A Complete Bibliography of Publications in *IEEE Computer Architecture Letters*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
01 October 2019
Version 1.01

Title word cross-reference

3 [RMMLK16]. O(1) [LX08].
-D [RMMLK16].
3D [HRF+11, XYMY16].
4T [JDK+02].

Abstract [BEA+13]. Accelerate [JLA16].
Accelerated [FFAMK15]. Accelerating [VRS18, WMZY17]. Acceleration [JLRA18, KKL+15, LYL+16, LHZ19, WKE12].
Address [KNGK15, KJS+19, SCL03, VD02, YWG17, AD06, LLLM06].
Addressable [VHN15]. Addressing
[CE14, MVJ17]. ADL [BVL09]. Adopting [LLLM06]. Advance [KME18]. Advanced [ANO16k]. Advertisement
NGS15, PL10, RSRT19, SBVB17, SKTC05, SJM17, VGMSLN+18, LAC14, LLLM06, LMK06, LHWB10, yPSS+10, SYC14.
Bayesian [BHY+19]. BDDs [PV06]. Be [TLG+11]. Behavior [TV02]. Benchmark [ILG10, KL02, WLL17]. Benchmarking [MTM18, XHG+19]. BENoC [WCK08].
Best [SKTC05]. Better [MCM13].
Better-Than-Bad [MCM13]. Between [HSUS11, ILXY18b]. Beyond [Ant09, GVG+08]. Bias [RZ06]. Big [AG17, Ano16k, Jac16a, JLA16, MSE+17].
Big-Data [MSE+17]. Bin [WLWZ19].
Birkhoff [DC18]. Bit [ILXY18a, JAM17].
Bit-Level [ILXY18a]. Bit-Serial [JAM17].
Bitwise [SHB+15]. Block [CCWY17, Jac16b, KG10, RB14, TMSA16, VD02, ZM07]. Blocks [MCM13]. Board [Ano08a, Ano09a, Ano09i, Ano10h, Ano10i, Ano14a, Ano14c, Ano15b, Ano15c].
Boomerang [FHL+10]. Boost [VMS17].
Bootstrapping [KH18]. Bottleneck [AMW15, GGS19, KKP+18, LLD+18].
Bottlenecks [BHL+18]. Bound [SCL13].
C [ZAK+17]. C-State [ZAK+17]. Cabinet [Jac16a]. Cache [AS14, BHL+18, BS17, BGP+17, CCWY17, CZYY11, FH08, GRVC02, GKKW07, IPS14, JP13, KLSD11, KG10, MPSS17, MCY+12, MCRV07, OKS+15, PPGL1, SSSM18, SKS+15, TV02, VGMSLN+18, VMP+16, WZLQ15, WKE12, XXYMY16, YMG14, YPFP14, ZVYW03, ZLA17, ZWL15, EPS06, Zha06].
Cache-aware [IPS14]. Caches [BLKS17, BS17, FJ08, JP13, LKK15, MV15, PHBC18, SLKD14, ZS18, Zha06].
Case [AA19, AS14, EE14, HBL+10, Jac16b, KWL+17, KR18, NMS14, PV06, SRT12, SCL13, CMLV03, TD02, Zho06]. CashMCC [JC17]. CAVA [CST+04]. Celebrates [Ano10b]. Cells [JDK+02]. Cellular [AS18].
Centralized [MCKW10]. Centric [KR18].
CF [CS18]. CF-TUNE [CS18].
Chaining [MJB11]. Challenge [DK13].
Checkpointing [MAT17]. Chief [Eec13, Gau09, Mar13a, Ska10a, Ska11a, Ska13].
Chip [AGJ18, CGY+14, DOM+07, DOM+08, GQLZ19, GGM+16, GKKW07, HCM10, KBD07, KKK13, KLZ12, LGLK17, LZS+08, LMJ12, MBJD11, MT12, PL15, PPG11, RMMLK16, SD02, WCK08, XL07, ZM07, ZKW12, MWK+06, Zho06].
Client [MLK15]. Closing [ILXY18b].
Cloud [DK16, GD18, WLL17]. Clumsy [KKK13]. Cluster [DRGA12, MWK+06].
CMA [ZL18a]. CMP [Jac16b, KG10, LMC+09, WCK08]. CNN [JLRA18]. Co [DCG12]. Co-designed [DCG12].
Coarse [LYL+16, ZM07].
Codesigned [MKM17]. Coding [YPFP14].
Cognitive [WL16]. Coherence [BGP$^+$17, JLP07, KLSD11, SLC03, EPS06].
Coherency [BHY$^+$19, MAHK18].
Coherent [MAHK18]. Collaborative [ACG$^+$07, CXS18]. Collaboratec
[Ano16l, Ano16m]. collection [Ano12k].
Combining [VD02]. Comment [Ant09]. Commit [DV13]. Commodity
[TMNK19]. Communicating [VD02]. Communication [BDJ06, GGM$^+$16, SPAP10, TASA13, LLLM06].
Communications [FJ08]. Compact [CGY$^+$14]. comparators [YE07].
Comparing [Man15, SCF04]. Competition [Ano10a]. Compiler [DV13, UKM02].
Compiler-Assisted [DV13]. Compiler-Enabled [UKM02].
Complementary [SYC07]. Complex [ACG$^+$07, ZL18a]. Complexity
[GG17, LX08]. Comprehensive [NS15].
Compressed [CEA18]. Compressing [PV06]. Compression
[MM03, MVJ17, PBO$^+$15].
CompressPoints [CEA18]. Computation
[ACS02, MLA$^+$14, YHM17, ZB19].
Computations [BY17]. Compute
[JLR18, LYL$^+$16, PL10].
Compute-Intensive [LYL$^+$16]. Computer
[AKK16, Ano08c, Ano09a, Ano09l, Ano09m, Ano10f, Ano10l, Ano10a, Ano10n, Ano10m, Ano11, Ano12j, Ano13j, Ano14a, Ano14b, Ano14c, Ano14f, Ano15b, Ano15d, Ano15c, Ano15e, Ano15f, Ano15g, Ano15a, Ano16a, Ano16b, Ano17, Ano18, Ano19, BVL09, Gau09, KLO2, Ska13, Ano10c]. Computers
[AG17, MTH11, Ano10b]. Computing
[BREM08, DL19, JAM17, KNG$^+$18, LJM$^+$14, Man15, WU14, ZL17].
Concurrency [ZWL15]. Concurrent
[ODKK18, ORS$^+$06]. Condition [XYZ15].
Conditions [KCPG18]. Conference
[Ano12c, Ano15h, Ano10g]. Confidence
[PL10]. conflict [Zha06]. Congestion
[GF16]. Congestion-Insensitive [GF16].
Connected [Ano10f, Ano13j]. Conquer
[CLCG14]. conscious [CMLV03].
Consistency [SM02, ZLS10].
Constrained [GO15, KPEC10].
Consumption [BKA$^+$09, FHL$^+$10].
Content [KWL$^+$17]. Content-Based
[KWL$^+$17]. Contention
[SVB17, TV02, WJFH11]. Contents
[Ano14g, Ano14h, Ano15j, Ano15k, Ano16n, Ano16o, Ano12h, Ano16p]. Continuous
[SRT12]. Control [KKK13, LGLK17]. Controlled [ALS09, RCS15]. Controller
[LLPC19, PDGV16]. conversion [RB14].
Convolutional [GG17, LHZ19, SW19].
Cool [UKM02]. Cool-Fetch [UKM02].
Cooperative [CV15, YIJ15]. Copies
[EE16]. Coprocessor [DEC$^+$18, Jun17].
Core [BHL$^+$18, BEA$^+$13, CVPI2, CXS18, DD18, FJ08, GBK$^+$09, IJS18, Jun17, KFJ$^+$03, LMT$^+$09, LA16, MNU$^+$15, NSF$^+$18, PHBC18, PL15, SW16, SMY15, XYMY16, ZLAE17, SPAP10]. Cores [NS15].
Corollaries [CM08]. Correct
[JSK13, KRB$^+$13]. Correction [EE16].
Correlation [SFCL03, SW19]. Cost
[DKD07, MAT17, NS15]. Count
[VGMSLN$^+$18]. Counter
[KML18, LLSA18, SJM17, RZ06].
Counter-Based [SJ17]. Counters
[WLWZ19]. counting [Rot08]. Cover
[Ano08c, Ano11c, Ano11d, Ano11f, Ano11e, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano08b, Ano09j, Ano09k, Ano10j, Ano10k, Ano11g, Ano11h, Ano12d, Ano12e, Ano12h, Ano12i, Ano12j, Ano13c, Ano13d, Ano13f, Ano13g, Ano16c, Ano16p]. Cover2
[Ano08a, Ano09h, Ano09i, Ano10h, Ano10i, Ano12f]. Cover3
[Ano12g]. Cover4
[Ano09l, Ano09m, Ano10l, Ano10m]. Covert
[KWKK18, NAG17]. CPI [EHDH18]. CPS
[Ano10g, Ano12c]. CPU [CFM$^+$03, FLSZ17, HDAS18, LMC$^+$09, NMS14, PHO$^+$15].

