Title word cross-reference

#2 [Cer85].

10 [GLM+10], 11 [SY11]. 2
[EAA+16, GG92, HD72], 2n [QG89, QG90].
3 [CBA94, Fly92, GG92, GKM94, LMIC07,
LDY+16, WSSO12], 5/8 [Sch11]. 862m
[Nic17]. 64 [LK16]. * [LNS93]. +
[Omi88, Omi89a], MT [HRB13]. 2
[AK98, QJ97], A [Lyo83]. A* [MD97]. A2
[Bie95]. α [ABC+16]. b [LK11]. B^+ [TB91].
c [SWQ+14]. d [FPS17, PRM16]. f [LG78].
H^2 [DRS12]. H_2A [CBB05]. K
[Yuv75, APV07, CLS5, CC91, CLC92,
DKRT15, Die96, FPS17, Gui78, HC14,
LLG+17, PT10a, PT16, RRS07, SS90b]. L
[OOB12], L_p [CJ19, HFF+17]. $\text{SL}_2(\mathbb{F}_2^*)$
[SGGB00]. N [BRM+09, BS91b, BS91a,
CM01, Gir87, Ven86, WS93, War14, Coh97,
Coh98, LHC05, QG89, QG90]. $O(1)$ [FKS84].
$O(\log \log n)$ [MN90]. $O(\log W)$ [LS07b].
$O(N)$ [HG77, MN90]. p^n [Ack74]. π
[FFGL10]. q [OWZ14]. SL_2 [MT16]. Z/p
[Mue04].

-approximate [SWQ+14]. -ary
[CC91, CLC92, Gui78, RRS07]. -Bit
[QG89, QG90, LK16, LK11]. -Body
[WS93, War14]. -codes [Bie95]. -dimension
[LHC05]. -dimensional [Yuv75].
-Functions [OOB12]. -gram
[Coh98, Ven86]. -Grams [Coh97, BRM+09].
-Hash [BS91b, BS91a]. -Independence
[PT16, PT10a]. -mer [HC14]. -min-wise
[FPS17]. -Nearest [CL5]. -partitions
[DKRT15]. -Pipeline [PRM16]. -probe
[SS90b]. -Round [GLM+10, SY11]. -tree
[Omi89a, Lyo83]. -trees [CM01].
-verarbeitung [Nie75]. -wise [Die96].

0 [BC15, ITP14, NSS+06, WYY05d]. ’07 [ACM07]. ’08 [ACM08b].

access-pattern-driven [ZO13]. Accessed [Ols69]. Accesses [Pan05]. Accessing [Cha88, Oro83, FK89]. accommodation [HO72]. Accountable [XHZ+19]. Accumulated [Nyb96]. accumulating [ZHWO1]. Accumulators [CHK08, PTT16, CHK10]. Accuracy [YWH09, HKL07]. Accurate [PCV94, SL16, NTW09, TYSK10]. Achieving [Lar88b, Lyo85]. ACM [ACM94d, ??69, ACM75c, ACM75b, ACM75a, ACM76, ACM77b, LFP82, ACM82, ACM83b, ACM84b, ACM85b, ACM85a, ACM86b, ACM86a, ACM87, ACM88a, ACM88b, ACM89b, ACM89a, ACM88c, SDA90, ACM90, ACM91c, ACM91d, ACM91a, ACM91b, ACM91e, ACM96, ACM97a, ACM97b, ACM98, ACM90, ACM01, ACM02, ACM03a, ACM04, ACM05, ACM07, ACM08a, ACM08b, ACM11, ACM12, Ano92, BIP92, BJ93, CLM89, FMA02, GMJ90, Van10, HF13, IEE02, Jen76, Kar98, LL08, Mat09, Nav85, Rie89, ACM77a, Shm00, SW94b, Sto92, YR87, ACM81, ACM91b, BV99, Lie81].

ACM-SIAM [ACM94d, SDA90, SDA91, ACM97a, ACM05, ACM08a, Kar98].

LY72, MLP07, MPL09, RW07.
Addressable [RSK17, Koh80, BB07].
Addressed [SVCC01].
Addressing [Bay74, Bra84a, Bra86, Buc63, Fab74, Fel87,
Gon77, Gon80, JC88a, Joh61, Kno71, Kno88,
KRG79, KRJ80, Lit80, Litxxa, LH03b,
LH03a, Mot84, MC86, Pet57, RJ7K79, SS62,
SD76, Som99, Tra63, CKW93, Lin63, NK16,
TT81, Wan05, van73].
Adelaide [Bar83].
Advancing [Pag85, Wog89].
Administration [Fis87].
Adressing [Bra85].
Advanced [Ano93d, CE95, HDCM11, Hsi83].
Advances [Buc82, AFK90, Bel00, Bra90,
Bri92, CR68a, CP87, Cop95a, Cop95b,
Dam90a, Dam91, Dav91, De 95, Fei91, Fra04,
GQ95, He949, IRM93, JB94, LC06, MV91c,
PSN95, QV95, Rue93, SP90, SZ93,
Sho05, Sti93, Van06, Wie99, Yum02].
Advantage [WSSO12].
Adversaries [LN93].
Advisor [Cer85].
Aegean [Rei88, Rei88].
Aeronautical [KCF84].
Aeronautics [Fis87].
Aerospace [Fis87].
AES [ABO17, BOY11, BOS11, G5K08, Sasi1, JNPP14].
AES-like [JNPP14].
affects [HL05].
Again [DRS12].
Against [DL17, ASBi616, JL14, JG95,
MSP12, Sho00b].
Age [Cro98].
Agent [BSH12, DF01].
Aggregation [BJL16, PT10b].
Agreement [BG10, YLSZ19].
Agrometeorological [WM93].
Ahead [Meh90, Moh93].
AID [Dost87b].
Airport [ICD88, ICD90].
Akon [Fis87].
al. [SPLHCB14].
Alaska [IEE01].
Albuquerque [ACM75c, ACM75a, IE919a].
Algebra [Bra84b, KTMO83b, KTMo83c,
EBD91, FP89a].
Algebraic [ACM94d, EjKMP80, Jen76, Lak96, Lev95,
Mar71, Ng79, WX01, vdHyH12, BF08, GS89,
LS06, Pons87, Cohl94, AAGG16].
Algebras [CT96].
Algo [FR69].
Algo-Based [FR69].
Algorithm [ANS97, ANS05, AKS78, ABH+73,
AEMR09, BH90, BI87, Bou12, Boy98,
CS85a, jCPB+12, CdM89, CW09, CT12,
Coh98, CHM92a, CHM92b, CM93, Dev93,
DCM18, FL73, FFPV84, FCHD88, FCHD89,
FCH2, Fro81, Get01, Han90, HCKW90,
HR96, HW08, HG77, HC13, Jen97, JRPK07,
KMM+06, KRRJ07, Leb87, LLL11, LLW10,
MXL+12, Man12, MHB90, MV01, MH00,
NP91, OG94a, OOB17, OL91, Omi91, OL92,
Pap94, PCY95, Pes96, Pit87, PVM97, Reg82,
SS01, Sol93, Spe92, Sta99, TRN86, TTY93,
Toy93, TSP+11, WGO0, WWZ90, WZJS10,
WS93, WVT90, Wt97, Wt71, WDTY91,
WYT93, WL12, ZG90a, ZJM94b, ZPS90,
ZPS93a, AS89, AT18, AGJA06, ATAKS07,
CLS95, CLW98, DHPK97, FH79, FHC89,
Gai82, GBY90, HL11b, HL94, ISO97,
ISH88, JWM+18, Kim99, LEHN02,
MCC01, MKSiA98, OT89, PCV94].
algorithm [SB95, SM94, Si02b, WM93,
War14, Wie86, YCJ12, ZJM94a, ZJM94c,
ZPS93b, ACZ16, Sta94, TKI99].
Algorithms [Meh77, Meh86, Wir75, Wir83, Zel91].
Algorithmics [Mat93].
Algorithms [ACM94d, ACM91c, ACM97a, ACM05,
ACM08a, ANS97, AHU83, AI06, Ano95a,
IA91, IA94, AT90, AT93, AT91, BS97,
Bur76b, CF19, CV86, CRR18, CT96,
DG85a, DG85b, Dev86, DS97, FM96, FW09,
FM85, Ger86a, Ger86b, Gon84, GBY91,
GI77, Gra88, Gra99, GC95, GKH, GK82,
Gui76a, Gui76b, GG80, GSB49, Har88, HS78,
HL91, KR81, LLLC17, LS99, Lom93, LTS90,
LU93b, Mag95, MF92, ML94, MLxx, Mat09,
MS88a, MO92a, OG94b, OL95, PS93, Pip94,
PV19, Pre97a, PB85, QG99, QG90, Reg85,
Riv74b, RNR13, Sam76, SD99c, SD99a,
Sed83b, Sed88, Sed90, Sed92, Sed93, SD76,
SG88, SK98, Shn00, TR02, TY91, Vit81b,
VCS85, Wai88, WFHC92, Wie87b, Wir86,
XCC09, Yen91, ZG90b, Al08, BMS+17,
BMQ98, Cra85, DG96, DJRZ06, DJRN09].
algorithm [DC94, EVF06, FJ13, GK05, Gui76c, HK95,
KCB81, LC06, Lit77b, LLW10, Ngu06, Pip79, QV89, QG95, Rog95, Rog99, Rue93, Sas11, Sch01b, SZ93, SvEB84, Web72, WC94, Yao91, vW94, AT90, CKB83a, CO82a, De 95, GQ95, Kan90, QJ97, SRRL98, Zob70a, Zob70b.

Applications
[AT93, BKST18, BG07, Bur81, CZLC12a, CZLC12b, CK15, CJ19, DR06, Deb03, DK02, DK15, DadH92, DR09, Fel50, FM85, HK12b, IEE80a, IEE95, KMM +06, Kna89, Lev89, LDY +16, LK93, MK11, Pon87, RP91, Rey14, RNT90, Ter87, TZ12, TS76, TS84, Val15, Vau06, Wee12, WVT90, YZ00, AG10, AR94, BZL +15, DFMR15, HKNW07, KKP92, LLC89, LK11, LG78, MJ08, MV91a, NY89b, NY89a, NX90, NW07, PW08, PSN95, RRS07, Shi17, SS16, Sie89, Ano92].

Applied
[CS93b, GNP05].

Applying
[Cer87, Cer88, CHY93, CLYY95, CHY97].

Approach
[BH93, CCH09, CK12, DL79, DC94, JV16, LT09, LQH18, MY80, RH95, Sch79a, SR98, SK98, Tsa96, ZO93, BJ07, BCCL10, DAC +13, GS89, JHL +15, NW07, PGV93e, PGV94, QZD +18, QD02, TK99].

APPROX
[DJRZ06, DJNR09].

Approximate
[AMA94, ARA94, LLC89, BCR04].

Arbres
[Kar82].

Architectural
[GLS17].

Architecture
[BCH87, HCJC06, Hsi83, Jou85, KP81, KCR11, KTMoor83a, MK11, WG94, XBH06, ZHB06, ABO +17, BOY11, HLH13, LMP +08, MBK00, RG89].

Architecture-conscious
[ZHB06].

Architectures
[ACM91c, BRW93, DR92, Kie85, MKAA17, MKASJ18, RNT90, Bis12, BMQ98, GK05, HDCM11, adHMR93, LLA15, NW07, PJM88, PJB90, Rei88].

archival
[QD02].

Area
[DD15, ABO +17, BOY11, Lar84].

Area-Efficient
[DD15].

ASSIGNMENTS
[THY +18, DMP09].

Assignment
[LL92, Wil71].

Associations
[SB95].

Asymmetric
[CLP17, BR94, CFN18].

Asymptotic
Asynchronous [KFG15, PAKR93].
Atlanta [ACM83a, ACM83b, USE00a].
Atlantic [Fre90, GMJ90, IEE84].
ATM [SMS91].
Atom [LC12].
Atomic [LMR02].
Attack [CJP12, CMP07, JLH08, KK06, Pey15, PGV90a, Sho0b, WW09, WFW+12, ZF06, BSU12, CJP15, JG95, PGV93a, PGV93b, SXL16].
Attacking [CP95b].
Attacks [ABD+16, BPBBLP12, Bih08, BKM09, CY06, DLS14, DL17, HKKK10, HRS16, KNR10, KLP98, KVK12, LK94, KKMS10, LL15, MRST10, MNS12, Saa12, SY11, Sas11, WYY05d, ZF06, BSU12, ITP14, KL95, KHK10, LS07a, MSP12, WYY05a, WS13].
Attribute [CS83b, CS87, GK94, GK95, HYH93, KG95, RSSD90, RL74, ZZM17, ASW87, HR93].
Attribute-Based [ZZM17].
Auction [SKM01].
Audio [MV01, YTJ06].
Audit [SK99, Ano93a].
Auditing [LRY+15, GB17].
Aufteilungs [vM39].
Aufteilungs- [vM39].
Aug [BD88].
Augmented [ZLC+18].
August [ACM79, LFP82, ABB93, AW89, A+90, Bel00, Bri92, BW92, CRS83a, CGO86, Cop95a, Cop95b, DSS84, DSZ07, DJR06, DJNR09, Fra04, Gi77, GS98, HB93, IEE95, Jen76, JY14, MK89, MS90, PFW85, PK93, RSK9, Ros74, Rov90, Sho05, Sti93, WYY05, Wei99, JWS99, Yu92, Yu02].
AUSCRYPT [SP90, SZ93].
Austin [ACM87, ACM88a, ARA94, Nav85, USE00b].
Australia [Bar83, SP90, SZ93, DG96, MS90, PSN95].
Australian [Bar83].
Austria [Kui92, ICD93].
Auswahl [Pet83, Dos78a].
Authenticate [Yas07].
Authenticated [KV09, PTT16, Sar10, YLS19, BSNP96b, GL06].
Authentication [Abi12, AS96, BCK96a, BCK96b, BKST18, BAN89, CJP12, DCM18, EPR99, FIP02a, GI12, GBL94, HMNB07, HCPLSB12, JRPK07, JK11, KKRJ07, MRW89, NR12, PGV93f, QJ97, RWSN07, Rog95, Rog99, Sho96, TW07, Tsu92a, WSC81, WDF+12, WS03, YY07, CJP10, CBB05, CJP15, HL12, Kra94, Kra95, KCL03, Ku04, KCC05, LLH02, LKY04, LW04, MS09, OCGD11, SPLLHCB14, Sta99, Sti91, Sti94b, SV06, Ts08, Tsu92b, YRY04].
Authenticity [Sch01b, ADF12].
Auto [Lit77a].
Auto-Structuration [Lit77a].
Automata [ACM82, IEE74, LP04, LK93, MNC01, AGK+10, ADG+08, ACR+09, ACJT07, dBvL80, CIM+05, Kui92, NS82, Pat90].
Automated [DGM89, ZZZ3, Cer85].
Automation [IEE11a].
Automaton [ACM90, FNY92, IEE02].
Average [Bra84a, Bra85, Bra86, Gon77, KU10, Reg81, TW91, MT16, THS97].
average-case [Mc02].
avoid [Pat94].
Aware [MZL+19, PG17, BB07, HFF+15, HFF+17, NDM08].
awareness [Li10].
Awesome [Knu19].
AWOC [Rei88].

B [BD84, FK89, Omi88, Omi89a].
B-Trees [BD84, FK89].
Back [DSSW90a, DSSW90b].
Backoff [SHRD09].
Backtracking [WKBA07, YD85].
Backward [CPP08, LLL11].
Balance [IK92].
Balanced [AG10, BAKU99, DW05, DW07, Lep98, LB07, Oto86, Oto88b, PB80, WZ12, FP82, TLL18].
Balancing [HC13, KJC11, Omi91, RRS12, RK01, Top92, TP95, ZJM94a, ZJM94b, ZJM94c, DSD95, SX08, WL07, WT09, XCC09].
Balatonfured [Rue93].
Balls [CRSW11, CRSW13].
Bally [IEE84].
Baltimore [ACM90, FNY92, IEE02].
Band [Meh86, Sol93].
Band-join [Sol93].
Bands [KCF84].
bandwidth [AS09].
BANG
Barreto [FT12], barrier [MPST16], Base [BCH87, CRdPHF12, Chr84, EE86, FM85, Gho77, Gho86, ISK93, McC79, YBQZ17, Zam80, Mar75, Mar77, WLLG08]. Based [AK98, Abi12, AP08, Aum09, AS16, Bal96, BG92, Ben98, BDM12, BHH15, BRS02, BCS09, BRSS10, BI12, Buc82, Bur83b, Bur83c, But17, CCF04, CFP19, CS83b, Ch84b, CS87, CW91, CdM89, CdM90, CW09, CTZD11, CZLC12a, CZLC12b, CZLC14, CT12, CDW19, CadHS00, DGV93, Dae12, DK09, DG85b, DL17, DF01, DR11, DB12, EK93, Fab74, FL04, FR69, FRB11, FH69, FFGOG07, GI12, GSC01, Gri98, GK08, GH07, HMNB07, Hal12, HCDM09, HHL10, HW08, HCPLSB12, HLC10, H¨ul13, HRS16, HBG17, HM19, JXY07, JTOT09, JK11, KSSS86, KM93, KV90, KLR7, KKR07, KJC11, KMV10, KTM085b, KW12, KP96, KP97, KR79, KRJ80, KS15, Kumat94a, KKT91, LM93a, LYY18, LYY19, LW88, LM07, LMJC07, LLZ10, LLO9, LHC05, LLLC17, LRY15, LXL19, LG78, LTS90, MLD94, MKF16]. Based [MCF17, MP12, Mi88, MKAA17, NIS15, NCFK11, NNA12, NB13, OL89, OSR10, PF14o9, PTT16, PC95y, PHG12, PRZ99, PSZ18, Pre97a, RGNMPM12, RTK12, Rey14, RWS07, RNR13, RL74, RK91, SD85, SDRK87, Sch01b, Sch97b, Sch81, SBS16, SC90b, SC90a, SC90e, SK98, Sho96, SKC07, SSS05, SVCC01, Sun15, TZW11, TGGF10, TZ12, TY91, TP15, TK07, US09, WWZ09, WSSO12, XB06, XHZ19, YNW09, YSW11, WL12, YY07, YTJ06, YD86a, ZJ09, ZWH17, ZMM17, ZQS12, ZLC12, vMG12, Ad188, AY14, ASM17, ACPI0, AAG16, BSNP96b, BLC12, BCR04, BC06, BDS09, Bur83a, Cha12, CML13, CCHK08, CJP12, CJP15, CLW98, CJ86, DG85a, DS09a, DHW08, GB17, GL06, GLC08, GZ99, HLL18b, HLL18a, HAK16, HCJC06, HC11, HLMW93, HXMW94, HW88, HL03, JFDF09, JL14, JBWK11, JG95]. Based [KI94, KR190, KST99, Kor08, Kra94, KCL03, Ku04, KCC05, KSC11, KSC12, LMK9b, LDM92, LG11, LND08, LACJ18, LLJ15, LMPW15, MS09, Mei95, MZ198, MS13, MHT13, Mul92, MFES04, MJ14, NS16a, OT95, PCK95, Par18, PPB16, PW06, PBGV89, PV91, PV93e, PV94, QZ18, RP95, SPLHCB14, SV94b, SV95, SGK09, SX08, SRRL09, Sim98, SA17, TWL18, Tsa08, TD93, UIY10, UHT95, VD05, Wil14, WXY02, XLZC14, YCJ12, YSL05, YL79, YZ16, YD86b, ZDI15, FH96, TLLL18]. basée [LG78]. Bases [ABB93, AW89, AAC01, BD88, BDS88, BJZ94, CG06, DSS84, Gon83, Hil78a, Hil78b, Ker75, LT00, LSC91, MDS090, PV85, ST83a, ST83b, Yua92, Yao78, LT80]. Basics [Dre17a]. Basis [BT12a, MW95, CHL07]. Batch [Lyo79]. Batched [Piw85, SG76b]. Bayesian [CSSP15, OGAB14, PKSB18, RH95, SP12]. BC [ACM05, LL08]. BDDs [MJJ+02]. Be [Yao81, CP91c, GMW90, Sch91a, Sim98]. Beach [PD91, RNT90]. Bearbeitung [Koe72]. Beaverton [ODB89]. Behavior [Lev00, Sav90, TTY93]. Beijing [An93c, Yan10]. Beitrag [BL87]. Belgium [BW92, QV93, Vd90, PV93c]. Bell [Lam70]. belt [BDPV06]. belt-and-mill [BDPV06]. Bemerkung [Eck74a]. Benchmarked [MKAA17]. Benefits [Bur79]. Bergen [Ytr06]. Berkeley [ACM86b, DJNR09, IEE06, IEE13]. Berlin [AH03, Yao78]. beschränkt [Wen92]. Besetzungswahrscheinlichkeiten [vM39]. BESM [Ers58b]. better [Mit17]. Between [Bra84a, Bra86, KCF84, Bra85, CCL91, GHW07, LC13, Omi89a, Sar11]. Bewertung
10

[LB102]. **Building** [AÖD19, BC06, HKL07, Mit17, PV95, RMB11, WHS07, Pvo95],
Built [Win84]. **Burden** [Oak98], **burst** [AZ10]. **Bushy** [CHY93]. **Business** [Bra88].
Bystrica [Rov90], **bytecodes** [SUH86]. **Byzantine** [HGR07].

C [Pla98, USE90, ÁCZ16, Blu95, Eug90, GBY91, Pro89, Sed90, Sed92, Sou92, Tay89].
C/C [Pla98]. **CA** [ACM03a, ACM08a, ACM11, DJNR09, IEE13, Joy03, Cop95a].
Cache [Ask05, PWYZ10, PWYZ14, Pro18, PSS09, SBS16, SKC07, YNW09, YT16, AZ10, BFCJ12, CCHK08, HSMB91, KSC11, KSC12, MZK12, QM98].
Cache-Optimized [ZH18].
cache-partitioned [MZK12].
Cache-Conscious [Ask05].
Cache-Oblivious [ZH18].
Cache-tries [Pro18].
Caches [SBS16, SVCC01].

Caching [DB12, KM92, Rey14, WBWV16, XBH06, BCR10, Cha12, HL05, KL+97, KSB+99, She06, WZ12, WW00, WW02, ZO13]. **CAD** [KF94, Bar97]. **CAD-based** [KF94].
Cake [CHSC18]. **California**
[ACM82, ACM86b, ACM07, Bel00, Bri92, CRSS83a, Cop95b, Fra04, ICD86, ICD87, ICD88, ICD90, IEE11b, Kar98, Shm00, Sho95, Sto93, Sto92, USE90, Wie99, Yun02, Col93, IEE88a, IEE06]. **California/Special** [ACM82].
Call [HLC10]. **Cambridge** [ACM86a, BV89, Gol96, JBHJ94, Kil95, And94].
CAMEROT [SP88]. **Camera** [BH93]. **CAMSure** [RSK17].
Can [CP91c, Dam93, PaI92, Sim98, Dam94, GMW90, Sch91a]. **Canada**
[ACM02, ACM05, ACM08b, AFK90, DSZ07, JY14, LL08, Lev95, Yua92]. **Canadian**
[CCC89]. **candidates** [ABM+12].
Canonical [DNV81]. **canonizing** [FGFK10].
Canterbury [Oxb86].
Capabilities [RS12, Tra63]. **Capability**
[Fab74, Wan84]. **Capability-Based** [Fab74].

Capacity [KK85, Tan83, HO72]. **Cape**
[IEE05, MS05].
cardinalities [GGR04].

Cardinality
[BHIMM12, GL+17, HM03, NTW09].
Cards [Ku04]. **Carlo** [BF83, Rey14].
Carolina [ACM91c].
Carry
[GK08, FJ13, LK16].
Carry-Less
[GK08, LK16].
carry-truncated [FJ13].

Carter [Sar80].
Cartesian [Du86].

Cascade [KZ84, RTK12]. **Cascaded**
[Jou04].
Cascading [Wan14].
Case
[ANS09, ANS10, AR17, DMV04, DS09c, El85b, F+03, FKS84, HBL+10, Kut10, Lar82a, YLB90, BGG94, FPSS05, Lar81, Mic02, MT16, SKD15]. **case/average**
[Mic02].
cash [Bac01].
Casino [IEE84].
Cassandra [EH17].
Catalonia [LSC91].
Catalunya [CTC90].
Categorization
[MBBS12].
Categorized [LLG+17].
Cathedral [IEE88a].
Cauchy [TI12].
Caution [Mul91].
Cayley [GM18, Zém94].
CBC [BBKN01, BBKN12].
CCA [CZLC14].
CCA-Secure [CZLC14].
Cell [Mil99, Pag01, Sun93].
Cells [JCK+18, WH83].
Cellular
[DGV93, MZ198].
Center
[ACM91b, Fis87, IEE90, Tuc89].
Centers
[SWTX18].
Centric
[LT12, SPSP16, WBWV16, XHZ+19, AK09].
century [ACM91b].
Certainty [Chr84, van94].
Certificate [MFES04].
Certificates [LK07].
Chain [EAA+16, JHL08, LAKW07, LHC05, SM01, YZ00, YSEL09, Bay73b, Par18].
Chained [Bay73a, HNS84].
Chaining
[BBP88, Cha94, CPP08, DMM05, GSC01, Joh61, Kue82b, MJBD11, Rag93, VC85, CBB05, Kno84, KtlT89, KFG15, Lar84, PW06, TT81, TT86, TLLL18, Kue82a, Rue82b].
Chains [BT12a, FL04, Jan08].
**Ngu06, YKLH10, ZQSH12, HL94, JFDF09].
challenge [GJM02].
challenges
[BFV12, GJM02].
Challenging [MSP12].
Chameleon [BR14, GZX14, PWY+13, LGW11, CTZD11, Moh11, Zha07].
codering [Lit77a]. Codes [BKST18, BGS96, Bie97, CLP17, Fal85a, Har97, Irbxx, JIP07, KP96, KP97, KGJ018, LQH18, SVCC01, TW07, BJKS93, BJKS94, Bou95, Fal86, Fal88, FM98, GHK+12, Gob75, IG94, Kri89, Mil98, Sti91, Sti94b, vT14, Far93, Bie95].

codification [FDL86]. Coding [Blo70, Boo74, Bur77, Bur78, Bur79, CJ86, DA12, Dav73, Dos78a, FH69, Gon77, HP63, HJ75, HG77, Kam74, Lit77b, Mar64, Mar71, Pip79, SD85, SDKR87, Sta73, Web72, Boy95, Bur76a, Coh94, DVS+14, Far93, LG78, Riv74a, Sab94, SDR83b, Sch79b, Ytr66, HJ75]. Coefficient [KKN12]. Coherent [GLHL11]. Coin [CLP13]. Coins [HR04, Ros12]. Collaboration [JXY07].

collections [AG93, LXL +19, TR02, UIY10]. Collections [BBD +82, BBD +86, LRY78, LRY80, SV15b]. College [J´aj90]. collide [GNP05]. Collision [Ask05, BG93, BR97, BM97, BK12, BKP09, CHKO08, CJC+09, Dam67, HM96, HHL10, HCJC06, IKO05, IT93, IH95, KKT91, MS99, MNS12, Men12, Mit12, MO19, MO91, MC86, NJS+06, Pey15, PACT09, PBGV99, PGV90b, PGV91, Rus92, Rus93, Rus95, Sab81, SY11, SHRD09, SHF+17, Van92, Vau93, WYY05a, WYY05d, XNS+13, YB95, ZBB+06, vW94, AKY13, BGG93, BF08, CHKO12, Gib91, ITP14, KdlT89, Men17, MT16, PGV93g, Sar11, SKP15, SBK+17, TWL+18, Van92, WS13].

Collision-Free [BM97, HM96, Rus92, Rus93, Rus95, SHRD09, BG93, HCJC06, PBGV99, Vau92, Vau93, ZBB+06, BGG93, Van92]. Collision-Mitigation [SHF+17].

Collision-Resistant [BR97, BK12, CHKO08, IKO05, CHKO12]. Collisionful [BPSN97, Gon95, Li95, BSNP96b, BSNP96c]. Collisions [Ano95a, BI87, BT94a, BT94b, CY06, DBGV93, GIS05, GL73, HR04, IP08, IP11, Pat95, VNP10, WFLY04, WYY05b, WYY05c, DV07, Gon95, Li95, Pat94, RVPV02, Sim98]. Colloquium [AGK+10, dBlL80, Kui92, NS82, Pat90, ADG+08, AMSM+09, ACJT07, CIM+05].

Colon [BZM93, ACM88b, ACM88c, ACM88d]. Colorado [BZM93, ACM88c, ACM88d].

Colonies [Ano95a, BI87, BT94a, BT94b, CY06, DBGV93, GIS05, GL73, HR04, IP08, IP11, Pat95, VNP10, WFLY04, WYY05b, WYY05c, DV07, Gon95, Li95, Pat94, RVPV02, Sim98]. Colloquium [AGK+10, dBlL80, Kui92, NS82, Pat90, ADG+08, AMSM+09, ACJT07, CIM+05].

Colonies [Ano95a, BI87, BT94a, BT94b, CY06, DBGV93, GIS05, GL73, HR04, IP08, IP11, Pat95, VNP10, WFLY04, WYY05b, WYY05c, DV07, Gon95, Li95, Pat94, RVPV02, Sim98]. Colloquium [AGK+10, dBlL80, Kui92, NS82, Pat90, ADG+08, AMSM+09, ACJT07, CIM+05].

Colonies [Ano95a, BI87, BT94a, BT94b, CY06, DBGV93, GIS05, GL73, HR04, IP08, IP11, Pat95, VNP10, WFLY04, WYY05b, WYY05c, DV07, Gon95, Li95, Pat94, RVPV02, Sim98]. Colloquium [AGK+10, dBlL80, Kui92, NS82, Pat90, ADG+08, AMSM+09, ACJT07, CIM+05].

Colonies [Ano95a, BI87, BT94a, BT94b, CY06, DBGV93, GIS05, GL73, HR04, IP08, IP11, Pat95, VNP10, WFLY04, WYY05b, WYY05c, DV07, Gon95, Li95, Pat94, RVPV02, Sim98]. Colloquium [AGK+10, dBlL80, Kui92, NS82, Pat90, ADG+08, AMSM+09, ACJT07, CIM+05].

Colonies [Ano95a, BI87, BT94a, BT94b, CY06, DBGV93, GIS05, GL73, HR04, IP08, IP11, Pat95, VNP10, WFLY04, WYY05b, WYY05c, DV07, Gon95, Li95, Pat94, RVPV02, Sim98]. Colloquium [AGK+10, dBlL80, Kui92, NS82, Pat90, ADG+08, AMSM+09, ACJT07, CIM+05].

Colonies [Ano95a, BI87, BT94a, BT94b, CY06, DBGV93, GIS05, GL73, HR04, IP08, IP11, Pat95, VNP10, WFLY04, WYY05b, WYY05c, DV07, Gon95, Li95, Pat94, RVPV02, Sim98]. Colloquium [AGK+10, dBlL80, Kui92, NS82, Pat90, ADG+08, AMSM+09, ACJT07, CIM+05].
[CHS+18, EK93, GG80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QCH+81, RLH91, SDK91, Tro95, KK96, RLH90, TT86].

comparisons [FDL86, Rön07].

COMPCON [IEE88a]. compensated

[CHS+18, EK93, GG80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QCH+81, RLH91, SDK91, Tro95, KK96, RLH90, TT86].

computer

comparisons [FDL86, Rön07].

COMPCON [IEE88a]. compensated

[CHS+18, EK93, GG80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QCH+81, RLH91, SDK91, Tro95, KK96, RLH90, TT86].

computer

comparisons [FDL86, Rön07].

COMPCON [IEE88a]. compensated

[CHS+18, EK93, GG80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QCH+81, RLH91, SDK91, Tro95, KK96, RLH90, TT86].

computer

comparisons [FDL86, Rön07].

COMPCON [IEE88a]. compensated

[CHS+18, EK93, GG80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QCH+81, RLH91, SDK91, Tro95, KK96, RLH90, TT86].

computer

comparisons [FDL86, Rön07].

COMPCON [IEE88a]. compensated

[CHS+18, EK93, GG80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QCH+81, RLH91, SDK91, Tro95, KK96, RLH90, TT86].

computer

comparisons [FDL86, Rön07].

COMPCON [IEE88a]. compensated

[CHS+18, EK93, GG80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QCH+81, RLH91, SDK91, Tro95, KK96, RLH90, TT86].

computer

comparisons [FDL86, Rön07].

COMPCON [IEE88a]. compensated

[CHS+18, EK93, GG80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QCH+81, RLH91, SDK91, Tro95, KK96, RLH90, TT86].

computer

comparisons [FDL86, Rön07].

COMPCON [IEE88a]. compensated

[CHS+18, EK93, GG80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QCH+81, RLH91, SDK91, Tro95, KK96, RLH90, TT86].

computer

comparisons [FDL86, Rön07].

COMPCON [IEE88a]. compensated

[CHS+18, EK93, GG80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QCH+81, RLH91, SDK91, Tro95, KK96, RLH90, TT86].

computer

comparisons [FDL86, Rön07].

COMPCON [IEE88a]. compensated

[CHS+18, EK93, GG80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QCH+81, RLH91, SDK91, Tro95, KK96, RLH90, TT86].

computer

comparisons [FDL86, Rön07].

COMPCON [IEE88a]. compensated

[CHS+18, EK93, GG80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QCH+81, RLH91, SDK91, Tro95, KK96, RLH90, TT86].

computer

comparisons [FDL86, Rön07].

COMPCON [IEE88a]. compensated

[CHS+18, EK93, GG80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QCH+81, RLH91, SDK91, Tro95, KK96, RLH90, TT86].

computer

comparisons [FDL86, Rön07].

