Title word cross-reference

#P [Zan91]. #P-Completeness [Zan91].

(−β) [Dom12]. (1, 0) [ZK19]. (1, 2) [BZ13].
(2 + p) [ZG13]. (2, 2) [ST16]. (2 · t) [PT19].
(3 · t) [PT19]. (3k + 1) [DZ00]. (A, B) [JL01].
(δ, α) [CCF09]. (δ, γ, α) [FG08]. (δ, κ, α) [FG08].
(n, k) [Fen22, WC13, CDX21, CC98, CHYT14, HLHH06, YCL11]. (n, n(n + 1))
[NS98]. (n − 2) [ZW+21]. (r, t) [WFN20].
[1 [CHWX09, Dic93, LR04, TCT14]. 11 [LJ17].
2 [AV96, BYP95, CSN21, FFMW19, HKT00, HJP+13, JZ16, JW08, Leo03, Pri06, TPSZRP17, XZS16, XCD17, ZM11]. 2^n
[CKZ17]. 2m [ZWCL14]. 3 [BYP95, DH96, JSPD03, KPS18, LJ17, SJ04, ST93, Tsi06].

3 log_2 n [Far20]. 4 [XC15, ZCZ15]. 7/3
[DSS15]. * [MTVM15, ZLL20]. 2 [Joh00]. A
[XBE02]. ab + c [KL03]. AQn [XZXY19].
ASPACE(log log n) [GP13]. β [Shu11]. c
[CDFK19]. C^1 [XBE02]. C_k [Yan21]. CTL
[MTVM09]. CTL^* [MTVM09]. T_2 [BW14].
F [BL14]. R [BL14]. D
[HLY+04, AE99, DG98, RS01, YW20]. e
[DDHL11]. f [DGL93]. F_p + nF_p [WGF16].
G [Ram05]. g [ZLL20]. G(2^n, 2) [YCTW10].
G_{x+y} [AT15]. G_{x+y} [BTO17]. GF(2^n
[WXF16]. H [GMU15]. K
[BT07, CHWX09, PV98, ZBS05, Aku06, AAI+20, AE99, BJD20, CSN21, DDHL11, DG98, DGL93, ESS20, EHS15, IZN99, INY07, KPS13, LMZC20, LZ12, MXY+04, Nak04, RS04, TCLS10, YTN01, YW20, Yan21, ZZZ16, ZK19]. K_{1,r} [RS22]. K_{m,m

19 October 2022
Version 1.91
2NFAs [KM17].

3-Ary [LLW21]. 3-Edge-Connected [ST11]. 3-Repetitions [GS12b].

60th [CVM20].

7 [DE08]. 7-Colourings [JP08].

'98 [GJV00a, HO00]. '99 [MS99b, Pal01a].

ABE [HLC+19, YMC+17]. Abelian
[AILR16, BSCH22, CRSZ11, CK16, CCI12, DR12, DMSS16, GRRS14, IMS03, KPS13, PP11, SS01].

Abstract [DG09, TZ91, WPX+21].

Acceleration [IN05, IN08].

Acceptance [GQZ15, Mer08]. Accepting
[Das19, Dom04, DM08, HH20, IIT91].

Access [DCS13, Rud15, SK04, Sun00].

Accountable [YMC+17]. ACD [Mar92].

ACD-Ground [Mar92]. ACE [YM19].

Achieving [JW08]. Across [CM12].

Action [HFLD09]. Active [DV11, JK14a, JK14b, PDPJJ11, PLMZ11, qua07].

Activity [BGMV08]. Acyclic
[AMR08, BPR09, FZFDCHB05, GVL07, KLB13, KS19, ZWS06].

Ad [AWF03, CIS03, LBJ03, SB12, WLF03, WD03]. Ad-Hoc
[CIS03].

Adapting [CFG12]. Adaptive
[BKS12, CLT14, CHYT14, KG11, LX94, LBJ03, SW09, TL99, Tse16, VJD+05].

Add [ANDZM09]. Addition [Wan04].

Additive [BLS20, SS07a]. Adic
[KK19, XZS16].

Adjacent [AKS14]. Adjustable
[HZZT12, WY05]. Adjusting [KJ08].

Advanced [Qua07]. Advances
[CFSK19, H000].

Adversary [BHK+18b].

Advertisements [NH02]. Advice
[BFB+18, FH05, KSY14]. Aerial
[Ami05].

Affine [BKP18, IKPY21, NKPT+22, Rov00].

Affirmative [PHPJRN+11]. AFL [BJ07a].

Against
[BCFR07, BHK+18b, HM05, HCTETP+12, HLC+19, KMZS19, LWS+20, TCT14, Uen13].

Agent
[BF07, BDDN01, EH12, MM07, NH02].

Agents [DSS08, FHL07, KL11, LCVL09, LRT92, MCS08]. Agglomeration
[BYIT21, KB20]. Agglomeration-Based
[BYIT21]. Aggregation [RGR11].

Agreement
[BVM00, Gua21, KMZS19, MNS11].

Agreements [Tru08]. Aid [CMWZ19].

Alberto [SCI15]. Algebra
[GC15, GB03, Hea11, Lar99]. Algebraic
[BM16, BMW91, BÉ11, CD21, FH05, HLC+19, Kri97, LWS06, WM13]. Accelerating
[BIIN04].

Accelerative
[AI05]. Acceleration
[IN05, IN08].

Acceptance
[GQZ15, Mer08]. Accepting
[Das19, Dom04, DM08, HH20, IIT91].

Access
[DCS13, Rud15, SK04, Sun00].

Accountable
[YMC+17]. ACD
[Mar92]. ACD-Ground
[Mar92]. ACE
[YM19].

Achieving
[JW08]. Across
[CM12].

Action
[HFLD09]. Active
[DV11, JK14a, JK14b, PDPJJ11, PLMZ11, qua07].

Activity
[BGMV08]. Acyclic
[AMR08, BPR09, FZFDCHB05, GVL07, KLB13, KS19, ZWS06].

Ad
[AWF03, CIS03, LBJ03, SB12, WLF03, WD03]. Ad-Hoc
[CIS03].

Adapting
[CFG12]. Adaptive
[BKS12, CLT14, CHYT14, KG11, LX94, LBJ03, SW09, TL99, Tse16, VJD+05].

Add
[ANDZM09]. Addition
[Wan04].

Additive
[BLS20, SS07a]. Adic
[KK19, XZS16].

Adjacent
[AKS14]. Adjustable
[HZZT12, WY05]. Adjusting
[KJ08].

Advanced
[Qua07]. Advances
[CFSK19, H000].

Adversary
[BHK+18b].

Advertisements
[NH02]. Advice
[BFB+18, FH05, KSY14]. Aerial
[Ami05].

Affine
[BKP18, IKPY21, NKPT+22, Rov00]. Affirmative
[PHPJRN+11]. AFL
[BJ07a].

Against
[BCFR07, BHK+18b, HM05, HCTETP+12, HLC+19, KMZS19, LWS+20, TCT14, Uen13].

Agent
[BF07, BDDN01, EH12, MM07, NH02].

Agents
[DSS08, FHL07, KL11, LCVL09, LRT92, MCS08]. Agglomeration
[BYIT21, KB20]. Agglomeration-Based
[BYIT21]. Aggregation
[RGR11].

Agreement
[BVM00, Gua21, KMZS19, MNS11].

Agreements
[Tru08]. Aid
[CMWZ19].

Alberto
[SCI15]. Algebra
[GC15, GB03, Hea11, Lar99]. Algebraic
[BM16, BMW91, BÉ11, CD21, FH05, HLC+19, Kri97, LWS06, WM13]. Accelerating
[BIIN04].

Accelerative
[AI05]. Acceleration
[IN05, IN08].

Acceptance
[GQZ15, Mer08]. Accepting
[Das19, Dom04, DM08, HH20, IIT91].

Access
[DCS13, Rud15, SK04, Sun00].

Accountable
[YMC+17]. ACD
[Mar92]. ACD-Ground
[Mar92]. ACE
[YM19].

Achieving
[JW08]. Across
[CM12].

Action
[HFLD09]. Active
[DV11, JK14a, JK14b, PDPJJ11, PLMZ11, qua07].

Activity
[BGMV08]. Acyclic
[AMR08, BPR09, FZFDCHB05, GVL07, KLB13, KS19, ZWS06].

Ad
[AWF03, CIS03, LBJ03, SB12, WLF03, WD03]. Ad-Hoc
[CIS03].

Adapting
[CFG12]. Adaptive
[BKS12, CLT14, CHYT14, KG11, LX94, LBJ03, SW09, TL99, Tse16, VJD+05].

Add
[ANDZM09]. Addition
[Wan04].

Additive
[BLS20, SS07a]. Adic
[KK19, XZS16].

Adjacent
[AKS14]. Adjustable
[HZZT12, WY05]. Adjusting
[KJ08].

Advanced
[Qua07]. Advances
[CFSK19, H000].

Adversary
[BHK+18b].

Advertisements
[NH02]. Advice
[BFB+18, FH05, KSY14]. Aerial
[Ami05].

Affine
[BKP18, IKPY21, NKPT+22, Rov00].
ERW04, ECY02, FK19, FZ15, FZEBB05, FPPS03, FA06, GO09, GHJS05, Gol90, GM19, GKS+19, HL06, HP09b, HLW09, IMP12, INY07, IMS03, JMS05, JZ16, KSMMT18, KHH09, LTDW02, Leu04, Li12a, LMM+12, MPS09, Ma04, Moh02, Moh03, Nak04, NB18, OSZ92, RLVW96, SRR15, Sah01, SK01, SK20, SK03, SL21, SJ04, SG04, Ste93, TV07, Tor15, TL99, Tse16, WRNK03, WM05, WH03, ZBS05, Zom03, FG08.

Alignment [AES18, AE02, BBM+12, CK08b, FM96, GD12, PYTH10, TFF18].

Alignment-to-Alignment [FM96].

Alignments [CCP18].

Alive [BC12].

Allocation [BRSRC11, NWK06, PS22, WG17].

Almost [BN20, BKST18, Far20, HJ13, Kur20, PS12a, PP11].

Almost-Equivalence [HJ13].

Almost-Group [BN20].

Almost-Universal [BKST18].

Alphabet [CCP18, DW04].

Alphabet-Independent [GNP+06].

Alphabet-Invariant [KMRY20].

Alphabets [CTS18, Leu16, Mas13, NR21].

Alternate [ESS21].

Alternating [AK14, BCP07, CLLL08, HIIW01, HIR+92, IIT91, JK19, MO10, Sl095].

Alternative [dSMOC18, Set08].

Ambiguity [AMR11, Iba15, KMK11, Leu05, MS04, MP107, Ser09, SL17].

Ambiguous [BCMS20, Mig09].

Amenable [Ble21].

American [SGZ02].

Amiable [Ata07].

Among [DDPS19].

Amount [BRY16].

Amplitudes [Nis03].

Analog [LWJ+10].

Analog/Mixed [LWJ+10].

Analog/Mixed-Signal [LWJ+10].

Analyses [KPM15, Tse16, ZPXX17].

Analysis [AHL+13, AH07, BKP95, BV09a, Bee95, BAK12, BCB12, BYIT21, BET03, DN16, DES09, EH12, FK19, FSWF11, FZAM08, FBK05, G090, HP09b, HM04, IDR97, Ibr22, KR97, Leo03, LCY12, Li12a, LC22, LN08, LPP92, Lu011, MH06, MG08, NAK+15, OM06, PV98, RWZ01, RO08, Set08, TY03, TV94, Wan04, WR16, Yam03, ZLYZ14, YB06, Yen08, ZZZ16, ZL22, ZWC+12, ZZZ22].

Analytic [BMMR11].

Analyzing [CCP18, DW04].

Anarchy [FFMW19].

And/or [FI008, DW04].

Angle [MB17].

Annealed [SA22].

Annotated [KO70a].

Annotation [BDL08].

Announcement [CIS16, IS21].

Anonymity [TFS19, ZY+19].

Ant [AOSY10, FDFZB12, Spr09, XS06].

Approach [PHPJRN+11].

Ant [KAP05, dMLBPP20].

Antennae [AC05].

Antennas [TH22].

Anti [BJ07a, KMG11].

Anti-AFL [BJ07a].

Antidictionary [AOSY10, FDFZB12, Spr09, XS06].

Any [PS12b, TSFZRP17].

Anytime [CD15].

Aperiodic [PS12b, TSFZRP17].

Approach [BR08, BVM00, BG+11, Fre02, Gol14, HL01, LZ12, Rya15, YJ05].

Approximation [AEO2, AP90, ABDP05, BLS02, CS93, CCG+11, HY12, GM19, HJP+13, HW17, JMS05, JS010, K10, LTW02, NB18, SK20, SL21, SO07b, Ste93, Tei17, WG17, XS11].

Approximations
WKS⁺08, YDI08, YW06, YBI11, ZHZ11, ZDI18, ZQL12, dBDZ19, CV13, Čam20.

LV08, MR99, MM97, Ste93, SK20].

Clique-Width
[BLM04, GR00, LV08, MR99]. Clock
[D’s03]. Close [Fre92]. Closed
[AAI+20, MRT95, Oe92, TBGP20, TW09].

Closed-Set-Based [TBGP20]. Closeness
[AO11, Dan11, YB19, ZLG21]. Closeness
[BGS11]. Cluster
[ABL+11, BBP11, Ber13, BNR99, IN08, URS07]. Cluster-Based
[ABL+11, BNR99]. Cluster-Dot
[IN08]. Clustered
[Che22a, CDFK19, FPP03]. Clustering
[BKS12, CL03, CHWX09, ECY02, FPPS03, LC22, MMS05, ZC05].

Clusters
[BLMR05, CFMR05, CVOV11, LCVLV09, SK03]. CMP
[For10]. Co
[BLM04]. Co-Gem-Free
[BLM04]. Coalgebras
[Oli13]. Coarse
[MS99a]. Cobham
[Kre21, MRSS12]. COCOON’02
[IZ04]. Code
[BK12, KHS21, LYHW19, ND02, PR11, Rud15]. Code-Based
[LYHW19]. Codebooks
[SSF20]. coded
[GP13]. Codes
[AGM14, BKST18, Bur12a, CFPR03, DT20, FLFR19, GMS15, GRB03, HS11, HSS19, Kun16, Leo03, LZ15, SZQS18, WGF16, WF17, WFN19, WDFN21, WF21, YTP11, YZP21]. Codewords
[Arn17]. Coding
[CIY01, CK08a, KKS05b, SM05]. Cographs
[GV03]. Collaborative
[SP04]. Collage
[IST05]. Collapsing
[APV06, BZ10, Pri06]. Collection
[CVM20]. Collision
[Nak04]. Colonies
[MCS08]. Colony
[KAPF05, dMLBPP20]. Colored
[AFB96]. Coloring
[Bod91, BHK+18b, CCK02, SG04]. Colorings
[GHJS05, IZN99]. Colouring
[SS99]. Colourings
[JP08]. Combination
[HW17]. Combinations
[CB09]. Combinatorial
[ACDL18, CCF08, DD06, MM05, TV07]. Combinatorics
[BS12, BMMR11, EMR10, GHS13, IZ04]. Combinatory
[RS95]. Combined
[CLMP16, CGKY11, CGKY12, SY07, ACM11]. Combining
[Bar90]. Committed
[Cev20]. Common
[AMT20, AILR16, AE05, DD13, IMP+05, KS10, LW05, LW06a]. Communicating
[BKM12, BKM15, CCFS07, CVVMV00, DPS97, Kri92, LRT92, MS07, MVMM02, Ott13, Ott15, Tru08]. Communication
[Ada10, BV98a, BF97, BKM15, DHIÖ7, DDPS19, FL97, HYLF20, LC18, Nak04, PPR02, Spr09, YBM11, ZC13, ZYYH14]. Communications
[CCM97, RVT06]. Community
[ROK08]. Commutative
[BH11, CD21, MR91]. Commutativity
[IDR97, MS12]. Commuting
[Cai94, MMR22]. Compact
[BMS12, LX+19, PPR18, YM19]. Comparative
[OM96, ZL22]. Comparing
[Sal07]. Comparison
[FA06, HT12, KA18]. Compatible
[MIN11]. Compensation
[Sem20]. Competence
[BCVVH07, CVVD10]. Competence-Based
[CVD10]. Competitive
[Leu04, ZZ16]. Competitiveness
[Pal03]. Compiler
[DVG03]. Complement
[Jir14, O’N15]. Complementary
[CSN21]. Complementation
[Bed18, FKV06, JJS05, JPS19, RC05]. Complements
[HP09b]. Complete
[ABH17, BGI+18, DK11, HW10, LD01, MW05, RWZ01, RS01, ZYLW12, GP13, GI19]. Completely
[DVG03]. Completeness
[ABDP05, FOP05, HJV93, LBL06, Nag20, Zan91]. Completing
[BCHK09]. Completion
[BS13, DFLL02, DK11, LLQ06, MMY10, PY04]. Completions
[ST16]. Complex
[Brz13, BD19]. Complexities
[HH20, Jir14, KK19, Sch02, TY15]. Complexity
[Ada10, AFO06, AKK19, AOSY10, AP92b, Ary97, AP90, BGN10,
BHK19, BAK12, BPT16, BFL02, Bod91, BT17, BHNRI04, BMMR11, BLY12, BL12, BT13, BL14, BKL520, BCC13, CSR12, CK08a, Cán14, CLMP16, CRSZ11, CK16, CDM13, CS93, CGKY11, CGKY12, Dai97, Das04, Das19, Das21, DLW02, DG98, DM08, DK12, EH15, EHS15, FH05, FZ13, FL97, GY12, GI22, GPS14, GH15, HS08, HKNS16, HT12, Hol11, HK03, HK09b, HK11, HJ14, HM19, IDR97, IR14, IJJ +21, IYZ04, JS02, JMR91, JJS05, JM11, Jur08, KN21, KEH16, KHL16, KSV00, KLS05, KO13, Leu05, Lis93, Loh05, LMW08, Luc18, MNS18, MvZ22, Mas19, MTVM09, MTVM15, MT95b, MB06, NRS18, NRS19, NB18, O’N15, OS19, PS02, PR11, Pru17, Rao08, RR18, Rya15, SS07a, SY07, SMS90, Sch10].

Complexity [SW17, SD16, Sun05, Tos06, TL99, VW93, WAG +06, Wid12, WP08, XZS16, YS13, YTLC02, YW20, YWY94, Yen08, ZZT91].

Complexity-Theoretic [FH05].

Component [GCH20, GZZX21, IN10, NB18, ZYZX18, ZGL +22]. Components [BGMV08, CVOV11, DL12, JHK08, LCY12, MMK22, Mas09, Ott13, ST11]. Composed [ABH +09]. Composite [AO10].

Composition [AM09, ARS11, BCDP08, Wan04]. Compositional [TW09, WM13].

Compositionality [FT09]. Compositions [Mai18, Teh18]. Compressed [HI18, IST05, IB12, KS06, KSS08, Loh10, MHT09, WF17]. Compression [CDLW05, CK08b, DM05, De 06, KM90, KK05, Sal18].

Computability [Bur12b, Gra90, LS98]. Computable [BS92, CZ11, SS12a, Sch02].

Computation [AHR02, BDL08, CMRR08, DW03, EL13, FNI16, GO09, GRV10, GS12a, GR03, HL04, HN06, Lic18, LLW21, MB06, Nis03, PDPPJ11, RZ12, RS17, SA22, ST11, SP04, SZQ +17, VP99]. Computational [BK12, BL10, DLW02, FOP05, KGS17, HK09b, Ib22, IPR07, JWB03, JS02, LMM +12, MT95b, NB18, SD16, Sir15, WAG +06]. Computations [Bee95, CD15, CE98, CK18, DK98, HK09a, HFLD09, HK19, KL20, LD01, Mec12, YSM +00a].