D [RMMLK16]. Danger [SKTC05]. Dark [CMM+14, DXSS15, TNC19]. Data [AG17, AD06, Ano16k, BLKSA17, DK16, HLH16, Jac16a, KWL+17, KLB12, LPK16, MCM13, MAT17, MVJ17, M+17, NSF+18, RL17, VMP+16].

Dimensional [RL08]. DIMM [ALSJ09]. Direct [NSF+18, Zha06]. direct-mapped [Zha06]. Directed [FGJ12, ZMC17].

Directory [HR10]. Discrete [SRT12]. Discrete-Continuous [SRT12].

Disintermediated [BDJ06]. Disk [YNS+08]. Distance [BY17]. Distinguish [Ano10d]. Distributed [AKK16, CYY11, FD08, SLKD14, SB18, SRLP09, YJZ15].

Duplication [KRB+13, MVJ17]. DVFS [CLCG14, RCS15]. Dynamic [CFM+03, GWR08, GMM+19, HCM10, JMKP07, JMKP08, KCP+19, LMK06, MHAD15, MCRV07, RMMLK16, SPJ02, SCF04, SKD09, YC15, ZB19].

Early [NBH13]. Early-Stage [NBH13]. EARtH [EGWM14]. easy [Ano12k].

Ecosystem [AWD+18]. Edge [DL19, GGS19]. Edition [DK13]. Editor [Eec13, Gau09, Mar13a, Ska09a, Ska10a, Ska11a, Ska13]. Editor-in-Chief [Eec13, Gau09, Mar13a, Ska10a, Ska11a, Ska13].

Editorial [Ano08a, Ano09h, Ano09i,

Foreword [GPS06]. Forwarding [BHD09].
FPGA [FLSZ17, LAC14, PP12].
FPGA-based [LAC14]. Fractal [ZLS10].
FRAM [YNS+08]. Framework [BVL09, KLZ12, LHZ19, TMNK19, LHWB10].
Free [PS17, XYZ15]. Frequency [CTNL16, MLM+06, YC15].
Friendly [PZX15]. Front [Ano08b, Ano09a, Ano09l, Ano10b, Ano13e, Ano14a, Ano14b, Ano14c, Ano14d, Ano15a, Ano16d, Ano16a, Ano16b, Ano17, LAC14].

Kernel [NMS14]. KSM [ZCG18]. kW [Jac16a].

Index [Ano11a, Ano12a, Ano13a, Ano15a, Ano16a, Ano16b, Ano17, Ano18, Ano19]. Indirect [JMKP07, JMKP08]. Induced [DS09, ZTHK15]. Instruction [LA16, NSF+18, ZLA17]. Inter-Core [LA16, NSF+18, ZLA17]. Inter-Domain [GGM+16]. Interaction [ZTS16]. Inter-Socket [SPAP10]. Internal [ZTS16]. Interconnect [CGY+14, KG10, SRV+19]. Interconnection [Ant09, GVG+08, SPJ02, SD04, GD06]. Interface [BHY+19]. Interleaving [VD02]. Interpreter [SPAP10]. Interpreter [MI18]. Interval [SKTC05]. Interval-Based [SKTC05]. Intervals [GWR08, PL10]. Intra-

MPSoC [PP12]. MPSoCs [KLZ12]. MPU [VRS18]. MRAM [ILXY18a, ILXY18b].

