
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

10 June 2022
Version 2.00

Title word cross-reference

$(k + 1)$ [AEA97]. (m, k) [Ram99]. $(N - 1)$ [LW95a]. 1.5 [LH05]. 2 [HY04, JKA07, ST99a, SY00, SJPS01, TSP+08]. 3 [CYY00, DS05, WH03a, XPL04]. 3! [RRRM09]. d [SV97]. K [LW06, BP98, CW00, Chi98, DAA97a, DMR01, HY01, HY04, HNO98c, KP99, KH97b, Kuo01, L03, LWS04, LBS01, PSK99, PW99, PG07, RC95, SX08, SX09, TLM04, Wan98, YW03a]. L_2 [WH01]. m [ME93]. M^3 [BEK+93]. speedup(n) [HM90]. N [CST02, OFZ99, Soh95, BP98, CW00, Chi98, DAA97a, HM90, KP99, PSK99, PW99, PG07, RC95, SX08, SX09, TLM04]. n^2 [NS95b]. $n \times n$ [NS95b]. $O((\log \log n)^2)$ [HNO98a]. $O(1)$ [WH03a, XL08]. $O(n)$ [LM06]. p [Wan04, WLZ08]. $\pm 2^b$ [Nas93]. r [JJ07, Wan04]. wr [KH98].

- Arbiters [Kuo01]. - Ary [SX08, TLM04, BP98, CW00, Chi98, DAA97a, KP99, PSK99, PW99, PG07, RC95, SX09, Soh95].

- Centers [Wan04]. - Connectivity [LBS01].

- Coteries [HY01, HY04, KH97b, KH98].

- Local [LWS04]. - Merge [HNO98c].

- Neighborhood [JJ07]. - Partition [HY04].

- resilient [LW95a]. - Self-Protection
1 [DM93]. 1-Hop [LJW+07]. 1999 [ANO99a].

2 [GR90, KWOA05, MCH+90]. 2-D [LMN94, TC95b, GR90]. 2004 [ANO05b].

2008 [ANO08d]. 2D [SY98, TLGP97, YK98, YYS97]. 2D/3D [TLGP97, SY98].

3D [SY98, TLGP97]. 3PC [SK02].

5 [DCSM96].

802.11 [BCG04, JASA08, NK08, XLW+06, ZL07b].

802.11-Based [ZL07b]. 802.11e [XL04].

802.15.4 [HPH08, MGZN07, MSM06]. 802.15.4-Based [MGZN07].

A* [MD97]. Ability [SM97, SZ95a].

Abstraction [WMB96]. Abstractions [AGL+97]. Accelerating [CHJ+07, SGTP08].

Accelerator [ANO09c]. Access [AMS97, ADD+02, BRSR08, CWYZ09, DKKSO4, Deh96, JGA08, KLO2, LIZAO4, LH94, Lop02, MR02, NW98, NKP+96, Par01, RO99, RNNKZ03, XLO4, AM93, BC92, FC91, Goh93, GS91, LC94, KP93b].

accessed [THO93]. Accesses [YY95, Har91].

Accessibility [KWC09, SSP+99]. Accessible [FARH02]. Accountable [Ros03].

Accounting [BGM297]. Accuracy [HV07, HE92]. Accurate [KBP09, ZL07b].

achievable [KH93]. Achieve [Gen00, TLM04]. Achieving [PS96a].

Acknowledgments [CH04b]. ACOM [CSC07]. acquisition [CR94]. across [ABJ+93, RM90]. acting [MM96]. actions [RPW93].

Activation [CGL07]. Active [BIK06, KMW95, MR03, MBTP06, MJ+07].

Activities [SH96]. Actor [AYA09, BBS+09]. Actuator [KHMO05, RE09].

acyclic [GY93]. Ad [ALW+03, ANO04d, BK09, BMPP06, BS08, CLW03, CKWC08, DW04a, DW04b, DW06, DPH08, DAMK06, DB08, GJDA06, GYS05, GY07, GS03, ISRS06, JJ07, LCW03, LWS04, LHC06a, LWC+09, LWC+07, NO00b, OSRS06a, OSRS06b, PDH06, SLWP06, TR06, WY07, W004, Wu02, WCDY06, W006, WYD07, X05, YWD08, Y09, ZL07b].

Ada [SMBT90, STMD96]. Adapt [MTL95]. Adaptation [BES06, CMBAN08, KZ07, LLY04, dLCK+05, JASA08].

Adaptive [BCCP04, BWC+03, BG09, CO94, CHI00, CS02b, C+09, DBH01, DWX09, D03b, Dua95a, Du95b, DP01, FFPF05, GCCC+04, GLY07, GKK05, GPBS94, GS03, GKK06, HHL08, HP07, HY07, HJB+09, HPH08, JNGS06, KIBW99, KA06, KHY09, KLC97, KS06, KSC03, Kgs04, KLO2, L95, LB00a, LP07, LC99, LLL01, MTM02, MLLS07, OKSA01, PC07, PGDS94, PGBI03, QNR99, RCS01, RE09, RLD03, SSK01, SVM07, SW07, TX08, TW98, TD01, TR04, TR06, TW00, VSD01, VS11, WCH08, W98, Wu00, XZ04, YR06, ZPY06, DA93, Dua93, KK92, OL92, PGFS94, SH93, YTB92].

Addressing [CDV+06, DS05, NSZ02]. Adjacency [RC95].

Adjustable [JJ07]. Adjustment [ZMC03]. Admission [CS02b, HYP02, JXT+04, LLY04, STY09, XHYL05].

Advance [RRX09]. Advanced [CE95, KP09, MAS08, PNZ+02].

Advancements [BP96]. Advances [CMR07]. Affinity [AAD08, MLI4, SL93c].

affordable [NE93]. against [CS05, LW09a, PZZ09, SX03, TC07].

Agent [LJW05, M03, SSLS03]. Agent-Based
[LJW05, MX03, SSsLY03]. Agents [DS02].
Aggregate
[CCSC09, CC03, CH08, CB03, DZH05].
Aggregates [CPX06, TCY07].
Aggregating [BeFGM08]. Aggregation
[TF01, ZPY06]. Aggressive [KGMB94].
Agreement [AKNR +04, FMR07, SCY98, STW00, WCY95, WYWZ08, KA94]. AI
[DM93]. aid [WG90]. Aided [JK99, SR91].
Algebra [CHC04, KCS +99, AC93, EHJ94].
Algebraic [THT +97, CWL92]. Algorithm
[ACT +97, AR97, Ano04c, AMP07, AB03,
BCVC05, BQF99, BT98, BS08, COP00,
CS01a, CRS06, CGK04, CY95, CFW98,
CD08, CY96c, DW04a, DA98, DTE07, DS05,
DB08, DY05, Din01, EW97, EAF00, FE97,
FG06a, FB01b, GMRC07, GW96a, GRY07,
Gon03, GFG +99, GRT97, GY07, HNO98a,
HPT04, yH02, Hsi03, HALT95, HH95, HZ96,
wJPP97, JK99, KKM08, KZ96, KR00,
KM01, KA99, KC98, Lan95, LQ95a, LH05,
LM06, LT97, LL06a, LH03, LLWC09, LK00,
LC02b, MM98a, MM98b, MS03, McK98,
MBM98, MF96, NO97, NO98, OZ96, OB00,
Pre99, RCS01, SRD04, SyFL99, SWC95,
SSsLY03, SOM05, TW98, jTM96, UKY98,
WCL97, WH03a, WR04, WLL +07, WMN99,
WY +04, YJ97a, YJ97b, YR06, YC95, ZY07,
ZH98, BCBC92, BW94, BLO +94, BP94,
CC93b, CH92, CL94, FA94). algorithm
[GR90, HAR94, KSA94, LW95a, LG94,
LK94, ME95, MC93, NZ95, NM92, NLM90,
Omi90, OL92, Pan93, RST95, RJ94, Sin92,
SY93, SCD97, SW92, SR94, Var93, VJ93,
VJ94, WL91, WYTD93, WYDY93, YD94a,
You93, YC96]. Algorithm-Architecture
[GMRC07]. Algorithm-Based [CD08,
YJ97a, YJ97b, BP94, RJ94, VJ93, VJ94].
Algorithm-Hardware [ZY07].
algorithm-machine [SR94].
Algorithm-Specific [GW96a].
Algorithmic [EAK97, PR05b, PD99].
Algorithms [AF05, AFAGR97, AB99,
AV96, ABK98, AD95, BT00, BCVC05,
BCVC05, BeFGM08, BKB96, BCL09,
BBG +95, BGOS98, BNO +01, BC96, BCR98,
BHK +97, CLW03, CFF99a, CYW08, CCY03,
CC93a, CH04a, CBE93, Che96, CST07,
CPLX04, CPX06, CK96, CBW96, CER99,
DS002, D002, DVV07, DCF95, FYS05,
FARH02, GVW09, GVDG95, G994b, GG95,
GW06, GKK97, HNO98b, HNO98c,
HTPS02, Ian97, IB95, Jou03, JKA07,
KACK03, KHWT95, KB03, KPK09, KSP09,
LC95, Lee97, LL06b, LCB96, LPZ98, LRG99,
Li07, Li08, LHSML95, LNO +00, LCL03,
LRS02, LH06b, LSVMW07, LWL97, LZ05,
MGZN07, NLW99, NS95a, PHKC09, PR99,
PP04, PGFS94, RL98, Raj05, RKHM06,
RK08, RJ99, Rav07, RLW +07, RS97b,
SKK01, SM97, SB00, SZ02, SVM07, SX07,
Sto7, SL01a, SSS2, Sto4, SY00, SJPS01,
TCL96, TR93]. Algorithms
[Tse05, TNPK01, VV99, WKS01, WHW05,
WL08, WH03b, XLPH06, XC01, XTL06,
YF97, YKS03, YdR05C05, YD95, YMG03,
YZC08, ZY04, ZCL06, ZCF09, ZP07,
ZTO1, ZW02, dCVG02, AA94, AC92,
AH94a, Al95, AC93, AB91b, AI91,
BJS90, BZ949, Cap92, CARW93, CA93,
CCS90, Che95a, EHJ94, EG93, HMR94,
IS90, JR03, wJNPS97, KNC90a, KNC90b,
KK92, LK90, LW93, LL94, M93, Nas93,
NLG94, OW91, OSZ92, PJC93, PDC94,
RSS90, RWF94, R906, R90, SC94, SP93,
SF92a, SC91, SMJ92, Tak93, TB94, UEA95,
WC90, WW92, Zia93]. Aligned
[TC99]. Alignment
[CHC04, GAL01, LSVMW07]. Alignments
[RA04, SA09]. Alive
[MRT09]. All-Port
[H000, HK95, KLS00, jTM96, YW02].
All-To-All [SR98, SY98, BHK +97, CCY96,
FYP07, FH97, GP03, SS01, TC96, WY00,
WY01, WY02, CYW94, LS94b].
all-to-many [RFW94]. Alleviate
[KZ07]. Alleviating
[BP98]. Allocating
[Bil94, CT94, HJS +06, HC97, KA96, Men05].
Allocation
[AMSK04, CW00, CC99].
Approaches [MB07]. Approximate [BM00b, PKP09, LR96, THH08, Tse05, XTL08, KA94]. Approximating [BM00b, KPK09, LR96, THH08, Tse05, XTL08, KA94]. Approximation [BI95, yCM98]. Approximations [Gre98]. APTEEN [MZA02]. AQM [WLL+07]. Arachne [DR98]. Arbiters [Kuo01, ZY07, TC93]. Arbitrarily [EA93]. Arbitrary [AMS97, Bar98, VB96, VM04, WM95, LS94a]. Arbitration [MLSS07]. Architectural [KPBD09, SSP00, SKPS01]. Architecture [AGGD04, AGGD05, AAS03, AB03, BS96, DSY99, DZHG04, FV09, GMRC07, GM97, GSS06, ILL07, KH04, KW08, LC8507, LK07, LWY96, LSW09, LNOZ03, LLA+06, MR03, MGA+09, OC05, PABD+99, SS08, SCL05, SS02, Ste96, WCCR+07, YYY+09, YKDV02, ZYK07, ZN04, ZH07c, AS92, AG96, ABD94, BCJ90, CPA93, DFD93, Ef92, GP93, HSS94, Lee93, LWY93, MLL92, TC94, YZW94, ZA92].

Architectures [AFM02, AS96, CGM+07, CF01, CBWD96, CG02a, CG02b, Din01, FPGAD08, FJY98, GR06, IT07, LB03, MCG08, MYA01, OHRW99, RD98, SLE03, SvAS04, TSG09, XZL05, YYY+09, YKDV02, ZyK07, ZN04, ZH07c, AS92, AG96, ABD94, BCJ90, CPA93, DFD93, Ef92, GP93, HSS94, Lee93, LWY93, MLL92, TC94, YZW94, ZA92].

Area [CBD+01, FARH02, SC05, An94, CAB93, CC02]. ARIMA [TR04]. Arithmetic [RSP02]. Arrangement [HCH99, LC01, BGM94]. Array [BFL+01, CE95, CLPT02, CY00a, DSO02, DDP+98, GWL97, GR06, HTP02, HCYD01, KKC+05, KP93b, KKC03, LHS03, LP98, LCL03, Pa95, PPR99, RS97a, SK95, TCR96, TC95b, WHW05, XRY09, Cap92, GR94, JW94, Lin93, O9H91, SC92, SA93]. Array-Intensive [KKC+05]. Arrays [AKN95, CHC04, Che95b, CM95, Din01, GW96a, LHSML95, PK99a, RJ99, TKP00, TC95a, VMXQ04, WH01, YL96, vDSP96, GM94, LK90, Mar93, NJ94, SF92a, WC90, TL05]. Artificial [SZ03a, SZ06]. Ary [SX08, TLM04, BF98, CW00, Chi98, DAA97a, KP99, PK99, PW99, PG07, RC95, SG94, Soh95, SX09]. ASAP [GLY07]. ASCEND [AV96, Nas93]. ASCEND/DESCEND [AV96]. Aspects [AF05, ZJ03, MJ94, NSD93]. Assignable [PH05]. Assignment [AAB+00, BPT03, BRTM09, CB00, CYD98, HTSP02, KGM97, KM02, KA99, LS97, Lee06, NYD09, SKS02, SZS05, CNNS94, WW92]. Assignments [LO95a]. Assisted [AYA09, CF01, YLW07, ZH07a]. associated [CO94]. Association [BS08, JZ04, PPBSA97]. Associative [SDF96, WM95]. Assumptions [MRT06]. Assurance [XHYL05]. Assuring [CWY09]. Asymmetric [CB00]. Asymptotical [LC02a]. Asymptotics [DF09]. Asynchronous [BCVC05, BCVC05, BKB96, BCCP04, BBS+09, CF99b, DMR01, FG01, GMRC07, GY95b, HMM+00, HLH04, LL96, LT97, LCB96, LH01, MRT09, QR07, SW95, VM99, WDCK04, CF94, ML89, MD96, MMSA94]. ATM [KS01]. atomic [KST94, LG90, RPW93]. Attached [MKR00, ZBJ+05]. Attack [YWF+09]. Attackers [LLY05]. Attacks [CS05, CHK07, CPM07, PZZ09, SL09, SX03, WS03, WCCB06, XZG09]. attribute [KG92]. Attributes [HS+99, PR05b]. Auction [CZLM09]. Auction-Based [CZLM09]. Auctions [CGM05, WLL08]. Augmented [ABC+01a]. Authentication [LHL+08]. Authorization [WRB09]. Auto [FO05]. Auto-Parallelizing [FO05]. Autocorrelated [ZMRS08]. Automata [JASA08, SZ02, SZ03b, SZZ06, TK96a]. Automata-Based [S202]. Automated [TC07]. Automatic [AKN95, BW96, EHP98, Fos91, GP92,
KCS+99, LL02, MSH00, PD00, RSP02, RR02, SK02, TR04, GB92, KKP91.

Autonomous [BQF99]. **Availability** [KH98, MJ98, MG09, RD09, TF96a, AT07, DMTB93]. **Average** [RMO+95, SRT96, GG94b]. **AVMON** [MG09]. **Avoidance** [BPT03, CY06, FF98, YM09, Bir93]. **Avoiding** [WDY98, WCD08]. **Aware** [ACM08, AD08, Ano07c, Bar98, CJLN09, CNT05, GV09, GKO99, KZ07, KSC03, L08, LLGS09, LZR09, MROD07, PS08, RGK09, SY07, SP07, SLO06, SL01b, TX05, TGV08, VVR07, WS03, WWLS08, XQ08, YGE06, ZRS+05, ZCLC06, ZMM04, ZH05]. **Awareness** [LXL+05].

B [GM97]. **B-Spline** [GM97]. **Back** [AT01, KCD07, LLY05, SOM05]. **Back-End** [KCD07]. **Back-Propagation** [SOM05]. **Backbone** [BMPP06, SY97, WWL06, YWD08]. **Backfilling** [Fei05, MF01b, TEF07, ZFMS03]. **Backoff** [XLW+06]. **backpropagation** [KSA94]. **Backtracking** [LC01, PG01, RK93]. **Backup** [MAJ+07, ZJ99]. **Bag** [BCF+08, Ros02]. **Bag-of-Tasks** [BCF+08, Ros02]. **Balance** [PH05].

Balanced [AOB93, BB07, CT98, CHHC06, DPS96a, DPS96b, DP02, GZ06, HV07]. **Balancing** [BCVC05, BCCP04, BB07, CT80, CK02, CCJ02, DHB01, DH+07, DB06, Dvdk09, G09, GB06, HC98b, JJ09, LRRV04, LC99, LJW05, Mit01, SMB07, SX07, SZ08, TX95, Tse09, WT98, Wu07b, ZRS+05, ZS09, ZH05, ZT01, Bok93, G093, GT93, LK94, Lin03, WLR93, ZMRS08]. **Band** [WNKS96].

Bandwidth [ACT06, BGMZ97, CS05, CKWC08, CS02b, DZH04, GBD07, GLQL09, LKKS05, NE01, PC07, SY07, SSRV99, TCLY07, TSK06, TLGP07, US04, WCH+08, WFS09, WLL08, YL07, ZK04, MS94b, ZS95b]. **Bandwidth-Constrained** [CKWC08, GBD07, WCH+08]. **Bandwidth-Efficient** [YL07]. **Bandwidth-Optimal** [TLGP97]. **Bank** [BG98, TSP+08]. **Banker** [LM06]. **Banyan** [YJHG06, SF95, YN90, YA93]. **Banyan-Based** [YJHG06]. **Banyan-hypercube** [YN90]. **Barrier** [CS95, OS02, SH95a, SCL01, YK98, OD93]. **Barriers** [Sol02]. **Base** [PSK99]. **Based** [AFM02, AJ95, AEA97, AAD08, AA00, AMP07, BQF99, BA07, BGB97, BES06, BOC09, BRTM09, CS01a, CB05, CAA99, CCGC99, CBM+07, CT97, CST02, CS05, CY06, CD08, CL08b, CH09, CNGH08, CGL07, CLZM09, CMDP09, CAZ04, CNT05, CMBAN08, DS96, DW40b, DP06, EKOAW02, EBS04, FSY09, FG06b, FMR01, FT97, FYJ+09, GBD07, GPST09, GV09, GB06, HS99a, HY07, HJ+09, HH08, HLL09, HSK08b, HCC06, JZZ009, JZ09, Jet03, JKA07, KKM08, KZ96, KHO4, KA06, KP01, KL99, KHL07, KCD07, KK03b, LNY03, LDD08, LWY96, LMS04, LL06a, LL06b, LLSZ08, LC99, LLMN07, LCO03, LJDW05, LS06, LW09, LQ09, LZTY09, MKR00, MGZ07, MGQS+08, MKY+09, MX03, MTK06, MAJ+07, MRT06, MB08, NGB+05, NE01, NGM97, PC07, PPR95, QCC99, RS07b, RL03, SS08, SF08, SD04, SKB02, ZS02].

Based [SJ+09, SF03, SS00, SC0+07, SP05, SC05, SCW07, ST96, SCP02, SSZ02, St04, SVB05, SDDY00, SSSLY03, Sun02, SS09, SX03, SS00, TJ08, TC04a, TC06, TC07, TCO07, TXL08, TF01, TAKB06, TN08, TPL96, TYK99, TF696b, Tze04, VM99, WC09, WCH+08, WLD08a, Wu98, Wu98, XZ08, XZ008, YJ97a, YJ97b, YK98, YKS03, YLW07, YK99, YJHG06, ZYKG07, ZYHC95, ZMMS08, ZWX06, ZZT07b, ZLKK07, ZH05, ZH07c, ZJWX08, ZL05, ZCSY08, ZCO98, BW94, BP94, CR94, CH92, CTC03, DK92, DD95,
DI95, FHRT93, GD93, HMR94, JF94, LB94, MXEN94, MB92, NE93, RJ94, SMBT90, SSG91, VJ93, VJ94, YK92, DMTB93.

Baseline [YW05b]. Basic
[CHB98, DCF95, NO98, WS98, YN00].

Basic-Cycle [CHB98]. basics
[PK92].

Basis [CXP09]. Be
[MRT06, SVP08].

Behavior [Bor00, CHL09, CB03, GY95b, HS99a, NN96, RD98, YJHG06, TMTH96].

Behavior-Based [HS99a]. Behavior-Level
[GY95b].

Benchmark [HXA96, HWWX99, KHS07].

Benchmarking [MTSAD93]. Benchmarks [MM07, BE92, EHP98]. Benes
[DC98, LO95a]. Best [HY07, KY98].

Best-Effort [HY07]. Best-Fit [KY98].

Between [MT97, PPR99, ZYC95, BC98, LC96b, LNO+00, SF07, YR96, AM90, AM91, CL93, CO94, GM94, Pad91]. binding
[RK94a].

Bioinformatics [ON06]. Biological
[LSVMW07, YFM98]. Biology
[AA06, Ano05c, LS06].

Bipanconnectivity [SX09].

Bipanconnectivity [SX09]. Bipartite
[LXN07, YC96]. bipartite-permutation [YC96]. Bisector [WKS01]. Bit
[ST99s, SDF96]. Bit-Pattern [SDF96].

Bitonic [LB90b]. BitTorrent [LY08].

BitTorrent-Like [LY08]. BLAST
[ON06]. Block [ASS95, DDP+98, EG93, Har91, JR96, LR99, PPR99, PHP03, PD99, XRY99, KK93a, SMJ92]. Block-Cyclic
[DDP+98, LRC99, PPR99, PD99]. Blocking
[HY99, MGA+09, WP00, YJHG06]. Blocks
[YN00]. Bluetooth [LSW04, TSK06]. BON
[BRR07]. Boolean [CT97]. Boost [CW06].

Boosting [FLMD02a, FLMD02b].

Bootstrapping [MCL+07]. Borrowing
[EKOAW02]. Both [CBE93, TCS97].

Bottleneck [BF98]. Bound
[BDvD98, GT02, EA93, YD94a].

boundaries [WF94]. Boundary [LCN+07].

Bounded [CH90, CSR07, KRL+09, LZ02, NSU97, HK91]. Bounded-Bypass [CH90].

Bounded-Collision [CSR07].

Bounded-Size [LZ02]. Bounding [LL98].

Bounds [AV96, BC95, HK06, LDG04, LMT98, RO99, VV99, XU01, GG94b, JR94, SRT94, TR93].

Branch [EAK95, MC95, UEA95, YD94a].

branch-and-bound [YD94a].

branch-and-combine [UEA95].

Branching [Lee95]. Breadth [SVP08].

Broadcast First [SVP08]. Break [JBW+08].

Break-In [JBW+08]. bridge [EF96].

Broadband [SA09]. Broadcast
[BDD+96, CCY96, DW04b, GP03, HK95, KH04, KLS00, MS90, MQ97, NOS99, NOZ02, SR98, SPS98, SLFW06, SP+02, TJO8, TM96, THT+97, XTL06, YW02, ZL05, CYW94, LS94b, LG90, TM97, VB93, XUAS99]. Broadcast-Based [KH04].

Broadcast-Efficient [NOS99].

Broadcasting [BNH99, BBG+95, CFK98, DW06, HK98, IRS99, LWS04, PC96, PS96b, SSW95, SSSZ02, Sto04, TWH99, VB95, BLO+94, CC95, LA93, MS92].

Broadcasts [BLMR05, VB96, ST93].

Broker [DZH90]. Brokering [BG96].

Browsing [LA04]. Bruijn [BCH94, HW97].

BSR [Sto96, XUAS99, XU01]. buddy
[LC91b]. Buffer [CY06, CCJ02, GLV06, Par01, VV99, YZCO8, ZCL04, DY93, MS93].

Buffered
[CCQ+05, GLS07, LKK95, Mba09, MD96].

Buffering [LYW96, MLW96, ZY06].

Buffers [WHM09].

Building
[BK09, HLL09, LXNO7, YN00]. Built
[CPX09, WS03]. Built-In [WS03]. Bulk
[FH03, RRX03, YXW03]. bundled [BR94].
Bus [AV96, CG08, CS97b, DSO02, EAK97, FYS05, GP99a, HTS02, KH97a, LP96, LPZ98, RMO+95, THT+97, TH01, WHW05, BIA+97, Lee93, TV92, WC90, WS93].

Bus-Based [FYS05]. Bus-Networked [CG08]. Bused [Fid92]. Buses [Chu95, LOSW99, PZLS01, RS97a, WH01, GM94, LO95b, SP93]. Butterfly [HWSH00, WMN99, Tze93]. Bypassing [AB94]. Byzantine [AMPR01, BCdSFL09, NT09, SCY98, WCY98].

Butterfly [HWSH00, WMN99, Tze93]. Bypass [CH09]. Bypassing [AB94]. Byzantine [AMPR01, BCdSFL09, NT09, SCY98, WCY98].

C [Geh93, FO05, ZH99b]. C/C [Geh93]. Cache [CC03, CH04a, CY00a, CY00b, FPGAD08, GCCC+04, HNY02, HKS+07, KKGS01, MM07, MTL95, PNP+02, PPP04, PD95, PD00, PPR95, SPP+09, SPC+02, TCO01, VGSS01, WDCK04, WY98, YZ00, YZ08, ZCL04, AH91, JF94, LY93a, MB92, NGL94, SG93, SL93c, SF92b, YTB92]. Cache-Based [PPR95, JF94]. Cached [GS95]. Cacheminer [YZZ00]. Caches [WM95, WFP90]. Caching [BB08, ILL07, LSB+07, LWY96, LA06, LAS04, SD04, SWH98, TCC05, WXLZ99, WH98, LWY93].

CAD [HB92]. Calculation [CHB98]. Call [Ano97d, Ano97b, Ano97c, Ano98c, Ano98b, Ano99c, Ano99d, Ano99e, Ano01b, Ano01c, Ano01d, Ano02b, Ano03c, Ano03b, Ano04b, Ano04c, Ano04d, Ano05c, Ano04c, Ano04c, Ano09b, HY98, SCP03]. Call-Overflow [SFP03]. Can [LLY05, MRT06]. Can’t [LLY05]. Capability [ZYS94].

Capable [YKDV02]. Capacity [CS07, SSP+09, TSRS07, ZCLC06, ZL08, ZLP09, KG93b]. Capacity-Aware [ZCLC06]. Capacity-constrained [CS07]. Capsules [Geh93]. Capture [CAZ04].

CAREL [SR91]. Carlo [You93]. Carrier [CLW03]. Carry [WYD07]. Case [AD08, Fei05, GRT97, LS06, TSJ07, XRY09, DI95].

cases [YK96a]. Categorization [PS08]. Causal [CGK04]. Causes [Fei05]. Cayley [CL97, DD01, VS96, WMN99]. CC [BIWK00, PGBI03, ZY95, AGGD05].

CC-NUMA [BIWK00, PGBI03, ZY95, AGGD05]. CCL [BB08]. Cedar [TZ97]. Cell [Mha09, SZ03a, BJS90, KBD08, SA09, SPP08]. Cell/BE [SPP08]. Cellular [CS02b, HYP02, JLS02, NSZ02, SZ02, SFP03, SZ03b, SSZ06, XPL04]. Center [Wan98]. Centers [TV92, Wan04]. Centralized [BCF+08]. Centric [HIJ02, PK00, SCP02, YWY98].

Chameleon [KIBW99]. Changes [BCQD07]. Changing [CH08, Lai00, VJA97]. Channel [BP98, BPT03, HTS02, JLS02, KL02, MBW02, XL04, ZW02, Da92].

Channel-Adaptive [KL02]. Channel-Assignment [HTS02]. Channels [CS97b, GN96, HSH+09, LSF+09, SCK00, SDO0b, TPL06, VSD01, ZS95a, Ahu93, DA93, SGS94]. Characteristics [MTL95, NKP+96]. Characterization [Bor00, BE06, CY95, KPBD09, KK3b, LWJ05, MS99a, MM07, PW99, SCP02].

Characterizing [AD08, TMT96, YK96a]. Checking [Qad03, TNPK01]. Checkpoint [Qad01, WCLF95]. Checkpointing [AT01, BQ99, CS98, CS01b, CS02a, CCD+09, MS99a, PK92, PLP98, PS96c, QS03, SE98, TKW98, Ts03a, Vai99, WCLF95, KP93a, LP95]. Checkpoints [CS01b, CS02a, MNS97]. Checks [ANKA99]. Chief [Bhu06b]. Chip [AGGD04, Ano03c, BB05, BJM+05, HP06, KKC+05, LM06, MKY+09, PHK09, PSGD05, PP05, WOT+07, XL08].
Chip-Scale [BB05]. Chips [KAY+06].
Chitra [ADM92]. Choice [FCF00].
Choices [Mit01]. Cholesky [KBD08].
Choose [KSB99a]. Chord [SL09]. Chordal
[Ano99f, PK99b, YCTW07]. Churn [SX07],
Churn-Resilient [SX07]. Circuit
[AR97, CDR98, HALT95, PC96, FS96b,
SMJ90, SV97, BoK93, HC92].
Circuit-Switched [PC96, PS96b, Bok93].
Circuits [ZMP07].
Circular [FT97, HS98b, Tze93, WS93]. Circulation
[IKOY02]. CLAM [GMR98].
Clarifications [ME93]. Class
[IB95, RJ96, WL00, YW01, YW03b, YW04,
ZC9F09, AB91b, BL91, CAB93, CI92,
CMNS94, LC94, ME92, ME93, Nc92, OW91,
SCh91, YD94a, Zia93]. classes [Nas93].
Classical [BS96, O’H91]. Classification
[GR06, JW94, KS93, KS93b, MS99a].
Classifier [KGKL07].
Classifying [BOPZ04, XLW+06]. Client
[AFM02, CN02, CN04, IL07, RO40,
TCC05, ICT93]. Client-Server
[AFM02, ICT93]. Client-Side [TCC05].
Clients [dLCK+05]. Cloaking [WLH08].
Clock [EAK95, SS95, ZL07, dL98, Arv94,
OS94a, UE95, YM95]. Clocking
[EA93, PN95].
Clocks [Her00, MB92, TKT92]. Closed [Bar98].
Closed-Form [Bar98]. Closer [QD05].
Closet [WHW05].
Closure [TC95b, SC92, WC90].
Cluster [AAB90, FHB97, FG96b, GB06, HCC96,
HJH92, JK90, KB03, KLH07, KCD07,
KWOA05, MSM96, NGB95, OXL96,
RNR93, SC95, TJS97, VJR07, XZC02,
ZSMF01, ZNO4, ZJWX08, AT07].
Cluster-Based [FG96b, GB06, HCC96,
KCD07, NGB95, ZJWX08]. Cluster/Grid
[VJR07]. Clustered
[AF05, BP96, CB95, HOD99, PGD95,
SJD99, YG96, ZRS95, ZH98]. Clusterer
[WC90]. Clustering
[BMPP06, DAMK96, GRS99, HP03,
KABK03, KB06, RA95, RGL95, RS91b,
SYC93, YYY99, YG93, PLW96]. Clusters
[AS90c, BP96, CD97, CR96, CJS96,
DDV97, FYP97, FB91, GKK95, JZ94,
LLH10, LBS95, MAS97, RK98, SH95a,
US94, XZC94, XQ98, YKD02]. CM
[DC96]. CM-5 [DC96]. CMP
[CASM07, FPGAD98, HKS97, IT97,
SSP99]. CMPs [CH97].
coalescing [OD93]. Coallocation [BE97]. Coarse
[AFAGR97, KL01, DAF95].
Coarse-Grained
[AFAGR97, KL01, DAF95]. Coarsest
[RL98]. Code
[CK08, GAK93, MM97, Pre99]. Codes
[CAZ94, CBAN98, HT06, KLS00, LLL99,
MQ97, WL98b, X98, ZL96]. Codesign
[ZY07]. Coding [AJ95, CJHG98, CMM99,
MJ98, WLL98, Kop94]. Coding-Based
[AJ95]. Coherence [CLS05, CH04a, CH07,
CY00a, CY00b, FPGAD98, GCCC94,
GP99a, MM97, MTL95, PD95, PD00,
SPC92, TF96b, LY93a, MB92, YTB92].
coherency [AH91, DY93]. Coherent
[PNZ97]. Collaboration [Ky99, SGB98].
Collaborative [BRS97, CKH97, CL90,
LZ90, MMT92, SM92, SS90]. Collecting
[KK93b]. Collection [Bar98, EVM97,
GLY97, HV97, KMW95, LWP07, RKHM06,
SNI02a, SNI02b, TX98, HM92, IT93].
Collection-Aware [Bar98]. Collective
[BBC95, Kan01]. Collective-I [Kan01].
Collective-I/O [Kan01]. Collectives
[VR50]. Collector [CRN09, MJ06].
Collision [CSR97, MLSS07, NO00a].
Collisions [WY98]. Colored
[JK99, BCBzC92, LR93]. Coloring
[Hsi03, JBW98]. Column [LC96b, SP93].
Columns [BOPZ04]. COMA [ZY95].
combinations [SR94]. Combinatorial
[HC99a, YG96]. Combine [BNB95,
BDD96, EAK95, JTM97, UEA95].
Combined [AS99, MRT06, WS09].
Combining [KGS94, LKK95, LS94a].
FLZ09, KA09, LS06, RD09, SVM07, SZ08, VVR07, WBO+01, XZN08, wJNPS97.

