A Bibliography of Publications on Hashing Algorithms

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

17 November 2017
Version 2.251

Title word cross-reference

#2 [Cer85].

10 [GLM+10], 11 [SY11], 2
[EAA+16, GG92, HD72], 2n [QG89, QG90],
3 [CBA94, Fly92, GG92, GK94, LMJC07,
LDY+16, WSSO12], 5/8 [Sch11], 64 [LK16],
* [LNS93]. + [Omi88, Omi89a]. MT [HRB13].
2 [AK98, QJ97]. A [Lyo83]. A^2 [Bie95]. α
[ABC+16]. b [LK11]. B^+ [TB91]. c
[SWQ+14]. d [PRM16]. f [LG78]. H^2
[DRS12]. K
[Yuv75, APV07, CL85, CC91, CLC92, Die96,
Gui78, HC14, PT16, RRS07, SS90b], L
[OOB12]. l_p [HFF+17]. SL_2(F_{2^n}) [GGG00]. N
[BS91b, BS91a, CM01, Gir87, Ven86, WS93,
War14, Coh97, Coh98, LHC05, QG89, QG90].

O(1) [FKS84]. O(\log \log n) [MN90],
O(\log W) [LS07b]. O(N) [HG77, MN90]. p^n
[Ack74]. π [FFGL10]. q [OWZ14]. SL_2
[MT16]. Z/p [Mue04].

- [RS14]. -approximate [SWQ+14]. -ary
[CC91, CLC92, Gui78, RRS07]. -Bit
[QG89, QG90, LK16, LK11]. -Body
[WS93, War14]. -codes [Bie95]. -dimension
[LHC05]. -dimensional [Yuv75],
-Functions [OOB12]. -gram
[Coh98, Ven86]. -Grams [Coh97]. -Hash
[BS91b, BS91a]. -Independence [PT16].
-mer [HC14]. -Nearest [CL85]. -Pipeline
[PRM16]. -probe [SS90b]. -Round
[GLM+10, SY11]. -tree [Omi89a, Lyo83].
-trees [CM01]. -verarbeitung [Nie75].
-wise [Die96].

/ [AFK90, SW94b]. / [Kna89].
0 [BCJ15, ITP14, NSS+06, WYY05d]. '07 [ACM07]. '08 [ACM08b].
1 [AMSM+09, AAE+14, BCJ15, DR06,
JRPK07, KKRJ07, KRJ09b, Nat95, SKP15,
WYY05a, WYY05b, WYY05c]. 100
[BLC12]. 100-Gb [BLC12]. 100-Gb/s
[BLC12]. 10118-3 [ISO04]. 10th
[Ano93a, DSZ07, DJRZ06, IEE94a, Fre90].
11th [Shm00]. 128
[BLP16, MNS12, WFLY04]. 128-bit
[MIO89]. 12th [BJZ94, Bri92, DJNR09, LC06].
13th [DJNR09, Sti93, Vid90]. 14th
[BIP92, BJZ94, Cop95a, Cop95b, IEE74].
15th [BIP92, BJZ94, Cop95a, Cop95b, IEE74].
16th [BDP97, PBD97]. 16th
[HM08, MSDS90]. 17th
[FS09, IEE76, IEE05, Mos95, Pat90]. 18
[Sar95b, Nat95]. 180-4 [Dan13]. 18th
[Deb03, Yu92]. 1969 [AFI69]. 1974
[Ros74]. 1975
[ACM75c, ACM75b, ACM75a, Ker75]. 1976
[ACM76]. 1977 [ACM77b, Gil77, TW77].
1978 [Win78, Yao78]. 1979 [ACM79, Ng79].
[LFP82, VLD82, IEE82, NS82, Sch82a].
1983 [Ano83, ST83b]. 1984
[ACM84b, ACM84a, DSS84]. 1985 [PV85].
1985/11th [PV85]. 1986
[ACM86b, CGO86, FS87, Oxb86]. 1987
[DT87]. 1988 [ACM88b, BD88, WGM88].
1989
[LJW89, ACM89c, MK89, PK89, RK99].
1990
[ACM90, Já90, USE90, Vid90, WPY90].
1990's [Rie98]. 1991
[ACM91d, ACM91c, IEE91a, IVS91]. 1992
[BIP92, Sto92]. 1993 [BJ93, IEE93]. 1993/
[ACM96]. 1997
[ACM97a, ACM97b, ANS97]. 1998
19th [ACM91b, Kui92, RRR99, Wie99,
vL94, ABB93]. 1st [CCC89, Coh94].
2 [BH86, GT63, KMV10, LS15, ST86, SK05].
2000 [Shm00, ZC12]. 2001
[ACM01, AAC+01]. 2002 [ACM02]. 2003
[ACM03a, ACM03b, Deb03]. 2004 [ACM04].
2005 [ACM05, ANS05]. 2006 [ABM06].
2007 [ACM07]. 2008 [ACM08b, LL08].
2009 [Mat09]. 2011 [Van10, LCK11]. 20th
[AH03, Bel00, EF12, WGM88, BJZ94].
21-January [USE91]. 21./22 [Lut88]. 21st
[ACM91b, IEE80b, JY14]. 22nd
[AIW11, Yun02]. 23rd [IEE82]. 24th
[769, ABB93, Fra04]. 24th-27th [ABB93].
25/1989 [AW89]. 256
[AKY13, CMP07, MAK+12, Sch11]. 25th
[Sho05, Vau06]. 26th [IEE85a]. 27th
[ABB93]. 28-July [Rei88]. 29-March
[IEE88a]. 29/Sept [BD88]. 29th [IEE88c].
2HOT [War14]. 2k [USE00b]. 2nd
[ACM83a, ACM94a, ABM06, HL91, ICD86,
Sch82a, KI94, Yu92].
3 [jCPB+12, NIS15, Sed93]. 30-May
[ACM84b]. 30th [IEE89]. 31-November
[ST83b]. 320 [MJ08]. 320-bit [MJ08]. 32nd
[CIM+05, IEE91b]. 33rd [ACM01, IEE92b].
34th [ACJT07]. 35th [ADG+08, Gol94].
36th [AMSM+09]. 37th [AGK+10]. 39th
[ACM07]. 3rd
[Já90, LS89, Rei88, Wol93, ACM91c].
40th [ACM08b, IEE99]. 42-step [AKY13].
45 [Pro94]. 47th [IEE06]. 48th [IEE07].
4th [LJW89, BW92, Far93, HKNW07,
BJJ94, Lom93, PSN95, USE00a].
5 [PW94]. 5-Independent [TFZ12]. 512
[GLM+10]. 51st [IEE10]. 52nd [IEE11b].
5th [BRW93, Boy95].
68110a [Sar98].
'76 [Jen76]. '79 [Ng79]. 7th
Litxxa, LH03b, LH03a, Mot84, MC86, Pet57, RJK79, SS62, SD76, Som99, Tra63, CKW93, Lin63, NK16, TTT81, Wan05, van73.

Adelaide [Bar83].

Adjusting [Pag85, Wog89].

Administration [Fis87].

Adressing [Bra85]. Advanced [Ano93d, CE95, HDCM11, Hsi83].

Advances [Buc82, AFK90, Bel00, Bra90, Bri92, Cha83, CP87, Cop95a, Cop95b, Dam90a, Dam91, Dav91, De 95, Fei91, Fra04, GQ95, He94, IRM93, JBJ94, LC06, MV91a, PSN95, QV95, QG95, Rue93, SP90, SZ93, Sho05, Sti93, Van06, Wie99, Yun02].

Advantage [WSSO12].

Adversaries [LN93].

Advisor [Cer85].

Aegean [Rei88, Rei88].

Aeronautical [Fis87].

Aerospace [Fis87, IEE94b].

AES [ABO+17, BOY11, B¨OS11, GK08, Sas11, JNPP14]. AES-like [JNPP14].

affects [HL05].

Again [DRS12].

Against [DL17, ASBdS16, JL14, JG95, MSP12, Sho00b].

Age [Cro98].

Agent [BˇSH12, DF01].

Aggregation [BJL16, PT10].

Agreement [GB10].

agrometeorological [WM93].

Ahead [Moh90, Moh93].

AID [Dos78b].

Airport [ICD88, ICD90].

Akron [Fis87].

al. [SPLHCB14].

Alaska [IEE01].

Albuquerque [ACM75c, ACM75a, IEE91a].

Algebra [Bra84b, KTMO83b, KTMo83c, EB91, FS89a].

Algebraic [Ac94d, ACM91c, ACM97a, ACM05, ACM08a, ANS97, AHU83, AI06, Ano95a, iA91, iA94, AT90, AT93, AT91, BS97, CV86, CT96, DG85a, DG85b, Dev86, DS97, FM96, FW90, FM85, Ger86a, Ger86b, Gon84, GBY91, GI77, Gra88, Gra89, GC95, GK81, GKB2, GUI76a, GUI76b, GS80, GB94, Har88, HS78, HL91, KL81, LLLC17, LS89, Lob93, LTS90, LH03b, Mac95, MF92, ML94, MLxx, Mat09, MS88a, MO92a, OG94b, OL99, PS95, Pip94, Pre97a, PB85, QG95, QG90, Reg85, Riv74b, RNR13, Sam76, SD89c, SD90a, Sed83b, Sed88, Sed90, Sed92, Sed93, SD76, SG88, SK98, Shn00, TR02, TY91, Vit81b, VC85, Wal88, WFHC92, Wie87b, Wir86, XCC09, Yen91, ZG90b, AI08, BMS+17, BMQ98, Cra85, DG96, DJRZ06, DJNR09, DC94, EVF06, FJ13, GK05].

Algorithms [Gui76c, HK95, HKNW07, JH02, Kan90, Kar98, KP92, Kha95, MPL09, Mol90a, Mol90b, MMSY94, NM02b, PBGV89, QM98, Rei88, RL87, RG89, Riv74a, SD90d, Sch91a, Sed83a, SG72, Vit82a, Vit01, SDA09, SDA91, A+90, AIOWN11, CT10, DSZ07, EF12, FS09, FB92, HM08].

Algorithmus [Bi87].

Alignment [BFMP11, LPT12].

Alignments [BDD+10].

All-or-Nothing [SRY99].

Alley [Boy98, Get01, Jen97, Pes96, Wil97].
Allocating [CC91, TC93]. Allocation [CC87, CLC92, Du86, YCRY93, vdP72, vdP73, DW05, DW07, LCRY93, OOK+10, van73]. Allocations [ABKU99, PG95]. Allowable [Blo70]. Almost [BM99, CKB83b, DW03, YSEL09, CKB83a, Duc08]. Almost-Minimum [BM99]. Alternative [EMM07, IH95, SD89b, LS15]. Alternatives [GD87]. am [CE95, LC95]. American [CHK06]. Among [CC91, GP08, KW94]. amortize [KM07]. amortized [ANS09]. Amplification [BBR88]. Amsterdam [AW89, CP87]. Analogue [Cai84]. Analyses [CS87]. Analysis [AP93, Ano95c, AD11, AM07, BYSP98, BR502, BRSS10, BM89, BM90a, BF08, CF92, CL85, CC87, CLNY06, CN08, CV83a, CV84, Che84a, Che84b, CV85, CK94, CS93b, DR11, FC87a, FPV98, FMM09, FMM11, GK12a, GL73, GBY90, GK81, GK82, GLG+02, GS76, Gui76a, Gui76b, GS78, Gui78, Gur73, HMIN07, Ha93, Has72, Kut10, Lar80a, Lar80c, Lar82b, Lar83, Lar84, Lar85c, LCK11, Lev00, Lew82, JWWQ08, LPP91, LPP92, LM93c, Lum73, MCW78, MMT09, MY80, Men92, MP12, Mol90a, Mol90b, NM02a, NCFK11, NAK+15, Omi91, Pit87, PVM94, Pre93, PB85, RM88, Ram88b, Ram89a, Reg85, Reg88, Rev74b, SS62, Sch97, SB93, SA97, Vek85, VP96, VP98, Vit80b, Vit80c, Vit83, VC87, WB90, Yao80, de 69, BZZ12, CK89, DM03, DK12, GLC08]. analysis [GM77, Gu76c, LLA15, LM88, MJ08, MS13, MSY77, PS08, Pro94, QM98, RAD15, SS90a, SLC+07, Sed83a, WL07, ZBB+06]. Analyti [Pro94]. Analytical [Bat81]. Analytics [LMD+12]. analyze [FJ13]. Analyzer [CRdPHF12]. Analyzing [Kue82b, PVM97]. Anchorage [IEE01]. Anderen [DS84a]. Anfänger [Sch76]. Angeles [AC82, BD88, ICD86, ICD87, ICD88, ICD90]. Ann [AC81, Bai81, Bor81, Lie81]. annotated [Pon87]. Announcement [DLH09, KS12, Nat92]. Announcing [SBK+17]. Annual [ACM75c, ACM75a, ACM76, ACM77b, ACM84b, ACM84a, ACM85a, ACM86b, ACM88b, ACM89c, SDA90, ACM90, ACM91c, ACM91d, SDA91, ACM91e, ACM97a, ACM01, ACM02, ACM05, ACM07, ACM08a, ACM08b, AH03, Ano93d, BV89, BIP92, Bri92, Cop95a, Cop95b, EF12, Fra04, Gol94, IE74, IE76, IEE80b, IEE82, IEE88c, IEE89, CTC90, IEE91b, IEE92b, IEE99, IE706, IE707, IE708, IE709, IE710, IE711, Kna89, Mat09, ACM77a, Slm00, Sho05, Sti93, USE00a, YR87, Yun02, ACM94d, ACM91a, ACM96, ACM97b, ACM98, Be100, DT87, FS09, HM08, IEE85a, IEE92a, IEE95, IE001, Kar98, Rie89, Wie99]. anonymization [RW07]. Anonymous [ZLCC12a, ZJ09]. Anti [NT01]. Anti-persistence [NT01]. Antonio [ACM91b]. Anwendungen [Lut88]. Any [LP15, HR07, Lev89]. Anzahl [Dos78a]. Application [BKMP09, Cer81, CKB83b, Cha88, CP87, Dum90a, Dum91, Dav91, FFGOG07, GK76, HP63, Hel94, IRM93, Jou04, KTMo83a, KCB81, LC06, Lit77b, LLW10, Ngu06, Pip79, QV89, QG95, Rog95, Rog99, Rue93, Salsi11, Schol1b, SZ93, SeBB84, Web72, WC94, Yao91, vW94, AT90, CKB83a, CO82a, De 95, Gq95, Kan90, QJ97, SRRL98, Zob70]. Applications [AT93, BG07, Bur81, CZLC12a, CZLC12b, CK15, DR06, Deb03, DK02, DK15, Dad92, DR09, Fel50, FM85, HK12b, IEE80a, IEE95, KMM+06, Kna89, Lev89, LDY+16, LK93, Pon87, RP91, Rey14, RNT90, Ter87, TZ12, TS76, TS84, Val15, Vau06, Wec12, WC79, WT090, YZ00, AG10, ARA94, BZL+15, DMFR15, HKNW07, KKP92, LLC89, LK11, LG78, MJ08, MV91a, NY89b, NY89a, NN90, NW07, PW08, PSM95, RRS07, Sli17, SS16, Sio89, Ano92]. Applied [CS93b, GNP05]. Applying [Cer87, Cer88, CHY93, CLYY95, CHY97].
Approach [BH93, CCH09, CK12, DL79, DC94, JV16, LT09, MY80, RH95, Sch79a, SR89, Ts98, ZO93, BJ07, BCCL10, DAC+13, GS89, JHL+15, NW07, PGV93e, PGV94, QD02, TKI99]. APPROX [DJRZ06, DJNR09]. Approximate [AI06, CCH09, CLP17, DP08, DHL+94, DHL+02, Hac93, HC14, MW09, AIO8, DC94, HFZ+15, LZ06, LCH+14, MBKS07, Rön07, SWQ+14]. Approximately [Ind01]. Approximating [ASW87, Pob86]. Approximation [DJRZ06, AGJA06, DJRZ06, DJNR09]. Approximative [MYS12]. APRICOD [ZO13]. April [ACM75b, ACM81, ACM84b, Ano83, Ano94, CP87, Col93, Dav91, ICD91, ICD93, IEE01, Joy03, Lie81, QV89, SM12, USE90, WGM88]. arbitrary [GHK+12]. Arbor [ACM81, Bai81, Bor81, Lie81]. Arbres [Kar82]. Architectural [GSL17]. Architecture [BCH87, HCJC06, Hsi83, Jou85, KP81, KCR11, KTMo83a, XBH06, MBK00, RG89]. Architecture-conscious [ZHB06]. Architectures [ACM91c, BRW93, DR92, Kie85, MKAA17, RNT90, Bis12, BMQ98, GK05, HDCM11, KHW91b, Koe72, YIAS89]. Assoziativer [GN80, Koe72]. Assumptions [Chr84, Dam93, Dam94, Sim98]. Astronomical [Gui89]. Asymmetric [CLP17, BR94]. Asymptotic [IK92, Pro94, WL07]. Asynchronous [KFG15, PAKR93]. Atlanta [ACM83a, ACM83b, USE00a]. Atlantic [Fre90, GMJ90, IEE84]. ATM [SMS91]. Atom [LC12]. Atomic [LMR02]. Attack [CJP12, CMP07, JLH08, KK06, Pey15, PGV90a, Sho00b, WW09, WFW+12, ZF06, BSU12, CJP15, JG95, PGV93a, PGV93b, SXL16]. Attacking [CP95b]. Attacks [ABD+16, BPBBLP12, Bih08, BKMP09, CY06, DK07, DDS14, DL17, KHKK10, HRS16, JL14, KN08, KLP98, KVK12, LK94, KKS10, LL15, MRST10, MNS12, SaAL12, SY11, SAS11, WYY05d, ZW+12, BSU12, ITP14, KL95, KHKK10, LS07a, MSP12, WYY05a, WS13]. Attribute [CS83b, CS87, GK94, GK95, HYH93, KG95, RSSD90, RL74, ZM17, ASW87, HR93]. Attribute-Based [ZZM17]. attributes [HM03]. Auction [SKM01]. Audio [MV01, YTJ06]. Audit [SK99, Ano93a]. Auditing [LY+15, GB17]. Aufteilungs [vM39]. Aufteilungs- [vM39]. Aug [BD88]. August [ACM79, LFP82, ABB93, AW89].
B [BD84, FK89, Omi88, Omi89a]. B-Trees [BD84, FK89]. Back [DSSW90a, DSSW90b].
Backoff [SHRD09]. Backtracking [WKBA07, YD85]. Backward
[CPP08, LLL11]. Backyard [ANS10].
Balance [IK92]. Balanced [AG10, ABKU99, DW05, DW07, Lep98, LB07, Otto86, Otto88b, PB80, FP82].
Balancing [HC13, KJC11, Omi91, RRS12, RK91, Top92, TP95, ZJM94a, ZJM94b, ZJM94c, DSD95, SX08, WL07, WTN09, XCCK09].
Balatonfured [Rue93]. Balls [CRSW11, CRSW13]. Bally [IEEE84].
Balanced [BD84, FK89, Omi88, Omi89a]. B-Trees [BD84, FK89]. Back [DSSW90a, DSSW90b].
Backoff [SHRD09]. Backtracking [WKBA07, YD85]. Backward
[CPP08, LLL11]. Backyard [ANS10].
Balancing [HC13, KJC11, Omi91, RRS12, RK91, Top92, TP95, ZJM94a, ZJM94b, ZJM94c, DSD95, SX08, WL07, WTN09, XCCK09].
Balatonfured [Rue93]. Balls [CRSW11, CRSW13]. Bally [IEEE84].
Balanced [BD84, FK89, Omi88, Omi89a]. B-Trees [BD84, FK89]. Back [DSSW90a, DSSW90b].
Backoff [SHRD09]. Backtracking [WKBA07, YD85]. Backward
[CPP08, LLL11]. Backyard [ANS10].
Balance [IK92]. Balanced [AG10, ABKU99, DW05, DW07, Lep98, LB07, Otto86, Otto88b, PB80, FP82].
Balancing [HC13, KJC11, Omi91, RRS12, RK91, Top92, TP95, ZJM94a, ZJM94b, ZJM94c, DSD95, SX08, WL07, WTN09, XCCK09].
BCS09, BRSS10, HKY12, LLJ15, PBGV89].
Blockcipher-Based [AP08, BCS09, LLJ15].
Blockciphers [RS08, PGV91]. blocking [PBB012]. Bloom
[DKT06, HKL07, HLS12, PSS09, Ram89b, RKK14, RK15]. BNCOD [Oxb86].
Boas [Wil00]. Boca [HB93]. Body [WS93, Lia95, War14].
Bonaventure [ICD86]. bond [ZBB +06]. Bonsai [DCW91]. Bookshelf [Cro98].
Boolean [AN96, ´ACZ16]. booting [LC95]. Bordeaux [AGK +10]. Boston [ACM84a].
bottleneck [MBK00]. Boulder [ACM77b]. Bound [Ari94, SG16, Sun91, Sun93, vT14].
boundaries [SS15]. Boundary [KSSS86]. Bounded [DS84a, LL86, Lom83, Lom88, MN90, GHK +12, RM88, TB91].
bounded-depth [GHK +12]. Bounds [BG96, Cha94, CV08, DKM +94, GadHW96, Gon77, KM86, KM88a, KVK12, MNP08, OWZ14, Woe01, Yao83, BV13, DGM +88, DKM +91, GHK +12, Rad92]. Box
[BR02, Rja12, SV94b, BZZ12, SV95]. braids [LMP +08]. Branch [LB02].
Branches [DGGL16]. Branching [FS82]. breaking [DK94, MPST16]. Brent [FL73].
Bridging [ACM04]. Brief [DLH09, KS12]. Brighton [Dav91]. Brisbane
[DG96, MDS90]. British
[ACM08b, Oxb86]. Broad [PACT09].
Broad-Phase [PACT09]. Broadband
[SMS91]. Broadcast
[YSW +11, GBL94, SNW06]. Broadcasting
[KCF84, OCGD11]. Broken [CP91c].
Broker [TGL +97]. browser [NM02b].
Brussels [Vid90]. Brute
[CJP12, LS07a, CJP15]. Brute-force
[CJP12, CJP15]. BST [AZ10]. BTB
[LB02]. Bubble [Wir83]. Bucket
[CS82, Dev86, Joh97, Kab87, KNT89, KO90, Lyo85, QCH +81, Rog95, Rog99, Tam81, TYZ015, Tra63, YD86b]. Bucketing
[Pal92]. Buckets
[Hac93, JV16, VP96, VP98, KHK12]. Buffer
[LB02]. Building [BC06, HKL07, Mit17, PV95, RMB11, WHS +07, P095]. Built
Bystrica [Rojo90]. bytencode [SUH86].
Byzantine [HGR07].

C [Pla98, USE90, ACZ16, Blu95, Eng90, GY91, Pro89, Sed90, Sed92, Sou92, Tay89].
C/C [Pla98]. CA [ACM03, ACM08a, ACM11, DJNR09, Joy03, Cop95a]. Cache
[Ask05, PWYZ10, PWYZ14, PSS09, SBS16, SKC07, YNW +09, YTL16, AZ10, BFCJ +12, CCHK08, HSMB91, KSC11, KSC12, MZK12, QM98]. Cache-
[PSS09]. Cache-Conscious
[Ask05]. Cache-Oblivious
[PWYZ14, PWYZ10]. cache-partitioned
[MZK12]. Caches [SBS16, SVCC01].
Caching [DB12, KM92, Rey14, WBW16, XBH06, BCR10, Cha12, HLO5, KLL +97, KSB +99, She06, WY00, WY02, Z013].
CAD [K194, Bar97]. CAD-based [KI94].
California [ACM82, ACM86a, ACM07, Bel00, Bri92, Cha83, Cop95b, Fra04, ICD86, ICD87, ICD88, ICD90, IE11b, Kar98, Shm00, Sho05, Sto92, USE90, Wi99, Ym02, Col93, IEE88a, IE06]. California/
Special [ACM82]. Call [HLC10].
Cambridge [ACM86a, BV89, G096, JB94, K095, And94]. CAMELOT [SP88].
Camera [BH93]. Can [CP91c, Dam93, Pal92, Sim98, Dam94, GMW90, Sch91a].
Canada [ACM02, ACM05, ACM08b, AFK90, DZ07, JY14, LL08, Lev95, Yua92].
Canadian [CCC89]. Canonical [DNV81].
Canterbury [Oxb86]. Capabilities
[RS12, Tr63]. Capability [Fab74, Wan84].
Capability-Based [Fab74]. Capacity
[KK85, Tan83, HO72]. Cape [IEE05, MS05].
cardinalities [GGR04]. Cardinality
[BHIMM12, GLLL17, HM03, NTW09].
Cards [Ku04]. Carlo [BF83, Rey14].
Carolina [ACM91c]. Carry
[GK08, FJ13, LK16]. Carry-Less
carry-truncated [FJ13].
Carter [Sar80]. Cartesian [Du86].
Cascade [KZ84, RTK12]. Cascaded [Jou04]. Cascading [Wan14].
Case [ANS09, ANS10, AR17, DMV04, DS09b, Ell85b, F+03, FKS84, Kut10, Lar82a, YLB90, BGG94, FPSS05, Lar81, Mic02, MT16, SKD15].
case/average [Mic02].
Casino [IEE84]. Cassandra [EH17].
Catalonia [LSC91]. Catalunya [CTC90].
Categorization [MBBS12].
Cathedral [IEE88a]. Cauchy [TI12]. Caution [Mul91].
Cayley [Z´em94]. CBC [BBKN01, BBKN12]. CCA [CZLC14]. CCA-Secure [CZLC14].
Cell [Mil99, Pag01, Sun93]. Cells [WH83].
Cellular [DGV93, MZI98]. Center [ACM91b, Fis87, IEE90, Rie89].
Centric [LT12, SPSP16, WBWV16, AK09]. century [ACM91b].
Certain [Chr84, van94]. Certificates [LK07]. Chain [EAA+16, JHL08, LAKW07, LHC05, SKM01, YZ00, YSEL09, Bay73b]. Chained [Bay73a, HNS84]. Chaining [BBP88, Cha94, CFP08, DDM05, GSC01, Joh61, Kue82b, Rag93, VC85, Kno84, KdlT89, KFG15, Lar84, TT81, Kue82a, Kue82b]. Chains [BT12a, Jan08, Ngu06, YKLH10, ZQSH12].
Challenge [GJM02]. challenges [BVF12, GJM02]. Challenging [MSP12]. Chameleon [BR14, GZXL14, PWY+13, LWG11, CTZD11, Moh11, Zha07].
Champion [KI94]. Change [DKH+15].
changeable [HYLT99]. Changes [Dan13].
Changing [Lit78, Litxb]. Channel [GO07, RWS07]. channels [SNW06].
chaos [McN03]. Chaotic [Sch01a, YY07]. CHAP [HDCM09].
Character [Dav73, YkWY83, Sab94]. Characteristics [Bay74, DR06, SDT75, DLH+79, RP95].
Characterization [BR14, CPP08, Lyo83, van94].
Characterizing [LH03a, RTK12, VZ12]. checker [Wie86]. Checking [Hea72, AD08, Wil96]. Checkpoint [LACJ18]. Checkpoint-Restart [LACJ18].
Checkpointing [FRB11]. checks [SB07]. Chemical [WKO78, ZBB+06]. Chennai [RRR99].
Chicago [ACM88b, ABM06, BL88, IEE82, Lom93, IEE80a]. Chile [BJZ94, CHK06]. China [Ano83, HL91, IEE11a, LC06, Yan10].
ChopMD [CN08]. Chord [KLSY07]. Chosen [CS02, Sho00b].
Churn [LMSM09, LMSM12, WTN07]. Churn-Resilient [LMSM09, LMSM12].
Chichelli [BF83, Cie80a, GS89, J080]. CICS [Bra88]. CIKM [FNY92].
Cincinnati [BD08]. Cipher [And91, BRS02, Dae95, clmL07, NCFK11, QG98, QG90, WSS012, GL08, HL03, ISO97, RS14, YL97].
Cipher-Based [NCFK11]. Ciphers [BBKN01, BBKN12, Fil02, KP96, LM93a, Pre97a, Roe94, SDMS12, SDMS15, Zhe90, HLMW93, HXMW94, Lai92, LM93b, PGV93e, PGV94, RP95, Roe95].
Ciphertext [CS02, Sho00b]. CipherText [CS02, Sho00b].
Circuit [NRW90, Ste82]. Circuity [Cai84].
Circuits [DLT98, MD05, GHK+12, Mil98].
Cirencester [Boy95, Far93]. City [VLDS82, Fre90, GMJ90, IEE84, IEE99, JBWK11].
Class+ [CMW83, DAD90, DSO9b, MCW78, AAGG16, DML11, EUG90].
Classes [ACZ16, CW77a, CW77b, CW91, CW92, Mul91, Sie04, WC79, van94, Bie95, DS09a, Sar80, Sie89].
Classification [GCMG15, HSPZ08, McK89a, PT11b, SY08, And93, CKKK09, I9G4, LS07b, McK89b, XLZC14].
classifications [LZ06]. Classifier [GK95, KG95]. Clause [CJ86, Lio81].
Claw [BHT98, BHT97]. Claw-Free [BHT98, BHT97]. Client [DR92, TC04].
Client-Server [DR92]. client-side [TC04].
Climbing [CL95]. Clocked [LN93]. clone [LG13]. closed [SS89a, SS90a]. Closest
close-pair [DHKP97].

Cloud [CdM89, CdM90, GC90].

Cluster [SKC07, KSC11, KSC12, TC04]. Clustered [Rot89].

Closure [AI89, Bel70, Bel72, Bel83, BBS90, CdM89, CdM90, Gui75, Gui78, Mac95, MNY81, SPSP16, Gui76c, NH74, SX08].

Clouding [LRY15, Mir17, GB17].

Cluster [SKC07, KSC11, KSC12, TC04]. Clustered [Rot89].

Clustering [AII89, Bel70, Bel72, Bel83, BBS90, CdM89, CdM90, Gui75, Gui78, Mac95, MNY81, SPSP16, Gui76c, NH74, SX08].

Clustering/hashing [AII89].

Clusters [TY03].

Clutter [MBBS12].

CLV [CF89a].

CM [PW94].

CM-5 [PW94].

CMAC [CG92].

CNF [BHIMM12].

Co [ZWCL10, HLH13].

Co-hashing [ZWCL10]. Co-processing [HLH13].

Coalesced [CV83b, CV84, Che84a, Che84b, CV85, CV86, Jan08, MS88b, Pal92, Pit87, Vit81a, Vit82b, Vit83, VC87, CV83a, PY88, Vit80a].

Coalescing [Vit80b, Vit80c, Kno84, SSU13].

Coalescing-lowering [SSU13].

Coast [SZ93].

COBOL [Bra88, Zou85].

Cod [BB70, Bel70, Bel72, Bel83, BBD82, Ch90, DC81, DL80, Eck74a, FIP02a, Gon81, KKRJ07, Lam70, LBJ02, Mau83, Mit95, Mau83, Mer72, MF82].

Coded [Bay73c].

codering [Lit77a].

Codes [BGS96, Bie97, CLP17, Fal85a, Har97, Irbxx, JP07, KP96, KP97, SVCC01, TW07, BJKS93, BJKS94, Bie97, Fal86, Fal88, FM89, GKH+12, Gob75, IG94, Kri89, Mill88, St91, St94b, VT14, Far93, Bie95].

codification [FDL86].

coding [BG96, Bie97, CLP17, Fal85a, Har97, Irbxx, JP07, KP96, KP97, SVCC01, TW07, BJKS93, BJKS94, Bie97, Fal86, Fal88, FM89, GKH+12, Gob75, IG94, Kri89, Mill88, St91, St94b, VT14, Far93, Bie95].

Collision-Resistant [BR97, BK12, CHKO08, IK05].

Collisionful [BPSN97, Gon95, Li95, BSNP96b, BSNP96c].

Collisions [An95, Bie97, BT94a, BT94b, CY06, DBGV93, GIS05, GL73, HR94, IP08, IP11, Pat95, VNP10, WFLY04, WYY05b, WYY05c, WYY05d, WYY05e, ZBB06, AKY13, BGG93, BF08, Gib91, ITP14, KdlT89, Men17, MT16, PGV93g, Sar11, SKP15, SBK+17, Van92, WS13].

