Title word cross-reference

(001) [dLdOAdAD12]. (100) [MFK+12]. (1 ≤ n ≤ 6) [UDVD10]. (2 ≤ n ≤ 8) [BLRdA+10]. (3 + 2) [WLS+19]. (3 + 3) [LFTL18]. (A = N, B) [ASW13].
(k + l + m = 4) [KYLC19]. (m + n = 3) [UKF+11]. (m = 5, n = 2) [MHHPR+17]. (m = 6, n = 3) [MHHPR+17]. (n = 1, 2) [Men10]. (n = 1, 2, 3) [EML+11]. (n = 1 -- 4) [LL11]. (n = 1 -- 7) [CAZ+11]. (n = 2, 3) [DTEMK11]. (n = 2 -- 10) [WJL+11]. (n = 2 -- 34) [QSLY10]. (N = 28) [GD11]. (r, s) [Bib13]. (ϕ - ψ) [MAW+18]. + [Buc12a, CdAFS+12, DMAB12, FRNM12, GKT+12, KT12b, LWZ13, MEEA+13, MPRCEG12, MOH+12, RSN12, SABA+12, SD12, WZH13, XZL+12, YGL+11, YZ10, ZH12]. 1 [BEM12, DFK16, JW19, PSKV19]. 1/3 [KLZQ15]. 13 [LXD13]. 14 [YD17]. 16 [GAPK+19a]. 18 [YD17, GAPK+19b]. 13 [GWZ+14]. 2 [ABTW14, CPL15, HMA+19, HGB08, IK14, LLZaH14, LD17, NF11, PSKV19, SPD+18, SdS17, YSW11]. 2(N + 1)^2 [MC18a]. 2n [BBYZ18].
\[2n + 2\pi \] \[MB13\]. \[2n = 68, 70, 78, \] \[WLZ^{+12a}\]. \[2p\pi \] \[VLFG12\]. \[3] \[ABTW14, BMX^{+19}, GWJ12, KSO^{+19}, LQZZL12, LD17, RLW^{+13}, SM^{+14c}, VVY18\]. 30 \[GGD12, SLZ^{+12}\]. 3d \[ALA15, DD17, RZC13\]. \[3\sigma \] \[VLFG12\]. \[4] \[ABTW14, CD12, GAPK^{+19b}, GB13, GWJ12, HCL13, LKN13, SM^{+14c}, WLS^{+19}\]. \[4\sigma \] \[VLFG12\]. \[4f\pi \] \[VLFG12\]. \[4f\sigma \] \[VLFG12\]. \[5] \[ABTW14, BGMD15, BJD1MA12, CSDK12, HDQ^{+13}, MPE15, SM14d, SM16\]. \[5g\sigma \] \[VLFG12\]. \[\leq 5 \] \[LCZ15\]. \[6] \[CWSZ13, HDQ^{+13}, LdMcDA^{+12}, MPE15, MJ14, MMV^{+19}, PAI18, PAKA15, SS18a, VBO^{+15}\]. \[6; y = 1, 2 \] \[BCGC12\]. \[6i\sigma \] \[VLFG12\]. \[6j \] \[RBO^{+10}\]. 7 \[CHV14, GGJD13, SR13, WCS^{+13}\]. \[7\pi \] \[KMF^{+11}\]. \[7\sigma \] \[KMF^{+11}\]. \[8] \[YC13\]. \[8\sigma \] \[KMF^{+11}\]. \[8\sigma \] \[KMF^{+11}\]. \[8 \leq n \leq 14 \] \[NW12\]. 9 \[AIi14, SB16\]. \(< \) \[BTH18\] = \[BPG^{+10}, BL10, BDK12, CF\text{C}11, DIOG12, DPPR11, ESS13, FTB11, GB13, JLI12a, KyH13a, LZZ^{+11}, LMZ^{+11}, LLG^{+12}, MLW10, MPPR^{+10}, dMOB12, QU13, SZZZ11, SYQ^{+10}, SZL^{+14}, TFB11, WCY^{+10}, WSL^{+11}, XZZ^{+10}, XWC11a, XWC11, YK11, YIY^{+13}, YL11, ZQJW13\]. \(> \) \[BTH18\]. \[2 + 2 \] \[MBS^{+18}\]. \[2 + 4 \] \[LLF17\]. \[2, 7 \] \[WWL^{+11}\]. \[2n, 2 \] \[LS13\]. \[3 + 2 \] \[ZRG^{+19}\]. \[3 + 3 \] \[ZQW^{+17}\]. \[4 + 2 \] \[HHZ^{+19}\]. \[4 + 3 \] \[XZG^{+18}\]. \[< \) \[ADB10, AGRI^{+12}, BD12, BCK19, BHV^{+11}, Ber13a, BGI11c, DW1Z11, DZ11a, DCHL11, FB11, WWL^{+11}, HCL13, LKN13, SM14c, VVY18\]. \[= \) \[BPG^{+10}, BL10, BDR12, CF\text{C}11, DIOG12, DPPR11, ESS13, FTB11, GB13, JLI12a, KyH13a, LZZ^{+11}, LMZ^{+11}, LLG^{+12}, MLW10, MPRB^{+10}, dMOB12, QU13, SZZZ11, SYQ^{+10}, SZL^{+14}, TFB11, WCY^{+10}, WSL^{+11}, XZZ^{+10}, XWC11a, XWC11, YK11, YIY^{+13}, YL11, ZQJW13\]. \(> \) \[BTH18\]. \[2 + 2 \] \[MBS^{+18}\]. \[2 + 4 \] \[LLF17\]. \[2, 7 \] \[WWL^{+11}\]. \[2n, 2 \] \[LS13\]. \[3 + 2 \] \[ZRG^{+19}\]. \[3 + 3 \] \[ZQW^{+17}\]. \[4 + 2 \] \[HHZ^{+19}\]. \[4 + 3 \] \[XZG^{+18}\]. \[\neq \) \[ADB10, AGRI^{+12}, BD12, BCK19, BHV^{+11}, Ber13a, BGI11c, DW1Z11, DZ11a, DCHL11, FB11, WWL^{+11}, HCL13, LKN13, SM14c, VVY18\]. \[\neq \) \[BPG^{+10}, BL10, BDR12, CF\text{C}11, DIOG12, DPPR11, ESS13, FTB11, GB13, JLI12a, KyH13a, LZZ^{+11}, LMZ^{+11}, LLG^{+12}, MLW10, MPRB^{+10}, dMOB12, QU13, SZZZ11, SYQ^{+10}, SZL^{+14}, TFB11, WCY^{+10}, WSL^{+11}, XZZ^{+10}, XWC11a, XWC11, YK11, YIY^{+13}, YL11, ZQJW13\]. \[\neq \) \[BTH18\]. \[2 + 2 \] \[MBS^{+18}\]. \[2 + 4 \] \[LLF17\]. \[2, 7 \] \[WWL^{+11}\]. \[2n, 2 \] \[LS13\].
LKN13, MHPR+17, PAPCMM+16, UKF+11]. N
[DVDBM11, EHK11, EK11, GGD12, GD11, LJK+18, MEEA+13,
RWW+19, SM16, Ali14, BPG+10, BGM15, BEM11, BLRdA+10,
BJdIMAV12, CDSK12, CAZ+11, CTW12, CWS13, CD12, DTEMK11,
EML+11, FTB11, GR11, GAPK+19b, GGJD13, GP13b, GB13, GWJ12,
HDQ+13, KSSK16, Kuz19, LRKM10, LKN13, LGHL11, LWL19, LCZ15,
LHL+15, MCP10, Men10, MJ14, MMV+19, MHPR+17, MMRRA10, NW12,
PAKA15, PAPCMM+16, QSLY10, RGR12, SKS10, SJZ+18, SR13, SBB16,
SLZ+12, SM14b, SM14c, SM14d, UKF+11, UVD10, WJL+11, WCS+13,
WJL+10, XYL+18, YC13, ZRR+11, ZCTG18, ZCP11]. n-1 [MCP10]. n-2
[LCZ15]. [(n-4)-] KMM16. N [RWW+19]. n-0/2-
[DHYC19]. 2+ [LL18]. 2- [SM14c]. x
[BCGC12, GLF+12, HCL13, KA13, On112, RLW+13]. y [BCGC12]. A
[ASW13]. α [BWBP+18, HZZ+19, KSAK17, MFZ+18, OPAVM18, LZZ12,
PEA+12, QTCL10, SVRGV12]. α2 [EPS+16]. β
[AC19, GZZ+14, JEC018, JSLH14, KZZ13b, LSG+14, OPAVM18, WSH+13,
NHFPVG12, NRP+11, PEA+12, SJW13, TPDMB12]. β2 [CSVCB12].
[BLW17, BTH18, XF19, Men10, TBH11, XLGA12]. … [TG13, JLG+12].
[IIH16, PGGMGM15, CWW+16, MVG18, MW16, OVT+16]. d10 [DLJT14].
Δ [CC11b, Yam10]. Δex [DE18]. [ZHF12]. [VLM+10]. [MSBF18]. η5
[DZO12b]. f [MW16]. G [ATPR11, DKS11, VATPR11, VAT12, SPO+11]. γ
[BWBP+18, CC11b, MFK+12, PEA+12]. h [PUGSF18]. J [AAHN16]. j = 0
[LZF13]. k(T) [CP11]. K+ [GBK18]. K2+ [GBK18]. l [WC14]. l + m + n = 6
[PAPCMM+16]. 0 [PAPCMM+16]. λ [AM13a]. λ5 [TM19].
LDA + U [HFDGC14]. ← [SB18]. M [XYL+18, KC11]. m, n = 1 [LKN13].
m = 1 [CD12, GWJ12]. m = -2 [FTB11]. m* [Dw13]. M5V [HNBS18]. μ
[ESS13]. N
[CZJ12, CPL15, DDÖY12, DPRK12, DDF+12, ES17, GW18, KC11,
KSAK17, MOSK10, MAN15, NJA+12, Pan16, RWW+19, SFW12, CMCN11,
CS12, DFK16, DHYC19, GE12b, KSSK16, KMM16, LWL19, ZYZ+11].
n + m ≤ 5 [CD12]. N, N [DAVMD17]. n = [LHL+15, SM14b]. n = 0
[GAPK+19b]. n = 0, 1, 2 [SKS10]. N = 1
[SM16, CWS13, GGJD13, GB13, HDQ+13, SR13, SM14d, WCS+13, YC13,
BGM15, PAKA15, SBB16, SM14c, BJdIMAV12, CD12, GWJ12]. n = 1, 2
[BPG+10]. n = 1, 4, -7 [FTB11]. n = 2
[Ali14, HDQ+13, MJ14, MMV+19, CDSK12, GGD12]. n = 2, 3, 4 [GP13b].
n = 20 [SLZ+12]. N+ [CZJ12, DDÖY12, TYD11]. n ≥ 2 [SM14c]. o
[KSAK17, SR18]. p [AGJ12, AMAC12, CS12, DLJT14, HLZ+14, RRK16,
SR18, SRA+11, ZSS11, ZYZ+11]. π
[BWE16, CCS13, DWZZ15, HIL19, KPL+17, LDKB15, LW18, LB18, MC17,
MAN17, NCMM+18, NIK19, NMV+14, OCGM+19, PC16, PNC19, SSB19,
SPD+18, SSS15, Szc18, TK16B, YZZ16, YD17, ZHL+19, CC11b, SLS+12,
AEKGZ12, BMR+13, DB15, FV11, GNMI+12, LCB10, MMA10, Nik11, NRGS11, RVNP12, RNVi+12, SD13a, VS11, Yam10, ZZZ+11. \(\Pi_a \) [HIL+12b]. \(\pi \cdots \sigma \) [WLC+17]. \(\pi \sigma^+ \) [KGV11]. \(pK_a \) [PWH+18]. \(\tau \) [Dau16, SAHAA16]. \(\Phi^\circ \) [GSI10]. \(q \) [Agb12]. \(q = 0 \) [SM14c]. \(\rightarrow \) [Buc12a, Coo12, GKT+12, LCB10, MPRCG12, NWQX11, YGL+11, YZ10, ZH12]. \(\rho \text{SU}(2) \) [Bra10]. S [HR12, MMM19]. S = 1/2 [KZQ15]. \(\sigma \) [LW18, SPI14, SC18, ZHL+19, CC11b, Ang10, Che12, DCDG10, JLG+12, Yam10]. \(\Sigma^- \) [SL5+12]. \(\sigma_{\text{hole}} \) [VJ15]. \(\sigma \pi \) [ZXY13, DMWH11]. \(sp^2 \) [OCGM+19, PNC19]. \(\sqrt{3} \times \sqrt{3} \) [OD16]. \(T \) [XCL+18]. \(\times \) [PWL+10, ZHY10]. \(\rightarrow \) [GW18, KMM16, ZWL18]. \(v = 0, 1 \) [LZF13]. \(v = 0, j = 0 \) [YZ10]. \(\varphi \) [CC11b]. W(\(l, m, n; \alpha, \beta, \gamma \)) [LWY13]. \(\wedge \) [ZQJ13, LYD+12]. X [AGOP18, AM18, BHA19, Kuz19, SB18]. x = 0 [HL13a]. x = 1 [RLW+13]. x = 2 [BCGC12]. X- [Kuz19]. X2 [BHA19]. Y [Kuz19]. Z [XCL+18]. * [LCB10].

2 [Boe12, EKD12, KK14a, LJK+18, LV12, Men10, MEEA+13, SAHA16, Tan12, WWX+11, Zha14].
2-adamantyl-thiazolidine-4-one [MBBT+12]. 2-amino [RJY+10].
2-amino-3-methylimidazo [MLPT10]. 2-azidoethanamines [SM10b].
2-dichloromethylbenzimidazole [PMC11]. 2-dihydro-3H-pyrazol-3-one [TAY11]. 2-dione [OPP+14]. 2-dioxetanone [dSdS13b].
2-ethoxypyridine [MCC12]. 2-furoic [GIO12]. 2-hydroxy-3-methylbenzylidene [TAY11].
2-pyridone [HHCA10, MCC12]. 2-RDM [KK14a]. 2-substituted [Tug13]. 2.0
[CW+16, LKZ+16, SC12b]. 3- [SC12b]. 3-alkylthiophene [BMR+13].
3-aminoacrylaldehyde [NRS+11]. 3-bisphospho-D-glyceric [SLA12].
3-dihydrolutidine [TM13]. 3-dimethyl-aminobenzonitrile [NMHPVG12]. 3-dimethylaminophenyl [FO10].
3-mesityl-3-methylcyclobutyl [KDC+12]. 3-methyl-1-pyridin-2-yl-5-pyrazolone [PGG12].
3-methyl-3-phenyl-cyclobutyl [SC12a, SC12b, DDČY12]. 3-methyl-4-nitropyridine [KC11]. 3-pentafluorophenyl [SM10b].
3-phosphonothioic acid [LYH+11]. 3-phosphonothioic acid-2-carboxylic acid [LYH+11]. 3-phosphonothioic acid-3-carboxylic acid [LYH+11].
4-trifluoromethylphenyl [SAHAA16]. 4-X-2-hydroxybenzaldehydes [EKN10]. 400K [KAR12a]. 4965 [SKHN13].

5

9- [CRSB12].

= [AGOP18, AM18, BLL+13, BHA19, BBYZ18, CWS15, CDL+19, DPDR11, DD17, DHYC19, EMSB15, EMS16, EAV16, GWML11, HNBG15, HNS18, HWL16, JLG+12, KSSK16, KMM16, Kuz19, LJI+11, LC16, LL18, LWL19, LG11, LXD13, ML1+16, MLW10, MZLM17, NBL12, PSK+16, PP19a, Pan16, PCD14, PAKA15, RWW+19, RBTL19, SB18, SMC18, SSK10, SPL14, SM17, SYQ+10, TW10, TL15, VO12, WSML16, WZW17, WLL19, XYL+18, XZL+12, XCL+18, YLWL12, ZHL+19, ZCTG18, ZLY+14, dOR10]. =4 [BEM11]. =H [RLTAT19].

activity
[BD14, Hat13, MPMCM+11, RCM+19].

acute
[ASD18, BGJSM+18, CJZJ12, CWL+13, CjongTL12, DSD18, DMBJ15, ESBJYJ12, GTSC+19, HSYM11, JB11, LCG12, LWH+12, MLC+11, PGG12, RCM+19, SHTO11, SS+12b, ZYL+13].

acyclic
[BBKO16].

acylbenzothiazolon
[SSTO11].

acylhydrazones
[Cao17].

acylium
[FDMR11].

acylphloroglucinols
[KM12b, MK10a, MK12].

adamantane
[BBKO16, GZ14].

adamantane-based
[GZ14].

adapted
[Ali19b, ANC+15, CB10, SR12, TPCJ+12, VRO+12, WH12, YKN13].

Adaptive
[BG11a, BR15, Lya14, MBSMJC18, ZKW17].

adatoms
[PP10, WDJ+17].

added
[Fuk12].

addition
[DI11, Buc11b, CAAI12, DP12, DFK16, Dum12, GW13, GMT18, JSLH14, LCM+11, LW13, MNC18, PDC14, SHL+13, SDR+13, TIN13, TBHL11, WZL+10].

addition-substitution
[Buc11b].

additions
[SFW12].

additive
[KF19].

additives
[YZZH15].

Addition
[BMB16, RLER10, Dob14].

address
[VVJ15].

adduct
[DWGX12].

Adducts
[BAB+18].

adenine
[MYZ+10, SOM10, TSH17, XSLF12, YTY19].

adenine-thymine
[XSLF12].

adenine-uracil
[MYZ+10].

adenosine
[DSWL11, PRG+10, WYWL13, YTY19].

adenosylmethionine
[WYWL13].

adenosine triphosphate
[KTI+12].

adrenoceptor
[CSVCB12].

adsorbates
[BWW+10, LRKM10].

adsorbed
[Hog13, JCCZ12, RFMC19, TTM16].

Adsorption
[CA17, DI18, IK18, NA12, SQ10, UDS19a, UMS13, BGMD15, BAP13, CTW12, CA018, EO11, EO11, FFF10, FTB11, GP13b, HZL+14, HCL13, Kim18, KF17, LV19, LZ12, LWX+14, LIK15, NBL+14, ONBP11, PK16, RD14, RJLPGH+13, SD16a, SR19, SM19, VSMK13, VDG13, WJY15, WLM+19, WZC+12, WH18, ZDL11, dLdOAd12, GD11].

adsorptions
[FZH+18].

adsorptive
[HCH+18].

Advances
[AK11, MCCGM+19, Nag16a, Liu15a, Ped16, Ban12, Mor13].

aerobic
[KBF+13].

aerogen
[KBF+13].

aerogen-bonding
[EAV16].

affected
[VGS10].

afects
[GJ18].

affinities
[DTMK11, KKT13, KKT14, VF13a].

affinity
[CSSK+12, DPK18, DJ18, ESLM19, KKM+12, Kry11b, Kry12b, Shi13, dCSdMC13].

after
[GD11].

Ag
[MSOV13, OD16, PAPCMM+16, SZZZ11, SYQ+10, XWC11a, ZPR10, AGG+18, ESBJYJ12, JFT13, LRKM10, PSK+16, RK14, SQ10, WLL19, ZRR+11].

against
[FMP+17, GAI19, KF19, SBKJ18].

AgBr
[RS12a, RS12b].

agenda
[SG14].

agent
[MBI4, PPK+13].

ages
[Nic14].

aggregates
[ATS+11, TFB11, WKE17, ZLE17].

Aggregation
[YLM+19, GDM+10, MAD12].

aggregations
[BBKO16].

AgOH
[KSST12].

agonists
[Ser11a, Ser11b].

agostic
[HHL12a, HHL14, WLS+19].

AgSi
[ZCP11].

ahead
[HJK14].

AHHC
[dOR10].

aim
[GWZ+14b, NRHJ11, PK13a, RJJY+10, RJA+10, UDVD10, ZZL+11].
Aiming [BBB16]. Al
[CWS15, CDL+19, HHL12a, HHL14, JLL11, LX1313, MLW10, MFK+12, Oni12,
Sat11b, TW10, XWC11a, CRB+12, DCDD10, DSZB18, KYLC19, LLZZ10,
MCP10, NH11, Pan19, Sat11a, SUL+11, TZD+19, VDG13, WJL+10, PS13b].
Alanine [VO12, ZPR10]. AIB [RRRV19]. alcohol [Pli18, SCL19, dCDC+11].
alcoholamines [LCT14]. alcohols [MMM+12, SGK12, SK12a, ZZC12].
AlCoN [AAAM12]. aldehyde [AG10a, LCS+11a, PWH+12, ZSS+13]. Alder
[CM12, Iku17, LW11, MIKH19, ZLWL16, ZXY13]. aldose [SSdS17].
adose-ketone [SSdS17]. Algebra [RW12, Lya14]. algebraic
[SCLCPB12, SÁBA+12]. algebras [WH12]. algorithm
[AFM+10, CGG18, GI11d, IG11, MCP10, SGH10]. algorithms
[CL08, TB15]. AIH [NH11, SLZ+11c]. aligned [HV11]. alignment
[CLL+11]. aliphatic [PI13, SN11]. Alkali
[CFC11, Ber13a, HWL16, HWWW18, SHE10, SM14c, UDS19a, UDS19b].
aklali-atoms [UDS19a]. alkali-based [UDS19b]. alkalide [SM17]. alkalides
alkanes [GZBH18]. alkene [ZSS+13, ZFW+13]. Alkene-3-quinolincarbonitriles
[ZFW+13]. alkenes
[CAA112, KB17, YZZ16, ZYSW17]. alkyl [ESS13, LYW11].
aklyaromatics [BMR+13]. alkylation [UMVB10]. alkylidene
[VGGPD19]. alkylithiophene [BMR+13]. alkylnes [LW15, SLS+15]. all-
[HWW18, LCB10]. all-electron [MPD+10, MPZW10, NDM+12].
al-meta! [MLW10]. all-nonmetal [JHL+18]. alkenoates [XZG+18].
allosteric [SKB18]. allophan [KB13]. alloy [BXR+13, VDG13, XGH+18b].
AIN [AAA12, RJLPGH+13]. AlNiN [AAAM12]. AIO [SZ11]. along
[IKS08, IKS10, KRG+13]. AIOOH [MMC+19]. alpha [MBTV12, SLS+10].
Al — [TZD+19]. alternant [DB13b]. Alternative
[CSTA16, COCF+14, GZF14, MJ16a, PCK19, SKLC19, Sze18]. alumino
[Ped16]. alumino-silicate [Ped16]. alumino-silicate [PM10].
aluminosilicates [CDFD10]. Aluminum [ALK18, AGB19, ALK19, HT10,
IIW+11, Kar12b, MMC+19, MS14b, MM11, PMH+16, SM19].
aluminum-bismuth-nitrogen [MS14b]. Aluminum-poor [ALK18].
Alzheimer [Bal16, MPTR12]. Am [PKK14]. AM05 [MA10]. AM1 [PI13].
ambient [Ma14, WC12D]. ambiguity [Fin14b]. ambiphilic [MAN5].
America [CBMMAPR19, MCCGM+19, MCMV19]. American
[GRGRRHT19]. amide [TPT+13]. amido [JLS13]. amido-amine [JLS13].
[HS11b]. amines [KSAK17, LSR+10a, LSR+11, LW15, RZG12, TV13].
Amino [DSCO+13, AM13b, Coo12, CF17, Cza18, DJB10, Jai10, KyH13a,
KSS12, MLPT10, Mit11b, NHG+12, Pog12, QZH13, RJY+10, Ril10, TAY11,
VHTEG15, WHM14, YSW11, ZCC11]. amino-2H-imidazole [VHTEG15].
aminoaconitrile [CdlDSC18, NC11]. aminoacrylaldehyde [NRS+11].
aminobenzenitrile [NMHPVG12]. aminocarbonothioyl [KDČ12].
[AY15, BC15, BC16, BR12b, DVP18, Fin15, GZSMFN16, HMH10a, HVR18, IIH16, Kut13, PCV19, RAN18, SABA+12, SK17a, Sut12, VVN+16].

approximations
[CLXD15, FMMD+10, GZSMFN16, Per18, PBB15, RBD+10, SGL+16].

APSG [JNZ+14]. APSG-based [JNZ+14]. aq [DSZB18]. aqua [BSPK11, MGK19]. aqueous [AMMK11, CTVA12, DZO12c, GCDNGS12, JCC10, KS11, KSS12, LGZC15, MB14, MNE+13, MPL+11, PS10a, RZG12, RCM10, SM10b, TIKN11]. AR20 [CWB+13]. Arbitrary [IAA15, WC14, ZHF12]. Archea [SLS+10]. Archea [SLX13, HMH10a, HVR18, Kut13, PCV19, RN18, SABA+12, SK17a, Sut12, VVN+16].

MFLK11, MAPS18, MNS11, MR18b, Pea11, PSC15, Pup11a, PJ19, RZ17, RZSZ18, RAFFR15a, RAFFR15b, Roy15, Roy16, RRCO11, RR19, SRPD16, SK17a, SKMN11, SL13, SS12, TBB+19, TW10, WWHZ13, Zak13, ZS12.

atom-bond [AD17]. atom-centered [KFS13, Zak13]. atom-pairwise [KKL+16, PSC15]. Atomic

[AST19, Obs11b, PNC19, SV11, ABS11, ALRA10, ALRAE11, CRA+11, CF11, CB10, Fin14a, Fin15, Fuk12, Gra08, Gra11, GE12b, HST13, IFT14, Lai11, LRMAA19, MK+12, Mann14, MC11b, May14, MS17, NDH10, Nic11, NE11, PUH+11, RLER13a, RAGM10, Rom10, SLG11, SMV11, Sch15, SD13c, STM17, TMC+13, ZY13, ZLWY13, ZZZ+18, vLRRK15]. atomic-wire [SD13c].

Atomistic

[AGG+18, Mai14, BMR+13, CLKD15, MMP+18a, vL13, Zha17].

atomization [Vyb08].

Atoms

[LSC+18, OA13, TBRIS12, AMK10, AM10, BHMN19, BAX+19, BSO11, Dil13, DSSM18, EMSB15, GBS17, GLT13, GZSMFN16, GI10, GI11b, GI11c, GI11e, GS11, Gra11, HMP+11, HMA+18, IG11, JEA13, JMX+15, Joh17, Leh19c, LKJ13, LZW+15, LHX+19, LLH15, Luz11b, MOY13, MFLK10, MJ11, NS10b, NT16, ONBP11, OD12, PRPU+13, PWP13, PNC19, RLW+13, RD14, RBVAG18, SBMM11, SBM16, SR19, Sha18, Sto18, SKL10, TBRIS10, TBRIS11, TH12, TXK+19, TFMC19, TLC+17, UGWL18, UDS19a, WLS+19, YJ17, ZS11, ZCG+16, ZHI17, ZZZ+18, ZJS13, dSTH17, dCGAMV12, Leh19a].

Atoms-in-molecules [OA13].

ATP [BGJSM+18]. attached [HMP+11].

attachment [DSVP15, Kry12b]. attack [LZFZ13]. attending [GWME18].

attenuated [NDP10]. attenuating [CF14]. Attosecond

aureusidin [KK11d]. aurones [XLZ+19]. AuSi [BCK19].

autoionization [DE18]. autoionizing [Cor16]. automated [KMNSP19, MHO+15, NKWT19, PBB15]. Automatic [MML+16, CW11].

AuX [LC16]. auxiliary [CEFMIK12, GS10, KFJ+18].

auxiliary-density-matrix [KFJ+18]. averaged [ABL11, CP13, RS12b, RSN12]. avian [KRH13, PCML08, WZ10a, ZBK15].

azopyrroles [Jac12]. azosulpha [EAK+10b].

MSNP18, MG12, NDM+12, PCD14, PBR18, RZSZ18, RLER14, RVO+14, RLZ12, SKT15, SXH18, SZS+10, SLZ+11c, SLZ+11a, SLS+11, TCG17, TWR15, UGW18, UV18b, VSS11, VRO+12, WSV10, YMI14, Zak13, ZF15.

SBD\(^{+16}\), SCZH16, SC18, Tav12, TDOD17, TYL10, TXL10, TL15, UV18b, WWC17, WLL11, WLWT12, WWD\(^{+15}\), WHM14, WWX\(^{+11}\), XZYS10, XCL\(^{+18}\), YMY12, YXK11, YYW\(^{+12}\), ZLWZ16, ZMB\(^{+17}\), dCSD\(^{dMC}\)13, dSDPG11, dCDC\(^{+11}\), dLRR11. Beyond [Chu12, DCD11, Dob14, EAA17, ZWE12, CTVA12, MA10, RB18, SK17a, Var14, VVN16]. BGlu1 [WHS\(^{+13}\)]. BH [Kim13, XZZ\(^{+10}\), SLZ\(^{+11a}\)]. bi [MMR\(^{+10}\), MHHP\(^{R}\)R\(^{+17}\)].

Bimolecular [LQ13, DAA16, WLWL14]. binary [AD17, CLL\(^{+11}\), GE12a, Kan18, LMC19, MS14b, RKCK19]. Binding [ESLM19, GB18, RWW\(^{+19}\), ZFW\(^{+13}\), ATS\(^{+11}\), BLB18, BBM17, BJ17, CSDK\(^{+12}\), DPK18, DTF\(^{+11}\), EKN10, FFhC11, GM11, GGD12, KKM\(^{+12}\), KB19, LCT14, LNI12, MS14a, MZB16, MPTR12, MS14c, OT14, PKS\(^{+16}\), PP14, SH19, SAHA12, Shi13, SKB18, SW12, SJW13, VBK18, WTH\(^{+11}\), WDJ\(^{+17}\), XL11, dCSD\(^{dMC}\)13]. Binuclear [RALK18, SS19a, WLS\(^{+19}\), ZLY14].

Biochemistry [AM13a, KRH13, KyH13a, KGK13, LSR\(^{+13}\), OM13b, PKS\(^{+13}\), PPK\(^{+13}\), SKHN13, Shi13, TYN13, XTLA13, YIY\(^{+13}\), YIY\(^{+13}\)]. biodiesel [MCRS16]. bioenergetics [Blo15]. biogenic [MBTVR12]. bioinformatics [RNP13].

Bioinorganic [BBA16]. biological [Bra11a, CWL\(^{+13}\), CAPGAIG18, Chu12, LB14a, MG12, MMP11, XHZZXZ10]. biologically [ASHF13, KM12b, KSD10, VO11]. bioluminescence [CYLL11].

Biomimetic [ADR\(^{+18}\), WRW\(^{+18}\), ZSHL16]. biomolecular [Mit11b, SKV12]. biomolecules [BMTT11, Dnm12, IKS08, IKS10]. biophysical [WSV10].

Biophysics [AM13a, KRH13, KyH13a, KGK13, LSR\(^{+13}\), OM13b, PKS\(^{+13}\), PPK\(^{+13}\), SKHN13, Shi13, TYN13, XTLA13, YIY\(^{+13}\), YIY\(^{+13}\)]. biorelated [LGZC15]. bionautical [BVP14]. bipartition [Du12]. Biphenyl [JMX\(^{+15}\), BMF13, RS11b]. bipolar [RS11b, Shi14]. bipolaron [PDm13]. bipyramid [SALK19]. bipyridine [LKZ\(^{+16}\)]. bipyridine-ligated [LKZ\(^{+16}\)]. biradical [KMK\(^{+16}\), KMM\(^{+18}\), KSN\(^{+10}\), KYH\(^{+13b}\), ZZW11]. bird [WLZ18]. birefringences [RC11].

Bis [BSM\(^{+15}\), Jac12, LYY11, LWJL10, LZZ\(^{+17}\), MCC13b, Pli18, RNDA\(^{+10}\), SDR\(^{+13}\), SAHAA16, QZCJ10, QZXP17, dARAV12, JWG\(^{+12}\)]. bis-actinyl [QZXP17]. bis-azopyrroles [Jac12]. bis-dithiolene [SDR\(^{+13}\)].

bis-furylfugimide [LZZ\(^{+17}\)]. bis-heterocyclic [LWL10]. Bis-imino [BSM\(^{+15}\)]. bis-tert-alcohol-functionalized [Pli18]. bisadduct [LYS\(^{+19}\)]. biss-cycloheptatrienyl [ZFC\(^{+17}\)].

bisimide [JR19]. bismuth [MS14b, MHHPR+17, MLK17]. bisphenol [BLWJ17]. bisphenol-F [BLWJ17]. bisphenols [SN11]. bisphospho [SLA12]. Bistability [SS19a]. bit [Ish14]. bithiazole [SAHAA16]. bithiazoline [Qu13]. BiVO [DWX+16]. Björn [Pyy11, SA11b, Sha11b, SL11]. block [GDM+10, JHL+18, KS19, MAA10]. block-copolymer [GDM+10]. blockade [ZX12]. blocks [LLZ+14, Sza13, XWP+18]. blue [Kry10, LXW+14, SLS+14, SHW+13, TU10, dOR10]. blue-emitting [SHW+13]. blue-green [SLS+14]. blue-shifted [Kry10]. blue-shifting [dOR10]. BN [LGHL11, BSS15, FKL+12, GLT13]. BnHn2 [LCZ15]. BnHn2- [LCZ15]. bodipy [TPT19]. body [ARG11, BSO16, DLP17, Fri12, GR11, Hog13, IM15, KRG+13, LV12, Lin14, Lya14, Per10a, RAN18, RAGM10, SK17b, SIB+13, SHKS15, Zak16]. body-fixed [IM15]. Bond [CP13, FC19, GRLA18, HS15, Mar11, MPMCM+11, RL12, SB10b, ZZZ12, ZFC12, dFR15a, AV19, AGB19, ABKJ18, AD17, AG19, ASK15, AMMB+18, BCP10, Bla15, Bou12b, BWB+18, CC11a, Che12, CYC+15, Coo12, CF17, DL17, EKN10, EMS16, FGD+19, FKC12, GIO12, GI11b, Gi10, GWE18, GPM+15, GZBH18, HNH+12, HHL12a, HHL14, HAX+18, JLG+12, JE10, Kal18, KZA+17, Kan18, KK14a, KK11a, KM12c, KN15, Kuz19, LZZ+11, LW18, LW15, MNV+17, MTR+19, MGB18, MBSMC18, MBA+19, MML11b, ND11, Nal12, NHB12, NRS11, NR1+11, NRHJ11, OKR12, OK16, OHDA13, PCMG12, PCK19, RJA+10, RI19, RB11b, RKCK19, SIS10, SSK+12, SH18b, Sch10b, Sch13, SMEH16, SRA+11, SCL19, SBD18, SC18, TL15, Tob19, TCA10, VVJ15, WCGD12, WTW+15, WLC+17, XHZXXZ10, XX12, XCD18, YYY+13]. bonding [YL10, YS18, YZZ16, ZAE10, ZZX10, ZCC11, ZYL+14, dFR15b, dSNBG08, LCM+11]. Bond-dissociation [SB10b]. Bond-extended [MPMCM+11]. bonded [CdLdSC18, CCP18, DLM12, DMBL16, DB15, GCD13, IKS08, IKS10, KS18, LJ+11, LJW+11, MT10, Mit11a, MS14c, OA13, RNE10, SGK12, SPI14, ZLZ+14, ZFS+11, dSCC12]. Bonding [Con10, Mil12, TFMC19, XWC11a, ZPR10, ABM+19, AMK10, AG19, BHA19, BMX+19, BG11b, Buc10, CLXZ12, CPF12, CG12, CCL+16, Cha10, CNSK11, DMS+10, DB15, EPS+16, EAV16, Fin14b, FC19, GI14, GLXL18, Gin10, GORW19, GPM+15, HSYM11, HYD11, J113, KK13, KdPNS16, Kry10, KM19, LRY+17, LFP+19, LWL19, LW18, LBV16, LYD+18, MCCGM+19, MS14a, MPD+15, MT10, MC12, MKM11, NZLG15, NE11, Pan16, PK13b, RY+10, riv11, RCS10, SM19, SJZ+18, SYY16, SCI8, UDVT10, WSML16, WJ11, XYZ10, YZW15b, YRN+11, ZFC+17, dOdCMUdALR11, CF18, GAPK+19a]. Bonding/ [CFV18]. bonding/antibonding [CCL+16]. bondons [PO15]. bonds [ABS13, AKHS13, AM18, ALHC18, BLR12, BL11, CG12, CDL+19, DR18, DLM12, DLLA10, ED16, EEMSS14, HB14, IROW10, JLZ+17, KKC14, KKG12, LLF+12, LLG+12, LZD+11, LLZ+12, MK11, MK12, MAT19, MJ16b, MGB18, MB15, NBL12, NZ13, OS10b, PRFR17, RRVJ10, Ril10, SSI+10, SSK+12, Sch13, SMP10, SIS+08, SPI14, SS11, SM14a, SW12, SCZH16,
C [AM18, Ban12, BDF+18, BCP10, BGFD14, BBYZ18, yBZfC18, CJMC19, DQZF12, GWM11, GZW16, GB13, GCD13, JLL+18, JLG+12, Kal18, Kl12, Kn15, LKN13, LCS+11a, MLY+16, MGD11, NBL12, OGvSG18, PAKA15, PP14, SUL+11, USL+13, VF13a, VLK+11, WLZ+12a, WLZ+12b, WZW17, WSL+11, YK11, YZL+10, YLZ+17, YL11, ZQJW13, ZHL+19, ZW15, ZLWZ16, ZCTG18, TSKN12, YB11, BHA19, yBZfC18, CCEGK12, CWL+13, CRSB12, CTDLA10, DFK16, DSFT17, EML+11, FBRBR12, FBO+11, GB13, HV11, HLB19, HHL+12b, IMS+13, JB18, JCCZ12, KWC10, KZA+17, Kan11, Kl11b, KK12a, Kl12, LCL+10a, LBY+14, LZW+15, LCZ15, LD13, LDAA+11, MNP+11, MS11, MS17, MPFGS19, MC18a, NL11, NMIP14, Nik11, OCL+18, PTS+11, PAKA15, RR11, RRCO11, S¸ BAT16, Sat11b, Srt19, SCTW10, SW12, SZY17, TG13, TSKK17, WCTR+13], C [WZW17, WWGW18, XCY15, XCD18, XZG+18, YS18, ZPM10, ZLWL16, ZJC+13, DZO12b], C-H [YS18], C1s [LdBF+12], C2h [KS18], C60 [DI10, GHGF12], C=S [JLG+12, JLG+12], Ca [VO12, WCY+10, YLW+13, CRB+12, DTEMK11, GR11, MPD+10, MPTZ13, SBB16, VPFD10, YYI+13], Caballol [dGR14], CACA [Ser11a], cacao [dAGNJT12], CaCuO [Fuk12], caffeine [LCG12, PRG+10, ST15, PRG+10], cage [yBZfC18, CS13, DI18, GAPK+19b, JL12a, SL10, WLZ+12a, KK12a], cage-like [JL12a], caged [PAKA15], cages [NW12, XYL+18], calcite [SC11], calcium [Ish14, RCGLV+14], calcium-doped [RCGLV+14], calculate [ZLE17], Calculated [SPO+11, Dw13, FKL+12, MFK+12, VMC11, WWC17], Calculating [FYhC11, KC11, WB17, ARH+13, CML+16, MGK+11, SA11a], Calculation [FZC14, KKS+11, MHO+15, Rit12a, SHS+13, VLFG12, VO11, YSÖ12, AM12, BVCAP12, BBYZ18, Boe12, CP10, DK13, FLCHL10, FBM+10, FS16, GWZ+14a, GCDNGS12, HM1+15, Han19, IK18, KMK+16, KHH10, Kni13, ILBqD+19, LIK15, LSKM19, MGK+12, Mum13, MA12, MIt11c, dMOB12, PS10a, Per10b, PCR+11, Rit12b, SBM16, SMGZF19, ST15, SRASZ16, TTT13, VF13a, WZH131, XCD18, YK13, YM14, YHI14b, YLYC18].
calculational [SC12a], Calculations [KH10, KV11, LKL13, SR19, TWHZ14, dHLds12, AV19, AK17, AFA13, ADB10, ACMRN10, AGG+18, BCK19, Bas11, BB10, Boul12, BJ12, Buc11b, Bud12, COCF+14, CK17, CSTA16, CFÖ11, Dau16, DSL15, DAE+12, DWX+16, DZO12c, DZO12a, DFF+13, ESS13, Eng16, FSK+11, GAPK+19b, GVPC10, GsaY11, GFZ13, Ghu13, GJ18, GE12b, HK11, HHCA10, HH18, HS1b, HL19, HNBS18, HZS14, IKC18, JH13, KAR12a, KKL14a, KG17, KRK+17, KPCV18, KSS12, Kim13, KJ15, KJ16a, KJ16b, Kim13, KYH+13b, KPH+12, KK12G, LRP+11, Leh19a, Leh19b, Leh19c, LCL+10a, LC16, LY+19, LCK+16, LLZ+12, LNI12, MCCGM+19, MJ16a, MWC13, Mit11b, MIt11a, MFLP12, MSY+12, MPT11, MPTZ13, MJ19, NS19, NKWT19, NMS14, NZLG15, yOFTH15, OKK10, OCGM+19, OPP+14, OH19, OSJ+12, Pan19, PP19a, PK16, PBR18, PB10, RS12a], calculations
CASPT2 [BDFM10, BDR12, ČFČ11, GLOGM+11, KZZ13a, LCL+11, LGP+12, MR11, Pul11, RS12b, SKTI15, SZZ+12].

