
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

18 February 2018
Version 1.46

Title word cross-reference

(001) [dLdOdAD12]. (100) [MFK+12]. (1 ≤ n ≤ 6) [UDVD10]. (2 ≤ n ≤ 8) [BLRdA+10]. (A = N, B) [ASW13]. (m + n = 3) [UKF+11]. (m = 5, n = 2) [MHHPR+17]. (m = 6, n = 3) [MHHPR+17]. (n = 1, 2) [Men10]. (n = 1, 2, 3) [EML+11]. (n = 1 -- 4) [LL11]. (n = 1 -- 7) [CAZ+11]. (n = 2, 3) [DTEMK11]. (n = 2 -- 10) [WJL+11]. (n = 2 -- 34) [QLY10]. (N = 28) [GD11]. (r, s) [Bib13]. (ϕ - ψ) [MAW+18]. + [Buc12a, CdAFS+12, DMAB12, FRNM12, GKT+12, KT12b, LWWZ13, MEEA+13, MPRCEG12, MOH+12, RS12, SABA+12, SD12, WZH12, XZL+12, YGL+11, YZ10, ZH12]. 1 [BEM12, DFK16]. 1/3 [KLQ15]. 13 [LXD13]. 14 [YD17]. 1^3Au [GWZ+14a]. 2 [ABTW14, CPL15, HGB08, IK14, LLZaH14, LD17, NF11, SPD+18, SSDS17, YSW11]. 2n + 2π [MB13]. 2n = 68, 70, 78, [WLZ+12a]. 2pπ [VLFG12]. 3 [ABTW14, GWJ12, LQZZ12, LD17, RLW+13, SM14c]. 30 [GGD12, SLZ+12]. 3d [ALA15, DD17, RZC13]. 3dσ [VLFG12]. 4
[ABTW14, CD12, GB13, GWJ12, HCL13, LKN13, SM14c]. 4π [VLFG12].

4σ [VLFG12]. $4f\sigma$ [VLFG12]. 5 [ABTW14, BGMD15, BjdlMAV12, CDSK12, HDQ$^+13$, MPE15, SM14d, SM16]. 5σ [VLFG12]. $5 \leq n \leq 7$ [LCZ15]. 6

[CWSZ13, HDQ$^+13$, LdMda$^+12$, MPE15, MJ14, PAKA15, VBO$^+15$]. 4

Σ [VLFG12]. 6σ [VLFG12]. $6j [RBD^+10]. 7$

[CHV14, GGJD13, SR13, WCH$^+13$. 7$i\pi [KMF^+11]. 7j\sigma [KMF^+11]. 8 [YCG13]. 80 [WLZ$^+12a]. 8jp [KMF^+11]. 8j\sigma [KMF^+11]. 8k\sigma [KMF^+11]. 8 \leq n \leq 14 [NW12]. 9 [Ali14, SBB16].$

[BPG813, YC13]. 80 [WLZ$^+12a]. 8jp [KMF^+11]. 8j\sigma [KMF^+11]. 8k\sigma [KMF^+11]. 8 \leq n \leq 14 [NW12]. 9 [Ali14, SBB16].

[BPG813, YC13]. 80 [WLZ$^+12a]. 8jp [KMF^+11]. 8j\sigma [KMF^+11]. 8k\sigma [KMF^+11]. 8 \leq n \leq 14 [NW12]. 9 [Ali14, SBB16].
[AO12a, ATS15, ALA15, BDFM10, BPG⁺10, BAP12, BAMA12, BL11, BGF14, BZZ15, BG11b, BB10, BLKB11, BJ17, BuC12a, BSK11, CP10, CRS12, CTW15, CCS15, CS17, CC11b, Cor16, CWSZ13, CS18, DMAB12, DLC15, DVDB11, DTP⁺12, DCDD10, Den13, DPDR11, DMG10, DZO11, DLM12, DQZF12, ESS13, EO11, EMS15, FLCH10, FBRBR12, FTB11, Fuk12, GP13a, GW11, dDG10, GKT⁺12, GR10, GD11, HV11, HDC⁺11, HSYM11, HHL12a, HHL14, HYH⁺10, HCL13, HHL⁺12b, JL12a, JL12b, JLZ⁺17, JW⁺12, JLG⁺12, KWC10, KAR12a, Kan11, KM⁺11, KN12, KKL13, KK1b4, KSK16, KSST12, KZQ15, KDOR17, KF17, KN15, KRC⁺13, LZ12, Les12, LV12, LPG⁺12, LCT14, LC16, LLL16, LCZ15, LL⁺12, LSS⁺11a, LXLL11, LLLB13, LEU11, MLY⁺16, MLW10, MFK⁺12, MC12, MBA⁺13, MPD⁺10, MKM11, Mit11a, MZLM17, MPRCEG12, MP⁺13, MPTZ13]. 2

[MCV11, MKW11, MGP16, MOH⁺12, NW12, NTNL10, NL11, NMIP14, NH11, Oni12, OgvSG18, PTV⁺11, Pan16, PWL⁺10, PC16, Per10b, PK13b, PRPU⁺13, Puz10, QSL10, Qu13, QC⁺10, RS12a, RS12b, RSL10, RFE⁺16, RNB⁺10, RGR12, RRB12, SBT16, SK14, SD16a, SCLPB12, SABA⁺12, SVPT⁺10, Sat11b, SMEH15, SSAM13, SX⁺12, SPIL14, SZZZ11, STL12, SLZH12, SYQ⁺10, SCTW10, SW12, SZ15, TOSN12, TSN12, Tan13, TFSRM11, TN11, TD11, TSL11, VPFD10, VPA11, Vik11a, Vik11b, VLK⁺11, WSL11, WLL11, WLG⁺11, WZ⁺13, WZH13, WZ⁺12, WLL14, XMZ⁺12, XZL⁺12, XZL⁺12, XZL⁺12, XD⁺10, WCY11, YL11, YLY18, YIY⁺13, YSK⁺12, YLW12, YGL10, YL⁺17, YC13, YLC17, YLYC18, Z15, ZPR10, Zha10, ZK12, ZH12, ZQJW13, ZLW13, ZGSM15, ZFS⁺11, ZLWZ16, ZLY⁺14, ZDZ11, dHL12, dRD10]. 20

[CWL⁺13, GB13, WSL⁺11]. 24 [MBK12, MC18, YL11]. 2

[AC12, Ber13c, Che12, OPC17, RS12b, SS14, VLG12]. 2 [FBRBR12]. 2

[SSAM13]. 2 [YGL10]. 2 [FBRBR12]. 24 [CSS12]. 2

[CSS12, CSS12]. 2 [WL12a, EML⁺11]. 3

[AY14, ACM10, BCP10, BGFD14, BG11b, BZ15, Bou12b, CCL⁺13, Ca1F12, CRS12, CWS15, CS18, DS11, DS12, DPD11, DZ11a, DQZF12, DSFT17, EMS15, EM16, EA16, FrN12, GW11, GZ11, GMP⁺11, JCC12, JL12, KWC10, KAR12a, KG17, KCK14, KLZ15, Les12, LJ⁺11, LJ⁺11, LGW11, LXX11, LD⁺11, MW15, MFK⁺12, Men10, MP⁺10, MEE⁺13, MP⁺10, MP⁺10, MPRC12, Mor11, NBL12, NH11, dMO12, On10, On12, OH12, OH13, PC16, Per10b, PP14, RSN12, RBB1b, SMC18, SK14, SK11, SD12, SS14, SZ12, STL12, SM17, SYQ⁺10, TSL11, TL15, UV18, VPFD10, VL⁺11, WCY⁺10, WLG⁺12a, WLG⁺12b, WZ⁺13, WZH13, WZ⁺17, WZ⁺12, XZL⁺12, XZZ⁺10, WSL11, XWCY11, YLW12, ZJC⁺13, dHL12, dRD10, dCMU11, dALR11]. 3

[BDF10, CCL⁺10, DWW⁺16, DLM12, ESS13, FBRBR12, HLM11, HS⁺11, HHL⁺12b, JCC12, K112, Kim13, KIK13, KSK16, KMM16,
[CD12, GWJ12]. \(m = 1 \)−−−2 [FTB11]. \(m^* [Dw13]. \mu [ESS13]. N \]
[CZJZ12, CPL15, DDÇY12, DPRK12, DDF+12, ES17, KC11, KSAK17, MOSK10, MAN15, NJA+12, Pan16, SFW12, CMCN11, CSK12, DFK16, GE12b, KSSK16, KMM16, ZYZ+11]. \(n + m \leq 5 \) [CD12]. \(n = \]
[HLH+15, SM14b]. \(n = 0, 1, 2 \) [SKS10]. \(N = 1 \)
[SM16, CWSZ13, GGJD13, GB13, HDQ+13, SR13, SM14d, WCS+13, YC13, BGMD15, PAKA15, SBB16, SM14c, BjdlMAV12, CD12, GWJ12]. \(n = 1, 2 \]
[BPG+10]. \(n = 1, 4 \)−−7 [FTB11]. \(n = 2 \)
[Ali14, HDQ+13, MJ14, CDSK12, GGD12]. \(n = 2, 3, 4 \) [GP13b]. \(n = 20 \]
[SLZ+12]. \(N^* [CZJZ12, DDÇY12, Tav11]. n \geq 2 \) [SM14c]. \(o [KSAK17]. p \]
[AGJ12, AMAC12, CSK12, DLJT14, HLZ+14, RRRK16, SRA+11, ZSASS13, ZYZ+11]. \(\pi [BWE16, CCS13, DWZZ15, KPL+17, LDKB15, LB18, MC17, MANP17, NMV+14, PC16, SPD+18, SSS15, TK16b, YZZ16, YD17, CC11b, SLS+12, AEKG12, BMR+13, DB15, FV11, GNM+12, LCB10, MAM10, Nik11, NNRG11, RNVP12, RNV+12, SD13a, VSS11, Yam10, ZZL+11]. \(\Pi_a \]
[HHL+12b]. \(\pi \cdots \pi [WLC+17]. \pi \sigma^* [KGVG11]. \(r [Dau16, SAHAA16]. \Psi^o \]
[GS10]. \(q [Agb12]. q = 0 [SM14c]. \rightarrow [Buc12a, Coo12, GKT+12, LCB10, MPRCEG12, NWQX11, YG+11, YZ10, ZH12]. rmSU(2) [Bra10]. {S} [HR12]. \(S = 1/2 \) [KLZQ15]. \(\sigma \]
[SPIL14, SC18, CC11b, Ang10, Che12, DCdG10, JLG+12, Yam10]. \(\Sigma^- \]
[ZCG+17, SLS+12]. \(\Sigma^o [ZCG+17]. \sigma_\text{hole} [VVJ15]. \sigma_\pi [XY13, DMW11]. \)
\(\sqrt{3} \times \sqrt{3} [OD16]. \times [PW+10, ZWWY10]. \rightarrow [KMM16]. v = 0, 1 [LZQZ13]. \)
\(v = 0, j = 0 [YZ10]. \varphi [CC11b]. W(l, m, n; \alpha, \beta, \gamma) [LWW13]. \wedge \]
[ZQJW13, YLY+12]. \(x = 0 [HL13]. x = 1 [RLW+13]. x = 2 [BCGC12]. \)

* [LCB10].

- [ABTW14, CPL15, CSK12, DFK16, LGHL11, LXD13, MW16, CZJZ12, CPL15, CZJZ12, DDÇY12, DPRK12]. -1 [CPL15, LL17, TAV11, YZW+15a].
-1-methyl-1H-benzo [ÖEDB11]. -2 [ZWWY10, JWG+12]. -2-
[KDC12, KAOB11]. -2-ethoxy-benzamide [DPRK12]. -3 [Tan12].
-3-methyl-cyclopentanone [PCR+11]. -3-methyl-divinylene [FO10]. -4
-actiny [ZQP17]. -Al [MFK+12]. -alanine [ZPR10].
-aminophenanthridine [BO+15]. -arylamides [DDF+12].
-arylcarbamates [DDF+12]. -azauracil [MPE15]. -based [MG16].
-bidipyrrins [JWG+12]. -bis [SAHAA16]. -bithiazole [SAHAA16].
bithiazoline [Qu13]. -bonded [SPIL14, DB15]. -Br [DVB11]. -butene

5 [SAHAA16, CSVCB12, CSSK+12, IK14, JLL11, KDC12, SZ11, Tan12]. 5-
[OA13]. 5-c [YB11]. 5-d [CC11a]. 5-diacetyl-1 [TM13]. 5-diamo-no-1
5-dimethylpyrazole-1-carbodithioic [SJZL12]. 5- f [MJ11]. 5-Aryl-2-pyrones
5-dimethylpyrazole-1-carbodithioic [SJZL12]. 5-dione [IK14, KDC12].
5-diphenylformazans [TT10]. 5-fluorouracil [MR11, NA12]. 5-HT
[CSVCB12, CSSK+12]. 5-methylhydantoin [SF13]. 5-nitro-1 [CLY12]. 5-triazine
[CLH14, TJS17]. 5-trinitro-1 [MJ11, TJS17]. 5-tris [FO10]. 503 [COP16]. 5d
[Ge12a]. 5H [LW13]. 5H-oxazol-4-ones [LW13].
6-acylbenzothiazolon [SSTÖ11]. 6-diaminoanthraquinone [DKS11].
6-diazaadamantane [KMK+16]. 6-dinitrophenol [LDW+11].
6-distyrylpyridine [MUPC10]. 6-fulleroid [iku17]. 6-tetrainitrooctahydroimidaZO-
[CC11a]. 6-trinitro-1 [CLH14]. 66
7 [Men10, PWL+10]. 7-trimethylxanthines [SMGZ13].
7-trinitro-9-fluorenone [Men10]. 770 [HS15, dFR15a].
8 [WWX+11]. 8-naphthalimide [QHS11]. 8-oxoguanine [YM12].
8-substituted [SMGZ13]. 8-TCDD [WWX+11].
9- [CRSB12].
= [BLL+13, CWS15, DPDR11, DD17, EMSB15, EMS16, EAV16, GWM11,
HNBG15, HWL16, JLG+12, KSSK16, KMM16, LJJ+11, LC16, LGW11,
LXD13, MLY+16, MLW10, MZLM17, NBL12, PSK+16, Pan16, PCD14,
PAKA15, SMC18, SKS10, SPI14, SM17, SYQ+10, TW10, TL15, VO12,
WSML16, WZW17, XZL+12, YLW11, dOR10]. =4 [BEM11].
A- [XLGA12]. A/H5N1 [KRH13]. Ab-Initio [CS13, TK16a]. ABAD
[MFR10]. ABEEM [DMYW11, ZXY13]. ABEEM- [DMYW11]. ability
[Fin14b, PSK+16]. abnormal [Pan16]. absorbance [RKM12]. Absorption
[JPPA10, JPP+11, PSK+13, BS11, BDR12, CRSB12, CS17, Eil14, FBO+11,
HHH+13, ILBS10, JCC10, LWL+12, LXW+14, Men15, SB10a, TZ11, TT10,
TCM+12, TG13, WWC17, WLZ+12b, ZQCI10, ZWLC12, ZQJW13, Zha17,
dARAV12], abstraction [FRNM12, LGW11, OD12, PM17, SKM11, SCBP17,
TIN13, WWZH13, WZH13]. abundant [RR11]. accelerate [BR15].
accelerated [ZH15]. Accelerating [TKN13]. accelerator [KCDC15].
acceptor [ABA11, CMR13, IIS+17, KPL+17, KDA+11, LQ13, MANP17,
SSK11, ScBsR+10, TSBSM12, ZYL+14]. accessible [TBST10]. account
VBC$^{+}$12b, VV12, VV13. aNHC [Pan16]. anhydride [DNCKS$^{+}$12, ZPW16]. anhydrous [CTVA12]. aniline [Zha15]. anion $^{[12]}$ [CM11a]. anion-based $^{[12]}$ [DNCKS$^{+}$12, ZPW16]. anionic [BMB12, GLPA10, XZL$^{+}$12]. anion- [DWZZ15]. anion-based [DWZZ15]. anionic [BMB12, GLPA10, XZL$^{+}$12]. anions [Bar11, DZO12c, LCL$^{+}$10b, MPM15, XSLF12]. anisol [AMAC12]. Anisotropic [BMTT11, LDZG16]. anisotropy [Ali14, MOY13]. annealing $^{[11]}$ [MOE$^{+}$11, TCG17]. annealing-based [TCG17]. annelated [PPK$^{+}$13]. annihilation [ZQW$^{+}$17]. anomaly [Kar12c]. ansatzes [Fin17]. Answers [Tas14]. anthranilic [MC11a]. anthropogenic [Mor11]. anti $^{[12]}$ [Iku17, MPE11, ScBsR$^{+}$10, Zag11]. anti-Bragg [Zag11]. anti-Bredt [Iku17]. anti-inflammatory [MPE11, ScBsR$^{+}$10]. antiaromatic [RBZ15]. antibiotics [LSR10b]. antitumors [CCL$^{+}$10]. antitumoral [CCL$^{+}$10]. antiparallel [SJW13]. antisense [UJSJ13]. antisymmetric [TKN13]. antitrypanocidal [MLC$^{+}$11]. antitrypanosomal [LWH$^{+}$12]. antitubercular $^{[11]}$ [SD13a]. antitumors [CCL$^{+}$10]. antiviral [MB14]. any $^{[14]}$ [FMPM$^{+}$14]. AP [NYS$^{+}$10]. AP-UBD [NYS$^{+}$10]. AP-UCC [NYS$^{+}$10]. apoptosis [QZH13]. applicability [BJ17, FCS13, FCS13b, WKE17, ZT13]. Application [ASK15, DSL15, ENV15, JH15, NMR14, OV$^{+}$16, RZG12, Rom10, SCBP17, TLC$^{+}$17, TPCJ$^{+}$12, Cha11, GWIZ11, HW12, KL13, LLLT12, LVP12b, MDP$^{+}$15, MT10, dMOB12, SKV12, XWC10, AEM$^{+}$12, DLRFMY10, HBMM11, IKS08, IKS10, KPH$^{+}$12, Luz11b, LKd$^{+}$16, MPREG12, MJ11, PCR$^{+}$11, RC11, SR12, SS12]. Applications [CW11, Lar11, Ném14, SDP$^{+}$16, AMAM18, CC12, HKZZ15, Hill13, Kap12, LMZY15, MANP17, PPMCM$^{+}$11, MML$^{+}$16, MG12, MML11b, Nic11, SSS15, TSV$^{+}$16, TSS$^{+}$15, YKM$^{+}$15, YFY17, ZSZ14, CW13b, ZDO10, Mor13]. applied [BVRM10, CF11, CL08, FCC11, HM11, NS13, SMV11, WR14a]. Approaches [LFF$^{+}$10, ATL$^{+}$14, AK17, ALO12, ART08, BPVDB11, BrvWG14, BVP14, BLKB11, CGG18, DVDBM11, DLM12, DMBL16, DLP17, Exn11, FAFR12, Fri12, FUE$^{+}$12, GR10, GRD11, JLL11, KP10, Kit17, LBW11, LSR10b, LSR$^{+}$13, LDAA$^{+}$11, Mak15, MGG$^{+}$11, MGN14, MSVMCI0, MBBT$^{+}$12, Mor12, NSN17, NNSN17, NVPCC13, OTC14, OPC17, OGVG18, PT13, Pir13, RZ17, RNC$^{+}$14, RC11, RDPW$^{+}$12, SCLCPB12, SABA$^{+}$12, SB10a, SC12b, SPSA11, SSB12a, SD13b, SC10a, SKL10, Tom11a, TPCJ$^{+}$12, UYN$^{+}$13, WZ10a, WWB$^{+}$14, WR14a, XNL$^{+}$14, Yam11, YK13, dSdS13b]. approaches [AMMK11, BBA$^{+}$16, Cap16, CKL16, DC14b, EML$^{+}$11, IAK13, ILBS10, Jia15, LMY15, MDC15, Men15, NYS$^{+}$10, PBB15, PJP08, Skol16, TSK17]. appropriate [FSB16]. approximants [DB13a]. Approximate [HYZ12, ZLJ11, AST16, HMM10b, KYH$^{+}$13b, Tom11a, ZRL10]. approximately [KSN$^{+}$10]. Approximating [Fin16b]. approximation
ZLWY13, vLRRK15. atomic-wire [SD13c]. Atomic
[Ma14, BMR+13, CLKD15, vL13, Zha17]. atomization [Vy08]. Atoms
[OA13, TBRIS12, AMK10, AM10, BSO11, Dil13, EMSB15, GBS17, GLT13,
GZSMFN16, GI10, GI11b, GI11c, GI11e, GS11, Gra11, HMP+11, IG11,
JEA13, JMX+15, Joh17, LKJ13, LZW+15, LLH15, Luz11b, MOY13,
MFLK10, MJ11, NIT16, ONBP11, OD12, PRPU+13, PWP13,
RLW+13, RD14, SBMM11, SBM16, Sto18, SKL10, TBRIS10, TBRIS11,
TH12, TLC+17, YJ17, ZS11, ZCG+16, ZHI17, ZJS13, dSTH17, dCGAMV12].

Atoms-in-molecules [OA13]. attached [HMP+11]. attachment
[DSVP15, Kry12b]. attack [LZFZ13]. attenuated [NDP10]. attenuating
[CF14]. Attosecond [Vik11a, SVPTM+10]. attraction
[MSRN+11, SYQ+10]. attractive [DCD11]. Au/SAPO [GSB10]. Au/
SAPO-11 [GSB10].

AuCl [SM14b]. augment [BDG17]. augmented
[CLKD15, D’y16, KRC+16, SZS+10, SLZ+11c, SLZ+11a]. AuO
[SM14c]. aureusidin [KK11d]. Autler [HYH+10]. autocatalysis
[Pie12]. Autocatalytic [dM13]. autocorelation [MPV+11]. AutoDock
[CRFR11]. autoignition [MOH+12]. autoionizing [Cor16]. automated
[MHO*15, PBB15]. Automatic [MML+16, CW11]. AuX [LC16]. auxiliary
[CEFMK12, GS10]. averaged [ABLT11, CP13, RS12b, RSN12]. avian
[KRH13, PCML08, WZ10a, ZBK15]. axial [LGS+16]. axiomatic
[AK17]. axis [Lad14, TLA13, TLA14]. aza [DC14a, WWL+11, WLTW12].
aza-Möbius [WVL+11]. azanaphthoquinone [PPK+13]. azauracil
[MPE15]. azide [Per10b]. azides [AEKGZ12]. azidoethanamines [SM10b].
aziridination [MCC13b]. azobenzenes [JPP+11]. azochromophores
[FSB16]. azocompound [NVPCJ+13]. azodicarboxylate [KI15]. azoles
[SK12a]. azomethine [DI10, WWL+11, WLWT12]. azopyrroles [Jac12]. azosulpha
[EAK+10b].

B [BCGC12, CWS15, GWM11, JLL11, LCZ15, MLY+16, PP14, VVAO12,
WCS+13, YGLL10, ADB10, CWSSZ13, CD12, HWL16, HZS14, KKG13,
LCL+10a, SXS+12, SCZG12, TCSD12, XLGA12, YGLL10, ZYL+14]. B-like
[JoOS16, Lu15, NDM+12, WZX15b]. Ba [MPD+15]. BACE1 [VHTEG15].
back [LBdV16]. back-donation [LBdV16]. backbiting [LSG+14].
backbone [PT13]. BaFe [WSC11]. baicalein [MMMK12]. balance
[AZD+11]. Balancing [TMC+13, NMSR14]. band
[BA13, CRSB12, DM16, IMS+13, KA13, Lad14, SSB12a, VLM+10, TLA13,
XTLA14, YHL+13, ZCJ10]. Bandgap [WCL+17]. bandgaps [GbZA10].
bands [BW15]. bandstructure [MMA10]. bang [CF11]. barium
[MMR+10]. barrier [CYK17, DLM12, DDF+12, DCR10, LLF+12, TCG17].
barrierless [dMOB12]. barriers [SCBP17]. Base
[SM13, ACF+11, AZD+11, CPF12, CW16, EMSB15, KSS12, Kuv10,
LSR+10a, LSR+11, Lad14, MSH13, OM13b, PP14, SMEH15, XSLF12,
XTLA13, TLA14, ZKWZ17, ZSQ+10, dSTH17]. based
bisdithiolene [BB16]. Bishop [Ano11c, Ano11b, RC11, Sau11]. bismuth [MS14b, MHHPR+17, MLK17]. bisphenol [BLWJ17]. bisphenol-F [BLWJ17]. bisphenyls [SN11]. bisphospho [SLA12]. bit [Ish14]. bithiazole [SAHAA16]. bithiazoline [Qu13]. BiVO [DWX+16]. Björn [Pyy11, SA11b, Sha11b, SL11]. block [GDM+10, MMA10]. block-copolymer [GDM+10]. blockade [ZX12]. blocks [LLZ+14, Sza13]. blue [Kry10, LXW+14, SLS+14, SHW+13, TU10, dOR10]. blue-emitting [SHW+13]. blue-green [SLS+14]. blue-shifted [Kry10]. blue-shifting [dOR10]. BN [LGHL11, BSS15, FKL+12, GLT13]. BnHn2 [LCZ15]. BnHn2- [LCZ15]. body [ARG11, BSO16, DLP17, Fri12, GR11, Hog13, IM15, KRG+13, LV12, Lin14, Lya14, Per10a, RAGM10, SK17b, SIB+13, SHKS15, Zak16]. body-fixed [IM15]. Bond [CP13, HS15, Mar11, MPMCM+11, RL12, SB10b, ZZZ12, ZFC12, dFR15a, AD17, ASK15, BCP10, Bla15, Bou12b, CC11a, Cbc12, CYC+15, Coo12, CF17, DLP17, EKN10, EMS16, FKC12, GIO12, GH1b, Gin10, GPM+15, HNH+12, HHL12a, HHL14, JLG+12, JE10, KZA+17, KK14a, KK11a, KM12c, KN15, LZZ+11, LW15, MNV+17, MML1b, ND11, Nal12, NHB12, NRGS11, NPR+11, NRHJ11, OK16, OHA+13, OKR12, PCMG12, RJA+10, RBl1b, SS10, SSK+12, Sch10b, Sch13, SMEH16, SRA+11, SC18, TL15, TCA10, VV15, WCGD12, WTW+15, WLC+17, XHZXXZ10, XX12, YII+13, YLI10, YZZ16, ZAE10, ZZZ10, ZCC11, ZYL+14, dFR15b, dSNBG08, LCM+11]. bond-dissociation [SB10b]. Bond-extended [MPMCM+11]. bonded [CdLdSC18, DLM12, DMBL16, DB15, GCD13, IKS08, IKS10, LJJ+11, LJW+11, MT10, Mit11a, MS14c, OA13, RNE10, SGKG12, SPIL14, ZLZ+14, ZFS+11, dSCC12]. Bonding [Con10, Mil12, XWC11a, ZPR10, AMK10, BG11b, Buc10, CLXZ12, CPF12, CG12, CCL+16, Cha10, CNSK11, DMS+10, DB15, EPS+16, EAV16, Fin14b, GH14, Gin10, GPM+15, HSYM11, HYD11, JN13, KK13, KdPNNS16, Kry10, LYR+17, LBdV16, LYD+18, MS14a, MPD+15, MT10, MC12, MKM11, NZLG15, NE11, Pan16, PK13b, RPY+10, Riv11, RSCS10, SYY16, SC18, UVDO10, WSM16, WJ11, XYS10, YZW15b, YRN+11, ZFC+17, dODCUMdALR11]. bonding/antibonding [CCL+16]. bondons [PO15]. bonds [ABS13, AKHS13, BLR12, BL11, CG12, DR18, DLM12, DLLA10, ED16, EEMSS14, HBI4, IROW10, JLZ+17, KKCI4, KGK12, LLF+12, LLG+12, LZW+11, LLZ+12, MK11, MK12, MJ16b, MB15, NZ13, OS10b, PRFR17, RRVJ10, RIl10, SSI+10, SSK+12, Sch13, SMP10, SIS+08, SPIL14, SS11, SM14a, SW12, SCZH16, TKS11, YSS+10, YY1+13, YG1L10, YWH+12c, ZZZ+11, ZLZW16, ZYL+14, ZJS13, dAVdM17, dLRR11, dOR10]. Book [Ban12, Brä12, Kry11a, Li11, Lin12, Mas11, Mor13, Mue12, SGJ10, Sch10a, Tay12]. borane [LCZ15, MC12]. boranes [GWM11]. borazine [STM18]. border [CN12, GMT16]. borides [CF11]. Born [BPL13, GVPCK10, RSM12, SK17a, Sut12, VVN+16]. boron [BCGC12, Buc10, DWGX12, ES17, FZX18, For12, GWZ+14b, GAMM10, ...
HNBG15, LQ13, LC12, Mar11, OVT+16, PPDF11, RRCO11, TCSD12, ZDF13, ZCG+16, YGLL10. boron- [HNBG15]. boron-rich [TCSD12].
Bose [DCD11]. Bound [Agb12, AY15, PGMMRM15, Fin16b, FDA16, FRGC10, GWHH17, KH10, LDADB+15, ONK+13, Ril10, WC14].
cages [NW12]. calcite [SC11]. calcium [Ish14, RCGLV+14].
calcium-doped [RCGLV+14]. calculate [ZLE17]. Calculated
[SPO+11, Dw13, FKL+12, MFK+12, VMC11, WWC17].
Calculating
[FYhC11, KC11, WB17, ARH+13, CML+16, MGK+11, SA11a].
Calculating
[FZC14, KKS+11, MHO+15, Rit12a, SHS+13, VLFG12, VO11, YŞÖ12, AM12,
BVCAP12, Boe12, CP10, DK13, FLCHL10, FBM+10, FSB16, GWZ+14a,
GCDNGS12, HMI+15, IK18, KMK+16, KKH10, Kri13, LIK15, MGK+12,
Mam13, MA12, Mit11c, dMOB12, PS10a, Per10b, PCR+11, Rit12b, SMB16,
ST15, SRASZ16, TTT13, VF13a, WZH13, YK13, YM14, YH14b, YLYC18].
Calculational [SC12a].
Calculations
[KH10, KV11, LKJ13, TWHZ14, dHLdS12, AK17, AFA13, ADB10, ACMRN10,
Bas11, BB10, Bou12b, BJ12, Buc11b, Bud12, COCF+14, CK17, CSTM16, ČFC11,
DSL15, DAE+12, DWX+16, DZO12c, DZO12a, DFF+13, ESS13, FG16, FBM+10,
GSaY11, GZF13, Glu13, GE12b, HK11, HHCA10, HS11b, HZ114, JH13,
KAR12a, KK14a, KG17, KRK+17, KSS12, Kim13, KJ15, KJ16a, KJ16b,
Kin13, KYH+13b, KPH+12, KKG12, LRPI+11, LC10a, LC16, LCK+16, LLZ+12,
LNI12, MJ16a, MUCV13, Mit11b, Mit11a, MFLP12, MSY+12, MPT11,
MPTZ13, NMSR14, NZLG15, yOItT15, OKK10, OPP+14, OSJ+12, PK16, PB10,
RS12a, RG12, RL14, RAM18, RCG12+16, RVO+14, Rud12, RRC011, RRT10,
RM+13, SME15, SAA11, SAA12, SLL13, Sko16, STL12, SRA+11, SN11, SW12,
SJW13, SCBP17, Tan13, TNN16].
Calculations
[TSH17, TWR15, UT13, USL+13, VVVB10, Wag14,
WWC17, WYMI15, WZW17, YTI+12, YYY+13, YSK+12, YKM+15, YHL+13,
Zak13, ZST+10, QOCJ10, ZCC11, ZF15, ZCC12].
CAM [JdOS16]. CaMn
[SYK+12, YY13, Y113, YSK+12].
Can
[Lu15, Met11, Nes11, Sza13, TFA10, Bio15, Luz11a, ZLWL16]. cancer
[LB14a]. candidate [AB16b]. candidates [KMRG13]. Canonical
[GW13, CML+16, JH15, Jor15]. Canuto [Ion11a, Rd11]. CaO [SA12].
capsules [KKH+13]. capture [GSA11, Mai14, PRP+13]. carbon
[MUNZVR12]. carbazol-oxadiazole [MUNZVR12]. carbazole [ZBBB17].
carbene
[LWC+10, LCS+11a, LCH+11, LCS+11b, LXLL11, RMP+14, ZFS+11].
carbonines [ABTW14, MAN15, Pan16, SZL+14]. carbide [NEEV15, RK14].
carbides [GM11]. carbocyanine [Mas10]. carbodiimides [WLWT12].
carbodithioic [SJZL12]. carbohydrazide [HZW11]. Carbon
[DSFT17, MPL+11, AKC10, AEM+12, Bas11, BEPZ10a, Buc10, Buc11b,
BS11, CS13, CTDOLA10, DI10, DM16, EBR11, GAMM10, GT13, GP13,
HNBG15, HOG13, KKC14, KKT13, KKT14, KG08, Mai14, MSOV13, OPS10,
OD12, PP14, RPK16, SD13a, SC10a, SQ10, TDOD17, TC10, Wan11, WW11,
WHY+14, WY15, WD+17, Yam10, ZCX+16, ZMB+17]. carbonate
carbonmonoxy [CHSO13]. carbonyl
[BHI10a, DWJZ11, GGJD13, MTS15, MG10, YYS15, dCSDdMC13].
carbonyl-coordination [GGJD13]. carbonyls [LLW⁺12]. carborane [FSQ⁺11, LCZ15]. carboxyl [HhGqZZ17]. carboxaldehyde [TBA13].
carboxylase [WLD⁺10]. Carboxylate [SCB⁺14, KSAK17, LYL⁺12].
carboxylic [KC11, LGM⁺18, MK10b, SAG13, TPT⁺13, VF13a, WJ11].
carcinogenic [DKZ⁺10]. Carlo [ÁFV12, ABG12, ANC⁺15, ASK15, Cal10, CP16, Hog13, HB14, HM12, JCCZ12, PDR⁺14, RCGLV⁺14, SG13, SCBP17, Wag14, WCM14, ZLR15, ZCC11]. Carlos [HS15]. caries [AGRI⁺12, BDF⁺16, Bas11, BBM17, CCL⁺16, DMAB12, DVDBM11, DAA16, DCDD10, DFF⁺13, GS11, Mar12, MVG18, MSC10, MURR13, Oni10, Ped16, PK13b, SS10, TC12, TWR15, YLZ⁺17, CTVA12, DB12].
cases [Zak13]. CASPT2 [BDR12, ˇCFˇC11, GLOGM⁺11, KZZ13a, LCL⁺11, LGP⁺12, Var14, ZQW⁺17]. CASSCF [BDFM10, DAR⁺11, Bas11, BBM17, CCL⁺16, DMAB12, DVDBM11, DAA16, DCDD10, DFF⁺13, GS11, Mar12, MVG18, MSC10, MURR13, Oni10, Ped16, PK13b, SS10, TC12, TWR15, YLZ⁺17, CTVA12, DB12].
cis, cis-trans, cis-

Claisen [EM17]. Clarification [CHSO13]. class

Cluster [TC10, BN12, BDFM10, BPT12, BGD12, BvWG14, BGL16, BDFS12, CTW12, CD12, DQZF12, ES016, EBH11, FB11, FMC11, GR11, GP13a, GD12, GI11, GFkDI11, GWJ12, HDQ13, HJ13, IIW11, JIT13, J112a, KPI11, Kar12b, KSS16, KSG12, KRG13, LKN13, LL11, LC15, LG15, LHL15, MJ16a, ML10, MCI10, MJ14, MD11, MPR10, MRR13, MMRA10, MW15, MCK17, NG11, NC11, OK10, PMH16, RSLY10, Rev11, RF10, RCGL14, RGR12, SIB13, SR13, SBB16, SCS15, TW10, TPC12, UKF11, VSK13, WJL11, WC13, WJL10, XWC11a, XWC11b, YSK12, YGL10, YZ15b, YJ17, YZ12, YC13, ZWS16, ZRR11, ZCW16, ZCP11].

clusters-continuum [DQZF12]. CN

[EMSB15, LZZ11, Oni12, ZLW16, CP10]. CNaY [LZZ11]. CNC [Zha10].