MTB [AGJ18]. MTB-Fetch [AGJ18]. Mth [MKM17]. Multi [AWD+18, CVP12, EHDH18, FJ08, IKS18, Jun17, KFJ+03, MNU+15, MMY+14, PLL08, PL15, RL17, SMZ18, SPAP10, VS11, Zho06]. Multi-Accelerator [MMY+14].

Multi-Architecture [AWD+18]. Multi-Core [CVP12, FJ08, IKS18, Jun17, KFJ+03, MNU+15, PL15, SPAP10].

Multi-Stage [EHDH18]. Multi-String [PLL08]. Multi-Threaded [VS11].

Multi-Threading [SMZ18]. MultiAmdahl [MMY+14, ZKW12].

Multicore [ALSJ09, BEA+13, CAPS09, DVAE18, DM06, KCPG18, KLSD11, Mic13, Mus09, ODKK18, SHK15].

Multicores [AEJE17, VMS17]. Multidimensional [JSDK13]. Multikernel [WYM+16].

Multilevel [PPG11]. Multimedia [ACSV02]. Multiply [GG17, JPC18].

Multiprocessor [ILG10, PPG11, SLC03, XL07].

Multiprocessors [AGJ18, GKKW07, HCM10, LMJ12, MTT12, SD02, MWK+06].

[AGJ18, KNE+14, SHW19]. My [ZKW12].

Nahalal [GKKW07]. Nanopore [JL18]. Narrow [EUVG06, KRB+13]. Native [MLK15].

Neighbor [NSF+18]. Nested [HBL+10].

Netflix [DK13]. Network [Ant09, CGY+14, GVG+08, JAM17, LZA+08, LHZ19, PL15, SCL13, WCK08, XHG+19, ZL18a, EPS06, TASA13].

Network-on-Chip [CGY+14, LZA+08, PL15].

Network-on-SSD [TASA13]. Networks [CG17, KBD07, KKK13, KR18, MXY19, MJBD11, RL08, RL09, RMMLK16, SPJ02, SW19, SD04, XYZ15, YHM17, GD06].

Networks-on-Chip [RMMLK16]. Neumann [DC18]. Neural [GG17, JAM17, KR18, MXY19, MXY+14, SM18, VHN15, WZLQ15].

O [LKA15, LKKS15, MAHK18, SYC14]. Oblivious [SCL13, TD02]. Odd [SCL13].

Offer [Ano10c]. On-Chip [GGM+16, KBD07, KKK13, KLZ12, LGLK17, MJBD11, ZM07, WCK08].

On-Demand [MHAD15]. Once [MSE+17].

Online [ZCG18]. Open [AWD+18, Ano13h, Ano13i, ACG+07, ILG10]. Open-Source [AWD+18, ILG10].

Operand [BHD09, MSL18]. Operating [AEJE17].

Operation [KCPG18]. Operations [JPC18]. Opportunities [TNC19, Wu14].

Opportunity [MTH11]. Optical [CGY+14].

Optimal [BHY+19, CFM+03, NMS14].

Optimization [BHY+19, CNHH15, GO15, MNY+14, WCC+14, YMG14, GD06].