CASPT2//CASSCF [GLOGM+11].

CASSCF [BDFM10, DAR+11, GLOGM+11, Lar11, Ols11a, PE11, RS12b, RSN12, SZZ+12, SBL11].

CASSCF/CASPT2 [SZZ+12, BDFM10].

CASSCF/MRCI [DAR+11].

Catacondensed [RB08, RB11a].

catalysed [SMRK18, ZYSW17].

catalysis [BvWG14, KJ14, MMM+12, MCRS16, PIS18, Sic16, SLS+15, XDM+10].

catalyst [ENV15, Esr18, EM19, GB18, Hög13, JXX+15, LCM+11, TM19, Var14, ZQW+17, ZBG+19].

catalyst-free [ZBG+19].

catalysts [BAB+18, TFZ+15, WR14a].

Catalytic [BD14, PM17, SS18b, AGOP18, BGFD14, CLY12, DMBJ15, ED16, GGZZ16, GSB10, HSN+11, HSYM11, LPOP12, MLW+14, MMP18b, NEEV15, TK16a, TTD13].

catalyze [XGH18a].

catalyzed [AKC10, AZD+11, CAPGAIG18, CWZ+10, Che12, GCZ+14, HZZ+19, JL12b, JXQ15, LCM+11, TM19, Var14, ZQW+17, ZBG+19].

catalyst [ENV15, Esr18, EM19, GB18, Hög13, JXX+15, LCM+11, TM19, Var14, ZQW+17, ZBG+19].

Cation [ZLWZ16, ATS+11, Ber13a, BMX+19, DW11, ESR13a, GYY+19, HZZ+19, JL12b, JXQ15, LCM+11, TM19, Var14, ZQW+17, ZBG+19].

cation [ZLWZ16, ATS+11, Ber13a, BMX+19, DW11, ESR13a, GYY+19, HZZ+19, JL12b, JXQ15, LCM+11, TM19, Var14, ZQW+17, ZBG+19].

cation-exchange [PDR+14].

cation-exchanged [PvS10].

cationic [BCGC12, FTB11, ZQJW13].

cations [BMF13, ESLM19, GK12, HFA+19, IGMK11, LGP+11, LPG+12, MMR+10, MKM11, NKWT19, PDR+14, SHE10, WLWT12, YLW+13, ZLWZ16].

caused [HYH+10].

causes [ABP13, MFM18].

causing [MFR10].

Cation [ZLWZ16, ATS+11, Ber13a, BMX+19, DW11, ESR13a, GYY+19, HZZ+19, JL12b, JXQ15, LCM+11, TM19, Var14, ZQW+17, ZBG+19].

cave [XGH18a].

cavities [MGK19, Pup11a].

cavity [PCR+11, OPC17, RAFFF18b, RAFFF18a].

CBr [WZHZ13].

CBS [CFOC+10, VF13a].

CBS-Q [VF13a].

CBS-QB3 [CFOC+10].

cc-pV5Z [SLS+11].

CCl [EMS16, LZZ+11].

CCI [SKS11, LGW11].

CCSD [CK13, VV13, BL12, CPF+11, DVP18, JdOS16, SLS+11, TD19, VV12].

CD [SZY17, ASHF13, ZZZ+10, XWCI11a, LKLW11, XWCI11a].

CDO [ADR+18, SAHG11].

Ce [WLG+11, WSL+11].

cefotaxime [LBMI11].

Cell [KMT+12, CBW+13, JK12, LGS+16, MANP17, QJ13, SSS15, TGRP19, WLL+13, WWB+14].

Cell-penetrating [KMT+12].

cells [AGJ12, BDG17, FFDP16, FM16, cLqFtW+14, LYS+19, MY17, PMAP12, SG19, Tz11, ZAP11, Zha17].

Cellular [Kuv10].

cel lulose [FBKB17].

Center [Buc10, Buc11a, CRSB12, CN12, Hog10, HZS14, Koc13a, MNPN18, Ta11, Yam10, YD17].

Centered [GAPK+19a, KFS13, Zak13].

Centers [ASD14, YG11a].

centrifugal [CLXD15, IIH16, ZLJ11].

centrosymmetric [KPT+17].

Century [Pup11b].

CeO [QCB+10].

Ceria [KJ14].

Cerium [CCA+12].

Cesium [MMR+10].

CF [IAW14, Mor11, Mor11].

CFC [dOdCMUdALR11].

CFP [KyH13a].

CGR
ASMP15, AD17, AMMB+18, BF11, Bal16, BL10, BL11, BG11b, Brä13, BVRM10, CJBBMMAPR19, CKL16, CLXD15, CFGC11, CPAT11, DKZ+10, DPK18, DSL15, DPRK12, DFK16, DMS+10, DLM+11, DMLB16, DSYT17, EAK+10b, EML+11, EMED+12, EMEDP15, FBO+11, FBD+13, Gag11, GP13a, GRCGRRHT19, GFPVAV19, GA19, GI11a, GhZA10, Gru17, HMA+19, Hop15, HAX+18, JN13, KWC10, Kal18, KBGIC12, KMK+16, KM12c, KUTS10, KK11d, LZZ12, LYT+17, LI17, MC11a, MPE15, MTR+19, MC14, MG12, MQ17, MKM11, MBT+12, MML11b, MPG16, NC11, Na12, NZ13, Ném14, NVPIC+13, NRP+11, NJA+12, OSI10b, OWD18, OSJ+12, OEDB11, PWY+18, PO15, Qu13, RLW+13, RGTS11, RNE10. **chemical** [RMP+14, RR19, RBTL19, SSI+10, SSK+12, SAG13, SBEH11, SKHN13, SC12a, SW10, SN15, SM19, SC10a, She14, Sh13, SIS+08, SKM11, SR13, Sko16, SFY12, SBKJ18, SRA+11, SK10, SSB+12b, TFBG14, TYN13, Tmp15, TMC18, TSTC17, UTTN13, UJSJ13, VOK+18, VO11, VO12, WYM15, WLD+10, WLWL14, YNL18, YSS+10, YYI+13, YB11, ZBK15, ZC12, dHLD12, vL13, vLRRK15]. **chemiexcitation** [dSM19a].

Chemiluminescence [dSDi13b]. **Chemisorption** [OD16]. **chemistry** [Vie17]. **Chemistry** [AH19, ÁIGVZ12, Brä13, Hog13, IFT13, KYS13, KYH+13b, TBRIS12, ZIS13, Ban12, Bar16, BMRM19, BZBZ13, Blo15, BHH+13, BT15, Buc12b, Cav13, CA1916, C16, C14, DC12, Gall11, GGZZ16, HR13, HEVMSA+19, IK14, Jia15, Kap12, Kar09, Kar10, KC19b, KN15, LSR+10a, LSR+11, LJ16, LF5+11, LCZL15, LSKM19, Luz11a, MML+16, MEF+15, MMCMV19, MQG13, MPGGS19, Mor13, NBZG16, NTCK13, Nic11, Nic14, NMSR14, OM13b, PTH11, Pup11b, Puz11, Rei15, RNB+10, SDP+16, She13, SG14, SPM+15, Tch16, TBB+19, TBRIS10, TBRIS11, Tri14, TB15, VYN+16, VMM11, VBJK18, WYWL13, WWX+11, WR14b, YZ13, ZWL13, ZWSF16, DC10, SG14, BT17, Tch13]. **Chemists** [RA10b]. **chemogenomics** [IAK13]. **chemometric** [LSR+10a, LSR+11]. **chemosensor** [LWZ+14]. **CHF** [STL12]. **Chiral** [YWR+18, BtTG11, CPL15, KGVI11, LPM+11, LMCZ11, LW13, QCW+12, SFW12, WTW+11, YYW+12, ZSS+13]. **chirality** [Luz11b, SD13a]. **chiroptical** [Cap16]. **chirp** [GRLA18]. **CHITEL** [RA10b]. **chloramine** [SZL+15]. **chloride** [EHDK11, EKD12, MM+12, SK11, dOLdV13]. **chlorides** [BLM+12, HSN+11]. **chlorinated** [FBO+11, KZA+17]. **chlorine** [DGX12, cLqF1W+14, MOY13, XXB+X+13]. **chlorins** [CJSLN11]. **chloro** [DDC+12, DPRK12, PSK19]. **chloroalkenes** [MLB+12]. **chloroanilines** [HLZ+14]. **chlorobenzaldehyde** [SRA+11]. **chlorobenzene** [SGL19, SC18]. **chlorobenzofuran** [ASMP15]. **chloroethyle** [CZJZ12]. **chloroethynitrosoreses** [ZMZ13]. **chlorophenol** [ASW13]. **chlorophenyl** [OEDB11]. **chloroquine** [KdPNS16]. **chlorotrifluoroethylene** [OCB+10]. **CHN** [RB11b]. **CHNC** [DW12]. **CHO** [DZ11a, Sch10b]. **choice** [AGP13, FSB16]. **Cholesky** [BVA+14, CPF+11]. **Choosing** [KBJ17]. **Chou** [QZH13]. **chromates** [Zen11]. **chromium** [HM12]. **chromogens** [JA12]. **chromophore** [BF11, BSM+15, GLOGM+11, LORR+12, TCM+12].
TW10, TFMC19, TPCJ+12, UKF+11, VSMK13, WJL+11, WCS+13]
custers [WJL+10, XGH1a, XWC11a, XWC11b, XF19, YSK+12, YGLL10, YZZ15b, YJ17, YZ12, YC13, ZWSF16, ZRR+11, ZCW16, ZCP11].
custers-continuum [DQZF12].
[EMSB15, LZZ+11, Oui12, ZLWZ16, CP10]. CNaY [LZZ+11]. CNC [Zha10].
CNH [Tap15]. CO
[BGFD14, BAA+18, BDR12, DPDR11, DWPK14, GGJD13, WZC+12, WRW+18, Kim19, VD13, YL11, BD14, BGFD14, BLdV19, CRSB12, CCS13, Esr18, EM19, FTB11, GSB10, HDC+11, LCT14, LW+18, MPM15, MMP+18b, RDB18, RDB19, RBTL19, SCLCPB12, SAHA12, SLSZ13, Sri18, Sri19, SCL18, WZC+12, YGLL10, AAA12, CRB+12, GZMC11, Kim18, MRT11, NKWT19, ZYSW17, WRW+18]. Co- [GZMC11]. Co-based [Kim18]. CO-photolysis [BGFD14]. CO/ [WRW+18]. Co/Ni [AAA12].
Collective [MLDP10, BM10]. collinear [SABA+12]. Collins [Sit15].
collision [LWWZ13, LPM+11, MGK+11, SABA+12]. collisions [BMTT11, BHV+11, DSC+11, dDGMB10, LdAA+11]. comb [MPC10].
Combination [KYH+13b, SN15, Buc10, CK13, DQZF12, SZZ+10, SLZ+11c, SLS+11, VV12, VV13]. combinations [Boe12]. combine [Lin14].
Combined [IK18, SJZL12, TAY11, KP11, MLDP10, NZ13, Tan13, ZLWY13, BBB+12b]. combines [WZX15b]. Combining [PC16]. combustion [MPGGS19].
CoMFA [MGK+12]. Comment [BR16, CK13, Cin20, COP16, FKBG19, Fer19, HS15, KBG17, Lad14, Lui13a, Man16, MBSA16b, MMB20, PS14, Tour13, VUC13, dSSF16a, dFR15a, HYZ19, PS13b, VV13, XT1A14].
commentary [Ols11a]. comments [Br11b]. commercial [FT15].
Common [VSL+15, ESLM19, LCH14]. compact [LQZZ12, LLZ14].
compactification [DTF+11]. Comparative [BLRdA+10, BO11, CLH14, DTEMK11, FDG18, LJJ+11, LL19, LL17, MF+13, NS2a, PI13, SD16a, dAGNJT12, CCB+12, FFF10, HNN+12, KMI12a, KKM+12, LCT10, LLZ10, ONBP11, PRUP+13, RS11b, YL13, YZ14, YLZ+14, dSSPG11].
comparing [HXDY16]. Comparison [AM13a, BPT12, CDSK12, Han19, JdOS16, MR11, RALK18, SSP+17b, SM13, UV18b, YF16, ZHL+19, ABL11, BLL+13, BGK16, CCI9, GP13a, HDQ+13, Kan11, KC16, LdBF+12, LFZ13, OKR12, dSMRFS18, SD13a, Sch13, SG19, SBK18,

Complex-scaling [JH13]. complex-valued [YW16]. complementant [XWCY11]. Complexation [ESLM19, SHE10, ZKKR11, ZAE10]. Complexes [ALMY18, GHGF12, AC19, ADR$^+$18, AM18, BHMN19, BPG$^+$10, BAP12, BHA19, BZBZ13, BLdV19, BPK19, BCS$^+$12, BB16, BS12, CRB$^+$12, CPF12, CTW12, Con10, CLMY12, CADSG18, DSD18, Den19, DPDR11, DG19, DCdG10, DD$^+$11, ED16, ESS13, EMSB15, EMS16, FBWR12, For12, FBD$^+$13, HS11b, HL19, HYD11, HZZW11, JW19, KRK$^+$17, KV11, Kry12c, KBMM10, LJL$^+$11, LYW11, LXW$^+$14, LYR$^+$17, LYL$^+$12, LSD13, Lu10, MZB$^+$13, MCE11, MNV$^+$17, MC17, MGK19, MI18, MI19, MG12, MKM11, MS14c, MPRCEG12, ND11, NFD$^+$10, OAC17, OPP$^+$14, OVT$^+$16, Owe17, PM17, PRG$^+$10, PAKA15, RFFGPP$^+$16, RB11b, SS10, SVRGV12, SG19, SGKG12, SRASZ16, SAHA12, SLS$^+$14, SK11, SS$^+$17b, SPI14, SHW$^+$13, SM17, SK12b, SS13, TTD13, TMM$^+$14, TL15, UDVD10, VO12, WLS$^+$19, WXW$^+$11, WZW17, WHM14, Wu11].

VPGC12, WCY+10, WWQG17, WLL19, YLWrL12, ZFC+17].

Comprehensive [LKN13, RYM12, WJY15, BTH18, FKC12, KI15, SL10].

Compressed [Man16, MBSAG16a, MBSAG16b, SBM16].

Computation [SPR19].

Compton [Kar12c, Kar15].

Computation [AM13a, AH19, AMK10, BYAT13, BGJSM+18, BJ17, BBA+16, BCS+12, CAA19, CSHK12, CLY12, CTH14, EM17, EBH11, FFP16, For17a, FNIT16, FR10, WKE17, Zen11, GI11c].

Computation [Man16, MBSAG16a, MBSAG16b, SBM16].

Compression [MNS10, Oni10].

Concentration [BS16, HMB16, IKN13, RTG+19].

Conceived [AF19b, GCK+17, Mak15].

Condensed [AF19b, GCK+17, Mak15].

Condensation [Chu12].

Concurrent [EMED+12].

Condensate [DCC11].

Conformation [RRCO11, Ali19b, BEM11, CGG18, CP16, DVDBM11, GBK18, HFD11,
JH15, KUY16, Luz08, NVI10, PBR18, SYL+18, Sha11b, SLZ+11c, SWS12, SZL+14, TG16, VVVB10, YKN13, ZST+10. configuration-interaction [JH15]. configurations [Buc12b, FM16, RSN12]. confined

[ATL+14, BChNH16, BJ12, CAAI12, CCP18, CFGC11, CSP+10, CDT12, CGIAI12, CJOW11, Cyhi11, DCOC+19, KP10, Kin13, LJSS12, MPTZ13, NH18, NB17, dMOB12, Per10b, RKR16, SGB11, SYL+18, SLZ+11b, SXS+12, SLS+12, SS12, SM10b, SWS12, UV18b, VLFG12, VO11, WZH13, Wit18]. constituent [MKHN11]. constrained [Lev10, SS12a, WCM14]. constrained-search [Lev10]. constraint [PSMD16]. constraints [CM16, Fin17, MB12, Oh13]. Constructing [Beh15, KFY+12]. construction [Pop15, SX15, WR14a, MPB11, RVO+14]. Contact [LJK+18, DK13, XYS10]. contacts [EAA17, GI14]. containing

[Con10, DLLA10, FBU+11, HZG12, LWJL10, MPD+15, MB15, NCMC+18, NFD+10, NFQ+11, RRR16, RRR19, SM12, SGT10, YGLL10, YZZ16]. contamination [Bla15, GXZ+14]. content [ALRA10, Sha11a, TRZ+19]. context [BBM17]. continuation [RW11]. continuous

[Ale13, Ban12, Mor13]. Continuum [AF19b, JCC10, Cam10, Cam12, Cap16, Car19, COCF+14, CML+16, DZ012c, DQZF12, FRGC10, GMA+19, Kit15, Li15, LSKM19, PCR+11, RTG+19, RFE18+16, SL10, SLS+19, WML11].
EAK+10b, EAK+10a, EI11, THSR13). corrosion-inhibition [THSR13].
cosine [GH11, GE12b, LLH15]. Coulomb
[SS12, CF14, ARG11, BPL13, BBL12, Fin16b, FRGC10, Fuki12, GH11, I0O18,
JH13, KH12, KWWH18, KK13, LLH15, Luz12, Nag16b, NDP10, PGGRMP10,
Rit12b, Roy13, Roy16, SMD11, Sil14, TC12, WWGW18, ZK12].
Coulomb-attenuated [NDP10]. coulomb-attenuating [CF14].
Coulomb-like [PGGRMP10]. Coulombic [Roy15, YW11b].
Coulombic-like [YW11b]. coumarin [MNP19, MDND0+16]. coumarins
[GTSC+19]. Counter [XPGA12, ZLWL16, MMSC19, Oni10]. Counter-ion
[XPGA12]. counterpoise [KPH+12]. counting
[JJL12a]. Coupled [BJ12, Cam10, Cam12, Car19, PCV19, Sto18, VVKB10,
WYC17, BVP13, BVP14, BSMT+15, CSVCB12, DMB12, DML12, LRP+11,
LP10b, Luz08, MPT11, PB10, RS12b, RSN12, SZH+10, Sza13, Tob19, Var11,
XDM+10, YK13, ZE18]. Coupled-cluster
[Cam10, Cam12, PCV19, LP10b, PB10, SZH+10, Sza13]. coupling
[ATL+14, Ash18, BJ12, BSVT12, CCP18, CFG11, CSP+10, CDT12,
IROW10, Kry10, Lar10, LKOS17, LW15, MKD19, MC18b, PM12, RCP14,
SSI+10, Shi18, SHS+13, WTP+19, Wtt18, YSS+10, YH14b, ZLS+18].
couplings [HKWL13, Kax15, LB19]. course [HSYM11]. covalency
[MML11b]. covalent [ABS13, AB16a, MURR13, NE11, YLH+19, KK13].
covariant [Luz08]. Cover [Ano12a, Ano12b, Ano12c, Ano12d, Ano12e,
Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n,
Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s,
Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, Ano13y, Ano13z, Ano14a, Ano14b,
Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k,
Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t,
Ano14u, Ano14v, Ano14w, Ano14x, Ano14y, Ano14z, Ano15a, Ano15b, Ano15c,
Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l,
Ano15m, Ano15n, Ano15o, Ano15p, Ano15q, Ano15r, Ano15s, Ano15t, Ano15u,
Ano15v, Ano15w, Ano15x, Ano15y, Ano15z, Ano15a, Ano15b, Ano15c, Ano15d,
Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m,
Ano15n, Ano15o, Ano15p, Ano15q, Ano15r, Ano15s, Ano15t, Ano15u, Ano15v,
Ano15w, Ano15x, Ano15y, Ano15z, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e,
Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano15n,
Ano15o, Ano15p, Ano15q, Ano15r, Ano15s, Ano15t, Ano15u, Ano15v, Ano15w,
Ano15x, Ano15y, Ano15z, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f,
Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano15n, Ano15o,
Ano15p, Ano15q, Ano15r, Ano15s, Ano15t, Ano15u, Ano15v, Ano15w, Ano15x,
Ano15y, Ano15z, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g,
[LQZZ12, MPT11, MPTZ13, LLZaH14]. curved [DI18]. curves
[DHZS11, GM11, PPDF11, SAS+12, Vik11b]. cusp [RLER14]. CuT1
[VLG12]. cutoff [KdSM+10]. cutting [LCK+16]. CX [LGW11]. cyanates
[KL0S17]. cyanide [CMCN11, DR18, GWZ16, WWLZ17, ZW15]. cyanins
[ESLM19]. cyano [KPL+17, RS11b]. Cyanoacetaldehyde [KS19].
cyanobenzenes [EMK14]. cyanogen [BMBD10]. cyanospherands
[ELC08]. cyano [VGL12]. cutoff [KdSM+10]. cutting [LCK+16].
cyclacene [OCGM+19]. cyclacenes [BLB+18]. cycle [KB13]. cycles
[BvWG14, COCF+14, Sic16]. cyclic [ABM+19, BBK16, DGA+13, FJK14, GHGF12, HL19, Jan10, JB18, LMCZ11, Luz11a, MZLM17, MWH+13, OB19, QTCL10, SB16, XZG+18, Con10]. cyclization [ALMY18, KSAK17, LD17]. cycloaddition
[ABM+19, BL11, CJGTL12, DI10, KI15, LLF17, LFTL18, LCS+11a, LXLL11, NAK+17, SKTI15, WLWT12, YNLD18, ZRGE+19, ZWWY10].
cycloalkanes [DFV+12]. cycloalkanone [HZZ+19]. cyclobutadiene
[LX13, ND10]. cyclobutane [LSL+08]. cyclobutene [QB15]. cyclobutyl
[DCY12, SC12a, SC12b]. cyclodextrin [NMHPVG12, SRVGRG12].
cyclodextrins [PEA+12]. cyclododecane [DFV+12, SAS+12]. cyclohexa
[KAOB11]. cyclohexadiene [TXK+19, ZWWY10]. cyclohexane
[WWGW18]. cyclohexyl [CZJZ12]. cyclohexyltitanium [GMM+18].
cyclohexadiene [LXD13, ND10]. cyclohexene [KAOB11]. cyclopentadiene
[CRI11]. cyclopentane-1 [OPP+14]. cyclopentane [OPP+14]. cyclopentane-1 [OPP+14].
cyclopentanone [PCR+11]. cyclopentene [ALMY18]. cyclopentenols
[VOK+18]. cyclopentene [ALMY18]. cyclopentene [ALMY18]. cyclopentane
[TBA+13]. cyclopropene [CT14]. cyclotetrazenes [FST19]. cyclopropane
e [DFV+12]. Cyclodecane [DFV+12]. cylindrical [D+16]. Cys
[ScBR+10]. Cys-Asn-Ser [ScBSR+10]. cysteinate [WHM+14]. cysteinate
[AED+18]. cysteine
[ASD18, CLMY12, HYD11, SKS10, YWH+12c, dAGNJT12]. cysteine-Ca
[CLMY12]. cysteine-formaldehyde [YWH+12c]. cysteine-thymine
[HYD11]. cytochrome [RD+11, TSKN12]. cytosine
[CTYA12, Cyb11, JS18, KUS19, YM13].

D [IIS+17, Kan11, STL12, SYZ17, TSL11, XLLZ10, ZGSM15, CC11a, ÖEB11, BEM12, BMX+19, BAB+18, DLRMFY10, HGB08, KHI10, KSO19, LCM+10a, LQZZ12, LLZA+H14, NF11, OD12, PTD+12, QTCL10, SLA12, SSS15, SK10, VY18, WTH+11, YGLL10, YSW11, ZHI12, CYS11]. D-
[SSS15]. D-dimensional [DLRMFY10]. D-wave [KHI10]. D3 [SSB19, SA18].
DABA [Ser11a]. DABCO [LLF17, LD17]. DABCO- [LLF17].
DABCO-catalyzed [LD17]. damage
[CAPGAIG18, FMP+17, POLV12, SS18a]. dance [FK18]. Darmstadtium
[DR18]. data [CFV18, EKN10, LLH15, OKR12, SAG13, SDP+16, SMEH15, SBKJ18, VLG12]. data-base [SMEH15]. database [TBST10]. dataset

decanethiol [FFF10]. decapeptide [DGA13].
decarboxylation [EAH13]. Decay [AC11, ASD14, Cao17, CCM08]. Decisive [SC18].
dehydrogenation [HSYM11, NTN10, WZ13]. Delayed [SGG10, GM18]. Deletion [Cin11a]. delivery [RdPW12].
Delocalization [DZO11, LNI12, ARH13, AT18, LDKB15, MJ16b, NE11, NRGS11, RBVAG18, WDSL14, WWD15]. delocalized [ALK18, DG19, Joh17]. delta [DAC11]. demon [CD15]. denaturation [BMB12]. Deng [Roy14]. denoising [SRMB15]. denominators [CPF11]. dense [BN12, DW12, Ng12]. densities [ALRA10, ALRA11, BPL13, Fin15, LS17, MAT19, MT11, MNZP19, SS19b, WGL10, ZL12]. Density [Ano13-49, BHA19, BGBV12, BJdIAM12, CCL13, CM12, CD12, DCBB11, DSZB18, DQZF12, EM16, ED16, FZ18, GMR18, GGD12, H12+z14, HK11W13, HY11, IS13, IN13, JS17, Kar13, KCC13, KK14b, KSA17, Kt14, Kt17, L14, LW14, LWX14, LBY14, MLC11, MW16, MUNZV12, MIN13, MLB12, MM13, MCRS16, MOH12, NTN10, NZAV10, PS10b, PS14, PMH16, RGPZ13, SA18, SRVG12, SKY13, SS13, TOS12, Tan12, Tin13, TDOD17, TFZ15, UMS13, VUC13, WJ11, Wit18, YKM15, YL11, ZCZ16, ZRR11, dCSDdMC13, AC19, ABLT11, AK17, AM13b, AB18, ATM17, AGPDZ13, AST16, BMK14, BD14, BGC12, BVCAP12, BL19, BDF16, BDF18, BLdV19, BLKB11, CDSK12, CEFMK12, CM15, CNSK11, CH17, CZL17, CLH14, CC19, CK17, CF14, CC11b, CSTA16, DWJ11, DKS11, DPK12, DW12]. density [Dil13, DZ11a, DGR16, DG19, FO10, FDNR10, Fin16a, Fin17, FA17,

FSB16, GFP AV19, GCK +17, GM11, GJ18, GHCMCMQ17, GWME18, GD11, GCZ +14, HMA +19, HR19, HHCA10, HZZ +19, HMH10a, HMH10b, HIIH13, HZZW11, IN15, JR12, JPP +11, Jan13, JW18, Jeo18, JW19, Jou13, KK13, KME +18, KPCV18, KJ16a, KJ16b, KKL +16, Kit15, KYLC19, KDO17, KJ14, Kri13, KFS13, KG08, KM +13, KFJ +18, Kuz19, Lat13, LPO +12, LSR10b, Leh19a, Leh19b, LW11, LC16, LSP +16, LLW +11, LCK +16, LDZG16, LNI12, MYZ +10, MLW +14, MJ16a, MFK +12, Mas10, MKSG13, MLK17, MJ11, MBBT +12, MBSMJFC18, MNS11, MKW11, MJM19, Nag15, Nag17, NAK +17, NDP10, NL11, NMIP14, NMSR14, NIT16, OD16, POLV12, PI13, PK13a, PABSK16, PP16, PTH11, PL11, PCV19, PR10b, PSMD16, PRFR17, PFDM13, Per18, PJP10].

Density [PMAP12, PI16, PC13, QHS11, RLER13a, RCM +19, RPVM10, RGT11, RAMB18, RBVAG18, Rud12, RSCS10, RLZ12, RS13, RKCK19, SS10, SLG11, SB18, SFC16, SL +18, SN12, SAHG11, SLL +18, SJJ +18, SIS +10, SDM12, SSP +17b, Srt19, SRA +11, SK12b, SX15, Tan13, TA10, TCA10, TGRP19, TLC +17, TRZ +19, UV18a, VP12C12, Vik13, VBO +15, VSL +15, WKE17, WW11, WJY15, WDJ +17, WTZ +11, WR15, XNL +14, XSLF12, FxxBhD19, XGH +18b, YLH +19, YW12a, YWH1b2, YRN +11, Yu13, YF16, ZT13, ZKRR11, ZQJC10, ZLB13, ZBG +19, ZM13, ZCNG16, ZS14, ZKW17, ZZ18, Zho18, dCGAM12, CTDOLA10, LLZ +12, Ven12].

Density-based [ZKW17].

Density-dependent [IN15].

Density-functional [SVRG12].

Density-matrix [EM16, Kit14, Kit15].

Depicting [LBdV16].

Depolarization [AEM +12].

Deposition [SAHGI1, SAHA12].

Deprotonation [CFOC +10, Kry12b, PUGSF18, Shi18, WX +11].

Depurated [Cin20, MMM16, MMO20].

Derivative [BR10, BR16, Bra10].

Derived [HSN18, BSS19, DWPK14, KG11G11, LWZ +14, TPT19, WLZ +12b].

Derivatives [ALMY18, BSS15, CML +13, CCL +16, CFV18, CWB +13, CSG14, DKZ +10, DWZZ15, DNCKS +12, EI11, FSQ +11, GTR11, GB13, HNH +12, HMA +19, HS11b, HLB19, ILBS10, JLZ +17, JB11, JFDD10, KZA +17, KKM +12, KSN +10, KKG12, LGM +18, LWL +12, LYS +19, LWY19].
LCCH10, LWH+12, LCH+11, LCS+11b, LW15, MLY+16, MNV+17, MLPT10, MDNDO+16, MBBT+12, NRHJ11, OAA19, PPK+13, QHS11, RYM12, RBZ15, RMP+14, SF13, SST011, SRMB15, TZ11, TKSK17, Val17, VV18, VMC11, VHTEG15, VBO+15, WGLX10, WLL+13, WJ11, YWR+18, ZSAP11, ZZX10, ZZR+12, ZYL+13, ZMB+17, ZFC12]. derived [CADSG18, MAN15, NH18, PAKA15]. describe [CB10, MMG15, PABSK16, Sza13]. describing [Gar08, JCC10, dGR14]. description [AB18, DVDBM11, DCFD10, DMBL16, Fer19, FGD19, GC19, HFdGC14, KO14, LORR+12, MPMMC+11, MBA+19, Nas19, NGS11, SIM14, SFL+10, TCA10, TRZ+19, ZZ18]. descriptions [PC16, PCK19]. descriptor [AKR12, FDG18, PUGSFM18]. descriptors [GI10, GI11b, GI11c, GI11e, JS18, LV19, LNV+18, Nag16b, Nal15, OPAVM18, PH12, Pog12, TFA10]. Design [FZH+18, HSS18, IIS+17, cLqFtW+14, Val17, BJ17, CAA19, DC14b, GhZA10, HM10b, LLZ+14, LZZ+17, MY17, MSM16, Ném14, Oni12, OW18, SRASZ16, SAHAA16, Sik18, SLA12, SSS15, SM18, THL+15, TK16b, VV18, WWB+14, WR14a, WR14b, XWF+14, YZZH15, YHLC15, ZFW+13, ZWZK19]. designed [NTGC19, OAA19]. designing [SSB12a, ST15]. desorption [´AFV12, FTB11, GD11]. Dess [TM19]. destructuring [KRG+13]. desulfurization [VPGC12]. detachment [DZO12a]. Detailed [Sch13, Fin14a]. Details [Lar10]. detector [BMB10]. determinant [RLZ12]. determinants [CSSK+12]. Determination [ATL+14, GI11b, GI11c, IKN13, SN12, Ali14, AGPDZ13, AST16, MLW10, PT13, Ser11b, GBK18]. determine [SFW12, Tob19]. determined [Mor12]. Determining [MGM11, AGB19, Bon17, IKN13]. detonation [LZZ+13, RGTS11, WGLX10, ZZX10, ZL12]. Detours [DB13a]. deuterium [NHB12]. deuteron [HITU16]. developed [AY15]. Developing [AV19]. Development [KSN+10, Lin14, NNSN17, SR11b, SKV12, SZ15, GEL18, Kap12, KKL+16]. developments [AMMC19, HJK14, Jor18, Mur12]. device [yBZfC18]. devices [Jan10]. dfppy [ZQJ13]. DFT [YSK+12, AEKGZ12, AFC+10, ACF+11, BVCAP12, BPVDB11, BP13, Bas11, BBZB13, BLRdA+10, BAA+18, BS14, BDR12, BAB+18, BJ12, BO11, BW13a, BW13b, BSV12, BSKP11, CRB+12, CR18, CPF12, ÇAS13, CRSB12, CW16, CCL+10, CKYR18, CKB18, CFGC11, DSCO+13, DSD18, DCDD10, DCFD10, Dw13, DAE+12, DPDR11, DP16, DdG+11, DB15, DFF+13, EG10, ESDO16, ESS13, EFO11, EO11, ES17, EM19, ESBVY12, FSQ+11, FY11, FRNM12, FPGRMGHB12, GAKP+19b, GC18, GJ18, HS11b, HFdGC14, HNBS18, HhGqZZ17, JPPA10, Jan10, JL12b, JB11, JLL11, KMS+11, KP11, KP11, Kar12b, KBF+13, KAG08, KMM+18, KG17, KI15, KKG12, KBM10, LJ13, LGM+18, Les12, Lev16, LYW11, LLP+13, LLF17, LZW+18, LTL18, LW+19, LGW11, DVMC19, LKZ+16, LGS+16, MXY18, MCP10, Mar12, MCC12, MK19, Mas10, MMP+18b]. DFT [MMC+19, MFZ+18, MCL11, MS17, MML+11a, MMY+12, MAN15, Nag16a, NEEV15, OKK10, OvGvS18, OCB+10, OCGM+19, OPP+14, OVT+16, PS10a, PTS+11, PK13a, PWL+10,
BS16, CW16, CP11, FM16, GI11e, GGP13, HGB08, JdOS16, KP10, LZZ+17, MNP19, MIKH19, TW10, TFZ+15, YŞÖ12, ZCW16, Zill14. differential [Ali14, yBZfC18, CRA+11, HVR18, Nag10]. differentiation [CW11].
difficult [KLE+19, Mar12]. difficulties [Sut12]. diffraction [ŒDB11].
dihydrolipoic [PM17]. dihydrobutyric [TM13]. dihydrolysergol [RGS+13].
diphenylamino [CRSB12]. diphénylcarbène [GLXL18].
diphyformazans [TT10]. diphenylpolyménes [MMWA11].
diphosphinito [ED16]. dipolar [BL11, DI10, ELC08, YNLD18]. dipole
[AM12, Ber13a, Ber13c, BVPI4, GFB12b, GI11a, GI11c, HK11, IMS+13,
KA11, LKJ13, MA11b, MD11, MVA19, MNS11, SS12]. dipoles [SMEH15].
Dirac [DJ12, Agb12, Bay19, BCNR18, DJ95, NF11, RW12, Rit12b, SS12].
diradical [MMF+13, NYS+10, PCK19, Sh18, YS+10]. Diradicalology
[NKF+13]. diradicals [BSM+15, CKL16, ZLS+18].
direct-potential-fit [Haj18]. Directed [DKR10, ABS13].
Divide-and-conquer-based [SKHN13, YKN13]. divide [HS11c].
divinyl [dILAI+12]. divinylenol [FO10]. division [FDG18]. DJ [Sh13]. DJ-1
[Sh13]. DMABN [CFP+10]. DMABN-Crown4 [CFP+10].
DMABN-Crown5 [CFP+10]. DMAP [LLF17]. DMAP-catalyzed
dual-level [WWHZ13], ductile [KG17], due [ALA15, CAO18, ZSZ14], duplex [PPK+13], during [HSYM11, MNC12, MSAB19, Tob19], Duschinsky [Man13], dyads [MUNZVR12], dye [AGJ12, BDG17, ÇAS13, FM16, FSBA12, cLqFtW+14, MY17, MFB11, MANP17, PMAP12, QJ13, SG19, SSS15, WKE17, WWB+14, Zha17].
dye-aggregates [WKE17], dye-sensitized [AGJ12, FM16, cLqFtW+14, MAP12, QJ13, SSS15, WWB+14, Zha17].
dyes [AGJ12, BBM17, FM16, FBU+11, GMA+19, JPPA10, JWG+12, cLqFtW+14, MY17, Mas10, PJP10, WWB+14, ZSAP11].
Dynamic [´AFV12, DLG12, KWLS15, AM13b, Ang10, B L16, CCEGK12, CEFMK12, FKL+12, FC19, KYS13, LKJ13, MNS11, NH18, RC11, RVO+14, Tob19, TSH17, TPCJ+12, YKM+15, ZWLC12, dWLC14].
Dynamical [AFM+10, BR10, BR16, GWZ+14a, Sko16, ZZ15, EML+11, Ign11, Ign12, KMF+11, NE11, PETB18, VVY18].
Dynamics [KKH+13, LLM13, MNE+13, PPK+13, RDB18, SPRD16, SPPT15, TIN13, TM13, AS19, BM16, BBB+12b, BR15, BWB+18, CTVA12, CCC19, CW13b, Cho19, CLXD15, CAPL12, Dau16, DGR+16, DLZ11, DP11, EAH13, Fra17, FUE+12, GKS10, GVPCK10, GW18, GSPR19, HDÖS12, HXX15, HHL+12b, IKC18, JHSG18, KTI+12, Kaw15, KCC13, KSC15, Kit14, Kit15, Kit17, KF17, KUY16, LWWZ13, LC19, LPM+11, LKLW11, MAD12, MMG15, Mak15, MSH13, MDC15, MP12, MCARL11, MOE+11, MMBK12, MKD19, MMT+13, MRS15, MSK+12, MPL+11, MLB+10, MBS+18, MMP11, NTGC19, Nyn14, OHDA13, PD11, PP10, PMH+16, PI16, RSM12, RP16, Rit11, SMK+12, SIT+12, SPSA11, SMEH15, SIB+13, SHKS15, SLS+10, SKV12, SZ15, SZY17, SBL11, TK16a, TPdMB12, UTt13, Vik11a, VGS10, WWHZ13, XZJ+16, Xu16, Xu19, Yak10, Yak11, YGL+11].
dynamics [YAF+15, YT14, YINM13, YLC17, Zak16, ZPM10, ZZW11, ZGSM15, ZH15, ZCG+17, ZWL18, ZRLV10].
dynamics/quantum [BBB+12b, EAH13].
E-C [LXD13].
Early [Kap12, Li16].
earth [Ali14, BHMN19, CZCW19, DTEMK11, SG19, ZQJC10].
easy [PR10b].
echo [HST13].
Eckart [PPK+16, TCG17, VOAH18].
Economical [ZF15].
EDA [ŠKB18].
edaravone [PGG12].
edge [PE11].
edged [WWL+11].
edges [BBK016].
edited [Ban12].
Editor [CK13, Lad14, PS14, VV13, XTIA14, C16, HS15, Luni13a, Man16, MBSAG16b, Ps13b, Sha11a, Tol13, VUC13, dSSF16a, dFR15a].
Editorial [Ano18-30, Bar16, Bri14, Cav17, For17a, Li16, LV16, MEF+15, Nag16a, Tch13].
E-... [WSML16].
ed [BAA+18].
Effect [ALRA10, BSSS19, CDldSC18, Eil14, KP10, KMM+18, KT12b, KM19, MBF11, MMC+19, Mit11b, MTS15, RP11a, Sch10b, Shi18, SYS14, WLZ+12a, YLW+13, ZCZ+12, dOLdlV13, AC19, BMTT11, BdTG11, BS14, BGL+16, Bra10, BEPZ10b, CNBPR+11, CCC19, CYLL11, COP16, DKS11,
DK13, GWZ^{+14}b, GZMC11, HV11, HR19, HSN$^{+11}$, IGMK11, JN13, JLG$^{+12}$, Lad14, LSR10b, LZ12, LPOP12, LWL$^{+12}$, LLC$^{+11}$, LWJL10, LB19, MNP19, MG12, MS10, MSK$^{+12}$, MPT11, MW15, NTCG18, ND10, OMK10, OA13, PCMG12, RY12, RMTG11, RRK16, RR19, SD13a, SIM14, SM19, SAHAA16, SPI14, SK10, STU19, TYN13, TM18, TJ17, WWL$^{+11}$, XTLA13, XTLA14, XWCY11, XZJ$^{+16}$, YRN$^{+11}$, YKN13, YD17, ZGSM15, ZKWZ17, dSSF16b, dSSF16a, dAVdM17, Jan10, JWG$^{+12}$, ZAE10].

