A Bibliography of Publications in International Journal of Foundations of Computer Science

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
26 February 2018
Version 1.61

Title word cross-reference

#P [Zan91]. #P-Completeness [Zan91].

(−β) [Dom12]. (1, 2) [BZ13]. (2 + p) [ZG13]. (2, 2) [ST16]. (3k + 1) [DZ00]. (A, B) [JL01].
(δ, α) [CCF09]. (δ, γ, α) [FG08]. (δ, κ, α) [FG08]. (n, k)
[WC13, CHYT14, YCL11, CC98, HLH06]. (n, n(n + 1)) [NS98]. 1
[CHWX09, Dic93, LR04, TCT14]. 11 [LJ17].
2 [AV96, BYP95, HKT00, HJP97, JZ16, JW08, Leo03, Pri06, TSFZRP17, XZS16, XCY17, ZM11]. 2^n [CKZ17]. 2m [ZWCL14].
3 [BYP95, DH96, JSPD03, LJ17, SJ04, ST93, Tsi06]. 4 [XC15, ZZC15]. 7/3 [DSS15]. 73
[Ram05]. * [MTVM15]. 2 [Joh00]. ab *c

[KL03]. ASPACE(log log n) [GP13]. β
[Sho11]. C^1 [XBE02]. CTC [MTVM09].
CTL* [MTVM09]. I_2 [BW14]. J [BL14]. R
[BL14]. D [HLY04, AE99, DG98, RS01]. ε
[DDHL11]. f [DGL93]. F_p + νF_p [WGF16].
G(2^m, 2) [YCTW10]. G^x+y [AT15]. G^{x+y}

[BT07]. DF(2) [BB99]. DF(2^n) [WGF16].

[H] [GMU15]. K

[BT07, CHWX09, PV98, ZBS05, Aku06,
AE99, DDHL11, DG98, DGL93, EHS15,
IZN99, INY07, KPS13, LZ12, MXY94,
Naka04, RS04, TCS10, YTN01, ZZZ16].
K_{m,m} [Kan15]. L [PSS12]. L(j, k) [Cal15].
L_p [CMR07]. M [Jun14, Teh16a, Teh16b].
F_{2^{m}} [ZWCL14]. μ [DL12]. N

[AM09, JM03, PV98, INY07]. O [Mal07].
O(1) [ST99]. O(n) [MM97]. O(n^2) [Bad09].
ω [COT12, Fin12, DI02, Hon02, Hon07],
KSV03, KMM06, Sel08, Sta05]. \(P \) \(\{ \text{AF006, ARV07, BGMV08, BCC}^{+}11, \)
BFO06, CD06, CCF507, CVF508, DI05,
FOP05, Frc05, FO07, FIO08, FH11, GH07,
IYO05, IW07, Iba11, ILT11, LZGN06, Luc09,
Mad03, MDAPHPJ^{+}11, NSVA12, PDPPJ11,
Păun00, PPJR06, PPJR07, PPJS07,
PPRPS11, PBMZ06, PLMZ11, RCTC^{+}09,
Sbu06, SRPC11, YDI08\}. \(P \) \(\{ \text{MR99, RRT99} \}. \(P \)
\(\{ \text{GV03} \}. \(P \)
\(\{ \text{YTN01} \}. \(P \)
\(\{ \text{BM16, FBK05} \}. \(P \)
\(\{ \text{KL00} \}. \(P \)
\(\{ \text{ZWW}^{+}14 \}. \(P \)
\(\{ \text{Noc98} \}. \(P \)
\(\{ \text{SMS92} \}. \(P \)
\(\{ \text{BYP95, Dic93, BL14} \}. \(P \)
\(\{ \text{KPS13} \}. \(P \)
\(\{ \text{DG98} \}. \(P \)
\(\{ \text{ChWX09, JW08, SJ04} \}. \(P \)
\(\{ \text{Dic93} \}. \(P \)
\(\{ \text{Joh00} \}. \(P \)
\(\{ \text{DGL93} \}. \(P \)
\(\{ \text{AV96} \}. \(P \)
\(\{ \text{Au06} \}. \(P \)
\(\{ \text{AE99, DG98, DZ00, RS01, PV98} \}. \(P \)
\(\{ \text{KSV03} \}. \(P \)
\(\{ \text{DL12} \}. \(P \)
\(\{ \text{YTI06} \}. \(P \)
\(\{ \text{Nak04} \}. \(P \)
\(\{ \text{Pri06} \}. \(P \)
\(\{ \text{ZBS05} \}. \(P \)
\(\{ \text{DG98} \}. \(P \)
\(\{ \text{ChWX09, JW08, SJ04} \}. \(P \)
\(\{ \text{DIC93} \}. \(P \)
\(\{ \text{Joh00} \}. \(P \)
\(\{ \text{DGL93} \}. \(P \)
\(\{ \text{AV96} \}. \(P \)
\(\{ \text{Au06} \}. \(P \)
\(\{ \text{AE99, JZ16, LR04} \}. \(P \)
\(\{ \text{BT07} \}. \(P \)
\(\{ \text{Edge-Connectivity} \} \text{ [Ts106].} \(P \)
\(\{ \text{Abstract} \} \text{ [DG09, TZ91].} \(P \)
\(\{ \text{Abstraction} \} \text{ [ADHR09, ACV13, BPZ07, CFH}^{+}03, \)
MH06, NTSH06, WM13]. \(P \)
\(\{ \text{Accelerating} \} \text{ [BIIN04].} \(P \)
\(\{ \text{Abstract} \} \text{ [GJ000, HO00].} \(P \)
\(\{ \text{Abstract} \} \text{ [GQZ15, Mer08].} \(P \)
\(\{ \text{Accepting} \} \text{ [Dom04, DM08, IIT91].} \(P \)
\(\{ \text{Access} \} \text{ [DCS13, Rud15, SK04, Smu06].} \(P \)
\(\{ \text{Accountable} \} \text{ [YMC}^{+}17]. \(P \)
\(\{ \text{ACD} \} \text{ [Mar92].} \(P \)
\(\{ \text{ACD-Ground} \} \text{ [Mar92].} \(P \)
\(\{ \text{Achieving} \} \text{ [JW08].} \(P \)
\(\{ \text{Across} \} \text{ [CM12].} \(P \)
\(\{ \text{Active} \} \text{ [DV11, JK14a, JK14b, PDPPJ11, PLMZ11, Qua07].} \(P \)
\(\{ \text{Activity} \} \text{ [BGMV08].} \(P \)
\(\{ \text{Acyclic} \} \text{ [AMR08, BPR09, FZFDCHB05, GV07],}
\text{KLB13, ZWS96].} \(P \)
\(\{ \text{Adaptation} \} \text{ [AFW03, CIS03,}
\text{LBJ03, SB12, WLF03, WD03].} \(P \)
\(\{ \text{Ad-Hoc} \} \text{ [CIS03].} \(P \)
\(\{ \text{Adapting} \} \text{ [CFG12].} \(P \)
\(\{ \text{Adaptation} \} \text{ [AFW03,}
\text{CIS03, LBJ03, SB12, WLF03, WD03].} \(P \)
\(\{ \text{Adaptive} \} \text{ [AFW03, CIS03,}
\text{LBJ03, SB12, WLF03, WD03].} \(P \)
BKS12, CLT14, CHYT14, KG11, LX94, LBJ03, SW09, TL99, Tse16, VJD'T05. Add
[ANDZM09]. Addition [Wan04]. Additive
[SS07a]. Adic [XZS16]. Adjacent [AKS14]. Adjustable
[HZTZ12, WY'05]. Adjusting
[KSJ08]. Advanced [Qua07]. Advances
[HO00]. Advertisements [NH02]. Advice
[FH05, KSY14]. Aerial [Ami05]. Affine
[RV00]. Affirmative [PHPJR N+11]. AFL
[BJ07a]. Against [BCFR07, HMZ05,
HCETPL+12, TCT14, Uen13]. Agent
[BF07, BDDN01, EH12, MM07, NH02]. Agents
[DSS08, FHL07, LK11, LCVLV09,
LRT92, MCS08]. Aggregation
[RGR11]. Agreement
[BVM00, MNS11]. Agreements
[Tru08]. Alberto [SCIS15]. Algebra
[GC15, GB03, Hea11, Lar99]. Algebraic
[BM16, BMW91, BE11, FH05,
Kri97, TCT14, TJZ13, ZWCL14]. Algebras
[ALR04, Ali16, BE92, BE93, KLB13,
MRT95, Oke92, SN13, TST01a]. Algorithm
[ATK12, ANDZM09, ARS11, BV08, BB04,
BKS12, CPY02, CF06, CFRD08, CDJ09,
CTZ01, CL03, CLT14, CHYT14, DGN07,
DN16, DG98, FL09, FZAM08, FJ12, Fr10,
Fuj17, GLV14, Gro03, GD12, GWL+17,
HKV17, He97, HO99, HM04, HW17, Hut02,
IST05, IZN99, JHK08, KK10, Kar99, Kör03,
LW93, Lii01, LJJ+17, LCL06].
MDAPHPJ+11, MTXN99, MC13, NGHK15,
Nis07, Ohko04, PRN13, PYTH10, PR00,
Pym92, QFL+15, SW09, SS07b, ST99,
SKW08, Tor13, TSFZR07, Ts06, WG17,
Won06, Won01, XSI1, ACM11, CCM11].
Algorithmic
[BS12, CFMR05, DGMM15,
GGR14, HPV99, Riv04]. Algorithms
[AFB06, Aku06, AILR16, AC05, AMR05,
AMR11, AE02, AE05, Ar07, AMO21,
BT07, BRM07, BH02, BCFL12, Buri02,
CD15, CCM97, CCF09, CFG12, CGN08,
CHWX09, CHA+92, CPC99, CHZ06,
CCG+11, DP90, DPS99, DD13, DGL93,
DWS15, DMS16, ERW04, ECY02, FZ15,
FZE09, FPS03, FA06, GO09, GHJS05,
Go09, HL06, HP09b, HLW09, IMP12, INY07,
Iv03, JMS05, JZ16, KKH90, LTV02,
Le04, Li12a, LMM+12, MPS99, Mas04,
Moh02, Moh03, Nak04, OSZ02, RLWW96,
SRR15, Sah01, SK01, SK03, SJ04, SG04,
Sef93, TV07, Tor15, TL99, Tse16, WRK03,
WM05, WH03, ZBS05, Zom03, FG08].
Alignment
[AE02, BBM+12, CK08b, FM96,
GD12, PYTH10]. Alignment-to-Alignment
[FM96]. Alive
[BC12]. Allocating
[BRSRC11, NWK06, WGN17]. Almost
[HJ13, PS12a, PP11]. Almost-Equivalence
[HJ13]. Alphabet
[Dom12, GNP+06, JMR91, JJS08, Jir11, Pig15].
Alphabet-Independent
[GNP+06]. Alphabets
[Leu16, Mas13]. Alternating
[AK14, BCFR07, CLLL08, HIW01, HIR+92,
IIT91, MO10, Slo95]. Alternative
[Set08]. Ambiguity
[AMR11, Iba15, KMK11, Leu05,
MS04, MP07, Set09, SL17]. Ambiguous
[Mig90]. American
[SGZ02]. Amiable
[Ata07]. Amount
[BGR16]. Amplitudes
[Nis03]. Analog
[LWJ+10]. Analog/Mixed
[LWJ+10]. Analyses
[KPM15, Tse16, ZPXX17]. Analysis
[AHW+13, AH07, B/M95, BV98a, Bee95,
BAK12, BCB12, BET03, DN16, DES09,
EH12, FSF11, FZAM08, FBK05, G090,
HP09b, HM04, IDR97, KRR7, Leo03, LCY12,
Li12a, LN08, LPP92, Luj11, MH06,
MG080, NAK+15, OM96, PV98, RWZ01,
ROK08, Set08, TY03, TV94, Wan04, WR16,
Yam03, YLZ14, YB06, Yen08, ZZ16].
Analytic
[BMRR11]. Analyzing
[DW04]. And
[FIO08, DW04]. Angle
[MB17]. Annotated
[KSJ08]. Annotation
[BD08]. Announcement
[CIS16]. Anonymous
[AOS10, FDFZB12, Spr09, Xo06]. Answer
[PHPJR N+11]. Ant
[KAPF05]. Antennae
[AC05]. Anti
[BJO7a, KMG11]. Anti-AFL
[BJO7a]. Anti-Spikes
[KMG11]. Antidictionary
[Shu14]. Antimirov
Any [PS12b, TSZFZRP17]. Aperiodic [BS09, BS15, Sel08]. Apices [MAN06]. APN [XC15, ZH13]. Apostolico [SCIS15]. Application [Cas05, MNS11, SB01, URS07, ZH06]. Applications [CK08a, CCF09, CHWX09, CW11, CB09, DI02, Fin12, GC15, GGR14, HYNO8, KL03, KKS05b, KMS11, KM90, Li07, MM97, PRS98, PYTH10, Suc90, Zom01c]. Approach [BET03, BMMR11, CLMP16, CMMR04, EAB16, GSD03, IMP05, Kri97, LW06b, MG14, MG099, Qua07, SZG02]. Approximability [DJL07]. Approximate [BH02, MRRV06, ORS08, WKS08, ZBS05]. Approximated [BB04]. Approximating [BR08, BVM00, BDG11, Fre02, Gol14, HL01, LZ12, Rya15, YJ05]. Approximation [AE02, AP90, ABDP05, CS93, CCG11, CY12, HJP13, HW17, JMS05, TM05, XK10, LTW02, SS07b, Ste93, Tei17, WG17, XS11]. Arrangement [FWZ15, LX17]. Arrangements [KL05]. Array [CE08, FS06, GPC09, Jun14, ZYYH14]. Arrays [AE99, Fre05, MMP10, PA98, SMAN13, WH03]. Articulation [Kar99]. Artin [AR16]. Ary [AE09, DG98, PV98, DZ00, RS01]. Asian [HO00, GV00a]. Aspects [BM16, BRST07, HK09a, Riv04]. Assembly [BH09, IPR07, IP08, JK14a, JK14b, Rog09, RTC109, SW17]. Assignment [Bar90, DGN07, GSD03, Hir91, NSVA12, WD90]. Associated [Sal11]. Assume [LSWW13]. Assume-Guarantee [LSWW13]. Assumptions [GKS17]. Asymmetric [Gol14, WR16]. Asymmetry [FPS02]. Asymptotic [FY08, PR12, Sz995]. Asymptotically [CDPR11]. Asynchronous [OTT15, YUE13]. Asynchrony [SR00a]. ATM [GKKP99]. Atomic [Anc02]. Atoms [BT13]. Attack [DS02, DEKZ11, HCT12, L17, WLC12]. Attacks [DEKZ11, TCT14]. Attribute [BV08, TYM17, WHL17]. Attribute-Based [TYM17, WHL17]. Augmentation [SN13, YH11]. Authenticated [LHT09, LH11, MMS17]. Authentication [HCETPL12, LB04, YTP11]. Author [Ano97, Ano98, Ano99, Ano00, Ano01a, Ano02, Ano03a, Ano04a, Ano05a, Ano06, Ano07, Ano08, Ano09, Ano11, Ano12, Ano13, Ano14, Ano15, Ano16, Ano17]. Auto [CGKN08]. Auto-Intersection [CGKN08]. Autocorrelation [KYZS17]. Automata [AHK07, ABH09, AK14, AMR11, AMR08, AR16, ACFE09, ABH17, AHK17, BPP11, Ber13, BCP03, BCD14, BMP15, BCP07, BCHK09, BHK07, BRST07, BMK11, BKM12, BK15, BW14, BMMR11, BMMR12, BK09, CFM12, CFM13, CP02, CLW09, CL15, Cha08, CLOZ04, CC05, CCR90, CFY16, CG06, CR15, CMR07, CMRR08, CMV00, CKK02, DJ12, Dom04, Dro92, DK98, DM11, DP14, Ds03, Dub95, EM11, ES12, FGS90, FTT10, Fre08, FK13, Fuj17, GLV14, GH20, GVL07, G107, G107, GS10, GSZ99, GH13, GH15, GQZ15, Gus13, GP15, HMZ05, HV05, HK09b, HJ13, HJ17, HKS13, LTJ+93, JM13, JJS08, JO07, JK07, JZ10, Kör03, KR16, KBH99a, KSV03, KMS06, KSY14, Kud07, KL11, KMM06, KR08, KMO10, KO13, KMW14b, KM14a, KM16, LD15, Loh10].
[Mac96, Mal05, MR11, Mar08b, MVMM02, Mar97, Mar09, Mas13, MHT09, MO07, MO09, Moh03, Moh13, MP91, MPJ07, NTSH06, NWK05, NWK06, NCC+07, Oli13, Ott15, P195, Pig09, PP14, Pig15, PM13, SS07a, S092, SY12, SM07, Sir15, Slo95, SVF09, Sut03, Tam08, Tor13, Tor15, TY15, Vor16, WM13, WKS+08, YDI08, YW06, YBI11, ZHZ11, ZQL12, CV13].