Computer [TH01]. Computers [Rya15, Sah01]. Computing [AETZ05, AO10, BMSMT11, BFL02, Cai94, CROdH17, CLW09, CMRR04, CMWZ19, EAB +16, FS21, FJ12, FK07, FT11, GPPJR13, GCK08, Hea11, HO00, IZ04, LTZ12, Li00b, MLO17, MDL97, Ob01, Ob06, Pal01b, Pau00, PPR02, PPR07, RS00, RR04, RC11, SRN +20, SVSN01, SGZ02, Sto92, SUZ13, TZ11, UU07, WP08, XFJ03, Yue13, ZTT91, Zon03].

Concatenation [JJS05, Okh07].

Concentration [JJS05, Okh07]. Concerning [CCF08, Hon02, IR14]. Concise [LP19].

Concurrency [Luc09]. Concurrent [BPT16, BET03, Dro92, DK08, MM07, PQ06, SKW08]. Condition [MP07, Mel93, Pal08, WTW20, ZWW +14].

Conditional [GTCV19, IW05, LW06a, LYH +15, LG17, LX19, MLO17, ZL20, ZC12]. Conditions [FT09, FO08, LBL06, Oka00, WFG15]. Conference [IZ04, SNJ11]. Confidentiality [SZQ +17]. Confidentiality-Preserving [SZQ +17]. Configuration [WC04].

Configurations [ZL22]. Conflicts [MSR06]. Conformations [FKM +21].

Conjugates [BMR +14]. Conjunctive [AK14, DR94, Jez08, Okh03]. Connected [AWF03, DWS15, ET14, Iba02, IN10, JHK08, KK10, KPS18, Li01, MTNN99, MNN06, ST11, Tor15, WAF03, ZHH].

Connection [WGD18]. Connections [DM08]. Connectivity [CV14, Che22b, FP04, GCH20, GZZX21, HLHH06, LLY13, LX17, LLL22, NPSY00,
TH22, Tsi06, WFG15, WLZT21, XZY19, Yan21, ZYZX18, ZH19, NS13, WC13.

[CDM13, FK13, GM19]. Covering
[DS06, GGR14, YB06, ZBS05]. Coverings
[TSS13]. Covers
[CCP05, ER06, LMZC20].
Covid [Ibr22]. Covid-19 [Ibr22]. CP
[YMC17]. CP-ABE [YMC17]. CPS
[Oga00]. CPS-Calculus [Oga00]. CPU
[CYZ14]. CQn [XZW+21]. Cramer
[LYY+21]. Crawlers [LK02]. Credit
[Tse16]. Credit-Based [Tse16]. Crick
[KM08, MMR12]. Criteria [HL04]. Critical
[AA19, DW04, HB06, SS12a, Sun11].
Cross-Pollinating [WM05]. Crossing
[BPT06, ST16]. Crossover [KLP20].
Cryptanalysis [LYY+21]. Cryptographic
[DQFL12, FY11]. Cryptography
[CT+17, YY19]. Cryptosystem
[LHT09]. Cryptosystems [LYY+21]. CTL
[MTVM15]. CTL* [CZ11]. Cube
[CS98, HYLF20, LMZC20, LC18, LLW21,
PS12b, Yan21, ZYYH14, ZFL+17].
Cube-Free [PS12b]. Cube-Of-Rings
[CS98]. Cubes [CLT14, DG98, ES20,
ES21, XZZY19, XZW+21, ZCX12].
Cuboids [JSPD03]. Curve [FV20].
Customizing [LX94]. Cyber [SA22].
Cyber-Physical [SA22]. Cycle
[GP15, KB20, LLL21, LCXS19, NS98, RS22,
Ros00, Won96, Noc98]. Cycle-Related
[KB20]. Cycle-Stealing [Ros00]. Cycles
[APMP17, DH18, GKSZ19, LX19, Won01,
ZFL+17]. Cyclic [DESW05, YZP21].
Cyclotomic [KK19, XZS16]. Cyclotomy
[XC16]. Cylindrical [ZWC+22].
D [CHW90, FFMW19, HJP+13, JSPD03,
JW08, Lco03, L17, SJ04, ZM11]. DOL
[Hon02, Hon06, Hon07, Sal07]. DAGs
Dassow [BRST07]. Data
[ATK12, BS03, KY96, LOD07a, LOD07b,
LC22, Lin08a, MLO17, MMS17, MGJ19,
Oka99, Oka00, RGR11, RN22, RR06, Ros00,
SKL03, Sal18, SH22, TV14, T91, WHLH17,
YZY+18, YMC+17, ZPXX17, ZLW+17].
Data-Parallel [Ros00]. Database
[HMZ05, Lin08b, SEE09]. Databases
[Lar98, MT95b, VS93]. Datacube [Poo04].
Datalog [vdM00]. Datawords [MR11].
Date [KS10]. Davidson [HO99]. DDOS
Deadlines [PZX07]. Deadlock [BDC90].
Dealer [Sun00]. Death [EMR10]. Debates
[YSD16]. Decaying [FIO08].
Decentralized [MMS05, YM19].
Decidabilities [BK15]. Decidability
[AT12, BHK19, BI20, BAK12, BCD14,
Burl20, BS05, DK12, Durr13, FM93, Gas96,
Loh05, RHS10, Yen08]. Decidable
[AGM14, CRS12, Man15]. Decide [DK11].
Deciding [Dai97]. Deciphering [GMNS15].
Decision [CMWZ19, DH05, DMS16, IR14,
MVM07, Mod21, ZB00, ZB02]. Decisions
[Cig04]. Decoder [BBFZ06]. Decoding
[GMNS15, OSZ92]. Decomposable
[FGV99]. Decomposition
[CFPR03, Dic93, FGV99, Joh00, MAM05,
SVF09, Yen09, ZWCL14]. Decompositions
[AAKR18, CSV02, DS05, PR00].
Decontaminating [FHL07].
Decontamination [LPS07]. Decryption
[CCD07]. Dedicated [BRST07].
Deduplication [MGJ19]. Definability
[BV98, ES01]. Definable [DK98]. Defined
[DH05, EMR11, Hut02, JP06, KMRV20].
Definitions [Kam95, Moh03]. Degenerate
[BRM07, IMP12, L9H+17]. Degradation
[ZWC+22]. Degree [AMT20, ABT16, AS16,
AHK17, AO10, A13, BTO17, BB04, CL98,
D9H6, L01, LHY+04, KSM22, KA18,
LDL17, Tor13, WLF03, WQ97]. Degree-
[DH96, HLY+04]. Degrees
[EEK08, Won96]. Del [KRK16]. Delaunay
[Dev02]. Delay [GMNS15, JS97]. Delays
[LLZ07]. Delegators [RS07]. Deleting
[KO13]. Deletion [AB91, De 06, GMU15,

e-Normalization [Moh02]. **e-Removal** [Moh02]. **E-Unification** [GJ00b]. **Earliest FSM11**. **Earliness KS10**. **Earliness-Tardiness** [KS10]. **Early PPJS07**. **Easier Lag11**. **Eco** [LK11, LCVLV09]. **Eco-Grammar** [LK11, LCVLV09]. **Economic** [NZH22]. **Eden** [Tos06]. **Edge** [AB91, AJM+21, BAK12, BS16, Cal15, CV14, DJL+07, ET14, GMU15, GZZX21, KA18, LDLW17, LX19, LLW18, NPS00, ST11, Ts06, WFG15, XZW+21, ZYX18, LLL22]. **Edge-Deletion** [AB91]. **Edge-Pancyclicity** [XZW+21]. **Edge-Path-Replacement** [LLW18]. **Edges DEKW06**. **Edit** [AE04, CZODH17, CB09, HKS13, HI18, Moh03, PRN13, YHK14]. **Edit-Distance** [HKS13, Moh03]. **Editing** [FM96, ZWS96]. **Editor** [Zom01c]. **Editorial** [AETZ05]. **Editors** [HSu98, NO99]. **EDZL** [WR16]. **Effect CL07b, FPS02, NZH22**. **Effective** [Fin21, Ru06, SS12b, WHL17]. **Effectively** [YMC+17]. **Efficiency** [EH12, ZL22, ZSG+22]. **Efficient** [ADHR09, AAI+20, ARS11, Anc02, BBFZM06, BR07, BS01, BB03a, CPY02, CF06, CCF09, CDD07, CDJ09, CL10, DHI097, DCS13, DZH16, ERW04, FL09, FZFDCHB05, FLP13, FG08, GLV14, GRV10, GSD03, GS12a, GRB03, HH22, HYT15, Huy91, INY07, IMS03, Kor03, KB20, LF96, LOD07a, LOD07b, Li01, LHYW19, MD00, MIN11, MHT09, MOSZ18, MS19, MC13,
NGHK15, Okh03, PT14, Ros03, SRN+20, SK04, SUZ13, TWZ11, TFF18, Tsi06, WKS+08, WRNK03, WY05, ZZ18, ZC05. Eigenvalues [QD03]. ELAN [BKKR01].

[AA19, BCFR07, ÇA18, Fri10, GO09, Go14].
Exponential-Time [GO09].

Fault-Free [GWL+17, LX19]. Fault-Tolerant [CHYT14, LPC11, XS11, ZXY19, ZZZY19]. Faults [KNR18, LX19, NPSY00, PP06, WCD+14, YBM11, YCL11]. Faulty [CP16, GKKP99, GWL+17, LLY13, LMZC20, LLL21]. Feature [MN00, SRR15]. Feedback [GB03, HG11, KHL21, ZL19, YB06]. Feedback-Free [GB03, YB06]. Feferman [HK95]. Few [GJKS18, MR99]. FHE [CK18, KLP20]. FHE-Based [CK18]. FHSSs [XCMT20]. Fibonacci [DMSS16, ESS20]. Fibonacci-Automatic [DMSS16]. Field [RW11, YW20]. Fields [LCXS19, WNF19, WNF20]. Fighter [KLS+19]. Fighting [FLP13]. File [Li12b]. Files [KSS08, WRN03]. Filter [ARS11, BCM11]. Filter-Based [ARS11]. Filtered [DM08]. Filtering [DEKZ11]. Filters [DT20, FBK05, SAI18]. Financial [LC22]. Find [GH19, Gia11, MTNN99]. Finding [DGL93, ET14, Fuj16, GKRS10, GHW05, HKV17, HCG96, IMP+05, IB12, IZN99, Kar99, MM97, NRT00, PR00, VW93, Won96, Won01, ZBO0]. Fine [Slo08, BSO10, KPS13]. Finite [AM09, ARS11, AM11, AMR08, AMR15, AKH17, BGN10, BHK19, BIF20, BBL+12, BMW91, BHK07, BMK11, BMK12, BMK15, CSR12, CZOdH17, CPY02, CLOZ04, CGH05, CGK08, CFY16, CLo7b, CGL12, CTS18, DL12, Das19, DGK08, Dom04, FFH15, Fin19, Fle20, Fre08, GLV14, GHW05, GMS15, GH13, GH15, GQZ15, HS08, HN10, HK09b, HJ17, HKJ18, Iba15, JJS08, JJS18, JK19, KZ10, KLO3, KS10, KS14, KMW14b, KMW14a, LCXS19, Mac96, MS02, MMR20, MM17, Mar08a, MMV02, MZ12, Mel93, Moh13, NWK05, NWK06, RW11, SS07a, SMS92, SD16, Shn14, SM07, SSO1, SN13, Vor16, Vor18, WNF19, WNF20, ZQL12].
Finite-Memory [KZ10]. Finite-State
[AM09, ARS11, AMR11, CSR12, CZOdH17, CGKN08, MaC96, SN13].
Finite-Valuedness [Iba15]. Finely
[AK10, AM03, GI22]. Finiteness [AK06].
Fire [FLP13, KLS19]. Firing [GLP07].
First [AB91, BB04, DGK08, DZ00, Has00, IMP+05, KKH90, Lin08a, MN00, Rov00, Ueh99].
First-Class [Has00, MN00]. First-Fit [KKH90].
First-Order [AB91, DGK08, DZ00, Lin08a].
Fit [KKH90]. Five [CH15].
Five-Valued [CH15]. Fixed
[DS96, FL97, HL06, JJS08, LOZ98, MB17, Poo04, QLWL06, SW17, Tos06].
Fixed-Height [SW17]. Fixed-Length [QLWL06].
Fixed-Parameter [HL06]. Fixpoint [ELS15]. Flat
[CDFK19, MT95b, Oka99]. Flexible
[FMN06, JMS005]. Flipping
[LRR08, ZG13]. Flips [AAH02]. Flooding
[CIS03, LB03]. Floundering [BM90]. Flow
[LLZ07, Mas04, SS07b]. Flows [DW04]. FM
[GNP+06, IN05, IN08]. FM-Index
[GNP+06]. Fold [RKRR02]. Folded
[DHI97]. Football [CLK15]. Forbidden
[LLL21, WAG+06, Wh12, Yen08]. Forbidding
[Mas09]. Force [CCP05].
Forecasts [CL10]. Foremost
[CFMS15, XF03]. Forest
[Ali16, GO09, LZ12]. Forests
[ERW04, Wh12]. Forever [HJM19].
Foreword [BNR05a, BNR05b, Hol05, Hol06, Hol08, Hol09, Hsu98]. Forgetting
[Gl07, Gl08]. Form
[BMMR19, Es12, FSM11, GJV00b, LZGN06, Lin08a, VS93, Asv07]. Formal
[BGS11, CSY03, CD21, CFRD08, DM05, DK12, ILT11, MDAPHP+11, McN90, MT95b, ROK08]. Formalism [dSMOC18].
Formalisms [HJW11]. Formalization
[HK95]. Formalizations [KKS05a].
Formed [LCVLV09]. Forms [Ca94].
Formula [DS02, Uen13]. Formula-Driven
[DS02]. Formulæ [HKKSI13]. Formulas
[CE98, Sch10]. Forums [XCC16].
Forums-Oriented [XCC16]. Forward
[CD95, Lugi11, WHL17]. Foundations
[HB08]. Four
[KK19, MTNN99, MN06, SQQ18, SH17].
Four-Connected [MN06]. Four-Valued
[SH17]. Fourth [VS93]. FPGA
[DE01, IN05, IN10]. FPGA-Based
[DE01]. FPSOLVE [ELS15]. FPTAS
[KS10]. Fractional [Sh04]. Fragment
[HC96, MW05]. Fragments
[DGK08, MTVM09, MTVM15]. Framework
[GGR14, LQ12, Lin07, NS13, NWK05, TST01b, Tsur01]. Free
[Asv07, Bed18, BMS92, BCR11, BCD14, BESW07, BHK05, BI04, BL04, BL12, CD06, CR15, DV14, DSS15, E1H15, E1M18, E1O13, FLST12, GS18, GKS10, GB03, GV03, GWL+17, HWW06, HS11, HKS13, Han13, HW10, HLH19, IKPY21, JM11, JP19, Kami95, KKKS05a, KK07, KEH16, KPK16, KM07b, LO13, LX19, MR91, Mig90, Nag21, NS18, Pal08, PS12b, Rav08, Rei07, RS22, RS04, Saa02, Sta04, Tei17, TSZ16, Tra02, Tru08, WCH19, Y100, Y105]. Freeness [Kog18, Nag21]. Frege
[HK95]. Frequencies [CK16]. Frequency
[CTZ13, WPZ16, X016]. Frequency-Hopping [WPZ16, X016]. Frequent
[BL15]. Frictional [DLC92]. Frontier
[AT12, CHZ06]. Frontiers
[GPPJR13]. FTSM [LLL22]. FTSM-
[LLL22]. Fujisaki [FSF19]. Full
[Bur12a, WC12, ZHZ11]. Full-Text
[ZH11]. Fullness [CdL04]. Fully
[IST05, MC13]. Function
[BR20, BKST18, CJ20, MMS17, dSMOC18, PS02, Sta05]. Functional
[An00e, BV08, BKKR01, HST01, Hio11, Mohn13, Pre01, Sal13, Wil91]. Functions
[BB99, BMS92, BLY12, BH11, CM92, CH15, Car11, CGH05, CL07b, DQFL12, EMR11,
CDFK19, CPC99, ČA18, DL12, DP90, DH18, DW04, ERW04, EL13, EZ01, FK19, FWZ15, FP04, FGV99, Fuj16, GV03, GP09, GS09, GP17, HKT00, HBIT08, HLHH06, HY97, JB03, Klo96a, KPM15, KHL12, KA18, LWYL14, LLDW17, LX17, LLL22, LW00, LOZ98, LLW+22, LV08, MR99, MG20, MTNN99, MAN05, MAN06, MN06, NGHK15, NPSY00, NS98, OS93, RS22, RLWW96, RRT99, RR99, SS98, SR21, SG04, ST99, To06, WAF03, WFG15, Wan21, WQY16, Won01, XZY19, YCTW10, YB19, ZWS96, ZH19, Noc98, WC13, YCL11].

Greedy [BR18, FKM+21, Fuj16, GKS19].
Greens [YLX22].
Greibach [Asv07].
Greys [CDLW05].
Grids [BFMBS11, BE19, JP08, LMM+12, MNN06, ST93, Cas05, PT14, YLZ14].
Grounds [Cal15, MM17, NR18].
Groups [BN20, CLLL08, DM12, FZ15, HY97, KPS18].
Grover [KNR18].
Growth [GKRS10, NZH22].
Grzegorczyk [Cap96].
GSM [LO10].
Guarantee [LSWW13].
Guaranteed [MPV04].
Guaranteeing [Pal03].
Guards [FGL+90].
Guest [AETZ05, NO99, Zom01c].
Guided [PFH+03, DDM07, HZZT12, WY22].
Guidelines [Ros00].
GVW [HLC+19].