Collision-Free [BM97, HM96, Rus92, Rus95, SHRD09, BG93, HCJC06, PBGV93, Vau93, Vau93, WYY05a, WYY05d, XNS13, YB95, ZBB+06, vW94, AKY13, BGG93, BF08, Gib91, ITP14, KdlT89, Men17, MT16, PGV93g, Sar11, SKP15, SBK+17, Van92, WS13].

Collision-Mitigation [SHF+17].

Collaboration [JXY07].

collective [WY00].

Collecting [FW76, FW77].

Collection [AG93, TR02, UIY10].

Collections [BBD+82, BBD+86, LRY78, LRY80, SV15b].

College [Jaj90].

collide [GNP05].

Collision [Ask05, BG93, BR97, BM97, BK12, BKMP09, CHKO08, CJ+09, Dam87, HM96, HHL10, HCJC06, IK05, IT93, IH95, KKT91, MNS12, Men12, Mit12, MO90, MO91, MC86, NS+06, Pey15, PACT09, PBGV93, PGV90b, PGV91, Rus92, Rus93, Rus95, Sam81, SY11, SHRD09, SHF+17, Vau92, Vau93, WYY05a, WYY05d, XNS+13, YB95, ZBB+06, vW94, AKY13, BGG93, BF08, Gib91, ITP14, KdlT89, Men17, MT16, PGV93g, Sar11, SKP15, SBK+17, Van92, WS13].

Collision-Free [BM97, HM96, Rus92, Rus95, SHRD09, BG93, HCJC06, PBGV93, Vau93, Vau93, ZBB+06, BGG93, Van92].

Collision-Resistant [BR97, BK12, CHKO08, IK05].
[ACM75c, ACM75a, ACM76, ACM77b, ACM84b, ACM85a, ACM86b, ACM88b, ACM89c, ACM90, ACM91e, ACM96, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM04, ACM07, ACM08b, ACM11, ACM12, Bai81, DT87, IEE94c, KKRJ07, KLT92, LCK11, Ram87, Rei88, Tro95, AFK90, GHK+12, GB17, GC90, LVD+11, MN99, Bai81, GT80, Rie89, ACM77a, WGM88]. Concatenated [CD84a, DC81, HS08]. Concatenation [BJKS93, BJKS94]. Concept [Kie85, Lum73, Ter87]. Concepts [KTMO83b, vL94]. Conceptual [FZ87]. Concise [PT12b]. Concomitant [MWC12]. Concurrency [Ell85a, Ell87, Ell88, FK89, GG74, HSM95, Kumi89b, Kumi89a, LS99, Moh90, Moh93, OA89, SDK91, GT16, MTB00]. Concurrent [AR16, CLP13, Cha88, Ell83, HYH89, HYH93, HY86, HTY90, Kumi90, MSD16, MSSWP90, Omi88, Omi89a, PBBO12, SDW14, SG88, CCL91, MMC01, TMW10]. Condensation [CT96]. Conditionally [ACP09]. Conditions [IKO05, IH95, Rus92, Rus93, Rus95]. Conference [ACM81, ACM85a, ACM91b, PDI91, ACM94c, ACM04, AFI69, ABB93, AFK90, VLD82, Ano89, AW89, ABB93, YR87]. Confidence [Vau06, Vid90, WPY90, IWS91, Yan10, Yao78, Yua92, Yum02]. Conference [ACM94a, ARA94, Ano83, Ano93a, Ano93c, CE95, Cop95a, DG96, DT87, Deb03, HF13, IEE92a, IEE94a, IEE94b, IEE01, Kil05, PSN95, SW94a, TWW77, USE90, Wie99, ACM75c, ACM76, ACM77b, LFP82, ACM91d, AFI63, YR87]. Connections [LK07]. Conscious [Ask05, ZHB06]. Consided [BJM14]. Considerations [Woe06a]. Consideration [CJP12, CJP15]. Considerations [SM02, Wri83]. Consing [AG93]. Consistent [KLL+97, Sun15, KSB+99, LDK12, WL07]. consonant [Wan05]. Constant [ANS10, BM99, F+03, LP15, Mul85, PP08, Sie04, DW05, DW07, FPSS05, GMW90, IKOS08, MV91a, OP03, PPR07]. Constant-Round [LP15]. Constant-Time [Sie04]. constrained [RAL07]. Constraints [BHIMMI2, NNA12]. Construct [CDMP05, Han17, SYG11]. Constructing [CS85a, Cha86b, CFY94, FFPV84, FCH92, HM12, Lis07, RS08, SS98, SL85, SL88]. Construction [ACM79, AN96, BCK96b, BBKN01, Eld84, IT93, KR01, Kut10, PV92, SP91, SSA01, Sar10, Sch01a, BDPV08, CML+13, LCO9b, Woe06a]. Constructions [AHV98, BBKN12, BR502, Bla00, DA12, Jou04, SG16, WX01, GPV08, LS06, MV08, NN09, VZ12, WC07]. Container [Hej89]. Containers [Ben89, LACJ18]. Content [GH07, Coh08, MHT+13, WDP+12, YTJ06, MJ14, TLLL09, XXCK09, ZO13, BB07]. Content-addressable [Koh80, BB07].
CT-RSA [Joy03]. Cube [OL89, TY91, OT89]. cube-connected [OT89]. CubeHash [AD11, BP09, BKMP09, KKMS10]. Cuckoo [ANS09, ANS10, ADW12, ADW14, BHKN13, DM03, DS09b, DMR11, FPS13, FMM09, FMM11, KMW08, KMW10, Kut09, Mit09, NSW08, PR01, PR04, Pag06, PRM16, PS12, SHF17, TK07, DS09a, KM07, Kut06, DK12]. Cumulative [LPWW06]. CUPID [KS89a]. Curve [ANS05, MSTA17, OOB12, TK17]. Curves [BGH12, FT12, WX01, BGH13, FSV09, FFS13, Far14, GZ99, LS06]. Cyclic [DH84]. Cycling [Saa12]. cyphers [Far93]. Czechoslovakia [Rov90]. D [CBA94, EAA+16, Fly92, GG92, GKH84, GG92, GK94, LMJC07, LDY+16, WSSO12]. D-Based [WSSO12]. d’Access [Lit77b, Kar82, Lit77a]. d’Adressage [Lit79a]. Dallas [ACM81, ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM89a, AA86, Bab79, BG92, DCW91, DKO+84b, DGS+90a, SHF91, HSMB91, HF91, IH83, KGJG12, Kie85, Kim80, KL87, KTMo83a, KO90, Kue84b, Kumi89a, LC86a, LL08, Llo81, Ouk83, SD90b, Sch90b, SD90a, Sha68, She68, She91, SD90a, Sto88, Tan83, Toy86, Ull82, WVT90, Wie83, Wie87a, Yam85, YNKM99, ZJ94a, AS82, AOV+99, Bal96, Bal05, BDPSNG97, BG80, Bat81, BG82, BS94a, CCH09, Chu90, Rou09, RK91, Sar10, Sch01a, SDW14, ST83a, ST83b, SW86, SW94b, Ste82, Sto92, SM08, SM12, SW87, Tan83, TC93, TY03, TA81, TA86, TGGF10, TS89, TGL+97, Top92, Toy86, TS76, TS84, VL87, Wal88, WPKK94, WS76, WH83, Win90a, Wir86, WDTV91, WTY93, Wus85, YDT83, YSW+11, YLB90, Yua92, Zam80, ZO93, AK09, BR75, BZZ12, BVF12, BGG12, BPT10, CLW98, CRS83, Col93, CH09, FP89a, FVS12, GB17, Ged14, GP08, HC11, HF91, HSMB91, HF13, IGA05, IL90, Kak83, Kan91, Kan93, KRJ09a, Koe72, LNS96, MSK96, MV08, NT01, NM02b, OSS88, SLC+07, SB07, She06, Shi17, SE89, SW94a, SA17, TKT+89, VL97, Vit01, WM93, WTZ+13, Wil78, Wil85a, Yao78, YLC+09, Yu92, YG10, ZKR08, ZLL+07, ACM75b]. Data [GJM02, ICD87, IEE94a, MO92a, Vit01]. Data-base [Mar75, Mar77]. data-centric [AK09]. data-driven [TKT+89]. data-intensive [Shi17]. Data-stream [Tan83]. Data-structures [Har73]. Data/Knowledge [BCH87]. databanks [FDL86]. Database [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM89a, AA86, Bab79, BG92, DCW91, DKO+84b, DKO+84c, DKO84a, DG+86, DG+90b, DG+90a, DNV81, DT91b, GD87, GHJ+93, Van10, Han90, HCKW90, He87, His83, HF13, IH83, KGJG12, Kie85, Kim80, KL87, KTMo83a, KO90, Kue84b, Kumi89a, LC86a, LL08, Llo81, Ouk83, SD90b, Sch90b, SD90a, Sha68, She68, She91, SD90a, Sto88, Tan83, Toy86, Ull82, WVT90, Wie83, Wie87a, Yam85, YNKM99, ZJM94b, AS89, AKN12, DKO+84d, EH17, EBD91, FNY92, GC90, HF91, ISH+91, JB94, MBK00, PS08, SSW94, SK88, SE89, SP89, TL93, Vak85, WC94, ZJM94a, ZJM94c, ODB89, BF89, KKP92]. Databases [AS82, AOV+99, Bal96, Bal05, BDPSNG97, BG80, Bat81, BG82, BS94a, CCH09, Chu90,
Chu91, DDF, DT91a, DT91b, FM91, FHCD92a, GY91, Gra92, Gra93c, GC95, GSW98, Heu87, HCY97, Kaw15, KR91, LOY00, LDM92, LOON01, O88, R200, RZ90, RNT90, Sch82a, SPW90, SW91, TRN86, Toy93, AP92, BW89, FHCD92b, HC92, ISO97, KR88, SB95, SB97, SI09.

Datalog [GST90].

Datasets [OGAB14, BZL15, HAKM15, LRU14, Mil95].

datastructure [B¨ut86].

Dateiorganisation [Nie75, Wie89].

Datenbanken [Lut88, Nee79, Stu82, Wie89].

Datenbankmaschine [Pet83].

Datenbanksystemen [Kue83, Kue84a].

Datenorganisationen [Oll89].

Datenstrukturen [DF77, LS85, Meh86, Nol82b, Oll89, Wir75, Wir83, OK80, Koe72].

Datenverarbeitung [Lut88].

Dawning [Cro98].

Dayton [IEE94b].

DB2 [BFG95].

DBJ [ZJM94a, ZJM94b, ZJM94c].

Dbms [KR86b, Gra86, KR86a, KP81].

DC [ACM84b, BJ93, Fis87].

DCC [SM08, SM12].

DDH [Dev93].

de-amortize [KM07].

De-amortized [ANS09].

De-duplication [BC08].

Dealing [Bre91, Vit01].

Deauville [BF89].

December [PDI91, And94, AiNOW11, Boy95, Far93, HL91, IEE88b, LC06, RRR99, SZ93, Yan10].

Decentralized [LB07].

Decision [Eng94, CKKW00, QP16].

decision-trees [QP16].

Declustering [FM89].

Decomposition [NS16a, Spe92].

Decompositions [GO15].

Decoupled [RKLC11+].

Decryption [GBL94].

Dedicated [HKY12, ISO97, ISO04, NM02a, Pre94a].

Deductive [Llo81, TRN86, SSW94].

deduplication [BVF12].

Deep [CLYY92, CLYY95].

defective [Hui90].

defered [Gri77, Vek85].

Defined [YD84].

definition [FNY92].

Definitions [DCW91].

del [ACM82].

Delay [NDMR08].

Deletion [AHS92, CV86, GG80, IG77, KV91, MV88, TW91, WW66, V11, V15].

Deletions [CF92, Kau77, Kau82].

Deutsche [BN85].

Develop [TC93].

Development [BV89, BIP92, CN07, Hil88, McI82, SS65, V90, Wei72, YR87].

Developments [ANO9a, Lar85a, Devices del ACM82, Delay [NDMR08], Deletion].
DH [AKY13].

DHT [RCF11, SX08, UPV11].

DHTs [CQW08].

Diagonal [PVM94].

Dichotomy [HW08].

Dicing [Kon10].

Dictionaries [DMPP06, DW05, DW07, GJM02, HMP01, MSK96, MN90, Mil98, RRS07, Ru08, Wen92].

Dictionary [CS82, DA93, Dod82, Dos78b, McK89a, Rad83, Die90, DHW08, McK89b, Ron07, Sun91, Sun93].

Diego [ACM03a, ACM07, Sto92].

Differences [Gri98].

Different [LH03b, BW89, Jan05, KSS88a].

Differentiability [DRS12].

Difficult [SKD15, SL88].

Diffusion [SDMS12, SDMS15].

Digest [IEE88a].

Digital [ANS05, BDS09, Cai84, Cip93, Fox91, GK12a, GT63, LM95, Mek83, Oka88, Oto85a, PW93, PGV93f, Reg81, Rou09, Ru89, An09, An13].

Digram [Wil79].

DIMACS [GJM02].

Dimension [CT96, LHC05].

Dimensional [HYH89, KSSS86, Leb87, LOY00, MNY81, Ngu06, ML95, RAD15, SWQ14, TYSK10, XMCL11, Yuy75].

Dimensioning [BP97].

Dimensions [AI06, GIM99, KS88b, KS88c, Oto84, Oto88a, PADHY93, AP93, Pro94, THS97].

Disc [CC87, CLC92, CF89b].

Discovery [LK10, PKW09, ZO13].

Discrete [ACM94d, SDA90, SDA91, ACM97a, ACM98b, ACM05, ACM08a, GH91, LR15, MLHK17, Mat09, Shm00, vW94, NW07].

Discretionary [BDPSNG97].

Discretized [RNR13].

Discriminant [SY08].

Discrimination [CP95a].

Discriminative [OSR10, HXLX13].

Discs [CF89a, CF89b].

discussed [Gre95].

Discussion [BBR88].

DISH [SKC07].

disjoint [ABB+92].

Disk [BGF88, Cha88, Du86, Gra94a, ML95, TC93, WB03, Kor08, Wil14].

disk-based [Kor08, Wil14].

Disk-tape [ML95].

Disks [CC91, Vit85, CCL91].

Disorder [LL86, Lom88, RM88, TB91].

Displace [BBD09a, Fag99].

Displacements [Jan08, Jan05, Vio05].

display [Sab94].

displaying [Koe72].

Dissemination [RHM09, RCF11].

Distance [Bra84a, Bra85, Bra86, NNA12, LP04, MY12, ZD11].

Distances [Bal96].

Distinguisher [Sch11].

Distinguishers [SY11, AP11].

Distinguishing [HIS+01].

distribute [Die90].

Distributed [PD91, APV07, BMS+17, CCF04, DPH08, Dev93, Ell83, Ell85b, GSB94, adH93, H13, HLC10, IK92, JXY07, KLAdH93, KLM96, LK07, LMSM09, LC06, LB07, LAC18, LMR02, ML68, MS02, MT11, Mey93, MK12, NTW09, PRR15, PAPV08, PF85, RH09, RMB11, SW91, SDK91, SM02, SPB88, Spe92, TT10, TP95, TCP+17, VBW94, Wil03, BVF12, BPT10, CCY91, DL06, DAC+13, HKW05, ISO97, KKP+17, KLL+97, Kha95, Kon93, LMSM12, LVD+11, LNS93, LNS96, MPL07, M09, MA15, SP89, WTN07, WTN09, XLC14, ZGO05, ZLL10, ZO13].

Distributing [KW94].

Distribution [AT93, BBS90, CM01, DTS75, EAA+16, LMC07, PK87, RR92, Sch01b, SDT75, AT90, GBL94, Vio05, XCC09].

Distribution-Dependent [DTS75, SDT75].

Distribution-Independent [DTS75].

Distributions [KS86, KSS87a, KS87b, KSS98b, RTK12].

Distributive [NP91].

Dither [AP08].

DITTO [SB07].

Diverses [LG78].

Division [Eck74a, GL73, Gra88, Gra89].

DLIN [CK12].

DM [KL95].

Do [Bur06, HSR+01, HR04].

Document [ANT85, DGM89, LR96a, Wil79, KRML09].

Documentation [DM90].

Documents
WWZ09, WMB94, WMB99, ZWCL10, WLLG08. Domain [BR06, Cor00, Cor02, DOP05, KK12, LT12, LLG12, PG95, RS12, SGY11, SPS16, ZNPM16]. Donnees [Kar82, LG78]. Don’t [BFCJ+12, YT16, BCR10]. Dortmund [Lut88]. Double [Boo72, Bur05, Cdm90, GS76, GS78, KLP98, LG94, LM93c, MB03, Men12, OOB17, Pal92, Yao95a, KL95, LM88, LL15, Men17, Mol90a, Mol90b]. Double-Linked [Pal92]. Down [LRY+15, PT11b, ZLC+12]. DPA [LRY+15]. Draft [MCF17]. drive [BC06]. Driven [Gra93b, Ven86, TKT+89, ZO13]. DSS [Ano09, Ano13]. Dual [MNS12, Wee12, BR75, MJ08]. Dual-Stream [MNS12]. Dublin [ABB93]. Dumping [Fro81]. d’un [LG78]. Duplicate [LK10, LQZH14, MD97, TW91]. Duplicates [Bre91]. duplication [BC08]. durch [Hil82]. Dynamic [AL86, AHS92, BGDW95, CS91, CR89, CBA94, DGGL16, Dev93, DKK+88, DadH90, DKK+94, DKK+94, ED88, FNPS79, FS82, GT93, adH90, Kaw85, Kie85, KNT89, Kou93, KS86, KS87a, KS87b, KSC11, KSC12, Lar78, Lar88a, Lar88b, LC88, LRY+15, MS12, MS02, Mui84a, Mui84b, Mul85, NKT88, OG94a, Ore83, Oto85b, Ouk83, OSS83a, OSS83b, PLKSO7, PG95, RZ90, RT89, RLS2, RSSD98a, Reg81, Rob86, Sch79b, Sch81, SSO5, TT10, Vek85, Wan14, YD84, YBQZ17, YD86a, YD86b, ZRT91, ZJM94a, ZJM94b, ZJM94c, ZO93, CS93a, DMP06, DHW08, FR94, FF90, Fro81, HKLS12, HR93, KD92, Lev89, Lin96, Mil98, YG10, SKC07]. Dynamically [Lit78, Litxxb]. dynamicis [DMPP06]. Dynamiques [Kar82]. Dynamischer [Hil82].

E-HASH [HGH+12], early [CV83a, CKKW00, PY88], early-insertion [CV83a, PY88]. Easier [Bor81, Eng90]. Easily [CMW83]. ECDSA [ANS05]. ECHO [BOY11, Sch11]. ECHO-256 [Sch11]. EDBT [JBJ94]. Edinburgh [AOV+99]. Edit [NNA12, TK88]. Editing [Koe72]. Editor [Fox91, BMB68]. Editors [RW97]. Education [LC86b]. Effect [KNT89, Mac95, Mia92]. Effective [FCHD88, FCHD89, HW08, PCY95, WDTY91, MA15]. effects [QM98]. Efficiency [DB12, Leb87, PCCQ08, Ul72, KST99, Pt10]. Efficient [AD08, ASBdS16, ASW07, Ast80, AEMR09, ADW12, ADW14, BR14, BCS09, BS11, BPZ07, CKB85, CLS12, DDF+07, DD15, DGM89, FES09, F+03, FRS94, GM79, Gon83, GRZ93, Grt77, HT01, HM12, HDCM09, HHL10, HLC10, IN89, JD12, KU88, KR81, KladH93, KLM96, KKRJ07, KJC11, KS12, KS86, KS87a, KS87b, KS89b, Kue84b, HGH+12, LW88, LWG11, MEK+14, MH00, MO92a, MJT+02, Mui85, NN90, OOK+10, Pag99, PAKR93, PAPV08, Pan05, Qui83, RT81, RFB97, Rémi92, Ros06, Ros07, Sac86, SDMS15, Sch91b, Sch93a, SL16, SGY11, SvEB84, SPSP16, SKM01, TY03, TYZ015, TYSK10, TW07, TS85, TGL+97, VL87, Vit85, WYY05d, WWZ09, Woe06b, YSW+11, YGC+12, BLP+14, BZL+15, BT93, CML+13, CJ14, CLW98, FNP09, FPSS05, Gai82, HKLO4, HJC06, adHMR93, KU86, Lin96, LCH+14, LLA15, MSK96].

efficient [NTW09, OCDG11, PCK95, PBBO12, PSS09, RFC11, SSW94, Sch93b, SX08, Shi17, SV15a, UHT95, VL97, Wie86, WTN09, XLZC14, ZWT+14]. Efficiently [AP08, Kim99]. Effiziente [Meh77, Meh86]. Eight [Van10]. Eighteenth [ACM86b, ACM91d, ACM91a]. Eighth [ACM76, ACM89b, ACM89a, ACM97a, VLD82, ACM96, Gol92]. Einfuehrung [Nol82b]. Einschrittcompilers [Dit76]. Elastic [Hac93]. Elections [EH12]. Electronic [Cip93]. electronics [IEE94b].
Expandable [Kno71]. Expander [CLG09]. Expanders [BK07b]. expanding [FNY92]. Expandible [CL95]. Expansion [AVZ11, Gri77, Mai92]. Expansions [Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Larxx, RSS89a]. expansive [LS96].

Expectation [GM91]. Expected [Gon81, Lar81, Lar82a]. Experimental [ANS09, JHL+15]. Experiments [KL96, Wil79]. expert [ARA94]. Explicit [ADW12, ADW14, Bla00, CL83, LS06, MvT08, WX01, GJR79]. exploit [AZ10].

Expectation [GM91]. Expected [Gon81, Lar81, Lar82a]. Experimental [ANS09, JHL+15]. Experiments [KL96, Wil79]. expert [ARA94]. Explicit [ADW12, ADW14, Bla00, CL83, LS06, MvT08, WX01, GJR79].

Extremely [Sie04].

Facility [FS82]. Failure [Ano95a].

Family [BDM+12, FLS+10, GK08, Ind01, IT93, MWH92, MWHC96, Sk05, ACP10, BDP12, KRT07, Sar13, SRRL98]. Fast [AKS78, AP92, AB12, BH91, BS97, BS94b, BS94a, BGV96, BT12b, CH12, CSS85a, CCW+17, CWCL10, CD84b, CS82, DC98a, Dit91, EPR99, FNPS79, FFGL09, GM91, GM94, GM98, GC95, GK94, GK95, GO15, Gui89, HK95, HKLS12, HW08, HXLX13, HG95, Ke96, KP97, KLP98, KR79, KR01, KRML09, LQZ14, LM95, LR99, LZ06, Lit91, LL87, Mad80, NR12, Ny96, OS14, Pea90, Pea91, PQ98, PQ99, P97, Rey14, Rog95, Rog99, SG76a, Sav90, Sav91, ST86, She78, SY08, She96, Tho17, Ven84, WH83, Yan05, YBQZ17, YKLH10, AB96, BS94c, CCA+12, DC94, FFGL10, HF91, KKL+09, KHH89, MSD16, MPL09, Mer90a, MZI98, MPST16, Pvo95, Sav85, SP12, Sie89, SV15b, Tho00, TLLL09, YTHC97, YZ16, ZO13, ZHC+13, And94, Bir07, Gol96].

Faster [ASM17, CRW11, CRW13, FCH92, LK16, McC79, Bosxx, HKL04, LS15, Sna87]. Fault [AAB92, DSSW90a, DSSW90b, MKAA17, HGR07].

Fault-tolerant [DSSW90b, HGR07]. FCD [ISO97]. FCSRs
forest [KP92]. Forgery [CY06]. fork [ALS10, CMP07]. FORK-256 [CMP07]. fork-join [ALS10]. Form [Aum09, HZ86]. Formalization [MMC01]. Formats [GIS05]. Formatted [LYD71, LY72]. Formula [GK76, Ram97]. Forrealization [FM96]. Forth [Gre95]. FORTRAN [FDL86, JC88b]. Forwarding [YBQZ17, BB07, HDCM11]. foundation [SXLL08]. Foundations [Ano85a, BCFW09, Gol94, IEE76, IEE80b, IEE82, IEE85a, IEE85b, IEE89, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, LT85, Roe90, Win78, HKNW07, LS89, Lom93, RRR99]. Four [Gra88, Gra89, SD89c, SD89d]. Fourteenth [BD88]. Fourth [ACM85b, ACM02, IEE80a, ICD88, KLT92, Las87, Yao78, GSW98]. FoXtrot [MK12]. FP [PHG12]. FPGA [DLT98, KMM06, MXL12, MAK12, TP15, TK07, WZJS10]. FPGA-Based [TK07]. FPGAs [DD15, MMMT09, SK05]. Fractal [Ano95c, YSEL09]. fractals [HCF95]. Fragmentation [Sac86]. framework [VT14]. Framework [BJL16, BKMP09, DGV93, FFGL09, GST90, EH17, FFGL10, GL06, PCK95, UHT95]. Framingham [Ker75]. France [AGK10, BF89, Jou85, LS89, Ng79, QQ95, QQ95, vdHvH12]. Francisco [ACM75b, ACM08a, DT87, IEE88a, Jou85, Kar98, Shl90, USE90]. Frankfurt [CE95]. Friedman [KM86]. Freedman-Komlos [KM86]. Free [AR16, BM97, BB07, BHT98, CLNY06, CTZD11, Dam87, HM96, HZ86, KKT91, LFD17, MO190, MO191, Ram89b, Rus92, Rus93, Rus95, SHRD09, BG93, BG93, BHT97, Gib91, Go95, HCJC06, MJ14, NK16, PBGV89, SS15, Van92, Vau92, Vau93, ZBB16, ZL12, SS06]. Free-Form [HZ86]. Free-text [Ram89b, Gob75]. Freestart [SKP15]. French [Coh94]. French-Israeli [Coh94]. Frequency [Lyo78a, TS85, CJP12, CJP15]. Frequent [OTKH11, CH09]. Frequently [She78]. Frontends [Sag85b]. Frontiers [J´a90, Fis87]. FSE [Bir07]. FSpH [ZWT+14]. Fugue [AP11]. Fujiyoshida [RM93]. Full [AC74, Bur75a, CMP07, Cor00, Day70, DOP05, KK12, L16, Lue84, GLM+10, San76, WYY05b, WYY05c, YSW+11, ZKR08, NH74, RCF11, SKP15]. Full-Text [YSW+11, RCF11]. Function [Abi12, ÁVZ11, Aum09, AMP14, BPSN97, BF83, BDM+12, BS94b, BS94a, BR502, Bla95, BKL+11, BDP97, CP91c, Cor81, CKB83b, CN08, Cob94, CBA94, CMP07, CO82b, DMPV05, DGV93, DG93, Dae95, DCG98b, DLT98, Dat88, DL80, FLS+10, GIS05, Gei95, Gei96, GSC01, GIS11, HPC02, Har97, Hel13, HLC10, JOP07, Kal01, KRJ09b, KCB81, Kra82, Kul84, KKT91, LWWQ08, LP15, Lis07, L180, LG78, MR07, MRST10, MIO89, NS16a, Oto84, PV92, PLH12, PBD97, GLM+10, RB01, Schl11, Sch90a, Sch91b, SGI11, Sta06a, TC93, TTY93, WW90, WSSO12, Win83, Win84, W84, WYF+12, YD84, Yan05, WL12, WZW+12, AKY13, ACP10, AB96, AMP15, ABO+17, AP11, BNN+10, BDPV06, BDPV12, BOY11, BS94c, BW89, CKB83a, CK89, DK94, DF89, FP82, Gib91, HR07, Han17]. function [HL03, ITP14, LW04, Lia95, LWG11, MJ08, Mer90a, MZ98, Mit17, NSW09, Pat94, Pat95, PCCQ08, QJ97, RS14, SS92, Sch82b, SRL98, SHA97, SXL16, VNP10, WS13, WYW14, YL97, YZ16]. Functional [LFP82, GMP95, ZKR08, Jou85]. Functions [AHV98, AFK83, AFK84, AN96, ACZ16, AA79b, AA79a, And91, ABD+16, An95a, AEM09, AR17, AM07, AP08, BSNP96a, BDPSN97, BCK96a, BCK96b, BR14, BBD+82, BBD+86, BG96, Bl908, BCS90, BRSS10, BCW09, BK12, Bo79, BZP07, BHT98, BH86, Bu78, Can97, CW77a,
CW77b, CW79, CMW83, CBK83, Cer85, CKB85, CW85, Cer87, Cer88, CS83a, CS83b, CS85c, CS85b, CS85a, CS86, Cha86b, CS87, CLNY06, CLG09, CK15, Chi91, Chi94, Cic80a, Cic80b, CE70, Coh97, CH94, CHM92a, CHM92b, +CM93, DGV93, Dam87, Dam90b, DDF+07, DK07, DY90, DY91, DTS75, DadH90, DGMP92, Die07, DGKK12, EK93, EPR99, Fil02, FL08, FLP08, FLP14, FFGL09, FCHD88, FCHD89, FCDH90, FCDH91, FCH92, FHCD92a, FK84, Get01, Gir87, GHK91a, GHK91b].

Functions [GLG+02, GK08, HHR+10, Hal12, HM12, HJ96, HKY12, HS08, HK12b, HR04, IInd01, IT93, JO80, Jae81, Jen97, Jou04, JD12, KH84, KK06, Kil01, Kn075, KP96, KLP98, KVK12, LM93a, LK94, LT09, LM95, Lis07, LH03a, LLG12, Mai92, MWC97, MWC98, Mar64, Mel82, MP12, Mer90b, Mir01, MRW89, Mit02, MO190, MOH91, Mul91, NIS15, NM02a, NCFK11, NP09, NR12, NAK+15, OOB12, Otk91, Pag99, PWY+13, PB80, PQ98, PQ99, PW93, PGV90a, PGV90b, PGV92, Pre93, PGV93d, PGV93f, Pre94a, PV95, Pre97a, Pre97b, Pre99, Pre94c, QG89, QG90, RP91, RR08, RWSN07, Rja12, Roe94, RS08, Ru993, SP91, Sag84, Sag85a, SDMS12, SDMS15, San76, SS01, SS88, Sch91a, SRY99, Sho00a, Sho00b, Si04, SVE84, SHT75, Sp77].

Functions [Sti06, Tv83, Tro92, Tro95, Ull70, Ull72, WFLY04, Wee12, WC79, WC81, WKO78, YD85, Zem91, Zhe90, ZTM91, vW94, van94, vDGLGL+12, AY14, AAB+92, ADM+99, AG10, And93, AAGG16, BSNP96b, BSNP96c, BD92, BCRO4, BDPV07, BDP11, BJKS93, BJKS94, BSU12, Bra09, BHT97, BM01, CMR98, CKB81, CCHK08, DW03, ESR114, FFGL10, FHC89, FHC92b, Ged14, GW94, GPGO16, Gou95, GLC08, GK12b, HK86, HC11, HLMW93, HXMW94, HKK13, HSK88, HYLT99, Hug85, ISO97, ISO04, JCC00, JG95, KST99, KL95, KRT07, KHK10, Kra95, Kri89, LS07a, LMM93b, LLH02, LKY04, Li95, Li10, LC13, Mei95, Mic02, MV08, MS13, MSP12, MT16, Mul92, Nae95, NY89b, NY89a, OS14, OS10, PW08, Pob86, PGV93a, PGV91, PGV93b, PGV93e, PGV93g, Pre94b, PGV94, PvP95, RB91].

functions [RFB97, RZ97, RP95, Roe95, Sar80, SS90b, ST85, SH92, SH94, SL88, SS16, Sie89, Sim98, SV06, TZ94a, Tsz92a, Tsz92b, VD05, XCC909, YRY04, Zem94, ZW05, ZBB+06, ZDI+15, RRS06].

functions-based [HC11]. Fundamental [LYD71, LY72].

Fundamental [HS78, HS84]. Further [Lit85, Sar15, DM03]. Fusion [Wil00].

Fuzzy [LMC07, LMJC07, LHH92, HC14].

Gallery [BFR87]. Galois [HJ96]. game [Zob70].