Computationally [Ara08]. Computation [BW96, BGOS97, Chu95, GWL97, GRS99, KCRK00, LRRV04, LT00, MR06, NO98, PM96, SkLC+03, YF97, YXW03, AMAM94, CNS94, HE92, ML90, Nas93, Compute [EK95, HNO98a]. Compute-Intensive [EK95]. Computer [BA97, BHL+07, CV08, Chu95, GG95, JK99, RJ99, SR91, SP03, Var01, WS98, WS00, vDSP96, CPA93, Don91, GG94b, NLM90, SC93, YK92, BG90].

Computers [AGWFH97, AFAGR97, Ano97d, Ano97b, Ano97c, BBC+95, GKS95, Lee97, Li08, MT97, PLS01, STGP08, SW96, YFJ+01, ATG92, CCC990, DK92, GK93, HIS94, HQL+91, JS90, KK94, KDL91, KLR94, SP93, SW95, WLR93]. Computing [AN94, ACM08, AAD08, Ano01b, Ano01c, Ano01d, Ano09c, ABC01b, BNB95, BWC+03, BFL+01, CS01b, CS02a, CW02b, CY96b, CK02, DO02, EBS02, FLP+07, GB07, GSS06, HMM+00, HJH02, JKR01, KKS07, KB03, KL99, KSME08, KL02, L208, LLGS09, LSBS98, LBS05, LWN98, LMT98, MTM02, MX03, ON02, PS08, PC05, PS96c, Ros03, RD09, SRL98, SC05, SZ03a, SZ03b, TSAL97, TS98, TGV08, TAKB06, THW02, VB95, WK96, WOT+07, WL00, YK96a, YK96b, YDW+09, YK03, Zha03, ZS98, ZH07b, ZP07, ZW02, CO95, CYW94, DGB+96, EA93, FA94, SR91].

Concept [CCJ02, KCN90a]. Concepts [L095b]. concurrence [AB91b].

Concurrency [KWH02, FHR93]. Concurrent [AG96, Ant94, EDO06, GDJ94, HISS94, KMWM95, Pan93, XRR00, BCBzC92, CTC93, LNP94, TH93, VJ94, Geh93].

Condition [Dua95a, Dua96, VS11]. Conditional [HL09b, Lee95]. Conditions [NX95]. Conference [YW04].

Configurable [DDY99, RSP02, SY00]. Configuration [Add97, HDRS00].

Congestion [BLD05, CSH00, CY96, FH97, GW06, KZN07, LSC95, SP05, TLM04, TR06]. Conjugate [GKS95]. Connected [AD95, CL00, CXP09, Chu95, CY96c, DW04a, GG95, KWL+09, Kls98, LW95b, LWM97, MBM98, PLS01, TKP00, WC95, WL00, Wu00, dCvGGO2, CcSc90, CT94, CS92, EF96, GG94b, MC93, PN93, SP93, TC94].

Connecting [Add97]. Connection [AM06, NSZ02, AS92].

Connection-Limited [AM06]. Connectionless [CHA07]. Connective [KH97a]. Connectivity [AYA09, AD09, LBS01, LWXS06, SRZF04, Ah95]. Conquer [CPM07, LRTZ96]. Conscious [VK7+99].

Consensus [DMR01, FIM01, LC02a, MP91, NC95, SCY96, TYK99, WCR90, AB91a, Fu97]. Consensus-Based [FIM01].

Conservation [TSR97]. Conservative [BT00, NH93, NC92, WHL95].

Consideration [SH96]. Considerations [CY00b, KPC09, S95b, IC92].

Consistency [AK99a, CS92, KHS09, TX08, WCH+08, ZLAV04, ZPY06, ANN95, AMAM94, CcSc90, SS94, SL93]. Constraints [AA00, BRS07, CKC08, GL06, GLQL09, LT00, RC95, RSG06, ZL08, ZLP09].

Constructing [PKP09, KWL+09, KWH03].
KH97b, LS96, ST99b, WCL97.

Construction
[AFAGR00, HY05, JYVA05, LCN+07, PH96, TSK06, XP07, YWD08, Sch91, You93.

Constructions [AM99].

Consumption[BP98, KGKL08, KA99, ZS09].

Contents[Ano00b, Ano00c, Ano01f, Ano01g, Ano01h, Ano01i, Ano01j, Ano01k, TC04b].

Context[HV07, SS09, YK03].

Context-Based[SS09].

Context-Sensitive[YK03].

Contextual[JJ09].

Continuous[BV05, Gon08, JN08, LL02, SBK02a, SBK02b, XRY09, HN93].

Continuous-Media[BV05, LL02].

Continuum[AD09].

Contributory[AKNR+04].

Control[ASB02, ANKA99, BÖ98, BRSS08, BLD05, BG09, CWYZ09, CS02b, DDDY99, DWX09, DF99, HY02, JX07, JXT+04, KWH02, KL02, LJZA04, LLY04, LL07, LWS04, LH06a, LH06b, Lop02, LWK05, LLA+06, MGZ07, NW98, PK99a, Ram99, RL03, RNKZ03, SRT96, SLFW06, TB93, TLM04, TS07, TK06a, WILK07, WCH+08, WD06, XHYL05, XL04, YJX03, ZL07a, Bir93, Dal92, FHRT93, NSD93, SS90].

Control-Based[RLD03, WCH+08].

control-flow[NSD93].

Control-Theoretical[ASB02].

Controllable[RAHM05].

Controller[HY07, WOT+07].

Controllers[CH07].

Controlling[TF01].

Conventional[KET06].

Convergence[BCVCV05, BKB96, HPT04, HH95, KM06, dB98].

conversation[WF94, YK92].

Convex[BG0+96, HNO98a, AD98].

Cooperating[CF95].

Cooperative[BB08, ILL07, KA09, KBY08, WRB09, WCDY06].

Coordinated[CS98, CLY08a].

COPACC[IL07].

copies[AGE94, BL91].

CoProcessors[KSWR03].

copy[LC94].

copying[FT93].

CORBA[AFM02, FWDC+00, LNYY03, MFLX01].

CORBA-Based[AFM02].

Core[CGM+07, CHJ+07, DW03, DZHG04, GS03, JZXX99, KCRK00, LR99, MGZD07, Wan98, WFS09].

Core-Based[JZXX99].

Corona[BBS+09].

Correcting[KLS00, XB98].

Correction[Ano99g, Ano99f, Ano99h, CS02a, DPS96a, MBW02, MTM02].

Corrections[Sto04, ME93].

Correlated[MM07].

Correlation[LWP07, MAJ+07, SLT03].

Corrupted[HZ97].

Coscheduling[FFPF05, SL06].

cosine[MM96].

Cost[AAB+00, Chi98, CZLM09, GG09, GvG06, GMCB01, JLF03, KB03, LW09a, MLW06, MRLD01, MAS+07, MKY+09, OC05, PS96c, Qua01, RvG02, Sar93, SWH08, TC04a, TC04b, WKS01, WWL06, XZ03, YW05a, BL91].

Cost-Effective[JLF03, MRLD01, MAS+07, YW05a].

Cost-Efficient[MKY+09].

Cost-Optimal[OZ96, WKS01].

Costs[ABK98, KDW01, KM02, SRL98, SY98, TF96a, WT08, XLP06].

Covered[FG06b].

Covering[TF96b].

Creatures[BI95, HY97, HY01, HY04, KH97b, KH98, IK93].

Counter[WS03, XWL+06].

Counters[SY97].

Counting[GPST09].

Coupled[ADG+08, LJS09].

coupling[YD94b].

covariance[NH93].

Coverage[AD09, BSCB09, LWXS06, RL+07, WT08, XLP06].

Covered[FG06b].

Covering[TF96b].

Covers[PKL06].

CPU[US04].

CPUUs[SL06].

CRAP[KHWT95].

Crash[RCS01, VJA97].

CRCW[WH03a].

creation[MKH91].

Critical[AD09, HK06, H098, KA96, XTL06].

Critical-Path[KA96].

Cross[DAA97b, ZCF09].

Cross-Layer[ZCF09].

Crossbar
[Mha09, WL00, TC93, YC93].

Crossbar-Connected [WL00]. Crossed [CSH00, Fan02a, Fan02b, FLJ05, Wan08, Efe92]. Cryptography [BRTM09, EP05].

Cube [BP98, CL00, Chi98, CY96c, HGC05, JVA05, Kia98, LCRM98, PW99, PN93, SCL00, TLM04, TF96b, Wu98, CW00, DAA97a, Efe92, KP99, MC93, OC93, OD96, P5K99, PG07, SG94, SB94a, TC94, ZL96].

Cube-Based [Wu98]. Cube-Connected [CL00, CY96c, MC93, TC94]. Cubes [CSH00, Fan98, Fan02a, Fan02b, FLJ05, FJL07, FC98, Hsu93, HWSH00, JHK97, RC95, Sca99, SX08, Wan08, Wu97a, SX09].

Cubic [BP98, CL00, Chi98, CY96c, HGC05, JVYA05, Kla98, PW99, MC93, TC94]. Cubic-Based [Wu98]. Cubic-Connected [CL00, CY96c, Kla98, MC93, TC94]. Cubes [CSH00, Fan98, Fan02a, Fan02b, FLJ05, FJL07, FC98, Hsu93, HWSH00, JHK97, RC95, Sca99, SX08, Wan08, Wu97a, SX09].

Cut [CFKR98, Dua96, KP01, QNR99].

Cut-Through [CFKR98, Dua96, KP01, QNR99]. Cyber [Ano08c, TGV08]. Cyber-Physical [Ano08c, TGV08]. Cycle [CHB98, GW06, LH05, Ros02, RH04, ZKB08, SKF94].

Cycle-Stealing [Ros02]. Cycles [BT98, CL00, HCH99, Kia98, LW95b, MS03, Wan08, MC93, TC94, YM95]. Cyclic [DDP+98, CFC98, HWSH00, LRG99, LW09b, MJRS06, PPR99, PD99, TG99].

Cyclic-Cubes [FC98, HWSH00].

D [CYY00, DS05, GR90, JKA07, LMN94, ST99a, SY00, SIPS01, TSP+08, TC95b, WH03a]. DaAgent [MX03]. Daemon [KY97]. DAG [BOC09, KLH07, KGS94, MLS94, WSG94].

Dags [CMR07]. Daisy [VM04]. DASH [LLJ+93]. Data [AKN95, AMY09, AMS97, AM06, AKSS04, BcFGM08, BW96, BE98, CW02a, CHC04, CS97a, CL09, CY00a, CH989, CJPW06, CN02, CN04, CGM05, CAZ04, CSR07, DY97, DGHR03, EBS02, EDO06, EVW07, GAL01, GLY07, GLV06, GSS96, HV07, HQL+91, HCY06, HH95, HZ96, JLD95, JVYA05, KK04, KCS+99, KW09, KAY+06, KC97, KET06, LA03, LC95, Lee97, LR99, LSC07, LCL03, LRS02, LW07, MY07, MNN04, MTL95, NZP03, NSD93, ON06, OXL06, PK99a, Par95, PHP03, PC05, PP96, PS03, PSC+95, PPBSA97, PLT00, PK04, PW95, RKHM06, RSB97, RY98, Rob04, RJ05, Sahu00a, SF08, SK04, SkLC+03, SVB05, SP99, TS98, TX08, TGV08, TF96a, TTB+00, XCG04, XL04, XRY09, XTL06, YPK08, ZS90, ZXZ+09, ZH98, ZPY06, AB91a, CS94, DY93, EG93, GD94, GB92, HN90, KN95, KC99, data [KC99b, KGS94, LHS92, LZ90, RS91a, RST95, SMS93, SB94b, TB93, TT94, WTYD93, WYD93, WT92, HSWB07].

Data-Driven [KET06, PK99a, ZXZ+09]. Data-Flow [CS97a, CY00a, EG93]. Data-Gathering [ZS90]. Data-Intensive [ON06, OXL06, XCG04]. Data-Parallel [GS96, LC95, SP99, HQL+91]. Database [FCF00, ZBJ+05, GD94, OM90, TB93, Var93]. Databases [GLV06, HCY97, LC04, Men05, WH98, PK92]. Dataflow [BG90, AM93, Lee91, LHS92, PAM94].

Dataspace [SVB05, CR90]. DAW [CT07]. dBcube [CAB93]. dbx [NE01]. DCMP [ZKB08]. DDoS [CS05, CHK07, LLY05, SX03, WS03]. Deadline [KGM97]. Deadlock [BC96, CBD+01, DA93, Dua95a, Dua95b, Dua96, DP01, DLPP05, FF98, FGF+99, JKA07, LMN94, LPD05, MRLD01, PPD03, RLD03, SM03, TW00, VS11, WP00, XL08, Bir93, Dua93, GPBS94, PG98, PGS94, PN93, STMD96]. deadlock-and [GPBS94, PG98]. deadlock-avoidance [HSL92, LHS92, LZ90, RLY98, RS91a, RST95, SMS93, SB94b, TB93, TT94, WTYD93, WYD93, WT92, HSWB07].

[NE01]. debugging [GH93]. Decentralized [BCVCV05, BBR07, LC02a, RGL05, SVM07, SBR02a, SBK02b, WJL07, WZZ09].
Deciding [Ost90]. decision [YK96b].
Declustering [SL93b, To07, GD94].
Decoding [St096, THH96]. Decomposed [CDR98].
Decomposition [AAD97, CA99, KGKL08, KR00, LK94, PLT00, SK02, WMB96, MS94b].
Decompositions [PD99].
Detection [Ost90].
Defending [SX03]. Defense [CS05].
Deferred [DY97]. defined [MM96].
Deconnection [BC95, FR96, Kuc01, RS97b].
Deconnection-Routed [FR96].
Degradation [YJ97b, HW91]. Degree [CL07, EF95, HALT95, LSW04, WMN99, YV98, PN93, VS96]. Degrees [cFC98].
Delaunay [LCWW03, LSW04]. Delay [AH06, BR07, BGM97, BC95, CS01a, DF09, Fu97, LLY04, LLA+06, SJKC06, TYK99, TS07]. Delay-Optimal [CS01a, Fu97]. Delays [DHP+07, GRT97, VRRL96, BGM94, BC92, RS94]. Delegated [Ara08].
Delivery [BV05, CLB08, DHN95, Gon08, LLD05, SL01a, TC04b, XHYL05].
Demand [CLZM09, HL09a, ILL07, JGA08, LHTY99, SSK02, WL08a, XTL06].
Demands [XCZ02]. Demonstration [GB92].
Denial [CPM07, SL09].
Denial-of-Service [CPM07, SL09].
Density [AD09]. Departure [CHL09].
Dependability [PPD03, DK92].
Dependable [Ano98c, ABC01b, HSH+99, PABD+99, SR99]. Dependence [BE98, PP96, PK04, TN93a, KKP91, LYZ90, SF92a, VJ93, WT92]. Dependences [PW95, XC01, KS91].
Dependency [CTC93, TKW98]. Dependent [CASM07, SP03, AT07, OSS93].
Deployment [CBM+07, SKCL09, WT08, YLW07, YG08].
Depth [CS90, PWW00, FHRT93]. Depth-First [PWW00, CS90]. Derived [WL97]. Deriving [Abr97, XP07].
DESCEND [AV96, Nas93]. Description [QS03]. Design [ANKA99, AS96, ABS01, Ano04c, ACD+09, BDD+96, CRS06, CSR+09, CJHG08, CV08, CY00b, CL05, CS03, Din06, FVR03, GV09, GMCB01, GM98, HCHM09, HP06, HY07, IC92, JKA07, KYD+07, KNC90b, LB00a, kLCC+06, LG08, LK04, LAS04, LLA+06, MNM04, MB92, MCC08, MYA01, Pad91, Pak07, PGBI03, RB00, RLY+07, SKJ07, SBFO, SVM07, SMBT90, SH94, SF09, SP07, SM02, TC95a, VJ94, WMXZ06, WFO6, XPL04, YJ97a, YTB02, YN00, LKGG92, TV92, WF94].
Design-Space [MCG08]. Designing [Ano98b, BP96, BC96, CFC90, GWL97, KHWT95, TH96, WA99, WCR09, YK98].
Designs [TC95b, YW05a]. Detecting [HZ97, ISAZM09, MSM09, SM97, SWWJ08].
Detection [ANKA99, AMR01, BCVCV05, BT98, CHK07, CK96, DTE07, DL02, FMG02, GW94, GW96b, HS99a, LT97, LLS06, LCN+07, MS03, MSG07, NO00a, PK00, RLY+07, RLD03, RKK03, TT01, XL08, XL96, ZLKK07, GM96, HISS94, LW95a, TH93, VJ94]. Detectors [HHM*00]. Determination [CH01, HMR99, KCS+99, KL99].
Determining [HMW93, Tho93].
Deterministic [BR97, CF05, LHH07, KWOA05, PF96, XZG09, XB98, AV94].
DEUCON [WJL07]. Developing [GMS09, LPD05].
Development [TS98, Gab90]. Devices [CKK*04]. DFT [GR90].
DHT [CSC07, LQZ09, ZH05]. DHT-Based [LQZ09, ZH05].
Diagnosabilities [CCC05]. Diagnosability [Fan98, Fan02a, Fan02b, HC09, HTO7].
Diagnosis [CBE93, DC98, Fan02a, Fan02b, HALT95, KHM05, SS07, SB04, BP94, LS94c, Rao96, VJ94].
Diagonal [TLGP97, YFJ+01].
Diagonal-Propagation [TLGP97].
Diagram [AD08, EW97]. Diameter [DAA97a, DAA00, EF95, MC93, TR93].

Diameters [KWL+09]. Diamond [PK01].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91].

Differentiated [You93]. Diameter [KWL+09]. Diamond [PK01].

Dictionary [NLW99, YL96, FC91]. Different [EAF00, PR05b, PR05a, Kop94]. Different [KCB92a, KCB92b, BDS94]. differential [You93]. Different [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].

DiCAS [WXLZ06]. Dictionary [NLW99, YL96, FC91]. Dierence [EAF00, PR05b, PR05a, Kop94]. Different [KKCB02a, KKCB02b, BDS94].
Distributed-Memory [DA98, RvG02, SST94].
Distributed-Parallel [MJ98].
Distributed-Shared-Memory [Bor00].
Distribution [AF05, Bar98, BGJ06, CHA07, CF08, CWCC07, CN02, CN04, DDV07, GAL01, GLQL09, KM02, KYB08, Lee97, Li03, MZ05, NZF03, Ro04, SF08, SVBV05, TC04a, TX05, VR05, WCD08, YM09, CV92, RS91a].
Distributions [LRG99, PSC05, TG99].
Distributive [CY96c].
Diverse [LG08].
Divide [CPM07, LRTZ06].
Divide-and-Conquer [CPM07, Divisible [Bar98, BCL05, CG08, CWCC07, DW03, GKK05, Li03, SRL98, VYRC05].
Division [QM94].
DNS [WZP03].
DOACROSS [CY96a, CY99, KS91, XC01].
Document [Tse05].
Documented [GM09].
Documents [BV05].
Doing [SF09].
Domain [BJM05, GMS09, Pak07, Pre99, PLT00, SK02, SKB04, SCP02, BGO97].
Domain-Based [SCP02].
Domain-Oriented [GMS09].
Domain-Specific [Pak07, Pre99, BGO97].
Domains [CHK07, ADM92].
Dominating [DW04a, KWL09, SSZ02, St04, WAn04, WU02, WCDY06, jTM97].
Dominating-Set-Based [WU02].
Domination [vH02].
Domino [LNOZ03].
Double [DY05, SZ95a].
Double-Loop [DY05].
Down [KP01, KDL91].
Down* [SRD04].
Downlink [MSM06].
Download [LA04, SJKC06].
DP [JKR01].
dQUOB [PS03].
DRAM [WHM09].
Draw [COP00].
Driven [BO98, CML05, KET06, LZTY09, PK99a, PPR95, RE09, RBSP02, SSRV99, SJKC06, SJ99, WR04, ZZ+09, BCJ90, HE92, HB92, NGL94].
DRP [GJDA06].
DSC [YG94].
DSDM [AMH08].
DSM [CH04a, LBS01, PBA03].
DSP [FO05, GR94, SZXS05].
Dual [CDV06, LS09, MGDS07, OC05, RMO+95, SCY99, BR91, CV92, KGM96, MF91].
Dual-Core [MGDS07].
dual-network [CV92].
Dual-Objective [LSZ09].
Dual-Thread [OC05].
Duality [CMR07].
Duplicate [FRGJ07, MD97].
Duplication [AK98, BKS03, BOC09, CKC08].
Duplication-Based [BOC09].
Dynamic [AMP07, BCC05, BM00a, CDMB05, CBD01, CRN09, CKC08, CHB98, CAZ04, DB08, DHP07, DB06, DvdMK09, DIM97, DLPP05, DMKJ96, HKL00, HV07, HCY06, HW08, HS99b, JLS02, KKS07, KBC+01, KSME08, KPC09, KA96, LW95b, LL04, LCB96, Li08, LBS01, LLWC09, LPD05, MM98a, MM98b, MMJ03, OB00, PP96, PB96, PPD03, PS03, Pre99, RRRM09, RPW3, SKK01, STW00, SB04, SS00, TSC09, TC04b, THH08, TF96a, VB95, WL08a, WT98, WLL08, XCL02, XZL05, XC01, XYW03, ZMC03, ZLP09, ZTO1, AM93, GDI93, HK93, HLY94, Lee93, LC94, OSS93, Sin92, WLR93].
Dynamically [DDY99, TW98].
Dynamics [MZT08, SGTP08, YD94b].
e-Commerce [ZWX06].
E-Commerce [MS94a].
e-Transaction [QR07].
e-Transactions [FG01].
Ear [KR00].
Early [DGFR03].
EDF [Bak05].
Edge [CSH00, FH97, HL09b, KWH03, RSO8, SLH97, WY07, LR93].
edge-colored [LR93].
Edge-Disjoint [KWH03].
Edge-Fault [HL09b].
Editing [SS09].
Editor [ACM08, Bhu06b, BH06a, Bhu07a, Bhu07b, Bhu08, Bhu09b, Bhu09c, KMT91, Yew03, Yew04a, Yew04b, Yew05a, Yew05b].
Editor-in-Chief [Bhu06b].
Editorial [AAB06, Bhu06b, Bhu09a, CRS06, IT07].
Law97, Law95, PP05, Sta98, Sta99, Sta00, Sta01, Sta02, SR99, Yew02, Yew06, Ano99g, GZ03, Zha03.

Editors
[LL07, ON02, WA99, ZH99a]. Effect
[CC03, CHL09, ZLE91]. Effective
[CY96a, JLF03, JKA07, SRD04, THW02, WX07, YW05a, YL97, AN93, SH94].

Effectively [LSF09, OXL06].

Effectiveness [WCBX06, Sar93]. Effects
[HWWX99, KSP09, WSA95]. Efficiency
[CC03, CTF09, LH06b, MGDZ07, MT97, RK93, TT94]. Efficient
[ACT06, Ara08, AD95, AB03, BCVC05, BGBP01, BJJ02, BG09, BHK+97, CF99a, CHA07, CF00, CSSC09, yCM98, CC03, CBE93, Che95a, Che95b, CW00, CT02, CPhX04, CY96b, CC98, CC99, CCD+09, CHB98, CLS04, CMDP09, DW06, DZ04, DS94, DDV+07, EBS02, EDO06, FJY98, FJR02, GPST09, GV09, Gom03, GJDA06, GAK03, GW06, GL06, GKG06, HÖ00, HHL08, HP06, yH02, HW97, Ian97, ISRS06, IB95, JZXX99, JTP+08, JTC08, JB01, KABK03, KZ96, KSP02, KHWT95, KP01, KB06, KP93a, KYB08, Lee97, LDC08, LWY96, LMS04, LYZ90, LPZ98, LRG99, LX08, LWC+09, LOSW99, LCL03, LH03, LNOZ03, LJW+07, LWP07, LC02, MGZN07, MY07, MB07, MZ05, MM98a, MS03, MKY+09, MQ97, NO98, NOS99, NO00a, NOZ01, NOZ02, NSU97, Par95, PH96, PPR99, Par01, PM02, PDC94, Pre99, PH02, Raj05, RSS00].

Efficient
[RE09, RJS0, SS96, STY90, SVP08, SJPL08, SO95, SZXS05, SJM09, SP95, SCP99, SP98, SKPS01, ST93, SW92, TGV08, TS06, TCR96, TD01, TS08, TC95a, TWH99, WW92, WHW05, WXZ06, WWP06, WLZ08, WMW08, WSG01, UXAS99, XL96, XH08, YL07, YLL+07, YWD08, YK03, YY98, YY97, YL96, YC96, ZH05, Zia93, dB08, AM91, CC93b, CESS90, CAB93, Cor92, Gab90, KN95, LG94, LC91a, MS93, MM96].

Effort [HY07]. EIC [Bhu09a, Yew06].

EKMR [LCL03]. Elastic [KSP02].

Election [CC93a, DB08, DML97, NO02, Sin96, YK99, AAG94].

Electrocardiogram [JNGS06]. Electronic [LZ05].

Element [LC99]. Element [ADD+02, CHC04].

Elements [PKL06]. Eligibility [LMS04].

Elimination-Based [LMS04]. Eliminate [PW95]. Eliminating [GP99a, MD91].

Elimination [Agr98, ABK98, CY99, FRCJ07, MGA+09, SS07, Sto04].

Elimination-Based [SS07, Sto04].

Embedded [BB05, CLS04, FDC00, GVV09, JNGS06, KHM05, KB06, KMW08, LA04, MZ05, YW98, ZBM09, Tak93].

Embedding
[Agr99h, Avr99, BS96, FLJ05, GM94, HS97, LCN96, LH05, LC01, SBS98, SX08, TCS97, Wan08, YR96, CARW93, CL93, MS94a].

Embeddings
[FJL07, GS95, dB08].

Emphasis
[AX04].

Empirical
[SLY90, DF97].

Employing [AD06]. EMPOWER [ZN04].

Emulation [WLZ07, ZN04].

Emulations [OHRW99]. Enabled
[BB08, CKK+04, LLY04, MSM06].

Encoding
[SPS98, THH96, RJ94].

Encoding/Decoding [THH96]. End
[AS02, JTC08, KCD07, KMW08, LWW05, SF07, SS07, WJJK07].

End-Host
[SF07].

End-Systems [AS02]. End-to-End
[JTC08, KMW98, LWW05, SS07, WJJK07].

Energy
[AD08, CHA07, CKK+04, CTF09, DZ04, DKKS04, FHA06, FLP+07, GVV09, GY07, ISRS06, KA09, KSM08, KMW08, LLTW08, LDC08, LWC+09, LRS02, LH06b, LWP07, MGZN07, MY07, MZ05, NO00a, NOZ01, NOZ02, SJPL08, SBCO+07, TM06, TGV08, TSK06, TSS07, WMW08, WCD08, YK03, YZ08, ZS09].

Energy-Aware
[AD08, GVV09].

Energy-Efficient
[DZ04, LDC08, LWC+09, LWP07, MGZN07, MY07, MZ05, NO00a, NOZ01, NOZ02, TGV08, WMW08, YK03].

Enhance [OHRW99, XL04]. Enhanced [BGO98, BGOS97, HCHM09, KK03b, MZA02, SM03, BGO97, KS94]. Enhancing [AA09, CLY08b, CK96, LK07, RD09, ZH06].

Ensure [WT08]. Ensuring [KK03a, QR07].

Enumeration [BDL95]. Envelope [CW02b]. Environment [BA04, DS02, DvdMK09, Gon03, KKGS01, KWH02, LMT98, LC02b, MOFD05, MROD07, RRFH98, SGB08, SKLC+03, CD94, DY93, GG94a, LHS92, RK94a, SM94].

Environments [AJF96, AKSS04, CLY08a, ED060, EW07, GR95, GN06, HS99a, KA06, KW08, PF08, SVM07, SWH98, SB04, TCO01, WDCK04].

Epidemic [GKG06]. Epidemic-Style [GKG06].

Equations [BAH01, KBD08, MBM98, CARW93, You93]. equivalence [WY94]. EREW [Che95a, PDC94]. Errata [Ano02c].

Erratum [Ano99h]. Error [ANKA99, KLS00, MBW02, MTM02, SM97, WFP90, XB98, HI99a, JF94, TH93, VJ94].

Error-Correcting [KLS00, X99a, KK93a, KM91, LK00, RRRM09, TYK99, BCBzC92, HMR94, IK93, NLM90, Sin92]. Executing [FB01a, GVG95, WW92]. Execution [ABr97, AKSS04, CF00, CY96a, DHN96, DÖ, HÖ99, HC03, HC97, KL01, KPR05, MG97, PH02, TSAL97, WSB90, CIW91, KK93a, KM91, ML94, RK94a, RK94b, RM90, Uht92, WCS92].

Executions [MJRS06]. Existing [dLCK+05]. expanding [JS93]. Expansion [dBL98]. Expansive [CMR07]. Expected [WWW09]. Experience [CSR+99, DCS96]. Experimental [BCJ90, Fei05, HS99a, KKKBC02a, KKKBC02b, NN06, PK04]. Experiments [GRM98].

Expiration [TC04a, TC06]. Expiration-Based [TC04a, TC06].

Explicit [YL08]. Exploit [RS02, WX07, YZZ00]. Exploitation [PLT00]. Exploiting [AGGD04, AK98, CW06, HT06, LCB00, LL90, LWP07, MA01, Pre99, RSB97, RM90, RH00, TLM04, TT94].