CO [BGFD14, BDR12, DPDR11, DWPK14, GGD13, WZC12, VDG13, YL11, BD14, BGFD14, CSG12, CC13, FTB11, GS10, HD11, LCT14, MPM15, SLCBP12, SAHA12, SLS13, SCLT10, WLG11, WZC12, ZCW16, AAA12, CRB12, GZM11, MRT11, ZYS17]. Co [GZM11].

CO-photolysis [BGFD14]. Co/Ni [AAA12]. CoA

[DLRMFY10, PCR11, SB10a]. cis

[BSM15, BUD12, FMKJ14, GLOM11, KZZ13b, CC11a, LCB10, LZ10].

cis- [FMKJ14, KZZ13b]. cis- [CC11a]. cis- [LCB10]. cis- [LCB10].

cis- [LCB10]. cis- [LCB10]. cis-trans [BSM15]. CI [DS12, EMSB15, EMS16, FBO11, GB13, HIROI13, HNBG15, JLG12, LM11, LL11, LW11, LCS11a, MZLM17, MEEA13, MPRCEG12, SKS10, SD12, SPIL14, SYQ11, XZL11, TL15, WZ11, XZL11, DZO11, KZA17, LLLL13, ML14, OK12, SC18, ZYS10, YGL11].

Claisen [EM17]. Clarification [CHSO13]. class

classical-map [DW12]. Classification [AA11].

classifications [LQZZ12]. ClCl [LGW11, MZLM17]. cleavage

[EMSB15, LZZ11, Oni12, ZLW16, CP10]. CNaY [LZZ11]. CNC [Zha10].

CO [BGFD14, BDR12, DPDR11, DWPK14, GGD13, WZC12, VDG13, YL11, BD14, BGFD14, CSG12, CC13, FTB11, GS10, HD11, LCT14, MPM15, SLCBP12, SAHA12, SLS13, SCLT10, WLG11, WZC12, ZCW16, AAA12, CRB12, GZM11, MRT11, ZYS17]. Co [GZM11].

CO-photolysis [BGFD14]. Co/Ni [AAA12]. CoA

[LC10, MLW14, MFR10]. cobaloxime [JL10b]. cobaloxime-catalyzed
cobalt [JL12b], COCH [Men10], COCl [SKS11], cocystal [DGR+16, LZZ+13], cocryallization [KAOB11], code [FMPM+14, GCK+17, MML+16, dMOB12], coding [CLC10, CLL+11], codoping [YHL+13], coefficients [AFM+10, FLCHL10, FBM+10, KH12], coenzyme [SLS+10], cofactor [LZZ12], cofactor-independent [LZZ12], cofactors [KGK13], cognition [Val13], coherence [She14, SMMT13, ZBK15], Coherent [Coo12, Mar13, SMMT13], coinage [DMBJ15], cold [ZJS13], collagen [EPS+16, PWH+12, SGG+10], colleague [Sau11, SL11], collected [RA10b], Collective [MLDP10, BM10], collinear [S´ABA+12], Collins [Sit15], collision [LWWZ13, LPM+11, MKG+11, SÁBA+12], collisions [BMTT11, BHV+11, DSC+11, dDGNB10, LdAA+11], comb [MP10], Combination [KYH+13b, SN15, Buc10, CK13, DQZF12, SZS+10, SLZ+11c, SLS+11, VV12, VV13], combinations [Boe12], combine [Lin14], Combined [IK18, SJZL12, TAY11, KP11, MLDP10, NZ13, Tan13, ZLWY13, BBB+12b], combines [WZX15b], Combining [PC16], CoMFA [MKG+12], Comment [BR16, CK13, COP16, HS15, KBG17, Lad14, Lun13a, Man16, MBSAG16b, PS14, Tou13, VUC13, dSSF16a, dFR15a, PS13b, VV13, XTLA14], commentary [Ols11a], comments [Brä11b], commercial [FT15], Common [VSL+15, LCH14], compact [LQZZ12, LLZaH14], compactification [DTF+11], Comparative [BLRdA+10, BO11, CLH14, DTEMK11, LJJ+11, LL17, MMF+13, NS10a, PI13, SD16a, dAGNJT12, CCBR+12, FFF10, HNH+12, KM12a, KKM+12, LCCH10, LLZZ10, ONBP11, PRPU+13, RS11b, YM13, ZLY+14, dSDSPG11], comparing [HXDY16], Comparison [AMI3a, BPT12, CDSK12, JdOS16, MR11, SSP+17b, SMMT13, UV18, YF16, ABLT11, BLL+13, BGKK16, GP13a, HDQ+13, Kan11, KC16, LdbF+12, LZFZ13, OKR12, SD13a, Sch13, SBKJ18, FMCA11, SCZH16, ZLZ+11], Comparisons [CA17, PGG12], compass [ZBK15], compatibility [Fin17], compensating [FUE+12], compensatory [Chu12], Competition [GE12a, SM17, TL15, GHS12, NRGS11, YZZ16], Competitive [LLG+12, SBKJ18], compilation [TB15], complementary [Yak11], complemented [WJY15], complete [GS10, LV12, SGB11], Complex [GLT13, IA13, JHI13, KBF+13, ONK+13, BSS16, Bou12b, Cho16, DI15, DZ012b, FDRN10, GR10, JLG+12, KR1+13, Lz12, LV16, LLG+12, LSR+13, LbdV16, LDADB+15, LKZ+16, MNC12, MIN13, MMT+13, NS10a, NBI+10, NMP14, PEA+12, Puz17, Qu13, RW11, SY10, Sat11b, Sic16, SLS+15, VDG13, XZ11, YSS+10, YYY+13, YSK+12, YS13, YW16, ZSASS13, ZSHL16, dCS12MC13, dODCMuALR11], Complex-scaling [JH13], complex-valued [YW16], complexant [XWCY11], complexation [SHE10, ZKKR11, ZAE10], Complexes [GHGF12, BPG+10, BAP12, BZBZ13, BCS+12, BB16, BSV12, CRB+12, CPF12, CTW12, Con10, CLMY12, DPDR11, DCdG10, DdG+11, ED16,
[PDR+14, CTDOLA10, FFF10, Ish14, yOIT15, VVN+16]. Computing [AGJ12, Ezz10, FT15, PJP08, TY17]. Concave [ONK+13]. Concave-bound [ONK+13]. Concept [GI11b, GI11c, Kry11b, Kry12b, KN15, Kry10]. Concepts [Brä13, Hor13, IFT13, MSH13, Mar13, WR14b, YK13, ZJS13, BM16, Grui17, Sit15, Tch16]. Conceptual [BCGC12, GHCMCM17, KP10, PC13]. Concerted [ACF+11, Met11]. Concluding [LF15]. Concurrent [EMED+12]. Condensate [DCD11]. Condensation [Chu12]. Condensed [GCK+17, Mak15]. Condon [Mam13]. Conductance [KM12c, OPS10]. Conducting [CEV10, ZLWZ16]. Conductor [Oni10]. Conductors [PFdM13]. Cone [MFLK11]. Conference [Ano13-49]. Configuration [RRCO11, BEM11, CGG18, CP16, DVDBM11, HFD11, JH15, KUY16, Luz08, NV110, Sha11b, SLZ+11c, SWS12, SLZ+14, TG16, VVV10, YKN13, ZST+10]. Configuration-interaction [JH15]. Configurations [Buc12b, FM16, RSN12]. Confined [FAFR12, GT13, JZZH17, KSC15, MNS11, OPC17, SL13]. Confinement [GBS17, HS15, dFR15a, BPSM12, COP16, GZF13, Roy15, Roy16, TFSRM11, dSSF16b, dSSF16a, dFR15b]. Conflicting [Yam10]. Conflicts [She14]. Confluent [PMGM12]. Conformation [Ire12, PK13a]. Conformational [BLWJ17, BCF+11, BSV12, EAH13, JN13, NRS+11, OSJ+12, YSG10, AB16b, AM13a, DS111, DFV+12, GSR12, KM12b, LBM11, MUP10, NJA+12, OMD13a, Pie12, SAS+12, WZX11, RCM10]. Conformationally [UJS13]. Conformations [BMR+13, CLMY12, MKSG13, NRI15, ZFW+13]. Conformer [KKH18]. Conformers [OPP+14, RJY+10, WZX11]. Confused [HM10a]. Congested [Dil13]. Congress [NYA+13, RA10b]. Conical [MSH13, GS11, HV11]. Conjecture [Koc13b, Sit15]. Conjugate [JS14, LCM+11]. Conjugated [AR11, FZH+18, GNM+12, MSG16, MMA10, RNV+12, TKS11, Wan11]. Conjunction [KDO17]. Connected [TKS11]. Connecting [Pat15]. Connection [CH17, KUY16, PL11]. Connectivity [AD17, Pog12]. Conquer [SKH13, SN15, YKN13]. Consequences [Coo12, Joh17, Kar15, LNI12]. Conservation [RS09, RS11a]. Consideration [Fuk12, HY13]. Considerations [NG11, P11]. Considering [Sut12]. Consistent [Fin15, GRD11, IS13, Mor12, SY10, SZZ+10, SLZ+11c, SLZ+11a, SHMR11, WDJ+17]. Consisting [KKH+13]. Constant [Buc12a, DNCK12, MVC13, Nag17, NZL15, WFS13]. Constants [ATL+14, BCH16, BJ12, CA12, CFG11, C10, CDT12, CG12, CJ11, Cy11, K10, Kin13, LJ12, M13, NB17, dM12, Per10b, RR16, SGB11, SLZ+11b, SXX+12, SLS+12, SS12, SM10b, SWS12, UV18, VL12, VO11, WZH13]. Constituent [MKHM11]. Constrained [Le10, SS12, WCM14]. Constrained-search [Le10]. Constraint [PS16]. Constraints [CM16, Fin17, MB12, Oht13]. Constructing [Beh15, KFY+12]. Construction [Pop15, SX15, WR14a, MP11, RVO+14].
contact [DK13, XZYS10]. contacts [EAA17, GI14]. containing [Con10, DALLA10, FBU+11, HZZG12, LWJL10, MPD+15, MB15, NFD+10, NFQ+11, RRR16, SDM12, SCTW10, YGLL10, YZZ16]. contamination [BlA15, GXZ+14]. content [ALRA10, Sha11a]. context [BBM17].

continuation [BW11]. continuous [Ale13, Ban12, Mor13]. Continuum [JCC10, Cam10, Cam12, COCF+14, CML+16, DZO12c, DQZF12, FRGC10, Kit15, Li15, PCR+11, RFEPP+16, SL10, WML11]. contracted [SGH10].

contamination [Bla15, GXZ+14]. content [ALRA10, Sha11a]. context [BBM17].

continuation [RW11]. continuous [Ale13, Ban12, Mor13]. Continuum [JCC10, Cam10, Cam12, COCF+14, CML+16, DZO12c, DQZF12, FRGC10, Kit15, Li15, PCR+11, RFEPP+16, SL10, WML11]. contracted [SGH10].

content [ALRA10, Sha11a]. context [BBM17].

continuation [RW11]. continuous [Ale13, Ban12, Mor13]. Continuum [JCC10, Cam10, Cam12, COCF+14, CML+16, DZO12c, DQZF12, FRGC10, Kit15, Li15, PCR+11, RFEPP+16, SL10, WML11]. contracted [SGH10].

content [ALRA10, Sha11a]. context [BBM17].

continuation [RW11]. continuous [Ale13, Ban12, Mor13]. Continuum [JCC10, Cam10, Cam12, COCF+14, CML+16, DZO12c, DQZF12, FRGC10, Kit15, Li15, PCR+11, RFEPP+16, SL10, WML11]. contracted [SGH10].

content [ALRA10, Sha11a]. context [BBM17].
cross [CK13, MGK+11, NA14, PWH+12, VV12, VV13]. cross-linking [PWH+12].
crossings [LKd+16]. crosslinks [ZMZ13]. Crossover [LKd+16].
crystallographic [WTW+15]. crystals [ABS13, AB16a, KC11, KG08, SMEH16, VBC+12b, ZSASS13, ZB18].
Cs [ˇCFˇC11, DIOG12, MLW10, YK11, RK14]. CSCH [ZFS+11]. C [ED16].
Cu [MHHP+17, MSOV13, SYQ+10, VO12, XWC11a, YL11, Ball16, CRB+12, CDSK12, DWPK14, JFT13, KLZQ15, LLZZ10, MM10, PK+16, PACM+16, RYW+15, TOSN12, TSKN12, Tan13, WZC+12].
Cu/AC [RYW+15]. cubane [NV10, YY+13]. cubic [QCB+10].
cyanspherands [ELC08]. cyanuric [DWZ15]. cycle [KB13]. cycles [BvWG14, COCF+14, Sic16]. cyclic [BBKO16, DGA+13, FMKJ14, GHGF12, Jan10, LMCZ11, Luz11a, MZLM17, QTCL10, SB16, Con10].
cyclization [KA17]. cycloaddition [BL11, CJGTL12, DI10, KL15, LLF17, LWC+10, LCS+11a, LXLL11, NAK+17, SKT15, WLWT12, ZWWY10]. cycloalkanes [DFV+12]. cyclobutadiene [LXD+13, ND10]. cyclobutane [LSL+08].

D
density

[GD11, GCZ+14, HHCA10, HMM10a, HMM10b, HKKI13, HZZW11, IN15, JR12, JPP+11, Jan13, JW18, Jeo18, Jou13, KK13, KJ16a, KJ16b, KKL+16, Kit15, KDOR17, KJ14, Kri13, KFS13, KG08, KMU+13, Lat13, LPO+12, LSR10b, LW11, LC16, LSP+16, LLW+11, LCK+16, LDZG16, LNI12, MYZ+10, MLW+14, MJ16a, MF+12, Ms+10, MKG13, MLK17, MJ11, MBBT+12, MNS11, MKW11, Nag15, Nag17, NAK+17, NDP10, NL11, NMIP14, NMSR14, NIT16, OD16, POLV10, PI13, PK13a, PABSK16, PP16, PTH11, PL11, PIR10b, PSM16, PRFR17, PFdM13, Per18, PJP10, PMAP12, PI16, PC13, QHS11, RLR13a, RPS10, RGT12, RPS10, RS13, SS10, SLG11, SFC16, SN12, SAHG11, SHL+13, SIS+08, SDM12, SYQ17b, SSA16, SX15, Tan13, TAI10, TCA10, TLC+17, VPGC12, VIK13, VBO+15].
density [VSL+15, WKE17, WW11, WJY15, WDJ+17, WVTZ+11, WR15, XNL+14, XSL12, XGH+18, YWH12a, YWH12b, YRN+11, Yu13, YF16, ZT13, ZKCR11, ZQJC10, ZLW13, ZM13, ZCG+16, ZS14, ZKW17, dCGAMV12, CTDOLA10, LLZ+12, Ven12]. density-based [ZKW17].
dependent [Bae16, Bae14, BDF+16, CP10, CEFMK12, CW11, CW13b, DCZ17, DM16, FMMD+10, GSR12, HS11b, HHA10, HKZZ15, IN15, ILB10, IG11, JPP+11, LKN13, LMZY15, Luz13, NMS+10, NSN17, NSN17, NDP10, Oht13, PVS11, PVS12, PSC15, PJP10, PMAP12, PI16, SFC16, SSAM13, SL13, Sko16, SHW+13, Vi11a, Vi11b, WKE17, WYWL13, YLYC18, ZQJC10, ZCG+17, ZLE17, ZS14]. dephasing [Gan14].
derivatives [BSS15, CWL+13, CCL+16, CWB+13, CSG14, DKZ+10, DWZZ15, DNCKCS+12, EI11, FSQ+11, GTR11, GB13, HNH+12, HS11b, ILBS10, JLZ+17, JB11, JFDD10, KZA+17, KKM+12, KSN+10, KKG12, LGM+18, LWL+12, LCCH10, LWH+12, LCH+11, LCS+11b, LW15, MLY+16, MNV+17, MLPT0, MDNDO+16, MBBT+12, NRH11, PPK+13, QHS11, RYM12, RBZ15, RMP+14, SF13, SST011, SRMB15, TZ11, TKS17, Val17, VMC11, VHTEG15, VBO+15, WGLX10, WLL+13, WJ11, ZSA11, ZZ10, ZZ+12, ZYL+13, ZMB+17, ZFC12]. derived [MAN15, PAKA15]. describe [CB10, MMG15, PABSK16, Sza13]. describing [Gar08, JCC10, dGR14]. description [DVDBM11, DCFD10, DMBL16, HFdGC14, KO14, LORR+12, MPMCM+11, NGS11, SIM14, SFL+10, TCA10]. descriptions [PC16]. descriptor [AKR12]. descriptors [GI10, GI11b, GI11c, GI11e, Nag16b, Nal15, PH12, Pog12, TFA10]. Design [FZH+18, IJS+17, cLqFrW+14, Val17, BJ17, DC14b, GhZA10, HM10b, LLZ+14, LZZ+17, MY17, MSM16, Ném14, Oni12, OWD18, SRASZ16, SAHAA16, SLA12, SSS15, STM18, THL+15, TK16b, WWB+14, WR14a, WR14b, XFW+14, YZZ15, YHLC15, ZFW+13]. designing [SSB12a, ST15]. desorption [´AFV12, FTB11, GD11]. destructuring [KRG+13]. desulfurization [VPGC12]. detachment [DZO12c, DZO12a]. Detailed [Sch13, Fin14a]. Details [Lar10]. detector [BMB10]. determinant [RLZ12]. determinants [CSSK+12]. Determination [ATL+14, GI11b, GI11c, IKN13, SN12, Ali14, AGPDZ13, AST16, MLW10, PT13, Ser11b]. determine [SFW12]. determined [Mor12]. Determining [GMM11, Bon17, IKN13]. detonation [LZZ+13, RGTS11, WGLX10, ZZ10, ZL12]. Detours [DB13a]. deuterium [NHB12]. deuterons [HITU16]. developed [AY15]. Development [KSN+10, Lin14, NSN17, NSNS17, SR11b, SKV12, SZ15, GEL18, Kap12, KKL+16]. developments [HJK14, Mur12]. devices [Jan10]. dfppy [ZQJW13]. DFT [YSK+12, AEKGZ12, AFC+10, ACF+11, BVCAP12, BPVDB11, BP13, Bas11, BZBZ13, BLRdA+10, BS14, BDR12, BJ12, BO11, BW13a, BW13b, BSV12, SPP11, CRB+12, CPF12, ÇAS13, CRSB12, CW16, CCL+10, CFGC11, DCSCO+13, DCDD10, DCFD10, Dw13, DAE+12, DPDR11, DP16, DDG+11, DB15, DFF+13, EG10, ESDO16, ESS13, EFO11, EO11, ES17, ESBJV12, FSQ+11, FV11, FRNM12, FPRGMHG12, HS11b, HFDGC14, HgGZ17, JPPA10, Jan10, JL12b, JB11, JLL11, KMS+11, KP10, KP11, Kar12b, KBF+13, KAG08, KG17, KI15, KKG12, KBMM10, LJ13, LGM+18, Les12, Lev16, LYW11, LLP+13, LLL17, LGW11, LZ+16, LGS+16, MCP10, Mar12, MCC12, Mas10, MCLL11, MS17, MML+11a, MMM+12, MAN15, Nag16a, NEEV15, OKK10, OGVG18, OCB+10, OPP+14, OVT+16, PS10a, PTS+11, PK13a, PWL+10, PAD+10, QCW+12]. DFT [RK14, RRV10, RGST12, RFEFP+16, RYW+15, RNA+10, RS11b, Rua10, SSP+17a, Sat11b, Sch12a, SMEHI5, Ser11a, Ser11b, SAHA12, SHE10, SM13, SS18, SB10b, SBB16, SHW+13, SMGZ13, SWS+14, Tas14, Tav12, TG13, Tug13, TKS17, UV18, VF13a, VLG12, VSN+11, Vie17, WLWT12, XX12, XZ11, YYS15, YY18, YY+12, YY+13, YZL+11, YWY+12,

diagonalization [Man16, MBSAG16a, MBSAG16b]. diagrams [FMKJ14, Jen13].

di-enol [Val17]. di-lanthanide [OAC17]. Diabatic [CHM +17, ART08, DMAB12, DM12, KUY16, SHS +13]. diacetyl [TM13].

diagonalization [Man16, MBSAG16a, MBSAG16b]. diagrams [FMKJ14, Jen13].

di-enol [Val17]. di-lanthanide [OAC17]. Diabatic [CHM +17, ART08, DMAB12, DM12, KUY16, SHS +13]. diacetyl [TM13].
PGMGRM15, RNC+14, SPD+18, SD13b, SSAM13, VBC+12a, VBC+12b.

Dimers [TBRIS12, BCF+11, Cas15, FSB16, KM12a, KK11a, KGOR17, MT10, PP10, RPBB11, RNE10, TBRIS10, TBRIS11, TPT+13, VSS11, WJ11, dSCC12].

dimetal [ZFC+17]. dimetallocene [LYD+18]. dimethoxyphenol [Tan12].

dimethyl [AM13a, BF11, GIO12, HM12, MPT11, NVI10, NHB12, PNMGL+11, SKY+13, SS13, TNN16, Zak13]. dimethylallene [CPL15]. dimethylamine [LLZZ10].

dimethylaminophenyl [FO10]. dimethylaminopropanol [WZX11].

dimethylcyclobutene [MB13]. dimethylene [LYD+18]. dimethoxyphenol [Tan12].

dimethylgermylidene [TXL10]. dimethyl-silylene [LXLL11].

dimethylamino [TXL10]. dimethylaminophenyl [FO10]. dimethylaminopropanol [WZX11].

dimethylnitrosamine [LVdSdM14, dAVdM17]. Dinitrophenyl [RNdA+10]. dinitrosamine [JN13].

dinitrophenol [LDW+11]. dinitrophenyl [RNdA+10]. dinitrosamine [JN13].

dimethylnitrosamine [LVdSdM14, dAVdM17]. Dimethylphenyl [Tan12].

Dinitrophenol [LDW+11]. dinitrophenyl [RNDA+10]. dinitrosamine [JN13].

dimethylaminophenyl [FO10]. Dimethylaminopropanol [WZX11].

dimethylnitrosamine [LVdSdM14, dAVdM17]. Dinitrophenyl [RNdA+10]. Dinitrosamine [JN13].

dimethylaminophenyl [FO10]. Dimethylaminopropanol [WZX11].

dimethylnitrosamine [LVdSdM14, dAVdM17]. Dinitrophenyl [RNdA+10]. Dinitrosamine [JN13].

dimethylaminophenyl [FO10]. Dimethylaminopropanol [WZX11].

dimethylnitrosamine [LVdSdM14, dAVdM17]. Dinitrophenyl [RNdA+10]. Dinitrosamine [JN13].

dimethylaminophenyl [FO10]. Dimethylaminopropanol [WZX11].

dimethylnitrosamine [LVdSdM14, dAVdM17]. Dinitrophenyl [RNdA+10]. Dinitrosamine [JN13].

dimethylaminophenyl [FO10]. Dimethylaminopropanol [WZX11].

dimethylnitrosamine [LVdSdM14, dAVdM17]. Dinitrophenyl [RNdA+10]. Dinitrosamine [JN13].

dimethylaminophenyl [FO10]. Dimethylaminopropanol [WZX11].

dimethylnitrosamine [LVdSdM14, dAVdM17]. Dinitrophenyl [RNdA+10]. Dinitrosamine [JN13].

dimethylaminophenyl [FO10]. Dimethylaminopropanol [WZX11].

dimethylnitrosamine [LVdSdM14, dAVdM17]. Dinitrophenyl [RNdA+10]. Dinitrosamine [JN13].

dimethylaminophenyl [FO10]. Dimethylaminopropanol [WZX11].

dimethylnitrosamine [LVdSdM14, dAVdM17]. Dinitrophenyl [RNdA+10]. Dinitrosamine [JN13].

dimethylaminophenyl [FO10]. Dimethylaminopropanol [WZX11].
SLZ⁺¹¹b, SB₁₀b, SQ₁₀, SYS₁₄, SDY₁₆, SCS₁₅, TJS₁₇, VSMK₁₃, VO₁₁, XX₁₂, ZZX₁₀, ZCC₁₁, ZSHL₁₄, ZZC₁₂, dSNBG₀₈ [dissociations [TCA₁₀]].

dissociative [DLCB₁₅, Kry₁₂b].
dissolution [KLN₁₃].
distance [GI₁₁b].
distances [GST₁₁].
distillation [TB₁₅].
Distinguishing [ZR₁₃].
distortion [CL₁₁, YVI⁺¹₃].
distortions [GFB₁₂a, GHCMCMQ₁₇, PK₁₃b].
distributed [RAMB₁₈].
distribution [ABP₁₃, DPRK₁₂, EPS⁺₁₆, GGD₁₂, LGHL₁₁, PK₁₃a, RCM₁₀, SM₁₄a, TMM⁺₁₄, WZX₁₁, vLRK₁₅].
distributions [LBdV₁₆, SVPTM⁺₁₀].
distyrylpyridine [MUPC₁₀].
disubstituted [dOdONM₁₂, dSNBG₀₈].
disulfide [Jan₁₀, KKT₁₃, KKT₁₄, WXZ⁺¹₁, WHY⁺¹₄, ZMB⁺₁₇].
disulfides [GSaY₁₁].
dithio [NA₁₂, PS₁₃a].
dithio-substituted [PS₁₃a].
dithiolene [SDR⁺¹₃, ZLWZ₁₆].
dithiols [LKOS₁₇].
dithione [QJ₁₃].
divalent [NFD⁺¹₀].
divergence [ALRAE₁₁, Rit₁₂a, Rit₁₂b].
divergence-free [Rit₁₂a, Rit₁₂b].
divergent [DB₁₃a, SWS⁺¹₄].
Divide [SKHN₁₃, YKN₁₃, SN₁₅].
divide-and-conquer [SN₁₅].
Divide-and-conquer-based [SKHN₁₃, YKN₁₃].
divided [HS₁₁c].
divinyl [dLIAI⁺¹₂].
divinylene [FO₁₀].
DJ [Sh₁₁₃].
DJB-1 [Shi₁₃].
DMABN [CFP⁺₁₀].
DMABN-Crown₄ [CFP⁺₁₀].
DMABN-Crown₅ [CFP⁺₁₀].
DMAP [LLF₁₇].
DMAP-catalyzed [LLF₁₇].
DMC [RYW⁺¹₅].
DMRG [MFLP₁₂].
dmso [CCL⁺¹₀, SK₁₂a, Ven₁₂, YZZ₁₅].
dmso-S [CCL⁺¹₀].
DNA [Lad₁₄, XTLA₁₄, ACF⁺¹₁, BS₁₄, BBM₁₇, CLC₁₀, CW₁₆, Che₁₃, Coo₁₂, DTFK₁₅, DSV₁₅, EG₁₀, FV₁₁, GwI₁₁, HW₁₂, KZA⁺¹₇, KKS⁺¹₁, LCH₁₄, LQZ₁₂, LLZ⁺¹₄, MMR⁺¹₀, MS₁₀, Net₁₂, OM₁₃b, POL₁₂, PAD⁺¹₀, PFK⁺₁₃, RAK₁₀, SM₁₃, Sza₁₃, XLAG₁₂, XTLA₁₃, Yak₁₀, Yak₁₁, ZM₁₃, ZTC₁₁].
DNA-based [LLZ⁺¹₄].
DNA-bases [EG₁₀].
DNA-binding [BBM₁₇].
DNA/RNA [BS₁₄, KZA⁺¹₇].
DNT [LPO₁₂].
do [HST₁₃].
Docking [LdMcDA⁺₁₂, Net₁₂, CSVCB₁₂, CSSK⁺₁₂, RdPW⁺¹₂, WYy⁺¹₂].
DOD [YFY₁₇].
DOD-PBE-P86-NL [YFY₁₇].
dodecaborate [LYR⁺¹₇].
dodecyl [CAP₁₂].
Does [BN₁₂, Bud₁₂, Fin₁₄b].
Domain [ABL₁₁, CP₁₃, Pat₁₅, ZLE₁₇].
Domain-averaged [ABL₁₁, CP₁₃].
domain-restricted [ABL₁₁].
donation [DCdG₁₀, LBdV₁₆].
donor [ABA₁₁, BLL⁺¹₃, CMR₁₃, IIS⁺¹₇, KPL⁺¹₇, LQ₁₃, LGS⁺¹₆, MANP₁₇, SSK₁₁, ScBsR⁺¹₀, TSBS₁₂, ZKKR₁₁, ZFS⁺¹₁].
donors [CN₁₂, VVJ₁₅, WTV⁺¹₅, XYS₁₀].
dopant [RMTG₁₁].
dopants [VSMK₁₃].
Doped [XMZ⁺¹₂, ASW₁₃, BSS₁₅, CSK₁₂, CWW⁺₁₆, DVB₁₁, DWX⁺¹₆, ENV₁₅, FFP₁₆, FTB₁₁, GAM₁₀, HLMO₁₁, HNBG₁₅, HWL₁₆, KJ₁₄, LHL⁺¹₅, NW₁₂, Omi₁₀, OGr₁₈, RKM₁₂, RZC₁₃, RYW⁺¹₅, RCGL⁺¹₄, SD₁₆a, ZCX⁺¹₆].
doped-gold [FTB₁₁].
doping [BGL⁺¹₆, Fer₁₁, OH₁₃, PPDF₁₁, TW₁₀, YVI⁺¹₃, ZK₁₂].
dot [CSK₁₂, CN₁₂, LEU⁺¹₁, MR₁₂, RP₁₁a, YHI₁₄a, ZX₁₂].
dots [HGB₀₈, OPS₁₀, SD₁₃b, YÇÖ₁₁].
Double [CF₁₄, SLZ⁺¹₂, AF₁₆, CF₁₇, KKC₁₄, KMT⁺¹₂, LV₁₂, NBL⁺¹₄, PAD⁺¹₀,
double-excitations [VAT12]. double-hybrid [AF16, Yu13, YF16].
double-well [SDL+15]. doubles [HFD11]. doubly
[BMF13, Cor16, KT12a, SX15]. Douglas [SN15]. down [RF10].
doxorubicin [Bas11]. Dr. [Mer11]. Dressed [MMWA11]. Drigo
[COP16, HS15, dFR15a]. driven
[Coo12, EM16, GB10, KC16, MS12, SPSA11, WR14a, Xu16]. drug
[AB16b, BJ17, HM10b, IAK13, KKS+11, MS10, RdPW+12, SD13a, SSTÖ11,
SK11, HM10b]. drug-DNA [MS10].
double-well [SDL+15]. doubles [HFD11]. doubly
[BMF13, Cor16, KT12a, SX15]. Douglas [SN15]. down [RF10].
doxorubicin [Bas11]. Dr. [Mer11]. Dressed [MMWA11]. Drigo
[COP16, HS15, dFR15a]. driven
[Coo12, EM16, GB10, KC16, MS12, SPSA11, WR14a, Xu16]. drug
[AB16b, BJ17, HM10b, IAK13, KKS+11, MS10, RdPW+12, SD13a, SSTÖ11,
SK11, HM10b]. drug-DNA [MS10].
double-well [SDL+15]. doubles [HFD11]. doubly
[BMF13, Cor16, KT12a, SX15]. Douglas [SN15]. down [RF10].
doxorubicin [Bas11]. Dr. [Mer11]. Dressed [MMWA11]. Drigo
[COP16, HS15, dFR15a]. driven
[Coo12, EM16, GB10, KC16, MS12, SPSA11, WR14a, Xu16]. drug
[AB16b, BJ17, HM10b, IAK13, KKS+11, MS10, RdPW+12, SD13a, SSTÖ11,
SK11, HM10b]. drug-DNA [MS10].
double-well [SDL+15]. doubles [HFD11]. doubly
[BMF13, Cor16, KT12a, SX15]. Douglas [SN15]. down [RF10].
doxorubicin [Bas11]. Dr. [Mer11]. Dressed [MMWA11]. Drigo
[COP16, HS15, dFR15a]. driven
[Coo12, EM16, GB10, KC16, MS12, SPSA11, WR14a, Xu16]. drug
[AB16b, BJ17, HM10b, IAK13, KKS+11, MS10, RdPW+12, SD13a, SSTÖ11,
SK11, HM10b]. drug-DNA [MS10].

[Bar16, Brä14, Cav17, For17a, LJ16, LV16, MEF+15, Nag16a, Tch13].

Effect

[ALRA10, CdLdSC18, Eil14, KP10, KT12b, MFB11, Mit11b, MTS15, RP11a, Sch10b, SYS14, WLZ+12a, YLW+13, ZCZ+12, dOLdlV13, BMTT11, BdTG11, BS14, BGL+16, Bra10, BEPZ10b, CNBR+11, CYLL11, COP16, DKS11, DK13, GWZ+14b, GZMC11, HV11, HSN+11, IGMK11, JN13, JLG+12, Lad14, LSR10b, LZ12, LPOP12, LWL+12, LLC+11, LWJL10, MG12, MS10, MSK+12, MPT11, MW15, ND10, OKK10, OA13, PCMG12, Ry12, RMTG11, RRR16, SD13a, SIM14, SAHAA16, SPIL14, SK10, TYN13, TJS17, WWL+11, XTLA13, XTLA14, XWCY11, XZJ+16, YRN+11, YK13, YL13, ZGSM15, ZKWZ17, dSSF16b, dSSF16a, dAVdM17, Jan10, JWG+12, ZAE10].

Effective

[CEM14, Liu15b, May14, TSvL+16, Vik11b, YHL+13, BCGC12, CCBR+12, Dw13, GhZA10, KUY16, MPTZ13, MST15, PGGRMP10, TG16, Liu16].

