A Bibliography of Publications in *International Journal of Foundations of Computer Science*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
12 November 2018
Version 1.66

Title word cross-reference

#P [Zan91]. #P-Completeness [Zan91].

(β) [Dom12]. (1,2) [BZ13]. (2+p) [ZG13].
(2,2) [ST16]. (3k+1) [DZ00]. (A,B) [JL01].
(δ,α) [CCF09]. (δ,γ,α) [FG08]. (δ,κ,α)
[FG08]. (n,k) [WC13, CHYT14, YCL11, CC98, HLHH06].
(n,n(n+1)) [NS98]. 1
[CHWX09, Dic93, LR04, TCT14]. 11 [LJ17].
2 [AV96, BYPD95, HKTO0, HJP+13, JZ16,
JW08, LA03, Pri06, TSFZRP17, XZS16,
XCX17, ZM11]. 2^n [CKZ17]. 2m [ZWCL14].
3 [BYPD95, DH96, JSPD03, KPSL18, LJ17,
SJ04, ST93, Ts06]. 4 [XC15, ZZC15]. 7/3
[DSS15]. 73 [Ram05]. * [MTVM15]. 2

[Joh00]. ab*c [KL03]. ASPACE(log log n)
[GP13]. β [Shu11]. C1 [XBE02]. CTL
[MTVM09]. CTL+ [MTVM09]. I_2 [BW14].
J [BL14]. R [BL14]. D
f [DGL93]. F_p + F_{p^r} [WGF16]. G(2^m,2)
[YCTW10]. G^{x+} [AT15]. G^{x-} [BTO17].
GF(2) [BB99]. GF(2^n) [WXF16]. H
[GMU15]. K
[BT07, CHWX09, PV98, ZBS05, Aku06,
AE99, DDHL11, DG98, DGL93, EHS15,
IZN99, INY07, KPS13, LZ12, MXY+04,
Nak04, RS04, TCSL10, YTN01, ZZZ16].
K_{m,m} [Kan15]. L [ADD+18, PSS12]. L(2,1)
[LL18]. L(j,k) [Cal15]. L_p [CMR07]. M
[Jun14, PT18, Teh16a, Teh16b].

F_{2^m}
[ZWCL14]. μ [DL12]. N
[AM09, Bed18, JM03, PV98, INY07]. O
KLB13, ZWS96]. Ad [AWF03, CIS03, LB03, SB12, WLF03, WD03]. Ad-Hoc [CIS03]. Adapting [CFG12, KLB13, CLT14, CHYT14, KG11, LX94, LB03, SW09, TL99, Tse16, VJD05]. Add [ANDZM09]. Addition [Wan04]. Additive [SS07a]. Adic [XZS16]. Adjacent [AKS14]. Adjusting [KSJ08, KLB13, ZWS96]. Advances [HO00]. Adversary [BHK18b].Advertisements [NH02]. Advice [BBB18, FH05, KSY14]. Aerial [Ami05]. Ane [BKP18, Rov00]. Armative [PHPJRN11]. AFL [BJ07a]. Against [BCFR07, BKS12, CLT14, CHYT14, KG11, LX94, LB03, SW09, TL99, Tse16, VJD05]. Against [HO00]. Agent [BF07, BDDN01, EH12, MRT95, LW93, Li01, LJH17, LCL06, MRT95, Ole92, SN13, TST01a]. Algorithm [ATK12, ANDZM09, ARS11, BV08, BB04, BKS12, CPY02, CF06, CFRD08, CDJ09, CTZ01, CL03, CLT14, CHYT14, DGN07, DN16, DG98, FL09, FZAM08, FF12, Fri10, Fuj17, GLV14, Gro03, GD12, GW17, HKV17, Hei97, HO99, HM04, HW17, Hut02, IST05, IZM99, JH08, KK10, Kar99, Kör03, LW93, Li01, LJH17, LCL06, MRT95, Ole92, SN13, TST01a, Wang99, MRT95, Nish09, Oki96, PRN13, PHY90, PR00, Pym92, QFL15, SW09, SS07b, ST99, SWK08, Tor13, TSFZRP17, Tse06, WG17, Won96, Won01, X511, ACM11, CC11]. Algorithmic [BS12, CFMR05, DGM15, GGR14, HPV99, Riv04]. Algorithms [AFB96, Aku06, ALR16, AC05, AMR05, AM11, ADD18, AE02, AE05, Ar15, AMOZ07, BT07, BRM07, BH02, BCF12, Bur12b, CD15, CCM07, CCF90, CDFG12, CGK08, CHWX09, CHZ06, CCG11, DFP90, DPF90, DD13, DGL93, DWS15, DMSS16, ERW04, ECFY02, FZ15, FZEBB05, FP03, FA06, GO09, GHJS05, Go90, HL06, HP09b, HLW09, IM12, INY07, IMS03, JMS05, JZ16, KSMRT18, KKH90, LTM02, Le04, Li12, LMM12, MPS99, MS04, Moh02, Moh03, Nak04, NB18, OSZ92, RLWW96, SRR15, Sah01, SK01, SK03, SJ04, SG04, ST93, TV07, Tor15, TL99, Tse16, WSNK03, WM05, WH03, ZBS05, Zom03, FG08]. Alignment [AE02, BBM12, CK08b, FM96, GD12, PYTH10]. Alignment-to-Alignment [FM96]. Alignments [CCP18]. Alive [BC12]. Allocation [BRSRC11, NWK06, WG17]. Almost [BKST18, HJ13, PS12a, PP11]. Almost-Equivalence [HJ13]. Almost-Universal [BKST18]. Alphabet [Dom12, GNP06, JRS01, JS08, JLR11, Pig15]. Alphabet-Independent [GNP06]. Alphabets [CTS18, Len16, MAS13]. Alternating [AK14, BCPR07, CLLL08, HIW01, HIR92, IIT91, MO10, Slo95]. Alternative [dSMOC18, Set08]. Ambiguity [AMR11, Iba05, KKM11, Leu05, MS04, MP07, Ser09, SL17]. Ambiguous [Mig90]. American [CGZ02]. Amiable [Ata07]. Amount [BGRY16]. Amplitudes [NS03]. Analog [LJW10]. Analog/Mixed [LJW15]. Analog/Mixed-Signal [LJW15]. Analyses [KPM15, Tse16, ZPXX17]. Analysis [AHKL+13, AH07, BVP95, BV98a, Bee95, BAK12, BCB12, BET03, DN16, DES09, EH12, FSWF11, FZAM08, FBF05, Go90, HP09b, HI04, IDR97, KR97, Le03, LC12, Li12, LN08, LPP92, Lus11, MH06, MGGP08, NAK15, OM96, PV98, RWZ01, ROK08, SET08, TY03, TV94, Wan04, WR16, Yam03, YLZ14, YB06, Yen08, ZZ16]. Analytic [BMMR11]. Analyzing
CLOZ04, CC05, CCR+90, CFY16, CG06, CR15, CMR07, CMRR08, CVMMV00, CKK02, CTS18, DJ12, Dom04, Dro92, DK98, DM11, DP14, D’so3, Dub95, ÉM11, Ési12, FG5+90, FTT10, Fre08, FK13, Fuj17, GLV14, GHZW05, GVL07, Glö07, Glö10, GSZ99, GH13, GH15, GQZ15, GC18, Gus13, GP15, HMZ05, HW05, HK90b, HJ13, HJ17, HK18, HKS13, IJT93, JM13, JJS08, JJJS18, JK07, KZ10, Kör03, KR16, KBBH99a, KSV03, KMS06, KSY14, Kud07, KL11, KMM06, KR08, KMO10.

Automata [KO13, KMW14b, KMW14a, KMW16, KO18b, Łód15, Loh10, Mac96, Mal1S, MR11, Mar08b, MVMM02, Mar97, Mar09, Mas13, MHT09, MZ12, MO07, MO09, MS18, Moh03, Moh13, MP91, MPJ07, Nak18, NTSH06, NWK05, NWK06, NCC+07, Oli13, Ott15, PI95, Pig90, PI14, Pig15, PM13, SS07a, Sao92, SY12, SM07, Sir15, Slo95, SVF09, Sut03, Tam08, Tor13, Tor15, TY15, Vor16, Vor18, WM13, WKS+08, YD08, YW06, YBI11, ZHZ11, ZZ18, ZQL12, CV13].

Automata-Based [Tor13].

Automated [CGR13, KM02, Pen93, TW09].

Automatic [ADR11, BCDP08, BK16, CRS12, DMSS16, GHS13, GRRS14, LD01, Loh05, LBL06, MH06, RS15, SS12a, SF07].

Automaton [AC11, CZoH17, CL14, CC05, GGL12, IT13, JH08, KPS08, MOSZ18, Okh03, Pol05, Pru17].

Automaton-Based [Okh03].

Autonomous [BFMBS11].

Auxiliary [ZLw17].

Base [BDI11, HJ13, JZ16, BV08, Vor18].

Batch [DFLL02, LLQ06, PY04, ZPXX17].

Bayesian [ZLw17].

BDD [FBK05].

BDD-based [FBK05].

Be [AAV00].

Becomes [KM07b].

Bee [EP17].

Before [BSS12].

Behavioral [AC05, LH11].

Behavioral [AC05, LH11].

Belated [Tse16].

Benford [Rav08].

Bent [XCX17, ZL11].

Bernays [RS95].

Beta [CS18].

Bet [Lag17, LF96, OM96].

Back [GH15].

Backbone [FPP03].

Backtracking [MT95b].

Backward [FL09].

Backward-Oracle-Matching [FL09].

Balanced [CFZH13, CS00a, Fei96, Lag14, LW03, LL16, MX11, RAB15, YTP11, ZWW14].

Balancing [Hei97, MD00, ST01].

Banded [BL01].

Bandwidth [GR03].

Banishing [HJV93].

Banyan [KR97].

Barrier [Uen13].

Base [DRDN08, FZ03, Hon06, MP91].

Bases [ADR11, ARS11, ABL11, AH07, BCB12, BK95, BNR99, BDDN01, BKS12, CCM11, CP06, CDPT16, CCD07, CST+17, CK18, CVDV10, DOPS93, DEZ01, DFDFZ12, FZT14, GLW02, GR03, HK02, HW10, JC03, JK07, LHT09, LTZ12, LH11, Luc09, MLO17, MM07, MMS17, MMS05, ND02, NWK08, NSVA12, Okh03, PRN13, Qua07, RK09, RR04, SB12, ST01, SL17, TWZ11, TY17, Tor13, Tor15, Tse16, VG01, Ver09, WHLH17, WD03, XHLF02, XTC16, YTL02, YW06, ZM11, ZPXX17, ZGCZ18, vLW15, FBK05, ZWCL14].

Basic [BV08, Vor18].

Batch [DFLL02, LLQ06, PY04, ZPXX17].

Bayesian [ZLw17].

BDD [FBK05].

BDD-based [FBK05].

Be [AAV00].

Becomes [KM07b].

Bee [EP17].

Before [BSS12].

Behavioral [AC05, LH11].

Behavioral [AC05, LH11].

Belated [Tse16].

Benford [Rav08].

Bent [XCX17, ZL11].

Bernays [RS95].

Beta [CS18].

Bet [Lag17, LF96, OM96].

Back [GH15].

Backbone [FPP03].

Backtracking [MT95b].

Backward [FL09].

Backward-Oracle-Matching [FL09].

Balanced [CFZH13, CS00a, Fei96, Lag14, LW03, LL16, MX11, RAB15, YTP11, ZWW14].

Balancing [Hei97, MD00, ST01].

Banded [BL01].

Bandwidth [GR03].

Banishing [HJV93].

Banyan [KR97].

Barrier [Uen13].

Base [DRDN08, FZ03, Hon06, MP91].

Bases [ADR11, ARS11, ABL11, AH07, BCB12, BK95, BNR99, BDDN01, BKS12, CCM11, CP06, CDPT16, CCD07, CST+17, CK18, CVDV10, DOPS93, DEZ01, DFDFZ12, FZT14, GLW02, GR03, HK02, HW10, JC03, JK07, LHT09, LTZ12, LH11, Luc09, MLO17, MM07, MMS17, MMS05, ND02, NWK08, NSVA12, Okh03, PRN13, Qua07, RK09, RR04, SB12, ST01, SL17, TWZ11, TY17, Tor13, Tor15, Tse16, VG01, Ver09, WHLH17, WD03, XHLF02, XTC16, YTL02, YW06, ZM11, ZPXX17, ZGCZ18, vLW15, FBK05, ZWCL14].

Basic [BV08, Vor18].

Batch [DFLL02, LLQ06, PY04, ZPXX17].

Bayesian [ZLw17].

BDD [FBK05].

BDD-based [FBK05].

Be [AAV00].

Becomes [KM07b].

Bee [EP17].

Before [BSS12].

Behavioral [AC05, LH11].

Behavioral [AC05, LH11].

Belated [Tse16].

Benford [Rav08].

Bent [XCX17, ZL11].

Bernays [RS95].

Beta [CS18].

Bet [Lag17, LF96, OM96].

Back [GH15].

Backbone [FPP03].

Backtracking [MT95b].

Backward [FL09].
CKZ17, CS00a, DSS15, HH12, HH11, HFLD09, Hol11, IN08, JS03, KYZS17, KK90, LZN06, OW92, PS12b, RAB15, Sal07, Sha04, Smy12, Vor16, XZS16, YB06.

Binding [AB17b], Binoid [GN11].

Binomial [ZZC15].

Bio [DH05, MB06].

Bio-Computation [MB06].

Bio-Operation [DH05].

Bioinformatics [KKS05b].

Biological [LJH17].

Biology [RCTC10].

Bipartite [FGV99, GV03, LV08, Tos06, Tos16, Won96, Won01].

Bipartitioning [HT95].

Bird [Ami05].

Bisemigroup [GN11].

Bisimulation [AHK07, ABH09, MC13].

Bisplit [GV03].

Bit [BT17, CF06, CCF09, DD13, DES09, HN06].

Bit-Parallel [CF06, CCF09, DD13, HN06].

Bit-Split [DES09].

Bitonic [INY07].

Bitwise [FNI16].

Bivariate [TWZ11].

Black [CS96, DSS08, HHP17, MC02].

Black-Box [HHP17].

Bordered [DVG03].

Borders [SM07].

Bottlenecks [JYF91].

Bottom [FSM11, Gaz06, Ma15].

Bottom-Up [FSM11, Gaz06, Ma15].

Bound [BBP11, CE98, FY08, HPP99, Uen13, ZSW14, ZG13].

Boundary [DRDN08, EH15, Fre02].

Bounded [BLM04, CFM12, CRSS11, DDD18, De06, DFLL02, DGM15, FCS05, IJT93, IS12, JZ16, LNP16, LZ93, MMP10, Mee12, Pet11, PZX07, Vik96, WLF03].

Boundedness [vdM00].

Bounds [ADD18, BKM15, DH18, Dom04, DSS15, Gus13, HH07, JWB03, LHG11, MV11, SNJ11, Uen13, YS13].

Box [HHP17].

Boyer [CFG12].

Branch [HPP99].

Branch-and-Bound [HPP99].

Branching [Bed18, PSA17].

Braune [CP06].

Breadth [CCR90].

Breaking [Uen13].

Bridge [Laz13].

Broadcast [Anc02, CFMS15, LAHN14, Nak04, PZX07].

Broadcasting [CYS12, HT09, PP06, WD03, XLC+04].

Broken [AAV00].

Brownian [Nis07].

Browsing [DE08].

Brujin [KX12, Noc98, NS98, WRN03].

Brute [CCP05].

Brzozowski [DN16, GLV14, SKW08].

Büchi [FKV06, KL11].

Buffer [DL9+14].

Bulk [CCG+11, FGN16].

Bundles [LWW00].

Burnside [KPS18].

Bursty [SKO4, SB17].

Buses [BT00, Mat04, PA98, WH03].

Buy [CCG+11].

Buy-At-Bulk [CCG+11].

Byzantine [PP06].

Cache [Leo03].

Caching [BLR09].

Cactus [TSFZR17].

Calculi [AH07].

Calculus [BDSV06, CP06, DL12, Kri92, Oga00, PT90, Pym92, RS95, Yue13].

Can [AAV00].