Optimizations [BY17, WZLQ15, ZM07].
Optimizing [MSE17]. ORAM [RM18].
Orbital [DL19]. Order
[CTJ+17, DV13, PGJ12, TOIS17, CMLV03].
Ordering [HR10]. Organization
[BSBD+08, GKKW07]. our [Ano12k].
Out-Of-Order
[DV13, CTJ+17, TOIS17, CMLV03].
Overall [LX08]. Overhead [RM18].
Overheads [KQGS16, SHK15]. Overview
[FUWT12].
Packet [MJBD11]. Packets [FHL+10].
Page [LMK06, TV02, WMZY17].
Page-based [LMK06]. Page-Level [TV02].
Pages [JLA16]. Paging [HBL+10].
Paradigm [TASA13]. Parallel
[ADS+19, AKK16, CLCG14, KLZ12, KPEC10, LX08, MPSS17, XL07, AD06].
Parallel/Distributed [AKK16].
Parallelism [yPSS+10, TMSA16, VE18].
Parallelization [DM06]. Parity [JSDK13].
ParMiBench [ILG10]. Partially [RL08].
Partially-Minimal [RL08]. Partitioning
[BLKSA17, YYK18]. Precaching
[AGJ18, LCW16]. pd [AKK16].
pd-gem5 [AKK16].
Per-Core [LMT+09, SW16]. Per-task
[LJM+14]. Performance [AW15, ABC+19, BREMO8, CCWY17, CZYY11, CLCG14, CMF+03, DPIC16, DVAE18, EE14, FHL+10, GMMC15, GGS19, GF16, GSG+17, JSBK13, KKL+15, KKF+18, KH18, MTH11, MWK+06, PL10, RMLKL16, RCS15, RB14, SIKM02, SJ+17, SCL06, TASA13, VP16, WCC+12, YMBA19, YNS+08, ZVYW03, ZCG18, ZL18b, LHWB10, SYC14, Zho06].
Performance-Efficient [KLZ18b].
Performance-Energy [KLZ18b].
Peripheral [AMW15]. Permanent
[OKS+15, SKS+15]. Persistence
[KQGS16, MAT17, PDGV16]. Persistent
[KQGS16, WYL+15]. Petabyte [Jac16a].
PetaFLOP [Jac16a]. Phase
[Jun17, KJS+19, KMKJ18, KKL+07, Sez10].
Phase-Change [KJS+19]. Physical
[Rot08]. PID [RCS15]. PID-Controlled
[RCS15]. PIMSim [XW+19]. Pipeline
[AS18, PL15]. Pipelined [PLL08].
Pipelining [FUWT12]. Placement
[HCM10, LLP19]. Plane [TMSA16].
Plane-Level [TMSA16]. Platform
[EGWM14]. Platforms [GO15]. Point
[ACSV02, DKD07, GF16]. Pointer
[MAT17, RADZ19]. Pointer-Based
[MAT17]. Points [AEJE17]. Policy
[LLKS12, TMSA16, VGMLN+18].
Portable [LJ18]. Potential [LLKS12].
Power [AEJE17, CNTL16, CVP12,
CGY+14, CLJ+02, DRGA12, FHL+10,
KLW13, KWWK18, KG10, KFJ+03,
LM+09, LLS+15, PHBC18, PP12, SBBV17,
SKTC05, SW16, SPJ02, SCF04, TVB+13,
UKMO2, WCK08, YH17, YPFP14,
ZAK+17, ZL18b, LHWB10, MWK+06].
Power-Aware [UKM02]. Power-Efficient
[YHM17, SPJ02]. Power-Gating
[CTNL16, ZL18b]. Power-Limited
[AEJE17]. POWER8 [LCW+16]. PPT
[ABC+19]. Practical [DM06]. PRAM
[JP13]. Pre [MKSP05, WB14].
Pre-Executed [MKSP05, WB14]. Precise
[NFAE19]. Predication
[JMTP07, JMKP08]. Predictability
[MXP19]. Predicting [PB16]. Prediction
[ST+04, DVAE18, FE07, MHAD15, PGJ12,
PB16, PS17, SYC07, SLKD14, SW19,
ZCG18]. Predictive [WCY09]. predictor
[RZ06]. Predictors [SYC07]. Prefetch
[PB16]. Prefetcher [BLKS17, YYK+18].
Prefetchers [PB16]. Prefetching
[AGJ18, LCW+16, PGJ12, TLG+11, ZMC17].
Preprocessing [YYK+18]. Preserving
[MTR18]. Pressure [HCM10].
Pressure-Aware [HCM10]. Prevent
Privacy [MS16, MTM18].
Privacy-Preserving [MTM18].
Proactive [FJ08].
Probabilistic [EF07, RZ06].
Problem [HS04].
Proceedings [Ano10g].
Process [DOM+07, DOM+08, MTT12, Mus09, ZZJ18].
Process-in-Memory [ZZJ18].
Process-Variation [Mus09].
Processing [AG17, AA19, AWD+18, BHL+18, BGP+17, CTJ+17, CHK+18, FFAMK15, JPC18, KZL18, SRV+19, XCW+19].
Processing-in-Memory [BGP+17, XCW+19].
Processor [BDBS+08, CZYY11, KPEC10, KFJ+03, LCW+16, LJ04, MKSP05, VE18, YKMG15].
Processors [ADS+19, ACSV02, CXS18, FJ08, GGS19, GMM+19, LLPC19, LMC+09, Mus09, PGJ12, RADZ19, RYSN04, SMY15, TOIS17, TDO16, VS11, WCYC09, WB14, CMLV03, Zho06].
Profiles [CNHH15].
Profiling [CV15, GMMC15].
Program [KKL+07, NGS15, SSTS17, SHK15].
Programmable [DCG12, DEC+18].
Programming [KLKK14].
Programs [GRCV02, MPPS17, ORS+06].
Progressive [AG17].
Protocol [KSB19].
Providing [KKH14].
PRR [SKD09].
Publication [Ano11j].
Publishing [Ano12c, Ano13h, Ano13i].
Q [GMM+19].
Q-Learning [GMM+19].
Quality [YC15].
Quantitative [LPK16].
Quantum [AS18, ZB19].
Quantum-Dot [AS18].
Quasi [JDK+02].
Quasi-Static [JDK+02].
quick [Ano12k].
Race [EGWM14].
Racetrack [KHB+19].
Radix [SD04, SCL13].
RAM [JP13, MVJ17, YPFP14].
Ramulator [KYM16].
Random [RL09].
Randomized [RL08].
Ransomware [MPA+18].
Rapid [DVAE18, SRS11].
RAS [RCS15].
Rate [PL10].
Rate-Based [PL10].
Read [MVJ17, MSE+17, ZZJ18].
Read-Disturbance [MVJ17].
Read-Once [MSE+17].
Real [PPG+17].
Real-Time [PPG+17].
Rebuttal [BREM08].
Reconfigurable [LLD+18, LYL+16, SSSM18, TNC19, ZL18a].
Recovery [MPA+18, MAT17].
ReDRAM [SSSM18].
Reduce [Cit04, KG10].
Reducing [FHL+10, KL02].
Reduction [HHL16, KKKH18, KFJ+03, SCF04].
Redundancy [GWR08].
Refactored [LKA15].
reference [Rot08].
Refresh [KKKH18, LLSA18].
Regional [YJZ15].
Register [BSBD+08, EE16, Rot08].
Registers [BHD09].
Regression [YYK+18].
Reliability [CE14, DD18, HSUS11, SMY15, TMNK19].
Reliable [KMJ18, KKL+07].
Relocation [SKD09].
Remapping [WMZY17].
Remote [KSB19].
Reordering [SJM02].
Replacement [VGMSLN+18].
Representation [NGS15].
Request [SJM02].
ReRAM [LHZ19].
ReRAM-Based [LHZ19].
ReRAMs [ZZJ18].
Resampling [PL10].
Research [AWD+18, KL02].
Reservation [LZS+08].
Resilience [LBB+19, OKS+15, SKS+15, SHK15].
Resiliency [LSS+15].
Resilient [ODKK18].
Resistive [MLA+14, YKMG15, YWG17, ZL17].
Resource [KCP+19, KQD18, LZZ+08, OKKK18, RMMLK16, CMLV03].
resource-conscious [CMLV03].
Response [FHL+10].
Restating [EE14].
Results [ACSV02, MKSP05, WB14].
RETOFIT [ZKF+18].
Reuse [BY17, CMP+14, LPK16, YHM17].
Reusing [MKSP05].
Revenues [DOM+07, DOM+08].
Reviewers [Ano11b, Ano12b, Ano13b].
Revisiting [WB14].
Rich [LBB+19].
Rock [Ano15h, Ano15i].
Rollback [MAT17].

Scalable [APK+18, ABC+19, GWR08, MCY+12, RSRT19, SRV+19, TASA13, ZL18b]. Scale [AG17, DRGA12, DSVK12, HCM10, MTH11]. Scaled [ILXY18a, ILXY18b, KCPG18].

ScaleGPU [KLKK14]. Scaling [CTNL16, GO15, MLM+06, SPJ02, SCF04, YC15]. SCC [CLCG14]. SCEPTER [DPC16].

Scheduling [CCWY17, DK16, DC18, LLKS12, LKK515, LA16, MNU+15, SBVB17]. Scheme [CLCG14, MMR17, SLC03, WJFH11]. Second [LMJ12]. Section [MNU+15].