Automata-Based [Tor13]. Automated [CGR13, KM02, Pen93, TW09]. Automatic [ADR11, BCDP08, BK16, CRS12, DMSS16, GHS13, GRRS14, LD01, Loh05, LBL06, MH06, RS15, SS12a, SF07].

Automaton [AC11, CZOdlH17, CL14, CC05, CGL12, IT13, JHK08, Okh03, Pol05, Pru17].

Automaton-Based [Okh03]. Autonomous [BFMBS11]. Auxiliary [DZ00, KR16].

Average [BGN10, BMMR11, BMMR12, CS93, DN16, FZAM08, KMIS09].

Averaging [CM12, Ste11]. Avoidance [Sha04]. Avoiding [CRSZ11, GS12b, ORS08, Ram05, WAG+06].

Aware [LB03]. Axiomatic [Bur12b].

Axioms [HST01].

Backbone [FPSS03]. Backtracking [MT95b].

Backward [FL09]. Backward-Oracle-Matching [FL09].

Balance [JL01, LF96, MMR10]. Balanced [CZTH13, CS00a, Fle96, Lag14, LW93, LL16, MX11, RAB15, YTP11, ZWW+14].

Balancing [Heh97, MD00, ST01]. Banded [BL01]. Bandwidth [GR03]. Banishing [HJ9V93]. Banyan [KR97]. Barrier [Uen13].

Base [DRDN08, FZ03, Hon06, MP91].

Base-Station [DRDN08]. Based [ADR11, ARS11, ABL+11, AH07, BC12, BK95, BN99, BDDN01, BKS12, CCM11, CP06, CDPT16, CCD07, CST+17, CVDV10, DPS93, DEZ01, FDFZB12, FZT14, GWL02, GR03, HK02, H099, HW10, J03, JK07, LHT09, LTZ12, LH11, Luc09, MLO17, MM07, MMS17, MMS05, ND02, NWK08, NSVA12, Okh03, PRN13, Qua07, RK09, RR04, SB12, ST01, SL17, TWZ11, TYM+17, Tor13, Tor15, Tse16, VG01, Ver09, WHL17, WD03, XHLF02, XCY16, YTLCC02, YW06, ZM11, ZPXX17, vW15, FBK05, ZWCL14].

Basic [BV08]. Basis [Sub90a, Sub90b].

Batch [DFLL02, LLQ06, PY04, ZPXX17].

Bayesian [ZLW+17]. BDD [FBK05].

BDD-based [FBK05]. Be [AAV00].

Belated [Tse16]. Benford [Rav08].

Bent [XCX17, ZLL11]. Bernays [RS95].

Between [CLT09, Faz08, Fia08, HKS13, HN10, Láz13, Sal13, ZWS96].

Beyond [FGH+07, HJ13, RKRR02]. Bi [GV03, NS13]. Bi-Cographs [GV03].

Biautomata [HJ14, HJ16].

Bichromatic [MB17]. Bideterministic [Tam08].

Bidirectional [GMNS15]. Bifurcation [APMP17]. Big [MLO17, MMS17, ZLV+17].

Bimonoïds [DP14]. Bimorphisms [MT10].

Bin [BDI+11, HJP+13, JZ16, MV11].

Binary [Ata07, CRSZ11, CDJ09, CKZ17, CS00a, DSS15, HH12, HH11, HFLD09, Hol11, IN08, JS03, KYZ17, KK90, LGZM06, OW92, PS12b, RAB15, Sal07, Sha04, Smy12, Vor16, XZS16, YB06].

Binding [AB17b].

Binoid [GN11]. Binomial [ZZC15].

Bio [DH05, MB06]. Bio-Computation [MB06].

Bio-Operation [DH05]. Bioinformatics [KKS05b]. Biological [LJH+17]. Biology [RTC+09]. Bipartite [FGV99, GV03, LV08, Tio06, WQY16, Won96, Won01].

Bipartitioning [HT95]. Bird [Ami05].

Bisemigroup [GN11]. Bisimulation [AHK07, ABF+09, MC13]. Bisplit [GV03].

Bit [BT17, CF06, CCF09, DD13, DES09, HN06].

Bit-Parallel [CF06, CCF09, DD13, HN06].
[DI02, DHR08]. Chandra [KMW12]. Changes [LZ93, Vik96]. Channel [BBL+12, BNS03, GSD03, NN93, Nak04]. Channels [MG14, YBM11]. Chaos [EMR012]. Characterisation [D’s03]. Characteristic [IB12]. Characteristics [OS01]. Characterization [EI14, KM17, MCM05, MCS08, Mar08b, Ohk05, OS93, RW11, YT01].

Circle [Klo96a]. Circuit [Bir11, LJ1+10, RVT06, Vin05]. Circuit-Size [Bir11]. Circuits [FGH+07, GB03, GRB03, IP08, PRS98, SUZ13, YB06]. Circulant [YCTW10]. Circulation [GSL12a]. Circumscription [Lis03]. CKY [BI11]. Class [AGM14, BS92, CPJ06, ERW04, Has00, Jai95, MR11, MN00, Oka99, Sch13, TCT14]. Classes [AV97, AP90, ABP05, CCS04, CM92, Cap96, G099, Géc07, GR00, HT12, HK95, KSV00, LV08, NCC+07, SH17, UU07, XZS16, XCM17, vLW15]. Classic [IN13].

Electronic [FK06]. Elegant [PRN13].
Elementary [Rog09]. Elements
[LLY13, VW93]. ElGamal [HLT09].
Embeddability [CLT09]. Embeddable
[BPT06]. Embedding
[DLT06, Mar97, RAB15, WXF16, ZFL+17].
Embeddings [Li00a]. Emerging
[CVPV08]. Emptiness [ABH17]. Ems1
[PRN13]. Emulated [YBM11]. Encoded
[Câm14, CFG12]. Encoding
[KSS08, OSZ92]. Encodings [CG09].
Encrypted [ZLW+17]. Encryption
[BB03b, GKS17, LHT09, LH11, MLO17,
MMS17, WLC12, WZ15, WHIL17]. Ended
[CS99, Tsu01, TST01b]. Ending [CD15].
Energy
[Jür08, Nak04, QFL+15, SUZ13, WY05].
Energy-Efficient [SUI3, WY05].
Enforcing [PQ06]. Enhanced [LW06b].
Enhancement [WK05]. Enhancing
[Qua07]. Ensure [Bec95]. Entangled
[LB04]. Entropy [CMR08]. Enumerable
[vLW15]. Enumerating [CC05].
Enumeration [CKZ17, CRS12, DMSS16].
Environment [MLO17]. Epigenetic
[BDL08]. Episturmian [JP04]. Equality
[BMW91, HH12, Hon12, Mel93, Sel98, Szw95].
Equals [RS13]. Equation [HSS07].
Equational [BF95, Pin12]. Equations
[CHKL07, CK07, ELS15, IDY08, LP11,
LS08, LO11, Okh05, PT90]. Equivalence
[BSD06, BH11, CMR07, DHR08, HJ13,
Hon02, Hon07, JLT+93, KL03, Man15,
NTSH06, Teh16a]. Equivalences
[BJ05, BJ07b, HJ97, BJ06]. Equivalent
[GLV07, Teh16b, ZB00]. Erasing [Zet11].
Erasure [LZGF16]. Errata [BJ06, Tsu01].
Erratum
[HT04a, LW06a, MTVM15, Ata11]. Error
[GRB03, HL04]. Error-Correcting
[GRB03]. Errors [HJ13, HJ17]. Ésik
[Füll]. Essential [CL07]. Estimation
[CTZ01, SY07, SEE99]. Estuarine [LR04].
Eulerian [Ber13, Gus13]. Evacuation
[Sir15]. Evaluating [KY90, Li00a].
Evaluation [ABL+11, BLY12, Cha02, DZ00,
Li12a, SK01, TH01, YH11]. Event
[D’s03, Yen08]. Evidence [BK95].
Evolution [EH12, Riv04]. Evolutionary
[DM08, HL01]. Exact [AMR08, BBM+12,
EL13, GQZ15, KL00, LLZ07, ZSW14].
Exactly [Cai94]. Example
[CHKL07, GRRS14]. Examples [CM92].
Exchange [CST+17, TYM+17]. Exchanged
[ZFL+17]. Exclusion [KG11, DDHL11].
Execution [FZAM08, Wan04, ZC05].
Execution-Time [Wan04]. Exhaustive [IN05, IN08].
Existence [DI02, RS07, Ruo96, Shu11].
Existential [Swz95]. Existing [FZ03].
Expected [CZOdlH17, Li00a]. Experience
[CFMR05]. Experiments [DES09].
Explicit [KN03, Kam98, vdHM92].
Exploiting [BDSV06]. Exploration
[CP16, ER14, HZTZ12, PT14]. Explore
[CFRD08]. Exploring [Gia11]. Explosion
[DS02]. Exponent [SS12a]. Exponential
[BCFR07, Fri10, GO09, Go14].
Exponential-Time [GO09].
Exponentiation [HP09b]. Exponents
[KMIS09]. Expressibility [MT95b].
Expressible [AB91]. Expression
[CKW09, HW05, Han13, SL17].
Expressions
[CSY03, Cha02, CLOZ04, DM11, GH13,
GH15, HWW06, HK11, Loh10, TV14, YZ07].
Expressive [Hen02, RHS10].
Expressiveness [Yue13]. Expsspace
[ZYW12]. Expsspace-Complete
[ZYW12]. Extended
[BHK07, DG08, FIO08]. Extending [Pat06].
Extension [EL13, Hen02, KM02].
Extensions
[BLY12, DM12, HN04, Ver09, XLC+04].
Extractable [Kun16]. Eye [Ami05].
FA [CKW09]. Face [RLWW96]. Facility
[XS11]. Factor [CISH07, MM05]. Factorial
[Shu07]. Factorization [BOV08, DD08].
Factorizations [CL14]. Factors
[AILR16, MN10, PAS08]. Failure
[FWZ15, NTH06, PNN+10]. Fair [MSR06].
Faithful [APP91]. Families
[DH05, DD08, HJK12, KY96, MRS97,
MAG09, OY11, SRPC11]. FAS [JRPIP08].
Fast [Ars15, BOV08, ECY02, FPPS03,
FNI16, FA06, GO09, IM04, Kan15, LCL06,
NWK06, PP06, SJ04, TCT14, Zha17].
Fastest [CFMS15, Hut02, FXJ03]. Fat
[DEKW06]. Fault [CL07a, CHYT14,
FZBB05, GWL+17, HY97, KR97, LPC11,
LYH+15, LY17, XS11, ZCX12].
Fault-Free [GWL+17]. Fault-Tolerant
[CHYT14, LPC11, X11]. Faults
[NPSY00, PP06, WCD+14, YBM11, YCL11].
Faulty [CP16, GKK09, GWL+17, LYY13].
Feature [MN00, SRR15]. Feedback
[GO03, HG11, KLCL12, YB06].
Feedback-Free [GO03, YB06]. Feferman
[HK95]. Few [MR99]. Fibonacci [DMSS16].
Fibonacci-Automatic [DMSS16]. Field
[RW11]. Fighting [FLP13]. File
[Li12b, NN93]. Files [KSS08, WRNK03].
Filter [ARS11, MCM+11]. Filter-Based
[ARS11]. Filtered [DM08]. Filtering
[DEKZ11]. Filters [FBK05]. Find
[Gia11, MTNN99]. Finding
[DGL93, ET14, Fuji16, GKR10, GHWW05,
HK17, HCG06, IMP+05, IB12, IZZ99,
Kar99, MM97, NRT00, PR00, VW93,
WN96, WN10, ZB00]. Fine
[Se08, BSOR10, KPS13]. Finite
[AM09, ARS11, AMR11, AMR08, AMR15,
AHK17, BG10, BBL+12, BMW91, BHK07,
BKM11, BKM12, BKM15, CSR12,
CZOdlH17, CPY02, CLOZ04, CGH05,
CGKN08, CFY16, CL07b, CGL12, DL12,
DGK08, Dom04, FFF15, Fre08, GLV14,
GHWW05, GMS15, GH13, GH15, GQZ15,
HS08, HN10, HK09b, HJ17, Iba15, JJS08,
KZ10, KL03, Kår03, KLS05, KSY14,
KM14b, KM14a, Mac96, MM17, Mar08a,
MVMM02, MZ12, Med93, Moh13, NWK05, NWK06, RW11, SS07a, SMS92, SD16, Shu14, SM07, SO1, SN13, Vor16, ZQL12.

Finite-Memory [KZ10]. Finite-State [AM09, ARS11, AMR11, CSR12, CZ0dlH17, CGKN08, Ma9c6, SN13].

Finite-Valuedness [Iba15]. Finitely [AK10, AM03]. Finiteness [AK06].

Finite-Valuedness [Iba15]. Finitely [AK10, AM03]. Finiteness [AK06].

Fire [FLP13]. Firing [GLP07].

First [AB91, BB04, DGK08, DZ00, Has00, IMP05, KKH90, Lin08a, MN00, Rov00, Ueh99].

First-Class [Has00, MN00]. First-Fit [KKH90].

First-Order [AB91, DGK08, DZ00, Lin08a]. Fit [KKH90].

Five [CH15]. Five-Valued [CH15].

Fixed [DS96, FL97, HL06, JJS08, LOZ98, MB17, Poo04, QLWL06, SW17, Tos06].

Fixed-Height [SW17]. Fixed-Length [QLWL06]. Fixed-Parameter [HL06].

Fixpoint [ELS15]. Flat [MT95b, Oka99].

Flexible [FMN06, JMS05]. Flipping [LRR08, ZG13]. Flips [AAH02].

Flow [LLZ07, MAs04, SS07b]. Flows [DW04].

FM [GPN06, IN05, IN08].

Fm [GPN06].

Fm-Index [GPN06]. Folded [DHI07].

Football [CLK15]. Forbidden [WAG06, Yal12, Yen08]. Forbidding [Mas09]. Force [CCP05]. Forecasts [CL10].

Foremost [CFMS15, XF03]. Forest [Ali16, GO09, LJ12].

Forests [ERW04, Yah12]. Foreword [BNR05a, BNR05b, Hol05, Hol06, Hol08, Hol09, Hau08].

Forgetting [Gl067, Gl010].

Form [Esi12, FSM11, GJV00b, LZN06, Lin08a, BS07, Asv07]. Formal [BG11, CS03, CFRD08, DM05, DK12, ILT11, MDAPHJ+11, MC090, MT95b, ROK08].

Formalisms [HJW11]. Formalization [HK95]. Formalizations [KKS05a].

Formed [LCVL09]. Form [Cai94].

Formula [DS02, Uen13]. Formula-Driven [DS02]. Formulæ [HKKS13]. Formulas [CE98, Sch10].

Forums [XCC16]. Forums-Oriented [XCC16]. Forward [CD95, Lug11, WHL17]. Foundations [HYNO8].

Four [MTNN99, MN06, SH17]. Four-Connected [MN06].

Four-Valued [SH17]. Fourth [VS93]. FPGA [DEZ01, IN08, IN06].

FPGA-Based [DEZ01]. FPSOLVE [ELS15]. FPTAS [KS10].

Fractional [Sha04]. Fragment [HCG96, MW05].

Frameworks [DG08, MTMV09, MTMV15]. Framework [GGR14, LTZ12, Lin07, NS13, NWK05, TST01b, Tsu01].

Free [Asv07, BMS92, BCR11, BCD14, BESW07, BHK05, BI004, BL04, BL12, CD06, CR15, DV14, DSS15, EH15, EHS15, E013, FLST12, GKR01, GB03, G03, G17, HWW06, HS11, KHS13, Han13, HW10, JM11, Kam95, KKS05a, KK07, KEH16, KKR16, KM07b, LO13, MR91, MG90, PA08, PS11, RV08, RE07, RS04, SH13, SO07, TE01, T16, TR02, TRU08, YB06, YJ05].

