A Bibliography of Publications in *International Journal of Foundations of Computer Science*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
09 February 2018
Version 1.59

Title word cross-reference

#P [Zan91]. #P-Completeness [Zan91].

(−β) [Dom12]. (1, 2) [BZ13]. (2 + p) [ZG13].
(2, 2) [ST16]. (3k + 1) [DZ00]. (A, B) [JL01].
(δ, α) [CCF09]. (δ, γ, α) [FG08]. (δ, κ, α)
[FG08]. (n, k) [WC13, CHY14, YCL11, CC98, HLH06].
(n, n(n + 1)) [NS98]. 1
[CHWX09, Dic93, LR04, TCT14]. 11 [LJ17].
2 [AV96, BYP95, HKT00, HJP+13, JZ16,
JW08, Leo03, Pri06, XZS16, XCS17, ZM11].
2^n [CKZ17]. 2m [ZWCL14]. 3 [BYP95,
DH96, JSPD03, LJ17, SJ04, ST93, Tsi06]. 4
[XC15, ZC15]. 7/3 [DSS15]. 73 [Ram05]. *
[MTM15]. 2 [Joh00]. ab + c [KL03].

ASPACE(log log n) [GP13]. β [Shu11]. C1
[XBE02, CTC [MTM09], CTL*
[MTM09], Z2 [BW14], J [BL14]. R
[BL14]. D [HL+04, AE99, DG98, RS01]. ℓ
[DDHL11]. f [DGL93]. F_p + νF_p [WGF16].
G(2^m, 2) [YCTW10]. G^{sy+} [AT15]. G^{sy−}
[BT017]. GF(2) [BB99]. GF(2^n) [XW16].
H [GMU15]. K
[BT07, CHWX09, PV98, ZBS05, Aku06,
AE99, DDL11, DG98, DGL93, EHS15,
IZN99, INY07, KPS13, LZ12, MXY+04,
Nak04, RS04, TCLS10, YTN01, ZZZ16].
K_m,m [Kan15]. L [PSS12]. L(j, k) [Cal15].
L_p [CMR07]. M [Jun14, Teh16a, Teh16b].
F_{2^m} [ZWCL14], μ [DL12]. N
[AM09, JM03, PV98, INY07]. O [Mal07].
O(1) [ST99]. O(n) [MM97]. O(n²) [Bad09].
ω [COT12, Fin12, DIO2, Hon02, Hon07],
KSV03, KMM06, Sel08, Sta05]. \(P \)
[AFO06, ARV07, BGMV08, BCC+11, BFM06, CD06, CCF07, CV0808, DI05, FOP05, Fre05, FIO08, FH11, GH07, IYD05, IW07, Iba11, ILT11, LG06, Luc09, Mad03, MDAPHPJ+11, NSVA12, PDPPJ11, Pau00, PPJR06, PPJR07, PPS07, PPRPS11, PBMZ06, PLMZ11, RCTC+09, Sbu06, SRPC11, YDI08]. \(P \)

\[MR99, RRT99. \]

\[GV03. \]

\[YTN01. \]

\[BM16, FBK05. \]

\[FZCFB08. \]

\[Dic93. \]

\[KL00. \]

\(f = 2^n + 2^{n+3}(n \geq 3) \) \[ZWW+14. \]

\(UG_b(n; n(n + 1)) \) \[Noc98. \]

\(Z \) \[SMS92. \]

- [BYP95, Dic93, BL14]. -Abelian [KPS13].
-Aodic [XZ16]. -Ary
[AE99, DG98, DZ00, RS01, PV98].
-Automata [KSV03]. -Calculus [DL12].
-Chains [DI02]. -Channel [Nak04].
-Collapsing [Pri06]. -Covering [ZBS05].
-Cubes [DG98]. -D

[CHWX09, JW08, SJ04]. -Decomposition
[Dic93, Joh00]. -Dependent [DGL93].
-DFA [AV96]. -Differences [Aku06].
-Dimensional [AE99, JZ16, LR04].
-Disjoint [BT07]. -Edge-Connectivity
[Tsi06]. -Edge-Labeling [Cal15].
-Equivalence [Hon07, Hon02, Teh16a].
-Equivalent [Teh16b]. -Free [GV03].
-Gram [FBK05]. -Hamiltonian [BZ13].
-Heap [Jun14]. -Independent [TCLS10].
-integers [Dom12]. -Intersection [EHS15].
-Language [Fin12]. -Languages
[COT12, Sel08]. -Like [HK11]. -Matching
[CCF09, FG08]. -Matchings [DGL93].
-Matrices [BM16]. -Means [CHWX09].
-Mesh [FZCFB08]. -out-of-
[DDDL11]. -Partners [RRT99]. -Periodic [CKZ17].
-Plateaued [XCY17]. -Power [Sta05].
-Power-Free [DSS15, RS04]. -Powers
[Shu11, Ram05]. -Qubit [JM03]. -Regular
[KMM06]. -Resilient [TCT14]. -Round
[LJ17]. -SAT [ZG13]. -Search [ZZZ16].
-Sided [ST13]. -Space [JZ16]. -Star

[CC98, CHYT14, HLHH06, WC13, YCL11].
-Subgraph [GMU15]. -Substitution
[Mai07]. -Systems [PSS12]. -Temporal
[SMS92]. -th [YTN01]. -Tree [LZ12].
-Trees [IZN99, YTN01, JL01, PV98].
-Trivial [BL14]. -Truck [MXY+04].
-Uniform [XC15, ZZC15]. -Union [EHS15].
-variable [ZWCL14]. -Way [AM09].
-Words [ST16].

160 [WLC12].

2012 [SSS13]. 2CCC [BE95]. 2NFAs
[KL17].

3-Edge-Connected [ST11]. 3-Repetitions
[GS12b].

7 [DE08]. 7-Colourings [JP08].

'98 [GJV00a, HO00]. '99 [MS99b, Pal01a].

A-Patches [XBE02]. ABE [YMC+17].
Abelian [AILR16, CRZ11, CK16, CCI12,
DR12, DMSS16, GRRS14, IMS03, KPS13,
PP11, SS01]. Abstract [DG09, T291].
Abstraction [ADHR09, ACV13, BZ07,
CFH+03, MH06, NTSH06, WM13].
Accelerating [BIIN04]. Acceleration
[IN05, IN08]. Acceptance [GZJ15, Mer08].
Accepting [Dom04, DM08, IIT91].
Acceptors [IR14, Iba15]. Access
[DCS13, Rud15, SK04, Sun00].
Accountable [YMC+17]. ACD [Mar92].
ACD-Ground [Mar92]. Achieving [JW08].
Across [CM2]. Action [HMLD09]. Active
[DV11, JK14a, JK14b, PDPPJ11, PLMZ11,
Qua01]. Activity [GBMV08]. Acyclic
[AMR08, BPR09, FZFDCHB05, GVL07,
KLB13, ZWS06]. Ad [AWF03, CIS03,
LBJ03, SB12, WLF03, WD03]. Ad-Hoc
[CIS03]. Adapting [CFG12]. Adaptive
[BKS12, CL14, CHYT14, KG11, LS98,
LBJ03, SW09, TL99, Tse16, VJD10]. Add
Addition [Wan04]. Additive [SS07a]. Adic [XZS16]. Adjacent [AKS14].
Adjustable [HZZT12, WY05]. Adjusting [KSJ08]. Advanced [Qua07]. Advances [HO00].
Advertisements [NH02]. Advice [NH02]. Aerial [Ami05]. Ane [Rov00]. Armative [PHPJRN+11].
AFL [BJ07a]. Against [BCFR07, HMZ05, HCETPL+12, TCT14, Uen13]. Agent [BF07, BDDN01, EH12, MM07, NH02].
Agents [DSS08, FHL07, LK11, LCVLV09, LRT92, MCS08]. Aggregation [RGR11].
Agreement [BVM00, MNS11]. Agreements [Tru08]. Alberto [SCIS15].
Algebra [GC15, GB03, Hea11, Lar99]. Algebraic [BM16, BMW91, BE11, FH05, Kri97, TCT14, TJJZ13, WZCL14].
Algebras [ALR04, Ali16, BE92, BE93, KLB13, MRT95, Ole92, SN13, TST90]. Algorithm [ATK12, ANDZM09, ARS11, BV08, BB04, BKS12, CPY02, CF06, CFDR08, CDJ09, CTZ01, CL03, CLT14, CHYT14, DGN07, DN16, DG98, FL09, FZAM08, FJ12, Fri10, Fuji17, GLV14, G03, GD12, HKV17, He97, HO99, HM04, Hut92, IST05, IZN99, JKH08, KK10, Kar99, Koor3, LW93, Lio1, LCT06, MDAPHPJ+11, MTNN99, MC13, NGHK15, Nis07, Okh06, PRN13, PYTH10, PR00, Pym92, QFL+15, SW09, SS07b, ST99, SKW08, Tor13, Ts06, Won96, Won01, X511, ACM11, CCM11]. Algorithmic [BS12, CFMR05, DGM15, GGR14, HPV99, Riv04].
Algorithms [AFB96, Aku06, ALR16, AC05, AM05, AM11, AE02, AE05, Arsl15, AMOZ07, BT07, BM07, BH02, BCF12, Bur12b, CD15, CCM97, CCF09, CFG12, CGKN08, CHWX09, CHA+92, CFC99, CHZ06, CCG+11, DP00, DPS99, DD13, DGL93, DWS15, DMSS16, ERW04, ECY02, FZ15, FZEBB05, FPPS03, FA06, GO09, GHJS05, Go90, HL06, HP09b, HLW09, IMP12, INY07, IMS03, JMSO05, JZ16, KKH90, L7W02, Leu04, Li12a, LMM+12, MPS99, Mas04, Moh02, Moh03, Nak04, OSZ92, RLWW96, SRR15, Sah01, SK01, SK03, SJ04, SG04, Ste93, TV07, Tor15, TL99, Tse16, WRNK03, WM05, WH03, ZBS05, Zom03, FG08].
Alignment [AE02, BBM+12, CK08b, FM96, GD12, PYTH10].
Alignment-to-Alignment [FM96]. Alive [BC12]. Allocation [BRSC11, NWW06].
Almost [HJ13, PS12a, PP11]. Almost-Equivalence [HJ13]. Alphabet [Dom12, GNP+06, JMR91, JSS08, Jir11, Pig15]. Alphabet-Independent [GNP+06].
Alphabets [Leu16, Mas13]. Alternating [AK14, BCP07, CL10, IIH01, II+92, II91, MO10, Slo95]. Alternative [Set08].
Ambiguity [AMR11, Iba15, KMK11, L1005, MS04, MPJ07, Ser09, SL17]. Ambiguous [Mig90]. American [SGZ02]. Amiable [Ata07]. Amount [BGRY16]. Amplitudes [Nis03].
Analog [LWJ+10]. Analog/Mixed [LWJ+10]. Analog/Mixed-Signal [LWJ+10].
Analyses [KPM15, Tse16, ZPXX17]. Analytic [BMM11]. Analyzing [DW04].
And/or [FI008, DW04]. Angle [MB17]. Annotated [KSJ08]. Annotation [BDL08].
Announcement [CIS16]. Anonymous [AOSY10, FDFZB12, Spr09, XS06]. Answer [PHPJRN+11].
Ant [KAPF05]. Antennae [AC05]. Anti [BJ07a, KMG11]. Anti-AFL [BJ07a].
Aperiodic [BS92, BS15, Sel08]. Apices [MAN06]. APN [XC15, ZH13]. Apostolico [SCIS15]. Application
Applications
[CK08a, CCF09, CHWX09, CW11, CB09, DI02, Fin12, GC15, GGR14, HYNO8, KL03, KK05b, KMS11, KM09, Li07, MM97, PRS98, PYTH10, Suc90, Zom01c].

Approach
[BET03, BMMR11, CLMP16, CMMR04, EAB16, GSD03, HNZ05, IMP05, Kri97, LW06b, MG14, MGGP08, Qua07, SGZ02].

Approximability
[DJL07].

Approximate
[BH02, MRRV06, ORS08, WKS08, ZBS05].

Approximated
[BB04].

Approximating
[BR08, BVM00, BDG11, Fre02, Gol14, HL01, LZ12, Rya15, YJ05].

Approximation
[AE02, AP90, ABDP05, CS93, CCG11, GY12, HL01, LZ12, Rya15, YJ05, KK10, LTW02, SS07b, Ste93, Tei17, XS11].

Approximations
[Shu07].

Arbitrage
[DLW02].

Arbitrarily
[BSOR10].

Arbitrary
[EZ01, GS12a, HKV17, Hei97, JW03, NGHK15, XHLF02, GP17, KHLC12].

Architecture
[MDL97, YLZ14].

Architectures
[AP92b, CPJ06].

Arches
[MM97].

Area
[CR14].

Arithmetic
[BB03a, FMC04, FT11, GY08, PR12, Szw95].

Arithmetical
[Okh05].

Arity
[CL07b, DZ00].

Arrangement
[FWZ15].

Arrangements
[KL05].

Arrays
[AE99, Fre05, MMP10, PA98, SMAN13, WH03].

Art
[CCPS04, Vin05].

Articulation
[Kar99].

Artin
[AR16].

Ary
[AE99, DG98, PY98, DZ00, RS01].

Asian
[HO00, GVJ00a].

Aspects
[BM16, BRST07, HK09a, Riv04].

Assembly
[BHR09, IP07, IP08, JK14a, JK14b, RSH06, SW17].

Assignment
[Bar09, DGN07, GSD03, Hir91, NSV12, WD90].

Associated
[Sal11].

Assume
[LSWW13].

Assume-Guarantee
[LSWW13].

Assumptions
[GKS17].

Asymmetric
[GOl4, WR16].

Asymmetry
[FPS02].

Asymptotic
[CY08, PR12, Szw95].

Asymptotically
[CDPR11].

Asynchronous
[OTT15, YUE13].

Asynchrony
[SR0a, ATM].

Atomic
[Ano02].

Atoms
[BT13].

Attack
[DS02, DEKZ11, HETPL12, LJ17, WLC12].

Attacks
[DEKZ11, TCT14].

Attribute
[BV08, TYM17].

Attribute-Based
[TYM17].

Augmentation
[NS13, YH11].

Authenticated
[LHT09, LH11, MMS17].

Authentication
[HETPL12, LB04, YTP11].

Author
[Ano97, Ano98, Ano99, Ano00, Ano01a, Ano02, An03a, Ano04a, Ano05a, Ano06, Ano07, Ano08, Ano09, Ano11, Ano12, Ano13, Ano14, Ano15, Ano16].

Auto
[CGK08].

Auto-Intersection
[CGK08].

Autocorrelation
[KYZS17].