Set-Granular [YJZ15]. Shader [WCYC09]. Shaping [JLRA17]. Shared [CZYY11, FJ08, IXS18, SLKD14, SRLP09]. Shared-Buffer [SRLP09].

Shared-Memory [IXS18]. Sharing [GG17, KCP+19, LMJ12, RMMLK16, WYM+16].

SIMD [WCZ+12]. SimpleSSD [JZA+18].

SIMT [LPK16]. Simulation [AKK16, AC+07, DM06, Hos18, JZA+18, KL02, LHZ19, LJo4, SCL06].

Simulation-Based [KL02]. Simulator [Ano10a, FLSZ17, JC17, KHB+19, KYM16, PZX15, PHO+15, RCBJ11, XCW+19]. Simulators [BVL09, CAPS09].

Simultaneous [SHW19, WYM+16]. Single [BEA+13, KKL+15, KH18, KFJ+03, MNU+15, MJBK11, SD02]. Single-Cycle [MJBK11]. Single-ISA [KFJ+03, MNU+15].

Small [JLA16]. SMT [HR10, KH18, RYSN04, SHW19, TVB+13].

SMT-Directory [HR10]. SMT-SA [SHW19]. SoC [MYY+14]. Society [Ano09a, Ano10c, Ano11i, Ano08c, Ano09l, Ano09m, Ano10f, Ano10l, Ano10n, Ano10m, Ano11i, Ano12j, Ano13j, Ano14e, Ano14f, Ano14g]. Socket [SPAP10].

SoCs [BHY+19]. Soft [EE16, EUVG06, KRB+13, PL15, SG14, YE07]. Software [BKA+09, CTJ+17, CV15, LMK06, MKM17, TVB+13, XWG+14].

Sparse [YG18]. Spatial [SW19, ZCG18]. SPEC [KL02]. Special [Ano10c].
Specialization [NGS15]. Specific [WCC14].
Speculation [MG14, RL17, XJ09].
Speculative [GQLZ19, SLC03]. Speed [MTT12, MCRV07, ZL18a]. Speedup [LJ04]. Spintronics [CHK+18, LJ18].

[GGM+16, Jac16a, JZA+18, KNG+18, KL18, KSO+16, KLZ12, KR18, MXS19, RCBJ11, SJA+17, XL07, ZLS10, LLLM06].

System-on-a-Chip [XL07]. Systems [AKK16, BDBS+08, CLJ+02, CEA18, GQLZ19, GRCV02, HBL+10, ILG10, KJS+19, LBB+19, LJM+14, MAHK18, PPG+17, PL15, PZX15, PPG11, SLC03, SPAP10, TLG+11, ZYY03, LHWB10]. Systems-on-a-Chip [GQLZ19]. Systolic [SHW19].

Table [Ano14g, Ano14h, Ano15j, Ano15k, Ano16p, Ano16n, Ano16o, KL18, Ano12h].
Technique [AMW15, ILXY18a, KR+13, MV15, Mus09, WCYC09]. Techniques [DKD+02, PL10]. Temporal [BLKSA17, EF07]. TERMinator [MTM18].
There [Ano12k]. Thermal [CFM+03, SRS11, Wu14]. Thermally [XYMY16]. Thinking [Ano16k]. Third [OSH16]. Third-Party [OSH16]. Thread [CCYW17, GBK+09, KKL+15, KH18, MNU+15, MGI14, RYSN04, SLKD14].
Thread-Level [MG14]. Thread-Sensitive [RYSN04]. Threaded [VS11]. Threading [SMZ18]. Threads [HH16, KMK17, ORS+06]. Three [RL08].
Three-Dimensional [RL08]. Threshold [KPEC10]. Throttling [UKM02]. Throughput [ILXY18a, ILXY18b, KKK13, LPPC19, Mic13, SRLP09, SCL13]. Tile [Mus09, CZYY11]. Tile-Based [Mus09].
Tileira [CZYY11]. Time [KNG15, LLAS18, PPG+17, RADZ19, LX08]. Timing [RL17, XJ09]. TLB [CLJ+02, PHBC18].
Toggle [PBO+15]. Toggle-Aware [PBO+15]. Tolerance [EUVG06, Zha06].
Tolerant [GDF+04, HRF+11, PL15].
Topology [GD06, KBD07]. Tori [GDF+04, SDTG04]. Torus [RL09]. Trace [MM03]. Traces [PV06]. Tradeoff [SHK15].
Traffic [HLH16, JLRA18, TD02, ZLAE17].
Training [KR18, LHZ19]. Transaction [LZS+08]. Transaction-Aware [LZS+08].
Transaction [BKA+09, DD18, LLD+18, WJFH11, WYL+15, XWG+14, BLM06].
Transactions [Ano10b, Ano14c, Ano14d, Ano12k, Ano13e].
Transcending [CTJ+17]. Transformation [KKKH18, LD02]. Translation [LMJ12]. Translation-Lookaside [LMJ12].
Transparent [KKH14]. Tree [SJM17, Ant09, GVG+08]. Trees [SB18].
TrustZone [PPG+17]. TrustZone-Assisted [PPG+17]. TUNE [CXS18].
Tuner [LCW+16]. Tuning [CXS18, YMBA19]. Turbo [VMS17].
TWiCe [LLSA18]. Twin [TMSA16]. TWL [KJS+19].
Ultra [MTT12]. Ultra-low [MTT12].
Unaware [KKK14]. Understanding [XHG+19]. Unfairness [SJA+17].
Unidirectional [Ant09, GVG+08].
Unification [RB14]. Unified [LHZ19].
UNISIM [ACG+07]. Unit [DCG12, GG17].
Units [GMMC15, JLRA18, MTT12].
Untitled [Ska09b, Ska10b, Ska11b]. Unused [KG10]. updates [RZ06]. Upgrading [IPS14]. Ups [MCRV07]. Use [FJ08].
Usefulness [PB16]. User [MLM+06, PZX15, LLLM06]. User-Driven [MLM+06]. User-Friendly [PZX15].
user-level [LLLM06]. Using [AG17, BHY+19, CHK+18, GGS19, GO15, KKP+18, KCP+19, KH18, LMT+09, LJ04, MCY+12, PL10, RADZ19, WLWZ19, WB14, YE07, YHM17, BREM08, JDK+02, MTT12, SLC03, SCL06, Zho06]. Utilization [TMSA16].
Validation [GWR08]. Valley [GBK+09].
Value [AS14, CST+04, KKH18, SW19].
Value-Aware [AS14]. Values [EUVE06, KRB+13]. Variability [DRGA12, RCS15].
Variance [MTT12, Mus09]. Variations [DOM+07, DOM+08]. Variety [AG17].
vCache [KKH14]. Verification [ZL10].
Versatile [WZLQ15]. Vertical [HREM11, ILXY18b].
View [KKH14]. Virtual [CE14, KNGK15, PHBC18]. Virtualization [SYC14].
Virtualized [HBL+10, KKH14].
Vision [GQLZ19]. VLIW [Jac16b].
VMOR [MSI18]. Voi [Ano15a, Ano16a, Ano16b, Ano17, Ano18, Ano19]. Volatile [PZX15, RM18, SM18, VHN15, WZLQ15].
Voltage [CTNL16, HADAS18, KCPG18, MFT12, SP10, SFC04, YC15].
Voltages [MTT12]. vs [GBK+09]. Vulnerabilities [HSUS11, KWK18].
Warehouse [AG17, MTH11].
Warehouse-Scale [AG17, MTH11]. Warp [ZTS16]. Way [VVLYW03, Ano12k].
Way-Halting [VVLYW03]. Wear [KJS+19, LZLX15, ZKF+18].
Wear-Leveling [LZLX15]. Wearables [Ano15i].
Web [MGII14, VP16, ZSLR14].
Webpage [ZSLR14]. Weight [GG17].
Weight-Sharing [GG17]. Weighted [EE14, RL09]. Weighted-IPC [EE14].
Window [LLSA18]. Wire [CIT04, ZL18a].
Wire-Speed [ZL18a]. Wires [TNC19].
Word [VD02]. Word-Interleaving [VD02].
Words [KG10]. Workers [VP16]. Worklist [ZMC17]. Worklist-Directed [ZMC17].
Workload [EE14, KL02]. Workloads [BHL+18, DS09, LMT+09, XHG+19, ZAK+17]. Worst [SKTC05, SCL13, TD02].
Worst-Case [SCL13, TD02]. Write [ILXY18a, LKKS15, WMZY17]. Writes [ILXY18b].
REFERENCES

