
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

13 October 2017
Version 1.14

Title word cross-reference

(12, 8) [BBT94, Joh93, SW90]. (16, 8) [GB93, KGB95]. (2^n + 1) [Ma98].
(2 log N − 1) [HSY97]. (d ≤ t) [SAR91].
(m, k) [HR95b, HR97]. (x/d) [ALB98]. {0, 1} [SV94]. 1 [LT90, PEH90, PV94a, THL92, VRK93a, VCB96, WL94]. 16 [CR90a]. 2 [ABZ96, CZSM99, CSA94, KR93, LM92c, MC93, MC95, SB90, SLH97, SPM97, Tse97, TNC95, VCB96]. 2^N − 1 [SR92]. 3 [COK95, LT90, PEH90, PV94a, VRK93a, WL94]. 4 [ABZ96, EL90b, EL90d, MC92, Tak92a]. 2 [ABK90, IO98]. DDQ [ZWL98]. K [MLK98].
m [YL98]. A + B = K [CL92b, Par94]. b [XSFR96]. cos^{-1} [MM93]. d [Nik91, NK92, SAR91]. d > k > t [NK92]. d > t [Nik91]. GD(2^n) [Ara93]. GF(2^m) [PFR98]. GF(2^n) [BCH93b, Dro98, FBT96, GW98, HB92, HWB92, Has97, Has98, WP90, WL93, Wan94a, Wei94, WH97a]. GF(q) [CM96a]. I [CC96a]. I^2L [DS94]. K [GP97, She95b, BG90, BBKA95, CSF90, CLC92, CRS98, Dal90, Dal91, DH90, FBM93, FR97b, GF295, GS93, HSL96, JHK97, KFYA93, LH91, NK92, OK99, RHT95, YC94]. log N [YA90]. m [AM91, CW99a, DSPN95, SB92b, WG98b]. m_j [WS95]. N [CA91b, ENS91, THL92, BG90, BBKA95, CZSM99, CSF90, CW99a, Dal90, Dal91, GF295, Lat93, Lin93b, LH91, OK99, PR99, RBG98, WG98b]. O(\log N) [DFM95]. O(n) [HTYP97]. O(n^2) [RS94]. O(N \cdot \log N) [Szy97]. O(N \log N) [She95a]. P [YM92]. p^t [HTCT91]. sin^{-1} [MM93]. t [LB90, Nik91, NK92, SAR91, XH95, YL98]. T.H = O(2^n/2) [Fer91]. t/s [LB90]. Z
[Cor96]. $Z_2(m)$ [FRK94].

- [ABZ96, PV94a, VCB96]. -ary
- [BBKA95, Da90, Da91, GY95a, GS93, LH91, OK99, SB92b, WG98b]. -Bit
- [XSFR96]. -by- [CZSM99]. -color [CRS98].
- [ABZ96, PV94a, VCB96]. -ary
- [BBKA95, Dal90, Dal91, GY95a, GS93, LH91, OK99, SB92b, WG98b]. -Bit
- [XSFR96]. -by- [CZSM99]. -color [CRS98].

13th [Ano98b]. 17th [Tri98].

2-bit [Nai95]. 2-level [vdBT93].

32-bit [MFH91].

754 [ABCW92].

802.6 [DL97]. 86^{TM} [MLK98].

90/150 [NC96].

ABFT [NAB96]. Absolute [HM91].
Abstract [Wel94]. Abstraction [MAH98].
Abstractions [Oik92]. Accelerated

[ABK90]. -matrices [SV94]. -nearest

-shuffle-exchange [HTCT91]. -sorter [BG90]. -spare-approach [VRK93a].
-stage [HSY97, YA90]. -track- [VRK93a].
-trees [FBM93]. -UEC [SAR91]. -UED [SAR91]. -unidirectional [NK92, SAR91].

2-bit [Nai95]. 2-level [vdBT93].

32-bit [MFH91].

754 [ABCW92].

802.6 [DL97]. 86^{TM} [MLK98].

90/150 [NC96].

ABFT [NAB96]. Absolute [HM91].
Abstract [Wel94]. Abstraction [MAH98].
Abstractions [Oik92]. Accelerated

[Kan93a]. accelerator [WSEZ90].
accelerators [SJ95]. acceptable [SC90b].
access [ACZD94, CF94, COK95, Dow92, HL91b, HC93, KMD97, KT91a, LS91b, MM91a, MM96, Maz93, SMY91, TPDB98, VLP95, WK97]. accesses [Har92, RH93].
accessing [AMS96]. accumulation [DM97a, Has97]. Accumulator [RT93a].
Accumulator-based [RT93a]. Accuracy [AB98, DM94, KC93b, CK99, Egg91, KE97].
Accurate [KTM+94, Lew94, WF92].
achievable [PM98]. achieve [LF96].
Achieving [TYJ99, KWF95, RYT95, Wu95].
aknowledgment [Bal98]. Active [TRS+99]. acyclic [BHS92, CL90].
adaptable [FN95]. Adaptation [CV92].
Adaptive [BK90, CS90b, CK90b, FBL96, LYS95, SS96, BFS97, DN98, HB95, KM97b, LK95, LH91, OK99, UVM97, ZC98]. Add
[JP98, HNR90]. Addendum [DBAP94].
Adder [Lo98, CK94, GM98a, Kan93c, Lo97b, LS92, MJ92, TH99, WT90]. adders [CS90a, CSTO92, DP96, DO96, Kan93a, Kan93b, PLM91, Pie94, RB99, Tya93].

addition [ABC92, CM96b, EL90a, Fag92, KOIH92, Lew90, QF92, Tho97, VCB96, Wal97, ZC90]. additions [Jun95, Ung94].
additive [DC93, GRT96]. address
[AC98, CK99, CT91a, Har92, HLP93, Kat97, WSY97, WHL95]. Addressing [CSK90].
adjacency [CT94b]. adjacent
[BBT94, GB93, KGB95, SW90, TB98b].
adjustment [CK99, KM97b]. admissibility
[SX95, She95a]. adopted [Ara93].
advanced [Leu97a]. advances [JBA+97].
affine [SHC96]. aggregation [BT90].
Agrawal [CLL91]. agreement
[AK96, VP95]. aided [BM94]. air
[KBMP99]. algebra
[CFV91, Jun95, TCI98, TLROI93, Ung94].
algebraic [CT94a, LK91b]. Algorithm
[Ano96b, BKM94, BR9+90, CK90b, CV92, DM93, HBB91, Kos91, OY91, RB90].
RCBB96, RCB96, SR96, WJ94, ABLZ97, AVBZ97, AHT92, Ara90, BDK98, BB90, Bar98, BHS92, BB91, BM96, BW95, CCGS98, CRC96, CLC92, CPK90, CB96, Cor96, DM96, DS94, DDGS97, DN98, DA96, EW93, FRK94, FS94a, GDY90, GMP94, GPS93, GRR94, GW98, HTYP97, Han91, HB98, HL90, HS93, HHC96, HTCT91, HABAB95, Hwa97, Kam92, KOIH92, KSL93, KMM91, KK92, KYM97, KM90, KM92b, Kum91, Leu97a, LHL99, LC92, LS94b, MM97a, MSS99, NS96, NAB96, OYR95, OK99, PK93, Pha98b, PLJ94, RS94, RDZ95, Red98, RR93, Saa95, SS90a, SJ90, SS93a, SBP90, SBP91, SXW95, She95a, SC95b, SJP96, SP95, SLS95, SL90b, SW97, Tak92a, TC98, TK97, Tem99, TY92b, VRK93b, VT94].

Algorithm [VJ93, WL90, WZXX93, WeBM97, YL95b, dM90].

Algorithm-based [BRS+90, RB90, RCBB96, RCB96, CRC96, CB96, FRK94, GRR94, NAB96, OYR95, Red98, RR93, TK97, VJ93].

Algorithmic [AEBVZ91, LPP91, JBA+97, LMT95, OVL96].

Algorithms [AC98, CSS90, DL94, Fow93, Has90, Kor94b, Lo94b, OF97b, SL95, THHK92, WG94, AC95, BB92a, BBB+94, BC95, BP95, CRM98, CT98, CG96b, CR98, CCL92, CG94, DB91, Esh91, GGD96, HL92a, HJ92a, HD95, HRR99, JK92, Joh95, KM97a, KMD97, KT99a, KY92, KS93b, LM92b, LS90b, LCT97, LL96b, NO94, NO91, OM91, PFSR99, P93, PSG95, PK91, PB99a, Qui90, RT91b, Rao93b, RF91, RBK90, SM92a, SF91, SF92, SHC96, SA92, SBM+98, SW94b, SA98, TY92a, TB91, TC95, VJ98, WPS97, YLC90, YMG99].

Aliasing [IN96, PNDN99].

alignment [PNDN99].

all-optical [YM92].

All-to-all [PB97a].

Alling [NAH98].

allocated [TF92].

Allocation [HS97, MYD96, AK92, CS90c, CU93a, CT92, DH91, FM91, FB93, HHS97, HKL98, KM97a, KLL97, KF92, SWG92, SM96b, TSS95, TNC95, Vog90].

allocator [CG96a].

allow [CLL90].

Almost [FHA94, Weg94b].

alpha [CRP+96].

alpha-particle-induced [CRP+96].

alphabet [PG92].

Alternative [MB93, Lin91].

alternatives [DP99].

ALU [PV94a, VPB93].

always [BNF91].

ambiguities [YM92].

AMD5 [MLK98].

among [LYW94, RH93].

AMULET1 [WDF+97].

analyses [SIS90].

Analysis [CM96a, CS90a, CL94b, DOR91, DW90, DHL96, GPTT98, HM93, KKKM99, Kip94, LD90, LHS+98, LZM90, MMSS96, MMJ91, NC96, NAH98, Qui90, SM90a, SSS97, SD96, SL90a, Smi95, TI92, UP93, YB91, YL90, ZB98, ABLZ97, BR93, BJ91, BC99, BAA97, BM90, Bok96, Bos90, BD97, BCLA91, CP91, CPRV95, CB95a, CS91, CU93b, CL94a, CSSP90, CW99b, CI92, CS96c, CB96, CMST90, Cor94b, DDS98, DKL90, Da90, DC93, Dav90, DZL93, DB94, DRS91, DM92, GOH92, GS95, GY95b, Gos97, GW91, GL92, HSHG99, HH93, HMC90, HJ92b, HP95, IA91, KPI93, Kan90, KACV94, KC93a, KLV94, KS96a, KS96c, KK93, KM94, LNS94, LY96, Lat93, LP98, LK91a, LKK+94, LG92, LP91, LBF92, Mah94b, MS93, MDyF94, MYD96, MAH98, MTG93, MY94a, NS96, NAB96, NB93, NS90, OH90a].

analysis [PMF96, PSG95, PLM91, QSA91, Rao93b, RW98, RF91, RS95, SF92, SM97, SB97, Seq99, SB94, SIKS95, SG92, SB92b, SRHI98, SY99, VC92, VT94, Wii92a, WSB90, WL92, W95, vdLS93].

Analytic [MY95, MY96, IO99].

Analytical [HC93, HKN99, JCS96, PMHY97, SVSB97, ESS98, JCMS97, MB93, ACH+97a].

analyzer [MB93, PGK90].

analyzers [Hla92, MMJ91].

Analyzing [dG90, PG91].

AND/OR [BOH90].

angle [ABLZ97, HN93, HC96, LL92a].

annealing [ACH+97b].

ANNs [MBR96, MBR95].

anonymous [LW94].

any [She95b].
aperiodic [BS99, SC95b, LS95].
Application [KWF95, Lew94, NC97, PR94a, SF96b, Ara93, Bry91, CK90a, CZSM99, CCC96, CT93a, CW99b, CKY+99, Cor94b, DBD93, DC93, EL90c, ENS91, GYY98, Jha93, KB93, Kle90, MS98b, PR99, RS95, SG90, TY92a, WP90, WG98a].

Applications [DJM99, BR94, BMP+97b, CDFH93, CRS98, DW90, DPO95, FA96, HLH96, JTY+99, Kal95, Kor94a, LM99b, MS98a, MJ91, NKC94, PDBH97, PR95b, RB90, Sch96, Sch98, SSS97, ST95b, TCI98, Vij91, WP996, WHK07, WH97b, XH95].
applied [Hei91]. Applying [ABCW92, SIKS95]. approach [ACH+97b, BB92b, BJK93, BBRL98, CK90a, CPV91, CL90, CT98, CRC96, CF90, CL99a, CFV91, CT91b, FP98, FL93, Fri94, HS98a, HJ92b, KS91, KA94, KB93, KT99a, KF97, KR93, KK91c, Lin90, LMT95, NSUR98, OVL96, RYT95, RBG98, SY91a, SSL96, SWWW94, SB97, SJ91, SD92, SRL90, SK94, SA98, VRK93a, WM96, Wil93, WMD96, vdLS93].
approaches [PHK94]. approximants [GY95b]. approximate [AK96, HP95, SR98, SG92].

Approximating [SS99, KT91a].

Approximation [HV91, SWT93, SF96b, CCGS98, CR98, IT97, KM92b, ZPP91].

Approximations [KZ90, WF92, ZVDF96]. approximators [Kos94]. ARB [FS96].

arbiter [VBH+95]. arbitrarily [RF92].

arbitrary [AMS96, BD96, BNG92, LAA98, RDZ95, TS99a]. arbitration [Kip94, Wil92a].

erchitectural [CWM+95, DP99, IS90]. Architecture [CS96b, DB95, Lee92, ABC92, AN90, BGJ+96, BS90a, BP92b, CRM98, FP98, GB90a, GE92, HLB+97, Har94, IO98, IO91, JIN94, JS92, KT99b, LBV+93, LAY96, LD94, Lew90, LKL98, LS91b, LZ94, Ma98, Mat90, MF92, NO94, Paa96, Pov97, PV94b, RK96, RHS98, SJ90, SR98, SBJ91, SY91b, SB92b, SP95, TRM95, TB99b, THA+99, Tze93, UP93, WW91, WL93, We96].

Architectures [Ara93, AB98, AVBZ97, BOI94, BBBBBM95, CJ90, CJ91, CU93a, CT96b, DAP93, DBAP94, DH90, H93, KKL90, HCC94, MC92, MNL99, NLV91, PFR98, SES+92].

areas [SV95]. Area [BOI94, CK94, SAR90, WT90, KIN+94, PK91+96, SC90c, Tya93, WSY97].

efficient [KIN+94, PK91+96].

Area-time [CK94, WT90, SC90c].

Argument [Sm95, HTHR94]. Arithmetic [ABCW98, GRT96, Hei91, KL97, KC93b, Lew94, Lo94b, PG92, SJ95, Tai92, ABCC90, ABCW92, CR90b, DOP93, Dro98, EL92, Kat96b, KM90, LW91, LO97a, MM97b, Mul94, PFSR99, Par93, PB97b, Pie90, RF99, SCA92, Sr90, VCB96, Vui90, WJ90, An90b].

ARM [WDF+97]. arrangement [DT93].

Array [Kor94b, LTR96, BOI94, BP93a, CPR95, CCB98, CU93b, CUC97, FL98, GW98, IJ92, ID95, JLL94, KR95, Lee92, LL92, LK91b, LC90, LK90, LHL99, LTR93, Meg92, Mie93, OFW92, Pek99, ST95b, St93, SCW91, TK97, Wan94a, ZAR95].

arrays [BB92b, CT94a, CT98, CA91b, CF90, CT91b, FR97a, Fri94, Hug93, JBA90, JK92, KT99a, KR93, KT91c, KL92, LA99, LK93, LR97, LH90, LBF92, LL96b, MRB90, Me92, MY95, NA90, NM94, QM93, RM94, RB90, SS93b, SM96b, SW94a, TB91, TC95, V998, VRK93a, WD92, WC90, ZWL98].

arrival [TH99]. arrivals [HS94d]. arsenide [MHH91].

artificial [RF91].

ary [BBKA95, DAI90, Dal91, GY95a, G93, LH91, OK99, SB92b, WG98b]. ASCA [NO94]. aspects [PS90, TY92b, TC94].

