A Bibliography of Publications in *International Journal of Foundations of Computer Science*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 October 2017
Version 1.57

Title word cross-reference

#P [Zan91]. #P-Completeness [Zan91].

(−β) [Dom12]. (1, 2) [BZ13]. (2 + p) [ZG13].
(2, 2) [ST16]. (3k + 1) [DZ00]. (A, B) [JL01].
(δ, α) [CCF09]. (δ, γ, α) [FG08]. (δ, κ, α)
[FG08]. (n, k)
[WC13, CHYT14, YCL11, CC98, HLHH06].
(n, n(n + 1)) [NS98]. 1
[CHWX09, Dic93, LR04, TCT14]. 11 [LJ17].
2 [AV96, BYPE95, HKT00, HJP+13, JZ16,
JW08, Leo03, Pri06, XZS16, XCY17, ŽM11].
2^n [CKZ17]. 2m [ZWCL14]. 3 [BYPE95,
DH96, JSPD03, LJ17, SJ04, ST93, Ts06]. 4
[XC15, ZZC15]. 7/3 [DSS15]. 73 [Ram05].
* [MTVM15]. 2 [Joh00]. ab * c [KL03].

ASPACE(log log n) [GP13]. β [Shu11]. C^1
[XBE02, CTC [MTVM09]. CTC^+
[MTVM09]. Z_2 [BW14]. J [BL14]. R
[BL14]. D [HLY+04, AE99, DG98, RS01].
[DDHL11]. f [DGL93]. F_p + νF_p [WGF16].
G(2^m, 2) [YCTW10]. G^{xy+} [AT15]. GF(2)
[BB99]. GF(2^n) [WXF16]. H [GMU15]. K
[BT07, CHWX09, PV98, ZBS05, Aku06,
AE99, DDHL11, DG98, DGL93, EHS15,
IZN99, INY07, KPS13, LZ12, MXY+04,
Nak04, RS04, TCLS10, YTN01, ZZZ16].
K_m,m [Kan15]. L [PSS12]. L(j, k) [Cal15].
L_p [CMR07]. M [Jun14, Teh16a, Teh16b].
F_{2^m} [ZWCL14]. μ [DL12]. N
[AM09, JM03, PV98, INY07]. O [Mal07].
O(1) [ST99]. O(n) [MM97]. O(n^2) [Bad09].
O [COT12, Fin12, DI02, Hon02, Hon07,
KSV03, KMM06, Sel08, Sta05]. P
- [BYP95, Dic93, BL14]. -Abelian [KPS13].
-Adic [XZ96]. -Ary
[AE99, DG98, DZ00, RS01, PV98].
-Automata [KSV03]. -Calculus [DL12].
-Chains [Di02]. -Channel [Nak04].
-Collapsing [Pri06]. -Covering [ZBS05].
-Cubes [DG98]. -D
[CHWX09, JW08, SJ04]. -Decomposition
[Dic93, Joh00]. -Dependent [DGL93].
-DF [AV96]. -Differences [Aku06].
-Dimensional [AE99, JZ16, LR04].
-Disjoint [BT07]. -Edge-Connectivity
[Tsi06]. -Edge-Labeling [Cal15].
-Equivalence [Hon07, Hon02, Teh16a].
-Equivalent [Teh16b]. -Free [GV03].
-Gram [FBK05]. -Hamiltonian [BZ13].
-Heap [Jun14]. -Independent [TCLS10].
-integers [Dom12]. -Intersection [EHS15].
-Language [Fin12]. -Languages
[COT12, Sel08]. -Like [HK11]. -Matching
[CCF09, FG08]. -Matchings [DGL93].
-Matrices [BM16]. -Means [CHWX09].
-Partners [RRT99]. -Periodic [CKZ17].
-Plateaued [XCS17]. -Power [Sta05].
-Power-Free [DS15, RS04]. -Powers
[Shu11, Ram05]. -Qubit [JW08]. -Regular
[KMM06]. -Resilient [TCT14]. -Round
[LJ17]. -SAT [ZG13]. -Search [ZZZ16].
-Sided [ST93]. -Space [JZ16]. -Star
[CC98, CHYT14, HLHH6, WC13, YCL11].
-Subgraph [GM15]. -Substitution
[Mal07]. -Systems [PSS12]. -Temporal
[SMS92]. -th [YTN01]. -Tree [LZ12].
-Trees [IZN99, YTN01, JL01, PV98].
-Trivial [BL14]. -Truck [MX14].
-Uniform [XC15, ZZZ15]. -Union [EHS15].
-variable [ZWCL14]. -Way [AM09].
-Words [ST16].
160 [WLC12].
2012 [SSS13]. 2CCC [BE95].

3-Edge-Connected [ST11]. 3-Repetitions
[GS12b].
7 [DE08]. 7-Colourings [JP08].
'98 [GJV00a, HO00]. '99 [MS99b, Pa01a].

A-Patches [XBE02]. Abelian [AILR16,
CRSZ11, CK16, CCI12, DR12, DMSS16,
GRSS14, IKS13, PP11, SS01].
Abstract [DG99, TZ91]. Abstraction
[ADHR09, ACV13, BPZ07, CFH03, MH06,
NTSH06, WM13]. Accelerating [BII104].
Acceleration [IN05, IN08]. Acceptance
[GQZ15, Mer08]. Accepting
[Dom04, DM08, IIT91]. Acceptors
[IR14, Iba15]. Access
[DCS13, Rud15, SK04, Sun00]. ACD
[Mar92]. ACD-Ground [Mar92].
Achieving [JW08]. Across [CM12].
Action [HFLD09]. Active [DV11, JK14a,
JK14b, PPFP11, PLMZ11, Qua07].
Activity [BGMV08]. Acyclic
[AMR08, BPR09, FZCDB10, GVL07,
KLB13, ZWS96]. Ad [AWF03, CIS03,
LBH03, SB03, WLF03, WD03]. Ad-Hoc
[CIS03]. Adapting [CFG12]. Adaptive
[BKS12, CLT14, CHYT14, KG11, LX94,
LBJ03, SW09, TL99, Tse16, VJT05]. Add
[ADD09]. Addition [Wan04]. Additive
[SS07a]. Adic [XZ96]. Adjacent [AKS14].
Adjustable [HZTZ12, WY05]. Adjustable [KSJ08]. Advanced [Qua07]. Advances [HO00]. Advertisements [NH02]. Advice [FH05, KSY14]. Aerial [Ari05]. Affective [PHPJR+11]. AFL [BJ07a]. Against [BCFR07, HMZ05, HCETPL+12, TCT14, Uen13]. Agent [BF07, BDDN01, EH12, MM07, NH02]. Agents [DSS08, FHL07, LK11, LCVLV9, LRT92, MCS08]. Aggregation [RGR11]. Agreement [BVM00, MNS11]. Agreements [Tru08]. Alberto [SCIS15]. Algebra [GC15, GB03, Hea11, Lar99]. Algebraic [BM16, BMW91, BE11, FH05, Kri97, TCT14, TJJZ13, ZWCL14]. Algebras [ALR04, Ali16, BE92, BE93, KLB13, MRT95, Ole92, SN13, TST01a]. Algorithm [ATK12, ANDZM09, ARS11, BV08, BB04, BKS12, CPY02, CF06, CFRD08, CDJ09, CTZ01, CL03, CLT14, CHY14, DGN07, DN16, DG98, FL09, FZAM05, FJ12, Fri10, GLV14, Gro03, GD12, Hei97, HO99, HM04, Hut02, IST05, IZ09, JHK08, KK10, Kar99, Kör93, LW93, Li01, LCL06, MDAPHP.J+11, MTNN99, MC13, NGHK15, Nis07, Okh06, PRN13, PYTH10, PR00, Pym92, QFL+15, SW09, SS07b, ST99, SKW08, Tor13, Tsi06, Won96, Won01, XS11, ACN11, CCN11]. Algorithmic [BS12, CFMR05, DGM15, GGR14, HP90, Riv04]. Algorithms [AFB96, Ak06, AILR16, AC05, AMR05, AMR11, AE02, AE05, Ars15, AMOZ07, BT07, BRM07, BH02, BCFL12, Bar12b, CD15, CMC97, CCF09, CFG12, CGKN08, CHWX09, CH09, CRA+92, CPC99, CHZ06, CCG+11, DP09, DPS99, DD13, DGL93, DWS15, DMS16, ERW04, ECTY02, FZ15, FZEBB05, FPS09, FA06, GO09, GHJ05, Gol90, HL06, HP09b, HLW09, IMP12, INV07, IMS03, JMS050, JZ16, KKH90, LTV02, Leu04, Li12a, LMM+12, MPS99, Mas04, Moh02, Moh03, Nak04, OSZ92, RLV99, SRR15, Sah01, SK01, SK03, SJ04, SG04, Ste93, TV07, Tor15, TL99, Tse16, WRNK03, WM05, WH03, ZBS05, Zom03, FG08]. Alignment [AE02, BBM+12, CK08b, FM96, GD12, PYTH10]. Alignment-to-Alignment [FM96]. Alive [BC12]. Allocation [BRSRC11, NWK06]. Almost [HJ13, PS12a, PP00]. Almost-Equivalence [HJ13]. Alphabet [Dom12, GNP+06, JRS91, JJS08, JIR92, MO10, Slo95]. Alternative [Set08]. Ambiguity [AMR11, Iba15, KMK11, Leu05, MS04, MP07, Ser09]. Ambiguous [Mig90]. American [SGZ02]. Amiable [Ata07]. Amount [BGRY16]. Amplitudes [Nis03]. Analog [PW97, VW99]. Analog/Mixed [PW97, VW99]. Analog/Mixed-Signal [PW97, VW99]. Analyses [KPM15, Tse16]. Analysis [AHL+13, AH07, BY95, BV98a, Bee95, BAK12, BCB12, BET03, DN16, DES09, EH12, FSWF11, FZAM08, FBK05, Gol90, HP09b, HM04, IDR97, KR97, Lec03, LCY12, Li12a, LNO9, LPP92, Lug11, MH06, MGGP08, NAK+95, OM96, PV98, RWZ01, ROK08, Ser08, TV03, TV94, Wan04, WR16, Yam03, YLZ14, YBO6, Yen08, ZZZ16]. Analytic [BMMR11]. Analyzing [DW04]. And/Or [FG08, DW04]. Annotated [KSJ08]. Annotation [BDL08]. Announcement [CIS16]. Anonymous [AOSY10, FDFZB12, Spr09, XS06]. Answer [PHPJR+11]. Ant [KAPF05]. Antennae [AC05]. Anti [B07a, KMG11]. Anti-AFL [BJ07a]. Antidictionary [Shu14]. Antimirov [AM09]. Any [PS12b]. Anytime [CD15]. Apertopic [BS92, BS15, Sel08]. Apices [MAN06]. APN [XC15, ZH13]. Apostolico [SCIS15]. Application [Cas05, MNS11, SB01, URS07, ZH06]. Applications [CK80a, CCF90, CHWX09, CW11, CB09, DI02, Fin12, GC15, GGR14, HY08, KL03, MGGP08, NAK+95, OM96, PV98, RWZ01, ROK08, Ser08, TV03, TV94, Wan04, WR16, Yam03, YLZ14, YBO6, Yen08, ZZZ16].
Approach
[BET03, BMRR11, CLMP16, CMMR04, EAB+16, GSD03, HMZ05, IMP+05, Kri97, LW06b, MG14, MGGP08, Qua07, SGZ02].

Approximability [DJL+07]. Approximate [BH02, MRRV06, ORS08, WKS+08, ZBS05].

Approximated [BB04]. Approximating [BR08, BVM00, BDG+11, Fre02, Gol14, HL01, LZ12, Rya15, YJ05].

Approximation [AE02, AP90, ABDP05, CS93, CCG+11, GY12, HJP+13, JMSO05, JSO10, KK10, LTW02, SS07b, Ste93, XS11].

Approximations [Shu07].

Arbitrage [DLW02]. Arbitrarily [BSOR10]. Arbitrary [EZ01, GS12a, Hei97, JWB03, NGHK15, XHLF02].

Arc [GP17, KHLC12].

Architecture [MDL97, YLZ14]. Architectures [AP92b, CPJ06].

Arrows [MM97].

Area [CR14].

Arithmetic [BB03a, FMC04, FT11, GK11, ´SM05]. Arithmetical [Okh05].

Arity [CL07b, DZ00]. Arrangement [FWZ15].

Arrangements [KL05]. Array [CE98, FS06, GPC09, Jun14, ZYHY14].

Arrays [AE99, Fre05, MMP10, PA98, SMAN13, WH03].

Arthur [CCPS04, Vin05]. Articulation [Kar99]. Artin [AR16].

Ary [AE99, DG98, PV98, DZ00, RS01].

Asian [HO00, GJV00a].

Aspects [BM16, BRST07, HK09a, Riv04].

Assembly [BHR09, IPR07, IP08, JK14a, JK14b, Rog09, RCTC+09].

Assignment [Bar90, DGN07, GSD03, Hir91, NSVA12, WD90].

Associated [Sal11]. Assume [LSWW13].

Assume-Guarantee [LSWW13].

Asymmetric [Gol14, WR16].

Asymmetry [FPS02].

Asymptotic [FY08, PR12, Szw95].

Asymptotically [CDPR11].

Asynchronous [Ott15, Yue13].

Asynchrony [SR00a].

Atomic [Anc02].

Atoms [BT13].

Attack [DS02, DEKZ11, HCETPL+12, LJ17, WLC12]. Attacks [DEKZ11, TCT14].

Attribute [BV08].

Augmentation [NS13, YH11].

Authenticated [LHT09, LH11].

Authentication [HCETPL+12, LB04, YTP11].

Author [Ano97, Ano98, Ano99, Ano00, Ano01a, Ano02, Ano03a, Ano04a, Ano05a, Ano06, Ano07, Ano08, Ano09, Ano11, Ano12, Ano13, Ano14, Ano15, Ano16].

Auto [CGK08].

Auto-Intersection [CGK08].

Automata [AHK07, ABH+09, AK14, AMR11, AMR08, AR16, ACFE09, BBP11, Ber13, BMP03, BCD14, BCP07, BCHK09, BHK07, BRST07, BKM11, BKM12, BKM15, BW14, BMMR11, BMMR12, BWK02, CF12, CFM13, CPY02, CLW09, CL15, Cha02, CLOZ04, CC05, CCR+13, CFY16, CG06, CR15, CRR07, CMRR08, CVMV00, CKK02, DJ12, Dom04, Dro92, DK08, DM11, DP14, D+03, Dub92, EM11, ´Esi12, FGS+09, FTT10, Fre08, FK13, GLV14, GH05, GL07, GL10, GS09, GH13, GH15, GQZ15, Gus13, GP15, HMZ05, HW05, HK09b, HJ13, HKKS13, IJT+93, JM13, JJS08, JO07, KJ07, KZ10, K+03, KR16, KKH99a, KSV03, KMS06, KSY14, Kud07, KL11, KMM06, KR08, KMO10, K13, KMW14b, KMW14a, KMW16, L¨od15, Loh10, Mac96, Ma05, MR11, Mar08b].

Automata-Based [Tor13].

Automaton [CGK08, Mar97, Mar09, Mas13, MHT09, MZ12, MO07, MO09, Moh03, Moh13, MP91, MPJ07, NTSH06, NWK05, NWK06, NCC+07, Oli13, Ott15, Pi05, Pi95, PP14, Pig92, PM13, S07a, Sa09, SY12, SME07, Sir15, Slo95, SVF09, Sut03, Tam08, Tor13, Tor15, TY15, Vor16, WM13, WKS+08, YD10, YW06, YBI11, ZH11, ZQ12, CV13].

Automata-Based [Tor13].

Automated [MVM02, Mar97, Mar09, Mas13, MHT09, MZ12, MO07, MO09, Moh03, Moh13, MP91, MPJ07, NTSH06, NWK05, NWK06, NCC+07, Oli13, Ott15, Pi05, Pi95, PP14, Pig92, PM13, S07a, Sa09, SY12, SME07, Sir15, Slo95, SVF09, Sut03, Tam08, Tor13, Tor15, TY15, Vor16, WM13, WKS+08, YD10, YW06, YBI11, ZH11, ZQ12, CV13].
Boundedness [vdM00].