Exploration [LC05, MCG08]. Exploring
19

[CC03, CH04a, KYD +07, PC05, SP07].
exponential [MM96]. Exposure [ZZMN07].
Expression [CT97]. Expression-Based [CT97].
Extended [DW04a, KP92, Sca99, Wu97a, Wu00, Wu92, WCDY06, YJ97a, ZMMS08, LH93, jTM97, VGGD94].
Extending [FPGAD08]. Extensible [Din06, RFDS97].
Extension [FD94].
Extensions [UZCZ97]. Extraction [CTF09, JNGS06, GO93, GP92].
F [Ahu93]. F-channels [Ahu93]. Fabrics [HDF07, Tze04].
Factor [GZ09].
Factorization [FJY98, GKK97, KBD08].
Fail [CD08]. Fail-Stop [CD08]. Failure [DO02, FCF00, HS99a, +00, KH05, LL02, PS96c, SCY96, WYWZ08, ZS95a, ZLKK07, MP91].
Failure-Detection [HS99a]. Failures [CD08, CS96, Par95, RCS01, Sin96, SS07, TCS97].
Fast [DV07, HS08, IKOY02, KSP02, LMS04, LK00, MEKOT03, TB94]. Fairness [AMY09, JNGS06, GO93, GP92].
Fastest [AN99]. Fat [CMDP09, MKY +09, RRRM09]. Fat-Tree [CMDP09].
Fault [AOK09, AB99, AM95, AMPR01, Ano98b, BMR99, BHC99, BHC99, CYW08, CL93, CLJ +04, ICL95, CC01, CD08, CXB99, CC98, CCD +09, DDY99, DY05, Dua97, FIMR01, GY95a, GN96, GMCB01, HY99, JZXX09, KH04, KLC97, Lan95, LDC08, LH06a, LHSML95, MM98b, MJRS06, MBM98, PG07, RO99, RST95, RRM09, SyFL09, SCP99, SB04, SDDY00, SN02a, SN02b, SLH97, TJO7, THH96, TL06, TB94, TCS97, TH01, VDS99, WC09, WMWL08, Wu98, WA99, Wu01, Xia01, YJ97a, JY97b, YDW +09, ZS98, dB98, AM91, BS95, BP94, CS90, Chua96, GMG96, KK93a, LG90, MN92, OC93, Rao96, RJ94, SB94a, SM94, Tze93, TC94, VJ93, VJ94, WF94]. fault [YZW94].
Fault-Resilient [AOK09]. Fault-Tolerance [GMM97].
Fault-Tolerant [AB99, AM95, Ano98b, BMR99, BC99, CYW08, ICL95, CC01, CC98, CCD +09, DDY99, DY05, Dua97, FIMR01, GY95a, GN96, GMCB01, HY99, JZXX09, KH04, KLC97, Lan95, LDC08, LH06a, LHSML95, MM98b, MJRS06, MBM98, PG07, RO99, RRRM09, SCP99, SDDY00, SN02a, SN02b, TH96, TCS97, TH01, VDS99, Wu98, WA99, Wu01, Xia01, YDW +09, ZS98, dB98, BCh94, CL93, FD94, OS94a, OS94b, RST95, TB94, BS95, CS90, KK93a, LG90, SN94, OC93, Rao96, RJ94, SB94a, SM94, Tze93, VJ93, VJ94, WF94, YZW94]. Faults [CB93, CC01, NT09, RCS01, SCY98, KA94].
Faulty [Ano99b, Avr99, CCP95, CT97, CH01, Fu05, GP99b, HCH99, HH97, KY98, LC01, PKL06, SR98, SX08, TW00, YR96, TR93].
FC3D [RLD03]. FDDI [BDS94, KZ96, SZ95a, ZS95b].
FDDI-Based [KZ96]. FDDI-M [SZ95a].
Feasibility [WR04]. Feature [JNGS06, GO93]. Feedback [FZGC06, LWK05, LLA +06, PC07, SC05, SS90].
Feedback-Based [PC07, SC05].
Feedbackforward [EAK97]. Fei [YYX +09].
Ferry [ZH07c]. Fetching [WB98]. FFT [GK93, Har91, SFB00, TH93]. fiber
[AAG94]. fiber-optic [AAG94]. Fibonacci
[Hsu93, JHK97, Sca99, Wu97a]. File
[FV09, FB96, HY94, JO95, LW08, MJ03, NKP+96, SJK06, WX07, AGE94, BL91, KE90]. File-Access [NKP+96]. Files
[DP02, HZ97, KA06, PM02]. Filling [AB07]. Filter [LH93, TSP+08]. Filtering
[LKK02, TZ90, SX03, WH03b, SMJ92]. Filters [WH01]. Find [XZG09]. Finding
[SJ98b, LH03, Wan98, Wan04, CF94]. Fine [Ksh03, PKJ97, RH00, RH04, Sun02, ZF07, DAF95]. Fine-Grain
[RH04, Sun02]. Fine-Grained [Ksh03, PKJ97, RH00, ZF07, DAF95]. Finite
[GLS07, LKK95, LC99, SKB04, TK96a, MD96]. Finite-Bounded
[GLS07, MD96]. Firewall [LG08, LG09]. Firm [Ram99]. First
[BMR99, PW00, SV08, CS90]. First-Fit [BMR99]. Fit [BMR99, KY98]. Fixed
[EF95, cFC98, OPZ99, WMWL08, PN93]. Fixed-Degrees [cFC98]. Fixed-Priority
[WMWL08]. Flat [TC04b]. Flexible
[DY99, FFPF05, HKS+07, LDC08, SDFV96, TL06, XZG09, RFDS07]. Flexible-Schedule-Based
[LDC08]. Flexibly [PH05]. FlexiTP [LDC08]. Flip
[CBM+07]. Flip-Based [CBM+07]. Floating
[ZP07]. Floating-Point [ZP07]. Flooding
[DP06, LJW+07, SL01a]. Flooding-Based [DP06]. Floods
[SWWJ08]. Flood [BRSS08]. Flow
[AA03, ANKA99, BO98, BJM+05, CS97a, CY00a, DD99, DF99, FYJ+09, LL06b, LMN95, RLD03, AN94, Bok93, Dal92, EG93, KGS94, MS94b, NSF03, SM93, TB93]. Flow-Based [FYJ+09, LL06b]. Flows
[JXT+04, LW09a, ZMR08]. Floyd [MF96]. Fly
[K06, MRT09, PK00]. Fold [YW03a]. Folded [DCF95, OD96, EAL91, KS94]. Force
[LW09c]. Forests [VRK16]. Fork
[Che01, LMT98, KS93, TRS90]. Fork-Join
[LMT98, KS93, TRS90]. Fork/Join [Che01]. Form
[Bar98, ME95]. Formal
[GT02, PD00, WP00]. formalization
[AH93]. Format [EBS02]. Formation
[BMP06, DW04a, LSW04, WWL06]. Formulation [PK01, KSA94]. Fortran
[SLY90]. Fortran/HPF [U2CZ97]. Forward
[Dua96, MTM02, WYD07]. Forwarding [BSCB09, KCD07, WCBX06, WH08, YL08, KCPT96]. Four
[CL97, CH95, MN99, AH93, VS96]. Fourier [FA94, ZA92]. FPAs [ZMP07]. Fragment
[MMJ03, SY93]. fragmentation
[NSD+91, YW93]. Fragments [Men05]. Framework
[AB07, BCCP04, BF04, BC96, CAZ04, DLS09, FS00, GAL01, GAG96, GSS96, KCR99, KCRB03, KLC97, KyK09, KPBD09, LK07, LL07, LWP07, MAS08, MYA01, PK95a, RSB97, SBF00, SKCL09, SA94, TH08, YI09, YR06, ZCO98, vDSP96, EHH94]. Free
[BC96, CBD+01, Du95a, Du95b, Da96, DP01, DLPP05, GPST09, GY09, HCH99, JKA07, Kuc01, LY08, LPD05, Mic04, MRT06, PPD03, SGB08, SL01a, TW00, VS11, WWWA09, BR91, CS94, DA93, Da93, GPBS94, HMP2, LMN94, PGDS94, PGFS94, PN93, SC93]. Free-Riding
[LY08]. frequency [ADM92]. FRoots
[TL06]. FT [RRRM09]. FTPA [YDW+09]. Full
[CSCP99, FRGL09, MT97, PS96a, RO99, LC94]. Full-Information [FRGL09]. Fully
[LBS01, MBTP06, PGFS94, RLD03, TW98, vdMDM07]. Function [WR04]. Function-Driven [WR04]. Functional
[AGWFH97, CE95, PAM95, YA93, GP92, MR94]. Functions
[HHM+00, LBS05, GG94a, MM96]. Fundamental
[DZH05, Sah00b]. Fusinc
[FZVT98]. Fusing-Restricted [FZVT98]. Fusion
[MA97, SvVB05, JWC94]. G
[XPL04]. Gabriel [WY07]. Game
[BHL+07, BGD07, KA09, KHS07, SZ08, YM09, YK09]. Game-Theoretic
[KHS07, SZ08]. Games [CHL09]. gamma
Gang [WF03, ZFMS03]. Gang-Scheduling [ZFS03]. Garbage [CRN09, KMW95, MJ06, RKHM06, SNI02a, SNI02b, HM92, IT93]. Gathering [LR90, MY07, YKP08, ZS09]. Gaussian [ABK98, PH96]. Gemini [CFB02]. General [Agr99, BF04, CM95, CCF96, DP01, FF98, HMR94, PK95a, RS97b, SM97, YJHG06]. Generalization [PZLS01]. Generalized [Chu95, DFKS01, EAK95, FE97, HPT04, HCYD01, JHK97, LKKS05, LL06a, LL06b, MC95, OC93, PM96, UEA95, WCY95, CA93, FC91, ME92, ME93, SKF94, SB94a, ZL96]. Generated [TEF07]. Generating [BI95, MQ97, MM96]. Generation [FI95, GAK03, LF03, TG99, ZSMF01, Fos91, MCH90, 99]. Generational [MJ06]. Generic [PABD99]. Genetic [CFW98, CFR99, WYJ04, ZWM99, ZT01, ZW02, HAR94]. Genetic-Algorithms [ZW02]. Genome [WZZ09]. Genomic [JTP08, MDL06, SA09]. Geo [WLHB08]. Geo-Forwarding [WLHB08]. Geographic [XLPH06]. Geographical [CW06, FG06b, SvVB05]. Geometric [ALW03, CL09, KH97b, LW09c, Che95a]. Geometry [LOS99, wJNPS97, ZA92]. Given [CM95]. Givens [MBM98]. Global [BNBH95, BCL09, BDD96, CLJ94, DGFH03, DvdMK09, HHM00, Ksh93, LT97, MD97, MNS97, NX09, OXL06, PC05, TAKB06, TLM04, XL04, GG94a, KM91, TM97]. Global-Scale [DvdMK09]. Global-State-Triggered [CLJ94]. Globally [AFGR97, Ksh93, PKJ97, RH00, ZF07, DAF95]. Gradient-Based [GVV09]. Gradually [LWN98]. Grain [RH04, Sun02]. Grained [AFGR97, KL01, Ksh93, PKJ97, RH00, ZF07, DAF95]. Granularity [FI95, GY93, MKH01]. Graph [AAD97, ACT97, BT98, CLB08, Che96, CL97, JJ07, MD97, MS03, OR97, PPF04, PWW00, RRR07, SBS98, TF01, THT+97, TCS97, WMM99, EG93, FIA94, LB94, Lat94, MS92, MJ94, RAO96, RJ90, VS96, WC90, YW93]. Graph-Based [TF01]. graph-level [EG93]. Graphics [TSP+08]. Grids [BDL95, BKS03, COP00, CS97a, CTS96, CH08, CKE99, D001, DN90, GZ09, H97, HCH99, yH02, Hsi03, HC97, ISAZ09, JK99, KA96, LKK02, LC99, LC01, SWC95, WY07, WV98, ZMM04, dBL98, Cor92, DT94, GY93, Lee91, LR93, LH94, PAM94, Sch91, SS94, VJ93, WV98, YC96]. Gravitational [HJB+09]. Gray [MQ97, ZL96]. greater [HM90]. Greedy [XLP06]. Grid [DvdMK09, LSZ09, PF08, RD09, W95, WBO+01, BcFGM08, BWC03, SVM07, VVR07]. Grid-Structured [WH95]. Grids [AMY09, CCD+09, KA09, S08, TZXN08, CC93b, EF96, ATML08, BA07, BGJ06, DV07, KHS07]. Group [AKNR04, AMP07, D03a, D03b, FB01b, Jou03, KMM08, KM01, LNY903, LL07, MFLX01, SJd9+09, XP07, YW04]. Group-Based [SJd9+09]. Grouping [CH08, TKP00]. Groups [STW00]. Growth [GZ09]. Growth-Restricted [GZ09]. GTS [HHP08]. Guarantee [Ram99, XP05]. Guaranteed [DZH04, KS01, LWX06, SL01a]. Guaranteeing [MGA09]. Guarantees [ASB02, FZGC06, HH08, KCK+06, LL+06, NK08]. GUARDS [PABD99]. Guest [CRS06, PP05, ACM08, GZ03, ON02, WA99, Zha03, ZH99a]. Guided [ZMR08]. H [MKY09]. H-Tree [MKY09]. Hamiltonian [HCH99, LC01, Wan08].
Hamiltonicity [HL09b, Fu05]. Handle [XCZ04]. Handling [BCQD07, MRLD01, SP03, TCLY07, XRR00, YD94b]. Hard [BMR99, GMM97, HS99b, WMWL08]. Hard-Real-Time [BMR99]. Hardware [CY00b, CMDP09, DSDS95, DS96, LLS06, LNO+00, RSV90, XL08, ZY05]. Hardware-Algorithms [LNO+00]. Hardware-Based [CMDP09, DS96]. Hardwired [SH95a]. Harmonic [ZX04, ZCSY08]. HARP [DFD93]. Hartley [AD95, ZA92]. HARTS [SH96, ZS95a]. Hash [HCY97, RHM09, TP95, OL92, WYTD93]. Hashing [DPH08, MD97]. Hazard [Mic04]. HBA [ZJWX08]. Hector [RRFH98]. Height [YCTW07]. Hellinger [SWWJ08]. Helper [LJLS09]. Hereditary [yH02, Hsi03]. HERO [ZLZN09]. Heterogeneity [AD08, LP07, SGL06, WX07]. Hierarchical [CS08, DC95, GD95, HSO97, HLL09, JLC05, KW08, MB94, PM94, RAj05, RJ05, SF03P, WTCY95, WCR09, YP98, CA93, CPA93, KP92, ME92, ME93, MS94b, ZY95, Zia93]. Hierarchically [HZ96, SS07, ZH98]. Hierarchy [PHP03, LK94]. High [AGGD04, ATML08, AS96, AAB06, Ano05c, Ano09c, BGMZ97, CE95, CBD+01, CS05, EBS02, FZGC06, FG06a, FL+07, GRS99, GMCB01, HDF07, HNY02, LLGS09, LBS05, MLW06, MJ98, MNM04, MDL06, ON06, OC05, PGB03, RK08, RJ96, SS08, SKLC+03, SD00a, SSP02, TCLY07, TGV08, TF96a, WOT+07, WCCR+97, ZMP07, An94, AB91b, WS93]. High-Bandwidth [BGMZ97]. High-Latency [GRS99]. High-Level [ATML08, MLW06, RJ96]. High-Performance [AGGD04, AAB06, Ano09c, EBS02, FG06a, FL+07, GMCB01, HDF07, LLGS09, MDL06, ON06, OC05, PGB03, RK08, SKLC+03, SD00a, SSP02, TGV08, ZMP07, WS93]. High-Speed [CBD+01, FZGC06, MNM04, An94]. High-Throughput [WCCR+97]. Highly [AGGD05, CB00, DAA00, DB08, GKK97, HK94, WL00, WLR93]. HiPER [MBW02]. HIPIQS [SSP02]. HLA [SF08]. HLA-Based [SL09]. Heuristic [AMS97, CHC09, PK95a, PK95b, YF97, MS93, SL93a]. Heuristics [ED006, HO00, JSWB97, KA06, TT+00, GD93]. Hexagonal [DS05, NSZ02, YL96]. Hidden [JTP+08]. Hide [LLY05]. Hiding [MLW06, SL09]. Hierarchical [CS08, DC95, GD95, HS97, HLL09, JLC05, KW08, MB94, PM94, RAj05, RJ05, SF03P, WTCY95, WCR09, YP98, CA93, CPA93, KP92, ME92, ME93, MS94b, ZY95, Zia93]. Hierarchically [HZ96, SS07, ZH98]. Hierarchy [PHP03, LK94]. High [AGGD04, ATML08, AS96, AAB06, Ano05c, Ano09c, BGMZ97, CE95, CBD+01, CS05, EBS02, FZGC06, FG06a, FL+07, GRS99, GMCB01, HDF07, HNY02, LLGS09, LBS05, MLW06, MJ98, MNM04, MDL06, ON06, OC05, PGB03, RK08, RJ96, SS08, SKLC+03, SD00a, SSP02, TCLY07, TGV08, TF96a, WOT+07, WCCR+97, ZMP07, An94, AB91b, WS93]. High-Bandwidth [BGMZ97]. High-Latency [GRS99]. High-Level [ATML08, MLW06, RJ96]. High-Performance [AGGD04, AAB06, Ano09c, EBS02, FG06a, FL+07, GMCB01, HDF07, LLGS09, MDL06, ON06, OC05, PGB03, RK08, SKLC+03, SD00a, SSP02, TGV08, ZMP07, WS93]. High-Speed [CBD+01, FZGC06, MNM04, An94]. High-Throughput [WCCR+97]. Highly [AGGD05, CB00, DAA00, DB08, GKK97, HK94, WL00, WLR93]. HiPER [MBW02]. HIPIQS [SSP02]. HLA [SF08]. HLA-Based [SL09]. Heuristic [AMS97, CHC09, PK95a, PK95b, YF97, MS93, SL93a]. Heuristics [ED006, HO00, JSWB97, KA06, TT+00, GD93]. Hexagonal [DS05, NSZ02, YL96]. Hidden [JTP+08]. Hide [LLY05]. Hiding [MLW06, SL09]. Hierarchical [CS08, DC95, GD95, HS97, HLL09, JLC05, KW08, MB94, PM94, RAj05, RJ05, SF03P, WTCY95, WCR09, YP98, CA93, CPA93, KP92, ME92, ME93, MS94b, ZY95, Zia93]. Hierarchically [HZ96, SS07, ZH98]. Hierarchy [PHP03, LK94]. High [AGGD04, ATML08, AS96, AAB06, Ano05c, Ano09c, BGMZ97, CE95, CBD+01, CS05, EBS02, FZGC06, FG06a, FL+07, GRS99, GMCB01, HDF07, HNY02, LLGS09, LBS05, MLW06, MJ98, MNM04, MDL06, ON06, OC05, PGB03, RK08, RJ96, SS08, SKLC+03, SD00a, SSP02, TCLY07, TGV08, TF96a, WOT+07, WCCR+97, ZMP07, An94, AB91b, WS93]. High-Bandwidth [BGMZ97]. High-Latency [GRS99].
SvAS04, SL01a, SZ04, SJPS01, SS00, WO04, WYWZ08, LHS92]. Hydrodynamic
[Hc99b]. Hydrothermal [dSF03]. Hyper
[GP93, LBS98, THT+97]. Hyper-Bus
[THT+97]. Hyper-deBruijn [GP93].
Hyper-Systolic [LBS98]. Hyperchannel
[CWYZ09]. Hypercube
[AD95, ICL95, Che97, CC98, FYS05, FMG02,
GVGD95, HS97, KP96, KC98, Lan95, LHP05,
LNW98, MR06, PKLO6, RTS95, SP95, SV97,
WL97, Xia01, dCVGG02, AOB93, BJS90,
CS90, DK92, GDJ94, HB92, IS90, JR93,
KDL91, KLD94, KP92, MB94, Nas93,
OL92, PGDS94, RS91b, RB90, RJ90, SRT94,
SF92b, YW93, YZW94, YN90, ZA93, Zia94].
Hypercube-Connected [AD95].
Hypercube-Derived [WL97].
Hypercube-Like [PKL06]. Hypercubes
[Ano99h, Avr99, CCP95, CT97, DPS96a,
DPS96b, DCF95, GP99b, H000, HK95,
HWKH01, JHK97, KLS00, OKSA01, SR98,
SLH97, TW98, TK96b, TC98, YR96, dBL98,
AM91, CL93, CC93b, DT94, EAL91, Fid92,
KK93a, KS94, KP92, KSA94, LS94b, OD96,
PFGS94, RS90, ST93, TR93, UEA95, VB93].
Hypercycle [DD95]. Hypercycle-based
[DD95]. Hyperedges [HL05]. Hypergraph
[BA07, CA99, GW06].
Hypergraph-Partitioning-Based
[BA07, CA99]. Hypernet [HC99a].
Hyperthreaded [SL06]. Hypertool
[WG90].

I/O [Bor00, JHJH02, JSWB97, KKC02a,
KKC02b, Kan91, KB03, kLCC+06, OPZ99,
RB90, TR04, VV99, YZC08]. I/O-Centric
[HJH02]. IBA [KYD+07]. IBM
[BGBP01, HXA96, MS94a, MF01b]. IC
[CMR07]. IC-Scheduling [CMR07]. ID
[BRTM09]. Identical [JR93].
Identification
[Che96, CT97, FHBJ97, MLSS07].
Identifier [LQZ09]. Identifier-to-Locator
[LQZ09]. Identifying [HP03]. Identity
[BRTM09, PZZ09, YK99]. Identity-Based
[BRTM09]. Idle [RH00]. IEEE
[BCG04, HPH08, JAS90, MGZN07,
MSM06, NK08, XL04, XLW+06, ZL07b]. II
[KCN90b, LL06b, LPD05, OSRS06b, PK95b,
RK94b, YK96b]. Image
[BA07, EAF00, JS93, LHS03, SKB04, WS00,
WCH+08, AHN94a, CL94, GO93].
Image-Space-Parallel [BA07]. Images
[EAF00]. Immucube [PG07]. Immune
[SSZ06, ZS95a]. Impact
[BIW00, CH04b, CT97, CY00a, DMJ96,
Li94, SG94, SCL05, SSP00, VSD01,
XLPJ06, ZMF01, D95]. Implementation
[ATG92, ACT+97, BRSS08, BGBP01,
BDD+96, Dn06, EBS04, FVR03, JTP+08,
JLF03, LAS04, MNN04, MR94, ON66,
Pak07, QLS03, SKJ07, SB00, SOM05,
TSP+08, WR04, WMX06, XUS99, XL08,
YK92, vDSP96, AHN94a, AIK91, HK91,
LKG92, LH93, LA93, SMBT90, SMJ92].
Implementations
[kLCC+06, PKJ97, PG01, GO93].
Implementing
[AGWFH97, BA90, FG01, SSP00].
Implications [CGM+07, HWXX99].
important [KLDR94]. Imposed [PDH06].
Improve [Kin06, SROD4, TTF94]. Improved
[BK93, CWCC07, KYD+07, Kla98, Li03,
LSS06, LH06b, PZLS01, PPP04, SRT94,
KPK91]. Improvement [KA06, LYYW08].
Improving [BA04, CK08, GYS05, KK04,
KCRB03, KA05, LY93a, LLX06, MOFD05,
PH05, SF07, TJO7, TSG09, GS91].
In-Kernel [LBS05]. In-Network [DLS09].
In-Order [WSB09]. In-Situ [MCL+07].
Incentive [TJO8, ZXNX08]. Incentive-Based
[XZNX08]. including [MM96].
Incomplete
[CTS96, CT97, LB94, TK96b, SCD97].
Incorrectly [SCL05]. Increased [PPD03].
increasing [MK91]. Incremental
[OR97, SW96, WYJ+04, YN00].
incrementally [LB94]. Independence
Independent [Gen00].

AAD08, BFL01, HP07, LH03, PG01, YCTW07, BA90, RK94a, RK94b. Index
Ano97a, Ano98a, Ano99b, Ano01c, Ano02a, Ano03b, Ano04a, Ano07a, Ano08a, Ano08d, Ano99d, BQF99, Din01, EHJ94, Ano05b. Index-Based [BQF99]. Indexed [BAH01].

Indexing [ZH07a]. Induced
BBH05, HMR99, TKW98, Tsa03. Inexpensive [HNY02].

Inference [BQF99]. Indexed
BAH01. Indexing
ZH07a.

Induced
BBH05, HMR99, TKW98, Tsa03. Inexpensive [HNY02].

Inference [BQF99]. Indexed
BAH01. Indexing
ZH07a.

Induced
BBH05, HMR99, TKW98, Tsa03. Inexpensive [HNY02].

Inference [BQF99]. Indexed
BAH01. Indexing
ZH07a.

Induced
BBH05, HMR99, TKW98, Tsa03. Inexpensive [HNY02].

Inference [BQF99]. Indexed
BAH01. Indexing
ZH07a.

Induced
BBH05, HMR99, TKW98, Tsa03. Inexpensive [HNY02].