Hairpin [DK11, MMY10, PR01, ST16].
Half [Kam95].
Half-Monotone [Kam95].
Halting [F007].
Hamilton [DH18].
Hamiltonian [BJ13, CP16, LX19, LL21, Noc98, NS98, RS22].
Hamiltonicity [LYG17].
Handling [BCHK09].
Harary [ABT16].
Hard
BLIS03, BV00, Die93, ZB00.
Harder [CKL15].
Hardness
AMT20, LWW00, SL21.
Hardware

[For10, IN05, INY07].
Harmonic [CCF08].
Harmony [LTZ12].
HAS-160 [WLC012].
Hash [BKST18, LHY+19, NAK+15].
Hashes [Wan14].
Hashing [CKW09, LPP92, MB03].
Hausdorff [Sta05].
Having [Gi22].
Head [HKKM22, KMW14b, KMW14a, ZG+22].
Heads [IT13].
Heap [BSG03, Jun14, Pro96].
Hedges [BOV08].
Height [GPP20, Rei07, SW17].
Helmet [YW22].
Helping [AKS05].
Hessenberg [MS19].
Heterogeneity [RC11].
Heterogeneous [BLMR05, CFMR05, CYS+12, EZ01, OS01].
Heuristic [CHY14, CDLW05, De06, LY94, PS22, WA03].
Hexagonal [GSD03].
Hidden [FZ13, IMS03, KTT20].
Hiding [RN22].
Hierarchical
[FK19, GM90, GCH20, JS02, Loi10, SVSN01, SK03, SP04, WC04, WHL17, ZY+19].
Hierarchies [BLSR95, BK15, DH05, IM21, KPT0a, Sch02].
Hierarchy
[BGK+20, BDM11, BJY09, CSR12, Dev02, DZ00, HW00, Okh05, PP0Y08, Rei07, Se08, YZS+18].
High
[CH15, Fin12, KPP97, KKF97, L12b, LM02, YLX22].
High-Capacity [Li12b].
High-Performance [LKM02].
High-Quality [YLX22].
High-Speed
[KKP97].
Higher
[BY95, CCCS04].
Higher-Order
[BY95].
Highly
[BCFR07].
Highly-Polynomial
[BCFR07].
Highways
[AA+09].
Hirschberg [JHK08].
Historical
[MP93].
Histories
[FAZ08].
Hit
[WP16].
Hits
[HM04].
Hoare
[HV02].
Hoc
[AWF03, CIS03, CL03, LBJ03, SB12, WLF03, WD03].
Hole
[DDS08].
Holes
[RR99].
Holonomic
[BMS92].
Home
[ST01].
Home-Based
[ST01].
Homing
[SYS19].
Homogeneous
[SPD03].
Homomorphic
[CK18, MLO17, RMZ19].
Homomorphism
[Sta90].
Homomorphisms
[LO13].
Honey
[NWHI22].
Honeycombs
[SB97].
Honour
[CVM20].
Hop
[AF20, KKP97].
DG90, Jür08, Li07, SB01, TWZ11.
Informational [GSZ09]. Informed [MD00].
Infrastructures [DW04]. Inhibition
[XCC16]. Inhibitors [Sbu06]. Initial
[Mec12]. Initiality [BE95]. Initiations
[MM07]. Inner [DMMM14]. Input
[DZ00, FK05, HKMW22, LZGN06, LMG20,
Lin07, MS19, Moh02, OS19, YLX22].
Input-Driven [HKMW22, OS19]. Input/Output
[MS19]. Ins [KRK16]. Ins-Del [KRK16]. Insertable
[Kun16]. Insertion [CW11, EG02, HKNS16, KS11,
KMK11, OY11, PPJY08]. Insertion-Deletion
Inspired [AETZ05]. Instance [BIIN04].
Instance-Specific [BIIN04]. Instances
[HHH07, IMS03]. Instruction [TV94].
Insulated [HL11]. Insurance [ZL22].
Integer [FZ02, HHH07, HH22, Hit20, PA98].
Integers [SMS92, Dom12]. Integrity
[BTK13, TK19]. Intelligence
[dMLBPP20, Zho22]. Intelligent
[DE08, LKM02, NH02]. Intention
[ZSG+22]. Interacting [BCB12].
Interaction [JWB03, Yue13]. Interactions
[JWB03]. Interactive [AKS95].
Interchange [HL01]. Interconnection
[CP99, CX98, CD09, Hsu98, LYH+15,
LLW21, QD03, WQ97]. Interconnections
[BF97]. Interesting [HPV99]. Interface
[DE08]. Internal [Che22a].
Internetworking [GD98]. Interplay
[GGJ+19, Kop21]. Interpolate [Fre02].
Interpolating [Ibr22]. Interprocedural
[TY03]. Intersection [BCD14, CGKN08,
CGKY11, EHS15, Flo20, HS08, YJ05].
Interstage [SS07b]. Interval
[CPC99, EL13, GP17, NTSH06, SS99, ST99].
Intra [DDM07]. Intra-Molecular
[DDM07]. Intractable [YHK14].
Intramolecular [IPR07]. Intransitive
[WO03]. Intricacies [CHKL07].
Introduction [BBM90, NO99]. Intruder
[ISAZ08]. Intuitionistically [TW09].
Invariant [KMR02]. Inverse
[ACFE09, FK13]. Inverses [Biz11].
Invertible [Dub95, Sut14]. Investigations
[Pig15]. Inversion [BCN12]. Involutive
[KM07a]. Involving [Pan91]. Iota
[dSOM18]. Iota-Delta [dSOM18]. IP
[LOd07a, LOD07b]. Irreducible [WgF16].
Irregular [MS99b]. Irreversibility
[AHK17]. Irreversible [GLPP22]. Iso
[KTT20]. Isolated [YB22]. Isomorphic
[BVM00]. Isomorphism [AV96, Gre96, RK09].
Isoperimetric
[AE99, BS16, RZ12, WFG15]. Isotopisms
[BH11]. Isotropic [WNF20]. ISPAN
[Pal01a]. Issue
[An01c, BRST07, CD02, CVM20, Hin01,
HO00, Hsu98, LC02, Pal01b, Pre01, RS00,
Se02, TY02, Yu02, YYW19, Zon01a].
Issues
[Am05, BF97, Cas05, RHS10, vdHM92].
Items [BLM15]. Iterated [BvdB18, Sta05].
Iteration
[BE92, BE93, CLW09, FL12, Sut14].
Iterative
[KPSC08, MMP10, SL21, ST16, Smy12].
Jacobsthal [PS02]. Job
[BS01, JMS005, L01]. Jobs
[CYE14, FCS05, Jan93, JOS00, LY94, Zaj09].
Join [CGKN08, SEE99, YB19]. Joint
[Coo17]. Jordan [Ca94]. Journeys
[XF03]. JPEG [KS06]. Jumbled
[BCFL12]. Jumping
[BHK19, BH20, CFY16, KM15, MS20,
MMR20, MZ12, Vor18]. Jürgen [BRST07].
Justification [VS93].
k-Isoperimetric [WFG15]. kernels
[ACM11]. Key
[GKS17, Gua22, HLH19, KMZS19, LYX+19,
LMG20, LH11, MNS11, SNWW06, SNJ11,
TYM+17, WLC12, WZ15]. Key-Insulated
Kinetics [HFLD09]. Kinta [KMW12].
Kit [HPV99]. Kite [XHLF02]. Kleene
[BC06, GN11, HSS07]. Knapsack [KS10].
Knödel [BHL+97]. Knot [San13].
Knowledge [BLR09, Pan91, ROK08, WCD+14, vdHM92].
Known [XC15, ZH13]. Kolmogorov
[Jai95, Sch02]. Kronecker [CV14].
Kuratowski [BGS11, JPS19]. Kurdistan
[Ibr22].
Minimizing [DFLL02, GKKP99, HJ13, HJ17, KS10, Kör03, LY94, LLQ06, PY04].

Minimum [AJMO11, BGRY16, BBZ+18, BBO4, BRSV13, CYJ+12, DGN07, DJL+07, DLC+14, FPSS03, Fuj16, GMU15, GCK08, KK10, KHLCl2, MPV04, MAN06, QFL+15, Tor13, WAF03, Wan04, ZH22].

Minimum-Process [GCK08].

Mining [GWL02, LC22].

Minor [NRT00].

Miss [Leo03].

Mitrana [CVM20].

Mixed [CYZ14, DI02].

Mixed-Signal [LWJ+10].

ML [Has00].

MM [ZLL20].

MM* [DXZ20].

Mobile [BFMB11, BF07, BT17, BDDN01, CIS03, DSS08, FPSS03, FHL07, GCK08, HT09, IML04, LB03, MM07, SB12, TZ11, WP08, Zom03].

Mod [HKT00, SUZ13].

Mod- [HKT00].

Modal [DL12].

Model [Ko80, RC01, WLC12].

Model-Based [BCB12].

Model-Checking [CGR13].

Modeled [CLT14].

Modeling [BBFZM06, BZ10, CTS18, DE08, DMT05, For10, HJ97, HJW11, IJJ+21, IP08, KPM15, LWJ+10, LW06b, dMLBPP20, Lüic18, Mal18, RCTC+09, RS17, Sah01, Suc90, HY60].

Modes [FFH15].

Modest [Ros90].

Modification [Rud15].

Modifications [AJM+21].

Modified [BGS03, BHL+97, CDX21, Ibr22, IIT91, KYZ17].

Modified-Bubble-Sort [CDX21].

Modifiers [AG01].

Modular [BP207, DS02, Ht20, RCTC+09].

Modules [BJ07b].

Modulo [CGR13].

Modulus [WD20].

Molecular [DDM07, EHK06].

Molecules [FMC04, FK05].

Monadic [SMS92, vdM00].

Monitoring [LWW22].

Monogenic [LV08].

Monoid [KM08, KLS05].

Monoids [BR08, BS92, Burk12a, DM11, Góc07, Loh05, MR91].

Monominal [Kur20].

Monotone [DDD18, Kam95].

Monotonic [ADHR09, ACV13, TY15].

Monotonicity [JC03].

Moore [CFG12].

Moore-Like [CFG12].

Morphic [Dur13, FR06, Hon12, NP09, Oy11, PS12a].

Morphisms [Ram05].

Mosaic [BRSV13].

Mosses [AMR09].

Most [Brz13, BD19, SKL03].

Most-Specific-Rule [SKL03].

Motif [PRN13].

Move [FM06].

MP [MM11].

MPEG [DE08].

MPEG-7 [DE08].

Muller [Arm17, FZ12].

Multi [AKS14, ABH17, AMP07, BCC+96, CCD07, CGK08, HP09b, JF18, KMW14, KMW14a, LGM20, LW22, Mal15, NCC+07, RR06, SK01, SH22, TYS+17, TS19, Ver09, WM05, YBI11, ZC13, ZSG+22].

Multi-Behavior [LWW22].

Multi-Cores [MX11].

Multi-Exponentiation [HP09b].

Multi-Head [KMW14b, KMW14a, ZSG+22].

Multi-Objective [WM05].

Multi-Party [TYS+17].

Multi-Processor [RR06].

Multi-Push-Down [BCC+96].

Multi-Pushdown [AKS14, ABH17].

Multi-Receiver [CCD07, TFS19].

Multi-Secret [ZC13].

Multi-Sensor [SH22].

Multi-Sequential [JF18].

Multi-Secret [ZC13].

Multi-Sequential [JF18].

Multi-Stability [APMP17].

Multi-Tape [CGK08, NCC+07].

Multi-Tokens [SKO1].

Multi-Track [YBI11].

Multi-use [LMG20].

Multicast [FPS02, SNW06].

Multicasting [Gon01, XLC+04].

Multicomputers [MS99a].

Multicounter [Iba02].

Multicriteria [CMW19].

Multidigraphs [Fuj17].

Multidimensional...
Multienvironment [KPS93, Tho06]. Multihead
[MDAPHPJ+11]. Multihop [CYS+12].
Multikey [KLP20]. Multilayer [RHN+22].
Multilingual [CK08b]. Multimessage [Gon01].
Multioperator [SVF09]. Multiparty [KLP20].
Multihop [Mac96, Slo95]. Multihead [Mac96, Slo95].
Multilayer [RHN+22]. Multilingual [CK08b].
Multimessage [Gon01]. Multioperator [SVF09].
Multiparty [KLP20]. Multiple
[CF06, FK05, GD12, Lin07, LZGF16, MB03, Mat04,
NR18, RVT06, XBE02, XWL+22, YCTW10].
Multiple-Sided [XBE02]. Multiplication
[MX11]. Multiply [ACV13, WF21].
Multiply-Linked [ACV13]. Multiprocessor
[BLR09, CD09, SS12b, YH11]. Multiprocessors
[WR16]. Multipseudoperiodic [MDGH13].
Multiresolution [XHLF02]. Multisequencer
[SK01]. Multiset [BPT16, BMI+14, CG06, Faa19].
Mutants [MCS08]. Mutex [LCY12]. Mutual
[KG11]. Mutually [YSM+00a].
NAAP [LBJ03]. Naïve [ZLW+17]. Name
[CB09]. Nameless [Kam98]. Nature
[Cha97]. Nature-Inspired [AETZ05].
Nature-Inspired [AETZ05]. Near
[BW14, HT09, XCV17]. Near-Bent
[XCV17]. Near-Optimal [HT09]. Nearest
[HL01]. Nearly [BJ07a, KS19, SSF20].
Necessary [WWT20, ZWW+14]. Negative
[CS18]. Neighbour [ABT16, BTK13, BTO17,
HL01, KA18, WQY16, LB03].
Neighbourhoods [DP90, NRS18]. Nerode
[SM90]. Nested [CZTH13, DP14, FGL+90,
Gre96, HLW09, RT16]. Net [LPC11]. Nets
[AH11, BCB12, GRV10, JC03, MOM91,
Muk92, RHS10, YYY04, Yin09]. Network
[BRSRC11, Cas05, CL98, CX98, CCG+11,
DR05, FZ03, KR97, Klo96b, LG17, LOZ98,
LPS07, Lug11, LLW21, MKB+11, Oka98,
RHN+22, RR18, SZ22, WQ97, YY22,
ZYYH14]. Network-Based [RHN+22].
Network-Guided [WY22]. Networks
[AWF03, AOSY10, AHL+13, AO11, BV98a,
BY18, BYT21, BNS03, BLR20, BDDN01,
CP99, CDFT16, CIS03, CFS15, CL03,
CYS+12, CHA+92, Che22b, Cig04, CD95,
CD09, DHI97, DGN07, DCS13, DT20,
DM08, Fae22, FPFS03, FRV19, GKKP99,
GSD03, GCH20, GNC+03, GZZX21, HKV17,
He97, Hsu98, ISA08, JS97, KAPF05,
KKP97, KB20, Láx13, Li12a, LYH+15,
LMZC20, LB03, LC18, LW22, MMS05,
MCM+11, MGCvdP20, NAS22, PPR02,
QD03, Ros00, SB12, SL21, SP04, TH22,
TL99, WLF03, W05, WZH19,
XLC+04, XFJ03, Yan21, YB22, ZC13,
ZGL+22, DDHL11]. Neural
[FI008, IW07, KMG11, LW22, PPR06,
PPJR07, PPJS07, SRPC11, SZ22].
Newcomb [Rav08]. NFA
[JMR91, Letu05, Pol05, RS07]. NFA
[CCF05, DESW05, KS19, KH21, Van05].
NFSR [WG18]. NL
[DK11]. NL-Complete [DK11]. NLC
[Joh04]. No
[Nak04]. Node
[BYT21, HKV17, KB20, WQ97, WY05].
Node-Disjoint [HKV17]. Nodes
[IML04]. Noisy
[MG14]. Non
[AG01, Ada10, AS18,
BM90, BCHK09, BD19, CD15, CK07, Da97,
DPDR07, DZ20, DESW05, ES01, FLST12,
Fre08, GJV00b, GRB03, GPP20, HL01,
IMS03, Jez08, KZ10, Kap05, Kut05, MvZ22,
MSMR22, MC13, PP11, TY15].
Non-Abelian
[MS03, PP11].
Non-Blocking [Da97]. Non-Boolean
[PP11]. Non-Commuting [MSMR22].
Non-Constructive [Fre08].
Non-Definability [ES01].
Non-Deterministic [Ada10, KZ10, MC13].
Non-Ending [CD15]. Non-Floundering
[BM90]. Non-inclusive [DX20].
Non-Linear [DP07]. Non-Periodic
Non-Primitive [FLST12].
Non-Qubit [GRB03]. Non-Recursive [Kap05, Kut05]. Non-Regular [Jež08].
Non-Return [BD19]. Non-Self-Embedding [GPP20].
Non-Standard [AG01]. Non-Symmetric [GJV00b]. Non-Synchronizing [TY15].
Non-Unary [MVZ22]. Non-Uniform [AS18]. Non-Uniform-Degree [HL01].
Non-Uniqueness [DESW05]. Nonblocking [WM13]. Nonce [KMZS19].
Noncounting [KY96]. Nondeterministic [BKW02, Cha02, CC05, GPS14, HK03, HK09].
Nonlinearity [CH15, Car11, LHG11]. Nonregular [Mer08, YS13]. Nonsingular [XLZ19].
Nonstandard [Bee95, BSBZ08]. Nonterminal [Das21]. Nonterminals [KK07]. Normal
[Asv07, BMMR19, Cai94, Ési12, FSM11, Lin08a, RKR02, Rya21, VS93]. Normalish
[Ble21]. Normalization [Mohl02]. Note
[AHR02, BB99, BHL+97, BS16, CKK02, FM13, GMU15, IK+04, LZ15, Mac96, Mas13, Szw95, YB19, Zaj09]. Notes
[Okl07]. Notion [Gra90]. Notions
[IYD05, SNJ11]. Novel [DCS13, KSM22, LYY+19, LH11, SRR15, SGZ02]. NP
[BGI+18, Die93, GP13, GI19, GSZ09, MW05, Nag20, SL21]. NP-Complete
[GI19, BGI+18, MW05, GP13].
NP-Completeness [Nag20]. NP-Hard
[Die93]. NP-Hardness [SL21]. NP-Pairs
[GSZ09]. Number
[AMR15, AB17b, AE99, BLS20, CP03, ÇA18, CF110, DV11, Dom04, FY08, FRV19, FT11, GRS21, GRRS14, HB06, HJK12, JWB03, KA18, LZ93, LY94, NAS22, Pan91, PR12, RS01, RRT99, Vik96, WQY16].
Numbering [MNS11]. Numberings
[Jai95]. Numbers
[BS16, BPT06, CK18, HFLD09, Jir11, LO11, PDPPJ11, RS15, Van05, Wan04].
Numeration [JP04]. Numerical
[CCM97, SGZ02].
Operating [DI05, ZL22]. Operation [BHK05, CK08a, CLMP16,
DH05, MR91, OS19, YB19]. Operational [BMSMT11, BHK19, Das19, Das21, ÉL14, KEH16]. Operations [AP92a, BGN10,
CP06, CS96, CGKY11, CGKY12, FM96,
FM04, FT11, GNC'03, HH20, JSJS18,
KKS05b, PS02, SY07, SEE99, SD16].

Operator [AT16, BMS18, HJM19]. Operators [HW00, PR11].

Opportunities [Zom03]. Optical [BF97, KAPF05, LYH'15,
LC18, PA98, Sah01, WH03]. Optically [BT00].

Optimal [AAA'09, AC05, BF07, CZTH13, CP99,
Cal15, CDPR11, CS96, DH18, DSS15, FZ03,
FM01, FOP05, FLFR19, GD98, GZ12, HT09,
KLP20, KK90, KTT20, KR08, Lag17, LZ15,
Liic18, MQ11, Nak04, OS01, OSZ92, Poo04,
TCT14, TJJZ13, WPZ16, WO03, WH03,
XCH16, XCMT20, ZTT91, ZWCL14].

Optimally [AAV00, GKS'19]. Optimization
[JS02, KM90, KAPF05, MZ01, NWHL22,
PS22, SSS09, WM05, YTLCC02].

Optimizations [GV03]. Optimize [GSZ99].

Optimizing [ZSG'22]. Optimum [CD95].

Option [SGZ02]. Optoelectronic [Sah01].

Oracle [FL09]. Oracles
[CISH07, FZT14, IN13, KLOO, MM05].

Order [AES18, AB91, BYP95, BGM'18, DG98,
DGK08, DZ00, EGPS10, KK19, Lar98,
LHG11, Lin08a, Lug11, Set08, Szw95, ZH22].

Ordered [AKS14, ABH17, Bas97, KL11,
KO18b, Pro96, Yah12, ZB02]. Ordering
[Com90]. Orderings
[BC06, BÉ11, GHJS05, RC05]. Orderly
[MAN05, ZH06]. Ordinal [Ési12].

Organizing [Lá13]. Orientation
[AMOZ07, AJMO11, AJM+21, ZH22].

Oriented
[DSS08, KTT20, LX94, XCC16, YZ07].

Oritatami [FKM'21, HKRS19].

Orthoconvex [ST93]. Orthogonal
[DKSS11, WNF19]. Oscillating [HFLD09].

Ostrom [WDFN21]. Other
[DH96, PSA17, RS13]. Outdegree
[AMOZ07, AJMO11]. Outer
[LLW'22, MAN06, SR21].

Outer-Independent [SR21]. Outer-Paired [LLW'22]. Output
[MS19, Ros00, Rya21]. Outputs
[FMR20b, RT16]. Outsourced [YMC'17].