Automata
[AKH07, ABH09, AK14, AMR08, AR16, ACFE09, AKH17, BBP11, Ber13, BMP03, BCD14, BMP15, BCP07, BCHK09, BHK07, BRST07, BM11, BK12, BM15, BW14, BMMR11, BMMR12, BKW02, CFM12, CMF13, CPY02, CLW09, CL15a, Cha02, CLO04, CMC5, CCR09, CFY16, C06, CR15, CMR07, CMR08, CVMV00, CCK02, DJ12, D17, Dom04, Der02, DK98, DM11, DP14, D's03, Dub95, EM11, Esi12, FG09, FFT10, Fre08, FK13, Fui17, GL14, GH205, GVL07, Glö07, Glö10, GSZ99, GH13, GH15, GQZ15, Gus13, GP15, HMZ05, HW05, HK09b, HJ13, HJ17, HJKS13, ILT12, JM13, JJS08, JO07, JK07, KL07, Kör03, KR16, KBBH99a, KSV03, KMS06, KSY14, Kud07, KL11, KMM06, K08, KMO10, KO13, KMW14b, KMW14a, KMW16, LÖd15, Loh10, Mac96].

Automata
[Mal05, MR11, Mar08b, MMV02, Mar97, Mar09, Mas13, MHT09, MZ12, MO07, MO09, Moh03, Moh13, MP01, MP107, NTS06, NWK05, NWK06, NCC07, Oli13, Ott15, PI95, PI14, PI15, PM13, SS07a, Sao92, SY12, SM07, Sir15, Slo95].
SVF09, Sut03, Tam08, Tor13, Tor15, TY15,
Vor16, WM13, WKS+08, YDI08, YW06,
YBI11, ZH11, ZQL12, CV13.

Automata-Based [Tor13]. Automated
[CGR13, KMO2, Pen93, TW09]. Automatic
[ADR11, BCDP08, BK16, CRS12, DMSS16,
GHS13, GRRS14, LD01, Loh05, LBL06,
MH06, RS15, SS12a, SF07]. Automaton
[AC11, CZOdlH17, CL14, CC05, CGL12,
IT13, JHK08, Okh03, Pol05, Pru17]. Automaton-Based [Okh03]. Autonomous
[BFMBS11]. Auxiliary [DZ00, KR16].

Average [BGN10, BMMR11, BMMR12,
CS93, DN16, FZAM08, KMIS09]. Averaging
[CM12, Ste11]. Avoidance [Sha04]. Avoiding
[CRSZ11, GS12b, ORS08, Ram05, WAG06].
Aware [LBJ03]. Axiomatic [Bur12b]. Axioms
[HST01].aying [FMV13]. B [Lag17, LF96, OM96]. B-Trees
[Lag17, LF96, OM96]. Back [GH15].

Backbone [FPSS03]. Backtracking
[MT95b]. Backward [FL09].

Backward-Oracle-Matching [FL09]. Balance
[LL10, LF96, MMR10]. Balanced
[CS93, CS00a, Fle96, Lag14, LW93, LL16,
MX11, RAB15, YTP11, ZWW+14].
Balancing [Hei97, MD00, ST01]. Banded
[BL01]. Bandwidth [GR03]. Banishing
[HHV93]. Banyan [KR97]. Barrier
[Uen13]. Base [GR03]. Binoid
[GR03]. Binarized [GR03]. Bisemigroup
[GN11]. Bimorphisms [MT10]. Bin
[BDI+11, HJP+13, JZ16, MV11]. Binary
[ATA07, CRS11, CDJ09, CKZ17, CS00a,
DSS15, HH12, HH11, HFLD09, Hol11, IN08,
JS03, KYZS17, KK90, LZGN06, OW92,
PS12b, RAB15, Sal07, Sha04, Smy12, Vor16,
XZS16, YB06]. Binding [AB17]. Binomial
[DH05]. Bioinformatology [KKS05b]. Bioinformatics
[KKS05b]. Biology [RCTC+09]. Bipartite
[FGV99, GV03, LV08, Ts06, WQY16,
Won96, Won01]. Bipartitioning [HT95].

Bird [Ami05]. Bisemigroup [GN11].
Bisimulation [AHK07, ABH+09, MC13].
Bisplit [GV03]. Bit
[BT17, CF06, CCF09, DD13, DES09, HN06].

Bit-parallel [CF06, CCF09, DD13, HN06].

Bit-Split [DES09]. Bitonic [INY07].

Bitwise [FIN16]. Bivariate [TWZ11].

Black [CS96, DSS08, HHP17, MC02].

Black-Box [HHP17]. Blackbox [WCD+14].

Blackwell [GZ12]. Block
[BLLS03, LJ17, MRRV06]. Blocking
[Dai97]. Blow [JJS08]. Blow-Ups [JJS08].
Blum [Câm14]. Bond [KKS05a].
Bond-Free [KKS05a].
Boolean [BB99, BJY90, BLY12, CM92, Car11, CLJP16, DQFL12, ĖK07, FY11, Hea11, HSS07, IP08, KY90, LO10, LHG11, Okh06, PP11, Sch10, SS01, SH17, TCT14, TJZ13, ZWCL14, ZWW14].
Bootstrap [DVG03].
Bordered [GRRS14, KM07a, KM08].
Borders [SM07].
Bottlenecks [JYF91].
Bottom [FSM11, Gaz06, Mal15].
Bottom-Up [FSM11, Gaz06, Mal15].
Bound [BBP11, CE98, FY08, HPP99, Un13, ZSW14, ZG13].
Boundary [DRDN08, EH15, Fre02].
Bounded [BLM04, CFW12, CRSZ11, De 06, DFLL02, DGMM15, FCS05, IJT+93, IS12, JZ16, LNP16, LZ93, MMP10, Mee12, Pet11, PZX07, Vik96, WLF03].
Boundedness [vdM00].
Bounds [BKM15, Dom04, DSS15, Gus13, HHH07, JWB03, LHG11, MV11, SNN11, Uen13, YS13].
Box [HHP17].
Boyter [CFG12].
Branch [HPP99].
Branch-and-Bound [HPP99].
Branching [PSA17].
Brane [CP06].
Breadth [CCR+90].
Breaking [Uen13].
Bridge [Láz13].
Bridges [GD98].
Broadcast [Anc02, CFMS15, LAHN14, Nak04, PZX07].
Broadcasting [CYS+12, HT09, PP06, WD03, XLC+04].
Broken [AAV00].
Brownian [Nis07].
Browsing [DE08].
Brijn [KK12, Noc98, NS98, WRN03].
Brute [CCP05].
Brzozowski [DN16, GLV14, SKW08].
Büchi [FKV06, KL11].
Buffer [DLC+14].
Bulk [CCG+11, FNM16].
Bundle [LWW00].
Bursty [SK04].
Buses [BT00, Mat04, PA98, WH03].
Buy [CCG+11].
Buy-At-Bulk [CCG+11].
Byzantine [PP06].

Cache [Leo03].
Caching [BLR09].
Calculi [AH07].
Calculus [BDV06, CP06, DL12, Kri92, Oga00, PT90, Pym92, RS95, Yue13].
Can [AAV00].
Canonical [BJ05, BJ06, BJ07b, CC05, FGV99, GSZ09, MAN05, WM13].
Cantor [Es12, Sta05].
Capacities [Li12b].
Capacity [BKM12, DST01, FL97, Li12b, Zet11].
Captures [DW03].
Capturing [FW90, ISA08].
Care [Ros03].
Careful [Vor16].
Carpi [Ber11].
Carriers [GH07].
Cartesian [MRT95, Ole92].
Cartesian-Closed [MRT95].
Cascading [Sub05, Wan14].
Case [BMS12, BDC90, DN16, FK06, Fle96, KP10b, Lag17, PPS17, YH11, ZSW14].
Cases [BCR11].
Catalytic [HFF09].
Categorical [Sak01].
Categories [MOM91, Oli13, RGR11].
Category [EM11, MRT95, Ole92].
Catenation [CLMP16, CGKY11, CGKY12].
Catenation-Intersection [CGKY11].
Catenation-Reversal [CGKY12].
Catenation-Star [CGKY12].
Catenation-Union [CGKY11].
Catenations [Mel93].
Cauchy [Ruo96].
Cauchy-Peano [Ruo96].
Causal [BCB12].
Cayley [BK16, CP99, CL07a].
CCZ [BH11].
CCZ-Equivalence [BH11].
Cd [FO08, BCVVH07, CVDV10, MO09, Sun05].
CD-Systems [MO09].
CDS [Fuj16].
Cell [AFO06, RCTC09].
Cell/Symbol [AFO06].
Cellular [DJ12, Dub95, FZ03, GSD03, JHK08, Mar08b, Sir15].
Centralized [Ott13].
Cerný [Ste11].
Certain [KKR16, Sai11, Won01].
Certificateless [DZH16].
Certify [GHW05].
Chain [GSZ99, JSO10].
Chains [DI02, DHR08].
Chandra [KMW12].
Changes [LZ93, Vik96].
Channel [BBL+12, BNS03, GSD03, NN93, Nak04].
Channels [MG14, YBM11].
Chaos [EMRB12].
Characterisation [D’s03].
Characteristic [B12].
Characteristics [OS01].
Characterization [Ef114, KM17, MM05, MCS08, Mar08b, Okh05, OS93, RW11, YTN01].
Characterizations [IS12, JM03, KSV00, OY11, PPJY08].
Characterizing [IW07, JC03]. Charts [EGPS10].
Checking [CGR13, CFH^+03, EHK06, HW10, LD01, Sch10, YW06].
Checkpoint [PNN^+10]. Checkpointing [GCK08, MM07, YSM^+00a]. Chemical
HFLD09, KPM15. Choffrut [BMY17].
Chomsky [DV14, PPJY08]. Choose [INY07].
Chord [CCF08]. Chordal [FH07, NS13]. Christian [BMY17]. chunk
AP92a. Church [AD12, KM07b]. Ciliate
DH05. Ciliates [BHR09]. Cipher [LJ17].
Circle [Klo96a]. Circuit [Bir11, LWJ^+10, RVT06, Vin05].
Circuit-Size [Bir11]. Circuits [FGH^+07, GB03, GRB03, IP08, PRR98, SUZ13, YB06].
Circulant [YCTW10]. Circular
Asv07, DS06, GP17, MM97, MRR10. Circular-Arc [GP17]. Circulating
SK01. Circulation [GS12a]. Circumscription
List03. CKY [BIIN04]. Class
AGM14, BS02, CPJ06, ERW04, Has00, Jai95, MR11, MN00, Oka99, Sch13, TCT14.
Classes [Arv97, AP90, AB DP05, CCS04, CM92, Cap96, GO09, Géc07, GR00, HT12,
HK95, KSV00, LV08, NCC^+07, SH17, UU07, XZS16, XCM17, vLW15]. Classic [IN13].
Classical
BMP15, Fia08, Oga00, ZQL12, CV13. Classification
ATK12, SKL03, ZWL^+17. Classifying [SWZ97]. Claus [HHH07].
Clauses [FGL^+90, SN13]. Clique [BLM04, DJL^+07, GR00, LV08, MR99, MM97, Ste93].
Clique-Width
BLM04, GR00, LV08, MR99]. Clock
D^03]. Close [Fre02]. Closed
MRT95, Ole92, TW09]. Closeness
AO11, Dan11]. Closure
CK08a, DMMM14, HIIW01]. Closures
BGS11]. Cloud
ML017, YMC^+17, ZLW^+17]. Cluster
ABL^+11, BBP11, Ber13, BNR99, IN08,
URS07]. Cluster-Based [ABL^+11, BNR99]. Cluster-Dot [IN08]. Clustered [FPF03].
Clustering [BKS12, CL03, CHWX09, ECY02, FPPS03, MMS05, ZC05]. Clusters
BLMR05, CFMR05, CVOV11, LCVLV09, SK03, CMP [For10]. Co [BLM04].
Co-Gem-Free [BLM04]. Coalgebras
[Oli13]. Coarse [MS99a]. COCOON’02
IZ04]. Code [DK12, ND02, PR11, Rud15]. coded [GP13]. Codes
AGM14, Bur12a, CFPR03, GMNS15, GRB03, HS11, Kun16, Le03, LZ15, WGF16, WF17, YTP11].
Codewords [Arn17]. Coding
CIY01, CK08a, KKS05b, SM05]. Cographs
GV03. Collaborative [SP04]. Collage
IST05]. Collapsing [APV06, BZ10, Pri06]. Collision
[Nak04]. Colonies [MC08].
Colony [KAPF05]. Colored [AFB96]. Coloring [Bo09, CKK02, SG04].
Colorings [GHJS05, IZN99]. Colouring
[SS99]. Colourings [JP08]. Combinations
CB09]. Combinatorial
CCF08, DD06, MM05, TV07].
Combinatorics
BS12, BMMR11, EMR10, GHS13, IZ04]. Combinatory [RS95]. Combined
CLMP16, CGKY11, CGKY12, SY07,
ACM11]. Combining [Bar90]. Common
AILR16, AE05, DD13, IMP^+05, KS10, LW05, LW06a]. Communicating
BKM11, BKM12, BKM15, CCFS07,
CVMVM00, DPS09, Kri02, LRT92, MS07, MVMM02, Ott13, Ott15, Tra08]. Communication
[Ada10, BV98a, BF97, BKM15, DHL097, FL97, Nak04, PPPP0, Spr09, YBBM11, ZC13, ZYHH1].
Communications [CCM97, RVT06].
Community [ROK08]. Commutative
BH11, MR91]. Commutativity
[IDR97, MS12]. Commuting [Cai94].
Compact [BMS12]. Comparative [OM96]. Comparing
[Sal07]. Comparison
[FA06, HT12]. Compatible [MI11].
Competence [BCVH07, CVDV10]. Competence-Based [CVDV10].
Competitive [Leu04, ZZZ16].
Competitiveness [Pal03]. Compiler [DVG03]. Complement [Jir14, O’N15].
Complementation [FKV06, JJS05, RC05]. Complements [HP09b].
Completely [DVG03]. Completeness [ABDP05, FOP05, HJV93, LBL06, Zan91].
Completing [BCHK09]. Completion [BZ13, DFLL02, DK11, LLQ06, MMY10, PY04].
Completions [ST16]. Complex [Brz13]. Complexities [Jir14, Sch02, TY15].
Complexity [Ada10, AFO06, AOSY10, AP92b, Arv97, AP90, BGN10, BAK12, BPT16, BFL02, Bod91, BT17, BHNRO4, BMMR11, BLY12, BL12, BT13, BL14, BCC13, CSR12, CK08a, Câ14, CLMP16, CRZS21, CK16, CDM13, CS93, CGKY11, CGKY12, DaH07, Das04, DLW02, DG98, DM08, DK12, EH15, EHS15, FH05, FZ13, FL07, GY12, GPS14, GH15, HS08, HKNS16, HT12, Hol11, HK03, HK09b, HK11, HJ14, IDR97, IR14, IYZ04, JS02, JMR91, JJS05, JM11, JüH08, KEH16, KLH16, KSV00, KLS05, KO13, Leu05, Lis93, Loh05, LMW08, MTVM09, MTVM15, MT95b, MB06, O’N15, PS02, PR11, Pru17, Ra08, Rya15, SS07a, SY07, SMS09, Sch10, SW17, SD16, Su05, To06, TL09, WVL93, WAG+06, Wd12, WP08, XZS16, YS13, YTLCO2, YWY94, Yen08, ZZT91].
Complexity-Theoretic [FH05].
Component [IN10]. Components [BGMV08, CVOV11, DL12, JHK08, LCY12, Mas09, Ott13, ST11]. Composed [ABH+09]. Composite [AO10].
Composition [AM09, ARS11, BCDP08, Wan04]. Compositional [TW09, WM13].
Compositionality [FT09]. Compressed [IST05, IB12, KS06, KSS08, Loh10, MHT09, WF17]. Compression [CDLW05, CK08b, DM05, De 06, KM90, KK05].
Computability [Bur12b, Gra90, LS98]. Computable [BS92, CZ11, SS12a, Sch02].
Computation [AHR02, BDL08, CMRR08, DW03, EL13, FNI16, GO09, GRV10, GS12a, GR03, HL04, HN06, MB06, NS03, PDPJJ11, RZ12, RS17, ST11, SP04, SQQ+17, VP99].
Computational [BKMI2, BZ10, DLW02, FOP05, GKS17, HK09b, IPR07, JWB03, JS02, LMM+12, MT95b, SD16, Sir15, WAG+06].
Computations [Bee95, CD15, CE98, DK98, HK09a, HFLD09, LD01, Mec12, YSM+00a].
Computer [TH01]. Computers [Rya15, Sah01]. Computing [AETZ05, AO10, BMSMT11, BFL02, Cai94, CZOdH17, CLW90, CMRR04, EAB+16, FJ12, FKT07, FT11, GPPJR13, GCK08, Hea11, HO00, LTM02, Li06b, MLO17, MDL97, Ob01, Ob06, Pa01, Pa00, PPR02, PPJR07, RS00, RR04, RC11, SVSN01, SGZ02, St09, SUZ13, TZ11, UU07, WP08, XF03, Yue13, ZZT91, Zom03].
Concatenation [JJS05, Okh07].
Concentration [Dai97]. Concept [BOV08, DE08, Hal98, ROK08]. Concerning [CCF08, Hon02, IR14]. Concurrency [Luc09]. Concurrent [BPT16, BET03, Dro92, DK98, MM07, PQ06, SKW08].
Condition [MP07, Melt93, Pa08, ZWW+14].
Conditional [LW05, LW06a, LHY+15, LG17, MLO17, ZCX12]. Conditions [FT09, FO08, LBL06, Oka00, WF15].
Conjectures [RS04]. Conjugates [BMR+14]. Conjunctive [AK14, DR94, Jez08, Okh03]. Connected [AWF03, DWS15, ET14, Iba02, IN10, JHK08, KK10, Li01, MTNN09, MN06, ST11, Tor15, WF03]. Connections
Exhaustive [IN05, IN08].
Existence [Di02, RS07, Ru06, Shu11].
Existing [Szw95].
Expected [CZOdlH17, Li00a].
Experience [CFMR05].
Expected [CZOdlH17, Li00a].
Expressible [AB91].
Expression [CKW09, HW05, Han13, SL17].
Expressions [CSY03, Cha02, CLOZ04, DM11, GH13, GH15, HWW06, HK11, Loh10, TV14, YZ07].
Expressive [Hen02, RHS10],
Expressions [GS09].
Expressiveness [Yue13].
Expression [CKW09, HW05, Han13, SL17].
Extensions [BLY12, DM12, DN04, Ver09, XLC04].
Extractable [Kun16].
Eye [Ami05].

