A Bibliography of Publications on Hashing Algorithms

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

05 March 2022
Version 2.348

Title word cross-reference

#2 [Cer85].

1 [PPS21]. 10 [GLM+10]. 11 [SY11]. 2
[EAA+16, GG92, HD72]. 2n [QG89, QG90].
3 [CBA94, Fly92, GG92, GK94, LMJC07,
LDY+16, SYW+20, WSSO12]. 5/8 [Sch11].

62m [Nic17]. 64 [LK16]. * [LNS93]. ♦
[Omi88, Omi89a]. MT [HRB13]. 2
c [SWQ+14]. d [FPS17, PRM16]. f [LG78].
GL2(Fp). [TNS20]. H2 [DRS12]. H2,A
[CBB05]. K [Yuv75, APV07, CL85, CC91,
CLC92, DKRT15, Die96, EFMRK+20,
FPS17, Gui78, HC14, LLG+17, PT10a,
PT16, PNPC20, RRS07, SS90b]. L [OOB12].
Lp [CJ19, HFF+17]. SL2(F2n) [SGGB00]. N
[BRM+09, BS91b, BS91a, CM01, Gir87,
Ven86, WS93, War14, Coh97, Coh98, LHC05,
QG89, QG90]. O(1) [FKS84]. O(log log n)
[MN90]. O(log W) [LS07b]. O(N)
[HC77, MN90]. P2 [VD21]. Pn [Ack74]. π
[FFGL10]. q [OWZ14]. SL2 [MT16]. Z/p
[Mue04].

-approximate [SWQ+14]. -ary
[CC91, CLC92, Gui78, RRS07]. -Bit
[QG89, QG90, LK16, LK11]. -Body
[WS93, War14]. -codes [Bie95]. -dimension
[LHC05]. -dimensional [Yuv75].
-Functions [OOB12]. -gram
[COH98, Ven86]. -Grams [Coh97, BRM+09].
-Hash [BS91b, BS91a]. -Independence
[PT16, PT10a]. -mer [HC14, PNPC20].
-min-wise [FPS17]. -Nearest [CL85].
-partitions [DKRT15]. -Pipeline [PRM16].
-probe [SS90b]. -Round [GLM+10, SY11].

1
-SHARP [VD21]. -tree [Omi89a, Lyo83].
trees [CM01]. -verarbeitung [Nie75].
-wise [Die96].

0 [BCJ15, ITP14, NSS+06, WYY05d]. '07 [ACM07]. '08 [ACM08b].

1 [AMSM+09, AAE+14, BCJ15, Con17, DR06, JRPK07, KKRJ07, KRJ09b, KJS17, Nat95, SKF15, WYY05a, WYY05b, WYY05c]. '10
[Ano10]. 100 [BLC12]. 100-Gb [BLC12].
100-Gb/s [BLC12]. 10118-3-10th
[Ano93a, DSZ07a, DSZ07b, DJRZ06, IEE94a, Fre90]. 11th [PV85, Shm00].
128 [LP16, MNS12, WFLY04]. 128-bit [MIO89].
12th [BJZ94, Bri92, Bri93, DJRZ90, LC06]. 13th [DJN90, Shi93, Shi94c, Vid90]. 14th
[AAC+01, Bri07]. 15th
[BIF92, BJZ94, Cop95a, Cop95b, IEE74]. 160 [BDP97, PBD97]. 16th
[HM08, MSDS90]. 17th
[FS09, IEE76, IEE95, MS05, Pat90, Ano10].
18 [Sar80]. 180 [Nat95]. 180-1
[Ano95b, Nat95]. 180-4 [Dan13]. 18th
[Deb03, Yua92]. 1969 [AFI69]. 1974
[Ros74]. 1975
[ACM75c, ACM75b, ACM75a, Ker75]. 1976
[ACM76]. 1977 [ACM77b, Gil77, TWW77].
1978 [Win78, Yao78]. 1979 [ACM79, Ng79].
[LFP82, VLD82, IEE82, NS82, Sch82a].
1983 [Ano83, ST83b]. 1984
[ACM84b, ACM84a, DSS84]. 1985 [PV85].
1985/11th [PV85]. 1986
[ACM86b, CGO86, Fis87, Ox86b]. 1987
[DT87]. 1988 [ACM88b, BD88, WGM88].
1989
[LIW98, ACM89c, MK89, PK89, RK89].
1990
[ACM90, Jāj90, USE90, Vid90, WYP90].
1990's [Rie89]. 1991
[ACM91d, ACM91e, IEE91a, IYSS91]. 1992
[BIF92, Sto92]. 1993 [BJ93, IEE93].
1993/sponsored [HB93]. 1994 [SW94b].
1996 [ACM96]. 1997
[ACM97a, ACM97b, ANS97]. 1998
19th [ACM91b, Kui92, RRR99, Wei99, vL94, ABB93]. 1st [CCC89, Coh94].
5 [PW94]. 5-Independent [TZ12]. 512 [GLM+10]. 51st [IEE10]. 52nd [IEE11b].
54th [IEE13]. 5G [Cho21]. 5th [BRW93, Boy95a, Boy95b].

68110a [Sar80].

'76 [Jen76], '79 [Ng79]. 7th [ARA94, Bar83, CHK06, USE00b, Win78].

80f [Sar80]. '83 [Ano83, CRS83a]. '84 [ACM84a]. '85 [IEE85b]. '86 [AA86]. '87 [CP87, CP88]. '88 [ACM88a]. '89 [ACM89a, BV89, BF89, Bra90, QV89, QV90, CP91c].

9-13 [ACJT07]. '90 [AFK90, A+90, Dam90a, Dam91, IEE90, MV91c, SP90]. '91 [ACM91a, Dav91, Fei91, HL91, IEE91a, IRM93, ACM91c]. '92 [Brit92, Bri93, BW92, FNY92, IEE92a, KLT92, Rue93, SZ93, Yua92]. '93 [Ano93c, BRW93, BJ93, Hel94, IEE93, Lom93, Sti93, Sti94c, vL94]. 93k [Pro94]. '94 [ACM94b, De 95, JB94, PSN95, SW94b, SW94a]. '95 [Cop95b, GQ95, IEE95, Lev95, QG95]. 959 [ACZ16]. '96 [Lak96], '99 [Wie99]. 9th [DJRZ06, ST83a, IEE88d].

A. [Pro94]. Aarhus [Dam90a, Dam91, NS82]. ability [DLM07].

abolishing [DSS10]. Abstract [DP08, EjKMP80, Lun73, MW95, SW97, THS97]. Abstraction [CL83, DL06, Hil88, LPSW03]. abstraction-safe [LPSW03]. Academic [Cer85]. ACCEL [HKL04].

ACCEL-RATE [HKL04]. accelerate [GK12b]. Accelerated [Kri89, MW90, MWC12]. Accelerating [HAK+16, TT82, BLY20]. Acceleration [FAFK21, JMH02]. Accelerator [FM91, TLL09]. Access [Ast80, BDPSNG97, BM76, CF89a, Cla77, Dum56, FNPS79, Fal85b, F+03, FP89b, FKS84, GG74, HB89a, HB92, KR86b, KR86a, KM88b, LK84, Lit84, LL96, LMR92, MY79, Mul72, Ols69, Pet57, SD85, SDKR87, SHRD09, Tra63, VB00, XHZ+19, YL04, And88, Bay73b, BCGS16, CS93a, FPSS05, HB89b, KFG15, Lar88b, Lin63, MBK00, Mil95, ML95, RT89, TKT+89, ZO13].

access-pattern-driven [ZO13]. Accessed [Ols69]. Accesses [Pan05]. Accessing [Cha88, Ore83, FK89]. accommodation [HO72]. Accumulative [XHZ+19]. Accumulated [Ny96]. accumulating [ZHW01]. Accumulators [CHK008, PTT16, CHK012]. Accuracy [YW90, HKL07]. Accurate [LCL+20, PCV94, SL16, YGS+19, NTW09, TYSK10]. Achieve [LLL+16]. achieved [Con17]. Achieving [Lar88b, Lyo85]. ACM [ACM94d, ?69, ACM75c, ACM75b, ACM75a, ACM76, ACM77b, LF82, ACM82, ACM83b, ACM84b, ACM85b, ACM85a, ACM86b, ACM86a, ACM87, ACM88a, ACM88b, ACM89b, ACM89a, ACM89c, SDA90, ACM90, ACM91c, ACM91d, ACM91a, ACM91c, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM04, ACM05, ACM07, ACM08a, ACM08b, ACM11, ACM12, Ano92, BIP92, BJ93, CLM89, FMA02, GMJ90, Van10, HF13, IEE02, Jen76, Kar98, LL80, Mat09, Nav85, Ric89, ACM77a, Shm00, SW94b, Sto92, YR87, ACM81, ACM91b, BV89, Lie81].

ACM-SIAM [ACM94d, SDA90, SDA91, ACM97a, ACM05, ACM08a, Kar98]. ACM-SIGMOD [Nav85, Lie81, ACM81]. across [HWWZ18, SF88]. Action [BFR87]. activation [ZO13].}

activation [SZO+20]. Active [GHJ+93, EVF06]. Actor [TCP+17]. Ad [DHP08, JH08, Cha12]. Ad-Hoc [JL08]. Ada [BCS89, ST86, TR006, W984].

AdaBoost [LLZ10]. Adaptable [NHS84]. adaptation [DOP+14]. Adapted [RJK79]. Adaptive
Ahn86, Ahn87, BK90, CBB05, CS02, Gri98, HT88, IGA05, KR91, KL08, LBj02, OL91, OL92, ST93, TC04, ZG90a, Zel91, GZ99, HAK+16, LYJ+13, LMLC14, TB91.

Adaptive-Hash [OL91, OL92]. add [FJ13]. add-rotate-xor [FJ13]. Addendum [CV85]. addition [FJ13]. Additional [LY72]. Address [HP63, Jai89, Jai92a, Jai92b, Jaixx, LYD71, Lum73, PK87, SR63, Tam85, TK85, Wil96, LY72, MLP07, MPL09, RW07]. Addressable [Hin20, RSK17, Koh80, BB07]. Addressed [SVCC01]. Addressing [Bay74, Bra84a, Bra86, Buc63, Fab74, Fel87, Gon77, Gon80, JC88a, Kno71, Kno88, KR79, KRJ+80, Lit80, Litxxa, LH03b, LH03a, Mot84, MC86, Pet57, RJK79, SS62, SD76, Som99, Tra63, CKW93, Lin63, NK16, Tt81, Wan05, van73]. Adelaide [Bar83]. Adjusting [Pag85, Wog89]. Administration [Fis87]. Addressing [Fis87]. al. [SPLHCB14]. Alaska [IEE01]. Albuquerque [ACM75c, ACM75a, IEE91a]. Algebra [Bra84b, KTMO83b, KTMo83c, EBD91, FP89a]. Algebraic [AM94b, EjKMP80, Jen76, Lak96, Lev95, Mar71, Ng79, WX01, vdHvH12, BF08, GS89, LS06, Pom87, Coh94, AAG16]. Algebras [CT96]. Algo [FR69]. Algo-Based [FR69]. Algorithm [ANS97, ANS05, AKS78, ABH+73, AEMR09, BH90, BS97, Bou12, Boy98, CS85a, jCPB+12, CdM89, CW09, CT12, Coh98, CHM92a, CHM92b, CM93, Dev93, DCM18, FL73, FFPV84, FCHD88, FCHD89, FCH92, Fro81, Get01, Han90, HCKW90, HR96, HW08, HG77, HC13, Jen97, JRPK07, KMM+06, KKRJ07, Leb87, LLD28, LLL11, LLW10, MX+12, Man12, MHB90, MV01, MH00, NP01, OG94a, OOB17, OL91, Omi91, OL92, Pap94, PCY95, Ps96, Pit87, PMV97, Reg82, SS01, Sol93, Spe92, Sta99, TRN86, TTY93, Toy93, TSP+11, WG00, WW20, WZJS10, WS93, WVT90, Wil97, Wil71, WDT91, WYT93, WL12, ZG90a, ZJM94b, ZPS90, ZPS93a, AS89, AT18, AGJA06, ATAKS07, CLS95, CLW98, DHKP97, FCH97, FHC99, FK+21, Gai82, GBY90, HLL18b, HL94, ISO97, ISHY88, JMW+18, Kim99, LEHN02, MCC01, MKSa98, OT89]. algorithm [PCV94, PL21, Pri95, SB95, SM94, Sil92b, Ste18, WM93, War14, Wie86, YCJ12, ZJM94a, ZJM94c, ZPS93b, ACZ16, Sta94, TK99]. Algorithmen [Meh77, Meh86, Wir75, Wir83, Zel91]. Algorithms [Mat93]. Algorithms [AM94d, ACM91c, ACM97a, ACM05, ACM08a, ANS97, AHU83, AOAAK20, An05a, iA91, iA94, AT90, AT93, AT91, BS97, Bur76b, CFP19, CV86, CRR18, CT96, DG85a, DG85b, Dev86, DS97, FM96, FW09, FM85, GRBCC19, Ger86a, Ger86b, Gon84, GBY91, GI77, Gra88, Gra89, GC95, GK81, GK82, Gu76a, Gu76b, GG80, GSB94, Har88, HS78, HL91, KR81, LLLC17, LS89, Lom93,
LTS90, LH03b, Mac95, MF92, MLD94, MLxx, Mat09, MS88a, MQ02a, OG94b, OL89, PS93, Pip94, PV19, Pre97a, PB85, QG89, QG90, Reg85, Riv74b, RNR13, Sam76, SD89c, SD89a, Sed88, Sed90, Sed92, Sed93, SD76, SG88, SK98, Shm00, TR02, TY91, Vit81b, VC85, Wal88, WFHC92, Wie87b, Wir86, XCCK09, Yen91, ZG90b, AI08, BMS17, BMQ98, Cra85, DG96.

algorithms [DJRZ06, DJNR09, DC94, EVF06, FJ13, GK05, Gui76c, HK95, HKNW07, JDW19, JMH02, Kan90, Kar98, KP92, Kha95, MPL09, Mol90a, Mol90b, MMSY94, NM02b, PBGV89, QM98, Rei88, RLM87, RG89, Riv74a, SD89d, Sch91a, Sed83a, SG72, Vit82a, Vit01, SDA90, SDA91, A+90, AINOW11, CT10, DSZ07a, DSZ07b, EF12, FS09, FY92, HM08].

Algorithmus [BI87].

Alignment [BFMP11, BRM10, LPT12, EASR22].

Alignments [BDD10].

All-in-one [SV18].

All-or-Nothing [SRY99].

Alley [Boy98, Get01, Jen97, Pes96, Wil97].

Allocating [CC91, TC93].

Allocation [CC87, CLC92, Du86, MJBD11, Nak21, YCRY93, vdpT72, vdpT73, DW05, DW07, LCRY93, OOK+10, van73].

Allocation-Based [Nak21].

Allocations [ABKU99, PG95].

Allowable [Blo70].

 Almost [BKST18, BM99, CKB83b, DW03, YSEL90, CKB83a, Duc08, ILL17].

Almost-Minimum [BM99].

Almost-Universal [BKST18].

Alpha [WM19].

Alternative [EMM07, HBL+10, IH95, SD89b, LS15].

Alternatives [GD87].

American [CHK86].

Anchored [CC91, GP08, KW94].

amortize [KM07].

amortized [AN09].

Amplification [BBR88].

Amsterdam [AW89, CP87, CP88].

Analogue [CaI84, DSGK820].

Analyses [CS87].

Analysis [AP93, Ano95c, AD11, AM07, BYSP98, BRS02, BRSS10, BM89, BM90a, BF08, CF92, CL85, CC87, Cha88, CLNY06, CN08, CV83a, CV84, Che84a, Che84b, CV85, CK94, CS93b, CDW+19, DR11, FC87a, FPV98, FM09, FMM11, GRBCC19, GK12a, GL73, GYB90, GK81, GK82, GLG+02, GS76, Gui76a, Gui76b, GS78, Gui78, Gur73, HMNB07, Hac93, Has72, Kut10, Lar80a, Lar80c, Lar82b, Lar83, Lar84, Lar85c, LCK11, Lev00, Lew82, LWW0q0, LPP91, LPP92, LM93c, Lum73, MK11, MCW78, MMTM09, MY80, Men82, MP12, Mol90a, Mol90b, NM02a, NCFK11, NAK+15, Omi91, Pit87, PVM94, PV19, Prev93, PB85, RM88, Ram88b, Ram91a, Reg85, Reg88, Riv74b, SS62, Sch79b, SYW+20, SB93, SA97, Vek85, VP96, VP98, Vit80b, Vit80c, Vit83, VSb7, WB90, Yao80].

Analysis [de 69, Ati20, BGKZ12, BZZ12, CK89, DSO9a, DK12, GLC08, GM77, Gui76c, KZ19, LLA15, LM88, MJ08, MS13, MSV87, PS08, Pr09, QM98, RAD15, S90a, SLC+07, Sed83a, SGK09, WLB7, ZBB+06].

Analyti [Pro94].

Analytical [Bat81, DOP+14, WTN07].

Analytics [LMD+12, WZY+18].

advise [FJ13].

Analyzer [CRdPHF12].

Analyzing [Kue82b, PVM97].

anchor [FK1+21, SZO+20].

Anchorage [IEE01].

AnchorHash [MVB+21].

Anfänger [Sch76].

Angeles [ACM82, BD88, ICD86, ICD87, ICD88, ICD90].

Ann [ACM81, Bai81, Bor81, LIE81].

annotated [Pon87].

Announcement [DLH09, KS12, Nat92].

Announcing [SBK+17].

Annual [ACM75c, ACM75a, ACM76, ACM77b, ACM84b, ACM84a, ACM85a, ACM86b, ACM88b, ACM89c, SDA90, ACM90, ACM91c, ACM91d, SDA91, ACM91e, ACM97a, ACM01, ACM02, ACM05, ACM07, ACM08a, ACM08b, AH03, Ano93d, Aho10, BV89, BIP92, Bri92, Bri93, Cop95a, Cop95b, EF12, Fra04, Go94, IEE74, IEE76, IEE80b, IEE82, IEE88c, IEE89, CTC90, IEE91b, IEE92b, IEE99, IEE06].
IEE07, IEE10, IEE11b, IEE13, Kua89, Mat09, ACM77a, Shm00, Sho05, Sti93, Sti94c, USE00a, YR87, Yun02, ACM94d, ACM91a, ACM96, ACM98, Bel00, DT87, FS09, HM08, IEE85a, IEE92a, IEE95, IEE01, Kar98, Rie89, Wie99, anonymity [GTL21]. anonymity [RW07].

Anonymous [CZLC12a, ZJ09]. Anti-persistence [NT01]. Anti [NT01]. Antioch [ACM91b]. Anwendung [Lut88]. Any [LP15, HR07, Lev89]. Anzahl [Dos78a]. Application [BKMP09, Cer81, CK83b, Cha88, CP87, CP88, DAM90a, DAM91, Dav91, FFGOG07, GK76, HP63, He94, IRM93, Jou04, KTMo83a, KBC81, LC06, Lit77b, LLW10, Ngu06, Pip79, QV89, QV90, QG95, Rog95, Rog99, Rue93, Sas11, Sch01b, SZ93, SvEB84, WC94, Yao91, wv94, AT90, KCB83a, CO82a, De 95, GQ95, Kan90, QJ97, SRL98, Zob70a, Zob70b].

Applications [AT93, BKST18, BG07, Bur81, CZLC12a, CZLC12b, CK15, CJ19, DR06, Deh03, DK02, DK15, DadH92, DR09, Fel50, FM85, HK12b, IEE80a, IEE95, KMM06, Kna89, Lev89, LDY16, MK11, PPS21, Pon87, RP91, Rey14, RNT90, Ter87, TZ12, TS76, TS84, Val15, Van06, Wee12, WC79, WVT90, YZ00, AG10, ARA94, BZL15, BK16, DFM15, HKNW07, KKP92, KZ91, LL92, LC89, LK11, LG85, MV91a, MV89b, NY89a, NN90, NW07, PW08, PSN95, RRS07, Shi17, SS16, Sie89, ZYW00, A902]. Applied [CS93b, GNP05]. Applying [Cer87, Cer88, CHY93, CLY95, CHY97]. Approach [BH93, CCH09, CK12, DL79, DC94, JV16, LT09, LQH18, MY80, RH95, Sch79a, SR89, SK89, Tsa96, Zob93, BJ07, BCC10, DAC13, GS89, JHL15, NW07, PGV93e, PGV94, QZD18, QD02, TK99]. APPROX [DZR06, DJNR09].

Approximate [AEP18, AI06, CCH09, CLP17, DP08, DHL+94, DHL+02, Hac93, HC14, MW09, RSK17, AI08, DC94, HFZ715, LZ06, LCH+14, LWKK20, MBKS07, Rön07, SWQ+14]. Approximately [DT14, Rön07]. Approach [DZR06, AGJ06, DZR06, DJNR09]. Approximative [MYS12]. APPROX [ZO13]. April [AM75b, ACM81, ACM84b, Ano83, Ano94, CP87, CP88, Col93, Dav91, ICD91, ICD93, IEE01, Joy03, Lie81, QV89, QV90, SM12, USE90, WGM88]. Aquahash [Rog99], arbitrary [GHK+12]. Arbor [AM81, Bai81, Bor81, Lie81]. Arbres [Kar82]. Architecting [LLL+16].

Architectural [GIP17]. Architecture [BCH7, HCJC06, Hs83, Jou85, KP81, KCR11, KTMo83a, MK11, WG94, XBH06, ZHB06, ABO+17, BOY11, HLH13, LMP+08, MBK00, RG89]. Architecture-conscious [ZHB06]. Architectures [AM91c, BRW93, DR92, Kie85, LC20, MKAA17, MKASJ18, RNT90, Bis12, BMQ98, GK90, HDMC11, adHM93, LIA15, NW07, PJM88, PJB90, Rei88]. archival [QD02]. Area [DD15, ABO+17, BOY11, Lar84]. Archival-Efficient [DD15]. areas [YJ14].

ARES [IH83]. Argon2 [BDK16]. Argon2i [AB17]. Arguments [Yao83, ABM+12]. ARIES [Mh90, Moh93]. ARIES/LHS [Moh90, Moh93]. ARIRANG [HKK10]. Arising [FS82]. ARITH [IEE05, MS05].\[\text{ARTH-17}\] [IEE05, MS05]. Arithmetic [Die96, Ers58a, GSC01, HSK88, IEE05, MS05, ISO97]. Arizona [Gol92]. Arlington [AM94d]. Arrangement [Riv76, Riv78]. Arrangements [Yao85a, Yao95, Wee88]. Array [Coh94, He87, YLB90, SV15b]. Arrays [BG09e, CP91a, Gra94a, LPWW06, RS77, Ros77, CP91b, MLS18, RS75, Taylor]. Art [Knu73, Knu75, Pre97b, Ruc15, PGV93c].

ASCII [HF91]. ASI [ANO95c].
average-case [Mic02]. avoid [Pat94]. Aware
[CJKK19, HNKO20, JLL+20, MZL+19, PG17, BB07, HFZ+15, HFF+17, NDMR08]. awareness [Li10]. Awesome [Knu19]. AWOC [Rei88].

Balatonfured [Rue93]. Balloon [AB17, BCGS16]. Balls [CRSW11, CRSW13]. Bally [IEE84]. Baltimore [ACM90, FNY92, IEE02]. Band [Meh86, Sol93]. Band-Join [Sol93]. Bands [KCF84]. bandwidth [AS09]. BANG [THS97]. Banked [vdBGLGL+16]. Banska [Rov90]. Barbara [Bel00, Bri92, Bri93, CRS83a, Cop95a, Cop95b, Fra04, Sh005, St09, St09a, Wie99, Yun02]. Barcelona [DJRZ06, CTC90, LLL09]. Barreto [FT12]. barrier [MPS016]. Base
[BCH87, CRdPHF12, Chr84, EE86, FM85, Gho77, Gho80, ISK+93, McC79, YBQ17, Zam80, Mar75, Mar77, WLLG08]. Based [AK98, Abi12, Ad12, AP08, Aum09, AS16, Bal96, BG92, Ben98, BDF+12, BHH+15, BR02, BS09, BSSH10, BI12, Buc82, Bur83b, Bur83c, But17, CCF04, CFP19, CS83b, Cha84b, CS87, CW91, CD89, CdM90, CW09, CTZD11, CZLC12a, CZLC12b, CZLC14, CT12, CW+19, CadH90, DGV93, Dae95, DK09, DG85b, DL17, DF01, DR11, DB12, EK93, Fab74, FL04, FR69, FRB11, FH69, FFGOG07, GGY+19, GRBCC19, GO07, GI12, GSC01, Grr98, GK08, GH07, HNNB07, Hal12, HDMC09, HHL10, HNKO20, HW08, HWZP18, HCPLSB12, HLC10, Hul13, HRS16, HBG+17, HM19, JXY07, JT0T09, JK11, KSSS86, KM09, KV09, KL87, KKRJ07, KJC11, KMV10, KTM083b, KW12, KP96, KP97, KR79, KJ+80, KK85, Kum89a, KKT91, LM93a, LY+18, LXY+19, LW88, LMC07, LLJC07, LLZ18, LLZ10, LLL09, LHC05]. Based [LCLC17, LRY+15, LXL+19, LG78, LTS90, LCM+20, MLD94, MKF+16, MCF17, MP12, Mil85, MKAA17, NIS15, NCFK11, Nak21, NNA12, NXB13, OL89, ORS10, PFM+09, PTT16, PC97, PHG12, PRZ99, PSZ18, Pre97a, RGNMPP12, RTK12, Rey14, RWSN07, RNR13, RL74, RK91, SD85, SDRK87, Sho1b, Sch79b, Sch81, SBS16, SYW+20, SC90b, SC90c, SK98, Sho06, SKC07, SS05, SVCC01, Sun15, TWZL11, TGGF10, TZ12, TY91, TP15, TK07, US09, WWZ09, WSSS12, XH06, XHZ+19, YNW+09, YSW+11, WL12, YY07, YTJ06, YD86a, ZJ09, ZWH17, ZZM17, ZQSH12, ZLC+12, vMG12, Ad88, AY14, ASM17, ACP10, AAGG16, BSNP96b, BLC12, BLY20, BCR04, BC06, BDS09, Bur83a, Cha12, CML+13, CCHK08, CJ12, CJ15, CLW98, CJ86, DG85a, DS09a, DWH08, EASR22, GB17, GL06, GLC08, GZ09, HLL18]. Based [HLL18a, HAK+16, HCJC06, HC11, HLWM93, HMWM94, HW88, HL03, JFDF09, JL14, JBWK11, JG95, KI94, KR09a, KST99, Koor8, Kra94, KCL03, Ku04, KCC05, KSC11, KSC12, LM93b, LDM92, LWG11, LND08, LTT21, LAC18, LL15, LS+21, LMPW15, MSZ+20, MS09, Mei95, MZ08, MS13, MHT+13, Mu92, MFES04, MJ14, NADY20, NS16a, OT89, PCK95, Par18, PPB16, PL21, PW06, PBGV89, PGV91, PGV93e, PGV94, QZD+18, RP95, SPLHCB14, SN19, SV94b, SV95, SE21, SG09, SX08, SRL09, Sim98, SA17, SZO+20, TKH20, TWL+18, Tsa08,
Bonsai [DCW91]. Bookshelf [Cro98].

Boolean [AN96, ÁCZ16]. booting [LC95].

Bordeaux [AGK+10]. Boston [ACM84a].

bottleneck [MBK00]. Boulder [ACM77b].

Bound [Ari94, SG16, Sun91, Sun93, vT14].

boundaries [SS15]. Boundary [KSSS86].

Bounded [DS84a, LL86, Lom83, Lom88, MN90, GHK+12, RM88, TB91].

bounded-depth [GHK+12].

Boundedness [BG96].

Box [BRSR92, Rja12, SV94b, BZ91].

braids [LMP+08]. Branch [LB92].

Branches [DGGL16]. Branching [FS82].

breaking [DK94, MPST16]. Brent [FL73].

Bridging [ACM04]. Brief [DLH99, KS12].

Brighton [Dav91]. bringing [NMQ22].

Brisbane [DG96, MSDS90]. British [ACM88b, Oxb96]. Broad [PACT09].

Broad-Phase [PACT09]. Broadband [SM91].

Broadcast [YSW+11, GBL94, SNW06]. Broadcasting [KCF84, OCGD11]. Broken [CP91c].

Broker [TG+97]. browser [NM20].

Bucket [CS82, Dev86, Joh97, Kab87, KNT89, KO90, Lyc85, QCH+81, Rog95, Rog99, Tam81, TYZ01, Tra63, YD96b].

Bucketing [Pa92].

Buckets [Hac93, JV16, VP96, VP98, KHK12]. Buffer [LB92].

Building [AÕD19, BC06, HKL07, Mit17, PV95, RMB11, WHS+07, PV095].

Built [Win84, DTM+18]. built-in

[DTM+18]. Burden [Oak98]. burst [AZ10].

Bushy [CHY93]. Business [Bra88, Luh58].

Bystrica [Rov90]. bytestreams [SUH96].

Byzantine [HGR07].

C [Pla98, USE90, ÁCZ16, Bht95, Eung90, GBY91, Pro89, Sed90, Sed92, Sou92, Tay89].

C/C [Pla98]. CA [ACM93a, ACM89a, ACM11, DJNR99, IE93, Joy03, Cor95a].

Cache [Ask05, CGLC20, PWYZ10, PWY914, Pro18, PSS09, SBS16, SKC07, YNW+09, YT16, ZH18, AZ10, BFCJ+12, CCHK98, HSM91, KSC11, KSC12, MZK912, GM88, WLC20].

Cache-tries [Pro18]. Caches [SBS16, S200].

Caching [DB12, KM92, Rey14, WBW16, XBH06, BCR10, Cha12, HL05, KLL+97, KSB+99, Sh06, WZ12, WY00, WY02, ZO13]. CAD [K94, Bar97]. CAD-based [K94].

Cake [CHSC18]. California [ACM82, ACM86b, ACM07, Ano10, Be00, Bri92, Bri93, CRSS3a, Cop95b, Fra04, ICD86, ICD87, ICD88, ICD90, IE11b, Kar98, Shm00, Sh05, Sti93, Sti94c, Sto92, USE90, Wie99, Ym92, Col93, IEE98a, IEE96].

California/Special [ACM92].

Call [HLC10].

Cambridge [ACM93a, BV89, G096, JBJ94, K105, And94]. CAMELOT [SPB98].

Camera [BH93].

CAMSure [RSK17].

Can [CP91c, Dan93, Pa92, Sim98, Dan94, GM90, Sh91a].

Canada [ACM902, ACM88b, ACM07, Ano10, Be00, Bri92, Bri93, CRSS3a, Cop95b, Fra04, ICD86, ICD87, ICD88, ICD90, IE11b, Kar98, Shm00, Sh05, Sti93, Sti94c, Sto92, USE90, Wie99, Ym92, Col93, IEE98a, IEE96].

Canadian [CC89].

candidates [ABM+12].

Canonical [DNV81].

canonicalizing [FGFK10].

Canterbury [Oxb86].

Capabilities [RS12, Tra63]. Capability [Fab74, Wan84]. Capability-Based [Fab74].

Capacity [KK85, Tan83, HO72]. Cape [IE95, MS05].

cardinalities [GGR04].

Cardinality [BHIMM12, GL17, HM03, NTW99].

Cards [Ku14].

Carlo [BF93, Rey94].

Carolina [ACM91c].

Carry [GK08, FJ913, LK16].

Carry-Less

[500x681] [102x646] [138x646] [146x646] [194x646] [202x646] [210x646] [218x646] [226x646] [234x646] [242x646] [250x646] [258x646] [266x646] [274x646] [282x646] [290x646] [298x646] [306x646] [314x646] [322x646] [330x646] [338x646] [346x646] [354x646] [362x646] [370x646] [378x646] [386x646] [394x646] [402x646] [410x646] [418x646] [426x646] [434x646] [442x646] [450x646] [458x646] [466x646] [474x646] [482x646] [490x646] [498x646] [506x646] [514x646] [522x646] [530x646] [538x646] [546x646] [554x646] [562x646] [570x646] [578x646] [586x646] [594x646] [602x646] [610x646] [618x646] [626x646] [634x646] [642x646] [650x646] [658x646] [666x646] [674x646] [682x646] [690x646] [698x646] [706x646] [714x646] [722x646] [730x646] [738x646] [746x646] [754x646] [762x646] [770x646] [778x646] [786x646] [794x646]
Mul91, Sie04, WC79, van94, Bie95, DS09b, Sar80, Sie89]. **Classification** [GCMG15, HSPZ08, McK89a, PT11b, SY08, And93, CKKK09, IG94, LS07b, McK89b, XLZC14].

classifications [LZ06]. **Classifier** [GCMG15, HSPZ08, McK89a, PT11b, SY08, And93, CKKK09, IG94, LS07b, McK89b, XLZC14].

Client [DR92, GTL21, TC04]. **Client-Server** [DR92]. **client-side** [TC04]. **Climbing** [CL95]. **Clocked** [LN93]. **clone** [Kos14, LG13]. **closed** [SS89a, SS90a]. **Closest** [Val15, DHKP97, TYSK10].

closest-pair [DHKP97]. **Closing** [PNPC20]. **Closure** [CdM89, CdM90, GC90]. **cloth** [TWL+18, TWL+18]. **Cloud** [HNKO20, HWZP18, LRY+15, Mir17, Nak21, DMB19, GB17, HLL18b, SZO+20].

cloud-RANs [Szo+20]. **Cluster** [SKC07, KSC11, KSC12, TC04, ZHX+21]. **Clustered** [Rot89]. **Clustering** [AII89, Bel70, Bel72, Bel83, BBS90, CdM89, CdM90, Gu75, Gu78, KBG18, Mac95, MNY81, PKSB18, SPF16, AOD19, Gu76c, NH74, SX08]. **Clustering/hashing** [AII89]. **Clusters** [TY03]. **Clutter** [MBBS12]. **CLV** [CF89a]. **CM** [PW94]. **CM-5** [PW94]. **CMAC** [CG92]. **CNF** [BHIMM12]. **CNN** [SYW+20].

Co-hashing [ZWCL10]. **co-processing** [HLH13]. **Coalesced** [CV83b, CV84, Che84a, Che84b, CV85, CV86, Jan08, MS88b, Pa92, Pit87, Vit81a, Vit82b, Vit83, VC87, CV83a, PY88, Vit80a].

Coalescing [Vit80b, Vit80c, Kno84, SSU+13]. **coalescing-lowering** [SSU+13]. **Coast** [SZ93]. **COBOL** [Bra88, Zou85]. **Cod** [IEE05, MS05]. **Codasyl** [Gra86]. **Code** [BK70, Bel70, Bel72, Bel83, BMB88, CLD82, Chn90, DC81, DL80, Eck74a, FIP02a, Gon81, KKRJ07, Lam70, LBJ02, Mau83, Mit73, SV15a, Sun15, CD84a, CLS95, Cl95, Mau68, Mer72, MF82]. **Coded** [Bay73c].

coding** [Lit77a]. **Codes** [BKST18, BGS96, Bie97, CLP17, Fal85a, Har97, Irbxz, JP07, KP96, KP97, KGJO18, LQH18, SVCC01, TW07, BJKS93, BJKS94, Bok95, Fal86, Fal88, FM89, GHK+12, Gob75, IG94, Kri89, Mil98, Sti91, Sti94b, vT14, Far93, Bie95].

codification [FDL86]. **Coding** [Blo70, Boo77, Bur78, Bur79, CJ86, DA12, Dav73, Dos78a, FH69, Gon77, HP63, HJ75, HG77, Kam74, Lit77b, Mar64, Mar71, Pip79, SDR85, SDK97, Sta73, Web72, Boy95a, Boy95b, Bur76a, Coh94, DVS+14, Far93, LG78, Riv74a, Sab94, SDR83b, Sch79b, MKL21, Ytr06, HJ75]. **Coefficient** [KKN12]. **coherence** [FWG18]. **Coherent** [GLHL11]. **Coin** [CLP13]. **Coins** [HR04, Rost12]. **Collaboration** [JXY07]. **Collaborative** [ADOAH19, WY00]. **Collecting** [FW76, FW77]. **Collection** [AG93, LXL+19, TR02, UIY10]. **Collections** [BBBD82, BBD86, LRY78, LRY80, DTM+18, SV15b]. **College** [Já90].

collide** [GNP05]. **Collision** [Ask05, BG93, BR97, BM97, BK12, BKMP09, CHKO08, CJC+19, Dam87, HM96, HHL10, HCJC06, IK06, IT93, IH95, KKT91, MS09, MNS12, Men12, Mit12, MIO90, MOI91, MC86, NSS+06, Pey15, PACT09, PBGV98, PGV90b, PGV91, Rus92, Rus93, Rus95, Sam81, SY11, SHRD09, SHF+17, Van92, Vau93, WYY05a, WYY05d, XNS+13, YB95, ZBB+06, vW94, AYK13, BGG93, BF08, CHKO12, Con17, Gib91, ITP14, KdlT89, Men17, MT16, PGV93g, Sar11, SKP15, SBK+17, TWL+18, Van92, WS13].