Cannot [KPS18].

Canonical [BJ05, BJ06, BJ07b, CC05, FGV09, GZ09, MAN05, WM13].

Cantor [Es12, St05].

Capacities [Li12b].

Capacity [BKM12, DST10, FL97, Li12b, Zet11].

Captures [DW03].

Capturing [FW90, ISA08].

Care [Ros03].

Careful [Vor16].

Carpi [Ber11].

Carriers [GH07].

Cartesian [MRT95, OIe92].

Cartesian-Closed [MRT95].

Cascade [WGD18].

Cascading [Sub05, Wan14].

Case [BMS12, BDC90, DN16, FK06, Fie96, KP10b, Lag17, PSA17, YH11, ZSW14].

Cases [BCR11].

Catalytic [HFLD09].

Categorical [Sak01].

Categories [MM01, Oli13, RGR11].

Category [EM11, MRT95, OIe92].

Catenation [CLMP16, CGK11, CGK12].
MT95b, NB18, SD16, Sir15, WAG+06].

Computations
[Bee95, CD15, CE98, CK18, DK98, HK09a, HFLD09, LD01, Mec12, YSM+00a],
Computer [TH01]. Computers [Rya15, Sah01]. Computing [TH01].

Computing [Rya15, Sah01].

Concatenation [JJS05, Okh07].

Concentration [Dai97].

Concept [BOV08, DE08, Jai98, ROK08]. Concerning [CCF08, Hon02, IR14].

Concurrency [Luc09]. Concurrent [BPT16, BET03, Dros92, DK98, MM07, PQ06, SKW08].

Condition [MP07, Mel03, Pal08, ZWW+14]. Conditional [LW95, LW06a, LHY+15, LYG17, MLO17, ZCX12]. Conditions [FT09, F008, LBL06, Oka00, WFG15].

Conference [IZ04, SNJ11].

Confidentiality [SZQ+17].

Confidentiality-Preserving [SZQ+17].

Configuration [WC04]. Conflicts [MSR06].

Congestion [GKKP99, KKP97, ZYHY14].

Conjecture [AV96, BMY17, Ber11, SFL17, PHPJRN+11, Ste11]. Conjectures [RS04].

Conjugates [BM+14].

Conjunctive [AK14, DG94, Jez08, Okh03]. Connected [AWF03, DWS15, ET14, Iba02, IN10, JKH08, KK10, KPS18, Li01, MTTN09, MN06, ST11, Tor15, WAF03].

Connection [WGD18]. Connections [DM08]. Connectivity [CV14, FP04, HLHH06, L13, LX17, NPSY00, Tsi06, WFG15, ZYXZ18, NS13, WC13]. CoNP [RZ01].

Consensus [BvdB18, RS13, SK01].

Consequence [BK95]. Consistency [ADR11]. Consistent [YSM+00a]. Constant [ANDZM09, CL98, FZCFB08, FT11, JYF91, Lag17, LZ15, NS18, OW92, Sny12, Sun00, WQ97].

Constant-Degree [CL98]. Constant-Free [NS18]. Constant-Memory [Sny12].

Constant-Width [CL98]. Constrained [AE05, CFM13, CHX09, GD12, NCC+07, RAB15, Tor13]. Constraint [MZ01].

Constraints [ADR11, AE02, BB03a, Com90, FTV01, FS08, GR03, JSO10, LTW02, LOPR18, MN00, NN93, PYTH10].

Constructing [AAA+09, CPY02, CC05, DH06, MC02, PS12b, TJJ13, XC15, YCTW10, ZH13, ZWCL14].

Construction [BF07, CGL12, DD08, FZT14, HYT15, HHP17, KKS05a, LW06b, MOSZ18, MNL97, Sak01, Set08, SKW08, WF17, WZ15, Zho02].

Constructions [DQFL12, LL16, SNJ11, Sal13, WPZ16, WKS+08].

Constructive [BRSRC11, Fre06, Oga00].

Constructivizing [Arv97].

Constructors [Huy91].

Constructs [HST01].

Containment [NRT00].

Contended [SB01].

Context [Cig04, GSZ09].

Context [Asv07, BMS92, BCR11, BCD14, BESW07, BKH05, BI04, D14, EIM18, EL01, FLST12, GKS10, HKS13, HW10, KK07, Kog18, KRK16, KM07b, LO13, Mg09, Ott13, Pal08, Rav08, Rei07, Sao92, Tei17, Tra02, Tru08].

Context-Free [Asv07, BCR11, BCD14, BESW07, BKH05, BI04, D14, EIM18, EL01, FLST12, GKS10, HKS13, HW10, KK07, KRK16, LO13, Mg09, Pal08, Rav08, Rei07, Sao92, Tei17, Tra02, Tru08].

Context-Freeness [Kog18].

Context-Sensitive [Ott13].

Contexts [CFRD08, Has00].

Continuous [CZ11, GFK98, RHS10].

Continuous-Space [CZ11].

Convergecast
Convergence [MV11].

Convergent [ECY02]. Convertible
[LHT09, LH11]. Convex
[CLW09, DRDN08, MAN06, MNN06].

Convolutions [Zha17].

Conway [FNI16].

Cooking [GW18]. Cooperating
[FFH15, Kar09, Mas09, MO07].

Cooperation [ARV07, SB12]. Cooperative
[FZ02]. Cooperativeness [MH06].

coordinate [ACM11]. Coordinated
[GCK08]. Core [Teh15].

Correcting [GRB03]. Correctness
[Bee95].

Correlation [EAB+16, GK11].

Correspond [BLS+05]. Correspondence
[DRS14, Fin12, HH11]. Corrigendum
[MS16a]. Cost [DGN07, FH05, For10, HI18,
OW92, TV94, WHLH17, WO03].

Cost-Effective [WHLH17]. Cost-Optimal
[WO03]. Countable [Bed18, RC05].

Counter [EIM18, IJT+13, IDY08, Pet11, SY12].

Counterexample [CFH+03].

Counterexample-Guided [CFH+03].

Counters [CR15, INY07, Raa08].

Counting [AC11, CP03, CCP18, G009,
MR11, SJ04, Tos06, ZSW14]. Cover
[CPY02, CGH05, CYS+12, HW17, Kör03].

Coverability [GRV10]. Coverage
[CMD13, FK13]. Covering
[DS06, GGR14, YB06, ZBS05]. Coverers
[TSS15]. Covers [CPC05, ER06].

CP [YMC+17]. CP-ABE [YMC+17]. CPS
[Oga00]. CPS-Calculus [Oga00]. CPU
[CYZ14]. Crawlers [LKM02]. Credit
[Tse16]. Credit-Based [Tse16]. Crick
[KM08]. Criteria [HL04]. Critical
[DW04, HB06, SS12a, Sun11]. Crochemore
[FJ12]. Cross [WM05]. Cross-Pollinating
[WM05]. Crossed [LCh18, Tn08, ZFL+17].

Crossing [BPT06, ST16]. Crosstalk
[KAPF05]. Crowd [Sir15]. Cryptographic
[DQFL12, FY11]. Cryptography [CST+17].

Cryptosystem [LHT09]. CTL [MTVM15].

Ct1*[CZ11]. Cube

CX98, LC18, PS12b, ZYYH14, ZFL+17].

Cube-Free [PS12b]. Cube-Of-Rings
[CX98]. Cubes [CLT14, D98, ZCYX12].

 Cuboids [JSPD03]. Curve [Fre02].

Customizing [LX94]. Cycle
[GP15, NS98, Ros00, Won06, Noc98].

Cycle-Stealing [Ros00]. Cycles
[APMP17, DH18, Won01, ZFL+17]. Cyclic
[DESW05]. Cyclotomic [XZS16].

Cyclotomy [XCY16].

D [CHWX09, HJP+13, JSPD03, JW08,
Le03, LJ17, SJ04, ZM11]. DOL
[Hon02, Hon06, Hon07, Sal07]. DAGs

Dassow [BRST07]. Data [ATK12, BSG03,
KY96, L0D07a, LOD07b, Lin08a, MLO17,
MMS17, Oka99, Oka00, RGR11, R06,
Ros00, SKL03, TV14, T91, WHLH17,
YZY+18, YMC+17, ZPXX17, ZLW+17].

Data-Parallel [Ros00]. Database
[HMZ05, Lin08b, SEE99]. Databases
[Laz98, MT95b, VS93]. Databace [Poo04].

Datalog [vdM00]. Dataswords [MR11].

Date [KS10]. Davidson [HO99]. DDOS
[DEKZ11]. De-Quantisation [CC11].

Deadlines [PZX07]. Deadlock [BDC90].

Dealer [Sun00]. Death [EMR10]. Debates
[YSD16]. Decaying [FIO08].

Decentralized [MMS05]. Decidabilities
[BKM15]. Decidability
[AT12, BAK12, BCM14, Bur12b, DS05, DK12,
Dur13, FM13, Gaz06, Loh05, R0S10, Yen08].

Decidable [AGM14, CRS12, Man15].

Decide [DK11]. Deciding [Dai97].

Deciphering [GMNS15]. Decision
[DH05, DMS16, IR14, MVM07, ZB00, ZB02].

Decisions [Cig04]. Decoder [BBFZM06].

Decoding [GMS15, OSZ92].

Decomposable [FGV99]. Decomposition
[CFPR03, Dic93, FGV99, Jol00, MAN05,
SVF09, Yen09, ZWCL14]. Decompositions
[CSV02, DS05, PR00]. Decontaminating
[FHL07]. Decontamination [LPS07].
Decryption [CCD07]. Dedicated [BRST07]. Definability [BV98b, ES01].
Definable [DK98]. Defined [DH05, EMR11, Hut02, JP06]. Definitions [Kam95, Mob03]. Degenerate [BRM07, IMP12, LJH+17]. Degree [ABT16, Asl16, AHK17, AO10, AA13, BTO17, BB04, CL98, DH96, HL01, HLY+04, KA18, LDIW17, Tor13, WLF03, WQ97].
HL01, HLY+04, HI18, Li07, Moh03, PRN13, YHK14, ZWS96]. Distances [ST99].
Distinct [LZGF16]. Distributed
[AETZ05, AHR02, ABL+11, BCB12, BB04, BKS12, CLT14, Cig04, DCS13, DEMT05, F FH15, FBHH01, HPP99, KK10, KG11, KBH90a, KSV03, LTZ12, Mas09, MO07, MV11, Pa01b, SK01, San13, SP04, Ti06, WL03, WC04, WRN03, XS11, YSM+00a, ZC05]. Distribution
[BBM+12, Cas95, DG98, MMR10, PNN+10, RR06, Rav08, SNWW06, SNJ11]. Distributions [BBM+12, Cas95, DG98, MMR10, RR06, Rav08, SNWW06, SNJ11]. Distributed [AETZ05, AHR02, ABL+11, BCB12, BB04, BKS12, CLT14, Cig04, DCS13, DEMT05, F FH15, FBHH01, HPP99, KK10, KG11, KBH90a, KSV03, LTZ12, Mas09, MO07, MV11, Pa01b, SK01, San13, SP04, Ti06, WL03, WC04, WRN03, XS11, YSM+00a, ZC05]. Distribution
[BBM+12, Cas95, DG98, MMR10, PNN+10, RR06, Rav08, SNWW06, SNJ11]. Distributions [BBM+12, Cas95, DG98, MMR10, RR06, Rav08, SNWW06, SNJ11]. Diverse [BGI+18]. Diversity [Qua07]. Diversity-Based [Qua07]. DLOG [Gre96]. DNA
[DEKW06, Pat06, ZH06]. Drawings
[ADD+18, MAN06, MNN06]. Drip [CP06]. Driven [BESW07, DS02, NKW08]. DSMS [ST01]. Dual [CLT14, DR14, HL04, LPC11, Okh07, SZQS18, ZCX12, ACM11]. Dual-Cubes [CLT14, ZCX12]. Dual-Net [LPC11]. Due [KS10]. Duplication
[DGMM15]. Duval [HN04]. Dynamic
[BV98a, BDC90, CFM15, Cas95, CZ11, DEZ01, GBL02, GR03, Hei97, H18, JP07, KG11, KK90, Lag14, LOD07a, LOD07b, Li00a, Lon09, MD00, NWK05, NWK06, PFG+01, Rud15, SK04, TZ11, Wan14, XFJ03]. Dynamical
[PBMZ06, Tos06]. Dynamically
[CVPV08, LCVLV09]. Dynamics [MB06].
e-Normalization [Moh02]. e-Removal [Moh02]. E-Unification [GJV00b]. Earliest
[FSM11]. Earliness [KS10]. Earliness-Tardiness [KS10]. Early
[PPJS07]. Easier [Lug11]. Eco
[LK11, LCVLV09]. Eco-Grammar
[LK11, LCVLV09]. Eden [To06]. Edge
[AB91, BAK12, BS16, Cal15, CV14, DJL+07, ET14, GMU15, KA18, LLW18, NPSY00, ST11, Ti06, WFG15, ZYX18]. Edge-Deletion [AB91]. Edge-Path-Replacement [LLW18]. Edges
[DEKW06]. Edit [AE04, CZODHIH17, CB09, HKS13, HI18, Moh03, PRN13, YHK14]. Edit-Distance [HKS13, Moh03]. Editing
[FM96, ZWS96]. Editor [Zom01]. Editorial
[AETZ05]. Editors
[Hsu98, NO99]. EDZL [WR16]. Effect
[CL07b, FPS02]. Effective
[Ru96, SS12b, WHL17]. Effectively
[YMC+17]. Efficiency [EH12]. Efficient
[ADHR09, ARS11, Anc02, BBFZM06, BRM07, BS01, BB03a, CPY02, CF06, CCF09, CCD07, CDJ09, CL10, DHI97, DCS13, DZH16, ERW04, FL09, FZFDCHB05, FLP13, FG08, GL14, GRV10, GSD03, GS12a, GRB03, H15, Huy91, INY07, IMS03, K03, LF96, LOD07a, LOD07b, Li1, MD00, MNN11, MHT09, MOSZ18, MC13, NHG15, Okh03, PT14, Ros03, SK04, SUZ13, TWZ11, Ti06, WKS+08, WRN03, WY05, ZZ18, ZC05, dSS01]. Eigenvalues
[QD03]. ELAN [BKKR01]. Election
[AOSY10, FDFZB12, FZAM08, XS06]. Electronic [FK06]. Elegant [PRN13]. Elementary [Rog09]. Elements
[KNR18, LLY13, VW93]. ElGamal
[LHT09]. Embeddability [CLT09]. Embeddable
[BPT06]. Embedding
[DLT06, Mar97, RAB15, WXF16, ZFL+17]. Embeddings
[Li00a]. Emerging
Goedel [Szw95]. Golomb [BMP03]. Good [DQFL12, FY11, TCT14]. Goodby [SSS13].
GPU [CYZ14, FNI16]. GPUs [GD12].
Graded [BV08]. Grained [MS99a]. Gram [FBK05].
Grammar [AMR05, BCVHH07, CVDV10, CVOV11, DPS97, FHH15, FO11, LCLV109, Láz13, MS07, Mas09, Ott13, Sun05, Tran08].
Graded [BV08]. Grained [MS99a]. Gram [FBK05].
Grammar [AMR05, BCVHH07, CVDV10, CVOV11, DPS97, FHH15, FO11, LCLV109, Láz13, MS07, Mas09, Ott13, Sun05, Tran08].
Graph [ADR11, AAV00, AB91, AMOZ07, AJMO11, AT15, BBC00, BDI11, BHK+18, BC98, CHYT14, DLT06, FW90, FL97, GO09, GR00, HO99, HZZT12, KL13, LW18, LOPR18, Oka08, RK09, RZ12, TSFZRP17, UU07, ZH06].
Graph-Bin [BDI11].
Graphs [AFB96, AP92a, ABT16, ADD+18, Asl16, AO10, AT11, AB17b, BTK13, BTO17, BPR09, BO97, BHL+97, BB04, BS16, BPT06, BLM04, BHR09, CP16, CV14, CLo7a, CLLL08, CPC99, ÇA18, DL12, DP90, DH18, DW04, ERW04, EL13, EK01, FWZ15, FP04, FG99, Fu16, GV03, GP09, GS90, GP17, HKT00, HBT08, HLLH06, HY97, JWB03, Kl096a, KPM15, KHL12, KAI18, LW1414, LDLW17, LX17, LW00, LOZ98, LV08, MR99, MTNN99, MAN05, MAN06, MN06, NGHK15, NPSY00, NS98, OS93, RLW96, RRT99, RR99, SS99, SG04, ST99, TV14, Tos06, WAF03, WFG15, WQY16, Won96, Won01, YCTW10, ZWS96, Noc98, WC13, YCL11].
Greedy [BR18, Fuji16].
Greibach [Asv07].
Gray [CDLW05]. Grid
[BFMBS11, JP08, LMM+12, MN06, ST93, Cas05, PT14, YLZ14].
Grids
[Cal15, MM17, NR18].
Ground [Mar92].
Group
[CLLL08, DM12, FZ15, HYT15, KPS18].
Grouping [Lar99]. Groups [PP11, SS01].
Grover [KRN18]. Growth [GKRS10, Shu14].
Grzegorczyk [Cap96].
GSM [LO10]. Guarantee [LSW13].
Guaranteed [DPR07, Ros00, YSM+00a].
Guaranteeing [MPV04]. Guarantees [Pal03]. Guarded [FGL+90].
Guess [FSWF11].
Guest [AETZ05, NO99, Zom01c]. Guided
[CFH+03, DDM07, HZZT12]. Guidelines [Ros00].
Hairpin [DK11, MMY10, PRY01, ST16].
Half [Kam95]. Half-Monotone [Kam95].
Halting [FO07]. Hamilton [DH18].
Hamiltonian [BZ13, CP16, Noe98, NS98].
Hamiltonicity [LYG17]. Handling
[BCHK09].
Harary [AB17b].
Hard [BCS03, BMV00, Dic93, ZB00].
Harder [CKL15].
Hardness [LWW00].
Hardware
[For10, IN05, INY07].
Harmonic [CCF08].
Harmony [LTZ12].
HAS-160 [WLC12].
Hash [BKST18, NAK+15].
Hashes [Wan14].
Hashing [CKW09, LPF92, MB03].
Hausdorff [Sta05].
Head
[KMW14b, KMW14a]. Heads [IT13].
Heap
[BSG03, Jun14, Pro96].
Hedges [BOV08].
Height [Rei07, SW17].
Helping [AKS95].
Heterogeneity [RC11].
Heterogeneous
[BLMR05, CFMR05, CYS+12, EZ01, OS01].
Heuristic
[CHYT14, CDLW05, De 06, LY94, WAF03].
Hexagonal [GSD03].
Hidden
[FZ13, IMS03].
Hierarchical
[GM90, JS02, Loh10, SYSN01, SK03, SP04, WC04, WHL17].
Hierarchies
[BL5+05, BKM15, DH05, KP10a, Sch02].
Hierarchy
[BKM11, BZ10, BJY90, CSR12, Dev02, DZ00, HW00, Okh05, PPY08, Rei07, Se08, YZY+18].
High
[CH15, Fin12, KR97, KKP97, Li12b, LKM02].
High-Capacity [Li12b].
High-Performance [LKM02].
Higher
[KKP97].
Higher [BYP95, CCPS04].

