Gei95, Gei96, GSC01, GIMS11, HPC02, Har97, Hol13, HLC10, JP07, Kal01, KRJ09b, KCB81, Kra82, Kul84, KKT91, LWWQ98, LP15, Lis07, Li80, LG78, MR70, MRST10, MNS12, MOI89, NS16a, Oto84, PV92, PHL01, PHG12, PBD97, GLM+10, RB01, Sch11, Sch90a, Sch91b, SGY11, Sta06a, TC93, TTY93, WW09, WSS012, Win83, Win84, Wol84, WFW+12, YD84, Yan05, WL12, ZWW+12, AKY13, ACP10, AB96, AMP15, ABO+17, AP11, BGKZ12, BNN+10, BDPV06, BDPV12, BOY11, BS94c, BW89, CKB83a, CK89, DK94, DF89, FP82, Gib91].
function [HR07, Han17, HL03, ITP14, LW04, Lia95, LWG11, MJ08, Mer90a, MZ98, Mit17, NSW09, Pat94, Pat95, PVCQ08, QJ97, RS14, SB14, SS92, Sch82b, SRRL98, SHA97, SXL16, VNP10, VFN91, WS13, WYW14, YL97, YZ16]. Functional [LFP82, GMP95, ZKR08, Jou85]. Functions [AHV82, AFK83, AFK84, AN96, ACZ16, AM02, AA79a, And91, ABD+16, Ano95a, AEMR09, AR17, AM07, AP08, BSNP96a, BDPNSG97, BCK96a, BCK96b, BR14, BBD+82, BBD+86, BG96, Bli08, BCS09, BRSS10, BCFW90, BK12, Bol79, BPZ07, BHT98, BH86, Bul78, Can97, CW77a, CW77b, CW79, CMW83, CBK83, Cer85, CKB85, CBK85, Cer87, Cer88, CS83a, CS83b, CS85c, CS85b, CS85a, CS86, Cha86b, CS87, CLNY06, CLG09, CK15, Chin1, Chl94, Cic80a, Cic80b, CE70, Coh97, CH94, CHM92a, CHM92b, CM93, DGV93, Dam87, Dam90b, DDF+07, DK07, DY90, DY91, DTS75, DadH90, DMPG92, Die07, DGK12, EK93, EPR99, Fil02, FL08, FLP08, FLP14, FFGL09, FCHD88, FCHD89, FCDH90, FCDH91, FCH92, FHC92a, FK84, G007, Get01, Gir87, GHK91a, GHK91b].
Functions [GLG+02, GKR08, HHR+10, Hal12, HM12, HJ96, HKY12, HS08, HK12b, HR04, Ind01, IT93, JO80, Jae81, Jen97, Jou04, JD12, KH84, KK06, Kil01, Kno75, KP96, KL98, KV92, LM93a, LK94, LT09, LM95, Lis07, LH03a, LLG12, Mai92, MWCH92, MCW78, Mar64, Mhe82, MP12, Mer90b, Mir01, MR89, Mit02, MOI90, MOI91, Moh11, Mul91, NIS15, NM02a, NCFK11, NP99, NR12, NAK+15, OOB12, Otk91, Pag99, PWY+13, PB80, PQ98, PQ99, PW93, PGV90a, PGV90b, PGV92, Pre93, PGV93d, PGV93f, Pre94a, PV95, Pre97a, Pre97b, Pre99, Pre94c, QG89, QG90, RP91, RR08, RWSN07, Rja12, Roe94, RS08, Rul93, SP91, Sag84, Sag85a, SDMS12, SDMS15, San76, SS01, SS88, Sch91a, SRY99, Sho00a, Sho00b, Sie04, SvEB84, SDT75, Spr77].
Functions [Sti06, Tv83, Tro92, Tro95, Ull70,
functions [PGV94, PvO95, RB91, RFB97, RZ97, RP95, Roe95, Sar90, SS90b, ST85, SH92, SH94, SL88, SS16, Sie89, Sim98, SV08, Pob86, PGV93a, PGV91, PGV93b, PGV93c, PGV93e, PGV93g, Pre94b].

functions-based [HC11].

Fundamental [LYD71, LY72].

Further [Lit85, Sar15, DM03].

Fusion [Wil00].

Fuzzy [LMC07, LMJC07, LI92, HC14].

Gallery [BFR87].

Galois [HJ96].

game [Zob70a, Zob70b].

Gamma [DGS90b, DGS90a, GD87, DGG86].

Garbage [AG93, FW76, FW77, UY10].

gates [GHK12].

Gb/s [BLC12].

GBDD [YTHC97].

GCM [Saa12].

geeks [McN03].

Gene [TGGF10].

General [Chi91, Chi94, DR06, ISO97, LW88, LQH18, LHC05, Lum73, MSD16, Sch91a, Sim98].

general-purpose [Sch91a].

Generalised [CC87, KKW99, LPW006].

Generalized [HB94, KVK12, L80, SK88, Sev74, KHK10].

generalizing [AMP12].

Generate [HSR01].

Generated [LMC07].

Generating [Bla95, CT96, CHM92a, CHM92b, Get01, Jae81, Sag84, FP82, GRF11, MFK12].

Generation [GRZ93, LL92, MS12, She91, SSS05, Wan14, BK07a, BK88, CCA12, CT10, KKP92, Mo92b].

Generator [ANO86, BK12, Cai84, Gui89, Sag85a, Sch90a, ZF06, Aam03, CLS95, HC11, SS92, TSY98, VZ12].

Generators [MWCH92, NAK+15, SP91, BK07a, CP13].

Generic [DL17, DOP05, MP12, Sar10].

Genetic [FFGOG07, HSIR02, CV05].

Genomic [CCH09].

Geo [TYZO15, ZWH17].

Geo-Fencing [TYZO15].

Geo-Tagged [ZWH17].

Geographic [RRS12].

GeoHash [BSH12].

Geometric [Bar97, BG92, Bie97, BM90b, CO82a, GPA97, HB89c, HB94, KGJG12, LW88, LMC07, LMJC07, MV02, PW94, RH92, RH95, RW97, SA97, Tsa94, Tsa96, WPKK94, War86, WR97, BJ93, BKJS94, GG92, JBWK11, LG96, MN99, MMG10, WC94].

geometries [FH15].

Geometry [CCC89, Wil00].

Georgia [USE00a, ACM83a, ACM83b].

German [Zel91, BJMM94a, Bi87, Eck74a, HJ75, Koe72, Sta73, Wen92, vM39].

Germany [AH03, BRW93, HM08, adHMR93, Yao78, CE95].

Gestion [Lit77b].

Get [Eug90].

GHASH [Saa12].

GI [Lut88, TWW77].

GI-Fachsprach [Lut88].

Gigabytes [WMB94, WMB99].

Girths [Zem91].

Give [AT93, AT90].

Global [CLP13, C195, DL79, LPSW03, MD97].

Globally [HSW88].

GLUON [BDM12].

GNU [Wil14].

Go [Bur06].

Goddard [Fis87].

Goes [Cip93].

Gold [SZ93].

gone [Nic17].

Gong [BPSN97].

Good [Bur92, Hol13, JP07, Lom88, Mit02, ADM+97, KU093].

Gooyear [Fis87].

GORDION [EE86].

gossiping [GHW07].

GOST [WYW14].

GPERF [Sch90a, SS92].

GPU [ASA+09, FRB11, HLH13, LLA15].

h [Gra94b]. Hackage [Lit79a, Mek83]. Hackers [Nic17]. HAIFA [DL17]. Halifax [DSZ07]. Hamming [Bal96, Bal05]. Handbook [Gon84, GBY91]. handle [Eug90]. Handling [BL87, DNS92, Lar85b, QCH+81, Sam81, Sch79a, Wil59, WB03, Z093]. Handwriting [MS12]. Handwritten [FLF11]. Haphazard [CS87]. happened [Her07]. Hard [Hol13, Kl01, GPV08, Nep95]. Hardness [BHKN13]. Hardware [ABM06, Bab79, BPBBLP12, Bur81, Bur84, DW83a, FW09, GD87, GLG+02, HDM09, IG77, MXL+12, RP91, TK85, dw83b, ABO+17, BOY11, Bis12, Bur82, CE95, FNP09, ISH+91, JMH02, KM07, KM10, MI98, RFB97, RAI07]. Hardware-Based [HDM09], hardware-constrained [RAL07]. Harmonious [HK83]. HaRP [PT11b]. Harrison [Boo73]. Harvesting [AS16]. HAS-V [PHL01]. Hash [ANS97, Abi12, Ack74, Ahi88, AHV98, AFK83, AFK84, APV07, AN96, AVZ11, AK74, AB+16, Ano93b, Ano95a, Ano95b, Ano95d, Ano02, Ano12, AG93, AR16, Ari88, Ask05, AEMR09, AR17, AM07, AP08, Aum09, AHMNP12, AHMNP13, AMPH14, ADW12, ADW14, AS16, Bao01, BSNP96a, BPSN97, BDPNSNG97, BM87, BFV12, Bat75, BFMP11, Bay73c, Bee99, BBD09a, BK70, Bel70, Bel72, BF83, Bel83, BD84, BCK96a, BCK96b, BBKN01, BR06, BBKN12, BR14, BBPBL12, Ben98, BDM+12, BHH+15, BMB68, BS94b, BS94a, BKST18, BS91b, BS91a, Bih08, BR02, BCS09, BSRS10, BW98, Bla00, BM98, BM90a, Bl00, Bb75, BKL+11, BI87, BCFW09, BK12, Boo74, BDP97, BPZ07, BT12a, Bou12, Bra84a, Bra85, Bra86, BJM14, BHT98, BW89, Bre91, BDO99, Bur77]. Hash [Bur78, Bur79, Bur06, Bur08, But17, CCF04, CP91c, Can97, CLP13, CRdPHF12, CW77a, CW77b, CW79, CMW83, CRSW11, CRSW13, Cer81, CKB83b, CKB83c, CKB85, CKB85, CKB85, Cer87, Cer88, CS91, CLNY06, CN08, CCH09, Cha12, jCPB+12,
Hashing
[Pal92, Pan05, PB80, Pap94, PV07, PT12a, PH73, Pea90, Pea91, Per73, Pes96, Pet13, PS93, PQ98, PQ99, PKW09, Pip79, Pit87, PM89, PVM94, PVM97, PT11b, PRM16, PS12, PACT09, PF85, PADHY93, PW04, Qui83, RT87a, Ram88b, RL89, RP91, RR92, Ram92, RL82, RL87a, RSD84, RSD85, RSSD89a, RSSD89b, RSSD90, RSSD92, Ram97, RGNMPM12, RLH91, Reg81, Reg82, Reg88, RSS12, RH92, RH95, RW97, Rob86, Rog95, Rog99, RS75, RS77, Ron09, RT87b, Rus92, Rus93, RS95, SDS83a, SNBC98, SuC05, Sag84, SY11, Sas11, SG76a, Sav90, Sav91, Sch79a, SD90b, SD90a, Sch91b, Sch93a, Sch81, SY91, SR89, SPW90, SB93, SSL18, SY08, Sh096, SR01, SSS05, SD75r, Spr77, SHRD09]. Hashing

[SGGB00, Sti94a, Stu85, Sun15, SHF17, SA97, Tam81, Tam82, TK88, TC93, TL95, TWZW11, TYO15, THY18, T112, TW07, TK85, TZ12, TTY93, TZ94b, Tv83, Tor84, TK07, Tro92, Tro95, Tsa96, US09, Ul70, Ull72, VV84, VV86, Vek85, VP96, VP98, Vit80b, Vit80c, Vit81b, Vit81a, Vit82b, Vit83, VC87, WG00, WPKK94, War86, WFC19, Wee07, Wee12, WPS12, WSZ16, WFT12, WP10, WDP12, WS03, Wil96, Wil00, Wil79, Wil71, Win90b, Win90a, Woe01, WR07, WZ03, Wu84, YDT83, YWH09, Yao80, Yao85a, Yao85b, Yao91, Yas07, YB95, YTJ06, YBQZ18, YGC12, YD86a, ZPS90, ZPS93a, ZHS18, dW83b, vdSD74a, vMG12, AT18, ASM17, ASA19, ADM19, AI08, AI189, AT90, BGG93, BL89, BGH13, BBPV11, BD82, BGG94, BDPV14, BMQ98, Boo72, Bosxx, BT89, BCC110, Bur05, Bur82]. Hashing

[BMILLC19, CP91b, CP95a, CHK012, CS93a, CW93, CP95b, CV83a, CCL91, CHL07, CL14, CWC10, CKKK90, CZZ12, CR89, CP13, CO82a, CHM97, Cze98, Dam94, DM03, DKM18, DTM91, DHW08, DS09a, D92, DLH13, DSS90b, DK12, DLN18, Duc08, DM11, EH17, EBD91, FMV09, FFS13, FNS88, GLHL11, GG92, Gb90, GW94, GM77, GLJ11, GS89, GRF11, GPY94a, GZ99, Gui76c, Gup89, HB89b, HDCM11, HKL07, HR93, HM93, HMWC94, HL05, HC02, Hua85, HFF15, HFF17, Hui90, IMRV97, Ind13, IIL17, Jan05, JWM18, JBWK11, Kan90, KYS05, KLL17, KSB19, KU86, KL96, KR88, KK96, Kim99, KM07, KM08, KM10, Kos14, KD92, Kou93, Kra94, KR06, Kum89b, Kut06, KSC11, KSC12, LG96, Lar84, LNS11, LH06, LK16, Lev89, LK11, LOZ12, Lin96, LS96]. Hashing [LNS93, LJY13, LMLC14, LLA15, LWXS18, LM88, LH04, LMPW15, LJW17, ML15, MIGA18, MI84, ML94, MNT93, MLP07, MPL09, MV91a, MC89, MMG10, MP16, Men17, Mil95, Mil98, MYS12, MKSiA98, Mol90a, Mol90b, MSV87, Nil94, OP03, OVY94a, OS88, Pag01, PR04, PWYZ10, PJM88, PBMM90, PCM15, PT11a, PT13, PY88, Polo87, Pro94, QM98, QZD18, Ram89a, RTB9, RB91, RFB97, RZ97, RLH90, RAD15, Sab94, Sar11, SP12, SS99a, SS99a, Sch93b, ST93, SH92, SL88, SS16, Sil02b, Sna87, Sta99, Sti91, Sti94b, Sun91, STS13, TB91, Tho00, Tho17, TK17, TK99, Tsa94, TLL07, TD93, Vak85, Vio05, Vit80a, Vit82a, Wan05, WL07, Wee88, WC94, WYO0, WWG18, XMLC11, ZWCL10, ZL12, ZWT14, ZPS93b, ZZL18, ZHC13, Zob70a, Zob70b, ZHB06, BJMM94a]. Hashing

[JM082, KS88c, SV94a, SKC07, SA17, CV85]. Hashing-Based [LMC07]. HashMap [Oak98]. Hashnet [Fah80]. Hashtabellen
Hashtable [Oak98, Bee83]. Hashtag [RTK12]. Hashverfahren [Dos78a]. HAVAL [WFLY04, ZPS90, ZPS93a, ZPS93b]. HAVAL-128 [WFLY04]. Hawaii [Deb03, SC77]. HCC [Har97]. HDDs [HGH+12]. Head [ACM91c]. Heap [FW76, FW77]. Heaps [CCA+12]. Heavy [TP15, Ind13]. Hebrew [Sch82a]. Hecke [CT96]. Hedge [Sho00b]. Height [Dev99, Reg81, THS97]. Hebrew [Sch82a]. Hecke [CT96]. Hedge [Sho00b]. Height [Dev99, Reg81, THS97]. Heinz [adHMR93]. Held [J´aj90, Fis87]. Help [PVM97]. Helper [ALS10]. Herding [KK06, BSU12]. Here [Bur06]. Hershey [ACM76]. Hersonissos [ACM01]. hesitate [Gre95]. Hessian [Far14]. Heterogeneity [PG17, WB03]. Heterogeneity-Aware [PG17]. Heterogeneous [PG17, WSZ+16, GDA10, Kha95, SX08]. Heuristics [Omi89b]. Hidden [Leb87]. Hide [Can97]. Hiding [MMMT09, MV01, Wee07, HR07]. Hierarchical [PACT09, TK88, VL87, GP08, VL97]. Hierarchy [Wil71]. High [ACM04, AS09, AEP18, AI06, ASBdS16, CT96, DGG+86, DadH92, DS97, Flo87, GIM99, HSM95, IEE94c, KMM+06, KMHJ10, LCK11, LPT12, McK89a, McK89b, OT91, PSR90, RSSD90, RW07, Rön07, She91, TK88, Tho13, TP15, WJS10, XLC14, YNKM89, YWH09, AI08, BCCL10, EVF06, HKL07, Inc81, MV91a, MAK+12, MA15, RFB97, SL07, Shi17, Sie89, SWQ+14, SXLL08, TYSK10, TLL07, XMLC11]. High-bandwidth [AS09]. High-Dimensional [AEP18, TYSK10]. High-error [Rön07]. High-Performance [DS97, Flo87, IEE94c, She91, Shi17]. High-Speed [KMM+06, KMHJ10, McK89a, YNKM89, McK89b, RW07, EVF06, SL07, SXLL08, TLL07, XMLC11]. High-Throughput [LPT12, XLC14, MAK+12]. HighEnd [LVD+11]. Higher [HKK13, DH84]. higher-order [DH84]. Highly [BCS09, KHW91a, Mat93, PAKR93, KHW91b, ZLL+07]. Highly-Associative [KHW91a, KHW91b]. Highly-Efficient [BCS09]. Hill [IEE88a]. Hilton [ACM91c, PD91, ICD88, ICD90, IEE90, IEE01]. Histogram [Gra93b, MNY81, PCK95, UHT95]. Histogram-Driven [Gra93b]. History [BG07, MNS07, NSW08, Reg82, NT01]. History-Independent [BG07, MNS07, NSW08]. Hitter [TP15]. hitters [Ind13]. HMAC [FIP02a, BCK96b, CY06, DRS12, MAK+12, RR08, Sta99]. Hmap [YTHC97]. Hoc [DPH08, JLH08, Cha12]. Hole [JLH08]. Holographic [BGF88]. Homepage [GCMG15]. Homomorphic [KKN12, CZL12, MT16]. Honolulu [Deb03]. Hood [CLM85, Cdh86, CLM86, DMV04]. Hop [RHM09, MA15]. Hopscotch [HST08]. hostile [LC95]. hot [KLL+97]. Hotel [ACM75b, ACM82, ACM83a, ACM83b, ACM85a, ACM87, ICD86, ICD87, IEE88a, IEE88d, IEE01, Kna89, Nav85]. Hough [HB94c, HB94]. House [IEE80a]. Houston [IEE76, IEE94a]. Houthalen [QV89]. Hover [EH12]. HTM [CCW+17]. HTML [UCFL08]. HTTP [DB12]. Human [Bor81, TCW+13]. humanities [Bai81]. Hungary [Rue93]. Hwang [KCL03]. Hyatt [Kna89]. Hybrid [BM89, BM90a, Gra93a, Gra93b, Gra94a, KNT89, HGH+12, LLL11, Sch79a, TYZO15, PCV94, TTS1]. Hybrid-Hash [BM89, BM90a]. Hypercube [OL91, OL92]. hyperelliptic [FFS+13]. hypergraph [KKP+17]. Hypergraphs [FP10, HMWC94, Rad92]. I/O [MMC01, Vit85]. IB [ZLC14]. IBE [Zha07]. IBM [Dit76, Dit76, MS02]. IBM/360 [Dit76, Dit76]. ICALP [AGK+10, ADG+08, AMSM+09, ACJT07].
CIM+05, ICCI [AKF90, KLT92], ICDT [AA86], Iceland [ADG+09], ICICTA [IEE11a], Icon [GG86b, GT93], iconic [WC94], ID [ZJ90], ID-Based [ZJ90], Idea [Gra94b, HL03, WPS+12], Ideal [Lis07], identical [Lia95], Identification [MV01, ST86, CJP12, CJP15, GS94, IG94, LWG11, WWG+18], Identifier [BSH12, Sev74], Identifiers [DB12, Wil59], Identity [CZLC12a, CZLC12b, CZLC14, KM92], Identity-Based [CZLC12a, CZLC12b, CZLC14], IEC [ISO04], IEEE [ACM04, Col93, IEE80a, IEE88a, IEE92a, IEE01, IEE05, IEE06, IEE07, IEE10, IEE11b, IEE13, MS05, IEE84, Yan10], IEEE/ACM [ACM04], IFIP [Gil77, Ros74], Igniting [ACM03b], II [BS91c, Sch93a, Sch93b, Van92, Vau93], III [Nol82b, OK80, Sed83a], Illinois [ACM88b, ABM06, BL88, Lom93], imm [DS84a, Wal74], Image [ANO95c, BFMP11, BS94a, BI12, DR11, GPA97, GH07, HW08, LQZH14, LI15, LÖON01, LC12, LYJ+13, MV02, OSR10, RGNPM12, SB97, TWZW11, THY+18, US09, WP10, WDF+12, ZWH17, HC11, LMLC14, Mit12, SB95, TCW+13], image-keyword [LMLC14], Images [FLF11, MNY81, PKW09, RT81, SSaS01, WMB94, WMB99, Gg92, LMLC14], Imaging [FHMU85], Imai [PGV90a, PGV93a, PGV93b], imbalance [WZ12], immutable [SV15b], Impact [GD87], imperative [NMS+08], Imperfect [Ven84], Implement [CL83], Implementation [BCS89, BS94b, BGDW95, Dat88, DF89, DKO+84b, DKO+84c, DKO84a, DKO84d, Dee82, Dev93, Dit76, DT75, EE86, EKMP80, FW09, GG86b, GT93, Gro86, Har71a, Hek89, ISK+93, JD12, Kah92, KMM+06, KU88, KM92, KR86b, KR86a, KKR07, KR09b, KTN92, LK84, Lit79b, LPP92, NM02a, PRM16, SDR83a, She91, SK05, Ste82, TGL+97, TNKT92, VL87, BDP+12, BS94c, BW92, DHW08, DM11, EBD91, GN80, GJM02, Inc81, IIL17, KU86, KKL+09, McD77, MZH19, MFES04, Tai79, Dit76], Implementations [GLG+02, Vit82b, WP4K94, WZJS10, DMP09, RAF07], Implemented [CMW83], Implementierungstechniken [Nee79], Implementing [Bab79, Buh95, BJM14, GJ+93, Gra86, Jun87, KHW91a, KHW91b, Lin96, Lo81, LB07, VL97], Implications [CHR84, CHS+18, RAD15], Implicit [OS88, Kor08], Impossibility [BCS09, HM12], Improve [LBJ02, BM01], Improved [Ari94, BvT13, BMB88, Bih08, Bre91, CN08, DDS14, DL17, FB87, HSM95, HW88, JNP14, KM86, Kut10, LW04, KKM10, LH04, Mau83, Mic02, Mul72, NSS+06, PS12, Rad92, RP95, SS80, SD95, TK17, UIY10, WM19, GM77, Mau68, War14, ZW05], Improvement [CH94, Fel87, RGMP12], Improvements [CTZD11, Lev00, Nam86], Improving [ATAKS07, AVZ11, BDS88, CHY93, CHY97, CAGM07, Cia77, DB12, GCMG15, JHL+15, MS12, RT87b, Sch82a, TCP+17, WYW10, ZGG05], Impure [Dee82], In-Bucket [TYZ15], In-Memory [CCW+17, ZWH01], In-Network [WBWV16], Inaccessible [HHR+10], Inadequacy [GY91], Includes [FW76, FW77], Including [DGV93, KL95], Incoming [LK07], Incompatibilities [KCF84], Incorporating [CBA94], Increased [PRM16, MSP12], Increment [Ban77, Luc72, RKK14], Incremental [BGG94, CT12, FRB11, GCS01, ISHY88, UIY10], Incrementality [BM97], incrementalization [SB07], Indeed [Yas07], Identify [KCF84], Independence [KW12, PPR09, PT16, Th013, DT14, PPP07, PT10a].
Independent [BG07, CCJ91, DGD02, DTS75, Die96, Ind01, MNS07, NSW08, TZ12, Han17, NT01]. Independently [AU79].

Index [BM89, BM90a, Buc82, Bur83b, Bur83c, DS84a, GPY94b, LC66a, Lou83, OL89, Oto5b, Qui83, TY91, Wil79, Bur83a, Fro81, GPY94a, HM03, LCH+14, McD77, SWQ+14].

Index-Based [OL89, TY91]. Indexable [RRS07]. Indexed [Chu91, Chu92, KHT89, Mul72, GB17, Tay89, WM93, TKI99]. Indexed-hash [WM93]. Indexed-Sequential [Mul72].

Indexes [Les88, Omi89b, Pip94, FVS12]. Indexing [CJ86, Dum56, KGJG12, Li15, Llo81, Per73, SE89, Tor84, Wil79, WMB94, WMB99, YWH09, WC10, Fly92, LG96, MIGA18, MMG10]. India [RRR99]. Indiana [Van10]. Indianapolis [Van10]. Indicator [YD84].

Indicators [Er86]. Indices [LR99, Val87]. Indifferentiability [CN08, LLG12, MPST16, BGKZ12, BDPV08, GLC08]. Indifferentiable [BGH12, CLNY06, FFS+13, FT12, BGH+13].

Indirect [Bal96, DGL16, Joh61]. Indirectly [Ols69]. Individual [Jan05, Jan08, Vio05]. Induced [de 69].

Industrial [PGV93c, ARA94]. Industry [ANS05]. Infeasibility [FS08]. Infinite [GHK91a, GHK91b, LI92, Bra09].

Influence [RTK12]. INFOCOM [IEE01, IEE92a]. Inform [Pro94]. informal [CK89]. Informatics [CHK06]. Informatik [No82a, No82b, OK80]. Information [PD91, BV89, BIP92, Can97, Cha84a, Dan13, DSS90a, Eil82, FC87b, FH89, FCD90, FCD91, GPY94b, ISO97, ISO04, KLT92, KM86, KM88a, LC06, MV01, MNS07, PV93f, SKC07, SPSP16, SC77, Sta06b, Sun15, Vid90, WBV16, Yan10, YR87, YBQZ17, AKF90, DSS90b, GPY94a, KSC11, KSC12, SG72, SXLL08, FNY92, FBY92, Gil77, Ros74].

Innovation [ACM03b]. Innovative [OG94b]. Input [AB12, Sab94]. Insecurity [DOP05]. insensitive [CyWM91]. inserting [Gup89]. Insertion [FPS13, PS12, CV83a, Jan05, Kon93, PY88]. inside-out [AP11]. Insight [CQW08, IEE02]. Installation [LAKW07]. instance [FS08]. instantaneously [DV07].

Instantiated [RR08]. Institute [Ano93d]. Instruction [BOS11, SS83]. instrumentation [Ano83]. Integer [Ano86, Die96, MV90, MV91b, Woe01].

integers [BCS89, Han17]. Integrated [DGKK12, PG17, NM02b]. integrating [ATKS07]. Integrity [CLS12, Sch01b, Sch01a, Wil96]. Intel [JHL+15]. Intellectual [DGKK12, IEE88a].

Intelligence [Kak93, ARA94, LLC89]. Intelligent [IEE11a, LJS+17]. intensive [Sih17]. inner [Kos14]. inter-system [Kos14]. Interacting [LLW10]. Interaction [ZLY+12, Bor81]. Interactive [CBK83, Cer85, CBK85, Dam93, Dam94, Dos78b, GK94, GK95, HR14, KG95, MS09, OVY94a, OVY94b, Rad83, Wee07, RWSN07, RW73, TCW+13, MS09].