Frege [HK95]. Frequencies [CK16].

Frequency [CZTH13, WPZ16, X16].

Frequency-Hopping [WPZ16, X16].

Frequent [BLM15]. Frictional [DLW02].

Front [AT12, CHZ06]. Frontiers [GPPJR13].

Full-Text [HZH11]. Fullness [CdL04].

Fully [IST05, MC13].

Function [MMS17, PSS0, STA05]. Functional [A001c, BV08, BKKR01, HST01, Hin01, Moh13, Pre01, S13, Wh91].

Functions [BB99, BMS92, BL002, BH11, CM92, CH15, Car11, CG05, CL07b, DFQ12, EMR11, FY11, FK05, HK95, HG11, J095, KM02, KY09].

KSV00, LHG11, LL16, NAK15, Obst01, PP01, RO03, RY15, SO01, SFL17, SH17, SUZ13, TST01a, TCT14, TIZ13.

XC15, XCC17, Yan03, YTP11, ZH13, ZLL11, ZW+14, ZWCL14].

Functorial [DD12]. Further [CD06, SBU06, ZYLW12].

Fusing [TV07]. Fuzzy [BOV08, EK07].
GA [VJDT05, Sun11]. Gain [MM11].
Galerkin [US02]. Game
[Fia08, FL12, GC15, FM16]. Games
[AT12, BFL02, Bod91, CM12, COT12, FZ02,
FZ12, Fri10, GZ12, GMP06, KLI10, Vin05].
Gandy [Obt06]. Gang [BS01, dSS01]. Gap
[FM96]. Gapped
[FBK05, HMZ05, PAS08]. Gapped-Factors
[PAS08]. Gaps [IMP +05].
Gardens [To106]. Gear
[AT11]. Gem
[BLM04]. Gem-
[BLM04]. Gemmating
[FOP05]. Gene
[ATK12, BHR09, DM05,
IPR07, IP08, MGGP08, Rog09]. General
[AMR11, BHR09, DM05, IPR07, IP08, MGGP06, Rog09]. General
[AMR11, BK95, BPG04, Die93, FP03, Leu16,
MD00, Moh03, TL99]. Generalization
[GMNS15, HW05]. Generalizations
[CLL10, LD04]. Generalized
[Ar11, Dai97, Dan11, GWL +17, HH11,
HW05, KKH90, LL16, Nak03, NS98, Okh06,
Rao08, Sch02, Tho06, WM13, WC13, XZS16,
ZYH14, Noc98]. Generalized-Concentration
[DI97]. Generate
[IN08, Jez08]. Generated
[AK10, CL07a, KMG11, LWJ +10]. Generating
[Asv07, BBC00, BM92, BSS92, Dom12, RS04,
Tru08]. Generation
[AM08, KMS06, LBL06, Sny12, TV07,
US02, Wan14]. Generative
[DST10, Zet11]. Generators
[HYN08, Nak +15]. Generic
[BET03, ELS15, LW06b, MZ01, Moh02]. Genetic
[AT12, AC05, LMM +12, Nis07, WM05]. Genome
[IM12, SSK96]. Genomic
[BBM +12]. Geo
[SS12]. Geometric
[CHW10, CCG +11, GGR14, GS90, MRS97,
PSS12]. Geometrical
[CDJ90]. Geometry
[RS17]. Girod
[GMNS15]. Given
[CC05]. Global
[FTT10, JHK08]. Globally
[Slo95]. Glushkov
[BM12]. Goals
[BM90].
Goedel
[Szw95]. Golomb
[BMP03]. Good
[DQFL12, FY11, TCT14]. Goodby
[SS13]. GPU
[CY14, FN16]. GPUs
[GD12]. Graded
[BV08]. Grained
[MS99a]. Gram
[FBK05]. Grammar
[AM08, BSV07, CV10, CVV11, DPS97, FFH15,
FO08, LK11, LCVL09, Láz13, MS07, Mas09, Ott13, Sun05, Tru08]. Grammars
[AK14, Asv07, BCFR07, BESW07, BNI04,
BCC +96, CCR +90, DPS93, DFP09, DST10,
Fer07, GSS99, Jez08, KK07, KM15, LO10,
LX94, MVM07, MS16a, MS16b, MO10,
Okh06, Pal08, Wil91, YJ05, Zet11].
Granularity
[Kri97]. Graph
[ADR11, AAV00, AB91, AMOZ07, AJMO11,
AT15, BBCC00, BDI +11, CC98, CHYT14,
DLT06, FW90, FL97, GO09, GR00, HO99,
HZZ12, KLB13, Oka98, RK09, RZ12,
TSCF17, UU07, ZH06]. Graph-Bin
[BDI +11]. Graphs
[AF96, AP92a, ABT16, AS16, AO10, AT11,
AB17b, BTK13, BTO17, BPR09, BO97,
BHH +97, BB04, BS16, BPT06, BLM04,
BHR09, CP16, CV14, CL07a, CLLO8,
CPC99, DL12, DP90, DO04, ERW04, EL13,
EZ01, FWZ15, FP04, FGV99, Fuj16, GV03,
GP09, GSP9, GP17, HKT00, HR08,
HLHH06, HY97, JWB03, Kio96a, KPM15,
KHC12, LWYL14, LD1W17, LX17,
LWW00, LOZ98, LV08, MR99, MT0999,
MAND05, MAN06, MNN06, NGHK15,
NPSY00, NS98, OS93, RLWW06, RRT99,
RR99, SS99, SGO4, ST99, TV14, To06,
WAF03, WFG15, WQY16, Won96, Won01,
YCTW10, ZWS96, Noc98, WC13, YCL11].
Greedy
[Fuj16]. Greibach
[Asv07]. Grey
[CDW05]. Grid
[BFMB05, JP08, LMM +12, MNN06, ST93,
Cas05, PT14, YLZ14]. Grids
[Cal15, MM17]. Ground
[Mar92]. Group
[CLL08, DM12, FZ15, HYT15]. Grouping
[Lar99]. Groups
[PP11, SS01]. Growth
[GRS10, Shu14]. Grzegorczyk
[Cap96]. GSM
[LO10]. Guarantee
[LSW13]. Guaranteed
[DPR07, Ros00, YSM +00a]. Guaranteeing
[MPV04]. Guarantees
[Pal03]. Guarded
[FGL +90]. Guess
[FSWF11]. Guest
[ATZ05, NO99, Zom01c]. Guided
Guidelines [Ros00].

Hairpin [DK11, MMY10, PRY01, ST16]. Half [Kam95]. Half-Monotone [Kam95]. Halting [FO07]. Hamiltonian [BZ13, CP16, Noc98, NS98]. Hamiltonicity [LYG17]. Handling [BCHK09]. Half-Monotone [Kam95]. Halting [FO07]. Hamiltonian [BZ13, CP16, Noc98, NS98]. Hamiltonicity [LYG17]. Handling [BCHK09]. Hard [BLLS03, BVM00, Dic93, ZB00]. Harder [CKL15]. Hardness [LWW00]. Hardware [For10, IN05, INY07]. Harmonic [CCF08]. Harmony [LTZ12]. HAS-160 [WLC12]. Hash [NAK +15]. Hashes [Wan14]. Hashing [CKW09, LPP92, MB03]. Hausdorff [Sta05]. Head [KMW14b, KMW14a]. Heads [IT13]. Heap [BSG03, Jun14, Pro96]. Hedges [BOV08]. Height [Rei07, SW17]. Helping [AKS95]. Heterogeneity [RC11]. Heterogeneous [BLMR05, CFMR05, CY5 +12, EZ01, OS01]. Heuristic [CHYT14, CDLW05, De 06, LY94, WAF03]. Hexagonal [GSD03]. Hidden [FZ13, IMS03]. Hierarchical [GM90, JS02, Loh10, SYSVN01, SK03, SP04, WC04, WHLH17]. Hierarchies [BLS +05, BKM15, DI5 +05, KP10a, Sch02]. Hierarchy [BKM11, BZ10, BJY90, CR12, Dev02, DZ00, HW00, OKh05, PPJY08, Rei07, Sel08]. High [CH15, Fin12, KR97, KKP97, LI12b, LKM02]. High-Capacity [LI12b]. High-Performance [LKM02]. High-Speed [KKP97]. Higher [BY5 +05, CCPS04]. Higher-Order [BY5 +05]. Highly [BCFR07]. Highly-Polynomial [BCFR07]. Highways [AAA +09]. Hirschberg [JHK08]. Historical [MP93]. Histories [Faz08]. Hit [WPZ16]. Hits [HM04]. Hoare [HV02]. Hoc [AWF03, CI5 +03, CL03, LBJ03, SB12, WLF03, WD03]. Hole [DSS08]. Holes [RR09]. Holonomic [BMS92]. Home [ST01]. Home-Based [ST01]. Homogeneous [JSPD03]. Homomorphic [MLO17]. Homomorphism [Suc90]. Homomorphisms [LO13]. Honeycombs [Sib97]. Hop [KKP97]. Hop-Congestion [KKP97]. Hop [KKP97]. Hybrid [CFH +03, DPR07, FK06, FFH15, FK13, MML +12, SM5 +95, SW09, XBE02]. Hybridization [ATK12]. Hyper [Bad09, CFMR05, HJ16, JM13, MQ11, MQ12]. Hyper-Clusters [CFMR05]. Hyper-Minimal [HJ16]. Hyper-Minimization [JM13, MQ11, MQ12, Bad09]. Hyperbolic [Mar08b, Mar08a]. Hypercube [BV98a, GWL +17, WC04, WRNK03]. Hypercubes [LIO0, Nak03, Zaj09]. Hypermesh [LYH +15].
Imprecision [Cha97]. Improved [DGN07, Dom04, Gro03, Han13, HW17, JZ16, Leu04, LJH+17, PR00, SS07b, WLC12]. Improvement [BC12, EG02]. IMRT [CHWX09]. In-Network [BRSRC11]. In-Place [GPC09]. Inclusion [BCR11, CTZ01]. Incompatible [Jan93]. Incremental [DZ00, PNN+10]. Independence [HKT00]. Independent [AWF03, CK07, GNP+06, MTNN99, NGHK15, TCLS10, Ueh99, YCTW10]. Indeterminate [SW09]. Index [Ano97, Ano98, Ano99, Ano00, Ano01a, Ano02, Ano03a, Ano04a, Ano05a, Ano06, Ano07, Ano08, Ano09, Ano11, Ano12, Ano13, Ano14, Ano15, Ano16, Ano17, BO97, FFH15, GNP+06]. Index-Shuffle [BO97]. Indexed [BC06]. Indications [MS04]. Inductive [BC12, CK16, COT12, DM12, Dom12, DK98, DSS15, Fin04, Fin12, IBS01, Ja95, L6d15, Me93, P195, Sao92, Sha04, Sta05]. Indeterminate [SW09]. Index [Ano97, Ano98, Ano99, Ano00, Ano01a, Ano02, Ano03a, Ano04a, Ano05a, Ano06, Ano07, Ano08, Ano09, Ano11, Ano12, Ano13, Ano14, Ano15, Ano16, Ano17, BO97, FFH15, GNP+06]. Index-Shuffle [BO97]. Indexed [BC06]. Indications [MS04]. Inductive [BC12, CK16, COT12, DM12, Dom12, DK98, DSS15, Fin04, Fin12, IBS01, Ja95, L6d15, Me93, P195, Sao92, Sha04, Sta05].
Iteration [BE92, BE93, CLW09, FL12, Sut14].
Iterative [KPSC08, MMP10, ST16, Smy12].

Jacobsthal [PS02]. Job [BS01, JMSO05, Li01, dSS01]. Jobs [CYZ14, FCS05, Jan93, JSO10, LY94, Zaj09].
Join [CGKN08, SEE99]. Joint [Coo17].

Jordan [Cai94]. Journeys [XFJ03]. JPEG [KS06]. Jumbled [CGKN08, SEE99]. Joint [Coo17].
Jordan [Cai94]. Journeys [XFJ03]. JPEG [KS06]. Jumbled [CGKN08, SEE99]. Joint [Coo17].
Jordan [Cai94]. Journeys [XFJ03]. JPEG [KS06]. Jumbled [CGKN08, SEE99]. Joint [Coo17].

Justification [VS93].
k-Isoperimetric [WFG15]. kernels [ACM11]. Key [GKS17, LH11, MNS11, SNW06, SNJ11, Tym+17, WLC12, WZ15]. Key-Insulated [H11].
Kinetics [HFLD09]. Kintala [KMW12]. Kit [HPV99]. Kite [XHLF02]. Kleene [BC06, GN11, HSS07].
Knapsack [KS10]. Knödel [BHL+97]. Knot [San13].

Knowledge [BLR09, Pan91, ROK08, WCD+14, vdHM92]. Known [XC15, ZH13]. Kolmogorov [Jai95, Sch02].
Kronecker [CV14]. Kuratowski [BGS11].

Laceability [LLY13]. Lambda [Hir91, TST01a, PT90].

Lambda-Representable [TST01a]. lambdaPi [Pym92]. lambdaPi-Calculus [Pym92].
LAN [GD98]. Language [BRST07, BV98b, CC05, CDJ09, Cos90, DH05, DGM15, ES01, Fin12, GKRS10, HK13, HJK12, IR14, MM05, MRS97, McN90, Mer08, Okh05, OY11, PS02, Pri06, Rov00, YS13]. Languages [Ada10, AK06, AK10, AT16, BGN10, BMS92, BCR11, BCD14, BC06, BJ07a, BHK05, BCC+96, BKW02, BGS11, BL12, BT13, Brc13, BL14, CPY02, CSV02, CL14, COT12, DK11, DES09, DJ12, Dom04, DK98, DV14, DPS97, EH15, EHS15, EO13, Faz11, FLST12, Fin04, GN11, Géc07, Gia11, Glö07, Gol90, HWW06, HS08, HS11, HK03, Huy91, Ijt+93, IW07, IS12, Jez08, JM11, Jr14, JP06, KKS05a, KP10a, KP10b, KEH16, KLH16, KY96, Kör03, KMG11, KMS06, KRK16, LNP16, LZ93, LO13, Leu16, MP07, Mig90, ND02, Ogi94, Oka99, Okh03, OY11, PRV01, PPJ08, Pig09, PP14, PIG15, Pip12, Rav08, RS12, Rei07, Sch13, Sel08, Shu07, Shu14, SR00a, SW97, Stat05, Stat07, Tei17, TSZ16, Tra02, YJ05, YZ07, ZQL12, vLW15]. languages [GP13, Ata11]. Laplacian [QFL+15]. Large [BIN04, BS15, DCS13, DEMT05, FPS03, FGH+07, HH12, MDL97, Sha04, WRN03, Won96]. Large-Scale [DCS13]. Late [LY94]. Latency [IN10].

Leader [AOS10, FDFZB12, FZAM08, XS06]. Leaf [BV98b]. Leakage [HHP17]. Learnability [KY96, Oka00]. Learnable [Oka99].
Learning [CM92, CS92, Cha97, KLO0, LZ93, PFG+01, SS01, Tor13, Tor15]. Left [BCHK09]. Left-Linear [BCHK09].