Laceability [LLY13]. Lambda [Hir91, TST01a, PT90]. lambda-Calculus [PT90]. Lambda-Representable [TST01a]. lambda-Calculus [PT90]. Lambda-Representable [TST01a]. lambdaPi [Pym92]. lambdaPi-Calculus [Pym92]. LAN [GD98]. Language [BRST07, BV98b, CC05, CDJ09, Cos90, DH05, DGMN15, ES01, Fin12, GKS10, HKS13, HKJ12, IR14, MM05, MRS97, McN90, Mer08, Okh05, OY11, PS02, Pri06, Rov00, YS13].

Languages [Ada10, AK06, AK10, AT16, BGN10, BMS92, BCR11, BCD14, BC06, BJ07a, BHK05, BCC96, BHW06, BHS08, BHS11, BHK03, BHK91, BIJT93, BW07, BJ12, Je08, JM11, Jir14, JP06, KKS05a, KP10a, KP10b, KEE16, KHS06, KLK16, KY96, Kog18, Kör03, KM01, KMS06, KRRK16, LP16, LZ03, LO13, Lec16, LM07, Mio90, NO02, Ogi04, Oka99, OKh03, OY11, PRY01, PJY08, Pig09, PP14, Pis15, Pin12, Rav08, RS12, Re07, Sch13, Sel08, Sht07, Sht14, SR00a, SW97, Sta05, Sta07, Tei17, TSZ16, Tra02, YJ05, YZ07].

Languages [ZQL12, vW15, GP13, Ata11]. Laplacian [QFL15]. Large [BIIN04, BS15, DCS13, DEMT05, FFP03, FHGT07, HH12, MDL97, Sha04, WNK03, Won96].

Large-Scale [DCS13], Late [LY94]. Latency [IN10]. Lattice [ML017]. Lattice-Based [MLO17]. Latticed [KL10]. Lattices [BOV08, DE08]. Laws [BE95].

Learning [CM92, CJS92, Cha97, KL00, LZ93, PFG01, SS01, Tor13, Tor15]. Leibniz [Sel98]. Length [AE02, DS96, Gus13, Mar09, PK06, QLWL06]. Lengths [BR18, FT09, GP15]. Lessness [FH05]. Letter [KP10b, Wid12]. Letters [CK16, LRR08]. Level [PS12b]. Levels [BLS05, BHK05]. Lexicographically [Ueh99]. LFSR [WGD18]. Library [AMR05, RR06]. Life [EMR10, Rya15, FN16]. Light [Hea11, Rov00]. Lightweight [HCETPL12]. Like [CFG12, CVP08, HV02, HK11]. Limit [APMP17, Goa09, Oka00, Sch02]. Limitations [HJ91, LO11]. Limited [HT12, KAF05, Mas13, PP14, RRT99]. Limiting [AP90, CS92, RS17, V96]. Limits [Ueh99]. Lindenmayer [Das04, DV11, HT12]. Lindström [BV98b]. Line [CGL12, FPS02, KL05, Mas04, Pat06, Pru17]. Linear [AK14, AMR15, BC06, BÉ11, BCHK09, CFPR03, DPR07, DI02, DGN07, FZ02, GV03, Gra90, LC18, MM01, MTNN09, Nak03, Oka00, RLWW96, RC05, SFL17, Tei17, WGF16, ZYYH14, vM00].

Linear-Time [CFFP03, MTNN99, RLWW96]. Linearly [CM92, YCL11]. Link [BY18, FZ15].

Linkable [LW06b]. Linkage [OW92, VJD05]. Linked [ACV13, KK07, Lin08a]. Links [Dre07, GKKP99, WP08]. List [Nak04]. Literally [KP10b]. Liveness [BHK18a, JC03]. LKH [SNWW06]. Load [Hei97, Li00a, MD00, ST01]. Local [AE02, Ars15, CYS12, CT18, FL12, HN06, IN05, NO08, JP06, LSWW13, LPS07, RS13]. Localities [Cas95, LZF16]. Locality [RR04]. Locally [Fri10, HJ91, RS12].

Logic [Ano01c, AH11, BM90, DKG08].
FMC04, FT11, GN04, GSZ99, HV02, HS95, Hin01, Lin08a, Luc09, Luc18, MOM91, Oga00, Pre01, Rov00, RKRR02, Sal13, SMS92, Sub90a, Sub90b, Logic-Based [Luc09].

Logic [D’s03, HKKS13, KM17, MCS08, RW11].

Logically [DK98].

Logics [DP14, LRT92, Pen93].

LogP [BNR99].

LogPQ [TH01].

Logspace [HJ97].

Longest [AILR16, AE05, DD13, UU07, Won01].

Look [AE04].

Look-Up [AE04].

Lookahead [Fuj16, RS07].

Lookup [SK04].

Loop [BAK12, CHA +92, JS97, Leo03].

Loopless [TV07].

Lossless [CDLW05, KK05, XHLF02].

Lossy [PRS98].

Low [IN10, KPSC08, WPZ16].

Low-Dimensional [KPSC08].

Low-Hit-Zone [WPZ16].

Low-Latency [IN10].

Lower [CE08, FY08, Gns13, LHG11, Uen13].

LR [FZCFB08, Ohk06].

LR-Mesh [FZCFB08].

LU [De 06].

LSC [HK02].

LTL [DPR07, MW05].

Lukasiewicz [Sta07].

Lyndon [Ata11, DFP99, DPR +08, HT04a, HT04b, LRK16, MS04, MS16a, MS16b, Teh15, WXF16, Zet11].

Matrogenic [AP92a].

Matter [MCM +11].

Max [Mas04, Poo04, HW00].

Maximal [AWF03, Bur12a, DD08, DGL93, FY08, Luc09, PR12, TSFZRP17, Ueh99].

Maximality [KK05a].

Maximally [WFG15].

Maximization [CS93].

Maximize [AJMO11, CR14].

Maximizing [Ros00].

Maximum [AMOZ07, BT07, BL01, BV000, CPC99, DJL +07, FK07, MM97, Wan04, Won96].

MCFLs [Éli14].

Mealy [CG06, KPS18].

Mean [BR08, GZ12].

Mean-Payo [GZ12].

Meaning [HKKS13].

Means [AP06, BSS12, FFH15].

Meet-in-the-Middle [LJ17].

Meet [AJMO11, CR14].

Meet [AT15, BLM15, BCC13, PSA17, RR04, Sch02].

Measuring [KMK +11].

Mechanisms [Obt06].

Meet [LJ17].

Meeting [LJ17].

Meet [MKB +11].

Megabase [BBM +12].
Mem [CP06]. Membership
[AK06, Arv97, Fuji17, Loh10]. Membrane
[BMSMT11, CMMR04, DI05, FT11,
GPPJR13, MB06, Nis07, Ob101, Ob106].
Membranes [PDPJ11, Pau00, PPR02,
PPRPS11, PLMZ11]. Memoriam
[Fül17, KMW12]. Memory
[BLR09, FBHH01, HPP99, KZ10, Mor10, Smy12].
Merge [WO03]. Mergeable
[CS99]. Merged
[DD13]. Merger
[INY07]. Merging
[CP03]. Merlin
[CCPS04, Vin05]. Mesh
[EG02, FZCFB08, ISAZ08, Li01,
RM98, Üso2, WC04]. Meshes
[BT00, FZEBB05, JW08, Mat04, XHLF02].
Message [EGPS10, FBHH01]. Messages
[MN00]. Meta
[SVSN01]. Meta-Computing
[SVSN01]. Metaheuristic
[HCETPL+12, LTZ12, SS12b]. Metainear
[MS07, Snt05]. Metalogic
[Cos90]. Method [ACFE09, EH12, FK13, GMNS15,
IN08, KM02, Li00a, ÜS02]. Methods
[CCM97, Fre08, KKS05a, MZ01]. Metric
[CLT09, XS11]. Meyniel
[RR99]. Microarray
[ATK12]. Middle
[LJ17, VW93]. Millionaire
[GKS17]. Min
[KR97, Tor13, HW00]. Min-Degree
[Tor13]. Mind
[LZ93, Vik96]. Minima
[MS99a]. Minimal
[ARV07, AMR08, BBC00, CIY01,
CP02, CP03, DWS15, GRV10, HY08,
HN04, HT04a, HT04b, HJ16, HJK18, Jai95,
Jai98, JS97, JMR91, JJS08, MB17, Shu11,
Sue90, Szw95, TA17, Teh18]. Minimality
[Tam08]. Minimalizations
[Po105]. Minimax
[HL04]. Minimization
[AHK07, FSM11, GLV14, JM13, KLB13,
MQ11, MQ12, ND02, Vin05, Bad09]. Minimize
[AMOZ07, LRR08, Mas04]. Minimizing
[DFLL02, GKKP99, HJ13,
HJ17, KS10, Kör03, LY94, LLQ06, PY04].
Minimum
[AJMO11, BGRY16, BB+18, BB04, BRSV13, CYS+12, DGN07, DJL+07,
DLC+14, FPPS03, Fuj16, GMU15, GCK08,
KK10, KHL12, MPV04, MAN06, QFL+15,
Tor13, WAF03, Wan04]. Minimum-Process
[GCK08]. Mining
[GW02]. Minor
[RRT00]. Miss
[Le03]. Mixed
[CYZ14, DI02]. Mixed-Signal
[LWJ+10]. ML
[Has00]. Mobile
[BFMBS11, BF07, BT17, BDDN01, CIS03, DSS08,
FPSS03, FHL07, GCK08, HT09, IM04,
LB03, MM07, SB12, TZ11, WP08, Zom03]. Mod
[HKT00, SUZ13]. Model-Mod
[HKT00]. Modal
[DI05, Fre05, Mas09, WLC12]. Model
[ACDL18, BC12, BNR99, BMS12,
CFMR05, CGR13, CFH+03, DW03, EHK06,
FZFDCHB05, HW10, LAH14, LGY17,
LR04, Nak04, Sac01, Sch10, SP04, Spr09,
Tha91, TH01, YW06]. Model-Based
[BCB12]. Model-Checking
[CR13]. Modeled
[CLT14]. Modeling
[BCC+11, Cas05, KRP08, KSS08, LCY12,
PSS12, Sun11, XBE02]. Modelled
[HFLD09]. Modelling
[AH07, BDL08, DM05, SK01]. Models
[APP91, BBFZM06, BZ10, CTS18,
DEM05, For10, HJ7, HJW11, IP80,
KPM15, LWJ*10, LW06b, LiC18, Mal18,
RCC+09, RS17, Sah01, Sue90, WY05]. Modes
[FFH15]. Modest
[Ros90]. Modification
[Rud15]. Modified
[BSG03, BHL+97, IIT91, KYZ17]. Modifiers
[AG01]. Modular
[BPZ07, DS02, RCC+09]. Modules
[BJ07b]. Modulo
[CR13]. Molecular
[DDM07, EHK06]. Molecules
[FMC04, FK05]. Monadic
[MS92, vdm00]. Monogenic
[LCY12]. Monoids
[BR08, BS92, Bur12a, DMI11, GéC07, Loh05, MR91].
Monotone
[DDE18, Kam95]. Monotonic
[ADHR09, ACV13, TY15]. Monotonicity
[JCS03]. Moore
[CFC12]. Moore-Like
[CFC12]. Morphic
[Dur13, FRS06, Hon12, NP09, OY11, PS12a].
Morphism
[Ram05]. Morphisms
[Hol11, JPD04, Kar09, PPJR07, RS04, Teh16b].
Morse [DSS15, Ram05]. Mosaic [BRSV13].
Mosses [AMR09]. Most [Brz13, SKL03].
Most-Specific-Rule [SKL03]. Motif
[PRN13]. Motifs [IMP+05]. Move [FM96].
MP [MM11]. MPEG [DE08]. MPEG-7
[DE08]. Muller [Arn17, FZ12]. Multi
[AKS14, ABH17, APMP17, BCC+96, CDD07, CGKN08, HP09b, JF18, KMW14b, KMW14a, Mal15, MX11, NCC+07, RR06, SK01, TYM+17, Ver09, WM05, YBI11, ZC13].
Multi-Cores [MX11].
Multi-Exponentiation [HP09b].
Multi-Head [KMW14b, KMW14a].
Multi-Objective [WM05]. Multi-Party
[TYM+17]. Multi-Processor [RR06].
Multi-Push-Down [BCC+96].
Multi-Pushdown [AKS14, ABH17].
Multi-Receiver [CCD07]. Multi-Secret
[AKS14, ABH17].
Multi-Track [YBI11]. Multicast
[GPS02, SNWW06]. Multicasting
[Go01, XLC+04]. Multicounters
[MS99a]. Multidigraphs [Fuj17]. Multidimensional
[KPS93, Tho06]. Multienvironment
[MDAPHPJ+11]. Multihead
[Mac96, Slo05]. Multihop [CYS+12].
Multilingual [CK08b]. Multimessage
[Go01]. Multioperator [SVF09].
Multiple
[CF06, FK05, GD12, Lin07, LZGF16, MB03, Mat04, NR18, RVT06, XBE02, YCTW10].
Multiple-Sided [XBE02]. Multiplication
[MX11]. Multiply [ACV13].
Multiply-Linked [ACV13].
Multiprocessor
[BLR09, CD09, SS12h, YH11].
Multiprocessors [WR16].
Multipseudoperiodic [MDGH13].
Multiresolution [XHFL02].
Multisequencer [SK01]. Multiset
[BPT16, BM+14, CG06]. Multisets
[Bas97, CG09]. Multistage [KAPF05].
Multitape [IT13]. Multitriangle [WQ97].
Multivalued [Lin08a]. Music
[CCF09, FMN06]. Musical
[CCF08, CIR08]. Mutants [MCS08].
Mutex [LCY12]. Mutual [KG11].
Mutually [YSM+00a].