Assertions [BGM+95, Fit97]. Assessing [CDKH93].

assessment [LS98, PS91].

assigning [BLOS95]. Assignment [TS94, AC98, BM91, Bon90, BNG92, BS99, GS97, HL91a, HR95b, HB98, KA94, LL92, Leu97b, NST96]. assignments
[FW93, KWF95, Ros90, SC90b, TK91].
assisted [ACFH95, BB90, RKS90]. assists [SM90b].
Associative
[Mer97, CFV91, CGC95b, HKN99, RS96, SKA92, SST92, WZXX93, Wan96, WHL95].
associativity [BS97]. Asymmetric
[ABB94a, Rag93, Rag96, TB98b].
Asymmetric/unidirectional [ABB94a].
Asymmetric [ACFH95, BB90, RKS90].
Asymmetric/unidirectional [ABB94a].
Asymptotic [KT92]. Asymptotically
[BS97]. Asymptotic
[Fra92, DFM95, JO93]. Asymptotic
[KT92].
Asynchronous
[AVR98, KT91a, MT98, AAL94, AS92a, AK96, BBD97, DB91, FW93, KA94, Kip94, LB99, LKL97, McA92, OYY97, SI94, TLE97, TKS94, VBB+95, VT97, WM92, WDF+97].
asynchronous/internally [VT97].
at-speed [HG96]. ATM [Hon99, RKJZ99].
atomic [DLW91]. ATPG [Da91, WG98a].
attack [Kul98]. attacks [GP96a].
Augmented [LAY96, MB95]. Augmenting
[PNDN99]. Authenticating [Mit92].
authentication [RS98].
Author
[Ano98a, Ano99a, KIN+96]. Automata
[CBGC94, NC97, BMP+97b, BK95, CK90a, CM96a, CZSM99, CCC96, CCBC98, CGC95b, DC93, HMC90, KMM91, NKC94, NC96, NK97, OdSC96, SCC96].
automata-based [HMC90]. Automated
[Cor94a]. Automatic
[BDL+99, IY90, LM99b, MBGT91, OK96, LL91a].
authentication [PR95b]. automaton
[I098, TW95a]. automotive [HLB+97].
automous [LS96b]. Availability
[KFYA93, KBMP99, Ser99, YC94, HY99, RS95]. available [SKK+90]. Avalanche
[HT95]. Average [BHSS97, BS93b, DM97b, Man90, Sas91, WH99]. avoidance
[Bel90, BBB+94].
B [LP98, LY90, PK90]. B-network [LY90].
B-networks [LP98]. B-trees [PK90]. back
[EZ92]. back-recovery [EZ92].
backpropagation [RF91]. backup [HS98a].
Backward [BGM+95, Fit97, HC96, LY90].
Balanced [TB99a, ABB93, AB94b, TB98a, UVM97, WH97b]. balancing
[BK90, BHS92, CL90, Dae91, HS93, KK92, LK98, NO94]. Ballast [GB90b]. Band
[Tat97]. Bandwidth [KH90, Kae92, Soh93].
banks [RR95]. banyan [YA90]. BAR
[HC96]. Base [DJM99, WSB90]. Based
[CBGC94, KZ90, WG94, ASS94, AV98, AVBZ97, AS92b, Bae97, BB90, BRS+90, BDL+99, Ber96, BM97a, BK95, C90, CC92, CA91b, CRC96, CCBC98, CU93a, CU93b, CU94, CB95c, CL99a, CAK90, CY91, CGC95a, CB96, DKL90, DL97, DTB96, DA96, FM95, FRK94, GPT98, Gs97, GRR94, HM95, HMCM91, HRT+95, HS94b, HMC90, HK97, Hon99, JW91, Jun95, K97, KT96, KKKM99, KKA95, K93, K991c, LS96b, LCF95, LL91b, LS94a, L95, LO97a, LKL97, LZ94, LM99b, MY96, Mer97, MDyF94, MY96, MT93, NAB96, OYR95, ORPP93, Paa96, PG95, Pek99, PG97, PW95, Pin99, PR97a, PR98, PR99, RT93a, RCS92, Rao93a, RKL93, RFS92, RB90, Red98, RR93, RCB96, RCB96, SCC96, SL95, SC95b, SE98, SP96, SR91, SR96, ST96, TK97, TB99b, TS99b].
based [TLROL93, THZ+99, Tse97, TY99, Ung94, VJ93, Vog90, WJ94, WS95, Wan96, WY95, WH97b, WG98b, YLC90]. baseline
[LFH92, NL90]. BASEMENT [HLB+97].
bases [PB97b, WHB98]. basic [SV95].
Basis [Kun92, FB9+96, Has98, KS98, Lu97].
batch [YL95a]. BDDs [JBA+97]. be
[GM94, Kop95]. behavior [BJ91, BP96, GK92, HKN99, KKKM99, SV95].
behavioral [Cor94a]. Being [OI90b].
benchmark [Ber92, SS95]. benchmarking
[IO99]. bends [LY94]. benefits [DP99].
Benes [RB91, Sch92]. Benes-like [Sch92].
Berger [LIT96, LIT93, RFK93].
Berlekamp [Zar95]. better [Kop95].
between [CL92a, CL99b, FC97, HJ95, OFW92, OZL96, SL97, YA90]. Bhuyan
[CLL91]. Bi [Me92]. Bi-level [Me92].
biased [SS91a]. biased-random [SS91a].
bidirectional [Mit92, Wan96]. Binary
[KTM+94, Kos91, Lo98, Ara92, BDN96,
BAA95, Cha93, CU93a, DE92, FC97, FS90,
GH91, HM95, JM96, JH95, Kip94, KM90,
KB95, LV99, LPV96, LAY96, Lin93b, Lo97b,
OCSVV98, PK93, Pou97, Pur91, RB99,
SG90, SY91b, Tho97, Weg94a].

binary-reflected [JH95]. Binary-
tree [CU93a]. binomial
[KKS93]. Bipartite
[SS99, KWF95]. birthday
[YF92a].

bisection [Saa95]. bisectional
[Ho92]. BIST
[CG96b, ITZ96, Nic96, PG91, RT99,
Sav98b, WI95, ZI92]. Bit
[HB92, IV94,
SKA92, Wan94a, XSFR96, Coh93, KH93,
KS98, KM90, Man90, MFH91, Nai95,
PHK94, Sy97, Vai95, WH98, WHB89].

bit-complexity [Szy97]. Bit-level
[Wan94a]. Bit-parallel
[SKA92, KS98, WH98, WHB98].

bit-pipelined [KM90]. Bit-serial
[HB92, IV94]. bit/byte
[Vai95]. bitonic
[LC98a]. BKM [BK94]. block
[CSTO92, DW91, Mon91, WdB92].

blocking [DR96]. board
[CCBC98]. boards
[KC93a]. Boltzmann [ZPP91].

Boolean [BC99, BBF91, BJK93, Bry91,
DGY92a, DLN95, FC97, Fal99, GM94,
JBA+97, LL92b, LP99, LM92c, Sch96,
Sch98, TMS97, WM96, WM98, Weg94b].

Borden [HPN95, Pie96]. Borel
[TA95].

Borrow [Sto93]. both
[SC95b]. Bottleneck
[SW92]. bound
[AM93, BOH90, KS90,
LH98, PRS94, Qui90, WNS96]. boundary
[NC96, RT97]. Bounded
[PK94, ACH+97b, Ahi93, SISU90].

bounded-degree [Ah93].
bounded-difference [SISU90]. Bounding
[HAM+99, KM92a, LMT95]. Bounds
[Ber93b, NAH98, Sas91, AR94, HM94,
HBAB95, Krâ89, L97, MB95, RR93, SFM92,
SM97, Sem95]. BPC [She95b]. Branch
[DF91, PS93, SAMC99, CK99, EAK98,
FM95, Fag97, GL93, KE97, MBGT91, Nai95,
Qui90, RW98]. branch-and-bound
[Qui90].

branch-and-combine [EAK98]. branching
[Pha98a, Pha98b, Weg94b]. breakdowns
[RS95]. bridged [DMS94]. bridging
[CT96a, CL98b, KM94, PR98, ZWL98].

Broadcast [CA91a, YM95, BH92, BB99b,
Fuj99, JL91, MMM96, OYY97, SSA94,
Tse97, TS97, YLC90, YM91, YY97].

Broadcasting [THY93, BKL93, Bal98,
CS90, Fra92, GS93, LCT97, PB97a, Wu95].
broadcasts [TS95]. broadcasts/
multicasts [TS95]. Brujin
[DHL96, PMF96, SP91, Ann97, DZH93,
LS96c, JJ97, RB93, RB97, SR91]. BSP
[GLR+99, SN90]. buffer
[ACFH95, DYL94, DB94, FNS95, Har94, PS93, Vog90, Wei96].
buffer-based [Vog90]. Buffered
[RR95, MY94a]. buffering
[BD97, MF92].
bufferless [BBP*95]. buffers
[AS95, CR93, FM95, Fag97, Kus90, TF92].

Bug [BW96a]. Built
[HRT+95, RFT90, BK95, GPZ99, GP96b, HMC90, IN96].

Built-in [HRT+95, RFT90, BK95, GPZ99,
GP96b, HMC90, IN96]. bus
[BHR94, CS91, CL99a, CS92a, FY96, HHS97, Ish95, JS92,
JL96, JW91, Kuh98, KEA96, LD94, Mah94b,
Ol90a, Wil92b, YB91, vdLS93].
bus-based
[CL99a]. bus-control
[JW91].

bus-encryption
[Kuh98]. bused
[KKL90, KEA95]. busses
[BB95, KH97, Raj96].

butterfly
[GH91, Tsz94]. bypassing
[JCMH99]. Byte
[BAB92, CGC95a, DDV90,
HF97, SI93, SCC96, XSFR96]. Byzantine
[VP95].

C [LH90]. C-testable
[LIH90]. C2SC
[SSA94]. CA
[CGC95a]. CA-based
[CGC95a]. CAA
[SCC96]. Cache
[GW92, MV99, Tak92b, CL98a, CB99,
CCCH93, CS99, CHH98, DDS98, DW91,
Egg91, FL93, HKN99, HAM+99, HSHG99,
HS99c, IS94, JLC98, JCMH99, KKKM99,
KRC99, KLH+99, LHS+98, Mah94a, MTP93,
NB93, NV99, PNDN99, PFP99, PHS99,
PG97, PBND98, PH93, RBS99, SS95, SS93a, SAMC99, SVSB97, STW92, SY99, TSW92, TWS92, TG99, TXD98, TS98, WSY97, WHL93, Yan93, ZC98].
cache-coherent [PBND98]. cache-related [LHS+98].
[KHW94, OMB97, Sez97, SST92, SV97, TRS+99, TLH94, VJ98, WHL95]. caching [SV97, WSY97].
[KB92, SST92, SV97, TRS+99, TLH94, VJ98, WHL95]. caching [SV97, WSY97].
CAECC [CBGC94]. calculating [CY95].
[ABLZ97, LL92a]. calculations [ABK90].
call [DL97]. CAM [IO98].
[CA91b, HD98]. cells [CA90a, LCS93, RT99, SMV91].
Cellular-automata-array-based [CCBC98].
Cellular [CCBC98, CBGC94, HMC90, NC97, NK97, Bmp+97b, BK95, CM96a, Czsm99, CCC96, CGC95b, DC93, GS97, IO98, KC94, NC96, PV90, Scc96, SLN97].
Cellular-automata-array-based [CCBC98]. central [BK90]. centralized [BBB+94]. CEQRNS [ST95b].
Certification [SWM95]. certifier [BSM97].
Chains [PK94, BT90, NGB93, Sem95, Wal98].
Channel [FCL98, CF94, Dow92, GS97, HS98a, MM91a, WL90]. channels [CA91a, LH98]. Chaos [KS94].
[BFS97, PBB97]. characteristic [LKL97]. characteristics [HT95]. characterization [CF95b, Cha93, DAF94, LB90, PG97, Weg94a, XH95]. characterizations [Mul94].
Characterizing [Joh95]. Check [LTR96, GRR94, LTR93].
checked [LS90a, MLK98]. checker [BJ94, CW99a, PEH90, RFKL93, THL92, Tao97, WL94].
checkers [DSPN95, GP96b, HNP95, Jha93, Jw94, LT90, Nik98, Pie90, Pie96]. checking [BB90, BJ94, CW99a, HNP95, Jha93, KPB92, KT99a, KSGT96, LT90, Lo96, RFKL93, SM90b, THL92, UWZ97].
checkpoint [Va97, ZB97]. checkpointing [Gai90, PV94b, Va97, ZB98]. checkpoints [BP92b, Wan97]. Checks [SM90a, CB96, NHA92, SJ93a]. Checksums [SM90a, SM90b]. Chinese [HP95].
Chinese-Remainder-Theorem [HP95].
chip [FTG92, KT99b, LS91b, Maz93, MYK+99, NV99, SL91c, TW95b, WSY97].
chip-multiprocessor [KT99b]. chips [LS92, Sta93]. choice [DBJ98]. Choices [BW95, CS92a]. chordal [HW95]. Cipher [Kuh98, Bmp97a, Lcl95]. circle [Hua92].
Circuit [CVMS99, CCGS98, DOP93, DR96, HTYP97, HRP99, KA94, KSL93, Lim92, Maz93, MY94b, PR94a, PR94b, PR98, Rfm90, SAF90, Wei94]. circuit-switched [DR96].
circuitry [LH96, Tho97]. Circuits [Vui94, AR94, Bar92, BH96, BS92, BOH90, BS90c, Cha96, CT96a, CMS99, CR97, CA90b, Cak90, CL98b, Dam92, Dav90, Dgy92a, Dgy92b, Dro98, Fw93, Fu90, HM93, Hrt+95, Hou99, HG96, KPB92, Kin+94, Km95, Kks93, LL96a, Lio94, LB99, LKL97, Lo96, NSUR98, PK1+96, Pie93, PK91, Pr93a, Pr95c, Pr96b, Pr96a, Pr97a, Pr99, RD96, RT94, Sisu90, SB92a, SB97, SSDK95, Smor98, Tsh94, Tsh95, WM92, Xk92].
circular [Ara92, MS93]. circulating [AD97]. circumvent [MS91]. Class
Class-congruence [TA95].

Classification [DBD94, KT92].

Classifiers [CFV91].

Clocks [Fis90, Chi94, CPK90, CL94b, EAK98, GP96a, KS90, LZM90, OS94, Pal94, RKS90].

Clock-controlled [GP96a].

Clocked [VT97].

Clos [MY94b, YM99, YW99].

Clos-type [YM99].

Closed [BHR94, WH99, BR90, KT92, LP91].

Closed-form [WH99].

Clusters [DYD94, GP97, MDyF94, TNC95].

Cluster-based [MDyF94].

Clustered [AHT92, BP93a, Hog99, MY96].

Clustering [SK96].

CMOS [BSS94, CS90a, CL98b, HM93, KA94, QF92].

co [ABCW98, DMS95, DJ99, RT91a].

co-NP [RT91a], co-processor [DMS95].

Co-synthesis [DJ99].

Co-transformations [ABCW98].

Coda [SKK+90].

Coded [Lo94b].

Codes [AVR98, ABB93, ABB94a, ABB94b, Bos91, BAB92, BB92d, Che92, CT94b, CC96a, DSP95, DDV90, DM97b, FM91, FRK94, FRK98, HF97, HP95, HBA98, Joh93, KB96, Kt96a, KY92, KS93b, KR90b, LY96, Lin93a, MK90, Mon91, NA90, Nik91, NK92, Pie90, Pie96, SI93, SAR91, SW95, TB98a, TB98b, TB99a, THL91, WD92, XSFR96, YL98, ZC90].

coding [BBRL98, BCH95, BJ94].

Coefficient [WMD96].

Coefficients [ORPP93].

COFTA [DJ99].

Cohen [KH93].

Coherence [Egg91].

coherency [Egg91].

coherent [NB93, PN97].

cohorts [JHK97].

coincident [KS96b].

collaborative [SBM98].

collapsing [PV94a, VPB93].

color [CRS98].

colored [CDFH93].

coloring [CRS98, FS94b].

column [WJM95].

Combination [KRC99].

combinational [AR94, BSS94, CT96a, Fuj90, Hei91, HG96, KM95, LT90, PR96b, PR99, RT94].

Combinatorial [Lat93, CB95a, DPO95, TY92b, VT94].

combine [EAK98].

combined [ALB98, HSY97, LM99a].

Combining [CHH98, HLHC91, Tz92].

Comments [MM97a, BMP97a, JCMS97].

Comment [ABC92, BMP97b, CK94, CL94b, Dav90, HNG94, Jun95, Kat94, KB95, KY92, Mah94a, NC97, PMF96, Par94, PK96, PT92, Pha98a, RS94, SB94, SW94b, Weg94a, Wei96, WH94, Wil92a, YC94, JBS90].

commit [ALPS90, EZ92].

commitment [DLW91].

common [DMS95, GM98b].

communicating [CK90a, KS96c].

Communication [CB97, LD90, SS90b, BB95, DW97, DL97, Fuj99, GM91, GM98b, HR95a, HS98a, HHMC91, Ish95, KD94, LH92, LK96, MS99, PBB97, PS91, RSH98, TF92, TS94].

communications [IIK91, LL97, LT93, LLJ97, QM93, YLC90, ZR97].

commutative [RS96].

compacted [LCS93].

compaction [CMH98, HRP99, PW95, RT93a, RP99].

Compactors [ITZ96, Kop95].

Comparative [SC94, SY99].

Comparator [KGT96].

compare [PLJ94].

compare-and-swap [PLJ94].

Comparing [HW97].

Comparison [JP98, NT92, SSA94, Vai96, AVR98, Ber96, BP92a, BB99b, DIP93, KHW94, KK91c, Met91, Pel92, SD92, Wan99].

comparison-based [AVR98, Ber96, KK91c].

Comparisons [FTL93, DYD94, MY95].
Constant-factor [LL92a]. constant-time [TW95c]. constrained [Cha99, HLH96, HHS97, ZSR90].

Constraint [Sut91]. constraints [ASWW92, DTAL93, HS97, Li97, SL95, SS94c, TW95a, WNS96].

Constructing [CL92a, Lin91, Yan90, ZS99, BB92d, LT93,YL98]. Construction [GR99, SW95, HW92, TJ99, Wi93]. constructions [KH96]. constructs [HL97].

consumption [ZR97]. contain [Wan97]. containment [CS99].

Contention [TNC95, AMS96, DE92, DW91, Fri95, JW91]. Contention-based [JW91].

Controllability [Fu90]. controllability/observability [Fu90]. controlled [Ber96, CWM95, GP96a]. controller [KS96a, KS96b, MNL99, TK94].

conversions [Kor94a]. converter [CN99, RM91]. Cooperative [TH91].

coordinated [SC95a]. copies [HW97].

Coping [LRF91]. Coprocessor [KZ90].

CORBA [GS98].

CORDIC [AB96, ABL97, AVB97, DM96, DM93, EL90c, HTHR94, HC94a, HD95, HH91, HN93, HC96, KC93b, LA98, LL92a, LS90b, PGS95, Pha98a, Pha98b, TAY91, THH92, WPS97, MMM93]. CORDIC-based [PGS95]. correct [Lam97]. Correcting [CBGC94, ABB93, ABB94a, BB94, BAB92, Che92, CGC95a, DM96, DM97b, FM91, FRK94, GB93, Joh93, KGB95, KR90b, Lin93a, Maz93, MK90, Nik91, NK92, RCSS94, RNA93, SI93, SARK91, SCC96, SW90, WdB92, XSFR96, YM92].

correcting/ [Nik91]. correcting/detecting [WdB92]. Correction [AS96b, Bou90, LTR96, Lo98, MBR96, NAH98, SP91, SB91, VS93, BL99, DOP93, Kat96b, Kat97, KS93b, KL92, Red98, SL90b, WS95].

correctly [Lam97, LMT98]. correctness [KYM97]. correlated [TH92]. Correlation [GP96a, FM95]. correlation-based [FM95].

Corrigendum [DHL96, TWS93]. Cosine [TAY91, CJ90, Pha98]. Cost [AEB90, CSA94, AZ98, BS90c, CW99a, GC95b, DDS98, GS93, JO93, JS92, LKK+94, PZ99, Pie90, QSA91, SJ95, San93, SB92a, SB97, SIK95, Tze92, WSY97, dM90].

cost-effective [Pie90, Tze92]. cost-effectiveness [JS92, LKK+94].

Counter-based [PW95]. counters [CA90a, CW94, KTM96, STE98, Tok94].

Counting [SM96a]. coupled [SM91].

Coverage [CPA99, MV95, MAH98, PMW92, PMAC95].

Crash [DW97, TS95]. Creating [TC93]. criterion [Sch96]. critical [JHK97, Ung95].

crossbar [GO98, HM95, Wi92b].

crossbar-based [HM95]. crossed [KB95].