Overcoming [DEKZ11]. Overhead
[OM96]. Overlap [BHR09, BKLS20,
CCM97, CNT22, DSS15, HS11, LOPR18].

Overlap-Free [DSS15, HS11]. Overlapping
[HT95]. Overlaps [AGM19]. Overlay
[CDPT16]. Overview [BMSMT11]. Own
[GW18].

P [FMV13, AFIV22, CV13, KMG11, PB20].

P2P [Li12b]. Packaging [FBHH01].

Packed [Zha17]. Packet
[DES09, GFK98, MMS05, SKL03]. Packing
[BDI'11, FFMW19, HJP'13, JZ16,
LOPR18, MV11, Nag06, TSFZR17].

Packings [CZTH13]. Pair [DÈK22]. Paired
[LLW'22]. Pairing
[CST'17, Ros03, Ver09, WZCH19].

Pairing-Based [CST'17, Ver09].

Pairing-Free [WZCH19]. Pairs
[GSZ09, ST99]. Palindromes
[DD06, MP22]. Palindromic
[AACR18, BGI'18, BHN104, BR18, Çev20,
DMMM14, FLST12]. PAMA [LCL06].

Panconnectivity [XZZY19]. Pancyclicity
[XZW'21]. Pansiot [GS12b]. paper
[Tsu01]. Papers
[CS02, CS00b, CVM20, Elb01, KMS02,
KBH99b, Pal01a, SR00b, YSM'00b].

Paradigm [Sir15]. Parallel [AC05, AP92b,
BS01, BCVVH07, BF97, BM11, BK12,
BKM15, BBM'12, BZ10, CCM97, CF06,
CCF09, CFJ06, CPC99, CR14,
CVMVMV00, DP90, DD13, DGL93, DPS97,
EAB'16, FBH101, FNI16, GD12, HB06,
HH22, Hea11, HS95, HW17, MN06, IMP12,

[2009].
Kan15, KS11, KSMMT18, LTZ12, LLQ06, LMM+12, LPP92, LLW21, MS07, MIN11, MVM02, MS99a, MDL97, OS01, OSZ92, Ott13, Ott15, Pal01b, Ros00, Sah01, S999, SK03, SM05, TH01, Tru08, VG01, VJDT05, WM05, WH03, Zaj09, Zom03, ZC05.

Planarity \cite{CDFK19, DOR06, HL06}. Plane \cite{AAV00, Mar08b, Mar08a, MAN05, MAN06, MNN06}. Plateaued \cite{XCX17}. Platforms \cite{DPR+08, DEMT05, KSMMT18}. Platoon \cite{PS22}. Playing \cite{FZ12}. Plays \cite{GW18}. PLC \cite{XWY+22}. PN \cite{ZH13}. Point \cite{Aku06, DD12, MB17, Pre90, RAB15, ZC13}. Point-To-Point \cite{ZC13}. Points \cite{DLT06, Kar99, SSK96, Tos06}. Polar \cite{ZWCL14}. Polarizations \cite{FRV19}. Polarized \cite{MGCVdlP20}. Pollinating \cite{WM05}. Polling \cite{TL99, Tse16}. Polygon \cite{BJD20, KM18, SRN+20}. Polyhedral \cite{AAH02}. Polymorphic \cite{APP91}. Polynomial \cite{AAV00, AP90, BCFR07, BB99, BLS+05, Cai94, Dic93, GKRS10, GO09, HW00, HT04a, HT04b, Ibr22, IZN99, Joh00, MX11, PLMZ11, Shu07, Tra02, WD20}. Polynomial-Time \cite{IZN99}. Polynomials \cite{EKKS18, RW11, TWZ11, XLZ19, ZZC15}. Polytime \cite{Cap96}. POPS \cite{DR05}. Popular \cite{Dar13}. Population \cite{HJW11, Sun11}. Port \cite{NN93}. Portfolio \cite{NWHL22, YTLC02}. Posets \cite{Bed18, Yah12}. Position \cite{AMZ20, MCM+11}. Positioned \cite{LK11}. Positive \cite{CM92, HJ91, KY96, MAG09, Oka99, Oka00}. Possession \cite{ZPXX17}. Potential \cite{DRS14, Fin12, HH11}. Power \cite{BMP15, BCP22, CCFG12, CFS07, DSS15, Fu16, HIR+92, IPR07, JWB03, Kar09, Mal15, MR97, Mer08, RHS10, RS04, Sali11, Slo95, SRPC11, Sta05, Sto92, Sud03, WD20, LBJ03}. Powerful \cite{ACMP20}. Powers \cite{CRSZ11, CFJJ10, Faj11, Shu04, Shu11, YTN01, Ram05}. Practical \cite{CSY03, Fu17, PPR18, TH01, ZLW+17}. Practice \cite{BCFR07, CCFG12}. PRAM \cite{FPP03, For10, JPS19}. PRAM-Algorithm \cite{JHK08}. Precedence \cite{JSO10, KD99, LTW02}. Preclusion \cite{CLLL08, Fen22}. Precoloring \cite{EL13}. Predecessors \cite{AHR02}. Predicate \cite{vdM00}. Predicates \cite{SWZ97}. Predicational \cite{ES01}. Predict \cite{SB01}. Prediction \cite{BCD90, SZ22}. Predictor \cite{WY22}. Preemptive \cite{HL04, HLW09}. Preface \cite{ASTZ12, AY99, Ano01b, Ano03b, Ano03c, Ano03d, Ano03e, Ano04b, Ano05b, BC14, BRST07, BN07, BN08, BFN10, BFN11, BFN12, BP11, Cal05, CP19, Cäm20, Cha03, CLR19, CV08, CV10, CV08, CV20, CV22, DR06, DP13, Den02, DN11, DW11, DS08, DS11, DÉ12, DLMS12, Ési15, FSTY16, FGM+11, FKN11, GP08, GJ07, GH09, HP08, HP09a, HS17, HRS17, HK08, Hol12, HK15, HK21, HY06, IY07, IR09, IV18, Ito10, JS21, JR14, KO18a, LJJ22, MH12, MBR18, ML12, MP12, MNP12, MR13, NW03, NW04, NB06, NY10, PP06, PT07, PV13, PS18, SY05, Sek20, Shu09, Wan06, YN08, YY13, Yu11, YY19, Zom01c}. Preference \cite{FDFZB12}. Preference-Based \cite{FDFZB12}. Prefix \cite{AGM14, CDPT16, CCFG12, CFS07, DSS15, Fuj16, HIR+92, IPR07, JWB03, Kar09, Mal15, MRS97, Mer08, RHS10, RS04, Sali11, Slo95, SRPC11, Sta05, Sto92, Sud03, WD20, LBJ03}. Preorder \cite{AMZ20, MCM+11}. Preprocessing \cite{AKMW20}. Presemifields \cite{BH11}. Presence \cite{Cig04, LPS07}. Present \cite{Gur16}. Preserving \cite{Gaz06, LO13, Mal15, NTSH06, Ric19, SZQ+17, XZL+19}. Prices \cite{FFMW19, SZ22}. Pricing \cite{SL21}. Prime \cite{CFPR03, KYZS17, WD20, YW20}. Prime-Power \cite{CDPT16, BRM07}. Primitive \cite{CJ20, DR12, FLST12, KMS11}. Principal \cite{Hir91}. Principles \cite{AMR05, AD12, Obt06}. Prints \cite{Ser09}. Priority \cite{CS99, Elm06, GZ12, GNC+03}. Prisms \cite{CSN21}. Privacy \cite{XZL+19}. Privacy-Preserving \cite{XZL+19}. Private \cite{BNBN20}. Privileged \cite{FJPS16}. Probabilistic \cite{CZOdlH17, CHYT14, CMR07, CMRR08, DTY15, DY19, Pre08, ...
Lug11, Mas13, Nak18, OS19, Ott15, PI95, Pig09, RT16, Sao92, Set08. Pushout [ALR04]. PVsub [AP92a].

Reconfigurable [BBFZM06, BT00, FZEBB05, FZFDCHB05, MDL97, PA98, RM98, WH03].
Reconstructing [FLM+21, FS06].
Recovering [IN13].
Rectangle [Uen13, WLC12].
Rectangles [KTT20, Nag06].
Recurrence [Dur13, LS98].
Recurrent [MO94, NP09].
Recursion [JK14b].
Recursive [APP91, AT12, KM02, Kap05, LZ93, LPC11, Sal11, YCTW10].
Recursively [vLW15].
Red [CS96, MC02].
Red-Black [CS96, MC02].
Redex [FW90].
Reduce [CKW09, Li12b].
Reduced [GI22, Sut03].
Reducibilities [DR94].
Reducibility [HJ97].
Reduction [BHR09, DG09, FMR20a, HH11, Hit20, MS19].
Reductions [AV06, HJ91, Wan14].
Redundancy [VS93].
Redundant [WXF16].
Reed [Arn17].
Reference [IMP12].
Refinement [CFH+03, HPV99, MH06].
Regex [Sch13].
Region [DRDN08, YW06].
Regional [NZH22].
Register [ACMP20, HFLD09].
Registers [HG11, XLZ19].
Regression [MM11].
Regular [Ada10, AK06, AK10, AB17a, BR20, BLS20, BS16, BMNR19, BT13, Brz13, BL14, BD19, Cal15, CSV02, CS03, Cha02, CLOZ04, CDJ09, COT12, CS02, CS00b, CKW09, Coo17, CFPR03, DK11, DM11, Elb01, EH15, EHS15, Faz11, FS21, FO08, GKR510, GH13, GH15, GLPP22, GZZX21, HHWW06, HKS13, Han13, HK03, HK11, IW07, Je08, JM11, Jir14, KMS02, KEH16, KHK16, KMR10, KBH90b, KMM06, Loh10, NR21, NPSY00, PP14, PT90, RS12, Re08, RO0b, SL17, TV14, To17, TW09, VSM+00b, YJ05, Fin12].
Regular-Expression [Han13].
Regularity [BKWO2, Mal15, Pal08, RS13, ST16].
Regularity-Preserving [Mal15].
Relabeling [BDL08].
Relabeling [Mal15].
Related [AO11, AB17b, BPR09, CHZ06, Iba11, KB20, TY15, WDFN21, WLC12].
Related-Key [WLC12].
Receptacle [EH15].
Reference [IMP12].
Regeneration [BB99, BJ05, BJ06, BJ07b, ON15, ROK08, WXF16, XHLF02, Zho02].
Representations [BB03a, BK16, HP09b, LP19, PPJY08, ZZ18].
Respective [TBP20].
Representing [HKKS13, Smy12].
Requests [CVPV08].
Required [Sun00].
Requires [Fri10].
Research [FH11, GPPJR13, ZZ22, XCC16, Zom03].
Resemble [KMS06].
Reservations [KL05].
Reset [Gus13, GP15, Mas19].
Resilient [AO11, Dan11, YBI9, ZLG21].
Resiliency [CL07a].
Resolution [Pla96].
Resources [BSRC11, BGC+11, CTZ20, FM01, PS22, SSVSN01, WG17, YH11].
Resumes [RS17, SB01].
Respect [RR18].
Restarting [JO07, KR08, KMO10, KO13, KO18b, MO07, MO09, MPJ07, POM22, PM13].
Restricted [BMS18, BFL02, BE19, CSAT20, DP90, DS05, GWL+17, MNS18, Nis03].
Restriction [FFH15, HCG96, HLW09].
Restriction-Fragment [HCG96].
Restrictive [PB20].
Result [CP06, ES01, LD01]. Resulting [HH20].
Results [AA13, BGRY16, BKM11, CD06, CKZ17, DGMM15, FOP05, HK09b, LS98, RS04, SYS19, Sbu06, WWY94, ZLG21].
Retrieval [CCF09, FMN06]. Returning [BKM15, BD19].
Reusability [KR03]. Reusing [FZ03]. Reveal [LKM02].
Reversal [CGKY12, Jir14, Rao08]. Reversals [QLWL06].
Reversibility [Iba11]. Reversible [AKMW20, HI22, HJK18, KPS16, LP19, RN22]. Reviews [ZCC22]. Revisited [AMR09, DR94, FJ12, KS11, KX12, LT21, Nag01, Pre90, TA17].
Revisiting [DPR08]. Revocable [SZFX20]. Revocation [HYT15]. Rewrite [AMR09]. Rewriting [Bar90, BCPVH07, BPT16, BKKR01, FW90, GHW20, KSM06, Luc09, Mad03, ND02].
Rewriting-Based [ND02]. RFID [HCETPL+12]. Rhythms [CIRS08]. Rich [FS12a].
Right [BH20, CNT22, FLM+21, KH21]. Right-Bounded-Block [FLM+21].
Right-Infinite [CNT22]. Rigid [GJV006].
Rigidity [BDD+18]. Ring [CL08, DSS08, G512a, LW06b, Mar97, Sub90a, Sub90b, ZGCZ18]. Ring-Theoretic [Sub90a, Sub90b]. Rings [BW14, CX98, EN03, FHL07, GLP07, WWY94]. RLE [HI18]. RLE-Compressed [HI18]. RNG [CIS03]. Road [CKK02]. Robot [SH22].
Robots [BFMB11, BT17, CGK+21, DDPS19].
Robust [DPR07, DW03, ECDY02, HJ91, HJV93].
Round-Optimal [KLP20]. Route [GR03]. Routed [PV98]. Router [LD007a, LD007b, MMS05].
Router-Based [MMS05]. Routing [BDC00, BDDN01, CHY14, Cig04, FPS02, GD08, GFK98, G17, JW08, KAPF05, LPC11, OS01, PA08, RM08, RS01, RVT06, Sib97]. Row [MS20, WAG+06]. RP [BJY90]. RSA [BNB20]. Rule [Fer07, dMLP2020, PB20, SKL03]. Rules [BMP03].
AFO06, BCKH09, TBGP20, Zet11].
Rumors [XCC16]. Run [LD001, MHT09]. Run-Time [LD001, MHT09]. Runs [FY08, FJ12, KSM09]. Runtime [Rud15].
Rupture [ABT16, AS16, AO10, AA13, BTO17, KA18, LD1W17, YB22].
Safe [Cap96]. Safety [CHY14, IBS01].
Salesman [BL01]. Salesmen [Klo96b].
Sampling [CCP18, MM17]. Sanitizers [YM19]. SAT [HW10, YW06, ZG13, ZK19].
SAT-Based [HW10, YW06]. Satisfiability [DDD18, MTVM09, MTVM15, ZSW14].
Sato [RKRR02]. SBN [KR97].
SC-Expressions [YZ07]. SC320 [MDL97].
Scalable [BBFZ06, Hei97, WTHL17, WH03]. Scale [CDLW05, DC013, DEMT05, MDL97].
Scales [CM12]. Scan [JP08, PRS98].
Scanning [DES09]. Scattered [Bed18, DSS08, EO13, E114, M1K22, RC05].
Scattering [BFMB11, BT17, KA18, WQY16].
Scenario [YTL02]. Scenario-Based [YTL02]. Schedulability [WR16].
Schedule [CD95, RWZ01]. Scheduler [TSFZP17]. Scheduling [BV98a, BS01, BLMR05, BNR09, BDG+11, BE19, CAS05, CTZ01, CYZ14, CR14, DFL02, DEZ01, DLC*14, DEMT05, FL97, FBH01, FCS05, GJIK08, GRO03, H1B06, HLO4, HW17, HLW09, JAN93, J100, JSO10].
KSMMT18, Klo96b, KD99, LAHN14, LTZ12, LTW02, LLZ07, Li01, MXY°+04, Mas04, NN93, Pal03, PY04, PZJ07, PFG°+01, RC11, SSS09, SS07b, Sun11, SS12b, WY05, WR16, YH11, Zaj09, Zom01b, Zom01c. Schema [KS11]. Scheme [DCS13, DZH16, FPP03, Fuji16, HHIP17, HLH19, LD04, LHT09, LH11, LYHW19, MD00, TWZ11, ZC13, ZGCZ18]. Schemes [FL12, GP17, JSO10, MMS17, PNN°+10, SNWW06, Sun00, WGF16]. Schutzenberger [DV14]. Schnyder [MAN05]. Science [HO00]. Scientific [RR04]. Scope [LNP16]. Scope-Bounded [LNP16]. Score [HN06]. Screening [IN08, IN05]. Search [ACDL18, BRM07, Brz13, CS00a, CGK°+21, Fle96, HM04, HLH19, IN05, IN08, JS03, KK90, KNR18, LTZ12, PRN13, WM05, ZZZ16]. Searching [Ami05, CFG12, DE08, KPS93, MP93, ST93]. Seat [KL05]. Seating [KL05]. Second [LHG11, Set08, Szw95]. Second-Order [Szw95]. Secrecy [BKST18]. Secret [LD04, MNS11, Sun00, TWZ11, WGF16, ZC13]. Secure [HLH19, KLP20, LYHW19, MLO17, MG14, MMS17, MGJ19, RMZW19, SNWW06, SNJ11, SZFX20, TWZ11, ZLW°+17]. Securing [CST°+17, SA22]. Security [DLW02, LW06b, LWS°+20, NAK°+15, SNJ11, WHLH17, YYW19]. Seeking [MD00]. Segmentation [RHN°+22]. Selected [Che22a, Pal01a]. Selected-Internal [Che22a]. Selection [ATK12, CD20, NB18, SA22, SRR15, WRRN03]. Selective [HHN°+95]. Self [CDPT16, DDHL11, DTY15, DWS15, FDFZB12, FZAM08, GHJS05, GS12a, GPP20, HKRS19, HHW99, HSS19, JKI14a, JKI14b, KK10, Kar99, Láz13, MvZ22, NGHK17, ST11, San13, SW17, SZQS18, TSFZRP17, WD03, XS06]. Self-Assembly [JK14a, JK14b, SW17]. Self-Attraction [HKRS19]. Self-Dual [HSS19, SZQS18]. Self-Organizing [Láz13]. Self-Pruning [WD03]. Self-Similar [JK14b]. Self-Specifying [HHW99]. Self-Stabilizing [CDPT16, DWS15, FDFZB12, FZAM08, GHJS05, GS12a, KK10, Kar99, NGHK15, ST11, TSFZRP17, XS06, DDHL11]. Self-Verifying [MVZ22]. Selfish [FFMW19, MV11]. Semantics [AG01, BMSMT11, BKKR01, CZ11, Cos90, Kri97, Luc09, MT95b]. Semi [GTCV19, KN21, KK05, SF07]. Semi-Automatic [SF07]. Semi-Conditional [GTCV19]. Semi-Lossless [KK05]. Semi-Simple [KN21]. Semiautomata [BJ05, BJ06, BJ07b]. Semicomputable [TZ91]. Semi-feasible [FH05]. Semiformal [Spr09]. Semigroups [AK10, BGK°+20, BS15, Fle20, TSS13]. Semilinear [IS12]. Semilinearity [IM20, Yen09]. Semirings [ELS15]. Semisimple [AR16]. Sender [WZ15]. Sense [BF07, FS98]. Sensing [AKK19, WF17]. Sensible [MMK22, Ott13]. Sensitivities [POM22]. Sensitivity [ZWC°+22]. Sensor [AHLM°+13, BNS03, DCS13, MKB°+11, SH22, SP04, TH22, WY05]. Sentences [Szw95]. Sentiment [ZZC22]. Separability [JM03, Teh16b]. Separable [CM92, KMS21, Mat04]. Separating [AAV00, DZ00, MB17, vLW15]. Separation [AA20, Fia08, JSM20]. Separations [BJY90]. Separators [BBC00]. Sequence [CZTH13, CW11, EGPS10, GD12, HMZ05, KYZS17, Lin07, PYTH10, Rya21, WPZ16, XCX16]. Sequences [Ars15, BLP18, BBM°+12, CCF08, CKZ17, CRS12, Coo17, DN07, Dur13, GKI11, Hon12, IMP12, KX12, KK19, Ljh°+17, NP09, Sal07, SS12a, Tho06, WWT20, WD02, WD03, XS16, YW20]. Sequencing [Sal18]. Sequential [CCFS07, DI05, Fre05, JF18, Kan15, LRT92, To06]. Serializable [Og94]. Series [CD21, CR14, Ma105]. Servers
[OS01, URS07]. Service
[BS01, BCDP08, Li12b, PS22]. Services
[SA22]. Set
[Aku06, AWF03, BR5V13, CSN21, CGL12,
Elm06, FZ15, GRV10, HLW09, KK10, KLS05,
KMW16, LLL21, MM97, RAB15, TBGP20,
Tor15, Ueh99, WAF03, XCMT20, ZL22].