Bounds [BKM15, Dom04, DSS15, Gus13, HHH07, JWB03, LHG11, MV11, SNJ11, Uen13, YS13].

Boyer [CFG12].

Branch [HPP99].

Branch-and-Bound [HPP99].

Brane [CP06].

Breadth [CCR+90].

Breaking [Uen13].

Bridge [L´az13].

Bridges [GD98].

Broadcast [Anc02, CFMS15, LAHN14, Nak04, PZX07].

Broadcasting [CYS+12, HT09, MO06, XLC+04].

Broken [AAV00].

Brownian [Nis07].

Browsing [DE08].

Bruijn [KX12, Noc98, NS98, WRNK03].

Brute [CCP05].

Brzozowski [DN16, GLV14, SKW08].

B¨uchi [FKV06, KL11].

Bulk [CCG+11, FNI16].

Bundles [LWW00].

Bursty [AP92a].

Buses [BT00, Mat04, PA98, WH03].

Buy [CCG+11].

Buy-At-Bulk [CCG+11].

Byzantine [AAV00].

Cache [Leo03].

Caching [BLR09].

Calculus [AH07].

Calculus [BDSV06, CP06, DL12, Kri92, Oga00, PT90, RS95, Yue13].

Can [AV00].

Canonical [BJ05, BJ06, BJ07b, CC05, FGV99, GSZ09, MAN05, WM13].

Cantor [Ési12, Sta05].

Capacities [Li12b].

Capacity [BK16, CL07a].

Captures [DW03].

Capturing [FW90, ISAZ08].

Care [Ros03].

Careful [Vor16].

Carpi [Ber11].

Carriers [GH07].

Cartesian [MRT95, Ole92].

Cartesian-Closed [MRT95].

Cascading [Sub05, Wan14].

Case [BMS12, BDC90, DN16, FK06, Fle96, KP10b, Lag17, YH11, ZSW14].

Categories

Category [EM11, MRT95, Ole92].

Catenation [CLMP16, CGKY11, CGKY12].

Catenation-Intersection [CGKY11].

Catenation-Reversal [CGKY12].

Catenation-Star [CGKY12].

Catenation-Union [CGKY11].

Catenations [Mel93].

Cauchy [Ruo96].

Cauchy-Peano [Ruo96].

Causal [BCB12].

Cayley [BK16, CP99, CL07a].

CCZ-Equivalence [BH11].

CD [FO08, BCVVH07, CVDV10, MO09, Sun05].

CD-Systems [MO09].

Cell [AFO06, RCTC+09].

Cell/Symbol [AFO06].

Cellular [DJ12, Dub95, FZ03, GSD03, JHK08, Ma08b, Sir15].

Centralized [Ott13].

Cern´y [Ste11].

Certain [KRK16, Sal11, Won01].

Certificateless [DZH16].

Certify [GHWZ05].

Chains [DI02, DHR08].

Chandra [KMW12].

Changes [LB93, Vik96].

Channel [BBL+12, BNS03, GSD03, NN93, Nak04].

Channels [MG14, YBM11].

Chaos [EMR12].

Characterisation [D’s03].

Characteristic [IB12].

Characteristics [OS01].

Characterization [EI14, MM05, MSC08, Mar08b, Okh05, OS93, RW11, YTN01].

Characterizations [IS12, JM03, KSV00, YO11, PPJY08].

Characterizing [IJ07, JC03].

Charts [EGPS10].

Checking [CGR13, CFH+03].

Chemical [EHK06, HW10, LD01, Sch10, YW06].

Checkpoint [PNN+10].

Checkpointing [GCK08, MM07, YSM+00a].

Chemical [HFLD09, KPM15].

Chomsky [DV14, PPJY08].

Choose [INY07].

Chord [CCF08].

Chunk [AP92a].

Church [AD12, KM07b].

Ciliate [DH05].

Ciliates [BHR09].

Cipher [LJ17].

Circle [Klo96a].

Circuit [Bir11, LWJ+10, RT06, Vin05].

Circuit-Size [Bir11].

Circuits [FGH+07, GB03, GRB03, IP08, PRS98, SUZ13, YB06].
Circulant [YCTW10]. Circular [Asv07, DS06, GP17, MM97, MMR10].
Circular-Arc [GP17]. Circulating [SK01].
Circulation [GS12a]. Circumscription [Lis93].
CKY [BIIN04]. Classical [AGM14, BS92, CPJ06, ERW04, Has00, Jai95, MR11, MN00, Oka99, Sch13, TCT14].
Classes [Arv97, AP90, ABDP05, CCPS04, CM92, Cap96, GO09, Géc07, GR00, HT12, HK95, KSV00, LV08, NCC+07, UU07, XZS16, XCX17, vLW15].
Classic [IN13].
Classical [BMP15, Fia08, Oga00, ZQL12, CV13].
Classification [ATK12, SKL03].
Classifying [SWZ97]. Claus [HHH07].
Clauses [FGL+90, SN13].
Clique [BLM04, DJL+07, GR00, LV08, MR99, MM97, Ste93].
Clique-Width [BLM04, GR00, LV08, MR99]. Clock [D's03].
Close [Fre02]. Closed [MRT95, OLe92, TW99]. Closeness [AO11, Dan11].
Closure [CK08a, DMMM14, HIIW01].
Clusters [BLMR05, CFMR05, CV0V11, LCVLV09, SK03].
Codes [AGM14, Bur12a, CFPR03, GMNS15, GRB03, HS11, Kun16, Leo03, LZ15, WGF16, WF17, YTP11]. Codewords [Arn17].
Coding [CIY01, CK08a, KKS05b, SM05]. Cographs [GV03]. Collaborative [SP04]. Collage [IST05]. Collapsing [AVP06, BZ10, Pri06].
Collision [Nak04]. Colonies [MCS08].
Colony [KAPF05]. Colored [AFB96].
Combinatorics [BS12, BMMR11, EMR10, GHS13, IZ04].
Combinatory [RS95]. Combined [CLMP16, CGKY11, CGKY12, SY07, ACM11].
Combining [Bar90]. Common [AILR16, AE05, DD13, IMP+05, KS10, LW05, LW06a]. Communicating [BKM11, BKM12, BKM15, CCFS07, CVMVMV00, DPK97, Kri92, LRT92, MS07, MVMM02, Ott13, Ott15, Tra08].
Communication [Ada10, BV98a, BF97, BKM15, DHI097, FL97, Nak04, PPR102, Spr09, YBM11, ZC13, ZYYH14].
Communications [CCM97, RVT06].
Community [ROK08]. Commutative [BH11, MR91]. Commutativity [IDR97, MS12]. Commuting [Cai94].
Competence [BCVVH07, CVDV10].
Competence-Based [CVDV10].
Competitive [Leu04, ZZ16].
Competitiveness [Pal03]. Compiler [DVG03]. Complement [Jir14, O'N15].
Complementation [FKV06, JJS05, RC05].
Complements [HP09b]. Complete [PK11, HW10, LD01, MW05, RWZ01, RS01, ZYLVW12, GP13]. Completely [DVG03].
Completeness [ABDP05, FOP05, HJV93, LBL06, Zan91].
Completing [BCHK09].
Completion [BZ13, DFL02, DK11, LLQ06, MMY10, PY04]. Completions [ST16].
Complex [Brz13]. Complexities [Jir14, Sch02, TY15].
Complexity [Ada10, AF006, AOSY10, AP92b, Arv97, AP90, BGN10, BAK12, BPT16, BFL02, Bod91, BT17, BHN04, BMMR11, BLY12, BL12, BT13, BL14, BCC13, CSR12, CK08a, Câm14, CLMP16,
Complexity-Theoretic [FH05].
Component [IN10]. Components [BGMV08, CVOV11, DL12, JHK08, LCY12, Mas09, Ott13, ST11]. Composed [ABH+09]. Composite [AO10].
Composition [AM09, ARS11, BCDP08, Wan04]. Compositional [TW09, WM13].
Compositionality [FT09]. Compressed [IST05, IB12, KS06, KSS08, Loh10, MHT09, WF17]. Compression [CDLW05, CK08b, DM05, De 06, KM90, KK05].
Computability [Bur12b, Gra90, LS98]. Computable [BS92, CZ11, SS12a, Sch02].
Computational [AHRO2, BDL08, CMRR08, DW03, EL13, FNI16, GO09, GRV10, GS12a, GR03, HL04, HN06, MB06, Nis03, PDPJ11, RZ12, ST11, SP04, VP99].
Computationality [IST05, IB12, KS06, KSS08, Loh10, MHT09, WF17]. Computation [BK95]. Computing [AAC+10, BB03a, Com90, FTT10, FM01, FS98, GR03, JS02, LTW02, MN00, NN93, PYTH10].
Computer [TH01]. Computers [Rya15, Sah01].
Computing [AETZ05, AO10, BMSMT11, BFL02, Cai94, CLW09, CMRR04, EAB+16, FJ12, FKT07, FT11, GPPJR13, GCK08, Hea11, HO00, IZ04, LTZ12, Li006, MLD97, Ob01, Ob06, Pal01b, Pan00, PPR02, PPRJ07, RS00, RR04, RC11, SVSN01, SGZ02, Sto92, SUZ13, TZ11, UU07, WP08, XFJ03, Yue13, ZZT91, Zom03].
Concatenation [JJS05, Okh07].
Concentration [Dai97]. Concept [BOV08, DE08, Jai98, ROK08]. Concerning [CCF08, Hon02, IR14]. Concurrency [Luc09]. Concurrent [BPT16, BET03, Dro92, DK98, MM07, PQ06, SKW08].
Condition [MP07, Mel93, Pal08, ZWW+14].
Conditional [LW05, LW06a, LYH+15, ZCX12].
Conjectures [RS04]. Conjunctive [AK14, DR94, Jež08, Okh03]. Connected [AFW03, DWS15, ET14, Iba02, IN10, JHK08, KK10, Li01, MTNN99, MNN06, ST11, Tor15, WAF03]. Connections [DM08]. Connectivity [CV14, FP04, HLHH06, LLY13, NPSY00, Tsi06, WFG15, NS13, WC13]. CoNP [RWZ01]. CoNP-Complete [RWZ01].
Consensus [RS13, SK01]. Consequence [BK95]. Conservativity [Sel98].
Consistency [ADR11]. Consistent [YSM+00a]. Constant [ANDZM09, CL98, FZCFB08, FT11, JYF91, Lg17, LZ15, OW92, Smy12, Sun00, WQ97].
Constant-Degree [CL98].
Constant-Memory [Smy12].
Constant-Width [JYF91]. Constrained [AE05, CFM13, CHWX09, GD12, NCC+07, RAB15, Tor13]. Constraint [MZ01].
Constraints [ADR11, AE02, BB03a, Com90, FTT10, FM01, FS98, GR03, JS010, LTW02, MN00, NN93, PYTH10]. Constructing [AAC+09, CPY02, CC05, DH96, MC02, PS12b, TJJ13, XC15, YCTW10, ZH13, ZWCL14]. Construction [BF07, CGL12, DD08, FZT14, HYT15,
Deadlines [PZX07]. Deadlock [BDC90]. Dealer [Sun00]. Death [EMR10]. Debates [YSD16]. Decaying [FIO08].
Decentralized [MMS05]. Decidabilities [BKZ15]. Decidability [AT12, BAK12, BCD14, Bur04, DS05, DK12, Dur13, FM13, Gaz06, Loh05, RHS10, Yen08].
Decidable [AGM14, CRS12, Man15]. Decide [DK11]. Deciding [Dai97].
Deciphering [GMNS15]. Decision [DH05, DMS16, IR14, MVM07, ZB00, ZB02].
Decisions [Cig04]. Decoder [BBFZM06]. Decoding [GMNS15, OSZ92].
Decomposable [FGV99]. Decomposition [CFP03, Die93, FGV99, Joh00, MAN05, SVF09, Yen09, ZWCL14].
Decompositions [CS02, DS05, PR00]. Decontaminating [FHL07]. Decontamination [LPS07].
Decryption [CCD07]. Dedicated [BRST07]. Definability [BV98h, ES01].
Definable [DK98]. Defined [DH05, EMR11, Hut02, JP06]. Definitions [Kam95, Moh03].
Degenerate [BRM07, IMP12]. Degree [ABT16, Asd16, AO10, AA13, BB04, CL98, DH06, HL01, HLY+04, Tor13, WLF03, WQL07].
Degree- [DH06, HLY+04]. Degrees [Won96]. Del [KRK16]. Delaunay [Dev02]. Delay [GMNS15, JS07]. Delays [LLZ07].
Delegators [RS07]. Deleting [KO13]. Deletion [AB91, De 06, GM15, KS11, PPJY08].
Deletions [WAG+06]. Delta [BLS+05, SSS08]. Demand [HT09, IZN05, PZX07]. Demonic [Tha91].
Dense [MX11]. Density [SIS15].
Dependability [ABL+11]. Dependencies [BV08, Lin08b]. Dependency [YJ05].
Dependent [DGL03]. Deployment [FZ03].
Depth [BS92, BLS+05, CCR+90, KL12, Pro96]. Deque [CCR+90]. Derandomized [SS01].

Derandomizing [Vin05]. Derivation [DFP99, Mas09]. Derivations [CVDV10].
Descripional [Cam14, Das04, DM08, GH15, HT12, HK03, HK09b, HJ14, KO13, Loe05, LW08, Mer08, Sun05].
Descriptions [YSD12, Pin12]. Descriptive

Design [AMR05, CCG+11, KR97]. Designed [Ver09]. Designing [GD12].
Design [FZEBB05, SK03]. Designs [PRS98].
Detection [EP17, Nak04, San13].

Detectors [Huy91]. Determination [AHR02]. Determine [FWSF11].

Determined [Gec07]. Determinism [CL15, HKK13]. Deterministic

[Ada10, AMR08, CDPR11, CCFS07, EP17, GLV14, Gia11, Glö01, HPP99, IS12, JMI3, JJS08, KZ10, LO13, Lod15, Mas13, MO09, MC13, OS01, Pig09, Sl05, WF17].

Determinization [CCP05]. Deutsch [CCM11]. Developable [Fre02].

Development [McN90]. Developments

[GLV07]. Deviation [DP99, MPS99]. DFA [AV96, NKW08, SKW08]. DFA-Based

[DK12]. DFCA [CP03]. DFT [SEE99].

Diagnosability [ZCX12]. Diagnosis [BCB12]. Diagnostic [CLT14]. Diameter

[NS98, Noc98]. Dictionary [AE04, De 06].

Difference [BMP03, CZTH13, LL16, Van05, YTP11].

Differences [Aku06]. Different [Leu05].

Differential [ABDP05]. Differentially

[XC15, ZZC15]. Diffusion [BCC+11, Hei97].

Digit [HP09b]. Digital [KPS93]. Digitized

[SMAN13]. Digraphs [QFL+15].

Dimension [DG08, LZ15]. Dimensional

[AGM14, AE99, BT00, Cdl04, DJ12, Dub95, JZ16, JP06, KPSC08, LR04, SKL03, SMAN13]. Dimensionality [BL+97].

Dimensions [KKH09, Poo04]. Diophantine [CE98, IDY08]. Direct

SB12. Directed
[FWZ15, NTSH06, PNN+10]. Fair [MSR06].

Faithful [APP91].

Families [DH05, DDC08, HJK12, KY96, MR97, MAG09, OY11, SRPC11]. FAS [JRPIP08].

Fast [Ars15, BOV08, ECV02, FPPOS03, FNI16, FA06, GO09, IML04, Kan15, LCL06, NWK06, PP06, SJ04, TCT14]. Fastest [CFMS15, Hut02, XFJ03].

Fat [DEKW06].

Fault [CL07a, CHYT14, FZEBB05, HY97, KR97, LPC11, LYH+15, XSL, ZCX12]. Fault-Tolerant [CHYT14, LPC11, XS11].

Faults [NPSY00, PP06, WCD+14, YBM11, YCL11]. Faulty [CP16, GKKP99, LLY13]. Feature [MN00, SRR15]. Feedback [GB03, HG11, KHLC12, YB06].