Effects

[ABA11, BS16, Bla15, KSAK17, LLZ+12, MSRn+11, PETB18, ACF+11, Ali14, AEM+12, BH10a, BS16, Chr10, CFGC11, DCD11, DPDR11, DWZZ15, DLLA10, EHKKD11, EKD12, EEMSS14, EAV16, Fer11, GR11, GBS17, GWM11, GZF13, GR10, I12, IRW10, IK14, JA12, KI15, KRG+13, LDKB15, LGHL11, LDW+11, MZLM17, MKHM11, MRR13, MPE11, NG11, NMHPVG12, Oni10, OGvSG18, PCR+11, PWP13, QHS11, RP11b, RFB+12, RS12a, RSN12, SM12, RdA11, Rii10, SKTI15, TK16a, TV13, TFSRM11, TH12, VFSC17, VSMK13, WDR+11, WLC+17, XX12, XLGA12, XDM+10, YZW+15a, YMY+13, YF17, ZH12, ZYL+13, ZBBB17, ZFC12, dCDC+11, dSNBG08, SMK+12].

Efficiency

[Cal10, ATRPR11, BDG17, Mai14, THSR13, VRO+12].

Efficient

[BL16, KI15, SHW+13, SCBP17, YMI14, ZWSF16, ZRL10, FZH+18, FM16, IIS+17, LCK+16, SGH10, SAHAA16, WZX15b, ZCZ+16, ZKW17].

EGEE

[LG10].

Ehrenfest [KUY16].

eigenfunctions [PMGGR12].

eigenstates [KB12].

eigenvalue [Mit11c].

eigenvalues [Mit11c].

Einstein [DCD11].

elastic [Per10b, UV18].

electric [SS12, BL16, DB15, EBR11, GA11, KT12b, PCD14, SMEH15, SMEH16, VRO+12, YSÖ12, Zha17].

electrical

[GKS10].

electrides [HWL16].

electrocatalysis [MLW16].

electrocatalytic

[FFPD16].

electrochemical [NBZG16].

electrochemistry [FFPD16].

electrode [KJ15, Tug13].

electrodes [Che13].

electrodynamics [FNIT16, IFT14, Lin14, Liu15b, Liu16].

electrolyte

[DLO16].

electrolytes [MNE+13].

electromagnetic [Bae14].

Electron

[Bas11, DZO12c, DJ18, DSV15, LC16, LZ10, MT11, PUH+11, P16, RVNP12, SLG11, VBC+12a, AA11, Ali14, AEM+12, ALRAE11, ARH+13, AST16, BLL+13, Ber13a, BL10, BL11, BKM15, Buc10, Buc11a, CMR13, ČW13a, CM15, CG12, CH17, CSMZ10, CSTA16, DLCB15, DAA16, DLJT14, DTEMK11, Dil13, DZO12a, DLLA10, Dum12, FYhC11, Fin15, FA17, FMM+10, GSaY11, GTR11, GS10, JDl08, Jan10, Joh17, KWSL15, Kar12c, Kha16, KPL+17, Kit15, Kri13, Lar10, LCH14, LZZ+11, LWY13, LYL+12, LG12, Lu10, MGK+11, MR12, MW16, MJ16b, MPD+10, MPZWD10, MJ11,
MNS11, NA14, NBZG16, NAK+17, Nes11, Ng12, NDM+12, NE11, NRGS11, NMV+14, OAT+13, POLV12, PL11, Pir13, RNV+12, RCM10, RAGM10, RS13, SS10, SBM+11, SBM16, SYK+12, SPD+18, SSAM13, SHS+13, SM12, Sit15, SL13]. electron [ScBsR+10, SBKJ18, TC12, VF13a, VBC+12b, WWD+15, WH12, XYS10, YM14, YRN+11, YHLC15, YD17, ZDZO10, ZFS+11, ZSZ14, ZIS13, dA12, dCDC+11]. electron-group [WH12].

Electronic [AB16b, BZBZ13, Ber13b, BVP14, BBAL12, BG11b, BG11c, CZLD17, CJGTL12, DZO12b, DLLA10, FBO+11, FMCA11, GZF13, HHCA10, IA13, KK11b, KLZQ15, KP13, LvdsM14, MLY16, MS14b, MKM11, NBL+14, NDM+12, Pup11a, RKM12, RZC13, SGC13, SBB16, TSKN12, TSH17, VSN+11, YHLC15, YD17, ZDZO10, ZFS+11, ZSZ14, ZJS13, dA12, dCDC+11].

electronic [Kri13, KO12, KUY16, Lai11, LL11, LMZY15, LLZ+14, LBDv16, LHL+15, LZ10, Lya14, MSG16, MLG+11, MC11b, May14, MMWA11, MUNZVR12, MBA+13, MPZWD10, Mil12, MS17, MA11a, MA11b, MMRRA10, MJ11, MB13, MPT11, MPTZ13, MM13, MW15, MSR+N11, MCRS16, MC18, NA12, NT16, NZAVR10, OGvSG18, PE11, PCR+11, PAKA15, PMA12, QJ13, QCB+10, RMLPGGH16, RS12a, RMJ11, RNC+14, RMTG11, Rus14, RMY+13, SRPD16, SR12, SD13a, SB10a, SLS+14, SX+12, SLS+12, SLSZ13, SIS+08, SRS+17, STO+11, SR11b, SZZ+12, ScBsR+10, SSW16, SK12b, TYN13, TZ11, TV13, TD11, TFB11, TG13, UTT+13, Var14, VPA11, VLFG12, WWC17, WFS13, WJL+10, YZL+10, YZL+11, YZW15b, YH14b, ZQCV10, Zha10, ZLLS10, ZZR+12, ZCG+16, ZQXP17, ZCP11, dSSF16b, dSSF16a, Bou12b, Lad14]. electrons [BEM12, BB10, BB10, BMB16, Dw13, Ig11, Ig12, ISRK12, KK13, KK14a, Kr12c, Nes10, QC+10, RP11a, RPVM10, RS13, She12].

Electrophilicity [PC13, GI11]. Electrostatic [NMHPVG12, TH12, TCS10, CSDK12, DPKR12, IG11, KKS+11, KRG+13, PK13a, TYN13, ZCZ+12]. electrophobi [BWE16]. element [OVT+16, SHS+13]. elementary [EMED+12, EMEPD15, SOF+10, Zil14]. elements [AÖ12b, ČW13a, GI10, LXD13, NZ13, RRK16, SW10, TMC+13].
[BS11, BSO11, CFP+10, LXW+14, ORJ18, PSK+13, dSdS13a]. emissive [ZKWZ17]. emitting [MUNZVR12, NZAVR10, SHW+13]. empirical
encapsulated [CWL+13, JLL12a, KG08, TPT+13, WW11, ZLWL16]. Encapsulation [RR11]. endic [ZPW16]. Endo [Jal10]. endohedral
[ACL12, JLL+18, MS17, SCTW10, WLZ+12a, WSL+11, YL11]. endohedrally [NW12]. endohedrals [YK11]. ene [IK14, Sat11b].
Energetic [GB13, GAMM10, HM11, HZZW11, Kar15, LCCH10, LL17, MTS15, SRA+11, TCSD12]. Energetics [MNC12, ACMRN10, CdAFS+12, CdLaSC18, DCBB11, GCD13, KUTS10, PMMG+11, Puz10, QTCL10, TBA13].
Energies [BBKO16, LBW11, SCZG12, ASHF13, AC12, ABA11, BVCAP12, Bla15, CFOC+10, DZO12c, DZO12a, EKN10, FLvLA15, FYhC11, GM11, GFRdG11, HNH+12, HM10b, IKN13, Kin13, KKS+11, LDKB15, LORR+12, Mas10, MS14c, NA14, Na13, NV10, OK16, OKR12, Pea11, PBB15, SOM10, SLZ+14, Tsu15, VF13a, VLFG12, WWC17, WZW17, WR15, XX12, YÇÖ11, YWH+12c, ZZX10, ZCC11, ZZC12]. Energy [CC11b, FDA16, AG10b, AK17, AÖLB12, AEM+12, ART08, AZD+11, AST16, BX1+13, BPVDB11, BP13, BAP12, BSS16, BBL12, Ber13c, BVA+14, Bou12b, Bud12, CPF+11, CWV12, CNBP+11, CCL+16, CLH14, CS14, COP16, DK13, DB11, DHZS11, EMK14, Fin16a, FMMD+10, GST11, Gra08, Gra11, HJRO13, HDF11, HMH10b, HFdGC14, HM10b, HM11, HBMM11, ISN12, IK8, Jeo18, JZP17, KKH18, KyH13a, Kin16, KSN+10, KMM16, KPH+12, Kir13, LFP+10, LSR10b, LV12, LWZW13, LDZG16, LG12, LDADB+15, LVP+12a, MZB+13, MGK+11, MDC15, MCP10, MHT+08, MA12, MC13a, MOE+11, MOL11, MIN13, MGD11, MPRCEG12, MLB+10, NA12, Ném14, Ng12, NDP10, NIT16, PML+11, Per18, PP14, RPVM10, RGTSt11, RCP14, RLR10, SAS+12, SIM4, SFC16, SGL+16, SCLCPB12, SA11a, SB16, SLZ+11b, SRS+17, SK11, SGC13]. energy [SSW16, SZ15, SYZ17, SC18, TNN16, TSL11, Tou11b, VPA11, Vik11b, Vyob18, Wag14, WKE17, WWL17, XZZ+10, YH14b, YLC17, YLC18, ZS12, ZRLV10, dHLS12, dSFF16b, dSFS16a, Yu13]. energy-based [SK11]. energy-dependent [FMMD+10]. energy-loss [AEM+12]. energy-relevant [Wag14]. Energy-surfaces [FDA16]. engineering [WCL+17]. enhance [ZLWL16]. Enhanced
[BGL+16, LLZ+14, Mas14, MS14c, MPE11, SKV12, TFSRM11, TSBSM12]. enhancement [KKT13, KKT14, SJW13]. enhancements [ATPRV11].
Entangled [Xu16, EMEPD15, SK17b].

Entanglement [Kar15, Tap15, BT15, BT17, SPM+15, XZJ+16, ZZ15, ZBK15].

Enthalpies [Mor12, dSNBG08, HZG12].

Entropic [DTPC17, SMOD11].

Enthalpies [Mor12, dSNBG08, HZG12].

Entropic [DTPC17, SMOD11].

Enthalpy [AG10a, JCC10, TYN13, MPL+11].

Environmental [RdPW+12].

Enzymatic [SCB+14, BMB12].

Enzymes [DPRK12, ZST+10, dSSdSGJ12].

EOMCC [DSVP15].

E'Ph [WSML16, WSML16].

Epoxidation [LMCZ11, ZLY+14].

Epoxide [KMS+11, KUTS10].

EQE [GCK+17].

Equation [Agb12, ATPRV11, BKM15, BR10, BR16, Cam10, CW11, CW13b, Cho16, GMGRMP12, HYZS12, KC16, Kha16, Kri13, Nag16b, NF11, PGRMP10, PYS11, PVS12, PGMGRM15, RZ17, RW12, RA10a, VATPR11, VAT12, WC14, Zak16, ZLJ11].

Equations [CRA+11, DSCO+13, Per10b, ZLE17].

Equilateral [RSN12].

Equilibration [Nes11].

Equilibrium [LDW+11, Nal15, NB17, TSH17, Zak16].

Equivalences [ZWE12].

Equivalent [GSZ10].

Ergodicity [NE11].

Estimation [CCL+16, ZS12, Bla15].

Estimating [CWF11, C¸T14].

Evaluating [CHSNLM11, HNH+12].

Evaluation [GS10, Hat13, NJA+12, Sch12a, dWLCL14, AA15, BL16, GTR11, GI10, HSN+11, IGI11, JS17, SPO+11, TPdMB12, YZ13, ZRLV10, GI11b].

Event [GI11a].

Events [CSS16].

Evidence [HV11, WTW+15].

Evidences [CG12].

Evolution [BL11, IFT13, IFT14, JL12b, MLW16, RGR12, YSS+10, YSK+12].

Evolutionary [CGG18].

Exact [GZSMFN16, HR12, HFZ12, Kha16, KUY16, RBD+10, RS13, Zak16, AM13b, Eng16, FA17, Hog13, IHG10, Kry12c, LEU+11, MPB11, PT13, SFL+10, Tou11a, FLCHL10].

Exchange [SFL+10].

Exactly [GMGRMP12, PGRMP10, PGMGRM12].

Examined [Kan17].

Example [CP10, DMBL16].
41

examples [DLM12, Hop15, JA12, Mai14, Sic16]. **excellence** [MEF+15].
exceptional [LA11]. **excess** [Jdl08, YHLC15]. **Exchange**
[Dw13, Fin16a, PTH11, ATL+14, AM13b, AGPDZ13, AK11, BHV+11, BVRM10, CWW12, Eng16, FB17, IGI10, KMK+16, Kry12c, LZFZ13, LCT14, Lu15, MMM16, MEEA+13, Mys12, PDR+14, RPVM10, RFEGPP+16, RLER10, SPPT15, SFI+10, SFC16, TÁ10, XZL+12, MRS15]. **exchange-correlation** [AGPDZ13, AK11, LCT14, RPVM10, SFC16, TA10]. **exchanged** [PVs10, UMS13]. **excimers** [Cas15]. **Excitation**
[KyH13a, BVCAP12, BSS16, FMCA11, dDGNB10, IGI10, LWWZ13, LORR+12, Mas10, MIN13, SZL+14, WSCL13, YH14b, ZGSM15]. **excitations** [CD15, VAT12, VBC+12b, ZB18]. **Excited**
[Cha11, Glu13, ACF+11, Cam10, Cao17, CHM+14, CM16, Cor16, GWHH17, IGMK11, JA12, KT12a, KK14b, KKT13, KKT14, LSL+08, LV16, LP10b, LGZC15, Lz10, MMWA11, MT11, MNS11, MB12, Nes11, NDP10, nie11, PRPU+13, PMAP12, SBM16, SR11b, SK12b, Sza13, TTT13, WKE17, YÇÖ11, ZCG10, MQG13]. **excited-state** [ACF+11, Cao17, JA12, WKE17]. **excitons** [RP11b]. **exclusion** [CM15]. **exhibiting** [Fin15]. **exist** [BN12]. **exohedral** [GB13, WLZ+12b]. **ExoMol** [TY17]. **expanded** [LLZ+14, ZRY+13]. **Expansion**
[Kut13, Nik10, HMH10a, Kit15, LV12, Sil14, SS12, Win10]. **expansions** [Tal11]. **expectation** [MC11b]. **Experimental** [CSSK+12, DDÇY12, EI11, MLPT10, SC12a, AZD+11, DSH+13, FPRGMHGB12, KAOB11, RGS+13, SC12b, SRASZ16, SJZL12, SBKJ18, TAY11, VMC11]. **experiments** [LRP+11, WSV10, YS13, MM10]. **Explicit**
[BH10a, Koc13a, JCC10, MAD12, MK10a, Pir13]. **explicitly** [GBS17, TH13]. **exploitation** [MPB11]. **Exploration** [MOE+11, MBA+13, WCS+13, MCP10, MOLF11, NH11, SSP+17a, Sic16, TCSD12]. **explorations** [WLL+13]. **explored** [JMX+15]. **Exploring**
[ACF+11, DCR10, ESBVJ12, HJRO13, KB12, PK13a, ZCG+17]. **explosive**
[DGR+16, LZZ+13]. **explosives** [YZ13]. **exponent** [HITU16]. **exponential**
[GMGRMP12, GH11, GE12b, HOG13, HH10, LLH15, PGMGRM15, PSGK17, Roy13]. **exponential-cosine-screened** [LLH15]. **exponential-screened**
[Roy13]. **exponential-type** [GMGRMP12, PGMGRM15]. **expressed**
[Glu13]. **Expression** [RA10b, Kuv10]. **expressions** [AEÖ12, GZSMFN16]. **Extended**
[Koc13b, CLL+11, DQZF12, HAJ18, HBMM11, Ire12, PMPCM+11, MSOV13, NZ13, WML11]. **Extension** [Kon11, WB17, BAP12]. **extensive** [IM15]. **extensivity** [RS09, RS11a]. **extent** [LDKB15]. **External**
[Hor13, Bae14, DB15, Glu13, KSC15, Kit14, RS13, TJS17]. **extractants**
[VBKJ18]. **extrapolation** [LV12]. **extrema** [SRMB15]. **extreme** [Mit11c]. **Eyring**
[BR16, BR10].
MEEA⁺13, PP14, SKS10, SPIL14, SYQ⁺10, SZL⁺14, TL15, WZW17, XZL⁺12, MLPT10, YZW⁺15a, BLWJ17, DMAB12, DZO11, GKT⁺12, LGHL11, Ma14, Pup11b, SZ15, TNN16, YGL⁺11, ZCG10. **F12** [BL12, yOITn15]. **Factor** [Tri14, Kan17]. **factors** [Mam13, MK11, SPO⁺11, TZ11, VLG12]. **family** [WZX15b]. **Factor** [Tri14, Kan17]. **factors** [Mam13, MK11, SPO⁺11, TZ11, VLG12]. **family** [WZX15b]. **Fan** [Roy14]. **far** [Var14]. **FARMS** [MC17]. **Fast** [GFRdG11, PT13, PSC15, SAS⁺12]. **fayalite** [NDM⁺12]. **FCX** [SZL⁺14]. **Fe** [DMG10, ESS13, FTB11, MPD⁺10, MG10, MGP16, PAKA15, Qu13, YL11, Zha10, AM10, BGD14, CRB⁺12, DSD10, LDsdM14, OGvSG18, SSP⁺17b, ZSQ⁺10, ZSHL16]. **Fe/C/S** [OGvSG18]. **Fe/C/S-doped** [OGvSG18]. **feasibility** [JS17]. **features** [CD12, DLG12, Pie12, Sch10b, TC10]. **Fe** [DMG10, ESS13, FTB11, MPD⁺10, MG10, MGP16, PAKA15, Qu13, YL11, Zha10, AM10, BGD14, CRB⁺12, DSD10, LDsdM14, OGvSG18, SSP⁺17b, ZSQ⁺10, ZSHL16]. **Fe/C/S** [OGvSG18]. **Fe/C/S-doped** [OGvSG18]. **feasibility** [JS17]. **features** [CD12, DLG12, Pie12, Sch10b, TC10]. **Fe** [DMG10, ESS13, FTB11, MPD⁺10, MG10, MGP16, PAKA15, Qu13, YL11, Zha10, AM10, BGD14, CRB⁺12, DSD10, LDsdM14, OGvSG18, SSP⁺17b, ZSQ⁺10, ZSHL16]. **Fe/C/S** [OGvSG18]. **Fe/C/S-doped** [OGvSG18]. **feasibility** [JS17]. **features** [CD12, DLG12, Pie12, Sch10b, TC10]. **Fe** [DMG10, ESS13, FTB11, MPD⁺10, MG10, MGP16, PAKA15, Qu13, YL11, Zha10, AM10, BGD14, CRB⁺12, DSD10, LDsdM14, OGvSG18, SSP⁺17b, ZSQ⁺10, ZSHL16]. **Fe/C/S** [OGvSG18]. **Fe/C/S-doped** [OGvSG18]. **feasibility** [JS17]. **features** [CD12, DLG12, Pie12, Sch10b, TC10].
fluorenone [Men10]. Fluorescence
[AMMK11, CFP+10, Men15]. Fluorescent
[BBM17, LDKB15, NTCK13, TCM+12, ZWLC12]. fluoride
[LWZ+14, MdAdCS12, OCB+10, ZL10, dLRR11].
fluoride-chlorotrifluoroethylene [OCB+10]. fluorine-mediated [ZL10].
fluorides [KMM16, THVP14]. fluorinated [SPIL14, SCZH16]. fluorine
[Rill10, SZL+14, VVJ15]. fluorescent [AMMK11, CFP+10, Men15].
fluorescent [BBM17, LDKB15, NTCK13, TCM+12, ZWLC12].
fluoride [LWZ+14, MdAdCS12, OCB+10, ZL10, dLRR11].
fluoride-chlorotrifluoroethylene [OCB+10]. fluorine-mediated [ZL10].
fluorides [KMM16, THVP14]. fluorinated [SPIL14, SCZH16]. fluorine
[Rill10, SZL+14, VVJ15]. fluorescent [AMMK11, CFP+10, Men15].
fluorescent [BBM17, LDKB15, NTCK13, TCM+12, ZWLC12].
fluoride [LWZ+14, MdAdCS12, OCB+10, ZL10, dLRR11].
fluoride-chlorotrifluoroethylene [OCB+10]. fluorine-mediated [ZL10].
fluorides [KMM16, THVP14]. fluorinated [SPIL14, SCZH16]. fluorine
[Rill10, SZL+14, VVJ15]. fluorescent [AMMK11, CFP+10, Men15].
fluorescent [BBM17, LDKB15, NTCK13, TCM+12, ZWLC12].
fluoride [LWZ+14, MdAdCS12, OCB+10, ZL10, dLRR11].
fluoride-chlorotrifluoroethylene [OCB+10]. fluorine-mediated [ZL10].
fluorides [KMM16, THVP14]. fluorinated [SPIL14, SCZH16]. fluorine
[Rill10, SZL+14, VVJ15]. fluorescent [AMMK11, CFP+10, Men15].
fluorescent [BBM17, LDKB15, NTCK13, TCM+12, ZWLC12].
Free \cite{AG10b, LCG12, MLB+10, AK17, BDG17, CFOC+10, ENV15, FM16, Fin17, FA17, Kle11, KDA+11, LSR10b, LSG+14, Luz11a, Luz12, LGS+16, Nag15, Rit12a, Rit12b, SX15, TPT+13}. \textit{free-radical} \cite{LSG+14}

\textit{frequencies} \cite{MCE11, Rud12, S¸BAT16, SZL+14, WHY+14, YWH+12c}

\textit{frequency} \cite{MPC10, TU10, ZPZ15, ZLE17}

\textit{friend} \cite{Sau11}

\textit{friendly} \cite{MDC15}

\textit{fringes} \cite{YS13}

\textit{frontier} \cite{ABA11, LSR+11, YZZH15, LSR+10a}

\textit{Frontiers} \cite{HKLW13, ISN13, IKN13, Kut13, MIN13, NS13, OHDA13, SFB+13, SHS+13, SKY+13, TKN13, TH13, UYN+13, UTTn13, YKN13}

\textit{frozen} \cite{Mas10}

\textit{FT} \cite{C¸AS13}

\textit{FT-Raman} \cite{C¸AS13}

\textit{FTIR} \cite{C¸AS13}

\textit{fuel} \cite{FFPD16, Sic16}

\textit{Fukui} \cite{Boc17, MJ11, SKL10}

\textit{fulfillment} \cite{RLER14}

\textit{Full} \cite{BEM11, Dau16, SR12, YIY+13, DVDBM11}

\textit{Full-configuration-interaction} \cite{BEM11, DVDBM11}

\textit{Full-dimensional} \cite{Dau16}

\textit{Fullerene} \cite{DJB10, CCEGK12, DI15, DFK16, FBO+11, KP11, KK11b, KK12a, MSS11, MS17, Nik11, PAKA15, RR11, RGPZD13, TKS17, Var11, ZW15}

\textit{fullerene-buckycatcher} \cite{DI15}

\textit{fullerene-derived} \cite{PAKA15}

\textit{fullerenes} \cite{ARH+13, DI11, GZW16, JLL+18, LBW11, MNS11, YLZ+17, ZCG+16}

\textit{fulleroid} \cite{Iku17}

\textit{Fulvene} \cite{Val17}

\textit{Function} \cite{Kut13, NS13, TKN13, TH13, UYN+13, AB16a, A ¨O12b, AOLB12, BL10, BL11, Gao11, Kub12, Liu15a, MRS15, Ng12, OAT+13, RZ17, SGH10, Sta10, SS12, SD13c, Tou11a, UYN+13, WWL17}

\textit{Functional} \cite{Ano13-49, HKLW13, ISN13, IKN13, MIN13, SKY+13, TK16b, AK17, AM13b, AGPDZ13, BMK+14, BD14, BCGC12, BVCAP12, BDF+16, BGBV12, BLKB11, BjdlMAV12, CCL+13, CNS11, CH17, CM12, CZLD17, CK17, CF14, CTDOLA10, CSTA16, CD12, DWJZ11, DCBB11, DK11, DW12, DZ11a, DGR+16, DQZF12, ED16, FCS13a, FCS13b, FZX18, FO10, FDN10, Fin17, FA17, FSB16, GCK+17, GM11, GGD12, GHCMCMQ17, GD11, GCZ+14, HHCA10, HLZ+14, HMH10a, HMH10b, HHIH13, HYD11, HZZW11, IN15, JR12, JPP+11, JA12, JS17, JW18, Kar13, KK14b, KKL+16, KSAS17, KSC+12, KJ14, Kri13, Kry12c, KG08, KU+13, Lat13, LPO+12, LSR10b, LW11, LWL+12, LWX+14, LBY+14, LLW+11, LCK+16, LDZG16, LLZ+12, LNI12, MYZ+10, MLW+14, MJ16a, MLC+11, MFK+12, MA10, MW16, MUNZVR12, MG12, MKSG13, MLK17, MLB+12, MBBT+12, MM13}

\textit{functional} \cite{MKW11, MCRS16, MOH+12, Nag15, Nag17, NDP10, NTLN10, NL11, NMP14, NMSR14, NDM+12, NZAVR10, OD16, POLV12, PS10b, PS14, PI13, PMH+16, PABSK16, PP16, PTH11, PR10b, Pir13, PU14, PJP10, PMA12, P116, PC13, QHS11, RGPZD13, RS12b, RPVM10, RAMB18, Rud12, RSCS10, SGL+16, SVRGV12, SN12, SAH11, SHL+13, SIS+08, SDM12, SBRM15, SK12b, SS13, TOSN12, Tan12, TIN13, Tan13, TDOD17, TFZ+15, TLC+17, UMS13, VPGC12, Ven12, VUC13, Vik13, VBO+15, WKE17, WJL+11, WW11, WJY15, WDJ+17, WFTZ+11, WR15, XNL+14, XSLF12, XGH+18, YWH12a, YWH12b, Yu13, YL11, ZT13, ZKKR11, ZQCJ10, ZLY13, ZCX+16, ZRR+11, ZMZ13, ZCG+16, ZSZ14, dCSDdMC13}

\textit{functionality}
[ATS+11]. Functionalization [ZWYY10, JNY17]. functionalized [LRKM10, MSOV13, MLW16, OD16, SPPT15, TDOD17, WLZ+12b, ZK12].
functions [AF16, AK11, DCDD10, DCFD10, Fin16a, HFdGC14, Jan13, Jou13, KDR17, Lai14, LCT14, LSP+16, LORR+12, Lu15, PSMD16, PRFR17, SFC16, SMOD11, SOF+10, SSP+17b, SG13, SX15, TÁ10, TCA10, UV18, VSL+15, YF16, YFY17, dSdS13a]. Functions [GLT13, IA13, KBF+13, ONK+13, CSMZ10, CML+16, FRGC10, GBS17, GTR11, GS10, HITU16, HG08, Hog13, Hor13, KH10, Kar13, MPV+11, MJ11, NS13, Oht13, PABSK16, SPO+11, SZS+10, SLZ+11c, SLZ+11a, SKL10, VSL+15, WH12, YM14, vLRK15].

Fundamental [Br¨a13, Hor13, IFT13, MSH13, YK13, ZJS13, Blo15, CK13, GI11b, GI11c, GI11e, VVVB10, VV12, VV13].
fungal [VGS10]. fur[310x155]oic [GIO12]. furylfulgide [LZZ+17]. furylfulgimide [LZZ+17].
fused [RGTS11, Yam11]. future [BJ17, MGN14, Sic16]. fuzziness [Tch16].

G [KK12b, CSVCB12, GTR11, ZR13].
G1 [PWP13].
G3 [DCR10]. G3B3 [LVP12a]. G4MP2 [VF13a]. Ga
[CWS15, JLL11, LX1D16, MLW10, BXR+13, CCM08, GWJ12]. Ga-like
[CCM08]. GABA [Ser11a].

gain [Luz11a].

Gaining [RNdA+10, vL13].
galactosyl [LQ13].
galanthamine [PK13a].
gallium [KP11]. GaN
[CWW+16, KO12]. gap [SSB12a, SSP+17b, YHL+13]. GAPDH [SLA12].
garnet [VPFD10].

Gases [BAP12]. gate [TB15].
gates [MR12, ZPR10].

Gauge [Kub12, Bra10].

Gaussian [BC15, BC16, Boe12, CML+16, GTR11, HITU16, Hill13, Kut13, Mat02, Mat10, NDM+12, OHDA13, PC14].

Gaussian-type [HITU16].

Gbar [Boe12].

Gc [NMS+10].

Gd [WL1+11, CWL+13].

Gd-encapsulated [CW13].

GDP [MTE+13]. Ge
[LC5+11a, MDP+10, LLLB13, MSVMCI10, UKF+11, ZCX+16].

Ge-ZCX+16].
gear [KKH+13].
gear-shaped [KKH+13].

GeCNT [SD16a].

geminal [Tok16].
geminals [TKN13].

General [Rit12b, FRGC10, MMG15, Pie12, QZH13, YAF+15].

general-purpose [YAF+15].

generalization [HXYD16].

Generalized [ACL12, ALRAE11, ART08, Cin11b, LMZY15, MGK+11, MPTZ13, MZST16, PMGMGR12, PBB15, CM15, CM16, Gra11, GdLT12, GE12b, Mit11c, SS12, ZLJ11].
generated [PE11]. Generating [AÖ12b, BW15, Fuk12, LLC+11].
generation [CML+16, GFrdG11, MML+16, OD12, ZLR15]. generator
[AHT12]. genetic [AFM+10, CL08]. genome [Kuv10]. Geometric
[KMM16, MR12, Sjö15, CD12, GTR11, LW13, LB18, RW12, Sch10b].
Geometrical [CSMZ10, GHCMCMQ17, WJL+10, EKN10, KK12a, LL11,
MBBT+12, MM13]. Geometries [SZL+14, Buc11a, MHT+08, ZYL+13, ZCP11].
Geometric [KMM16, MR12, Sjö15, CD12, GTR11, LW13, LB18, RW12, Sch10b].
Geometries [CSMZ10, GHCMCMQ17, WJL+10, EKN10, KK12a, LL11,
MBBT+12, MM13].
ED16, Eng16, GRD11, JLG+12, LSR10b, LdMCDa+12, LZB10, LXD13, LYO+18, NZ13, TMC+13, THVP14, WH12, YKM+15, YD17, ZZC12.

group-12 [THVP14]. group-13 [LYD+18]. groups
[ATS+11, ABA11, CMR13, FNBK17, KPL+17, KSAK17, LPO+12, NHG+12, Rii10, ScBsr+10, Tril14]. growing [CD12]. growth [LVP12b]. Grx3 [Dum12]. Grx3-like [Dum12]. GTP [MMT+13]. guanidine [LW13].
guanidine-catalyzed [LW13]. Guanine
[SL10, BSV12, KMM17, POLV12, YM12, ZRY+13]. guess [LCK+16].
Guest [DC14a, XXbX+13]. guided [SRS+17]. Guseinov [Mam14].
Gutzwiller [YWH12a, YWH12b]. GW [RAMB18].

H [BGFD14, BJ17, Buc12a, BSPK11, CRSB12, CS17, DMAB12, DPDR11, DZO11, DZO12b, DJZ12, EML+11, EMS16, FBRBR12, GWM11, GB13, GR10, HJRO13, JCCZ12, JLG+12, KWC10, Kan11, KI12, KSSK16, KST12, KRG+13, LZ12, LCL+10a, LLL+11, LZZ+11, LMZ+11, LBY+14, LZW+15, LZO15, LDZ13, LDAA+11, LEU+11, MLY+16, MC12, MMBK12, MPRT+10, NBL12, NL11, NMIP14, NH11, PTS+11, Pan16, QSLY10, RFGPP+16, RGR12, SBAT16, Sat11b, SZZZ11, SICT10, SBL+14, SZ15, SY17, TBRIS12, TG13, VLL+11, WCY+10, WZW17, WLLW14, XLLZ10, YII+13, YSK+12, YLYC18, ZGSM15, ZG+17, AC12, BN12, BDFM10, BVDB11, BP13, BPG+10, BAP12, BEM11, BHH+11, Buc12a, CLXZ12, CP10, CC11b, Cor16, DLMC15, Den13, DMS+10, DLM12, DMLB16, FCM+10, GWM11, GZSMFN16, GMT16, GTK+12, GD11, HV11, HSYM11, IKS08, IK10, IROW10, JL12b, KWC10].

H-atom [KDA+11]. h-BN [GLT13]. H-Bond [LCM+11, SME16].
H-bonded [DLM12, DMLB16, IKS08, IK10]. H-bonding
[CLZ12, DMS+10, KdPPNS16]. H-bonds [IROW10, SS11]. H-passivated
[GMT16]. H/D [SK10]. H2 [ZCG+17]. H5N1 [WZ10a]. HAI [Sat11a].

HALA [RRK16]. Half
[KMS+11, AAAM12, AA12, DZO12b, SMOD11, Pup11b]. Half-a-century
[Pup11b]. half-line [SMOD11]. half-metallicity [AAAM12, AA12].
half-sandwich [DZO12b]. halide [DZO12c, HNBG15, LGM+18, XZL+12].
halide-exchange [XZL+12]. halides
[BMBD10, For12, LC16, MML+11a, RYM12]. Hall [Bro10]. halo
[EMK14, LGP+11]. halo- [EMK14]. haloalkane [ZCZ+12].
haloammonium [XZL+12]. Halogen [DLP17, SC18, BLL+13, Buc11b, CLXZ12, DWZZ15, EBSB15, JLZ+17, KKC14, LLL+11, LLG+12, LDG16, LZD+11, LLZ+12, MS14c, Sch13, SMP10, SPIL14, SY16, SCH16, TL15.
[AF16, AK11, CF14, FCS13a, FCS13b, HZZW11, Kry12c, LPO+12, MCK17, NMSR14, SB10b, SX15, TFSRM11, XCY15, YIY+12, YIY+13, Yu13, YF16, ZPR10, MPE15, SIS+08, YSK12, MCK17, NMSR14, SB10b, SX15, TFSRM11, XCY15, YIY+12, YIY+13, Yu13, YF16, ZPR10, MPE15, SIS+08, YSK12]. Hybrid-density [SIS+08].

hybridization [ABS11], hydantoin [ND11], hydratase [MLW+14].

hydrate [MLW+14]. Hydration [Ma14, Pat15, PBM10, RGR12, SL10].

Hydrazide [DDC¸Y12]. Hydrazine [SC12a]. Hydrazono [KDC¸12, SC12b].

Hydride [BLL+13, Ber13a, HMI+15, JL12b, Mar11, OA12, YYS15]. Hydrides [AO12a, BDR12, CP13, EAA17]. Hydroacylation [WML10]. Hydroaminations [ZSS+13]. Hydroboration [SLS+15].