Crossing [MNK90]. crosspoint [VC92].

CRT [CN99]. Cryptanalysis [LG97, O95]. Cryptography [NC97, BMP+97b, NC94]. cryptosystem [LG97, TY92a]. CSMA [KM94].

CSMA/CD [KM94]. cube [ASS94, AMB96, BCS94, CA91b, Dal90, Dal91, ENS91, HSL96, Lat93, Lin93b, OM91, She95a, Tze93, WH97b].

cube-based [ASS94, WH97b].

cube-connected [BCS94, OM91, Tze93].
SHHJ93, SB92b, Szy97, TB98a, TC95, WS98, Wil92a, AE94, Ber92, BZ92, BS90c, CCGS98, CS90a, CW99a, Cd93, CCH93, CK94, CG96b, CL99a, CS92a, CGC95b, DOR91, DH92, FL92, GB90b, HK90, Ha92, Hon90, ID95, KS91, KA94, KIN+94, KH97, LY96, LSS91, LHF93, LC90, LK90, LO97a, LH96, LT90, LH90, LS94b, MM95b, MFI91, MC94, MJ92, NK91, NK92, OFW92, PKI+96, PFF99, PS93, PR95b, PZ93, RCSSS94, SJ95, SM97, SB92a, SB97, SJ91, SS91b, SJ93a, TLE97, TB98b, TK96, TS99b, TY92b, VP93, WC96, WP90, WJM95, WT90, WDS+95.

design [WC99, XK92, Yan93, ZV98].

Designing [HLP93, JCSM96, Kan93b, MM91b, CT98, DH90, EAK94, BBT94, BAB92, DDV90, GB93, Joh93, KGB95, KR90b, Lin93a, MK90, NK91, NK92, RCSSS94, SS90a, SI93, SAR91, SW90, XSR96].

Destage [VJ98]. Destination [RFS92].

detailed [LBF92]. detect [PR96b, TMS96].
detectable [Oik92].

detecting [LB99, ABB91a, BB94a, BAB92, BRT94, DBV90, GB93, Jol93, KGB95, KR90b, Lin93a, MK90, NK91, NK92, RCSSS94, SS90a, SI93, SAR91, SW90, XSR96].

detection [JBS90, LFH92, SF96a, AR94, BBRL98, BM90, BS92, CH90, CR97, Dan92, DW90, Fri94, He91, Hug93, Jha93, JW94, KRM95, KL92, LL96a, LH90, MMJ91, OY95, RB90, RCB96, Ser99, SJ93a, TSS95, Web97, WK97]. detections [PR99].

Determinancy [SK92].

Determining [WR95].

Deterministic [BK95, KT96, KMM91, Kus90, Sch96].

development [IIK+91]. device [TPDB98].

developed [GM90a].

DFT [Ara90, SA98].

Diagnosability [KK91a].

Diagnosability [VJ93, Wan94b, Wan99, LB90, NL90, RT91b, RT91a, SP96, SR93]. diagnosable [RS94, SD92, XH95].

Diagnosis [BP93b, KL94, RT99, TS99a, BB92c, BP92a, BSM92a, BSM92b, BB99b, CSF90, CCB98, DTAL93, DF90, DP97, DN98, FBL96, FHA94, KK91a, KK91c, KK91c, KF92, LS93, LYS95, Pe91, Pe92, Pe98, Rag96, RDZ95, Rar93a, Rar93b, SD92, SL95, Som90, SA92, SCW91, VP94, VJ93, Wan99].

diagnostic [KC93a].

diagnostics [Sav98b].

Diagonal [TP94, LS94b, Pea96, Tse97].

diagram [Pur91]. diagrams [BAA95, BHSB97, Cha93, FC97, FS90, LV99, LPV96, OCYSV98, Weg94a, ZV98].

diameter [BS93b, CCD9+92, Efe91, KTS90, Lat93].

dictionary [LP90, PR97a].

dictionary-based [PR97a]. difference [PBB97, SISU90]. different [San93].

Differential [CK90b, DM96, GM98a, O'C95, RCB96].

Digit [Kor94a, Par90, PK94, AW93, CR90a, CT91a, GM98a, MC93, MC94, MC95, Par93, Pou97, WH99]. digit-by-digit [MC94].

Digit-set [Kor94a].

Digital [Ano96b, AB98, BP98, BS92, Bou90, Cd93, CR97, Kip94, MM95b, PK91, PR97a, RD96, SAF90, YL95b, YL95a].

Digraph [DHL96, DZL9H3, FL92, PMF96]. digraphs [Kno96, PS99].

Dijkstra [Bar98].

dilated [Tse97]. diluted-diagonal-based [Tse97].

dilation [MH90]. dimension [SWT93].

dimensional [CM96a, FL98, IO98, IO91, KT99a, Maz93, RBG98, SF96a, ST96, TW95b, UVM97, Ver92, WM91, WGSb].

dimensions [BCH95, RYT95, SBP90, SBP91, YTR94].

dimensions-an [RYT95].

Diogenes [BB92b].

Diophantine [BMP97a, LG97, LCL95]. direct [BB91, GDYS96, SV97].

direct-form [BB91].

direct-mapped [SV97]. directed [BS93b, PB99a].

disagreeing [HW97].

discovered [KOIH92].

Disk [FM91, BBBM95, CPR99, DL90, FR97a, WP90, WJM95, WT90, WDS+95].
Gai90, KT91a, LK93, MY95, Ng91, NM94, TSW92, VJ98. disks [BBRL98].

dispatching [GPS95]. display [MS94].
dissemination [BH94, KT91b].
dissimilarity [OZL96]. dissipation [WG98a].
Distance [HLH96, BHBA91, BBKA95, BS93b, KTS90].
Distance-constrained [HLH96]. distances [LYW94].
distance-constrained [HLH96].
distance-constrained [HLH96].
distance-constrained [HLH96].
distances [LYW94].
distinct [BH94, KT91b].
distinctness [BH94].

distributed [AG94, GDYS96, LW94, LK99, RB97, SS90b, Sav99, SDL95, SL90a, SA92, SW94b, Tri98, WW91, WDS95, YMG99, AV97, ALPS90, AHT92, BBD97, BHS93, BH94, BB92c, BNG92, BES96, CK90a, CB99, CL94a, DJ99, DN98, FP98, GH90, GYY98, Gun97, HL92a, HL92b, HSHG99, H92a, HS94e, HS94d, HS97, IO91, IA91, IJN94, KM97a, KK92, KS96c, KA96, LS93, LYS95, LK98, MvdS90, MS95, OS94, RKS90, RD925, RP98, SKK90, ST95a, SC94, SB94, SW92, SC90b, SES92, SI94, Tze94, TS95, WNPM95, WF90].
distributed-memory [Tze94].
distributed/parallel [LK98]. distributing [CS96c].
distributed [Chi94, DG91, KLL97, KKS93, NM94, YY97].
divide [LZ94].
Dividers [LTR96, LTR93, PV90].
divisible [BHR94].
Division [BW96a, CL94c, ELM94, Has97, Man95, OF97b, OF97a, WF92, ALB98, BW95, CR90a, Dow92, EL90d, FBT96, GW98, HTHR94, HK95, IYT97, LM99a, LC92, Man90, Man93, MPG98, MC92, MC93, MC94, MC95, MLK98, QM93, SF93a, SP95, SPM97, Wa98].
Division-and-accumulation [Has97].
division-free [HTHR94].
division/square [ALB98, LM99a].

division/square-root [ALB98].
divisions [WL93].
DOACROSS [HKL98].
Doing [Pea96].
dot [DM97a].
Double [DJM99, Has98, Pha98b, BBBM95, CC92, CT97a, GB93, HW95, Joh93, KGB95, PT92, XSFR96].
Double-Base [DJM99].

Double-basis [Has98]. double-integer [CC92].
Double-loop [HW95, PT92].

DQDB [MB93].
drawing [PT98].
drawings [SY91a]. Driven [Tan92, GL92, Mah94a, SJ93b, TWS92, TWS93].
dropping [KACV94, PR95a]. DS5002FP [Kuh98].

DSM [DP99]. DSP [CK99, DPO96, ST95b]. DSPs [MYK99].

Dual [JP98, FB96, HHS97, SSS97, WHB98].
dual-bus [HHS97].
dual-link [SSS97].

Dual-Pass [JP98].
Duato [OK99].
duplex [Fuj99, Vai96].
duplication [ZB98].
Duprat [Pha98a].
during [GP96b, Har92, WG98a].

Dynamic [FTY90, HS93, JTY99, MMM96, CST90, CK99, CCC96, DRW92, DW97, FS96, HL97, HR95b, HR97, HL91b, LVB93, Maz93, NR90, RW98, RP99, SSH99, SS93a, WJ994].

Dynamically [TF92, CMS99]. Dynamically-allocated [TF92].

easily [Sas97, WC90, CCC96]. easy [CL99a, CW94]. easy-to-use [CL99a].

EC/AUED [BB92d, KB96, YL98].

EC/d [WH97a].

Edge-disjoint [FA96].

Editors [BC97, GL99b, KP98, MV99].

Effect [HJ92b, MS98b, BP96, CC93, SS95, SK96].

Effective [CB95c, GP99, Pie90, RY95, Tze92, ZI92].

effectiveness [JS92, KA96, LKK94].

effects [KLH99, ATF98, CS92b, EANPH93, KS96b, KHC94].
efficiency [CPV91, DB91, TS94].

Efficient [Ber96, BSM92a, CL96, CT94b, FE97, Fox93, GM94, HP95, HJ92a, HC92, IYT97, LS95, MBR95, MBR96, Met91, Mon91, NAB96, OM95, PFR98, RFB97, RPK90, RP99, SBP90, SZN92, TL96, WHL95, WH97a, ABB93, ABB94b, Ann97, AMB96, Be90,
expansions [KT92, LM92c, Pur91, RF99, VR94].
Expected [Rao93b, CK91, KS90, LMT95].
Expected-value [Rao93b].
experiment [LKK+94].
Experimental
[NP90, CI92, KY90, Pal94].

d [NP90, CI92, KY90, Pal94].

expected-value [Rao93b].

expected [LKK+94].

Expected [Rao93b, CK91, KS90, LMT95].

expected [LKK+94].

Expected [Rao93b].

Experiment [Yok92].

Expected [LKK+94].

Expected [NP90, CI92, IYI90, Pal94].

expected [LKK+94].
ACC+, BR90, BR93, BR94, Bar92, BP98, BCH95, Cd93, CF90, CS90b, CU94, CUC97, CW99b, CW96, CC97b, CFPK90, CS96c, DG91, DH92, FP98, Fuj99, GB91, JHK97, Kan90, KS93a, KLL97, KH97, LS96a, LH92, LK96, LK99, LBF92, Maz93, NA90, NHA92, PM98, PS90, PLB93, PR93b, PV94b, RNA93, ST95a, SY91b, SJ93a, ST95b, Sta93, SS96, SW97, TT90, TYJ99, TS95, VJ93, WH97b]. faults [AR94, BP94, BAA95, BCS92, CRP+, CH90, CT96a, CB97, CCBC98, CCK96, CL98b, DP97, HD98, HS94a, HG96, JBS90, KS96b, LM92b, LG95, LB99, Lio93, LHF92, Oik92, Pel98, PW95, Pol95, PR93a, PR96b, PR97b, PR98, PH93, SF96a, SW94a, TL96, Ver92, WK97, ZWL98]. faulty [BH94, BNL93, BJ91, BCS94, CA90a, CT97b, Fra92, GDYS96, GMP94, LS90c, MS98a, PB97a, RS96, RB97, RN95, WY95, Wu97, WG98b, YTR94].

Functions [BKM94, Fow93, KZ90, SS94b, SS99, AEBV90, AEBVZ91, BC99, Bry91, BS90c, BHSB97, DMS95, DGY92a, Dre99, DLN95, FC97, FaI99, HTHR94, HNY93, IM91, JBA+97, Kan96, KEA96, Knu92, LL92b, Lin91, Lu97, MBNSV93, MMM93, Mul94, PI93, Par93, RF95, San93, Sas91, Sch96, Sch98, TMS97, Weg94b, WG95, YMI92, ZV95].
fundamental [HNY93].

Further [JBS90].

Fused [JP98]. FUSS [CF90]. future [HS94d].

GaAs [PLM91]. gallium [MFH91]. Galois [PFR98, PFSR99]. Gamma [TCW93]. gate [BE92, CRP+96, HM93, THL92, JBA+97].
gate-level [CRP+96]. gates [BS94].
gate-based [CRP+96].

General [CC92, FTYZ90, LL92b, Lin93b, NNH93, RCS92, THL92, vDL93].
Generalization [Vij91, XSF96].
generalizations [Kor94a]. Generalized [CL91, Dam92, OPL93, Par90, Red98, TMS96, WPZ96, BL98, BL92, BM90, CA90a, Cor94b, LW95a, LW95b, Par93, Pur91, RFKL93, SG90, Sas97, SB92b, SK92b].
generate [WP90].
generated [LIO94, RT96]. Generating [Ann97, CA90].
Generation [CK96, CT91a, Lo98, OY91, SM96b, VR94, BBP91, BAA95, BAA98, CT96a, CA91b, CCC96, DC93, KSL93, LL91a, Lo97b, MBGT91, MAH98, NK97, OVL96, ORPP93, Pha98b, PR94b, PR97b, PR99, RD96, RT93b, Sav99, SS91a, SS91b, SJ96, TS91].
generator [BK95, LS96b, WS98].
Geometrical [PK93]. geometry [Mie93].
given [Wan97]. Global [RS96, DYM94, SWW94, Wan97, WY95].

Globally [DF97, Ber96]. goal [LF96].
good [FHA94].

Gordon [Hwa97]. Gossiping [BHS93, Fra92, FY96]. gracefully [CSSP90, LS95, SN99].

grain [BOI94, RSS97]. Graph [OdSC96, BD96, BB99a, BC99, Bry91, BM96, CYH91, Fu99, KF97, KTS90, LKL97, LCT97, Mer97, PT98, PeI91, Rao93a, Sch92, SWK90, SR91, Tra96, TS97, Wil93, YLC90, YK98].

graph-based [Mer97, Rao93a]. graph-construction [Wil93].

Graph [DS96, Als92, ARS95, Bar98, BHS92, BCS94, CL90, DBD93, DT93, DZL93, GB91, GE92, G93, HL91a, HL97, HB94, KWF95, ML93, MNK90, MPS94, OSST96, PMF96, PB99a, PB99b, TA95].

GRASP [MS99].

Gray [HJ95].

GRD [MYK+99]. Greedy [BB99a]. grids [Ell91, MH90, RBG98].

Group [Bos90, CG97, LY96, MPS94, NM94].
groups [CC9+92]. Growing [SM93].

Guarantee [ACZD94]. guard [TLE97].

Guest [BC97, GL99b, KP98, MV99, Tri98].

Guibaly [Wil92a]. guide [SS91].

H. [PT92]. Haar [FC97]. HaL [SCD+95].

Half [Ros90, Fu99]. half-duplex [Fu99].

Half-hot [Ros90]. Hamming [AW93].

Handling [DL94, KCCD99, TD93]. handoff [FCL98].

Hard [VSS91, VS93, AS93, BS99, GPS95, Pol95, SLS95].

Hard-wired [VSS91, VS93]. Hardware [BKM94, EW93, Fow93, KC93b, OY91, RKS90, RPW98, SS94b, SF96b, WG94, BP94, CM92, CF90, CB95c, CP90, DJ99, DA90, FS96, FTG92, HH93, Kan96, Mil91, PR93b, PR94b, RFB97, TY92a, Tak92a, TS98, Uhl92, WZXX93, WK97, WSEZ90, XT99, YS96].

Hardware-assisted [RKS90].

Hardware-Based [WG94, CB95c].

Hardware-Oriented [OY91].

hardware-software [DJ99]. Hartley
[Ano97b, BSMC98, Soh90]. Issues [OF97a, CU93a, DH92, IS90, Rao93a, SJ95]. iteration [FL93, HL91a, MC93, MC95]. Iterations [DHL96, WF92, DMLH93, PMF96]. iterative [CA91b, Fri94, JK92, PM91, RCBB96, SW94a, WC90].

L. [CLL91]. L.0 [CCG+91]. labeling [BB92a, CS990, SY91a]. LAN [MTG93]. language [CCG+91, CMD93, ST95a].

Large [SS90b, WJR94, Zur94, ABK90, BDL+99, CL90, CPK90, Fug92, FL92, FW93, Fi97, HS93, KT92, KF92, LHPN94, LL90, LY91, MBNSV93, OS94, PK90, Sem95, SP96, TRM95, Tze92]. large-scale [ABK90, CL90, FW93, Tze92]. Latch [CBRS90]. Latch-to-latch [CBRS90].

lengths [UWZ97]. level [BB92c, BOH90, CRP+96, CL96, CCC98, CU93a, CU93b, CU94, DN98, FBL96, FRK98, GP98, GQ97, Kan93a, Kan93b, LKW97, MBNSV93, Me92, PRASA99, Pe91, RDZ95, SS94a, SS91b, Som90, VP94, Vai98, Wan94a, vdB93]. leveled [BBP+96]. levels [KSS95, Tm90, WRS95, Wu95, Wu97, YF92a]. levels-an [Wu95]. Lewis [ABC92].

LFSR [ESS98, RT96]. LFSR-generated [RT96]. library [PDB97]. lightwave [PS99]. like [GPS93, Sch92, WNPM95]. likelihoods [SK94]. limited [CDP98, EZ92, KSS95, WY95].

limited-global-information-based [WY95]. Line [DMLH93, DMLH96, HC94a, PMF96, BH98, BB99b, CT97a, DKT96, FL90c, FL92, GP96b, HL92b, Kip94, LS90b, LT95, Mu94, SY91a, SSL96, ST96, Z097].