Gamma [DGS+90b, DGS+90a, GD87, DGG+86].

Garbage [AG93, FW76, FW77, UIY10]. gates [GHK+12]. Gb/s [BLC12]. GBDD [VTHC97].

GCM [Saa12]. geeks [McN03]. Gene [TGGF10]. General [Chi91, Chi94, DR06, ISO97, LW88, LHC05, Luni73, MSD16, Sch91a, Sim98].

general-purpose [Sch91a]. Generalised [CC87, KKK99, LPWW06]. Generalized [HB94, KV12, Li80, SK88, Sev74, KHK10]. Generate [HSR+01]. Generated [LMC07].

Generating [Bla95, CT96, CHM92a, CHM92b, Get01, Jae81, Sag84, FP82, GFR11, MFK+06].

Generation [GRZ93, LL92, MS12, She91, SSS05, Wan14, BK07a, BK88, CCA+12, CT10, KKK92, Mo92b]. Generator [An06, BK12, Cai84, Gui89, Sag85a, Sch90a, ZF06, Aam03, CLS95, HC11, SS92, TSY98, VZ12].

Generators [MWC97, NAK+15, SP91, BK07a, CP13].

Generic [DL17, DOP05, MP12, Sar10]. Genetic [FFGOG07, HSIR02, CV05].

Genomic [CCH09]. Geo [TYZO15].

Geo-Fencing [TYZO15]. Geographic [RSS12]. GeoHash [BSH12]. Geometric
24

[Bar97, BG92, Bie97, BM90b, CO82a, GPA97, HB89c, HB94, KGJG12, LW88, LMC07, LMIJC07, MV02, PW94, RH92, RH95, RW97, SA97, Tsa94, Tsa96, WPKK94, War86, WR97, BJKS93, BJKS94, GG92, JBWK11, LG96, MN99, MGG10, WC94].

geometries [FH15].

Geometry [CCC89, Wil00].

Georgia [USE00a, ACM83a, ACM83b].

German [Zel91, BJMM94a, BI87, ECK74a, HJ75, Koe72, Sta73, Wen92, vM39].

Germany [AH03, BRW93, HM08, adHMR93, Yao78, CE95].

Gestion [Lit77b].

Get [Eug90].

GHASH [Saa12].

GI [Lut88, TWW77].

GI-Fachgespräch [Lut88].

Gigabytes [WMB94, WMB99].

Girths [Zem91].

Give [AT93, AT90].

Global [CLP13, Cli95, DL79, LPSW03, MD97].

GNU [Wil14].

Go [Bur06].

Goddard [Fis87].

Goes [Cip93].

Gold [SZ93].

Gong [BPSN97].

Good [Bur92, Hol13, JP07, Lom88, Mit02, ADM*97, Kout93].

Goodyear [Fis87].

GORDION [EE86].

gossiping [GHW07].

GOST [WYW14].

GPERF [Sch90a, SS92].

GPU [ASA+09, FRB11, HLH13, LLA15].

GPUs [CZL12, vdBGLG16+16].

GRAB [Les88].

GRACE [KTM083b, KTM083c, KNT89, KTN92].

Graduate [Ano93d].

Grained [PAKR93, KLSV12].

Gram [Ven86, Coh98].

Grams [Coh97].

granular [CLS12].

Graph [Ari94, BMQ98, Hal12, HM93, JBWK11, KMB88b, MD97, MBB12, NRR90, T112, YkWY83, BPT10, CML+13, CLL+14, Kor08, Mol90a, Mol90b, WLLG08, vL94].

Graph-Based [Hal12, JBWK11].

Graph-Entropy [Ari94].

graph-structured [BPT10, WLLG08].

Graph-theoretic [vL94].

Graphic [LLL17].

Graphs [Leb87, RKLC+11].

Graphischen [Lut88].

Graphs [CLG09, HMWC94, KPS92, Kmu98, Zem91, AD08, AAB+92, AS07, DW03, HK83, Kut06, LL13, Zem94].

Gray [CLD82, Fal85a, DL80, Fal86, Fal88].

Greece [ACM01, AMSM*09, Rei88].

Greedy [WTZ+13, AGJA06].

Greenbalt [Fis87].

Grenoble [vdHvH12].

Grid [Gri98, KS88a, KS88c, Leb87, NHS84, Reg85].

Grindahl [KRT07, Pey15].

grosser [Dos78a].

Grostl [ABO+17, ITP14, MRST10, WFW+12].

Grostl-0 [ITP14].

Group [ACM82, DT87, DD11, KKW99, LND08, Mue04, TZ94a, YLC+09].

Group-based [LND08].

Group-by [KKW99, YLC+09].

Group-theoretic [TZ94a].

Groups [HM12, LLW10, PWY+13, Reg82, CYTF94].

growing [KW94].

Growth [Oto88a, Rey14].

Guangdong [IEE11a].

Guaranteed [RT89].

Guaranteeing [LK84].

Guarantees [HC13].

Guess [ZF06].

Guess-and-Determine [ZF06].

Guest [Fox91, DLM07, RW97].

Guide [AS82, SD76].

guided [SSU+13].

h [Gra94b].

Hachage [Lit79a, Mek83].

HAIFA [DL17].

Halifax [DSZ07].

Hamming [Bal96, Bal05].

Handbook [Gon84, GBY91].

handle [Eug90].

Handling [B187, DNSS92, Lar85b, QCH+81, Sam81, Sch79a, Wi59, WB03, ZO93].

Handwriting [MS12].

Handwritten [FL11].

Haphazard [CS87].

happened [Her07].

Hard [Hol13, Kil01, GPV08, Nae95].

Hardness [BHKN13].

Hardware [ABM06, Bab79, BPPPBLP12, Bur81, Bur84, DW83a, FW09, GD87, GLG+02, HDMC09, IG77, MXXL+12, RP91, TK85, dW83b, ABO+17, BOY11, Bis12, Bur82, CE95, FNP09, ISH+91, JMH02, KM07, KM10, MZ198, RFB97, RAL07].

Hardware-Based [HDMC09].

hardware-constrained [RAL07].

harmonious [HK83].

HaRP [PT11b].

Harrison [Boo73].

Harvesting
Hash-Bucket [CS82].

Hash-CBC [BBKN01, BBKN12].

Hash-code-techniken [Mer72].

Hash-Coded [Bay73c].

Hash-codering [Lit77a].

Hash-coding [Bay77, Dos78a, HJ75, Lit77b, Mar64, Sch79a, Ber79, Giv80, Riv74a, HJ75].

Hash-consed [BJM14].

Hash-consing [AG93].

Hash-Function [BF83, BRS02, ACP10].

Hash-Functions [Gir87, QG89, QG90, ISO97, ISO04].

Hash-Join [Gra99, NNA12, GK05, RG89].

Hash-Join-Algorithmen [Zel91].

Hash-Joins [LR96b].

Hash-Jpoin [Omi91].

Hash-Key [MW95].

Hash-Lookup [CN07].

Hash-Only [EH12].

Hash-Partitioned [Ger86a, NKT88, SW91, Ger86b].

Hash-Routing [WBWV16, SPSP16].

Hash-Search [WWZ09].

Hash-Sequential [Lit89, IL90].

Hash-Speicherung [BJMM94b, BJMM94a].

Hash-Structured [CS93b].

Hash-Tabellen [BI87].

Hash-Tables [LMSM09, LMSM12].

Hash-values [GS94].

Hash-verfahren [Hil82].

Hash/Table [DAC+13].

Hashcodingverfahren [Sta73].

Hashed [GBK79, GG74, HYKS08, KS12, LI80, MF92, Mul72, SVCC01, VL87, VL97, WS93, And88, GMW90, HSBM91, Ken73, War14].

Hashedcubes [PSSC17].

Hashes [BC08, Saa12, Sch01b, Sch01a, Wan14, GvR08, GP08, GNP09].

Hashfunctions [PBGV89].

Hashiguchi [LP04].

Hashimoto [SsaS01].

Hashing [CLC06, CV83b, CV84, Che84a, Che84b, CV86, CW09, CTZD11, CZ17, Ch93, CT12, CJC+09, CK94, Chur91, Chur92, CV08, CKW09, CE70, Coh97, COS82, CHX85, CH94, CG79, DA12, CadHS00, DW83a, DC98a, Dan93, DLT98, DPH98, Dat88, DD11, vdsDW74b, DSS84a, DGD02, DTS75, DL79, Dev90, DJSN09, Dad90, Dad92, DKM94, Die96, DHT+94, DHL+02, DLH09, DSSW90a, DR11, DL80, DT91a, DT91b, DT75, Dm89a, Dm89b, El83, Ell85a, El87, Eid88, ED88, FNPS79, Fal85a, FM96, Far14, Fel87, FNSS92, Fla81, FS82, Fla83a, FPV98, Flo87, FPS13, FT12, FFGOG07, FM09, FM11, Fur88, GSS01, GL73, GM91, GM94, GdHW96, GM98, GIM99, Gon80, GL82, GL88, GRZ93, GK76, GJ77, GT80, Gra86, GPY94b].

Hashing [Gre95, Gri77, Gri79, GT93, GPA97, Gui75, GS76, Gu76a, Gu76b, GS78, Gui78, GG80, GH07, GZ14, Gur73, HB89a, HB92, Hac93, HSPZ08, HT01, HR14, HM96, HK12a, Ham02, Har71a, HCF95, Hea82, Hea72, HB89c, HB94, adH90, adH93, He89, HST08, HNS84, HSM95, HKY12, HYH89, HYH93,
Hol87, HC87, HT88, HY86, HTY90, HSW88, IK05, IH95, Jac92, Jae81, Jag91, Jai89, Jai92a, Jai92b, Jaixx, Jan08, JV16, JP08, JTOT09, Jol97, Kab87, KU88, KKN12, KV09, KGJJ12, Kaw85, Kaw15, Kel93, KR86b, KR86a, KV91, KMWO8, KMW10, KZ84, Kno75, KP97, KM86, Kon10, KM88a, KP94, Kri84, KS86, KS87a, KS87b, KS88b, KSW9b, KRO1, Kums9a, Kum90, Kut10, LW88, Lar78, Lar80a, Lar80b, Lar80c, Lar82a, Lar82c, Lar82d, Lar83, LR85, Lar85b, Lar85c].

Hashing
[Lar88b, Larxx, Leb87, LMC07, LK14, Lep98, LC88, cLmL07, Li15, LCML94, Lia95, LLZ10, LLL11, LLLC17, LRY78, LRY80, LN93, Lit91, LB0, Lit78, Lit80, Lit81, Lit85, LZL88, LSVO8, LRIW89, LRLH91, Litxxa, Litxxb, LC12, LZ16, Loms83, LLP91, LPP92, LM93c, LHO3b, Lyo78a, Lyo83, MLHK17, Mac95, MD97, MWHC96, Man12, MNT90, MB03, MBBS12, MV88, MV90, MV91b, MW09, MHB90, MSSWP90, Men82, Men12, Mey93, MV01, MV02, Mit73, Mit09, MH00, Moh90, Moh93, MNP08, MWC12, Mu84a, Mu81, Mu84b, Mu85, MS88b, NS80W, NRW90, NIS8, Nyb96, OWZ14, OTHK11, OG94a, OG94b, OOB12, OOB17, OVY94b, Otk91, Oto84, Oto85a, Oto88b, Oto88a, OT91, OSR10, Ouk83, OS83a, OA89, OS83b, PR01, Pag06, POP80, PWYZ14, Pal92, Pan05, PB80, Pap94, PV07].

Hashing
[PT12a, PH73, Pec90, Pea90, Per73, Pes96, Pet13, PS93, PQQ8, PQ99, PKW09, Pip79, Pit87, PM89, PM94, PM97, PT11b, PRM16, PS12, PACT09, PF85, PADHY93, PW94, Qui83, RT87a, Ram88b, RL89, RP91, RR92, Ram92, RLS2, RLT3, RSD84, RSD85, RSSD89a, RSSD89b, RSSD90, RSSD92, Ram97, RLH91, Reg81, Reg82, Reg88, RRS12, RH92, RH95, RW97, Rob86, Rog95, Rog99, RS75, RS77, Ros77, Rou09, RT87b, Rus92, Rus93, Rus95, SDR83a, SNBC98, SnC05, Sag84, SY11, Sas11, SG76a, Sav90, Sav91, Sch79a, SD90b, SD90a, Sch91b, Sch93a, Sch81, SY91, SR89, SPW90, SB93, SY08, Sho96, SR01, SSS05, SDT75, Spr77, SHRD09, SGGB00, Sti94a, Stu85, Sun15, SHF+17, SA97, Tam81, Tam82].

Hashing
[TK88, TC93, TL95, TWZW11, TYZO15, TI12, TW07, TK85, TZ12, TTY93, T94b, TV83, Tor84, TK07, Tro92, Tro95, Tsa96, US09, UI70, UI72, VV84, VV86, Vek85, VP96, VP98, Vit80b, Vit80c, Vit81b, Vit81a, Vit82b, Vit83, VC87, WG00, WPKK94, War86, WFHC92, Wee07, Wee12, WPS+12, WZ+16, WFT12, WP10, WDP+12, WSO3, Wil96, Wil00, Wil79, Wil71, Win90b, Win90a, Woe01, WR97, WZ93, Wu84, YDT83, YW90, Yao80, Yao85a, Yao85b, Yao91, Yas07, YB95, YTJ06, YGC+12, YD86a, ZPS90, ZPS93a, dW83b, vdsdW74a, vMG12, ASM17, ASA+09, ADN+97, AI08, AT90, BG93, BL99, BGH+13, BBVP11, BD82, BG94, BMQ98, Boo72, Bosxx, BT89, BCC10, Bur05, Bur82, CP91b, CP95a, CS93a, CW93, CP95b, CV83a, CCL91, CHL07, CL14, CW10, C3K09, CZ12, CR89, CP13, CO82a].

Hashing
[CHM97, Cze98, Dam94, DM03, DMK+88, DKM+91, DHW08, DSO9a, D+92, DLH13, DSSW90b, DK12, Duc08, DM11, EH17, EBD91, Fal86, FSV90, FFS+13, FNNSS88, GLHL11, GGG2, Gib90, GW94, GM77, GLJ11, GS98, GRF11, GPYY94a, GZ99, Gui76c, Gup89, HB89b, HDCM11, HKL07, HR93, HM93, HWC94, HL05, HC02, Hua85, HFZ+15, HFF+17, Hui90, IMRV97, Ind13, Jan05, JBWK11, Kan90, KYS05, KLL+97, KSB+99, KU86, KL96, KR88, KM99, KM07, KM08, KD92, Kou93, Kra94, KR06, Kun89b, Ku06, KSC11, KSC12, LG96, Lar84, LNS11, LH06, LK16, Lev89, LK11, Lin96, LS96, LNS93, LYY+13, LMLC14, LLA15, LM88, LH04, LMPW15, LJ+17, ML15, MI84, ML94, MNT93, MLP07, MPP09, MV91a, MC89, MMG10, Men17, Mil95, Mil98, MYS12, MKSIA98].
hashing [Mol90a, Mol90b, MSV87, Nil94, OP03, OVK94a, OS88, Pag01, PR04, PWYZ10, PJM88, PBJM90, PCM15, PT11a, PY88, Pon87, QM84, Ram89a, RT89, RB91, RFB97, RZ97, RLP90, RAP15, Sab94, Sar11, SP12, SS89a, SS90a, Schro93b, ST93, SH92, SL88, Sili02b, Sia87, Sta99, St91, Su94b, Sun91, STS+13, TB91, Tho00, Tho17, TKI99, Tsa94, TLLL07, TD93, Vak85, Vio05, Vit80a, Vit82a, Wan05, WL07, Wee88, WC94, WY00, XMLC11, ZWCL10, ZL12, ZWT+14, ZPS93b, ZHC+13, Zob70, ZHB06, BJMM94a, JMH02, KSS88e, SV94a, SKC07, SA17, CV85].

Hashing-Based [LMC07]. HashMap [Oak98]. Hashnet [Fah80]. Hashtabellen [Kue82a, Kue82b]. Hashtable [Oak98, Bee83]. Hashtag [RTK12]. Hashverfahrens [Dos78a]. HAVAL [WFLY04, ZPS90, ZPS93a, ZPS93b]. HAVAL-128 [WFLY04]. Hawaii [Deh03, SC77]. HCC [Har97]. HDDs [HGH+12]. Head [ACM91c]. Heap [FW76, FW77]. Heaps [CCA+12]. Heavy [TP15, Ind13]. Hebrew [Schi82a]. Hecke [CT96]. Hedge [Sho00b]. Height [Dev99, Reg81, TSH97]. Heights [Jen76]. Heinz [adHM93]. Held [Jä90, Fis87]. Help [PVM97]. Helper [ALS10]. Herding [KK06, BSU12]. Here [Bur06]. Hershey [ACM76]. Heronsissos [ACM01]. hesitate [Gre95]. Hessian [Far14]. Heterogeneity [WB03]. Heterogeneous [WSZ+16, GDA10, Kha95, SX08]. Heuristics [Omi89b]. Hidden [Leb87]. Hide [Can97]. Hiding [MMMT09, MV01, Wee07, HR07]. Hierarchical [PACT09, TK88, VL87, GP08, VL97]. Hierarchy [Wil71]. High [ACM04, AS09, AI06, ASBD16, CT96, DGG+86, DadH92, DS97, Flo87, GIM99, HSM95, IEE94c, KMM+06, KMMV10, LCK11, LPT12, MCK89a, MCK89b, OT91, PSR90, RSSD90, RW07, Rö07, She91, TK88, TP15, WZIS10, XLZC14, YNM89, YWH09, AI08, BCCL10, EVF06, HKL07, Inc81, MV91a, MAK+12, MA15, RFB97, SLC+07, Shi17, Sie89, SWQ+14, SSL08, TYSK10, TLLL07, XMLC11]. High-bandwidth [AS09].

high-dimensional [TYSK10]. High-error [Rö07]. High-Performance [DS97, Flo87, IEE94c, She91, Shi17]. High-Speed [KMM+06, KMMV10, MCK89a, YNM89, MCK89b, RW07, EVF06, SLC+07, SSL08, TLLL07, XMLC11]. High-Throughput [LPT12, XLZC14, MAK+12]. HighEnd [LVD+11]. Higher [HKKK13, DH84]. higher-order [DH84]. Highly [BCS09, KHW91a, Mat93, PAKR93, KHW91b, ZLL+07]. Highly-Associative [KHW91a, KHW91b]. Highly-Efficient [BCS09]. Hill [IEE88a]. Hilton [ACM91c, PDI91, ICD88, ICD90, IEE90, IEE01].

Histogram [Gra93b, MNY81, PCK95, UHT95].

Histogram-Driven [Gra93b]. History [BG07, MNS07, NSW08, Reg82, NT01]. History-Independent [BG07, MNS07, NSW08]. Hitter [TP15]. hitters [Ind13]. HMAC [FIP02a, BCK96b, CY06, DRS12, MAK+12, Sta99]. Hmap [YTHC97]. Hoc [DPL08, JHL08, Cha12]. Hole [JHL08]. Holographic [BGF88].

Homepage [GCM15]. Homomorphic [KKN12, CZL12, MT16]. Honolulu [Deb03]. Hood [CLM85, Ce86, CLM86, DMV04]. Hop [RHM09, MA15]. Hopscotch [HST08]. hostile [LC95]. hot [KLL+97]. Hotel [ACM75b, ACM82, ACM83a, ACM83b, ACM85a, ACM87, ICD86, ICD87, IEE88a, IEE88d, IEE01, Kna99, Nav85]. Hough [HB89c, HB94]. House [IEE80a]. Houston [IEE76, IEE94a]. Houthalen [QV89]. Hover [EH12]. HTM [CCW+17]. HTML [UCFL08]. HTTP [DB12]. Human [Bor81, TCW+13]. humanities [Bai81].
Hungary [Rue93]. Hwang [KCL03]. Hyatt
[Kna89]. Hybrid [BM89, BM90a, Gra93a, Gra93b, Gra94a, KNT89, GH+12, LLL11, Sch79a, TYZ015, PCVQ, TT81].
Hybrid-Hash [BM89, BM90a]. Hypercube
[OL91, OL92]. Hyperelliptic [FFS+13].
Hypergraph [KKP+17]. Hypergraphs
[FP10, HMC94, Rad92].
I/O [MMC01, Vit85]. IB [CLZC14]. IBM
[Dit76, Dit76, MS02]. IBM/360
[Dit76, Dit76]. ICALP [AGK+10, ADG+08, AAMS+09, ACJT07, CIM05]. ICICC
[AFK90, KLT92]. ICCIT [AA86]. Iceland
[ADG+08]. ICDT [AK86]. Iceland
[ADG+08]. ICICTA [IEE11a]. Icon
[GG86b, GT93]. Iconic
[WC94]. ID [ZJ09]. ID-Based [ZJ09]. Idea
[Gra94b, HL03, WPS+12]. Ideal [Lis07].
identification [Lia95]. IEEE
[ACM88b, ABM06, BL88, Lom93]. Illinois
[NCL82, OK80, Sed83a]. Illinois
[ACM88b, ABM06, BL88, Lom93]. im
[DS84a, Wal74]. Image
[AN95c, BFMP11, BS94a, BI12, DR11, GPA97, GH07, HW08, LK10, LQZH14, Li15, LÖÖ01, LC12, LJY+13, MV02, OSR10, SB97, TWZW11, US09, WP10, WDP+12, HC11, LMLC14, Mit12, SB95, TCW+13]. image-keyword [LMLC14]. Images
[FLF11, MNY81, PKW09, RT81, SSa01, WMB94, WMB99, GG92, LMLC14].
Imaging [FHMU85]. Imai
[PGV90a, PGV93a, PGV93b]. immutable
[SV15b]. Impact [GD87]. imperative
[NMS+08]. Improper [Ven84]. Implement
[CL83]. Implementation
[BCS89, BS94b, BGDW95, Dat88, DF89, DKO+84b, DKO84a, DKO84d, Dee82, Dev93, Dit76, DT75, EEE6, EJKMP80, FW09, GG86b, GT93, Gro86, Har71a, Hek89, ISK+93, JD12, Kahl92, KMM+06, KU88, KM92, KR96b, KR86a, KRR07, KR09b, KT92, LK84, Lit79b, LPP92, NM02a, PRL16, SDR83a, Sch91, SK05, Ste82, TGL+97, TNKT92, VL87, BDP+12, SB94c, BW92, DHW08, DM11, EBD91, GN80, GJM02, Inc81, KU86, KKL+09, McD77, MZI98, Tai79, Dit76]. Implementations
[GLG+02, Vit82b, WPB99, WZJS10, DMP09, RA10]. Implemented
[CMW83]. Implementierungstechniken
[Nee79]. Implementing
[Bab79, Blu95, BJM14, GHJ+93, Gra86, Jun87, KHW91b, Lin96, Llo81, LB07, VL97]. Implications
[Chr84, RAD15]. Implicit [OS88, Kor08]. Impossibility
[BCS09, HM12]. Improve
[LB302, BM01]. Improved
[Ari94, BvT13, BMB68, Bih08, Bre91, CN08, DDS14, DL17, FB87, HSM95, HW88, JNP14, KM86, Kut10, LW04, KKM10, LH04, Mau83, McI02, Mul72, NSS+06, PS12, Rad92, RP95, SS80, SD55, TK17, UI10, GM77, Mau68, War14, ZW05]. Improvement
[CH94, Fel87]. Improvements
[CTZD11, Lev00, Nam86]. Improving
[ATAKS07, AVZ11, BDS88, CHY93, CHY97, CAGM07, Cla77, DB12, GCMG15, HHL+15, MS12, RT87b, Sch82a, TCP+17, YWH09, ZGG05]. Impure
[Dec82]. In-Bucket [TYZ015]. In-Memory
[CCW+17, ZHW01]. In-Network
[WBWV16]. Inaccessible
[HHR+10]. Inadequacy [GY91]. Includes
[FW76, FW77]. Including [DGV93, KL95]. Including
[LK07]. Incompatibilities
[KCF84]. Incorporating [CBA94].
Increased [PRM16, MSP12]. Increment [Ban77, Luc72, RKK14]. Incremental [BGG94, CT12, FRB11, GSC01, ISHY88, UIY10]. Incrementality [BM97].
incrementalization [SB07]. Indeed [Yas07]. Indentify [KCF84]. Independence [KW12, PT16, PPR07]. Independent [BG07, CCJ91, DGD02, DTS75, Die96, Ind01, MNS07, NSW08, TZ12, Han17, NT01]. Independently [AU79]. Index [BM89, BM90a, Buc82, Bur83b, Bur83c, DS84a, GPY94b, LC86a, Lom83, OL89, Oto85b, Qui83, TY91, Wil79, Bur83a, Fro81, GPY94a, HM03, McD77, SWQ +14]. Index-Based [OL89, TY91]. indexable [RRS07]. Indexed [Chu91, Chu92, KHT89, Mul72, GB17, Tay89, WM93, TKI99]. indexed-hash [WM93]. Indexed-Sequential [Mul72]. Indexes [Les88, Omi89b, Pip94, FVS12]. Indexing [CJ86, Dum56, KGJG12, Li15, Llo81, Per73, SE89, Tor84, Wil79, WMB94, WMB99, YWH09, CWC10, Fly92, LG96, MMG10].
industrial [PGV93c, ARA94]. Industry [ANS05]. Infeasibility [FS08]. Infinite [GHK91a, GHK91b, LII92, Bra09].
Influence [RTK12]. INFCOM [IEE01, IEE92a]. Inform [Pro94]. informal [CK89]. Informatics [CHK06]. Informatik [Nol82a, Nol82b, OK80]. Information [PD91, BV89, BIP92, Can97, Cha84a, Dan13, DSSW90a, EII82, FC87b, F69, FCDH90, FCDH91, GPY94b, ISO97, ISO04, KLT92, KM86, KM88a, LC06, MV01, MNS07, PGV93f, SKC07, SPSP16, SC77, Sta06b, Sun15, Vid90, WBBW16, Yan10, YR87, YBQZ17, AFK90, DSSW90b, GPY94a, KSC11, KSC12, SG72, SXLL08, FNY92, FBY92, Gil77, Ros74].
interleaved [RH90]. Internal
[GL82, GL88, ITP14, LC88, Wil59].

International
[ACM81, IJW89, D91, ACM94b, ACM91d, ACM91a, ACM50, ACM08a, Kar98, Mat09, SP90, Shm00, USE91]. Japan [IJW89, A+90, AIMOW11, AOV+99, AA86, Bai81, BD88, D88b, BV89, BIP92, Bel00, BBD09b, BJZ94, BRW93, BL88, BF89, B92, BD92, B89, B93, CGO86, CLM89, Cop95b, DG96, DSS84, DSZ07, DJR92, FLY92, Fra04, Fre90, GMJ90, Go92, GSW98, HB93, HL91, IEE80a, IEE84, IEE85b, ICD88, IEE89a, IEE95, IR93, JB94, JY14, Ker75, KN89, KLT92, Kn92, LC06, Lak96, Las87, LCM89, Cop95b, DG96, DSS84, DSZ07, DJR92, FLY92, Fra04, Fre90, BM01, HDMCO9, IGA05, JL14, MPL09, RW07, SXLL08]. IPSec [KMM+06]. IPv4 [PT12b]. IPv6 [PT12b]. Ireland [ABB93]. iris [MMG10]. Irreversible [ANS97]. ISA [HL91]. ISAAC [AiNOW11]. ISCA [Deb03]. Island [Rei88, IEE07]. ISO/IEC [IS004]. Isolated [MMMT09]. Israel [Sch2a, BDD88]. Israeli [Coh94]. ISSAC [ACM94b, LAk96, Lev95, vdHvH12]. Issued [LG78]. Issues [MP90, LMSF89, LG78, Yu92]. Italian [FFPV84]. Italy [AAC+01, AA86, ST83a, ST83b, ANo94, De95, IEE85b, ICD91, LT85]. Java [Sun02, CHL07, LBJ02, NM10, OOK10, SB07, SSS05, Tym96]. Jersey [Fly92, GvR08]. Jersey-sponsored [IEE84]. Jerusalem [BDS88, Sch2a]. Johnson [SG16]. Johnson-type [SG16]. Join [Adi98, AT91, BM89, BM90a, CS83a, CHY97, DG85a, DG85b, FP89b, Gra93a, Gra93b, Gra94a, Gra94b, Gra99, HR96, KR91, KKW99, KL87, KNT89, KHT89, KO90, KTN92, LR99, LDM92, LTS90, MLD94, MLLx, MS88a, NKT88, NNA12, NP91, OL91, OL89, Omi89b, OL92, PAPV08, PG95, Pip94, RK91, SD89c, SD89a, SD90b, SD90a, SHA86, SM87, Sol93, Spe92, TR02,
TY91, Top92, TP95, Toy93, TNKT92, Val87, WYT93, YNW+09, Yam85, ZG90a, ZG90b, Zei91, ZJM94a, ZJM94b, ZJM94c, ZO93, ALS10, BMS+17, CAGM97, CyWM91, GKO5, ISO97, Kh95, KKL+09, LNS11, LEHN02, MMSY94, Mull92, OT89, PCK95, PAV94, RLM87, RS89, SD89d, SM94, SA17, SP89, TL93, UHT95, WL07, NNA12.

Joining [NP91].

Joins [CLYY92, CLYY95, DG93, DG94, DNSS92, GBC98, Gra86, HCY94, HCY97, LR99, LR96b, NNA12, PCL93a, SC90b, SC90a, SC90c, WDDY91, YCRY93, AKN12, BATO13, BLP+14, HLH13, JHL+15, LCRY93, ML95, PCL93b].

Joint [IJW89, AFI63, AFI69, MO92a, IEE92a, IEE01, ZC12].

Jose [ACM11].

JPEG [ZC12].

JPEG-2000 [ZC12].

Jpoin [Omi91].

Juan [IEE91b].

Judy [Sil02a].

July [IJW89, ACM91c, ACM94b, ACM01, AGF+10, ADG+08, AMSM+09, Ano95c, ACJT07, dBvL80, CIM+05, Coh94, DG96, CTC90, Ku92, Lak96, Lev95, NS82, Oxb96, Pat90, Rei88, vdHvH12].

June [ACM94a, ACM03a, ACM07, ACM11, ABM06, BDS88, BV89, BPF92, BRW93, BL88, BPF91, FMA02, Fre90, Van10, HF13, IEE05, LL89, MS05, Ng79, Rei88, Sch82a, Sto92, Vau06, VL94].

Just [Yas07].

JVM [SV15b].

k-ary [Gui76c].

Karlsruhe [HM08].

Karp [GBY90].

Karp-Rabin [GBY90].

Katapayadi [Ram97].

Katholieke [BBD09b].

KD [KHT89].

KD-Tree [KHT89].

KDL [PSR90].

KDL-RAM [PSR90].

Kecceak [BDPV99, BDPV12, DDS14, LLA15, MS13, BDP+12].

KEM [CZLC14].

Kent [Oxb96].

Kerkryra [Rei88].

Kernel [CSSP15, Lev00, ZLY+12].

Key [AN97, AN95, a91, BD82, Bol79, Boo74, CS83b, CC87, CS87, CC91, CLC92, CTZD11, CY06, CG79, CS02, Dam87, DL12, Dos78a, EAA+16, GG86a, Gri79, GG80, HB89b, HB9a, HM12, IG77, Joh97, KM09, KV09, KR86b, KR86a, LAKW07, LCML94, Lin63, LDY71, Lum73, Men12, MW95, NTY12, PRRR15, RSD89b, RSD92, Rob86, RS08, SY11, SR63, SSS05, Sta99, Yao95, Yub82, ZQSH12, An88, BSNP96b, CGL91, GL60, GBL94, LW04, LND08, LY72, ML94, Men17, NM02b, Oka88, SD85, Sar11, Shi17].

Key-Exposure [CTZD11].

Key-Sequential [BB89a, BB89b].

Key-to-Address [LYD71, Lum73, SR63, LY72].

Key-Value [PRR15, Shi17].

Keyed [Ano95a, BSNP96a, KKRJ07, Gon95, Li95, SV06, FIP02a].

Keyed-Hash [KCRJ07, FIP02a].

Keying [BCK96a].