Hydrocarbon [MS14a, MdAdCS12, MK11, MK12, MNV+17, MCARL11, MTL+12, MT10, MFLK11, MMBK12, MS14c, MMM+12, MNS11, NW12, MG10, DMG10].

hydrochloric [dLdOdAD12]. Hydrofluoropolyethers [Vie17].

hydrogen [SS10, Sch10b, Sch13, SK17a, SMP10, Sic16, SP14, SPIL14, SYS14, SS12, SW12, SCZH16, SCBP17, TL15, UVD10, Var14, VSMK13, WCGD12, WWHZ13, WWHZ13, WLLL17, WJ11, XDM+10, YW11a, YWH12a, YWH12b, YRN+11, YWH+12c, ZAE10, ZL10, dSCc12, dSSF16b, dSSF16a, dFR15b, dAVdM17, dOR10]. Hydrogen-bond [OHDA13].

Hydrogen-bonded [SGKG12, CdLdSc18, LJW+11, MT10, OA13, RNE10, ZL10, dSCc12].

hydrogen-bonding [BB15]. Hydrogen-like [SS12].

Hydrogenase [BGFD14, MG10, DMG10]. Hydrogenated [IIW+11]. Hydrogenation [TGA+11, VPAC12, XSLF12, ZZC15]. Hydrogenic [DLRMFY10].

Hydroxamine [TPdMB12]. Hydroxamic [KK11a]. Hydroxide [RGR12, WZZL10]. Hydroxides [DCDD10]. Hydroxy [TAY11, YLW+13].

Hydroxyacetone [SSdS17]. Hydroxyanthraquinone [JB11].

Hydroxybenzaldehyde [EKN10]. Hydroxybenzenes [ATM17, KM12a]. Hydroxybenzylamine [AFC+10]. Hydroxy carbene [Buc12b].

Hydroxycarbons [SSdS17]. Hydroxycinamoyl [MLW+14].

BS11, BDG17, BLM+12, BSO11, Fin14b, Gan14, NHC+12, NMS+10, ScBeR+10, SYQ+10, SW12, VC13, XWB+11, XWC11b, ZLLS10, ZHI17.

Influences [SKY+13, DLLA10, FBD+13]. influenza [KRH13, WZ10a].

information [PKK+16, PSGK17, Rei15, SLG11, Sj¨o15, SDL+15, TBST10, WSV10, YOS15].

Influence-theoretic [YOS15]. Information-theoretical [MEEA+13, EMED+12]. informed [DC14b].

Infrared [CLMY12, ZQXP17, DSFT17, GIO12, IROW10, KV11, MTS15, NDM+12, UTTn13, VVVB10, dARAV12]. Inheritance [YDW13].

Inhibition [YI11, THSR13]. inhibitive [LBZ10]. inhibitor [SKHN13, SSK10].

Inhibitors [DSWL11, EAK+10b, EAK+10a, KMRG13, KKG12, MGK+12, RDM+11, ST15, SLA12, TPdMB12, WLL+13, XFW+14, WYW+12, ZFW+13, dOdONM12]. Initial [BD12]. Initial-based [LV12].

Initio [CS13, LC16, PMH+16, PK16, AEM+12, ATS15, BLR12, BHV+11, BMB10, BR15, Bou11, BM10, Buc11a, Buc11b, CTV12, CCBR+12, CHM+14, CCS13, CK17, DZO12a, DCdG10, DFW+12, DOE+14, DM16, EG10, For12, FBU+11, FS1+11, GMP+11, HMI+15, HHCA10, HFD11, HHL+12b, KAR12a, KDC12, KP11, KKF14b, KSST12, KU+13, KUY16, LSR+10a, LSR+11, LVdSDM14, Les12, LJJW+11, LL11, LV12, LYR+17, LLLB13, LdAA+11, MC11a, MHT+08, MPJ12, MOE+11, MMBK12, MPD+10, MPZWD10, Mit11a, MSY+12, MLK17, MLB+12, MLB+10, NDM+12, NRHJ11, OT14, ONBP11, QSLY10, RLW+13, RRVJ10, RS12a, Ril10, RNC+14, RAMB18, Ser11a, SAHAA16, STL12, SM14c, SN11, SJW13, SPM+15, TK16a, TNN16, TSL11, THVP14, UV18, VFPD10, Var11, WZX11, Wu11, WLWL14, YKM+15, YZL+11, Yu13, ZDZO10, ZLZ+11, ZF15, ZXY13, ZRLV10].

Inorganic [BMF+14, Swa13, YSA+11]. inserted [KRH13]. insertion [DPDR11, RRVJ10, SMC18]. Insight [DMW11, HFL+17, She12, She13, TFF+15, WLL+13, BGM15, DGR+16, EM17, KCDC15, MNV+17, MC17, RNDA+10, SAG13, SC11, VHTEG15, WYW+11, AF16, Tan13]. Insights
Interpolated \[ZRLV10 \]. Interpolating \[MQA17 \]. Interpolation \[RP16, DTVP+12 \]. Interpretation \[Nes11 \]. Interpreting \[LB18, ZP16 \]. Intersection \[MSH13 \]. Intersections \[GSaY11, HV11 \]. Interstellar \[TBRIS12, BN12, BR10, CM17, LRP+11, RR11, TBRIS10, TBRIS11, XDM+10 \]. Interstitial \[LLF+12 \]. Intersubband \[BN11 \]. Intersystem \[LKd+16, MMG15, RMJ11 \]. Intramolecular \[BMR+13, RJY+10, RJ+10, Buc12b, CNBPRI+11, COf+11, CKL16, EKN10, FSBA12, HN+12, JN13, JS17, KSAK17, KA0B11, Kry10, LXW+12, MK11, MK12, MB15, NRGS11, NRP+11, NRHJ11, Tav11, Tav12, UTTn13, YRN+11 \]. Intriguing \[WSML16, YHLC15 \]. Intrinsic \[Lai11, MHO+15 \]. Introduction \[CCC11, KKL+12, LP10a, OS10a, OS12a, PBL12, Sch12b, SE11, Tch11, BC15, BC16, KCK14, KSAK17 \]. Intuitive \[OS10b \]. Invariance \[Laz14, Kon10 \]. Invariants \[LZ10 \]. Inverse \[CCA+12, Kar09, LXD13, WR14b, BMB12, BN11, CYK17, JW18, KM12c, PT13, WR14a, Kar10 \]. Inversion \[MMM16, PM12 \]. Inverted \[AAHN16, BW18, KMT+12 \]. Investigated \[CP16 \]. Investigating \[BS14, MB15, CHSO13 \]. Investigation \[EAV16, Gan14, KG17, KKL13, CCK14, SM12, VO12, ASMP15, ATM17, AAA12, AZD+11, BXR+13, BWE16, Buc11a, CZJZ12, CHM+17, CNSK11, CC11a, DDQY12, DMG10, DOE+14, DSV15, Exn11, GWJ12, HDQ+13, HWHZ11, HCL13, JFT13, KB13, KSSK16, LB14a, LOHB13, LRP+11, LPO+12, LL11, LDW+11, LXD13, LZZ+17, LMCZ11, LCZL11, LW15, MWH15, MCF10, MPT12, MB14, MSK11, MJ14, MLK17, MLB+10, MKW11, NSF+10, OT14, ONK+13, PJP10, PMAP12, PSK+13, QSLY10, RK14, RW11, RMP+14, Rua10, SAG13, SS18, SR13, SAHAA16, SDM12, TZ11, THVP14, WGLX10, WXB+11, XZL+12, XCY15, YJ17, YLW+13, ZH12, ZR13, ZSHL14, ZZC15, Zha17, ZQW+17, ZL12, ZYL+13, ZM13, ZCG+16, ZMB+17, dCSDdMC13, dSSPG11, dSTH17, GFRdG11, XWC10 \]. Investigations \[Bou12a, BL12, Cas15, KRG+13, Mag14, NMIP14, SZS+10, SLZ+11b, SLZ+11c, SLZ+11a, SLS+11, SM14c, SM14d, VSN+11, WFS13, YL11, ZZR+12, ZFS+11 \]. Involve \[Bud12 \]. Involved \[CLXZ12, MM10 \]. Involvement \[LSL+08 \]. Involving \[LLLB13, Ril10, TCA10, YHLC15 \]. Iodide \[MJ14 \]. Iodides \[LW15 \]. Iodine \[MOY13 \]. Iodo \[LZD+11 \]. Iodo-perfluorobenzene \[LZD+11 \]. Ion \[ABS13, AB16a, BS14, COP16, DLO16, DCHC11, EHKD11, EK12, FRBR12, FDMR11, GFB12b, GH11, HMI+15, HLJZ11, HFL+17, IAA15, KMS+11, KKL13, KHH10, MS14a, MPT12, MNC12, Ng12, Oui10, Oui12, SSP+17a, SZS+10, SLZ+11a, SLS+11, SLZH12, Vik13, WFS13, XLGA12, YW11a, dSSF16b, dSSF16a, SSP14 \]. Ion-covalent \[ABS13, AB16a \]. Ion-neutral \[FRBR12 \]. Ion-pair \[SSP+17a \]. Ionic \[BWWW10, AFC+10, Be13c, Buc12a, DLZ11, HFL+17, MFK+12, NDH10, RF10, WZZL10, XWC10, ZPZ15, dOLdV13 \]. Ionization
ionized [Glu13]. ionochromic [FBU11]. ions [ASHF13, BMTT11, CCM08, DSC+11, DP16, FBRBR12, KWLS15, KWWH18, KLK13, KFY+12, LLZZ10, MGK+11, NC11, RP16, SB16, SKL10, WLQ+11, WHM14, YYY+12, ZCG10].

Isodensity [TMC+13]. Isodensity-based [TMC+13]. isomeric [VFCSC17, SBAT16].

isotopologues [BL12]. isotropic [NB17]. Israfil [Mam14]. issue [Ano12a, Ano12b, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, Ano13y, Ano13z, Ano13-27, Ano13-28, Ano13-29, Ano13-30, Ano13-31, Ano13-32, Ano13-33, Ano13-34, Ano13-36, Ano13-37, Ano13-38, Ano13-39, Ano13-40, Ano13-48, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n]. Issue [Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano14y, Ano14z, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n]. Issue [Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano14y, Ano14z, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n].
RLW +13, Var14, WLWL14, ZZW11. kinks [Yak10]. Kirchhoff
[Cit11a, PR10a, Pat10, PR11b, PR11a, WZ10b]. Kitaev [TSS +15]. KOH
[VLK +11]. KOH/DMSO/CH [VLK +11]. Kohn
[BW18, Bar11, Gan14, KdSm +10, LB14b, Lev10]. konic [KS11]. Kondo
Kramers [BMB16]. Kratzer [Sta10]. Krb [LDADB +15]. Krb-K
[LDADB +15]. Kroll [SN15]. Kubo [Hor13]. Kubo-transformed [Hor13].
ykurenine [BS11].

L [CCL +10, DPDR11, MLW10, ZQJW13, WHM14, KSG +12, PUH +11,
QTC10, ZYL +13]. L- [PUH +11, QTC10]. L-ascorbic [ZYL +13].
LaAlO [Oni10]. labile [YIY +13]. laboratory [IM15]. laboratory-
ladder [CEM14, Jan13]. ladder-like [CEM14]. Ladik [XTLA14]. LaF
[Lan10]. Lagrange [Mit11c, KRC +16, OPC17, WWL17]. Lagrange-mesh
[OPC17]. Lagrange-type [Mit11c]. Laguerre [SMOD11]. Lamb [Rit12a, Rit12b].
Lamé [MFLK10]. landscape [DVC14, PP14]. landscapes [AG10b]. language
[Win10]. LaNiInH [OA12]. lanthanide [FS11, OAC17, SSW16, TG13, VBJK18,
WLG +11]. Laplacian [CWW12]. Laplacian-based [CWW12]. Large
[DFF +13, SN15, BBB +12a, BBB16, DFV +12, GFRG11, KP11, KYH +13b, MSS11,
Mit11c, PBB15, QX +15, RAMB18, TY17, Tok16, XXJ +16, YFY17, ZWSF16].
large-amplitude [XXJ +16]. Large-scale [DFF +13, SN15, RAMB18].
larger [JLL +18, RVNP12]. Laser
[BN11, RP11b, DLCB15, HYH +10, IAA15, NWQX11, SRPD16, SVPTM +10].
later [Mur12]. lateral [LEU +11, SIT +12]. Latin [RA10b]. lattice
[DTFK15, Ng12, PK13b, VBC +12b]. lattices [DB13b, VBC +12a]. law
[BR10, BR16]. layers [ATS15, Dw13]. laying [KHH10]. LCAO
[Nal13]. Lck [XFW +14]. LDA [Fuk12]. Lead [VDG13, MW15, Per10b].
Leading [LG12, KMS +11, YY18]. Leading-order [LG12]. learned [LSP +16].
learning [BR15, CLKD15, FLvLA15, Rup15a, Rup15b, STM17, vLRRK15].
Lee [LJ16]. Legendre [Win10]. length [Mar11, PE11, Sch10b]. Lennard
[CAPLI2]. lesion [SM13]. lessons [PR10b]. Letter
[HS15, PS14, Sha11a, dFR15a]. Letters [CK13, COP16, Lad14, Lun13a,
Man16, MBAG16b, PS13b, Tou13, VV13, VUC13, XTLA14, dSSF16a]. level
[KK13, KdSm +10, LCL +10a, MAN15, NBI +10, PAD +10, PWH +12, RNE10,
Shi13, SZL +14, WWZH13]. levels [DK13, Kin13, MA12, SA11a, Tou11b].
levodopa [EAIH13]. Levy [SGC13]. Lewis
[EMSB15, GCZ +14, PP14, dSTH17]. Li [BCGC12, BL10, ČFC11, HHL12a,
HHL14, HLW16, MLW10, MPRB +10, RFEGP +16, Sat11b, SM17,
XWCY11, YK11, YC13, BGL +16, CSDK12, DLZ11, GGD12, HMP +11,
HYH +10, JCCZ12, KH12, LKJ13, LdAA +11, MT11, MJ14, SM16, TL15,
VVAO12, WCY +10, XWCY11, YZ10, YLC17, ZLWL16, ZCG10, dOR10].
Li-B-H [VVAO12]. Li-like [ZCG10]. LiBH [WZM +13]. Lieb [SGC13]. LiF
low-barrier [DLM12]. low-dimensional [BEPZ10b]. low-doping [Fer11].
low-energy [HFD11]. Low-frequency [TU10]. low-lying [BG11b, BG11c,
DAR+11, DCHC11, GFB12b, JCC10, Kin13, KZZ13a, LVdSm14, LP10b,
LCL+11, LGP+11, LGP+12, MMWA11, MT11, SLSZ13, SZZ+12, WFS13].
low-temperature [MOH+12]. low-valent [LXD13].
LOWDIN [FMPM+14, JH15, SG14, dA12]. lowest [DAC12, MLW10]. Lp [YZZ16].
luminescence [SGG+10]. luminescent [KP12, LXW+14]. LUMO [MA12].
lungu [Tou13]. lyase [MLW+14, ZSHL14].
lying [BG11b, BG11c, DAR+11, DCHC11, GFB12b, JCC10, Kin13, KZZ13a,
LVdSm14, LP10b, LCL+11, LGP+11, LGP+12, MCP10, MMWA11, MT11,
SLSZ13, SZZ+12, WFS13, ZCG10]. lysergol [RGS+13]. lysozyme [DFF+13].
M [Ano11c, Ano11b, BLL+13, BL10, BDR12, DD17, FTB11, HWL16, JL12a,
JLG+12, M06 [KSG+12]. M06-L [KSG+12]. Machine
[Rup15b, STM17, BR15, CLKD15, FLvLA15, LSP+16, Rup15a, vLRRK15].
machine-learned [LSP+16]. machine-learning-augmented [CLKD15].
macro [RAK10]. macro-dimensions [RAK10]. macrocycles [VSMK15].
macromolecules [Chr10, OVT+16]. macroscopic
[DL12, DP11, FUE+12]. made [Mas10]. Magic
[TB15, MJ16a, MHHRP+17]. Magnesium [FMP+17, BPT12]. Magnetic
[GKS10, KMU+13, MPD+10, MPZWD10, WSCL11, Zag11, AGCVG15,
ATL+14, AC11, AK11, AM10, BXR+13, Bou12b, CL11, CWW+16, CKL16,
GE12a, GV11, JL12a, KSC15, KSG+12, KSY+11, KT12b, Lae14, LB14b,
Mag14, MZB+13, NBL+14, OMD13a, PL11, RP11a, RZC13, SRPD16,
SSI+10, SBB16, SS12, Sto18, SS13, TD11, TW10, Vik11a, Vik11b, Vik13,
VRO+12, YZW15b, ZPM10, ZP16, ZLWZ16, ZST+10]. magnetic-field
[ABP13, KLQZ15, SC10b]. magnetization [KLQZ15]. magent [KG17].
magneto-electronic [KG17]. magnetoelectric [RC11]. magnetoexcitons
[MLPD10]. magnetoresistance [ZX12]. magnetotropicity [TG13].
magnitude [LZD+11]. main [TMC+13]. main-group [TMC+13]. MALDI
[HMH+13]. malonaldehyde [NRHJ11, RJY+10]. malonate
[DaG+11, JSLH14]. maltolate [DaG+11]. manganese [SSK+12]. manifest
[GI11c]. manifold [MCV11]. manifolds [CC11b]. Mannich [TFZ+15].
Mannich-type [TFZ+15]. Manning [ZHF12]. Many
[BSO16, GR11, CSMZ10, DLP17, Fri12, Kha16, KRG+13, LV12, Lin14, Lya14,
Per10a, SK17b, SIB+13, SHKS15, Sit15, Zak16]. Many-body [BSO16, GR11,
DLP17, Fri12, LV12, Lin14, Lya14, Per10a, SK17b, SIB+13, SHKS15, Zak16].
MK-4965 [SKHN13]. M Li [SM17]. M'M
[MLY+16, Cap16, SDP+16]. MM/continuum [Cap16]. MMPs [TPdB12].
MN [PAKA15, BXR+13, BDR12, YLI11, KLK13, MRT11, PM17, SAHA12,
TMM+14, YIY+12]. Mn-superoxide [PM17]. MnXMn [YIY+13]. MO
[ZLY+14, MLX+16, MGP16, BB10, Bou12b, Na13, DWPK14, GD11]. MoB
[DJ95, DJ12, LDY+18, PSV12, SSI+10, ST15, SD12]. Model
[LEU+11, AMAM18, BPL13, BEM11, BGFD14, BKM15, BH10a, Buc11a,
Buc11b, CPF11, Cam10, Cam12, Cap16, COCF+14, CNSK11, CVSCB12,
Cys11, DZO12c, DQZ12, FMP+17, FB17, FS11, GLOGM+11, Haji8,
I MS+13, JK12, JZP17, KyH13a, KBJ17, KKG12, Kub12, LLF+12, LDKB15,
LSR+13, LKJ13, Lin15a, LN12, MYZ+10, MSH13, MGK+11, MRT11,
MPE15, MA12, MT10, MIN13, PABSK16, PWL+10, PCR+11, SPPT15,
SKE11, SPSA11, SL10, SM10a, SSdS17, Vie17, VGS10, WML11,
WWGQ17, Zen11, ZLJ11, dOR10]. modeled [MMBK12].
Modeling [BRS10, IBA+11, Kry12a, LBM11, Men15, MRA11, NBZG16, Pog12,
TCM+12, ZP15, BGFD14, Buc10, CRSB12, CSSK+12, DFK16, DLM+11,
DDF+12, FBO+11, KMS+11, KBJ17, KGK13, LTdSJ+10, LZZ12, Mai14,
MP12, MCV11, OTV+16, PTD+12, SJZL12, Sic16, SLS+10, SBJK18,
SM14a, SSB+12b, TAY11, YBMK12, YJ17, ZP16, ZK12, dAGNJT12,
SSdSGJ12, KRMRG13].
Models [FFF10, AM13a, BMR+13, BM16, Buc12b, CWV12, CPAT11, CSTA16,
EPS+16, FLvLA15, GMT16, JCC10, KO10, LVdSM14, Li15, LORR+12,
LWH+12, LZ10, Luz13, MPV+11, NS10b, PI13, PL11, RFEGPP+16, SKT15,
SJW13, TD11, VLG12, WYM15, YIY+12, vLRRK15]. modern [Hat13].
modes [CLXZ12, FKC12, PM12, RPBB11, RA10a, TU10]. modification
[Wan11]. modified [DJ18, HFZ12, LZW+15, PSGK17]. modulated
[HGB08]. Modulation [MS14a]. MODYLAS [YAF+15]. Moeller [EG10].
MOFs [PK16]. moieties [Cha11]. moiety [BS14, ELC08, SKM11].
Moiseyev [Bra12]. Molecular
[Buc11b, CSS16, CSSK+12, CHV14, DGR+16, DLZ11, FUE+12, Hor13,
IHG10, KTI+12, KMI12c, KKT13, MY17, MAD12, MSH13, Mar13, MP12,
MOY13, McC13a, MMT+13, NV10, OHDA13, OA13, Pvs10, PWH+12,
Ppk+13, RAK10, SMK+12, SIT+12, SVTM+10, SIB+13, SHS+13, SSS15,
TPdB12, UYN+13, UTTn13, VHTEG15, WML11, WVB+14, YK13,
YINM13, dSSdSGJ12, ABA11, AA15, Bae14, BL16, BBB+12a, BPT12,
BDF+16, BMB+14, BMB10, BB+B+12b, BR15, BWE16, CRA+11, CDSK12,
Cam10, CZJZ12, CTV12A, CCL+16, CD15, CNSK11, CAPL12, COP16,
Dau16, DDGY12, DMWY11, DLG12, DDF+12, DdG+11, DWGX12, Eil14,
FZH+18, FBRBR12, FPM+14, For12, Fra17, FBU+11, FSST16, Fuk12,
GVPCK10, GFB12b, GI11d, GH11, GR10, GHP11, GS10, HS11a, HYZS12,
Hill13, Hog10, HZS14, HFL+17, IFT14, IA13, Ish14]. molecular
[JdL08, Jan10, KLK13, KCK14, KHH10, KKH+13, KKT14, Kry12a,
KRG+13, KUY16, LB14a, LG10, Lai11, Laz14, LLM13, LA11, LTdSJ+10,
LFS$^{+1}$, LJSS12, LG15, LKLW11, LNI12, LB18, Mam14, MC11b, MHT$^{+8}$, Mas14, MOE$^{+11}$, MMBK12, MKSG13, Mit11a, MSY$^{+12}$, MSK$^{+12}$, MPL$^{+11}$, MBTVR12, MBBT$^{+12}$, MPP11, Mur12, NKKN15, NDH10, NAK$^{+17}$, Nic11, Nik11, OT14, OW18, PP10, PMH$^{+16}$, PH12, PBB15, Pog12, PETB18, PRG$^{+10}$, Puz16, RS12b, RSM12, RP16, RL12, Rit11, RC11, RAMB18, RdPW$^{+12}$, RA10a, SC12b, SLZ$^{+11b}$, SXS$^{+12}$, SLS$^{+12}$, SLSZ13, Shi13, SRS$^{+17}$, SLS$^{+10}$, SKY$^{+13}$, SWS12, TK16a, TA10, Tok16, TSH17, TIKL13, TC12, Vik13, WZ10a, WFS13, WCI14, XFW$^{+14}$, XXJ$^{+16}$, Xu16, YZZH15, YAF$^{+15}$, YT14, ZSASS13, ZFW$^{+13}$, ZPR10, ZLE17, ZLWZ16, ZRLV10, ZB18, dSSF16b.

molecular [dSSF16a, dOdCMUdALR11, dWLC14, dOLdlV13, vL13, vLRRK15, Puz10, RdA11].
molecular-dynamics [PP10].
molecular-level [Shi13].
Molecule [ANC$^{+15}$, AM12, ASK15, Ber13c, CAZ$^{+11}$, CL11, CHM$^{+14}$, CHM$^{+17}$, CC11b, Cor16, DAC11, DAC12, DAR$^{+11}$, DPK12, DLG12, DCZ17, ES17, Fra17, GW17, GI11a, GT13, HK11, IIS$^{+17}$, KKH18, KSC15, KP12, KN15, Lan10, LSS12, LEU$^{+11}$, Luz11, MGT11, MHT$^{+8}$, MSS11, MZLM17, MPTZ13, MC18, OT14, PK13a, RPBB11, SXS$^{+12}$, SLSZ13, SLSZH12, SRA$^{+11}$, TFBG14, TH12, Vik11a, Vik11b, WR14a, YW11a, KRC$^{+16}$, TFSRM11].
Molecule-adapted [ANC$^{+15}$].
molecule-TiO [TFSRM11].
molecule-to-material [TFBG14].
molecules [Agb12, Ale13, ACL12, BMK$^{+14}$, BtTG11, BCHN16, BR10, BG17, BB16, BB10, Cam12, CM17, C11, C101, C17, DIOG12, DK13, DSRGD12, Di13, DCR10, EML$^{+11}$, EMS16, GFB12a, G10, GI11, GHP11, HRT12, HMH$^{+13}$, HST13, HNBG15, HYH$^{+10}$, Jen13, JMK$^{+15}$, Jeo18, JZP17, JCCZ12, KBG12, KBG17, KKL$^{+16}$, Kim16, KKH$^{+13}$, KK5$^{+11}$, KKT13, KKT14, LCDC11, LPM$^{+11}$, LL17, Luz12, MS16, MCE11, MK10a, Mar12, May14, MFLK10, MCL11, MS16, Mit11a, MB15, MJ11, MK17, MPE11, Nan15, NS10b, OK10, OA13, OD16, PL11, PK14, PWP13, PB10, Puz16, Puz17, RGTS11, RC11, Roy14, RAK10, SGB11, SD16b, SSS12, SA11a, SK11, SMEH15, SB16, SM14, Sto18, SY16, Sut12, SCZH16, SV11, THL$^{+15}$, TK16b, TH12, Tou11a, VO11, XHZZX10].
molecules [YZZ16, YD17, ZS11, ZDF13, ZP16, ZCC11, ZS12, dSCC12, dSTH17].
Møller [RS11a, BVA$^{+14}$, NMP14, RS09, TH13].
molten [BM10, DLZ11].
moment [AM12, Ber13c, BV14, HK11, KSG$^{+12}$, Kri13, MoAdCS12, YSØ12].

moments [AM10, Ber13a, DPK12, GFB12b, GI11a, GI11c, MD11, TW10].
momentum [AL10, AKR12, MOY13, TCG17, TÁ10, YOS15].

Moniliophthora [PTD$^{+12}$].

mono [Buc12b, JAc12, MMR$^{+10}$, PS13a, ZQXP17, BL10].
monoo [Buc12b, JAc12, MMR$^{+10}$, PS13a].
monoacetylides [DD17].
monoa [MBTVR12].
monoatomic [Bar11].
monoboronyl [ML17].

monobromide [HTM10].
Monochloride [MOY13].
monoclinic [DWX$^{+16}$].
monocyclic [Dut12].
monodentate [ZKKR11].
monofluorides [KWC11].
Monofunctional [XZ11].
monohalogenated
N [BJ17, CWS15, CWSZ13, HWL16, JLG+12, LYL+12, Men10, Per10b, SÁBA+12, SSAM13, WLZ+12a, WLZ+12b, XZZ+10, XXJ+16, Zha10, ZHI2, ZQJW13, SC12a, ARG11, BEM11, XWC10, ABTW14, CTW12, FLCHL10, HM10a, HXX15, KMK+16, LYL+12, LW15, MNV+17, MBA+13, OKR12, PRPU+13, Puz10, RRB12, SÁBA+12, SC12a, SSAM13, SXS+12, TPdMB12, WZ11, XMZ+12, YZL+12, YWJ+11, Zha10, ZHI2, ZGSM15, ZG10, dAVdM17]. N- [SC12a]. N-confused [HM10a]. N-coordinating [YZL+10]. N-dimethylaminopropanol [WZX11]. N-Doped [XMZ+12].

nanoparticle [KO14, PW10]. nanoparticles [AL15, BLRD+10, ESBV, JY12, GE12a, KT12b, LIK15, RAK10, SDY16, TFSR11, ZHI17].

nanosheets [ES17]. nanosilicon [She13]. nanostructure [CTDOLA10]. nanosheets [ES17]. nanosilicon [She13]. nanostructure [CTDOLA10].

nanotube [OP10, SD13a, SD16b, WW11, WJY15, XZL+12]. nanotube-based [OP10].

Nature [GI14, JEA13, ZQJC10, ZMB+17, ACF+11, Cys11, LQ13, LZD+11, MB15, RB11b, TC10, UDVD10, VVJ15, Wu11, YYY+13]. natures [She14].

NC [EMSB15, EMS16, LZZ+11]. NCO [PTS+11, DDF+12]. NCS [Qul3].

near-infrared [dARAV12]. near-IR [ZQJC10]. near-resonance [KYS13].
neat [AMMK11]. need [MR11]. Negative
[DSC+11, IAA15, Kry10, MMRR+10]. negatively [DCBB11, KWWH18].
neopentyl [MML+11a]. nested [Cal10]. Net [RLZ12]. netted [DW12].
network [Beh15, BGKK16, FCC11, MDC15, WZX15b, dAVdM17].

network-based [MDC15]. networks [CRA+11, CL08, LFF+10, MPD+15].
Neural
[BGKK16, MDC15, Beh15, CRA+11, CL08, FCC11, LFF+10, MPR+10].
netted [DW12].

neurotransmitters [RZG12]. neutral
[BCGC12, BGMD15, CAZ+11, EPS+16, FBRBR12, Gra11, MMRR+10,
ONBP11, PSSS11, TCM+12, Val17, ZQCJ10]. neuron
[CD15, Kar12c, Zag11].

neuropeptides [dSSdSJ12].

neuraminidases [YWY+12]. neurotransmitters [YWY+12].
neuropeptides [dSSdSJ12].

neutral [BCGC12, BGMD15, CAZ+11, EPS+16, FBRBR12, Gra11, MMRR+10,
ONBP11, PSSS11, TCM+12, Val17, ZQCJ10]. neutron
[CD15, Kar12c, Zag11]. News [BDF+16, BHH+13,
CYC+15, DOE+14, FMPM+14, KRC+16, LCZL15, MML+16, MRS15,
NKKN15, yOTn15, SQS+15, TYZH17, ZH15, ZWSF16].

NEXAFS [LRP+11]. next [KRH13]. Ng [SMC18]. NH
[EMSB15, MPRCEG12, WZM+13, XWCY11, CCL+13, CRSB12, CCL+10,
LV12, LLG+12, MWH15, MPMS+12, RNH+10, SLZH12, SW12, XZL+12,
RRVJ10, RB11b]. NH-tautomeric [CCL+10]. NHS
[NRP+11]. Ni [AO12a, YL11, BXR+13, FBD+13, GP13b, GZMC11,
LWX+14, MRT11, SLZ+12, WJL+10]. Ni-based [GZMC11]. Ni-loaded
[LWX+14].

nicotinamide [MPD12]. nicotine [SGKG12]. NICS [XWC10]. Nikolai
[Pup11b]. Nile [FSBA12, MRA11]. Nimrod [Bräu12]. nitramines
[MOSK10]. nitrate [HM11, ZL10]. nitrates [HZZW11]. nitration
[LLW+11]. nitric [BGMD15, MNE+13, ONBP11]. nitride
[Che13, DHZS11, ES17, FZX18, GWW+14a, GAMM10, Ish14]. nitrile
[CMMN11, NAK+17]. nitriles [RFN+12]. nitrites [BL10].
nitric [CLY12, WGLX10, ZCC11]. nitroaniline [KC11]. nitrobenzene [SS18].
nitroethylene [BBAL12]. nitrogen [BSO11, EAV16, GZ14, HZG12,
HNG15, LZW+15, MS14b, PPDF11, RD14, ZKRR11].
nitrogen-containing [HZG12]. nitrogen-doped [HNG15].
nitroso-oxide [YRN+11]. nitrosothiols [XHZXXZ10]. nitrosoureas
[CZJZ12]. nitrostyrene [JSLH14]. nitrosyl [ESS13, LLR+11]. nitrosyls
[UMS13]. nitrous [Dau16, MZB+13, Rua10, SZ11, TSKN12]. nitrosoxide

NLO-X [PCD14]. NMR
[AMB13a, BMF+14, ÇAS13, CDP+10, CD12, EKN10, FBD+13, OPP+14,
ÖEDB11, Ped16, RRK16, SK10, TTM16, TSKK17]. NO
[ESS13, LLR+11, SSAM13, AFV12, BAMA12, Les12, MCV11, RN10+10,
SK14, SSAM13, VLM+10]. noble
[GI14, JEA13, KDOR17, MBI5, PSK+16, SMC18]. nomenclature [Tch16]
[No]
IGMK11, JdOS16, JFDD10, KC11, KPL+17, KL11, KMU+13, LYW11, LZW+15, LYL+12, MPC10, Mas14, MPJ12, MA11a, MMF+13, NKF+13, NMHPVG12, OGvSG18, RKM12, ŞBAT16, SSKS12, SLS+14, SM17, SYQ+10, WLZ+12a, YK11, YLY+12, YHL+15, ZSQ+10b. optics

Optoelectronic [AFA13, KA13, MANP17]. orbit
[Ber13b, BDR12, LWL+12, MLK17, MC18, RS12a]. Orbital [BT15, Kon10, AK17, ABA11, Bar11, CPF+11, DVDBM11, Fin17, FA17, FMPM+14, GR10, Hgo10, IKN13, IK18, JH15, KK14a, KLK13, KCK14, Kit17, KKT13, KKT14, KPH+12, KUY16, LB18, MMM16, MFLP12, MSY+12, MMA10, Mur12, Nag15, OT14, OAT+13, Pir13, PU14, SIM14, Tal11, TD11, Tsu15, XHZXXZ10, YPDW14, BT17]. orbital-free [AK17, Fin17, FA17, Nag15]. orbital-specific [MMM16]. Orbital [BT15, Kon10, AK17, ABA11, Bar11, CPF+11, DVDBM11, Fin17, FA17, FMPM+14, GR10, Hgo10, IKN13, IK18, JH15, KK14a, KLK13, KCK14, Kit17, KKT13, KKT14, KPH+12, KUY16, LB18, MMM16, MFLP12, MSY+12, MMA10, Mur12, Nag15, OT14, OAT+13, Pir13, PU14, SIM14, Tal11, TD11, Tsu15, XHZXXZ10, YPDW14, BT17].