Inference [BQF99]. Indexed
BAH01. Indexing
ZH07a.
LCB00, LSRT06, PSC+95, PH02, QNR99, SD00a, SD00b, SKPS01, TW00, UZCZ97.
Irregularities [HP03]. Isolated [ZS95a].
Isomorphism [Che96, HWSH00, WMN99].
Isotach [RWW97]. ISPs [LJCL08].
Issue [AGWFH97, Ano97d, Ano97b, Ano97c, Ano98c, Ano98b, Ano01b, Ano01c, Ano01d, Ano02b, Ano03c, Ano04c, Ano04d, Ano05c, Ano06c, Ano09b, DF99, Ano99g, Ano07c]. Issues [AS96, TL05, VMXQ04, ZWM99, LY93b].
Items [OPZ99]. Iteration [GAK03].
Iterations [KGKL08]. Iterative [BCVC05, BCVC50, BG90, Lee95, LRRV04, YF97, dLCK+05, AH91, AC92, EG93, Pan93].
Iterative-Improvement-Based [KA06].
Jacobi [KGKL08]. January [Ano99g]. Java [CKK+04, CS03, MJ06, SM02, YLL+07].
Java-Enabled [CKK+04]. JEWEL [LKG92]. Job [AAB+00, AM06, CV08, CB03, DvdMK09, FFPF05, GB07, KLD+94, LC91b, SP98, ZA93]. Jobs [BG06, HJS+96, KC98, XC02, XCZ04, XQ08, KGM96, KS93]. Join [Che01, CST02, CY96c, HY01, LR96, LMT98, TP95, CY92, KS93, NM92, OL92, TR90, WYTD93, WD93]. Joins [HCY97, SY93].
Joint [BB05, KA09, LWX06, SKJ07, WWLS08].
k-ary [SG94]. k-Dimensional [CWCC07]. k-splitting [XB93]. Kernel [LBS05, MS94a, ABDZ94]. Kernels [NN96]. Kestrel [DDD+05]. Key [AKNR+94, EP05, MCL+07, STW00, XH08, YG06, YG08].
Knapsack [AR97]. Knots [BT98, MS03]. Knowledge [LHL+08, TLM04, YG08, MLL92]. Known [XCZ02].
Labeled [WCL97, WY94]. Labeling [BBH05, Ahn94a, DH92]. laboratory [BEK+93]. ladders [PN93]. Lambda [BeFGM08]. Lamport [BCBzC92, JK99].
LAN [LJZA04, LWW96]. Language [ATML08, ABI+93, Pak07, GR94, JW94, NSD93]. language/compiler [NSD93].
Languages [Ano97d, Ano97b, Ano97c, BT00, CE95, PG01, WMB96, MR94]. LANs [BCG04, NK08, WX+06]. LAPI [BGP01].
Large [Agr99, AM99, BG09, CY00b, CASM07, DS03a, EDO06, FT97, GMC01, GP99b, HL09a, HS98b, HZ97, KM03, KC09, LGC07, LC95, LL04, MY07, MA01, MJ03, ML06, OX06, PM02, RD98, SKL+03, ST99a, SGL06, VVR07, XHYL05, XZC04, ZJWX08, dB98, CO95, CTC93, EA93, OS94a, SG93, YTB92].
Large-Scale [BG09, CY00b, EDO06, GMC01, HL09a, KM03, KW09, LGC07, LC95, LL04, MY07, MA01, MJ03, SKL+03, VVR07, XHYL05, SG93].
LARPBS [CPhX04]. Latency [Agr99, GRS99, KK03a, MROD07, PBA03, QM97, LNP94]. Latency-Aware [MROD07]. Latency-Tolerance [PBA03].
Latin [KP93b]. LaTTe [YLL+07]. Lattice [TG99]. Lattices [FHBJ97]. Lawler [GRT97]. Layer [XZL05, ZCFX09].
Layered [LSRT06, ZL07a]. Layout [BG02, JK04, PHP03, CAB03].
Layouts [CLPT02, CL00, KCS+99, LC96a]. Lazy [MK91, SN02a, SN02b]. Leader [DB08, DIM97, NO02, SN96, YK99, AAG94]. Leadership [MRT06]. Leading [OB00].
Leakage [ZB09]. Leapfrog [WHC03].
Learning [MR02]. Length [BBD00, VB93].
Lengths [FJL07]. Level [AGGD05, ATML08, ANKA99, CB05, DCF95, EP05, GY95b, HC99a, MLW06, RJ96, SKB04, SL03, SZ04, WZP+03, XRY09, ZCL04, BGM94, EG93, Lar93, ME92, ME93].
Levels [Wu00]. Leveraging [BRTM09].
LFSR [CSC90]. Library
LID [NYD09]. Life [SZ03a]. Lifetime [LWJ06, TX08, ZS09].
Lifetime-Constrained [TX08]. Lifting [TSP+08]. LightFlood [JGZW08].
Lightweight [CY06, EBS04, ZBM09]. Like [BK09, LYW08, PKL06, ZXNX08, ZH06, Pan93]. Limited
[AS00, AM06, CBLM07, FHA06, GY09, LSW04, PH04, ZY04, ZY06, FHR93]. Limits [Aga91]. Linda [BS95, GT02]. Line [ANKA99, Bir93]. Linear
[AAD08, CHC04, DSO02, HWKH01, HCD97, KCS+99, KB08, LPZ98, LLL09, MBM08, PK99a, VM04, WNKS96, WHW05, ZL08, ZLP09, AC93, EHJ94, IA95, KST94, Lin93, CSH94, O’H91, Pan93, ZL96]. Linear-Complement [HWKH01]. Linearization [MF96]. Linearly [GDJ94]. Lines [NE01]. Link [CWLR09, hKY08, Sin96, THH08, TCS97, WWLS08, YW03b]. Link-Disjoint [YW03b]. Link-State [THH08]. Linked [LWN98]. Lists [ADD97, BV05, LWC+09, SCY98, SX08, Wu02]. List [An099a, An00a, An01a, An03a, An04e, An05a, An06, An07b, An08b, An09a, FT97, HS98b, PKJ97, WL08a, RJ90]. List-Based [FT97, HS98b, WL08a]. lists [SH95b]. Little [CC99]. Live [BS059, DF09, GLQL09, LILN07]. Lived [STY90].存活 [GPBS04, PGDS94]. livelock-free [GPBS04, PGDS94]. LMSR [SKK01]. Load [BCVC05, BC004, Bar98, BBR07, CWC07, CT08, CHHC06, CK02, Dah00, DPH96, DPH96b, DHB01, DP02, DHP+07, DB06, DvdMK09, DW03, GZ06, GZ09, G903, GKK05, GB06, H99b, JJO9, LRRV04, LL06a, LL06b, LI03, LC99, LJJ05, M901, PH05, SS08, SVM07, SX07, SH06, SRL98, SSZ08, TP95, Tse09, WT98, Wu97b, ZRS+05, ZMR08, ZH05, ZT01, AT07, Bok93, GT93, GDI03, KK92, LY94, LK94, SH93, SH94, WL93]. Load-Balanced [CHHC06, GZ06]. Load-Balancing [GZ09, LRRV04, LC99, SX07, ZT01]. load-dependent [AT07]. load-sharing [GD93]. Loads [BCL+05, CG08, VM04, YvdRC05]. Local [BT98, CBD+01, DAMK06, HT07, KM01, KAY+06, LWS04, MD97, PC05, WSG01, Xia01, PAM94]. Local-Spin [KM01]. Locality [CW06, HT06, KKO4, KCRK00, KBC+01, KCRB03, MA97, PLT00, SX07, TSG09, VS+09, YZZ00, ZH99b]. Locality-Aware [SX07]. Locality-Conscious [VKS+09]. Localization [HCHM09, KS08b, KSP09, SRZ04, TN08, WW07, XC08, YWF+09]. Located [An04d, BMPP06, DW04a, GI07, LCV04, LSW04, LH06a, MGZ07, ORS06a, ORS06b, SLFW06, SL01b, ZPY06]. Localizing [CS96]. Locating [DS02]. Location [CSR+09, FCF00, LXL+05, PM02, SL09, ZS03b, WLHB08, XPL04, XLT08, YGE06, BA90]. Location-Aware [YGE06]. Locator [LQZ09]. Lock [GPST09, HM92, JH97, Mic04, And90]. Lock-Free [GPST09, Mic04, HM92]. Locking [Sun02]. logarithm [MM96]. Logarithmic [EF95, WYD07]. Logging [ADG06, GS08]. LogGP [Ian97]. Logic [LLJ+93, LNO03, PG01, RSP02, RJJ99, CIW91, CR90, RK94a, RK94b]. Logical [FMG02]. LogP [DCSM96]. LoGPC [MF90a]. LOMARC [SL06]. Long [Kuc01, SX08]. Longest [WY07, LL94]. Lookupahead [SL06, LL90]. Lookup [CHHC06]. Lookups [FGRL09, Tze06]. Loop [CS00, DC05, FLVG05, GMG96, L死去, OD93, RJ96, SL01a, WL91, DR94, Gup92, LK90, Li94, ML94, SKF94, SC91, SC93, TN93a, WW92]. Loop-Free [SL01a, SC93]. Loop-level [Lr93]. Loops [AKN95, CY96a, CY99, HCF03, Lee95, MA97, RSP02, RRP02, RP99, TP00, XC01, AH91, D’H92, GMG96, KM91, KS91, ST91, Uht92, WW92, YJZ97]. Loosely
[LJLS09, XL96, TKT92]. Loss
[KS01, WLL+07]. Losses [SM09].
Lossless [MNM04].
[LP94, OC05, PS96c, RvG02, SKJ07, SKF04, TF96a, THW02, WWL06, WCCR+97, XXZ03, YV98, dBL98, AB19, Bl91, Knn92, MS93, NZ95].
Low-Bandwidth [NE01].
Low-Complexity [KA99, THW02].
Low-Cost [GvG06, GMCB01, OC05, PS96c, RvG02, WWL06, XXZ03, Bl91].
Low-Degree [YV98].
Low-latency [LNP94].
Low-Level [SKB04].
Low-Memory [WCCR+97].
Lower [GW96a, JR94, SF92a, SRT94].
Lower-Dimensional [GW96a].
Lowering [FMR07].
LRED [WLL+07].
LRPD [RP99].
LRU [LWY96].
LRU-Based [LWY96].
Machine [Bor00, Cha96, RK94a, RK94b, SKB04, YL96, AT07, FC91, MR92, SR94, AS92, SM02].
Machine-Based [SKB04].
Machines [DA98, PKJ97, RvG02, SZ95b, TN08, YF97, YD95, GD94, LC91a, NSD+91, RS91a, TB93].
Macro [YV98, AM93, PAM94].
macro-dataflow [AM93].
Macro-Star [YV98].
Macroscope [LJW05].
MAD [NN96].
MAGIC [GD94].
Main [TP95].
Maintenance [LXL08, BLS01, TSK06].
Making [NE93].
Malicious [SM09].
Manage [KKGS01].
Management [BIWK00, ICL95, CY06, HDS00, KY09, KSME08, KMW08, LSS06, LP07, Ram99, SF08, SKB02a, SKB02b, SJd+09, SY07, SYC03, SRD08, SZ03b, SSSLY03, TC04a, TC06, VV99, XPL04, XL05, YG06, YG08, ZCL04, ZJWX08, JS90, LEH92, NSD93, RST95, TT94].
Managing [MZZ08, RD98, US04, SB94b, WT93, WY93].
Manchester [BG90].
Manets
[AMH08, LW90c, STY09, WLH08, WCR09].
Many [Ano09b, BRS97, CC97, PKL06, KST94, RWF94].
Many-to-Many
[BRS97, PKL06].
Mapping
[AB07, AB03, BB05, CM95, CSR07, DSP96a, DSP96b, EAK97, HWH91, HCYD01, HW08, LK90, LRRV04, LQZ09, RRG07, YLL+07, CC93b, CA93, IS90, KN95, MS94a, SF92a, ST91, SA94, Zia93].
Mapping/Interconnect [BB05].
Mappings [LF03, D99].
Mar [ME93].
Margin [HY07].
Marked [WY94].
Marker [HM98].
Market [FLZ90, XZN08, ML92].
Market-Like [XZN08].
market-propagation [ML92].
Marking
[ADG06, GS08, PC07, XZG09].
Markov
[HN93, JTP+08, LL96, MMS06].
Martini
[WOT+07].
Maskable [WL97].
MasPar [ACT+97].
Massively
[CFW98, JTP+08, LWN98, NGL94, YFJ+01, GM96, HT94, LC91a, MB94, RJ94].
Master
[BB04, BLR03, KA06].
Master-Slave
[BBC97, BLR03, KA06].
Match
[DP02].
Matching
[ACT+97, BM00b, D02, HL90, Sto96, PDC94].
Matchmaking [SL06].
Mathematical
[TTB+00].
Matrices
[BOPZ04, Che96, FLVG95, HCYL06].
Matrix
[AA97, BBR01, BW96, Ch99, Cha96, CLPT02, GKK97, LKHL03, LQZ08, Li07, PM96, Sah00a, SR98, THH96, TC95a, TC95b, ZP07, DF93, ME95].
Max
[HS08, HPT04].
Max-Min
[HS08, HPT04].
Maximal
[HL03, LWJ06].
Maximally
[CXP09].
Maximization
[LCL08].
Maximize
[HP07, ZS09, LW91].
Maximizing
[JGW08, SM97].
Maximum
[BC95, CT97, KGKL08, LCG04, TYK99].
Measure
[HT07].
Measured
[WB98].
Measurement
[DI95, KK03b, WLL+07, HB92, LKG92, MRW92, MCH+90, TV92].
Measurement-Based
[KK03b, DI95].
measurements
[LEH92].
measures
[OC93]. Measuring [AMSK04].
Mechanism [BO98, GG09, MY07, RLD03, WS03, WXLZ06, CR94, Geh03, GD94].
Mechanisms [BLD05, CG08, Lop02, ZSMF01]. Media [BV05, CZLM09, ILL07, KSWR03, LL02, SBK02a, SBK02b, TJ07, WL08a, XHYL05, YK09, ZL07a]. Median [WH01, WH03b, X93]. MediaPort [AOK09]. Mediator [SGB08]. Mediator-Free [SGB08]. MediaWorm [YKDV02]. Medium [JGA08, LJZA04]. Meet [HYP02]. Membership [DS03b, FB01b, MMSA94, YK96b]. Memories [CSR07, BC92, GS91]. Memory [AD98, AGGD04, AAS03, AKN95, Agr98, ADD+02, BCdSFL09, BIAW90, BGMP97, Bef98, CSH05, Cha98, CH04b, CH95, CK08, CSR07, DSS95, DS96, DA98, DKKS04, Deb96, DMKJ96, FT97, FJY98, GAL01, GPST09, GP99a, GMR98, Hol98, HS98b, JR96, JYVA05, KH04, KL01, KHY09, KA05, Lee97, LT97, Li07, LC99, LCL03, Lop02, LBC03, MS94b, MA01, McK98, Mic04, MP97, NN96, OXL06, PAM95, PH96, Par01, PHP03, PH04, PD00, PPBSA97, Qad03, QD05, RVG02, RS98, SCL05, SW96, SLT03, SLEV03, SN02a, SN02b, S95b, TD01, TF96a, TP95, WH95, WCC97, XC202, XZ04, Y95, YF97, YL97, ZCY95, AH93, AM93, ABJ+93, BIA+97, CF94, DC95, DF97, Don91, Geh93, GH93, Gup92, Har91, HE92, IT93, IC92, Kop94, KCPT96, LE92, LY93a, Li94, LH94]. memory [ML94, MR92, PSD+91, PL96, PAM94, RS91a, RP94, SST94, SL93c, SA93, TM96, VGG94, WFP90, YJ97, ZLE91, ZSL92]. Memory-Mapping [CSR07]. Merge [HY05, HNO89c, LB95, WY93]. merging [Wen96, XB93]. Mesh [BM00b, CT02, Cha95, EF96, EW97, FHA06, FZVT98, GG95, wJPP97, KY98, KYK09, LSF+99, LOSW99, LWLN97, MDSS09, MBM98, NO97, PZLS01, PC96, RS98, SV97, SP98, SS01, TW00, TKP00, WS98, WS00, Wu00, WHC03, YK98, YY97, dCVGG02, AV94, Cap92, CCCS90, CT94, CS92, GG94b, wJNPS97, LC91b, LMN94, OS94b, SC94, SP93, jTM97]. Mesh-Connected [Ch95, GG95, LWN97, MBM98, PZLS01, TPK00, Wu00, EF96, CCCS90, GG94b, SP93]. Mesh/Relay [FHA06]. Meshes [Aro00, BBG+95, BGO+96, BGO+98, BGOS97, BGOS98, BNO+01, yc98, CWW07, CC01, CH01, CST02, CC09, CCJ02, DHB01, GN96, HNO98a, JSR98, KY98, LS96, LZ02, LC95, LC96b, Li03, LRT96, NO98, RS97b, SKK01, ST99a, SY98, SY00, SPS01, TW98, YW02, BLO+94, BGO+97, EF96, LS94b, MS93, NS95b, PGFS94, UE95]. Meshes/Tori [LZ02]. mess [RFDS97]. Message [AS99, Blu06b, BHK+97, CBDW96, DDY99, DFK01, DHN96, EBS04, FYP07, Gn08, HK98, Hol98, LMN95, MFO1a, MRT09, PS99, RR07, SRT96, SNC95, SP03, WCLF95, WP00, YC95, vDSP95, ATG92, AMAM94, BR91, BR94, IC92, WG90, YK92]. message-based [YK92]. Message-Dependent [SP03]. Message-Passing [BHK+97, CBDW96, DHN96, HK98, MF01a, MRT09, WCLF95, vDSP96, ATG92, AMAM94, WG90]. Messages [BNHH99, BBD00, CJPW06, JGZ08, Kue01, NSU97, VJA97, WL97, XJJZ00, KGMB94, KH93]. Metadata [ZJWX08]. Metaheuristic [LZ08]. Metaheuristic-Based [LZ08]. Method [yCM98, GS03, HY05, LZ08, LC01, MROD07, PK95a, PK95b, RS97b, SM07, SZ04, TKP00, WZ09, WHC03, X01, MM96, SC91, SJM92, WSC92]. Methodical [KK92]. Methodology [CM05, GBC+07, HP06, LLY05, LP96, LLA+06, LPD05, RRR09, SRD04, XL08]. Methods [CWCC07, CS95, GKS95, HKM+94].
metrics [BBH05]. Metric-Induced [BBH05].

Microarchitectures [PSGD05]. Microprocessors [KET06, MC95, BW98].

Middleware [AJMJS03, Ano02b, CS03, FVR03, GZ03, KSC03, RNR°03, TS08, WCH°08, YK03, ZJ03]. Midimew [LC96a].

Migrant [DR98]. Migration [GS03, HY96, ZFMS03, GT93, SW92].

MIMD [BCJ90, CG02a, CG02b, HQL°91, KE90, OD93]. Min [CZLM09, HS08, HPT04, DMTB93, QM94, YD95, ZYC95].

Min-based [DMTB93, ZYC95]. Min-Cost [CZLM09]. Minigrids [LJW05]. Minima [NO98]. Minimal [DAA00, TC04a, TC04b, Wu00, YD95, Cap92, GPBS94, PGSF94, SC92, SC94].

Minimization [OS02, SWH98, ZKB08]. Minimized [HS08a, KP99]. Minimizing [AMS97, DO02, GJZV08, LB00b, TSAL97, TYK99, WCS92, YW93]. Minimum [BBD00, BSCB09, CH09, GW06, GY07, KPK99, KWL°99, LS96, LW09a, LG04, LL98, SY98, YI09]. Minimum-Cost [LW09a]. Mining [BS08, CL09, DB06, JZ04].

Minislotted [CLW03]. MINS [VM99]. Mirroring [HJH02]. Mismatch [HLM09, Lin08]. Mitigating [SL09].

Mitosis [MGQS°08]. Mix [FYJ°09]. Mixed [DP01, SCY98, VKS°09, KA94]. mixed-mode [KA94]. Mixed-Parallel [VKS°09]. Mobile [ABS01, Ano01b, Ano01c, Ano01d, BJH02, CS01b, CS02a, CKK°04, DB08, DS02, GJDA06, GYS05, GY07, GS03, HL08, JLS02, LW09, LW99b, MZT08, MX03, NOS99, NSZ02, ON02, PS08, PC05, PS96c, SFP03, SWH98, SZ03a, SZ03b, SSsLY03, TR06, TT01, WDC04, WO04, WT08, WD06, WYD07, YWD08, ZW02, dLCK°05].

Mobility [AD08, CBM°07, FCF00, MZT08, TM06, WD06]. Mobility-Sensitive [WD06]. Möbius [Fan98, PN93]. Modality [Ksh03]. Mode [Gon08, WYWZ08, KA94].

Model [AMH08, BNHB°95, BHH99]. BSCB09, BES06, BP06, BDD°96, CRiX04, Ch98, Chi00, CF99b, Fan02a, Fan02b, FB01a, GT02, GFG°99, Gre98, HY99, HC09, JRT96, JKA07, KL01, KS08a, KPR05, LSZ09, LMN95, MZA02, NOZ02, OKSA01, Qad03, Qua01, RMO°95, RRG07, RJ05, SK02, SSS06, SE98, TS89, TTB°00, TPL96, TNPK01, WH03a, WP00, XHYL05, YJ97a, YY95, ZB09, AAG94, AK91, Bok93, CIW91, DK92, DMTB93, DI95, LH94, MS94b, NJ94, TV92, VVG94]. Model-Based [BES06].

Modeled [WB98, OSZ92]. Modeling [DS05, FHY°99, GB00, HM90, KHS07, LYW08, LJJW05, MF01a, PF96, SSP°99, Sob96, Sv0A04, TR04, vG03, BCBzC92, KCN90a, LEH92, ZY95]. Modelling [MAJ°07]. Models [SCY96, MP91].

Modifications [DB06, GTP08]. Money [And90]. Monitoring [MG09, ZBM09, HKM°94, OS93].

Monitors [YWF°09]. Monotonic [BMR99, LG04]. Monte [You93].

Movement [AAY09, YLW07]. Movement-Assisted [AAY09, YLW07].

Moving [QD05, XZ08]. MPEG [KS01].

MPI [BGBP01, kLCC°06, NE01, WC09].

MPI-LAPI [BGBP01]. MPLS [THH08].

MPP [HWWX99]. MPVs [HK98].

MPSoCs [CK08]. mRACER [RE09].

MST [LWS04]. Multi [CWCC07, CGM°07, F005]. Multi-Core [CGM°07]. Multi-DSP [FO05].
Multi-Installment [CWCC07].
Multiaccess [CS95, CS97b]. Multiagent [CK02]. multiaffective [GD94]. Multibus [Add97]. Multicast
[ABSO1, BRS07, BCR98, CHA07, CGK04, CSC07, CJIHG08, CC98, CH88, CMDP09, CNX06, DPH08, Dua95b, FIRM01, GG09, GY07, GS03, GKG06, H000, Jia95, JZXX99, KP99, KP01, LCGC07, LW09a, LN93, Mha09, RMC95, SH97, SPS98, SPC02, TJ07, XGN97, XH08, YMP08, YW99, YW03a, YL07, YL08, YWY08, ZCLC06, ZL07a, ZLP09, LMN94, MXEN94].
Multicasting [CFK98, Gon03, Gon08, SKPS01, TPL96, VM99]. Multicast [KWOA05, SS00]. Multichannel [LWN98]. Multiclass [CGL07, GBD07, KK03a, TT94]. Multicluster [BE07, DNSC09]. Multiclusters [HJS06]. Multicoloring [WH95]. Multicomputer [lCL95, CYY00, HSWB07, CF94, DA93, HB92, KS93, LN93, QM94, OL92, RS91b, RFDS97, SF92b]. Multicomputers [AD95, CC98, GVD95, K98, Lan95, LC99, LCL03, LWLN97, RSB97, SP95, SP98, Ste96, TD01, TW00, TH99, Wu98, Wu00, Xia01, XL96, dB98, dCVC02, Bok93, CS90, CS94, GJ94, GB92, LMN94, SA94]. Multicore [MCG08, SJPL08, TSG09]. Multidestination [PSK99, SSP00]. Multidimensional
[AAGR00, AA00, CW02a, DP02, DD98, Din01, FHJ97, LCL03, MMSM06, PS96a, SS01, YW02, A94b, LK90]. Multidimensional
[SS07]. Multigrid [MT97]. Multigroup [TS07]. Multihop [DSY99, GP03, JGA08, MY07, SCP09, YYY09, ZL07b, KSF94]. Multilayer [AB03, NJ94]. Multilayered
[LCO2a]. Multilevel [JLF03, WT08].
Multimedia [BJH02, BSS09, EKOAW02, GB06, HDRS00, LSC07, LA04, MEO03, SD04, CCQ05]. multimicroprocessor [VGGD94]. Multimode [MZ05]. Multinode [VB93].
Mutioverlay [WLL08]. multipartite [FD94]. Multiparty [CL09, GWYS08]. Multipath [MDSS09, S096, WSNA95]. Multiple [AV96, AM06, AKSS04, BN99, BBG05, BNO01, CF01, CHK07, Chua95, EAK97, JR03, JGA08, JO95, KP99, KH97a, LKK02, LZA04, L96, LS909, ZLS01, PM02, RC95, SLH97, SS00, TH01, VB96, YYY05, AN94, AIK91, BLO94, CACC95, LG94, LS94c, SB94a, YS93]. Multiple-Beam [LZA04]. Multiple-Bus [KH97a, TH01]. Multiple-Edge-Fault [SLH97]. multiple-fault [SB94a]. Multiplexed [QM94]. Multiplexing [QM97]. Multiplication
[BBR01, CA99, CLPT02, wJPP97, LPZ98, Sah00a, SR98, TC95a, TC95b, ZP07]. multiply [ZL96]. multiply-twisted [ZL96]. Multiport [BNBH95, BN99, BHK97, SP98, jTM97]. Multiprocessing
[LMT98, Sar98]. Multiprocessor [AK99b, AM95, Bak05, B098, BKS03, BP96, BCL09, BJM05, BA97, CRN09, CFS89, FG06a, G95, GMM97, GV99, HT07, J99, J97, KWH02, LTJ97, LT97, Li08, LDG04, LBC03, MM98a, MM98b, MJ06, NN96, PAM95, PM96, PR95, QM97, SH95a, SO95, SJM92, SS05, VDS99, WMW08, WM95, WYJ04, Y97a, Y97b, ZM03, AC92, BLA97, B93, BC92, BEK93, CD94, CV92, CAB93, Cor92, DC95, EC93, GD94, GH93, Gup92, H94, IT93, IC92, JR94, LS94c, LT94, MS94a, ME92, ME93, MLS94, QM94, RSS90, SRS93, ST91, SL95b, SL95c, TV92, VJ94, ZL96]. Multiproducts
[AGGD04, AGGD05, AK95, BD95, BGMZ97, CS08, CW00, CY00b, Ch95, CKC08, CY96c, DDS95, DS96, DD95, DMK96, FT97, GAL01, GP99a, GMR98, HS98b, KKC03, KL01, KB06, KA96, KA99, LP96, LL98, MA01, MeK99, PNZ02, PD00, PGB03, Qad03, QD05, RTS95, WH95, WHC03, YL97, AOB93,
ABJ+93, And90, BJS90, CS92, DMT93B, Gab90, HM92, JF94, Kop94, KE90, KCPT96, LS94a, MS94b, ML94, Pad91, PAN94, RB90, SS90, SG93, SS94, TRS90, WW92, WFP90, YT92, YW93, YD94a.
Multiprogrammed [YL97, SST94].
Multiquery [WTCY95].
Multiresource [SL06].
Multiround [YdRC05].
Multisensor [SlTC05].
Multiserver [CGL06].
Multisignature [vdMDM07].
Multisite [SRD08].
Multiphase [YL97, SST94].
Multiquery [WTCY95].
Multiresource [SL06].
Multiround [YvdRC05].
Multisensor [SvVB05].
Multiserver [CGL07].
Multisignature [vdMDM07].
Multisite [SRD08].
Multiskewing [Deb96].
Multistage [BIWK00, LKK95, LSC95, RO99, SPS98, Sob96, TZ97, Tze04, WL97, XGN97, YW90, YW01, YW04, BI97, CI92, HC92, LC94, MD96, YM95, YA93].
Multistage-Based [YdRC05].
Multistep [dB98].
multistride [Har91].
multisystem [DY93].
Multithreaded [BKI06, BF04, CH95, CMBAN08, GMR98, LLS06, LPE+99, MGQS+08, SCL05, Aga92].
Multithreading [KET06, MB07].
Multitoroidal [ADG+08].
Multinit [XL08].
Multiway [LB95, MC95, Wen96].
Mutable [CS01b, CS02a].
Mutual [AMP07, CS01a, CH09, FT97, HL08, HY05, HS98b, JK99, Jou03, KKM08, KM01, LK00, TYK99, XXZ03, BCBzC92, HMR94, IK93, NL90, Sin92].
MVSS [MR03].
Myrinet [FLMD02a, FLMD02b].

n [OC93, SG94].
n-cube [OC93, SG94].
NAD [SD04].
NAD-Based [SD04].
name [KM91].
namespace [KM91].
Narrow [MBW02].
NAS [KHS07].
NAS/PSA [KHS07].
Native [EBS02].
Natural [TS08].
Near [KL90, YW02].
Near-Optimal [KL90, YW02].
Nearest [KP96, LS96, NO97, WH05].
Nearly [CC97].
Necessary [Du95a, Du96, NX95, VS11].
Negative [CH04b].
negligible [SS94].
Negotiation [JJ09].
Negotiation-Based [JJ09].
Neighbor [NO97, SSZ02, St04, WH05].
Neighborhood [JJ07].
Neighbors [LS96].
nested [LK90, ST91, SC91, WW92].
net [CTC93, SMBT90, STMD96, VGG94, NE01].
Net-db [NE01].
NETRA [CPR93].
Nets [JK99, BCBzC92, WF94].
Network [AN04d, ABC01b, AB03, BBH05, BA97, BIKW00, Bok93, CFB02, CH04a, CHK07, CHL90, CS95, CPHG08, CZLM09, DC98, DS03a, DS05, DLS09, DR98, DLMP05, DCF95, EK95, FYS05, FV09, Fu05, GKK05, GBC+07, GS95, HY94, HSWB07, HY99, HH08, HGC05, HH95, HW08, JTC08, KSW03, KPB09, LCR98, LB95, LR93, LWN98, LK04, LPD05, MRR00, MZ08, MKY+09, MF01a, NT08, OEP99, Pak07, PPD03, Pre99, PDH06, Ros02, Sah00a, Sah00b, SS96, SF08, SF95, SC07, SYC03, SSR99, Sol02, SP05, Ste96, SSJ93, TT+00, T297, THT+07, TWH99, TF96b, US04, VB96, WCY95, WSN95, Wan98, WOT+07, WF06, WLL08, YW99, YFJ+01, YWD08, ZJ07, ZS09, ZN04, ZJK07, Aga91, AN94, An94a, An95, CV92, Ch96, KP92, LB94, LK94, MS94a, MR92, MJ94, PGDS94, PN93].
network [SS91, WS93, SL09].
Network-Attached [MKR00].
Network-Based [Ste96].
Network-Coding-Based [CJHG08].
Network-Partitioning [TWH99].
Network-Supported [ZL07a].
Networked [BES06, CG08, KMW08].
Networks [AY09, ABC+01, AB99, AV96, AS00, ALW+03, AD08, AD09, AA00, An98b, An01b, An01c, An01d, An03c, AA09, BO98, BK99, BR07, BRS08, BBS+09, BLD05, BSC09, BCL+05, BWS+05, BR08, BC06, BM00a, BPT03, BHL+07, BS08, BC95, BB07, CLW03, CF99a, CH07, CY08, CDV+06, CLB08, CBD+01, CC05, CBM+07, CL97, CC97, CY06, CPX06, CSC07, CH08, CL08, CJL09, CH09, CI09, CX09, CPHG08, CKWC08, CS02b, CS97b, CFKR08.
CMDP09, CNT05, DW04a, DW04b, DW06, DSY99, DPH08, DZ04, DAA97b, DAA97a, DAA00, DAA02, DAM06, DLS09, DB08, DY05, DD98, DWX09, Dua95a, Dua95b, Dua96, Dua97, EF95, EAK95, EAK97, EKOAW02, FFA06, FCF00, FR96, FF98, FLMD02a, FLMD02b, FG06b, cFC98, FYJ09, GZ06, GY95a, GLY07, GRY07, GD95, GLS07, GJDA06, GP03.

Networks [GBC+07, GY09, GY05, GY07, GS03, GSS06, HOD99, HS97, HS99a, H099, HSLA05, HCHM09, HL09a, HP03, HTPS02, HY07, HLL09, HLH09, HL09b, HC09, HW07, HCD97, HZ06, HC09a, HC97, HWSH00, ISRS06, JLA99, JGA08, JJO7, JLS02, JNO8, JASA08, JKA07, KZ96, KZN07, KP99, KP01, KPK09, KLW09, KyK09, Kla98, KAY06, Kop06, KHW03, KS01, KS08b, Lai00, LKK02, LC96a, LKK95, LO95a, LW95b, LS97, LDC08, LMS04, LL06a, LL06b, LCW03, LWS04, LH06a, LS+09, LW+09, LC+07, LR97, LM95, LLWC09, LRS02, LSC95, LWXS06, LH06b, LJW07, LW09b, LZ05, LSRT06, MGZ07, MCL07, MY07, MEKOT03, MZA02, MMSM06, MRLD01, MR06, MTK06, MAJ07, NO99, NO06a, NO06b, NOZ01, NOO2, NGM07, NYD09, NSZ02, ON02, OSRS06a, OSRS06b, PHKC09, PSK99, PK01, PR05b, PR05a, PC96, PKL06, PP05, PS96b, PF06].

Networks [PW99, PG07, QN99, RO99, RRX09, RGL05, RV07, RLW07, Res97, RW97, RE09, RM95, RLD03, RH00, RH04, SKS02, SJd09, SRZ04, SO95, SJM90, SC99, SX07, SD00a, SD00b, SPS08, SKP01, SOb06, SY97, SC05, SLFW06, SP07, SGL06, SS07, StO7, SL01a, SL01b, SSZ02, StO4, SZ03b, SS01, SDF96, SCL00, SC01, SOM05, TX08, TXL08, THH08, TLM04, TR06, TN08, JT96, TPL96, TLGP97, TH01, TS07, VDS99, VM04, VS11, WY07, WL07, WO04, WWL06, WCH08, WT08, WL08, WWLS08, WWWA09, WP00, WL00, WA99, Wu02, WCDY06, WD06, WY07, WLZ07, WCD08, XXX03, XNL04, XP05, XP07, XCO08, XGN97, XTL08, YK99, YK98, YN00, YW00, YW01, YW03a, YW04, YW05b, YW08, YL07, YW08, YW09, YW09, YW09, YW09, YW09, ZCRC06, ZF07, ZS09, ZC0F09].

Networks [ZL07b, ZH98, ZP06, ZB08, ZL08, ZL09, ZB09, ZL05, AAG94, AV94, Ahn94, Ant94, BR91, BR94, BFP06, BGM94, BIA07, BCHA04, CAB03, CAS04, Cor92, DA03, DGB09, DS94, Du93, FD94, Fid92, GP93, GP94, H092, HK94, KR93, KS94, LC94, LN93, MXEN94, MD96, NJ94, Noc92, NLM09, OC93, OD96, Pad91, PGFS94, RS04, RWF04, RFDS07, Sch91, SG94, SB94a, SC93, SR91, SC97, Tak93, TH93, jTM97, UEA95, VS96, YK96a, YK96b, YC93, YM95, YN90, YA93, ZS09b, Zia94].

Networks-on-Chips [KAY06]. Neural [AB03, EAK97, Pre99, NJ94]. Next [ZSMF01]. NFS [BB08]. No [NO00a, GR90]. NoC [BJM05]. Node [BRTM09, KP99, RGL05, STY09, TCS97, WCD08, YW03b, YW05b, jTM97]. Node-Disjoint [YW03b, YW05b]. Nodes [BFL01, Fu05, GP99b, JH97, LIZA04, SX08]. NODUP [CYW94]. Nomadic [KL02]. Non [CSC07, HJS06, PNZ02, PB96, KM96, SS94].

Nonunimodular [FLVG95].
 normalization [Omi90]. Notation [CF95].
 Note [Bhu06a, Bhu07a, Bhu07b, Bhu08, Bhu09b, Bhu09c, CH98, HGC05, SCY96,
 Yew03, Yew04a, Yew04b, Yew05a, Yew05b].
 Nothing [RD98]. Notice [Ano02c]. Novel [ADG06, BS08, CN02, CN04, Deb96, KL02,
 LM06, L208, Rob04, SKJ07, SX03, TH93, THH08, XL08]. NOWs [AA09]. NRMI
 [TS08]. NUCA [HKS +07]. NULL [KH93]. NUMA [AGGD05, BIWK00, DMKJ96,
 LEH92, PGBI03, ZY95]. Number [BM00b, CH09, GP99b, PP95, UKY98, Tho93, YG94].
 Numbers [YK99, NS95b]. numeric [HB92, Lar93].
 O [WSB09, Bor00, JSWB97, KKCB02a, KKCB02b, Kan01, KB03, kLCC +06, OPZ99,
 RB90, TR04, VV99, WSB09, YZ98]. O-Centric [HJH02]. O-O-O [WSB09].
 OBIWAN [FVR03]. Object [GMS09, JLDC05, LSC207, RS08, RLW +07, TF01, Tse09, XRR00,
 XTL08, YK03, SM94]. Object-Tracking [XTL08]. Objective [LSZ09]. Objectives [LKK02]. Objects
 [AM99, KMW95, LA04, Mic04, MTK06, IA95]. Oblique [ABRY03]. Observations
 [ZT01, ZW02]. Obtain [MRT06, BR91]. Occurrence [JK99]. OCGRR [GRY07].
 OCI [LNYY03]. OCI-Based [LNYY03]. octrees [IA95]. Odd [Ch00, LH01, RS90].
 Odd-Even [Ch00]. Off [FHA06, FLP +07, QCC99, SP07].
 Offloading [CKK +04, SF08]. Offs [CKK +04, DZH05, GZ09, MYA01, ZCXF09, DF97].
 Offset [LCRW98]. OLAP [LA06].
 Old [Mito00]. Omega [PW95, BR91, BR94].
 On-Chip [AGGD04, A003c, HP06, KKC +05, MKY +09, PSGD05, PP05].
 On-Demand [CZLM09, ILL07, JGA08, SKS02, WL08a, XTL06]. On-Line
 [ANKA99, Bir93]. On-the-Fly
 [KS06, PK00]. On/Off [SP07]. On [AJF96, CC97, FMR07, LWJ06, RHMO9,
 XP05, KST94]. One-Directional [AJF96]. One-Hop [RHMO9, XP05]. One-Shot
 [FMR07]. One-to-Many [CAC97]. Online [CHL09, EDO06, HKL00, HHL08, TSRS07,
 Tse09, ZLN09, ZBM09]. On [EAK97, HÖ99, IS90, KB06, SS94, TKP00].
 OPAM [BS96]. Open [BCL +05, YLL +07, DFD93]. Open-Source
 [YLL +07]. OpenMP [ACD +09, MM07].
 Operand [BWS +05, SS08]. Operand-Load-Based [SS08]. Operated
 [NK08]. Operating [LBS05, VGD94].
 Operation [HY01, HY05, Ian97, KST94]. Operational [LL07, SS09]. Operationally
 [KS94]. Operations [Agr99, BNBH +95, Bar98, BDD +96, GY07, JSWB97, LCL03,
 Sah00b, SCL05, THH96, WS98, MR92].
 Operator [SP02]. Operators [ZMP07].
 Opportunistic [CWY09]. Opportunities
 [CW02a]. Opportunity [AAB +00, KB03].
 optic [AAC94]. Optical [CFB02, CWY09, DS03a, GR96, G03, HS0B7, LW98,
 LK04, MR06, MAJ +07, RS97a, Sah00a, Sah00b, SCP99, WL00, WH01, YW01,
 YW05a, YJH06, YZ04, YZ06]. Optically
 [QM97]. Optics [LRW98]. Optimal
 [Aln94b, AR97, ABRY03, ADD +02, BFP96, BBG +95, BGO +96, BGM +04, BOS97,
 BNO +01, CS01a, CC93a, CCP95, CGK04, CYW94, CC97, CC95, CNE04,
 CNX06, DA98, DPF06a, DPF06b, DP02, Deb96, DS05, DY05, DD01, DD95, Din01,
 EK95, FLJ05, FJL07, FCF00, FI95, GW96a, GR599, GAG96, HNO98b, HNO98c, HK95,
 HS02, HTSP02, HWK01, HW95, HZ96, ISRS06, JR93, JR03, wJPP97, JDC05,
 JYVA05, JEG07, KDW01, KZ96, KCS +99, KR00, KL500, LC96a, LC95, LS97, LT97,
 LHSML95, MC93, MS92, MG09, NO97, OW91, OSZ92, OZ96, RA04, Rav07, Res97,
 RMC95, Ros02, SK02, SP93, SWC95, ST99a, TCC07, TLGP97, TH01, WKS01, WMN99,
 WL08b, XGN97, YMP08, YW00, YW01, YW02, YL08, XYW03, ZY04, ZL96, AGE94,
BGO+97, Fid92, Fu97, JR94, LW93, LA93, SB94b. **Optimal** [Uht92]. **Optimality** [LC02a, Xu01]. **Optimally** [BSS09].