Interconnection [Fah80]. Interest [ACM82, DT87, OSR10]. interesting [VNC07]. Interface [Vit85, WGM88, Bor81]. Interfaces [DCW91]. interleaved [RH90]. Internal [GL82, GL88, ITP14, LC88, Wil59].

International [ACM81, IJW89, PD91, ACM94b, ACM11, ACM12, AGK+10, ABB93, ABM06, AFK90, ARA94, VLD82, Ano89, Ano93c, AW89].
AAC^+90, A^+90, AINOW11, AOV^+99, AA86,
Bai81, BD88, BDS88, BV89, BIP92, Bhel00,
BBG09b, BJZ94, BRW93, BL88, BF89,
Bri92, BW92, BD08, BJ93, CML89,
Cop95b, DG96, DSS84, DSZ07, DJRZ06,
DJNR09, FNY92, FMA02, Fra94, Fre90,
GMJ90, Golv92, GSW98, HB93, HL91,
IEE80a, IEE84, IEE85b, ICD87, IEE88a,
IEE88d, ICD88, IEE88b, ICD90, ICD91,
ICD93, IEE94a, IEE95, IRM93, JBJ94,
JY14, Ker75, Kna89, KLT92, Kui92, LC06,
Lak96, Las87, LCK11, Lev95, Lie81, LS89,
LT80, LSC91, Lom93, MK89, MSDS90,
Mo92b, Nav85, Ng79, Pat90, PSN95, PV85,
PK89, QG95, RK89, RNT90, ST83a, ST83b,
SP90, Sho05, SW94b, SW94a, SC77.

International [Sti93, Sto92, Vau06, Vid90,
WPY90, IWS91, Yan10, Yao78, Ytr06,
YR87, Yu92, Yva92, Yum02, VL94, vdHvH12,
ADG^+08, ADM^+09, ACJT07, Bir07,
CIM^+05, Cop95a, Deb03, Gol96, HKNW07,
HF13, Wie99, ICD86, IEE11a, Sch82a].

Internet [Ano95d, ATAKS07, HLC10,
MCF17, Mcf03, She06, SXLL08, ZNPM16].

Internet-Draft [MCF17].

Internet-scale [ZNPM16].

Interpolation [Buc82, Bur83a, Bur83b, Bur83c, Wu84].

Interpolation-Based [Buc82, Bur83b, Bur83c, Bur83a].

interpretation [Fly92, Grv08].

Interpreter [CBA94, Gai82].

interprocessor [KK96].

Interrogating [HLI10].

Interrogating-Call [HLI10].

Interval [GY91, Lip02, BL89].

Intractable [TT93, IH95].

Introduction [Cob94, DK02, DK15, Fell05, Fox91, Har85,
Hua82, RW97, TS76, TS84].

Invariance [SvEB84].

Invariant [CPP08, HCF09].

Inverse [DK07].

inversions [Pat95].

Inverted [Les88, HC02, McD77].

IoT [HLL18].

IP [BLC12, BM01, HDMC09, IGA05, JL14,
MPL09, RW07, SXLL08].

IPSec [KMM^+06].

IPv4 [PT12b].

IPv6 [PT12b].

Ireland [ABB93].

iris [MMG10].

Irreversible [ANS97].

ISA [HL91].

ISAAC [AINOW11].

ISCA [Deb03].

Island [Rei88, IEE07].

ISO/IEC [ISO04].

Isolated [MMMT09].

Israel [Sch82a, BDS88].

Israeli [Coh94].

ISSAC [ACM94b, Lak96, Lev95, vdHvH12].

Issued [LG78].

Issues [MP90, LMSF89, LG78, Yu92].

Italian [FFPV84].

Italy [AAC^+91, AAS6, ST83a, ST83b, ANo94, De95, IEE88d, IEE92a].

item [WYD^+18].

items [Bay73b, CH09].

Itemsets [BMLLC^+19].

Iterated [Jon04, KVK12, HLMW93, HXMW94, KHK10].

iterations [OS10].

Iterative [MV02, SXLL16].

IV [Farr93, Sil02a].

IWDM [BF89].

J [Sar80].

January [ACM91d, ACM91a, ACM97a, ACM05, ACM08a, Kar88, Mat09,
SP90, Shm00, USE91].

Japan [IJW98, JBJ94].

JERIM [MJ08].

JERIM-320 [MJ08].

Jersey [Fre90, IEE84].

Jersey-sponsored [IEE84].

Jerusalem [BD88, Sch82a].

Johnson [SG16].

Johnson-type [SG16].

Join [Adi88, AT91, BM89, BM90a, CS83a,
CH89, DDG85a, DDG85b, FP89b, Gra93a,
Gra93b, Gra94a, Gra94b, Gru99, HR96,
KR91, KKV99, KL87, KNT98, KTB92,
KO90, KTN92, LR99, LDM92, LTS90,
MLD94, MLxx, MS88a, NKT88, NNA12,
NP91, OL91, OL89, Omi89b, OL92, PAPV08,
PG95, Pip94, RK91, SD98c, SD98a, SD98b,
SD90a, Shl86, SM87, Sol93, Spe92, TR02,
TY91, Top92, TP95, Toy93, TNKT92, Val87,
WYT93, YWY^+09, Yan85, ZG90a, ZG90b,
Zel91, ZJM94a, ZJM94b, ZJM94c, ZO93,
ALS10, BMS^+17, CAGM07, CyWM91,
GK05, ISO97, Kha95, KKL^+09, LNS11,
LEHN02, MMSY94, MuI92, OT89, PCK95, PCV94, RLM87, RG99, SD89d, SM94, SA17, SP89, TL93, UHT95, WL07, NNA12.

Joining [NP91]. Joins [CLYY92, CLYY95, DG93, DG94, DNSS92, GBC98, Gra86, HCY94, HCY97, LR99, LR96b, NNA12, PCL93a, SC90b, SC90a, SC90c, WDY91, YCRY93, AKN12, BAT93, BL94+14, HLH93, JHL94+15, LCRY93, ML95, PCL93b].

Joint [IJW89, AFI63, AFI69, MO92a, IEE92a, IEE01, ZC12].

June [ACM84a, ACM03a, ACM07, ACM11, ABM06, BMS89, BV99, BPP92, BF93, BL88, BF99, FMA02, Fre00, Van10, HFL93, IEE05, LS89, MS95, NL89, Oto85a, PB80, Riv76, Riv78, SD78, She78, Yao85a, FP82, GMW90, Wan05].

Knowledge [BDS88, BCI90, CLP13, CRdPHF12, Dam93, ISK93, OVY94b, Dam94, FNY92, OVY94a].

Known-Keypoints [CTZD11]. Known-Key [CTZD11]. Kawasaki [EE85c].

June [ACK94, ACM03a, ACM07, ACM11, ABM06, BMS89, BV99, BPP92, BF93, BL88, BF99, FMA02, Fre00, Van10, HFL93, IEE05, LS89, MS95, NL89, Oto85a, PB80, Riv76, Riv78, SD78, She78, Yao85a, FP82, GMW90, Wan05].

Key-Exposed [CTZD11]. Key-Recovery [CY06]. Key-Sequential [HB89a, HB89b].

Key-to-Address [LYD71, Lum73, SR63, LY72]. Key-Value [PRR95, Shi97].

Known [SY11]. Known-Keypoints [CTZD11]. Keywords [Coh98]. Khafr [BS91c]. Kinetic [Rey14].

Kolmogorov [CG92, Sch01b]. Komlos [KMS86]. KY [Rie89]. Kyoto [CG06, Got83, IEE85b, LT85].

L [Sar80]. Label [LQH18]. labeling [TCW13, YSL05]. Lam [Wag90].

LaMansion [Nav85]. lamp [McN03].

Landau [SV06]. Landmark [NNA12].

Landmark-Join [NNA12]. Landsat [MN81]. language [LG78]. Language [Cer81, CKB83b, Dit76, FR69, GJH93, GT63, GG86a, Har85, ISK93, KCB81, LG78, Wil59, BW92, CP95a, CKB83a, Lev69, YIAS89, YMI98].

Languages [ACM91d, DBM80, BR93, CL83, CHe85, IEE84, Jou85, Kui92, NMS92, Pat90, ACM91a, AGK+10, ADG+08, AMS+09, ACJ90, CRI95, DL95, DL97, GJ79, DGC85, GMR95, GT97, Inc92].

LAPI [MS02]. Laplacian [ZWCL10]. Large
[ABB93, VLD82, AW89, AOV⁺99, BD88, BH85, BCH87, BJZ94, BI12, CKB85, CML⁺13, CGO86, Chu90, Coh98, DSS84, DS09b, Dos78a, DT91a, DT91b, FM91, Fel87, FHCD92a, FHMV85, GLLL17, Gra92, Gra93c, Gri74, GS998, HB89a, HB92, Hil78a, Hil78b, Kcr75, KCR11, KRRH84, KK85, Kos14, LM95, LS16, LSC91, LYD71, MSDK90, MEK⁺14, MWC12, OGAB14, PAKR93, PV85, ST83a, ST83b, Sha86, SHF⁺17, SXL08, Tan83, Win90a, XNS⁺13, YWH09, Yua92, YGC⁺12, Zam80, Zem91, BZL⁺15, BT89, CFYT94, FES09, FHC92b, GC95, HB89b, LK93, LY72, MSK96, SHi17, TBC⁺05, Yao78, YMI89].

Large-Grained [PAKR93]. **Large-Scale** [GLLL17, LI15, MEK⁺14, YGC⁺12, CML⁺13, Kos14, SXL08, FES09, SHi17].

Last [PM89]. **Last-Come-First-Served** [PM89]. **Latency** [Sam81, SL16, WY00, KLV12, LD12, ZGG05].

Latency-sensitive [WY00]. **later** [Roe95].

Latin [CH06, DMPP06, CH06]. **Lattices** [KV09, LYY⁺18, GPV08]. **Java** [McN03].

laws [AK09]. **Layer** [YSEL09]. **Layered** [Man12, ZC12].

Lazy [AHs92, BJMM94b, BJMM94a, CF92, Hug85, KV91, MV88, VV86, MSV87].

LCCR [Cer85]. **LCFS** [PV97]. **Leakage** [NTY12, ZM17]. **Leakage-Resilience** [NTY12]. **Leakage-Resilient** [ZM17].

Lean [SV15b]. **Learn** [McC79].

Learning [LK94, Gk95, KG95, KKC12, KR⁺80, LQH18, LL10, Val15, Wan84, BC06].

Least [OG94b]. **Lecture** [Dev86].

LEDA [MN99].

Lee [KCL03]. **Leistungsanalyse** [Kue82a, Kue82b].

Leitmotiv [Kah92].

Lemmas [Gk76].

Lemmatization [DS98b].

Length [Dit91, Gon81, KLP98, LK94, Lit91, MF92, Men12, Mit73, PHL01, Phe90, Pea91, Sav90, Sav91, ZPS90, ZPS93a, GS94, KL95, LL15, Men17, ZPS93].

Lengths [Bra84a, Bra85, Bra86].

Less [DH01, Gk08, KHK12, LK16].

Letter [BBM68, CS85c, CS85b, Cha85, CL86, Cha86a, CW91, COSb2, JC88a, TL95, Tro95, Wan05]. **Letter-Oriented** [CS85c, Cha86a, JC88a, TL95, CL86, CW91, Wan05].

Leuven [BBD09b, BW92, PGV93c]. **Level** [CJC⁺09, BGG12, DAC⁺13, HL94, INe81, LDK12, MB00, SDR83b, TK199].

level-set [BGG12]. **Levelled** [LRY⁺15]. **leverage** [EE88]. **leverage / COMPCON** [EE88].

** Lexical** [RdPHF12, ISHY88]. **lexically** [FF90].

Lexicographic [BMLLC⁺19].

Lexicon [CK881, CK88b, CK88a].

Lexicons [CK88b]. **LFSR** [Kra94].

LFSR-based [Kra94]. **LH** [LNS93]. **LH⁺** [LNS96].

LHF [ZL12]. **LHS** [Moh90, Moh93]. **Li** [KCL03].

libdbh [Will4]. **libhashckpt** [FRB11].

Library [ACZ16, Bee99, Sou92].

Life [BCR04].

Lightweight [AHMP12, AHMP13, BDM⁺12, BKL⁺11, HK12]. **like** [JNP14, RS14].

Limited [GL82, GL88, SS90a, Wen92].

limitedness [LP04].

Limits [KST99, MMSY94, BVF12].

Line [AS82, Bry84, FFG07, H072, IABV15, Leb87, SS83, Tsa96, BBK12, HHL10, KRRH84, RW73, Tsa94].

Line-Oriented [Bry84]. **Line-Rate** [IABV15].

line / Off [HHL10].

Linear [Ald88, ADM⁺99, ATT98, Ano95a, AD11, BYS98, Ban77, BK70, BGS96, BW98, Cle84, CL09a, CM93, Dae95, Ell85a, Ell87, FPV8, HB89a, HB92, HH85, HYH93, HTY90, HSW88, Jak85, Jv16, Kno88, Knu98, Kor08, Kd92, Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Lar85b, Lar85c, Lar88b, Larxx, KKM10, Lit79b, Lit80, Litxxa, Luc72, Lyo78a, MSSW90, MY80, Moh90, Moh93, Mul81, Omi88, OGB14, OT91, OS83a, OA89, OOS83b, PPR07, PPR09, PT16, Pet13, PK87, PVM97, RSD84, RSD85, RSSD89a, RS92, RLH91, Reg82, Rob86, RT87b, SDR83a, SP90, TW91, Tz12, Toy93, VP96, VP98, WVT90, YD86a, Ald87, ADM⁺97, BJ07, Bou95].
Means [Bab79].

Measure [Bac02]. Measurement
[NS16b, SL16, LMP+08, RW07, ACM94c].

Measurements [KLSV12]. Measures
[MY79]. Mechanism [DGD02, Kum89a, Cha12, HKL04, JDF09, SF88].

Mechanisms [DF01, Set74], media [ZO13].

Median [HSPZ08, She78].

Medical [FHMU85, GPA97].

Meet [Sas11].

Meet-in-the-Middle [ACM84a].

Mehrfachattribut [Stu82].

Mehrfachattribut-zugriffsverfahren [Stu82].

Mehrfachattribut [Stu82].

Membership
[BM99, DP08, HKLS12, Pag01].

MeetGuard [CZ14]. memo [Hug85].

memo-functions [Hug85]. Mémoires
[Lit77b, Lit79a]. Memories
[DD15, KHW91a, MNS07, Sha86, vdBGL].

Memory-Contention [DG93, DG94].

Memory-Efficient
[YBQZ18, BLP+14, Shi17, XLZC14].

Memory-Efficient [HC14].

Merge [Gra94b, Gra99, AKN12].

Merge-Join [Gra99]. merging [SSU+13].

Merkle [Bak09, CDMP05, GB17, LRY+15, Mir01, MFES04].

Merkle-Damgård
[Mir01]. Mesh [CRR18]. Mesh-to-Mesh
[CRR18]. Message [AVZ11, BCK96a, BCK96b, EPR99, FIP02a, HK12a, KKRJ07, MRW89, NCFK11, RWSN07, Rog95, Rog99, Sho96, TC83, Tsu92a, Tsu92b, WS03, Yas07, GK12b, Kra95, MS09, Sta99, SV06].

Metadata [KP81]. metadata [DAC+13].

Method [AA79b, AA79a, Ari68, Bat75, Bel70, Bel72, Bel83, CS91, CC87, CLC92, CPP08, CLS12, Cie80a, Dos78a, DT75, FNP79, HD72, JO80, Jae81, Joh61, KR86b, KR86a, KNT89, KRV90, KR97, KRJ+80, Lam70, LK84, LPT12, LL86, LL87, Mal77, MNY81, McI63, Moh90, Moh93, Mul72, NKT88, NI83, PG95, Per73, Ram92, RJK79, RT87b, SD85, Sag84, SG76a, SS62, SR63, SSS05, Spr77, SHRD07, Ven84, WKBA07, Wu85, YD85, Zou85, BGG12, HW88, Kan91, Kan93, LP04, MI84, MF92, MFK+06, NH74, Vit80a, WLLG08, Wu85, Zou85, Ch80, Zob70a, Zob70b].

Méthode [Kar82], Méthodes [Lit77b].

Methodologie [Lit77a], methodologies [CE95].

Methodology [Hea82, GJM02].

Methods [AS16, Bay74, Bla00, Bra84b, CSSP15, CF89a, Eck74b, FSB85, FC87a, Gri98, HB89a, HB92, Kab87, Lit84, Lum73, WMHC96, ML75, MV02, Pip94, QC+81, SDRK87, SM87, TK88, CE95, GRF11, HB89b, Lev89, Mul92, RAD15].

Metric [Bai05, TWZW11].

Mémoire [Lit77a], mémoire [Hug85].

Mexico [ACM75c, ACM75a, VLD82, IEE91a, Gol94].

MHT [GB17].

MICHIGAN
[ACM81, BAI81, Bor81, Live81, Lie81].

Microcomputer [Ano83].

Microcomputer [Bai81].

Microcomputer-controlled [CBA94].

Microprocessors [DGD02].

Microsoft
[GBC98].

Mid [ACM85a], Mid-80.
Middleware

Milan

Min-Hash

Minihashing

Min/Max

Minimal

Minimean

Minimization

Minimized

Minimum

Mining

Missing

Mix

Mix-Compress-Mix

Mixed

Mixing

Models

Model-Based

Modeling

Modelisation

Modelling

Modelisation

Modelle

Models

Modern

Modes

Modified

Modula

Morphological

Moscow

Most

Motion

Motivating

Move

Moving

Multi

Multi-Agent

Multi-Attribute

Multi-core

Multi-Dimensional
Multi-Directory [PADHY93, AP93, Pro94].
Multi-Disc [CC87].
Multi-Disk [Cha88].
Multi-Entry [YLB90].
Multi-granular [CLS12].
multi-graph [Cll+14].
Multi-Index [GPY94, GPY94a].
Multi-Join [CHY97, TL93].
Multi-Key [KR86b, KR86a, SD85].
Multi-Level [CJC+09, MTB00, HL94].
multi-linear [Sar13].
Multi-Modal [KL87, YNW+09].
Multi-Proxy [ZJ09].
Multi-Replica [LRY+15].
Multi-target [HRS16].
Multi-Threaded [VBO0].
Multi-Version [Coh84].
Multiattribute [CLD82, Fal85a, Fal86, Rot89].
Multicast [DPH08, TW07, ATAKS07].
Multicomputer [AGMT11].
Multidimensional [Cob94, Hua85, HSW88, KS86, KS87a, KS87b, KS89b, LOY00, Oto84, Oto85a, Oto86, OS83a, OA89, OS83b, Stu85, Toy93, WFT12, IMRV97, LS07b].
multidisk [CCh88a].
multigrid [GZ99].
multihop [VBO0].
multigraph [Cll+14].
multimatch [XLZC14].
multimaps [AGMT11].
multimatch [XLZC14].
multimedia [Fox91, HLC10, ISK+93, LQH18, LZ16, RZ90, SSL+18, ZHC+13].
multimodal [MHT+13].
multi-permutations [SV94b, SV95].
multi-threaded [GK05].
multiprocessor [Bor84, LTR90].
multithreaded [GK05].
multithreading [CRO98, MIGA18].
multireplica [ZG99a, ZG99b].
multivariate [ZG99a, ZG99b].
multivariates [DY08].
multiview [SSL+18].
munich [BRW93].
munster [DIT76].
mur [LRY+15].
mur-dpa [LRY+15].
mutable [CJP12, GI12, CJP15, FF90, SPLHC14].
n [Sar80, FCH89, ISO97].
n-bit [ISO97].
nachrig [FT12].
named [WTZ+13].
names [ABC+16, DOS78a].
nancy [Joun85].
nanowire [rey14].
nasa [Fis87].
nashville [ACM94].
national [??69, Fis87, Oxb86, Ano83, IEE94b].
nato [ano95c].
natural [Cer81, KCB83a, Har85, KCB83b, Har85, KCB81, LG78, YMI89, KCB83a].
nature [LG78].
nat [IEEE89].
near [AI06, AI08, BT89, DD15, LQZH14, GJM02, SB97, Yuv75].
near-associative [DD15].
near-duplicate [LQZH14].
near-optimal [AI06, AI08].
near-perfect [BT89, SB97].
nearset [APE18, AI06, CL85, MW09].
PACT09, SY08, AI08, CW93, FH79, HFZ+15, LCH+14, SWQ+14, TYSK10.

nearest-neighbor [FH79]. Nearly
[HT01, FP82, MV91a]. nearly-constant
[MV91a]. Necessary
[IH95, Rus92, Rus93, Rus95]. Need
[HR04]. Negative [DF+07, SB95]. Neighbor
[AEP18, AI06, CL85, MW09, PCM15,
PACT09, SY08, AI08, CW93, FH79, GJM02,
HFZ+15, LCH+14, SWQ+14, TYSK10].
Neighbor-sensitive [PCM15].

Neighborhood
[DHL+94, DHL+02, D+92, SG72]. neighbours
[Yuv75]. Neither
[CP91a, CP91b]. neophytes
[Gre95]. nested
[FK89, MMC01, TMB02]. netflow
[LDK12]. Netherlands
[dBvL80, CP87, vL94, AW89]. Network
[HCJC06, HLC10, JL14, KHK15, MK11,
PLKS07, Ven86, WBWV16, YBQZ18, AS09,
CVR14, DFMR15, Die90, FVS12, KL08,
RAL07, TLLL07]. Networking
[ACM04, LCK11, LZ16, WBWV16, WTZ+13].

Networks
[DK09, DPH08, Jai89, Jai92a, Jai92b, Jaixx, JLH08, Kak93, Ksl84,
LDY+16, PLKS07, SV94b, SPSP16, SMS91,
TGGF10, ZQSH12, AK09, AF12, BCCL09,
Cha12, GB14, LG13, LND08, MLP07,
PES+12, SV95, SX08, TBC+05, WHS+07,
WWG+18, YG10, ZBB+06, BB07, CT10].

neuer [Bl+87]. Neuralex
[Kak93, WWG+18].

Nevada
[IEE10, AFI69]. Next
[DCW91, She91, CCA+12, CT10, KKP92].
Next-Generation
[She91, CCA+12, KKP92]. Niagara
[AFK90]. NiceHash
[Nic17]. NIDS
[KJC11, TK07]. NIDS/NIPS
[TK07]. Nineteenth
[ACM08a, IEE95]. Ninth
[ACM77b, SS82, ACM77a, ACM97b, Kar98,
ICD93, ST83b]. NIPS
[TK07]. NIST
[Bou12, RRS06]. Nixdorf
[adHMR93]. NJ
[GMJ90]. NL
[DSS17]. NMAC
[CY06, RR08]. NMAC/HMAC
[RR08]. No
[AKS78, CP91a, KR01, CP91b, GB14,
Pro94, Sar80]. node
[LG13, THS97, WL07]. Nodes
[BGF88, RAL07]. Non
[BCFW09, Boo74, FNS88, KS86, KS87b, LT12, LS96,
RWSN07, SD78, SA97, TSY98, ZH18, TY14,
Ald87, CCA+12, ESRI14, FP82, MLP07,
MP16, PBBO12, Sar15, SXL16, Lut88].
Non-biased
[TSY98]. non-blocking
[PBBO12]. non-compressing
[MP16]. non-cryptographic
[AY14, ESRI14]. Non-expansive
[LS96]. Non-interactive
[RWSN07]. non-iterative
[SXL16]. Non-malleable
[BCFW09]. Non-oblivious
[FNS88]. Non-programmable
[LT12]. non-random
[FP82]. non-randomness
[Sar15]. Non-rigid
[SA97]. Non-standard
[Lut88]. Non-Uniform
[KS86, KS87b, Ald87]. non-uniformly
[MLP07]. Non-Unique
[Boo74, SD78]. Non-Volatile
[ZH18, CCA+12]. nonchalantly
[Gre95]. Nonclustered
[Omi99b]. noncontinuous
[ZO13]. nondestructive
[AD08]. Nonlinear
[MLHK17, LC13]. Nonmalleable
[LP15]. nonnumeric
[JMH02]. Nonoblivious
[FNS92]. Nonstationary
[WB90]. NonStop
[Eng94]. Nonuniform
[Ald88, KS87a, KS89b, PK87]. nonuniformly
[MPL09].

Noordwijkerhout
[dBvL80]. NOrec
[DSS10]. Norm
[Aum09, HFF+17]. Normalization
[RGNM12]. Norway
[Hel94, Ytr06, Ano95c]. NoSQL
[EH17].

Nostradamus
[KK06]. Notary
[Cip93]. Note
[Bob75, CC91, Dit91, GIS05, Gei95,
Gei96, Gur73, Lit91, Pea91, Sav91, SVCC01,
Ull72, Yao80, Bay73b, FH79, Sar80]. Notes
[Dev86]. Nothing
[SD98c, SD98a, SY99, SD98d]. Nouvelle
[Lit79a]. Novel
[DR11, LYY+18, CML07, NW07, PHG12,
YSW+11, ZSZM17, HLL18, LMP+08].