Sets
[AK06, AGM19, BMW91, BMP03, BLL06,
CZTH13, CJ20, CYS+12, CL07b, DLT06,
DGL93, DWS15, DS05, DR94, EK07, FH05,
HT95, HHH+95, Hon06, Hon12, KHLC12,
LO11, Mel93, MB17, NGHK15, Pru17,
RC11, Ros90, RW11, RW02, STM99, Ueh03,
Uen13, TZW10, UY16, WAF03].

Setting
[BV08, HST01, HHP17, LMG20, TYM+17].

Several
[HL+19, LD04, SH17, XCM16].

Shamir’s
[LD04].

Shape
[Gaz06].

Shapes
[MC02].

Shared-Memory
[Mor10].

Sharing
[BDG+11, LD04, Li12b, Sun00, TWZ11,
WGF16, WSH17, ZC13].

Sharpened
[FP04].

Sheng
[CISS12, SSS13].

Shift
[HI11, XLZ19].

Shifts
[Asv07, CS18, JP04, Kop21].

Shop
[JMS005, SS07b].

Shops
[LLZ07].

Short
[FLFR19, IMP12].

Shorter
[GH13].

Shortest
[AHL+13, CFMS15, DPS99, Hut02, JW08,
KM18, LW05, LW06a, MPS99, ST99, XF103].

Shortest-Path
[JVW08].

Should
[Ros03].

Shoup
[LYY+21].

Shrinking
[JO07].

Shuffle
[BO97, BMS18, CV02, CL98,
DKS11, DS05].

Shuffling
[EH12].

Siblings
[LL20].

Side
[SRN+20].

Sided
[ACDL18, ST93, XBE02].

Sidel’nikov
[YW20, KYZS17].

Signal
[BCC+11, LWJ+10].

Signature
[DZH16, HHP17, LW06b, LYWH19].

Signatures
[HYT15, Ver09].

Signcryption
[FZT14, RMZW19, ZCGZ1].

Signed
[HP99b, QGLW06].

Similar
[FA06, JKT14b].

Similarity
[ARS15, BOV08, DSS15, HN06].

Simple
[AFB96, BCFR07, CDLW05,
CHKL07, Fle96, GNP+06, HH12, HYT15,
Huy91, IST05, Jun14, KN21, KM18, MS16a,
MS16b, Oka99, WAF03].

Simple-Algorithms
[AFB96].

Simple-Yet-Efficient
[HYT15].

Simplification
[Löd15].

Simplifications
[KNR21].

Simulated
[XCM15].

Simulate
[DV05].

Simulation
[BCDP08, FGS+90, FPP03, FZFDCHB05,
FN16, GB03, KL10, LWJ+10,
MDAPHPJ+11, Mat04, Qua07, SVSN01,
YB06].

Simulations
[EM11, KR08, KMW14a, Pet11].

Simultaneous
[Sha04].

Since
[McN90].

Sinecure
[FK06].

Single
[ALR04, BNS03, GH07, KS10, SSS09].

Single-Channel
[BNS03].

Single-Pushout
[ALR04].

Sink
[EG02].

SINR
[LAHN14].

Siphon
[JC03].

Siphon-Based
[JC03].

Site
[AES18].

Six
[EAB+16].

Size
[BBP11, BHK18a, Bir11, BMRR12, CSR12,
CKW09, De06, FKM+21, GS12a, KO13,
SEE99, Sun11, Uen13, YM19, VL15].

Size-Computation
[GS12a].

Sizes
[ZB02].

Slave
[GS12a].

SLDNF
[Pla96].

SLDNF-Resolution
[Pla96].

SLMAP
[HCEP+12].

Small
[AKM+11, ARV12,
AE04, CD20, CGL12, CD09, DL12, DGK08,
FRV19, HIR+92, KM17, KS10, Len16,
Mer08, PR00, U07, YSD16, ZB00].

Smallest
[FS21, NRT00, SRN+20].

Smart
[SA22].

SMP
[SK03].

SNQ
[PB20].

Soccer
[CKL15].

Social
[SL21, WZCH19].

Sofic
[Sut03].

Soft
[Nag06].

Software
[BJ07b, FM01, KR03, LX94, Qua07, ST01].

Solid
[HS11, ST93].

Soliton
[BJ07a, JK07].

Solution
[Anc02, MGCVdP20, NSVA12, Pan91].

Solutions
[BIIN04, CK07, RN06, ZZT91, ZK19].

Solver
[ELS15].

Solving
[Com90, Fl12, GGR14, Gou01, HSS07,
Lin07, LMM+12, MNS18, MZ01].

Some
[AA19, AA13, BM16, BCR11, BE95, Bod91, CCF08, Çev20, CKZ17, ÇA18, For10, FH11, GC15, Go10, GR00, HH20, IR14, IMS03, KM22, KPS93, KNR18, Kud07, Kun16, LL16, MMY10, Oka00, Pri06, Shu14, TL99, TY15, WY94, ZQL12, ZZC15, vdHM92].

Sort [CDX21, Lar98, ZH19].

Sorted [MRT95, Ole92, WO03].

Sorting [BLLS03, BMR+14, BNS03, DR05, FS05, HH22, MRRV06, MIN11, PA98, QLWL06, RM08, WRNK03].

Soundness [Kam98].

Source [GR03].

Source-Based [GR03].

Space [AOSY10, BGRY16, CF06, CZ11, Fre02, HIR+92, IJ+21, JZ16, KM18, Kör03, KTT20, MMP10, PLMZ11, SSK96, Sta05, US02, WNF19, WNF20, YS13, ZZ18].

Space-Efficient [ZZ18]. Space-Optimal [KTT20].

Space-Time [US02].

Spaces [A^am14, CLT09, CMWZ19, HHW01].

Spanners [A^FW03, DH96, GS09, WLF03].

Spanning [BBB+18, BB04, Dar13, ERW04, ET14, Fuj17, HLH06, LLY13, LX17, LZ12, MTNN99, MAN05, Tor13, YCTW10].

Sparse [DR94, ET14, VP99].

Sparser [DH96].

Special [Ano01c, BRST07, CD02, CVM20, Hua01, Hoo00, Hsu98, LC02, Pa101b, Pre01, RS00, Sek20, Smy12, TY02, Yu02, YY19, YLX22, Zom01a].

Specific [BIIN04, LMK02, SKL03].

Specific [BI07b, SKW08, WXY+22].

Specifications [BMW91, HK02, LSWW13, SR00a].

Specified [KNR21, Teh18].

Specifying [HHW99, HWJ11].

Spectra [CH15, SH17].

Spectral [Coo17].

Spectrum [RK09].

Speed [KKP97, RS17, WH03].

Speed-Up [WH03].

Speedup [BR08].

Spi [BDSV06].

Spike [PPJR06].

Spikes [FIO08, KMG11, PB20].

Spiking [FIO08, IW07, KMG11, PPJR06, PPJR07, PPJS07, SRPC11].

Spin [ILT11].

SpliceTAPyr [TF18].

Splicing [ARV12, KN21, LMW08].

Split [DES09, GLV14, RS22].

Split-Minimization [GL14]. Splits [CB09].

Splitting [PRS98]. Spreading [XCC16].

Squad [GLP07].

Square [GS18, JK19]. Square-Free [GS18].

Squarefree [JP07].

Squares [GLP07, MMR10, ORS08, PR12, Sh04a].

ST [MNS11].

ST-Numbering [MNS11].

Stability [AA19, APMP17, EMBR12, KDD99].

Stabilization [DTY15, San13].

Stabilizing [CDPT16, DWS15, FDFZB12, FZAM08, GHJS05, GKS12a, HK17, KK10, Kar99, NGHK15, ST11, TSFZRP17, XZ06, DDLH11].

Stack [BBK17, IM21, IJ+21].

Stacked [RHN+22].

Stage [ZZZ16].

Standard [AG01, BPR09, LY+19, MN11, PR12, ZC13].

Star [BMRR19, BL12, CC98, CHYT14, CGKY12, DH18, Fen22, GCH20, HLH06, HY97, Jir14, JPS19, MR91, OY11, JY05, ZH19, WC13, YCL11].

Star-Free [BL12, YJ05].

Start [FO08].

State [AM09, ARS11, AMR11, BGN10, BLMR05, BHK19, BMMR11, BKLS20, CSR12, CZOdH17, CK08a, CLMP16, CCP05, CGKN08, CGKY11, CGKY12, Das19, DS02, Eh15, EHS15, Gy12, GPS14, HS08, HKNS16, HK02, HHS01, JJS05, Jir14, KPS18, KEH16, KLH16, KLS05, Mac96, NRS18, NRS19, OS19, PS02, PR11, SS07a, SY07, SSM02, SN13, WGD18, Yen08].

State-Based [HK02].

State-Sized [CSR12].

Stateless [KMO10, KMW14b, Mars13, YDI08].

States [BLR09, BMR5, CP03, HKS13, JM03, LB04, MVMM02, NWK06, ZQL12].

Static [BET03, C^am14, Cas95, TIZ11].

Station [DRDN08].

Stations [PT14].

Stationary [FZ03].

Statistical [GK11, Ma18, MG14].

Stay [BC12].

Steady [BLMR05].

Steady-State [BLMR05].

Stealing [Ros00].

Steganography [RN22].

Steiner [Che22a, RR18, SK20, SSK96, SB17, Tor15].

Stencil [Leo03].

Step [BBI04].
[LOZ98, Muk92, ZYLW12]. **Steps** [FT11, JWB03]. **Stepwise** [KN93, MM11]. **Stevens** [Fri10]. **Stevens-Stirling-Algorithm** [Fri10]. **Stigmergic** [DDPS19]. **Still** [ACMP20]. **Stirling** [Fri10]. **Stochastic** [Li12b, SB01, Tor13]. **Stoichiometric** [MM11]. **Storage** [OM96, WHLH17]. **Store** [CD95]. **Stored** [Rud15]. **Stored-Program** [Rud15]. **Straight** [Pat06]. **Straight-Line** [Pat06]. **Strategies** [BRSRC11, BKKR01, Fia08, GZ12, Rog09, TZ11]. **Strategy** [BC12, FL12]. **Stream** [BRSRC11]. **Streaming** [AF20, BLM15]. **Streams** [Lin07]. **Strength** [MS18, ZWC22]. **Strict** [RS13, WPX21]. **Strictly** [Dai97, MAG09, RS12, XCMT20]. **String** [BH02, CZOdlH17, CCI12, DJR18, DS96, FY08, GHZW05, KMG11, Kmis09, LRR08, LCL06, NWK06, NWK08, YBI11]. **Strings** [AAI+20, BCFL12, CF06, CCI12, DJR18, DS96, FY08, GF12, GMU15, NWK06, NKW08, YBI11]. **Strong** [BMMR19, BJY90, DP14, GM90, Iba11, NGH15, PT12, PT15, Teh16a, WLZT21]. **Stronger** [NPPS11]. **Strongly** [GLPP22, HHP17, ZH22]. **Structural** [BCB12, JK14b, XYW22]. **Structure** [AK10, BSG03, CCF08, Che22b, CSH07, HK95, IT91, JMR91, LKM02, MGGP08, MO10]. **Structures** [ACV13, Cha02, ER14, JK14b, LOD07a, LOD07b, Lin08a, RGR11, SKL03, Smo00, SFL17, WRNK03]. **Study** [CSY03, CSAT20, FK06, VJDT05]. **Sturmian** [BPR09, DD06, Mig90, PR12, Tho06]. **Style** [RKRR02]. **Sub** [Yan21]. **Subalgorithm** [Nis07]. **Subarrays** [BT07]. **Subclasses** [BHK05, Gia11, TSZ16]. **Subcubic** [SG04]. **Subdivision** [XHLF02]. **Subdivision-Based** [XHLF02]. **Subgraph** [AMT20, AB91, GMU15, WLZT21, XZL19]. **Subgraph-based** [WLZT21]. **Subgraphs** [ESS20, ET14, Far20, LT21]. **Subgroup** [FZ13, IMS03]. **Subgroups** [Ble21]. **Sublinear** [FMN06, Mod21]. **Sublinear-Time** [Mod21]. **Sublinearly** [MMP10]. **Sublogarithmic** [HIIW01]. **Submatrices** [WAG+06]. **Submodular** [SSS09]. **Subnetwork** [Fen22]. **Suboptimal** [GD98]. **Suboptimal-Optimal** [GD98]. **Subregular** [HJK12]. **Subregularly** [DST10]. **Subsequence** [AE05, DD13]. **Subsequences** [YW20]. **Subsequent** [AM03]. **Subset** [CIS03, Mar09, Vor16]. **Subshifts** [MM17]. **Subspace** [BNF19]. **Subspaces** [WFN20]. **Substitution** [KN93, Kam98, Mal07, MCM+11]. **Substitutions** [Dom12, KL03, Th06]. **Substitutive** [BDD+18]. **Substrings** [DS96, IB12]. **Subtree** [BVM00, Gre96, HLY04, KEH16]. **Subtree-Free** [KEH16]. **Subversion** [LWS20]. **Subword** [BPR09, CK08a, Cer08, Faz08, FM13, JP19, MS04, Sal07, SY10, TSZ16]. **Subword-Free** [JP19, TSZ16]. **Subwords** [AC11]. **Successful** [Rog09]. **Successors** [FS21]. **Succinct** [BMP03, HBN08, KRK16, ROK08]. **Sufficient** [KL00, Oka00, WGF15, ZWW14]. **Suffix** [DGMM15, FM120a, FS06, GPC09, HBT08, Hol11, JP19, LJA09, MM05, NRS19, PL06]. **Suffix-** [JP19]. **Suffixes** [BMR14, FS05]. **Suggestions** [FH11]. **Suites** [BMS12]. **Sum** [KMIS09]. **Summary** [GH15]. **Sums** [Sal11]. **Super** [CV14, LLY13, LX17, Yan21, ZK19]. **Supercompilation** [OL08]. **Supernode** [JS03]. **Superstring** [LW05, LW06a]. **Supertrees** [NRT00]. **Supply** [IZN05, YLX22]. **Support** [LRR08]. **Surface** [BPT06, KTT20]. **Surfaces** [AAH02, Fre02]. **Surveillance** [MKB11]. **Survey** [DGK08, Man15, MOM91, PJP07, PPR11, Riv04]. **Survives** [JYF91]. **SVMs** [ACM11]. **Swaps** [CCFG12]. **Swarm**
Symbols [GP09, KG11].
Symbol
AFO06, JSKM20, NCC⁺07. Symbolic
BB03a, Bee95, BCPR07, Com09, MC13, MB06, Set08. Symbols [DV11].
Symmetric [GJV00b, MvZ22, O’N15, SFL17, TWZ11, TH22, Van05, KR97]. Symmetries [BDSV06]. Symmetry [Cer08, MRS97]. Symplectic [WNF20].
Symport [AFO06, ARV07]. Symport/Antiport [AFO06, ARV07]. Synchronization [FMV13, GLP07, Vor16]. Synchronize [BGMV08, IT13]. Synchronized [AK14, CKK02, HIR⁺92, Slo95].
Synchronizing [AK14, CKK02, HIR⁺92, Slo95]. Synchrony [SR00a].
Syntactic [BL14, KM08, Sak01]. Synthesis [BBL⁺12, SF07, XWY⁺22]. Synthesizing [HK02].
Sympathetic [DAI09, BGMV08, CLT14, EZ01, FL97, HC06, LN10, MC13, MB06, OY11, Ott13, Ott15, PDPP11, Pän00, PPJR06, PPJR07, PPJS07, PPJV08, PPRPS11, PB20, Pen93, PBMZ06, PT90, PLMZ11, PFG⁺01, PSS12, Qua07, RCTC⁺09, SA22, Sal13, SVSN01, Sbu06, Set08, SRPC11, Sta05, Sun05, Sut03, TA17, Teh18, Toš06, Tru08, WC04, Wil91, YDI08, Yen08, ZC05].
Systolic [FGS⁺90, MP91].
Table [BESW07, IWW00, NKW08]. Table-Driven [BESW07, NKW08]. Tables [HI18, LOD07a, LOD07b]. Tags [HMZ05]. Tally [DR94]. Tamaki [RKRR02]. Tandem [Riv04]. Tape
[AMR11, CGK08, NAK18, NCC⁺07]. Tapes [KSY14]. Tardiness [KS10]. Target [DEKZ11]. Target-Controlled [DEKZ11]. Task [BNR99, DEZ01, EZ01, FL97, FBHH01, RR06, Sun11, YH11]. Tasks [HL04, LTW02, MZ01, ZC05]. Taxonomies [KSJ08, ROK08]. Taxonomy [CFRD08, Glö10]. Technique [EL13, RN22]. Techniques [FZ02, HP99, RK09, SEE99]. Technology [SH22]. Telecommunications [AC05]. Temperature [JK14a]. Template [DDM07, WH03]. Template-Guided [DDM07]. Templates [ER06]. Temporal [GN04, LRT92, MG20, PQ06, Pen93, SMS92]. Tenacity [LWYL14]. Tents [US02]. Term [Bar90, FW90, TST01a]. Terminating [Mas09]. Termination [CRG13, DMR07, DG09, GHWZ05, KM02]. Terms [RS01, DMR07, DMR07]. Terminology
[AMR11, BDSV06, CLT09, CL10, CDFK19, HL06, MSR06, Mer08, WCD⁺14, Yah12]. Tests [KY90]. Tetration [Hit20]. Text [CK08b, KK05, ZH11]. Texts
Their [CLLLO8, CK18, HJ14, KM08, KMS11, KP10b, KY96, LO11, MS16a, MS16b, POM22, QD03, YTN01].

Theorem [BC06, BSOR10, BGS11, DV14, GN11, GHS13, GRRS14, Kog21, Kre21, MRSS19, Ruo96, SMS90, VG01, KPS13].

Theorem-Proving [GHS13, GRRS14].

Theorems [Fin19, Suc90].

Theoretic [Cev20, DGMM15, FH05, FZ15, GC15, Pan91, Sub90a, Sub90b].

Theoretical [Ami05, HBN08].

Theoretically [TWZ11].

Theories [CGR13, Mar92].

Theory [AR16, AD12, BLS20, BK95, BRST07, Bur12b, Kam95, Láz13, McN90, SMS92, Sek20, Smi95, Suc90, Tor15, Tso01, TST01b, Wan04, YLZ14, Zom01c].

Thesis [AD12].

Thompson [Ble21].

Thorny [YB22].

Thoughts [Mee12].

Three [Cha02, CLT14, CK07, ET14, Fin12, KKK90, NS18, Tse16].

Three-Edge-Connected [ET14].

Three-Round [CLT14].

Three-Variable [NS18].

Three-Vertex-Connected [ET14].

Threshold [CCD07, SUZ13, WD20].

Thresholds [GP15].