Optimistic [QSO3, VJA97]. **Optimization** [BCG04, HLA90, LK94, LA93, SB94]. **Optimized** [Uht92]. **Optimality** [LC02, XU01]. **Optimally** [BSS09]. **Optimistic** [QS03, VJA97]. **Optimization** [BCG04, HLA90, LK94, LA93, SB94]. **Optimized** [BV05, CF94].

Optimizing [AMY09, AKSS04, COS00, GSS96, HCY06, KKK+05, KCRK00, LA04, MGD07, PPP04, SRL98, WSB09, XLW+06, ZXZ+09, AC93].

Optimum [Bar98]. **Optional** [Sun02].

Optoelectronic [WS98, WS00]. **Order** [BC99, FMR01, WSB09]. **Ordered** [GDJ94].

Ordering [AJF96, CH98, EBS04, Jia95, SH97, Var93]. **Orders** [KSP09, HMW93]. **ordinary** [GP92]. **organization** [DC95]. **Ordering** [CDV+96, SH95]. **Orientation** [UKY98].

Oriented [CV08, GMS09, HL09a, KCK+06, LP96, NR9+03, YZC08, dBL98, MN92].

Orthogonal [HJH02, Sch91]. **Oscillation** [hK08]. **other** [Fid92, PGFS94]. **OTIS** [CXP09, DAA02, RS98, WS98, WS00]. **OTIS-Mesh** [RS98, WS98, WS00]. **OTIS-Networks** [DAA02]. **Out-of-Core** [DW03, KCRK00, LRG99]. **Outerplanarity** [KR00].

Output [FZGC06, GCCC+04, MLW06, MR02].

Overall [COS00, YJHG06]. **Overflow** [SFP03]. **Overhead** [BG02, CC99, FPGAD08, KB03, PF08, SRT96, Kum92, LLI+93, NZ95, ZLE91].

Overheads [SSRV99]. **Overlapping** [kLC+06, YY90]. **Overlay** [AO09, BRS07, BRK08, BBR07, CLB08, CSC07, CXN06, GY09, LCG07, LLSZ08, LSN07, PDH06, SL09, TJ07, TSJ07, WCBX06, WLO8a, YMP08, YL07, ZCLC06, ZL08, ZLP09, ZCSY08].

Overlays [BK09, FRGL09, MG09, PZZ09]. **Overload** [Ram99]. **Oversubscribed** [TTB+00].

Packaging [BP96]. **Packet** [ADG06, AH06, DIN95, DZH05, FR96, GR06, GS98, GG95, HPT04, KSP02, LMS04, LL06a, LL06b, LL07, LSC95, MS09, PC07, PF96, RSK97, SX03, Tz06, WR04, WLL+07, ZXG09, MS93, PGFS94].

Packet-Based [LL06a]. **Packet-Switched** [LSC95]. **Packet-Switching** [LL06a, LL06b].

Packet-Based [LZ02, ST99a, VB93]. **packing** [BW94]. **Packings** [dBL98]. **Page** [DYJ97, Bir93]. **page-parallel** [Bir93]. **Pages** [HJ97]. **Pair** [WHW05]. **Paired** [WF03]. **Pairwise** [MCL+07, MDL06, TC94].

Paradigm [LJ00, OC05, WSC97, ZL05, MN92]. **Paradigms** [OB00]. **Paragon** [FBD96].

PAPADS [Ano07c, ACM08].

Papers [Ano97d, Ano97b, Ano97c, Ano98, Ano01b, Ano01c, Ano01d, Ano02b, Ano04b, Ano04c, Ano04d, Ano05c, Ano07c, Ano08c, Ano09c, Ano09b, Ano09b, Ano09c, Ano09d, Ano09e, Ano03c].

Paradigm [BLR03, JKR01, OC05, WSC97, ZL05, MN92].

Paradigms [OB00]. **Paragon** [FBD96].

Parallel [DGB+96]. **Parallel** [AKH95, AK98, ACM08, AM90, AFAGR97, AJMJS03, AFAGR00, ATML96, ACT+97, Aln95, AGL+98, AM06, ABK98, AKSS04, Ano97d, Ano97b, Ano97c, Ano02a, ABDZ94, AH06, ADD+12, AIK91, BT00, BCVC05, BBC+95, BDvd98, BJS09, BKB96, BA07, BAH01, BA97, BP06, COP00, CA06, CA08, CARW93, CF02, CC93b, Cha96, CH07, Che95b, Che96, CC97, CFW98, Che01, CW02b, CPX04, CV08, CY96c, CB00, CJPW06, CN02, CN04, CSR07, DGS96a, DPN96b, DHB01, DGB+96, Deb96,
Parallel	KG92, KPR05, KA99, LB00a, LH93, LO95a, LC95, LL96, Lee97, LKHL03, LHS03, LM06, LCB96, LPZ98, Li07, LP07, LT00, LBS01, LC99, kLCc+06, LOSW99, LH+01, LCL03, LNOZ03, LBS98, LS06, LRTZ96, LWN98, LL94, LZ05, LMT98, MR02, MD97, MJ98, MT97, MNM04, MS99b, NZ95, NLW99, Nas93, NL02, NKP+96, OHRW99, OXL06, OR97, PR05a, PKJ97, PWW00, PG01, PK95a, PK95b, Pre99, PH02, QCC99, Qua01, QS03, RL98, Raj05, RA04, RK93, RR02, Rob04, SA09, SBB04, SZE09, SW96, SSP00, SRRV99, Soh95, SCO+07, SP03, SCP02, SPF99, SZ04, SOM05, TSP+08, TP95, Var01, VV99, VB95, VKS+09, WCL97, Wan98, WKS01, Wan04, WHM09, WL00, WCF91, WYD93, WTCY95, WHL95, WDY98, WMB96, Wu97b, XQ08, XB93, YFJ+01, YDW+09, YFM98, YZC08, ZFMS03, ZY07, ZH98.	
Parallelepiped	MM96.	
Parallel-acting	MM96.	
Parallel-Pipeline	KPR05.	
Parallel-Systems	SF09.	
Parallelepiped-Shaped	RR02.	
Parallelism	AGWFH97, KCRK00, MA97, MA01, PAM95, PS96a, RSP02, RS97, TG90, WHL95, GP92, LAr93, MR94, RM90, WL91.	
Parallelization	CL05, EHP98, GP92, MSH00, OB00, PPBSA97, RP99, SJJK06, XC01, YR06, JWC94, KKP91, NE93, TN93a.	
Parameterized	PAM95, PS96a, RSP02, RSB97, TG90, WHL95, GP92, LYZ90, SL90, Parameter	XLO4.
Parameters	ZSMF01.	
Parse	PDC94.	
Parenthood	PDC94.	
Parentheses-matching	PDC94.	
Parenthesis	Sto96.	
Parity	Par95.	
Parsing	NLW99.	
Part	DLPP05, LPP05, OSRSO6b, PK95a, PK95b, RK94a, RK94b, YK96a, YK96b.	
Partial	Agr98, DP02, FJY98, LSW04, RLW+07, ZH07a, You93.	
Partitions	HY04, RL98.	
Partitionable	CPA93, JS90, LC91b, NSD+91, WS93.	
Partitioned	BC99, DS03a, MR06, RJ94, Sah00a, Sah00b.	
Partitioners	SC02.	
Parsing	NLW99.	
Passive	DS03a, GP99a, MR06, Sah00a, Sah00b.	
Patch	KSP09.	
Patch-and-Stitch		
Path | [KSP09].
---|---
Flooding | [FLJ05, FH97, GZ06, HSWB07, HoI98, KL99, KA96, PKL06, QM07, SM03, THT+97, ZH98, BR91, CWL92, SC97].
Path | [KSP09].
---|---
Path/Flooding | [SL01a].
Paths | [FJL07, PSK99, SX08, UFS96, YW03b, YW05b, GPBS94, KGBM94, TR93].
Pattern | [DKKS04, LS06, SDFV96].
Pattern-Based | [LS06].
Patterned | [YY95].
Patterns | [AMS97, Aro00, GS95, MR02, TW00, BR94].
Payment | [TJ08].
---|---
Payment-Based | [TJ08].
PC | [JZ04].
PCBN | [WS93].
PCS | [FCF00, WOT+07].
PDE | [WH95].
PDF | [Ano00b, Ano00c, Ano01f, Ano01g, Ano01h, Ano01i, Ano01k].
PE | [Kop94].
Perimeter | [CS05].
Performance-Based | [AA00, KL99].
Performance-Driven | [CML05].
Performance-Efffective | [THW02].
Performance-Guided | [ZMRS08].
Performance-memory | [DF97].
Performance-Oriented | [dBL98].
Performance-per-Watt | [KHY90].
Performing | [Lai00].
Perimeter-Based | [CS05].
Period | [SC94].
Period-processor-time-minimal | [SC94].
Periodic | [JR03, MIIW06, Ram95, SA94].
Periodically | [Ano99f, PK99b].
Permutation | [CST02, DZ04, NOZ01, NS95a, SBF00, SyFL99, WMN99, MS93, RFW94, YC96].
Permutation-Based [CST02].
Permutations [Lai00, YW03b, YW05b].
Persistent [Lop02].
Personalized [FYP07, SS01, TG96, YW00, YW01, RWF94].
perspective [MTSDA93].
Perturbation [CL09, MRW92].
Pervasive [Lop02].
Pessimistic [SB94b].
PET [CL94].
Petersen [OD96].
Petri [BCBzC92, CTC93, JK99, SMBT90, STMD96, VGGD94, WF94].
pf [BE92].
PFS Fusion [ZYKG07].
Phase [Agr99, Her00, HY07, HLH04, LH01].
Phased [KKC03].
Phenomena [JN08].
Photonic [LZ05].
Physical [Ano08c, TGV08].
Pin [HY07].
Pica [WCCR+97].
Pin [Fid92].
Pin-optimal [Fid92].
Pipeline [KPR05, SS08, SM03, YKS03, AN94, EMS90].
Pipelined-Based [YKS03].
Pipelined [DSO02, HO99, KCN90a, KCN90b, LPZ98, Li03, RJ96, SDDY00, WHW05, ZMP07, CNNS94, JR93, SG94].
Pipelines [FDC00].
Pipelining [AB94, BLMR05, CDR98, GAG96, KL01, AN95].
Pivoting [FJY98].
Placement [Agr99, BRSR08, KD01, KM02, LSCZ07, Par95, RC95, RSG06, TX05, TC06, TCC07, Tse05, BJS90].
Planning [SKC09, SZ03a, dSF03].
Platform [Ano04c, CR06, FVR03].
Platforms [BBC+04, BBR01, BLMR05, BCL09, CF00, DNSC09, HK06, LSO9, MTSDA93].
Player [CHL09].
PMC [HC09].
Podality [BGOS97].
Podality-Based [BGOS97].
Point [DSY99, HO99, SK02, ZP07, Cor92].
Point-to-Point [DSY99, HO99, SK02, Cor92].
Pointer [CHJL04, CAZ04].
Pointer-Based [CAZ04].
Pointers [Mic04].
Points [HNO98b, HNO98a].
Poison [SZ04].
Policies [BRSR08, BIWK00, BE07, CV08, CY98, DY97, LA06, DY93].
Policing [RH04].
Policy [BCdSFL09, LR96, LG09, SRD08].
Policy-Enforced [BCdSFL09].
Polling [Res97].
Polymorphic [Mar93, TC07].
Polynomial [BCSB09, CF94].
Port [H000, HK95, KLS00, jTM96, YW02].
Portability [ABJ+93, AN93].
Portable [AGL+98, BBC+95, DR98, LB00a, Gab90].
Positions [Qua01].
Possible [HMY93].
Postal [BNBH+95, BDD96].
Potential [CV08, MTL95, SP05].
Power [ACM08, Ano07c, CMBAN08, FMR07, KGKL08, Li08, MGZ07, MB07, Mit01, MCG08, PS08, SP07, SL01b, ZMM04, MM96, WT92].
Power-Aware [ACM08, Ano07c, Li08, PS08, SP07, SL01b, ZMM04].
Power-Performance [CMBAN08].
Power/Performance/Thermal [CMBAN08].
PowerPC [AAS03].
Powers [Li07].
PowerTrust [ZH07b].
pp [RFDS97].
pp-mess-sim [RFDS97].
Practical [AFAGR97, DDV07, FB01b, GS08, KA99, Ste96, WT98, Gab90, TN93b].
Practically [GLV06].
PRAM [Che95a, HNO98c, PDC94, WH03a].
Precedence [BKS03, BBD00, HO99, Ram95, AMAM94, SS94].
Precedence-Constrained [HO99, AMAM94].
Precedence-Related [Ram95].
Precedent [LT00].
Precise [CT94].
Precomputation [MGQS+08].
Preconditioned [GKS95].
Predicate [CK96, DL02, MSG07].
Predicates [Ksh03, GW94, GW96].
Predict [DI95].
Predictability [MF01b].
Predictable [HS99b, KSWR03].
Predicting [ML90, XC04].
Prediction [CMBAN08, Din06, DF99, GvG06, GDI93, LT00, SMS93, TAKB06].
Prediction-Based [CMBAN08, GDI93].
Predictions [TEF07].
Predictor [TAKB06].
Preface [OSRS06a, OSRS06b].
Prefetching [COS00, DDS95, DS96, KE90, LJS90, SL03, TCC05, TR04, TKVD02, VV99, Lil94].
Prefix [BM00b, Chu95, LNO4+00, LNOZ03, Tak93].
Presence [DHP+07, NT09, OKSA01, Sin96, SCY98, VRKL96]. **Present** [KyK09].
Presentation [GT02]. **Preservation** [CGM05]. **Preserving** [CL09, JBW+08], **PRESS** [CB05]. Prevention [LSC95].
Proactively [vdMDM07]. **Probabilistic** [Arv94, CHJL04, KMG03, KCK+06, ZZN07, LS94c]. Probability [DO02, HY99, MAJ+07, RO99]. Problem [AK99b, BSCB09, BNO+01, CT08, CKWC08, FH98, HTPS02, HLC09, yH02, NO97, PPBSA97, PK95a, PK95b, TC04a, THT+97, TKVD02, WLZ08, YK99, CWL92, FD94, LL94]. **Problem-Solving** [PK95a, PK95b]. Problems [BCL+05, CB00, DMR01, FMR07, Gon08, HH95, IB95, LLY07, PLT00, RL98, SK02, SKB04, THT+97, UZCZ07, WK91, WH05, OH91, OSZ92, RJ90, SW95, WC90, YK96b].
Process [DTE07, GM09, JBW+08, SvVB05, GT93]. Processes [BcdSFL09, CLB08, CF95, LPD05, MRT09, WM93]. Processing [BDvD98, CBB02, DHB01, DW03, HX96, KY98, KKCO3, LB00a, RGK09, SKB04, TSP+08, WS00, YKS03, YYX+09, ZPY06, dSF03, BC90, CY92, DFD93, GDJ94, HK03, KK93b, LHS92, Lee93, LY93b, MLL92, MTSDA93, RS94, SPT94, SMJ92, Th03, YD94b]. **Processor** [BBC+04, Bar98, BE07, CBE93, CW90, CY90, CC95, CML05, DDD+05, DD95, EP05, GW96a, GLW97, GR06, HK06, HKWH01, HCYD01, HW08, KBD08, LKHL03, LKKS05, LPZ98, LHSML95, LWLN97, MGQS+08, MMSA94, OC05, PPR99, RTS95, SVPO8, SP95, TKP00, UKY98, VM04, VKS+09, WSC97, WF06, WYD98, Wy97b, WHC03, YK99, YL96, YL97, ZCO98, ZWM99, AB94, AN94, Cap92, CD94, CNNS94, GR94, GM94, KDL91, KLDR94, Mar93, ML94, SC92, SC94, SPT94, SF92a, SL93a, SMS93, SL93c, SA93, WC90, WW92, YW93].
processor-cache [SL93c]. processor-time-minimal [Cap92, SC92]. Processors [AF05, BLR03, BF04, DF99, GY95b, HTPL02, HCH97, JR03, LPE+99, MBM98, SF08, SJPL08, SCY98, WSB09, Ag92, Aho94a, Aho95, HK93, YG94]. Produce [TK96a]. **Product** [DAA97b, DAA00, FE97, HC09, KWH03, Li07]. production [ATG92, AG96]. Products [EF95, KHL03]. Profiles [RMO+95]. Profiling [HO98]. Program [Abr97, AK98, AN93, KP09, BCBr92, MS94a, MCH+90, RM90, TRS90]. Programmable [ZLKK07]. Programming [AAD08, AJMJS03, AGL+98, BM00a, CDMB05, JZ94, KBC+01, LCB96, OB00, PG01, PW95, RNR+03, SK95, TSG90, YYX+09, BS95, CR90, HQL+91, HL94, KMT91, WG90]. Programming-Based [AAD08]. Programs [CF00, DH96, FO05, GSS96, Hol98, KA99, LRC99, LMT98, MF01a, NE01, OXL06, PH02, WNKS96, WBO+01, ZH99b, ADM92, Bil94, BE92, CIW91, CR90, Fos91, Gab90, GW94, GW96b, GP92, HH90, LAR93, LC91a, LNP94, MK91, RS94, RK94a, RK94b, SLY90]. Progress [WWWA09]. Progressive [SP03, ZZMN07]. Promoting [AD08]. PROMPT [HRG00]. proof [CG08]. Propagation [CH98, DY97, Jia95, SH97, SOM05, TLGP97, MLL92, Rao96]. Propagations [HM98]. Properties [Abr97, CSH10, DAA02, DS05, DCF95, EAL91, EAK95, HC99a, Pre99, Sto97, Tsa03, DT94, Ost90]. Property
[SyFL99, BR91, LC94]. Proportional [FLZ09, LLY04, PC07, ZX04].
Proportional-Delay [LLY04]. Proportional-Share [FLZ09].
Protecting [WZP03, W +03]. Protection [WS03, WLZ08, WFS09, XRY09]. Protein [TAKB06].
Proteins [FARH02]. Protocol [ABS01, CBD +01, CHHC06, DZ04, EBS04, FPGAD08, GCCC +04, Gen00, GP99a, GJDA06, HRC00, HSLA05, HJB +09, Jia95, JZX99, KL02, LDC008, LLY07, LC02a, LW09c, LK04, MEKOT03, MZA02, MTK06, PK00, RE09, SH97, SPC +02, TF96a, WO04, XJZ00, YWY08, YK03, ZMSS08, ZL07b, ZKB08, AB91a, KP93a, LG90, YTB92].
Protocol-Centric [PK00]. Protocols [AEA97, AK99a, Ano04d, BRSS08, BBS +09, BMPP06, CH04a, CFKR98, DW04b, FRGJ07, GY95a, GKG06, ISRS06, MLSS07, NOS99, NO00a, NO00b, NO02, ORS06a, ORS06b, PD95, PDH06, SRT96, TKW98, Tsa03, TT01, WCR09, XZ03, MSMA90].
prototype [DM93, LLJ +93]. Provably [HHL08].
Provenance [GM09, JBW +08]. Provenance-Preserving [JBW +08].
Provide [MAS08]. Providing [FZGC06, RAHM05]. Provision [Cly08a, MGA +09]. Providing [EKOAW2, WMZ06]. Proxies [CC03, JLDC05, LA06, TCC05].
Proximate [HN09b]. Proximity [ZH05].
Proximity-Aware [ZH05]. Proxy [ILL07].
Proxy-Client [ILL07]. Pruned [XP07].
Pruning [CB00, DW04b, MD97, SG93].
pruning-cache [SG93]. PSA [KHS07].
PSCR [GP99a]. Pseudo [LH +08].
Publish [ZH07c]. Publish/Subscribe [ZH07c]. Pull [KLH07]. Push [KLH07].
Push-Pull [KLH07]. Puzzles [ACT06].
Pyramid [PH96, DS94, JS93]. pyramids [GM94].
QoS [ASD04, CCQ +05, CWYZ09, CS02b, EKOAW2, FHA06, HSH +09, HY02, KK03b, MAS +07, MGA +09, NK08, RGK09, RSG06, SJK06, TX05, WMXZ06, XHYL05, XP05, YKD02, ZPY +06]. QoS-Aware [RGK09, TX05]. QoS-Constrained [ZPY06]. QoS-Enhanced [KK03b].
QoS-Provisioning [WMXZ06].
QoS-Sensitive [CS02b]. Quadratic [CHC04]. Quality [CL09, HH08, KSC03, LXX06, MAS08, RAHM05, ZB09].
Quantifying [HP03, NGB +05].
Quantitative [JCR]. Quasi [CCS +99a].
Quasi-Aggregate [CCS +99a].
Quasi-Synchronous [MS99a].
Quasidynamic [KK04]. Quasiregular [LH06b]. Queries [AKSS04, DP02, JN08, LG09, LA06, SC07, XTL08]. Query [BNO +01, LXX06, SKCL09, CY92, LY93b, WCS92].
Quering [DL09, PS03, BGO +97]. Question [SMH02]. Question/Answering [SMH02].
Queue [hK08, LR96, RMO +95, DC95].
Queued [HS08]. queuing [Nic92]. Queues [Che01, DPS96a, DPS96b, OW91]. Queuing [AH06, FHA06, FZGC06, PF96, SV97, SS02, TH06]. Quiescence [DTE07].
Quiver [RS08]. Quorum [AEA97, AMPR01, AMP07, CS01a, CY95, Jou03, MTK06, NW98, TYK99, YC95, AB91a, Fu97]. Quorum-Based [AEA97, AMP07, CS01a, Jou03, MTK06, TYK99].
Quorums [KKM08].
Race [PK00]. Radars [KKC03, KCK +06].
Radio [DZ04, NOS99, NO00a, NOZ01, NO02, Rav07]. Radius [ISR06, TF96b].
RAID [HJH02]. RAID5 [Tho06, TM97].
RAIN [FL +01]. Random [BGJ06, CH08, LKK02, LLL09, LXWX06, Rav07, VB06, RS94, You93].
Randomization [JS98]. Randomized [AS00, CPX06, FRGJ07, Mit01, NO00b, RS98, UFS96, YJ97a, BL91]. Randomly [CH08, VB93]. Range
Range-Free [WWWA09]. Range-Join [CST02]. Ranking [PK97, SS96, RJ90].

RAPID [HNY02]. RAPID-Cache [HNY02]. rasterizer [Bir93].

Rate [BMR99, EKOAW02, GAG96, HY07, HPT04, JASA08, LDG04, SS08].

Rate-Based [EKOAW02]. Rate-Monotonic [BMR99]. Rate-Optimal [GAG96]. Rateless [WL08b]. Rates [HJ8+09]. Rather [TEF07]. Raw [MYA01].

Rayleigh [Gre98]. RDT [Tsa03]. Reaching [KA94, TYK99, WYWZ08]. Read [KDW01].

Reading [KST94]. Real [AS99, Ano98c, AA09, BÖ99, BMR99, CRN09, CS97b, CS03, EDO06, FWDC+00, GMM97, HS99a, HRG00, HJS+06, HSH+99, HS99b, KSF94, KGM97, KMW08, KWH02, KKC03, KS01, KS03, KgCS04, LL07, LHSML95, LWK05, MZ05, MM98a, MM98b, ME95, PABD+99, Ram99, SJPL08, SCK00, SR99, TL05, VMXQ04, WJL07, WCH+08, WMWL08, XZG09, XP05, XQ06, YW98, ZS95a, ZS98, ZMC03, ZMM04, ZLZ09, ZJ99, CD94, KGM96, RSS90, SRS93, SH93, SH94, SA94, SMS93]. Real-Time [AS99, Ano98c, AA09, BÖ98, CRN09, CS97b, CS03, EDO06, FWDC+00, GMM97, HS99a, HRG00, HJS+06, HSH+99, HS99b, KSF94, KGM97, KMW08, KWH02, KKC03, KS01, KS03, KgCS04, LL07, LHSML95, LWK05, MZ05, MM98a, MM98b, ME95, PABD+99, Ram99, SJPL08, SCK00, SR99, TL05, VMXQ04, WJL07, WCH+08, WMWL08, XZG09, XP05, XQ06, YW98, ZS95a, ZS98, ZMC03, ZMM04, ZLZ09, ZJ99, CD94, KGM96, RSS90, SRS93, SH93, SH94, SA94, SMS93].

Real-Time [AS99, Ano98c, AA09, BÖ98, CRN09, CS97b, CS03, EDO06, FWDC+00, GMM97, HS99a, HRG00, HJS+06, HSH+99, HS99b, KSF94, KGM97, KMW08, KWH02, KKC03, KS01, KS03, KgCS04, LL07, LHSML95, LWK05, MZ05, MM98a, MM98b, ME95, PABD+99, Ram99, SJPL08, SCK00, SR99, TL05, VMXQ04, WJL07, WCH+08, WMWL08, XZG09, XP05, XQ06, YW98, ZS95a, ZS98, ZMC03, ZMM04, ZLZ09, ZJ99, CD94, KGM96, RSS90, SRS93, SH93, SH94, SA94, SMS93]. Realistic [Ano04c, CRS06, LR97, SS06, WLZN07].

Realizability [SyFL99]. Realizable [GL06]. Reallocation [Tse09].

Rearrangeable [CF99a]. Reassignment [CT08]. Recirculating [ZY06]. reclaiming [SRS93]. Reclamation [GPST09, Mic04, WCLF95, ZMC03].

Recognition [CW00, GR94, YC96].

Recognition-Complete [CW00]. Recognizing [KH98, PWW00].

Recomputing [YDW+09]. Reconciliation [ACT06]. Reconfigurable [BM00a, BM00b, BA97, BGS98, BNO+01, DSO02, EKW97, FZTV98, HNO98a, HTSP02, wJPP97, LS96, LPZ98, LO95b, NO97, NO98, PS08, RS97a, RJ99, SGTP08, WHW05, WH01, YZW94, ZP07, Ahn94a, Ahn95, wJNPS97, MR92, WC90].

Reconfiguration [Año99h, Avr99, CBD+01, DLPP05, KZ96, LHSML95, LPD05, PPD03, QM94, Tze93, YR96, MS94a]. Reconstruction [St96, CL94]. Recorded [LL98].

Recording [GM90]. Recoverable [MP97].

Recovery [CY96b, DY97, LL02, MGDZ07, PS96c, SNI02a, SNI02b, VJA97, ZLKK07, JF94, KK93a, KP93a, KT92, WFP90].

Recurrence [BAH01]. Recurrences [WNKS96]. Recurrent [GWL97].

Recursion [ZL05]. Recursion-Based [ZL05]. Recursive [CLPT02, Fu05, HCD97, HGC05, LR99, PH02, SCL00, TC04a, YFJ+01, HN90, SCD97].

Recycling [WRB09]. ReDAL [DV+07]. Redirection [CC03, RK08]. Redistribution [CHB98, CJPW06, DDP+98, GAL01, HCYD01, CYL06, KM02, PPR99, PD99, TCR96, KN95].

Reduce [Ian97, SJK06, AH91, ME95].

Reduce-Scatter [Ian97]. reduced [Zia94].

Reducing [KKR03, hKY08, Kop94, QM97, RJ05, WSN95, YCTW07].

Reduction [KB03, MR92, PP95, RP99, SSO0, YR06, ZMP07, LA93, STM96].

Reductive [CMR07]. Redundancy [Ag98, LW95b, SWC95].

Recurrent [Ny99, JGZW08, MB07, KGMB94, KS91].

Refactoring [ZJ03]. Reference [GPST09, HE92]. References [CHC04].

Reflected [MQ97]. Regeneration [DHP+07]. Regeneration-Theory
[DHP+07]. Region [GLS07]. Register [LPE+99, YLL+07, ZLAV04]. Registers [CH09]. Regular [Ano99f, CCC05, CM95, HC09, MDSS09, PX99b, PLT00, SK02, SKB04, TC95a, GMG96, HK91, MS91]. Regularity [LCB00]. Regularization [TC95a]. Regularly [Lai00, YY95]. Regularly-Based [ZCO98]. Regularization-Based [ZCO98]. Regularly-Based [Lai00, YY95]. Regulating [SP07]. Reinforcement [ZCO98]. Reinforcement-Based [ZCO98]. Reinforcement-Based [ZCO98]. Reliability [yCM98, CH92, CI92, GB00, GYS05, SJ99, SR91, SRT94]. Reliable [ABS01, BFL+01, DHN95, GPST09, GKG06, HNY02, KMG03, LCW+09, MN92, RE09, RHM09, ST99b, XZ03, ZF07, HK94, LS94b]. Reliability [KPR05]. Requirements [HYP02, SSRV99, Uht92, GO93, MS93, SMS93]. Rerouting [NSZ02, SDDY00]. Rescheduling [SSZ06]. Research [RRX09]. Reservation [CS02b, SP05, XLW+06, ZMMS08]. Reservation-Based [SP05, ZMMS08]. Reservations [RRX09]. Reshuffle [Dim01]. Residue [BM00b, PP95]. Resilience [TTJ07]. Resilient [AOK09, CWLR09, CC93a, DAA00, NLM90, SX07, WL08b, YK09, LW95a]. Resistant [BSS09]. Resolution [GFG+99, SP05, WP00, XRR00]. Resolving [HLH09]. Resource [ANN95, AOK09, AMSK04, BCR98, CXN06, CNT05, DP06, Din06, GAG96, HWWX99, J09, KZN07, KSME08, KyK09, KCG09, KPR05, LJC08, MEK03, RC95, RK08, RH04, SKJ07, SBK02a, SBK02b, SRS93, SRD08, TF96b, VVR07, XZC02, XL08, XQ08, YMP08, ZWX06, PJC93]. Resource-Aware [VVR07]. Resource-Constrained [GAG96, ANN95]. Resources [BCFG08, DP01, FLZ09, GKK05, SJKC06]. Respect [SLH97]. Respective [FMR07]. Response [CN04, KA09, LLTW08, LLX06, Var01, TRS90, WSC92]. Responsive [LAV03, Sun02, WLL+07]. Restart [CLS04]. Restoration [AYA09, FCF00, MAJ+07]. Restoration-Based [MAJ+07]. Restricted [FZVT98, GZ09, NO97, CCJ02]. Restructuring [CK08, DKK04]. Results [BCL+05, CCY96, FCF00, Fe05]. Retiming [CDR98, CS97a, PS96a]. Retrieval [LC04, MZA02, SC07, ZYKG07]. Retry [CF01]. Review [PDH06]. Revenue [LJC08]. Reversible [LJ03]. Reviewers [Ano99a, Ano00a, Ano01a, Ano03a, Ano04a, Ano05a, Ano06, Ano07b, Ano08b, Ano09a]. Rewriting [SF07]. RFID [MLSS07]. RH [Zia94]. RHiNET [KWOA05]. RHiNET-2 [KWOA05]. Riding [LYW08]. Right [SF09]. Ring [BC+01a, BK09, CC93a, LW95b].
Ring-Based [Zyc95], Ring-Connected [Lw95b], Ring-Like [bk09].