Keypoints [MMG10].

Keys [GBY80, Gur73, JCA88a, Joh61, KR01, LMJC07, LL87, Oto85a, PB80, RV76, RV78, SD78, She78, Yao85a, FP82, GMW90, Wan05].

Keyword [WWZ09, LMLC14].

Keywords [Coh98].

Khaire [BS91c].

Kinetic [Rey14].

Kingdom [JB94, ACM94b].

KLIPA [GT63].

Knapsack [CP91c, JG95, Pat94].

Knowledge [BDS88, BCH87, CLP13, CRdPHF12, Dam93, ISK+93, OVY94b, OVY94a].

Known [SY11].

Known-Key [SY11].

Knoxville [IEE94c].

Knuth [DM90].

Kobe [IC91].

Kollisionsstrategien [Bi87].

Kolmogorov [CG92, Sch01b].

Komlos [KM86].

KY [Rie89].

Kyoto [CGO86, Got83, IEEE85b, LT85].

L [Sar80].

labeling [TCW+13, YSL05].

Lam [Wag00].

LaMansion [Nav5].

lamp [McN03].

Landau [SV06].

Landmark [NNA12].

Landmark-Join [NNA12].

Landsat [MY81].

language [LG78].

Language [Cerb, CKB83b, Dit76, FR69, GHJ+93, GT63, GG86b, Hart85, ISK+93, KCB81, LG78, Wil59, BW92, CP95a, CKB83a, Lev89, VIA89, YMI89].

Languages [ACM91d, dBvL80, BRW93, CL83, Cra85, IEEE84, Jou85, Kui92, NS82].
Pat90, ACM91a, AGK+10, ADG+08, AMSM+09, ACJT07, CIM+05, DLH+79, DL06, GMP95, GJR79, Inc81. **LAPI** [MS02]. **Laplacian** [ZWCL10]. **Large** [ABB93, VLDS2, AW89, AAC+01, AOY+99, BD88, BH85, BCH87, BJZ94, BI12, CKB85, CML+13, CGO86, Chen90, Coh98, DSS84, DSB99, Dos78a, DTJ91a, DTJ91b, FM91, Fel87, FHC92a, FHMY85, GLL17, Gra92, Gra93c, Gri74, GSW98, HB99a, HB92, Hill86, Hill87, Ker75, KCR11, KRRH84, KK85, LM95, Li15, LSN91, LYS90, MDF90, MEK+14, MWC12, OGAB14, PAKR93, PV95, ST83a, ST83b, Sha86, SHF+17, SXLL08, Tan83, Win90a, XNS+13, YWH09, Yua92, YGC+12, Zun80, Zem91, BZL+15, BT89, CFYT94, FES90, FHC92b, GC95, HB99b, LK93, LY72, MSK96, Sh17, TBC+05, Yao78, YM89. **Large-Grained** [PAKR93]. **Large-Scale** [GLL17, Li15, MMEK+14, SHF+17, YGC+12, CML+13, SXLL08, FES90, Sh17]. **Last** [PM89]. **Last-Come-First-Served** [PM89]. **Latency** [Sam81, SL16, WW00, KLSV12, LDK12, ZGG05]. **Latency-sensitive** [WW00]. **later** [Roe95]. **Latin** [CHK06, DMP00, CHK06]. **Lattices** [KV09, GPV08]. **lava** [McN03]. **laws** [AK09]. **Layer** [YSEL09]. **Layered** [Man12, ZC12]. **Layers** [SDMS12, SDMS15]. **Lazy** [AHS92, BJMM94b, BJMM94a, CF92, Hug85, KV91, MV88, VV86, MSV87]. **LCCR** [Cer85]. **LCFS** [PV97]. **Leakage** [NTY12, ZZM17]. **Leakage-Resilience** [NTY12]. **Leakage-Resilient** [ZZM17]. **lean** [SV15b]. **Learn** [McC79]. **Learning** [GK94, Gk95, KG95, KKC12, KRJ+80, LLZ10, Val15, Wan84, BC06]. **Least** [OG94b]. **Lecture** [Dev86]. **LEDA** [MN99]. **Lee** [KCL03]. **Leistungsanalyse** [Kue92a, Kue92b]. **Leitmotiv** [Kah92]. **Lemmas** [GK76]. **Lemmatised** [DS84b]. **Length** [Dit91, Gon81, KLP98, LK94, Lit91, MF92, Men12, Mit73, PH01, Pea90, Pea91, Sav90, Sav91, ZPS90, ZPS93a, GS94, KL95, LJ15, Men17, ZPS93b]. **Lengths** [Bra84a, Bra85, Bra86]. **Less** [DH01, GK08, KHK12, LR16]. **Lett** [Pro94]. **Letter** [BMB68, C85c, C85b, Cha85, CL86, Cha86a, CW91, CO82b, JC88a, TL95, Tr95, Wan05]. **Letter-Oriented** [CS85c, Cha86a, JC88a, TL95, CL86, CW91, Wan05]. **Leuven** [BBB9b, BW92, PGV93]. **Level** [CJC+09, BGG12, DAC+13, HL94, Inc81, LDK12, MTB00, SDR83b, TK99]. **level-set** [BGG12]. **Levelled** [LRY15]. **leverage** [IEE88a]. **leverage/COMPCON** [IEE88a]. **Lexical** [CRD92, ISY88]. **lexically** [FF90]. **Lexicon** [CKB81, CKB83b, CKB83a]. **Lexicons** [CKB85]. **LFSR** [Kra94]. **LFSR-based** [Kra94]. **LH** [LNS93]. **LH*** [LNS96]. **LHif** [ZL12]. **Li** [KCL03]. **libdbh** [Wil14]. **libhashckpt** [FRB11]. **Library** [ACZ16, Bee99, Son92]. **Life** [BCR04]. **Lightweight** [AHMNP12, AHMNP13, BDM+12, BKL+11, HKY12]. **like** [JNPP14, RS14]. **Limited** [GL2, GL88, SSS90a, Wen92]. **limitedness** [LP04]. **Limits** [KST99, MSS94, BVF12]. **Line** [AS82, Bry84, FFGO7, HO72, IABV15, Leb87, SSS8, Ts89, BBKN12, HHL10, KRRH84, RW73, Ts89]. **Line-Oriented** [Bry84]. **Line-Rate** [IABV15]. **line/Off** [HHL10]. **Linear** [AK88, ADD*99, ATT98, Ano95a, AD11, BYSP98, Ban77, BK70, BGS96, BW98, Cle84, CL09a, CM93, Da85, E85a, E87, FPV98, HB99a, HB92, HH85, HYH93, HY90, HSW88, Jak85, JV16, Kno88, Knu98, Kor95, KD92, Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Lar85b, Lar85c, Lar88b, Larxx, KKM91, Lit79b, Lit80, Litxxa, Luc72, Lyo78a, MSSWP90, MY80, Moh90, Moh93, Mui88, O89, OA89, OS83b, POP07, PT16, Pet13, PK87, PVM97, RSD84, RSD85, RSSD99a, RS92, RLH91, Reg82, Rob86.
RT87b, SDR83a, SPW90, TW91, TZ12, Toy93, VP96, VP98, WVT90, YD86a, Ald87, ADM+97, BJ07, Bot95, HB89b, HCF95, Jan05, LNS93, MTB00, MMC01, ML94, Omi89a, OP03, OSS88, RLI09, Sar13, SS16, TMB02, Vio05, ZL12. Linear-density [KD92]. Linear-Time [WVT90, Kor08]. Linearizability [SDW14]. Linearization [BKMP09]. Linearizing [Oto88a]. Lingo [McC79]. Linguistics [Cer83]. link [BR75]. Linked [Fel87, Pal92, ZKR08]. Linking [Bob75]. Linkless [CJC+09]. links [EVF06]. Linux [USE00a, LACJ18, Lev00]. Lisbon [CIM+05]. Lisp [LFP82, He98, Nam86, FH96, GSI+82]. Lisp-Based [FH96]. List [Mc182, Ter87]. Lists [BH86, HK87, LLC89, Lyo79, M94, ST85, SS06]. literate [Sab94]. little [DMPP06, PES12]. Ljubljana [EF12]. Load [HC13, IK92, KJC11, LRLW89, LRLH91, Omi91, RRS12, TP95, WL07, KL08, SX08, WTN09, XCC09]. Load-balancing [WL07, XCC09]. Loading [vdP72]. Local [MD97, MNY81, MJT+02, PKW09, RT81, SY80, BGG12]. Locality [BT12b, CSSP15, Chi91, Chi93, Chi94, IMRV97, Kaw15, MNP08, OWZ14, OTKH11, HAK+16, HFZ+15, HFT+17, LNS11, LJW+17, SP12, STS+13, SA17]. Locality-Preserving [Chi91, Chi93, Chi94, IMRV97]. Locality-Sensitive [BT12b, OWZ14, HFZ+15, HFT+17, STS+13, SA17]. Localizing [DD11, DJSN09]. Locally [KS88a, Oto88b]. Locating [WL12]. Location [CCF04, TY03]. Lock [AR16, NM10, NK16, ZL12, SS06]. Lock-Free [AR16, NK16, ZL12, SS06]. locks [ALS10]. Lothhus [Hel94]. log [FHC89]. logarithm [Gib91]. Logarithms [vW94]. Logging [Moh90, Moh93]. Logic [AR16, BM87, BAN89, Cra85, IEE84, Las87, dKC94, BW92, DLM07, YIAS89]. Logical [CPP08]. Logs [SK99]. LOKI [BV91c, Knu92]. London [Ano93a]. Long [Mit12]. Longest [DKT06, Gsn81, PT12b]. Look [CP91b, Sna87, AY14, CP91a]. look-up [AY14]. Lookup [CN07, HDM09, Jai89, Jai92a, Jai92b, Jaixx, Pri71, She78, Tro06, BLC12, HXLX13, Mad80, MSK96, MPL07, MPL09, MA15, PT12b, WZ+13, WTN07, ZGG05]. Lookups [Pan05, BM01, IGA05]. Loss [FC87b]. Lossy [PW08, Wee12]. Louisiana [ACM91e, ACM97a]. Low [GI12, HMB07, HR07, Les88, PSSC17, TBC+05, ABO+17, BOY11, CZ14, HM03, MA15]. low-area [ABO+17, BOY11]. Low-Cost [GI12, HMB07]. Low-overhead [HR07]. Lower [DKM+94, GadHW96, Gon77, MNP08, OWZ14, Yao83, DKM+88, DKM+91, Sun91, Sun93]. lowering [SSU+13]. LR [HC87]. LSH [CKM14, CK15, LCH+14, LJW+17, ZNP16]. LSH-Preserving [CK15]. Lucifer [BS91c]. Luxembourg [Bir07]. LXCloud [LACJ18]. LXCloud-CR [LACJ18]. Lymphocytic [SSa01]. Lyra2 [ASBD16]. M [Sar80]. MA [ACM84a, Ker75, Kil05, CP91b, ACM86a, CP91a]. MAC [PV95, Pvo95, Pre97a, SRR98, SRY99, Eug90]. Machine [And88, CCJ91, DGG+86, DGS+90b, DGS+90a, GD87, GSI+82, Hsi83, KladH93, KLM96, KTM08a, KTM08b, KTM08c, Tan83, EBD91, Vak85, BM90b, KK96, HR92]. Machine-Independent [CCJ11]. Machinery [DT87]. Machines [BF89, adH93, Mey93, Sd98b, Sch90b, SD90b, SD90a, TR02]. MACs [DL17, GO07, PV95, Pvo95, Pre97b, Saa12]. Made [Cic80b, PV07]. Madison [FMA02]. Magnetic [Wri83]. MAHT [CrdPH12]. Main [AP93, CE95, CrdPH12, DKO+84b, DKO+84c, DKO+84a, KR91, KL87, KK85].
Kum89a, LC86a, SPW90, Sha86, TP95, AKN12, AF92, BATÔ13, DKO+84d, JHL+15, Pro94. **Main-Memory** [KR91, BATÔ13]. **Maintaining** [Woe06b]. **Maintenance** [Buc82, Bur83b, Bur83c, Oto85b, Bur83a]. **Making** [BR97, Cob94, Hel91, LT09, CCA+12]. **Malicious** [AAE+14]. **malleable** [BCFW09]. **Malo** [GQ95, QG95]. **Management** [ACM75b, ACM81, ACM82, ABM06, BL88, BJ93, BC90, CLM89, DT87, EE86, Fj077, FMA02, GMJ90, Gho77, Gho86, ISK+93, KM09, Lie81, McC79, MKF+16, Nav85, SW94b, CC77, Sto92, ZZ83, ZQSH12, DAC+13, FY92, FRS94, HF13, SW94a, WM93]. **Manager** [Pro89]. **Managing** [WMB94, WMB99, WYT93]. **MANETs** [JFDF09]. **Manipulation** [GK76, Ng79, Pon87]. **Manual** [RWSN07, Sil02a]. **Manuscript** [FLF11]. **Many** [BGF88, CZL12, Lia95]. **many-body** [Lia95]. **many-core** [CZL12]. **Map** [GR99, LD17, Som99]. **Maple** [PVM97]. **mapped** [SV15b]. **mapper** [YTHC97]. **Mapping** [Oto84, WH83, YD85]. **Mappings** [OS83a, OS83b]. **MapReduce** [LMD+12]. **maps** [HC14, JBWK11]. **March** [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM89a, ACM91b, AH03, Bir07, CHK06, Deb03, IEE88a, IEE11a, JB94, RNT90, SM08, TW83, Ytr06]. **marching** [ZRL+08]. **Marina** [ACM82]. **markerless** [JBWK11]. **Markets** [Mir17]. **Markov** [HL94]. **Marseille** [Ng79]. **marshalling** [LPSW03]. **Maryland** [ACM90, FNY92, Jaj90]. **Marz** [Lut88]. **Mass** [Col93]. **Massachusetts** [BV89, IEE05, MS05]. **massive** [HAKM15, LRU14, Vit01, XCCK90]. **Massively** [AKN12, Jaj90, MK93, RH92, YLB90, Yen91, CZL12, Fis87]. **Massively-Parallel** [MK93]. **Match** [AU79, Bur75b, Bur76b, Bur76c, Bur78, Bur79, CLD82, Chu90, Jag91, Mor83a, RLT83, RSD85, RSSD90, RSSD92, YD86a, CC88a, Fal88, Hua85, RSSD98a, RSSD98b, Riv74a, SDR83b, YD86b]. **Matches** [Day73, PRK98]. **Matching** [iA94, BH85, CCH09, CG79, Gri79, Han90, HCKW90, HW08, KSSS86, KR81, KPS92, LLLC17, RH92, RH95, TK07, ASM17, CLS95, CWC10, DKT06, DC94, GBY90, HC14, HW88, ISHY88, KP92, KS89, KIM99, MHT+13, PT12b, Sch91a, TKT+89, TLLL07, TLLL09, XMLC11]. **Materialized** [BM89, BM90a]. **materials** [SE89]. **math** [McN03]. **Mathematica** [Jac92]. **Mathematical** [BC39, LG78, LII92]. **NAK+15, Sed83a, GT80, Rov90, Win78]. **Mathematics** [FH96, GK81, GKS, Knu74]. **mathématique** [GK81]. **Matrix** [AN96, Atk75, BHM0, vdsDW74b, vDsW74a, BT09, CFYT94, JCC00]. **Matsumoto** [PGV93a, PGV90a, PGV93b]. **maxima** [MI84]. **Maximizing** [KHK15]. **Maximum** [AHS92, GB10, KV91, MV88, Pet13, CKKK09]. **Maximums** [MY81]. **maxmin** [AII89]. **May** [ACM75a, ACM75b, ACM76, ACM77b, ACM81, ACM84b, ACM86b, ACM88b, ACM89c, ACM90, ACM91e, ACM94c, ACM96, ACM97b, ACM98, ACM02, ACM08b, ACM12, AFK90, ARA94, Bai81, Bri93, Dam90a, Dam91, DT87, De 95, FIP93, GMJ90, GQ95, Hel94, IE85b, IE94b, IE94c, LKT92, Lie81, LT85, Nav85, PGV93c, QG95, Rue93, SW94b, SW94a, Vau06]. **McGill** [CCC89]. **MD** [Fis87, IEE02, PvO95]. **MD-x** [PV095]. **MD4** [Ano95a, WFLY04]. **MD5** [WFLY04, WZJS10]. **MD6** [BKMP09]. **MDC** [LS15]. **MDC-2** [LS15]. **MDS** [TW07]. **MDx** [PV95, SRRL98]. **MDx-family** [SRRL98]. **MDx-MAC** [PV95]. **Me** [Lan06]. **Mean** [Bra84a, Bra85, Bra86]. **Means** [Bab79]. **Measurement**
Min-Hash [LK10]. min-hashes [GP08].

min-hashing [CWC10]. Min-Wise [Ind01].

Min/Max [DSS17]. Min/Max-Poly [DSS17].

Minimal [BPZ07, BH86, CKB83b, CKB83a, CS83a, Cha84b, Cha84c, CS85c, CS85b, Cha85, CS86, Cl86, Cha86b, CC88b, CT12, Cie80a, Cie80b, CO82b, CHM92a, CHM92b, CM93, DH01, Die07, FCDH90, FCDH91, FCH92, FHC92a, GHK91a, GHK91b, HT01, Irbxx, JO80, Jae81, JD12, KW92, MWCH92, Pag99, PV92, Pes96, Sag84, Sag85a, ST85, TST91, Tro92, Tro95, Win90b, Win90a, BBPV11, FHC89, FHC92b, HK86, SH92, SH94, TK99].

Minimean [Yao95]. Minimization [YY01].

minimized [CVR14]. minimizing [CCY91].

Minimum [BM99]. Mining [CL05, CLC06, CT12, HC02, JL14, LRU14, PCY95, PKW09, SK98, YGC +12, HC07].

Minneapolis [SW94b, SW94a]. Minnesota [SW94b]. Minor [Gri77]. Minus [NXB13].

Minutiae [JTOT09]. Minutiae-Based [JTOT09]. Minwise [PT16, LK11].

Misspelt [KR79]. Mitigating [HRS16].

Mitigation [SHF +17]. Mix [LT09].

Mix-Compress-Mix [LT09]. Mixed [LMLC14]. Mixing [Cai84, LMPW15].

MJH [LS15]. ML [Ano92]. MN [SW94a].

Mobile [DF01, KKR07, KJ09b, YY07, HK85, ZC12].

Modal [MLHK17, WSZ +16]. Mode [PHG12, Wan05].

Model [BG80, Bat81, BG82, CLP13, GadHW96, ISK +93, KSSS86, KCF84, LW88, LT12, NY85, Ram88a, RH92, RH95, Sev74, VC85, Web72, Gvr08, GMP95, HW88, LMSF89, MTB00, Sun91, TM02]. Model-Based [KSSS86, LW88, HW88].

Modeling [BY89, LW10, ACM94c, PCV94].

Modelisation [Lit77b]. Modell [Kue82a, Kue82b]. Models [AT91, GHJ +93, Kue82b, SK88].

Modern [Ram97, Ros06, Ros07, Bis12, BMQ98, DLH +79, GK05, KKL +09]. Modes [AR17, LLG12, SY11, Sas11, WPS +12].

Modified [HPC02, KGJ12, Kaw85].

Modula [Fel88, SW86, SW87, BH86, ST86, Sed93].

Modula-2 [Fel88, SW86, SW87, BH86, ST86].

Modula-3 [Sed93]. Modular [GSC01, LT09, ISO97, Me95]. Module [KRJ09b].

Monte [BF83, Re14]. Monterey [Col93].

Montgomery [WS03]. Montréal [ACM02, CCR07, YJC +14, Lev95].

Morphological [CrPD912]. Moscow [Ers58b]. Most [AT93, AT90, ESR14].

Motion [CBA94, Cil95]. Motivating [She06]. move [KM10]. Moving [Lep98, SR01]. MPEG4 [KM09].

MPHF [Zou85]. MR [Pro94, Sar80]. MRD [SNBC98, SuC05]. MS [JC88b].

MS-DOS [JC88b]. MTAC [GT80]. Muenster [Dir76].

Multi [AP93, BAT013, BSH12, BR06, CS83b, CS87, CS88, CHY97, CLS12, CJC +09, Coh84, FL08, FLP08, FLP14, GPY94a, GPY94b, HYH89, HYH93, HRS16, KR86b, KR86a, KL78, LÖO01, LR +15, MTB00, MNY81, Ngu06, PADHY93, RSDL90, SD85, VB00, WSZ +16, YNW +09, YLB90, ZJ09, AKN12, Ano83, CLD +14, HR93, HL94, KKL +09, KKL +09, LJJW +17, Pr94, Sar13, TL93, XMLC11].

Multi-Agent [BSH12]. Multi-Attribute [CS83b, CS87, HJ93, RSSD90, HR93].

Multi-core [BAT013, AKN12, KKL +09].

Multi-Dimensional [HYH89, MNY81, Ngu06, XMLC11].

Multi-Directory [PADHY93, AP93, Pr94].

Multi-Disc [CC87]. Multi-Disk [Cha88].

Multi-Entry [YL89]. Multi-granular [CLS12]. multi-graph [CL +14].

Multi-Index [GPY94b, GPY94a].
Multi-Property [CJC+09, MTB00, HL94]. Multi-Property-Preserving [BR06]. Multi-Proxy [ZJ09].
multi-target [HRS16]. Multi-Threaded [VB00]. Multi-Version [Coh84]. Multiattribute [CLD82, Fal85a, Fal86, Rot89].
Multicast [DPH08, TW07, ATAKS07]. Multicollision [KKH10, KVK12]. Multicollisions [Hal12, Jou04].
[DL80, KR88, NHS84, SDKR87, VV84]. Multimatches [SV94b, SV95].
Multi-level [BK90, DT91a, DT91b, Gri98, LZL88]. Multimaps [AGMT11]. Multimatch [CML+13, LMLC14].
Multimodal [MHT’13]. Multipermutations [SV94b, SV95].
Multiple [Abi12, AS96, BP97, Bol79, CS83b, CC87, CS87, CC91, CLC92, CLYY95, FB87, FP10,
GK94, GK95, HDMC09, HHL10, HCY94, KG95, KKC12, HGH’12, LCML94, LOY00,
LLLC17, MB03, Mi02, RSSD89b, RSSD90, RSSD92, SM87, Tra63, WB87, BM01,
CCL91, DH84, DMP09, HKLS12, XCCK09]. Multilocal
Neighbor-sensitive [PCM15].

Neighborhood [DHL+94, DHL+02, D+92, SG72].

neighbours [Yuv75]. Neither [CP91a, CP91b], neophytes [Gre95].

nested [FK89, MMC01, TMB02], netflow [LDK12]. Netherlands [dBvL80, CP87, vL94, AW89].

Network [HCJC06, HLC10, JL14, KHK15, PLKS07, Ven86, WBWV16, AS09, CVR14, DFMR15, Die90, FVS12, KL08, RAL07, TLL07].

Networking [ACM04, LCK11, LZ16, WBWV16, WTZ+13]. Networks [DK09, DPH08, Ja99a, Ja99b, Jaixx, JLH08, Kak93, Ku84, LDY+16, PLKS07, SV94b, SP91, SMS91, TGPF10, ZQS12, AK90, ADF12, BCC11, Cha12, GBL94, LG13, LND08, MLP07, PES+12, SV95, SX08, TBC+05, WHS+07, YG10, ZBB+06, BB07, CT10].

neuer [BI87]. Neural [Kak93].

Nevada [IEE10, AFI69]. Next [DCW91, She91, CCA+12, CT10, KKP92]. Next-Generation [She91, CCA+12, KKP92]. Niagra [AKF90]. NIDS [KJC11, TK07]. NIDS/NIPS [TK07].

Nineteenth [ACM08a, IEE95]. Ninth [ACM77b, NS82, ACM77a, ACM97b, Kar98, ST83b]. NIST [Bou12, RRS06]. Nixdorf [adHMR93]. NJ [GML90]. NL [DSS17].

NMAC [CY06, RR08]. NMAC/HMAC [RR08]. No [AKS97, CP91a, KR01, CP91b, GBL94, Pro94, Sar80]. node [LG13, TSH97, WL07].

Nodes [BGF88, RAL07]. Non [BCFW09, Boo74, FNS88, K86, KS87b, LT12, LS96, RWS07, SD78, SA97, TSY98, Ay14, Al87, CCA+12, ESR14, FSP2, MLP07, PPB012, Sar15, SXL16, Lut88].

Non-programmable [LT12]. non-random [FP82]. non-randomness [Sar15].

nonchalantly [Gre95]. Nonclustered [Omi89b]. noncontinuous [ZQ13].

nondestructive [AD08]. Nonlinear [MLH17, LC13]. Nonmalleable [LP15].

nonnumeric [JMI02]. Nonoblivious [FNS92]. Nonstationary [WB90].

NonStop [Eng94]. Nonuniform [Ald88, KS87a, KS89b, PK87].

nonuniformly [MPL09]. Noordwijkhout [dBvL80]. NOrec [FRS10].

Norm [Aum09, HFF+17]. Norway [Hel94, Ytr06, Ano95c]. NoSQL [EH17].

Nostrandus [KK06]. Notary [Cip93]. Note [Bob75, CC91, Dit91, GIS05, Gei95, Gei96, Gur73, Lit91, Pea91, Sav91, SVCC01, Ull72, Yao80, Bay73b, F79, Sar80].

Notes [Dev86]. Nothing [SD89c, SD89a, S99, SD89d]. Nouvelle [Lit79a]. Novel [DR11, cLmL07, NW07, PHG12, YSW+11, ZZM17, LMP+08].

November [AC87, ACM94a, ACM03b, ACM04, AFI69, FNY92, Go194, adHMR93, IEE82, IEE88d, IEE89, IEE90, IEE91a, IEE93, IEE02, IRM93, LCK11, PNS95, ST83a, ST83b].

NP [FS08]. Nroff [Hol87]. NTRUSign [ZJ09].

NTRUSign-Based [ZJ09]. NTRUSign-Based [ZJ09]. Number [Ano86, Bat75, Dos78a, Gui99, WL12, Aam03, ASW78, BK07a, CP13, HC11, Hua98, KW94, TSY98]. numbering [C195, DM11, VNC07].

Numbers [BJMM94b, BJMM94a, Coh98, HSR+01, OG94a, MFK+06, OS10]. Numerals [Hol87].

NV [CCA+12]. NV-Heaps [CCA+12]. NY
[ACM12, GSW98, Mat09, IEE80b, IEE88c].

O [FHC89, MMC01, Vit85]. OBDD [Woe01]. OBDD-Size [Woe01]. Object [BDPSNG97, BP94, EE86, GK94, GK95, Hej89, ISK+93, KG95, KM92, LDM92, MBBS12, PKW09, PW94, SA97, TR02, WPKK94, YWH09, WL12, DMP09, DM11, Fly92, GMF95, GG92, LG96, BM90b].

Object-Oriented [BDPSNG97, BP94, EE86, GK94, GK95, Hej89, ISK+93, KG95, KM92, LDM92, Me29, PKW09, PW94, SA97, TR02, WPKK94, YWH09, WL12, DMP09, DM11, Fly92, GMF95, GG92, LG96, BM90b].

Objects [Bar97, BS94b, KM92, SR01, BS94c, CCA+12, GP08, TD93]. Oblivious [Cha94, GM98, HK12a, PWYZ14, SS88, CHL07, FNSS88, PWYZ14, SS88].

Observations [Bal96, Sti06]. obstacles [HM93]. obstacles [HM93]. obtain [Vit80a].

Occasions [vM39]. Occurrences [ZC77]. Occurring [She78]. OCR [Wan84]. Obd一流的 [Wan84].

Oberflächen [Wan84]. October [ACM85a, Ano93a, Ano93c, BD08, CJC+09, GMP95, GG92, LG96, BM90b].

ODBF [ODB89]. October [ACM85a, Ano93a, Ano93c, BD08, CE95, IEE74, IEE76, IEE80a, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, Jä90, Lom3, Mo92b, ST83a, ST83b, USE00a].

Octree [CJC+09]. ODBF [ODB89].

octal [IEE01]. octal [IEE01].

Octree [CJC+09]. ODBF [ODB89].

October [ACM85a, Ano93a, Ano93c, BD08, CE95, IEE74, IEE76, IEE80a, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, Jä90, Lom3, Mo92b, ST83a, ST83b, USE00a].

October [ACM85a, Ano93a, Ano93c, BD08, CE95, IEE74, IEE76, IEE80a, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, Jä90, Lom3, Mo92b, ST83a, ST83b, USE00a].

October [ACM85a, Ano93a, Ano93c, BD08, CE95, IEE74, IEE76, IEE80a, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, Jä90, Lom3, Mo92b, ST83a, ST83b, USE00a].

October [ACM85a, Ano93a, Ano93c, BD08, CE95, IEE74, IEE76, IEE80a, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, Jä90, Lom3, Mo92b, ST83a, ST83b, USE00a].
YNW*9, Yub82, DJRZ06, DJNR09, Loh89, MP90. Optimized [CVR14, EPR99].
Optimizer [ML86]. Optimizing [DGGL16, LOY00, MBK00, FF88, SW91, SV15b, WL12, TCW*13, WTN07].
Optimum [VC85, vdP72, vdP73, van73, Vit80a].

OR-parallel [Cra85]. Oracle [GHR99, LT12]. Oracles [Can97]. Order [FCDH90, FCDH91, GG86a, HB92, HM12, HSW88, Oto88a, Ouk83, Rob86, Tam81, AKY13, DH84, DLM07, HKKK13].

Optimizing [DGGL16, LOY00, MBK00, PF88, SW91, SV15b, WL12, TCW*13, WTN07].

Optimum [VC85, vdP72, vdP73, van73, Vit80a].

Oracle [GHR99, LT12]. Oracles [Can97]. Order [FCDH90, FCDH91, GG86a, HB92, HM12, HSW88, Oto88a, Ouk83, Rob86, Tam81, AKY13, DH84, DLM07, HKKK13].
PSR90, PW94, Rag93, Ram89b, RS92, RH92, RC94, RK89, RNT90, RK91, SS01, SD89c, SD89a, SV94a, SPW90, SB93, SK98, SA17, TR02, TK85, Top92, TP95, TNKT92, WPY90, WPKK94, WS93, WYT93, Woo89, Wu85, IWSS91, YLB90, Yen91, YB95, ZO93, dKC94, vW94, vdVL12, ALS10, AKN12, ASA+.09, CZL12, CyWM91]. parallel
Pentium [BGV96, Bosxx]. Peoples [Ano83]. Per-Flow [NS16b, SL16, HKL04, LMP+08].

Perceptual [LC12, MV01, MV02, NS16a, WDP+12].

Perfect [AN96, AA79b, AA79a, Ari94, BHIMM12, BBD+82, BBD+86, BS94a, BS94a, BW98, Bla00, Bla95, BPZ07, BT90, BT94a, BT94b, BH86, Bu92, BC09, Cer81, CK89b, CB83, Cer85, CK85, CK85, Cer87, Cer88, CL82, CS83a, Cha84b, Cha84c, CS85c, CS85b, Cha85, CS86, CL86, Cha86b, CC88b, CCJ91, CW91, CL95, CLC06, CT12, CJC+09, CR83, Cio80, Cio80b, CO82b, CH85, CHM92a, CHM92b, CM93, CHM97, Dat88, DKM+94, DH01, Die07, DJ80, DHJ83, Duc08, DM11, FM96, FCHD88, FCHD89, FCHD90, FCHD91, FCHD92, FC89, FH15, Get01, GHH91a, GH91b, HT01, JO80, Jae81, JD12, KH84, KM86, KM88a, KCB81, Kra82, KP94, LR85, LH06, LLVM17, MEL92, MWCH92, MWHC96, Meh82, NRW90, Nil94, OG94a, OG94b, Pag99, PV92, PG95, Pes96].