NAAP [LBJ03]. Naive [ZLW+17]. Name
[CB09]. Nameless [Kam98]. Natural
[Cha97]. Nature [AETZ05].
Nature-Inspired [AETZ05]. Near
[BW14, HT09, XCY17]. Near-Bent
[XCY17]. Near-Optimal [HT09]. Nearest
[HL01]. Nearly [BJ07a]. Necessary
[ZWW+14]. Negative [CS18]. Neighbor
[ABT16, BTK13, BTO17, HL01, KA18,\ WQY16, LB03]. Neighbourhoods
[DP90, NRS18]. Nerode [SM90]. Nested
[CZTH13, DP14, FGL+90, Gre96, HLW09, RT16]. Net [LPC11]. Nets
[AIH11, BCB12, GRV10, JC03, MOM91, MUK92, RHS10, YY94, Yen09]. Network
[BRSRC11, Cas05, CL98, CX98, CCG+11, DR05, FZ03, KR97, Kl96b, LGY17, LOZ98,\ LPS07, L11, MKB+11, Oka98, RR18, WQ97, ZYYH14]. Networks
[AWF03, AOSY10, AHAL+13, AO11, BV98a, BY18, BNS03, BDDN01, CP99, CDPT16,\ CIS03, CFMS15, CL03, CYS+12, CHA+92, Cig04, CD09, DHI07, DGMN07,\ DCS13, DM08, FPPS03, GKKP99, GSD03, GNC+03, HK17, Hei97, Hsu98, ISAZ08,\ JS97, KAPF05, KKKP97, Lãz3, Li12a,\ LHY+15, LB03, LC18, MMS05, MCM+11, PPR02, QD03, Ros00, SB12, SP04, TL99,\ WLF03, WD03, WQY0, XLC+04, XFO13, ZC13, DDHL11]. Neural
[FI008, IW07, KMG11, PPJR06, PPJR07, PPJS07, SRPC11]. Newcomb [Ray08].
NFA [JMR91, Leu05, Pol05, RS07]. NFAs
[CCP05, DESW05, Vn05]. NFSR
[WGD18]. NL [DK11]. NL-Complete
[DK11]. NLC [Joh00]. No [Nak04]. Node
[HKV17, WQ97, WY05]. Node-Disjoint [HKV17]. Nodes [IML04]. Noisy [MG14].
Non [AG01, Ada10, BM90, BCHK09, CD15, CK07, Dai97, DPR07, DESW05, ES01, FLST12,
Fre08, GJV00b, GRB03, HL01, IMS03, Jež08, KZ10, Kap05, Kut05, MC13, PF11, TY15].
Non-Abelian [IMS03, PP11]. Non-Boolean [PP11]. Non-Constructive [Fre08].
Non-Definability [ES01]. Non-Deterministic [Ada10, KZ10, MC13].
Non-Ending [CD15]. Non-Flourishing [BM90]. Non-Linear [DPR07].
Non-Periodic [CK07]. Non-Primitive [FLST12]. Non-Qubit [GRB03].
Non-Recursive [Kap05, Kut05]. Non-Regular [Jež08]. Non-Standard [AG01]. Non-Symmetric [GJV00b].
Non-Synchronizing [TY15]. Non-Uniform-Degree [HL01].
Non-Uniqueness [DESW05]. Nonblocking [WM13]. Noncounting [KY96]. Nonderandomism [HKKS13, PSA17].
Nondeterministic [BKW02, Cha02, CC05, GPS14, HK03, HK09b, HJ14, HJ17, JRPIP08, JJS08,
KO18b, Mar09, Sao92, Tha91, Vin05]. Nondeterministically [HHN+95].
Nonlinearity [CH15, Car11, LHG11]. Nonregular [Mer08, YS13]. Nonstandard [Bee95, BSZ08]. Nonterminals [KK97].
Normal [Asv07, Ca94, Ėši12, FSM11, Lin08a, RKRR02, VS93]. Normalization [Moh02].
Note [AHR02, BB99, BHL+97, BS16, CCKK02, FM13, GMU15, IJK+04,
LZ15, Mac96, Mas13, Szw95, Zaj90]. Notes [Olk07]. Notion [Gra90]. Notions [TYD05, SNJ11].
Novel [DCS13, LH11, SRR15, SGZ02]. NP [BGI+18, Die93, GP13, GSZ09, MW05].
NP-Complete [BGI+18, MW05, GP13]. NP-Hard [Die93]. NP-Pairs [GSZ09].
Number [AMR15, AB17b, AE09, CP03, ČA18, CFJ10, DV11, Dom04, FY08, FT11,
GRRS14, HB06, HJK12, JW03, KA18, LZ93, LY94, Pan91, PR12, RS01, RRT99,
Vik96, WQY16]. Numberings [MNS11]. Numbers [BMS16, PPT06, CK18, HFLD09, Jir11, LO11,
PDPP11, RS15, Van05, Wan04]. Numeration [JP04]. Numerical [CCM07, SGZ02].
O [Fl96, OM96]. O-Trees [OM96]. Object [HK02, LX94, MT95a, VZ07].
Object-Oriented [LX94, YZ07]. Objective [WM05, YTLC02]. Observable [AT12].
Observer [CCM11]. Observer-Based [CCM11]. Observing [Cas95]. Obtained [BMS16, CP03].
Occurrences [CFIJ10, MS04, Sali07, SY10]. OCR [CB09].
Octal [GJM06]. Odd [TJZ13]. Off [KL05, Mas04, KM18]. Off-Line [KL05, Mas04]. Offline [CW11]. Offs [Kap05, KKP07, Kut05].
One-Cluster [BBP11]. One-Dimensional [BKP18, Dub95, SKL03]. One-Membrane [DI05]. One-Round [TYM+17]. One-Turn [AK14].
One-Variable [NS18]. One-Way [BMP15, CFY16, HIR+92, IS12, KMW14b, KMW14a, Ob00, Sk05].
Online [BBB+18, BLM15, BHK+18b, CYZ14, DLC+14, FCS05, JP07, JZ16, Pal03, ZZZ16].
Onto [EZ01]. Ontologies [Zho02]. Open [GPPJR13, Tsu01, TST01b]. Open-Ended [Tsu01, TST01b]. Operating [DI05].
Operation
24

[BHK05, CK08a, CLMP16, DH05, MR91].
Operational [BMSMT11, Éli14, KEH16].
Operations [AP92a, BGN10, CP06, CS96, CGKY11, CGKY12, FM96, FMC04, FT11, GNC+03, JIJS18, KKS05b, PS02, SY07, SEE99, SD16].
Operator [AT16, BMS18]. Operators [BW00, PR11]. Opportunities [Zom03].
Optical [BF97, KAPF05, LYH+15, LC18, PA98, Sah01, WH03].
Optically [BT00].
Optimal [AAA+09, AC05, BF07, CZTH13, CP99, Cal15, CDPR11, CS96, DH18, DSS15, FZ03, FM01, FOP05, GD98, GZ12, HT09, KK90, KR08, Lag17, LZ15, Lic18, MQL1, Nak04, OS01, OSZ92, Poo04, TCT14, TJZ13, WPZ16, WO03, WH03, XCC16, ZTT91, ZWCL14].
Optimally [AAV00].
Optimization [JS02, KM90, KAPF05, MZ01, SSS09, WM05, YTL02].
Optimizations [GV03]. Optimize [GSZ99].
Optimum [CD95]. Option [SGZ02].
Optoelectronic [Sah01]. Oracle [FL09].
Oracles [CISH07, FZT14, IN13, KL00, MM05].
Order [AB91, BRY95, DG98, DGK08, D200, EGPS10, Lar98, LHF11, Lin08a, Lug11, Set08, Szw95].
Ordered [AKS14, ABH17, Bas07, KL11, KO18b, Pro06, Yah12, ZB02].
Ordering [Com90].
Orderings [BC06, BÉ11, GHJIS05, RCO05].
Orderly [MAN05, ZHO].
Organizing [Láz13]. Orientation [AMOZ07, AJMO11]. Oriented [DSS08, LX94, XCC16, ZY07].
Outer [MAN06].
Output [Ros00]. Outputs [RT16].
Outsourced [YMC+17]. Overcoming [DEKZ11]. Overhead [OM96].
Overlap [BHR09, CCM97, DSS15, HS11, LOPR18].
Overlap-Free [DSS15, HS11]. Overlapping [HT95].
Overlay [CDPT16].
Overview [BMSMT11].

P [FMV13, CV13, KMG11].
Packet [BFHH01].
Packet [Zha17].
Packet [DES09, GFK98, MMS05, SKL03].
Packaging [BDI+11, HRP+13, JZ16, LOPR18, MV11, Nag06, TSFZRP17].
Packings [CZTH13].
Pairing [CST+17, Ros03, Ver09].
Pairing-Based [CST+17, Ver09]. Pairs [GSZ09, ST99].
Palindromes [DD06].
Palindromic [BG1+18, BHNRO4, BR18, DMM14, FLST12].
PAMA [LCL06].
Pansiot [GS12b]. paper [Tsu01]. Papers [CS02, CS00b, Elb01, KMS02, KBH99b, Pal01a, SR00b, YSM+00b].
Paradigm [Sir15].
Parallel [AC05, AP92b, BS01, BCVH07, BF97, BKM11, BMK12, BMK15, BMM+12, BZ10, CCM97, CF06, CCF09, CPJ06, CPC99, CR14, CVMMV00, DP90, DD13, DGL93, DPs97, EAB+16, FBHH01, FNI16, GD12, HB06, Hea11, HS95, HW17, HNN6, IMP12, Kan15, KSI11, KSMMT18, LTT2, LQ06, LMM+12, LPP92, MS07, MIN11, MVMM02, MS99a, MDL97, OSI1, OSZ92, Ott13, Ott15, Pal01b, Ros00, Sah01, SS99, SK03, SM05, TH01, Tru08, VG01, VJDT05, WM05, WH03, Zaj09, Zom03, ZC05, dSS01].
Parallelism [IYD05].
Parallelizing [LR04].
Parameter [AT11, HL06, RZ12].
Parameterization [DD12].
Parameterized [ADHR09, CFRD08, RR18].
Parameters [KPS93].
Parametric [ACFE09, CE98, FK13, NTSH06].
Parent [LAG14].
Parenthesis [LAG14].
Parikh [Atha11, AT16, BM16, BMS18, CFM12, Hon06, MS12, PT18, SY10, Ser09, SHN09, SMAN13, Teh15, Teh16a].
Parity [Fri10, FL12, GW18].
Parsing [Bas97, BIIN04, Kog18, Okh06].
Part [AnO01c, CS00b, Elb01, GJV00a, Hin01, JKI4a, JK14b, KBH99b, Li00b, MS99b, Pal01a, Pre01, SR00b, YSM+00b, Zom01a, BJ07b, HT12].
Partial

Partial-Total

Partition

Partition-Type

Partitionable

Partitioned

Partitioning

Partitions

Partners

Party

Passbits

Passenger

Path

Path-Controlled

Path-Equivalent

Paths

Pathway

Pattern

Pattern-Matching

Patterned

Paun's

Payo

PC

Penalties

Perfect

Performance

Permuational

Permutations

Persistent

Perspective

Petri

Phantoms

Phenomenon

Photographs

Phrase

Phrase-Structure

Phylogenies

Phylogeny

Physical

Pi

Pi-Calculus

Picture

Pictures

Piecewise

Planelines

Plaiding

Plates

Planted

Platform

Placements

Planar

Planarity

Plane

Plateaued

Platforms

Playing

Plays

PN

Point

Point-To-Point

Points

polar

Pollinating

Polling

Polygon

Polyhedral

Polymorphic

Polynomial

Polynomial

Polytime

Polytime

Popular

Population

Portfolio

Positions

Positioned

Position

Positive

Possession

Possession

Possession

Power

Power
CIY01, CJS92, HB06, HV02, Jaa95, RKRR02, Sao92, Sto92, Tha91, Vik96.
Progress [APV06, Pal03]. Projections [TZ91]. Prolog [HST01, MT95b].
Prolongeable [CDJ09]. Promoters [Sbu06]. Promoters/Inhibitors [Sbu06].
Proof [AKS95, GN04, GM90]. Proofs [Arv97]. Proper [MM97]. Properties [AB91, BMS18, BLL06, CRS12, CC98, Dai97, DPR07, DH96, DD08, DD06, DQFL12, DMSS16, DK12, FH05, FY11, GK11, JC03, KMS11, Kun16, LOZ98, MT10, MMR10, NPSY00, Pri06, RS13, Sak01, TW09, Vor18].

Quantisation [CCM11]. Quantitative [DV14]. Quantum [ATK12, Arn17, AD12, BMP03, BCD14, BMP15, BB03b, FZ15, Fia08, GRB03, GIMP06, Gro03, GQZ15, IMS03, IN13, KR03, Kud07, LB04, NR18, Nak18, Nis03, SY12, YSD16, Yami03, ZQL12]. Quasi [Ber13, MT10]. Quasi-Eulerian [Ber13]. Quasi-One-Cluster [Ber13]. Quasi-Relabeling [MT10]. Qubit [GRB03, JM03]. Queries [Arn17, Arsi15, Cig04, GSZ99, Lag14].
Representing [HKKS13, Smy12]. Requests [CVPV08]. Required [Sun00].
Required [Fri10]. Research [FH11, GPPJR13, XCC16, Zom03].
Resemble [KMS06]. Reservations [KL05]. Reset [Gus13, GP15].
Residual [AO11, Dan11]. Resiliency [CL07a]. Resilient [SNWW06, TCT14, YBM11].
Resolution [Pla96]. Resource [BRSRC11, BDG+11, CTZ01, FM01, SVSN01, WG17, YH11].
Resources [RS17, SB01]. Respect [RR18]. Restarting [JO07, KR08, KMO10, KO13, KO18b, MO07, MO09, MPJ07, PM13]. Restricted [BMS18, BFL02, DP90, DS05, GWL+17, MNS18, Nis03].
Restriction [FFH15, HCG96, HLW09]. Restriction-Fragment [HCG96]. Result [CP06, ES01, LD01]. Results [AA13, BGRY16, BKM11, CD06, CKZ17, DGM15, FOP05, HK09b, LS98, RS04, Sbu06, YWY94]. Retrieval [CCF09, FMN06]. Returning [BKM15]. Reusability [KR03]. Reusing [FZ03].
Reveal [LK02]. Reversal [CGKY12, Jir14, Ra08]. Reversals [QLWL06]. Reversibility [Iba11]. Reversible [HIJK18, KPS18]. Revisited [AM09, DR94, FJ12, KS11, KX12, Pre90, TA17]. Revisiting [DPR+08]. Revocation [HYT15]. Rewrite [AM09]. Rewriting [Bar90, BCVVH07, BPT16, BKKR01, FW90, GHWZ05, KMS06, Luc09, Mad03, ND02].
Rewriting-Based [ND02]. RFID [HCETPL+12]. Rhythms [CIRS08]. Rich [PS12a]. Rigid [GJV00b]. Rigidity [BDD+18]. Ring [CL98, DSS08, GS12a, LW06b, Mar97, Sub90a, Sub90b, ZGCZ18]. Ring-Theoretic [Sub90a, Sub90b]. Rings [BW14, CX98, EN03, FHL07, GLP07, YWY94]. RLE [HI18]. RLE-Compressed [HI18]. RNG [CIS03]. Road [CKK02].
Routed [PV98]. Router [LOD07a, LOD07b, MMS05]. Router-Based [MMS05]. Routing [BDC90, BDDN01, CHA+92, CHY14, Cig04, FPS02, GD08, GFK98, GP17, JW08, KAPF05, LPC11, OS01, PA08, RM08, RS01, RV06, Sib97]. Row [WAG+06]. RP [BJY90]. Rule [BF07, SKL03]. Rules [BMP03]. Rules [AFO06, BCHK09, Zet11]. Rumors [XCC16]. Run [LD01, MHT09]. Run-Time [LD01, MHT09]. Runs [FY08, FJ12, KMS09]. Runtime [Rud15]. Rupture [ABT16, Asl16, AO10, AA13, BTO17, KA18, LDLW17].
Safe [Cap96]. Safety [CHY14, IBS01]. Salesman [BL01]. Salesmen [Klo96b]. Sampling [CCP18, MM17]. SAT [HW10, YW06, ZG13]. SAT-Based [HW10, YW06]. Satisfiability [DDB11, DTV09, DTV15, ZSW14]. Sato [RKRR02]. SBN [KR97]. SC-Expressions [YZ07]. SC320 [MDL97]. Scalable [BBFZM06, Hei97, WHLH17, WH03]. Scale [CDLW05, DCS13, DMT05, MDL97]. Scales [CM12]. Scan [JP08, PRS98]. Scanning [DES09]. Scattered [Bed18, DSS08, EO13, EI14, RC05]. Scattering [BFMBS11, BT17, KA18, WQY16]. Scenario [YTLC02]. Scenario-Based [YTLC02]. Schedulability [WR16]. Schedule [CD95, RWZ01]. Scheduler [TSFZRP17]. Scheduling [BV98a, BS01, BLMR05, BNR99, BDG+11,
Cas05, CTZ01, CYZ14, CR14, DFLL02, DEZ01, DLC+14, DEMT05, FL97, FBHH01, FCS05, GJKS18, Gro03, HB06, HL04, HW17, HLW09, Jan93, JSO10, KSMMT18, Klo96b, KD99, LAHN14, LTZ12, LTW02, LLZ07, Li01, MXY404, Mas04, NN93, Pal03, PY04, PZX07, PFG01, RC11, SS09, SS07b, Sun11, SS12b, WY05, WR16, YH11, Zaj09, Zom01b, Zom01c, dSS01.

