Title word cross-reference

#P [Zan91]. #P-Completeness [Zan91].

(−β) [Dom12]. (1, 2) [BZ13]. (2 + p) [ZG13]. (2, 2) [ST16]. (3k + 1) [DZ00]. (A, B) [JL01]. (δ, α) [CCF09]. (δ, γ, α) [FG08]. (δ, κ, α) [FG08]. (n, k) [WC13, CHYT14, YCL11, CC98, HLH06]. (n, n(n + 1)) [NS98]. 1 [CHWX09, Dic93, LR04, TCT14]. 11 [LJ17]. 2 [AV96, BYP95, HKT00, HJP13, JZ16, JW08, Leo03, Pri06, XZS16, XCY17, ZM11]. 2^n [CKZ17]. 2m [ZWCL14]. 3 [BYP95, DH96, JSPD03, LJ17, SJ04, ST93, Tsi06]. 4 [XC15, ZZC15]. 7/3 [DSS15]. 73 [Ram05]. * [MTVM15]. 2 [Joh00]. ab + c [KL03].

ASPACE(log log n) [GP13]. β [Shu11]. C [XBE02, CTC [MTVM09], CTC* [MTVM09], Z [BW14], J [BL14], R [BL14]. D [HLY*04, AE99, DG98, RS01]. ℓ [DDHL11]. f [DGL93]. F_p + νF_p [WGF16]. G(2^m, 2) [YCTW10]. G^{xy+} [AT15]. G^{xy} [AT15]. BTO17. GF(2) [BB99]. GF(2^n) [WXF16]. H [GMU15]. K [BT07, CHWX09, PV98, ZBS05, Aku06, AE99, DDHL11, DG98, DGL93, EHS15, IZN99, INY07, KPS13, LZ12, MXY*04, Nak04, RS04, TCLS10, YTN01, ZZZ16]. K_m,m [Kan15]. L [PSS12]. L(j, k) [Cal15]. L_p [CMR07]. M [Jun14, Teh16a, Teh16b]. F_{2^m} [ZWCL14]. μ [DL12]. N [AM09, JM03, PV98, INY07]. O [Mal07]. O(1) [ST99]. O(n) [MM97]. O(n^2) [Bad09]. ω [COT12, Fin12, DIO2, Hon02, Hon07].
KSV03, KMM06, Sel08, Sta05]. $P$
[AFO06, ARV07, BGMV08, BCC+11, BFM06, CD06, CCF07, CVP08, DI05, FOP05, Frc05, FIO08, FH11, GH07, IYD05, IW07, Iba11, ILT11, LZGN06, Luc09, Mad03, MDAPH1+11, NSVA12, PDPPJ11, Pau00, PPJR06, PPJR07, PPJS07, PPRPS11, PBZ06, PLMZ11, RCTC09, Sbu06, SRPC11, YD08]. $P$
\[MR99, RRT99\]. $P$
\[GV03\]. $P$
\[YTN01\]. $q$
\[BM16, FBK05\]. $s$
\[Dic93\]. $p$
\[KL00\]. $f = 2n + 2n + 3(n - 3)$ [ZWW+14].
$UG_b(n; n + 1)$ [Noc98]. $Z$
\[SMS92\]. $Z$
Applications
[CK08a, CCF09, CHWX09, CW11, CB09, DI02, Fin12, GC15, GGR14, HYNO8, KL03, KKS05b, KMS11, KM90, Li07, MM97, PRS98, PYTH10, Suc90, Zom01c].

Approach
[BET03, BMRR11, CLMP16, CMMR04, EAB+16, GSD03, HMZ05, IMP+05, Kri97, LW06a, MG14, MGGP08, Qua07, SGZ02].

Approximability
[DJL+07].

Approximate
[BH02, MRRV06, ORS08, WKS+08, ZBS05].

Approximated
[BB04].

Approximating
[BH02, MRRV06, ORS08, WKS+08, ZBS05].

Approximation
[AE02, AP90, ABDP05, CS93, CCG+11, GY12, HL01, LZ12, Rya15, YJ05].

Approximations
[Shu07].

Arbitrage
[DLW02].

Arbitrarily
[BSOR10].

Arbitrary
[EZ01, GS12a, HKV17, Hei97, JWB03, NGHK15, XHLF02].

Arc
[GP17, KHLC12].

Architecture
[MDL97, YLZ14].

Architectures
[AP92b, CPJ06].

Arrays
[AE99, DG98, PV98, DZ00, RS01].

Aspects
[BM16, BRST07, HKO9a, Riv04].

Assembly
[BHR09, IP07, IP08, JK14a, JK14b, RGC09, RCTC+09, SW17].

Assignment
[Bar09, DGN07, GSD03, Hir91, NSVA12, WD90].

Associated
[Sal11].

Assume
[LSWW13].

Assume-Guarantee
[LSWW13].

Assumptions
[GKS17].

Asymmetric
[Gol14, WR16].

Asymmetry
[FPS02].

Asymptotic
[FY08, PR12, Swz95].

Asymptotically
[CDPR11].

Asynchronous
[Ott15, Yue13].

Asynchrony
[SR00a].

Atomic
[Ano02].

Atoms
[BT13].

Attack
[DS02, DEK11, HCT+12, JI17, WLC12].

Attacks
[DEK11, TCT14].

Attribute
[BV08].

Augmentation
[NS13, YH11].

Authenticated
[LHT09, LH11].

Authentication
[HCET+12, LB04, YTP11].

Author
[Ano97, Ano98, Ano99a, Ano00, Ano01a, Ano02, Ano03a, Ano04a, Ano05a, Ano06, Ano07, Ano08, Ano09, Ano11, Ano12, Ano13, Ano14, Ano15, Ano16].

Auto
[CGKN08].

Auto-Intersection
[CGKN08].

Autocorrelation
[KYZS17].

Automata
[AHK07, ABH+09, AK14, AMR11, AMR08, AR16, ACFE09, AKH17, BBI11, Ber13, BMP03, BCD14, BMP15, BCRP07, BCHK09, BHK07, BRST07, BKM11, BKM12, BKM15, BW14, BMRR11, BMRR12, BMWR02, CMF12, CMF13, CPY02, CL09, CL15, Cha02, CLOZ04, CC05, CRR+90, CFY16, CG06, CR15, CMR07, CMRR08, CVMVMV00, CKKK02, DJ12, Dom04, Dr092, DK98, DM11, DP14, D’s03, Dub95, ÉMi11, Ési12, FGS+90, FTI10, Fre08, FK13, Fuj17, GLV14, GHV05, GLV07, Glö07, Glö10, GS99, GH13, GH15, GQZ15, Gus13, GP15, HM05, HW05, HK09b, HJ13, HJ17, HKKŠ+93, JMJ13, JJS08, JO07, JK07, KZ10, Kör03, KR16, KBH99a, KSV03, KSM06, KSY14, Ku07, KL11, KMM06, KR08, KMO10, KO13, KMW14b, KMW14a, KMW16, Ló15, Loh10, Mac96].

Author
[Mal05, MR11, Mar08b, MVMM02, Mar97, Mar09, Mas13, MHT09, MZ12, MO07, MO09, Moh13, MP91, MPJ07, NTSH06, NWK05, NWK06, NCC+07, Oli13, Ott15, PI95, Pig09, PP14, Pig15, PM13, SS07a, Saa92, SY12, SM07, Sir15, Slo95, SVF09, Sut03, Tan08, Tor13, Tor15, TY15, Vor16, WM13, WKS+08, YDI08, YW06, YBI11, ZH11, ZQL12, CV13].
Chorut [BMY17].

Choose [INY07].

Chord [CCF08].

Chordal [FHL07, NS13].

Christian [BMY17].

chunk [AP92a].

Church [AD12, KM07b].

Ciliate [DH05].

Ciliates [BHR09].

Cipher [LJ17].

Circle [Klo96a].

Circuit [Bir11, LWJ10, RVT06, Vin05].

Circuit-Size [Bir11].

Circuits [FGH07, GB03, GRB03, IP08, PRS08, SUZ13, YB06].

Circulant [YCTW10].

Circular [Asv07, DS96, GP17, MM97, MMR10].

Circular-Arc [GP17].

Circulating [SK01].

Circulation [GS12a].

Circumscription [Lis93].

CKY [BIIN04].

Class [AGM14, BS92, CPJ06, ERW04, Has00, Jai95, MR11, MN00, Oka99, Sch13, TCT14].

Classes [Arv97, AP90, ABDP05, CCPS04, CM92, Cap96, GO09, Géc07, GR00, HT12, HK95, KSV00, LV08, NCC07, SH17, SUZ13, YB06].

Clausal [HHH07].

Clauses [FGL90, SN13].

Clique [BLM04, DJL07, GR00, MR99, MM97, Ste93].

Clique-Width [BLM04, GR00, LV08, MR99].

Clock [D’s03].

Close [Fre02].

Closed [MRT95, Ole92, TW09].

Closeness [AO11, Dan11].

Closure [CK08a, DMMM14, HHH07].

Closures [BS92].

Cluster [ABL+11, BBP11, Ber13, BNR99, IN08, URS07].

Cluster-Based [ABL+11, BNR99].

Cluster-Dot [IN08].

Clustered [FP03].

Clustering [BKS12, CL03, CHWX09, ECY02, FPSP03, MMS05, ZC05].

Clusters [BLMR05, CFMR05, CVOV11, LCVL09, SK03].

CMP [For10].

Co [BLM04].

Co-Gem-Free [BLM04].

Coalgebras [Oli13].

Coarse [MS99a].

COCOON’02 [IZ04].

Code [DK12, ND02, PR11, Rud15].

Codes [AGM14, Bur12a, CFPR03, GMNS15, GRB03, HS11, Kun16, Leo03, LZ15, WGF16, WF17, YTP11].

Codewords [Arn17].

Coding [CIY01, CK08a, KKS05b, SM05].

Cographs [GV03].

Collaborative [SP04].

Collage [IST05].

Collapsing [AVP06, B210, Pri06].

Collision [Nak04].

Colonies [MCS08].

Colony [KAPF05].

Colored [AFB96].

Coloring [Bod91, CKK02, SG04].

Colorings [GHJS05, IZN99].

Colouring [SS99].

Combinations [CB09].

Combinatorics [BS12, BMMR11, EMR10, GHS13, IZ04].

Combinatory [RS95].

Combined [CLMP16, CGKY11, CGKY12, SY07, ACM11].

Combining [Bar09].

Common [AILR16, AE05, DD13, IMP05, KSS10, LW05, LW06a].

Communicating [BKM11, BKM12, BKM15, CCF07, CVMMV00, DPS97, Kri02, LR92, MS07, MVMM02, Ott13, Ott15, Tru08].

Communication [Ada10, BV98a, BF97, BKM15, DHI09, FL97, Nak04, PPR02, Spr09, YBM11, ZC13, ZHY14].

Communications [CCM97, RVT06].

Community [ROK08].

Commutative [BH11, MR91].

Commutativity [IDR97, MS12].

Commuting [Cai94].

Compact [BMS12].

Comparative [OM96].

Comparing [Sal07].

Comparison [FA06, HT12].

Compatible [FHM11].

Competence [BCVVH07, CVDV10].

Competence-Based [CVDV10].

Competitive [Leu04, ZZZ16].

Competitiveness [Pal03].

Compiler [DVG03].

Complement [Jir14, ON015].

Complementation [FKV06, JSS05, RC05].

Complements [HP09b].

Complete [DK11, HW10, LD01, MW05, RWZ01, RS01, ZYLW12, GP13].

Completely [DVG03].

Complete
Completing \cite{BCHK09}. Completion \cite{BZ13,DFLL02,DK11,LLQ06,MMY10,PY04}. Completions \cite{ST16}. Completing \cite{Brz13}. Complexities \cite{Jir14, Sch02,TY15}. Complexity \cite{Ada10,AFO06,AOSY10,AP92b,Arv97,AP90,BGN10,BAK12,BPT16,BFL02,Bod91, BT17,BHN04,BMMR11, BLY12, BL12, BT13,BLI4,BC13,CSR12,CK08a, Cäm14,CLMP16,CRSZ11,CK16,CDM13,CS93,CGKY11,CGKY12,Dai97, Das04,DLW02, DG98,DM08,DK12,EH15,EHS15,FH05,FZ13, FL97,GP14,CH15, HS08, HKNS16,HT12,Hol11, HK03,HK09b,HK11,HJ14, IDR97,IR14,IV’04,JS02, JMR91,JJS05,JM11,Jür98,KEH16,KLH16,KSV00,KLS05,KO13,Leu05,Lis93,Loh05,LMW08,MTMV09,MTVM15, MT95b,MB06,Ö’N15,PS02,PR11,Pru17,Rao08,Rya15, SS07a,SY07,SMS90,Sch10,SW17,SD16,To06,TL99, VW93,WAG+06, Wid12,WP08,XZS16,YS13, YTL10,YW94,Yen08,ZTT91]. Complexity-Theoretic \cite{FH05}. Component \cite{IN10}. Components \cite{BGVM08,CVOV11,DL12,HJK08,LCY12,Mas09,Ott13,ST11}. Composed \cite{ABH+09}. Composite \cite{AO10}. Composition \cite{AM09,ARS11,BCDP08,Wan04}. Compositional \cite{TW09,WM13}. Compositionality \cite{FT09}. Compressed \cite{IST05,BK12,KS06,KSS08,Loh10,MHT09,WF17}. Compression \cite{CDLW05,CK08b, DM05,De 06,KM09,KK05}. Computability \cite{Bur12b,Gra90,LS98}. Computable \cite{BS92,CZ11,SI12a,Sc02}. Computation \cite{AH02,BD08,CMRR08,DW03,EL13,FN16,GO09,GR10,HS06,MB06,Nis03, PDPJ11,RZ12,RS17,ST11,SP04,VP99}. Computational \cite{BKM12,BZ10,DLW02,FOP05, GKS17,HK09b,IPR07, JWB03,JS02,LMM+12,MT95b,SD16,Sir15,WAG+06}. Computations \cite{Bee95,CD15,CE98,DK98, HK09a,HFLD09,LD01, Mec12, YSM+00a}. Computer \cite{TH01}. Computers \cite{Rya15,Sah01}. Computing \cite{AETZ05,AO10,BMSMT11,BFL02,Cai94, CZO17,CLW09,CMMR04,EAB+16,FJ12,FKT07,FT11, GPPJR13,GCK08,Hea11,HO00,IZ04,LTZ12,Li06b, M99,Ob01,Ob06,Pa01b,Pá00,PPR02,PPJR07,RS00, RR04,RC11,SVS01,SGZ02,Sto92,SUZ13,TZ11,UU07, WP08, XF10,Yue13,ZTT91,Zom03]. Concatenation \cite{JJS05,Okh07}. Concentration \cite{Dai97}. Concept \cite{BOV08,De08, Jai98,RK08}. Concerning \cite{CCF08,Hon02,IR14}. Concurrency \cite{Luc99}. Concurrent \cite{BPT16,BET03,Dro92,DK98,MM07,PQ06,SKW08}. Condition \cite{MP07,Mel93,Pal08,ZW+14}. Conditional \cite{BW05,LW06a,LYH+15,LYG17, ZCX12}. Conditions \cite{FT09,FO08,LBL06,Oka00,WFG15}. Conference \cite{IZ04,SNJ11}. Configuration \cite{WC04}. Conflicts \cite{MSR06}. Congestion \cite{GKKP99,KKP97, ZYYH14}. Conjecture \cite{AV96,BMY17,Ber11,PHPJR+11,Ste11}. Conjectures \cite{RS04}. Conjugates \cite{BMR+14}. Conjunctive \cite{AK14,DR94,Jez08,Okh03}. Connected \cite{AWF03, DWS15,ET14, Iba02, IN10, JHK08,KK10,LI01,MTNN99,MNN06,ST11,Tor15, WAF03}. Connections \cite{DM08}. Connectivity \cite{CV14,FP04,HLHH05,LLY13,NPSS00, Ts06,WFG15,NS13,WC13}. CoNP \cite{RWZ01}. CoNP-Complete \cite{RWZ01}. Consensus \cite{RS13,SK01}. Consequence \cite{BK95}. Conservativity \cite{Sel98}. Consistency \cite{ADR11}. Consistent \cite{YSM+00a}. Constant \cite{ANDZ09,CL98,FZFB08,FT11,JY91, ZTT91}.
[Won01, ZFL+17]. Cyclic [DESW05].
Cyclotomic [XZS16]. Cyclotomy [XCX16].