Organic [SA11b, WTW+15, BF11, BDG17, BWE16, CKL16, FM16, GNM+12, HKZZ15, JPPA10, KMK+16, LSR+10a, LSR+11, Mat02, Mat10, May14, Mit11a, NZ13, Nik11, RRCO11, RLZ12, SOM10, TH13, Tsu15, WWL17, YZZH15].}

organics [PDR+14]. ordered [CPL15, HW12]. ordering [AM10, GE12a]. orders [KK14a]. Organic [SA11b, WTW+15, BF11, BDG17, BWE16, CKL16, FM16, GNM+12, HKZZ15, JPPA10, KMK+16, LSR+10a, LSR+11, Mat02, Mat10, May14, Mit11a, NZ13, Nik11, RRCO11, RLZ12, SOM10, TH13, Tsu15, WWL17, YZZH15].

organic-metal [SFL+10]. organization [Brä11a, Chr10, Kuv10, RAK10]. organoaluminum [ALK18].

orientations [MK11, WML11]. oriented [LPM+11].

origin [GFB12a, G11b, G11c, MC17, MNS11, NJA+12, TIKN11, ZQW+17].

origins [Zha15, Mur12, MB13]. Ornstein [CSTA16]. orthogonal [RPBB11, TKN13, Yur13, Yur15].

orthogonalization [JH15]. orthogonormal [GS10]. orthosilicates [DCDD10]. oscillating [SRPD16]. oscillator [AAHN16, ACL12, Haj18, HRT12, KBG17, PVS12, PABSK16, Roy14, Sta10]. oscillators [Tou11a]. other [Ném14].

outbreak [KRH13].

outlier [LLZ+14].

outer-expanded [LLZ+14].

outgoing [CW13b]. Outstanding [Ng12, Pie11].

outward [MB13].

overlap [AE012, MML11b]. overtone [CK13, VV12, VV13].

overview [BBB16, DSL15, Li15]. oxadiazole
Munz [MUNZVR12], oxalate [DdG+11], oxazol [LW13], oxazoline [MCC13b], oxamic [FPRGMHG12], oxidase [TSKN12], oxidation [BD14, CGIAI12, GMT16, GS10, Jan10, KBF+13, LLW+12, MKM11, POL12, SSP14, SM14b, TBHL11, XMG13, XG+18, ZSH16, ZCW16, ZJC+13], oxidative [FMP+17, NTLN10], oxide [Ali14, ASW13, BGMD15, Dan16, DLJT14, DWGX12, FSK+11, HG+13, KC11, LWX+14, LCH+11, MSL11, MGP16, ONBP11, Oni10, SZ11, TSKN12, WCY+10, YHL+13, YC13, ZDF13], oxidizes [NAK+17, PSK+16, RGST12], oxidized [FTB11, RR11B2], oxidoreductase [SR11a], oxime [QCW+12, XZ11, YRN+11], oximes [ZYSW17], oxo [ZSAP11], oxo-titanium [ZSAP11], oxoacids [CK17], oxocarbon [JFDD10], oxodithioesters [GCZ+14], oxoguanine [YM12], Oxygen [GLT13, SDY16, CAZ+11, dDGNB10, JAB12, KCK14, LSR+13, Mor12, MLW16, PMH+16, SCZG12, WWHZ13, YYS15, YSS+10, YYI+13, YSK+12, YZZ16, dOdCMUdALR11, OD12, YYI+12], oxygen-evolving [LSR+13], oxygen/nitrogen [YZZ16], oxygenated [TYN13], oxyluciferin [SR11b, dSdS13a], ozone [ASK15, Var14, WWX+11], P [ACMRN10, CdAFS+12, CD12, GWZ+14a, GWJ12, KLZQ15, PP14, TW10, ZCG+17, ZPB12, ED16, OD12, RPBB11, RRC011, WFS13, XYS10, DQZF12, SN12], P [SG14], P-O [SG14], P218 [AB16b], p300 [DPRK12], P450 [SIS+08], P6 [UV18], Pa [OM13b], parameter [FCS13a, FCS13b, IKN13, SX15, WFS13, YF16]. parameter-free [SX15], parameterization [HSS+11, PABSI16, PSPS11, SOF+10], parameters [AGPDZ13, AK11, BMF+14, EKN10, FV11, FCC11, IIS+17, KAR12a, LJSS12, MGM11, MPM15, MOY13, Roy16, SPO+11, SR11b, SWS12, WDI+17, YSÔ12, dCDM14, dCDMudALRI11], parametric [LdMCdA+12, RSC10, SOF+10], parametrizations [WR15], parametrized [Oht13], parent [MR11, PGG12], Part [Ban12, GH11b, Mor13, BR08, BR12a, For12, GH11c, RB08, RB11a], Partial [MCKD11], partially [AA11], Participants [Ano12r, Ano10a, Ano10b, Ano10c, Ano10d, Ano11d, Ano11c], particle [ATPRV11, BPL13, DTF+11, FMPM+14, Kon11, MGM11, SK17b].
Poly [XLGA12, BMR+13, IBA+11, JLS13, OCB+10, OCB+10, XLGA12].

polyacetylene [CFGC11].

polyalanine [Ire12].

polyatomic [Bae16, DK13, HKLW13, KP12, IBA+11, JLS13, OCB+10, OCB+10, XLGA12].

polyethylene [YZZH15].

polyfunctional [BA12, ALRA10, KPL+17].

polyhedra [ALK18].

polyhedral [Pup11a, TDOD17].

polyhydroxybenzenes [MK11].

polymer [DI15, FZH+18, MM13, PETB18, SPPT15, Wan11, YT14].

polymerization [AMAC12, CL08, LSG+14, LKZ+16].

polymorphism [GP13a, PAD+10].

polymorphs [Gao12, VVS+18].

polynitrodiazoles [RGTS11].

polynitrogen [THL+15].

polynitrotetraazaoctahydroanthracenes [ZL12].

polynomials [Rom10, RA10a, SMOD11].

polynuclear [OPF11].

polypeptide [MCE11, NRI15, PCML08].

polypeptides [YSG10].

potassium [Ish14].

potency [DKZ+10].

potassium [ish14].

potency [DKZ+10].

Potential [BAP12, Ber13c, DHZS11, LDADB+15, McC13a, SB16, XZZ+10, ZLR15, AB16a, AAHN16, Agb12, AOLB12, ART08, AY15, BPVDB11, BP13, CDSK12, CNBR+11, CSS16, DTVP+12, DB12, EMK14, Fin15, Fin16b, FA17, FB17, FMMD+10, FBU+11, FNIT16, Fuk12, GSZ10, Glu13, Haj18, HDOS12, HR12, HYZS12, HJRO13, HNBG15, HFZ12, IH16, IJ17, KMRG13, KMM16, KRG+13, LFF+10, LV12, LKJ13, LDZG16, MPD+15, MDC15, MCP10, MOE+11, MOLF11, MGD11, MPRCEG12, MPT11, MPTZ13, Nag10, NMIP14, NMHPVG12, PGGRMP10, PML+11, PVS11,
program [BHH+13, CYC+15, DOE+14, LCZL15, MPZWD10, YAF+15, ZHF12, ZH15, ZWSF16]. programmed [AFV12]. progress [HDÖS12].

promiscuous [RNdA+10]. Promising [LPO+12, KM12b, MVG18].

promoted [LCM+11, QCW+12, WHT+11]. promoting [RNdA+10].

propagation [Bae16, EM16, KFY+16]. propagator [DZO12c, DZO12a, FMMD+10, POLV12, SM12, ZDO10]. propane [NTNL10]. propen [HNH+12]. propene [DPDR11, ZPW16].

proplylamine [RJA+10]. Proper [SD13b, Fin15].

properties [MC18, NBL+14, NBI+10, NMHPVG12, NDM+12, OGvSG18, OCB+10, OMD13a, PK13a, PCD14, PFD13, Pit12, Pog12, PAKA15, PMAP12, PK+13, QHS11, QJ13, QCB+10, RMLPGGH16, RGTS11, RZC13, RC11, RCS10, RBLZ15, SD13a, SMOD11, SSKS12, SLS+14, SB16, SXS+12, SLS+12, SLSZ13, SR13, SST11, SBB16, SM14b, SM14d, SM17, SYO+10, TIKN11, T211, Tad14, TD11, TBRIS10, TFR10, TCV11, TD11, TBRIS11, THVP14, TFB11, TCG13, TPfMB12, UTTu13, VMC11, VRO+12, VBO+15, WGLX10, WX+11, WLZ+12a, WLZ+12b, Wan13, Wu11, YK11, Yan11, YZL+10, YZL+11, YLWR12, YZW+15a, YBMK12, YZW15b, ZZ10, ZLS10, ZZR+12, ZQJW13, ZKW17, ZSQ+10, ZL12, ZCG+16, ZS12, ZCP11, dSDSPG11, dOLdV13, vLRRK15]. properties/activities [MPMCM+11]. property [BXR+13, CWL+13, CJNSLM11, FSQ+11, GII1e, GMP+11, M17, MCM11, MPM11, Nic11, Pea11, RGST12, ZYZ+11].

property-specific [Nic11]. proportions [Lu15]. proposed [TCA10].

protein-coupled [CSVCB12]. Protein-nucleic [TBST10]. proteins [PT13, AGRI+12, CHSO13, CSVCB12, DFF+13, GSR12, HXDY16, KFY+12, KKG12, LLZaH14, MYZ+10, MRT11, MRS15, MSK+12, Pop15, TYN13, TCM+12, TBHL11, YSW11, ZPM10, ZWLC12, ZTC11, dA12, TBST10].
QR-SCMEH-MO [BB10]. QSAR [KKM+12, PH12, XFW+14, ZFW+13]. QSPR [MPMCM+11, SN12, TFA10]. QSPR/QSAR [MPMCM+11].

Quantitative [CJSNLM11, HSN+11, Zha17, MY17, MBTVR12]. quantitatives [FSST16]. quantization [HKLW13, Kle11, SD13b]. quantified [Mar12, MML11b].

Quantitative [CJSNLM11, HSN+11, Zha17, MY17, MBTVR12]. quantitatives [FSST16]. quantization [Kli11, SD13b]. quantified [Mar12, MML11b].

Quantum [Bal16, BSS16, BL10, BR16, Bra12, CSG14, CW13b, Cho15, CYK17, Coo12, CPAT11, CN12, Dau16, DSL15, DPK12, Dil13, DMB16, DSFT17, EA13, FCLHL10, FBO+11, FNT16, FSST16, Gag11, Gan14, GWZ+14a, GB10, G11, R11a, HITU16, HS1c, HM12, Hor13, IFT14, Ish14, JN13, JMX+15, Kap12, KB12, KCDC15, Kar09, Kar10, Kha16, KCC13, Kit14, Kit15, Kle11, KN15, KK11d, LS17, LSR+13, LCZL15, Lin14, Lin15b, Liu16, LEU+11, Luz11a, Ma14, MC11a, MR12, Mam14, MDC15, MPE15, Mar13, MSC10, MML+16, MPD+10, MQG13, MPL+11, MBTT12, Mor13, MLDP10, MB12, MG16, NC11, NNK15, NS10b, NGS11, NBZG16, Né14, Nic11, NVP13+13, NMR14, NPR+11, NJA+12, Nym14, OPS10, OM13b, OJS+12, PABSK16, PTH11, PMGMGR12]. quantum [Pup11b, RP11a, RP11b, RL12, Rei15, RDM+11, RNE10, RNB+10, Rup15a, Rup15b, SOF+10, SBEH11, SKH13, SC12a, SPS11, SN15, SKK17b, SD13b, She13, SIB+13, SHKS15, SKM11, SGC13, Sjö15, SFY12, SRA+11, SZ15, SCBP17, SPM+15, Tch13, TK16b, TH12, TFA10, Tri14, TB15, UTTn13, UV18, VPF10, VMn11, VVBB10, VIK11a, VO12, WYM15, WR14b, YC11, YI13, YY11a, YS13, YH14a, YW16, YLC17, YLVC18, ZS11, ZX12, ZGSM15, ZH15, ZWSF16, ZC12, ZWE12, ZRL10, dHLd12, dSTH17, vLRRK15, AGNS14, DMS+10, GP13a, ZBK15]. Quantum-chemical [DL11, ÖEDB11, Qu13, BF11, DMB16, DSFT17, MGP16, Né14, NVP13+13, SN15, DMS+10]. Quantum-chemical-aided [GbZA10].

Quantum-classical [CHO16, Mak15, SPS11]. Quantum-matter [Tap15].
quantum-mechanical [VPFD10]. quantum/classical [CP11].
R [DPDR11, DQZF12, GWM11, NBL12, Pan16, CPL15, ESS13, GWM11, LL17, PCR+11, ZSHL14]. R- [PCR+11]. racemase [LZZ12]. radial [IG11, Kha16, RZ17, SPO+11, vLRRK15]. radiation [TK16a]. radiative [Ber13a, CCM08, SCZG12]. radical [BLL+13, BAMA12, BRS10, BCS+12, CWZ+10, GKI2, HWHZ11, IUMVB10, JB11, JAB12, KAR12a, KZA+17, KI12, KZZ13b, LCG12, Les12, LLP+13, LSG+14, LVP12b, MMM12, dMOB12, OKR12, PM17, STI+10, SK14, SPSA11, Sch12a, SB16, SLZ+11b, SLZ+11c, SLS+12, SKM11, SWS+14, WLWL14, XNL+14, YMI12, YY18, YSS+10, Zha14, Zha15, ZBK15, ZLWZ16, ZJC+13]. Radicals [TWHZ14, lAyL14, Buc12b, CGIA12, DII1, DFK16, HXX15, KK14a, KDA+11, LCL+11, LVP12b, NP18, RLW+13, SGL+15, TIN13, TCA10, YMI13, YL10]. radii [GI10, SV11, TMC+13]. radius [Bar11]. Radu [Tou13].
Reaching [MAN15]. reacting [Gin10]. Reaction [BvWG14, Kaw15, LGNG14, NZLG15, SKS10, VPG12, WWLZ17, ZSHL16, ZPW16, lAyi14, AG10a, AG10b, AASU+17, AGNS14, AFM+10, ASD14, BPT12, BAMA12, BZ15, BLW17, Buc12a, CLXD15, DS12, DAA16, DPDR11, DZ11a, EHKK11, EKD12, EM17, FM+10, Fra17, FUE+12,
GWZ+14a, GZF13, GKT+12, HSN+11, HXX15, HHL+12b, HhGqZZ17, Iku17, IK14, JWJ+12, JAB12, KAR12a, KI15, KI12, LGM+18, LKOS17, Les12, LZZ12, LZFZ13, LLP+13, LWWZ13, LD17, LLC+11, LCH11, LWC+10, LKLW11, LCZL11, LCS+11a, LCH+11, LCS+11b, LXLL11, MGM11, MHO+15, Met11, MEEA+13, MPRCEG12, MML+11a, MLB12, MB13, Mor11, MKW11, MOH+12, NMS+10, NWQX11, Nym14, PTS11, PDNC14, PWH+12, RY12, RSL10, RMP+14, SYK+12, SSK+12, SAG13, SK14, SKS11, SD12, Sic16, SR11a, STL12, SLZH12, SWS+14, SZ15, SY17, SHMR11, TM13, TSL11, Tsz15, TGA+11, WXZ+11, WWHZ13]. reaction

[WWX+11, WJ11, XZL+12, XDM+10, YM12, YY18, YK13, YGL12, YZ10, YLC17, YLYC18, ZZW11, ZH12, Zha14, ZLWL16, ZCG+17, ZYSW17, ZPB12, ZXY13, ZSS+13, ZJC+13, Zil14, dHLdS12]. reaction-field [SHMR11].

Reactions [KKH+13, LLM13, MNE+13, ODI12, TIN13, TM13, ACMRN10, BR10, BS14, Buc11b, CdAFS+12, CM12, Chr10, CJGTL12, DWJZ11, DAA16, DFK16, EMED+12, EMEPD15, FRNM12, FDMR11, GGZZ16, HDC+11, HLJZ11, HB14, Hop15, HXX15, HCL13, Kan11, KZZ13b, KMM16, LW11, LLF17, LGW11, LSG+14, MAP+10, NAK+17, dMOB12, RLW+13, Sch12a, SKM11, SWS+14, TFZ+15, Var14, WLG+11, WLWT12, WZH13, WLL14, XLL10, YSS+10, ZGSM15, ZXY13, ZQXP17]. reactivated [MG10]. reactive [Cho15, dDGNB10, RL12, Ser11b].

reverse [SKHN13, TFZ+15, WLWL14]. Review
[Ban12, Brä12, CD15, CSG14, CLXD15, DVC14, DSL15, DC14b, Dun15,
FZC14, For17b, HJ13, HFtGC14, IN15, LJ13, Lin14, Mai14, MC14, Nym14,
PM16, RNP13, SMMT13, SBD+16, Tay12, Val13, WR14b, WCM14, ZP16,
dGR14, Beh15, LFF+10, Li11, Lin12, Liu15b, MWH15, Mor13, RF10, Sch10a,
YZ13, YKM+15, Kry11a, Mas11, Mue12, Liu16]. Reviewers [Cav17].
Reviews
[AB16a, AGNS14, AMAM18, Bae16, BW18, BC15, Beh15, BBB16, BM16,
BBA+16, BSO16, BW13b, Cap16, COCF+14, CM15, CSS16, CKL16, DMBL16,
D’y16, FFPD16, GGZZ16, HKZZ15, Hop15, HXX15, JW18, Jia15, KCC13,
KKL+16, Lat14, Li15, LGZC15, LSP+16, LMZY15, Liu15a, Liu15b, LKd+16,
MHO+15, MMG15, MDC15, MWH15, MW16, MMÅ13, Mos14, MZST16,
NBZG16, OWD18, PDR+14, Ped16, PSMD16, Per18, PETB18, PI16, Rup15b,
SFC16, Sch13, SB16, SHKS15, SG14, Sjö15, SCB+14, SZ15, SPM+15, TTD13,
TSvL+16, Tch16, TK13, TR13, Tsv16, Tz16, VV16b, WXY+15, WR14b, WCM14,
ZP16, dGR14, Beh15, LFF+10, Li11, Lin12, Liu15b, MWH15, Mor13, RF10, Sch10a,
YZ13, YKM+15, Kry11a, Mas11, Mue12, Liu16]. Reviewers [Cav17].
Reviews
[AB16a, AGNS14, AMAM18, Bae16, BW18, BC15, Beh15, BBB16, BM16,
BBA+16, BSO16, BW13b, Cap16, COCF+14, CM15, CSS16, CKL16, DMBL16,
D’y16, FFPD16, GGZZ16, HKZZ15, Hop15, HXX15, JW18, Jia15, KCC13,
KKL+16, Lat14, Li15, LGZC15, LSP+16, LMZY15, Liu15a, Liu15b, LKd+16,
MHO+15, MMG15, MDC15, MWH15, MW16, MMÅ13, Mos14, MZST16,
NBZG16, OWD18, PDR+14, Ped16, PSMD16, Per18, PETB18, PI16, Rup15b,
SFC16, Sch13, SB16, SHKS15, SG14, Sjö15, SCB+14, SZ15, SPM+15, TTD13,
TSvL+16, Tch16, TK13, TR13, Tsv16, Tz16, VV16b, WXY+15, WR14b, WCM14,
ZP16, dGR14, Beh15, LFF+10, Li11, Lin12, Liu15b, MWH15, Mor13, RF10, Sch10a,
YZ13, YKM+15, Kry11a, Mas11, Mue12, Liu16]. Reviewers [Cav17].
Reviews
[AB16a, AGNS14, AMAM18, Bae16, BW18, BC15, Beh15, BBB16, BM16,
BBA+16, BSO16, BW13b, Cap16, COCF+14, CM15, CSS16, CKL16, DMBL16,
D’y16, FFPD16, GGZZ16, HKZZ15, Hop15, HXX15, JW18, Jia15, KCC13,
KKL+16, Lat14, Li15, LGZC15, LSP+16, LMZY15, Liu15a, Liu15b, LKd+16,
MHO+15, MMG15, MDC15, MWH15, MW16, MMÅ13, Mos14, MZST16,
NBZG16, OWD18, PDR+14, Ped16, PSMD16, Per18, PETB18, PI16, Rup15b,
SFC16, Sch13, SB16, SHKS15, SG14, Sjö15, SCB+14, SZ15, SPM+15, TTD13,
TSvL+16, Tch16, TK16b, TB15, Tsa15, Var14, WZX15b, YZ13, YKM+15,
YZ15b, YH14b, YHLC15, ZF15, ZPZ15, ZBK15, ZB18, vL13, SGJ10].
revisited [DVDBM11, OPC17]. Revisiting [GGP13, MJ16a, NS10b, VVJ15].
Rg [BPG+10]. Rh [BLRDa+10, MMRA10, PRPU+13, RYW+15, SBB16].
Rh-doped [RYW+15]. rhenium [YZW+15a]. rhodanine [EAK+10b].
rhodium [DSH+13, LYR+17, MMRA10, WM10, ZZC15]. rhodium-catalyzed
rings [SPD+18]. ribose [ZKWZ17]. rice [WH+13]. rich [TCSD12]. Ricotta
[HS15]. ridge [VSL+15]. rigged [IFT13]. right [KBJ17]. rigorous
[Mak15, vL13]. Ring
[BR08, RBO8, AKR12, CLXZ12, DLLA10, GZ14, KMS+11, KUTS10,
LWJL10, LLLB13, MSK11, NHG+12, QB15, Sat11a, WDSL14, WCY+10,
Yam10, YZ12, YT14, Zha14, BR12a, RB11a]. ring-polymer [YT14]. rings
[ABTW14, BR08, BR12a, BBKO16, RB08, RB11a, RVN+12, TKS11, VC13,
WrSW+11, WWD+15]. rippling [MFM18]. RISM [KSS12]. Ritz
[MB12, SBM16]. riva [PC16]. Rn [KDOR17, SM18]. RNA
[CLL+11, DSPV15, LLLT12, MYZ+10, MMR+10, ZKW17]. Ro [Roy14].
Ro-vibrational [Roy14]. road [HJK14, PP16]. Robust [AAAM12].
robustness [Fin14a]. roentgenium [DR18]. Role
[BR12b, CM16, HSYM11, PCML08, AM13b, BLWJ17, CG12, CHSO13, DS11,
EMK14, EMSB15, FB17, GbZ10, GLOGM+11, JNY17, KG1111,
KKG12, LSR+10a, LSR+11, LQ13, MAW+18, MSOV13, Per10a, PWH+12,
RMJ11, SFL+10, SHL+13, SSP14, SC11, SC18, Var14, WCGD12, ZQW+17,
ZWE12, dAVdM17, LWL+12, MB12]. roles [JLG+12]. room [TD11]. Roos
[Pyy11, SA11b, Sha11b, SL11]. Rosa [dGR14]. Rosen
[PSGK17, Tou11a, ZHF12]. rosiglitazone [HSS+11]. rotamer [CODF+11].
rotamers [HNH+12]. rotary [OWD18]. rotating [HRT12, KGB17, Sta10].
rotation [AO12b, CPL15, DDF+12, HK11, HRT12, KGB17, QD10, Sut12].
rotation-vibration [HRT12, QD10]. rotational
[AEÖ12, CCBR+12, DCR10, Puz17, RMJ11, SPO+11, VLM+10]. rotations

84
rotovibrational [PBB15]. route
[BMF13, HGB08, SRS+17]. routes [VPGC12]. Rovibrational
[LLP17, AM12, FT15, VLFG12]. rovibrationally [Dau16]. row
[BZBZ13, KWC11, MKM11, ZFC+17]. RPA [LZ10]. RRKM [DS12, STL12].
RS [ESS13]. RT [KKG12]. Ru [MJ16a, YYI+12, ZPW16]. Ru-catalyzed
[ZPW16], rubidium [LHL+15, MMR+10]. rubidium-doped [LHL+15].
RuCl [CCL+10]. rule
[DMWY11, Jb12a, KIT12a, XWC10, YLZ+17, KK11b].
Rung [Jan13]. Russian [Tch16]. Ruthenium
[CWB+13, LYL+12, SLS+15, LGS+16]. rutile
[BZBZ13, KWC11, MKM11, ZFC+17]. RPA [LZ10]. RRKM [DS12, STL12].
RS [ESS13]. RT [KKG12]. Ru [MJ16a, YYI+12, ZPW16]. Ru-catalyzed
[ZPW16], rubidium [LHL+15, MMR+10]. rubidium-doped [LHL+15].
RuCl [CCL+10]. rule
[DMWY11, Jb12a, KIT12a, XWC10, YLZ+17, KK11b].
Rung [Jan13]. Russian [Tch16]. Ruthenium
[CWB+13, LYL+12, SLS+15, LGS+16]. rutile
[BZBZ13, KWC11, MKM11, ZFC+17]. RPA [LZ10]. RRKM [DS12, STL12].
RS [ESS13]. RT [KKG12]. Ru [MJ16a, YYI+12, ZPW16]. Ru-catalyzed
[ZPW16], rubidium [LHL+15, MMR+10]. rubidium-doped [LHL+15].
RuCl [CCL+10]. rule
[DMWY11, Jb12a, KIT12a, XWC10, YLZ+17, KK11b].
Rung [Jan13]. Russian [Tch16]. ruthenium
[CWB+13, LYL+12, SLS+15, LGS+16]. rutile
[EFO11, GP13a, HCL13, ZLWY13]. Rydberg
[DLRMFY10, DTPC17, GV11]. Rydberg-like [DTPC17].

S [BAP12, BGFD14, CCL+10, EMS16, FRNM12, GCD13, HJRO13, KA13,
SBMM11, SK14, TOSN12, TSKN12, WSML16, YLZ+17, ZCG+17, ZLWZ16,
ARG11, BPG+10, BAP12, CMCN11, DSFT17, EHKD11, EKD12, GWZ+14a,
KMM15, KIn13, MEA+13, OD12, TCS12, Tan13, TL15, WYWL13,
RHXXZ10, XXJ+16, Zha14]. S-adenosylmethionine-dependent
saddle [QB15]. safety [FUE+12]. Sahni [VUC13]. salen [TMM+14]. salt
[CLMY12, RMTG11]. salt-bridge [CLMY12]. Salts
[Bon17, BM10, LG15, LMCZ11]. salts-catalyzed [LMCZ11]. same
[GI11e]. sample [Nic11]. sampling [BBB+12b, SKV12]. samplings [BS16].
sandwich [DZO12b, LXD13, WCY+10, YZW15]. sandwich-like
[WCY+10]. Sanibel [OS12b]. Santos [HS15, dFR15a]. SAPT [JNY17].
sarin [XCH11]. satisfaction [PSMD16]. saturated [CGIA12, VF13a].
SBO [GZSMFN16, GZSMFN16]. SBO-3G [GZSMFN16]. scaffold
[OSJ+12, ST15]. scaffolds [TFZ+15]. Scale
[Lya14, DFF+13, RAMBl8, SN15, SKV12, ZLWY13, MBTV12].
Scale-adaptive [Lya14]. scaled [YF16]. scales [DP11]. scaling
[DB13a, JH13, KJ16a, KJ16b, Kr13, LCZL15, QXR+15, RCP14]. scandium
[GGJD13, OH13]. Scanning [ZLWY13]. Scarf [QD10]. Scattering
[IIH16, AY15, CD15, Cho15, CK17, Kar12c, Kar15, NA14, RL12, RW11,
SY10, TSBS12, Zal11, ZH15, dSCC12]. scavengers [MV18]. scavenging
[JB11, LCG12, PGG12, RM17]. scenario [CSS16]. scènes [Kry10]. SCF
[KSS12, NA13]. scheme
[DTVP+12, Gan14, KUY16, MA10, SN15, Tav12, dAB17]. schemes
[MGK+12]. Schiff [CPF12, MSH13, ZSQ+10]. Schmidt [EM17].
Schrödinger [KCI16, BDP12, CW11, CW13b, GMGRMP12, HYSS12,
Kha16, Krl13, PGGRMP10, PVS11, PVS12, PGMMR15, WC14, ZLJ11].
Schuster [WCGD12]. Science
[IMS+13, MMF+13, NKF+13, OH13, She13, YMY+13]. sciences [BHH+13].
scintillation [IBA+11]. scission [LSG+14]. SCMEH [BB10, Bn12b]. SCR
[MWH15]. screened [CW13a, GH11, HZW11, JH13, KH10, KH12.
KWWH18, LLH15, Roy13, Roy16]. screening
[CCA+12, CRFR11, KWLS15, ST15, YŞO12]. screw
[Lad14, XTLA13, XTLA14]. SCRF [TMC+13]. SDWP [TCG17]. Se
[EM16, HJRO13, WSML16, KMMS17]. Se-substituted [KMMS17].
Search [LTdSJ+10, Lev10, MHO+15, MCP10]. Second
[LYL+12, NKF+13, UV18, ABA11, BR10, BR16, BVA+14, DHC11, EG10,
FSQ+11, KC11, KK13, Kar12, Kle11, LKDC11, LCL+10b, LPG+12, Per10b,
TH13, VR0+12, YMY+13, ZFC+17, ZSQ+10]. Second-order
[LYL+12, UV18, ABA11, BR10, BR16, BVA+14, DHC11, EG10, FSQ+11,
KC11, KK13, LKDC11, LCL+10b, LPG+12, Per10b, TH13, VR0+12, ZSQ+10].
second-row [LYL+12, UV18, ABA11, BR10, BR16, BVA+14, DCHC11,
EG10, FSQ+11, KC11, KK13, LKDC11, LCL+10b, LPG+12, Per10b, TH13,
VR0+12, ZSQ+10]. secondary [LYL+12, UV18, ABA11, BR10, BR16,
BVA+14, DCHC11, EG10, FSQ+11, KC11, KK13, LKDC11, LCL+10b,
LPG+12, Per10b, TH13, VR0+12, ZSQ+10]. sections [LYL+12, UV18,
ABA11, BR10, BR16, BVA+14, DCHC11, EG10, FSQ+11, KC11, KK13,
LKDC11, LCL+10b, LPG+12, Per10b, TH13, VR0+12, ZSQ+10].
self-assembled [KKH+13, QTCL10]. self-assembly
[FIF10, LYW11, VFCSC17]. Self-consistent
[ISN13, Fin15, SY10, SHMR11, VFCSC17, WDJ+17, ZZW11].
self-energy [SIM14]. Self-organization [CHR10, Rähr11a, RAK10].
semi-biorthogonal [BPV14]. semi-core-valence [Eng16]. semi-empirical
[YWJ+11]. semicircles [LQZZ12]. semiclassic [CPAT11]. semiclassical
[EM16, FLCHL10, LBW11, Liu15a, RBD+10, SABA+12]. semiconductor
[DLJT14, Fer11, KP11, Kar12b, SAHG11]. semiconductors
[BWE16, Eng16, HKZZ15, YHL+13]. semidirect [Tri14]. Semiempirical
[Bou11, GI10, BO11, KDÇ12, MSVMCI10, RS11b, SM14a, WKE17].
Semilocal [PSMD16, SFC16]. Semiquantal [ODHA13]. semirandom
[Pog12]. semicircular [Bib13]. Sensing
[NEEV15, Man16, MBSAG16a, MBSAG16b]. sensitive
[CC11a, MPJ12, PJP10]. sensitivity [Bon17, ORJ18, YZ13]. sensitized
[AGJ12, BDG17, FM16, cLqFtW+14, MY17, MANP17, PMAP12, QJ13,
SS15, WWB+14, Zha17]. sensitizers [CWB+13, LGS+16, SSSS15]. sensor
[HNBG15]. sensors [FBU+11]. SeO [ZY+14]. Separation
[Nal13, BLKB11, MPD+15, PETB18, SSP+17a]. separations [PWP13].
Sequence [NMS+10, CLC10, HW12, YSW11]. Sequence-dependent
[NMS+10]. sequences [Gar08, GFWIZ11, HXY16, KA11, Lad14, LQZZ12,
LLZaH14, XTLA13, XTLA14]. sequencing [Che13]. Sequential
Simplification [CFOC+10]. Simplified [GZF14, GZSMFN16]. simulant [HYZ13]. simulate [SKV12]. Simulated [TCG17, VVS+18, AM13a, Eil14, JPP+11, MOE+11, VVN+16]. Simulating [DMBJ15, MRS15]. Simulation [LPM+11, CwCW+11, CSK12, CS17, CTDOLA10, DKZ+10, DGR+16, DLZ11, FFF10, Fra17, FNT16, Hog13, IFT13, IFT14, KSS12, LTC14, LL17, Mas14, MPD+10, MPZWD10, MG12, NKKN15, Net12, NDM+12, PP10, PMH+16, SLS+10, Tan13, UTTh13, YAF+15, YT14, YINM13, ZWSF16].

Simulations [Hor13, MSH13, Mar13, OHDA13, SIB+13, SHS+13, UYN+13, UTTh13, YK13, ÁFV12, ATS15, BMF+14, BM10, CLKD15, GVPCK10, GSR12, Kit15, KKH+13, KFS13, LFS+11, MGN14, MM10, MMT+13, PDR+14, PPK+13, QSX+15, RP16, RNC+14, SHKS15, SBL11, TSH17, TPdMB12, ZWLC12, Zha17].

Spectral
[LLH15, Mys12, CdLdSC18, FBU11, KP12, LYR17, SMGZ13].
Spectral-luminescent
[KP12].
Spectral/structural
[LLH15].
Spectroscopic
[BH10b, Jac12, Mag14, NC11, NVPCJ13, SZS10, SLZ11c, SLZ11a, SLS11, SXS12, SLS12, WFS13, BD12, CHM14, CWB13, CJOOW11, DAE12, GFB12a, KSSK16, LJSS12, LZZ17, MG12, MPTZ13, QHS11, RNdA10, Sch10b, SLSZ13, SWS12, Tas14, VLG12, VLF12, VBO15, WX11, YZL10, YZL11, ZLLS10, ZR13, dSdSPG11].
Spectroscopy
[Ber13a, BDR12, For17b, GFB12b, LdBF12, Mas10, MML11b, ORJ18, Ped16, Puz17, SA11b, UTTh13, YJ17, ZP15, Rd11].
Spectrum
[AA11, BS16, BBB12b, Bou12b, CWF11, CRSB12, DHZS11, DWGX12, HHCA10, HRT12, HMH13, HYH10, JCC10, KGB17, NDM12, QD10, RS12a, SBKJ18, WWC17, Zha17].
Spin
[BDR12, DcdG10, JR12, Kle11, Luz11a, MLK17, SAHG11, SAHA12, Swa13, YY112, ATL14, Ber13b, Bla15, Bra10, CFGC11, CSP10, CDT12, DS11, DM16, FS16, GXZ14, GFRdG11, Joh17, Kap12, KK14a, KSN10, KY113b, LVdSDM14, LWL12, MR12, MPB10, Mos14, MC18, NS17, NNS17, O10b, Qi13, RS12a, RLZ12, SR12, SRASZ16, SSP17b, SBD16, TA10, TD11, WH12, Yur13, Yur15, ZSQ10]. spin-dependent
[DM16, NS17, NNS17]. Spin-free
[Kle11, Luz11a, Luz12]. spin-Hamiltonian
[TD11]. Spin-orbit
[MLK17, MC18, RS12a].
spin-projection
[KY113b]. spin-restricted
[KY113b]. spin-spin
[CFG11].
spinless
[NF11]. spiro
[LLLB13]. spiro-heterocyclic
[LLLB13]. spiroborate
[QCW12, WTZ11]. spiroiminodi-hydantoin
[SJ13]. spline
[HZS14]. split
[GRD11]. split-graph
[GRD11]. splitting
[GWM11, HYH10, SYK12, SSK12, T13, YY112]. Spontaneous
[CCE08]. spread
[BE12]. square
[LGHL11]. squaric
[DL11]. squeezed
[PSGK17]. SR
[MC18, MPD15, MPG16, On10]. Sr-doped
[On10]. SrBi
[HLM011]. Src
[ZFW13]. SrH
[HMI15]. SrTiO
[OH13, WCL17, OH12]. SS
[SZZ12]. SSH
[DTFK15]. stabilities
[AF16, MS17, SFW12, SUL11, SM14c, ZYL13, dAVdM17]. Stability
[GV11, KZ117, Kry11b, MC12, TLC17, USL13, Boe12, CWS13, DVC14, FBBR12, GB13, GAMM10, GWJ12, Ire12, KK11b, Kry12b, LGHL11, LCZ15, LGS16, MNV17, MC17, MCARL11, MJ14, MM10,
strength

strengths

stretched [HB14, MJ16b]. stretching [CLXZ12, ZZ15].

strong [DI15]. strongly

stronger

Structural

structure [RGST12]. structure-property [RGST12]. structure-stability [DVC14]. Structures

Structure-dependence [KSG12]. structure-property [RGST12]. structure-stability [DVC14]. Structures

[BBB+12b, CL08, She12, YZZH15].