Level [PS12b]. Levels [BLS+05, BHK05]. Lexicographically [Ueh99]. Library [AMR05, RR06]. Life [EMR10, Rya15, FNI16]. Light [Hea11, Rov00]. Lightweight [HCETPL+12]. Like
[CFG12, CVPV08, HV02, HK11]. Limit [APMP17, Goi90, Oka99, Oka0a, Sch02]. Limitations [HT91, LO11]. Limited [Rei12, KAPF05, Mas13, PP14, RRT99]. Limiting [AP90, CJS92, BE11, BCHK09, CFP03, DPR07, DI02, DGN07, FZ02, GV03, Gra90, MOM91, MTNN99, Nak03, Okh03, RLWW96, RC05, SFL07, Tei17, WGF16, ZYYH14, vdM00]. Limitation [Ueh99]. Lindenmayer [Das04, DV11, HT12]. Lindström [BV98a]. Linear [CGL12, FPS02, KL05, Mas04, Pat06, Pru17]. Linearly [CM92, YCL11]. Link [FWZ15]. Linkable [LW06b]. Linkage [OW92, VJD05]. Linked [ACV13, TK07, Lin08a]. Links [Dre07, GKKP99, WP08]. List [Nak04]. Literally [KP10b]. Liveness [JC03]. LKH [SNWW06]. Load [Hei97, Li00a, MD00, ST01]. Local [AE02, Ars15, CY12, FL12, HN06, IN05, IN08, JP06, LSWW13, LPS07, RS13]. Localities [Cas95, LZGF16]. Locality [RR04]. Locally [Fri10, HT91, RS12]. Locate [DS08]. Location [MG14, Pre90, T121, X11]. Löf [Tsu01, TST01b]. Log [GWL02, MM11, TV94]. Log-Gain [MM11]. Logic [An001c, AH11, BM90, DGK08, FM04, FT11, GN04, GSZ99, HV02, HS95, Hin01, Lin08a, Luc09, MOM91, Oga00, Pre01, Rov00, RKRR02, Sal13, SMS92, Sub0a0, Sub90b]. Logical [Luc09]. Logical [DP98]. Logics [DP14, LRT12, Pen93]. LogP [BNR99]. LogPQ [TH01]. Logspace [HJ97]. Longest [AILR16, AE05, DD13, UU07, Won01]. Look [AE04]. Look-Up [AE04]. Lookahead [Fuj16, RS07]. Lookup [SK04]. Loop [BAK12, CHA92, JS97, Leo03]. LOOPless [TV07]. Lossless [CDLW05, KK05, XHFL02]. Lossy [PR98]. Low [IN01, KPSC08, WPZ16]. Low-Dimensional [KPSC08]. Low-Hit-Zone [WPZ16]. Low-Latency [IN01]. Lower [CE98, FY08, Gusa13, LHHG11, Uen13]. LR [FZC08, Okh06]. LR-Mesh [FZC08]. LRU [De 06]. LSC [HK02]. LTL [DR07, MW05]. Lukasiewicz [Sta07]. Lyndon [SY10, Suc90]. M [BSG03]. M-Heap [BSG03]. Machine [HFLD09, HW17, KS10, LLZ07, PY04, PFG10, Rud15, SS07b, vLW15]. Machines [Cap96, CGKN08, Dub95, FPP03, FBHH01, HHH01, HHH09, HPP19, HJ17, HIR92, IJT93, Iba02, IDY08, IS12, IIT91, IIK94, Jan93, Kap05, LLQ06, Mer08, Pet11, Slo95, YS13]. Made [FKV06]. Magic [HJ12, Jir11, Van05]. Makespan [DLC+14]. Making [vdHM92]. Malleable [LTW02]. Management [SVSN01, TZ11]. Manufacturing [PFG10]. Many [BSOR10, MRT95, Ole92, YCL11, Zan91]. Many-One [Zan91]. Many-Sorted [MRT95, Ole92]. Map [Wid12]. Mapping [AP92b, Ata11, EZ01, Hei97, IMP12, Teh15]. Mappings [LO10]. Maps [BFM06, HCG96, KPSC08]. Market [DLW02]. Markov [DHR08]. Markovian [HJW11, MGFP08]. Martin [Tsu01, TST01b]. Martin-Löf [Tsu01, TST01b]. Mass [HFLD09]. Mass-Action [HFLD09]. Massively [AP92b]. Master [DPR98, GS12a]. Master-Slave [GS12a]. Master-Worker [GDS12]. Matching [AK06, BH02, BZ13, BCFL12, CFG12, CF06, CCF09, CLLL08, CB09, CPC99, CHZ06, DES09, FL09, FPP03, Fia08, Han13, IST05, KSO6, KLH16, LJH+17, LCL06, MHT09, ND02, Pru17, SKL03, HHH09, HPP19, HJ17, HIR92, IJT93, Iba02, IDY08, IS12, IIT91, IIK94, Jan93, Kap05, LLQ06, Mer08, Pet11, Slo95, YS13].
SW09, WH03, Zha17, FG08]. Matchings [DGL93, HCG96]. Mate [CP06]. Mate/Drip [CP06]. Mathematical
Model-Checking [CGR13]. Modeled [CLT14].
Modeling [BCC+11, Cas05, JRP+08, KSS08, LCY12, PSS12, Sun11, XBE02]. Modeled [HFLD09].
Modelling [AH07, BDL08, DM05, SK01].
Models [APP91, BBFZM06, BZ10, DMT05, For10, HJ97, HJW11, IP08, KPM15, LWJ*10, LW06b, RCTC*09, RS17, Sah01, Suc90, WY05].
Modes [FFH15].
Modest [Ros90].
Modification [Rud15].
Modified [BSG03, BHL*97, IIT91, KYZS17].
Modifiers [AG01].
Modular [BPZ07, DS02, RCTC*09]. Modules [BJ07b].
Modulo [CGR13]. Molecular [DDM07, EHK06].
Molecules [FMC04, FK05].
Monadic [SMS92, vdM00].
Monogenic [LV08].
Monoid [KM08, KLS05].
Monoids [BR08, BS92, Bur12a, DM11, Gé07, Loh05, MR91].
Monotone [Kam95].
Monotonic [KPM15, LWJ*10, LW06b, RCTC*09, RS17, Sah01, Suc90, WY05].
Monotonicity [JC03].
Moore [CFG12].
Moore-Like [CFG12].
Morphic [Dur13, FR506, Hon12, NP09, OY11, PS12a].
Morphism [Ram05].
Morphisms [Hol11, JP04, Kar90, PPJ*07, RS04, Teh16b].
Morse [DSS15, Ram05].
Mosaic [BRSV13].
Mosses [AMR09].
Most [BZ13, SKL03].
Most-Specific-Rule [SKL03].
Motif [PRN13].
Motifs [IMP*05].
Move [FM96].
MP [MM11].
Pseudolikelihood [DE08].
Pseudolikelihood [DE08].
Muller [Arn17, FZ12].
Multi [AKS14, ABH17, APMP17, BCC*96, CCD07, CGKN08, HP09b, KMW14b, KMW14a, Mal15, MX11, NCC*07, RR06, SK01, TYM*17, Ver09, WM05, YBI11, ZC13].
Multi-Cores [MX11].
Multi-Exponentiation [HP09b].
Multi-Head [KMW14b, KMW14a].
Multi-Objective [WM05].
Multi-Party [TYM*17].
Multi-Processor [RR06].
Multi-Push-Down [BCC*96].
Multi-Pushdown [AKS14, ABH17].
Multi-Receiver [CCD07].
Multi-Secret [ZC13].
Multi-Stability [APMP17].
Multi-Tape [CGKN08, NCC*07].
Multi-Tokens [SK01].
Multi-Track [YBI11].
Multi-Track [YBI11].
Multi-Track [YBI11].
Multi-Track [YBI11].
Multi-Track [YBI11].
Nested [CZTH13, DP14, FGL+90, Gre96, HLW09, RT16]. Net [LPC11]. Nets
[AH11, BCB12, GRV10, JCO3, MOM91, Muk92, RSH10, YWY94, Yen09]. Network
[BRSC11, Cas05, CL98, CCG+11, CR05, FZ03, KR97, Kio96b, LY17, LOZ98,
LPS07, Lug11, MKB+11, Oka98, WQ97, ZYYH14]. Networks [AH11, BCB12, GRV10,
HC84, HK09b, HJ14, HJ17, JRP08, JJS08, Mar09, Sa09, Tha91, Vin05].
Non-Deterministically [HHN+95]. Nonenumerable [Sch02]. Nonexistence
Nonregular [Mer08, YS13]. Nonstandard [Bee95, BS90]. Nonterminals [KK07].
NP [Dic93, GP13, GSZ09, MW05]. NP-Complete [MW05, GP13]. NP-Hard
[Dic93]. NP-Pairs [GSZ09]. Number [AMR15, AB17b, AE99, CP03, CFIJ10,
DV11, Dom04, FY08, FT11, GRRS14, HB06, HJK12, JWB03, LZ93, LY94, Pan91,
PR12, RS01, RRT99, Vik96, WQY16]. Numbering [MNS11]. Numberings [Jai95].
Numbers [BS16, BPT06, HFLD09, Jir11, LO11, PDPPJ11, RS15, Van05, Wan04].
Numeration [JP04]. Numerical [CCM97, SGZ02]. O [Fle96, OM96]. O-Trees
[OM96]. Object [HK02, LX94, MT95a, YZ07]. Object-Oriented [LX94, YZ07]. Objective
[WM05, YTL02]. Observable [AT12]. Observer [CCM11]. Observer-Based
[CCM11]. Observing [Cas95]. Obtained [CP03]. Occurrences
[CFIJI0, MS04, Sa07, SY10]. OCR [CB09]. Octal [GJMP06]. Odd [TJZ13].
[KL05, Mas04]. **Off-Line** [KL05, Mas04].

Offline [CW11]. **Off**

[Kap05, KKP09, Kut05]. omega

[SMS90, CL14]. omega-Tree [SMS90].

On-Demand [PZX07]. **On-Line**

[CGL12, FPS02, KL05, Mas04, Pru17]. One

[AK14, BBP11, Ber13, BMP15, CFY16, DI05, Dub95, HIPT13, HIR+92, IS12, KL12, KMW14b, KMW14a, LP11, Obt01, SKL03, Slo95, TYM+17, Zan91, ZWW+14].

One-Cluster [BBP11]. One-Dimensional

[Dub95, SKL03]. One-Membrane

[DI05]. One-Round

[TYM+17]. One-Turn [AK14].

One-Way [BMP15, CFY16, HIR+92, IS12, KMW14b, KMW14a, Obt01, Slo95]. Online

[ABL05, CY14, DLC+14, FCS05, JP07, JZ16, Pal03, ZZZ16]. Onto [EZ01].

Ontologies [Zho02]. Open

[GPPJR13, Tsu01, TST01b]. Open-Ended

[Tsu01, TST01b]. Operating [DI05].

Operation [BHK05, CK08a, CLM16, DH05, MR91].

Operational [BMSMT11, Éli14, KEH16].

Operations [AP92a, BGN10, CP06, CS98, CGKY11, CGKY12, FM96, FMC04, FT11, GNC+03, KKS05b, PS02, SY07, SEE99, SD16].

Operator [AT16]. Operators

[HW00, PR11]. Opportunities [Zom03].

P [FMV13, CV13, KMG11]. P2P [Li12b].

Packaging [FBHH01]. Packed [Zha17].

Packet [DES09, GFK98, MMS05, SKL03].

Packing [BDI+11, HJP+13, JZ16, MV11, Nag06, TSFZRP17]. Packings [CZTH13].

Pairing [CST+17, Ros03, Ver09].

Pairing-Based [CST+17, Ver09]. Pairs

[GSZ09, ST99]. Palindromes [DD06].

Palindromic [BHRN04, DMMM14, FLST12]. **PAMA** [LCL06]. **Pansiot** [GS12b]. paper [Tsu01].

Papers [CS02, CS00b, Elb01, KMS02, KBH99b, Pal01a, SR00b, YSM+00b].

Paradigm [Sir15]. **Parallel** [AC05, AP92b, BS01, BCCVH07, BF97, BKM11, BKM12, BKM15, BBM+12, BZ10, CCM97, CF06, CCF09, CPJ06, CPC09, CR14, CVMVVM00, DP90, DD13, DGL93, DPS97, EAB+16, FBHH01, FNI16, GD12, HB06, Hea11, HS95, HW17, HN06, IMP12, Kan15, KS11, LTTZ12, LQ06, LMM+12, LPP92, MS07, MIN11, MVMM02, MS99a, MDL97, OS01, OSZ92,
Yen08, ZYLW12. Procedure [GN04].

Procedures
[BET03, FMC04, FK05, FKT07, Sal11].

Process
[AH07, DD12, GCK08, Kri97, SN13].

Processes
[Cas95, FGH07, HW10, SMS92].

Processing
[BRSRC11, CW11, GCK08, Kri97, SN13].

Processor
[CE98, Leu04, RR06].

Processors
[DM08, HB06, LY94, MCM11, NKW08].

Product
[PR08, MS12].

Production
[Wil91].

Products
[BK16, CV14, CR15, TSS13].

Profile
[Car11].

Program
[RR04, Rud15, Wan04].

Program-Based
[RR04].

Programmed
[Fer07].

Programming
[Ano01c, Cos90, FZ02, GN04, Hin01, ND02, Pre01, RR06, Rov00, Sub90a, Sub90b].

Programs
[ACV13, BM90, BAK12, BET03, CIY01, CJS92, HB06, HV02, Jai95, RKRR02, Sao92, Sto92, Tha91, Vik96].

Progress
[APV06, Pal03].

Projections
[TZ91].

Prolog
[HST01, MT95b].

Prolongable
[CDJ09].

Promoters
[Sbu06].

Promoters/Inhibitors
[Sbu06].

Proof
[AKS95, GN04, GM90].

Proofs
[Arv97].

Proper
[MM97].

Properties
[AB91, BLL06, CRS12, CC98, Dai97, DPR07, DH96, DDO8, DD06, DQFL12, DMS16, DK12, FH05, FY11, GKI1, JC03, KMS11, Kun16, LOZ98, MT10, MMR10, NPSY00, Pri06, RS13, Sak01, TW09].

Property
[Elm06, Gaz06, HIW01, WM13].

Proportional
[GPS14].

Proposal
[Spr09].

Propositional
[Pla96, Sal13].

Protect
[YMC17].

Protein
[HMZ05].

Proteins
[PPRS11].

Protocol
[BV98a, GCK08, HCEPL12, HT09].

Protocols
[ADR11, CIS03].

Provable
[ZPXX17].

Provably
[GH13].

Proving
[GHS13, GRRS14, Sak01].

Proxy
[DZH16, MLO17].

Pruning
[WD03].

Pseudo
[KMS11, ST93].

Pseudo-Primitive
[KMS11].

Pseudorandom
[Nak15].

Pseudovarieties
[Alr16].

PSPACE
[JYF91, vdM00, DW03].

PTAS
[DFLL02].

Public
[GKS17, WZ15, YMC17].

Public-Key
[GKS17].

Publicly
[SZQ17].

Pumping
[MP07].

Pure
[JM03, Mal07].

Pursuit
[IML04].

Push
[BCC96].

Pushdown
[AK14, AKS14, ABH17, CVMV00, JIT93, KMO10, LNP16, L0d15, Mas13, Ott15, PI95, PIg09, RT16, Sao92, Set08].

Pushout
[ALR04].

By
[AP92a].

Q3Ap
[LMM12].

QoS
[XLC04].

Qsort
[MN11].

Quadratic
[BBP11, CCI12, KS10, NSVA12, XCC17].

Quality
[MKB11].

Quantifiers
[BV98b].

Quantifying
[EGPS10].

Quantisation
[CMM11].

Quantitative
[DV14].

Quantum
[ATK12, Arn17, AD12, BMP03, BCD14, BMP15, BB03b, FZ15, Fia08, GRB03, GJMP06, Gro03, GQZ15, IMS03, IN13, KR03, Kud07, LB04, Nis03, SY12, YSD16, Yam03, ZQL12].

Quasi
[Ber13, MT10].

Quasi-Eulerian
[Ber13].

Quasi-One-Cluster
[Ber13].

Quasi-Relabeling
[MT10].

Qubit
[GRB03, JM03].

Queries
[Arn17, Ars15, Cig04, GSZ99, Lag14].

Query
[CW11, Lag17, Mec12, ST99, VG01].

Query-Based
[VG01].

Query-Optimal
[Lag17].

Querying
[TV14].

Questions
[IR14, Shu14].

Queue
[Elm06, Gaz06, HIW01, WM13].

Queue-Connected
[IBa02].

Queueing
[YLZ14].

Queues
[CST99, Fer07].

Quickest
[GR03].

Quickheaps
[NPS11].

Quine
[RS95].

Quine-Bernays
[RS95].

Quotient
[BL12].

Rabbit
[FSWF11].

Radical
[BW14].

Radio
[DGN07].

Radius
[Coo17, DESW05].

Ramsey
[PDPPJ11].