Throttle [FK06].

Thue [DSS15, Ram05].

Tight [AF20, AHL+13, BE19, HJP+15, PZX07, YS13].

Tighter [FKV06].

Tightness [CD09].

Tile [JK14a, JK14b, SW17].

Tiled [Leo03].

Tiling [Gia11, Mar08a, PM13].

Tilings [Mar08b].

Time [AAV00, ANDZM09, BCFO07, Cai19, CD06, CM12, CCI12, CZ11, CFPr03, DFF07, DFL02, EH12, FZAM08, FZCFB08, FZ19, FMN06, Fr110, GKR510, GO09, GV03, Gol14, Gra90, HK19, HG11, IR14, IZ11, JWB03, Joh00, KM18, Kör03, KD99, Kri97, Lag17, LD01, Leo03, Leu04, LLQ06, LCY12, LWQ06, MM97, Mas04, MHT09, MTN19, NV11, Mod21, MGCVdP20, Nak04, NTH06, Pal03, Pet11, PY04, RLWW96, SK01, ST99, Sun11, US02, WG17, Wan04, XY1922, YS13].

Time-Bounded [Pet11].

Time-Critical [Sun11].

Time-Free [CD06].

Time-Interval [NTSH06].

Time-Shuffling [EH12].

Time-Space [KM18].

Timed [AEMY21, ACFe09, Kri92, NTSH06].

Times [Li12b, SSS09].

Tissue [AFO06, ARV07, AFIV22, CVPV08, FOP05, NSVA12].

Tissue-Like [CVPV08].

TLC [Hen02].

Token [DG98, GS12a, PT14].

Tokens [DSS08, SK01].

Tolerance [FWZ15, HY97, KR97, LHP+15, LZF16].

Tolerant [CHYT14, FZEB05, LPC11, XSL11, ZYY19, ZLZ+21].

Tool [HPV99].

Top [LM93].

Top-Down [LM93].

Topic [LKM02].

Topic-Specific [LKM02].

Topics [GPPJR13].

Topological [CC98, FS98, KM22, Kop21].

Topologically [HCG96].

Topology [FH11, Hei97, KG11, OKa98].

Torus [FHL07, LLY13, Sib97].

Toroid [BF07, Che22b, ISAZ08, LYG17, Mar97].

Toruses [GLP07].

Total [ALR04, DFL02, FIO08, IZ11, LLQ06, LWY14, PY04, SR21, Smi95].

Totally [FGV99, WN99].

Tour [BEMR11].

TPR [IML04].

Trace [BR08, Gol90, KM19, Pen93].

Traceability [HCETPL+12].

Traces [LMW+10].

Track [YB11].

Tractable [BCR11, HL06, YHK14].

Trade [Kap05, KM18, KKP97, Kut05].

Trade-Offs [KM18].

Trading [Kap05, KKP97, Kut05].

Trajectories [XWL+22].

Traffic [DEK11].

Trains [PPJR06].

Transaction [DKSS11, DSS05, KKS05b].

Transactional [SK01].

Transcription [AES18].

Transcriptome [TFF18].

Transcriptomics [AS18].

Transducers [AM03, AM09, ARS11, AMR11, AMR15, BR20, BBL+12, BBK17, CGH05, DJR18, FSM11, Gaz06, Iba15, KMR20, KMS21, LLS21, Mal05, Mal15, Moh02, Moh13, RT16].

Transduction [BCC+11].

Transductions [BvdB18, Sut14].

Transfer [HLY+04].

Transfers [NN93].

Transfinite [DN07].

Transform [KSM22].

Transformation
[ALR04, AT15, BTK13, BTO17, TSS13, TFS19]. Transformations [KLS05, MRS07, PT19, RKRR02].

Transient [BLY12, YBM11, YB06].

Transients [GB03]. Transition [Muk92, Tan08]. Transitions [KLS05, MRS97, PT19, RKRR02].

Transformations [BLY12, YBM11, YB06].

Transient [BLY12, YBM11, YB06].

Transmission [JS97]. Transparent [GD98, YSD16]. Transporter [SS07b].

Transitive [DI02]. Transitivity [JP06]. Translation [Mal18].

Translation [Mal18]. Transition [Muk92, Tam08]. Transitions [CTS18, ZYLW12].

Transitive [DI02]. Transitivity [JP06]. Translation [Mal18].

Transparent [GD98, YSD16]. Transporter [SS07b].

Transposition [LLL22]. Transpositions [CL07a, XZY19].

Transposition [LLL22]. Transpositions [CL07a, XZY19].

Traveling [BL01]. Trawling [DEKZ11].

Traveling [BL01]. Trawling [DEKZ11].

Tree [AHK07, ABH+09, AA20, AMZ20, BB04, BCHK09, BLY12, YBM11, YB06].

Tree-Based [ZM11]. Tree-Height [Rei07].

Tree-to-Tree [Mal18]. Tree-to-Word [LSS21].

Tree-Width [Fuj17]. Trees [BYP95, CS96, Dar13, DOR06, ERW04, FDFZB12, FA06, GI19, Gre96, GKS+19, HL01, IML04, IZ99, IZ05, JL01, JS03, JK07, Lag17, LW93, LF96, LLL22, MM17, MNN99, MAN05, OZ92, OM96, OW92, P89, PV98, PL06, Pr96, RS01, SA02, SM12, XHLF02, YTN01, YZY+18, YCTW10, ZB00, ZB02, ZH06].

Tree-width [AMT20, KLO96a]. Trellis [FGS+90].

Trellax [DOR06]. tri [NS13]. Triangle [FP04, SRN+20, XHLF02]. Triangles [AAV00, MB17, Sib97]. Triangulating [AFB98].

Triangulation [DPT02]. Triangulations [Fre02]. Trick [Ste11]. Trie [AC11, PPR18]. Tries [KPS93].

Trinomial [ZZC15]. Trinomials [WXF16]. Triple [DÉK22, JS97, LOZ98, LCXS19, YZP21].

Triple-Cycle [LCXS19]. Triple-Pair [DÉK22]. Trivalent [CP99]. Trivial [BL14].

Tumor [RHN+22]. Tunable [BBM+12].

Turing [AD12, Cap96, HIW01, HVJ93, II91, IK+04, Mer05, Sm05]. Turn [AK14].

Tutte [GO09]. TVDH [AKM+11].

Twisted [HYLF20, ZLL20]. Two [AF20, AGM14, ARS15, ACDL18, BR20, BHK18a, BSZB08, BT00, BKW02, CH15, CL15, CDL04, CHZ06, CGKY11, CGKY12, CTS18, DLT06, DJ12, Fin21, FS05, FL12, GP15, HKV17, HJP+13, HL06, HKKŠ13, HG11, JLT+93, IS12, JP06, JM03, Kap05, KYZ17, KKH90, KP10b, Klos96, KL11, KMO10, LY94, Leu04, LLZ07, LCXS19, MS20, MP22, MMK22, Mc93, MSNMR22, NR18, OS01, Prü17, RWZ01, RLWW96, SS07b, Ste93, SMAN13, WO03, XZS16, XZL+19, YZY+18, ZZZ16, ZQL12, ZG13].

Two-Dimensional [AGM14, BT00, CDL04, DJ12, JP06, MS20, MP22, NR18, Prü17, SMAN13]. Two-Face [RLWW96].

Two-Hop [AF20]. Two-Machine [LLZ07, SS07b].

Two-Processor [Leu04].

Two-pushdown [KMO10]. Two-sided [ACDL18]. Two-Way [BR20, BHK18a, BKW02, CL15, HKKŠ13, IJT+93, IS12, Kap05, KL11, ZQL12].

Type [Bar90, ByIT21, CZTH13, HIR91, Kam95, MM17, MN00, PB20, P195, Sm95, Tsvu01, TST01b]. Type-Free [Kam95].

Typeness [KMM06]. Types [APP91, GJKS18, TZ91].

Unambiguous [CFM13, FRS06, JJŠ18, MS18, M010, Rav08]. Unary [AK10, BCN12, Das19, DESW05, GP13].
Vertex-Neighbor-Scattering [WQY16].
Vertices [DW04, GWL+17, RR18].
Very [FPPS03, FGH+07].
Vesicles [AFIV22].
VH [ZWC+22, VH-CATT [ZWC+22], Via [BCDP08, Kar09, KL05, LN08, YLZ14, BLS20, Kog21, Zan91].
Victor [CVM20].
Video [AF20, HT09].
Video-On-Demand [HT09].
View [Ami05, DD12].
Viewed [Wil91].
Viral [DM05].
Virtual [BCC+11, GNC+03, LJA09].
Visibly [RT16].
Visitors [ECY02].
Volume [Ano97, Ano98, Ano01a, Ano02, Ano03a, Ano04a, Ano05a, Ano06, Ano07, Ano08, Ano09, Ano11, Ano12, Ano13, Ano14, Ano15, Ano16, Ano17, Ano18, Ano19, Ano20, Ano21].
Volumes [BCC+11], V [SR00a, HKKS13], vs. [DTY15].
VTLoE [MT95a].
Vulnerabilities [DW04].
Vulnerability [AT11, AT15, BY18].
Walk [BKS12, Li12a].
Walking [DPT02].
Walks [NR18, Sub05].
Walsh [CH15, KSM22, SH17].
Walsh-Transform [KSM22].
Watson [KM08, MMR20]. Way [AM09, BR20, BH20, BMP15, BHK18a, BKW02, CL15, CFY16, HIR+92, HKKS13, IJT+93, IS12, Kap05, KL11, KMW14b, KMW14a, Obt01, POM22, Slo95, ZQL12].
WDM [LC18, XLC+04].
Weak [AA20, ACMP20, Asl16, BSOR10, DTY15, GV03, HLC+19, KR08].
Weak-Bisplit [GV03].
Weak-Rupture [Asl16].
Weakly [AWF03, DWS15, GLPP22].
Weakly-Connected [AWF03].
Web [ECY02, HM04, NH02, Zho02].
Wedderburn [AR16].
Weibull [PNN+10].
Weight [CS00a, FPPS03, LW93, WF21].
Weighted-Balanced [LW93].
Weighted [AMR05, AM09, AJMO11, BLP18, CL15, CLOZ04, CGKN08, DM11, DP14, DÉK22, ÉM11, GVL07, HI18, IMP12, JC03, KS10, LLQ06, Mal05, MQ12, Mal15, Moh02, Moh03, Oli13, PYTH10, SS07a, SYF09, Tei17, ZHZ11].
Weights [HN06, KR16].
Welch [SSF20].
Well [Hut02, RT16, ZH06].
Well-Defined [Hut02].
Well-Nested [RT16].
Well-Orderly [ZH06].
Wheel [AB17b, BYIT21].
Wheel-Type [BYIT21].
Wheels [AO11]. Where [WCD+14].
Whether [CDJ09, DK11]. Which [ERW04].
While [GPC09].
Whiteman [KK19].
Whose [Rya21].
Width [BLM04, DL12, Fuj17, GR00, JYF91, LHV08, MR99, PR00, RVT06].
Wildcard [DES09].
Wildcards [GS18, Zha17].
Window [KO13].
Winning [Fia08].
Wireless [AWF03, AHL+13, BNS03, BDDN01, CYS+12, DCS13, FPPS03, Li12a, MG14, MKB+11, SP04, TH22, WLF03, WP08].
Within [AE04].
Within [CC05, FZT14, GI19, GKS17, KLP20, Lug11].
Word [BBM+12].
Worker [DPR+08].
Words [LKM02].
Working [Elm06, Fre05, PLMZ11].
Working-Set [Elm06].
Worksharing [RC11].
Workstations [Ros00].
Wormhole [PV98].
Worst [Fle96, Lag17, PSA17, YH11, ZSW14].
Worst-Case [Fle96, Lag17, YH11, ZSW14].
Wreath [BK16].
WWW [LKM02].
Yao [GKS17]. Yen [AH11]. Yield [ER14].
YOLO [YW22]. Yu [CISS12, SSS13].

Zero [KMŚ21, LL16, WCD+14]. Zero-Avoiding [KMŚ21].
Zone [WPZ16]. Zoom [ER14].

References

Aytac:2013:SRR

Aytac:2019:EDC

Alirezazadeh:2020:WSP

Ahn:2009:COH

Adamczyk:2018:PDG

Aichholzer:2002:FPS

Alamro:2020:EIC

Accornero:2000:AST

Arvind:1991:EDG

Aytac:2017:RRC

Aytac:2017:BNW

Ausiello:2005:CD

Abdulla:2009:CBT

Étienne André, Thomas Chatain, Laurent Fribourg,

References

[AE05] Arslan:2005:ACL
Ammar:2021:TBV

Ando:2020:TBU

Abdollahyan:2018:IPR

Agarwala:1996:SAP

Alba:2005:GEN

Alhazov:2006:CSC

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
| Afonin:2006:MFP | Sergey Afonin and Elena Khazova. Membership and
REFERENCES

[AMOZ07] Yuichi Asahiro, Eiji Miyano, Hirotaka Ono, and Kouhei

Allauzen:2005:DPA

Almeida:2008:EGM

Almeida:2009:AMR

Allauzen:2011:GA

Amorim:2015:NLF

Akutsu:2020:IHM

Tatsuya Akutsu, Avraham A. Melkman, and Takeyuki Tamura. Improved hardness of maximum common subgraph problems on labeled graphs of bounded treewidth and bounded degree. *International Journal
REFERENCES

Anonymous:2001:AIV

Anonymous:2001:P

Anonymous:2001:SIF

Anonymous:2002:AIV

Anonymous:2003:AIV

Anonymous:2003:Pa

Anonymous:2003:Pb

Anonymous:2003:Pc

REFERENCES

REFERENCES

Anonymous: 2009: AIV

Anonymous: 2011: AIV

Anonymous: 2012: AIV

Anonymous: 2013: AIV

Anonymous: 2014: AIV

Anonymous: 2015: AIV

Anonymous: 2016: AIV

Anonymous: 2017: AIV

Anonymous: 2018: AIV

Anonymous: 2019: AIV

REFERENCES

Anonymous:2020:AIV

Anonymous:2021:AIV

Aytac:2010:CRD

Aytac:2011:RCW

Ando:2010:SCL

Ausiello:1990:LPA

Agostino:1992:PCO

Cyril Allauzen, Michael Riley, and Johan Schalkwyk. A filter-based algorithm for efficient composition of

Arslan:2015:FAL

Arvind:1997:CMP

Alhazov:2007:MCS

Alhazov:2012:SUS

Alnasir:2018:TQN

Aslan:2016:WRD

Alba:2012:P

REFERENCES

Asveld:2007:GAC

Aytac:2011:VVP

Auger:2012:FDP

Aytac:2015:VMT

Atanasiu:2016:NOP

Atanasiu:2007:BAW

Atanasiu:2011:EPM

Abderrahim:2012:HGQ

Agrawal:1996:ICD

Alzoubi:2003:MIS

Andresen:1999:P

Badr:2009:HM

Ben-Amram:2012:EDC

Barbanera:1990:CTR

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Basten:1997:PPO

Beigel:1999:NPR

Bouda:2003:EQR

Blin:2004:FAD

Bianchi:2018:OMS

Berry:2000:GAM

Anne Berry, Jean-Paul Bordat, and Olivier Cogis. Gen-
REFERENCES

Babvey:2006:SEI

Bensc:2017:DST

Benattar:2012:CSF

Bertoni:1990:I

Boukerche:2012:EP

Beal:2011:QUB
Marie-Pierre Béal, Mikhail V. Berlinkov, and Dominique Perrin. A quadratic upper bound on the size of a synchronizing word in one-

[BCMS20] Somnath Bera, Rodica

Bovet:1990:DPC

Berthe:2018:RSD

Bui:2001:RMA

Bougeret:2011:ADR

Bujtas:2011:GPP

Biegler:2008:CAM

M. Beeson. Using non-standard analysis to ensure the correctness of symbolic computations. *International
REFERENCES

[BF07] Hanane Becha and Paola Flocchini. Optimal con-

Bartholdi:2020:NHA

Belazzougui:2018:BV

Bernardini:2008:HSA

Bassino:2010:ASC

Bednarova:2016:NRM

Brzozowski:2011:CFL

Bergeron:2002:VAA
Budaghyan:2011:ICP

Beier:2020:DRO

Bordihn:2007:HEF

Bianchi:2018:STW

Burjons:2018:OGC

Beier:2019:OSC

Simon Beier, Markus Holzer, and Martin Kutrib. Operational state complexity
REFERENCES

REFERENCES

Bui:2012:ARW

Bibak:2018:AUH

Bruggemann-Klein:2002:RTW

Bleak:2021:NAS

Broda:2011:ASC

Broda:2012:ASG

Broda:2019:ABR

Bertoni:2003:GRD

Bianchi:2015:POW

Bonomo:2014:SCS
REFERENCES

REFERENCES

REFERENCES

[BPT06] Károly J. Böröczky, János Pach, and Géza Tóth. Pla-

Bertier:2016:CCM

BPT16

Balaban:2007:MRA

Bertoni:2008:AMS

Bucci:2018:GPL

Baudru:2020:TWT

Balla:2007:EAD

Anne Benoit, Veronika Rehn-Sonigo, Yves Robert, and Henri Casanova. Resource allocation strategies

Bordihn:2007:PAL

Blin:2013:MMI

Brzozowski:2013:SMC

Blanchet-Sadri:1992:DDG

BarbosaDaSilva:2001:EPJ

Blanchet-Sadri:2012:ACP

Brzozowski:2015:LAS

REFERENCES

Bonnet:2016:NEI

Blanchet-Sadri:2008:RTN

Blanchet-Sadri:2022:DWL

Bansal:2003:MHM

Blanchet-Sadri:2010:FWT

Bresolin:2012:BMB

Bourgeois:2000:RTD
A. G. Bourgeois and J. L. Trahan. Relating two-dimensional reconfigurable

Bae:2007:ADM

Brzozowski:2013:CAR

Bramas:2017:RBC

Bacak-Turan:2013:NIT

Bacak-Turan:2017:NRD

Burderi:2012:FMM

Burgin:2012:DUA

REFERENCES

REFERENCES

Bienkowski:2013:HCM

Ciftci:2018:EIN

Cai:1994:CNF

Bruda:2010:CHP

Berberler:2018:LVN

Berberler:2021:ABN

Bruda:2010:CHP

Bienkowski:2013:HCM

Ciftci:2018:EIN

Cai:1994:CNF
REFERENCES

0129-0541 (print), 1793-6373 (electronic).