November
[ACM87, ACM94a, ACM94b, ACM94, AFI69,
FNY92, Goi94, adHMR93, IEE82, IEE88d,
IEE89, IEE90, IEE91a, IEE93, IEE02, IRM93, LCK11, PSN95, ST83a, ST83b. NP [FS08]. Nroff [Hol87]. NTRUSign-Based [ZJ09]. Number [Ano86, Bat75, Dos78a, Gui89, WL12, Aam03, ASW87, CP13, HC11, Hua82, KW94, TSY98]. numbering [Hol87]. Numbers [Ano86, ASW87, BK07a, CP13, HC11, Hua82, KW94, TSY98]. Numbering [Cli95, DM11, VNC07]. Numbers [BJMM94b, BJMM94a, Coh98, HSR +01, OG94a, MFK +06, OS10]. Numerals [Hol87]. NV [CCA +12]. NV-Heaps [CCA +12]. NY [ACM12, GSW98, Mat09, IEE80b, IEE88c]. O [FHC89, MMC01, Vit85]. OBDD [Woe01]. OBDD-Size [Woe01]. Object [BDPSNG97, BP94, EE86, GK94, GK95, Hej89, ISK’93, KG95, KM92, LDM92, MBBS12, PKW09, PW94, SA97, TR02, WPKK94, YWH09, WL12, DMP09, DM11, Fly92, GMP95, GG92, LG96, BM90b]. Object-Oriented [BDPSNG97, ISK’93, LDM92, TR02, DMP09, DM11]. Objects [Bar97, BS94b, KM92, SR01, BS94c, CCA’12, GP08, TD93]. Obvious [Cha94, GM98, HK12a, PWYZ14, SS88, CHL07, FNSSS88, PWYZ10, SS90b]. Observations [Bal96, Sti06]. obtain [Vit80a]. Occupation [vM39]. Occurrences [ZC77]. Occurring [She78]. OCR [Wan84]. Oct [IEE80b, WS93, War14]. Oct-Tree [WS93, War14]. October [ACM85a, Ano93a, Ano93c, BD08, CE95, IEE74, IEE76, IEE80a, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IE99, IE90, IE07, IEE10, IEE11b, IE13, Já90, Lom93, Mo92b, ST83a, ST83b, USE00a]. Octree [CJC’09]. ODBF [ODB89]. odyssey [IEE01]. off [GW94, Sar11]. Off-line [HHL10]. Office [DGM89, FC87a]. Offline [GAS’16]. Offs [ASBdS16, Blo70]. offset [HLL18]. OFL [GP95]. OH [BD08, IEE94b]. Ohio [Fis87]. OHLCAP [HMNB07]. Old [LF11]. On-Line [AS82, FFGOG07, SS83, BBKN12, HHL10, KRRH84, RW73]. On-line/Off-line [HHL10]. One [MNS07]. One [BCFW09, DGV93, Dit76, GK08, HHR’10, HYLT99, JL098, HGH’12, LM84, Lar88b, LAKW07, LOZ12, LMD’12, LC05, LP15, Lyo85, Mer90b, Moh11, OGBA14, PWY+13, RH09, Roe94, Ru93, SP91, Sch91a, Sho00a, Tsn92a, Woe07, Win83, Win84, Yoo07, YZ00, ZPS90, Zhe90, ZMI91, ZPS93a, CMR98, Gib91, HR07, HL03, IEE92a, KST99, KM10, LW04, Mer90a, MZ98, NY89b, NY98a, Roe95, Sim98, STS+13, Tsn92b, ZW05, ZPS93b, HMNB07]. One-access [Lar88b]. One-Hop [RHM09]. One-Pass [LMD’12]. One-Step [Dit76]. One-Time [LAKE07, Moh11, PWY+13]. One-Way [BCFW09, DGV93, GK08, HHR’10, JL098, LP15, Roe94, Ru93, Sch91a, Sho00a, Tsn92a, Woe07, Win83, Win84, YZ00, Zhe90, HYLT99, LC05, ZPS90, ZMI91, ZPS93a, CMR98, HR07, HL03, KST99, LW04, Mer90a, MZ98, NY89b, NY98a, Sim98, Tsn92b, ZW05, ZPS93b, HMNB07]. Online [BBKN01, Ds87, FW06, FR91, Yoo83, Kue84a, Mir17, SI09, TP15, PES+12]. Online-fehlerbehandlung [Kue84a]. Online-fehlererkennung [Kue83]. Only [EH12, MT11, NM10]. Ontario [KLT92]. Open [AMP15, Bra84a, Bra85, Bra86, Fel87, Gon77, Gon80, Kno71, Kno88, LH03b, LH03a, Mit09, MC86, SS80, NK16, TT81, van73]. Open-Addressing [Gon77, Gon80]. Operating [ACM87]. Operation [CLS12, KL87, PHG12, AS89]. Operationen [Nee79]. Operations [ANS10, Bra84b, El83, Ers58a, Gir87, He87, HY89, HY93, HY86, HY90, Kum90, Kut10, MSSW90, SG76a, Wu85, JHM02]. Opportunistic [LDK12]. OPS5 [KS99]. Optical [CF89a, Vit85, CF89b]. OPTIK
Optimal [AU79, Al06, Bat50, Bat82, BR94, BBP88, BW98, BMRV02, CC88a, Cha84a, CHM92a, CHM92b, DA93, FC87b, FP89b, HR93, HRRB13, Jag91, KK12, KK18, KP92, Kri84, LL92, LCM94, Lip02, MLP07, Men12, Men17, Mor83a, OWZ14, PP08, RR92, Riv76, Riv78, Tro06, Yao85a, Yao95, YCY93, YSELF9, Al08, GSS01, LCRY93].

Optimality [Bol79, CLC92, JP08].

Optimizing [DGGL16, LOY00, MBK00, PF88, SW91, SV15b, WL12, TCW+13, WTN07].

Optimum [VC85, vdp72, vdp73, van73, Vit80a].

OR-parallel [Cra85]. Oracle [GHR99, LT12]. Oracles [Can97]. Order [FOC90, FOC91, GG86a, HI92, HM12, HS88, Oto88a, Ouk83, Rob86, Tam81, AKY13, BMLLC+19, DI94, DLM07, HKKK13]. Order-Preserving [GG86a, Ouk83].

Ordering [LY78a, GM79, Sab94]. Oregon [IEE93, ACM85b, CLM89]. Organisation [Lit77a, Wie87a]. Organization [ACM75b, Ano85a, ANT85, Ast80, Bu63, DS84b, Gho77, Gho86, IE88b, KK85, LKS4, LTX5, LI80, Lit89, LS89, Lom88, Lom93, Mar75, Mar77, Obs99, QCH+81, SL89, TLA4, Tha84, TS85, Wie83, Wu85, BR75, Bat65, IL90, Koun93, RM88, VBW94].

Organizations [CF89a, Sch79b, Sch81, Toy86, YD86a].

Organized [FLF11]. Organizing [HH85, Som99, TY03]. Orientability [FP10]. Orientation [BH93]. Oriented [BDPSNG97, Bry84, CS85c, CS85b, Cha85, Cha86a, CO82b, DCW91, ISK+93, JC88a, Kie85, LDM92, PV92, TL95, TR02, Tro95, CL86, CW91, CW93, CKW93, DMP09, DM11, Wan05].

Optimally [Woe06a]. Optimierungsfragen [Wal74]. Optimistic [GT16]. Optimization [ODB99, AP17, BG92, Kie85, KM80, MXL12, Mir17, MWC12, TV83, XNS+13, YNW+09, Yub82, DJZ96, DJZ98, TLO+12].

Optimized [CVR14, EPR99, ZH18]. Optimizer [ML86].

Oracle [GHR99, LT12]. Oracles [Can97].

Organisation [ACM75b, Ano85a, ANT85, Ast80, Buc63, DS84b, Gho77, Gho86, IEE85b, K85, LK84, LTX5, LI80, Lit89, LS89, Lom88, Lom93, Mar75, Mar77, Obs99, QCH+81, SL89, TLA4, Tha84, TS85, Wie83, Wu85, BR75, Bat65, IL90, Koun93, RM88, VBW94].

Papers
[ACM75c, ACM76, ACM77b, LFP82, LC86b, SC77, ACM79, ACM91d, Bai81, Bor81, GMJ02, IEE88a, Ytr06, Bir07, FNY92, JY14].
Paradeisos [JWM+18]. Paradigm [BM97, CS02], paradox [RK15]. Parallel [ACM91c, PD191, And88, Ano93d, AEMR09, AR17, AT91, BFG+95, BH91, Bis12, BRW93, Bor84, Bur81, CDm89, CdM90, Chi91, Chi94, CT96, DNS892, DA93, DS97, GST90, GM94, GM98, GI77, Gra94c, GZ99, GC90, HB93, HNS84, HC07, HCY97, IG77, J´aj90, KU86, KU88, KR91, KCJ11, KO90, KTN92, LLC17, LPP91, LPP92, MD97, MLD94, MV90, MV91b, Mat93, MK98, Mi85, MK93, NM02a, PAKR93, Pap94, PK89, PRM16, PSR90, PW94, Rag93, Ram89b, RS92, RH92, CR94, RK89, RNT90, RK91, SS01, SD89c, SD89a, SV94a, SPW90, SB93, SK98, SA17, TR02, TK85, Top92, TP95, TNK92, WPY90, WP9K94, WS93, WYT93, Woo89, Wu85, IWS891, YLB90, Yen91, YB95, ZWH17, ZO93, dK94c, vW94, vdVL12, ALS10, AKN12, ASA+09, CZL12]. parallel [CyWM91, Cra85, Don91, Fis87, GLHL11, HK95, KP92, MV91a, MP90, Mol90a, Mol90b, OT89, PCK95, RLM87, SK88, SD89d, ST8+13, TL93, UHT95, War14, adHM93, KL95]. parallelism [ASM17, Ged14, MMSY94], parallelizable [MP16]. Parallelizing [GK12b, WDYT91]. Parameter [CC88b, GB10]. parameterization [SS15]. Parameterized [SS89b]. Parameters [HRB13, HYLT99]. parazoa [AMP12]. PARBASE [RNT90]. PARBASE-90 [RNT90]. Paris [LS89, Coh94]. Parities [Val15]. Park [IEE84, IEE89, J´aj90]. PARLE [BRW93]. Parser [HC87]. parsing [Tai97]. Part [ANS97, Bor81, ISO97, ISO04, MBBS12, Sed83a, ADG+08, AMSM+09, KMV10, Wil93]. Part-Graph [MBBS12]. Partial [AU79, Bur75b, Bur76b, Bur76c, Bur78, Bur79, Can97, CLD82, Chn90, CY06, Cor02, Jag91, Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Larxx, LKI10, Mor83a, PF88, RLT83, RSD85, RSD89a, RSD89b, RSD90, RSD92, TGGF10, YD86a, CC89a, FaI88, Hua85, Riv74a, SDR83b, SNW06, YD86b]. Partial-Domain [Cor02]. Partial-Match [AU79, Bur75b, Bur76b, Bur78, Bur79, Jag91, RLT83, RSD90, RSD92, RSD99a, RSD89b, Hua85, Riv74a]. Partial-Relation [PF88]. Partially [PCL93a, PCL93b]. particles [Lia95]. Partition [LKI10, LC96, WZ12]. Partitioned [Ger86a, LR96a, NKT88, SW91, Ger86b, HKL07, MZK12]. partitioner [KKP+17]. Partitioning [Bre91, Ged14, PFM+09, SB816, WBW16, ZRT91, vM93, CKKK90, CKKW00, EH17, HAK+16, Kim99, LL13, PCK95, SKD15, UHT95, AP11]. partitions [DKRT15]. Partly [OTKH11]. PASCAL [Dir76, Hil88, H84, Dir76, G891, Hej89, Sch76, TA81, TA86]. Pay [ACM97b]. Pay [LMD+12, OGBA14, YDT83]. Passbits [MB03, Bur05]. Passed [Gra94b]. passive [RW07]. Password [ASdS16, GAS+16, JK11, KV09, WG00, BSNP96b, GL06, KCL03, KU04, KCC05]. Password-Based [KV09, BSNP96b, GL06]. Path [Her07]. Patch [B12, BZL+15]. PatchTable [BZL+15]. Path [GO15, CVR14, CHL07, VNC07]. Paths [Kul84, AAB+09, VNC07]. Patricia [KS12]. Pattern [iA94, BT94a, BT94b, CG79, Fre90, G91, IEE88d, KR81, TK07, CLS95, ISH88, Kim99, Sch91a, ZO13, YIAS89]. Pattern-Matching [KR81]. Patterns [BH85, CLC06, HSP208, OTKH11, SK98, BCU10, KRML09]. pauco [DMPP06]. Pay [LHC05]. Pay-Word [LHC05]. payment [LHC05]. PCPs [FS08]. PDE [GZ99]. PDEs [Gri98]. Pebbled [Dev99, CM01]. Peer [CCF04, JXY07, KLSY07, KS12, LMSM09, PFM+09, SM02, LMSM12, WHS+07].
Peer-To-Peer [PFM+09, CFC04, JXY07, KS12, LMSM09, SM02, LMSM12, WHS+07].
Perceptual [LC12, MV01, MV02, NS16a, RGNMP12, SL16, HKL04, LMP+08].
Perfect [AN96, AA79b, AA79a, Ari94, BHIMM12, BBD+82, BBD+86, BS94b, BS94a, BW98, Bla00, Bla95, BPZ07, BT90, BT94a, BT94b, BH86, Bur92, BC90, Cer81, CKB83b, CBK83, Cer85, CKB85, CBK85, Cer87, Cer88, CLD82, CS83a, Cha84b, Cha84c, CS85c, CS85b, Cha85, CS86, CL86, Cha86b, CC88b, CCKJ91, CW91, CL05, CLC06, CT12, CJC+09, CRS83b, Cie80a, Cie80b, CO82b, CHM92a, CHM92b, CM93, CHM97, Dat88, DKM+94, DH01, Die07, DIJS80, DHJS83, Duc08, DM11, FM96, FCHD88, FCHD89, FCDH90, FCDH91, FCH92, FHCDO92a, FK84, FH15, Get01, GHK91a, GHK91b, HT01, J080, Jae81, JD12, KH84, KM86, KM88a, KCB81, Kra82, KP94, LR85, LH06, LLLC17, Mai92, MWC89, MWHC96, Meh82, NRW90, Nil94, OG94a, OG94b, Pag99, PV92, PG95, Pes96].
Perfect [RL89, RP91, Ram92, SB95, Sag84, Sag85a, Sch90a, SvEB84, Spr77, Tro92, Tro95, WX01, Win90b, Win90a, Wol84, YDT83, YD84, YD85, AAB+92, AG10, BJ67, BBPV11, BS94c, BT89, CKB83a, CK89, CL09b, Cze98, DF89, DFM+88, DKM+91, DHW08, FH89, FHCDO92b, GS89, HK86, Han17, HM93, JWM+18, Lia95, LC13, MtT08, MiI05, MiI05, Pag01, RB91, SB97, SS92, ST85, SH92, SH94, SL88, SiI02b, TKI99, XMLC11, WC07]. Perfectly [CM98]. Performance [ACM04, AP93, ANS09, BM89, BM90a, Bre91, Bur83c, CL85, CC87, CS87, Chr84, CH94, DGG+86, DR92, DadH92, DS97, Don91, ESR14, FC87a, Fla81, Fla83a, Flo87, GD87, Gra88, Gra89, Gra93a, Gra93b, Gri74, Hac93, HSMB91, HC13, IEE94c, IG77, KS89a, Kha95, KK96, KTN92, Kue82b, Kvn90, Lar80c, Lar81, Lar82a, Lar82b, Lar85c, LCK11, LLL09, LMSF89, Lith84, Lit85, Lom88, LYD71, Lym73, Lyo83, MXL+12, Mac95, ML86, ML94, MIY79, Mil85, Mul85, NM02a, NP99, Om91, Pal92, PB80, Pro94, Ram89b, RZ97, RSS90, RHL90, RHL91, Roe94, Roe95, RT87b, SD85, SD89c, SD89a, Sch79b, SC90b, SC90a, SC90c, She91, TKN9T2, TM02, TMY96, Vit83, Yen91, YB95, BMQ98, BW89, CAGM07, CF89b, HM03, Kom93, LL15, LY72, MA15].
Prime
[Bat75, HM12, Mue94, OG94a, WS03, Lar84].
Primes
[Die96, ACP10]. Primitive
[Kil01, Mue04].
Principal
[Cha88, MW09, SA97, US09].
Principle
[Cha88, MW09, SA97, US09].
Principles
[ACM82, ACM83a, ACM83b, ACM85b, ACM85a, ACM86a, ACM86b, ACM86a, ACM87, ACM89a, ACM91d, ACM91a, ACM91b, ACM91c, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM08a, ACM08b, ACM09, ACM90, ACM90, ACM93, ACM94b, ACM94a, ACM94c, ACM94d, ACM94, ACM95, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM08a, ACM11, AFK93, ABB93, ABM06, AH03, ACM02, ACM03a, ACM05, ACM08a, ACM11, AFK93, ABB93, ABM06, AH03, ACM92, AAC+91, A+90, AI1991, AOV+99, BDD88, BDS88, BF92, Bor85, Bri92, BD08, BJ93, CP87, CML89, Col93, CHK90].
Privacy
[AFK83, ACP10, RT87b, GJM02].
Privacy-Preserving
[BJL16, GZX14, QZD+18].
Probabilistic
[Bla90, BK90b, FL83, FPV98, JV16, Knu98, Lar85b, Lyo78a, MY80, PPR09, PT16, Pet13, PK87, PVM97, SL16, TZ12, VP96, VP98, Ald87, Jan05, LWJ+17, PPR07, PT10a, Ram89a, Val90].
Probabilities
[Ald88, PRK98, vM93, Ald87].
Probability
[Of10, Gon83, NY83, Ram88a, MV91a, NN90, Nil94, Ram87, Sar11].
Probe
[AA79b, AA79a, Gon81, OT91, Spr77, LWJ+17, Mil89, Pag01, SS88, SS90b, Sun93].
Probes
[Lyo85, Ros06, Ros07].
Probing
[Ald88, BBS90, Cle84, FPV98, JV16, Knu98, Lar83b, Lyo78a, MY80, PPR09, PT16, Pet13, PK87, PVM97, SL16, TZ12, VP96, VP98, Ald87, Jan05, LWJ+17, PPR07, PT10a, Ram89a, Val90].
Problem
[DSS17, DM90, GB10, HP63, Hop88b, Mit73, NAK+15, Val15, BC06, HKP97, HCF95, LP04, Loh89, Sun91, Sun93].
problem-based
[BC06].
Proceedings
[DJZ06, FHUM15, Yu82, ZO93, AMP15, CP96, COS2a, JWM+18, WZ12].
Process
[FS82, Pro94].
Processes
[WB90].
Processing
[APV07, BG92, CCW+17, Dan13, Eld84, GES90, Ger86a, Ger86b, Gil77, GSL17, Gra92, Graf94, HB93, Har85, HCJC06, IABF15, KMV10, LLL17, LC96, MK89, MS88a, Omi89b, PAPV08, PAP94, PK89, R89, SAC86, Sch90b, SD90b, SD90a, ADG+98, AMM+99, Ano83, AA86, DB03, Fis87, Van10, HL91, HF13, IEE90, Jen76, M92b, SM12, USE90, Win78, ACM94d, ?769, ACM75a, ACM79, ACM82, ACM83a, ACM83b, ACM84b, ACM85b, ACM85a, ACM86b, ACM86a, ACM87, ACM88b, ACM89b, ACM90, ACM90, ACM91d, ACM91a, ACM91b, ACM91c, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM08a, ACM11, AFK93, ABB93, ABM06, AH03, ACM92, AAC+91, A+90, AI1991, AOV+99, BDD88, BDS88, BF92, Bor85, Bri92, BD08, BJ93, CP87, CML89, Col93, CHK90].
Proceedings/Ninth
[ICD93].
Proceedings/Seventh
[ICD91].
Proceedings/Third
[ICD87].
Proceedings
[FS82, Pro94].
Processes
[WB90].
Processing
[APV07, BG92, CCW+17, Dan13, Eld84, GES90, Ger86a, Ger86b, Gil77, GSL17, Gra92, Graf94, HB93, Har85, HCJC06, IABF15, KMV10, LLL17, LC96, MK89, MS88a, Omi89b, PAPV08, PAP94, PK89, R89, SAC86, Sch90b, SD90b, SD90a, ADG+98, AMM+99, Ano83, AA86, DB03, Fis87, Van10, HL91, HF13, IEE90, Jen76, M92b, SM12, USE90, Win78, ACM94d, ?769, ACM75a, ACM79, ACM82, ACM83a, ACM83b, ACM84b, ACM85b, ACM85a, ACM86b, ACM86a, ACM87, ACM88b, ACM89b, ACM90, ACM90, ACM91d, ACM91a, ACM91b, ACM91c, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM08a, ACM11, AFK93, ABB93, ABM06, AH03, ACM92, AAC+91, A+90, AI1991, AOV+99, BDD88, BDS88, BF92, Bor85, Bri92, BD08, BJ93, CP87, CML89, Col93, CHK90].
Sha86, Sol93, SPB88, Spe92, Tha88, Toy86, WPY90, IWS891, YkWY83, BZZ12, Bra88, CP95a, CCHKW00, Ged14, GC90, HLH13, Kan91, Kan93, LLC89, RAD15, Ros74, Sab84, SK88, SP89, WLLG08, YMI89, Yu92.

Processor [Adi88, KL87, SM87, YCRY93, ISH+91, LCRY93, TLLL07, YNW+09].

Processors [Pap94, Ros06, Ros07, Wil59, JHL+15, KL08, KW94, TLLL09, YIAS89].

Producing [DV07, RVPV02, Win83].

Product [Du86, YGC+12, OS14].

Productive [Bor81].

Profile [SSU+13].

Profile-guided [SSU+13].

profiling [VNC07].

Program [Hil88, Kru84, Mai83, Mai92, Meh82, SS80, BZZ12].

Programmable [HM12, HK12b, LT12].

Programmer [Cro98].

Programmiersprache [Dit76].

Programming [LFP82, ACM91d, dBvL80, BM87, BGS96, Dit76, Dun89a, Ers58a, Ers58b, GG86b, Har71b, Har73, IEEE97, Jon85, Knu73, Knu75, Ku92, LII92, Mau68, NS82, Pat90, SSS05, dKHC49, ACM91a, AGK+10, ADG+08, ALS10, AMSM+09, ACJT07, BW92, CIM+05, DLH+79, Er86, Sab94, TMW10, YIAS89, BW92, Las87].

Programs [AR16, Hea72, PAKR93, Ers58b, FDL86, MP90, NMS+08].

progress [Wolf93].

progressive [XMLC11].

Progressively [DVS+14].

Project [DGS+90b, DGS+90a, Tro92, NM02b].

Projecting [AT93, AT90].

Projection [Bur78, SPW90, AS89].

Projective [ACP09, HK12a, KV09, Wcc12, FH15].

PROLOG [CJ86, Bor84, Coh84].

Proof [CZLC12a, CZLC14, Cor02, LYY+18, LT12, SDW14, ZMM17, DLM07].

proofing [CHL07].

Proofs [CZLC12b, CS02, KK12, KK18, NTY12, WG00, Wee11, Li10].

Propagating [DSSW90a, CML+13, DSSW90b].

Properties [Bal05, Bol79, CS83b, CLC92, Lit85, RS12, TSS5, WSS7, ZMB91, GW94].

Property [BR06, DGKK12, FLP14, Rja12, SRY99, Ter87, FL08, FLP08].

proposal [LJ15].

Proposed [CP91c, HPC02].

Protecting [LMJC07].

Protection [DF01, DGKK12].

Protein [LLW10, ZLY+12].

Protein-Protein [ZLY+12].

Protocol [Ano95a, BT12a, Dam93, GI12, HMNB07, HCPB12, TLC10, JRPK07, JK11, OYV94b, TY03, CJP15, Dam94, GB17, LW04, OYV94a, SPLHCB14, CJP12, JL14].

Protocols [LLL09, SDK91, KLL+97].

Provable [ANS09].

Provably [DLY90, DLY91, HM96].

Provide [Sch01b].

Providence [IEEE07].

Proving [Kil01, WS76].

proxies [TC04].

proximity [SX08].

Proxy [ZJ09].

Pruning [CT12, MD97, HC02].

Pseudo [DW83a, FLF11, WFW+12, dW83b, MFK+06, PVCQ08, TSY98, WS13].

Pseudo-Associative [DW83a, dW83b].

pseudo-collision [WS13].

pseudo-random [MFK+06].

pseudo-randomness [PVCQ08].

Pseudo-structural [FLF11].

Pseudochaining [HP78].

pseudoentropy [VZ12].

Pseudorandom [BK12, NAK+15, OS10, SP91, Aam03, CP13, VZ12].

PUB [Nat95, FIP93, NIS93].

Public [ANS97, ANS05, BBR88, CLP13, Cip93, CS02, Dam87, HR04, LRY+15, NTY12, LW17, Oka88].

Public-Coin [CLP13].

Public-Key [CS02, NTY12, Oka88].

Publication [Nat92].

publish [MJ14].

publish/subscribe [MJ14].

Puerto [IEEE91b].

Purpose [Ch91, Ch94, Sch91a].

putting [Col93].

pyramid [MHT+13].

QC [JY14].

Quadratic [Ack74, AC74, Bat75, Bel70, Bel72, Bel83, BI87, Bur75a, Day70, Eck74b, HD72, Lam70, Rad70, NH74].

quadratischen [BI87].

Quality [THY+18, YWH09, GW94].

quality-size [GW94].

Quantification [GC95].

Quantile [KS87b, KS89b].
Quantitative [Hea82]. quantities [Bee83].
Quantization [YWH09, YGC+12].
Quantum [BBD09b, BHT97, BHT98, MKAA17, BD08, BBD09b]. Quark
[AHMPN12, AHMPN13]. Quasi [Cze98, LLW10, MD05]. Quasi-Bicliques
[LLW10]. Quasi-perfect [Cze98]. Quasi-Pipelined [MD05]. Quaternary
[KP96]. Québec [ACM02]. Queensland [SZ93]. Queries
[APV07, Bur75b, CLD82, Cha84a, CHY97, DHL+94, DHL+02, GST90, KS12, LCML94,
LOYO00, LLG+17, LB07, ML86, PAPV08, PF88, SD90b, SD90a, SW91, Sol93, Stu85,
BZL+15, DH84, Fa88, HYKS08, HAKM15, HAK+16, HR93, HF91, Hua85, LL13,
MBKS07, SWQ+14, TL93, Wil87, Wil85a]. Query
[ODB89, BG92, FB87, Ger86a, Ger86b, Gra92, Gra93c, Gra94c, HLC10,
HFZ+15, HFF+17, Kie85, Kim80, LC96, MS88a, Sac86, SD89b, Sch90b, Spec2, TS85,
Toy86, CCY91, CKKW00, DSD95, GMP95, LYJ+13, LMLC14, Loh89, RAD15, SP89,
WLLGO8, YLC+09, Yu92]. query-adaptive [LYJ+13]. Query-aware
[HFF+15, HFF+17]. Querying
[CN07, LÖON01, TT10, AK09, NDMR08]. Questions [Mit09]. Queue
[KV91, MV88, KM07]. queueing [MSV87]. Queues
[AFK83, AFK84, Woo89, GJM02]. quick [FDL86]. QuikFind [Cha91].
Quotient
[BK70, Bel70, Bel72, Bel83, Bur75a, Lam70].

r [KKT91, WYW14]. R* [ML86]. r-th
[KKT91]. Rabin [FHT97, GBY90]. radio
[CJP12, CJP15]. radio-frequency
[CJP12, CJP15]. RadioGatún
[BDPV06, BDPV09, BF08]. Radisson
[ACM85a]. Radix [FB87, Lin63, SKD15].
Radon [GH07, RGNMPM12]. Ragged
[Ros77]. RAM [PSR90]. RAMA [MK93].
Ramanujan [SV06]. RANDOM
[DJRZ06, DJNR09, AD85, Ano86, BH90,
BM76, BBS90, Can97, Cha84a, Cla77, Dev99,
Die96, Dum56, EAA+16, FP10, FMM09,
FMM11, GHR99, Gu89, HSR+01, JTOT09,
KLSY07, KMS8b, LT12, MY79, Mil95.
MEK+14, ORX90, Ols69, Ore83, Pet57,
Sie04, Tra63, Yao91, de 69, BR75, BK07a,
BK88, CM01, DW03, FP82, GW94, HC11,
JCC00, KLL+97, Kut06, Lin63, MYS12,
MKF+06, Ram89a, TSY98, WL07, ZGG05].
Random-Access [MY79, Pet57, Tra63].
Random-Walk [FMM09, FMM11].
Randomization
[GSB94, DJRZ06, DJNR09]. Randomize
[GK12a]. Randomize-Hash-then-Sign
[GK12a]. Randomized
[AEP18, KR81, LQZH14, Mat93, YWH09,
DHKP97, MSS96]. randomly [RH90].
Randomness [AY14, Knu77, Vit81b, LW17,
PVCQ08, Sar15, SS90a, Vit82a]. Range
[ACM85a, LCML94, LB07, CCL91, Fal88,
HR93, Wil85a]. Rank [TC93]. Ranking
[LR96a]. Rapid [CG79, Dum56, Gri79,
LG96, PT11b, WKO78]. Rapidly [Dav73].
Rate [IBAV15, KL95, HKL04]. Raton
[HB93]. Ray [ACM82, SS89b, ZRL+08].
RBIBDs [Woe06a]. RC4
[IP08, RS14, Sar15, YZ16]. RC4-Hash
[IP08]. RC4-like [RS14]. RC4A [Sar15].
Rdbm
[Pei82, Pet83]. Rdbm-verwaltungsdaten [Pei82]. RDF
[HAKM15, LL13]. RDMA [CCW+17]. RE
[WGW+18]. re-identification [WGW+18].
Reactive [BT12a]. Read [MT11, NM10].
Read-Only [MT11, NM10]. Readings
[Sto88]. Real [ASA+09, Ano96, DadH90,
Dre17c, FVS12, Lyo83, Man12, NS16b,
PSSC17, ZRL+08, AY14]. Real-Time
[Lyo83, NS161b, PSSC17, ASA+09, FVS12,
Man12, ZRL+08, AY14]. Realizing
[Can97, PBDD95, Ru93]. Reallocaton
[Bay73c]. Reasoning [BJM14].
Reassignment [DDMM05]. Rebound
[KNR10, MRST10]. Rechenanlage [Dit76].
Reciprocal [CS85a, Cha86a, Jae81].
Recognition [BM90b, Fre90, GK94, GK95, IEE88d, KG95, KR79, KRJ+80, KRHRH84, LW88, PW94, S6aS01, SR89, SA97, WPDK94, Fly92, GG92, LG96].