Linear [CFV91, Gol96, Kor94b, Ber93a, CCD+92, CM96a, CT98, C093, DOR91, DD95, GK92, Har92, HRT+95, Hia92, HTCT91, LJ92, Kop95, KT91c, LK92, LR90, MRF90, MNK90, Oston96, RT96, RBG98, SW93, SM92b, SF91, ST95b, SR96, TC95, VRD92, Wan96]. Linear-Array [Kor94b]. linearization [CR97]. Linearizer [dM90]. linearly [RF99, Z095]. lines [AR94, MTP93]. link [AAL94, BM91, KT99a, LVB+93, SSS97]. linked [Han91]. links [DRT97, LY90, SY91b]. List [Ano97a, Ano97b, Ano98c, Han91, SJP96].

live [MTP93]. LNS [DMS95, Lew94]. Load [CS96a, Dae91, HS94d, LK98, BHR94, BK90, CS96c, HS94e, HS93, KK92, KLL97, KM97b, NO94, SC95a]. load-distributing [CS96c]. local
[KHW94]. membership [HS98b]. memorie [TWS93]. memories

[CS99, CFV91, Mah94a, Mon91, PHS99, RH93, SMV91, Soh93, Tak92b, TWS92, VLP95, WZXX93, WSY97]. Memory

[JCSM96, KHC94, Lew94, MV99, AMS96, BGJ94b, BP93a, BP95, CGG96a, CB99, Cheh92, CS96b, CSS90, CGC95b, CL99b, DDS98, DA99, Dek98, DDV90, FL93, FS96, Fri95, GW92, HF97, Han91, Har92, HC93, HSH99, HS94b, JCMS97, Kat97, LL96b, LK97, Maz93, MTP93, MNL99, PRAS99, PD99, PG97, PBND98, RPW98, SS90a, Sav98a, SCD99, SL92, Sta93, STW92, Tem99, Tze92, Tze94, Vai96, Vin95, Wan96, WF90, WDS95, XT99, XSF96].

merging [GL91].

Mesh [Raj96, BC95, CSK90, CSS90, DDGS97, DRS91, FY96, Mat90, MD95, TP94, TN95, WH94]. mesh-bus [FY96]. mesh-connected [CSS90, Mat90, MD95, WH94]. meshes [BP94, BN91, B93a, B95, CC94, DDS99, MPKRS93, Pea96, SL97, SS96, SW97, ST96, TY99, UVM97, Y94, MM95a]. Message [TS95, ACZ94, Ber93b, SI94, WH97, WS90]. Message-optimal [TS95].

message-connection [WS90]. messages [BPR93, BBP97, HH97, Mi92, ZSR90]. MetaNet [OYY97]. metasatbility [Kle90, Ung95, VBB95].

Method [KTM94, SF96b, CA90b, C90, CB96, Dal92, DD95, HTH94, HN93, LK90, LT93, Man90, OVL96, Pur91, SIK95, SGP93, SL91b, SV97, ST96, TLE97, TSH94, Vog90, ZFP91]. Methodologies [HD98, OFW92]. methodology [GB90b, HLB94, MM95b, TLE97, YS96].

Methods [TAY91, CHH98, CPA99, FM91, HS98c, TSH95, Uht92]. Micro

[AS92b, LKK94, MFH91, WDF97]. microprocessor-based [AS92b].

microprocessors [Cor94a, Win95]. microprogrammable [TKS94].

microsequencing [PI93]. migration

[CS90c, CT97a, DL97, PI93]. Min

[Tra96, Vija91, SSA94]. Min-cut

[Tra96, Vija91]. mini [KMD97]. mini-slot [KMD97].

Minimal

[AMS96, BS93a, TB91, Bar92, DTB96, HM91, HLC91, LM92c, MBNSV93, MNKF90, OCVS98, Sar90, SL91a, WG98a].

minimize [KS96b, SL95]. Minimizing

[BL92, CL99b, WS97, UW97]. Minimum

[FL91, GC97, PM98, BDL99, J93, LMT95, NT92, SIS90, Sa91, SWK90, THL92].

Minimum-congestion [GC97]. MISR

[Sav96]. miss [BSMC98, SST92, vdBT93].

miss-path [BSMC98]. miss-rate [SST92].

mixed [ABZ96, WPZ96]. Mobile

[Ano97b, CL97, JTK97, AV97, FCL98, LL97, LS97, MS98b]. Mobility [CL97]. Möbius

[CL95]. mod [SB90]. mod- [SB90]. mode

[KIN94, PKI96, SIS90, SSA94]. Model

[JCSM96, AD97, BR93, BP93a, BB99b, CA91b, CS91, CRD93, Cor96, Egg91, Fu99, GY95a, GLR99, GYY98, JCMS97, JL96, Kle90, LW94, Mer97, MB93, OK99, PMW92, PZ99, RD96, RCS92, RFS92, SN99, SST92, SR93, SF93b, TW95a, TS99b, Wan99, WNPM95, vdBT93]. model-based

[TS99b]. modeled [LG95].

Modeling

[C94, DF91, MTP93, AKL90, BR90, CK90a, CDF93, EANPH93, HKN99, LBF92, MY95, MY94b, PMHY97, PLM91, T92, T93, TSH95, Win95, ZVN92].

modelling [DYD94]. models

[AK96, BR94, BP92a, BS92a, CWM95, FTL93, GP98, GS95, G096, GSH92, GL92, KK91b, LPP91, O190a, PS90, Pel91, Pel92, Sta93, VRK93b, VRK93a, VT94].
modification [Hwa97, ITY97, Tak98].
modified [BB92b, HWB93, RK96].

Modular
[HWB92, PB97b, SJ90, TY92a, VBH+95, BDK98, CT98, CW99a, EW93, HTPY97, Pie94, SY91b, Tak92a, Wal93, Wal97].

Module
[LVAG98, AS93, FBM93, HS96, LS90c, PK91].

modules
[CYH91, HS97, Sar90, TKS94, TS94].

moduli
[CN99].

modulo
[AM91, LM92c, Ma98, SR92].

modulo-
[LM92c].

modulus
[WJ90].

moment
[CT93a].

moment-preserving
[CT93a].

monitoring
[SS94a, UR94, Wil93].

monotonicity
[Sch96].

Montgomery
[BDK98, EW93, Kal95].

Moore
[Kno96].

most
[HW97].

moving
[Ara90, CY95, FL91].

MP
[XT99].

MPS
[BSC98].

Muller
[DTB96, ORPP93, Pha98a, Pur91, Sas97, TMS96, TMS97, VR94, WPZZ96, ZV95].

Multi
[NO94, DDGS97, KHW94, TF92].

Multi-ASCA
[NO94].

multi-megabyte
[KHW94].

multi-mesh
[DDGS97].

multi-module
[VLPA95].

multioperand
[Pie94].

multioutput
[Pie93].

Multiphase
[Bok96, LT93].

Multiple
[GM98a, JW94, KLP93, LL96a, San93, AA92, ACFH95, AE94, BSMC98, BHS97, CA90a, CS91, CU93a, CU93b, CT94a, CU94, CF94, DP99, Dam92, DDS99, Dav90, Dow92, HNY93, HRT+95, HJ92a, HS96, JS92, JL96, KPI93, KACV94, KC93a, KIN+94, KMD97, KT92, KEA96, LaF99, LS96b, LCFH95, LFH92, MM91a, MMM96, Mi93, NGB93, NM94, PKI+96, PR92, PR97b, PGK90, RTZ98, SISU90, Sas91, SM92b, SF96a, SB92a, SB97, Soh90, TCI98, TB91, TS97, VR93b, VRK93a, Ver92, Wil92b, Wil95, YB91, ZV95].

multiple-adjacency
[CT94b].

multiple-bus
[JT96, YB91].

multiple-input
[SISU90].

multiple-issue
[BSC98].

multiple-level
[CU93a, CU93b, CU94].

multiple-module
[HS96].

multiple-path
[DP99].

multiple-polynomial
[HRT+95].

multiple-sequence
[LS96b].

multiple-track
[VR93b, VRK93a].

multiple-value
[Sas91].

Multiple-valued
[GM98a, KLP93, BSMC98, HNY93, KIN+94, PKI+96, SB92a, SB97, TCI98, TB91, ZV95].

Multiple-way
[San93].

multiplexed
[YMG99].

Multiplexer
[Pek99].

Multiplexer-based
[Pek99].

Multiplication
[CV92, BDK98, Bry91, CM96b, DS94, EW93, EL90a, FB96, Fio99, ITY97, KT91c, Lin90, Ma98, TY92a, Tak92a, Tak98, TY92b, Vin95, Wal93, Wal97, ZC90].

multiplicative
[BCH93b, Has98, ITY97].

Multiplier
[Kor94b, AM91, HB92, HWB93, Hon90, KIN+94, Lim92, MJ92, Paa96, PFR98, PKI+96, SG90, SK99].

Multipliers
[Kat94, LTR96, WG94, YGI91, ATF98, GPZ99, HWB92, IV94, KS98, LTR93, Lu97, MRT97, OVL96, OI90b, Pek99, SB92, SR92, SMOR98, VSS91, VS93, WJJ95, WH98, WHB98].

Multiply
[JP98].

Multiply-Add
[JP98].

Multiplying
[Zur94].

multiprocess
[Lam97].

multiprocessing
[ENS91].
Multiprocessor [DTAL93, YLL90, ABK90, BR5+90, BD95, BB92a, BSM92a, BSM92b, BP93b, BLOS95, CPK90, DA99, FR94, JS92, JL96, JW91, KRM95, KM92b, KT99b, Lam97, LHNP94, LY91, LS95, NHA92, OI90a, QM93, RCS92, RRS95, RSD98, RCB96, RS95, Sah96, SP91, SD92, SJ93a, TLH94, TSS95, YB91, vdlS93].

multithreaded [BB90, BGJ96, CB95b, CB99, CSK90, CS90c, CS92a, DDS98, DH92, DM97b, FBL96, Fri95, GW91, GW92, HS94b, Ish95, KH97, Mah94b, MNL99, MDyF94, NT92, PRASA99, SLD95, TLH94, TSS95, YB91, vdLS93].

Multirate [LR97]. multirendezvous [SCV91].

Multiserver [BK90].

Multispectral [Tat97].

Multistage [Ber96, BAA97, BS90a, CDHK93, DBD93, DBD94, DB94, FTL93, KK90, LY90, MY9D96, MOM91, MY94a, NB93, SX9W5, SLD95, ST96, WL92].

multiserver [BK90].

multitasking [Ber96, BAA97, BS90a, CS90c, CS92a, DDS98, DH92, DM97b, FBL96, Fri95, GW91, GW92, HS94b, Ish95, KH97, Mah94b, MNL99, MDyF94, NT92, PRASA99, SLD95, TLH94, TSS95, YB91, vdLS93].

multistream [McC95]. multistreaming [McC95].

multivalued [DS94, MBNSV93].

multiversion [Leu97b]. mutation [GOH92].

mutual [HY99]. MVL [AEBVZ91].

MVMT [AEBV90].

N [CLL91, DSPN95]. natural [CMD93].

Near [MPS94, BDL99, CW94, KS96b].

near-maximal [MY94b].

nearest-neighbor [Mat90]. nearly [MY96].

Necessary [Wd9B92, Sch96, YM99].

Negation [WM96]. negative [GM98a, KKS93]. negative-binomial [KKS93]. neighbor [Mat90]. neighbors [CLC92].

Nest [LMJ93]. nested [FTYZ90, LMJ93]. nested-predicate [LM9J3]. net [GY98]. nets [CDFH93, CL94b, CGTN92, CKLY98, LG92, LW95a, LW95b, LZM90, Mer97, SV95].

Network [CK90b, HNG94, NG90, AZ98, AMS96, BHS93, BR94, BJK93, BS90a, CF95a, C1L91, C9T93a, CC96b, CS96c, CT91b, DP99, DDS99, DDGS97, DR96, FA96, FTL93, GMP94, HH93, JO93, KTS90, LY90, LPP91, LL91b, LO94a, LCT97, MvdS90, MJ91, MB93, MKY+99, OI90a, OPLP93, PS99, PWG94, P93, RD96, RDZ95, RFS92, Saa95, SY91a, SP91, San93, SBP90, SB91, SJ91, SL9D95, SRH98, SF93b, SW94b, TC98, TW95c, WH94, WNPM95, WL92, CSA94, MM95a].

network-based [SLD95]. Networks [YLL90, ASS94, AAL94, Aal93, AHT92, ANR96, Bae97, BH92, BHR94, BHBA91, BJ91, Ber96, BCG98, BF98, BPR93, BBP+96, BCL97, BAA97, BC95, BS93b, BE92, BCLA91, CF95b, CD+92, CDP98, CDHT99, CRC96, CS91, CC97a, Coh93, CDHK93, CG94, Dahl0, Dal91, DE90, DE92, DB9D93, DB9D94, DB9D, DW97, DL97, Du93, EAK98, FCL98, F9S94a, FE97, FR94, FL92, F9o99, FTL93, GDYS96, GS97, GB91, GS98, GE92, GM98b, GH91, HR95a, HHS97, HS98a, HY99, HS94a, He91, HT95, Ho92, Hou99, HSL96, HSY97, HTCT91, HW95, JL91, KH93, KS92, KT92, KM94, LS9N4, LW94, LS9N6a, LP98, LY91, LLL92, LL94, LM92b, Leu97a, LW95a, LW95b, LW95, LL97, LO97a, LS96c, LL97, LFH92, Mah94b, MS98a, MM97a, MM96, MB95, MS98b, MY96, MOM91, MS95, MY94a]. networks [MY94b, NB93, NL90, O'C95, OYR95, OSST96, PK93, PA96, PT92, Pie93, RB91, RKJ99, RSH98, RF91, RBB93, RB97, SM93, SC94, SS97, SXW95, She95a, She95b, SR91, SC94, Sut91, Z979, TCP91, TP94, TK96, TC98, V9C2, WM91, W94, Wil92b, WS91, YM91, Y955, Yan98, YM99, YW99, YF92b, YA90, YM99, dM90].

networks-architecture [GE92]. Neural [LL91b, BJ91, BP98, BJK93, CT93a, CFV91, FTL93, HH93, LPP91, MYK+99, OPLP93, PWG94, PK93, PZ93, RF91, SM93, SY91a,
STW92, WPS96, Ahn93, Als92, BNP91, BCLR97, BK90, CK94, CF94, DBD93, DP97, EAK98, Fra92, FS90, GL91, Han91, HS94c, HS96, KK92, KS96a, KEA95, KT91c, LB91b, LS94a, LS98, LS91, PM91, SS90a, SM92a, SF91, SX95, She95a, TC95, TS97, TNS99, Tua92, TS95, WL90, Wan96, WNS96, Weg94b, WT90, WH94, WI93, Yan90, ZS99.

Optimally [HSL96, SJB91, Tem99].

Optimistic [BZ92].

Optimization [TCP91, WD92, AE94, CSTO92, CVMS99, DF91, GGD96, OMB97, PHK94, PS93, PR99, SWT93, SK96, SF93b, TK96, YK98].

optimizations [CCCH93].

Optimized [LS90a, OVL96].

Optimizing [TXD98, BV99a].

optimum [Kan93b, PM91, TSH94].

options [PFP99].

optoelectronic [LO97a].

OR-parallel [NO94].

oracles [DLN95].

Order [SC90a, PD99, PB97b, Tao97, TD93].

Ordered [LV99, FC97].

ordering [AV97, BW96b, CRS98, DBJ98, FS90, Tat97].

organization [KKL90].

organized [HF97].

orientation [CYH91].

Oriented [OY91, CG99a, CS92a, LV97, VOG90, WSB90].

orthogonal [MLD93, PT98, SBP90, SBP91].

Other [OF97a].

out-of-order [TD93].

output [Dav90, EZ92, KS97, Oik92, SAS91].

outputs [Tho97].

Over-redundant [MC94, SPM97].

Overflow [Yok92].

Overflow/Underflow [Yok92].

Overflow/Underflow-Free [Yok92].

overhead [DJ99, E991, EZ92, NL91, SHH93, TSS95, Vai97].

overlapping [Wil92b].

overlaid [Ber93a].

overload [BH97].

Overturned [MJ92].

Overturned-stair [MJ92].

oxide [HM93].

P [CLL91].

Packet [YLL90, CG99, RA96, ST96, YB91].

Packet-switched [YB91].

Packet-Switching [YLL90].

packing [DLC93, YW99, ZPP91].

page [Gai90, ZC98].

pages [HW97].

paging [Dal92].

pair [Yan97].

pairwise [GP97].

paper [Pha98a].

Papers [Ano98b].

paradigm [BB97, LH96].

Parallel [BB92a, DD95, Esh91, Fio99, HA92, IP91, MBR96, MS99, MPK93, NAH98, PB99a, PK90, SS90b, SP91, SM97, SF93a, SR90, WE94, YLC90, ZR95, AD97, AC95, AM96, BHBA91, BB95, BA93, BN90, BB91, BJ94, CL92a, CC97a, CMD93, CR94b, Cor96, DS94, DE98, DB90, FT90, FL93, FRU96, FR91, FS92, FL98, GPZ99, GMP94, GE92, GP93, GL91, GLR99, Gz94, GL91, HL92a, HC93, HWB92, HWB93, HB90, HL90, HG99, HO90, IO98, KS98, Li97, LPP91, MBR95, MT98, MR97, MJ91, NO94, NR90, NO91, NL91, OL96, OM91, PA96, PW94, QA91, RF92, SP91, SN99, SP90, SKA92, SC94, SMOR, TB99a, TS99a, TH91, TY92b, WSN96, WH98, WHB98, HNR90].

parallelism [CL96, DAF94, PRASA99, SS94a].

parallelization [SM91].

Parameter [BM94].

Parameters [KA96].

Parametric [FBM93, GS95, LG92].

parity [FR97a, Jha93, JW94, LK93, NM94, NK98, TH97].

parsing [IPS91, Sr90].

Partial [Cha99, Frm97, HABA98, PL99, CA90b, FBM93, FL92, GB90b, JS92, KT96, OL96, PR93b, Rag93, RC99b, VSS99, VS93].

partial-multiple-bus [JS92].

Partial-sum [HBA98].

Partially [WL94, AS95, WPZ96].

partially-mixed-polarity [WPZ96].

particle [CRP96].

partition [FL93, KM92b].

partitionable [BB97, KM92b].

partitioned [GM98b].

Partitioning [CM99, BB99a, BCS92, BM96, HL92a, KL97, LM95, ODS96, PR98, PB99b, RFL93, San93, SS93a, SF92, STW92, TSW92, Td96, Vd91].

Pass [JP98, CHH98, WM92].

passing [SI94, WH97].

passive [CDP98, GM98b].

path [ASS94, AHT92, BSM98, BAA95, BAA98].

path-based [Hou99, THZ +99].

paths [CL92a, CT97a, LYW94, MRT97, TCW93, Yan97].

pattern [CG96b, DC93, MV95, Maj96, MBGT91, NSUR98, NK97, ORPP93, RT93b, Sav98a, SS91a].

patterns [AMS96, FFS92, GM98b, GW92, GRT96, Sav99, SW94a].