Rings [Ano99f, Hgc05, HlH04, Ky97, Lh01, PK99b, Scl00, Yctw07, Vb93].

Rips [sw96].

Ritz [Gre98].

Rle [Eaf00].

Rle-Compressed [Eaf00].

Robin [Ksp02, Lms04, Zy07].

Robust [Aknr94, Cpx06, Evw07, Wll97, Zho7b, Ly94].

Robustness [Amk04, Pr05b].

Role [Chc09].

Role-Based [Chc09].

Rollback [Cy96b, Tkt92, Tk98].

Rollback-Recovery [Cy96b].

Rolling [At01].

Rotation [Cy97].

Rotations [Mb98].

Rotator [Cor92].

Round [Ksp02, Lms04, Zy07].

Round-Robin [Zy07].

Roundings [Maj97].

Routing [Bp98, Cfk98, Fr96, Ff98, Hoo0, Kls00, Lmn95, Rmc95, Ss07, Scl01, Jtm96, Tg96, Tpl96, Tlgp97, Twh99, Xgn97, Zlo5, Mxn94, Jtm97].

Routers [Bcp04, Chi98, Hdf07, Lbc03, Tze04, Tze06, Ws03, Wfs09].

Routes [Maj97].

Row [LC96b, No98, Sp93].

Row-Column [LC96b].

Routing [Wu02, Wyd07, Xia01, Xlph06, Xjzx00, Yw99, Yw03b, Wy05b, Wy08, Av94, Cs90, Da93, Dua93, Gbps94, Lmn94, Ms93, Mc93, Os94b, Pgds94, Pfcs94, Sc93, St93, Scd97].

Routings [Kwoa05].

Rows [LC96b].

Routing [Wu02, Wyd07, Xia01, Xlph06, Xjzx00, Yw99, Yw03b, Wy05b, Wy08, Av94, Cs90, Da93, Dua93, Gbps94, Lmn94, Ms93, Mc93, Os94b, Pgds94, Pfcs94, Sc93, St93, Scd97].

Royalty [Flei05, Chf94, Lw93].

Rotation [Cy97].

Rotations [Mbm98].

Rotator [Cor92].

Round [Ksp02, Lms04, Zy07].

Round-Robin [Zy07].

Roundings [Maj97].

Routing [Bp98, Cfk98, Fr96, Ff98, Hoo0, Kls00, Lmn95, Rmc95, Ss07, Scl01, Jtm96, Tg96, Tpl96, Tlgp97, Twh99, Xgn97, Zlo5, Mxn94, Jtm97].

Routers [Bcp04, Chi98, Hdf07, Lbc03, Tze04, Tze06, Ws03, Wfs09].

Routes [Maj97].

Row [LC96b, No98, Sp93].

Row-Column [LC96b].

Routing [Wu02, Wyd07, Xia01, Xlph06, Xjzx00, Yw99, Yw03b, Wy05b, Wy08, Av94, Cs90, Da93, Dua93, Gbps94, Lmn94, Ms93, Mc93, Os94b, Pgds94, Pfcs94, Sc93, St93, Scd97].

Routings [Kwoa05].

Rows [LC96b].

Routing [Wu02, Wyd07, Xia01, Xlph06, Xjzx00, Yw99, Yw03b, Wy05b, Wy08, Av94, Cs90, Da93, Dua93, Gbps94, Lmn94, Ms93, Mc93, Os94b, Pgds94, Pfcs94, Sc93, St93, Scd97].

S [HK98].

S-to-P [HK98].

Saccs [Wdck04].

Safe [Mic04].

Safety [Kin06, Sj99, Wu98, Wu00, Xia01].

Sampling [Gly07].

Samr [Scp02].

Sapphire [Bes06].

Sara [Jas08].

Satisfying [Ttb00].

Saturation [Ss90].

Scalability [Af05, Bg02, Df90, Gks95, Jw00, Kw08, Lzty09, Sr94, Gk93].

Scalable [Wdck04].

Scalable [Wdck04].

Scalability [Af05, Bg02, Df90, Gks95, Jw00, Kw08, Lzty09, Sr94, Gk93].

ScalablA [On06].

ScalaL [On06].

Scalar [Bws01, Gs91].

Scale
[BB05, BG09, CY00b, DvdMK09, EDO06, GMCBO1, GYO9, HL09a, KMG03, KCW09, LC017, LC95, LKO4, MY07, MA01, MMJ03, SklC03, VVR07, WHM09, XHYL05, ZYK07, SG93, YTB92].

Scale-Free [GY09]. Scaling [FZVT98, HWWX99, KSME08, SGL06, WZZ09].

SCALLOP [CHHC06]. Scan [YLW07, Yi09]. Scan-Based [YLW07].

Scatter [Ian97]. Scatternet [LSW04]. Scatternets [TSK06].

Schedulability [AA09, Bak05, BCL09]. Schedule [LDC08, SC94]. Schedulers [BCF08, SF09]. Schedules [BOC09, COS00, Ros02, JR94]. Scheduling [AS09, AK98, AK99b, A006, ABK98, An004c, BA04, BFGM08, BBC04, BKS03, BBD00, BCL09, BMR99, BOC09, BE07, CC02, CG08, CRS06, CS08, CS09a, CV08, CRN09, CY00, CBO08, CJPW06, CFR99, DA09, DDP08, DXW09, D02, DRY07, D07, DZ05, DMKJ09, DNSC09, EK95, ED006, FUY07, FFPF05, FH03, GRY07, GKK05, GMM97, GV09, GHT07, HKL00, HHL00, H08, JZ00, KSP02, KGM96, KA06, KB06, KH07, KAK6, KC08, LTH08, LKHL03, L08, LMS04, L05, LWJ06, LWS06, LD04, MLS94, MM08a, MM98b, Mha09, MF01b, PAM95, PM96, RvG02, R0X09, Ram95, RLW07, RJ06, RBS09, SD04, SS94, SJP08, SZ02, SZX05, SP98, SM03, SW06, SS05, SS05, SP05, SCW07, SS00, SS06, TSL09, TVG08, T01, TTB00, TWH02, VRK06, VM04].

Scheduling [VVR07, VKS09, WR04, WWS08, WSB09, WMW08, WFT03, WTC95, Wth97b, WSG01, WY10, XU10, XNZ08, YG94, Y9F7, YKS03, YvdRC05, ZLAV04, ZSMF01, ZFMS03, ZY04, Z04, ZMCO3, ZMM04, ZCO98, ZW99, AM93, AM93, AMM94, DR94, EG93, FS91, H0R94, KLRD94, KS93, LC91b, L04, L0D93, PLW96, RSS90, SL93a, SL93b, SL93c, TN93b, YJ07, ZEL91, ZA93].

Scheme [BHJ02, BG09, CC09, C1L95, C1C01, CC09, CC99, C1L05, D05, DOW99, EKO04, FYPO7, FT07, FI05, HCH09, H08b, HPH08, KCD07, LCL03, L0W07, MCL07, PAM95, PK98a, SKd09, SFP03, SZ05a, TS98, TJ08, TD01, WDCK04, WX07, XTL08, YYS97, YGE06, YG08, vdMDM07, AM91, CA93, HMR94, JS09, KDL91, LHS92, LC91b, MB92, SB94b, TH93, TN93b, YK92].

Schemes [AJ95, ADG06, CSR07, DF99, GBD07, HSH99a, HW97, J095, PDS05, PPD03, SS96, T0S07, TK099, VB96, WT08, CYW94, C094, R0J4, SL90, SH93, ST93].

Schur [ME95]. Scientific [CH04b, CMBAN08, HT06, MLW06, NKP09, SF08, SLkC03]. Schemes [AJ95, ADG06, CSR07, DF99, GBD07, HSH99a, HW97, J095, PDS05, PPD03, SS96, T0S07, TK099, VB96, WT08, CYW94, C094, R0J4, SL90, SH93, ST93].

Search-Based [KL07]. Searching [MTK06]. Second [ZCL09].

Second-Level [ZCL09]. Secondary [WR09]. Secret [NW09]. Section [ACM08, AAB06, ABC01b, CRS06, GZ03, IT07, ON02, ORS06a, ORS06b, PP06, SR09, Zha03, HK91]. Sections [HK06].

Secure [AKNR04, BCC07, HCH09, KYY08, Lee06, MMJ03, STY09, SGB08, WCBX06, ZZ06, vdMDM07]. Securing [PZ09]. Security [BHL07, KCP09, LAV03, LKO7, SF07, XQ08, Zha03].

Security-Aware [XQ08]. Segments [CW02b]. Selectable [HJB09]. Selecting [Qua01].

Selection [AFAGR97, AMY09, BW96, CH04a, CB03, GS03, KCW09, NS097, RS97a, RS98, SCK00, WH03b, YK09, YR06, ZF07, BLO09].

Selective [CK08, LA93]. Self [CDV06, DW04b, DAMK06, DB08, DIM97, DS03b, FG06a, KY97, Kar01, LH03, MS99b,
SP07, TLM04, TH06, TNPK01, TK96a, UKY98, WLZ08, YW99, YW00, YW03b, Fos91, SH95b, TN93b. Self-Control [TK96a]. Self-Optimization [TK96a]. Self-Pruning [DW04b]. Self-Regulating [SP07]. Self-Routable [YW00, YW03b]. Self-Routing [FG06a, YW99]. self-scheduling [Fos91, TN93b]. Self-Stabilizing [DAMK06, DB08, DIM97, DS03b, KY97, Kar01, LH03, TH06, TNPK01, UKY98]. Self-Synchronization [MS99b]. Self-Tested [MS99b]. Self-Tuned [TLM04]. Selfish [KHS07, LTZS06, LSB+07, LW09a]. Semi [ABRY03]. Semi-Oblique [ABRY03]. semijoins [CY92]. SenCar [MY07]. Sensing [CLW03, FG06b, RLW+07, XLP06]. Sensing-Covered [FG06b]. Sensitivity [KHS07, LTZS06, LSB+07, LW09a]. Sensing-Covered [FG06b]. Sensitive [CS02b, WD06, YK03]. Sensor [AYA09, AD08, AD09, BK09, BBS+09, BS08, CHA07, CYW08, CBM+07, CY06, CPX06, CH08, CTF09, DLS09, DWX09, GL07, GBC+07, HSLA05, HCH09, ISRS06, JN08, KZ07, KPK09, KS08b, LDC008, LC+07, LRS02, LWJ06, LWX06, LH06b, LWP07, MGZ07, MCL+07, MY07, MZT08, MZA02, RLW+07, RE09, SSK02, SJ+09, SRZF04, TX08, TN08, WT08, WLZ08, WWWW09, WLZ07, WCD08, XC08, XTL08, YL07, YJ09, YGE06, YYY09, YPK08, YG08, ZS09, ZPY06]. Sensor-Actuator [RE09]. Sensors [LWJ06]. separable [SP93]. Separating [BOP04]. Separation [BPT03]. Sequence [JTP+08, LSVMW07, MQ07, RA04, YFM98, CY02]. Sequence-Search [JTP+08]. Sequences [CS09, MDL06]. Sequencing [Bar98, BGM94]. Sequential [BGJ06, CHJ+07, DDS95, DS96, Qad03, QCC09, SZ02, HMW93]. Series [AG96]. Series-Parallel [DL02]. Server [ASB02, AFM02, CB05, CT08, CGL07, CY98, DDD+07, GBO6, LL04, QR07, RSG06, RJO5, SBK02a, SBK02b, VR05, CR94, ICT03]. server-based [CR94]. Servers [GB00, GMB01, K KO3a, KCD07, LL02, LKKS05, LLA+06, RAHM05, RNNK03, SD04, Tse05, WZF+03, ZRS+05, ZX04, ZWX06, KGM96]. Service [AOK09, AMH08, CP07, DPN95, DAMK06, DS03b, FJZ06, GMS09, KKS07, KSC03, JLN07, LLA+06, LZY09, MAS08, PS08, RAHM05, RE09, SY07, SLO9, SS07, TJ08, YWY08, ZF07, ZC04, ZWX06, ZZZN07, ZJ99, AT07, CR94, CS+09]. Service-Centric [YWY08]. Service-Driven [RE09]. Services [AK99a, CLY08a, DZHG04, GRY07, KSC03, KSWR03, LAS04, NGB+05, RS08, RD09, SYC03, WZZ09, ZHZ07]. Session [ZWX06]. Session-Based [ZWX06]. Set [AMP07, BSC09, DW04a, DM01, DP01, LH03, WM95, Wu02, WCD06]. Set-Associative [WM95]. Sets [JB01, KWL+09, OZ96, PPR99, RD98, SSZ02, Sto04, Wan04]. SFC [SCP02]. Shape [GDK09, HS02]. Shaped [RR02]. Sharf [US04]. Share [FLZ09]. Shared [AD08, AGGD04, AAS03, AKN95, Br00, Cha96, Ch04b, DDS95, DS96, FBO1a, FT97, GP99a, GMR98, Hol98, HSS98, KH04, KL01, KA05, LP96, LT07, LBC03, MA01, MK98, MP97, PC05, PPBSA97, Qad03, QD05, RG09, RD98, SLE03, SN02a, SN02b, S95b, TF96a, US04, VGGD94, WH95, YL97, ZYC95, AH93, ABJ+93, Add90, BIA+97, CR90, DC95, Don91, Geh93, GH93, Gup92, IT93, IC92, KCP96, Li94, ML94, SL93c, WFP90, YJZ07, ZLE91, ZSLW92]. Shared-Bus [GP99a, LP96]. Shared-Memory [AGGD04, AKN95, DDS95, DS96, FT97, GP99a, Hol98, HSS98, KL01, LT07, MA01, MK98, PPBSA97, Qad03, QD05, SLE03, WH95, YL97, ZYC95, AH93, DC95, Gup92,
shared-money [And90]. Shared-Nothing [RD98].

Sharing [BC4SF97, DGJY97, GG09, GP99a, HKS*07,
KCRB03, KA06, KyK09, LKK05, LL06a,
LL06b, LYW08, MTL95, NW98, RSO8, SH96,
VR05, WX07, DY93, GDF93, H93, K92,
LY94, SH93, SH94]. shift [LO95b]. shifts [RS90]. Short [GZ06, STY09, KGM94].

Short-Lived [STY09]. Short-Path [GZ06].

Shortest [FH97, LR96, ZH98]. Short-Lived [STY09].

Shorter [UFS96]. Shortest [FH07, LR96, ZH98, SC9D97, TR93]. Shot [FM07]. Shrinking [JL99, JLS93, SKF94].

Shuffle [FG06a, BCH94, Pad91].

shuffle-exchange [BCH94, Pad91]. Side [TCCO9]. Signal [HXA99, KKC03, DFD93].

Signature [CCS99, TC97].

Signature-Based [TC97]. Signatures [NW98]. sim [RFDS97]. SIMD [AGWF97,
AS96, BCJ90, CFW98, KK94, NAS93,
NSD+91, NSD93, PH96, RS90, SR98, SW95].

Simple [BAH01, COP00, EW97, HS93,
KMO1, KAY+06, SC93]. SimpleFit [MYA0].

Simulated [CFW98, HM95, LL96,
Soh95, BJ90, EG93, NZ95, WCF91].

Simulation [BT00, BG09, CPP95, DHN96,
FZTV98, YG95b, NL02, QCC99, Qwa01,
QS03, SSP+99, SF09, SE98, TK96b, WHL95,
XC04, H93, HE93, HB92, Kum92, KH93,
LL90, Nc92, RB90, ZL96]. Simulations [MLW06, Sah0b, SF08, SGT98, NG94,
PGF93]. Simulator [PPR95, RFDS97].

Simultaneous [LPE+99, FC91].

single [MM96]. Single [CLW03, DZ04, GB07,
GS08, NO0b, SL01a, BGM9, R906].

single-fault [Rao96]. Single-Hop [CLW03, DZ04, NO0b]. single-level [BGM9]. Single-Packet [GS08].

Single-Path [SL01a].

Single-Path/Flooding [SL01a].

Single/Multiclass [GBD07]. sites [TH03].

Situ [MCL*07]. Size [DS03a, LZ02, LH01, OPZ99]. sized [Pad91].

Sizes [SC99, YA93].

Skew [EA93, WY93, WD93]. Skip [WL08a].

Slack [M95, ZMC03]. Slave [BB+04, BLR03, KAO6].

Sleep [DWX95].

Slices [MGQ5+98]. Slicing [MS97].

Sliding [SA93]. Slowdown [FB01].

Small [HLL09, LLS98, YM95]. Small-World [HLL09].

Small-World-Based [LSS98].

Smaller [KP96, UK98]. Smart [CB03, JGA08].

Smoothing [KgC94].

Software [CD99, CDR98, CL05, EBS04, GAG96,
JJ09, KIBW99, KAB93, KA05, LPE+99,
LBC03, MBTPV99, PAB03, SDDY00,
WD98, XG97, ZLKK07, ANN95, WF94].

Software-Based [SDDY00, ZLKK07].

Software-Directed [LPE+99]. Solution [BSC99, Che01, LC99, Liu08, CAR93,
You93]. Solution-Adaptive [LC99].

Solutions [Bar98, BAH01, CCQ+99, LLY07,
St096, KST94]. solvable [YK96a]. Solve [CHC04, FM07].

Solvent [FAH9].

Solvers [SZ04, WH95]. Solving [KBD08, Liu08, MSG07, MB08, NCV05,
PK95a, PK95b, THT+97, O‘H91, R90].

Some [Lee06, THT+97, TC95b, O‘H91, WC90].

SORD [AO90].

Sort [LB00b, OPZ99, AOB93, WD93]. Sorted [Che95b, HNO98a]. Sorter [PK99a].

Sorting [BGO+98, CS92, DSO02, DCM96,
FE97, HW97, LB95, NS95b, OPZ99, R97a,
RS98, CO94, G94b, Lin93, MN92, X93].

Source [CTF03, GYS05, MM97, XZG99,
YLL+07, CSC07].

Source-Code-Correlated [MM97]. SP [BGBP01]. SP2 [HXA96, MF01b].

Space [AB07, BA07, CDV+06, CL05, KAB93,
Stream-Oriented [RNR+03]. Streaming [BSS09, CZLM09, DF09, ILL07, LJLN07, LSVMW07, PS03, TJ07, TJ08, WL08a, WLL08, WL08b, YM09, YK09, ZL07a, ZXZ+09, ZL04]. Streams [BHJ02, CW02a, CH07]. Stream Stretch [GZ09]. Stride [DS06]. String [ACT06, BM00b]. Striping [HJH02]. Strong [HC09, JS98, Kar01, GW96b]. Structure [BW96, DPN09, JJ07, TAKB06, Sin92]. Structured [ASS95, BRTM09, CT08, HY01, HZ96, LP07, PB06, PDH06, PZZ09, SX07, WH95, ZCSY08, Bi94]. Structures [CAZ04, CSR07, DB06, HLL09, HALT95, PR05a, EA93, GDJ94, HN90, LHS92, MS91]. Structuring [SM94, AN93]. Studies [ZWM99]. Study [AD98, CY00b, CGL07, Fei05, LS06, MTM02, OS05, SSRV99, DT94, Di95, EMS90, KH93, LLY94, SLV90]. Studying [CKK+04]. Style [GKG06, CR90]. Subarray [Par01]. Subcube [ICL95, CT97]. sublinear [KST94]. Submesh [yCM98, CH01, CC99, KY98]. submeshes [CT94]. Subnets [WYWW08]. Subnetworks [ASD04]. Suboptimal [DD05]. Subscribe [ZHW07]. Subscript [SK95]. Subsequence [LL94]. Substitutional [TC94]. Substrate [HKS+07]. Subsystem [LP96]. Subsystem-Oriented [LP96]. Subtasks [TSAL97]. Successive [Gre98, PF96]. Sufficient [Dua95a, Dua96, NX95, VS11]. SUF [MHS00]. Suite [RE09]. Summation [DS03a]. Sums [BM00b, LNO+00]. Substitutional [TC94]. Substrate [HKS+07]. Subsystem [LP96]. Subsystem-Oriented [LP96]. Subtasks [TSAL97]. Successive [Gre98, PF96]. Sufficient [Dua95a, Dua96, NX95, VS11]. SUF [MHS00]. Suite [RE09]. Summation [DS03a]. Sums [BM00b, LNO+00]. Substitutional [TC94]. Substrate [HKS+07]. Subsystem [LP96]. Subsystem-Oriented [LP96]. Subtasks [TSAL97]. Successive [Gre98, PF96]. Sufficient [Dua95a, Dua96, NX95, VS11]. SUF [MHS00]. Suite [RE09]. Summation [DS03a]. Sums [BM00b, LNO+00]. Substitutional [TC94]. Substrate [HKS+07]. Subsystem [LP96]. Subsystem-Oriented [LP96]. Subtasks [TSAL97]. Successive [Gre98, PF96]. Sufficient [Dua95a, Dua96, NX95, VS11]. SUF [MHS00]. Suite [RE09]. Summation [DS03a]. Sums [BM00b, LNO+00]. Super [JZ04]. Super-Programming [JZ04]. Supercomputer [St96, TAKB06]. Supercomputers [ADC+08]. Supernode [GDK09, HS98a, HS02]. Superpeer [XZL05]. Superposition [PF96]. Superscalar [CC95, DF99, WB98]. Support [CCQ+05, CASM07, DZHG04, GBD07, LCB00, LNYY03, MAS+07, MFLX01, MX03, PSC+95, RH04, SYC03, SKPS01, SSZ06, TN08, RSV90]. Supported [ZL07a]. Supporting [BS95, DR98, SY07, SZ95a, YDW+09, YMG03, ZN04]. Support [FARH02]. Surfaces [AB07, GM97]. Surveillance [LWJ06]. Survey [MP97]. Survivable [THH08]. Sustained [NK08]. Swapped [CX09]. Sweep [GRS99]. Switch [KP01, La00, MGA+09, NMG97, SS00, SS02, YA93]. Switch-Based [KP01, NMG97, SS00]. Switched [FYP07, HOD99, LSC95, PC96, PS96b, SJM90, VM99, WR04, Bok93, HC92]. Switches [AH06, HS08, Mha09, QNR99, TC93]. Switching [DS99, FZGC06, HDF07, LMS04, LL06a, LL06b, LZ05, MAS08, SO95, SV97, T297, Tze04, YW04, YJHG06, LO95b]. Symbiotic [HY96]. Symbolic [BE98, FS00, KP09, TNPK01, vG03, Lar93]. Symmetric [CS08, Epo05, LO93, TC93, HK94]. Symmetric-Key [EP05]. Symmetrical [CF99a, HCYL06]. Symmetries [JK99]. Synchronization [BHJ02, CY09, Che01, CS95, CS96, CLS04, FR96, Gup92, HM95, HLH04, LH01, MX03, MS99b, NL02, OS02, SH95a, SC05, SCL01, YK98, ZS07b, dS98, Arv94, OS94a, TB94]. synchronized [AC92, RS94, TKT92]. Synchronous [AV96, FR96, FH03, LL96, MS99a, PN95, ZS95a, XL96, XC04, YXW03, ZS95b, AAG94, MS91]. synchrony [RPW93]. syndromes [LS94c]. Synthesis [BB05, BJM+05, GW96a, R96, VJ93, UEA95]. Synthesize [LKK02]. Synthesizing [AGWGFH97, LRG99, SC91, CTC93]. System [ANKA99, AM06, AMP07, BM00b, CLJ+04, CBE93, CT07, CF99b, DSO02, DR98, FB96, FI95, GWYS08, HM98, HCC06, ILL07, JTH+08, KGM97, LM06, LPZ98, LBS05, Lop02, MJ98, MNN04, MX03, MRT09, NN96, PF96, Par01, PC05, PS03, RMO+05, SF03, SSRV99, SC05,
[Ano04c, BB05, CRS06, JZXX99, KB06, NZP03, PP96, PBA03, PK04, SC07, SjM09, SZ03a, CS94, GS91, GB92, KN95, RS91a].

Technological [BBR07]. Technology [BP96]. Technology [BBR07].

template-based [SSG91]. Templates [ADD+02]. Temporal [CW06]. Teng [YXY+09].

Termination [DTE07, LT97, TT01, XL96, LW95a]. Test [FI95, PW99, RP99, HISS94, KKP91, PKK93, LA04].

Test&Set [ST99b]. Tested [MS99b]. Testing [BE98, HALT95, KR00, LC94, Pak07].

Tests [Uht92]. Test & Text [HM98]. Textured [HH95].

Their [HCD97, LW95b, SSP00, UZCZ97, WMN99]. Their [HCD97, LW95b, SSP00, UZCZ97, WMN99].

theorem [WY94]. Theoretic [BHL+07, KHS07, SZ08, YM90, YK90].

Theoretical [ASB02, KA09, TKW98]. Theory [CMR07, DHP+07, DD98, Dua95b, Dua97, DP01, DLPP05, FF98, GB07, IK93, LL06a, Lu93, WL91]. Theory-Based [GBD07].

Thermal [CGM07, MCG08, TGV08]. Thermal-Aware [TG08]. Thing [SF90].

Thread [KL01, OC05, SLT03]. Threads [CAS07, DR98, HS99b, LLJS09]. Threat [YWF+09]. Threats [ISAZM09].

Three [AD09, LCRW98, LS03, MBTPV06, OB00, SZ03a]. Three-Dimensional [AD09, LCRW98, LS03]. Three-Tier [MBTPV06].

Threshold [CGL07, vdM07]. Threshold-Based [CGL07]. Threshold-Multiplicity [vdM07]. Throttling [CLY07].

Through-Wafer [LCRW98]. Throughput [GLS07, HP07, WCCR+97, ZXZ+09].

Thwarting [CPM07]. Tier [MBTPV06].

Tied [DTE07]. Tight [HK06, VV99].

Tighter [CL00, RO99]. Tightly [ADG+08].

Tiled [GAK03, HCF03]. Tiles [RR02].

Tiling [ABRY03, JLF03, PHP03].

Time [AS99, ASS95, AMS97, Ano98c, AA09, AT01, Bö98, BSCB09, BM00a, BBG+95, BGO+98, BG0997, BGO+97, BG0998, CF00, CRN09, CS09b, CKC08, CS03, CNT05, DÖ02, EDO06, FWD+00, FB01a, FLP+07, GM997, HS99a, HRG00, HNO98a, HNO98c, HJS+06, HSH+99, HS98a, HS02, HFC03, HS99b, KABK03, KH05, KG97, KA09, KMW08, KWH02, KKK03, KS01, KS03, KCS04, KA99, LCB00, LLTW08, LB00a, LP07, LL07, LCH+07, LHSML95, LA04, LWK05, LL08, MZZ05, MM98a, MM98b, MT97, MRT06, MTL95, OS02, OZ96, PABD+99, QCC99, Qua01, RA04, Ram99, RMO+95, RP99, RRF98, SJP08, SCK00, ST99a, SE98, Sto06, SR99, TSAL97, TR04, Var01, WH03a, WR04, WJL07, WCH+08, WMWL08, XU01, XQ08, X01, XT06, YLL+07, YW98, ZS95a, ZS98, ZMC03, ZMM04, ZLZM09, ZJ99].

Time [AH91, ADM92, Ah94a, Ah95, Cap92, CD94, GG94b, GS91, HS93, JB94, wJNPS97, KS94, KM96, QM94, RS90, RS01, RW94, Sar93, SC92, SC94, SF92a, SRS93, SH93, SH94, SA94, SF93a, SMS93, Var93, WC90, WDS92, DFG97, GT93].

Time-constrained [KHM05]. time-cost [Sar93]. Time-Critical [XTL06].

Time-Free [MRT06]. Time-Optimal [BBG+95, BG0997, ST99a, BGo+97].

Time-Shared [FB01a]. timestamp [Var93]. Time-Utility [WR04]. Timed [CF99b, Ost90]. Timeliness [VH07].

Timeliness-Accuracy [VH07]. Timeout [EBS04]. Timeout-Based [EBS04]. Timer [MRT06]. Timer-Based [MRT06].

Times [VM04, RS94, TRS90]. Timestamped [KRM06]. timestamps [MB92]. Timing [KSA08a, KCK+06]. TMR [EMS00, EBS04].

Toeplitz [Pan93]. Toeplitz-like [Pan93].

Token [IKOY02, KY97, KKM08, HRG94].

Token-and [HRG94]. Token-Based [KKM08]. TokenCMP [FPGAD08].

Tolerance [BHL+07, CD08, FPGAD08].
GMM97, HÖD99, KIBW99, KH97a, PBA03, SyFL99, SLH97, WC09, WMWL08, BF94, MN92, OC93, RB94a, TC94.

Tolerant [AB99, AM95, Ano98b, BMR99, BC99, CYW08, ICL95, CC01, CXP09, CC98, CCD+09, DDY99, DY05, Dua97, FIMR01, GY95a, GN96, GMBB01, HY99, HDF07, JZXX99, KH04, KLC97, LMD08, LH06a, LHSML95, MM98b, MJRS06, MBM98, PG07, RO99, RRRM09, SCP99, SDDY00, SNI2a, SNI2b, TTH96, TL06, TCS97, TH01, VDS99, Wa98, W99, Wu00, Xia01, YJ97a, YJ97b, YDW+09, ZS98, b98, AM91, B99, BCH94, CL93, CS90, Chu96, FD94, KK93a, LG90, OS94a, OS94b, RST95, SM94, TB94, Tze93, VJ93, VF94, YZ94].

Tolerate [Par95].

Tolerating [HY04, RCS01].

Tool [SRD08, Gab90].

Toolkit [Din06, SMBT90].

tools [HKM+94].

Top [WZP+03, KDL91].

top-down [KDL91].

Top-Level [WZP+03].

Topological

[CSP00, DAA02, DS05, Sto97, DT94, YA93].

Topologies [BS96, BHH95, BS99, CYW08, IC98, MDSS99, VB96].

Topologies [Ano04d, BCQD07, CYW08, CTF90, CJH90, DWH09, EVW07, GY95b, HLH90, JJ07, JT08, KZ97, LCRW98, LW04, LH06a, LH06b, Liu08, MGZ97, NT09, OSR06a, OSR06b, RM90, SD00a, SD00b, SLFW06, SLG06, SL06, TL06, WD06, Cor92, Hsu93, MB94].

Topological-Aware [KZ97].

Topological-Flexible [TL06].

Tori [CH01, JSH98, LH02, ST99a, SY98, TW98, WY02, UE95].

Toorumal [AB99].

Torus [AB93, CYW00, GY95b, PC96, PS96b, RMC95, SB98, SS01, TM96, TC96, TL06, YF+01, GPBS94].

Total [CH98, DD98, DD01, FMR01, HS98a, Jia95, SH97].

TPDS [Ano08d, Ano09d].

Trace [LLY05, LZTY09, PPR95, HE92, HB92, NGL94].

Trace-Driven

[LZTY09, PPR95, HE92, NGL94].