Recognized [RJK79].

Recommendation [BK07a, WYD+18, QZD+18].

Reconfigurable [PJM90].

Record [ACM75c, ACM76, ACM77b, LFP82, KS86, KS87a, KS87b, ACM91d].

Records [Bra84a, Bra85, Bra86, MF92, Ols69, Rém92, SD78, DSS10].

Recovery [AS82, CY06, Moh90, Moh93].

Recreations [BC39].

Recurrence [MC89].

Recursion [FF90].

Recursive [Coh97, DM81, Gra93b, RSD84, RSD85, RS92, SDMS12, SDMS15, ATAKS07, CL09b].

Recyclable [NS16b].

Redesigning [AZ10].

REDOC [BS91c].

REDOC-II [BS91c].

Reduce [CKW09].

Reduced [AD11, BM07, BCJ15, DDS14, HSR+01, HKKK10, MRST10, MNS12, THY+18, WFW+12, ZWW+12, AKY13, CV05, ITP14, MS13, WS13].

Reduced-Reference [THY+18].

Reduced-Round [AD11, CV05, ITP14].

Reducing [Bre73, Dod82, DSD95, Kub87, Mal77, NI83].

Reduction [Bla95, Ken73, LT12, MT16].

Reduction-Centric [LT12].

Reductions [BHKN13].

Reducts [Wan14].

Redeuts [Kar82].

Redundancy [Bur79, CQW08, FES09, MSS96].

Redundant [KR79, KRJ+80, RJK79, Som99].

Reference [THY+18].

refined [DVS+14].

refinement [CKW93, ZDI+15].

Region [FB87, ORS10, KHH89].

Registration [GPA97, JBWK11].

Regression [OGBA14, TGGF10].

Regular [CKW09, CH94, IIL17, MSP12].

Regularized [TGGF10].

Rehashable [LBJ02].

Rehashed [Bin96, Kno88].

Rehashing [Kel93, Kel96, Mad80].

Related [Eck74b, Mit09, BSU12, GJM02].

Relation [Knu74, PF88, de 69, GC90, MC89].

Relational [Bab79, Bra84b, FPS9b, Fro82, Gra88, Gra89, He87, Heu87, IH83, KR86b, KR86a, KP81, Kim80, KTMOS83b, KTMOS83c, MS88a, PF88, Wu85, Yam85, YNK89, AS89, EBD91, ISH+91, KR88, SP89].

Relationalen [Nec79, Pet83].

Relations [KHT89, NP91, SW91, PCK95, UHT95].

relationship [LMSF89].

relationships [LC13].

Relative [GB17].

repetitions [THY+18].

Reduced-Round [AD11, CV05, ITP14].

Reliability [MS12, CZ14].

Reliable [BH91, DGMP92, RHM09, DHPF97, ZLL+07, ZC12].

Reliably [TCP+17].

relieving [KLL+97].

Remaps [CRR18].

Remake [MRR89, Eck74a].

Remote [LC95, YY07, LLL10].

Removal [Leb87].

Rendering [War86, ZRL+08].

Re rendezvous [EH17].

Reorganisation [Bat80].

Reorganization [Bat82, Reg82, Szy82, Szy85, Sl09].

Repair [Bar97, BRM10].

Repairing [ZJ09].

Repeated [Lar80a].

Repetitions [YGC+12].

Replacement [Jak85].

Replica [CCF04, LRY+15].

Replication [LMSM09, LMSM12, UIY10, WY02].

replication-based [UIY10].

Report [jCPB+12, MO92a, TSP+11].

reporting [YG10].

Repository [XNS+13].

Represent [Rém92].

Representation [ANS10, CD84b, DCW91, BL89, BT93, JCC00, MHT+13, TK17].

Representations [KKC12, SD98b, CR983b, CFYT94].

representing [LK93].

reprinted [LT80].

Reprogramming [PLKS07].

Republic [Ano83, HL91].

Reputable [RMB11].

Required [PT16, PT10a].

Requirements [BD92, NSW09].

Rescue [YY01].

Research [BV89, BIP92, IEE89, cLmL07, Vid90, CE95, Woi93, Yu92, YR87].

Researcher [GCMG15].

Reserved [Eck74b, Mit09, BSU12, GJM02].

Relation [Knu74, PF88, de 69, GC90, MC89].

Relational [Bab79, Bra84b, FPS9b, Fro82, Gra88, Gra89, He87, Heu87, IH83, KR86b, KR86a, KP81, Kim80, KTMOS83b, KTMOS83c, MS88a, PF88, Wu85, Yam85, YNK89, AS89, EBD91, ISH+91, KR88, SP89].

Relationalen [Nec79, Pet83].

Relations [KHT89, NP91, SW91, PCK95, UHT95].

relationship [LMSF89].

relationships [LC13].

Relative [GB17].

relatively [HF91].

relativistic [TMW10].

RelaxDHT [LMSM12].

Reliability [MS12, CZ14].

Reliable [BH91, DGMP92, RHM09, DHPF97, ZLL+07, ZC12].

Reliably [TCP+17].

relieving [KLL+97].

Remaps [CRR18].

Remake [MRR89, Eck74a].

Remote [LC95, YY07, LLL10].

Removal [Leb87].

Rendering [War86, ZRL+08].

Rendezvous [EH17].

Reorganisation [Bat80].

Reorganization [Bat82, Reg82, Szy82, Szy85, Sl09].

Repair [Bar97, BRM10].

Repairing [ZJ09].

Repeated [Lar80a].

Repetitions [YGC+12].

Replacement [Jak85].

Replica [CCF04, LRY+15].

Replication [LMSM09, LMSM12, UIY10, WY02].

replication-based [UIY10].

Report [jCPB+12, MO92a, TSP+11].

reporting [YG10].

Repository [XNS+13].

Represent [Rém92].

Representation [ANS10, CD84b, DCW91, BL89, BT93, JCC00, MHT+13, TK17].

Representations [KKC12, SD98b, CR983b, CFYT94].

representing [LK93].

reprinted [LT80].

Reprogramming [PLKS07].

Republic [Ano83, HL91].

Reputable [RMB11].

Required [PT16, PT10a].

Requirements [BD92, NSW09].

Rescue [YY01].

Research [BV89, BIP92, IEE89, cLmL07, Vid90, CE95, Woi93, Yu92, YR87].

Researcher [GCMG15].

Reserved
[ST86, Tro06, Wol84, Zou85, ST85]. **Residue** [Ari68, KKT91, Mue04, Rad70]. **Resilience** [NTY12]. **Resilient** [BGS96, LMSM09, WTN09, ZZM17, LMSM12]. **Resistance** [Mit12, BF08, MSP12]. **Resistant** [BR97, BK12, CHKO08, IKO05, PGV90b, CHKO12, KHK12, PGV91, PGV93g, MS09]. **resisting** [SXL16]. **Resizable** [Boy98]. **Resolution** [Ask05, CadHS00, MC86, YB95, KdlT89]. **Resort** [PDI91, IEE88b]. **Resource** [DB12, TL93]. **response** [DSD95]. **Responsible** [IH83]. **Responsive** [DG93, DG94]. **Responsiveness** [BDS88, Sch82a]. **Restart** [LACJ18]. **Resizable** [Boy98]. **Results** [ANS09, Bur83c, DR06, DRS12, Jv86, RR08, CV05, LY72]. **RETCOn** [BRM10]. **retention** [ZLL+07]. **Retrieve** [AA79b, AA79a, Spr77]. **Return** [Wil96]. **Reversing** [ZHS94]. **Reversible** [DR11, SLC+07]. **Revised** [Ytro6, BK07a, Br07, JY14]. **Revisited** [AHS92, BYSP98, CDMP05, FLP08, GLS91, GLS94, HR96, HK97, KK12, KKV12, BATÖ13, Han02, KKL+09, LP04]. **Revisiting** [Dhk+15, HLH13]. **Revocation** [Wee11, MFES04]. **Reykjavik** [ADG+08]. **RFID** [CJP15, CJP12, FW09, GI12, GLLL17, HCPLSB12, JRPK07, LLL09, LLG+17, SPLHCB14]. **Rhode** [IEE07]. **Rhodes** [AMSM+09]. **Rico** [IEE91b]. **riding** [BB07], **riding-aware** [BB07]. **Right** [CLYY92, CLYY95]. **Right-Deep** [CLYY92, CLYY95], **rigid** [SA97]. **Rigorous** [GLL17]. **RIMS** [Got83]. **Rinda** [ISH+91]. **Ring** [OL89, TY91]. **Rings** [HJ96]. **RIPEMD** [BDP97, LP16, MNS12, PBD97, WFLY04, WW09]. **RIPEMD-128** [LP16, MNS12]. **RIPEMD-160** [BDP97, PBD97]. **ripple** [LEHN02]. **risks** [DS09a]. **RITS** [GB17]. **RNA** [BD+10]. **Road** [BDPV09, HR04]. **Robin** [CLM85, Cel86, CLM86, DMV04]. **Robust** [BFMP11, FLP08, FLP14, KMW08, KMW10, KO90, Li15, LDY+16, MCM10, MV01, MV02, OCDG11, WDP+12, CWC10, EAA+16]. **Rockefeller** [IEE90]. **Roma** [AAC+01]. **Roman** [Hol87]. **Rome** [AA86, IEE88d, Wol93]. **Root** [LAKW07, TLLL07]. **root-hashing** [TLLL07]. **Roots** [Mue04]. **rotate** [FJ13]. **Rotated** [US09]. **Rotation** [Bla95, PQ98, PQ99]. **Rotation-Symmetric** [PQ98, PQ99]. **Rotational** [KRN10]. **Rotationally** [HSPZ08]. **Round** [AD11, jCPB+12, DDS14, HSR+01, LP15, PT11b, GLM+10, SY11, TSP+11, WFW+12, ABM+12, CV05, ITP14]. **Round-Down** [PT11b]. **Round-Reduced** [DDS14, WFW+12]. **Rounds** [GK08, HSIR02, Sch11]. **Router** [ABC+16, DF01, BLC12, YG10]. **routers** [ATAKS07, PT12b]. **Routine** [Hea82]. **Routing** [ABC+16, BT12a, WBWV16, Cha12, HLL18, PT10b, SPSP16, TC04, TBC+05, WY02]. **routing-based** [WOY2]. **rows** [FH15]. **RSA** [Joy03, Ano95a, Jun87]. **Rule** [BG92, Han90, HCKW90]. **Rule-Based** [BG92]. **rulebase** [CKKK09]. **Rules** [CL05, CT12, PCY95, HC02, HC07].
runtime OOK+10. Russia Vau06. Ryu KCC05.

s [PES+12, BLC12]. S. Pro94. S81 [KTN92]. SAC [JY14, HSR+01], safe [CCA+12, LPSW03, Lin96]. SAGA [HKNW07]. Saint [GQ95, QG95]. Saint-Malo [GQ95, QG95]. saliency [FXWW17]. SAMOSA [PHG12]. Sampler [Mil87]. samples HYK508. Sampling [AD5, Jak55, WM19, BZZ12, CyWM91, ORX90, RKLC+11, ZGG05]. San ACM75b, ACM91b, ACM03a, ACM07, ACM08a, ACM11, DT87, IEE88a, IEE91b, Joy03, Kar98, Shm00, Stc92, USE90.

Sandwich [Yas07]. Santa [Bel00, Brf92, CRS83a, Cop95a, Cop95b, Fra04, Gol94, Sho05, Sti93, Wie99, Yun02]. Santiago [BJZ94]. sat [DK07, MS13]. SAT-based [MS13]. Satzuebergreifende [Nee79], says [Nic17], SC’11 [LCK11].

SC2002 IEE02. SC2003 ACM03b.

Scalability [DR92, Eng94, TCP+17, ATAKS07]. Scalable [CKKK09, DPH08, GlJ11, IEE94c, LMD+12, MD97, MEK+14, PRRR15, PW94, SSL+18, SKC07, TMW10, WPK99, WZS+16, CL+14, KKP+17, KYS05, KSC11, KSC12, LNS96, LEHNO2, NK16, PT12b, SB14, TLL09, VBBW94, KCR11, NTW09].

Scale [BI12, GlL17, Li15, MEK+14, MWC12, NS16a, SHF+17, YGC+12, CML+13, FES09, Kos14, Shi17, SXLO08, ZNP16].

Scale-Invariant [NS16a]. Scaling [AK09, LL13, TCP+17, PES+12, YSL05]. SCALLA [LMD+12]. scanner [ISHY88].

Scanning [Bur81, LLL11]. Scatter [Ban77, BMB08, Bre73, Day70, FL73, FW76, FW77, LC72, Lyo78b, Ma77, Man83, Mor86, Mor83b, Mau68]. Scenes [War86].

Schmuel [KPS92]. schedules [GK12b]. Scheduling [Lyo79, TL93]. Scheme [AK98, BP97, Bur84, CLD82, Cha84b, Cha84c, Cha85, CL86, Cha86a, Cha86b, CC88b, CC91, CW91, Dat88, DJ88, DH88, Fah80, Hul13, JLMH88, JKC11, LW88, Lar88b, LHC05, NXB13, Oto85a, Oto85b, PVM94, PACT09, SGB00, SHF+17, TC93, VV84, Vit81a, YSW+11, YY07, ZJ09, ZQSH12, ZH18, Bur82, CW93, CKW93, CP95b, DF89, EAA+16, HL03, HFF+17, KCL03, Ku04, KCC05, LLLH02, LKY04, LWWG11, MMG10, Oka88, SDR83b, WZ12, YRY04, YG10, ZW05, ZC12, FF90]. Schemes [BDS09, CL05, CLC06, Cor02, Dam87, DDS17, ED88, HM96, HDMC09, HHL10, Jai89, Jai92a, Jaixx, Kal01, KM09, LM95, LRY78, LRY80, MY80, Ngu06, Ouk83, PWY+13, PF88, RL82, RS77, SDR83a, TL95, CQW08, DH84, GS94, HDMC11, HSMB91, IN89, KK96, KM10, ML94, OS88, RS75, SNW06, ZHS94].

Schlusselwoertern [Dos78a]. Schnellen [Kue84a]. Schnorr [DBGV93, NSW09]. Sci [Sar80]. Science [ACM91b, AH03, Bar83, Gol94, Got83, IEE76, IEE80b, IEE82, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, IEE13, Knut74, Kon10, LC86b, LL83, RRR99, Rie89, Rov90, Wal88, WGM88, Wil85b, Win78, WTW77, vL94, AT18].

science/3rd [TW77]. Sciences [SC77]. scientific [Fis87]. Scope [CL83, GJRT97].

scoped [FF90]. Scopus [AT18]. Scotland [AOV+99]. Scratchpad [vdBGL16].

SDC [K090]. SE [Sun92]. Sealed [SKM01].

Sealed-Bld [SKM01]. Search [Ack74, Ia91, Ban77, BM76, Boo74, Bra84a, Bra85, Bra86, Cer81, CBK38b, CBK85, Cha91, CLP17, CS28, Eck74b, GIM90, HH85, KCR91, Kra82, Kut10, LLY5, Luc72, MD97, MW09, Mue04, NSS+06, Pa92, PACT09, Reg81, SD78, San76, Sev74, SG88, SSL+18, Tam85, TYO15, TK99, Ven86, Vit83, WYY05d, WW09, WSZ+16, XNS+13, YSW+11, ZLC+12, vW94, AP92, BC06, CKB83a, CK89, CLL+14, FP82,
GP08, HFZ+15, Kor08, KW94, Lin96, LCH+14, MKSiA98, MT16, NM02b, NH74, PY88, Rön07, SP12, STS+13, TYSK10, WYY05a, WZ93, ZWT+14, ZLC+18, ZHC+13, ZNPM16, WWZ09. Searches [LL87, Lyo85, GJM02, KHH89]. Searching [Bay74, BS97, Bur75a, CL85, CS82, Dav73, Day70, Dos78b, Fla81, FS82, Fla83a, Flo87, Gon81, Gon83, Knu73, Knu75, Lam70, Mai83, McI63, Meh84, Ouk83, Piw85, RT81, Ram89b, RC94, SG76b, TT82, Wie87b, WBB87, YJT06, Yub82, CW93, CLW98, ISH+91, Mol90a, Mol90b, PH73]. Seattle [ACM89c, LCK11, KCR11]. Seaweed [NDMR08]. Second [ACM83b, ACM90, SDA91, AKY13, ABD+16, Ano93d, BD08, Kil05, Mit12, TZ12, ABM+12, IEE88b, TSP+11]. Second-Preimage [ABD+16]. Secondary [Bel70, Bel72, Bel83, Fel87, FP89b, Gu75, Joh61, NH74, YMI89]. Secrecy [BKST18]. Secret [HR04, LMC07, LPWW06, SNW06, ZHS94]. sections [NM10]. Secure [AHV98, Ano93b, Ano95b, BT12a, CZLC14, CS02, Dan13, DK07, DY90, DY91, DR11, FIP93, FFGL09, GHR99, GX14, HM96, HR04, JTOT09, JK11, KMM+06, KP97, LM95, LRY+15, MKA17, NIS93, Nat95, NR12, PLKS07, PV07, PGV95, SK99, Sh96, Sta06a, Win84, Yas07, Y07, Zhe90, Aam03, FFGL10, GBL94, IN89, JPFD09, Sim98, SX16, YRY04, ZC12, AN97, Ano02, Ano08, Ano12, Bou12, FIP02b, Nat92, Sta94]. Security [AK98, Abi12, And94, ASBdS16, CLNY06, CN08, Cor00, Cor02, FW09, GK12a, HMBN07, HLMW93, HXMW94, ISO97, ISO04, KK12, KI01, LC06, LT12, LLL09, MP12, Men12, NAK+15, RS12, SM02, WG00, WPS+12, Yan10, ACM94a, ACP10, ABM+12, AMP15, Ano93a, BGKZ12, Kak83, Lai92, LC95, Men17, MPTST16, PGV93c, SF88, Sta06b, UPV11]. Segmented [CLYY92, CLYY95]. Segments [Bor84]. Sekundaerspeichers [Pet83]. select [FY92]. selectable [BNSP96c, Gon95, Li95]. Selected [SC77, Ytr06, Bir07, Bor81, JY14, JY14]. Selecting [MBH90, Sou92]. Selection [DC81, FFGOG07, Hea82, MS12, OGAB14, TYZ015, CD84a, HYKS08, D87sa]. selectivity [HYKS08, MBKS07]. Selects [Bou12]. Self [HH85, Pag85, PR15, SS83, Som99, TY03, Wil96, Wog98, ZF06, TK19]. Self-Adjusting [Pag85, Wog98]. Self-checking [Wil96]. Self-Indexed [TK19]. Self-Monitoring [SS83]. Self-Organizing [HH85, Som99, TY03]. Self-Shrinking [ZF06]. Self-Tuning [PR15]. Semantic [Li15, LL13, MTB00]. Semantics [IH83]. Semi [CBK83, CLL+14]. Semi-Interactive [CBK83]. Semi-supervised [CLL+14]. semijoin [CCY91]. Semite [LI92]. Semite-Infinite [LI92]. sensing [Ind13]. Sensitive [BT12b, CSPS15, Kaw15, MNP08, OZW14, OTR11, AT18, HFZ+15, HFF+17, LNS1, LWXS18, LFW+17, PCM15, QZD+18, SP12, STS+13, WY00, SA17]. Sensor [DK09, LDY+16, PLKS07, QSH12, AK09, ADF12, LG13, LND08, RAL07, YG10]. Sensors [DL12, DVS+14]. Sentence [CH12]. Sentences [Ven86]. sentiment [ZZLZ18]. Separate [Kue82b, Mul81, Kue82a]. Separating [FK84, SG16, BVTL13, LS06, T14]. Separators [Lar88b, Moh90, Moh93, CS93a]. Sept [BD88, Jou85]. September [VLD82, A+01, AOV+99, AA86, BJZ94, EF12, FS09, Fis87, HM08, HKNW07, Ker75, Kna89, LSC91, Vid90, Win78, Yao78]. Sequence [BC08, FP89b, GS81, HG77, LPT12, LL85, MS88b, BJ07, CW98, Wog99]. Sequences [Som99, KS88a, QJ97]. sequencing [KRML09]. Sequential [AD85, BCCL10, CT96, GSB94, HB89a].
KKC12, Lit89, Mul72, Ore83, Piw85, SK98, SG76b, BDPV14, HB89b, IL90. Series [BJL16]. Served [PM89]. Server [DR92, GSL17, GBC98, Gra99, VB00]. Server-Side [GSL17]. Servers [SKC07, KSC11, KSC12]. Serves [Ano95d]. Service [CCF04, Bac02, BPT10, QZD 18, TLLL18]. Services [ANS05, Ano85b, HLC10]. Session [HLC10]. Set [B¨OS11, Kie85, SG76a, WC81, YD85, BGG12, GGR04, HYKS08, HDCM11, HKLS12, HM03, MI84, SA17]. set-expression [GGR04]. Set-Oriented [Kie85]. set-valued [HM03]. Setl [BFR87]. Sets [AA79b, AA79a, GHK91a, GHK91b, GT93, Lit89, PBDD95, Ram92, Spr77, Win90a, BT89, BT93, FP82, IL90]. seven [RAD15]. seven-dimensional [RAD15]. Seventeenth [LC86b, LSC91, Rie89]. Seventh [ACM75c, ACM75a, ACM88a, dBvL80, LL08, ACM88a, ACM89b, ACM97a, ACM97b, ACM05, ACM08a, Kar98, Mat09, Shm00]. Sichere [BN85]. Side [GO07, GSL17, TC04]. SIFT [MMG10]. SIGACT [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM90a, LL08]. SIGACT-SIGMOD [ACM83a, ACM83b, ACM85b, ACM86a]. SIGACT-SIGMOD-SIGART [ACM88a, ACM89b, ACM89a]. SIGAL [A+90]. SIGART [ACM88a, ACM89b, ACM89a, Van10, LL08]. SIGCSE [LC86b]. SIGIR [BIP92, YR87, BV89]. SIGMOD [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM89a, BJ93, CLM89, FMA02, GMJ90, Van10, HF13, LL08, Nav85, SW94b, Stoa92, ACM81, ACM84a, BL88, HF13, Lie81, SW94a]. SIGMOD-SIGACT-SIGART [Van10, LL08]. SIGMOD/PODS [HF13]. SIGMOD/PODS’13 [HF13]. Sign [CK12, GHR99, PV07, GK12a]. Signature [Cai84].
Signatures [SS83]. Signatures [AS16, BHH+15, But17, CK12, DK09, FL04, FFG0G07, GK12a, GHR99, Hül13, HRS16, HBG+17, MKF+16, MCF17, Moh11, MKAA17, PW93, PGV93f, RR92, Ru93, TT82, NSW09, PPB16, ST93]. Signed [Sch01b, ZDI+15]. significant [BCCL10]. signing [BGG94]. SIGPLAN [ACM79].

Silententrennung [BN85]. SIMD [AT91, RG89]. SIMD-MIMD [RG89]. Similar [RC94]. similarities [UCFL08].

Similarity [GIM99, HCF05, LNS11, LÖON01, NNA12, TWZW11, WSZ+16, YJ106, CLL+14, GP08, HYK08, SP12, SA17, STS+13, ZWT+14].

Simple [BPZ07, Cie80b, DH01, DS09b, GM94, GM98, IT93, KM08, Lon88, PSSC17, PT12a, Ram92, Sar10, Tho13, CLS95, DKRT16, DW03, DS09a, DLM07, MV08, PT11a, SKD15, SF88]. Simplicity [Rag93]. Simplifies [OVY94b, OVY94a]. Simplify [Dam93, Dam94]. simplifying [VZ12].

Simulating [adh93, Mey93]. Simulation [EK93, Hil82, Hui90, KladH93, KLM96, KHW91a, YkWV83, KHW91b, War14, DS84a]. Simulation-Based [EK93].

Simulations [CadH00, DadH92, Lep98, Rey14, MSS96].

Simultaneously [LOY00]. Simdh [SSS05].

Singapore [DSS84]. Single [AKS78, AA79b, BA79a, CCS88b, GIS05, Lar82c, Lar82d, Lar85c, Men12, OT91, Spr77, YDT83, YSEL09, Men17, MA15, RT89].

Schnittspredendhe [BN85]. Sintering [Rey14]. SipHash [AB12], sites [OOK+10].

Sixteenth [ACM84b, ACM05]. Sixth [BF89, ICD90, GMJ02, LT80]. Size [Acl74, AHS92, Bat75, CKW09, Dev99, Dod82, FK84, HD72, Joh97, Kab87, KV91, KNT89, MV88, Meh82, Sam76, Wil79, Woe01, Bee83, CM01, DW05, DW07, GW94, Han17, LNS11, Sar11]. SK [LCH+14]. Skein [AEMR09, FLS+10, KNR10]. Skeleton [LDY+16]. Sketch [BI12, TP15]. sketches [NTW09, SLC+07]. Sketching [Ind13].

Skey [Bre91, CyWM91, DNSS92, KO90, RK91, Top92, WDYT91, WYT93, ZO93].

Skip [AS07, Coh98, BCR10]. SL2 [CP95b, TZ94b]. Slack [AEP18]. SLCA [WWZ09, ZLC+12]. SLCA-Based [WWZ09]. Slicing [Kon10, MEK+14]. sloth [LW17]. Slovenia [EF12]. SM3 [MXP+12, WS13, ZWW+12]. Small [FHMU85, Ind01, Joh97, KR01, NN00, NY85, YLC+09, YBQZ17, MP16, Sag85b].

Small-bias [NN90]. Smaller [CRSW11, CRSW13]. Smalltalk [SUH86].

Smart [Ku04]. Smartcards [JF11]. smoke [ZRL+08].

Smooth [ACP09, HK12a, KV09, LYY+18].

snapshots [PPB012]. Snefru [Bih08, BS91c]. Snowbird [SM09, SM12].

SOAR [SUH86]. Social [KKP+17, ZWH17, PES+12, ZZLZ18].

Societies [IEE92a, IEE01]. Society [IEE89a, IEE89b, IEE90a].

Softswitches [TLL18]. Software [Aso85b, DT75, Els84, FHMU85, GN80, GD87, Got83, IEE89a, IEE89b, Kma89, Lew82, Mil87, MW95, NP99, RRR99, Sch01b, SBS16, Wal88, And94, Bir07, Gol86, Mer90a, SGK09].