[ACL12, BPG+10, CG12, RB11b, WLC+17].

[BBH+13, MS14c, RBZ15, ZYL+14].

[Fin14b, JMX+15, MPV+11, NIT16, XXJ+16].

[ACL12, BPG+10, CG12, RB11b, WLC+17].

[Fin14b, JMX+15, MPV+11, NIT16, XXJ+16].

[ACL12, BPG+10, CG12, RB11b, WLC+17].

[Fin14b, JMX+15, MPV+11, NIT16, XXJ+16].

[ACL12, BPG+10, CG12, RB11b, WLC+17].

[Fin14b, JMX+15, MPV+11, NIT16, XXJ+16].

[Fin14b, JMX+15, MPV+11, NIT16, XXJ+16].

[Fin14b, JMX+15, MPV+11, NIT16, XXJ+16].
Studies [Roy13, ACF+11, AMK10, BD12, Buc11b, CCA+12, CAS13, CYLL11, CTW12, CWB+13, CSVB12, CSSK+12, DSWL11, DB15, EAK+10b, EAK+10a, EI11, For12, GGD12, GTK+12, HTM10, HNBG15, Hop15, HWL16, JL12b, KDC+12, KA13, KSY+11, KAOB11, Les12, LWW+12, LSR+13, LBY+14, LGZC15, LWJL10, LKLW+11, MANP17, MLPT10, MAP+10, MMM+12, NTCK13, ONBP11, OEDB11, PBM10, PTD+12, PETB18, PAPCMM+16, RJY+10, RJA+10, RGTS+11, RNdA+10, Rii10, Riv11, RGS+13, RGR12, Roy+14, SMK+12, SD16a, SCI12a, SJZL12, SIS+10a, SK10b, SZ15, SSB+12b, TIKN11, TOSN12, TYN+13, TAY11, Tan12, TIN13, TXL10, THSR+13, UJSJ+13, WTH+11, Wan13, WZM+13, WYWL13, WHM14, XFW+14, YZL+10, YZW+15a, YB11, ZZL+11, ZZX10, ZYY+11, ZQW+13, ZLY+13, ZLY+14, ZSZ+14, dAGNJ+12, YWY+12]. Study [Bar11, CH17, IFT+13, IFT14, SGL+16, ZCP11, AFC+10, lAy+14, AM12, ATM17, AKC17, ASU+17, AT13, ASW13, ASD14, AMA12, BMK+14, BD14, BF11, BCG12, BDF+16, Bas11, BAMA12, BLR12, BS11, BEM11, BZZB13, Ber13a, BL11, BLRdA+10, BS14, BZJ15, BDG17, BMF13, Bon17, BDR12, BCF+11, BPSM12, BLM+12, BJ17, BJdlMAV12, Buc10, BO11, BVRM10, BCS+12, BB16, BSV12, BSPK11, CRB+12, CM12, CCL+13, Cao17, CPL15, CPF12, CCBR12, CHM+14, CG12, CW16, CM12, CCL+10, Che12, CS13, CW+16, CZLD17, CLY12, CS13, CWS15, CK13, CFGC11, CGIAI+12, CAPL+12, CPAT+11, CD12, CS18, DWJ13, DCB11, DIOG12, DMA12, DAR+11, DKS11, DS12, DCDD10, DSRG12, DPRK12, DPDR+11, DTEMK+11, DZ11a, DLO16, DMS+10, DCdG10, DDF+12, DdG+11, DQZF12, GWGX12]. study [DSH+13, DCR10, DSFT17, DFF+13, EG10, ESDO16, ELC08, EAH13, EFO11, EO11, EBH11, EA12, ENV+15, ES17, ESBV12, FSQ+11, FZX+11, FFF+10, FO10, FM16, FTB11, FRNM12, FDN10, Fin14a, FT15, FPFRGM12, FBU+11, Gag11, GBS17, GWM11, Gao12, GLF+12, GGD13, GZW16, GHGF12, GKF12, GIO12, GF12b, GP13b, GDT16, GS11, GLG+11, GHMC1M17, GD11, GSB10, GT13, GGP10, GGA10, GCZ+14, HN1+12, HK11, HBC+11, HLJZ11, HLZ+14, HFD11, HHL12a, HHL14, HM12, HM10a, HKLW13, HZZW11, HFL+17, HHL+12b, HbgqZZ17, IJJ1+11, Iku17, IGMK11, IM15, JPPA10, JN+13, Jai10, Jan10, JS+17, JCCZ12, JSJ14, JLZ+17, JB11, JW+12, JFDD10, KM12a, KS11, KWC10, KWC11, KPI11, KBF+13, KKM+12, KL15, KL12, KK14b, KS17, KZ13a, KZ13b, KUTS10, KKT13, KKT14, KG08, KO12, KMP+13, KKL13d]. study [KBMM10, Lan10, LLF+12, LGM+18, LLM13, LKOS17, LVdSM14, LPOP12, LZR10, LCL+11, LJL+11, LW11, LWJ+11, LWY+11, LGP+11, LM+11, LGP+12, LLP+13, LW+14, LLM+16, LYR+17, LLY+17, LLYW+11, LLCC+11, LCC10, LLZZ10, LCC11, LCHS12, LXX+12, LWZ+14, LL17, LWL+12, Lu10, LWC+10, LCS+11a, LCH+11, LCS+11b, LXL+11, LLLB13, LW13, LKZ+16, MYZ+10, MLW+14, MA14, MY17, MAD+12, MSG16, MZB+13, MFB11, MK10b, MK12, MLC+11, MCP10, MMR+10, MCG15, MVG18, MP12, MTL+12, MSC10, MOY13]
MMWA11, MUNZVR12, MUPC10, MDNDO+16, Men10, MCL11, MKSG13, MS17, MHUWR+17, MM11, MSK+12, MLP+11, MGD11, MTS15, MPRCEG12, MMRRA10, MML+11a, MLB+12, MBBT+12, Mor11, MM13, MG10, MFF+13, MSRn+11, MSOV13, MCRS16, MOH+12, ND11, NS10a, NHJ+12, NDH10, NBL12, NAK+17, NTNL10, NL11, NFQ+11, NHB12, NRGS11, NRS+11, NRP+11, NRHJ11]. study

[NJA+12, NT16, NZAVR10, NEEV15, OAC17, OPC17, OH12, OH13, OCB+10, OPP+14, OMD13a, OM13b, OD12, OD16, POLV12, PS13a, PEA+12, PTS+11, PDNC14, PMH+16, PE11, PWH+10, PK13b, PPK14, PRG+10, PAD+10, PRP+13, PM17, Puz10, QHS11, QCW+12, Qu13, RMY12, RFN+12, RGPZD13, RVJ10, RS12b, RSN12, RD14, RGST12, RYW+15, RCM10, RJLP+13, RDM+11, RNE10, RNB+10, RS11b, RRB12, SF13, SIT+12, SK14, SD16b, SBEH11, SSK11, SVRG12, SB10a, SKHN13, Sat11b, Sch12a, SK17b, Ser11a, Ser11b, SLS+14, SKS11, SHL+13, SLSZ13, SHE10, Shi13, SL10, SKM11, SM13, SR13, SSTÖ11, SLA12, SK11, SS+17b, SMA11, SZ11, SBB16, SZZZ11, SZ+12, SLZH12, SHW+13, SMGZ13, SK10, SYQ+10, SWS12, SWS+14, SZZ+14, SZL+15, SY+16, SCZH16, SS13, TK16a, TV13, Tav11]. study

[Tav12, TM13, TT10, TDD17, TU10, TLY10, TSL11, TFZ+15, TJS17, TFA10, TSH17, TFB11, TCCI10, TGA+11, Tug13, TWR15, TPT+13, UKF+11, UMS13, VF13b, VPGC12, VFCSC17, Var11, VHTEG15, VVN+16, VLJ+10, Ven12, VSMK13, VSMK15, VV12, VV13, Vie17, Vik13, VDG13, VO11, VO12, WML10, WXZ+11, WJL+11, Wan11, WvRSW+11, WLL11, WLG+11, WLWT12, WLZ+12a, WLZ+12b, WWHZ13, WHS+13, WHY+14, WJY15, WTW+15, WDJ+17, WWQG17, WZZL10, WTZ+11, WWX+11, WLD+10, Wu11, WSL+11, WZC+12, XNL+14, XX12, XSLF12, XLZ10, XZCH11, XZ11, WXC11b, XGH+18, YM12, YM13, YYS15, YY18, ZYL+11, YZZH15, YZ12, YZ11, YLZ+17, YZ10, ZKKR11, ZSAP11, ZSASS13, ZAE10, ZLR15, ZWYY10, Zha10, ZLLS10, ZZW11, ZL+14, Zha14, Zha15, ZLWL16, ZCX+16, ZKW17, ZSQ+10, ZRR+11, ZPB12, ZSS+13, ZLWZ16, ZTC11, ZQXP17, ZLY+14, ZPV16, ZBBB17, ZDZL11, dSdSPG11]. study
dSdS13a, dLRR11, dOR10, dOdONM12, dAB17. Substituent [SPIL14, Buc10, Buc11a, Buc11b, EMS16, HJL12, JLG+12, ND10, RFN+12, Ril10, RB11b, dAB17]. Substitutional [BSO11]. Substrates
subsystem [MA10, NS10b, Sha11a, YKN13, ZS11]. subsystems [GHP11, HS11c]. subunits [Sch15]. subvalence [dCDC+11].

Successes [Swa13]. successive [SM14b]. such [Ser11a]. sudden [CLXD15]. sufficiently [MK10a]. sugar [BS14, SKM11]. sulfate [CAPL12, FMP+17].

sulfate-methane [CAPL12]. sulfated [MCRS16]. sulenate [ZAE10].

sulfide [BAP13, DWJJ11, JAB12, MA11a, MTS15, SSP14, TCSD12, YGLL10, YLZ+17]. sulfanyl [SFW12]. sulfite [SDM12]. sulfonamide [TPdMB12].

sulfoxide [LdBF+12, ZAE10]. sulfur [CK17, DI11, DSFT17, GFRdG11, GCD13, LKd+16, NFD+10, NFQ+11, Oni12, SFW12, SCB+14, dLDODAD12].

sulfur-containing [NFQ+11]. Sulfuric [dLDODAD12]. sulphonamides [EAK+10a].

sumanene [ONK+13]. Sup [LJ16]. super [Man16, MBSAG16a, MBSAG16b]. super-resolution [Man16, MBSAG16a, MBSAG16b].

superacidic [CS18, Val17]. superalkali [STM18]. superatom [YLWR12].

Superconductivity [DB13b, Lar10, BCP10, Dun15, MC14, SM10a]. superconductor [HKIH13]. superconductors [GdLT12, PK13b].

Superalloy [BBB+12b, Ma14]. superfluid [ZLR15]. Superhalogen [SMC18, SR13, SM14b, SM14d, SM14c]. Superhalogen-supported [SMC18].

Supermolecular [MSM16]. superoxide [CWZ+10, PM17]. superpolyenes [NKF+13]. superposition [MBBT+12, VSS11].

supersymmetric [KB12, MPB11]. Supersymmetry [DJ95, DJ12, MB12]. supert [ZCX+16]. supported [BJdMAV12, GLT13, SMC18, ZCW16]. supports [SAHA12]. suppression [YY+13]. supramolecularly [KMK+16]. surface [BPVDB11, BP13, Bud12, DWPK14, ESBVYJ12, FSK+11, HJRO13, JdlO8, JK12, KF17, LV12, LLL16, LDG16, LDADB+15, MMG15, MCP10, MFK+12, MTL+12, MOE+11, MOLF11, MSVMI10, MNE+13, MDG11, MPRECG12, NA12, NTLN10, OD16, PP10, PWL+10, RCP14, RJLPGH+13, RSCS10, SCLCPB12, SPD+18, SB16, SYS14, SZ15, SYZ17, TFSRM11, TNN16, TBRIS10, TBRIS11, TSBM12, TSL11, TBST10, TCC110, VDG13, WWQG17, WZC+12, XGH+18, YLC17, YLYC18, ZWWY10, ZLWY13, ZRLV10, ZDZL11, dLDODAD12, TBRIS12].

Surfaces [TBRIS12, AA11, ART08, ATIS15, BWW10, BAP12, BM16, CNBPR+11, CSMD10, FFT10, FDA16, HDÖS12, HLZ+14, Hög13, HB14, HCL13, IAA15, KMM16, KJ14, LRKM10, LFF+10, LZFZ13, MDC15, McC13a, PML+11, RYW+15, SSAM13, SRS+17, TBRIS10, TBRIS11, VPA11, WKE17, ZK12]. surfactant [BMB12]. surfactants [THSR13]. Surprises [DB12].

symmetrical [CG12, RSN12]. symmetry [AEÖ12, Ale13, BMB16, DlCB15, FDNR10, GFRdG11, GMP11, Lad14, Luz11a, MK11, NSN17, NNSN17, PL11, RS09, RS11a, SR12, SC10a, TPCJ12, XTLA13, XTLA14, YIY13, YKN13, ZWE12, SSK12]. symposium [DC12, DC10, ÖSI2b]. Synergistic [YKN13, OGvSG18]. synthase [PTD12]. Synthesis [MPD15, CLY12, CLH14, LCCH10, LCCH11, LL17, LW15, ZYSW17]. synthesised [JPPA10]. Synthesizing [YW16]. synthetase [ST15]. System [AEKGZ12, Bae14, BPL13, BEM11, Ber13b, BKM15, CAPL12, DLM12, Gan14, GFRdG11, KB12, KPL17, KO10, KMY13, LDKB15, LZZ11, LCCH11, Lun13a, Lun13b, MR11, MFM18, NMIP14, QIX15, RNdA10, SW10, Tou13, Vlk11, Xu16, ZX12]. Systematic [KSS12, WR15]. Systems [GLT13, IA13, KBF13, ONK13, ARG11, Bae16, BR08, BR12a, BBB12a, Brä11a, BDPT12, BWE16, BBA16, Cap16, CH17, CS13, CP11, CP16, DMB12, DLRMYF10, DCDD10, Dun15, DB15, Fin16b, FSST16, GB10, HS11a, HITU16, HFdGC14, HKLW13, IFT14, JE10, KH12, KK13, Kha16, KCC13, KSD10, KSN10, KYY13b, Kon11, Kry11b, Kry12b, Lad14, LS17, LV16, LGZC15, LZZ11, LNI12, MANP17, MC11b, Nag16b, NKF13, NDH10, NGS11, NYS10, NMY14, OPC17, Per10a, PBB15, QTC10, RB08, RB11a, RMB18, RAG10, Roy15, RS13, SLG11, SBAT16, SSK11, SMV11, SK17b, SHKS15, Sko16, SKV12, SMM13, Swa13, TFSRM11, Tok16, TC12, WCM14, XTLA13, XTLA14, YIY12, YWH12a, YWH12b, YFY17, Zak16, ZWE12, dGR10, dGR10]. systems* [Mam14].

Temperature
[Buc12a, KKH+13, MKSG13, PMMGL+11, Boe12, CAAI12, CS17, Dun15, KAR12a, MOH+12, Nag17, TD11, WCGD12, ÁFV12].

Temperature-programmed [AFV12]. temperatures [Chu12, STM17].

tends [SMP10].

Tensor
[SPM+15, Fin14b, JMX+15, Lyu14, NIT16, XXJ+16].

Tentorial [SD13c].

terminal [SLS+15]. terminated [dLdOdAD12].

Terms
[Gin10, Glu13, KL11, PE11].

ternary [MS14b, OGS18]. tert [AMAC12].

tertiary [MMM+12, PCM108, SAG13]. test [DA16, Mar12, PWP13].

Testing
[FC13b, KK14a, FC13a]. testosterone [KKM+12]. tetra [Q13].

tetraanions [DZO12a]. tetrabenzo-porphyrin [LGS+16]. tetracarbide

[PK14]. tetrachloride [YSA+11, ZS14]. tetracoordinate [YD17].

tetrad [DKS11]. tetrads [DKS11, DKS11]. tetracarboxyborate

[MFK+12].

tetrafluoromethane [VVJ15].

tetrahedral

[IW+11, MP+11, Pup11a, RFEG16, TGA+11, WWG17, YGLL10].

tetrahydrofuran [dSP11]. tetraik [ZS13]. tetramer [FRN12].

tetramethylvinyl [DAE+12]. tetrachloride [XXJ+16].

tetranitroocto-hidroimida [CC11a]. tetraphenylbutadiene

[VVS+18].

tetraphenylimidodiphosphinate [SLS+14]. tetracyrrole [ZQ+10].

tetrasulfonate [DZO12a], tetrasulfur [XXJ+16]. tetryl

[WLC+17].

TH [dR10, JLL+18, LNGW14, NZL15].

THD [SS12].

Theobroma

dAGNJT12]. theorem [GW13, Lev10, Nag10]. theorems

[LB14b, TLC16, ZWE12].

theoretical [YOS15].

Theoretical

[AYL14, AM12, Ali14, AIG12, ACM10, AAA12, AMAC12, BD12, Bar16, BAMA12, BGMD15, BSH11, BZZ15, Boe12, BMF13, Bra14, BLM+12, BWE16, CMR13, CW11, CAZ+11, CPL15, Cas15, COCF+14, CKN11, CWZ+10, CTW12, CWB+13, CWS15, CS18, DIOG12, DSCO+13, Den13, DSRG12, DSW11, DWG12, DSH+13, EAK+10a, ESO16, FM16, Gao12, GZW16, GK12, GCDN12, GIO12, GFB12b, GMT16, GDM+10, GSB10, HTH10, HK11, HDC+11, HDQ+13, HMO11, HMH+13, HLYJ11, HZG12, HHL12a, HWL16, HM10a, HWH11, IWW+11, IGK11, IROW10, JFT13, JSL14, JLZ+17, JWG+12, JFDD10, KS11, KB13, KWC11, KA13, KI12, KSS16, KSY+11, KZ13a, KZ13b, KKH10, KAO11, LKDC11, LOH13, L16, LCL+10b, LZZ10, LPG+11, LMZ+11, LPG+12, LSR+13, LXX+14, LGZC15, LD17, LLL+11, LWL10, LDW+11, LXX+12, LWZ+14, LZZ+17, LIW+12, LWH+12, Lu10, LWC+10, LMC11, LCZL11, LCS+11a].
Theoretical [BPSM12, Buc10, CZJZ12, Cao17, CG12, CYLL11, Che12, CLH14, CGIAI12, CPAT11, DDC, Y12, DPRK12, DTEMK11, DZ11a, DQZF12, DC12, EI11, EMED12, ENV15, FMP17, Fri12, GLF12, GHGF12, GT13, GGP13, HYZ13, Iku17, Jia15, KO14, Kim16, KO12, LS17, Lan10, LRP11, LL11, LCZ15, LlZZ10, LD13, LW15, LdAA11, MCP10, MMR10, MPR12, MLPT10, MUPC10, MEEA13, MSRe11, MSOV13, ND11, NHG12, NBL12, N`em14, NRGS11, NRS11, OH12, OH13, OKR12, OMD13a, ORJ18, POL12, PM17, Puz10, RGR12, S13, SFL10, SSK11, SC12b, SKS11, STO11, SRA11, SYQ10, Tch16, TK16b, VATPR11, VFCS17, VM11, VSMK13, VO11, WGLX10, Wan11, WLZ12a, WZ13, WWB14, YM12, YZ15, ZAE10, ZWWY10, ZR13, ZKW17, ZPB12, ZW15, ZLWZ16, ZMB17, dLRR11, dOR10, dOdCMUdAL11.

Theoretical [DJB10, DC10, HHL14, LEU11, Sit15]. theoretical/computational [N`em14]. theoretically [Jeo18, VMC11]. theories [Cam10, JNZ14, Li5, Luz08, ZT13]. Theory [Ano13-49, Buc12b, DCZ17, HKLW13, ISN13, ICN13, Koc13b, Kri13, Kut13, LMZY15, MIN13, NS13, S11, SSK12, SIS08, SKY13, TKN13, TH13, YSS10, YKN13, YH14b, AM13b, AGPDZ13, BVP13, BGBV12, BLBK11, BIdMAV12, Cam12, CCL13, CEFMK12, Cha11, CH17, CM12, CZLD17, CK17, CF14, CTDO1A10, CSTA16, DWJ11, DCBB11, DKS11, DLRFMY10, DB11, DMWY11, DGR16, DCHC11, FZX18, Fin17, FA17, FMMD10, Fri12, FSST16, GCK17, GM11, GEL18, GS11, GCZ14, HLZ14, HMH10a, HMH1b, HKIH3, HYD11, IN15, IROW10, JR12, JPP11, JX15, JW18, KAR12a, KCDC15, Kar13, KKL16, KSAK17, Kit14, KM12c, KdSM10, KJ14, KMU13, Lar12, Lat13, LPO12, LCL12b, LW11, LWL12, LPP12, LB14, LW11, Lin14, LDZ16, LLZ12, Ly14, LKd16, MYZ10, MLW14, MJ16a, MAM14, MLC11, MFK12, Mas14]. theory [MW16, MLK17, MBT12, MBBT12, Mor13, MCRS16, Mur12, Nag15, Nag17, NSN17, NNSN17, Na13, NS10b, NAK17, NTNL10, NL11, NMIP14, OK16, OD16, PS10b, PS14, PK13a, PABSK16, FP16, Pat15, PTH11, PR10b, PBB15, PU14, PM16, PJP10, PMAP12, PI16, PC13, RGPZD13, RAMB18, RS09, RS11a, Rud12, SVRGV12, SN15, SN12, SZS10, SLZ11c, SLS11, SLL13, SM12, Sto18, SK12b, SD13c, SS13, TFBG14, TIN13, Tan13, TTD13,

PI16, SHKS15, SL13, SHW+13, SKV12, Vik11a, Vik11b, WKE17, YLYC18, ZCG+17, ZSZ14, ZQJC10]. Time-dependent
[Bae14, CW13b, HS11a, HKZZ15, ILBS10, Sko16, ZLE17, Bae16, BDF+16, CP10, CEFMK12, CW11, DCZ17, HHCA10, JPP+11, LMZY15, Luz13, NDP10, Oht13, PVS11, PVS12, PJP10, PMAP12, PI16, SL13, SHW+13, Vik11a, Vik11b, WKE17, YLYC18, ZCG+17, ZSZ14, ZQJC10].

Time-independent [CP10, ILBS10, ZSZ14]. time-reversal [NSN17, NNSN17]. times [PR11a]. TiO [ATS15, ALA15, EFO11, EO11, GP13a, HCL13, OGvSG18, TFSRM11, XMZ12, ZK12, ZLWY13, ZDZL11].
titania [SFNC+18].

Titanium [YSA+11, ALA15, Che13, OH13, WWLZ17, YHL+13, ZSAP11].
titanocenyl [Con10].

Tl [LXD13, MLW10].

TM [WSL+11, YL11, WSL+11, YL11].

tolerance [Kan17].
tool [May14, MML11b, Sic16]. tools [VLG12].

topography [dGR14].

topo-geometrical [MBBT+12].

topo-geometrical [MBBT+12].
topological [BL10, DM12, HYD11, JXX+15, LNGW14, MZB+13, OAT+13, PH12, PL11, PO15, BF11]. topologies [ART08, YWH+12c].

topology [AGNS14, BL10, FMKJ14, Jen13].

tops [PR11a].

topography [dGR14].

topo-geometrical [MBBT+12].

topo-geometrical [MBBT+12].

Towards [HYH+10].

toxic [SD16b].
toxicity [PI13].

tpy [LWL+12, ZQJW13].

dtrail [dGR14].

dtrains [SVPTM+10].

dtrajectories [Cho15, Cho16, YH14a].

dtrajectory [MMG15, SPSA11, XLZL10, Xu16, YW16, YZ10].

dtrans [BSM+15, Bud12, CCL+10, FMKJ14, KZZ13b, MB13, ZS11, LCB10].

dtrans [KZZ13b].

dtrans-3 [MB13].

dtrans-diarylethylenes [Bud12].

dtrans-isomers [FMKJ14].

dtrans-RuCl [CCL+10].

dtrans-to-cis [Bud12].

dtranscriptase [SKHN13].

dtranscription [Nag17].

dtransesterification [GCZ+14, MCRS16].

Transfer [SS10, AKC10, ARH+13, BSS16, CS17, DS11, DAA16, FV11, FDMR11, FSBA12, GI11a, GHCMCMQ17, JdL08, KyH13a, KAOB11, KT12b, KBMM10, LZZL12, LYL+12, LXW+12, Lu10, MANP17, MPE15, MNC12, NMS+10, NBZG16, QJ13, RY12, RS12a, SSK11, Sch15, SHS+13, SCS15, Tav11, Tav12, TCG13, WJ11, XDM+10, YH14b, Z邹18, da12, dCDC+11].

dtransfer/induction [dCDC+11].

dTransferability [GSR12, STM17, RLER10].

dtransfers [KyH13a, YYS15, YY18].

dtransform [SFY12, YSÖ12].

transformation [DMAB12, DM12, DK13, IM15, Jor15, Mam13, Rau10, SN15, TSS+15].

dtransformed [Hor13].

dtransistors [SAHA16].

Transmission [Pie11, ALK18, BEM11, BBZB13, Ber13a, BVP14, BB10, BDR12, Buc11a, BN11, CWW+16, Cho16, CP13, Dau16, DMS+10, DMBL16, EMEM+12, EMEPD15, GFB12b, GM11, KWC11, Kin13, Kry12c, Lar12, LCB10, LKd+16, MKM11, NZ13, Qu13, RZ13, SFW12, SAHG11, TMC+13, TTD13, VSMK13, VO12, WWC17, WR15, ZK12, ZFC+17, ZHI17, ZSZ14, Zii14, KAR12a].

dtransition-metal [TDD13, WR15].

dtransition-metal-doped [RZ13].
transitions
[AC11, CK13, LZ10, MS12, MLDP10, PJP08, VV12, VV13, Zen11].
Translation [RLER13b, Laz14]. translational [Lad14, Tou11b, XTLA13, XTLA14]. translations [Hog10].
transmembrane [KMT+12]. transmission [CDT12, NA12, SD13c].
transmitted [Cho15]. Transport [Yam11, DCZ17, DLZ11, Gao12, Jan10, KM12c, MSG16, MMP11, OH12, OH13, PfDM13, SSKS12, SSB12a, ZYZ+11, ZQJW13, ZY13, ZB18].
translations [Hog10].
transmembrane [KMT+12]. transmission [CDT12, NA12, SD13c].
transmembrane [KMT+12]. transmission [CDT12, NA12, SD13c].
transmitted [Cho15]. Transport [Yam11, DCZ17, DLZ11, Gao12, Jan10, KM12c, MSG16, MMP11, OH12, OH13, PfDM13, SSKS12, SSB12a, ZYZ+11, ZQJW13, ZY13, ZB18].
translations [Hog10].
transmembrane [KMT+12]. transmission [CDT12, NA12, SD13c].
transmitted [Cho15]. Transport [Yam11, DCZ17, DLZ11, Gao12, Jan10, KM12c, MSG16, MMP11, OH12, OH13, PfDM13, SSKS12, SSB12a, ZYZ+11, ZQJW13, ZY13, ZB18].
translations [Hog10].
Two-dimensional

Two-dimensionally [Yam11].

two-electron

[UBHandHLYP].

U [BB10, OGvSG18, WDJ+17].

UB3LYP [YSK+12].

UBD [NYS+10].

Unordered [PS10a, PGMGRM15, RVO] Updates.

[Mat10, Mit11c, PS10a, PGMMR15, RVO+14, TBRIS10, TBRIS11, TFZ+15, XLGA12, YD17, ZJS+11].

[LMZ+11, SMU13, SKY+13].

typical [ZZL+11].

[UBLH11].

tyrosine [ST15].

Unbound [BB10, BLRdA, BLRdA12, CG12, WLZ+12b].

two-component [SN15].

[Cho15, ART08, Dw13, Mam13, MDLP10, RNC+14, SSM13].

two-dimensionally [Yam11].

two-electron

[BKM15, CW13a, CJ17, KWL15, Pir13, RAGM10, SBM16, YML14, ZJS13].

two-particle [DTF+12].

two-range [GW13].

two-state [JW17.12].

Type [TBRIS10, AY15, BPG+10, Boe12, GMGRMP12, GZ13, GZ14, GW13, GE12b, HIT16, HHG10, HOG13, IIS+17, JH15, cLQFT+14, Mat02, Mat10, Mit11c, PS10a, PGMGR15, RVO+14, TBRIS10, TBRIS11, TFZ+15, XLGA12, YD17, ZJS+11].

types [LMZ+11, SMU13, SKY+13].

typical [ZZL+11].

tyrosine [TBHL11].

U [BB10, OGvSG18, WD17].

UB3LYP [YSK+12].

UBD [NYS+10].

UBHandHLYP [YSK+12].

UC [LLZaH14].

UC-Curve [LLZaH14].

UCH [NYS+10].

Uno [MLW16].

Uno-MRCC [NYS+10].

ultra [NWQX11].

ultra-short [NWQX11].

ultrastart [PET18].

Uncatalyzed [CF17, DP12].

Uncertainty [ORJ18, Rus14, Coo12].

uncharged [MP12].

Unconventional [SS11, MC14, ZYL+14].

Understanding [CRB+12, LSP+16, LG15, MB13, NAK+17, OGVG18, VSL+15, XSL12, WY+12, ZJC+13, Kim16, LKN13, May14, PWH+12, SB16, TBHL11, XZCH11].

Unexpected [Cor16].

Unicyclic [DZ11b].

Unified [Mam13, PMGR12, DP11, GTR11, PD11].

Uniform [LG12, RL12].

unimolecular [MB2+12, RLV+13, WL14].

Unique [GPM+15, MOLF11, YD17, AEGKZ12].

uniqueness [She14].

d unit [LQZ12, MYZ+10, Sch10b].

Unitary [NS13, GRD11, SN15].

united [CC11b].

units [BBKO16, MPD+15, ZH15].

universal [BPV14].

unnatural [OM13b].

Uno- [NYS+10].

Unoccupied [AL15].

Unpaired [KK13, KK14a, MBM16, QC+10].

unpolarized [SMF13].

Unraveling [AGN514].

unrestricted [AH12, NS17].

unsaturated [SAG13, VF13a, ZYSW17].

Unstable [Ban12, Mor13].

unsupported [NZ13].

unsymmetrical [FDNR10].

usually [BM13].

Update [KRC+16].

Updates [BDF+16, BHH+13, CYC+15, DOE+14, FMPM+14, KRC+16, LCZ15, MML+16, MRS15, NKK15, yoTn15, QXS+15, SDP+16, TY17, YAF+15, ZH15, ZWSF16].

upon [CRSB12, MS14a].

upper [FDA16].

Uptake [DLLAO10].

uracil [MYZ+10, MBZ+13, MR11, YPDW14, ILB510].

Urananyl [ZK11, KRK+17, Lu10, Lu10].

urea [EBH11, LWZ+14].

urease [MBM12].

Use [GE12b, CP11, FT15, KJ14, MR11, SIM14, Sic16, SV11].

used [AG12, KDA+11, MUN2R12, NZAVR10, PPS11, Sza13].

uses [ZF15].