Calude:2005:P

Calmoneri:2015:OJK

Campeanu:2014:DCE

Campeanu:2020:IAA

Caporoso:1996:STM

Carlet:2011:MVB

Castellani:1995:ODP

Casanova:2005:NMI

Henri Casanova. Network modeling issues for Grid application scheduling. *Inter-
REFERENCES

Chondoulakis:2009:EDC

Chiang:1998:TPS

Champarnaud:2005:ENA

Chai:2007:EIB

Cantone:2008:SCP

Cantone:2009:NEB

Domenico Cantone, Salvatore Cristofaro, and Simone Faro. New efficient bit-parallel algorithms for the (δ, α)-matching problem with applications in music information retrieval. International Journal of Founda-

Cristian S. Calude, Matteo Cavaliere, and Radu Mardare. An observer-based de-quantisation of Deutsch’s Algorithm. *International Journal of Foundations of Computer Sci-
Champarnaud:2005:BFD

Chauve:2018:CGA

Cai:2004:HAM

Cherubini:1990:BDG

Clementi:1995:OSP

Cheng:2002:SI

Cavaliere:2006:FRT

REFERENCES

Cvetkovic:2009:MIN

Calude:2015:AAN

Chen:2020:SAS

Carpi:2021:CEA

Chimani:2019:ATC

Champarnaud:2009:EAT

Carpi:2004:RFU

Cinque:2005:SLC

Chatterjee:2013:CC

Carrier:2011:AOD

Caron:2016:SSP

Cao:2021:KMB

Cappello:1998:PLB

December 1998. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Cern\texttt{y}:2008:SSW

Cevik:2020:PCC

Can\texttt{tone}:2012:ABM

Clarke:2003:ACG

Crochemore:2010:NOP

REFERENCES

(Cadilhac:2012:BPA)

(Cadilhac:2013:UCA)

(Cappello:2005:AMH)

(Casteigts:2015:SFF)

(Czyzowicz:2003:LTP)

(Cellier:2008:PAE)

(Chigahara:2016:OWJ)
Hiroyuki Chigahara, Szilárd Zsolt Fazekas, and Akihiro Yamamura. One-way jumping finite automata. *Inter-

References

Cui:2012:SCT

Crochemore:2012:LCS

Carioni:2013:ATM

Cao:2015:TBF

Cheng:1992:RAD

Changizi:1997:LNI

Champarnaud:2002:ETI

[CHZ06] Loek Cleophas, Kees Hemerik, and Gerard Zwaan. Two re-

[CIY01] Christian S. Calude, Hajime Ishihara, and Takeshi Yam

[CIY16] Christian S. Calude, Hajime Ishihara, and Takeshi Yam-

[Catalano:2020:SPF]

[Case:1992:LLP]

[Czeizler:2007:NPS]

[Campeanu:2008:SCS]

[Conley:2008:UAM]

[Cassaigne:2016:ACF]

REFERENCES

Chung:2018:ERN

Culik:2002:NSA

Christensen:2015:SHT

Coetser:2009:REH

Chang:2017:SER

Chen:1998:SRN

Chen:2003:ZAC

Cheng:2007:FRC

Couceiro:2007:EVI

Chang:2010:ETF

Carnino:2014:FUA

Carnino:2015:DUW

Cheng:2008:MPA

Caron:2016:SCC

REFERENCES

Champarnaud:2004:RWE

Charlier:2019:P

Chang:2009:TEB

Chen:2014:TRA

Cantin:2009:CCH

Campadelli:1992:LCL

Chatterjee:2012:DA

Krishnendu Chatterjee and Rupak Majumdar. Discounting and averaging in

Casasnovas:2004:AMC

Cortes:2007:DEP

Cortes:2008:CRE

Couceiro:2019:CVS

Costa:2022:OGB

Comon:1990:SSO

REFERENCES

Coons:2017:RSJ

Costantini:1990:SMP

Chaturvedi:2012:LVO

Calamoneri:1999:OLT

Campeanu:2003:CNM

Cardelli:2006:URM

Caissy:2016:EFH

REFERENCES

Campeanu:2019:P

Chung:1999:PMM

Ceterchi:2006:SCP

Campeanu:2002:EAC

Cordasco:2014:SSP

Corson:2015:ACR

Charlier:2012:EDP

REFERENCES

[Cassaigne:2011:AAP]

[CS93]

[Chen:1996:OOR]

[Cho:1999:MDE]

[Cho:2000:NWB]

[Cho:2000:PRP]

[Charlier:2018:PNB]
Emilie Charlier and Wolfgang Steiner. Permutations

Chern:2020:NSP

Camargo:2021:RK

Calude:2012:SSH

Chen:2017:SIE

Campean:2002:SDR

Campean:2003:FSP

Czyba:2018:FAI

Chantrapornchai:2001:REA

Csuhaj-Varju:2013:PDA

Cao:2014:SEC

Csuhaj-Varju:2010:VCB

Csuhaj-Varju:2022:P

Csuhaj-Varju:2010:P

Cortina:1998:CRI

Chen:2012:MLD

Chen:2014:OSM

Collins:2011:CSC

Calvo-Zaragoza:2017:CEE

Cai:2013:NOF

Dai:1997:CDS

REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

REFERENCES

CODEN IFCSEN. ISSN 0129-0541.

[DDM07] Mark Daley, Michael Domaratzki, and Alexis Mor-

Dieudonné:2019:ECA

DeAgostino:2006:BSD

Ducrou:2008:IUI

Domosi:2012:P

Droste:2022:TPC

Duncan:2006:DFE

Dolev:2011:TTU

Dutot:2005:SLS

Deng:2002:P

Dixon:2009:ABS

Domaratzki:2005:NUR

Devillers:2002:DH

Diesel:2001:DTS

[DEZ01] Oliver Diesel, Hossam Elgindy, and Albert Zomaya. On dynamic task scheduling for FPGA-based systems. *International Jour-
REFERENCES

Doyen:2008:ELM

Dang:2002:ECT

Dang:2005:OMS

Dickerson:1993:GPD

Dolzenko:2012:TDL

Dessmark:2007:AMM

Dartois:2018:AST

REFERENCES

Droste:1998:RLD

DK98

Diekert:2011:INC

DK11

Dudzinski:2012:FDC

DK12

Daley:2011:OST

DKSS11

DAgostino:2012:MCF

DL12

Ding:2014:OMM

Ning Ding, Yan Lan, Xin Chen, Gy"orgy D"osa, He Guo, and Xin Han. Online minimum makespan scheduling with a buffer. *International Journal of Foundations of Computer Sci-
REFERENCES

Durand-Lose:2012:P

[DLMS12]

DiGiacomo:2006:EGT

[DLT06]

Deng:2002:CCA

[DLW02]

Daley:2005:FMV

[DM05]

Dragoi:2008:DCA

[DM08]

Droste:2011:WAR

[DM11]

Diekert:2012:GEI
Volker Diekert and Alexei Myasnikov. Group exten-

Lopez:2020:SIM

Dasso:2014:IPC

Du:2016:DAF

Demri:2007:RAT

Dieckert:2011:P

DeFelice:2016:ACA

Domaratzki:2004:IBN

Michael Domaratzki. Improved bounds on the num-

Dassow:1993:GBP

Dumitrescu:1997:PLV

DeQueirosVieiraMartins:1999:DAR

Devillers:2002:WT

Dong:2012:NCV

Duris:1994:CDR

Stefan Dobrev, Nicola Santoro, and Wei Shi. Using

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>CODEN</th>
<th>ISSN</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dassow:2011:NAS</td>
<td>2011</td>
<td>Jürgen Dassow and György Vasíl. On the number of active symbols in Lindenmayer...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Droste:2014:CST

Dold:2003:CVR

Dantsin:2003:RDC

Desmedt:2004:AVC

Ding:2011:P

Ding:2015:NSS

Ding:2020:NID

Tongtong Ding, Min Xu, and Qiang Zhu. The non-inclusive diagnosability of hypercubes under...

Dimitrijews:2019:URP

Dong:2000:SAA

Deng:2016:ECP

Etherington:2016:PAC

Estivill-Castro:2002:CWV

Edelsbrunner:2002:SIM

Elkind:2010:QDO

Edith Elkind, Blaise Genest, Doron Peled, and Paola

Ediger:2012:EAT

Eom:2015:SCB

Emerson:2006:MMC

Eom:2015:SCK

Ésik:2014:OCS

Eremondi:2018:DCF

Ésik:2007:BFS

Endrullis:2018:DIW

Ehmsen:2013:TEC

Elbl:2001:PRP

Elmasry:2006:PQW

Esparza:2015:FGS

Esik:2011:CSW

Ehrenfeucht:2010:CLD

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Ehrenfeucht:2011:FDR

Ehrenfeucht:2012:SCR

Ehrenfeucht:2014:ZSR

Emerson:2003:RAR

Ehrenfeucht:2006:CT

Ehrenfeucht:2013:CFL

Elouasbi:2017:DRD
REFERENCES

DEN IFCSEN. ISSN 0129-0541.

REFERENCES

April 2014. CODEN IFCSEN. ISSN 0129-0541.

Eshaghian:2001:MAH

Fukagawa:2006:FAC

Faal:2019:MVE

Farhadian:2020:AEV

Fazekas:2008:IBS

Fazekas:2011:PRL

Fujimoto:2001:MPT
REFERENCES

Cristina G. Fernandes, Carlos E. Ferreira, Flávio K. Miyazawa, and Yoshiko Wakabayashi. Prices of an-

[Fin19] Olivier Finkel. Incompleteness theorems, large cardi-

Finkel:2021:TEP

Freund:2008:ESN

Franek:2012:CRA

Forsyth:2016:RPW

Fujiwara:2005:PMI

Fehnkner:2006:HSV

1997. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Faro:2009:EVB

Friedmann:2012:TLS

Fleischer:2020:IPF

Fu:2019:CBO

Fleischmann:2021:RWR

REFERENCES

FLoderus:2013:TME

Fazekas:2013:NDS

Fazekas:2012:NPP

Fuerer:1996:AAE

Fimmel:2001:OSP

Frenkel:2013:NDS

Fredriksson:2006:FMR

Fazekas:2020:PSD

Filiot:2020:PLA

Fominykh:2013:PAS

Fujita:2016:FSC

Freund:2007:PHS

Freund:2008:CGS

Freund:2005:ORC

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Forsell:2010:PCS

Ferrante:2004:VCP

Fantozzi:2003:GPS

Ferro:2003:FCM

Faloutsos:2002:EAL

Frey:2002:BTA
REFERENCES

REFERENCES

REFERENCES

[FZ03] Fan:2003:OCN

REFERENCES

Fernandez-Zepeda:2008:SML

Fernandez-Zepeda:2005:DFT

Fernandez-Zepeda:2005:ESA

Fan:2014:NCI

Gazdag:2006:DSP

Gheorghiu:2003:SFF

REFERENCES

2003. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

[Gecseg:2007:CTL] Ferenc Gécseg. Classes of tree languages determined by classes of monoids. Inter-
REFERENCES

Hermann Gruber and Markus Holzer. From finite automata to regular expres-

REFERENCES

Gudmundsson:2007:P

Gehrke:2018:PSU

Gravier:2006:QOG

Ganzinger:2000:PA

Ganzinger:2000:RRN

Goresky:2011:SPA

Gasieniec:1999:MCL

References

Gawrychowski:2010:FGR

Grigoriev:2017:YMP

Grosse:2019:FAD

Gao:2019:GAC

Glockler:2007:FAU

Glockler:2010:TDF

Gruska:2007:FSS
Guillon:2022:WSI

Garcia:2014:EDF

Gorrieri:1990:THD

Gorain:2019:AAB

Giambruno:2015:GGB

Grigoriev:2015:NMS

Gergatsoulis:2004:PPT

Manolis Gergatsoulis and Christos Nomikos. A proof procedure for temporal logic

Gazdag:2011:KTB

Gningue:2003:VOV

Grabowski:2006:SAI

Gebauer:2009:FET

Goldwurm:1990:SLD

Golovnev:2014:AAT

REFERENCES

??, January 2014. CODEN IFCSEN. ISSN 0129-0541.

Gonzalez:2001:SMM

Geert:2008:P

Groote:2009:SG

Galle:2009:PUS

Gusev:2015:RT

Gurski:2017:IRS

Gallé:2009:PUS

Guillon:2020:NSE

Gheorghe:2013:RFM

Goc:2014:NSC

Gruska:2015:PQF

Golumbic:2000:CWS

Grimmel:2003:SBR

Gradel:1990:NLT

REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Grassl:2003:EQC

Greenlaw:1996:SID

Grover:2003:IQS

Geric:2014:NAB

Geric:2021:INP

Geeraerts:2010:ECM

Gudmundsson:2009:SGG
REFERENCES

149, February 2009. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

|------------|---|
REFERENCES

(Hprint), 1793-6373 (electronic).

[HBIT08] Yasuto Higa, Hideo Ban
nai, Shunsuke Inenaga, and Masayuki Takeda. Reacha-

bility on suffix tree graphs. International Journal of
Foundations of Computer Science (IJFCS), 19(1):147–
162, February 2008. CODEN IFCSEN. ISSN 0129-0541
(print), 1793-6373 (electronic).

[Hamrouni:2008:SMG]

Tarek Hamrouni, Sadok Ben Yahia, and Engelbert Me-
hifu Nguifo. Succinct min-
imal generators: Theoreti-
cal foundations and applica-
tions. International Journal
of Foundations of Computer
Science (IJFCS), 19(2):271–
296, April 2008. CODEN
IFCSEN. ISSN 0129-0541
(print), 1793-6373 (elec-
tronic).

[Hernandez-Castro:2012:MTA]

Julio Cesar Hernandez-
Castro, Juan Mannel Esteve-
Tapiador, Pedro Peris-
Lopez, John A. Clark, and
El-Ghazali Talbi. Meta-
heuristic traceability at-
tack against SLMAP, an
RFID lightweight authen-
tication protocol. Interna-
tional Journal of Foun-
dations of Computer Sci-
ence (IJFCS), 23(2):543–
553, February 2012. CO-
DEN IFCSEN. ISSN 0129-
0541 (print), 1793-6373
(electronic).

[HCG96] L. Hanks, R. K. Cytron,
and W. Gillett. On finding topologically valid match-
ings in restriction-fragment maps. International Jour-
nal of Foundations of Computer Science (IJFCS), 7
(1):59–??, 1996. CODEN
IFCSEN. ISSN 0129-0541
(print), 1793-6373 (elec-
tronic).

[Head:2011:CLT]

Tom Head. Computing with light: Toward paral-
lel Boolean algebra. Interna-
tional Journal of Founda-
tions of Computer Science
(IJFCS), 22(7):1625–1637,
November 2011. CODEN
IFCSEN. ISSN 0129-0541
(print), 1793-6373 (elec-
tronic).

[Hei97] A. Heirich. A scalable dif-
fusion algorithm for dy-
namic mapping and load bal-
ancing on networks of arbi-
trary topology. International Journal of Foun-
dations of Computer Science (IJFCS), 8(3):329–??,
September 1997. CODEN
IFCSEN. ISSN 0129-0541
(print), 1793-6373 (elec-
tronic).
Henriksen:2002:EET

Hinze:2009:RMC

Hu:2011:PTK

Halava:2011:RTB

Hadravova:2012:LSB

Hospodar:2020:RAS

Han:2022:MEP

[HH22] Yijie Han and Xin He. More efficient parallel integer sorting. *International Journal
Halava:2007:UBI

Hemaspaandra:1995:NSS

Huang:2017:BBC

Hemaspaandra:1999:SSM

Hyyro:2018:DR

Harvath:2001:CPP

REFERENCES

REFERENCES

Holzer:2014:NBT

Holzer:2016:MHM

Holzer:2017:MMF

Harren:2013:TOT

Hemaspaandra:1993:BR

[HK09b] Markus Holzer and Martin Kutrib. Nondeterministic fi-
REFERENCES

Holzer:2021:P

Hromkovic:2013:DVN

Holzer:2022:IDD

Han:2016:SCI
Yo-Sub Han, Sang-Ki Ko,

Han:2019:SAR

Han:2013:EDB

Halldorsson:2000:MID

Hadid:2017:SAF

Hon:2001:ANN

Ho:2004:DCP

Healy:2006:TFP

Hsu:2006:SCS

Hu:2019:AAA

Huo:2009:PSA

Hwang:2019:ELS

Hon:2004:STD

REFERENCES

Hong:2004:AWS

Han:2005:AAM

Harju:2004:MDE

Hyyro:2006:BPC

Holub:2010:RBP

Holzrichter:1999:GBD

Hsiang:2000:SIA

REFERENCES

Holub:2005:F

Holub:2006:F

Holub:2008:F

Holub:2009:F

Holub:2011:BMS

Holub:2012:P

Honkala:2002:R

Honkala:2006:B
REFERENCES

Honkala:2007:DEP

Honkala:2012:ESM

Halava:2008:P

Halava:2009:P

Heuberger:2009:ACM

Herley:1999:DBB

Habib:1999:PRT

REFERENCES

DEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

REFERENCES

Huynh:1991:EDC

Han:2005:GGA

Hartog:2002:VPP

Huang:2010:CSB

Hong:2017:IAA

Han:2006:IFR
Yo-Sub Han, Yajun Wang, and Derick Wood. Infix-free regular expressions and languages. *International
REFERENCES

Hu:1997:FTS

Hong:2006:P

Han:2020:CPE

Ho:2015:SYE

Hu:2012:LGG

Inenaga:2012:FCS

Ibarra:2002:VQC
O. H. Ibarra. Verification in queue-connected multi-counter machines. *International Journal of Found-

Ibarra:2011:SRS

Ibarra:2015:AFV

Ibrahim:2022:MMC

Ibarra:2001:RSI

Ibarra:1997:CCA

Ibarra:2008:CMR

Inoue:2004:NRT
Katsushi Inoue, Akira Ito, Takashi Kamiura, Holger Inoue. 2004: NRT

Inoue:1991:ATM

Ibarra:2021:SCS

Ibrahimov:2021:EFA

Ipate:2011:FVS

Ibarra:2020:SFL

REFERENCES

Ibarra:2021:GCS

Idwan:2004:FPM

Iliopoulos:2005:FAF

Iliopoulos:2012:PAM

Ivanyos:2003:EQA

Ito:2005:FSL

Ishdorj:2008:GAM

Ishdorj:2007:CPI

Ibarra:2009:P

Oscar H. Ibarra and Bala Ravikumar. Preface. *In-
REFERENCES

Ibarra:2014:SDQ

Ibarra:2012:CBS

Ibarra:2021:A

Imani:2008:ICM

Inenaga:2005:FCP

Ibarra:2013:HSH

REFERENCES

Ito:2005:PTS

Jain:1995:ICF

Jain:1998:MCI

Jansen:1993:SIJ

Jiao:2003:CLM

Jez:2008:CGG

Jecker:2018:MSW
Ismaël Jecker and Emmanuel Filiot. Multisequential word relations.
REFERENCES

Helmut Jürgensen and Pauline Kraak. Soliton au-

Jonoska:2014:ATSa

Jonoska:2014:ATSb

Jiraskova:2019:SDA

Jacobsen:2001:VTR

Jorrand:2003:SPQ

Jiraskov:2011:CUF

Jez:2013:HMD

Artur Jež and Andreas Maletti. Hyper-minimization.

Jansson:2007:ODR

Jalsenius:2008:SSC

Jirsek:2019:KA

Jurgensen:2014:P

Jack:2008:DNM

Jia:1997:TLN

Jia:2002:CCH

REFERENCES

[Jung:2003:SBS]

[JS03]

[Jonoska:2021:P]

[JS21]

[JSPD03]

[Jain:2003:PPH]

[JSPD03]

[Jun14]

[JSKM20]

[Jürg08]

[Jürg08]

[JSO10]
Klaus Jansen and Roberto Solis-Oba. Approximation schemes for scheduling jobs with chain precedence constraints. *International Jour-

[JW08]

[Jung:2010:ASS]

[JW08]

Janzing:2003:CPP

Jin-Yi:1991:PSC

Januszewski:2016:IOA

Kurkcu:2018:CBE

Kameyama:1995:TFT

Kamareddine:1998:SES

REFERENCES

REFERENCES

Korah:1990:DOB

Kaufman:2005:SLT

Klein:2007:CFG

Kamei:2010:SSD

Kumari:2019:ALC

Keqin:1990:GFF

Kranakis:1997:HCT

Kari:2005:BFL

Kari:2005:OTA

Kobler:2000:OSE

Kupferman:2010:LSR

REFERENCES

Kufleitner:2011:POT

Kufleitner:2012:ADD

Kalampakas:2013:MPD

Ko:2016:SCR

Kloks:1996:TCG

Klostermeyer:1996:STS

Kim:2020:TRO

REFERENCES

[Kuppusamy:2011:AIS] Lakshmanan Kuppusamy,

Kupferman:2006:TRA

Kutrib:2010:STP

Konstantinidis:2020:RET

Klarlund:2002:RP

Krivka:2006:GLR

Kari:2011:PPP

Konstantinidis:2021:ZA

Kappes:2012:MCK

Kutrib:2014:SO

Kutrib:2014:SUO

Kang:2019:NBK

Kamareddine:1993:SES

REFERENCES

September 1993. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Kari:2021:DCS

Kutrib:2013:DCW

Kari:2018:P

Kravchenko:2018:GSF

Kwee:2018:NOR

Koga:2018:CFP

REFERENCES

Koga:2021:PPT

Kopra:2021:IDT

Korner:2003:TSE

Klima:2010:LIL

Kouri:2015:RMA

Kirschenhofer:1993:MDS
REFERENCES

0129-0541 (print), 1793-6373 (electronic).