Perfectly [CMR98]. Performance [ACM04, AP93, ANS09, BM89, BM90a, Bre91, Bur83c, CL85, CS87, CS87, Chr84, CH94, DGG+86, DR92, Dadi92, DSG97, Don91, ESRJ14, FC87a, Fla81, Fla83a, Flo87, GD87, Gra88, Gra89, Gra93a, Gra93b, GRI74, Hac93, HSMB91, HC13, IEE94c, IG77, KS89a, Kh95, KK96, KTN92, Kue82b, Kum90, Lar80c, Lar81, Lar82a, Lar82b, Lar85c, LCK11, LLL09, LMSF89, Lit84, Lit85, Lon88, LYD71, Lun73, Lyo83, MXL+12, Mac95, ML86, ML94, MY79, Mil85, Mul85, NM02a, NP99, Omi91, Pal92, PB80, Pro94, Ram89b, RZ97, RSSD90, RLH90, RLH91, Roe94, Roe95, RT87b, SD85, SD89c, SD89a, Sch79b, SC90b, SC90a, SC90c, Sche91, TNK92, TM92, Tym96, Vit83, Yen91, YB95, BMQ98, BW89, CAGM07, CF89b, HM03, Kon93, LLA15, LY72, MA15].

performance [RFB97, SSG89a, SD89d, Shie17, Se98, Vit80a, WL07, WTN07, XCC09].

Permutation [DLH09, HSR+01, NS15, PHG12, Sch01a, CFY94, DLH13, HK95, KST99, LMPW15].

Permutation-Based [NS15, PHG12, KST99]. Permutations [JNPP14, MP12, Woe07, BK88].

Persistence [NT01]. Persistent [KM92, CCA+12]. Personal [Rad83].

Perspective [ACM85a, CSSP15, Wil00, Mit17]. Pert [Kul84]. Pertaining [Wir83]. Perugia [De 95].

Petersburg [Vau06]. Peterson [Kno88]. PGV [BR02, BR01]. Phase [DKH+15, PACT09]. PHASH [Shie17]. PhD [HJ+15].

Physical [BG80, Bat81, BG82, DT91b, DGKK12]. Picture [BS94b, BS94c]. pipe [MPST16].

Pipeline [PRM16]. Pipelined [CLLY92, He87, HCY94, MD05, MS88a, RS92, YCRY93, ISHY88, LCY93, RLM87, XLZC14]. pipelines [AS09, RS11].

DK02, DK15, Van10, HF13, LL08, Pre94a, UlI82, Wal88, Zhe90, KKP92, Sta06b. **Print** [Cip93]. **Priority** [AFK83, AFK84, RT87b, GMJ02]. **Privacy** [Ano95d, BJL16, BBR88, GZX14]. **Privacy-Preserving** [BJL16, GZX14].

Probabilistic [Bla00, BK07b, Fla83b, FM85, Pit87, Sch91a, Tsa96, VWT90, Yao83, CMR98, SD95]. **Probabilities** [Ald88, PRK98, vM39, Ald87]. **Probability** [Fel50, Gon80, LL83, NY85, Ram88a, MV91a, NN90, Nil94, Ram87, Sar11]. **Probe** [AA79b, AA79a, Gon81, OT91, Spr77, LJW +17, Mil99, Pag01, SS88, SS90b, Sun93]. **Probes** [Lyo85, Ros06, Ros07]. **Probing** [Ald88, BBS90, Cle84, FPV98, JV16, Knu98, Lar85b, Lyo78a, MY80, Pet13, PK87, PV97, SL16, TZ12, VP96, VP98, Ald87, Jan05, LJW +17, PPR07, Ram89a, Vio05].

Problem [DSS17, DM90, GB10, HP63, Hop68b, Mit73, NAK +15, Val15, BC06, DHKP97, HCF95, LP04, Loh89, Sun91, Sun93]. **problem-based** [BC06]. **Problems** [DJRZ06, FHMU85, Yub82, ZO93, AMP15, CP95a, CO82a]. **Proceedings** [ACM84a, ACM88a, ACM89a, ACM91a, ACM94b, ACM04, ACM12, Ano85a, ODB89, AW89, Bar83, BV89, BRW93, BL88, Cha83, CG086, DSS84, Gil77, Got83, ICD87, CTC90, IEE02, Jaj90, Jou85, KLT92, Lak96, LCK11, Lev95, LSC91, Ros74, WGM88, YR87, Yu92, vdHvH12, ACM81, ACM91b, ACM07, ACM08b, ADG +08, AMSM +09, Ano83, AA86, Deb03, Fis87, Van10, HL91, HF13, IEE01, Jen76, Mo92b, SM12, USE90, Win78, ACM94d, ??69, ACM75a, ACM79, ACM82, ACM83a, ACM83b, ACM84b, ACM85b, ACM85a, ACM86b, ACM86a, ACM87, ACM88b, ACM89b, IJW89, ACM89c, SDA90, ACM90, PDI91, SDA91, ACM91e, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM08a, ACM11, AFI63, ABB93, ABM06, AH03, Ano92, AAC +01, A +90, AIW11, AOV +99, BD88, BDS88, BIF92, BF89, Bor81, Bri92, BD08, BJ93, CP87, CLM89, Col93, CHK06]. **Proceedings** [Dav91, DT87, DSZ07, EF12, Fei91, FMA02, Fra04, Fre90, GJM90, Gol94, GSW98, HB93, HeI94, IEE80a, IEE85b, ICD88, ICD90, IEE90, IEE91b, IEE91a, ICD91, IEE92b, IEE92a, ICD93, IEE93, IEE94c, IEE95, IEE01, IEE05, IEE07, IEE10, IEE11b, IRM93, Joy03, Kar08, Ker75, Kna89, Kui92, LC06, Lss87, LTO8, LT85, LS89, Long93, Mat09, MK89, MV91c, MS05, Nav85, Ovb86, Pat90, PK98, QV98, RRR99, RK98, Rov90, Rue93, ACM77a, SZ93, Shm00, SW94b, SC77, Sti93, Sto92, USE91, USE00a, USE00b, Vao6, Vid90, WPy90, IWS91, Yan10, Yun02, AGK +10, AFK90, ACJT07, Be00, BJZ94, Bra90, BW92, CIM +05, Cop95b, Dam09a, Dam91, DJRZ06, DJNR09, FS09, Go196, HM08, adHMR93, HKNW07, IEE11a, JB94, K105, Lut88, QQ95, Rei88, SP90, Sho05, SM08]. **proceedings** [Wie99, vL94]. **Proceedings/Ninth** [ICD93]. **Proceedings/Seventh** [ICD91]. **Proceedings/Third** [ICD87]. **Process** [FS82, Pro94]. **Processes** [WB90]. **Processing** [APV07, BG92, CCW +17, Dan13, Eld84, GST90, Ger86a, Ger86b, Gil77, GIL17, Gra92, Gra94c, HB93, Har85, HJC06, IABV15, KMV10, LLLC17, LC96, MK89, MS88a, PAPV08, Pip94, PK89, RK98, Sac86, Sch90b, SD90b, SD90a, Sha86, Sol93, SPB88, Spe92, Tha88, Toy86, WP90, IWS91, YkWY83, BZZ12, Bra98, CP95a, C KK99, Gen14, GC90, HLH13, Kan91, Kan93, LLC89, Omm89, RAD15, Ros74, Sab94, SK88, SP89, WLLG08, YMI90, Yu92]. **Processor** [Adi88, KL87, SM87, YC93, ISH +01, LC93, TLL07, YNW +09]. **Processors** [Pap94, Ros06, Ros07, Wil59, JHL +15, KL08, KW94, TLL09, YIAS98]. **Producing** [DV07, RVPV02, Win83]. **Product** [Du86, YGC +12, OS14].
Productive [Bor81]. Profile [SSU+13].
Profile-guided [SSU+13]. profiling [VNC07]. Program [Hil88, Kru84, Mai83, Mai92, Mehl82, SS80, BZZ12].
Programmable [HM12, HK12b, LT12].
Programmer [Cro98].
Programmiersprache [Dit76].
Programming [LFP82, ACM91d, dBvL80, BM87, BGS96, Dit76, Dm89a, Ers58a, Ers58b, GG86b, Har71b, Har73, IEE84, Jou85, Knu73, Knu75, Kui92, Mau68, NS82, Pat89, SS80, dK94, ACM91a, AGK+10, ADG+08, ALS10, AMSM+09, ACJT07, BW92, CIM+05, DLH+79, Er86, Sab94, TMW10, YIAS89, BW92, Las87].
Programs [AR16, Hea72, PAKR93, Ers58b, FDL86, MP90, NMS+08]. progress [Wol93].
progressive [XMLC11]. Progressively [DVS+14].
Project [DGS+90b, DGS+90a, Tro92, NM02b].
Projecting [AT93, AT90]. Projection [Bur78, SPW90, AS89].
Projective [ACP09, HK12a, KV09, Wee12, FH15].
PROLOG [CJ86, Bor84, Coh84].
Proof [CZLC12a, CZLC14, Cor02, LT12, SDW14, ZM17, DLM07].
proofing [CHL07].
Proofs [CZLC12b, CS02, KK12, NTY12, WG00, Wee11, Li10].
Propagation [DSSW90a, CML+13, DSSW90b].
Properties [Bal05, Bol79, CS83b, CLC92, Li85, RS12, TS85, WS76, ZM91, GW94].
Property [BR06, DGKK12, FLP14, Rja12, SR99, Ter87, FL08, FLP08]. proposal [LLJ15]. Proposed [CP91c, HPC02].
Protecting [LMJC07]. Protection [DF01, DGKK12].
Protein [LLW10, ZLY+12].
Protein-Protein [ZLY+12]. Protocol [Ano95a, BT12a, Dam93, G12, HMNB07, HCPLSB12, HLC10, JRPK07, JK11, OVV94b, TY03, CJP15, Dam94, GB17, LW04, OVV94a, SPLHC814, CJP12, JL14].
Protocols [LLL09, SDK91, KLL+97].
Provable [ANS09]. Provably [DY90, DY91, HM96, JP07, LM95, Sho96, IN89, SXL16].
Provably-Secure [DY90, DY91, HM96].
Provide [Sch01b]. Providence [IEE07].
Proving [Kil01, WS76]. proxies [TC04]. proximity [SX08]. Proxy [ZJ09].
Pruning [CT12, MD97, HC02]. Pseudo [DW83a, FLF11, WFW+12, dW83b, MFK+06, PVCQ08, TSY98, WS13].
Pseudo-Associative [DW83a, dW83b].
Pseudochaining [HP78]. pseudoentropy [VZ12].
Pseudorandom [BW92, LAK15, OS10, SP91, Aam03, CP13, VZ12].
Public [Nat95, FIP93, NIS93]. Public-Coin [CLP13].
Publication [Nat92].
publish [MJ14]. publish/subscribe [MJ14].
Puerto [IEE91b].
Purpose [Chi91, Chi94, Sch91a]. putting [Col93].
pyramid [MHT+13].
QC [JY14]. Quadratic [Ack74, AC74, Bat75, Bel70, Bel72, Bel83, BI87, Bur75a, Day70, Eck74b, HD72, Lam70, Rad70, NH74]. quadratischen [B187].
Quality [YWH09, GW94]. quality-size [GW94]. Quantification [GC95]. Quantile [KS87b, KS89b]. Quantitative [Hea82].
quantities [Bee83]. Quantization [YWH09, YGC+12]. Quantum [BB09b, BHT97, BHT98, MKAA17, BD08, BBD09b].
Quark [AHMN12, AHMN13]. Quasi [Cze98, LLW10, MD05]. Quasi-Bicliques [LLW10]. Quasi-perfect [Cze98].
Quasi-Pipelined [MD05]. Quaternary [KP96]. Québec [ACM02]. Queensland [SZ93].
Queries [APV07, Bur75b, CLD82, Cha84a, CHY97, DHL+94, DHL+02, GST90, KS12, LCLM94, LO00, LB07, ML86, PAPV08, PF88].
SD90b, SD90a, SW91, Sol93, Stu85, BZL+15, DH84, Fal88, HYKS08, HAKM15, HAK+16, HR93, HF91, Hua85, LL13, MBKS07, SWQ+14, TL93, Wil78, Wil85a. Query [ODB89, BG92, FB87, Ger86a, Ger86b, Gra92, Gra93c, Gra94c, HLC10, HFZ+15, HFF+17, Kie85, Kim80, LC96, MS88a, Sac86, SD89b, Sch90b, Spe92, TS85, Toy86, CCKW00, DD95, GMP95, LYJ+13, LMLC14, Loh89, RAD15, SP89, WLLG08, YLC+09, Yu92]. query-adaptive [LYJ+13]. Query-aware [HFZ+15, HFF+17]. Querying [CN07, LOON01, TT10, AK09, NDMR08]. Questions [Mit09]. Queue [KV91, MV88, KM07]. queueing [MSV87]. Queues [AFK83, AFK84, Woo89, GJM02]. quick [FDL86]. QuikFind [Cha91]. Quotient [BK70, Bel70, Bel72, Bel83, Bur75a, Lam70].

Recyclable [NS16b]. Redesigning [AZ10]. REDOC [BS91c]. REDOC-II [BS91c].
Reduce [CKW09]. Reduced [AD11, BM97, BC15, DDS14, HSR′01, HKKK10, KNR10, MRST10, MNS12, WFW′12, ZWW′12, AKY13, CV05, ITP14, MS13, WS13].
Region [FB87, OSR10, KHH89]. Registration [GPA97, JBWK11]. Regression [OGAR14, TGGF10]. Regular [CKW09, CH94, MSP12]. Regularized [TGGF10]. Rehashable [LBJ02]. Rehashed [Bone96, Kno88]. Rehashing [Kel93, Kel96, Mad80]. Related [Eck74b, Mit09, BSU12, GJM02]. Relation [Km74, PF88, de69, GC90, MC89].
Relational [Bab79, Bra84b, FP89b, Fro82, Gra88, Gra98, H87, Heu87, IH83, KR86b, KR86a, KP81, Kim80, KTM083b, KTM083c, MS88a, PF88, Wu85, Yam85, YNM89, AS89, EBD91, ISH′91, KR88, SP89].
Researcher [GC915]. Reserved [ST86, Tro06, W84, Zou85, ST85]. Residue [Ari68, KKT91, Mue04, Rad07]. Resilience [NTY12]. Resilient [BS96, LMSM09, WTN09, ZMM17, LMSM12]. Resistance [Mit12, BF08, MSP12]. Resistant [BR97, BK12, CHKO08, IK05, PGV90b, KHK12, PGV91, PGV93g]. resisting [SXL16]. Resizable [Boy98]. Resolution [Ask05, CadHS07, M06, MC86, YB95, KdT89].
Restklassenhash [Eck74a]. Results [AN09, Bur83c, DR06, DRS12, Jv86, RR08, CV05, LT72]. RETCON [BRM10]. retention [ZLL′07]. Retrieval [AU79,
ANT85, BV89, BIP92, BI12, Bre73, Bur76b, Bur76c, Bur77, Cha84a, CJP12, CF89b, Chu90, DS84b, DP08, DSSW90a, DGM89, FH69, FCDH90, FCDH91, FB92, GPY94b, Irbxx, Kab87, Kuo71, LK84, Lar88b, Mal77, MH00, Mor83a, NI83, OT91, RLT83, RSD85, RSSD89a, RSSD89b, RSSD90, RSSD92, Riv74b, RT87b, TS85, VD90, WH83, Wil79, WKO78, YDT83, YWH09, YR87, YTJ06, YD86a, Bu76a, CCL91, CJP15, DSSW90b, Gol97, GPY94a, LYJ13, ML94, RT89, Riv74a, SDR83b, WC94, YD86b.

retrieve [SG72]. Retrieving [AA79b, AA79a, Spr77]. Return [Wil96]. Reusing [ZHS94]. Reversible [DR11, SLC07]. Revised [Ytr06, BK07a, Bir07, JY14]. Revisited [AH92, BYSP98, CDMP05, FLP08, GLS91, GLS94, HR96, HK87, KK12, KVK12, BAT¨O13, Ham02, KKL09, LP04].

Round-Down [PT11b]. Round-Reduced [DSS14, WFW12]. Rounds [GK08, HSIR02, Sch11]. Route [ABC+16, DF01, BLC12, YG10]. Router [JL14, KLSV12]. routes [ATAK07, PT12b]. Routine [Hea82]. Routing [ABC+16, BT12a, WBWV16, Cha12, PT10, SPSP16, TC04, TBC+15, WY02].

s [PES05, BLC12]. S. [Pro94]. S81 [KTN92]. SAC [JY14, HSR+01]. safe [CCA+12, LPW03, Lin96]. SAGA [HKNW07]. Saint [GQ95, QG95]. Saint-Malo [GQ95, QG95]. saliency [FXW17]. SAMOSA [PHG12]. Sampler [Mil87]. samples [HYK08]. Sampling [AD85, Jak85, BZZ12, CyWM91, ORX90, RKLC+11, ZGG05]. San [ACM75b, ACM91b, ACM03a, ACM07, ACM08a, ACM11, DT87, IEE88a, IEE91b, Joy03, Kar98, Shm00, Sto92, USE90].

Sandwich [Yas07]. Santa [Bel00, Bri92, Cha83, Cop95a, Cop95b, Fra04, Gol94, Sho05, Sti93, Wie99, Yun02]. Santiago [BJZ94]. sat [DK07, MS13]. SAT-based [MS13]. Satzuebergreifende [Nec79]. SC11 [LCK11]. SC2002 [IE02]. SC2003 [ACM03b]. Scalability
Scalable [CKKK09, DPH08, GLJ11, IEE94c, LMD12, MEK14, PRRR15, PW94, SKC07, TMW10, WPKK94, WSZ+16, CLL+14, KKP+17, KYS05, KSC11, KSC12, LNS96, LEHN02, NK16, PT12b, TLLL09, VBW94, KCR11, NTW09].

Scale [BI12, GLLL17, Li15, MEK14, MWC12, NS16a, SHF+17, YGC+12, CML+13, FES09, Shi17, SXLL08, ZNPM16].

Scale-Invariant [NS16a].

Scaling [LL13, TCP+17, PES+12, YSL05].

SCALLA [LMD12].

scanner [ISHY88].

Scanning [Bur81, LLL11].

Scatter [Ban77, BMB68, Bre73, Day70, FL73, FW76, FW77, Luc72, Lyo78b, Mal77, Mau83, Mor68, Mor83b, Mau68].

Scenes [War86].

Schanuel [KPS92].

schedules [GK12b].

Scheduling [Lyo79, TL93].

Scheme [AK98, BP97, Bur84, CLD82, Cha84c, Cha85, CL86, Cha86a, Cha86b, CCS8b, CCJ91, CW91, Dat88, DJ850, DHJS83, Fab80, Hui13, JLL08, KJC11, LW88, Lar88b, LHC05, NXB13, Oto85a, Oto85b, PVM94, PACT99, SGGB00, SHF+17, TC93, VV84, Vit81a, YSW+11, YY07, ZI09, ZQSH12, Bur82, CW93, CKW93, CP95b, DF89, EAA+16, HL03, HFF+17, KCL03, Ku04, KCC05, LLH02, LKY04, LWG11, MMG10, Oka88, SDR83b, YRY04, YG10, ZW05, ZC12, FF90].

Schemes [BDS09, CL05, CLC06, Cor02, Dam87, DSS17, ED88, HMC09, HHL10, Jai89, Jai92a, Jai92b, Jaixx, Kal01, KM09, LM95, LRY78, LRY80, MY80, Ngu06, Ouk83, PWY+13, PS88, RL82, RS7, SDR83a, TL95, CQW08, DH84, GSG94, HDMC11, HMBZ11, IN98, KJK6, KM10, ML94, OOS8, RS75, SNW06, ZHS94].

Schluesselwerten [Dos78a].

Schnellen [Kue84a].

Schnorr [DBGV93, NS09].

Science [Sar80].

IEE89, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEI0, IEE11b, Knu74, Kon10, LC86b, LL83, RRR99, Rie89, Ro90, Wal88, WGM88, Wil85b, Win78, WW77, vLA94].

Science/3rd [TWW77].

Scientific [Sar80].

Science/3rd [TWW77].

Scientific [Sar80].

Science/3rd [TWW77].

Scientific [Sar80].

Scientific [Sar80].

Scientific [Sar80].

Scotland [NAO+19].

Scratchpad [vdBGGL16].

SCD [KWO95].

Search [Ack74, IA91, Ban77, BM76, Boo74, Bra84a, Bra85, Bra86, CER1, CKB83b, CKB85, Cha91, CLP17, CS82, Eck74b, GIM99, HH85, KCB81, Kna82, Kna10, LLL73, LC78, LM95, LRY78, LRY80, MY80, Ngu06, Ouk83, PWY13, PF88, RL82, RS77, SDR83a, TL95, CQW08, DH84, GSG94, HDMC11, HMBZ11, IN98, KJK6, KM10, ML94, OOS8, RS75, SNW06, ZHS94].

Searches [LL87, Lyo85, GJM02, KHH99].

Searching [Bay74, BS97, Bur75a, CL85, CS82, Dav73, Day70, Dos88b, Flas1, FSB, Flas3a, Flo87, Gos1, Gos3, Knu73, Knu75, Lam70, Mai83, McI63, Meh84, Ouk83, Piw85, RT81, Ram98, RC94, SG76b, ST82, Wis7b, WB87, YJ706, Yub82, CW93, CLW98, ISH+91, Mol90a, Mol90b, PH73].

Seattle [ACM89c, LCK11, KCR11].

Seattle [ACM89c, LCK11, KCR11].

Seaweed [NDM08].

Second [ACM83b, ACM90, SDA91, AKY13, ABD+16, Ano93d, BD08, Kil05, Mit12, TZZ12, IE88b, TSP+11].

Second-Preimage [ABD+16].

Secondary [Bel70, Bel72, Bel83, Fel87, FP89b, Gui75, Joh61, NH74, YMB89].

Secret [HR04, LMJC07, LPWW06, SNW06, ZHS94].

sections [NM10].

Secure [AHV98, Ano93b, Ano95b, BT12a, CILC14, CS02, Dan13, DK07, DY90, DY91, DR11,
FIP93, FFGL09, GHR99, GZX14, HM96, HR04, JTOT09, JK11, KMM+06, KP97, LM95, LRY+15, MKAA17, NIS93, Nat95, NR12, PLKS07, PV07, PGV92, SK99, Sho96, Sta06a, Win84, Yas07, YY07, Zhe90, Aam03, FFGL10, GBL94, IN89, JFDF09, Sim98, SXL16, YRY04, ZC12, ANS97, Ano02, Ano08, Ano12, Bou12, FIP02b, Nat92, Sta94.

Security
[AK98, Abi12, And94, ASBdS16, CLNY06, CN08, Cor00, Cor02, FW09, GK12a, HMNB07, HLMW93, HXMW94, ISO97, ISO04, KK12, Kil01, LC06, LT12, LLL09, MP12, Men12, NAK+15, RS12, SM02, WG00, WPS+12, Yan10, ACM94a, ACP10, AMP15, Ano93a, Kak83, Lai92, LC95, Men17, MPST16, PGV93c, SF88, Sta06b, UPV11].

Segmented [CLYY92, CLYY95]. Segments [Bor84]. Sekundaerspeichers [Pet83]. select [FNY92]. selectable [BSNP96c, Gon95, Li95]. Selected [SC77, Ytr06, Bir07, Bor81, JY14, JY14]. Selecting [MHB90, Sou92]. Selection [DC81, FFGOG07, Hea82, MS12, OGAB14, TYZO15, CD84a, HYKS08, Dos78a]. selectivity [HYKS08, MBKS07]. Selects [Bou12]. Self [HH85, Pag85, PRRR15, SS83, Som99, TY03, Wil96, Wog89, ZF06, TKI99]. Self-Adjusting [Pag85, Wog89]. Self-checking [Wi96]. Self-Indexed [TKI99]. Self-Monitoring [SS83]. Self-Organizing [HH85, Som99, TY03].

Sensor [DK09, LDY+16, PLKS07, ZQSH12, AK09, ADF12, LG13, LND08, RAL07, YG10].

Sensors [DL12, DVS+14]. Sentence [CH12]. Sentences [Ven86]. Separate [Kue82b, Mul81, Kue82a]. Separating [FK84, SG16, BvT13, LS06, vT14]. Separators [Lar88b, Moh90, Moh93, CS93a].

Sept [Jou85]. September [VL82, AAC+01, AOV+99, AA86, BJZ94, EF12, FS09, Fis87, HM08, HKNW07, Ker75, Kna89, LSC91, Vid90, Win78, Yao78].

Sequence [BC08, FP89b, Gon81, HG77, LPT12, LL85, MS88b, BJ07, CLW98, Wog89]. Sequences [Som99, KS88a, QJ97]. sequencing [KRML09]. Sequential [AD85, BCCL10, CT96, GS94, HB89a, KKC12, Lit89, Mul72, Ore83, Piw85, SK98, SG76b, HB89b, IL90].

Series [BJL16]. Served [PM89]. Server [DR92, GSL17, GBC98, Gra99, VB00]. Server-Side [GSL17]. Servers [SKC07, KSC11, KSC12]. Serves [Ano95d]. Service [CCF04, BPT10]. Services [ANS05, Ano85b, HLC10]. Session [HLC10]. Set [BOS11, Kie85, SG76a, WC81, YD85, BGG12, GGR04, HYKS08, HDM11, HKLS12, HM03, MS84, SA17]. set-expression [GGR04]. Set-Oriented [Kie85]. set-valued [HM03]. SetI [BFR87]. Sets [AA79b, AA79a, GHK91a, GHK91b, GT93, Lit89, PBD95, Ram92, Spr77, Win90a, BT89, BT93, FP82, IL90]. seven [RAD15]. seven-dimensional [RAD15]. Seventeenth [LC86b, LSC91, Rie89].

Seventh [ACM75c, ACM75a, ACM88a, dBvL80, LL08, AAC+01]. several [DLH+79, Kan90]. SHA
[ANS97, Bou12, TSP+11, AAE+14, BCJ15, jCPB+12, DR06, GLG+02, JRPK07, KKKR07, KR09b, MAK+12, NIS15, NSS+06, SK05, Sta94, SKP15, WYY05a, WYY05b, WYY05c]. SHA-0 [BCJ15, NSS+06, WYY05d]. SHA-1 [ANS97, AAE+14, BCJ15, DR06, JRPK07, KKKR07, KR09b, SKP15, WYY05a, WYY05b, WYY05c].
WYY05b, WYY05c, GLG+02. SHA-2 [SK05]. SHA-256 [MAK+12]. SHA-3 [Bou12, TSP+11, jCPB+12, NIS15]. SHA-512 [GLG+02]. SHA-1 [SKB+17].

Shading [ZDI+15]. Shading-based [ZDI+15]. Shanghai [Ano83, LC06]. Shape [SR89]. Shared [Bor84, CadHS00, DadH92, EK93, adH93, KU88, KTN92, LTS90, ML94, MLxx, Mey93, Omi91, SD89a, TB02, VN93, GLJ11, Kan91, Kan93, KU86, MSS96, SD89d].

Shared-Disk [WB03]. Shared-Everything [KTN92, ML94, TNKT92].

Shared-Memory [MLxx, TR02, Vit81a, Bor84].

Shared-Nothing [SD89c, TR02, TNKT92].

Shared-Memory [MLxx, TR02, Vit81a, Bor84].

Shares [ZHS94]. Sharing [LPW06, KL08, KD92, SNW06, YD86b, ZHS94].

SHAvite [GLM+10]. SHAvite-3-512 [GLM+10].

Shenzhen [IEE11a].

Sheraton [ACM75b]. Sheraton-Palace [ACM75b]. Shop [Si02a].

Short [AB12, CW09, DK09, Lyo79, NR12, MT16, SV15a].

Short-Input [AB12]. Short-Output [NR12].

Short-Time [CW09]. Shorter [Hil13, PB16]. Should [Yao81].

Shoup [Mir01]. Showcase [USE00a]. Shrinking [ZF06].

Silent [BN85]. Side [GO07, GSL17, TC04].

SIFT [MMG10]. SIGACT [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM89a, Van10, LL08].

SIGACT-SIGMOD [ACM83a, ACM83b, ACM85b, ACM86a].

SIGACT-SIGMOD-SIGART [ACM88a, ACM89b, ACM89a]. SIGAL [A+90]. SIGART [ACM88a, ACM89b, ACM89a, Van10, LL08].

SIGCSE [LC86b]. SIGIR [BIP92, YR87, BV89]. SIGMOD [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM89a, BJ93, CLM89, FMA02, GMJ90, Van10, HF13, LL08, Nav85, SW94b, Sto92, ACM81, ACM84a, BL88, HF13, LIE81, SW94a].

Signature [Cai84]. Signature [ANS05, ANO09, ANO13, BDS09, C91, Cor02, Dam87, FC87a, FC87b, HHL10, Huı̈l13, Kal01, LR96a, LM95, LL92, NXB13, PWY+13, RZ90, RR92, ZRT91, Z90, CR89, ZW05].

Signatured [SS83]. Signatures [AS16, BHH+15, But17, CK12, DK09, FFGG07, GDN12, GHR99, Hui13, HRS16, HBG+17, MKF+16, MCF17, Moh11, MKAA17, PW93, P93, RR92, Ru93, TT82, NS09, PPB16, ST93].

Simple [BPZ07, Cic80b, DH01, DS09b, GM94, GM98, IT93, KM08, Lom88, PSSC17, PT12a, Ram92, Sar10, SF88, CLS95, DW03, DS09a, DLM07, MV08, PT11a, SK15].

Simplicity [Rag93]. Simplifies [OVY94b, OVY94a].

Simplify [Dam93, Dam94]. simplifying [VZ12].

Simulating [adH93, Mey93]. Simulation [EK93, Hii82, Hii90, KLadH93, KLM96, KWH91, YkW83, KWH91b, War14, DS84].

Simulation-Based [EK93]. Simulations [CadHS00, DadH92, Lep98, Rey14, MSS96]. Simultaneously [LOY00]. Sindhi [SS05].

Singapore [DSS84]. Single [AKS78, AA79b, AA79a, CS93a, CC88b, ...]
Speech [CW09, RJK79]. Speed [FP89a, KMM+06, KMV10, McK89a, PSR90, TK88, YNKM89, BCCL10, EVF06, McK89b, MSS96, RW07, SLC+07, SXLL08, TLLL07, XMLC11]. Speeding [FH96].

Speicher [GN80]. Speichertechniken [Kue84a]. Speichertspezialisten [Dos78a]. SPHINCS [BHH+15]. Spiral [CK94, Mul85]. Split [LL85, MS88b, SS06, She78, Wog89]. Split-ordered [SS06]. Splits [BY89]. Splittable [CP13]. Splitting [DR09, RT87b, Vek85]. Spoken [KRRH84].

Storage [ACM04, Bay74, BM68, Bre73, Col93, Day70, FL73, Fed87, FB87, FP89b, Fro82, GL82, GL88, HCJC06, Kno71, HGH+12, LCK11, Less88, LRY+15, MSK96, Mal77, Mau83, MEK+14, Mor68, Mor83b, Mul81, Mul85, Omi88, OT91, OS83a, OS83b, Pet57, Sam81, SHF+17, TY03, TS85, Tra63, WH83, Wil71, WKO78, WB87, YDT83, vdP72, vdP73, AY14, AK09, CRS83, HGR07, Mau68, MS896, PT10, QD02, YSL05, YMI89, van73]. storage-efficiency [PT10]. Storage-efficient [HCJC06, MSK96]. Store [DW83a, dW83b, Shi17, BP94]. Stores [Bry84, PRR15]. Storing [AL86, FKS84, MNS07, Ros77, TY79]. Stouffer [ACM87]. Strategies [iA91, iA94, BI87, Dae95, Die07, adH90, adH93, KL87, KHT89, MD97, Mey93, MNS07, Tro95, YB95]. Strategy [CdM90, LMSM09, LC96, NKT88, RS92, GC90, LMSM12]. Stream [DC98a, cLmL07, MNS12, NCFK11, TW07, TS85, Ged14, MV08, OCDG11, RS14, Tan83]. Streaming [CN07, STS+13, YSW+11, FVS12, ZC12]. streamlining [DSS10]. Streams
Street [Sim98].

Strength [HS08, FH15, Ken73]. Stretching [BVF12]. String [iA94, Ask05, BH85, Bur84, CCH09, Cha91, Dav73, LK14, LLLC17, NNA12, TK88, Tay89, TT82, ASM17, AZ10, Bur82, DC94, GBY90, Kim99, MBKS07, RZ97, XMLC11].