Random
[BT17, BKS12, FZT14, KPM15, Li12a].
MD00, NPSY00, Rud15, Sub05, ZG13].
Random-Access [Rud15]. Randomized
[BDDN01, DR05, FDFZB12, Li00b, MD00, RS00, SRR15]. Randomness [Sun00].
Range [DGN07, MS99a, Poo04, RGR11].
Range-Aggregation [RGR11]. Ranges
[Jir14, WY05].
Rank [Sun00, TA17].
Ranking
[BPZ07, DPS99, BEMR11, EMR10, EMR11, ER14, Sal13, TA17].
Re-Distribution [RR06]. Re-Encryption [MLO17].
Reachability [FT09, GJV00b, HBIT08, IBS01, IDY08, Kar09, KPSC08, LN08, Mar09, Set08, SN13].
Reaction [APMP17, BFM06, BEMR11, EMR10, EMR11, ER14, Sal13, TA17].
Real-Value [KD99, Leu04, LCY12, Pal03, Rya15, SK01, YS13].
Reassign [KD99, Leu04, LCY12, Pal03, Rya15, SK01, YS13].
Real-Life [Rya15].
Real-Time
[KD99, Leu04, LCY12, Pal03, YS13].
Realistic
[BPZ07, DSV09, ERW04, MPS99, Nak04].
Rate
[GKRS10, Pal03].
Ratio
[FCS05, HZZT12].
Rational
[AK06, BGN10, Fin04, RC05, RS15, Shu07, TWZ11, ZC13, ACM11].
Rationale
[CFMR05].
Realistic
[KD99, Leu04, LCY12, Pal03, YS13].
Real-Life
[MD00, NPSY00, Rud15, Sub05, ZG13].

Reconstructing [FS06]. Recovering
[IN13]. Recovery [WZ15]. Rectangle
[Uen13, WLC12]. Rectangles [Nag06].
Recurrence
[Dur13, LS98]. Recurrent
[MO09, NP09]. Recursion
[JK14b].
Recursive
[APP91, AT12, Kap05, Kut05, LZ93, LPC11, Sal11, YCTW10].
Recursively
[BOvW15]. Red
[CS96, MC02].
Red-Black
[CS96, MC02]. Redex
[FW90].
Reduce
[CKW09, Li12b]. Reduced
[Sut03].
Reducibilities
[DR94]. Reducibility
[HJ97].
Reducing
[BCFR07]. Reduction
[BHR09, DGO9, HJ11].
Reductions
[AV96, HJ91, Zan91]. Reducts
[Wan14].
Redundancy
[VS93]. Redundant
[WXF16]. Reed
[Arn17]. Reference
[IMP12].
Refinement
[CFH+03, HPV99, HJ90]. Regex
[Sch13].
Region
[DRDN08, WY06]. Register
[HFLD09]. Registers
[THG11]. Regression
[MM11]. Regular
[Ada10, AK06, AK10, AB17a, BS16, BT13, Brz13, BL14, Cal15, CSV02, CS05, Cha02, CLOZ04, CDJ09, COT12, CS02, CS06b, CKW09, Coo17, CFPR03, DK11, DM11, Elb01, EH15, EHS15, Faz11, FO08, GKR10, GH13, GH15, HWW06, HKS13, Han13, HK03, HK11, IWS07, JF08, JM11, Kri04, KMS02, KEH16, KLMH16, KMBH99b, KMM06, Loh10, NPSY00, PP14, PT90, RS12, Sel08, SR00b, SL17, TV14, Tei17, TV09, YSM+00b, YJ05, Fin12].

Regular-Expression
[Han13]. Regularity
[BKW02, Mal15, Pa08, RS13, ST16].
Regularity-Preserving
[Mal15].
Regulation
[BDL08]. Relabeling
[MT10].
Relabelings
[Kan15]. Related
[AO11, AB17b, BPR09, CHZ06, Iba11, TY15, WLC12]. Related-Key
[WLC12].
Relating
[BT00, Mal05]. Relation
[HK95, HN10].
Relational
[Lar98, Lar99, Tha91, VS93, YBI11].

Relations
[BDK95, DI02, DZ00, Fin12, KL10,
Lin08b, TZ91. Relative [CMRR08].
Relaxed [L01, LF96]. Relaxing [De 06].
Relay [CIS03]. Relevant [CCI12].
Reliability [Jai98]. Reliable [YBM11].
Remarks [BSB208, FIS16, Hon02, Kud07, MMY10, Tru08, VG01]. Removal [Moh02].
Removals [GPS14]. Repair [LZGF16].
Repeated [Cig04]. Repeats [Riv04].
Repetition [VG01]. Repetitions [CdL04, FJ12, IYZ04]. Replication [Qua07]. Report [APV06]. Reporting [SJ04].
Representable [TST01a]. Representation [BB99, BJ05, BJ07b, O’N15, ROK08, WX16, XHLF02, Zho02].
Representations [BB03a, BK16, HP09b, PPJY08]. Representing [HKK913, Sny12].
Requests [CVPV08]. Required [Sun00].
Revisiting [DPR08]. Rewriting [AMR09].
Rewriting-Based [ND02]. RFID [HCETPL+12]. Rhythms [CIRS08]. Rich [PS12a].
Rigid [GJV00b]. Ring [CL98, DSS08, GS12a, LW06b, Mar97, Sub90a, Sub90b].
Ring-Theoretic [Sub90a, Sub90b]. Rings [BW14, CX98, EN03, FHL07, GLP07, YWY94]. RNG [CIS03].
Road [CKK02]. Robots [BFMBS11, BT17]. Robust [DPR07, DW03, ECY02, HJ91, HJY93].
Robustness [AB17a, MCS08]. Root [CHZ06]. Root-To-Frontier [CHZ06].
Rooted [HKY12]. Rotation [SFL17]. Rotations [MO94]. Rotator [KHLC12].
Rough [TSS13]. Round [CLT14, LJ17, TYM+17]. Route [GR03].
Routed [PV98]. Router [L0D07a, L0D07b, MMS05].
Router-Based [MMS05]. Routing [BDC90, BDDN01, CHY14, Cig04, FPS02, GD98, GFK98, GP17, JW08, KAPF05, LPC11, OS01, PA98, RM98, RS01, RVT06, Sib97].
Row [WAG+06]. RP [BLY90]. Rule [Fer07, SKL03]. Rulers [BMP03]. Rules [AFO06, BCHK09, Zet11].
Rumors [XCC16]. Run [LD01, MHT09].
Run-Time [LD01, MHT09]. Runs [FY08, FJ12, KMS09]. Runtime [Rud15].
Rupture [ABT16, Asl16, AO10, AA13, BTO17, LDDLW17].
Safe [Cap96]. Safety [CHYT14, IBS01].
Salesman [BL01]. Salesmen [Klo96b].
Scalable [BBFZM06, Hei97, WHLH17, WH03]. Scale [CDLW05, DCS13, DEMT05, MDL97].
Scales [CM12]. Scan [JP08, PRS98]. Scanning [DES09]. Scattered [DSS08, EO13, ÉI14, RC05]. Scattering [BFMBS11, BT17, WQY16]. Scenario [YTL, CDLW05, DCS13, DEMT05, MDL97].
Scheduling [CD95, RWZ01]. Scheduler [TSFZRP17]. Schedulability [WR16]. Schedule [CD05, RWZ01]. Scheduling [BV98a, BS01, BLMR05, BNR99, CTZ01, CYZ14, CR14, DFLL02, DEZ01, DLC+14, DEMT05, FL97, FBHH01, FCS05, Gro03, HB06, HL04, HW17, HLW09, Ja93, JS010, KLo96b, KD99, LAHN14, LTCZ12, LTW02, LLL07, Li01, MXY+04, Mas04, NN93, Pa03, PY04, PZX07, PFF+01, RC11, SSS09, SSS07b, Sun11, SL2b, WY05, WR16, YH11, Zaj09, Zom01b, Zom01c, dSS01]. Schema [KS11].
Scope [LNP16]. Scope-Bounded [LNP16]. Score [HN06]. Screening [IN08, IN05]. Search [BRM07, Brz13, CS00a, Fle96, HM04, IN05, IN08, JS03, KK90, LTZ12, PRN13, WM05, ZZ16]. Searching [Ami05, CFG12, DE08, KPS93, MP93, ST93]. Self-Assembly [JK14a, JK14b, SW17]. Self-Stabilizing [CDPT16, DWS15, FDFZB12, FZAM08, GHJS05, GS12a, HHW99, JK14a, JK14b, KK10, Kar99, Láz13, NGHK15, ST11, San13, SW17, TSFZR17, WD03, XS06].
Sequences [Ars15, BBM+12, CCF08, CKZ17, CRS12, Coo17, DN07, Dur13, GKI, Hon12, IMP12, KXX12, LHI+17, NP09, Sal07, SS12a, Tho06, WOO3, XZS16]. Sequential [CCFS07, DI05, Fre05, Kan15, LRT92, Tos06]. Serializable [Ogi94]. Series [CR14, Mal05]. Servers [OS01, URS07]. Service [BS01, BCDP08, Li12b, dSS01]. Set [Aku06, AWF03, BRSV13, CGL12, Elm06, FZ15, GRV10, HLW09, KK10, KLS05, KMW16, MM97, RAB15, TOr15, Uh99, WAF03]. Sets [AK06, BMW91, BMP03, BLL06, CZTH13, CY+12, CL07b, DLT06, DGL93, DT15, DWS15, FDFZB12, FZAM08, GHJS05, GS12a, HHW99, JK14a, JK14b, KK10, Kar99, Láz13, NGHK15, ST11, San13, SW17, TSFZR17, WD03, XS06].
Self-Specifying [HIW99].
DWS15, DS05, DR94, ÉK07, FH05, HT95, HHH+95, Hon06, Hon12, HLKC12, LO11, Me93, MB17, NGHK15, Pru17, RW11, RC05, Ros90, RS19, Sto92, TCLS10, TV94, WPZ16, XCI16. Setting [BV08, HST01, HHP17, TYM+17]. Several [LD04, SH17, XCI16]. Shamir’s [LD04].

Simple-Algorithms [AFB96]. Simple-Yet-Efficient [HYT15]. Simplification [Löd15]. Simulate [Dub95]. Simulating [CPJ06, FZCFB08, JW03]. Simulation [BCDP08, FGS+90, FP03, FZRDCHB05, FNI16, GB03, KL10, LWJ+10, MDAPHPJ11, Mat04, Qua07, SVSN01, YB06]. Simulations [ÉM11, KR08, KMW14a, Pet11]. Simultaneous [Sha04]. Since [McN90]. Sincure [FK06]. Single [ALR04, BNS03, GH07, KS10, SSS09]. Single-Channel [BNS03]. Single-Pushout [ALR04]. Sink [EG02]. SINR [LAHN14]. Siphon [JC03]. Siphon-Based [JC03]. Six [EAB+16]. Size [BBP11, Bir11, BMRR12, CSR12, CWK09, De 06, GS12a, KO13, SEE99, Sun11, Uen13, vLV15]. Size-Computation [GS12a]. Sizes [ZB02]. Slave [GS12a]. SLDNF [Pla96]. SLDNF-Resolution [Pla96]. SLMAP [HCETPL+12]. Small [AKM+11, ARV12, AE04, CGL12, CD09, DL12, DGK08, HIR+92, KM17, KS10, Leu16, Mer08, PR00, RU07, YS16, ZB00]. Smallest [NRT00]. SMP [SK03]. Soccer [CKL15]. Sofic [Sut03]. Soft [Nag06]. Software [BJO7b, FM01, KR03, LX94, Qua07, ST01]. Solid [HS11, ST93]. Soliton [BJO7a, JK07]. Solution [Anc02, NSVA12, Pan91]. Solutions [BIIN04, CK07, Ru06, ZZT91]. Solver [ELS15]. Solving [Com90, FL12, GGR14, Gou01, HSS07, Lin07, LMM+12, MZ01]. Some [AA13, BM16, BCR11, BE95, Bod91, CCF08, CKZ17, For10, FH11, GC15, Go90, GR00, IR14, IMS03, KPS93, Kud07, Kun16, LL16, MMY10, Mee12, Oka00, Pri06, Shu14, TL99, TY15, YY94, ZQL12, ZZC15, vDHM92]. Sort [Lar98]. Sorted [MI15, Ole92, WO03]. Sorting [BLLS03, BMR+14, BNS03, DR05, FS05, MRRV06, MIN11, PA98, QLWL06, RM98, WRNK03]. Soundness [Kam98]. Source [GR03]. Source-Based [GR03]. Space [AOSY10, BGRY16, CF06, CZ11, Fre02, HIR+92, JZ16, Kör03, MMP10, PLMZ11, SSK96, Sta05, US02, YS13]. Space-Time [US02]. Spaces [Câm14, CLT09, HIIW01]. Spanners [AFW03, DH96, GS90, WLF03]. Spanning [BB04, Dar13, ERW04, ET14, Fuj17, HLHH06, LLY13, LX17, LZ12, MTNN99, MAN05, Tor13, YCTW10]. Sparse [DR94, ET14, VP99]. Sparseness [DH96]. Special [Ano01c, BRST07, CD02, Hin01, HO00, Hsu98, LC02, Pal01b, Pre01,
Sublinearly [MMP10].
Sublogarithmic [HIIW01].
Submatrices [WAG+06].
Submodular [SSS09].
Suboptimal [GD98].
Suboptimal-Optimal [GD98].
Subregular [HJK12].
Subregularly [DST10].
Subsequence [AE05, DD13].
Subsubsequences [AM03].
Substrings [DS96, IB12].
Subtrees [BVM00, Gre96, HLY+04, KEH16].
Subtree-Free [KEH16].
HCETPL +12. Traces [LWJ +10]. Track [YB11]. Tractable [BCR11, HL06, YHK14]. Trade [Kap05, KKP97, Kut05]. Trade-Offs [Kap05, KKP97, Kut05]. Traffic [DEKZ11]. Trains [PPJR06]. Trajectories [DKSS11, DS05, KKS05b]. Transactional [SK01]. Transducers [AM03, AM09, ARS11, AMR11, AMR15, BBL +12, BBK17, CGH05, FSM11, Gaz06, Iba15, Mal05, Mal15, Man15, Moh02, Moh13, RT16]. Transduction [BCC +11]. Transductions [Sut14]. Transduction [BCC +11]. Transfers [NN93]. Transitive [DI02]. Transitivity [JP06]. Transformation [ALR04, AT15, BTK13, BTO17, TSS13]. Transformations [KLS05, MRS97, RKRR02]. Transient [BLY12, YBM11, YB06]. Transients [GB03]. Transition [Muk92, Tam08]. Transitions [ZYLW12]. Transitive [DI02]. Transitivity [JP06]. Transmission [JS97]. Transformation [ALR04, AT15, BTK13, BTO17, TSS13]. Transformations [KLS05, MRS97, RKRR02]. Transient [BLY12, YBM11, YB06]. Transients [GB03]. Transition [Muk92, Tam08]. Transitions [ZYLW12]. Transitive [DI02]. Transitivity [JP06]. Transmission [JS97]. Transparent [GD98, YSD16]. Transporter [SS07b]. Transpositions [CL07a]. Tree [AHK07, ABH +09, BB04, BCHK09, Bkw02, CDPT16, CS00a, CH06, DL12, DST0, ÉM11, FGS +90, FT10, Fle96, FSM11, Fuj17, Gaz06, Gec07, HH11, HB10, JM13, KM09, KEH16, KKL16, KKK90, Li00a, LZ12, LA09, MO94, Mal05, MT10, Mal15, Man15, MC02, MP91, PR00, PAS08, RAB15, Rei07, RVT06, SMS90, SB17, SVF09, Tei17, Tor13, XS06, YHK14, ZM11, DDHL11]. Treewidth [BB04, ERM06, KKP97, Kut05]. Trémaux [DOR06]. tri [NS13]. Triangle [FP04, XHLF02]. Triangles [AAV00, MB17, Sib97]. Triangulating [AFB96]. Triangulation [DPT02]. Triangulations [Fret2, Trick [Ste11]. Trie [AC11]. Tries [KPS93]. Trinomial [ZZC15]. Trinomials [WXF16]. Triple [JS97, LOZ98]. Trivalent [CP99]. Trivial [BL14]. Truck [MXY +04]. TSP [Go14]. Tube [AKM +11]. Tunable [BBM +12]. Turing [AD12, Cap96, Dub95, HIW01, HJV93, HIT91, IJK +04, Mer08, Slo95]. Turn [AK14]. Tutte [GO09]. TVDH [AKM +11]. Two [AGM14, Ars15, BSBZ08, BT00, BK02, CH15, CL15, CDL04, CHZ06, CGKY11, CGKY12, DLT06, DJ12, FS05, FL12, GP15, HKV17, HJP +13, HL06, HKKS13, HG11, IJT +93, IS12, JP06, JM03, Kap05, KYYZ17, KKH90, KP10, KL06, KL11, KMO10, LY94, L04, LLZ07, Mel93, OS01, Pr04, R17, RWZ01, RLWW96, SS07b, Ste93, SMAN13, W003, XZ016, ZZ12, ZC13]. Two-Dimensional [AGM14, BT00, CDL04, DJ12, JP06, Pr04, Pr07, SMAN13]. Two-Face [RLWW96]. Two-Machine [LLZ07, SS07b]. Two-Pattern [FS05]. Two-Prime [KYYZ17]. Two-Processor [Leu04]. Two-Pushdown [KMO10]. Two-Way [BK02, CL15, HKKS13, IJT +93, IS12, Kap05, KL11, ZC12]. Type [Bar90, CTH13, Hir91, Kam95, MM17, MN00, PI95, Smi95, TST01b]. Type-Free [Kam95]. Typeness [KMM06]. Types [APP91, TZ91].
35