D [CHWX09, HJP+13, JSPD03, JW08, Leo03, LJ17, SJ04, ZM11]. D0L
[Hon02, Hon06, Hon07, Sai07]. DAGs
Dassow [BRST07]. Data
[ATK12, BSG03, KY96, LOD07a, LOD07b, Lin08a, Oka99, Oka00, RGR11, RR06, Ros00, SKL03, TV14, TZ91]. Data-Parallel
[Ros00]. DAGs [CR14, PRS98]. D’Alessandro [Ber11].


Date [KS10]. Davidson [HO99]. DDOS
[DEKZ09, HJP+13, JSPD03, JW08, Leo03, LJ17, SJ04, ZM11]. D0L
[Hon02, Hon06, Hon07, Sai07]. DAGs
Dassow [BRST07]. Data
[ATK12, BSG03, KY96, LOD07a, LOD07b, Lin08a, Oka99, Oka00, RGR11, RR06, Ros00, SKL03, TV14, TZ91]. Data-Parallel
[Ros00]. DAGs [CR14, PRS98]. D’Alessandro [Ber11].


Date [KS10]. Davidson [HO99]. DDOS
[DEKZ09, HJP+13, JSPD03, JW08, Leo03, LJ17, SJ04, ZM11]. D0L
[Hon02, Hon06, Hon07, Sai07]. DAGs
Dassow [BRST07]. Data
[ATK12, BSG03, KY96, LOD07a, LOD07b, Lin08a, Oka99, Oka00, RGR11, RR06, Ros00, SKL03, TV14, TZ91]. Data-Parallel
[Ros00]. DAGs [CR14, PRS98]. D’Alessandro [Ber11].


Date [KS10]. Davidson [HO99]. DDOS
[DEKZ09, HJP+13, JSPD03, JW08, Leo03, LJ17, SJ04, ZM11]. D0L
[Hon02, Hon06, Hon07, Sai07]. DAGs
Dassow [BRST07]. Data
[ATK12, BSG03, KY96, LOD07a, LOD07b, Lin08a, Oka99, Oka00, RGR11, RR06, Ros00, SKL03, TV14, TZ91]. Data-Parallel
[Ros00]. DAGs [CR14, PRS98]. D’Alessandro [Ber11].


Date [KS10]. Davidson [HO99]. DDOS
[DEKZ09, HJP+13, JSPD03, JW08, Leo03, LJ17, SJ04, ZM11]. D0L
[Hon02, Hon06, Hon07, Sai07]. DAGs
Dassow [BRST07]. Data
[ATK12, BSG03, KY96, LOD07a, LOD07b, Lin08a, Oka99, Oka00, RGR11, RR06, Ros00, SKL03, TV14, TZ91]. Data-Parallel
[Ros00]. DAGs [CR14, PRS98]. D’Alessandro [Ber11].


Date [KS10]. Davidson [HO99]. DDOS
[DEKZ09, HJP+13, JSPD03, JW08, Leo03, LJ17, SJ04, ZM11]. D0L
[Hon02, Hon06, Hon07, Sai07]. DAGs
Dassow [BRST07]. Data
[ATK12, BSG03, KY96, LOD07a, LOD07b, Lin08a, Oka99, Oka00, RGR11, RR06, Ros00, SKL03, TV14, TZ91]. Data-Parallel
[Ros00]. DAGs [CR14, PRS98]. D’Alessandro [Ber11].


Date [KS10]. Davidson [HO99]. DDOS
[DEKZ09, HJP+13, JSPD03, JW08, Leo03, LJ17, SJ04, ZM11]. D0L
[Hon02, Hon06, Hon07, Sai07]. DAGs
Dassow [BRST07]. Data
[ATK12, BSG03, KY96, LOD07a, LOD07b, Lin08a, Oka99, Oka00, RGR11, RR06, Ros00, SKL03, TV14, TZ91]. Data-Parallel
[Ros00]. DAGs [CR14, PRS98]. D’Alessandro [Ber11].


Date [KS10]. Davidson [HO99]. DDOS
[DEKZ09, HJP+13, JSPD03, JW08, Leo03, LJ17, SJ04, ZM11]. D0L
[Hon02, Hon06, Hon07, Sai07]. DAGs
Dassow [BRST07]. Data
[ATK12, BSG03, KY96, LOD07a, LOD07b, Lin08a, Oka99, Oka00, RGR11, RR06, Ros00, SKL03, TV14, TZ91]. Data-Parallel
[Ros00]. DAGs [CR14, PRS98]. D’Alessandro [Ber11].


Date [KS10]. Davidson [HO99]. DDOS
[DEKZ09, HJP+13, JSPD03, JW08, Leo03, LJ17, SJ04, ZM11]. D0L
[Hon02, Hon06, Hon07, Sai07]. DAGs
Dassow [BRST07]. Data
[ATK12, BSG03, KY96, LOD07a, LOD07b, Lin08a, Oka99, Oka00, RGR11, RR06, Ros00, SKL03, TV14, TZ91]. Data-Parallel
[Ros00]. DAGs [CR14, PRS98]. D’Alessandro [Ber11].


Date [KS10]. Davidson [HO99]. DDOS
[DEKZ09, HJP+13, JSPD03, JW08, Leo03, LJ17, SJ04, ZM11]. D0L
[Hon02, Hon06, Hon07, Sai07]. DAGs
Dassow [BRST07]. Data
[ATK12, BSG03, KY96, LOD07a, LOD07b, Lin08a, Oka99, Oka00, RGR11, RR06, Ros00, SKL03, TV14, TZ91]. Data-Parallel
[Ros00]. DAGs [CR14, PRS98]. D’Alessandro [Ber11].
Diagnosability [ZCX12]. Diagnosis [BCB12, SL17]. Diagnostic [CLT14].
Expressions
[CSY03, Cha02, CLOZ04, DM11, GH13, GH15, HWW06, HK11, Loh10, TV14, YZ07].

Expressive
[Hen02, RHS10].

Expressiveness
[Yuc13].

Expspace
[ZYLW12].

Expspace-Complete
[ZYLW12].

Extended
[BHK07, DG98, FIO08].

Extending
[Pat06].

Extension
[EL13, Hen02, KM02].

Extensions
[BLY12, DM12, HN04, Ver09, XLC+04].

Extractable
[Kun16].

FA
[CKW09].

Face
[RLWW96].

Facility
[XS11].

Factor
[CISH07, MM05].

Factorial
[Shu07].

Factorization
[BOV08, DD08].

Factorizations
[CL14].

Factors
[AILR16, HN10, PAS08].

Failure
[FWZ15, NTSH06, PNN+10].

Fair
[MSR06].

Faithful
[APP91].

Families
[DH05, DD08, HJK12, KY96, MRS97, MAG09, OY11, SRPC11, FAS].

Fast
[Ars15, BOV08, ECY02, FPPS03, FNI16, FA06, GO09, IML04, Kan15, LCL06, NWK06, PP06, SJ04, TCT14, Zha17].

Fastest
[CFMS15, Hut02, XFJ03].

Fat
[DEKW06].

Fault
[CL07a, CHYT14, FZEBB05, HY97, KR97, LPC11, LYH+15, LYG17, XS11, ZCX12].

Fault-Tolerant
[CHYT14, LPC11, XS11].

Faults
[NPSY00, PP06, WCD+14, YBM11, YCL11].

Faulty
[CP16, GKKP99, LLY13].

Feature
[MN00, SRR15].

Feedback
[GB03, HG11, KHLC12, YB06].

Feedback-Free
[GB03, YB06].

Feferman
[HK95].

Few
[M99].

Fibonacci-Automatic
[DMSS16].

Fibonacci-Automatic
[DMSS16].

Field
[BW11].

Fighting
[FLP13].

File
[Li12b, NN93].

Filters
[KSS08, WRNK03].

Filter
[ARS11, MCM+11].

Filter-Based
[ARS11].

Filtered
[DM08].

Filtering
[DEK211].

Find
[Gia11, MTNN99].

Finding
[DS96, FL97, HL06, JJS08, LOZ98, MB17, Poo04, QLWL06, SW17, Tos06].

Fixed-Height
[SW17].

Fixed-Length
[QLWL06].

Fixed-Parameter
[HL06].

Fixpoint
[ELS15].

Flat
[MT95b, Oka99].

Flexible
[FMMN06, JMS05].

Flipping
[LRR08, ZG13].

Flips
[AAH02].

Flooding
[CIS03, LBJ03].

Floundering
[BM90].

Flow
[LLZ07, Mas04, SS07b].

Flows
[DW04].

Fm
[GNP+06, IN05, IN08].

Fm-Index
[GNP+06].

Folded
[DH10].

Football
[CKL15].

Forbidden
[WAG+06, Yah12, Yen08].

Forbidding
[DS96, ET14, Fuj16, GKRS10, GHZW05, HK17, HCG96, IMP+05, IB12, IZN99, Kar99, MM97, NRT00, PR00, VW93, Won96, Won01, ZB00].

Finite
[Sel08, BSOR10, KPS13].

Finite
[AM09, ARS11, AMR11, AMR08, AMR15, AHK17, BGN10, BBL+12, BMW91, BHK07, BKM11, BKM12, BKM15, CSR12, CZOdH17, CPY02, CLOZ04, CGH05, CGKN08, CFY16, CL07b, CGL12, DL12, DGK08, Dom04, FFH15, Fre08, GLV14, GHZW05, GMNS15, GH13, GH15, GQZ15, HS08, HN10, HK09b, HJ17, Iba15, JJS08, KZ10, KL03, Kär03, KLS05, KSY14, KMW14b, KMW14a, Mac96, MM17, Mar08a, MVMM02, MZ12, Me93, Moh13, NWK05, NWK06, RW11, SS07a, SMS92, SD16, Shu14, SM07, SS01, SN13, Vor16, ZQL12].

Finite-Memory
[KZ10].

Finite-State
[AM09, ARS11, AMR11, CSR12, CZOdH17, CGKN08, Mac96, SN13].

Finite-Valuedness
[Iba15].

Finely
[AK10, AM03].

Finiteness
[AK06].

Fire
[FLP13].

Firing
[GLP07].

First
[AB91, BB04, DGK08, DZ00, Has00, IMP+05, KKH90, Lin08a, MN00, Rov00, Ueh99].

First-Class
[Has00, MN00].

First-Fit
[KKH90].

First-Order
[AB91, DGK08, DZ00, Lin08a].

Five
[CH15].

Five-Valued
[CH15].

Fixed
[DS96, FL97, HL06, JJS08, LOZ98, MB17, Poo04, QLWL06, SW17, Tos06].

Fixed-Height
[SW17].

Fixed-Length
[QLWL06].

Fixed-Parameter
[HL06].

Fixpoint
[ELS15].

Flat
[MT95b, Oka99].

Flexible
[FMMN06, JMS05].

Flipping
[LRR08, ZG13].

Flips
[AAH02].

Flooding
[CIS03, LBJ03].

Floundering
[BM90].

Flow
[LLZ07, Mas04, SS07b].

Flows
[DW04].

Fm
[GNP+06, IN05, IN08].

Fm-Index
[GNP+06].

Folded
[DH10].

Football
[CKL15].

Forbidden
[WAG+06, Yah12, Yen08].

Forbidding
[ATK12, AC05, LMM12, Nis07, WM05].

**Genome** [IMP12, SSK96]. **Genomic** [BBM12]. **Geometric** [CHWX09, CCG11, GGR14, GS09, MRS97, PSS12]. **Geometrical** [CDJ09]. **Geometry** [RS17]. **Girod** [GMNS15]. **Given** [CC05].

**Global** [FTT10, JHK08]. **Globally** [Slo95]. **Glushkov** [BMMR12]. **Goals** [BM90]. **Goedel** [Szw95]. **Golomb** [BMP03]. **Good** [DQFL12, FY11, TCT14]. **Goodby** [SSS13]. **GPU** [CYZ14, FNI16]. **GPUs** [GD12]. **Graded** [BV08]. **Grained** [MS99a].

**Grammar** [AMR05, BCVVH07, CCG11, GGR14, GS09, MRS97, PSS12]. **Grammars** [AK14, Asv07, BCFR07, BESW07, BIIN04, BCC96, CCR90, DPS93, DFP99, DST01, Fer07, GSS90, Jez08, KK07, KM15, LO10, LX94, MVM07, MS16a, MS16b, MO10, Okh06, Pal08, Wili11].

**Granularity** [Kri97]. **Graph** [ADR11, AAV00, AB91, AMOZ07, AJMO11, AT15, BBC00, BDI11, CC98, CHYT14, DLT06, FW90, FL97, GO09, GR00, HO99, HZZT12, KLB13, Oka98, RK09, RZ12, UU07, ZH06].

**Graph-Bin** [BDI11]. **Graphs** [AFB96, AP92a, AB16, AS16, AO10, AT11, AB17, BT13, BT017, BPR90, BO97, BBLH97, BB04, BS16, BPT06, BLM04, BHR09, CP16, CV14, CL07a, CLL08, CPC99, DL12, DP90, DW04, ERW04, EL13, EZ01, FWZ15, FP04, FGV99, Fuj16, GV03, GP09, GS09, GP17, HKT00, HB08, HLHH10, HY07, JW03, Kl096a, KPM15, KHL12, LWYL14, LW00, LO98, LV08, MR99, MTNN99, MAN05, MAN06, MNN06, NGHK15, NPSY00, NS98, OS93, RLWW96, RRT99, RR99, SS99, SG04, ST99, TV14, To016, WAF03, WFG15, WQY16, Won96, Won01, YCTW10, ZWS96, Noc98, WC13, YCL11].

**Greedy** [Fuj16]. **Grey** [CDLW05]. **Grid** [BFMBS11, JP08, LMM12, MNN06, ST93, Cas05, PT14, YLZ14]. **Grids** [Cal15, MM17]. **Ground** [Mar92]. **Group** [CLLO8, DM12, FZ15, HYT15]. **Grouping** [Lar99]. **Groups** [PP11, SS01]. **Growth** [GKRS10, Slu14]. **Grzegorczyk** [Cap96].

**GSM** [LO10]. **Guarantee** [LSWW13]. **Guaranteed** [DPR07, Ros00, YSM00a]. **Guaranteeing** [MPV04]. **Guarantees** [Pal03]. **Guarded** [FGL90]. **Guess** [FSWF11]. **Guest** [AEZ05, NO99, Zom01c].