Strong [CHKO08, JRPK07, Ku04]. strong-password [Ku04]. Strongly [BG07, LK14, Tho00].

Structural [TWZW11, Wil96, ZMI91, FLF11, MK12, ZBB06]. structuration [Lit77a].

Structure [AHS92, CK12, CJC09, DGM89, DT91a, DT91b, FLF11, Flo77, FH91a, GHHK91a, KR09a, KHH91, LNS96, LCH14, MMC01, MS96, SB07, TM82, YD86b].

Structure-Preserving [CK12].

Structured [CS93b, GDA10, Piw85, SG76b, SM87, BP10, GHW07, WHS07, WLLG08].

Structures [AHU83, BDD10, BFR87, Boy98, BJM14, CE70, Coh84, DSZ07, DP08, Ell85b, Ell82, Fek88, FB92, Fro82, Gon84, GBY91, Gri74, Har88, Har71b, HS84, Kru84, LC86a, LRY78, LR78, Lit84, M92a, RW73, Sal88, SD14, SW86, Sne92, Ste82, SW87, T81, TA86, TGL97, TS76, TS84, VL87, WS76, WKO78, Wir86, YLB90, BY91, CR83, FP89a, GM90, Har73, HM03, Inc81, IGA05, Koe72, Lin96, MTB00, NT01, NM02b, O88, She06, VL97, Vit01, Wil85a, ZKR08].

Structuring [Bay73a]. Studies [An93d, GT80, GG80, Yu82]. Study [AR17, BF83, BK07b, Cha84c, Cha85, Cra85, DTS75, DJS80, DJS83, Ell85b, Gri74, Hil78a, Hil78b, LC86a, LG87, LYD71, TL95, YLB90, HM03, LY72, Wee88, WTN07].

style [UCFL08]. Subgraph [ZLY12, WLLG08]. Subquadratic [Val15].

Subscripts [Atk75, vdSDW74b, vdSDW74a].

subset [IN89]. Subspace [KRJ80, Sch11]. Substring [B073, Har71a, MKS98].

Subsystem [HLC10]. subtype [Duc08]. subtyping [DL06]. Succinct [AN0, DP08, RRS07, FS08, SH92, SH94].

Suchen [Meh86]. Suffice [ADW12, ADW14]. Sufficiency [NY85]. Sufficient [IKO05, H95, Rus92, Rus93, Rus95].

suitable [MZ98]. sum [IN89]. summaries [KM08]. Summary [DLH79]. Sums [HJ96, RRS07]. Super [An95d, KO90].

supercomputers [GLJ11]. Supercomputing [ACM04, IEE90, IEE91a, IEE93, Kha95].

Superimposed [CJ86, FH65, SD85, SDKR87, SD83b].

superior [PT10]. Superjoin [TRN86].

Supertree [GB10]. supervised [CL714].

Supplement [SC77]. Supplementary [PLKS07]. Support [CN07, Eng94, GSL17, KJC11, SK99, YCRY93, C14, CWW00, JMH02, KLSV12, LC93]. Supporting [CLS12]. Surface [Leb87, LDY16].

surprising [SKD15]. Surrogate [BCH87].

Surrogates [Dec82]. Survey [CZ17, Kal93, Sev74, Mi99, RAL07, UpV11].

SUSE [PT10]. Sweden [Ros14]. Switching [IEEE]. Switzerland [HKNW07, Lak96].

Sydney [SP90]. Symbol [CL83, Bat65, GJR79]. Symbolic [ACM94b, CLD82, DL80, FH96, Jen76, Lak96, Lev95, Ng79, vDH12, GoR08, Kan91, Kan93, Ng79]. Symbols [Wil59].

Symmetric [FW09, Fil02, H13, NHS84, Oto85a, PQ98, PQ99, QG89, QG90, Roe94].

Symmetry [KTN92]. Symposia [Got83].

Symposium [ACM94d, ACM75c, ACM75a, ACM76, ACM77b, ACM79, LFP82, ACM82, ACM83a, ACM83b, ACM84b, ACM85b,
ACM86b, ACM86a, ACM87, ACM88a, ACM88b, ACM89b, ACM89a, ACM89c, SDA90, ACM90, ACM91c, ACM91d, SDA91, ACM91e, ACM94b, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM07, ACM08a, ACM08b, ACM11, ACM12, AH03, A+90, AINOW11, BW92, Col93, CHK06, EF12, Col94, Van10, adHMHR93, HL91, HF13, IEE74, IEE76, IEE80b, IEE82, IEE84, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE05, IEE06, IEE07, IEE11b, Jáj90, Jen76, Lak96, LL08, Lev95, LC86b, Mat09, MS05, Ng79, ACM77a, Shm00, WGM88, Win78, Wol93, vdHvH12, ACM91a, FS09, Fis87, HM08, HKNW07, Kar98, IEE82.

Symsac [Jen76]. Synchronization [Oak98]. synchronizing [ML95]. Syndrome [vMG12]. Syndrome-Based Syndrome-Based [vMG12].
synergy [GHW07]. Synonym [QCH+81]. synopses [YLC+09].
synopses [YLC+09]. Synaptic [Ven86].
synergies [Sah94]. synthetic [GLC08, PGV93e, PGV94]. Syracuse [IEE80b]. System [JBC88, CBK83, Cer85, CBK85, CZL91a, CZL91c, CBA94, CJS6, DNV81, ERS86, FH69, GRZ93, Gra94c, He87, ISK+93, JXY07, KL87, Koe72, KRJ+80, HGH+12, Mi85, MK93, MKF+06, PRZ99, PSR90, Sar80, SBS16, SPB88, SC77, TC93, YK99, ZZ93, AS09, CZ14, Gob75, WM93, YMI89].
systematic [SSaS01]. Systems [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM87, ACM88a, ACM89b, ACM89a, PDI91, And91, ANT85, BSH12, Bor81, Cer81, CS83b, CC87, Col93, DKO+84b, DKO+84c, DKO84a, Dum56, DGK91, ELL82, FLS84, GI12, GLILL17, GL80, Van10, Van90, HCKW90, Har88, HFC93, Kim80, KSC12, KCS81, Kue84b, Kum89a, LSC68a, LL08, Llo81, Man12, MEK+14, Mor83a, Ouk83, PFM+09, Sha86, She81, SHF+17, Toy86, ULL82, Web72, WBO3, Yam85, YLB90, ZJM94b, dK94, ACM94c, AKN12, ARA94, DKO+84d, DAC+13, FP89a, FES09, GPGO16, KKP92, Lia95, Mo92b, RW07, SK88, SP89, TL93, U1Y10, WTN07, ZGG05, ZJM94a, ZJM94c, SC77, Sto88]. systolic [EBD91, PJM88, PJB90].

T3D [DS97]. Tabellen [Bl87]. Table [AL86, Bat75, Bee99, Bru75a, CCF04, CW91, CL83, Day70, DHI+15, FKS84, FW76, FW77, GGU94, GKH95, Hop68b, HD72, HLC10, LABV15, JL14, JXY07, JMH02, JD12, KG95, Kno71, LMJC07, Lev00, Lit80, Litxxa, LACJ18, Lyo85, Mai83, Mai92, MT11, ML75, Mue04, MDT+02, Pri71, Pro89, Rey14, Riv76, Riv78, Sam76, Sam81, San76, Sno29, Sy82, Sy85, TY79, Tro06, VB00, YD84, YT16, YLB90, vdVL12, AY14, AZ10, BCR10, Bay73b, BGG12, Fro81, GSS10, HXL13, KdlT89, MK92, MA15, NK16, NH74, PH73, Ram87, SB95, SB97, WTN07, ZGG05].

Table-Based [HLC10]. Table/urn [Ram87].

Tabled [AR16]. Tables [ACK74, APV07, AK74, ASK05, Ban77, BM87, Bay73a, Bay73c, Bay73d, BPPB12, Ben98, BJ87, CRRdPHF12, Cle84, CD84b, EMM07, FFPV84, F+03, GT93, HP78, Hop68b, HC87, HC13, IK92, Jv86, KKH15, Kue82b, Kue84b, LO79, Lar88a, LMSM09, LC88, Lit79b, LB07, Luc72, LMR02, Lys78b, MS02, Mit02, MC86, NY85, Pag85, PAV80, PV92, PTT16, PP95, PIA89, Qui83, Ram88a, RRS12, RH90, RMB11, SD78, Sch79a, SS80, SM02, TT10, Woe06b, Yao81, Yaq95, Bat65, Fly92, FPSS05, FRS94, GM79, GRJ79, HKW05, KK12, LMSM12, LVD+11, Mad80, MSD16, PT10, PT12b, QP16, SS06, Tai79, TBC+05, TMW10, WII03, WII14, Wog89, WTN09, XLZC14, YTHC97, ZWH01].

Tabu [WZ93].

Tabulation [KW12, PT12a, TT12, PT11a, TH17]. Tabulation-Based [KW12, T12].

Tabulative [GT80]. Tag [JRPK07, CJP15, SPLHCB14, CJP12].

Tagging [TCW+13]. Tagging [TCW+13].

Tamed [NXB13]. Tampa [IEE88b]. Tamper
Tight [Cha94, CV08, GHK⁺12, vT14].

Two [DDMM05, DAC+13, HK12a, HSIR02, Jv86, KSSS86, Leb87, LMPW15, Lyo85, ML15, Pan05, Pip94, PGV90a, TCG93, CCL91, GP08, Li10, McN03, PGV93a, PGR93b, SDR83b].

Two-Way [DDMM05]. TWOBLOCK [Yan05]. TX [USE91, ACM87, ARA94, IEE94a]. **Type** [KPS92, KRJ90a, SF88, SG16]. Type-based [KRJ90a]. **Type-Graphs** [KPS92]. Types [EjKMP80, Hej89, SW87, Wal88, LPSW03, NMS+08]. **TYPHOON** [HKW05].

Unified [JV16, Mul84a, Mul84b, ABO+17, BOY11].

Uniform [ABH+73, AT93, Gui89, Kie85, KS86, KS87b, Lar83, Leb87, LQZH14, LPP91, LPP92, Mal77, OP03, OP08, PCK95, Rui08, UHT95, Yao85b, Ald87, AT90, MC89, Rad92]. Uniform-Grid [Leb87]. **uniformity** [MLP07]. Unifying [BG80, BG82]. Unique [Boo74, DLH09, DLH13, SD78, ASW87].

Uniqueness [Kah92]. Unit [BC90, HO72]. United [ACM94b, JBJ94]. Units [LLLC17, WB87, SF88]. **Universal** [Abl12, AS96, Bie97, Bra09, CW77a, CW77b, CW79, CS02, DadH90, DadH92, Die96, DSo9b, EPR99, Fürr88, GC95, HHR+10, HJ96, Kil01, KR01, LK14, MNT90, MCW78, Mhe82, Mul91, Nae95, NY89b, NY89a, NP99, NR12, Ram88b, Sar80, Sho96, Sho00a, Sie04, Sti91, Sti94a, Sti94b, Woe01, van94, ACP10, Bie95, DSo9a, KYS05, KL96, KR06, KL16, LC13, MNT93, Sar11, Sar13, Sie89, Tho00, Woe06a]. **universality** [SS89a]. universe [Bra09, Wem92]. Universes [DS09b].

Universitat [CTC90, Dit76]. **Universiteit** [BBDB09]. University [ACM81, IJW89, CCC89, Cha83, HB93, IEEE74, Jالف90, Lie81, Ox86, Pat90, Sch82a, Dit76]. universum [Wem92]. UNIX [SY91, WGO0]. Unlabeled [GCMG15]. unleash [McN03]. Unlimp [Kah92]. unsigned [BCS89]. Unstructured [Gon83, PFM+09]. Unsupervised [PKW09]. Untersuchung [Stu82].

unveiling [BBC10]. **UOWHFs** [BR97]. Update [Ano95a, GO07, GGR04]. Upon [CS83b, Cha84b, CS87, CW91]. Upper [DKM+88, DPM+94, GadHW96, DPM+91]. **URAL** [GT63]. **URAL-2** [GT63]. **URLs** [AY14]. USA [ACM03a, ACM07, BD88, Be00, Bri92, BD08, Cop95b, Deb03, DJNR09, FNY92, Fra04, Fre90, Van10, GSW98, Joy03, Ker75, Kil05, Lom93, Sh05, Sti93, Wie99, Yun02, ACM94d, ACM11, ACM12, FMA02, HF13, IC86, IC87, ICD86, IE88b, ICD90, IEE01, IEE02, IEE05, IEE10, IEE11b, MS05, USE91, USE00a, USE00b]. Usability [BDS88, Sch82a]. Use [ACM75b, Bal95, BK84, Bor81, Bra84a, Bra85, Bra86, BC90, Gur73, NR12, Rad70, WC81, Er86, adHMR93, RK15, Vak85, YIAS89]. Used [Stu85, GS94, Sch91a]. USER [USE91, USE00b, USE90]. User [RTK12, YY07, Bor81, DFMR15, LLH02].
LKY04, YRY04]. Using
[ANS97, ASW07, BDPSNG97, Bar97,
BCK96b, Bor84, BOS11, BM90b, BI12,
BT94a, BT94b, BM01, BT12b, CPF95a,
CRdPHF12, CKB85, CdB90, CdB90,
CLYY92, CJC09, Cle84, CD84b,
CE70, CY06, DLT98, Dav73, DK07, Dod82,
DL12, DSSW90a, DSSW90b, DSSW90b,
FRB11, FJ13, Ger86b, Gir87, Gri77, GPA97,
GAS16, Har97, HG77, HNS84, HKY12,
JRPK07, JTOT09, JD12, JK11, Kab87,
KSSS86, KM07, LK07, LAKW07, LQZH14,
LR99, LMD12, Lum73, MS02, MBBS12,
MNY81, McK89a, MH00, Moh90, Moh93,
MJT02, Mul72, NKT88, NI83, OTKH11,
OG94a, Omi89b, PAPV08, PLKS07, PKW09,
PFF88, PW94, QG90, QG90, RL89, RLT83,
RSD85, RSSD92, Rey14, Rob86, SD78, SS83,
SRY99, Sh000b, SW86, SK05, Som99, SA97,
SKM01, TK88, TC93, TA81]. Using
[TA86, TGGF10, TK85, TS85, Tsa96, US09,
VV84, WPKK94, Wan14, WDP12, Wil96,
Wil79, YY07, BSNP96b, BLC12, BK07a,
BF08, BT90, BG12, CKB81, CHL07,
CKKK09, CP13, CT96, DMP06, DKT06,
DS09a, DSSW90b, EH17, Fal86, FM89, Fly92,
GG92, Ger86a, Gob75, GBL94, HC02, HW88,
HXLX13, ISO97, JFDF09, JLH08, JL14,
JAC00, JBBK11, JM02, Ken73, Kim99,
Ku04, LG96, LLH02, LKY04, LW04, LNS11,
LDK12, LL16, MMC01, McK89b, MCM10,
Mue04, Ok88, PC95, RSSD99a, RSSD99b,
Röm07, SB95, Sar12, STS+8, Th017, UHT95,
YTHC97, YRY04, ZGG05, ZRL08].
Utah [SM08, Nam86, SM12]. utilizing
[DMPP06]. Utilisation [OT91]. Utilization
[PS12, Wil71, CF99b]. Utilizing [KK85].
Utrecht [vL94]. UUID [BSH12].

V [PHL01]. v1.4.0 [Sun02]. VA
[ACM94d, ACM94a]. Valdivia [CHK06].
Validation [ML86]. Value
[DGD02, GIS05, Gra99, NS16a, PRRR15,
PRK98, Cli95, MK12, Mi05, Shi17]. valued
[DH84, HN03]. values
[ASW87, GS94, SB95]. Vancouver
[ACM05, LL08, Yua92]. Variable
[Dir91, Lit91, MF92, Mar64, OGAB14,
PHL01, Pea90, Pea91, Sam76, Sav90, Sav91,
ZPS90, ZPS93a, RK14, ZPS93b].
variable-increment [RKK14].
Variable-Length [MF92, Pea90].
Variables [Die96]. Variant
[AAE+14, Mcl63, PS12, PVCQ08]. Variants
[CV83b, CV85, VNP10].
Variationally [KR06]. varieties [FH15].
Various [LG78, WPS+12]. Varying [Wil79].
Vault [LM07, LMJC07]. VAX [JC88b].
VAX/VMS [JC88b]. VBF [AC16].
Vector
[AC16, Kaw15, PG95, SB93, Kan91, Kan93].
Vectorization [Kan90]. Vectors
[Bhu95, M184, WZ93]. Vegas
[AFI69, IEE10]. vehicle [LGW11].
Vehicular [GZX14]. Venti [QD02].
verarbeitung [Nie75]. verfahren [Hil82].
Verfahrens [Pet83]. Vergleich [DS84a].
Vergleichende [Hil82]. Verification
[CLS12, EH12, Lew82, MJT02, YKLH10,
CE95, KRR09a, SD95, YLC09, ZKR08].
Verified [BGH12, BGG+13]. Versa
[Hol13].
Versatile [CBA94]. Version
[Coh84, HPC02, JXY07, Kutt0, Lar82c,
Lar82d, Lar85c, CMR98]. Versions
[HSR01, CV05]. Versions
[BD84, CF89b, DSS17, GLS91, SVE84].
vertex [ZBB+06]. Verwaltung
[Pet83]. verwaltungsdaten [Pei82]. Very
[ABB93, VLD82, AW89, AAC+01, AOV+99,
BD88, BCH78, BJZ94, CGO86, Chem00,
DSS84, DT91a, DT91b, GN48, GS89,
HB98a, HB92, Hilt78, Hilt78, Ker75, Ker79,
KS87a, KS87b, LT80, LSC91, MSDS90, PV85,
ST3a, ST3b, Yan08, Yan09, DC94, HD89b,
KS89b, VLD82, AW89, CGO86, DSS84,
LSC91, MSDS90, PV85, Yan08, Yan92].
VHAM [Lit77b]. Via [GH07, YJ06,
Lar81, Lar82a, FPSS05, Mic02, MT16].

Worst-Case [ANS09, ANS10, DMV04, Lar82a, Lar81, Mic02]. worst-case/
average-case [Mic02]. Wörterbücher [Wen92]. Write [Moh90, Moh93, MNS07].

Write-Ahead [Moh90, Moh93]. Write-Once [MNS07]. Wrocław [ACJT07].

WSN [DL12]. Wyner [DVS+14].

XML [CN07, KRML09, MK12, WLLG08, WWZ09].

XMSS [HRB13, HBG+17]. xor [FJ13, CCHK08, MLP07, VD05, vdBGLGL+16].

XOR-based [CCHK08, VD05]. XPS [Ger95]. XRDB [YNKM89]. XSB [SSW94].

XTEA [CV05].

year [Roe95]. Years [Kon10, IEE01]. Yi [Wag00]. Yi-Lam [NMS+08]. Yokohama [AINOW11]. Yoo [KCC05]. Yoon [KCC05]. York [ACM12, GSW98, HF13, IEE90, IEE99, Mat09, IEE90, Jen76]. Yorktown [Jen76].

YY [Nat92].

Zahlen [BJMM94b, BJMM94a]. Zakopane [Win78]. Zeiteffizienten [Kue83]. Zemor [Gei95, Gei96, GIMS11, PVCQ08]. Zero [CLP13, Dam93, OVY94b, Dam94, OVY94a].

Zero-Knowledge [CLP13, Dam93, OVY94b, Dam94, OVY94a]. Zheng [PGV90a, PGV93a, PGV93b]. Zheng-Matsumoto-Imai [PGV90a, PGV93a, PGV93b]. Zipper [LWWQ08]. Ziv [DVS+14]. Zoning [GRZ93].

Zugriffsoperationen [Pei82]. zugriffsverfahren [Stu82]. zum [Eck74a]. zur [Koe72, Kue83, Kue84a, Pet83]. Zurich [HKNW07, Lak96].

ACM:1969:PAN

Asano:1990:ISS

Anderson:1979:CPH

Anderson:1979:CCP

Ausiello:1986:IIC

Ajtai:1992:FTG

Apers:2001:PTS

Albertini:2014:MHE

Anshel:2016:CHF

Aamodt:2003:CSP

REFERENCES

Arnold:1973:UHA

Abidin:2012:SUH

Azar:1999:BA

Ailamaki:2006:PIW

At:2017:LAU

Amdahl:1953:xxx

[ABRS53] Gene M. Amdahl, Elaine M. Boehme, Nathaniel Rochester, and Arthur L. Samuel. The year is uncertain (????). Amdahl originated the idea of open addressing with linear probing, which was later independently rediscovered and published [Ers58b]. The term ‘open addressing’ was apparently first used in [Pet57] [see Kno75, page 274.], 1953.
REFERENCES

Atkinson:1974:FPQ

Ackerman:1974:QSH

Arge:2007:ALP

ACM:1975:PSA

ACM:1975:DUO

ACM:1975:CRS

ACM:1976:CRE
Conference Record of the Eighth Annual ACM Symposium on Theory of Computing: Papers Presented at the
REFERENCES

REFERENCES

ACM:1986:PFA

ACM:1986:PEA

ACM:1987:PEA

ACM:1988:PPS

REFERENCES

ACM:1988:PTA

ACM:1989:PEA

ACM:1990:PTF

ACM:1991:ACS

REFERENCES

ACM:1991:AAS

ACM:1991:CRE

ACM:1991:PTT

ACM:1991:CCS

ACM:1994:IP1

ACM:1994:MMC

ACM-SIAM:1994:ASD

ACM:1996:PTE

REFERENCES

REFERENCES

Ayday:2012:DAA

Aceto:2008:ALPa

Heide:1990:DHS

Heide:1993:HSS

Adi:1988:DCC

W. Adi. Design criteria and complexity evaluation of a hash-based join processor. Technical report, Technischen Universität Carolo-Wilhelmina zu Braunschweig, Brauns-

REFERENCES

REFERENCES

Aumasson:2012:QLH

Aumasson:2013:QLH

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

Ahn:2009:SLD

Albutiu:2012:MPS

Ajtai:1978:TNF

AlTawy:2013:SOC

Aho:1986:SDS

Aldous:1987:HLP

Aldous:1988:HLP

Noga Alon and Moni Naor. Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions.

Anderson:1988:PHK

Anderson:1991:TFC
Ross J. Anderson. Tree functions and cipher systems. Cryptologia, 15(3):194–202, July 1991. CODEN CRYPT5. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://www.informaworld.com/smpp/content~content=a741902753.db=all.order=page. encryption systems; plaintext bit; hash function; ciphertext errors; error extension; tree function; ciphertext attack; computable attack; connectivity; DES; RSA key selection; algorithm design.

Anderson:1993:CHF

Anderson:1994:FSE

Anonymous:1983:MPM

Anonymous:1985:PFD
REFERENCES

[Ano93d] Anonymous, editor. The Second Annual Dartmouth Institute on Advanced Graduate Studies in Parallel Computation. Dartmouth College (??), Hanover, NH, USA, June 1993. ISBN ?? LCCN ?? I have been unable to locate this reference in several major libraries, including Dartmoth’s, sigh....

REFERENCES

Anonymous:1995:AUC

Anonymous:1995:FSH

Anonymous:1995:NAF

Anonymous:1995:SHS

Anonymous:1996:RF

Anonymous:2002:SHS

Anonymous:2008:SHS

Anonymous:2009:DSS

Anonymous:2009:ACH

ANSI:2003:AXP

ANSI:1997:AXP

Arbitman:2010:BCH

Arnaurov:1985:ODF

Atkinson:1999:PTF

Analyti:1992:FSM

Analyti:1993:PAM

Aumasson:2008:HED

Aumasson:2011:CHF

Akbarinia:2007:PTK

Areias:2016:LFH

Atighehchi:2017:OTM

Anger:1994:IEA

Ariwasa:1968:RHM

Arikan:1994:IGE

E. Arikan. An improved graph-entropy bound for per-

[ASA+09] Dan A. Alcantara, Andrei Sharf, Fatemeh Abbasinejad, Subhabrata Sen Gupta, Michael Mitzenmacher, John D. Owens,

Andrade:2016:LEP

Askitis:2005:CCC

Al-Ssulami:2017:FSM

Astrahan:1987:ANU

Aspnas:2007:EAS

Asano:1990:APP

Tetsuo Asano and T. Tokuyama. Algorithms for projecting points to give the most uniform distribution with appli-
cation to hashing. In Asano et al. [A+90], pages 300–309.

Azadegan:1991:PJA

[AT91] Shiva Azadegan and Anand Tripathi. Parallel join algorithms for SIMD models. In Lin Wu (v. 1) et al. [IWSS91],
pages III–125–III–133. ISBN 0-8493-0190-4 (set), 0-8493-

Azadegan:1991:PJA

[AT93] Tetsuo Asano and Takeshi Tokuyama. Algorithms for projecting points to give the
most uniform distribution with applications to hashing. Algorithmica, 9(6):
572–590, June 1993. CODEN ALGOEJ. ISSN 0178-
4617 (print), 1432-0541 (electronic). Selections from SI-

Asano:1993:APP

CODEN LNCSD9. ISSN
0302-9743 (print), 1611-
3349 (electronic). URL
com/link/service/series/
0558/bibs/1538/15380086.
hmt; http://link.springer-
ny.com/link/service/series/
0558/papers/1538/15380086.
pdf.

Ang:1998:TLH

CODEN LNCSD9. ISSN
0302-9743 (print), 1611-
3349 (electronic). URL
com/link/service/series/
0558/bibs/1538/15380086.
hmt; http://link.springer-
ny.com/link/service/series/
0558/papers/1538/15380086.
pdf.

Ang:1998:TLH

[AU79] Alfred V. Aho and Jeffrey D. Ullman. Optimal partial-match retrieval when fields are independently spec-
ified. ACM Transactions on Database Systems, 4(2):
168–179, June 1979. CODEN ATDSD3. ISSN 0362-
5915 (print), 1557-4644 (elec-
Aumasson:2009:CHF

Alvarez:2011:IME

Apers:1989:VLD

Ahmad:2014:RTN

Askitis:2010:RSH

Babb:1979:IRD

REFERENCES

REFERENCES

REFERENCES

Bays:1973:NWC

Bays:1973:RHC

Bayer:1974:SCM

Bohm:2007:FRA

Berman:1982:CFP

Berman:1986:CFP

Belazzougui:2009:HDC

Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. Hash, displace, and compress. In Fiat and Sanders [FS09], pages 682–693. CODEN
REFERENCES

Bernstein:2009:PQC

Bellare:2012:LCH

Bernstein:1988:OCE

Belazzougui:2011:TPM

Bennett:1988:PAP

Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public discussion.
REFERENCES

[BC90] W. W. Rouse (Walter William Rouse) Ball and H. S. M. (Harold Scott MacDonald [“Donald”]) Coxeter. Mathematical recreations and essays. Macmillan Publishing Company, New York, NY, USA, 11th edition, 1939. 45 pp. LCCN QA95 .B3 1939. According to Knuth [Knu73, p. 507], this is one of two papers that first discuss the birthday paradox: “if 23 or more people are present in the same room, chances are good that two of them will have the same month and day of birth! In other words, if we select a random function which maps 23 keys into a table of size 365, the probability that no two keys map into the same location is only 0.4927 (less than one-half).” The discovery is credited to unpublished work of H. Davenport (1927). See also [vM39].

REFERENCES

Bu:2010:SHF

Boldyreva:2009:FNM

Bellare:1996:KHF

Bellare:1996:MAU

Bedau:2004:CHF

REFERENCES

[Barr:2010:TCS]

[Bardin:1989:IUI]

[Black:2009:IHE]

[Bell:1982:KSC]

[Bell:1984:HTV]

[Bancilhon:1988:PFI]

[Bauspiess:1992:RCH]

[Buchmann:2008:PQC]
References

cryptographic_functions_for; internal&sk=05460486

Bertoni:2006:RBM

Bertoni:2007:SF

Bertoni:2008:ISC

Bertoni:2009:RPK

Bertoni:2012:KSF

Beeri:1988:PTI

Buchmann:2009:HBD

Johannes Buchmann, Erik Dahmen, and Michael Szydło.
REFERENCES

Beeton:TB4-1-36

Beebe:1999:HTL

Bell:1970:QQM

Bell:1972:QQM

Bellare:2000:ACC

Benzinger:1998:SCB

Mike Benzinger. STL containers based on hash tables.
REFERENCES

C/C++ Users Journal, 16 (2):??, February 1998. CODEN CCUJEX. ISSN 1075-2838.

Bell:1983:MCS

Boral:1989:DMS

Bouillaguet:2008:ACR

Bender:2012:DTH

Barn:1995:ODP

Battiato:2011:RFH

REFERENCES

Bierbrauer:1996:OAR

Bosselaers:1996:FHP

Berkovich:1985:MSP

Bruckner:1986:MPH

Ban-Hashemi:1993:FAC

Bast:1991:FRP

Ban-Hashemi:1993:FAC

Bernstein:2015:SPS

REFERENCES

REFERENCES

CODEN DDJOEB. ISSN 1044-789X.

[Bis12] Francesco Biscani. Parallel sparse polynomial multiplication on modern hardware architectures. In
van der Hoeven and van Hoeij [vdHv12], pages 83–90. ISBN 1-4503-1269-1. LCCN QA76.95 .I59 2012.

REFERENCES

REFERENCES

REFERENCES

Beyer:1968:LEC

Black:1998:GHA

Buhrman:2002:BO

Barthels:2017:DJA

Barth:1985:SSS

Barreto:2010:WNC

REFERENCES

[Bosxx] A. Bosselaers. Even faster
hashing on the Pentium.

Biliris:1994:EEO

Barbour:1997:DMH

Brier:2009:CC

Ben-Porat:2012:VHH

Bakhtiari:1997:WGC

Buehrer:2010:DPS

Botelho:2007:SSE

Banerjee:1975:DLD

Bellare:1994:OAEa

Bellare:1997:CRH

Bellare:2006:MPP

Bellare:2014:CCH

Bradley:1984:UMD
[Bra84a] James Bradley. Use of
mean distance between overflow records to compute average search lengths in hash files with open addressing. Technical Report 84/154/12, University of Calgary, May 1984. ?? pp. (email parin@cpsc.ucalgary.ca).

Brent:1973:RRT

Richard P. Brent. Reducing the retrieval time of scatter storage techniques. *Communications of the Association for Computing Machinery*, 16 (2):105–109, February 1973. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Modification of open addressing with double hashing to reduce the average number of probes for a successful search.

Bremers:1991:HPP

Brickell:1992:ACC

Blundell:2010:RTR

Black:2002:BBA

Black:2010:ABB

REFERENCES

Bode:1993:PPA

Bryant:1984:EHL

Bhatia:1994:FPH

Bhatia:1994:FIP

REFERENCES

Bjatia:1994:FIP

Bentley:1997:FAS

Balkic:2012:GUI

Bakhtiari:1996:PBA

Bakhtiari:1996:SCH

Blackburn:2012:CHA
REFERENCES

REFERENCES

Buckhart:1982:AII

Burkhard:1975:FTQ

Burkhard:1976:ART

Burkhard:1976:PMQ

Walter A. Burkhard. Partial-matching queries and file designs. In Kerr [Ker75], page ?? ISBN ???. [Bur75b]

Burkhard:1976:PMR

Burkhard:1977:ART

REFERENCES

CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

REFERENCES

Buttner:1986:UDM

Butin:2017:HBS

Belkin:1989:SPT

Barreto:2012:HCS

Bazrafshan:2013:IBS

Breen:1989:HFP

Bruynooghe:1992:PLI

Blackburn:1998:OLP

Baeza-Yates:1989:MSF

References

Barnes:2015:PEP

Bao:2012:WBS

Czumaj:2000:CRH

Chen:2007:IHJ

Cain:1984:MAD

Canetti:1997:TRR

Coelkesen:1994:MCV
Cercone:1983:SIS

Cercone:1985:ISF

Chang:1987:PAG

Chang:1988:OMP

Chang:1991:NAA

Coburn:2012:NHM

Chen:2017:FMT

Chen:1991:HNT

Chang:1984:CHC

Cleary:1984:FCR

Cheiney:1989:PTC

Cheiney:1990:PST

Cheiney:1990:PTC

Coron:2005:MDR

REFERENCES

Coffman:1970:FSU

Camurati:1995:CHD

Celis:1986:RHHa

Cercone:1981:PHFa

Cercone:1983:CL

Cercone:1985:AAA

Cercone:1987:FAP
REFERENCES

REFERENCES

Cousin:1994:PIS

Cormode:2009:FFI

Ceglarek:2012:FPD

Chaum:1983:ACP

Chang:1984:OIR

Chang:1984:OMP

[Cha84c] C. C. Chang. The study of an ordered minimal perfect hashing scheme. Communications of the Association for Computing Machinery, 27 (4):384–387, April 1984. CODEN CACMA2. ISSN 0001-
REFERENCES

Chang:1988:APC

Chang:1985:SLO

Chang:1986:LOR

Chang:1986:SCO

Chang:2012:HCM

[Cha88]
0782 (print), 1557-7317 (electronic). The English translation of Ref. 6 of this paper appears in [Hua82]; that book contains the fundamental prime number functions needed for the ordered minimal perfect hash functions described here.