X [XHG+19]. XML [BVL09]. XML-Based [BVL09].

Years [Ano10b]. Yourself [Ano10d].

Zebra [KKKH18]. Zero [KKKH18]. Zero-Aware [KKKH18]. [AKSV02]

References

Akin:2019:CAP

Arafa:2019:PGS

August:2007:UOS

Alvarez:2002:IRF

Ahn:2006:DPA

Agrawal:2019:MPS

Adileh:2017:MPH

Almutaz Adileh, Stijn Eyerman, Aamer Jaleel, and Lieven Eeckhout. Mind the power holes: Sifting operating

Ahmadvand:2017:UDV

AlBarakat:2018:MFM

Alian:2016:PGS

Ahn:2009:MDE

Azriel:2015:PMT

Anonymous:2008:EBC

Anonymous:2008:FC

REFERENCES

Anonymous:2009:EBCb

Anonymous:2009:FCa

Anonymous:2009:FCb

Anonymous:2009:ICSa

Anonymous:2009:ICSb

Anonymous:2009:IAa

Anonymous:2009:IAb

Anonymous:2010:ICSb

Anonymous:2010:AIT

Anonymous:2010:ACS

Anonymous:2010:ADY

Anonymous:2010:ASS

Anonymous:2010:ASC

Anonymous:2010:CPS

Anonymous:2010:EBCa

Anonymous:2010:EBCb

Anonymous:2010:FCa

Anonymous:2010:FCb

Anonymous:2010:ICSa

REFERENCES

Anonymous:2011:FCa

Anonymous:2011:FCb

Anonymous:2011:ICS

Anonymous:2011:PI

Anonymous:2012:AI

Anonymous:2012:ACP

Anonymous:2012:BC

Anonymous:2012:BIC

Anonymous:2012:Ca

Anonymous:2012:Ca
REFERENCES

Anonymous:2012:Cb

Anonymous:2012:FCT

Anonymous:2012:FIC

Anonymous:2012:ICS

Anonymous:2012:TNQ

Anonymous:2013:AI

Anonymous:2013:RL

Anonymous:2013:BC

Anonymous:2013:BIC

Anonymous:2013:ITN
REFERENCES

CODEN ????. ISSN 1556-6056 (print), 1556-6064 (electronic).

Anonymous:2013:FC
[Ano13f] Anonymous. [front cover].

Anonymous:2013:FIC
[Ano13g] Anonymous. [front inside cover].

Anonymous:2013:IOAa

Anonymous:2013:IOAb

Anonymous:2013:SCI

Anonymous:2014:ICAAa

Anonymous:2014:ICAb

Anonymous:2014:ITPa

Anonymous:2014:ITPb
IEEE Computer Architecture Letters, 13
Anonymous:2014:ICSa

Anonymous:2014:ICSb

Anonymous:2014:TCa

Anonymous:2014:TCb

Anonymous:2015:ICSa

Anonymous:2015:ICSa

Anonymous:2015:ICSa

Anonymous:2015:ICSa

REFERENCES

Anon:2015:ICSa

Anon:2015:ICSb

Anon:2015:RSC

Anon:2015:RSW

Anon:2015:TCa

Anon:2015:TCb

Anonymous:2016:IICa

Anonymous:2016:IICb

Anonymous:2016:BC

Anonymous:2016:ICS
Anonymous:2016:TCb

Anonymous:2017:IIC

Anonymous:2018:IIC

Arelakis:2014:CVA

Anonymous:2019:IIC

Almatrood:2018:DGP

Amjad F. Almatrood and Harpreet Singh. Design of generalized pipeline cellular

REFERENCES

Beckmann:2017:CCM

Black-Schaffer:2008:HIR

Barnes:2009:XBA

Badawy:2017:GLO

Chiou:2009:AFF

Choukse:2018:CEM

[Esha Choukse, Mattan Erez, and Alaa Alameldeen. CompressPoints: An evaluation...]