Traceback [ADG06, GS08, SX03, XZG09].

Traceback-Based [SX03].

traces [HWM93, HE92].

Tracing [JBW+08].

Trackability [TKW98].

Tracking [LH93, NSZ02, PPBSA97, XT08, ZLN90, AIK91].

Trade [CKK+04, DZH05, FWA06, FLP+07, GZ09, MA01, QC99, ZCF09, DF97].

Trade-Offs [FLP+07, QC99].

Trade-Offs [DZH05, GZ09, MA01, ZCF09, DF97].

Tradeoffs [Ag92, DAF95].

Traffic [Aro00, BO98, CC9+05, HY07, Kop96, KPBD09, KGCS04, LKKS05, MSM06, OKSA01, RJ05, SY07, SZ95a, TSAL97, T96b, XP05, AH91, CV92, Kop94].

Trail [QR07, ZMS08, The93, YD94b].

Transactions [FG01, ANO2a].

Transcoding [CC03].

Transfer [KAY+06, MS99b].

Transfers [ED006, VF09, RX90].

Transaction [AD95, CPHX04, LHS03, TSP+08, WH03a].

Transformation [BW96, FLV95, HS98a, LL07, SS09, EH94, SC91, WL91].

Transformations [JZ96, D9H92, GMG96, SKF94, WW92].

transforms [AD94b, ABDZ94, FA94, ZA92].

Transient [Her00, MGZ97, K93b].

Transient-Fault [MGZ97].

Transition [LZ98, Ost90].

Transitive [TC89b, SC92, WC90].

Translation [QD95].

Transmission [BG90, ISRS06, LLY07, WCH+08, RS94].

Transmissions [GG09, XL04, KGMB94].

Transparent [JLDC05, LSC07].

Transport [KS01, WS03, ZL07a].

Transport-Aware [WS03].

transpose [SH95b].

Transposition [RBSP02].

Transposition-Table-Driven [RBSP02].

Transputer [ADD97].

Transversal [HY05].

Trapezoid [TN03b].

Traversals [St096].

Tree [ADD+02, BCL+05, BRSR08, CY95, CMDD09, DP09, EVW07, GRS99, HY01, HH08, JZXX99, LC99, MKY+09, Sto96, TC04a, VM99, WCL97, Wan98, WKS01].
BCBzC92, DA93, GS08, HN93, HC92, KMT91, LS94c, LC91b, MS94b, SC91, SSG91, SMJ92, TK92, WCF91, WFP90, ZL96[.]

Utility [CNT05, WR04]. Utility-Based [CNT05]. Utilization [CCJ02, LDG04, LWK05, MF01b, WJJK07, LY93a]. Utilizing [OXL06, SF07].

Validated [TV92]. Validating [TV92]. Validation [RJ96]. Validity [AS00, RCS01]. Validity-Based [CNT05].

VCR [HL09a, WLO8a]. VCR-Oriented [HL09a]. Vector [CA99, MS99b, NCV05, TN08, WNKS96, WH01, YY95, Har91, PKK93].

vectorization [KPK93]. Vectors [Wu98]. Velocity [ZLZN09]. Velocity-Based [SFP07]. Verification [CLS05, Qad03, SPC+02]. versatile [GP93, Zia94]. Versioning [VGS01].

versus [BCF+08, TB93, TSP+08]. VI [ZBJ+05]. VI-Attached [ZBJ+05]. Via [JS98, CS97a, CMR07, JBW+08, KH93, NW98, TSG90, YXW03, ZZN07]. Victor [MS94a]. Video [GB00, GLQ09, HL09a, KS01, LPTY09, XL04, YK03].

Video-on-Demand [HL09a, LZY09]. Vienna [UZCZ97]. Vienna-Fortran [UZCZ97]. Vienna-Fortran/HPF [UZCZ97]. Virtual [Cha96, CH04a, Dal92, GN96, KY98, KW08, Lee93, LW09c, LC02b, MOFD05, MROD07, MP97, SD00b, SZ95b, SM02, TPL96, VSD01, WYW08, DA93].

Virtual-channel [Dal92]. Virtual-Force-Based [LT00c]. Visibility [BBG+95]. Visibility-Related [BBG+95].

Vision [BA97, RJ99, CPA93]. Visual [Ab97, ADM92]. VLIW [AB94, CF01, MC95, OC05]. VLSI [Ab94b, AR97, BGO+98, HALT95, TC93, ZA92].

VLSI-Optimal [BGO+98]. VMMP [GB90]. VMNet [WLZN07]. VOD [GMB01]. Voice [WMXZ06, XL04, GWYS08].

Wafer [LCR98]. Wait [Kuc01, FHRT93]. wait-depth [FHRT93]. Wait-Free [Kuc01].

Waiting [RMO+95]. walk [Yon93]. Warp [AT01, CF00, QCC99, Qua01, SE98, DF97, GT93]. Warp-Based [QCC99]. Warshall [MF96]. Warshall-Floyd [MF96].

Watershed [GMRC07]. Watt [KHY09]. Wavefront [MA01, STK01]. Wavelength [ZY04, ZY06]. Wavelet [TSP+08]. WDM [GP03, SCP99, YW05a, ZY04, ZY06]. Weak [Kar01, GW94]. Web [ASB02, CC03, CWI09, CY08, GB06, JLD05, KK03a, KCD07, LL04, LA04, LLA+06, NE01, RK08, RAHM05, Ros03, RKNZ03, TC04b, TCC05, TSSR07, Tse05, ZRS+05].

Web-Based [NE01]. Web-Computing [Ros03]. Web-Server [CYD98]. Weighted [DY05]. Weld [OC05]. Well [BDL95].

Wire [EBS02]. Wireless [AYA99, ALW+03, AD08, AD09, Ano01b, Ano01c, BK09, BBS+09, BSB09, BPT03, BCG04, BHJ02, BS08, CYW08, CPX06, CH08, CTF90, CKWC08, CNT05, DW04a, DW06, DPH08, DAMK06, DLS09, DWX09, EKOAW02, GZ06, GBC+07].

HSLA05, HCHM09, JGA08, JJ07, KPK09, KWL+09, KyK09, KS08b, LJZA04. LDC08, LCWW03, LWS04, LH06a, LSF+09, LWC+09, LWX06, LW07, MCL+07, MEKOT03, MZA02, MMSM06, MTM02, NK08, ON02, SKS02, Sjd+09.
REFERENCES

SLFW06, SL01a, SL01b, SSZ02, Sto04, TC001, TX08, TN08, WY07, WWL06, WT08, WLZ08, WWLS08, WWWA09, Wu02, WLZN07, WCD08, XLW+06, XZC08, YLW07, Yi09, YY09, YG08, ZCXF09, YLW07, Yi09, XXX09, YYY09, YG08, ZCXF09, YLW07, Yi09, XXX09, YYY09, YG08, ZCXF09.

within [LCB00, NSD+91], without [Fu05, GN96, SWC95, VJA97]. WK [Fu05, SCD97]. WK-Recursive [Fu05, SCD97]. Word [CF01]. Work [CF99a]. Work-Efficient [CF99a]. Work-Time [HNO98c, Xu01]. Workflow [LSZ09]. Workflows [PF08]. Workload [Ros02, ZSMF01, ZRS+05]. Workload-Aware [ZRS+05]. Workloads [CV08, MF01b, NKP+96, PB96, YZC08].

Workstation [GKK05, LLH+01]. Workstations [AA09, CDMB05, EK95, FB01a, JL99, Ros02, RH00, RH04, SD00a, SD00b, SOM05, DGB+96, SSG91]. World [HLL09, LLZ08]. Worm [JBW+08, RS97b]. Wormhole [BP98, BL05, BC96, BCR98, Chi98, Dua95a, Dua95b, Dua97, FF98, GN96, GO97, HO99, HO00, HK95, KP99, KLS00, LSM04, LMN95, MRLD01, NCV05, NGM97, OKSA01, PSK99, RMC95, RLD03, SCL01, jTM96, TG96, TPL96, TLGP97, TWH99, VM99, VS11, XGN97, ZL05, Dua93, LNM94, MEXN94, jTM97]. Wormhole-Routed [BP98, FF98, H000, HK95, KLS00, LNM95, RMC95, SCL01, jTM96, TG96, TPL96, TLGP97, TWH99, XGN97, MEXN94, jTM97]. Wormhole-Switched [H099, VM99]. Worms [SSP00, TC07]. Worst [GRT97, TSJ07]. Worst-Case [TSJ07].

Wraparound [SV97]. Wrapped [HWSH00, WMM99]. Write [BB08, HNY02, KDW01]. Write-Enabled [BB08]. Writing [WBO+01]. WSN [KSP09].

X [GM94]. X-trees [GM94]. XML [CF08]. XNet [CF08].

Yama [MJ06].

Zero [LHL+08, ME95]. Zero-Knowledge [LHL+08]. Zone [WO04].

References

Anderson:2000:PBC

Auluck:2009:ESR

Amir:2000:OCA

Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and A. Keren. An opportunity cost approach for job assignment in a scalable computing cluster. *IEEE Transactions on Parallel and
REFERENCES

Aluru:2006:ESS

Al-Ayyoub:1997:MDS

Al-Azzoni:2008:LPB

Abu-Amara:1994:NMA

Adir:2003:IFM

Agrawal:1991:NQC

Divyakant Agrawal and Arthur J. Bernstein. A nonblocking quorum consensus protocol for replicated data. IEEE Transactions on Parallel and Distributed Sys-
REFERENCES

REFERENCES

Anastasi:2001:RMP

Agrawal:1992:PAS

Angelaccio:1993:UOP

Ayguade:2009:DOT

Ahmad:2008:GEI

Allen:1997:PA

REFERENCES

Auletta:2002:OTA

Al-Duwairi:2006:NHS

Aridor:2008:MIT

Agrawal:1997:AQB

Aggarwal:2005:SAI

REFERENCES

Al-Furiah:1997:PAS

Al-furaih:2000:PCM

Abdul-Fataih:2002:PCB

Amaral:1996:CAS

Agarwal:1991:LIN

Agarwal:1992:PTM

Abdel-Ghaifar:1994:OSC

Acacio:2004:AHP

Acacio:2005:TLD

Alverson:1998:APS

Agrawal:1998:IPR

Agrawal:1999:GIF

Abu-Ghazaleh:1997:SVI

Abraham:1991:CTP

Adve:1993:UFF

Attiya:2006:IQD

Ahuja:1993:IFC

Averbuch:1991:PIM

Agrawal:1995:CBR

REFERENCES

Agarwal:1995:APP

Amir:2004:SGC

Alnuweiri:1994:CTP

Alnuweiri:1994:OVN

Alnuweiri:1995:PCT

Andrade:2004:OEM

REFERENCES

Al-Mouhamed:1994:PES

Al-Mouhamed:1997:HSM

Artail:2008:DDS

Atreya:2007:QBG

Alvisi:2001:FDB

Ali:2004:MRR

Al-Mistarihi:2009:FOR

Alverson:1993:PSE

Agrawal:1994:CNF

Anderson:1990:PSL

Anonymous:1997:AI

Anonymous:1997:CPSb

Anonymous:1997:CPSc

Anonymous:1997:CPSa

Anonymous:1998:AI

Anonymous:1998:CPSb

Anonymous:1998:CPSa

Anonymous:1999:RL

REFERENCES

Anonymous:1999:AI

Anonymous:1999:CPC

Anonymous:1999:CPb

Anonymous:1999:CEJ

Anonymous:1999:ECE

Anonymous. Call for papers for special issue on mobile computing and wireless networks. *IEEE Transactions on Parallel and Distributed Systems*, 12
REFERENCES

[Ano01k] Anonymous. Table of contents in PDF. IEEE Transactions on Parallel and Distributed Systems, 12(6):??, June 2001. CODEN ITDSEO. ISSN 1045-9219 (print),
Anonymous:2002:ITP

Anonymous:2002:CPS

Anonymous:2002:NE

Anonymous:2003:RL

Anonymous:2003:I

Anonymous:2003:CPS

Anonymous:2004:AI

REFERENCES

Anonymous:2004:CP

Anonymous:2004:CPSa

Anonymous:2004:CPSb

Anonymous:2004:RL

Anonymous:2005:RL

Anonymous:2005:AAI

org/comp/trans/td/2005/03/10286.pdf.
Anonymous:2005:CPS

Anonymous:2006:RL

Anonymous:2007:AI

Anonymous:2007:RL

Anonymous:2007:CPS

Anonymous:2008:AI

Anonymous:2008:RL

Anonymous:2008:CPS

Anonymous:2009:CPSa

Anonymous:2009:CPSb

Anonymous:2008:TAI

Anonymous:2009:TAl

Antonio:1994:CCH

Abali:1993:BPS

REFERENCES

REFERENCES

Abdelzaher:1999:CTM

Alleyne:2000:ETN

Abdelzaher:2002:PGW

Alfaro:2004:QIS

Agrawal:1995:IR

Avril:2001:RBC
Ang:2007:AOS

Acharya:1992:IPS

Ali:1996:EBR

Avresky:1999:ERS

Abbasi:2009:MAC
Ameer Ahmed Abbasi, Mo-

Barlas:1998:CAO

Bambha:2005:JAM

Batsakis:2008:NCW

Bala:1995:CPT

Banino:2004:SSM

Barcaccia:2000:CML

P. Barcaccia, M. A. Bonuccelli,

Bhagavathi:1995:TOV

Bhagavathi:1995:TOV

Bhagavathi:1995:TOV

Barsi:2009:ACT

REFERENCES

Bessani:2009:SMB

Beaumont:2008:CVD

Banerjee:2008:AIR

Bononi:2004:ROI

Bruck:1994:FTB

Bronson:1990:EAD

Boppana:1998:RDP

Bahi:2005:DLB

Bahi:2005:DCD

REFERENCES

REFERENCES

Bucur:2007:SPP

Burkhart:1993:ML

Bose:2006:SSC

Bhowmik:2004:GCF

Bohossian:2001:CRR

Bertome:1996:OID

Bohm:1990:IM
A. P. Wim Bohm and John R. Gurd. Iterative instructions in
REFERENCES

REFERENCES

Bhagavathi:1996:SMO

Bokka:1997:TOD

Bhagavathi:1998:TVO

Bokka:1997:PBT

Bokka:1998:CTA

Boukerche:2002:ESS
Azzedine Boukerche, Sung-

REFERENCES

REFERENCES

Bhuyan:2000:ICN

Bertozzi:2005:NSF

Banerjee:1990:PSA

Banerjee:2009:BRL

Baran:1996:PAT

Basile:2006:ARM

Bansal:2003:IDS

Barbara:1991:CRS

Baydal:2005:FMC

Beaumont:2003:PBH

Bhagavathi:1994:FSA

Beaumont:2003:MSP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1045-9219 (print), 1558-2183 (electronic).

Butler:2009:LIB

Bakken:1995:SFT

Barak:1996:ECC

Boukerche:2008:NAM

Baysan:2009:PTS

Brinkmeier:2009:ORP

Boukerche:1998:DGA

A. Boukerche and C. Tropper. A distributed graph algorithm for the detection of local cycles and knots. *IEEE Trans-

Bagrodia:2000:PEC

Barlas:2005:ODD

Berman:2003:ACG

Bik:1996:ADS

REFERENCES

[Colbrook:1996:A] Adrian Colbrook, Eric A. Brewer, Chrysanthos N. Del-

Chen:1993:EAS

Chellappan:2007:MLF

CC95

Chen:1997:NOO

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Volume</th>
<th>Pages</th>
<th>CODEN</th>
<th>ISSN</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

[CE95] David C. Cann and Paraskevas Evripidou. Advanced array optimizations for high performance

REFERENCES

Chand:2008:SDX

Chamberlain:2002:GOI

Fu:1998:CCN

Cohen:1998:OBM

Correa:1999:SMT

Chen:1998:PGS

H. Chen, N. S. Flann, and

Cremonesi:2002:IPMa

Carroll:2008:SPM

Chandra:2004:POC

Chou:2007:MMT

Cooper:2005:PPD

Chaparro:2007:UTI

Chen:2001:SDF

Chiu:1998:NTO

Chong:1995:PAF

Cao:2007:UUC

Chung:1998:BCC

Chang:2004:UEL

Chen:2009:HDR

Chen:2004:HEA

Chen:2005:HEE

REFERENCES

REFERENCES

|---------------|---------------|

|---------------|---------------|

|---------------|---------------|

|---------------|---------------|
REFERENCES

Chen:2009:DAH

Cohen:2006:MSP

Chiou:1996:EDE

Chow:2002:LBD

Chen:2008:CDC

Choudhury:2008:HSD

Chen:2004:SET
Guangyu Chen, Byung-Tae Kang, Mahmut Kandemir, Narayanaraiy Vijaykrishnan, Mary Jane Irwin, and Rajarathnam Chandraouli. Studying energy tradeoffs in offloading computation/compilation in Java-enabled mobile devices. *IEEE

Chiu:2008:BCR

Chan:1993:FTE

Chen:1994:PEA

Chen:1997:CNF

Chen:2000:TLC

Cintra:2005:DSE

Chen:2009:PPM

Carra:2008:SGP

Chandra:2004:GST

Chatterjee:2002:RAL

Claesson:2004:ETS

Cantin:2005:CVM

[CLS05] Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. The
complexity of verifying memory coherence and consistency.

REFERENCES

Coll:2009:ESH

Corbalan:2005:PDP

Cordasco:2007:AIS

Comino:2002:NDD

Comino:2004:RCN

Choudhary:1994:OPA

REFERENCES

Curescu:2005:TAU

Chien:1994:ABS

Chang:1995:DTA

Choudhary:1993:NHP

Choudhary:1993:NHP

Corbett:1992:RGE

Chen:2000:OOL
REFERENCES

DEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Chen:2004:SEP

Cunningham:1990:USP

Chen:2007:DCS

Chang:1994:SAM

Cho:2009:GCS

Casanova:2006:GES
Henri Casanova, Yves Robert, and H. J. Siegel. Guest ed-
REFERENCES

Chen:1990:DFS

Corbett:1992:SMC

Chao:1994:CFD

Cheung:1995:PBS

Choy:1996:LFD

Chao:1997:SDF

REFERENCES

Chou:1997:SRT

Cao:1998:CCD

Cao:2001:DOQ

Cao:2001:MCN

Cao:2002:CMC

Choi:2002:ABR
REFERENCES

Corsaro:2003:DPR

Chen:2005:PBD

Chang:2000:ECT

Chandra:2008:HSS

Cordasco:2007:BCM
Gennaro Cordasco, Vittorio Scarano, and Arnold L. Rosenberg. Bounded-collision memory-mapping schemes for data structures with applications to parallel memories. IEEE Trans-

Chervenak:2009:GRL

Chen:2002:PBR

Chuang:1994:APS

Chen:1997:BEB

Chen:2002:MPE

Chen:2007:DDA

REFERENCES

Chen:2008:SRP

Chen:1993:DAP

Chen:2009:ITP

Chen:1996:BST

Chalasani:1992:ETT

Chiang:2008:DPP

Chen:2000:ER
REFERENCES

[CWYZ09] Jing Chen, Jianping Wang, Hui Yu, and Si-Qing Zheng. Opportunistic optical hyperchannel...

[CY96c] Soon M. Chung and Jaerheen Yang. A parallel distributive join

Chen:1999:RSE

Choi:2000:CAC

Chen:2006:CAB

Colajanni:1998:ATA
REFERENCES

REFERENCES

Demirbas:2006:FLS

deAzevedo:1998:MIC

dBL98

DiFatta:2006:DLB

Dandamudi:1995:HTQ

Das:1998:FDB

[DC98] S. Das(Bit) and A. Chaudhuri. Fault diagnosis in a Benes interconnection network. *IEEE
REFERENCES

Duh:1995:APN

Dusseau:1996:FPS

Dimakopoulos:1995:OSP

Dimakopoulos:1998:TTE

REFERENCES

[DFKS01] E. D. Demaine, I. Foster, C. Kesselman, and M. Snir. Generalized communicators in the message passing interface. *IEEE Transactions on Parallel and
REFERENCES

REFERENCES

DeLaLuz:2004:APR

Duato:2005:PTD

Demirbas:2009:NQF

DeMara:1993:SPA

REFERENCES

REFERENCES

REFERENCES

Khaled Day and Anand Tri-

DeMara:2007:TAD

Duato:1993:NTD

Duato:1995:TDF

Duato:1996:NSC

Duato:1997:TFT

REFERENCES

Dobber:2009:DLB

Doulamis:2007:FSA

Drozdowski:2003:CDL

Dai:2004:ELA

Dai:2004:PAB

Dai:2006:EBA

Fei Dai and Jie Wu. Efficient broadcasting in ad hoc wireless networks using directional antennas. _IEEE Transactions
REFERENCES

Ding:2009:APS

Dan:1997:RAD

Datta:2004:EEP

Duan:2005:FTO
[DZH05] Zhenhai Duan, Zhi-Li Zhang, and Yiwei Thomas Hou. Fundamental trade-offs in aggregate packet scheduling. *IEEE Transactions on Parallel and Distributed Systems*, 16(12):1166–
REFERENCES

Eisenhauer:2002:NDR

Ezhilchelvan:2004:TBM

Eltayeb:2006:CSE

Efe:1995:PNL

Efe:1996:MCT

Efe:1992:CCA
REFERENCES

CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Evripidou:1993:BSI

Edelman:1994:IT

Eigenmann:1998:APP

Efe:1995:OSC

El-Kadi:2002:RBB

Ezhilchelvan:1990:PES

REFERENCES

Elbirt:2005:ILD

England:2007:RST

ElGindy:1997:SVD

Fragopoulou:1994:PAC

Fan:1998:DMC

Fan:2002:DCCa

REFERENCES

13, no. 10, October 2002, pp. 1099-1104 for the correct paper.

REFERENCES

Fang:2000:ARO

Farrag:1994:FTE

Fleury:2000:PME

Fernandez:1997:GAP

Feitelson:2005:EAR

Fleury:1998:GTD

Frachtenberg:2005:APJ

Frolund:2001:ITA

Francalanci:2006:HPS

Frey:2006:GCB

Fiduccia:1997:ECS

Fujimoto:2003:ABS

REFERENCES

Jianxi Fan, Xiaohua Jia, and Xi-

REFERENCES

Fernandez:1995:LTU

Frankel:2005:CCA

Foster:1991:AGS

Fernandez-Pascual:2008:ETC

[FPGAD08] Ricardo Fernández-Pascual, José M. Garcia, Manuel E. Acacio, and José Duato. Extending the TokenCMP cache coherence proto-

REFERENCES

Ferreira:2003:ODI

[YS05] Lee-Juan Fan, Chang-Biau Yang, and Shyue-Horng Shiau.

Firoiu:2006:PSG

Fernandez-Zepeda:1998:SSF

Gabber:1990:VPT

Govindarajan:1996:FRC

Goumas:2003:ECG

Garcia:2001:FID

J. Garcia, E. Ayguadé, and J. Labarta. A framework for integrating data alignment, distribution, and redistribution

Gupta:1992:DAD

Gafsi:2000:MPC

Guo:2006:LBC

Gupta:1992:DAD

Gafsi:2000:MPC

Garcia-Carballeira:2004:ACC

Felix Garcia-Carballeira, Jesus Carretero, Alejandro Calderon, Jose M. Perez, and Jose D. Gar-
REFERENCES

Ghandeharizadeh:1994:MMD

Ghose:1995:HCN

Goswami:1993:PBD

Ghosh:1994:CPL

Goumas:2009:CAS

Gehani:1993:CSM

Gennaro:2000:PAI

R. Gennaro. A protocol to achieve independence in con-

GonzalezdeMendivil:1999:DDR

Garg:2009:FDM

Goldberg:1993:MIS

REFERENCES

Gossain:2006:DED

Gupta:1993:SFP

Gupta:2006:EAE

Gupta:1997:HSP

Guo:2009:PPL

REFERENCES

Gong:1996:LTF

Ghosh:1997:FTT

Gomez:1998:CAM

[GMRC07]

Georgiou:2009:DCD

[GMG96]

Glass:1996:FTW

[GN96]
REFERENCES

Gu:2006:CSA

Gerogiannis:1993:LBR

Greenberg:1997:UWR

Gonzalez:2003:EA

Gonzalez:2008:CDM

Girkar:1992:AEP

Ganesan:1993:HDN

Elango Ganesan and Dhiraj K. Pradhan. Hyper-deBruijn net-

Giorgi:1999:PCP

Gu:1999:UHL

Gu:2003:MAA

Gravano:1994:ADL

Gidenstam:2009:ERL

Gertner:1990:PAD
Izidor Gertner and Martin Rofheart. A parallel algorithm

Glinski:1994:SLR

Gebali:2006:PAA

Greer:1998:PMS

Gao:1999:OCT

Guinand:1997:WCA

Ghaffar:2007:ONS

Akbar Ghaffar, Pour Rahbar, and Oliver Yang. OCGRR: a new scheduling algorithm for differentiated services networks. *IEEE Transactions on Parallel and Distributed Systems*, 18
REFERENCES

Gupta:1991:CTT

Gupta:1995:AEC

Gupta:2003:ACS

Gong:2008:MPA

Gupta:1996:UFO

Gupta:2006:CAI

REFERENCES

[Glazer:1993:PML]

[Gibaud:2002:CDB]

[Gautama:2006:LCS]

[Goh:2009:DFE]

REFERENCES

computer.org/tpds/td1995/
10482abs.htm.

[GY95b] Sumit Ghosh and Meng-Lin Yu. An asynchronous distributed approach for the simulation of
behavior-level models on parallel processors. IEEE Transactions on Parallel and Distributed
Systems, 6(6):639–652, June 1995. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183
computer.org/tpds/td1995/
10639abs.htm.

[GY07] Song Guo and Oliver Yang. Localized operations for distributed minimum energy mul-
ticast algorithm in mobile ad
2007. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

[GY09] Hasan Guclu and Murat Yuksel. Limited scale-free overlay topologies for unstructured peer-
May 2009. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Song Guo, Oliver Yang, and Yantai Shu. Improving source routing reliability in mobile ad
hoc networks. IEEE Transactions on Parallel and Distributed Systems, 16(4):362–373,
April 2005. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

org/comp/trans/td/2003/11/
11057.pdf.

Jie Gao and Li Zhang. Load-
balanced short-path routing in wireless networks. IEEE Transactions on Parallel and Distributed Systems, 17(4):377–388,
April 2006. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Jie Gao and Li Zhang. Trade-
offs between stretch factor and load-balancing ratio in rout-
ing on growth-restricted graphs. IEEE Transactions on Parallel
and Distributed Systems, 20(2):
REFERENCES

Huang:1995:DA

Harp:1991:BMV

Hou:1994:GAM

Hsu:1992:PMT

Hsiao:1992:PEC

Hui:1997:ATI

REFERENCES

REFERENCES

Hagin:2000:DMA

Holliday:1992:AMR

Herman:2000:PCT

Hu:2005:NRC

Huang:1995:ECP

Hsiao:2008:TBP

He:2008:PEO

REFERENCES

Helary:2000:CGF

Hancu:1994:CTA

Hopkinson:2009:AGG

Hwang:2002:OSM

He:2006:ANR

Havlak:1991:IIB

REFERENCES

CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

[HKM+94] R. Hofmann, R. Klar, B. Mohr,

REFERENCES

[Hsiao:2009:RTM]

[Hsiao:2009:BSW]

[Huang:1994:PDP]

[Helmbold:1990:MGT]

[Herlihy:1992:LFG]

[Hong:1995:RSD]

[Harabagiu:1998:PST]

[HNO98b] T. Hayashi, K. Nakano, and S. Olariu. Optimal parallel algorithms for finding proximate points, with applications. *IEEE Transactions on Parallel and Distributed Sys-
Hayashi:1998:WTO

Hu:2002:RCR

Hary:1999:PCT

Halwan:2000:EHA

Halwan:1999:RWS

REFERENCES

REFERENCES

REFERENCES

org/tpds/td1998/10415abs.htm. See [FT97].

Han:1999:EEB

Humphrey:1999:PTD

Hodzic:2002:TOS

Hosaagrahara:2008:MMF

Hiltunen:1999:RTD

Hsieh:2003:SFP

Sun-Yuan Hsieh. A simple and fast parallel coloring algorithm for distance-hereditary

He:2005:SCP

Hsu:1993:FCN

Hawkins:2007:DVA

Han:2006:ELI

Hsu:2007:LDM

Horng:2002:OAC

K. Hwang, C. Wang, C.-L.
REFERENCES

REFERENCES

Harada:2004:CTN

Harada:2005:TMO

Hong:2007:DAP

Hou:2002:IPC

Huang:1996:NAO

Hwang:1997:DCP
REFERENCES

Islam:1992:DCS

Ip:2007:CAC

Ibarra:1990:MSA

Imani:2009:DTS

Ingelrest:2006:OTR

Imai:1993:EPC

Iyer:2007:ESS

Joshi:2008:SSA

Joisha:2001:ECO

Jiang:2008:TWB

Jung:2007:ODC

Janssens:1994:PCB

Jain:2008:DMA

Jiang:2008:LMR

Johnson:1997:PMS

Jiang:1997:EGF

Jia:1995:TOM

Jeng:2007:NGA

Jiang:2009:CRN

Jorgensen:1999:CA

Jouraku:2007:EDD
REFERENCES

REFERENCES

CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Jafari:2006:AEF

Jeong:1995:IFP

Jeong:2003:QBA

JaJa:1993:OAP

Jain:1994:LUB

JaJa:1996:BDM

Jackson:2003:OQP

Laura E. Jackson and George N. Rouskas. Optimal quantization of periodic task requests on multiple identical processors. *IEEE Transactions on
REFERENCES

REFERENCES

ISSN 1045-9219 (print), 1558-2183 (electronic).

Tsai:1996:BAA

Tsai:1997:EDN

Jiang:2008:EPI

Jia:2004:DA

Weijia Jia, Dong Xuan, Wanqing Tu, Lidong Lin, and Wei Zhao. Distributed admission control for anycast flows.

Jin:2005:CMO

Jogalekar:2000:ESD

Ju:1994:CFP

Jia:2004:DAC

Jin:2004:SPA

[102x681]REFERENCES

Jia:1999:EFT

Kiec khafer:1994:RAA

Kwok:1999:DCP

Kwok:1999:FPL

[KABK03] Anantharaman Kalyanaraman, Srinivas Aluru, Volker Bren-
Koibuchi:2006:SDT

Keren:2003:OCA

Kandemir:2001:SDL

Kianzad:2006:ETC

Kurzak:2008:SSL

Kwon:1998:ASJ

REFERENCES

198

Kim:2007:SBE

Kuo:2006:COR

King:1990:PDPa

King:1990:PDPb

Koufaty:1996:DFS

Kandemir:2003:RFS

Kandemir:2000:UFO

[KCRK00] M. Kandemir, A. Choudhary, J. Ramamujam, and M. A. Kan-

[KET06] Costas Kyriacou, Paraskevas Evripidou, and Pedro Trancoso. Data-driven multithreading using conventional microprocessors. *IEEE Transactions on Par-
REFERENCES

Klaiber:1992:PEA

Kweon:2004:SRT

Kamal:2008:PCA

Kao:1996:SSR

Kao:1997:DAD

Kao:1994:ATS

REFERENCES

Kramer:1994:CDT

Kumar:1993:SAS

Ku:1997:CFT

Kuo:1998:RNC

Katsinis:2004:FTD

REFERENCES

REFERENCES

REFERENCES

Kuo:2003:RTD

Kadayif:2005:OA1

Kandaswamy:2002:EEOa

Kandaswamy:2002:EEOb

Kahol:2001:SMC

REFERENCES

Kakugawa:2008:TBD

KKM08

Kong:1991:TID

KKP91

Kalasapur:2007:DSC

KKS07

Kim:1999:PBP

KL99

Kazi:2001:CGT

KL01

Kwok:2002:NCA

Yu-Kwong Kwok and Vincent K. N. Lau. A novel channel-adaptive uplink access control protocol for nomadic computing. IEEE Transactions on...
REFERENCES

Klasing:1998:ICC

Kla98

Kim:1997:CRF

KL97

Krueger:1994:JSM

Krueger:1994:JSM

Kim:2007:PPD

Kim:2007:PPD

Ko:2000:NOB

Liao:2006:SDI

Krueger:1994:JSM

Liao:2006:SDI

Ko:2000:NOB

H. Ko, S. Latifi, and P. K. Srimani. Near-optimal broadcast in all-port wormhole-routed hypercubes using error-

[KMW95] Dennis Kafura, Manibrata Mukherji, and Douglas M.
REFERENCES

Kumar:2008:EEE

KMW08

Kalns:1995:PMT

KN95

Koppelman:1994:RPM

Kop94

Koppelman:1996:FIN

Kop96

Kumar:1992:EHH

[KP92]

Kim:1993:EPC

[KP93a]

Kim:1993:LSP

[KP93b]
REFERENCES

ISSN 1045-9219 (print), 1558-2183 (electronic).