**Guided** [CFH03, DDM07, HZZT12]. **Guidelines** [Ros00].

**Hairpin** [DK11, MMY10, PRY01, ST16]. **Half** [Kam95]. **Half-Monotone** [Kam95]. **Halting** [FO07]. **Hamiltonian** [BZ13, CP16, Noc98, NS98]. **Hamiltonicity** [LYG17]. **Handling** [BCHK09]. **Harary** [ABT16]. **Hard** [BLLS03, BVM00, Dic93, ZB00]. **Harder** [CKL15]. **Hardness** [LWW00]. **Hardware** [For10, IN05, INY07]. **Harmonic** [CCF08]. **Harmony** [LTZ12]. **HAS-160** [WLC12].

**Hash** [NAK15]. **Hashes** [Wan14]. **Hashing** [CKW09, LPP92, MB03].

**Hausdorff** [Sta05]. **Head** [KMW14b, KMW14a]. **Heads** [IT13]. **Heap** [BSG03, Jun14, Pro96]. **Hedges** [BOV08]. **Height** [Rei07, SW17]. **Helping** [AKS95].

**Heterogeneity** [RC11]. **Heterogeneous** [BLMR05, CFMR05, CSYS12, EZ01, OS01]. **Heuristic** [CHYT14, CDLV05, De06, LY94, WAF03]. **Hexagonal** [GSD03]. **Hidden** [FZ13, IMS03]. **Hierarchical** [GM90, JS02, Loh10, SVSN01, SK03, SP04, WC04].

**Hierarchies** [BLS05, BKM15, DH05, KP10a, Sch02]. **Hierarchy** [BKM11, BZ10, BJY90, CSR12, Dev02, DZ00, HW00, Okh05, PPJ08, Rei07, Sel08].
Lambda-Calculus [PT90].

Lambda-Representable [TST01a].

lambdaPi [Pym92]. lambdaPi-Calculus [Pym92].

LAN [GD98]. Language [BRST07, BV98b, CC05, CDJ09, Cos90, DH05, DGMM15, ES01, Fin12, GKRS10, HKS13, HJR12, IR14, MM05, MRS97, McN90, Okt05, OY11, PS02, Pri06, Rov00, YS13].

Languages [Ada10, AK06, AK10, AT16, BGN10, BMS92, BCR11, BCD14, BC06, BJ07a, BHK05, BCC96, BKW02, BGS11, BL12, BT13, Brz13, BL14, CPY02, CSV02, CL14, COT12, DK11, DES09, DJ12, Dom04, DK98, DT13, Brz13, BL14, CPY02, CSV02, CL14, COT12, DK11, DES09, DJ12, Dom04, DK98, DV14, DFS07, EH15, EHS15, EO13, Faz11, FLST12, Fin04, GN11, Gec07, Gia11, Glö07, Go90, HWW06, HS08, HSI1, HK03, Huy91, IJT93, IW07, IS12, Je08, JM11, Jir14, JP06, KKS05a, KPi0a, KP10b, KEH16, KL16, KY96, Kör03, KMG11, KMS06, KRK16, LNP16, LZ93, LO13, Leu16, MP07, Mig90, ND02, Ogi94, Oka99, Okt05, OY11, PRY01, PPJ08, Pig09, PP14, Pig15, Pin12, Rav08, RS12, Rei07, Sch13, Sel08, Shu07, Shu14, SR00a, SWZ97, Sta05, Sta07, Tei17, TSZ16, Tra02, YJ05, YZ07, ZQL12, vLW15].

Languages [GP13, Ata11].

Laplacian [QFL15].

Large [BIIN04, BS15, DCS13, DEMT05, FPPS03, FGH07, HH12, MDL97, Sha04, WRNK03, Wow96]. Large-Scale [DCS13].

Late [LY94].

Latticed [KL10].

Lattices [BOV08, DE08].

Laws [BE95]. Layout [CP99, Nak03].

Layouts [GKKP99].

LDPC [BBFZM06].

Leader [AOSY10, PDFZB12, FZAM08, XS06].

Leaf [BV98b].

Learnability [KY96, Oka00].

Learnable [Oka99].

Learning [CM92, CJS92, Cha97, KL00, LZ93, PFG01, SS01, Tor13, Tor15].

Left [BCHK09].

Left-Linear [BCHK09].

Leftmost [DFP99, MS16a, MS16b].

Leibniz [Sel98].

Length [AE02, DS96, Gus13, Mar09, Pro96, QLWL06].

Lengths [FT09, GP15].

Lessness [FH05].

Letter [KP10b, Wid12].

Letters [CK16, LRR08].

Level [PS12b].

Levels [BLST05, BHK05].

Lexicographically [Ueh99].

Library [AR05, RR06].

Life [EMR10, Rya15, FNI16].

Light [Hea11, Rov00].

Lightweight [HCETPL12].

Like [CFG12, CPVP08, HV02, HK11].

Limit [Go90, Oka99, Oka00, Sch02].

Limitations [HJ91, LO11].

Limited [HT12, KAPF05, Mas13, PP14, RRT99].

Limiting [AP90, CJS92, RS17, Vik96].

Limits [Ueh99].

Lindenmayer [Das04, DV11, HT12].

Lindström [BV98b].

Line [CGL12, FPS02, KL05, Mas04, Pat06, Pru17].

Linear [AK14, AMR15, BC06, BÉ11, BCHK09, CFPR03, DPR07, DI02, DGN07, FZ02, GV03, Gra90, MOM91, MTNN99, Nak03, Okt05, RLWW96, RC05, Tei17, WGF16, ZYYH14, vLW15].

Linear-Time [CFPR03, MTNN99, RLWW96].

Linearly [CM92, YCL11].

Link [FW15].

Linkable [LW06b].

Linkage [OW92, VJD05].

Linked [ACV13, KK07, Lin08a].

Links [Dre07, GKKP99, WP08].

List [Nam04].

Literally [KP10b].

Liveness [JC03].

LKH [SNWW06].

Load [Hei97, Li00a, MD00, ST01].

Local [AE02, Ar15, CYS+12, FL12, HH06, IN05, IN08, JP06, LSWW13, LPS07, RS13].

Localities [Cas95, LSGF16].

Locality [RR04].

Locally [Fri10, HJ91, RS12].

Locate [DSS08].

Location [MG14, Pri90, TZ11, XS11].

Löf [Tsu01, TST01b].

Log [GWL02, MM11, TV94].

Log-Gain [MM11].

Logic [Ano1c, AH11, BM90, DGK08, FMC04, FT11, GN04, GSZ99, HV02, HS95, Hin01, Lin08a, Luc09, MCM01, Oga00, Pre01, Rov00, RKRR02, Sal03, SMS92, Sub00a, Sub00b].

Logic-Based [Luc09].

Logical
Look ahead [Fu16, RS07]. Look-up [SK04].
Look [AE04]. Look-up [AE04].
Lookahead [Fuj16, RS07]. Lookup [SK04].
Look [BAK12, CHA +92, JS97, Leo03].
Loopless [TV07]. Lossless [CDLW05, KK05, XHLF02].
Low [IN10, KPSC08, WPZ16]. Low-Dimensional [KPSC08].
Low-Hit-Zone [WPZ16]. Low-Latency [IN10].
Lower [CE98, FY08, Gus13, LHG11, Uen13]. LR [FZCFB08, Ohk06].
LRU [De 06]. LSC [HK02]. LTL [DPR07, MW05]. Lukasiewicz [Sta07].
Lyndon [SY10, Suc90].
Merged [DD13], Merger [INY07].
Merging [CP03], Merlin [CCPS04, Vin05].
Mesh [EG02, FZCFB08, ISAZ08, Li01, RM98, ÜS02, WC04]. Meshes
[BT00, FZEBB05, JW08, Mat04, XHLF02].
Message [EGPS10, FBHH01]. Messages
[MN00]. Meta [SVSN01].
Meta-Computing [SVSN01].
Metaheuristic [HCETPL+12, LTZ12, SS12b]. Metalinear
[MS07, Sun05]. Metalogic [Cos90].
Method [ACFE09, EH12, FK13, GMNS15, IN08, KM02, Li00a, ÜS02]. Methods
[CCM97, Fre08, KKS05a, MZ01]. Metric
[CLT09, XS11]. Meyniel [RR99].
Microarray [ATK12]. Middle
[LJ17, VW93]. Millionaire [GKS17]. Mind
[KR97, Tor13, HW00]. Min-Degree [Tor13].
Mind [LZ93, Vik96]. Minima [MS99a].
Minimal [ARV07, AMR08, BBC00, CIY01, CP03, DWS15, GRV10, HYN08, HN04, HT04a, HTO4b, HJ16, Jai95, Jai98, JS97, JMR91, JJS08, MB17, Shu11, Suc90, Szw95, TA17]. Minimality [Tam08].
Minimalizations [Pol05]. Minimax
[HL04]. Minimization
[AHK07, FSM11, GLV14, JMI3, KLB13, MQ11, MQ12, ND02, Vin05, Bad09].
Minimize [AMOZ07, LRR08, Mas04].
Minimizing [DFLL02, GKKP99, HJ13, HJ17, KS10, Kör03, LY94, LLQ06, PY04].
Minimum [AJMO11, BGRY16, BB04, BRSV13, CYS+12, DGN07, DJL+07, DLC+14, FPPS03, Fu16, GMU15, GCK08, KK10, KHLC12, MPV04, MAN06, QFL+15, Tor13, WAF03, Wan04].
Minimum-Process [GCK08]. Mining
[GLW02]. Minor [NRT00]. Miss [Leo03].
Mixed [CYZ14, DI02]. ML [Has00].
Mobile [BFMBBS11, BF07, BT17, BDDN01, CISO3, DSS08, FPPS03, FH07, GCK08, HTO9, IML04, LB03, MM07, SB12, TZ11, WP08, Zom03]. Mod [HKT00, SUZ13].
Mod- [HKT00]. Modal [DL12]. Mode
[DI05, Fre05, Mas09, WLC12]. Model
[BC12, BNR99, BMS12, CFMR05, CGR13, CFH+03, DW03, EHK06, FZFDCHB05, HW10, LAHN14, LYG17, LR04, Nak04, Sak01, Sch10, SP04,Spr09, Tha91, TH01, YW06]. Model-Based [BCB12].
Model-Checking [CGR13]. Modeled
[CLT14]. Modeling
[BCC+11, Cas05, JRPIP08, KSS08, LCY12, PSS12, Sun11, XBE02]. Modelled
[HFLD09]. Modelling
[AH07, BDL08, DM05, SK01]. Models
[APP91, BBFZM06, BZ10, DMT05, For10, HJ97, HJW11, IP08, KPM15, LW+10, LW06b, RCTC+09, RS17, Sah01, Suc90, WY05]. Modes [FFH15]. Modest [Ros90].
Modification [Rud15]. Modified
[BSG03, BHL+97, ITT91, KZY17].
Modifiers [AG01]. Modular
[BPZ07, DS02, RCTC+09]. Modules
[BJ07b]. Modulo [CGR13]. Molecular
[DDM07, EHK06]. Molecules
[FMC04, FK05]. Monadic [SMS92, vdM00].
Monogenic [LV08]. Monoid
[KM08, KLS05]. Monoids [BR08, BS92, Bur12a, DM11, Géc05, Loh05, MR91].
Monotone [Kam95]. Monotonic
[ADHR09, ACV13, TY15]. Monotonicity
[JCo3]. Moore [CFG12]. Moore-Like
[CFG12]. Morphic
[Dur13, FRS06, Hon12, NP09, OY11, PS12a].
Morphism [Ram05]. Morphisms
[Hol11, JP04, Kar09, PPJR07, RS04, Teh16b]. Morse
[DSS15, Ram05]. Mosaic [BR13].
Mosses [AMR09]. Most [Brez13, SKL03].
Most-Specific-Rule [SKL03]. Motif
[PRN13]. Motifs [IMP+05]. Move [FM96].
MP [MM11]. MPEG [DE08]. MPEG-7
[DE08]. Muller [Arn17, FZ12]. Multi
[AKS14, BCC+96, CDD07, CGKN08, HP09b, KMW14b, KMW14a, Mal15, MX11, NCC+07, RR06, SK01, Ver09, WM05, YBI11, ZC13].
Multi-Cores [MX11].
Multi-Exponentiation [HP09b].
Multi-Head [KMW14b, KMW14a].
Multi-Objective [WM05].
Multi-Processor [RR06].
Multi-Push-Down [BCC96].
Multi-Pushdown [AKS14].
Multi-Receiver [CCD07].
Multi-Secret [ZC13].
Multi-Tape [CGKN08, NCC07].
Multi-Tokens [SK01].
Multi-Track [YBI11].
Multicast [FPS02, SNWW06].
Multicasting [Gon01, XLC04].
Multicomputers [MS99a].
Multicounter [Iba02].
Multidigraphs [Fuj17].
Multidimensional [KPS93, Tho06].
Multienvironment [MDAPHPJ11].
Multihead [Mac96, Slo95].
Multihop [CYS12].
Multilingual [CK08b].
Multimessage [Gon01].
Multioperator [SVF09].
Multiple [CF06, FK05, GD12, Lin07, LZGF16, LZGF16].
Multiple-Sided [XBE02].
Multiplication [MX11].
Multiply [ACV13].
Multiply-Linked [ACV13].
Multiprocessor [BLR09, CD09, SS12b, YH11].
Multiprocessors [WR16].
Multipseudoperiodic [MDGH13].
Multiresolution [XHLF02].
Multiset [BPT16, BMR14, CG06].
Multisets [Bas97, CG09].
Multistage [KAPF05].
Multitape [IT13].
Multitriangle [WQ97].
Multivalued [Lin08b].
Music [CCF09, FMN06].
Musical [CCF08, CIR08].
Mutants [MC13].
Mutual [KG11].
Mutually [YSM00a].

NAAP [LBJ03].
Name [CB09].
Nameless [Kam98].
Natural [Cha97].
Nature [AETZ05].
Nature-Inspired [AETZ05].
Near [BW14, HT09, XCY17].
Nearest [HL01].
Nearly [BJ07a].
Necessary [ZWW14].
Neighbor [ABT16, BTK13, BTO17, HL01, WQY16, LBJ03].
Neighbourhoods [DP90].
Nerode [SMS90].
Nested [CZTH13, DP14, FGL90, Gre96, HLW09, RT16].
Net [LPC11].
Nets [AH11, BCB12, GRV10, JCO3, MOM91, Muk92, RHS10, YWY94, Yen09].
Network [BRSRC11, Cus05, CL98, CX98, CCG11, DR05, FZ03, KR97, Klo96b, LYG17, LOZ98, LPS07, LU11, MKB11, Oka98, WQ97, ZYYH14].

Networks [AWF03, AOSY10, AHO13, AO11, BV98a, BNS03, BDDN01, CP99, CDPT16, CIS03, CFMS15, CL03, CY512, CHA92, Cig04, CD95, CD09, DHI09, DGN07, DCS13, DM08, FPS03, GKKP99, GSD03, GNC13, HKV17, Hei97, Hsu98, ISAZ08, JS97, KAPF05, KPK97, Láz13, Li12a, LYH15, LBJ03, MMS05, MCM11, PPR02, QD03, Ros00, SB12, SP04, TL09, WL03, WD03, WY05, XLC04, XFJ03, ZC13, DDHL11].
Neural [FIO08, IW07, KMG11, PPJR06, PPJR07, PPJS07, SRPC11].
Newcomb [Rav08].
NFA [JM99, LEO05, Pol05, RS07].
NFAs [CCP05, DESW05, Van05].
NL [DK11].

NL-Complete [DK11].
NLC [Joh00].
Node [Nak04].