Feedback-Free [GB03, YB06]. Feferman [HK95]. Few [MR99]. Fibonacci [DMSS16].

Fibonacci-Automatic [DMSS16]. Field [RW11]. Fighting [FLP13]. File [Li12b, NN93]. Files [KSS08, WRNK03].

Filter [ARS11, MCM+11]. Filter-Based [ARS11]. Filtered [DM08]. Filtering [DEKZ11]. Filters [FBK05]. Find [Ga11, MTNN99]. Finding [DGL93, ET14, Fuji6, GKR510, GHWO5, HCG96, IMP+05, IB12, IZN99, Kar99, MM97, NRT00, PR00, VW93, Won96, Won01, ZB00].

Fine [Sel08, BSOR10, KP513]. Finite [AM09, ARS11, AMR11, AMR08, AMR15, BGN10, BBL+12, BMW91, BHK07, BKM11, BKM12, BKM15, CSR12, CPY02, CLOZ04, CGH05, CGKN08, CFY16, CL07b, CGL12, DL12, DGK08, Dom04, FFH15, Fre08, GLV14, GHWO5, GMN515, GH13, GH15, GQZ15, HS98, HN10, HK09b, Iba15, JJS08, KZ10, KL03, Kör03, KL505, KSY14, KMW14b, KMW14a, Mac96, Mar08a, MVMM02, MZ12, Me93, Moh13, NWK05, NWK06, RW11, SS07a, SMS92, SD16, Shu14, ŠM07, SS01, SN13, Vor16, ZQL12].

Finite-Memory [KZ10]. Finite-State [AM09, ARS11, AMR11, CSR12, CGKN08, Mac96, SN13]. Finite-Valuedness [Iba15].

Finitely [AK10, AM03]. Finiteness [AK06]. Fire [FLP13]. Firing [GLP07]. First [AB91, BB04, DGK08, DZ00, Has00, IMP+05, KKH90, Lin08a, MN00, Rov00, Ueh99]. First-Class [Has00, MN00]. First-Fit [KKH90]. First-Order [AB91, DGK08, DZ00, Lin08a]. Fit [KKH90]. Five [CH15]. Five-Valued [CH15]. Fixed [DS96, Fl07, HL06, JJS08, LOZ98, Poo04, QLWL06, To06].

Fixed-Length [QLWL06]. Fixed-Parameter [HL06]. Fixpoint [ELS15]. Flat [MT95b, Oka99]. Flexible [FMN06, JMSO05]. Flipping [LRR08, ZG13]. Flips [AAH02]. Flooding [CIS03, LBJ03]. Floundering [BM90].

Flow [LLZ07, Mas94, SS07b]. Flows [DW04]. Fm [GSNP+06, IN05, IN08]. Fm-Index [GSNP+06]. Folded [DHÖ97]. Football [DK15]. Forbidden [WAG+06, Yah12, Yen08]. Forbidding [Mas09]. Force [CCP05]. Forecasts [CL10].

Foremost [CFMS15, XFJ03]. Forest [Ali16, GO09, LZ12]. Forests [ERW04, YAH12]. Foreword [BNR05a, BNR05b, Hol05, Hol06, Hol08, Hol99, Hsu098]. Forgetting [GL607, GL610].

Form [És12, FSM11, GJVO06b, LZGN06, Lin08a, VS93, Asv07]. Formal [BGS11, CSY03, CFRD08, DM05, DK12, ILT11, MDAPHP+11, MC90, MT95b, ROK08].

Formalisms [HHW11]. Formalization [HK95]. Formalizations [KK05a]. Form [LCVLV09]. Forms [Cai94].

Formula [DS02, Üen13]. Formula-Driven [DS02]. Formulæ [HKŠ13]. Formulas [CE08, Sch10]. Forums [XCC16].

Forums-Oriented [XCC16]. Forward [CD95, Lug11]. Foundations [HY95].

Four [MTNN99, MN06]. Four-Connected [MN06]. Fourth [VS93]. FPGA [DEZ01, IN08, IN10]. FPGA-Based [DEZ01]. FPSOLVE [ELS15]. FPTAS [KS10]. Fractional [Sha04]. Fragment
[HCG96, MW05]. Fragments [DGK08, MTVM09, MTVM15]. Framework [GGR14, LTZ12, Lin07, NS13, NWK05, TST01b, Tsu01]. Free [Asv07, BMS92, BCR11, BCD14, BESW07, BHK05, BNN04, BLM04, BL12, CD06, CR15, DV14, DSS15, EH15, EHS15, EO13, FLST12, GKR10, GB03, GV03, HWW06, HS11, HKS13, Han13, HW10, JM11, Kam95, KKS05a, KK07, KEH16, KRK16, KM07b, LO13, MR91, Ps08, PS12b, Rav08, Rei07, RS04, Saa02, Sta07, TSZ16, Tra02, Tru08, YB06, YJ05]. Frege [HK95]. Frequencies [CK16]. Frequency [CZTH13, WPZ16, XCX16]. Frequency-Hopping [WPZ16, XCX16]. Frequent [BLM15]. Frictional [DLW02]. Frontier [AT12, CHZ06]. Frontiers [GPPJR13]. Full [Bur12a, WLC12, ZHZ11]. Full-Text [ZHZ11]. Fullness [CdL04]. Fully [IST05, MC13]. Function [PS02, Sta05]. Functional [Ano01c, BV08, BKKR01, HST01, Hin01, Moh13, Pre01, Sali13, Whil91]. Functions [BB99, BMS92, BLY12, BH11, CM92, CH15, Car11, CGH05, CL07b, DQFL12, EMR11, FY11, FK05, HK95, HG11, Jai95, KM02, KY09, KSV00, LHG11, LL16, NAK+15, Ob10, PPL11, Ros03, Rya15, SS01, SUZ13, TST01a, TCT14, TJZ13, XC15, XCL17, Yam03, YTP11, ZHL13, ZW14+1, ZWCL14]. Functorial [DD12]. Further [CD06, Sbu06, ZYLW12]. Fusing [TV07]. Fuzzy [BOV08, EK07].

Graph-Bin [BDI +11]. Graphs

AFB96, AP92a, AFT16, Asl16, AO10, AT11, AB17, BTK13, BPR09, BO97, BHL +97, BB04, BS16, BPT06, BLM04, BHR09, CP16, CV14, CL07a, CL0L98, CPC99, DL12, DP90, DW04, ER09, EL13, EZ01, FWZ15, FP04, FG99, Fuj16, GV03, GP09, GP17, HKTO0, HFI08, HLHH06, HY97, JWB03, KLB03, KPM15, KHLC12, LWYL14, LW00, LOZ98, LWW00, LOZ98, LV08, MR99, MTNN99, MAN05, MAN06, MN06, NGHK15, NPSY00, NS98, OS93, RLWW96, RRT99, RR99, SS99, SG04, ST99, TV14, To06, WAF03, WFG15, YLS96, Noc98, WC13, YCL11.

Greedy [Fuj16]. Greibach [Asv07]. Grey [CDLW05]. Grid [BFMBS11, JP08, LMM +12, MNN06, ST93, Cas05, PT14, YLZ14]. Grids [Cal15].

Guest [AETZ05, NO99, Zom01c]. Guided [CFH +03, DDM07, HZT12]. Guidelines [Ros00].

Hairpin [DK11, MM10, PRY01, ST16]. Half [Kam95]. Half-Monotone [Kam95].

Halting [FO07]. Hamiltonian [BZ13, CP16, Noc98, NS98]. Handling [BCH09]. Harary [ABT16]. Hard [BLLS03, BVM00, Dic93, ZB00]. Harder [CKL15]. Hardness [LWW00]. Hardware [For10, IN05, INY07]. Harmonic [CCF08]. Harmony [LTZ12]. HAS-160 [WLC12].

Hash [NAK +15]. Hashes [Wan14]. Hashing [CKW09, LPP92, MB03].

Hausdorff [Sta05]. Head [KMW14b, KMW14a]. Heads [IT13]. Heap [BSG03, Jun14, Pro96]. Hedges [BOV08].

Height [Rei07]. Helping [AKS95]. Heterogeneity [RC11]. Heterogeneous [BLMR05, CFMR05, CYS +12, EZ01, OS01].

Heuristic [CHYT14, CDLW05, De 06, LY94, WAF03]. Hexagonal [GSD03]. Hidden [FZ13, IMS03]. Hierarchical [GM90, JS02, Loh10, SVSN01, SK03, SP04, WC04].

Hierarchies [BLS +05, BK15, DH05, KP10a, Sch02].

Hierarchy [BKM11, BZ10, BJY90, CSR12, Dev02, DZ00, HW00, Okh05, PPJ08, Rei07, Sel08].

High [CH15, Fin12, KR97, KKP97, Li12b, LKM02]. High-Capacity [Li12b].

High-Performance [LKM02]. High-Speed [KKP97]. Higher [BYP95, CCPS04].

Higher-Order [BYP95]. Highly [BCFR07]. Highly-Polynomial [BCFR07]. Highways [AAA +09]. Hirschberg [JHK08].

Historical [MP93]. Histories [Faz08]. Hit [WPZ16]. Hits [HM04]. Hoare [HV02].

Hoc [AWF03, CIS03, CL03, LB03, SB12, WLF03, WD03]. Hole [DSS08]. Holes [RR99]. Holonomic [BMS92]. Home [ST01]. Home-Based [ST01].

Homogeneous [JS03]. Homomorphism [SUC90]. Homomorphisms [LO13].

Honeycombs [Sib97]. Hop [KKP97]. Hop-Congestion [KKP97].

Hopping [CTH13, WPZ16, XCH16]. Horn [FGL +90, SN13]. Huffman [CFG12]. Hulls [CLW09]. Hurry [FZ12].

Hybrid [BHK07, CFH +03, DPR07, FK06, FF15, FK13, LMM +12, Smi95, SW09, XBE02]. Hybridization [ATK12]. Hyper [Bad09, CFMR05, HJ16, JM13, MQ11, MQ12].
Hyper-Clusters [CFMR05].
Hyper-Minimal [HJ16].
Hyper-Minimization
[JM13, MQ11, MQ12, Bad09]. Hyperbolic
[Mar08b, Mar08a]. Hypercube
[BV08a, WC04, WRNK03]. Hypercubes
[Li00a, Nak03, Zaj09]. Hypermesh
[LYH+15].
ID [CCD07]. ID-Based [CCD07]. Ideal
[APP91]. Idempotency [Len16]. Idempotent
[KP10b]. Identical [LLQ06]. Identifiable
[Jai95]. Identification [CL07b, Bai98]. II
[BJ07b, Ros00]. III [DMSS16]. Image
[MPV04]. Images [CDLW05, DE08, FRS06, IN08, KS06,
PS12a, SY10]. Immediate [AHR02].
Immunity
[EAB+16, LPS07, TCT14, TJZ13, ZWCL14]. Implement
[Cha02]. Implementation
[BCPR07, DK12, HST01, LPP92, MHT09,
NWK05, NKW08]. Implementations
[BBFZ06, DEMT05]. Implementing
[JHK08]. Implication
[Li08b]. Implications
[BP08]. Implicit
[Cha02, vdHM92]. Importance
[FCS05]. Imprecise
[HL04]. Impreciseness
[CTZ01]. Imprecision
[Cha97]. Improved
[DGN07, Dom04, Gru03, Han13, JZ16,
Leu04, Pr00, SSo7b, WLC12]. Improvement
[BC12, EG02]. IMRT
[CHWX09]. In-Network
[BRSC11]. In-Place
[GP09]. Inclusion
[BCR11, CTZ01]. Incompatible
[Jan93]. Incomplete
[KHL12]. Incremental
[DZ00, PNN+10]. Independence
[HKT00]. Independent
[AWF03, CK07, GNP+06, MTNN99,
NGHK15, TCLS10, Ueh99, YCTW10]. Indeterminate
[SW09]. Index
[Ano02, Ano03a, Ano04a, Ano05a, Ano06,
Ano07, Ano08, Ano09, Ano11, Ano12,
Ano13, Ano14, Ano15, Ano16, BO97,
FFH15, GNP+06]. Index-Shuffle
[BO97]. Indexed
[BP06]. Indexing
[PAS08, ZM11, ZHZ11]. Indicators
[MS04]. Induced
[AWF03]. Induction
[TY03]. Inductive
[BCC13, Kam95, Vlk96, Wan04]. Industrial
[FHG+07]. Inequalities
[Faz08, FM13, LW05, LW06a]. Inequality
[FP04]. Inexactitude
[CMR04]. Infection
[FLP13]. Inference
[BRSV13, MN00, Vlk96]. Infinite
[BHNR04, CK16, COT12, DM12, Dom12,
DK08, DSS15, Fin04, Fin12, IBS01, Jai95,
LÆd15, Mel93, Pr95, Sào92, Sha04, Sta05]. Infinite-State
[IBS01]. Infix
[WW06]. Infix-Free
[WW06]. Information
[BB03b, CCF09, DG90, Jir08, Li07, SB01,
TWZ11]. Informational
[GSZ09]. Informed
[MD00]. Infrastructures
[DW04]. Inhibition
[XCC16]. Initial
[Mec12]. Initiality
[BE95]. Initiations
[MM07]. Inner
[DMMIM14]. Input
[DK00, FK05, LZN06, Lin07, Moh02]. Ins
[KRK16]. Ins-Del
[KRK16]. Insertable
[Kun16]. Insertion
[CU11, EG02, HKNS16, KS11, MK11, OY11, PPJY08]. Insertion-Deletion
[PPJY08]. Insertion-Query
[CW11]. Insights
[RC11]. Inspired
[AETZ05]. Instance
[BI04]. Instance-Specific
[BI04]. Instances
[HHH07, IS03]. Instruction
[TV94]. Insulated
[LH11]. Integer
[FZ02, HHH07, PA98]. Integers
[SMS92, Dom12]. Integrity
[BTK13]. Intelligence
[Zho02]. Intelligent
[DE08, LKM02, NH02]. Interacting
[BCC12]. Interaction
[JWB03, Yue13]. Interactions
[JWB03]. Interactive
[AKS95]. Interchange
[HL01]. Interconnection
[CP99, CX98, CD09,
Hsu98, LYH+15, QD03, WQ97]. Interconnections
[BF97]. Interesting
[HPV99]. Interface [DE08].
Internetworking [GD98]. Interpolate [Fre02]. Interprocedural [TY03].
Intersection [BCD14, CGKN08, CGKY11, EHS15, HS08, YJ05]. Interstage [SS07b].
Interval [CPC99, EL13, GP17, NTSH06, SS99, ST99].
Intra [DDM07]. Intra-Molecular [DDM07]. Intractable [YHK14].
Intramolecular [IPR07]. Intransitive [WO03]. Intricacies [CHKL07].
Introduction [BBM90, NO99]. Intruder [ISAZ08]. Intuitionistically [TW09].
Inverse [ACFE09, FK13]. Inverses [Bir11]. Invertible [Dub95, Sut14].
Irreducible [WXF16]. Irresolvable [WFX15]. Israel [BCD14, CGKN08, CGKY11, EHS15, HS08, YJ05].
Irregular [MS99b]. Isomorphic [BVM00]. Isomorphism [AV96, Gre96, RK09].
Isoperimetric [AE99, BS16, RZ12, WFG15]. Isotopisms [BH11]. ISPAN [Pal01a].
Isomorphism [AV96, Gre96, RK09]. Isotopic Invariants [WFG15].
Isotypicality [ACM11]. ISsuring [Pal01a]. Issue [Ano01c, BRST07, CD02, Hin01, HO00, Hsu98, LC02, Pal01b, Pre01, RS00, TY02, Yu02, Zom01a].
Issues [Ami05, BF97, Cas05, HS01, Fin12, GKR01, HS13, HJK12, IR14, MM05, MRS07, McN09, Mer08, Okh05, OY11, PS02, Pri06, Rov00, YS13].
Items [BLM15]. Iterated [Sta05].
Iteration [BE92, BE93, CLW09, FL12, Sut14].
Iterative [KPSC08, MMP10, ST16, Sny12].

Jacobsthal [PS02]. Job [BS01, JMS005, Lio1, dSS01]. Jobs [CYZ14, FCS05, Jan93, LY94, Zaj09].
Join [CGKN08, SEE99]. Joint [Coo17].
Justification [VS93].