Schema [KS11].

Schemes [DCS13, DZH16, FPP03, Fuj16, HHP17, LD04, LHT09, LH11, MD00, TWZ11, ZC13, ZGCZ18].

Science [HO00].

Science [RR04].

Scope [LNP16].

Scope-Bounded [LNP16].

Score [HN06].

Screening [IN08, IN05].

Searching [Ami05, CFG12, DE08, KPS93, MP93, ST93].

Seat [KL05].

Seating [KL05].

Second [LHG11, Set08, Swz95].

Second-Order [Swz95].

Secrecy [BKST18].

Secret [LD04, MNS11, Sun00, TWZ11, WGF16].

Securing [CST+17].

Security [DLW02, LW06b, NAK+15, SN11, WHL17].

Seeking [MD00].

Selected [Pal01a].

Selection [ATK12, NB18, SRR15, WRNK03].

Selective [HHN+95].

Self [CDPT16, DDHL11, DTY15, DWS15, FDFZB12, FZAM08, GHJS05, GS12a, KK10, Kar99, NGHK15, ST11, TSFZRP17, XS06, DDHL11].

Selfish [MV11].

Semantics [AG01, BMSMT11, BKKR01, CZ11, Cos90, Kri97, Luc09, MT95b].

Semi [KK05, SF07].

Semi-Automatic [SF07].

Semi-Lossless [KK05].

Semiautomata [BZ05, BZ06, BZ07].

Semicomputable [ZT91].

Semi-Feasible [FH05].

Semiformal [Springer].

Semigroups [AK10, BS15, TSS13].

Semilinear [IS12].

Semilineararity [Yen09].

Semirings [ELS15].

Semisimple [AR16].

Sender [WZ15].

Sense [BF07, FS98].

Sensing [WF17].

Sensible [OTT13].

Sensor [AHL+13, BNS03, DCS13, MKB+11, SP04, WY05].

Sentences [Swz95].

Separability [BM03, Teh16b].

Separable [CM92, Mat04].

Separating [AV00, DZ00, MB17, vLW15].

Separation [Fra08].

Separations [BJY90].

Separators [BBC00].

Sequence [CZTH13, CW11, EGPS10, GD12, HZ15, KYZS17, Lin07, PYTH10, WPZ16, XCX16].

Sequences [Ar15, BBM+12, CCF08, CKZ17, CRS12, Co017, DN07, Dur13, GK11, Hon12, IMP12, KX12, LJJ+17, NP09, Sal07, SS12a, Tho06, WO03, XZS16].

Sequential [CCFS07, DI05, Fre05, JF18, Kan15, LRT92, To06].

Sequentializable [Og94].

Series [CR14, Mal05].

Servers [OS01, URS07].

Service [BS01, BCP08, Li12b, dSS01].

Set [Aku06, AF03, BRVS13, CGL12, El06, FZ15, GRV10, HLW09, KK10, KLS05, KMW16, MM97, RAB15, Tor15, Ueh99, WAF03].

Sets [AK06, BMW91, BMP03, BLL06, CZTH13, CY5+12, CL07b, DLT06, DGL93, DWS15, DS05, DR94, EK07, FO05, HT95, HNN9+95, Hon06, Hon12, KHC12, LO11, Me193, MB17, NGHK15, Pru17, RW11, RC05, Ros90, RS15, SMS90, Sto92, TCLS10, TV94, WPZ16, XC16].

Setting [BV08, HST01, HPH17, TYM+17].

Several [LD04, SH17, XCX17].

Shamir’s [LD04].

Shape [Gaz06].

Shapes [MC02].

Shared [BLR09, Mor10, RR18].

Shared-Memory
Sharpened [FP04]. Sheng [CIS12, SSS13]. Shift [HG11], Shits [Asv07, CS18, JP04]. Shop [JMS005, SS07b]. Shops [LLZ07]. Short [IMP12]. Shorter [GH13]. Shortest [AHL13, CFMS15, DPS99, Hut02, JW08, KM18, LW05, LW06a, MPS99, ST99, XFJ03]. Shortest-Path [JW08]. Should [Ros03]. Shrinking [JO07]. Shuffle [BO97, BMS18, CSV02, CL08, DKSS11, D09]. Shuffle-Ring [CL98], Shuffling [EH12]. Sided [ACDL18, ST93, XBE02]. Sidelnikov [KYZS17]. Signal [BCC+11, LWJ+10]. Signature [DZH16, HHP17, LW06b]. Signatures [HTY15, Ver09]. Signcryption [FZT14, ZGCZ18]. Signed [HP99b, QLWL06]. Similar [FA06, JK14b]. Similarity [Ars15, BOV08, DSS15, HN06]. Simple [AFB96, BCR07, CDLW05, CHK07, Fl¢96, GNP+06, HH12, HTY15, Huy91, IST05, Jun14, KM18, MS16a, MS16b, Oka09, WAF03]. Simple-Algorithms [AFB96]. Simple-Yet-Ecient [HTY15]. Simplification [L¢15]. Simulate [Dub95]. Simulating [CPJ06, FZCFB08, JWB03]. Simulation [BCDP08, FGS90, FPP03, FZFDCHB05, FNB03, KLI0, LW/+10, MDAPHPJ/+11, Mat04, Qua07, SVSN01, YB06]. Simulations [EM11, KR08, KMW14a, Pet11]. Simultaneous [Sha04], Since [McN90]. Sinecure [FK06]. Single [ALR04, BNS03, GH07, KS10, SSS09]. Single-Channel [BNS03]. Single-Pushout [ALR04]. Sink [EG02]. SINR [LAHN1]. Siphon [JC03]. Siphon-Based [JC03]. Six [EAB+16]. Size [BBP11, BHK18a, Bir11, BMMR12, CSR12, CW09, De 06, GS12a, KO13, See99, Sun11, Uen13, vLW15]. Size-Computation [GS12a], Sizes [ZB02]. Slave [GS12a], SLDNF [Pla96]. SLDNF-Resolution [Pla96]. SLMAP [HCETPL+12]. Small [AKM+11, ARV12, AE04, CGL12, CD09, DL12, DGK08, HIR+92, KM17, KS10, Leu16, Mer08, PR00, UU07, YSD16, ZB00]. Smallest [NRT00]. SMP [SK03]. Soccer [CKL15], Sofic [Sut03], Soft [Nag06]. Software [BJ07b, FM01, KR03, LX94, Qua07, ST01]. Solid [HS11, ST93]. Soliton [BJ07a, JK07]. Solution [Anc02, NSV12, Pan91]. Solutions [BI1104, CK07, Ruoo96, ZZZ19]. Solver [ELS15], Solving [Com90, Fri10, FL12, GGR14, Gon01, HSS07, Lin07, LMM+12, MNS18, MZ01]. Some [AA13, BM16, BCR11, BE05, Bod91, CCF09, CKZ17, CA18, For10, FH11, GC15, G09, GR00, IR14, IMS03, KPS93, KNR18, Kud07, Kun16, LL16, MMY10, Mee12, Oka00, Pri06, Shu14, TL99, TY15, WYY94, ZCL12, ZZC15, vdmHM92]. Sort [Lar98]. Sorted [MRT95, O€92, WO03]. Sorting [BLL03, BMR+14, BNS03, DR05, FS05, MRRV06, MIN11, PA98, QLWL06, RM98, WRNK03]. Soundness [Kam98]. Source [GR03]. Source-Based [GR03]. Space [AOSY10, BGRY16, CF06, CZ11, Fre02, HIR+92, JZ16, KM18, K¢03, MMP10, PLMZ11, SSK96, Sta05, ¢S02, YS13, ZZ18]. Space-Ecient [ZZ18]. Space-Time [US02]. Spaces [Cam14, CLT09, HIW11]. Spanners [AWF03, DH96, GS09, WLF03]. Spanning [BBB+18, BB04, Dar13, ERW04, ET14, Fuji17, HLHH06, LLY13, LX17, LZ12, MTNN99, MAN05, Tor13, YCTW10]. Sparse [DR94, ET14, VP99]. Spannerness [DH96]. Special [An001c, BRST07, CD02, Hin01, H000, Hsu98, LC02, PL01b, Pre01, RS00, Smu12, Ty02, Yu02, Zon01a]. Species [MCS08]. Specic [BI1104, LMK02, SKL03]. Specication [BJ07b, SKW08]. Specifications [BMW91, HK02, LS04, SR00a]. Specied [Teh18]. Specifying [HH99, HJ11]. Spectra [CH15, SH17]. Spectral [Coo17], Spectrum [RK09].
Speed [KKP97, RS17, WH03]. Speed-Up [WH03]. Speedup [BR08]. Spi [BSV06].

Spike [PPJR06]. Spikes [FIO08, KM11]. Spiking [FIO08, IW07, KM11, PPJR06, PPJR07, PPJS07, SRPC11]. Spin [ILT11].

Stable [Hol11]. Stack [BBK17]. Stage [ZZZ16]. Standard [AG01, BPR09, MIN11, PR12, ZC13]. Star [BL12, CC98, CHYT14, CGKY12, DH18, HLHH06, HY97, Jir14, MR91, OY11, YJ05, WC13, YCL11]. Star-Free [BL12, YJ05].

Stable [Hol11]. Stack [BBK17]. Stage [ZZZ16]. Standard [AG01, BPR09, MIN11, PR12, ZC13]. Star [BL12, CC98, CHYT14, CGKY12, DH18, HLHH06, HY97, Jir14, MR91, OY11, YJ05, WC13, YCL11]. Star-Free [BL12, YJ05].

State-Based [HK02]. State-Size [CSR12]. Stateless [KMO10, KMW14b, Mas13, YLI08]. States [BLR09, BMP15, CP03, HKKŠ13, JM03, LB04, MVM02, NWK06, ZQL12]. Static [BE03, Cán4, Cas95, TZ11]. Station [DRDN08]. Stationary [PT14]. Stations [FZ03]. Statistical [GK11, Mal18, MG14]. Stay [BC12]. Steady [BLMR05].

Steady-State [BLMR05]. Stealing [Ros00]. Steiner [RR18, SSK96, SB17, Tor15].

Stencil [Le03]. Step [LOZ98, Muk92, ZYLW12]. Steps [FT11, JWB03]. Stepwise [KN93, MM11].

Streaming [BLM15]. Streams [Lin07]. Strength [MS18]. Strict [RS13]. Strictly [Dai97, MAG09, RS12]. String [BH02, CÖZdl17, CF06, CCI12, DJR18, DS96, FY08, GHWOZ5, KM11, KM10, LRR08, UCL06, NWW06, NWK08, YB11].

Strings [BCFL12, CFIJ10, D08, FS05, Fre05, FR06, IN13, JP07, Lag14, Suy12, SW09, TCLS10, ZBS05, Zha17]. Strong [BJY90, DP14, GM90, Iba11, NGHK15, PT18, Teh16a]. Stronger [NPPS11].

Strongly [HHP17]. Structural [BCB12, JK14b]. Structure [AK10, BSG03, CCF08, CISH07, HK95, IIT91, JMR91, LMK2, MGGP08, MO10].

Structures [ACV13, Chat02, ER14, JK14b, LOD07a, LOD07b, Lin08a, RGR11, SKL03, SM00, SFL17, WRNK03]. Study [CS03, FK06, VJD10]. Sturmian [BPR09, DD06, Mig90, PR12, Tho06]. Style [RKRR02]. Subalgorith [Nis07].

Subarrays [BT07]. Subclasses [BHK05, Gia11, TSZ16]. Subcubic [SG04].

Subdivision [XHLF02]. Subdivision-Based [XHLF02]. Subgraph [AB91, GMU15]. Subgraphs [ET14].

Subgroup [FZ13, IMS03]. Sublinear [FMN06]. Sublinearly [MMP10].

Sublogarithmic [HIIW01]. Submatrices [WAG+06]. Submodular [SSS09].

Suboptimal [GD98].
Tapes [KSY14]. Tardiness [KS10]. Target [DEKZ11]. Target-Controlled [DEKZ11].
Task [BNR99, DEZ01, EZ01, FL97, FBHH01, RM06, Sun11, YH11]. Tasks [HL04, LTW02, MZ01, ZC05].
Taxonomies [KSJ08, ROK08].
Techniques [FZ02, HPV99, RK09, SEE99].
Telecommunications [AC05].
Temperature [JK14a].
Template [DDM07, WH03].
Template-Guided [DDM07].
Templates [ER06].
Temporal [GN04, LRT92, PQ06, Pen93, SMS92].
Tenacity [LWYL14].
Tents [US02].
Term [Bar90, FW90, TST01a]. Terminating [Mas09].
Terms [Hir91, JC03, OY11, YTN01].
Testability [RS13]. Testable [KP10a, RS12]. Testing [AMR11, BDSV06, CLT09, CL10, HL06, MSH06, Mer08, WCD+14, Yah12].
Tests [KY90]. Text [CK08b, KK05, ZHZ11].
Texts [CFG12, CIRS08, IB12].
Their [CLL08, CK18, HJ14, KM08, KMS11, KP10b, KY16, LO11, MS16a, MS16b, QD03, SY07]. Theorem [BC06, BSOR10, BGS11, DV14, GN11, GHS13, GRRS14, Ruo96, SMS90, VG01, KPS13].
Theorem-Proving [GHS13, GRRS14].
Theorems [Suc90]. Theoretic [DGMM15, FH05, FZ15, GCS15, Pan91, Sub90a, Sub90b].
Theoretical [Ama05, HYN08].
Theoretically [TWZ11].
Theories [CGR13, Mar92]. Theory [AR16, AD12, BK95, BRST07, Bur12b, Kan95, Láz13, McN90, SMS92, Smi95, Suc90, Tor15, Tsz01, TST01b, Wan04, YLZ14, Zom01c]. Thesis [AD12].
Thoughts [Mec12]. Three [Cha02, CLT14, CK07, ET14, Fin12, KKH90, NS18, Tse16]. Three-Edge-Connected [ET14].
Three-Round [CLT14].
Three-Variable [NS18].
Three-Vertex-Connected [ET14].
Tiling [Gia11, Mar08a, PM13]. Tilings [Mar08b]. Time [AAV00, ANDZM09, BCFR07, CA94, CD06, CM12, CCI12, CZ11, CFPR03, DPR07, DPLL02, EH12, FZAM08, FZCFB08, Fle96, FMN06, Fri10, GKR10, GO09, GV03, Go14, Gra90, HG11, IR14, IZN99, JWB03, Joo00, KM18, Kör03, KD99, Kri97, Lag17, LD01, Leo03, Lev04, LLQ06, LCY12, LW00, MM97, Mas04, MHT09, MTNN99, MV11, NAK04, NTSH06, Pa03, Pet11, PY04, RLLW96, SK01, ST99, Sun11, US02, WG17, Wan04, YS13].
Time-Free [CD06].
Time-Interval [NTSH06]. Time-Shuffling [EH12]. Time-Space [KM18].
Times [ACFE09, Kri92, NTSH06].
Tissue [AFO06, ARV07, CVPV08, EVP05, NSVA12].
Tool [HPV99].
Top [LW93]. Top-Down [LW93].
Topic [LKM02]. Topic-Specific [LKM02].
Topics [GPPJR13]. Topological [CC98, FS98]. Topologically [HCG96].
Topology [FH11, He97, KG11, Oka98].
Tori [FHL07, LLY13, Sib97].
Torus [BF07, ISA08, LYG17, Mar97].
Tortures [GLP07]. Total [ALR04, DPLL02, FIO08, IZN99, KS10, LLQ06, LLY14, PY04, Smi95].
Totally
Tour [BEMR11]. TPR [IML04].