COMPCON [IEE88a]. compensated

[CHS+18, EK93, GG80, Jai89, Jai92a, Jai92b, Jaixx, LG78, LH03b, QCH+81, RLH91, SDK91, Tro95, KK96, RLH90, TT86].

computer
Condensation [CT96]. Condensers [ATS19]. Conditionally [ACP09]. Conditions [IKO05, IH95, Rus92, Rus93, Rus95, BDPV14]. Conference [ACM81, ACM85a, ACM91b, PDI91, ACM94c, ACM04, AFI69, ABB93, AFK90, VLD82, Ano89, AW89, AAC+91, AOV+99, AA86, Bai81, BD88, Bar83, BDS88, BV89, BIP92, Bel90, BJZ94, BRW93, BL88, Bor81, Boy95, Bri92, BJ93, CCC89, CGO86, CLM89, Cop95b, DSS84, Far93, FNY92, FMA02, Fra04, Fre90, GMJ90, G92, GSW98, HB93, IEE80a, IEE85b, ICD86, Ich87, IEE88a, IEE88d, ICD88, IEE88b, CTC90, ICD90, ICD91, ICD93, IEE94c, IEE95, IEE02, IEE11a, IRM93, JB94, Jon85, JY14, Joy03, Ker75, Kra89, KLT92, LC06, Las87, LCK11, Lie81, LS89, LT80, LSC91, Dom93, MK89, MSD90, Mo92b, Nav85, Oxb86, PV85, PK95, QG95, RRR99, Rie89, RK95, RN90, Sch82a, ST93a, ST93b, SP90, Sho05, SW94b, SC77, Sti93, Sto92, SM08, SM12, USE91, USE00a, USE00b]. Conference [Vau06, Vid90, WYP90, JWSS91, Yan10, Yao78, Yua92, Yun02, ACM94a, ARA94, Ano83, Ano93a, Ano93c, CE95, Cop95a, DG96, DT87, Del03, HFF13, IDE92a, IEE94a, IDE94b, Il010, Nav85, Oxb86, PV85, PK95, QG95, RRR99, Rie89, RK95, RN90, Sch82a, ST93a, ST93b, SP90, Sho05, SW94b, SC77, Sti93, Sto92, SM08, SM12, USE91, USE00a, USE00b]. Conference [Vau06, Vid90, WYP90, JWSS91, Yan10, Yao78, Yua92, Yun02, ACM94a, ARA94, Ano83, Ano93a, Ano93c, CE95, Cop95a, DG96, DT87, Del03, HFF13, IDE92a, IEE94a, IDE94b, Il010, Nav85, Oxb86, PV85, PK95, QG95, RRR99, Rie89, RK95, RN90, Sch82a, ST93a, ST93b, SP90, Sho05, SW94b, SC77, Sti93, Sto92, SM08, SM12, USE91, USE00a, USE00b]. Conference [Vau06, Vid90, WYP90, JWSS91, Yan10, Yao78, Yua92, Yun02, ACM94a, ARA94, Ano83, Ano93a, Ano93c, CE95, Cop95a, DG96, DT87, Del03, HFF13, IDE92a, IEE94a, IDE94b, Il010, Nav85, Oxb86, PV85, PK95, QG95, RRR99, Rie89, RK95, RN90, Sch82a, ST93a, ST93b, SP90, Sho05, SW94b, SC77, Sti93, Sto92, SM08, SM12, USE91, USE00a, USE00b]. Conference [Vau06, Vid90, WYP90, JWSS91, Yan10, Yao78, Yua92, Yun02, ACM94a, ARA94, Ano83, Ano93a, Ano93c, CE95, Cop95a, DG96, DT87, Del03, HFF13, IDE92a, IEE94a, IDE94b, Il010, Nav85, Oxb86, PV85, PK95, QG95, RRR99, Rie89, RK95, RN90, Sch82a, ST93a, ST93b, SP90, Sho05, SW94b, SC77, Sti93, Sto92, SM08, SM12, USE91, USE00a, USE00b]. Conference [Vau06, Vid90, WYP90, JWSS91, Yan10, Yao78, Yua92, Yun02, ACM94a, ARA94, Ano83, Ano93a, Ano93c, CE95, Cop95a, DG96, DT87, Del03, HFF13, IDE92a, IEE94a, IDE94b, Il010, Nav85, Oxb86, PV85, PK95, QG95, RRR99, Rie89, RK95, RN90, Sch82a, ST93a, ST93b, SP90, Sho05, SW94b, SC77, Sti93, Sto92, SM08, SM12, USE91, USE00a, USE00b]. Conference [Vau06, Vid90, WYP90, JWSS91, Yan10, Yao78, Yua92, Yun02, ACM94a, ARA94, Ano83, Ano93a, Ano93c, CE95, Cop95a, DG96, DT87, Del03, HFF13, IDE92a, IEE94a, IDE94b, Il010, Nav85, Oxb86, PV85, PK95, QG95, RRR99, Rie89, RK95, RN90, Sch82a, ST93a, ST93b, SP90, Sho05, SW94b, SC77, Sti93, Sto92, SM08, SM12, USE91, USE00a, USE00b].
[R SSD89b, RSSD90, RSSD92, CW C10].

coprocessor [TL L07]. copy
[Kil01, SvEB84, AKN12, BATÔ13, CZL12,
K KL+09, Nae95]. cores [B M S+17]. Corfu
[Rei88]. Corporation [Fis87]. Corps
[RMB11]. correct [CE95, CE95].
Correcting [BG896, Har97, FM89,
GHK+12, Mil98, MF82]. Correction
[Bur84, KR79, RJK79, Ven84, Zam80].
correctness [MMC01]. Correlation
[TGGF10]. Correlations [Val15].
Correspondence [PH73]. Corrigendum
[AA79b]. Corruption [DD11, DJSN09].
Corruption-Localizing [DJSN09].
cosmological [War14]. Cost
[BM97, BBS90, CJP12, FCHD88, FCHD89,
GI12, HMN807, Kut10, L YW+18, L yo83,
PFS8, C14, CJ15, VBW94].
cost/performance [VBW94]. Costs
[HR96]. could [PES+12]. Counter
[LMP+08, MA S J18, NS16b, Bac02].
Countermeasure [LAW07, MMMT09].
Counters [WLWZ19]. Counting
[Fla83b, FM85, Mck89a, WVT90, DLM07,
EVF06, Mck89b, RKK14]. coupled
[HLH13]. course [PGV93c]. Couvrants
[Kar82]. Coverage [IJK13]. covering
[CLS18, Red92]. CoveringLSH [Pag18].
CPHASH [MZK12]. CPHR [WBWV16].
CPU [HLH13]. CPUs [KKL+09]. CR
[LACJ18]. Cracking [GAS+16]. CRAY
[DS97]. creating [Sag85b]. creation
[FVS12]. Credential [YLSZ19]. credit
[JDF09]. credit-based [JDF09]. Crete
[ACM01]. Criss [GRZ93]. Criss-Cross
[GRZ93]. Criteria [Adi88, AI189].
Criterion [Sun15]. critical [NM10]. Cross
[GRZ93, LWZ+18, MLHK17, WB90,
QZD+18]. Cross-Media [LWZ+18].
Cross-Modal [MLHK17]. cross-platform
[QZD+18]. Cryptanalysis [Aum09, BS91a,
Bih08, BCJ15, BHT98, BP09, DGV93,
Dae95, GO07, GIMS11, HPC02, JNPP14,
Knu92, LP16, LKY04, MR07, Mon19,
NXB13, GLM+10, SPLHCB14, SV94b,
Wag00, WSSO12, WYW14, AP11, BS91b,
BS91c, BHT97, CV05, RP95, SV95].
Cryptanalytic [CJS19]. CRYPTO
[Bel00, Bra90, Bri92, CRS83a, Cop95b,
Fei91, Fra04, MV91c, Sho95, Sti93, Wie99,
Yun02, CP91c]. Crypto’91 [DBGV93].
Cryptoanalysis [HSIR02]. Cryptographer
[Joy03]. Cryptographic
[ARH+18, BDPSNG97, BCR04, BDP11,
BDP97, Bur06, jCPB+12, CLG09, CP87,
DA12, DC98b, Dam90a, Dam91, DDF+07,
Dav91, DY91, DY91, GO07, He94,
MKAA17, PTT16, Pre93, PVG93d, Pre94b,
PB97, Pre99, Pre94c, QV89, QG95, RSS06,
Rja12, RS08, Rue93, SS01, Sch91b, Sch93a,
SZ93, SYI11, Sti06, TSP+11, Vau06, AY14,
ABO+17, BNN+10, BD92, BOY11, CP13,
De 95, ERI14, GPV08, GS94, GQ95, IN89,
KR19, Mic02, NY89b, NY99, RA07,
Sch93b, ZY16]. Cryptographically
[PGV92, Aam03]. Cryptography
[ANS97, ANS05, ACZ16, BD08, DK02,
DK15, IKO808, Ytr06, BGG94, BBDO9b,
Far93, GNP05, JY14, Kil05, PVG93c, Wol93,
Boy95, DG96]. Cryptology [Bri92, CRS83a,
CP87, Dam90a, Dav91, Fei91, Fra04, He94,
IR93, LC06, MV91c, QV89, Rue93, SP90,
SZ93, Sti93, Vau06, Bel00, Bra90, Cop95a,
Cop95b, Dam91, De 95, GQ95, Joy03,
PSN95, QG95, Sho05, Wie99, Yun02].
Cryp tosystem [Jun87, KKT91].
Cryp tosystems [Oka88, Wee11]. CS2
[NM02b]. CT [Joy03]. CT-RSA [Joy03].
Cube [OL89, TY91, OT89].
cube-connected [OT89]. CubeHash
[AD11, BP09, BKKMP9, KMKSL0]. Cuckoo
[ANS09, ANS10, ADW12, ADW14,
BHKN13, BHKN19, DM03, DS09c, DMR11,
FPS13, FMM09, FM11, KMW08, KMW10,
Kut10, Mit09, NSWO8, PR01, PR04, Pag06,
PRM16, PS12, SHF+17, TK07, DS09b,
KM07, Kut06, DK12]. Cumulative
D [CBA94, EAA+16, Fly92, GG92, GK94, LMJC07, LDY+16, WSSO12]. **D-Based** [WSSO12]. **d’Access** [Lit77b, Kar82, Lit77a]. **d’Adressage** [Lit79a]. **Dallas** [ACM98, IEE95, USE91]. **Damgård** [DGV93, Pat95, CDMP05, Gib90, Mir01]. **Darmstadt** [TWW77]. **Darstellung** [Koe72]. **Dartmouth** [Ano93d]. **Data** [ACM81, ACM82, ABB93, AHU83, ABM06, AHS92, VLD82, Ano85a, Ano89, AW89, AAC+01, ANT85, ADF12, BC08, BD88, BDD88, BJL16, BCH87, BJZ94, BFR87, BL88, Boy98, BJM14, BJ93, CLS12, CJ+09, Chr84, CGO86, CLMS99, DA12, CSS84, DT87, DSZ07, DP08, Dri17b, EjKMP80, Eid84, Eil83, Eil85b, Eil82, Fed88, FM85, Fli77, FB87, FBY92, FMA02, GMJ90, Gh77, Gh86, GCMG15, Go92, Gou83, Gro84, GBY91, Grit74, Har71b, Har73, Hem91, Hil78a, Hil78b, HZ66, Hii88, HSB4, IEE85b, ICD86, IC87, ICD88, ICD90, IC91D, IC93D, IH83, IAVB15, JL14, Ker75, KP81, KS12, Kru84, KHH98, Lte81, LTR85, LRY80, Lit89, Lit84, LL87, LSR9, LRY+15, LST80, LSC91, Lom93, LG78, LMR02, MLHK17, Mar75, Mar77, Mcc79, MSDS90, MKE+14, Nav85]. **Data** [NR12, PSSC17, PRR15, PV85, PW94, RNR13, Rou09, RK91, Sar10, Sch01a, SDW14, ST83a, ST83b, SW86, SW94b, Ste82, St092, SM08, SM12, SW87, SWTX18, Tan83, TC93, TY03, TA81, TA86, TGGF10, TS85, TGL+97, Toy92, Toy86, TS76, TS84, VL87, Wal88, WPKK94, WZY+18, WS76, WH83, Win90a, Wir86, WDYT91, WYT93, Wu85, YDT83, YSW+11, YLB90, Yua92, Zam80, ZLDD8, ZOH93, AK09, BR75, BZZ12, BVF12, BGG12, BPT10, BMLLC+19, CXLK19, CLW98, CRS83b, Col93, CH90, FP89a, FVS12, GB17, Ged14, GP08, HC11, HF91, HSMB91, HK13, IGA05, IL90, JDW+19, Kak83, Kan91, Kan93, KRJ09a, Koe72, LNS96, MSK96, MV08, NT01, NM02b, OS88, SLC+07, SB07, She06, Shi17, SE89, SW94a, SA17, TKT+89, VL97, Vit01, WM93, WZ+13, Wil78]. **data** [Wil85a, Yao78, YLC+09, Yu92, YG10, ZKR80, ZLL+07, ACM75b, GM02, ICD87, IEE94a, MO92a, Vit01]. **Data-base** [Mar75, Mar77]. **data-centric** [AK09]. **data-driven** [TKT+89]. **data-intensive** [Shi17]. **Data-stream** [Tan83]. **Data-structures** [Har73]. **Data/Knowledge** [BCH87]. **databanks** [FDL86]. **Database** [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM98b, ACM98a, AA86, Bab79, BG92, DCW91, DKO+84b, DKO+84c, DKO84a, DGG+86, DGS+90b, DGS+90a, DNV81, DT91b, GD87, GHJ+93, Van10, Han90, HCKW90, He87, Hsi83, HF13, IH83, KJG912, Kie85, Kim80, KL87, KTM083a, Ko90, Ket84b, Kum89a, LC86a, LL08, Lla81, Ouk83, SD98a, SD98b, SD98a, Sha86, She91, SD91, Sto88, Tan83, Toy86, Ull82, WVT90, Woe83, Woe87, Yam85, YNKM89, ZJM94b, AS89, AKN12, DKO+84d, EH17, EBD91, FNY92, GC90, HF91, IS+91, JB+94, MKB00, PS08, SSW94, SK88, SE89, SP89, TL93, Vak85, WC94, ZJM94a, ZJM94c, ODB89, BF89, KKP92]. **Databases** [AS82, AOV+99, Bar96, Bal05, BDSPS97, BG80, Bat81, BG82, BS94a, CCH09, Chu90, Chu91, DDF+07, DT91a, DT91b, FM91, FHCD92a, GY91, Gra92, Gra93c, GC95, GSW98, Heu87, HCY97, Kaw15, KR91, LOY00, LDM92, LÖON01, Oxb86, RZ90, RNT90, Sch82a, SPW90, SW91, TRN86, Toy93, AÖD19, AP92, BW89, FHCD92b, HC07, ISO97, KR88, MIGA18, SB95, SB97, SI09, ZLC+18]. **Dataflow**
DHTs [CQW08]. Diagonal [PVM94].
diagonalization [Lia95]. diced [Nic17].

Dichotomy [HW08]. Dicing [Kon10].
dictionaries [DMPP06, DW05, DW07,
GJM02, HMP01, MSK96, MN90, Mi98,
RRS07, Ru08, Wen92].
dictionariis [DMPP06]. Dictionary [CS82, DA93,
Dod82, Dos78b, McK99a, Rad83, Die90,
DHW08, McK99b, Rou07, Sun91, Sun93].

Diego [ACM03a, ACM07, Sto92].

Differences [Gri98]. Different
[LH03b, BW89, Jan05, KS88a].

Differentiability [DRS12]. Differential
[AS82, BS91b, BS91c, CH94, Dae95,
KKMS10, MMMT09, AGJA06, ITP14,
RP95]. difficulty [SKD15, SL88].

Diffusion [SDMS12, SDMS15].
Digest [IEE88a].

Digital [ANS05, BDS09, Cai84, Cip93,
Fox91, GK12a, GT63, LM95, Mek83,
Oka88, Oto85a, PW93, PGV93f, Reg81,
Rou07, Ru08, Ano09, Ano13].

DIGRAM [Wil79].

DIMACS [GJM02]. Dimension
[CT96, LHC05].

Dimensions [BP97]. Dimensions
[AI06, GIM99, KS88b, KS88c, Oto84,
Oto88a, PADHY93, Pre94, TSH97]. Dirty
[MZD*18]. Disc [CC87, CLC92, CF89b].

Discovery [LK10, PKW09, ZO13].

Discrete
[ACM94d, SDA90, SDA91, ACM97a, ACM01,
ACM05, ACM08a, Gib91, Kar98, Li15, MLHK17,
Mat09, SSL+18, Shm00, vW94, NW07].

Discretionary [BDPSNG97]. Discretized
[RNR13]. Discriminant [SY08].
discrimination [CP95a]. Discriminative
[OSR10, HXLX13]. Discs [CF89a, CF89b]. discussed [Gre95]. Discussion [BBR88].

DISH [SKC07]. disjoint [ABB+92]. Disk
[BGF88, Cha88, Du86, Gra94a, ML95, TC93,
WB03, Kor08, Wi14]. disk-based
[Kor08, Wi14]. Disk-tape [ML95]. Disks
[CC91, Vit85, CCL91]. Disorder
[LL86, Lom88, RM88, TB91]. Displace
[BBD09a, Pag99]. Displacement
[Pet13, FWG18]. Displacements
[Jan08, Jan05, Vio05]. display [Sab94].

displaying [Koe72]. Dissemination
[RHM99, RCF11]. Distance
[Bra84a, Bra85, Bra86, NNA12, Zha19,
LP04, MYS12, ZD1+15]. Distances [Bal96].

Distinguishable [Sch11]. Distinguishers
[LJF19, SY11, AP11]. Distinguishing
[HSR+01]. Distortion [CKPT19].

distribute [Die90]. Distributed
[PD191, APV07, BMS+17, CF04, DPH08,
Dev93, Ell83, Ell85b, GGY+19, GY9+19,
GSB94, adH93, HC13, IK92, JXY07,
KLH93, KLM96, KL97, LMSM90, LC96,
LB07, LACJ18, LMR02, ML86, MS02,
MT11, Mey93, MK12, NTW09, PRRR15,
PAVP08, PF85, RHM09, RMB11, SP90,
SW90, SDK91, SM92, SPB88, Spe98,
SWTX18, TT10, TP95, TIP+17, VBW94,
Wi03, BFL12, BPT10, CXY91, DLO6,
DAC+13, HKW05, ISO97, KKP+17,
KLL+09, Kua95, Kym93, LMSM12, LVD+11,
LNS09, LNS96, MLP07, MLS09, MA15,
SP98, WZ12, WST07, WTN09, ZC14,
ZGG05, ZLL+07, ZO13]. Distributing
[KW94]. Distribution [AT93, BBS90,
CM01, DTS75, EAA+16, JCK*18, LMC07,
PK87, RR92, Sch01b, SDT5, WZW+18,
AT90, GB94, Vio05, XCC99].

Distribution-Dependent [DTS75, SDT75].
Distribution-Independent [DTS75].

Distributions
[KS86, KS87a, KS87b, KS89b, RTK12].

Distributive [NP91]. Disturbance
[WLWZ19]. Dither [AP08]. DITTO [SB07].

Diverses [LG78]. Divisible [FL04].
Division [Eck74a, GL73, Gra88, Gra89].
DLIN [CK12]. DM [KL95]. Do [Bur06, HSR+01, HR04]. Document [ANT85, DGM89, LR96a, Wil79, KRML09].
Documentation [DM90]. Documents [WWZ09, WMB99, ZWCL10, WLLG08].
Domain [BR06, Cor00, Cor2, DOP05, KK12, KK18, LT12, LLG11, PC95, RS12, SGY11, SPSP16, ZNPM16]. Donald [Ruc15]. Donnees [Kar82, LG78]. Don’t [BFCJ+12, YT16, BCR10]. Dortmund [Lut88].
Double [Boo72, Bur05, CdM90, GS76, GS78, KLP98, LK94, LM93c, MB03, Men12, OOB17, Pal92, Tho13, Yao85a, KL95, LM88, LLJ15, Men17, MoI90a, MoI90b]. Double-Linked [Pal92].
Dual [CDW+19, MNS12, Wee12, BR75, MJ08]. Dual-Stream [MNS12]. Dublin [ABB93].
Dumping [Fro81]. d’une [LG78]. Duplicate [LK10, LQZH14, MD97, TW91].
Duplicates [Bre91]. duplication [BC08]. durch [Hilb2]. DWT [THY+18]. Dynamic [AL86, AHS92, BGDW95, CS91, CR89, CBA94, DGGL16, Dev93, DKM+88, DadH90, DKN+91, DKM+94, ED88, FNPS97, FHL+19, FS82, GT93, adH90, Kaw85, Kie85, KNT89, Kou93, KS86, KS87a, KS87b, KSC11, KSC12, Lar78, Lar88a, Lar88b, LCC8, LRY+15, MS12, MS02, Mul84a, Mul84b, Mul85, NKT88, OG94a, Ore83, Oto85b, Ouk83, OS83a, OS83b, PLKS07, PG95, RZ90, RT89, RL82, RSSD9a, Reg81, Rob86, Sch79b, Sch81, SSS05, TT10, Vek85, Wan14, YD84, YLSZ19, YBQZ17, YD86a, YD86b, ZRT91, ZJM94a, ZJM94b, ZJM94c, ZO93, CS93a, DMPM06, DHW08, FRS94, FF90, Fro81, HKLS12, HR93, KD92, Lev89, Lin96, Mil98, YG10, SKC07].
Dynamically [LIT78, Litxxb]. dynamicis [DMPP06]. Dynamiques [Kar82]. Dynamisch [DS84a]. Dynamischer [Hilb82].
E-HASH [HGH+12]. early [CV83a, CJKW00, PY88]. early-insertion [CV83a, PY88]. Easier [Bo81, Ego90].
Easily [CMW83]. Eat [CHSC18]. ECDSA [AN05]. ECHO [KOY11, Sch11].
Editors [RW97]. Education [LC86b].
Effect [KNT89, Mac95, Mai92]. Effective [FCH88, FCH89, HW08, PCY95, WDYT91, MA15]. effects [QM98].
Efficiency [DB12, Lei87, PVCO98, UI72, KST99, PT10b]. Efficient [AD08, ASW18, ASBDS16, ASW07, Ast80, AEMR09, AD12, AD14, BR14, BCS09, BOS11, BPZ07, CFP19, CKB85, CLS12, DDF+07, DD15, DGM89, FES09, F+03, FR94, GGY+19, GM79, Gon83, GR93, Gri77, HT01, HM12, HDM09, HHL10, HLC10, IN89, JDW+19, JD12, KU88, KR81, KLadH93, KLM96, KKRJ07, KJC11, KS12, KS86, KS87a, KS87b, KS89b, Kue84b, HGH+12, LW88, LCLX19, LWG11, LXL+19, MZD+18, MP16, MJBD11, MEK+14, MH10, MO92a, MKASJ18, MJ+02, Mul85, NN90, OOK+10, Pag99, PAKR93, PAFV08, Pan05, Qui83, RT81, RFB97, Rémi92, Ros06, Ros07, Sac86, SDMS15, Sh91b, Sch93a, SL16, SGY11, SvEB84, SPSP16, SKM01, TY03, TYZ05, TYSK10, TW07, TS85, TGL+97, Ts18, VL87, Vit85, WYY05d, WWZ09, Woe06b, XHZ+19, YSW+11, YBQZ18, YGC+12, BLP+14, BZL+15, BT93].
efficient [CML+13, CZ14, CLW98, DS90a, FNP90, FPSS05, Gai82, HHL04, HCJC06, adHM93, ILL17, KU86, LIN96, LCH+14, LL15, MSK96, NTW09, OCG11, PCK95,
PBBO12, PSS09, RCF11, SSW94, Sch93b, SX08, Shi17, SV15a, UHT95, VL97, Wie86, WTN09, XLZC14, ZWT+14, SV18.

Efficiently [AP08, Kim99].

Effiziente [Meh77, Meh86].

eigenvalue [JWM+18].

Eight [Van10].

Eighteenth [ACM86b, ACM91d, ACM91a].

Eighth [ACM76, ACM89b, ACM89a, ACM97a, VLD82, ACM96, Go82].

Embedded [SVCC01, vMG12, Hui90, TLLL07, TLLL09, UIY10].

Embedding [CLP17].

Embeddings [AEP18].

EMD [BR06].

Emde [Wil00].

Emergence [Fox91].

Empirical [DMP09].

Employing [Per73].

Emulated [EK93].

Emulations [Kel93, Kel96].

en-route [YG10].

enabled [BZZ12].

Enabling [GYW+19, HDCM09, LCLX19, SMZ18, TT10, SLC+07].

Encapsulation [HM12].

Encipherment [BM76].

Encoding

[Ano95c, KP94, Wil79, CVR14, RRS07].

Encodings [BHIMM12].

Encrypted

[GYW+19, Kaw15].

Encryption

[CS02, DC98a, Kae93, NTY12, PRZ99, Sar10, ZMM17, ZHZ+19, And94, BR94, Bir07, Gol96, GBL94, Sab94, ZCQ19].

Energy

[AS16, KYS05, HGH+12, YSW+11, CZ14].

Energy-Efficient [GHG+12].

Energy-Harvesting [AS16].

Engine

[YNK89, BC06, NM02b, PES+12, SSW94].

Engineer [Jac92].

Engineering

[Gol92, Got83, ICD86, ICD87, ICD88, ICD90, ICD91, ICD93, Lew82, Wal88, ARA94, Ano93c, IEE94a, Yu92, Ano89].

England [ACM94b, Pat90].

English

[CS82, Dit76, Wan05].

Enhance

[Lit84, CZ14].

Enhanced [RS12, LG96].

Enhancement [HMMN07].

Enhancements

[Grain93a, EnRUPT [IP11], ensemble [ZNP16]].

Entire [FDL86, Nic17].

entity [ZLC+18].

Entropy

[And94, ATS19, HHR+10, KM88b, NRW90, CKKK09, MV08].

Entry [YL90].

Environment

[DGM89, ML94, MS88a, RS92, RL74, SD90c, SD98a, SSS05, ZG90b, Kha95, QD+18, SD98d, TMB02].

Environments [ZG90a, DGA10, RCF11].

EOS [BP94].

EPGAs [YTHC97].

Equality

[TD93, WC81, AD08, GRR+11, ZCQ19].

equalization [PCK95, UHT95].

Equations

[Aum09].

Equijoin [SW91].

Equiprobable [PB80].

Equivalence [Mar71, de 69].

eraser [AAGG18].

Erasure [KGG18].

Ergife [IEE88d].

Erlang

[TCP+17].

Erratum [FW77].

Error

[BGS96, Har97, Kue84b, Mil98, MKASJ18, RJK79, WLWZ19, FM98, GHK+12, Rön07].

Error-Correcting

[BGS96, GHK+12].

Error-Correction [RJK79].

Errors

[Blo70, Zam80, MF82].

ErsatzPasswords

[GAS+16].

ESA [EF12, FS09, HM08].

ESAT [PG93c].

essays [BC39].

Establishment [DL12].

estimate [Rön07].

estimated [Nic17].

Estimating

[Leb87, MBK80].

Estimation

[GLL17, IJK13, TGGF10, TZ12, HKL04, LNS11, LDK12, NTW09].

estimators

[HYK08].

eTCR [HKKK13, RWSN07].

Ethernet [KCR11].

Etude [Mek83, LG78].

Euclidean

[SWQ+14].

Euler [Cha84b].

EUROCRYPT

[CP87, Dam90a, Dam91, Dav91, De 95, GQ95, Hel94, QV98, QG95, Rue93, Vau06].

Europe [BRW93].

European

[EF12, FS09, HM08].

EUROSAM [Ng79].

Evaluating [HAKM15, RS92].

Evaluation [AHL88, BGDW95, CRSW11, CRSW13].
Chr84, Fla81, Fla83a, Gra93b, Gra93c, Gri77, HNS84, KTN92, LCLX19, LLO99, MXL+12, ML86, MLxx, MS88a, NMX19, Pag99, SD89c, SD89a, SC90b, SC90a, SC90c, Stu85, TNKT92, Web72, Woo89, YNKM89, CHS+18, GDA10, RLM87, SD89d, TMB02.

Eve [AAE+14]. Even [Bosxx, Tho00].

Event [McKi89a, McKi89b, ZLY+13].

Everything [Kil01]. Everything [KTN92, MLD94, TNKT92]. evolution [PGV93c]. Evolutionary [DLT98].

Exact [Cor00, Ram88a, Vio05, Lia95]. Examining [Wil00]. Example [FHMU85]. Exceed [Pal92]. Except [OWZ14]. Exchange [KV09, BSNP96b, GL06, LW04]. Exclusive [Kno71]. Expander [CLG09]. Expanders [BK07b, Tho13]. expanding [FNY92]. Expandible [CL95]. Expansion [AVZ11, Gri77, Mai92]. Expansions [Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Larxx, RSSD89a]. expansive [LS96].

Expectation [GM91]. Expected [Gon81, Lar81, Lar82a]. Experimental [ANS09, JHL+15]. Experiments [KL96, Wil79].

Expert [ARA94]. Explicit [ADW12, ADW14, Bla00, CL83, LS06, MvT08, WX01, GJR79]. exploit [AZ10].

Exploitation [LAD+12]. Exploiting [Bre91, CKKW00, GHW07, HL12, MSS96, MV08, HAK+16]. Exploration [CH94, PSSC17].

Expanding [Ana95a].

Expansible [SL96].

Extended [DP08, HBG+17, Ter87, YNKM89, YD84, YTHC97].

Extenders [RS12].

Extendible [BK84, Bry84, Chu91, Chu92, DT91a, DT91b, Ell83, Ell88, FNP879, Fla81, Fla83a, Hac93, HSM95, HYH89, HY86, KR86b, KR86a, Kum89a, LOON01, Men82, MH00, Oto84, Oto86, Oto88a, RLH91, RS77, Tam81, Tam82, Yao80, Hua85, Kum89b, MKSiA98, RLH90, RS75, Wee88].

Extending [CMP07, JB94, SS01, WKBA07].

Extensible [BG92, Gra94c, Hei90, Kum90, Rém92, KR88, SS06, BP94].

Extension [BR06, CDW+19, Lit77a, LLG12, PSZ18, FYG11, WH83, Bak09, SFA+19].

Extensions [CSSP15, Heu87].

External [AS89, AGMT11, GL82, GL88, Gra94a, GT63, JP08, LR85, LRY78, LRY80, Vit01, Woe06b, RT98, RB91].

External-Memory [AGMT11].

Extractable [ACP09, CZLC12b, CZLC14, Woe11].

Extracting [HZ86].

Extracts [FC87b, KKN12, LDY+16, ZLY+12].

Extremely [Sie04].

FA [CKW09].

Face [KGJG12].

Fachgespräch [Lut88].

Facility [VL87, FF90, VL97].

Factor [CFP19].

Factoring [CTZD11].

Factorization [FS82].

Failure [Ana95a].

Fairfax [ACM94a, WGM88].

Fake [Ana96, LAKW07].

Fall [AFI69].

Fallen [HCPLSB12].

False [Pag18, CVR14].

Families [ADW12, ADW14, BW98, Bla00, CRSW11, CRSW13, F84, HHL10, SG16, WX01, AG10, BJ07, BT13, BJKS93, BJKS94, CRS83b, CL09a, CL09b, CLS18, FH15, GW94, LS06, LCL13, MvT08, WC07, Woe06a, vT14].

Family [BDM+12, BKST18, FLS+10, GK08, Håd01, IT93, MWHC92, MWHC96, SK05, ACP10, AMP12, BDPV12, FPS17, KRT07, Sar13, SRR98].

Fast
[AKS78, AP92, AB12, BH91, BRM+09, BS97, BS94b, BS94a, BGV96, BT12b, CH12, CS85a, CCW+17, CWC10, CD84b, CRR18, CS82, DC98a, Dit91, EPR99, FNPS79, FFGL09, GM91, GM94, GM98, GC95, GK94, GK95, GO15, Gui89, HK95, HKLS12, HW08, HXLX13, KG95, Kei96, KP97, KL98, KR79, KR01, KRML09, LQZH14, LM95, LK14, LR09, LS15, LL87, Mad80, MSD19, NR12, Os14, Pea90, Pea91, PQ98, PQ99, PKSB18, PV95, Rey14, Rog95, Rog99, SG76a, Sav90, Sav91, SMZ18, ST86, She78, SY08, Sh96, Tho13, Tho17, Ven84, WH83, Yan05, YBQZ17, YKLH10, AB96, BS94c, CXLK19, CCA+12, DC94, FFGL10, HF91, KKL+09, KHH89, MSD16, MPO90, Mer90a, MZ98, MSST16, PVO95, Sag85b, SP12, Sie89, SV15b, Tho00, TLLL09, WWG+18, YTHC97, YZ16]. fast [ZO13, ZHC+13, And94, Bir07, Gol94]. Faster [ASM17, CRSW11, CRSW13, FCH92, LK16, McC79, Bosxx, HKL04, LS15, Sna87]. Fault [AAB+92, DSSW90a, DSSW90b, MAK17, HGR07]. Faulty [JCK+18]. FCD [ISO97]. FCSRs [BDM+12]. Fe [Gol94]. Feal [BS91b, BS91a]. Feasibility [CKM14]. Feature [LMC07, NS16a, Som99, TWZW11, Fly92, MHT+13]. Feature-Based [TWZW11]. Features [DHT+19, MS12, MBBS12, PKW09, SSaS01, THY+18, Tsa96, Tsa94, ZLY+13]. Feb [Bar83]. February [AH03, Gol96, Gol92, IE84, ICD86, ICD87, IE88a, ICD88, ICD90, IE94a, KI94, Ki05, Rie89, USE00b, Wol93, Yu92]. Federal [Dan13]. fehlerbehandlung [Kue84a]. fehlererkennung [Kue83]. Feistel [SY11]. Fencing [TYZ01]. FFT [BGG93, BGG93, DBGV93, Scho91b, Schl93a, Schl93b, SV94a, Van92, Van92, Van93]. FFT-Hash [DBGV93, Schl93b, Schl93a, Van92]. FFT-Hash-II [Vau93, Vau92]. FFT-Hashing [SV94a, Sch91b]. FGS [KM09]. Fichier [Lit77a]. Fields [AU79, HJ96, WX01, LS06]. Fifteenth [AW98]. Fifth [ACM86a, ACM03a, BAI81, Mo92b, OX86, ACMS94d, AOV+99, GJM02, CTC90, Mo92b]. Fifty [Kon10]. File [BG88, Bat80, Bat82, BCR87, Buc63, Bur75b, CS83b, CF89a, CE70, DS84b, DGM89, DT91a, DT91b, CF87a, FZ87, GGY+19, GIS05, GG74, Gro86, HP63, Har88, KS88b, KS88c, LRS82c, LRS84, LRS85, LRS86, Lit80, Litxxa, Lom88, Lu73, MF92, Mi63, Mi85, MK93, NHS84, OLS89, ORE88, PSS90, RL89, RS89a, RS89b, RS89c, RS89d, Rot89, Sal88, SS82, SCH79, SCH81, SWTX18, Tha88, Wie83, WIE87a, WRI83, WB03, YD86a, vDP72, vDP73, BY89, BR75, Bra88, CC88a, DA+13, FE809, IN81, KOU93, OMI89a, RMM88, SG72, BBV94, YD86b, van73]. Files [AS82, AN85, BM76, BHS85, BRA84a, BRA86, CC87, CS87, CC91, CLC92, CL95, CL87, CS93b, Du86, FNP97, FE87, GRI74, HB89a, HB92, Lar81, Lar82a, LRS85a, LR96a, LCM94, Lit79b, LY71, MY79, ML85, Oto85a, Piw85, RS89b, RS89c, RS89d, Rot89, SG76b, TK88, ZRT91, Bra85, CS93a, CL91, HB89b, LNS93, LY72, ORX90, OMI89a, RB91, TC83]. Filing [FC87a, DH84]. filling [GZ99]. Filter [CCH09, Kau15, MK11, LZ06, RKK14, RK15]. Filtered [Ahn93]. filtering [KRM90, MK12, RCFF11, YG10]. Filters [CHY93, CHY97, KIE85, LYY+18, RAM89b, DK06, HKL07, HKLS12, HXLX13, ISO97, PSS09]. Final [MO92a]. Financial [ANS05]. Find [Hol13, Lan06, Pat94]. Finding [CBK83, Cer85, CKB85, Cer87, Cer88, Coh98, CH09, CM93, DR06, FCH88, FCH89, HK86, HG77, HR04, KI84, SH92, SH94, SIM98, VAL15, WYY05b, WYY05c, YUV75, FHC89, MI84]. fine [KLSV12].
fine-grained [KLSV12]. Fingerprint [JTOT09, LMC07, LMJC07].
Fingerprinting [Rou09]. Finite [Gri98, HJ96, Ram88a, WX01, FH15, KHK12, LS06, LK93]. FIPS [Dan13, Ano93b, Ano95b, NIS93, Nat95].
Firewalls [Kal01]. First [ACM89c, SDA90, PDI91, BBD09b, FNY92, adHMR93, PM89, DLM07, Fis87, SBK17].
first-order [Gri98, HJ96, Ram88a, WX01, FH15, KHK12, LS06, LK93]. FIPS [Dan13, Ano93b, Ano95b, NIS93, Nat95].
Firewalls [Kal01]. First [ACM89c, SDA90, PDI91, BBD09b, FNY92, adHMR93, PM89, DLM07, Fis87, SBK17].
first-order [Gri98, HJ96, Ram88a, WX01, FH15, KHK12, LS06, LK93]. FIPS [Dan13, Ano93b, Ano95b, NIS93, Nat95].
Firewalls [Kal01]. First [ACM89c, SDA90, PDI91, BBD09b, FNY92, adHMR93, PM89, DLM07, Fis87, SBK17].
first-order [Gri98, HJ96, Ram88a, WX01, FH15, KHK12, LS06, LK93].
Full-Text [YSW⁺11, RCF11]. **Function**
[Abi12, ÁVZ11, Aum09, AMPH14, BPSN97, BF83, BDM⁺12, BS94b, BS94a, BKST18, BRS02, Bla95, BKL⁺11, BDP97, CP91c, Cer81, CKB83b, CN08, Cob94, CBA94, CMP07, CO82b, CDPD05, DBGV93, DGV93, Dae95, DC98b, DLT98, Dat88, DL80, FLS⁺10, GIS05, Gei95, Gei96, GSC01, GIMS11, HPC02, Har97, Hol13, HLC10, JP07, Kal01, KRP09b, KCB81, Kra82, Kul84, KKT91, LFW98, LP15, Lis07, Lis80, LG78, MR07, MRST10, MNS12, MIO89, NIS15, Oto84, PA08, PV92, PH10, PHG12, PBD07, GLM⁺10, RB01, Sch11, Sch90a, Sch91b, SBY11, Sta06a, TC93, TT93, WV90, WSS012, Win83, Win84, Woh84, WFW⁺12, YD84, Yen05, WL12, ZWW⁺12, AKY13, ACP10, AB96, AMP15, ABO⁺17, AP11, BGKZ12, BNN⁺10, BDPV06, BDPV12, BOY11, BS94c, BW89, CK83a, CK89, DK94, DF89, FP82].

function
[GM18, Gib91, HR07, Han17, ITP14, LW04, Lia95, LWG11, MJ08, Mer90a, MZI98, Mit17, Mon19, NSW09, Pat94, Pat95, PVCQ08, QJ97, RS14, SB14, SS92, Sch82b, SRL98, SHA97, SXL16, Tsa08, VNP10, VFN91, WS13, WYW14, YL97, YZ16].

Functional
[LFP82, GMP95, SV18, ZKR08, Jon85].

Functions
[ABV98, AFK83, AFK84, AN96, ASW81, ACZ16, AA79b, AA79a, And91, ABD⁺16, Ano95a, AEMR09, AR17, AM07, AP08, BSNP96a, BDP99, BCK96a, BCK96b, BR14, BBD⁺82, BBD⁺86, BGS96, Bih08, BCS09, BRSS10, BCFW09, BK12, Bol79, BP207, BHT98, BI86, BUR78, BDMD19, Can97, CWT77a, CWT77b, CW79, CMW83, CBK83, Cer85, CBK85, CBK85, Cer87, Cer88, CS83a, CS83b, CS85c, CS85b, CS85a, CS86, Cha86b, CS87, CLNY06, CLG09, CK15, Chi91, Chi94, Cic80a, Cic80b, CE70, Coh97, CH94, CHM92a, CHM92b, CM93, DGV93, Dam87, Dam90b, DDF⁺07, DK07, DY90, DY91, DTS75, DADH90, DGM92, Die07, DGKK12, EKR93, EPR99, Fil92, FL08, FLP08, FL14, FFGL09, FCHD88, FCHD89, FCD90, FCD91, FCD92, FHC90, FHC91, FHC92, FHC93, FHC94, GO07, Get01, Gir87, GHK91a].