Node [HKV17, WQ07, WY05].
Node-Disjoint [HKV17].
Nodes [IML04].
Noisy [MG14].

Non [AG01, Ada10, BM90, BCHK09, CD15, CK07, Dai97, DPR07, DESW05, ES01, FLST12, Fre06, GJVB006, GRB03, HL01, IMS03, Jez08, KZ10, KAP05, KUT05, MC13, PPJR06, TY15].

Non-Abelian [IML04, PP11].
Non-Boolean [PP11].
Non-Constructive [Fre06].

Non-Definability [ES01].
Non-Deterministic [Ada10, KZ10, MC13].
Non-Ending [CD15].
Non-Flourishing [BM90].
Non-Linear [DPR07].
Non-Periodic [CK07].
Non-Recursive [KAP05, KUT05].
Non-Regular [Jež08]. Non-Standard [AG01]. Non-Symmetric [GJV00b].
Non-Synchronizing [TY15]. Non-Regular-Degree [HL01].
Non-Uniqueness [DESW05]. Nonblocking [WM13]. Noncounting [KY96].
Nondeterminism [HKKŠ13, PSA17]. Nondeterministic [GBKW02, Cha02, CC05, GPS14, HK03, HK09b, HJ14, HJ17, JRP10, JJS08, Mar09, Sa092, Tha91, Vin05].
Nondeterministically [HHN+95]. Nonenumerable [Sch02]. Nonexistence [ZLL11]. Normal [Asv07, Cai94, Esi12, FSM11, Lin08a, RKR02, VS93]. Normalization [Moh02]. Note [AHR02, BB99, BHL +97, BS16, CKK02, FM13, GMU15, I1K^+04, LZ15, Mac96, Mas13, Szw95, Zaj09].
NP-Complete [MW05, GP13]. NP-Hard [Dic93]. NP-Pairs [GSZ09]. Number [AM15, AB17, AE99, CP03, CFJJ10, DV11, Dom04, FY08, FT11, GRRS14, HB06, HJK12, JW03, LZ93, Pan91, PR12, RS01, RRT99, Vik96, WQY16].

O [FLe96, OM96]. O-Trees [OM96]. Object [HK02, LX94, MT95a, YZ07].
Object-Oriented [LX94, YZ07]. Objective [WM05, YTL02]. Observable [AT12].
Observer [CCM11]. Observer-Based [CCM11]. Observing [Cas95]. Obtained [CP03]. Occurrences [CFJJ10, MS04, Sa07, SY10]. OCR [CB09].
Octal [GJMP06]. Odd [TJZ13]. Off [KL05, Mas04]. Offline [CW11]. Offs [Kap05, KKP97, Kut05]. omega [MS90, CL14]. omega-Tree [MS90].
On-Demand [PZX07]. One [CGL12, FPS02, KL05, Mas04, Pru17].
One-Turn [AK14]. One-Way [BMP15, CFY16, HIR^+92, IS12, KL12, KMW14b, KMW14a, LP11, Ob01, SKL03, Slo95, Zan91, ZWW+14]. One-Cluster [BBP11]. One-Dimensional [Dub95, SKL03]. One-Membrane [DI05].
One-Turn [AK14]. One-Way [BMP15, CFY16, HIR^+92, IS12, KMW14b, KMW14a, Ob01, Slo95]. Online [BLM15, CYZ14, DLC^+14, FCS05, JP07, JZ16, Pal03, ZZZ16].
Onto [EZ01]. Ontologies [Zho02]. Open [GPPJR13, Tsu01, TST01b]. Open-Ended [Tsu01, TST01b]. Operating [DI05].
Operation [BHK05, CK08a, CLMP16, DH05, MR91].
Operational [BMSMT11, É114, KEH16].
Operations [AP92a, BGN10, CP06, CS96, CGKY11, CGKY12, FM06, FMC04, FT11, GNC+03, KKS05b, PS02, SY07, SEE99, SD16].
Operator [AT16]. Operators [HW00, PR11]. Opportunities [Zom03].
Optical [BF97, KAPF05, LYH^+15, PA98, Sah01, WH03]. Optically [BT00]. Optimal [AAA^+09, AC05, BF07, CZTH13, CP99, Cal15, CDPR11, CS96, DSS15, FZ03, FM01, FOP05, GD98, GZ12, HT09, KK90, KR08, Lag17, LZ15, MQ11, Nah04, OS01, OSZ92, Poo04, TCT14, TJZ13, WPZ16, WO03, WH03, XCM16, ZTT91, ZWCL14].
Optimally [AAV00]. Optimization [JS02, KM90, KAPF05, MZ01, SS009, WM05, YTL02]. Optimizations [GV03].
Optimize [GSZ99]. Optimum [CD95].
NY10, PPJ06, PT07, PV13, SY05, Shu16, Sos09, Wan06, YN08, Yi13, Yu11, Zom01c.

Preference [FDFZB12].


[BCC+96]. **Pushdown**  
[AK14, AKS14, CVMVMV00, IJT+03, KMO10, LNP16, Löd15, Lug11, Mas13, Ott15, Pitt95, Pig09, RT16, Sa92, Set08].  
**Pushout**  
[ALR04].  
**PVsub**  
[AP92a].  
**Q3Ap**  
[LMM+12].  
**QoS**  
[XLC+04].  
**Qsort**  
[MN11].  
**Quadratic**  
[BBP11, CC12, KS10, NSVA12, XCY17].  
**Quality**  
[MKB+11].  
**Quantifiers**  
[BV98b].  
**Quantifying**  
[EGPS10].  
**Quantisation**  
[CCM11].  
**Quantitative**  
[DV14].  
**Quantum**  
[ATK12, Arn17, AD12, BMP03, BMP15, BCF03, BWB03, FZ15, Fia08, GRB03, GJMP06, Gro03, GQZ15, IMS03, IN13, KR03, Kud07, LB04, Nis03, SY12, YSD16, Yam03, ZQL12].  
**Quasi**  
[Ber13].  
**Quasi-Eulerian**  
[Ber13].  
**Quasi-One-Cluster**  
[Ber13].  
**Quasi-Relabeling**  
[MT10].  
**Quabit**  
[GRB03, JM03].  
**Queries**  
[Ar17, Ar15, CG04, GZ99, Lag14].  
**Query-based**  
[CG01].  
**Query-Optimal**  
[TV14].  
**Querying**  
[Lag17].  
**Queue**  
[Eln06, Iba02].  
**Queue-Connected**  
[YLZ14].  
**Queuing**  
[CS99, Fer07].  
**Quickest**  
[GR03].  
**Quickheaps**  
[NPPS11].  
**Quine**  
[RS95].  
**Quine-Bernays**  
[RS95].  
**Quotient**  
[BL12].  

**Rabbit**  
[FSWF11].  
**Radical**  
[BW14].  
**Radio**  
[DGN07].  
**Radius**  
[Coo17, DESW05].  
**Ramsey**  
[PDPFJ11].  
**Random**  
[BT17, BKS12, FZT14, KPM15, Li12a, MD00, NPSY00, Rud15, Sub05, ZG13].  
**Random-Access**  
[Rud15].  
**Randomized**  
[BDDN01, DR05, FDFZB12, Li00b, MD00, RS00, SRR15].  
**Randomness**  
[Sun00].  
**Range**  
[DGN07, MS99a, FPP04, RGR11].  
**Range-Aggregation**  
[RGR11].  
**Ranges**  
[Jir14, WY05].  
**Rank**  
[Sun00, TA17].  
**Ranking**  
[BPZ07, DPS09, ERW04, MPS09, Nak04].  
**Rate**  
[GKRS10, Pal03].  
**Ratio**  
[FCS05, HZ12].  
**Rational**  
[AK06, BGN10, Fin12, RC05, RS15, SH07, TW11, ZC13, ACM11].  
**Rationale**  
[CFMR05].  
**Re**  
[RR06].  
**Re-Distribution**  
[RR06].  
**Reachability**  
[FT09, GJ06, HBI10, IBS01, IDY08, Kar09, KPS08, LN08, Mar09, Set08, SN13].  
**Reaction**  
[BFM06, BEMR11, EMR10, EMM11, EMRB12, ER14, SA13, TA17].  
**Reactions**  
[HFLD09].  
**Reactive**  
[SR00a].  
**Real**  
[KD99, Leu04, LCY12, Pal03, Rya15, SK01, YS13].  
**Real-Life**  
[Rya15].  
**Real-Time**  
[KD99, Leu04, LCY12, Pal03, YS13].  
**Realistic**  
[DVG03].  
**Realizability**  
[LRL06].  
**Realizer**  
[MAN05].  
**Real-world**  
[Mee12].  
**Rearrangements**  
[SK96].  
**Reasoning**  
[DN07, EN03, LSWW13, MT95a, TW09].  
**Reassignment**  
[KZ10].  
**Rebalancing**  
[LF96, MO94].  
**Rebound**  
[IK+04].  
**Receiver**  
[CCD07].  
**Reciprocity**  
[SB12].  
**Reciprocity-Based**  
[SB12].  
**Recoding**  
[GPC09].  
**Recognition**  
[DPR09, GP03, JP07, NWK06, Okh03, YS13].  
**Recognizable**  
[DK98, Fin04, Gia11, RW11].  
**Recognize**  
[CR15].  
**Recognized**  
[MM05, ZQL12].  
**Recognizer**  
[SRPC11].  
**Recognizing**  
[BM90, LWW00].  
**Recombinants**  
[BRSV13].  
**Recombination**  
[DMD07].  
**Recommendation**  
[GWL02].  
**Reconfigurable**  
[BBFZ06, BT00, FZEBB05, FZFDHB05, MDL97, PA98, RM98, WH03].  
**Reconstructing**  
[FST06].  
**Recovering**  
[IN13].  
**Recovery**  
[WZ15].  
**Rectangle**  
[Uen13, WLC12].  
**Rectangles**  
[Nag06].  
**Recurrence**  
[Dur13, LS98].  
**Recurrent**  
[MO94, NP09].  
**Recursion**  
[JK14b].  
**Recursive**  
[APP91, AT12, KO02, Kap05, Kut05, LZ93, LPC11, SA11, YCTW10].  
**Recursively**  
[vLW15].  
**Red**  
[CS96, MC02].  
**Red-Black**  
[CS96, MC02].  
**Redex**  
[FW90].
Road [CKK02]. Robots [BFMBS11, BT17]. Robust [DPR07, DW03, ECY02, HJ91, HVJ93].
Robustness [MCS08]. Root [CHZ06]. Root-To-Frontier [CHZ06]. Rooted [Yah12]. Rosser [KM07b].
Route [GR03]. Routed [PV98]. Router [LOD07a, LOD07b, MMS05]. Router-Based [MMS05].
Routing [BDC90, BDDN01, CHA+92, CHYT14, Cig04, FPS02, GD08, GFK08, GP17, JW08, KAPF05, LPC11, OS01, PA98, RM08, RS01, RVT06, Si97].
Row [WAG+06]. RP [BJY90]. Rule [Fe07, SKL03]. Rules [AFO06, BCHK09, Zet11].
Rumors [XCC16]. Run [LD01, MHT09]. Run-Time [LD01, MHT09]. Runs [FY08, FJ12, KMIS09]. Runtime [Lud15].
Rupture [ABT16, As16, AO10, AA13, BTO17].
Safe [Cap96]. Safety [CHYT14, IBS01]. Salesman [BL01]. Salesmen [Klo96b].
Scales [CM12]. Scan [JP08, PRS98]. Scanning [DES09]. Scattered [DSS08, EO13, EL14, RC05]. Scattering [BFMBS11, BT17, WQY16]. Scenario [YTL09]. Scenario-Based [YTL09].
Schedulability [WR16]. Schedule [CD95, RWZ01]. Scheduling [BV98a, BS01, BLMR05, BNR99, BDG+11, Cas05, CTZ01, CYZ14, CR14, DFL02, DEZ01, DLC+14, DEMT05, FL07, FBBH01, FCS05, Gro03, HB06, HL04, HLW09, Jan93, JSo10, Kko6b, KD99, LAHN14, LTZ12, LTW02, LLZ07, Li01, MXY+04, Mas04, NN93, Pal03, PY04, PZX07, PFG+01, RC11, SSS09, SSS07b, Sun11, SS12b, YW05, WR16, YH11, Zaj09, Zom01b, Zom01c, dSS01].
Schema [KS11]. Scheme [DSC13, DZH16, FP03, Fu16, LD04, LHT09, LH11, MD00, TWZ11, ZC13]. Schemes [FL12, GP17, JSo10, PNN+10, SNWW06, Sun00, WGF16]. Schnyder [MAN05]. Schützenberger [DV14].
Science [HO00]. Scientific [RR04]. Scope [LNP16]. Scope-Bounded [LNP16]. Score [HN06]. Screening [IN08, IN05]. Search [BRM07, Brz13, CS00a, Fle96, HM04, IN05, IN08, JS03, KK90, LTZ12, PRN13, WM05, ZZZ16]. Searching [Ami05, CFG12, DE08, KPS93, MP93, ST93].
Seat [KL05]. Seating [KL05]. Second [LHG11, Set08, Szw95]. Second-Order [Szw95]. Secret [LD04, MNS11, Sun00, TWZ11, WGF16, ZC13]. Secure [MG14, SNWW06, SNJ11, TWZ11].
Security [DLW02, LW06b, NAK+15, SNJ11]. Seeking [MD00]. Selected [Pal01a]. Selection [ATK12, SRR15, WRNK03].
Selective [HHN+95]. Self [CDPT16, DDHL11, DTY15, DWS15, FDFZB12, FZ08, GHJS05, GS12a, HHW99, JK14a, JK14b, KK10, Kar99, Láz13, NGHK15, ST11, San13, SW17, WD03, X06].
Self-Assembly [JK14a, JK14b, SW17]. Self-Pruning [WD03]. Self-Similar [JK14b]. Self-Specifying [HHW99].
Self-Stabilizing [CDPT16, DWS15, FDFZB12, FZ08, GHJS05, GS12a, KK10, Kar99, NGHK15, ST11, X06, DDHL11].
Selfish [MV11]. Semantics [AG01, BMSMT11, BKKR01, CZ11, Cos90, Kri97, Luc09, MT95b]. Semi [KK05, SF07]. Semi-Automatic [SF07]. Semi-Lossless [KK05]. Semiautomata
Solution [Anc02, NSVA12, Pan91].
Solutions [BIIN04, CK07, Ru06, ZZT91].
Solver [ELS15].
Solving [Com90, Fri10, FL12, GGR14, Gon01, HSS07, Lin07, LMM+12, MZ01].
Some [AA13, BM16, BCR11, BE95, Bod91, CCF08, CKZ17, For10, FH11, GC15, Gol90, IR04, IR14, KPS93, Lud07, Kun16, LL16, MMY10, Mc12, Oka00, Pri06, Shu14, TL99, TY15, YWY94, ZQL12, ZZC15, vdHM92].
Sort [Lar98].
Sorted [MRT95, Ole92, WO03].
Sorting [BLLS03, BMR+14, BNS03, DR05, FS05, MRRV06, MIN11, PA98, QLWL06, RM98, WRNK03].
Soundness [Kam98].
Source [GR03].
Source-Based [GR03].
Space [AOSY10, BGRY16, CF06, CZ11, Fre02, HIR+92, JZ16, Kör03, MMP10, PLMZ11, SSK96, Sta05, US02, YS13].
Spaces [Câm14, CLT09, HIW01].
Spanners [AWF03, DH96, GS09, WLF03].
Spanning [BB04, Dar13, ERW04, ET14, Fuj17, HLHH06, LLY13, LZ12, MTNN09, MA05, Tor13, YCTW10].
Sparse [DR94, ET14, VP99].
Sparserness [DH96].
Special [Ano01c, BRST07, CD02, Hau00, Hau98, LC02, Pal01b, Pre01, RS00, Smy12, TY02, Yu02, Zom01a].
Species [MC08].
Specific [BIIN04, LKM02, SKL03].
Specification [BJ07b, SKW08].
Specifications [BMW91, HK02, LSWW13, SR00a].
Specifying [HHW99, HIW11].
Spectra [CH15, SH17].
Spectral [Coo17].
Spectrum [RK09].
Speed [KKP97, RS17, WH03].
Speed-Up [WH03].
Speed-up [BR08].
Spiky [BDSV06].
Spike [PPJR06].
Spikes [FI08, KMG11].
Spiking [FI08, IW07, KMG11, PPJR06, PPJR07, PPJS07, SRPC11].
Spin [ILT11].
Splicing [ARV12, LMIW08].
Split [DES09, GL14].
Split-Minimization [GL14].
Splits [CB09].
Splitting [PRS98].
Spreading [XCC16].
Squad [GLP07].
Squarefree [JP07].
Squares [GLP07, MMR10, ORS08, PR12, Sha04].
ST [MNS11].
ST-Numbering [MNS11].
Stability [EMRB12, Kd99].
Stabilization [DTY15, San13].
Stabilizing [CDPT16, DWS15, FDFZB12, FZAM08, GHJS05, GS12a, HKV17, KK10, Kd99, NGHK15, ST11, X06, DDHL11].
Stable [Hol11].
Stack [BBK17].
Stage [ZZZ16].
Standard [AG01, BPR09, MIN11, PR12, ZC13].
Star [BL12, CC98, CHYT14, CGKY12, HLHH06, HY97, Jir14, MR91, OY11, YJ05, WC13, YCL11].
Star-Free [BL12, YJ05].
Start [FO08].
State [AM09, ARS11, AMR11, BGN10, BLMR05, BMMR11, CSR12, CZod1H17, CK08a, CLMP16, CCP05, CGKN08, CGKY11, CGKY12, DS02, EH15, EHS15, GY12, GYS14, HS08, HKNS16, HKO2, IBS01, JJS05, Jir14, KEH16, KLH16, KLS05, Mac96, PS02, PR11, SS07a, SY07, SMS06, SN13, Yen08].
State-Based [HK02].
State-Sized [CSR12].
Stateless [KMO10, KMW14b, MS13, YD08].
States [BLR09, BMR15, CP03, HKK13, JMO3, LB04, MVMM02, NWK06, ZQL12].
Static [BET03, Câm14, Cas95, CZ09, TZ11].
Station [DRDN08].
Stationary [PT14].
Stations [FZ03].
Statistical [GK11, MCG14].
Stay [BC12].
Steady [BLMR05].
Steady-State [BLMR05].
Stealing [Ros00].
Steiner [SSK96, Tor15].
Stencils [Leo03].
Steps [LOZ98, Muk92, ZYLW12].
Stepwise [KN93, MM11].
Stevens [Fri01].
Stevens-Stirling-Algorithm [Fri10].
Stirling [Fri10].
Stochastic [Li12b, SB01, Tor13].
Stoichiometric [MM11].
Storage [OM06].
Stored [Ru15].
Stored-Program [Ru15].
Straight [Pat06].
Straight-Line [Pat06].
Strategies [BRSRC11, BKRR01, Fia08, GZ12, Rog09, TZ11].
Strategy
31