Effective [AST19, CEM14, Liu15b, May14, TSvL$^{+16}$, Vik11b, YHL$^{+13}$, BCGC12, CCBR$^{+12}$, Dw13, GbZA10, KUY16, MPTZ13, MZST16, PGGRMP10, TG16, ZE18, Liu16].

effectively [ABM$^{+19}$. Effects [ABA11, BS16, Bla15, CAO18, KSAK17, LLZ$^{+12}$, MSRn$^{+11}$, PETB18, AGOP18, ACF$^{+11}$, Ali14, AEM$^{+12}$, ALMY18, BHMN19, BH10a, BSO16, Chr10, CFCG11, DCD11, DPDR11, DWZZ15, DOLL15, EH1K11, EKD12, EEMSS14, EAV16, Fer11, GR11, GBS17, GWM11, GZ13, GR10, GRCATG19, HZW18, Ire12, IROW10, IK14, JA12, JHSG18, KI15, KRG$^{+13}$, LDKB15, LGHL11, LDW$^{+11}$, MNZPT19, MZLM17, MKHM11, MRR13, MPE11, NG11, NMHPYG12, Oni10, OGVG18, OK19, PCR$^{+11}$, PWP13, QHS11, RLTAT19, RP11b, RFN$^{+12}$, RSL2a, RSN12, RSM12, RdA11, Ril10, SH18a, SKT115, SP19, TK16a, TV13, TFSRM11, TH12, Tob19, VFC17, VSMK13, WDR$^{+11}$, XZJ12, XZC12, XD$^{+10}$, YZW$^{+15a}$, YMY$^{+13}$, YT14, YFY17, ZHI12, ZLS$^{+18}$, ZBG$^{+19}$, ZIL$^{+13}$, ZBBB17, ZFC12, dCDC$^{+11}$, dSMT18, dSNBG08, SMK$^{+12}$].

Efficiency [Cal10, AGOP18, ATPRV11, BDG17, Mai14, THSR13, VRO$^{+12}$. Efficient [BL16, KI15, SHW$^{+13}$, SCBP17, YM14, ZWSF16, ZRLV10, CKB$^{+19}$, FH1$^{+18}$, FM16, IIS$^{+17}$, LCK$^{+16}$, OAA19, SKLC19, SGH10, SAHAA16, WTP$^{+19}$, WZX15b, ZC116, ZKW17, dSM19a].

EGEE [LG10].

Ehrenfest [KUY16].

eigenfunctions [PMGMGR12, PBR18].

eigenstates [KB12].

eigenvalue [Mit11c].

Eigenvalues [Mit11c].

eigenvector [LHX$^{+19}$. eight [SALK19].

eight-vertex [SALK19].

Einstein [DCC11].

electric [BL16, KI15, SHW$^{+13}$, SCBP17, YM14, ZWSF16, ZRLV10, CKB$^{+19}$, FH1$^{+18}$, FM16, IIS$^{+17}$, LCK$^{+16}$, OAA19, SKLC19, SGH10, SAHAA16, WTP$^{+19}$, WZX15b, ZC116, ZKW17, dSM19a].

electrochemical [AVG19b, NBZG16].

electrochemistry [FFPD16].

electrode [KK13, Sliv13].

electrodes [Che13].

electrodynamics [FNT16, IFT14, Lin14, Liu15b, Liu16].

electrolyte [DLO16].

electrolytes [AVG19a, MNE$^{+13}$, Pha19].

electromagnetic [Bae14, NTGC19].

Electron [Bas11, DZ012c, DJ18, DSVP15, LC16, LRMAA19, LZ10, MT11, PUH$^{+11}$, PI16, RVNP12, RBVAG18, SLG11, VBC$^{+12}$a, AA11, AOT$^{+18}$, Ali14, AEM$^{+12}$, AGG$^{+18}$, ALRAE11, AM18, ARH$^{+13}$, AST16, AT18, BKL$^{+13}$, BHMM19, Ber13a, BL10, BL11, BSSS19, BKM15, Bu10, Bu11a, CM13, CW13a, CM15, CG12, CH17, CSMZ10, CSTA16, DCLB15, DAA16, DLJT14, DTEMK11, Dil13, DZO12a, DLA10, Dun12, DSSM18, ETGLMJ$^{+19}$, FYHC11, Fin15, FA17, FMMD$^{+10}$,
GAPK$^{+19b}$, GS$_{A}Y_{11}$, GTR$_{11}$, GS$_{10}$, HSN$_{18}$, JdL$_{08}$, Jan$_{10}$, Joh$_{17}$, KWLS$_{15}$, Kar$_{12c}$, Kha$_{16}$, KPL$^{+17}$, Kit$_{15}$, Kri$_{13}$, KM$_{19}$, Kuz$_{19}$, Lai$_{10}$, LCH$_{14}$, LZZ$^{+11}$, LWY$_{13}$, LYL$^{+12}$, LGI$_{2}$, Lu$_{10}$, MGI$^{+11}$, MR$_{12}$, MW$_{16}$, MJ$_{16b}$, MPD$^{+10}$, MPZW$_{10}$, MGB$_{18}$, MJ$_{11}$, MNS$_{11}$, NA$_{14}$, NCMC$^{+18}$, NIK$_{19}$, NBGZ$_{16}$, NAK$^{+17}$, Nes$_{12}$, Ng$_{12}$, NDM$^{+12}$, NEI$_{11}$, NRGs$_{11}$, NMV$^{+14}$.

electron [OAT$^{+13}$, POLV$_{12}$, PL$_{11}$, Pir$_{13}$, PNC$_{19}$, RBGGM$_{18}$, RNV$_{12}$, RCM$_{10}$, RAGM$_{10}$, RS$_{13}$, RKCK$_{19}$, SDS$_{19}$, SDS$_{20}$, SS$_{10}$, SM$_{11}$, SBM$^{+11}$, SMB$_{16}$, SYK$^{+12}$, SPD$^{+18}$, SSAM$_{13}$, SHS$^{+13}$, SM$_{12}$, Sit$_{15}$, SL$_{13}$, ScBsr$^{+10}$, SBKJ$_{18}$, SRI$_{18}$, Tob$_{19}$, TC$_{12}$, VF$_{13a}$, VBC$^{+12b}$, WLS$^{+19}$, WWD$^{+15}$, WHI$_{12}$, XYS$_{10}$, YNL$_{18}$, YM$_{14}$, YRN$_{11}$, YHLC$_{15}$, YD$_{17}$, ZDO$_{10}$, ZFS$^{+11}$, ZZZ$^{+18}$, ZSZ$_{14}$, ZJS$_{13}$, dAI$_{12}$, dCDC$^{+11}$]. **Electron-density** [RBVAG$_{18}$]. **Electron-group** [WH$_{12}$]. **Electron-muon** [RAGM$_{10}$]. **Electron-N** [SSAM$_{13}$]. **Electron-pair** [LRMAA$_{19}$, MT$_{11}$, WH$_{12}$]. **Electron-proton** [DLCB$_{15}$]. **Electron-rich** [YNLD$_{18}$]. **Electron-withdrawing** [BSSS$_{19}$]. **Electronegativity** [CG$_{12}$, GI$_{11b}$, GI$_{11c}$, GI$_{11e}$, GI$_{11f}$, Kan$_{18}$, TSBSM$_{12}$]. **Electronic** [AB$_{16b}$, AC$_{19}$, AGB$_{19}$, AVG$_{19b}$, BZBZ$_{13}$, Ber$_{13b}$, BVP$_{14}$, BBYZ$_{18}$, BBAL$_{12}$, BG$_{11b}$, BG$_{11c}$, CZLD$_{17}$, CJGTL$_{12}$, DLLA$_{10}$, FMO$^{+11}$, FMCA$_{11}$, GZF$_{13}$, HHCA$_{10}$, IA$_{13}$, KK$_{11b}$, KLZQ$_{15}$, KP$_{13}$, LDsdMi$_{14}$, MLY$^{+16}$, MFZ$^{+18}$, MS$_{14b}$, MKM$_{11}$, NBL$^{+14}$, NDM$^{+12}$, Pup$_{11a}$, RKM$_{12}$, RZC$_{13}$, SGC$_{13}$, SBB$_{16}$, TNT$_{18}$, TSKN$_{12}$, TSH$_{17}$, VSN$^{+11}$, VBO$^{+15}$, XTLa$_{13}$, XTLa$_{14}$, YW$_{11a}$, YH$_{14a}$, AEGKZ$_{12}$, AO$_{12a}$, Alc$_{13}$, ART$_{08}$, AST$_{16}$, BVCAP$_{12}$, BPVDB$_{11}$, BPL$_{13}$, BS$_{11}$, BL$_{10}$, BW$_{15}$, BB$_{16}$, BSV$_{12}$, CWL$^{+13}$, Cas$_{15}$, CMCN$_{11}$, CWW$^{+16}$, CHSO$_{13}$, COP$_{16}$, DIOG$_{12}$, DAR$^{+11}$, DCY$_{12}$, DD$_{17}$, DWX$^{+16}$, DG$_{19}$, DCHC$_{11}$, DHYC$_{19}$, DHZS$_{11}$, DSH$^{+13}$, DB$_{13b}$, Dun$_{15}$, Dy$_{16}$, ETGLMJ$^{+19}$, Fin$_{14b}$, FSM$_{11}$, GB$_{17}$, GAPK$^{+19b}$, GSZ$_{10}$, GWM$_{11}$, GFB$_{12b}$, GP$_{13b}$, GMT$_{16}$, GEL$_{18}$, GJ$_{18}$, GB$_{13}$, GM$^{+18}$, GC$_{19}$, HMI$^{+15}$, HTM$_{10}$, HILI$_{19}$, HIJ$_{13}$, HWW$_{18}$, HhGqZz$_{17}$, IGMK$_{11}$, IK$_{18}$]. **electronic** [JL$_{12a}$, KG$_{17}$, KRF$^{+17}$, KMF$^{+11}$, KCK$_{14}$, KJ$_{15}$, KJ$_{16a}$, KJ$_{16b}$, KSD$_{10}$, Klec$_{11}$, KYLC$_{19}$, KSY$^{+11}$, KFY$^{+12}$, KZZ$_{13a}$, KHH$_{10}$, KAOB$_{11}$, KMM$_{16}$, Kri$_{13}$, KO$_{12}$, KUY$_{16}$, Lai$_{11}$, Leh$_{19c}$, LL$_{11}$, ILBqD$^{+19}$, LMZY$_{15}$, LL$_{19}$, LLZ$^{+14}$, LBdV$_{16}$, DVMC$_{19}$, LHL$^{+15}$, LZ$_{10}$, Lya$_{14}$, MSG$_{16}$, MLC$^{+11}$, MC$_{11b}$, May$_{14}$, MMW$_{11}$, MUNZVR$_{12}$, MBA$^{+13}$, MPZW$_{10}$, MGB$_{18}$, Mi$_{12}$, MS$_{17}$, MKD$_{19}$, MA$_{11a}$, MA$_{11b}$, MMRRA$_{10}$, MJ$_{11}$, MB$_{13}$, MPT$_{11}$, MPTZ$_{13}$, MM$_{13}$, MW$_{15}$, MS$_{11}$, MCR$_{16}$, MC$_{18b}$, NS$_{19}$, NA$_{12}$, NIT$_{16}$, NZAV$_{10}$, Ogv$_{18}$, PE$_{11}$, PR$_{+11}$, PAKA$_{15}$, PMA$_{12}$, QJ$_{13}$, QCB$^{+10}$, RMLPGGH$_{16}$, RS$_{12a}$, RMJ$_{11}$, RRRV$_{19}$, RNC$^{+14}$, RTMG$_{11}$, Rus$_{14}$, RMY$^{+13}$, SRPD$_{16}$, SR$_{12}$, SD$_{13a}$, SB$_{10a}$, SLC$^{+18}$, SYL$^{+18}$, SLS$^{+14}$, SX$_{12}$, SLS$^{+12}$, SLSZ$_{13}$, SIS$^{+08}$, SRS$^{+17}$, SSTO$_{11}$, SR$_{11b}$, SZZ$^{+12}$, ScBsr$^{+10}$, SSW$_{16}$, SKI$_{12b}$, TYN$_{13}$, TZ$_{11}$, TV$_{13}$, TD$_{11}$, TBB$^{+19}$, TFB$^{+11}$]. **electronic** [TRZ$^{+19}$, TG$_{13}$, UTT$_{13}$, Var$_{14}$, VPA$_{11}$, VLFG$_{12}$, WWC$_{17}$, WFS$_{13}$, WDS$_{19}$, WJL$^{+10}$, YZL$^{+10}$, YZL$^{+11}$, YZW$_{15b}$, YH$_{14b}$, ZQcJ$_{10}$, Zha$_{10}$, ZLS$_{10}$, ZZR$^{+12}$, ZCG$^{+16}$, ZQXP$_{17}$, Zho$_{18}$, ZCP$_{11}$, dSSF$_{16b}$, dSSF$_{16a}$, Bont$_{12b}$, Lad$_{14}$]. **electrons** [BEM$_{12}$, BBM$_{10}$, BB$_{10}$, BMB$_{16}$,
Dw13, Fer19, Ig11, Ign12, ISRK12, KK13, KK14a, KV19, Kry12c, Nas19, Nes10, QCB+10, RP11a, RPVM10, RS13, SALK19, She12, SS19b.

energies [BBKO16, LBW11, SCZG12, ASHF13, AC12, Ali19a, ABA11, BVCAP12, Bla15, CFCO+10, CHH’+19, DZO12c, DZO12a, EKN10, FLvLA15, FYHC11, FC19, GMA+19, GM11, GFRdG11, HNH+12, HIL19, HM10b, IKN13, Kin13, KKS+11, KB19, LDKB15, LORR+12, MIM19, Mas10, MS14c, NA14, Na13, NV10, OKR12, OK16, Pea11, PBB15, SH19, SR19, SOM10, SZL+14, TsyU15, VFS13a, VLFG12, WW17, WZ17, WR15, XCY11, YW+12c, ZZ10X, ZCC11, ZZC12].

Energy [CCl11b, FDA16, AV19, AG10b, AK17, AB18, AOLEB12, AEM+12, ART08, AZD+11, AST16, ALK19, BXR+13, BPG12B11, BP13, BAP12, BFS16, BBL12, Ber13c, BVA+14, Bou12b, Bud12, CPF+11, CWW12, CNBPR+11, CDS+18, CCL+16, CFV18, CLH14, CSG14, COP16, DK13, DB11, DHZS11, EMK14, Fin16a, FMDM+10, GST11, Gra08, Gra11, HR19, Han19, HJRO13, FHD11, HMI10b, HFdGC14, HM10b, HM11, HBMM11, ISN13, IK18, Jeo18,

F [yBZfC18, CS18, DPD11, DSSM18, DSSM19, EMSB15, GWM11, GKT+12, GB13, HNBG15, JLG+12, KAR12a, KMM16, Kuz19, LIL+11, LHGL11, LZZ+11, LMZ+11, LLG+12, LC16, MEEA+13, PP14, RLAT19, SB18, SKS10, SPI14, SYQ+10, SZL+14, TMC18, TL15, WZW17, XZL+12, MLPT10, YZW+15a, BLWJ17, DMAB12, DZO11, GKT+12, LHGL11, MA14, MGB18, Pup11b, SIK18, SZ15, TNN16, YGL+11, ZHL+19, ZCG10]. F12 [BL12, yOITn15]. Fabricio [COP16]. fac [AC19]. fac [DMWY11, DLG12]. Factor [Tri14, Kan17]. factors [AGB19, BMX+19, Mam13, MK11, SPO+11, TZ11, VLG12]. families
first-shell [JMPP19]. Fischer [MJ16a]. fischeri [PI13].
Fisher [LNV+18, MR18a, Nag15, OOI+19]. fit [Ha18]. fitting
[KFJ+18, PCV19]. five [RNV+12, WLS+19]. five-electron [WLS+19].
fixing [WR14a]. Fixation [GC18]. fixed [IM15]. flavonoid [DS18].
flavonols [FZX18]. flavor [Tch16]. flavors [Mat02, Mat10]. flexibility
[LB11, MB11, OMD13a]. flexible [BAB+18, ZP16]. flexible-cluster
[BAB+18]. FLi [YLWrL12]. flow [FUE+12]. fluctuation [NTCG18].
fluence [HMH+13]. fluid [TTM16, Vki11a]. fluids [SA18]. fluorene
[BCAP12, Shi18]. fluorescent [BBM17, LDKB15, NTCK13, TCM+
12, ZWLC12]. fluoride [HL19, LWZ+14, MtAdCS12, OCB+10, ZL10,
dLRR11]. five-electron [WLS+19].
}

...
CD12, DWJZ11, DCBB11, DKS11, DW12, DZ11a, DGR+16, DG19, DSZB18, DQZF12, ED16, FCS13a, FCS13b, FZX18, FO10, FDNR10, Fin17, FA17, FS16, GPFV19, GCK+17, GMR18, GM11, GGD12, GHCDCM1Q17, GD11, GCZ+14, HMA+19, HR19, HHCA10, HLZ+14, HZZ+19, HMH10a, HMH10b, HK11H3, HY11D, HZZ11, IN15, JR12, JPP+11, JA12, JS17, JW18, KME+18, Kar13, KPCV18, KK14b, KKL+16, KSAK17, KYLC19, KSG+12, KJ14, Kri13, Kry12c, KG08, KMU+13, Lat13, LPO+12, LSR10b, Lle19a, Lle19b, LW11, LWL+12, LWX+14, LBY+14, LLW+11, LKK+16, functional [LDZG16, LLZ+12, LSC+18, LNI12, MYZ+10, MLV+14, MJ16a, MLC+11, MFF+12, MA10, MW16, MUNZ1R12, MG12, MKG13, MLK17, MLB+12, MBBT+12, MM13, MKW11, MCRS16, MOH+12, Nag15, Nag17, NH18, NDP10, NTLN10, NL11, NMIP14, NMSR14, NDM+12, NZAV10, OD16, POLV12, PS10b, PS14, PI+13, PMH+16, PABS16, PP16, PTH11, PR10b, Pir13, PU14, PJ1P10, PMAP12, PI16, PC13, QHS11, RGPZ13, Rs12b, RCM+19, RPVM10, RAMB18, Rud12, RSCS10, SB18, SA18, SGL+16, SVRG12, SLC+18, SN12, SAHG11, SHL+13, SJZ+18, SIS+08, SDM12, SRMB15, Srl19, SK12b, SS13, TOSN12, Tan12, TIN13, Tan13, TDOD17, TFZ+15, TLC+17, UV18a, UMS13, VPGC12, Ven12, VUC13, Vik13, VBO+15, WKE17, WJL+11, WW11, WY15, WY15, WZT+11, WR15, Wit18, XNL+14, XSLF12, XGH+18b, YLH+19, YWH12a, YWH12b].

Fundamental [Brä13, Hor13, IFT13, MSH13, Mar13, YK13, ZJS13, B15, CK13, Gi11b, Gi11c, Gi11e, VVVB10, VV12, VY13]. fungal [VGS10]. furoic [VGS10]. Further [Jor15, ZLW16]. furylfulgide [LZZ+17]. furylfulgimide [LZZ+17]. fused [RGTS11, WDS19, Yaml1]. future [BJ17, MGN14, Sic16]. fuzziness [Tch16].

growing [CD12]. growth [LVP12b]. Grx3 [Dum12]. Grx3-like [Dum12].
GTP [MMT+13]. guanidine [LW13]. guanidine-catalyzed [LW13].
Guanine [SL10, BSV12, KMMS17, POLV12, YM12, ZRY+13]. guess
[LCK+16]. Guest [DC14a, XXbX+13]. guests [NCMC+18]. guide [SLS+19].
guided [SRS+17]. Guseinov [Mam14]. Gutzwiller [YWH12a, YWH12b].
GW [RAMB18].

H [BDF+18, BGFD14, BJ17, BTH18, Buc12a, BSPK11, CRSB12, CS17,
DMAB12, DPDR11, DZO11, DZO12b, DQZF12, EML+11, EMS16,
FBRBR12, GWMI1, GB13, GR10, GKG18, HJRO13, JCCZ12, JLG+12,
KWC10, Kal18, Kun11, Ki12, KSSK16, KSST12, KRG+13, LZ12, LCL+10a,
LJ+11, LZZ+11, LMZ+11, LBY+14, LZW+15, LCZ15, LXD13, LdAA+11,
LEU+11, MLY+16, MC12, MMBK12, MPRB+10, MC18a, NBL12, NL11,
NMPI14, NH11, OCL+18, PTS+11, Pan16, QSLY10, RLTAT19.
RFEGPP+16, RGR12, SBAT16, Sat11b, SZZZ11, SCTW10, SZL+14, SZ15,
SY17, TBRIS12, TG13, Vlk+11, WCY+10, WZW17, WLL14,
WWGW18, XLLZ10, XCL+18, XF19, Y1Y+13, YSK+12, YLYC18, ZGSM15,
ZCG+17, ZWL18, ZHL+19, AC12, AST19, BN12, BDFM10, BPVDB11,
P13, BPG+10, BAP12, BEM11, BHV+11, Buc12a, CLXZ12, CP10, CC11b,
Cor16, DLCB15, DSA18, Den13, DMS+10, DLM12].

H-Bond [LCM+11, SMEH16]. H-bonded [DLM12, DMBL16, IS08, IKS10].
H-bonding [CLXZ12, DMS+10, KdPNN16]. H-bonds [IROW10, SS11].
H-passivated [GMT16]. H/D [SK10]. H2 [ZCG+17]. H5N1
[KRH13, WZ10a]. HAI [Sat11a]. HALA [RKR16]. Half
[KMS+11, AAAM12, AAA12, DZO12b, SMOD11, Pup11b]. Half-a-century
[Pup11b]. half-line [SMOD11]. half-metallicity [AAAM12, AAA12].
half-sandwich [DZO12b]. halide [DZO12c, HNBG15, LGM+18, XZL+12].
halide-exchange [XZL+12]. halides
[BMBD10, For12, LC16, MML+11a, RYM12, RKCK19]. Hall [Bra10]. halo
[EMK14, LGP+11]. halo- [EMK14]. haloalkane [ZCZ+12].
haloammonium [XZL+12]. Halogen [DLP17, SC18, VVY18, BLL+13,
Buc11b, CLXZ12, DPK18, DWZZ15, EMSB15, FGD+19, GLXL18, JZL+17,
KCC14, Kuz19, LLJ+11, LLG+12, LDG16, LDZ+11, LLZ+12, MS14c, Sch13,
SMP10, SPI14, SY16, SCZH16, TL15, VVJ15, WTW+15, XZYS10, YZZ16,

hexafluorocyclohexane [HWWW18]. hexagonal
[KC19a, LFP+19, NBL+14, PL18a, UV18a, UV18b]. hexahydro [MJ11].

hexahydro-1 [MJ11]. hexanal [BCS+12]. hexanuclear [PAPCM+16].
HF [GKT+12, LGW11, SPI+14, YGL+11, YZ10, AFM+10, SY+16, SCZH16, Boul2a]. HFC [Tas14]. HFC-32 [Tas14]. HFE [KAR12a]. HFE-161 [KAR12a]. HFF [BLKB11]. Hg [NF+11, WHM14]. HgClO4 [RSM12].

HGGGW [MRT11]. HH [Che12]. HI [LGW11]. hidden [YLZ+17].

Hierarchy [ZLE17, PC13]. HIF [MK+12]. HIF-1 [MK+12]. High
[Beh15, LGW11, Beh15, BHH+13, CKB+19, CRFR11, CL14, CKYR18, CML+16, DBTA19, DSFT17, DSSM18, Fer11, HSN18, Jeo18, JW19, KG17, KMU+13, LCL+10a, cLqFtW14, LMC19, Luz08, Lya19, Mai14, MDC15, Mili2, NKKN15, RTGS11, RNE10, SSP+17b, SZL+14, WCGD12, fXXBhD19, XZZ+10, XCD18, YYY+12, YZ13, YMI4].

high- [Fer11]. high-density [JW19]. high-dimensional [Beh15, DBTA19].

high-efficiency [Mai14]. high-energy [CL14, XZZ+10].

high-energy-density [Jeo18, fXXBhD19]. high-harmonic [CML+16].

high-level [LCL+10a, RNE10, SZL+14]. High-lying [ZCG10, DSSM18].

high-order [Luz08]. high-performance
[BBH+13, CKB+19, cLqFtW14, Lya19, NKKN15]. High-precision [Kin13].

high-pressure [KMU+13]. high-resolution [DSFT17].

High-spin [MPRB+10]. High-temperature [Dun15, WCGD12].

high-throughput [CRFR11, KG17]. high-valent [YYY+12]. higher [LBW11, SMRK18].

highest [SM14b]. Highly [KPH+12, KS18, WZW17, EM19, KRH13, LLZaH14, NDH10, OK16, OAA19, SMEH16, YAF+15]. hill [SSB12a, RA10a].

Hillman [QZW+17]. hindered [SBEH11]. Hirsch [MC18a]. Hirschfelder
[Haj18]. Hirschfelder-long-range [Haj18]. histidine [NGH+12]. histone
[dSMPRP18]. Historical [Hop15]. hitting [PR11a]. HIV

HMgH [WLL11]. HMgO [LGP+12]. HMH [BLB+13].

HMX [Jeo18, LZZ+13]. HMX/NOTO [LZZ+13]. HNB [LCL+11]. HNBe
[LCL+10b]. HNCh [XDM+10]. HNgBeF [SMC18]. HNO [BL11, YL10].

HOAI [LGP+11]. HOCl [RNE10]. Hoff [Buc10]. HOH [SW12].

Hohenberg [LB14b, Lev10]. holding [NIK19]. hole
[ATPRV11, ABLT11, FY11, JLG+12, MCL11, SC18, VATPR11, VAT12, WTP+19, WLC+17, ZHL+19]. hole-transporting [MCL11]. holes [CP13].

hollow [MC18a, PAKA15]. hollow-caged [PAKA15]. Holstein [DTFK15].

HOMg [LGP+12]. HOMO [MA12]. homodesmotic [MMM19].

Homodimers [ZS12]. homogeneous
[CSTA16, Lak10, MLB+12, MMM+12, Sic16, Yak10]. Homology
[PTD+12, SLS+10, CSVCB12]. homolytic [KZA+17, OKR12, OK16].
59
Homonuclear [EMS16, KBGC12, NZ13, SZZ+ 19, SM14a]. HONPAS
hopping [MMG15]. horseradish [ZST+ 10]. HOSO [STU19]. host
[DC14a, MSS11, OCGM+ 19, XXbX+ 13, YBMK12]. hot [BW15]. HOX
[LLG+ 12]. Hras [MMT+ 13]. Hras-GDP [MMT+ 13]. Hras-GTP
[MMT+ 13]. HRh [DPDR11]. HS [dDGNB10, LZFZ13]. HSAB [ZXY13].
HSAl [LPG+ 12]. HSH [SKS10]. Hsp90 [KTI+ 12]. HT
[CSVCB12, CSSK+ 12]. Hua
[FKBG19, HYZS19, KBG17, AAHN16, HRT12, HYZS12]. hubbard
[LNI12, HFdGC14, WDJ+ 17]. Hubbard-corrected [HFdGC14].
hubbard-like [LNI12]. Hückel [Koc13b]. Huge [FBD+ 13]. Hulburt
[Haj18]. Hulthén [Roy15]. Human [CSVCB12, WTH+ 11]. humans
[KRH13]. Hund [KT12a, MHT+ 08]. HX
[SPIL14, HNBG15, SPIL14, Vie17, Wu11]. hybrid
[AV19, AF16, Ali19a, AK11, CF14, FCS13a, FCS13b, HZZW11, Kry12c,
KSO19, LPO+ 12, MCK17, NMSR14, SB10b, SX15, TFSRM11, XCY15,
YYI+ 12, YIY+ 13, Yu13, YF16, ZPR10, MPE15, SIS+ 08, YSK+ 12].
Hybrid-density [SIS+ 08]. hybridization [ABS11]. hybrids [MJM19].
hydantoin [ND11]. hydratase [MLW+ 14]. hydratase-lyase [MLW+ 14].
hydrate [XXbX+ 13]. hydrated
[BMF+ 14, EPS+ 16, MNC12, SMEH16, SCS15]. hydrates [LB19].
Hydration [Ma14, Pat15, PBM10, RGR12, RBTL19, SL10]. hydrazide
[DDÇY12]. hydrazine [SC12a]. hydrazono [KDÇ12, SC12b]. hydride
[BLL+ 13, Ber13a, HMI+ 15, JL12b, Mar11, MHOG18, OA12, YYS15].
hydrides [AO12a, BDR12, CP13, EAA17, SH18a, SSA18]. hydroacylation
[WML10]. hydroaminations [ZSS+ 13]. hydroboration [SLS+ 15].
hydrocarbon [MSY+ 12, WLS+ 19]. hydrocarbons [BRS10, Bla15, CA17,
DI18, FC19, GMT18, GHS12, HIL19, LVP12b, RNV+ 12, SFM13, VRO+ 12].
hydrochloric [dLdOdAD12]. hydrofluoropolyethers [Vie17]. Hydrogen
[AO12a, BLR12, BAP13, Cha10, CTDOLA10, GZ14, HS15, JLG+ 12, KK11a,
MSVMCI10, MURR13, ND11, NBL12, OA12, PCMG12, SGKG12, SJZ+ 18,
SKM11, WWGW18, YL10, dFR15a, dLRR11, AV19, AKHS13, BCGC12,
BN12, Bay19, BL11, BWB+ 18, CdLdSC18, CDS+ 18, CNSK11, CCP18,
CC11a, Coo12, COP16, DAC11, DAC12, Den13, DLG12, DLM12, DLP17,
DB15, EKN10, EPS+ 16, FAFR12, FRNM12, FMCA11, FKC12, GI14, GIO12,
GH11, GORW19, GZBH18, GZMC11, HNH+ 12, HL19, HNBG15, HYD11,
IAA15, IK18, JN13, JCCZ12, JZZH17, Kar12c, KKG12, KS18, Kry10,
LLF+ 12, LJW+ 11, LLG+ 12, LWX+ 14, MS14a, MdAdCS12, MK11, MK12,
MNV+ 17, MCARL11, MTL+ 12, MT10, MFOH18, MFLK11, MMBK12,
MS14c, MMM+ 12, MAPS18, MNS11, MR18b, NW12, NG11, NMIP14, NH11,
NHB12, NRGS11, NRP+ 11, NRHJ11, NEEV15, OH12]. hydrogen
[OH13, OHDA13, OA13, PM17, Pup11a, RZ17, RZSZ18, RJY+ 10, RJA+ 10,
RYM12, RI19, Ril10, Riv11, RAFR18a, RAFR18b, RNE10, RB11b, SRPD16,
SS10, SMRK18, Sch10b, Sch13, SK17a, SM19, SMP10, Sic16, SSP14, SPIL14,


hydrogen-bond [OHDA13, SCL19]. Hydrogen-bonded
[SGKG12, CdLdSC18, CCP18, KS18, LJW+11, MT10, OA13, RNE10, ZLZ+14, dSCC12]. hydrogen [OHDA13, SCL19].
Hydrogen-bonded [SGKG12, CdLdSC18, CCP18, KS18, LJW+11, MT10, OA13, RNE10, ZLZ+14, dSCC12]. hydrogen-like [SS12].
Hydrogenated [IIW+11]. hydrogenation [TGA+11, VPGC12, XSLF12, ZZC15].
Hyrogenic [DLRMFY10, DBTA19]. hydrolysis [CCL+11, DSZB18, KFS13, PRFR17, PMC11, RNDA+10, YTY19].
Hydronium [DE18]. hydrophobic [NHG+12, SMK+12]. hydroquinone [NP18].
hydrosulfide [HLJZ11]. hydroxamates [TPdMB12]. hydroxamic [KK11a].
hydroxide [DE18, RGR12, WZZL10]. hydroxides [DCDD10].
hydroxy [TAY11, YLW+13]. hydroxyacetone [SSdS17].
hydroxynaphthoquinone [JB11]. hydroxybenzaldehydes [EKN10].
hydroxybenzenes [ATM17, KM12a]. hydroxybenzylamine [AF+10].
hydroxycarbene [Buc12b]. hydroxycarboxyls [SSdS17].
hydroxycinnamoyl [MLW+14]. hydroxycinnamoyl-CoA [MLW+14].
hydroxyl-fullerene [KK11c]. Hydroxyl [TWHZ14, CGIAI12, FNBK17, KAR12a, LLP+13, LCM+11, Ril10, XNL+14, YMY18a, ZZC12].
hydroxyl-thiourea [LCM+11]. hydroxylapatite [UV18a, UV18b].
hydroxylated [MDND+16]. hydroxylations [SSI+10].
hydroxylbutyloxy [RS11b]. hydroxylbutyryl [MFR10].
hydroxynataresinol [SBEH11]. hydroxymethyl [KAOB11].
hydroxyphenalenone [OA13]. hydroxypropanal [SSdS17].
hydroxyquinoline [CHV14]. Hylleraas [OH19, PSGK17]. Hyper [LXW+12, DW12, FK1+12, KP11, Kha16, Mar12, XWCY11].
hyper-netted-chain [DW12]. hyper-radial [Kha16]. hyperbolic [AY15, GE12b, SDL+15, dAB17]. hyperbolic-type [AY15]. hyperbolic [WC14].
hyperconjugative [CSP+10]. hyperfine [Bou11, Bou12a, Kin13, Wit18]. hypergeometric [PMGMR12].
hyperpolarizabilities [AK11, CEFMK12, NKF+13, OCL+18, YMY+13, dWLC14].
hyperpolarizability [BHMN19, FSB16, GXZ+14, Kar12b, Mar11, RVO+14, WWL+11].
hyperspherical [BAP12, PML+11, RPB11]. hypersurfaces [PBM10].
hypervirial [ATPRV11, VATPR11, VAT12]. hypochlorous [TV13].
hypoelastic [SALK19].
identical [XLz+12]. identifies [ST15]. identify [MVG18].
Identifying [BB16]. identities [Cin11a, Cin11b].
Identity [RDB19, Buc10, Buc11a, GI11b, GI11c].
IEO [FYhC11], IEPOX [KZZ13b].
II [Bal16, DSD18, DCdG10, FBD+13, LYW11, LGW11, LGS+16, MGK19, NNSN17, NFQ+11, OAA19, RNdA+10, SLC+18, SG19, TFA10, WHM14, WRW+18, YZL+10, ZSASS13, ZLLS10, dCSDdMC13, dARAV12, dCDC+11, ADR+18, Bou11, Bou12a, Cam10, CPF12, Ire12, Jor18, Kry12b, Leh19b, LSR+13, MS12, OH13, PDI1, PEA+12, PVS12, QD10, SGL19, YVI+13, YIY+13, YSK+12, YWR+18]. IIB [Eng16].
III [CADSG18, EG10, LD5dSI14, MSOV13, MMSC19, PCD14, RMP+14, SLS+14, SSP+17b, SHW+13, WXH+11, ZQCI10, ZQJR13, ZSYW17, ZSQ+10, AC19, AMK10, Cam12, CWS15, LCR+17, NMS+10]. IIIA [Eng16].
Illustrative [Mai14]. Image [Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, Ano13y, Ano13z]. Image [Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano14y, Ano14z]. Image [Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano14y, Ano14z]. Image [Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w].
Ano19], Ano19k, Ano19l, Ano19m, Ano19n, Ano19p, Ano19q, Ano19r, Ano19s].
imidazo [YZW+15a, YB11]. *imidazole* [CC11a, NHG+12, ÖEDB11, VHTEG15]. *imidazoles* [Tug13]. *amine* [BH10a, ÇT14, Coo12, HS11b, LFTL18]. *amines* [SFW12, XZG+18, ZZC15, ZQW+17]. *imino* [BSM+15, HNH+12, ¨OEDB11, VHTEG15]. *imidazoles* [Tug13]. *imine* [BH10a, C¸T14, Coo12, HS11b, LFTL18]. *amines* [SFW12, XZG+18, ZZC15, ZQW+17]. *imino* [BSM+15, HNH+12, ¨OEDB11, VHTEG15]. *imidazoles* [Tug13]. *imine* [BH10a, C¸T14, Coo12, HS11b, LFTL18]. *amines* [SFW12, XZG+18, ZZC15, ZQW+17]. *imino* [BSM+15, HNH+12, ¨OEDB11, VHTEG15]. *imidazoles* [Tug13]. *imine* [BH10a, C¸T14, Coo12, HS11b, LFTL18]. *amines* [SFW12, XZG+18, ZZC15, ZQW+17]. *imino* [BSM+15, HNH+12, ¨OEDB11, VHTEG15]. *imidazoles* [Tug13]. *imine* [BH10a, C¸T14, Coo12, HS11b, LFTL18]. *amines* [SFW12, XZG+18, ZZC15, ZQW+17]. *imino* [BSM+15, HNH+12, ¨OEDB11, VHTEG15]. *imidazoles* [Tug13]. *imine* [BH10a, C¸T14, Coo12, HS11b, LFTL18]. *amines* [SFW12, XZG+18, ZZC15, ZQW+17]. *imino* [BSM+15, HNH+12, ¨OEDB11, VHTEG15]. *imidazoles* [Tug13].
[SKY^{13}, DLLA^{10}, FBD^{13}, OG^{19}, YTY^{19}]. influencing [BMX^{19}].
inhibition [AI^{11}, PCF^{18}, THSR^{13}]. inhibitive [LZB^{10}]. inhibitor [SKHN^{13}, SKS^{10}]. inhibitors [DSWL^{11}, EAK^{10b}, EAK^{10a}, KMRG^{13}, KKG^{12}, MGK^{12}, RDM^{11}, ST^{15}, SLA^{12}, TP^{14}, WLL^{13}, YFW^{14}, YWY^{12}, ZFW^{13}, dOdONM^{12}]. InI [BD^{12}]. Initial [BLWJ^{17}, BS^{16}, LCK^{16}, Liu^{15a}, TJS^{17}]. initialization [ZWSF^{16}].
TSL11, THVP14, UGWL18, UV18b, VPFD10, Var11, WZX11, Wit18].

initio [Wu11, WIWL14, YKM+15, YZL+11, Yu13, ZDZO10, ZZL+11, ZLZ+14, ZF15, ZXY13, ZZZ+18, ZRL10, DAE+12, GWJ12, MPM15, SW12, Wag14].

initio-based [LV12].
injection [ZQJW13].
inner [BB10].
inner-transition [BB10].
intrusion [LV12].
injection [ZQJW13].
inner [BB10].
inorganic [BMRM19, BMF+14, BGJSM+18, KSO19, MCCGM+19, Swa13, YSA+11].
inserted [KRH13, Lwl19].
insertion [DPDR11, RRVJ10, SMC18].
Insight [DMWY11, HFL+17, She12, She13, TFZ+15, WLL+13, BGMD15, GR+16, EM17, KCDC15, MNV+17, MC17, MMSC19, RNd+10, SAG13, SACA18, SC11, VIHTG15, YWJ+11, AF16, Tan13].
Insights [CP13, CADSG18, GJ18, HNBS18, MS14a, MC18b, SLA12, TFBG14, VBO+15, Bal16, BHA19, DJB10, LXW+14, LKZ+16, MNE+13, NP18, Pan16, SMGZF19, SR11a, SKB18, XZYS10, XLZ+19, YHLC15, dSM19a, dARAV12, KMS+11, QTCL10].