PCS [FCL98].

[NC96].

AUED [BB92d, KB96, Kat96a, LY96, YL98].

byte [Vai95].

carry-select [Kan93c].

CD [KM94].

column [SM96b].

d-UED [THL91].

detecting [WdB92].

down [STE98].

exchange [Hua90].

first-in-first-out [NT92].

hardware [Fer91].

internally [VT97].

join [LP91].

logarithm [ABCW92].

OR [BOH90].

parallel [LK98].

pipeline [WS91].

slave [GW91].

square [LM99a].

square-root [ALB98].

time [Wa97].

Underflow-Free [Yok92].

unidirectional [ABB94a].

wavefront [SS93b].

WSI [CU94, CUC97].

Per-node [TK98].

Perfect [FR94].

Performance

[CMST90, IA91, NS96, SB94, PS90, PLB93].

Performance

[AS92a, BD95, BM90, BD97, BCLA91, CS91, DDS98, Da90, DYD94, DA99, DR91, DM92, GB90a, GL92, HS94b, IS94, IS90, JL96, Kua90, LD90, Mah94b, MDyF94, MY94a, MY94b, PH93, SL90a, SJ93b, TN93, WS90, WL92, YL99, AYB97, BB97, Ber93b, BP98, BAA97, BS97, BP92b, CPRV95, CG96a, CB95c, CT96b, CFV91, CS96c, CSA94, DP99, Da91, DG91, DBAP93, DBAP94, DRT97, EAT95, FD90, FM95, GY95a, GS95, GY95b, HM95, Har92, HC93, HAM+99, HHMC91, HSH99, HS98c, HLP93, Ish95, Juh95, KKKM99, KK91b, KTS90, KLM+99, KM94, LLS91, LK93, LKL98, MM95b, Mei91, MS98b, NO94, Ng91, OI90a, OK99, PNDN99, PHY97, PG97, PV94a, PV97, RFB97, RCS92, RF91, SS95, SJ95, SJ90, SK92a, SIKS95, SGP92, SAMC99, Soh90, SVS97, SV97].

performance

[T990, TXD98, Tze93, VB96, VT94, WNP95, WNL93, ZVN92, ZCT99, dLS93].

performance-reliability [PV97].

periodic [CLL90, HS97, KST96, NC96, PM98, SC95b].

permutation

[AZ98, CF95a, CC96b, BBD94, HT95, Hua90, JO93, KKL90, LL94, LO94a, LO97a, MY96, O'C95, SXW95, She95a, She95b, ST96].

permutations [CF95b, HLS96, HTCT91].

personal [DL97].

pessimistic [KK1a].

Petri

[CL94b, CLE98, GY98, LG92, LW95a, LW95b, LZM90, SV95].

Pfair

[BL98].

phase [TA95].

Phased [LH96].

photonic [DBAP93, DBAP94].

piecewise [ZVDF96].

pinwheel [BL98, CC92].

Pipeline

[MFH91, DF91, HAM+99, LS94b, SSK+96].

Pipelined

[DP96, BB95, Cor94b, GY95a, GDYS96, GL93, HL92a, KM90, LHF93, Mc91, Mc95, NO91, OMB97, Soh90, VD92].

pipelines [EAT95, SC96].

PLA

[AE94, EL90b, HK90, SB90, SHH93].

Placement

[LS91a, Ba97, CT94b, TC99, ZB97].

placements

[ACH+97a, ACH+97b, LK93].

placing [W93].

planar [SWK90].

plane

[FL91, SW92].

PLAs [HLHC91, KF92].

PLAYTHROUGH [SGP92].

PM [SA98].

PMC [SR93].

Point [BGM+95, CV92, Has90, JP98, Lo94b, OY91, OF97a, Tan92, Yok92, Fit97, Gri98, Lio93, MLK98].

pointer [LM99b].

pointer-based [LM99b].

points [CCCR96, FL91].

polarity

[CRC96, DTB96, TMS97, WPZ96].

policies

[DYD94, DKT96, NT92, RSD+98, dG90].

policy

[GS97, HKL98, KS96a, LS94a, MLT95, SC95a, TN93, WH94].

polling
[GL92]. **polygon** [AC95, SS90a, Yan97].

Polynomial [Kat94, LIO94, PK91, BHS92, Fal99, HRT+95, KMM91, MP90, RT94, Sch98, SS92, VRK93b]. **polynomial-time** [RT94]. **POPS** [GM98b].

Portable [GLR+99, TPDB98]. **position** [BL99]. **positive** [Bal98].

Power [NL99, Wei94]. **power-sum** [Wei94]. **Powering** [Tak98].

Practical [McC95, PV90, CL99a, DH92, LKK+94, Szy97]. **precedence** [Cha99, HS97, SS94c]. **Precision** [SM90a, AB98, HH93, Lim92, SM90b, VRK93b].

predictors [JG99, Nai95]. **preemption** [LHS+98]. **preselected** [PL99].

Prefetching [JG99, CB95c, HS98c, LM99b, MS91, TS98].

prefix [Han91, MT98, WNS96]. **prepass** [CLM+95]. **Prescaling** [ELM94, LM92a, LM99a].

preserving [CT93a, DA96]. **pressure** [LVAG98]. **preventive** [GPTT98]. **primary** [HS98a, IJH92b]. **primary-backup** [HS98a].

prime [CJ90, LS94b, WS91]. **primitive** [WH97a]. **Primitives** [LD90]. **Principal** [SES+92]. **principles** [Szy97]. **priori** [CPV91, Krä98].

prioritized [GY98, JL96, MM91a, MmM96]. **Priority** [SRL90, GS97, HR95b, KSS95, LHS+98, MTG93, RCS92]. **priority-based** [MTG93].

private [BR94]. **Probabilistic** [NHA92, OS94, BM92a, CGTN92, LS93].

probabilities [AR94, FFK195, KM92a, Rob91]. **Probability** [LF96, CH90, DW90, ESS98, HR97, MI93, PGK90, RF92].

probe [CCCC96]. **problem** [Bar92, BC99, BBP91, BJK93, BP93a, BNG92, CC92, CT94a, CLC92, Fer91, GGD96, HV91, IJN94, JLC98, KMM91, LK91b, MS91, SM92a]. **Problems** [MV99, AS93, AC95, CCGS98, DLC93, Fri95, Fuj90, FTL93, GY95b, HL92a, Hua92, LK98, LS96c, PR95b, SF93b, SW94b, TK96, WDS+95, YK98, ZPP91].

procedural [Uhl91]. **procedure** [BM90, LP91, PR99].

procedures [CSF90, Yan90]. **process** [AA92, BNG92, KLL97, UR94]. **processes** [CMST90, NNHG93, RS95, SCV91].

processing [AB98, AS92b, Cor94b, DF91, Esh91, FL93, FFS92, Lim92, LKL98, Mat90, MYK+99, PM98, PK90, RB90, SP91, SC94, ST95b, SY99]. **Processor** [Leu97b, MF92, RSD+98, ABZ96, AD97, BGJ+96, BB92b, BA93, BM91, Bon90, CF90, CS99, CT92, DA99, DMS95, Dow92, DBAP93, DBAP94, FTY90, HJ92a, KT99a, KR93, LW91, LAY96, Lee92, Li97, LO97a, LBF92, MMSS96, NA90, SKA92, THA+99, VRK93a, Zar95].

Processors [KC93b, AK91, BSMC98, BHR94, BPR93, CLM+95, CL96, CU93b, CB95c, CUC97, CT93b, Cor96, DPO95, GL93, HLR93, KRM95, LS91a, LO94a, McC91, McC95, Mie93, MD95, NV99, RSS97, Sol93, Sto93, SC91, TK97, TD93].

Producing [SDK95]. **product** [FE97, KS93b, LO94a, OVL96, WMD96].

products [DM97a, Sas91, VSS91, VS93, WJ90].

program [AN90, BS97, BP96, CL94a, DAF94, HL91a, HL97, KKKM99, KOIH92, Lam97, Li97, MLK98, PG97, Wl93].

programmability [ZCT99].

Programmable [ITZ96, Hug93, JBS90, TB99b, TB91, ZWL98]. **Programming** [ST95a, BBD97, BBP91, CSTD92, DA90, SS93a]. **Programs** [We94, CT93b, FD90, HC94b, PM91, Wgl94b].

Progressive [WHK97, Pin99]. **prohibition** [BB99a].

projection [WS95]. **Prolog** [FD90].

proofs [NAH98, MLK98, SG90].

propagate [EL90a]. **Propagation** [PK94, CL92b, Par94, PLM91].

Properties
property [CN99, TA95]. propositional [MSS99].
Protected [GH93]. protection [FR97a].
prototyping [CCG91]. pruning [SM93].
protocols [CG97, GM91, HHMC91, Lin91, LT93, PS91, RHT95, SRL90, SVSB97, TS95, Wil92a].
protected [GHH93]. protection [FR97a].
Public [BMP97a, LG97, LCL95, PFSR99]. public-key [BMP97a, LCL95, PFSR99].
Purpose [KC93b, FTG92]. pyramid [CDHT99, Gre94].
QoS [Hou99]. quality [CKC96].
quantitative [HSHG99, WHL93]. quantizers [PWG94]. Quasi [WC99].
Quasi-universal [WC99]. queries [HBA98].
queue [TF92]. Queueing [DKL90, GL92, KT92, LP91, OL90a, dM90].
queues [Bon90, PLJ94]. Quicksort [HNR90]. quorum [Kum91]. Quotient [WF92, SPM97].
R. [Dav90, KH93]. Race [FW93, KWF95].
Race-free [FW93, KWF95]. races [Ung95].
radially [Kno96]. Radix [CR90a, CL94c, EL90b, ELM94, SPM97, ABZ97, AVBZ97, ALB98, CM90, EL90d, LM92a, LM99a, MC92, MC93, MC95, NK99, SF93a, SP95, Tak92a, Val97].
Radix-4 [AVBZ97, SP95]. RAID [BBBM95, CT96b, MY96].
RAM [CGTN92, FS94b, LS91b]. RAMs [DF90, HDS91, Nic96]. Random [KMD97, Sav89a, DF90, DP97, MV95,
Maj96, Maz93, MY96, MK90, NSUR98, NK97, Pel98, SMV91, Sav99, SFM92, SS91a].
random-access [Maz93, SMV91].
Raphson [KTM94]. rapid [YS96]. rate [FCL98, H95, PM91, SCF96, S92].
rate-adaptive [H95]. rate-optimal [PM91]. ratio [Vai97, vBT93]. Rational [G95b, KZ90, KM90]. ratios [TS92].
rays [CK95]. reactive [BB99a]. read [ACFH95, Vin95, Weg94b]. read-once [Weg94b]. read-only [Vin95]. readers [TN93].
Real [NA90, ABCW98, BH97, Ber93a, BLOS95, BS99, DKT96, GOH92, GPS95, HR95a, HL96, H98a, HLB+97, HL92b, H94c, H94d, HL97, HL93, IA91, JL91, Kan90, KL92, KM97b, NT92, Pol95, R98, SS93a, SRL90, SRSC91, SS97, SB94, SC95b, SS94c, SL955, Vui90, W955, WHL95].
Real-number [NA90]. real-time [BH97, Ber93a, BLOS95, BS99, DKT96, GOH92, GPS95, HR95a, HL96, H98a, HLB+97, HL92b, H94c, H94d, H97, IA91, JL91, Kan90, KL92, KM97b, NT92, Pol95, R98, SS93a, SRL90, SRSC91, SS97, SC95b, SS94c, SL95, WRS95].
real-time-systems [SB94]. realization [AEBV90, KEA96, L94b, She95b, WS91].
realizations [Sas97]. realized [CF95b].
Realizing [G98b, HTCT91, SB92a].
Rearrangeable [Don93, FS94a, MM97a, YF92b]. reasoning [Cyr94]. reception [CF94]. Reciprocal [DM94, Man95]. recoding [HC96, SG90].
recognition [CT92, IPS91, IY90, LVB+93, SW94b].
recognition-complete [CT92].
Reconfigurability [SS93b]. reconfigurable
[BS90a, CMS99, CU93a, CC94, HK90, KK91b, KF92, MPKRS93, PB99b, Raj96, RFS97, SCF96, SB92b, ZWL98].

Reconfiguration
[BB92b, BP93a, CF90, CU93a, CUC97, CT91b, JTY+99, KR93, KM97b, LK99, LL96b, MYK+99, RBK90, SSA94, Som90].

reconfigurations
[BB92b, BP93a, CF90, CU93a, CUC97, CT91b, JTY+99, KR93, KM97b, LK99, LL96b, MYK+99, RBK90, SSA94, Som90].

Recording
[BB92b, BP93a, CF90, CU93a, CUC97, CT91b, JTY+99, KR93, KM97b, LK99, LL96b, MYK+99, RBK90, SSA94, Som90].

Recoverable
[WF90].

Recovering
[AA92, OK96].

recovered
[FS94b].

Reduction
[SG95, CW94, LVAG98, SM92b].

Reduced
[AK91, CM92, CM94, FSS99, HDS91, MB95, MYD96, RS96, SWT93, SL91b, TLE97].

Redundancies
[PR96a].

Redundant
[Smi95, AEBV90, ABLZ97, CC92, CC96a, HTHR94, Ng91, OVL96, RS96, SWT93, SL91b, TLE97].

Reduction
[ABCC90, EL90c, HC94a, KTM+94, NK99, Par90, PK94, TAY91, ABZ96, CS99, DM96, DOF93, DH93, EANPH93, Kie90, KM90, LL92a, MC93, MC94, MC95, PB97b, SPM97, TY92a].

Reed
[DTB96, HB95, ID95, KY92, ORPP93, Par91, Sas97, SL92, TMS96, TMS97, VR94, WPZZ96, ZV95].

Referee
[Ano98c].

reproducibility
[FS96, GHH93, vdBT93].

Refinable
[Sem95].

Reflections
[BW96a].

register
[AK92, CL96, CW94, LVAG98, SM92b].

registers
[FFK95, GP96a, GK92, HRT+95].

Regular
[GO98, CZSM99, CT94a, CT98, LNS94, LW94, SA92, SP96, TC95, WH94].

Reduction
[RKJZ99].

Reliability
[BR94, CU93a, CR90, BR93, CB95a, CL94a, CU94, CDHK93, GOH92, HW95, KM97a, LBF92, MB95, MYD96, PV97, RHT95, SS93b, SWG92, TK97, Tze93, UP93, VP93, Vai96, VT94, YF92a].

Reliable
[KL97, L94b, Tze94, Wu97, LC98b, NES+92, SSDK95, Wu95].

Remainder
[HP95].

Remains
[MC93, MC95].

remapping
[NR90].

remark
[MC95].

remote
[Met91, TK98].

reduction
[COK95].

rendezvous
[GNPM90].

repair
[BP93b, CT93b, FR97b, HD991, NNH93, RS95].

repairable
[BR93, Sr99, SM96b, dG90].

repeated
[Wal97].

replacement
[vdBT93].

Replicated
[KLL97, KMM91, Leu97a, MY95, Met91, SBB98].

replication
[MN97, W90].

Reply
[KIN+96, NC97, BMP+97b, CG97, HNG94, JBS90, KGB95].

represent
[JBA97].

Representation
[KT99+94, AM93, Cyr94, Dro98, JK92, JM96, LL92b, TY92a].

Representational
[Bou90].

Representations
[Par90, PK94, Yok92, AW93, Bry91, DH93, NK99, WH99].

representing
[FS96, GHH93, vdBT93].

Residue
[AG94, PR94].

Resilience
[HNG94, NG90].

Resilient
PB99b, RSD+98, SMC91, SK92a, SL95, SC95b, SS94c, TW95a, TN93, WPS96.

schema [SK92b]. Scheme
[KTM+94, BNL93, BBM95, BJ94, CL96, CUC97, COK95, Fu99, GL92a, GP929, HL91b, HKL98, JW91, Kat96b, LMJ93, Lee92, LH92, LYS95, LK96, Lo96, Man93, PA96, PV94b, Sto93, Tse97, Tya93, UVM97, Vai97, WY95, ZI92]. schemes [AS92a, BD97, BM94, CM96b, FM95, LS93, NAB96, RW98, RCB96, SSA94, Vai98, ZB98].

Schur [Zar95]. Scientific [KL97]. scope [FR97a]. SDE [IIK+91]. search

segmentation [Dal92]. segments [LT95]. select [Kan93c, Tya93]. Selection [ELM94, ASS94, AL998, BM94, SPM97]. Selective [SV97, YY97]. Self [KSG96, SCW91, WM92, Y92, AZ98, BK95, BJ94, CF95a, CW99a, CC96b, CL94b, DGY92a, DGY92b, FTY9Z90, GP929, GP96b, HP95, HMC90, HJ92a, IN96, JO93, Jha93, KPB92, KC93a, LL94, LYS95, LT90, Lo96, LQM90, N998, OK96, Pie90, Pie96, RB91, RFK9L3, SD92, SM96b, Szy97, THL92, T997].

Self-checking
[BK95, GPZ99, GP96b, HMC90, IN96]. self-testing [Nik98, Pie90, Pie96, Tao97]. self-timed [DGY92a, DGY92b].

semantics [Bou90]. Semi [MST98, CMST90].

Semi-logarithmic [MST98]. semi-Markov [CMST90].

Semi-logarithmic [MST98]. sense [VB96, YW99]. sensitivity [BE92, CI92].

sensor [L949, Pol95]. separation
[HAB95]. sequence
[LS96b, Leu97b, RP99]. sequences [Ann97, CT91a, CW94, KTS90, OM95, PR94a, PR96a, RT96, SM96a, UZW97, WP90].