Functions
[GHK91b, GLG⁺02, GK08, HHR⁺10, Hal12, HM12, HJ96, HKY12, HS08, HK12b, HR04, Ind01, IT93, JO80, Jae81, Jen97, Jou04, JD12, KHS84, KL06, Kno75, KP96, KLP98, KV12, LM93a, LM94, LT09, LM95, Lis07, LH03a, LL12, Mal92, MWCH92, MCW78, Mar64, MHL82, MP12, MHL90b, Mir01, MRW89, Mit02, MO10, MO19, Moli11, Mul91, NIS15, NM02a, NCFK11, N99, NR15, OBO12, Otk91, Pag99, PWC⁺13, PB80, PQ98, PQ99, PW93, PV90a, PV90b, PV92, Pre93, PV93d, PV93f, Pre94a, PV95, Pre97a, Pre97b, Pre99, Pre94c, QG89, QC90, RP91, RR08, RWS07, Rua12, Roe84, RS08, Rif93, SP91, Sag84, Sag85a, SDMS12, SDMS15, San76, SS01, SS88, Sch91a, SRY99, Sho00a, Sho00b, Sie04, SVEB84, SDT75]. **Functions**
[Spr77, Sti06, TV83, Tro92, Tro95, Uhl70, Uhl72, WFLY04, Wee12, WC79, WC81, WKO78, YD85, ZHA11, Zha07, Zhe90, ZMJ91, VW94, van94, vdBGLG⁺16, AY14, AAB⁺92, ADM⁺99, AG10, And93, AMP12, AAGG16, BSNP96b, BSNP96c, BD02, BCR04, BDPV07, BDP11, BJS93, BJS94, BSU12, Bra09, BHT97, BM01, CMR98, CN18, CB81, CCHK08, D709a, DW03, ESRI14, FPS17, FFGL10, FHC90, FHC92b, GKK10, Ged14, GW94, GPGO16, Gou95, GLCO8, GK12b, HK86, HC11, HLMW93, HXM94, HKK13, HSK88, HYLT99, HL12, Hug85, ISO97, ISO04, JCC00, JG95, KST99, KL95, KRT07, KHK10, Kra95, Kri89, LS07a, LM93b, LLH02, LKY04, LI95, LI10, LC13, MS09, Mei95, Mic02, MV08, MS13, MSP12, MT16, Mul92, Nae95, NY89b, NY89a, OS14, OS10, PW08, PW06, Pob86].
functions [PGV93a, PGV91, PGV93b, PGV93e, PGV93g, Pre94b, PGV94, Pvo95, RB91, RFB97, RZ97, RP95, Roe95, Sar80, SS90b, ST85, SH92, SH94, SL88, SS16, Sie89, Sim98, SV06, TZ94a, Tsu92a, Tsu92b, VD05, XCCK09, YL04, YRY04, Zém94, ZW05, ZBB+06, ZDI+15, RRS06].

functions-based [HC11].

Fundamental [LYD71, LY72].

Fundamentals [HS78, HS84].

Further [Lit85, Sar15, DM03].

Fusion [Wil00].

Fuzzy [LMC07, LMJC07, LII92, HC14].

G2 [BP18].

Gallery [BFR87].

Galois [HJ96].

Gamma [DGS+90b, DGS+90a, GD87, DGG+86].

Gap [ATS19].

Garbage [AG93, FW76, FW77, UIY10].

gates [GHK+12].

Gb/s [BLC12].

GBDD [YTHC97].

GCM [Saa12].

Gigabytes [WMB99].

Girths [Zem91].

Give [AT93, AT90].

Global [CLP13, CII95, DL79, LPSW03, MD97].

Globally [HSW88].

GLUON [BDM+12].

gMig [MZD+18].

GNU [Wil14].

Go [Bur06].

Goddard [Fis87].

Goes [Cip93].

Gold [SZ93].

gone [Nic17].

Gong [BPSN97].

Good [Bur92, Hol13, JP07, Lom88, Mit02, ADM+97, Kou93].

Goodyear [Fis87].

GORDION [EE86].

gossiping [GHW07].

GOST [LJF19, WYW14].

GPERF [Sch90a, SS92].

GPU [ASA+09, FRB11, HLH13, LLAA15, MZD+18, TWL+18].

GRAB [Les88].

GRACE [KTM83b, KTM83c, KNT89, KTN92].

Graduate [Ano93d].

Grained [PAKR93, KLSV12].

Gram [Ven86, Coh98].

Grams [BRM+09, Coh97].

granular [CLS12].

Graph [Ari94, BMQ98, Hal12, HM93, JBWK11, KM88b, MD97, MBBS12, NRW90, TI12, YKWy83, BPT10, CML+13, CLL+14, FH+19, Kor08, Mol90a, Mol90b, WLLG08, vL94].

Graph-Based [Hal12, JBWK11].

Graph-Entropy [Ari94].

graph-structured [BPT10, WLLG08].

Graph-theoretic [vL94].

Graphic
Graphics [Leb87, RKLC+11].

Graphische [Lut88]. Graphs [CLG09, HMWC94, KPS92, Kmn98, Zem91, AD08, AAB+92, AS07, DW03, FGFK10, HK83, Kut06, LL13, Zén94].

Grid [CLD82, Fal85a, DL80, Fal86, Fal88].

Greece [ACM01, AMS+09, Rei88].

Greedy [WTZ+13, AGJA06].

Greenspan [Fis87].

Greenbelt [KRT07, Pey15].

Grøstl [ABO+17, ITP14, MRST10, WFW+12].

Grøstl-0 [ITP14].

Group [ACM82, DT87, DD11, KKW99, LND08, Mue04, TZ94a, YLC+09].

Group-based [LND08].

Group-by [KKW99, YLC+09].

Group-theoretic [TZ94a].

Groups [HM12, LLW10, PWY+13, Reg82, CFYT94].

Growth [Oto88a, Rey14].

Guangdong [IEE11a].

Guaranteed [RT89].

Guaranteeing [LK84].

Guess [ZF06].

Guess-and-Determine [ZF06].

Guest [Fox91, DLM07, RW97].

Guide [AS82, SD76].

Guess-and-Determine [ZF06].

Guaranteed [RT89].

Guess [ZF06].

Guess-and-Determine [ZF06].

Guide [AS82, SD76].

Guaranteeing [LK84].

Guess [ZF06].

Guess-and-Determine [ZF06].

Guide [AS82, SD76].

Guess-and-Determine [ZF06].

Guest [Fox91, DLM07, RW97].

Guide [AS82, SD76].

Guaranteeing [LK84].

Guide [AS82, SD76].

Guess-and-Determine [ZF06].

Guide [AS82, SD76].

Guaranteeing [LK84].

Guide [AS82, SD76].

Guaranteeing [LK84].

Guide [AS82, SD76].

Guess-and-Determine [ZF06].

Guide [AS82, SD76].
DhK+15, Dev99, DAC+13, DadH90, DGMF92, Die07, DSo9c, DCM18, DL17, DOP05, DRS12, DF01. **Hash**

[DC81, Dos78a, DB12, DHJ80, DHJS83, DGKK12, Eck74a, Eck74b, EAA+16, EK93, EMM07, EH12, EPR99, FIP93, FIP02b, FL04, FLS+10, FLF11, FRB11, FFPV84, Fl02, FL08, FL080, FL14, FFG109, FB87, F+03, FCHD88, FCHD89, FCDH90, FCDH91, FCH92, FHC92a, FK84, GK05, GO07, GK12a, GIS05, Gei95, Gei96, GHR99, Ger86a, Ger86b, Get01, Gi87, GI2, GSC01, GHK91a, GHK91b, Gon77, Gon81, GRS91, Gra93a, Gra93b, Gra94a, GLS94, GBC98, Gra99, GIS10i1, GLG+02, GK94, GK95, GK08, HMBN06, HHR+10, HP78, Hal12, HPC02, HDMC09, Har97, HHL10, HCJC06, HW08, HC11, He91i, HJ96, HCPPLS12, HJ75, HH77, HIL82, HS08, HK12b, Hol13, HHKK10, Hop66b, HD72, HCY94, HCY97, HR04, HC13, HLC10, HIL13, HRS16, HBG+17, ISO04, IK92, IG77, IG94.]

Hash

[IP08, Ind01, Irbxx, IABV15, IT93, IL90, JOS0, Jen97, JRPK07, JHL08, JL14, JXY07, Jou04, JD12, JK11, JP07, KG95, KMM+06, KK12, KK18, Kal01, Kam74, KHK12, KHK15, KH84, KM09, KR91, KK06, KKW99, KII01, KKRJ07, KJR09b, KJC11, KKK12, KM10, KTM03a, KTMO83b, KNT89, KO90, KTN92, KW12, Kn071, Kdt89, KP96, KLP08, KR97, KRJ+08, KK85, KVK12, KC80, Kra82, Kue82b, Kue84b, Klu84, KKT91, LF17, LK07, LM93a, LM93b, LK94, LYY+18, LLY+19, Lam70, Lan06, LT12, Lar81, Lar82a, Lar85a, Lar88a, LAKW07, LMJC07, LK10, LMSM09, LT09, LM95, Lev00, LJF19, LLL09, LÖÖ01, LCH05, LWWQ08, Lip02, Lis07, Lit89, Lit77a, Lit77b, LC96, LR+15, LR96b, LL85, LB07, LAC18, LTS90, LH03a, LLG12, LMR02, Leo85, MXL+12, MD05, MSD19, Ma92, MTA17.]

Hash

[MWCH92, MS12, MS02, MT11, MCW78, Mar64, Mar71, MLD94, ML75, Mau83, McC79, MKF+16, MCF17, McK98a, Mel82, Mei95, MR07, MRST10, MNS12, MP12, Mer72, Mer90b, Mii85, Mir01, MRW99, Mit12, MW95, Mit02, MO98, MOJ90, MOI91, Mol91, Mot84, MKAA17, MKASJ18, Mue09, MJT+02, Mui91, Mul92, MC86, Nat92, NIS03, Nat95, NIS15, NM02a, NCFK11, NKT88, NNA12, NS16a, NP99, NSW09, Ngu06, NTy12, NR12, NxB13, NY85, NAK+15, OL91, Omi88, OL89, Omi91, OL92, Ore83, Oto86, Pag99, Pag85, PAPV08, PWY+13, PCL93a, PV92, PFM+09, PTT16, PCY95, PH01, PLK507, PV07, PHG12, PBDD95, PG95, PRK89, PRZ99, PW93, Pip94, Pla98, PGV90a, PGV90b, PG92, Pre93, PGV93d, PGV93e, PGV93f, Pre94a, PGV94, PV95, PBD97.]

Hash

[Pre97a, Pre97b, Pre99, Pre94c, Pro89, QG89, QG90, Ram88a, RRS06, RR08, GLM+10, RRS12, RJK79, Rey14, RWSN07, RS12, RG89, RB01, RHM09, Riv76, Riv78, Rja12, RNR13, Roe94, RS08, RMB11, Ros06, Ros07, Rot89, RK91, Rul93, SP91, Sag85a, SDMS12, SDMS15, SD78, Sam81, SS01, Sch11, SS80, SS88, Sch90a, Sch91a, Sch91b, Sch93a, SV94b, Sch79b, SBS16, SG16, SBY11, SW91, SX08, SYR99, SK98, Sho00a, Sho00b, Sie04, SM02, SK05, SvEB84, Sol93, Som99, SPSP16, Spec92, Sta94, Sta06a, Sti06, SKM01, Szy82, Szy85, TIT0, TR02, TY91, Top92, TP95, Toy93, TNP91, Tsu92a, TSP+11, Van92, Vau92, Vau93, VB00, WX01, WFLY04, WLLG08, WW09, WZJS10, WSSO12, WBWV16, Web72, Wee11, WC79, WC81, WBKA07, Win83, Win84, WK078.]

Hash

[Woe06b, WDT91, WYT93, Wol84, Wu05, WFW+12, XNS+13, XBO06, YNW+09, YAM85, YDS84, YDS85, Yap05, YSW+11, YT16, Yao95, YLS05, WL12, YLB90, Yen91, YZ00, YCR93, YY07, YY01, YSE09, YKLH10, ZG90a, ZG90b, Zel91, Zem91, Zén94, Zha07, ZLY+12, ZZZ17, ZJM94a,
Hash-Routing [WBWV16, SPSP16]. Hash-Search [WWZ09]. Hash-semijoin [CCY91]. Hash-Sequential [Lit89, IL90]. Hash-Speicherung [BJMM94b, BJMM94a]. Hash-Structured [CS93b], Hash-Tabellen [BI87]. Hash-Tables [LMSM09, LMSM12]. hash-tries [SV18]. hash-values [GS94]. Hash-verfahren [Hil82]. Hash/Table [DAC +13]. HAShCache [PG17]. Hashcash [Bac02]. Hashcodingverfahren [Sta73]. Hashed [GJR79, GG74, HYKS08, KS12, LI80, MF92, Mul72, SVCC01, VL87, WS93, WM19, And88, GMW90, HSBM91, Ken73, War14]. Hashedcubes [PSSC17]. Hashes [BC08, Saa12, Sch01b, Sch01a, Wan14, GvR08, GP08, GNP05]. hashfunctions [PBGV89]. Hashiguchi [LP04]. Hashimoto [SSa01]. Hashing [ACP09, AK98, Alm86, Alm87, Alm93, AKS78, AAE+14, Ald87, Ald88, AHS92, AP93, AA79b, AAT98, ANS09, ANS10, Ari94, ABH+73, AT93, ASW07, Ast80, AS96, AC74, ATK75, ADW12, ADW14, BYSP98, BAL96, Bal05, BH90, BP97, Bar97, BG93, BGH12, BH91, BK84, BR97, BM97, BHMM12, BJMM94b, BBD+82, BBD+86, BHKN13, BHNK19, Bie97, Bin96, Bia95, BG07, BOL81, BGV96, BM90b, BI12, BK07b, BT90, BT94a, BT94b, BK90, BT12b, BH86, BRY84, BP18, BUR92, BUR76b, BUR81, BUR84, BC90, CP91a, CHKO08, CH12, CLM85, CEB86, CM86, CF92, CSSP15, CLD82, CS83a, CS83b, Cha84b, Chas84c, CS85c, CS85b, CS85a, Cha85, CS86, CEB86a, Cha86b, CSS87, CS87, CS88b, CC91, CW91, CC91, CLC92]. Hashing [CL95, CL05, CLC06, CV83b, CV84, Che84a, Che84b, CV86, CW09, CTZD11, CZ17, CKPT19, Chi93, CT12, CJC+09, CK94, Chun91, Chun92, CV08, CKW09, CE70, Coh97, CS82b, CHK85, CH94, CG79, DA12, CDW+19, CadHS00, DW83a, DC98a, DKRT15, DAM93, DLT98, DPH08, Dat88, DD11, vDSDW74b, DS84a, DGD02, DTS75, DL79, Dev93, DMV04, DJSN09, DadH90, DadH92, DMR11, DTY08, Dit91, DOD82, DHL+94, DHL+02, DLH09, DSSW90a, DR11, Dre17b, Dre17c, DL80, DT91a, DT91b, DT75, Dun89a, Dun89b, Ell83, Ell85a, Ell87, Ell88, ED88, FNP579, Fal85a, FM96, Fur14, Fel87, FNSS92, FGFK10, Fl81, FS82, Fla83a, FPV98, Flo87, FPS13, FT12, FFG007, FMM90, FMM11, Fûr88, GSS01, GL73, GM91, GM94, Gathc96, GM98, GIM99]. Hashing [Gon80, GL82, GL88, GRZ93, GK76, GI77, GT80, Gra86, GPY94b, Gre95, Gri77, Gri79, GT93, GPA97, Gu75, GS76, Gu76a, Gu76b, GS78, Gu87, GG80, GH07, GZ14, GUR3, HB90a, HB92, Hac93, HSPZ08, HTO1, HHR14, HM96, HK12a, Ham02, Har71a, HCF95, He82, Hea72, HB89c, HB94, adeH90, adH93, Hef89, HST08, HNO84, HSM95, HKY12, HYH93, HY93, HCL78, HC87, HT88, HY86, HTY90, HSW88, IJ313, IK005, IH95, Jae92, Jae81, Jag91, Jai89, Jai92a, Jai92b, Jai93, Jan08, JV16, JP08, JTOT09, Jol97, JCK+18, Kab87, KGB18, KU88, KKN12, KV09, KGG12, Kaw85, Kaw15, Ke93, KR86b, KR86a, KY91, KMW08, KMW10, KZ84, Kn90, KP97, Kn91, KM86, Kon10, KM88a, KP94, Kri84, KS86, KS87a, KS87b, KS88b, KS89b, KR01, Kum89a, Kum90]. Hashing [Kut10, LW88, Lar78, Lar80a, Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Lar83, LR85, Lar85b, Lar85c, Lar88b, Larx, Leb87, LMC07, LK14, Lep98, LC88, CML07, Li15, LCLX19, LCM94, Lia95, LLI90, LLL11, LLLC17, LRY78, LR80Y, LR93, Lit91, Lit80, Lit78, Lit97b, Lit80, Lit81, Lit85, LZL88, LS89, LR18W9, LRL91, LTX16a, LTX2b, LC12, LZ16, LWZ+18, Lon83, LP991, LPP92, LM93c, LH03b, Lyo78a, Lyo83, MLHK17, Mac95, MD97, MWHC96, Man12,
MK11, MNT90, MB03, MBBS12, MV88, MV90, MV91b, MV90, MB90, MSSWP90, Men82, Men12, Mey93, MV01, MV02, Mit73, Mit09, Moh90, Moh93, MNP08, MWC12, Mu84a, Mu81, Mu84b, Mul85, MS88b, NSW08, NRW90, N83, Nyb96, OWZ14, OTHK11, OG94a, OG94b, OOB12, OOB17, OGY94b, Ott91, Ott84, Ott85a.

Hashing

[Ott88b, Ott88a, OT91, OR10, Ouk83, OS83a, OA89, OS83b, PR01, Pag86, PP08, PWY914, Pag18, Pal92, Pan05, PB80, Pap94, PV07, PT12a, PH73, Pea90, Pea91, Per73, Pes96, Pet13, PS93, PQ98, PQ99, PKW09, Pip79, Pit87, PM89, PVC94, PVC97, PV19, PT11b, PRM16, PKSB18, PS12, PACT09, PF85, PADHY93, PW94, Qi83, RT87a, Ram88b, RL89, RF91, RR92, Ram92, RL82, RT83, RSD84, RSD89a, RSD89b, RSD90, RSD92, Ram97, RGNMPM12, RL91, Reg81, Reg82, Reg88, RRS12, RH92, RH95, RW97, Rob86, Rog85, Rog99, RS75, RS77, Ros77, Rou89, RT87b, Ru82, Ru83, Ru85, SDR83a, SNBC98, SnC05, Sag84, SY11, Saa11, SG76a, Sav80, Sav82, Sch79a, SD90b, SD90a, Sch91b, Sch93a].

Hashing

[Sch81, SMZ18, SY91, SR89, SPW90, SB93, SSL+18, SY08, Sho96, SR91, SSS95, SDT75, Spr77, SHR90, SGB90, Sti94a, Stu85, Sun15, SHF+17, SA97, Tam82, Tam83, TK88, TC93, TL95, TZW91, TY015, THY+18, TI12, TW07, TK85, TZ12, TTY93, TZ94b, TV83, Tor84, TK07, Tro92, Tro95, Ts96, US09, UI70, UI72, VV84, VV85, VP96, VP98, Vit80b, Vit80c, Vit81b, Vit81a, Vit82b, Vit83, VC97, WG00, WPKK94, War86, WFHC92, Wee07, Wee12, WPS+12, WSZ+16, WFT12, WP01, WDP+12, WS03, Wi78, Wi80, Wi79, Wi71, Win90b, Win90a, Woe01, WR97, WZ93, Wu84, YDT83, YW90, Yao80, Yao85a, Yao85b, Yao91, Yas07, YB95, YTMJ06, YBQZ18, YGC+12, YD86a, ZPS90, ZPS93a, ZH18, ZHW19, dW83b, vdSdW74a, vMG12, AT18, ASM17, ASA+09, ADM+97, AI08, AI89].

Hashing

[AT90, BGG93, BL89, BGH+13, BBPV11, BD82, BGG94, BDVP14, BMQ98, Boo72, Bosxx, BT89, BCL10, Bur05, Bur82, BMLLC+19, CP91b, CP95a, CHKO12, CS93a, CW93, CJM919, CP95b, CV93a, CCL91, CHL07, CLI+14, CWZ10, CKKK09, CZL12, CR89, CP13, CO82a, CH97, Cze98, Dan94, DM03, DKM+88, DKM+91, DHW08, DS09b, D+92, DLH13, DDSW90b, DK12, DLN+18, Duc08, DM11, E17, EBD91, Fal86, FWG18, FSV09, FFS+13, FNS98, GLHL11, G92, GL90, GW94, GM77, GLJ11, GS98, GRF11, GPy94a, GZ99, Gui76c, Gup89, HB98b, HDM11, HKL08, HR93, HM93, HMW94, HL05, HC02, Hua85, HF+15, HFF+17, Hui90, IMR97, Ind13, IIL17, Jan05, JWM+18, JWBK11, Kan90, KYS95, KLL+97, KSB99, KU86, KL96, KR88, KK96, Kim99, KO7, KO80, KM10, KR19, Kost14].

Hashing

[KD92, KOU93, Kra94, KR06, KUM96, Kut06, KSC11, KSC12, LG96, Lar84, LNS11, LH06, LK16, Lev89, LK11, LOZ12, Lin96, LS96, LNS93, LYS+13, LLC14, LLA15, LWX98, LM88, LH04, LMPW15, LJW+17, ML15, MIGA18, MI94, MNT93, MLP07, MLP09, MV91a, MC90, MM10, MP16, Men17, Mil95, Mil98, MS12, MKSA98, Mol90a, Mol90b, MSV97, NL04, NMX19, OP03, OV94a, OS88, Pag81, PR04, PWY910, PJM88, PB90, PCM15, PT11a, PT13, PY88, Pou87, Pro94, QM98, QZD+18, Ram89a, RT89, RB91, RFB97, RZ97, RLH90, RAD15, Sab94, Sar11, SP12, SS99a, SS90a, Sch93b, ST93, SH92, SL88, SS16, Si02b, Sna87, Sta99, Sti91, Sti94b, Sun91, S13+13, TLZL16, T13, Tho00, Tho17, TK17, TME19, Tsa94, TLL07, TD93].
ZWT+14, ZPS93b, ZZLZ18, ZHC+13, Zob70a, Zob70b, ZHB06, BJJM94a, JHM02, KS88c, SV94a, SKC07, SA17, CV85.

Hashing-Based [LMC07]. HashMap [Oak98]. Hashnet [Fah80]. Hashtabellen [Kue82a, Kue82b]. Hashtable [Oak98, Bee83]. Hashstag [RTK12, KJG08]. Hashverfahrens [Dos78a]. Haskell [MRL+19]. HAVAL [WFLY04, ZPS90, ZPS93a, ZPS93b].

HAVA-128 [WFLY04]. Hawaii [Deb03, SC77]. HCC [Har97]. HDDs [HG+12]. Head [ACM91c]. Heap [FW76, FW77]. Heaps [CCA+12]. Heavy [TP15, Ind13]. Hebrew [Sch82a]. Hecke [CT96]. Hedge [Sho00b]. Height [Dev99, Reg81, THS97]. Heights [Jen76].

Hiding [MMMT09, MV01, Wec07, HR07]. Hierarchical [FWG18, PACT09, TK88, VLS87, GP08, VL97]. Hierarchy [Wil71, YL04]. High [ACM04, AS09, AEP18, AI06, ASB16, CT96, DGG+86, Dar92, DS97, Flo87, GM99, HSM95, IEE94e, KMM+06, KMV10, LCK11, LPT12, MCK99a, MCK99b, OT91, PSSR90, RSSD90, RW07, Rön07, She91, TK88, Tho13, TP15, WZS10, XLZC14, YNM89, YWH09, ZHW19, AI08, BCCL10, EVF06, HKL07, Inc81, MV91a, MAK+12, MA15, RFB97, SLC+07, Shi17, SIE09, SWQ+14, SXL08, TYSK10, TLLL07, XMLC11].

High-bandwidth [AS09].

High-Dimensional [AEP18, TYSK10].

High-error [Rön07]. High-Performance [DS97, Flo87, IEE94e, She91, ZWH19, Shi17].

High-Speed [KMM+06, KMV10, MCK99a, YNM89, MCK99b, RW07, EVF06, SLC+07, SXL08, TLLL07, XMLC11].

High-Throughput [LPT12, XLZC14, MAK+12]. HighEnd [LVD+11]. Higher [HKKK13, DH84].

higher-order [DH84]. Highly [BCS09, KHW91a, Mat93, PAK93, KHW91b, ZLL+07]. Highly-Associative [KHW91a, KHW91b]. Highly-Efficient [BCS09]. Hill [IEE88a]. Hilton [ACM91c, PD91, ICD88, ICD90, IEE90, IEE01].

Histogram [Gra93b, MNY81, PCK95, UHT97]. Histogram-Driven [Gra93b]. History [BG07, MNS07, NSW08, Reg82, NT01].

History-Independent [BG07, MSN07, NSW08]. Hitter [TP15]. hitters [Ind13]. HMAC [FIP02a, BCK96b, CY06, DRS12, MAK+12, RR08, Sta99].

Hmap [YTHC97]. Hoc [DPH08, JHL08, Cha12]. Hole [JHL08].

Holographic [BGF88]. Homepage [GCMG15]. Homomorphic [CFN18, KKN12, CZL12, MT16]. Honolulu [Deb03].

Hood [CLM85, Cel86, CLM86, DMV04, PV19].

Hop [RHM09, MA15]. Hopscotch [HST08].

hostile [LC95]. hot [KLL+97]. Hotel [ACM75b, ACM82, ACM83a, ACM83b, ACM85a, ACM87, ICD86, ICD87, IEE88a, IEE88d, IEE91, Kna89, Nav85].

Hough [HB99c, HB94]. House [IEE80a]. Houston [IEE76, IEE94a].

Houthalen [QV89].

Hover [EH12]. HTM [CCW+17]. HTML [UCFL08]. HTTP [DB12]. Human [Bor81, TCW+13]. humanities [Bai81].

Hungary [Rue93]. Hwang [KCL03]. Hyatt [Kna89].

Hybrid [BM89, BM90a, CBB05, Gra93a, Gra93b, Gra94a, KNT89, HGH+12, LLL11, Sch79a, TYZO15, PCV94, TT81].

Hybrid-Hash [BM89, BM90a]. Hypercube [OL91, OL92], hyperelliptic [FFS+13]. hypergraph [KKP+17]. Hypergraphs
I-cloth [TWL+18], I/O [MMC01, Vit85], IB [CZLC14], IBE [Zha07], IBM [Dit76, Dit76, MS02], IBM/360 [Dit76, Dit76]. ICALP [AGK+10, ADG+08, AMSM+09, ACJT07, CIM+05], ICICI [AFK90, KL09]. ICIT [AA86], Iceland [AGK+10, ADG+08], ICCX [IEE11a]. Icon [GG86b, GT93], iconic [WC94]. ID [ZJ09], ID-Based [ZJ09]. Idea [Gra94b, HL03, WPS+12], Ideal [Lia95]. Identification [MV01, ST66, CJP12, CJP15, GS94, IG94, LGW11, WWG+18]. Identifier [BSH12, Sev74]. Identifiers [DB12, Wil59]. Identifying [ASWD18]. Identity [CZLC12a, CZLC12b, CZLC14, KM92, LYX+19]. Identity-Based [CZLC12a, CZLC12b, CZLC14, LYX+19]. IEC [ISO04]. IEEE [ACM04, Co93, IEE89a, IEE89b, IEE92a, IEE92b, IEE97, IEE06, IEE07, IEE10, IEE11b, IEE13, MS05, IEE84, Yan10]. IEEE/ACM [ACM04]. IFIP [Gil77, Ros74]. Igniting [ACM03b]. II [BS91c, Sch93a, Van92, Vau92, Vau93]. III [Nol82b, OK80, Sed83a]. Illinois [ACM88b, ABM06, BL88, Lm93]. im [DS84a, Wal74]. Image [Ano95c, BFMP11, BS04a, BI12, DCM18, DHT+19, DR11, GPA97, GH07, HW08, LK10, LQZH14, Li15, LOON01, LC12, LYJ+13, MV02, OSR10, RGNNPM12, SB97, TWZW11, THY+18, US09, WP10, WDP+12, ZWH17, HC11, LMLC14, Mit12, SB95, TCW+13, TLZL16]. image-keyword [LMLC14]. Images [FLF11, MNY81, PKW09, RT81, Ssa01, WMB99, GG92, LMLC14]. Imaging [FHMU85]. Imai [PGV90a, PGV90a, PGV93b]. imbalance [WZ12]. immutable [SV15b]. Impact [GD87]. imperfect [NMS+08]. Implement [CL83]. Implementation [BCS99, BS04b, BGDW95, Dat88, DF89, DKO+84b, DKO+84c, DKO+84d, Dee82, Dev93, Dit76, DT75, EE86, EjKMP80, FW09, GG86b, GT93, Gro86, Har71a, Hek89, ISK+93, JD12, Kahl92, KMM+06, KU88, KM92, KR86b, KR86a, KKRJ07, KRJ09b, KTN92, L84, Lit79b, LPP92, NM02a, PRM16, SDR83a, She91, SK05, Ste82, TGL+97, TNKT92, VL87, BDP+12, BS94e, BW92, DS09a, DW08, DM11, EBD91, GN80, GJM02, Inc81, IL17, KU86, KKL+09, McD77, MZJ98, MFES04, Tai79, Dit76]. Implementations [GLG+02, Vit82b, WPPK94, WJZS10, DMP09, RL07]. Implemented [CMW83, ML+19]. Implementierungstechniken [Nec79]. Implementing [Bab79, Blu95, BjM14, GHJ+93, Gra86, Jun87, KHW91a, KHW91b, Lin96, Llo81, LB07, VL97]. Implications [Chr84, CHS+18, RAD15]. Implicit [OS88, Kor08]. Impossibility [BCS99, HM12]. Improve [LBJ02, BM01]. Improved [Ari94, BvT13, BM68, Bi08, Brc91, CN08, DDS14, DL17, FB87, HSM95, HW88, JNPP14, KM86, Kut10, LW04, LJF19, KKM10, LH04, Man83, Mic02, Mul72, NSS+06, PS12, Rad92, RP95, SS00, SD95, TK17, UIY10, WM19, GM77, Mau68, War14, ZW05]. Improvement [CH94, Fel87, RGNNPM12]. Improvements [CTZD11, Lev00, Nam86]. Improving [ATAKS07, AVZ11, BDS88, CHY93, CHY97, CAGM07, Cla77, DB12, GCMG15, JHL+15, MS12, RT87b, Sch82a, TCP+17, YWH09, ZZG05]. Impure [Dec82]. In-Bucket [TYZO15]. In-Memory [CCW+17, MZL+19, ZWH01]. In-Network [WBWV16]. Inaccessible [HHR+10]. Inadequacy [GY91]. Includes [FW76, FW77]. Including [DGV93, KL95]. Including [LK07]. Incompatibilities [KCF84]. Incorporating [CBA94].
Increased [PRM16, MSP12]. Increment [Ban77, Luc72, RKK14]. Incremental [BGG94, CT12, FRB11, GSC01, ISHY88, PW06, TWL+18, UIY10]. Incrementality [BM97]. incrementalization [SB07]. Indeed [Yas07]. Indentify [KCF84]. Independence [KW12, PPR09, PT16, Tho13, DT14, PPR07, PT10a]. Independent [BG07, CCJ91, DGD02, DTS75, Die96, Ind01, MNS07, NSW08, TZ12, FPS17, Han17, NT01]. Independently [AU79]. Index [BM89, BM90a, Buc82, Bur83b, Bur83c, DSS84a, GY94b, LC86a, Lom83, MZL+919, OL89, Otoo85b, Qui83, TY91, Wil79, ZHW19, Bur83a, Fr81, GY94a, HM03, LCH+14, McD77, SWQ+14]. Index-Based [OL89, TY91]. indexable [RRS07]. Indexed [Chu91, Chu92, KHT89, Mul72, Tay89, WM93, TK99].-indexed-hash [WM93]. Indexed-Sequential [Mul72]. Indexes [Les88, Omi89b, Pip94, FVS12]. Indexing [CJ86, Dumn56, KGG12, LI15, Llo81, Per73, SE89, Tor84, Wil79, WMB99, YWH09, CXLK19, CWC10, Fly92, LG96, MIGA18, MMG10]. Index [RR99]. Indiana [Van10]. Indianapolis [Van10]. Indicator [YD84]. indicators [Er86]. Indices [LR99, Val87]. Indifferentiability [CN08, LLG12, MPST16, BGKZ12, BDPV08, GLC08]. Indifferentiable [BGH12, CLNY06, FFS+13, FT12, BGH+13]. Indirect [Bal96, DGGG016, Joh61]. Indirectly [Ols69]. Individual [Jan05, Jan08, Vio05]. Induced [de 69]. industrial [PGV93c, ARA94]. Industry [ANS05]. Infeasibility [FS08]. Infinite [GHK91a, GHK91b, LIJ92, Bra09]. Influence [RTK12]. INFOCOM [IEE01, IEE92a]. Inform [Pro94]. informal [CK89]. Informatics [CHK06]. Informatik [Nol82a, Nol82b, OK80]. Information [PDJ91, BV89, BIP92, Can97, Cha84a, Dan13, DDSW90a, Ell82, FC87b, FH69, FCDH90, FCDH91, GY94b, ISO97, ISO04, KLT92, KM86, KM88a, LC06, LXL+19, MV01, MNS07, PGV93f, SKC07, SPSP16, SC77, Sta06b, Sun15, Vid90, WBWV16, XHZ+19, Yan10, YR87, YBQZ17, AFR90, DDSW90b, GY94a, KSC11, KSC12, SG72, SXLL08, FNY92, FBY92, Gill77, Ros74]. Information-Based [SKC07, KSC11, KSC12]. Information-Centric [SPSP16, WBWV16]. Information-Theoretic [Sun15, SXLL08]. Informix [Ger95]. Infrastructure [MJ14]. Infrastructure-free [MJ14]. ingestion [CXLK19]. Ingres [Sne92]. inheritance [DMP09]. Inhibiting [AS+16]. Initial [vdP72]. Initiative [MO92a]. Injection [NCF11]. Inner [PWY+13]. Innesbook [IEE88b]. Innovation [ACM03b]. Innovative [OG94b]. Input [AB12, Sab94]. Insecurity [DOP05]. insensitive [CyWM91]. inserting [Gup89]. Insertion [FPS13, PS12, CV83a, Jan05, Kon93, PY88]. inside-out [AP11]. Insight [CQW08, IEE02]. Installation [LAKW07]. instance [FS08]. instantaneously [DV07]. Instantiated [RR08]. Institute [Ano93d]. Instruction [BOS11, SS83]. instrumentation [Ano83]. Integer [Ano86, Die96, MV90, MV91b, Woe01, Woe05]. integers [BCS89, Han17]. Integral [LJF19]. Integrated [DGKK12, PG17, NM02b]. integrating [ATAKS07]. Integrity [CLS12, Sch01b, Sch01a, Wil96]. Intel [JHL+15]. Intellectual [DGKK12, IEE88a]. Intelligence [Kak93, ARA94, LLC99]. Intelligent [IE11a, LJW+17]. intensify [HL12]. intensive [Shi17]. interim [Kos14]. inter-system [Kos14]. Interacting [LLW10]. Interaction [ZLY+12, Bor81]. Interactive [CBK83, Cer85, CBK85, Dam93, Dam94, Dos78b, GK94, GK95, HR14, KG95, MS09, OY94a, OY94b, Rad83, Wee07, RWSN07,
Interconnection [Fah80]. Interest [ACM82, DT87, OSL10]. interesting [VNC07]. Interface [Vit85, WGM88, Bor81]. Interfaces [DCW91]. interleaved [RH90]. Internal [GL82, GL88, ITP14, LC88, Wil59]. International [ACM81, IJW89, PDI91, ACM94b, ACM11, ACM12, AGK+10, ABB93, ABM06, AKF90, ARA94, VLD82, Ano89, Ano93c, AW89, AAC+01, A+90, AINOW11, AOV+99, AA86, Bais1, BD88, BDS88, BV89, BIP92, Bel00, BBD09b, BJZ94, BRW93, BL88, BF89, Br92, BW92, BD08, BJ93, CGO86, CLM89, Cop95b, DG96, DSS84, DZ07, DJRZ06, DJNR09, FNY92, FMA02, Fra04, Fre90, GM90, Go92, GSW98, HB93, HL91, IEE80a, IEE84, IE88b, ICD87, IE88a, IE88ed, ICD88, IE88eb, ICD90, ICD91, ICD93, IEE94a, IEE95, IER93, JB94, JY14, Ker75, Kua89, KLT92, Ku93, LC06, Lak96, Las87, LCK11, Lev95, Lie81, LS89, LT80, LSC91, Lom93, MK89, MS90, Mo92b, Nav85, Ng79, Pat90, PSM95, PV85, PK89, QG95, RK89, RNT90, ST83a, ST83b, SP90, Sho05, SW94b, SW94a, SC77]. International [St93, Sto92, Vau96, Vid90, WPY90, IWSS91, Yan10, Yoa78, Yt96, YR87, Yn92, Yn92, Yun02, vL94, vDHvH12, ADG+08, AMSM+09, ACJ9707, Bir07, CIM+05, Cop95a, Deb03, Go96, HKN07, HF13, Wie99, ICD86, IEE11a, Sch82a]. Internet [An95d, ATAKS07, HLC10, MCF17, McNo3, She06, SXL08, ZNPM16]. Internet-Draft [MCF17]. Internet-scale [ZNPM16]. Interpolation [Buc82, Bur83a, Bur83b, Bur83c, Wu84, FWG18]. Interpolation-Based [Buc82, Bur83b, Bur83c, Bur83a]. interpretation [Fly92, GrR08]. Interpreter [CA94, Gai82]. interprocessor [KK96]. Interrogating [HLC10]. Interrogating-Call [HLC10]. Intersection [PSZ18]. Interval [GY91, Lip02, BL89]. Intractable [IT93, IH95]. Introduction [Coh94, DK02, DK15, Fe150, Fox91, Har85, Hua82, RW97, TS76, TS84]. Invariance [TV84]. Invariant [SvE84]. Inversion [DK07]. inversions [Pat95]. Inverted [Les88, HC02, McD77]. IP [BLC12, BM01, HDMC09, IGA05, JL14, MPL09, RW07, SXL08]. IPSec [KMM+06]. IPv4 [PT12b]. IPv6 [PT12b]. Ireland [ABB93, IEE10]. Irreversible [ANS97]. ISA [HL91]. ISACA [ADJ91]. island [Rei88, IE07]. ISO/IEC [SO04]. Isolated [MM83]. Israel [Sch82a, BSD88]. Israeli [Coh94]. ISSAC [ACM94b, Lk96, Lev95, vDHvH12]. Issue [LG78]. Issues [MP90, LMS89, LG78, Yu92]. Italian [FFPV84]. Italy [AAC+01, AA86, ST83a, ST83b, Ano94, De95, IEE88d, IEE92a]. Item [WYD+18]. items [Bay73b, CH09]. Itemsets [BMLLC+19]. Iterated [Jon04, KKV12, HLM93, HXMW94, KHK10]. iterations [OS10]. Iterative [MV02, SXL16]. IV [Far93, Sil02a]. IWDM [BF89]. J [Sar80]. January [ACM91d, ACM91a, ACM91a, ACM05, ACM08a, Kar98, Mat09, SP90, Shm00, USE91]. Japan [IJW89, A+90, AINOW11, CGO86, Got83, IE88b, IER93, Mo92b, IE88ed, ICD90, LT85]. Java [Sun02, CHL07, LB02, NMI0, OKX+09, SB07, SSS05, Tym96]. JEqualityGen [GRF11]. JERIM [MJ08]. JERIM-320 [MJ08]. Jersey [Fre90, IE84]. Jersey/sponsored [IE84]. Jerusalem [BDS88, Sch82a]. Johnson [SG16]. Johnson-type [SG16]. Join [Ad88, AT91, BM89, BM90a, CS83a, CHY97, DG85a, DG85b, FP90b, Gra93a, Gra93b, Gra94a, Gra94b, Gra99, HR96,
Joint [NP91]. Joins [CLYY92, CLYY95, DG93, DG94, DNSS92, GBC98, Gra86, HCY94, HCY97, LR99, LR96b, NNA12, PCL93a, SC90b, SC90a, SC90c, WDYT91, YCRY93, AKN12, BAT013, BLP14, HLH13, JHL15, LCRY93, ML95, PCL93b].