Karhumaki:2013:FWT

Klimann:2018:CSR

Kurganskyy:2008:RPL

Keum:1997:DAS

Klappenecker:2003:QSR

Kutrib:2008:OSW

Kostolanyi:2016:AAW

Peter Kostolányi and Branislav Rovan. Automata with

Krebs:2021:MRP

Krishnan:1992:CTC

Krishnan:1997:PAA

Kuppusamy:2016:SDC

Klein:2006:CPM

Kellerer:2010:MTW

Kari:2011:SPI

Lila Kari and Shinno...

Keeler:2019:BMN

Kaiser:2008:AAT

Kumar:2022:NAT

Kedad-Sidhoum:2018:FSA

Klein:2008:MDE

Kosub:2000:UCC

Krithivasan:2003:D

Kucuk:2014:FAA

Kosmatopoulos:2020:SOH

Kudlek:2007:SRQ

Kunimochi:2016:SPE

Kuroda:2020:MGA

Kutrib:2005:PNR

Kari:2012:BSR

REFERENCES

of Foundations of Computer Science (IJFCS), 23(6): 1307–??, September 2012. [KZ10]
CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Kenyon:1990:EBF

Kobayashi:1996:FN

Ke:2017:AMB

Kaminski:2010:FMA

Lagogiannis:2014:PQD

Lagogiannis:2017:QOP

Lam:2014:BSP

(3):331–??, April 2014. CODEN IFCSEN. ISSN 0129-0541.

Liu:2018:REC

Li:2022:FCB

Lu:2006:PFS

Lazar:2009:DFC

Liu:2019:TCP

Li:2012:MAR

Lederer:2001:ARV
Edgar F. A. Lederer and Romeo A. Dumitrescu. Automatic result verification
REFERENCES

REFERENCES

Lin:2011:NIB

Li:2011:LBS

Lee:2009:NCA

Li:2000:MEE

Li:2000:PR

Li:2001:EJS

Li:2007:IDA
REFERENCES

[LJ17] Rongjia Li and Chenhui Jin. Meet-in-the-middle attack on 11-round 3D block cipher. *International Jour-
REFERENCES

[LL20] Patrick Landwehr and Christof Löding. Projection for Büchi tree automata with constraints between siblings. *International Jour-
REFERENCES

REFERENCES

Li:2020:UMM

Lisitsa:2008:RAV

LaTorre:2016:SBP

Lehtinen:2010:BGG

Lehtinen:2011:ESN

Lehtinen:2013:HPD

Lauer:2007:UEDa

DEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Lauer:2007:UEDb

Loping:2015:SPD

Lohrey:2005:DCA

Lohrey:2010:CMP

Lopez-Ortiz:2018:A

Liestman:1998:NPD

Laine:2011:WEO

REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

[LPS07]

Lavado:2019:CRR

[LP19]

Li:2011:DPF

[LPC11]

Luccio:2007:NDP

[LRR08]

Luo:2004:PDE

[LPS07]

Luccio:1992:AIP

[LRT92]

Lodaya:1992:TLG

K. Lodaya, R. Ramamujam, and P. S. Thiagarajan. Temporal logics for communicating sequential agents:
REFERENCES

LeVerge:1998:NRC

Lomuscio:2013:AGR

Levit:2021:RGS

[LTZ12]

Lepere:2002:AAS

Lee:2012:PMF

Lucanu:2009:RLB

REFERENCES

0541 (print), 1793-6373 (electronic).

REFERENCES

Lai:2019:NIB

Liu:2021:CCS

Liao:2012:AST

Liao:2015:NOC

Lu:2016:MRL

Leporati:2006:SIB

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Macarie:1996:NMF

Madhu:2003:PRS

Morris:2009:USP

Maletti:2005:RTS

Maletti:2007:PS

Maletti:2015:PWR

Maletti:2018:CTT

Miura:2005:CDR

Miura:2006:CDP

Maneth:2015:SDE

Marche:1992:WPA

Martin:1997:ETA

Margenstern:2008:FTP

Margenstern:2008:CCA

Martyugin:2009:LSR

Mastrolilli:2004:SMM

Masopust:2009:TDM

Masopust:2013:NLP

Maslennikova:2019:RCI

Matsumae:2004:SMS

Martini:2003:DHM

REFERENCES

Melnikov:1993:ECI

Mereghetti:2008:TDP

Mandal:2014:SA

Mandal:2020:CTT

Montoro:2020:LTS

Melodelima:2008:MAA

Meng:2019:SDD

[Wenjuan Meng, Jianhua Ge, and Tao Jiang. Secure data deduplication with reliable

[Mig90]

[MH06]

[MIN11]

[MKB11]

[MHT09]

Giancarlo Maur and Alberto Leporati. Preface. *Inter-
REFERENCES

Ma:2017:LBI

Manac:1997:FMC

Mancheron:2005:LGS

Mairesse:2017:USS

Mandal:2007:MAB

Manca:2011:LGS

[MMY10] Florin Manea, Victor Mitrana, and Takashi Yokoo-

Müller:2000:TIF

Miura:2006:CGD

Montanari:2012:P

Mizuki:2011:ASN

Manea:2018:CSR

Maelbrancke:1994:DTR

Messerschmidt:2007:CDS

Hartmut Messerschmidt and

Marti-Oliet:1991:PNL

Morin:2010:USM

Mignot:2018:EAC

Monti:1991:STB

Moffat:1993:HS

Magalini:2007:PCU

Mcquillan:2012:P

Mahalingam:2022:HPT

Mraz:2007:ARA

Martins:1999:DAR

Margolis:2004:WGM

Maletti:2011:OHM

Maletti:2012:UWH

Metivier:1991:SOF

REFERENCES

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Mongelli:1999:PRM

Mongelli:1999:PI

Mateescu:2004:MIS

Malcher:2007:MPC

Mahalingam:2012:PPM

Meduna:2016:C

Meduna:2016:SMG

REFERENCES

CODEN IFCSEN. ISSN 0129-0541.

Michalewski:2018:SUT

Mohanty:2019:IOE

Madejski:2020:MPT

Mukhtar:2022:MPN

Malik:2006:CFT

Mason:1995:RAO

Musikaev:1995:FBP

I. K. Musikaev and M. A. Taitslin. Flat backtracking

Maletti:2010:PQR

Miura:1999:LT

Meier:2009:CSF

Meier:2015:ECS

Mukund:1992:PNS

Miyazawa:2011:BCT

REFERENCES

REFERENCES

NAK+15 Koji Nuida, Takuro Abe, Shizuo Kaji, Toshiaki Maeno, and Yasuhide Numata. A

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

[Neggazi:2015:ESS]

[NGHK15]

[Ng:2002:IAW]

[NH02]

[Nishimura:2003:QCR]

[Nis03]

[Nishida:2007:MAB]

[NKPKA+22]

[NKPKA+22]

[Ngassam:2008:IPT]

[NKW08]
REFERENCES

REFERENCES

Niu:2012:TPS

Nakata:2006:TFE

Nakano:2003:P

Nakano:2004:P

Ni:2022:HEB

Ngassam:2005:FDI

Ngassam:2006:DAF

Ernest Ketcha Ngassam, Bruce W. Watson, and Derrick G. Kourie. Dy-

Okadome:1999:SFL

Okadome:2000:SSC

Okadome:2003:EAB

Oles:1992:WCM

Oliveira:2013:WA

Orlandic:1996:SOT

O'Neil:2015:CCS

Ochem:2008:AAS

Olariu:1993:NCU

Oida:2001:CDO

Okhotin:2019:SCQ
REFERENCES

Olariu:1992:OPE

Otto:2013:CPC

Otto:2015:APC

Ottmann:1992:UBT

Okubo:2011:MCL

Pavel:1998:ISR

Palis:2001:PSP
Palis:2001:SIP

Palis:2003:COR

Palano:2008:RCC

Panti:1991:SNT

Peterlongo:2008:IGF

Patrignani:2006:EPS

Pau:2000:CMS

Ignacio Pérez-Hurtado, Mario J. Pérez-Jiménez, Agustín Riscos-Núñez, Miguel A. Gutiérrez-Naranjo, and Miquel Rius-Font. On a partial

Peng:1995:NTP

Pighizzini:2009:DPA

Pighizzini:2015:IAL

Pin:2012:EDL

Prieur:2006:STS

Plaza:1996:PSR

Porreca:2011:SAM

REFERENCES

Prrusa:2013:RTA

Paun:2010:ICS

Polak:2005:MNU

Poincare:2004:ORM

Paquette:2006:FBB

Poinso:2011:NBA

Laurent Poinso and Alexander Pott. Non-Boolean almost perfect nonlinear

Pighizzini:2014:LAR

Paun:2006:P

Paun:2006:STS

Paun:2007:CMS

Paun:2007:SNS

Paun:2008:RCL

Păun:2002:CCN

Poyias:2018:MBP

Păun:2011:SPM

Peled:2006:ECT

Perkovic:2000:IAF

Pribavkina:2011:SCC

Piatkowski:2012:ABM

DEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Preparata:1990:PPL

Preface:2001:SIF

Pribavkina:2006:SPL

Pathak:2013:EEA

Prodinger:1996:DPL

Paik:1998:VSD

Prusa:2017:CMS

Prusinkiewicz:2012:SGM

Piperno:1990:RSE

Peled:2007:P

Pelc:2014:EGE

Poovanandran:2018:MES

Poovanandran:2019:SST

Petrini:1998:PAW

Potanin:2013:P

Poon:2004:MTC

Pym:1992:UAL

Peng:2010:AAS

Poon:2007:DBB

Qiu:2003:INT

Qi:2015:LED

Qi:2006:SSP

Quaglia:2007:SDB

Rajabi-Alni:2015:CPS

Rampersad:2005:WAP

Rao:2008:GCR

Ravikumar:2008:BND

Rispal:2005:CRS

REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Rezaeibagha:2019:PSB

Raju:2022:SEM

Rogojin:2009:SEG

Roth:2008:SRK

Rosolini:1990:AMS

Rosenberg:2000:GDP

Rosenberg:2003:EPF

Arnold L. Rosenberg. Efficient pairing functions — and why you should care.

N. Raja and R. K. Shyamasundar. The Quine-Bernays

Rajasekaran:2000:SIR

Roberts:2001:RNC

Richomme:2004:CRM

Ravikumar:2007:ELD

Reghizzi:2012:RSL

Reghizzi:2013:SLT

Rowland:2015:ASR

Eric Rowland and Jeffrey Shallit. Automatic sets of rational numbers. *Inter-
Rudy:2015:DRA

Russell:2017:GSL

Renjith:2022:HCK

Reynier:2016:VPT

Ruohonen:1996:ECP

Roy:2006:RMW

Rigo:2011:LCR

Michel Rigo and Laurent Waxweiler. Logical characterization of recognizable sets of polynomials over
REFERENCES

Rhodes:2001:TCC

Ryabko:2015:CAF

Ryabko:2021:PRG

Ranjan:2012:VIP

Saad:2022:SSC

[SA22] [Sah01]

Sahni:2001:MAO

Sakurai:2001:CMC

[Sak01] Takaumi Sakurai. Categorical model construction

Salomaa:2007:CSO

Salomaa:2011:PSA

Salomaa:2013:FCB

Salikhov:2018:ICD

Santhosh:2013:SSD

Saoudi:1992:PAI

Schopf:2001:USI

Seredynski:2012:DRB

Sharma:2017:BST

Sburlan:2006:FRS

Schmidhuber:2002:HGK

Schnoor:2010:CMC

Schmid:2013:ICR

Salomaa:2015:AA

Shtrakov:2016:CCF

Slavcho Shtrakov and Ivo Damyanov. On the com-

REFERENCES

Scheewe:2007:SAD

Sun:2017:CAL

Skulrattanakulchai:2004:CAS

Shu:2002:NNA

Sun:2017:SCB

Shi:2022:FDO

Shallit:2004:SAL

Jeffrey Shallit. Simultaneous avoidance of large

Subramanian:2009:PM

Shur:2007:RAP

Shur:2011:EMP

Shur:2014:LFA

Shur:2016:P

Sibeyn:1997:RTT

Sirakoulis:2015:CPC

Shi:2004:FAD

Saidane:2001:MPE

Schmollinger:2003:DPA

Sahni:2004:EDL

Saikia:2020:DAA

Sahni:2003:DSO

Strauss:2008:CSB

[SKW08] Tinus Strauss, Derrick G. Kourie, and Bruce W. Wat-

Sulzmann:2017:DBD

Shen:2021:NHA

Slobodova:1995:POW

Supol:2005:ACP

Simuneck:2007:BFA

Subramanian:2013:TDD

REFERENCES

Smith:1995:HPT

Saoudi:1990:COT

Saoudi:1992:FSP

Smyczynski:2012:CMI

Saoudi:1992:FSP

Safavi-Naini:2006:RLS

Skrypnyuk:2013:RFS

REFERENCES

Sosik:2009:P

Singh:2004:HMD

Sprojcar:2009:PSM

Shyamasundar:2000:LRS

Shyamasundar:2000:PRP

Sharma:2021:AAO

Sadhu:2020:EAC

Sanjib Sadhu, Sasanka Roy, Soumen Nandi, Subhas C. Nandy, and Suchismita Roy. Efficient algorithm for computing the triangle maximizing the length of its smallest side inside a convex polygon. *International
REFERENCES

[Saha:2015:NRF]

[Sajith:1999:PVC]

[Sitharam:2001:DLB]

[Salomaa:2007:SCA]

[Soper:2007:IAA]
REFERENCES

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Sprague:1999:QTA

Shi:2001:LBH

Saifullah:2011:SSC

Shikishima-Tsuji:2016:RIH

Staiger:2005:IIF

Staiger:2007:PFL

Stewart:1993:TAA

REFERENCES

Steinberg:2011:ATC

Stolboushkin:1992:CPP

Subrahmanian:1990:RTBa

Subrahmanian:1990:RTBb

Subramani:2005:CRW

Suchenek:1990:ALH

Sun:2000:DRR

REFERENCES

REFERENCES

Özlem Salehi, Abuzer Yakaryılmaz, and A. C. Cem Say. New

Tamm:2008:TMB

Tirnauca:2020:CSB

Ti:2010:SIS

Tang:2014:CRB

Teh:2015:CWP

Teh:2016:PMS

Teh:2016:SME

Teh:2018:CFP
Wen Chean Teh. Compositions of functions and per-

Thomas:2006:MSS

Tu:2013:COV

Tokat:2019:DI

Tosic:2006:CCF

Torkestani:2013:LAB

Torkestani:2015:ASC

REFERENCES

[TST01b] Yasuyuki Tsukada, M. Sato, and Y. Toyama. Martin-

REFERENCES

Uehara:1999:MLF

Ueno:2013:BRB

Urgaonkar:2007:APC

Ungor:2002:PTS

Uehara:2007:CLP

VanZijl:2005:MNS

vdHM92

Jan van Leeuwen and Jiří Wiedermann. Separating the classes of recursively

Vorel:2016:SSC

Vorel:2018:BPJ

Voisin:1999:SCP

Vincent:1993:RJF

Vollmer:1993:CFM

Wan:2003:SHM

Wernicke:2006:CCA

Wang:2004:ICN

Wang:2006:P

Wang:2014:DRG

Wang:2021:EDH

Wang:2004:HCD

Wei:2013:GCK

Wang:2014:ZKB

REFERENCES

Wang:2018:ERS

Wang:2016:SSS

Wu:2003:SOS

Widmer:2012:PCL

Wilmes:1991:FPS
Watson:2008:EAC

Wei:2012:IRK

Yuechuan Wei, Chao Li, and Dan Cao. Improved related-key rectangle attack on the full HAS-160 encryption mode. International Journal of Foundations of Computer Science (IJFCS), 23(3):733–??, April 2012. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Wang:2003:DSB

Wilson:2005:CPP

Ware:2013:CVG

Simon Ware and Robi Malik. Compositional verification of the generalized nonblocking property using abstraction and canonical automata. International Journal of Foundations of Computer Science (IJFCS), 24(8):1183–??, Dec-
REFERENCES

cember 2013. CODEN IFCSEN. ISSN 0129-0541.

Wang:2016:NCO

[WPZ16]

Wu:1997:MCN

[WQY16]

Wei:2003:EAS

Wu:2016:ESS

Wang:2016:RRU

Wu:2005:EEN

Wu:2022:GCN

Wei:2015:CPK

Wu:2019:PFI

Xu:2002:MHM

Xu:2015:CNP

REFERENCES

August 2015. CODEN IFCSEN. ISSN 0129-0541.

Xu:2019:NPF

Xu:2006:SSA

Xu:2011:DAA

Xu:2022:ADA

Xie:2022:SSP

Xu:2019:PPS

[Yan21] Yuxing Yang. Super \(C_k\) and sub-\(C_k\) connectivity of \(k\)-ary \(n\)-cube networks. *International Journal of Foundations of Computer Sci-
REFERENCES

Ye:2006:CTS

Yigit:2019:NLR

Yildirim:2022:IRT

Yu:2011:RSV

Yamauchi:2011:RCE

Yuan:2011:LMF

Yang:2010:CMI

Jinn-Shyong Yang, Jou-Ming Chang, Shyu-Ming

Yang:2008:SAS

Yen:2008:DCA

Yen:2009:PDS

Ye:2011:WCP

Yamamoto:2014:TIV

Yen:2013:P

Yli-Jyra:2005:ADG

Anssi Yli-Jyrä. Approximating dependency gram-

Yu:2011:P

Yu:2013:CIE

Yu:2006:SBM

Yu:2019:PSI

Yang:2020:KEL

Yang:2022:IHD

Yen:1994:SCR

REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Yu:2011:P

Yue:2013:CIE

YW06

YW22

YW20

YWY94

YYW19

Yu:2007:SEO

Yao:2021:TCC

Yan:2018:DAB

Zajicek:2009:NSP

Zanko:1991:PCM

Zantema:2000:FSE

Zantema:2002:SOD

ZHou:2018:CBG

ZhZhuang:2022:CDG

ZHao:2019:GCB

ZHou:2022:SCO

ZHang:2006:AWO

ZhZhang:2017:FCP

[Zhong:2002:RCO]

[Zhang:2011:WAF]

[Zhou:2019:LBS]

[Zhang:2022:ICO]

[Zhou:2021:ERV]

[Zhang:2011:NBF]

[Zhang:2020:ECD]
 REFERENCES

Zhu:2017:PSN

Zdarek:2011:TBI

Zomaya:2001:S

Zomaya:2001:STA

Zomaya:2003:MCO

Zhou:2017:IBB

REFERENCES

CODEN IFCS. ISSN 0129-0541 (print), 1793-6373 (electronic).

Zhou:2014:OSN

Zhou:2012:PTE

Zhang:2019:LRH

Zhao:2018:CEC

Zhang:2018:SER

REFERENCES