Collision-Free [BM97, HM96, RS92, RUS93, RUS95, SHRD09, BG93, HCJC06, PBGV98, Vau92, Vau93, ZBB+06, BGG93, Van92].

Collision-Mitigation [SHF+17]. **Collision-Resistant** [BR97, BK12, CHKO08, IK05, CHKO12].

Collisionful [BPS97, Gon95, Li95, BSNP96b, BSNP96c].
Collisions [Ano95a, B187, BT94a, BT94b, CY06, DBGV93, GIS05, GL73, HR04, IP08, IP11, LCL+09, Pat95, VNP10, WFLY04, WYY05b, WYY05c, DV07, Gov95, Li95, Pat94, RVPV02, Sim98]. Colloquium [AGK+10, dBrL80, Kui92, NS82, Pat90, ADG+08, AMSM+09, ACJT07, CIM+05]. Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM85a]. Colored [Ros12]. coloring [HK83]. Columbia [ACM08b]. Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM85a]. Colored [Ros12]. coloring [HK83]. Columbia [ACM08b]. Colony [ACM83a, ACM83b]. Colorado [ACM77b, ACM85a]. Colored [Ros12]. coloring [HK83].
Chi94, DJRZ06, IEE11a, Jáj90, Jen76, Lak96, Lev95, Ng79, RK91, Tan85, ZO93, ZLC +12, vdhHvH12, Fis87, MYS12, Ano93d.

Computational [CCC89, Cer83, LYW+18, MNT90, Sab94, Wil00, de 69, Dam94, GvR08, IEE11b, MNT93, Sch82b].

Computations [FHL+19, GK87].

Compute [Bra84a, Bra85, Bra86, Tro92].

Computed [TT81, TT86].

Computer [IJW89, ACM91b, AFI63, AFI69, AH03, BA91, iA94, Bar83, BCH87, Bor81, DS97, Ell82, Gol94, GT63, HST8, IEE76, IEE80b, IEE80a, IEE82, IEE84, IEE85a, IEE88c, IEE88a, IEE88b, IEE89, IEE91b, IEE92b, IEE93, IEE95, IEE99, IEE05, IEE06, IEE07, IEE10, IEE11b, IEE13, Jaix92a, Jaix92b, Jaixx, Jou85, KCF84, KO90, Kna89, Knu73, Knu74, Knu75, Kon10, Leb87, LC86b, LC95, LL83, Mar75, Mar77, MS05, RRR99, RJK79, Rie89, Rov90, Ruc15, SK99, Wall88, Wil85b, Win78, ZZ83, ACM94c, Ano93c, Don91, ER86, FP89a, GKO5, GRL94, HCF95, IEE92a, IEE01, MLP07, Mo92b, OT98, RG89, TWW77, vL94, ACM94a, Ano93a, PGV93c].

Computer-Recognized [RJK79].

Computers [FHMU85, MK93, PSR90, Rad83, SB93, RFB97, Deb03].

Computing [ACM75c, ACM75a, ACM76, ACM77b, ACM84b, ACM85a, ACM86b, ACM88b, ACM89c, ACM90, ACM91e, ACM96b, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM04, ACM07, ACM08b, ACM11, ACM12, Bai81, DT87, IEE94c, KKJR07, KL92, LCK11, Ram87, Re88, Tro95, AFK90, GHK+12, GB17, GC90, LVD+11, MN99, Pri95, Bai81, GT80, Rie89, ACM77a, WGM88].

Concatenated [CD84a, DC81, HS08].

concatenation [BJKS93, BJKS94].

Concept [Kie85, Lum73, Ter87, Ano99b].

Concepts [KTMO83b, vL94].

Conceptual [FZ87].

Concise [PT12h].

Concomitant [MWC12].

Concrete [GKP89, GKP94].

Concurrency [Ell85a, Ell87, Ell88, FK89, GG74, HSM95, Kum89b, Kum89a, LSV89, Moh90, Moh93, OA89, SDK91, GT16, MTB00].

Concurrent [AR16, CLP13, Cha88, CHS+18, CHSC18, Ell83, HYH89, HYH93, HY86, HTY90, Kum90, MSD16, MSD19, MSSWP90, Omi88, Omi89a, PBBO12, SDW14, SG88, WCW+22, CCL91, MMCO1, MRL+19, Fro18, TMW10].

Condensation [CT96].

Condensers [ATS19].

Conditionally [ACP90].

Conditions [IKO05, IH95, Rus92, Rus93, Rus95, BDPV14].

Conference

[ACM81, ACM85a, ACM91b, PD19, ACM94c, ACM04, AFI69, ABB93, AFG90, VLD82, Ano89, AW89, AAC+91, AOY+99, AA86, Bai81, BD88, Bar83, BDS88, BV89, BIP92, Bel00, BJZ94, BRW93, BL88, Bor81, Boy95a, Bri92, Bri93, BJ39, CCC89, CGO86, CLM89, Cop95b, DSS84, Far93, FNY92, FMA02, Fre04, Fre90, GJ90, Gol92, GSW98, HB93, IEE80a, IEE85b, ICD86, ICD87, IEE88a, IEE88d, IEE88e, IEE88f, CTC90, ICD90, ICD91, ICD93, IEE94b, IEE95, IEE02, IEE11a, IRM93, JB94, Jou85, JY14, Joy03, Ker75, Kna89, KLT92, LC06, Las87, LCK11, Lie81, LS89, LT80, LSC91, Lom93, MK89, MSD90, Mo92b, Nav85, Oxb86, PV85, PK89, QG95, RRR99, Rie89, RK89, RNT90, Sch82a, ST83a, ST83b, SP90, Sh005, SW94b, SC77, Sti93, Sti94c, Sto92, SM08, SM12, USE91].

Conference [USE00a, USE00b, Vau06, Vid90, WPY90, JWSS91, Yan10, Yao78, Yua92, Yun02, ACM94a, ARA94, Ano83, Ano93a, Ano93c, Boy95b, CE95, Cop95a, DG96, DT87, Deb03, HF13, IEE92a, IEE94a, IEE94b, IEE01, Kii05, PSN95, SW94a, TWW77, USE90, Wie99, Nic95, ACM75c, ACM76, ACM77b, LFP82, ACM91d, AF16, YR87].

Confidence [DGD02].

Configurable [vdBGLGL+16].

configurations [CL90a].

Confinement [NS16b].

Confirmation [MOI90, MOI91].

Congress [Gil77, Ros74].

Conjecture [KPS92].

Conjunctive [Stu85].

Connected [OL89, TY91, OT89].
[QXL+20]. CPUs [KKL+09]. CR [LACJ18]. Cracking [GAS+16]. CRAY [DS97].
creating [Sag85b]. creation [FVS12]. Credential [YLSZ19]. credit [JFDF09].
credit-based [JFDF09]. Crete [ACM01]. Criss [GRZ93]. Criss-Cross [GRZ93].
Criteria [Adi88, AIJ89]. Criterion [Sun15].
critical [NM10]. Cross [CJN20, GRZ93, LWZ+18, MLHK17, WB90, ZWY21, QZD+18]. Cross-Media [LWZ+18]. Cross-Modal [MLHK17, LJN20, ZWY21]. cross-platform [QZD+18]. Cryptanalysis [Aum09, BS91a, BJ15, BHT98, BP09, DGV93, Daec95, G007, GIMS11, HPC02, JNPF14, Kmu92, LP16, LKY04, MR07, Mon19, NXB13, GLM+10, SPLHCB14, SV94b, W4g00, WSSO12, WYW14, AP11, BS91b, BS91c, BHT97, CV05, RP95, SV95]. Cryptanalytic [CJMS19]. CRYPTO [Bel00, Bra90, Bri92, Bri93, CRS83a, Cop95b, Fei91, Fra04, MV91c, Sh005, Sti93, Sti94c, W069, Yum02, H010, CP91c].
Cryptographer [Joy03]. Cryptographic [ARH+18, BDPSNG97, BCR04, BDP11, BDP97, Bur06, JCPB+12, CLG09, CPS7, CPS8, DA12, DCG89b, Dam90a, Dam91, DDF+07, Dav91, D900, D911, G007, He94d, MMKA17, PTT16, Pre93, PGV93d, Pre94b, PBD97, Pre99, Pre94c, QV89, QV90, QG95, RRS06, Rja12, RS08, Rue93, S001, Sch91b, Sch93a, S293, SYG11, S069, Sti06, TSP+11, Vau06, AY14, ABO+17, BNN+10, BD92, BOY11, CP13, De 95, ESR14, GPV08, GS94, GQ95, IN98, KR19, KTD620, Mic02, NY89b, N289, RA10, Sch93b, Sch93c, YZ16]. Cryptographically [PGV92, Aam03]. Cryptography [ANS97, ANS05, AČZ16, AG18, BD08, DK02, DJK15, IKOS08, She17, Wol93b, Ytt06, BGG94, BBD09b, Far93, GNP05, JY41, KL15, Kl005, PGV93c, Wol93a, Boy95a, Boy95b, DG96]. Cryptology [Bri92, Bi93, CRS83a, CP87, Dam90a, Dav91, Fei91, Fra04, He94d, IRM93, LC06, MV91c, QV89, R9ue3, SP90, S92, Sti93, Sti94c, Vau06, Be100, Bra90, CP88, Cop95a, Cop95b, Dam91, De 95, GQ95, Joy03, PSN95, QV90, QG95, Sho05, Wie99, Yum02]. Cryptosystem [Jun87, KKT91]. Cryptosystems [Oka88, Wee11]. CS2 [NM02b]. CT [Joy03]. CT-RSA [Joy03]. Cube [OL89, TY91, OT89].
cube-connected [OT89]. CubeHash [AD11, BP09, BKM90, KKM510]. Cuckoo [ANS09, ANS10, ADW12, ADW14]. BHKN13, BHK19, DM03, DS90c, DMR11, FPS13, FMM09, FM11, KMW08, KMW10, Kutt10, M0tt9, N9W08, PR01, PR04, Pa006, PM16, PS12, SHF+17, TK07, D900b, KM07, Kutt06, DK12]. Cumulative [LPWW06]. CUPID [KS89a]. Curve [ANS05, MSA17, OOB12, TK17]. Curves [BGH12, FT12, She17, WX01, BGR+13, BP18, CDS20, FSV9, FFS+13, Far14, GZ99, LS06]. Cyber [LSZ+11].
cyphers [Far93]. Czechoslovakia [Rov90].

D [CBA94, EAA+16, Fly92, GG92, G944, LMJC07, LVD+16, PPS21, SYW+20, WSSO12]. D-Based [WSSO12]. d’Acces [Lit77b, Kar82, Lit77a]. d’Adressage [Lit79a]. Dallas [ACM98, IEE95, USE91].
Damgård [DGV93, Pat95, CDMP05, Gib90, Mir01]. Dana [Ano10]. Darmstadt [TWW77]. Darstellung [Koe72]. Dartmouth [Ano93d]. Dash [LHLW20]. Data [ACM81, ACM82, AB93, AHU83, ABM06, ADOAH19, AHS92, VLD82, Ano85a, Ano89, AW99, AAC+01, ANT85, ADF12, BC08, BD88, BDS88, BJL16, BCI18, BJ94, BFR87, BL88, Boy98, BSM14, BJ93, CLS12,
Data/Knowledge [BCH87]. databanks [FDL86]. Database
[ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM89b, ACM89a, AA86, Bab97, BG92, DCW91, DKO+84b, DKO+84c, DKO84a, DGG+86, DGS+90b, DGS+90a, DNV81, DT91b, GD87, GHJ+93, Van10, Han90, HCKW90, He87, Hsi83, HF13, IH83, KGJG12, Kie85, Kim80, KL87, KTMo83a, KO90, Kue84b, Kue89a, LC86a, LL08, Llo81, Ouk83, SD89b, Sch90b, SD90b, SD90a, Sha86, She91, SD91, Sto88, Tan83, Toy86, Ull82, WVT90, Wie83, Wie87a, Yam85, YNK89, ZMJ94b, AS89, AKN12, DKO+84d, EH17, EBD91, FNY92, GC90, HF91, ISH+91, JBJ94, MBK00, PS08, SSW94, SK88, SE89, SP89, TL93, Vak85, WC94, ZMJ94a, ZMJ94c, ODB89, BF89, KKP92]. Databases
[AS82, AOV+99, Bal96, Bal05, BDPSNG97, BG80, Bat81, BG82, BS94a, CICH09, Chu90, Chu91, DDF+07, DT91a, DT91b, FM91, FHCD92a, NY91, Gra92, Gra93c, GC95, GSW98, Heu87, HCY97, Kaw15, KR91, LOY00, LÖÖN01, Oxb86, RZ90, RNT90, Sch82a, SPW90, SW91, TRN86, Toy93, ZHW21, AÖD19, AP92, BW89, FHCD92b, HC07, ISO97, KR88, MSZ+20, MIGA18, SB95, SB97, SI09, ZLC+18]. Dataflow
[DF89, Ger86a, Ger86b, Gra94c]. Datalog [GST90]. Datasets

CGLC20, CJC+9, Chr84, CGO86, CLM89, DA12, DSS84, DT87, DZo7a, DZo7b, DP08, Dre17b, EJKMP80, Ekh84, Ell83, Ell85b, Ell87, FM85, Flo77, FB87, FBY92, FMA02, GMJ90, Gho77, Gho86, GCMG15, Goh92, Gon83, Gon84, GBY91, Gre21, Grol71, Har73, HJ87, HWZP18, He87, Hi78b, Hi78a, HZ86, Hi83, HS84, IEE85b, ICD87, ICD88, ICD90, ICD91, ICD93, IHS, IAV85, JL14, Ker75, K81, K82, Kru84, KHH89, LC20, Lie81, LT85, LRY78, LRY80, Lit89, Lit84, LL87, L89, L89+15, LT80, LSC91, Lom93, LG78, LMR02, MLHK17, Mar75. Data
[Mar77, McC79, MSDS90, MEK+14, Nav85, NR12, PSSC17, PRR15, PV85, PW94, RNR13, Rout91, R91, Sar10, Sch01a, SDW14, ST83a, ST83b, SW86, SW94b, Ste82, Sto92, SM08, SM12, SW87, SWTX18, TKH20, Tan83, TC93, TY88, ST83a, ST83b, SW86, SW94b, Ste82, Sto92, SM08, SM12, SW87, SWTX18, TKH20, Tan83, TC93, TY88, ST83a, ST83b, SW86, SW94b]. Data-centric
[Mar75, Mar77]. Data-driven [TKT+89]. data-independent [BCGS16].
data-intensive [Shi17]. Data-Parallel [LC20]. Data-stream [Tan83]. Data-structures [Har73].

WLLG08]. Domain [BR06, Cor00, Cor02, DOP05, KK12, KK18, LLG12, PG95, RS12, SGY11, SPSP16, ZNPM16]. Donald [Ruc15]. Donnees [Kar82, LG78]. Don't [BFCJ12, YT16, BCR10]. Dortmund [Lut88]. Double [Boo72, Bur05, CdM90, GS78, GLP98, LK94, LM93c, MB03, Men12, OOB17, Pal92, Tho13, Yao85a, KL95, LM88, LJJ15, Men17, Mol90a, Mol90b]. Double-Linked [Pal92]. Double-Stream [Li98] Draft [MCF17]. DRAM [CJKK19, KHK15, WLWZ19]. DRAMCache [PG17], drive [BC06]. Driven [Gra93b, Ven86, TKT89, ZO13]. DSS [Ano99a, Ano13]. Dual [CDW19, MNS12, Wec12, BR75, MJ08]. Dumping [Fro81]. d'une [LG78]. Duplicate [Bre91], duplication [BC08, PL21]. durch [Hil82]. DWT [THY88]. Dynamic [AL86, AHS92, BGDW95, CS91, CR89, CBA94, DGGL16, Dev93, DKM88, DadH90, DKT90, DKT91, DKM91, DKM94, ED88, FNP97, FHL91, FS82, GT93, adH90, Kaw85, Kie85, KNT98, KSS86, KSS87a, KSS87b, KSC11, KSC12, Lar78, Lar88a, Lar88b, LC88, LRY15, LHNL21, MSW19, MS12, MS02, Mul84a, Mul84b, Mul85, NKT88, OG94a, Ore83, Oto85b, Ouk83, OS89a, OS89b, PLKS07, PG95, RT89, RL82, RSGD89a, Reg81, Rob86, Ros21, Sch79b, Sch81, SSS05, TT10, Vek85, Wan14, YDS4, YLZS19, YBQZ17, YD86a, YD86b, ZRT91, ZJM94a, ZJM94b, ZJM94c, ZO93, CS93a, DTM18, DMPM06, DHW08, FR94, FF90, Fro81, HKLS12, HR93, KD92, Lev99, Lin96, Mil98, YG10, SKC07]. Dynamically [Lit78, Litxxb]. dynamische [DMPM06]. Dynamiques [Kar82]. Dynamischer [Hil82].
EUROSAM [Ng79]. Evaluating [HAKM15, MPP14, RS92]. Evaluation [Adi88, BGDW95, CRSW11, CRSW13, Chr84, Fla81, Fla83a, Gra93b, Gra93c, Gri77, HNS84, KTN92, LCLX19, LLL09, MXL+12, ML86, MLxx, MS88a, NMX19, Pag99, SD89c, SD90a, SC90a, SC90c, Stu85, TNKT92, Web72, Woo89, YNKM89, CHS+18, GDA10, HCW+21, RLM87, SD89d, TM02]. Eve [AAE+14]. Even [Bosxx, Tho00]. Event [McK89a, McK89b, ZLY+13]. Every [Kil01]. Everything [KTN92, MLD94, TNKT92]. evolution [PGV93c]. Evolutionary [DLT98]. Exact [Cor00, Ram88a, Vio05]. Examining [Wil00]. Example [FHMU85]. Exceed [Pal92]. Except [OWZ14]. Exchange [KV09, BSNP96b, GL06, LW04]. Exclusive [DLN+18]. executable [NADY20]. Execution [CLYY92, CHY93, CHY97, Cra85, GHJ+93, GM98, Hea72, HCY94, HCY97, KL87, PAKR93, S88a, W85, GMP95]. exhaustive [KJS17]. Exhibit [Gui75, Gui78, Gui76c]. existence [WC07, Woe06a]. Existing [LYD71, LY72]. Expandable [Kno79]. Expander [CLG09]. Expanders [BK07b, Tho13]. expanding [FNY92]. Expansible [CL95]. Expansion [AVZ11, Gri77, Mai92]. Expansions [Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Larxx, RSS89a]. expansive [LS96]. Expectation [GM91]. Expected [Gon81, Lar81, Lar82a]. Experimental [ANS09, HCW+21, JHL+15]. Experiments [KL06, Wil79]. expert [ARA94]. Explicit [ADW12, ADW14, Bla00, CL83, LS06, MV08, WX01, GJR79]. exploit [AZ10]. exploitation [MAK+12]. Exploiting [Bre91, CWW00, GHW07, HL12, MSS96, MV08, NMQ22, HAK+16]. Exploration [CH94, PSSC17]. Explore [SP21]. Exploring [LVD+11]. Exponent [Ano95a]. Exponential [DS84a, HJ96, Lom83, LTT21, LH04, SHA97]. Exponentiation [Kak83]. Exposure [CTZD11]. Expression [BBP88, CKW09, Gri77, GGR04]. Expressions [Hol87, Mar71]. Extendable [NIS15]. Extendable-Output [NIS15]. Extended [DP08, HBG+17, Tcr87, YNKM89, YDS4, YTHC97]. extendible [BK84, Bg01, Chu91, Chu92, DT91a, DT91b, Eli83, Eli88, FNP879, Fla81, Flsa3a, Hac93, HSM95, HYH89, HY86, KR86b, KR86a, Kum89a, LÖON01, Men82, MH00, Oto84, Oto86, Oto88a, RLH91, RS77, Tam81, Tam82, Yao80, Hua85, Kum89b, MKSIA98, RLH90, RS75, Wee88]. extending [CMP07, JBJ94, SS01, WKBA07]. extendible [BG92, Gra94c, Hel89, Kum90, Ré92, KR88, SS06, BP94]. Extension [BR06, CDW+19, Lit77a, LLG12, PSZ18, SGY11, WH83, Bak09, SFA+19]. Extensions [CSSP15, Heu87]. External [AS89, AGMT11, GL82, GL88, Gra94a, GT63, JP08, LR85, LRY78, LRY80, Vit01, Woe06b, RT89, RB91]. External-Memory [AGMT11]. Extract [ACP09, CZLC12b, CZLC14, Wee11]. Extracting [HZ86]. Extraction [FC87b, KKN12, LLDZ18, LDY+16, ZLY+12]. Extremely [Sie04].
BvT13, BJKS93, BJKS94, CRS83b, CL09a, CL09b, CLS18, CDH19, FH15, GW94, LS06, LC13, MtT08, WC07, Woe06a, vT14.

Family [BDM+12, BKST18, FLS+10, GK08, Ind01, IT93, MWCH92, MWHC96, SK05, ACP10, AMP12, BDPV12, FPS17, KRT07, Sar13, SRLR98].

Fast [AKS78, AP92, AB12, BH91, BRM+09, BS97, BS94b, BS94a, BGV96, BT12b, CH12, CS85a, CCW+17, CWC10, CD84b, CRR18, CS82, CKN18, DC90a, Dit91, EFMRK+20, EPR99, FNPS79, FFGL09, FKI+21, GM91, GM94, GM98, GC95, GK94, GK95, GO15, Gui89, HK95, HKLS12, HW08, HXLX13, KG95, Kel96, KP97, KLP98, KR79, KR01, KRM09, LQZH14, LM95, LA14, LR99, L060, Lit91, LS87, LCL+20, Mad80, MSD19, NR12, Nyb96, OS14, PPS21, Pea90, Pea91, PQ98, PQ99, PKS18, PV95, Rey14, Rog99, Rog19a, Rog19b, SG76a, Sav90, Sav91, SMZ18, ST86, She78, SY08, Sho96, Tho13, Tho17, Ven84, WH83, Yan05, YBQZ17, YBQZ18, YKHL10, AB96, BS94c, CXLK19, CCA+12, DC94, FFGL10, HF91, KKL*99, KHI189, MSD16, MPL09, Mer90a, MZ98, MPST16, PV095, Sag85b, SP12].

Fast [Sie89, SV15b, TKH20, WWG+18, YTHC97, YZ16, ZO13, ZHC+13, And94, Bir07, Gol96].

Faster [ASM17, CRSW11, CRSW13, FCH92, LK16, McC79, Bosxx, HKL04, LS15, Sna87].

Fault [AA99, DSSW90a, DSSW90b, MKAA17, HGR07].

Fault-tolerant [DSSW90b, HGR07].

Faulty [JCK+18].

FCD [ISO97].

FCSRs [BDM+12].

Fe [Go94].

Feasibility [CJM14].

Feature [LMM07, NS16a, Som99, TWZW11, Fly92, MHT+13].

Feature-Based [TWZW11].

Filing [FC87a, DH84].

Filter [CC00, Kay15, MK11, LZ06, RKK14, RK15].

Filtered [Ahn93].

Filtering [KRML09, MK12, RCF11, YG10].

Filters [CHY93, CHY97, Kie85, LYW+18, Ram89b].
Freestart [SKP15]. French [Coh94]. French-Israeli [Coh94]. Frequency [Lyo78a, TS85, CJP12, CJP15]. Frequent [OTKH11, CH09, BMLLC+19]. Frequently [She78]. fridge [WLC20]. Friendly [ZH18, BP18]. Frontends [Sag85b]. Frontiers [Jaj90, Fis87]. FSE [Bir07]. FSpH [ZWT+14]. Fugue [AP11]. Fujiyoshida [IRM93]. Full [AC74, Bur75a, CMP07, Cor00, Day70, DOP05, KK12, LP16, LT12, LLL+16, MZD+18, Mue04, GLM+10, San76, WYY05b, WYY05c, YSW+11, ZKR08, NH74, RCF11, SKP15, QXL+20]. Full-Stack [LLL+16]. Full-Text [YSW+11, RCF11]. Function [Abil2, AVZ11, Aum09, AMPH14, BPSN96, BES83, BDM+82, BS94b, BS94a, BKST18, BRS02, Bla95, BKL+11, BDP97, CP91c, Cer81, CK83b, CN08, Cob94, CBA94, CMP07, CO82b, CDP05, DBGV93, DGV93, Dae95, DC98b, DL78, Dat88, DL80, FLS+10, GIS05, Gei95, Gei96, GSC01, GIMS11, HPC02, Har97, Hol13, HLC10, JP07, Kal01, KAS+22, KRJ09b, KCBS1, Kra82, Kus84, KKT19, LWQW08, LP15, Lis07, Li80, LG78, MR07, MRST10, MNS12, MIO89, NS16a, Oto84, PV92, PPS21, PHL01, PHG12, PBD97, GLM+10, RB01, Sch11, Sch90a, Sch91b, SYG11, Sta06a, TC93, TTY93, WW09, WSSO12, Win83, Win84, Wol84, WFW+12, YD84, Yau65, WL12, ZW+12, AKY13, ACP10, AB96, AMP15, ABO+17, API1, BGK12, BNN+10, BDPV06, BDPV12, BOY11, BS94c, BW98, CK83b, CK89, Con17]. function [DK94, DF89, DMB19, FP82, GT21, GM18, Gih91, HR07, Han17, HLO3, ITP14, KTD20, LW04, Lia95, LWG11, MJ08, Mer90a, MZ98, Mit17, Mon19, NSW09, Pat94, Pat95, PL21, PVCQ08, QJ97, RS14, SB14, SS92, Sch82b, SRR198, SHA97, SXL16, Tsa08, VNP10, VFN91, WS13, WYW14, YL97, YZ16, ZHX+21]. function-based [PL21]. Functional [LFP82, GMP95, SV18, ZKR08, Jou85]. Functions [AHV98, AFK83, AFK84, AN96, ASWD18, ÁCZ16, AA79b, AA79a, And91, ABD+16, Ano95a, AEMR09, AR17, AM07, AP08, BSN96a, BDPS97G, BCK96a, BCK96b, BR14, BBD+82, BBD+86, BG96a, BG96b, BS09, BRSS10, CFW09, BK12, Bol79, BPZ07, BHT98, BH86, Bur78, BMD91, Can97, CW77a, CW77b, CW79, CMW83, CBK83, Cer85, CBK85, CBK85, Cer87, Cer88, CS83a, CS83b, CS85c, CS85b, CS85a, CS86, Chao6b, CS87, CLNY06, CLG09, CK15, Chi91, Chi94, Cie80a, Cie80b, CE70, Coh97, CH94, HM92a, HM92b, CM93, DGV93, Dam97, Dam98, DDF+07, DK07, DY90, DY91, DTS75, Dad90, DGMP92, Die97, DGK12, EK93, EPR99, Fil02, FL08, FLP08, FL14, FGL09, FCHD88, FCHD89, FCDH90, FCDH91, FCH92, FHCD92a, FK84, G007, Get01, Gir87, GKH91a]. Functions [AHV98, GLG+2, G008, HHR+10, Hal12, HM12, HH96, HKY12, HS08, HK12b, HR04, Ind01, IT93, JO80, Jae81, Jen97, Jou04, JD12, KH84, KL06, Kn05, KP96, KLP98, KV12, LM93a, LK94, LT09, LM95, Lis07, LH03a, LLG12, Ma92, McWH92, MCW78, Mar64, Meh82, MP12, Mer90b, Mir01, MRW89, Mis02, MO10, MO11, Moh11, Mul91, NZ815, NM02a, NCFK11, NP99, NR12, NAK+15, OO12, Okt91, Pag99, PWY+13, PB80, PQ98, PQ99, PW93, PGV90a, PGV90b, PGV92, Pre93, PGV93d, PGV93f, Pre94a, PV85, Pre97a, Pre97b, Pre99, PQ89, QC89, RP91, RR08, RWSN07, Rja12, Roe94, RS08, Rui93, SP91, Sag84, Sag85a, SDMS12, SDMS15, San76, SS01, SS88a, Sch91a, SY99, Sho00a, Sho00b, Sep04, SVEB84, SD75]. Functions [Spr77, Sti06, TNS20, Tv83, Tro92, Troy95, Ull70, Ull72, WFLY04, W090, WC79, WC81, WKO78, YD85, Zem91, Zha07, Zhe90,
functions [NY89a, OS14, OS10, PW08, PW06, Pob86, PGV93a, PGV91, PGV93b, PGV93e, Pre94b, PGV94, PvO95, RB91, RFB97, RZ97, RP95, Roe95, Sar80, SS90b, ST85, SH92, SH94, SL88, SS16, Sie89, Sim98, SV06, TZ94a, Tsu92a, Tsu92b, VD05, XCCK09, YL04, YR05, Z´em94, ZW05, ZBB+06, ZDI+15, RRS06].

functions-based [HC11]. Fundamental [LYD71, LY72]. Fundamentals [HS78, HS84]. Further [Lit85, Sar15, Ano09b, DM03]. Fusion [Wil00]. Future [SP21]. Fuzzy [HWZP18, LMC07, LMJC07, LI92, HC14].

G2 [BP18]. Gallery [BFR87]. Galois [HJ96]. game [Zob70a, Zob70b]. Gamma [DGS+90b, DGS+90a, GD87, DGG+86].

Gen2 [LYDA19]. Gene [TGGF10].

General [Chl91, Chl94, DR06, ISO97, LW88, LQH18, LHC05, Lum73, MSD19, MSD16, Sch91a, Sim98]. general-purpose [Sch91a]. Generalised [CC87, KKW99, LPWW06]. Generalized [HB94, KVK12, LI80, SK88, Sev74, KHK10].

generalizing [AMP12]. Generate [HSR+01]. Generated [LMC07].

Generating [Bla95, CT96, CHM92a, CHM92b, Get10, Jae81, Sag84, Con17, FP82, GRF11, MFK+06].

Generation [GRZ93, LL92, MS12, She91, SSS05, Wan14, BK07a, BDK16, BK88, CCA+12, CT10, KKP92, Mo92b]. Generator [Ano86, BK12, Cai84, Gui89, Sag85a, Sch90a, ZF06, Aam03, CLS95, HC11, SS92, TS98, VZ12].

Generators [MWCH92, NAK+15, SP91, BK07a, CP13].

Generic [BDG+20, DL17, DOP05, MP12, Sar10].

Genetic [FFFG07, HSIR02, CV05]. Genomic [CCH09]. genus [CD80].

Geo-Tagged [ZWH17]. Geographic [RRS12]. geohash [MKL21, BSH12].

Geometric [Bar97, BG92, Bie97, BM90b, CO82a, GPA97, HB89c, HB94, KHK12, LW88, LMC07, LMJC07, LI92, MV02, PW94, RH92, RH95, RW97, SA97, Tsa94, Tsa96, WPKK94, War86, WR97, BJKS93, BJKS94, GG92, JWK11, LG96, MN99, MMG10, WC94].

geometries [FH15]. Geometry [CC89, MPP14, Wil00].

Germany [AH03, BRW93, HM08, adHMR93, Yao78, CE95].

Gestion [Lit77b].

Gigabytes [WMB94, WMB99].

Girths [Zem91]. Give [AT93, AT90].

Global [CLP13, CLI95, DL79, LPSW03, MD97].

Globally [HSW88].

GNU [Wil14]. Go
Goddard [Fis87]. Goes [Cip93].

Gold [SZ93]. Gone [Nic17]. Gong [BPSN97]. Good [Bur92, Hol13, JP07, Lom88, Mit02, ADM+97, Kou93].

Goodyear [Fis87]. GORDION [EE86]. gossiping [GHW07]. GOST [LJF19, WYW14]. GPERF [Sch90a, SS92].

GPU [ASA+09, FRB11, HLH13, LC20, LLA15, MZD+18, TWL+18]. GPU-based [TWL+18]. GPUs [CZL12, vdBGLGL+16].

GRAB [Les88]. GRACE [KTMO83b, KTMo83c, KNT89, KTN92]. Graduate [Ano93d]. Grained [PAKR93, KLSV12].

Gram [Ven86, Coh98]. Grams [BRM+09, Coh97]. granular [CLS12].

Graph [Ari94, BMQ98, EFMRK+20, Gre21, Hal12, HM93, JBWK11, KM88b, MD97, MBBS12, NRW90, TI12, YkYW83, YkWY83].

Graph-Based [Hal12, JBWK11]. Graph-Entropy [Ari94]. graph-structured [BPT10, WLLG08].

Graphischen [Lut88]. Graphs [CLG09, HMWC94, KPS92, Knu98, Zem91, AD08, AAB+92, AS07, DW03, FGFK10, HK83, Kut06, LL13, SN19, Z´em94].

Gray [CLD82, Fal85a, DL80, Fal86, Fal88].

Greek [ACM01, AMSM+09, Rei88].

Greedy [WTZ+13, AGJA06]. Greenbelt [Fis87]. Grenoble [vdHvH12]. GREYC [AGBR19]. GREYC-Hashing [AGBR19].

Grid [Gri98, KS88b, KS88c, Leb87, NHS84, Reg85].

Grindahl [KRT07, Pey15]. grosser [Dos78a].

Groestl [ABO+17, ITP14, MRST10, WFW+12].

Groestl-0 [ITP14]. Group [ACM82, Alb21, DTS7, DD11, KKW99, LND08, Mue04, TZ94a, YLZ20, SE21, YLC+09].

Groups [HM12, LL10, PWy+13, Reg82, CFYT94]. growing [KW94, MSZ+20]. Growth [Oto88a, Rey14]. Guangdong [IEE11a].

guaranteed [RT89]. Guaranteeing [LK84]. Guarantees [HC13]. Guess [ZF06].

Guess-and-Determine [ZF06]. guest [DLM07, Fox91, RW97].

Guide [AS82, SD76, She17]. guided [SSU+13].

HAIFA [DL17]. Halifax [DSZ07a, DSZ07b].

Hamiltonicity [CKN18]. Hamming [Bal96, Bal05].

HANA [SFA+19].

Handbook [Gon84, GBY91]. handle [Eug90]. Handling [BI87, DNSS92, Lar85b, QCH+81, Sam81, Sch79a, Wil59, WB03, ZO93, TWL+18].

Handwriting [MS12].

Hans [Sta18]. Haphazard [CS87].

happened [Her07]. Hard [Hol13, Kil01, BDK16, BCGS16, GPV08, LSZ+21, Nae95].

Hardness [BHKN13, BHKN19].

Hardness-Preserving [BHKN19].

Hardware [ABM06, ARH+18, Bab79, BPBBL12, Bur81, Bur84, CHSC18, DW83a, FAFK21, FW09, GD87, GLG+02, HDMC09, IG77, MVL+12, RP01, TK85, dW83b, ABO+17, BOY11, Bis12, Bur82, CE95, DSO9a, FNP09, ISH+91, JMH02, KM07, KM10, MZ19, RFB97, RAL07].

Hardware-Based [HDMC09].

hardware-constrained [RAL07]. harmonious [HK83]. HarPF [PT11b].

Harrison [Boo73]. Harvesting [AS16].

HAS-V [PRL01].

Hash [ANS07, Abi12, Ack74, Adi88, AHV98, AFK83, AFK84, APV07, AOAAK20, AN96, AVZ11, AK74, ABD+16, Ano93b, Ano95a, Ano95b, Ano95d, Ano02, Ano08, Ano12, AG93, AM16, Ari68, Ask05, AEM09, AR17, AM07, AP08.
NY85, NAK+15, OL91, Omi88, OL89, Omi91, OL92, Ore83, Oto86, Pag99, Pag85, Papv08, Pwy+13, Pcl93a, PV92, Pps21, PfM+19, Ptt16, Pcy95, Phil01, Plks07, PV07, Phg12. **Hash**

[Pbbd95, Pg95, Prk89, Prz99, PW93, Pip94, Pla98, PgV90a, PgV90b, PgV92, Pre93, PgV93d, PgV93e, PgV93f, Pre94a, PgV94, PV95, Pbbd97, Pre97a, Pre97b, Pre99, Pre94c, Pro89, Qg89, Qc90, Ram88a, Rrs06, Rro8, Glm+10, Rrs12, Rjk79, Rey14, Rwsn07, Rs12, Rgs9, Rbo1, Rhm09, Riv76, Riv78, Rja12, Rnr13, Roe94, Rs08, Rmb11, Ros06, Ros70, Ros21, Rot98, Rk91, Rul93, Sp91, Sag85a, Sdms12, Sdms15, Sd78, Sam81, Sso1, Sch11, Sss80, Sss88a, Sch90a, Sch91a, Sch91b, Sch93a, Sv94b, Sch79b, Sbs16, Sg16, Sgy11, Sw91, Sx80, Sry99, Sc98, Sho0a, Sho0b, Sie04, Sm02, Sk05, Sweb94, Sol93, Som99, Spsp16, Spe92, Sta94, Sta06a, Sti06, Skm01, Sz82, Szy85, Tt10, Tr02, Ty91, Tns20, Top92, Tp95, Toy93, Tso15. **Hash**

[Tntk92, Tsuz29a, TsP+11, Van92, Vd21, Vafu92, Vau93, Vb00, Wx01, Wfl94, Wllg08, Ww09, Wjz510, Wss012, Wbwv16, Web72, Wei88, Wc79, Wc81, Wkb07, Win83, Win84, Wkg08, Woe06b, Wdy91, Wy93, Wlo84, Wu05, Wfw+12, Xn+15, Xbh06, Yunw90, Yun85, Yds09, Ydr5, Yan05, Ysw+11, Yt16, Yao05, Ysl05, Wl12, Ylb90, Yen91, Yz00, Ycr93, Yy07, Yy01, Ylzz20, Ysle09, Ykhl10, Gzh0a, Gzh0b, Ze91, Zem91, Zem94, Zha07, Zly+12, Zzm17, Zjm94a, Zjm94b, Zjm94c, Zqsh12, Ze90, Zfm91, Zo93, Zlc+12, Zw+2w, Zuk21, Zhz+19, v4W9, van94, vdbglgl+16, vdvl12, Ay14, Aab+12, Ataks07, Aky13, Acp10, Adm+99, Ag10, And93, Ab96, Amp12, Amp15, Aagg16, An20, Ar12, Az10, Ab0+17, Ati20, Ap11, Bgkz12, Bsn96b, Bsn96c, Bak09, Batx13, Bcl12, Blp+14, Bnn+10, Bj07, Bdx92, Bvt13, Bcr04].