Chen:2017:IGP

Cakmakci:2014:EVA

CE14

[CM08] S. Cho and R. Melhem. Corollaries to Amdahl’s Law for en-
REFERENCES

Jie Chen and Guru Venkataraman. A hardware-software cooperative approach for application energy profiling.

REFERENCES

95, January/June 2018. CODEN ???. ISSN 1556-6056 (print), 1556-6064 (electronic).

Delimitrou:2013:NCD

Delimitrou:2016:SID

Dieter:2007:LCM

Denby:2019:OEC

Donald:2006:EPP

Das:2007:MMC

Das:2008:MMC

Daya:2016:THP

Bhavya K. Daya, Li-Shiuan Peh, and Anantha P. Chandrakasan. Towards high-

REFERENCES

Eker:2016:EEC

Eedkhout:2013:MNE

Etsion:2007:PPT

Efraim:2014:EAR

Eyerman:2018:MSC

Eisley:2006:NCC

Ergin:2006:ENV

Flich:2008:LBD

REFERENCES

January 2008. CODEN ???
ISSN 1556-6056 (print), 1556-6064 (electronic).

Farmahini-Farahani:2015:DAA

Fang:2010:BRP

Fide:2008:PUS

Feng:2017:HHC

Finlayson:2012:OSP

Gaudiot:2009:INE

Guz:2009:MCV

June 2009. CODEN ????
ISSN 1556-6056 (print), 1556-6064 (electronic).

Gupta:2006:TOI

Gan:2018:AIC

Gomez:2004:EFT

Gorgues:2016:EPC

Gou:2011:ESH

Garland:2017:LCM

García:2016:CMP

Golestani:2019:PMB

Gupta:2019:DQL

Gupta:2015:CEO

Gibert:2015:PSR

Guz:2007:NCO

Gordon-Ross:2002:EFP

A. Gordon-Ross, S. Cotterell, and F. Vahid. Exploiting fixed programs in embedded

Qi Hu, Peng Liu, and Michael C. Huang. Threads

Ipek:2018:BLL

Ipek:2018:VWC

Ilic:2014:CAR

Iliakis:2018:DMS

Jacob:2016:PPT

Jacob:2016:CVC

Judd:2017:SBS

Jeon:2017:CCA

Dong-Ik Jeon and Ki-Seok Chung. CasHMC: A cycle-

Juang:2002:IDT

Jung:2016:LPS

Joao:2007:DPI

Joao:2008:DPI

Joo:2013:HPS

Jung:2018:PCU

REFERENCES

ISSN 1556-6056 (print), 1556-6064 (electronic).

Jeon:2018:HMP

Jian:2013:HPE

Jung:2017:NIP

Jung:2018:SMS

Kim:2007:FBT

Kim:2019:IGM

Kaliorakis:2018:SAM

Manolis Kaliorakis, Athanasios Chatzidimitriou, George Papadimitriou, and Dimitris Gizopoulos. Statistical analysis of multicore CPUs operation in scaled voltage conditions. *IEEE Computer Ar-
REFERENCES

Kumar:2003:PPR

Kim:2010:LUC

Kondguli:2018:BUS

Khan:2019:RCA

Kim:2019:THA

Kim:2014:VPT

Kim:2013:CFC

REFERENCES

Kim:2018:ZRV

Kim:2018:SPM

Kim:2018:HBP

Kim:2014:SGA

Youngsok Kim, Jaewon Lee, Donggyu Kim, and Jangwoo Kim. ScaleGPU: GPU architecture for memory-unaware GPU programming. IEEE

Khan:2011:DDC

Kong:2012:ASF

Kline:2018:CAR

Kvatinsky:2014:MBM

Khatamifard:2018:MSD

Kang:2015:SRT

Kim:2015:ASM

Krimer:2010:SNT

Kulkarni:2018:LAI

Kansal:2013:EDT

Kumar:2019:HRA

Kleinhans:2016:EAP

Kleinhans:2016:TML
Marios Kleinhans, Yiannakis Sazeides, Emre Ozer, Chrysostomos Nicopoulos, Panagiota Nikolaou, and Zacharias Hadjilambrou. Toward multi-layer holistic evaluation of system designs.

Khatamifard:2018:NCC

Kai:2013:GRP

Khan:2017:CMC

Kim:2016:RFE

Khoram:2018:AAA

Li:2016:ICL

Lavasani:2014:FBL

Leng:2019:ARA

Li:2016:PHP

Lee:2017:FFE

Lyons:2010:ASF

Liu:2019:UFT

Luo:2004:EES

Lou:2018:BSB
REFERENCES

ISSN 1556-6056 (print), 1556-6064 (electronic).

Liu:2014:PTE

[1556-6056 (print), 1556-6064 (electronic).]

Lee:2015:RDA

[1556-6056 (print), 1556-6064 (electronic).]

Lee:2015:SSI

[1556-6056 (print), 1556-6064 (electronic).]

Li:2018:BSB

[1556-6056 (print), 1556-6064 (electronic).]

Lakshminarayana:2012:DSP

Lee:2006:ASC

Lin:2019:DSE

[Ting-Ru Lin, Yunfan Li, Masoud Pedram, and Lizhong Chen. Design space exploration of memory controller placement in throughput processors with deep learning. *IEEE Computer Architecture Letters*, 18(1):51–54, Jan-
Liu:2015:LHP

Lee:2018:TTW

Luque:2009:CAC

Li:2012:LSS

Li:2006:PBH

Leverich:2009:PMD

Lai:2016:QMD

Lyons:2013:SFF

Lee:2008:PDD

Liang:2016:CGR

Liao:2015:AWL

Li:2008:TAN

Min:2018:SCD

Manohar:2015:CSD

REFERENCES

Martinez:2013:MNE

Martinez:2013:E

Mirhosseini:2017:SPB

Manevich:2010:CAR

Maddah:2013:DDS

MoretoPlanas:2007:EDC

Meza:2012:EES

Martinsen:2014:HTL

REFERENCES

Mohammadi:2015:DDB

Michaud:2013:DMT

Michelogiannakis:2011:PCE

Manatunga:2015:HSS

Mutlu:2005:RRP

Mahmoodi:2014:RCC

Marquez:2017:MCH
REFERENCES

REFERENCES

ISSN 1556-6056 (print), 1556-6064 (electronic).