June [ACM84a, ACM03a, ACM07, ACM11, ABM06, BDD88, BV99, BIP92, BP99, BL88, BF89, FMA02, Fre90, Van10, HF13, IEE05, LL08, LS89, MS89, NG97, Re88, SC82a, St092, Vau06, V194]. Just [Yas07]. JVM [SV15b]. k-ary [Gui76c]. Karlsruhe [HM08]. Karp [GBY90]. Karp-Rabin [GBY90]. Katapayadi [Ram97]. Katholieke [BBD09b]. KD [KHT89]. KD-Tree [KHT89]. KDL [PSR90]. KDL-RAM [PSR90]. Keccak [BDPV09, BDPV12, DDS14, LLA15, MS13, BDP12]. KEM [CZLC14]. Kent [Oxb86]. Kerkyra [Re88]. Kernel [CSSP15, Lev00, ZLY12]. Key [ANS97, ANS05, iA91, BD82, B079, Boo74, CS83b, CC87, CS87, CC91, CLC92, CTZD11, CY06, CG79, CS02, Dam87, DL12, Dos78a, EAA16, GG86a, Gni79, GG80, GYW19, HB89b, HB89a, HM12, IG77, Joh97, KM09, KV09, KR86b, KR86a, LLY99, LAKW07, LCML94, Lin63, LYD71, Lust73, MZL19, Men12, MW95, NTY12, PRRL15, RSSD89b, RSSD92, Rob86, RS80, SY11, SR63, SS05, Sta99, YLSZ19, Yao95, Yub82, ZQSH12, And88, BSNP96b, CL91, GL06, GBL94, LW04, LND08, LY72, ML94, Men17, NM02b, Oka88, SD5, Sar11, Shi17, ZCZ19].

Key-Exposure [CTZD11]. Key-Recovery [CY06]. Key-Sequential [HB89a, HB89b]. Key-to-Address [LYD71, Lum73, LR72]. Key-Value [PRRL15, Shi17]. Keyed [An095a, BSNP96a, KKRJ07, Gon95, Li95, SV06, FIP02a]. Keyed-Hash [KKRJ07, FIP02a]. Keying [BCK96a]. keypoints [MMG10]. Keys [Gon80, Gur73, JC88a, Joh61, KR01, LMJC07, LL87, Oto85a, PB80, Riv76, Riv78, SD78, She78, Yao85, CFN18, FP82, GM90, Wan05]. Keyword [WWZ09, LMLC14, ZLC18]. Keywords [Coh99]. Khafr [BS91c].

Kinetic [Rey14]. Kingdom [BJ94, ACM94b]. KLIPA [GT63]. Knapsack [CP91c, JG95, Pat94].

L [Sar80]. Label [LQH18]. labeling [TCW13, YSL05]. Lam [Wag00].
LaMansion [Nav85]. lamp [McN03].
Landau [SV06]. Landmark [NNA12].
Landmark-Join [NNA12]. Landsat [MNY81].
Language [Cer81, CKB85, CKB83a, CF92, Hug85, KV91, MV88, VV86, MSV87].

LCFR [Cer85]. LCFS [PVM97]. Leakage [NTY12, ZZM17]. Leakage-Resilience [NTY12]. Leakage-Resilient [ZZM17].
Lean [SV15b]. Learn [McC79].

Line [AS82, Bry84, FFGOG07, HO72, IABV15, Leb87, SS83, Tsa96, BBKN12, HHL10, KRRH84, RW73, Tsa94].
Line-Oriented [Bry84]. Line-Rate [ARH18]. Lightweight [AHMNP12, AHMNP13, BDM+12, BKL+11, HKY12].

Large [ABB93, VLD82, AW89, AAC+01, AOY+99, BD88, BH85, BCH87, BJZ94, BI12, CKB85, CML+13, CGO86, Chn90, Coh98, DSS84, DS09c, Dos78a, DTM91, FM91, Feo87, FHCD92a, FHUM85, GGY+19, GLL17, Gra92, Gra93c, Gri74, GSW98, HB89a, HB92, Hii78a, Hii78b, Ker75, KCR11, KRRH84, KK85, Kos14, LM95, Li15, LT80, LSC91, LY72, MSK96, Shi17, TBC+05, Yao78, YM89, Zha91]. Large-Grained [PAKR93].
Large-Scale [GGY+19, GLL17, Li15, MEK+14, SHF+17, YGC+12, CML+13, Kos14, SXLL08, FES09, Sh17, Zha91].

Large-Scale [GGY+19, GLL17, Li15, MEK+14, SHF+17, YGC+12, CML+13, Kos14, SXLL08, FES09, Sh17, Zha91].

Lazy [AH89, BJMM94b, BJMM94a, CF92, Hug85, KV91, MV88, VV86, MSV87].
[IABV15]. line/Off [HHL10]. Linear [Ald88, ADM+99, ATT98, Ano95a, AD11, BYSP98, Ban77, BK70, BGS96, BW98, CFP19, Cle84, CL09a, CM93, Dae95, Ell85a, Ell87, FPV98, HB89a, HB92, HH85, HYH93, HTY90, HSW88, Jak85, JV16, Kno88, Knu19, Kuu98, Kor08, KD92, Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Lar85b, Lar85c, Lar88b, Larxx, KKMS10, Lit79b, Lit80, Litxxa, Luc72, Lyo78a, MSSWP90, MY80, Moh90, Moh93, Mul81, Omi88, OGAB14, OT91, OSSa, OA89, OS83b, PPR07, PPR09, PT16, Pet13, PK87, PV97, RSD8, RSD85, RSSD89a, RS92, RLH91, Reg82, Rob86, RT87b, SDR83a, SPW90, TW91, TZ12, Toy93, VP96, VP98, WVT90, YD86a, Ald87, AD11, BJ07, Bon95, HB89b, HCF95, Jan05, LNS93, MBC00, MCM01, ML94, Omi89a, OP03, OSS8, PPT10a, RLH90, Sar13, SS16]. linear [TMB02, Vio05, ZL12]. Linear-density [KD92]. Linear-Time [WVT90, Kor08]. Linearizability [SDW14]. Linearization [BKMP09]. Linearizing [Oto88a]. Lingo [McC79]. Linguistics [Cer83]. link [BR75]. Linked [Fel87, Pal92, ZLLD18, ZKR08]. Linking [Bob75]. Linkless [CJC+09]. links [EVF06]. Linux [USE0a, Lev00, LACJ18]. Lisbon [CIM+05]. Lisp [LFP82, Hek89, Nam86, FH96, GST+82]. Lisp-Based [FH96]. List [McI82, Ter87]. Lists [BH86, HK87, LLLC89, Lyo79, MY79, Knu94, ST85, SS06]. literate [Sab94]. little [DMP06, PES*12]. Live [MZD+18]. Ljubljana [EF12]. LLE [TLZL16]. Load [HC13, IK92, KJC11, LRLW89, LRLH91, Omi91, RRS12, RK91, Top92, TP95, WL07, KL08, SX08, TLLL18, WZ12, WT90, XCCK09]. load-balanced [TL11L8]. Load-balancing [WL07, XCCK09]. Loading [vdP72]. Local [MD97, MNY81, MJT+02, PKW09, RT81, SY08, BGG12]. Locality [BT12b, CSSP15, CKPT19, Chi91, Chi93, Chi94, IMR97, KGB18, Kaw15, MZL+19, MNP08, OWZ14, OTKH11, Pag18, AT18, HAK+16, HFZ+15, HFF+17, LNS11, LWXS18, LJW+17, QZD+18, SP12, STS+13, SA17]. Locality-Aware [MZL+19]. Locality-Preserving [Chi91, Chi93, Chi94, IMR97]. Locality-Sensitive [BT12b, OWZ14, Pag18, HFF+15, HFF+17, QZD+18, STS+13, SA17]. Localizing [DD11, DJSN09]. Locally [KS88a, Oto88b]. Location [WL12]. Location-Based [WVT90]. Lock [AR16, NM10, ZLLD18, NK16, Pro18, ZL12, SS06]. Lock-Free [AR16, ZLLD18, NK16, Pro18, ZL12, SS06]. locks [ALS10]. Loftus [Hel94]. log [FHC89]. logarithm [Gib91]. Logarithms [vW94]. Logging [Moh90, Moh93]. Logic [AR16, BM87, BAN98, Cra85, IEE84, Las87, dKC94, BW92, DLM07, YIAS89]. Logical [CPP08]. Logs [SK99]. LOKI [BS91c, Knu92]. London [Ano93a]. Long [Mit12]. Longest [DKT06, Gon81, PT12b]. Look [CP91b, Sna87, AY14, CP91a]. look-up [AY14]. Lookup [CN07, HDMC09, Jai89, Jai92a, Jai92b, Jaixx, Pri71, She78, SWTX18, Tro06, YBQZ18, BLC12, HXLX13, Mad80, MSK96, MPL07, MPL09, MA15, PT12b, WTZ+13, WTN07, ZGG05]. Lookups [Pan05, BM01, IGA05]. Loss [ATS19, FC87b]. Lossy [PW08, Wee12]. Louisiana [ACM91e, ACM97a]. Louisville [Rie89]. Low [GI12, HMNB07, HGR07, Les88, LWY+18, PSSC17, TBC+05, ABO+17, BOY11, CZ14, HM03, MA15]. Low-area [ABO+17, BOY11]. Low-Cost [GI12, HMNB07]. Low-overhead [HGR07]. Lower [DKM+94, GadHW96, Gon77, MNP08, OWZ14, Yao83, DKM+88, DKM+91, Sun91, Sun93]. lowering [SSU+13]. LR [HC87]. LSH [AT18, AÖD19, CKM14, CK15, LCH+14, LJW+17, NZPM16]. LSH-Preserving [CK15]. Lucifer [BS91c]. Luxembourg [Bir07]. LXCloud [LACJ18]. LXCloud-
Lympocytic [SAsS01]. Lyra2 [ASBdS16].

M [Sar80]. MA [ACM84a, Ker75, Kil05, CP91b, ACM86a, CP91a]. MAC [HLL18a, PV95, P-O95, Pre97a, SRRL98, SRY99, Eun90]. Machine
[And88, CCJ91, DGG+86, DGS+90b, DGS+90a, GD87, GS+82, Hs83, KLadH93, KLM96, KTMo83a, KTMo83b, KTMo83c, Tan83, EBD91, Vak85, BM90b, KK96, RH92].

Machine-Independent [CCJ91].

Machinery [DT87]. Machines [BF89, adH93, Mey93, SD89b, Sch90b, SD90b, SD90a, TR02, CHS+18]. MACs [DL17, GO07, PV95, PvO95, Pre97b, Saa12]. Made [Cicc80b, PV07]. Madison [FMA02]. Magnetic [Wri83]. MAHT [CRdPHF12]. Main [AP93, CE95, CRdPHF12, DKO+84b, DKO+84c, DKO84a, KR91, KL87, KK85, Kum89a, LC86a, SPW90, Sha86, TP95, ZHZ+19, AKN12, AP92, BATÔ13, DKO+84d, JHL+15, Pro94].

Main-Memory [KR91, BATÔ13].

Maintaining [Woe06b]. Maintenance [Buc82, Bur83b, Bur83c, Oto85b, Bur83a]. Making [BR97, Cob94, Hel91, LT09, CCA+12]. Malicious [AAE+14]. malleable [BCFW09]. Malo [GQ95, QG95]. Malware [ASWD18]. Management [ACM75b, ACM81, ACM82, ABM06, BL88, B93, BC90, CLM89, DT87, EE86, Flo77, FMA02, GGY+19, GMJ90, Gho77, Gho86, ISK+93, KM09, LC86a, Lie81, McC79, MKF+16, Nav5, SW94b, SC77, Sto92, ZZ83, QZSH12, DAC+13, FNY92, FR94, HF13, SW94a, WM93]. Manager [Pro89].

Marching [ZRL+08].

Marina [ACM82]. markerless [JBWK11]. Markets [Mir17]. Markov [HL94]. Marseille [Ng79]. marshalling [LPSW03]. Maryland [ACM90, FNY92, JÁJ90]. Marz [Lut88]. Mass [Co93]. Massachusetts [BV89, IEE05, MS05]. Massive [SMZ18, HAKM15, LR14, Vito1, XCCK09]. Massively [AKN12, JÁJ90, MK93, RH92, YLB90, Yen91, CZL12, Fis87]. Massively-Parallel [MK93]. Master [LYX+19]. Match [AU79, Bur75b, Bur76b, Bur76c, Bur78, Bur79, CLD82, Chun90, Jag91, Mor85a, RLT83, RSD85, RSD90, RSD92, YD86a, AT18, CC88a, Fai88, Hua85, RSD89a, RSD92b, Rivi4a, SDR38b, YD86b]. Matches [Dav73, PRK98]. Matching [iA94, BH85, CFP19, CCH90, CG79, Gri79, Han90, HCKW90, HW08, KSSF86, KR81, KPS92, LLL17, RH92, RH95, TK07, ASM17, CL895, CW10, DKT06, DC94, GBY90, HC14, HW88, ISHY88, KP92, KS89a, Kim99, MHT+13, PT12b, Sch91a, TKT+89, TLLL07, TLLL09, XMLC11].

Mathematics [FH96, GK81, GK82, Knu74]. mathématique [LG78]. Matrices [ASW07]. Matrix [AN96, Atk75, BH90, vSDW74b, vSDW74a, BT90, CFYT94, JCC00].
Matsumoto [PGV93a, PGV90a, PGV93b].
Max-Poly [DSS17]. maxima [MI84].
Maximizing [KHK15]. Maximum [AHS92, GB10, KV91, MV88, Pet13, CKKK09].
Maximums [MNY81]. maxima [MI84].
Maximizing [KHK15]. Maximum [AHS92, GB10, KV91, MV88, Pet13, CKKK09].
Maximums [MNY81]. maxmin [AII89].
May [ACM75c, ACM75a, ACM76, ACM77b, ACM81, ACM84b, ACM86b, ACM88b, ACM89c, ACM90, ACM91e, ACM94c, ACM96, ACM97b, ACM98, ACM99, ACM02, ACM08b, ACM12, AFR90, ARA94, Bai01, Bor01, BJ93, Dam90a, Dam91, DT87, De 95, FIP93, GMJ90, GQ95, He94, IEE85b, IEE94a, KLT92, Lie81, LT85, Nav85, PGV93c, QG95, Rue93, SW94b, SW94a, Vau06]. McGill [CCC89]. MD [Fis87, IEE02, PvO95]. MD-x [PV95]. MD4 [Ano95a, WFLY04]. MD5 [WFLY04, WZJS10]. MDC [LS15]. MDC-2 [LS15]. MDS [TW07]. MDx [PV95, SRR9L98]. MDx-MAC [PV95]. Me [Lau06]. Mean [Bra84a, Bra85, Bra86]. Means [Bab79].
measure [Bac02]. Measurement [NS16, SL16, LMP*08, RW07, ACM94c]. measurements [KLSV12]. Measures [MY79]. Mechanism [DG02, KAM9a, Cha12, HHL04, JDF09, SF88]. Mechanisms [DF01, Sev74]. Media [LWZ*18, CBB05, ZO13]. media-streaming [CBB05]. Median [HSPZ08, She78]. Medical [FHMU85, GPA97]. Meet [Sas11]. Meet-in-the-Middle [Sas11]. Meeting [ACM84a]. Mega [TKT*89]. Mega-access [TKT*89]. Methods [Du86]. Mehrfachattribut [Stu82]. Mehrfachattribut-zugriffsverfahren [Stu82]. Mehrschluesselzugriff [Fri86]. Membership [BM99, DP08, HKLS12, Pag01]. MemGuard [CZ14]. memo [Hug85]. memo-functions [Hug85]. Mémoires [Lit77b, Lit79a]. Memories [DD15, KHW91a, MNS07, Sha86, vdBGLGL*16, CCHK08, CCA*12, Hui90, KHW91b, Koh80, Lin63, Rh90]. Memory [A93, ASbS16, AGM*11, BL*14, BC90, CRdPHF12, CCW*17, CadHS00, DG93, DG94, DKO*84b, DKO*84c, DKO84a, DHK*15, DadH92, DUM56, EK93, adH93, HNS84, JPO8, JCK*18, KHK15, KUS88, KladH93, KLM96, KR91, KL87, KK85, KUM89, LC86a, LTS90, MZL*19, MLxx, Mey93, Omi91, PSSC17, Pan05, PG65, PS12, PGV90b, RSK17, RL74, SPW90, TR02, TP95, Vit81a, WIL71, Woe06b, WRI83, YBQZ18, ZH18, ZHZ*19, AS09, AKN12, AP92, BAT013, Bor84, CJS19, CZ14, DKO*84d, Don91, GLJ11, HCM11, HKL04, JHL*15, KUS68, KFG15, MBK00, MSSL93, PGV93g, Pro94, Shi17, SG72, SV15a, TKT*89, Vit01, XLC14, YIAS89, ZHW01]. Memory-Contention [DG39, DG94]. Memory-Efficient [YBQZ18, BL*14, SHI17, XLC14]. mer [HC14]. Merge [Gra94b, Gra99, AKN12]. Merge-Join [Gra99]. merging [SST*13]. Merkle [Bak09, CDMP05, GB17, LRY*15, Mir01, MF604]. Merkle-Damgård [Mir01]. Mesh [CRR18]. Mesh-to-Mesh [CRR18]. Message [AYZ11, BCK96a, BCK96b, EPR99, FIP02a, HK12a, KKRJ07, MRW99, NCFK11, RWSN07, Rog95, Rog99, Sho06, TC83, Tsy92a, Tsy92b, WS03, Yas07, GKL12b, Kra95, MS09, Sta99, SV06]. Metabase [KP81]. Metadata [GGY*19, SWTX18]. MetaFlow [SWTX18]. Metagenomic [PKSB18]. Method [AA79b, AA79a, Ari68, Bat75, Bel70, Bel72, Bel81, CS91, CC87, CLC92, CPP08, SLCS12, Cie86a, DOS78a, DT75, FNPS79, HD72, JO80, JAE81, Joh61, KR86b, KR86a, KNT89, KOR90, KF79, KRJ*80, Lam70, LK84, LPT12, LL86, LL87, Mal77, MNS07, MIE03, Moh90, Moh93, Mu72, NKT88, NIS83, PG95, Per73, Ram92, RJK79, RT87b, SD85, Sag84, SG76a, SS62, SR63]
41

MLxx, Omi91, RS92, SD89b, SD89c, SD89a, Sch90b, SD90b, SD90a, TNKT92, ZJM94b, SD90d, ZJM94a, ZJM94c.

Multiprocessors [Bor84, LTS90].

multiqueue [Has72].

Multiset [MSTA17, CP95a].

multisets [B¨ut86, NTW09, RRS07].

multisignature [Oka88].

Multispectral [DCM18].

Multiterm [Bur84, Bur82].

multithreaded [Cro98, MIGA18].

Multithreading [Cro98, MIGA18].

Multiuser [ZG90a, ZG90b].

Multivariate [AM07, OS10].

Multivariates [DY08].

Multiview [LWZ+18, SSL+18].

Munich [BRW93].

M¨unster [Dit76].

MuR [LRY+15].

MuR-DPA [LRY+15].

Mutual [CJP12, GI12, CJP15, FF90, SPLHCB14].

N [Sar80, FHC89, ISO97].

n-bit [ISO97].

Naehrig [FT12].

name [WTZ+13].

Named [WTZ+13].

Names [ABC+16, Dos78a].

Nancy [Jou85].

Nanowire [Rey14].

NASA [Fis87].

Nashville [ACM94c].

National [??69, Fis87, Oxb86, Ano83, IEE94b].

Native [SFA+19].

NATO [Ano95c].

Natural [Cer81, CKB83b, Har85, KCB81, LG78, YMI89, CKB83a].

naturel [LG78].

NC [IEE89].

Near [AI06, AI08, BT98, DD15, LQZH14, GMJ2, SB97, Yuv75].

Near-Associative [DD15].

Near-Duplicate [LQZH14].

Near-Optimal [AI06, AI08].

Near-perfect [BT89, SB97].

Nearest [AEP18, AI06, CL85, KBG18, MW09, PACT09, SY08, AI08, CW93, FH79, GMJ2, HZF+15, JDW+19, LCH+14, SWQ+14, TYSK10].

nearest-neighbor [FH79].

Nearly [HT01, FP82, MV91a].

nearly-constant [MV91a].

Necessary [IH95, Rus92, Rus93, Rus95].

Need [HR04].

Negative [DFD+07, SB95].

Negatives [Pag18].

Neighbor [AEP18, AI06, CL85, KBG18, MW09, PACT015, PACT09, SY08, AI08, CW93, FH79, GMJ2, HZF+15, JDW+19, LCH+14, SWQ+14, TYSK10].

Neighbor-sensitive [PCM15].

Neighborhood [DHL+94, DHL+02, D+92, SG72, ZLY+13].

neighbours [Yuv75].

Neither [CP91a, CP91b].

neophytes [Gre95].

Nested [HBL+10, FK89, MMC01, TMB02].

netflow [LDK12].

Netherlands [dBvL80, CP87, vL94, AW89].

Network [HCJC06, HLC10, JL14, KHK15, MK11, PLKS07, Ven86, WBV16, YBQZ18, AS09, CVR14, DFMR15, Die90, FYS12, KL08, RAL07, TLL10].

Networking [ACM04, LCK11, LZ16, WBV16, WTZ+13].

Networks [DK09, DPH08, Jai89, Jai92a, Jai92b, Jaixx, JLH08, Kak93, Kul84, LDY+16, MJBD11, PLKS07, SY94b, SPS16, SMS91, TGGF10, XHZ+19, ZQSH12, AK99, ADF12, BCCL10, Cha12, GBL94, LG13, LND08, MLP07, PES+12, SV95, SX08, TBC+05, WHS+07, WWG+18, YG10, ZBB+06, BB07, CT10].

neuer [BI87].

Neural [Kak93, WWG+18].

Nevada [IEE10, AFI69].

Next [DCW91, She91, CCA+12, CT10, KKP92].

Next-Generation [She91, CCA+12, KKP92].

Niagara [AFK90].

NiceHash [Nic17].

NIDS [KJC11, TK07].

NIPS [TK07].

Nineteenth [ACM08a, IEE95].

Ninth [ACM77a, ACM77b, ACM97b, Kar98, ICD93, ST83b].

NIPS [TK07].

NIST [Bou12, RRS06].

Nixdorf [afHMR93].

NJ [GMJ90].

NL [DSS17].

NMAC [CY06, RR08].

NMAC/HMAC [RR08].

No [AKS78, CP91a, KR01, CP91b, GBL94, Pro94, Sar80].

node [LG13, TSS97, WL07].

Nodes [BGF88, RAL07].

Non [BCFW09, Boo74, FNS88, KS86, KS87b, LT12, LS96, RWSN07, SD78, SA97, TSY98, ZH18, AY14, Ald87, CCA+12, ERS14, FP82, MLP07, MP16, PBB012, Sar15, SXL16, Lut88].

Non-biased [TSY98].

non-blocking [PBB012].

non-compressing [MP16].

non-cryptographic [AY14, ESR14].
One-access [Lar88b].
One-Hop [RHM09].
One-Pass [LMD+12].
One-Step [Dit76].
One-Time [LAKW07, Moh11, PWY+13, Par18].
One-Way [BCFW09, DGV93, GK08, HHR+10, JLH08, LP15, Roe94, Rui93, Sch91a, Sho00a, Tsu92a, Wei07, Win83, Win84, Yar07, ZY00, ZPS90, ZMI91, ZPS93a, CMR98, Gh91, HR07, HL03, IEE92a, KST99, KM10, LW04, Mer09a, MZI98, NY89, NY89a, Roe95, Sim98, SV18, STS+13, Tsa08, Tsa92b, YL04, ZW05, ZPS93b, HMNB07].

Optimality [Bol79, CLC92, JP08].
optimally [Woe06a].
Optimierungsfragen [Wal74].
Optimistic [GT16].
Optimization [ODB89, AR17, BG92, Kie85, Kin00, MXL+12, Mir17, MWC12, TV83, XNS+13, YNW+09, Yu82, DJRZ06, DJNR09, Loh89, MP90].
Optimized [ARH+18, CPR14, EP99, MZ+18, ZH18].
Optimizer [ML86].
Optimizing [DGGL16, LOY00, MBK00, PF88, SW91, SV15, WL12, TCW+13, WTN07].
Optimum [VC85, vdp72, vdp73, van73, Vit80a].
OR-parallel [Cra85].
Oracle [GHR99, LT12].
Oracles [Can97].
Order [FCDH90, FCDH91, GG86, HB92, HM12, HSW88, Oto88a, Ouk90, Rob86, Tam81, AKY13, BMLC+19, DH84, DLM07, HKK13].
Order-Preserving [GG86, Ouk83].
Ordered [AK74, CS83a, Cha84b, Cha84c, CS86, Cha86b, CC88b, MY79, MN90, SH92, SH94, SS06, JM902].
Ordering [Lyo78a, GM79, Sab94].
Orientability [FP10].
Orientability [HH85, Som99, TO03].
Orientation [BH93].
Oriented [BDPSNG97, Bry84, CS85c, CS85b, Cha85, Cha86a, CO82b, DCW91, ISK+93, JC88a, Kie85, LDM92, PV92, TL95, TR02, Tro95].
Organizations [CF89a, Sch97b, Sch98, Toy86, YD86].
Organized [CLL11].
Organizing [HH85, Som99, TO03].
Optimal [GT16].
Optimal [AU79, A106, Bat80, Bat82, BR94, BBP88, BW98, BMRVo2, CC88a, Cha84a, CHM92a, CHM92b, DA93, FC87b, FP98b, HR93, HRL13, Jag91, KK12, KK18, KP92, Kri84, LL92, LCML94, Lip02, MLP07, Men12, Men17, Mor83a, OWZ14, PP08, RR92, RIV76, Riv78, Tro06, Yao85a, Yao85b, Yao95, YCR93, YSEL09, Al08, GSS01, LCY93].
Optimality [Bol79, CLC92, JP08].
optimally [Woe06a].
Optimierungsfragen [Wal74].
Optimistic [GT16].
Optimization [ODB89, AR17, BG92, Kie85, Kin00, MXL+12, Mir17, MWC12, TV83, XNS+13, YNW+09, Yu82, DJRZ06, DJNR09, Loh89, MP90].
Optimized [ARH+18, CPR14, EP99, MZ+18, ZH18].
Optimizer [ML86].
Optimizing [DGGL16, LOY00, MBK00, PF88, SW91, SV15, WL12, TCW+13, WTN07].
Optimum [VC85, vdp72, vdp73, van73, Vit80a].
OR-parallel [Cra85].
Oracle [GHR99, LT12].
Oracles [Can97].
Order [FCDH90, FCDH91, GG86, HB92, HM12, HSW88, Oto88a, Ouk90, Rob86, Tam81, AKY13, BMLC+19, DH84, DLM07, HKK13].
Order-Preserving [GG86, Ouk83].
Ordered [AK74, CS83a, Cha84b, Cha84c, CS86, Cha86b, CC88b, MY79, MN90, SH92, SH94, SS06, JM902].
Ordering [Lyo78a, GM79, Sab94].
Orientability [FP10].
Orientability [HH85, Som99, TO03].
Orientation [BH93].
Oriented [BDPSNG97, Bry84, CS85c, CS85b, Cha85, Cha86a, CO82b, DCW91, ISK+93, JC88a, Kie85, LDM92, PV92, TL95, TR02, Tro95].
CL86, CW91, CW93, CKW93, DMP09, DM11, Wan05]. Orlando
[ACM91d, ACM91a, Kna89]. Orleans
[ACM91c, ACM97a, IE474]. Orthogonal
[BGS96, LCML94, CCL91, Wil78, Wil85a]. Oscar
[ACM76, ACM97a, ACM97b, ACM97c, ACM97d]. Outbreak
[FNP09]. Orleans
[ACM91e, ACM97a, IE474]. Outfit
[Nic17]. Output
[Mit12, NIS15, ISO97, ISO04, MBBS12, Sed83a, ADG08, AMSM09, KMV10, Wil03]. Oxford
[ACM94b, ACM94c]. Parallel
[Rck15]. Paradox
[RL89, BRW93, BRW94]. P-Paradiseos
[JWM+99, CL91, And88, Ano93d, AEMR09, AR17, AT91, BFG+95, BH91, Bis12, BRW93, Bor84, Bul81, CDh89, CDm90, Cil91, Chi94, CT96, DSN89, DA93, DS97, GST90, GM94, GM98, GI77, Gra94c, GB99, GB99, HNS84, HD97, HCY97, IG77, Jaj90, Ku86, Ku88, KR91, KJC11, KR19, KO90, KT92, LLLC17, LPP91, LPP92, MD97, MLD94, MV90, MV91, Mat93, MK93, Mil85, MK93, NM02a, PAKR93, Pap94, PK98, PRM16, PPS90, PW94, Rag93, Ram89b, RS92, RHE92, RK91, RT90, RK91, SS01, SDD9c, SD91a, SV94a, SPW90, SB93, SK98, SA17, TR02, TK85, TOP92, TP95, TNK90, WPY90, WPK94, WS93, WYT93, Woo89, Wu85, IWS91, YLB90, Yen91, YB95, ZHW17, Z093, dKC94, vW94, vDVL12, ALS10, AKN12, ASA09]. Parallel
[CZL12, CyW91, Cra85, Don91, FH91, FRR19, Fis87, GLHL11, HK95, KP92, MV91a, MP90, Mol90a, OT89, PCK95, RLM87, SK88, SD94d, STS13, TL93, UHT95, War14, adHMR93, KL95]. parallel-DM
[KL95]. parallelism
[ASM17, Ged14, MMS94]. parallelizable
[MP16]. Parallelizing
[IK12b, WDYT91]. Parameter
[CC88b, GB10]. parameterization
[SS98b]. Parameters
[HRBS13, HYLT99]. parazoa
[AMP12]. PARBASE
[AMP12]. PARBASE-90
[RT90]. Paris
[LS89, Coh94]. Parities
[Val15]. Park
[IEE84, IEE89, Jaj90]. PARLE
[BRW93]. Parser
[HC87]. parsing
[Ta17]. Part
[MNS97, Bor81, ISO97, ISO04, MBBS12, Sed83a, ADG+08, AMSM+09, KMV10, Wil03]. Part-Graph
[MBBS12]. Partial
[AU79, Bur75b, Bur76b, Bur76c, Bur78, Bur79, Can97, CLD82, Chun90, CY06, Cor02,
Jag91, Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Larxx, LK10, Mor83a, PF88, RLT83, RSD85, RSSD89a, RSSD89b, RSSD90, RSSD92, TGGF10, YD86a, CC88a, Fal88, Hua85, Riv74a, SDR83b, SNW06, YD86b.

Partial-Domain [Cor02]. Partial-Match
[AU79, Bur75b, Bur76b, Bur78, Bur79, Jag91, RLT83, RSSD90, RSSD92, RSSD89a, RSSD92b, Hua85, Riv74a].

Partial-Relation [PF88]. Partially
[PCL93a, PCL93b, particles [Lia95].

Partition [LKI10, LC96, WZ12].

Partitioned [Ger86a, LR96a, NKT88, SW91, Ger86b, HKL07, MZK12].

Partitioning [Bre91, Ged14, PFM+09, SBS16, WBWV16, ZRT91, vM39, CKKK09, CKKW00, EH17, HAK+16, Kim99, LL13, PCK95, SKD15, UHT95, AP11]. partitions [DKRT15].

Partly [OTKH11]. PASCAL
[CCF04, JXY07, KLSY07, KS12, LMSM09, SM02, LMSM12, WHS+07].

Peer-To-Peer [PFM+09, CCF04, JXY07, KS12, LMSM09, SM02, LMSM12, WHS+07].

Peers [RBM11]. Pennsylvania
[ACM76, LFP82, ACM96, HB93, IEE92b].

Pentium [BGV96, Bosxx]. Peoples
[Ano83]. peptides [MIGA18].

Perceptual
[DCM18, LC12, MV01, MV02, NS16a, RGNMPM12, SB14, THY+18, WDP+12].

Perfect [AN96, AA79b, AA79a, Ari94, BHIMM12, BBD+82, BBD+86, BS94b, BS94a, BW98, Bla00, Bla95, BPZ07, BT90, BT94a, BT94b, BH86, Bur92, BC90, Cer81, CKB83b, CB83, Cer85, CKB85, CKB85, Cer87, Cer88, CLD82, CS83a, Cha84b, Cha84c, CS85c, CS85b, Cha85, CS86, CL86, Cha86b, CC88b, CC91, CW91, CL05, CLC06, CT12, CJC+09, CRS83b, Cie80a, Cie80b, CO82b, CHK85, CHM92a, CHM92b, CM93, CHM97, Dat88, DM94, DH01, Dic07, DJS80, DJS83, Duc08, DM11, FM96, FCHD88, FCHD89, FCHD90, FCHD91, FCH92, FCHD92a, FK84, FH15, Get01, GKH91a, GKH91b, HTO1, JOT9, Jae81, JD12, KH84, KM86, KM88a, KCB81, Kra82, KP94, LR85, LH06, LLLC17, Mai92, MWCH92, MWCH96, Meh82, NRW90, Nil94, OG94a, Og94b, Pag99, PV92, PG95, Pes96].

Perfectly
[CMR98]. Performance
[ACM04, AP93, ANS09, BM89, BM90a,
Bre91, Bur83c, CL85, CS87, CS87, Chr84, CH94, DGG+86, DR92, DadH92, DS97, Don91, ESR114, FC87a, Fla81, Fla83a, Flo87, GD87, Gra88, Gra89, Gra93a, Gra93b, Gri74, Hac93, HSBMB91, HC13, IEE94c, IG77, KS89a, Kha95, KK96, KTN92, Kue82b, Kum90, Lar80c, Lar81, Lar82a, Lar82b, Lar85c, LCK11, LCLX19, LLL09, LMSF89, Lit84, Lit55, Lom88, LYD71, Lum73, Lya03, MXL+12, Mac95, ML86, ML94, MY79, Mii85, Mii85, NM02a, NP99, Omi91, Pal92, PB80, Pro94, Ram89b, RZ97, RSSD90, RLH90, RLH91, Roe94, Roe95, RT87b, SD85, SD89c, SD89a, Sch79b, SC90b, SC90a, SC90c, She91, TNKT92, TMB02, Tyn96, Vit83, Yen91, YB95, BMQ98, BW89, CAGM07, CF89b, HM03, Kou93, LL15, LY72.

performance [MRL+19, MA15, RFB97, SS89a, SD89d, Sh17, Sie89, VBW94, Vit80a, WL07, WTN07, XCCK09, Yu18, ZHW19].

Performances [Mek83].

Performed [Wil71].

Performing [FP89b].

Period [AC74, Eck74b].

Periodicity [HG77].

Permutation [DLH09, HSR+01, NIS15, PHG12, Sch01a, CFYT94, DLH13, HK95, KST99, LOZ12, LMPW15].

Permutation-Based [NIS15, PHG12, KST99].

Permutations [ARH+18, JNPP14, MP12, Wee07, BK88].

Persisten [NT01].

Persistent [KM92, ZHW19, CCA+12].

person [WWG+18].

Personal [Rad83].

Personalized [WYD+18].

Perspective [ACM85a, CSSP15, Will00, LWXS18, Mit17].

Pert [Kul84].

Pertaining [Wri83].

Perugia [De95].

Petersburg [Vau96].

Persson [Kno88].

PGV [BRS02, BRSS10].

Phase [DHL+15, PACT09].

PHash [Shi17].

Phi [JHL+15].

Philadelphia [ACM89b, ACM90a, ACM90b].

Phoenix [ACM03b].

Photomosaic [US09].

PHP [GSL17].

Phrase [JD12].

Phylogenetic [BT12b].

Physical [BG80, Bat81, BG82, DT91b, DGKK12].

Picture [BS94b, BS94c].

Pilfered [Nic17].

pipe [MPST16].

Pipeline [PRM16].

Pipelined [CLYY95].

Pipelining [CLYY92, He87, HSY94, MD05, MS88a, RS92, YCR93, ISHY88, LCRY93, RLM87, XLZC14].

pipelines [AS90, RKLC+11].