Kleene [BC06, GN11, HSS07]. Knapsack [KS10]. Knödel [BHL+97]. Knot [San13].
Knowledge [BLR09, Pan91, ROK08, WCD+14, vdhHM92]. Known [XIC15, ZHL13]. Kolmogorov [Jab95, Sch02]. Kronecker [CV14].
Kuratowski [BGK11].

Languages [Ata11]. Laplacian [QFL+15]. Language [BRST07, BV98b, CC05, CDJ09, Cos90, BRST07, BV98b, CC05, CDJ09, Cos90, DH05, DGM05, ES01, Fin12, GKR01, HS13, HJK12, IR14, MM05, MRS07, McN09, Mer08, Okh05, OY11, PS02, PPS06, Rov00, YS13].
Languages [AD02, AK10, AT16, BGN10, BMS92, BCR11, BCD14, BC06, BJ07a, BHK05, BCC+96, BK02, BGS11, BL12, BT13, BRz13, BL14, CPY02, CSV02, CL14, COT12, D11, DES09, DJ12, Dom04, DK98, DV14, DPS97, EH15, EHS15, ÉO13, Faz11, FLST12, Fin04, GN11, Géc07, Gla11, Glö07, G0190, HWW06, HS08, HS11, HK03, Huy91, IJT+93, IW07, IS12, Jez08, JML11, Jir14, JP06, KKS05a, KP10a, KP10b, KEH16, K1L16, KY6, Kör03, KMG11, KMS06, KR1K6, LNP16, LZ93, LO13, Leu16, MP07, Mig90, ND02, Ogi94, Oka99, Okh03, OY11, PRY01, PP06, Pig09, PP14, Pig15, Pin12, Rav08, RS12, Rei07, Sch13, Sel08, Shu07, Shu14, SR00a, SWZ97, STA05, STA07, TSZ16, Tra02, YJ05, YZ07, ZQL12, vW15, GP13].
Languages [ata11]. Laplacian [QFL+15]. Large [BIIN04, BS15, DCS13, DEMT05]
Management [SVSN01, TZ11].
Manufacturing [PFG+01]. Many [BSOR10, MRT95, Ole92, YCL11, Zan91].

Many-One [Zan91]. Many-Sorted [MRT95, Ole92]. Map [Wid12]. Mapping [AP92b, Ata11, EZ01, Hei97, IMP12, Teh15].

Mappings [LO10]. Maps [BFM06, HCG96, KPSC08]. Market [DLW02].
Markov [DHR08]. Markovian [HJW11, MGGP08].
Martin [Tsu01, TST01b]. Martin-Löf [Tsu01, TST01b].

Master-Slave [GS12a]. Master-Worker [DPR+08]. Match [HMZ05]. Matching [Aku06, BH02, BZ13, BCFL12, CCFG12, CF06, CCF09, CLLL08, CB09, CPC99, CHZ06, DES09, Fia08, Han13, IST05, KS06, KLH16, LCL06, MHT09, ND02, SKL03, SW09, WH03, FG08].

Matchings [DGL93, HCG96]. Mate [CP06].
Mate/Drip [CP06]. Mathematical [BCC13, NAK+15]. Matrices [BM16, BL01, Cai94, HHH07, HN06, MS12, Oli13, SY10, Sør09, SN09, SMAN13, Teh16a, WF17].

Matrix [Ata11, DFP99, DPR+08, HTO4a, HTO4b, KRK16, MS04, MS16a, MS16b, Teh15, WX16, Zet11]. Matrogenic [AP92a].

Matte [MC+11]. Max [Mas04, Pou04, HW00].
Maximal [AW03, Bur12a, DD08, DGL93, FY08, Luc09, PR12, Ueh99].
Maximality [KKS05a]. Maximally [WFG15].

Maximization [CS93]. Maximize [AJMO11, CR14].

Maximum [AMO07, BT07, BL01, BV00, CPC99, DJL+07, FKT07, MM97, Wan04, Won96].

MCFLs [Ê14]. Mealy [CG06]. Mean [BR08, GZ12]. Mean-Payoff [GZ12].

Meaning [HKKS13]. Means [CCP05, CHWX09, PPJY08]. Measure [CS93, Sta05, Uch99].

Meet-in-the-Middle [LJ17]. Meets [BSS12, FFH15]. Megabase [BBM+12].
Mem [CP06]. Membership [AK06, Arv97, Loh10]. Membrane [BMSMT11, CMMR04, DI05, FT11, GPPJR13, MB06, Nis07, Obt01, Obt06].

Merlin [CCPS04, Vin05]. Mesh [EG02, FZCB08, IS02, L06, RM98, ÜS02, WC04].

Meshes [BT00, FZEBB05, JW08, Mat04, mat05, WC04]. Message [EGPS10, FBHH01]. Messages [MN00]. Meta [SVSN01].

Meta-Computing [SVSN01]. Metaheuristic [HCETPL+12, LTZ12, SS12a]. Metalinear [MS07, Sun05]. Metabolic [Cos90].

Method [ACFE09, EH12, FK13, GMNS15, IN08, KM02, Li00a, US02]. Methods [CCM97, Fre08, KKS05a, MZ01].

Metric [CL09, XS11]. Meyniel [RR99].
Microarray [ATK12]. Middle [LJ17, VW93]. Min [KR97, Tor13, WH00].

Min-Degree [Tor13]. Mind [LZ93, Vi96]. Minima [MS99a].

Minimal [ARV07, AMR08, BBC00, CIY01, CPY02, CP03, DWS15, GRV10, HYN08, HN04, HT04a, HT04b, HJ16, Jai95, Jai98, JS97, JMR91, JJS08, Shu11, Szw95].

Minimality [Tam08]. Minimalizations [Pol05].

Minimax [HL04]. Minimization [AHK07, FSH11, GLY04, KM13, KLB13, MQ11, MQ12, ND02, Vin05, Bad09].

Minimize [AMO07, LRR08, Mas04].
Minimizing [DFLL02, GKKP99, HJ13, KS10, Kör03, LY94, LLQ06, PY04].
Minimum [AJMO11, BGRY16, BB04, BRSV13, CYS+12, DGN07, DIL+07, DLC+14, FPPS03, Fuj16, GMU15, GCK08, KK10, KHC12, MPV04, MAN06, QFL+15, Tor13, WAF03, Wan04].

Minimum-Process [GCK08].

Mining [GWL02].

Minor [NRT00].

Miss [Leo03].

Mixed [CYZ14, Di02].

ML [Has00].

Mobile [BFMBS11, BF07, BT17, BDDN01, CIS03, DSS08, FPPS03, FHL07, GCK08, HT09, IML04, LB03, MM07, SB12, TZ11, WP08, Zom03].

Mod [HKT00, SUZ13].

Model [BCB12, BNR03, BHL+97, IIT91].

Modifiers [AG01].

Modular [BPZ07, DS02, RCTC+09].

Modules [BJ07b].

Modulo [CGR13].

Molecular [DDM07, EHK06, FZFDCHB05, HW10, LAHN14, LR04, NAK04, Sak01, Sch10, SP04, Spr09, Tha91, TH01, YW06].

Modeled [BCC96, CCD07, CGKN08, HP09b, KMW14b, KMW14a, Mal15, MX11, NCC+07, RR06, SK01, Ver09, WM05, YBI11, ZC13].

Modal [DL12].

Mode [DI05, Fre05, Mas09, WL12].

Model-Checking [CGR13].

Model-Based [BCC12].

Modeling [BCC96, Cas05, JRPIP08, KSS08, LCY12, PSS12, Sun11, XBE02].

Modelled [HFLD09].

Modelling [AH07, BDL08, DM05, SK01].

Models [APP91, BBFZM06, BZ10, DEMT05, For10, HJ97, HJW11, IP08, KPM15, LWJ+10, LW06b, RCTC+09, Sah01, Suc90, WY05].

Mod [FFH15].

Modification [Rud15].

Modified [BSG03, BHL+97, IT91].

Modifiers [AG01].

Modular [BPZ07, DS02, RCTC+09].

Modules [BJ07b].

Modulo [CGR13].

Molecular [DDM07, EHK06].

Molecules [FMC04, FK05].

Monadic [SMS92, vD00].

Monogenic [LV08].

Monoid [KM08, KLS05].

Monoids [BR08, BS92, Bur12a, DM11, GEC07, Loh05, MR91].

Monotone [Kam95].

Monotonicity [JC03].

Moore [CFG12].

Morphic [Dur13, FRS06, Hon12, NP09, OY11, PS12a].

Morphism [Ram05].

Music
Musical

Mutants [MCS08].

Mutex [LCY12], Mutual [KG11], Mutually [YSM+00a].

NAAP [LBJ03], Name [CB09], Nameless [Kam98], Natural [Cha97], Nature [AETZ05], Nature-Inspired [AETZ05].

Near [BW14, HT09, XCY17], Near-Bent [XCY17], Near-Optimal [HT09], Nearest [HL01], Nearly [BJ07a], Necessary [ZWW+14], Neighbour [ABT16, BTK13, HL01, WQY16, LBJ03].

Neighbourhoods [DP90], Nerode [SMS90], Nested [CTH13, DP14, FGL+90, Gre96, HLW09, RT16], Net [LPC11], Nets [AH11, BCB12, GRV10, JC03, MOM91, Muk92, RHS10, WYY94, Yen09].

Networks [BRSRC11, Cas05, CL98, CX98, CCG+11, DR05, FZ03, KR97, KLo96b, LOZ08, LPS07, Lug11, MKB+11, Oka98, WQ97, YYH14].

Networks [AWF03, AOSY10, AH1+13, AO11, BV98a, BNS03, BDDN01, CP99, CDPT16, CIS03, CFMS15, CL03, CYS+12, CHA+92, Cig04, CD95, CD09, DHI997, DGN07, DCS13, DM08, FPPS03, GKP09, GSD03, GNC+03, Hei97, Hsu98, ISAZ08, JS97, KAPF05, KKK97, Li613, Li12a, LYH+15, LB03, MMS05, MCM+11, PP02, QD03, Ros00, SB12, SP04, TL90, WLF03, WD03, WQY05, XLC+04, XFJ03, ZC13, DDHL11].

Neural [FIO08, IW07, KM11, PPJR06, PPJR07, PPJS07, SRPC11].

Newcomb [Rav08].

NFA [JMR91, Leu05, Pol05, RS07], NFAs [CCP05, DESW05, Van05], NL [DK11].

NL-Complete [DK11], NLC [Joh00], No [Nak04], Node [WQ97, WY05], Nodes [ML04].

Noisy [MG14], Non [AG01, Ada10, BM90, BCHK90, CD15, CK07, DAi97, DPR07, DESW05, ES01, FLST12, Fre08, GJV00b, GB03, HL01, IMS03, Je08, KZ10, Kap05, Kut05, MC13, PP11, TY15].

Non-Abelian [IMS03, PP11].

Non-Blocking [DAi97], Non-Boolean [PP11], Non-Constructive [Fre08].

Non-Definability [ES01].

Non-Deterministic [Ada10, KZ10, MC13], Non-Ending [CD15], Non-Floundering [BM90], Non-Linear [DPR07].

Non-Periodic [CK07], Non-Primitive [FLST12], Non-Qubit [GRB03].

Non-Recursive [Kap05, Kut05].

Non-Regular [Je08], Non-Standard [AG01], Non-Symmetric [GJV00b].

Non-Synchronizing [TY15], Non-Uniform-Degree [HL01], Non-Uniqueness [DESW05].

Nonblocking [WLM13], Noncounting [KY96].

Non-determinism [HKK913].

Nondeterministic [BKW02, Cha02, CC05, GPS14, HK03, HK09b, HJ14, JRP08, JS08, Mar09, QD03, Tha91, Vin05].

Nondeterministically [HHN+95], Nonenumerable [Sch02], Nonexistence [ZLL11], Nonlinear [HG11, PP11].

Nonlinearity [CH15, Car11, LGH11].

Nonregular [Mer08, YS13], Nonstandard [Bee95, BSZ08].

Nonterminals [KK07].

Normal [Asv07, Cai94, Shi12, FSM11, Lin08a, RKRR02, VS93].

Normalization [Moh02].

Note [AHR02, BB99, BHL+97, BS16, CKK02, FM13, GMU15, IUK+04, LZ15, Mac96, Mas13, Szw95, Zaj09].

Notes [Okh07].

Notion [Gra90], Notions [IYD05, SNJ11].

Novel [DCS13, LH11, SRR15, SGZ02].

NP [Dic93, GP13, GSZ09, MW05].

NP-Complete [MW05, GP13].

NP-Hard [Dic93].

NP-Pairs [GSZ09].

Number [AMR15, AB17, AE99, CP03, CFJ10, DV11, Dom04, FY08, FT11, GRRS14, HB06, HJK12, JWB03, LZ93, LY94, Pano91, PR12, RS01, RRT99, Vi96, WQY16].

Numeration [MNS11].

Numerations [Jai95].

Numbers [BS16, BPT06, HFLD09, Jir11, LO11, PDPP11, RS15, Van05, Wan04].

Numeration [JP04].
[CCM97, SGZ02].

O [Fle96, OM96]. O-Trees [OM96]. Object [HK02, LX94, MT95a, YZ07]. Object-Oriented [LX94, YZ07].

Observer-Based [CCM11]. Object-Oriented [LX94, YZ07]. Objective [WM05, YTLC02]. Observable [AT12].

Observer-Based [CCM11]. Object-Oriented [LX94, YZ07]. Objective [WM05, YTLC02]. Observable [AT12].

Observer-Based [CCM11]. Object-Oriented [LX94, YZ07]. Objective [WM05, YTLC02]. Observable [AT12].

Observer-Based [CCM11]. Object-Oriented [LX94, YZ07]. Objective [WM05, YTLC02]. Observable [AT12].

Observer-Based [CCM11]. Object-Oriented [LX94, YZ07]. Objective [WM05, YTLC02]. Observable [AT12].

Observer-Based [CCM11]. Object-Oriented [LX94, YZ07]. Objective [WM05, YTLC02]. Observable [AT12].

Observer-Based [CCM11]. Object-Oriented [LX94, YZ07]. Objective [WM05, YTLC02]. Observable [AT12].

Observer-Based [CCM11]. Object-Oriented [LX94, YZ07]. Objective [WM05, YTLC02]. Observable [AT12].

Observer-Based [CCM11]. Object-Oriented [LX94, YZ07]. Objective [WM05, YTLC02]. Observable [AT12].

Observer-Based [CCM11]. Object-Oriented [LX94, YZ07]. Objective [WM05, YTLC02]. Observable [AT12].

Observer-Based [CCM11]. Object-Oriented [LX94, YZ07]. Objective [WM05, YTLC02]. Observable [AT12].
Paradigm [Sir15]. Parallel [AC05, AP92b, BS01, BCVVH07, BF97, BKM11, BKM12, BKM15, BBM+_12, BZ10, CCM97, CF06, CCF09, CPJ06, CPC99, CR14, CVMMV00, DP90, DD13, DGL93, DPS97, EAB+_16, FBHH01, FN16, GD12, HB06, Hea11, HS95, HN06, IMP12, Kan15, KS11, LTZ12, LLQ06, LMM+_12, LPP92, MS07, MIN11, MVMM02, MS99a, MDL97, OS01, OSZ92, Ott13, Ott15, Pal01b, Ros00, Sah01, SS99, SK03, ŠSM05, TH01, Tran08, VG01, VJD10, WM05, WH03, Zaj09, Zom03, ZC05, dSS01].