FA [CKW09].
Face [RLWW96].
Factor [CIS07, MM05].
Factorial [Shu07].
Factorization [BOV08, DD08].
Factorizations [CL14].
Factors [AILR16, HN10, PAS08].
Failure [FWZ15, NTSH06, PN010].
Fair [MSR06].
Faithful [APP91].

Finite-Memory [KZ10].
Finite-State [AM09, ARS11, AMR11, CSR12, CZOdlH17, CGKN08, Mac96, Mac96, SN13].
Finite-Valuedness [Iba15].
Finity [AK10, AM03].
Finiteness [AK06].
Fire [FLP13].
Firing [GLP07].
First [AB91, BB04, DGK08, DZ00, Has00, Imp05, KKH90, Lin08a, MN00, Rov00, Ueh99].
First-Class [Has00, MN00].
First-Order [KKH90].
[AB91, DGK08, DZ00, Lin08a]. \textbf{Fit}
[KKH90]. \textbf{Five} [CH15]. \textbf{Five-Valued} [CH15]. \textbf{Fixed}
[DS96, FL97, HL06, JJS08, LOZ98, MB17, Poo04, QLW106, SW17, Tos06].
\textbf{Fixed-Height} [SW17]. \textbf{Fixed-Length} [QLW106]. \textbf{Fixed-Parameter} [HL06].
\textbf{Fixpoint} [ELS15]. \textbf{Flat} [MT95b, Oka99]. \textbf{Flexible} [FMN06, JMS05].
\textbf{Flipping} [LRR08, ZG13]. \textbf{Flips} [AAH02]. \textbf{Flooding} [CIS03, LBJ03].
\textbf{Floundering} [BM90]. \textbf{Flow} [LLZ07, Mas04, SS07b]. \textbf{Flows} [DW04].
\textbf{Fm} [GNP+06, IN05, IN08]. \textbf{Fm-Index} [GNP+06]. \textbf{Folded} [DHI+097].
\textbf{Football} [CKL15]. \textbf{Forbidden} [WAG+06, Yah12, Ye08]. \textbf{Forbidding} [Mas09].
\textbf{Force} [CCP05]. \textbf{Forecasts} [CL10]. \textbf{Foremost} [CFMS15, XFJ03]. \textbf{Forest}
[Ali16, GO09, LZ12]. \textbf{Forests} [ERW04, Yah12]. \textbf{Foreword} [BNR05a, BNR05b, Hol05, Hol06, Hol08, Hol09, Hsu08].
\textbf{Forgetting} [GL07, GL10]. \textbf{Formula} [DS02, Uen13]. \textbf{Formula-Driven}
[DS02]. \textbf{Formule} [HKKS13]. \textbf{Formulas} [CE98, Sch10]. \textbf{Forums} [XCC16].
\textbf{Forums-Oriented} [XCC16]. \textbf{Forward} [CD95, Lug11]. \textbf{Foundations} [HYN08].
\textbf{Four} [MTNN99, MN06, SH17]. \textbf{Four-Connected} [MNN06]. \textbf{Four-Valued}
[SH17]. \textbf{Fourth} [VS93]. \textbf{FPQG}
[DEZ01, In05, In10]. \textbf{FPQGA-Based}
[DEZ01]. \textbf{FPSOLVE} [ELS15]. \textbf{FPTAS}
[KS10]. \textbf{Fractional} [Sha04]. \textbf{Fragment}
[HCG96, MW05]. \textbf{Fragement}
[DGK08, MTVM09, MTVM15]. \textbf{Framework}
[GGR14, LTZ12, Lin07, NS13, NWK05, TST01b, Tst01]. \textbf{Free}
[Asv07, BMS92, BCR11, BCD14, BESW07, BH05, Bi04, BL04, BL12, CD06, CR15, DV14, DSS15, EH15, EHS15, EO13, FLST12, GKR10, GB03, GV03, HW06, HS11, HKS13, Han13, HW10, IM11, Kan95, KKS05a, Ko07, KEH16, KRM16, KM07b, LO13, MR91, Mi09, Pal08, PS12b, Rav08, Rei07, RO09, Sae92, Sta07, Tei17, TSZ16, Tra02, Tra08, YB06, YJ05]. \textbf{Frege} [HK95].
\textbf{Frequencies} [CK16]. \textbf{Frequency}
[CTZH13, WPZ16, XCS16]. \textbf{Frequency-Hopping} [WPZ16, XCS16].
\textbf{Frequent} [BLM15]. \textbf{Frictional} [DLW02]. \textbf{Frontier}
[AT12, CHZ06]. \textbf{Frontiers}
[GPPJ+13]. \textbf{Full} [Bur12a, WLC12, ZH11].
\textbf{Full-Text} [ZHZ11]. \textbf{Fullness} [Cdl04].
\textbf{Fully} [IST05, MC13]. \textbf{Function}
[MMS17, PSL02, Sta05]. \textbf{Functional}
[An01c, BV08, BK010, HST01, Hin01, Moh13, Pre01, Sal13, Wil91]. \textbf{Functions}
[BB99, BMS92, BLY12, BH11, CM92, CH15, Car11, CHG05, CL07b, DQFL12, EM11, FY11, FK05, HK95, HG11, Jai95, KM02, KY90, KS00, LHG11, LL16, NAK15, Ob01, PP11, Ros03, Rya15, SS01, SH17, SUZ13, TST01a, TCT14, TJJ13, XCC15, XCS17, YAM03, YTP11, ZH13, ZLL11, ZW14, ZWCL14]. \textbf{Functorial} [DD12].
\textbf{Further} [CD06, Sbus06, ZYLW12]. \textbf{Fusing}
[TV07]. \textbf{Fuzzy}
[BOV08, ÁE07].
\textbf{GA} [VJD05, Sun11]. \textbf{Gain} [MM11].
\textbf{Galerkin} [US02]. \textbf{Game}
[Biao08, FL12, GC15, FNI16]. \textbf{Games}
[AT12, BFL02, Bod91, CM12, DOT12, FO02, FO12, Fri10, GZ12, GJMP06, KL10, Vin05].
\textbf{Gandy} [Obt06]. \textbf{Gang} [BS01, dSS90]. \textbf{Gap}
[FM96]. \textbf{Gapped} [FBK05, HMZ05, PAS08].
\textbf{Gapped-Factors} [PA08]. \textbf{Gaps} [IMP+05].
\textbf{Gardens} [Tos06]. \textbf{Gear} [AT11]. \textbf{Gem}
[BLM04]. \textbf{Gem-} [BLM04]. \textbf{Gemmatting}
[FOP05]. \textbf{Gene} [ATKD2, BHR09, DM05].
\textbf{IPR07}, IP08, MGGP08, Rog09]. \textbf{General}
[AMR11, BK95, BB04, Die93, FPP03, Leu16].
[LW06b]. Linkage [OW92, VJDT05].
Linked [ACV13, KK07, Lin08a].
Literally [KP10b].
Load [Hei97, Li00a, MD00, ST01].
Local [AE02, Ars15, CYS+12, FL12, HN06, IN05, IN08, JP06, LSWW13, LP07, RS13].
Locality [Cas95, LZGF16].
Locate [DSS08].
List [Nak04].
Liveness [JC03].
LKH [SNWW06].
Liveness [OW92, VJDT05].
Linked [ACV13, KK07, Lin08a].
Links [Dre07, GKKP99, WP08].
List [Nak04].
Liveness [JC03].
LKH [SNWW06].
Liveness [OW92, VJDT05].
Linked [ACV13, KK07, Lin08a].
Links [Dre07, GKKP99, WP08].
List [Nak04].
Liveness [JC03].
LKH [SNWW06].
Monoids [BR08, BS92, Bur12a, DM11, Géc07, Loh05, MR91].
Monotone [Kam95].
Monotonic [Kam95].
Monotonicity [JC03].
Moore [CFG12].
Moore-Like [CFG12].
Morphic [Dur13, FRS06, Hon12, NP09, OY11, PS12a].
Morphism [Ram05].
Morphisms [Hol11, JP04, Kar09, PPJR07, RS04, Teh16b].
Morse [DS15, Ram05].
Mosaic [BRSV13].
Mosses [AMR09].
Most [Brz13, SKL03].
Most-Specific-Rule [SKL03].
Motif [PRN13].
Motifs [IMP05, Lin08b].
Move [FM96].
MP [MM11, MPEG [DE08].
MPEG-7 [DE08].
Muller [Arn17, FZ12].
Multi [AKS14, BCC+96, CCD07, CGKN08, HPo9b, KMW14b, KMW14a, Mal15, MX11, NCC+07, RR06, SK01, TYS07, Ver09, WM05, YB11, ZC13].
Multi-Cores [MX11].
Multi-Exponentiation [HPo9b].
Multi-Head [KMW14b, KMW14a].
Multi-Objective [WM05].
Multi-Party [TYS07].
Multi-Processor [RR06].
Multi-Push-Down [BCC+96].
Multi-Pushdown [AKS14].
Multi-Receiver [CCD07].
Multi-Secret [ZC13].
Multi-Tape [CGKN08, NCC+07].
Multi-Tokens [SK01].
Multi-Track [YB11].
Multicast [FPS02, SNWW06].
Multicasting [Gon01, XLC04].
Multicomputers [MS99a].
Multicounter [Iba02].
Multidigraphs [Fuj17].
Multidimensional [KPS93, Tho06].
Multienvironment [MDAPHPJ+11].
Multihead [Mac96, Sno95].
Multihop [CYS+12].
Multilingual [CK08b].
Multimessage [Gon01].
Multioperator [SVF09].
Multiple [CF06, FK15, GD12, Lin07, LZGP16, MB03, Mat04, RV06, XBE02, YCTW10].
Multiple-Sided [XBE02].
Multiplication [MX11].
multiply [ACV13].
Multiply-Linked [ACV13].
Multiprocessor

NAAP [LBJ03].
Naïve [ZLW+17].
Name [CB09].
Nameless [Kam98].
Natural [Cha97].
Nature [AETZ05].
Nature-Inspired [AETZ05].
Near [BW14, HT09, XCM17].
Near-Bent [XCM17].
Near-Optimal [HT09].
Nearest [HL01].
Nearly [BJ07a].
Necessary [ZWW+14].
Neighbor [ABT16, BTK13, BTO17, HL01, WQY16, LBJ03].
Neighbourhoods [DP90].
Nerode [CMS90].
Nested [CZTH13, DP14, FGL+90, Gre96, HLM09, RT16].
Net [LPC11].
Nets [AH11, BCB12, GRV10, JC03, MOM91, Muk92, RSH10, YWWY94, Yen09].
Network [BRSR11, Cas05, CL98, CXX98, CCG+11, DR05, FZ03, KR97, Kloc06, LYG17, LOZ98, LPS07, Lug11, MKB+11, Oka98, WQY97, ZYHY14].
Networks [AWF03, AOSY10, AHI+13, AO11, BV98a, BNS03, BDDN01, CP99, CDPT16, CIS03, CFMS15, CL03, CYH+12, CHA+92, Cig04, CD05, CD09, DHH09, DGN07, DCS13, DM08, FPFS03, GKKP99, GSD03, GNC+03, HKV17, Hei97, Hsu98, ISA08, JS97, KAPF05, KKKP97, Láz13, Li12a, LYH+15, LB03, MMS05, MCM+11, PPR02, QD03, ROS00, SB12, SP04, TL99, WLF03, WD03, WY05, XLC+04, XF03, ZC13, DHD11].
Neural [FI008, IW07, KMG11, PPJR06, PPJR07, PPJJ07, SRPC11].
Newcomb
22