Pipelining [CLYY95].

Pittsburgh [LFP82, ACM04, IEE92b].

PKC'98 [HPC02, HKKK10].

PKC98-Hash [HKKK10].

PKE [HL18a, Zha07].

PKI [YY01].

Place [Dos78a, IEE84].

Placement [MEK+14, PRRR15, BPT10].

Plagiarism [CH12].

Plains [IEE88c].

Plural [AI89].

Platform [LMD+12, Sun02, TCP+17, FN09, MN99, QZD+18, ZL+07].

Platforms [AS16, NMX19].

Play [But17].

playing [Zob70a, Zob70b].

PLILP [BW92].

PLOP [KS88b, KS88c].

PLOP-Hashing [KS88c, KS88b].

PODS [HL13, ACM88a, ACM89a].

PODS'08 [LL08].

PODS'10 [Van10].

PODS'13 [HF13].

Point [BL89, TK17].

Pointer [LDM92, SC90b, SC90a, SC90c, SVCC01].

Pointer-Based [SC90b, SC90a, SC90c, LDM92].

Points [AT93, Bat80, Bat82, AHI89, AT90].

Poisson [Pob86, PVM94].

Poland [ACJT07, Win78].

polls [Jan05].

Policy [GGY+19, DG96].

Politecnica [CTC90].

Polling [LXL+19].

Polling-Based [LXL+19].

Poly [DS17].

polylog [DLM07].

Polynomial [DGMP92, FS82, Saa85a, San76, WSSO12, Win90b, Bis12, GPGO16, Kak83].

Polynomial-Advantage [WSSO12].

Polynomials [DY08, OS10, Sar11].

PolyR [KR01].

Pools [Woo09].

POPL [ACM91a].

Popular [CLNY06, RR08].

Portable [Hek89].

Portland [ACM85b, CLM89, IEE95a, IEE95b].

Portugal [CIM+05].

positive [CVR14].

Post [BBD09b, MKAA17, BDD09b, BD80].

Post-Quantum [BBD09b, MKAA17, BD08, BDD09b].

Postal [Dos78a].

Postortsnamen [Dos78a].

Postprocessing [Dos78a].
Pour [Kar82]. Power

Powerful [Tho17]. PQCrypto [BD08].

Practical [Dun89a, FP10, HD72, MK11, MMMT09, PT12a, PGV90b, ACP10, Ano93c, DKRT16, GP08, KM10, PT11a, PGV93g, Sch82b].

Practitioner [SD76]. PRAM [GM91, KLadH93, KLM96, Kel93, Kel96, Lep98]. Pramanik [Pro94].

primary [ML94]. Prime [Bat75, HM12, Muc04, OG94a, WS03, Lar84].

Primes [Die96, ACP10]. Practical [AS82, BR97, BHH +15, CHK85, DNSS92, DDS14, EMM07, FHCD92b, GRS05, GLLl17, HM96, IP11, LT09, Ram89b, ZZ83, JCG95, LWXS18, Sil02b, SXLl08].

Practically [TT82]. Practice [KGJØ18, Mir17, Ram88b, BBPV11, RZ97, Sta06b, KKP92].

Predicates [RS92]. Predicator [KS12]. Predicate [Han90, HCKW90, VV84].

predictability [LBJ02]. Prediction [TW07, DFMR15]. Predictive [DCW91, RT87a]. Predictors [DGD02, NI83, TT86].

Predictive [DCW91, RT87a]. Prediction [TW07, DFMR15]. Predictive [DCW91, RT87a]. Predictors [DGD02, NI83, TT86].

preimage [Mit12]. Pre-image [Mit12]. PRECI [BD82, DNV81]. precise [DK12]. Precision [LOON01].

Precomputation [AS16]. Predecessor [KS12]. Predicate [Han90, HCKW90, VV84].

Presence [RK91, WYD91]. Presented [AM75c, ACM76, ACM77b, LFP82, DBGV93, ACM79, ACM91d]. preservation [DL06]. Preserve

[Knu77, RS12, Vit81b, Vit82a]. Preserving [BR06, BJL16, BHKN13, BHKN19, CK12, CK15, Chi91, Chi93, Chi94, DHL+94, DHL+02, FL08, FCDH90, FCDH91, GG86a, GZX14, HB92, HSW88, LQH18, Ot088a, Rob86, Tam81, D+92, IMRV97, Ouk83, QZD+18, RW07, SG72, Zha19].

pretty [Tho00]. Prevention [JLH08]. PRF [AB12].

primary [ML94]. Prime [Bat75, HM12, Muc04, OG94a, WS03, Lar84].

Primes [Die96, ACP10]. Primitive [Kil01, Muc04]. primitives [MP16, RAL07].

Principal [Cha88, MW09, SA97, US09]. Principle [Dam90b, FDL86, Gib90].

Principles [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM87, ACM88a, ACM89b, ACM91d, ACM91a, DK02, DK15, Van10, HF13, LL08, Pre94a, UIl82, Wal88, Zhe90, KKP92, Sta06b]. Print [Cip93].

Priority [AFK83, AFK84, RT87b, GJM02]. Privacy [An95d, BJL16, BBR88, GZX14, ZXL19, QZD+18]. Privacy-Preserving [BJL16, GZX14, QZD+18]. Private [PSZ18].

Probabilistic

[Bla00, BK07b, Flas83b, FM85, Pit87, Sch91a, Tsa96, WVT90, Yao83, CMR98, SD95].

Probabilities

[Ald88, PRK98, vM39, Ald87]. Probability [Fel50, Gon80, NY85, Ram88a, MV91a, NN90, Ni94, Ram87, Sar11].

Probe [AA79b, AA79a, Gon81, ORT91, Spr77, LJW+17, Mil99, Pag01, SS88, SS90b, Sun93].

Probes [Lyo85, Ros06, Ros07]. Probing [Ald88, BBS90, Cle84, FPV98, JV16, Kmn98, Lar85b, Lyr87a, MY85, PPR09, PT16, Pet13, PK87, PV97, PV99, SL16, TZ12, VP96, VP98, Ald87, Jan05, LJW+17, PPR07, PT10a, Ram89a, Vio05].

Problem [DSS17, DM90, GB10, HP63, Hop68b, Mit73, NAK+15, Val15, BC06, DHKP97, HCF95, LP04, Loh89, Mon19, Sun91, Sun93].

Problem-based [BC06]. Problems [DJRZ06, FHMU85, Yub82, ZO93, AMP15, CP95a, CO82a, JWM+18, WZ12].

Proceedings [ACM84a, ACM88a, ACM89a, ACM91a, ACM94b, ACM04, ACM12, Ano85a, ODB89].
Proceedings [Dav91, DT87, DSZ07, EF12, Fei91, FMA02, Fra04, Fre90, GMJ90, Gol94, GSW90, HB93, He94, IEE88a, IEE85b, ICD88, ICD90, IEE90, IEE91b, IEE91a, ICD91, IEE92b, IEE92a, ICD93, IEE93, IEE94c, IEE95, IEE01, IEE05, IEE07, IEE10, IEE11b, IEE13, ILM93, Joy03, Kar98, Ker75, Kna89, Kui92, LC06, Las87, LLO8, LT85, LS89, Lom93, Mat09, MK89, MV91c, MS05, Nav85, Oxb86, Pat90, PK93, QV89, RRR90, RK98, Rov90, Rue93, ACM77a, S293, Slm00, SW94b, SC77, ST93, St92, USE92, USE91, USE00a, USE00b, Vau06, Vid90, WPY90, IWS891, Yan10, Yun02, AGK*10, AFK90, ACJT07, Bel00, BZ90, BW92, CIM*05, Cop95b, Dan90a, Dan91, DJRZ06, DJNR09, FS99, Go96, HM08, adHMR93, HKNW07, IEE11a, JB94, Ki90, Lut88, QG95, Rei88, SP90, Sho05, SM08].

Proceedings/Ninth [ICD93].
Proceedings/Seven [ICD93].
Proceedings/Third [ICD87].
Process [FS82, Pro94].
Processes [WB90].
Processing [APV07, BG92, CCW+17, Dan13, Eld84, GST90, Ger86a, Ger86b, Gil77, GL17, Gra92, Gra94c, HB93, Har85, HCJC06, IABV15, KMW11, LCL17, LC96, MK89, MS86a, Omi99, PAPV08, Pip94, PK93, RK98, Sac96, Sch90b, SD90b, SD90a, Sha86, So93, SPB88, Spe92, Tha88, Toy86, WPY90, IWS891, YkW83, BZZ12, Bra88, CP95a, Ckw00, Ged14, GC90, HLH13, Kan91, Kan93, LLC89, RAD15, Ros74, Sab94, SK89, SW90, WLL10, YMI99, Yu92].

Processor [Adi88, KL87, SM87, YCRY93, ISH+91, LCY93, TLLL07, YNW+09].

Processors [Pap94, Ros06, Ros07, Wil95, JHL+15, KL08, KW94, TLLL09, YIAS98].

Producing [DV07, RVPV02, Win83].

Product [Du86, YGC+12, OS14].

Productive [Bor81].

Profile [SSU+13].

Profile-guided [SSU+13], profiling [VNC07].

Program [Hil88, Knu84, Mai83, Mai92, Meh82, SS80, BZZ12].

Programmable [HM12, HK12b, CFN18, LT12].

Programmer [Cro98].

Programmiersprache [Dit76].

Programming [LFP82, ACM91d, DBvL80, BM87, BGS96, Dit76, Dun89a, Ers58a, Ers58b, GG86b, Har71b, Har73, IEE84, Jou85, Knu73, Knu75, Kui92, LII92, Mau68, NS82, Pat90, Ruc15, SSS05, dKC94, ACM91a, AGK*10, ADG+08, ALS10, AMSM+09, ACJT07, BW92, CIM*05, DLH*79, Er86, Sab94, TMW10, YIAS98, BW92, LLO8].

Programs [AR16, Hea72, PAKR93, Ers58b, FDL86, MP90, NMS+08], progress [Wol93].

progressive [XMLC11].

Progressively [DVS+14].

Project [DGS+90b, DGS+90a, Tro92, NM02b].

Projecting [AT93, AT90].

Projection [Bur78, SPW90, AS89].

Projective [ACP09, HK12a, KVO9, Wee12, FH15].

PROLOG [CJ86, Bor84, Cobl84].

Proof [CZLC12a, CZLC14, Cor02, LYY+18, LYX+19, LT12, SDW14, ZZM17, DLM07,
proofing [CHL07].

Proofs [CZLC12b, CS02, KK12, KK18, NTY12, WG00, Wee11, Li10]. Propagation [DSSW90a, CML+13, DSSW90b].

Properties [Bal05, Bol79, CS83b, CLC92, Lit85, RS12, TS85, WS76, ZMI91, GW94].

Property [BR06, DGKK12, FLP14, Rja12, SRY99, Ter87, FL08, FLP08].

Proposal [LLJ15]. Proposed [CP91c, HPC02]. Protecting [LMJC07]. Protection [DF01, DGKK12].

Protein [LLW10, ZLY+12]. Protein-Protein [ZLY+12]. Protocol [Ano95a, BT12a, Dam93, GI12, HMNB07, HCPLSB12, HLC10, JRPK07, JK11, OVY94b, TY03, YLSZ19, CB15, Dam94, GB17, LW04, Ovy94a, SPLHC14, CJ12, JL14].

Protocols [LLL09, SDK91, KLL+97].

Provably [ANS97, ANS05, BBR88, CLP13, Cip93, CS02, Dam87, HR04, LYX+19, LRY+15, NTY12, ZCZQ19, CFN18, LW17, Oka88].

Public [Nat95, FIP93, NIS93].

Query [JY14]. Quadratic [Ack74, AC74, Bat75, Bel70, Bel72, Bel83, BI87, Bur75a, Day70, Eck74b, HD72, Lam70, Rad70, NH74].

Quadratic [BI87]. Quality [THY+18, YWH09, GW94].

quality-size [GW94]. Quantiﬁcation [GC95]. Quantile [KS87b, KS89b].

Quantitative [Hea82]. quantities [Bee83]. Quantization [YWH09, YGC+12].

Quantum [BBD09b, BHT97, BHT98, MKAA17, BD08, BBD09b]. Quark [JY14].

Quasi-Bicliques [LLW10]. Quasi-perfect [Zee98].

Quasi-Pipelined [MD05]. Quaternary [KM96]. Qu´ebec [ACM02]. Queensland [SZ93].

Queries [APV07, Bur75b, CLD82, Cha84a, CHY97, DHL+94, DHL+02, GST90, GW94].

Quantization [YWH09, YGC+12].

Quasi-Pipelined [MD05]. Quaternary [KM96]. Qu´ebec [ACM02]. Queensland [SZ93].

Quotient [CN07, LOON01, TT10, AK09, NDMR08].

Questions [Mit09]. Queue [KV91, MV88, KM07]. queueing [MSV87].

Queue [AFK83, AFK84, Woo89, GMJ02]. quick [FDL86]. QuikFind [Cha91].

Puerto [IEE91b]. purely [SV18]. Purpose [Chi91, Chi94, Sch91a]. putting [Col93].

Pyramid [HHT+13].

public/subscribe [MJ14]. Puerto [IEE91b].

Putting [Col93].

Putty [KKT91, LJJ19, WWY14]. R* [ML86].

r [KKT91, LJJ19, WWY14]. R* [ML86].

r-th [KKT91]. Rabin [FH79, GY90].
Redundant
[KR79, KRJ+80, RJK79, Som99].

Reference [THY+18], refined [DVS+14].

refinement [CKW93, ZD+15]. Region
[FB87, OSR10, KHH89]. Regions [JCK+18].

Registration [GPA97, JBWK11, Par18].

Regression [OGAB14, TGGF10]. Regular
[CKW09, CH94, IIL17, MSP12].

Regularized [TGGF10]. Rehashable
[LBJ02].

Rehashing [Kel93, Kel96, Mad80]. Related
[Kmt74, PF88, de 69, GC90, MC89].

Relational
[Bab79, Bra84b, FP89b, Fro82, Gra88, Gra89, He87, Heu87, IH83, KR86b, KR86a, KP81, Kim80, KTMQ83b, KTM83c, MS88a, PF88, Wu85, Yams5, YNKM89, AS89, EBD91, ISH+91, KR88, SP89].

Relation [Nee79, Pett83]. Relations
[KHT89, NP91, PCK05, UHT95]. relationship [LMSF89]. relationships [LC13]. Relative [GB17]. relatively [HF91]. relativistic [TMW10]. RelaxDHT
[LMSM12]. Reliability [MS12, CZ14].

Reliable [BH91, DGMP92, MKAJ18, RHM09, DHKP97, ZLL+07, ZC12].

Reliably [TCP+17], relieving [KLL+97].

Remaps [CRR18]. Remark
[MRW89, Eck74a]. Remote
[LC95, YY07, HL12, LLLH02]. Removal
[Leb87]. Rendering [War86, ZRL+08].

Rendezvous [EH17]. Reorganisation
[Bat80]. Reorganization
[Bar82, Reg82, Szy82, Szy85, SI09].

Reorganizing [JCK+18]. Repair
[Bar97, BRM10]. Repairing [ZJ90].

Repeated [Lar80a]. Repetitions
[YGC+12]. Replacement [Jak85, JCK+18].

replay [BRM10]. Replica
[CCF04, LR+15]. Replication
[LMSM09, LMSM12, UIY10, WY02].

replication-based [UIY10]. Report
[jCPB12, MO92a, TSP+11]. reporting
[YG10]. Repository [XNS+13]. Represent
[Rém92]. Representation
[ANS10, CD84b, DCW91, BL89, BT93, JCC00, MHT+13, TK17]. Representations
[DHT+19, KKK12, SD89b, CRS83b, CFYT94]. representing [LK93]. reprinted
[LT80]. Reprogramming [PLK07].

Republic [Avo83, HL91]. Reputable
[RMB11]. Required [PT16, PT10a].

Requirements [BD92, NSW9]. Rescue
[YY01]. Research
[BV89, BHP92, IEE89, cLM07, Rad70, SVCC01, Vid90, CE95, WO93, Yu92, YR87].

Researcher [GCMG15]. Reserved
[ST86, Tro06, WOL84, Zou85, ST85].

Residue [Ari86, KKT91, Mue04, Rad70].

Reliability [NTY12]. Resilient
[ASWD18, BGS96, LMSM09, WTN09, ZZZM17, LMSM12]. Resistance
[Mit12, BF08, MSP12]. Resistant
[BR97, BR98, CHKO08, IK05, PGV90b, CHKO12, KHK12, PGV91, PGV93g, MS09].

resisting [SXL16]. Resizable [Boy98].

resizing [ZHW19]. Resolution
[Ask05, CadHS00, MC86, YBY95, KdlT89].

Resort [PDI91, IE88b]. Resource
[DB12, HM19, TL93], response [DS95].

Responsible [IH83]. Responsive
[DG93, DG94]. Responsiveness
[BDS88, Sch82a]. Restart [LACJ18].

Restklassenhash [Eck74a]. Results
[ANS09, Bur83c, DR06, DRS12, Jv86, RR08, CV05, LY72]. RETCON [BRM10].

reinforcement [ZLL+07]. Retrieval
[AU79, ANT85, BV89, BIP92, BI12, Bre73, Bur73, Bur76c, Bur77, Cha84a, CJP12, CF89b, Cm90, DS84b, DP08, DHT+19, DSSW90a, DGM89, FH69, FCDH90, FCDH91, FBY92, GPY94b, Irbxx, Kab87, Kno71, LK84, Lar88b, LQH18, Mal77, MHO0, Mor83a, NI83, OT91, RLT83, RSD85, RSD89a, RSD9, RSD90, RSD92, Riv7, RST87b, TS85, Vid90, WH83, Wil79,
WKO78, YDT83, YWH09, YR87, YTJ06, YD86a, ZWH17, Bur76a, CCL91, CJP15, DSSW90b, Gob75, GPY94a, LYJ+13, ML94, RT89, Riv74a, SDR83b, WC94, YD86b, Zha19, ZZLZ18, retrieve [SG72].

Retrieving [AA79b, AA79a, Spr77]. Return [Wil96]. Reusing [ZHS94]. Revising [AA79a, AA79b, Spr77]. Revised [Ytr06, BK07a, Bir07, JY14]. Revisited [AH92, BY99, CDMP05, FLP08, GLS91, GLS94, HK87, HR96, HK87, KK12, KV12, BAT03, Ham02, KKL09, LP04]. Reversing [DHR+15, HLH13, Yu18]. Revocation [Wei11, MFES04]. Reykjavik [ADG+08]. RFID [CJP15, CJP12, FW09, G12, GL17, HCP012, JRP07, LL09, LL17, LXL+19, SPLHC14].

RKA [HLL18a]. RNA [BD+10]. Road [BDPV09, HR04]. Robin [CLM85, CR86, CLM86, DMV04, PV19].

Robust [BFMP11, FLP08, FLP14, KM08, KM10, KO90, Li15, LDY+16, MMG10, MV01, MV02, OCG11, TLZL16, WDP+12, CWC10, EAA+16, YCJ12]. Rockefeller [IE90]. Roma [AAC+01]. Roman [Hol87].

Routers [ATAKS07, PT12b]. Routine [Hea82]. Routing [ABC+16, BT12a, WBWV16, Cha12, HLL18b, PT10b, SPS16, TC04, TBC+05, WW02]. routing-based [WW02].

routines [FH15]. RSA [Joy03, An95a, Jun87]. Rule [BG92, Han90, HCKW90].

Rule-Based [BG92]. rule-based [KKK09]. Rules [CL05, CT12, PCY95, HC02, HC07]. runtime [O0K+10]. Russia [Vau06]. Ryu [KCC05].

Saint-Malo [GQ5, QG95]. saliency [FXW17]. SAMOSA [PHG12]. Sampler [Mii87]. Samplers [CJ19]. samples [HYK08]. Sampling [AD5, Jak5, WM19, BZZ12, CyWM91, ORX90, RKL+11, ZGG05].

San [ACM75b, ACM91b, ACM03a, ACM07, ACM08a, ACM11, DT87, IE88a, IE91b, Joy03, Kar98, Shm00, Sto92, USE90].

Sandwich [Yas07]. Santa [Bel00, Bri92, CRS83a, Cop95a, Cop95b, Fra04, Gol94, Sha05, St93, Vie99, Yun02].

Santiago [BJZ94]. SAP [SFA+19]. sat [DK07, MS13]. SAT-based [MS13].

Scalable [KKK09, DPH08, GLJ11, IEE94c,
LMD+12, MZL+19, MD97, MEK+14, PRRR15, PSZ18, PW94, SSL+18, SKC07, SWTX18, TMW10, WPKK94, WSK+16, CML+14, KKP+17, KYS05, KSC11, KSC12, LNS96, LEHNO, NK16, PT12b, SB14, TLLL09, VBV94, KCR11, NTW09]. Scale
[B12, GGY+19, GLLL17, Lii15, MEK+14, MWC12, NS16a, SHF+17, YGC+12, CML+13, FES09, Kos14, Sh17, SXLLO8, Zha19, ZNP16]. Scale-Invariant [NS16a].
Scaling [AK09, LL13, TCP+17, FHL+19, PES+12, YSL05]. SCALLA [LMD+12].
scanner [ISHY88]. Scanning [Bur81, LLI11]. Scatter
[Ban77, BMB08, Bre73, Day70, FL73, FW76, FW77, Llc72, Lyo78b, Mal77, Mau83, Mor68, Mor83b, Mau86]. Scenes [War86].
Schannel [KPS92]. schedules [GK12b].
Scheduling [Lyo79, TL93]. Scheme
[AK89, BP97, Bur84, CLD82, Cha84b, Cha84c, Cha85, CL86, Cha86a, Cha86b, CC88b, CCG91, CW91, Dat88, DJ80, DHJ83, Fab80, Huli13, JHL08, KJC11, LW88, Lsu88a, LHC05, NXB13, Oto85a, Oto85b, PVM94, PACT90, SGGB00, SHF+17, TC93, VV84, Vit81a, YSW+11, YY07, ZJ09, ZQSH12, ZH18, Bur82, CBB05, CW93, CKW93, CP95b, DF89, EAA+16, HL12, HL03, HFF+17, KCL03, KU04, KCC05, LLH02, LK04, LWG11, MMG10, Oka88, SDR83b, Tsa08, WZ12, YRY04, YG10, ZW05, ZC12, FF90]. Schemes
[BD509, CL505, CLC06, Cor02, D857, DSS17, ED88, HM96, HCDM09, HHL10, Jia89, Jia92a, Jia92b, Jaixx, Kal10, KMO9, LM95, LRY78, LRY80, MY80, MKAS18, Ngu06, Ouk83, PWY+13, PF88, RLS2, RS77, SDR83a, TL95, CJMS19, CQW08, DH84, G594, HDCM11, HSMB91, IN80, KK96, KM10, ML94, NMX19, OS88, RS75, SWN06, ZHS94]. Schluesselwoertern
[Dos78a]. Schnenlen [Kue84a]. Schnorr
[DBGV93, NSW09]. Sci [Sar80]. Science
[ACM91b, AH03, Bar83, Gol94, Got83, IEE76, IEE80b, IEE82, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, IEE13, Knu74, Kon10, LC86b, LL83, RRR09, Ric89, Rov90, Wal88, WGM88, Wil85b, Win78, TW77, vL94, AT18]. science/3rd [TW77].
Sciences [SC77], scientific [Fis87]. Scope
[CL83, GJ79], scoped [FF90]. Scopus
[AT18]. Scotland [AV099]. Scratchpad
[vdBGGL16]. SDC [K090]. SE
[Sun02, HLL18a]. Sealed [SKM01].
Sealed-Bid [SKM01]. Search
[Ack74, iA91, Ban77, BM76, Boo74, Bra84a, Bra85, Cer81, CK83b, CK85, Cha91, CL17, CS82, Eck74b, GIM99, HH85, KCB81, Kra82, Kut10, LL85, Luc72, MD97, MW09, Mue04, NS06, Pa192, PACT09, Reg81, RSK17, SD78, San76, Sev74, SGG88, SSL+18, Tam85, TZO15, TK99, Ven86, Vit83, WYY05d, WWZ09, WZ+16, XNS+13, YSW+11, ZLC+12, vW94, AP92, BC06, CKB83a, CK89, CL+14, FP82, GP08, HFZ+15, Kor08, KW94, Lin96, LCH+14, MKS98, MT16, NM02b, NH74, PY88, Ron07, SP12, STS+13, TYSK10, WYY05a, WZ93, ZWT+14, ZLC+18, ZHC+13, ZNP16, WWZ09].
Searches [LL87, Lyo85, GM02, KHH89].
Searching
[Bay74, BS97, Bur75a, CL85, CS82, Dav73, Day70, Dos78b, Fls81, FSS2, Fla83a, Flo87, Gon81, Gon83, Km73, Knu75, Lam70, Mal83, Ml63, Me84, Ouk83, Piw85, R81, Ram89b, RC84, SG76b, TTS2, Wie87b, WB87, YT06, Yub82, CW93, CLW98, ISH+91, Mol90a, Mol90b, PH73].
Seattle [ACM89c, LCK11, KCR11].
Seaweed [NDR08]. Second
[ACM83b, ACM90, SDA91, AKY13, ABD+16, An093d, B085, Ki05, Mi12, TZ12, ABM+12, IEE88b, TSP+11].
Second-Preimage [ABD+16]. Secondary
[Bel70, Bel72, Bel83, Fel87, FP89b, G075, Joh61, NH74, YMB90]. Secrecy [BKST18]. Secret
[HR04, LMJC07, LPPW06, SN06,
sections [NM10]. Secure [AHV98, An93b, An95b, BT12a, CZLC14, CS02, Dan13, DK07, DY90, DY91, DR11, FIP93, FFGL09, GHR99, GZX14, HM96, HR94, JTJOT9, JK11, KMM+06, KP97, LM95, LRY+15, MKAA17, NIS93, Nat95, NR12, PLKS07, PV07, PGV92, Rei03, RS17, SK99, Sho96, Stao6a, Win84, XHZ+19, Yas07, YY07, Zhe90, ZHZ+19, Aam03, FFGL10, GM18, GBL94, HLL18a, IN89, JDFD09, Sim98, SXL16, YRY04, ZC12, ANS97, Ano02, Ano08, Ano12, Bou12, FIP02b, Nat92, Sta94]. Security [AK98, Abi12, And94, ASBdS16, CLNY06, CN08, Cor00, Cor02, FW09, GK12a, HMNB07, HLMW93, HXMW94, ISO97, ISO04, KK12, KL18, Ki01, LC06, LT12, LLL09, MP12, Men12, NAK+15, PW06, RS12, SM02, WPS+12, Yan10, XZL19, ACM94a, ACP10, ABM12, Ano93a, BGKZ12, Kab83, Lai92, LC95, Men17, MPST16, PGV93c, SF88, Sta94]. Segmented [CLYY92, CLYY95]. Segments [Bor84]. Sekundaerspeichers [Pet83]. Select [FNY92]. selectable [BSNP96c, Gon95, Li95]. Selected [SC77, Ytr06, Bor81, JY14, JY14]. Selecting [MHB90, Sou92]. Selection [DC81, FFGOG07, Hea82, MS12, OB14, TY012, CD84a, HYKS08, Dos78a]. Selective [DHT+19]. selectivity [HYKS08, MBKS07]. Selects [Bou12]. Self [HH85, Pag85, PRRR15, SS83, Som99, TY03, Wil96, Wog89, ZF06, AOD19, TK99]. Self-Adjusting [Pag85, Wog89]. Self-checking [Wil96]. self-clustering [AOD19]. Self-Indexed [TK99]. Self-Monitoring [SS83]. Self-Organizing [HH85, Som99, TY03]. Self-Shrinking [ZF06]. Self-Tuning [PRRR15]. Semantic [CDW+19, Li15, LWZ+18, LL13, MTB00]. Semantics [H83]. Semi [CBK83, CLL+14]. Semi-Interactive [CBK83]. Semi-supervised [CLL+14]. semijoin [CCY91]. Semite [LI92]. Semite-Infinite [LI92]. sensing [Ind13]. Sensitive [BT12b, CSSP15, CKPT19, KBG18, Kaw15, MNP08, OWZ14, OTHK11, Pag18, AT18, FWG18, HFZ+15, HFF+17, LNS11, LWXS18, LNW+17, PCM15, QZD+18, SP12, STS+13, WY00, SA17]. Sensor [DK90, LDY+16, PLKS07, ZQSH12, AK09, ADF12, LG13, LND08, RAL07, YG10]. Sensors [DL12, DVS+14]. Sentence [CH12]. Sentences [Ven86]. sentiment [ZZLZ18]. Separate [Kue82b, Mul81, Kue82a]. Separating [FK84, SG16, BV13, LS06, V14]. Separators [Lar88b, Moh90, Moh93, CS93a]. Sept [BD88, Jou85]. September [VLD82, AAC+01, AOV+99, AA86, BZ94, EF12, FS09, FS87, HM08, HKNW07, Ker75, Kna89, LSC91, Vid90, Win78, Yao78]. Sequence [BC08, FP89b, G081, HG77, LPT12, LL85, MS88b, B10, CLW98, Wog89]. Sequences [Som99, KS88a, Q97]. sequencing [KRML09]. Sequential [AD85, BCC10, CT96, GB94, HB89a, KKC12, Lit89, Mul72, Ore83, Piw85, SK98, SG76b, BDPV14, HB89b, IL90]. Series [BJL16]. Served [PM89]. Server [DR92, GSL17, GBC98, Gra99, VB00, Tsa08]. Server-Side [GSL17]. Servers [SKC07, KSC11, KSC12]. Serves [Ano95d]. Service [CCF04, SWT18, Bac02, BPT10, QZD+18, TLL18]. Services [ANS05, Ano85b, HLC10]. Session [HLC10]. Set [BOS11, Kie85, PSZ18, SG76a, WC81, YD85, BGG12, GGR04, HYKS08, HDCM11, HKLS12, HM03, MI84, SA17]. set-expression [GGR04]. Set-Oriented [Kie85]. set-valued [HM03]. Setl [BFR87]. Sets [AA79b, AA79a, GHK91a, GHK91b, GT93, Lit89, PBDD95, Ram92, SPR77, Win90a, AT89, BT89, FP82, IL90]. seven [RAD15]. seven-dimensional [RAD15]. Seventeenth [LC86b, LSC91, R89].
Seventh [ACM75c, ACM75a, ACM88a, dBvL80, LL08, AAC+01, ICD91]. several [DLH+79, Kan90]. SHA
[ANS97, Bou12, TSP+11, AAE+14, ARM+12, BCJ15, jCPB+12, DR06, GLG+02, JRPK07, KKRJ07, KRJ09b, MAK+12, NIS15, NSS+06, SK05, Sta94, SKP15, WYY05a, WYY05d, WYY05c].
SHA-0 [BCJ15, NSS+06, WYY05d].
SHA-1 [ANS97, AAE+14, BCJ15, DR06, JRPK07, KKRJ07, KRJ09b, SKP15, WYY05a, WYY05b, WYY05c, GLG+02].
SHA-2 [SK05].
SHA-256 [MAK+12].
SHA-3 [Bou12, TSP+11, ABM+12, jCPB+12, NIS15]. SHA-512 [GLG+02].
SHA1 [SBK+17]. Shading [ZDI+15].
Shading-based [ZDI+15]. Shanghai [Ano83, LC06].
Shape [SR89]. Shared [Bor84, CadHS00, DadH92, EK93, adH93, KBG18, KU88, KTN92, LTS90, MLD94, MLxx, Mey93, Omi91, PG17, SD89c, SD89d, TR02, TKNT92, VB00, Whi81a, WB03, YNW+09, Don91, GLJ11, Kan91, Kan93, KU86, MSS96, Par18, SD89d].
Shared-Disk [WB03].
Shared-Everything [KTN92, MDL94, TKNT92].
Shared-Memory [MLxx, TR02, Vit81a, Bor84].
Shared-Nothing [SD89c, SD89a, SD89d].
shares [ZHS94].
Sharing [LPWW06, KLO8, KRD92, SNW06, YDS86b, ZHS94]. SHAVite [GLM+10].
SHAVite-3-512 [GLM+10].
Shell [Rei03]. Shenzhen [IEE11a].
Sheraton [ACM75b]. Sheraton-Palace [ACM75b].
Shop [Si02a]. Short [AB12, CW09, CDW+19, DK09, Lys79, NR12, MT16, SV15a].
Short-Input [AB12].
Short-Output [NR12].
Should [Yao81].
Shoup [Mir01].
Showcase [USE00a]. Shrinking [ZFO6].
SHS [Ano08, Ano12, NIS93, Nat92].
SIAM [ACM94d, SDA90, SDA91, ACM97a, ACM05, ACM08a, Kar98, Mat09, Shm00].
Sichere [BN85].
Side [GO07, GSL17, TC04].
SIFT [MMG10]. SIGACT [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM89a, Van10, LL08].
SIGACT-SIGMOD [ACM83a, ACM83b, ACM85b, ACM86a].
SIGACT-SIGMOD-SIGART [ACM88a, ACM89b, ACM89a]. SIGAL [A+90].
SIGART [ACM88a, ACM89b, ACM89a, Van10, LL08].
SIGCSE [LC86b]. SIGIR [BiP92, YR87, BV89]. SIGMOD [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM89a, Bij93, CLM89, FMA02, GMJ90, Van10, HF13, LL08, Nav85, SW94b, Sto92, ACM81, ACM84, BL88, HF13, Lie81, SW94a].
SIGMOD-SIGACT-SIGART [Van10, LL08]. SIGMOD/PODS [HF13].
SIGMOD/PODS’13 [HF13].
Sigal [Cai84].
Signature [ANS05, Ano09, Ano13, BDS09, CS91, Cor02, Dam87, FC87a, FC87b, HHL10, Hul93, Kal01, LR96a, LM95, LL92, NXB13, PW93, PGV93f, RR92, Rul93, TT82, CFN18, NSW09, PBP16, ST93].
Signatures [SS83].
Significant [BCCL10].
Significant-signing [BGG94].
SIGPLAN [ACM79].
Silentreinigung [BN85]. SIMD [AT91, RG89]. SIMD-MIMD [RG89].
Similar [RC94].
Similarities [UCFL08].
Similarity [GJM99, HCF95, LÑON01, NAA12, TWZW11, WSŽ+16, YTL06, CL+14, GP08, HYKS08, SP12, SA17, STS+13, ZWT+14].
Simple [BPZ07, Cie05b, DH01, DS09e, GM94, GM98, IT93, KM08, Lom88, PSSC17, PT12a, Ram92, Sar10, Tho13, CLS95].
Space-Efficient [BPZ07, JD12, PSS09].
space-filling [GZ99]. Space/Time [Blo70].
spaces [IMRV97, NN90]. Spain
[DJRZ06, LSC91, CTC90]. spam
[LZ06, UCFL08]. SPARC [WG94].
SPARQL [HAKM15, HAK+16]. Sparse
[AL86, ASW07, vDSW74b, FKS84, Gri98,
Gri77, KK12, RT81, TY79, ZHC+13,
vDSW74a, Bis12, BT90, BT93, CML+13,
JCC00, CW91, Ind13]. Spatial
[LR96b, SS88, WYD+18, DLN+18, LH06,
SS90b, ZBB+06, ZLC+18]. spatio-
temporal [CWC10, FXWW17].
speaking [LC95]. Special
[ACM82, DT87, Dos78a, GIS05, MO92a].
specialization [SV15a]. Specialized
[Bab79, ISH+91]. Specific
[RTK12, ARH+18, JDW+19]. Specifications
[Nat92]. Specified [AU79].
Specifying [GH+93]. Spectral
[KKC12, Li15, WFT12, WB90, ZWT+14].
Speech [CW09, RJK79]. Speed
[FP89a, KMM+06, KV16, McK89a,
PSR90, TK88, WZ+18, YNM89,
BCC10, EVF06, McK89b, MSS96, RW07,
SLC+07, SXLL08, TLLL07, XMLC11].
Speeding [FH96]. Speicher
[GN80]. Speicherstrukturen [Kue84a].
Speichertechniken [LS85]. Speicherung
[BJMM94b, BJMM94a].
Speicherungsstrukturen [Kue83].
Speicherverfahren [DS84a]. Spelling
[CS82, Mcl82, Rad83, Zam80, MF82, Wei86].
spezifisch [Dos78a]. SPHINCS
[BHH+15].
Spiral [CK94, Mul85]. Split
[LL85, MS88b, SS06, She78, Wog89].
Split-ordered [SS06]. splits [BY89].
Splittable [CP13]. Splitting
[DR09, RT87b, Vek85]. Spoken [KRRH84].
Sponge [ARH+18, BDPV07, AMP12,
BDPV08, BDP11, BDPV12]. Sponge-specific
[ARH+18]. spongente
[BKL+11]. spongy [RS14]. sponsored
[Fis87, HB93, IEE84]. spots [KLL+97].
Spotting [FLF11]. Sprache
[BN85]. Spreading [KO90]. Spring
[AFI63, IEE88a]. Springs [IEE11b]. Spritz
Square [ACM83a, ACM83b, EPR99].
Squares [OG94b]. squaring [Mei95].
SRAM [KHK15]. SRAM/DRAM
[KHK15]. SRS [SQ+14]. SSD [HGH+12].
SSPIN [Cob94]. St [Vau06]. Stability
[CW09]. stable [HF91]. Stack
[Bo84, KV91a, KV91b]. STACS
[AH03]. stage [ZQD+18]. STAIRS
[RCF11]. stamped [GB17]. Stamping
[Cip93, Lip02, SL16]. Standard
[Ano93b, Ano95b, Ano08, Ano12,
Ano13, Dan13, FIP93, LYX+19, NIS93,
Nhat95, NIS15, SK05, CV83a, GV08, Nam86,
Ano02, Dan13, FIP02b, Nat92, Pla98, Lut88].
Standards [Bur06, Fox91, Kal93]. Trash
[ADW12, ADW14, KMW08, KMW10].
State [But17, CH94, HB93, MKF+16,
Pre97b, Pre99, vDP73, ATAKS07, HL94,
PGV93c, Wol93]. Stateful [NTY12, Ged14].
Stateless [BHH+15, MKAA17, NTY12].
Stateless/Stateful [NTY12]. Static
[AA79b, A79a, LC88, Ram92, Sci77,
DMP09]. Statistical
[Fil02, HZ97, Sav90, TTY93, LZ06, MJ08].
Statistically [HR07, Wee07].
Statistically-hiding [HR07]. Statistics
[Rob86, WGM88, DKRT15]. Status
[TSP+11]. steady-state [HL94]. Steering
[LLL18]. Step [Dit76, ZWW+12, AKY13, WS13].
Step-Reduced [ZWW+12, WS13]. Steps
[HKKK10]. Stereo [ZZ83].
Stereo-Warehouse [ZZ83]. stimulating
[JFDF09]. STL [Ben98]. STM [DSS10].
STOC [ACM07, ACM08b]. STOC’12
[ACM12]. Stochastic [HKNW07]. stock
[She06]. Stockholm [PV85, Ros74].
Storage
[ACM04, Bay74, BMB68, Breq73, Col93].
Day70, FL73, Fel87, FP89b, Fro82, GL82, GL88, HCJC06, Kno71, HGH+12, LCK11, Les88, LCLX19, LRY+15, MSK96, Mal77, Mau83, MEK+14, Mor68, Mor83b, Mul81, Mul85, Omi88, OT91, OS83a, OS83b, Pet57, Sam81, SHF+17, TY03, TS85, Tra63, WZY+18, WH83, Witt1, WK078, WB87, YDT83, vdP72, vdP73, AY14, AK09, CRS83b, HGR07, Mau68, MSS96, PT10b, QD02, YSL05, YMI89, van73].

storage-efficiency [PT10b].