[BC12, FL12]. Stream [BRSRC11]. Streaming [BLM15]. Streams [Lin07]. Strict [RS13]. Strictly [Dai97, MAG09, RS12]. String [BHO2, CZoDH17, CF06, CCI12, DS96, FY08, GHWZ05, KMG11, KMIS09, LRR08, LCL06, NWK06, NK08, YBI11]. Strings [BCFL12, CFIJ10, DD08, FS05, Fre05, FRS06, IN13, JP07, Lag14, Smy12, SW09, TCLS10, ZBS05, Zha17]. Strong [BJY90, DP14, GM90, Iba11, NGHK15, Teh16a]. Stronger [NPPS11]. Structural [BCB12, JK14b]. Structure [AK10, BSG03, CCF08, CIS07, HK95, IIT91, JMR91, LKM02, MGGP08, MO10]. Structures [ACV13, Cha02, ER14, JK14b, LOD07a, LOD07b, Lin08a, RGR11, SKL03, Sun00, WRNK03]. Study [CSY03, FK06, VJDT05]. Sturmian [BPR09, DD06, Mig90, PR12, Tho06]. Style [Nis07]. Subalgorithm [BT07]. Subclasses [BHK05, Gia11, TSZ16]. Subcubic [SG04]. Subdivision [XHLF02]. Subdivision-Based [XHLF02]. Subgraph [AB91, GMU15]. Subgraphs [ET14]. Subgroup [FZ13, IMS03]. Sublinear [FMN06]. Sublinearly [MMP10]. Sublogarithmic [HIIW01]. Submatrices [WAG06]. Submodular [SSS09]. Suboptimal [GD98]. Suboptimal-Optimal [GD98]. Subregular [HJK12]. Subregularly [DST10]. Subsequence [AE05, DD13]. Subsequential [AM03]. Subset [CIS03, Mar09, Vor16]. Subshifts [MM17]. Substitution [KN93, Kam98, Mal07, MCM11]. Substitutions [Dom12, KL03, Tho06]. Substrings [DS96, IB12]. Subtree [BVM00, Gre96, HLY04, KEH16]. Subtree-Free [KEH16]. Subword [BPR09, CK08a, Čer08, Faz08, FM13, MS04, Sal07, SY10, TSZ16]. Subword-Free [TSZ16]. Subwords [AC11]. Successful [Rog09]. Succinct [BMP03, HYN08, KRK16, ROK08]. Sufficient [KL00, Oka00, WFG15, ZWW+14]. Suffix [DGM15, FS06, GPC09, HBIT08, Hol11, LJA09, MM05, PL06]. Suffixes [BMR+14, FS05]. Suggestions [FH11]. Suites [BMS12]. Sum [KMIS09]. Summary [GH15]. Sums [Sal11]. Super [CV14, LLY13]. Supercompiler [LN08]. Supernode [JS03]. Superstring [lw05, LW06a]. Supertrees [NRT00]. Supply [IZN05]. Support [LRR08]. Surface [BPT06]. Surfaces [AAH02, Fre02]. Surveillance [MB+11]. Survey [DGK08, Man15, MOM91, PPJS07, PPRPS11, Riv04]. Survives [JYF91]. SVMs [ACM11]. Swaps [CCFG12]. Switched [RVT06]. Switches [GFK98]. Switching [GP09, KG11]. Symbol [NCC07]. Symbolic [BB03a, Bee95, BCP07, Com90, MC13, MB06, Set08]. Symbols [DV11]. Symmetric [GJV06b, O’N15, TWZ11, Van05, KR97]. Symmetries [BDSV06]. Symmetry [Cer08, MRS07]. Symport [AFO06, ARV07]. Symport/Antiport [AFO06, ARV07]. Synchronization [FMV13, GLP07, Vor16]. Synchronize [BGMV08, IT13]. Synchronized [AK14, CCK02, HIR+92, Slo95]. Synchronizing [AR16, BBP11, Ber13, TY15]. Synchrony [SR00a]. Syntactic [BL14, KM08, Sak01]. Synthesis [BBL+12, SF07]. Synthesizing [HK02]. System [AMR09, BGMV08, CLT14, EZ01, FK06, GLW02, GM90, HK95, NSVA12, SK01, TA17]. Systematic [JP08]. Systems [ADHR09, AFO06, ARV07, AKM+11, ARV12, ABL+11, AKS95, AKS14, AH07, Bar90, BCVHH07, BLR09, BF07, BCC+11, BF06, BEMR11, CE98, CD06, CCFS07,
CFH+03, CZ11, CVMVM00, CVPV08, CVDV10, CVOV11, CK07, DPR07, DI05, Das04, DV11, DG09, DEZ01, DZ00, DG90, DPS97, EMR10, EMR11, EMRB12, ER14, FFH15, FOP05, Fre05, FO07, FO08, F008, FH11, GH07, GHZW05, GM90, GCK08, HT12, HK02, IBS01, IYD05, IW07, Iba05, IST05, ILT11, JP06, JP04, Kri92, KMG11, KMS06, KMK11, KRK16, LTZ12, LZGN06, Leu04, Li01, LCY12, Li12b, LMW08, Luc09, Lug11, Mad03, MS07, MM11, MVMM02, MDAPHPJ11, MT95a, Mas09, MO07, MO09, MDL97, Mor10, Muk92, MC13, MB06, OY11, Ott13, Ott15, PDPPJ11, Pau00, PPJR06. Systems [PPJR07, PPJS07, PPJY08, PPRPS11, Pen93, PBMZ06, PT90, PLMZ11, PFG+01, PSS12, Qua07, RCTC+09, Sal13, SVSN01, Sub06, Set08, SRPC11, Sta05, Sun05, Sut03, TA17, To08, Tra08, WC04, Wil91, YDI08, Yen08, ZC05].

Systolic [FGS+90, MP91].

Table [BESW07, LWW00, NKW08].

Table-Driven [BESW07, NKW08].

Tables [LOD07a, LOD07b]. Tags [HMZ05].

Tally [DR94]. Tamaki [RKRR02].

Tandem [Riv04]. Tape [AMR11, CGKN08, NCC+07].

Tapes [KSY14]. Tardiness [KS10]. Target [DEKZ11]. Target-Controlled [DEKZ11].

Task [BNR99, DEZ01, EZ01, FL97, FHBH01, RR06, Sun11, YH11]. Tasks [HL04, LTW02, MZ01, ZC05].

Taxonomies [KS08, ROK08].

Taxonomy [CFRD08, GiG10]. Technique [EL13].

Techniques [FZ02, HPV99, RK09, SEE99].

Telecommunications [AC05].

Temperature [JK14a].

Template [DDM07, WH03].

Template-Guided [DDM07].

Templates [ER06]. Temporal [GN04, LRT92, PQ06, Pen93, SMS92].

Teleseness [LWYL14].

Tents [US02].

Term [Bar90, FW90, TST01a]. Terminating [Mas09].

Termination [CGR13, DPR07, DG09, GHZW05, KM02].

Terms [Hir91, JC03, OY11, YTN01].

Ternary [Jir11, XCY17].

Tessellation [Pr17]. Test [AKM+11, BMS12, CDJ09, FK13].

Testability [RS13]. Testable [KP10a, RS12].

Testing [AMR11, BDSV06, CLT09, CL10, HL06, MSR06, Mer08, WCD+14, Yah12]. Tests [KY90].

Text [CK08b, KK05, ZHZ11].

Texts [CFG12, CIRS08, IB12].

Their [CLLL08, HJ14, KM08, KP10b, KY96, L011, MS16a, MS16b, QD03, SY07].

Theorem [BC06, BSO10, BGS11, DV14, G11, GH13, GRRS14, Ruo96, SMS90, VG01, KPS13].

Theorem-Proving [GHS13, GRRS14]. Theorems [Su90].

Theoretic [DGMM15, FH05, FZ15, GC15, Pan91, Su90a, Sub90b]. Theoretical [Ami05, HYN08].

Theories [CGR13, Mar92].

Theory [AR16, AD12, BK95, BRST07, Bur12b, Kam95, Láz13, McN90, SMS92, Smi95, Suc08, Sut15, Tso11, TST01b, Wn04, YLZ14, Zom01c].

Thesis [AD12].

Thoughts [Mec12].

Three [Cha02, CLT14, CK07, ET14, Fin12, KKH90, Tse16]. Three-Edge-Connected [ET14].

Three-Round [CLT14].

Three-Vertex-Connected [ET14].

Threshold [CCD07, SUZ13].

Thresholds [GP15].

Tight [DFCH13, Ram05].

Tight [AKL+13, HJP+13, FZ07, YS13].

Tight [FZC06].

Tightness [CD09].

Tiles [JK14a, JK14b, SW17].

Tiled [Leo03].

Tiling [Gia11, Mar08a, PM13].

Tilings [Mar08b].

Time [AAV00, ANDZM09, BCFR07, Cai94, CD06, CM12, CCI12, CQ11, CFPR03, DPR07, DFLL02, EH12, FZAM08, FZCB08, Fle96, FMN06, Fri10, GKR110, GO09, GV03, Go14, Gra90, HG11, IR14, IZN99, JWB03, Joh00, Kör03, KD99, Kri97, Lag17, LD01, Leo03, Leu04, LLQ06, LCY12, LW00, MM97].


Time-Interval [NTSH06]. Time-Shuffling [EH12]. Timed [ACFE09, Kr92, NTSH06].

Times [Li12b, SSS09]. Tissue [AF06, ARV07, CVPV08, FOP05, NSVA12].

Tissue-Like [CVPV08]. TLC [Hen02].

Token [DG98, GS12a, PT14]. Tokens [DSS08, SK01].

Tolerance [FWZ15, HY97, KR97, LYH+15, LZGF16].

Tolerant [CHYT14, FZEBB05, LPC11, XS11]. Tool [HPV99]. Top [LW93]. Top-Down [LW93].

Topic [LKM02]. Topic-Specific [LKM02].

Topics [GPPJR13]. Topological [CC98, FS98].

Topologically [HCG96]. Topology [FH11, Hei97, KG11, Oka98].

Tori [FHL07, LLY13, Sib97]. Torus [BF07, ISA208, LYG17, Mar97]. Toruses [GLP07].

Total [ALR04, DFLL02, FIO08, IZN99, KS10, LLQ06, LWYL14, PY04, Smi95]. Totally [FGV99].

Tour [BEMR11]. TPR [IML04].

Trace [BR08, Gol90, Pen93]. Traceability [HCETPL+12]. Traces [LWJ+10]. Track [YB11].

Tractable [BCR11, HL06, YHK14].

Trade [Kap05, KKP97, Kut05]. Trade-Offs [Kap05, KKP97, Kut05]. Traffic [DEK11].

Trains [PPJR06]. Trajectories [DKS11, DS05, KKS05b]. Transactional [SK01].

Transducers [AM03, AM09, ARS11, AMR11, AMR11, BBL+12, BBK17, CHG05, FSM11, Gaz06, Iba15, Mal05, Mal15, Man15, Moh02, Moh13, RT16].

Transduction [BCC+11]. Transductions [Sut14]. Transfer [HLY+04]. Transfers [NN93].

Transfinite [DN07].

Transformation [ALR04, AT15, BTK13, BTO17, TSS13].

Transformations [KLS05, MRS97, RKRR02]. Transient [BLY12, YBM11, YB06]. Transients [GB03]. Transition [Muk92, Tam08].

Transitions [ZYMW12]. Transitive [DI02].

Transitivity [JP06]. Transmission [JS97].

Transparent [GD98, YSD16]. Transporter [SS07b]. Transpositions [CL07a].

Traveling [BL01]. Trawling [DEK11].

Tree [AHK07, ABH+09, BB04, BCHK09, BKW02, CDPT16, CS00a, CHZ06, DL12, DST01, EM11, FGS+90, FTT10, Fle96, FSM11, Fu17, Gaz06, Gé07, HH11, HBIT08, JMI3, KM90, KEH16, KLH91, KK90, Li00a, LZ12, LJA09, MO94, Mal05, MT10, Man15, Ma02, MP91, PR00, PAS08, RAB15, Rei07, RVT06, SM09, SYF09, Ter17, Tor13, XSO6, YHK14, ZM11, DDHL11]. Tree-Based [ZM11]. Tree-Height [Rei07]. Tree-Width [Fuj17].