Using [CRA+11, TWH14, AHN16, AA11, Ale13, AC12, AFM+10, ASW13, BLRdA+10, Boe12, BVA+14, CRFR11, CG12, CK17, CF14, CAPLJ12, DKB, DCHC11, DFV+12, DQZ12, ESOD16, Fek12, GI10, GS10, HS11a, HJ13, Ish14, KH10, KRK+17, KCK14, KPH+12, KUY16,
Lad14, LRP+11, LCL+10b, LPG+12, LKJ13, MdAdCS12, Mam13, MOLF11, MBA+13, MAW+18, MBBT+12, MMTA0, NC11, NMIP14, OT14, OHDA13, OSJ+12, PDR+14, PT13, PK13, PK16, PJP10, RFEGPP+16, RSCS10, RRCO11, SAS+12, SY10, SOF+10, SN12, SSAM13, SZS+10, SLZ+11c, SLZ+11a, SLS+11, SB10b, SM12, SK12h, TNN16, TG13, TWR15, Val17, WML10, WB17, WDJ+17, WH12, XTLA13, XTLA14, ZWSF16, ZS12, ZCP11, dAB17. uteroferrin [KSY+11]. utilizing [KFS13, Tou11a]. UV [AFC+10, BS15, D12b, CAS13, FPRGMHGB12, PJP08, PJP10]. UV-visible [Bou12b]. UV/VIS [PJP10, PJP08]. uvarovite [MPZWD10, VPFD10].

vinyboronates [SLS+15]. vinylicatechin [BCF+11]. vinyldene [OCB+10].
vinyldienefluoride [OCB+10]. vinyldienefluoride-trifluoroethylene [OCB+10].
vinylypyranoanthocyanin [CoF+11]. vinylypyranoanthocyanin-phenol [CoF+11].
Visualization [Val13]. Vitae [Ano11a, Ano11c, KK12b]. vitamin [WTH+11, WLD+10]. vitre [CG12]. VIVO [MG12]. Vleck [Jer15]. VMD [CRFR11]. VO [Che12]. Volterra [CYK17]. Volume [Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, Ano13y, Ano13z, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n]. Volume [Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano14y, Ano14z, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n].
Vortex [GKS10]. vorticity [HMH10a]. vs [Yam10]. vsLab [CRFR11].
W [MLY+16, ZLY+14, SXS+12]. W1BD [VF13a]. W2 [OK16]. W2w [OKR12]. Waals [BPG+10, BAP12, Ber13b, KKL+16, NRI15, PABSK16].
waistline \[TMC^{+13}\]. **walks** \[PR10a\]. wall \[DI10, SD13a, TC10\]. walled \[Bas11, HNBG15, KG08, MSOV13, SD16a\]. **Wannier** \[PABSK16\]. **warm** \[DW12, Ng12\]. **Watch** \[ZLWY13\]. Water
\[RFEGPP^{+16}, WW11, XMZ^{+12}, AF16, ATS15, BBB^{+12b}, BPSM12, BCS^{+12}, Cha10, CNSK11, Chui12, CK17, CAPL12, EFO11, EO11, FMCA11, FUE^{+12}, GSZ10, GLPA10, HDQ^{+13}, HS11b, KK11c, KV11, LLF^{+12}, LLM13, LJW^{+11}, LNGW14, LCB10, Ma14, MAD12, MFB11, MK10a, MK10b, MPE15, Mar12, MTL^{+12}, MPV^{+11}, MOE^{+11}, MD11, MRA11, NS10a, OHDA13, OD12, PW10, PCMG12, QSLY10, RRVJ10, RAK10, SYK^{+12}, SSK^{+12}, SMEH15, SMEH16, SK12a, SL10, SW12, SJW13, SHMR11, Var14, WCDG12, WWD^{+15}, WSV10, YY18, YY1^{+12}, YT14, ZKW17, Zak13].

water-soluble \[GLPA10\]. **Watson** \[PS10a, SKG11\]. Wave
\[AB16a, HDÖS12, Kut13, NS13, TKN13, TH13, YKN13, Bae16, BR12b, CW13b, CSMZ10, D'y16, GBS17, Gao11, GKT^{+12}, HR12, Hog13, IK18, KRC^{+16}, KH10, Kar13, Oht13, OHDA13, RZ17, RW11, SSAM13, SGH10, WC14, WH12, YLYC18, ZHF12, ZCG^{+17}\]. **Wave-function-based** \[AB16a\]. wave-functions \[Hog13\]. wave-packet \[Bae16\]. wavefunction
\[CH17, DAC11, GWHH17, ZWSF16\]. wavefunctions
\[AC12, Lai11, Yur13, Yur15\]. wavelengths \[JdOS16\]. Wavelet \[SFY12\].
wavepacket
\[GWZ^{+14a}, HKZZ15\]. waves \[GNM^{+12}\]. way \[GFW11\].
weak \[LMZ^{+11}, LLZ^{+12}, MAW^{+18}, YJ17, ZFS^{+11}\]. weaker \[MK12\].
weakest \[SRA^{+11}\]. weakly \[Mit11a\]. Welcome \[Ano13-49\]. well
\[DB12, Fuki12, HB14, KC16, SDL^{+15}, WZ^{+15a}, Xu16\]. wells \[BN11\]. wet
\[ZK12\]. **Where** \[Di13\]. **Whether** \[GI11e, GI11f\]. **Which** \[CB10, DI15\].
Whittaker \[RA10a\]. wide \[AM10\]. widely \[PSPS11\]. width \[LA11\].
widths \[CRSB12, SY10\]. Wiener \[Du12\]. Wigner
\[ISRK12, Liu15a, Sta10, ZWE12\]. wings \[BR12b\]. wire \[RP11b, SD13c\].
\[KPL^{+17}\]. within
\[BVP14, FS11, Gin10, IROW10, JMX^{+15}, KG08, LZ10, OGVG18, PCR^{+11}, SG13, Sut12, VAT12, XXbX^{+13}, dCDC^{+11}\]. without
\[DB11, Hog10, Kap12, MB12, PP16\]. Wittig \[AG10a, AG10b\]. WO
\[ZLY^{+14}\]. Wolfenstein \[BdTG11\]. Wolfsberg \[Koc13b\]. work
\[HDÖS12, LFF^{+10}, NMSR14, RF10\]. work-stealing \[NMSR14\]. working
\[GI11b, GI11c, JA12\]. world \[GI11b, GI11c\]. written \[NF11\].
Afaq:2011:CPR

Avery:2015:REM

[AB16b] Sheenu Abbat and Prasad V. Bharatam. Electronic structure and conformational analysis of P218: an antimalarial

[I] I. V. Abarenkov, M. A. Boyko, and P. V. Sushko. Embedding and atomic orbitals hybridization. *International Jour-
Abarenkov:2013:LDO

Altun:2014:THC

Alexander:2011:DRS

Alexander:2012:VEH

Ai:2011:ECE

REFERENCES

Antunes:2010:DPT

Álvarez-Falcón:2012:DMC

Alagona:2010:DWR

Alagona:2010:FEL

Agboola:2012:BSD

Angelotti:2012:GCM

Alvarez-Idaboy:2012:SIM

Arbuznikov:2011:ALH

Alharbi:2017:KED

Amme:2010:CCP

Ahmed:2013:SCH

Ashour A. Ahmed, Oliver Kühn, Rifaaat H. Hilal, and Mohamed F. Shibli. Structure and cooperativity of the hydrogen bonds in sodium dihydrogen triacetate. *International
REFERENCES

Angulo:2010:EIR

Angulo:2011:GJD

Ayuela:2010:MMT

Alaa:2012:TSR

Ahlstrom:2013:CBB

Alipour:2013:APD

Mojtaba Alipour and Afshan Mohajeri. Assessing the performance of density functional theory for the dynamic polarizabilities of amino acids: Treatment of correlation and

[ANC+15]
Angeli:2010:ADP

Anonymous:2010:LPa

Anonymous:2010:LPb

Anonymous:2010:LPc

Anonymous:2010:LPd

Anonymous:2011:BCV

Anonymous:2011:DMBb

REFERENCES

Anonymous:2011:DMBa

Anonymous:2011:LPa

Anonymous:2011:LPb

Anonymous:2012:CIVa

Anonymous:2012:CIVb

Anonymous:2012:CIVc

Anonymous:2012:CIVd

Anonymous:2012:CIVe

Anonymous:2012:CIVf

Anonymous:2012:CIVg

Anonymous:2012:CIVh

Anonymous:2012:ICVa

Anonymous:2012:ICVb

Anonymous:2012:ICVc

Anonymous:2012:ICVd

Anonymous:2012:ICVe

Anonymous:2012:ICVf

Anonymous:2012:ICVg

Anonymous:2012:LCa

Anonymous:2012:LCb

Anonymous:2012:LP

REFERENCES

REFERENCES

REFERENCES

Anonymous:2013:CIIv

Anonymous:2013:CIIw

Anonymous:2013:CIIb

Anonymous:2013:CIIc

Anonymous:2013:CIIid

Anonymous:2013:CIIe

Anonymous:2013:CIIff

Anonymous:2013:CIVn

Anonymous:2013:CIVo

Anonymous:2013:CIVp

Anonymous:2013:CIVq

Anonymous:2013:CIVr

Anonymous:2013:CIVs

Anonymous:2013:CIVb

Anonymous:2013:CIVe

Anonymous:2013:CIVf

Anonymous:2013:CIVg

Anonymous:2013:CIVh

Anonymous:2013:CIVi

Anonymous:2013:ICV

Anonymous:2013:PWI

REFERENCES

REFERENCES

Anonymous:2014:CIIe

Anonymous:2014:CIIf

Anonymous:2014:CIIg

Anonymous:2014:CIIh

Anonymous:2014:CIIi

Anonymous:2014:CIVa

Anonymous:2014:CIVi

Anonymous:2014:CIVj

Anonymous:2014:CIVk

Anonymous:2014:CIVm

Anonymous:2014:CIVn

Anonymous:2014:CIVo

Anonymous:2014:CIVq

Anonymous:2014:CIVb

Anonymous:2014:CIVr

Anonymous:2014:CIVs

Anonymous:2014:CIVt

Anonymous:2014:CIVu

Anonymous:2014:CIVv

Anonymous:2014:CIVc

Anonymous:2014:CIVd

Anonymous:2014:CIVf

Anonymous:2014:CIVg

Anonymous:2014:CIVh

Anonymous:2015:CIIa

REFERENCES

REFERENCES

REFERENCES

Anonymous:2015:CIVz

Anonymous:2015:CIVaa

Anonymous:2015:CIVab

Anonymous:2015:CIV

Anonymous:2015:CIVb

Anonymous:2015:CIVc

Anonymous:2015:CIVd

Anonymous:2015:CIVe

Anonymous:2015:CIVf

Anonymous:2015:CIVg

Anonymous:2015:CIVh

Anonymous:2015:CIVi

Anonymous:2015:IIa

Anonymous:2015:IIb

Anonymous:2015:IIc

Anonymous:2015:IIId

Anonymous:2015:IIe

Anonymous:2015:IIf

Anonymous:2015:IIg

Anonymous:2015:IIh

Anonymous:2015:IIf

Anonymous:2015:IIf

REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Anonymous:2015:IIk

Anonymous:2015:III

Anonymous:2015:IIm

Anonymous:2015:IIm

Anonymous:2015:IIo

Anonymous:2015:IIp

Anonymous:2015:IIq

Anonymous:2015:IIr

Anonymous:2015:IIr

Anonymous:2015:IIr

Anonymous:2015:IIr

Anonymous:2015:IIr

Anonymous:2015:IIr

Anonymous:2015:IIr

Anonymous:2016:CIVa

Anonymous:2016:CIVk

Anonymous:2016:CIVl

Anonymous:2016:CIVm

Anonymous:2016:CIVn

Anonymous:2016:CIVo

Anonymous:2016:CIVp

REFERENCES

Anonymous:2016:CIVw

Anonymous:2016:CIVx

Anonymous:2016:CIVy

Anonymous:2016:CIVz

Anonymous:2016:CIVaa

Anonymous:2016:CIVab

Anonymous:2016:CIVc

REFERENCES

Anonymous:2016:CIVd

Anonymous:2016:CIVe

Anonymous:2016:CIVf

Anonymous:2016:CIVg

Anonymous:2016:CIVh

Anonymous:2016:CIVi

Anonymous:2016:CIVj

Anonymous:2016:IIa

Anonymous:2016:IIb

Anonymous:2016:IIc

Anonymous:2016:IId

Anonymous:2016:IIf

Anonymous:2016:IIg

Anonymous:2016:IIh

Anonymous:2016:IIh

Anonymous:2016:IIi

Anonymous:2016:IIj

Anonymous:2016:IIk

Anonymous:2016:IIl

Anonymous:2016:IIm

Anonymous:2016:IIn

Anonymous:2016:IIo

Anonymous:2016:IIp

Anonymous:2016:IIq

Anonymous:2016:IIr

Anonymous:2016:IIIs

Anonymous:2016:IIIt

Anonymous:2016:IIu

REFERENCES

 REFERENCES

Anonymous:2017:CIVt

Anonymous:2017:CIVu

Anonymous:2017:CIVc

Anonymous:2017:CIVd

Anonymous:2017:CIVv

Anonymous:2017:CIVw

Anonymous:2017:CIVx

Anonymous:2017:CIVy

Anonymous:2017:CIVz

Anonymous:2017:CIVe

Anonymous:2017:CIVf

Anonymous:2017:CIVg

Anonymous:2017:CIVh

Anonymous:2017:CIVi
Anonymous:2017:CIVj

Anonymous:2017:CIVk

Anonymous:2017:IIa

Anonymous:2017:IIb

Anonymous:2017:IIc

Anonymous:2017:IID

Anonymous:2017:IIe

REFERENCES

REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Anonymous:2017:IIv

Anonymous:2017:IIw

Anonymous:2017:IIx

Anonymous:2018:CIVa

Anonymous:2018:CIVb

Anonymous:2018:CIVc

Anonymous:2018:CIVd

REFERENCES

Anonymous:2018:CIVe

Anonymous:2018:CIVf

Anonymous:2018:CIVg

Anonymous:2018:CIVh

Anonymous:2018:IIa

Anonymous:2018:IIb

Anonymous:2018:IIc
Anonymous:2018:IId

Anonymous:2018:IIf

Anonymous:2018:Igg

Aburto:2012:HSO

Akdemir:2012:GFR

Alves:2012:DFP
REFERENCES

REFERENCES

Ahubelem:2015:FBC

Astakhov:2016:PIA

Arriagada:2013:RCU

Alcoba:2014:DHE

Alvarez-Thon:2017:IAH

REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Alcoba:2011:CCE

Aquino:2011:FCB

Aschauer:2015:ISS

Aydogdu:2015:BSS

Aschi:2011:EEB

REFERENCES

Boyko:2013:CBS

Baer:2014:TDM

Baeck:2016:TRB

Balasubramanian:2016:QCI

Batiha:2012:TSR

Bandrauk:2012:BRA

Barreto:2012:PES

Borisova:2013:HSA

Barrera:2011:SOH

Barone:2016:ETC

Basiuk:2011:ESD

Boudreaux:2010:QSM

Bushnell:2016:ISD

Bruschi:2016:RCA

Borges:2012:ESN

Barone:2012:TAC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Berriche:2013:ESS

Berriche:2013:PED

Balakina:2011:QCS

Bjorkman:2011:ASB

Borin:2011:ESC

Borin:2011:ESG

[BG11c] Antonio Carlos Borin and João Paulo Gobbo. Electronic structure of the ground and low-lying electronic states

REFERENCES

REFERENCES

Khodakhast Bibak. The number of spanning trees in an (r, s)-semiregular graph and its line graph. *International Journal of Quantum Chemistry*, 113(8):1209–1212, April 15, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Sławomir Berski and Zdzisław Latajka. Quantum chemical topology: The electronic structure of the alkaline nitrites MONO (M = Li, Na, K) studied by means of topological analysis of the electron localization function. *International
REFERENCES

[Berski:2011:MDC]

[Brites:2012:CFI]

[Baranowska-Laczkowska:2016:EPB]

[Blanquart:2015:ESC]

[Branken:2011:DFT]

REFERENCES

[BLL+13] Xiangbin Bai, Qingzhong Li, Ran Li, Jianbo Cheng, and Wenzuo Li. Is a MH (M = Be and Mg) radical a better electron donor in halogen-hydride interaction?: a theoretical comparison with HMH. International Journal of Quantum Chemistry, 113(9):1293–1298, May 5, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[Bian:2017:IRM] Cheng Bian, Yu Li, Shujuan Wang, and Xinli Jing. Initial reaction mechanism between HO- and bisphenol-F: Con-

REFERENCES

Bacchus-Montabonel:2011:AEC

Burileanu:2011:LFD

Barbatti:2012:DHH

Budyka:2011:CSD

Bochicchio:2017:SFM

Boettger:2012:TCZ

REFERENCES

[BPG+10] Patrícia R. P. Barreto, F. Palazzetti, G. Grossi, A. Lombardi, G. S. Maciel, and A. F. A. Vilela. Range and strength of intermolecular forces for van der Waals complexes of the type H$_2$X$_n$-Rg, with X = O, S and n = 1, 2. *International
REFERENCES

Becerra:2013:NBO

Bravo-Perez:2012:TSC

Barsukov:2012:CZM

Barragan:2011:GPE

Balaban:2008:RSB

[Bra10] Paul Bracken. Hamiltonian for the spin quantum Hall effect solution and derivation based on an $rmSU(2)$ gauge field. *International Journal of Quantum Chemistry*, 110(7):
REFERENCES

1322–1326, June 2010. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

REFERENCES

5, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

Barboza:2012:TDB

Bhattacharya:2013:FSM

Bhattacharya:2014:ETD

Bulo:2010:BEM

Beret:2014:RCP

Burke:2013:EDN

REFERENCES

[190]

113(10):1601, May 15, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic). See [BW13b].

Jing Bai, Nan Xu, Jean-Marc Raulot, Claude Esling, Xiang Zhao, and Liang Zuo. First-principles investigation

REFERENCES

REFERENCES

5, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

2161, October 2010. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

REFERENCES

CD12 Verónica Ferraresi Curotto and Reinaldo Pis Diez. Density functional study on the geometric features and growing pattern of B$_n$P$_m$ clusters with $n = 1–4$, $m = 1–4$, $n + m \leq 5$. *International Journal of Quantum Chemistry*, 112(19):3261–3268, October 5, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

and spectral properties of the astromolecule aminoacetoni-

[Calaminici:2012:CMG]

[Contreras:2012:CAT]

[Carmona-Espindola:2012:SDF]

[Carmona:2014:ERL]

[Chetverikov:2010:TSS]
REFERENCES

REFERENCES

REFERENCES

Gloria I. Cárdenas-Jirón, Mireya Santander-Nelli, Ramón López, and María Isabel Menéndez. Quantitative structure property relationships to evaluate the photosensitizing

Yuan chao Li, Ya qing Feng, Ya ting Wang, Chen cheng Fan, Xi jun Liu, Xiang gao Li, and Bao Zhang. Design of high-performance chlorine type dyes for dye-sensitized...

Chu:2015:RVC

Cao:2012:CSR

Cheng:2012:CSC

Chemouri:2012:DFT

Chakraborty:2015:RSO

REFERENCES

Carmona-Novillo:2011:DDI

Chaudhari:2011:TIM

Casasnovas:2014:RTP

Carvalho:2011:CIK

Conradie:2010:BTC

Cooper:2012:CSC

Cruz:2016:LEC

Corongiu:2016:UPN

Carbonniere:2010:TIT

Clavero:2011:DMQ

Cooper:2013:BFD

Coe:2016:OSS

Crespo:2011:TSS

Cacheiro:2011:CMC

Caramori:2012:ISB

Caputo:2015:TPO

Caetano:2011:UNN

Caetano:2012: UIP

Cerqueira:2011:VIV

Chashchikhin:2012:DMB

[CRSB12] Vladimir Chashchikhin, Elena Rykova, Andrei Scherbinin, and Alexander Bagaturyants. DFT modeling of band shifts and widths in the absorption spectrum of a 9-(diphenylamino)acridine/silica receptor center upon its interaction with gas-phase NH₃, C₂H₅OH, and (CH₃)₂CO molecules. *International Journal of Quantum Chemistry,*
REFERENCES

Cheng:2013:ISH

Chiou:2017:CTS

[CS17] Mong-Feng Chiou and Wen-Shyan Sheu. Charge-transfer-to-solvent absorption spectra of $\Gamma^-(\text{H}_2\text{O})_3\cdots5$ at a finite temperature via simulation. *International Journal of Quantum Chemistry*, 117(17):??, September 5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Czapla:2018:TPH

Cheng:2014:RAE

Chen:2012:CSD

Chuvylkin:2010:GPN

[CSMZ10] Nikolai D. Chuvylkin, Evgenii A. Smolenskii, Marina S. Molchanova, and Nikolai S. Zefirov. Geometrical properties of nodal surfaces of many-electron wave functions. In-
Contreras:2010:NSS

Chang:2016:RME

Cordova-Sintjago:2012:MDL

Cueva-Saavedra:2016:AOZ

Cordova-Sintjago:2012:HSH

January 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

Campos:2011:TEI

Cao:2013:SEP

Cheng:2015:TSD

Cui:2013:GSI

Cancio:2012:LBM

Chen:2016:SEM

Guo-Xiang Chen, Dou-Dou Wang, Jun-Qing Wen, A-Ping Yang, and Jian-Min Zhang. Structural, electronic, and

Chen:2010:TMS

Cybulski:2011:VCG

Chen:2015:SNU

Chou:2017:VIS

Chen:2011:MTS

REFERENCES

2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[DAA16] Sara Del Galdo, Massimiliano Aschi, and Andrea Amadei. In silico characterization of bimolecular electron transfer

deArmino:2017:QFF

Datta:2011:SPD

Datta:2012:LOR

Dhouib:2012:DIC

deAndrade:2012:CMQ

DeOliveira-Filho:2011:CMS

deAlmeida:2012:TIV

Daud:2016:FDQ

[Dau16] Mohammad Noh Daud. Full-dimensional quantum molecular dynamics calculations of the rovibrationally mediated \(\text{X} 1\text{A}^\text{0} \rightarrow 2\text{A}^\text{0} \) transition of nitrous oxide. *International Journal of Quantum Chemistry, 116*(6):452–468, March 15, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

deAndrade:2017:SET

Dhatt:2011:PTE

Dhatt:2012:SNP

Dhatt:2013:ESR

Dunne:2013:SRE

Dutta:2015:DSH

Delgado-Barrio:2011:P

Degreve:2010:PPX

Demichelis:2010:PDF

Domingo:2010:SCF

Demichelis:2010:PED

delCampo:2012:RDG

Dong:2011:LPO

REFERENCES

DosSantosGrasel:2012:AAN

DosSantosRodrigues:2011:DSV

Garrido:2010:IOV

Denis:2013:TCH

Defranceschi:2011:O

REFERENCES

REFERENCES

[Doemer:2013:APC]

[dGraaf:2014:RMD]

[Ding:2016:MDS]

[daHora:2012:CSR]

[DHZS11]

Dahl:2012:EDK

Driver:2018:EAM

DeLeon:2010:AAI

Dehestani:2013:CVE

Dekhtyar:2010:DMM

REFERENCES

REFERENCES

[DM12] Anita Das and Debasis Mukhopadhyay. The adiabatic-to-diabatic transformation angle and topological phases for

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Page</th>
<th>DOI</th>
</tr>
</thead>
</table>
REFERENCES

Boaz Galdino de Oliveira and Mozart Neves Ramos. Di-
hydrogen bonds and blue-shifting hydrogen bonds: a the-
oretical study of AH···HCF$_3$ and TH$_2$···HCF$_3$ model sys-
tems with A = Li or Na and T = Be or Mg. *International
2010. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-
461X (electronic).

Philippe Durand and Ivana Paidarová. Towards a unified
formulation of dynamics and thermodynamics. I. From mi-
croscopic to macroscopic time scales. *International Jour-
CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X
(electronic).

Sanjib Deuri and Prodeep Phukan. A stepwise mechanism
for the uncatalyzed Michael addition of acetylacetone to
methyl vinyl ketone. *International Journal of Quantum
Chemistry*, 112(3):801–808, February 5, 2012. CODEN
IJQCB2. ISSN 0020-7608 (print), 1097-461X
(electronic).

Dušan Dimić and Milena Petković. Control of a photo-
switching chelator by metal ions: DFT, NBO, and QTAIM
(1):27–34, January 5, 2016. CODEN IJQCB2. ISSN 0020-
7608 (print), 1097-461X (electronic).

Roberta P. Dias, Mauro S. L. Prates Jr., Wagner B. De
Almeida, and William R. Rocha. DFT study of the lig-
and effects on the regioselectivity of the insertion reaction
of olefins in the complexes [HRh(CO)$_2$(PR$_3$)(L)] (R = H,
F, Et, Ph, OEt, OPh, and L = propene, styrene). *Inter-
national Journal of Quantum Chemistry*, 111(7–8):1280–
1292, June/July 2011. CODEN IJQCB2. ISSN 0020-7608
(print), 1097-461X (electronic).
REFERENCES

DeCastroFaria:2011:NIT

daSilva:2012:RLS

DeLaVega:2013:TDK

daSilva:2013:APD

daSilva:2013:CDS

daSilva:2011:TST

Larissa Tunes da Silva, José Roberto dos Santos Politi, and Ricardo Gargano. Theoretical study of tetrahydrofuran:

Du:2013:TSE

Deglmann:2015:RAQ

dosSantos:2008:SEO

Derrar:2012:TSS

REFERENCES

Dong:2011:TSC

Díaz-Torrejón:2011:CTS

Delfino:2011:DCT

Dang:2015:DCP

Dehesa:2017:EMR

Dharma-Wardana:2012:CMH

Dharma-wardana:2013:ECE

Du:2012:TSA

Dai:2011:DFTa

deWergifosse:2014:EMS

REFERENCES

[Du:2011:GPR]

REFERENCES

2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Echeverria:2017:IIG

Elroby:2013:CPM

Ebenso:2010:TSS

Ebenso:2010:QCS

Esrafili:2016:ISE

[EG10] Tarek M. El-Gogary. Interaction of angelicin with DNA-bases (III) DFT and ab initio second-order Moeller–Plesset...

Elroby:2008:SCD

Elliott:2016:DMP

Enchev:2017:CIC

Esquivel:2012:CPT

Esquivel:2015:QIS

Ebrahimi:2014:PNI

Elango:2011:QCD

Esrafili:2016:HCC

Esrafili:2015:DRH

Engel:2016:RSC

Esrafili:2015:ASD

Erdogan:2011:ODSb

Eifler:2016:CDH

Esrafili:2017:DSH

Estrada-Salas:2012:ESR

ElHoudaBensiradj:2016:TSS

[ESDO16] Nour El Houda Bensiradj, Amar Saal, Azeddine Dekhira, and Ourida Ouamerali. Theoretical study of selenium and tellurium impurities in $(\text{ZnO})_6$ clusters using DFT and TDDFT. *International Journal of Quantum Chemistry,
Emelyanova:2013:DCR

Exner:2011:CIP

Ezziane:2010:QCM

Finzel:2017:EFP

Fernandez:2012:VAC

Finzel:2017:SMS

REFERENCES

Kati Finzel. How does the ambiguity of the electronic stress tensor influence its ability to serve as bonding in-
REFERENCES

Matteo Ferrabone, Bernard Kirtman, Valentina Lacivita, Michel Rérat, Roberto Orlando, and Roberto Dovesi.

References

Flores-Moreno:2010:TAN

Fernandez:2017:MSA

Flores-Moreno:2014:SNU

Feng:2017:RHG

Fukuda:2016:CMR

Masahiro Fukuda, Kento Naito, Kazuhide Ichikawa, and Akitomo Tachibana. Computational method for the retarded potential in the real-time simulation of quantum electrodynamics. *International Journal of Quantum Chem-
REFERENCES

REFERENCES

Freidzon:2012:STI

Fuks:2011:ICS

Fan:2011:DSS

Fukuda:2016:LPQ

Fortenberry:2015:OCU

REFERENCES

[Gan14] Timothy Ganesan. Investigation of dephasing in an open quantum system under chaotic influence via a fractional

REFERENCES

Gil-bernal:2010:QCA

Guo:2013:SEI

Ghalami-Choobar:2012:TCP

Genova:2017:EOS

Guo:2014:DFT

Granja:2011:DFS

Grether:2012:GBP

Giro:2010:TAA

Gruner:2012:CBO

Guseinov:2012:UNG

REFERENCES

Goings:2018:PCD

Garcia-Fernandez:2012:PJT

Ghanmi:2012:TSL

Greco:2011:FGB

Guo:2011:NWN

Goel:2012:DFS

Neetu Goel, Seema Gautam, and Keya Dharamvir. Density functional studies of Li_N and Li_N^+ (N = 2–30) clusters:

Gao:2013:MCC

Guha:2013:RRD

Golubeva:2016:RQC

Ghoshal:2011:PHM

Gonzalez:2017:GDC

REFERENCES

Gaszowski:2014:NBA

Gineityte:2010:TRR

Ghalla:2012:TSP

Garifzianova:2012:TSF

Gaididei:2010:MVD

Gogtas:2012:RWP

Aimei Gao, Guoliang Li, David Finlow, Hongyu Chen, and Qian-Shu Li. A theoretical study of the dependence of the $\text{AS}_x\text{Si}_{6-x}$ cluster structures and properties on composition. *International Journal of Quantum Chemistry*, 112(5):1499–1506, March 5, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Grassi:2008:RBA

Grassi:2011:RBA

Gordon:2011:PRA

Grunenberg:2017:IDC

Guseinov:2010:EOE

Goli:2011:QTA

REFERENCES

[GWJ12] Ling Guo, Hai-Shun Wu, and Zhi-Hao Jin. Retraction: Ab Initio investigation of structures and stability of Ga$_n$P$_m$

Gao:2011:SEE

Gao:2014:DPH

Gao:2014:EBN

Gao:2014:PRB

Gao:2014:HSP

Teng-Fei Gao and Hong Zhang. Hydrogen storage in porous structures of adamantane-based nitrogen-heterocyclic ring with diamond-like structure. *International Journal of...

Garcia:2013:ECE

Garcia:2014:SBO

Guo:2011:EIC

Garcia:2016:SBO

Gao:2016:TSM

Hajigeorgiou:2018:EHH

Hatanaka:2013:EOA

Hoggan:2014:QMC

Hoffmann:2018:P

Huang:2011:KEMb

Huang:2013:CIA

[HCL13] Wen-Fei Huang, Hsin-Tsung Chen, and M. C. Lin. Computational investigation of the adsorption and reactions of SiH$_x$ ($x = 0$–4) on TiO$_2$ anatase (101) and rutile (110) surfaces. *International Journal of Quantum Chemistry*, 113
Han:2011:TSR

Hall:2012:WPD

Han:2013:TIG

HerreriasdeOliveira:2011:IMS

Himmetoglu:2014:RHC

REFERENCES

Huang:2017:CSI

Huang-Fu:2012:ESM

Hazra:2008:QAS

Hammoutene:2010:ESP

Huo:2017:MES

REFERENCES

Hedegaard:2014:PPE

Hermoso:2013:ENS

Hamdan:2011:TSV

Higuchi:2013:CDF

Hu:2013:FDF

REFERENCES

Huang:2010:KEM

Huang:2011:KEMa

Hongo:2012:BQM

Higuchi:2010:CVV

Higuchi:2010:RCA

Hatakeyama:2013:TAC
Makoto Hatakeyama, Takako Mashiko, Hisanao Hazama, Kunio Awazu, and Masanori Tachikawa. Theoretical analy-

Habli:2015:ICE

Hernando:2011:LAA

Hornyak:2012:IPS

Hizhnyi:2015:CSB

Hajia:2012:CSO

REFERENCES

Haag:2013:RTQ

Hamzavi:2012:RVS

Hamada:2011:TDS

Hasanein:2011:DCA

Heidarzadeh:2011:QDB

Heger:2015:LEC

REFERENCES

REFERENCES

A volume of 0 was provided to me for this task. The page number of the image is 291.

[Huang:2011:DFT]

[HYD11]
Huang:2011:DFT

[HYH+10]

[Hu:2010:TPA]
Hu:2010:TPA

[HYZ13]

[HYZ13]
Hu:2013:ADM

[HYZS12]

[Hassanabadi:2012:AAV]
Hassanabadi:2012:AAV

[HZG12]

[HZG12]
REFERENCES

Hu:2014:BSO

Huang:2011:SHD

Imamura:2013:CSP

Iqbal:2015:PHN

Ilatovskiy:2013:PQM

Irgibaeva:2011:MPS

[IBA+11] Irina Smailovna Irgibaeva, Nikolay Barashkov, Anuar Al-Donagarov, Artur Mantel, and Irina Barashkova. Mod-

REFERENCES

2574, September 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic). See erratum [Ign12].

Ikuma:2017:TSR

[135x681] Ikuma:2017:TSR

Improta:2010:TDT

[135x681] Improta:2010:TDT

Islampour:2015:EST

[135x681] Islampour:2015:EST

Ide:2013:CMN

[135x681] Ide:2013:CMN

Ikabata:2015:TRL

[135x681] Ikabata:2015:TRL

REFERENCES

[Ireta:2012:MES]

[Issaoui:2010:TIL]

[Ishii:2014:BMM]

[Ikabata:2013:FDF]

[Iyakutti:2012:WCQ]

Iuga:2010:SRA

Jacquemin:2012:BSF

Jin:2012:TKA

Jacquemin:2012:SPM

Jalbout:2010:ESA

Jang:2010:DSM

REFERENCES

Janesko:2013:PRD

Jin:2011:DSR

Jaramillo:2010:CDE

Jiang:2012:DMC

Jalbout:2008:CTS

Jorge:2016:CBO

[JdOS16] Francisco E. Jorge, Amanda Z. de Oliveira, and Thiago P. Silva. CAM–B3LYP optical rotations at different wavelengths: Comparison with CCSD results. International
REFERENCES

Jones:2010:BBO

Jamshidi:2013:NCO

Jenkins:2013:PQT

Jeong:2018:NTP

Junqueira:2010:TSN

Jamshidi:2013:GIA

Zahra Jamshidi, Hossien Farhangian, and Zahra Aliakbar Tehrani. Glucose interaction with Au, Ag, and Cu clusters:

REFERENCES

[JLL+18] Peng Jin, Chang Liu, Ying Li, Lanlan Li, and Yujun Zhao. Th@C76. Computational characterization of larger actinide endohedral fullerenes. *International Journal of Quantum Chemistry*, 118(5), March 5, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[JLZ+17] Yinchun Jiao, Yi Liu, Wenjing Zhao, Zhaoxu Wang, Xunlei Ding, Hexiu Liu, and Tian Lu. Theoretical study on the

Jenkins:2015:BST

Jahani:2013:CAT

Javadi:2017:RSN

Jeszenszki:2014:PAB

Johansson:2017:NLA

[Adam Johannes Johansson. Noninnocence of the ligand atoms in iron-porphine: Chemical consequences of the de-

of Quantum Chemistry, 117(20):??, October 15, 2017. CO-
DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (elec-
tronic).

Jiang:2014:TSM

Jensen:2018:TRN

Jin:2012:TSP

Ji:2012:TSR

Jenkins:2015:QTR

Kang:2017:FPE

Kosar:2011:TES

Kaplan:2012:ESD

Karwowski:2009:IPQ

Karwowski:2010:EIP

Kaliginedi:2012:KPR

Veerabhadrarao Kaliginedi, Mohamad Akbar Ali, and B. Rajakumar. Kinetic parameters for the reaction of hydroxyl radical with CH$_3$OCH$_2$F(HFE-161) in the temperature range of 200–400K: Transition state theory and

Kakkar:2013:TIA

Karanjit:2013:CSP

Khodja:2017:CRV

Kamal:2012:IPV

Kekisev:2017:CMS

Kim:2014:ICE

Kosinova:2011:HAA

Karakurt:2012:ISC

Kovács:2017:BDF

Kasende:2016:HBS

REFERENCES

REFERENCES

REFERENCES

Frederick W. King. High-precision calculations of the hyperfine constants and some selected transition energies for the low-lying 4S levels of the lithium atom. *International Journal of Quantum Chemistry*, 113(23):2534–2539, December 5, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Kim:2015:PPE

Kim:2016:CPD

Kim:2016:PPD

Kaur:2011:HBC

Khamatgalimov:2011:ESS

Khokhriakov:2011:IHS

Kumar:2011:QCS

Khamatgalimov:2012:IIF

Klein:2012:GKC

Karafiloglou:2013:UES

Karafiloglou:2014:UES

Klein:2012:I

Kim:2016:RRD

Khan:2012:RBA

Kostjukov:2011:CEC

Koyanagi:2013:CMS

REFERENCES

ISSN 0020-7608 (print), 1097-461X (electronic). See corrigendum [KKT14].