Instability [Pat15].
instanton [Buc12a].
insulator [BEM11, Lar12, SAHG11].
superscription [BMRM19, BMF+14, BGJSM+18, KSO19, MCCGM+19, Swa13, YSA+11].
inserted [KRH13, Lwl19].
insertion [DPDR11, RRVJ10, SMC18].
Insight [DMWY11, HFL+17, She12, She13, TFZ+15, WLL+13, BGMD15, GR+16, EM17, KCDC15, MNV+17, MC17, MMSC19, RNd+10, SAG13, SACA18, SC11, VIHTG15, YWJ+11, AF16, Tan13].
Insights [CP13, CADSG18, GJ18, HNBS18, MS14a, MC18b, SLA12, TFBG14, VBO+15, Bal16, BHA19, DJB10, LXW+14, LKZ+16, MNE+13, NP18, Pan16, SMGZF19, SR11a, SKB18, XZYS10, XLZ+19, YHLC15, dSM19a, dARAV12, KMS+11, QTCL10].

Intelligence [Ezz10, SRS+17].
Intense [DLCB15, SRP+16].
Intensities [VVVB10].

Inter [BR16, COP16, HS15, Man16, dFR15a].
integral [HSN18, HFB11, KSST12, LWY+13, Mak15, RGLV+14, SGC13, YK13, ZLR15].
integrals [AE¨O12, AA15, GTR11, GS10, Hog10, YM14, YSÖ12].
Integrated [Cap16, HCH+18].
integration [BG11a].
integrations [Koc13a].

Interaction [ASHF13, DWPK14, EG10, JLS13, MYZ+10, MRT11, RNB+10, SPD+18, SK11, TBRIS10, ZT13, Ali19b, Bae14, BLL+13, Bas11, BEM11, Ber13b, CAZ+11, CCL+13, CGM12, CGG18, CRSB12, Cha10, CC11a, CYL+18, CP16, DC14a, DVBDM11, DTVP+12, DLG12, DWZZ15, ELC08, Eng16, EBH11, EAV16, FZX18, GWZ+14b, GD11, HFD11, HM10b, JFT13, JH15, JLG+12, KMM+18, KV19, KPH+12, LLG+12, LBdV16, LuO8, MMR+10, Mar12, MMC+19, NL11, NV10, NFQ+11, OA12, PSK+16, PR18, RYM12, RFN+12, RFMC19, RS11b, RRCO11, SB19, SA18, SD13a, SD16b, SKHN13, SYL+18, Shal1b, SLZ+11c, SS11, SM14d, SWS12, SZL+14, SYY16, SCZH16, TK16b, TG16, VIHTG15, VVVB10, WLL11, WZ17, WWQG17, W18, Wm10, Xbx+13, ZST+10, ZCZ+12, ZS12, ZMB+17, TBRIS11, TBRIS12, YL10].

Interactions [KMMS17, MKF+12, dCDC11, AGRI+12, BMIR+13, BAP12, BMRM19, BLW17, BDG17, BLDV19, BWE16, Buc12b, CNBPR+11, CdLdSC18, CNSK11, CCS13, CKL16, Chu12, CSP+10, Cys11, DJB10, Dob14, DLPL17, EAA17, EA12, EMS16, FNK17, FRGC10, FKCI12, HCH+18, HMA+19, HYD11, Ja10, JEA13, JLZ+17, KDPPNS16, KMK+16, KP12, KKG12, Kry12a, Kuv10, Kuz19, LMZ+11, LC16, LWY+19, LZZ+13, LDZG16, LB18, MBZ+13, MHZ18, MS12, MIKH19, MSNP18, MPD+10, MPPW10, MS10, MSY+12, MZLM17, MAW+18, MRR13, MMSC19, NH18, Nal13, NRI15, OA13, PML+11, PABSK16, PP16, Pie12, PETB18, RK14, Ril10, Riv11, RGR12, SB18, Sch15, SSAM13, SM14b, SM14c, SS13,
TH12, TDOD17, TCS10, Var11, VBC+12b, VSMK15, Yak11, YJ17, Yu13, YF16, YFY17, Zak13, ZRY+13, ZFS+11, ZLWZ16, dCSDdMC13.

kinetically \([\text{FXxBhD19}].\) kinetics
\([\text{ACMRN10, BMB12, BLM+12, CdAFS+12, COdF+11, DS12, EML+11, HWHZ11, MXC18, MCC12, MPREGC12, MML+11a, MLB+12, MMM+12, PRFR17, RLV+13, Var14, WLL+14, ZZW11}].\) kinks
\([\text{Yak10}].\) Kirchhoff
\([\text{Cin11a, LSW19, LWY19, PR10a, Pal10, PR11b, PR11a, PL18a, WZ10b}].\) Kitaev \([\text{TSS+15}.\) KOH \([\text{VLK+11}].\) KOH/DMSO/CH \([\text{VLK+11}].\) Kohn
\([\text{AT18, BW18, Bar11, GdSM+10, KFJ+18, LB14b, Lev10}].\) kojic
\([\text{KS11}].\) Kondo
\([\text{BRBRS11}.\) Kondo-like
\([\text{Cin11a, LSW19, LWY19, PR10a, Pal10, PR11b, PL18a, WZ10b}].\) Kondo
\([\text{BRBRS11}.\) Kondo
\([\text{Kim18, RTG+19}.\) layer
\([\text{Kim18}.\) layer-structured
\([\text{Kim18}.\) layers
\([\text{KHL10}.\) LCAO
\([\text{Dal13}.\) LDA
\([\text{Fuk12}.\) Lead
\([\text{VDG13, CAA19, MW15, Per10b, VVY18}.\) Leading
\([\text{LG12, KMS+11, YY18a}.\) Leading-order
\([\text{LG12}.\) learned
\([\text{LSP+16}.\) learning
\([\text{BR15, CKD15, FLvLA15, MJSC18, NDLC19, Rup15a, Rup15b, SKLC19, STM17, vLRRK15}.\) Lee
\([\text{LJ16}.\) Legendre
\([\text{Win10}.\) Leibler
\([\text{LSS19, LNV+18}.\) length
\([\text{Mar11, PE11, RKCK19, Sch10b}.\) Leonard
\([\text{CAPL12}.\) lesion
\([\text{SM13}.\) lessons
\([\text{PR10b}.\) Letter
\([\text{HS15, PS14, Sha11a, dFR15a}.\) Letters
\([\text{CK13, COP16, Lad14, Lun13a, Man16, MBSAG16b, PS13b, Tou13, VV13, VUC13, XLTA14, dSSF16a}.\) level
[FUE+12]. Ln [BSPK11]. LnO [TG13]. Load [NMSR14]. loaded [LWX+14]. Lobatto [Rom10]. Local [AKR12, FSST16, IN15, RB18, ZXY13, ATL+14, AK11, CCL+16, DNCKS+12, Fin17, FKC12, Glu13, ISN13, KK12a, Lya14, MDND0+16, OS10b, OPAVM18, PK13b, PSR11, RPBB11, RPVM10, SMGZ19, SN15, SACA18, Zha17, Kut13, YSS+10]. Locality [RCP14, LNV+18]. Localization [GB10, AOT+18, AT18, BEM12, BL10, BL11, GNM+12, KC18, MGB18, MFLP12, OAT+13]. Localized [ABS13, NB19, AEKZ12, ALK18, BMB10, IK18, PABS16, SS19, DG19].

Lobatto [Rom10]. Local [AKR12, FSST16, IN15, RB18, ZXY13, ATL+14, AK11, CCL+16, DNCKS+12, Fin17, FKC12, Glu13, ISN13, KK12a, Lya14, MDND0+16, OS10b, OPAVM18, PK13b, PSR11, RPBB11, RPVM10, SMGZ19, SN15, SACA18, Zha17, Kut13, YSS+10]. Locality [RCP14, LNV+18]. Localization [GB10, AOT+18, AT18, BEM12, BL10, BL11, GNM+12, KC18, MGB18, MFLP12, OAT+13]. Localized [ABS13, NB19, AEKZ12, ALK18, BMB10, IK18, PABS16, SS19, DG19].

Lobatto [Rom10]. Local [AKR12, FSST16, IN15, RB18, ZXY13, ATL+14, AK11, CCL+16, DNCKS+12, Fin17, FKC12, Glu13, ISN13, KK12a, Lya14, MDND0+16, OS10b, OPAVM18, PK13b, PSR11, RPBB11, RPVM10, SMGZ19, SN15, SACA18, Zha17, Kut13, YSS+10]. Locality [RCP14, LNV+18]. Localization [GB10, AOT+18, AT18, BEM12, BL10, BL11, GNM+12, KC18, MGB18, MFLP12, OAT+13]. Localized [ABS13, NB19, AEKZ12, ALK18, BMB10, IK18, PABS16, SS19, DG19].
NDLC19, Rup15a, vLRRK15. machine-learned [LSP+16].
machine-learning-augmented [CLKD15]. macro [RAK10].
macro-dimensions [RAK10]. macrocycle [CJMC19]. macrocycles
[VSMMK15]. macromolecules [Chr+10, OVT+16]. macroscopic
[DLML2, DP11, FUE+12]. made [Mas10]. Magic
[TB15, MJ16a, MHHPR+17, TZD+19]. Magnesium [FMP+17, BPT12].
Magnetic [GKS10, KV19, KMG+13, MPD+10, MPZWD10, WSC11, Zag11,
AGCV15, ATL+14, AC11, AK11, ALB18, AM10, BXR+13, Boli2b, CL11,
CWW+16, CKL16, GE12a, GV11, JL12a, JHL+18, KSC15, KSM+12,
KSY+11, K12h, LAc14, LB14b, LL19, LMC19, LB19, Mag14, MB+13,
MC18a, NBL+14, OMD13a, PL11, RP11a, RZC13, SRPD16, SSI+10, Shi18,
SSI2b, SSB16, SS12, Sto18, SS13, TD11, TW10, Vik11a, Vik11b, Vik13,
VRO+12, YZW15b, ZPM10, ZP16, ZLS+18, ZLWZ16, ZST+10].
magnetic-field [PL11]. magnetic-resonance [AK11].
magnetically [ATM17, ALB18, MAT19]. magnetism [ABP13, KLZQ15, SC10b].
magnetization [KLZQ15]. magneto [KG17]. magneto-electronic [KG17].
magnetolectric [RC11]. magnetoexcitons [MLDP10].
magneto-resistance [ZX12]. magnetotropicty [TG13]. magnets [LL19].
magnitude [LZD+11]. main [TMC+13]. main-group [TMC+13]. Major
[ALK19]. Makarov [Cyl+18]. make [SLS+19]. MALDI [HMH+13].
malomaldehyde [NRHJ11, RJR+10]. malonate [DdG+11, JSH].
maltolat [DdG+11]. manganese [SSK+12]. manifest [GI11e]. manifold
[TFZ+15]. Mannich-type [TFZ+15]. Manning [ZFH]. Many
[B10, GR11, CSMZ10, DLP17, Fer19, Fr12, Kha16, KRG+13, LV12, Lin14,
Lya14, Nas19, Per1a, RBVAG18, SK17b, SIB+13, SHKS15, Sit15, Zak16].
Many-body [BOS16, GR11, DLP17, Fri12, LV12, Lin14, Lya14, Per10a,
SK17b, SIB+13, SHKS15, Zak16]. many-electron
[CSMZ10, Kha16, RBVAG18, Sit15]. many-electrons [Fer19, Nas19]. map
[DW12, Dw13]. mapped [Sta10]. mapping [Kry12b, WWC17]. maps
[GB18]. Maria [HS15, dFR15a]. marker [BCNR18]. Markov [Cal10].
Markovian [CW13b]. Markovnikov [DMWY11]. Martin [TM19]. mass
[ABKJ18, Dw13, DdG+11, FUE+12, PGGRMP10, SBB18]. masses
[GbZAI0]. Massively [OIT15, PCV19]. match [SMK+12]. matching
[MGN14]. material
[FPF16, IKC18, LC12, Oun12, OA13, TFCB14, YBMK12]. Materials
[Nem14, BCGC12, BHH+13, BCNR18, CLH14, DMBL16, Fer11, GNM+12,
HNGB15, IIS+17, Jia15, KJ15, Kim18, LPO+12, MW16, MML11b, MSOV13,
MGP16, NBI+10, PETB18, SBB12a, TK16b, UMS13, VVY18, Wagy14,
fXphD19, ZCY+16, ZWSF16, ZLWZ16]. Mathematical
[Gar08, Lev16, Sha11a]. matrices
[ABL17, Boc17, Gin10, Mit11c, Per18, WH12, Yur13, Yur15]. Matrix
[LZL08, AAHN16, AOI12b, CW13a, CM15, EM16, GBK18, HMH+13, KK13,
KJ16a, KJ16b, Kit14, Kit15, KIT17, KFS13, KFJ+18, Lan10, Lat13, SHS+13,
Matrix-covariant [Luz08]. matter [AF19b, DW12, Ng12, Tap15]. Matthews [BSS16]. Matthews= [MSBF18].

Matthews= Olson [MSBF18]. Mattsson [MA10]. MAu [FTB11].

MD [AHCh+18, Eil14, MFB11, SLA12, YWY+12]. MD/QC [Eil14].

MD/QC-simulated [Eil14]. MD/QM [MFB11].

Me [ˇCFˇC11, GWM11, HHL14, RBTL19, HHL12a]. mean [DCD11].

means [AGNS14, BL10, N´em14, OK16, RNdA+10, TH12, ZXY13].

measurement [Ezz10]. measurements [Bra19, KDA+11, ZPM10]. measures [Ale13, DTPC17, IOO18, Kan18, LS17, LSS19, Lat13, LRMAA19, Luz13, MR18b, SLG11, YOS15, ZYL+14].

MeB [ˇCFˇC11]. mechanical [CPAT11, DKR10, DC14b, LV19, MMP+18b, MD/QC-simulated [Eil14].

mechanics [BBB+12b, EAH13, IAK13, Ma14, MPE15, MSC10, Rup15a, Rup15b, SK17b, SB+13, UV18b, Brãl12]. mechanics/molecular [Ma14].

Mechanism [KBF+13, MCC13b, Pli18, SH18b, WML10, ZQW+17, ZL10, AG10a, Bal16, BCP10, BL11, BLWJ17, yBZc18, CCL+10, CWS15, DS12, DP12, DZ11a, DSZB18, EAH13, EM17, FZX18, FDMR11, HWH11, HhGqZZ17, JSLH14, LGM+18, LJK+18, LLLL16, LZW+18, ILBqD+19, LS19, LWJL10, LWC+10, LCM+11, LCS+11a, LCH+11, LCS+11b, LXLL11, LLLL13, MLW+14, MOS10, MR11, MML+11a, MKW11, NE11, OH12, OH13, PL18b, PO15, PY12, RFMC19, SAS+12, SSI+10, SAG13, SLS+15, SSdS17, TM13, TY110, TXL10, VPQC12, VLK+11, VOK+18, WGLX10, WXZ+11, WHS+13, WWL17, WWX+11, WLD+10, XDM+10, XZCH11, YM12, YNLD18, YWJ+11, YZZH15, ZRGE+19, Zha10, ZZW11, ZCZ+12, ZBK15, ZBG+19, ZSL+13, ZCTG18, ZTC11, ZLY+14, ZPW16].

Mechanisms [CGIA12, LLFI17, LFTL18, PWL+10, XZG+18, AGNS14, CWZ+10, FTB11, HLS11, HHZ+19, HB18, HY13, JLS13, LNGW14, LD17, MXC18, MMP+18b, MLB+12, NKWT19, NZLG15, OD12, PTS+11, PRG+10, RFEGP+16, SYK+12, SSK+12, SS18a, VHTEG15, WLWT12, YSS+10, ZPB12, ZM13, ZSHL16].

Mechanistic [Buc12b, GMT18, LTL18, LKZ+16, NP18, SGL19, WRW+18, dSM19a, AASU+17, AEAS+19, RNdA+10, VPQR19, dLIAI+12]. mechananochemical [TJS17].

mechananochemistry [QBR18]. media [CFL15, Ser11a].

mediated [Dau16, FDMR11, SGL19, WTP+19, ZL10]. mediating [Var14, ZYL+14].

Medium [TBRI12, BRS10, BB16, EAK+10b, EAK+10a, MP1+11, PBB15, Puz16, Ser11b, TV13, TBRI10, TBRI11, XDM+10]. medium-sized [Puz16]. medium-to-large [BBB16, PBB15].

MEDT [ZRGE+19]. meeting [Tch13]. Meetings [AIKVZ12]. meets [Puz17].

melamine [AASU+17]. member [RNV+12].

member [ABTW14, BBKO16, MSK11, VsRSW+11, Zha14]. membrane [FPM+17, KMT+12, SMK+12, YINM13, MPM11]. memory [BXR+13].
MMA10, MB12, NZ13, NL11, Ols11a, Pu11, SBMM11, SY10, SA11a, SSB12a, SN15, SGH10, SLZ+11a, ShMR11, Szc18, TKN13, VAT12, Viv19, WWL17, XLGA12, Xu16, Xu19, YKN13, YŠÔ12, ZE18, ZCG+17, ZL10, SP19.

MOFs [PK16]. moieties [Cha11, NCMC+18]. moiety [BS14, ELC08, SKM11]. Moiseyev [Br¨a12]. Molecular [Buc11b, CSS16, CŞSK+12, CHV14, DGR+16, DLZ11, FKBG19, FUE+12, Hor13, IIG10, KTI+12, KM12c, KKT13, MY17, MAD12, MSH13, Mar13, MP12, MOY13, McCl13a, MMT+13, MBS+18, NVI10, OHDA13, OA13, Pvs10, PWH+12, PPK+13, RAK10, SMK+12, SIT+12, SVPTM+10, SIB+13, SHS+13, SSS15, TPdMB12, UYN+13, UTtn13, VHTEG15, WML11, WVB+14, YK13, YINM13, dSDsSGA12, AC19, AV19, AS19, ABV11, BAe14, BL16, BBB+12a, BPT12, BDF+16, BMF+14, yBZfC18, BMB10, BBB+12b, BR15, BVB+18, BWE16, BH19, CRA+11, CDSK12, Cam10, CŻZI2, CTV12, CČC19, C(CL+16, CFV18, CD15, CNSK11, CHL+19, CAPL12, COP16, Dan16, DSD18, DDCY12, DI18, DMWY11, DLG12, DDF+12, DdG+11, DWGX12, Eil14, ESLM19, FZH+18, FBRBR12, FMPM+14, For12, Fra17, FK18, FBU+11, FSST16, Fuc12, FDG18].

molecular [GVPCK10, GFB12b, GI11d, GH11, GJ18, GSPR19, GR10, GHP11, GS10, HS11a, HYZS12, HYZS19, HLB19, Hii13, Hgo10, HZS14, HFL+17, HVR18, HFBC19, IFT14, IA13, IKC18, Ish14, JdL08, Jan10, KLK13, KCK14, KHH10, KKH+13, KKT14, Kry12a, KRG+13, KUY16, LB14a, LG10, Lai11, Laz14, LLM13, LA11, LTdsJ+10, LFS+11, LJSS12, LG15, LC19, LKLW11, LNI12, LB18, Ma14, Mam14, MC11b, MHT+08, Mas14, MOE+11, MMBK12, MKS13, MAF19, Mit1a, MSY+12, MVA19, MPL+11, MLB+10, MBTVR12, MBBT+12, MSAB19, MMP11, Mar12, NKK15, NDH10, NAK+17, Nic11, Nik11, NB19, OT14, OB19, OWD18, PP10, PMH+16, PH12, PBB15, Pog12, PETB18, PRG+10, Puz16, RS12b, RSM12, RBGM18, RAN18, RMC19, RP16, RLER14, Rit11, RC11, RAMB18, RdPW+12, RA10a].

molecular [SC12b, SLZ+11b, SXS+12, SLS+12, SLSZ13, Shi13, SRS+17, SACA18, SLS+10, SKY+13, SWS12, TK16a, TY17, TFA10, Tok16, TSH17, TIK13, TRZ+19, TC12, TPT19, Vik13, WZ10a, WFS13, WC14, XFW+14, XXI+16, Xul16, XWP+18, Xu19, YZHZ15, YAF+15, YT14, ZSASS13, ZFW+13, ZPR10, ZLE17, ZLWZ16, ZRLV10, ZB18, dSSF16b, dSSF16a, dOdCMUdALR11, dWLC14, dOLDLV13, vL13, vLRRK15, Puz10, RH9, RdA11].

molecular-dynamics [PP10]. molecular-level [Shi13]. Molecule [ANC+15, AM12, ASK15, Ber13c, CAZ+11, CL11, CHM+14, CHM+17, CCI11b, Cor16, DAC11, DAC12, DAR+11, DPKR12, DLG12, DCZ17, ES17, ESR18, Fra17, GWHI17, Gl11a, GT13, HK11, IIS+17, KKH18, KSC15, KP12, KN15, Lan10, LJSS12, LEU+11, Luz11b, MG11, MHT+08, MSL11, MKD19, MZLM17, MPTZ13, MJM19, MC18b, OT14, OCL+18, PK13a, RPBB11, SXS+12, SLSZ13, SLZH12, SRA+11, TFBG14, TH12, TOB19, VOAH18, Vik11a, Vik11b, WR14a, YW11a, ZZZ+18, KRC+16, TFSRM11]. Molecule-adapted [ANC+15]. molecular-TiO [TFSRM11]. molecule-to-material [TFBG14]. molecules [Agb12, Ale13, Ali19a, ACL12, AT18, BMK+14, BdTG11, BCHN16, BR10,
BAX$^{+}$19, BDG17, BB16, BB10, Cam12, CM17, CPL15, CRSB12, CKB18, CB19, CK17, CF17, DIOG12, DK13, DSRGD12, Dil13, DCR10, EML$^{+}$11, EMS16, GFB12a, GMR18, Gin10, GS11, GHP11, HRT12, HMH$^{+}$13, HST13, HNBG15, HYH$^{+}$10, HMA$^{+}$18, Jen13, JM$^{+}$X15, Jeo18, JZP17, JCCZ12, KBGC12, KBG17, KKL$^{+}$16, Kim16, KKH$^{+}$13, KKS$^{+}$11, KKT13, KKT14, LKDC11, Leh19b, Leh19c, LHX$^{+}$19, LSKM19, LPM$^{+}$11, LLP17, Luz12, MSG16, MCE11, MK10a, Mar12, May14, MFLK10, MCL11, MSM16, Mit11a, MB15, MJ11, MCK17, MPE11, Na15, NS10b, OKK10, OA13, OD16, PL11, PWY$^{+}$18, PKK14, PW13, PB10, Puz16, Puz17, RBGGM18, RGTS11, RWK$^{+}$19, RC11, Roy14, RAK10, SGB11, SD6b, SSKS12, SA11a, SKG11].

Molecules [SMEH15, Sha18, SB16, SMR14, SRN$^{+}$19, Sto18, SYY16, Sut12, SCZH16, SV11, THL$^{+}$15, TK16b, TH12, TXK$^{+}$19, TFMC19, Tou11a, UGWL18, VO11, XHZXXZ10, YZZ16, YD17, ZS11, ZDF13, ZP16, ZCC11, ZZZ$^{+}$18, ZS12, ZI19, dSCC12, dSTH17].

Møller [RS11a, BVA$^{+}$14, NMIP14, RS09, TH13].

Monolayer [UDS19b].

Monomer [Cas15, BHA19, JWG$^{+}$12, MM13, BM$^{+}$13].

Monomers [MBA$^{+}$13, UJSJ13].

Monometallic [ZW15, GZW16, ZCTG18].

Monomolecular [MOSK10].

Monooxygenase [SSI$^{+}$10].

Monoanions [CYL$^{+}$19].

Monoboronyl [MLK17].

Monoanionic [Bar11].

Monobromide [HTM10].

Monoatomic [DSS19].

Monofunctional [XZ11].

Monofluorides [KWC11].

Monohalogenated [MNV$^{+}$17].

Monolayers [KC19a, MDP12, RZC13, TTM16].

Monolithic [WWL$^{+}$11].

Monolayered [HTM10].

Monte [AF12, ABG12, ANC$^{+}$15, ASK15, Cal10, CKB$^{+}$19, CCC19, CP16, HCH$^{+}$18, Hog13, HBY14, HMI12, JCCZ12, PDR$^{+}$14, PIS18, RCGLV$^{+}$14, SGC13, SCBP17, WAG14, WCM14, ZLR15, ZCC11].

Monomorillonite [BJdlMAV12].

MoO [MFZ$^{+}$18].

Monoclinic [DWX$^{+}$16].

Monodentate [ZKKR11].

Monooxigenase [SSI$^{+}$10].

Monophosphates [PAD$^{+}$10].

Mostar [ACT19].

Motif [SLZ$^{+}$12, YD17].

Motifs [CJMC19, KUS19, Kry10].

Motion [Cam10, DLR10, KC15, KB18, MCM$^{+}$11, MMSC19, SRPD16, Sut12].
motions [HZW18, XXJ\,16, YW11a]. motors [OWD18]. moving [FAFR12].
MP2 [KBMM10, LKLW11, NMIP14, yOITn15, RSM12, SZ11, Tav12, Yu13].
MRCC [NYS\,10]. MRI [GSPR19].
MRPT2 ONBP11, SLZ\,11b, SLZ\,11a. MRI [GSPR19].
multicolor [CYLL11]. Multicomponent [STU19, GJ18, Kar13, OBP11, SLZ\,11b, SLZ\,11a]. MRI [GSPR19].
multicolor [CYLL11]. Multicomponent [STU19, GJ18, Kar13, OBP11, SLZ\,11b, SLZ\,11a]. MRI [GSPR19].
multicolor [CYLL11]. Multicomponent [STU19, GJ18, Kar13, OBP11, SLZ\,11b, SLZ\,11a]. MRI [GSPR19].
multiexcited [SCZG12]. multimode [RGPZD13]. multiobjective [SSB12a].
multiparameter [GMGRMP12, I1H16]. Multipartitioning [RS09, RS11a]. Multiphoton [NWQXi11].
Multiple [HhGqZZ17, PBM10, PP14, DB12, GFRdG11, Ish14, JW19, MGB18, NMV\,14, RWW\,19, YGLL10]. Multiple-pathways [PP14]. Multiplets [BMB16]. Multiplicative [LSW19, LWY19, PL18a]. multiplicities [Nal12].
multiply [HDÖS12]. multiply-valued [HDÖS12]. Multipole [Tal11, LBW11, YSÖ12].
multipoles [TH12]. Multireference [CYLL11, KB19, LP10b, RMG\,19, SWS12, BVP13, GSaY11, HFD11, JNZ\,14, Kon10, MdAdCS12, SYL\,18, SLZ\,11c, SZL\,14, dSM19a].
Multiscale [AHC\,18, Mas14, ZP16, CLKD15, CW\,11, MGN14, TTM16].
Multistep [SAS\,12, Sic16]. Multithreaded [MAF19]. multicolor [UGWL18].
muscinol [Ser11a]. mustard [VSMK15]. mutagenesis [CSVCB12].
mutagens [MLPT10]. mutant [dAGNJT12]. mutation [SSB12a]. mutations [DMG10, MFR10, MG10].
mutipathways [SWS\,14]. Mutual [Mat02, MAT19, Mat10]. Mycobacterium [ST15]. myoglobin [CHSO13].

N [AGOP18, BBYZ18, BJ17, CJMC19, CWS15, CSWSZ13, GC18, HWL16, JLG\,12, Kal18, LYL\,12, Men10, MC18a, OCL\,18, PCK19, Per10b, RLTTA19, SB18, SABA\,12, SSAM13, WLZ\,12a, WLZ\,12b, XXZ\,10, XXJ\,16, XCL\,18, Zha10, ZHI2, ZQFW13, SC12a, ARG11, BEM11, LL18, LWY19, YLX\,18, XWC10, ZCTG18, ABTW14, CJMC19, CTW12, CDL\,19, Est18, FLCHL10, GMM\,18, HZZ\,19, HMO10a, HXX15, KMK\,16, KMM\,18, LYL\,12, LW15, MNV\,17, MBA\,13, PRPU\,13, PL18b, Puz10, RRB12, SABA\,12, SC12a, SSAM13, SXS\,12, TMC18, Tob19, TPdMB12, WZX11, XMZ\,12, XZL\,12, XZG\,18, YLZ\,10, YWJ\,11, Zha10, ZHI2, ZGSM15, ZCG10]. N- [SC12a].
N-confused [HM10a]. N-coordinating [YZL\,10]. N-cyclic [XZG\,18].

near-infrared [YWR+18, dARAV12]. near-IR [ZQJCJ10].
[DCBB11, KWWH18]. neglect [HVR18]. neglecting [Fe19, Na19].
nitroethylene [MLL+11a]. nested [Ca10]. Net [RLZ12]. netted [DW12].
network [Beh15, BGKK16, FCC11, MDC15, WZX15b, dAVdM17].
network-based [MDC15]. networks
[CRAC+11, CL08, LFF+10, LZZ19, MPD+15]. Neural
[BGKK16, MDC15, Beh15, CRA+11, CL08, FCC11, LFF+10, WZX15b].
near-IR [ZQJCJ10]. neuraminidase [PCF+18]. neuraminidases [YXY+12]. neurotransmitters [RZG12]. Neutral
[RFMC19, BCGC12, BGMD15, CA+11, DHYC19, EPS+16, FBRB12,
Gra11, MMRA10, ONBP11, PPSI11, RTG+19, TCM+12, Val17, ZQJCJ10].
nicotinic [CD15, Kar12c, Zaq11]. neutrons [Kar15]. newly [VVY18].
Newly [BAX+19, HMA+18, TXK+19, KRH13, LHX+19]. Next-generation
[BAX+19, HMA+18, TXK+19, LHX+19]. NH [SMC18]. NH
[AM18, yBZC18, EMSB15, MPRCEG12, WZM+13, XWCY11, XF19,
CCL+13, CRSB12, CCL+10, LV12, LLG+12, MWH15, MPRCEG12, OKR12,
RNB+10, SLZH12, SW12, XZL+12, RRVJ10, RB11b]. NH-tautomeric
[CCL+10]. NHC [Pan16]. NHC [NR+11]. Ni [AO12a, KYLC19, YL11,
AAA12, BXR+13, FBD+13, GP13b, GZMC11, Kim18, LWX+14, MRT11,
NKWT19, SFA19, SLC+18, SLZ+12, WJL+10, WRW+18]. Ni [Kim18].
Ni-loaded [LWX+14]. nicotine [PDNC14]. NiAl
[CJOOW11]. Nickel
[ASD18, LSCMSFC19, DZO12a, SDR+13, VSMK13, TFA10, dCSdMC13].
Nickel-substituted [ASD18]. Nicolaides [Ban12]. Nicotinamide
[MDP12]. nicotine [SGKJ12]. NICS [XWC10]. Nikolai [Pup11b]. Nile
[FSBA12, MRA11]. Nimrod [Brä12]. nine [PMEP19]. nitrates
[MOSK10, OB19]. nitrate [HM11, ZL10]. nitrates [HZZW11]. nitration
[LLW+11]. nitric [BGMD15, MNE+13, ONBP11]. nitride [CJMC19, Che13,
DHZS11, ES17, Esr18, FZX18, GWZ+14b, GAMM10, Ish14, TTN18, WG18].
nitride [CMCN11, NAK+17, YNL18]. nitriles [RFN+12]. nitrites [BL10].
nitro [CLY12, WGLX10, ZCC11]. nitroaniline [KC11]. nitrobenzene
[SS18b]. nitroethylene [BBAL12]. nitrogen
[BHMM19, BSO11, EAV16, EM19, GZ14, HZG12, HNBG15, KC19a, LZW+15,
MS14b, PPDF11, PP19b, RD14, VKF+19, WLL19, YZZ16, ZKRR11].
nitrogen-heterocyclic [GZ14]. nitrogen/phosphorus [BHMM19].
nitrogenase [CR18, VPOG19]. nitrogens [XxxBl9]. nitroguanidine
[DGR+16]. nitrones [AB1+19]. nitropentaamminecobalt [MMSC19].
[GR10, MJ11, RLER14, STU19, BPL13, BJ12, CG12, Cyb11, DVDBM11, FKL+12, GJ18, JHSG18, MZB+13, Mam14, MVC13, MNZPT19, NS10b, NB17, SPSA11, TMIC18, ZPM10, ZP16]. nucleic
[Kuv10, TBST10, YDW13, ZDZO10]. nucleobase [ZKWZ17]. nucleobases [CAO18, Cys11, DSVP15, KZA+17, LCH14, TD19, WG18]. nucleophilic

oligonucleotides[ACF+11], oligopeptide[MM10], oligopyrroles[DCBB11], oligosilane[ZYZ+11], oligothiophene[TZ11], oligopeptide[MM10], oligopyrroles[DCBB11], oligosilane[ZYZ+11], oligothiophene[TZ11].

Olof[Pyy11], Olson[BSS16, MSBF18], OMC[WCY+10], On-site[DLMJ14], on-the-fly[UTTn13], One[Ber13a, CG12, Dum12, LCH14, Bud12, CYK17, FCS13a, FCS13b, GTR11, GI11e, GAMM10, GS10, HZS14, Kri13, LW15, Luz11a, MSC10, MBBT+12, PVS12, RZSZ18, SC12b, SZZ+19, SWS+14, TAY11, VBC+12a, VBC+12b, WW17, WLZ+12b, YF16, ZZZ+18, TC12].

One-[CG12, WLZ+12b], one-center[HZS14], one-dimensional[CYK17, MSCP10, RZSZ18, VBC+12a, VBC+12b], One-electron[Ber13a, Dum12, LCH14, GI11e, GAMM10, GS10, Kri13, WCY+10], one-mode[PVS12], one-parameter[FCS13a, FCS13b, YF16], one-photon[Bud12], one-pot[LW15], one-to-one[WW17], one-two[TC12], ones[HMA+19, LW13], Onicescu[OH19], ONIOM[EFO11, EO11, KYH+13b, SKB18], ONO[XX12], onset[LB14a], onto[CA17, CAO18, SFW12, SRS+17, Sta10], OO[SBSD18, SSK+12], OOHH[NP18, PGG12], OPAL[CwCW+11], Open[CP16, DSM+19b, GAN14, GCK+17, HNP+12, JEA13, JH10, MAT19], NSN17, NNSN17, QSX+15, RMB18, Scha18, YMY+13, open-close[HNP+12], Open-shell[CP16, JEA13, NSN17, NNSN17, YMY+13, dGr14, GXZ+14], open-source[DSM+19b, GCK+17, QSX+15, RMB18], Opening[TFBG14, AMBM+18, BAX+19, KMS+11, MBSMJ18, QB15, TXK+19], openings[KUTS10], OpenMP[WMK+19], Operator[DJ95, CD18, DJ12, IM15, Mys12], OP[DPDR11], Oppenheimer[BPL13, GVPC10, RSM12, Ran18, Sk17a, Sut12, VV+16], opportunities[FAK19], OPPS[ZPM10], opsin[TU10], optic[Zen11], Optical[LRKM10, YBMK12, AMK10, ABA11, BF11, BSM+15, BSO16, CPL15, CZLD17, DWX+16, FSQ+11, FZX18, FBU+11, GAPK+19b, GD1+10, GCGM18, GRCATG19, Hat13, HWL16, HWW18, HSS18, IGMK11, JdOS16, JFDD10, KC11, KPL+17, KL11, KMMU+13, LYW11, LZM+15, LYL+12, MFC10, MNP19, Mas14, MPJ12, MFZ+18, MA11a, MMF+13, NF+13, NMHPGV12, OGvSG18, RKM12, RRRV19, SBAT16, SSSK12, SLS+14, SM17, SYQ+10, WZL+12a, YKL11, YLW12, YHLC15, ZSQ+10], optics[DSRGD12, LKDC11], Optimal[FT15, GSP19, NVI10, NB19, TC17], YWR+18, optimally[NTGC19, ZZ8], Optimization[CL08, FCC11, HJ13, KYH+13b, Kub12, Lu15, MHT+08, SCH10, SP+15, WWL17], optimizations[YIY+13], optimized[ANC+15, KPH+12, SXH18], Optoelectronic[AFA13, JR19, BHAH+18, KA13, MANP17, OAA19], orbit[Ash18, Ber13b, BDR12, CYL+18, KV19, LWL+12, MLK17, MC18b, RS12a], Orbital[BT15, Kon10, MM120, AOT+18, AK17, Ash18, ABA11, Bar11, CPF+11, Cn20, DVDBM11, Fin17, FA17, FMPM+14, FC19, GR10, Hog10, HVR18, IKN13, IK18, JH15, KK14a, KLK13, KCK14, Kit17, KKT13, KKT14].
KPH$^{+12}$, KUY16, LB18, MSNP18, MMM16, MAF19, MFLP12, MSY$^{+12}$, MAI0, Mur12, Nag15, OT14, OAT$^{+13}$, Pir13, PU14, PNC19, RMC19, SIM14, Tal11, TD11, Tsu15, XHZZX10, YPDW14, BT17]. orbital-free [AK17, Fin17, FA17, Nag15]. Orbital-Specific [MMM20, Cin20, MMM16]. Orbital [GZSMFN16, ABS11, ABS13, Boed12, CCL$^{+16}$, CFV18, CC12, DZO11, EBR11, Falk12, GZF14, GW13, GE12b, LSR$^{+10a}$, LSR$^{+11}$, Mat02, Mat10, May14, Mit11a, NZ13, Nik11, NB19, RMG$^{+19}$, RRCO11, RLZ12, SOM10, TH13, Tsu15, WWL17, YZHH15].

Order [AF16, ABA11, BR10, BR16, BVA$^{+14}$, DAC12, DCHC11, Dun15, EG10, FSQ$^{+11}$, Gin10, HSS18, KC11, KK13, KM12c, LKDC11, LCL$^{+10b}$, LPG$^{+12}$, LG12, Luz08, MSNP18, MMF$^{+13}$, NKF$^{+13}$, PDR$^{+14}$, Per10b, RL12, RS09, RS11a, SN15, TH13, UV18b, VRO$^{+12}$, WLZ$^{+12a}$, ZSQ$^{+10}$].

order-disorder [PDR$^{+14}$]. ordered [CPL15, HW12]. Ordering [GA19, AM10, GE12a]. orders [KK14a]. Organic [SA11b, WTW$^{+15}$, BF11, BDG17, BWE16, CKL16, FM16, GNM$^{+12}$, GRCATG19, HKZZ15, JPPA10, KMK$^{+16}$, KSO19, LSR$^{+10a}$, LSR$^{+11}$, LV19, LYS$^{+19}$, MUNC11, MUNZVR12, MAP$^{+10}$, MCL11, MLW16, NZAVR10, OPAM18, PFDm13, PWY$^{+18}$, PETB18, Puz17, RD PW$^{+12}$, SFL$^{+10}$, SB16, SAHA16, TCA10, Val17, WWB$^{+14}$, ZB18].

oxides

[Ali14, ASW13, BGMD15, Dau16, DLJT14, DWGX12, FSK+11, GC18,
Hog13, KC11, LWX+14, LCH+11, MSK11, MGP16, ONBP11, Oni10, SZ11,
TSKN12, WCY+10, XGH18a, YNLD18, YHL+13, YC13, ZDF13, ZRGE+19].

oxidized [FTB11, RRB12].

oxime [IKC18, Kan18, NAK+17, PSK+16, RGST12, RKCK19, VGGPdL19, VKF+19].

oxidoreductase [SR11a].

oxirane [BAX+19].

oxo [ZSAP11].

oxo-titanium [ZSAP11].

oxoacids [CK17].

oxoanions [HNBS18].

oxocarbon [JFDD10].

oxodithioesters [GCZ+14].

oxoguanine [YM12].