RWZ01, RLWW96, TY15, Yen08, ZYLW12.
Procedure [GN04]. Procedures [BET03, FMC04, FK05, FKT07, Sal11].
Process [AH07, DD12, GCK08, Kri97, SN13]. Processes [Cas95, FGH07, HW10, SMS92].
Processing [BRSRC11, CW11, HS95, HLW09, KBH99a, SS90]. Processor [CE98, Leu04, RR06].
Processor [DM08, HB06, LY94, MCM11, NKM08].
Product [DPR08, MS12]. Production [Wil91]. Products [BK16, CV14, CR15, TSS13].
Profile [Car11]. Program [RR04, Rud15, Wan04]. Program-Based [RR04].
Programmed [Fer07]. Programming [Ano01c, Cos90, FZ02, GN04, Hin01, ND02, Pre01, RR06, Rov00, Sub90a, Sub90b].
Programs [ACV13, BM90, BAK12, BET03, CIY10, CJS92, HB06, HV02, Jai95, RKRR02, Sao92, Sto92, Tha91, Vik96].
Progress [APV06, Pal03]. Projections [TZ91].
Quality [MKB11]. Quantifiers [BV98b]. Quantifying [EGPS10]. Quantisation [CCM11]. Quantitative [DV14]. Quantum [ATK12, Arn17, AD12, BMP03, BCD14, BMP15, BB03b, FZ15, Fia08, GR03, GJMP06, Gro03, GQZ15, IMS03, IN13, KR03, Kud07, LB04, Nis03, SY12, YSD16, Yam03, ZQL12]. Quasi [Ber13, MT10].
Quasi-Eulerian [Ber13].
Quasi-One-Cluster [Ber13].
Quasi-Relabeling [MT10]. Qubit [GR03, JMO3]. Queries [Arn17, Ars15, Cig04, GSZ99, Lag14].
Query [CW11, Lag17, Mec12, ST99, VG01]. Query-Based [VG01]. Query-Optimal [Lag17]. Querying [TV14]. Questions [IR14, Iba14]. Queue [Elm06, Iba02].
Queue-Connected [Iba02]. Queuing [YLZ14]. Queues [CS09, Fer07]. Quickest [GR03]. Quickheaps [NPS11]. Quine [RS95]. Quine-Bernays [RS95]. Quotient [MC11].
Rabbit [FSWF11]. Radical [BW14]. Radio [DG07]. Radius [Coo17, DESW05].
Ramsey [PDPJJ1]. Random [BT17, BKS12, FZT14, KPM15, Li12a, MD00, NPSY00, Rud15, Sub05, ZGL3].
Random-Access [Rud15]. Randomized [BDD01, DOR5, FDFZB12, LIO0b, MD00, RS00, SRR15]. Randomness [Sm00].
Range [DG07, MS99a, Poo04, RGR11].
[CdL04, FJ12, GS12b, IYZ04]. Replication [Qua07]. Report [APV06]. Reporting [SJ04]. Representable [TST01a]. Representation [BB99, BJ05, BJ06, BJ07b, O’N15, ROK08, WXF16, XHLF02, Zho02].

Resource [BRSRC11, CTZ01, FM01, SVSN01, YH11]. Resources [SB01]. Restarting [JO07, KR08, KO10, KO13, MO07, MO09, MP07, PM13]. Restricted [BFL02, DP90, DS05, Nis03]. Restriction [FFH15, HCG96, HLW09].

Restriction-Fragment [HCG96]. Result [CP06, ES01, LD01]. Results [AA13, BGRY16, BKM11, CD06, CKZ17, DGMM15, FOP05, HK09b, LS98, RS04, Sbu06, YYW94]. Retrieval [CCF09, FMN06]. Returning [BKM15].

Revisited [AMR09, DR94, FJ12, KS11, KX12, Pre90]. Revisiting [DPR+08]. Revocation [HYT15]. Rewrite [AMR09]. Rewriting [Bar90, BGVH07, BPT16, BKKR01, FW90, GHWZ05, KMS06, Luc09, Mad03, ND02]. Rewriting-Based [ND02].

RFID [HCETPL+12]. Rhythms [CIRS08]. Rich [PS12a]. Rigid [GJV00b]. Ring [CL98, DSS08, GS12a, LW06b, Mar97, Sub90a, Sub90b]. Ring-Theoretic [Sub90a, Sub90b]. Rings [BW14, CX98, EN03, FHL07, GLP07, YYW94]. RNG [CIS03]. Road [CKK02]. Robots [BFMBS11, BT17]. Robust [DPR07, DW03, ECY02, HJ01, HJV93].

Router-Based [MMS05]. Routing [BDC90, BDDN01, CHA+92, CYT14, Cig04, FPS02, GD98, GK98, GP17, JW08, KAPF05, LPC11, OS01, PA98, RM98, RS01, RV06, Sib97]. Row [WAG+06].

Run-Time [LD01, MHT09]. Runs [FY08, FJ12, KMIS09]. Runtime [Rud15].

Rupture [ABT16, Asl16, AO10, AA13]. Safe [Cap96]. Safety [CHYT14, IBS01].

Scales [CM12]. Scan [JP08, PRS98].

Scanning [DES09]. Scattered [DSS08, EO13, E114, RC05]. Scattering [BFMBS11, BT17, WQY16]. Scenario [YTC02]. Scenario-Based [YTC02]. Schedulability [WR16]. Schedule [CD95, RWZ01]. Scheduling [BV98a, BS01, BLMR05, BNR99, BDG+11, Cas05, CTZ01, CZY14, CR14, DFLL02, DEZ01, DL+14, DEMT05, FL97, FBHH01, FCS05, Gro03, HB06, HL04, HLW09, Jan93,
JSO10, Klo96b, KD99, LAHN14, LTZ12, LWT02, LLZ07, Li01, MXY+04, Mas04, NN93, Pal03, PY04, PZK07, PFF+01, RC11, SSO09, SS07b, Sun11, SS12b, WY05, WR16, YH11, Zaj09, Zom01b, Zom01c, dSS01].

Schema [KS11].

[DCS13, DZH16, FPP03, Fuj16, LD04, LHT09, LH11, MD00, TWZ11, ZC13].

Schemes [FL12, GP17, JSO10, PNN10, SNWW06, Sun00, WGF16].

Schnyder [MAN05].

Schützenberger [DV14].

Science [HO00].

Scientific [RR04].

Scope [LNP16].

Scope-Bounded [LNP16].

Score [HN06].

Screening [IN08, IN05].

Searching [AMI05, CFG12, DE08, KPS93, MP93, ST93].

Seat [KL05].

Seating [KL05].

Second [LHG11, Set08, Szw95].

Second-Order [Szw95].

Secret [LD04, MNS11, Sun00, TWZ11, WGF16, ZC13].

Secure [MG14, SNWW06, SNJ11, TWZ11].

Security [DLW02, LW06b, NAK+15, SNJ11].

Seeking [MD00].

Selected [Pd01a].

Selection [ATK12, SRR15, WRRK03].

Selective [HHN+95].

Self [CDPT16, DDHL11, DTY15, DWS15, FDFZB12, FZAM08, GHJS05, GS12a, HHW99, JK14a, JK14b, KK10, Kar99, Lázi13, NGHK15, ST11, San13, WD03, XS06].

Self-Assembly [JK14a, JK14b].

Self-Pruning [WD03].

Self-Similar [JK14b].

Self-Specifying [HHW99].

Self-Stabilizing [CDPT16, DWS15, FDFZB12, FZAM08, GHJS05, GS12a, KK10, Kar99, NGHK15, ST11, XS06, DDHL11].

Selfish [MV11].

Semantics [AG01, BMSMT11, BKKR01, CZ11, Cos90, Kri97, Luc09, MT95b].

Semi [KK05, SF07].

Semi-Automatic [SF07].

Semi-Lossless [KK05].

Semiautomata [BJ05, BJ06, BJ07b].

Semicomputable [TZ91].

Semifeasible [FH05].

Semiformal [Spr09].

Semigroups [AK10, BS15, SS13].

Semilinear [IS12].

Semilinearity [Yen09].

Semirings [ELS15].

Semisimple [AR16].

Sender [WZ15].

Sense [BF07, FS08].

Sensing [HY01].

Sensitive [OTT13].

Sensor [AML+13, BNS03, DCS13, MKB+11, SP04, WY05].

Sentences [Szw95].

Separability [JM03, Teh16b].

Separable [CM92, Mat04].

Separating [AV00, DZ00, vLW15].

Separation [Fia08].

Separations [BJY90].

Separators [BBC00].

Sequence [CZTH13, CW11, EGPS10, GD12, HMZ05, Lin07, PYTH10, WPZ16, XCC16].

Sequences [Ar15, BBM+12, CCF08, CKZ17, CRS12, Coo17, DN07, Dur13, GKI11, Hon12, IMP12, KX12, NP09, Sal07, SS12a, Tho06, WO03, XZS16].

Sequential [CCFS07, D05, Fre05, Kan15, LRT92, To06].

Serializable [Ogi94].

Series [CR14, Mal05].

Servers [OS01, URS07].

Service [BS01, BCDP08, Li12b, dSS01].

Set [AKu06, AW00, BRSV13, CGL12, Elm06, FZ15, GRV10, HLW09, KK10, KLS05, KM16, MM97, RAB15, Tor15, Uel99, WAF03].

Sets [AK06, BMW91, BMP03, BLL06, CTH13, CYS+12, CL07b, DLT06, DGL03, DWS15, DS05, DR94, EK07, FH05, HT95, HON+95, Hon06, Hon12, KHC12, LO11, Mel93, NGHK15, RW11, RC05, Ros90, RS15, SMS90, Sto92, TCLS10, TV94, WPZ16, XCC16].

Setting [BV08, HST01].

Several [LD04, XCC17].

Shamir’s [LD04].

Shape [Gaz06].

Shapes [MC02].

Shared [BLR09, Mor10].

Shared-Memory [Mor10].

Sharing [BDG+11, LD04, Li12b, Sun00, TWZ11, WGF16, ZC13].

Sharpened [FP04].

Sheng [CIS12, SS13].

Shift [HG11].

Shifts [AY07, JF04].

Shop [JMSO05, SS07b].

Shops [LLZ07].

Short [IMP12].

Shorter [GH13].

Shortest [AHL+13, CFMS15, DSP99, HUT02, JW08, LW05, LW06a, MPS99, ST99, XFJ03].

Shortest-Path [JW08].

Should [Ros03].
ST-Numbering [MNS11]. Stability [EMRB12, KD99]. Stabilization [DTY15, San13]. Stabilizing [CDPT16, DWS15, FDFZB12, FZAM08, GHJS05, GS12a, KK10, Kar99, NGHK15, ST11, XS06, DDHL11]. Stable [Hol11]. Stage [ZZZ16]. Standard [AG01, BPR09, MIN11, PR12, ZC13]. Star [BL12, CC98, CHYT14, CGKY12, HLHH06, HY97, Jir14, Mr91, OY11, YJ05, WC13, YCL11]. Star-Free [BL12, YJ05]. Start [FO08]. State [AM09, ARS11, AMR11, BGN10, BLMR05, BMMR11, CSR12, CK08a, CLMP16, CCP05, CGKN08, CGKY11, CGKY12, DS02, EH15, EHS15, GY12, GPS14, HS08, HKNS16, HK02, IBS01, JJS05, Jir14, KEH16, KLS05, Ma06, PS02, PR11, SS07a, SY07, SRS92, SN13, Yen08]. State-Based [HK02]. State-Size [CSR12]. Stateless [KMO10, KMW14b, Mas13, YD108]. States [BLR09, BMP15, CP03, HKS13, JMO3, LB04, MVM02, NWK06, ZQL12]. Static [BET03, Cam14, Cas95, TZ11]. Station [DRDN08]. Stationary [PT14]. Stations [FZ03]. Statistical [GK11, MG14]. Stay [BC12]. Steady [BLMR05]. Steady-State [BLMR05]. Stealing [Ros00]. Steiner [SSK96, Tor15]. Stencil [Leo03]. Step [LOZ98, Muk92, ZYLW12]. Steps [FT11, JW03]. Stepwise [KN93, MM11]. Subalgorithm [Nis07]. Subarrays [BT07]. Subclasses [BHK05, Gia11, TSZ16]. Subcubic [SG04]. Subdivision [XHLF02]. Subdivision-Based [XHLF02]. Subgraph [AB91, GMU15]. Subgraphs [ET14]. Subgroup [FZ13, IMS03]. Sublinear [FMN06]. Sublinearly [MMP10]. Sublogarithmic [HHW01]. Submatrices [WAG+06]. Suboptimal [GD98]. Suboptimal-Optimal [GD98]. Subregular [HIJK12]. Subregularly [DST10]. Subsequence [AE05, DD13]. Subsequential [AM03]. Subset [CIS03, Mar09, Vor16]. Substitution [KN93, Lam98, Mal07, MCM+11]. Substrings [Dom12, KL03, Tho06]. Subtrees [BG03, BI92]. Subtree [BVM00, Gre96, HLY+04, KEH16]. Subtree-Free [KEH16]. Subword [BPR09, CK08a, Cer08, Fad08, FM13, MS04, Sal07, SY10, TSZ16]. Subword-Free [TSZ16]. Subwords [AC11]. Succinct [BMP03, HYN08, KRK16, ROK08]. Sufficient [KL00, Oka00, WFG15, WW+14]. Suffix [DGMM15, FS06, GPC09, HBIT08, Hol11,
LJA09, MM05, PL06. **Suffixes**
BMR+14, FS05. **Suggestions** [FH11].
Suites [BMS12]. **Sums** [KMS09].
Summary [GH15]. **Suffixes** [Sal11]. **Super**
CV14, LLY13. **Supercompilation** [LN08].
Supernode [JS03]. **Superstring** [LW05, LW06a].
Superstrings [NN01]. **SuperTree** [NRT00].
SuperTree [NRT00].
Supply [IZN05]. **Support** [LRR08].
Surface [BPT06]. **Surfaces** [AAH02, Fre02].
Surveillance [MKB+11]. **Survey** [DGK08, Man15, MOM91, PPJS07, PPR08, Riv04].
Survives [JYF91]. **SVMs** [ACM11]. **Swaps**[CCFG12].
Switched [RVT06]. **Switches** [BGMV08].
Switching [GFK98]. **Switching** [GP09, KG11].
Symbol [NCC+07]. **Symbolic** [BB03a, Bee95, BCP07, Com90, MC13, MB06, Set08].
Symbols [DV11].
Symmetric
GJV00b, O’N15, TWZ11, Van05, KR97. **Symmetries** [BDSV06].
Symmetry [Cer08, MRS97]. **Symport**
[AF06, ARV07]. **Symport/Antiport**
[AF06, ARV07]. **Synchronization**
[FMV13, GLP07, Vor16]. **Synchronize**
[BGMV08, IT13]. **Synchronized**
[AK14, CKK02, HIR+92, Sto95].
Synchronizing
[AR16, BBP11, Ber13, TY15]. **Synchrony**
[SR00a]. **Syntactic** [BL14, KM08, Sak01].
Synthesis [BBL+12, SF07]. **Synthesizing**
[HK02]. **System**
[AMR09, BGMV08, CL14, EZ01, FK06, GWL02, GM90, HK95, NSV12, SK01].
Systematic [JP03].
Systems [ADHR08, BMS12, CDJ09, FK13].
Tenacity [LWYL14]. **Tents** [US02]. **Term**
[Bar90, FW90, TST01a]. **Terminating**
[Mas09]. **Termination**
[CR13, DPR07, DG09, GHZW05, KM02].
Terms [Hir91, JC03, OY11, YTN01].
Ternary [Jir11, XCX17]. **Test**
[AKM+11, BMS12, CDJ09, FK13].
Testability [RS13]. **Testable**
[KP10a, RS12]. **Testing**
[AMR11, BDSV06, CL09, CL10, HL06,
Tests [KY90]. Text [CK08b, KK05, ZHZ11].

Theorem [BC06, BSOR10, BGS11, DV14, GN11, GHS13, GRRS14, Ru96, SMS90, VG01, KPS13]. Theorem-Proving [GHS13, GRRS14]. Theorems [Suc90]. Theoretic [DGMM15, FH05, FZ15, GC15, Pan91, Sub90a, Sub90b]. Theoretical [Ami05, HYN08]. Theoretically [TWZ11].

Times [Li12b, SSS09]. Tissue [AF006, ARV07, CVPV08, FOP05, NSVA12]. Tissue-Like [CVPV08]. TLC [Hen02].

Token [DG98, GS12a, PT14]. Tokens [DSS08, SK01]. Tolerance [FWZ15, HY97, KR97, LYH+15, LZGF16].

Tolerant [CHYT14, FZEBB05, LPC11, XS11]. Tool [HPV99]. Top [LW93]. Top-Down [LW93].