[Rav08]. NFA [JMR91, Leu05, Pol05, RS07].
Non [AG01, Ada10, BM90, BCHK09, CD15, CK07, Dai97, DPR07, DESW05, ES01, FLST12, Fre08, GJV00b, GRB03, HL01, IMS03, Jež08, KZ10, Kap05, Kut05, MC13, PP11, TY15]. Non-Abelian [IMS03, PP11]. Non-Blocking [Dai97]. Non-Boolean [PP11]. Non-Constructive [Fre08].
Non-Recursive [Kap05, Kut05]. Non-Abelian [IMS03, PP11]. Non-Standard [AG01]. Non-Symmetric [GJV00b].
Non-Synchronizing [TY15]. Non-Uniform-Degree [HL01].
Non-Uniqueness [DESW05]. Nonblocking [WM13]. Noncounting [KY96]. Nondeterminism [HKKS13].
Nondeterministic [HSW93, PSA17]. Nondeterministic [HKW02, Cha02, CC05, GPS14, HK03, HK09b, HJ14, JRPIP08, JJS08, Mar09, Saa02, Tha91, Vin05].
Nonlinearity [CH15, Car11, LHG11].
Number [AMR15, AB17, AE99, CP03, CFIJ10, DV11, Dom04, FY08, FT11, GRR14, HB06, HJK12, JWB03, LZ93, LY94, Pan91, PR12, RS01, RRT99, Vik96, WQY16]. Numbering [MNS11]. Numberings [Jai95]. Numbers [BS16, BPT06, HFLD09, Jir11, LO11, PDPJ11, RS15, Van05, Van04]. Numeration [JP04]. Numerical [CCM97, SGZ02].
O [Fle96, OM96]. O-Trees [OM96]. Object [HK02, LX94, MT95a, YZ07].
Object-Oriented [LMX94, YZ07]. Objective [WM05, YTLC02]. Observable [AT12]. Observer [CCM11]. Observer-Based [CCM11]. Observing [Cas95]. Obtained [CP03]. Occurrences [CFIJ10, MS04, Sa07, SY10]. OCR [CB09].
Octal [GJMP06]. Odd [TJZ13]. Off [KL05, Mas04]. Off-Line [KL05, Mas04].
Offline [CW11]. Offs [Kap05, KKP97, Kut05]. omega [SMS90, CL14]. omega-Tree [SMS90].
On-Demand [PZ00]. On-Line [CGL12, FPS02, KL05, Mas04].
One [AK14, BBP11, Ber13, BMP15, CFY16, DI05, Dub95, HJP+13, HIR+92, IS12, KL12, KMW14b, KMW14a, LP11, Ob10, SKL03, Slo95, TYM+17, Zan91].
On-Demand [PZ00]. On-Line [CGL12, FPS02, KL05, Mas04].
One-Membrane [DI05]. One-Round [TYM+17]. One-Turn [AK14]. One-Way [BMP15, CFY16, HIR+92, IS12, KMW14b, KMW14a, Ob10, Slo95].
Operating [DI05].
Operation [BHK05, CK08a, CLMP16, DH05, MR91]. Operational [BMSMT11, Śli14, KEH16].
Operations [AP92a, BGN10, CP06, CS96, CGKY11, CGKY12, FM96, FMC04, FT11, GNC +03, KKS05b, PS02, SY07, SEE99, SD16].
Operator [AT16]. Operators [HW00, PR11]. Opportunities [Zom03].
Optical [BF97, KAPF05, LYH +15, PA98, Sah01, WH03]. Optically [BT00]. Optimal [AAA +09, AC05, BF07, CZTH13, CP99, Cal15, CDPR11, CS96, DSS15, FZ03, FM01, FOP05, GD98, GZ12, HT09, KK90, KR08, Lag17, LZ15, MQ11, Nak04, OS01, OSZ92, Poo04, TCT14, TJZ13, WPZ16, WO03, WH03, XCX16, ZZT91, ZWCL14].
Optimally [AAV00]. Optimization [JS02, KM90, KAPF05, MZ01, SSS09, WM05, YTLC02]. Optimizations [GV03]. Optimize [GSZ99]. Optimum [CD95]. Option [SGZ02]. Optoelectronic [Sah01]. Oracle [FL09]. Oracles [CISH07, FZT14, IN13, KL00, MM05]. Order [AB91, BYP95, DG98, DGK08, DZ00, EGPS10, Lar98, LHG11, Lin08a, Lug11, Set08, Szw95].
Orderly [Com90]. Orderings [BC06, BE11, GHJS05, RC05]. Orderly [MAN05, ZH06].
Partial-Total [Smi95]. Partially [AT12, Bas97, KL11, Lag17, MR91].
Partition [CZTH13, DJL+07, HPV99].
Partition-Type [CZTH13]. Partitionable [Li01].
Partitioned [Mat04]. Partitioning [HO99, IZN05, JSPD03].
Partitions [BMS12, Partners [RRT99]. Party [TYM+17].
Patches [XBE02]. Path [AH11, AHL+13, BLL06, FT09, GVL07, HB06, JW08, MVM07, Pro96, Yen09].
Path-Controlled [MVM07]. Path-Equivalent [GVL07]. Paths [DPS99, GR03, HKV17, LFC11, MPS99, RLWW96, U07, YTN01].
Pathway [BCC+11, JRPIP08]. Pattern [BCFL12, CCFG12, CHZ06, DPS97, FS05, IST05, KS06, MHT09, ND02, SW09, ZYYH14, Zha17].
Antiport [AFO06, ARV07]. Drip [CP06]. Fold [RKRR02]. Inhibitors [Sbu06].
Mixed-Signal [LWJ+10]. Or [FI008, DW04]. Symbol [AF06]. Perfect [AF96, GR00, PP11, Sun00].
Performance [BLM15, For10, KR97, Li12a, LKM02, NWK05, NWK08, PV98, Qua07, SK01, TZ21, TH01, WR16, YLZ14, YH11].
Periodic [CKZ17, CK07]. Periodicity [BSBZ08, HN10]. Periods [BSOR10, CCI12, HG11, KPS13].
Permutation [RM98, W1d12, ZZC15].
Perspective [TV94]. Petersen [DHIO97]. Petri [JC03, AH11, BCB12, GRV10, MOM91, Muk92, RHS10, YYW94, Yen09].
Pi-Calculus [Yue13]. Picture [AGM14, BESW07, Gia11, SMAN13]. Pictures [Fin04]. Piecewise [KP10a, XC15]. Pipelined [BT00].
Pipelining [FM01]. Pitching [US02]. PKI [AH07]. PKI-Based [AH07]. Place [GPC09]. Placement [AC05, DRDN08, URS07]. Planar [BPT06, KLB13, MTNN99, Pre90, RLWW96, To06].
Planarity [DOR06, HL06]. Plane [AAV00, Mar08b, Mar08a, MAN05, MAN06, MNN06].
Polymorphic [APP91]. Polynomial [AAV00, AP90, BCFR07, BB99, BLS+05, Ca94, Di93, GKR10, GO09, HW00, HT04a, HT04b, IZN99, Joh00, MX11, PLMZ11, Shu07, Tra02]. Polynomial-Time [IZN99].
Polynomials [RW11, TWZ11, ZZC15]. Polytime [Cap96].
Positive [CM92, HJ91, KY96, MAG09, Oka99, Oka00].
Possession [ZPXX17]. Post [DRS14, Fin12, HH11]. Potential [GQZ15].
Power [BMP15, CCF07, DSS15, Fu16, HIR+92, IPR07, JW03, Kar09, Mal15, MRS97, Mer08, RSH10, RS04, Sal11, Slo95, SRPC11, Sta05, Sto92, Sun03, LBJ03].
Powers [CRSZ11, CFIJ10, Faz11, Sha04, Shu11, YTN01, Ram05]. Practical [CSY03, Fui17, TH01, ZLW+17]. Practice [BCFR07, CCFG12]. PRAM [FPP03, For10, JHK08, TV94].

Preface [ASTZ12, AY99, Ano01b, Ano03b, Ano03c, Ano03d, Ano03e, Ano04b, Ano05b, BC14, BRST07, BN07, BN08, BFN10, BFN11, BFN12, BP11, Cal05, Chat03, CV08, CVE10, DR06, DP13, Den02, DN11, DW11, DS08, DS11, DÉ12, DLMS12, Ési15, FSTY16, FGM+11, FKN11, GP08, GJ07, GH09, HP08, HP09a, HS17, HRS17, HK08, Hol12, HK15, HY06, IY07, IR09, Jro10, JR14, MH12, ML12, MP12, MN12, MR13, NW03, NW04, NB06, NY10, PPJ06, PT07, PV13, SY05, Shu16, Sos09, Wan06, YN08, Y113, Yu11, Zom01c].

Preserving [Gaz06, LO13, Mal15, NTS06, SZQ+17].

Prime [CPFR03, KYZ17]. Primer [BRM07]. Primitive [DR12, FLST12, KMS11]. Principal [Hir91].

Principles [AMR05, AD12, Obt06]. Prints [Ser09]. Priority [CS99, Elm06, GZ12, GNC+03]. Privileged [FJPS16]. Probabilistic [CZOdlH17, CHYT14, CMR07, CMR08, DTY15, Fre08, HV02, HiW01, Mad03, MDAPHPJ+11, PBM06]. Probabilities [Szw95]. Probably [MMS17]. Probing [Li12b]. Problem [AP92b, BLR09, BCR11, BCD14, BB04, BL01, BDG+11, BLM15, BDI+11, CF06, CCF09, CKK02, DGN07, DRDN08, DRS14, DD13, FPS02, FZ13, FP04, Fin12, Fui17, GKS17, GLP07, GD12, HH11, HL04, HJK12, HO99, Hon02, Hon06, Hon07, IMS03, KL03, LAHN16, LW05, LW06a, LZ12, Lin07, MXY+04, Mar92, Mar08a, NSVA12, NAK+15, Pan91, RC11, SS07a, Ste93, Tor13, Tor15, Vin05, WD90, YTL02, ZZZ16, Ueh09]. Problems [AK06, AE05, AB91, BPR09, BHK05, BCC13, CCF08, CHWX09, CCI12, CD95, CR15, CS93, DH05, DJL+07, FZ15, GC15, GGR14, GPPJR13, Go90, Gao01, Hut02, IDY08, Iba11, Iba15, JMS005, Kar09, KPSC08, Kar98, Ló15, Loh10, Man15, MVM07, RWZ01, RLWW96, TY15, Yen08, ZLYW12].

Procedure [GN04]. Procedures [BET03, FMC04, FK05, FKT07, Sal11].

Process [AH07, DD12, GCK08, Kri97, SN13]. Processes [Cas95, FGH+07, HW10, SMS92].

Processing [BRSRC11, CW11, HS95, HLW09, KBH99a, SS09]. Processor [CE98, Leu04, RR06]. Processors [DM08, HB06, LY94, MCM+11, NW08].

Product [DPR+08, MS12]. Production [Wii91]. Products [BK16, CV14, CR15, TSS13]. Prof [SSS13].

Programming [Ano01c, Cos90, FZ02, GCO04, HiN01, ND02, Pre01, RR06, Rov00, SUB09, SUB90b].

Programs [ACV13, BM90, BAK12, BET03, CIY10, CJS92, HB06, HV02, Jai95, RKRR02, SAA02, Sto92, Tha91, VIK96].

Progress [APV06, Pal03]. Projections [TZ91].

Prolog [HST01, MT95b].
BDG+11, CTZ01, FM01, SVSN01, YH11].

Resources [RS17, SB01]. Restarting [JO07, KR08, KMO10, KO13, MO07, MO09, MPJ07, PM13]. Restricted [BFL02, DP90, DS05, Nis03]. Restriction [FFH15, HCG96, HLW09].

Restriction-Fragment [HCG96]. Result [CP06, ES01, LD01]. Results [AA13, BGRY16, BKM11, CD06, CKZ17, DGMM15, FOP05, HK09b, LS98, RS04, Sbu06, YYW94]. Retrieval [CCF09, FMN06]. Retrieval-Fragment [HCG96]. Result [CP06, ES01, LD01].

Restarting [JO07, KR08, KMO10, KO13, MO07, MO09, MPJ07, PM13]. Restricted [BFL02, DP90, DS05, Nis03]. Restriction [FFH15, HCG96, HLW09].

Restricted [BFL02, DP90, DS05, Nis03]. Restriction [FFH15, HCG96, HLW09].

Restriction [BFL02, DP90, DS05, Nis03]. Restriction [FFH15, HCG96, HLW09].

Result [CP06, ES01, LD01]. Results [AA13, BGRY16, BKM11, CD06, CKZ17, DGMM15, FOP05, HK09b, LS98, RS04, Sbu06, YYW94].

Restriction-Fragment [HCG96]. Result [CP06, ES01, LD01]. Results [AA13, BGRY16, BKM11, CD06, CKZ17, DGMM15, FOP05, HK09b, LS98, RS04, Sbu06, YYW94]. Retrieval [CCF09, FMN06]. Retrieval-Fragment [HCG96]. Result [CP06, ES01, LD01].

Restriction-Fragment [HCG96]. Result [CP06, ES01, LD01]. Results [AA13, BGRY16, BKM11, CD06, CKZ17, DGMM15, FOP05, HK09b, LS98, RS04, Sbu06, YYW94]. Retrieval [CCF09, FMN06]. Retrieval-Fragment [HCG96]. Result [CP06, ES01, LD01].
Search [BRM07, Brz13, CS00a, Fle96, HM04, IN05, IN08, JS03, KK90, LTZ12, PRN13, WM05, ZZZ16]. Searching [Ami05, CFG12, DE08, KPS93, MP93, ST93].

Seat [KL05]. Seating [KL05].

Second [LHG11, Set08, Szw95]. Second-Order [Szw95].

Secret [LD04, MNS11, Sun00, TWZ11, ZLZ+17]. Securing [CST+17].

Security [DLW02, LW06b, NAK+15, SNJ11].

Seeking [MD00]. Selected [Pal01a].

Selection [ATK12, SRR15, WRNK03].

Selective [HHN+95]. Self [CDPT16, DDHL11, DTY15, DWS15, FDFZB12, FZAM08, GHJS05, GS12a, HHW99, JK14a, JK14b, KK10, Kar99, Láz13, NGHK15, ST11, San13, SW17, WD03, XS06].