Sequencing [KS96b, HC92]. Sequential
[PW94, RT91a, Som90, CMS99, CA90b, C90, CA92, DGY92b, FW93, HRP99, KSL93, KF97, LB90, NS98, PR93a, PR94a, PR95c, PR96a, SSDK95, SW94a, Ver92, WM92]. Sequentially
[X95]. Serial
[JLLR94, HB92, IV94, SM92]. series
[Y90]. server
[BM94, DM92, SLS95, WNPM95, ZC98]. server-aided
[BM94]. Service
[CK90b, DKT96, HS98b, LW95a, LW95b, MR97, vdl93]. set
[BBP91, CR90b, HKN99, Kor94a, LL96a, Pie93, S93, WW91, Wan97, WHL95].

set-associative [HKN99, WHL95]. sets
[CR93, GRR94, H90, KTM96, KE96, Kun92, MC94, SP96, W98]. Setup
[OM91, DL97]. seven [FLT93]. SFU
[LLS91]. Shared
[DW91, BG97b, CB99, CS92a, DDS98, DY94, DA99, Dek98, GW92, HSHG99, HS94b, HS93, KH97, MNL99, PRASA99, PBN98, PL94, RP98, SS94c, T9e2, WF90].

shared-memory
[BG97b, DDS98, DA99, GW92, MNL99, PRASA99, PBN98, T9e2]. shared-nothing
[HS93]. Sharing
[KH90, BHR94, Bon90, CS96a, HS94c, HS94d, JLC98, SC95a, TLH94]. Shift
[Kor94b, CW94, GP96a, G92, HR1+95, SM92b, Tok94]. shifters [FR94]. short
[Man95, SY91b]. shortest
[AH92, WH94]. shortest-path
[WH94]. shorts
[HM93]. shuffle
[Hua90, HTCT91, MB95, RB91, Sch92].
Spectral [BC99, BOH90, Cor94b]. spectrum [Cor96, Hei91]. Speculation [CL94c]. speculative [CWM+95, KT99b].
Speculation [CL94c]. speculative [CWM+95, KT99b].
susceptibility [HC94b]. SVD [EL90c]. Svoboda [MPG98]. swap [PLJ94]. sweeping [SSL96]. switch [Wil92b, WC99]. switchable [EAT95]. switchbox [Sar90]. switched [DR96, YB91]. switches [GMP94, TF92]. Switching [CC96a, YLL90, HM91, HC94b, JO93, Jun95, Kun92, MY94b, SD96, Szy97, TRL993, Ung94, VC92, VR94, YM91]. syEC/AUED [LY96]. Symbol [Che92]. Symmetric [SS99, BHSB97, CCD92, CDFH93, Dre99, KR90b, Lin93a, MPS94, WeBM97]. symmetries [TMS96]. symmetrization [TLE97]. Symposium [Ano98b]. synchronization [CPK90, CL94b, LZ90, OS94, Pa94, RKS90, SRL90]. synchronized [WM92]. synchronizer [WC96]. synchronizers [EANPH93, Kle90]. Synchronizing [HS94a, PR96a]. Synchronous [LD90, AS92a, ACZD94, BJ91, Chi94, KS90, KEA96, Lin93b, LH96, PR93a, PR94a, PR94b, PR95c, PR96a, TW95a, WNPM95]. synchrony [BB90]. Synergistic [SL92]. Synthesis [Cha96, CRC96, CKY99, FSS99, KM95, LK97, PS91, AEBV91, BB90, BDL99, BSS94, CCC96, CA92, DJ99, KS91, Kun92, LR97, LS99a, OK94, SJB91, SZTN91, SR96]. Synthesizing [KR90a, RM91, FW93, KT91c]. Synthetic [MA94a, TV92, TWS93]. System [DJM99, SJP96, ALPS90, ABC92, AS92b, BB92e, BMP97a, BK90, Bon90, CPRV95, CL99a, CSS90, CGK93, DKL90, DIP93, DN98, FBL96, GP98, Gos97, JL96, KKA95, KMP99, KK91c, KS93b, KA96, LW91, Lew90, LS90c, LL91b, LCL95, LP91, LZ94, LC92, LS97, LC98b, OI90a, Pel91, PBND98, RCS92, RDZ95, SKK90, SN99, SK92a, Som90, TI93, TXD98, TSS95, UP93, VP94, Vog90, WH97b, vDS93]. system-an [AS92b]. system-level [BB92c, DN98, FBL96, GP98, Pel91, RDZ95]. Systematic [KH97, LHF93, MK90, BBT94, GB93, KGB95, KB93, Man90, MM95b, SW90, SW95]. Systems [Par90, PK94, SL90a, Tri98, YLL90, AS92a, AMS96, AV97, AD97, AKL90, ACC+93, ABCW98, AMB96, BBD97, BH94, BR90, BR93, BH97, BL98, BSM92a, BSM92b, BP93b, BB99b, BAA98, Bou90, BNG92, BES+96, BLOS95, CG96a, Cd93, Che92, CL94a, CU94, CS99, Chi94, CPK90, CL99b, CKLY98, DP99, DE90, DA99, DJ99, DD95, DP97, DG91, DM92, DDV90, FP98, FNS95, FR97b, FRK98, GPTT98, GH93, GE92, GSH+92, GL92, GY998, HF97, HL96, HL97+98, HY99, HK95, HL90, HJ92a, HS94d, HS96, HS97, HKB97, HBA95, IA91, JW91, KRM95, KM97a, Kat97, KK92, KS96c, KK91b, Kos94, KM92b, KS90, KEA96, KA96, KM97b, LHN94, LY91, LK96, LK98, LS95, LW95, MTP93, MST98, NHA92, NNH93, OS94, OK96, OPT92, PBB97, Par93, PS90, PLB93]. systems [Pel98, PM97, Pol95, RS94, Rai95, RK90, Rao93a, RNA93, RR95, RSD+98, RCB96, Sah96, SSH+99, SS93a, SD92, Ser99, SB94, SWG92, SC90b, SES+92, SJ93a, SP96, SI94, SL90b, TB98a, TT90, T92, TS95, UP93, VT97, VJ93, WRS95, WH93, XT99, XSF96, XH95, Yan90, YB91, YF92a, YY97, dG90]. systems-SbEC- [HF97]. Systolic [CM92, CJ90, GW98, Kor94b, MP90, Wa93, CLC92, DOP93, HB92, Hug93, ID95, JK92, KT91c, KL92, LK91b, LC90, LK90, LHL99, MRB90, OFW92, SM92a, SS93b, ST95b, WL93, Wn94a, Wei94, WS91, WD92]. systolic-array [DI95]. systolic/pipeline [WS91]. systolic/wavefront [SS93b]. t [RCS94, KB96, LY96, THL91]. t-EC [KB96, THL91]. t-EC/AUED [KB96]. t-EC/d-UED [THL91]. t-syEC [LY96]. t-syEC/AUED [LY96]. t-unidirectional [RCS94]. T. [PT92]. Table
Table-Driven [Tan92]. Tables [DM94, SS99, EAT95, Lin90, PG92, SB92a], tabular [Jun95, TLE97, TLROL93, Ung94], tag [RFS92], tagged [AN90], tagged-token [AN90], tags [WSY97, WHL95], take [TW95c], tampering [BB97], tape [HMM+90], target [FM95, Fag97, HC92, LA98, PS93]. Task [KM97a, SWG92, BL98, CS90c, CT97a, HS94d, HS97, IOP99, LLK92, SC90b, TS94, ZB98], tasks [BLOS95, BS99, DKT96, GPS95, HL92b, KB93, KS96c, KS96b, KM92b, NST96, PM98, SC95b], TBED [KY92]. TCP [BB97], TDM [LLJ97].

Temporal

[PB99b, Cyr94, Hou99, KKKM99, Tem99]. temporal-based [KKKM99]. term [WS95]. terminal [TPD98], ternary [DS94, YM92]. Test [BAA95, CA91b, CCCC96, ORPP93, PR97b, RT98, SK92a, TS91, BB99, BAA98, BK95, CM98, CS96b, DC93, GPZ99, GRT96, GP96b, HRT+95, HMC90, HRP99, IN96, KTM96, KN90, KL94, KSL93, LL96a, LL91a, MV95, MBGT91, MAH98, Pie93, PR92, PR94b, PR99, RD96, RT93a, RT93b, Roh91, RP99, Sav98b, SS91a, SS91b, SK96, SSDK95, WG98a]. Test-pattern [ORPP93]. Testability [BH96, Cha96, CA90a, FS99, KM92a, KMM91, LIO94, PK91, Sav98a, SAF90, Ver92]. testable [CCC96, CRC96, Hon90, LH90, MRT97, RT94, Sas97, SHHJ93, WC90, XK92]. Testing [LY94, PR93b, SMV91, SW94a, BS92, CG96b, CL98b, CCC96, DOR91, DF90, FHA94, FS94b, HDS91, HJ92a, HG96, KSNM91, LK91a, LS91b, MV95, MA96, MBGT91, MOM91, NSUR98, Nik98, OPL93, Pie90, Pie96, PK91, PR94a, PR95b, RFG90, SSL96, SFM92, Tao97, Yan90, ZWL98]. testing-module [FK91], testing-theory [CG96b]. tests [CT96a, CA90, CKC96, PR96b, Rag93]. text [LL90]. text-retrieval [LL90]. their [Dam92, Dou93, HNY93, Hla92, LR97, SS95, SUS90, TY92a]. Theorem [NAH98, Sch92, HP95]. theoretic [BS90, DC93]. theoretical [Bok96, LY96, Nic98]. Theory [BMP+97b, CCC96, DJM99, NKC94, NC97, Nic96, Nik91, NK92, CS97, TB98b, BB92c, BB99b, BCh95, CR90b, CZSM99, Cd93, CG96b, FRU96, KS93b, Pa94, SAF90, Uhl91, YK98].

Thrashing [FL93, JLC98], Three [CWM+95, WM91, Dou93, HW97, Maz93, Sar90, SBP90, SBP91, TW95b].

Three-dimensional

[WM91, Maz93, TW95b]. three-sided [Sar90]. three-stage [Dou93]. Threshold [GS97, Pie93, RB99, TN93, VCB96]. thresholding [CT93a]. Throughput [LP98, CS92a, CK91, HD93]. throughput-oriented [CS92a]. Tight [AR94, LH98]. tiling [PND99]. Time [GL91, QM93, SF91, TH92, AA92, BOI94, BH97, Ber93a, BLOS95, BS99, CR97, CK94, CC94, CS96b, CK99, CT93b, DKT96, DB91, Fer91, FR97b, GOH92, GPS95, HL91a, HL97, HR95a, HL96, HHS97, HS98a, HLb+97, HL92b, HS94c, HS94d, HS96, HS97, HCK97, HJ92b, HBA95, IA91, JL91, JCMH99, JLLR94, Kan90, KMM91, KS96c, KL92, KM97b, LI94, LO94a, LMT95, MRB90, MC93, MC95, NT92, Pol95, PR92, QSA91, RT94, RHS98, SMC91, SS93a, SRL90, SRC91, SS97, SB94, SK94, SC95b, SS94c, SLS95, SC90c, TW95c, VRK93b, WRS95, WNS96, WT90, WD92, ZSR90].
ZS99, FTG92]. time-analysis [HJ92b].
time-constrained [HHS97, ZSR90].
Time-division [QM93]. time-freeze [CR97].
Time-space [GL91].
time/hardware [Fer91].
Timed [DLW91, LD90, ACZD94, BDL+99, DGY92a, DGY92b].
timeouts [HS94c].
times [FCL98, HKC97, IOP99, KT91b, L97, vdLS93].
Timing [TS98, ASWW92, CBRS90, Mil91, Pol95, SL95].
TLB [SS95].
TMR [CS99, KS96a, KS96b, SK94].
Token [CK90b, ACZD94, AN90]. Token-Ring [CK90b].
Tolerance [BGM+95, PT92, Al92, BR5+90, CDHT99, CB95b, CB96, DJ99, DA96, DM97b, FRK94, Fit97, FA96, GRR94, HJ92b, HNG94, LNS94, LM93, MRB90, NAB96, NG90, PMAC95, RYT95, Red98, RR93, SC94, SL92, Sto93, SCG94, TK97, VC92, WJ94, WG98b, YF92a].
Tolerant [MM95a, AKL90, ACC+93, BR90, BR93, BR94, Bar92, BP98, BC95, BP95, BCH93a, BCH95, Cdf93, CF90, CS90b, CU94, CUC97, CW99b, CW96, CC97b, CPM9+95, PT92, Al92, BR5+90, CDHT99, CB95b, CB96, DJ99, DA96, DM97b, FRK94, Fit97, FA96, GRR94, HJ92b, HNG94, LNS94, LM93, MRB90, NAB96, NG90, PMAC95, RYT95, Red98, RR93, SC94, SL92, Sto93, SCG94, TK97, VC92, WJ94, WG98b, YF92a].
Traffic [KS92, FTL93, HR95a, KBMP99, LL97, RKJZ99, UVM97]. traffic-balanced [UVM97].
TRAM [RK96]. transaction [GL92, LS97].
Transactions [An96a, An98a, GPT98].
transcendents [LMT98]. transfers [BH92]. transform [Man95, ZV95].
transformation [LK90, Pou97].
Transformations [HC94a, ABCW98, FC97, Har92, KRC99].
transforms [CJ90, C91, CT91a, D92, LM92c, MS99, Mie93].
sentient [CRP+96, YS96].
transistor [WM92].
transition [CKL98, SM96a].
transition-tour [SM96a].
transitive [SM92a].
Translation [BBP91, Dal92, Kat97].
transmission [Kip94, KT91b, ZSR90]. transmission-line [Kip94].
transmitters [CD98].
transmitting [LS96c]. transparency [SK96].
Transparent [KM94, EZ92, Nic96].
transport [Me91].
transposition [LS96a].
traveling [BJ93].
treating [YM92].
tree [BDN96, BHR94, BS90a, BH96, CB99, CU93a, DH90, LS92, O95, RSS97, SM93, SR98, SBP90, SBP91, SY91b, SL91c, SB92b, SCW91, Tra96, TC94, Vjj91, Zhe94].
tree-match [SL91c].
tree-structured [O95, RSS97].
trees [BB92b, BOH90, FBM93, FA96, FL91, GH91,
trellises [LV99]. triangular [HL90, LLS92].

triangularization [EL90c]. triangulation [SBP90, SBP91]. tridiagonal [DD95, LZ94, SZN92]. Triangular [HL90, LLS92].

triangularization [EL90c]. triangulation [SBP90, SBP91]. tridiagonal [DD95, LZ94, SZN92]. Trigonometric [Fow93, Smi95, Kan96].

trinomials [SK99]. triple [GB93, KGB95]. triple-adjacent [GB93, KGB95].

triple [GB93, KGB95]. triple-adjacent [GB93, KGB95].
variation [Efe91]. various [WdB92].

varying [KM92b]. Vector
[AK92, DC93, BA93, CL99b, Dek98, Fri95, HL91b, Har92, HC93, PGW94, RH93, SL91b, Soh93, SY99, Yan93]. vector-reduction [SL91b]. vectoring [LA98]. vectorization [CY95]. vectors [DHK93, HRP99, Lin93b, SSDK95].

verifiable [KM95]. verification [Cor94a, LPV96, LY94, Mi91, Pa94, PBND98, Win95, YL95a]. verified [BSM97]. verifier [PD99]. verify [JBA+97]. versa [GP96b]. versatile [IJN94, SP91, SLN97].

Virtual [BP92b, We94, DR91, Hon99, KS92, WF90, WHL95]. visibility [SS90a]. vision [Sut91, TH91]. visualization [GAFN96, MS93, MS94]. VLSI [SP91, AS92a, AM91, AM93, AB98, AK91, Ah93, BOF94, BB92b, Bry91, CF95a, CJ91, CU94, CUC97, CRS98, CGTN92, CT91b, DM93, FE97, LK91a, LR97, LP90, LHO0, Nic98, NV99, NLV91, OK96, RKB90, SR98, SB90, SK92a, SCW91, SC90c, TB98a, TT90, TF92, Tua92, WP90]. VLSI-efficient [CF95a]. VLSI/ [RBK90]. VLSI/WSI [CU94, CUC97]. VOLTAN [SES+92].

Volume [Ano96a, COK95]. Vote [TK91]. voting [LYS95, TK91]. vs [AB98].

waveforms [Cyr94]. wavefront [Sto93].

well [CDFH93, LL91a]. well-defined [LL91a]. well-formed [CDFH93], while [LRG91]. WICI [PA96]. Wide [CL98a, YW99]. Wide-sense [YW99].

width [MRT97]. Wildcard [BCH95].

winner-take-all [TW95c]. wire [Gre94].

wired [LM92b, VSS91, VS93]. wireless [DRT97, Leu97a, TPDB98]. wires [BL92].

Wiring [SWWWW94, BS90b]. within [Joh93]. without [CM96b, CL92b, DM96, EL90a, EL90b, LP90, MS99, Par94]. word [ABC92, Lew90]. work [AS92b]. workflow [PDBH97].

wormhole [BC95, BD97, FRU96, KD94, LH98, LH91, SW97, Tse97, TY99, TNS99, UVM97].

write-once [BBRB98, Ga90]. writers [TN93]. writing [ST95a]. WSI [RBK90].

XOR [CRC96, ESS98].

Yield [CU93b, HK90, KKS93, KF92, NV99, Sta93, T95, WL90]. yielding [Dro98].