Topic [LKM02]. Topic-Specific [LKM02]. Topics [GPPJR13]. Topological [CC98, FS98]. Topologically [HCG96].

Topology [FH11, He97, KG11, Oka98]. Tori [FHL07, LLY13, Sib97]. Torus [BF07, ISA08, Mar97].

Torus [GLP07]. Total [ALR04, DFLL02, FIO08, IZN99, KS10, LLQ06, LWLY14, PY04, Smi95].

Tightly [FKV06]. Tightness [CD09]. Tight [FK06]. Thue [DS95, Ram05]. Tighter [GP15]. Throttle [FK06].

Thresholds [CGR13, Mar92]. Theory [AR16, AD12, BK95, BRST07, Bur12b, Kam95, Láz13, McN90, SMS92, Smi95, Suc90, Tor15, Ts01, TST01b, Wan90, Zom01c].

Thoughts [Mee12]. Three [Cha02, CLT14, CK07, ET14, Fin12, KKH90, Tse16]. Three-Connected [ET14].

Three-Edge-Connected [ET14]. Three-Round [CLT14].

Three-Vertex-Connected [ET14]. Three-Edge-Connected [ET14].

Threshold [CGR13, Mar92]. Theory [AR16, AD12, BK95, BRST07, Bur12b, Kam95, Láz13, McN90, SMS92, Smi95, Suc90, Tor15, Ts01, TST01b, Wan90, Zom01c].

Thoughts [Mee12]. Three [Cha02, CLT14, CK07, ET14, Fin12, KKH90, Tse16]. Three-Connected [ET14].

Three-Edge-Connected [ET14]. Three-Round [CLT14].

Three-Vertex-Connected [ET14]. Three-Edge-Connected [ET14].

Threshold [CGR13, Mar92]. Theory [AR16, AD12, BK95, BRST07, Bur12b, Kam95, Láz13, McN90, SMS92, Smi95, Suc90, Tor15, Ts01, TST01b, Wan90, Zom01c].

Thoughts [Mee12]. Three [Cha02, CLT14, CK07, ET14, Fin12, KKH90, Tse16]. Three-Connected [ET14].

Three-Edge-Connected [ET14]. Three-Round [CLT14].

Three-Vertex-Connected [ET14]. Three-Edge-Connected [ET14].

Threshold [CGR13, Mar92]. Theory [AR16, AD12, BK95, BRST07, Bur12b, Kam95, Láz13, McN90, SMS92, Smi95, Suc90, Tor15, Ts01, TST01b, Wan90, Zom01c].

Thoughts [Mee12]. Three [Cha02, CLT14, CK07, ET14, Fin12, KKH90, Tse16]. Three-Connected [ET14].

Three-Edge-Connected [ET14]. Three-Round [CLT14].
Tree [AHK07, ABH+09, BB04, BCHK09, BKW02, CDPT16, CS00a, CHZ06, DL12, DST10, EM11, FGS+90, FTT10, Fle96, FSM11, Gaz06, Géc07, HH11, HBIT08, JM13, KM90, KEH16, KLF16, KK90, Li00a, L12, JLA09, MO94, Mal05, MT10, Mal15, Man15, MC02, MP91, PR00, PAS08, RAB15, Rei07, RVT06, SM99, SVF09, Tor13, XS06, YHK14, ZM11, DDHL11]. Tree-Based [ZM11]. Tree-Height [Rei07]. Trees [BYP95, CS96, Dar13, DOR06, ERW04, FDFZB12, FA06, Gre96, HL01, IML04, IZN99, IZN05, JL01, JS03, JK07, Lag17, LW93, LF96, MTNN99, MAN05, OSZ92, OM96, OW92, PI95, PV98, PL06, Pro96, RS01, Sao92, Smy12, XHLF02, YTN01, YCTW10, ZB00, ZB02, ZH06]. Treewidth [Klo96a]. Trellis [FGS+90]. Trémaux [DOR06]. tri [NS13]. Triangle [FP04, XHLF02]. Triangles [AAV00, Sib97]. Triangulating [AFB96]. Triangulation [DPT02]. Triangulations [Fre02]. Trick [Ste11]. Trie [AC11]. Tries [KPS93]. Trinomial [ZZC15]. Trinomials [WXF16]. Triplet [JS97, LOZ98]. Trivalent [CP99]. Trivial [BL14]. Truck [MYX+04]. TSP [Gol14]. Tube [AKM+11]. Tunable [BBM+12]. Turing [AD12, Cap96, Dub95, HIW01, HJV93, IIT91, IK+04, Mer08, Slo05]. Turn [AK14]. Tutte [GO09]. TVDH [AKM+11]. Two [AGM14, Ars15, BSZB08, BT00, BKW02, CH15, CL15, CdL04, CHZ06, CGKY11, CGKY12, DLTO6, DJ12, FS05, FL12, GP15, HJP+13, HL06, HKK913, HG11, IJT+93, IS12, JP06, JM03, Kap05, KKH90, KP01b, Klo96b, KL11, KMO10, LY94, Leu04, LLZ07, Mel93, OS01, RWZ01, RLWW96, SS07b, Ste93, SMAN13, WO03, XZS16, ZZZ16, ZQL12, ZG13]. Two-Dimensional [AGM14, BT00, CdL04, DJ12, JP06, SMAN13]. Two-Face [RLWW96]. Two-Machine [LLZ07, SS07b]. Two-Pattern [FS05]. Two-Processor [Leu04]. Two-Pushdown [KMO10]. Two-Way [BKW02, CL15, HKKS13, IJT+93, IS12, Kap05, KL11, ZQL12]. Type [Bar90, CZTH13, Hir91, Kam95, MN00, PI95, Smu95, Tsz01, TST01b]. Type-Free [Kam95]. Typeness [KMM06]. Types [APP91, TZ91].

Update-Efficient [LOD07a, LOD07b].
Updating [LW93, OW92]. Upper
[BPP11, ZSW14, ZG13]. Ups [JJS08].
Upward [HL06]. Use [BCC+11, SS12b].
Used [LKM02]. Useful [BGRY16].
Usefulness [BPR09]. User [DE08]. Using
[AC11, AH07, BBFZ06, BS01, Bee95, BC12, CTZ01, CK08b, DW04, DSS08, DZ00, DE08, EP17, FGH+07, FHL07, FK13, FN16, GD98, HHH07, HV02, HP09b, HFLD09, IML04, ILT11, INY07, IN08, IN10, Jia95, KAPF05, KS10, LX94, LB04, LWJ+10, MO94, PAS08, Pol05, RCTC+09, SKL03, SB01, SN13, Wan14, WX16, WM13, XHLF02, YBI11, dSS01]. Usual [ES01].

Valid [HCG96]. Valuation [DM11]. Value
[KMIS09]. Valued [CH15]. Valuedness
[Iba15]. Values [BFL02]. Var [YTLC02].
Variable [CLO7b, TY03, TJZ13, ZWCL14].
Variables [EAB+16, Kam98, ZG13].
Variant [Pán00, VG01]. Variants
[CVDV10, FL09, JL01, MS16a, MS16b].
Variations [DRDN08, YHK14]. Varieties
[KP10b]. Various [BLM15, IY05].
Varying [HG11]. Vector [BH02, CHYT14].
Vectorial [Car11, DQFL12, FY11]. Vectors
[PL06]. Verification [ADHR09, ADR11, BB03a, BDSV06, DPR07, FK06, FK13, Iba02, ILT11, LD01, LN08, LWJ+10, MG14, MDAPHPJ+11, Pen03, WM13, YBI11].
Verified [DVG03]. Verifier [Ver09].
Verifiers [YSD16]. Verifying
[FGH+07, HV02]. Version [Jun14].
Versions [BSBZ08]. Versus
[COT12, DPS07, CV13]. Vertex
[AT11, ET14, FP04, Kan15, PRS98, RZ12, SS99, WQY16]. Vertex-Connectivity
[FP04]. Vertex-Neighbor-Scattering
[WQY16]. Vertices [DW04]. Very
[FPPS03, FGH+07]. Via [BCDP08, Kar09, KL05, LN08, YLZ14, Zan91]. Video
[HT09]. Video-On-Demand [HT09]. View
[Ami05, DD12]. Viewed [Wil91]. Viral
[DM05]. Virtual
[BCC+11, GNC+03, LJA09]. Visibly
[RT16]. Visitors [ECY02]. Volume
[Ano97, Ano98, Ano01a, Ano02, Ano03a, Ano04a, Ano05a, Ano06, Ano07, Ano08, Ano09, Ano11, Ano12, Ano13, Ano14, Ano15, Ano16]. Volumes [BCC+11]. Vs
[SRO0a, HKKS13] vs. [DTY15]. VTLoE
[MT95a]. Vulnerabilities [DW04].
Vulnerability [AT11, AT15].

Walk [BKS12, Li12a]. Walking [DPT02].
Walks [Sub05]. Walsh [CH15]. Watson
[KM08]. Way [AM09, BMP15, BKW02, CL15, CFY16, HIR+92, HKKS13, IJT+93, IS12, Kap05, KL11, KMW14b, KMW14a, Obl01, Slo95, ZQL12]. WDM [XLC+04].
Weak
[Asl16, BSOR10, DTY15, GV03, KR08].
Weak-Bisplit [GV03]. Weak-Rupture
[Asl16]. Weakly [AFW03, DWS15].
Weakly-Connected [AFW03]. Web
[ECY02, HM04, NH02, Zhou02].
Wedderburn [AR16]. Weibull [PNN+10].
Weight [CS00a, FP03, LW93].
Weight-Balanced [LW93]. Weighted
[AMR05, AM09, AJMO11, CL15, CLOZ04, CGKN08, DM11, DP14, ÉM11, GVL07, IMP12, JC03, KS10, LLQ06, Mal05, MQ12, Mal15, Moh02, Moh03, Oli13, PYTH10, SS07a, SVF09, ZH11]. Weights
[HN06, KR16]. Well [Hut02, RT16, ZH06].
Well-Defined [Hut02]. Well-Nested
[RT16]. Well-Orderly [ZH06]. Wheel
[AB17]. Wheels [AO11]. Where
[WCD+14]. Whether [CDJ09, DK11].
Which [ERW04]. While [GPC09]. Width
[BLM04, DL12, GR00, JF91, LV08, MR99, PR00, RVT06]. Wildcard [DES09]. Wilf
[BSOR10, KPS13]. Window [KO13].
Winning [Fia08]. Wireless
[AFW03, AHL+13, BNS03, BDDN01, CYS+12, DCS13, FPPS03, Li12a, MG14, MKB+11, SP04, WLF03, WP08]. Within
References

[AAV00] Aytac:2013:SRR

Alazemi:2011:CSU

Andre:2009:IMP

Allauzen:2011:DCD

Abdulla:2013:MAP

Arrighi:2012:PCT

Ada:2010:NDC

Abdulla:2009:MAE
Parosh Aziz Abdulla, Giorgio Delzanno, Noomene Ben Henda, and Ahmed Rezine. Monotonic abstraction: on

Abdulla:2011:AVD

Azizoglu:1999:IND

Arslan:2002:AAL

Arslan:2004:DLW

Arslan:2005:ACL

Alba:2005:GEN

REFERENCES

Augustine:2013:TAS

Anceaume:2002:NDI

Alatabbi:2016:ALC

Asahiro:2011:GOM

Afonin:2006:MFP

Afonin:2010:SFG

Allauzen:2003:FST

[AM03] Cyril Allauzen and Mehryar Mohri. Finitely subsequen-
tial transducers. International Journal of Founda-
tions of Computer Science (IJFCS), 14(6):983–??, December 2003. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (elec-
tronic).

[AM09] Cyril Allauzen and Mehryar Mohri. N-way composi-

Amir:2005:TIS

Asahiro:2007:GOA

[AMOZ07] Yuichi Asahiro, Eiji Miyano, Hirotaka Ono, and Kouhei Zenmyo. Graph orientation algorithms to minimize the maximum outdegree. Inter-

Almeida:2008:EGM

Almeida:2009:AMR

Allauzen:2011:GAT

Amorim:2015:NLF

Ahrabian:2009:CTA

Anonymous:1997:AIV

Anonymous:1998:AIV

Anonymous:1999:AI

Anonymous:2000:AI

Anonymous:2001:AIV

Anonymous:2001:P

Anonymous:2001:SIF

Anonymous:2002:AI

Anonymous:2003:AIV

Anonymous:2003:Pa

Anonymous:2003:Pb

Anonymous:2003:Pa

Anonymous:2003:Pa

Anonymous:2004:AIV

Anonymous:2004:Pa

Anonymous:2005:AIV

Anonymous:2005:Pa

Anonymous:2006:AIV

Anonymous:2007:AIV

Anonymous:2008:AIV

Anonymous:2009:AIV

Anonymous:2011:AIV

Anonymous:2012:AIV

Anonymous:2013:AIV

Anonymous:2014:AIV

Anonymous:2015:AIV

Anonymous:2016:AIV

Aytac:2010:CRD

REFERENCES

Aytac:2011:RCW

Ando:2010:SCL

Ausiello:1990:LPA

Agostino:1992:PCO

Antonelli:1992:CMP

Abadi:1991:FIM

Ananichev:2006:CWP

D. S. Ananichev, I. V. Petrov, and M. V. Volkov. Collapsing words: a progress
Almeida:2016:SSA

Arnold:2017:IGR

Allauzen:2011:FBA

Arslan:2015:FAL

Arvind:1997:CMP

Alhazov:2007:MCS

Alhazov:2012:SUS
REFERENCES

2012. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Aslan:2016:WRD

Alba:2012:P

Asveld:2007:GAC

Aytac:2011:VVP

Auger:2012:FDP

Aytac:2015:VMT

Atanasiu:2016:NOP

REFERENCES

REFERENCES

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

288, February 2011. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

[Burgin:2013:ICM] Mark Burgin, Cristian S. Calude, and Elena Calude. Inductive complexity mea-

Berton:2014:DIP

Berardi:2008:ASC

Burcsi:2012:AJP

Bastien:2007:RSG

Boichut:2009:HNL

Bischoff:2012:UPI

REFERENCES

Bujtás:2011:GPP

Biegler:2008:CAM

Bertolotti:2006:EST

Bloom:1992:IA

Bloom:1993:IA

Bloom:1995:SEL

Bloom:2011:ALO

Beeson:1995:UNA

Brijder:2011:TRS

Berlinkov:2011:CCD

Berlinkov:2013:SQE

Bhika:2007:TDC

Bouajjani:2003:GAS

Berthome:1997:CIP

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Bermond:1997:NDM

Brlek:2004:PCI

Brijder:2009:RGO

Bordim:2004:ISS

Birget:2011:CSI

Brzozowski:2005:RSC

REFERENCES

Peter Borovanský, Claude Kirchner, Hélène Kirchner, and C. Ringeissen. Rewriting with strategies in ELAN: a functional semantics. *International Journal of Foun-
REFERENCES

[201x567] Bordihn:2011:UHR

[BKM11]

[Bordihn:2012:CCP]

[BKM12]

[Bordihn:2015:RPC]

[BKM15]

[Bui:2012:ARW]

[BKS12]

[Bruggemann-Klein:2002:RTW]

[BKW02]

[Blokh:2001:MTS]

Bein:2009:KSC

Borchert:2005:DDP

Brzozowski:2012:CET

Barbuti:1990:RNF

Bera:2016:SAA

Broda:2011:ASC

Broda:2012:ASG

Bertoni:2003:GRD

Bianchi:2015:POW

Bonomo:2014:SCS

Bertoni:1992:HGF

Bonifacio:2012:MPC

REFERENCES

REFERENCES

Bordim:2005:Fb

Bordim:2003:SSC

Baumslag:1997:ISG

Bodlaender:1991:CSC

Belohlavek:2008:FFS

Bournez:2011:P

Baturo:2009:UDA

REFERENCES

ISSN 0129-0541 (print), 1793-6373 (electronic).