Oxygen [GLT13, SDY16, AGOP18, CAZ+11, dDGNB10, JAB12,
KCK14, LSR+13, Mor12, MLW16, PMH+16, dSMRPF18, SCZG12, SBSD18,
VS19, WWHZ13, YS+10, YYI+13, YSK+12, YZZ16,
dOdCMUdALR11, OD12, YYI+12].

oxygen-evolving [LSR+13].

oxygen/nitrogen [YZZ16].

oxygenated [TYN13].

oxyluciferin [SR11b, dSdS13a].

oxypentadienyl [VGGPdL19].

ozone [ASK15, MKD19, Var14, WWHZ13, YYS15, YSS+10, YYI+12, dOdCMUdALR11, OD12, YYI+12].

oxygen-evolving [LSR+13].

oxygen/oxygen [SBSD18].

ozone [RA10b].

para [Kle11, NG11].

para-Fermionics [Kle11].

para-hydrogen [NG11].

parametric [BH19, LdMCdA+12, RSCS10, SOF+10].

parametrizations [WR15].

parametrized [Oht13].

parent [MR11, PGG12].

Papers [RA10b].

para [Kle11, NG11].

para-Fermionics [Kle11].

parallel [CLKD15, Lya19, yOITn15, PC19, SRPD16].

Parallelization [ZWSF16, MAF19].

parameterization [HSS+11, PABSK16, PSPS11, SOF+10].

parameters [AGPDZ13, AK11, BMF+14, EKN10, FV11, FCC11, SPGR19,
IIS+17, KAR12a, LJSS12, MEG11, MPM15, MOY13, Roy16, SPO+11,
SR11b, SWS12, WJ+17, YS+12, dCSdCMC13, dOdCMUdALR11].

Parametric [BH19, LdMCdA+12, RSCS10, SOF+10].

Part
portable \[\text{Lya}19 \].

position \[\text{CMR13, CJSNL11, GLPA10, MSOV13, QJ13, TTD13, VC13, Yam11} \].

potassium \[\text{Ish}14, MMV19 \].

potency \[\text{DKZ10} \].

potassium-iodide \[\text{MMV19} \].

potency \[\text{DKZ10} \].

potential \[\text{BS18, DPPD11, OPP14, WLG11} \].

practical \[\text{RAMB18, SIM14, SLS19} \].

prebiotic \[\text{KS19, VFCSC17} \].

precision \[\text{Kin13} \].

precondition \[\text{KW18} \].

predict \[\text{STO11} \].

predicted \[\text{Jeo18} \].

Predicting \[\text{ABKJ18, BPK19, DWX16, KRK17, PO15, AMMB18, CFOC10, DE18, GA19, TWR15} \].

Prediction \[\text{DFV12, LC12, SGB11, SSP14, Ali19b, BB16, BBA16, CPL15, DGA13, GB18, LCL10b, LPG12, PCD14, PWY18, RMLPGGH16, SLC18, SRAS16, SBKJ18, VPFD10, VR012, WZX15b, XYL18, YC13, ZYSW17, ZW15, dOLdLV13, MGD11} \].

predictions \[\text{Bou11, Bou12a, KKH18, TSK17, WLL19} \].

Preface \[\text{ACL10, ABC12, ABo13-49, BSS14, DC10, DBMBP11, HLSD14, HB18, NYA13, NT15, Rei15, RSV10, Rup15a, RA10b} \].

preference \[\text{EAH13, JN13} \].

preferences \[\text{KM12b, LB18, MAW18, NRS11, NJA12} \].

preliminary \[\text{CC12} \].

Prelude \[\text{AS19} \].

preparation \[\text{CS18} \].
[DPK18, DB15, EBR11, FRNM12, KSC15, Lae14, LB14b, Pit12]. Present
[TsvL+16]. Presentation [EMK14]. pressure [KMU+13, Mil12, SIT+12].
prevention [Bal16]. primary [ABKJ18, MOSK10, NGS11]. principle
[AF13, CM15, DWX+16, GI11f, KLK13, Oht13, RD14, SMGZF19, SGC13,
TCCI10, VDG13]. principles [AGG+18, BXR+13, Bon17, CC11a, CWW+16,
CJOOW11, FTB11, Fra17, GNM+12, HMA+19, Jia15, Kan17, KSS12, Kim13,
LLM13, LL16, LBqD+19, LIK15, LBdV16, LSCMSFC19, MBKH19,
MJM19, PPI19a, Per10b, RZG12, RJJPGH+13, RRB12, TZ11,
TWR15, Wan13, WLH+19, WZC+12, XCD18, YHL+13, ZWLC12, vL13].
prion [MRT11, MM10]. priori [LG10]. prismanes [GKGM18]. Pristine
[BSS15]. proapoptotic [GTSC+19]. Probability [dA12, MNZPT19, MAPS18, NTCG18, YW16].
Probable [KRH13, GI10]. probe [BAB+18, LYS+19, LGS+16, RDB18, RDB19].
probed [LSR+10a, LSR+11]. probes [GSPR19]. Probing
[GXZ+14, MA19, MRY+13, SRA+11, TWHZ14, TG13]. Problem
[DJ95, BW18, BM12, Brt11b, DJ12, DB12, DVP18, Gru17, Ign11, Ign12,
JW18, Mit11c, PFI19, RGPZD13, Rit12b, TPJC+12, UYN+13]. Problems
[LDZG16, Blo15, FRGC10, Kar10, Mar12, RMY+19, SW10, Sha18].
procedure [GTR11, KMNSP19, NS10b, Sha11a, ZS11]. procedures
[OKR12]. Proceedings [DC12, DC10]. process
[AGB19, AGRI+12, CRB+12, CL08, DWP14, GI11a, KK19, KTI+12,
LYS+19, MJ16a, MNC12, SR18, TCG17, WZX+15a]. processes
[BM10, CPAT11, KUS19, MWH15, Mar13, Mas14, PD11, RLW+13, RSL10,
Tapi15, TBHL11, TPT19, VKF+19, XZL+12, ZLWY13]. processing
[LSKM19, ZH15]. processors [Lya19]. prochiral [WTZ+11]. produced
Professor [LJ16]. proficiency [JXX+15]. profile [SIT+12, SSP14, STU19].
profiles [dHLdS12]. program [BHH+13, CYC+15, DOE+14, DCOC+19,
LCZL15, MPZWD10, YAF+15, ZHF12, ZH15, ZWSF16]. programmable
[CKB+19]. programmed [AVF12]. programming [Lya19]. progress
[HDÖS12]. progression [Ish14]. project [TY17]. projected [KSN+10].
projection [KYH+13b, Vv19]. Projector [KRC+16]. prolate [Kar12b].
proline [SHL+13, YZZ15]. proline-catalyzed [SHL+13]. Prominent
[WLC+17]. promiscuous [RNdA+10]. Promising
[LO+12, SG19, Ear18, EM19, KM12b, LYS+19, MVG18]. promoted
[LJK+18, LCM+11, PII18, QCW+12, WTZ+11]. promoting [RNdA+10].
promotion [CAPGAI18]. propagation [Bae16, EM16, KFS13, KUY16].
propagator [DZO12c, DZO12a, FMMD+10, POLV12, SM12, ZDZO10].
propagators [AMMC19]. propane [NTNL10]. propen [HNH+12]. propene
[DPFR11, ZPW16]. propensity [PSK19]. propenylamine [RJA+10].
Proper [SD13b, Fin15]. Properties [GLT13, GH11, IA13, KBF+13, KKT13,
MOY13, MC13a, ONK+13, OA13, TBRIS12, TSS+15, AGCVG15, AFA13,
AFM+10, AMK10, AMAM18, ABA11, BL16, BHAH+18, BSM+15, BGKK16,
properties

properties/activities

properties

properties

proteasome [VHTEG15, dAGNJT12]. proteases [SKS10].

protected [MC18b]. Protection [CAPGAIG18, BSS15, GA19]. Protein
[PT13, AGRI+12, CR18, CHSO13, CSVBC212, DFF+13, GSR12, HXDY16, KFY+12, KKK12, LLZaH14, MYZ+10, MRT11, MRS15, MSK+12, Pop15, TYN13, TCM+12, TBHL11, YSW11, ZP10, ZWLC12, ZT11, dA12, TBST10]. protein-coupled [CSVBC212]. Protein-nucleic [TBST10].

proteins

protic [HFL+17]. ProtNA [TBST10]. ProtNA-ASA [TBST10].

protochlorophylide [SR11a]. protocol [BDF+18, CW+11, SCBP17].

protocols [COCF+14]. Proton [SCS15, DLCB15, DLM12, DSZB18, FDMR11, IKS08, IKS10, KA011, Kry11b, Kry12b, LZ12, LYL+12, MPE15, MNC12, MGP16, NMS+10, RY12, SPPT15, SYK+12, Sat11a, Tav11,
SD16b, ST15, SLA12, TIKN11, UYN+13, VHTEG15, ZKW17, dAGNJT12. QM/MM-ER [TIKN11]. QM/MM/MD [AHC+18]. QM/polarizable [Cap16]. QM/QTAIM [BTH18]. QMMM [HCH+18]. QR [BB10, Bou12b]. QRM-SCHE-MO [BB10]. QSAR [KKM+12, MPPCM+11, PH12, XFW+14, ZFW+13]. QSPR [CD18, MPPCM+11, SN12, TFA10]. QSPR/QSAR [MPPCM+11]. QSTR [PI13]. QTAIM [BTH18, DP16, MAW+18, NH18, Shal1a, VHTEG15, XXJ+16, XWP+18, YXM+18, ZLZ+14]. quadratic [FYhC11, OPAVM18, RSN12]. quadratically [ISRK12]. quadratically [ZST+10]. quadracyclic [TTD13]. quadrilateral [LZZ19]. quadruple [MPT11, NZ13]. Quadrupole [MdAdCS12, AC11, BJ12]. quality [OKR12]. Quantal [SIB+13, SHKS15]. Quantification [SP19, Gru17, ORJ18, Rus14]. Quantifying [Mar12, MML11b]. Quantitative [CJSNL11, HSN+11, Zha17, MY17, MBTVR12]. quantities [FSST16]. quantization [HKLW13, Kle11, SD13b]. quantized [Tou11b]. Quantum [Bal16, BSS16, BL10, BR16, Bra19, Brü13, CJBMMAPR19, Cav13, CKL16, Choi16, Cho19, COP16, DKZ+10, DLCB15, DFK16, DLM+11, DC14b. EAK+10b, EML+11, EMEPD15, Ezz10, FMKJ14, For17b, GbZA10, GGZZ16, HGB08, HS15, Hog13, HB14, Hop15, IAK13, IO18, IK14, Jen13, JXX+15, KWC10, KYS13, KMK+16, KYH+13b, KUTS10, LB14a, LZZ12, Luz11b, Mak15, Man16, MMP+18b, MNE+13, MBTVR12, NTCK13, Nic14, OWD18, ÖEDB11, PH12, PWY+18, PETB18, PKK+16, PSDK17, Puz17, Qu13, RTGTS11, Rit11, RMP+14, SAG13, Shi13, SR13, SG14, ŠKB18, SBKJ18, SZY17, SSB+12b, Tap15, TFSRM11, UJSJ13, VVN+16, VBJK18, Wag14, WDSL14, WYWL13, WZX+15a, WXW+11, WCM14, WLD+10, XS18, XZJ+16, Xu16, YM12, YW11b, YZ12, YB11, ZCC11, ZJS13, dFR15a, dFR15b, dSMT+18, ASMP15, ABG12]. quantum [ANC+15, ASK15, BF11, Bau12, BAX+19, Blo15, BGL+16, BHH+13, BT15, BT17, BM16, BBS+12b, Bra10, Brä12, Buc12a, BN11, CD18, CKB+19, CM16, CS12, CSG14, CW13b, Cho15, CYK17, Coo12, CPAT11, CN12, Dau16, DP18, DSL15, DPRK12, Dil13, DMBL16, DSFT17, EAH13, FLCHL10, FBO+11, FNIT16, FSST16, Gag11, Gan14, GWZ+14a, GRCGRRHT19, GB10, GSI1, GR10, HR13, HS11a, HITU16, HS1c, HEVMSA+19, HM12, Hor13, HMA+18, IFT14, Ish14, JN13, JHSG18, JMX+15, Kap12, KB12, KCDC15, KC18, Kar09, Kar10, Kha16, KCC13, Kit14, Kit15, Kle11, KN15, KK11d, LS17, LSS19, LV19, LSR+13, LCZL15, LHX+19, Lin14, Liu15b, Liu16, LSKM19, LEU+11, Luz11a, Ma14, MC11a, MR12, Mam14, MDC15, MEP15, Mar13, MSC10, MML+16, MPD+10, MQG13, MPL+11, MBBT+12]. quantum [Mor13, MLDP10, MB12, MGP16, NC11, NKKN15, NS10b, NGS11, NBZG16, Ném14, Nic1, NVPCJ+13, NMSR14, NRP+11, NJA+12, Nym14, OPS10, OK19, OMT13b, OSJ+12, PABSK16, PTH11, PMGMGR12, PMHM19, Pup11b, RP11a, RP11b, RL12, Rei15, RDM+11, RNE10, RNB+10, Rup15a, Rup15b, SDS19, SDS20, SOF+10, SBEH11, SKHN13, SC12a, SPSA11, SN15, SK17b,
SKLC19, SD13b, Sha18, She13, SIB+13, SHKS15, SKM11, SSA18, SGC13, Sjö15, SS19b, SYF12, SRA+11, STU19, SZ15, SCBP17, SPM+15, Tch13, TBB+19, TK16b, TH12, TXK+19, TFA10, Tri14, TB15, UTT13, UV18b, VPFD10, VMR11, VVVB10, Vik11a, VOK+18, VO12, WYM15, WR14b, YNL18, YÇÖ11, YZ13, YW18a, YS13, YH14a, YW16, YLC17, YLYC18, ZS11, ZX12, ZGSM15, ZHI15, ZWSF16, ZZC12, ZWE12, ZRLV10, dHLdS12].

quantum [dSTH17, vLRRK15, AGNS14, BMRM19, DMS+10, GP13a, SP19, ZBK15].
Quantum-chemical [DLM+11, ÖEDB11, Qu13, BF11, DMBL16, DSFT17, MGP16, Ném14, NVP13+13, SN15, VOK+18, YNL18, DMS+10].
Quantum-chemical-aided [GbZA10].
Quantum-classical [Cho16, Cho19, Mak15, SPSA11].
Quantum-matter [Tap15].
quantum-mechanical [LV19, VPFD10]. quantum/classical [CP11].
Quantumness [CD15]. quartet [HK11, SCZG12, ZCG10]. Quartic [VBC+12b, FT15, dAB17]. quartz [LLM13].
[BAP12, BGL+16, DLG12, JEA13, JMP19, LWL19, MURR13, SZZ+19, TMC18, YJ17, ZQCJ10]. rare-gas [SZZ+19]. Rashba [KV19, SBD+16].
Ratchet [BEPZ10b]. Rate
[WZH13, AFM+10, Buc12a, CAIA12, CGIA12, DCO1+19, FLCHL10, FM+10, MVC13, MIKH19, NZLG15, dMOB12, ZLWL16, ZXY13, SSP14]. rates [AC11, CCM08, RFEGPP+16, YK13]. Rational [LLZ+14, WR14b].
rationale [JWJ+12]. rationally [LLZ+14, WR14b].
Rayleigh [BDR12, MB12, dSCC12]. Rb
[ˇCFˇC11, DIOG12, MLW10, RBTL19]. RbH [KHH10]. RbSi [LHL+15].
RCOOH [DQZF12, NBL12]. RDC [PT13]. RDM [KK14a]. RDX
[Jeo18, MJ11, TJ17]. RDX- [Jeo18]. Re
[BvWG14, Kaw15, LNGW14, NZLG15, SKS10, SR18, VPG12, WWLZ17, ZSHL16, ZP16, ABM+19, AGOP14, lAy14, AG10a, AG10b, AASU+17, AEAS+19, AGNS14, AFM+10, ASD14, BPT12, BAMA12, BZZ15, BLJ17, BZ+19, Buc12a, CLKD15, DS12, DAA16, DPDR11, DZ11a, DSZB18, EHD11, EM17, EHM+10, EDA16, FLT14, FY17, FUE+12, GWZ+14a, GZFM13, GKT+12, HSS+11, HX15, HHL+12b, HhGqZZ17, Iku17, IK14, JW+12, JAB12, KAR12a, KI15, KI12, LGM+18, LKOS17, Les12, LZZ12, LZFZ13, LLP+13, LW1Z13, LD17, LZ+18, LFT18, LS19, LLC+11, LCH+11, LW+10, LSW12, LSG11b, LCL+11, LWW13, LWW14, SWS+14, SZ15, SY17, SHMR11, TM13, TSL11, Tsn15, TGA+11, WXZ+11, WWZH13, WX+11, WJ11, XGH18a, XZL+12, XDM+10, YKL12, YNL18, YY18a, YK13, YGL+11, YZ10, YLC18, YLFC18, ZRG+19, ZZ11, ZH12, Zha14, ZLWL16, ZCG+17, ZYSW17, ZWL18, ZPB12, ZXY13, ZSS+13, ZJC+13, Zil14, dHLdS12]. reaction-field
[SHMR11].
Reactions
[KKH+13, LLM13, MNE+13, OD12, TIN13, TM13, ACR10, AMMB+18, BRS10, BS14, BAX+19, Buc12b, CdAFS+12, CM12, Chr10, CJGT12, DWZ11, DAA16, DFK16, EMED+12, EMEP15, FNM12, FDMR11, GGG16, GB18, HDC+11, HL1Z11, HB14, Hop15, HX15, HCL13, Kan11, KZZ13b, KMM16, LJK+18, LW11, LLF17, LGW11, LSG+14, MHC18, MIKH19, MAP+10, MBSMC18, NW19, NAK+17, dMOB12, RLW+13, SCH12a, SHS+13, SKM11, SWS+14, TFZ+15, Var14, WLG+11, WLWT12, WZ1H13, WLWL14, XLZ10, YSS+10, YS18, ZGSM15, ZXY13, ZQXP17]. reactivated [MG10]. reactive
[Cho15, dDG10a, RCM+19, RL12, Ser11b, XCD18]. Reactivities
[YM13, LLLZ10, MDNO+16]. Reactivity
[JS18, KSC15, OPF11, PMH+16, TWHZ14, TV13, BVRM10, Cha11, DVC14, DNCKCS+12, ESBVJY12, GFPV19, GTSC+19, GGP13, HMA+19, HR19, Hg13, JWJ+12, KP10, KO14, MMM12, MUNZVR12, MAP+10, MBA+13, MBBT+12, MBSMJ+16, MCRR16, NAK+17, NE11, NZAVR10, OPAVM18, RGS+13, RBLZ15, RBT19, SMZ19, Ser11a, SC10b, TM19, WJ11, YSK+12, YXM+18, RdA11]. **reagent** [BPT12, LWZW13]. **reagents** [VOK+18]. **Real** [GKT+12, HR13, Fin14a, FNIT16, GI11b, GI11c, PI16, RLRI13b, SHKS15]. **Real-time** [HR13, FNIT16, PI16, SHKS15]. **reality** [SPSA11]. **Realization** [PM12]. **realistic** [SMR14]. **rearrangement** [SKS11, WTH11, YY18b, ZAE10]. **rearrangements** [WCGD12]. **rearranges** [MG10]. **reason** [PWP+18]. **ReaxFF** [BGKK16]. **recently** [JPPA10, TCA10]. **Receptor** [KKM+12, CRSB12, CSVCB12, MSY+12, SSP+17a, SK11, SKB18, WTH11]. **receptors** [PRG+10]. **recipe** [STM18]. **recognition** [Cav17]. **recognitions** [YWY+12]. **Recognizing** [Cav17]. **recombination** [BMF13, dMOB12]. **reconstructed** [dLdOdAD12]. **Reconstructing** [YS13]. **reconstruction** [AST19, GD11]. **reconverge** [Lun13a, Lun13b, MPD+15, Tou13, YMY+13]. **recurrence** [HSN18]. **Recursion** [LYW13]. **recursive** [SMR14]. **red** [FSBA12, Kry10, MRA11]. **red-** [Kry10]. **Redox** [MLY+16, AC19, AGJ12, BBA+16, ESS13, KB13, KRK+17, LCH14, VLG12]. **reduced** [ABL12, CM15, KK13, Lat13, MPE11, Per18, dCGAMV12]. **reductase** [SDM12, SLS+10, TSK12]. **reduction** [AGOP18, Esr18, KGK13, QCW+12, SBS18, VPOG19, WTA+11, YHL+13]. **reductions** [Srl18]. **reevaluation** [GI14]. **reference** [NS13, NF11, SBK18]. **refined** [SYK+12]. **reflecting** [AA11]. **reformulation** [Lev10]. **refractive** [SHMR11]. **Regina** [HS15]. **regio** [CM12, GHCMCMQ17]. **regio-** [CM12]. **regio-selectivity** [GHCMCMQ17]. **region** [EMED+12, KYS13, OVT+16]. **regional** [NGS11]. **regions** [LdBF+12]. **regioselective** [iku17, LKZ+16]. **regioselectivity** [DPDR11, DM0W11, NAK+17, YNL18, Zha15]. **regression** [VSL+15]. **regular** [PR10a, Pal10]. **regulated** [MBA+19]. **rehybridization** [Sch15]. **REIN** [MR15]. **Reinvestigation** [NRH11]. **relafen** [YNM13]. **related** [Buc12b, HNH+12, Kal18, Luz13, MSAB19, RALK18, RLY+13, SSI+10, TD11, TFMC19, UMS13, VLG12, WVL14]. **Relation** [PM16, HSN18, KM12c, RBGGM18]. **relations** [AEÖ12, DB13a, GZSMFN16, LWY13, OOM+19, RS13]. **Relationship** [CJZ12, DNCKCS+12, GXZ+14, Gra08, Gra11, LB1V16, MY17, RGST12]. **Relationships** [NBI+10, CJSNLM11, EKN10]. **Relative** [SFW12, BMX+19, LNV+18, MC17, Pan16, PSKV19, ZSZ14]. **relatives** [Fin14a]. **Relativistic** [BCK19, Fri12, Liu14, MM19, RLTAT19, SH18a, CSG14, DAC12, FSST16, GAPK+19b, Leh19c, MGGCM+19, MPTZ13, MZT16, NS17, NNSN17, OCGM+19, RR19, RTT10, SN15, SS12, ZE18, ZKKR11, ZQXP17].
rotation [Å12b, CPL15, DDF+12, HK11, HRT12, KKB17, QD10, Sut12].
rotation-vibration [HRT12, QD10]. rotational
[AEO12, CCBR+12, DCR10, Puz17, RMJJ1, SPO+11, VLM+10]. rotations
[JdOS16, KMS+11]. rovibrational [PBB15]. route
[BMF13, HGBO8, SRS+17]. routes [VPGC12]. Rovibrational
[LLP17, AM12, FT15, VLF12]. rovibrationally [Dan16]. row
[BZBZ13, KWC11, MKM11, ZFC+17]. RPA [LZ10]. RRKM [DS12, STL12].
RS [ESS13]. RT [KKG12]. Ru
[PP19a, MJ16a, OG19, SG19, YTY+12, ZPW16]. Ru-catalyzed [ZPW16].
rubidium [LHL+15, MMR+10]. rubidium-doped [LHL+15]. RuCl
[CCL+10]. rule [DMWY11, JL12a, KT12a, MHT+08, MC18a, SD13b,
XWC10, YLY+17, KKS11b]. rules [RBGGM18]. Rung [Jan13]. Russian
[Tch16]. ruthenium [ADR+18, CBW+13, DFC17, HJKD11, EKD12, GZW+14a, KMS17,
Kin13, LJK+18, MEEA+13, OD12, PCK19, PIR18, TCD12, Tan13, TL15,
WYL13, XHZXXZ10, XXJ+16, YXM+18, Zha14].
S-adenosylmethionine-dependent [WYWL13]. S-doped [OGvSG18].
S-nitrosothiols [XHZXXZ10]. S2p [LdbF+12]. S2s [LdbF+12]. saddle
[QB15]. safety [FUE+12]. Sahni [VUC13]. salen [TMM+14].
salicilidemethylfurlyamine [GW18]. salt [CLMY12, RMTG11].
salt-bridge [CLMY12]. salts [Bon17, BM10, LG15, LMCZ11].
sampling [BBB+12b, SKV12]. samplings [BS16]. Sanderson [SMGFZ19].
sandwich [DZ012b, LXD13, WCY+10, YZW15b]. sandwich-like
[WY+10]. sandwiches [SSB19]. Sanibel [ÖS12b]. Santos [HS15, dFR15a].
SAPO [SACA18]. SAPO-11 [GSB10, SACA18]. SAPT [JNY17]. sarin
[GZSMFN16, GZSMFN16]. SBO-3G [GZSMFN16]. scaffold
[OSJ+12, ST15]. scaffolds [TFZ+15]. scalability [CKYR18]. scalable
[CKB+19]. scalar [HEVMSA+19]. Scale
[Lya14, CKYR18, DFF+13, RMB18, SN15, SKV12, ZLY13, MBTVR12].
Scale-adaptive [Lya14]. scaled [YF16]. scales [DP11]. scaling
[DB13a, DVP18, JHI13, KJ16a, KJ16b, Kri13, LCL15, QX+15, RCP14].
SCAN [KME+18]. scandium [BBY18, GGD13, XCD18, OH13].
scandium-based [BBY18]. Scanning [ZLWH13]. scarce [SG19]. Scarf
[QD10]. Scattering [III16, A15, CD15, Choi15, CYK17, Choi19, Kar12c,
Kar15, NA14, RL12, RW11, SY10, SSA18, TBSTM12, Zal11, ZH15, dSCC12].
scavenger [GAI19]. scavengers [MG18]. scavenging
semiconductor [DLJT14, Fer11, KP11, Kar12b, SAHG11, VVY18].
semiconductors [BWE16, Eng16, HKZZ15, WDS19, YHL+13].
semiregular [Bib13].
Sensing [NEEV15, IKC18, Man16, MBSAG16a, MBSAG16b, dSMT+18].
Sensitized [AGJ12, BDG17, FM16, cLqFtW+14, MY17, MANP17, PMAP12, QJ13, SG19, SS515, WWB+14, Zha17].
Sensitizers [CWB+13, LGS+16, SG19, SSS15].
Series [CLMY12].
Serine [CLMY12].
Serotonin [CSVCB12, CSSK+12].
Serrano [Mer11].
Serrano-Andrés [Mer11].
SERS [TSBSM12].
Seventh [NYA+13].
Several [Tch16, MMM+12, SLSZ13, XZYS10, YY+13].
 Sextet [AM12, RB18].
 Sextuple [SLZ+11a].
 SGSA [SOF+10].
 SH [BDF+16, BXZ+19, CdAFS+12, dSNBG08].
 Shannon [BW18, Bar11, Gan14, KdSm+10, KFJ+18].
 Shape [CL18, NMV+14, BXR+13, BVP13, KP11, LKN13, SSAM13, XWCY11].
 Shape- [LKN13].
 Shape-Inducing [PN11, KKH+13].
 Shapes [IROW10].
 Sharing [BBKO16].
 Shcl [MZLM17].
 Sheet [BHAH+18, SJW13].
 Shell [CP16, Fin14a, Fin15, GB17, GXX+14, JEA13, JMPI19, KK13, DVLC19, LSC+18, MSRu+11, NNS17, NNSN17, PJ19, STM18, SDY16, SX18, YMM+13, dSDS13b, dGR14].
 Shell-Confined [SJ19].
 Shell-Inducing [LSC+18].
 Shells [GHP11, PUF+11].
 Shielding [Cyb11, MKG+11, NB17, RRK16, SS12].
 Shift [Bou11, Bou12a, LCB10, MFB11, Rit11a, Rit12b, SCB+14, SK10, TKSK17, XGH18a].
 Shifted
shifting \cite{dOR10}. shifts \cite{CRSB12, CFGC11, FBD+13, RR19, Tap15}. SHN \cite{NRP+11, SS11}. short \cite{Dum12, GST11, NWQX11, RMC19, SB16, WWL+11, XCD18}. short-living \cite{SB16}. short-loop \cite{Dum12}. shortcomings \cite{MGN14}. should \cite{She13}. showing \cite{DSH18}. shuttle \cite{Ali19a, FDMR11}. SHX \cite{EMSB15}. Si \cite{GLF+12, JL12a, MGD11, TW10, VPFD10, XCL+18, ZHL+19, CN12, ENV15, Esr18, GKG18, LKN13, LBY+14, LW18, LLLB13, MGP10, MBA+13, MSVCI10, OD16, PWL+10, WLWL14, ZCX+16}. Si-[ZCX+16]. Si-doped \cite{ENV15}. SiC \cite{LXLL11, TCCI10}. SiCH \cite{FT15}. SiCNT \cite{SD16a}. side \cite{DSCO+13, MPE11, NHG+12}. side-chain \cite{DSCO+13}. sieve \cite{SACA18}. SiF \cite{KMM16, KMM16, SLS+12}. SiGe \cite{LLLB13}. Sigma \cite{DAC11, FC19}. sigma/pi \cite{FC19}. signal \cite{GSPR19, QZH13}. signature \cite{GDM+10}. signatures \cite{BR08, BR12a, RB08, RB11a, SCL19, ZR13}. signed \cite{SK17b, SKLC19}. Significance \cite{Chu12, ELC08, Kut10}. Sigma \cite{HCL13, RLW+13}. silica \cite{CRSB12, SFNC+18}. silicate \cite{Ped16}. Silicene \cite{WLH+19}. Silica \cite{COP16, HS15}. silver \cite{AMK10, Boe12, BPK19, RFMC19, SS18b, YJ17}. silver-ligand \cite{BPK19}. silapolymer \cite{TYL10}. silica \cite{CRSB12, SFNC+18}. similar \cite{BB16, MK10a}. similarities \cite{ART08, Luz11b, MBTVR12, MBBT+12, Sat11b}. Similarity \cite{QBRA18, BM16, DCR10, Fin15, FB17, KV11, Lev10, LPM+11, MA12, MT10, SAS+12, SGL+16, SGG12, STM18, SLS+19, Szc18, TLC+17, TC12, VSL+15, YZZ+16, ZT13, ZDF+13}. Simplification \cite{CFOC+10}. Simplified \cite{GZF14, GZSMFN16}. simultan \cite{HYZ13}. simulate \cite{SKLC19, SKV12}. Simulated \cite{TGC17, VVS+18, AM13a, Eil14, JPP+11, MOE+11, VVN+16}. Simulating \cite{DMBJ15, GMA+19, MRS15}. Simulation \cite{LPM+11, CW+11, CSK12, CS17, CTDOLA10, DKZ+10, DGR+16, DLZ11, FFF10, Fra17, FNT16, GW18, Hog13, IFT13, IFT14, Kim19, KST12, LCT14, LL17, Mas14, MDP+10, MPZWD10, MG12, NKK15, Net12, NDM+12, PP10, PMH+16, SLS+10, Tan13, UTThn13, YAF+15, YT14, YIN13, ZWSF16}. Simulations \cite{Hor13, MSH13, Mar13, OHDA13, SIB+13, SLS+13, UYN+13, UTThn13, YK13, ÁFV+12, AF19b, ATS15, BMF+14, BM10, CLK15, CKY18, GPVPC10, GSR12, GSPR19, HFBC19, IKC18, Kit15, KKH+13, KFS13, LFS+11, MGN14, MM10, MMT+13, MBS+18, PDR+14, Pha19, PIS18, PP+13, QXS+15, RP16, RNC+14, SHKS15, SBL11, TGRP19, TSH17, TPdMB12, UV18a, ZWLC12, Zha17}. sinc \cite{KRC+16}. sine \cite{dAB17}. Single \cite{Esr18, Sri18, Bar11, Bas11, DI10, DCZ17, ETGLMJ+19, EM19, Fra17, HNBG15, KG08, LZZ+11, DVMC19, MR12, MSOV13, RLZ12, SD13a, SD16a, SVPTM+10, SWS+14, TKS11, TC10, XGH18a, YW16}. Single- \cite{Sri18, DVMC19}. single-electron \cite{LZZ+11}. single-molecule \cite{Fra17}.
singularities [SKG11]. SiO [DCDD10]. Siroheme [SDM12].
Siroheme-containing [SDM12]. site [AO12a, BGFD14, DLJT14, DPRK12, KRH13, KSY+11, MS10, OH13, PK13a, SKB18, SZ11, TOSN12, TSKN12, TYN13, WH18, XCD18, dCDC+11]. sites [ATL+14, BSO11, LKd+16, OPF11, QZH13, RDB18, RDB19, Ser11a, Ser11b, SACA18]. situation [CPF12]. Six [Nes10, BBKO16].
six-membered [BBKO16]. Size [MW15, BHAH+18, BGL+16, GWZ+14b, GI10, Kar12b, LKN13, MPMCM+11, WLZ+12a, ZRY+13, RS09, RS11a].
Slater [FB17, GZF14, GW13, Hog10, JH15, RLER14, RVO+14, RRCO11].
Slater-type [GZF14, GW13, Hog10, JH15, RVO+14, RRCO11].
solubility [RGS+13]. soluble [GLPA10]. solute [Cap16, MFB11]. solutes [Cam10, RTG+19]. Solution [KC16, AMMK11, ATPR11, BKM15, Bra10, BCF+11, Cam12, DE18, DCOC+19, FPRGMHB12, GCDNNS12, HS11a, HR12, HFD12, ILBS10, KS11, Kha16, LLP+13, LGZC15, Lu10, MSH13, MK10b, MPE15, MB14, QSX+15, RZZS18, RZG12, RP16, RCM10, RW12, Rit12b, SL10, SM10b, WXB+11, Zag11, ZKWZ17, ZH19, DM12]. Solutions
[FKBG19, AEÖ12, EI11, HYZS12, HYZS19, LDZG16, LEU+11, PS10a, PVS11, PVS12, PT13, PGMRGM15, RMLPGGGH16, SMV11, SCL19, TIKN11, ZLJ11, ZHF12, ZPZ15]. solvable
[GMGRMP12, Kuhb12, PGGRMP10, PMGMGR12]. solvated
[CLMY12, GMA+19, HFBC19, LCCH11, LSKM19]. Solvation
[GLPA10, MSK+12, RTG+19, AM18, BH10a, Car19, DMS+19b, FAK19, JCC10, Li15, Owel17, PCR+11, RFN+12, SL10, SLS+19]. solvation-layer
[RTG+19]. Solvatochromic
[LCB10, MFB11]. solvatochromism
[Men15, MR˚A11]. Solvatofluorochromism
[FSBA12]. solve
[Blo15, CRA+11, Ign11, Ign12, Kri13]. solved
[SW10]. Solvent
[CCC19, EKD12, HR19, RdA11, RMTG11, dAVdM17, AGOP18, BS11, Cap16, CYLL11, CS17, DLO16, DFF+13, GZF13, HFL+17, IG11k, IK14, JN13, KI15, LJK+18, LWL10, LWJL10, LDW+11, LLZ+12, MG12, MKHM11, QHS11, SN12, TC10, WLD+10, XX12, XWC11b]. solvent-separated
[LJK+18]. solvents
[COCF+14, HFL+17, KP10, MIKH19]. Some
[Brå11b, Jou13, Luz12, SW10, Sha18, Sut12, VATPR11, ZYL+14, AF16, AMAM18, ALB18, BCGC12, DCR10, EAK+10b, EAK+10a, E11, For12, GCNGS12, GB10, GI11b, GI11c, HS11b, KCC13, Kin13, MANP17, MIKH19, MAP+10, PL11, Pie12, Roy13, SGL+16, Tch16, TCA10, VO11, XHZXXZ10, ZCC11, ZLZ+14, ZZC12, Sic16]. SOS
[RNC+14]. SOS/QM/MM
[RNC+14]. soundness
[Sha11a]. source
[DSM+19b, GCK+17, Hor13, QSX+15, RAMB18]. sources
[LtdSJ+10]. sp
[She13, MCK17]. space
[BVP13, BGBV12, CDT12, Fin14a, GRD11, HN12, KPH+12, MSNP18, MFLK11, MQA17, Na12, Na13, PC16, RW12, SH19, SHTI15, SBL11, VMR11, WWL17, Ze18, vL13]. spacers
[ALRAE11, KI14a]. spacetime
[Bi13, LSW19, LW19, LZZ19, PL18a]. sparkle
[FS11]. spatial
[ABP13, CDS+18, GKM18, Pit12, RBL19, SR12]. Spatially
[AT18, CK18, GFZ14]. Special
[AH19, ÁJGVZW12, For17a, LV16, NYA+13, NT15, ÖS12b, Rei15, Rup15a]. speciation
[HFL+17, RDB18]. species
[APK+19a, GS11, HJK013, Kal18, MGD11, RFMC19, SSI+10, SM14b, SM14c, SM14d, SM16, SBSD18, YHLC15, dHLD15]. Specific
[MMM20, Cin20, LZZ+11, Lya19, MMM16, MSY+12, Nic11]. specificity
[PS10a]. Spectra
[Mly+16, AEKGZ12, AFC+10, ÁFV12, AEM+12, Ban12, BBB+12a, BS11, Ber13b, BBB16, BBAL12, BKPK19, CP10, CFP+10, CHH+19, CS17, CML+16, CLMY12, DSH+13, E114, FBO+11, For12, GI12, GKM18, ILBS10, IHG10, JPPA10, JPP+11, KV11, KBBM10, LYW11, LWL+12, LMZ15, LLP17, MC11a, MPJ12, MSK11, MAA13, Mor13, NBI+10, OVT+16, ORJ18, PR10a, PCR+11, FJP10, RNC+14, SBAT16, SB10a, SPO+11, SZZZ11, TZ11, TFSRM11, TT10, TG13, VPDF10, VVS+18, VSN+11, Zen11, ZQCJ10, ZWL12, ZLE17, ZSZ14, ZQXP17, ZI19, dARAV12]. Spectral
[LLH15,
Mys12, CdLdSC18, FBU+11, KP12, KM19, LYR+17, SMGZ13, XLZ+19. spectral-luminescent [KP12]. Spectral/structural [LLH15].

spectrometry [ABKJ18]. Spectroscopic [BH10b, Jac12, Mag14, NC11, NVPCJ+13, SZS+10, SLZ+11c, SLZ+11a, SLS+11, XSS+12, SLS+12, WFS13, BD12, CHM+14, CWB+13, CJOOW11, DAE+12, GFB12a, KSSK16, LJSS12, LZZ+17, MG12, MPTZ13, QHS11, RNdA+10, Sch10b, SYL+18, SLSZ13, SWS12, Tas14, VLG12, VLFG12, VBO+15, WXB+11, YZL+10, YZL+11, ZLJS10, ZR13, dSDSPG11].

Spectroscopical [MSBF18]. Spectroscopies [KKT13, MOY13, McC13a, OA13]. spectroscopy [Ber13a, BDR12, BWB+18, For17b, GFB12b, LdBF+12, Mas10, MML11b, ORJ18, Ped16, Puz17, SA11b, UTTn13, YJ17, ZPZ15, RdA11].

spectrum [AA11, BS16, BDF+18, BBB+12b, Bou12b, CWF11, CRSB12, DSD18, DHZS11, DWGX12, HHCA10, HRT12, HMH+13, HYH+10, JCC10, KBG17, NDM+12, QD10, RS12a, SBKJ18, WWC17, Zha17]. Speculation [KRH13].

spent [HB14]. spermine [SGB11]. Spherical [Kit15, PML+11, Roy15, CH17, CB19, CN12, GAPK+19b, Nik11, OHDA13, RLR13b, RAFL18a, RAFL18b, Roy16]. Spherical-harmonics [Kit15]. spherically [JZZH17, Nag16b]. spheroconal [MFLK10]. spheroidal [OPC17]. Spin [BDR12, DCDG10, JR12, Kle11, Luz11a, MLK17, NKWT19, SAHG11, SAHA12, Swa13, YLY+12, ATL+14, Ash18, Ber13b, Bla15, Bra10, CR18, CCP18, CYL+18, CFGC11, CSP+10, CDT12, DS11, DM16, FSST16, GXZ+14, GLXL18, GFRdG11, Joh17, Kap12, KK14a, KV19, KSN+10, KYH+13b, LVdSM14, LWL+12, LB19, Luz12, MR12, MPRB+10, Mos14, MC18b, NSN17, NNSN17, OS10b, PBR18, Qu13, RS12a, RLZ12, SR12, SRASZ16, SSP+17b, SBD+16, TÁ10, TD11, Viv19, WH12, Yur13, Yur15, ZSQ+10].