Storage-efficient [HCJC06, MSK96].

Store [DW83a, MZL+19, dW83b, SFA+19, Shi17, BP94].

Stores [Bry84, GYW+19, PRRR15].

Storing [AL86, FKS84, MNS07, Ros77, TY79].

Stouffer [ACM87].

Strategies [iA91, iA94, BI87, Die07, adH90, adH93, KL87, KHT89, Mey93, MNS07, Tro95, YB95].

Strategy [CdM90, LMSM09, LC96, NKT88, RS92, GC90, LMSM12].

Stream [DC98a, cLmL07, MNS12, NCFK11, TW07, TS85, DS09a, Ged14, MV08, OCGD11, RS14, Tan83].

Streaming [CN07, STS+13, YSW+11, CBB05, FVS12, ZC12].

streamlining [HS08, FH15, Ken73].

Stretching [BFV12].

String [iA94, Ask05, BRM+09, BH85, Bur84, CFP19, CCH09, Cha91, Dav73, JK14, LLLL17, NNA12, TK88, Tay89, TT82, ASM17, AZ10, Bur82, DC94, GKB90, Kim99, MKBS07, RS97, XMLCL11].

String-indexed [Tay89].

string-pattern [Kim99].

Strings [BS97, Dit91, FM96, Lit91, Pea90, Pea91, RC94, Sav90, Sav91, Euz90].

Strong [CHKO08, CHKO12, JRPK07, HLL18a, Ku04].

strong-password [Ku04].

Strongly [BG07, JK14, Tho00].

Structural [BRM+09, TWZW11, Witt81, ZMI91, FLF11, MK12, ZBB+06].

structure [Lit77a].

Structure [AHS92, CK12, CJC+09, DGM89, DT91a, DT91b, FLF11, Flo77, FB87, GHK91a, GHK91b, CTC90, KS12, NHS84, Omi88, SG88, WH83, Witt83, ZHW19, BR75, BGG12, IG94, KJK90a, KKH89, LNS96, LCH+14, MMC01, MSK96, SB07, TMB02, YD86b].

Structure-Preserving [CK12].

Structured [CS93b, GDA10, Piw85, SGS76b, SM87, WGG+18, BPT10, GHW07, WHS+07, WLLG08].

Structures [AHU83, BDD+10, BFR87, Boy98, BMJ14, CE70, Coh84, DSZ07, DP08, Ell85b, Ell82, Fel88, FZ87, FBY92, Fro82, Gom84, GBY91, Gr174, Har88, Har71b, HS84, Kru84, LC86a, LRY78, LRY80, Lit84, MO92a, RW73, Sal88, SDW14, SW86, Sme92, Ste82, SW87, TA81, TA86, TGL+97, TS76, TS84, VL87, WS76, WK078, Wir86, YLB90, ZLLD18, BY89, CRS83b, FP89a, GJM02, Har73, HM03, Inc81, ICA05, Koe72, Lin96, MTB00, NT01, NM02b, OSS89, Sch06, VL07, Vit01, Wil78, Wil85a, ZKR08].

Structuring [Bay73a].

Studies [Ano93d, GT80, GG80, Yub82].

Study [AR17, BF83, BK07b, Cha84c, Cha85, Cra85, DTS75, DJS80, DHJS83, Ell85b, Gr174, Hil78a, Hil78b, LC86a, LG78, LRD71, TL95, YLB90, HM03, LTH12, Wee88, WTN07].

style [UCFL08].

Sub [WZY+18].

Sub-Datasets [WZY+18].

Subgraph [ZLY+12, WLLG08].

sublinear [CFN18].

Subquadratic [Val15].

subscribe [MJ14].

Subscriptions [Atk75, vdSDW74b, vDSW4a].

subset [IN89, Mon19].

Subspace [KRJ+80, Sch11].

Substring [Boo73, Har71a, MKSA98].

Subsystem [HLC10].

subtype [Duc08].

subtyping [DL06].

Succinct [ANS10, DP08, RRS07, FS08, SH02, SH94].

Suchen [Meh86].

Suffice [ADW12, ADW14].

Sufficiency [NY85].

Sufficient [BDPV14, IK005, IH95, Rus92, Rus93, Rus95].

suffix [BGKZ12, Kos14].

suffix-free-prefix-free [BGKZ12].

suitable [MIZ98].

sum [IN89, Mon19].

summaries

Supercomputing
[ACM04, IEE90, IEE91a, IEE93, Kha95].

Superimposed [CJ86, FH69, SD85, SDKR87, SDR83].

Superior [PT10b]. Superjoin [TRN86]. Supertree [GB10].

Supervised [CLL+14].

Supplement [SC77, Ruc15]. Supplementary [PLKS07].

Support [CN07, Eng94, GSL17, KJC11, SK99, YCR93, Cz14, CKK00, JMH02, KLSV12, LCR93].

Supporting [CLS12].

SURF [YCJ12]. Surface [Lb87, LDY+16].

Surprising [SKD15]. Surrogates [Dee82]. Survey [CZ17, CJ19, Kal93, Sev74, Mil99, RAL07, UP11].

SUSE [PT10b]. Sweden [Ros74].

Switching [IEE74].

Symmetric [FW09, Fil02, HC13, NHS84, Oto85b, PQQ9, PQG99, QG90, Roe94].

Symmetry [KTN92]. Symposia [Got83].

Symposium [ACM94d, ACM75c, ACM75a, ACM76, ACM77b, ACM79, LFP82, ACM82, ACM83a, ACM83b, ACM84b, ACM85b, ACM86b, ACM86a, ACM87, ACM88a, ACM88b, ACM89b, ACM89e, SDA90, ACM90, ACM91c, ACM91d, SDA91, ACM91e, ACM94b, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM08a, ACM08b, ACM11, ACM12, AH03, A+90, AIOW11, BW92, Col93, CHK06, EF12, Gol94, Van10, adHMR93, HL91, HF13, IEE74, IEE76, IEE80b, IEE82, IEE84, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE05, IEE06, IEE07, IEE10, IEE11b, IEE13, Jaj90, Jen76, Lak96, LL08, Lev95, LC86b, Mat09, MS05, Ng79, ACM77a, Shm00, WGM88, Win78, Wol93, vdHv12, ACM91a, FS09, Fis87, HM08, HKNW07, Kar98, IEE82]. Symsc [Jen76].

Synchronization [Oak98].

Syndrome-Based [VMG12].

Synergy [GH07]. Synonym [QCH+81].

Synopsis [YL+09]. Syntactic [Ven86].

Synthesis [Sah94]. synthetic [GLC08, PGV93e, PGV94].

Syndrome-Based [VMG12].

Syndrome-Based [VMG12].

Systolic [EBD91, PJM88, PBJ09].

T3D [DS97]. Tabellen [BI87]. Table [AL86, Bat75, BRM+09, Bee99, Bur75a].
CCF04, CW91, CHSC18, CL83, Day70, DHK+15, DAC+13, FKS84, FW76, FW77, GK94, GK95, Hop88b, HD72, HLC10, IABV15, JL14, JXY07, JMHO2, JD12, KG95, Kno71, LMJC07, Lev00, Lit80, Litxxa, LACJ18, Lyo85, Mai83, Mai92, MT11, ML75, Muc04, MJT+02, Pri71, Pro89, Rey14, Riv76, Riv78, Sam76, Sam81, San76, Sne92, Szy82, Szy85, TY79, Tro06, VB00, YD84, YT16, YLB90, vdVL12, AY14, AZ10, BCR10, Bay73b, BGG12, Fro81, GSS01, HXLX13, KdlT89, MZK12, MA15, NK16, NI74, PH73, Ram87, SB95, SB97, Tsa08, WTN07, Yu18, ZGG05.

Table-Based

[HLC10].

Table/urn

[Ram87].

Tabled

[AR16].

Tables

[Ack74, APV07, AK74, Ask05, Ban77, BM87, Bay73c, Bay73a, BPBBLP12, Ben98, BI87, CRdPHF12, Cle84, CD84b, EMM07, FFPV84, F003, GT93, Hop68b, HC87, HC13, IK92, Kue82b, Kue84b, Lar88a, LMSM09, LC88, Lit79b, LB07, Luc72, LMR02, Lyo78b, MSD19, MS02, Mit02, MC86, NY55, Pag85, PAPV08, PV92, PTT16, PBD95, Pla98, Qui93, Ram88a, RRS12, RHM09, RMB11, SD78, Sch79a, SS80, SM02, TTI0, Woe06b, Yao81, Yao95, Bat65, CHS+18, Fly92, FFS05, FRS94, GM79, GJR79, HKW05, HKH12, LMSM12, LVD+11, Mad80, MSD16, MRL+19, PT10b, PT12b, QP16, SS06, Tai79, TBC+05, TMW10, Wil03, Wil14, Wog89, WTN09, XLZC14, YTHC97, ZHW01].

tabu

[WZ93].

Tabulation

[KW12, PT12a, TZ12, Tho13, DT14, DKT16, PT11a, PT13, Tho17].

Tabulation-Based

[KW12, TZ12].

Tabulative

[GT80].

Tag

[JRPK07, ZWH17, CJP15, HLL18a, SPLHCB14, CJ12].

tag-based

[HL18a].

Tagged

[ZWH17].

tagging

[TCW+13].

Taipei

[HL91].

Tamed

[NXB13].

Tampa

[IEE88b].

Tamper

[CHL07].

Tamper-proofing

[CHL07].

Tampering

[TZW11, PS08].

Tangle

[ÁVZ11].

Tape

[SvEB84, ML95].

Target

[LBJ02, Mit12, 1RS16, MIGA18].

task

[JDW+19].

task-specific

[JDW+19].

Taxonomy

[CZ17].

TBE

[Zha07].

TBE/IBE

[Zha07].

TCC

[Kil05].

Tcl

[USE00b].

Tcl/2k

[USE00b].

Tcl/Tk

[USE00b].

TEA

[CV05, HSR+01, HSIR02].

Teams

[GBC98, KKW99].

Technical

[IEE84, LC86b, Mit17, SE89].

techniken

[Mer72].

Technique

[AP93, Boo73, CL85, CS82, CT96, Dod82, HC87, KM92, Lit79a, Mau68, McK89a, RZ90, Ram97, SDW14, She78, TK88, Wan84, Yam85, CCY91, GM77, Kan90, KK96, MIGA18, McK89b, Pro94, Sac86, Sag85b].

Techniques

[Bay73a, Bih08, Bre73, CP87, CZ17, Dam90a, Dam91, Dav91, DKO+84b, DKO+84c, DKO84a, DL79, Dun89a, Dun89b, Fel87, Gra92, Gra93c, Gui78, Hel94, KMV10, Kue84b, LDM92, LYD71, Ma177, Mor83b, MC86, Pri71, QV89, QG95, RHL91, Rue93, SD85, SDRK87, SZ93, She91, SS06, Sta73, Sti94a, Vau06, YTJ06, BF08, De 95, DKO+84d, DJRZ06, DJNR09, GQ95, ISO97, ISO04, LY72, PH73, RHL90, SXL08, UPV11, YSL05].

Technology

[IEE11a, RRR99, ISO97, ISO04, 1BJ94, Pei82].

Teletraffic

[CS93b].

Tempe

[Go92, Yu92].

Template

[LMC07].

Templates

[JTOT09].

Temporal

[GY91, WYD+18, CWC10, FXWW17, MHT+13].

temporaries

[Ken73].

TENCON

[Ano93c].

Tennessee

[IEE94c].

Tenth

[DSS84, SC77, YR87].

Terabytes

[IEE02].

term

[KP92].

termination

[Er86].

Terms

[Wil79, ZwCL10, vT14].

ternary

[Bou95].

Tertiary

[Gui75].

Test

[Har71a, RT87a, Sav90, Duc08, ZCZQ19].

Testbed

[SDK91].

Testing

[Boo73, DD11, Fil02, Sam76, WM19, Ay14, HKL12, TD93].

Tetris

[GSS01].

Tetris-Hashing

[GSS01].

Tex

[ACM91b].

Texas

[ACM91b, ACM97b, ACM98, IEE76, USE00b, ACM88a, IEE95, Nav85].

Text
[Bur81, Coh98, CDW+19, DS84b, Dit91, Fal55b, Gon83, HZ86, Lit91, Pea90, Pea91, Sav91, TTT92, Ven84, YSW+11, Gob75, HC07, Ram89b, RCF11, Sab94, ZZZL18, ZHW01].

textes [LG78]. Texts [LG78]. Textual [BH85, MLHK17]. Texture [HSPZ08, ˇSSaS01]. th [KKT91]. Their [CZLC12b, CK15, CJ19, Deb03, Gra88, Gra89, Heu87, HK12b, NR12, RNT90, SDT75, WC81, AG10, adHMR93, NY89b, NY89a, PW08, Pob86, Sie89].

Theorem [Cha84b, CG92, HR14, Kno88, Sho90a]. Theoretic [Sun15, HM93, SXLL08, TZ94a, vL94]. Theoretical [AH03, CHK06, NR12, RNT90, SDT75, WC81, AG10, adHMR93, NY89b, NY89a, PW08, Pob86, Sie89].

There [AKS78].

thesaurus [RW73]. things [SKD15]. Think [DCW01]. Third [ACM91e, jCPB+12, ICD87, IEE88a, BDS88, Gol96, Ano98].

Thousand [KRJ+80]. Thousand-Word [KRJ+80]. thousands [BMS+17, Nic17]. thrash [BFCJ+12]. Threaded [VB00].

Throughput [KHK15, LPT12, PRM16, TP15, WZJS10, MAK+12, XLZC14]. Thyroiditis [SSaS01]. Tiger [AB96, MR07]. Tight [Cha94, CV08, GHK+12, vT14].

Tightly [Mul81, DW05, DW07]. Tillich [Gei95, Gei96, GIMS11, PVCQ08]. Time [ASBdS16, BJL16, Blo70, Bre73, BM99, CW09, Cip93, Cla77, CM93, Dad90, F+03, FPS13, FK94, Gra94b, Jak85, Kab87, LAKW07, LP02, Lyy83, Moh11, Ni83, NS16b, PP08, PSSC17, PWY+13, PS12, Sag85a, SL16, SL16, Sie04, TW91, Val15, WVT90, Win90b, AY14, ASA+09, CJMS19, CCY91, DSD95, FPSS05, FVS12, GB17, GMW90, Han17, Kor08, Man12, MV91a, MN90, MP90, OP03, Par18, Pro18, Sie89, ZRL+08].

Time-Memory [ASBdS16, CJMS19]. Time-Series [BJL16]. time-space [Sie89]. Time-Stamping [Cip93, LP02]. Timer [VL87, VL97]. Times [Mal77, SD78, PY88].

Timestamps [GY91]. Timing [VL87, VL97]. Tiny [GW94, OWZ14, SWQ+14]. title [Dit76]. Tk [USE00b]. TN [ACM94c]. To-many [SV18]. to-one [SV18]. Tokyo [IW89, A+09, Mo92b].

Tolerant [DSSW90a, AAB+92, DSSW90b, HGR07].

Too [CHSC18]. Tool [Lit79b, Lit80, Litxxa, MV01]. Toolbox [Jac92]. Toolkit [FZ87]. Tools [Mil87, JC88b]. Top [APV07, LRY+15, LLG+17, ZLC+12]. Topo [APV07, LLG+17]. Top-Down [LRY+15, ZLC+12]. Topic [RTK12, Gre95].

Topic-Specific [RTK12]. Topics [Joy03].

Topography [RHM09]. Toronto [Gil77, KLT92]. torrent [Bak09]. Towers [ICD88, ICD90]. TPM [WYD+18].

Traceback [JL14, SXLL08]. Tracing [SS89b]. Track [Joy03]. Tracking [GGR04, LLL11, UCF08, FXWW17, ML15, OOK+10]. Tractability [GB10].

Trade-Offs [ASBdS16, Blo70]. tradeoff
Tradeoffs [SD89b, SD90b, SD90a].

Traditional [EMM07].

Traffic [TLLL18, HKL04, MA15, TBC+05].

Tragen [BJMM94b, BJMM94a].

Transaction [CCW+17, SPB88, MTB00, SSU+13, TMB02, Yu92].

Transactions [CHSC18, FK89, MMC01, SSU+13].

Transitive [CdM89, CdM90, GC90].

Translated [WSZ+16].

Translation [BCR10, TK85].

Translator [DGGL16].

Trees [BM76, BD84, BBP88, CLYY92, CHY93, CLYY95, CN07, CD84b, DCW91, Dev99, LQZH14, Reg81, She78, VV84, WI10, AD08, Bra09, CM01, FP82, FK89, KLL+97, Kos14, Lev89, QP16, RRS07, TB91, BD84].

Tree-Structured [PI18, BT10].

Trees [BF17, CT10, TL15, DL16].

Triangular [GPGO16].

Tri [AR16, Bur76b, Bur77, CCH09, Flas81, Flas83a, KS12, Lit81, Lit85, LZLL88, LSV89, LRW89, LRLH91, Oto88b, Reg88, TV83, AZ10, BLC12, Bur76a].

Trie- [KS12].

Tried [ATT98].

Tries [BT94a, BT94b, GO15, Tam81, PBBO12, Pro18, SV15a, SV15b, SV18].

trigger [ZLY+13].

Trigram [Wil79].

Trime [LG11].

Trime-trapdoor [LG11].

Trondheim [Ano95c].

Truncated [FJ13].

Truncating [So93].

Truncation [Wil79].

Trusted [KKRJ07, KRJ09b].

Trustworthy [EH12, LW17].

Tsunami [CZL12].

Tulip [XBH06].

Tunable [AÖD19].

Tunable-LSH [AÖD19].

Tuning [KNT89, PRRR15, Tym96, Vit80a].

tuple [WHS+07].

Turbo [Hej89].

TV [YGC+12].

Tweakable [MKASJ18].

Tweaking [Zha07].

tweets [STS+13].

Twelfth [BV89, CGO86, Col93].

Twentieth [ACM88b, IEE01, Mat09].

Twenty [ACM90, ACM91e, AAC+01, AOV+99, Van10, GSW98, LL08, ACM96, ACM97b, IEE01].

twenty-eight [ACM96].

Twenty-fifth [AOV+99].

Twenty-fourth [GSW98].

twenty-ninth [ACM97b].

Twenty-Seventh [LL08, AAC+01].

twig [KRML09].

Twisted [PT13, DT14].

TWISTER [FFG10, FFG09].

Twitter [RTK12].

Two [DDMM05, DAC+13, HK12a, HSR02, Jv86, KSSS86, LEB87, LMPW15, LYO85, ML15, Pan05, Pip94, PGV90a, TC93, CCL91, DKRT16, GP08, LI10, MS09, Mcn03, PGV93a, PGV93b, QZD+18, SDR83b].

Two-channel [MS09].

Two-Dimensional [KSSS86, LEB87].

Two-Disk [TC93].

Two-level [DAC+13].

Two-Message [HK12a].

Two-permutation-based [LMPW15].

two-stage [QZD+18].

Two-Way [DDMM05].

TWOBLOCK [Van05].

TX [USE91, ACM97, ARA94, IEE94a].

Type [KPS92, KRJ09a, SF88, SL16, SV18].

Type-based [KRJ09a].

Type-Graphs [KPS92].

Type-heterogeneous [SV18].

Types [EjKMP80, Hej89].

TYPHOON [HKW05].

typing [DMP09].
[Wil79, LK93, ZHW01]. Vocabulary
[KRRH84, LLZ10, YWH09, YMI89].
Vocabulary-Based [LLZ10]. Voice
[SMS91]. Volatile [ZH18, CCA+12].
Volcano [Gra94c], volumes [Ruc15].
volumetric [ZDi+15]. Vorschläge
[Kue83]. Vortex [GK08]. Vowel [Wan05].
Vowel-consonant [Wan05]. VPN
[KMM+06]. vs [BATÖ13, GLS94, KKL+09, Oak98].
Vulnerability [BPBBLP12].

WADS [DSZ07]. Wait [LFD17]. Wait-Free
[LFD17]. Walk [FMM09, FMM11, BCR10].
wallet [Nic17]. Warehouse [ZZ83].
Warwick [Pat90, Was [HJ75].
Washington
[ACM94b, ACM89c, BJ93, Fis87].
Watermarking [DR11, WDP+12]. Wave
[LC12]. Wavelet [GH07]. Way
[BCFW09, DGV93, DDM05, GKO8,
HHR+10, JHLH8, LP15, McC79, Mer90b,
Roe94, Rul93, SP91, Sch91a, Sho00a, Tsz92a,
Wec07, Win83, Win84, YZ00, Zhe90, CMR98,
Gib01, HR07, HYLT99, HLO3, KST99, LW04,
LCH05, MRR90a, MZI98, NY98b, NY98a,
Sim98, SP89, Tsa08, Tsz92b, YL04, ZW05,
ZPS90, ZMJ91, ZPS93b, HMNB07].
WCC [Ytr06]. WDDL [MMMT09]. Weak
[CFF19, HS08, Lis07, PV07]. Weaknesses
[BPS09, DS09c, KCL03, KCC05, SGGB00].
web [KSC11, KSC12, NMX19, AT18,
KLL+97, KSB+99, NM02b, Sch01b, SKC07,
TC04, UCFL08, WY00, WY02, XH06].
Web-Based [Sch01b]. webcam [McN03].
Wegman [Sar80]. Weight
[LR96a, LL92]. Weighted
[Ban77, Lue72, TY8+18, Yao91, YZ00].
Weighting [DSS17]. West [Yao78]. WG
[vL94]. WHAM [LPT12]. Wheels
[VL87, VL97]. Where [Bur06, SW91].
Which [FW76, FW77]. WHIRLPOOL
[RB01, Sas11, Sta06a]. Whirlwind

[BNN+10]. White [BZZ12, IEE88c]. whole
[Pat95]. whom [LC95]. Whose [Gra94b].
WI [FMA02]. Wide [KLL+97, MPST16].
Wien [Kui92]. Will [DCL91]. Winner
[Bou12]. Winter [USE91]. Wireless
[DK09, DPH08, LDY+16, PLK07, SHRD09,
YSW+11, ZQSH12, AK09, ADF12, Cha12,
LG13, LND08, YG10]. Wise
[Ind01, Die96, FPS17]. within [Bay73b].
Without
[CHR99, PV19, SL16, ASW87, BKS4,
BRM10, CP95a, Dam93, Dam94, Die96,
Jaks5, KSS88b, KSS88c, Ku04, LW04, Mul81,
Pag18, Par18, Reg82, SUH86, Tsa08, ZW05].
Witnesses [AN96]. Wollongong [PSN95].
Word
[BH86, FL11, KRJ+80, LHC05,
BT89, Han17, ST85]. Words
[Chn90, DM90, Dos78a, KR79, KRRH84,
MH00, ST86, Tro06, Wol84, Zou85]. work
[Col93, MV08]. Working [Cer85, CE95].
works [Gre95, LWXS18]. Workshop
[LIW89, ABM06, ODB89, Ano92, BDD09b,
BF89, BD08, CP87, Dam90a, Dar91, Dar91,
Dar 95, DSZ07, DJRZ06, DJNNR09, GQ95,
Hel94, QV89, RRS06, Rei88, Rue93, SZ93,
Utr06, vL94, And94, Bir07, Coh94, Gol96,
KIm94, Yu92, Ano94, Heu87]. World
[Ano93a, Drel17c, IEE92a, LC95, KLL+97].
worm [FNP09, CF98]. Worst
[ANS09, ANS10, DMV04, F+03, FKS84,
Lar81, Lar82a, FPS05, Mic02, MT16].
Worst-Case
[ANS09, ANS10, DMV04, Lar82a,
Lar81, Mic02]. worst-case/average-case
[Mic02]. Wörterbücher [Wen92]. Write
[Moh90, Moh93, MNS07, ZH18, ZHZ+19].
Write-Ahead [Moh90, Moh93].
Write-Friendly [ZH18]. Write-Once
[MNS07]. Wroclaw [ACJ07]. WSN
[DL12]. WSNs [YLSZ19]. Wyner
[DVS+14].
x [PvO95]. X9.30 [ANS97]. X9.30-2
[ANS97]. X9.62 [ANS05]. Xeon [JHL+15].
REFERENCES

XML [CN07, KRML09, MK12, WLLG08, WWZ09].
XMSS [HRB13, HBG+17]. xor [FJ13, CCHK08, MLP07, VD05, vdBGLGL+16].
XOR-based [CCHK08, VD05]. XPS [Ger95]. XRDB [YNKM89]. XSB [SSW94].
XTEA [CV05].

years [Roe95]. Years [Kon10, IEE01, KR19].
Yi [Wag00]. Yi-Lam [Wag00]. Ynot [NMS+08]. Yokohama [AiNOW11]. Yoo [KCC05]. Yoon [KCC05]. York
[ACM12, GSW98, HFI93, IEE90, IEE99, Mat09, IEE90, Jen76]. Yorktown [Jen76].
YY [Nat92].

Zahlen [BJMM94b, BJMM94a]. Zakopane
[Win78]. Zeiteffizienten [Kue83]. Zemor
[Ge95, Ge96, GIMS11, PVCQ08]. Zero
[CLP13, Dam93, OVE94b, Dam94, OVE94a].
Zer-Knowledge [CLP13, Dam93, OVE94b, Dam94, OVE94a].
Zheng [PGV90a, PGV93a, PGV93b]. Zheng-Matsumoto-
Imai [PGV90a, PGV93a, PGV93b]. Zipper
[LWWQ08]. Ziv [DFS*14]. Zoning [GRZ93].
Zugriffsooperationen [Pei82]. zugriffsver-
fahren [Stu82]. zum [Eck74a]. zur [Koe72, Kue83, Kue84a, Pet83]. Zurich [HKNW07, Lak96].

References

ACM:1969:PAN

LCCN ??

Asano:1990:ISS

Anderson:1979:CPH

dum: [AA79b].

Anderson:1979:CCP

Ausiello:1986:IIC

Giorgio Ausiello and Paolo Atzeni, editors. ICDT '86: International Conference on
REFERENCES

Ajtai:1992:FTG

Apers:2001:PTS

Albertini:2014:MHE

Anshel:2016:CHF

Aamodt:2003:CSP

Anderson:1996:TFN
REFERENCES

Aumasson:2012:SFS

Agrawal:1993:ICV

Ahmed:2016:RN

Andreeva:2016:NSP

Arnold:1973:UHA
Abidin:2012:SUH

Azar:1999:BA

Ailamaki:2006:PIW

Andreeva:2012:SAS

At:2017:LAU

Amdahl:1953:xxx

Amdahl, Gene M., Elaine M. Boehme, Nathaniel Rochester, and Arthur L. Samuel. The year is uncertain. Amdahl originated the idea of open addressing with linear probing, which was later independently rediscovered and published [Ers58b].
REFERENCES

The term 'open addressing' was apparently first used in [Pet57] [see [Kno75, page 274]], 1953.

[AC74] L. V. Atkinson and A. J. Cor-
nah. Full period quadratic
hashing. International Jour-
nal of Computer Mathe-
matics, 4(2):177–189, September
1974. CODEN IJCMAT.
ISSN 0020-7160.

[ACJT07] L. (Lars) Arge, Chris-
tian Cachin, Tomasz Jur-
dzinski, and Andrzej Tar-
lecki, editors. Automata,
languages and program-
ming: 34th international
colloquium, ICALP 2007,
Wrocław, Poland, July 9-
13, 2007: proceedings, vol-
ume 4596 of Lecture Notes
in Computer Science. Spring-
er-Verlag, Berlin, Germany / Hei-
delberg, Germany / Lon-
don, UK / etc., 2007. ISBN
3-540-73419-8. ISSN 0302-
9743 (print), 1611-3349 (elec-
tronic). LCCN QA267 .I55
://www.myilibrary.com?id=
135198; http://www.springerlink.
com/content/978-3-540-
73419-2; http://www.
springerlink.com/openurl.
asp?genre=book\%26isbn=
978-3-540-73419-2; http:
//www.springerlink.com/ [ACM76]
openurl.asp?genre=issue

[ACM75a] A. Frank Ackerman. Quadratic
search for hash tables of
size p^n. Communications
of the Association for Com-
puting Machinery, 17(3):
164, March 1974. CO-
DEN CACMA2. ISSN 0001-
0782 (print), 1557-7317 (elec-
tronic).

[ACM75b] ACM, editor. Proceedings of
Seventh Annual ACM Sym-
posium on Theory of Com-
puting, Albuquerque, New
ACM Press, New York, NY
10036, USA, 1975.

[ACM75c] Data: Its Use, Organization
and Management: ACM Pa-
cific 75, Sheraton-Palace Ho-
tel, San Francisco, April 17–
18, 1975. ACM Press, New
York, NY 10036, USA, 1975.

[ACM76] Conference Record of Sev-
enth Annual ACM Sympo-
sium on Theory of Com-
puting: Papers Presented at
the Symposium, Albuquerque,
ACM Press, New York, NY
10036, USA, 1975.

[ACM77] Conference Record of the
Eighth Annual ACM Sympo-

REFERENCES

ACM:1986:PFA

ACM:1984:SPA

ACM:1984:PSA

ACM:1985:RCM

ACM:1985:PFA

ACM:1988:PPS

ACM:1988:PTA

ACM:1989:PPE

ACM:1989:PEA

ACM:1989:PTF

ACM:1990:PTS

ACM:1991:PPE

ACM:1991:ACS

ACM:1991:AAS

ACM:1991:CRE

ACM:1991:PTT

ACM:1991:CCS

ACM:1991:IP1

ACM:1991:MMC

ACM-SIAM:1994:ASD

REFERENCES

REFERENCES

NY 10036, USA and 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2003. ISBN 1-58113-695-1. LCCN ????.

Ahrens:1985:SRS

Adams:2008:ENE

Ashur:2011:LAR

REFERENCES

REFERENCES

Anagnostopoulos:2018:RES Evangelos Anagnostopoulos, Ioannis Z. Emiris, and Ioannis Psarros. Randomized embeddings with slack and

REFERENCES

Ajtai:1983:HFP

Ajtai:1984:HFP

Akl:1990:ACI

Appel:1993:HCG

Alon:2010:BFP

REFERENCES

REFERENCES

[Ald87] David J. Aldous. Hashing with linear probing, un-

Albers:2009:ALP

Alon:1996:DWB

Anderson:1988:PHK

Anderson:1991:TFC

Anderson:1993:CHF

Anderson:1994:FSE

REFERENCES

Anonymous:1983:MPM

Anonymous:1985:PFD

Anonymous:1985:SS

Anonymous:1986:IRN

Anonymous:1989:TIC

Anonymous:1992:PAW

Anonymous:1993:CSA

Anonymous:1993:FSH

Anonymous:1993:TCC

Anonymous:1993:SAD

[Ano93d] Anonymous, editor. The Second Annual Dartmouth Institute on Advanced Graduate Studies in Parallel Computation. Dartmouth College (??), Hanover, NH, USA, June 1993. ISBN ?? LCCN ?? I have been unable to locate this reference in several major libraries, including Dartmoth’s, sigh…

Anonymous:1994:WAM

Anonymous:1995:AUC

Anonymous:1995:FSH

Anonymous:1995:NAT

Anonymous:1995:SHS

Anonymous:1996:RF

Anonymous:2002:SHS

Anonymous:2008:SHS

Anonymous:2009:DSS

Anonymous:2012:SHS

Anonymous:2013:DSS

ANSI:1997:AXP

ANSI:2005:AXP

ANSI. ANSI X9.62:2005:

REFERENCES

Analyti:1992:FSM

Analyti:1993:PAM

Aumasson:2011:CHF

Akbarinia:2007:PTK

Atighehchi:2017:OTM

Anger:1994:IEA

Altawy:2018:SLT

Ariwasa:1968:RHM

Arikan:1994:IGE

Aghili:1982:PGD

Abdelguerfi:1989:EVA

M. Abdelguerfi and A. K. Sood. External VLSI al-

[AS96]

[AS07]

[AS09]

[AS16]

[ASA+09]

[ASBdS16]

5. ISSN 0302-9743 (print), 1611-3349 (electronic).

Asano:1993:APP

Abdulhayoglu:2018:ULS

Al-Talib:2007:IMS

Atkinson:1975:HMS

Aviv:2019:ELG

Ang:1998:TLH

REFERENCES

[Bab79] E. Babb. Implementing a relational database by

REFERENCES

Batson:1965:OST

Batagelj:1975:QHM

Batory:1980:OFD

Batory:1981:AMP

Batory:1982:OBD
D. S. Batory. Optimal file designs and reorganization points. ACM Transactions on Database Systems,
REFERENCES

REFERENCES

ISSN 1066-8888 (print), 0949-877X (electronic).

REFERENCES

[BC39] W. W. Rouse (Walter William Rouse) Ball and H. S. M. (Harold Scott MacDonald [“Donald”]) Coxeter. *Mathematical recreations and essays*. Macmillan Publishing Company, New York, NY, USA, 11th edition, 1939. 45 pp. LCCN QA95 .B3 1939. According to Knuth [Knuth73, p. 507], this is one of two papers that first discuss the birthday paradox: “if 23 or more people are present in the same room, chances are good that two of them will have the same month and day of birth! In other words, if we select a random function which maps 23 keys into a table of size 365, the probability that no two keys map into the same location is only 0.4927 (less than one-half).” The discovery is credited to unpublished work of H. Davenport (1927). See also [vM39].
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bosselaers:1997:RCH

Bertoni:2011:CSF

Bertoni:2012:KIO

Baraani-Dastjerdi:1997:UCH

Bertoni:2006:RBM

Bertoni:2007:SF

Bertoni:2008:ISC

[BDPV08] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentiability-

Bertoni:2009:RPK

Bertoni:2012:KSF

Bertoni:2014:SCS

Beeeri:1988:PTI

Buchmann:2009:HBD

Beeton:TB4-1-36

Beebe:1999:HTL

REFERENCES

REFERENCES

Boral:1989:DMS

Bouillaguet:2008:ACR

Bender:2012:DTH

Batory:1980:UMP

Battiato:2011:RFH

Boeker:1987:SAG

Batory:1980:UMP

[BFG†95] C. Barn, G. Fecteau, A. Goyal,
REFERENCES

Batory:1982:UMP

Becker:1992:RBO

Baritaud:1993:FHCb

Blelloch:2007:SHI

Broadbery:1995:IDE

Barak:1988:HFS

Baritaud:1993:FHCa

Bellare:1994:ICC

Brun:2012:LLS

Barthe:2012:VIH

Barthe:2013:VIH

Bagheri:2012:SFP

REFERENCES

REFERENCES

.springer.com/chapter/10.1007/978-3-662-46800-5_15.

[BI12] Konstantinos Bozas and Ebroul Izquierdo. Large

[BJKS93]

Biscani:2012:PSP

[Bis12]

Buneman:1993:PAS

[BJ93]

Barwick:2007:SAL

[BJ07]

Bierbrauer:1993:FHF

[BJS93]

Bierbrauer:1994:FHF

[BJKS93]

Benhamouda:2016:NFP

[BJL16]
Braibant:2014:IRA

Benouamer:1994:HST

Benouamer:1994:HLN

Bocca:1994:ICV

Bell:1970:LQH

Bechtold:1984:UEH

REFERENCES

[Brassard:1988:GRP]

[Broder:1990:MAH]

[Barker:2007:RRN]

[Bogdanov:2011:SLH]

[Brier:2009:LFC]
REFERENCES

REFERENCES

ISSN 2150-8097.