Hash [Bfcj+12, Bdpv06, Boy11, Bjk93, Bjk94, Ble95, Bs94c, BsU12, Bcg16, Bra09, Bht97, Bm01, BgG12, Bur76a, Cmr98, Cvr14, Cfn18, Ckb81, Ckb83a, Ckb9, Cd84a, Cagm07, Chs+18, Cchh08, Cj15, Cm01, Clw98, Cl09a, Cl09b, Cls18, Cdh19, Con17, Dk94, Df89, Ds09a, Ds03, Ds09b, Easr22, Esri14, Fxw+17, Fps17, Fji13, Ffgl10, Fps+05, Hc89, Hcld92b, Fro81, Fh15, Gt21, Gbt7, Gkkt10, Gm18, Gb91, Gs94, Gob75, Gpg016, Gon95, Glc08, Gm79, Gk12b, Hks6, Han17, Hll18b, Hll18a, Hak+16, Hll13, Hcl14, Hlmw93, Hxmw94, Hkk13, Hsk88, Hkw05, Hylt99, Hl12, Hlo3, Hcw+21, Hxl13,Iso97, Itp14, Jfd09, Jh15, Jcco00, Jg95, Kkp+17, Kha95, Kst99, Kjl95, Krt07, Ktd20, Ktk10, Kra95, Kri89, Kcl03, Ku04, Kcc05, Ls07a, Llh02, Lky04, Lw04, Ll11. **Hash** [Lm12, Lpsw03, L95, Lvd+11, Lwg11, Ls06, Lcl13, Lcry93, Lg78, Lhnh02, Llj15, Msz+20, Mad80, Mtbo0, Mmc01, Msd16, Mv91, Ms90, Mj98, Man98, McK99b, Mr+19, Mer90a, Mzk12, Mic02, Mz98, Mv08, Migt17, Mon19, Ma15, Mpst16, Ms82, Ms13,Msp12, Mm synerg, Mt16, Mfes04, Nae95, Nady90, Ny89b, Ny89a, Nk16, Ntw09, Orx90, Os14, Omi89a, Ot89, Os10, Pcl93b, Pck95, Par18, Pat94, Pat95, Pcv94, Pp16, Pl21, Pvcq08, Pw06, Pg93a, Pg91, Pg93b, Pg93g, Pr94b, Pvo95, Pro18, Pss09, Qp16, Qj97, Ram87, Rp95, Riv74a, Rs14, Roe95, Ron07, Sb95, Sb97, Splhcb14, Sb14, Sar13, Sn19, Sar80, Ssc90, Ssc92, Sv95, St85, Sh94, Se21, Ssc06, Sr08, Shr09, Sio98, Sha97, Sp98, Sv15a, Sv15b, Sv18, Sd95, Sx16]. **Hash**

[sv06, tkh20, Tco4, Tz94a, Tmw10, Tsa08, Tsuz29b, Tm02, Uht95, V05, Vnp10, Vfn91, Wg00, Wm93, Ws13, Wyy14, We66, Wl03, Wl14, Woe06a, Wog9, Wv02, Wtn07, Wtn09, Xcck09, Xcck09,

HAShCache [PG17]. Hashcash [Bac02].

Hashcodingverfahren [Sta73]. Hashed [GJR79, GG74, HYKS08, KS12, LI80, MF92, Mul72, SVC01, VL87, VL97, WS93, WM19, And88, GMW90, HSM91, Ken73, War14].

Hashedcubes [PSSC17]. Hashes [BC08, Saa12, Sch01b, Sch01a, Wan14, GvR08, GP08, GPNP05]. hashfunctions [PBGV89]. HashGraph [Gre21].

Hashiguchi [LP04]. Hashimoto [SSa01].

Hashing [ACP09, Ahn86, Ahn87, Ahn93, AKS78, AAE+14, Alb21, Ald87, Ald88, GMW90, HSMB91, Ken73, War14].

Hashiguchi [LP04]. Hashimoto [SSa01].

Hashing [ACP09, Ahn86, Ahn87, Ahn93, AKS78, AAE+14, Alb21, Ald87, Ald88, GMW90, HSMB91, Ken73, War14].
DMV04, DJSN09, DadH90, DadH92, DDKM+94, Die96, DH01, DS09c, DMR11, DLY08, Dit91, Dod82, DHL+94, DHL+02, DMLH09, DSSW90a, DR11, Dre17b, Dre17c, DL80, DTM99, DT91b, DT75, Dum99a, Dum99b, EFMRK+20, Ell83, Ell85a, Ell87, Ell88, ED88, FNS97, Fal85a, FM96, Far14, Fel87, FNS992, FGK10, Fla81, FS82, Fla83a, FPV98, Flo87, FPS13, FT12, FFGO07, FMM09, FMM11, Für88, GSS01, GL73].

Hashing

[GM91, GM94, GadHW96, GM98, GIM99, Gon80, GL82, GL88, GRZ93, Gon80, GL82, GL88, GRZ93, GK76, GI77, GT80, Gra86, GPY94b, Gre95, Grie77, Grie79, GT93, GPA97, Gui75, GS76, Gui76a, Gui76b, GS78, Gui78, GS80, GH07, GZX14, Gur73, HB89a, HB92, Hac93, HSPZ08, HT01, HR14, HM96, HK12a, Ham02, Har71a, HCF95, Hea82, Hea72, HB89c, HB94, adH90, adH93, Hel89, HST08, HNS84, HSM95, HK02, HY89, HYH03, Hol87, HC87, HT88, HY86, HTY90, HSW88, IK05, HH95, Jae92, Jae81, Jag91, Jai89, Jai92a, Jai92b, Jaixx, Jan08, JV16, JP08, JYHT09, Jol97, JCK+18, Kab87, KGB18, KU88, KK11, KV99, KGJG12, Kaw85, Kaw15, Ke93, KR86b, KR86a, KV91, KMW08, KMW10, KZ84, Kno75, KP97, Ku819, KM86, Kon10, KM88a, KP94, Kri84, KSS86, KSS87a, KSS87b, KSS88b].

Hashing

[KS89b, KR01, Kum89a, Kum90, Kut10, LW88, Lar78, Lar80a, Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Lar83, LR85, LR85b, Lar85c, Lar85b, Larxx, Leb87, LMC07, LLK14, Lep98, LC20, LC88, cLmL07, Li15, LCLX19, LCM94, Lia95, LLZ10, LLL11, LLL17, LRY18, LRY80, LNM3, Lit91, L180, Lit78, Lit79b, Lit80, Lit81, Lit85, LSL88, LSV89, LRLW89, LRLH91, Litxxa, Litxxb, LC12, LZ16, LWZ+18, LH02, Lom83, LPP91, LPP92, LM93c, LH03b, LSZ+21, Lyo78a, Lyo83, MLHK17, Mac95, MD97, MSW19, MWHC96, Man12, MK11, MNT90, MB03, MBBS12, MV88, MV90, MV91b, MW09, MHB90, MSSWP90, Men82, Men12, Mey93, MV01, MV02, Mit73, Mit90, MH00, Moh90, Moh93, MN98, MWC12, Muls84a, Muls84b, Muls85, MS88b, Nak21, NSW08, NRW90, NI83, Nyb96, OWW14, OTKH11].

Hashing

[OG94a, OG94b, OOB12, OOB17, OVY94b, Otk91, Oto84, Oto85a, Oto88b, Oto88a, OTO91, OSR10, Ouk83, OS83a, OA89, OS83b, PR01, Pag96, PP08, PWY14, Pag18, Pal92, Pan05, PB80, Pap94, PV07, PT12a, PH73, Pea90, Pea91, Per73, Pes96, Pet13, PNPC20, PS93, PQ98, PQ99, PKW09, Pip79, Pit87, PM89, PVM94, PVM97, PV19, PT11b, PRM16, PKSB18, PS12, PACT09, PF85, PADDY93, PW94, Qui83, RT87a, Ram88b, RL89, RP91, RR92, Ram92, RL82, RLT83, RSD84, RSD85, RSS89a, RSS89b, RSD90, RSD92, Ram97, RGNMMP12, RLL91, Reg81, Reg82, Reg88, RRS12, RH92, RH95, RW97, Rob6b, Rog95, Rog99, Rog19a, Rog19b, RS75, RST7, Ros77, Rou9, RT87b, Russ2, Rus93, Russ95, SDR83a, SNBC98, SN05].

Hashing

[Sag84, SY11, Sas11, SG76a, Sav90, Sav91, Sch79a, SD90b, SD90a, Sch91b, Sch93a, Sch81, SM18, SY91, SR98, SPW90, SY+20, SB93, SSL8+20, SHZ8+20, SY08, Sho96, SR01, SSS5, SD75, Spr77, SHRD09, SGGB00, St194a, Stud5, Sun15, SHF+17, SA97, Tam81, Tam82, TK88, TC93, TL95, TWZ811, TYZ015, THY+18, TCY+20, TI12, TW07, TK85, TQZ12, TTY93, TQZ4b, Tv83, Tor84, TK07, Tro92, Tro95, Ts96, US09, Ull10, Ull2, VV84, VV86, Vek85, VP96, VP98, Vit80b, Vit80c, Vit81b, Vit81a, Vit82b, Vit83, VC87, WG00, WP9K94, War86, WFHC92, Wee07, Wee12, WPS+12, WSZ+16, WFT12, WP0, WPD+12, WS03, Wil96, Wil00, Wil79, Wil71, Win90b, Win90a, Woe01, WR97, WZ93, Wu84, YDT83, YWH09, Yao80, Yao85a, Yao85b, Yao91, Yas07, YB95, YTJ06, YBQZ18, YGC+12].

Hashing

[YD86a, ZYW21, ZZZ21, ZPS90, ZPS93a, ZWH21, ZLC+20, ZH18, ZH19, dW83b, vD6d4, vMG12, AT18, ASI17]
ASA+09, ADM+97, AI08, AI89, AT90, BG93, BL89, BGH+13, BBPV11, BD82, BG94, BDPV14, BDK6, BMQ98, BCGS16, Boo72, Bosxx, BT89, BCC10, Bur05, Bur82, BMLLC+19, CP91b, CP95a, CHK 12, CS93a, CW93, CJS93, CP95b, CV83a, CCL91, CHL07, CLL+14, CWCL10, CKK09, CZL12, CR89, CP13, CO82a, CHM97, Cze98, Dam94, DM03, DOP+14, DKM+88, DVM+91, DHW08, DS99b, D+92, DLH13, DSW90b, DK12, DLN+18, Duc08, DM11, EH17, EBD91, Fal86, FWG18, FSV09, FFS+13, FNS88, FKI+21, GLHL11, GG92, GDGK20, Gib90, GW94, GM77, GLJ11, GS89, GRF11, GPY94a, GZ99, Gui76c, Gup89, HB89b, HDCM11, HKL07, HR93, HM93, HMWC94, HL05, HC02].
High-bandwidth [AS09].
High-Dimensional [AEP18, TYSK10].
High-error [Rön07]. High-Performance [DS97, Flo87, IEE94c, She91, MKL21, ZHW19, Shi17]. High-Speed [KMM+06, KMY10, McK89a, YNKM89, McK89b, RV07, EVF06, SLC+07, SXLL08, TLLL07, XMLC11]. High-Throughput [LPT12, XLZC14, MAK+12]. HighEnd [LVD+11]. Higher [HKKK13, DH84]. Higher-order [DH84]. Highly [BCS09, KHW91a, Mat93, PAKR93, KHW91b, ZLL+07]. Highly-Associative [KHW91a, KHW91b]. Highly-Efficient [BCS09]. Hill [IEE88a]. Hilton [ACM91c, PDI91, ICD88, ICD90, IEE90, IEE01]. Histogram [Gra93b, MNY81, PCK95, UHT95]. Histogram-Driven [Gra93b]. History [BG07, MNS07, NSF08, Reg82, NT01]. History-Independent [BG07, MNS07, NSF08]. Hitter [TP15]. hitters [Ind13]. HMAC [FIP02a, BCK96b, CY06, DRS12, MAK+12, RR08, Sta99]. Hmap [YTHC97]. Hoc [DPH08, JHL08, Cha12]. Hole [JHL08]. Holistic [LCM+20]. Holographic [BGF88]. Homepage [GCMG15]. Homomorphic [CFN18, KKN12, CZLC12, MT16]. Honolulu [De03]. Hood [CLM85, Cls86, CLM86, DMV04, PV19]. Hop [RHM09, MA15]. Hopscotch [HST08]. hostile [LC95]. hot [KLL+97]. Hotel [ACM75b, ACM82, ACM83a, ACM83b, ACM85a, ACM87, ICD86, ICD87, IEE88a, IEE88d, IEE01, Kna89, Nav85]. Hotspot [JLL+20]. Hotspot-Aware [JLL+20]. Hough [HB89c, HB94]. House [IEE80a]. Houston [IEE76, IEE94a]. Houthalen [QV89, QV90]. Hover [EH12]. HTM [CCW+17]. HTML [UCFL08]. HTTP [DB12]. Human [Bor81, TCW+13]. humanities [Bai81]. Hungary [Rue93]. Hwang [KCL03]. Hyatt [Kna89]. Hybrid [BM89, BM90a, CBB05, Gra93a, Gra93b, Gra94a, JLL+20, KNT89, GHG+12, LLL11, Sch79a, TYZO15, PCV94, TST81]. Hybrid-Hash [BM89, BM90a]. Hypercube [OL91, OL92]. hyperelliptic [FFS+13]. hypergraph [KKP+17]. Hypergraphs [FP10, HMWC94, Rad92]. hyperspace [DOP+14]. hypersphere [LWWK20]. I-cloth [TWL+18]. I/O [MMC01, Vit85]. IB [CZLC12a]. IBE [Zha07]. IBM [Dit76, Dit76, MS02]. IBM/360 [Dit76, Dit76]. ICALP [AGK+10, ADG+08, AMSM+09, ACJT07, CIM+05]. ICCI [AKF90, KLT92]. ICDT [AA86]. Iceland [ADG+08]. ICICTA [IEE11a]. Icon [GG86b, GT93]. ID [ZJ09]. ID-Based [ZJ09]. Idea [Gra94b, HL03, WPS+12]. Ideal [Lis07]. identical [Lia95]. Identification [MV01, ST86, CJ12, CJP15, GS94, IG94, LW11, WWG+18]. Identifier [BHS12, Sev74]. Identifiers [DB12, Wil59]. Identifying [ASWD18]. Identity [CZLC12a, CZLC12b, CZLC14, KM92, LXY+19, Cho21, ZYYW20]. Identity-Based [CZLC12a, CZLC12b, CZLC14, LXY+19, ZYYW20]. IEEE [ACM04, Col93, IEE80a, IEE88a, IEE92a, IEE01, IEE05, IEE06, IEE07, IEE10, IEE11b, IEE13, MS05, Yan10, IEE84]. IEEE/ACM [ACM04]. IFIP [Gil77, Ros74]. Igniting [ACM03b]. II [BS91c, Sch93a, Sch93b, Sch93c, Van92, Vau92, Vau93]. III [Nol82b, OK80, Sed83a]. Illinois [ACM88b, ABM06, BL88, Lom93]. im [DS84a, Wal74]. IMA [Boy95b]. Image [Alb21, Ano95c, BFMP11, BS94a, BI12, DCM18, DHT+19, DR11, GPA97, GH07, HW08, LKI10, LQZH14, Li15, LÓN01, LC12, LKY+13, LH20, MV02, OSR10, RGNMPM12, SB97, TWZW11, THY+18, US09, WP10, WDP+12, ZWH17, ZYWM20, HC11, LMLC14, Mt12, SB95, TCW+13].
TLZL16, XZPG21. image-keyword [LMLC14]. Images [FLF11, MNY81, PKW09, RT81, SSaS01, WMB94, WMB99, GG92, LMLC14].

Imaging [FHMU85]. Imai [PGV93a, PGV90a, PGV93b]. imbalance [WZ12]. immutable [SV15b].

Impact [GD87]. imperative [NMS+08]. Imperfect [Ven84]. Implement [CL83].

Implementation [BCS89, BS94b, BGDW95, Dat88, DF89, DKO++84b, DKO++84c, DKO++84d, Dee82, Dev93, Dit76, DT75, EE86, EjKMP80, FW09, GG86b, GT93, Gro86, Har71a, Hek89, ISK++93, JD12, Kahl92, KMM++06, KU88, KM92, KR86b, KR86a, KKRJO7, KRJO9b, KTN92, LK84, Lit79b, LPP92, NM02a, PRM16, SDR83a, She91, SK05, Sto82, TGL++97, TNKT92, VL87, BDP++12, BS94c, BW92, DS09a, DHWO8, DM11, EBD91, GN80, GJM02, Inc81, IIL17, KU86, KKL++09, McD77, MZI98, MFES04, Tai79, MKL21, Dit76]. Implementations [GLG++02, Vit82b, WPKK94, WZJS10, DMP09, RAL07]. Implemented [CMW83, MRL++19].

Implementierungstechniken [Nee79]. Implementing [Bab79, Bh95, BJM14, GHJ++03, Gra86, Jun87, KHR91a, KHW91b, Lin96, Llo81, LB07, VL97]. Implications [Chr84, CHS++18, RAD15]. Implicit [OS88, Kor08]. Impossibility [BCS09, HM12]. Improve [LB3J02, BM01]. Improved [Art94, BVT13, MB08, Bli08, Bre91, CN08, DDS14, DL17, FB87, HSM95, HW88, JNP14, KM86, Kut10, LW04, LJF19, KKM10, LH04, Mau83, Mic02, Mul72, NSS++06, Nak21, PS12, Rad92, RP95, SS80, SD95, TK17, UIY10, WM91, GM77, Mau68, War14, ZW05]. Improvement [CH94, Fel87, LCM++20, RGNMMP12]. Improvements [CTZD11, Lev00, Nam86]. Improving [ATAKS07, AVZ11, BDS88, CHY93, CHY97, CAGM07, Cla77, DB12, GCMG15, JHL++15, KZH19, MS12, RT87b, Sch82a, TCP++17, YWH09, ZGG05]. Impure [Dee82]. In-Bucket [TYZO15].

In-Memory [CCW++17, JLL++20, MZL++19, QXL++20, ZHW01, WLC20]. In-Network [WBWV16]. Inaccessible [HHR++10].

Inadequacy [GY91]. Includes [FW76, FW77]. Including [DGV93, KL95].

Incoming [LK07]. Incompatibilities [KCF84]. Incorporating [CBA94].

Increased [PRM16, MSP12]. Increment [Ban77, Lue72, RKK14]. Incremental [BGG94, CT12, FRB11, GSC01, ISHY88, PW06, TWL++18, UIY10]. Incrementality [BM97]. incrementalization [SB07].

Indeed [Yas07]. Indenitify [KCF84]. Independence [KW12, PPR09, PT16, Tho13, DT14, PPR07, PT10a].

Independent [BG07, CCGJ91, DGD02, DTS75, Die96, Ind01, MNS07, NSW08, TZ12, BCGS16, FPS17, Han17, NT01]. Independently [AU79]. Index [BM89, BM90a, Buc82, Bur83b, Bur83c, DS84a, GPy94b, LC86a, Lom83, MZL++19, OL89, Oto85b, Qu83, TY91, Wil79, ZHW19, Bur83a, Fro81, GPy94a, HM03, KZ19, LCH++14, McD77, SWQ++14]. Index-Based [OL89, TY91]. indexable [RRS07].

Indexed [Chu91, Chu92, KHT89, Mul72, GB17, SN19, Tay89, WM93, TK199].

indexed-hash [WM93]. Indexed-Sequential [Mul72]. Indexes [Les88, Omi89b, Pip94, WC++22, FVS12, HCW++21].

Indexing [CJ86, Dum56, KGJG12, Li15, Llo81, Per73, SE89, Tor84, WJ09, WMB94, WMB99, YWH09, CXLK19, CW010, Fb92, LG96, MSZ++20, MIGA18, MMG10]. India [RRR99]. Indiana [Van10]. Indianapolis [Van10]. Indicator [YD84]. indicators [Er86]. Indices [LR99, Val87].

Indifferentiability [CN08, LLG12, MPST16, BGKZ12, BDPV08, GLC08]. Indifferentiable.
BGH12, CLNY06, FFS+13, FT12, BGH+13.

Indirect [Bal96, DGGL16, Joh61].

Indirectly [Ols69]. Individual [Jan05, Jan08, Vio05]. Induced [de 69].

industrial [PGV93c, ARA94]. Industry [ANS05]. Infeasibility [FS08]. inference [NMQ22].

Infinite [GHK91a, GHK91b, LII92, Bra09]. infinity [Hil05]. inflate [NMQ22].

Influence [RTK12]. INFOCOM [IEE01, IEE92a]. Inform [Pro94]. informal [CK89].

Informatics [CHK06]. Information [PDI91, BV89, BIP92, Can97, Cha84a, Dan13, DSSW90a, ELL82, FC87b, FH69, FCDH90, FCDH91, GPY94b, ISO97, ISO04, KLT92, KM86, KM88a, LC06, LXL+19, MV01, MNS07, PGV93f, SKC07, SPSP16, SC77, Sta06b, Sun15, Vid90, WBWV16, XHZ+19, Yan10, YRB7, YBQZ17, AFK90, DSSW90b, GPY94a, KSC11, KSC12, SG72, SXLL08, FNY92, FBY92, Gil77, Ros74].

Information-Based [SKC07, KSC11, KSC12].

Information-Centric [SPSP16, WBWV16]. Information-Theoretic [Sun15, SXLL08].

Informix [Ger95]. Infrastructure [MJ14, Nak21]. Infrastructure-free [MJ14].

ingestion [CXLK19]. Ingres [Sne92]. inheritance [DM09]. Inhibiting [GAS+16].

Initial [vDP72]. Initiative [MO92a]. Injection [CFK11]. Inner [PWY+13].

Innesbrook [IEE88b]. Innovation [ACM03b]. Innovative [OG94b].

Input [AB12, Sab94]. Insecurity [DOP05]. insensitive [CyWM91]. inserting [Gup89].

Insertion [FPS13, PS12, CV83a, Jan05, Kon93, PY88].

inside-out [AP11]. Insight [CQW08, IEE02]. Installation [LAKW07].

instance [FS08]. instantaneously [DV07].

Instantiated [RR08]. Institute [Ano93d].

Instruction [B ¨OS11, SS83].

instrumentation [Ano86]. Integer [Ano86, Die96, MV90, MV91b, Woe01, Woe05].

integers [BCS89, Han17]. Integral [LJF19, Rog19b]. Integrated

[DGKK12, PG17, NM02b]. integrating [ATAKS07].

Integrative [LLDZ18]. Integrity [CLS12, Scho11b, Scho1a, Wil96].

Intel [JHL+15]. Intellectual

[DGKK12, IEE88a]. Intelligence [Kak93, Luh58, ARA94, LLC89].

Intelligent [IEE11a, LJW+17]. intensify [HL12].

intensive [Shi17]. inter [Kos14].

inter-system [Kos14]. Interacting [LLW10]. Interaction [ZLY+12, Bor81].

Interactive

[CBK83, Cer85, CBK85, Dam93, Dam94, Dos78b, GK94, GK95, HR14, KG95, MS09, OVY94a, OVY94b, Rads3, Wee07, RWSN07, RW73, TCW+13, TWL+18, MS09].

Interconnection [Fah87]. Interest [ACM82, DT87, OSR10]. interesting [VNC07]. Interface [Vit85, WGM88, Bor81].

Interfaces [DCW91]. interleaved [RH90].

Internal [GL82, GL88, ITP14, LC88, Wil59].

International

[ACM81, IJW89, PDI91, ACM94b, ACM11, ACM12, AGK+10, ABB93, ABM06, AFK90, ARA94, VLD82, Ano89, Ano93c, AV89, AAC+01, A+90, AIOW11, AOV+99, AA86, Bai81, BD88, BDS88, BV90, BIP92, Be00, BBD09b, BJ94, BRW93, BL88, BF89, Bri92, Br93, BW92, BD08, BJ93, CG80, CLM89, Cop95b, DG69, DSS84, DSZ07a, DSZ07b, DJRZ06, DJNR09, FNY92, FMA02, Fra04, Fre90, GMJ90, Gol92, GSW98, HB93, HL91, IEE80a, IEE84, IEE85b, ICD87, IEE88a, IEE88d, ICD88, IEE88b, ICD90, IC91, ICD93, IEE94a, IEE95, IRM93, JBJ94, JY14, Ker75, Kna89, KLT92, Kui92, LC06, Lak96, Las87, LCC11, Le95, Lie81, LS89, LT80, LSC91, Lon93, MK89, MSDS90, Mo92b, Nav85, Ng79, Pat90, PSS95, PV85, PK98, QG95, RK89, RNT90, ST83a, ST83b, SP90, Sho05, SW94b].

International [SW94a, SC77, Sti93, Sti94c,
July [IJW89, ACM91c, ACM94b, ACM01, AGK+10, ADG+08, AMSM+09, Ano95c, ACJT07, dBvL80, CIM+05, Coh94, DQG96, CTC90, Kui92, Lak96, Lev95, NS82, Oxb86, Pat90, Rei88, vdHvH12]. June [ACM84a, ACM03a, ACM07, ACM11, ABM06, BDS88, BV89, BIF92, BRW93, BL88, BF89, FMA02, Fre90, Van10, HF13, IEE05, LL08, LS89, MS05, Ng79, Rei88, Sch82a, St92, Vau06, vL94].

June

Just [Yas07].

JVM [SV15b].

k-ary [Gui76c]. Karlsruhe [HM08]. Karp [GBY90]. Karp-Rabin [GBY90].

Katapayadi [Ram97]. Katholieke [BBD09b]. KD [KHT89]. KD-Tree

KDL [PSR90]. KEL [PSR90]. Keccak [BDPV09, BDPV12, DDS14, LL14].

KEM [KHT89]. KD-Tree [KHT89]. KDL-RAM [PSR90].

Keccak [BDPV09, BDPV12, DDS14, LL14].

KEM [KHT89]. KD-Tree [KHT89]. KDL-RAM [PSR90].

Keccak [BDPV09, BDPV12, DDS14, LL14].

KEM [KHT89]. KD-Tree [KHT89]. KDL-RAM [PSR90].

Keccak [BDPV09, BDPV12, DDS14, LL14].

KEM [KHT89]. KD-Tree [KHT89]. KDL-RAM [PSR90].

Keccak [BDPV09, BDPV12, DDS14, LL14].

KEM [KHT89]. KD-Tree [KHT89]. KDL-RAM [PSR90].

Keccak [BDPV09, BDPV12, DDS14, LL14].

KEM [KHT89]. KD-Tree [KHT89]. KDL-RAM [PSR90].

Keccak [BDPV09, BDPV12, DDS14, LL14].

KEM [KHT89]. KD-Tree [KHT89]. KDL-RAM [PSR90].

Keccak [BDPV09, BDPV12, DDS14, LL14].

KEM [KHT89]. KD-Tree [KHT89]. KDL-RAM [PSR90].

Keccak [BDPV09, BDPV12, DDS14, LL14].
Large-Grained [PAKR93]. Large-Scale [GGY +19, GLLL17, Li15, MEK +14, SHF +17, GLLL21, CML +13, Kos14, SXLL08, FES09, FHCD92b, GC95, LY72, MSK96, Shi17, TBC +15, Yao78, YMI89, ZZLZ21, CML +13, Kos14, SXLL08, FES09, Shi17, TBC +15, Yao78, YMI89, Zha19a].

Last [PM89, KR19]. Last-Come-First-Served [PM89].

Latency [QXL +20, Sam81, SL16, WY00, KLSV12, LDK12, ZGG05]. Latency-sensitive [WY00]. later [Roe95].

Latin [CHK06, DMPP06, CHK06]. Lattices [KV09, LYY +18, LYX +19, GPV08]. lava [McN03]. laws [AK09]. Layer [YSEL09]. Layered [Man12, ZC12]. Layers [SDMS12, SDMS15]. Lazy [AHS92, BJMM94b, BJMM94a, CF92, Hug85, KV91, MV86, MSV87].

LCCR [Cer85]. LCFS [PV97]. Leakage [NTY12, ZM17]. Leakage-Resilience [NTY12, ZM17]. Leakage-Resilient [ZM17].

lean [SV15b]. Learn [McC79]. Learned [CW92]. Learning [CK94, GK95, KGC9, KKC12, KRJ +80, LQH18, LLZ10, Val15, Wan84, BC06, SZO +20]. Least [OG94b].

Lecture [Dev86]. LEDA [MN99]. Lee [KCL03]. Leftover [DSGKS20].

Leistungsanalyse [Kue82a, Kue82b]. Leitmotiv [Kah92]. Lemma [DSGKS20].

Lemmas [KMG]. Lemmatized [DS84].

Length [Dit91, Gou81, KLP98, HK94, Lit91, MF92, Men12, Mit73, PHL01, Pea90, Pea91, Sav90, Sav91, ZPS90, ZPS93a, GS94, KL95, LLJ15, Men17, ZPS93b]. Lengths [Bra84a, Bra85, Bra86].

Less [DH01, GKH98, HK912, LK16]. Lett [Pro94].

Letter [BB34, CS85c, CS85b, Cha85, CL86, Cha86a, CW91, CO82b, JCC85a, TL95, Tr95, Wan05]. Letter-Oriented [CS85c, Cha86a, JCC95a, TL95, CL86, CW91, Wan05].

Leven [BB90b, BW92, PV93]. Level [CJC +09, ZWH19, BGG12, DAC +13, HL94].

level-set [BG12]. Levelled [LR +15].

leverage [IEE88a]. leverage/COMPCON [IEE88a]. Lexical [CRdPHF12, ISHY88]. lexically [FF90]. lexicographic [BMCC9 +19].

light [AR +98]. Lightweight [AHMP12, AHMP13, BDM +12, BKL +11, HKY12, Cho21, GTL21]. like [JNPP14, RS14].

Limited [GL82, GL88, SS90a, Wen92]. limitedness [LP04]. Limits [KST99, MMSY94, BVF12].

Linear [Ald88, ADM +99, ATT98, Ano95a, AD11, BPS98, Ban77, BK70, BGS96, BW98, CFP19, Cle84, CL09a, CM93, Dae95, Ell85a, Ell87, FPV98, HB89a, HB92, HH85, HYH93, HTH90, HSW88, Jak85, JV16, Kno88, Knu19, Knu98, Kor98, KDL92, Lar80b, Lar80eb, Lar82b, Lar82b, Lar82d, Lar85b, Lar85c, Lar88b, Larxx, KKMS10, Lit79b, Lit80, Litxxa, Luc72, Lyna7, MSSWP90, MY80, Moh90, Moh93, Mul81, Omi88, OGAB14, OT91, OS83b, OA89, OS83b, PPR07, PPR09, PT16, Pet13, PK87, PVM97, RSD84, RSD85, RSSD89a,
RS92, RLH91, Reg82, Rob86, RT87b, SDR83a, SPW90, TW91, TZ12, Toy93, VP96, VP98, WVT90, YD86a, Ald87, ADM+97, BJ07, Bou95, HB89b, HCF95, Jan05, LNS93, MTB00, MMC01, ML94, Omi89a, OP03, OS88, PT10a, RLH90, Sar13, SS16]. \textbf{linear} [TMBO2, Vi05, ZL12]. \textbf{Linear-density} [KD92]. \textbf{Linear-Time} [WVT90, Kor08]. \textbf{Linearizability} [SDW14]. \textbf{Linearization} [BKMP09]. \textbf{Linearizing} [Oto88a]. \textbf{Lingo} [McC79]. \textbf{Linguistics} [Cer83]. \textbf{link} [BR75]. \textbf{Linked} [Fel87, Pal92, ZLLD18, ZKR08]. \textbf{Linking} [Bob75]. \textbf{Linkless} [CJC+09]. \textbf{links} [EVF06]. \textbf{Linux} [USE00a, Lev00, LACJ18]. \textbf{Lisbon} [CIM+05]. \textbf{Lisp} [LFP82, Hek89, Nam86, FH96, GSI+82]. \textbf{Lisp-Based} [FH96]. \textbf{List} [McI82, Ter87]. \textbf{Lists} [BH86, HK87, LLC89, Lyo79, MY79, Kno84, ST85, SS06]. \textbf{literate} [Sab94]. \textbf{little} [DMPP06, PES+12]. \textbf{Live} [MZD+18]. \textbf{Ljubljana} [EF12]. \textbf{LLE} [TLZL16]. \textbf{Load} [HC13, IK92, KJC11, LRLW9, LRLH91, Omi91, RRS12, RK91, Top92, TP95, WL07, KL08, SX08, TLL18, WZ12, WTN09, XCCK09]. \textbf{load-balanced} [TLL18]. \textbf{Load-balancing} [WL07, XCCK09]. \textbf{Loading} [vdP72]. \textbf{Local} [MD97, MNY81, MJT+02, PKW09, RT81, SY08, BG12, EASR22]. \textbf{Locality} [BT12b, CSSP15, CKPT19, Chi91, Chi93, Chi94, EFMRK+20, HNKO20, IMRV97, KBG18, Kau15, MZL+19, MNP08, OWZ14, OTK11, Pag18, ZHW21, AT18, GDGK20, HAK+16, HF+15, HFF+17, LNS11, LWXS18, LJW+17, QZD+18, SP12, STS+13, ZHX+21, SA17]. \textbf{Locality-Aware} [HNKO20, MZL+19]. \textbf{Locality-Preserving} [Chi91, Chi93, Chi94, IMRV97]. \textbf{Locality-Sensitive} [BT12b, OWZ14, Pag18, ZHW21, EFMRK+20, HF+15, HFF+17, QZD+18, STS+13, ZHX+21, SA17]. \textbf{Localizing} [DD11, DJSN09]. \textbf{Locally} [KS88a, Oto88b]. \textbf{Locating} [WL12]. \textbf{Location} [CCFO4, TY03, ZWH17]. \textbf{Location-Based} [ZWH17]. \textbf{Lock} [AR16, NM10, ZLSD18, AR21, NK16, Pro18, ZL12, SS06]. \textbf{Lock-Free} [AR16, ZLSD18, AR21, NK16, Pro18, ZL12, SS06]. \textbf{locks} [ALS10]. \textbf{Loftus} [He94]. \textbf{log} [FHC89]. \textbf{logarithm} [Gib91]. \textbf{Logarithms} [vW94]. \textbf{Logging} [Moi90, Moi93]. \textbf{Logic} [AR16, BM87, BAN89, Cra85, IEE84, Las87, dKc94, BW92, DLM07, YIAS89]. \textbf{Logical} [CPP08]. \textbf{Logs} [SK99]. \textbf{LOKI} [BS91c, Knu92]. \textbf{London} [Ano93a]. \textbf{Long} [Mit12]. \textbf{Longest} [DKT06, Gao81, PT12b]. \textbf{Look} [CP91b, Sn87, AY14, CP91a]. \textbf{look-up} [AY14]. \textbf{Lookup} [CN07, HDM09, Jai89, Jai92a, Jai92b, Jaixx, Tri71, She78, SWTX18, Tro06, YBQZ18, BLC12, HXL13, Mad80, MSK06, MLP07, MPL09, MA15, PT12b, WTZ+13, WTN07, ZGG05]. \textbf{Lookups} [Pan05, BM01, IGA05]. \textbf{Loss} [ATS19, FC87b]. \textbf{Lossy} [PW08, Wec12]. \textbf{Louisiana} [ACM91e, ACM97a]. \textbf{Louisville} [Rie89]. \textbf{Low} [GI12, HMBN07, HGR07, Les88, LYW+18, PSSC17, QXL+20, TBC+05, ABO+17, BOY11, CZ14, HM03, MA15]. \textbf{low-area} [ABO+17, BOY11]. \textbf{Low-Cost} [GI12, HMBN07]. \textbf{Low-overhead} [HGR07]. \textbf{Lower} [DKM+94, GadHW96, Gon77, MNP08, OWZ14, Yao83, DKM+88, DKB+91, Sun91, Sun93]. \textbf{lowering} [SSU+13]. \textbf{LR} [HC87]. \textbf{LSH} [AT18, AOD19, CKM14, CK15, LCH+14, LJW+17, ZPM16]. \textbf{LSH-Preserving} [CK15]. \textbf{Lucifer} [BS91c]. \textbf{Luhn} [Ste18]. \textbf{Luxembourg} [Bir07]. \textbf{LXCloud} [LACJ18]. \textbf{LXCloud-PR} [LACJ18]. \textbf{Lymphocytic} [SSS01]. \textbf{Lyra2} [ASBdS16]. \textbf{M} [Sar80]. \textbf{MA} [ACM84a, Ker75, Kil05, CP91b, ACM86a, CP91a]. \textbf{MAC} [HLL18a, PV05, PV05, Pre97a, SRRL98, SY99, Ew90]. \textbf{Machine} [And88, CCJR1, DGS+86, DGS+90b, DGS+90a, GD87, GSH+82, Hsi83, KLAD93,}
KLM96, KTMo83a, KTMO83b, KTMO83c, Tan83, EBD91, Vak85, BM90b, KK96, RH92.