Sr-doped [Oni10]. SrBi [HLMO11]. SrC [ZFW+13]. SrH [HMI+15]. SrTiO [OH13, WCL+17, OH12]. SS [SZZ+12]. SSH [DTFK15]. stabilities [AF16, MS17, SFW12, SUL+11, SM14c, ZYL+13, dAVdM17]. Stability [GV11, KZA+17, Kry11b, LWL19, MC12, PMEP19, TLC+17, USL+13, BMX+19, Boe12, CCC19, CYL+19, CWSZ13, DVC14, FBRBR12, GJ18, GB13, GAMM10, GWJ12, HLB19, Ire12, KK11b, Kry12b, LGHL11, LCZ15, LGS+16, MNV+17, MC17, MCARL11, MMW19, MJ14, MMV+19, MM10, MS14b,
Structuring [KRG+13]. studied [AMMK11, BL10, CK17, DCHC11, FBO+11, SJZ+18, TTM16, ZL10, dSdS13b]. Studies [PCF+18, Roy13, ACF+11, AMK10, AVG19b, BD12, Buc11b, CJBMMAPR19, CCA+12, ÇAS13, CYLL11, CTW12, CWB+13, CSVCB12, CSSK+12, DSWL11, DSZB18, DB15, EAK+10b, EI11, For12, GGD12, GKT+12, GZBH18, HTM10, HNBG15, Hop15, HWL16, JL12b, KDC+12, KMM+18, KA13, KSY+11, KAOB11, Les12, LWL+12, LSR+13, LBY+14, LGZC15, LWJL10, LKLW11, MANP17, MLPT10, MAP+10, MMY+12, MSAB19, NTCK13, ONBP11, ÖEDB11, PBM10, PTD+12, PETB18, PAPCMM+16, RJY+10, RJIA+10, RTGS11, Rnda+10, Rii10, Riv11, RGS+13, RGR12, Roy14, SMK+12, SC16a, SJZL12, SIS+08, SK12b, SZ15, SSB+12b, TIKN11, TOSN12, TYN13, TAY11, Tan12, TIN13, TXL10, THSR13, UJSJ13, VGGPdL19, VPOG19, WZX11, WTH+11, Wan13, WZM+13, WYWL13, WLH+19, WHM14, Wit18, WWGW18, XS18, XFW+14, YZL+10, YZW+15a, YB11, ZZL+11, ZZX10, ZYX+11, ZQJW13, ZLWY13, ZLZ+14].

studies [ZWL18, ZSZ14, dAGNJT12, YWY+12]. Study [Bar11, BWB+18, CH17, CYL+18, IFT13, IFT14, SGL+16, SS19b, ZCP11, AC19, AFC+10, IayL14, AM12, AASU+17, AEAS+19, ATM17, AKC10, ASW13, AVG19a, ASD14, AMAC12, AG19, BMK+14, BD14, BF11, BCCG12, BDF+16, BDF+18, Bas11, BAMA12, BB18, BLR12, BS11, BEM11, BBZB13, Ber13a, BL11, BLRdA+10, BHAH+18, BS14, BSSS19, BZZ15, yBZc18, BXZ+19, BDG17, BLdV19, BMF13, Bon17, BGJSM+18, BDR12, BCF+11, BPSM12, BLM+12, BJ17, BJdlAV12, BTH18, Buc10, BO11, BVRM10, BC+12, BB16, BS12, BSK11, CRB+12, CMR13, CAZ+11, CLXZ12, CLL+13, Cao17, CPL15, CPF12, CCBR+12, CHM+14, CHH+19, CC12, CW16, CM12, CCL+10, Che12, CCS13, CWW+16, CZLD17, CLY12, CS13, CWS15, CZZC19, CK13, CFGC11, CGIAI12, CAPL12, CPAT11, CJOOW11, CD12, CS18, DWJZ11, DCCB11, DIOG12]. study [DMAB12, DAR+11, DDS18, DS11, DPK18, DS12, DC16, DSRGD12, DPRK12, DPRD11, DTEMK11, DZ11a, DLO16, DG19, DMS+10, DCdG10, DDF+12, DdG+11, DQZF12, DWGX12, DSH+13, DCR10, DFT17, DFF+13, EG10, ESD016, ELCO8, EAH13, EFO11, EO11, ETGLMJ+19, EBH11, EA12, ENV15, ES17, ESR18, EM19, ESBV12, FSO+11, FZX18, FFF10, FO10, FM16, FTB11, FRNM12, FDN10, Fni14a, FT15, FPRGMHGB12, FBU+11, Gag11, GBS17, GWM11, Gao12, GLF+12, GGJD13, GZW16, GHGF12,
GK12, GLXL18, GIO12, GFB12b, GC18, GP13b, GMT16, GMT18, GS11, GLOGM+11, GHCMMCMQ17, GB18, GWME18, GD11, GSB10, GT13, GTSC+19, GGP13, GLPA10, GCZ+14, HNH+12, HMA+19, HK11, HTC+11, HJZ11, HZL+14, HZZ+19, HDF11, HHL12a, HHL14, HM12, HM10a, HKLW13, HZZW11, HFL+17, HHL+12b, HhGqZZ17, IWI+11, Iku17, IGMK11.

study [IM15, JPPA10, JN13, Jali10, Jan10, JB18, JS17, JCCZ12, JSLH14, JLZ+17, JB11, JWG+12, JFDD10, KM12a, KS11, KWC10, KWC11, KP11, KBF+13, KKM+12, KI15, KI12, KK14b, KSAK17, KZZ13a, KZZ13b, KUTS10, KKT13, KKT14, KG08, KO12, KMA+13, KK11d, KBMM10, Lan10, LGM+18, LLM13, LKOS17, LKJ+18, LVDsdM14, LPOP12, LZZB10, LCL+11, LJL+11, LW11, LNW+11, LYN11, LGP+11, LMZ+11, LGP+12, LLP+13, LXW+14, LL11, LYT+17, LFF17, LZW+18, LTL18, LFTL18, LW+11, LLC+11, LGW11, LLLB13, LLL+17, LLF17, LD17, LZW+18, LTL18, LLW+11, LLC+11, LGW11, LCZ15, LL19, LCH+11, LSL12, LW+12, LWZ+14, LL17, LLW+12, Lu10, LWC+10, LCS+11a, LCH+11, LCS+11b, LXLL11, LLLB13, LW13, DVMC19, LKZ+16, MYZ+10, MLW+14, Ma14, MY17, MAD12, MBKH19, MSG16, MZB+13, MFF11, MK10b, MK12, MLC+11, MCP10, MMR+10, MCC12, MV18, MP12, MTL+12, MSC10, MM19, MOY13, MMWA11, MNC+19, MUNVR12].

study [MUPC10, MDNDO+16, Men10, MFZ+18, MCL11, MGG13, MS17, MHP+17, MM11, MSK+12, M+11, MGD11, MTS15, MPRCEG12, MMRA10, MML+11a, MLA+12, MBBT12, Mor11, MM13, MG10, MMF+13, MSRn+11, MSOV13, MCAS16, MOH+12, ND11, NS10a, NHG+12, NDH10, NBL12, NAK+17, NTNL10, NL11, NFQ+11, NHBI2, NRG51, NRS+11, NRP+11, NRHJ11, NAJ+12, NT16, NZAVR10, NEE15, OAC17, OPI17, OAA19, OH12, OH13, OCB+10, OPP+14, OMD13a, OM13b, OD12, OD16, POLV12, PSI3a, PEA+12, P+11, PW+18, PDNC14, PMH+16, PE11, PWL+10, PSK19, PK13b, PKK14, PRG+10, PAD+10, PRP+13, PM17, Puz10, QS11, QCW+12, Qu13, RYM12, RNF+12, RGPD13, RRVJ10, RS12b, RSN12, RSM12, CRC+19, RD14, RRRV19, RGST12, RDB19, RYW+15, RI19, RCM10, RJLPGH+13, RDM+11, RBVAG18, RNE10, RNB+10].

study [RS11b, RRB12, SF13, SB18, SSB19, SIT+12, SK14, SD16b, SBEH11, SK11, SRYGV12, SB10a, SKHN13, Sat11b, Sch12a, SK17b, Ser11a, Ser11b, SLS+14, SKS11, SHT+13, SLSZ13, SHE10, Shi13, Shi18, SL10, SKM11, SM13, SR13, SSTD11, SLA12, SK11, SR18, SSA18, SSP+17b, SB18, SMA11, SZ11, SBB16, SZZZ11, SZZ+12, SLZH12, SHW+13, Sri18, SMGZ13, SK10, STU19, SYQ+10, SWS12, SWS+14, SZL+14, SZZ+15, SGL19, SYY16, SCZH16, SS13, TK16a, TV13, Tav11, Tav12, TM13, TT10, TDOID7, TU10, TLY10, TSL11, TFZ+15, TJ17, TFA10, TSH17, TFB11, TCCI10, TGA+11, Tug13, TWR15, TPT+13, TPT19, UKF+11, UMS13, VF13b, VPGC12, VFCSC17, Var11, VHTEG15, VNF+16, VLM+10, Ven12, VSMK13, VSMK15, VV12, VV13, Vie17, Vik13, VKF+19, VDG13, VS19, VO11].

study [VO12, WML10, WXZ+11, WJL+11, Wan11, WvRSW+11, WLL11,
QSX⁺15, RAN18, RNdA⁺10, SDS19, SDS20, SW10, Tou13, VLK⁺11, Xu16, Xu19, ZX12, ZWL18. **Systematic** [KSS12, WR15]. **Systems** [GLT13, IA13, KBF⁺13, ONK⁺13, ARG11, ACT19, Bae16, BR08, BR12a, BBB⁺12a, Brå11a, BDP12, BWE16, BBA⁺16, Cap16, CJBBMAPR19, CAPGAIG18, CH17, CS13, CP11, CP16, DMAB12, DLMRFY10, DBTA19, DCD10, DI18, Dun15, DB15, Fer19, Fin16b, FSST16, GB10, HS11a, HITU16, HFdGC14, HKLW13, IFT14, JE10, KH12, KK13, Kha16, KCC13, KSD10, KSN⁺10, KYH⁺13b, Kon11, Kry11b, Kry12b, KM19, Lad14, LS17, LV16, LGZC15, LC19, LRMAA19, SBD13c, WLL⁺13, XLLZ10, YGLL10, dOR10]. **Systems** [VOAH18, WCM14, XTLA13, XTLA14, YYI⁺12, YWH12a, YWH12b, Zak16, Zak16, ZWE12, dGR14, dOR10]. **systems** [Mam14]. **Szeged** [Tra19]. **T** [BL12, BTH18, CPF⁺11, SLS⁺11, ZHL⁺19, GWM11, BBM17, BTH18, SD13c, WLL⁺13, XLLZ10, YGLL10, dOR10]. **T-cell** [WLL⁺13]. **T-junction** [SD13c]. **T** [DFF⁺13]. **Table** [Gar08, GI10, Kut10]. **Tables** [Rus14]. **TACA** [Ser11a]. **Tailored** [GbZA10]. **Tailoring** [AV19, BHAH⁺18, MMA10]. **Take** [PUGSFM18]. **Tame** [DB13a]. **Tardy** [FK18]. **Target** [HM10b]. **Targets** [PUH⁺11]. **Tartaric** [LCZL11]. **Tautomer** [dAVdM17]. **Tautomeric** [SOM10, CCL⁺10, JN13, LDW⁺11, NRS⁺11, NJA⁺12, TSH17]. **Tautomerism** [HS11b, PS13a, VF13b]. **Tautomerization** [JS17, YY18b]. **Tautomerizations** [MPGS19]. **Tautomers** [KAOB11, LCH14, TAV11, TAV12, ZR13]. **Tayloring** [PJP08]. **TB** [ZCP11]. **tBu** [HHL12a, HHL14, PP14]. **Te** [ZLY⁺14]. **TCD** [WWX⁺11]. **TCNE** [TD11, KBMM10]. **TCNE-methylsubstituted** [KBMM10]. **TD** [AFC⁺10, BDR12, JPPA10, ACF⁺11, BVCAP12, FPQGMBI12, KI15, LJI13, Mas10, dSM19a]. **TD-DFT** [KI15, LGS⁺16, dSM19a]. **TDDFT** [WKE17, BGFD14, BAA⁺18, BHAH⁺18, ESDO16, HKLW13, IHG10, LY11, LZ10, MMWA11, PJP08, PSK⁺13, VSN⁺11, YZW⁺15a, ZSAP11]. **Te** [AM18, BHA19, WSML16, XWC11a]. **Tea** [MKHM11]. **Technical** [KdSM⁺10, LKJ13, MJSC18, SR12, SOF⁺10]. **Techniques** [DW12, LSR⁺10a, LSR⁺11, MQG13, OLS11b, RW11, SKV12]. **Technology** [YSA⁺11]. **Teller** [DMAB12, AGPDZ13, DMAB12, GFB12a, HR12, HFZ12, JZP17, RGPDZ13, SBD⁺16, TPCJ⁺12, WLZ18, YYI⁺13, ZFC12]. **Teller/Renner** [DMAB12]. **Telluride** [KG08, MW15]. **Tellurium** [ESDO16, RR19]. **Tellurium-containing** [RR19]. **Temozolomide** [KdPNS16, KMMS17]. **Temperature** [Buc12a, GFPVA19, KKH⁺13, MKSG13, PMMG⁺11, Boc12, CAAI12, CS17, DUN15, KAR12a, ILBQ⁺19, LL19, MOH⁺12, NAG17, TD11, WCGD12, AFV12]. **Temperature-dependent** [GFPVA19, ILBQ⁺19].
Temperature-programmed [ÁFV12].

[[Chu12, STM17].

tendencies [SMP10].

Tensor [SPM15, BL19, Fin14b, JMX15, LHX19, Lya14, NIT16, XXJ16, XWP18, YXM18].

Temperature-programmed [YFY17].

terephthalate [TNI13].

term [IIH16, Ols11b, ZLJ11].

terminal [SLS15].

terminated [dLDodAD12].

Terms [Gin10, Glu13, KLI11, PE11].

ternary [KYLC19, MS14b, OGvSG18].

tert [AMAC12, Pli18].

tertiary [MMM12, PCML08, SAG13].

test [DAA16, Mar12, PWP13].

Testing [FCS13b, KK14a, FCS13a].

testosterone [KKM12].

tetra [QJ13, SSA18].

tetraammine [MGK19].

tetraanions [DOZ12a].

tetrabenzozyophyrin [LGS16].

tetracarbide [PKK14].

tetracarbindane [ALK19].

tetracarbon [ALK19].

tetrachloride [YSA11, ZSZ14].

tetracoordinate [YD17].

tetrad [DKS11].

tetraad [DKS11, DKS11].

tetrafluoroborate [MFK12].

tetrafluoromethane [VVJ15].

tetrahedral [GAPK19a, IIV11, MPB10, Pup11a, RFFGPP16, TGA11, WQW17, YGL11].

tetrahedrofuran [dSDSPG11].

tetrakis [ZSASS13].

tetramer [FRNM12].

tetramers [MFOH18].

tetramethyltin [DAE12].

tetranitride [XXJ16].

tetranitrooctahydromidazoo [CC11a].

tetrahene [ZLS18].

tetrahene-bridged [ZLS18].

tetraphenybutadiene [VV18].

tetraphenylimidodiphosphinate [SLS14].

tetrapyrole [ZQJ10].

tetrasulfonate [DOZ12a].

tetrasulfur [XXJ16].

tetrazole [PP19b].

Tetrel [XCL18, WLC17, ZHL19].

TH [ZHL19, dOR10, JLI18, LNGW14, LLY19, NZL15].

Th-based [LYW19].

THDDP [SSKS12].

THDP [SSKS12].

Their [She14, ALK19, ALB18, AMI10, BPT12, Buc12b, BO11, BSO11, CJBMAMPR19, CCL16, CFV18, CTW12, DSC11, For12, GTR11, GWZ14a, GI10, HS11b, LLY19, MW19, MKM11, MMC19, PR10a, PL11, PSK19, RB10, RBZ15, RLR14, Rua10, SACA18, SM14c, VGGPD19, WJ11, XSL12, YZ11, ZR13, ZGS15, ZF15, ZYL13].

them [WXB11].

Theobroma [dAGNJ12].

theorem [GW13, Lev10, Nag10].

theorems [LB14b, Tch16, ZWE12].

theoretic [AB18, IOO18, YOS15].

Theoretical [AB18, IOO18, YOS15].

Theoretical [AB18, IOO18, YOS15].

Theorical [AB18, IOO18, YOS15].

Theorical [AB18, IOO18, YOS15].

Theorical [AB18, IOO18, YOS15].
[LDW+11, LXW+12, LWZ+14, LZZ+17, LLW+12, Lu10, LWC+10, LMCZ11, LCZL11, LCS+11a, LCH+11, LCS+11b, LXLL11, LW13, LYD+18, MLW10, MWH15, Mas10, MOY13, MDNDO+16, Men10, MAP+10, MMCNV19, MSK11, MJ14, MMV+19, MHHPR+17, MGD11, MBBT+12, Mor11, NYA+13, NL11, NMP14, NFD+10, NFQ+11, NH11, NHB12, NIT16, OT14, ONK+13, PEA+12, PWP+18, Pan16, PMEP19, PSKV19, PKK14, PMC11, RFN+12, RMLPGGH16, RI19, RCM10, Riv11, RGS+13, SK12a, SRASZ16, SLS+14, SLSZ13, SSA18, SZZZ11, SLZH12, SM14d, SK12b, SK10, SLS+15, SZL+15, SCZH16, TYN13, THWZ14, TM13, TYL10, TXL10, TSH17, TBF11, TGA+11, TPT+13, TPT19, UKF+11, VF13b, WXB+11, WLL11, WLG+11, WLZ+12b, WHS+13, WHY+14, WTW+15, WWQG17, WHM14, WZZL10, WLL19, WJ11, WSL+11, WWGW18, XGH18a, XZL+12, XWC11b, XbX+13, XCY15, XLZ+19, YZ13, YZL+10, YJ17, YHLC15, YC13].

Theoretical

[Zha10, ZZX10, ZLLS10, ZYZ+11, ZZR+12, ZSHL14, Zha14, ZQW+17, ZYSW17, ZSQ+10, ZFS+11, ZL12, ZSS+13, ZTC11, dSdSG11, dARAV12, dOdONM12, AZD+11, ASD14, AG19, BLL+13, BLB+18, BLRdA+10, BG13, yBZfC18, BPSM12, Buc10, CZH12, Cao17, CHH+19, CG12, CYLL11, Che12, CHL14, CZCW19, CGIA12, DP11, DDY12, DPK12, DTEMK11, DZ1a, DQZF12, DC12, EI11, EMED+12, ENV15, FMP+17, Fri12, GLF+12, GHGF12, GLXL18, GT13, GP13, HYZ13, HSS18, Iku17, Jia10, Jia15, KO14, Kim16, KC19b, KO12, LS17, Lan10, LR+11, LL11, LS19, LCZ15, LMC19, LLZ10, LX13, LW15, LdAA+11, MNP19, MCP10, MMR+10, MPR12, MLPT10, MUPC10, MEF+15, MEEA+13, MSRn+11, MSOV13, MMS19, ND11, NHC+12, NBL12, N´em14, NRS11, NRS+11, OKR12, OAA19, OH12, OH13, OMD13a, ORJ18, POLV12, PM17, Puz10, RGR12, SF13].

Theoretical/computational

[N´em14].

theoretically

[SA18, SFL+10, SSK11, SC12b, SKS11, SST11, SACA18, SRA+11, SYQ+10, Tch16, TK16b, VATPR11, VFSC17, VLM+10, VSMK13, VKF+19, VO11, WGLX10, Wan11, WLZ+12a, WZM+13, WWB+14, XF19, YM12, YZZH15, YLW+13, ZAE10, ZWY10, ZR13, ZKW17, ZPB12, ZW15, ZLWZ16, ZMB+17, dLR11, dOR10, doCMu1dALR11, DJB10, DC10, HHL14, LEU+11, Sit15].

theoretical/computational

[N´em14].

theoretically

[Jeo18, VMC11].

theories

[Cam10, JNZ+14, Li15, Luz08, ZT13].

Theory

[Ano13-49, BHA19, Buc12b, DCZ17, HKL13, ISN13, IKN13, Koc13b, Kri13, Kut13, LMZY15, MIN13, NS13, SSI+10, SSK+12, SIS+08, SKY+13, TKN13, TH13, YSS+10, YKN13, YH14b, AC19, ABM+19, AM13b, AGPDZ13, BVP13, BAX+19, BGBV12, BKBL11, BljdM12, Cam12, CCL+13, Car19, CFGMK12, Cha11, CH17, CM12, CZLD17, CC19, CK17, CF14, CTDOLA10, CSTA16, DWJZ11, DCCB11, DKS11, DLRMY10, DBl1, DMWY11, DGR+16, DG19, DCHC11, DSZB18, FZX18, Fin17, FA17, FMM1+10, Fri12, FSST16, GFPAV19, GCK+17, GM11, GEL18, GS11, GCZ+14, HMA+19, HR19, HLZ+14, HZZ+19, HM10a, HM10b, HI13, HYD11, HMA+18, IN15, IROW10, JR12, JPP+11, JHS18, JM+15, JW18, Kar12a, KCDC15, KC18, Kar13, KKL+16, KSAK17, Kit14, KM12c, KYLC19, KdSM+10, KJ14,
KMU\(^{+13}\), KFJ\(^{+18}\), KLE\(^{+19}\), Lar\(^{12}\), Lat\(^{13}\)]. **Theory**

[LPO\(^{+12}\), LCL\(^{+10b}\), LW\(^{11}\), LWL\(^{+12}\), LPG\(^{+12}\), LBY\(^{+14}\), LHX\(^{+19}\), LLW\(^{+11}\), Lin\(^{14}\), LDZG\(^{16}\), LLZ\(^{+12}\), Lya\(^{14}\), LKd\(^{+16}\), MYZ\(^{+10}\), MLW\(^{+14}\), MJ16a, Mam\(^{14}\), MLC\(^{+11}\), MFK\(^{+12}\), Mas\(^{14}\), MW\(^{16}\), MLK\(^{17}\), MLB\(^{+12}\), MBBT\(^{12}\), Mor\(^{13}\), MJM\(^{19}\), MCRS\(^{16}\), Mur\(^{12}\), Nag\(^{15}\), Nag\(^{17}\), NSN\(^{17}\), NS10b, Nak\(^{+17}\), NTLN\(^{10}\), NL11, NMIP\(^{14}\), OK\(^{16}\), OD\(^{16}\), PS10b, PS14, PK\(^{13a}\), PABSK\(^{16}\), PP\(^{16}\), Pat\(^{15}\), PTH\(^{11}\), PR\(^{10b}\), PBB\(^{15}\), PU\(^{14}\), PM\(^{16}\), PJ\(^{10}\), PMAP\(^{12}\), PI\(^{16}\), PC\(^{13}\), QBRA\(^{18}\), RGPZD\(^{13}\), RCM\(^{+19}\), RB\(^{18}\), RMG\(^{+19}\), RMC\(^{19}\), RAMB\(^{18}\), RS\(^{09}\), RS\(^{11a}\), Rud\(^{12}\), SVRGV\(^{12}\), SLC\(^{+18}\), SN\(^{15}\), SN\(^{12}\), Sha\(^{18}\), SZZ\(^{+10}\), SLZ\(^{+11c}\), SLS\(^{+11}\), SHL\(^{+13}\), SJZ\(^{+18}\), SM\(^{12}\), Stol\(^{18}\), SKZ\(^{12b}\), SD\(^{13c}\), SS\(^{13}\), TFBG\(^{14}\), TIN\(^{13}\), Tan\(^{13}\), TTD\(^{13}\), TH\(^{12}\), TDOD\(^{17}\), TG\(^{16}\), TXK\(^{19}\), TLC\(^{17}\), UV\(^{18a}\), VP\(^{12}\), Var\(^{11}\), VUC\(^{13}\), VBO\(^{+15}\), WKE\(^{17}\), WJL\(^{11}\), WW\(^{11}\), WJY\(^{15}\), WB\(^{17}\), WD\(^{+17}\), WTZ\(^{+11}\)].

Theory [Wit\(^{18}\), XNL\(^{+14}\), XGH\(^{+18b}\), YKM\(^{+15}\), YLH\(^{+19}\), YWH\(^{12a}\), YWH\(^{12b}\), ZS\(^{11}\), ZQCJ\(^{10}\), ZLW\(^{13}\), ZCX\(^{16}\), ZBG\(^{19}\), ZMZ\(^{13}\), ZSZ\(^{14}\), ZZ\(^{18}\), Zho\(^{18}\), dCSD\(^{dMC}\(^{13}\), dSTH\(^{17}\), BM\(^{10}\), SP\(^{19}\)]. **Theory-based** [KSAK\(^{17}\), WJY\(^{15}\)].

Thermal [GI\(^{11f}\), SMR\(^{14}\), TKSK\(^{17}\)].

Thermalization [Nes\(^{11}\)].

Thermalized [PFdM\(^{13}\)].

Thermally [GMM\(^{18}\)].

Thermochemical [Kim\(^{19}\), Rus\(^{14}\)].

Thermochemistry [ABTW\(^{14}\), S¸BAT\(^{16}\), AK\(^{11}\), BYAT\(^{13}\), ÇT\(^{14}\), HZG\(^{12}\), Rus\(^{14}\), WZX\(^{15b}\)].

Thermodynamic [JAB\(^{12}\), VOAH\(^{18}\), XNL\(^{+14}\), COCF\(^{+14}\), DWGX\(^{12}\), Kim\(^{13}\), LZZ\(^{+13}\), OSJ\(^{+12}\), Fan\(^{19}\), PP\(^{19a}\), RMLPGG\(^{16}\), Tav\(^{11}\), TSH\(^{17}\), dOLd\(^{1V}\)].

Thermodynamical [Nag\(^{17}\)].

Thermodynamics [MLW\(^{16}\), PK\(^{16}\), ByWG\(^{14}\), Bra\(^{19}\), DP\(^{11}\), PD\(^{11}\), PRFR\(^{17}\), RTG\(^{+19}\), WSCL\(^{11}\)].

Thermoelectric [KG\(^{17}\)].

Thermostats [GVPCK\(^{10}\)].

These [MMM\(^{19}\), Ril\(^{10}\)].

Thiophene [HHL\(^{12a}\), HHL\(^{14}\), AG\(^{10b}\), RTT\(^{10}\)].

Thiazole [MMB\(^{12}\)].

Thiosemicarbazone [LWH\(^{12}\)].

Thiourea [LCM\(^{11}\)].

Third [KWC\(^{11}\), MMF\(^{+13}\), NKF\(^{+13}\), RS\(^{09}\), RS\(^{11a}\), WLZ\(^{+12a}\)].

Third-order [MMF\(^{+13}\), NKF\(^{+13}\), WLZ\(^{+12a}\)].

Third-row [KWC\(^{11}\)].

Thoughts [KN\(^{15}\), Lev\(^{16}\)].

Threading [WMK\(^{+19}\)].

Three
[DMS$^{+10}$, FMMD$^{+10}$, HYH$^{+10}$, Kry10, LQZZ12, MPD$^{+15}$, MMP$^{+18b}$, RAN18, ARG11, Buc10, Buc11a, CG12, GsaY11, Hog13, KV19, LWY13, Mat02, Mat10, MUPC10, RZSZ18, RAGM10, SD13b, SYL$^{+18}$, SKY$^{+13}$, WvRSW$^{+11}$, WLZ$^{+12b}$, Zha14, JA12]. Three-body [RAN18, ARG11, Hog13, RAGM10]. three-center [Buc10, Buc11a]. three-dimensional [DMS$^{+10}$, MPD$^{+15}$, RZSZ18, SD13b]. three-electron [Buc11a, CG12, LWY13]. three-membered [Zha14]. Three-peak [HYH$^{+10}$]. three-photon [WLZ$^{+12b}$]. three-state [GsaY11]. three-unit [LQZZ12]. threonine [WJY15]. threshold [HMH$^{+13}$]. through-bridge [KyH13a, Na12, Na13]. through-space [CDT12, Na12, Na13]. throughput [CRFR11, KG17]. Thymine [TWHZ14, HYD11, TSH17, XSLF12, YM13]. Ti [FTB11, HLMO11, JL12a, KYLC19, MLY$^{+16}$, TFB11, ZLY$^{+14}$, CAZ$^{+11}$, NKWT19, OPP$^{+14}$]. TiCl [BAB$^{+18}$]. Tietz [KBG17, AAHN16, HRT12]. tight [BLB$^{+18}$, LNI12, WDJ$^{+17}$]. tight-binding [BLB$^{+18}$, LNI12, WDJ$^{+17}$]. Time [Bae14, BDF$^{+18}$, CP10, CW13b, HS11a, HKZZ15, HB14, ILBS10, SSAM13, Sko16, ZLE17, Bae16, BDF$^{+16}$, Brä13, CEFMK12, CW11, DZC17, DP11, FNIT16, HR13, HHCA10, IFT13, IFT14, JPP$^{+11}$, LMZY15, Luz13, MJM19, NNSN17, NNSN17, NDP10, Oht13, PV11, PV12, PJP10, PMAP12, PI16, RBGGM18, SL13, SHW$^{+13}$, SKV12, Vik11a, Vik11b, WKE17, Xu19, YLYC18, ZCG$^{+17}$, ZSZ14, ZZ18, Zho18, ZQCJ10]. Time-dependent [Bae14, BDF$^{+18}$, CP10, CW13b, HS11a, HKZZ15, ILBS10, Sko16, ZLE17, Bae16, BDF$^{+16}$, CP10, CEFMK12, CW11, DZC17, HHCA10, JPP$^{+11}$, LMZY15, Luz13, NDP10, Oht13, PV11, PV12, PJP10, PMAP12, PI16, SL13, SHW$^{+13}$, Vik11a, Vik11b, WKE17, YLYC18, ZCG$^{+17}$, ZSZ14, ZZ18, Zho18, ZQCJ10]. Time-independent [CP10, ILBS10, ZSZ14]. time-reversal [NSN17, NNSN17]. times [PR11a]. TiO [MFZ$^{+18}$, ATS15, ALA15, EFO11, EO11, GP13a, HCL13, OGvSG18, TFSRM11, XMZ$^{+12}$, ZK12, ZLWY13, ZDZL11]. TiSi [DHYC19]. TiSiO [MBKH19]. titania [SFNC$^{+18}$]. Titanium [YSA$^{+11}$, ALA15, Che13, DHYC19, OH13, RALK18, WWLZ17, YHL$^{+13}$, ZSAP11]. titanium-doped [DHYC19]. titancenyl [Con10]. Ti [LXD13, MIL10]. TM [PP19a, WSL$^{+11}$, YL11, BLDV19, WSL$^{+11}$, YL11]. TMZr [PP19a]. TO/H [ZHL$^{+19}$]. tolerance [Kan17]. tomentosin [ZRGE$^{+19}$]. tool [May14, MML11b, Sic16, TRZ$^{+19}$]. tools [VLG12]. topo [MBBT$^{+12}$]. topo-geometrical [MBBT$^{+12}$]. Topography [AS19, dOoCMuALR11]. Topography-driven [AS19]. Topological [MSAB19, AOT$^{+18}$, BL10, BLDV19, BCNR18, DM12, HYD11, JXX$^{+15}$, LNGW14, MZB$^{+13}$, MGB18, OAT$^{+13}$, PH12, PL11, PO15, TM19, BF11]. topologies [ART08, YWH$^{+12c}$]. Topology [AGNS14, BL10, FMKJ14, GRGRRHT19, Jen13]. tops [PBB15]. toroidal [CTDOLA10]. torquoselectivity [AMMB$^{+18}$, MB13, MBSMJ18]. torsion [DSCO$^{+13}$, GWME18]. torsional [CMCN11, MCMN$^{+11}$, RA10a]. Total
Transfer [SS10, AKC10, ARH+13, BSS16, CS17, DS11, DAA16, FV11, FDMR11, FSBA12, GI11a, GHCMMMMQ17, Jdl08, KyH13a, KUS19, KAOB11, KT12b, KBMM10, LZZ12, LYS+19, LYL+12, LXW+12, Lu10, MANP17, MPE15, MOGM18, MNC12, NMS+10, NBZG16, OK19, QJ13, RY12, RS12a, SS11, SMRK18, Sch15, SHS+13, SCS15, Tav11, Tav12, TCG13, WJ11, XDM+10, YH14b, Zen11, ZZ18, ZB18, dA12, dCDC+11].
transfer/induction [dCDC+11]. Transferability [GSR12, STM17, RLER10]. transferred [HSN18]. transfers [KyH13a, YYS15, YY18a]. transform [SFY12, YSO12]. transformation [DMAB12, DM12, DK13, HHC18, IM15, Jor15, Jor18, Man13, Rua10, SN15, TSS+15]. transformed [Hor13]. transistors [SAHA16]. Transition [BLdV19, Pie11, ALK18, BEM11, BZBZ13, Ber13a, BVP14, BB10, BDR12, Buc11a, BN11, CWW+16, Cho16, Cho19, CP13, Dau16, DMS+10, DMBL16, EMED+12, EMEPD15, GRLA18, GFB12b, GM11, GZBH18, JHL+18, KCW11, Kin13, Kry12c, Lar12, LCB10, LKd+16, MKM11, NKWT19, NZ13, Qu13, RZC13, SDS19, SDS20, SFW12, SAHG11, TMC+13, TT13, VSMK13, VO12, WWC17, WR15, ZK12, ZFC+17, ZHL17, ZS14, Zil14, KAR12a].
translational [Ld14, T11b, XTLA13, XTLA14]. translations [Hog10].
transmembrane [KMT+12]. Transmission [RBGGM18, CDT12, NTG18, NA12, SD13c]. transmitted [Cho15].
Transport [Yam11, DCZ17, DLZ11, ETGLMJ+19, Gao12, Jan10, JR19, KMI12c, MSG16, MMP11, OH12, OH13, PFdM13, RBGGM18, RRRV19, SS11, SSB12a, WDS19, ZY9+11, ZQJW13, ZY13, ZB18]. transporting [MCL11]. Trap [YZZ15]. trapped [TG13]. Trapping [PDNC14, LL18]. treatment [AEKGZ12, BHV+11, ISN13, Jor18, KL11, Kry12a, Man13, MSNP18, PMGMG12, SKG11, SSAM13, WJY15, AM13b]. trees [AD17, Bib13, DZ11b, Du12, LSW19, LWY19, LZZ19, PL18a]. trends [BCHN16, DMBJ15, MT10]. tri [AM18]. tri-coordinated [AM18].
triazol [CLY12], triazole [LLW+11, THSR13], triazol [IK14], tricarbon [ZJC+13], tricarbonyl [YZW+15a], trichelates [LOHB13], trichloroacetyl [SKS11], tricks [SCB+14], tricyclic [ZWK19], triagonal [HFF12], tridiagonalization [ZH12], triel [CDL+19], trifluoride [DGX12, For12, LQ13], trifluoroacetone [NRGS11], trifluoroethylene [OCB+10], trifluoromethylphenyl [SAHA16], trifluoromethyl [SKS11], tricks [SCB+14], tricyclic [ZWZK19], tridiagonal [HFZ12], tridiagonalization [ZHF12], triel [CDL+19], trifluoroacetylacetone [NRGS11], trifluoroethylene [OCB+10], trifluoromethylphenyl [SAHA16].
SOF$^{+10}$, SN12, SSAM13, SZS$^{+10}$, SLZ$^{+11c}$, SLZ$^{+11a}$, SLS$^{+11}$, SB10b, SM12, Sri18, SK12b, TNN16, TMC18, TG13, TWR15, Val17, WML10, WB17, WDJ$^{+17}$, WH12, XTLA13, XTLA14, Xu19, ZWSF16, ZS12. using [ZZ18, ZCP11, dAB17]. utoferin [KSY$^{+11}$]. utilizing [KFS13, Tou11a].

UV [AFC$^{+10}$, BSS15, Bou12b, ÇAS13, DSD18, FPRGMHGB12, MSBF18, PJP08, PJP10]. UV-Vis [DSD18]. UV-visible [Bou12b]. UV/VIS [PJP10, PJP08]. uvarovite [MPZWD10, VPFD10].

Valence [Lu10, Tch13, TFB11, ZLY$^{+14}$, Ang10, AMK10, BN11, KWC10, ILBqD$^{+19}$, LW18, NKWT19, NTNL10, SS13, TD11, XCL$^{+18}$]. V-shaped [BN11]. VA [Eng16].

vapor [Chu12, LKOS17, TFBG14]. variants [RPBB11]. variation [JWG$^{+12}$]. Variational [FAFR12, CDS$^{+18}$, DSSM18, Kri13, NS10b, Oht13, dMOB12, SBM16, SSB12a, Shai1a, ZSI1, MHT$^{+08}$]. variations [KBGC12, MB12]. variety [AM10, TOSN12]. Various [MGK$^{+12}$, ART08, HFL$^{+17}$, KMT$^{+12}$, PSK$^{+13}$, SMM11, STM13, YÇÖ11].

vapor [Chu12, LKOS17, TFBG14]. variants [RPBB11]. variation [JWG$^{+12}$]. Variational [FAFR12, CDS$^{+18}$, DSSM18, Kri13, NS10b, Oht13, dMOB12, SBM16, SSB12a, Shai1a, ZSI1, MHT$^{+08}$]. variations [KBGC12, MB12]. variety [AM10, TOSN12]. Various [MGK$^{+12}$, ART08, HFL$^{+17}$, KMT$^{+12}$, PSK$^{+13}$, SMM11, STM13, YÇÖ11].