Zero [LG95, CMH98, GL93, MC93, MC95, PG91]. Zero-aliasing [LG95, CMH98].
References

Arnold:1990:RLA

Arnold:1992:AFI

Arnold:1998:ACT

Amano:1990:SIL

Antelo:1997:EAR

Antelo:1996:UMR

Atallah:1995:OPH
M. J. Atallah and D. Z. Chen. Optimal parallel hypercube al-

Apon:1997:CPM

Asari:1994:OTD

Abd-El-Barr:1991:ASM

Arora:1994:DR

Antonio:1992:FDS

Alnuweiri:1991:OVS

Allen:1992:VRA

Azadmanesh:1996:NHF

Arlat:1990:DME

Antelo:1998:CVH

Alnuweiri:1993:NCO

Ancilotti:1990:DCP

Alspach:1992:CGO

B. Alspach. Cayley graphs with optimal fault tolerance.

Alia:1991:VMM

Alia:1993:LBV

[AM93]

Arvind:1990:EPT

Annexstein:1997:GBS

REFERENCES

Afghahi:1992:PSA

Atiquzzaman:1992:MBO

Ahn:1993:NHM

Akyurek:1995:MPS

Abonamah:1994:CRF

Allan:1992:FIS

Al-Twaijry:1998:TSE

H. A. Al-Twaijry and M. J. Flynn. Technology scaling effects on multipliers. *IEEE
REFERENCES

D. Bhattacharya, P. Agrawal, and V. D. Agrawal. Test generation for path delay faults using binary decision diagrams.

Balasubramanian:1990:CAS

Brent:1991:SPA

Belkhale:1992:RSV

Bianchini:1992:IOD

Bruck:1992:NTC

Blaum:1995:DIP

M. Blaum and J. Bruck. Delay-insensitive pipelined communication on parallel buses.
REFERENCES

REFERENCES

REFERENCES

Bernasconi:1999:SAB

Bettayeb:1996:ESN

Bruck:1993:FTM

Brunner:1993:CMI

Bruck:1995:WDC

Burke:1991:PAS

REFERENCES

REFERENCES

Benini:1999:ASL

Bagherzadeh:1996:EAB

Brzozowski:1992:DSG

Belik:1990:EDA

Berry:1992:CBE

Berkovich:1993:OTS

Bernhard:1993:BPM
Bernard:1996:EFL

Brasileiro:1996:IFS

Bolding:1997:CCA

Beigel:1990:SOS

Banatre:1996:ATP

Boley:1995:FPF

Bagchi:1992:DTB

REFERENCES

Bagchi:1994:IDD

[60] Baruah:1997:SOR

S. K. Baruah and J. R. Hari

[64] Boros:1992:PAB

E. Boros, P. L. Hammer, and R. Shamir. A poly-

Bagchi:1993:GDN

Butler:1997:AWC

Bonomi:1990:AOL

REFERENCES

REFERENCES

[Blackburn:1997:CNP]

[Blackburn:1997:CTA]

[BM96]
References

Bagherzadeh:1993:RBS

Bar-Noy:1991:SMA

Brandman:1990:SLB

Bajwa:1994:ATT

Bokhari:1996:MCE

Bonomi:1990:JAP

Bose:1990:GTS
REFERENCES

[Bose:1991:UC]

[Bout90]

[BP92a]

[BP93a]

[BP93b]

[BP94]
REFERENCES

Bowen:1995:FTH

Bowen:1996:EPB

Bettola:1998:HPF

Bhatt:1993:SGM

Balakrishnan:1990:RMC

Balakrishnan:1993:ARM

Balakrishnan:1994:RMF

References

Banerjee:1990:ABF

Bryant:1991:CVI

Biswas:1990:RTA

Brady:1990:SKK

Butler:1990:ECF

Boneh:1992:SRD

Brand:1993:MEE

REFERENCES

Braun:1993:ODA

Bodin:1997:SAI

Buttazzo:1999:ODA

Buttazzo:1999:ODA

Blough:1992:EDM

Blough:1992:IFD

Bright:1997:FVS
REFERENCES

REFERENCES

Chang:1995:SFT

Chen:1995:EHB

Chowdhury:1996:NEA

Chalasani:1997:CMN

Chang:1999:ETC

Chowdhury:1994:DCC

Champernowne:1990:LLT

A. F. Champernowne, L. B. Bushard, J. T. Rusterholz, and J. R. Schomburg. Latch-to-latch

REFERENCES

Chakraborty:1996:TAN

Choy:1996:TGD

Chen:1993:ECE

Campbell:1992:SDS

Cameron:1991:LEP

Carpenter:1998:SAA

REFERENCES

Chen:1996:TPG

Chowdhury:1995:LCH

Chlamtac:1993:HIS

Clarkson:1992:LPR

Chakravarty:1990:CSP

S. Chakravarty and H. B. Hunt III. On computing signal probability and detection

Chien-Ming Chen and Chung-Ta King. Walk-time address adjustment for improving the ac-
REFERENCES

Cheng:1996:GHQ

[CKL90]

Choi:1999:SAS

Chang:1990:DAB

Chen:1992:CPP

Choi:1999:SAS

Cortadella:1998:DPN

Cortadella:1992:ECC

[CL92a]
See comments [?].

Chen:1994:DCS

Ciardo:1994:CAS

Cortadella:1994:HRD

Cull:1995:MC

Chang:1996:EEI

Chlamtac:1997:MCW

Chess:1998:LTB

Chen:1999:EUA

Corral:1999:MCB

Chen:1992:SAN

Chung:1990:SPJ

Chen:1991:NGH

Chang:1995:IPC

REFERENCES

Ciminiera:1990:HRS

Cappello:1992:SSS

Cattell:1996:AOD

Chung:1993:PCM

Chakrabarty:1998:OZA

See response [KH93].

REFERENCES

REFERENCES

Cho:1998:FAA
REFERENCES

Choi:1996:DPA

Chen:1999:FCC

Chen:1996:ATT

Choi:1996:DPA

Chen:1999:FCC

REFERENCES

Cheung:1990:DAG

Chan:1992:DOC

Choiński:1991:GDR

Codenotti:1991:NFA

Chuang:1992:FRC

Cheng:1993:NNI

REFERENCES

Chimento:1993:CTP

Chang:1994:FER

Chen:1994:ERP

Chen:1996:PER

Chakravarty:1996:SGI

Chen:1997:LTM

Chang:1998:ADM

Chen:1993:RRS

Chen:1993:YAR

Chen:1994:MRC

Chen:1997:CRS

Cosentino:1992:AMJ

REFERENCES

Chang:1999:COR

Clark:1994:MNM

Chiu:1996:FTR

Chang:1999:LCM

Chisholm:1999:AFA

Chang:1995:TAM

Chung:1995:FVC

REFERENCES

Cheng:1991:OMB

Cyre:1994:CRW

Cattell:1999:HCA

Dotan:1990:CLP

Dutt:1996:MPO

Dandamudi:1999:PHP

Daehn:1991:LBH

W. Daehn. Load balancing in a hybrid ATPG environment. *IEEE Transactions
REFERENCES

Dubey:1994:IWS

Dally:1990:PAA

Dally:1991:ECI

Dally:1992:FTM

Damarla:1992:GTM

David:1990:CSA

Dubois:1991:RTE

REFERENCES

ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
/ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=102830

Ding:1994:FBA

Jianxun Ding and L. N. Bhuyan. Finite buffer analysis of multi-
stage interconnection networks. IEEE Transactions on Com-
ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
/ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=262132

[DB94] N. Das, B. B. Bhattacharya, and J. Dattagupta. Isomor-
phism of conflict graphs in multistage interconnection networks
and its application to optimal routing. IEEE Transactions on
ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
/ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=277286

See addendum [DBAP93].

Dowd:1993:HSP

P. W. Dowd, K. Bogineni, K. A.
Aly, and J. A. Perreault. Hierar-
chical scalable photonic ar-
chitectures for high-performance
processor interconnection. IEEE
Transactions on Computers, 42
CODEN ITCOB4. ISSN 0018-9340
(print), 1557-9956 (electronic). URL http://
/ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=241599

See addendum [DBAP94].

Das:1993:ICG

P. W. Dowd, K. K. Bogineni, K. A.
Aly, and J. A. Perreault. Addendum
"Hierarchical scalable photonic ar-
chitectures for high-performance
processor interconnection". IEEE
Transactions on Computers, 43(7):864,
July 1994. CODEN ITCOB4. ISSN 0018-9340
(print), 1557-9956 (electronic). URL http://
/ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=338106

Das:1994:HCP

R. Drechsler. On variable or-
dering and decomposition type
choice in OKFDDs. IEEE
Transactions on Computers, 47
CODEN ITCOB4. ISSN 0018-9340
(print), 1557-9956 (electronic). URL http://
REFERENCES

Das:1993:VST

Dekker:1995:PMN

De:1997:ESA

Dahlgren:1998:PEC

Dunning:1990:UBE

Dandamudi:1990:HIN
S. P. Dandamudi and D. L. Eager. Hierarchical interconnection networks for multicomputer

[Dandamudi:1992:HSC]

[Dekker:1998:ASP]

[David:1990:FDR]

[DF91]

[Dubey:1991:BSM]

[DeBiase:1995:DAN]

[Donatiello:1991:ECP]

L. Donatiello and V. Grassi. On evaluating the cumulative performance distribution of

David:1992:EIB

Dutt:1990:DRF

Dutt:1991:SAH

Dutt:1992:SPI

Du:1996:CLD

[DHL96] Ding-Zhu Du, D. F. Hsu, and Yuh-Dauh Lyuu. Corrigendum to “Line Digraph Iterations and Connectivity Anal-

Duprat:1993:NRR

[Dimauro:1993:NTF]

[Dave:1999:CHS]

[DK96]

[Dimitrov:1999:TAD]

[Demmel:1994:FNA]

REFERENCES

ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=295860; http://www.cs.berkeley.edu/~xiaoye/ieee.ps.gz. This is an expanded version of [?].

Dong:1997:EPC

Du:1993:WPP

Drakopoulos:1992:PAC

Duprat:1993:CAN

DeSouzaeSilva:1990:NCC

Drakopoulos:1992:PAC

Duprat:1993:CAN

J. Duprat and J.-M. Muller. The CORDIC algorithm: New results

DasSarma:1994:MAR

Dawid:1996:DCA

Daumas:1997:VRD

Dutt:1997:NCE

Das:1994:NFB

Das:1995:IFC

REFERENCES

REFERENCES

REFERENCES

David:1990:ADP

Dubois:1991:SBC

Dolev:1997:CRC

El-Amawy:1998:CDO

Ding-Zhu:1993:LDI

Dolev:1997:CRC

El-Amawy:1993:NME

El-Amawy:1995:MPP

Efe:1991:VHL

Eggers:1991:SVA

Ergegovac:1990:FMC

Ergegovac:1990:RSR

Ercegovac:1990:RLC

REFERENCES

REFERENCES

REFERENCES

Feng:1996:ASL

Fernandez-Baca:1993:PMA

Fernandez:1997:EVL

A. Fernandez and K. Efe. Efficient VLSI layouts for ho-

Falkowski:1997:FIT

Fang:1998:COT

Fagin:1990:PPP

Fernandez:1997:EVL

A. Fernandez and K. Efe. Efficient VLSI layouts for ho-

Ferreira:1991:PTH

Feng:1995:MVA

Fiore:1999:PMU

Fishburn:1990:CSO

P. Fitzpatrick. Extending backward error assertions to...

REFERENCES

Friedman:1994:FAE

Fricker:1995:MCP

Feng:1994:ECC

Feng:1994:NRA

Felperin:1996:TWR

Friedman:1990:FOV

Fujiiwara:1998:OTL

E. Fujiiwara, T. Rithongpitak, and M. Kitakami. Optimal two-level unequal error control codes for computer systems.
REFERENCES

Franklin:1994:HCR

Franklin:1996:AHM

Fummi:1999:STH

Fujimoto:1992:DER

Fujimoto:1993:CSN

Fang:1990:DPS

Fujimoto:1992:DER

Funabiki:1993:CSN

Fujimoto:1992:DER

Fujimoto:1992:DER

Fujimoto:1992:DER

REFERENCES

Fujita:1999:FTB

Fisher:1993:RFS

Fujita:1996:FGM

Grimsrud:1996:LVT

Gait:1990:CPS

Ghosal:1990:PED

Gupta:1990:BMS
R. Gupta and M. A. Breuer. The Ballast methodology for structured partial scan design.
REFERENCES

Ghafoor:1991:SOG

Gulliver:1993:SCC

See comments [KGB95].

Ganley:1997:MCH

Gale:1990:IAE

Gaughan:1996:DDF

REFERENCES

Gu:1996:CPO

Gupta:1991:ECB

Geihs:1993:POR

Guha:1992:RCB

Guan:1991:TSO

Groenendijk:1992:PAT

Gonzalez:1993:RBD

REFERENCES

Golic:1996:LMK

Golic:1996:CAC

Gupta:1996:ULC

Geist:1992:EER

Goswami:1997:DSB

Gupta:1996:ULC

Goldberg:1994:PAR

Guo:1998:RSC

Golic:1996:CAC

Gupta:1996:ULC
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Healy:1999:BPI

Han:1991:OLL

Harper:1992:IMP

Harper:1994:MFB

Hashemian:1990:SRA

Hasan:1997:DA

Hasan:1998:DBM

REFERENCES

Hasan:1992:BSS

Hoelzeman:1994:GSG

Hasan:1995:ALC

Hasteer:1998:PAS

Hulgaard:1995:AEB

Hwu:1992:EIS

REFERENCES

Heidtmann:1991:ASA

Hamada:1997:CEC

Hsu:1996:SSR

Holi:1993:FPE

Hu:1991:ERC

Heck:1991:HPE

REFERENCES

Han:1997:SAT

Hosseini:1992:EDA

Huang:1992:EFT

Ha:1990:DHY

Hitz:1995:IDR

Hou:1997:ORT

Hurson:1998:CSS

REFERENCES

Harper:1999:AMS

Harper:1991:CFV

Harper:1990:PAS

Ho:1990:PAS

Hansen:1992:IAP

Hong:1992:LSR

Ha:1991:CTS

REFERENCES

REFERENCES

REFERENCES

Heidelberger:1990:PQU

Hata:1993:SFP

Ho:1992:OBI

Hoganson:1999:WES

Hong:1990:DTP

Hou:1999:RVC

Hung:1995:EAA

REFERENCES

[Haniotakis:1995:ETS]

[Hamdaoui:1995:DRT]

[Hamdaoui:1995:DPA]

[Hamsaoui:1997:EDF]

[Hsiao:1999:FSC]

[Hellebrand:1995:BTC]

[Hua:1993:DLB]
REFERENCES

Harrington:1994:SHN

Holliday:1994:PEH

Hou:1994:LSC

Hou:1996:DOR

Hou:1997:APT

REFERENCES

Han:1998:PBC

Hiltunen:1998:CMS

Hsu:1998:PSI

Heinrich:1999:QAP

Hu:1996:ORL

Hu:1997:TCS

Heys:1995:ACS
REFERENCES

Huang:1991:ERA

Hahn:1994:UDF

Hamano:1997:DME

Huang:1990:NSE

Hughey:1993:CED

D. J. Haglin and S. M. Venkatesan. Approximation and in-

Islam:1991:PAD

Iwamura:1995:DRS

Ichikawa:1991:SIS

Iyengar:1994:VAD

Ibarra:1992:SEO

Iwasaki:1996:AEM

Irwin:1991:TDD

REFERENCES

Ikenaga:1998:CHP

Iverson:1999:SPT

Ibarra:1991:PRP

Ishikawa:1995:HMB

Ito:1997:EIA

M. Ito, N. Takagi, and S. Yajima. Efficient initial approx-

Jain:1997:IBA

Jacob:1990:FCR

Johnson:1999:RTC

REFERENCES

Jacob:1997:CAM

Jacob:1996:AMD

Joseph:1999:PUM

Johnsson:1995:CBB

Jha:1993:FDC

Jiang:1997:CSF

Jen:1992:DFR

Chein-Wei Jen and Ding-Ming Kwai. Data flow representation

[R. Johansson. A class of $(12, 8)$ codes for correcting sin-
REFERENCES

REFERENCES

Juang:1991:CBB

Jone:1994:MFD

Kantabutra:1994:SAA

Kamal:1992:AEU

Karkouri:1994:UFD

Kaliski:1995:MIA

Kant:1990:PAR

Kantabutra:1993:ATL

Kantabutra:1993:DOO

Kantabutra:1993:RCL

Kantabutra:1996:HCE

Katti:1994:CDC

Katti:1996:NSA

REFERENCES

Katti:1996:NRA

Katti:1997:NMS

Kavianpour:1993:SAM

Kulasinghhe:1995:EBT

Kulasinghe:1996:ICE

Kanoun:1999:ACS

Karpovsky:1993:DSD

REFERENCES

REFERENCES

Khanna:1997:GPA

Kakugawa:1993:AC

Katti:1995:CSC

Ku:1997:SDF

Kurian:1994:MLE

L. Kurian, P. T. Hulina, and L. D. Coraor. Memory latency effects in decoupled architectures. *IEEE Transactions on Com-
Kessler:1994:CTS

King:1991:FPE

Kawahito:1994:HSA

Kawahito:1996:AR

Kipnis:1994:AAB

Kavianpour:1991:DHU

Koren:1991:DCM

I. Koren and Z. Koren. Discrete and continuous models...
REFERENCES

for the performance of reconfigurable multistage systems.

Kuo:1992:CED

Kinoshita:1997:RAE

Kleeman:1990:JMM

Ko:1993:MVC

Karpovsky:1994:DSA

M. G. Karpovsky, L. B. Levitin, and F. S. Vainstein. Diagnosis by signature analysis of test responses. *IEEE
REFERENCES

Kornerup:1990:ARB

Kapur:1992:BSP

Krishnamurti:1992:AAS

Kwok:1994:TCT

Ke:1995:SDV

Kartik:1997:TAA

REFERENCES

REFERENCES

REFERENCES

[102x681] data structures-an introduction.

REFERENCES

152

REFERENCES

[KT91a] M. Y. Kim and A. N. Tantawi. Asynchronous disk interleav-
REFERENCES

Kabuo:1994:ARS

Kagaris:1996:UCR

Kuhn:1998:CIS

Kumar:1991:HQC

Kundu:1992:BSS

Kuszmaul:1990:FDR

Krishnamoorthy:1990:IDD

Kang:1995:ABG

Koksal:1992:CDA

Kim:1997:CIR

Koren:1990:EEF

Lang:1998:CVA

LaForge:1999:CLS

Lamport:1997:HMC

REFERENCES

Latifi:1993:CAF

Lalgudi:1996:ABH

Lee:1990:CDS

Liebelt:1999:DES

Lopez-Benitez:1992:DMR

Lin:1990:DUS

Lu:1992:NDA
M. Lu and J.-S. Chiang. A novel division algorithm for the residue number system. *IEEE Transactions on Com-

REFERENCES

REFERENCES

Lo:1996:PAT

LF96

Lombardi:1992:DLM

LG92

Li:1992:EPA

LH90

Lempel:1995:ZAM

LG95

Laih:1997:CDE

LG97

Lombardi:1990:FDD

LH91

Linder:1991:AFT
Lee:1992:FTC

Linder:1996:PLS

Libeskind-Hadas:1998:TLB

Lapointe:1993:SDP

Liu:1999:SAI

Latifi:1994:CCM

Lee:1998:ACR

REFERENCES

REFERENCES

Lee:1994:PTT

Lin:1990:NLT

Lee:1991:OSS

Lewis:1991:OSA

Lee:1993:PPP

Liao:1995:VRE

Leu:1996:FTT

Yuh-Rong Leu and Sy-Yen Kuo. A fault-tolerant tree communication scheme for hypercube...

Li:1998:LBP

Leu:1999:DFT

Leveugle:1994:HDT

Lin:1997:SHF

Linderman:1998:DHP

Lu:1997:FTI

REFERENCES

REFERENCES

Low:1996:NCE

Lim:1997:OPH

Liu:1997:TTB

LaPaugh:1992:HST

Lang:1992:HRS

[Vincent Lefèvre, Jean-Michel Muller, and Arnaud Tisserand. Toward correctly rounded transcendental functions. *IEEE Transactions on Computers*, 47(11):}
REFERENCES

See correction [Lo98].
REFERENCES

[Lo97b] See [Lo97b].