Machine-Independent [CCJ91].

Machinery [DT87]. Machines [BF89, adH93, Mey93, SD89b, SD90b, SD90a, TR02, CHS+18]. MACs [DL17, GO07, PV95, PvO95, Pre97b, Saa12].

Machine-Independent [CCJ91].

Machinery [DT87]. Machines [BF89, adH93, Mey93, SD89b, SD90b, SD90a, TR02, CHS+18]. MACs [DL17, GO07, PV95, PvO95, Pre97b, Saa12].

Main-Memory [KR91, BAT¨O13].

Maintaining [Woe06b]. Maintenance [Buc82, Bur83b, Bur83c, Oto85b, Bur83a].

Making [BR97, Cob94, Hel91, LT09, CCA+12].

Malicious [AAE+14]. malleable [BCFW09]. Malo [GQ95, QG95]. Malware [ASWD18, LLDZ18, NADY20].

Management [ACM75b, ACM81, ACM82, ABM06, BL88, B93, BC90, CGLC20, CLM89, DT87, EE86, Flo77, FMA02, GGY+19, GMJ90, Gho77, Gho86, ISK+93, JLL+20, KM90, LC86a, Lie81, McC79, MFK+16, Nav85, SW94b, SC77, Sto92, ZZ83, QZSH12, DAC+13, FNY92, FRS94, FHL+13, SW94a, WM93].

Many [BGF88, CZL12, JWM+18, Lia95, SV18]. many-body [JWM+18, Lia95]. many-core [CZL12]. Map [GRZ93, LF17, PPS21, Som99, AR21].

Map [PVM97]. mapped [SV15b]. mapper [YTHC97]. Mapping [Oto84, WH83, YD85]. Mappings [OS83a, OS83b]. MapReduce [LMD+12].

Mass [Col93]. Massachusetts [BV89, IEE05, MS05]. Massive [SMZ18, HAKM15, LRU14, Vit01, XCCK09].

Massively [AKN12, J´aj90, MK93, RH92, YLB90, Yen91, CZL12, Fis87]. Massively-Parallel [MK93]. Master [LYX+19]. Match [AU79, Bur75b, Bur76b, Bur76c, Bur78, Bur79, CLD82, Chn90, Jag91, Mor83a, RLT83, RSD85, RSS90, RSS92, YD86a, AT18, CC88a, Fal88, Ha85, RSSD99, RSSD89b, Riv74a, SDR83b, YD86b].

Matches [Dav73, PRK98]. Matching [AI94, BH95, CFP19, CCH09, CG79, Gri79, Han90, HCKW90, HW08, KSS86, KR81, KPS92, LLCL17, RH92, RH95, TK07, ASM17, CLS95, CW10, DKT06, DC94, GBY90, HC14, HW88, IY95, KP92, KS98, Kim99, MHT+13, PT12b, Sch91a, TKT+09, TLL10, TLLL09, XML11].

Matchings [CKN18]. Materialized [BM89, BM90a]. materials [SE89]. math [McN03]. Mathematica [Jac92].

Mathematical [BC39, LG78, LI92, NAK+15, Sed83a, Hil05, GT80, RV09, Win78]. Mathematics [FH96, GKP89, GKP94, GKS81, GKS82, Knu74]. math´ematique [LG78]. Matrices [ASW07]. Matrix [AN96, Atk75, BH90, vdSDW74b, ZWY21, vdSdW74a, BT90, CFY94, JCC00]. Matsumoto [PGV93a, PGV90a, PGV93b]. Max-Poly [DSS17]. maxima [MI84].
Maximizing [KHK15]. Maximum [AHS92, GB10, KV91, MV88, Pet13, CKKK09].

Maxims [MNY81]. maxmin [AII89].

May [ACM75c, ACM75a, ACM76, ACM77b, ACM81, ACM84b, ACM86b, ACM88b, ACM89c, ACM90, ACM91e, ACM94c, ACM96, ACM97b, ACM98, ACM02, ACM08b, ACM12, AFK90, ARA94, Bai81, Bor81, BJR93, Dam90a, Dam91, DT87, De 95, FIP93, GMJ90, GQ95, Hel94, IEE85b, IEE94b, IEE94c, KLT92, Lie81, LT85, Nav85, PGV93c, QG95, Rue93, SW94b, SW94a, Van06]. McGill [CCC89]. MD [Fis87, IEE02, PV95]. MD-x [PV95]. MD4 [Ano95a, WFLY04]. MD5 [Ano09b, For09, WFLY04, WZJS10]. MD6 [BKMP09]. MDC [LS15]. MDC-2 [LS15]. MDS [TW07]. MDx [PV95, SRRL98]. MDx-family [SRRL98]. MDx-MAC [PV95]. Mean [Bra84a, Bra85, Bra86]. Means [Bab79].

measure [Bac02]. Measurement [NS16b, SL16, YGS+19, LMP+08, RW07, ACM94c].

measurements [KLSV12]. Measures [MY79]. Mechanism [DGD02, Kuma89]. Cha12, HKL04, JFD09, SF88].

Mechanisms [DF01, Sev74]. Media [LWZ+18, CBB05, ZO13].

media-streaming [CBB05]. Median [HSP08, She78]. Medical [FHMU85, GPA97]. Meet [Sas11].

Mehrfachattribut [Stu82]. Mehrfachattribut-zugriffsverfahren [Stu82]. Mehrschlusselzugriff [Fri86].

Membership [BM99, DP08, HJKL12, Pag01].

MemGuard [CZ14]. memo [Hug85]. memo-functions [Hug85]. Mémoires [Lit77b, Lit79a]. Memories [DD15, KHW91a, MNS07, Sha86, vdBGL1+16, CCHK08, CCA+12, Hui90, KHW91b, Koh80, Lin63, RH90]. Memory [AP93, ASBdS16, AGMT11, BLP+14, BC90, CRdPHF12, CCW+17, CadHS00, DG93, DG94, DKO+84b, DKO+84c, DKO84a, DKK+15, DadH92, Dum56, EK93, adH93, HNS84, JP08, JLL+20, JCK+18, KHK15, KU88, KLaH93, KLM96, KR91, KL87, KK85, Kuma89, LC86a, LTS90, LHWL21, LSZ+21, MZL+19, Mlxx, Mey93, Omi91, PSSC17, Pan05, PG95, PS12, PG90b, QXL+20, RSK17, Ros21, RL74, SPW90, SS88b, TR02, TP95, Vit81a, W171, Woe06b, Wri83, YBQZ18, ZHI8, ZHZ+19, AS09, AKN12, AP92, BAT013, BDK16, Bor84, CJMS19, CZ14, DKO+84d, Don91, GLJ11, HDCM11, HKL04, HCW+21, JHL+15, KU86, KFG15, LHWL20, MSZ+20, MBK00, MSH96, PGV93g, Pro94, Shi17, SG72, SV15a, TKT+89, Vit01, WLC20, XLZC14, YIAS89, ZHW01]. Memory-Contention [DG93, DG94]. Memory-Efficient [YBQZ18, BLP+14, Shi17, XLZC14].

Metabase [KP81]. Metadata [GGY+19, SWTX18, DAC+13]. MetaFlow [SWTX18]. Metagenomic [PKSB18, KZ19]. Method [AA79b, AA79a, Ari68, Bat75, Bel70, Bel72, Bel83, CS91, CC87, CMC92, CPP08, CLS12, CMC80a, Dos78a, DT75, FNPS79, HD72, JOS0, Jae81, Joh61, KR86b, KR86a, KNT89, KOF90, KR79, KR7+80, Lam70, LK84, LPT12, LL86, LL87, Mal77, MNY81, Mcl63,
Moh90, Moh93, Mul72, NKT88, NI83, PG95, Per73, Ram92, RJK79, RT87b, SD85, Sag84, Sg76a, SS62, SR63, SSS05, Spr77, SHRD09, Ven84, WKBA07, Wu85, Ven90b, Woe06a, Zob70a, Zob70b.

Methode [Kar82]. Méthodes [Lit77b]. Methodologie [Lit77a]. methodologies [CE95]. Methodology [Hea82, GJM02]. Methods [AS16, Bay74, Bla00, Bra84b, CSSP15, CF89a, Eck74b, Fal85b, FC87a, Gri98, HB89a, HB92, Kab87, Lit84, Lum73, MWHC96, ML75, MV02, Pip94, QCH+81, SDKR87, SM87, TK88, CE95, CLS18, GRF11, HB89b, Lev89, Mul92, RAD15].

[HPC02, KGJG12, Kaw85, KJS17]. **Modula**
[Fel88, SW86, SW87, BH86, ST86, Sed93]. **Modula-2**
[Fel88, SW86, SW87, BH86, ST86]. **Modula-3** [Sed93]. **Modular**
[GSC01, LT09, ISO97, Mei95, Mon19]. **Module** [KRJ09b]. **Modulo**
[CC87, CLC92, Gir87, Kak83]. **Modulo-**[Gir87]. **Modulus** [PV92]. **molecular** [IG94]. **Moment** [TZ12].
Monitoring [SS83, SLC07]. **monotone** [BBPV11]. **Monte** [BF83, Rey14]. **Monterey** [Col93]. **Montgomery** [WS03].
Montreal [ACM02, CCC89, JY14, Lev95]. **Morphological**
[CRdPHF12]. **Moscow** [Ers58b]. **Most** [AT93, AT90, ESR14]. **Motion**
[CB94, Cil95]. **Motivating** [She06]. **move** [KM10]. **Moving**
[Lep98, SR01]. **MEPG4** [KM09]. **MPHF** [Zou85]. **MR** [Pro94, Sar80]. **MRD**
[SNBC98, SnC05]. **MS** [JC88b]. **MS-DOS** [JCS88b]. **MTAC** [GT80]. **Muenster**
[Dit76]. **Multi** [AP93, BATÖ13, BSH12, BR06, CS83b, CC87, CS87, Cha88, CHY97, CLS12, CJC*09, Coh84, FL08, FLP08, FLP14, GPY94a, GPY94b, HYH89, HYH93, HRS16, KR86b, KR86a, KL87, LÖON01, LRY*15, LCM*20, MTB00, MNY81, NGU06, PADHY93, RSSD90, SD85, SMZ18, VB00, WSN*16, YNW*09, YLB90, ZJ09, ZHW21, ZLC*20, AKN12, Ano83, CLL*14, HR93, HL94, KKL*09, LJJ*15, Pro94, Sar13, SV18, TL93, Tsa08, XZPG21, XMLC11]. **Multi-Agent**
[BSH12]. **Multi-Attribute**
[CS83b, CC87, HYH93, RSSD90, HR93]. **Multi-core** [BATÖ13, AKN12, KKL*09].
Multi-Dimensional
[HYH89, MNY81, NGU06, XMLC11]. **Multi-Directory**
[PADHY93, AP93, Pro94]. **Multi-Disc** [CC87]. **Multi-Disk** [Cha88].
Multi-Entry [YLB90]. **Multi-granular**
[CLS12]. **multi-graph** [CLL*14]. **Multi-Index** [GPY94b, GPY94a].
Multi-Join [CHY97, TL93]. **Multi-Key**
Multiple-Attribute [GK95, KG95].
Multiple-Collision [HHL10].
Multiple-Key [Bol79, RSSD89b, RSSD92].
multiple-set [HKLS12]. multiple-valued [DH84].
multiplication [AN96, GK08, Woe01, Bis12, Woe05].
multiplications [LK16].
multiprocessor [DG85a, DG85b, Ger86a, Ger86b, KTN92, MLxx, Omi91, RS92, SD89b, SD89c, SD89a, Sch90b, SD90b, SD90a, TNKT92, ZJM94b, SD94d, ZJM94a, ZJM94c].
multiprocessors [Bor84, LTS90].
multiqueue [Has72].
multiset [MSTA17, CP95a].
multiset [B¨ut86, NTW09, RRS07].
multisignature [Oka88].
multispectral [DCM18].
multiterm [Bur84, Bur82].
multithreaded [KGC95].
multithreading [Cro98, MIGA18].
multiser [ZG90a, ZG90b].
multiplicate [AM07, OS10].
multiplicities [DG85a, DG85b, Ger86a, Ger86b, KTN92, MLxx, Omi91, RS92, SD89b, SD89c, SD89a, Sch90b, SD90b, SD90a, TNKT92, ZJM94b, SD94d, ZJM94a, ZJM94c].
multiprocessors [Bor84, LTS90].
multiqueue [Has72].
multiset [MSTA17, CP95a].
multiset [B¨ut86, NTW09, RRS07].
multisignature [Oka88].
multispectral [DCM18].
multiterm [Bur84, Bur82].
multithreaded [KGC95].
multithreading [Cro98, MIGA18].
multiser [ZG90a, ZG90b].
multiplicate [AM07, OS10].
multiplicities [DG85a, DG85b, Ger86a, Ger86b, KTN92, MLxx, Omi91, RS92, SD89b, SD89c, SD89a, Sch90b, SD90b, SD90a, TNKT92, ZJM94b, SD94d, ZJM94a, ZJM94c].
N [Sar80, FHC89, ISO97].
n-bit [ISO97].
Naehrig [FT12].
named [WTZ+13].
NSA [Fis87, NASA].
Nato [Fis87, NASA].
Names [ABC16, Doshi88].
Nancy [Jou88].
Nanowire [Rey14].
NAT [Fis87, NASA].
Natural [Cer81, KBC83b, Har85, KBC81, LG78, YMI89, KBC83a].
NC [IEE89].
NDN [KTC20].
NDSS [Aan20].
Near [A106, AI08, BT89, DD15, LQZ14, GJM02, SB97, Yuw75].
Near-Associative [DD15].
Near-Duplicate [LQZ14].
Near-Optimal [AI06, AI08].
Nearest [AEP18, AI06, CL85, KBC81, MW09, PACT09, SY08, AI08, CW93, FH79, HFZ+15, JDW+19, LCH+14, LWKK20, SWQ+14, TYSK10, MKL21].
nearset-near [FHT99].
Nearly [HT01, FP82, MV91a].
nearly-constant [MV91a].
Neccessary [IH95, Rus92, Rus93, Rus95].
Negative [DDF07, SB95].
Negatives [Pag18].
Neighbor [AEP18, AI06, CL85, KBC81, MW09, PCM15, PACT09, SY08, AI08, CW93, FH79, GJM02, HFZ+15, JDW+19, LCH+14, LWKK20, SWQ+14, TYSK10, MKL21].
Neighbor-sensitive [PCM15].
Neighborhood [DHL+94, DHL+02, D+92, SG72, ZLY+13].
nighbours [Yuw75].
Neither [CP91a, CP91b].
Nested [HBL+10, FK89, MCM01, TMB02].
etflow [LDK12].
Netherlands [dBvL80, CP87, CP88, vL94, AW89].
Network [Ano10, HCJC06, HLC10, JL14, KHK15, MK11, PLKS07, Veh86, WBWV16, YBZQ18, AS09, CV14, Che21, DFMR15, Die90, FVS12, KL08, RAL07, TLL07].
Networking [ACM04, LCK11, LZ16, WBWV16, WTZ+13].
Networks [CGLC20, DK09, DPH08, Jai79, Jai92a, Jai92b, Jaixx, JLX08, Kalk93, Kub84, LDY+16, MJBD11, PLKS07, SV94b, SPSP16, SMS91, TGGF10, XHZ+19, ZQSH12, AK09, ADF12, BCCL10, Cha12, GDGK20, GBL94, LG13, LDD08, ML07, NMQ22, PES+12, SV95, SX08, TBC+05, WSH+07, WGW+18, YG10, ZBB+06, BB07, CT10].
neuer [BI87].
Neural [Kak93, NMQ22, WGW+18].
Nevada [IEE10, AFI69].
Next [DCW91, She91, CCA+12, CT10, KKP92].
Next-Generation [She91, CCA+12, KKP92].
Niagara [AFK90].
NiceHash [Nic17].
NIDS [KJC11, TK07].
NIDS/NIPS [TK07].
OCR [Wan84]. Oct [IEE80b, WS93, War14]. Oct-Tree [WS93, War14].
Octree [CJC09]. ODBF [ODB89]. Odyssey [IEE01].
Offline [HHL10]. Office [DGM89, FC87a]. Offline [GAS16]. OfFs [ASBdS16, Blo70]. offset [HLL18b]. OFL [GMP95]. OH [BD08, IEE94b]. Ohio [Fis87]. OHLCAP [HMNB07]. Old [FLF11]. Omnibus [GDGK20]. On-Chip [MJB11]. On-Line [AS82, FFGOG07, SS83, BBKN12, HHL10, KRRH84, RW73]. On-line/Off-line [HHL10]. Once [MNS07]. One [BCFW09, DGV93, Dit76, GK08, HHR+10, HYLT99, JHL08, HGH+12, LK84, Lar88b, LAKW07, LOZ12, LMD+12, LHC05, LP15, Lyo85, Mer90b, Moh11, OGAB14, PWY+13, Par18, RHMO9, Roe94, Rus93, SF91, Sch91a, Sho90a, Tsu92a, Wee07, Win83, Win84, Yas07, ZY00, ZPS90, Zhe90, ZMI91, ZPS93a, CMR98, Git91, HR07, HL03, IEE92a, KST99, KM10, LWO4, Mer90a, MZI98, NY89b, NY98a, Roe95, Sim98, SV18, STS+13, Tsao8, Tsu92b, YLO4, ZW05, ZPS93b, HMNB07]. One-access [Lar88b]. One-Hop [RHMO9]. One-Pass [LMD+12]. One-Step [Dit76]. One-Time [LAKW07, Moh11, PWY+13, Par18]. One-Way [BCFW09, DGV93, GK08, HHR+10, JHL08, LP15, Roe94, Rus93, Sch91a, Sho90a, Tsu92a, Wee07, Win83, Win84, YZ00, Zhe90, HYLT99, LHC05, ZPS90, ZMI91, ZPS93a, CMR98, HR07, HL03, KST99, LW04, Mer90a, MZI98, NY89b, NY98a, Sim98, Tsao8, Tsu92b, YLO4, ZW05, ZPS93b, HMNB07].
Online [BBKN01, Dos78b, FXWW17, Ger95, Kue83, Kue84a, Mir17, SI09, TP15, PES+12]. Online-fehlerbehandlung [Kue84a]. Online-fehlererkennung [Kue83]. Only [EH12, MT11, NM10]. Ontario [KLT92]. Open [AMP15, Bra84a, Bra85, Bro87, F977, G80n, Kn07, Kno88, LH03b, LH03a, Mit09, MC86, SS80, NK16, NMX9, TT81, van73]. Open-Addressing [G80n, G80]. Operating [ACM87]. Operation [CMS12, KL87, PHG12, AS89]. Operationen [Nec79]. Operations [ANS10, Bra84b, Eil83, Ers58a, FAFK21, Gir87, He87, HY89, HY93, HY86, HTY90, Kn90, Kut10, MSW90, SG76a, Wu85, JMH02, Pro18]. Opportunistic [LDK12]. OPS5 [KS89a]. Optical [CF89a, Vit85, CF89b, FWP18]. OPTIK [GT16]. Optimal [AU79, A106, Bat80, Bat82, BR94, BBP88, BW98, BMV02, CC88a, Cha84a, CHM92a, CHM92b, DAA, FC87b, FP98, HR93, HRB13, Jag91, KK12, KK18, K92, Kri84, LL92, LCML94, Lip02, MLP07, Men12, Men17, Mor83a, OWZ14, PP08, RR92, Riv76, Riv78, Tra06, Yao85a, Yao85b, Yao95, YCRY93, YSEL09, A108, GSS01, LCRY93]. Optimality [Bol79, CLC92, JP08]. optimally [Woe06a]. Optimierungsfragen [Wal74]. Optimistic [GT16, SDZ21]. Optimistically [GLB21, Zuk21]. Optimization [AOAAK20, ODB89, AR17, BG92, Kie85, Kn08, MXL+12, Mir17, MWC12, TV83, XNS+13, YNW+09, Yub82, DJRZ06, DJNR09, Loh89, MP90]. Optimized [ARH+18, CVR14, EPR99, MZD+18, ZH18]. Optimizer [ML86]. Optimizing [DGGL16, DOP+14, LOYO0, MBK00, PFB8, SW91, SV15b, WL12, TCW+13, WLC20, WTN07]. Optimum [VC85, vdP72, vdP73, van73, Vit80a]. OR-parallel [Cra85]. Oracle [GHR99, LT12]. Oracles [Can97]. Order
[FCDH90, FCDH91, GG86a, HB92, HM12, HSW88, Oto88a, Ouk83, Rob86, Tam81, Aky13, BMLLC½ 19, DH84, DLM07, HKKK13, Pri95]. Order-Preserving [GG86a, Ouk83]. Ordered [AK74, CS83a, Cha84b, Cha84c, CS86, Cha86b, CC88b, MY79, MN90, SH92, SH94, SS06, JMH02].

Ordering [Lyo78a, GM79, Sab94]. Ordinal [ZZLZ21]. Ordinal-Preserving [ZZLZ21]. Oregon [IEE93, ACM85b, CLM89]. Organisation [Lit77a, Wie87a]. Organization [ACM75b, Ano85a, ANT85, Cha84b, Cha84c, CS86, Cha86b, CC88b, MY79, MN90, SH92, SH94, SS06, JMH02].

Organizations [CF89a, Sch79b, Sch81, Toy86, YD86a]. Organized [FLF11]. Organizing [HH85, Som99, TY03]. Orientability [FP10]. Orientation [BH93]. Oriented [BDPSNG97, Bri84, CS85c, CS85b, Cha85, Cha86a, CO82b, DCW91, ISK* 93, JC88a, Ke85, LD92, PV92, TL95, TR92, Tr95, CL86, CW91, CW93, CW96, DM99, DM11, W905].

Orlando [ACM91d, ACM91a, Koa89]. Orleans [ACM91e, ACM97a, IEE74]. Orthogonal [BG906, LCML94, CCL91, W97, W95a].

Oscar [GDA10]. OT [PSZ18]. Othello [YBQ28]. Other [PV19, Saa12, Bee83, BDK16]. OTS [Huí13]. outbreak [FPN09]. outfit [Nic17]. outlier [GDGK20]. Output [Mit12, NIS15, NR12, PHL01, ZPS90, ZPS93a, Sab94, ZPS93b].

outsourced [YLC+ 09]. Overflow [Bra84a, Bra85, Bra86, Hop68b, Lar85b, Mul72, Mul81, NY85, Sam76, Sch79a, Tam82, Tor84, Bay73b, CS93a, KD92, Kou93, Ram87, YD86b]. Overflow-Handling [Lar85b]. Overhead [Les88, HGR07, IKOS08, MA15].

overheads [SSU+13]. Overlapping [MJJ+02]. Overlay [PFM+09, GDA10, TBC+05]. overlays [GHW07]. Overview [PGV92, Ros12, WR97, BFG+95, BDP+12]. ownership [DSS10, LWG11]. Oxford [ACM94b].

Paging [Bry84, HBL+10]. Pair [GSC01, Val15, DHPK97, PW06, YSK10]. pairing [BP18]. pairing-friendly [BP18].

Pairwise [DL12, ZLY+12]. Palace [ACM75b, EEE84d]. Palm [IEE11b].

Palmer [IEE80a]. PANAMA [DC98a, DV07, RVPPV02, BDPV09, DC98b]. Paper [Cer85, Pro94, SV15a, ZL12]. Papers [ACM75c, ACM76, ACM77b, LFP82, LC86b, SC77, ACM79, ACM91d, Bai81, Bor81, GM02, EEE88a, Ytr06, Bir07, FNY92, YJ14].

Paradigms [JWM+18]. Paradigm [BM97, CS02]. paradox [RK15]. Parallel [ACM91c, PDI91, And88, Ano93d, AEMR09, AR17, AT91, BFG+95, BH91, Bis12, BRW93, Bor84, Bur81, CDM98, CDM99, Chi91, Chi94, CT96, DNS92, DA93, DS97, GST90, GM94, GM98, GI77, Gra94c, GZ99, GC90, HB93, HNS84, HCO7, HCY94, HCY97, IG77, J‡90, KUS6, KUS8, KR91, KJC11, KR19, KO90, KTN92, LBC20, LLLC17, LPP91, LPP92, M97, MLD94, MV90, MV91b, Mat93, MK89, Mii85, MK93, NM02a, PAKR93, Pap94, PK89, PRM16, PSR90, PW94,
parallel [AKN12, ASA+09, Ati20, CZL12, CyWM91, Cra85, Don91, EASR22, FHL+19, Fis87, GLHL11, HK95, KP92, MV91a, MP90, Mol90a, Mol90b, OT89, PCK95, RLM87, SK88, SD89d, STS+13, TL93, UHT95, War14, adHMR93, KL95].
parallel-DM [KL95].
parallelism [ASM17, Ged14, MMSY94].
parallelizable [MP16].
Parallelization [DTM+18].
Parallelizing [GK12b, WDYT91].
Parameter [CC88b, GB10].
parameterization [SS15].
Parameters [HRB13, HYLT99].
parazoa [AMP12].
PARBASE [RNT90].
PARBASE-90 [RNT90].
Paris [LS89, Coh94].
Parities [Val15].
Park [IEE84, IEE89, Jáj90].
PARLE [BRW93].
Parser [HC87].
parsing [Tai79].
Part [ANS97, Bor81, ISO97, ISO04, MBBS12, Sed83a, ADG+08, AMSM+09, KMOV10, Wil03].
Part-Graph [MBBS12].
Partial [AU79, Bur75b, Bur76b, Bur76c, Bur78, Bur79, Can97, CLD82, Chun90, CY06, Cor02, Jag91, Lar80b, Lar80c, Lar82c, Lar82d, Larxx, LKI10, Mor83a, PF88, RTL83, RSD85, RSSD89a, RSSD89b, RSSD90, RSSD92, TGGF10, YLZ20, YD86a, CC88a, Fa88, Hua85, Pri95, Riv74a, SDR83b, SNW06, YD86b].
Partial-Domain [Cor02].
Partial-Match [AU79, Bur75b, Bur76b, Bur76c, Bur78, Bur79, Jag91, RTL83, RSSD90, RSSD92, RSSD89a, RSSD89b, Hua85, Riv74a].
Partial-Relation [PF88].
Partially [PCL93a, PCL93b].
particles [Lia95].
Partition [LKI10, LC96, WZ12].
Partitioned [Ger86a, LR96a, NKT88, SW91, Ger86b, HKL07, MZK12].
partitioner [KKP+17].
Partitioning [Bre91, Ged14, PF+09, SBS16, WBV16, ZRT91, vM39, CKKK09, CKKW00, EH17, HAK+16, Kim99, LL13, LWWK20, PCK95, SKD15, UHT95, AP11].
partitions [DKRT15].
Partly [OTKH11].
PASCAL [Dit76, Hil88, HS84, Dit76, GBY91, Hej89, Sch76, TA81, TA86].
Paso [ACM97b].
Pass [LMD+12, OGAB14, YDT83].
Passbits [MB03, Bur05].
Passed [Gra94b].
Password [ASBD16, GAS+16, JK11, KV09, LSZ+21, WG00, BSNP96b, BDK16, CJMS19, GL06, KJS17, KCL03, Ku04, KCC05, NMX19, Par18].
Password-Based [KV09, BSNP96b, GL06].
Pastry [Her07].
Patch [BI12, BZL+15].
PatchTable [BZL+15].
Paths [Kul84, AAB+92, VNC07].
Patricia [KS12].
Pattern [iA94, BT94a, BT94b, CG79, Fre90, Gri79, IEE88d, KR81, Sch91a, ZO13, YIAS89].
Pattern-Matching [KR81].
Patterns [BH85, CLC06, HSPZ08, OTKH11, SK98, BCGS16, BCC10, KRML09].
pebbled [Dev99, CM01].
Peer [CCF04, JXY07, KLSY07, KS12, LMSM09, PF+09, SM02, LMSM12, WHS+07].
Peer-To-Peer [PFM+09, CCF04, JXY07, KS12, LMSM09, SM02, LMSM12, WHS+07].
Peers [RMB11].
Pennsylvania [ACM76, LFP82, ACM96, HB93, IEE92b].
Pentium [BGV96, Bosxx].
Peoples [Ano83].
peptides [MIGA18].
Per-Flow [NS16b, SL16, YGS+19, HKL04, LMP+08].
Perceptual [DCM18, LC12, MV01, MV02, NS16a, RNMPM12, SB14, THY+18, WDP+12].
Perfect [AN96, AA79b, AA79a, Ari94].
BHIM12, BBD+82, BBD+86, BS94b, BS94a, BW98, Bla00, Bla95, BPZ07, BT90, BT94a, BT94b, BH86, Bur92, BC90, Cer81, CK88b, CB88, Cer85, CB85, CB85, Cer87, Cer88, CLD82, CS83a, Cha84c, Cha85c, CS85b, Cha85, CS86, CL86, Cha86b, CC88b, CCJ91, CW91, CL05, CLC06, CT12, CJ+99, CRSS83b, Cis80b, Cis80, CO92b, CHK85, CHN81, CHN92a, CM93, CHN97, Dat88, DKM+94, DH01, Die05, DHJS83, Duc08, DM11, FM96, FCD88, FCD89, FCD90, FCD90, FCD91, FCD92b, FHCD92b, FHCD92, FHCD92a, FK84, FH15, Get01, GHK91a, GHK91b, HT01, JOS0, Jae81, JD12, KH84, KM86, KM88a, KCB81, Kra82, KP94, LR85, LH06, LLLC17, Mai92, MWC92, MHC96, Mem82, NRW90, Nil94, OG94a, OG94b, Pag99, PV92, PG95].

Perfect

[Pes96, RL99, RP91, Ram92, Rog19b, SB95, Sag84, Sag85a, Sch90a, SvEB84, Spr77, Tro92, Tro95, WX01, Win90b, Wol84, YDT83, YD84, YD85, AAB+92, AG10, BJO7, BBPV11, BS94c, BT89, CB81, CK83a, CK89, CL90b, CSR88, Cze98, DF89, DKM+88, DKM+91, DHW08, FHC89, FCD92b, GS89, HK86, Han17, HM93, JW+18, Lia95, LC13, McT08, Mi95, Mi98, Pag01, RB91, SB97, SS92, ST85, SH92, SH94, SL88, Sl90b, TK99, XMCL11, WC07].

Perfectly

[CMR98].

Performance

[ACM04, AP93, ANS09, BM99, BM89, BM90a, Bre91, Br93c, CL85, CS87, Chr84, CH94, DGG+86, DR92, DH92, DS97, Don91, ESR14, FC87a, Fla81, Fla83a, Flo87, GD87, Gra88, Gra93a, Gra93b, Gri74, Hac93, HSMB91, HC13, IE94a, IG77, KS89a, Kha95, KK96, KNT92, Kue82b, Kun90, Lar80c, Lar81, Lar82a, Lar82b, Lar85c, LCK11, LCLX19, LL09, LMSF89, Lit84, Lit85, Lom88, LMC+20, LYM71, Lum73, Lyo83, MXL+12, Mac95, ML86, ML94, MY79, Mi85, Mul85, NM02a, NP99, Omi91, Pal92, PB80, Pro94, Ram89b, RZ97, RSSD90, RLH90, RLH91, Roe94, Roe95, RT78b, SD85, SD89c, SD89a, Sch79b, SC90b, SC90a, SC90c, She91, TNK92, TMB02, Tym96, Vit83, Yen91, YB95, BMQ98, BW89, CAGM07, CF89b, HM03, KOU93, LLA15].

performance [LY72, MRL+19, MA15, RFB97, SK20, SS89a, SD89d, Shii17, Sie89, MKL21, VB94, Vit80a, WL07, WTN07, XCC90, Yu18, ZHW19].

Performances [Mek83].

Performed [Wil71].

Performing [FP98b].

Period [AC74, Eck74b].

Periodicity [HG77].

Permutation [DLH09, HSR+01, NIS15, PHG12, CFTP94, DLH13, HK95, KST99, LOZ12, LMPW15].

Permutation-Based [NIS15, PHG12, KST99].

Performances [Mek83].

Perfect [Pes96, RL99, RP91, Ram92, Rog19b, SB95, Sag84, Sag85a, Sch90a, SvEB84, Spr77, Tro92, Tro95, WX01, Win90b, Wol84, YDT83, YD84, YD85, AAB+92, AG10, BJO7, BBPV11, BS94c, BT89, CB81, CK83a, CK89, CL90b, CSR88, Cze98, DF89, DKM+88, DKM+91, DHW08, FHC89, FCD92b, GS89, HK86, Han17, HM93, JW+18, Lia95, LC13, McT08, Mi95, Mi98, Pag01, RB91, SB97, SS92, ST85, SH92, SH94, SL88, Sl90b, TK99, XMCL11, WC07].
Plagiarism [CH12]. Plains [IEE88c]. plane [AI89].

Platforms [ADOAH19, LMD+12, LLL+16, Sun02, TCP+17, FNP09, MN99, QZD+18, ZLL+07].

Platforms [AS16, NMX19]. Play [But17].

Playing [Zob70a, Zob70b]. PLILP [BW92].

PLOP [KS88b, KS88c]. PLOP-Hashing [KS88c, KS88b]. PLOP [KS88b, KS88c].

PODS [TGGF10]. PODS [HF13, ACM88a, ACM89a]. PODS'08 [LL08]. PODS'10 [Van10]. PODS'13 [HF13]. Point [BL89, TK17]. Pointer [LDM92, SC90b, SC90a, SC90c, SVCC01].

Pointer-Based [SC90b, SC90a, SC90c, LDM92]. Points [AT93, Bat80, Bat82, AI89, AT90]. Poisson [Pob86, PVM94]. Poland [ACJT07, Win78].

policies [Jan05]. Policy [GGY+19, DG96]. Politecnica [CTC90]. Polling [LXL+19].

Polling-Based [LXL+19]. Poly [DSS17]. polylog [DLM07]. Polynomial [DGMP92, FS82, Saa12, Sag85a, San76, WSSO12, Win90b, Bis12, GPGO16, Kak83].

Polynomial-Advantage [WSSO12].

Popular [CLNY06, RR08]. Portable [Hek89, NADY20]. Portland [ACM85b, CLM89, IEE85a, IEE93].

Portugal [CIM+05]. positives [CVR14].

Post [BBDO9b, MKAA17, SE21, BBDO9b, BD08].

Post-Quantum [BBDO9b, MKAA17, SE21, BD08, BBDO9b].

Postal [Dos78a]. poster [ZL12].

Postortsnamen [Dos78a]. Postprocessing [RJK79]. Pour [Kar82]. Power [Dun89a, FP10, HD72, MK11, MMMT09, PT12a, PGV90b, ACP10, Ano93c, DKRT16, GP08, KM10, PT11a, PGV93g, Sch82b]. powerful [Tho17]. PQCrypto [BD08].

Pracniques [Dod82]. Practical [AS82, AB17, AG18, BR97, BHH+15, CHK85, DNSS92, DDS14, EMM07, FHCD92b, GIS05, GLLL17, HM96, IP11, LT09, Ram89b, ZZ83, Con17, JG95, LWXS18, Sil02b, SXLL08].

Practicality [TT82]. Practice [KGJO18, Mir17, Ram88b, BBPV11, RZ97, Sta06b, Tso15, KKP92]. Practitioner [SD76]. PRAM [GM91, KLadH93, KLM96, Kel93, Kel96, Lep98]. Pramanik [Pro94]. Pre [Mit12]. Pre-image [Mit12]. PRECI [BD82, DNV81]. precise [Ati20, DK12].

Prediction [TW07, DFMR15]. Predictive [DCW91, RT87a]. Predictors [DGD02, NI83, TT86]. predistribution [LND08, SN19].