Self-Assembly [JK14a, JK14b, SW17].

Self-Pruning [WD03]. Self-Similar [JK14b]. Self-Specifying [HHW99].

Self-Stabilizing [CDPT16, DWS15, FDFZB12, FZAM08, GHJS05, GS12a, KK10, Kar99, NGHK15, ST11, XS06, DDHL11].

Selfish [MV11]. Semantics [AG01, BMSMT11, BKKR01, CZ11, Cos90, Kri97, Luc09, MT95b]. Semi [KK05, SF07].

Semigroups [AK10, BS15, TSS13]. Semilinear [IS12]. Semilinearity [Yen09].

Semirings [ELS15]. Semisimple [AR16].

Sender [WZ15]. Sense [BF07, FS98].

Sensing [WF17]. Sensitive [Ott13]. Sensor [AHL+13, BNS03, DCS13, MKB+11, SP04, WY05].

Sentences [Szw95]. Separability [JM03, Teh16b]. Separable [CM92, Mat04].

Separating [AAV00, DZ00, MB17, vLW15]. Separation [Fin08]. Separations [BJY90].

Separators [BBC00]. Sequence [CZTH13, CW11, EGPS10, GD12, HMZ05, KYZS17, Lin07, PYTH10, WPZ16, XCS16].

Sequences [Ars15, BBM+12, CCF08, CKZ17, CRS12, Coo17, DN07, Dur13, GK11, Hon12, IMP12, KX12, NP09, Sal07, SS12a, Tho06, W003, XZS16]. Sequential [CCFS07, DI05, Fe05, Kan15, LRT92, To06].

Serializable [Og94]. Series [CR14, Mal05].

Servers [OS01, URS07]. Service [BS01, BCDP08, Li12b, sSS01].

Set [Aku06, AW03, BRSV13, CGL12, Elm06, FZ15, GRV10, HLW09, KK10, KL05, KMW16, MM97, Rab15, Tor15, Ueh99, WAF03].

Sets [AK06, BMW91, BMP03, BLL06, CZTH13, CY+12, CL07b, DLT06, DGL93, DWS15, DS05, DR94, ÉK07, FH05, HT95, HHH+95, Hon06, Hon12, KHLC12, LO11, Mel93, MB17, NGHK15, Pru17, RW11, RC05, Ros90, RS15, SMS90, Sto92, TCLS10, TV94, WPZ16, XCS16]. Setting [BV08, HST01, HH17, TY1+17]. Several [LD04, SH17, XCS17].

Shamir’s [LD04].

Shape [Gaz06]. Shapes [MC02]. Shared [BLR09, Mor10]. Shared-Memory [Mor10].

Shop [JMSO05, SS07b]. Shops [LLZ07]. Short [IMP12]. Shorter [GH13]. Shortest [AHL+13, CFMS15, DPS99, Huf02, JW08, LW05, LW06a, MPP09, ST99, XF03].

Shortest-Path [JW08]. Should [Ros03].

Shrinking [Jo07]. Shuffle [BO97, CSV02, CL98, DKSS11, DS05].

Shuffle-Ring [CL98].

Shuffling [EH12].

Sided [ST93, XBE02]. Sidelinkov [KYZS17]. Signal [BTC+11, LWJ+10].

Signature [DZ16, HHP17, LW06b]. Signatures [HYT15, Ver09].

Signcryption [FZT14]. Signed [HP09b, QLWL06].

Signatures [HYT15, Ver09]. Signcryption [FZT14]. Signed [HP09b, QLWL06].

Similar [FA06, JK14b]. Simplicity [Ars15, BOV08, DSS15, HN06]. Simple [AFB96, BCFR07, CDLW05, CHKL07, Fle96, GNP+06, HH12, HYT15, Huy91, IST05].
YCL11]. Star-Free [BL12, YJ05]. Start
[FO08]. State
[AM09, ARS11, AMR11, BGN10, BLMR05, BMMR11, CSR12, CZOdli17, CK08a, CLMP16, CCP05, CGKN08, CGKY11, CGKY12, DS02, EH15, EHS15, GY12, GPS14, HS08, HKNS16, HK02, IBS01, JJS05, Jir14, KEH16, KLH16, KLS05, Mac96, PS02, PR11, SS07a, SY07, SMS92, SN13, Yen08]. State-Based [HK02]. State-Sized [CSR12]. Stateless [KMO10, KMW14b, Mas13, YDI08]. States [BLR09, BMP15, CP03, HKKS16, JM03, LB04, MVMM02, NWK06, ZQL12]. Static [BT03, C˘am14, Cas95, TZ11]. Station [DRDN08]. Stationary [PT14]. Stations [FZ03]. Statical [HK11, MG14]. Stay [BC12]. Steady [BLMR05]. Steady-State [BLMR05]. Stealing [Ros00]. Steiner [SSK96, Tor15]. Step [LOZ98, Muk92, ZYJW12]. Steps [FT11, JWBO3]. Steplike [KN93, MM11]. Stevens [Fri10]. Stevens-Stirling-Algorithm [Fri10]. Stirling [Fri10]. Stochastic
[KN93, KAM98, MAL07]. Substitution [DOM12, KL03, Tho06]. Substrings [DS96, IB12]. Subtree [BVM00, Gre96, HLY04, KEH16]. Subtree-Free [KEH16]. Subword [BPR09, CK08a, Čer08, Faz08, FM13, MS04, Sal07, SY10, TSZ16]. Subword-Free [TSZ16]. Subwords [AC11]. Successful
[Rog09]. Succinct [BMP03, HYN08, KRK16, ROK08]. Sufficient [KL00, Ok00, WFG15, ZWW14]. Suffix [GGM15, FS06, GPC09, HB108, Hol11, LJA09, MM05, PL06]. Suffixes [BMR14, FS05]. Suggestions [FH11]. Suites [BMS12], Sun [KMS09]. Summary [GH13]. Sums [Sal11]. Super
[CV14, LLY13]. Supercompilation [LN08]. Supernode [JS03]. Superstring [LW05, LW06a]. Supertrees [NRT00].
Supply [IZN05]. Support [LRR08].
Surface [BPT06]. Surfaces [AAH02, Fre02].
Surveillance [MKB+11]. Survey [DGK08, Man15, MOM91, PPJS07, PPRPS11, Riv04].
Survives [JYF91]. SVMs [ACM11]. Swaps [CCFG12].
Switched [RVT06]. Switches [GFK98]. Switching [GP09, KG11].
Symbol [NCC+07]. Symbolic [BB03a, Bee95, BCPR07, Com90, MC13, MB06, Set08]. Symbols [DV11].
Symmetric [GJV00b, O'N15, TWZ11, Van05, KR97].
Symmetries [BDSV06]. Symmetry [Cer08, MRS07].
Symport [AFO06, ARV07]. Symport/Antiport [AFO06, ARV07].
Synchronizing [AR16, BBP11, Ber13, TY15]. Synchrony [SR00a].
Synchronization [FMV13, GLP07, Vor16]. Synchronize [BGMV08, It13].
Synchronized [AK14, CKK02, HIR+92, Slo95]. Synchronizing [AR16, BBP11, Ber13, TY15].
Synchrony [SR00a].
Table [BESW07, LWW00, NKW08].
Table-Driven [BESW07, NKW08]. Tables [LOD07a, LOD07b]. Tags [HMZ05]. Tally [DR94]. Tamaki [RKRR02].
Tandem [Riv04]. Tape [AMR11, CGKN08, NCC+07].
Tapes [KSY14]. Tardiness [KS10]. Target [DEKZ11]. Target-Controlled [DEKZ11].
Task [BNR99, DEZ01, EZ01, FL97, FBHH01, RR06, Sun11, YH11]. Tasks [HL04, LTW02, MZ01, ZC05].
Taxonomies [KJS08, ROK08]. Taxonomy [CFRD08, GLi10]. Technique [EL13].
Techniques [FZ02, HPV99, RK09, SEE99].
Telecommunications [AC05].
Temperature [JK14a]. Template [DDM07, WH03]. Template-Guided [DDM07].
Templates [ER06]. Temporal [GN04, LRT92, PQR06, Pen93, SMS92].
Tenacity [LWY14]. Tents [US02]. Term [Bar90, FW90, TST01a]. Terminating [Mas09].
Termination [CGR13, DPR07, DG09, GHWW05, KM02].
Terms [Hir91, JC03, OY11, YTN01].
Ternary [Jir11, XCX17]. Tessellation [Pr17]. Test [AKM+11, BMS12, CDJ09, FK13].
Testability [RS13]. Testable [KP10a, RS12]. Testing [AMR11, BDSV06, CLT09, CL10, HL06, MSR06, Mer08, WCD+14, Yah12]. Tests [KY09].
Text [CFO08, CK05, ZHZ11].
Texts [CFG12, CIRS08, IB12]. th [YTN01].
Their [CLLL08, HJ14, KM08, KMS11, KP10b, KY96, LO11, MS16a, MS16b, QD03, SY07].
Theorem [BC06, BSOR10, BGS11, DV14, GN11, GHS13, GRRS14, Ruo06, SMS90, VG01, KPS13].

Theorem-Proving [GHS13, GRRS14].

Theorems [Suc90].

Theoretic [DGMM15, FH05, FZ15, GC15, Pan91, Sub90a, Sub90b].

Theoretical [Ami05, HYN08].

Theoretically [TWZ11].

Theories [CGR13, Mar92].

Theory [AD12].

Three [Cha02, CLT14, CK07, ET14, Fin12, KKH90, Tse16].

Three-Edge-Connected [ET14].

Three-Round [CLT14].

Three-Vertex-Connected [ET14].

Threshold [CD07, SUZ13].

Thresholds [GP15].

Throttle [FK06].

Thue [DSS15, Ram05].

Tight [AHL+13, HJP+13, PZ07, YS13].

Tighter [FKV06].

Tightness [CD09].

Tile [JK14a, JK14b, SW17].

Tiled [Leo03].

Tiling [Gia11, Mar08a, PM13].

Tilings [Mar08b].

Time [AAV00, ANDZM09, BCFR07, Cai94, CD06, CM12, CCH12, CZ11, CFPR03, DPR07, DFL02, EH12, FZAM08, FZCFB08, Fle96, FMN06, Fri010, GKR010, GO09, GV03, Gol14, Gra09, HG11, IR14, IZ099, JWB03, Joh00, Kör03, KD90, Kr197, Lag17, LD01, Loe03, Len04, LLQ06, LCY12, LW00, MM97, Mas04, MHT10, MN09, MV11, Nak04, NTSH06, Pal03, Pet11, PY04, RLW96, SK01, ST99, Sun11, US02, Wan04, YS13].

Time-Bounded [Pet11].

Time-Critical [Sun11].

Time-Free [CD06].

Time-Interval [NTSH06].

Time-Shuffling [EH12].

Timed [ACFE09, Kr192, NTSH06].

Times [Li12b, SSS09].

Tissue [AFO06, ARV07, CV08, FOP05, NSV12a].

Tissue-Like [CV08].

TLC [Hen02].

Token [DG98, GS12a, PT14].

Tokens [DSS08, SK01].

Tolerance [FWZ15, HY97, KR97, LYH+15, LZGF16].

Tolerant [CHYT14, FZEBB05, LPC11, XS11].

Tool [HPV99].

Top [LW93].

Top-Down [LW93].

Topic [LKM02].

Topic-Specific [LKM02].

Topics [GPP13].

Topological [CC98, FS98].

Topologically [HCG96].

Topology [FH11, He97, KGI11, Ok98].

Tori [FHL07, LLY13, Sib97].

Torus [BF07, ISAZ08, LY17, Mar97].

Toriuses [GLP07].

Total [ALR04, DFFL02, FIO08, IZ099, KS10, LLQ06, LWY14, PY04, Smi95].

Totally [FGV09].

Tour [BEML11].

TPR [IML04].

Trace [BR08, Gol90, Pen93].

Traceability [HCETPL+12].

Traces [LWJ+10].

Track [YBI11].

Tractable [BCR11, HL06, YHK14].

Trade [Kap05, KKP97, Kut05].

Trade-Offs [Kap05, KKP97, Kut05].

Traffic [DEKZ11].

Trains [PPJR06].

Trajectories [DKSS11, DS05, KKS05b].

Transactional [SK01].

Transducers [AM03, AM09, ARS11, AMR15, BBL+12, BBK17, CGH05, FSM11, Gaz06, Iba15, Mal05, Mal15, Man15, Moh02, Moh13, RT16].

Transduction [BCC+11].

Transductions [Sut14].

Transfer [HLY+04].

Transfers [NN93].

Transfinite [DN07].

Transformation [ALR04, AT15, BTK13, BTO17, TSS13].

Transformations [KLS05, MRS97, RKKR02].

Transient [BLY12, YB111, YB06].

Transients [GB03].

Transition [Muk92, Tam08].

Transitions [ZYLW12].

Transitive [DI02].

Transitivity [JP06].

Transmission [JS97].

Transparent [GD98, YSD16].

Transporter [SS07b].

Transpositions [CL07a].

Traveling [BL01].

Trawling [DEKZ11].

Tree [AHK07, ABH+09, BO04, BCHK09, BKKW02, CDPT16, CS00a, CHZ06, DL12, DST10, EM11, FGS+90, FTT10, Fle96, FSM11, Fuj17, Gaz06, Géc07, HH11, HBIT08, JM13, KM90, KEH16, KLH16, KK90, Li00a, LZ12,
LJA09, MO94, Mal05, MT10, Mal15, Man15, MC02, MP91, PR00, PAS08, RAB15, Rei07, RVT06, SMS90, SVF09, Tei17, Tor13, XS06, YHK14, ZM11, DDHL11]. Tree-Based [ZM11]. Tree-Height [Rei07]. Tree-Width [Fuj17]. Trees [BYP95, CS96, Dar13, DOR06, ERW04, FDFZB12, FA06, Gre96, HL01, IML04, IZN99, IZN05, JL01, JS03, JK07, Lag17, LW93, LF96, MM17, MTNN99, MAN05, OSZ92, OM96, OW92, P95, PV98, PL06, Pro96, RS01, Saq92, Smy12, XHLF02, YTN01, YCTW10, ZB00, ZB02, ZH06]. Treewidth [Klo96a]. Trellis [FGS +90]. Tremaux [DOR06]. tri [NS13]. Triangle [FP04, XHLF02]. Triangles [AAV00, MB17, Si97]. Triangulating [AFB96]. Triangulation [DPT02]. Triangulations [Fre02]. Trick [Ste11]. Trie [AC11]. Tries [KPS93]. Trinomial [ZZC15]. Trinomials [WXF16]. Triple [JS97, LOZ98]. Trivalent [CP99]. Trivial [BL14]. Truck [MX16]. Two [AGM14, Ars15, BSBZ08, BT00, BKW02, CI15, CL15, DL04, CHZ06, CGKY11, CGKY12, DLT06, DJ12, FS05, FL12, GP15, HKV17, HH13, HL06, HKS13, HG11, IJT+93, IS12, JP06, JM03, Kap05, KYZS17, KKH09, KP10b, KI11, KMO10, LY94, Lhu04, LLZ07, Me93, OS01, Pru17, RW201, RLW96, SS07b, Ste93, SMAN13, WO03, DXS16, ZZZ16, ZQL12, ZG13]. Two-Dimensional [AGM14, BT00, CL04, DJ12, JP06, Pru17, SMAN13]. Two-Face [RLW96]. Two-Machine [LLZ07, SS07b]. Two-Pattern [FS05]. Two-Prime [KYZS17]. Two-Processor [Leu04]. Two-Pushdown [KMO10]. Two-Way [BKW02, CI15, HKS13, IJT+93, IS12, Kap05, KL11, ZQL12]. Type [Bar90, CZTH13, Hir91, Kam95, MM17, MN00, P95, Smi95, Tsu01, TST01b]. Type-Free [Kam95]. Typeness [KMM06]. Types [APP91, TZ91].