Trace [BR08, Gol90, Pen93]. Traceability [HCETPL+12]. Traces [LWJ+10]. Track [YBI11]. Ttractable [BCR11, HL06, YHK14].

Trade [Kap05, KM18, KKP97, Kut05]. Trade-off [KM18]. Trade-Offs [Kap05, KKP97, Kut05]. Traffic [DEKZ11].

Trains [PPJR06]. Trajectories [DKSS11, DS05, KKS05b]. Transactional [SK01]. Transducers [AM03, AM09, ARS11, AMR11, AMR15, BBL+12, BBK17, CGH05, DJR18, FSM11, Gaz06, Iba15, Mal05, Mal15, Man15, Moh02, Moh13, RT16]. Transduction [BCC+11].

Transductions [BvdB18, Sut14]. Transfer [HLY+04]. Transfers [NN93]. Transfinite [DN07]. Transformation [ALR04, AT15, BTK13, BTO17, TSS13].

Transformations [KLS05, MRS07, RRK02]. Transient [BLY12, YBM11, YB06]. Transients [GB03]. Transition [Ma0k92, Tam08].

Transparent [GD98, YSD16]. Transporter [SS07b]. Transpositions [CL07a]. Traveling [BL01]. Trawling [DEKZ11].

Tree [AHK07, ABH+09, BB+B+18, BB04, BCHK09, BKW02, CDPT16, CCP18, CS00a, CHZ06, DL12, DST10, EM11, FG+90, FFT10, Fie96, FSM11, Fuj17, Gaz06, Géc07, GC18, HH11, HBIT08, JM13, KM90, KM18, KEH16, KHL16, KK90, Li00a, LZ12, LJA09, Lüc18, MO94, Mal05, MT10, Mal15, Mal18, Man15, MC02, MS18, MOSZ18, MP91, PR00, PAS08, RAB15, Rei07, RVT06, SMS90, SB17, SVF09, Tei17, Tor13, XS06, YHK14, ZM11, DDH11].

Tree-Based [ZM11]. Tree-Height [Rei07]. Tree-to-Tree [Mal18]. Tree-Width [Fuj17]. Trees [BPY95, CS96, Dar13, DOR06, ERW04, FDFZB12, FA06, Grc96, HL01, IML04, IZN99, IZN05, JL01, JS03, JK07, Lag17, LW93, LF96, MM17, MTNN99, MAN05, OSZ92, OM96, OW92, PI95, PV98, PL06, Pro96, RS01, Sao92, Sny12, XHLF02, YTN01, YZY+18, YCTW10, ZB00, ZB02, ZH06]. Treewidth [Klo96a, Trellis [FG+90]. Trémaux [DOR06]. tri [NS13]. Triangle [FP04, XHLF02]. Triangles [AAV00, MB17, Sib97]. Triangulating [AFB96]. Triangulation [DPT02].

Turing [AD12, Cap96, Dub95, HIIW01, HJV93, IIT91, IIK+04, Mer08, Slo95]. Turn [AK14]. Tutte [GO09]. TVDH [AKM+11].

Two [AGM14, Ars15, ACGL18, BHK18a, BSBJ08, BT00, BKW02, CH15, CL15, CdL04, CHZ06, CGKY11, CGKY12, CTS18, DLT06, DJ12, FS05, FL12, GP15, HKV17, HJP+13, HL06, HkkS13, HG11, IJT+93, IS12, JP06, JM03, Kap05, KYZS17, KKH90, KP10b, Kzb96, KL11, KMO10, LY94, Leu04, LLZ07, Me93, NR18, OS01, Pru17, RWZ01, RLLW96, SS07b, Ste93, SMAN13, WO03, XZS16, YZY+18, ZZZ16, ZQL12, ZG13].

Two-Dimensional [AGM14, BT00, CdL04, DJ12, JP06, NR18, Pru17, SMAN13]. Two-Face [RLLW96]. Two-Machine [LLZ07, SS07b]. Two-Pattern [FS05].

Two-Prime [KYZS17]. Two-Processor [Leu04]. Two-Pushdown [KMO10]. Two-Sided [ACDL18]. Two-Way [BHK18a, Bkw02, CL15, HkKš13, IJT+93, IS12, Kap05, KL11, ZQL12]. Type [Bar90, CZTH13, Hir91, Kam95, MM17, MN00, PI95, Sn95, Tsa01, TST01b].

Type-Free [Kam95]. Tyтипeness [KMM06]. Types [APP91, GJKS18, TZ91].

UGB [NS98]. Ultrilinear [MP07].
References

Aytac:2013:SRR

Aysun Aytac and Hanife Aksu. Some results for the rupture degree. International Journal of Foundations of Computer Science (IJFCS), 24(8):1329–??, De-
Ahn:2009:COH

Aichholzer:2002:FPS

Accornero:2000:AST

Ausiello:2005:CD

REFERENCES

Abdulla:2009:CBT

Altundag:2016:NRD

Alba:2005:BPG

Alazemi:2011:CSU

Aydinian:2018:CMT
Harout Aydinian, Ferdi-

Abdulla:2009:MAE

Abdulla:2011:AVD

Azizoglu:1999:IND

Arslan:2002:AAL

Arslan:2004:DLW

Arslan:2005:ACL

Alba:2005:GEN

Agarwala:1996:SAP

Alhazov:2006:CSC

Abramo:2001:SNS

Anselmo:2014:PPC

Aziz:2007:MAP

Atig:2011:YPL

REFERENCES

Abdulla:2007:BMT

Axelsen:2017:DID

Augustine:2013:TAS

Anceaume:2002:NDI

Alatabbi:2016:ALC

Asahiro:2011:GOM

Afonin:2006:MFP
Sergey Afonin and Elena

Afonin:2010:SFG

Aizikowitz:2014:LCG

Alhazov:2011:SUT

Arvind:1995:HIP

Atig:2014:AOM

Akutsu:2006:APS

Alirezazadeh:2016:PFA

Alberich:2004:SPT

Allauzen:2003:FST

Asahiro:2007:GOA

Allauzen:2005:DP

Anonymous:1998:AIV

Anonymous:1999:AII

Anonymous:2000:AIV

Anonymous:2001:AIV

Anonymous:2001:P

Anonymous:2001:SIF

Anonymous:2002:AIV

Anonymous:2003:AIV

Anonymous:2003:Pa

Anonymous:2003:Pb

Anonymous:2003:Pa

Anonymous:2003:Pb

Anonymous:2003:Pa

Anonymous:2003:Pa

Anonymous:2005:Pa

REFERENCES

(IJFCS), 26(8):1191–??, December 2015. CODEN IFCSEN. ISSN 0129-0541.

Anonymous:2016:AIV

Anonymous:2017:AIV

Aytac:2010:CRD

Ando:2010:SCL

Ausiello:1990:LPA

Agostino:1992:PCO

REFERENCES

Aysun Aytac and Tufan Turaci. Vertex vulnerability parameter of gear
Auger:2012:FDP

Aytac:2015:VMT

Atanasiu:2007:BA

Atanasiu:2016:NOP

Abderrahim:2012:HGQ

Agrawal:1996:ICD

M. Agrawal and S. Venkatesh. On the isomorphism conjecture for 2-DFA reduc-

Alzoubi:2003:MIS

Andresen:1999:P

Badr:2009:HM

Ben-Amram:2012:EDC

Barbanera:1990:CTR

Basten:1997:PPO

Beigel:1999:NPR

R. Beigel and A. Bernasconi. A note on the polynomial representation of Boolean functions over GF(2). *International Journal of Foun-
REFERENCES

Bartzis:2003:ESR

Bouda:2003:EQI

Blin:2004:FAD

Bianchi:2018:OMS

Berry:2000:GAM

Babvey:2006:SEI

REFERENCES

Bensch:2017:DST

Benattar:2012:CSF

Bertoni:1990:I

Boukerche:2012:EPA

Beal:2011:QUB

Bes:2006:KTL

Brim:2012:USI

Beal:2014:P

Bennoui:2012:SAI

Brevéglieri:1996:MPL

Besozzi:2011:MDS

Burgin:2013:ICM

Bertoni:2014:DIP

REFERENCES

25(8):1065–??, December 2014. CODEN IFCSEN. ISSN 0129-0541.

Berardi:2008:ASC

Boichut:2009:HNL

Bischoff:2012:UPI

Bastien:2007:RSG

REFERENCES

Bujtas:2011:GPP

Biegler:2008:CAM

Bertolotti:2006:EST

Bloom:1992:IA

Bloom:1993:IA

Bloom:1995:SEL

Bloom:2011:ALO

REFERENCES

Bedon:2018:CBA

Beeson:1995:UNA

Brijder:2011:TRS

Berlinkov:2013:SQE

Bhika:2007:TDC

Bouajjani:2003:GAS

Bannai:2018:DPF

Bernardini:2008:HSA

Bednarova:2016:NRM

Bassino:2010:ASC

Bednárová:2016:NRM

Bergeron:2002:VAA

Budaghyan:2011:ICP

Lilya Budaghyan and Tor Helleseth. On isotopisms

Bordihn:2005:ULO

Bordihn:2007:HEF

Bianchi:2018:STW

REFERENCES

Bordihn:2015:RPC

Bournez:2018:RPO

Bui:2012:ARW

Bibak:2018:AUH

Bruggemann-Klein:2002:RTW

Blokh:2001:MTS

Brzozowski:2012:QCS

Janusz Brzozowski and Bo Liu. Quotient complex-

[102x681] REFERENCES

0129-0541 (print), 1793-6373 (electronic).

[Brzozowski:2014:SCS]

[Brlek:2006:PCP]

[Bein:2003:BSH]

[Brandstadt:2004:GCG]

[Boyar:2015:FIP]

[Bein:2009:KSC]
Wolfgang Bein, Lawrence L.

REFERENCES

[BMP03] Bianchi:2015:POW

[BMS18] Bonifacio:2012:MPC

[BMS18] Bera:2018:PPM

Somnath Bera, Kalpana Mahalingam, and K. G. Subramanian. Properties of Parikh matrices of binary words obtained by an extension of a restricted shuffle operator. *International Journal of Foundations of
REFERENCES

Computer Science (IJFCS), 29(3):403–??, April 2018. CODEN IFCSEN. ISSN 0129-0541.

Barbuti:2011:OOS

Bergstra:1991:UAS

Boeres:1999:CBT

Bordim:2008:P

Bordim:2011:P

Belovs:2017:CCC
REFERENCES

{\textbf{Bordim:2005:Fa}}

{\textbf{Bordim:2005:Fb}}

{\textbf{Bordim:2003:SSC}}

{\textbf{Baumslag:1997:ISG}}

{\textbf{Bodlaender:1991:CSC}}

{\textbf{Belohlavek:2008:FFS}}

{\textbf{Bournez:2011:P}}

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Issue</th>
<th>Year</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
</table>
ISSN 0129-0541 (print), 1793-6373 (electronic).

Brzozowski:2015:LAS

Bonnet:2016:NEI

Blanchet-Sadri:2008:RTN

Bansal:2003:MHM

Blanchet-Sadri:2010:FWT

Bresolin:2012:BMB

Bourgeois:2000:RTD
REFERENCES

Bae:2007:ADM

Bacak-Turan:2017:NIT

Brzozowski:2013:CAR

Bramas:2017:RBC

Bacak-Turan:2013:NIT

Bacak-Turan:2017:NRD

Burderi:2012:FMM

Burgin:2012:DUA

Banerjee:1998:DSC
REFERENCES

77

Bruda:2010:CHP

Bienkowski:2013:HCM

Ciftci:2018:EIN

Cai:1994:CJN

Calude:2005:P

Calamoneri:2015:OJK

Campean:2014:DCE

Caporaso:1996:STM

S. Caporaso. Safe Turing machines, Grzegorczyk

REFERENCES

Chai:2007:EIB

Cantone:2008:SCP

Cantone:2009:NEB

Cienciala:2007:PDS

Czumaj:2011:AAB

REFERENCES

[Cai:2004:HAM]
REFERENCES

[Carpi:2004:RFU] Arturo Carpi and Aldo de Luca. Repetitions, fullness, and uniformity in two-

Cantone:2006:SEB

Cantone:2012:ABM

Clarke:2003:ACG

Cappello:2005:AMH
Franck Cappello, Pierre Fraigniaud, Bernard Mans, and Arnold L. Rosenberg. An algorithmic model

Crochemore:2010:NOP

Cadilhac:2012:BP

Cadilhac:2013:UCA

Cropp:2020:BPA

Champarnaud:2005:CTF

Champarnaud:2008:AJA

Cui:2012:SCT

Crochemore:2012:LCS

Cao:2015:TBF

[CH15] Xiwang Cao and Lei Hu. Two Boolean functions with five-valued Walsh spectra

Cui:2011:SCT

Carioni:2013:ATM

[CHYT14] Chiao-Wei Chiu, Kuo-Si Huang, Chang-Biau Yang,

[Cleophas:2006:TRA]

[Ciglaric:2004:CND]

[Christodoulakis:2008:IRM]

[Cartigny:2003:RRS]

[Chin:2016:A]

[Crochemore:2007:SFO]

Chung:2018:ERN

Culik:2002:NSA

Christensen:2015:SHT

Coetser:2009:REH

Chang:2017:SER

Chen:1998:SRN

Chen:2003:ZAC
REFERENCES

Cheng:2007:FRC

Couceiro:2007:EVI

Chang:2010:ETF

Cheng:2008:MPA

Carnino:2015:DUW
Carnino:2014:FUA

Cheng:2016:SCC

Champarnaud:2004:RWE

Chang:2009:TEB

Chen:2014:TRA

Cantin:2009:CCH

Campadelli:1992:LCL

Chatterjee:2012:DAG

Casasnovas:2004:AMC

Jaume Casasnovas, Joe Miró, Manuel Moyà, and

Campeanu:2003:CNM

Cardelli:2006:URM

Caissy:2016:EFH

Chung:1999:PMM

Ceterchi:2006:SCP

Campeanu:2002:EAC

Cordasco:2014:SSP

Gennaro Cordasco and Arnold L. Rosenberg. On

REFERENCES

Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. A formal study of practical regular expressions. International Journal of Foun-

E. Csuhaj-Varjú, C. Martín-Vide, V. Mitrana, and G. Vaszil. Parallel communicating pushdown automata...

Dassow:2004:DCL

Das:2013:NEA

DD06

DD08

DD12

DD13

DDD18

Andreas Darmann, Janosch Döcker, and Britta Dorn. The monotone satisfiability problem with bounded variable appearances. *International Journal of Foundations of Computer Science (IJFCS)*, 29(6):??,
REFERENCES

Datta:2011:SSE

Daley:2007:IMT

DeAgostino:2006:BSD

Ducrou:2008:IUI

Domosi:2012:P

Duncan:2006:DFE

Dolev:2011:TTU
Shlomi Dolev, Yuval Elovici, Alex Kesselman, and Polina...