Software-implementation [GN80].

Solution [DM90, Hop68b, Mit73, WSZ+16, HCF95, HL94]. Solvability [BF83]. solve [CP95a, WZ12]. solved [Loh89]. solver [GZ99]. Solvers [DK07]. solving [SWQ+14].

Some [Bay73a, CV85, Gib90, Gri74, Lar85a, Mit09, MO190, MO191, Nam86, Sti06, Wri83, BSU12, GLC08, Inc81]. Sonographic [SSa01]. Sophisticated [BPBBLP12]. Sort [GLS91, Gra94, GLS94, KKL+09, KTM083b, OOB17, TR02, AKN12, BAT013]. Sort-Hash [TR02]. sort-merge
Sort-Merge-Join [Gra94b].
Sorted [Yao81, YLB90]. Sortieren [Meh86].
Sorting [BS97, DS97, Gra94a, Gup89, Km93, Km95, MV90, MV91b, Meh84, ASW87, CKKW00, ISH+91, Kan90]. Sound [GvR08, KCF84, SDW14, BDPV14]. Source [KP94, Cha12, HC11]. source-based [CV08].

Space [Bal05, Blo70, BPZ07, BM99, CH94, DH01, Fis87, F+03, FPSS05, HT01, JD12, PP08, SvEB84, TW91, YY01, BD82, CF89b, DMPP06, GZ99, Knu93, MN90, OP03, PSS09, Sie89, SWQ+14, TYSK10, WHS+07, Yuv75].

Space-Efficient [BPZ07, JD12, PSS09].

Space-filling [GZ99]. Space/Time [Blo70].

space [IMRV97, NN90].

Spanish [ACM91c].

Sparql [HAKM15, HAK+16].

sparse [CS82, McI82, Rad83, Zam80, MF82, Wie86].

Specialization [SV15a].

Specifications [Nat92].

Specifying [GHJ+93].

Speech [CW09, RJK97].

Speed [FP89a, KMM+06, KMV10, McK89a, PSR90, TK88, YNKM89, BCCL10, EVF06, McK89b, MSS96, RW07, SLC+07, SXL08, TLLL07, XMC11].

Speeding [FH96].

Speicher [GN80].

Speicherverfahren [DS84a]. Spelling [CS82, McI82, Rad83, Zam80, MF82, Wie86].

speziellen [Dob87a]. SPHINCS [BH+15].

Split [LLS85, MS88b, SS06, Sch78, Wog89].

Split-ordered [SS06]. Spots [BY89].

Sponsored [Fis87, HB93, IEE84].

Spotting [FLF11]. Sprache [BN85].

Spreading [KO90]. Spring [AFI63, IEE88a].

Springs [BAm97a, IEE11b].

Square [ACM83a, ACM83b, EPR99].

Squares [OG94b]. squaring [Mei95].

SRAM [KHK15]. SRAM/DRAM [KHK15].

SSPIN [Cob94].

Stability [CW09].

Standards [Bur06, Fox91, KWel91b].

STACS [AH03]. stage [QZD+18].

STAIRS [RCF11]. stamped [GB17].

Stamping [Cip93, Lip02, SL16].

Standard [Ano93b, Ano95b, Ano08, Ano09, Ano12, Ano13, Dan13, FIP93, NIS93, Nat95, NIS15, SK05, CV83a, GVR08, Nam86, Ano02, Dan13, FIP02b, Nat92, Pla98, Lut88].

Steady [vdP73, HL94].
steady-state [HL94].
Steering [TLLL18].
Step [Dit76, ZWW+12, AKY13, WS13].
Step-Reduced [ZWW+12, WS13]. Steps [HKKK10]. Stereo [ZZ83].
Stereo-Warehouse [ZZ83]. stimulating [JFDF09]. STL [Ben98]. STM [DSS10].
STOC [ACM07, ACM08b]. STOC′12 [ACM12]. Stochastic [HKNW07], stock [She06].
Stockholm [PV85, Ros74].
Storage [ACM04, Bay74, BMB68, Bre73, Col93, Day70, FL73, Fel87, FB87, FP89b, Fro82, GL82, GL88, HCJC06, Kno71, HGH+12, LCK11, Les88, LRY+15, MSK96, Mal77, Man83, MEK+14, Mor68, Mor83b, Mul81, Mul85, Omi88, OT91, OS83a, OS83b, Pet57, Sam81, SHF+17, TY03, TS85, Tra63, WH83, Wilt71, WKO78, WB87, YDT83, vdp72, vdp73, AY14, AK09, CRS83b, HGR07, Man68, MSS96, P101b, QD02, YSL05, YMI89, van73].
storage-efficiency [PT10b]. Storage-efficient [HCJC06, MSK96]. Store [DW83a, dW83b, Shi17, BP94]. Stores [Bry84, PRRR15].
Storing [AL86, FKS84, MNS07, Ros77, TY79].
Stouffer [ACM87]. Strategies [iA91, iA94, BI87, Dae95, adH90, adH93, KL87, KHT89, KL87, KHT89, MD97, Mey93, MNS07, Tro95, YB95].
Strategy [CdM90, LMS09, LC96, NKT88, RS92, GC90, LMS12]. Stream [DC98a, cLmL07, MNS12, NCFK11, TW07, TS85, Gedi14, MV08, OCDG11, RS14, Tan83].
Streaming [CN07, STS+13, YSW+11, FVS12, ZC12].
streamlining [DSS10]. Streams [Coh98, SSS3, YGC+12, BMML+19, CH09, GGR04, SLC+17, YLC+09]. street [Sim98].
Strength [HS08, FH15, Ken73]. Stretching [BVF12].
String [iA94, Ask05, BH85, Bur84, CCH09, Cha91, Dav73, KL14, LLLC17, NNA12, TK88, Tay89, TT82, ASM17, AZ10, Bur82, DC94, GBY90, Kim99, MBKS07, RZ97, XMLC11].
String-indexed [Tay89]. string-pattern [Kim99]. Strings [BS97, Dit91, FM96, Lit91, PEA0, PEA91, RC94, Sav90, Sav91, Eug90].
Strong [CHKO08, CHKO12, JRKP07, Ku04]. strong-password [Ku04]. Strongly [BG07, LK14, Tho00]. Structural [TWZC11, W1996, FLF11, MK12, ZBB+06]. structuring [Lit77a].
Structure [AH92, CK12, CJC+09, DGM89, DT91a, DT91b, FL11, Fo77, FB87, GHK91a, GHK91b, CTC90, KS12, NHS84, Omi88, SG88, WH83, Wilt3, BR75, BGG12, ICG94, KR09a, KHH89, LNS85, LCH+14, MMC01, MSK96, SB07, TMB02, YD86b].
Structure-Preserving [DK12]. Structured [CS93b, GDA10, Piw85, SG76b, SM87, WWG+18, BPT10, GHW07, WSH+07, WLLG08].
Structures [AHU83, BDB+10, BF187, Boy98, BJM14, CE70, Coh84, DSZ07, DP08, EL85b, ELL82, Fel88, FZ78, FBY92, Fro82, Gou84, GBY91, GRI74, Har88, Har71b, HS84, Kru84, LC86a, LRY78, LRY80, Lit84, MO92a, RW73, Sal88, SDW14, SW86, Sret12, Ste82, SW87, TA81, TA86, TGL+97, TS76, TS84, VL87, WS76, WKO78, Wir86, YLB90, BY89, CR83b, FP89a, GJ02, Har73, HM03, Inc81, IGA05, Koe72, Lin96, MT00, NT01, NMO2b, OS88, She06, VL97, Vit01, Wi78, Wi85a, ZKR08].
Structuring [Bay73a]. Studies [Ano93d, GT80, GG80, Yub82]. Study [AR17, BF83, BK07b, Cha84c, Cha85, Cra85, DTS75, DJS80, DHJS83, ELL85b, Gri74, Hil78a, Hil78b, LC86a, LG78, LYD71, TL95, YLB90, HM03, LT82, WEE88, WTN07]. style [UCFL08]. Subgraph [ZLY+12, WLLG08].
Subquadratic [Val15]. subscribe [MJ14].
Subscripts [Atk75, vdSDW74b, vdSDW74a]. subset [IN89]. Subspace [KRJ+80, Sch11].
Substring [Boo07, Har71a, MKS49].
Subsystem [HLC10]. subtype [Duc08].
subtyping [DL06]. Succinct
Transactions [BRM10, SSU+13]. Transactions [FK89, MMC01, SSU+13]. Transfer [HK12a]. Transform [BR06, GH07, HB89c, HB94, LC12, LYD71, NS16a, PVM94, RGNPM12, LY72, Pob86, Ind13]. Transform-Based [RGNPM12].

Transformation [Lum73, NXB13, SR63, Lin63, PT10b]. Transformations [GG86a]. Transforms [Zha07]. Transitive [CdM89, CdM90, GC90]. Translated [WSZ+16]. Translation [BCR10, TK85]. Translators [DGGL16]. Trapdoor [HHL10, Wee12, LWG11, PW08]. Trapdoors [GPV08]. Traversal [CLC06, Lip02, YSEL09]. Tree [And91, AR17, BT12b, FB87, GadHW96, KHT89, Lip02, LRY+15, LB07, Lyo83, Omi88, Ot86, Piw85, SG76b, SM87, WS93, Wil00, BDPV14, BPT10, CCL91, DKRT16, GP08, Li10, MS09, MCN03, PGV93a, PGV93b, QZD+18, SDR83b].

Two-Way [DDMM05]. TWOBLOCK [Yan05]. TX [USE91, ACM87, ARA94, IEE94a]. Type [KPS92, KRJ09a, SF88, SG16]. Type-based [KRJ09a]. Type-Graphs [KPS92]. Types [EjKMP80, Hej89, SW87, Wal88, LPSW03, NMS+08]. TYPHOON [HKW05]. typing [DMP09].

Überlegungen [Kue84a]. Uebersicht [Mer72]. UK [AOV+99, Dav91, Go96]. UL [DSS17]. Ultra [WZJS10, YBQZ18].

Unified [JV16, Mul84a, Mul84b, ABO+17, BOY11]. Uniform [ABH+73, AT93, Gui89, Kie85, KS86, KS87b].
Lar83, Leb87, LQZH14, LPP91, LPP92, Mal77, OP03, PP08, PCK95, Ruž08, UHT95, Yao85b, Ald87, AT90, MC89, Rad92.

Uniform-Grid [Leb87], Uniformly [MLP07], Unifying [BG80, BG82], Unique [Boo74, DLH09, DLH13, SD78, ASW88], Uniqueness [Kah92], Unit [BC90, HO72], United [ACM94b, JBJ94], Units [LLLC17, WB87, SF88], Universal [Abi12, AS96, BKST18, Bie97, Bra09, CW77a, CW77b, CW79, CS02, DadH90, DadH92, Die96, DS09b, EPR99, Für88, GC95, HHR+10, HJ96, Kil01, KR01, KL14, MNT90, MCH78, Meh82, Mul91, Nae95, NY89b, NY89a, NP99, NR12, Ram88b, Sar80, Sho96, Sho00a, Sie04, St91, St94a, St94b, Woe01, van94, ACP10, Bie95, DS09a, ILL17, KYS05, KL96, KR06, LC16, LC13, MNT93, Sar11, Sie98, Tho00, Woe06a].

Universality [SS89a], universe [Bra09, Wen92]. Universitat [CTC90, Dit76], Universiteit [BBD09b]. University [ACM81, IJW89, CCC89, CRS83a, HB93, IEE74, Jaj90, Lie81, Ox86, Pat90, Sch82a, Dit76]. universum [Wen92], UNIX [SY91, WG00]. Unlabeled [GCMG15], unleash [McN03]. Unlimp [Kah92]. unsigned [BCS89]. Unstructured [Gon83, PFM+09], Unsupervised [PKW09]. Untersuchung [Stu82].

unveiling [BCC110], UOWHFs [BR97]. Update [Ano95a, GO07, GGR04]. Upon [CS83b, Cha84b, CS87, CW91]. Upper [DKM+88, DKM+94, GadHW96, DKM+91].

URAL [GT63]. URAL-2 [GT63], URLs [AY14]. urn [Ram87], USA [ACM03a, ACM07, BD88, Bel00, Bri92, BD08, Cop95b, Deb03, DJNR09, FNY92, Fra04, Fre90, Van10, GSW98, Joy03, Ker75, Kil05, Lom93, Sho05, St91, Wic99, Yum02, ACM94d, ACM11, ACM12, FMA02, HF13, IC86, ICD87, ICD88, IEE88b, ICD90, IEE01, IEE02, IEE05, IEE10, IEE11b, IEE13, MS05, USE91, USE00a, USE00b].

Usability [BDS88, Sch82a], Use [ACM75b, AT18, Bal05, BK84, Bor81, Bra84a, Bra85, Bra86, BC90, Gur73, NR12, Rad70, WC81, Er86, adHMR93, RK15, Vak85, YIAS89]. Used [Stu85, GS94, Sch91a], USENIX [USE91, USE00b, USE90], User [RTK12, YY07, Bor81, DFM15, LLH02, LKY04, YRY04].

Using [AN97, ASW07, BDPSNG97, Bar97, BCK96b, Bor84, BÖS11, BM06b, BL12, BT94a, BT94b, BM01, BT12b, BMLLC+19, CP95a, CRdPHF12, CKB85, Cdm89, Cdm90, CLYY92, CCW+17, CJC+09, Cle84, CD84b, CE70, CRR18, CY06, DLT98, Dav73, DK07, Dod82, DL12, DSSW90a, DGK12, Fal85a, FLF11, FRB11, FJ13, Ger86b, Gir87, Gir77, GPA97, GAS+16, Har97, HG77, HNS84, HKY12, JRP07, JT09, JD12, JK11, Kab87, KSSS86, KM07, LK07, LAKW07, LQZH14, LR99, LMD+12, Lumm73, MS02, MBBS12, MNY81, Mk89a, MH00, Moh90, Moh93, MJT+02, Mul72, NKT88, NIS3, OTKH11, OG94a, Omi89b, PAP08, PLKS07, PKW09, PF88, PW94, QG89, QG90, RLS9, RLT93, RSD85, RSSD92, Rey14, Rob86, SD78, SSS99, SRY99, Sho00b, SW86, SK05, Som99, SA97, SKM01, TK88].

Using [TC93, TA81, TA86, TGGF10, TK85, TS85, Tsa96, US09, VV84, WPKK94, Wan14, WDP+12, Wi96, Wi79, WM19, YY07, YBQZ18, BSNP96b, BLC12, BK07a, BF08, BT90, BGC12, CKB81, CHL07, CKK09, CP13, CT96, DMP06, DKT06, DS09a, DSSW90b, EH17, Fal86, FM89, Fly92, GKK10, GG92, Ger86a, Gob75, GBL94, HDC11, HKL07, HKL12, HC14, Hila88, HC02, HW88, HX13, ISO97, JFDF09, JLH08, JL14, JCC00, JBWK11, JHM02, Ken73, Kim99, Kos14, Ku04, LG96, LLH02, LKY04, LW04, LNS11, LD12, LF16, MMC01, McKB9b, MMG10, MP16, Mue04, Oka88, PCK95, RSSD98a, RSSD98b, RGNMP12, Rö07, SB95, Sar11, STS+13, Tho17, UHT95, YTHC97, YRY04, ZGG05,
Warwick [Pat90]. Was [HJ75].
Washington [ACM84b, ACM89c, BJ93, Fis87].
Watermarking [DR11, WDP+12]. Wave [LC12], Wavelet [GH07], Way [BCFW09, DGV93, DDMM05, GK08, HHR+10, JH08, LP15, McC79, Mer90b, Roe94, Ru93, SF91, Sch91a, Sh90a, Tsu92a, Wee07, Win83, Win84, YZ00, Zhe90, CMR98, Gi91, HR07, HYLT99, HL03, KST99, LW04, LHC05, Mer90a, MZ98, NY99b, NY99a, Sin98, Sp98, Tsu92b, WZ05, ZPS90, ZMI91, ZPS93a, ZPS93b, HMNB07]. WCC [Ytr06], WDDL [MMMT09]. Weak [HS08, Lis07, PV07]. Weaknesses [BPSN97, DS09b, KCL03, KCC05, SGGB00].
web [KSC11, KSC12, AT18, KLL+97, KSB+99, NM02b, Sch01b, TC04, UCFL08, WY00, WY02, XBH06].
Web-Based [Sch01b]. webcam [McN03]. Wegman [Sar80]. Weight [LR96a, LL92]. Weight-Partitioned [LR96a]. Weighted [Ban77, Luc72, THY+18, Yao91, YZ00].
Weighting [DSS17]. West [Yao78], WG [vL94], WHAM [LPT12]. Wheels [VL87, VL97]. Where [Bur06, SW91].
Which [FW76, FW77]. WHIRLPOOL [RB01, Sas11, Sta06a]. Whirlwind [BBN+10]. White [BZZ12, IEE88c]. whole [Pat95]. whom [LC95]. Whose [Gra94b].
WI [FMA02]. Wide [KLL+97, MPST16]. Wien [Kui92]. Will [DCW91]. Winner [Bou12]. Winter [USE91]. Wireless [DK09, DPH08, LDY+16, PLKS07, SHRD09, YSW+11, ZQSH12, AK09, ADF12, Cha12, LG13, LND08, YG10]. Wise [Ind01, Die96]. within [Bay73b]. Without [GHR99, SL16, ASW87, BK84, BRM10, CP95a, Dam93, Dam94, Die96, Jak85, KSS8b, KS88c, Ku04, LW04, Mu81, Reg82, SUH86, ZW05].
Witnesses [AN96]. Wollongong [FSN95]. Word [BH86, FLF11, KRU+80, LHC05, BT89, Han17, ST85]. Words [Chu90, DM90, Dos78a, KR79, KRRH84, MH00, ST86, Tro06, Wol84, Zou85]. work [Co93, MV08]. Working [Cer85, CE95]. works [Gre95, LWXS18]. Workshop [IJW89, ABM06, ODB89, Ano92, BBD09b, BF89, BD08, CP87, Dam90a, Dam91, Dav91, De 95, DSZ07, DJRZ06, DJRN09, GQ95, He94, QV89, RR06, Re81, Ruci93, SZ93, Ytr06, vL94, Ano94, Bir07, Coh94, Gol96, Kl94, Yu92, Ano94, Heu87]. World [Ano93a, Dre17c, IEE92a, LC95, KLL+97].
worm [FPN09, CF89b]. Worst [ANS09, ANS10, DMV04, F+03, FKS84, Lar81, Lar82a, FPSS05, Mic02, MT16].
Worst-Case [ANS09, ANS10, DMV04, Lar82a, Lar81, Mic02]. worst-case/average-case [Mic02]. Wörterbücher [Wen92]. Write [Mohl90, Moh93, MNS07, ZH18]. Write-Ahead [Mohl90, Moh93].
Write-Friendly [ZH18]. Write-Once [MNS07]. Wroclaw [ACJT07]. WSN [DL12]. Wyner [DV+14].

year [Roe95]. Years [Kon10, IEE01]. Yi [Wag00]. Yi-Lam [Wag00]. Ynot [NMS78]. Yokohama [ANOW11]. Yoo [KCC05]. Yoon [KCC05]. York [ACM12, GSW98, HF13, IEE90, IEE99, Mat09, IEE90, Jen76]. Yorktown [Jen76]. YY [Nat92].

Zahlen [BJJM94b, BJMM94a]. Zakopane [Win78]. Zeiteffizienten [Kue83]. Zemor [Ge95, Ge96, GIMS11, PVCQ08]. Zero
REFERENCES

[CLP13, Dam93, OVY94b, Dam94, OVY94a].

Zero-Knowledge [CLP13, Dam93, OVY94b, Dam94, OVY94a]. Zheng [PGV90a, PGV93a, PGV93b]. Zheng-Matsumoto-Imai [PGV90a, PGV93a, PGV93b]. Zipper [LWWQ08]. Ziv [DVS+14]. Zoning [GRZ93].

Zugriffsoperationen [Pei82]. zugriffsverfahren [Stu82]. zum [Eck74a, zur [Koe72, Kue83, Kue84a, Pet83]. Zurich [HKNW07, AA79b] Lak96].

References

ACM:1969:PAN

Asano:1990:ISS

Anderson:1979:CCP

Ausiello:1986:IIC

Ajtai:1992:FTG

REFERENCES

Agrawal:1993:ICV

Ahmed:2016:RN

Abidin:2012:SUH

Arnold:1973:UHA

Andreeva:2016:NSP

REFERENCES

[ACJT07] L. (Lars) Arge, Christian Cachin, Tomasz Jurdiński, and Andrzej Tarlecki, editors. Automata, languages and programming: 34th international

[ACM77b] Conference Record of the Ninth Annual ACM Sym-
REFERENCES

[ACM84b] Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing: Washington, DC, April 30-May 2,

[ACM89a] Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on

ACM:1989:PEA

ACM:1989:PTF

ACM:1990:PTS

ACM:1991:CRE

ACM:1991:PPE

ACM:1991:ACS

ACM:1991:AAS

Conference record of the Eighteenth Annual ACM Symposium on Principles of Programming Languages: papers presented at the symposium, Orlando, Florida,

ACM:1997:PTN

ACM:1998:PTA

ACM:2001:PAA

ACM:2002:PTF

ACM:2003:PTF

ACM:2003:SII

ACM:2004:SHP

REFERENCES

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hashing for conditionally extractable commitments. Lect-
REFERENCES

Alomair:2010:PPS

Alvarez-Cubero:2016:AVL

Ahrens:1985:SRS

Adams:2008:ENE

Ashur:2011:LAR

Ayday:2012:DAA

Aceto:2008:ALPa

Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, ed-

Heide:1990:DHS

Heide:1993:HSS

Heide:1993:PAE

Adi:1988:DCC

Alon:1997:LHG

Alon:1999:LHF

Aumuller:2012:EEH

Aumuller:2014:EEH

Atighehchi:2009:EPA

Anagnostopoulos:2018:RES

AFIPS:1963:PSJ

AFIPS:1969:ACP

1969 Fall Joint Computer Conference, November 18–20, 1969, Las Vegas, Nevada,
REFERENCES

[Ajtai:1983:HFP]

[Ajtai:1984:HFP]

[Akl:1990:ACI]

[Appel:1993:HCG]

[Alon:2010:BFP]

[Agarwal:2006:AGA]

[Abramsky:2010:ALP]
Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors. *Automata,

REFERENCES

springer.com/article/10.1007/s00145-012-9125-6. [AHV98]

[Ahn1986:AH]

[Ahn1987:AH]

[Ahn1993:FH]

[AHS92]

[Aho1983:DSA]

[Aiello1998:NCS]

[Andoni2006:NOH]

[Andoni2008:NOH]
REFERENCES

Asano:1989:CPP
Tetsuo Asano, H. Imai, and K. Imai. Clustering/hashing points in the plane with maxmin criteria. In CCCG ’89 [CCC89], page 15. ISBN ????. LCCN ????.

Asano:2011:ACI

Abdukhalikov:1998:SHS

Ahn:2009:SLD
Joon Ahn and Bhaskar Krishnamachari. Scaling laws for data-centric storage and

Albutiu:2012:MPS

Ajtai:1978:TNF

AlTawy:2013:SOC

Aho:1986:SDS

Aldous:1987:HLP

Aldous:1988:HLP

Agrawal:2010:HLF

Aumasson:2007:AMH

Andreeva:2012:PFG

Andreeva:2015:OPH

Aumasson:2014:HFB

Albers:2009:ALP

Alon:1996:DWB
Noga Alon and Moni Naor.
REFERENCES

Anderson:1988:PHK

Anderson:1991:TFC
Ross J. Anderson. Tree functions and cipher systems. Cryptologia, 15(3):194–202, July 1991. CODEN CRYP6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://www.informaworld.com/smpp/content~content=a741902753~db=all~order=page. encryption systems; plaintext bit; hash function; ciphertext errors; error extension; tree function; ciphertext attack; computable attack; connectivity; DES; RSA key selection; algorithm design.

Anderson:1993:CHF

Anderson:1994:FSE

Anonymous:1983:MPM

Anonymous:1985:PFD
REFERENCES

[Ano86] Anon:1986:IRN

Anonymous, editor. The Second Annual Dartmouth Institute on Advanced Graduate Studies in Parallel Computation. Dartmouth College (??), Hanover, NH, USA, June 1993. ISBN ?? LCCN ?? I have been unable to locate this reference in several major libraries, including Dartmoth’s, sigh….
Anonymous:1994:WAM

Anonymous:1995:AUC

Anonymous:1995:FSH

Anonymous:1995:NAF

Anonymous:1995:SHS

Anonymous:1996:RF

Anonymous:2002:SHS

Anonymous:2008:SHS

Anonymous:2009:DSS

Anonymous:2012:SHS

Anonymous:2013:DSS

ANSI:1997:AXP

ANSI:2005:AXP

Arbitman:2009:ACH

Arbitman:2010:BCH

Arnaurov:1985:ODF

Atkinson:1999:PTF

Analyti:1992:FSM

Analyti:1993:PAM

Aumasson:2008:HED

Jean-Philippe Aumasson and Raphael C.-W. Phan. How (not) to efficiently dither blockcipher-based hash functions? Lecture Notes in
REFERENCES

Aumasson:2011:CHF

Akbarinia:2007:PTK

Areias:2016:LFH

Atighehchi:2017:OTM

Anger:1994:IEA

Ariwasa:1968:RHM
REFERENCES

February 1968. CODEN JIPRDE. ISSN 0387-6101.

REFERENCES

[Alcantara:2009:RTP]

[Andrade:2016:LEP]

[Ask05]

[Aspnas:2007:EAS]

[AST80]

[Astrahan:1987:ANU]

[Askitis:2005:CCC]

[ASM17]
Abdulrakeeb M. Al-Ssulami and Hassan Mathkour. Faster
Asano:1990:APP

Azadegan:1991:PJA

Asano:1993:APP

Abdulhayoglu:2018:ULS

Al-Talib:2007:IMS

Atkinson:1975:HMS

Ang:1998:TLH

REFERENCES

Aho:1979:OPM

Aumasson:2009:CHF

Álvarez:2011:IME

Apers:1989:VLD

Ahmad:2014:RTN

Askitis:2010:RSH

Nikolas Askitis and Justin Zobel. Redesigning the string hash table, burst trie, and BST to exploit cache. *ACM*
Babb:1979:IRD

Back:2001:HC

Back:2002:HDS

Balakirsky:1996:HDB

Balakirsky:2005:HDU

Bailey:1981:CHP

Bakker:2009:MHT

REFERENCES

[102x681]

Bandypadhyay:1977:CWI

Burrows:1989:LAa

Barter:1983:ACS

C. J. Barter, editor. *Australian Computer Science Conference. Proceedings of the 7th Conference (Adelaide, Australia, Feb. 6–8, 1983)*. University of Adelaide, Computer Science Department, Adelaide, South Australia, Australia, 1983. Published as Australian Computer Science Communications; vol 6, no. 1.