[BBP11, ZSW14, ZG13].
Ups [JJS08].
Upward [HL06]. Use [BCC+11, SS12b].
Used [LKM02]. Useful [TGRY16].
Usefulness [BPR09]. User [DE08].
Using [AC11, AH07, BBFZM06, BS01, Bee95,
BC12, CTZ01, CST+17, CK08b, DW04,
DSS08, DZ00, DE08, EP17, FG+07,
FHL07, FK13, FN16, GD98, HHH07, HV02,
HP09b, HFLD09, IML04, ILY07,
IN08, JFl95, KAF05, KS10, LX94,
LB04, LWJ+10, MO94, PAS08, Pol05,
RCTC+09, SKL03, SB01, SN13, Wan14,
WFX16, WM13, XHLF02, YBI11, dSS01].
Usual [ES01].
Valid [HCG96]. Valuation [DM11]. Value
[KM09]. Valued [CH15, SH17].
Value [BFL02]. Valuedness [Iba15]. Values
[KMIS09]. Valuedness [Iba15]. Values [BFL02].
Variables [EAB+16, Kan98, ZG13].
Variable [CST+17]. Var [YTL02].
Variations [CL07b, TY03, TJZ13, ZWCL14].
Variables [EAB+16]. Variations [CST+17].
Variant [Pau00]. Variants [CVDV10, FL09, JL01, MS16a, MS16b].
Variations [DRDN08, YHK14]. Varieties
[KP10b]. Various [BLM15, YID05].
Varying [HG11]. Vector [BH02, CHYT14].
Vectorial [Car11, DQFL12, FY11]. Vectors
[PL06]. Verifiability [YMC+17]. Verifiable
[SZQ+17]. Verification [ADHR09, ADR11,
BB03a, BDSV06, DPR07, FK06, FK13,
Iba02, ILT11, LD01, LN08, LWJ+10, MG14,
MDAPHPJ+11, Pen93, WM13, YBI11].
Verified [DVG03]. Verifier [Ver09].
Verifiers [YSD16]. Verifying [FGH+07, HV02].
Version [Jun14]. Versions [BSB08]. Versus
[COT12, DPS07, CV13]. Vertex
[AT11, ET14, FP04, Kan15, PRS98, RZ12,
SS99, WQY16]. Vertex-Connectivity
[FP04]. Vertex-Neighbor-Scattering
[WQY16]. Vertices [DW04].
Very [FPPS03, FGH+07]. Via [BCDP08, Kar09,
KL05, LN08, YLZ14, Zan91]. Video [HT09].
Video-On-Demand [HT09]. View
[Ami05, DD12]. Viewed [Wil91]. Viral
[DM05]. Virtual [BCC+11, GNC+03, LIA09]. Visibly
[RT16]. Visitors [ECY02]. Volume
[Ano97, Ano98, Ano01a, Ano02, Ano03a,
Ano04a, Ano05a, Ano06, Ano07, Ano08,
Ano09, Ano11, Ano12, Ano13, Ano14,
Ano15, Ano16]. Volumes [BCC+11]. Vs
[SR00a, HKKS13, vs. [DTY15]. VTLoE
[MT95a]. Vulnerabilities [DW04].
Vulnerability [AT11, AT15].
Walk [BKS12, Li12a]. Walking [DPT02].
Walks [Sub05]. Walsh [CH15, SH17].
Watson [KM08]. Way [AM09, BMP15,
BKW02, CL15, CFY16, HIR+92, HKKS13,
IJ+93, IS12, Kap05, KL11, KMW14b,
KMW14a, Obo01, Slo95, ZQL12]. WDM
[XLC+04]. Weak [Asl16, BSOR10, DTY15, GV03, KR08].
Weak-Bisplit [GV03]. Weak-Rupture [Asl16]. Weakly
[AWF03, DWS15]. Weakly-Connected [AWF03]. Web
[ECY02, HM04, NH02, Zho02].
Wedderburn [AR16]. Weibull [PNN+10].
Weight [CS00a, FPPS03, LW93].
Weight-Balanced [LW93]. Weighted
[AMR05, AM09, AJMO11, CL15, CLOZ04,
CGKN08, DM11, DP14, EM11, GVL07,
IMP12, JC03, KS10, LLQ06, Mal05, MQ12,
Mal15, Moh02, Moh03, Oli13, PYTH10,
SS07a, SVF09, Tei17, ZH17]. Weights
[HN06, KR16]. Well [Hut02, RT16, ZHO6].
Well-Defined [Hut02]. Well-Nested
[RT16]. Well-Orderly [ZH06]. Wheel
[AB17]. Wheels [AO11]. Where
[WCD+14]. Whether [CDJ09, DK11].
Which [ERW04]. While [GPC09]. Width
[BLM04, DL12, Fuj17, GR00, JYF91, LV08,
MR09, PR00, RV06]. Wildcard [DES09].
Wildcards [Zha17]. Wilf [BSOR10, KPS13].
Window [KO13]. Winning [Fia08].
Wireless [AWF03, AHL+13, BNS03,
BDDN01, CYS+12, DCS13, FPPS03, Li12a,
MG14, MKB+11, SP04, WLF03, WP08].

Words [APV06, Ata07, BPR09, BC06, BSBZ08, BSOR10, BS12, BMR+14, BHNRO4, BJ05, BJ06, BJ07b, Cdl04, CRSZ11, CK16, Cer08, CGL12, DGBK08, DM12, DR12, DSS15, DMSS16, ÉO13, FJPS16, GPC09, GHS13, GRRS14, GS12b, Gust13, HH12, HN10, IYZ04, JP04, KM07a, KM08, KMS11, Lød15, MMR10, MPV04, MDGH13, Mel93, Mig90, PS12a, PS12b, PR12, Pri06, Ram05, RS04, Sal11, Shao4, ST16, Teh15, Teh16b]. Work [BBM+12]. Worker [DPR+08]. Workflows [LBL06]. Working [Elm06, Fre05, PLMZ11].

Working-Set [Elm06]. Worksharing [RC11]. Workstations [Ros00]. Wormhole [PV98]. Worst [Fle96, Lag17, PSA17, YH11, ZSW14].

Worst-Case [Fle96, Lag17, YH11, ZSW14]. Wreath [BK16]. WWW [LKM02].

References

Aytac:2013:SRR

Ahn:2009:COH

Aichholzer:2002:FPS

Accornero:2000:AST

REFERENCES

Alazemi:2011:CSU

Andre:2009:IMP

Allauzen:2011:DCD

Abdulla:2013:MAP

Arrighi:2012:PCT

Ada:2010:NDC

Abdulla:2009:MAE
Parosh Aziz Abdulla, Giorgio Delzanno, Noonene Ben Henda, and Ahmed Rezine. Monotonic abstraction: on

Abdulla:2011:AVD

Azizoglu:1999:IND

Arslan:2002:AAL

Arslan:2004:DLW

Arslan:2005:ACL

Alba:2005:GEN

REFERENCES

Agarwala:1996:SAP

Alhazo:2006:CSC

Abramov:2001:SNS

Anselmo:2014:PPC

Aziz:2007:MAP

Atig:2011:YPL

Abdulla:2007:BMT

REFERENCES

Axelsen:2017:DID

Augustine:2013:TAS

Anceaume:2002:NDI

Alatabbi:2016:ALC

Asahiro:2011:GOM

Afonin:2006:MFP

REFERENCES

Alberich:2004:SPT

Allauzen:2003:FST

Allauzen:2009:WCW

Amir:2005:TIS

Asahiro:2007:GOA

Allauzen:2005:DPA

Almeida:2008:EGM

REFERENCES

REFERENCES

Anonymous:1999:AI

Anonymous:2000:AI

Anonymous:2001:AIV

Anonymous:2001:P

Anonymous:2001:SIF

Anonymous:2002:AIV

Anonymous:2003:AIV

Anonymous:2003:Pa

REFERENCES

REFERENCES

Aytac:2010:CRD

Aysun Aytac and Zeynep Ni

Aytac:2011:RCW

Aysun Aytaç and Zeynep Ni

Ando:2010:SCL

Ei Ando, Hirotaka Ono, Ku
nihiko Sadakane, and Masa

Ausiello:1990:LPA

Agostino:1992:PCO

S. D. Agostino and R. Pe

Antonelli:1992:CMP

S. Antonelli and S. Pelag

Abadi:1991:FIM

Ananichev:2006:CWP

Almeida:2016:SSA

Arnold:2017:IGR

Allauzen:2011:FBA

Arslan:2015:FAL

Arvind:1997:CMP

Alhazov:2007:MCS

REFERENCES

Andrew Badr. Hyper-minimization in $O(n^2)$. *International Journal of Foundations of Computer Sci-
REFERENCES

Ben-Amram:2012:EDC

Barbanera:1990:CTR

Basten:1997:PPO

Beigel:1999:NPR

Bartzis:2003:ESR

Bouda:2003:EQI

Blin:2004:FAD

Lélia Blin and Franck Butelle. The first approximated distributed algorithm for the minimum

Beal:2011:QUB

Bes:2006:KTL

Brim:2012:USI

Beal:2014:P

Bennoui:2012:SAI

Breveglieri:1996:MPL

Besozzi:2011:MDS

Daniela Besozzi, Paolo Cazzaniga, Stefania Cocco, Gi-

[BCD09] Yohan Boichut, Romeo Courbis, Pierre-Cyrille Heam, and Olga Kouchnarenko.

Bischho:2012:UPI

Bloom:2007:SIA

Bertoni:2011:IPC

Beek:2007:CCG

Bovet:1990:DPC

Bui:2001:RMA

Bougeret:2011:ADR

Bujtas:2011:GPP

Biegler:2008:CAM

Bertolotti:2006:EST

Bloom:1992:IA

Bloom:1993:IA

Bloom:1995:SEL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BKW02] A. Brüggemann-Klein and D. Wood. The regularity of two-way nondeter-

[BLL06]

Blokh:2001:MTS

[BLLS03]

Brzozowski:2012:QCS

[BL01]

Brzozowski:2014:SCS

[BL12]

[BL14]

Bein:2003:BSH

[BL03]

Brandstadt:2004:GCG

REFERENCES

[BM90] Roberto Barbuti and Maurizio Martelli. Recognizing non-floundering logic programs and goals.
REFERENCES

REFERENCES

Bonifacio:2012:MPC

Barbuti:2011:OOS

Bergstra:1991:UAS

Belovs:2017:CCC

Bordim:2007:P

Bordim:2008:P

Bordim:2011:P

Jacir L. Bordim, Koji Nakano, and Akihiro Fujiwara. Preface. *International

Radim Bělohlávek, Jan Outrata, and Vilem Vychodil. Fast factorization by similarity of fuzzy concept lattices with hedges. *International Journal of Foun-
REFERENCES

Bournez:2011:P

Baturow:2009:UDA

Borozky:2006:PCN

Bertier:2016:CCM

Balaban:2007:MRA

Bertoni:2008:AMS

Balla:2007:EAD

Sudha Balla, Sanguthevar Rajasekaran, and Ion I. Mandoiu. Efficient algorithms for degenerate

REFERENCES

Blanchet-Sadri:2012:ACP

Brzozowski:2015:LAS

Bonnet:2016:NEI

Blanchet-Sadri:2010:FWT

Bresolin:2012:BMB

Blanchet-Sadri:2008:RTN

Bansal:2003:MHM

Blanchet-Sadri:2010:FWT
REFERENCES

REFERENCES

Stefan D. Bruda and Yuanqiao Zhang. Collapsing the hierarchy of parallel computational models. *International Journal of Found-
Bienkowski:2013:HCM

Cai:1994:CJN

Calude:2005:P

Campeanu:2014:DCE

Caporaso:1996:STM

Carlet:2011:MVB

Castellani:1995:ODP

I. Castellani. Observing distribution in processes:
REFERENCES

Casanov:2005:NMI

Christodoulakis:2009:EDC

Chiang:1998:TPS

Champarnaud:2005:ENA

Chai:2007:EIB

Cantone:2008:SCP

REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Cantone:2009:NEB

Campanelli:2012:PMS

Cienciala:2007:PDS

Czumaj:2011:AAB

Christou:2012:IAA

Calvin:1997:MOC
REFERENCES

211–??, June 1997. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Calude:2011:OBQ

Champarnaud:2005:BFD

Cai:2004:HAM

Cherubini:1990:BDG

Clementi:1995:OSP

Cheng:2002:SI

Cavaliere:2006:FRT

References

Cvetkovic:2009:MIN

Calude:2015:AAN

Champarnaud:2009:EAT

Carpi:2004:RFU

Cinque:2005:SLC

Chatterjee:2013:CC

Carrier:2011:AOD

Fabienne Carrier, Stéphane Devismes, Franck Petit, and Yvan Rivierre. Asymptotically optimal determin-

Caron:2016:SSP

Cappello:1998:PLB

Cerny:2008:SSW

Cantone:2006:SEB

Cantone:2012:ABM

Clarke:2003:ACG

REFERENCES

[CFRD08] Peggy Cellier, Sébastien Ferré, Olivier Ridoux, and Mireille Ducassé. A pa-

Chigahara:2016:OWJ

Ciobanu:2006:MMA

Ciobanu:2009:EM

Champarnaud:2005:CTF

Champarnaud:2008:AJA

Cui:2011:SCT

Cui:2012:SCT

Crochemore:2012:LCS

Carioni:2013:ATM

Cao:2015:TBF

Cheng:1992:RAD

Changizi:1997:LNI

Champarnaud:2002:ETI

REFERENCES

Elena Czeizler and Juhani Karhumäki. On non-periodic solutions of independent systems of word equations over three unknowns. *International Jour-
Campean:2008:SCS