[Car11, HB06]. Unbreakable [OS93].
Unconditionally [SNJ11]. unconventional [CV13]. Undecidabilities [BKM15].
Undecidability [BKM11, Fin12, HHH07].
Undecidable [Mar92, Mar08a].
Understanding [Zet11]. Undirected
[CFZDCHB05, XLC04, ZWS05]. Unfold
[KKR02]. Unfold/Fold [KKR02].
Unforgeable [HHP17]. Unicast [GWL04].
Unidirectional [GS12]. Unification
[RG00, Pym92]. Unified
[CLMP16, NS13]. Uniform
[ANC02, BFMBS11, BMW91, Dur13, Fuj17, HL10, KSV00, LPP92, MM17, XC15, ZZC15].
Uniformity [CdL04]. Uniformly
[NP09].
Union
[CGKY11, EHS15, GNC03, HS08, JM11].
Union-Free [JM11]. Unique
[DD08, Ru06]. Uniqueness
[DES05]. Unit
[Fuj16, FCS05, Zaj09]. Unitary
[HN06]. Universal
[AKM11, ARV12, CL14, DCG07, LIs93, Pole05, Sch02, Ver09].
Universality
[Bur12b, CP06, JKL14a]. Universally
[Tra02]. Universe
[MAG09]. Unknown
[LP11]. Unknowns
[CK07].
Unordered
[FA06, YHK14]. Unranking
[ERW04]. Unrelated
[Jan93]. Unreliable
[KY90]. Unsolvability
[BHK05].
Unweighted
[MQ12]. Update
[Fle96, GPC09, Lag17, LOD07a, LOD07b].
Update-Efficient
[LOD07a, LOD07b].
Updating
[LW93, OW92]. Upper
[BBP11, ZSW14, ZG13]. Ups
[JLS08].
Upward
[HL06]. Use
[BCC11, SS12].
Used
[LKM02]. Useful
[BGKY16].
Usefulness
[BPR09]. User
[DE08]. Using
[AC11, AH07, BBFZM06, B01, Bee95, BC12, CTD01, CST01, CK08b, DW04, DSS07, DZ09, DE08, EP17, FGH07, FHL07, FK13, FNI16, G98, HHH07, HLV02, HP09b, HFLD09, IM04, ILT11, IN07, IN08, IN10, JA95, KAPF05, KS10, LX94, LB04, LWJ10, MO94, PAS08, Pole05, RCTC09, SKL03, SB01, SN13, Wan14, WXF16, WM13, WHLH17, XHLF02, YBI11, dSS01].
Usual
[ES01].
Valid
[HCG96]. Valuation
[DM11]. Value
[KMIS09]. Valued
[CH15, SH17].
Valuedness
[Iba15]. Values
[BFL02].
VANETs
[CST17]. Var
[YTLN09].
Variable
[CL07b, TY03, TJZ13, ZWCL14].
Variables
[EAB16, Kam98, ZG13].
Variant
[Pa10]. Various
[BLM15, YD05].
Varying
[HHG11]. Vector
[BH02, CHYT14].
Vectorial
[Car11, DQFL12, FY11]. Vectors
[PL06]. Verifiability
[YMC17]. Verifiable
[SZQ17]. Verification
[ADHR09, ADR11, BB03a, BSDV06, DPR07, FK06, FK13, Iba02, ILT11, LD01, LN08, LWJ10, MG14, MDAPJ11, Pen93, WM13, YBI11].
Verified
[DVG03]. Verifier
[Ver09].
Verifiers
[YSD16]. Verifying
[FGH07, HV02]. Version
[Jun14].
Versions
[BSBZ08]. Versus
[COT12, DSR97, CV13]. Vertex
[AT11, ET14, FP04, HW17, Kan15, PRS98, RZ12, SS99, WQ16].
Vertex-Connectivity
[FP04]. Vertex-Neighbor-Scattering
[WQY16].
Vertices
[DW04, GWH17]. Very
[FPPS03, FGH07]. Via
[BCD08, Karp09, KL05, LN08, YLZ14, Zan91]. Video
[HT09].
Video-On-Demand
[HT09]. View
[Am05, DD12]. Viewed
[Wil91]. Viral
[DM05]. Virtual
[BCC11, GNC03, LJA09]. Visibly
[RT16]. Visitors
[ECY02]. Volume
[BCC11]. Vs
[SR00a, HKKS13]. vs.
[DTY15]. VTLoE
[MT95a]. Vulnerabilities
[DW04]. Vulnerability
[AT11, AT15].
Walk [BKS12, Li12a]. Walking [DPT02].
Walks [Sub05]. Walsh [CH15, SH17].
Watson [KM08]. Way [AM09, BPM15, BKW02, CL15, CFY16, HIR+92, HKKS13, LIT+93, IS12, Kap05, KL11, KMW14b, KMW14a, Oht01, Slo95, ZQL12]. WDM [XLC+04]. Weak [Asl16, BSOR10, DTY15, GV03, KR08].
Weak-Bisplit [GV03]. Weak-Rupture [Asl16]. Weakly [AWF03, DWS15]. Weakly-Connected [AWF03]. Web [ECY02, HM04, NH02, Zho02].
Wedderburn [AR16]. Weibull [PNN+10].
Weight [CS00a, FPPS03, LW93]. Weight-Balanced [LW93]. Weighted [AMR05, AM09, AJMO11, CL15, CLOZ04, CGKN08, DM11, DP14, EM11, GV03, IMP12, JS06, KGW08, KGW11, LM04, PS12a, PS12b, Pri06, Pri07, RM05, RS04, Sa11, Sha04, ST16, Teh15, Teh16b]. Work [BBM+12]. Worker [DPR+08]. Workflows [LBL06]. Working [Elm06, Fre05, PLMZ11]. Working-Set [Elm06]. Worksharing [RC11]. Workstations [Ros00]. Wormhole [PV98].
Worst [Fle96, Lag17, PSA17, YH11, ZSW14]. Worst-Case [Fle96, Lag17, YH11, ZSW14]. Wreath [BK16]. WWW [LKM02].
Yao [GKS17]. Yen [AH11]. Yield [ER14].
Yu [CISS12, SSS13].

References

Aytac:2013:SRR

Ahn:2009:COH
REFERENCES

Aichholzer:2002:FPS

Accornero:2000:AST

Arvind:1991:EDG

Aytac:2017:RR

Aytac:2017:BNW

Ausiello:2005:CD

Abdulla:2009:CBT

Cyril Allauzen, Corinna

Abdulla:2013:MAP

Arrighi:2012:PCT

Ada:2010:NDC

Abdulla:2009:MAE

Abdulla:2011:AVD

Azizoglu:1999:IND

REFERENCES

REFERENCES

Anselmo:2014:PPC

Aziz:2007:MAP

Atig:2011:YPL

Abdulla:2007:BMT

Axelsen:2017:DID

Augustine:2013:TAS

Artiom Alhazov, Marian Kogler, Maurice Margenstern, Yuriy Rogozhin, and Sergey Verlan. Small universal TVDH and test tube systems. *International Journal...
Alirezazadeh:2016:PFA

Alberich:2004:SPT

Allauzen:2009:WCW
Amir:2005:TIS

Asahiro:2007:GOA

Allauzen:2005:DPA

Almeida:2008:EGM

Almeida:2009:AMR

Allauzen:2011:GAT

REFERENCES

Anonymous:2001:P

Anonymous:2001:SIF

Anonymous:2002:AIV

Anonymous:2003:AIV

Anonymous:2003:Pa

Anonymous:2003:Pb

Anonymous:2003:Pc

Anonymous:2003:Pdf

REFERENCES

Anonymous:2011:AIV

Anonymous:2012:AIV

Anonymous:2013:AIV

Anonymous:2014:AIV

Anonymous:2015:AIV

Anonymous:2016:AIV

Anonymous:2017:AIV

Aytac:2010:CRD

Aytac:2011:RCW

REFERENCES

Almeida:2016:SSA

Arnold:2017:IGR

Allauzen:2011:FBA

Arslan:2015:FAL

Arvind:1997:CMP

Alhazov:2007:MCS

Alhazov:2012:SUS

2012. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Atanasiu:2007:BAW

Atanasiu:2011:EPM

Abderrahim:2012:HGQ

Badr:2009:HM

Andresen:1999:P

Alzoubi:2003:MIS

Agrawal:1996:ICD

[AV96] M. Agrawal and S. Venkatesh. On the isomorphism conjecture for 2-DFA reduc-
Ben-Amram:2012:EDC

Barbanera:1990:CTR

Basten:1997:PPO

Beigel:1999:NPR

Bartzis:2003:ESR

Bouda:2003:EQI

Blin:2004:FAD

REFERENCES

Berry:2000:GAM

Babvey:2006:SEI

Bensch:2017:DST

Benattar:2012:CSF

Bertoni:1990:I

Boukerche:2012:EPA
Beal:2011:QUB

Bes:2006:KTL

Bennoui:2012:SAI

Breveglieri:1996:MPL

Brim:2012:USI

Besozzi:2011:MDS

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Bischof:2012:UPI

Bloem:2007:SIA

Bertoni:2011:IPC

Bovet:1990:DPC

Bui:2001:RMA

REFERENCES

REFERENCES

Bloom:2011:ALO

Bereson:1995:UNA

Brijder:2011:TRS

Berlinkov:2011:CCD

Bhika:2007:TDC

Bouajjani:2003:GAS
Berthome:1997:CIP

Bec:2007:OCS

Bilbao:2002:CCV

Bianco:2006:SRM

Barriere:2011:USA

Bordim:2010:P

Bordim:2012:P

REFERENCES

REFERENCES

[BJ05]

[BJ06]

[BJY90]

[BK95]
REFERENCES

[BKW02] A. Brügge-Klein and D. Wood. The regularity of two-way nondeter-

[BLL06]

[BL01]

[BL12]

[BL14]

[BL03]

Boyar:2015:FIP

Beaumont:2005:SSS

Bein:2009:KSC

Borchert:2005:DDP

Brzozowski:2012:CET

Barbuti:1990:RNF

REFERENCES

Bera:2016:SAA

Broda:2011:ASC

Broda:2012:ASG

Bertoni:2003:GRD

Bianchi:2015:PO

Bonomo:2014:SCS

Bertoni:1992:HGF

Bonifacio:2012:MPC

[BM12]

Barbuti:2011:OOS

[BMSMT11]

Bergstra:1991:UAS

[BMW91]

Belovs:2017:CCC

[BM17]

Bordim:2007:P

[BN07]

Bordim:2008:P

[BN08]

Bordim:2011:P

[BNF11]
Jacir L. Bordim, Koji Nakano, and Akihiro Fujiwara. Preface. *International
REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Boeres:1999:CBT

Bordim:2003:SSC

Bordim:2005:Fa

Bordim:2005:Fb

Baumslag:1997:ISG

Bodlaender:1991:CSC

Belohlavek:2008:FFS

Radim Bělohlávek, Jan Outrata, and Vilem Vychodil. Fast factorization by similarity of fuzzy concept lattices with hedges. International Journal of Found-

Bertier:2016:CCM

Balaban:2007:MRA

Bertoni:2008:AMS

Balla:2007:EAD
Sudha Balla, Sanguthevar Rajasekaran, and Ion I. Mandoiu. Efficient algorithms for degenerate

REFERENCES

REFERENCES

REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Bienkowski:2013:HCM

Cai:1994:CJN

Calude:2005:P

Campeanu:2014:DCE

Caporaso:1996:STM

Carlet:2011:MVB

Castellani:1995:ODP

I. Castellani. Observing distribution in processes:

Casanova:2005:NMI

Christodoulakis:2009:EDC

Chiang:1998:TPS

Champarnaud:2005:ENA

Chai:2007:EIB

Cantone:2008:SCP

REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Cantone:2009:NEB

Campanelli:2012:PMS

Cienciala:2007:PDS

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Czumaj:2011:AAB

Christou:2012:IAA

Calvin:1997:MOC

References

Calude:2011:OBQ

Cherubini:1990:BDG

Clemen
ti:1995:OSP

Cheng:2002:SI

Cavaliere:2006:FRT

Fabienne Carrier, Stéphane Devisnes, Franck Petit, and Yvan Rivierre. Asymptotically optimal determin-

Caron:2016:SSP

Cappello:1998:PLB

Cerny:2008:SSW

Cantone:2006:SEB

Cantone:2012:ABM

Clarke:2003:ACG

Croc
hemore:2010:NOP

Maxime Crochemore, Szilárd Zsolt Fazekas, Costas S. Iliopoulos,
and Inuka Jayasekera. Number of occurrences of powers in strings.

Cadilhac:2012:BPA

Casteigts:2015:SFF

Czyzowicz:2003:LTP

Cellier:2008:PAE

Peggy Cellier, Sébastien Ferré, Olivier Ridoux, and Mireille Ducassé. A pa-

Chigahara:2016:OWJ

Ciobanu:2006:MMA

Ciobanu:2009:EM

Champarnaud:2005:CTF

Champarnaud:2008:AJA

Cui:2011:SCT

REFERENCES

REFERENCES

Champarnaud:2003:P

Czeizler:2007:ISW

Chen:2009:GAC

Chiu:2014:AHA

Cleophas:2006:TRA

Ciglaric:2004:CND

Christodoulakis:2008:IRM

Cartigny:2003:RRS

Chin:2012:SY

Calude:2001:CMP

Case:1992:LLP

Czeizler:2007:NPS

Elena Czeizler and Juhani Karhumäki. On non-periodic solutions of independent systems of word equations over three unknowns. *International Jour-
REFERENCES

Campeanu:2008:SCS

Conley:2008:UAM

Cassaigne:2016:ACF

Culik:2002:NSA

Christensen:2015:SHT

Coetser:2009:REH

Chang:2017:SER

REFERENCES

Science (IJFCS), 28(2), February 2017. CODEN IFCSEN. ISSN 0129-0541.

Chen:1998:SRN

Chen:2003:ZAC

Cheng:2007:FRC

Couceiro:2007:EVI

Chang:2010:ETF

Carnino:2014:FUA

Carnino:2015:DUW
Cheng:2008:MPA

Caron:2016:SCC

Chang:2009:TEB

Chen:2014:TRA

Cantin:2009:CCH
REFERENCES

DEN IFCSEN. ISSN 0129-0541.

REFERENCES

REFERENCES

0129-0541 (print), 1793-6373 (electronic).

Chen:1996:OOR

Cho:1999:MDE

Cho:2000:NWB

Cho:2000:PRP

ISSN 0129-0541 (print), 1793-6373 (electronic).

Cheng:2002:RP

Calude:2012:SSH

Chen:2017:SIE

Campeanu:2002:SDR

Campeanu:2003:FSP

Chantrapornchai:2001:REA

Csuhaj-Varju:2010:VCB

Csuhaj-Varju:2010:P

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

[CYS+12] Guaning Chen, Chih-Wei Yi, Min-Te Sun, Fang-Chu Liu, and Wei-Chi Lan. Minimum local disk cover sets for broadcasting in heteroge-

Chen:2014:OSM

Collins:2011:CSC

Calvo-Zaragoza:2017:CEE

Cai:2013:NOF

Dai:1997:CDS

Dangalchev:2011:RCG

Darmann:2013:PST

Andreas Darmann. Popular spanning trees. *Inter-
REFERENCES

Dassow:2004:DCL

Das:2013:NEA

DeLuca:2006:CPS

Daykin:2008:PCU

Domínguez:2012:PPF

Deorowicz:2013:BPA

Datta:2011:SSE

Ajoy K. Datta, Stéphane Devisnes, Florian Horn, and Lawrence L. Larmore.