[Cha85]

[Cha86a]

[Cha86b]
REFERENCES

Chen:1984:DACa

[Che84a] Wen-Chin Chen. *The Design and Analysis of Coalesced Hashing*. PhD thesis, Department of Computer Science, Brown University, Providence, RI, USA, November 1984. ?? pp. See also [Che84b].

Chen:1984:DACb

Chin:1991:LPH

Cormack:1985:PPH

Correa:2006:LTI

Camacho:2008:SAC

[CHK08] Philippe Camacho, Alejando...

Chen:2007:TPB

Czech:1992:OAGa

Czech:1992:OAGb

Czech:1997:PH

Christodoulakis:1984:ICA

Chung:1990:BCW

Chung:1991:IEH

Chung:1992:IEH

Chen:1993:AHF

Chen:1997:AHF

Cichelli:1980:MPH

Caires:2005:ALP

Luís Caires, Guiseppe F. Ital-

[CJP14] Jung-Sik Cho, Young-Sik Jeong, and Sang Oh Park. Consideration on the brute-force attack cost and retrieval cost: a hash-based radio-frequency identifica-
REFERENCES

140

Cercone:1989:IAP

Chu:1994:ASH

Chierichetti:2015:LPF

Cercone:1981:LDU

Chierichetti:2015:LPF

Chierichetti:2015:LPF

Chercone:1983:MAM

Chercone:1983:MAM

[CKB83b] Nick Cercone, Max Krause, and John Boates. Mini-

Cercone:1985:ESL

Choi:2009:SPC

Claussen:2000:EES

Chierichetti:2014:CLF

Chang:1993:RCO

Coetser:2009:REH

Wikus Coetser, Derrick G. Kourie, and Bruce W. Wat-

Cook:1983:STA

Chang:1985:PAK

Chang:1986:LOM

Chang:1995:CHE

Chang:2005:PHS

Colbourn:2009:LHF
REFERENCES

Click:1995:GCM

Cheng:2014:SSM

Celis:1986:RHH

Celis:1986:RHHb
[CLM86] P. Celis, P. Å. Larson, and J. I. Munro. Robin Hood hashing. Technical Report CS-86-14, Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, April 1986. ?? pp. See also [Cel86].

Clifford:1989:AIC

Li:2007:RNH

Chang:2006:ISA
REFERENCES

Chiu:2017:AAS

Chen:1992:USR

Chen:1995:STP

Chen:1995:ASR
Ming-Syan Chen, Mingling Lo, Philip S. Yu, and Honesty C. Young. Applying segmented right-deep trees to pipelining multiple hash joins. *IEEE Transactions on

REFERENCES

Cheng:2007:DHL

Chang:2008:IIS

Comer:1982:GPA

Cook:1982:LOM

Coburn:1994:ISH

Cohen:1984:MSP

Cohen:1994:ACF

REFERENCES

REFERENCES

149

Sponsored by the International Association for Cryptologic Research (IACR), in cooperation with the IEEE Computer Society Technical Committee on Security and Privacy.

Chaum:1987:ACE

Cai:1991:MNH

Cai:1991:LMN

Camion:1991:KHF

P. Camion and J. Patarin. The knapsack hash function proposed at Crypto ’89 can be broken. In Davies [Dav91],
REFERENCES

Cai:1995:UMD

Charnes:1995:ASH

Claessen:2013:SPN

Chaudhuri:2008:LCF

Chen:2008:IRS

Chung:1989:DSH

Crammond:1985:CSU

Carreras-Riudavets:2012:MAU

Cromwell:1998:PBD

Chung:1983:DOM

REFERENCES

Chang:1983:PMF

Chang:1985:FAC

Chang:1985:DLO

Chang:1985:DLM

Chang:1986:DOM

Chang:1987:PAM

Cesarini:1991:DHM

Cesarini:1993:SAH

REFERENCES

Cooper:1993:TTA

Cramer:2002:UHP

Chakrabarti:2015:BPL

Cooperman:1996:NSP

Cormode:2010:ANG

Chiou:2012:IMA
Chuang-Kai Chiou and Judy

IEEE:1990:FAS

Chen:2011:CIK

Chen:1983:AEI

Chen:1983:NVC

Chen:1984:ANV

Chen:1985:AAS

References

[CV91] Chin-Chen Chang and Tzong-Chen Wu. A letter-oriented perfect hashing scheme based upon Sparse table compression. *Software—Practice*

Chang:1993:HON

Chen:2009:SHA

Chiu:2010:FMH

Chen:2014:MLC

REFERENCES

Czech:1998:QPH

Chu:2012:TMP

Chen:2012:AIB

Chen:2012:IBE

Chen:2014:CSI

Dolev:1992:NPH

Dietzfelbinger:1993:OPD
M. Dietzfelbinger and F. M. Aufderheide. An optimal

REFERENCES

[Damgaard:1990:ACE]

[Damgaard:1990:DPH]

[Damgaard:1991:ACE]

[Damgaard:1993:IHC]

[Damgaard:1994:IHC]

Dang:2013:CFI

Datta:1988:IPH

Davison:1973:RSC

Davies:1991:ACE

Day:1970:FTQ

Drechsler:2012:IEH

Daemen:1993:CSH

Joan Daemen, Antoon Bosselaers, Rene Govaerts, and Joos Vandewalle. Collisions for Schnorr’s hash func-
REFERENCES

DeBonis:2011:CGT

Dhawan:2015:AEN

Danezis:2007:END

Dalal:2005:TWC

Dinur:2014:IPA

deBalbine:1969:CAR

DeSantis:1995:ACE

A. De Santis, editor. Advances in cryptology: EUROCRYPT ’94: Workshop on the theory and application of cryptographic techniques — May 1994, Perugia, Italy, number 950 in Lecture Notes in Computer Science. Spring-

REFERENCES

[DGD02] V. Desmet, B. Goeman, and K. De Bosschere. Independent hashing as confidence mechanism for value predictors in microprocessors. Lec-
REFERENCES

DeWitt:1986:GHP

Dantras:2016:OIB

Durvaux:2012:IPP

Du:1989:EFS

Dietzfelbinger:1992:PHF

DeWitt:1990:GDMb

[DGS∗90a] David J. DeWitt, Shaharm Ghandeharizadeh, Donovan A. Schneider, Allan Bricker, Hui i Hsiao, and Rick Rasmusen. The gamma database machine

DeWitt:1990:GDMa

Daemen:1993:FDO

Donaldson:1984:CMV

Dietzfelbinger:2001:SMP

Du:1983:SNP

Debnath:2015:RHT

REFERENCES

0163-5980 (print), 1943-586X (electronic). [DHW08]

Dietzfelbinger:1997:RRA

Dietzfelbinger:2008:DIB

Dolev:1994:NPH

Dolev:2002:NPH

Dietzfelbinger:1990:HDD

Dietzfelbinger:2007:DSM

I. Dittmer. Note on fast hashing of variable length text strings. Communications of the Association for Computing Machinery, 34(11):118, November 1991. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Points out that Pearson’s hashing algorithm [Pea90] was discovered fourteen years earlier by this author [Dit76]. See also comments in [Sav91, Lit91, Pea91].
REFERENCES

DiCrescenzo:2009:CLH

Damgaard:1994:BAH

Delfs:2002:ICP

De:2007:IAS

Debapratim De and Abishek Kumarasubramanian. In-

Dahmen:2009:SHB

Drmota:2012:PAC

Delfs:2015:ICP

deKergommeaux:1994:PLP

Dietzfelbinger:1988:DPH

Dietzfelbinger:1991:DPH

[Dietzfelbinger:1994:DPH]

[DeWitt:1984:ITMc]

[DeWitt:1984:ITMa]

[Dharmapurikar:2006:LPM]

[Devillers:1979:HTG]
R. Devillers and G. Louchard. Hashing techniques, a global

REFERENCES

//www.sciencedirect.com/
[173]

Durand:2007:SPP

[175x646]//www.sciencedirect.com/

```
//www.sciencedirect.com/
science/article/pii/S0304397513000133
```


Damiani:1998:EDH

```
[DLT98]
```


Davie:1981:RDC

```
[DM81]
```


Diby:1990:DDK

```
[DM90]
```


Devroye:2003:CHF

Ducournau:2011:PCH

Ducournau:2009:EAO

Roland Ducournau, Floréal Morandat, and Jean Privat. Empirical assessment of object-oriented implementations with multiple inheri-
REFERENCES

Demaine:2006:DDP

Dietzfelbinger:2011:CHP

Devroye:2004:WCR

DeWitt:1992:PSH

Deen:1981:DCD

Dodds:1982:PRD

Donovan:1991:PSM

Kevin Donovan. Performance of shared memory

Dodis:2005:GIF

Doster:1978:AHG

Doszkocs:1978:AAI

Dietzfelbinger:2008:SDS

Das:2008:DHS

Delis:1992:PSC

REFERENCES

Du:1995:RMQ

Dayal:1984:VLD

Dalessandro:2010:NSS

Dhayal:2017:MMP

Dontas:1990:FTHa

Deutscher:1975:CSD

Du:1986:DAM

Ducournau:2008:PHA

Dumey:1956:IRR

Mentions chaining for collision handling, but not open addressing. See [Ers58b] for the latter.

Duncan:1989:PPU

Duncan:1989:UHT

Daemen:2007:PCP

Deligiannis:2014:PRW

Nikos Deligiannis, Frederik Verbist, Jürgen Slowack, Rik van de Walle, Peter Schelkens, and Adrian Munteanu. Progressively refined Wyner-Ziv video coding for visual sensors. ACM Transactions on Sensor Networks, 10(2):21:1–21:??, January 2014. CO-
REFERENCES

DEN ???. ISSN 1550-4859 (print), 1550-4867 (electronic).

DaSilva:1983:PAS

DaSilva:1983:PSH

Dietzfelbinger:2003:ARG

Dietzfelbinger:2005:BAD

[DW05] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionaries with tightly packed constant size bins. In Caires et al. [CIM+05], pages 166–178. ISBN 3-540-27580-0. LCCN ???. EUR 130.54. URL http://www.springerlink.com/content/39gwr5b5hp6d15hw/.

Dietzfelbinger:2007:BAD

DeSantis:1990:DPS

DeSantis:1991:DPS

Ding:2008:MPH

Jintai Ding and Bo-Yin Yang. Multivariates polynomials for hashing. Lecture Notes in CS, 4990:
Ehdaie:2016:HCR

Ecker:1974:BRG

A. Ecker. Eine Bemerkung zum Restklassenhash. (German) [Remark on the division hash code]. Angewandte Informatik/Applied Informatics, 16(6):253–256, June 1974. CODEN AW-IFAT.

Ecker:1974:PSQ

Elleithy:1991:VIS

Epstein:2012:AEA

REFERENCES

Essex:2012:HTE

Elghamrawy:2017:PFC

Ehrig:1980:AIA

Engelmann:1993:SBC

Elder:1984:CDP

Elzey:1982:DSC

Ellzey:1983:EHC

Ellis:1985:CLH

Ellis:1985:DDS

Ellis:1987:CLH

Ellis:1988:CEH

Erlingsson:2007:CPA

Er:1986:UTI

Englert:1994:NSS

Etzel:1999:SHF

Er:1986:UTI

REFERENCES

Ershov:1958:PAO

Ershov:1958:PPB

Estebanez:2014:PMC

Eugenides:1990:ESM

Estan:2006:BAC

Fotakis:2003:SEH
D. Fotakis et al. Space efficient hash tables with worst case constant access time. In Alt and Habib [AH03], pages 271–283. CODEN LNCSD9. ISBN 3-540-00623-0 (softcover). ISSN 0302-9743 (print), 1611-

REFERENCES

REFERENCES

REFERENCES

Farashahi:2013:IDH

Files:1969:IRS

Fortune:1979:NRN

Fateman:1996:SLB

Fuji-Hara:2015:PHF

Fox:1989:LAF

Fox:1992:MPH

Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and Amjad M. Daoud. Minimal perfect hash functions for large databases. *Commu-
This is the first published algorithm for computing minimal perfect hash functions for lists of millions of words; previous algorithms were computationally infeasible for more than a few hundred words.

[FIPS:1993:SHS]

[FIPS:2002:KHM]
REFERENCES

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with $O(1)$ worst case access time. Journal of the Association for Computing Machinery, 31(3):538–544, July 1984. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic). Extends the work of Tarjan and Yao [TY79], using a two-level data structure, the first containing

pointers to the second, and the second containing blocks accessible by a perfect hashing function.

d9.

d9.

REFERENCES

Faudemay:1991:AAL

Farach:1996:PHS

Franklin:2002:PAS

Frieze:2009:ARW

Frieze:2011:ARW

Faezipour:2009:HPE

Fagin:1979:EHF

Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H. Raymond Strong. Extendible hashing — a fast access method for dynamic...

REFERENCES

[FRA04] Matt Franklin, editor. *Ad-
REFERENCES

REFERENCES

198

Discusses the dynamic hashing scheme used by ASDAS, under development at Strathclyde University.

Flajolet:1982:BPA

Fortnow:2008:IIC

Fiat:2009:AEA

Farashahi:2009:HEC

Fouque:2012:IHB

Fuerer:1988:UHV

Fusco:2012:RTC

Friedman:1976:GCH

Friedman:1977:EGC

Feldhofer:2009:HIS

REFERENCES

Fang:2017:OHT

Folk:1987:FSC

Gil:1996:TMH

Gait:1982:AEC

Gutierrez:2016:IDO

Guillemot:2010:FPT

REFERENCES

[GC95] Goetz Graefe and Richard L.

REFERENCES

algorithms used in the Icon compiler are described on pp. 97–107.

REFERENCES

J. K. Gibson. Discrete logarithm hash function that is collision free and one way. IEE proceedings, E: Computers and digital techniques,
REFERENCES

REFERENCES

Graham:1979:HST

Goto:1976:HLT

Greene:1981:MAA

Greene:1982:MAA

Gue:1994:ILD

Gue:1995:ILD

Garcia:2005:HJA

Gue:2008:VNF

REFERENCES

[102x681] REFERENCES
[102x681] 208

Grembowski:2002:CAH

Garcia:2011:CPH

Goodman:2011:SHS

Gong:2017:TMR

Rehak:2008:IAD

Graefe:1991:SVH
REFERENCES

Not all keys can be hashed in constant time. In ACM-TOC’90 [ACM90], pages 244–253. ISBN 0-89791-361-2. LCCN ???.

Roberto Grossi and Giuseppe Ottaviano. Fast compressed tries through path decompositions. ACM Journal of Experimental Algorithmics, 19(??):1.8:1–1.8:??, February 2015. CODEN ????. ISSN 1084-6654.

Forouzan Golshani, editor. Eighth International Conference on Data Engineering: February 2–3, 1992,
REFERENCES

Gastone H. Gonnet. Handbook of Algorithms and Data
Gong:1995:CKH

Goto:1983:RSS

Gollapudi:2008:PTM

Gentry:2008:THL
REFERENCES

Greene:1994:MIHa

Greene:1994:MIHb

Guillou:1995:ACE

Gray:1986:IJH

Graefe:1988:RDF

Graefe:1989:RDF

Graefe:1992:QPT

Graefe:1993:PEHa

REFERENCES

[Gri77] Martin L. Griss. Efficient expression evaluation in sparse minor expansion, using hashing and deferred evaluation. In Sprague and Chat-
REFERENCES

Griss:1979:HKR

Griebel:1998:ASG

Grosshans:1986:FSD

Gopal:1993:CCH

Guibas:1976:ADH

Guibas:1978:ADH

Gori:1989:AAC

Girault:1994:LCH

REFERENCES

ISSN 0302-9743 (print), 1611-3349 (electronic).

REFERENCES

Greniewski:1963:ELK

Goto:1980:SHM

Guibas:1975:HTE

Guibas:1976:AHAb

Guibas:1976:AHAc
Leo J. Guibas. The analysis of hashing algorithms that exhibit k-ary clustering. In IEEE-FOCS’76 [IEE70], pages 183–196.

Guerraoui:2016:OCO

1999. CODEN PACOEJ. ISSN 0167-8191 (print), 1872-7336 (electronic).

[HB89a] N. I. Hachem and B. P. Berra. Key-sequential access methods for very large files derived from linear hashing. In *Proceedings of the...*
REFERENCES

Hachem:1989:KAM

Hecker:1989:IGH

Hachem:1992:NOP
REFERENCES

Holt:2002:MAR

Holt:2007:PMA

Hedayatpour:2011:HFB

Hsiao:2013:SLB

Healy:2014:AKM

REFERENCES

Heller:1989:EH

Heller:1991:MHY

Helleseth:1994:ACE

Herbert:2007:WHP

Heuer:1987:WRD

Herrin:1991:ADF

Hull:2013:SPC

Huang:2017:QAL
Qiang Huang, Jianlin Feng, Qiong Fang, Wilfred Ng,

[Huang:2015:QAL]

[HG77]

[Hikita:1977:AFP]

[HFGZ+15]

[JHGR07]

[Hester:1985:SOL]

[Harn:2010:ELL]

311, September 1983. CODEN SJAMDU. ISSN 0196-5212. Work related to minimal perfect hash functions.

REFERENCES

Hao:2012:FDM

Hromkovic:2007:SAF

Hsiao:2005:TMD
Hirose:2012:CFU

Hsu:1991:IAI

Horton:1994:MLS

Hsu:2003:NCS

Heileman:2005:HCA

Huang:2010:DHT

Huang, Chung-Ming; Li, Jian-Wei; Chen, Chun-Ta. Distributed hash table-based interrogating-call session control function network in

He:2013:RCP

Hohl:1993:SIH

Havas:1993:GTO

Halevi:1996:PPS

Helmer:2003:PSF

Halperin:2008:AEA

REFERENCES

[Huf88] Andreas Hutflesz, Hans-Werner Six, and Peter Wid-

REFERENCES

Ho:1989:COM

Ho:1993:COM

Hadjieleftheriou:2008:HSS

Hsieh:1999:OWH

Hill:1986:ESD

Aoe:1991:CAK

Aoe:1994:CAS

Istvan:2015:HTL

Zsolt István, Gustavo Alonso, Michaela Blott, and Kees Vissers. A hash table for in-state data processing. *ACM Transactions on Reconfig-
REFERENCES

[ICD91] Proceedings/Ninth International Conference on Data Engineering, April 19–23,
IEEE:1974:ASS
IEEE, editor. *15th Annual Symposium on Switching and Automata Theory, October 14–16, 1974, the University of New Orleans*. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1974.

IEEE:1976:ASF

IEEE:1980:PCI

IEEE:1980:ASF

IEEE:1982:SFC

IEEE:1984:ISL

IEEE:1985:FOC
26th annual Symposium on
REFERENCES

IEEE:1989:ASF

IEEE:1990:PSN

IEEE:1991:PSA

IEEE:1991:PII

IEEE:1992:PII

IEEE:1992:PAS

IEEE:1993:PSP

IEEE:1994:DEI

IEEE:1994:NAE

IEEE:1994:PSH

IEEE:1995:PNA

REFERENCES

August 1994. CODEN JCCD. ISSN 0192-8651 (print), 1096-987X (electronic).

Ivanov:1990:HSO

Indyk:1997:LPH

Impagliazzo:1989:ECS

Indyk:2013:SHH

Indesteege:2008:CRH

Sebastiaan Indesteege and Bart Preneel. Collisions for RC4-hash. *Lecture Notes in CS*, 5222:355–366, 2008. CODEN LNCS9D. ISSN 0302-9743 (print), 1611-3349 (elec-

Irby:19xx:MRH

Imai:1993:ACA

Inoue:1991:RRD

Itano:1988:IPM

Ishikawa:1993:MLI

Hiroshi Ishikawa, Funio Suzuki, Fumihiko Kozakura, Akifumi Makinouchi, Mika Miyagishima, Yoshio Izumida, Masaaki Aoshima, and Yasuo Yamane. The model, language, and implementation of an object-oriented multimedia knowledge base management sys-
REFERENCES

[102x681]REFERENCES

Jae:1981:RHM

G. Jaeschke. Reciprocal hashing: a method for generating minimal perfect hashing functions. Communications of the Association for Computing Machinery, 24(12):829–833, December 1981. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Hash functions, for a key \(x \) in a set \(S \) of positive integers, of the form \(h(x) = (C/(Dx+E)) \mod N \) are considered. Though the existence of \(h \) is guaranteed, the scheme suffers from many practical problems because of exhaustive nature of the search for \(h \).

Jag:1991:OPM

Jai:1989:CHS

Jai92a

Jai92b

Jai19xx:CHS

Jáj:1990:SFM

Jakobsson:1985:SRL

Janson:2005:IDL

Janson:2008:IDH

Jarke:1994:ADT

Jan:1988:ALO

Jiang:2011:GBM

References

- **Jiang:2000:CSM**

- **Chang:2012:TRR**

- **Junczys-Dowmunt:2012:SEP**

- **Jenks:1976:SPA**

- **Jenkins:1997:AAH**

- **Janzadeh:2009:SCB**
 Hamed Janzadeh, Kaveh Fayazbaksh, Mehdi Dehghan, and Mehran S. Fal-

REFERENCES

Jean:2014:ICA

Jaeschke:1980:CMP
G. Jaeschke and G. Osterburg. On Cichelli’s minimal perfect hash functions method. Communications of the Association for Computing Machinery, 23(12):728–729, December 1980. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This letter to the editor contains comments on [Cic80b], together with a response from R. J. Cichelli [Cic80a].

Jouannaud:1985:FPL

Joux:2004:MIH
REFERENCES

[Jun87] Achim Jung. Implementing the RSA cryptosystem. Com-
REFERENCES

Jacobs:1986:TRT

Janson:2016:UAL

Jiang:2007:DHT

Jacques:1986:TRT

Kabe:1987:RRT

Kahrs:1992:UUL

Kak:1983:EMP

Subhash C. Kak. Exponentiation modulo a polynomial for data security. International Journal of Com-
Kak:1993:NNA

Kaliski:1993:SES

Kaliski:2001:HFF

Kaman:1974:HC

Kanada:1990:VTH

Kanada:1991:MVP

Kanada:1993:MVP
Karlsson:1982:ACR

Karloff:1998:PNA

Kawagoe:1985:MDH

Kawamoto:2015:LSH

Krause:1981:PHF

Ku:2005:WYR

Kirk:1984:CMI

Ku:2003:WLL

REFERENCES

OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

Kim:2011:SSE

Koushik:1992:LDH

Knott:1989:HTC

Keller:1993:HRP

Keller:1996:FRP

Kennedy:1973:RSU

Kerr:1975:PIC

Kocberber:2015:AMA

Onur Kocberber, Babak Falsafi, and Boris Grot. Asynchronous memory access

Kak:1995:ILM

Kaushik:2012:MGH

Kanizo:2012:HTF

Kanizo:2015:MTH

Kitsuregawa:1989:JSK

Kim:1991:ISSa

Kil01

Kilian:2005:TCS

Kim:1980:QOR

Kim:1999:NSP

Kim:2011:EHB

Kojima:1985:HFO

Khan:1996:PCI

REFERENCES

vice Cent. Piscataway, NJ, USA.

Knudsen:1995:NAA

Katajainen:1996:EUH

[KL96] Jyrki Katajainen and Michael Lykke. Experiments with universal hashing. DIKU Report 96/8, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark, ????. 1996.

Karl:2008:ALS

Karp:1993:EPS

Karp:1996:EPS

Karger:1997:CHR

REFERENCES

Kompella:2012:RSF

King:2007:CRP

Koczkodaj:1992:IPF

Korner:1986:IFB

Korner:1988:NBP

Korner:1988:RAC
REFERENCES

9448 (print), 1557-9654 (electronic).

[Karroumi:2009:HBK]

REFERENCES

Kirsch:2010:HBT

Kirsch:2008:MRH

Kirsch:2010:MRH

Knafl:1989:PSC

Knott:1971:EOA

Knott:1975:HF
REFERENCES

http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/267.tif;[Kno84]
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/268.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/269.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/270.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/271.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/272.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/273.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/274.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/275.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/276.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/277.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/278.tif

Section 3, "A history of hashing schemes", and the lengthy bibliography, are recommended and useful resources.

Knott:1984:DCC

Knott:1988:LOA

Khovratovich:2010:RRA

Kitsuregawa:1989:EBS
REFERENCES

Knuth:1973:ACP

Knuth:1974:CSR

Knuth:1975:ACP

Knuth:1977:DPR

Knudsen:1992:CL

Knuth:1998:LPG

REFERENCES

[KP81] Kh. I. Kilov and I. A. Popova. Data metabase architecture for relational DBMS. Programming and Computer Software; translation of Programmirovanie,
Kedem:1992:OPA

Krichevskii:1994:CSE

Knudsen:1996:HFB

Knudsen:1997:FSH

Katzenelson:1992:TMT

Kohonen:1979:VFA

Karp:1981:ERP
R. M. Karp and M. O. Rabin. Efficient randomized pattern-
incremental hash function is described for application to the string search problem.

Kelley:1986:IMK

Kelley:1986:IME

Kelley:1988:MEH

Keller:1991:APH

Krovetz:2001:FUH

Krovetz:2006:VUH

Krause:1982:PHF

M. Krause. Perfect hash function search. M.sc. thesis,
REFERENCES

Joonho Kwon, Praveen Rao, Bongki Moon, and Sukho

Kohonen:1984:ORS

Knudsen:2007:GFH

Kruse:1984:DSP

Kriegel:1986:EMD

Kriegel:1987:MDH

Kriegel:1987:MDQ

REFERENCES

Korner:1988:LDS

Kriegel:1988:PHGa

Kriegel:1988:PHGGb

Kelly:1989:POM

Karger:1999:WCC

[KSB+99] David Karger, Alex Sherman, Andy Berkheimer, Bill Bogstad, Rizwan Dhanidina, Ken Iwamoto, Brian Kim, Luke Matkins, and Yoav Yerushalmi. *Web caching with consistent hash-
REFERENCES

Kwak:2011:DIB

Kwak:2012:DIB

Kalvin:1986:TDM

Kim:1999:LEO

Kitsuregawa:1983:AHD

Kitsuregawa:1983:GRA

Kitsuregawa:1983:RAM

Kitsuregawa:1992:PGH

Karlin:1986:PHE

Karlin:1988:PHE

Ku:2004:HBS

Kuespert:1982:MLHa

Kuespert:1982:MLHb

Kuespert:1983:VZO
REFERENCES

[102x681] REFERENCES

Kuespert:1984:USO

Kuespert:1984:EED

Kuich:1992:ALP

Kulkarni:1984:CHP

Kumar:1989:CCM

Kumar:1989:CCE

Kumar:1990:COE

Kutzelnigg:2006:BRG

Kutzelnigg:2010:IVC

Kenyon:1991:MQS

Kortelainen:2012:GIH

Kroll:1994:DST

Brigitte Kröll and Peter Widmayer. Distributing a search tree among a growing number of processors. SIGMOD Record (ACM Special Interest Group on Management of Data), 23(2):265–276, June 1994. CODEN SRECDS. ISSN 0163-5808 (print), 1943-5835 (electronic).

Klassen:2012:ITB

Toryn Qwyllyn Klassen and Philipp Woelfel. Indepen-
dence of tabulation-based hash classes. Lecture Notes in CS, 7256:506–517, 2012. CO-
springer.com/content/pdf/10.1007/978-3-642-29344-
3_43.

Kaps:2005:ESU

org/stamp/stamp.jsp?tp=& arnumber=1524931.

Kjellberg:1984:CH

Peter Kjellberg and Tor-
ben U. Zahle. Cascade
hashing. In VLDB, pages
481–492. VLDB Endowment, Saratoga, CA, USA, August 1984. [Lak96]

LakshmanYN:1996:IPI

Lakshman Y. N., editor. IS-
SAC ’96: Proceedings of the
1996 International Sympo-
sium on Symbolic and Alge-
braic Computation, July 24–
26, 1996, Zurich, Switzer-
land. ACM Press, New York,
NY 10036, USA, 1996. ISBN
0-89791-796-0. LCCN QA
76.95 I59 1996.

Lee:2007:CFRa

Younggyo Lee, Jeonghee
Ahn, Seungjoo Kim, and Dongho Won. A countermea-
ure of fake root key instal-

REFERENCES

REFERENCES

[LC88] Ted G. Lewis and Curtis R. Cook. Hashing for dynamic and static internal tables. Computer, 21(10):45–57 (or 45–56??), October 1988. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic). The authors survey the classical hashing function approach to information retrieval and show how general hashing techniques exchange speed for memory. It is a tutorial paper that covers, among other topics, dynamic and static hash tables, perfect hashing, and minimal perfect hashing.

[Liu:2013:RBP] Jian Liu and Lusheng Chen. On the relationships between perfect nonlinear func-
REFERENCES

Liu:2014:SLE

Lathrop:2011:SPI

Liang:1994:OMK

Lo:1993:OPA

Lee:2012:OFL

Lieuwen:1992:PBJ

Gang Luo, Curt J. Ellmann, Peter J. Haas, and Jeffrey F. Naughton. A scalable hash ripple join algorithm. In Franklin et al. [FMA02], pages 252–262. ISBN ???? LCCN ???? ACM order number 475020.

V. Leppänen. Balanced PRAM simulations via moving threads and hashing.

Chuck Lever. Linux kernel hash table behavior: Analysis and improvements. In USENIX [USE00a], page ??
REFERENCES

Lewis:1982:SEA

Laborde:2017:WFH

ACM:1982:CRA

Louis-Gavet:1978:DAI

Lamiroy:1996:ROI

Li:2013:NCD

REFERENCES

Luo:2003:COA

Luo:2003:CDO

Luo:2004:IEH

Lefebvre:2006:PSH

Lin:2005:GPW

Litvinov:1980:GHF

Li:1995:CKH

Li:2010:PAP

REFERENCES

REFERENCES

Litvinov:1989:HSO

Litwsios:1991:HFH

James Litsios. Note on fast hashing of variable length text strings. Communications of the Association for Computing Machinery, 34(11):118–120, November 1991. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Suggests a simple extension of Pearson’s hashing algorithm [Pea90] that supports non-character data. See also comments in [Dit91, Sav91, Pea91], and early work in [Dit76].

Litwin:19xx:LHN

Litwin:19xx:VHD

Lv:2017:IPL

Larson:1984:FOI

Lucchesi:1993:AFA

Claudio L. Lucchesi and Tomasz Kowaltowski. Applications of finite automata representing large vocabularies. Software—Practice

Lai:1994:ADB

Lagutin:2007:CIC

Li:2011:TAB

Lemire:2014:SUS

Lemire:2016:FBU

Lee:2010:PMH

REFERENCES

Lee:2013:SQB

Lowden:2015:DPA

Leung:1989:LPA

Luo:2012:IDE

Lee:2002:RUA

Luo:2015:ADL

Lim:2009:SPE
REFERENCES

Liu:2011:HAB

Lin:2017:PHB

Lloyd:1981:ICI

Lueker:1988:MAD

Molodowitch:1988:MAD

Lai:1993:HFBa

REFERENCES

REFERENCES

February 2014. CODEN ????, ISSN 1551-6857 (print), 1551-6865 (electronic).