Preemptible [PCL93a, PCL93b]. Preferential [VNC07].

prefetch [TKH20]. prefetching [CAGM07].

Prefix [CLNY06, BGKZ12, BLC12, DKT06, PT10b, PT12b, RRS07, RW07].

prefix-compressed [BLC12]. Prefix-Free [CLNY06]. prefix-preserving [RW07].

Prefixes [PT11b]. Preimage [ABD+16, HKKK10, Li10, Sas11, WW09, WS13, WFW+12, ZW+12, MS13].

preliminary [CMR98]. preparing [ACM91b].

Preprocessing [KR01].

Presence [RK91, WDYT91]. Presented [ACM75c, ACM76, ACM77b, LFPS82, DBGV93, ACM79, ACM91d]. preservation [DL06].

Preserve [Knu77, RS12, Vit81b, Vit82a].

Preserving [ABD+16, HKKK10, Li10, Sas11, WW09, WS13, WFW+12, ZW+12, MS13].

Prime [Bat75, HM12, MUE04, OG94a, WS03, Lar84].

Primes [Die96, ACP10]. Primitive
Primitives [LYDA19, Mue04]. Principal [Cha88, MW09, SA97, US09]. Principle [Dam90b, FDL86, Gib90]. Principles [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM87, ACM88a, ACM89b, ACM89a, ACM91d, ACM91a, DK02, DK15, Van10, HF13, LL08, Pre94a, Ul82, Wal88, Zhe90, KKP92, Sta06b]. Print [Cip93]. Priority [AFK83, AFK84, RT87a, GJM02]. Privacy [ADOAH19, Ano95d, BJL16, BBR88, GZX14, KAS+22, VD21, ZXL19, Cho21, QZD+18]. Privacy-Preserving [ADOAH19, BJL16, GZX14, QZD+18]. Private [PSZ18]. Probabilistic [Bla00, BK07b, Fla83b, FM85, Pit87, Sch91a, Tsa96, WVT90, Yao83, CMR98, SD95]. Probabilities [Ald88, PRK98, vM39, Ald87]. Probability [Fel50, Gon81, OT91, Spr77, LJW+17, Mil99, Pag01, SSS8a, SS90b, Sun93]. Probes [Lyo85, Ros06, Ros07]. Probing [Ald88, BBS90, Cle84, FPV98, JV16, Knu98, Lar85b, Lyo78a, MY80, PPR09, PT16, Pet13, PK87, PVM97, PV19, SL16, TZ12, VP96, VP98, Ald87, Jan05, LJW+17, PPR07, PT10a, Ram89a, Sar11]. Problem [AA79b, AA79a, Gon81, OT91, Spr77, LJW+17, Mil99, Pag01, SSS8a, SS90b, Sun93]. Problem-Based [BC06]. Problems [DSS17, DM90, GB10, HP63, Hop68b, Mit73, NAK+15, Val15, BC06, DHKP97, HCF95, LP04, Loh89, Mon19, Sun91, Sun93]. Proceedings [Col93, CHK06, Dar91, DT87, DSZ07a, DSZ07b, EF12, Fei91, FMA02, Fre90, GMJ90, Go94, GSW98, HB93, Hel94, IEE80a, IEE85b, ICD88, ICD90, IEE90, IEE91b, IEE91a, ICD91, IEE92b, IEE92a, ICD93, IEE93, IEE94c, IEE95, IEE01, IEE05, IEE07, IEE10, IEE11b, IEE13, IIRM93, Joy03, Kar98, Ker75, Kn98, Kui92, LC06, Las87, LL08, LT85, LS89, Lom93, Mat09, MK98, MV91c, MS95, Nav85, Oxb86, Pat90, PK89, QV98, RR09, RK98, Roe93, ACM77a, SZ93, Shm00, SW94b, SC77, Sti93, Sti94c, Sto92, USE91, USE00a, USE00b, Van06, Vid90, WPT90, IWS99, Yan10, Yun02, AGK+10, AFK00, ACJT07, Bel00, BJZ94, Boy05b, Bra90, BW92, CIM+05, CP88, Cop95b, Dam90a, Dam91, DMRZ06, DJNR09, FSP9, Go96, HM08, adHMR93, HKNW07, IEE11a, JB94, Kil05]. Proceedings [Lut88, QV90, QG95, Rei88, SP90, Sho05, SM08, Wie99, vL94]. Proceedings/Ninth [ICD93]. Proceedings/Seventh [ICD91]. Proceedings/Third [ICD87]. Process [FS82, Pro94]. Processes [WB90]. Processing [APV07, BG92, CCW+17, Dan13, Eld84, GST90, Ger86a, Ger86b, Gil77, GSL17, Gra92, Gra94c, HB93, Har85, HCJC06, IABV15, KMV10, LLLC17, LC96,
MK89, MS88a, Omi89b, PAPV08, Pip94, PK89, RK89, Sac86, Sch90b, SD90b, SD90a, Sha86, Sol93, SPB88, Spe92, Tha88, Toy86, WPy90, IWS99, YkWY83, BZZ12, Bra88, CP95a, CKKW00, Ged14, GC90, HLI93, Kan91, Kan93, LLC89, RAD15, Ros74, Sab94, SK88, SP89, WLLG08, YkWY83, BZZ12, Bra88, CP95a, CKKW00, Ged14, GC90, HLH13, Kan91, Kan93, LLC89, RAD15, Ros74, Sab94, SK88, SP89, WLLG08, YkWY83, BZZ12, Bra88, CP95a, CKKW00, Ged14, GC90, HLI93, Kan91, Kan93, LLC89, RAD15, Ros74, Sab94, SK88, SP89, WLLG08, YkWY83, BZZ12.

Processor

[Adi88, KL87, SM87, YCRY93, ISH91, LCRY93, TLLL07, YNW91].

Processors

[Pap94, Ros06, Ros07, Wil59, JHL15, KL08, KW94, TLLL09, YIAS89].

Producing

[DV07, RVPV02, Win83].

Product

[Du86, YGC12, OS14].

Productive

[Bor81].

Profile

[SSU13].

Profile-guided

[SSU13].

profiling

[VNC07].

Program

[Hil88, Kru84, Mai83, Mai92, Meh82, SS80, BZZ12].

Programmable

[HM12, HK12b, CFN18, LT12].

Programmer

[Cro98].

Programmiersprache

[Dit76].

Programming

[LFP82, ACM91d, dBvL80, BM87, BGS96, Dit76, Dun89a, Ers58a, Ers58b, GG86b, Har71b, Har73, IEE84, Jou85, Knu73, Knu75, Ku72, Li92, Ma88, NS82, Pat90, Ruc15, SSS05, dKC94, ACM91a, AK10, ADG98, ALS10, AMS10, ACJT07, BW92, CIM10, DLH79, Er86, Sab94, TMW10, YIAS89, BW92, LAS87].

Programs

[AR16, Hea72, PAKR93, SS88b, Ers58b, FD86, MP90, NMS08].

Progress

[Wol93b, Wol93a].

progressive

[XML11].

Progressively

[DV87].

Project

[DGS90, DGS90a, Tro92, NM02b].

Projecting

[AT93, AT90].

Projection

[Bur78, SPW90, AS89].

Projective

[ACP09, HK12a, KV99, Wec12, FH15].

PROLOG

[CJ86, Bor84, Coh84].

Proof

[Ano99b, CZLC12a, CZLC14, Cor02, LYY10, LYY19, LT12, SD14, ZM17, DLM07, HLI18, ZCQ19, ZYW20].

proofing

[CHL07].

Proofs

[CZLC12b, CS02, KK12, KK18, NTY12, WG00, Wee11, Li10].

Propagation

[DSSW90a, CML13, DSSW90b].

Properties

[BA05, Bol79, CS83b, CLC92, Lit85, RS12, TS85, WS76, ZM91, GW94].

Property

[BR06, DGKK12, FLP14, Rja12, SRY99, Ter87, FL08, FLP08].

proposal

[LLJ15].

Proposed

[CP91c, HPC02].

protected

[AGBR19].

Protecting

[LMJC07].

Protection

[DF01, DGKK12, SP21].

Protein

[LY12].

Protein-Protein

[ZL12].

Protocol

[Ano95a, BT12a, Dam93, GI12, HCN07, HPLS12, HLC10, JRPK07, JK11, OZY94b, TY03, VD21, YLZ19, CJ15, Dam94, GB17, LW04, OZY94a, SLPB14, CJ12, JL14].

Protocols

[LLL09, SDK91, KLL97].

Provable

[ANS09].

Provably

[BCG16, DY90, DT91, HM96, JP07, LM95, Sh06, IN89, SXL16].

Provably-Secure

[DY90, DY91, HM96].

Provide

[Sch01b].

Providence

[IEE07].

Proving

[Kil01, WS76].

proxies

[TC04].

Proximity

[MPP14, SX08].

Proxy

[ZJ90].

Pruning

[CT12, MD97, HC02].

Pseudo

[DW83, FLF11, WFS12, dW83b, MFK06, PVCQ8, TSY98, WS13].

Pseudo-Associative

[DW83, dW83b].

pseudo-collision

[WS13].

pseudo-random

[MFK06].

pseudo-randomness

[PVCQ8].

Pseudo-structural

[FLF11].

Pseudochaining

[HP78].

pseudoentropy

[VZ12].

Pseudorandom

[BK12, NA15, OS10, SP91, AAM03, CP13, VZ12].

PUB

[Nat95, FIP93, NIS93].

Public

[ANS97, ANS05, BBR88, CLP13, Cip93, CS02, Dam87, HR04, LYY19, LRY15, NTY12, ZCQ19, CFN18, LW17, Oka88].

Public-Coin

[CLP13].

Public-Key

[CS02, NTY12, Oka88].

Publication

[Nat92].

publish

[MI14].

publish/subscribe

[MJ14].

Puerto

[IEE07].

Purpose

[CHI91, CHI94, Sch91a].

Put

[WLC20].
putting [Col93]. pyramid [MHT+13].

QC [JY14]. Quadratic
[Ack74, AC74, Bat75, Bel70, Bel72, Bel83, BI87, Bur75a, Day70, Eck74b, HD72, Lam70, Rad70, NH74, Pri95]. quadratischen [BI87]. Quality [THY+18, YWH09, GW94]. quality-size [GW94]. Quantification [GC95]. Quantile [BI87]. Quality [THY+18, YWH09, GW94]. Quatrernary [KP96]. Quatery [KP96]. Québec [ACM02]. Queensland [SZ93]. Queries [APV07, Bur75b, CLD82, Cha84a, CHA97, DHL+94, DHL+02, GST90, GYV+19, KS12, LCM94, LOY00, LLG+17, LB07, ML86, MPP14, PAV08, PF88, SD90b, SD90a, SW91, Sol93, STU85, BZL+15, DH84, FAL88, HYKS08, HAKM15, HAK+16, HR93, HF91, Hua85, LL13, MBKS07, SWQ+14, TL93, Wil78, Wil85a]. Query
[OD89, BG92, FB87, Ger86a, Ger86b, Gra92, Gra93c, Gra94c, HLC10, HF+15, HFF+17, Kie85, Kim80, LC96, MS88a, Sac86, SD90b, Sch90b, Spec92, TS85, Toy86, CCY91, CKKW00, DSD95, GMP95, LYT+13, LMLC14, Loh89, RAD15, SP89, WLLG08, YLC+09, Yuf92]. query-adaptive [LYJ+13]. Query-aware
[HFZ+15, HFF+17]. Querying
[CN07, LÖON01, TT10, AK09, NDMR08]. Questions
[Mit09]. Queue
[KV91, MV88, KM07]. queueing [MSV87]. Queues
[AFK83, AFK84, WOO89, GJM02]. quick
[FDL86]. QuikFind
[Cha91]. Quotient
[BK70, Bel70, Bel72, Bel83, Bur75a, Lam70].

r [KKT91, LJPF19, WY15]. R* [ML86]. r-th [KKT91]. Rabin
[FH79, GBY90]. race
[Hil05]. radio
[CJP12, CJP15]. radio-frequency
[CJP12, CJP15]. RadioGatún
[BDPV06, BDPV09, BF08]. Radisson
[ACM85a]. Radix
[FBJ78, Lin63, SKD15]. Radon
[GH07, RGNPM12]. Ragged
[Ros77]. RAM
[PSR90]. RAMA [MK93]. Ramamujan
[SV06]. RANDOM
[DJRZ06, DJRN09, AD85, ANO86, BH90, BM76, BBS90, Can97, Cha84a, Cla77, Dev99, Die96, Dum56, EAA+16, FP10, FMM09, FMM11, GHR99, GUI89, HSR+01, JTO99, KLSY07, KM88b, LT12, MY79, MÖ09, MEK+14, ORX90, OL69, Ore83, Pet57, PV19, Sie04, Tra63, Yao91, de69, BR75, BK07a, BK88, CM01, DW03, FP82, GW94, HC11, JCC90, KLL+97, Kut06, Lin63, MYS12, MFK+06, Ram89a, TSY98, WL07, ZGG05]. Random-Access
[MY79, Pet57, Tra63]. Random-Walk
[FMM09, FMM11]. Randomization
[GBS94, DJRZ06, DJRN09]. Randomize
[KG12a]. Randomize-Hash-then-Sign
[KG12a]. Randomized
[AEP18, KR81, LZQH11, Mat93, YWH09, DHKP97, MS96]. randomly
[RH90]. Randomness
[AY14, Knu77, Vit81b, LW17, PVSQ08, Sar15, SS90a, Vit82a]. Range
[ACM85a, LCM94, LB07, CL91, Fal88, HR93, Wil85a]. Rank
[TC93]. Ranking
[LR96a]. RANSAC
[ZW+18]. Rapid
[CG79, Dum56, GRI79, LG96, PT11b, WK07]. Rapidly
[Dav73]. Rate
[CJKK19, IABV15, KL04]. Raton
[HB93]. raw
[CLXL15]. Ray
[ACM82, SS89b, ZRL+08]. RBIBDs
[Woa06a]. RC4
[IP08, RS14, Sar15, YZ16]. RC4-Hash
[IP08]. RC4-like
[SB91]. RC4A
[Sa15]. Rdbm
[Pei82, Pet83]. Rdbm-verwaltungsdaten
[Pei82]. RDF
[AÖD19, HAKM15, LL13]. RDMA
[CCW+17]. re
[Par18, WWG+18]. re-identification
[WWG+18].
Robust [BFMP11, CJN20, FLP08, FLP14, KMW08, KMW10, KO90, Li15, LDY+16, MGG10, MV01, MV02, OCGD11, TLZL16, WDP+12, CWC10, EAA+16, YCJ12].

Rockefeller [IEE90]. Roma [AAC+01].

Roman [Hol87]. Rockefeller [IEE90].

Roma [AAC+01].

Roman [Hol87]. Rockefeller [IEE90].

Rotational [KNR10]. Rotationally [HSPZ08].

Round [AD11, jCPB+12, DDS14, HSR+01, LP15, PT11b, GLM+10, SY11, TSP+11, WFW+12, ABM+12, CV05, ITP14].

Round-Down [PT11b]. Round-Reduced [DDS14, WFW+12]. Rounds [GK08, HSIR02, Sch11].

Route [ABC+16, DF01, BLC12, YG10]. Router [BL14, KLSV12]. routers [ATAKS07, PT12b, TKH20]. Routine [Hea82]. Routing [ABC+16, BT12a, WBWV16, Cha12, HLL18b, PT10b, SPSP16, TC04, TBC+05, WY02]. routing-based [WY02]. rows [CDH19, FH15].

Rule [Joy03, Ano95a, Jun87]. RSA [Joy03, Ano95a, Jun87].

BG92. Han90, HCKW90]. Rule-Based [BG92]. rulebase [CKKK09]. Rules [CL05, CT12, PCY95, HC02, HC07].

runtime [OOK+10]. Russia [Vau06]. Ryu [KCC05].

s [PES+12, BLC12]. S. [Pro94]. S81 [KTN92]. SAC [JY14, HSR+01]. safe [CCA+12, LPSW03, Lin96]. SAGA [HKNW07]. Saint [GQ95, QG95].

Saint-Malo [GQ95, QG95]. saliency [FXWW17]. same [Con17]. SAMOSA [PHG12]. Sampler [Mil87]. Samplers [CJ19]. samples [HYK08]. Sampling [AD85, Jak85, WM19, BZZ12, CyWM91, ORX90, RKLC+11, ZGG05]. San [ACM75b, ACM91b, ACM03a, ACM07, ACM08a, ACM11, Ano10, DT87, IEE88a, IEE91b, Joy03, Kar98, Shm00, Sto92, USE90].

Sandwich [Yas07]. Santa [Bel00, Bri92, Bri93, CRS83a, Cop95a, Cop95b, Fra04, Gol94, Sho05, Sti93, Sti94c, Wie99, Yun02].

Santiago [BJZ94]. SAP [SFA+19]. sat [DK07, MS13]. SAT-based [MS13].

scalability [DR92, Eng94, TCP+17, ATAKS07].

Scalable [CKKK09, DPH08, GLJ11, Gre21, IEE94c, LMD+12, MZL+19, MD97, MVB+21, MEK+14, PRR15, PSZ18, PW94, SSL+18, SKC07, SWTX18, TMW10, WPKK94, WSZ+16, YLZ20, ZLC+20, CLL+14, KKP+17, KYS05, KSC11, KSC12, LNS96, LHWL20, LEHN20, NMQ22, NK16, PT12b, SB14, SE21, TLL09, VBW94, KCR11, NTW09].

Scale [BI12, GGY+19, GLL17, Li15, MEK+14, MWC12, NS16a, SHF+17, YGC+12, ZZZ21, CML+13, FES09, Kos14, Shi17, SXLL08, Zha19a, ZNP16].

Scale-Invariant [NS16a]. Scaling [AK09, LL13, LHWL21, Ros21, TCP+17, FHL+19, PES+12, YSL05]. SCALLA [LMD+12]. scanner [ISHY88]. Scanning [Bur81, LLL11].

Scatter [Ban77, BMB68, Bre73, Day70, FL73, FW76, FW77, Luc72, Lyo78b, Mal77, Mau83, Mor68, Mor83b, Mau68].

Scenes [War86].

Schannel [KPS92]. schedules [GK12b].

Scheduling [Lyo79, TL93]. Scheme [AK98, Alb21, BP97, Burg4, CLD82, Cha84b, Cha84c, Cha85, CL68, Cha86a, Cha86b, CC88b, CC91, CW91, CGLC20, Dat88, DJS80, DHJS83, Fak80, Hul13, JHL08, KJC11, LW88, Lar88b, LHC05, LSS+21, NX13, Otto85a, Otto85b, PPS21, PVM94, PACT09, SGGB00, SHF+17, TC93, VV84, Vit81a, YSW+11, YY07, ZJ09].
Schemes [BDS09, CL05, CLC06, Cor02, Dam87, DSS17, ED88, HM96, HDCM09, HHL10, Jai89, Jai92a, Jai92b, Jaixx, Kal01, KM09, LM95, LRY78, LRY80, MY80, MKASJ18, Ngu06, PWY13, PF88, RL82, RS77, SDR83a, TL95, CJMS19, CQW08, DH84, GS94, HDCM11, IN89, KK96, KM10, ML94, NMX19, OS88, RS75, SNW06, ZHS94].

Schluesselwoertern [Dos78a].
Schnellen [Kue84a].
Schnorr [DBGV93, NSW09].
Sci [Sar80].
Science [ACM91b, AH03, Bar83, Gol94, Got83, IEE76, IEE80b, IEE82, IEE85a, IEE88c, IEE89, IEE90, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, IEE13, Knu74, Kon10, LC86b, LL83, RR99, Rie89, Rov90, Wai88, WGM88, Wil85b, Win78, TWW77, vL94, AT18].

science/3rd [TWW77].

scientific [Fis87].
Scope [CL83, GJR79].
scoped [FF90].
Scopus [AT18].
scoring [NADY20].
Scotland [AOV99].
Scratchpad [vdBGGLGL16].

SDC [KO90].

SE [Sun02, HLL18a].
Sealed [SKM01].

Sealed-Bid [SKM01].

Search [Ack74, iA91, Ban77, BM76, Boo74, Bra84a, Bra85, Bra86, Cer81, CKB83b, CKB85, Cha91, CLP17, CS82, Ekk74b, GIM99, HWZP18, HH85, KCB81, Kra82, Kut10, LL85, Luc72, MD97, MW90, Mue04, NSS+06, Pal92, PW07, V07, PGV92, Rei03, RSK17, SK99, Sho96, Sta06a, VD21, Win84, XHZ+19, Yas07, YY07, Zhe90, ZH+19, Aam03, FFGL10, GBL94, GBL94, HLL18a, In89, JFDF09, Sim98, SX16, YRY04, ZC12, ANS97, Ano02, Ano08, Ano12, Bou12, FIP02b, Nat92, Sta94].

Security [AK98, Abi12, And94, ASBdS16, CLNY06, CN08, Cor00, Cor92, FW09, GKIa2, HMNB07, HLMW93, HXMW94, ISO97, ISO04, KK12, KK18, Kil01, LC06, LT12, LLL09, MP12, Men12, NAK+15, PW06, RS12, SK20, SM02, WG00, WPS+12, Yan10, XZL19, ACM94a, ACP10, ABM+12, AMP15, Ano93a, AGBR19, BGKZ12, Kak83, Lai92, LC95, Men17, MPST16, PGV93c, SF88, Sta06b, UPV11].

Seed [PNPC20].
Segmented [CLYY92, CLYY95]. Segments [Bor84]. Sekundärteichers [Pet83]. select [FNY92]. selectable [BSNP96c, Gon95, Li95]. Selected [SC77, Ytr06, Bir07, Bor81, JY14, JY14].

Selecting [MHB90, Sou92]. Selection [DC81, FGOG07, Hea82, MS12, OGAB14, TYZO15, CD84a, HYKS08, Dos78a].

Selective [DHT+19, LYDA19]. selectivity [HYKS08, MBKS07]. Selects [Bou12].

Self [HH85, Pag85, Wog89]. Self-Adjusting [Pag85, Wog89].

Self-Monitoring [HH85, Som99, TY03]. Self-Organizing [HH85, Som99, TY03, Wil96, Wog89, ZFD9, AOID19, TKI99].

Semite-Infinite [LII92]. sensing [Ind13].

Sensitive [BT12b, CSSP15, CKPT19, KBG18, KAw15, MNP08, OWZ14, OTKH11, Pag18, ZH2W1, AT18, EFMRK+20, FWG18, GDGK20, HFT+15, HFF+17, LNS11, LWXS18, LJW+17, PCE15, QZD+18, SP12, STS+13, WY00, ZH+21, SA17].

Sentence [CH12]. Sentences [Ven86].

sentiment [ZZLZ18]. Separate [Kue82b, MUL81, Kue82a]. Separating [FK84, SG16, BV13, LS06, VT14].

Separators [Lar88b, Moh90, Moh93, CS93a].

Sept [BD88, Jou85]. September [VLD82, AAC+01, AOV+99, AA86, BJZ94, EF12, FS09, Fis87, HM08, HKNW07, Ker75, Kna89, LSC91, Vid90, Win78, Yao78].

Sequence [BC08, FP89b, Gon81, HG77, LPT12, LL85, MS88b, BJ07, CLW98, EASR22, Wog89].

Sequences [Som99, KS88a, QJ97].

sequencing [KRML09]. Sequential [AD85, BCC10, CT96, GSB94, HB89a, KKC12, Lit89, MUL72, ORE83, PIV85, SK98, SG76b, BDVP14, HB89b, IL90].

Series [BJL16]. Serious [AG18]. Served [PM89].

Server [DR92, GCL17, GBC98, Gra99, LLL+16, VB00, Tsao08]. Server-Side [GSL17].

Services [ANS05, Ano85b, HLC10]. Session [HLC10].

Set [BOS11, Kie85, PSZ18, SG76a, WC81, YD85, BGG12, GGR04, HYKS08, HDCM11, HKLS12, HM03, MB84, SA17].

set-expression [GGR04]. Set-Oriented [Kie85].

several [DLH+79, Kan90]. SHA [ANS97, Bou12, TSP+11, AAE+14, ABM+12, BCC15, jCPB+12, Con17, DR06, GLG+02, JRPK07, KRKJ07, KRJ09b, KJS17, MAK+12, NIS15, NSS+06, PPS21, SK05, Sta9a, SKP15, WYY05a, WYY05d, WYY05b, WYY05c].

SHA-0 [BC15, NSS+06, WYY05d]. SHA-1 [ANS97, AAE+14, BCC15, Con17, DR06, JRPK07, KRRKJ07, KRJ09b, KJS17, SKP15, WYY05a, WYY05b, WYY05c, GLG+02].

SHA-2 [SK05]. SHA-256 [MAK+12, PPS21]. SHA-3 [Bou12, TSP+11, ABM+12, jCPB+12, NIS15].

SHA-512 [GLG+02]. SHA1 [Con17, SBK+17]. Shading [ZDI+15].

Shading-based [ZDI+15]. Shanghai [Ano83, LC06]. Shape [SR89, SYW+20].

Share [SS88b]. Shared
[Bor84, CadHS00, DadH92, EK93, adH93, KBG18, KU88, KTN92, LTS90, MLD94, MLxx, Mey93, OmI91, PG17, SD89c, SD89a, TR02, TNKT92, VB00, Vit81a, WB03, YNW+99, Don91, GLJ11, Kan91, Kan93, KU86, MSS96, Par18, SD89d]. **Shared-Disk** [WB03]. **Shared-Everything** [KTN92, MLD94, TNKT92]. **Shared-Memory** [MLxx, TR02, Vit81a, Bor84]. **Shared-Nothing** [SD89c, SD89a, SD89d]. **shares** [ZHS94]. **Sharing** [LPWW06, KL08, KD92, SNW06, YD86b, ZHS94]. **SHARP** [VD21]. **SHAvite** [GLM+10]. **SHAvite-3-512** [GLM+10]. **Shell** [Rei03]. **Shenzhen** [IEE11a]. **Sheraton** [ACM75b]. **Sheraton-Palace** [ACM75b]. **Shop** [Sil02a]. **Short** [AB12, CW09, CDW+19, DK09, Lyo79, NR12, MT16, SV15a]. **Short-Input** [AB12]. **Short-Output** [NR12]. **Short-Time** [CW09]. **Shorter** [H¨ul13, PPB16]. **Should** [Yao81]. **Shoup** [Mir01]. **Showcase** [USE00a]. **Shrinking** [ZF06]. **SHS** [Ano08, Ano12, NIS93, Nat92]. **SIAM** [ACM94d, SDA90, SDA91, ACM97a, ACM05, ACM08a, Kar98, Mat09, Shr00]. **Sichere** [BN85]. **Side** [GO07, GSL17, TC04]. **SIFT** [MMG10]. **SIGACT** [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM89a, Van10, LL08]. **SIGACT-SIGMOD** [ACM83a, ACM83b, ACM85b, ACM86a]. **SIGACT-SIGMOD-SIGART** [ACM88a, ACM89b, ACM89a]. **SIGNAL** [A+90]. **SIGART** [ACM88a, ACM89b, ACM89a, Van10, LL08]. **SIGCSE** [LC86]. **SIGIR** [BIP92, YR87, BV89]. **SIGMOD** [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM89a, BJ93, CLM89, FMA02, GMJ90, Van10, HF13, LL08, Nav85, SW94b, Sto92, ACM81, ACM84a, BL88, HF13, Lie81, SW94a]. **SIGMOD-SIGACT-SIGART** [Van10, LL08]. **SIGMOD/PODS** [HF13]. **SIGMOD/PODS’13** [HF13]. **Sign** [CK12, GH99, PV07, GK12a]. **Signature** [ANS05, Ano09a, Ano13, BDS09, CS91, Cor02, Dam87, FC87a, FC87b, HHL10, Hill13, Kal01, LR96a, LM95, LL92, N XB13, PWY+13, RZ90, RR92, ZRT91, ZJ09, CR89, Con17, SE21, ZW05]. **Signatured** [SS83]. **Signatures** [AS16, BHH+15, But17, CK12, DK09, FL04, FFGG07, GK12a, GHR99, Hill13, HRS16, HBG+17, MKF+16, MCF17, Moh11, MKAA17, PW93, PGV03f, RR92, Ru93, TT82, CN18, NS09, PP016, ST93]. **Signed** [Sch01b, ZDI+15, SN19]. **Significance** [SP21]. **significant** [BCCL10]. **signing** [BGG94]. **SIGPLAN** [ACM79]. **Silbentrennung** [BN85]. **SIMD** [AT91, RG89]. **SIMD-MIMD** [RG89]. **Simhash** [LLD18]. **Simhash-Based** [LLD18]. **Similar** [RC94]. **similarities** [UCFL08]. **Similarity** [GMT99, HCF95, LNS11, LOO91, NADY20, NNA12, SHZ20, TWZ11, WSZ+16, YT706, CLL+14, GP08, HYK90, SP12, SA17, STS+13, ZWT+14]. **Similarity-Preserving** [SHZ20]. **Simple** [BPZ07, Cic80b, DH01, DS09c, GM94, GM98, IT93, KM08, Lom88, PSSC17, PT12a, Ram92, Sar10, Tho13, CLS95, DKR16, DW03, DS09b, DLM07, MV08, PT11a, Pri95, SKD15, SF88]. **Simplicity** [Rag93]. **Simplifies** [OVY94b, OVY94a]. **Simplify** [Dam93, Dam94]. **simplifying** [VZ12]. **Simulating** [adH93, Mey93]. **Simulation** [EK93, Hill82, Hu00, KLadH93, KLM96, KHW91a, YKW93, KHW91b, TWL+18, War14, DS84a]. **Simulation-Based** [EK93]. **Simulations** [CadHS00, DadH92, Lep98, Rev14, MSS96]. **Simultaneously** [LOY00]. **Sindhi** [SS83]. **Sino** [PPS21]. **Singapore** [SD84]. **Single** [AKS78, AA79b, AA79a, CS93a, CC88b, GIS05, Lar82c, Lar82d, Lar85c, LLD+16]
Men12, MJBD11, OT91, Spr77, YDT83, YSEL09, Men17, MA15, RT89.

spatio [CWC10, DMPP06, FXWW17].
spatio-temporal [CWC10, FXWW17].
speaking [LC95]. Special
[ACM82, DT87, Dos78a, GIS05, MO92a].
specialization [SV15a]. Specialized
[Bab79, ISH+91]. Specific
[RTK12, ARH+18, JDW+19].
Specifications [Nat92]. Specified [AU79].
Specifying [GH+93]. Spectral
[KKC12, Li15, WFT12, WB90, ZWT+14].
Speech [CW09, RJK79]. Speed
[FP98a, KMM+06, KMK89a, PSR90, TK88, WZY+18, YNKM89, BCCL10, EVF06, MCK89b, MSS96, RW07, SLC+07, SXLL08, TLLL07, XMLC11].
Speeding [FH96]. Speicher [GN80].
Speicherstrukturen [Kue84a].
Speichertechniken [LS85]. Speicherung
[BJMM94b, BJMM94a].
Speicherungsstrukturen [Kue83].
Speicherverfahren [DS84a]. Spelling
[CS82, McI82, Rad83, Zam80, MF82, Wie86].
spieziellen [Dos78a]. SPHINCS [BHH+15].
Spiral [CK94, Mul85]. Split
[LL85, MS88b, SS06, SHe78, Wog89].
Split-lived [SS06]. splits [BY89].
Splittable [CP13]. Splitting
[DR09, RT87b, Vek85]. Spoken [KRRH84].
Sponge [ARH+18, BDPV07, AMP12, BDPV08, BDP11, BDPV12].
Sponge-specific [ARH+18]. sponget
[BKL+11]. spongy [RS14]. sponsored
[Fis87, HB93, IEE84]. spots [KLL+97].
Spotting [FLF11]. Sprache [BN85]. SPRC
[Wok93a]. Spraying [KO90]. Spring
[AFI63, IEE88a]. Springs [IEE11b]. Spritz
Square [ACM89a, ACM89b, EPR99].
Squares [OG94b]. squaring [Me95].
SRAM [KHK15]. SRAM/DRAM
[KHK15]. SRS [SWQ+14]. SSD [HGG+12].
SSPIN [Cob94]. St [Vau06]. Stability
[CW09]. stable [HF91]. Stack
[Bor84, KKH91a, LLL+16, KKH91b].
STACS [AH03]. Stage [LCM+20, QZD+18].
STAIRS [RCF11]. stamped [GB17].
Stamping [Cip93, Lip02, SL16]. Standard
[Ano93b, Ano95b, Ano08, Ano09a, Ano12, Ano13, Dan13, FIP93, IXY+19, NIS93, Nat95, NIS15, SK05, CV83a, GVR08, Nam86, Ano02, Dan13, FIP02b, Nat92, Pla98, Lut88].
Standards [Bu06, Fox91, Kal03]. Stash
[ADW12, ADW14, KMW08, KM10].
State [But17, CH94, HB93, MKF+16, Pre97b, Pre99, Wo93b, vdp73, ATAK07, HL94, PV93c, WOl93a].
Stateful [NTY12, Ged14]. Stateless
[BHH+15, MKKA17, NTY12].
Stateless/Stateful [NTY12]. Static
[AA79s, AA79a, LC88, Ram92, Spr77, DMP09]. Statistical
[Fil02, HZ86, Sav90, TTY93, LZ06, MJ08].
Statistically [HR07, Wee07].
Statistically-hiding [HR07]. Statistics
[Rob86, WGM88, DKRT15]. Status
[TSP+11]. Steady [vdp73, HL94].
steady-state [HL94]. Steering [LLL18].
Step [Dit76, ZW+12, AKY13, WS13].
Step-Reduced [ZWW+12, WS13]. Steps
[HKKK10]. Stereo [ZZ83].
Stereo-Warehouse [ZZ83]. stimulating
[JFD09]. STL [Ben98]. STM [DS10].
STOC [ACM07, ACM88b]. STOC’12
[ACM12]. Stochastic [HKNW07]. stock
[She06]. Stockholm [PV85, Ros74].
Storage [ACM04, Bay74, BMB68, Bre73, Col93, Day70, FL73, Fel87, FB87, FP89b, Fro82, GL82, GL88, HCJC06, HMK20, Hin20, Kno71, HGG+12, LCK11, Les88, LCLX19, LRY+15, MSK96, Mau77, Mau83, MEK+14, Mor68, Mor83b, Mul81, Mul85, Omi88, OT91, OS83a, OS83b, Pet57, Sam81, SHF+17, TY03, TS85, Tra63, WZY+18, WCW+22, WH83, WL71, WKO78, WB87, YDT83, YLZ20, vdp72, vdp73, AY14, AK09, CRS83b, DMB19, HGR07, Mau68, MSS96,
storage-efficiency [PT10b].

Storage-efficient [HCJC06, MSK96].

Store [DW83a, LLL+16, LCM+20, MZL+19, QXL+20, dW83b, SFA+19, Shi17, BP94].

Stores [Bry84, GYW+19, JLL+20, PRRR15, SDZ21, WLC20]. Storing [AL86, FKS84, MNS07, Ros77, TY79].

Stouffer [ACM87]. Strategies [iA91, iA94, BI87, Dae95, Die07, adH90, adH93, KL87, KHT89, MD97, Mey93, MNS07, Tro95, YB95].

Strategy [CdM90, LMSM09, LC96, NKT88, RS92, GC90, LMSM12].

Stream [DC98a, cLmL07, MNS12, NCFK11, TW07, TS85, DS09a, Ged14, MV08, OCGD11, RS14, Tan83]. Streaming [CN07, STS+13, YSW+11, YGS+19, CBB05, FVS12, ZC12].

streamlining [DSS10].

Streams [Coh98, SS83, YGC+12, BMMLC+19, CH09, GGR04, SLC+07, YLC+09].

street [Sim98].

Strength [HS08, FH15, Ken73]. Stretching [BVF12].

String [Av94, Ask05, BRM+09, BH85, Bur84, CPF19, CCH09, Cha91, Dav73, KL14, LLLC17, NNA12, TK88, Tay89, TT82, ASM17, AZ10, Bur82, DC94, GBY90, Kim99, MBK07, RZ97, XMLC11].

String-indexed [Tay89].

Strings [BS97, Dit91, FM96, GLB21, Lit91, Pea90, Pea91, RC94, Sav90, Sav91, Zuk21, Evg90].

Strong [CHKO08, CHKO12, JRPK07, HLL18a, Ku04]. strong-password [Ku04].

Strongly [BG07, LK14, Tho00].

Structural [BRM+09, TWZW11, Wil96, ZMI91, FLF11, MK12, ZBB+06]. structuration [Lit77a].

Structure [AHRS92, CK12, CJC+09].

DGM89, DTF91a, DTF91b, FLF11, Flo77, FB87, GHK91a, GHK91b, Gre21, CTC90, KS12, NIS84, Omi88, SG88, WH83, Wri83, ZHW19, BR75, BGG12, IG94, KR09a, KHH89, LNS96, LCH+14, MMC01, MSK96, SB07, TMB02, YD86b].

Structure-Preserving [CK12].