Viable [fXxBhD19]. vibration [HK11, HRT12, KBG17, LZW$^{+15}$, QD10, SPO$^{+11}$]. vibration-rotational [SPO$^{+11}$]. Vibrational [AC12, CTVA12, Cyb11, FKL$^{+12}$, KKT13, KKT14, SD12, AF19a, AGCVG15, BBB$^{+12a}$, BBB16, CP10, DK13, DCFD10, DWGX12, For12, FKC12, dDG110, HH18, Ish14, KL11, LWJ$^{+11}$,
123
LWWZ13, MC11a, MBKH19, MCE11, MB14, MMCN+ 11, NDM+ 12, PM12,
PBB15, RPBB11, RSM12, RC11, Roy14, ŞBAT16, SA11a, SPO+ 11, SZZZ11,
SZL+ 14, TU10, Tou11a, WHY+ 14, YWH+ 12c, ZGSM15, ZPZ15, ZQXP17].
vibrationally [LMZY15]. vibrations
[CNBPR+ 11, CMCN11, Eil14, LBW11, NH18, ZZ15]. Vibrio [PI13].
vibronic [PETB18]. view [AY15, BMRM19, BLdV19, vL13]. viewpoint
[LS19]. Vignale [PS13b]. VII [SIS+ 08]. vinyl
[BSSS19, DP12, KI15, WZZL10]. vinylallenes [LW11]. vinylation
vinylcyclopentadiene [VV18]. vinylidene [OCB+ 10]. vinylideneflouride
[OCB+ 10]. vinylideneflouride-trifluoroethylene [OCB+ 10].
vinylpyranoanthocyanin [COdF+ 11]. vinylpyranoanthocyanin-phenol
[KN15, CCA+ 12, CRFR11, KPH+ 12, LG10, Lya19, MSNP18, RMG+ 19,
SDP+ 16, ST15]. virtue [FYhC11]. viruses [WZ10a]. VIS
[PJP10, AFC+ 10, ÇAS13, DSD18, MSBF18, PJP08]. Visible
[FPRGMHGB12, Bou12b, WCL+ 17, dARAV12]. visual [LLLT12].
Visualization [Val13, Ash18]. visualizes [ABM+ 19]. Vitae
[Ano11a, Ano11c, KK12b]. vitamin [WTH+ 11, WLD+ 10]. vitro [CG12].
VIVO [MG12]. Vleck [Jør15, Jør18]. VMD [CRFR11]. VO [Che12].
Volterra [CYK17]. Volume [Ano12a, Ano12b, Ano12c, Ano12d, Ano12e,
Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n,
Ano13k, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w,
Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i,
Ano13j, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13x, Ano13-35,
Ano13y, Ano13z, Ano13-27, Ano13-28, Ano13-29, Ano13-30, Ano13-31,
Ano13-32, Ano13-33, Ano13-34, Ano13-36, Ano13-37, Ano13-38, Ano13-39,
Ano13-40, Ano13-48, Ano14a, Ano14b, Ano14n, Ano14t, Ano14u, Ano14v,
Ano14w, Ano14x, Ano14y, Ano14z, Ano14c, Ano14d, Ano14e, Ano14f,
Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14o].
Volume [Ano14p, Ano14q, Ano14r, Ano14s, Ano14-27, Ano14-37, Ano14-43,
Ano14-44, Ano14-45, Ano14-46, Ano14-47, Ano14-48, Ano14-28, Ano14-29,
Ano14-30, Ano14-31, Ano14-32, Ano14-33, Ano14-34, Ano14-35, Ano14-36,
Ano14-38, Ano14-39, Ano14-40, Ano14-41, Ano14-42, Ano15a, Ano15b,
Ano15c, Ano15d, Ano15e, Ano15t, Ano15x, Ano15y, Ano15z, Ano15-27,
Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano15n,
Ano15o, Ano15p, Ano15q, Ano15r, Ano15s, Ano15u, Ano15v, Ano15w,
Ano16a, Ano16s, Ano16t, Ano16n, Ano16u, Ano16v, Ano16w, Ano16x,
Ano16y, Ano16z, Ano16-27, Ano16-28, Ano16b, Ano16c, Ano16d, Ano16e,
Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano16m].
Volume
[Ano16o, Ano16p, Ano16q, Ano16r, Ano17a, Ano17b, Ano17m, Ano17n,


Volume [Ano19r, Ano19s, Ano12o]. vortex [GKS10]. vorticity [BL19, HMH10a]. vs [Ali19b, DG19, SP19, Yam10]. VSc [BBYZ18]. V [LW18]. vsLab [CRFR11].

W [HNBS18, MLY+16, ZLY+14, GAPK+19b, SXS+12]. **W1BD** [VF13a].

W2 [OK16]. W2w [OKR12]. **Waals** [BPG+10, BAP12, Ber13b, GRCATG19, KKL+16, NRI15, PABSK16, SZZ+19].

waistline [TMC+13]. walks [PR10a]. wall [DI10, SD13a, TC10]. walled [Bas11, ETGLMJ+19, HNBG15, KG08, MSOV13, SD16a]. walls [RBVAG18].

Wannier [PABSK16]. warm [DW12, Ng12]. Watch [ZLWY13]. Water [Kim18, RFEGPP+16, WW11, XMZ+12, AF16, ATS15, BBB+12h, BPSM12, BCS+12, Cha10, CNSK11, Chui2, CK17, CAPL12, DPK18, DE18, EFO11, EO11, FMC11, FUE+12, GZS10, GLPA10, HDQ+13, HS11b, KK11c, KV11, LLF+12, LLM13, LJW+11, LNGW14, LCB10, Ma14, MAD12, MFB11, MK10a, MK10b, MPE15, Mar12, MTL+12, MPV+11, MOE+11, MD11, MRA11, NS10a, OHDA13, OD12, PW10, PCMG12, QSLY10, RRWJ10, RAK10, SYK+12, SSK+12, SMEH15, SMEH16, SK12a, SJZ+18, SL10, SCL19, SW12, SJW13, SML11, TGRP19, Var14, WCGD12, WWD+15, WTP+19, WSV10, X18, XGH18a, YY18a, YYY+12, YT14, ZKZW17, Zak13].

Wave [AB16a, HDOS12, Kut13, NS13, TKN13, TH13, YKN13, Bae16, BR12h, CW13b, Cho19, CSMZ10, D’y16, GBS17, Gao11, GKT+12, HR12, Hog13, IK18, KRC+16, KH10, Kar13, NGTC19, Oht13, OHDA13, OH19, RZ17, RW11, SSAM13, SGL10, Tobi19, WC14, WH12, YLYC18, ZHF12, ZCG+17].

Wave-function-based [AB16a]. wave-functions [Hog13]. wave-packet [Bae16]. wavefunction [CH17, DACK11, GWHH17, ZWSF16].

wavefunctions [AC12, Lai11, Yur13, Yur15]. wavelengths [JdOS16].

Wavelet [SFX12, GSPR19]. wavepacket [GWZ+14a, Hkzz15, Han19].

REFERENCES

PAKA15, VO12, XZZ+10, XWC11a, YL11, Bal16, CRB+12, DSD18, MC17, MRT11, ZSASS13, dCDC+11. ZnO [ESDO16, BRBRS11, KA13, LPO+12, MTL+12, RZC13]. ZnO-based [LPO+12]. ZO [EAV16]. zone [BG11a]. Zr [Bou11, Kim19, WJL+11]. ZrF [BLKB11]. ZrN [RMLPGGH16]. ZSM [JLL11, SZ11]. ZSM-5 [JLL11, SZ11]. zündel [MNC12]. zwitterionic [KRG+13, RFMC19, YZZ15, ZZ18].

References

REFERENCES

June 15, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[ABP13] Vladislav Antonov, Dobrina Borisova, and Ana Proykova. Vacancy spatial distribution causes different magnetism in

[Abarenkov:2011:EAO]

[Abarenkov:2013:LDO]

[Altun:2014:THC]

[Alexander:2011:DRS]

[Alexander:2012:VEH]

[Adeniyi:2019:EED]
Adebayo A. Adeniyi and Jeanet Conradie. Electronic effect of β-diketonato ligands on the redox potential of fac

REFERENCES

Hossein Asghar Rahnamaye Aliabad, Marjan Fathabadi, and Iftikhar Ahmad. Optoelectronic properties of KDP by

Adrover:2010:IIF

Antunes:2010:DPT

Alvarez-Falcon:2012:DMC

Alagona:2010:DWR

Alagona:2010:FEL

Giuliano Alagona and Caterina Ghio. Free energy landscapes in THF for the Wittig reaction of acetaldehyde and triphenylphosphonium ylide. *International Journal

REFERENCES

[AK17] Fahhad H. Alharbi and Sabre Kais. Kinetic energy density for orbital-free density functional calculations by axiomatic

Amme:2010:CCP

Ahmed:2013:SCH

Azami:2012:LAM

Auvinen:2015:UTS

Aysin:2018:ASC

Attia:2019:STU

Arslancan:2018:CBC

Angulo:2010:EIR

Angulo:2011:GJD

Ayuela:2010:MMT

REFERENCES

REFERENCES

Anonymous:2011:DMBb

Anonymous:2011:DMBa

Anonymous:2011:LPa

Anonymous:2011:LPb

Anonymous:2012:CIVa

Anonymous:2012:CIVb

Anonymous:2012:CIVc

REFERENCES

 Anonymous:2012:CIVd

 Anonymous:2012:CIVe

 Anonymous:2012:CIVf

 Anonymous:2012:CIVg

 Anonymous:2012:CIVh

 Anonymous:2012:ICVa

 Anonymous:2012:ICVb

September 15, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Anonymous:2012:ICVc

Anonymous:2012:ICVd

Anonymous:2012:ICVe

Anonymous:2012:ICVf

Anonymous:2012:ICVg

Anonymous:2012:LCa

Anonymous:2012:LCb

REFERENCES

REFERENCES

Anonymous:2013:CIIo

Anonymous:2013:CIIp

Anonymous:2013:CIIq

Anonymous:2013:CIIr

Anonymous:2013:CIIa

Anonymous:2013:CIIi

Anonymous:2013:CIIm

Anonymous:2013:CIVm

Anonymous:2013:CIVn

Anonymous:2013:CIVO

Anonymous:2013:CIVp

Anonymous:2013:CIVq

Anonymous:2013:CIVr

Anonymous:2013:CIVs

REFERENCES

Anonymous:2013:CIVd

Anonymous:2013:CIVe

Anonymous:2013:CIVf

Anonymous:2013:CIVg

Anonymous:2013:CIVh

Anonymous:2013:CIVi

Anonymous:2013:ICV

Anonymous:2013:PWI

Anonymous:2014:CIC

Anonymous:2014:CIIa

Anonymous:2014:CIIj

Anonymous:2014:CIIk

Anonymous:2014:CIII

Anonymous:2014:CIIIm

REFERENCES

Anonymous:2014:CII

Anonymous:2014:CIIo

Anonymous:2014:CIIq

Anonymous:2014:CIIr

Anonymous:2014:CIIr

Anonymous:2014:CIIr

REFERENCES

Anonymous:2014:CIIId

Anonymous:2014:CIIe

Anonymous:2014:CIIf

Anonymous:2014:CIIg

Anonymous:2014:CIIh

Anonymous:2014:CIIi

Anonymous:2014:CIVA

REFERENCES

Anonymous:2014:CIVi

Anonymous:2014:CIVj

Anonymous:2014:CIVk

Anonymous:2014:CIVm

Anonymous:2014:CIVn

Anonymous:2014:CIVo

REFERENCES

<table>
<thead>
<tr>
<th>Reference Key</th>
<th>Reference</th>
</tr>
</thead>
</table>
REFERENCES

Anonymous:2015:CIVl

Anonymous:2015:CIVm

Anonymous:2015:CIVn

Anonymous:2015:CIVo

Anonymous:2015:CIVp

Anonymous:2015:CIVq

Anonymous:2015:CIVr

Anonymous:2015:CIVs

Anonymous:2015:CIVt

Anonymous:2015:CIVu

Anonymous:2015:CIVv

Anonymous:2015:CIVw

Anonymous:2015:CIVa

Anonymous:2015:CIVx

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>

Anonymous:2015:Ib

Anonymous:2015:IIc

Anonymous:2015:IIId

Anonymous:2015:IIe

Anonymous:2015:IIf

Anonymous:2015:IIg

Anonymous:2015:IIh

REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Anonymous:2015:IIq

Anonymous:2015:IIr

Anonymous:2015:IIs

Anonymous:2015:IIt

Anonymous:2015:IIu

Anonymous:2015:IIv

Anonymous:2015:I IW

REFERENCES

CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

15, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Anonymous:2016:CIVp

Anonymous:2016:CIVq

Anonymous:2016:CIVr

Anonymous:2016:CIVs

Anonymous:2016:CIVt

Anonymous:2016:CIVu

Anonymous:2016:CIVv

REFERENCES

5, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Anonymous:2016:CIVb

Anonymous:2016:CIVw

Anonymous:2016:CIVx

Anonymous:2016:CIVy

Anonymous:2016:CIVz

Anonymous:2016:CIVaa

Anonymous:2016:CIVab

Anonymous:2016:CIVj

Anonymous:2016:IIa

Anonymous:2016:IIb

Anonymous:2016:IIc

Anonymous:2016:IId

Anonymous:2016:IIe

Anonymous:2016:IIf

REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

<table>
<thead>
<tr>
<th>Anonymous:2016:IIu</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2016:IIv</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2016:IIw</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2016:IIx</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2016:IIy</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2017:CIVa</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anonymous:2017:CIVb</th>
</tr>
</thead>
</table>
5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Anonymous:2017:CIV1

Anonymous:2017:CIVm

Anonymous:2017:CIVn

Anonymous:2017:CIVo

Anonymous:2017:CIVp

Anonymous:2017:CIVq

Anonymous:2017:CIVr

Anonymous:2017:CIVs

Anonymous:2017:CIVt

Anonymous:2017:CIVu

Anonymous:2017:CIVc

Anonymous:2017:CIVd

Anonymous:2017:CIVv

Anonymous:2017:CIVw
REFERENCES

Anonymous:2017:CIVx

Anonymous:2017:CIVy

Anonymous:2017:CIVz

Anonymous:2017:CIVe

Anonymous:2017:CIVf

Anonymous:2017:CIVg

Anonymous:2017:CIVh

Anonymous:2017:CIVi

Anonymous:2017:CIVj

Anonymous:2017:CIVk

Anonymous:2017:IIa

Anonymous:2017:IIb

Anonymous:2017:IIc

Anonymous:2017:IIId

Anonymous:2017:Ile

Anonymous:2017:IIf

Anonymous:2017:IIg

Anonymous:2017:IIh

Anonymous:2017:IiI

Anonymous:2017:IIj

Anonymous:2017:Iik

Anonymous:2017:Iil

Anonymous:2017:IIm

Anonymous:2017:IIn

Anonymous:2017:IIo

Anonymous:2017:IIp

Anonymous:2017:IIq

Anonymous:2017:IIr

Anonymous:2017:IIIs

Anonymous:2017:IIIt

Anonymous:2017:IIu

Anonymous:2017:IIv

Anonymous:2017:IIw

Anonymous:2017:IIx

Anonymous:2018:CIVa

Anonymous:2018:CIVb

Anonymous:2018:CIVm

Anonymous:2018:CIVn

Anonymous:2018:CIVO

Anonymous:2018:CIVp

Anonymous:2018:CIVq

Anonymous:2018:CIVr

Anonymous:2018:CIVs

Anonymous:2018:CIVt
REFERENCES

REFERENCES

Anonymous:2018:CIVh

Anonymous:2018:CIVi

Anonymous:2018:CIVj

Anonymous:2018:CIVk

Anonymous:2018:CIVl

Anonymous:2018:E

Anonymous:2018:IIa

REFERENCES

Anonymous:2018:IIj

Anonymous:2018:IIk

Anonymous:2018:IIl

Anonymous:2018:IIm

Anonymous:2018:IIm

Anonymous:2018:IIo

Anonymous:2018:IIP
Anonymous:2018:IIq

Anonymous:2018:IIr

Anonymous:2018:IIs

Anonymous:2018:IIt

Anonymous:2018:IJu

Anonymous:2018:IIV

Anonymous:2018:IIw

REFERENCES

 Anonymous:2019:CIVp

 Anonymous:2019:CIVq

 Anonymous:2019:CIVr

 Anonymous:2019:CIVs

 Anonymous:2019:CIVt

 Anonymous:2019:CIVu

 Anonymous:2019:CIVv

Anonymous:2019:CIVe

Anonymous:2019:CIVw

Anonymous:2019:CIVx

Anonymous:2019:CIVy

Anonymous:2019:CIVz

Anonymous:2019:CIVaa

Anonymous:2019:CIVf
Anonymous:2019:CIVg

Anonymous:2019:CIVh

Anonymous:2019:CIVi

Anonymous:2019:CIVj

Anonymous:2019:CIVk

Anonymous:2019:CIVl

Anonymous:2019:IIa

Anonymous:2019:IIb

Anonymous:2019:IIc

Anonymous:2019:IId

Anonymous:2019:IIf

Anonymous:2019:IIf

Anonymous:2019:IIf

Anonymous:2019:IIf

Anonymous:2019:IIi

Anonymous:2019:IIj

Anonymous:2019:IIk

Anonymous:2019:IIl

Anonymous:2019:IIm

Anonymous:2019:IIo

Anonymous:2019:IIo

Anonymous:2019:Ilp

Anonymous:2019:Ihq

Anonymous:2019:Ihr

Anonymous:2019:Ihs

Anonymous:2019:Iht

Anonymous:2019:Ihu

Anonymous:2019:Ihv
REFERENCES

[ASD18] Amr A. A. Attia and Radu Silaghi-Dumitrescu. Nickel-substituted iron-dependent cysteine dioxygenase: Implica-

[Asher:2018:AVO]

[Ahlstr:2013:IEB]

Emma Ahlstrand, Daniel Spångberg, Kersti Hermansson, and Ran Friedman. Interaction energies between metal ions (Zn$^{2+}$ and Cd$^{2+}$) and biologically relevant ligands. *International Journal of Quantum Chemistry*, 113(23):2554–2562, December 5, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[Azadi:2015:RVB]

[Ahube:2015:FBC]

[Astakhov:2016:PIA]

Artyukova:2019:AHP

Arriagada:2013:RCU

Astakhov:2018:SRC

Alcoba:2014:DHE

Alvarez-Thon:2017:IAH

REFERENCES

REFERENCES

Bandrauk:2012:BRA

Barone:2016:ETC

Basiuk:2011:ESD

[Bar16] Vladimir A. Basiuk. Electron smearing in DFT calculations: a case study of doxorubicin interaction with single-walled carbon nanotubes. International Journal of Quan-
Bin:2019:NGQ

Baye:2019:CHA

Boudreaux:2010:QSM

Bushnell:2016:ISD

Bruschi:2016:RCA

REFERENCES

[Bandaru:2012:TAS]

[Barrow:2016:PTC]

[Barysz:2019:RCA]

[Bolivar:2018:FMT]

[Bastos:2010:RVB]
REFERENCES

REFERENCES

Barone:2010:CCA

Biswas:2017:INI

Brouder:2012:RSP

Brahim:2012:SOA

Bargueno:2011:MSW

REFERENCES

[BG11c] Antonio Carlos Borin and João Paulo Gobbo. Electronic structure of the ground and low-lying electronic states

Bhavaraju:2013:TAS

Blanchard:2012:DFT

Bertini:2014:TMC

[BGFD14] Luca Bertini, Claudio Greco, Piercarlo Fantucci, and Luca De Gioia. TDDFT modeling of the CO-photolysis of Fe\textsubscript{2} (S\textsubscript{2}C\textsubscript{3}H\textsubscript{6})(CO)\textsubscript{6}, a model of the [FeFe]-hydrogenase catalytic site. *International Journal of Quantum Chemistry*, 114(13):851–861, July 5, 2014. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Bordes:2018:CSP

Boes:2016:NNR

REFERENCES

[BL10] Sławomir Berski and Zdzisław Latajka. Quantum chemical topology: The electronic structure of the alkaline nitrites MONO (M = Li, Na, K) studied by means of topological analysis of the electron localization function. *International
REFERENCES

Berski:2011:MDC

Brites:2012:CFI

Baranowska-Laczkowska:2016:EPB

Barquera-Lozada:2019:VCD

Blanquart:2015:ESC

Xiangbin Bai, Qingzhong Li, Ran Li, Jianbo Cheng, and Wenzuo Li. Is a MH (M = Be and Mg) radical a better electron donor in halogen-hydride interaction?: a theoretical comparison with HMH. *International Journal of Quantum Chemistry*, 113(9):1293–1298, May 5, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Bohorquez:2010:LED

Borges:2012:IPI

Bucinsky:2016:AKP

Bhattacharyya:2010:SDC

Bondarchuk:2013:TST

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Start Page</th>
<th>End Page</th>
<th>Year</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
</table>
REFERENCES

Bin:2019:DBP

Burileanu:2011:LFD

Barbatti:2012:DHH

Budyka:2011:CSD

Bochicchio:2017:SFM

Boettger:2012:TCZ

Jonathan C. Boettger. Theoretical calculation of the zero-temperature isotherm and phase stability of silver up to 2 Gbar using the linear combinations of Gaussian type orbitals method. *International Journal of Quantum Chem-
Bondarchuk:2017:ISC

Bouazza:2011:SHS

Bouazza:2012:IHS

Boudreaux:2012:QSM

Barragan:2013:DBP

Barreto:2010:RSI

of intermolecular forces for van der Waals complexes of the type H_2X_n-Rg, with $X = O, S$ and $n = 1, 2$. International Journal of Quantum Chemistry, 110(3):777–786, March 5, 2010. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

February 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Barbatti:2016:EDI

Bhattacharya:2015:PNO

Bulusheva:2011:SSN

Bulusheva:2016:RMB

Buzko:2011:DSC

Brandas:2014:P
REFERENCES

Bhattacharya:2015:PBD

Bengtson:2016:QNE

Bhattacharya:2019:EEW

Butchosa:2012:CDE

Boguslawski:2015:POE
Boguslawski:2017:EOE

Brovarets:2018:UWR

Ol’ha O. Brovarets’, Kostiantyn S. Tsiupa, and Dmytro M. Hovorun. Unexpected $\text{A-T(WC)}<\leftrightarrow\text{A-T(rWC)}/\text{A-T(rH)}$ and $\text{A-T(H)}<\leftrightarrow\text{A-T(rH)}/\text{A-T(rWC)}$ conformational transitions between the classical A-T DNA base pairs: a QM/QTAIM comprehensive study. *International Journal of Quantum Chemistry*, 118(18):e25674:1–e25674:??, September 15, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Buck:2010:LTC

Buck:2011:MII

Buck:2011:MMS

Buchowiecki:2012:TDR

Buck:2012:MMI

Budyka:2012:DOP

Bostrom:2014:AGS

Barboza:2012:TDB

REFERENCES

REFERENCES

[BXR+13] Jing Bai, Nan Xu, Jean-Marc Raulot, Claude Esling, Xiang Zhao, and Liang Zuo. First-principles investigation
of magnetic property and defect formation energy in Ni–
Mn–Ga ferromagnetic shape memory alloy. *International
Journal of Quantum Chemistry*, 113(6):847–851, March 15,
2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-
461X (electronic).

[BXZ+19] He Bian, Bin Xu, Honghong Zhang, Qian Wang, Huiming
Zhang, Shiguo Zhang, and Daohong Xia. Theoretical study
on the atmospheric reaction of CH$_3$ SH with O$_2$. *Inter-
e25822:??, March 5, 2019. CODEN IJQCB2. ISSN 0020-
7608 (print), 1097-461X (electronic).

Computational thermochemistry of glycolaldehyde. *Inter-
national Journal of Quantum Chemistry*, 113(8):1147–
1154, April 15, 2013. CODEN IJQCB2. ISSN 0020-7608
(print), 1097-461X (electronic).

[BZBZ13] Akila Benmachiche, Saber-Mustapha Zendaoui, Salah-
Eddine Bouaoud, and Bachir Zouchoune. Electronic struc-
ture and coordination chemistry of phenanthridine ligand
in first-row transition metal complexes: a DFT study. *Inter-
national Journal of Quantum Chemistry*, 113(7):985–
996, April 5, 2013. CODEN IJQCB2. ISSN 0020-7608
(print), 1097-461X (electronic).

[BZZ15] He Bian, Shiguo Zhang, and Huiming Zhang. Theoretical
study on the atmospheric reaction of CH$_3$ O$_2$ with OH. *Inter-
national Journal of Quantum Chemistry*, 115(17):1181–
1186, September 5, 2015. CODEN IJQCB2. ISSN 0020-
7608 (print), 1097-461X (electronic).

hydrocarbons onto graphyne: Comparisons with graphene. *Inter-
national Journal of Quantum Chemistry*, 117(7):??, April 5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print),
1097-461X (electronic).
REFERENCES

REFERENCES

Cammi:2012:CCT

Cao:2017:TSE

Cortes-Arriagada:2018:EAC

Cappelli:2016:RIQ

Castaneda-Arriaga:2018:RPC

Costantino:2012:MDS

REFERENCES

[CAZ+11] Lu-Jie Cao, Hong-Qi Ai, Li-Ming Zheng, Su-Na Wang, Mei-Juan Zhou, Ji-Feng Liu, and Chong Zhang. Theoretical study on the interaction of neutral and charged

Chinini:2019:ACM

Carregal:2012:IVS

Cassam-Chenai:2012:IER

Coutinho:2011:I

Cezar:2019:SES

REFERENCES

REFERENCES

REFERENCES

Marcin Czapla and Sylwia Freza. Uncatalyzed peptide bond formation between two double amino acid molecules

REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Chaudhari:2010:HBI

Chatterjee:2011:ESR

Chen:2012:TSH

Chen:2013:DST

Chang:2019:TSP

Chen:2019:SJD

[CHL+19] Wei-Hong Chen, Hui-Min He, Ying Li, Hui Yang, Jia-Yuan Liu, Dan Yu, Di Wu, Zhong-Jun Zhou, Wei-Ming Sun, Feng-Long Gu, and Zhi-Ru Li. Small Janus dimer as electric field manipulated molecular clam switch and electric
REFERENCES

Chaieb:2014:ISS

Chaieb:2017:DIN

Chou:2015:TDR

Chou:2016:QCT

Chou:2019:QCT

REFERENCES

Cinal:2020:CDI

Cardenas-Jiron:2019:QCS

Correa:2012:EAC

Charistos:2019:ACC

Cundari:2011:FPS

Cho:2016:RQC

Choi:2018:AHF

Curteanu:2008:OSB

Caputo:2011:GDB

Cheng:2018:SCE

Cao:2010:GRD

Zhi Cao, Renfa Li, and Weiyang Chen. A 3D graphical representation of DNA sequence based on numerical coding method. *International Journal of Quantum Chemistry*, 110
Cheng:2014:CTS

Caccin:2015:FML

Cao:2011:RSS

Corral:2012:ISC

Li:2014:DHP

REFERENCES

[Chakraborty:2016:RGP] Romit Chakraborty and David A. Mazziotti. Role of the generalized Pauli constraints in the quantum chemistry of
References

REFERENCES

REFERENCES

Cooper:2012:CSC

Cruz:2016:LEC

Corongiu:2016:UPN

Carbonniere:2010:TIT

Clavero:2011:DMQ

REFERENCES

Cooper:2013:BFD

Coe:2016:OSS

Crespo:2011:TSS

Cacheiro:2011:CMC

Caramori:2012:ISB

Caputo:2015:TPO

[CPL15] Maria C. Caputo, Stefano Pelloni, and Paolo Lazzeretti. Theoretical prediction of the optical rotation of chiral

[Chashchikhin:2012:DMB] Vladimir Chashchikhin, Elena Rykova, Andrei Scherbinin, and Alexander Bagaturyants. DFT modeling of band

Cheng:2013:ISH

Chiou:2017:CTS

Czapla:2018:TPH

Cheng:2014:RAE

Chen:2012:CSD

Chuvylkin:2010:GPN

Contreras:2010:NSS

Chang:2016:RME

Cordova-Sintjago:2012:MDL

Cuevas-Saavedra:2016:AOZ

Cordova-Sintjago:2012:HSH

Ciftcio glu:2014:CET

Cruz-Torres:2010:HSI

Carbonniere:2012:VAB

Chen:2012:TSA

Ya Kun Chen, Wei Quan Tian, and Yan Alexander Wang. Theoretical studies of Au\textsubscript{m} and PtAu\textsubscript{n} clusters and their N\textsubscript{2} and O\textsubscript{2} adsorption complexes. *International Journal of Quantum Chemistry*, 112(1):65–77, January 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).
REFERENCES

Chou:2011:AAD

Certik:2013:CST

Chou:2013:TDS

Chatterjee:2016:HDP

Chen:2013:TSS

Cao:2011:OMM

Campos:2011:TEI

Cao:2013:SEP

Cheng:2015:TSD

Cui:2013:GSI

REFERENCES

Chou:2017:VIS

Chen:2018:SSO

Chen:2019:PHM

Chen:2011:MTS

Cysewski:2011:NNN

Czapla:2018:SAA

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

dARAV12

Dau16

deAndrade17

DB11

DB12

Dhatt:2013:ESR

Dunne:2013:SRE

Dutta:2015:DSH

Delgado-Barrio:2011:P

Dehesa:2019:SEH

Degreve:2010:PPX

REFERENCES

Demichelis:2010:PDF

Domingo:2010:SCF

Demichelis:2010:PED

delCampo:2012:RDG

Dong:2011:LPO

Dong, Bo-Zhen Chen, Ming-Bao Huang, and Hai-Bo Chang. O-loss photodissociation of the OCS⁺ ion in the low-lying electronic states studied using multiconfiguration second-order perturbation theory. *International Journal
REFERENCES

Dzib:2019:EPC

Ducati:2010:EGM

daCosta:2013:DFT

Drazic:2017:TTD

Dickerson:2017:GPE

Shelby D. Dickerson and Nathan J. DeYonker. Gas phase electronic structure of the 3d metal monoacetyldides
REFERENCES

Demir:2012:ETI

DosSantosGrasel:2012:AAN

DosSantosRodrigues:2011:DSV

Garrido:2010:IOV

Diana Radikovna Diniakhmetova, Anna Konstantinovna Friesen, and Sergey Viktorovich Kolesov. Quantum chemical modeling of the addition reactions of 1-n-phenylpropyl...

[daSilvadosSantos:2015:LER]

[daSilvadosSantos:2015:QCH]

[DosSantos:2012:PCP]

[Dmitriev:2019:IDF]
Doemer:2013:APC

deGraaf:2014:RMD

Ding:2016:MDS

daHora:2012:CSR

Dong:2019:RSE

Dardouri:2012:TSE

Dahl:1995:DKP

Dahl:2012:EDK

Driver:2018:EAM

DeLeon:2010:AAI

Dehestani:2013:CVE

M. Dehestani and Z. Kalantari. The calculation of vibrational energy levels of polyatomic molecules including an-

[dLdOdAD] Guilherme Ferreira de Lima, Cláudio de Oliveira, Heitor Avelino de Abreu, and Hélio Anderson Duarte. Sulfuric and hydrochloric acid adsorption on the reconstructed sulfur terminated (001) chalcopyrite surface. *International Jour-

[DLG12]

[DLG12]

[DLLA10]

[dlLIAI+12]

[DLM+11]

REFERENCES

John J. Determan, Salvador Moncho, Edward N. Brothers, and Benjamin G. Janesko. Simulating periodic trends in the structure and catalytic activity of coinage metal

[DMWY11] Yan-Li Ding, Ji-Rong Mu, Chun-Hui Wang, and Zhong-Zhi Yang. Insight into Markovnikov regioselectivity rule via molecular face and ABEEM-\(\sigma\pi\) theory. *International
REFERENCES

REFERENCES

REFERENCES

Demissie:2018:DRC

DeGraaf:2011:RML

Dehestani:2012:MRS

DeCastroFaria:2011:NIT

daSilva:2012:RLS

DeLaVega:2013:TDK
J. M. García De La Vega, J. San Fabián, R. Crespo-Otero, R. Suardíaz, and C. Pérez. Theoretical DFT Karplus

[DeSouza:2018:DSM]

[daSilva:2013:APD]

[daSilva:2013:CDS]

[Dudek:2017:CSC]
REFERENCES

María Pilar De Lara Castells, Pablo Villarreal, Gerardo Delgado-Barrio, and Alexander O. Mitrushchenkov. Microscopic description of small doped 3He clusters through the full-configuration-interaction nuclear orbital approach: The $(^3\text{He})_N^\cdot\...

Dolgounitcheva:2012:ESB

Dolgounitcheva:2012:EDE

Esrafili:2012:CII

Echeverría:2017:IIG

Elroby:2013:CPM

Ellis:2016:DFA

Esrafili:2014:SEC

Erdogan:2011:ODSa

El-Gogary:2010:IAD

Ebrahimi:2011:SER

Eddy:2011:ETS
Nnabuk O. Eddy and Benedict I. Ita. Experimental and theoretical studies on the inhibition potentials of some derivatives of cyclopenta-1,3-diene for the corrosion of mild...

Elango:2011:QCD

Esrafili:2016:HCC

Esrafili:2015:DRH

Engel:2016:RSC

Esrafili:2015:ASD

Estevez:2019:CCM

Esrafili:2018:SSA

Emelyanova:2013:DCR

Espinosa-Torres:2019:TSE

Exner:2011:CIP

REFERENCES

REFERENCES

October 15, 2019. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Fazio:2016:RCE

Franchini:2019:VBD

Finzel:2014:ERD

Finzel:2014:HDA

Finzel:2015:SAP

Finzel:2016:ADB

[Fin16a] Kati Finzel. About the difference between density functionals defined by energy criterion and density functionals defined by density criterion: Exchange functionals. *International Journal of Quantum Chemistry*, 116(15):1187–1189,
REFERENCES

August 5, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[FKL+12] Matteo Ferrabone, Bernard Kirtman, Valentina Lacivita, Michel Réat, Roberto Orlando, and Roberto Dovesi. Vibrational contribution to static and dynamic (hyper)polarizabilities of zigzag BN nanotubes calculated by

Faginas-Lago:2010:DCR

Faber:2015:CSR

Ferdowsi:2016:TSM

Ferreira:2011:EEI

Figueredo:2014:QTP

Alexandra Ya. Freidzon, Andrei A. Safonov, Alexander A. Bagaturyants, and Michael V. Alfimov. Solvatoflu-

MAu$_n$O ($M = Ti, Fe; n = 1, 4, 7–7; m = 1, 2$). *International Journal of Quantum Chemistry*, 111(2):510–519, February 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[FYhC11] Hong-Yi Fan, Hong-Chun Yuan, and Jun Hua Chen. Calculating electron binding energies for quadratic fermion Hamiltonian by virtue of the IEO method. *International
REFERENCES

REFERENCES

Galano:2019:CSP

Goncalves:2010:ESB

Ganesan:2014:IDO

Gao:2011:MWF

Gao:2012:TSC

Gam:2019:SHC

[GAPK+19a] Franck Gam, Ramiro Arratia-Pérez, Samia Kahlal, Jean-Yves Saillard, and Alvaro Muñoz-Castro. Stabilizing heteroatom-centered 16-vertex group 11 tetrahedral architectures: Bonding and structural considerations to-

Gam:2019:SLC

Garai:2008:MFD

Ghosh:2010:LSD

Gomez:2013:ESE

Gormley:2018:BMS

Chen Guo, Zhong-Hua Cui, and Yi-Hong Ding. Structures, energetics, and isomerism of [Be, C, O, S]: Stability

[Ghalami-Choobar:2012:TCP]

[Genova:2017:EOS]

[Granja:2011:DFS]

[Grether:2012:GBP]
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>CODEN</th>
<th>ISSN (print)</th>
<th>ISSN (electronic)</th>
</tr>
</thead>
</table>

Gao:2013:MCC

Guha:2013:RRD

Golubeva:2016:RQC

Ghoshal:2011:PHM

Gonzalez:2017:GDC

Garcia:2012:CCC

Gottlieb:2011:NMS

Gross:2012:CCH

Ghosh:2011:CCTA

Ghosh:2011:DSDa

Dulal C. Ghosh and Nazmul Islam. Determination of some descriptors of the real world working on the fundamental

Ghosh:2011:DSDb

Ghosh:2011:QAE

Ghosh:2011:WEH

Ghosh:2011:WTH

Gaszowski:2014:NBA

[GI14] Dawid Gaszowski and Marek Ilczyszyn. Nature of Brønsted acid–noble atom contacts: a reevaluation of hydrogen

Gineityte:2010:TRR

Ghalla:2012:TSP

Goli:2018:HIN

Garifzianova:2012:TSF

Gordeychuk:2018:SBV

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

Gotz:2019:VWE

Garcia-Revilla:2019:LAC

Gordon:2011:PRA

Garzon-Ramirez:2018:BSD

Grunenberg:2017:IDC

Guseinov:2010:EOE

[GS10] Israfil I. Guseinov and Ercan Sahin. Evaluation of one-electron molecular integrals over complete orthonormal sets
REFERENCES

Goli:2011:QTA

Gamez:2011:TTS

Griffe:2010:TSC

Goncalves:2019:NRR

Genheden:2012:TCD

REFERENCES

REFERENCES

Guo:2012:RII

Gao:2011:SEE

[Shulin Gao, Wei Wu, and Yirong Mo. Steric and electronic effects on the heterolytic H\textsubscript{2}-splitting by phosphine-boranes R\textsubscript{3}B/PR\textsubscript{4} (R = C\textsubscript{6}F\textsubscript{5}, Ph; R’ = C\textsubscript{6}H\textsubscript{2}Me\textsubscript{3}, t Bu, Ph, C\textsubscript{6}F\textsubscript{5}, Me, H): a computational study. *International Journal of Quantum Chemistry*, 111(14):3761–3775, November 15, 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).]

Goss:2018:CDA

Gao:2014:DPH

[Shoubao Gao, Wei Wei, Bin Zheng, Yuzhi Song, and Qing-tian Meng. Dynamical properties of S(3P) + HD reaction on 1A\textsubscript{u} state and their quantum wavepacket calculation. *International Journal of Quantum Chemistry*, 114 (11):748–754, June 5, 2014. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).]

Gao:2014:EBN

Jing-Hua Guo, Hong Zhang, Yoshiyuki Miyamoto, and Xin-Lu Cheng. The effect of ionization and CH$_3$ ligand for

Huang:2013:CIA

Han:2011:TSR

Hall:2012:WPD

Han:2013:TIG

[HDQ$^+$13] Guangzhan Han, Yanli Ding, Ping Qian, Chao Zhang, and Wei Song. Theoretical investigation of gas phase ethanol–(water)$_n$ ($n = 1$–5) clusters and comparison with gas phase pure water clusters (water)$_n$ ($n = 2$–6). *International Journal of Quantum Chemistry*, 113(10):1511–1521, May 15, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Hernandez-Esparza:2019:GBA

REFERENCES

Hadad:2019:MSC

Hyers:2019:RWR

HerreriasdeOliveira:2011:IMS

Himnetoglu:2014:RHC

Huang:2017:CSI

REFERENCES

Huang-Fu:2012:ESM

Hazra:2008:QAS

Hanson-Heine:2018:UCP

Hammoutene:2010:ESP

Huo:2017:MES

Ho:2012:TSA

Huo:2012:DID

Ho:2014:CTS

Hernandez-Hernandez:2018:TEE

Hill:2013:GBS

Hayat:2019:CBE

He:2011:TSM

He:2011:TSM

Hao:2011:TAS

Hao:2011:TAS

He:2014:DFT

He:2014:DFT

Hu:2010:TSS

Hu:2010:TSS

Huang:2010:KEM

Huang:2010:KEM

Huang:2011:KEMa

Hongo:2012:BQM

Huang:2018:NGQ

Hajji:2019:CFP

Higuchi:2010:CVV

[HNBG15] Yuriy Hizhnyi, Sergii G. Nedilko, Viktor Borysiuk, and Viktor A. Gubanov. Computational studies of boron- and...

[Hinznyi:2018:ROC]

[Hajiabadi:2012:CSO]

[Hoggan:2010:FCS]

[Hoggan:2013:CQC]

REFERENCES

Hamade:2010:TES

Halasz:2011:NET

Husch:2018:SMO

Huang:2012:NGR

Huang:2011:TIM

Hou:2016:TSS

REFERENCES

Hou:2018:IES

He:2016:GCR

Hu:2015:RSS

Huang:2011:DFT

Hu:2010:TPA

Hu:2013:ADM

Hassanabadi:2012:AAV

Hassanabadi:2019:RCA

He:2012:TTE

Hu:2014:BSO

He:2018:PPA

He:2019:DFT

Huang:2011:SHD

Imamura:2013:CSP

Iqbal:2015:PHN

Inerbaev:2011:TSS

Ignatiev:2011:HSP

Ignatiev:2012:EHS

Ipatov:2010:MES

Ikot:2016:SSM

Irfan:2017:DDA

Muhammad Irfan, Javed Iqbal, Sana Sadaf, Bertil Eliasson, Usman Ali Rana, Salah Ud din Khan, and Khur-

Isaev:2008:PPC

Isaev:2010:EPP

Ikuma:2017:TSR

Improta:2010:TDT

Islampour:2015:EST

REFERENCES

2015. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Ishii:2014:BMM

Ikabata:2013:FDF

Iyakutti:2012:WCQ

Iuga:2010:SRA

Jacquemin:2012:BSF

Jin:2012:TKA
Fei Jin, Rubik Asatryan, and Joseph W. Bozzelli. Thermo-
dynamic and kinetic analysis on the reaction of dimethyl
sulfide radical with oxygen. *International Journal of Quan-
IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Jacquemin:2012:SPM
Denis Jacquemin. Spectroscopic properties of mono- and
bis-azopyrroles. *International Journal of Quantum Chem-
ISSN 0020-7608 (print), 1097-461X (electronic).