REFERENCES

Lomet:1993:FDO

Lin:2001:EHM

Liang:2000:OMD

Leung:2004:LPD

Lin:2015:CRN

REFERENCES

Landelle:2016:CFR

Luccio:1991:APU

Luccio:1992:AIP

Li:2012:WHT

Long:2006:GCA

REFERENCES

Computer Studies and Systems Research Center, Department of Computer Science, 78150 Le Chesnay France; University of Maryland, College Park, MD 20742, February 1989. 1–29 pp.

Leskovec:2014:MMD

Lipton:1978:EHS

Lipton:1980:EHS

Liu:2015:MDT

Lipton:1985:DS

Litwin:1989:FDO

Linial:1996:NEH

Nathan Linial and Ori Sason. Non-expansive hashing. In ACM [ACM96], pages
Liu:2006:ECS

Laccetti:2007:BFA

Lu:2007:MPC

Lee:2015:MFA

Lohman:1991:VLD

Litwin:1989:CTH

REFERENCES

Frederick H. Lochovsky and ?. Taylor, editors. Sixth International Conference on Very Large Data Bases: reprinted from Very large data bases. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1980. ACM order no. 471800. IEEE catalog no. 80CH1534-7C. Long Beach order no. 322.

Hans Peter Luhn. ??? Internal IBM memo that first suggested the idea of hashing, and one of the first applications of linked linear
lists. Luhn is also the inventor of KWIC indexing, in 1960 [Knu73, p. 437]. See also [Lin53], January 1953.

Wu:1991:PIC

Lin:2008:AZH

Lum:1971:KAT

Lum:1972:ARK

Liu:2013:IRQ

Lyon:1978:HLP

Lyon:1978:PST

Lyon:1979:BSS

Lyon:1983:PCC

Lyon:1985:AHT

Li:2006:FSS

Liu:2016:MHN

Litwin:1988:MTH

Monnerat:2015:ESH

DEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

Macii:1995:ECP

Maddison:1980:FLH

Mairson:1983:PCS

Mairson:1992:ETE

Mack:1992:ETH

Mallach:1977:SST

Mandelbrod:2012:LHA

Martin:1964:HCF

Martin:1971:DEA

Martin:1975:CDB

Martin:1977:CDB

Matias:1993:HPR

Mathieu:2009:PTA

Maurer:1968:PTI

Maurer:1983:IHC
[W. D. Maurer. An improved hash code for scatter storage. *Communications of the Association for Com-
REFERENCES

Martini:2003:DHM

Marton:2012:OCC

Manegold:2000:ODA

Mazeika:2007:ESA

Munro:1986:TCR

McMillan:1989:RRU

Paul E. McKenney. High-speed event counting and

McNichol:2003:HTM

Markowsky:1978:AUC

Mahapatra:1997:SGL

Macchetti:2005:QPH

Mehlhorn:1977:EA

Mehlhorn:1982:PSP

Mehlhorn:1984:SS

Mehlhorn:1986:DEA

Meijer:1995:HFB

Mekouar:1983:EPD

Miranda:2014:RSE

Mendelson:1982:AEH

Mennink:2012:OCS

Mennink:2017:OCS

REFERENCES

REFERENCES

[Mil98] Peter Bro Miltersen. Error correcting codes, perfect

[Miltersen:1999:CPC]

[Miyaguchi:1989:NHF]

[Mironov:2001:HFM]

[Mirrokni:2017:OOM]

[Mitra:1973:SHP]

[Mitzenmacher:2002:GHT]

[Mitzenmacher:2009:SOQ]
Michael Mitzenmacher. Some open questions related to cuckoo hashing. In Fiat and Sanders [FS09], pages 1–10.
Mittelbach:2012:HCS

Mitzenmacher:2017:BBH

Mathew:2008:JBH

Muthusamy:2014:IFC

Mukherjee:2002:ECV

McAuliffe:1989:PIC

Miller:1993:RFS

Miliaraki:2012:FDS

Mozaffari-Kermani:2017:FDA

McGrew:2016:SMH

Mochizuki:1998:SSA

Maurer:1975:HTM

Mackert:1986:ROV

Manolopoulos:1994:PLH

Y. Manolopoulos and N. Lorentzos. Performance of linear

S. Kumar Madria, S. N. Maheshwari, and B. Chandra. Formalization and correctness of a concurrent linear hash structure algorithm

Mehrotra:2010:RII

Mehrotra:2010:RII

Motwani:2008:LBL

REFERENCES

Molodowitch:1990:ADAb

Morris:1968:SST

Robert Morris. Scatter storage techniques. Communications of the Association for Computing Machinery, 11(1):38–44, January 1968. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Influential survey of the subject of hashing, and first introduction of random probing with secondary clustering. Appears to be the first publication where the word ‘hashing’ appeared, although it was in common use at the time. Knuth [Knu73, p. 542] found only one earlier printed use of the word, in a 1961 unpublished memorandum by W. W. Peterson.

Moran:1983:CDO

Morris:1983:SST

Motoyoshi:1984:HAC

Midkiff:1990:ICO

Mennink:2012:HFB

Bart Mennink and Bart Preneel. Hash functions

Martinez:2009:DFN

Moody:2016:ISF

Mitchell:1989:RHF

Mikkilineni:1988:ERJ

REFERENCES

[MSDS90] Dennis McLeod, Ron Sacks-Davis, and Hans Schek, editors. *Very Large Data Bases: 16th International Conference on Very Large Data Bases, August 13–16, 1990, Brisbane, Australia*. Morgan Kaufmann Publishers, San
REFERENCES

Mullan:2016:HHF

Madria:2000:MLT

Muehlbacher:2004:FHT
Joerg R. Muehlbacher. Full hash table search using primitive roots of the prime residue group Z/p. J.UCS:

Mullin:1972:IIS

Mullin:1981:TCL

Mullin:1984:UDH
REFERENCES

Mullin:1985:SSE

Mullin:1985:SSE

Mullin:1991:CUC

Mullin:1991:CUC

Mullin:1992:HFH

Mullin:1992:HFH

Matias:1990:PHI

Matias:1990:PHI

Matias:1991:CHP

Matias:1991:CHP

Matias:1991:PHI

Matias:1991:PHI

Menezes:1991:ACC

REFERENCES

1990, at the University of California, Santa Barbara.

Mihcak:2001:PAH

Mihcak:2002:NIG

Mitzenmacher:2008:WSH

Matsushita:2009:PCH

Mu:2012:ALS

Majewski:1992:FGM

Majewski:1996:FPH

Majewski:1996:FPH

Ma:2012:HPO

Mendelson:1979:PMO

Mendelson:1980:NAA

REFERENCES

K. Namba. Some improvements on Utah standard...
Nakano:2011:AMI

Narayanan:2008:DAQ

Neeb:1979:ISO

Ng:1979:ESS
Edward W. Ng, editor. *Symbolic and Algebraic Computation: EUROSAM ’79,*

Nguyen:2006:MDH

Nishihara:1974:FTQ

Nievergelt:1984:GFA

Nishihara:1983:RRT

Niemeyer:1975:DV

Nilli:1994:PHP

NIST:1993:FPS

NIST:2015:SSP

NIST. SHA-3 standard: Permutation-based hash and extendable-output functions.
REFERENCES

Naor:1990:SPS

Negri:1991:DJN

Nevelsteen:1999:SPU

Nguyen:2012:SOU

REFERENCES

REFERENCES

Naor:2001:APH

Ntarmos:2009:DHS

Nguyen:2012:LRS

Naor:2007:NAP

Nie:2013:CHB

Norton:1985:PMO

Naor:1989:UOW

[NY89a] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In ACM-TOC’89 [ACM89c], pages...
REFERENCES

LCCN QA 76.6 A13 1989.

REFERENCES

Omiecinski:1988:CSS

Omiecinski:1989:CFC

Omiecinski:1989:HJP

Omiecinski:1991:PAL

Omar:2012:HEC

Omar:2017:DHS

Odaira:2010:ERT

Ostlin:2003:UHC
Anna Ostlin and Rasmus Pagh. Uniform hashing in constant time and linear
To properly integrate the provided references, I would need more specific information about the context of the document. However, I can provide a general outline of how references are typically organized in an academic paper. Here's a breakdown of the references provided in the image:

1. **Orenstein:1983:DHF**
 - **[Ore83]** Jack A. Orenstein. A dynamic hash file for random and sequential accessing. In Schkolnick and Thanos [ST83a], pages 132–141. CODEN VLDBDP.

2. **Olken:1990:RSH**

3. **Ouksel:1983:SMM**

5. **Ostafe:2010:PNH**

7. **Ou:2010:DIH**
 - **[OSR10]** Yang Ou, Chul Sur, and Kyung Hyune Rhee. Discriminative image hashing

If you have a specific context or need further assistance with these references, please let me know, and I can provide more detailed information or assistance.

REFERENCES

(Otto:1988:LDG)

(Otto:1988:LBC)

(Ouksel:1983:OPD)

(Ostroovsky:1994:IHSa)

(Ostroovsky:1994:IHSb)

(ODonnell:2014:OLB)

(Oxborrow:1986:PFB)

(Pouchol:2009:HHS)

Mickael Pouchol, Alexandre Ahmad, Benoit Crespin, and Olivier Terraz. A hierarchical hashing scheme for nearest

REFERENCES

Panigrahy:2005:EHL

Papadopoulos:1994:NHA

Palma:2008:EPC

Patarin:1994:HFA

Patarin:1995:CID

Papadimitriou:1980:PBH

[PB80] Christos H. Papadimitriou and Philip A. Bernstein. On
the performance of balanced hashing functions when the keys are not equiprobable. ACM Transactions on Programming Languages and Systems, 2(1):77–89, January 1980. CODEN ATPSDLT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[PBDD95] Purdom:1985:AA

[PB85] Prokopec:2012:CTE

[PB97] Pepper:1995:RSH

REFERENCES

Pearson:1991:NFH

Peiler:1982:ZRV

Perry:1973:IME

Pescio:1996:AAM

Pujol:2012:LEC

Peterson:1957:ARA

Petersen:1983:AVV

Petersen:2013:MDL

Peyrin:2015:CAG

Pramanik:1985:DH

Pramanik:1988:OCR

Papadakis:2009:HBO

Perrizo:1995:DDV

Preneel:1990:ATH

Preneel:1990:PMD

B. Preneel, R. Govaerts, and J. Vandewalle. On the power of memory in the design of collision resistant hash functions. In Seberry and Pieprzyk [SP90], page ?? ISBN
REFERENCES

Preneel:1991:CRH

Preneel:1991:CRH

Preneel:1992:CSH

Preneel:1993:ATH

Preneel:1993:ATH

Preneel:1993:IAH
B. Preneel, R. Govaerts, and J. Vandewalle. Information authentication: Hash

Preneel:1993:PMD

Preneel:1994:HFB

Pawson:1973:CHT

Paul:2012:NPB

Park:2001:VNH

Pippenger:1979:ACT

Pippolini:1994:JIH

Pittel:1987:PAC

Piwowarski:1985:CBS

http://www.acm.org/pubs/toc/Abstracts/tods/214294.html. See [SG76b, BG82].

Panneerselvam:1990:RSA

Panneerselvam:1988:NAS

number 88CH2603-9). Piscataway, NJ, USA.

Pflug:1987:LPN

Georg Ch. Pflug and Hans W. Kessler. Linear probing with
a nonuniform address distribution. Journal of the
Association for Computing
Machinery, 34(2):397–410, April 1987. CODEN JA-
COAH. ISSN 0004-5411 (print), 1557-735X (electronic).

Plachy:1989:PIC

Emily C. Plachy and Pe-
ter M. Kogge, editors. Proceed-
ings of the 1989 Interna-
tional Conference on Paral-
lel Processing, August 8–12,
1989, volume 2. IEEE Com-
puter Society Press, 1109
Spring Street, Suite 300, Sil-
ver Spring, MD 20910, USA,

Pineda:2009:UOD

Gibran Fuentes Pineda,
Hisashi Koga, and Toshinori
Watanabe. Unsupervised ob-
ject discovery from images
by mining local features us-
ing hashing. Lecture Notes in
CS, 5856:978–985, 2009. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/
10.1007/978-3-642-10268-
4_114.

Plauger:1998:SCCk

P. J. Plauger. Stan-
ard C/C++: Hash tables.
C/C++ Users Journal, 16
CODEN CCUJEX. ISSN
1075-2838.

Park:2007:SDN

Kwangkyu Park, JongHyup
Lee, Taekyoung Kwon, and
Jooseok Song. Secure dy-
namic network reprogram-
ming using supplementary
hash in wireless sensor net-
works. Lecture Notes in CS,
4611:653–662, 2007. CO-
DEN LNCSDE9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/
10.1007/978-3-540-73549-
6_64.

Poblete:1989:LCF

Patricio V. Poblete and
J. Ian Munro. Last-come-
first-served hashing. Jour-
nal of Algorithms, 10(2):228–
248, June 1, 1989. CO-
DEN JOALDV. ISSN 0196-
6774 (print), 1090-2678 (elec-
tronic).

Poblete:1986:AFT

Patricio V. Poblete. Ap-
proximating functions by their
Poisson transform. Informa-
tion Processing Letters, 23
CODEN IFPLAT. ISSN
0020-0190 (print), 1872-6119
(electronic).
Ponder:1987:AHA

Pagh:2008:UHC

Pereira:2016:SHB

Pagh:2001:CH

Pieprzyk:1998:RSF

Pieprzyk:1999:RSF

Pagh:2007:LPC

REFERENCES

Pagh:2004:CH

Preneel:1993:ADC

Preneel:1994:DPD

Preneel:1994:CHF

Preneel:1997:CHF

Preneel:1997:MDF

Preneel:1999:SCH

Price:1971:TLT

REFERENCES

CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic).

Peyravian:1998:PHV

Pontarelli:2016:PDP

Provenzano:1989:HTM

Prodinger:1994:ACP

Paiva:2015:ASS

Peyravian:1999:HBE

Pieprzyk:1993:DHA

REFERENCES

com-link/service/series/0558/tocs/t0756.htm;
issue&issn=0302-9743&volume=756.

REFERENCES

[PV07] B. Preneel and P. C. van Oorschot. MD-x MAC and
building fast MACs from hash functions. In Coppersmith [Cop95b], pages 1–14.

Piper:1993:DSH

Prasanna:1994:SDP

Peikert:2008:LTF

Pan:2013:CHF

Ping Pan, Licheng Wang, Yixian Yang, Yuanju Gan, Lihua Wang, and Chengqian Xu. Chameleon hash functions and one-time signature schemes from inner automorphism groups. Fundamenta Informaticae, 126(1):103–119, January 2013. CODEN FUMAAJ. ISSN 0169-2968 (print), 1875-8681 (electronic).

Pagh:2010:COH

Pagh:2014:COH

Pittel:1988:STE

Boris Pittel and Jenn-Hwa Yu. On search times for early-insertion coalesced hashing. SIAM Journal
REFERENCES

Quittner:1981:CSH

Quinnan:2002:VNA [QD02]

Quisquater:1989:BHF [QG89]

Quisquater:1990:BHF [QG90]

Quisquater:1995:ACE [QJ97]

Quisquater:1997:ASS

Jean-Jacques Quisquater and Marc Joye. Authentication of sequences with the SL2

Richter:2015:SDA

Ragde:1993:PSC

Roman:2007:SCP

Ramakrishna:1987:CPH

Ramakrishna:1988:EPM

Ramakrishna:1988:HPA

Ramakrishna:1989:ARP

Ramakrishna:1989:PPB

M. V. Ramakrishna. Practical performance of Bloom

Mireille Regnier. On the average height of trees in

Regnier:1982:LHG

Regnier:1985:AGF

Regnier:1988:THA

Reif:1988:AWC

Remy:1992:ERE

Reyes:2014:FKM

Ramakrishna:1997:EHH

Richter:1989:HJA

Raghavan:1990:RIM

Rigoutsos:1992:MPM

Rigoutsos:1995:BAM

Risson:2009:TDR

Riehl:1989:CTS

Rivest:1974:HCA
REFERENCES

[RK91] S. Roy and A. Keller. Load balancing in hash-based par-

Rathi:1991:PCE

Richardson:1987:DEP

Ramakrishna:1988:ABD

Rosas:2011:CBC

REFERENCES

REFERENCES

REFERENCES

[Ran91:PHF]

[Ramakrishna:1992:ODS]

[RRS06]

REFERENCES

3835 (print), 1572-9125 (electronic).

Christoph Ruland. Realizing digital signatures with one-way hash functions. *Cryptologia*, 17(3):285–300, July 1993. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://www.informaworld.com/smpp/content~content=a748639237\db=all\order=page. digital signatures; one-way hash functions; asymmetric cryptographic systems; smart cards; one-time signatures; optimally implemented hash functions; asymmetric algorithms; one-bit signatures; N-bit signatures; infinite signature trees; performance.

Isidore Rigoutsos and Haim J. Wolfson. Guest Editors' in-
REFERENCES

REFERENCES

Salzberg:1988:FS

Samson:1976:TOA

Samson:1981:HTC

Santoro:1976:FTS

Sarwate:1980:NUC

Sarkar:2010:SGC

Sarkar:2011:TBC

Schauer:1976:PA

Scheuermann:1979:OHH

Scholl:1979:PAN

Scheuermann:1982:PSI

Schmitt:1982:CPF

Schmidt:1990:GPH

Schneider:1990:CQP

REFERENCES

[Sch91a] Bruce Schneier. One-way hash functions: Probabilistic algorithms can be used for general-purpose pattern matching. Dr. Dobbs Journal, 16(9):148–151, September 1, 1991. CODEN DDJOEB. ISSN 1044-789X.

REFERENCES

Severance:1976:PGA

Samson:1978:STU

Sacks-Davis:1985:PMK

[SD85] Ron Sacks-Davis. Performance of a multi-key access method based on descriptors and superimposed coding techniques. *Information system*, 10(4):391–403, 1985. CODEN INSYD6. ISSN 0306-4379 (print), 1873-6076 (electronic). Hashing algorithm used to create descriptors for file indexing; this extends the author’s earlier work [SDR83b].

Schneider:1989:DTA

Schneider:1989:PEFa

Schneider:1989:PEFb

Schneider:1989:PEFc

Schneider:1990:TPCb

D. Schneider and D. DeWitt. Tradeoffs in processing complex join queries via hashing in multiprocessor database machines. In McLeod et al. [MSDS90], page 469. ISBN 1-55860-149-X. LCCN ???

Schneider:1990:TPCa

Stern:1995:IPV

ACM:1990:PFA

ACM:1991:PSA

Shih:1991:CDC

Sacks-Davis:1987:MAM

Sajadieh:2012:RDL

Mahdi Sajadieh, Mohammad Dakhilalian, Hamid Mala, and Pouyan Sepehrdad. Recursive diffusion layers for

[Sajadieh:2015:ERD]

[SDMS15]
Sacks-Davis:1983:ILH

[SDR83a]
Sacks-Davis:1983:TLS

[Sorenson:1975:DDH]

[Schellhorn:2014:SCP]

[Smith:1989:ITD]
Sedgewick:1983:MAC

Sedgewick:1983:A

Sedgewick:1988:A

Sedgewick:1990:AC

Sedgewick:1992:AC

Sedgewick:1993:AM

Severance:1974:ISM

Scott:1988:SMT

Simon:1972:APN

[Sassa:1976:HMF]

[Shneiderman:1976:BSS]

[Shasha:1988:CSS]

[Shangguan:2016:SHF]

[Steinwandt:2000:WHS]

[SGY11] Zhang Shaolan, Xing Guobo,

Seiden:1992:FSO

Seiden:1994:FSO

Shapiro:1986:JPD

Smith:1997:EHF

Sheil:1978:MST

Shekita:1991:HPF

Sher:2006:MDS

REFERENCES

Sun:2017:CMC

Shim:2017:PME

Shmoys:2000:PAA

Shoup:1996:FPS

Shoup:2000:CTU

Shoup:2000:UHF
Shoup:2005:ACC

Starzetz:2009:HBC

Sockut:2009:ORD

Siegel:1989:UCF

Siegel:2004:UCE

REFERENCES

Silverstein:2002:JIS

Silverstein:2002:PPH

Simon:1998:FCO

Sakti:1988:GPP

Silverstein:2002:PPH

Schneier:1999:SAL

Sklavos:2005:ISH

Schweller:2007:RSE

Shultz:1987:TSM

Shin:1994:NJA

Sit:2002:SCP

Storer:2008:DDC

Storer:2012:DDC

REFERENCES

REFERENCES

[Spr77] Renzo Sprugnoli. Perfect hashing functions: a single probe retrieving method for static sets. *Communications of the Association for Computing Machinery*, 20(11): 841–850, November 1977. CODEN CACMAM. ISSN 0001-0782 (print), 1557-7317 (electronic). This is the first discussion on perfect hashing; describes heuristics for constructing perfect hash functions. See comments in [AA79a].

REFERENCES

Song:2001:HMO

Shin:1998:NHF

Shin:1999:HFM

Schay:1962:AFA

Schmidt:1980:IPC

Schmidt:1988:SCO

Schmidt:1988:SCO

REFERENCES

REFERENCES

Shpilrain:2016:CLF

[SaSa01]

[Soomro:2005:DDH]

Stipic:2013:PGT

Sagonas:1994:XED

Schkolnick:1983:ICV
Mario Schkolnick and C. Thanos, editors. 9th International
REFERENCES

Conference on Very Large Data Bases: Florence, Italy, October 31–November 2, 1983. Very Large Data Bases Endowment, Saratoga, CA, USA, 1983.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. SRS: solving c-approximate nearest neighbor queries in high dimensional Euclidean space with a tiny index. Proceedings of the VLDB Endowment, 8(1):1–12, September 2014. CODEN ???? ISSN 2150-8097.]

Sun:2014:SSA

Shen:2008:HBP

Su:2016:PSN

Sung:2008:LSI

[Margo Seltzer and Ozan Yigit. A new hashing package for UNIX. In USENIX WINTER’91 [USE91], pages 173–184.]

[Seltzer:1991:NHP]

Shibata:2008:LFD

[Yu Sasaki and Kan Yasuda. Known-key distinguishers on

Sasaki:2011:KKD]

[Tam81] Markku Tamminen. Order preserving extendible hash-

REFERENCES

Tang:2004:AHR

Tang:2013:TOH

Trinder:2017:SRI

Turau:1993:ETC

Terashima:1987:EPL

REFERENCES

[TI12] Liang Tao and Horace H. S. Ip. Hashing with Cauchy graph. *Lecture Notes in
REFERENCES

Thakkar:1985:VAT

Tanaka:1988:HSS

Tran:2007:FBC

Tibouchi:2017:IEC

Torres:1999:SIS

Takata:1989:MMP

REFERENCES

Tan:1993:RSM

Tang:1995:SLO

Tseng:2007:DHS

Tseng:2009:FSA

Tubaishat:2002:PEL

Triplett:2010:SCH

TSUDAKA:1992:PHJ

TOPTSIS:1992:LBP

TORN:1984:HOI

TOYAMA:1986:DOQ

TOYAMA:1993:JAM

TOUT:1995:DLB

TONG:2015:HTS

TANIER:2002:PSH

REFERENCES

informaworld.com/smpp/content~content=a777924083

REFERENCES

4379 (print), 1873-6076 (electronic).

acm.org/citation.cfm?id=2774219.

Thorup:2012:TBI

REFERENCES

JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic). Early work on the problem of finding optimal hash functions for open addressing.

REFERENCES

Vakhshoori:1985:UHD

Valduriez:1987:JI

Valiant:2015:FCS

vanTrung:1994:CCC

Vaudenay:1992:FHI

REFERENCES

Vaudenay:1993:FHI

Vaudenay:2006:ACE

Vckovski:2000:MTS

Vingralek:1994:DFO

Vitter:1985:OAM

Vitter:1987:DAC

Vandierendonck:2005:XBH

[VD05] H. Vandierendonck and K. De Bosschere. XOR-
REFERENCES

REFERENCES

REFERENCES

[VL87] George Varghese and Tony

[Varghese:1987:HHT]

R. von Mises. Über Aufteilungs- und Besetzungswahrscheinlichkeiten. (German) [on partitioning and occupation probabilities]. Istanbul Universitesi Fen Fakültesi Mecmuasi, 4 (?7):145–163, 1939. See also [BC39].

REFERENCES

vanOorschot:1994:PCS

Vadhan:2012:CPS

Wagner:2000:CYL

Waldschmidt:1974:OIC

Walker:1988:CSP

Wang:1984:NOT

Wang:2005:VCA

Wang:2014:DRG

Warren:1986:GHR

Warren:2014:IPH

WBWV16

Wegman:1979:NCA

REFERENCE

CODEN JCSSBM. ISSN 0022-0000 (print), 1090-2724 (electronic).

REFERENCES

[Wagner:2000:PSU]

[Wegman:1988:CSS]

[Wiederhold:1983:FOD]

[Wiener:1986:EVH]
REFERENCES

Wiederhold:1987:FOD

Wiedermann:1987:SA

Wiederhold:1989:DD

Wiener:1999:ACC

Williams:1959:HII

Williams:1971:SUM

Willard:1978:NDS

Willett:1979:DRE

REFERENCES

Willard:1985:NDS

Dan E. Willard. New data structures for orthogonal range queries. *SIAM Journal on Computing*, 14 (1):232–253, February 1985. CODEN SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic). This paper, together with an earlier report [Wil78], present seven data structures for orthogonal range queries which are more efficient than earlier data structures used for this purpose, such as box array hashing.

Williamson:1985:CCS

Wildner:1996:CAS

[Wil97]

[Willard:2000:ECG]

Wiley:2003:DHT

Winkowski:1978:SMF

J. Winkowski, editor. *Mathematical Foundations of Com-
REFERENCES

Winternitz:1983:POW

Winternitz:1984:SOH

Winters:1990:MPHa

Wirth:1975:AD

Wirth:1983:AD

Wirth:1986:ADS

Westergaard:2007:CME

Michael Westergaard, Lars Michael Kristensen, Gerth Stølting Brodal, and Lars Arge. The ComBack method — extending hash compaction with backtracking. Lecture Notes in CS, 4546:
REFERENCES

Wipke:1978:HFR

Wang:2007:LBP

Wang:2008:HBS

Wang:1993:IHA

Witten:1994:MGC

REFERENCES

Wolfowicz:1993:SPR

Wood:1989:PQP

Weng:2010:IHV

Wang:1994:SDP

Wei:2012:SIV

Wah:1990:PIC

Wolfson:1997:GHO

[WR97] Haim J. Wolfson and Isidore
REFERENCES

Wright:1983:SFS

Wegbreit:1976:PPC

Warren:1993:PHO

Whiting:2003:MPH
Douglas L. Whiting and Michael J. Sabin. Montgomery prime hashing for message authentication. In Joye [Joy03], pages 50–67. CODEN LNCS9. ISBN 3-540-00847-0. ISSN 0302-9743 (print), 1611-
REFERENCES

Wang:2013:PPC

Wang:2012:PAC

Wei:2016:HTH

Wu:2007:ASO

Wu:2009:REL

Wang:2013:GNL

Wu:1984:IHD

Wu:1985:DOM

Whang:1990:LTP

Wang:2000:LSH

Wang:2009:PAH

Whang:1990:LTP

Wu:2000:LSH

Kun-Lung Wu and Philip S. Yu. Latency-sensitive hash-

Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search attacks on SHA-0. In Shoup [Sho05], pages 1–?? CODEN LNCS9. ISBN 3-
Woodruff:1993:HVT

Wang:2010:UHT

Xu:2006:TNH

Xu:2011:MDP

[Y. Xu, L. Ma, Z. Liu, and H. J. Chao. A multidimensional progressive perfect hashing for high-speed string matching. In ACM,

REFERENCES

Yu:2017:FSD
Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang.
A fast, small, and dynamic forwarding information base.

Yo:1993:OPA

Yang:1984:DPH
W. P. Yang and M. W. Du.
A dynamic perfect hash function defined by an extended hash indicator table. In Dayal et al. [DSS84], pages 245–254.

Yang:1985:BMC
W. P. Yang and M. W. Du.

Yuen:1986:DFO
T. S. Yuen and H. C. Du.

Yuen:1986:DFS
T. S. Yuen and H. C. Du.

Yang:1983:SPH
REFERENCES

[Yen:1991:MPH]

[Yu:2010:DRF]

[Yuan:2012:EMR]

[Yasuda:1989:PAM]

[Yum:2010:FVH]

[Yao:1983:SSG]

[Yi:1997:NHF]
REFERENCES

[Yen:1990:HTS]

[Yi:2009:SSG]

[Yokoyama:1989:NLP]

[Yamane:1989:DEH]

[Yadan:2009:HJO]

[Yu:1987:RD1]

[Yoon:2004:SUA]
Yum:2009:SLF

Yao:2005:HBL

Yang:2011:NHB

Yaniv:2016:HDC

Yang:1997:HFM

Yu:2006:SST

REFERENCES

10.1007/978-3-540-69423-6_39.

[Ytrehus:2006:LFN]

[Yu:1992:IWR]

[Yuan:1992:VLD]

[Yung:2002:ACC]

REFERENCES

Zemor:1994:HFC

Zhang:2006:NGD

Zeller:1990:AHJ

Zeller:1990:HJA

Zhang:2005:ILL

Zhang:2007:TTI

Zukowski:2006:ACH

Zhu:2013:SHF

Xiaofeng Zhu, Zi Huang, Hong Cheng, Jiangtao Cui, and Heng Tao Shen. Sparse hashing for fast multimedia search. ACM Transactions
REFERENCES

Zheng:1990:PDS

Zheng:1994:RSS

ZHS94

Zobel:2001:MHT

ZHJ00

Zhao:1994:DDBa

ZJM94a

Zhao:1994:DDBb

ZJM94b
Zhao:1994:DDBc

Zee:2008:FFV

Zhang:2012:LLF

Zhou:2012:TSC

Zheng:2007:BHR

Zhang:2012:HSP

Zheng:1991:SPO

REFERENCES

9743 (print), 1611-3349 (electronic).

[ZNPM16] Erkang Zhu, Fatemeh Nar-
gesian, Ken Q. Pu, and
Renée J. Miller. LSH ensem-
ble: Internet-scale domain
search. *Proceedings of the
VLDB Endowment*, 9(12):
1185–1196, August 2016.
CODEN ????? ISSN 2150-
8097.

[Zhou:1993:DAH] X. F. Zhou and M. E. Or-
lowska. A dynamic approach
for handling data skew prob-
lems in parallel hash join
computation. In Anony-
mous [Ano93c], pages 133–
137. ISBN 7-80003-285-X,
0-7803-1233-3, 0-87031-232-
5, 0-87031-234-1. LCCN
TK5105.5.I327 1993. Five
volumes.

[Zhao:2013:AAP] Zhen Wei Zhao and Wei Tsang
Ooi. APRICOD: an access-
pattern-driven distributed
caching middleware for fast
content discovery of noncon-
tinuous media access. *ACM
Transactions on Multime-
dia Computing, Communications,
and Applications*, 9(2):
15:1–15:??, May 2013. CO-
DEN ????? ISSN 1551-
6857 (print), 1551-6865 (elec-
tronic).

method with application for
game playing. *ICCA Journal*,

[Zou:1985:MMC] Youwen Zou. MPHF method
for Chinesizing Cobol re-
served words. *Hunan Keji
Daxue Xuebao/Journal of
Hunan Science and Tech-
ology University*, 1(1-2):97–
104, September 1985. CO-
DEN HKDXEX.

J. Seberry. HAVAL — a one-
way hashing algorithm with
variable length of output. In
Seberry and Pieprzyk [SP90],
page ?? ISBN 0-387-53000-
2 (New York), 3-540-53000-2
(Berlin). LCCN QA76.9.A25
A87 1990.

J. Seberry. HAVAL — a one-
way hashing algorithm with
variable length of output. In
Seberry and Zheng [SZ93],
pages 3.1–3.10. ISBN 0-387-
57220-1 (New York), 3-540-
57220-1 (Berlin). ISSN 0302-
9743 (print), 1611-3349 (elec-
tronic). LCCN QA76.9.A25
REFERENCES

[ZW05]

Zhao:2012:HCB

[ZQSH12]

Zhou:2008:RTS

[ZRL+08]

Zezula:1991:DPS

[ZRT91]

[Zhang:2005:ISS]

[ZWCL10]