Conley:2008:UAM

Cassaigne:2016:ACF

Culik:2002:NSA

Christensen:2015:SHT

Coetser:2009:REH

Chang:2017:SER

Chen:1998:SRN

Chen:2003:ZA

Cheng:2007:FRC

Couceiro:2007:EVI

Chang:2010:ETF

Carnino:2014:FUA

Carnino:2015:DUW
REFERENCES

2015. CODEN IFCSEN.
ISSN 0129-0541.

Cheng:2008:MPA

Caron:2016:SCC

Champarnaud:2004:RWE

Chang:2009:TEB

Chen:2014:TRA

Cantin:2009:CCH

REFERENCES

Chen:1996:OOR

Cho:1999:MDE

Cho:2000:NWB

Cho:2000:PRP

Cheng:2002:RP

Calude:2012:SSH

Chen:2017:SIE

REFERENCES

Campeanu:2002:SDR

Campeanu:2003:FSP

Chantrapornchai:2001:REA

Cao:2014:SEC

Csuhaj-Varju:2010:VCB

Csuhaj-Varju:2010:P

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Csuhaj-Varju:2000:PCP

Csuhaj-Varju:2011:PGS

Csuhaj-Varju:2008:TLS

Csuhaj-Varju:2008:P

Chen:2011:POI

Cortina:1998:CRI

Chen:2012:MLD

Guaning Chen, Chih-Wei Yi, Min-Te Sun, Fang-Chu Liu, and Wei-Chi Lan. Minimum local disk cover sets for broadcasting in heteroge-

[Darmann:2013:PST] Andreas Darmann. Popular spanning trees. *Inter-
REFERENCES

Dassow:2004:DCL

Das:2013:NEA

DeLuca:2006:CPS

Daykin:2008:PCU

Dominguez:2012:PPF

Deorowicz:2013:BPA

Datta:2011:SSE

Daley:2007:IMT

DeAgostino:2006:BSD

Ducrou:2008:IUI

Domosi:2012:P

Duncan:2006:DFE

Dolev:2011:TTU

Dutot:2005:SLS

Deng:2002:PM

Dixon:2009:ABS

Domaratzki:2005:NUR

Devillers:2002:DH

Diessel:2001:DTS

Deng:2002:PMT

Xiaotie Deng, Haodi Feng, Guojun Li, and Guizhen Liu. A PTAS for minimizing total completion time...
REFERENCES

REFERENCES

[Dang:2002:ECT] Zhe Dang and Oscar H. Ibarra. The existence of \(\omega \)-chains for transitive mixed linear relations and its applications. *International Jour-
REFERENCES

Dang:2005:OMS

Dickerson:1993:GPD

Dolzhenko:2012:TDL

Dessmark:2007:AMM

Diekert:2011:INC
References

REFERENCES

[DP13] Giorgio Delzanno and Igor Potapov. Preface. *Inter-
REFERENCES

Droste:2014:WNW

Damm:2007:GTV

Dongarra:2008:RMP

Dassow:1993:GBP

Dumitrescu:1997:PLV

DeQueirosVieiraMartins:1999:DAR
Devillers:2002:WT

[102x681]

Dong:2012:NCV

Duris:1994:CDR

DeFelice:2006:P

Domaratzki:2012:APW

Das:2008:VBS

REFERENCES

Domaratzki:2008:P

Domaratzki:2011:P

daSilva:2001:EPJ

Dobrev:2008:USM

Du:2015:OBS

Dassow:2010:GCS

Devismes:2015:WVS

REFERENCES

REFERENCES

[EGPS10] Edith Elkind, Blaise Genest, Doron Peled, and Paola

Ehmsen:2013:TEC

[EH12]

Eom:2015:SCK

Esik:2014:OCS

Esik:2007:BFS

Emerson:2006:MMC

Eom:2015:SCB

Ediger:2012:EAT

Elbl:2001:PRP

Elmasry:2006:PQW

Esparza:2015:FGS

Esik:2011:CSW

Ehrenfeucht:2010:CLD

Ehrenfeucht:2011:FDR

Ehrenfeucht:2012:SCR

REFERENCES

dations of Computer Science (IJFCS), 23(5):1173–??, August 2012. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Emerson:2003:RAR

Esik:2013:CFL

Elouasbi:2017:DRD

Ehrenfeucht:2006:CT

Ehrenfeucht:2014:ZSR

Egecioğlu:2004:CGW

Elbl:2001:NDR

REFERENCES

Fujimoto:2001:MPT

Fontaine:2005:BBA

Fernau:2007:PGR

Fernau:2015:FIR

Fredriksson:2008:EAM

Kimmo Fredriksson and Szymon Grabowski. Efficient algorithms for (δ, γ, α)

REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

[FJ12] Frantisek Franek and Mei Jiang. Crochemore’s repe-

REFERENCES

[Friedgut 2006:BCM]

[Finta 1997:CTG]

[Faro 2009:EVB]

[Friedmann 2012:TLS]

[Fleischer 1996:SBS]

[Floderus 2013:TME]

[Fazekas 2012:NPP]
Fuerer:1996:AAE

Fimmel:2001:OSP

Fazekas:2013:NDS

Fujiwara:2004:PLA

Fredriksson:2006:FMR

Fominykh:2013:PAS

Fujita:2016:FSC

REFERENCES

Faloutsos:2002:EAL

Frey:2002:BTA

Friedmann:2010:SSA

Freivalds:2008:NCM

Freydenberger:2006:UMI

REFERENCES

Flocchini:1998:TCS

Franek:2005:SST

Franek:2006:RSA

Friese:2011:ENF

Fazekas:2016:P

Feng:2011:GD

Felscher:2009:CRC
REFERENCES

Franek:2008:ALB

Feng:2011:VBF

Fang:2002:LIP

Fan:2003:OCN

Fearnley:2012:PMG

Fenner:2013:CHS

Fenner:2015:QAS

Gheorghiu:2003:SFF

Gandhi:2015:AAS

Gupta:2008:MPC

Garcia:1998:SOR

Gudys:2012:PAC

Gecseg:2007:CTL

Grammatikakis:1998:CRP

REFERENCES

Ghasemi:2014:AFS

Gao:2007:SSP

Gudmundsson:2009:P

Gruber:2013:PSR

Gruber:2015:FAR

Goddard:2005:SSA

Goc:2013:ATP

REFERENCES

September 2013. CODEN IFCSEN. ISSN 0129-0541.

Geser:2005:FFA

Gianmarresi:2011:EIT

Gudmundsson:2007:P

Gravier:2006:QOG

Ganzinger:2000:PA

Ganzinger:2000:RRN

Goresky:2011:SPA

Gasieniec:1999:MCL

Gawrychowski:2010:FGR

Grigoriev:2017:YMP

Glockler:2007:FAU

Glockler:2010:TDF

Gruska:2007:FSS

Garcia:2014:EDF

Pedro García, Damián López, and Manuel Vázquez

Gorrieri:1990:THD

Giambruno:2015:GGB

Grigoriev:2015:NMS

Gergatsoulis:2004:PPT

Gazdag:2011:KTB

Guingne:2003:VOV
REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

REFERENCES

REFERENCES

Golumbic:2000:CWS

Grimmell:2003:SBR

Gradel:1990:NLT

Grassl:2003:EQC

Greenlaw:1996:SID

Grover:2003:IQS

Goc:2014:NAB

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

Gurevich:2016:PP

Gusev:2013:LBL

Giakoumakis:2003:LTR

Giraud:2007:PED
Mathieu Giraud, Phillipe Veber, and Dominique Lave

Gao:2002:DRS

Gao:2012:SCA

Gimbert:2012:BOS
0129-0541 (print), 1793-6373 (electronic).

Han:2013:IPF

Hashimoto:2000:FCC

Hakem:2006:CPS

Higa:2008:RST

Hernandez-Castro:2012:MTA

Hanks:1996:FTV

Head:2011:CLT

Tom Head. Computing with light: Toward parallel Boolean algebra. International Journal of Founda-
Heirich:1997:SDA

Henriksen:2002:EET

Hinze:2009:RMC

Hu:2011:PTK

Halava:2011:RTB

Hadravová:2012:LSB

REFERENCES

Hromkovic:1992:POW

Hemachandra:1991:LLR

Hemaspaandra:1997:LRM

Holzer:2013:EAE

Holzer:2014:NBT

Holzer:2016:MHM

Holzer:2017:MMF

Holzer:2012:MNP

Harren:2013:TOT

Hemaspaandra:1993:BRT

Henzinger:2011:FSM

Hayashi:1995:NFF

Harel:2002:SSB

Holzer:2003:NDC

Markus Holzer and Martin Kutrib. Nondeterministic descriptional complexity of

Harju:2008:P

Hempel:2009:APC

Holzer:2009:NFA

Holzer:2011:CRL

Hromkovic:2013:DVN

Han:2016:SCI

Yo-Sub Han, Sang-Ki Ko, Timothy Ng, and Kai Salomaa. State complexity of in-
REFERENCES

Han:2013:EDB

Han:2013:EDB

Halldorsson:2000:MID

Hon:2001:ANN

Ho:2004:DCP

Healy:2006:TFP
Hsu:2006:SCS

Huo:2009:PSA

Hon:2004:STD

Hong:2004:AWS

Han:2005:AAM

Harju:2004:MDE

Hyyro:2006:BPC

Heikki Hyyrö and Gonzalo Navarro. Bit-parallel computation of local similarity score matrices with

Holub:2010:RBP

Holub:2005:F

Holub:2006:F

Holub:2008:F

Holub:2009:F

Holub:2011:BMS

Holub:2012:P

Honkala:2002:RCD

Honkala:2007:DEP

Honkala:2008:ESM

Halava:2008:P

Halava:2009:P

REFERENCES

Heuberger:2009:ACM

Herley:1999:DBB

Habib:1999:PRT

Han:2017:Pb

Hintikka:1995:WLP

Han:2008:SCU

Han:2011:OFL

Han:2017:P

Herlihy:2007:KBE

Hinze:2001:PCC

Hsu:1998:SII

Haralambides:1995:BOS

Hoang:2004:EMP

Hoang:2004:MPM

[Hung:2009:NOB]

[Harbibh:2012:CDC]

[Hutter:2002:FSA]

[Huynh:1991:EDC]
REFERENCES

Huang:2010:CSB

Han:2006:IFR

Hu:1997:FTS

Ho:2015:SYE

Hu:2012:LGG

Inenaga:2012:FCS

Ibarra:2002:VQC

Ibarra:2011:SRS

Ibarra:2015:AFV

Ibarra:2001:RSI

Ibarra:1997:CCA

Ibarra:2008:CMR

REFERENCES

151

REFERENCES

Iliopoulos:2012:PAM

Ivanyos:2003:EQA

Ito:2008:NFS

Ito:2010:LLC

Iwama:2013:RSO

Ito:2007:EHA

Yasuaki Ito, Koji Nakano, and Youhei Yamagishi. Efficient hardware algorithms

Ito:2005:FSL

IN05

IN08

IN10

IN13

IN07

Ishdorj:2008:GAM

Ishdorj:2007:CPI

Ibarra:2009:P

Ibarra:2014:SDQ

Ibarra:2012:CBS

Imani:2008:ICM

Inenaga:2005:FCP

Ibarra:2013:HSH

Ibarra:2007:P

Ibarra:2007:CRL

Ilie:2004:WCR

REFERENCES

Ibarra:2004:CCC

Isobe:1999:PTA

Ito:2005:PTS

Jain:1998:MC1

Jansen:1993:SIJ

Jiao:2003:CLM

Jez:2008:CGG

Jendrsczok:2008:IHP

Jiraskova:2014:RSC

Jirasek:2005:SCC

Jirasek:2008:DBU

Jiraskova:2011:MNT

Jurgensen:2007:SAB
Helmut Jürgensen and Pauline Kraak. Soliton automata based on trees. *In-
Jonoska:2014:ATSa

Jonoska:2014:ATSb

Jacobsen:2001:VTR

Jiraskova:2011:CUF

Jez:2013:HMD

Jiang:1991:SCM

REFERENCES

Jansen:2005:AAF

Jurdzinski:2007:SRA

Jansson:2007:ODR

Jonoska:2006:TTD

Justin:2004:EWS

Johansson:2000:NDP

Jalsenius:2008:SSC

Markus Jalsenius and Kasper Pedersen. A systematic scan for 7-colourings of the
REFERENCES

Jurgensen:2014:P

Jack:2008:DNM

Jia:2002:CCH

Jung:2003:SBS

Jansen:2010:ASS

Jain:2003:PPH

Anuj Jain, Sartaj Sahni, Jatinder Palta, and James Dempsey. Partitioning 3D phantoms into homogeneous cuboids. *International Jour-
REFERENCES

Jung:2014:SAV

Jurgensen:2008:CIE

Jiang:2008:ASP

Januszewski:2016:IOA

Kameyama:1995:TFT

REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Kamareddine:1998:SES

Kanatabutra:2015:FSP

Kapoutsis:2005:NRT

Katangur:2005:ROM

Karaata:1999:SSA

Karhumaki:2009:PCM

Krithivasan:1999:DPA

Krithivasan:1999:PRP

Krings:1999:RTD

Ko:2016:OSC

Karmakar:2011:ADM

Kuo:2012:MFA

Korah:1990:DOB

Kaufman:2005:SLT

REFERENCES

Klein:2007:CFG

Kamei:2010:SSD

Keqin:1990:GFF

Kranakis:1997:HCT

Kari:2005:BFL

Kari:2005:OTA

Kobler:2000:OSE

REFERENCES

REFERENCES

Kloks:1996:TCG

Klostermeyer:1996:STS

Krawetz:2005:SCM

Katajainen:1990:TCO

Kamareddine:2002:EAT

Kari:2007:IBW

Kutrib:2007:WCR
REFERENCES

Kari:2008:WCB

Krivka:2015:JG

Kapoutsis:2017:LCS

Krithivasan:2011:SLG

Kusano:2009:AVS

Kuppusamy:2011:AIS

Kupferman:2006:TRA

REFERENCES

Kutrib:2016:SA

[168]

Kamareddine:1993:SES

[192]

Korner:2003:TSE

[311]

Klima:2010:HPT

[311]

Klima:2010:LIL

[311]

Kouri:2015:RMA

[311]

Kirschenhofer:1993:MDS

Karhumaki:2013:FWT

Kurganskyy:2008:RPL

Keum:1997:DAS

Klappenecker:2003:QSR

Kutrib:2008:OSW

Kostolanyi:2016:AA

REFERENCES

November 2016. CODEN IFCSEN. ISSN 0129-0541.