Trees [BYP95, CS96, Dar13, DOR06, ERW04, FDFZB12, FA06, Gre96, HL01, IML04, IZN09, IZN05, JL01, JS03, JK07, Lag17, LW93, LF96, MM17, MTNN99, MAN05, OSZ09, OW09, P195, PV98, PL06, Pro96, RS01, Sm02, Smy12, XHLF02, YTN01, YCTW10, ZBO0, ZBO2, ZH06].

Treewidth [Klo96a]. Trellis [FGS+90].

Trémaux [DOR06]. tri [NS13]. Triangle [FP04, XHLF02].

Triangles [AA00, MB17, Sib97]. Triangulating [AFB96]. Triangulation [DPT02].


Trinomials [WXF16]. Triple [JS97, LOZ98]. Trivalent [CP99]. Trivial [BL14].

Truck [MXY+04]. TSP [Go14].

Tube [AKM+11]. Tunable [BBM+12].

Turing [AD12, Cap96, Dub95, HIW01, HVI93, HIT91, IIK+04, Mer08, Slob95]. Turn [AK14].

Tutte [GO09]. TVDH [AKM+11].

Two [AGM14, ARS15, BSBZ08, BT00, BKW02, CH15, CL15, CdL04, CHZ06, CGKY11, CGKY12, DLT06, DJ12, FSO5, FL12, GP15, HKV17, HJP+13, HL06, HKK+13, HG11,
IJT°93, IS12, JP06, JM03, Kap05, KYZS17, KKH90, KP10b, Klo96b, KL11, KMO10, LY94, Len04, LLZ07, Mel93, OS01, Pru17, RWZ01, RLWW96, SS07b, Ste93, SMAN13, WO03, XZS16, ZZZ16, ZQL12, ZG13.

Two-Dimensional [AGM14, BT00, CdL04, DJ12, JP06, Pru17, SMAN13]. Two-Face [RLWW96]. Two-Machine [LLZ07, SS07b]. Two-Pattern [FS05]. Two-Prime [KYZS17]. Two-Processor [Leu04]. Two-Pushdown [KMO10]. Two-Way [BKW02, CL15, HKK913, IJT°93, IS12, Kap05, KL11, ZQL12]. Type [Bar90, CZTH13, Hir91, Kam95, MM17, MN00, PI95, Smi95, Tsu01, TST01b]. Type-Free [Kam95]. Typeness [KMM06]. Types [APP91, TZ91].


Union [CGKY11, EHS15, GNC°03, HS08, JM11]. Union-Free [JM11]. Unique [DD08, Ruо96]. Uniqueness [DESW05]. Unit [Fuj16, FCS05, Zaj09]. Unitary [HN06]. Universal [AKM°11, ARV12, CL14, DG90, Lis93, Pol05, Sch02, Ver09]. Universality [Bur12b, CP06, JK14a]. Universally [Tra02]. Universe [MAG09]. Unknown [LP11]. Unknowns [CK07]. Unordered [FA06, YHK14]. Unranking [ERW04]. Unrelated [Jan93]. Unreliable [KY90]. Unsolvability [BHK05]. Unweighted [MQ12]. Update [Fle96, GPC09, Lag17, LOD07a, LOD07b]. Update-Efficient [LOD07a, LOD07b]. Updating [LW93, OW92]. Upper [BBP11, ZSW14, ZG13]. Ups [JJ08]. Upward [HL06]. Use [BCC°11, SS12b]. Used [LKM02]. Useful [BGRY16]. Usefulness [BPR09]. User [DE08]. Using [AC11, AH07, BBFZM06, BS01, Bee95, BC12, CTZ01, CK08b, DW04, DSS08, DZ00, DE08, EP17, FGH°07, FHL07, FK13, FNI16, GD98, HHH07, HV02, HP09b, HFLD09, IML04, ILT11, IN07, IN08, IN10, Ja95, KAPF05, KS10, LX94, LB04, LWJ°10, MO94, PAS08, Pol05, RCTC°09, SKL03, SB01, SN13, Wan14, WXP16, WM13, XHLF02, YBI11, dSS01]. Usual [ES01].


Verifiers [YSD16], Verifying [FGH+07, HV02], Version [Jun14], Versions [BSBZ08, Versus [COT12, DPS97, CV13], Vertex [AT11, ET14, FP04, Kan15, PRS98, RZ12, SS99, WQY16], Vertex-Connectivity [FP04], Vertex-Neighbor-Scattering [WQY16], Vertices [DW04], Very [FPPS03, FGH+07], Via [BCDP08, Kar09, KL05, LN08, YLZ14, Zan91], Video [HT09], Video-On-Demand [HT09], View [Ami05, DD12], Viewed [Wil91], Viral [DM05], Virtual [BCC+11, GNC+03, LJ09], Visibly [RT16], Visitors [ECY02], Volume [Ano97, Ano98, Ano01a, Ano02, Ano03a, Ano04a, Ano05a, Ano06, Ano07, Ano08, Ano09, Ano11, Ano12, Ano13, Ano14, Ano15, Ano16], Volumes [BCC+11], Vs [SR00a, HKKS13], vs. [DTY15], VTLoE [MT95a], Vulnerabilities [DW04], Vulnerability [AT11, AT15].

Walk [BKS12, Li12a], Walking [DPT02], Walks [Sub05], Walsh [CH15, SH17], Watson [KM08], Way [AM09, BMP15, BKW02, CL15, CFY16, HIR+92, HKKS13, IJIT+93, IS12, Kap05, KL11, KMW14b, KMW14a, Obt01, Slo95, ZQL12], WDM [XLC+04], Weak [Asl16, BSOR10, DTY15, GV03, KR08], Weak-Bisplit [GV03], Weak-Rupture [Asl16], Weakly [AWF03, DWS15], Weakly-Connected [AWF03], Web [EYC02, HM04, NH02, Zho02], Wedderburn [AR16], Weibull [PNN+10], Weight [CS00a, FPPS03, LW93], Weight-Balanced [LW93], Weighted [AMR05, AM09, AJMO11, CL15, CLOZ04, CGKNO8, DM11, DP14, ÉM11, GVL07, IMP12, JC03, KS10, LLQ06, Mal05, MQ12, Mal15, Moh02, Moh03, Oli13, PYTHON10, SS07a, SVF09, Tei17, ZHZ11], Weights [HN06, KR16], Well [Hut02, RT16, ZH06], Well-Defined [Hut02], Well-Nested [RT16], Well-Orderly [ZH06], Wheel [AB17], Wheels [AO11], Where [WCD+14], Whether [CDJ09, DK11], Which [ERW04], While [GPC09], Width [BLM04, DL12, Fuj17, GR00, JYF91, LV08, MR99, PR00, RVT06], Wildcard [DES09], Wildcards [Zha17], Wilf [BSOR10, KPS13], Window [KO13], Winning [Fia08], Wireless [AWF03, AHL+13, BNS03, BDDN01, CYS+12, DCS13, FPPS03, Li12a, MG14, MKB+11, SP04, WLF03, WP08], Within [AE04], Without [CC05, FZT14, GKS17, Lug11], Word [BBP11, CR15, CHKL07, CK07, DP14, DSS15, Hon12, IYZ04, LP11, Mar92], Words [APV06, Ata07, BPR09, BC06, BSBZ08, BSOR10, BS12, BMR+14, BHNR04, BJ05, BJ06, BJ07b, CdL04, CRSZ11, CK16, Čer08, CGL12, DGK08, DL12, DR12, DSS15, DMSS16, ÉO13, FJPS16, GPC09, GHS13, GRSS14, GS12b, Gus13, HH12, HN10, IYZ04, JP04, KM07a, KM08, KMS11, Lód15, MMR10, MPV04, MDHH13, Mel93, Mig90, PS12a, PS12b, PR12, Pri06, Ram05, RS04, Sal11, Sha04, ST16, Tch15, Teh16b], Work [BBM+12], Worker [DPR+08], Workflows [LBL06], Working [Elm06, Fre05, PLMZ11], Working-Set [Elm06], Worksharing [RC11], Workstations [Ros00], Wormhole [PV98], Worst [Fle96, Lag17, PSA17, YH11, ZSW14], Worst-Case [Fle96, Lag17, YH11, ZSW14], Wreath [BK16], WWW [LKM02], Yao [GKS17], Yen [AH11], Yield [ER14], Yu [CISS12, SSS13], Zero [LL16, WCD+14], Zero-Difference [LL16], Zero-Knowledge [WCD+14], Zoltán [Fül17], Zonal [CL03], Zone [WPZ16], Zoom [ER14].
References

Aytac:2013:SRR


Ahn:2009:COH


Aichholzer:2002:FPS


Accornero:2000:AST


Arvind:1991:EDG


Aytac:2017:BNW


Ausiello:2005:CD

Abdulla:2009:CBT


Anceaume:2011:DEC


Altundag:2016:NRD


Alba:2005:BPG


Alazemi:2011:CSU


Andre:2009:IMP


Allauzen:2011:DCD

Cyril Allauzen, Corinna


[ACV13]

[AD12]

[Ada10]
REFERENCES


[AG01] Sergei Abramov and Robert Glück. From standard to


Artiom Alhazov, Marian Kogler, Maurice Margenstern, Yuri Rogozhin, and Sergey Verlan. Small universal TVDH and test tube systems. *International Journal
REFERENCES

Arvind:1995:HIP


Alirezazadeh:2016:PFA


Atig:2014:AOM


Alberich:2004:SPT


Allauzen:2003:FST


Allauzen:2009:WCW

Amir:2005:TIS


Asahiro:2007:GOA


Allauzen:2005:DPA


Almeida:2008:EGM


Almeida:2009:AMR


Allauzen:2011:GAT

REFERENCES

**Amorim:2015:NLF**


**Anceaume:2002:ESU**


**Ahrabian:2009:CTA**


**Anonymous:1998:AIV**


**Anonymous:1999:A1**


**Anonymous:2000:A1**


**Anonymous:2001:AIV**

(print), 1793-6373 (electronic).


Anonymous:2004:AIV


Anonymous:2004:P


Anonymous:2005:AIV


Anonymous:2005:P


Anonymous:2006:AIV


Anonymous:2007:AIV


Anonymous:2008:AIV


Anonymous:2009:AIV

Anonymous:2011:AIV


Anonymous:2012:AIV


Anonymous:2013:AIV


Anonymous:2014:AIV


 Anonymous:2015:AIV


Anonymous:2016:AIV


Aytac:2010:CRD


Aytac:2011:RCW


Ando:2010:SCL

[AOSY10] Ei Ando, Hirotaka Ono, Kunihiko Sadakane, and Masafumi Yamashita. The space complexity of leader election

**Ausiello:1990:LPA**


**Agostino:1992:PCO**


**Antonelli:1992:CMP**


**Abadi:1991:FIM**


**Ananichev:2006:CWP**


**Almeida:2016:SSA**


**Arnold:2017:IGR**

Stefan Arnold. Identifying generalized Reed–Muller codewords by quantum queries. *International
Allauzen:2011:FBA


Arslan:2015:FAL


Arvind:1997:CMP


Alhazov:2007:MCS


Alhazov:2012:SUS


Aslan:2016:WRD


Alba:2012:P

Asveld:2007:GAC


Aytac:2007:VVP


Aytac:2011:VMT


Atanasiu:2016:NOP


Atanasiu:2007:BAW


Atanasiu:2011:EPM

Abderrahim:2012:HGQ


Agrawal:1996:ICD


Alzoubi:2003:MIS


Andresen:1999:P


Badr:2009:HM


Ben-Amram:2012:EDC


Barbanera:1990:CTR

Basten:1997:PPO


Beigel:1999:NPR


Bartzis:2003:ESR


Bouda:2003:EQI


Blin:2004:FAD


Berry:2000:GAM


Babvey:2006:SEI

Sharareh Babvey, Ann G. Bourgeois, José Alberto
REFERENCES


REFERENCES


[BCC+96]


[BCC+11]

Brim:2012:USI


[BC12]

Bessozzi:2011:MDS


[BC14]


[BCB12]

Bennoui:2012:SAI


[BCC13]

Bertoni:2014:DIP

Alberto Bertoni, Christian Choffrut, and Flavio
REFERENCES


REFERENCES


REFERENCES


REFERENCES

Bilbao:2002:CCV


Bianco:2006:SRM


Barrière:2011:USA


Bordim:2010:P


Bordim:2012:P


Bernardini:2008:HSA


Bassino:2010:ASC

Frédérique Bassino, Laura Giambruno, and Cyril Nicaud. The average state complexity of rational operations on finite languages.
REFERENCES


BH02

REFERENCES


Boldt:2007:SLN

Brzozowski:2007:RSC

Bruschi:1990:SSB

Besnard:1995:ETB

Berdinsky:2016:CAR

Borovansky:2001:RSE

Bordihn:2011:UHR
Henning Bordihn, Martin Kutrib, and Andreas Malcher. Undecidability and hierarchy results for

**Bordihn:2012:CCP**


**Bordihn:2015:RPC**


**Bui:2012:ARW**


**Bruggemann-Klein:2002:RTW**


**Blokh:2001:MTS**


**Brzozowski:2012:QCS**

REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Brzozowski:2014:SCS


Brlek:2006:PCP


Bein:2003:BSH


Brandstädt:2004:GCG


Boyar:2015:FIP


Beaumont:2005:SSS


Bein:2009:KSC

Wolfgang Bein, Lawrence L. Larmore, and Rüdiger Reischuk. Knowledge states for the caching problem

[REFERENCES]


Bertoni:2003:GRD

Bianchi:2015:POW

Bonomo:2014:SCS

Bertoni:1992:HGF

Bonifacio:2012:MPC

Barbuti:2011:OOS


[BNR05b] Jacir L. Bordim, Koji Nakano, and Arnold L.

**Rosenberg:2005:FIJFCS**


**Bordim:2003:SSC**


**Baumslag:1997:ISG**


**Bodlaender:1991:CSC**


**Belohlavek:2008:FFS**


**Bournez:2011:P**


**Baturo:2009:UDA**

[BPT06] Károly J. Börözky, János Pach, and Géza Tóth. Pla-

**Bertier:2016:CCM**


**Ballo:2007:EAD**


**Benoit:2011:RAS**


**Bordihn:2007:PAL**

ISSN 0129-0541 (print), 1793-6373 (electronic).