[KPK09] Maleq Khan, Gopal Pandurangan, and V. S. Anil Kumar.

REFERENCES

Kandlur:1994:RTC

Kshemkalyani:2003:FGM

Kim:2008:DRM

Kanhere:2002:FEP

Kwon:2009:ESO

Kirousis:1994:RMV

Krishnamurthy:2003:NCS

[KSWR03] Raj Krishnamurthy, Karsten Schwan, Richard West, and
REFERENCES

Kucera:2001:WFD

Kumar:1992:SLD

Kuo:2001:CA

Kwok:2008:SAH

Kuo:2002:RTC

Ku:2003:CED

Kim:2009:CMC

Koibuchi:2005:PED

Kakugawa:1997:USS

Kim:1998:SAM

Koglin:2008:ESC

Kim:2007:EID

Eun Jung Kim, Ki Hwan Yum, Chita R. Das, Mazin Yousif,
and José Duato. Exploring IBA
design space for improved per-
formance. *IEEE Transactions
on Parallel and Distributed Sys-
CODEN ITDSEO. ISSN 1045-
9219 (print), 1558-2183 (elec-
tronic).

Kim:2009:PCF

Hwangnam Kim and E yang Kim. PReSENt: a collaboration
framework for resource sharing in wireless mesh networks. *IEEE
Transactions on Parallel and Dis-
tributed Systems*, 20(3):289–
302, March 2009. CODEN ITD-
SEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Kamat:1996:EOR

Sanjay Kamat and Wei Zhao. An efficient optimal reconfigura-
tion algorithm for FDDI-based
networks. *IEEE Transactions on Parallel and Dis-
CODEN ITDSEO. ISSN 1045-
9219 (print), 1558-2183 (elec-
computer.org/tpds/td1996/
10411abs.htm.

Kang:2007:TTA

Jaewon Kang, Yanyong Zhang,
and Badri Nath. TARA: Topology-aware resource adap-
tation to alleviate congestion in sensor networks. *IEEE Trans-
actions on Parallel and Dis-
tributed Systems*, 18(7):919–931,
July 2007. CODEN ITDSEO.
ISSN 1045-9219 (print), 1558-
2183 (electronic).

An optimal implementation of
broadcasting with selective re-
duction. *IEEE Transactions on Parallel and Distributed Sys-
CODEN ITDSEO. ISSN 1045-
9219 (print), 1558-2183 (elec-
tronic).

Loukopoulos:2004:ODT

Thanasis Loukopoulos and Ish-
faq Ahmad. Optimizing down-
load time of embedded multi-
media objects for Web brows-
ing. *IEEE Transactions on Parallel and Distributed Sys-
tems*, 15(10):934–945, Octo-
ber 2004. CODEN ITDSEO.
ISSN 1045-9219 (print), 1558-
2183 (electronic). URL http:
htm; http://csdl.computer.
org/dl/trans/td/2004/10/l0934.
htm; http://csdl.computer.
org/dl/trans/td/2004/10/l0934.
pdf.

Loukopoulos:2006:PCO

Thanasis Loukopoulos and Ish-
faq Ahmad. Policies for caching
OLAP queries in Internet prox-
ies. *IEEE Transactions on Par-
allel and Distributed Systems*, 17
CODEN ITDSEO. ISSN 1045-
9219 (print), 1558-2183 (elec-
tronic).
Lai:2000:PPI

Lan:1995:AFT

Larus:1993:LLP

Lu:2004:DIE

Latifi:1994:TAS

Lakshmanan:2003:RSS

LawrieEditor-in-Chief:1995:E

Duncan Lawrie, Editor-in-Chief. Editorial. *IEEE Transactions*
REFERENCES

on Parallel and Distributed Systems, 6(3):??, March 1995. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

REFERENCES

Liang:2001:FDM

Liss:2005:KIO

Li:1991:CCE

Li:1991:JSP

Lee:1994:TDF

Lee:1995:OHS

Lau:1996:OLM

REFERENCES

Lee:1996:ECB

Liao:1999:TBP

Lin:2002:AOM

Lui:2002:EP

Lo:2001:EHP

Losee:2004:IRD

[LC04] Robert M. Losee and Lewis Church, Jr. Information retrieval with distributed databases: Analytic models of perfor-

Chen:1995:FTD

REFERENCES

Lian:2007:GBD

Lacy:1998:OCT

Lee:1991:CDG

[1] Lop

[2] Lee

Li:2003:LDT

Lian:2007:GBD
REFERENCES

Lee:1993:VBA

Lee:1995:PIL

Lee:1997:EAD

Lee:2000:SFB

Lee:2003:GIR

LaRowe:1992:ENM

Lee:2003:GIR

REFERENCES

Libeskind-Hadas:1995:ORA

Li:2003:IMD

Lin:1993:BSL

Li:2007:APA

Li:2008:PAP

Lilja:1994:IPL

Li:2003:ORA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[LLA+06] Chenyang Lu, Ying Lu, Tarek F. Abdelzaher, John A. Stankovic, and Sang Hyuk Son. Feedback control architecture and design methodology for service delay guarantees in Web servers.

Li:2009:FAR

Lin:2001:APR

Lenoski:1993:DPL

Li:2006:SDH

Lam:2008:NMS
Tak-Wah Lam, Lap-Kei Lee, Isaac K. K. To, and Prudence W. H. Wong. Nonmigratory multiprocessor schedul-

Lin:2009:DSA

Liu:2006:IQR

Lee:2004:PDD

LaW:2005:YCR

Leung:2007:OPR

Lee:2006:NPB

Lin:1994:DFM

Lin:1995:MFM

Lui:1998:CPB

Lui:1993:MCM

Lin:2000:SHA

REFERENCES

REFERENCES

[Lin:1999:MHB]

[Lysne:2005:PIM]

[Lee:1996:SOP]

[Li:1999:HRM]
Luo:2009:DBI

Liestman:1993:NCE

Lin:1996:AAJ

Li:1999:SEC

Legrand:2004:MLB

REFERENCES

Lindsey:2002:DGA

Lo:1996:PDC

Lee:1994:IAA

Lee:1994:PDM

Lai:1996:CEM

Lee:1997:OTA

[LS97] Cheol-Hoon Lee and Kang G. Shin. Optimal task assign-

Liu:2006:PPB

Laoutaris:2007:DSC

Lippert:1998:HSP

Liu:1995:PCP

Li:2007:MOP

Li:2009:HEU

REFERENCES

Lysne:2006:LRI

Liu:2007:SAB

Li:2004:PDT

Lee:2009:PDO

Leung:1997:OAG

Liang:2000:PPP

Liu:2006:MLS

Lu:2005:FUC

Lo:1997:NPA

Louri:1998:SML

Liu:2007:EED

Li:2004:ALM

Liu:2006:RCG

Leff:1993:RAR

Leff:1996:ELB

Liu:2005:LAU

Li:2008:ESC

Liu:2007:BSB

Lilja:1993:IMU
David J. Lilja and Pen-Chung Yew. Improving memory utilization in cache coherence directories. *IEEE Transactions on Par-
Liu:1993:PID

Liu:1990:EDD

Liu:1993:PID

Liu:1990:EDD

Lau:2002:FGS

Lau:2002:FGS

Lee:2008:NST

Lee:2008:NST

REFERENCES

Martinez:2008:FPQ

Min:1992:DAS

Malluhi:1994:HHN

Madan:2007:PEA

Murthy:1998:NAB

Marchetti:2006:FDT

May:2002:HCN

Phil May, Santithorn Bunchua, and D. Scott Wills. HiPER: a compact narrow channel

Meliksetian:1993:ORA

Moon:1995:GMB

Monchiero:2008:PPT

Miller:1990:ISG

McKinley:1998:COA

Ma:2007:ISP

[Liran Ma, Xiuzhen Cheng, Fang Liu, Fengguang An, and Jose Rivera. iPAK: An in-situ pairwise key bootstrapping scheme for wireless sensor networks. *IEEE Transactions on Parallel and Distributed Systems*, 18(8):1174–1184, August 2007. CODEN ITDSEO. ISSN 1045-
Mohapatra:1996:PAF

Mahapatra:1997:SGL

Mueller:2006:HPD

Mamidisetty:2009:MDR

Mahgoub:1992:PAG

Mahgoub:1993:CCP

Mantharam:1995:RTZ
Mythili Mantharam and P. J. Eberlein. Real two-zero algorithm: a parallel algorithm to reduce a real matrix to a real
REFERENCES

REFERENCES

Morales:2009:AOS

Martinez:2009:SAG

Ma:2007:ODC

Madriles:2008:MSM

Ma:2007:EEL

Mhamdi:2009:IUM

REFERENCES

9219 (print), 1558-2183 (electronic).

[Michael:2004:HPS]

[Mitzenmacher:2000:HUO]

[Mitzenmacher:2001:PTC]

[Misic:1994:CAS]

[Malluhi:1998:CHA]

[Muthukumar:2006:YSG]
REFERENCES

Marcelin-Jimenez:2006:CSF

Mohr:1991:LTC

Ma:2000:PES

Matsutani:2009:FHT

Mak:1990:PPP

Markatos:1994:UPA

Moldovan:1992:SMP

Malloy:1994:SDA

Myung:2007:TSA

Ma:2006:HLB

Mandelbaum:1996:FEP

Manimaran:1998:EDS

Manimaran:1998:FTD

Marathe:2007:SCC

Mei:2003:SDF

Moser:1994:PMA

Manoj:2006:UMM

Mei:2003:SDF

Milward:2004:DIL

Manivannan:1997:FCG

D. Manivannan, Robert H. B. Netzer, and Mukesh Singhal. Finding consistent global

Morillo:2005:IPD

Meyer:1991:CDF

Morin:1997:SRD

Moore:1997:GEB

Miguet:1992:ROD

Murthy:1994:ISP

Achour Mostefaaoui, Michel Raynal, and Corentin Travers. Time-free and timer-based assumptions can be combined to obtain eventual leadership. *IEEE Transactions on Parallel and Distributed Systems*, 17(7):656–666, July 2006. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Achour Mostefaaoui, Michel Ray-

Malony:1992:PMI

Madala:1991:PSP

Mendia:1992:OBS

Makedon:1993:EHP

Ma:1994:KEK

Mahmud:1994:MBA

Manivannan:1999:QSC

REFERENCES

Mu:1999:VTS

Manivannan:2003:EDA

Mittal:2007:SCS

Moon:2000:EAP

Misic:2006:PBE

Mizrak:2009:DMP

Alper T. Mzrak, Stefan Sav-

Robert B. Mueller-Thuns, Daniel G. Saab, Robert F. Damiano, and Jacob A. Abraham. Benchmarking parallel processing platforms: an applications perspective. *IEEE Transactions on Par-
REFERENCES

Mishra:2003:ICS

Mckinley:1994:UBM

Ma:2007:SEE

Moritz:2001:SFA

Mahapatra:2005:EES

Manjeshwar:2002:AMI

Arati Manjeshwar, Qing-An Zeng, and Dharma P. Agrawal. An analytical model for information retrieval in wireless sensor networks using enhanced APTEEN protocol. IEEE Transactions on Parallel and Distributed Systems,

Ma:2008:MMM

Nassimi:1993:PAC

Neves:2005:SVC

Nakatani:1993:MCB

Neophytou:2001:NDW

Nagaraja:2005:QPC

REFERENCES

REFERENCES

REFERENCES

Nakano:2000:EEI

Nakano:2000:RIP

Nakano:2002:ULE

Nakano:1999:BEP

Nakano:2001:EEP

Nakano:2002:EER

Newman:1995:HPA

[Nigam:1995:SNM]

[Negro:1997:EDS]

[Nocetti:2002:ARH]

REFERENCES

Nesterenko:2009:DNT

Naor:1998:ACS

Netzer:1995:NSC

Nienaber:2009:LAI

Nabhan:1995:PSA

Navarro:2003:CTD

Oliker:2000:PDU
L. Oliker and R. Biswas. Parallelization of a dynamic

Oh:1993:GMF

O'er:2005:HPL

O'Hallaron:1991:UAS

Obreni:1999:UEE

Ould-Khaoua:2001:AMA

Omiecinski:1992:AHJ

Omiecinski:1990:PAR

Olariu:2002:GEI

Stephan Olariu and Koji Nakano. Guest Editors’ introduction.

Olariu:1999:HSI

Ou:1997:PIG

Olson:1994:FTC

[OS94a] Alan Olson and Kang G. Shin. Fault-tolerant clock synchronization in large multicomp

Olson:1994:FTR

OBoyle:2002:CTB

Olariu:2006:LCTa

Olariu:2006:LCTb

Ogle:1993:ADD

Ostroff:1990:DPT

Olariu:1992:OPA

Olariu:1991:OPI

Oleszkiewicz:2006:EUG

Olariu:1996:TCO

Powell:1999:GGU

Padmanabhan:1991:DAE

Krishnan Padmanabhan. Design and analysis of even-sized binary

Pakin:2007:DID

Pak07

Prasanna:1994:HCM

PAM94

Pande:1995:SSS

PAM95

Pan:1993:CIA

Par95

Park:2001:EBM

REFERENCES

Pilkington:1996:DPN

Pinto:2003:CLT

Peng:2005:SDA

Park:2007:FBA

Pong:1995:NAV

Petitet:1999:ARM

REFERENCES

REFERENCES

Pinar:2004:ICL

Pinar:2005:ILB

Palesi:2009:ASR

Page:1993:FAD

Pilarski:1992:CDD

Pramanick:1995:IPMa
REFERENCES

Pramanick:1995:IPMb

Parhami:1999:DDC

Parhami:1999:PRC

Parhami:2001:UFH

Psarris:2004:EED

Kleanthis Psarris and Konstantinos Kyriakopoulos. An experimental evaluation of data dependence analysis techniques.

[PP95] Karl C. Posch and Reinhard
REFERENCES

Petersen:1996:SDE

Peh:2005:GES

Park:1997:SMP

Pinkston:2003:DFD

Popp:1997:SMP

[PSGD05] Joan-Manuel Parcerisa, Julio Sahuquillo, Antonio Gonzalez, and Jose Duato. On-chip interconnects and instruction steer-

Panda:1999:MMP

Pugh:1995:GBI

Pinkston:1999:CDA

Peng:2000:RUD

Pan:2001:IGM

Qiao:1999:ATR

Quaglia:2007:ETA

Quaglia:2003:NCO

Quaglia:2001:CMS

Rajko:2004:STO

Rashid:2005:AAP

Mohammad M. Rashid, Attahiru Sule Alfa, Ekram Hossain, and Muthucumaru Maheswaran. An analytical approach to providing controllable differentiated quality of service in
REFERENCES

[283]

Rexford:1997:PMS

Repantis:2009:QAS

Ramaswamy:2005:DAN

Risson:2009:TDR

Risson:2009:TDR
REFERENCES

Ryu:1990:EAL

Rexford:1994:PES

Rim:1996:VTN

Ratha:1999:CVA

Rubio:2005:RSD

Rao:1993:EPB

Ramkumar:1994:MIPa

Balkrishna Ramkumar and Laxmikant V. Kale. Machine independent AND and OR parallel execution of logic programs: Part I — the binding

REFERENCES

Rego:1990:EPA

Robinson:1995:OMC

Rao:1995:AWT

Ryutov:2003:IAC

Ramachandran:2003:SCP

Rai:1999:TBF

Robertazzi:2004:CND

Rosenberg:2002:OSC

Rosenberg:2003:AWC

Rogers:1994:CDM

Rauchwerger:1999:LTS

REFERENCES

REFERENCES

Ranka:1990:OES

Ramanujam:1991:CTT

Ranka:1991:CHM

Rajsbaum:1994:PSP

Rajasekaran:1997:SSR

Roberts:1997:GMD

Rajasekaran:1998:RRS

REFERENCES

Reiter:2008:QCS

Ramaswamy:1997:FET

Rangarajan:1995:FT

Ramasubramanian:2002:ACL

Rangaraj:1995:FTA

REFERENCES

REFERENCES

[Sarje:2009:PGA]

[Sahni:2000:MMD]

[Sahni:2000:POP]

[Sar93]

[SB94a]

[SB94b]

[SB04]

Jang-Ping Sheu and Chih-Yung Chang. Synthesizing nested loop algorithms using nonlinear transformation method. *IEEE
REFERENCES

Scheiman:1992:PTM

Shim:1993:SDL

Scheiman:1994:PPT

Song:2005:FBS

Seshadri:2007:RQT

Scarano:1999:SEF

Su:1997:SPR

REFERENCES

Scherson:1991:OGC

Shin:2000:DRS

Sendag:2005:IIS

Son:2007:CDE

REFERENCES

ISSN 1045-9219 (print), 1558-2183 (electronic).

Shen:1999:EFT

Siu:1996:NCD

Siu:1998:BAP

Silla:2000:HPR

Shang:1992:TMU

Stunkel:1992:ACP

Seo:1995:CBN

Song:2007:UBR

Santoro:2008:ODD

Shmueli:2009:SDP

Shan:2003:PEH

REFERENCES

Shang:1995:DHB

Stauffer:1995:SSO

Shin:1996:ELS

Shieh:1997:CTO

Singhal:1992:DIS

Singh:1996:LEP

Srinivasan:1999:SRD

[SJ99] S. Srinivasan and N. J. Jha. Safety and reliability driven task allocation in distributed

Shaikh:2009:GBT

Sohail:2006:QDP

Shao:2009:CTE

Seo:2008:EES

Sundar:2001:HAC

Subhlok:1995:IPA

Jaspal Subhlok and Ken Kennedy. Integer programming for array subscript analysis. *IEEE Transactions on Parallel and
REFERENCES

Seinstra:2002:PPP

Seinstra:2004:FSM

Seshadri:2009:DSQ

Shang:1994:LTG

Sabrina:2007:DAI

Schloegl:2001:WDL

K. Schloegl, G. Karypis, and V. Kumar. Wavefront diffusion and LMSR: Algorithms

Shen:2003:HPA

Sivaram:2001:ASE

Schurgers:2002:DDA

Sih:1993:CTS

Sih:1993:DNM

Squillante:1993:UPC

Seznec:1994:IPS

Stojmenovic:2001:LFH

Sriavatsa:2009:MDS

Stojmenovic:2001:PAL

Sodan:2006:LLM

Sorin:2003:AES

REFERENCES

Song:2006:LTC

Sung:1997:MEF

Shen:1990:ESF

Shrivastava:1994:SFT

Schollmeyer:1997:GMM

Song:2006:LTC

Surdeanu:2002:DPA

Shim:2003:SPE

Shatz:1990:DIP

Surdeanu:2002:PAD

Sung:1992:MID

Som:1993:PPP

Sukhamoy Som, Roland R. Mielke, and John W. Stoughton.
REFERENCES

REFERENCES

Yong Ho Song and Timothy Mark Pinkston. A progressive approach to handling message-dependent deadlock in parallel computer sys-

Song:2005:DRN

Soteriou:2007:EDS

Sorin:2002:SVB

Sun:1999:IRC

Sivaram:1998:EBM

REFERENCES

Soh:1991:CCA

Sun:1994:SPA

Sengupta:1998:AAB

Sancho:2004:EMI

Srivatsa:2008:PET
ISSN 1045-9219 (print), 1558-2183 (electronic).

Sohn:1998:OCC

Shen:1993:RRM

Soh:1994:ILB

Saha:1996:AAM

Shang:2004:LCS

Scott:1990:UFM

Selvakumar:1994:SPC

S. Selvakumar and C. Siva Ram Murthy. Scheduling precedence

Saikia:1996:TRS

Surma:2000:CRM

Sinnen:2005:CCT

Steinder:2007:MDE

Sangireddy:2008:OLB

Rama Sangireddy and Jatan Shah. Operand-load-based split pipeline architecture for high clock rate and commensurable IPC. *IEEE Transactions on Parallel and Distributed Systems*, 19(4):529–544, April 2008. CODEN ITDSEO. ISSN 1045-

REFERENCES

[ST91] Jang-Ping Sheu and Tsu-Huei Tai. Partitioning and mapping nested loops on multiprocessor systems. *IEEE Trans-
REFERENCES

Stanko\v{c}ic:2002:E

Steenkiste:1996:NBM

Shatz:1996:APN

Stojmenovic:1996:CTB

Stojmenovic:1997:HNT

Stojmenovic:2004:CCD

REFERENCES

[Shah:2007:DAD] Ruchir Shah, Bhardwaj Veer-

Scarpazza:2008:EBF

Storms:2005:PDA

Suen:1992:ETM

Shu:1995:APS

Shu:1996:RIP

Jang-Ping Sheu, Chao-Tsung Wu, and Tzung-Shi Chen. An optimal broadcasting algorithm without message redundancy in

Sistla:1998:MCC

Sengar:2008:DVF

Sung:2003:ITB

Shen:2007:LA

Stewart:2008:ELP

Stewart:2009:BBA

REFERENCES

Stamos:1993:SFR

Song:1997:BNU

Suh:1998:AA

Suh:2000:CAC

Shan:2007:BMS

Shen:2003:CSR
REFERENCES

Seo:1999:PRF

Shin:1995:FMS

Sun:1995:PCS

Seredynski:2002:SPC

Subrata:2003:CTA

Subrata:2003:ECA

Riky Subrata and Albert Y. Zomaya. Evolving cellular automata for location management in mobile computing networks. *IEEE Transac-
REFERENCES

Sun:2004:PTL

Tak:1993:FPP

Subrata:2008:GTA

Teeuw:1993:CVD

Taufer:2006:PPS

Tsay:1994:FTA

Tsay:1995:SND

Tamir:1993:SCA

Tzeng:1998:FCH

Tzeng:1994:PSF

Tzeng:1995:DER

Tzeng:1995:PSF

REFERENCES

Chee Wei Tan, Dah-Ming Chiu, John C. S. Lui, and David K. Y. Yau. A distributed throttling approach for handling high bandwidth aggregates. *IEEE Transactions on Parallel and Distributed Systems*, 18(7):983–995,
Tan:2001:ECI

Thanalapati:2001:EAS

Thakur:1996:EAA

Tseng:1997:FTR

Tsafrir:2007:BUS

Theel:1996:DCP

Oliver E. Theel and Brett D. Fleisch. A dynamic coherence protocol for distributed shared memory enforcing high data availability at low costs. *IEEE Transactions on Parallel and Distributed Systems*, 7(9):
REFERENCES

REFERENCES

Tu:2001:FOF

Tirthapura:2006:SSD

Tao:1996:NED

Tao:2006:CRP

Tsai:1997:SAP

Horng-Ren Tsai, Shi-Jinn Horng, Shun-Shan Tsai, Tzong-Wann

Tapolcai:2008:TNA

Thomasian:1993:DNR

Thomasian:2006:CRP

REFERENCES

Yu-Chee Tseng, Ting-Hsien Lin, Sandeep K. S. Gupta, and Dhableswar K. Panda. Bandwidth-optimal complete exchange

Yu-Chee Tseng, Ting-Hsien Lin, Sandeep K. S. Gupta, and Dhableswar K. Panda. Bandwidth-optimal complete exchange

Thottethodi:2004:EGK

Thottethodi:2004:EGK

[Thottethodi:2004:EGK]

Tang:2006:EOU

Torrie:1996:CMB

[Evan Torrie, Margaret Martonosi, Chau-Wen Tseng, and Mary W. Hall. Characterizing the memory behavior of compiler-parallelized applications. *IEEE Transactions on Parallel and Distributed Systems*, 7(12):1224–1237, December 1996. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).]

Tzen:1993:DUL

Tzen:1993:TSS

[Thomasian:1997:RPD]

[Thomasian:1997:RPD]

[Thomasian:1997:RPD]

[TR04] Nancy Tran and Daniel A. Reed. Automatic ARIMA time series modeling for adaptive
REFERENCES

[TSAL97] Min Tan, H. J. Siegel, J. K. Antonio, and Y. A. Li. Minimizing the application execution time through scheduling of subtasks and communication traffic in a heterogeneous com-

[TSRS07] Chang-Hao Tsai, Kang G. Shin, John Reumann, and Sharad Singhal. Online Web cluster ca-

[TW00] M.-J. Tsai and S.-D. Wang. Adaptive and deadlock-free routing for irregular faulty...

REFERENCES

REFERENCES

REFERENCES

Varvarigos:1993:MBH

Varvarigos:1995:DBP

Varvarigos:1996:RSM

vanderMerwe:2007:FDP

Vaidya:1999:TEF

vanReeuwijk:1996:IFH

REFERENCES

Vydyanathan:2009:IAL

Varavithya:1999:ATB

Veeravalli:2004:SDL

Varvarigou:1996:SFP

[VRKL96] Theodora A. Varvarigou, Vwani P. Roychowdhury, Thomas Kailath, and Eugene Lawler. Scheduling in and out forests in the presence of communication delays. IEEE Transactions on Par-

Varki:2004:ICP

Villela:2005:PSA

References

Wang:2004:FDS

Wang:2008:EHC

Wallace:1998:MMI

Wolski:2001:WPR

Wang:1990:CTA

[Ban90] Biing-Feng Wang and Gen-Huey Chen. Constant time algorithms for the transitive clo-

[Walters:2009:RBF]

[Wang:2006:ESO]

[Wills:1997:HTL]

[Writes:1991:PSA]

REFERENCES

Wang:2004:SAC

Wolf:1993:PSM

Wong:1998:SAA

Wen:1996:MMP

Wu:1994:UPN

Wiseman:2003:PGS

Wolf:2006:PMN

Wu:1990:ERS

Wen:2009:DBA

Wu:1990:HPA

Wang:1995:MGS

Wolfson:1998:CAC

Wu:2001:VMF

REFERENCES

Wang:2003:TAE

Wu:2003:FSS

Wu:2003:PAM

Wong:1995:PAC

Wang:2009:UPD

Wang:2005:EAA

Yuh-Rau Wang, Shi-Jinn Horng, and Chin-Hsiung Wu. Efficient algorithms for the all nearest neighbor and closest pair problems on the linear array with a

Wang:2007:LRR

Wu:2008:RRO

Willebeek-LeMair:1993:SDL
Marc H. Willebeek-LeMair and Anthony P. Reeves. Strate-

Wang:2008:EAS

Wu:2007:VRE

Woodside:1993:FAP

Wu:1995:SEA

Wei:1999:IDF

Wei:2008:FPA

Wang:2006:DIQ

Watanabe:2007:MNI

Warnakulasuriya:2000:FMM

S. Warnakulasuriya and T. M. Pinkston. A formal model of message blocking and dead-

J. Wu. Fault-tolerant adaptive and minimal routing in mesh-connected multicomputers using extended safety lev-
Wu:2002:EDS

Wang:2006:EDL

Wang:2007:EPS

[WZP+03] Lan Wang, Xiaoliang Zhao, Dan Pei, Randy Bush, Daniel

Xiao:2002:DCR

Xiao:2004:AMA

Xia:2005:DA

Xiang:2001:FTR

[Xia01] Dong Xiang. Fault-tolerant routing in hypercube multicomputers using local safety information. *IEEE Transactions on
REFERENCES

Xuan:2000:RPA

Xu:1996:ETD

Xiao:2008:NDD

Xiao:2004:VVT

Xiao:2004:VVT

Xing:2006:ISC
Xiao:2006:OBC

Xiao:2005:DQG

Xiao:2007:GCM

Xiao:2004:DAL

Xie:2008:SAR

Xu:2000:CEH

Xiao:2009:CCD

[Weijun Xiao, Jin Ren, and Qing Yang. A case for continuous data protection at block level in...

Xu:2006:TCD

Xu:2008:NSS

Xiang:2001:TBW

Xiang:1999:EIB

Xiao:2003:LCR

Xiang:2009:FDP

Yang Xiang, Wanlei Zhou, and Minyi Guo. Flexible determin-

REFERENCES

Yang:2007:RHI

Yu:1995:DT

Yu:1994:PET

Yu:1999:FSF

Yew:2002:E

Yew:2003:EN

Pen-Chung Yew. Editor’s note. *IEEE Transactions on Paral-
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
Yi:2009:UAF

Yajnik:1997:ARD

Yajnik:1997:GDA

Yu:2006:OBB

Yan:1997:ASP

Yang:1992:ICS

Yamashita:1996:CANa

Masafumi Yamashita and Tsunehiko Kameda. Computing on anonymous networks: Part I:

References

[Yang:2008:OSA]

[Yangy:2007:SBM]

[Yang:2009:HAP]

[Yang:2009:HAP]

[Youn:1995:MIN]

[YM08] Jinyao Yan, Martin May, and Bernhard Plattner. Comments

[Yan:2008:COR]

Yang:1992:DAC

Yeh:1998:MSN

Yang:2005:MAS

Yang:1993:NGA

Qing Yang and Hong Wang. New graph approach to minimizing processor fragmentation in hypercube multiprocessors.

Yen:1998:PER

Yang:1999:NSR

Yang:2000:OAA

Yang:2001:OAA

Yang:2002:NOA

Yang:2003:NFM

Yang:2003:RPL

Yang:2004:CMC

[Yang:2005:CED]

[Yang:2005:RPB]

[Yang:2008:SCM]

[Yin:2003:ORD]

[Yu:2009:ILA]

[Yang:2008:SCM]
REFERENCES

Yang:1995:MIM

YYX+09

Youssef:2009:OMC

Yue:2008:EOE

Yang:1994:RMF
REFERENCES

Yan:2000:CRA

Zapata:1992:VCG

Zhu:1993:JSH

Zhu:2009:ILM

Zhou:2005:VAD

Zhou:2004:SLB

Zhang:2006:CAM

Zomaya:1998:FRB

Zhuge:2008:HSP

Zheng:2009:CCL

Zheng:2007:FGR

Zhang:2003:IAP

Zh:1998:NPD

Zh:1999:GEI

Zh:1999:LAP

Zh:2005:EPA

Zh:2006:ESP

Zhe:2007:APP

Zhe:2007:PRS

REFERENCES

Zhu:2008:DDC

Zh:2008:DDC

Zheng:1996:OSL

Zhuang:2005:RBB

Zhang:2007:NSL

Zhou:2007:ASC

Zhu:2008:ONL

Zalamea:2004:RCM

[ZLAV04] Javier Zalamea, Josep Llosa, Eduard Ayguadé, and Mateo Valero. Register constrained modulo scheduling. *IEEE Trans-

Zahorjan:1991:ESD

Zhou:2007:SBF

Zhu:2003:SDV

Zhu:2009:HOR

Zhu:2009:DMO

REFERENCES

Zhao:2008:RBE

Zh:2006:ALQ

Zhang:2005:WAL

Qi Zhang, Alma Riska, Wei Sun, Evgenia Smirni, and Gianfranco Ciardo. Workload-aware load balancing for clustered Web servers. IEEE Transactions on Parallel and Dis-
REFERENCES

REFERENCES

Zomaya:2001:OUG

Zomaya:2002:OUG

Zomaya:1999:GSP

Zhou:2006:RAS

Zhou:2004:HPB

Zhang:2009:OTD

REFERENCES

January 2009. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Zhang:1995:CME

Zhang:2004:OSA

Zhang:2006:WOI

Zheng:2007:AHC

Zhang:1995:CPE

Zeinalipour-Yazti:2007:PPA