Dutot:2005:SLS

Deng:2002:P

Dixon:2009:ABS

Domaratzki:2005:NUR

Devillers:2002:DH

Diesel:2001:DTS

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Deng:2002:PMT

Dasso:1999:LDM

Droste:1990:UIS

Diderich:1998:EDO

Dawson:2009:TAR

Diekert:2008:SSF

Diks:1993:PAF

K. Diks, O. Garrido, and A. Lingas. Parallel algorithms for finding maximal
104

Dumitran:2015:BPS

Das:2007:IAM

Derakhshan:2018:OBD

Das:1996:CDS

Das:1997:ECF

REFERENCES

REFERENCES

Dassow:2014:IPC

Du:2016:DAF

Demri:2007:RAT

Demri:2007:RAT

Diekert:2011:P

DeFelice:2016:ACA

Domaratzki:2004:IBN

Dombek:2012:SIA

DeFraysseix:2006:TTP

DeAgostino:1990:PRA

Delzanno:2013:P

Droste:2014:WNW
Manfred Droste and Bundit Pibaljommee. Weighted nested word automata and logics over strong bimonoids.

Damm:2007:GTV

Dongarra:2008:RMP

Dassow:1993:GBP
REFERENCES

ISSN 0129-0541 (print), 1793-6373 (electronic).

[DR06] Clelia De Felice and Antonio Restivo. Preface. *In-
REFERENCES

Domaratzki:2012:APW

Das:2008:VBS

Drewes:2007:L

Droste:1992:CAD

Day:2014:DPC

Duval:1996:CCS

DeFrancesco:2002:FDM

Nicoletta De Francesco and Antonella Santone. A formula-driven modular attack on state explosion. *In-
D'souza:2003:LCE

Domaratzki:2005:RST

Ozelim:2018:IDF

daSilva:2001:EPJ

Domaratzki:2011:P

REFERENCES

Du:2015:OBS

REFERENCES

Dold:2003:CVR

Dantsin:2003:RDC

Desmedt:2004:AVC

Ding:2011:P

Ding:2015:NSS

Ding:2016:ECP
Etherington:2016:PAC

Estivill-Castro:2002:CWV

Edelsbrunner:2002:SIM

Elkind:2010:QDO

Ediger:2012:EAT

Eom:2015:SCB

Emerson:2006:MMC
REFERENCES

[116]

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

[Elmasry:2006:PQW] Amr Elmasry. A priority queue with the working-

[ELS15]

[EMR11]

[EMR12]

[EMRB12]

[EMR10]

[ÉM11]

[EN03]

Esik:2015:P

Elmasry:2014:FST

Eshaghian:2001:MAH

Fazekas:2008:IBS

Fazekas:2011:PRL

Fujimoto:2001:MPT

REFERENCES

Fontaine:2005:BBA

Fung:2005:OSU

Fajardo-Delgado:2012:RSS

Fernau:2007:PGR

Fernau:2015:FIR

Fredriksson:2008:EAM

Fix:2007:VVL
Limor Fix, Orna Grumberg, Amnon Heyman, Tamir Heyman, and Assaf Schuster. Verifying very large industrial circuits using 100

Falaschi:1990:NGH

Freund:2011:P

Fachini:1990:SST

Fouquet:1999:BGT

Faliszewski:2005:ASS

Frisco:2011:STS

Flocchini:2007:DCR

Fialik:2008:SBC

Finkel:2004:RLI

Finkel:2012:TAR

Freund:2008:ESN

Franek:2012:CRA

Forsyth:2016:RPW

Fujiwara:2005:PMI

Fehnk:2006:HSV

Fribourg:2013:PVT

Friedgut:2006:BCM

REFERENCES

REFERENCES

Fimmel:2001:OSP

Fazekas:2013:NDS

Fujiwara:2004:PLA

Fredriksson:2006:FMR

Fominykh:2013:PAS

Fujita:2016:FSC

Freund:2007:PHS

REFERENCES

[Freund:2008:CGS]

[Freund:2005:ORC]

[Forsell:2010:PCS]

[Ferrante:2004:VCP]

[Fantozzi:2003:GPS]

[Ferro:2003:FCM]

[Faloutsos:2002:EAL]
Michalis Faloutsos, Rajesh Pankaj, and Kenneth C. Sevcik. The effect of asym-

[Fri10]

Frey:2002:BTA

[Fre02]

Freund:2005:SWS

[Fre05]

Freivalds:2008:NCD

[Fre08]

Friedmann:2010:SSA

[Fri10]

Freydenberger:2006:UMI

[FRS06]

Flocchini:1998:TCS

[FS98]
REFERENCES

Filiot:2010:TAG

Fujita:2016:PLG

Fujiyoshi:2017:PAU

Fulop:2017:MZE

Farmer:1990:RCT

Feng:2015:LFT

Franek:2008:ALB

Feng:2011:VBF

[FY11] Keqin Feng and Jing Yang. Vectorial Boolean functions
REFERENCES

[FZCFB08] José Alberto Fernández-Zepeda, Carlos Alberto

Fernandez-Zepeda:2005:DFT

Gazdag:2006:DSP

Gheorghiu:2003:SFF

Gandhi:2015:AAS

[Ratnik Gandhi and Samaresh Chatterji. Applications of algebra for some game theoretic problems. *International Journal of Founda-
REFERENCES

Geser:2005:FFA

Gianmarresi:2011:EIT

Gudmundsson:2007:P

Gehrk:2018:PSU

Gravier:2006:QOG

Ganzinger:2000:PA

Ganzinger:2000:RRN

REFERENCES

Garcia:2014:EDF

Gorrieri:1990:THD

Giambruno:2015:GGB

Grigoriev:2015:NMS

Gergatsoulis:2004:PPT

Gazdag:2011:KTB

Guingne:2003:VOV

Franck Guingne, Florent Nicart, Jean-Marc Cham-

Grabowski:2006:SAI

Gebauer:2009:FET

Goldwurm:1990:SLD

Golovnev:2014:AAT

Gonzalez:2001:SMM

Geffert:2008:P

REFERENCES

Groote:2009:SG

Geffert:2013:UCN

Gusev:2015:RTA

Gurski:2017:IRS

Galle:2009:PUS

Gheorghe:2013:RFM

Goc:2014:NSC

Gruska:2015:PQF

[GQZ15] Jozef Gruska, Daowen Qiu, and Shenggen Zheng. Po-
REFERENCES

Columbic:2000:CWS

Grimmell:2003:SBR

Gradel:1990:NLT

Grassl:2003:EQC

Greenlaw:1996:SID

Grover:2003:IQS

Goc:2014:NAB

Daniel Goč, Narad Rampersad, Michel Rigo, and Pavel Salimov. On the number

Geeraerts:2010:ECM

Gudmundsson:2009:SGG

Goddard:2012:SSM

Gorbunova:2012:PWA

Gasnikov:2018:SFP

Ghosh:2003:NAE

Greco:1999:GA

Giakoumakis:2003:LTR

Gazda:2018:CYO

Guo:2017:FFU

Gao:2012:SCA

Hakem:2006:CPS

Higa:2008:RST

REFERENCES

Hernandez-Castro:2012:MTA

Hanks:1996:FTV

Head:2011:CLT

Heirich:1997:SD

Henriksen:2002:EET

Hinze:2009:RMC
REFERENCES

(Hu:2011:PTK)

(Halava:2011:RTB)

(Hadravova:2012:LSB)

(Hemaspaandra:1995:NSS)

(Huang:2017:BBC)

(Hemaspaandra:1999:SSM)

REFERENCES

Hyyro:2018:DRC

Hirokawa:1991:PTA

Harvath:2001:CPP

Hinze:2001:SIF

Hromkovic:1992:POW

Hemachandra:1991:LLR

Hemaspandra:1997:LRM

Lane A. Hemaspandra and Zhigen Jiang. Logspace
Holzer:2013:EAE

Holzer:2014:NBT

Holzer:2016:MHM

Holzer:2017:MMF

Holzer:2012:MNP

Holzer:2018:MRD

Harren:2013:TOT
REFERENCES

REFERENCES

148

Holzer:2009:NFA

Holzer:2011:CRL

Holzer:2015:P

Hromkovic:2013:DVN

Han:2016:SCI

Han:2013:EDB

Halldórsson:2000:MID

M. M. Halldórsson, J. Kratochvíl, and J. A. Telle. Mod-2 independence and domination in graphs. *In-
REFERENCES

ternational Journal of Foun-
dations of Computer Sci-
ence (IJFCS), 11(3):355–
364, 2000. CODEN IFC-
SEN. ISSN 0129-0541
(print), 1793-6373 (elec-
tronic).

[RHKV17] Rachid Hadid, Mehmet Hak-
ara, and Vincent Vil-
lain. A stabilizing algo-

[Hadid:2017:SAF] Rachid Hadid, Mehmet Hakara,
and Vincent Villain. A stabilizing algorithm for finding two node-
disjoint paths in arbitrary networks. International
Journal of Foundations of Computer Science (IJFCS),
28(4):411–??, June 2017. CODEN IFCSEN. ISSN
0129-0541.

[HL01] Wing-Kai Hon and Tak-
Wah Lam. Approximating the nearest neighbor inter-
change distance for non-
uniform-degree evolutionary trees. International
Journal of Foundations of Computer Science (IJFCS),
(print), 1793-6373 (elec-
tronic).

[H0:2004:DCP] Kevin I.-J. Ho and Joseph
Y.-T. Leung. A dual cri-
teria preemptive scheduling problem for minimax error
of imprecise computation tasks. International Journal
of Foundations of Computer

Leung, and Xin Wang. Pre-
emptive scheduling algo-
rithms with nested processing set restriction. International
Journal of Foundations of Computer Science (IJFCS),
20(6):1147–1160, December 2009. CODEN

Healy:2006:TFP] Patrick Healy and Karol
Lynch. Two fixed-parameter tractable algorithms for

Hsu:2006:SCS] Hong-Chun Hsu, Cheng-
Kuan Lin, Hua-Min Hung,
and Lih-Hsing Hsu. The spanning connectivity of the
(n,k)-star graphs. International
Journal of Foundations of Computer Science (IJFCS),
17(2):415–??, April 2006. CODEN IFCSEN. ISSN 0129-0541
(print), 1793-6373 (elec-
tronic).
REFERENCES

Hon:2004:STD

Hong:2004:AWS

Han:2005:AAM

Harju:2004:MDE

Hyyro:2006:BPC

Holub:2010:RBP

Holzrichter:1999:GBD
M. Holzrichter and S. Oliveira. A graph based Davidson algorithm for the graph par-

Honkala:2006:BPD

Honkala:2007:DEP

Honkala:2012:ESM

Halava:2008:P

Halava:2009:P

Heuberger:2009:ACM

Habib:1999:PRT

Han:2017:P

Han:2011:OFL

HS95

Han:2017:Pa

Herlihy:2007:KBE

Hinze:2001:PCC

Ralf Hinze, M. Sato, and Y. Toyama. Prolog’s control...

Hutter:2002:FSA

Huynh:1991:EDC

Hartog:2002:VPP

Hempel:2000:OMM

Han:2005:GGA

Huang:2010:CSB

Hong:2017:IAA

REFERENCES

REFERENCES

[Ibarra:2002:VQC]

[Ibarra:2011:SRS]

[Ibarra:2015:AFV]

[Ibarra:2001:RSI]

[Ibarra:1997:CCA]

[Ibarra:2008:CMR]

[IIK+04]
Inoue:1991:ATM

Ibarra:1993:ETW

Ipate:2011:FVS

Idwan:2004:FPM

Iliopoulos:2005:FAF

Iliopoulos:2012:PAM

Ivanyos:2003:EQA

[IMS03] Gábor Ivanyos, Frédéric

REFERENCES

[IT13] Oscar H. Ibarra and Nicholas Q. Tran. How to synchronize the heads of a mul-
REFERENCES

Ibarra:2007:CRL

Ibarra:2007:P

Ibarra:2005:VNP

Ilie:2004:WCR

Ibarra:2004:CCC

Isobe:1999:PTA
REFERENCES

Ito:2005:PTS

Jain:1995:ICF

Jain:1998:MCI

Jansen:1993:SIJ

Jiao:2003:CLM

Jez:2008:CGG

Jecker:2018:MSW
REFERENCES

Jendrsczok:2008:IHP

Jiraskova:2011:MNT

Jiraskova:2014:RSC

Jirasek:2005:SCC

Jirasek:2008:DBU

Jurgensen:2007:SAB

DEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Jonoska:2014:ATSa

Jonoska:2014:ATSB

Jacobsen:2001:VTR

Jorrand:2003:SPQ

Jiraskova:2011:CUF

Jez:2013:HMD

Jiang:1991:SCM

Jansen:2005:AAF

Jurdzinski:2007:SRA

Johansson:2000:NDP

Justin:2004:EWS

Jonoska:2006:TTD

Jansson:2007:ODR

Jalsenius:2008:SSC

REFERENCES

ISSN 0129-0541 (print), 1793-6373 (electronic).

Jurgensen:2014:P

Jack:2008:DNM

Jia:1997:TLN

Jia:2002:CCH

Jung:2003:SBS

Jansen:2010:ASS

Jain:2003:PPH

Jung:2014:SA

Jurgensen:2008:CIE

Jiang:2008:ASP

Janzing:2003:CPP

Jin-Yi:1991:PSC

Januszewski:2016:IOA

Kurkcu:2018:CBE

[KBH99a] K. Krithivasan, M. S. Balan, and P. Harsha. Distributed
REFERENCES

[KK05] Yair Kaufman and Shmuel T. Klein. Semi-lossless text

Klein:2007:CFG

Kamei:2010:SSD

Kari:2005:BFL

Kari:2005:OTA
REFERENCES

REFERENCES

Ko:2016:SCR

Kloks:1996:TCG

Klostermeyer:1996:STS

Krawetz:2005:SCM

Katajainen:1990:TCO

Kamareddine:2002:EAT

Kari:2007:IBW

REFERENCES

Kutrib:2007:WCR

Kari:2008:WCB

Krivka:2015:JG

Kapoutsis:2017:LCS

Kavand:2018:TST

Krithivasan:2011:SLG

Kusano:2009:AVS

Kuppusamy:2011:AIS

Kupferman:2006:TRA

Kutrib:2010:STP

Klarlund:2002:RP

Krivka:2006:GLR

Kari:2011:PPP

Kappes:2012:MCK

REFERENCES

Koga:2018:CFP

Korner:2003:TSE

Klima:2010:HPT

Klima:2010:LIL

Kouri:2015:RMA

Kirschenhofer:1993:MDS

Karhumaki:2013:FWT

Juhani Karhumäki, Svetlana Puzynina, and Aleksi Saarela. Fine and Wilf’s theorem for k-Abelian periods. *International Journal*
177

REFERENCES

of Foundations of Computer
Science (IJFCS), 24(7):
1135–??, November 2013.
CODEN IFCSEN. ISSN
0129-0541.

Klimann:2018:CSR [KPS18]
Ines Klimann, Matthieu Pi-
cantin, and Dmytro Savchuk.
A connected 3-state re-
versible Mealy automaton
cannot generate an in-
finite Burnside group. Inter-
national Journal of Foun-
dations of Computer Sci-
ence (IJFCS), 29(2):297–??,
February 2018. CODEN
IFCSEN. ISSN 0129-0541.

Kurganskyy:2008:RPL [KPSC08]
Oleksiy Kurganskyy, Igor
Potapov, and Fernando
Sancho-Caparrini. Reach-
ability problems in low-
dimensional iterative maps.
International Journal of Foun-
dations of Computer Sci-
ence (IJFCS), 19(4):935–
951, August 2008. CODEN
IFCSEN. ISSN 0129-0541
(print), 1793-6373 (elec-
tronic).

Young Wook Keum and
Hwakyung Rim. Design and
analysis of the Symmetric
Banyan Network (SBN): a
min with high performance
and high fault tolerance. In-
nernational Journal of Foun-
dations of Computer Sci-
ence (IJFCS), 8(3):253–??,
September 1997. CODEN
IFCSEN. ISSN 0129-0541
(print), 1793-6373 (elec-
tronic).