[Daley:2007:IMT]

[De 06]

[DE08]

[DE12]

[DEKW06]

[DEKZ11]
Dutot:2005:SLS

Domaratzki:2005:NUR

Deng:2002:P

Devillers:2002:DH

Diessel:2001:DTS

Deng:2002:PMT

Xiaotie Deng, Haodi Feng, Guojun Li, and Guizhen Liu. A PTAS for minimizing total completion time

Droste:1990:UIS

Dawson:2009:TAR

Diekert:2008:SSF

Diks:1993:PAF

References

[DGMM15]

[DH96]

[DHR08]

[DHIÖ97]

[DH05]

[DI02] Zhe Dang and Oscar H. Ibarra. The existence of \(\omega \)-chains for transitive mixed linear relations and its applications. *International Jour-
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

[DM08] Dragoi:2008:DCA

[DMSS16] Du:2016:DAF

REFERENCES

[Demri:2007:RA]

[Diekert:2011:P]

[DeFelice:2016:ACA]

[Domaratzki:2004:IBN]

[Dombek:2012:SIA]

[DeFraysseix:2006:TTP]

[DeAgostino:1990:PRA]

[Delzanno:2013:P]
Giorgio Delzanno and Igor Potapov. Preface. Inter-
REFERENCES

Droste:2014:WNW

Damm:2007:GTV

Dongarra:2008:RMP

Dassow:1993:GBP

Dumitrescu:1997:PLV

DeQueirosVieiraMartins:1999:DAR

REFERENCES

(Drew:2007:L)

(Droste:1992:CAD)

(Day:2014:DPC)

(Dsouza:2003:LCE)

(Domaratzki:2005:RST)
REFERENCES

REFERENCES

REFERENCES

[EGPS10] Edith Elkind, Blaise Genest, Doron Peled, and Paola

Ediger:2012:EAT

Eom:2015:SCB

Emerson:2006:MMC

Eom:2015:SCK

Esik:2014:OCS

Esik:2007:BFS

Ehmsen:2013:TEC
Martin R. Ehmsen and Kim S. Larsen. A technique for exact computation of precoloring extension on

Elbl:2001:PRP

Elmasry:2006:PQW

Esparza:2015:FGS

Esik:2011:CSW

Ehrenfeucht:2010:CLD

Ehrenfeucht:2011:FDR

Ehrenfeucht:2012:SCR

Andrzej Ehrenfeucht, Michael Main, Grzegorz Rozenberg, and Allison Thompson Brown. Stability and chaos in reaction systems. *International Journal of Foun-
Emerson:2003:RAR

Esik:2013:CFL

Elouasbi:2017:DRD

Ehrenfeucht:2014:ZSR

Egecioğlu:2004:CGW

Elbl:2001:NDR

Fujimoto:2001:MPT

Fontaine:2005:BBA

Fung:2005:OSU

Fajardo-Delgado:2012:RSS

Fernau:2007:PGR

Fernau:2015:FIR

Fredriksson:2008:EAM

Kimmo Fredriksson and Szymon Grabowski. Efficient algorithms for (δ, γ, α)

Fix:2007:VVL

Falaschi:1990:NGH

Fouquet:1999:BGT

Faliszewski:2005:ASS

REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

[FJ12] František Franek and Mei Jiang. Crochemore’s repe-

Forsyth:2016:RPW

Fujiwara:2005:PMI

Fehnkner:2006:HSV

Fribourg:2013:PVT

Fujiwara:2011:P

Fujiwara:2007:PCM

REFERENCES

REFERENCES

REFERENCES

Freund:2007:PHS

Freund:2008:CGS

Freund:2005:ORC

Forsell:2010:PCS

Ferrante:2004:VCP

Fantozzi:2003:GPS

Ferro:2003:FCM

[FPPS03] A. Ferro, G. Pigola, A. Pulvirenti, and D. Shasha. Fast clustering and minimum weight matching algorithms for very large mobile backbone wireless networks. *I-
REFERENCES

Faloutsos:2002:EAL

Frey:2002:BTA

Freund:2005:SWS

Freivalds:2008:NCM

Friedmann:2010:SSA

Freydenberger:2006:UMI
REFERENCES

Floccini:1998:TCS

Franek:2005:SST

Franek:2006:RSA

Friese:2011:ENF

Fazekas:2016:P

Feng:2011:GDA

Felscher:2009:CRC
REFERENCES

Franek:2008:ALB

Feng:2011:VBF

Fang:2002:LIP

Fan:2003:OCN

Fearnley:2012:PMG

Fenner:2013:CHS

Fenner:2015:QAS
Fernandez-Zepeda:2008:AAE

Fernandez-Zepeda:2008:SML

Fernandez-Zepeda:2005:DFT

Fan:2014:NCI

Gazdag:2006:DSP

REFERENCES

Gheorghiu:2003:SFF

Gandhi:2015:AAS

Gupta:2008:MPC

Garcia:1998:SOR

Gudys:2012:PAC

Gécseg:2007:CTL

Grammatikakis:1998:CRP

REFERENCES

Ghasemi:2014:AFS

Gao:2007:SSP

Gudmundsson:2009:P

Gruber:2013:PSR

Gruber:2015:FAR

Goddard:2005:SSA

Goc:2013:ATP

REFERENCES

September 2013. CODEN IFCSEN. ISSN 0129-0541.

Geser:2005:FFA

Gianmarresi:2011:EIT

Gudmundsson:2007:P

Gravier:2006:QOG

Ganzinger:2000:PA

Ganzinger:2000:RRN

Goresky:2011:SPA

REFERENCES

Gorrieri:1990:THD

Giambruno:2015:GGB

Gazdag:2011:KTB

Guingne:2003:VO

REFERENCES

Grabowski:2006:SAI

Gebauer:2009:FET

Goldwurm:1990:SLD

Gonzalez:2001:SMM

REFERENCES

Golumbic:2000:CWS

Grimmell:2003:SBR

Gradel:1990:NLT

Grassl:2003:EQC

Greenlaw:1996:SID

Grover:2003:IQS

Goc:2014:NAB

Geeraerts:2010:ECM

Gudmundsson:2009:SGG

Gorbunova:2012:PWA

Ghosh:2003:NAE

Greco:1999:GAO

Glasser:2009:ICC

REFERENCES

Mathieu Giraud, Phillipe Veber, and Dominique Lave

Gimbert:2012:BOS

Han:2013:IPF

Hashimoto:2000:FCC

Hakem:2006:CPS

Higa:2008:RST

Hernandez-Castro:2012:MTA

Hanks:1996:FTV

L. Hanks, R. K. Cytron, and W. Gillett. On finding topologically valid matchings in restriction-fragment maps. *International Journal of...
REFERENCES

[Head:2011:CLT]

[Hinze:2009:RMC]

[Heirich:1997:SDA]

[HG11]

[HH11]
REFERENCES

REFERENCES

2001. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Hirokawa:1991:PTA

[Hir91]

Hromkovic:1992:POW

[HIR+92]

Hemaspaandra:1997:LRM

[HJ91]

Holzer:2013:EAE

[HJ13]

Holzer:2014:NBT

[HJ14]

Holzer:2016:MHM

[HJ16]
Holzer:2017:MMF

Holzer:2012:MNP

Hemaspaandra:1993:BRT

Henzinger:2011:FSM

Hayashi:1995:NFF

Harel:2002:SSB

D. Harel and H. Kugler. Synthesizing state-based ob-

Holzer:2003:NDC

Harju:2008:P

Hempel:2009:APC

Holzer:2009:NFA

Holzer:2011:CRL

Holzer:2015:P

Hromkovic:2013:DVN

Juraj Hromkovič, Rastislav Královič, Richard Královič, and Richard Štefanec. Determinism vs. nondetermin-

Han:2016:SCI

Han:2013:EDB

Halldorsson:2000:MID

Hadid:2017:SAF

Hon:2001:ANN

Ho:2004:DCP

Healy:2006:TFP

Hsu:2006:SCS

Huo:2009:PSA

Hon:2004:STD

Hong:2004:AWS

Han:2005:AAM

Harju:2004:MDE

Tero Harju and Dirk Nowotka. Minimal Duval extensions.
REFERENCES

145

REFERENCES

Holub:2009:F

Holub:2011:BMS

Holub:2012:P

Honkala:2002:RCD

Honkala:2006:BPD

Honkala:2007:DEP

Honkala:2012:ESM

Halava:2008:P

REFERENCES

(First name Surname: Year: Article Title)

Halava:2009:P

Heuberger:2009:ACM

Herley:1999:DBB

Han:2008:SCU

Habib:1999:PRT

Han:2017:Pb

Hintikka:1995:WLP
REFERENCES

Han:2011:OFL

Han:2017:Pa

Hsuy:1998:SII

Herlihy:2007:KBE

Hinze:2001:PCC

Hsu:1998:SII

Haralambides:1995:BOS

Hoang:2004:EMP
References

Hoang:2004:MPM

Hung:2009:NOB

Harbich:2012:CDC

Hutter:2002:FSA

Huynh:1991:EDC

Hartog:2002:VPP

Hempel:2000:OMM
REFERENCES

Han:2005:GGA

Huang:2010:CSB

Hong:2017:IAA

Han:2006:IFR

Hu:1997:FTS

Hong:2006:P

Hamrouni:2008:SMG
REFERENCES

Ho:2015:SYE

Hu:2012:LGG

Inenaga:2012:FCS

Ibarra:2015:AFV

Ibarra:2001:RSI

[IJT+93]

[Ibarra:2008:CMR]

[IDY08]

[Ibarra:1993:ETW]

[IIT+04]

[ILT11]

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

REFERENCES

Iwama:2013:RSO

Ito:2007:EHA

Ishdorj:2008:GAM

Ishdorj:2007:CPI

Ibarra:2009:P

Ibarra:2014:SDQ

Ibarra:2012:CBS

Oscar H. Ibarra and Shinnosuke Seki. Characterizations of bounded semilinear languages by one-way and two-way deterministic machines. International
REFERENCES

Imani:2008:ICM

Ibarra:2007:CRL

Ibarra:2005:VNP

Imenaga:2005:FCP

Inenaga:2008:FCP

Ibarra:2005:VNP

Ibarra:2007:P

Ibarra:2007:ICM

Ibarra:2013:HSH

Ito:2010:P
REFERENCES

Ilie:2004:WCR

Ibarra:2004:CCC

Isobe:1999:PTA

Jansen:1998:MCI

Jansen:1993:SIJ

Ito:2005:PTS

Jain:1995:ICF
REFERENCES

December 1993. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

[JJS08] Jozef Jirasek, Galina Jiraskova, and Alexander Szabari. Deterministic blow-ups of minimal nondeterministic finite

Jurgensen:2007:SAB

Jonoska:2014:ATSa

Jonoska:2014:ATSb

Jacobsen:2001:VTR

Jorrand:2003:SPQ

Jiraskova:2011:CUF

Jez:2013:HMD

REFERENCES

(J6):815–??, September 2013. CODEN IFCSEN. ISSN 0129-0541.

<table>
<thead>
<tr>
<th>Jiang:1991:SCM</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Jansen:2005:AAF</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Jurdzinski:2007:SRA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Johansson:2000:NDP</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Justin:2004:EWS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Jonoska:2006:TTD</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Jansson:2007:ODR</th>
</tr>
</thead>
</table>
| Jesper Jansson and Zeshan Peng. Online and dynamic recognition of square-free strings. *International
REFERENCES

Jalsenius:2008:SSC

Jurgensen:2014:P

Jack:2008:DNM

Jia:1997:TLN

Jia:2002:CCH

Jung:2003:SBS

Jansen:2010:ASS

REFERENCES

Jain:2003:PPH

Jung:2014:SAV

Jurgensen:2008:CIE

Janzing:2003:CPP

Jin-Yi:1991:PSC

Januszewski:2016:IOA
REFERENCES

Kameyama:1995:TFT

Kamareddine:1998:SES

Kantabutra:2015:FSP

Kapoutsis:2005:NRT

Katangur:2005:ROM

Karaata:1999:SSA

Karhumaki:2009:PCM

REFERENCES

REFERENCES

Kaufman:2005:SLT

Klein:2007:CFG

Kamei:2010:SSD

Keqin:1990:GFF

Kranakis:1997:HCT

Keqin:1990:GFF

Kranakis:1997:HCT

Keqin:1990:GFF

Kranakis:1997:HCT

Keqin:1990:GFF
Kobler:2000:OSE

Kupferman:2010:LSR

Kufleitner:2011:POT

Kufleitner:2012:ADD

Kalampakas:2013:MPD

Antonios Kalampakas and Olympia Louscou-Bozapalidou. Minimization of planar directed acyclic graph algebras. *International Jour-

REFERENCES

Kupferman:2006:TRA

Kutrib:2010:STP

Klarlund:2002:RP

Krivka:2006:GLR

Kari:2011:PPP

Kappes:2012:MCK

Kutrib:2014:SUO

November 2014. CODEN IFCSEN. ISSN 0129-0541.

REFERENCES

Kouri:2015:RMA

[Tina M. Kouri, Daniel Pas
cua, and Dinesh P. Mehta.
Random models and analy-
ses for chemical graphs. In-
ternational Journal of Foun-
dations of Computer Sci-
ence (IJFCS), 26(2):269–9?,
February 2015. CODEN
IFCSEN. ISSN 0129-0541.

KPM15

Kirsc
henhofer:1993:MDS

[P. Kirschenhofer, H. Prodinger,
and W. Szpankowski. Mul-
tidimensional digital search-
ing and some new parameters
in tries. International Jour-
nal of Foundations of Com-
puter Science (IJFCS), 4(1):
69–84, March 1993. CODEN
IFCSEN. ISSN 0129-0541
(print), 1793-6373 (elec-
tronic).

KPS93

Karhumaki:2013:FWT

[Juha Karhumäki, Svet-
lana Puzynina, and Aleksi
Saarela. Fine and Wilf’s
theorem for k-Abelian peri-
ods. International Journal
of Foundations of Computer
Science (IJFCS), 24(7):
CODEN IFCSEN. ISSN
0129-0541.

KPS13

Kurganskyy:2008:RPL

[Oleksiy Kurganskyy, Igor
Potapov, and Fernando
Sancho-Caparrini. Reach-
ability problems in low-
dimensional iterative maps.
International Journal of
Foundations of Computer
Science (IJFCS), 19(4):
935–951, August 2008. CODEN
IFCSEN. ISSN 0129-0541
(print), 1793-6373 (elec-
tronic).

KPSC08

Keum:1997:DAS

[Young Wook Keum and
Hwakyung Rim. Design and
analysis of the Symmetric
Banyan Network (SBN): a
min with high performance
and high fault tolerance. In-
ternational Journal of Foun-
dations of Computer Sci-
ence (IJFCS), 8(3):253–9?,
September 1997. CODEN
IFCSEN. ISSN 0129-0541
(print), 1793-6373 (elec-
tronic).

KR97

Klappenecker:2003:QSR

[Andreas Klappenecker and
Martin Rötteler. Quantum
software reusability. In-
ternational Journal of Foun-
dations of Computer Sci-
ence (IJFCS), 14(5):777–9?,
October 2003. CODEN
IFCSEN. ISSN 0129-0541
(print), 1793-6373 (elec-
tronic).

KR03

Kutrib:2008:OSW

[Martin Kutrib and Jens
Reimann. Optimal simul-
ations of weak restarting au-
tomata. International Jour-
nal of Foundations of Com-
puter Science (IJFCS), 19
CODEN IFCSEN. ISSN
REFERENCES

0129-0541 (print), 1793-6373 (electronic).

REFERENCES

ISSN 0129-0541 (print), 1793-6373 (electronic).