Blin:2013:MMI

Brzozowski:2013:SMC

Blanchet-Sadri:1992:DDG

BarbosaDaSilva:2001:EPJ

Blanchet-Sadri:2012:ACP

Brzozowski:2015:LAS

Bonnet:2016:NEI

References

Blanchet-Sadri:2008:RTN

Bansal:2003:MHM

Blanchet-Sadri:2010:FWT

Bresolin:2012:BMB

Bourgeois:2000:RTD

Bae:2007:ADM

Brzozowski:2013:CAR

[Janusz Brzozowski and Hellis Tamm. Complexity of atoms of regular languages. *International
REFERENCES

Bramas:2017:RBC

Bacak-Turan:2013:NIT

Burderi:2012:FMM

Burgin:2012:DUA

Banerjee:1998:DSC

Burgschick:1998:LQL

Belohlavek:2008:BAA

Tiziana Calamoneri. Optimal \(L(j,k) \)-edge-labeling of

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Champarnaud:2005:ENA

Chai:2007:EIB

Cantone:2008:SCP

Cantone:2009:NEB

Campanelli:2012:PMS

Cienciala:2007:PDS

Cherubini:1990:BDG

Clementi:1995:OSP

Cheng:2002:SI

Cavaliere:2006:FRT

Cvetkovic:2009:MIN

Calude:2015:AAN

Champarnaud:2009:EAT

REFERENCES

Carpi:2004:RFU

Cinque:2005:SLC

Chatterjee:2013:CC

Carrier:2011:AOD

Caron:2016:SSP

Cappello:1998:PLB

Cerny:2008:SSW

Cantone:2006:SEB

Cantone:2012:ABM

Clarke:2003:ACG

Crochemore:2010:NOP

Cadilhac:2012:BPA

Cadilhac:2013:UCA

Cappello:2005:AMH
Franck Cappello, Pierre Fraigniaud, Bernard Mans,

Castelgts:2015:SFF

Czyzowicz:2003:LTP

Cellier:2008:PAE

Chigahara:2016:OWJ

Ciobanu:2006:MMA

Ciobanu:2009:EM

Champarnaud:2005:CTF

Cui:2012:SCT

Champarnaud:2008:AJA

Cui:2011:SCT

Cao:2015:TBF

[XW15] Xiwang Cao and Lei Hu. Two Boolean functions with five-valued Walsh spectra.

Crochemore:2012:LCS

Carioni:2013:ATM

Cao:2015:TBF

[XW15] Xiwang Cao and Lei Hu. Two Boolean functions with five-valued Walsh spectra.

Cheng:1992:RAD

Changizi:1997:LNI

Champarnaud:2002:ETI

Champarnaud:2003:P

Czeizler:2007:ISW

Chen:2009:GAC

Chiu:2014:AHA

Chiao-Wei Chiu, Kuo-Si Huang, Chang-Biau Yang,

Cleophas:2006:TRA

Ciglaric:2004:CND

Christodoulakis:2008:IRM

Cartigny:2003:RRS

Chin:2016:A

Crochemore:2007:SFO

REFERENCES

Miguel Couceiro and Erkko Lehtonen. On the effect

Chang:2010:ETF

Carnino:2014:FUA

Carnino:2015:DUW

Cheng:2008:MPA

Caron:2016:SCC

Champarnaud:2004:RWE

Chang:2009:TEB

Chen:2014:TRA

Cantin:2009:CCH

Campadelli:1992:LCL

Chatterjee:2012:DAG

Casasnovas:2004:AMC

Cortes:2007:DEP

Corinna Cortes, Mehryar Mohri, and Ashish Ras-
REFERENCES

Cortes:2008:CRE

Cortes:2008:CRE

Comon:1990:SSO

Coons:2017:RSJ

Costantini:1990:SMP

Chaturvedi:2012:LVO

Calamoneri:1999:OLT

Campeanu:2003:CNM

Cezar Câmpeanu and Andrei Păun. Counting the

Cardelli:2006:URM

Caissy:2016:EFH

Chung:1999:PMM

Ceterchi:2006:SCP

Campeanu:2002:EAC

Cordasco:2014:SSP

Corson:2015:ACR

REFERENCES

ISSN 0129-0541 (print), 1793-6373 (electronic).

REFERENCES

Danny Z. Chen and Haitao Wang. Processing an offline insertion-query sequence

Deorowicz:2013:BPA

Datta:2011:SSE

Daley:2007:IMT

DeAgostino:2006:BSD

Ducrou:2008:IUI

Domosi:2012:P

Duncan:2006:DFE

REFERENCES

Dolev:2011:TTU

Dutot:2005:SLS

Deng:2002:P

Dixon:2009:ABS

Domaratzki:2005:NUR

Devillers:2002:DH

Diessel:2001:DTS
Oliver Diessel, Hossam Elgindy, and Albert Zomaya.

Deng:2002:PMT

Dassow:1999:LDM

Droste:1990:UIS

Diderich:1998:EDO

Dawson:2009:TAR

[DHR08] Laurent Doyen, Thomas A. Henzinger, and Jean-François Doyen. 0129-0541 (print), 1793-6373 (electronic).

Dang:2002:ECT

Dang:2005:OMS

Dickerson:1993:GPD

Dolzhenko:2012:TDL

Dessmark:2007:AMM

Droste:1998:RLD

Diekert:2011:INC

Dudzinski:2012:FDC

Daley:2011:OST

Dagostino:2012:MMC

Ding:2014:OMM

Durand-Lose:2012:P

DiGiacomo:2006:EGT

Emilio Di Giacomo, Giuseppe Liotta, and Francesco Trotta. On embedding a graph on

References

DeQueirosVieiraMartins:1999:DAR

Devillers:2002:WT

Dong:2012:NCV

Duris:1994:CDR

Davila:2005:RSP

DeFelice:2006:P

Domaratzki:2012:APW

REFERENCES

Das:2008:VBS

Drewes:2007:L

Droste:1992:CAD

Day:2014:DPC

Duval:1996:CCS

DeFrancesco:2002:FDM

Dsouza:2003:LCE
Domaratzki:2005:RST

Domaratzki:2008:P

Domaratzki:2011:P

daSilva:2001:EPJ

Dobrev:2008:USM

Du:2015:OBS

Dassow:2010:GCS

REFERENCES

106

 DeVismes:2015:WVS

[Dur95]

[Dur13]

[DV11]

Desmedt:2004:AVC

Ding:2011:P

Ding:2015:NSS

Dong:2000:SAA

Deng:2016:ECP

Etherington:2016:PAC

Estivill-Castro:2002:CWV

REFERENCES

[EMR11] Andrzeij Ehrenfeucht, Michael Main, and Grzegorz Rozenberg. Functions defined by

Ehrenfeucht:2012:SCR

Emerson:2003:RAR

Esik:2013:CFL

Elouasbi:2017:DRD

Ehrenfeucht:2006:CT

Égicioglu:2004:CGW

Fazekas:2011:PRL

Fujimoto:2001:MPT

Fontaine:2005:BBA

Fung:2005:OSU

Fajardo-Delgado:2012:RSS

Fernau:2007:PGR

Fernau:2015:FIR
Henning Fernau, Rudolf Freund, and Markus Holzer.

Fredriksson:2008:EAM

Fredriksson:2008:EAM

Fredriksson:2008:EAM

Fredriksson:2008:EAM

Fix:2007:VVL

Fix:2007:VVL

Fix:2007:VVL

Fix:2007:VVL

Fachini:1990:SST

Fachini:1990:SST

Fachini:1990:SST

Fachini:1990:SST

Fouquet:1999:BGT

Faliszewski:2005:ASS

Frisco:2011:STS

Flocchini:2007:DCR

Fialik:2008:SBC

Finkel:2004:RLI

Finkel:2012:TAR

Freund:2008:ESN

Rudolf Freund, Mihai Ionescu and Marion Oswald. Ex-

REFERENCES

Fazekas:2012:NPP

Fuerer:1996:AAE

Fimmel:2001:OSP

Fazekas:2013:NDS

Fujiwara:2004:PLA

Fredriksson:2006:FMR

Fominykh:2013:PAS
Fujita:2016:FSC

Freund:2007:PHS

Freund:2008:CGS

Freund:2005:ORC

Forsell:2010:PCS

Ferrante:2004:VCP

Fantozzi:2003:GPS

REFERENCES

Ferro:2003:FCM

Faloutsos:2002:EAL

Frey:2002:BTA

Freund:2005:SWS

Freivalds:2008:NCM

Friedmann:2010:SSA

REFERENCES

REFERENCES

Fernandez-Zepeda:2008:SML

Fernandez-Zepeda:2005:DFT

Fernandez-Zepeda:2005:ESA

Fan:2014:NCI

Gazdag:2006:DSP

Gheorghiu:2003:SFF

REFERENCES

2003. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Gandhi:2015:AAS

Gupta:2008:MPC

Garcia:1998:SOR

Gudys:2012:PAC

Gecseg:2007:CTL

Grammatikakis:1998:CRP

Ghasemi:2014:AFS

Taha Ghasemi, Hossein Ghasemalizadeh, and Mohammadreza Razzazi. An

Gao:2007:SSP

Gudmundsson:2009:P

Gruber:2013:PSR

Gruber:2015:FAR

Goddard:2005:SSA

Goc:2013:ATP

Geser:2005:FFA

Alfons Geser, Dieter Hofbauer, Johannes Waldmann, and Hans Zantema. Finding finite automata that certify

Gawrychowski:2010:FGR

Glockler:2007:FAU

Glockler:2010:TDF

Gruska:2007:FSS

Garcia:2014:EDF

Gorrieri:1990:THD

REFERENCES

Heidi Gebauer and Yoshio Okamoto. Fast exponential-

Goldwurm:1990:SLD

Golovnev:2014:AAT

Gonzalez:2001:SMM

Geffert:2008:P

Groote:2009:SG

Geffert:2013:UCN

Gusev:2015:RTA

Vladimir V. Gusev and Elena V. Pribavkina. Reset thresholds of automata with two cycle lengths. *International Journal of Foun-
REFERENCES

Gurski:2017:IRS

Galle:2009:PUS

Gheorghe:2013:RFM

Goc:2014:NSC

Gruska:2015:PQF

Golumbic:2000:CWS

Grimmell:2003:SBR
References

Gradel:1990:NLT

Grassl:2003:EQC

Greenlaw:1996:SID

Grover:2003:IQS

Goc:2014:NAB

Geeraerts:2010:ECM

Gudmundsson:2009:SGG

Joachim Gudmundsson and Michiel Smid. On spanners of geometric graphs. International Journal of Foun-
REFERENCES

REFERENCES

REFERENCES

Henriksen:2002:EET

Hinze:2009:RMC

Hu:2011:PTK

Halava:2011:RTB

Hadravova:2012:LSB

Halava:2007:UBI

Hemaspandra:1995:NSS

[Hir91]

[Hir91]

[Hromkovic:1992:POW]

[Hromkovic:1992:POW]

[Hemachandra:1991:LLR]

[Hemachandra:1991:LLR]
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>specifying Markovian population models. *International Journal of</td>
</tr>
<tr>
<td></td>
<td>CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).</td>
</tr>
<tr>
<td></td>
<td>of functions and classes and its relation to Frege structure. *</td>
</tr>
<tr>
<td></td>
<td>International Journal of Foundations of Computer Science (IJFCS)*,</td>
</tr>
<tr>
<td></td>
<td>6(3):187–??, 1995. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373</td>
</tr>
<tr>
<td></td>
<td>(electronic).</td>
</tr>
<tr>
<td>Harel:2002:SSB</td>
<td>D. Harel and H. Kugler. Synthesizing state-based object systems from</td>
</tr>
<tr>
<td></td>
<td>Science (IJFCS)*, 13(1):5–??, 2002. CODEN IFCSEN. ISSN 0129-0541</td>
</tr>
<tr>
<td></td>
<td>(print), 1793-6373 (electronic).</td>
</tr>
<tr>
<td>Holzer:2003:NDC</td>
<td>Markus Holzer and Martin Kutrib. Nondeterministic descriptional</td>
</tr>
<tr>
<td></td>
<td>complexity of regular languages. International Journal of Foundations</td>
</tr>
<tr>
<td></td>
<td>IFCSEN. ISSN 0129-0541</td>
</tr>
<tr>
<td></td>
<td>CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).</td>
</tr>
<tr>
<td></td>
<td>International Journal of Foundations of Computer Science (IJFCS),</td>
</tr>
<tr>
<td></td>
<td>20(4):701–715, August 2009. CODEN IFCSEN. ISSN 0129-0541 (print),</td>
</tr>
<tr>
<td></td>
<td>1793-6373 (electronic).</td>
</tr>
<tr>
<td></td>
<td>recent results on the descriptional and computational complexity.</td>
</tr>
<tr>
<td></td>
<td>International Journal of Foundations of Computer Science (IJFCS),</td>
</tr>
</tbody>
</table>
REFERENCES

Holzer:2011:CRL

Holzer:2015:P

Hromkovic:2013:DVN

Han:2016:SCI

Han:2013:EDB

Halldorsson:2000:MID

Hon:2001:ANN
(print), 1793-6373 (electronic).

Ho:2004:DCP

Healy:2006:TFP

Hsu:2006:SCS

Huo:2009:PSA

Hon:2004:STD

Hong:2004:AWS

Han:2005:AAM

[HMZ05] Yonghua Han, Bin Ma, and Kaizhong Zhang. An au-

[Hol06] Jan Holub. Foreword. *International Journal of Founda-
REFERENCES

Holub:2008:F

Honkala:2002:RCD

Holub:2009:F

Holub:2011:BMS

Holub:2012:P

Holub:2006:BPD

Holub:2007:DEP

Honkala:2012:ESM
REFERENCES

Halava:2008:P

Halava:2009:P

Heuberger:2009:ACM

Herley:1999:DBB

Habib:1999:PRT

Hintikka:1995:WLP

Han:2008:SCU

Yo-Sub Han and Kai Salomaa. State complexity of union and intersection of finite languages. Inter-
REFERENCES

Han:2011:OFL

Herlihy:2007:KBE

Hinze:2001:PCC

Hsu:1998:SII

Haralambides:1995:BOS

Hoang:2004:EMP

Hoang:2004:MPM

[HT04b] Thanh Minh Hoang and Thomas Thierauf. On the minimal polynomial of a matrix. International Jour-
REFERENCES

Hung:2009:NOB

Harbich:2012:CDC

Hutter:2002:FSA

Huy91

HV02

HW00

Han:2005:GGA

Yo-Sub Han and Derick Wood. The generalization of
REFERENCES

Huang:2010:CSB

Han:2006:IFR

Hu:1997:FTS

Ho:2015:SYE

Hu:2012:LGG
Liang Hu, Meng Zhang, Yi Zhang, and Jijun Tang.

Hamrouni:2008:SMG

Ho:2015:SYE

Hu:2012:LGG
Liang Hu, Meng Zhang, Yi Zhang, and Jijun Tang.

Inenaga:2012:FCS

Ibarra:2002:VQC

Ibarra:2011:SRS

Ibarra:2008:CMR

Oscar H. Ibarra, Zhe Dang, and Linmin Yang. On...