Barequet:1997:UGH

Batson:1965:OST

Batagelj:1975:QHM

Batory:1980:OFD

Batory:1981:AMP

Batory:1982:OFD

Balkesen:2013:MCM

Bays:1973:STS

Bays:1973:NWC

Bays:1973:RHC

Bayer:1974:SCM

Bohm:2007:FRA

Berman:1982:CFP

Berman:1986:CFP

Belazzougui:2009:HDC

Bernstein:2009:PQC

Bellare:2001:OCH

REFERENCES

Bellare:2012:LCH

Bernstein:1988:OCE

Belazzougui:2011:TPM

Bennett:1988:PAP

Bollobas:1990:CDC

Ball:1939:MRE
[BC39] W. W. Rouse (Walter William Rouse) Ball and H. S. M. (Harold Scott MacDonald ["Donald"] Coxeter. Mathematical recreations and essays. Macmillan Publishing Company, New York, NY, USA, 11th edition, 1939. 45 pp. LCCN QA95 .B3 1939. According to Knuth [Knuth73, p. 507], this is one of two papers that first discuss the birthday paradox: "if 23 or more people are present in the same room, chances are good that two of them will have the same month and day of birth! In other words, if we select a random function which maps 23 keys into a table of size
365, the probability that no two keys map into the same location is only 0.4927 (less than one-half)." The discovery is credited to unpublished work of H. Davenport (1927). See also [vM39].

Burkowski:1990:UPH

Bird:2006:BSE

Balachandran:2008:SHC

Bu:2010:SHF

Boldyreva:2009:FNK

Berra:1987:CA

Biham:2015:CSR

Eli Biham, Rafi Chen, and Antoine Joux. Crypt-

Antoon Bosselaers, Hans Doglbertin, and Bart Pre-

cryptographic_functions_for; internal&sk=05460486

Bertoni:2012:KSF

Bertoni:2014:SCS

Beeri:1988:PTI

Buchmann:2009:HBD

Beeton:TB4-1-36

Beebe:1999:HTL

REFERENCES

REFERENCES

Bouillaguet:2008:ACR

Bender:2012:DTH

Batory:1980:UMP

Batory:1982:UMP
REFERENCES

[BG92]

[BGDW95]

[BG93]

[BGG93]

[BF88]

REFERENCES

REFERENCES

Berman:2013:HPR

Brassard:1997:QCH

Brassard:1998:QCH

Bohm:1987:BQK

Bozas:2012:LSS

Bierbrauer:1995:CUH

REFERENCES

Bierbrauer:1997:UHG

Biham:2008:NTC

Binstock:1996:HR

Belkin:1992:PAI

Biryukov:2007:FSE

Biscani:2012:PSP

Buneman:1993:PAS

Peter Buneman and Sushil Jajodia, editors. Proceedings of the 1993 ACM SIGMOD International Conference on
REFERENCES

REFERENCES

[Ba07] Elaine Barker and John Kelsey. Recommendation for random number generation using deterministic random bit generators (revised). National Institute for Standards and Technology, Gaithersburg, MD 20899-8900, USA,
REFERENCES

[BL89] Ronald E. Barkley and
REFERENCES

Blasius:1995:GRR

Blackburn:2000:PHF

Bando:2012:FBG

Bloom:1970:STT

Barber:2014:MEH

Blustein:1995:IBV

Bayer:1976:EST

Barklund:1987:HTL

J. Barklund and H. Millroth. Hash tables in logic programming. In Lassez
REFERENCES

[BMB68] J. D. Beyer, W. D. Maurer, and Frank K. Bamberger. Letter to the Edi-

REFERENCES

Bobrow:1975:NHL

Bolour:1979:OPM

Bookstein:1973:HST

Bookstein:1974:HCN

Borman:1981:PSP

Borgwardt:1984:PPU

P. Borgwardt. Parallel Prolog using stack segments
REFERENCES

used in the C++ Standard Template Library. Also compares the Jenkins hash function [Jen97] with the one proposed in this paper.

Beuchat:2011:LAU

Biliris:1994:EEO

Barbour:1997:DMH

Brier:2009:CC

Ben-Porat:2012:VHH

Bakhtiari:1997:WGC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[124]

[Bode:1993:PPA]

[Biham:1991:DCFb]

[Biham:1991:DCFa]

[Biham:1991:DCS]

[Bhatia:1994:FPH]

S. Bhatia and C. Sabharwal. A fast perfect hash function for image databases. In
REFERENCES

Brain:1989:NPH

Brain:1990:PHU

Briggs:1993:ERS

Brain:1994:UTE

Bouabana-Tebibel:2012:HCB

Brown:2012:FPT

Daniel G. Brown and Jakub Truszkowski. Fast phylogenetic tree reconstruction us-

REFERENCES

REFERENCES

kins Univ, Baltimore, Md, USA, 1983.

Nicholas J. Belkin and C. J. Van Rijsbergen, editors. SIGIR ’89: Proceedings of the Twelfth Annual International

Barreto:2012:HCS

Bazrafshan:2013:IBS

Breen:1989:HFP

Edmond J. Breen and Keith L. Williams. Hash function performance on different biological databases.

Bruynooghe:1992:PLI

Blackburn:1998:OLP

Baeza-Yates:1989:MSF

Ricardo A. Baeza-Yates and Héctor Soza-Pollman. Anal-

Coelkesen:1994:MCV

Cercone:1983:SIS

[Nick Cercone, John Boates, and Max Krause. A semi-interactive system for finding perfect hash functions. Technical report CMPT TR 83-4, Simon Fraser University, Burnaby, BC, Canada, 1983. ?? pp. (email library@cs.sfu.ca).]

Cercone:1985:ISF

Chang:1987:PAG

Chang:1988:OMP

Chang:1988:OMP

Chang:1991:NAA

Coburn:2012:NHM

[Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: making persistent]

CCCG:1989:CCC

Choi:2008:DNX

Chang:1991:DMI

Chang:2009:HTF

REFERENCES

http://www3.oup.co.uk/computer_journal/hdb/Volume_34/Issue_05/tiff/474.tif

Chen:1991:DMK

Chen:2017:FMT

Chen:1991:HNT

Chang:1984:CHC

Cleary:1984:FCR

Cheiney:1989:PTC

Cheiney:1990:PST

[J. P. Cheiney and C. de Mandreville. A parallel strategy for transitive closure using double hash-based clustering. In McLeod et al. [MSDS90], page 347. ISBN 1-55860-149-X. LCCN ???
REFERENCES

Cercone:1987:FAP

Cercone:1988:FAP

Christodoulakis:1989:FOA

Christodoulakis:1989:RPV

Celis:1992:AHL

Cooperman:1994:CPR

Cowan:1979:HKR

Cotter:1992:CTK

REFERENCES

Chu:1986:VLD

Cousin:1994:PIS

Cormode:2009:FFI

Ceglarek:2012:FPD

Chang:1984:OIR

Chang:1984:OMP

Chang:1984:SOM

[Cha84c] C. C. Chang. The study of an ordered minimal perfect hashing scheme. *Communications of the Association for Computing Machinery*, 27(4):384–387, April 1984. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). The English translation of Ref. 6 of this paper appears in [Hua82]; that book contains the fundamen-
tal prime number functions needed for the ordered minimal perfect hash functions described here.

Wen-Chin Chen. The Design and Analysis of Coalesced Hashing. PhD thesis, Department of Computer Science, Brown University, Providence, RI, USA, November 1984. ?? pp. See also [Che84b].
Chen:1984:DACb

Chin:1991:LPH

Chin:1993:LPH

Andrew Chin. Locality-preserving hashing. In Anonymous [Ano93d], pages 87–98. ISBN ?? LCCN ?? I have been unable to locate this reference in several major libraries, including Dartmouth’s, sigh....

Chin:1994:LPHb

Cormack:1985:PPH

Correa:2006:LTI

Camacho:2008:SAC

REFERENCES

REFERENCES

Chung:1990:BCW

Chung:1991:IEH

Chung:1992:IEH

Chen:1993:AHF

Chen:1997:AHF

Cichelli:1980:CMP

R. J. Cichelli. On Cichelli’s minimal perfect hash functions method. Communications of the Association for Computing Machinery, 23(12):728–729, December 1980. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (elec-
Cichelli:1980:MPH

Richard J. Cichelli. Minimal perfect hash functions made simple. Communications of the Association for Computing Machinery, 23(1):17–19, January 1980. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See remarks in [JO80], and the author’s response in [Cic80a]. A simple improvement giving dramatic speedups is described in [Tro95].

Caires:2005:ALP

Cipra:1993:ETS

Colomb:1986:CIS

Choi:2009:DSC

Cho:2012:CBF

Jung-Sik Cho, Young-Sik Jeong, and Sang Oh Park.

See cryptanalysis [SPLHCB14].

Jo-Chen:2015:CBF

Cherichetti:2015:LPF

Cherichetti:1994:LDU

Nick Cercone, Max Krause, and John Boates. Lexicon de-
sign using perfect hash functions. In Borman [Bor81], pages 69–78. CODEN SG-
.S53 v.12 no.4-v.13 no.1-3.

Cercone:1983:MAMa

N. Cercone, M. Krause, and J. Boates. Minimal and almost minimal perfect hash
function search with application to natural language lexicon design. In Compu-

Cercone:1983:MAM

Nick Cercone, Max Krause, and John Boates. Minimal and almost minimal perfect hash
function search with application to natural language lexicon design. Computers and Mathemat-
ics with Applications, 9(1): 215–231, ???? 1983. CO-
DEN CMAPDK. ISSN 0898-1221 (print), 1873-7668
science/article/pii/0898122183900160

Cercone:1985:ESL

N. Cercone, M. Krause, and J. Boates. Efficient search of large lexicons using per-
fected hash functions. In 1983 International Conference on Data Bases in the Human-
ities Social Sciences, New

Choi:2009:SPC

Lynn Choi, Hyogon Kim, Sunil Kim, and Moon Hae Kim. Scalable packet classifi-
cation through rulebase partitioning using the maximum entropy hashing. IEEE/
(print), 1558-2566 (electronic).

Claussen:2000:EES

J. Claussen, A. Kemper, D. Kossmann, and C. Wies-
ner. Exploiting early sorting and early partitioning for decision support query proces-
sing. VLDB Journal: Very Large Data Bases, 9
(3):190–213, December 2000. CODEN VLDBFR. ISSN
1066-8888 (print), 0949-877X (electronic).

Chierichetti:2014:CLF

Flavio Chierichetti, Ravi Kumar, and Mohammad Mahdian. The complexity of LSH feasibility. Theo-
science/article/pii/S0304397514001467
REFERENCES

Chang:1993:RCO

Chang:1985:PAK

Coetser:2009:REH

Cook:1983:STA

Chang:2005:PHS

REFERENCES

Colbourn:2009:LHF

Colbourn:2009:RCP

Clapson:1977:IAT

Chang:1992:OPD

Chang:2006:PHS

Chang:1982:SGC

Cleary:1984:CHT
Charles:2009:CHF

Click:1995:GCM

Cheng:2014:SSM

Celis:1985:RHH

Celis:1986:RHHb

P. Celis, P. Å. Larson, and J. I. Munro. Robin Hood hashing. Technical Report CS-86-14, Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, April 1986. ?? pp. See also [Cel86].

Clifford:1989:AIC

Li:2007:RNH

Chang:2006:ISA

Canetti:2013:PCC

Chiu:2017:AAS

Chen:20195:STP

Chen:2012:EDI

Chu:1998:EHB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chung:1989:DSH

Crammond:1985:CSU

Carreras-Riudavets:2012:MAU

Cromwell:1998:PBD

Collom:2018:FMM

Chaum:1983:ACP

Chung:1983:PSR

REFERENCES

[Celis:2011:BBS][CS83b]

[Celis:2013:BBS][CRSW13]

[Comer:1982:HBS][CS82]

[Chang:1983:DOM][CS83a]
C. C. Chang and J. C. Shieh. On the design of ordered minimal perfect hashing functions and join dependencies. Was to appear in J. ACM, but did not. Where was it finally published?, 1983.

[Celis:2011:BBS][CS83b]

[Chang:1985:FAC][CS85a]

[Chang:1985:DLO][CS85b]

[Chang:1985:DLM][CS85c]
Chin-Chen Chang and Jian-Cherung Shieh. On the design of letter-oriented minimal perfect hashing func-
REFERENCES

Aniket Chakrabarti, Venu Satuluri, Atreyd Srivathsan, and Srinivasan Parthasarathy.
REFERENCES

A Bayesian perspective on locality sensitive hashing with extensions for kernel methods. *ACM Transactions on Knowledge Discovery from Data (TKDD)*, 10(2):19:1–19:??, October 2015. CODEN ?? ?? ISSN 1556-4681 (print), 1556-472X (electronic).

Cooperman:1996:NSP

Cormode:2010:ANG

Chen:2011:CIK

REFERENCES

Carrea:2014:OHN

Carter:1977:UCHa

Carter:1977:UCHb

Carter:1979:UCH

Chang:1991:LOP

Chang:1993:HON

Chen:2009:SHA

Chiu:2010:FMH
Chih-Yi Chiu, Hsin-Min Wang, and Chu-Song Chen. Fast min-hashing indexing and robust spatio-temporal matching for detecting video

Contini:2006:FPK

Cobb:1991:SIP

Chen:2014:MLC

Chi:2017:HTS

Czech:1998:QPH

Chu:2012:TMP

Chen:2012:AIB

Yu Chen, Zongyang Zhang, Dongdai Lin, and Zhenfu Cao. Anonymous identity-based hash proof system and its applications. Lecture Notes in CS, 7496:
REFERENCES

REFERENCES

Dietzfelbinger:1990:NUC

Dietzfelbinger:1992:HPU

Daemen:1995:HFC

Damgaard:1987:CFH

Damgaard:1990:ACE

Damgaard:1990:DPH

REFERENCES

REFERENCES

Daemen:1998:FHS

Daemen:1998:PCF

Darragh:1991:BCR

DeBonis:2011:CGT

Dhawan:2015:AEN

Danezis:2007:END

Dalal:2005:TWC

Dinur:2014:IPA

Debnath:2003:CTA

Deen:1982:IIS

Devroye:1986:LNB

Luc Devroye. *Lecture Notes on Bucket Algorithms.* Birkhäuser, Cambridge, MA,

Devine:1993:DID

Devroye:1999:HSR

Denert:1977:D

Datta:1989:IPH

Domingo-Ferrer:2001:MAR

DellAmico:2015:UAP

DeWitt:1985:MHBa

REFERENCES

DeWitt:1985:MHBb

Davison:1993:MCR

Davison:1994:MRH

Dawson:1996:CPA

Desmet:2002:IHC

DeWitt:1986:GHP

Dantras:2016:OIB

[DGGL16] Amanieu D’antras, Cosmin Gorgovan, Jim Garside, and Mikel Luján. Optimizing indirect branches in dynamic binary translators. ACM

Durvaux:2012:IPP

Du:1989:EFS

Dietzfelbinger:1992:PHF

DeWitt:1990:GDMa

Daemen:1993:FDO

REFERENCES

REFERENCES

Dietzfelbinger:2008:DIB

Dietzfelbinger:1990:HDD

Dietzfelbinger:1996:UHW

Dietzfelbinger:2007:DSM

Dittmer:1976:IEP

Dietzfelbinger:2007:DSM

Dittmer:1976:IEP

REFERENCES

[Dit91] I. Dittmer. Note on fast hashing of variable length text strings. Communications of the Association for Computing Machinery, 34(11):118, November 1991. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Points out that Pearson’s hashing algorithm [Pea90] was discovered fourteen years earlier by this author [Dit76]. See also comments in [Sav91, Lit91, Pea91].

[DJS80] Min Wen Du, Kuen Fang

REFERENCES

REFERENCES

DeWitt:1984:ITMa

DeWitt:1984:ITMb

DeWitt:1984:ITMd

Dahlgaard:2015:HSP

Dahlgaard:2016:PTC

Dharmapurikar:2006:LPM

Devillers:1979:HTG

[R. Devillers and G. Louchard. Hashing techniques, a global...
REFERENCES

Du:1980:SGC

Du:1980:SGC

DeRemer:1979:SCS

Denielou:2006:APS

Denielou:2006:APS

Dolev:2009:BAU

Dong:2012:UAS

Dong:2012:UAS

REFERENCES

Durand:2007:SPP

Duan:2018:EGS

Damiani:1998:EDH

Davie:1981:RDC

Diby:1990:DDK

Devroye:2003:CHF

Ducournau:2011:PCH

Roland Ducournau and Floréal Morandat. Perfect class hashing and numbering for object-oriented im-
Ducournau:2009:EAO

Ducournau:2009:EAO

Dietzfelbinger:2011:CHP

DeWitt:1992:PSH

Deen:1981:DCD

REFERENCES

Dodds:1982:PRD

Donovan:1991:PSM

Dodis:2005:GIF

Doster:1978:AHG

Doszkocs:1978:AAI

Dietzfelbinger:2008:SDS

Das:2008:DHS

Saumitra M. Das, Himabindu Pucha, and Y. Charlie Hu. Distributed hashing for scalable multicast in wireless ad hoc networks. IEEE Transactions on Parallel and
REFERENCES

DEN ITDSEO. ISSN 1045-
9219 (print), 1558-2183 (elec-
tronic).

Delis:1992:PSC

A. Delis and N. Roussopou-
los. Performance and scal-
ability of client-server archi-
tectures. In Proceedings of
the 18th Conference on Very
Large Databases, Vancouver,
page ?? Morgan Kaufmann
Publishers, San Francisco,

DeCaniere:2006:FSC

Christophe De Cannière and
Christian Rechberger. Find-
ing SHA-1 characteristics:
General results and appli-
cations. Lecture Notes in
CS, 4284:1–20, 2006. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/
10.1007/11935230_1.pdf;
http://link.springer.
com/content/pdf/bfm:978-
3-540-49476-8/1.pdf.

Dietzfelbinger:2009:AST

Martin Dietzfelbinger and
Michael Rink. Applications
of a splitting trick. In Al-
bers et al. [AMSM+09], pages
ISBN 3-642-02926-4. ISSN
0302-9743 (print), 1611-3349
(electronic). LCCN QA267
.J55 2009. URL http:

Doyoddorj:2011:NSI

Munkhbaatar Doyoddorj and
Kyung-Hyune Rhee. A
novel secure image hashing
based on reversible water-
marking for forensic analy-
sis. Lecture Notes in CS,
6908:286–294, 2011. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/
10.1007/978-3-642-23300-
5_22.

Drescher:2017:BB

Daniel Drescher. Blockchain
Basics. Apress, Berkeley,
CA, USA, 2017. ISBN 1-
4842-2603-8 (print), 1-4842-
2604-6 (e-book). xv +
1007/978-1-4842-2604-9.

Drescher:2017:HD

Daniel Drescher. Hashing
data. In Blockchain Ba-
sics [Dre17a], pages 71–
79. ISBN 1-4842-2603-8
(print), 1-4842-2604-6 (e-
book). LCCN HG1710 .D74
springer.com/chapter/10.
1007/978-1-4842-2604-9_10.
REFERENCES

REFERENCES

[Du:1995:RMQ]

[Dayal:1984:VLD]

[Dalessandro:2010:NSS]

[Dhayal:2017:MMP]

[Dontas:1990:FTHa]

[Dontas:1990:FTHb]

[Dehne:2007:PAI]
REFERENCES

H. C. Du. Disk allocation methods for binary Cartesian...
REFERENCES

184

Ducournau:2008:PHA

Dumey:1956:IRR

Duncan:1989:PPU

Duncan:1989:UHT

Daemen:2007:PCP

Deligiannis:2014:PRW

DaSilva:1983:PAS

daSilva:1983:PSH

REFERENCES

References to conference papers are given in the order in which they are mentioned in the text.

Dietzfelbinger:2003:ARG

Dietzfelbinger:2005:BAD

Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionaries with tightly packed constant size bins. In Caires et al. [CIM+05], pages 166–178. ISBN 3-540-27580-0. LCCN ????? EUR 130.54. URL http://www.springerlink.com/content/39gwr5b5hp6d15hw/ ; http://www.tuilmenau.de/fakia/mdpapers.html.

Dietzfelbinger:2007:BAD

DeSantis:1990:DPS

DeSantis:1991:DPS

Ding:2008:MPH

Ehdaie:2016:HCR

REFERENCES

Sally M. Elghamrawy and
REFERENCES

Ellis:1987:CLH

Ellis:1988:CEH

Erlingsson:2007:CPA

Englert:1999:SHF

Er:1986:UTI

Ershov:1958:PAO

REFERENCES

[189]

tions of the Association for Computing Machinery, 1(8): 3-6, August 1958. CO-
DEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). English translation
of [Ers58b].

Ershov:1958:PPB

Andrei P. Ershov. Programming programs for the BESM [Moscow]. Dok-
lady Adak. Nauk SSSR, 118 (??):427–430, 1958. CO-
DEN DANKAS. ISSN 0002-3264. Rediscovery and first publication of linear open
addressing. See [ABRS53, Dum56]. English translation in [Ers58a].

Estebanez:2014:PMC

César Estébanez, Yago Saez, Gustavo Recio, and Pedro Isasi. Performance
of the most common non-cryptographic hash functions. Software—Practice
and Experience, 44(6):681–698, June 2014. CODEN SPEXBL. ISSN 0038-0644
(print), 1097-024X (electronic).

Eugenides:1990:ESM

J. G. Eugenides. Easier strings for the Mac. Get a handle on Mac strings
with this C++ class. Byte Magazine, 15(13):349–350, 352, December 1990. CO-
DEN BYTEDJ. ISSN 0360-5280 (print), 1082-7838 (electronic).

Estan:2006:BAC

Cristian Estan, George Varghese, and Michael Fisk. Bitmap algorithms for counting
active flows on high-speed links. IEEE/ACM Transactions on Networking, 14(5):
925–937, October 2006. CODEN IENBEP. ISSN 1063-6692 (print), 1558-2566 (electronic).

Fotakis:2003:SEH

D. Fotakis et al. Space efficient hash tables with worst case constant access
time. In Alt and Habib [AH03], pages 271–283. CODEN LNCSD9. ISBN 3-540-
00623-0 (softcover). ISSN 0302-9743 (print), 1611-3349 (electronic). LCCN QA75.5 .S956 2003. URL
http://link.springer-ny.com/link/service/series/0558/tocs/t2607.htm;
http://www.springerlink.com/openurl.asp?genre= issue&issn=0302-9743&volume=2607. Also available via the
World Wide Web.

Fabry:1974:CBA

for Computing Machinery, 17 (7):403–412, July 1974. CODEN CACMA2. ISSN 0001-
0782 (print), 1557-7317 (electronic).
REFERENCES

REFERENCES

REFERENCES

Franco:1990:TFL

Fleischmann:2009:TFS

Fleischmann:2010:TFS

Freire:2007:BHB

Figini:1984:ACH

Farashahi:2013:IDH

REFERENCES

2012-02606-8; http://
/www.ams.org/journals/
mcom/2013-82-281/S0025-
5718-2012-02606-8/S0025-

[Files:1969:IRS]
John R. Files and Harry D.
Huskey. An information
retrieval system based on
superimposed coding. In
AFIPS FJCC ’69 [AFI69],
page ?? LCCN TK7885.A1
J6 1969.

[Fortune:1979:NRN]
Steve Fortune and John
Hopcroft. A note on Ra-
bin’s nearest-neighbor algo-

[Fateman:1996:SLB]
Richard J. Fateman and
Mark Hayden. Speeding up
Lisp-Based symbolic math-
ematics. SIGSAM Bul-
letin (ACM Special Interest
Group on Symbolic and
Algebraic Manipulation), 30(1):
25–30, March 1996. CO-
DEN SIGSBZ. ISSN 0163-
5824 (print), 1557-9492 (elec-
tronic).

[Fuji-Hara:2015:PHP]
Ryoh Fuji-Hara. Perfect hash
families of strength three
with three rows from varieties

[Fox:1989:LAF]
E. A. Fox, L. Heath, and
Q. Chen. An O(n log n) algo-
rithm for finding minimal
perfect hash functions. Technical
Report TR 89-10, Depart-
ment of Computer Sci-
ence, Virginia Polytechnic
Institute and State Univer-
sity, Blacksburg, VA 24061-

[Fox:1992:MPH]
Edward A. Fox, Lenwood S.
Heath, Qi Fan Chen, and
Amjad M. Daoud. Mini-
mal perfect hash functions
for large databases. Communi-
cations of the Association
for Computing Machinery, 35
CODEN CACMA2. ISSN
0001-0782 (print), 1557-7317
(electronic). This is the first
published algorithm for com-
puting minimal perfect hash
functions for lists of millions
of words; previous algorithms
were computationally infeasi-
bly for more than a few hun-
dred words.
Heath, Qi Fan Chen, and Amjad M. Daoud. Practical minimal perfect hash functions for large databases. Communications of the Association for Computing Machinery, 35(1):105–121, January 1992. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). URL http://www.acm.org/pubs/toc/Abstracts/0001-0782/129623.html. This is the first published algorithm for computing minimal perfect hash functions for lists of millions of words; previous algorithms were computationally infeasible for more than a few hundred words.

Frieder:1985:LSP

Filiol:2002:NST

FIPS:1993:SHS

FIPS:2002:KHM

FIPS:2002:SHS

Fischer:1987:FMP
James R. Fischer, editor. Frontiers of massively parallel scientific computation: proceedings of the first symposium sponsored
REFERENCES

Fredman:1984:SST

Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with $O(1)$ worst case access time. Journal of the Association for Computing Machinery, 31(3):538–544, July 1984. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic). Extends the work of Tarjan and Yao [TY79], using a two-level data structure, the first containing pointers to the second, and the second containing blocks accessible by a perfect hashing function.

Feldman:1973:CBS

Fan:2004:DBS

C. I. Fan and C. L. Lei. Divisible blind signatures based
REFERENCES

REFERENCES

Fischlin:2008:RMP

Fischlin:2014:RMP

Ferguson:2010:SHF

Flynn:1992:ORU

Flajolet:1985:PCA

Faloutsos:1989:DUE
REFERENCES

REFERENCES

(electronic). Also published in/as: IBM Research Report RJ2305, Jul. 1978. See also [Reg85].

Discusses the dynamic hashing scheme used by ASDAS, under development at Strathclyde University.

Fraenkel:1994:EMD

Flajolet:1982:BPA

Fortnow:2008:IIC

Fiat:2009:AEA
REFERENCES

REFERENCES

[GB17] Neenu Garg and Seema Bawa. RITS-MHT: Relative indexed and time stamped Merkle hash tree
REFERENCES

REFERENCES

Gollapalli:2015:IRH

Gerd:1987:IHS

Gerdzijauskas:2010:SOH

Gedik:2014:PFS

Geiselmann:1995:NHF

Geiselmann:1996:NHF

Gerber:1986:DQPa

R. H. Gerber. *Dataflow Query Processing using Multiprocessor Hash-Partitioned
REFERENCES

Gerber:1986:DQPb

Gerber:1995:IOX

Gettys:2001:AAG

Griswold:1986:IIP

REFERENCES

REFERENCES

REFERENCES

Graham:1979:HST

Goto:1976:HLT

Greene:1981:MAA

Greene:1982:MAA

Grewe:1994:ILM

Grewe:1995:ILM

Garcia:2005:HJA

Gueron:2008:VNF

Gauravaram:2012:SAR

Gueron:2012:PMS

Gauravaram:2010:HFU

Ghosh:1973:ACW

Gonnet:1982:EHL

Gonnet:1988:EHL

Gennaro:2006:FPB

References

Graefe:1991:SVH

Graefe:1994:SVH

Gonnet:1977:AIH
G. Gonnet and I. Munro. The analysis of an improved hashing technique. In ACM-TOC’77 [ACM77b], pages 113–121.