Lenders:1997:MVA

Lakshmanan:1991:CEI

Leveugle:1990:OSC

Lin:1990:LCA

Lai:1991:PPH

Liu:1991:RAC

Lynch:1992:STC

T. Lynch and E. E. Swartzlander, Jr. A spanning
REFERENCES

REFERENCES

Liu:1996:RTP

Lu:1997:RCM

Lin:1998:DAO

Lopez:1995:CCC

Lo:1990:DCT
REFERENCES

Lo:1996:CBC

See [LTR93].

Lu:1997:SMK

Lafferty:1999:OBD

Llosa:1998:MSR

Lades:1993:DIO

Lai:1991:HNS

Lakshman:1994:DCR

REFERENCES

REFERENCES

D. Moundanos, J. A. Abraham, and Y. V. Hoskote. Abstraction techniques for validation coverage analysis and test
REFERENCES

Majumdar:1996:EOW

Mandelbaum:1990:SMD

Mandelbaum:1993:SRS

Mandelbaum:1995:DUL

Matic:1990:EHA

Mazumder:1993:DFT

Mukherjee:1993:ASI

B. Mukherjee and S. Banerjee. Alternative strategies
REFERENCES

Menezes:1995:NBR

Makki:1991:ATP

Malik:1993:TLM

Malluhi:1995:EMA

See correction [MBR96].

Malluhi:1996:CEM

See [MBR95].

Montuschi:1992:DRD

REFERENCES

9956 (electronic). URL http://
/ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=214670

Montuschi:1993:RIT

Reducing iteration time when
result digit is zero for radix
2 SRT division and square
root with redundant remainders.
IEEE Transactions on Com-
puters, 42(2):239–246, Febru-
ISSN 0018-9340 (print), 1557-
9956 (electronic). URL http://
/ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=204797

See remark [MC95].

Montuschi:1994:RDS

Over-redundant digit sets and
the design of digit-by-digit divi-
sion units. IEEE Transactions on
Computers, 43(3):269–277,
ISSN 0018-9340 (print), 1557-
9956 (electronic). URL http://
/ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=272428

Montuschi:1995:RRI

A remark on “Reducing iteration
time when result digit is zero for
radix-2 SRT division and square
root with redundant remain-
ers”. IEEE Transactions on
Computers, 44(1):144–146, Jan-
ISSN 0018-9340 (print), 1557-
9956 (electronic). URL http://
/ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=368000

See [MC93].

McAuley:1992:FSA

[McA92] A. J. McAuley. Four state asyn-
chronous architectures. IEEE
Transactions on Computers, 41
CODEN ITCOB4. ISSN
0018-9340 (print), 1557-9956
(electronic). URL http://
ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=123391

McCrackin:1991:EID

[McC91] D. C. McCrackin. Elimi-
nating interlocks in deeply
pipelined processors by de-
lay enforced multistreaming.
IEEE Transactions on Com-
puters, 40(10):1125–1132, Octo-
ISSN 0018-9340 (print), 1557-
9956 (electronic). URL http://
ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=93745

McCrackin:1995:PDE

[McC95] D. C. McCrackin. Practical de-
lay enforced multistream (DE-
MUS) control of deeply pipelined
processors. IEEE Transactions on
Computers, 44(3):458–462,
ISSN 0018-9340 (print), 1557-
9956 (electronic). URL http://
ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=372038

Mohapatra:1995:DEM

On dependability evaluation
of mesh-connected processors.
Mohapatra:1994:PAC

Megson:1992:FFA

Meister:1991:PSI

Melhem:1992:BLR

Merigot:1997:ANG

Metzner:1991:ERR

Mulder:1992:PAD

REFERENCES

REFERENCES

REFERENCES

Masuda:1990:CML

Michael:1999:CCA

Montalvo:1998:NST

Montgomery:1991:EUE

Mathias:1990:SEP

Mourad:1991:CTM

REFERENCES

Mehta:1994:CDC

Mukhopadhyaya:1995:FTR

Mans:1998:OEF

Mishra:1998:ECR

Mukhopadhyaya:1995:FTR

Mishra:1998:ECR

Mans:1998:OEF

Marques-Silva:1999:GSA

Muller:1998:SLN

Marino:1999:PIM

Marques-Silva:1999:GSA

Marques-Silva:1999:GSA

Muller:1998:SLN

Marino:1999:PIM

REFERENCES

Manohar:1998:APP

Mukherjee:1993:MPB

Mendelson:1993:MLD

Muller:1994:SCF

Majumdar:1995:FCT

Milutinovic:1999:GEI

Martin:1990:IND

A. J. Martin and J. L. A. van de Snepscheut. An in-
REFERENCES

A connection to distributed recursive computations.

REFERENCES

Nair:1990:RNC

Nair:1996:ETA

Nandi:1993:DAC

Nandi:1996:API

Nicolici:1998:CPT

See [SM97].

Nair:1995:OBB

Nandi:1996:RCT

See [NKC94, BMP+97b].

M. Nicolaidis. Theory and design of t-error correcting/d-error detecting (d > t) and all unidi-

REFERENCES

REFERENCES

[Nicol:1990:ODR]

[Nicol:1990:ASD]

[Nabli:1996:PAN]

[Nicol:1996:SAS]

[Nachman:1998:NAR]

[Nain:1992:CHM]

[Oommen:1996:GPU]

[Oberman:1997:DID]

[Oberman:1997:DAI]

[O'Keefe:1992:RBT]
References

Onyuksel:1990:MQN

Owens:1990:BSM

Oikonomou:1992:AFS

Orailoglu:1996:ASS

Ould-Khaoua:1999:PMD

Oruc:1991:SAC

Olstad:1995:EPS

REFERENCES

REFERENCES

REFERENCES

Purna:1999:TPS

Papadimitriou:1997:SCC

Pong:1998:DVS

Park:1999:ESV

Papazoglou:1997:CLS

Pearlmutter:1996:DTD

Paschalis:1990:ETC
A. M. Paschalis, C. Efstathiou, and C. Halatsis. An efficient
REFERENCES

Pekmestzi:1999:MBA

Pelc:1991:UGM

Pelc:1992:ODH

Pelc:1998:ODH

Pelc:1999:UGM

Pelc:1992:OGD

Paar:1998:EMA

Paar:1998:ODM

C. Paar, P. Fleischmann, and P. Soria-Rodriguez. Fast arithmetic for public-key algorithms in Galois fields with
REFERENCES

D. S. Phatak. Comments on Duprat and Muller’s branch-
REFERENCES

Phatak:1998:DSB

Park:1994:TCA

Peir:1999:FIT

Papachristou:1993:VMS

Piestrak:1990:DHS

Piestrak:1993:MTS

Piestrak:1999:MTS
REFERENCES

Piestrak:1994:DRG

Piestrak:1996:DST

Pinkston:1999:FER

Pramanik:1990:PPL

Pomeranz:1991:PCA

Park:1993:GLA

Phatak:1994:HSD

Parhami:1996:CHS

See [KIN+94].

Pan:1999:PSP

Pattipati:1993:UFP

Prakash:1994:NAS

Perunicic:1991:SMA

Parhi:1991:SRO

Pandya:1998:MAU

M. Pandya and M. Malek. Minimum achievable utiliza-

Powell:1995:EFT

Padro:1996:CLD

See [DZLH93, DHL96].

Pentakalos:1997:APM

Park:1992:TDF

Panda:1999:ALT

Poledna:1995:TST

REFERENCES

Pourbigharaz:1997:SDA

Pomeranz:1992:MOT

Pomeranz:1993:CFS

Pomeranz:1993:TFT

Pomeranz:1994:AHS

Pomeranz:1994:RHR

Pomeranz:1995:ACU

Pomeranz:1995:INS

Pomeranz:1995:FSS

Pomeranz:1996:RRS

Pomeranz:1996:NTD

Pomeranz:1997:DBF

Pomeranz:1997:TGM

I. Pomeranz and S. M. Reddy. Location of stuck-at faults and bridging faults based on circuit partitioning. *IEEE*
REFERENCES

Pomeranz:1999:CBG

Pai:1999:IEI

Paik:1994:DVB

Probert:1991:SCP

Perleberg:1993:BTB

Panchapakesan:1999:LNT

Peha:1992:CTD

Papakostas:1998:IOG

Purwar:1991:EMC

Preparata:1990:PCD

Phillips:1994:HPI

Pradhan:1994:RFC

REFERENCES

Pradhan:1997:RFR

Pilarski:1995:CBC

Parhi:1994:SPN

Porter:1993:NNN

Pham:1999:SCM

Quach:1992:HSA

Qiao:1993:TDO

REFERENCES

[Rao93b] N. S. V. Rao. Expected-value analysis of two sin-

Rowley:1997:DRE

Ramos:1999:TOB

Rovatti:1998:GAM

Rangarajan:1995:DSL

Redinbo:1998:GAB

Reyneri:1991:APS

Rangarajan:1992:DAC

Rahardja:1999:FLI

Ramakrishna:1997:EHH

REFERENCES

REFERENCES

REFERENCES

Rosenkrantz:1990:HHS

Rudnick:1999:ETD

Reinhardt:1998:HSF

Rosenkrantz:1993:IBA

Robbins:1995:BBM

Radoytchevsky:1994:CFI

Rubino:1995:IAA

G. Rubino and B. Sericola. Interval availability analysis using denumerable Markov processes: application to multiprocessor subject to breakdowns and repair. *IEEE

Raghavendra:1996:GCA

Reiter:1998:RAU

Rosti:1998:PSS

Raghavan:1991:SDC

Raghavan:1991:IDA

REFERENCES

Raghavendra:1995:FDE

Somani:1992:DDA

Sundararajan:1998:IMA

Saab:1995:FRN

Seth:1990:STD

Sahni:1996:SMS

Skadron:1999:BPI

REFERENCES

REFERENCES

[SB90] Tsutomu Sasao and Philipp Besslich. On the complexity of mod-2 sum PLA’s.

REFERENCES

Strom:1998:CCV

Saxena:1990:EVP

Saxena:1991:CPA

Sugla:1990:EAT

Segee:1994:CFT

B. E. Segee and M. J. Carter. Comparative fault tolerance...

REFERENCES

Schwabe:1992:BLT

Schneeweiss:1996:NSC

Schneeweiss:1998:PFB

Su:1991:SDF

Sengupta:1992:SDM

Shin:1996:AIH

Sisto:1991:PML

SCV91

SD96

SD92

REFERENCES

REFERENCES

Schwarz:1993:PHR

Sun:1993:HNN

Schlag:1996:DMF

Schwarz:1996:HSA

Saxena:1992:SBS

Sam:1990:GMR

Silio:1992:AMP
References

Y. Shintani, K. Inoue, E. Kamada, and T. Shonai. A

REFERENCES

Smith:1996:SDE

Sayah:1992:TSH

Stevens:1992:DGS

Shin:1994:TRA

Singh:1996:EDC

Sunar:1999:MMA

Scherson:1992:BPA
Satyanarayanan:1990:CHA

Shyu:1990:PAS

Su:1990:ASS

Sarrafzadeh:1991:TMR

Sips:1991:IVR

Smith:1991:TMC

Stapper:1992:SFT

Shih:1995:ASI

Sheu:1995:DFD

Shen:1997:EBM

Shayan:1997:CSV

Strosnider:1995:DSA

Sarrafzadeh:1998:FST

Saxena:1990:ACE
N. R. Saxena and E. J. McCluskey. Analysis of checksums, extended-precision checksums, and cyclic redundancy

N. R. Saxena and E. J. McCluskey. Parallel signature analysis design with bounds on
REFERENCES

See [NAH98].

Saltz:1991:RTP

Smith:1995:CFA

Savir:1991:TCC

Savva:1999:GDM

Sohi:1990:IIL

REFERENCES

REFERENCES

ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=93750

[Skavantzos:1992:NMM]

[Stephens:1993:SFS]

[Sung:1996:ABF]

[Sastry:1998:VAA]

[Stott:1998:DAH]

[Srikant:1990:PPA]

[Siu:1991:DST]

References

Sasinowski:1993:DPA

Sha:1993:RRS

Schulte:1994:HDE

Spuri:1994:HIP

Saavedra:1995:MCT

Su:1996:AFT
Chien-Chun Su and K. G. Shin. Adaptive fault-tolerant deadlock-free routing in meshes

Schulte:1999:AEF

Sibai:1994:CRS

Soufi:1995:PRI

Sanchez:1999:SDC

Sibai:1994:CRS

SSL96

Sha:1997:ADL

Singh:1992:MWU

Schlichting:1995:PLS

Smith:1995:FTC

Symvonis:1996:ESL

Stapper:1993:IYM

Stan:1998:LFU

Stouraitis:1993:BFT

Stone:1992:OPC

Suter:1991:CNV

Swaminathan:1994:DM

Sisto:1995:MPN

Stiliadis:1997:SVC

Srbljic:1997:APP

REFERENCES

Schwartz:1990:SCC

Sarrafzadeh:1992:BST

Su:1994:TIL

Sun:1994:CDA

Skolleborg:1995:CSC

Sui:1997:IAF

REFERENCES

Singh:1991:MFT

Sun:1999:CAC

Sun:1992:ETS

Shiratori:1991:UFS

Szymanski:1997:DPP

Tang:1995:CCP

Takagi:1992:RMM

Takesue:1992:CMD

Takagi:1998:PTL

Tang:1992:TDI

Tao:1997:STN

Tate:1997:BOL

Takagi:1991:RCM

Tirumalai:1991:MAM

REFERENCES

[TCI98] Zheng Tang, Qi-Ping Cao, and O. Ishizuka. A learning multiple-...

REFERENCES

Toborg:1991:CVI

Takagi:1999:HSR

Tsai:1999:SPA

Timmermann:1992:LLT

Tao:1991:NED

Tao:1992:GTD

Thornton:1997:SBA

Tien:1993:BIH

Tsai:1999:SBP

Tang:1992:AMC

Tang:1993:DMM

Tong:1991:VAW

Tohma:1996:FTD

Tao:1997:ERI

See additions [Ung94].

Tsai:1996:GRM

Tsai:1997:BFC

Thomasian:1993:PET

Turner:1995:CFM

Tseng:1999:TOC

Tokarnia:1994:IMS

Tang:1994:DTM

REFERENCES

Tsai:1994:ATM

Tzeng:1995:MOP

Tseng:1997:TOB

Tseng:1997:DDB

Tse:1998:CCP

Tang:1999:DPC

Tomita:1999:IDD

REFERENCES

Thiebaut:1992:IDC

Tamir:1990:HPF

Tuan:1992:OSJ

Tzeng:1991:EH

REFERENCES

Thiebaut:1992:STT

Thiebaut:1993:CST

Torrellas:1998:OIC

Tseng:1995:CTL

N. Takagi and S. Yajima. Modular multiplication hardware

[Tze92]

Tsay:1992:SCA

[Tya93]

Tyagi:1993:RAS

[Tze93]

Tzeng:1992:CEC

[Tze94]

Tzeng:1993:CCC

[Tze94]

Tzeng:1994:RBD

REFERENCES

Uht:1991:TRM

Uht:1992:CEH

Unger:1994:SAS

Upadhyaya:1993:ANS

Upadhyaya:1994:CPM

Upadhyay:1997:TBA
REFERENCES

Ural:1997:MLC

Vaidya:1995:UBB

Vaidya:1996:CDT

Vaidya:1997:ICL

Vaidya:1998:CTL

Varvarigos:1996:CSR

Valencia:1995:MAA

REFERENCES

REFERENCES

REFERENCES

[Veeraraghavan:1994:CAP]

[VanScheik:1997:HSE]

[Vuillemin:1990:ERC]

[Vuillemin:1994:CN]

[Walter:1993:SMM]

[Walter:1997:STT]

Chin-Liang Wang. Bit-level systolic array for fast exponentia-
REFERENCES

Wang:1994:DEH

Wang:1996:BAM

Wang:1997:CGC

Wang:1999:DHE

Wu:1990:ETI

Walker:1996:NSD

Wu:1999:QUS

REFERENCES

Wong:1992:OCT

Weber:1992:NSC

Wu:1995:DMC

Wang:1997:ATS

Wegener:1994:CCB

[Weg94b] I. Wegener. The size of reduced OBDD’s and optimal read-once branching programs

Wei:1994:SPS

Wei:1996:CMF

See [Har94].

Welch:1994:PVM

Wu:1990:RDS

Wong:1992:FDU

Wong:1994:FHB

Wong:1995:FEE

REFERENCES

Wang:1998:AHD

Wu:1997:EEP

Wu:1997:BHC

Wu:1998:LCB

Weller:1994:COS

Wu:1999:CFE
Huapeng Wu and M. A. Hasan. Closed-form expres-

REFERENCES

Wilkinson:1992:CSM

Wilken:1993:OGC

Windley:1995:FMV

Wigley:1990:MRR

Wigley:1994:LDR

Wijlen:1993:OGC

Wang:1994:ABF

Wang:1995:NDT

REFERENCES

REFERENCES

REFERENCES

Wu:1995:LGI

Wang:1993:NWL

Xiao:1996:GSB

Xia:1999:CHS

Xiaqing:1992:TDL

Wu:1995:SDS

REFERENCES

Youssef:1990:EBF

Yang:1990:COP

Yang:1998:CIN

Yang:1997:SPN

Yang:1998:CIN

Yang:1999:APS

Yuan:1994:CAC

See [KFYA93].

Yang:1992:RST

[Gun-Chang Yang and T. Fuja.](YF92a) The reliability of systems with
two levels of fault tolerance: the return of the ‘birthday surprise’.

See correction [Ano96b].

C.-B. Yang, R. C. T. Lee, and W.-T. Chen. Parallel graph algorithms based
upon broadcast communications.
CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=61071.

Yoon:1990:PAM

CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=48863.

Yamamoto:1992:FTL

CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=83662.

Yamamoto:1992:FTL

P-functions — ternary logic functions capable of correcting input failures and suitable for treating ambiguities.
CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=123830.

Yang:1995:BRS

CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=467692.

Yang:1999:NCC

CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=811110.

Yuan:1999:DPR

CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=817397.
Yokoo:1992:OUF

Yount:1996:MRI

Yang:1994:ERM

Yang:1999:WSN

Yeung:1997:SBD

Zarowski:1995:PIS

Ziv:1997:LAC

REFERENCES

REFERENCES