**Bansal:2003:MHM**


**Blancet-Sadri:2010:FWT**


**Bresolin:2012:BMB**


**Bourgeois:2000:RTD**


**Bae:2007:ADM**


**Brzozowski:2013:CAR**


**Bramas:2017:RBC**

Quentin Bramas and Sébastien Tixeuil. The random bit


Bonizzoni:2000:AMI


Boykett:2014:RAN


Bruda:2010:CHP


Bienkowski:2013:HCM


Cai:1994:CJN


Calude:2005:P

REFERENCES

Calamoneri:2015:OJK


Campeanu:2014:DCE


Caporaso:1996:STM


Carlet:2011:MVB


Castellani:1995:ODP


Casanova:2005:NMI


Christodoulakis:2009:EDC


Chiang:1998:TPS

Wei-Kuo Chiang and Rong-Jaye Chen. Topological properties of the $(n, k)$-star

**Champarnaud:2005:ENA**


**[CCF09] Cantone:2009:NEB**


**Chai:2007:EIB**


**[CCFG12] Campanelli:2012:PMS**


**[CCFS07] Cantone:2008:SCP**


**Cienciala:2007:PDS**

Luděk Cienciala, Lucie Ciencialová, Pierluigi Frisco, and Petr Sosík. On the power of deterministic and sequential communicating

**Champarnaud:2005:BFD**


**Cai:2004:HAM**

REFERENCES


Cherubini:1990:BDG


Clementi:1995:OSP


Cheng:2002:SI


Calude:2015:AAN


Champarnaud:2009:EAT

Jean-Marc Champarnaud, Jean Philippe Dubernard, and Hadrien Jeanne. An efficient algorithm to test whether a binary and prolongeable regular language

**Carpi:2004:RFU**


**Cinque:2005:SLC**


**Chatterjee:2013:CC**


**Carrier:2011:AOD**


**Caron:2016:SSP**


**Cappello:1998:PLB**

Cerny:2008:SSW


Cantone:2006:SEB


Cantone:2012:ABM


Clarke:2003:ACG


Crochemore:2010:NOP


Cadilhac:2012:BPA


Cadilhac:2013:UCA

[CFM13] Michaël Cadilhac, Alain Finkel, and Pierre Mckenzie. Unambigous constrained automata. *Inter-
REFERENCES

Cappello:2005:AMH

Casteigts:2015:SFF

Czyzowicz:2003:LTP

Cellier:2008:PAE

Chigahara:2016:OWJ

Ciobanu:2006:MMA
REFERENCES

Ciobanu:2009:EM


Champarnaud:2005:CTF


Champarnaud:2008:AJA


Cui:2011:SCT


Cui:2012:SCT


Crochemore:2012:LCS


Carioni:2013:ATM

[Alessandro Carioni, Silvio Ghilardi, and Silvio Ranise. Automated termination in

**Cao:2015:TBF**


**Cheng:1992:RAD**


**Changizi:1997:LNI**


**Champarnaud:2002:ETI**


**Champarnaud:2003:P**


**Czeizler:2007:ISW**


**Chen:2009:GA**

Danny Z. Chen, Mark A. Healy, Chao Wang, and Bin Xu. Geometric algorithms for the constrained 1-D K-

**Chiu:2014:AHA**


**Cleophas:2006:TRA**


**Ciglaric:2004:CND**


**Christodoulakis:2008:IRM**


**Cartigny:2003:RRS**


**Chin:2016:A**

REFERENCES

DEN IFCSEN. ISSN 0129-0541.


Cassaigne:2016:ACF


Culik:2002:NSA


Christensen:2015:SHT


Chen:2003:ZAC


Chen:1998:SRN


Chang:2017:SER


Coetser:2009:REH

REFERENCES

**Cheng:2007:FRC**


**Couceiro:2007:EVI**


**Chang:2010:ETF**


**Carnino:2014:FUA**


**Carnino:2015:DUW**


**Cheng:2008:MPA**


**Caron:2016:SCC**

REFERENCES

Champarnaud:2004:RWE

Chang:2009:TEB

Chen:2014:TRA

Can
tin:2009:CCH

Campadelli:1992:LCL

Chatterjee:2012:DAG

Casasnovas:2004:AMC
Jaume Casasnovas, Joe Miró, Manuel Moyà, and


REFERENCES


[Campeanu:2003:CNM]


[Cardelli:2006:URM]


[Caissy:2016:EFH]


[Chung:1999:PMM]


[Ceterchi:2006:SCP]


[Campeanu:2002:EA]


[Cordasco:2014:SSP]

Gennaro Cordasco and Arnold L. Rosenberg. On


REFERENCES

**Cho:2000:PRP**


**Cheng:2002:RP**


**Campeanu:2002:SDR**


**Campeanu:2003:FSP**


**Chantrapornchai:2001:REA**


**Campeanu:2012:SSH**

Calude:2012:SSH

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>


REFERENCES

August 2017. CODEN IFCSEN. ISSN 0129-0541.


REFERENCES


[DE08] Jon Ducrou and Peter Eklund. An intelligent user interface for browsing and searching MPEG-7 images using concept lattices. *International Journal of Foun-
REFERENCES


Domosi:2012:P


Duncan:2006:DFE


Dolev:2011:TTU


Dutot:2005:SLS


Dixon:2009:ABS


Dong:2002:PRE

References


REFERENCES


[DH05] Jürgen Dassow and Markus Holzer. Language families

**[DI05]**

**Das:1997:ECF**


**[DHIO97]**

**Doyen:2008:ELM**


**[DHR08]**


**[DHR08]**


**[Dic93]**


**[DJ12]**


REFERENCES


REFERENCES

IFICSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).


REFERENCES

0129-0541 (print), 1793-6373 (electronic).


[DR05] Jaime Davila and Sanguthavarn Rajasekaran. Randomized sorting on the POPS network. *Inter-
REFERENCES


DeFelice:2006:P


Domaratzki:2012:APW


Das:2008:VBS


Drewes:2007:L


Droste:1992:CAD


Day:2014:DPC


Duval:1996:CCS

DeFrancesco:2002:FDM


Dsouza:2003:LCE


Domaratzki:2005:RST


Domaratzki:2008:P


Domaratzki:2011:P


daSilva:2001:EPJ


Dobrev:2008:USM

**REFERENCES**


**Du:2015:OBS**


**Dasso:2010:GCS**


**DY15**


**Dubacq:1995:HST**


**Durand:2013:DUR**


**Dassow:2011:NAS**


**Droste:2014:CST**

Manfred Droste and Heiko Vogler. The Chomsky–Schützenberger theorem for quantitative context-free languages. *International Journal of Foundations of Computer Science*
REFERENCES

(DWFCS), 25(8):955–??, December 2014. CODEN IFCSEN. ISSN 0129-0541.

Dold:2003:CVR


Dantsin:2003:RDC


Desmedt:2004:AVC


[DZH16]

Ding:2011:P


Ding:2015:NSS


Dong:2000:SAA


Deng:2016:ECP

REFERENCES

Etherington:2016:PAC

Estivill-Castro:2002:CWV

Edelsbrunner:2002:SIM

Elkind:2010:QDO

Ediger:2012:EAT

Eom:2015:SCB

Emerson:2006:MMC
REFERENCES

Eom:2015:SCK


Esik:2014:OCS


Esik:2007:BFS


Ehmsen:2013:TEC


Elbl:2001:PRP


Elmasry:2006:PQW


Esparza:2015:FGS


[ER06] A. Ehrenfeucht and G. Rozenberg. Covers from tem-

**Ehrenfeucht:2014:ZSR**


**Egecioglu:2004:CGW**


**Elbl:2001:NDR**


**Esik:2012:OA**


**Esik:2015:P**


**Elmasry:2014:FST**


**Eshaghian:2001:MAH**

Mary Mehrnoosh Eshaghian and Albert Zomaya. Mapping arbitrary heterogeneous task graphs onto arbitrary heterogeneous system

**Fukagawa:2006:FAC**


**Fazekas:2008:IBS**


**Fazekas:2011:PRL**


**Fujimoto:2001:MPT**


**Fontaine:2005:BBA**


**Fung:2005:OSU**

REFERENCES


REFERENCES


Fachini:1990:SST


Fouquet:1999:BGT


Faliszewski:2005:ASS


Frisco:2011:STS


Flocchini:2007:DCR


Fialik:2008:SBC

REFERENCES

Finkel:2004:RLI


Finkel:2012:TAR


Freund:2008:ESN


Franek:2012:CRA


Forsyth:2016:RPW


Fujiwara:2005:PMI


Fehnker:2006:HSV

[FK06] Ansgar Fehnker and Bruce Krogh. Hybrid system verification is not a sinecure — the electronic throttle control case study. *International Journal of Foundations of Computer Sci-
REFERENCES

Friedgut:2006:BCM

Fribourg:2013:PVT

Finta:1997:CTG

Faro:2009:EVB

Friedmann:2012:TLS
Oliver Friedmann and Martin Lange. Two local strategy iteration schemes for parity game solving. *Inter-


REFERENCES


Fleischer:1996:SBS


Floderus:2013:TME


Fazekas:2012:NPP


Fuerer:1996:AAE


Fimmel:2001:OSP


Fazekas:2013:NDS


Fujiwara:2004:PLA

REFERENCES

Fredriksson:2006:FMR

Fominykh:2013:PAS

Fujita:2016:FSC

Freund:2007:PHS

Freund:2008:CGS

Freund:2005:ORC

Forsell:2010:PCS
Martti Forsell. On the performance and cost of some PRAM models on CMP

**Ferrante:2004:VCP**


**Fantozzi:2003:GPS**


**Faloutsos:2002:EAL**


**Frey:2002:BTA**


**Ferund:2005:SWS**

REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Freivalds:2008:NCM


Friedmann:2010:SSA


Freydenberger:2006:UMI


Flocchini:1998:TCS


Franek:2005:SST


Franek:2006:RSA


Friese:2011:ENF

REFERENCES


Fazekas:2016:P


Feng:2011:GDA


Felscher:2009:CRC


Fujita:2016:PLG


Fujiyoshi:2017:PAU

Akio Fujiyoshi. A practical algorithm for the uniform membership problem.

Fujiwara:2011:LAO


Filiot:2010:TAG


Fujita:2016:PLG


Fujiyoshi:2017:PAU

Akio Fujiyoshi. A practical algorithm for the uniform membership problem.


**Fearnley:2012:PMG**


**Fenner:2013:CHS**


**Fenner:2015:QAS**


**Fernandez-Zepeda:2008:AAE**


**Fernandez-Zepeda:2008:SML**


**Fernandez-Zepeda:2005:DFT**

REFERENCES


[GD98] Roman García and José Duato. Suboptimal-optimal

**Gudys:2012:PAC**


**Gecseg:2007:CTL**


**Grammatikakis:1998:CRP**


**Ghasemi:2014:AFS**


**Gao:2007:SSP**


**Gudmundsson:2009:P**


**Gruber:2013:PSR**

Hermann Gruber and Markus Holzer. Provably shorter


Gravier:2006:QOG [GJMP06] Sylvain Gravier, Philippe Jorrand, Mehdi Mhalla, and

Ganzinger:2000:PA


Ganzinger:2000:RRN


Goresky:2011:SPA


Gasieniec:1999:MCL


Gawrychowski:2010:FGR


Grigoriev:2017:YMP

REFERENCES

2017. CODEN IFCSEN. ISSN 0129-0541.


[GMU15] Alexander Grigoriev, Bert Marchal, and Natalya Usotskaya. A note on the minimum $H$-subgraph edge dele-
REFERENCES


REFERENCES


Matthias Gallé, Pierre Peterlongo, and François Coste. In-place update of suffix array while recoding words. *International Journal of Founda-
REFERENCES

132


Markus Grassl, Martin Rötteler, and Thomas Beth. Efficient quantum circuits for non-qubit quantum


[GRV10]


[Gre96]


[Gro03]


[GS09]


[GS12a]
REFERENCES


[GVL07] Mathieu Giraud, Phillipe Veber, and Dominique Lave-


[HBT08] Yasuto Higa, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. Reachability on suffix tree graphs. *International Journal of
REFERENCES


Hernandez-Castro:2012:MTA


Hanks:1996:FTV


Head:2011:CLT


Heirich:1997:SDA


Henriksen:2002:EET


Hinze:2009:RMC

REFERENCES


[HIIW01] Géza Harváth, Katsushi Inoue, Akira Ito, and Y. Wang. Closure property of probabilistic Tur-


[HJ14] Markus Holzer and Sebastian Jakobi. Nondeterminis-


**Harel:2002:SSB**


**Holzer:2003:NDC**


**Harju:2008:P**


**Hempel:2009:APC**


**Holzer:2009:NFA**


**Holzer:2011:CRL**

REFERENCES


Ho:2004:DCP


Healy:2006:TFP


Hsu:2006:SCS


Huo:2009:PSA


Hon:2004:STD


Hong:2004:AWS


Han:2005:AAM

[HMZ05] Yonghua Han, Bin Ma, and Kaizhong Zhang. An au-

[Tomato:2004:MDE]

[HNN04]

[HNN06]

[HNN10]
REFERENCES


REFERENCES


Halava:2008:P


Halava:2009:P


Heuberger:2009:ACM


Herley:1999:DBB


Habib:1999:PRT


Hintikka:1995:WLP


Han:2008:SCU

[HS08] Yo-Sub Han and Kai Salomaa. State complexity of union and intersection of finite languages. Inter-


[Han:2011:OFL]


[Hsu:1998:SII]


[Haralambides:1995:BOS]


[Hoang:2004:EMP]

REFERENCES


REFERENCES

Han:2005:GGA

Huang:2010:CSB

Han:2006:IFR

Hu:1997:FTS

Hong:2006:P

Hamrouni:2008:SMG

Ho:2015:SYE
Tzu-Hsin Ho, Li-Hsing Yen, and Chien-Chao Tseng. Simple-yet-efficient construction and revocation of group signatures. *International Journal of F...*
REFERENCES

Ibarra:2011:SRS

Ibarra:2015:AFV

Ibarra:2001:RSI

Ibarra:1997:CCA

Ibarra:2002:VQC

Inenaga:2012:FCS

Iba11

Iba15

IB12

IBS01

IBS01

IBS01

Inenaga:2012:FCS

Iba15

IB12

IBS01

Ibarra:2001:RSI

Ibarra:1997:CCA
REFERENCES


Ibarra:2008:CMR


Inoue:2004:NRT


Ibarra:1993:ETW


Ipate:2011:FVS


Idwan:2004:FPM

Iliopoulos:2005:FAF


Iliopoulos:2012:PAM


Ivanyos:2003:EQA


Ito:2005:FSL


Ito:2008:NFS


Ito:2010:LLC

Iwama:2013:RSO


Ito:2007:EHA


Ishdorj:2008:GAM


Ibarra:2014:SDQ


Ibarra:2012:CBS

Imani:2008:ICM


Inenaga:2005:FCP


Ibarra:2007:CRL


Ibarra:2013:HSH


Ito:2010:P

Ilie:2004:WCR


Ibarra:2004:CCC


Isobe:1999:PTA


Ito:2005:PTS


Jain:1995:ICF


Jain:1998:MCI


Jansen:1993:SLJ

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES


Jurgensen:2007:SAB


Jonoska:2014:ATSa


Jonoska:2014:ATSb


Jacobsen:2001:VTR


Jorrand:2003:SPQ


Jiraskova:2011:CUF


Jez:2013:HMD

REFERENCES

Jiang:1991:SCM

Jansen:2005:AAF

Jurdzinski:2007:SRA

Johansson:2000:NDP

Justin:2004:EWS

Jonoska:2006:TTD

Jansson:2007:ODR
Jesper Jansson and Zeshan Peng. Online and dynamic recognition of square-free strings. *International
REFERENCES

Jalsenius:2008:SSC


Jurgensen:2014:P


Jack:2008:DNM


Jia:1997:TLN


Jia:2002:CCH


Jung:2003:SBS


Jansen:2010:ASS

REFERENCES


Jain:2003:PPH


Jung:2014:SAV


Jurgensen:2008:CIE


Jiang:2008:ASP


Janzing:2003:CPP


Jin-Yi:1991:PSC


Januszewski:2016:IOA

REFERENCES

Kameyama:1995:TFT


Kamareddine:1998:SES


Kantabutra:2015:FSP


Kapoutsis:2005:NRT


Katangur:2005:ROM


Karaata:1999:SSA


Karhumaki:2009:PCM

REFERENCES


REFERENCES

Kaufman:2005:SLT


Klein:2007:CFG


Kamei:2010:SSD


Keqin:1990:GFF


Kranakis:1997:HCT


Kari:2005:BFL


Kari:2005:OTA

References


[KLB13] Antonios Kalampakas and Olympia Louscou-Bozapalidou. Minimization of planar directed acyclic graph algebras. *International Jour-


REFERENCES


Kupferman:2006:TRA


Kutrib:2010:STP


Klarlund:2002:RP


Krivka:2006:GLR


Kari:2011:PPP


Kappes:2012:MCK


Kutrib:2014:SUO


Kouri:2015:RMA


Kirshchenhofer:1993:MDS


Koh:2013:FAS


Klappenecker:2003:QSR


Kutrib:2008:OSW

REFERENCES

0129-0541 (print), 1793-6373 (electronic).