Klappenecker:2003:QSR [KR03]
Andreas Klappenecker and
Martin Rötteler. Quantum
software reusability. Inter-
national Journal of Foun-
dations of Computer Sci-
ence (IJFCS), 14(5):777–
??, October 2003. CODEN
IFCSEN. ISSN 0129-0541
(print), 1793-6373 (elec-
tronic).

Kutrib:2008:OSW [KR08]
Martin Kutrib and Jens
Reimann. Optimal simula-
tions of weak restarting au-
tomata. International Jour-
nal of Foundations of Com-
puter Science (IJFCS), 19
CODEN IFCSEN. ISSN
0129-0541 (print), 1793-
6373 (electronic).

Peter Kostolányi and Branislav
Rovan. Automata with
auxiliary weights. Interna-
tional Journal of Foun-
dations of Computer Sci-
ence (IJFCS), 27(7):787–??,
November 2016. CODEN
IFCSEN. ISSN 0129-0541.

Krishnan:1992:CTC [Kri92]
P. Krishnan. A calculus of
timed communicating sys-
tems. International Jour-
nal of Foundations of Com-
puter Science (IJFCS), 3(3):

[KSMMT18] Safia Kedad-Sidhoum, Florence Monna, Grégory

REFERENCES

Kari:2012:BSR

Kenyon:1990:EBF

Kobayashi:1996:FNL

Ke:2017:AMB

Kaminski:2010:FMA

Lagogiannis:2014:PQD

Lagogiannis:2017:QOP

REFERENCES

REFERENCES

[Li:2017:ERD]

[Leopold:2003:CMA]

[Leung:2004:ICA]

[Leung:2005:DCN]

[LF96]

[LF96]

References

REFERENCES

Lin:2017:IID

Langer:2011:PAE

Lorincz:2002:IHP

Liu:2016:SNC

Li:2006:MTW

Lin:2018:ELE

Li:2013:SSC

REFERENCES

Leung:2007:STM

Loukil:2012:PHG

Loos:2008:DCS

Lisitsa:2008:RAV

LaTorre:2016:SBP

Lehtinen:2010:BGG

Lehtinen:2011:ESN

Tommi Lehtinen and Alexander Okhotin. On equations over sets of numbers and their limitations. *International Journal of Foundations of Computer Sci-
REFERENCES

Löding:2015:SPD

Lohrey:2005:DCA

Lohrey:2010:CMP

Lopez-Ortiz:2018:AOC
Alejandro López-Ortiz, Cynthia B. Perez, and Jazmín Romero. Arbitrary overlap constraints in graph packing problems. *International Journal of Foundations of

Lehtinen:2013:HPD

Lauer:2007:UEDa

Lauer:2007:UEDb

REFERENCES

REFERENCES

REFERENCES

[0541 (print), 1793-6373 (electronic).

Jing Li, Yuxing Yang, and Xiaohui Gao. Hamiltonicity of the torus network under the conditional fault model. *International Journal of Foundations of Computer Science (IJFCS)*, 28
Li:2015:CFT

Lange:1993:LRL

Liao:2012:AST

Liao:2015:NOC

Lu:2016:MRL

Leporati:2006:SIB

Macarie:1996:NMF

REFERENCES

194

(Madhu:2003:PRS)

(Morris:2009:USP)

(Maletti:2005:RTS)

(Maletti:2007:PS)

(Maletti:2015:PWR)

(Maletti:2018:CTT)

(Miura:2005:CDR)
REFERENCES

Miura:2006:CDP

Maneth:2015:SDE

Marche:1992:WPA

Martin:1997:ETA

Margenstern:2008:FTP

Margenstern:2008:CCA

Martyugin:2009:LSR

REFERENCES

[MD00] N. R. Mahapatra and S. Dutt. Random seeking: a general, efficient, and informed randomized scheme for dynamic load balancing. *International Jour-
REFERENCES

Martinez-Del-Amor:2011:SAM

Masse:2013:MW

Monien:1997:CLS

Mereghetti:2008:TDP

References

[102x681] REFERENCES

[102x681] (print), 1793-6373 (electronic).

Manca:2011:LGS

Mairesse:2017:USS

Malcher:2010:SSB

Mantaci:2010:BPD

Merkle:2005:DPC

Mazumder:2017:PSK

Manea:2010:SRH

REFERENCES

Muller:2000:TIF

Miura:2006:CGD

Montanari:2012:P

Mizuki:2011:ASN

Manea:2018:CSR

Maelbrancke:1994:DTR

Messerschmidt:2007:CDS

[MO07] Hartmut Messerschmidt and Friedrich Otto. Cooperating distributed systems of restarting automata. *Inter-
REFERENCES

Messerschmidt:2009:DCS

Moriya:2010:APS

Mohri:2003:EDW

Mohri:2013:DFA

Marti-Oliet:1991:PNL

Morin:2010:USM

Rémi Morin. Unambiguous shared-memory systems. International Journal of Found-
Mignot:2018:EAC

Monti:1991:STB

Moffat:1993:HS

Magalini:2007:PCU

Mcquillan:2012:P

Mraz:2007:ARA

Martins:1999:DAR

E. D. Q. V. Martins, M. M. B. Pascoal, and J. L. E. D. Santos. Deviation algorithms for rank-
REFERENCES

REFERENCES

September 2013. CODEN IFCSEN. ISSN 0129-0541.

Maha:jan:2006:ABS

Mateescu:1997:GTL

Monserrat:1995:WCM

Mongelli:1999:PRM

Mongelli:1999:PI

Mateescu:2004:MIS

Malche:r:2007:MPC

Mahalingam:2012:PPM

Meduna:2016:C

Meduna:2016:SMG

Michalewski:2018:SUT

Malik:2006:CFT

Mason:1995:RAO

Musikaev:1995:FBP

I. K. Musikaev and M. A. Taitslin. Flat backtracking Prolog for databases: a formal semantics, the computational complexity and the

REFERENCES

Mahalingam:2012:PPM

Meduna:2016:C

Meduna:2016:SMG

Michalewski:2018:SUT

Malik:2006:CFT

Mason:1995:RAO

Musikaev:1995:FBP

I. K. Musikaev and M. A. Taitslin. Flat backtracking Prolog for databases: a formal semantics, the computational complexity and the

Maletti:2010:PQR

Miura:1999:LTA

Meier:2009:CSF

Meier:2015:ECS

Mukund:1992:PNS

Miyazawa:2011:BCT

REFERENCES

[Ma:2004:TSP]

2012. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Nagamochi:2006:PSR

Nakano:2003:LLG

Nakano:2004:TEO

Nakano:2006:P

Nouribiaygi:2018:CCA

REFERENCES

Nicart:2007:LMT

Ng:2002:IAW

Ngassam:2008:IPT
Ernest Ketcha Ngassam, Derrick G. Kourie, and

Nahimovs:2018:QWT

Ng:2018:SCN

Nishimura:2000:FSS

Narayanaswamy:2013:UFB

Nowotka:2018:OVW

Niu:2012:TPS

REFERENCES

ISSN 0129-0541 (print), 1793-6373 (electronic).

REFERENCES

DEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Okhotin:2005:CAH

Okhotin:2006:GLP

Okhotin:2007:NDC

Oles:1992:WCM

Oliveira:2013:WAC

Orlandic:1996:SOT

ONeil:2015:CCS

Ochem:2008:AAS
Pascal Ochem, Narad Rampersad, and Jeffrey Shallit. Avoiding approximate squares. *International Journal of...*
REFERENCES

REFERENCES

Pavel:1998:ISR

Palis:2001:PSP

Palis:2001:SIP

Palis:2003:COR

Palano:2008:RCC

Panti:1991:SNT

PAS08

Pierre Peterlongo, Julien Allali, and Marie-France Sagot. Indexing gapped-factors using a tree. *International Journal of Foun-
Patrignani:2006:EPS

Pan:2011:CRN

Penczek:1993:TLT

Petersen:2011:STB

Priore:2001:DSM

Paolo Priore, D. D. L. Fuente, A. Gomez, et al. Dynamic scheduling of manufacturing systems with ma-
REFERENCES

Perez-Hurtado:2011:PAA

Pin:2012:EDL

Prieur:2006:STS

Pighizzini:2009:DPA

Pighizzini:2015:IAL

Peng:1995:NTP

Pin:2012:EDL

Prieur:2006:STS

Plaza:1996:PSR

Porreca:2011:SAM

Prrusa:2013:RTA

Pau:2010:ICS

Polak:2005:MNU

Poon:2004:ORM

Paquette:2006:FBB

Poinsot:2011:NBA

Laurent Poinsot and Alexander Pott. Non-Boolean almost perfect nonlinear functions on non-Abelian groups. International Journ-
REFERENCES

Pighizzini:2014:LAR

Pigizzini:2014:LAR

Paun:2006:PP

Paun:2006:STS

Paun:2007:CMS

Paun:2008:RCL

REFERENCES

REFERENCES

Pighizzini:2002:ULO

Pelantova:2012:ARW

Petrova:2012:CPB

Potapov:2018:P

Palioudakis:2017:WCB

Prusinkiewicz:2012:SGM

Piperno:1990:RSE

Peled:2007:P

REFERENCES

Pelc:2014:EGE

Poovanandran:2018:MES

Petrini:1998:PAW

Potanin:2013:P

Poon:2004:MTC

Poovanandran:2018:MES

P Petrini:1998:PAW

Pym:201992:UAL

Pym:1992:UAL

Peng:2010:AAS

Poontab:2007:DBB

Qiu:2003:INT

Qi:2015:LED

Qi:2006:SSP

Quaglia:2007:SDB

Rajabi-Alni:2015:CPS

Rampersad:2005:WAP

Saladi Rahul, Prosenjit Gupta, and K. S. Rajan. Data structures for range-aggregation over categories. *International Journ-

REFERENCES

REFERENCES

Richomme:2004:CRM

Ravikumar:2007:ELD

Reghizzi:2012:RSL

Reghizzi:2013:SLT

Rowland:2015:ASR

Russell:2017:GSL

Reynier:2016:VPT

Rudy:2015:DRA
Jaroslaw Rudy. Dynamic random-access stored-program machine for runtime code

[Sah01] Sartaj Sahni. Models and algorithms for optical and

[SB01] Jennifer M. Schopf and Francine Berman. Using stochastic information to predict application behavior on contended resources. *International Journal of Foun-
REFERENCES

Seredynski:2012:DRB

Sharma:2017:BST

Sburlan:2006:FRS

Schmidhuber:2002:HGK

Schnoor:2010:CMC

Schmid:2013:ICR

Salomaa:2015:AA

REFERENCES

REFERENCES

REFERENCES

Sahni:2004:EDL

Sahni:2003:DSO

Sulzmann:2017:DBD

Slobodova:1995:PO

Supol:2005:ACP

Simunek:2007:BFA
Martin Šimůnek and Bořivoj Melichar. Borders and finite

Subramanian:2013:TDD

Smith:1995:HPT

Saoudi:1990:COT

Saoudi:1992:FSP

Smyczynski:2012:CMI

Skrypnyuk:2013:RFS

Safavi-Naini:2011:USC

Reihaneh Safavi-Naini and Shaoquan Jiang. Unconditionally secure conference

REFERENCES

REFERENCES

Saifullah:2011:SSC

Shikishima-Tsuji:2016:RIH

Staiger:2005:IIF

Staiger:2007:PFL

Stewart:1993:TAA

Steinberg:2011:ATC

Stolboushkin:1992:CPP

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Subrahmanian:1990:RTBa

Subrahmanian:1990:RTBb

Subramani:2005:CRW

Suchenek:1990:ALH

Sun:2000:DRR

Sunckel:2005:DCM

Sun:2011:PSM

REFERENCES

REFERENCES

Wen Chean Teh. Separability of M-equivalent words by morphisms. *International Journal of Founda-
Teh:2018:CFP

Teichmann:2017:RAW

Touyama:2001:PEP

Thanh:1991:RMD

Thomas:2006:MSS

Tu:2013:COV

Tse:1999:CSA

Joel Antonio Trejo-Sánchez, José Alberto Fernández-Zepeda, and Julio César Ramírez-Pacheco. A self-stabilizing algorithm for a

[TWZ11]

[TW07]

[TY02]

[TWZ11]

[TY14]

[TW09]

[TY03]

Uraz Cengiz Türker and Hüsnü Yenigün. Complexities of some problems re-

References

References

Ungor:2002:PTS

Uehara:2007:CLP

VanZijl:2005:MNS

Vergnaud:2009:NEP

Verbitsky:2001:RQB

REFERENCES

Viksna:1996:IIL

Vinodchandran:2005:NCM

Vermeulen-Jourdan:2005:LDS

vanLeeuwen:2015:SCR

Vorel:2016:BPJ

Vorel:2018:BPJ

Voisin:1999:SCP

Vincent:1993:RJF

[VS93] M. W. Vincent and B. Srinivasan. Redundancy and the justification for fourth

Wei:2013:GCK

Wang:2014:ZKB

Wan-Di:1990:PAP

Wu:2003:BAH

Wang:2017:DCC

Wang:2015:SCM

Wadhwa:2017:AAR

REFERENCES

[WKSK+08] Watson, 2008: EAC
Bruce W. Watson, Derrick G. Kourie, Tinus Strauss, Ernest Ketcha, and Loek Cleophas. Efficient automata constructions and approximate automata. *International Jour-
Wei:2012:IRK

Yuechuan Wei, Chao Li, and Dan Cao. Improved related-key rectangle attack on the full HAS-160 encryption mode. *International Journal of Foundations of Computer Science (IJFCS)*, 23(3):733–??, April 2012. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Wang:2003:DSB

Wilson:2005:CPP

Ware:2013:CVG

Wu:2003:COM

Wong:1996:AFM

Wong:2001:AFL

Wong:2001:AFL

Wiedermann:2008:WMC

Wiedermann:2008:WMC

Wang:2016:NCO

Wang:2016:NCO

Wei:2016:VNS

Wei:2016:VNS

Wu:2016:ESS

Wu:2016:ESS

Wei:2003:EAS

Wei:2003:EAS

[XZS16] Zibi Xiao, Xiangyong Zeng, and Zhimin Sun. 2-adic complexity of two classes of generalized cyclotomic bi-
REFERENCES

Yahalom:2012:TFP

Yamakami:2003:AQF

Ye:2006:CTS

Yu:2011:RSV

Yamauchi:2011:RCE

Yuan:2011:LMF

Yang:2010:CMI
Jinn-Shyong Yang, Jou-Ming Chang, Shyue-Ming

[Yen:2009:PDS]

[Yen:2013:P]

[Yen:2008:DCA]

[Yen:2008:SAS]

[Yen:2008:DC]

Yli-Jyra:2005:ADG

Anssi Yli-Jyra. Approximating dependency gram-
Yang:2014:PAG

Yakaryilmaz:2013:TBS

Yakaryilmaz:2016:DST

Yang:2000:GMC

Yang:2000:PRP

Z.-H. Yang, C.-Z. Sun, Y. Miao, A. Sattar, and

Yang:2002:CSB

Yang:2002:CSB

Yu:2002:SI

Yu:2011:P

Yue:2013:CIE

REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

REFERENCES

Zhang:2005:AAC

Zomaya:2005:ECP

Zhang:2013:RMS

Zetzsch:2011:TUG

Zhou:2017:CEE

Zhou:2013:NUB

Zhou:2018:CBG

Zhang:2006:AWO

Zha:2013:CNA

Zhang:2017:FCP

Zhong:2002:RCO

Zhang:2011:WAF

Zhang:2011:NBF

Zhu:2017:PSN

Youwen Zhu, Xingxin Li,

Shenggen Zheng, Daowen Qiu, and Lvzhou Li. Some languages recognized by two-way finite automata with quantum and classical

Zhou:2014:NWC

Zheng:2014:CMV

Zhang:1996:EDB

Zhou:2014:OSN

Zhou:2012:PTE

Zhang:2014:CGC

Zhao:2018:CEC

ZHao:2018:CEC

Zhang:2018:SER

Zhu:2015:SBT

Zhi-Zhong:1991:CCO

Zhang:2016:OTS