Blustein:1995:IBV

Bayer:1976:EST

Barklund:1987:HTL

Blakeley:1990:JIM

Bourdon:1990:ORU

Bellare:1997:NPC

Brodnik:1999:MCT

Andrej Brodnik and J. Ian
REFERENCES

Broder:2001:UMH

Beyer:1968:LEC

Beyer:1968:LEC

Black:1998:GHA

Buhrman:2002:BO

Bustio-Martinez:2019:UHL

[BM01] Lázaro Bustio-Martínez, Martín Letras-Luna, René Cumplido, Raudel Hernández-León, Clau-
Barthels:2017:DJA

Barth:1985:SSS

Barreto:2010:WNC

Bobrow:1975:NHL

Bothering:1997:SSS

Bookstein:1972:DH

Bookstein:1973:HST

Bookstein:1974:HCN

[Boo74] Abraham Bookstein. Hash coding with a non-unique search key. *Journal of the
Borman:1981:PSP

Borgwardt:1984:PPU

Bos:2011:EHU

Boukliev:1995:NTL

Boutin:2012:NSW

REFERENCES

REFERENCES

REFERENCES

Bellare:1997:CRH

Bellare:2006:MPP

Bellare:2014:CCH

Bradley:1984:UMD

James Bradley. Use of mean distance between overflow records to compute average search lengths in hash files with open addressing. Technical Report 84/154/12, University of Calgary, May 1984. ?? pp. (email parin@cpsc.ucalgary.ca).

Bratbergsengen:1984:HMR

Bradley:1985:UMD

Bradley:1986:UMD

J. Bradley. Use of mean distance between overflow records to compute average search lengths in hash

REFERENCES

REFERENCES

Bryant:1984:EHL

Biham:1991:DCFb

Biham:1991:DCFa

Biham:1991:DCS

Bhatia:1994:FPH

Bhatia:1994:FIP

Bjatia:1994:FIP

Bentley:1997:FAS

REFERENCES

REFERENCES

journals/tods/1979-4-2/p228-burkhard/.

Burkowski:1981:PHH

Burkowski:1982:HHS

Burkhard:1983:IBI

Burkhard:1983:IIM

Burkhard:1983:PRI

Burkowski:1984:CHH

Burk:1992:HGP

Burkhard:2005:DHP

REFERENCES

Burr:2006:CHS

Burr:2008:NHC

Buttner:1986:UDM

Butin:2017:HBS

Belkin:1989:SPT

Barreto:2012:HCS

Bazrafshan:2013:IBS

REFERENCES

Burnaby, BC, Canada, 1983. ?? pp. (email library@cs.sfu.ca).

137

REFERENCES

[CCW+17] Haibo Chen, Rong Chen, Xingda Wei, Jiaxin Shi,

Chen:1991:HNT

CCY91

Chen:1984:CHC

CD84a

Cheiney:1984:FCR

CDM89

Cheiney:1990:PST

CDM90

Coron:2005:MDR

CDMP05
REFERENCES

Cercone:1987:FAP

Cercone:1988:FAP

Christodoulakis:1989:FOA

Christodoulakis:1989:RPV

Celis:1992:AHL

Catalano:2018:HSS

Cantone:2019:LES

Cooperman:1994:CPR

Gene Cooperman, Larry Finkelstein, Bryant York,

Cowan:1979:HKR

Cotter:1992:CTK

Cormode:2009:FFI

Ceglarek:2012:FPD

Chang:1984:OIR

Cousin:1994:PIS

REFERENCES

ISIJBC. ISSN 0020-0255 (print), 1872-6291 (electronic). Discusses the Multiple Key Hashing method of Rothnie and Lozano [RL74].

Chang:1984:OMP

Chang:1984:SOM

C. C. Chang. The study of an ordered minimal perfect hashing scheme. Communications of the Association for Computing Machinery, 27(4):384–387, April 1984. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). The English translation of Ref. 6 of this paper appears in [Hua82]; that book contains the fundamental prime number functions needed for the ordered minimal perfect hash functions described here.

Chang:1985:SLO

Chang:1986:LOR

Chang:1986:SCO

Chang:1988:APC

Chapman:1991:QSS

Chaudhuri:1994:TBO

Shiva Chaudhuri. Tight bounds on oblivious chaining. SIAM Journal on Computing, 23(6):1253–1265,
REFERENCES

Chang:2012:HCM

Chen:1984:DACa

Wen-Chin Chen. The Design and Analysis of Coalesced Hashing. PhD thesis, Department of Computer Science, Brown University, Providence, RI, USA, November 1984. ?? pp. See also [Che84b].

Chen:1984:DACb

Chen:1991:LPH

Chin:1993:LPH

Andrew Chin. Locality-preserving hashing. In Anonymous [Ano93d], pages 87–98. ISBN ?? LCCN ?? I have been unable to locate this reference in several major libraries, including Dartmouth’s, sigh...

Chin:1994:LPHb

Cormack:1985:PPH

Correa:2006:LTI

José R. Correa, Alejandro Hevia, and Marcos

Camacho:2008:SAC

Camacho:2012:SAC

Chen:2007:TPB

Czech:1992:OAGa

Czech:1992:OAGb

M.-S. Chen, H.-I. Hsiao, and P. S. Yu. Applying hash filters to improving the execution of bushy trees. In Agrawal et al. [ABB93], pages 505–516. ISBN 1-55860-152-X. ISSN 0730-
Ming-Syan Chen, Hui-I Hsiao, and Philip S. Yu.

R. J. Cichelli. On Cichelli’s minimal perfect hash functions method. *Communications of the Association for Computing Machinery*, 23(12):728–729, December 1980. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This is the author’s response to the comments in [IO80] about [Cic80b]. See also [Sag85a].
Cipra:1993:ETS

Colomb:1986:CIS

Cormode:2019:STA

Chang:2019:CTM

Cho:2012:CBF
See cryptanalysis [SPLHCB14].

[Cho:2015:CBF]

[Cercone:1989:IAP]

[Chu:1994:ASH]

[Chase:2012:NHS]

[Chierichetti:2015:LPF]

[Cercone:1981:LDU]

[Cercone:1983:MAMa]
N. Cercone, M. Krause, and J. Boates. Minimal and almost minimal perfect hash

[Cercone:1983:MAM]

[Cercone:1985:ESL]

[Choi:2009:SPC]

[Clausen:2000:EES]

[Chierichetti:2014:CLF]

[Chierichetti:2019:DLS]

REFERENCES

REFERENCES

[CLE84] John G. Cleary. Compact hash tables using bidirec-

[CLM86] P. Celis, P. Å. Larson, and J. I. Munro. Robin Hood hashing. Technical Report CS-86-14, Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, April 1986. ?? pp. See also [Cel86].

Ming-Syan Chen, Mingling Lo, Philip S. Yu, and Honesty C. Young. Applying segmented right-deep trees to pipelining multiple hash joins. IEEE Transactions on Knowledge and Data Engineering, 7(4):656–??, August 1, 1995. CODEN ITKEEH. ISSN 1041-4347.

Xiangyu Chen, Yadong Mu, Hairong Liu, Shuicheng Yan, Yong Rui, and Tat-Seng Chua. Large-scale multilabel propagation based on efficient sparse graph construction. ACM Transac-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chaum:1983:ACP

Chung:1983:PSR

Celis:2011:BBS

Celis:2013:BBS

Comer:1982:HBS

Chang:1983:DOM

Chang:1983:PMF

Chang:1985:FAC

REFERENCES

Cramer:2002:UHP

Chakrabarti:2015:BPL

Cooperman:1996:NSP

Cormode:2010:ANG

Chiou:2012:IMA

IEEE:1990:FAS
Fifth Annual Structure in Complexity Theory Conference Proceedings: July 8–11 1990, Universitat Politècnica de Catalunya, Barcelona,
REFERENCES

Chen:2011:CIK

Chen:2018:AEI

Chen:2018:NVC

Chen:1984:ANV

Chen:1985:AAS

Chen:1986:DAC

Castro:2005:NRG

REFERENCES

Carter:1977:UCHa

Carter:1977:UCHb

Carter:1979:UCH

Chang:1991:LOP

Chang:1993:HON

Carrea:2014:OHN

Cw77b

Chung:2008:TBH

Cw79

Chung:2005:TBH

Chung:2008:TBH

Cw77b

Cw79

Chung:2005:TBH

Cw77b

Chung:2008:TBH

Cw77b

Chung:2008:TBH

Cw77b

Chung:2008:TBH

Chen:2009:SHA

Chiu:2010:FMH

Chandramouli:2019:FFI

Badrish Chandramouli, Dong Xie, Yinan Li, and Donald Kossmann. FishStore: fast ingestion and indexing of raw data. Proceedings of the VLDB Endowment, 12(12):1922–1925, August 2019. CODEN ????? ISSN 2150-8097.

Contini:2006:FPK

Cobb:1991:SIP

Chen:2014:MLC

Chi:2017:HTS

166

REFERENCES

Czech:1998:QPH

Chu:2012:TMP

Chen:2012:AIB

Chen:2012:IBE

Chen:2014:CSI

Dolev:1992:NPH

Dietzfelbinger:1993:OPD

REFERENCES

REFERENCES

[Damgaard:1990:ACE]

[Damgaard:1990:DPH]

[Damgaard:1993:ACE]

[Damgaard:1994:ACE]

[Damgaard:1995:ACE]

[Damgaard:1996:ACE]
REFERENCES

Dang:2013:CFI

Datta:1988:IPH

Davison:1973:RSC

Davies:1991:ACE

Day:1970:FTQ

Drechsler:2012:IEH

Daemen:1993:CSH
REFERENCES

REFERENCES

Debnath:2003:CTA

Deen:1982:IIS

Devroye:1986:LNB

Devine:1993:DID

Devroye:1999:HSR

Denert:1977:D

Datta:1989:IPH
REFERENCES

Domingo-Ferrer:2001:MAR

DellAmico:2015:UAP

Davison:1993:MCR

Davison:1994:MRH

Dawson:1996:CPA

REFERENCES

Desmet:2002:IHC

DeWitt:1986:GHP

Dantras:2016:OIB

Durvaux:2012:IPP

Du:1989:EFS

Dietzfelbinger:1992:PHF

REFERENCES

DeWitt:1990:GDMb

DeWitt:1990:GDMa

Daemen:1993:FDO

Donaldson:1984:CMV

Dietzfelbinger:2001:SMP

Du:1983:SNP

Debnath:2015:RHT

[Biplob Debnath, Alireza]

Dietzfelbinger:1997:RRA

Dolev:1994:NPH

Dolev:2002:NPH

Do:2019:SDC

Dietzfelbinger:2008:DIB

Dietzfelbinger:1990:HDD

I. Dittmer. Note on fast hashing of variable length text strings. Communications of the Association for Computing Machinery, 34(11):118, November 1991. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Points out that Pearson’s hashing algorithm [Pea90] was discovered fourteen years earlier by this author [Dit76]. See also comments in [Sav91, Lit91, Pea91].

Irit Dinur, Klaus Jansen, Joseph Naor, and José Rolim, editors. Approximation, randomization, and combinatorial optimization: algorithms and techniques: 12th International Workshop, APPROX 2009, and 13th International Workshop, RANDOM 2009, Berkeley, CA,
REFERENCES

Diaz:2006:ARC

Du:1980:SNP

DiCrescenzo:2009:CLH

DK94

REFERENCES

Delfs:2002:ICP

DK02

Drmota:2012:PAC

DK12

DK15

De:2007:IAS

DK07

Dahmen:2009:SHB

DK09

REFERENCES

0360-0300 (print), 1557-7341 (electronic). URL

[Dietzfelbinger:1988:DPH]
perfect hashing: Upper and lower bounds. In IEEE-FOCS’88 [IEE88c], pages 524–531. ISBN 0-8186-0877-
3 (paperback), 0-8186-4877-5 (microfiche), 0-8186-8877-7

[Dietzfelbinger:1991:DPH]
perfect hashing: upper and lower bounds. Technical Report CS-TR-310-91, Department of Computer Science,

[Dietzfelbinger:1994:DPH]
Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans Rohnert, and
738–761, ????. 1994. CODEN SMJCAT. ISSN 0097-
5397 (print), 1095-7111 (electronic).

[DeWitt:1984:ITMc]
D. J. DeWitt, H. R. Katz, and F. Olken. Implementation techniques for main
memory database systems. Technical report, University of Wisconsin–Madison,

[DeWitt:1984:ITMa]
D. J. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stone-
braker, and D. Wood. Implementation techniques for main memory database sys-

[DeWitt:1984:ITMb]
D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. Stone-
braker, and D. Wood. Implementation techniques for main memory database sys-
tems. Technical Report UCB/ERL 84/5, Electronics Research Labora-
tory, University of California, Berkeley, CA, USA, January

[DeWitt:1984:ITMd]
David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D.
Shapiro, Michael R. Stonebraker, and David Wood. Implementation techniques

[Dong:2012:UAS] Qi Dong and Donggang Liu. Using auxiliary sensors for pairwise key establishment in WSN. *ACM Trans-

Ernesto Damiani, Valentino Liberali, and Andrea G. B.
REFERENCES

E. D. Demaine, F. Meyer auf der Heide, R. Pagh, and M. Pătraşcu. De dictionariis dynamicis pauco spatio utentibus. (latin) [On dynamic dictionaries using little space]. In Correa et al. [CHK06], pages 349–361. CODEN LNCS9D. ISBN 3-540-32755-X (soft-
REFERENCES

REFERENCES

REFERENCES

[Detroit:2009:AST]

[Doyoddorj:2011:NSI]

[Drescher:2017:BB]

[Drescher:2017:HD]

[Drescher:2017:HRW]

[Dodis:2012:HHA]

[Dertmann:1984:SBI]
REFERENCES

Devine:1984:DFO

Dixon:1997:HPS

Deepthi:2009:DIA

Dietzfelbinger:2009:RUC

Dietzfelbinger:2009:WCH

Du:1995:RMQ

Dayal:1984:VLD

Umeshwar Dayal, G. Schlageter and Lim Huat Seng, editors. Very Large Data Bases:
REFERENCES

Dalessandro:2010:NSS

Dhayal:2017:MMP

Dontas:1990:FTHa

Dontas:1990:FTHb

Dehne:2007:PAI

Dubost:1975:SIN

Dayal:1987:PAC
Umeshwar Dayal and Irv Traiger, editors. Proceedings of Association for Com-
REFERENCES

REFERENCES

[EBD91] K. M. Elleithy, M. A. Bayoumi, and L. M. Delcambre. VLSI implementation of a systolic database machine for relational algebra and hashing. Integration, the VLSI journal, 11(2):169–??, April
1, 1991. CODEN IVJODL. ISSN 0167-9260.

REFERENCES

Ellis:1988:CEH

Erlingsson:2007:CPA

Englert:1994:NSS

Etzel:1999:SHF

Er:1986:UTI

Ershov:1958:PAO

REFERENCES

Ershov:1958:PPB

Estebanez:2014:PMC

Eugenides:1990:ESM

Estan:2006:BAC

Fotakis:2003:SEH

Fabry:1974:CBA

Fahlman:1980:HIS

S. E. Fahlman. The hashnet interconnection scheme. Technical Report CMU-CS-80-125, Department of Computer Science, Carnegie Mel-
REFERENCES

Faloutsos:1985:MHU

Faloutsos:1985:AMT

Faloutsos:1986:MHU

Faloutsos:1988:GCP

Farrell:1993:CCC

Farashahi:2014:HHC

Fontayne:1987:MSR

Frakes:1992:IRD

William B. Frakes and Ricardo Baeza-Yates, editors. *Information Retrieval:
REFERENCES

Faloutsos:1987:DPA

Faloutsos:1987:OSE

Fox:1990:OPM

Fox:1991:OPM

Fox:1992:FAC

Fox:1988:MCE
REFERENCES

ence, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0106, USA, 1988. 11 pp. Electronic mail to fox@fox.cs.vt.edu.

[198]

Fox:1989:MCE

[FCHD89]

[175]

[Feldman:1988:DSM]

[Feldman:1988:DSM]

[Fon]

Manuel R. Freire, Julian Fierrez, Javier Galbally, and Javier Ortega-Garcia. Bio-

Jesus Arias Fisteus, Nor-

puting minimal perfect hash functions for lists of millions of words; previous algorithms were computationally infeasible for more than a few hundred words.

[FHCD92b] Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and Amjad M. Daoud. Practical minimal perfect hash functions for large databases. Communications of the Association for Computing Machinery, 35(1):105–121, January 1992. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). URL http://www.acm.org/pubs/toe/Abstracts/0001-0782/129623.html. This is the first published algorithm for computing minimal perfect hash functions for lists of millions of words; previous algorithms were computationally infeasible for more than a few hundred words.

FIPS:2002:SHS

Fischer:1987:FMP

Field:2013:UCT

Fredman:1984:SST

Fu:1989:CCN

Fredman:1984:SSS
using a two-level data structure, the first containing pointers to the second, and the second containing blocks accessible by a perfect hashing function.

REFERENCES

Flores:1977:DSM

Flores:1977:DSM

Floyd:1987:HHP

Floyd:1987:HHP

Fischlin:2008:RMP

Fischlin:2008:RMP

Fischlin:2014:RMP

Fischlin:2014:RMP

Ferguson:2010:SHF

Ferguson:2010:SHF

Flynn:1992:ORU

Flynn:1992:ORU

Flajolet:1985:PCA

Faloutsos:1989:DUE

Faudemay:1991:AAL

Farach:1996:PHS

Franklin:2002:PAS

Frieze:2009:ARW

Frieze:2011:ARW

Faezipour:2009:HPE

Miad Faezipour, Mehrdad Nourani, and Rina Panigrahy. A hardware platform for efficient worm outbreak

Fagin:1979:EHF

Fiat:1988:NOH

Fiat:1992:NH

Finin:1992:IKM

Fox:1991:GEI

Frost:1982:FGN
Fateman:1989:SDS

Fotouhi:1989:OSS

Fountoulakis:2010:ORH

Fountoulakis:2013:ITC

Feigenblat:2017:MWI

Fotakis:2005:SEH

Flajolet:1998:ALP

[FPV98] Philippe Flajolet, Patricio V. Poblete, and Alfredo Viola. On the anal-

Feldman:1969:ABA

Franklin:2004:ACC

Ferreira:2011:LHB

Freeman:1990:ICP

REFERENCES

Friemel:1986:DM

Frost:1981:ADI

Frost:1982:BRS

Fraenkel:1994:EMD

Flajolet:1982:BPA
REFERENCES

Fortnow:2008:IIC

Fiat:2009:AEA

Farashahi:2009:HEC

Fouque:2012:IHB

Fuerer:1988:UHV

Fusco:2012:RTC

Friedman:1976:GCH

Daniel P. Friedman and David S. Wise. Garbage collecting a heap which includes a scatter table. Information Processing Letters, 5(6):161–164, December 1976. CODEN IFPLAT. ISSN 0020-
REFERENCES

0190 (print), 1872-6119 (electronic). See erratum [FW77].

[FW77] Daniel P. Friedman and David S. Wise. Erratum: “Garbage Collecting a Heap Which Includes a Scatter Table”. Information Processing Letters, 6(2):72, April ??, 1977. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic). See [FW76].

[FXG18] Joseph Gil, Friedhelm Meyer auf der Heide, and Avi Wigderson. The tree model for hashing: Lower and up-

REFERENCES

Gonnet:1990:AKR

Gonnet:1991:HAD

Guh:1990:PPS

Graefe:1995:FAU

Gollapalli:2015:IRH

Gerber:1987:IHS

[GG80]

[GG86a]

[GG86b]

[GG92]

[GGR04]

[GGY+19]
Guo:2007:CBI

Ghandeharizadeh:1993:ILS

Goldsmith:1991:SCIa

Goldsmith:1991:SCIb

Gal:2012:TBC

Ghosh:1977:DBO

Ghosh:1986:DBO

Gennaro:1999:SHS

R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the

Grassl:2011:CTZ

Girault:1987:HFU

Gebhardt:2005:NPV

Goldwasser:2002:DSN

Graham:1979:HST

Goto:1976:HLT

REFERENCES

REFERENCES

Grembowski:2002:CAH

Garcia:2011:CPH

Goodman:2011:SHS

Gong:2017:TMR

Rehak:2008:IAD

Graefe:1991:SVH

Graefe:1994:SVH
REFERENCES

on Knowledge and Data Engineering, 6(6):934–??, December 1, 1994. CODEN ITKEEH. ISSN 1041-4347.

Gonnet:1977:AIH

Gonnet:1979:EOH

Gil:1991:FHP

Gil:1994:SFP

Gil:1998:SFP

Ghaffari:2018:MSV

Garcia-Molina:1990:ASI

Gardarin:1995:OFE

[GMP95] Georges Gardarin, Fernando Machuca, and Philippe Pucheral. OFL: a functional execution model for object query languages. SIGMOD Record (ACM Spe-

REFERENCES

Golshani:1992:EIC

Goldwasser:1994:P

Gollmann:1996:FSE

Gonnet:1977:ALB

Gonnet:1980:OAH

Gonnet:1981:ELL

Gonnet:1983:UDB
Gaston H. Gonnet. Unstructured data bases or very efficient text searching. In ACM-PODS ‘83
REFERENCES

Gonnet:1984:HAD

Gong:1995:CKH

Goto:1983:RSS

Gollapudi:2008:PTM

Gueziec:1997:MIR

Gomez-Perez:2016:CCT

Gentry:2008:THL

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for

Greene:1994:MIHa

Greene:1994:MIHb

Guillou:1995:ACE

Gray:1986:IJH

Graefe:1988:RDF

Graefe:1989:RDF

Graefe:1992:QPT

REFERENCES

Graefe:1993:PEHa

Graefe:1993:PEHb

Graefe:1993:QET

Graefe:1994:DAE

Graefe:1994:SIW

Graefe:1994:VEP

Graefe:1999:VMJ

Gregg:1995:HFT

Grech:2011:JGE

Grimson:1974:PSS

REFERENCES

Griss:1977:EEE

Griss:1979:HKR

Griebel:1998:ASG

Gopal:1993:CCH

Guibas:1976:ADH

Guibas:1978:ADH

Gori:1989:AAC

Grosshans:1986:FSD

REFERENCES

Girault:1994:LCH

Gupta:1994:RSD

Goi:2001:IHF

Goto:1982:DLM

Gope:2017:ASS

Galli:2001:THO

Ganguly:1990:FPP

REFERENCES

Gupta:1998:PTF

Greniewski:1963:ELK

Goto:1980:SHM

Griswold:1993:DID

Guerraoui:2016:OCO

Guibas:1975:HTE

Guibas:1976:AHAa

Guibas:1976:AHAb

Guibas:1976:AHAc

Leo J. Guibas. The analysis of hashing algorithms that exhibit k-ary clustering. In IEEE-FOCS’76 [IEE76], pages 183–196.

Guibas:1978:AHT

Guinier:1989:FUA

Gupta:1989:SHI

Gurski:1973:NAK

Garcia:2008:SCC

Goldreich:1994:TFF

Gadia:1991:IIT

Guo:2019:EER

Griebel:1999:PMA

Guo:2014:CHS

Hachem:1993:AAP

Harbi:2016:ASQ

Harbi:2015:ESQ

Halunen:2012:MGB

REFERENCES

REFERENCES

Hecker:1994:GHG

Hulsing:2017:XEH

Hoang:2010:CAN

Horspool:1987:HCT

Holt:2002:MAR

Holt:2007:PMA

Hedayatpour:2011:HFB

Hsiao:2013:SLB

Healy:2014:AKM

Hart:1995:SHC

Hasan:2006:CSE

Hanson:1990:PMAb

Hernandez-Castro:2012:AFH

REFERENCES

Healey:1972:CEP

Headrick:1982:HRS

Hejlsberg:1989:COT

Hekmatpour:1989:LP1

Heller:1989:EH

Heller:1991:MHY

Helleseth:1994:ACE

Herbert:2007:WHP

Heuer:1987:WRD

Herrin:1991:ADF

Hull:2013:SPC

Huang:2017:QAL

Huang:2015:QAL

Hikita:1977:AFP

Lai:2009:CCD

Hendricks:2007:LOB

Hester:1985:SOL

Harn:2010:ELL

Haitner:2010:UOW

Hill:1978:CSVa

Hill:1978:CSVb

Hildebrandt:1982:VBD

Hille:1988:DAP

Reinhold F. Hille. Data Abstraction and Program Devel-

[Herschel:1975:WHC]

[Helleseth:1996:UHF]

[Hopcroft:1983:HCG]

[Haggard:1986:FMP]

[Hofri:1987:PLR]

[Hagerup:1995:FPP]

[Halevi:2012:SPH]

Hofheinz:2012:PHF

Hk:2010:PAR

Hk:2013:HOE

Hao:2004:ARF

Hao:2007:BHA

Hao:2012:FDM

REFERENCES

[Hsu:2003:NCS] Ching-Hung Hsu and Ming-Chih Lai. A new cipher scheme based on one-way hash function and IDEA.
REFERENCES

[HLL18a] Shuai Han, Shengli Liu, and Lin Lyu. Super-strong RKA secure MAC, PKE and SE from tag-based hash proof system. Designs, Codes, and Cryptography, 86(7):1411–1449, July 2018. CODEN DCCREC. ISSN 0925-

Hanaoka:2012:ICE

Hwang:2019:BBR

Ha:2007:SAE

Hagerup:2001:DD

Havas:1994:GHH

Hiraki:1984:EAM

REFERENCES

Hashida:1972:LAC

Holub:1987:NHE

Holden:2013:GHF

Hopgood:1968:xxx

Hopgood:1968:STO

Hanan:1963:ACT

Halatsis:1978:PHT

Han:2002:CMV

Harris:1993:ODM

REFERENCES

REFERENCES

Hirano:1995:IEH

Hiranandani:1991:PHC

Hafiane:2008:RIH

Hernandez:2001:DTR

Herlihy:2008:HH

Hutflesz:1988:GOP

[HSW88] Andreas Hutflesz, Hans-Werner Six, and Peter Wid-

Huisman:1990:SEM

Hulsing:2013:WOS

Hong:1988:IMB

He:2008:FED

Huang:2013:FDH

Hohl:1994:SIH

Hsu:1986:COE

Zsolt István, Gustavo Alonso, Michaela Blott, and Kees Vissers. A hash table for in-rate data processing. *ACM Transactions on Reconfig-
REFERENCES

IEEE:1986:ICD

IEEE:1987:DEP

IEEE:1988:PFI

IEEE:1990:PSI

IEEE:1991:PSI

IEEE:1993:ICD

[ICD93] Proceedings/Ninth International Conference on Data Engineering, April 19–23,

IEEE:1974:ASS

IEEE:1976:ASF

IEEE:1980:PCI

IEEE:1980:ASF

IEEE:1982:SFC

IEEE:1984:ISL

IEEE:1985:FOC

[IEE85a] 26th annual Symposium on
REFERENCES

IEEE:1989:ASF

IEEE:1990:PSN

IEEE:1991:PAS

IEEE:1992:PII

IEEE:1992:PAS

IEEE:1993:PSP

IEEE:1994:DEI

IEEE:1994:NAE

IEEE:1994:PSH

IEEE:1995:PNA

Computer Society order number P????.

REFERENCES

ACM:1989:PIJ

Ishai:2005:SCC

Ishai:2008:CCC

Impagliazzo:1989:ECS

[Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as secure as subset sum. An-
REFERENCES

Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors. Advances in Cryptology, ASIACRYPT ’91: International Conference on the Theory and Ap-
Inoue:1991:RRD

ISO:1997:ITS

REFERENCES

Itoh:1993:SCF

Ideguchi:2014:IDC

Jacobson:1992:ETH

Jaeschke:1981:RHM

G. Jaeschke. Reciprocal hashing: a method for generating minimal perfect hashing functions. *Communications of the Association for Computing Machinery*, 24(12):829–833, December 1981. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Hash functions, for a key \(x \) in a set \(S \) of positive integers, of the form \(h(x) = (C/(Dx+E)) \mod N \) are considered. Though the existence of \(h \) is guaranteed, the scheme suffers from many practical problems because of exhaustive nature of the search for \(h \).

Jagannathan:1991:OPM

Jain:1989:CHS

Raj Jain. A comparison of hashing schemes for ad-

REFERENCES

4309 (print), 1557-7309 (electronic).

[Chang:2012:TRR]

[Junczys-Dowmunt:2012:SEP]

[Jia:2019:ETS]

[Jenks:1976:SPA]

[Jenkins:1997:AAH]

[Janzadeh:2009:SCB]

Jean:2014:ICA

Jaeschke:1980:CMP
[JO80] G. Jaeschke and G. Osterburg. On Cichelli’s minimal perfect hash functions method. Communications of the Association for Computing Machinery, 23(12):728–729, December 1980. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This letter to the editor contains comments on [Cic80b], together with a response from R. J. Cichelli [Cic80a].

Johnson:1961:ICM

Johannson:1997:BHS

Jouannaud:1985:FPL

Joux:2004:MIH

Joye:2003:TCC

Jutla:2007:PGC

Jensen:2008:OEM

Jin:2009:SMB

Jung:1987:IRC

REFERENCES

Jacobs:1986:TRT

Janson:2016:UAL

Jia:2018:PPH

Jiang:2007:DHT

Joux:2014:SAC

Kabe:1987:RRT

Kahrs:1992:UUL

S. Kahrs. Unlimp, uniqueness as a leitmotiv for implementation. In Bruynooghe and Wirsing [BW92], pages

Kanada:1993:MVP

Karlsson:1982:ACR

Karloff:1998:PNA

Kawagoe:1985:MDH

Kawamoto:2015:LSH

Kanj:2018:SNN

Krause:1981:PHF

Max Krause, Nick Cercone, and John Boates. Perfect hash function search with application to natural language systems. Technical Report CMPT TR 81-6, Simon Fraser University, 1981. ?? pp. (email library@cs.sfu.ca).

Ku:2005:WYR

Wei-Chi Ku, Min-Hung Chiang, and Shen-Tien Chang. Weaknesses of Yoon–Ryu–Yoo’s hash-based password

Kirk:1984:CMI

Ku:2003:WLL

Kim:2011:SSE

Koushik:1992:LDH

Knott:1989:HTC

Keller:1993:HRP

Keller:1996:FRP

Kennedy:1973:RSU

Kerr:1975:PIC

Kocberber:2015:AMA

Kak:1995:ILM

Kaushik:2012:MGH

Kralevska:2018:HEC

Karplus:1984:FMP

Khan:1995:PDH

REFERENCES

Kuo:1989:DSF

Kortelainen:2010:MAG

Kanizo:2012:HTF

Kanizo:2015:MTH

Kitsuregawa:1989:JSK

Kim:1991:ISSa

Kim:1991:ISSb

REFERENCES

5999 (print), 1557-9484 (electronic).

Kak:1994:CVW

Kiessling:1985:DFU

Kiltz:2001:PPS

Kilian:2005:TCS

Kim:1980:QOR

Kim:1999:NSP

Kim:2011:EHB

[102x444] Nam-Uk Kim, Sung-Min

Kojima:1985:HFO

Khan:1996:PCI

Kelsey:2006:HHF

Kakvi:2012:OSP

Kakvi:2018:OSP

Kim:2012:SSL
Saehoon Kim, Yoonseop Kang, and Seungjin Choi. Sequential spectral learning to hash with multiple representations. *Lecture Notes in
REFERENCES

REFERENCES

[KL96] Jyrki Katajainen and Michael Lykke. Experiments with universal hashing. DIKU Report 96/8, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark, ??? 1996.

REFERENCES

[102x681] REFERENCES

volume=49&issue=2&spage=147.

REFERENCES

Kirsch:2008:SSH

Karroumi:2009:HBK

Kirsch:2010:POM

Kakarountas:2006:HSF

Kirsch:2010:HBT
REFERENCES

link.springer.com/content/pdf/10.1007/978-3-540-87744-8_51; http://www.springerlink.com/content/24620h6712831010/.

http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/277.tif
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/278.tif
Section 3, “A history of hashing schemes”, and the lengthy bibliography, are recommended and useful resources.

Knott:1984:DCC

Knott:1988:LOA

Khovratovich:2010:RRA

Kitsuregawa:1989:EBS

Knuth:1973:ACP

Knuth:1974:CSR
REFERENCES

Knuth:1975:ACP

Knuth:1977:DPR

Knudsen:1992:CL

Knudsen:2019:LHA

Kitsuregawa:1990:BSP

Koehler:1972:SDB
Ch. Koehler. Ein System zur Darstellung und Bearbeitung Assoziativer Datenstrukturen. (German) [a system for displaying and edit-

Kohonen:1980:CAM

Koschke:2014:LSI

Koushik:1993:DHD

Kilov:1981:DMA

REFERENCES

Kedem:1992:OPA

Krichevskii:1994:CSE

Knudsen:1996:HFB

Knudsen:1997:FSH

Katzenelson:1992:TMT

Kohonen:1979:VFA

Karp:1981:ERP

REFERENCES

Kelley:1986:IMK

Kelley:1986:IME

Kelley:1988:MEH

Keller:1991:APH

Krovetz:2001:FUH

Krovetz:2006:VUH

Kishore:2019:PCH

REFERENCES

Krause:1982:PHF

Krawczyk:1994:LBH

Krawczyk:1995:NHF

Krichevsky:1984:OH

Krichevskii:1989:ADC

Kohonen:1980:TWR

Kawaguchi:2009:TBD

Kim:2009:CIS

REFERENCES

Kwon:2009:FXD

Kohonen:1984:ORS

Knudsen:2007:GFH

Kruse:1984:DSP

Kriegel:1986:EMD

Kriegel:1987:MDH

Kriegel:1987:MDQ

Hans-Peter Kriegel and Bernhard Seeger. Multidimensional dynamic quantile hashing is very effi-

Karger:1999:WCC

Kwak:2011:DIB

Kwak:2012:DIB

Kalvin:1986:TDM

Kim:1999:LEO

Kitsuregawa:1983:AHD

Kitsuregawa:1983:GRA

[KTMO83b] Masaru Kitsuregawa, Hidehiko Tanaka, and Tohru
Kitsuregawa:1983:RAM

Kitsuregawa:1992:PGH

Karlin:1988:PHE

Ku:2004:HBS

Kuespert:1982:MLHa

Kuespert:1982:MLHb

REFERENCES

Kuespert:1983:VZO

Kuespert:1984:USO

Kuespert:1984:EED

Kuich:1992:ALP

Kulkarni:1984:CHF

Kumar:1989:CCM

Kumar:1989:CCE

Kumar:1990:COE

REFERENCES

[**Kutzelnigg:2006:BRG**]

[**Kutzelnigg:2010:IVC**]

[**Kenyon:1991:MQS**] [**KV91**]

[**Katz:2009:SPH**] [**KV09**]

[**Kortelainen:2012:GIH**] [**KVK12**]

[**Kroll:1994:DST**] [**KW94**]

Brigitte Kröll and Peter Widmayer. Distributing a search tree among a growing num-

[Lai:1992:DSB] Xuejia Lai. On the design and security of block ciphers. Hartung-Gorre Verlag, Konstanz, Switzerland, 1992. ISBN 3-89191-573-X. xii + 108 pp. LCCN ??. This is the author’s Ph.D. dissertation. “Secret-key block ciphers are the subject of this work. The design and security of block ciphers, together with their application in hashing techniques, are considered. In particular, iterated block ciphers that are based on iterating a weak round function several times are considered. Four basic constructions for the round function of an iterated cipher are studied.”.

REFERENCES

Lee:2007:CFRa

REFERENCES

[LC86a] T. J. Lehman and M. J. Carey. A study of index

Ted G. Lewis and Curtis R. Cook. Hashing for dynamic and static internal tables. Computer, 21(10):45–57 (or 45–56??), October 1988. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic). The authors survey the classical hashing function approach to information retrieval and show how general hashing techniques exchange speed for memory. It is a tutorial paper that covers, among other topics, dynamic and static hash tables, perfect hashing, and minimal perfect hashing.

Fang Liu and Lee-Ming Cheng. Perceptual image hashing via wave atom transform. Lecture Notes in CS,
REFERENCES

REFERENCES

Lee:2012:OFL

Lieuwen:1992:PBJ

Liu:2016:TRS

Lebedev:1987:EEU

Luo:2002:SHR

Gang Luo, Curt J. Ellmann, Peter J. Haas, and Jeffrey F. Naughton. A scalable hash ripple join algorithm. In Franklin et al. [FMA02], pages 252–262. ISBN ???? LCCN ???? ACM order number 475020.

Leppanen:1998:BPS

Lesk:1988:GII

REFERENCES

[Lamiroy:1996:ROI]

[LG96]

[Li:2013:NCD]

[LG13]

[Luo:2003:COA]

[LH03a]

[Luo:2004:IEH]

[Lefebvre:2006:PSH]

[LH06]

[Lin:2005:GPW]

A. D. Lin. ??? The year is uncertain (???). Extends [Luh53] with an alternative overflow handling technique using “degenerative addresses” [Knu73, p. 541], 1953.
REFERENCES

James Litsios. Note on fast hashing of variable length text strings. Communications of the Association for Computing Machinery, 34(11):118–120, November 1991. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Suggests a simple extension of Pearson’s hashing algorithm [Pea90] that supports non-character data. See also comments in [Dit91, Sav91, Pea91], and early work in [Dit76].

REFERENCES

Li:2019:IID

Lv:2017:IPL

Larson:1984:FOI

Lucchesi:1993:AFA

Lai:1994:ADB

Lagutin:2007:CIC

Li:2011:TAB

Ping Li and Arnd Christian König. Theory and applications of b-bit minwise hashing. *Communications of the Association for Computing Machinery*, 54(8):101–109, August 2011. CODEN CACMA2. ISSN 0001-
Lemire:2014:SUS

Lemire:2016:FBU

Lee:2004:CUA

Louchard:1983:PTC

Lodi:1985:SSH

Litwin:1986:BDA

[LL86] Witold Litwin and David B. Lomet. The bounded disorder access method. In *Proceedings of the International Conference on Data Engineering*, pages 38–48 (or 38–47??). IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD
REFERENCES

Litwin:1987:NMF

Leng:1992:OWA

Lenzerini:2008:PTS

Lee:2013:SQB

Lowden:2015:DPA

Leung:1989:LPA

Luo:2012:IDE

Yiyuan Luo, Xuejia Lai, and Zheng Gong. Indifferen-

Cheng-Hung Lin, Jin-Cheng Li, Chen-Hsiung Liu, and Shih-Chieh Chang. Perfect hashing based parallel algorithms for multiple string matching on graphic processing units. *IEEE Transactions on Parallel and Dis-
tributed Systems, 28(9):2639–2650, September 2017. CO-
DEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (elec-
computer.org/csdl/trans/
td/2017/09/07864442-abs.
html.