REFERENCES

Kutrib:2005:PNR

Kari:2012:BSR

Kenyon:1990:EBF

Kobayashi:1996:FN

Ke:2017:AMB

Kaminski:2010:FMA

Lagogiannis:2014:PQD

Lagogiannis:2017:QOP

[Lag17] George Lagogiannis. Query-optimal partially persistent

Lam:2014:BSP

Larsen:1998:SOP

Larsen:1999:GRA

Lazar:2013:BBS

Li:2004:QA

Lipman:2003:NAA

Lu:2006:CR

Shiyong Lu, Arthur J. Bernstein, and Philip M. Lewis. Completeness and realizability: Conditions for automatic generation of work-

Ling:2002:SI

Lu:2006:PFS

Lazar:2009:DFC

Li:2012:MAR

Lederer:2001:ARV

Lai:2004:SGS

Li:2017:ERD

Yinkui Li, Mingzhe Du, Hongyan Li, and Xiaolin
REFERENCES

Leopold:2003:CMA

Leung:2004:ICA

Leung:2005:DCN

Leupold:2016:GIL

Larsen:1996:ERB

Lin:2011:NIB

Li:2011:LBS

REFERENCES

Lee:2009:NCA

Li:2000:MEE

Li:2000:PRC

Li:2001:EJS

Li:2007:IDA

Li:2012:PAE

Li:2012:PHC

Keqin Li. Probing high-capacity peers to reduce download times in P2P file sharing systems with

Lin:2007:FSS

Lindell:2008:NFF

Link:2008:IMD

Lisitsa:1993:CUC

Li:2017:MMA

Lin:2009:VST

Lin:2017:IID

[Loos:2008:DCS]

[Lisitsa:2008:RAV]

[LaTorre:2016:SBP]

[Lohtinen:2010:BGG]

[Lohtinen:2011:ESN]

[Lohtinen:2013:HPD]
Lauer:2007:UEDa

Lauer:2007:UEDb

Loding:2015:SPD

Lohrey:2010:CMP

Lohrey:2005:DCA

Lohrey:2011:WEO

REFERENCES

Li:2011:DPF

Luccio:1992:AIP

Luccio:2007:NDP

Luo:2004:PDE

Lancia:2008:FLM

Lodaya:1992:TLC

LeVerge:1998:NRC
Hervé Le Verge and Yannic Saouter. New results on computability of recur-

Lomuscio:2013:AGR

Lepere:2002:AAS

Lee:2012:PMF

Lucanu:2009:RLB

Lugiez:2011:FAD

Lozin:2008:CWB

REFERENCES

[**LWYL14**] Yinkui Li, Zongtian Wei, Xiaokui Yue, and Erqiang Liu. Tenacity of total graphs. *International Jour-
REFERENCES

[185]

0129-0541 (print), 1793-6373 (electronic).

Liao:2015:NOC

Lu:2016:MRL

Leporati:2006:SIB

Macarie:1996:NMF

Madhu:2003:PRS

Morris:2009:USP

Maletti:2005:RTS

Maletti:2007:PS

Andreas Maletti. Pure and O-substitution. Inter-
REFERENCES

Maletti:2015:PWR

Miura:2005:CDR

Miura:2006:CDP

Maneth:2015:SDE

Marche:1992:WPA

Martin:1997:ETA

Margenstern:2008:FTP
REFERENCES

Margenstern:2008:CCA

[Mas08b]

Martyugin:2009:LSR

[Mart09]

Mastrolilli:2004:SMM

[Mas04]

Masopust:2009:TDM

[Mas09]

Masopust:2013:NLP

[Mas13]

Matsumae:2004:SMS

[Mat04]

Martini:2003:DHM
Paul M. Martini and Walter A. Burkhard. Double hashing with multiple passbits. *International Journal
REFERENCES

Muskulus:2006:CBC

Moslehi:2017:SBP

Mantler:2002:CRB

Mumme:2013:EFS

Montoro:2011:FPN

McNaughton:1990:DFL

Mardare:2008:LCR
Radu Mardare, Matteo Cavaliere, and Sean Sedwards. A logical characterization

Mahapatra:2000:RSG

Martinez-Del-Amor:2011:SAM

Masse:2013:MW

Monien:1997:CLS

Meer:2012:SIT

Melnikov:1993:ECI

B. F. Melnikov. The equality condition for infinite catenations of two sets of finite words. *International Journal of Foun-
191

REFERENCES

Mereghetti:2008:TDP

Mandal:2014:SA

Melo delima:2008:MAA

Mang:2006:CCA

Masakova:2012:P

Matsumoto:2009:RTE

Mignosi:1990:SWA

Filippo Mignosi. Sturmian words and ambiguous

Man:2011:EPS

Mondal:2011:MQS

Maur:2012:P

Ma:2017:LBI

Manacher:1997:FMC

Mancheron:2005:CCL

Mandal:2007:MAB

Manca:2011:LGS

Mairesse:2017:USS

Malcher:2010:SSB

Mantaci:2010:BPD

Merkle:2005:DPC

<table>
<thead>
<tr>
<th>Author1</th>
<th>Author2</th>
<th>Year</th>
<th>Title</th>
<th>Journal Title</th>
<th>Volume</th>
<th>Pages</th>
<th>Month</th>
<th>Year</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

Morin:2010:USM

Monti:1991:STB

Moffat:1993:HS

Magalini:2007:PCU

Mcquillan:2012:P

Mraz:2007:ARA

Martins:1999:DAR

Margolis:2004:WGM

S. W. Margolis, J.-E. Pin, and M. V. Volkov. Words

Maletti:2011:OHM

Maletti:2012:UWH

Metivier:1991:SOF

Makowsky:1999:CWG

Manuel:2011:CCA

Moreira:2013:P

Mahajan:2006:ABS

REFERENCES

Kalpana Mahalingam and K. G. Subramanian. Prod-

Meduna:2016:C

Meduna:2016:SMG

Malik:2006:CFT

Maletti:2010:PQR

Miura:1999:LTA

K. Miura, D. Takahashi, S. I. Nakano, and T. Nishizaki. A linear-time algorithm to find four independent spanning trees in four connected

Meier:2009:CSF

Meier:2015:ECS

Mukund:1992:PNS

Miyazawa:2011:BCT

Martin-Vide:2007:DPP

Martin-Vide:2002:PFA

REFERENCES

[NH02] V. Ng and M. K. Ho. An intelligent agent for Web advertisements. *International
REFERENCES

[NP09] Francois Nicolas and Yuri Pritykin. On uniformly re-

Navarro:2011:SQ

Nikoletseas:2000:CPR

Nishimura:2000:FSS

Niu:2012:TPS

| [Okh05] | Alexander Okhotin. A characterization of the arithmetical hierarchy by language equations. *Inter- |
Okhotin:2006:GLP

[Okh06]

Okhotin:2007:NDC

[Okh07]

Oliveira:2013:WAC

[Oli13]

Orlandic:1996:SOT

[OM96]

O’Neil:2015:CCS

[O’N15]

Ochem:2008:AAS

[ORS08]

Oles:1992:WCM

[Ole92]
Olariu:1993:NCU

Olariu:1992:OPE

Oida:2001:CDO

Ottman:1992:UBT

Otto:2013:CPC

REFERENCES

REFERENCES

ISSN 0129-0541 (print), 1793-6373 (electronic).

Perez-Hurtado:2011:PAA

Peng:1995:NTP

Pighizzini:2009:DPA

Pighizzini:2015:IAL

Pin:2012:EDL

Prieur:2006:STS

Plaza:1996:PSR

REFERENCES

ISSN 0129-0541 (print), 1793-6373 (electronic).

Pighizzini:2014:LAR

Paun:2006:P

Paun:2006:STS

Paun:2007:CMS

Paun:2007:SNS

Paun:2008:RCL

Paun:2002:CCN

[Paun:2011:SPM]

[PPRPS11]

[PQ06]

[PR00]

[PR11]

REFERENCES

[PS02] G. Pighizzini and J. Shallit. Unary language opera-

Pelantova:2012:ARW

Petrova:2012:CPB

Palioudakis:2017:WCB

Prusinkiewicz:2012:SGM

Pipe\textsc{r}:1990:RSE

Peled:2007:P

Pelc:2014:EGE

Andrzej Pelc and Anas Tiane. Efficient Grid exploration with a stationary token. *International Jour-
REFERENCES

Petrini:1998:PAW

Potanin:2013:P

Poon:2004:MTC

Pym:1992:UAL

Peng:2010:AAS

Poon:2007:DBB

Qiu:2003:INT
Qi:2015:LED

Qi:2006:SSP

Quaglia:2007:SDB

Rajabi-Alni:2015:CPS

Rampersad:2005:WAP

Rao:2008:GCR

Ravikumar:2008:BND

REFERENCES

Rispal:2005:CRS

Rosenberg:2011:HCI

Romero-Campero:2009:MAC

Reinhardt:2007:THH

Rahul:2011:DSR

Recalde:2010:CPN

Camille Roth, Sergei Obiedkov, and Derrick G. Kourie. On succinct representation of knowledge community taxonomies with formal concept analysis. *International Journal of Foundations of Computer Science (IJFCS)*,
REFERENCES

[102x681]REFERENCES
[102x681]221

Rosolini:1990:AMS

Rosenberg:2000:GDP

Rosenberg:2003:EPF

Roversi:2000:LAL

Roussel:1999:HDM

Rauber:2004:PBL

Rauber:2006:DRD
REFERENCES

Roussel:1999:GLN

[RRT99]

[Raja:1995:QBC]

[RS95]

[Rajasekaran:2000:SIR]

[RS00]

[Roberts:2001:RNC]

[RS01]

[Richomme:2004:CRM]

[RS04]

[Ravikumar:2007:ELD]

[RS07]

[Reghizzi:2012:RSL]

Stefano Crespi Reghizzi and Pierluigi San Pietro. From regular to strictly locally

REFERENCES

Rigo:2011:LCR

Rhodes:2001:TCC

Ryabko:2015:CAF

Ranjan:2012:VIP

Sahni:2001:MAO

Sakurai:2001:CMC

Salomaa:2007:CSO

Salomaa:2011:PSA

Salomaa:2013:FCB

Santhosh:2013:SSD

Saoudi:1992:PAI

Schopf:2001:USI

Seredynski:2012:DRB

Sharma:2017:BST

Sburlan:2006:FRS
Dragoș Sburlan. Further results on P systems with

REFERENCES

REFERENCES

Sun:2017:SCB

Shallit:2004:SAL

Subramanian:2009:PM

Shur:2007:RAP

Shur:2011:EMP

Shur:2014:LFA

Shur:2016:P

Sibeyn:1997:RTT

Sirakoulis:2015:CPC

Shi:2004:FAD

Saidane:2001:MPE

Schmollinger:2003:DPA

Sahni:2004:EDL

Sahni:2003:DSO

Strauss:2008:CSB

Tinus Strauss, Derrick G. Kourie, and Bruce W. Wat-

Sulzmann:2017:DBD

Slobodova:1995:POW

Supol:2005:ACP

Simunek:2007:BFA

Subramanian:2013:TDD

Smith:1995:HPT

Saoudi:1990:COT

A. Saoudi, D. E. Muller, and P. E. Schupp. On the complexity of omega-tree sets and Nerode the-

Saoudi:1992:FSP

Smyczynski:2012:CMI

Skrypnyuk:2013:RFS

Safavi-Naini:2011:USC

Safavi-Naini:2006:RLS

Sosik:2009:P

REFERENCES

Singh:2004:HMD

Sprojcar:2009:PSM

Shyamasundar:2000:LRS

Shyamasundar:2000:PRP

Sosik:2011:PFR

Saha:2015:NRF

Sajith:1999:PVC

REFERENCES

[SSS09] Natalia V. Shakhlevich, Akiyoshi Shioura, and Vitaly A. Strusevich. Single machine scheduling with controllable processing...

Salomaa:2013:GKD

Symvonis:1993:SPS

Sprague:1999:QTA

Shi:2001:LBH

Saifullah:2011:SSC

Shikishima-Tsuji:2016:RIH

Staiger:2005:IIF

Ludwig Staiger. Infinite iterated function systems in Cantor space and the Hausdorff measure of ω-power
Staiger:2007:PFL

Stewart:1993:TA

Steinberg:2011:AT

Stolboushkin:1992:CPP

Subrahmanian:1990:RTBa

Subrahmanian:1990:RTBb

Subramani:2005:CRW

Suc:1990:ALH

Sun:2000:DRR

Sunckel:2005:DCM

Sun:2011:PSM

Sutner:2003:RP

Sutner:2014:IIT

Suzuki:2013:EET

Salomaa:2010:SOP

Say:2012:QCA

Sun:2017:CPP

Szwast:1995:NAP

Teh:2017:MRS

Tamm:2008:TMB

Ti:2010:SIS

Tang:2014:CRB

Teichmann:2017:RAW

Teh:2015:CWP

Touyama:2001:PEP

Thinh:1991:RMD

Thomas:2006:MSS

[Tru08] Bianca Truthe. Remarks on context-free parallel communicating grammar systems generating crossed

Tse:2016:BAT

Trejo-Sanchez:2017:SSA

Tsin:2006:EDA

Tiwari:2013:CPR

Takahashi:2001:LRF

Tsukada:2001:MLT

Tsukada:2001:EPM

[Yasuyuki Tsukada. Errata: The paper: Martin-Löf’s...

Tang:2003:IIV

Turker:2015:CSP

Tian:2017:ORA

Tucker:1991:PSR

Taheri:2011:PSD

Uehara:1999:MLF

Ueno:2013:BRB
Kenya Ueno. Breaking the rectangle bound bar-

Urgaonkar:2007:APC

Ungor:2002:PTS

Uehara:2007:CLP

VanZijl:2005:MNS

vanderHoek:1992:MSI

vanderMeyden:2000:PBL

Vergnaud:2009:NEP

Damien Vergnaud. New extensions of pairing-based signatures into universal
Verbitsky:2001:RQB

Viksna:1996:IIL

Vinodchandran:2005:NCM

Vermeulen-Jourdan:2005:LDS

vanLeeuwen:2015:SCR

Vorel:2016:SSC

Voisin:1999:SCP

F. Voisin and G. R. Perrin. Sparse computation with
REFERENCES

Wang:2014:DRG

Wang:2004:HCD

Wei:2013:GCK

Wang:2014:ZKB

Wan-Di:1990:PAP

Wu:2003:BAH

Wang:2017:DCC

Wang:2015:SCM

REFERENCES

(VIJFCS), 26(5):583–??, August 2015. CODEN IFCSEN. ISSN 0129-0541.

Wei:2012:IRK

Yuechuan Wei, Chao Li, and Dan Cao. Improved related-key rectangle attack on the full HAS-160 encryption mode. *International Journal of Foundations of Computer Science (IJFCS)*, 23(3):733–??, April 2012. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Wang:2003:DSB

Wilson:2005:CPP

Ware:2013:CVG

Wu:2003:COM

Wong:1996:AFM

Wong:2001:AFL

Wiedermann:2008:WMC

Wang:2016:NCO

Wu:1997:MCN

Wiedermann:2008:VNS

Wei:2016:ESS

Wei:2003:EAS

REFERENCES

[XZS16] Zibi Xiao, Xiangyong Zeng, and Zhimin Sun. 2-adic complexity of two classes of generalized cyclotomic bi-

Yahalom:2012:TFP

Yamakami:2003:AQF

Ye:2006:CTS

Yu:2011:RSV

Yamauchi:2011:RCE

Yuan:2011:LMF

Yang:2010:CMI

[YCTW10] Jinn-Shyong Yang, Jou-Ming Chang, Shyue-Ming

[YH11]

Yang:2008:SAS

[YDI08]

Yen:2008:DCA

[Yen08]

Ye:2011:WCP

[YH11]

Yamamoto:2014:TIV

[YHK14]

Yen:2013:P

[YH11]

Yli-Jyra:2005:ADG

Anssi Yli-Jyrä. Approximating dependency gram-

Yang:2014:PAG

Yu:2017:A

Yahia:2008:P

Yakaryilmaz:2013:TBS

Yakaryilmaz:2016:DST

Yang:2000:GMC

Yang:2000:PRP

[YSM+00b] Z.-H. Yang, C.-Z. Sun, Y. Miao, A. Sattar, and
REFERENCES

Yang:2002:CSB

Yu:2002:SI

Yu:2011:P

Yu:2013:CIE

Yang:2011:ACD

Yen:1994:SCR

Yu:2007:SEO

Zajicek:2009:NSP

Zan91

ZB00

ZB02

ZBS05

REFERENCES

2005. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

REFERENCES

Zha:2013:CNA

Zhang:2017:FCP

Zhong:2002:RCO

Zhang:2011:WAF

Zhang:2011:NBF

Zhu:2017:PSN

Zdarek:2011:TBI