Gonnet:1979:EOH

Gil:1991:FHP

Gil:1994:SFP

Gil:1998:SFP

Garcia-Molina:1990:ASI

Gil:1990:AKC

Gall:1980:SIA

Gutmann:2005:WHC

Gauravaram:2007:USC

Grossi:2015:FCT

Goble:1975:FTR
REFERENCES

http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_01/tiff/20.tif.

Golshani:1992:EIC

Goldwasser:1994:P

Gollmann:1996:FSE

Gonnet:1977:ALB

Gonnet:1980:OAH

Gonnet:1981:ELL
REFERENCES

Gentry:2008:THL

Greene:1994:MIHa

Greene:1994:MIHb

Guillou:1995:ACE

Gray:1986:IJH

Graefe:1988:RDF

Graefe:1989:RDF

Graefe:1992:QPT

G. Graefe. Query processing techniques for large
Graefe:1992:TR

Graefe:1993:PEHa

Graefe:1993:PEHb

Graefe:1999:VMJ

Graefe:1994:DAE

Grech:2011:JGE

Grimson:1974:PSS

J. B. Grimson. A performance study of some di-
rectory structures for large data files. *Information Storage and Retrieval*, 10(11):??, 1974.

Griss:1977:EEE

Griss:1979:HKR

Griebel:1998:ASG

Guibas:1978:ADH

REFERENCES

Girault:1994:LCH

Gupta:1994:RSD

Goi:2001:IHF

Galli:2001:THO

Ganguly:1990:FPP
Sumit Ganguly, Avi Silberschatz, and Shalom Tsur. A framework for the parallel processing of Datalog queries. SIGMOD Record (ACM Special Interest Group
REFERENCES

REFERENCES

Stanford, CA, USA, August 1976. ?? pp. This is the author’s Ph.D. thesis, [Gui76a].

Leo J. Guibas. The analysis of hashing algorithms that exhibit k-ary clustering. In IEEE-FOCS’76 [IEE76], pages 183–196.

REFERENCES

CODEN ISIJBC. ISSN 0020-0255 (print), 1872-6291 (electronic).

John Hamer. Hashing revisited. *SIGCSE Bulletin (ACM Special Interest Group on Computer Sci-
Hanson:1990:PMAa

Han:2017:CPW

Harrison:1971:IST

Harrison:1971:DSP

Malcolm C. Harrison. Data Structures and Programming. Courant Institute of Mathematical Sciences, New York University, New York, NY, USA, April 1971. xii + 381 pp. LCCN QA76.5 .H37. See also [Har73].

Harrison:1973:DSP

Harris:1985:INL

Harbron:1988:FSS

Harari:1997:HHF

REFERENCES

REFERENCES

REFERENCES

Hopgood:1972:QHM

Hanna:2009:CEE

Hanna:2011:AHS

He:1987:PAS

Healey:1972:CEP

Headrick:1982:HRS

Hejlsberg:1989:COT

Hekmatpour:1989:LPI

Heller:1989:EH

Heller:1991:MHY

Helleseth:1994:ACE

Herbert:2007:WHP

Heuer:1987:WRD

Herrin:1991:ADF

Huang:2017:QAL

Huang:2015:QAL

Hikita:1977:AFP

Lai:2009:CCD

Hendricks:2007:LOB

Hester:1985:SOL

REFERENCES

Hopcroft:1983:HCG

Haggard:1986:FMP

Hofri:1987:PLR

Hagerup:1995:FPP

Halevi:2012:SPH

Hofheinz:2012:PHF

Hong:2010:PAR

Deukjo Hong, Bonwook Koo, Woo-Hwan Kim, and Dae-sung Kwon. Preimage attacks on reduced steps of ARIRANG and PKC98-hash. Lecture Notes in CS,
REFERENCES

Hsiao:2005:TMD

Hirose:2012:CFU

Horton:1994:MLS

Hsu:2003:NCS

Heileman:2005:HCA

Hsu:1991:IAI

REFERENCES

REFERENCES

[Sven Helmer and Guido Moerkotte. A performance study of four index structures for set-valued attributes of low cardinality. VLDB Journal: Very Large Data Bases, 12 (3):244–261, October 2003. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).]

REFERENCES

REFERENCES

[Hernandez:2001:DTR] Julio César Hernández, José María Sierra, Arturo Ribagorda, Benjamín Ramos, and J. C. Mex-Perera. Distinguishing TEA from a random permutation: Reduced round versions of TEA do not have the SAC or do not generate random numbers. Lecture Notes in CS, 2260:374–377, 2001. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-
REFERENCES

minimal perfect hash functions.

REFERENCES

[Hohl:1994:SIH]

[Hadjieleftheriou:2008:HSS]

[Hill:1986:ESD]

[Aoe:1991:CAK]

IEEE:1986:ICD

IEEE:1987:DEP

IEEE:1988:PF1

IEEE:1990:PSI

Proceedings, Sixth International Conference on Data Engineering: February 5–9, 1990, Los Angeles Airport Hilton and Towers, Los Angeles, California, USA. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1990. ISBN 0-8186-
REFERENCES

[IEEE:1991:PSI]

[IEEE:1993:ICD]

[IEEE:1974:ASS]

IEEE, editor. 15th Annual Symposium on Switching and Automata Theory, October 14–16, 1974, the University of New Orleans. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1974.

[IEEE:1976:ASF]

[IEEE:1980:PCI]

[IEEE:1982:SFC]

[IEEE:1982:ASF]

REFERENCES

Silver Spring, MD 20910, USA, 1982. LCCN QA76.6 S95 1982.

REFERENCES

IEEE:1988:ICP

[IEE88d]

IEEE:1989:ASF

[IEE89]

IEEE:1990:PSN

[IEE90]

IEEE:1991:PSA

[IEE91a]

IEEE:1991:PAS

[IEE91b]

REFERENCES

IEEE:1995:PNA

IEEE:1999:ASF

IEEE:2001:PII

IEEE:2002:STI

IEEE:2005:PIS

IEEE:2013:PIA

Ioannidis:2005:ADS

Ichikawa:1983:ARD

Itoh:1995:ANS

Ivanchykhin:2017:RAU

Ida:1977:PPH

Ihlenfeldt:1994:HCl

IG77

IEEE:2013:PIA

IG94

IEEE:2013:PIA

IGA05

IEEE:2013:PIA

IH83

IEEE:2013:PIA

IH95

IEEE:2013:PIA

IIL17

IEEE:2013:PIA

Ith:1977:PPH

Ith:1995:ANS

Iv:1994:HCl

Ikeda:2013:CEM

Ichiyoshi:1992:ALB

Ishai:2008:CCC

Ivanov:1990:HSO

Indyk:1997:LPH

REFERENCES

Impagliazzo:1989:ECS

Impagliazzo:1989:ECS

Impagliazzo:1989:ECS

Indyk:2001:SAI

Indyk:2001:SAI

Indyk:2013:SHH

Indesteege:2008:CRH

Indesteege:2008:CRH

Indesteege:2011:PCE

REFERENCES

Irby:19xx:MRH

IRM93

Inoue:1991:RRD

ISH+93

Ishikawa:1993:MLI

ISO:1997:ITS

ISO and IEC 10118. *Information technology — Se-

are considered. Though the existence of h is guaranteed, the scheme suffers from many practical problems because of exhaustive nature of the search for h.

Jagannathan:1991:OPM

Jain:1989:CHS

Jain:1992:CHSa

Jain:1992:CHSb

Jain:1990:CHS

Jaja:1990:SFM

Jakobsson:1985:SRL

Janson:2005:IDL

Svante Janson. Individual displacements for linear probing hashing with different insertion policies. *ACM Transactions on Algorithms,*
REFERENCES

Janson:2008:IDH

Jarke:1994:ADT

Jiang:2011:GBM

Jan:1988:ALO

Jones:1988:FTV

Jiang:2000:CSM
REFERENCES

0169-023X (print), 1872-6933 (electronic).

Jaeschke:1980:CMP

Johnson:1961:ICM

Johansson:1997:BHS

Jouannaud:1985:FPL

Joux:2004:MIH

Joye:2003:TCC

Jutla:2007:PGC

Jensen:2008:OEM

Jeon:2007:SAP

Jin:2009:SMB

Jung:1987:IRC

Jacobs:1986:TRT

Janson:2016:UAL
Svante Janson and Alfredo Viola. A unified approach to linear probing hashing with

Jia:2018:PPH

Jiang:2007:DHT

Kabe:1987:RRT

Kahrs:1992:UUL

Kak:1983:EMP

REFERENCES

REFERENCES

[Kim:2011:SSE] Changhoon Kim, Matthew Caesar, and Jennifer Rex-

REFERENCES

Kak:1995:ILM

Kaushik:2012:MGH

Kanizo:2012:HTF

Kanizo:2015:MTH

Yossi Kanizo, David Hay, and Isaac Keslassy. Maximizing the throughput of

Kuo:1989:DSF

Kortelainen:2010:MAG

Karplus:1984:FMP

Khan:1995:PDH

Kanizo:2015:MTH

Yossi Kanizo, David Hay, and Isaac Keslassy. Maximizing the throughput of

Kitsuregawa:1989:JSK

Kim:1991:ISSa

Kim:1991:ISSb

Kak:1994:CVW

Kiessling:1985:DFU

Kiltz:2001:PPS

Kilian:2005:TCS

Kim:1980:QOR

Kim:1999:NSP

KJC11

Kojima:1985:HFO

Khan:1996:PCI

Kelsey:2006:HHF
J. Kelsey and T. Kohno. Herding hash functions and the Nostradamus attack. In Vaudenay [Vau06], pages
REFERENCES

Kakvi:2012:OSP

Kakvi:2018:OSP

Kim:2009:SVH

Lioma:2008:AHT

Kaski:2012:HHS

KK12

KK18

KKC12

KKC12

KK12

KKM10

KK18

KK12

KKC12

Kaski:2012:HHS

KK12

KKC12

REFERENCES

Kim:1992:DSN

Kabiljo:2017:SHP

Kim:2007:EIK

Kurosawa:1991:CFH

Kemper:1999:GHT

Kim:1987:ESJ

REFERENCES

Knudsen:1995:NAA

Katajainen:1996:EUH

Jyrki Katajainen and Michael Lykke. Experiments with universal hashing. DIKU Report 96/8, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark, 1996.

Kencl:2008:ALS

Karp:1996:EFS

Knudsen:1998:AFD

Karp:1996:EFS

Lars R. Knudsen, Xuejia Lai, and Bart Preneel. Attacks on fast double block length hash

Korner:1988:RAC

Kato:1992:PCI

Kirsch:2007:UQA

Kirsch:2008:SSH

Karroumi:2009:HBK

Kirsch:2010:POM

Kakarountas:2006:HSF

Athanasios P. Kakarountas, Haralambos Michail,
REFERENCES

REFERENCES

Also published in/as: Stanford University Report, 1975. Section 3, “A history of hashing schemes”, and the lengthy bibliography, are recommended and useful resources.

Knott:1984:DCC

Knott:1988:LOA

Khovratovich:2010:RRA
Kitsuregawa:1989:EBS

Knuth:1973:ACP

Knuth:1974:CSR

Knuth:1975:ACP

Knuth:1977:DPR

Knudsen:1992:CL

REFERENCES

Knuth:1998:LPG

Kitsuregawa:1990:BSP

Koehler:1972:SDB

Kohonen:1980:CAM

Konheim:2010:HCS

Korf:2008:LTD

Koschke:2014:LSI

[Koschke] Rainer Koschke. Large-scale inter-system clone detection using suffix trees and hash-
REFERENCES

Koushik:1993:DHD

Kilov:1981:DMA

Kedem:1992:OPA

Krichevskii:1994:CSE

Knudsen:1996:HFB

Knudsen:1997:FSH

Katzenelson:1992:TMT

Jacob Katzenelson, Shlomit S. Pinter, and Eugen Schenfeld. Type matching, typegraphs, and the Schanuel conjecture. In *ACM Transactions on Programming Lan-

REFERENCES

[Kawaguchi:2009:TBD]

[Kim:2009:CIS]

[Kwon:2009:FXD]

[Kohonen:1984:ORS]

[Knudsen:2007:GFH]

[Kruse:1984:DSP]

[Kriegel:1986:EMD]
H-P. Kriegel and Bernhard Seeger. Efficient multidimensional dynamic hashing for uniform and non-uniform record distributions. In Ausiello and Atzeni [AA86],
REFERENCES

Kniesburges:2012:BAH

Karger:1999:WCC

Kwak:2011:DIB

Kwak:2012:DIB

Kalvin:1986:TDM

Kim:1999:LEO

Jeong Han Kim, D. R. Simon, and P. Tetali. Limits on the efficiency of one-way permutation-based
hash functions. In IEEE [IEE99], pages 535–542. CO-
den ASFPDV. ISBN 0-7695-0409-4 (softbound),
0-7803-5955-0 (casebound),
0-7695-0411-6 (microfiche).
ISSN 0272-5428. LCCN TK7885.A1 S92 1999. IEEE
Catalog Number 99CB37039.

Kitsuregawa:1983:AHD

[KTMO83a] M. Kitsuregawa, H. Tanaka, and T. Moto-oka. Application of hash to database ma-
chine and its architecture. New Generation Compu-
ting, 1(1):63–74, 1983. CO-
den NGCOE5. ISSN 0288-
3635 (print), 1882-7055 (elec-
tronic).

Kitsuregawa:1983:GRA

[KTMO83b] Masaru Kitsuregawa, Hide-
hiko Tanaka, and Tohru
Moto-Oka. GRACE: Rela-
tional algebra machine based
on hash and sort — its de-
sign concepts. Journal of the
Information Processing Soci-
ety of Japan, 6(3 (or 6??)):
148–155, ???? 1983. CODEN
JIPRDE. ISSN 0387-6101.

Kitsuregawa:1983:RAM

[KTMO83c] Masaru Kitsuregawa, Hide-
hiko Tanaka, and Tohru
Moto-oka. Relational alge-
bra machine: GRACE. In Goto [Got83], pages 191–
(New York), 3-540-11980-9
(Berlin). LCCN QA76.6 .R55
1983.

Karlin:1986:PHE

[KU86] A. R. Karlin and E. Up-
fal. Parallel hashing — an
efficient implementation of
shared memory. In ACM-
TOC ’86 [ACM86b], pages
160–168. ISBN 0-89791-193-
8. LCCN QA76.6 .A14 198.

Karlin:1988:PHE

[KU88] Anna R. Karlin and Eli
Upfal. Parallel hashing:
An efficient implementation
of shared memory. Journal of the Association for
Computing Machinery, 35
CODEN JACOAH. ISSN
0004-5411 (print), 1557-735X
(electronic).

Ku:2004:HBS

[Ku04] Wei-Chi Ku. A hash-based
strong-password authentica-
tion scheme without using
Smart Cards. Operating
34, January 2004. CODEN

Kuespert:1982:MLHa

Kuespert:1982:MLHb

Kuespert:1983:VZO

Kuespert:1984:USO

Kuespert:1984:EED

Kuich:1992:ALP

Kulkarni:1984:CHF

Kumar:1989:CCM

Vijay Kumar. A concurrency control mechanism based on extendible hashing for main memory database systems. In
REFERENCES

Kumar:1989:CCE

Kumar:1990:COE

Kutzelnigg:2006:BRG

Kutzelnigg:2010:IVC

Kenyon:1991:MQS

Katz:2009:SPH

Kortelainen:2012:GIH

Kroll:1994:DST
Brigitte Kröll and Peter Widmayer. Distributing a search tree among a growing number of processors. SIGMOD Record (ACM Special Interest Group on Management of Data), 23(2):265–276, June 1994. CODEN SREC8D. ISSN 0163-5808 (print), 1943-5835 (electronic).

Klassen:2012:ITB

Kaps:2005:ESU

Kjellberg:1984:CH

Louati:2018:LCT

Lai:1992:DSB
Xuejia Lai. On the design and security of block ciphers. Hartung-Gorre Verlag, Konstanz, Switzerland,
REFERENCES

1992. ISBN 3-89191-573-X. xii + 108 pp. LCCN ??? This is the author's Ph.D. dissertation. “Secret-key block ciphers are the subject of this work. The design and security of block ciphers, together with their application in hashing techniques, are considered. In particular, iterated block ciphers that are based on iterating a weak round function several times are considered. Four basic constructions for the round function of an iterated cipher are studied.”.

LakshmanYN:1996:IP1

[Lar80b] Per-Åke Larson. Linear hashing with partial expansions.
In Lochovsky and Taylor [LT80], pages 224–232. ACM order no. 471800. IEEE catalog no. 80CH1534-7C. Long Beach order no. 322.

REFERENCES

Larson:1985:HFS

Larson:1985:LHO

Larson:1985:PAS

Larson:1988:DHT

Larson:1988:LHS

Larson:19xx:LHP

Lassez:1987:PFI

Lopes:2007:IRQ

[LB07] Nuno Lopes and Carlos Baquero. Implementing range queries with a decentralized balanced tree over distributed hash tables. Lecture Notes in CS, 4658:
REFERENCES

Li:2002:RBA

Lehman:1986:SIS

Little:1986:PSS

Lewis:1988:HDS

Ted G. Lewis and Curtis R. Cook. Hashing for dynamic and static internal tables. Computer, 21(10):45–57 (or 45–56??), October 1988. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic). The authors survey the classical hashing function approach to information retrieval and show how general hashing techniques exchange speed for memory. It is a tutorial paper that covers, among other topics, dynamic and static hash tables, perfect hashing, and minimal perfect hashing.

Lomas:1995:RBH

Liu:1996:HPS

Lai:2006:ACA

Xuejia Lai and Kefei Chen, editors. Advances in Cryptology — ASIACRYPT 2006: 12th International Confer-
REFERENCES

294

Lo:1993:OPA

Lee:2012:OFL

Lieuwen:1992:PBJ

Luo:2002:SHR

Gang Luo, Curt J. Ellmann, Peter J. Haas, and Jeffrey F. Naughton. A scalable hash ripple join algorithm. In Franklin et al. [FMA02], pages 252–262. ISBN ???. LCCN ???. ACM order number 475020.

Leppänen:1998:BPS

References

Lesk:1988:GII
Michael Lesk. GRAB—
 inverted indexes with low storage overhead. Computing
 Systems, 1(3):207–220, Summer 1988. CODEN CM-
 SYE2. ISSN 0895-6340.

Levy:1989:LPT
G. Levy. A language for
 the P-any trees — applica-
 tions to the dynamic virtual
 hashing methods. In Litwin
 and Schek [LS89], page ??
 ISBN 0-387-51295-0. LCCN

Levelt:1995:IPI
A. H. M. Levelt, editor. IS-
 SAC ’95: Proceedings of the
 1995 International Sympo-
 sium on Symbolic and Alge-
 braic Computation: July 10–
 12, 1995, Montréal, Canada,
 ISSAC -PROCEEDINGS-
 1995. ACM Press, New York,
 NY 10036, USA, 1995. ISBN
 0-89791-699-9. LCCN QA
 76.95 I59 1995. ACM order
 number: 505950.

Lever:2000:LKH
Chuck Lever. Linux kernel
 hash table behavior: Analy-
 sis and improvements. In
 USENIX [USE00a], page ??
 ISBN 1-880446-17-0. LCCN
 ???? URL http://www.
 usenix.org/publications/
 library/proceedings/als2000/
 lever.html.

Lewis:1982:SEA
T. G. Lewis. Software Engi-
 neering: Analysis and Veri-
 fication. Reston Publishing
 Co. Inc., Reston, VA, USA,
 x + 470 pp. LCCN QA76.6
 .L477 1982. US$21.95. Hash-
 ing is covered in Chapters 4–
 7.

Laborde:2017:WFH
Pierre Laborde, Steven Feld-
 man, and Damian Dechev.
 A wait-free hash map. Inter-
 national Journal of Par-
 allel Programming, 45(3):
 421–448, June 2017. CO-
 DEN IJPPE5. ISSN 0885-
 7458 (print), 1573-7640 (elec-
 tronic).

ACM:1982:CRA
Conference Record of the
 1982 ACM Symposium on
 Lisp and Functional Pro-
 gramming: Papers Presented
 at the Symposium, Pitts-
 burgh, Pennsylvania, August
 15–18, 1982. ACM Press,
 New York, NY 10036, USA,
 August 1982. ISBN 0-89791-
 082-6. LCCN QA76.73.L23
 A26 1982. US$26.00. The pa-
 pers were not formally refer-
 eed but were accepted on the
 bases of extended abstracts.

Louis-Gavet:1978:DAI
Guy Louis-Gavet. Diverses
 applications issues d’une fonc-
 tion f de compac-
 tagage basée sur une étude

Litvinov:1980:GHF

Li:1995:CKH

Li:2010:PAP

Li:2015:RDS

Liang:1995:PHF

Lien:1981:AIC

Luhandjula:1992:FSI

Lin:1953:xxx

[A. D. Lin. ???. The year is uncertain (???).]
REFERENCES

[Luh53] with an alternative overflow handling technique using “degenerative addresses” [Knu73, p. 541], 1953.

REFERENCES

Lv:2017:IPL

REFERENCES

REFERENCES

Leng:1992:OWA

Lenzerini:2008:PTS

Lee:2013:SQB

Lowden:2015:DPA

Leung:1989:LPA

Luo:2012:IDE

REFERENCES

Liu:2010:MPI

Liang:2010:LVB

Lueker:1993:MAD

Leighton:1995:LPF

Lee:2007:FDF

Sungju Lee, Daesung Moon, and Yongwa Chung. Feature distribution of the fingerprint template generated by the geometric hashing-based fuzzy vault. *Lecture Notes in CS*, 4693:

Lin:1989:PIB

Legtchenko:2009:CRR

Legtchenko:2012:RCR

Litwin:1993:CAH

Liu:2008:GBK

Litwin:1993:LLH

Litwin:1996:LSD

Witold Litwin, Marie-Anne A. Neimat, and Donovan A. Schneider. LH* — a scalable, distributed data

REFERENCES

Luccio:1991:APU

Luccio:1992:AIP

Leifer:2003:GAS

Li:2012:WHT

Long:2006:GCA

Li:2018:LLP

Lei:2014:FND

REFERENCES

Leskovec:2014:MMD

Lipton:1978:EHS

Lipton:1980:EHS

Liu:2015:MDT

Lange:1985:DS

Litwin:1989:FDO

Linial:1996:NEH

[LS06] Liu:2006:ECS

[LSC91] Laccetti:2007:BFA

[LSV89] Lu:2007:MPC

[Lsp89] Litwin:1989:CTH
Lochovsky:1980:SIC

Frederick H. Lochovsky and ?. Taylor, editors. Sixth International Conference on Very Large Data Bases: reprinted from Very large data bases. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1980. ACM order no. 471800. IEEE catalog no. 80CH1534-7C. Long Beach order no. 322.

Lipski:1985:PFD

Lehmann:2009:MDH

Larangeira:2012:RCN

Lu:1990:HBJ

Luccio:1972:WIL

Luhn:1953:xxx

Hans Peter Luhn. ??? Internal IBM memo that first suggested the idea of hashing, and one of the first applications of linked linear
Luhn is also the inventor of KWIC indexing, in 1960 [Knu73, p. 437]. See also [Lin53], January 1953.

Lum:1973:GPA

Lutterbach:1988:NSD

Li:2011:EDH

Lamdan:1988:GHG

Lee:2004:IAK

Lenstra:2017:TPR

Lin:2011:EVO

Wu:1991:PIC

Lin:2008:AZH

Lu:2018:WLS

Lum:1972:ARK

Lum:1971:KAT

REFERENCES

ISSN 0001-0782 (print), 1557-7317 (electronic). Survey of several hash functions, with performance results.

Liu:2013:IRQ

Lyon:1983:PCC

Lyon:1985:AHT

Lu:2018:LCC

Lai:2018:NSH

Qiqi Lai, Bo Yang, Yong Yu, Yuan Chen, and Jian Bai. Novel smooth hash proof

Li:2006:FSS

Liu:2016:MHN

Litwin:1988:MTH

Monnerat:2015:ESH

Macii:1995:ECP

Maddison:1980:FLH

Mairson:1983:PCS

Harry G. Mairson. Program complexity of searching

Mairson:1992:ETE

Michail:2012:EHT

Mallach:1977:SST

Mandelbrod:2012:LHA

Martin:1964:HCF

Martin:1971:DEA

Martin:1975:CDB

REFERENCES

Manegold:2000:ODA

Mazeika:2007:ESA

Munro:1986:TCR

McMillan:1989:RRU

McCarney:1979:LLH

McDonell:1977:III

McGrew:2017:IDH

McIlroy:1963:VMF

McIlroy:1982:DSL

McKenney:1989:HSEa

McKenney:1989:HSEb

McNichol:2003:HTM

Markowsky:1978:AUC

REFERENCES

Mahapatra:1997:SGL

Macchetti:2005:QPH

Mehlhorn:1977:EA

Mehlhorn:1982:PSP

Mehlhorn:1984:SS

Mehlhorn:1986:DEA

Meijer:1995:HFB

Mekouar:1983:EPD

Miranda:2014:RSE

Mendelson:1982:AEH

Mennink:2012:OCS

Mergenthaler:1972:HCT

Merkle:1990:FSO

Merkle:1990:OWH

\[\text{MeyerAufDerHeide:1993:HSS}\]

\[\text{Mor:1982:HCM}\]

\[\text{Manolopoulos:1992:AHF}\]

\[\text{Munoz:2004:CRS}\]

\[\text{Mueller:2006:SMG}\]

\[\text{Mochizuki:2000:ERA}\]

\[\text{McKenzie:1990:SHA}\]
Bruce J. McKenzie, R. Harrries, and Timothy C. Bell. Selecting a hashing algorithm. Software—Practice
REFERENCES

Mou:2013:CBC

Machii:1984:HMF

Micciancio:2002:ICH

Maabreh:2018:MHT

Miller:1985:PHF

Miller:1987:STS

Miller:1995:RAC

Miltersen:1998:ECC

Peter Bro Miltersen. Error correcting codes, perfect

Miltersen:1999:CPC

Mirrokni:2017:OOM

Mitra:1973:SHP

Mitzenmacher:2002:GHT

Mitzenmacher:2009:SOQ

Michael Mitzenmacher. Some open questions related to cuckoo hashing. In Fiat and Sanders [FS09], pages 1–10.
Mittelbach:2012:HCS

Mitzenmacher:2017:BBH

Mathew:2008:JBH

Muthusamy:2014:IFC

Mukherjee:2002:ECV

McAuliffe:1989:PIC

Miller:1993:RFS

Manoharan:2011:PAM

Miliaraki:2012:FDS

Mozaffari-Kermani:2017:FDA

McGrew:2016:SMH

Mochizuki:1998:SSA

Maurer:1975:HTM

REFERENCES

[MLP07] Christopher J. Martinez, Wei-Ming Lin, and Parimal Patel. Optimal XOR hashing for non-uniformly distributed address lookup in computer networks. *Journal of Network and Com-
REFERENCES

REFERENCES

Moto-oka:1992:FGC

Mohan:1990:ACC

Mohan:1993:ACC

Mohassel:2011:OTS

Miyaguchi:1990:CSH

Miyaguchi:1991:CSH

REFERENCES

[MP90] Samuel P. Midkiff and David A. Padua. Issues in the compile-time optimization of parallel programs. Techni-
cal Report CSRD 993, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, May 1990. 26 pp.

Mennink:2012:HFB

Mennink:2016:EPH

Martinez:2009:DFN

Moody:2016:ISF

Mendel:2007:CTH

Mendel:2010:RAR
REFERENCES

springer.com/content/pdf/10.1007/978-3-642-11925-5_24.