Structured [CS93b, GDA10, Nak21, Piw85, SG76b, SM87, WWG+18, BPT10, GHW07, WHS+07, WLLG08].

Structures [AHU83, BDD+10, BFR87, Boy98, BJM14, CE70, Coh84, DSZ07a, DSZ07b, DP08, Ell85b, Ell82, Fei88, FZ87, FB92, Fro82, Gon84, GBY91, Gri74, Har88, Har71b, HS84, Kru84, LC86a, LRY78, LRY80, Lit84, MO92a, RW73, Sal88, SDW14, SW86, Sne92, Ste82, SW87, TA81, TA86, TGL+97, TS76, TS84, VL87, WS76, WK07, Wir86, YLB90, ZLLD18, BY89, CRS83b, FP89a, GJM02, Har73, HM03, Inc81, IGA05, Koe72, Lin96, MTB00, NT01, NM02b, OS88, She06, VL97, Vit01, Wil78, Wil85a, ZKR08].

Structuring [Bay73a]. Studies [Ano93d, GT80, GG80, Yub82]. Study [AR17, BF83, BK07b, Cha84c, Cha85, Cra85, DTS75, DJS80, DHJS83, Ell85b, Gri74, Hil78b, Hil78a, LC86a, LG78, LYD71, TL95, YLB90, HM03, LY72, Wee88, WTN07].

style [UCFL08]. Sub [WZY+18, Pri95].

Sub-Datasets [WZY+18], sub-quadratic [Pri95]. Subgraph [ZLY+12, WLLG08].

sublinear [CFN18]. Subquadratic [Val15].

subscribe [MJ14]. Subscripts [Atk75, vdSDW74b, vdSdW74a]. subset [IN89, Mon19, Pri95].

Subspace [KRJ+80, Sch11].

Substring [Boo73, Har71a, MKSIA98].

Subsystem [HLC10]. subtype [Duc08]. subtyping [DL06].

Succinct [ANS10, DP08, RRS07, FS08, SH92, SH94].

Suchen [Meh86].

Suffice [ADW12, ADW14]. Sufficiency [NY85].

Sufficient [BDPV14, IK005, IH95, Rus92, Rus93, Rus95]. suffix [BGKZ12, Kos14].

suffix-free-prefix-free [BGKZ12].

Suitable [PPS21, MZI98]. sum [IN89, Mon19]. summaries [KM08].

Summary [DLH+79], Sums [HJ96, RRS07].

Super [An95d, HLL18a, KO90].

Super-strong [HLL18a]. supercomputers [GLJ11].

Supercomputing
Superimposed [ACM04, IEE90, IEE91a, IEE93, Kha95].
Superior [PT10b]. Superjoin [TRN86].
Supervised [CJ86, FH69, SD85, SDKR87, SDR83b].
Superior [PT10b].
Superjoin [TRN86].
Superspecial [CDS20]. Supertree [GB10].
Supervised [CLL14]. Supplement [SC77, Ruc15].
Supplementary [PLKS07]. Support [CN07, Eng94, GSL17, KJC11, SK99, YCRY93, JMHO2, KLSV12, LCRY93].
Supporting [CLS12].
SURF [YCJ12]. Surface [Leb87, LDY16].
Surprising [SKD15]. Surrogate [BCH87].
Surrogates [Dee82]. Surveillance [CZ17, CJ19, Kal93, Sev74, Mil99, RAL07, UPV11].
Survey [CZ17, CJ19, Kal93, Sev74, Mil99, RAL07, UPV11]. SUSE [PT10b].
Symbol [CL83, Bat65, GJR79]. Symbolic [ACM94b, CLD82, DL80, FH96, Jen76, Lev90, Kan91, Kan93, Ng79]. Symbols [Wil59].
Symmetric [FW09, Fil02, HC13, NHS84, Oto85b, PQ98, PQ99, QG89, QG90, Roe94, SK20].
Symmetry [KTN92]. Symposia [Got83]. Symposium [ACM94d, ACM75c, ACM75a, ACM76, ACM77b, ACM79, LFP82, ACM82, ACM83a, ACM83b, ACM84b, ACM85b, ACM86b, ACM86a, ACM87, ACM88a, ACM88b, ACM89b, ACM89a, ACM89c, SDA90, ACM90, ACM91c, ACM91d, SDA91, ACM91e, ACM94b, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM08a, ACM08b, ACM11, ACM12, AH03, Ano10, A+90, AiNOW11, BW92, Co93, CHK06, EF12, Gol94, Van10, adHMR93, HL91, HF13, IEE74, IEE76, IEE80b, IEE82, IEE84, IE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE05, IEE06, IEE07, IEE10, IEE11b, IEE13, Jaj90, Jen76, Lak96, LL08, Lev95, LCS06b, Mat09, MS05, Ng79, ACM77a, Shm00, WGM88, Win78, Wol93a, Wol93b, vdHvH12, ACM91a, FS09, Fis87, HMO8, HKNW07, Kar98, IEE82].
Symssc [Jen76]. Synchronization [Oak98].
synchronizing [DTM+18, ML95].
Syndicate [HM19]. Syndrome [vMG12].
Syndrome-Based [vMG12]. synergy [GHW07]. Synonym [QCH+81]. synopses [YLC+09]. Syntactic [Ven86]. synthesis [Sab94]. synthetic [GL08, PGV93e, PGV94]. Syracuse [IEE80b]. System [ASWD18, Ano10, BGF88, BG92, CBK83, Cer85, CK85, HCL+20, HGH+12, LYX+19, Luh58, Mil85, MK93, MFK+06, PRZ99, PSR90, QXL+20, Sar80, SBS16, SPB88, SC77, TC93, YkWY83, ZZM17, ZZ83, AS09, CZ14, Gob75, HLL18a, KJS17, Kos14, MFES04, WM93, YMI89, ZCZQ19, ZYWM20].
Systematic [SSaS01]. Systems [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM87, ACM88a, ACM89b, ACM89a, DFI91, And91, ANT85, BˇSH12, Bor81, Cer81, CS83b, CC87, Col93, DKO+84b, DKO+84c, DKO84a, Dum56, DGKK12, Ell82, Fox91, FK84, GGY+19, GI12, GLLL17, Gro86, Van10, Han90, HCKW90, Har88, HNK20, HBL+10, HF13, Kim80, Ks12, Kcb81, Kue84b, Kum89a, LYY+18, LC86a, LL08, LLD+17, LXL+19, LCL+20, Llo81, LSZ+21, Man12, Mek+14, Mor83a, Ouk83, PFM+09, PG17, Sha86, She91, SHF+17, SWTX18, Toy86, Ull82, Web72, WB03, Yam85, YLB90, ZJM94b, ZH18, dKC94, ACM94c, AKN12, ARA94, DKO+84d, DAC+13, FP89a, FES09, GPGO16, KKP92, Lia95, Mo92b, RW07, Sk88, SGK09, SP89, TL93, Uiy10, WZ12, WTN07, ZGG05, ZJM94a, ZJM94c, SC77, Sto88].
systolic [EBD91, PjM88, PBJM90].

T3D [DS97]. Tabellen [BI87]. Table [AL86, Bat75, BRM+09, Bee99, Bur75a,
ICD88, ICD90. **TPM** [WYD+18].
[Yan05]. TX
[USE91, ACM87, ARA94, IEE94a]. Type
[KPS92, KRJ09a, TNS20, SF88, SG16, SV18]. Type-based
[KRJ09a]. Type-Graphs
[KPS92]. type-heterogeneous [SV18].
Types [EjKMP80, Hej89, Rog19b, SW87,
Wal88, LPSW03, NMS+08]. TYPHOON
[HKW05]. typing [DMP09].

Überlegungen [Kue84a]. Uebersicht
[Mer72]. UK
[AOV+99, Boy95b, Dav91, Gol96]. UL
[DSS17]. Ultra
[QXL+20, WZJS10, YBQZ18]. Ultra-Fast
[YBQZ18]. Ultra-Low-Latency [QXL+20].
ocertain [BZZ12]. Undergraduate
[Tro92]. Undergraduates [Pag06].
Understanding [Dun89a, Dun89b].
Unequal [Gon80]. Unequal-Probability
[Gon80]. unicast [ATAKS07]. unicorn
[LW17]. Unification [Büt86, Cra85].
Unified [JVM16, Mul84a, Mul84b, ABO+17, BOY11].

Uniform [ABH+73, AT93, Gui89, Kie85, KS86, KS87b,
Lar83, Leb87, LQZJ14, LPP91, LPP92,
Mal77, OP03, PP08, PCK95, Ruž08, UHT95,
Yao85b, Ald87, AT90, MC89, Rad92].
Uniform-Grid [Leb87]. uniformly
[MLP07]. Unifying [BG80, BG82]. Unique
[Boo74, DLH09, DLH13, SD78, ASW87].
Uniqueness [Kah92]. Unit [BC90, H072].
United [ACM94b, JB94]. Units
[LLLC17, WB87, SF88]. Universal
[Abi12, AS96, BKST18, Bié97, Bra09, CW77a,
CW77b, CW79, CJKK19, CS02, Dad90,
DadH92, Die96, DS09c, EPR99, Für88, GC95,
HHR+10, HJ96, JCK+18, Kil01, KR01, KL14,
MNT90, MCW78, Mhe82, Mul91, Nae95,
NY89b, NY89a, NP99, NR12, Ram88b, Sar80,
Sho96, Sho00a, Sie04, Sti91, Sti94a, Sti94b,
Woe01, van94, ACP10, Bié95, DS09b, IIL17,
KYS05, KL96, KR06, LK16, LC13, MNT93,
Sar11, Sar13, Sie89, Tho00, Woe05, Woe06a].
universality [SS89a]. universe
[Bra09, Wen92]. Universes [DS09c].
Universitat [CTC90, Dit76]. Universiteit
[BBD09b]. University [ACM81, IJW89,
CCC89, CR83a, HB93, IEE74, Jäh90, Lie81,
Oxb86, Pat90, Sch82a, Dit76]. universum
[Wenn92]. UNIX [SY91, WG00]. Unknown
[LCL+20]. Unlabeled [GCMG15]. unleash
[McN03]. Unlimp [Kah92]. unsafe [Con17].
unsigned [BCS89]. Unstructured
[Gon83, PFM+09]. Unsupervised
[CJ20, PKW09]. Untersuchung [Stu82].
Unveiling [WZY+18, BCL10]. UOWHFs
[BR97]. updatable [ZYWM20]. Update
[An95a, GO07, GGR04]. Updates
[LCLX19]. Upon
[CS83b, Cha84b, CS87, CW91]. Upper
[DKM+88, DKM+94, GadHW96, DKM+91].
URAL [GT63]. URLs [AY14]. urn
[Ram87]. USA
[ACM03a, ACM07, BD88, Be100, Bra84, Bra93,
BD08, Cop95b, Deb03, DJN09, FNY92,
Fra94, Fre90, Van10, GSW98, Joy03, Ker75,
Kil05, Lom93, Sho95, Sho93, Sho95, Wie99,
Yum02, ACM94d, ACM11, ACM12, FAMA02,
HF13, IC86, ICD86, ICD87, ICD88, IEE88b,
IC90, IEE01, IEE02, IEE05, IEE10, IEE11b,
IEE13, MS05, USE91, USE00a, USE00b].
Usability [BDS88, Sch82a]. Use
[ACM75b, AT18, Bal05, BK84, Bra81, Bra84a,
Bra85, Bra86, BC90, Gur73, NR12, Rad70, WSC1,
Er86, adHMR93, RK15, Vak85, YIAS89].
Used [Stu85, GS94, Sch91a]. USENIX
[USE91, USE00b, USE90]. User
[RTK12, YY07, Bor81, DFMR15, HL12,
LLLH02, LKY04, YRY04]. Using
[ANS97, ASW07, BSD97, Bar97,
BRM+09, BCK96b, Bor84, BÖ511, BM90b,
BI12, BT54a, BT94b, BM01, BT12b,
BMLLC+19, CP95a, CRdPH12, CKB85,
CdM89, CdM90, CLYY92, CCW+17,
CJC+99, CJKK19, Cle84, CD84b, CE70,
CRR18, CY06, DLT98, Dav73, DK07,
Dod82, DL12, DSSW90a, DGKK12,
EFMRK⁺²⁰, Fal85a, FLF11, FRB11, FJ13, GRBCC19, Ger86b, Gir87, Gre21, Gri77, GPA97, GAS⁺¹⁶, Har97, HG77, HNS84, HKY12, JRPK07, JT0909, JD12, JK11, Kab87, KSSS86, KM07, LK07, LAKW07, LQZH14, LR99, LMD⁺¹², Lnm73, MS02, MPP14, MBBS12, MNY81, MH00, Moh90, Moh93, MJT⁺², Mol72, NKT88, N83, OTHK11, O94a, Omi89b, PAPV08, PPS21, PLKS07, PKW09, PW94, QG89, QG90, RL89, RLT83, RSD85, RSSD92, Rey14, Rob86, SD78, SS83]. Using [SRY99, Sho00b, SW86, SK05, Som99, SA97, SKM01, TK88, TC93, TA81, TA86, TGG10, TK85, TS85, Ts96, US09, VV84, WPKK94, Wan14, WLWZ19, WDP⁺¹², Wil96, Wil79, WM19, YY07, YBQZ18, AÖD19, BSNP96b, BLC12, BK07a, BF08, BT90, BGG12, CDS20, CB81, CHL07, CKKK09, CP13, CT96, DS09a, DMP06, DKT06, DS09b, DSSW90b, EH17, Fal86, FM89, Fly92, GTL21, GKK10, G92, Ger86a, GDGK20, Gob75, GBL94, HDMC11, HKL07, HKLS12, HC14, Hil88, HC02, HW88, HXLL13, ISO97, JFDF09, JH98, JL14, JCC00, JBGW11, JMH02, Ken73, Kim99, KJS17, Kos14, Ku04, LG96, LLH02, LKY04, LW04, LNS11, LDK12, LK16, MMC01, McE89b, MG10, MP16, Mue04, Oka88, PCK95, RSD89a, RSSD9b, RGMPM12, RÖN07, SK02, SB95, Sar11, STS⁺¹³, Tho17, UHT95]. using [XZPG21, YTHC97, YL04, YRY04, ZGG05, ZW05, ZLY⁺¹³, ZRL⁺⁸]. USSR [GLB21, ZUK21]. Utah [SM08, Nam86, SM12]. utentibus [DMPP06]. Utilisation [OT91]. Utility [HNKO20]. Utilization [PS12, Wil71, CF99b]. Utilizing [KAS⁺²², KK85]. Utrecht [vL94]. UUID [BŠH12].

V [PHL01], v1.4.0 [Sun02]. VA [ACM94a, ACM94a]. Valdivia [CHK06]. Validation [ML86]. valuation [JDW⁺¹⁹]. Value [DGD02, GIS05, Gra99, GYW⁺¹⁹, JLL⁺²⁰, LLL⁺¹⁶, LMD⁺¹², Lnm73, MS02, MPP14, MBBS12, MNY81, MCK9a, MH00, Moh90, Moh93, MJT⁺², Mol72, NKT88, N83, OTHK11, O94a, Omi89b, PAPV08, PPS21, PLKS07, PKW09, PW94, QG89, QG90, RL89, RLT83, RSD85, RSSD92, Rey14, Rob86, SD78, SS83]. Using [SRY99, Sho00b, SW86, SK05, Som99, SA97, SKM01, TK88, TC93, TA81, TA86, TGG10, TK85, TS85, Ts96, US09, VV84, WPKK94, Wan14, WLWZ19, WDP⁺¹², Wil96, Wil79, WM19, YY07, YBQZ18, AÖD19, BSNP96b, BLC12, BK07a, BF08, BT90, BGG12, CDS20, CB81, CHL07, CKKK09, CP13, CT96, DS09a, DMP06, DKT06, DS09b, DSSW90b, EH17, Fal86, FM89, Fly92, GTL21, GKK10, G92, Ger86a, GDGK20, Gob75, GBL94, HDMC11, HKL07, HKLS12, HC14, Hil88, HC02, HW88, HXLL13, ISO97, JFDF09, JH98, JL14, JCC00, JBGW11, JMH02, Ken73, Kim99, KJS17, Kos14, Ku04, LG96, LLH02, LKY04, LW04, LNS11, LDK12, LK16, MMC01, McE89b, MG10, MP16, Mue04, Oka88, PCK95, RSD89a, RSSD9b, RGMPM12, RÖN07, SK02, SB95, Sar11, STS⁺¹³, Tho17, UHT95]. using [XZPG21, YTHC97, YL04, YRY04, ZGG05, ZW05, ZLY⁺¹³, ZRL⁺⁸]. USSR [GLB21, ZUK21]. Utah [SM08, Nam86, SM12]. utentibus [DMPP06]. Utilisation [OT91]. Utility [HNKO20]. Utilization [PS12, Wil71, CF99b]. Utilizing [KAS⁺²², KK85]. Utrecht [vL94]. UUID [BŠH12].

V [PHL01], v1.4.0 [Sun02]. VA [ACM94a, ACM94a]. Valdivia [CHK06]. Validation [ML86]. valuation [JDW⁺¹⁹]. Value [DGD02, GIS05, Gra99, GYW⁺¹⁹, JLL⁺²⁰, LLL⁺¹⁶, LMD⁺¹², Lnm73, MS02, MPP14, MBBS12, MNY81, MCK9a, MH00, Moh90, Moh93, MJT⁺², Mol72, NKT88, N83, OTHK11, O94a, Omi89b, PAPV08, PPS21, PLKS07, PKW09, PW94, QG89, QG90, RL89, RLT83, RSD85, RSSD92, Rey14, Rob86, SD78, SS83]. Using [SRY99, Sho00b, SW86, SK05, Som99, SA97, SKM01, TK88, TC93, TA81, TA86, TGG10, TK85, TS85, Ts96, US09, VV84, WPKK94, Wan14, WLWZ19, WDP⁺¹², Wil96, Wil79, WM19, YY07, YBQZ18, AÖD19, BSNP96b, BLC12, BK07a, BF08, BT90, BGG12, CDS20, CB81, CHL07, CKKK09, CP13, CT96, DS09a, DMP06, DKT06, DS09b, DSSW90b, EH17, Fal86, FM89, Fly92, GTL21, GKK10, G92, Ger86a, GDGK20, Gob75, GBL94, HDMC11, HKL07, HKLS12, HC14, Hil88, HC02, HW88, HXLL13, ISO97, JFDF09, JH98, JL14, JCC00, JBGW11, JMH02, Ken73, Kim99, KJS17, Kos14, Ku04, LG96, LLH02, LKY04, LW04, LNS11, LDK12, LK16, MMC01, McE89b, MG10, MP16, Mue04, Oka88, PCK95, RSD89a, RSSD9b, RGMPM12, RÖN07, SK02, SB95, Sar11, STS⁺¹³, Tho17, UHT95]. using [XZPG21, YTHC97, YL04, YRY04, ZGG05, ZW05, ZLY⁺¹³, ZRL⁺⁸]. USSR [GLB21, ZUK21]. Utah [SM08, Nam86, SM12]. utentibus [DMPP06]. Utilisation [OT91]. Utility [HNKO20]. Utilization [PS12, Wil71, CF99b]. Utilizing [KAS⁺²², KK85]. Utrecht [vL94]. UUID [BŠH12].
REFERENCES

Word [BH86, FLF11, KRJ+80, LHC05, BT89, Han17, ST85]. Words [Chu90, DM90, Dos78a, KR79, KRRH84, MH00, ST86, Tro06, Wai84, Zou85]. work [Colh93, MV08]. Working [Cer85, CE95]. works [Gre95, LWXS18]. Work [IJW89, ABM06, ODB89, Ano92, BBD09b, Dav91, De 95, DSZ07a, DSZ07b, DJRZ06, GQ95, Hel94, QV89, QV90, RR82a, Rei88, Rue93, ST86, Tro06, Wol84, Zou85].

work [Col93, MV08]. Working [Cer85, CE95]. works [Gre95, LWXS18]. Work [IJW89, ABM06, ODB89, Ano92, BBD09b, Dav91, De 95, DSZ07a, DSZ07b, DJRZ06, GQ95, Hel94, QV89, QV90, RR82a, Rei88, Rue93, ST86, Tro06, Wol84, Zou85].

References

ACM:1969:PAN

Asano:1990:ISS

Anderson:1979:CPH

M. R. Anderson and M. G. Anderson. Comments on perfect hashing functions: a sin-

Anderson:1979:CCP

Ausiello:1986:IIC

Ajtai:1992:FTG

Apers:2001:PTS

Albertini:2014:MHE

Anshel:2016:CHF

Iris Anshel, Derek Atkins, Dorian Goldfeld, and Paul E.

Andreeva:2016:NSP

Arnold:1973:UHA

Azar:1999:BA

Ailamaki:2006:PIW

Ahmed:2016:RN
Andreeva:2012:SAS

Atkinson:1974:FPQ

Arge:2007:ALP

REFERENCES

[ACM84a] ACM:1982:SPA

REFERENCES

[ACM:1986:PEA]

[ACM:1987:PEA]

[ACM:1988:PPS]

[ACM:1988:PFA]

[ACM:1989:PPE]

[ACM:1989:PEA]
ACM:1989:PTF

ACM:1990:PTS

ACM:1991:PPE

ACM:1991:ACS

ACM:1991:CRE

ACM:1991:PTT

ACM:1994:CCS

ACM:1994:IP1

ACM:1994:MMC

ACM:1994:ASD

ACM:1996:PTE

ACM:1997:PEA

ACM:1997:PTN

ACM:1998:PTA

REFERENCES

ACM:2001:PAA

ACM:2002:PTF

ACM:2003:PTF

ACM:2004:SHP

ACM:2005:PSA

REFERENCES

URL [ACM07]: http://dl.acm.org/citation.cfm?id=1070432.

Alvarez-Cubero:2016:AVL

Ahrens:1985:SRS

Adams:2008:ENE

Ashur:2011:LAR

Ayday:2012:DAA

Aceto:2008:ALPa

Heide:1990:DHS

Meyer auf der Heide. Dy-

Heide:1993:HSS

Heide:1993:PAE

Adi:1988:DCC

Alon:1997:LHG

Alon:1999:LHF

AlMahmoud:2019:SPP

A. AlMahmoud, E. Damiani, H. Otrok, and Y. AlHammadi. Spamdoop: a

Aumuller:2012:EEH

Aumuller:2014:EEH

Atighehchi:2009:EPA

Anagnostopoulos:2018:RES

AFIPS:1963:PSJ

AFIPS:1969:ACP

Ajtai:1983:HFP

M. Ajtai, M. Fredman, and J. Komlos. Hash functions for priority queues. *Annual Symposium on Foundations of
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Alb21] Aiiad Albeshri. An image hashing-based authenti-

[AMPH14] Jean-Philippe Aumasson, Willi Meier, Raphael C.-W.
REFERENCES

Albers:2009:ALP

Anders:1988:PHK

Anders:1991:TFC

Alon:1996:DWB

Araujo:2020:CHR

REFERENCES

informaworld.com/smpp/content~content=a741902753db=all~order=page. Encryption systems; plaintext bit; hash function; ciphertext errors; error extension; tree function; ciphertext attack; computable attack; connectivity; DES; RSA key selection; algorithm design.

REFERENCES

[Ano93d] Anonymous, editor. The Second Annual Dartmouth Institute on Advanced Graduate Studies in Parallel Computation. Dartmouth College (??), Hanover, NH, USA, June 1993. ISBN ?? LCCN ?? I have been unable to locate this reference in several major libraries, including Dartmoth’s, sigh…

[Ano95c] Anonymous, editor. NATO ASI on Fractal Image En-
Anonymous:1995:SHS

Anonymous:1996:RF

Anonymous:2002:SHS

Anonymous:2008:SHS

Anonymous:2009:DSS

Anonymous:2009:PCA

Anonymous:2010:NDS

Anonymous:2012:SHS

Anonymous:2013:DSS

ANSI:1997:AXP

ANSI:2005:AXP

Arbitman:2009:ACH

Arbitman:2010:BCH

Y. Arbitman, M. Naor,
REFERENCES

Arnaurov:1985:ODF

Al-Odat:2020:SHA

Aluc:2019:BSC

Atkinson:1999:PTF

Analyti:1992:FSM

REFERENCES

Analyti:1993:PAM

Aumasson:2008:HED

Aumasson:2011:CHF

Akbarinia:2007:PTK

Areias:2016:LFH

Atighehchi:2017:OTM

Areias:2021:CEN
Miguel Areias and Ricardo Rocha. On the correctness and efficiency of a novel lock-free hash trie map design. *Journal of Parallel
REFERENCES

Anger:1994:IEA

Altawy:2018:SLT

Arikan:1994:IGE

Aghili:1982:PGD

Abdelguerfi:1989:EVA

M. Abdelguerfi and A. K. Sood. External VLSI algorithm for the relational database projection operation. International Jour-
REFERENCES

REFERENCES

Al-Ssulami:2017:FSM

Astakhov:1980:OEA

Astrahan:1987:ANU

Aspnas:2007:EAS

Alrabaee:2018:FRE

Asano:1990:APP

Azadegan:1991:PJA

Asano:1993:APP

Abdulhayoglu:2018:ULS

Al-Talib:2007:IMS

Atighehchi:2020:PNA

Atkinson:1975:HMS

Aviv:2019:ELG

Ang:1998:TLH

C. H. Ang, S. T. Tan, and T. C. Tan. Tried lin-

Aho:1979:OPM [AU79]

Aumasson:2009:CHF [Aum09]

Alvarez:2011:IME [ÁVZ11]

Apers:1989:VLD [AW89]

Ahmad:2014:RTN [AY14]

Askitis:2010:RSH [AZ10]

Nikolas Askitis and Justin

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bellare:2012:LCH

Bernstein:1988:OCE

Belazzougui:2011:TPM

Bennett:1988:PAP

Bollobas:1990:CDC

Ball:1939:MRE

W. W. Rouse (Walter William Rouse) Ball and H. S. M. (Harold Scott MacDonald [“Donald”]) Coxeter. *Mathematical recreations and essays*. Macmillan Publishing Company, New York, NY, USA, 11th edition, 1939. 45 pp. LCCN QA95 .B3 1939. According to Knuth [Knuth73, p. 507], this is one of two papers that first discuss the birthday paradox: “if 23 or more people are present in the same room, chances are good that two of them will have the same month and day of birth! In other words, if we select a random function which maps 23 keys into a table of size
365, the probability that no two keys map into the same location is only 0.4927 (less than one-half)." The discovery is credited to unpublished work of H. Davenport (1927). See also [vM39].

Burkowski:1990:UPH

Bird:2006:BSE

Balachandran:2008:SHC

Bu:2010:SHF

Boldyreva:2009:FNM

Boneh:2016:BHP

REFERENCES

Bell:1982:KSC

Bell:1984:HTV

Bancilhon:1988:PFI

Bauspiess:1992:RCH

Buchmann:2008:PQC

Blin:2010:ARS

Bao:2020:GAH

REFERENCES

Biryukov:2016:ANG

Bussi:2019:MHF

Berger:2012:GFL

Bosselaers:1997:RCH

Bertoni:2011:CSF

Bertoni:2012:KIO
Guido Bertoni, Joan Daemen, Michaeł Peeters, Gilles Van Assche, and Ronny Van Keer. Keccak implementation overview. Report, STMicroelectronics,
REFERENCES

Baraani-Dastjerdi:1997:UCH

Bertoni:2006:RBM

Bertoni:2007:SF

Bertoni:2008:ISC

Bertoni:2009:RPK

Bertoni:2012:KSF

REFERENCES

REFERENCES

[BFCJ+12] Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C. Kuszmaul, Dzejla

0782 (print), 1557-7317 (electronic).

REFERENCES

Barn:1995:ODP

Battiat:2011:RFH

Becker:1987:SAG

Batory:1980:UMP

Batory:1982:UMP

Becker:1992:RBO

Baritaud:1993:FHCb

Baritaud:1993:FHCa

Blelloch:2007:SHI

Broadbery:1995:IDE

Barak:1988:HFS

Bellare:1994:ICC

Brun:2012:LLS
Emmanuel Brun, Arthur Guittet, and Frédéric Gibou. A local level-set method using a hash table data

REFERENCES

Bruckner:1986:MPH

Banieqbal:1990:RMH

Bast:1991:FRP

Ban-Hashemi:1993:FAC

Bernstein:2015:SPS

Ben-Haim:2012:PHC

Berman:2013:HPR

REFERENCES

REFERENCES

Barwick:2007:SAL

Bierbrauer:1993:FHF

Bierbrauer:1994:FHF

Benhamouda:2016:NFP

Braibant:2014:IRA

Benouamer:1994:HST

Benouamer:1994:HLN

[BJMM94b] M. O. Benouamer, P. Jallou,
REFERENCES

Bradford:2007:PSC

Boldyreva:2012:NPG

Bogdanov:2011:SLH

Brier:2009:LFC

Bibak:2018:AUH

Boral:1988:SIC

Barkley:1989:PRH

REFERENCES

Blasius:1995:GRR

Blackburn:2000:PHF

Bando:2012:FBG

Bloom:1970:STT

Barber:2014:MEH

Blustein:1995:IBV

Battulga:2020:HTP

Bayer:1976:EST

REFERENCES

5915 (print), 1557-4644 (electronic). Also published in [Ker75, p. 508–510].

Beyer:1968:LEC

Bustio-Martinez:2019:UHL

Black:1998:GHA

Buhrman:2002:BO

Barthels:2017:DJA

Barth:1985:SSS

Wilhelm Barth and Heinrich Nirschl. Sichere Sinensprechende Silbentrennung für die Deutsche Sprache. Angewandte Informatik, Applied Informatics,
Barreto:2010:WNC

Boo72

Boo73

Boo74

Bor71
REFERENCES

[102x681] REFERENCES

Boyd:1995:CCI

Boyer:1998:AAR

John Boyer. Algorithm alley: Resizable data structures. Dr. Dobbs Journal, 23(1):115–116, 118, 129, January 1998. CODEN DDJOEB. ISSN 1044-789X. Discusses some deficiencies of the Java library hash table support, and compares it with his algorithm and that used in the C++ Standard Template Library. Also compares the Jenkins hash function [Jen97] with the one proposed in this paper.

Beuchat:2011:LAU

Biliris:1994:EEO

Barbour:1997:DMH

REFERENCES

REFERENCES

December ?, 1975. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

Bradley:1985:UMD [Bra85] James Bradley. Use of mean distance between overflow records to compute av-

Bradley:1986:UMD

Bradley:1988:BFP

Brassard:1990:ACC

Brass:2009:UHF

Brent:1973:RRT

Richard P. Brent. Reducing the retrieval time of scatter storage techniques. *Communications of the Association for Computing Machinery*, 16 (2):105–109, February 1973. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Modification of open addressing with double hashing to reduce the average number of probes for a successful search.

Bremers:1991:HPP

H. L. Bremers. Hash partitioning performance improved by exploiting skew

John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the block-cipher-based hash-function constructions from PGV. In Yung [Yun02],
REFERENCES

Black:2010:ABB

Bode:1993:PPA

Bryant:1984:EHL

Biham:1991:DCFa

Biham:1991:DCS

REFERENCES

REFERENCES

DEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

REFERENCES

springer.com/chapter/10.1007/978-3-642-32298-3_17/.

REFERENCES

Burkhard:1976:PMR

Burkhard:1977:ART

Burkhard:1978:PMH

Burkhard:1979:PMH

Burkowski:1981:PHH

Burkowski:1982:HHS

Burkhard:1983:IBI

Burkhard:1983:IIM

REFERENCES

REFERENCES

sp/2017/04/msp2017040037-abs.html

Belkin:1989:SPT

Barreto:2012:HCS

Bazrafshan:2013:IBS

Breen:1989:HFP

Bruynooghe:1992:PLI

Blackburn:1998:OLP

Baeza-Yates:1989:MSF
REFERENCES

Barnes:2015:PEP

Bao:2012:WBS

Czumaj:2000:CRH

Chen:2007:IHJ

Cain:1984:MAD

Canetti:1997:TRR

REFERENCES

Coelkesen:1994:MCV

Challal:2005:HHC

Chang:1987:PAG

Chang:1988:OMP

Cercone:1983:SIS

[Nick Cercone, John Boates, and Max Krause. A semi-interactive system for finding perfect hash functions. Technical report CMPT TR 83-4, Simon Fraser University, Burnaby, BC, Canada, 1983. ?? pp. (email library@cs.sfu.ca).]

Cercone:1985:ISF

Chang:1988:OMP

[C. C. Chang and C. H. Chang. An ordered minimal perfect hashing scheme...]

[CC88b]
REFERENCES

Chang:1991:NAA

Chang:2012:NHM

Coburn:2012:NHM

Chang:2009:HTF

Cho:2008:DNX

Chang:1991:DMI

[CD84b] John G. Cleary and John J. Darragh. A fast compact representation of trees us-
REFERENCES

ing hash tables. Technical Report 84/162/20, University of Calgary, September 1984. ?? pp. (email parin@cpsc.ucalgary.ca).

Colbourn:2019:DHF

Cheiney:1989:PTC

Cheiney:1990:PST

Coron:2005:MDR

Castryck:2020:HFS

Cui:2019:STA

REFERENCES

acm.org/ft_gateway.cfm?id=3326166.

REFERENCES

CODEN AMLEEL. ISSN 0893-9659 (print), 1873-5452 (electronic).

Richard M. Cowan and Martin L. Griss. Hashing – the key to rapid pattern matching. In Ng [Ng79], pages
Cotter:1992:CTK

Chen:2020:PPM

Cormode:2009:FFI

Ceglarek:2012:FPD

Chang:1984:OIR

Chang:1984:OMP

Chang:1984:SOM

C. C. Chang. The study of an ordered minimal perfect hashing scheme. *Communications of the Association for Computing Machinery*, 27(4):384–387, April 1984. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). The English translation of Ref. 6 of this paper appears in [Hua82]; that book contains the fundamental prime number functions needed for the ordered minimal perfect hash functions described here.

Chang:1985:SLO

Chang:1986:LOR

Chang:1986:SCO

Chapman:1991:QSS

Chaudhuri:1994:TBO

REFERENCES

[Che84a] Wen-Chin Chen. The Design and Analysis of Coalesced Hashing. PhD thesis, Department of Computer Science, Brown University, Providence, RI, USA, November 1984. ?? pp. See also [Che84b].

[Chi93] Andrew Chin. Locality-preserving hashing. In Anonymous [Ano93d], pages 87–98. ISBN ?? LCCN ?? I have been unable to locate this reference in several major libraries, including Dartmouth’s, sigh...

Camacho:2008:SAC

Camacho:2012:SAC

Czech:1997:PH

[CHKO08]

[CHKO12]

[CHL07]

[CHM92a]

[CHM92b]
REFERENCES

Chen:1997:AHF

Cichelli:1980:MPH

Caires:2005:ALP

REFERENCES

J. Claussen, A. Kemper, D. Kossmann, and C. Wiesner. Exploiting early sorting and early partitioning

Chierichetti:2014:CLF

Cygan:2018:FHC

Chierichetti:2019:DLS

Chang:1993:RCO

Coetser:2009:REH

Cook:1983:STA

REFERENCES

CODEN IESEDJ. ISSN 0098-5589 (print), 1939-3520 (electronic).

Chang:1985:PAK

Chang:1986:LOM

Chang:1995:CHE

Chang:2005:PHS

Colbourn:2009:LHF

Colbourn:2009:RCP

Clapson:1977:IAT

Philip Clapson. Improving the access time for random access files. Communications of the Association for Computing Machinery, 20(3):127–135, March 1977. CO-
REFERENCES

DEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

Chang:1992:OPD

Chang:2006:PHS

Chang:1982:SGC

Cleary:1984:CHT

Charles:2009:CHF

Click:1995:GCM

Cheng:2014:SSM

Jian Cheng, Cong Leng, Peng Li, Meng Wang, and Hanqing Lu. Semi-supervised

Celis:1985:RHH

Celis:1986:RHHb

[CLM86] P. Celis, P. Å. Larson, and J. I. Munro. Robin Hood hashing. Technical Report CS-86-14, Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, April 1986. ?? pp. See also [Cel86].

Clifford:1989:AIC

Li:2007:RNH

Chang:2006:ISA

Canetti:2013:PCC

REFERENCES

Chiu:2017:AAS

Chen:1995:STP

Chen:2012:EDI

Colbourn:2018:ACM

Chu:1998:EHB

Chen:1995:ASR

Chen:1992:USR
Knowledge and Data Engineering, 7(4):656–??, August 1, 1995. CODEN ITKEEH. ISSN 1041-4347.

Czech:1993:LTA

Cheng:2007:DHL

Chang:2008:IIS

Comer:1982:GPA

Cook:1982:LOM

Coburn:1994:ISH

Cohen:1984:MSP

Cohen:1994:ACF

REFERENCES

[164]

[Con17] Lucian Constantin. The SHA1 hash function is now completely unsafe: Researchers have achieved the first practical SHA-1 collision, generating two PDF files with the same signature. ComputerWorld, ?? (??):??, February 23, 2017. CODEN CMPWAB. ISSN 0010-4841. URL https://www.computerworld.com/article/3173616/the-sha1-hash-function-is-now-completely-unsafe.html.