Krishnan:1992:CTC

Krishnan:1997:PAA

Kuppusamy:2016:SDC

Klein:2006:CPM

Kellerer:2010:MTW

Kari:2011:SPI

Kaiser:2008:AAT

Klein:2008:MDE

Kosub:2000:UCC

Krithivasan:2003:DA

Kucuk:2014:FAA

Kudlek:2007:SRQ

Kunimochi:2016:SPE

Kutrib:2005:PNR

REFERENCES

Kari:2012:BSR

Kenyon:1990:EBF

Kobayashi:1996:FNL

Ke:2017:AMB

Kaminski:2010:FMA

Lagogiannis:2014:PQD

Lagogiannis:2017:QOP

Lam:2014:BSP

Nhat Lam, Min Kyung An, Dung T. Huynh, and Trac Nguyen. Broadcast

[LC02] C. X. Ling and N. Cercone. Special issue. *Inter-
REFERENCES

Lu:2006:PFS

Lazar:2009:DF

Li:2012:MAR

Lederer:2001:ARV

Lai:2004:SGS

Leopold:2003:CMA

REFERENCES

[LN08] Alexei Lisitsa and Andrei P. Nemytykh. Reachability analysis in verification via supercompilation. *International Journal of Foun-

REFERENCES

LaTorre:2016:SBP

Lehtinen:2010:BGG

Lehtinen:2011:ESN

Lehtinen:2013:HPD

Lauer:2007:UEDa

Lauer:2007:UEDb

Loding:2015:SPD
[179x564] Christof Löding. Simplification problems for deterministic pushdown automata on

[LTZ12] Young Choon Lee, Javid Taheri, and Albert Y.

Lucanu:2009:RLB

Lugiez:2011:FAD

Lozin:2008:CWB

[LW03]

[LW05]

[LW06a]

Liu:2006:ESM

Little:2010:AMS

Liebers:2000:HRB

Li:2014:TTG

Leiberherr:1994:CAS

Leung:1994:HMN

Li:2017:HTN

Jing Li, Yuxing Yang, and Xiaohui Gao. Hamiltonicity of the torus network under the conditional fault

REFERENCES

(Madhu:2003:PRS)

(Mag09)

(Mal05)

(Mal07)

(Mal15)

(MAN05)

(MAN06)
Maneth:2015:SDE

Marche:1992:WPA

Martin:1997:ETA

Margenstern:2008:FTP

Margenstern:2008:CCA

Martyugin:2009:LSR

Mastrolilli:2004:SMM

Masopust:2009:TDM

Tomáš Masopust. On the terminating derivation

Malcolm Mumme and Gianfranco Ciardo. An effi-

Montoro:2011:FPN

McNaughton:1990:DFL

Mardare:2008:LCR

Mahapatra:2000:RSG

Martinez-Del-Amor:2011:SAM

Masse:2013:MW

Alexandre Blondin Massé, Sarah Desmeules, Sébastien Gaboury, and Sylvain Hallé. Multipseudoperiodic words.
REFERENCES

Monien:1997:CLS

Mee:2012:SIT

Mel93

Mereghetti:2008:TDP

Mandal:2014:SA

Melodelima:2008:MAA

Meer:2012:SIT
Mang:2006:CCA

Masakova:2012:P

Matsumoto:2009:RTE

Mignosi:1990:SWA

Man:2011:EPS

Mondal:2011:MQS

Maur:2012:P

REFERENCES

Ma:2017:LBI

Mandal:2007:MAB

Manacher:1997:FMC

Manca:2011:LGS

Mancheron:2005:CCL

Mairesse:2017:USS

Malcher:2010:SSB

Andreas Malcher, Carlo Mereghetti, and Beatrice Palano. Sublinearly space bounded iterative arrays.
REFERENCES

Mantaci:2010:BPD

Merkle:2005:DPC

Miura:2006:CGD

Muller:2000:TIF

Mazumder:2017:PSK

Manea:2010:SRH

REFERENCES

Montanari:2012:P

Mizuki:2011:ASN

Maelbrancke:1994:DTR

Messerschmidt:2007:CDS

Messerschmidt:2009:DCS

Moriya:2010:APS

Mohri:2002:GRI

REFERENCES

Mraz:2007:ARA

Martins:1999:DAR

Margolis:2004:WGM

Maletti:2011:OHM

Maletti:2012:UWH

Metivier:1991:SOF

Makowsky:1999:CWG

196

REFERENCES

Manuel:2011:CCA

Moreira:2013:P

Mahajan:2006:ABS

Mateescu:1997:GTL

Monserrat:1995:WCM

Mongelli:1999:PRM

Mongelli:1999:P1
Mateescu:2004:MIS

Meduna:2016:C

Meduna:2016:SMG

Malcher:2007:MPC

Mahalingam:2012:PPM

Mason:1995:RAO

[MV11] Flávio K. Miyazawa and André L. Vignatti. Bounds on the convergence time of...

Meduna:2012:JFA

Nagamochi:2006:PSR

Nakano:2003:LLG

Nakano:2004:TEO

Nuida:2015:MPS

[Nak03]

Nicart:2007:LMT

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND02</td>
<td>Pattern matching code minimization in rewriting-based programming languages</td>
<td>International Journal of Foundations of Computer Science (IJFCS)</td>
<td>13(6)</td>
<td>873–??</td>
<td>2002</td>
</tr>
<tr>
<td>NH02</td>
<td>An intelligent agent for Web advertisements</td>
<td>International Journal of Foundations of Computer Science (IJFCS)</td>
<td>13(4)</td>
<td>531–??</td>
<td>2002</td>
</tr>
<tr>
<td>Nis03</td>
<td>Quantum computation with restricted amplitudes</td>
<td>International Journal of Foundations of Computer Science (IJFCS)</td>
<td>14(5)</td>
<td>853–??</td>
<td>2003</td>
</tr>
<tr>
<td>NN93</td>
<td>Scheduling file transfers un-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nakano:1999:GEI

Nochefranca:1998:DHC

Nicolas:2009:URM

Navarro:2011:SQ

Nikoletseas:2000:CPR

Nishimura:2000:FSS

REFERENCES

Ngassam:2006:DAF

[NWK06]

Namjoshi:2010:P

[NY10]

Obtulowicz:2001:MCO

[Obt01]

Obtulowicz:2006:GPM

[Obt06]

Ogata:2000:CCL

[Oga00]

Ogihara:1994:SL

[Ogi94]

Okawa:1998:PGN

[Oka98]
Okadome:1999:SFL

Okadome:2000:SSC

Okhotin:2003:EAB

Okhotin:2005:CAH

Okhotin:2006:GLP

Okhotin:2007:NDC

Oles:1992:WCM

Friedrich Otto. On centralized parallel communicat-

Otto:2015:APC

Ottmann:1992:UBT

OY11

Otto:2015:APC

Palis:2001:PSP

Palis:2001:SIP

Palis:2003:COR

Michael A. Palis. On the competitiveness of online real-time scheduling with

Palano:2008:RCC

Panti:1991:SNT

Peterlongo:2008:IGF

Patrignani:2006:EPS

Pau:2000:CMS

Pescini:2006:DPS

Pan:2011:CRN

[Linqiang Pan, Daniel Díaz-Pernil, and Mario J. Pérez-Jiménez. Computation of

REFERENCES

Pighizzini:2015:IAL

Pin:2012:EDL

Prieur:2006:STS

Plaza:1996:PSR

Porreca:2011:SAM

Prrusa:2013:RTA

Pau:2010:ICS

Polak:2005:MNU

Libor Polák. Minimalizations of NFA using the uni-

Poon:2004:ORM

Paquette:2006:FBB

Poirso:2011:NBA

Pighizzini:2014:LAR

Paun:2006:P

Paun:2006:STS

Pau:2007:CMS

Gheorghe Păun, Mario J. Pérez-Jiménez, and Grzegorz Rozenberg. Computing morphisms by spiking...

Paun:2007:SNS

Paun:2008:RCL

Paun:2011:SPM

Peled:2006:ECT

REFERENCES

REFERENCES

Prusinkiewicz:2012:SGM

Piperno:1990:RSE

Peled:2007:P

Pelc:2014:EGE

Petrini:1998:PAW

Potanin:2013:P

Poon:2004:MTC

Pym:1992:UAL

D. Pym. A unification algorithm for the lambdaPi-calculus. International

Reinhardt:2007:THH

Rahul:2011:DSR

Recalde:2010:CPN

Rivals:2004:SAA

Rajasekaran:2009:SBT

Roychoudhury:2002:BTS

Ripphausen-Lipa:1996:LTA

H. Ripphausen-Lipa, D. Wagner, and K. Weihe. Linear-

Rajasekaran:1998:PRS

Rogojin:2009:SEG

Roth:2008:SRK

Rosolini:1990:AMS

Rosenberg:2000:GDP

Rosenberg:2003:EPF

REFERENCES

Roversi:2000:LAL

Roussel:1999:HDM

Rauber:2004:PBL

Rauber:2006:DRD

Roussel:1999:GLN

Raja:1995:QBC

Rajasekaran:2000:SIR

REFERENCES

[PVT16] Pierre-Alain Reynier and Jean-Marc Talbot. Visibly...

Rudy:2015:DRA

Ruohonen:1996:ECP

Rigo:2011:LCR

Rhodes:2001:TCC

Ryabko:2015:CAF

Ranjan:2012:VIP

Desh Ranjan and Moham- mad Zubair. Vertex isoperimetric parameter of a computation graph. *International Journal of Foundation...
REFERENCES

Sahni:2001:MAO

Sakurai:2001:CMC

Salomaa:2013:FCB

Santhosh:2013:SSD

Shtrakov:2016:CCF

Sarac:1999:DTS

Sellink:1998:CLE

Selivanov:2008:FHR

Serbanuta:2009:PMA

Seth:2008:ACS

Schewe:2007:SAD

REFERENCES

Skulrattanakulchai:2004:CAS

Shu:2002:NNA

Sun:2017:SCB

Shallit:2004:SAL

Subramanian:2009:PM

Shur:2007:RAP

Shur:2011:EMP

Sartaj Sahni and Kun Suk Kim. Efficient dynamic lookup for bursty access pat-

[Sahni:2003:DSO]

[Skl03]

[Strauss:2008:CSB]

[Skw08]

[Supol:2005:ACP]

[Sm05]

[Simunek:2007:BFA]

[Sl17]

[Subramanian:2013:TDD]

K. G. Subramanian, Kalpana Mahalingam, Rosni Abdul-

Saha:2015:NRF

Sajith:1999:PVC

Sitharam:2001:DLB

Salomaa:2007:SCA

Sopper:2007:IAA

Schaeffer:2012:CEC

Switalski:2012:EMS

[ST11] Abusayeed Saifullah and Yung H. Tsin. Self-stabilizing computation of 3-edge-connected compo-
REFERENCES

Shikishima-Tsuji:2016:RIH

Staiger:2005:IIF

Staiger:2007:PFL

Stewart:1993:TAA

Steinberg:2011:ATC

Stolboushkin:1992:CPP

Subrahmanian:1990:RTBa

REFERENCES

Subrahmanian:1990:RTb

Subramani:2005:CRW

Suchenek:1990:ALH

Sun:2000:DRR

Sunckel:2005:DCM

Sun:2011:PSM

Sutner:2003:RPA

REFERENCES

ISSN 0129-0541 (print), 1793-6373 (electronic).

Salomaa:2005:P

Salomaa:2007:SCC

Salomaa:2010:SOP

Say:2012:QCA

Sun:2017:CPP

Szwast:1995:NAP

Teh:2017:MRS

Tamm:2008:TMB

[Tam08] Hellis Tamm. On transition minimality of bideterministic automata. *International

References

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Thanh:1991:RMD

Thomas:2006:MSS

Tu:2013:COV

Tse:1999:CSA

Torkestani:2013:LAB

Torkestani:2015:ASC

Tosic:2006:CCF

REFERENCES

Tsukada:2001:EPM

Tian:2016:SFL

Trahan:1994:API

Takaoka:2007:FLA

Tan:2014:REQ

Tsay:2009:ACR

Tartary:2011:EIT

Thiagarajan:2002:SI

Tang:2003:IV

Turker:2015:CSP

Tian:2017:ORA

Tucker:1991:PSR

Taheri:2011:PSD

Uehara:1999:MLF

Ueno:2013:BRB

Urgaonkar:2007:APC

Ungor:2002:PTS

Uehara:2007:CLP

VanZijl:2005:MNS

vanderHoek:1992:MSI

vanderMeyden:2000:PBL
REFERENCES

Vergnaud:2009:NEP

Verbitsky:2001:RQB

Viksna:1996:III

Vinodchandran:2005:NCM

Vermeulen-Jourdan:2005:LDS

vanLeeuwen:2015:SCR

Vorel:2016:SSC

REFERENCES

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

REFERENCES

Wang:2016:SSS

Wu:2003:SOS

Widmer:2012:PCL

Wilmes:1991:FPS

Watson:2008:EAC

Wei:2012:IRK

Yuechuan Wei, Chao Li, and Dan Cao. Improved related-key rectangle attack on the full HAS-160 encryption mode. *International Journal of Foundations of Computer Science (IJFCS)*, 23(3):733–??, April 2012. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Wang:2003:DSB

Yu Wang, Xiang-Yang Li, and Ophir Frieder. Distributed spanners with

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
Ye:2006:CTS

Yuan:2011:LMF

Yu:2011:RSV

Yang:2010:CMI

Yang:2008:SAS

Yen:2008:DCA

Hsu-Chun Yen. Decidability and complexity analy-

[YMC+17] Gang Yu, Xiaoxiao Ma, Zhenfu Cao, Guang Zeng, and Wenbao Han. Accountable CP-ABE with public

Koich Yamazaki, Sei’ichi Tani, and Tetsuro Nishino.

Yang:2011:ACD

Yu:2002:SI

Yu:2011:P

Yue:2013:CIE

Yu:2006:SBM

Yen:1994:SCR

Yu:2007:SEO

Zajicek:2009:NSP

Zanko:1991:PCM

Zantema:2000:FSE

Zantema:2002:SOD

Zhang:2005:AA

Zomaya:2005:ECP

Zhang:2013:RMS

Zhou:2012:CFD

Zetzsc.he:2011:TUG

Zhou:2017:CEE

Zhou:2013:NUB

Zha:2013:CNA

Zhang:2017:FCP

Zhong:2002:RCO

Zdarek:2011:TBI

Zomaya:2001:SIP

Zomaya:2001:S

Zomaya:2001:STA

Yu Zhou, Lin Wang, Weiqiong Wang, Xinfeng Dong, and Xiaoni Du. One sufficient and necessary condition on balanced Boolean functions with $\sigma_f = 2^2 + 2^n + 3(n \geq 3)$. *International Journal of Foundations of Computer Science (IJFCS)*,
REFERENCES

Zhou:2012:PTE

Zhang:2014:CGC

Zhu:2015:SBT

Zhi-Zhong:1991:CCO

Zhang:2016:OTS