REFERENCES

ISSN 0129-0541 (print), 1793-6373 (electronic).

Kaiser:2008:AAT

Klein:2008:MDE

Kosub:2000:UCC

Kudlek:2007:SRQ

Kunimochi:2016:SPE

Krithivasan:2003:DA

Kucuk:2014:FAA
REFERENCES


[Lag17] George Lagogiannis. Query-optimal partially persistent


**Ling:2002:SI**


**Lu:2006:PFS**


**Lazar:2009:DFC**


**Li:2012:MAR**


**Lederer:2001:ARV**


**Lai:2004:SGS**


**Leopold:2003:CMA**

Claudia Leopold. Cache miss analysis of 2D stencil codes with tiled time


**Li:2000:MEE**


**Li:2000:PRC**


**Li:2001:EJS**


**Li:2007:ID**


**Li:2012:PAE**


**Li:2012:PHC**

REFERENCES

**Lin:2007:FSS**


**Lindell:2008:NFF**


**Link:2008:IMD**


**Lisitsa:1993:CUC**


**Li:2017:MMA**


**Lin:2009:VST**


**Langer:2011:PAE**


**Lorincz:2002:IHP**

[LKM02] A. Lörinicz, I. Kókai, and A. Meretei. Intelligent

**Liu:2016:SNC**


**Li:2006:MTW**


**Li:2013:SSC**


**Leung:2007:STM**


**Loukil:2012:PHG**


**Loos:2008:DCS**

REFERENCES

... (print), 1793-6373 (electronic).

**Lisitsa:2008:RAV**


**LaTorre:2016:SBP**


**Lehtinen:2010:BGG**


**Lehtinen:2011:ESN**


**Lehtinen:2013:HPD**


**Lauer:2007:UEDa**


**Lauer:2007:UEDb**

REFERENCES


1992. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic). [LRT92]


R. Lepère, D. Trystram, and G. J. Woeginger. Approximation algorithms for scheduling malleable

[Lee:2012:PMF]


[LTZ12]

Lucanu:2009:RLB


[Luc09]

Laube:2005:CIS


[Lug11]
REFERENCES

Laube:2006:ECI


Liu:2006:ESM


Little:2010:AMS


Liebers:2000:HRB


Li:2014:TTG


Leiberherr:1994:CAS


Leung:1994:HMN

REFERENCES


REFERENCES


REFERENCES


**Masse:2013:MW**


**Monien:1997:CLS**


**Mee2012:SIT**


**Melnikov:1993:ECI**


**Mereghetti:2008:TDP**


**Mandal:2014:SAT**

REFERENCES


REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Maur:2012:P


Manac:1997:FMC


Manc:2005:CCL


Mandal:2007:MAB


Manca:2011:LGS


Mairesse:2017:USS


Malcher:2010:SSB

Andreas Malcher, Carlo Mereghetti, and Beatrice Palano. Sublinearly space bounded iterative arrays.
**REFERENCES**


Mizuki:2011:ASN


Maelbrancke:1994:DTR


Messerschmidt:2007:CDS


Messerschmidt:2009:DCS


Moriya:2010:APS


Mohri:2002:GRI


Mohri:2003:EDW

REFERENCES

Mohri:2013:DFA


Marti-Oliet:1991:PNL


Morin:2010:USM


Monti:1991:STB


Moffat:1993:HS


Magalini:2007:PCU


Mcquillan:2012:P


Mraz:2007:ARA

František Mráz, Martin Plátek, and Tomasz Jurdiński. Ambiguity by

**Martins:1999:DAR**


**Margolis:2004:WGM**


**Maletti:2011:OHM**


**Maletti:2012:UWH**


**Metivier:1991:SOF**


**Makowsky:1999:CWG**


**Manuel:2011:CCA**

Amaldev Manuel and R. Ramanujam. Class counting

**Moreira:2013:P**


**Mahajan:2006:ABS**


**Mateescu:1997:GTL**


**Monserrat:1995:WCM**


**Mongelli:1999:PRM**


**Mongelli:1999:P1**


**Mateescu:2004:MIS**

Alexandru Mateescu and Arto Salomaa. Matrix indicators for subword occurrences and ambiguity. *International Journal of Found-


REFERENCES


REFERENCES

2012. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).


[Nedjah:2002:PMC] Nadia Nedjah and Luiza De Macedo Mourelle. Pattern matching code minimization in rewriting-based programming languages. *Inter-
REFERENCES

Naggazi:2015:ESS

Ng:2002:IAW

Nishimura:2003:QCR

Nishida:2007:MAB

Ngassam:2008:IPT

Nakano:1993:SFT
REFERENCES

Nakano:1999:GEI


Nochefranca:1998:DHC


Nicolas:2009:URM


Navarro:2011:SQ


Nikoloseas:2000:CPR


Nishimura:2000:FSS


Nochefranca:1998:DHC

Narayanaswamy:2013:UFB


Niu:2012:TPS


Nakano:2003:P


Nakano:2004:P


Ngassam:2005:FDI


Ngassam:2006:DAF

[NWK06] Ernest Ketcha Ngassam, Bruce W. Watson, and Derrick G. Kourie. Dynamic allocation of finite automata states for fast string recognition. *Intern-
REFERENCES

Namjoshi:2010:P


Obtulowicz:2001:MCO


Obtulowicz:2006:GPM


Ogata:2000:CCL


Obtulowicz:2006:GPM


Okada:1998:PGN


Okadome:1999:SFL

REFERENCES

[Okadome:2000:SSC]


[Okhotin:2003:EAB]


[Okhotin:2005:CAH]


[Okhotin:2006:GLP]


[Okhotin:2007:NDC]


[Oles:1992:WCM]


[Oliveira:2013:WAC]


[Orlandic:1996:SOT]

R. Orlandic and H. M. Mahmoud. Storage overhead of


REFERENCES

206

Ottmann:1992:UBT


Okubo:2011:MCL


Pavel:1998:ISR


Palano:2008:RCC


Palis:2001:SIP


Palis:2003:COR


Palis:2001:PSP

Panti:1991:SNT


Peterlongo:2008:IGF


Patrignani:2006:EPS


Pau00


PBMZ06


PDPPJ11


Penczek:1993:TLT

W. Penczek. Temporal logics for trace systems: On automated verification. *Inter-
REFERENCES


Petersen:2011:STB


Priore:2001:DSM


Perez-Hurtado:2011:PAA


Peng:1995:NTP


Pighizzini:2009:DP


Pighizzini:2015:IAL


Pin:2012:EDL

Jean-Éric Pin. Equational descriptions of languages. International Journal of
REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

**Prieur:2006:STS**


**Plaza:1996:PSR**


**Porraca:2011:SAM**


**Pruša:2013:RTA**


**Pau:2010:ICS**


**Polak:2005:MNU**


**Poon:2004:ORM**

[Poo04] Chung Keung Poon. Optimal range max datacube for fixed dimensions. *International Journal of Foun-
REFERENCES

Paquette:2006:FBB

Poinso:2011:NBA

Pighizzini:2014:LAR

Paun:2006:P

Paun:2006:STS

Paun:2007:CMS

Paun:2007:SNS
Gheorghe Păun, Mario J. Pérez-Jiménez, and Arto Salomaa. Spiking neural P sys-

**Paun:2008:RCL**


**Paun:2002:CCN**


**Paun:2011:SPM**


**Peled:2006:ECT**


**Perkovic:2000:IAF**


**Pribavkina:2011:SCC**

(print), 1793-6373 (electronic).

**Piatkowski:2012:ABM**


**Preparata:1990:PPL**


**Preface:2001:SIF**


**Pribavkina:2006:SPL**


**Pathak:2013:EEA**


**Prodinger:1996:DPL**


**Paik:1998:VSD**

Prusa:2017:CMS


Paun:2001:HL


Pighizzini:2002:ULO


Pelantova:2012:ARW


Petrova:2012:CPB


Palioudakis:2017:WCB


Prusinkiewicz:2012:SGM


Piperno:1990:RSE

[PT90] Adolfo Piperno and Enrico Tronci. Regular

**Peled:2007:P**


**PT07**

**Pelec:2014:EGE**


**PT14**

**Petrini:1998:PAW**


**PV98**

**Potanin:2013:P**


**PY04**


**Poon:2004:MTC**

**Pym:1992:UAL**


**Pym92**

**Peng:2010:AAS**

Poon:2007:DBB


Qiu:2003:INT


Qi:2006:SSP


Quaglia:2007:SDB


Rajabi-Alni:2015:CPS

REFERENCES


Rajasekaran:1998:PRS


Rogojin:2009:SEG


Roth:2008:SRK


Rosolini:1990:AMS


Rosenberg:2000:GDP


Rosenberg:2003:EPF


Roversi:2000:LAL

REFERENCES


REFERENCES

[RS04] Richomme:2004:CRM


[RT16] Reynier:2016:VPT

[Rud15] Rudy:2015:DRA
Jarosław Rudy. Dynamic random-access stored-program machine for runtime code
REFERENCES


Sartaj Sahni. Models and algorithms for optical and

Sakurai:2001:CMC


Salomaa:2007:CSO


Salomaa:2011:PSA


Salomaa:2013:FCB


Santhosh:2013:SSD


Saoudi:1992:PAI


Schopf:2001:USI

[SB01] Jennifer M. Schopf and Francine Berman. Using stochastic information to predict application behavior on contended resources. *International Journal of Foun-
REFERENCES

Seredynski:2012:DRB

Sburlan:2006:FRS

Schmidhuber:2002:HGK

Schnoor:2010:CMC

Schmid:2013:ICR

Salomaa:2015:AA

Shtrakov:2016:CCF
January 2016. CODEN IFCSEN. ISSN 0129-0541.

**[Sarac:1999:DTS]**


**[Sellink:1998:CLE]**


**[Selivanov:2008:FHR]**


**[Serbanuta:2009:PMA]**


**[Seth:2008:ACS]**


**[Schewe:2007:SAD]**


**[Skulrattanakulchai:2004:CAS]**


REFERENCES

February 2016. CODEN IFCSEN. ISSN 0129-0541.


[SKL03] Sartaj Sahni, Kun Suk Kim, and Haibin Lu. Data structures for one-dimensional packet classification using most-specific-rule matching. *International Journal


REFERENCES

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

[Saoudi:1990:COT]

[SMS90]
[Saoudi:1992:FSP]

[SMS92]

[Smy12]

[Skrypnyuk:2013:RFS]

[Safavi-Naini:2011:USC]

[Safavi-Naini:2006:RLS]

[Sosik:2009:P]
Petr Sosík. Preface. *International Journal of Found-
REFERENCES

Singh:2004:HMD


Sprojcar:2009:PSM


Shyamasundar:2000:LRS


Shyamasundar:2000:PRP


Sosik:2011:PFR


Saha:2015:NRF


Sajith:1999:PVC

G. Sajith and S. Saxena. Parallel vertex colouring of


Akira Suzuki, Kei Uchizawa, and Xiao Zhou. Energy-efficient threshold circuits


[S07] Kai Salomaa and Sheng Yu. On the state complexity of combined operations...

**Salomaa:2010:SOP**


**Say:2012:QCA**


**Szwast:1995:NAP**


**Teh:2017:MRS**


**Tamm:2008:TMB**


**Ti:2010:SIS**


**Tang:2014:CRB**


**Teh:2015:CWP**


**Teh:2016:PMS**


**Teh:2016:SME**


**Teichmann:2017:RAW**


**Touyama:2001:PEP**


**Thanh:1991:RMD**


**Thomas:2006:MSS**

REFERENCES

**Tu:2013:COV**


**Tse:1999:CSA**


**Torkestani:2013:LAB**


**Tosic:2006:CCF**


**Tran:2002:UPC**


**Truthe:2008:RCF**

REFERENCES


TRAHAN: 1994: API


TAKAOKA: 2007: FLA


TAN: 2014: REQ


TSAY: 2009: ACR


TARTARY: 2011: EIT


THIAGARAJAN: 2002: SI


TANG: 2003: IIV

REFERENCES


REFERENCES

ISSN 0129-0541 (print), 1793-6373 (electronic).


(print), 1793-6373 (electronic).

Vinodchandran:2005:NCM


Vermeulen-Jourdan:2005:LDS


vanLeeuwen:2015:SCR


Vorel:2016:SSC


Voisin:1999:SCP


Vincent:1993:RJF


Vollmer:1993:CFM

REFERENCES


Steven Widmer. Permutation complexity and the let-

**Wilmes:1991:FPS**

**Watson:2008:EAC**

**Wei:2012:IRK**
Yuechuan Wei, Chao Li, and Dan Cao. Improved related-key rectangle attack on the full HAS-160 encryption mode. *International Journal of Foundations of Computer Science (IJFCS)*, 23(3):733–??, April 2012. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

**Wang:2003:DSB**

**Wilson:2005:CPP**

**Ware:2013:CVG**


Xu:2016:FOR


Xu:2016:OFH


Xu:2016:SCQ


Xuan:2003:CSF


Xu:2002:LSB


Xu:2004:MBU


Xu:2006:SSA

Zhenyu Xu and Pradip K. Srimani. Self-stabilizing anonymous leader election in a tree. *International
REFERENCES

Journal of Foundations of Computer Science (IJFCS), 17(2):323–??, April 2006. [Yam03]
CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Xu:2011:DAA


Xiao:2016:ACT


Ye:2006:CTS


Yahalom:2012:TFP


Yamauchi:2011:RCE

Yukiko Yamauchi, Doina Bein, and Toshimitsu Masuzawa. Reliable communication on emulated channels resilient to transient

Yamakami:2003:AQF


Yahalom:2012:TFP

Yuan:2011:LMF


Yang:2010:CMI


Yang:2008:SAS


Yen:2008:DCA


Yen:2009:PDS


Ye:2011:WCP

Yamamoto:2014:TIV

Yen:2013:P

Yli-Jyra:2005:ADG

Yang:2014:PA

Yang:2014:TBS

Yakaryilmaz:2016:DST

Yahia:2008:P

Yang:2000:GMC
Z.-H. Yang, C.-Z. Sun, Y. Miao, A. Sattar, and Y. Y. Yang. Guaranteed mutually consistent checkpointing in distributed com-


[Houguang Yue. From computing to interaction: on the expressiveness of asynchronous pi-calculus. *International Journal of Found-
REFERENCES

dations of Computer Science (IJFCS), 24(3):349–??, April 2013. CODEN IFCSEN. ISSN 0129-0541.


REFERENCES


REFERENCES


Zhou:2014:OSN

Zhou:2012:PTE

Zhang:2014:CGC

Zhi-Zhong:1991:CCO

Zhu:2015:SBT

Zhang:2016:OTS