Mitchell:1989:RHF

Mikkilineni:1988:ERJ

Murthy:1988:SSC

Malard:2002:DDH

[MS02] J. M. Malard and R. D. Stewart. Distributed dynamic hash tables using IBM LAPI.

Montuschi:2005:PIS

Mashatan:2009:ITC

Makrushin:2012:IRB

[MS12] Andrey Makrushin and Tobias Scheidat. Improving reliability of biometric hash generation through the selection of dynamic handwriting

Morawiecki:2013:SBP

Maier:2016:CHT

Mouha:2012:CIR

MeyeraufderHeide:1996:ESR

Malhotra:1996:SED

McCleod:1990:VLD

REFERENCES

Mullin:1972:IIS

Mullin:1981:TCL

Mullen:1984:UDH

Mullin:1984:UDH

Mullin:1985:SSE

Mullin:1991:CUC

Mullin:1992:HFH

Mathieu:1988:MQS
MATIAS:1990:PHI

MATIAS:1991:CHP

MATIAS:1991:PHI

MENEZES:1991:ACC

MIHCAC:2001:PAH

MIHCAC:2002:NIG

MITZENMACHER:2008:WSH

[MV08] M. Mitzenmacher and S. Vadhan. Why simple hash func-

Martirosyan:2008:ECP

Mittermeir:1995:AVS

Matsushita:2009:PCH

Mu:2012:ALS

Majewski:1992:FGM

Majewski:1996:FPH

This paper claims the discovery of order-preserving perfect hashing methods that run in linear time.

Ma:2012:HPO

Mendelson:1979:PMO

Mendelson:1980:NAA

Mimaroglu:2012:ADC

Mihaljevic:1998:CAB

Metreveli:2012:CCP

Zviad Metreveli, Nikolai Zeldovich, and M. Frans

M. Nakayama, M. Kitsuregawa, and M. Takagi. Hash-partitioned join method us-
ing dynamic destaging strategy. In Bancilhon and DeWitt [BD88], page 468.

CODEN SIGSD3. ISSN 0097-8418 (print), 2331-3927 (electronic). Inroads: paving the way towards excellence in computing education.

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Nyberg:1996:FAH

Ouksel:1989:CML

Oaks:1998:BSH

Olagunju:1994:DPH

Olagunju:1994:ILS

Ordonez:2014:BVS

Oberschelp:1980:IID

Okamoto:1988:DMS

Omiecinski:1989:HBI

Ollmert:1989:DD

Omiecinski:1992:AHJ

Olsen:1969:RRF

Omiecinski:1988:CSS

Omiecinski:1991:AHJ

Omiecinski:1989:CFC

Omiecinski:1989:HJP

Omiecinski:1991:PAL

Omar:2017:DHS

Odaira:2010:ERT

Ostlin:2003:UHC

Orenstein:1983:DHF

[Ore83] Jack A. Orenstein. A dynamic hash file for random and sequential accessing. In Schkolnick and
Thanos [ST83a], pages 132–141. CODEN VLBDBP.

Omiecinski:1989:HBJ

Ou:1991:HSU

Otken:1991:HF

Ogawara:2011:DFF

Otoo:1984:MFD

Otoo:1985:MDH

Otoo:1985:SDI

Otoo:1986:BME

Otoo:1988:LDG

[Oto88a] Ekow J. Otoo. Linearizing the directory growth in order preserving extendible hashing. In ICDE’88 [ICD88],
REFERENCES

Otoo:1988:LBC

Ouksel:1983:OPD

Ostrovsky:1994:IHSa

Ostrovsky:1994:IHSb

ODonnell:2014:OLB

Oxborrow:1986:PFB

Pouchol:2009:HHS
Pramanik:1993:MDH

Pagli:1985:SAH

Pagh:1999:HDE

Pagh:2001:CPC

Pagh:2006:CHU

Palem:1993:HEA

Pal:1992:SPD

[Srimanta Pal. Search performance of double-linked coalesced hashing can not exceed “bucketing”. Information sciences, 65(1 / 2):123–142, November 1, 1992. CODEN ISIJBC. ISSN 0020-0255 (print), 1872-6291 (electronic).]

Panigrahy:2005:EHL

Papadopoulos:1994:NHA

[Constantinos V. Papadopoulos. A new hashing algorithm for parallel processors.]
REFERENCES

Parallel Algorithms and Applications, 4(3–4):223–237, November 1994. CODEN PAAPEC. ISSN 1063-7192. URL http://www. informaworld.com/smpp/ content~content=a777314733. This is a plagiarized article. See http://www.sics. se/europar95/plagiarism. html for details. The original work from which the material in this paper was stolen is due to Thomas J. Sheffler and Randal E. Bryant, CMU report MCU-CS-92-172.

Palma:2008:EPC

Paterson:1990:ALP

Patarin:1994:HFA

Patarin:1995:CID

Papadimitriou:1980:PBH

Purdom:1985:AA

Paul Walton Purdom, Jr. and Cynthia A. Brown. The Analysis of Algorithms. Holt,
REFERENCES

Prokopec:2012:CTE

Preneel:1997:CHF

Pepper:1995:RSH

Preneel:1989:CHB

Park:1995:UPR

Pang:1993:PPHa

Pang:1993:PPHb

HweeHwa H. Pang, Michael J. Carey, and Miron Livny.

Park:2015:NSH

Patel:1994:AMH

Park:1995:EHB

ACM:1991:PFI

Pearson:1990:FHV

Pearson:1991:NFH

Peter Pearson. Note on fast hashing of variable length text strings. *Communications of the Association for
CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Responds to several comments [Dit91, Lit91, Sav91] on the author’s earlier paper [Pea90], and early work [Dit76].

Peiler:1982:ZRV

Perry:1973:IME

Pescio:1996:AAM

Pujol:2012:LEC

Peterson:1957:ARA

Petersen:1983:AVV

Petersson:2013:MDL

Peyrin:2015:CAG

Pramanik:1985:DH

Pramanik:1988:OCR

Papadakis:2009:HBO

Perrizo:1995:DDV

Patil:2017:HHA

Preneel:1990:ATH

Preneel:1990:PMD

B. Preneel, R. Govaerts, and J. Vandewalle. On the power of memory in the design of collision resistant hash functions. In Seberry and Pieprzyk [SP90], page ?? ISBN ???.
REFERENCES

[B. Preneel, R. Govaerts, and J. Vandewalle. Information authentication: Hash]

[B. Preneel, R. Govaerts, and J. Vandewalle. Information authentication: Hash]

Preneel:1993:PMD

Preneel:1994:HFB

Pawson:1973:CHT

Paul:2012:NPB

Park:2001:VNH

REFERENCES

Pippenger:1979:ACT

Pippolini:1994:JIH

Pittel:1987:PAC

Piwowarski:1985:CBS

Panneerselvam:1990:RSA

Panneerselvam:1988:NAS

REFERENCES

number 88CH2603-9). Piscataway, NJ, USA.

COAH. ISSN 0004-5411 (print), 1557-735X (electronic).

[PM89] Patricio V. Poblete and J. Ian Munro. Last-come-

248, June 1, 1989. CODEN JOALDV. ISSN 0196-

6774 (print), 1090-2678 (electronic).

Ponder:1987:AHA

Pagh:2008:UHC

Pereira:2016:SHB

Pagh:2007:LPC

Pagh:2009:LPC

Pieprzyk:1998:RSF

Pieprzyk:1999:RSF

REFERENCES

[Pre99] B. Preneel. The state of cryptographic hash func-
Price:1971:TLT

Peyravian:1998:PHV

Pontarelli:2016:PDP

Provenzano:1989:HTM

Prodinger:1994:ACP

Paiva:2015:ASS

Pieprzyk:1993:DHA

Josef Pieprzyk and Babak Sadeghiyan. Design of Hashing Algorithms, volume 756
REFERENCES

Pavlou:2008:FAD

Pramanik:1990:HSK

Putze:2009:CHS

Pahins:2017:HSL

Cicero A. L. Pahins, Sean A.

Fong Pong and Nian-Feng Tzeng. Concise lookup tables for IPv4 and IPv6 longest prefix matching in scalable routers. *IEEE/ACM Transactions on Networking*, 20(3):729–741, June 2012. CODEN IEANEP. ISSN 1063-
REFERENCES

6692 (print), 1558-2566 (electronic).

Patrascu:2013:TTH

Patrascu:2016:IRL

Papamanthou:2016:AHT

Pirotte:1985:VLD

Panti:1992:MOH

Preneel:1995:MBF

Pasini:2007:HSW

REFERENCES

springer.com/content/pdf/10.1007/978-3-540-73458-1_25.

Petit:2008:EPR

Poblete:1994:AHS

Poblete:1997:ALL

Preneel:1995:MMB

Piper:1993:DSH

Prasanna:1994:SDP

Peikert:2008:LT

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications.

374

REFERENCES

Quisquater:1990:BHF

Quisquater:1995:ACE

Quisquater:1997:ASS

Qi:1998:DAH

Qu:2016:CHT

Quittner:1983:ECI

Quisquater:1989:ACE
Jean-Jacques Quisquater and
Qi:2018:TSL

Radke:1970:UQR

Radue:1983:DIS

Radhakrishnan:1992:IBC

Richter:2015:SDA

Ragde:1993:PSC

[Ram89b] M. V. Ramakrishna. Practical performance of Bloom filters and parallel free-text searching. *Communications of the Association for Computing Machinery*, 32(10):1237–1239, October 1989. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). *Computing Reviews*: “This short communication deals with a special kind of hash function called ‘Bloom filters.’ These filters are used, for example, to search a differential file containing updates to a main file.”

Raman:1997:KFM

Ramakrishna:1991:DPH

Rijmen:2001:WHF

Rigoutsos:1994:SPS

Rao:2011:STE

Regnier:1981:AHT

Regnier:1982:LHG

Regnier:1985:AGF

REFERENCES

Regnier:1988:THA

Reif:1988:AWC

Remy:1992:ERE

Reyes:2014:FKM

Ramakrishna:1997:EHH

Richter:1989:HJA

Ramirez-Gutierrez:2012:IRT

Riehl:1989:CTS

Rivest:1974:HCA

Rivest:1974:AAR

Rottenstreich:2014:VIC

Ragan-Kelley:2011:DSG

Rothnie:1974:ABF

Ramamohanarao:1982:DHS

Ramakrishna:1989:FOU

Rathi:1990:PCE

Rathi:1991:PCE
Ashok Rathi, Huizu Lu, and G. E. Hedrick. Perfor-
mance comparison of extendible hashing an linear hashing techniques. SIAM J.
mall PC Notes, 17(2): 19-72, Summer 1991. CO-
DEN SGBLEC. ISSN 0893-
7875.

Richardson:1987:DEP

Ramakrishna:1988:ABD

[RM88] M. V. Ramakrishna and P. Mukhopadhyay. Analysis of bounded disorder file organization. In ACM [ACM88a], pages 117-

Rosas:2011:CBC

[RMB11] Erika Rosas, Olivier Marin, and Xavier Bonnaire. Corps: Building a community of reputable peers in distributed hash tables. The Com-
puter Journal, 54(10):1721–
1735, October 2011. CO-

Robey:2013:HBA

rithms for discretized data. SIAM Journal on Scien-
tific Computing, 35(4):C346–
C368, ???? 2013. CO-
DEN SJOCE3. ISSN 1064-
8275 (print), 1095-7197 (elec-
tronic).

REFERENCES

REFERENCES

[RRS06] Christian Rechberger, Vincent Rijmen, and Nicolas Sklavos. The NIST Cryptographic Workshop on Hash

REFERENCES

3835 (print), 1572-9125 (electronic).

Ramamohanarao:1992:PRU

Ramakrishna:1989:DEH

Raghavan:1981:ELS

Rattanaritnont:2012:CTS

Rueppel:1993:ACE

Raite:1987:PTC

Ruchte:1987:LHP

REFERENCES

Ramaswamy:2007:HSP

Reyhanitabar:2007:NIM

Rabitti:1990:DST

Ramakrishna:1997:PPS

Surendro:1997:NRO

REFERENCES

Sarkar:2013:NML

Sarkar:2015:FNR

Sasaki:2011:MMP

Savoy:1990:SBF

Savoy:1991:NFH

Savoy:1995:PHT

REFERENCES

Shekita:1990:PEPa

Shekita:1990:PEPc

Schauer:1976:PA

Scheuermann:1979:OHH

Scholl:1979:PAN

Scholl:1981:NFO

Schmitt:1982:CPF

REFERENCES

Schmidt:1990:GPH

Schneider:1990:CQP

Schneier:1991:OWH
[Sch91a] Bruce Schneier. One-way hash functions: Probabilistic algorithms can be used for general-purpose pattern matching. Dr. Dobbs Journal, 16(9):148–151, September 1, 1991. CODEN DDJOEB. ISSN 1044-789X.

Schnorr:1991:FHE

Schnorr:1993:FHIa

Schnorr:1993:FHIb

Scharinger:2001:CDD

Scharinger:2001:ASK
Schlaffer:2011:SDR

Severance:1976:PGA

Samson:1978:STU

Sacks-Davis:1985:PMK
Ron Sacks-Davis. Performance of a multi-key access method based on descriptors and superimposed coding techniques. Information system, 10(4):391–403, 1985. CODEN INSYD6. ISSN 0306-4379 (print), 1873-6076 (electronic). Hashing algorithm used to create descriptors for file indexing; this extends the author’s earlier work [SDR83b].

Schneider:1989:PEFc

Schneider:1989:DTA

Schneider:1989:PEFa
Donovan A. Schneider and David J. DeWitt. A performance evaluation of four parallel join algorithms in a shared-nothing multiprocessor environment. Technical Report TR 836, University of

1529-3785 (print), 1557-945X (electronic).

[SF88] Michael L. Scott and Raphael A. Finkel. A simple mecha-

Simon:1972:APN

Sassa:1976:HMF

Shneiderman:1976:BSS

Shasha:1988:CSS

Shangguan:2016:SHF

REFERENCES

REFERENCES

[Sheil:1978:MST]

[Shekita:1991:HPF]

[David B. Sher. Motivating data structures with caching Internet stock data. SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education), 38(3):344, September 2006. CODEN SIGSD3. ISSN 0097-8418 (print), 2331-3927 (electronic).]

[Sher:2006:MDS]

[SHF+17]

[Shim:2017:PME]

[Shmoys:2000:PAA]
REFERENCES

Shoup:1996:FPS

Shoup:2000:CTU

Shoup:2000:UHF

Shoup:2005:ACC

Starzetz:2009:HBC

Sockut:2009:ORD
Gary H. Sockut and Balakr-

Siegel:1989:UCF

Siegel:2004:UCE

Silverstein:2002:PPH

Simon:1998:FCO

Sakti:1988:GPP

Shintani:1998:MAS

[T. Shintani and M. Kitsuregawa. Mining algorithms

Silverstein:2002:JIS

SK98

Simon:1998:FCO

Sakti:1988:GPP

Shintani:1998:MAS

[T. Shintani and M. Kitsuregawa. Mining algorithms

Silverstein:2002:JIS

SK98

REFERENCES

406

Shang:1988:DCP

Shahzad:2016:AEP

Schweller:2007:RSE

Shultz:1987:TSM

Shin:1994:NJA

Sit:2002:SCP

REFERENCES

Storer:2008:DDC

Storer:2012:DDC

Sriram:1991:VPC

Snader:1987:LIF

Safavi-naini:2005:MH
REFERENCES

REFERENCES

[Spect:1988:CDF]

[Saffkhan:2014:CCA]

[Spr:1977:PHF]

[Sourlas:2016:EHR]

REFERENCES

//www.sciencedirect.com/science/article/pii/S1389128616300998

Severance:1990:DLH

Schay:1963:MKA

Sethi:1989:FSR

Song:2001:HMO

Shin:1998:NHF

Shin:1999:HFM

Schay:1962:AFA

REFERENCES

DEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Early analysis of linear probing.

Schmidt:1980:IPC

Sequin:1989:PRT

Shen:1983:OSU

Schmidt:1988:SCO

Schmidt:1990:ACH

Schmidt:1992:GPH

REFERENCES

Schweitz:1993:AHS

Stahl:1973:HGH

Stallings:1994:SSH

Stallings:1999:HAK

Stallings:2006:WSH

Stamp:2006:ISP

Stewart:1982:DSV

Stinson:1999:UHA

REFERENCES

[Sun13] Narayan Sundaram, Aizana Turmukhametova, Nadathur Satish, Todd Mostak, Piotr Indyk, Samuel Madden, and Pradeep Dubey. Streaming similarity search over one

Stumm:1982:UMZ

Sturc:1985:MHU

Samples:1986:SSB

Sundar:1991:LBD

Sundar:1993:LBC

Sun:2002:BJP

Sun:2015:CCH

Schnorr:1994:PFH

Schnorr:1994:BBC

REFERENCES

Schnorr:1995:BBC

Suganya:2006:LRK

Steindorfer:2015:CSM

Steindorfer:2015:OHA

Stanca:2001:HAC

Slot:1984:TVC

C. Slot and P. van Emde Boas. On tape versus core: An application of space efficient perfect hash functions to the invariance of space. In ACM-TOC’84 [ACM84b], pages 391–400.

Sincovec:1986:DSU

REFERENCES

[SXL16] Shenghui Su, Tao Xie, and Shuwang Lü. A provably secure non-iterative hash

REFERENCES

REFERENCES

Tang:2013:TOH

Turau:1993:ETC

Terashima:1987:EPL

[Ter87] Motoaki Terashima. Extended property list — its concept and applications.

Tenenhaus:2010:GAN

Tomasic:1997:DSE

Tharp:1988:FOP

Thakkar:1985:VAT

Tanaka:1988:HSS

Tran:2007:FBC

Tibouchi:2017:IEC

Torres:1999:SIS

Takata:1989:MMM

Tan:1993:RSM

[TL93]

Tan:1995:SLO

[TL95]

Tseng:2007:DHS

[TLLL07]

Tseng:2009:FSA

[TLLL09]

Thai:2018:TLB

[TLLL18]

Tubaishat:2002:PEL

[TMB02]

Triplett:2010:SCH

Josh Triplett, Paul E.
REFERENCES

Tsudaka:1992:PHJ

Toptsis:1992:LBP

Torn:1984:HOI

Toyama:1986:DOQ

Toyama:1993:JAM

Tout:1995:DLB

Tong:2015:HTS

Taniar:2002:PSH

David Taniar and J. Wenny Rahayu. Parallel sort-
hash object-oriented collection join algorithms for shared-memory machines. [Tro95]

Trainiter:1963:ARA

Thom:1986:SAD

Trono:2006:OTL

Tremblay:1976:IDS

Tremblay:1984:IDS

Hashing is covered in section 6–2.4.

REFERENCES

[Tv83] Leen Torenvliet and P. van Emde Boas. The reconstruction and optimization of trie hashing functions. In Schkolnick and Thanos [ST83a], pages 142–156. CODEN VLDBDP.

[TT07] Christophe Tartary and Huaxiong Wang. Combining prediction hashing and

Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis.

Tomoharu Ugawa, Hideya Iwasaki, and Taiichi Yuasa. Improved replication-based

REFERENCES

Gucht:2010:PHE

Vaudenay:1992:FHI

Vaudenay:1993:FHI

Vaudenay:2006:ACE

Vckovski:2000:MTS

Vingralek:1994:DFO

Vitter:1985:OAM

[VC85] Jeffrey Scott Vitter and Wen-Chin Chen. Optimum al-

Vitter:1987:DAC

Vandierendonck:2005:XBH

vanderHoeven:2012:IP1

vanderPool:1972:OSA

vanderPool:1973:OSAa

deVillers:1974:HSS

DeVilliers:1974:HSS

vanderVegt:2012:PCH

Veklerov:1985:ADH

Ventae:1986:GDS

Vo:1991:FHF

Vidick:1990:PIC

REFERENCES

Viola:2005:EDI

Vitter:1980:TCH

Vitter:1980:ACHa

Vitter:1980:ACHb

Vitter:1981:DAH

Vitter:1982:DAH

Vitter:1982:ICH

Vitter:1983:ASP

REFERENCES

REFERENCES

citations/journals/ton/1997-5-6/p824-varghese/.

Anonymous:1982:VLD

vonMises:1939:ABG

vonMaurich:2012:ESB

Vaswani:2007:PPP

Vidali:2010:CVB

Viola:1996:ALP

Viola:1998:ALP

Symposium on Algorithms (Barcelona, 1996).

vanTrung:2014:TBF

Valduriez:1984:MHS

VanWyk:1986:CHL

vanOorschot:1994:PCS

Vadhan:2012:CPS

Wagner:2000:CYL

Waldschmidt:1974:OIC

Walker:1988:CSP

REFERENCES

Wang:2016:CNC

Wegman:1979:NCA

Wegman:1981:NHF

Weng:2012:RIC

Wolf:1991:EAP

REFERENCES

[WFLY04] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for

Weiss:2012:MSH

Wu:2012:PPA

Wagner:2000:PSU

Wang:2007:BTS

[WHS+07] Chia-Wei Wang, Hung-Chang Hsiao, Wen-Hung Sun, Chung-Ta King, and Ming-Tsung Sun. Building a tuple space on structured

[Wil71] J. G. Williams. Storage utilization in a memory hier-
archy when storage assignment is performed by a hashing algorithm. *Communications of the Association for Computing Machinery*, 14 (3):172–5, March 1971. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

[Wil85a] Dan E. Willard. New data structures for orthogonal range queries. *SIAM Journal on Computing*, 14 (1):232–253, February 1985. CODEN SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic). This paper, together with an earlier report [Wil78], present seven data structures for orthogonal range queries which are more efficient than earlier data structures used for this purpose, such as box array hashing.

REFERENCES

[Wirth:1983:AD]
N. Wirth. *Algorithmen und Datenstrukturen*. B.

[Wirth:1986:ADS]

[Westergaard:2007:CME]
Michael Westergaard, Lars Michael
Kristensen, Gerth Stølting Brodal, and Lars Arge. The ComBack method —
extending hash compaction with backtracking, *Lecture Notes in CS*, 4546:
1_26.

[Wipke:1978:HFR]

[Wang:2007:LBP]

[Wang:2008:HBS]

[Yau:2009:NTV]
Zhu Wang and Tiejian Luo. Optimizing hash function number for BF-based object locating algorithm. *Lecture Notes in CS*, 7332:
543–552, 2012. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://link.springer.com/content/pdf/10.1007/978-3-642-31020-
1_65.
REFERENCES

Wyman:2019:IAT

Witten:1994:MGC

Witten:1999:MGC

Woelfel:2001:NBO

Woelfel:2006:CMO

Philipp Woelfel. A construction method for optimally universal hash families and its consequences for the ex-

Woelfel:2006:MEM

Wogulis:1989:SAS

Wolverton:1984:PHF

Wolfowicz:1993:SPR

Wood:1989:PQP

Weng:2010:IHV

Wang:1994:SDP

Wei:2012:SIV

Wah:1990:PIC

Wolfson:1997:GHO

Wright:1983:SFS

REFERENCES

[WSZ+16] Ying Wei, Yangqiu Song, Yi Zhen, Bo Liu, and Qiang Yang. Heterogeneous translated hashing: a scalable so-
solution towards multi-modal similarity search. *ACM Transactions on Knowledge Discovery from Data (TKDD)*, 10(4):36:1–36:??, July 2016. CODEN ????. ISSN 1556-4681 (print), 1556-472X (electronic).

REFERENCES

Wang:2009:PAH

Wu:2018:SDH

Wang:2009:HSEa

Wang:2001:ECP

Wu:2002:CRH
Wang:2018:TTP

Wang:2005:CSA

Wang:2005:FCFa

Wang:2005:FCFb

Wang:2005:ECS

Woodruff:1993:HVT

Wang:2012:BPS

Wang:2010:UHT

Xu:2006:TNH

Xia:2009:APL

Xu:2014:HTM

Xu:2011:MDP

Xin:2013:LVR

Yamane:1985:HJT

Yang:2005:TFN

Yang:2010:PII

Yao:1978:VLD

Yao:1980:NAE

Yao:1981:STS

[Yao81] Andrew Chi-Chih Yao. Should tables be sorted? *Journal
Yao:1983:LBP

Yao:1985:OAK

Yao:1985:UHO

Yao:1991:WRA

Yao:1995:MOK

Yasuda:2007:SIS

Yen:1995:PHC

REFERENCES

Yu:2017:FSD

Yu:2018:MEU

Yo:1993:OPA

Yang:1984:DPH

Yang:1985:BMC

Yang:1986:DFO

Yuen:1986:DFS

Tak-Sun Yuen and David Huang-Chang Du. Dynamic file structure for partial match retrieval based
REFERENCES

Yang:1983:SPH

Yen:1991:MPH

Yu:2010:DRF

Yuan:2012:EMR

Yasuda:1989:PAM

Yum:2010:FVH

Yao:1983:SSG

Yi:1997:NHF

Yen:1990:HTS

Yi:2009:SSG

Yokoyama:1989:NLP

Yamane:1989:DEH

Yadan:2009:HJO

Yu:1987:RDI

C. T. Yu and C. J. Rijs-

Yu:2006:SST

Ytrehus:2006:LFN

Yuan:1992:VLD

Yuba:1982:SOP

Yung:2002:ACC

Yuval:1975:FNN

Yang:2009:ILV

Yoon:2007:SCH

Young:2001:HRS

Yoon:2007:SCH

Yen:2000:WOW

Yu:2016:NFC

Zamora:1980:ADC

Zhang:2006:CFS

Zobrist:1977:DCO

Zhu:2012:JLS

Zollhofer:2015:SBR

REFERENCES

467

DEN ATGRDF. ISSN 0730-0301 (print), 1557-7368 (electronic).

[Zeller:1991:AHJ]

[ZG90a]

[Zeller:1990:AHJ]

[ZG90b]

[Zemor:1991:HFG]

[ZGG05]

[Zémor:1994:HFC]

[ZH18]

[Zhang:2006:NGD]

[ZH18]

[Zhang:2005:ILL]

[Zuo:2018:WFC]
REFERENCES

d/2018/05/08186236-abs.html.

REFERENCES

Zhao:1994:DDBa

Zhao:1994:DDBb

Zhao:1994:DDBc

Zee:2008:FFV

Zhang:2012:LLF

Zhou:2012:TSC

Dongxiang Zhang, Yuchen Li, Xin Cao, Jie Shao, and Heng Tao Shen. Augmented keyword search on spatial entity databases. *VLDB Journal: Very Large Data Bases*, 27(2):225–244, April 2018. CODEN VLDJFR. ISSN 1066-8888 (print), 0949-877X (electronic).

Zhen Wei Zhao and Wei Tsang Ooi. APRICOD: an access-pattern-driven distributed caching middleware for fast content discovery of noncontinuous media access. *ACM Transactions on Multimedia Computing, Communications, and Applications*, 9(2):15:1–15:??, May 2013. CODEN ???? ISSN 1551-
REFERENCES

6857 (print), 1551-6865 (electronic).

Zobrist:1970:NHMa

Zobrist:1970:NHMb

Zou:1985:MMC

Zheng:1990:HOW

Zheng:1993:HOWa

Zheng:1993:HOWb

Zhao:2012:HCB

Zhou:2008:RTS
Zezula:1991:DPS

Zhang:2005:ISS

Zhang:2010:LCH

Zhang:2017:LBP

Zhang:2014:FFS

Zou:2012:PAS