Lloyd:1981:ICI

puter Science, University of Melbourne, Australia, 1981. ?? pp.

Liu:2010:MPI

[LLW10] Xiaowen Liu, Jinyan Li, and Lusheng Wang. Modeling protein interacting groups by quasi-bicliques: Complex-
ity, algorithm, and application. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, 7 (2):354–364, April 2010. CO-
DEN ITCBCY. ISSN 1545-
5963 (print), 1557-9964 (elec-
tronic).

Liang:2010:LVB

[LLZ10] Yingyu Liang, Jianmin Li, and Bo Zhang. Learning vocabulary-based hash-
ing with AdaBoost. Lecture Notes in CS, 5016:
545–555, 2010. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (elec-
springer.com/content/pdf/10.1007/978-3-642-11301-
7_54.

Lueker:1988:MAD

[LM88] G. S. Lueker and M. Molodow-
itch. More analysis of double hashing. In ACM-TOC’88
[ACM88b], pages 354–359. ISBN 0-89791-264-0. LCCN
QA 76.6 A13 1988.

Lai:1993:HFBa

[Rue93], pages 53–66. ISBN 0-387-56413-6 (New York), 3-

Lai:1993:HFBb

DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
tronic).

Lueker:1993:MAD

[LM93c] G. S. Lueker and Mariko Molodowitch. More analysis of double hashing. Combi-
natorica, 13(1):83–96, 1993. CODEN COMBDI. ISSN 0209-9683 (print), 1439-6912 (elec-
tronic).

Leighton:1995:LPF

[F. T. Leighton and S. Mi-
cali. Large provably fast and secure digital signature schemes from secure

[Lee:2007:FDF]

Lee:2007:FDF

[LMLC14]

Liu:2014:MIK

[Li:2012:SPS]

Li:2012:SPS

[Lu:2008:CBN]

Lu:2008:CBN

[Luykx:2015:TPB]

Luykx:2015:TPB

[LNS93] Witold Litwin, Marie-Anne A. Neimat, and Donovan A. Schneider. LH* — linear hashing for distributed files. *SIGMOD Record (ACM Special Interest Group on Man*

Litwin:1996:LSD

Lohman:1989:IQO

Lomet:1983:BIE

Lomet:1988:SBD

Lomet:1993:FDO

Lin:2001:EHM

Shu Lin, M. Tamer Özuşu, Vincent Oria, and Raymond T. Ng. An ex-

Franck Landelle and Thomas

Lei:2014:FND

Larson:1985:EPH

Lee:1996:DRW

Lo:1996:SHJ

Li:1999:FJU

Litwin:1991:THC

Litwin:1989:THC

Leskovec:2014:MMD

Lipton:1978:EHS

Lipton:1980:EHS

Lipton:1980:FDO

REFERENCES

Luhn:1953:xxx

Hans Peter Luhn. Internal IBM memo that first suggested the idea of hashing, and one of the first applications of linked linear lists. Luhn is also the inventor of KWIC indexing, in 1960 [Knu73, p. 437]. See also [Lin53], January 1953.

Lum:1973:GPA

Lutterbach:1988:NSD

Li:2011:EDH

Lamdan:1988:GHG

Lee:2004:IAK

Lenstra:2017:TPR

Arjen K. Lenstra and Benjamin Wesolowski. Trustworthy public randomness with
REFERENCES

Lum:1972:ARK

Lum:1971:KAT

Liu:2013:IRQ

Lyon:1978:HLP

Lyon:1978:PST

Lyon:1979:BSS

Lyon:1983:PCC

REFERENCES

REFERENCES

Mallach:1977:SST

Mandelbrod:2012:LHA

Martin:1964:HCF

Martin:1971:DEA

Martin:1975:CDB

Martin:1977:CDB

Matias:1993:HPR

Mathieu:2009:PTA
Maurer:1968:PTI

Maurer:1983:IHC

Martini:2003:DHM

Marton:2012:OCC

Manegold:2000:ODA

Mazeika:2007:ESA

Munro:1986:TCR

J. Ian Munro and Pedro Celis. *Techniques for Collision Resolution in Hash Tables with Open Addressing*. IEEE Computer Society Press, 1109 Spring Street,
REFERENCES

Mehlhorn:1982:PSP

Mehlhorn:1984:SS

Mehlhorn:1986:DEA

Meijer:1995:HFB

Mekouar:1983:EPD

Miranda:2014:RSE

Mendelson:1982:AEH

Mennink:2012:OCS

REFERENCES

[Mennink:2017:OCS]

[Mergenthaler:1972:HCT]

[Merkle:1990:FSO]

[Merkle:1990:OWH]

[MeyerAufDerHeide:1993:HSS]

[Mor:1982:HCM]

[Manolopoulos:1992:AHF]
Y. Manolopoulos and N. Fistas. Algorithms for a hashed file with variable-length records. Information sciences, 63(3):229, 1992. CODEN ISIJBC. ISSN 0020-
Munoz:2004:CRS

Mueller:2006:SMG

Mochizuki:2000:ERA

Micciancio:2002:ICH
Maabreh:2018:MHT

Milersen:1998:ECC

Milersen:1999:CPC

Miyaguchi:1989:NHF

Mironov:2001:HFM

Mirrokni:2017:OOM

Mitzenmacher:2009:SOQ

Mittelbach:2012:HCS

Mitzenmacher:2017:BBH

REFERENCES

Miliaraki:2012:FDS

Mozaffari-Kermani:2017:FDA

Mozaffari-Kermani:2018:ERE

McGrew:2016:SMH

Mochizuki:1998:SSA

Maurer:1975:HTM

Mackert:1986:ROV

REFERENCES

Rajeev Motwani, Assaf Naor, and Rina Panigrahy. Lower bounds on locality sensitive
REFERENCES

REFERENCES

REFERENCES

REFERENCES

1984. CODEN DGSKAR. ISSN 0366-9092.

[MRL+19] Rodrigo Medeiros Duarte, André Rauber Du Bois,

Mendel:2010:RAR

[MRST10]

Mitchell:1989:RHF

[MRW89]

Mikkilineni:1988:ERJ

Murthy:1988:SSC

Malard:2002:DDH

Montuschi:2005:PIS

Mashatan:2009:ITC

Makrushin:2012:IRB

Morawiecki:2013:SBP

Maier:2016:CHT

McCleod:1990:VLD
Dennis McLeod, Ron Sacks-Davis, and Hans Schek, editors. *Very Large Data Bases: 16th International Conference on Very Large Data Bases, August 13–16, 1990, Brisbane, Australia*. Morgan Kaufmann Publishers, San

Mullan:2016:HHF

Madria:2000:MLT

Muehlbacher:2004:FHT

Mullin:1972:IIS

Mullin:1981:TCL

Mullin:1984:UDH

Mullin:1984:UDH
REFERENCES

tal storage: Efficient dy
namic hashing with con
stant performance. The
Computer Journal, 28(3):
330–334, July 1985. CO
DEN CMPJA6. ISSN 0010
4620 (print), 1460-2067 (elec
tronic).

on universal classes of hash
functions. Information Pro
cessing Letters, 37(5):247–
256, March 14, 1991. CO
DEN IFPLAT. ISSN 0020
0190 (print), 1872-6119 (elec
tronic).

tions for hash-based join
methods. The Computer Jour
nal, 35(6):A499–A503, Dece
ISSN 0010-4620 (print), 1460-2067 (elec
tronic).

ffrey Scott Vitter. Maxi
mum queue size and hash
ing with lazy deletion. In
Wegman et al. [WGM88],
pages 743–748. URL http:
//www.dtic.mil/dtic/tr/
fulltext/u2/a208838.pdf.

On parallel hashing and in
teger sorting. In Paterson
[Pat90], page ?? ISBN 0
387-52826-1 (New York), 3
540-52826-1 (Berlin). LCCN
QA267.A1 L43 no.443.

Converting high probability
into nearly-constant time,
with applications to parallel
hashing. In ACM-TOC’91
[ACM91e], pages 307–316.
QA 76.6 A13 1991.

On parallel hashing and in
teger sorting. Journal of
Algorithms, 12(4):573–606,
December 1, 1991. CO
DEN JOALDV. ISSN 0196
6774 (print), 1090-2678 (elec
tronic).

Vanstone, editors. Advances in Cryptology–
CRYPTO ’90: Proceedings,
volume 537 of Lecture Notes
in Computer Science. Spring
er-Verlag, Berlin, Germany /
Heidelberg, Germany / Lon
don, UK / etc., 1991. ISBN
0-387-54508-5 (New York), 3
540-54508-5 (Berlin). LCCN
QA76.9.A25 C79 1990. Con
ference held Aug. 11–15,
1990, at the University of California, Santa Barbara.

Mu:2012:ALS

Majewski:1992:FGM

Majewski:1996:FPH

http://www3.oup.co.uk/computer_journal/Volume_39/Issue_06/0139_06.body.html#AbstractMajewski. This paper claims the discovery of order-preserving perfect hashing methods that run in linear time.

Ma:2012:HPO

Mendelson:1979:PMO

Mendelson:1980:NAA

REFERENCES

Nuida:2015:MPS

Namba:1986:SIU

NIST:1992:PYA

NIST:1995:FPSb

Navathe:1985:PAI

Nakano:2011:AMI

Narayanan:2008:DAQ

[NDMR08] Dushyanth Narayanan, Austin Donnelly, Richard Mortier,

[NH74]

[Nec79]

[Ng79]

[NI83]

Shaun Nichols. Nice-Hash diced up by hackers, thousands of Bitcoin

Niemeyer:1975:DV

Nilli:1994:PHP

NIST:2015:SSP

Nielsen:2016:SLF

Nakayama:1988:HPJ

Nakajima:2002:PAP
Newhall:2002:CPC

Tia Newhall and Lisa Mee-\linebreak den. A comprehensive \linebreak project for CS2: \linebreak combining key data structures \linebreak and algorithms into an \linebreak integrated Web browser \linebreak and search engine. SIGCSE \linebreak Bulletin (ACM Special \linebreak Interest Group on Computer \linebreak Science Education), 34(1):386–\linebreak 390, March 2002. CO\-\linebreak DEN SIGSD3. ISSN 0097-\linebreak 8418 (print), 2331-3927 (elec\-\linebreak tronic). Inroads: paving \linebreak the way towards excellence in \linebreak computing education.

Nakaike:2010:LER

Takuya Nakaike and Maged M. Michael. Lock elision for \linebreak read-only critical sections in \linebreak Java. SIGPLAN Notices, \linebreak 45(6):269–278, June 2010. \linebreak CODEN SINODQ. ISSN 0362-1340 \linebreak (print), 1523-2867 (print), 1558-1160 (elec\-\linebreak tronic).

Nanevski:2008:YDT

Aleksandar Nanevski, Greg \linebreak Morrisett, Avraham Shin\linebreak nar, Paul Govereau, and \linebreak Lars Birkedal. Ynot: depen\linebreak dent types for imperative \linebreak programs. SIGPLAN No\-\linebreak tices, 43(9):229–240, Septem\linebreak ber 2008. CODEN SIN\-\linebreak ODQ. ISSN 0362-1340 \linebreak (print), 1523-2867 (print), \linebreak 1558-1160 (electronic).

Ntantogian:2019:EPH

Naor:1990:SPS

Joseph Naor and Moni Naor. Small-bias probability \linebreak spaces, efficient constructions \linebreak and applications. In Pro\-\linebreak ceedings of the 22nd Annual \linebreak ACM Symposium on Theory \linebreak of Computing (May 14–16 \linebreak 1990: Baltimore, MD, USA), \linebreak pages 213–223. ACM Press, \linebreak New York, NY 10036, USA, \linebreak 1990. ISBN 0-89791-361-2. \linebreak LCCN ???.

Narita:2012:LJH

Kazuyo Narita, Shinji Nakada\linebreak i, and Takuya Araki. Landmark\linebreak Join: Hash-join based string \linebreak similarity joins with edit dis\linebreak tance constraints. Lecture \linebreak Notes in CS, 7448: \linebreak 180–191, 2012. CODEN \linebreak LNCSD9. ISSN 0302-9743
REFERENCES

358

Noltemeier:1982:I

Noltemeier:1982:IIE

Negri:1991:DJN

Nevelsteen:1999:SPU

Nguyen:2012:SOU

Newman:1990:PHG

Nielsen:1982:ALP

Neelima:2016:PHF

[Arambam Neelima and Kh Manglem Singh. Perceptual...

[Nyang:2016:RCC]

[NS16b]

[NSS+06]

[NSW08]

[NSW09]

[NT01]

REFERENCES

Ouksel:1989:CML

Oaks:1998:BSH

Oligeri:2011:REA

Anonymous:1989:DQO

Olagunju:1994:DPH

Olagunju:1994:ILS

Ordonez:2014:BVS

Oberschelp:1980:IID
Okamoto:1988:DMS

Omiecinski:1989:HBI

Omiecinski:1988:CSS

Omiecinski:1992:AHJ

Ollmert:1989:DD

Olsen:1969:RRF

Omiecinski:1988:CFC

Omiecinski:1989:CFC

Omiecinski:1989:HJP

Omiecinski:1991:PAL

Omar:2012:HEC

Omar:2017:DHS

Odaire:2010:ERT

Ostlin:2003:UHC

Orenstein:1983:DHF

Olken:1990:RSH

[ORX90] Frank Olken, Doron Rotem, and Ping Xu. Random sampling from hash files. SIGMOD Record (ACM Special Interest Group on Management of Data), 19(2):

REFERENCES

Ouksel:1983:OPD

Oxborrow:1986:PFB

Ostrovsky:1994:IHSa

Ostrovsky:1994:IHSb

ODonnell:2014:OLB

Pouchol:2009:HHS

Pramanik:1993:MDH

REFERENCES

Parallel Algorithms and Applications, 4(3-4):223–237, November 1994. CODEN PAAPEC. ISSN 1063-7192. URL http://www.informaworld.com/smpp/content~content=a777314733. This is a plagiarized article. See http://www.sics.se/europar95/plagiarism.html for details. The original work from which the material in this paper was stolen is due to Thomas J. Sheffler and Randal E. Bryant, CMU report MCU-CS-92-172.

Palma:2008:EPC

Park:2018:OTP

Paterson:1990:ALP

Patarin:1994:HFA

Patarin:1995:CID

Papadimitriou:1980:PBH

Christos H. Papadimitriou and Philip A. Bernstein. On the performance of balanced hashing functions when the
keys are not equiprobable. ACM Transactions on Programming Languages and Systems, 2(1):77–89, January 1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Purdom:1985:AA

Prokopec:2012:CTE

Preneel:1997:CHF

Park:1995:UPR

Pang:1993:PPHa

H. Pang, M. Carey, and M. Livny. Partially pre-

REFERENCES

http://www.acm.org/pubs/toc/Abstracts/0001-0782/78978.html. See [Dit76, Dit91, Lit91, Pea91, Sav91].

REFERENCES

Petersson:2013:MDL

Peyrin:2015:CAG

Pramanik:1985:DH

Pramanik:1988:OCR

Papadakis:2009:HBO

Perrizo:1995:DDV

Patil:2017:HHA

Preneel:1990:ATH

B. Preneel, R. Govaerts, and J. Vandewalle. An attack on two hash functions by zheng-matsumoto-imai. In Seberry and Pieprzyk [SP90],
REFERENCES

Preneel:1990:PMD

Preneel:1991:CRH

Preneel:1992:CSH

Preneel:1993:ATH

Preneel:1993:ATH

Preneel:1993:CSI

Preneel:1993:CHF

Preneel:1993:HFB

[PGV93e] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ciphers:
REFERENCES

Preneel:1993:IAH

Preneel:1993:PMD

Preneel:1994:HFB

Preneel:1994:HFB

Paul:2012:NPB

Park:2001:VNH

REFERENCES

Pflug:1987:LPN

Plachy:1989:PIC

Popic:2018:FMB

Pineda:2009:UOD

Plauger:1998:SCCk

Park:2007:SDN
Kwangkyu Park, JongHyup Lee, Taekyoung Kwon, and Jooseok Song. Secure dynamic network reprogramming using supplementary
Pieprzyk:1998:RSF

Pieprzyk:1999:RSF

Pieprzyk:2001:RSF

Pagh:2004:CH

Preneel:1993:ADC

Preneel:1994:DPD

Preneel:1994:CHF

REFERENCES

Prenel:1994:CHF

Prenel:1997:HFM

Prenel:1997:MHF

Prenel:1999:SCH

Price:1971:TLT

Peyravian:1998:PHV

Pontarelli:2016:PDP

Provenzano:1989:HTM

Prodinger:1994:ACP

Prokopec:2018:CTC

Paiva:2015:ASS

Peyravian:1999:HBE

Pieprzyk:1993:DHA

Pavlou:2008:FAD

Porat:2012:CHV

Pieprzyk:1995:ACA

REFERENCES

[Pramanik:1990:HSK]

[PSR90]

[PSS09]

[Pong:2010:SSS]

[Pahins:2017:HSL]

[PT10b]
Fong Pong and Nian-Feng Tzeng. SUSE: superior storage-efficiency for routing tables through prefix

Patrascu:2011:PST

Pong:2011:HRP

Patrascu:2012:PST

Patrascu:2013:TTH

Patrascu:2016:IRL

Papamanthou:2016:AHT

Pirotte:1985:VLD

Panti:1992:MOH

Preneel:1995:MBF

Pasini:2007:HSW

Poblete:2019:ARH

Petit:2008:EPR
REFERENCES

Poblete:1994:AHS

Poblete:1997:ALL

Preneel:1995:MMB

Technical Committee on Security and Privacy.

Piper:1993:DSH

Prasanna:1994:SDP

Phan:2006:SCI

Peikert:2008:LTF

Pan:2013:CHF

Pagh:2010:COH

Pagh:2014:COH

Pittel:1988:STE

Quittner:1981:CSH

Quinlan:2002:VNA

Quisquater:1989:BHF

Quisquater:1990:BHF

[QG90] Jean-Jacques Quisquater and Marc Girault. 2n-bit hash-

Quisquater:1995:ACE

Quisquater:1997:ASS

Qi:1998:DAH

Qu:2016:CHT

Quittner:1983:ECI

Quisquater:1989:ACE

Jean-Jacques Quisquater and Joos Vandewalle, editors. Advances in Cryptology—EUROCRYPT ’89: Workshop on the Theory and Ap-
Qi:2018:TSL

Radke:1970:UQR

Radue:1983:DIS

Radhakrishnan:1992:IBC

Richter:2015:SDA

Ragde:1993:PSC
Roman:2007:SCP

Ramakrishna:1987:CPH

Ramakrishna:1988:EPM

Ramakrishna:1988:HPA

Ramakrishna:1989:ARP

Ramakrishna:1989:PPB

[Ram89b] M. V. Ramakrishna. Practical performance of Bloom filters and parallel free-text searching. Communications of the Association for Computing Machinery, 32(10):1237–1239, October 1989. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Computing Reviews: “This short communication deals with a special kind of hash function called ‘Bloom filters.’ These filters are used, for example, to search a differential file containing updates to a main file.”.

Ramakrishna:1992:SPH

Raman:1997:KFM

[Ram97] Anand V. Raman. The Katapayadi formula and

Ramakrishna:1991:DPH

Rijmen:2001:WHF

Rigoutsos:1994:SPS

Rao:2011:STE

Regnier:1981:AHT

Regnier:1982:LHG

Regnier:1985:AGF

Regnier:1988:THA

Reif:1988:AWC

Reid:2003:SSE

Remy:1992:ERE

Reyes:2014:FKM

Ramakrishna:1997:EHH

Richter:1989:HJA

Ramirez-Gutierrez:2012:IRT

Kelsey A. Ramirez-Gutierrez, Mariko Nakano-Miyatake, and Hector M. Perez-Meana.

[Riv74b] Ronald L. Rivest. Analysis of associative retrieval

Rottenstreich:2015:BPW

[175x644]Rottenstreich:2014:VIC

Rottenstreich:2014:VIC

[175x588]Rottenstreich:2015:BPW

Rottenstreich:2014:VIC

[175x464]Ramakrishna:1989:FOU

Ramakrishna:1989:FOU

[175x316]Ramamohanarao:1982:DHS

Ramamohanarao:1982:DHS

[175x180]Rothnie:1974:ABF

Rothnie:1974:ABF

Ragan-Kelley:2011:DSG

[175x228]Rathi:1990:PCE

Rathi:1990:PCE
Rathi:1991:PCE

Richardson:1987:DEP

Ramakrishna:1988:ABD

Rosas:2011:CBC

Robey:2013:HBA
[Rachel N. Robey, David Nichoallef, and Robert W. Robey. Hash-based algo-

[Rön07] Johan Rönnblom. High-error approximate dictionary

[Rosenfeld:1974:IPP]

[Rosenberg:1977:SRA]

[Ross:2006:EHP]

[Ross:2007:EHP]

[Rosenfeld:2012:OCC]

[Rotem:1989:CMH]

[Roussev:2009:HDF]

REFERENCES

REFERENCES

Arnold L. Rosenberg and Larry J. Stockmeyer. Hashing schemes for extendible arrays. In ACM-TOC’75 [ACM75c], pages 159–166.

REFERENCES

Ruckert:2015:MSS

Rueppel:1993:ACE

Ruland:1993:RDS

Russell:1992:NSC

Russell:1993:NSC

Russell:1995:NSC

Ruzic:2008:UDD

Rijmen:2002:PCP

Rickman:1973:SIL

Rigoutsos:1997:GEI

Ramaswamy:2007:HSP

Reyhanitabar:2007:NIM

Rabitti:1990:DST

Ramakrishna:1997:PPS

[RZ97] M. V. Ramakrishna and Justin Zobel. Performance in practice of string hashing functions. In Rodney W.

Sager:1984:NMG

Sager:1985:PTG

Sager:1985:TCS

Salzberg:1988:FS

Samson:1981:HTC

Santoro:1976:FTS

Sarwate:1980:NUC

Sarkar:2010:SGC

Sarkar:2011:TBC

Sarkar:2013:NML

Sasaki:2011:MMP

Savoy:1990:SBF

Savoy:1991:NFH
Suggests an improvement to Pearson’s hashing algorithm [Pea90] that avoids secondary clustering. Exhibits a key set for which Pearson’s algorithm produces alarming clustering. See also comments in [Dit91, Lit91, Pea91], and early work in [Dit76].

Sheffler:1993:AHP

Sabharwal:1995:PHT

Sabharwal:1997:IDN

Shankar:2007:DAI

Saikia:2014:PHF

Stevens:2017:AFS

Scolari:2016:SCP

Alberto Scolari, Davide Basilio, Bartolini, and Marco Domenico.

Sprague:1977:PTh

Shekita:1990:PEPc

Schauer:1976:PA

Scheuermann:1979:OHH

Scholl:1979:PAN

Scholl:1981:NFO

Scheuermann:1982:PSI

Schmitt:1982:CPF

Schmidt:1990:GPH

Schneider:1990:CQP

Schneier:1991:OWH
[Sch91a] Bruce Schneier. One-way hash functions: Probabilistic algorithms can be used for general-purpose pattern matching. *Dr. Dobbs Journal*, 16(9):148–151, September 1, 1991. CODEN DDJOEB. ISSN 1044-789X.

Schnorr:1991:FHE

Schnorr:1993:FHIa

Schnorr:1993:FH Ib

[SD85] Ron Sacks-Davis. Performance of a multi-key access method based on descriptors and superimposed coding techniques. *Information System*, 10(4):391–403, 1985. CODEN INSYD6. ISSN 0306-4379 (print), 1873-6076 (electronic). Hashing algorithm used to create descriptors for file indexing; this extends the author’s earlier work [SDR83b].
REFERENCES

[SD90a] D. Schneider and D. DeWitt. Tradeoffs in processing complex join queries via hashing in multiprocessor database machines. In McLeod et al. [MSDS90], page 469. ISBN 1-55860-149-X. LCCN ???

REFERENCES

ACM:1990:PFA

ACM:1991:PSA

Shih:1991:CDC

Sacks-Davis:1987:MAM

Sacks-Davis:1983:ILH

[Sacks-Davis:1983:TLS]

Sacks-Davis:1983:TLS

[Sacks-Davis:1983:ILH]

R. Sacks-Davis and K. Ramamohanarao. A two level

Sorenson:1975:DDH

Schellhorn:2014:SCP

Smith:1989:ITD

Sedgewick:1983:MAC

Sedgewick:1983:A

Sedgewick:1988:A

REFERENCES

REFERENCES

Shneiderman:1976:BSS

SG76b

Shasha:1988:CSS

SG88

Shangguan:2016:SHF

SG16

Steinwandt:2000:WHS

SGGB00

Sharma:2009:DAC

SGK09

Shaolan:2011:EDE

SGY11
Zhang Shaolan, Xing Guobo,

[She06] David B. Sher. Motivating data structures with caching Internet stock data. SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education), 38(3):344, September 2006. CODEN SIGS3. ISSN 0097-
REFERENCES

8418 (print), 2331-3927 (electronic).

Sun:2017:CMC

Shim:2017:PME

Shmoys:2000:PAA

Shoup:1996:FPS

Shoup:2000:CTU

Shoup:2000:UHF
Victor Shoup. Using hash functions as a hedge against chosen ciphertext attack. *Lecture Notes in CS*,

Shoup:2005:ACC

Starzetz:2009:HBC

Sockut:2009:ORD

Siegel:1989:UCF

Siegel:2004:UCE

REFERENCES

Silverstein:2002:JIS

Silverstein:2002:PPH

Simon:1998:FCO

Sakti:1988:GPP

CODEN PCPADL. ISSN 0190-3918. Available from IEEE Service Cent (catalog number 88CH2625-2). Piscataway, NJ, USA.

Shintani:1998:MAS

Schneier:1999:SAL

Sklavos:2005:ISH

REFERENCES

[Schweller:2007:RSE]

[Shultz:1987:TSM]

[Shin:1994:NJA]

[Sit:2002:SCP]

[Storer:2008:DDC]

[Storer:2012:DDC]

REFERENCES

Spetka:1992:DAD

Safkhani:2014:CCA

Sprungnoli:1977:PHF

[Spr77] Renzo Sprungnoli. Perfect hashing functions: a single probe retrieving method for static sets. *Communications of the Association for Computing Machinery*, 20(11):841–850, November 1977. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This is the first discussion on perfect hashing; describes heuristics for constructing perfect hash functions. See comments in [AA79a].

Sourlas:2016:EHR

Severance:1990:DLH

[C. Severance, S. Pramanik, and P. Wolberg. Distributed linear hashing and parallel projection in main memory databases. In McLeod et al. [MSDS90], page 674. ISBN 1-55860-149-X. LCCN ???.]

Schay:1963:MKA

REFERENCES

REFERENCES

[SS06] Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free extensible hash tables.
Smith:2015:BPF

Shpilrain:2016:CLF

Sara:2001:SCT

Shen:2018:MDH

Soomro:2005:DDH

Stipic:2013:PGT

REFERENCES

December 2013. CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).

REFERENCES

Stallings:1994:SSH

Stallings:1999:HAK

Stallings:2006:WSH

Stinson:1991:UHA

Stinson:1993:ACC

Stinson:1994:CTU

[Sti94a] D. R. Stinson. Combinatorial techniques for universal hash-
REFERENCES

Stinson:1994:UHA

Stinson:2006:SOT

Stonebraker:1992:PAS

Sundaram:2013:SSS

Stumm:1982:UMZ

Sturc:1985:MHU

Jan Sturc. Multidimensional hashing used for conjunctive
REFERENCES

Steindorfer:2015:CSM

Steindorfer:2015:OHA

Steindorfer:2018:MOA

Stanca:2001:HAC

Slot:1984:TVC

C. Slot and P. van Emde Boas. On tape versus core: An application of space efficient perfect hash functions to the invariance of space. In ACM-TOC’84 [ACM84b], pages 391–400.

Sincovec:1986:DSU

Stubbs:1987:DSA

REFERENCES

Su:2016:PSN

Sung:2008:LSI

Seltzer:1991:NHP

Shibata:2008:LFD

Sasaki:2011:KKD

Seberry:1993:ACA

Tang:2013:TOH

Terashima:1987:EPL

Tenenhaus:2010:GAN

Tomasic:1997:DSE

Tharp:1988:FOP

REFERENCES

Tan:1993:RSM

Tang:1995:SLO

Tseng:2007:DHS

Thai:2018:TLB

Tang:2016:RIH

Tubaishat:2002:PEL
Malik Ayed Tubaishat, Sanjay Kumar Madria, and

Da Tong and Viktor Prasanna. High throughput sketch
REFERENCES

Taniar:2002:PSH

Trainiter:1963:ARA

Trono:1992:UPC

Trono:1995:CTS

Trono:2006:OTL

Tremblay:1976:IDS

J. P. Tremblay and P. G. Sorenson. *An Introduction to...*
REFERENCES

Round2_Report_NISTIR_7764.pdf.

Tsudik:1992:MAOa

Tsudik:1992:MAOb

Thomlinson:1998:NBP

Tai:1986:CCC

Talio:2010:EDQ

Tian:1993:NHF

Torenvliet:1983:ROT

[Tv83] Leen Torenvliet and P. van Emde Boas. The reconstruction and optimization of trie hashing functions. In Schkolnick and Thanos [ST83a], pages 142–156. CODEN VLDBDP.

Teuhola:1991:MSA

Tartary:2007:CPH

Tang:2018:CIC

Tzschach:1977:TCS

Tang:2011:SFB

Tarjan:1979:SST

ISSN 0001-0782 (print), 1557-7317 (electronic). See also [FKS84].

[Tien:1991:CHB]

[Tang:2003:EDL]

[Tyma:1996:TJP]

[Tao:2010:EAN]

[Tang:2015:EGF]

[Tillich:1994:GHF]

[Tillich:1994:HS]
Thorup:2012:TBI

Urvoy:2008:TWS

Ung:1995:UPR

Ugawa:2010:IRB

Ullman:1970:DHF

Ullman:1972:NEH

Ullman:1982:PDS

Urdaneta:2011:SDS

[UPV11] Guido Urdaneta, Guillaume Pierre, and Maarten Van

Uchiyama:2009:RIB

USENIX:1990:UCC

USENIX:1991:PWU

Vakhshoori:1985:UHD

Valduriez:1987:JI

Valiant:2015:FCS

VanderPool:1973:OSAb

Vandery:1992:FHN

VanTrung:1994:CCC

Gucht:2010:PHE

Vaudenay:1992:FHI

Vaudenay:1993:FHI

Vaudenay:2006:ACE

REFERENCES

Vckovski:2000:MTS

Vingralek:1994:DFO

Vitter:1985:OAM

Vitter:1987:DAC

Vandierendonck:2005:XBH

vandenBraak:2016:CXH
Gert-Jan van den Braak, Juan Gómez-Luna, José María González-Linares, Henk Corporaal, and Nicolás Guíl. Configurable XOR hash functions for banked scratchpad memories in GPUs. IEEE Transactions on Computers, 65(7):2045–2058, ????. 2016. CODEN ITCOB4. ISSN

Olli Ventae. *Fast Text Reconstruction Method for the Correction of Imperfect Text*. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD

REFERENCES

0190 (print), 1872-6119 (electronic).

R. von Mises. Über Aufteilungs- und Besetzungswahrscheinlichkeiten. (German) [on partitioning and occupation probabilities]. *İstanbul Üniversitesi Fen Fakültesi Mecmuası*, 4(?):145–163, 1939. See also [BC39].

Kapil Vaswani, Aditya V. Nori, and Trishul M. Chilimbi. Preferential path profiling:

Wu:1987:ASM

[WB87]

White:1990:CSA

[WB90]

Wu:2003:HHS

[WB03]

Wang:2016:CNC

[WBWV16]

Wegman:1979:NCA

[WC79]

Wegman:1981:NHF

[WC81]

Wu:1994:AGH

September 1, 1994. CODEN PRLEDG. ISSN 0167-8655 (print), 1872-7344 (electronic).

Walker:2007:PHF

Weng:2012:RIC

Wolf:1991:EAP

References

10.1007/978-3-642-20465-4_32.

Wee:2012:DPH

Wenzel:1992:WBU

M. Wenzel. Wörterbücher für ein beschränktes universum. (German) [Dictionaries for a limited universe]. Diplomarbeit, Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany, ???. 1992.

Wartik:1992:HA

Wang:2004:CHF

Weiss:2012:MSH

Wu:2012:PPA

Weaver:1994:SAM

Wagner:2000:PSU

Wegman:1988:CSS

Weide:1983:MCE

Wang:2007:BTS

Wiederhold:1983:FOD

Wiener:1986:EVH

REFERENCES

[Wil85a] Dan E. Willard. New data structures for orthogonal range queries. *SIAM Journal on Computing*, 14 (1):232–253, February 1985. CODEN SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic). This paper, together with an earlier report [Wil78], present seven data structures for orthogonal range queries which are more efficient than earlier data structures used for this purpose, such as box array hashing.

Winternitz:1983:POW

Winternitz:1984:SOH

Winters:1990:MPHa

Wirth:1975:AD

Wirth:1983:AD

Wirth:1986:ADS

Westergaard:2007:CME

Wipke:1978:HFR

Wang:2007:LBP

Wang:2008:HBS

Wang:2009:NTV

Wang:2019:DDD

Wang:1993:IHA

Wyman:2019:IAT

REFERENCES

Witten:1999:MGC

Woelfel:2001:NBO

Woelfel:2005:BOS

Woelfel:2006:CMO

Woelfel:2006:MEM

REFERENCES

Wogulis:1989:SAS

Wolverton:1984:PHF

Wolfowicz:1993:SPR

Wood:1989:PQP

Weng:2010:IHV

Wang:1994:SDP

Wei:2012:SIV
Lei Wei, Thomas Peyrin, Przemyslaw Sokołowski, San Ling, Josef Pieprzyk, and

[Wu:2009:REL]

[Wang:2013:GNL]

[Wu:2005:HC]

[Wang:1990:LTP]

Gaoli Wang and Shaohui Wang. Preimage attack

REFERENCES

Wolf:1993:PHJ

Wang:2014:CGR

Wang:2005:CSA

Wang:2005:FCFa

Wang:2005:FCFb

Wang:2005:ECS

Woodruff:1993:HVT

Wang:2012:BPS

Wang:2010:UHT

Wang:2018:SBD

Xu:2006:TNH

Xia:2009:APL

Xue:2019:SEA

REFERENCES

CODEN IEANEPE. ISSN 1063-6692 (print), 1558-2566 (electronic).

Yen:1995:PHC

Yu:2017:FSD

Yu:2018:MEU

Yang:2012:RHA

Yo:1993:OPA

Yang:1984:DPH

Yang:1985:BMC

W. P. Yang and M. W. Du. A backtracking method for constructing perfect hash functions from a set of mapping functions. *BIT*
Yuen:1986:DFO

Yuen:1986:DFS

Yang:1983:SPH

Yen:1991:MPH

Yu:2010:DRF

Yuan:2012:EMR

Yasuda:1989:PAM

Yum:2010:FVH

Yao:1983:SSG

Yi:2009:SSG

Yen:1990:HTS

Yang:2004:ACH

Yang:2019:NAK

Yokoyama:1989:NLP

Yamane:1989:DEH

Yadan:2009:HJO

Yu:1987:RDI

Yoon:2004:SUA

Yum:2009:SLF

Yao:2005:HBL

Yang:2011:NHB

Yaniv:2016:HDC

Yang:1997:HFM

Yu:2006:SST

Ytrehus:2006:LFN

Yu:1992:IWR

Yu:2002:ACC

Yung:2002:ACC

Yuba:1982:SOP

Yu:2018:RHT

Yuan:1992:VLD

Yuba:1982:SOP
REFERENCES

Yuval:1975:FNN

Yang:2009:ILV

Young:2001:HRS

Yoon:2007:SCH

Yen:2000:WOW

Yu:2016:NFC

REFERENCES

REFERENCES

Zhang:2007:TTI

Zhai:2019:DVP

Zukowski:2006:ACH

Zheng:1990:PDS

Zheng:1994:RSS

Zobel:2001:MHT

Zuo:2019:LHH

Zuo:2019:WDH

Zhang:2009:IBR

Zhao:1994:DDBa

Zhao:1994:DDBb

Zhao:1994:DDBc

REFERENCES

Zee:2008:FFV

Zhang:2012:LLF

Zhou:2012:TSC

Zhang:2012:HSP

[ZLC+18] Dongxiang Zhang, Yuchen Li, Xin Cao, Jie Shao, and Heng Tao Shen. Augmented keyword search on spatial entity databases. VLDB Journal: Very Large Data Bases, 27(2):225–244, April 2018. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

Zhang:2007:BHR

Zhang:2018:LFT

Zhang:2018:AKS

[ZLY+12] Yijia Zhang, Hongfei Lin, Zhihao Yang, Jian Wang, and Yanpeng Li. Hash subgraph pairwise kernel for protein-protein interaction extraction. IEEE/ACM Transactions on Computational Biology and Bioinfor-
REFERENCES

Zhao:2013:AAP

ICCA Journal, 13(2):69–73, 1970. ISSN 0920-234X.

[Refs]

Zou:1985:MMC

Zheng:1990:HOW

Zheng:1993:HOWa

Zheng:1993:HOWb

Zhao:2012:HCB

Zhou:2008:RTS

Zezula:1991:DPS

Zhang:2005:ISS

Zhang:2010:LCH

Zhang:2017:LBP

Zhang:2014:FFS

Zou:2012:PAS

Zhang:2019:SPB

Zhao:1983:PMC

Hejun Zhao and Yuefang Zhang. Practical microcomputer management system of an automated stereo-warehouse. *Chi Hsieh Kung Chi'eng Hsueh Pao/Chinese
Zhou:2018:DSH

Zhang:2017:NLR