REFERENCES

Mittal:2015:ATE

Mittal:2017:ARD

Morad:2006:PPE

Masouros:2019:RRS

Naghibijouybari:2017:CCG

Nilakan:2013:MES

Naithani:2019:PRE

Nowatzki:2015:GBP

Tony Nowatzki, Venkatraman Govindaraju, and Karthikeyan

Naghibijouybari:2017:CCG

Nilakan:2013:MES

Naithani:2019:PRE

Nowatzki:2015:GBP

Tony Nowatzki, Venkatraman Govindaraju, and Karthikeyan

REFERENCES

Patil:2010:URT

Poluri:2015:SET

Pao:2008:PAM

Piscitelli:2012:HLP

Pinto:2017:TTA

Prais:2017:SFM

Price:2006:CCT

CODEN ???. ISSN 1556-6056 (print), 1556-6064 (electronic).

Poremba:2015:NUF

Rao:2019:ATC

Rotem:2014:BUI

Rosenfeld:2011:DCA

Rodopoulou:2015:TPV

Ramanujam:2008:RPM

Ramanujam:2009:WRR

Sasaki:2017:MPC

Stine:2004:CAR

Srinivasan:2006:PMU

Sun:2013:NWC

Son:2017:SAS

Shaw:2002:MSC

Singh:2004:BDB

Singh:2004:GAL

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Pages</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seznec</td>
<td>A phase change memory as a secure main memory.</td>
<td>IEEE Computer Architecture Letters, 9 (1):5-8</td>
<td>2010</td>
<td>5-8</td>
<td>??</td>
<td>1556-6056</td>
</tr>
</tbody>
</table>
Song:2017:EPU

Sohn:2002:RRE

Seyedzadeh:2017:CBT

Skadron:2009:U

Skadron:2010:ELE

Skadron:2010:U

Skadron:2011:ELE

Skadron:2011:U

Skadron:2013:INE

Sudarsanam:2009:PPD

Seongil:2015:CCI

Sazeides:2005:DIB

Shim:2018:AAS

Seo:2015:DDF

Song:2015:ARL

Scionti:2018:EMM

Subramoni:2010:ISI

Shang:2002:PEI

Soteriou:2009:HTD

Siozios:2011:SRT

Sethumadhavan:2012:CHD

Simha Sethumadhavan, Ryan Roberts, and Yannis Tsii-

REFERENCES

6056 (print), 1556-6064 (electronic).

Tavakkol:2013:NSS

[TASA13] Arash Tavakkol, Moham-
mad Arjomand, and Hamid
Sarbaz-Azad. Network-on-
SSD: A scalable and high-
performance communication
design paradigm for SSDs.
IEEE Computer Architecture
Letters, 12(1):5–8, January/
June 2013. CODEN ????
ISSN 1556-6056 (print), 1556-
6064 (electronic).

Towles:2002:WCT

[TD02] B. Towles and W. J. Dally.
Worst-case traffic for obliv-
ious routing functions. IEEE
Computer Architecture Let-
CODEN ???? ISSN 1556-
6056 (print), 1556-6064 (elec-
tronic).

Tomusk:2016:DDG

[TDO16] Erik Tomusk, Christophe
Dubach, and Michael O’Boyle.
Diversity: A design goal
for heterogeneous processors.
IEEE Computer Architecture
December 2016. CODEN ????
ISSN 1556-6056 (print), 1556-
6064 (electronic).

Tang:2011:PEM

[TLG+11] Jie Tang, Shaoshan Liu,
Zhimin Gu, Chen Liu, and
Jean-Luc Gaudiot. Prefetch-
ing in embedded mobile sys-
tems can be energy-efficient.
IEEE Computer Architecture
Letters, 10(1):8–11, January/
June 2011. CODEN ????
ISSN 1556-6056 (print), 1556-
6064 (electronic).

Tovletoglou:2019:SIH

[TMNK19] Konstantinos Tovletoglou,
Lev Mukhanov, Dimitrios S.
Nikolopoulos, and Georgios
Karakonstantis. Shimmer:
Implementing a heterogeneous-
reliability DRAM framework
on a commodity server. IEEE
Computer Architecture Let-
ters, 18(1):26–29, January/
June 2019. CODEN ????
ISSN 1556-6056 (print), 1556-
6064 (electronic).

Tavakkol:2016:TTB

[TMSA16] Arash Tavakkol, Pooyan
Mehrvarzy, and Hamid Sarbazi-
Azad. TBM: Twin block man-
agement policy to enhance the
utilization of plane-level par-
allelism in SSDs. IEEE Com-
puter Architecture Letters, 15
(2):121–124, July/December
2016. CODEN ???? ISSN
1556-6056 (print), 1556-6064
(electronic).

Tan:2019:DWO

[TNC19] Tian Tan, Eriko Nurvitadhi,
and Derek Chiou. Dark
wires and the opportunities
for reconfigurable logic.
IEEE Computer Architecture
Letters, 18(1):67–70, January/
June 2019. CODEN ????
ISSN 1556-6056 (print), 1556-
6064 (electronic).
REFERENCES

Tanimoto:2017:EDG

Tambat:2002:PLB

Tembey:2013:SSS

Unsal:2002:CFC

Vandierendonck:2002:ATC

VandenSteen:2018:MSP

Vakil-Ghahani:2018:CRP

REFERENCES

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
</table>

Walter:2008:BBE

Wang:2009:PST

Wang:2012:ISA

Wang:2019:MEM

Wang:2011:GGC

Wu:2012:CID

Wu:2016:MCN

REFERENCES

You:2015:QSA

Yalcin:2007:UTM

Ya'vits:2018:ASM

Ya'vits:2015:RAP

Yasin:2019:TPM

Yavits:2014:CHO

REFERENCES

Yo:2008:CHP

Yun:2018:RPP

Yazdanshenas:2014:CLL

Zhan:2017:CCS

Park:2010:EIP

Zhou:2019:QCD

Yavits:2017:RAD

Zhao:2018:KOA

[Wenyi Zhao, Quan Chen, and Minyi Guo. KSM:

Hao Zheng and Ahmed Louri. EZ-Pass: An energy & performance-efficient power-gating router architecture for
REFERENCES

Zhao:2017:LIC

Zhang:2010:FCA

Zebchuk:2007:BBC

Zhu:2014:EW

Zhang:2016:SIW