[Cop95b] Don Coppersmith, editor. Advances in cryptology, CRYPTO '95: 15th Annual International Cryptology Conference, Santa Barbara, Cal-
REFERENCES

Coron:2000:ESF

Coron:2002:SPP

Chaum:1987:ACE

Chaum:1988:ACE

David Chaum and Wyn L. Price, editors. Advances in cryptography — EUROCRYPT '87: Workshop on the Theory and Application of Cryptographic Techniques, Amster-
REFERENCES

Cai:1991:MNH

Camion:1991:KHF

Cai:1991:LMN

Charnes:1995:ASH

Claessen:2013:SPN

C. C. Chang and J. C. Shieh. On the design of ordered minimal perfect hashing functions and join dependencies. Was to appear in J. ACM, but did not. Where was it finally published?, 1983.

REFERENCES

CODEN PCCCDU. ISSN 0732-6181.

Cooper:1993:TTA

Cramer:2002:UHP

Chakrabarti:2015:BPL

Cooperman:1996:NSP

Cormode:2010:ANG

Chiou:2012:IMA

Chuang-Kai Chiou and Judy C. R. Tseng. An incremental mining algorithm for association rules based on minimal perfect hashing and pruning. Lecture Notes in CS, 7234:106–113, 2012. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (elec-
REFERENCES

IEEE:1990:FAS [CTC90]

[CTZD11]

Chen:2011:CIK

[CV83a]

Chen:1983:AEI

[CV83b]

Chen:1983:NVC

[CV84]

Chen:1984:ANV

[CV85]

Chen:1985:AAS

[CV86]
REFERENCES

REFERENCES

Chang:1993:HON

Chen:2009:SHA

Chiu:2010:FMH

Chandramouli:2019:FFI

Contini:2006:FPK

Cobb:1991:SIP

Chen:2014:MLC

REFERENCES

REFERENCES

Dietzfelbinger:1993:OPD

Crescenzo:2012:DFC

Diaz:2013:TLH

Dietzfelbinger:1990:NUC

Dietzfelbinger:1992:HPU

Daemen:1995:HFC

REFERENCES

[Dam94] Ivan B. Damgård. Interactive hashing can simplify zero-knowledge protocol design without computational
Davies:1991:ACE

Day:1970:FTQ

Drechsler:2012:IEH
REFERENCES

10.1007/978-3-642-32808-4_33.

([DCM18] Ding:2018:NPH) Kaimeng Ding, Shiping Chen, and Fan Meng. A novel perceptual hash algorithm for multispectral im-

[Darragh:1991:BCR]

[DeBonis:2011:CGT]

[Dhawan:2015:AEN]

[DDS14]
deBalbine:1969:CAR

DeSantis:1995:ACE

Debnath:2003:CTA

Deen:1982:IIS

Devroye:1986:LNB

Devine:1993:DID

Devroye:1999:HSR

REFERENCES

REFERENCES

and Data Engineering, 1(2): ??, June 1989. CODEN ITKEEH. ISSN 1041-4347. Also published in [ICD87].

Dietzfelbinger:1992:PHF

DeWitt:1990:GDMb

DeWitt:1990:GDMa

Donaldson:1984:CMV

Dietzfelbinger:2001:SMP

REFERENCES

[DHW08] Martin Dietzfelbinger, Martin Hühne, and Christoph
REFERENCES

Dietzfelbinger:1990:HDD

Dietzfelbinger:1996:UHW

Dietzfelbinger:2007:DSM

Dittmer:1976:IEP

Dittmer:1991:NFH

this author [Dit76]. See also comments in [Sav91, Lit91, Pea91].

REFERENCES

REFERENCES

deKergommeaux:1994:PLP

Jacques Chassin de Ker
gommeaux and Philippe Codognet. Parallel logic pro-

dietzfelbinger:1994:DPH

dietzfelbinger:1988:DPH

dietzfelbinger:1991:DPH

dietzfelbinger:1991:DPH

dewitt:1984:ITMc

dewitt:1984:ITMa

REFERENCES

[DMB19] Nikolaos Doukas, Oleksandr P. Markovskyi, and Nikolaos G. Bardis. Hash function design for cloud

Ducournau:2009:EAO

Demaine:2006:DDP

Dietzfelbinger:2011:CHP

Devroye:2004:WCR

DeWitt:1992:PSH

Deen:1981:DCD

REFERENCES

[DP08] Martin Dietzfelbinger and Rasmus Pagh. Succinct data structures for retrieval and approximate member-
ship (extended abstract).
In Aceto et al. [ADG+08],
pages 385–396. ISBN
3-540-70574-0 (softcover).
LCCN ????. URL http:
//www.springerlink.com/
content/r124235788213548/ .

Saumitra M. Das, Himabindu
Pucha, and Y. Charlie Hu.
Distributed hashing for scalable
multicast in wireless ad hoc
networks. *IEEE Transactions on Parallel and
Distributed Systems*, 19(3):
347–362, March 2008. CO-
DEN ITDSEO. ISSN 1045-
9219 (print), 1558-2183 (elec-
tronic).

A. Delis and N. Roussopoulos.
Performance and scalability of
client-server architectures.
In *Proceedings of the 18th Conference on Very
Large Databases, Vancouver*,
page ?? Morgan Kaufmann
Publishers, San Francisco,

Christophe De Cannière and
Christian Rechberger.
Finding SHA-1 characteristics:
General results and applica-
tions. *Lecture Notes in CS*, 4284:1–20,
2006. CODEN LNCS9D9.
ISSN 0302-9743 (print), 1611-3349 (elec-
springer.com/content/pdf/10.1007/11935230_1.pdf;
http://link.springer.com/content/pdf/bfm:978-
3-540-49476-8/1.pdf.

Martin Dietzfelbinger and
Michael Rink. Applications
of a splitting trick. In Al-
berson et al. [AMSM+09],
ISBN 3-642-02926-4. ISSN
0302-9743 (print), 1611-3349
(electronic). LCCN QA267
.155 2009. URL http:
//www.springerlink.com/
content/27w12p275w8njju3/ .

Munkhbaatar Doyoddorj and
Kyung-Hyune Rhee. A
novel secure image hashing
based on reversible water-
marking for forensic analy-
sis. *Lecture Notes in CS*,
6908:286–294, 2011. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/10.1007/978-3-642-23300-
5_22.

Daniel Drescher. *Blockchain
Basics*. Apress, Berkeley,
CA, USA, 2017. ISBN 1-
4842-2603-8 (print), 1-4842-
2604-6 (e-book). xv +
255 pp. LCCN HG1710
.D74 2017. URL http:/
//link.springer.com/book/
REFERENCES

[Drescher:2017:HD]

[Drescher:2017:HRW]

[DS84a]

[DS84b]

[Dixon:1997:HPS]

[Deepthi:2009:DIA]
REFERENCES

Dietzfelbinger:2009:RUC

Dietzfelbinger:2009:WCH

Du:1995:RMQ

Dachman-Soled:2020:TRA

Dayal:1984:VLD

Dalessandro:2010:NSS

REFERENCES

[Dayal:1987:PAC] Umeshwar Dayal and Irv Traiger, editors. *Proceed-
Du:1986:DAM

Daloze:2018:PDL

Deutscher:1975:CSD

Du:1991:MEH

Du:1991:PDD

Dalinagaard:2014:AMI

Daloze:2018:PD

Deutscher:1975:CSD

Du:1986:DAM

REFERENCES

REFERENCES

January 1983. CODEN IPETD3. ISSN 0143-7062.

Dietzfelbinger:2003:ARG

Dietzfelbinger:2005:BAD

Dietzfelbinger:2007:BAD

DeSantis:1990:DPS

DeSantis:1991:DPS

Ding:2008:MPH

Ehdaie:2016:HCR

Esmat:2022:PHB

Elleithy:1991:VIS

Ecker:1974:BRG

Ecker:1974:PSQ

Enbody:1988:DHS

Ege:1986:DIG

Epstein:2012:AED

Ellis:1983:EHC

Ellis:1985:CLH

Ellis:1985:DDS

Ellis:1987:CLH

Ellis:1988:CEH

Erlingsson:2007:CPA

Englert:1994:NSS

Etzel:1999:SHF

http://link.springer-ny.com/link/service/series/0558/bibs/1666/16660234. [Ers58b]

Er:1986:UTI

Ershov:1958:PAO

Estebanez:2014:PMC

Eugenides:1990:ESM

Estan:2006:BAC

Cristian Estan, George Varghese, and Michael Fisk. Bitmap algorithms for counting active flows on high-speed...
Fotakis:2003:SEH

Fabry:1974:CBA

Fairouz:2021:HAH

Fahlman:1980:HIS

Faloutsos:1985:MHU

Faloutsos:1985:AMT

Faloutsos:1986:MHU

Christos Faloutsos. Multiattribute hashing using Gray codes. SIGMOD Record (ACM Special Interest Group
Faloutsos:1988:GCP

Farrell:1993:CCC

Farashahi:2014:HHC

Fontayne:1987:MSR

Frakes:1992:IRD

Faloutsos:1987:DPA

Faloutsos:1987:OSE

REFERENCES

REFERENCES

Freire:2007:BHB

Figini:1984:ACH

Farashahi:2013:IDH

Fisteus:2010:HCN

Files:1969:IRS

Fortune:1979:NRN

REFERENCES

DEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

[FHCD92a] Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and Amjad M. Daoud. Minimal perfect hash functions for large databases. *Communications of the Association for Computing Machinery*, 35 (1):105–121, January 1992. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This is the first published algorithm for computing minimal perfect hash functions for lists of millions of words; previous algorithms were computationally infeasible for more than a few hundred words.

[FHCD92b] Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and Amjad M. Daoud. Practical minimal perfect hash functions for large databases. *Communications of the Association for Computing Machinery*, 35(1):105–121, January 1992. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). URL http://www.acm.org/pubs/toc/Abstracts/0001-0782/129623.html. This is the first published algorithm for computing minimal perfect hash functions for lists of millions of words; previous algorithms were computationally infeasible for more than a few hundred words.

Fan:2019:DSP

Frieder:1985:LSP

Filiol:2002:NST

Fischer:1987:FMP

REFERENCES

Gay the article by Field and Jones:

Gay the article by Fredman and Komlős:

Gay the article by Fu and Kameda:

Gay the article by Fujiwara et al.:

Gay the article by Fredman et al.:

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with $O(1)$ worst case access time. *Journal of the Association for Computing Machinery*, 31(3):538–544, July 1984. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic). Extends the work of Tarjan and Yao [TY79], using a two-level data structure, the first containing pointers to the second, and the second containing blocks accessible by a perfect hashing function.

Gay the article by Feldman and Low:

REFERENCES

REFERENCES

Fischlin:2008:RMP

Fischlin:2014:RMP

Ferguson:2010:SHF

Flynn:1992:ORU

Flajolet:1985:PCA

Faloutsos:1989:DUE

REFERENCES

(electronic). Also published in/as: IBM Research Report RJ2305, Jul. 1978. See also [Reg85].

Fiat:1988:NOH

Fiat:1992:NH

Finin:1992:IKM

Forte:2009:DM

Fox:1991:GEI

Frost:1982:FGN

Fateman:1989:SDS

[FP89a] R. J. Fateman and C. G. Ponder. Speed and data structures in computer algebra systems. SIGSAM
REFERENCES

Bulletin (ACM Special Interest Group on Symbolic and Algebraic Manipulation), 23 (2):8–11, April 1989. CODEN SIGSBZ. ISSN 0163-5824 (print), 1557-9492 (electronic).

Average-case analysis of algorithms.

Feldman:1969:ABA

Franklin:2004:ACC

Ferreira:2011:LHB

Freeman:1990:ICP

Friemel:1986:DM

REFERENCES

Discusses the dynamic hashing scheme used by ASDAS, under development at Strathclyde University.

[Fortnow:2008:IIC] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and

[Friedman1977:EGC] Daniel P. Friedman and David S. Wise. Erra-

REFERENCES

[GDA10] Šarūnas Girdzijauskas, Anwitaman Datta, and Karl Aberer. Structured overlay for heterogeneous envi-

CODEN ???. ISSN 1556-4665 (print), 1556-4703 (electronic).

Y. Gao, X. Gao, X. Yang, J. Liu, and G. Chen. An efficient ring-based metadata management policy for

Guo:2007:CBI

Ghandeharizadeh:1993:ILS

Goldsmith:1991:SCIa

Goldsmith:1991:SCIb

Gal:2012:TBC

Ghosh:1977:DBO

Ghosh:1986:DBO

Sakti P. Ghosh. *Data Base Organization For Data Management*. Academic Press,
Gennaro:1999:SHS

Ghodsi:2007:ESB

Goto:1977:PHA

Godor:2012:HBM

Gibson:1990:SCD

Gibson:1991:DLH

Gilchrist:1977:IPP

Gionis:1999:SSH

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hashing. In Atkinson

Grassl:2011:CTZ

Girault:1987:HFU

Gebhardt:2005:NPV

Goldwasser:2002:DSN

Graham:1979:HST

Goto:1976:HLT
E. Goto and Y. Kanada. Hashing lemmas on time complexities with applica-
REFERENCES

[Greene:1982:MAA]

[Garcia:2005:HJA]

[Gueron:2008:VNF]

[Gauravaram:2012:SAR]

Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key exchange. *ACM Transactions on Information

REFERENCES

volume=25&issue=4&spage= 748.

Gueron:2012:PMS

[GL73]

Gauravaram:2010:HFU

[GL82]

Graham:1989:CM

[GL88]

Graham:1994:CM

[GL06]

Gennaro:2006:FPB

Gubner:2021:OCH

Gong:2008:SIA

Grembowski:2002:CAH

Garcia:2011:CPH

Goodman:2011:SHS

Gong:2017:TMR

Wei Gong, Jianchuan Liu, Kebin Liu, and Yunhao Liu. Toward more rigorous and practical cardinality estimation for large-scale RFID sys-
CODEN IEANEJ. ISSN 1063-6692 (print), 1558-2566 (electronic).

Praveen Gauravaram, Gaëtan Leurent, Florian Mendel, Maria Naya-Plasencia, and
Thomas Peyrin. Cryptanalysis of the 10-round hash
and full compression function of SHA-3-512. *Lecture Notes in CS*, 6055:
URL http://link.
springer.com/content/pdf/10.1007/978-3-642-12678-9_25.

Gaston H. Gonnet and J. Ian Munro. Efficient ordering of
SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic).

Joseph Gil and Yossi Matias. Simple fast parallel hashing.
(print), 1611-3349 (electronic).

Joseph Gil and Yossi Matias. Simple fast parallel hashing by
oblivious execution. *SIAM Journal on Computing*, 27
(5):1348–1375, October 1998. CODEN SMJCAT. ISSN 0097-5397 (print), 1095-7111
Ghaffari:2018:MSV

Gil:1990:AKC

Garcia-Molina:1990:ASI

Gardarin:1995:OFE

Gutmann:2005:WHC

Gauravaram:2007:USC
REFERENCES

Guziec:1997:MIR

Gomez-Perez:2016:CCT

Gentry:2008:THL

Greene:1994:MIHa

Greene:1994:MIHb

Guillou:1995:ACE

Gray:1986:IJH

P. M. D. Gray. Implement-

Graefe:1988:RDF

Graefe:1989:RDF

Graefe:1992:QPT

Graefe:1993:PEHb

Graefe:1993:PEHa

Graefe:1993:QET

Graefe:1993:PEHb

Graefe:1993:RDF

Graefe:1994:DAE

Graefe:1994:SIW

Graefe:1994:VEP

X. Gregg. Hashing Forth: It’s a topic discussed so nonchalantly that neophytes hesitate to ask how it works. *Forth Dimensions*, 17(4):13–??, 1995. CODEN FODMD5. ISSN 0884-0822.

Martin L. Griss. Efficient expression evaluation in sparse minor expansion, using hashing and deferred evaluation. In Sprague and Chattergy [SC77], pages 169–172. LCCN ??

Grosshans:1986:FSD

Gopal:1993:CCH

Guibas:1976:ADH

Guibas:1978:ADH

Gori:1989:AAC

Girault:1994:LCH

Gupta:1994:RSD

Goi:2001:IHF

B.-M. Goi, M. U. Siddiqi, and H.-T. Chuah. Incremental hash function based on pair chaining & modular

Goto:1982:DLM

Gope:2017:ASS

Galli:2001:THO

Ganguly:1990:FPP

Gupta:1998:PTF

Greniewski:1963:ELK
M. Greniewski and W. Turski. The external language KLIPA for the URAL-2 digital computer. Communications of the Association for Computing Machinery, 6(6):322–324, June 1963. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (elec-
tronic). Early work on derivation of hash functions.

[Goto:1980:SHM]

[Gri93]

[Guerr2016:OCO]

[Gaikwad:2021:PSL]

[Guiba:1975:HTE]

[Guibas:1976:AHAc]

Leo J. Guibas. The analysis of hashing algorithms that exhibit k-ary clustering. In IEEE-FOCS’76 [IEEE76], pages 183–196.
REFERENCES

Guibas:1978:AHT

Guinier:1989:FUA

Gupta:1989:SHI

Gurski:1973:NAK

Garcia:2008:SCC

Goldreich:1994:TFF

Gadia:1991:IIT

Guo:2019:EER

REFERENCES

Malcolm C. Harrison. *Data Structures and Programming*. Courant Institute of Mathematical Sciences, New York University, New York, NY, USA, April 1971. xii + 381 pp. LCCN QA76.5.H37. See also [Har73].

REFERENCES

Hashida:1972:AM

Hachem:1989:KSA

Hachem:1989:KAM

Hecker:1989:GHG

Hachem:1992:NOP

Hariri:1993:PIC

Hecker:1994:GHG
REFERENCES

Hulsing:2017:XEH

Hsiao:2013:SLB

Horspool:1987:HCT

Hulet:2002:MAR

Hedayatpour:2011:HFB

Hsiao:2013:SLB

Holt:2007:PMA

DEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

Healy:2014:AKM

Hart:1995:SHC

Hasan:2006:CSE

Hanson:1990:PMAb

Hernandez-Castro:2012:AFH

Hu:2021:PMH

Hsiao:1994:PEM

Hsiao:1997:PEH

Hopgood:1972:QHM

Hanna:2009:CEE

Hanna:2011:AHS

He:1987:PAS

[He87] Guo He. *Pipelined Array Sys-

URL dl.acm.org/doi/10.14778/3446095.3446101.

URL http://www3.oup.co.uk/computer_journ

REFERENCES

(1943-586X (electronic).

Heuer:1987:WRD

Herrin:1991:ADF

Hull:2013:SPC

Huang:2015:QAL

Hikita:1977:AFP

Lai:2009:CCD

REFERENCES

Hendricks:2007:LOB

Hester:1985:SOL

Harn:2010:ELL

Haitner:2010:UOW

Hill:1978:CSVb

Hill:1978:CSVa

Hildebrandt:1982:VBD
zu Braunschweig, Braunschweig, Germany, 1982. ?? pp.

REFERENCES

DEN SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic).

REFERENCES

REFERENCES

REFERENCES

org/cgi/content/abstract/53/7/918; http://comjnl.oxfordjournals.org/cgi/reprint/53/7/918.

He:2013:RCP

Han:2018:SSR

Han:2018:NRA

Hohl:1993:SIH

Havas:1993:GTO

George Havas and Bohdan Majewski. Graph theoretic obstacles to perfect hashing. Congressus Numerantium, 98:81–??, 1993. ISSN 0384-9864.

Halevi:1996:PPS

Helmer:2003:PSF

Sven Helmer and Guido Moerkotte. A performance study of four index structures for set-valued attributes of low cardinality. VLDB Journal:
REFERENCES

Very Large Data Bases, 12 (3):244–261, October 2003. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

Halperin:2008:AEA

Hanaoka:2012:ICE

Hwang:2019:BBR

Ha:2007:SAE

Hagerup:2001:DD

Havas:1994:GHH

G. Havas, B. S. Majewski, N. C. Wormald, and Z. J. Czech. Graphs, hypergraphs and hashing. In van Leeuwen [vL94], pages 153–165. CO-
Hassanzadeh-Nazarabadi:2020:DUL

Hiraki:1984:EAM

Hashida:1972:LAC

Holub:1987:NHE

Holden:2013:GHF

Hopgood:1968:xxx

Hopgood:1968:STO

Hanan:1963:ACT

REFERENCES

Halatsis:1978:PHT

Han:2002:CMV

Harris:1993:ODM

Harris:1996:JAC

Hsiao:2004:FCP

Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do secure hash functions need secret coins? In Franklin [Fra04], pages 92–?? CODEN LNCSRD. ISBN 3-540-22668-0. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://www.springerlink.com/
openurl.asp?genre=issue&
issn=0302-9743&volume=
3152; http://www.springerlink.
com/openurl.asp?genre=
volume&id=doi:10.1007/
b99099.

[Haitner:2007:SHC]
Iftach Haitner and Omer
Reingold. Statistically-hiding
commitment from any one-
way function. In ACM
[ACM07], pages 1–10. ISBN
1-59593-631-9. LCCN ????

[Haitner:2014:NIH]
Iftach Haitner and Omer
Reingold. A new interac-
tive hashing theorem. Jour-
nal of Cryptology, 27(1):109–
138, January 2014. CO-
DEN JOCREQ. ISSN 0933-
2790 (print), 1432-1378 (elec-
springer.com/article/10.
1007/s00145-012-9139-0.

[Hulsing:2013:OPX]
Andreas Hülsing, Lea Rausch,
and Johannes Buchman.
Optimal parameters for
XMSSMT. Lecture Notes in
CS, 8128:194–208, 2013. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/chapter/10.
1007/978-3-642-40588-4_
14.

[Hulsing:2016:MMT]
Andreas Hülsing, Joost Ri-
jneveld, and Fang Song.
Mitigating multi-target at-
tacks in hash-based signa-
tures. Lecture Notes in CS,
9614:387–416, 2016. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/article/10.
1007/978-3-662-49384-7_
15.

[Horowitz:1978:FCA]
Ellis Horowitz and Sartaj
Sahni. Fundamentals of
Computer Algorithms. Com-
puter Science Press, 11 Taft
Court, Rockville, MD 20850,
USA, 1978. ISBN 0-914894-
22-6. xiv + 626 pp. LCCN QA76.6 .H67 1978. A
standard textbook treatment
of well-known hashing algo-
rithms appears on pp. 82–93.

[Horowitz:1984:FDS]
Ellis Horowitz and Sartaj
Sahni. Fundamentals of
Data Structures in Pascal.
Computer Science Press, 11
Taft Court, Rockville, MD
20850, USA, 1984. ISBN
0-914894-94-3. xiv + 542
pp. LCCN QA76.9.D35 H67
1984. US$29.95. Textbook
treatment of hashing algo-
rithms.

[Hoch:2008:SCH]
Jonathan J. Hoch and Adi
Shamir. On the strength
of the concatenated hash
combiner when all the hash
functions are weak. Lecture
Notes in CS, 5126:
REFERENCES

REFERENCES

REFERENCES

He:2018:MBF

Huang:2013:FDH

Hohl:1994:SIH

Hsu:1986:COE

Ho:1989:COM

Ho:1993:COM

Hadjieleftheriou:2008:HSS

Hsieh:1999:OWH

T.-M. Hsieh, Y.-S. Yeh, C.-H. Lin, and S.-H. Tuan. One-way hash functions with

IEEE:1988:PFI

IEEE:1999:PSI

IEEE:1974:ASS

IEE74 IEEE, editor. 15th Annual Symposium on Switching and Automata Theory, October 14–16, 1974, the University of New Orleans. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1974.

IEEE:1976:ASF

IEEE:1980:PCI

IEE80a Proceedings 4, COMPSAC 80, the IEEE Computer Society’s Fourth International Computer Software and Ap-

IEEE:1980:ASF

IEEE:1982:SFC

IEEE:1984:ISL

IEEE:1985:FOC

IEEE:1985:PFD

IEEE:1988:DPI

IEEE:1988:SIC

IEEE:1988:ASF

IEEE:1988:ICP

IEEE:1989:ASF

IEEE:1990:PSN

IEEE:1991:PSA

IEEE:1991:PAS

IEEE:1992:PII

IEEE:1992:PAS

IEEE:1993:PSP

IEEE:1994:DEI

REFERENCES

T. Ichikawa and M. Hirakawa. ARES: a relational database, responsible
REFERENCES

REFERENCES

REFERENCES

[Jae81] G. Jaeschke. Reciprocal hashing: a method for generating minimal perfect hashing functions. *Communications of the Association for Computing Machinery*, 24(12):829–833, December 1981. CODEN CACMA2, ISSN 0001-0782 (print), 1557-7317 (electronic). Hash functions, for a key x in a set S of positive integers, of the form $h(x) = (C/(Dx+E)) \mod N$ are considered. Though the existence of h is guaranteed, the scheme suffers from many practical problems because of exhaustive nature of the search for h.

REFERENCES

pp. URL jain%erlang.dec@decwrl.dec.com.

Jaja:1990:SFM

Jakobsson:1985:SRL

Janson:2005:IDL

Janson:2008:IDH

Jarke:1994:ADT

Jiang:2011:GBM

Jan:1988:ALO
Jinn-Ke Jan and Chin-Chen

[Jia:2019:ETS] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis,

Jeong:2014:ITP

[102x625]

Jeong:2008:PBH

[102x432]

Jin:2020:HAH

[102x252]

Jovanov:2002:ANO

[102x289]

Jean:2014:ICA

[102x289]

Jaeschke:1980:CMP

[102x264]
sponse from R. J. Cichelli [Cic80a].

[Johnson:1961:ICM]

[Johnson:1961:ICM]

[Johansson:1997:BHS]

[Jouannaud:1985:FPL]

[Joux:2004:MIH]

[Joye:2003:TCC]

[Jutla:2007:PGC]
REFERENCES

Jiang:2007:DHT

Kahrs:1992:UUL

Kak:1993:NNA

Kaliski:1993:SES

1732 (print), 1937-4143 (electronic).

Kaliski:2001:HFF

Kaman:1974:HC

Kanada:1990:VTH

Kanada:1991:MVP

Kanada:1993:MVP

Karlsson:1982:ACR

Karloff:1998:PNA

Khanal:2022:UBI

Kawagoe:1985:MDH

Kawamoto:2015:LSH

Kanj:2018:SNN

Krause:1981:PHF

Max Krause, Nick Cercone, and John Boates. Perfect hash function search with application to natural language systems. Technical Report CMPT TR 81-6, Simon Fraser University, 1981. ?? pp. (email library@cs.sfu.ca).

Ku:2005:WYR

Kirk:1984:CMI

M. Kirk, R. J. Chignell, and J. Finnie. Computer model to indentify incompatibilities between the FM sound broadcasting and aero-
REFERENCES

Ku:2003:WLL

Kim:2011:SSE

Koushik:1992:LDH

Knott:1989:HTC

Keller:1993:HRP

Keller:1996:FRP

Kennedy:1973:RSU

Kerr:1975:PIC

REFERENCES

Kocberber:2015:AMA

Kak:1995:ILM

Kaushik:2012:MGH

Kralevska:2018:HEC

Karplus:1984:FMP

Khan:1995:PDH

Kuo:1989:DSF

Kortelainen:2010:MAG

Kanizo:2012:HTF

Kanizo:2015:MTH

Kitsuregawa:1989:JSK

Kim:1991:ISSa

Kim:1991:ISSb

Kak:1994:CVW

A. C. Kak and K. Ikeuchi, editors. 2nd CAD-based vision workshop: – February 1994, Champion, PA, PROCEEDINGS OF THE CAD BASED VISION WORKSHOP 1994; 2nd. IEEE Computer Society Press, 1109 Spring Street,
Kiessling:1985:DFU

Kiltz:2001:PPS

Kilian:2005:TCS

Kim:1980:QOR

Kim:1999:NSP

Kim:2011:EHB

Kim:2017:MES

Kojima:1985:HFO

Khan:1996:PCI

Kelsey:2006:HHF

Kakvi:2012:OSP

Kakvi:2018:OSP

Kim:2012:SSL

Saehoon Kim, Yoonseop Kang, and Seungjin Choi. Sequential spectral learning

Kim:2009:SVH

Lioma:2008:AHT

Kaski:2012:HHS

Kim:1992:DSN

Kabiljo:2017:SHP

Kim:2007:EIK

Mooseop Kim, Youngse Kim, Jaecheol Ryou, and Sungik Jun. Efficient implementation of the keyed-hash message authentication code based on SHA-1 algorithm
for mobile trusted computing. Lecture Notes in CS, 4610:410–419, 2007. CO-
DEN LNCS-D9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/10.1007/978-3-540-73547-
2_42.

Kurosawa:1991:CFH

[KKT91] Kaoru Kurosawa, Hirofumi
Kasai, and Shigeo Tsujii. Collis-
one free hash function based on the r-th residue
cryptosystem. IEICE Transactions on Com-
munications/Electronics/Infor-
mation and Systems, E74(8):2114–2117,
1991. CODEN IEITEF. ISSN 0917-1673.

Kemper:1999:GHT

[KKW99] Alfons Kemper, Donald
Kossmann, and Christian
Wiesner. Generalised hash
team for join and group-by.
In Atkinson et al. [AOV
99], pages 30–41. ISBN 1-55860-
615-7. LCCN QA76.9.D3
1559 1999. URL http:
//www.vldb.org/dblp/db/
conf/vldb/KemperKW99.html
Also known as VLDB’99.

Kim:1987:ESJ

[KL87] Chang D. Kim and Yoon J.
Lee. Execution strategies for join operation in
multi-processor main memory based database system.
In Proceedings — TENCON
87: 1987 IEEE Region 10
Conference, ’Computers and
Communications Technology
Toward 2000’, pages 302–
306. IEEE Computer Soci-
ety Press, 1109 Spring Street,
Suite 300. Silver Spring, MD
20910, USA, 1987. IEEE Ser-
cie Cent. Piscataway, NJ, USA.

Knudsen:1995:NAA

L. R. Knudsen and X. Lai.
New attacks on all double block length hash functions
of hash rate 1, including the parallel-DM. In De Santis
[De 95], pages 410–418. ISBN
3-540-60176-7. ISSN 0302-
9743 (print), 1611-3349 (elec-
tronic). LCCN QA76.9.A25

Katajainen:1996:EUH

[JYKL96] Jyrki Katajainen and Michael
Lykke. Experiments with uni-
versal hashing. DIKU Re-
port 96/8, Department of
Computer Science, University
of Copenhagen, Copen-
hagen, Denmark, ???? 1996.

Kenc:2008:ALS

[Lukas Kencl and Jean-Yves
Le Boudec. Adaptive load
sharing for network proces-
sors. IEEE/ACM Transactions
on Networking, 16(2):
293–306, April 2008. CO-
DEN IEANEP. ISSN 1063-
6692 (print), 1558-2566 (elec-
tronic).

Katz:2015:IMC

Jonathan Katz and Yehuda
Lindell. Introduction to mod-

REFERENCES

Kirsch:2008:SSH

Karroumi:2009:HBK

Kirsch:2010:POM

Kakarountas:2006:HSF

KM+06
Kirsch:2010:HBT

Kirsch:2008:MRH
Adam Kirsch, Michael Mitzenmacher, and Udi Wieder.

Knott:1984:DCC

Knott:1988:LOA

Khovratovich:2010:RRA

Kitsuregawa:1989:EBS

Knuth:1973:ACP

Knuth:1974:CSR

[Knuth:1998:LPG](#)

[Knudsen:1992:CL](#)

REFERENCES

(SDC). In McLeod et al. [MSDS90], page 210. ISBN 1-55860-149-X. LCCN ???

Koehler:1972:SDB

Kohonen:1980:CAM

Konheim:2010:HCS

Koschke:2014:LSI

Koushik:1993:DHD

Kilov:1981:DMA

Kh. I. Kilov and I. A. Popova. Data metabase architecture for relational DBMS. Programming and
REFERENCES

Computer Software; translation of Programmirovanie, (Moscow, USSR) Plenum, 7 (1):??, February 1981. CODEN PCSODA. ISSN 0361-7688 (print), 1608-3261 (electronic).

Kedem:1992:OPA

Krichevskii:1994:CSE

Knudsen:1996:HFB

Katzenelson:1992:TMT

Kohonen:1979:VFA

Kishore:2019:PCH

Krause:1982:PHF

Krawczyk:1994:LBH

Kawaguchi:2009:TBD

Kim:2009:CIS

Kwon:2009:FXD

Kohonen:1984:ORS

Knudsen:2007:GFH

Kruse:1984:DSP

Kriegel:1986:EMD

Kriegel:1987:MDH

H. P. Kriegel and B. Seeger. Multidimensional dynamic hashing is very efficient for nonuniform record distributions. In ICDE’87 [ICD87],
Hans-Peter Kriegel and Bernhard Seeger. Multi-
dimensional dynamic quantile hashing is very effi-
cient for non-uniform record distributions. In ICDE'87 [ICD87], pages 10–17. ISBN 0-8186-0762-9 (paperback) 0-

H. P. Kriegel and B. Seeger. PLOP-hashing: a grid file without directory. In ICDE'88 [ICD88], page 369. ISBN 0-8186-0827-7 (paper-
back), 0-8186-8827-0 (hard-
cover), 0-8186-4827-9 (mi-

Hans-Peter Kriegel and Bernhard Seeger. PLOP-

Michael A. Kelly and Rudolph E Seviora. Performance of OPS5 matching on CUPID. Microprocessing and Micro-
programming, 27(1-5):397–404, August 1989. CO-
DEN MMICDT. ISSN 0165-6074 (print), 1878-7061 (elec-
tronic).

Hans-Peter Kriegel and Bernhard Seeger. Multidi-
imensional quantile hashing is very efficient for nonuni-
form distributions. Information sciences, 48(2):99–117, July 1, 1989. CO-
DEN ISIJBC. ISSN 0020-0255 (print), 1872-6291 (elec-
tronic).

Sebastian Kniesburges and Christian Scheideler. Brief
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Citation Details</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

Ku:2004:HBS

Kuespert:1982:MLHa

Kuespert:1982:MLHb

Kuespert:1983:VZO

Kuespert:1984:USO

Kuespert:1984:EED

Kuich:1992:ALP

Kulkarni:1984:CHF

REFERENCES

Kumar:1989:CCM

Kumar:1989:CCE

Kumar:1990:COE

Kutzelnigg:2006:BRG

Kutzelnigg:2010:IVC

Kenyon:1991:MQS

Katz:2009:SPH

[V KV09] Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-based authenticated key exchange from lattices. Lec-
Kortelainen:2012:GIH

Kroll:1994:DST

Klassen:2012:ITB

Kaps:2005:ESU

Kjellberg:1984:CH

Koslicki:2019:IMC

[Lai92] Xuejia Lai. On the design and security of block ciphers. Hartung-Gorre Verlag, Konstanz, Switzerland, 1992. ISBN 3-89191-573-X. xii + 108 pp. LCCN ??? This is the author’s Ph.D. dissertation. “Secret-key block ciphers are the subject of this work. The design and security of block ciphers, together with their application in hashing techniques, are considered. In particular, iterated block ciphers that are based on iterating a weak round function several times are considered. Four basic constructions for the round function of an iterated cipher are studied.”.

Per-Åke Larson. Linear hashing with partial expansions. In Lochovsky and Taylor [LT80], pages 224–232. ACM order no. 471800. IEEE catalog no. 80CH1534-7C. Long Beach order no. 322.

Per-Åke Larson. Analysis of uniform hashing. *Jour-
REFERENCES

Larson:1983:JACML

[Lar84]

Larson:1985:HFS

Larson:1985:LHO

Larson:1985:PAS

Larson:1988:DHT

Larson:1988:LHS

Larson:19xx:LHP

[LC88] Ted G. Lewis and Curtis R. Cook. Hashing for dynamic and static internal tables. Computer, 21(10):45–57 (or 45–56??), October 1988. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic). The authors survey the classical hashing function approach to information retrieval and show how general hashing techniques exchange speed for memory. It is a tutorial paper that covers, among other topics, dynamic and static hash tables, perfect hashing, and minimal perfect hashing.

[LC95] Mark Lomas and Bruce Christianson. Remote booting in a hostile world: to whom am I speaking? (computer security). Computer,

Yingfan Liu, Jiatao Cui, Zi Huang, Hui Li, and Heng Tao Shen. SK–LSH: an efficient index structure for approximate nearest neighbor search. Proceedings of the VLDB Endowment, 7(9):
REFERENCES

745–756, May 2014. CODEN ???? ISSN 2150-8097.

[Lathrop:2011:SPI]

[Liu:2020:FAD]

[LCLX19]

[Lu:2020:NMS]

[Liang:1994:OMK]

[Lo:1993:OPA]
Ming-Ling Lo, Ming-Syan Chen, C. V. Ravishankar, and Philip S. Yu. On optimal processor allocation to support pipelined hash joins. SIGMOD Record (ACM Special Interest Group on Management of Data), 22(2):69–78, June 1993. CODEN ????
REFERENCES

Lee:2012:OFL

Lieuwen:1992:PBJ

Luo:2002:SHR

Gang Luo, Curt J. Ellmann, Peter J. Haas, and Jeffrey F. Naughton. A scalable hash ripple join algorithm. In Franklin et al. [FMA02], pages 252–262. ISBN ???? LCCN ???? ACM order number 475020.