Koyanagi:2014:CVE

Kirtman:2011:CMT

Klein:2011:SFQ

Kim:2013:IDM

Kong:2015:EPM

[KMM16] Vitaliy V. Koval, Ruslan M. Minyaev, and Vladimir I. Minkin. Geometric and electronic structures of silicon flu-
orides SiF$_n^{(n-4)-}$ ($n = 4–6$) and potential energy surfaces for dissociation reactions SiF$_5^{-}$–SiF$_4$ + F$^-$ and SiF$_6^{2-}$ → SiF$_5^{-}$ + F$^-$. *International Journal of Quantum Chemistry*, 116(18):1358–1361, September 15, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Kasende:2017:IBT

Kiametis:2013:AIM

Kalaiselvan:2011:HRL

Kawamoto:2012:CPP

Kulatov:2013:MKO

Kryachko:2015:VFF

Klein:2010:CSM

Kula:2012:TSE

Karlicky:2014:PCT

Koch:2013:EIM

[KP12] Platon Valerievich Komarov and Viktor Georgievich Plotnikov. Influence of intermolecular interactions on spectral-

References

Kawaguchi:2012:MDA

Kubo:2012:GFO

Kutzelnigg:2010:PTS

Kutzelnigg:2013:FWF

Korzan:2010:QCS

[KWLS15] Sabyasachi Kar, Yu-Shu Wang, Wei-Qi Li, and Xiu-Dong Sun. Dynamic polarizability of two-electron ions under De-
REFERENCES

Kong:2013:TCL

Kong:2013:TCL

Kong:2013:TSG

Kong:2013:TSG

Lefebvre:2011:ZWR

Lefebvre:2011:ZWR

Ladik:2014:LEC

Ladik:2014:LEC

Laestadius:2014:DFP

Laestadius:2014:DFP

REFERENCES

2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Ai:2014:TSR

Lazzeretti:2014:TRI

Ladik:2014:QMB

Laestadius:2014:HKT

Lutz:2018:IGP

Lobayan:2016:DED

REFERENCES

Kristen Lewis, Kari Copeland, and Glake Hill. One-electron redox properties of DNA nucleobases and common tautomers. *International Journal of Quantum Chemistry*,

Nan Lu, Dezhan Chen, Shizhen Mi, Guiqiu Zhang, and Honghong Zhang. The H-Bond activation mechanism and enantioselectivity in stepwise conjugate amine addition promoted by hydroxyl-thiourea catalyst. *International

REFERENCES

Lazzari-Dean:2015:ERD

Leite:2012:DBN

Liu:2011:TIS

Liu:2016:PDF

Lesar:2012:PCR

Lagana:2010:PMV

Loos:2012:LOB

Liu:2015:PUM

Li:2011:EAP

Lawal:2018:DSA

Li:2011:TSL

[LGP+11] Wen-Zuo Li, Fang Geng, Yu-Wei Pei, Jian-Bo Cheng, Qing-Zhong Li, and Bao-An Gong. Theoretical study on low-

Li:2012:CSL

Lv:2016:TFR

Liang:2011:GPH

Li:2015:RTS

[Chang-Geng Luo, Chao-Zheng He, Hua-Yang Li, Gen-Quan Li, Shuai Zhang, and Xu-Yan Liu. Structures and electronic properties of the small rubidium-doped silicon

Liu:2015:RRA

Liu:2015:TRE

Liu:2016:EEQ

Laurent:2013:RTD

Lee:2016:ETC

Li:2011:CSX

[LJL+11] Qingzhong Li, Bo Jing, Zhenbo Liu, Wenzuo Li, Jianbo Cheng, Baoan Gong, and Jiazhong Sun. Comparative study of XO···ClF and XS···ClF (X = H, CH, and F)

[Li:2013:CDD] Hua-Wei Li, Sabyasachi Kar, and Pinghui Jiang. Calculations of dynamic dipole polarizabilities of Li and Na atoms

Lu:2011:DMM

Lan:2013:CUS

You-Zhao Lan, Hong-Lan Kang, and Tao Niu. Comprehensive understanding of size-, shape-, and composition-dependent polarizabilities of Si$_m$C$_n$ ($m,n = 1–4$) clusters. *International Journal of Quantum Chemistry*, 113(7):949–958, April 5, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Lee:2017:CSV

Jae Young Lee, Ahhyun Kim, Woo-Suk Oh, and Bonggeun Shong. Computational study on vapor phase coupling reaction between diiso(thio)cyanates with diamines, diols, and dithiols. *International Journal of Quantum Chemistry*, 117(7):??, April 5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Luo:2016:MIR

Li:2011:ITI

Da-Zhi Li and Si-Dian Li. An Ab initio theoretical investigation on the geometrical and electronic structures of BAu$_n$
Liu:2017:CSS

Lian:2011:TSS

Lao:2012:IWF

Li:2017:MDD

Li:2012:CIB

REFERENCES

[LLP+13] Minjie Li, Weixia Liu, Chunrong Peng, Qinghua Ren, Wenchong Lu, and Wei Deng. A DFT study on reaction of

[LP10a] Xiangzhu Li and Josef Paldus. Multireference coupled-cluster methods for ground and low-lying excited states. A benchmark illustration on CH+ potentials. *International

REFERENCES

See [Lun13a].
Lungu:2013:SPM

Luzanov:2008:MCR

Luzanov:2011:SFQ

Luzanov:2011:QFA

Luzanov:2012:SSS

Luzanov:2013:NRM

Anjie Liu, Dongling Wu, Dianzeng Jia, and Lang Liu. Theoretical studies on geometry, solvent effect, and pho-

Li:2012:DFT

Li:2013:ICE

Li:2014:DFS

Li:2013:RRT

Liu:2014:TSC

Liu:2013:ISC

Lu:2011:TSMd

Xiu Hui Lu, Ping Ping Xiang, Zhen Xia Lian, and Yong Qing Li. Theoretical study of mechanism of cycloaddition reaction between dimethyl-silylene carbene [(CH₃)₂Si == C:] and formaldehyde. *International Journal of Quantum Chemistry*, 111(14):3664–3672, November 15, 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Liu:2012:TSS

Li:2014:TIA

Lyakh:2014:SAT

Lei:2012:BEA

Li:2010:TSI

Lu:2011:NMS

Li:2013:CAA

Li:2015:SNO

Li:2011:NSE

Li:2012:QCM

Lin:2013:IIT

Liu:2017:TIS

Mattsson:2010:SFS

Mohajeri:2011:OES

Mohajeri:2011:ZSN

Matamala:2012:SMC

Ma:2014:HSK

Magliano:2012:MDS

Magnani:2014:PSM

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Authors</th>
</tr>
</thead>
</table>
Chemistry, 116(23):1814–1817, December 5, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic). See [MBSAG16a, MBSAG16b].

[Manzoor:2017:CSO]

[Maneses:2010:TSR]

[Maroulis:2011:BLD]

[Maroulis:2012:QPC]

[Martens:2013:CFM]
<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
Mayer:2014:PEA

Mukherjee:2012:RRM

Morales-Bayuelo:2013:UER

Marquez:2014:SVI

Mohajeri:2015:INI

Alejandro Morales-Bayuelo, Juan Torres, and Ricardo Vivas-Reyes. Quantum molecular similarity analysis and quantitative definition of catecholamines with respect to biogenic monoamines associated: Scale alpha and beta of

REFERENCES

[MCE11] Olga Makshakova, Denis Chachkov, and Elena Ermakova. Geometry and vibrational frequencies of the helical

Munoz-Castro:2017:AAX

Munoz-Castro, Alvaro Muñoz-Castro and R. Bruce King. \(\text{Au}^{2+}\) and \(\text{Au}_6\) \(\text{X}^{2+}\) clusters: Superatomic molecules bearing an \(\text{SP}^3\) hybrid \(\text{Au}_6\) core. *International Journal of Quantum Chemistry, 117*(5):??, March 5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Mavromoustakos:2011:PIL

Mi:2011:DSS

Marchal:2010:GSA

Marchal, Rémi Marchal, Philippe Carbonnière, and Claude Pouchan. A global search algorithm of minima exploration for the investigation of low lying isomers of clusters from DFT-based potential energy surface. A theoretical study of \(\text{Si}_n\) and \(\text{Si}_{n-1}\) \(\text{Al}\) clusters. *International Journal of Quantum Chemistry, 110*(12):2256–2259, October 2010. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Muniz:2016:DFT

REFERENCES

[MDP12] María Florencia Martini, Edgardo Aníbal Disalvo, and Mónica Pickholz. Nicotinamide and picolinamide in phos-

Mondal:2011:TSS

Malinovskaya:2011:GEA

Madhavan:2012:VAC

Madsen:2011:DMP

Masia:2014:PFM

Alan Miralrio, Arturo Hernández-Hernández, Jose A. Pescador-Rojas, Enrique Sansores, Pablo A. López-Pérez, Francisco Martínez-Farias, and Eduardo Rangel Cortes. Theoretical study of the stability and properties of magic numbers ($m = 5$, $n = 2$) and ($m = 6$, $n = 3$) of bimetallic bismuth–copper nanoclusters; Bi$_m$Cu$_n$. *International Journal of Quantum Chemistry*, 117(24):??, December 15, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[MK11] Liliana Mammino and Mwadham M. Kabanda. Interplay of intramolecular hydrogen bonds, OH orientations, and

Moradi:2010:FES

Mora:2012:DFT

Manzoni:2011:DFT

Moskalenko:2010:CPC

Moon:2017:SOI

Jiwon Moon, Jeong Sik Lim, and Joonghan Kim. Spin-orbit ab initio and density functional theory investigation of bismuth monoboronyl, BiBO. *International Journal of*
REFERENCES

Quantum Chemistry, 117(4):??, February 15, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Marques:2010:ETS

Mang:2010:TDL

Ma:2014:DFT

Musho:2016:TOE

Ma:2016:EPP
Minicozzi:2010:CIP

Mirzaei:2011:CSA

Motaghiani:2013:DFS

Mujica-Martinez:2010:MBT

Minaev:2013:RDS

Meng:2012:SHD

Qingguo Meng, P. Stanley May, Mary T. Berry, and Dmitri Kilin. Sequential hydrogen dissociation from a charged

Melendez:2011:SVA

Muhammad:2013:CMN

Mai:2015:RGM

Mora:2011:RMG

Muller:2011:HTT

Marino:2010:IRC

Mora:2010:SES

Miyakawa:2013:MDS

Mazur:2011:DTS

Meraj:2012:EDP

Mishra:2013:CCR

Motapon:2011:SDD

Man:2017:ICH

Mejia:2011:EEW

Mostafanejad:2014:TRB

Mazilov:2010:MMG

Matsuoka:2013:CMS

Martini:2012:MDS

Mukherjee:2011:NES

REFERENCES

Maurel:2012:IMO

Moin:2011:CDA

Magoulas:2015:SPG

Marrero-Ponce:2011:BES

Monari:2010:HSS

REFERENCES

March 15, 2010. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Monge-Palacios:2012:APE

Mosyagin:2011:EIT

Marino:2012:SBP

Mosyagin:2013:GRE

Medina:2011:FSA

Meyer:2010:MIE

Miranda-Quintana:2017:IHC

Miranda-Quintana:2013:DTQ

Mercier:2011:CDM

Malinovsky:2012:GSQ

REFERENCES

Miralrio:2014:ESS

Mohan:2014:ABE

Miralrio:2017:SSE

Matamala:2010:DOD

Makarova:2016:CSS

Granada:2015:QLS

Mhin:2011:TII

Mizukami:2012:SES

Minyaev:2016:PSD

Muniz:2013:RAB

Muniz:2011:EAA

Mazurek:2011:FCL

Miranda:2010:HSP

Miyagi:2012:IFM

McDowell:2010:SMH

REFERENCES

[Murrell:2012:OLD]

[Moncada:2013:HIE]

[Mandra:2013:DNR]

[Martinez:2018:HIP]

[Mulugeta:2015:SES]
REFERENCES

Mattsson:2016:TRD

Mao:2015:RTI

Madugula:2017:MDP

Mysovsky:2012:SRH

Ma:2010:IBR

Makiabadi:2013:IIU

[MZLM17] Lixin Mo, Yaunli Zeng, Xiaoyan Li, and Lingpeng Meng. The enhancing effects of molecule X (X = PH$_2$Cl, SHCl, CICl) on chalcogen–chalcogen interactions in cyclic trimers Y · · · Y · · · X (Y = SHCl, SeHCl). *International Journal of Quantum Chemistry*, 117(8):??, April 15, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[Nal12] Roman F. Nalewajski. Direct (through-space) and indirect (through-bridge) components of the chemical bond multiplicities. *International Journal of Quantum Chemistry,*
REFERENCES

Sufyan Naji, Adil Belhaj, Hicham Labrim, Mohamed Bhihi, Abdelilah Benyoussef, and Abdallah El Kenz.
References

[Nazmutdinov:2016:RME]

[Naganathappa:2011:SCA]

[Nazari:2010:SEH]

[Nadvorny:2011:HBC]

[Nakazato:2010:ACS]
REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[NFQ+11] Yuzhong Niu, Shengyu Feng, Rongjun Qu, Yunqiao Ding, Dengxu Wang, and Yike Wang. Theoretical study on the interaction of sulfur- and aminopyridine-containing chelating resins with Hg(II) and Pb(II). *International Journal*
Navarro:2011:TES

Ng:2012:OQE

Nasertayoob:2011:TRQ

Nold:2011:TEH

Noureddine:2012:TSH

Najafabadi:2012:IHA

[NHG+12] Reza Izadi Najafabadi, Mohammad Reza Housaindokht, Mohammad Sadegh Sadeghi Googheri, Mohsen Sargolzaei,

REFERENCES

[NMIP14] Saba Niaz, Taniya Manzoor, Nasarul Islam, and Altuf Hussain Pandith. Theoretical investigations on C_2H_2Nb com-

Nakarada:2018:MIH

Nowroozi:2011:CBI

Nowroozi:2011:RIH

Nochebuena:2015:VWI

Nowroozi:2011:NSI

Nowroozi:2011:CTP

Nagaraju:2010:CSF

Nasertayoob:2010:RFQ

Nagy:2013:FWF

Nakano:2017:DSDa

Nakai:2015:SIA

Nemukhin:2013:PQC

Nguyen:2010:DFT

Nikolaev:2010:MIE

Nicolas-Vazquez:2013:NAP

Naumkin:2012:BCC
Fedor Y. Naumkin and David J. Wales. Beryllium cluster cages endohedrally doped by hydrogen: H$_2$@Be$_n$ (8 ≤ n ≤ 10).

[NZ13] Sylvester Ndambuki and Tom Ziegler. An analysis of unsupported triple and quadruple metal–metal bonds between two homonuclear group 6 transition elements based on the combined natural orbitals for chemical valence and extended transition state method. *International Journal of*
REFERENCES

REFERENCES

CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

OReilly:2016:DHA

Okumura:2010:DCH

Oreilly:2012:HCH

Olsen:2011:CMP

Olson:2011:ATS

Ostojic:2013:TSC

Pomogaev:2015:SEP

Palacios:2010:KIR

Pandey:2016:TIR

Posada-Amarillas:2016:CSS

[PAPCMM+16] Alvaro Posada-Amarillas, Rafael Pacheco-Contreras, Sharity Morales-Meza, Mario Sanchez, and J. Christian Schön. Computational studies of stable hexanuclear Cu_{l}Ag_{m}Au_{n} (l+m+n = 6; l, m, n > 0) clusters. *International Journal of Quantum Chemistry*, 116(13):1006–1015, July 5, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Pathak:2015:SHP

Puzzarini:2010:BCM

Piccardo:2015:GVP

Persson:2012:I

Perez-Badell:2010:MMH

Putz:2013:EKH

Penotti:2016:CRS

Pedone:2016:RRA

Percus:2010:RIA

Perger:2010:FPC

Pernal:2018:TRC

Polkehn:2018:RQD

PereiradosSantos:2013:IBD

REFERENCES

Perez-Gonzalez:2012:SAM

Pacheco-Garcia:2010:ESE

Pena:2015:BSS

Paukku:2012:QTM

Pandith:2013:CAQ

REFERENCES

[PKK+16] Pooja, R. Kumar, G. Kumar, R. Kumar, and Anil Kumar. Quantum information entropy of Eckart potential. In-
REFERENCES

Pelloni:2011:SGT

Patel:2012:RPI

Piris:2016:RCI

Prasad:2017:CAM

Preat:2012:PBD

REFERENCES

References

[PP14] Maoping Pu and Timofei Privalov. Multiple-pathways of carbon dioxide binding by a Lewis acid [B(C₆F₅)₃] and a Lewis base [P(tBu)₃]: the energy landscape perspective.
Pastorczak:2016:RME

Padilha:2011:ICB

Punkvang:2013:CBB

Palacios:2010:BKI

Perdew:2010:FEL

2010. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Palacios:2011:BKF

Palacios:2011:ALD

Pereira:2017:BDF

Poltev:2010:CSM

Poulain:2013:IPP

REFERENCES

Pacureanu:2010:DPP

Pan:2010:DPC

Paine:2013:CST

Pan:2013:LER

Pan:2014:LEC

Petraglia:2015:FCD

Pooja:2017:QIE

Promkatkaew:2013:CBB

Pan:2016:NIA

Perdew:2016:TRS

Prates:2011:CBP

REFERENCES

Patoary:2011:EII

Pulay:2011:PCM

Pupyshev:2011:ESH

Pupyshev:2011:NFS

Puzzarini:2010:TSC

Puzzarini:2016:PAM

[QCW+12] Zhibo Qu, Xiaolan Chen, Donghui Wei, Diandian Ke, Lingbo Qu, Jinwei Yuan, Yunliang Bai, Fujun Wang, and
REFERENCES

Qu:2010:SAC

Qu:2013:QCS

Qin:2013:LAP

Roncaratti:2010:WHE

Russo:2010:PPC

REFERENCES

Roohi:2011:ISS

Ragni:2010:eca

Rybakov:2015:CFZ

Ren:2015:ICS

Rizzo:2011:DBA

Rodrigues:2011:QMS

Rodrigues:2012:MOF

Reiher:2015:PSI

Rodrigues:2010:PBI

Regueiro-Figueroa:2016:WER

REFERENCES

REFERENCES

June 15, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

February 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

Randic:2013:RMG

Randic:2012:ECP

Romanowski:2010:ALP

Roy:2013:SSE

Roy:2014:RVS

Roy:2015:SCC

Amlan K. Roy. Spherical confinement of Coulombic systems inside an impenetrable box: H atom and the Hulthén

REFERENCES

[RRVJ10] K. Ramasami, M. Ramalingam, P. Venavanalingam, and M. Jacob. Singlet methylene insertion into polar O — H and N — H bonds of water and ammonia — Ab initio and

Rolik:2009:MMP

Rolik:2011:EMM

Roychoudhury:2011:API

Ramirez-Solis:2012:ESA

A. Ramírez-Solís. The electronic spectrum of AgBr$_2$: Ab initio benchmark calculations on the $^2\Pi_u$ and $^2\Sigma^+_u$ charge transfer states including spin-orbit effects. *International Journal of Quantum Chemistry*, 112(21):3535–3542, November 5, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Ramirez-Solis:2012:MSA

A. Ramírez-Solís. The molecular structure of AgBr$_2$ and AgBr$_2^+$. A benchmark CASSCF, CASPT2, and averaged coupled pair functional study. *International Journal of Quantum Chemistry*, 112(22):3559–3563, November 15,

Ramirez-Solis:2012:NES

Reyes:2010:P

Ryzhkov:2010:FRC

Ruangpornvisuti:2010:DID

Rudbeck:2012:BSD

Rupp:2015:PSI

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Shalabi:2012:SQM

Siddiqui:2016:IIB

Shalabi:2011:SQT

Saavedra:2012:MCI

Satpati:2011:PPP

Satpati:2011:SCC

Sauer:2011:DMB

Santoro:2010:CAS

Siegbahn:2010:BDU

Shchegoleva:2016:RPE

Sahin:2016:CCI

REFERENCES

[Saracoglu:2012:EQC] Hanife Saraçoğlu and Alaaddin Cukurovali. Experimental and quantum chemical calculational studies on N-[4-(3-Methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-N'-pyridin-

Saracoglu:2012:ETA

Sutradhar:2018:HBB

Sousa:2014:RET

Swann:2017:EPQ

Soriano-correa:2010:IED

Scheiner:2010:BR

Scheiner:2010:ECH

Scheiner:2012:EDM

Scheiner:2012:I

Scheiner:2013:RDC

Scheiner:2015:IBC

[Sch15] Steve Scheiner. The interplay between charge transfer, re-hybridization, and atomic charges in the internal geometry of subunits in noncovalent interactions. *International
Sanchez-Castellanos:2012:PES

Suwannakham:2015:PDT

Sun:2010:OEH

Sun:2012:EFS

Sutradhar:2016:TSI

Shojaie:2012:VMA

Saikia:2013:CEN

Serrano:2013:PQR

Sulston:2013:TGF

Samanta:2016:CQM

Samanta:2016:QMS

Pabitra Narayan Samanta and Kalyan Kumar Das. QM/MM study of the interaction between zigzag SnC nanotube

Sun:2015:SIE

Silaghi-Dumitrescu:2012:SCS

Salvadori:2016:SNU

Shibl:2013:MAE

Staykov:2016:ODP

REFERENCES

[SFL+10] Fabio Della Sala, Eduardo Fabiano, Savio Laricchia, Stefania D’Agostino, and Manuel Piacenza. The role of exact-exchange in the theoretical description of organic-metal in-

Senthilkumar:2012:HBC

Salazar:2016:SSS

Shahbazian:2011:LEM

Shavitt:2011:PBR

Shibl:2010:DSC

Sheka:2012:CSG

[She12] Elena F. Sheka. Computational strategy for graphene: Insight from odd electrons correlation. *International Journal...
Sheka:2013:CMN

Sheka:2014:UPC

Shigemitsu:2013:CBB

Shigeta:2015:RQC

Shi:2013:RBA

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
| SKHN13 | Patchreenart Saparpakorn, Masato Kobayashi, Supa Hannongbua, and Hiromi Nakai. Computational biochemistry and biophysics: Divide-and-conquer-based quantum

Szarek:2010:FFA

Shukla:2011:HAA

Skouteris:2016:PTD

Shankar:2010:RMC

Shankar:2011:TSD

REFERENCES

Scarborough:2015:ASB

Spiriti:2012:DAE

Sumimoto:2013:FDF

Shukla:2010:GWS

Siegbahn:2011:BRM

REFERENCES

<table>
<thead>
<tr>
<th>Code</th>
<th>Authors</th>
<th>Title</th>
<th>Journal, Volume(Issue): Pages, Date</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLZ+11a</td>
<td>De-Heng Shi, Hui Liu, Jin-Ping Zhang, Jin-Feng Sun, Yu-Fang Liu, and Zun-Lue Zhu.</td>
<td>Spectroscopic investigations on BH^+(X^2Σ^+) ion using MRCI method and correlation-consistent sextuple basis set augmented with diffuse functions.</td>
<td>International Journal of Quantum Chemistry, 111</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[SM14c] Ambrish Kumar Srivastava and Neeraj Misra. Ab initio investigations on the stabilities of AuO\(_n^q\) (\(q = 0\) to 3; \(n = 1\) to 4) species: Superhalogen behavior of AuO\(_n\) (\(n \geq 2\)) and their interactions with an alkali metal. *International Journal of Quantum Chemistry*, 114(8):521–524, April 15,

Anik Sen, Pavlin D. Mitev, Anders Eriksson, and Kersti Hermansson. From electric fields to H$_2$O dipoles and...

REFERENCES

5, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[SPIL14] Vladimír Sladek, Kraiwan Punyain, Michal Ilén, and Vladimír Lukeš. Substitution effect on the intermolecular halogen and hydrogen bonds of the σ-bonded fluorinated pyridine-·-XY/HX complexes (XY = F₂, Cl₂, ClF; HX =

REFERENCES

REFERENCES

REFERENCES

Szaleniec:2012:QCM

Sun:2017:GPA

Saito:2010:TCB

Santhanamoorthi:2011:LRC

REFERENCES

[Sirirak:2017:CDF] Jitnapa Sirirak, Darunee Sertphon, Wasinee Phonsri, Phimphaka Harding, and David J. Harding. Comparison of density functionals for the study of the high spin low spin...

Srikanth:2015:MDC

Sidir:2011:TSE

South:2016:DEE

Sathya:2015:SBV

Stanek:2010:WFR

REFERENCES

Song:2012:IRC

Suzuki:2017:MLA

Srivastava:2018:ABS

Stopkowicz:2018:PCC

Slanina:2011:CSM
Zdeněk Slanina, Filip Uhlík, Shyi-Long Lee, Ludwik Adamowicz, Takeshi Akasaka, and Shigeru Nagase. Computed stabilities in metallofullerene series: Al@C$_{82}$, Sc@C$_{82}$, Y@C$_{82}$, and La@C$_{82}$. *International Journal of Quantum Chemistry*, 111(11):2712–2718, September 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[SW12] Chang-Liang Sun and Chang-Sheng Wang. Cooperative influence of water binding to peptides by NH ···OH$_2$ and C
REFERENCES

Swart:2013:SSB

Sun:2012:MCI

Sun:2014:DSM

Su:2015:PTC

Shi:2012:SCMa

Samanta:2010:OPW

Saito:2012:PMW

Sun:2010:IMM

Staykov:2014:EHG

Sutay:2016:PHS

REFERENCES

[SYZ+17] Zhao-Peng Sun, Wen-Kai Zhao, and Chuan-Lu Yang. Quantum reaction dynamics of C(1D) + HDCH(CD) + D(H) on the ground state potential energy surface. *International Journal of Quantum Chemistry, 117*(21):??, November 5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[ZZZ+11] Xiudan Song, Yongfang Zhao, Pingxia Zhang, and Guohua Zhang. Theoretical study on structures and vibrational spectra of M+(H\textsubscript{2}O)Ar (M = Cu, Ag, Au). *International Journal of Quantum Chemistry, 111*(9):2109–2116, August 5, 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

[Tav11] Hossein Tavakol. Kinetic and thermodynamic study of inter- and intramolecular proton transfer in N'-acetyl formohydrazide tautomers. *International Journal of Quantum...
REFERENCES

REFERENCES

Quantum Chemistry, 117(15):??, August 5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

Torres:2017:SFS

Teramae:2013:CCR

Tao:2013:BAW

Teixeira:2014:CDM

Tashakor:2016:FDI

Tolosa:2017:TTS

Takano:2012:ESC

Tian:2011:ISP

Tranter:2015:BKT

Tsuneda:2015:RCR

[TWR15] Nina Tymińska, Marta Wloch, and A. Timothy Royappa. Mind the correct basis set: a case study for predicting gas phase acidities of small compounds using calculations from

[TZ11] Shanshan Tang and Jingping Zhang. First principles investigation on the key factors of broad absorption spectra and electronic properties for oligothiophene and its derivatives

Uribe:2010:NCH

Uppuladinne:2013:QCS

Ueno:2011:TSG

Uzunova:2013:DFS

Uhlik:2013:SCE

REFERENCES

REFERENCES 526

[VF13a] Younes Valadbeigi and Hossein Farrokhpour. DFT, CBS-Q, W1BD and G4MP2 calculation of the proton and elec-

REFERENCES

Vyas:2011:CDC

Vyas:2012:ITS

Velilla:2011:BSC

Valenzano:2010:IQM

L. Valenzano, F. Pascale, M. Ferrero, and R. Dovesi. Ab initio quantum-mechanical prediction of the IR and Raman spectra of Ca\textsubscript{3} Cr\textsubscript{2} Si\textsubscript{3} O\textsubscript{12} Uvarovite garnet. *International Journal of Quantum Chemistry*, 110(2):416–421, February 2010. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Valencia:2012:RMH

REFERENCES

REFERENCES

[WCL+17] Guang-Zhao Wang, Hong Chen, Xu-Kai Luo, Hong-Kuan Yuan, and An-Long Kuang. Bandgap engineering of

Xiao-Qing Wang, Zhen-Yi Jiang, Jun-Qian Li, Qing-Li He, and San-Yan Chu. Density functional theory study of geometry and stability of small Zr\textsubscript{n} (n = 2–10) clusters.

Yuan-Xin Wei, Hai-Bei Li, Jian-Bo Cheng, Wen-Zuo Li, and Qing-Zhong Li. Prominent enhancing effects of substituents on the strength of $\pi \cdots \sigma$-hole tetrel bond. *International Journal of Quantum Chemistry*, 117(23):??, December 5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Yong-Cheng Wang, Hui-Wen Liu, Zhi-Yuan Geng, Ling-Ling Lv, Yu-Bing Si, Qing-Yun Wang, Qiang Wang, and Dan-Dan Cui. Theoretical study of the reactions of lanthanide ions (Ce$^+$, Pr$^+$) with CO$_2$ in the gas phase. *International Journal of Quantum Chemistry*, 111(9):2021–
REFERENCES

2030, August 5, 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Thomas Weymuth and Markus Reiher. Systematic dependence of transition-metal coordination energies on density-

Wang:2011:MET

Wu:2011:TSS

Wang:2016:IEB

Widom:2010:BBB

Wang:2011:TSS

REFERENCES

Wang:2015:OFH

Wei:2011:DFT

Wu:2011:SPN

Wang:2011:SAT

Wang:2011:WCE

Wang:2014:MDO

REFERENCES

Wallace:2017:CCC

Andrew J. Wallace, Bryce E. Williamson, and Deborah L. Crittenden. Coupled cluster calculations provide a one-to-one mapping between calculated and observed transition energies in the electronic absorption spectrum of zinc phthalocyanine. *International Journal of Quantum Chemistry*, 117(8):??, April 15, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Wang:2015:CBE

Wang:2013:DLD

Wang:2017:LFM

Yu Wang, Jian Wang, and Hans Lischka. Lagrange function method for energy optimization directly in the space of natural orbitals. *International Journal of Quantum Chemi-

[Wang:2017:RMH]

[Wang:2011:CSM]

[Wang:2011:TIS]

Li Wang, Jianxiang Zhao, Hongqing He, and Jinglai Zhang. Rate constants calculation of hydrogen abstraction reactions CH$_3$ CHBr + HBr and CH$_3$CBR$_2$ + HBr. *International Journal of Quantum Chemistry*, 113(7):997–1002.
REFERENCES

April 5, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

REFERENCES

Xu:2011:TSI

Xu:2011:CSE

Xiaohong:2012:PSS

Xu:2013:TAH

XXJ+16

Xu:2010:PHE

Yoshii:2015:SNU

Yakushevich:2010:NDD

Yakushevich:2011:DSD

Yamaguchi:2010:VCA

Yamaguchi:2011:TPT

REFERENCES

3238, October 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

References

You:2014:RTC

Yu:2013:EBG

Yu:2015:RTI

Yousefpour:2013:MDS

Yamaguchi:2013:CBBb

Yang:2010:HBR

Yue:2011:DFI

Yuan:2017:GXP

Yi:2013:EMC

Yang:2012:SPN

[Ohnishi:2015:SNU]

[Yahya:2015:PMI]

[Yang:2014:VOR]

[Yoosefian:2011:SES]

[Yang:2013:RIF]

REFERENCES

Yu:2011:NGR

Yoshikawa:2014:NRD

Yu:2013:IIF

Yurovsky:2013:SWY

Yurovsky:2015:ESW

Shinichi Yamabe and Shoko Yamazaki. A DFT study of proton transfers for the reaction of phenol and hydroxyl radical leading to dihydroxybenzene and H\textsubscript{2}O in the water cluster. *International Journal of Quantum Chemistry*, 118(6), March 15, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

2015. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[YZZH15] Zhao-Di Yang, Hui Zhang, Hong Zhao, and Baozhong Han.</td>
<td>Trap mechanism based on frontier molecular orbitals of additives</td>
</tr>
<tr>
<td>(electronic).</td>
<td>IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).</td>
</tr>
<tr>
<td>September 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X</td>
<td>CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).</td>
</tr>
<tr>
<td>[Zak13] Maxim Zakharov. Performance of numerical atom-centered basis</td>
<td>Exact equation for classical many-body systems: Passage from</td>
</tr>
<tr>
<td>sets in the ground-state correlated calculations of noncovalent</td>
<td>dynamics to equilibrium. *International Journal of Quantum</td>
</tr>
</tbody>
</table>
Ziegler:2017:CSS

Zhang:2015:RRP

Zhang:2011:QMC

Zhuo:2010:HLC

Zhao:2016:DFC

Yuan Zhang, En Cao, Shoubao Gao, Xin Huang, Qingtian Meng, and Yuzhi Song. Exploring the reaction dynamics of $\text{O}(^3\text{P}) + \text{H}_2 + (X^2 \Sigma_g^+) \text{OH}^+ (X^3 \Sigma^-) + \text{H}(^2\text{S})$ reaction with time-dependent wave packet method. *International Journal of Quantum Chemistry*, 117(7):??, April 5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Zamani:2013:GSS

Zou:2011:DSA

Zakrzewski:2010:IEP

Zenkov:2011:CTT

Zhang:2015:REB

Zou:2012:BPJ

REFERENCES

Zhang:2017:MMB

Zhao:2011:TIW

Zeng:2013:BCQ

Zhang:2015:QDR

ZH12

Zhao:2017:SIT

Zilberg:2014:PCR

Zhu:2013:UOT

Zoboki:2013:CFM

Zhang:2012:CMW

REFERENCES

Zhang:2017:HEC

Zhang:2011:ASS

Zhang:2010:TSI

Zeng:2015:PPG

Zhang:2016:CAL

Zhang:2013:PST

Zhao:2016:CAR

Zhu:2014:CDS

Zhang:2014:CSS

Zierkiewicz:2017:NIB

REFERENCES

Zhao:2013:DFT

Zhao:2012:TSR

Zerbetto:2016:TRM

Zhao:2010:CON

Zerbetto:2010:BPA

REFERENCES

REFERENCES

Zhang:2013:DYG

Zimmermann:2010:EEA

Zhao:2011:DFS

Zadeh:2011:QTA
Farnaz Heidar Zadeh and Shant Shahbazian. The quantum theory of atoms in positronic molecules: The subsystem
Zhikol:2012:ESI

Zarate:2011:DTS

Zarate:2013:MST

Zhang:2014:TID

Zhao:2016:RMM

Zhao:2010:TSS

Zhao:2013:TSM

Zazza:2010:CHP

Zhekova:2014:PRM

Zaitsevskii:2013:ICG

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Zheng:2011:TSM

Zhao:2015:MCC

Zicovich-Wilson:2012:BWT

Zhang:2012:FPS

Zhang:2016:SNU

Zhang:2010:FDS

Zhang:2012:TCB

Zhao:2013:LHR

Zhang:2013:PRP

Zhao:2013:CIG

Zhuo:2014:SMM

[ZYL+14] Hongying Zhuo, Hong Yu, Qingzhong Li, Wenzuo Li, and Jianbo Cheng. Some measures for mediating the strengths

Zeng:2011:IAS

Zhang:2012:TIE

Zhang:2011:DDS

Zhang:2010:TSH