Inoue:2004:NRT

Inoue:1991:ATM

Ipate:2011:FVS

Idwan:2004:FPM

Iliopoulos:2005:FAF

Costas S. Iliopoulos, James McHugh, Pierre Peterlongo, Nadia Pisanti, Wojciech Rytter, and Marie-France Sagot. A first approach to finding common motifs with gaps. *International Journal of Founda-

REFERENCES

Ito:2007:EHA

Ishdorj:2008:GAM

Ishdorj:2007:CP1

Ibarra:2009:P

Ibarra:2014:SDQ

Ibarra:2012:CBS

Imani:2008:ICM

Inenaga:2005:FCP

Ibarra:2007:CRL

Ibarra:2013:HSH

Ibarra:2005:VNP

Ito:2010:P

Ilie:2004:WCR

REFERENCES

Ibarra:2004:CCC

Isobe:1999:PTA

Ito:2005:PTS

Jain:1995:ICF

Jain:1998:MCI

Jansen:1993:SIJ

Jiao:2003:CLM

Li Jiao and To-Yat Cheung. Characterizing liveness monotonicity for weighted petri nets in terms of siphon-based properties. Inter-
REFERENCES

[Jir14]

[Jež08]

[JHK08]

[Jir11]

[Jiraskova:2014:RSC]

[JJS08]

[JJS05]
REFERENCES

REFERENCES

Jansen:2005:AAF

JMSO05

Justin:2004:EWS

Jurdzinski:2007:SRA

JO07

Jonoska:2006:TTD

Jansson:2007:ODR

JP04

JP06

JP07

Johansson:2000:NDP

Joh00
REFERENCES

Jalsenius:2008:SSC

Jurgensen:2014:P

Jack:2008:DNM

Jia:1997:TLN

Jia:2002:CCH

Jung:2003:SBS

Jansen:2010:ASS

Jain:2003:PPH

[JSPD03] Anuj Jain, Sartaj Sahni, Jatinder Palta, and James
REFERENCES

Y. Kameyama. A type-free theory of half-monotone in-
Kamareddine:1998:SES

Kantabutra:2015:FSP

Kapoutsis:2005:NRT

Katangur:2005:ROM

Karaata:1999:SSA

Karhumaki:2009:PCM

Krithivasan:1999:DPA
REFERENCES

Kobler:2000:OSE

Kufleitner:2011:POT

Kufleitner:2012:ADD

Kalampakas:2013:MPD

Ko:2016:SCR

Kloks:1996:TCG

Klostermeyer:1996:STS

Krawetz:2005:SCM

Katajainen:1990:TCO

Kamareddine:2002:EAT

Kari:2007:IBW

Kutrib:2007:WCR

[KM07b] Martin Kutrib and Andreas Malcher. When Church–Rosser becomes context
REFERENCES

Kari:2008:WCB

Krivka:2015:JG

Krithivasan:2011:SLG

Kusano:2009:AVS

Kuppusamy:2011:AIS

Kupferman:2006:TRA

Kutrib:2010:STP
Martin Kutrib, Hartmut Meserschmidt, and Friedrich

Klarlund:2002:RP

Krivka:2006:GLR

Kari:2011:PPP

Kappes:2012:MCK

Kutrib:2014:SUO

Kutrib:2014:SOW

REFERENCES

[8] KPS93 P. Kirschenhofer, H. Prodinger, and W. Szpankowski. Mul-

Karhumaki:2013:FWT

Kurganskyy:2008:RPL

Keum:1997:DAS

Klappenecker:2003:QSR

Kutrib:2008:OSW

Kostolanyi:2016:AAW

REFERENCES

REFERENCES

0129-0541 (print), 1793-6373 (electronic).

Klein:2008:MDE

Kosub:2000:UCC

Krithivasan:2003:DA

Kucuk:2014:FAA

Kudlek:2007:SRQ

Kunimochi:2016:SPE

Kutrib:2005:PNR

Kari:2012:BSR

Kenyon:1990:EBF

Kobayashi:1996:FN

Kaminski:2010:FMA

Lagogiannis:2014:PQD

Lagogiannis:2017:QOP

Lam:2014:BSP

Larsen:1998:SOP

[Lar98] Kim S. Larsen. Sort order problems in relational databases. *Inter-
Larsen:1999:GRA

Lazar:2013:BBS

Li:2004:QAU

Lipman:2003:NAA

Lu:2006:CRC

Ling:2002:SI

Lu:2006:PFS

REFERENCES

Leung:2005:DCN

Leupold:2016:GIL

Larsen:1996:ERB

Lin:2011:NIB

Li:2011:LBS

Lee:2009:NCA

Li:2000:MEE

REFERENCES

Lehtinen:2010:BGG

Lehtinen:2011:ESN

Lehtinen:2013:HPD

Lauer:2007:UEDa

Lehtinen:2011:ESN

Lauer:2007:UEDb

Löding:2015:SPD

Lohrey:2005:DCA

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Liao:2012:AST

Liao:2015:NOC

Lu:2016:MRL

Leporati:2006:SIB

Macarie:1996:NMF

Madhu:2003:PRS

Morris:2009:USP

REFERENCES

Maletti:2005:RTS

Maletti:2007:PS

Maletti:2015:PWR

Miura:2006:CDP

Maneth:2015:SDE

Marche:1992:WPA

Martin:1997:ETA

[Mar97] Bruno Martin. Embedding torus automata into a
Margenstern:2008:FTP

Margenstern:2008:CCA

Margenstern:2008:FTP

Martyugin:2009:LSR

Masopust:2009:TDM

Masopust:2013:NLP

Matsumae:2004:SMS

Susumu Matsumae. Simulation of meshes with separable buses by meshes...

Martini:2003:DHM

Muskulus:2006:CBC

Mantler:2002:CRB

Mumme:2013:EFS

Montoro:2011:FPN

McNaughton:1990:DFL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mohri:2002:GRI

Mohri:2003:EDW

Mohri:2013:DFA

Marti-Oliet:1991:PNL

Morin:2010:USM

Monti:1991:STB

Moffat:1993:HS

REFERENCES

192

REFERENCES

REFERENCES

Mongelli:1999:PRM

Mongelli:1999:PI

Mateescu:2004:MIS

Meduna:2016:C

Meduna:2016:SMG

Mahalingam:2012:PPM

Malik:2006:CFT

Mason:1995:RAO

Musikaev:1995:FBP

Maletti:2010:PQR

Miura:1999:LTA

Meier:2009:CSF

Meier:2015:ECS

Mukund:1992:PNS

Miyazawa:2011:BCT

Martin-Vide:2007:DPP

Muscholl:2005:NCF

Maza:2011:BDP

Ma:2004:TSP

MeyerAufmHofe:2001:SRT

Meduna:2012:JFA

Nagamochi:2006:PSR

Nakano:2003:LLG

Nakano:2004:TEO

Nuida:2015:MPS

REFERENCES

197

dations of Computer Science (IJFCS), 17(2):249–??, April 2006. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Nicart:2007:LMT

[NCC+07]

[NH02]

[Nis03]

[Nis07]

[Negga:2007:MAB]

[Nedjah:2002:PMC]

[ND02]

[Neggazi:2015:ESS]

[NH02]

[Nis03]

[Nis07]

Brahim Neggazi, Nabil Guellati, Mohammed Haddad, and Hamamache Kheddouci. Efficient self-stabilizing algorithm for independent strong dominat-
Ngassam:2008:IPT

Nakano:1993:SFT

Nakano:1999:GEI

Nochefranca:1998:DHC

Nicolas:2009:URM

Navarro:2011:SQ

Nikoletseas:2000:CPR

Nishimura:2000:FSS

Nochefrance:1998:DHC

Narayanaswamy:2013:UFB

Niu:2012:TPS

Nakano:2003:P

Nakano:2004:P

References

Ngassam:2005:FDI

Ngassam:2006:DAF

Obtulowicz:2001:MCO

Obtulowicz:2006:GPM

Ogata:2000:CCL

Ogihara:1994:SL

[S. Olariu, J. L. Schwing, and J. Zhang. Optimal parallel encoding and decoding...
Otto:2013:CPC

Otto:2015:APC

Ottmann:1992:UBT

Okubo:2011:MCL

Pavel:1998:ISR

Palis:2001:PSP

Palis:2001:SIP
REFERENCES

Palis:2003:COR

Palano:2008:RCC

Panti:1991:SNT

Peterlongo:2008:IGF

Patrignani:2006:EPS

Paun:2000:CMS

Pescini:2006:DPS
Dario Pescini, Daniela Bezozi, Giancarlo Mauri, and Claudio Zandron. Dynamical probabilistic P systems. *International Journal
Pan:2011:CRN

Penczek:1993:TLT

Petersen:2011:STB

Priore:2001:DSM

Perez-Hurtado:2011:PAA

Peng:1995:NTP

Pighizzini:2009:DPA
Giovanni Pighizzini. Deterministic pushdown au-

Pighizzini:2015:IAL

Pin:2012:EDL

Prieur:2006:STS

Plaza:1996:PSR

Porreca:2011:SAM

Pruša:2013:RTA

Paun:2010:ICS

Polak:2005:MNU

Poon:2004:ORM

Paquette:2006:FBB

Poinsot:2011:NBA

Pighizzini:2014:LAR

Paun:2006:P

Paun:2006:STS
REFERENCES

Science (IJFCS), 17(4):975–??, August 2006. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Paun:2007:CMS

Paun:2007:SNS

Paun:2008:RCL

Paun:2002:CCN

Paun:2011:SPM

Peled:2006:ECT
REFERENCES

REFERENCES

Prodinger:1996:DPL

Paik:1998:VSD

Paun:2001:HL

Pighizzini:2002:ULO

Pelantova:2012:ARW

Petrova:2012:CPB

Prusinkiewicz:2012:SGM

Piperno:1990:RSE

Peled:2007:P

Pelc:2014:EGE

Petrini:1998:PAW

Potanin:2013:P

Poon:2004:MTC

Pym:1992:UAL

Peng:2010:AAS

Yung-Hsing Peng, Chang-Biau Yang, Kuo-Tsung

Rampersad:2005:WAP

Rao:2008:GCR

Ravikumar:2008:BND

Rispal:2005:CRS

Rosenberg:2011:HCI

Romero-Campero:2009:MAC

Reinhardt:2007:THH

REFERENCES

REFERENCES

Roussel:1999:HDM

Rauber:2004:PBL

Rauber:2006:DRD

Roussel:1999:GLN

Raja:1995:QBC

Rajasekaran:2000:SIR

Roberts:2001:RNC
Richomme:2004:CRM

Ravikumar:2007:ELD

Reghizzi:2012:RSL

Reghizzi:2013:SLT

Rowland:2015:ASR

Reynier:2016:VPT

Rudy:2015:DRA

Ruohonen:1996:ECP

[Ruo96] K. Ruohonen. An effective Cauchy-Peano existence theorem for unique solutions. *International Jour-
REFERENCES

Roy:2006:RMW

Rigo:2011:LCR

Rhodes:2001:TCC

Ryabko:2015:CAF

Ranjan:2012:VIP

Sahni:2001:MAO

Sakurai:2001:CMC
Takafuli Sakurai. Categorical model construction

Salomaa:2007:CSO

Salomaa:2011:PSA

Salomaa:2013:FCB

Santhosh:2013:SSD

Saoudi:1992:PAI

Schopf:2001:USI

Seredynski:2012:DRB

REFERENCES

puter Science (IJFCS), 23 (2):501–521, February 2012. [Sch13]
CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Dragoş Sburlan. Further results on P systems with promoters/inhibitors. [Sbu06]

J. Schmidhuber. Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit. [Sch02]

Henning Schnoor. The complexity of model checking for Boolean formulas. [Sch10]

Markus L. Schmid. Inside the class of regex languages. [Sch13]

Arto Salomaa, Francis Chin, Oscar Ibarra, and Sartaj Sahni. Alberto Apostolico. [SCIS15]

Slavcho Shtrakov and Ivo Damyanov. On the computational complexity of finite operations. [SD16]

K. Saraç, Ö. Egecioğlu, and A. El Abbadi. DFT techniques for size estimation of database join operations. [SEE99]

REFERENCES

[Slobodova:1995:POW] A. Slobodova. On the power of one-way globally deter-

REFERENCES

Shyamasundar:2000:LRS

Shyamasundar:2000:PRP

Sosik:2011:PFR

Saha:2015:NRF

Sajith:1999:PVC

Sitharam:2001:DLB

Salomaa:2007:SCA

REFERENCES

REFERENCES

Sprague:1999:QTA

Shi:2001:LBH

Saifullah:2011:SSC

Shikishima-Tsuji:2016:RIH

Staiger:2005:IIF

Staiger:2007:PFL

Stewart:1993:TAA

REFERENCES

IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Steinberg:2011:ATC

Stolboushkin:1992:CPP

Subrahmanian:1990:RTBa

Subrahmanian:1990:RTBb

Subramani:2005:CRW

Suchenek:1990:ALH

Sun:2000:DRR
REFERENCES

Sunckel:2005:DCM

Sun:2011:PSM

Sutner:2003:RPA

Suzuki:2013:EET

Stuber:2009:DWM

Santoso:2001:SHR

Tamm:2008:TMB

Ti:2010:SIS

Tang:2014:CRB

Teh:2016:PMS

Teh:2016:SME

Teh:2015:CWP

Teh:2015:CWP

Touyama:2001:PEP

Thanh:1991:RMD

REFERENCES

Thomas:2006:MSS

Tu:2013:COV

Tosic:2006:CCF

Tran:2002:UPC
Nicholas Tran. On universally polynomial context-free languages. International Journal of Founda-

[Tsu01] Yasuyuki Tsukada. Errata: The paper: *Martin-Löf’s Type Theory as an Open-Ended Framework. Inter-
REFERENCES

Tian:2016:SFL

Trahan:1994:API

Takaoka:2007:FLA

Tak:2014:REQ

Tsay:2009:ACR

Tartary:2011:EIT

Thiagarajan:2002:SI

P. S. Thiagarajan and R. Yap. Special issue. *In-

Tang:2003:IIV

Turker:2015:CSP

Tucker:1991:PSR

Taheri:2011:PSD

Uehara:1999:MLF

Ueno:2013:BRB

Urgaonkar:2007:APC

REFERENCES

[Ungor:2002:PTS]

[Uehara:2007:CLP]

[VanZijl:2005:MNS]

[vanderHoek:1992:MSI]

[vanderMeyden:2000:PBL]

[Vergnaud:2009:NEP]

[Verbitsky:2001:RQB]

Vinodchandran:2005:NCM

Vermeulen-Jourdan:2005:LDS

resolution

vanLeeuwen:2015:SCR

Vorel:2016:SSC

Voisin:1999:SCP

Vincent:1993:RJF

M. W. Vincent and B. Srinivasan. Redundancy and the justification for fourth normal form in relational databases. International
REFERENCES

[HVollmer:1993:CFM]

[W Wan:2003:SHM]

[Dajin Wang:2004:HCD]
Dajin Wang and Jianmong Cao. On hierarchical configuration of distributed sys-

[Wei:2013:GCK]

[Wan-Di:1990:PAP]

[Wu:2003:BAH]

[Wang:2017:DCC]

[Wang:2015:SCM]

[Wang:2016:SSS]

Xiaofang Wang, Jian Gao, and Fang-Wei Fu. Secret sharing schemes from linear codes over \(\mathbb{F}_p + \nu\mathbb{F}_p\). *International Journal of Foundations of Computer Science*

Lucas A. Wilson and Michelle D. Moore. Cross-pollinating parallel ge-

REFERENCES

Wei:2016:VNS

Wu:2016:ESS

Wei:2003:EAS

Wang:2016:RRU

Wu:2005:EEN

Wei:2015:CPK

Xu:2002:MHM
G. Xu, C. L. Bajaj, and S. Evans. C^1 modeling with

Xu:2015:CNP

Xu:2016:FOR

Xu:2016:OFH

Xu:2017:SCQ

Xuan:2003:CSF

Xu:2002:LSB

Xu:2004:MBU

Yinlong Xu, Li Lin, Guoliang Chen, Yingyu Wan,

[XZS16] Zibi Xiao, Xiangyong Zeng, and Zhimin Sun. 2-adic complexity of two classes of generalized cyclotomic bi-

Yu:2011:RSV

Yamauchi:2011:RCE

Yuan:2011:LMF

Yang:2010:CMI

Yang:2008:SAS

Yen:2008:DCA

Yen:2009:PDS

Ye:2011:WCP

Yamamoto:2014:TIV

Yen:2013:P

Yli-Jyra:2005:ADG

Yang:2014:PAG

Yahia:2008:P

Yakaryilmaz:2013:TBS

Yu:2011:P

Yu:2007:SEO

Yue:2013:CIE

Zajíček:2009:NSP

Zanko:1991:PCM

Yu:2006:SBM

Zan:1994:SCR

REFERENCES

REFERENCES

Zhou:2017:CEE

Zhou:2013:NUB

Zhang:2006:AWO

Zha:2013:CNA

Zhong:2002:RCO

Zhang:2011:WAF

Zhang:2011:NBF

Zdarek:2011:TBI

[Jan Ždárek and Bořivoj Melichar. Tree-based 2D in-
References

Zomaya:2001:SIP

Zomaya:2001:S

Zomaya:2001:STA

Zomaya:2003:MCO

Zheng:2012:SLR

Zhou:2014:NWC

Zheng:2014:CMV

REFERENCES