Leppänen:1998:BPS

Lesk:1988:GII

Levy:1989:LPT

Levelt:1995:IPI

Lever:2000:LKH

Lewis:1982:SEA

Laborde:2017:WFH

ACM:1982:CRA

Louis-Gavet:1978:DAI

Guy Louis-Gavet. Diverses applications issues d’une fonction f de compactage basée sur une étude mathématique du langage naturel (compactage de données, comparaison de textes, hash-coding). [various applications issued from a compression function f based on a mathematical study of the natural language (data compression,

Li:2013:NCD

Luo:2003:COA

Luo:2004:IEH

Lefebvre:2006:PSH

Liu:2020:EIH

Lin:2005:GPW

Iuon-Chang Lin, Min-Shiang Hwang, and Chin-Chen Chang. The general payword: a micro-payment

REFERENCES

Lien:1981:AIC

Luhandjula:1992:FSI

Lin:1953:xxx

A. D. Lin. ??? The year is uncertain (???). Extends [Luh53] with an alternative overflow handling technique using “degenerative addresses” [Knu73, p. 541]., 1953.

Lin:1963:KAR

Lindner:1996:DSH

Lipmaa:2002:OHT

Liskov:2007:CIH

Litwin:1977:ASD

W. Litwin. Auto-structuration du fichier: Methodologie, organisation d’acces, extension

Litwin:1977:MDP

Litwin:1978:VHD

Litwin:1979:LVH

Litwin:1980:LHN

Litwin:1981:TH

Litwin:1984:DAM

Litwin:1985:THF

Litvinov:1989:HSO

Litsios:1991:NFH

James Litsios. Note on fast hashing of variable length
text strings. *Communications of the Association for Computing Machinery*, 34(11):118–120, November 1991. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Suggests a simple extension of Pearson’s hashing algorithm [Pea90] that supports non-character data. See also comments in [Dit91, Sav91, Pea91], and early work in [Dit76].

OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

Louchard:1983:PTC

Lodi:1985:SSH

Litwin:1986:BDA

Litwin:1987:NMF

Leng:1992:OWA

Lenzerini:2008:PTS

Lee:2013:SQB

Kisung Lee and Ling Liu. Scaling queries over big RDF graphs with semantic hash partitioning. *Proceedings of the VLDB Endowment,*
REFERENCES

Lim:2009:SPE

Lim:2011:HAB

Liu:2016:FSA

Lin:2017:PHB

Lloyd:1981:ICI

Liu:2021:DHB

Zhuotong Liu, Chen Li, and Lihua Tian. Deep hashing based on triplet labels and

Liu:2010:MPI

Liang:2010:LVB

Lueker:1988:MAD

Leighton:1995:LPF

Lee:2007:FDF

Sungju Lee, Daesung Moon, and Yongwha Chung. Feature distribution of the fingerprint template generated
REFERENCES

Li:2012:SPS

LMD+12

Lu:2008:CBN

Luykx:2015:TPB

REFERENCES

Lin:1989:PIB

[102x681] REFERENCES
330

[LMSF89] Chih-Chen Lin, Leo Mark, Timos Sellis, and Christos Faloutsos. Performance is-

175x522 221, September 1989. CODEN DKENEW. ISSN 0169-023X (print), 1872-6933

(175x475) (electronic).

[LND08] Richard J. Lipton and Jeffrey F. Naughton. Clocked adversar-

(Lipton:1993:CAH)

(print), 1432-0541 (electronic).

[LMSM12] Sergey Legtchenko, Sébastien Monnet, Pierre Sens, and Gilles Muller. RelaxDHT:

(Legtchenko:2012:RCR)

a churn-resilient replication strategy for peer-to-peer distributed hash-tables. ACM Trans-

(LMSM09) actions on Autonomous and Adaptive Systems (TAAS), 7(2):28:1–

[175x164] 28:??, July 2012. CODEN ????. ISSN 1556-4665 (print), 1556-4703 (electronic).

[175x350] (print), 1550-4859 (print), 1550-4867 (electronic).

[LND08] Donggang Liu, Peng Ning, and Wenliang Du. Group-based key predistribu-

[LMSF89]

[175x338] (print), 1432-0541 (electronic).

[LMSM09] Serge Legtchenko, Sébastien Monnet, Pierre Sens, and Gilles Muller. Churn-

(Legtchenko:2009:CRR)

resilient replication strategy for peer-

[LND08]

ISSN 0302-9743 (print), 1611-3349 (elec-

(LN93)

[LMSM09]

(LMSM12)

(LN93)

(LND08)

(Lipwin:1993:LLH)

(Lipwin:1996:LSD)

(Lipwin:1993:LLH)

(Lipwin:1996:LSD)

(Witold Litwin, Marie-Anne A. Neimat, and Donovan A. Schneider. LH* — linear

hashing for distributed files. SIGMOD Record (ACM Special Interest Group on Man-

ISSN 0163-5508 (print), 1943-5835 (electronic).

(Witold Litwin, Marie-Anne Neimat, and Donovan A.

REFERENCES

REFERENCES

Li:2012:WHT

REFERENCES

France; University of Maryland, College Park, MD 20742, February 1989. 1–29 pp.

Leskovec:2014:MMD

Lipton:1978:EHS

Lipton:1980:EHS

Liu:2015:MDT

Lipton:1985:DS

Litwin:1989:FDO

Linial:1996:NEH

[Lac07a] Laccetti:2007:BFA

[LS07b] Lu:2007:MPC

[LS06] Liu:2006:ECS

[Lac07a] Laccetti:2007:BFA

[LS07b] Lu:2007:MPC

[LS07a] Laccetti:2007:BFA

[LS07b] Lu:2007:MPC

REFERENCES

5903 (print), 1432-0525 (electronic).

[Luc72] Fabrizio Luccio. Weighted increment linear search for

Hans Peter Luhn. Internal IBM memo that first suggested the idea of hashing, and one of the first applications of linked linear lists. Luhn is also the inventor of KWIC indexing, in 1960 [Knu73, p. 437]. See also [Lin53], January 1953.

Dong Liu, Shuicheng Yan, Rong-Rong Ji, Xian-Sheng Hua, and Hong-Jiang Zhang.

Lyon:1978:HLP

Lyon:1978:PST

Lyon:1979:BSS

Lyon:1983:PCC

Lyon:1985:AHT

Lu:2018:LCC

Lai:2019:NIB

Lai:2018:NSH

Li:2006:FSS

Liu:2016:MHN

Litwin:1988:MTH

Monnerat:2015:ESH

Macii:1995:ECP

Maddison:1980:FLH

Mairson:1983:PCS

Mairson:1992:ETE

Michail:2012:EHT

Mallach:1977:SST

REFERENCES

Manegold:2000:ODA

Mazeika:2007:ESA

Munro:1986:TCR

Munro:1986:TCR

Mazeika:2007:ESA

McDonell:1977:III

REFERENCES

http://www3.oup.co.uk/computer_journal/hdb/Volume_20/Issue_02/tiff/118.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_20/Issue_02/tiff/119.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_20/Issue_02/tiff/120.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_20/Issue_02/tiff/121.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_20/Issue_02/tiff/122.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_20/Issue_02/tiff/123.tif

McGrew:2017:IDH

McIlroy:1963:VMF

McIlroy:1982:DSL

McKenney:1989:HSEa

McKenney:1989:HSEb

McNichol:2003:HTM

Markowsky:1978:AUC

G. Markowsky, J. L. Carter, and M. N. Wegman. Anal-

Miranda:2014:RSE

Mendelson:1982:AEH

Mennink:2012:OCS

Mennink:2017:OCS

Mergenthaler:1972:HCT

Merkle:1990:FSO

Merkle:1990:OWH

MeyerAufDerHeide:1993:HSS

Mor:1982:HCM

Manolopoulos:1992:AHF

Munoz:2004:CRS

Mueller:2006:SMG

Mochizuki:2000:ERA

McKenzie:1990:SHA

Bruce J. McKenzie, R. Harris, and Timothy C. Bell.

Mou:2013:CBC

Machii:1984:HMF

Micciancio:2002:ICH

Maabreh:2018:MHT

Miller:1985:PHF

Miller:1987:STS

Miller:1995:RAC

REFERENCES

Mitzenmacher:2009:SOQ

Mitzenmacher:2012:HCS

Mitzenmacher:2017:BBH

Mathew:2008:JBH

Muthusamy:2014:IFC

Michelogiannakis:2011:PCE

Mukherjee:2002:ECV

R. Mukherjee, J. Jain, K. Takayama, J. A. Abra-
ham, D. S. Fussell, and M. Fujita. Efficient combina-
tional verification using overlapping local BDDs and
a hash table. Formal Meth-
ods in System Design, 21(1):
95–101, July 2002. CODEN
FMSDE6. ISSN 0925-9856.

McAuliffe:1989:PIC

KMKB Kevin P. McAuliffe and Peter M. Kogge, editors. Pro-
cedings of the 1989 Inter-
national Conference on Paral-
lel Processing, August 8–12,
1989, volume 1. IEEE Com-
cputer Society Press, 1109
Spring Street, Suite 300, Sil-
ver Spring, MD 20910, USA,
Three volumes.

Miller:1993:RFS

KMKB Ethan L. Miller and Randy H.
Katz. RAMA: a file system for massively-parallel com-
puters. In Coleman [Col93],
pages 163–168. ISBN 0-8186-
3462-6. LCCN TK7895.M4
I5 1993.

Manoharan:2011:PAM

KMKB Arun Manoharan and Am-
masi Krishnan. Power anal-
ysis of multiple hashing Bloom filter architec-
ture for network applica-
tions. International Journal
of Computer Applications,
33(4):316–322, 2011. ISSN
1206-212X (print), 1925-7074
www.tandfonline.com/doi/
full/10.2316/Journal.202.1
2011.4.202-3052.

Miliaraki:2012:FDS

KMKB Iris Miliaraki and Manolis
Koubarakis. FoXtrot: Dis-
tributed structural and value
XML filtering. ACM Trans-
actions on the Web (TWEB),
6(3):12:1–12:??, September
2012. CODEN ???. ISSN
1559-1131 (print), 1559-114X
(electronic).

Mozaffari-Kermani:2017:FDA

KMKB Mehran Mozaffari-Kermani,
Reza Azarderakhsh, and
Anita Aghaie. Fault detec-
tion architectures for post-
quantum cryptographic stateless hash-based secure
signatures benchmarked on
ASIC. ACM Transactions
on Embedded Computing
Systems, 16(2):59:1–59:??,
April 2017. CODEN ???. ISSN
1539-9087 (print), 1558-3465
(electronic).

Mozaffari-Kermani:2018:ERE

KMKB Mehran Mozaffari-Kermani,
Reza Azarderakhsh, Ausmita
Sarker, and Amir Jalali. Ef-
ficient and reliable error de-
tection architectures of hash-
counter-hash tweakable en-
ciphering schemes. ACM
Transactions on Embedded
Computing Systems, 17(2):
54:1–54:??, April 2018. CO-
DEN ????. ISSN 1539-
9087 (print), 1558-3465 (elec-
tronic).

Ma:2015:TDH

Martin:1994:PHB

Ma:2017:NDC

Martinez:2007:OXH

McEvoy:2009:IWH

Mourad:1994:LPH

Mehlhorn:1990:BOD

Mehlhorn:1999:LPC

Motwani:2008:LBL

Moran:2007:DHI

Mendel:2012:CAR

Florian Mendel, Tomislav Nad, and Martin Schläffer. Collision attacks on the re-

Mansour:1990:CCU

Mansour:1993:CCU

Matsumoto:1981:NCM

Mohan:1990:ACC

C. Mohan. ARIES/LHS: a concurrency control and recovery method using write-ahead logging for linear hashing with separators. Technical report, IBM Corporation,

Monien:1992:DSE

Moto-oka:1992:FGC

REFERENCES

San Jose, CA, USA, March 1990. ?? pp.

 REFERENCES

Morris:1968:SST

Robert Morris. Scatter storage techniques. Communications of the Association for Computing Machinery, 11(1):38–44, January 1968. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Influential survey of the subject of hashing, and first introduction of random probing with secondary clustering. Appears to be the first publication where the word ‘hashing’ appeared, although it was in common use at the time. Knuth [Knu73, p. 542] found only one earlier printed use of the word, in a 1961 unpublished memorandum by W. W. Peterson.

Moran:1983:CDO

Morris:1983:SST

Motoyoshi:1984:HAC

Midkiff:1990:ICO

Mennink:2012:HFB

Mennink:2016:EPH

Martinez:2009:DFN

Malensek:2014:EGG

Moody:2016:ISF

Mendel:2007:CTH

MedeirosDuarte:2019:CPC

Mendel:2010:RAR

[Florian Mendel, Christian Rechberger, Martin Schläffer,

[MS02]

[MRW89]

[MS88a]

[MS88b]

[MS02]

[MS05]

springer.com/article/10.1007/s10207-008-0063-0.

Makrushin:2012:IRB

Morawiecki:2013:SBP

Maier:2016:CHT

Maier:2019:CHT

McCleod:1990:VLD

Malhotra:1996:SED

Mouha:2012:CIR
Nicky Mouha, Gautham Sekar, and Bart Preneel. Challenging the increased resistance of regular hash func-

March:2011:ROD

Muehlbacher:2004:FHT

Mullan:2016:HHF

Madria:2000:MLT

Mullin:1972:IIS

Mullin:1981:TCL

Mullen:1984:UDH
REFERENCES

Mullin:1984:UDH

Mullin:1985:SSE

Mullin:1991:CUC

Mullin:1992:HFH

Mathieu:1988:MQS

Matias:1990:PHI

Matias:1991:CHP

Matias:1991:PHI

Menezes:1991:ACC

[MV91c] Alfred J. Menezes and Scott A. Vanstone, editors. Advances in Cryptology-CRYPTO ’90: Proceedings, volume 537 of Lecture Notes...

Mihcak:2001:PAH

Mitzenmacher:2008:WSH

Mendelson:2021:ASC

Martirosyan:2008:ECP

Mittermeir:1995:AVS

Matsushita:2009:PCH

Mu:2012:ALS

Majewski:1992:FGM

Majewski:1996:FPH

Ma:2012:HPO

Yuan Ma, Luning Xia, Jingqiang Lin, Jiwu Jing, Zongbin Liu, and Xingjie Yu. Hardware performance optimization and evaluation of SM3 hash algorithm on FPGA. Lecture Notes in

Mendelson:1979:PMO

Mendelson:1980:NAA

Mimaroglu:2012:ADC

Ma:2018:GEG

Mihaljevic:1998:CAB

Metreveli:2012:CCP

Ma:2019:BSB

Namanya:2020:SHB

Nakatani:2021:SAB

Namba:1986:SIU

REFERENCES

36, February/May 1986. CODEN SIGSBZ. ISSN 0163-5824 (print), 1557-9492 (electronic).

[Ng:1979:ESS] Edward W. Ng, editor. Symbolic and Algebraic Computation: EUROSAM ’79, an International Symposium on Symbolic and Algebraic Manipulation, Marseille, France, June 1979, volume 72 of Lecture Notes in Computer Science. Spring-

REFERENCES

CODEN CPCOFG. ISSN 0963-5483 (print), 1469-2163 (electronic).

Negri:1991:DJN

Nevelsteen:1999:SPU

Nguyen:2012:SOU

Newman:1990:PHG

Nielsen:1982:ALP

Neelima:2016:PHF

Nyang:2016:RCC

REFERENCES

Oligeri:2011:REA

Anonymous:1989:DQO

Ordonez:2014:BVS

Oberschelp:1980:IID

Olagunju:1994:DPH

Olagunju:1994:ILS

Okamoto:1988:DMS

Omiecinski:1989:HBI

Edward R. Omiecinski and Eileen Tien Lin. Hash-based and index-based join algorithms for cube and ring connected multicomputers. *IEEE Transactions on Knowledge and Data
REFERENCES

Omicinski:1991:AHJ

Omicinski:1992:AHJ

Ollmert:1989:DD

Olsen:1969:RRF

Omicinski:1988:CSS

Omicinski:1989:CFC

Omicinski:1989:HJP

Omar:2012:HEC

Omar:2017:DHS

Ostlin:2003:UHC

Orenstein:1983:DHF
Jack A. Orenstein. A dynamic hash file for random and sequential accessing. In Schkolnick and Thamos [ST83a], pages 132–141. CODEN VLBDP.

Olken:1990:RSH

Ouksel:1983:SMM

Ouskel:2013:SMM
M. Ouskel and P. Scheuermann. Storage mappings

Ouksel:1988:IDS

Ostafe:2010:PNH

Omar:2014:FHF

Otken:1991:HF

Ogawara:2011:DFP

Otoo:1986:BME

Otoo:1984:MFD

Otoo:1985:MDH

Otoo:1985:SDI

Otoo:1988:LDG

Otoo:1988:LBC

Ouksel:1983:OPD

Ostrovsky:1994:IHSa

Ostrovsky:1994:IHSb

O'Donnell:2014:OLB

Oxborrow:1986:PFB

Pouchol:2009:HHS

Pramanik:1993:MDH

Pagli:1985:SAH

Pagh:1999:HDE

R. Pagh. Hash and displace: Efficient evaluation of minimal perfect hash functions. Lecture Notes in

and Randal E. Bryant, CMU report MCU-CS-92-172.

Palma:2008:EPC

Park:2018:OTP

Paterson:1990:ALP

Patarin:1994:HFA

Patarin:1995:CID

Papadimitriou:1980:PBH

[Christos H. Papadimitriou and Philip A. Bernstein. On the performance of balanced hashing functions when the keys are not equiprobable. *ACM Transactions on Programming Languages and Systems, 2*(1):77–89, January 1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).]

Purdom:1985:AA

REFERENCES

Prokopec:2012:CTE

Preneel:1989:CHB

Park:1995:UPR

Pang:1993:PPHa

Pang:1993:PPHb

HweeHwa H. Pang, Michael J. Carey, and Miron Livny.

Computing Machinery, 34 (11):120, November 1991. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Responds to several comments [Dit91, Lit91, Sav91] on the author’s earlier paper [Pea90], and early work [Dit76].

Peiler:1982:ZRV

Perry:1973:IME

Pescio:1996:AAM

Pujol:2012:LEC

Peterson:1957:ARA

Petersen:1983:AVV

Petersson:2013:MDL

B. Preneel, R. Govaerts, and J. Vandewalle. On the power of memory in the design of collision resistant hash functions. In Seberry and Pieprzyk [SP90], page ?? ISBN
REFERENCES

Preneel:1991:CRH

Preneel:1991:CRH

Preneel:1992:CSH

Preneel:1993:ATH

Preneel:1993:ATH

Preneel:1993:CHF

Preneel:1993:HFB

Preneel:1993:IAH

Pippenger:1979:ACT

Pippolini:1994:JIH

Pittel:1987:PAC

Piwowarski:1985:CBS

http://www.acm.org/pubs/toc/Abstracts/tods/214294.html. See [SG76b, BG82].

Panneerselvam:1990:RSA

Panneerselvam:1988:NAS

number 88CH2603-9). Piscataway, NJ, USA.

Plachy:1989:PIC

Popic:2018:FMB

Plauger:1998:SCCk

Park:2007:SDN

[PLKS07] Kwangkyu Park, JongHyup Lee, Taekyoung Kwon, and

Poblete:1989:LCF

Poblete:1986:AFT

Ponder:1987:AHA

Pagh:2008:UHC

Pereira:2016:SHB

[Pri95] Paul Pritchard. A simple sub-quadratic algorithm for

REFERENCES

REFERENCES

Pahins:2017:HSL

Pinkas:2018:SPS

Patrascu:2010:IRL

Pinkas:2018:SPS

Patrascu:2011:PST

Pong:2011:HRP

Patrascu:2012:PST

Mihai Pătraşcu and Mikkel Thorup. The power of sim-

Pong:2012:CLT

Patrascu:2013:TTH

Patrascu:2016:IRL

Papamanthou:2016:AHT

Pirotte:1985:VLD

Panti:1992:MOH

[PvO95] B. Preneel and P. C. van Oorschot. MD-x MAC and building fast MACs from hash functions. In Coppersmith [Cop95b], pages 1–14.
REFERENCES

Piper:1993:DSH

Prasanna:1994:SDP

Phan:2006:SCI

Peikert:2008:LTF

Pan:2013:CHF

Pagh:2010:COH

Pagh:2014:COH

Pittel:1988:STE

Quittner:1981:CSH

Quinlan:2002:VNA

Quisquater:1989:BHF

Quisquater:1990:BHF

Quisquater:1995:ACE

REFERENCES

REFERENCES

low-latency in-memory key–value store system design on CPU-FPGA. IEEE Transactions on Parallel and Distributed Systems, 31(8):1828–1444, 2020. CO-
DEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

DEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

DEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).
Richter:2015:SDA

Ragde:1993:PSC

Roman:2007:SCP

Ramakrishna:1987:CPH

Ramakrishna:1988:EPM

Ramakrishna:1988:HPA

Ramakrishna:1989:ARP

Ramakrishna:1989:PPB
Computing Reviews: “This short communication deals with a special kind of hash function called ‘Bloom filters.’ These filters are used, for example, to search a differential file containing updates to a main file.”

Regnier:1982:LHG

Regnier:1985:AGF

Regnier:1988:THA

Regnier:1988:THA

Reif:1988:AWC

Reid:2003:SSE

Remy:1992:ERE

Reyes:2014:FKM

Ramakrishna:1997:EHH

REFERENCES

REFERENCES

REFERENCES

[RL89] M. V. Ramakrishna and Per-Ake Larson. File organization using composite perfect

REFERENCES

proceedings/pods/308386/p117-ramakrishna/.

Rosas:2011:CBC

Robey:2013:HBA

Rishe:1990:PIC

Robinson:1986:OPL

Roe:1994:PSC

Roe:1995:PBC

Rogaway:1995:BHA

REFERENCES

REFERENCES

Rosenfeld:2012:OCC

Roussesv:2009:HDF

Rovan:1990:MFC

Rajamakrishna:1991:PHF

Rijmen:1995:ICD

Ross:2021:TPS

Rotem:1989:CMH

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Ronald L. Rivest and Jacob C. N. Schuldt. Spritz — a spongy RC4-like stream cipher and hash function. Report, MIT CSAIL and Research Institute for Secure Systems, Cambridge, MA 02139, USA.
REFERENCES

Raghavan:1981:ELS

Raite:1987:PTC

Ruchte:1987:LHP

Ramakrishna:1989:DEH

Rukanaritnont:2012:CTS

Ruckert:2015:MSS

Rueppel:1993:ACE

REFERENCES

Ruland:1993:RDS

Christoph Ruland. Realizing digital signatures with one-way hash functions. *Cryptologia*, 17(3): 285–300, July 1993. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://www.informaworld.com/smpp/content~content=a748639237~db=all~order=page. digital signatures; one-way hash functions; asymmetric cryptographic systems; smart cards; one-time signatures; optimally implemented hash functions; asymmetric algorithms; one-bit signatures; N-bit signatures; infinite signature trees; performance.

Russell:1992:NSC

Russell:1993:NSC

Russell:1995:NSC

Ruzic:2008:UDD

Rijmen:2002:PCP

Rickman:1973:SIL

Rigoutsos:1997:GEI

Isidore Rigoutsos and Haim J. Wolfson. Guest Editors’ in-
REFERENCES

Ramaswamy:2007:HSP

Reyhanitabar:2007:NIM

Surendro:1997:NRO

Ramakrishna:1997:PPS

REFERENCES

Sarkar:2013:NML

Sarkar:2015:FNR

Sasaki:2011:MMP

Savoy:1990:SBF

Savoy:1991:NFH

Sheffler:1993:AHP

Sabharwal:1995:PHT

REFERENCES

REFERENCES

[Sch91a] Bruce Schneier. One-way hash functions: Probabilistic algorithms can be used for general-purpose pattern matching. Dr. Dobbs Journal, 16(9):148–151, September 1, 1991. CODEN DDJOEB. ISSN 1044-789X.

[Sch01b] Josef Scharinger. Application of signed Kolmogorov hashes to provide integrity and authenticity in Web-based software distribution. Lecture

Schlaffer:2011:SDR

Severance:1976:PGA

Samson:1978:STU

Sacks-Davis:1985:PMK

Ron Sacks-Davis. Performance of a multi-key access method based on descriptors and superimposed coding techniques. Information system, 10(4):391–403, 1985. CODEN INSYD6. ISSN 0306-4379 (print), 1873-6076 (electronic). Hashing algorithm used to create descriptors for file indexing; this extends the author's earlier work [SDR83b].

Schneider:1989:PEFc

Schneider:1989:DTA

REFERENCES

[SD90a] D. Schneider and D. DeWitt. Tradeoffs in processing complex join queries via hashing in multiprocessor database machines. In McLeod et al. [MSDS90], page 469. ISBN 1-55860-149-X. LCCN ???.

REFERENCES

Schellhorn:2014:SCP

Spirovksa:2021:OCC

Smith:1989:ITD

Shafieinejad:2021:SPQ

Sedgewick:1983:MAC

Sedgewick:1983:A

Sedgewick:1988:A

REFERENCES

[SG76a] M. Sassa and E. Goto. A hashing method for fast set operations. *Informa-
REFERENCES

432

Shneiderman:1976:BSS

Shasha:1988:CSS

Shangguan:2016:SHF

Steinwandt:2000:WHS

Sharma:2009:DAC

David B. Sher. Motivating data structures with caching Internet stock data. SIGCSE Bulletin (ACM Special Interest Group on Computer

Shemanske:2017:MCE

Sun:2017:CMC

Shim:2017:PME

Shmoys:2000:PAA

Shoup:1996:FPS

Shoup:2000:CTU

V. Shoup. A compo-

Sockut:2009:ORD

Siegel:1989:UCF

Siegel:2004:UCE

Silverstein:2002:PPH

Simon:1998:FCO

Sakti:1988:GPP

Koutarou Suzuki, Kunio

REFERENCES

REFERENCES

Snader:1987:LIF

Safavi-naini:2005:MH

Snellen:1992:ITS

Safavi-Naini:2006:SSS

Soloviev:1993:THA

V. Soloviev. A truncating hash algorithm for processing band-join queries. In Soloviev [ICD93], pages 419-427. ISBN 0-8186-3572-X (hardcover), 0-8186-

REFERENCES

REFERENCES

REFERENCES

P. Sarkar and P. J. Schellenberg. A parallel algorithm for extending cryptographic hash functions. *Lecture Notes*
REFERENCES

Shalev:2006:SOL

Smith:2015:BPF

Shpilrain:2016:CLF

Sara:2001:SCT

Shen:2018:MDH

Soomro:2005:DDH

H. K. Soomro, S. A. A. Shah, and A. A. G. Shaikh. Development of dynamic hashing key generation method for Java based Sindhi program-
REFERENCES

Stipic:2013:PGT

Sagonas:1994:XED

Schkolnick:1983:ICV

Schkolnick:1983:NIC

Sebesta:1985:MPH

Sebesta:1986:FIA

Schweitz:1993:AHS

Eric A. Schweitz and Alan L. Tharp. Adaptive hashing
REFERENCES

[Sta73]

[Sta94]

[Sta99]

[Sta06a]

[Sta06b]

[Ste82]

[Ste18]

[Sti91]
REFERENCES

9743 (print), 1611-3349 (electronic).

Stinson:1993:ACC

Stinson:1994:CTU

Stinson:1994:UHA

Stinson:1994:ACC

Stinson:2006:SOT

Stonebraker:1988:RDS

Michael Stonebraker, edi-
REFERENCES

REFERENCES

Sun:2002:BJP

Sun:2015:CCH

Schnorr:1994:PFH

Schnorr:1994:BBC

Schnorr:1995:BBC

Suganya:2006:LRK

Steindorfer:2015:CSM

Steindorfer:2015:OHA

Steindorfer:2018:MOA

[SV18] Michael J. Steindorfer and Jurgen J. Vinju. Too many or to-one? All-in-one! Efficient purely

[C. Slot and P. van Emde Boas. On tape versus core: An application of space efficient perfect hash functions to the invariance of space. In ACM-TOC’84 [ACM84b], pages 391–400.

[Dennis Shasha and Tsong-Li Wang. Optimizing equi-join queries in distributed databases where relations are hash-partitioned. ACM Transactions on Database Systems, 16(2):279–??, June 1, 1991. CODEN ATDS03. ISSN 0362-5915 (print), 1557-4644 (electronic).

[Richard T. Snodgrass and Marianne Winslett, edi-

Sun:2014:SSA

Sun:2018:MSM

Shen:2008:HBP

Seltzer:1991:NHP

Shibata:2008:LFD

Sasaki:2011:KKD

Shao:2020:HCS

Seberry:1993:ACA

Sun:2020:RRL

Szymanski:1982:HTR

Szymanski:1985:HTR

Tenenbaum:1981:DSU

Tenenbaum:1986:DSU

Tai:1979:IPT

Tamminen:1981:OPE

Tamminen:1982:EHO

Tamminen:1985:SAC

Tanaka:1983:DSD

Tharp:1988:FOP

Thorup:2000:ESU

Thorup:2013:STF

REFERENCES

[TL18] Minh-Tuan Thai, Ying-Dar Lin, Po-Ching Lin, and

Anestis A. Toptsis. Load balancing in parallel hash join with data skew. In Finin et al. [FNY92], page ?? ISBN
REFERENCES

Torn:1984:HOI

Toyama:1986:DOQ

Toyama:1993:JAM

Tout:1995:DLB

Tong:2015:HTS

Taniar:2002:PSH

Trainiter:1963:ARA

Thom:1986:SAD
REFERENCES

[Tro95] John A. Trono. A comparison of three strategies for computing letter oriented, minimal perfect hashing functions. SIGPLAN Notices, 30(4):29–35, April 1, 1995. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). This paper introduces a simple modification that produces dramatic speedups to the algorithms of Cichelli [Cic80b] and Cook and Oldehoeft [CO82b].

REFERENCES

Tsai:1996:PAG

Tsai:2008:EMS

Tsudik:1992:MAOa

Tsudik:1992:MAOb

Turan:2011:SRS

Tsoukalos:2015:HTP

Thomlinson:1998:NBP

REFERENCES

REFERENCES

K. P. Ung, K. C. Hwang, and G. K. Tag. Uniform partitioning of relations using his-

Tyma:1996:TJP

Tao:2010:EAN

Tang:2015:EGF

Tillich:1994:GHP

Tillich:1994:HS

Thorup:2012:TBI

Urvoy:2008:TWS

Ung:1995:UPR

[UHT95] K. P. Ung, K. C. Hwang, and G. K. Tag. Uniform partitioning of relations using his-

REFERENCES

[USE00a] USENIX:2000:PAL

[USE00b] USENIX:2000:PUT

[Vak85] Vakhshoori:1985:UHD

[van73] vanderPool:1973:OSAb

Vitter:1985:OAM

Vitter:1987:DAC

Vasudev:2021:SPP

vandenBraak:2016:CXH

vanderHoeven:2012:IP1
vanderPool:1972:OSA

vanderPool:1973:OSAa

deVillers:1974:HSS

deVilliers:1974:HSS

vanderVegt:2012:PCH

Veklerov:1985:ADH

Ventae:1984:FTR

Ventae:1986:GDS

IEEE Service Cent. Piscataway, NJ, USA.

REFERENCES

Vitter:1982:ICH

[Vit01]

Vitter:1983:ASP

[VL87]

Vitter:1985:EIO

[vL94]

Varghese:1987:HHT

[Varghese:1987:HHT]

vanLeeuwen:1994:GTC

Varghese:1997:HHT

Anonymous:1982:VLD

Vaswani:2007:PPP

Vidali:2010:CVB
REFERENCES

REFERENCES

5915 (print), 1557-4644 (electronic). Discusses interpolation hashing, a multidimensional variant of linear hashing.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wiederhold:1987:FOD

Wiedermann:1987:SA

Wiederhold:1989:DD

Wiener:1999:ACC

Williams:1959:HII

Williams:1971:SUM

Willard:1978:NDS

Willett:1979:DRE

REFERENCES

[Wil85a] Dan E. Willard. New data structures for orthogonal range queries. *SIAM Journal on Computing*, 14 (1):232–253, February 1985. CODEN SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic). This paper, together with an earlier report [Wil78], present seven data structures for orthogonal range queries which are more efficient than earlier data structures used for this purpose, such as box array hashing.

[Winternitz:1983:POW]

[Winternitz:1984:SOH]

[Wirth:1975:AD]

[Wirth:1983:AD]

[Wirth:1986:ADS]

[Westergaard:2007:CME]

tronics in Agriculture, 8(2): 105–??, March 1, 1993. CO-
DEN CEAGE6. ISSN 0168-1699.

computer.org/csdl/trans/tg/2019/02/08010336-abs.
html.

[WMB94] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compressing and Indexing Documents and Images. Van Nos-
scribed in this book, and errata for the book, are available for anonymous ftp from munnari.oz.au in the directory /pub/mg.

utah.edu/pub/mg/mg-1.3x/bibsearch-1.02.tar.gz;
utah.edu/pub/mg-1.3x/bibsearch-1.02.tar.gz;
asp.

REFERENCES

[Wri83] William E. Wright. Some file structure considerations

Wegbreit:1976:PPC

Warren:1993:PHO

Whiting:2003:MPH

Wang:2013:PPC

Gaoli Wang and Yanzhao Shen. Preimage and pseudocollision attacks on step-reduced SM3 hash function. Information Pro-

Wu:1985:DOM

Wu:2005:HC

Whang:1990:LTP

Wang:2009:PAH

Wu:2018:SDH

Wang:2009:HSEa

Wang:2001:ECP

H. Wang and C. Xing. Explicit constructions of perfect

REFERENCES

Xiang:2021:EFT

Yamane:1985:HJT

Yang:2005:TFN

Yang:2010:PII

Yao:1978:VLD

Yao:1980:NAE

Yao:1981:STS

Yao:1983:LBP

Andrew C. Yao. Lower bounds by probabilistic arguments. Annual Symposium on Foundations of Computer Science (Proceedings), pages
REFERENCES

[YBQZ17] Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang. A fast, small, and dynamic

Ye:2018:MEU

Yang:2012:RHA

Yang:1984:DPH

Yang:1985:BMC

Yuen:1986:DFS

REFERENCES

[497]

Yang:1983:SPH

Yen:1991:MPH

Yu:2010:DRF

Yuan:2012:EMR

Yang:2019:DSA

Yasuda:1989:PAM

Yum:2010:FVH

Yen:1990:HTS

Yi:2009:SSG

Yang:2019:NAK

Yao:1983:SSG

REFERENCES

Yao:2005:HBL

Yang:2011:NHB

Yaniv:2016:HDC

Yang:1997:HFM

Yu:2006:SST

Ytrehus:2006:LFN

Yu:1992:IWR

Yu:2018:RHT

Yuan:1992:VLD

Yuba:1982:SOP

Yung:2002:ACC

REFERENCES

Yuval:1975:FNN

Yang:2009:ILV

Yu:2016:NFC

Yoon:2007:SCH

Yen:2000:WOW

Young:2001:HRS

REFERENCES

[Zel91]

[Zem91]

[Zém94]

[ZGG05]

[ZH18]
REFERENCES

td/2018/05/08186236-abs.html.

Zuo:2019:LHH

Zhou:2021:ELS

Zhang:2021:TME

Zuo:2019:WDH

Zhang:2009:IBR

Zhao:1994:DDBa
X. Zhao, R. G. Johnson, and N. J. Martin. DBJ — a dynamic balancing hash join algorithm in multipro-

Zhao:1994:DDBb

Zhao:1994:DDBc

Zee:2008:FFV

Zhang:2012:LLF

Zhou:2012:TSC

Zhang:2018:AKS

[DZL18] Dongxiang Zhang, Yuchen Li, Xin Cao, Jie Shao, and Heng Tao Shen. Augmented keyword search on spatial entity databases. VLDB Journal: Very Large Data Bases, 27(2):225–244, April 2018. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

[ZNPM16] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and
REFERENCES

Zhou:1993:DAH

Zhao:2013:AAP

Zobrist:1970:NHMa

Zheng:1990:HOW

Zheng:1993:HOWa

Zheng:1993:HOWb

Zhao:2012:HCB

Zhou:2008:RTS

Zezula:1991:DPS

Zukowski:2021:TPO

Zhang:2005:ISS

Zhang:2010:LCH

Zhang:2017:LBP

Zhang:2014:FFS

Zou:2012:PAS

Zhang:2021:LCF

Zhang:2019:SPB

Zhou:2020:NUI
Zhao:1983:PMC [ZZ83]

Zhou:2018:DSH [ZLZ18]

Zhang:2021:POP [ZZLZ21]

Zhang:2017:NLR [ZZM17]