Jalbout:2010:ESA
Abraham F. Jalbout. Endo[metallo] SWNT-amino acid in-
teractions: a theoretical study. *International Journal of Quan-
DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (elec-
tronic).

Jang:2010:DSM
Yun Hee Jang. A DFT study on molecular junction de-
vices with cyclic disulfide anchors: Effect of anchor oxida-
tion on electron transport. *International Journal of Quan-
tum Chemistry*, 110(12):2290–2298, October 2010. CODEN
IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Janesko:2013:PRD
Benjamin G. Janesko. Perspectives: Rung 3.5 density func-
tionals: Another step on Jacob’s ladder. *International Jour-
nal of Quantum Chemistry*, 113(2):83–88, January 15,
2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-
461X (electronic).

Jin:2011:DSR
Ruifa Jin and Hongzheng Bao. A DFT study on the radical
scavenging activity of hydroxyanthraquinone derivatives in
rhubarb. *International Journal of Quantum Chemistry*, 111
(5):1064–1071, April 2011. CODEN IJQCB2. ISSN 0020-
7608 (print), 1097-461X (electronic).
Jantschi:2018:CSC

Jaramillo:2010:CDE

Jiang:2012:DMC

Jalbout:2008:CTS

Jorge:2016:CBO

Jones:2010:BBO

REFERENCES

[Jiao:2013:CSC] Li Guang Jiao and Yew Kam Ho. Complex-scaling calculations for resonance states of He with screened Coulomb

REFERENCES

[JLL+18] Peng Jin, Chang Liu, Ying Li, Lanlan Li, and Yujun Zhao. Th@C$_{76}$. Computational characterization of larger actinide endohedral fullerenes. *International Journal of Quantum Chemistry*, 118(5), March 5, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Javadi:2017:RSN

Jeszenszki:2014:PAB

Johansson:2017:NLA

Jorgensen:2015:GCV

Jorgensen:2018:GCV

Joubert:2013:SFP

REFERENCES

Jacquemin:2011:ASA

Jacquemin:2010:ASR

Jacob:2012:SDF

Joshi:2019:OCT

Jayasree:2017:DFE

Jerbi:2018:RDD

REFERENCES

Jiang:2014:TSM

Jensen:2018:TRN

Jiang:2019:EEC

Jin:2012:TSP

Ji:2012:TSR

Jenkins:2015:QTR

Jia:2017:IPT

Jiao:2017:BVS

Koch:2011:SED

Khan:2013:TSB

Kassaee:2008:NSN

Kalemos:2018:NCB

Apostolos Kalemos. The nature of the chemical bond in borazine ($\text{B}_3\text{N}_3\text{H}_6$), boroxine ($\text{B}_3\text{O}_3\text{H}_3$), carborazine ($\text{B}_2\text{N}_2\text{C}_2\text{H}_6$), and related species. *International Journal of Quantum Chemistry*, 118(16):e25650:1–e25650:??, August 15, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Kang:2011:CSB

Kang:2017:FPE

Kang:2018:CBM

Kosar:2011:TES

Karanjit:2013:CSP

Khodja:2017:CRV

Kamal:2012:IPV

Kekisev:2017:CMS

Kysel:2010:MDS

Munmun Khatua, Debudatta Chakraborty, and Pratim Kumar Chattaraj. Reviews: Density dynamics in some quan-
REFERENCES

379

REFERENCES

[KI12] Joonghan Kim and Hyotcherl Ihee. Theoretical study on the reaction of butadiynyl radical (C_4H) with ethylene (C_2H_4) to form C_6H_4 and H. *International Jour-

REFERENCES

Kim:2016:CPD

Kim:2016:PPD

Kaur:2011:HBC

Khamatgalimov:2011:ESS

Khokhriakov:2011:IHS

Kumar:2011:QCS

Khamatgalimov:2012:IIF

Klein:2012:GKC

Karafiloglou:2013:UES

Karafiloglou:2014:UES

Kim:2014:DFM

REFERENCES

Kaczmarek-Kedziera:2019:IPS

Kalescky:2014:CHD

Kretschmer:2012:RHB

Koseki:2013:CCR

Kanal:2018:SAS

REFERENCES

REFERENCES

ISSN 0020-7608 (print), 1097-461X (electronic). See corri-
gendum [KKT14].

[KKT14] Katsuhiko Koyanagi, Yukiumi Kita, and Masanori Tachikawa. Corrigendum: Vibrational enhancement of positron affini-

[KL11] Bernard Kirtman and Josep M. Luis. On the contribution of mixed terms in response function treatment of vibra-
DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

tond quantization and para-Fermionics. *International Jour-
nal of Quantum Chemistry*, 111(1):76–95, January 2011. CO-
DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[KLE+19] Teobald Kupka, Małgorzata Leszczyńska, Krzysztof Ejs-
mont, Adrianna Maich, Małgorzata Broda, Karthick Thangavel, and Jakub Kaminský. Phosphorus mononi-

[KLK13] Yongseon Kim, Jaehyuk Lim, and Shinhoo Kang. Investi-
gation on the dissolution of Mn ions from LiMn$_2$O$_4$ cathode in the application of lithium ion batteries: First principle molecular orbital method. *International Journal of Quan-

Karu:2018:PSD

Kiametis:2011:HDP

Khafizov:2016:QCC

Koval:2016:GES

Khafizov:2018:ECS

Kasende:2017:IBT

Kopec:2019:VTA

Kiametis:2013:AIM

Kalaiselvan:2011:HRL

Kawamoto:2012:CPP

Kulatov:2013:MKO

Kryachko:2015:VFF

Klein:2010:CSM

Kula:2012:TSE

Karlicky:2014:PCT

REFERENCES

REFERENCES

- **Komarov:2012:III**

- **Koufos:2013:ESF**

- **Kidd:2018:APB**

- **Kraus:2012:HCC**

- **Kim:2017:IPE**
Kang:2016:SNU

Kulkarni:2013:SDE

Kaiyawet:2013:CBB

Kristyan:2013:TVC

Khungar:2017:PRP

Bharti Khungar, Ankita Roy, Anand Kumar, Biswajit Sadhu, and Mahesh Sundararajan. Predicting the redox properties of uranyl complexes using electronic structure
Kryachko:2010:TCM

Kryachko:2011:BR

Kryachko:2011:SPM

Kryachko:2012:MMI

Kryachko:2012:SPM

Krykunov:2012:IHT

Kis:2010:ESB

Koitz:2012:SDM

Kitagawa:2010:DAS

Kumar:2019:NAP

Kido:2012:SAA

REFERENCES

Kaur:2019:SDS

Kim:2016:TIS

Koizumi:2012:IPI

Koizumi:2011:TSE

Katriel:2012:HRD

Kozhushner:2012:CTC

[Mortko Kozhushner and Leonid Trakhtenberg. Charge transfer in composites “dielectric + metal nanoparticles”:

Kawaguchi:2012:MDA

Kawaguchi, Kazutomo; Takagi, Hiroyuki; Iwayama, Masashi; Nishimura, Megumi; Miyakawa, Takeshi; Saito, Hiroaki; Takasu, Masako; and Nagao, Hidemi. Molecular dynamics analyses of the dissociation process of ADP from Hsp90. *International Journal of Quantum Chemistry*, 112(24):3791–3795, December 15, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Kub:2012:GFO

Kohagen:2019:NIS

Kutzelnigg:2010:PTS

Kutzelnigg:2013:FWF

REFERENCES

Korzan:2010:QCS

Kuvichkin:2010:LNA

Kunisada:2016:NII

Kuznetsov:2019:CHB

Kieninger:2011:CIR

Khordad:2019:MPT

Kalamse:2010:QCS

Kalamse:2011:TST

Kar:2015:DPT

Kar:2018:PNC

Kawatsu:2013:CBB

Tsutomu Kawatsu and Jun ya Hasegawa. Computational biochemistry and biophysics: Excitation energy transfer in GFP-X-CFP model peptides (X = amino acids): Direct

Kitagawa:2013:CQC

Koh:2019:GGS

[KYLC19] Pin Wai Koh, Tiem Leong Yoon, Thong Leng Lim, and Yee Hui Robin Chang. The generation of ground-state structures and electronic properties of ternary Al\textsubscript{k} Ti\textsubscript{l} Ni\textsubscript{m} clusters (\(k + l + m = 4\)) from a two-stage density functional theory global searching approach. *International Journal of Quantum Chemistry*, 119(10):e25884:1–e25884:??, May 15, 2019. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Kato:2013:CQC

Kaliyeva:2017:SCD

Kong:2013:TCL

Kong:2013:TSG

Lefebvre:2011:ZWR

Ladik:2014:LEC

Laestadius:2014:DFP

Laikov:2011:IMA

October 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[Ai:2014:TSR] Li ling Ai and Jing yao Liu. Theoretical study on the reaction of (Z)-CF$_3$CH \equiv CHCF$_3$ with OH radicals. *Inter-
REFERENCES

Lazzeretti:2014:TRI

[135x681] Lazzeretti:2014:TRI

Ladik:2014:QMB

Laestadius:2014:HKT

Lutz:2018:IGP

Luo:2019:IEF

Lobayan:2016:DED

[LBdV16] Rosana M. Lobayan, Roberto C. Bochicchio, and Carlos Pérez del Valle. Depicting electronic distributions from

REFERENCES

2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Rongbao Liao, Lanlan Chai, and Yun Zhu. A theoretical study on the stability difference of the borane B_nH_{n+2}- and carborane $\text{C}_2\text{B}_{n-2}\text{H}_n$ ($5 \leq n \leq 7$) clusters. *International Journal of Quantum Chemistry*, 115(4):216–223, February 15, 2015. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Jose Maria Lucas, Jaime de Andrés, Margarita Albertí, Josep Maria Bofill, and Antonio Aguilar-Navarro. An ab initio theoretical approach to the gas phase decomposition of C_3H_7^+ produced in ground state Li$^+ + \text{i-C}_3\text{H}_7$ Cl collisions. *International Journal of Quantum Chemistry*, 111(2):493–504, February 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).
REFERENCES

Liu:2016:PDF

Lehtola:2019:FNHa

Lehtola:2019:FNHb

Lehtola:2019:RNR

Lesar:2012:PCR

Ludena:2011:MBL

Levy:2010:SCS

Levy:2016:PMT

Liu:2015:CRC

Latino:2010:APE

Li:2019:SBB

[LGHL11] Rui Li, Li-Hua Gan, Qun Hui, and Qian Li. The effects of atom pyramidalization and square distribution on the stability of $F_4F_6-(BN)_n$ polyhedrons. *International Journal of
REFERENCES

Lei:2019:NLM

Lawal:2018:DSA

Li:2011:TSL

Li:2012:CSL

Lv:2016:TFR

References

(18):1342–1349, September 15, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

2015. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic). See erratum [Liu16].

Zhao Zhe Li and An Yong Li. $\text{B}_4\text{Rg}_n^{2+}$ ($\text{Rg} = \text{He}–\text{Rn}$, $n = 1–4$): In quest of the potential trapping ability of the aromatic ring. *International Journal of Quantum Chemistry*, 118(10):e25530:1–e25530:??, May 16, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Lao:2012:IWF

Li:2017:MDD

Li:2012:CIB

Lin:2015:SSD

Li:2016:FPS

Lu:2013:ISM

[LLLB13] Xiuhui Lu, Zhenxia Lian, Dongting Liu, and Weijie Bao. Ab initio study of the mechanism of forming a spiro-

Liang:2012:VRR

Ledyastuti:2013:CCR

Li:2013:DSR

Lumb:2017:RSB

Lian:2011:DFT

Long:2012:TSI

Lu:2012:ESW

Liu:2014:RDO

Li:2014:UCH

Liu:2010:CTS
Limon:2019:SBI

Lu:2011:TIC

Li:2011:TST

Liang:2015:RGT

Li:2014:GPW

Lundberg:2012:DEH

Marcus Lundberg, Yoshio Nishimoto, and Stephan Irle. Delocalization errors in a hubbard-like model: Consequences

Levamaki:2018:KLR

Lakehal:2013:TIY

List:2012:PPX

[List:2012:PPX]

Lagana:2010:I

Li:2010:MCC

Li:2012:TUS

Lajoie:2010:OPA

Lopez-Rosa:2019:EPE

Lattelais:2011:SGI

Laguna:2017:ITM

Li:2013:CBB

Laguna:2019:EKL

Li:2019:MDK

Leite:2010:SNA

Li:2018:MSG

REFERENCES

Lu:2010:TSE

Lu:2015:CBI

Lungu:2013:LER

Lungu:2013:SPM

Luzanov:2008:MCR

Luzanov:2011:SFQ

[Luz11a] A. V. Luzanov. Spin-free quantum chemistry: What one can gain from Fock’s cyclic symmetry. International Jour-
REFERENCES

Lu:2013:TSE

Lu:2015:TIP

Liu:2018:OAS

Lu:2010:TSM

Lozano:2012:TMA

REFERENCES

Li:2013:RRT

Li:2019:NLM

Liu:2014:TSC

Liu:2013:ISC

Lu:2011:TSMd

Xiu Hui Lu, Ping Ping Xiang, Zhen Xia Lian, and Yong Qing Li. Theoretical study of mechanism of cycloaddition reaction between dimethyl-silylene carbene [(CH$_3$)$_2$Si]$=\text{C}$ and formaldehyde. *International Journal of Quantum Chemistry*, 111(14):3664–3672, November 15, 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).
REFERENCES

REFERENCES

REFERENCES

Adelio R. Matamala and Alejandro A. Alarcón. A simple model for the calculation of HOMO and LUMO energy

Ma:2014:HSK

Magliano:2012:MDS

Mironov:2019:MPE

Magnani:2014:PSM

Maiti:2014:RAM

[MANP17] Taniya Manzoor, Summera Asmi, Saba Niaz, and Altaf Hussain Pandith. Computational studies on opto-

Meneses:2010:TSR

Morcillo:2018:IPH

Maroulis:2011:BLD

Maroulis:2012:QPC

Martens:2013:CFM

REFERENCES

5, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[Mas10] Artēm E. Masunov. Theoretical spectroscopy of carbocya-
nine dyes made accurate by frozen density correction to
excitation energies obtained by TD–DFT. International
Journal of Quantum Chemistry, 110(15):3095–3100, De-
cember 2010. CODEN IJQCB2. ISSN 0020-7608 (print),
1097-461X (electronic).

[Massa11] Lou Massa. Book Review. International Journal of Quan-
tum Chemistry, 111(12):3251, October 2011. CODEN
IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[Masiello14] David J. Masiello. Perspective: Multiscale theory and sim-
ulation of plasmon-enhanced molecular optical processes.
International Journal of Quantum Chemistry, 114(21):
1413–1420, November 5, 2014. CODEN IJQCB2. ISSN
0020-7608 (print), 1097-461X (electronic).

[Mathar02] Richard J. Mathar. Mutual conversion of three flavors of
Gaussian type orbitals. International Journal of Quantum
ISSN 0020-7608 (print), 1097-461X (electronic). See erra-
tum [Mat10].

flavors of Gaussian type orbitals. International Journal of
IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).
See [Mathar02].

[Mammino19] Liliana Mammino and Luis Alvarez-Thon. Different mutual
positions of double bonds in open carbon chains and corre-
sponding information from magnetically induced current
densities. International Journal of Quantum Chemistry,
Momen:2018:RWI

Mayer:2014:PEA

Mukherjee:2012:RRM

Morales-Bayuelo:2013:UER

Marquez:2014:SVI

Mohajeri:2015:INI

Messaoudi:2013:ERT

Mostafa:2019:DGR

Morales-Bayuelo:2012:TSC

Majid:2019:FPS

Alejandro Morales-Bayuelo, Juan Torres, and Ricardo Vivas-Reyes. Quantum molecular similarity analysis and

Maciel:2011:IQC

Marmorino:2011:BEE

Mendez:2012:SBB

Mazumdar:2014:RCP

Mangondo:2017:ORS

REFERENCES

Munoz-Castro:2018:FHR

Munoz-Castro:2018:SMU

Martins-Costa:2011:SSD

Marquez:2012:DSG

McCoy:2013:CMS

Montero-Campillo:2013:MAS

REFERENCES

Macleod-Carey:2019:ABP

Makshakova:2011:GVF

Munoz-Castro:2017:AAX

Mavromoustakos:2011:PIL

Mi:2011:DSS

REFERENCES

Mendizabal:2010:TSA

Mennucci:2015:PMA

Merchan:2011:RDL

Metropoulos:2011:CMA

Malaspina:2011:ESF

Martins:2012:IBB

Mateus J. F. Martins, Ary R. Ferreira, Elena Konstantinova, Heitor A. de Abreu, Wladmir F. Souza, Sandra S. X. Chiaro, Luís G. Dias, and Alexandre A. Leitão. Interactions between 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and γ-Al2O3 (100) surface calculated by

Marques:2010:SAA

Meng:2018:EOP

Motiu:2010:FFH

Micera:2012:EFB

Mierzwa:2018:ESM

Masia:2014:PFM

Munoz-Garcia:2016:POP

Ana B. Muñoz-García and Michele Pavone. Perspective: From oxide to proton conduction: a quantum-chemical perspective on the versatility of Sr$_2$Fe$_{1.5}$Mo$_{0.5}$O$_{6-\delta}$-based materials. *International Journal of Quantum Chemistry, 116*(21):1501–1506, November 5, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Miralrio:2017:TSS

Alan Miralrio, Arturo Hernández-Hernández, Jose A. Pescador-Rojas, Enrique Sansores, Pablo A. López-Pérez, Francisco Martínez-Farias, and Eduardo Rangel Cortes. Theoretical study of the stability and properties of magic numbers ($m=5, n=2$) and ($m=6, n=3$) of bimetallic bismuth–copper nanoclusters; Bi$_m$Cu$_n$. *International Journal of Quantum Chemistry, 117*(24):??, December 15, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Maeda:2015:RIR

Mejrissi:2018:CTI

Maruyama:2008:IIH

Malenov:2018:IMI

Mehranfar:2019:URN

Militzer:2012:BEP

Minami:2013:FDF

Mahler:2016:RAP

Mehmood:2016:EDR

Muhammed:2019:EFA

Mitikiri:2018:MLT

Mammino:2010:AAE

Mammino:2010:CSC

Mammino:2011:IIH

Mammino:2012:CSP

Mirzaie-Khalilabadi:2019:NCD

Monajjemi:2011:SSE

Mitin:2011:ESC

Mineva:2013:TDM

Mu:2011:DFI

Moradi:2010:FES

Mora:2012:DFT

REFERENCES

Motaghiani:2013:DFS

Melo:2019:RCE

Mujica-Martinez:2010:MBT

Minaev:2013:RDS

Meng:2012:SHD

Medvedev:2019:EAV

Mora:2011:RMG

Moura:2011:CBO

Mazur:2016:SNU

Mora:2012:DSH

Mendez:2016:DIM

REFERENCES

Mazzone:2018:QMD

Marino:2010:IRC

Mora:2010:SES

Muya:2019:TIR

Miyakawa:2013:MDS

REFERENCES

113(21):2333–2337, November 5, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Murakami:2012:DFS

Melaccio:2011:UQM

Morgon:2011:TSA

Morgon:2012:EFP

Morgan:2013:BRA

REFERENCES

Malinovskaya:2010:ISC

Meyer:2010:MIC

Mandal:2015:TDN

Musa:2011:NNA

Markova:2015:HSM

Monari:2010:HSS

Monge-Palacios:2012:APE

Mosyagin:2011:EIT

Marino:2012:SBP

Mosyagin:2013:GRE

[MPTZ13] Nikolai S. Mosyagin, Aleksander N. Petrov, Anatoly V. Titov, and Andrei V. Zaitevskii. Generalized relativistic effective core potential calculations of the adiabatic potential curve and spectroscopic constants for the ground

Medina:2011:FSA

Meyer:2010:MIE

Miranda-Quintana:2017:IHC

Miranda-Quintana:2013:DTQ

Mercier:2011:CDM

REFERENCES

Malinovsky:2012:GSQ

Mukherjee:2018:FIC

Mukherjee:2018:IEM

Murugan:2011:MSN

Miyashita:2015:SNU

Marino:2011:IMC

REFERENCES

Miroshnychenko:2010:EDD

March:2012:PTD

Mahadevi:2014:MHB

Miralrio:2014:ESS

Mohan:2014:ABE

Miralrio:2017:SSE

[MS17] Alan Miralrio and Luis Enrique Sansores. Structures, stabilities, and electronic properties of fullerene C_{36} with en-
REFERENCES

484

Mukherjee:2019:TSR

Mondragon-Solorzano:2018:SUV

Matamala:2010:DOD

Makarova:2016:CSS

Malhado:2013:CFM

REFERENCES

Muniz:2011:EAA

Mazurek:2011:FCL

Miranda:2010:HSP

Miyagi:2012:IFM

McDowell:2010:SMH

Fangfang Ma, Hong-Bin Xie, and Jingwen Chen. Benchmarking of DFT functionals for the kinetics and mechanisms of atmospheric addition reactions of OH radicals with phenyl and substituted phenyl-based organic pollutants. *International Journal of Quantum Chemistry*, 118

Mosyagin:2016:RGR

Nazari:2012:APF

Naghma:2014:TSC

Nagy:2010:PPD

Nagy:2015:FSI

Nagy:2016:EAD

Roman F. Nalewajski. Perspectives: Phase/current information descriptors and equilibrium states in molecules. In-
REFERENCES

Naji:2014:EMP

Nazmutdinov:2016:RME

Naganathappa:2011:SCA

Nagurniak:2018:AEI

Nazari:2010:SEH
Nadvorny:2011:HBC

Nakazato:2010:ACS

Nguyen:2019:CML

Noel:2012:ESD

Nguyen:2010:AEG

Nascimento:2011:SVD

Niu:2010:TIS

Niu:2011:TSI

Navarro:2011:TES

Ng:2012:OQE

REFERENCES

Oleg S. Nychyporenko, Olga P. Melnyk, Oleksandr O. Vinnychuk, Tetiana M. Pinchuk-Rugal, Volodymyr A. Brusentsov, Elena L. Pavlenko, Oksana P. Dmytrenko, Nikolay P. Kulish, and Olexiy D. Kachkovsky. Shape and

Nakano:2017:DSDb

Nakarada:2018:MIH

Nowroozi:2011:CBI

Nowroozi:2011:RIH

Nochebuena:2015:VWI

REFERENCES

2015. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Nowroozi:2011:NSI

Nowroozi:2011:CTP

Nagaraju:2010:CSF

Nasertayoob:2010:RFQ

Nagy:2013:FWF

[NTGC19] Pulak Naskar, Srijeeeta Talukder, Subhasree Ghosh, and Pinaki Chaudhury. Controlling the isomerization dynamics of iodide acetonitrile dimer complex by optimally de-

Ying-Yu Niu, Rong Wang, Ming-Hui Qiu, and Jun-Ling Xiu. Multiphoton association reaction He + H$^+$ → HeH$^+$ steered by ultra-short laser pulse. *International Journal of Quantum Chemistry*, 111(9):2117–2122, August 5,
Nakai:2013:PSI

Nyman:2014:TRC

Nishihara:2010:UMM

Ndambuki:2013:AUT

Nunez-Zarur:2010:DFS

Ozkan:2012:RCA

Ozkaya:2016:CTF

Ozdemir:2011:QCI

Orenha:2019:HDP

Opoku:2018:USE

Robert J. O’Reilly and Amir Karton. A dataset of highly accurate homolytic N — Br bond dissociation energies ob-
REFERENCES

Osella:2019:EEC

Okumura:2010:DCH

OReilly:2012:HCH

Olsen:2011:CMP

Ols11b

[ONK+13] Mitsutaka Okumura, Yasuyuki Nakanishi, Keiji Kinoshita, Satoru Yamada, Yasutaka Kitagawa, Takashi Kawakami,

[Opp+14] Irina Osadchuk, Tõnis Pehk, Anne Paju, Margus Lopp, Mario Öeren, and Toomas Tamm. Isomers and conformers

REFERENCES

[Posada-Amarillas:2016:CSS] Alvaro Posada-Amarillas, Rafael Pacheco-Contreras, Sharity Morales-Meza, Mario Sanchez, and J. Christian Schönn. Computational studies of stable hexanuclear Cu\textsubscript{l}Ag\textsubscript{m}Au\textsubscript{n} (l+m+n = 6; l, m, n > 0) clusters. *International Journal of Quantum Chemistry*, 116(13):1006–1015, July 5, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

June 15, 2014. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Peng:2019:CCS

Paidarova:2011:TUF

Papamokos:2014:TAM

Palin:2014:RCS

Pavlov:2011:ETF

REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Polkehn:2018:RQD

PereiradosSantos:2013:IBD

Perez-Gonzalez:2012:SAM

Pacheco-Garcia:2010:ESE

Pena:2015:BSS

REFERENCES

Paukku:2012:QTM

Pham:2019:ISL

Pandith:2013:CAQ

Provorse:2016:TRE

Pierloot:2011:TMC

Piela:2012:IIS

[Pie12] Lucjan Piela. Intermolecular interactions — from some general features to conformational autocatalysis. *Internationa-
REFERENCES

Piris:2013:NOF

Prats:2018:GCA

Pitaevskii:2012:APD

Pupyshev:2019:SCA

Preat:2008:TST

REFERENCES

[PKK+16] Pooja, R. Kumar, G. Kumar, R. Kumar, and Anil Kumar. Quantum information entropy of Eckart potential. *Int-

Raghunath Putikam and Ming-Chang Lin. A novel mechanism for the isomerization of N\textsubscript{2}O\textsubscript{4} and its implication for the reaction with H\textsubscript{2}O and acid rain formation. *International Journal of Quantum Chemistry*, 118(12):e25560:1–e25560:??, June 15, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Piris:2016:RCI

Prasad:2017:CAM

Preat:2012:PBD

Pop:2011:TCH

Petrovic:2019:TSN

References

Pena:2012:UTE

Paranthaman:2016:RMO

Polkosnik:2019:FQC

Palazzetti:2011:SHR

PerezDeTudela:2011:TDE

REFERENCES

Panagiotides:2010:DPA

Pu:2014:MPC

Pastorczak:2016:RME

Pan:2019:SMT

Pimienta:2019:HFT

Palacios:2011:ALD

Pereira:2017:BDF

Poltev:2010:CSM

Poulain:2013:IPP

Pacureanu:2010:DPP

REFERENCES

Pan:2010:DPC

Paine:2013:CST

Pan:2013:LER

Pan:2014:LEC

Petraglia:2015:FCD

Pooja:2017:QIE

[PSGK17] Pooja, Aarti Sharma, Rama Gupta, and Anil Kumar. Quantum information entropy of modified Hylleraas plus exponential Rosen–Morse potential and squeezed states.
Promkatkaew:2013:CBB

Pan:2016:NIA

Petsis:2019:TSM

Perdew:2016:TRS

Prates:2011:CBP

Érica T. Prates, Paulo C. T. Souza, Mónica Pickholz, and Munir S. Skaf. CHARMM-based parameterization of

Pantos:2013:PBS

Pinheiro:2012:HMS

Peach:2011:ECD

Pan:2011:DSM

Piris:2014:PNO

REFERENCES

Pineda-Urbina:2018:FPT

Patoary:2011:EII

Pulay:2011:PCM

Pupyshev:2011:ESH

Pupyshev:2011:NFS

Puzzarini:2010:TSC

Puzzarini:2016:PAM

Puzzarini:2017:PAC

Pidko:2010:MRC

Palma:2011:TDS

Palma:2012:TDS

Papas:2010:DWP

Brian N. Papas and Jerry L. Whitten. Dissociation of water on a palladium nanoparticle. *International Jour-
Pu:2012:MLU

Peng:2010:MHD

Proud:2013:APE

Pan:2018:RWK

Philipp:2018:QCP

REFERENCES

Pyykko:2011:BOR

Peng:2019:CIC

Quapp:2015:ESP

Quapp:2018:TTM

Quintanar:2010:SEP

Qu:2012:DSE

[QCW+12] Zhibo Qu, Xiaolan Chen, Donghui Wei, Diandian Ke, Lingbo Qu, Jinwei Yuan, Yunliang Bai, Fujun Wang, and
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

Rodriguez-Bautista:2018:EDD

Ren:2015:ICS

Rizzo:2011:DBA

Rodriguez-Cantano:2014:PIM

Rincon:2010:TSM

Martín Regueiro-Figueroa, David Esteban-Gómez, Rosa Pujales-Paradela, Laura Caneda-Martínez, Andrés de Blas,

[RGS+13] Mehak Rohilla, Neetu Goel, Tej Vir Singh, P. Venugopalan, N. V. Suresh Kumar, and K. Tewari. Theoretical and ex-

[Ravi:2012:DSS]

[Ravi:2011:QCS]

[Rezaeian:2019:TSI]

[Riley:2010:ISC]

[Ritchie:2011:QMD]

Ramirez:2013:NAD

Rico:2013:TRS

Rico:2014:NCC

Rabanal-Leon:2019:RER

Raghunath:2013:ICK

Ruzankin:2012:NSP
Sergey Ph. Ruzankin, Igor Lyskov, and Igor L. Zilberberg. Net spin and polarization components of the spin density

[RMP+14] Alexander B. Rozhenko, Sergiy S. Mykhaylychenko, Nadiya V. Pikun, Yuriy G. Shermolovich, and Jerzy Leszczynski. Intermediate carbene formation in the reaction of thioamides with phosphorus (III) derivatives: Quan-

[Rey:2010:PDI] Nicolás A. Rey, Ademir Neves, Wagner B. de Almeida, Hélio F. Dos Santos, and Luiz Antônio S. Costa. A promiscuous dicopper(II) system promoting the hydrolysis of bis(2,4-dinitrophenyl)phosphate: Gaining mechanistic insight by means of structural and spectroscopic DFT

[Roy14] Amlan K. Roy. Ro-vibrational studies of diatomic molecules in a shifted Deng–Fan oscillator potential. Inter-

Mirco Ragni, Frederico V. Prudente, Ana C. P. Bitencourt, and Patricia R. P. Barreto. Analysis of vibrational modes...

Rampino:2010:MBP

Robb:2011:F

Ramirez-Solis:2012:NVE

Ramirez-Solis:2012:NES

Reyes:2010:P

Rahimi:2019:STN

[RTG+19] Ali Mehdizadeh Rahimi, Amirhossein Molavi Tabrizi, Spencer Goossens, Matthew G. Knepley, and Jaydeep P. Bardhan. Solvation thermodynamics of neutral and

Ryzhkov:2010:FRC

Ruangpornvisuti:2010:DID

Rudbeck:2012:BSD

Rupp:2015:PSI

Rupp:2015:TRM

R. D. Santiago, O. Álvarez-Bajo, J. M. Arias, J. Gómez-Camacho, and R. Lemus. An algebraic approach to the

Sierraalta:2018:NTI

Salin:2013:QCI

Shalabi:2012:SQM

Siddiqui:2016:IIB

Shalabi:2011:SQT

REFERENCES

REFERENCES

[Santoro:2010:CAS]

[Siegahn:2010:BDU]

[Shchegoleva:2016:RPE]

[Saha:2018:BHP]

[Sahin:2016:CCI]

REFERENCES

Saracoglu:2012:EQC

Saracoglu:2012:ETA

Sutradhar:2018:HBB

Sousa:2014:RET

Swann:2017:EPQ

Soriano-correa:2010:IED

Scheiner:2010:BR

Scheiner:2010:ECH

Scheiner:2012:EDM

Scheiner:2012:I

Scheiner:2013:RDC

REFERENCES

Shibl:2013:MAE

Sadhukhan:2019:CSQ

Sadhukhan:2020:CCS

Staykov:2016:ODP

Silvi:2011:I

Goncağül Serdaroğlu. DFT and Ab initio computational study on the reactivity sites of the GABA and its agonists, such as CACA, TACA, DABA, and muscimol: In the gas phase and dielectric media. *International Journal of Quantum Chemistry*, 111(14):3938–3948, November 15, 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Fabio Della Sala, Eduardo Fabiano, Savio Laricchia, Stefania D’Agostino, and Manuel Piacenza. The role of exact-

San-Fabiin:2013:PUG

Staykov:2018:STS

Salter:2012:RST

Song:2012:WTQ

Simoes:2014:RPL

Sabin:2010:BR

Senthilkumar:2012:HBC

Salazar:2016:SSS

Sun:2019:MSI

Santiago:2018:REI

Santoro:2018:MSR

Sheka:2013:CMN

Sheka:2014:UPC

Shigemitsu:2013:CBB

Shil:2018:EDM

Shigeta:2015:RQC

REFERENCES

REFERENCES

Szarek:2010:FFA

Sellier:2019:MLS

Shukla:2011:HAA

Skouteris:2016:PTD

Shankar:2010:RMC

Shankar:2011:TSD

REFERENCES

Skouteris:2013:EMT

Silva:2012:IDT

Sciortino:2018:APV

Sagar:2011:EPD

Silva:2010:HMM
José Rogério Araújo Silva, Jerônimo Lameira, Priscila P. B. Santana, Artur Silva, Maria Paula Cruz Schneider, and Cláudio Nahum Alves. Homology modeling and molecular dynamics simulation of an alpha methyl coenzyme M

[SLS+19] Benjamin Stamm, Louis Lagardère, Giovanni Scalmani, Paolo Gatto, Eric Cancès, Jean-Philip Piquemal, Yvon

Shi:2013:TSS

Shi:2011:SIB

Shi:2011:MID

Shi:2011:SIA

Speranza:2014:CDH

Srivastava:2014:HOS

Srivastava:2014:IIS

[SM14c] Ambrish Kumar Srivastava and Neeraj Misra. Ab initio investigations on the stabilities of AuO\textsubscript{q}− (q = 0 to 3; n = 1 to 4) species: Superhalogen behavior of AuO\textsubscript{n} (n ≥ 2) and their interactions with an alkali metal. *International Journal of Quantum Chemistry*, 114(8):521–524, April 15, 2014. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Srivastava:2014:TIS

Srivastava:2016:SBL

Srivastava:2017:CBA

[SM17] Ambrish Kumar Srivastava and Neeraj Misra. Competition between alkaliide characteristics and nonlinear optical

Senami:2019:EEC

Solimannejad:2011:GOC

Saha:2018:HNA

Ranajit Saha, Bijoya Mandal, and Pratim K. Chattaraj. HNgBeF3 (Ng = Ar–Rn): Superhalogen-supported noble gas insertion compounds. *International Journal of Quantum Chemistry*, 118(5), March 5, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic). This article will be published in an upcoming issue of the *International Journal of Quantum Chemistry*.

Sen:2015:EFH

Sen:2016:HBE

Stanchev:2013:DSP

Sanchez-Marquez:2019:NIC

Saito:2012:MDSa

Squire:2013:TRC

Sanchez-Moreno:2011:EFL

REFERENCES

Sendiuk:2018:ISD

Sladek:2014:SEI

Szalay:2015:TRT

Sauer:2011:CRV

Sagarik:2015:DPE

September 5, 2015. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

[Siddiqui:2013:QCS]

[Sinha:2018:RMM]

[Sanchez:2019:CAE]

[Stephen:2011:PWB]

[Shahbazi-Raz:2016:TCP]
REFERENCES

[SSAM13] Bhavesh K. Shandilya, Manabendra Sarma, Satrajit Adhikari, and Manoj K. Mishra. Time dependent wave packet treatment of $^2\Pi_g \ N_2^-$ and $^3\Sigma^- \ NO^- \ shape \ resonances \ using \ two-dimensional \ surfaces \ for \ electron-N_2 \ and \ NO \ interactions$. *International Journal of Quantum Chemistry*, 113 (2):130–138, January 15, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Sirirak:2017:CDF

Srikanth:2015:MDC

Sidir:2011:TSE

South:2016:DEE

Sathya:2015:SBV

REFERENCES

Stanek:2010:WFR

Song:2012:IRC

Suzuki:2017:MLA

Srivastava:2018:ABS

Stopkowicz:2018:PCC

Sugimoto:2019:MQS

[STU19] Hideya Sugimoto, Masanori Tachikawa, and Taro Udagawa. Multicomponent QM study on the reaction of HOSO

Schwarz:2010:SSP

Sun:2012:CIW

Swart:2013:SSB

Sun:2012:MCI

Sun:2014:DSM

REFERENCES

Shan:2018:ASC

Sun:2010:IMM

Staykov:2014:EHG

Sutay:2016:PHS

Solkan:2011:PHF

REFERENCES

A. L. TchougRéeff and J. G. Ángyán. Classes of admissible exchange-correlation density functionals for pure spin and

REFERENCES

Tavakol:2011:KTS

Tavakol:2012:DMS

Tanak:2011:CEC

Taylor:2012:BR

Trout:2015:RMS

Trindle:2013:SEC

D. Teillet-Billy, N. Rougeau, V. V. Ivanovskaya, and V. Sidis. Erratum: Interaction of Atoms With Graphenic-Type Surfaces for the Chemistry of the Interstellar
REFERENCES

Tkachenko:2010:PAP

Torrens:2010:CNS

Turbiner:2012:CCS

Tognetti:2010:APS

Trejo:2010:CSP

Tsinberg:2013:SCT

Talukder:2017:SAB

Tchougreeff:2011:I

Tchougreeff:2013:EVF

Tchougreeff:2016:RSS

Topol:2012:MAK

Igor Topol, Jack Collins, Vladimir Mironov, Alexander Savitsky, and Alexander Nemukhin. Modeling absorption of the kindling fluorescent protein with the neutral form
REFERENCES

[TDOD17] Ilker Tezsevin, Cansu Demirtas, Isik Onal, and Cerag Dilek. Density functional theory study of interactions between carbon dioxide and functionalized polyhedral oligomeric silsesquioxanes. *International Journal of Quan-

Athanassios Tsipis and Dimitrios Gkarmpounis. Probing the electronic structure, magnetotropicity, and absorption spectra of benzene trapped by lanthanide monoxides, $\text{C}_6\text{H}_6\cdot\cdot\cdot\text{LnO}$, using DFT methods. *International Journal of Quantum Chemistry*, 113(5):694–708, March 5, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Tsuneda:2015:RCR

Tchougreeff:2016:REH

Tezcan:2010:CSA

Tchougreeff:2013:RRT

Tsoneva:2016:NCD

Tyminska:2015:MCB

Tian:2019:NGQ

Tian:2010:TSMb

Tennyson:2017:SNU

Tian:2010:TSMa

Uribe:2010:NCH

Ugandi:2018:UBS

Uppuladinne:2013:QCS

Ueno:2011:TSG

Uzunova:2013:DFS

Valle:2013:TRV

Valadbeigi:2017:DNO

Varandas:2011:HFP

Varandas:2014:ROH

Valdemoro:2012:IDE

Valdemoro:2011:STQ

REFERENCES

Pedro Villar, Lucía Guillade, Adán B. González-Pérez, and Angel R. de Lera. Computational studies on the forma-

REFERENCES

[VLFG12] Henrique Vieira Rivera Vila, Luciano Almeida Leal, A. L. A. Fonseca, and Ricardo Gargano. Calculation of the H\(^+\)\(_2\) rovibrational energies and spectroscopic constants in the 2\(\pi\), 3\(\sigma\), 4\(d\sigma\), 4\(f\pi\), 4\(f\sigma\), 5\(g\sigma\), and 6\(i\sigma\) electronic states. *International Journal of Quantum Chemistry*, 112(3):829–833, February 5, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Vyas:2011:CDC

Vyas:2012:ITS

Valencia-Ortega:2018:TPD

Vitkovskaya:2018:TCH

Velilla:2011:BSC

REFERENCES

Vignale:2013:LEC

Vidal:2012:CSA

Vidal:2013:LER

Valadbeigi:2018:SPO

Vazquez-Villavicencio:2012:FSL

Vázquez-Villavicencio, Mario; Aburto, Andrea; Orgaz, Emilio. The first steps of the Li-B-H cluster formation. *International Journal of Quantum Chemistry*, 112(5):1507–1513, March 5, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Vyboishchikov:2008:PAE

Wagner:2014:PQM

Wang:2011:NMC

Wang:2013:FPS

Wang:2017:CFR

Wei:2014:AWB

Jinhu Wang, Qianqian Hou, Xiang Sheng, Jun Gao, Yongjun Liu, and Chengbu Liu. Theoretical study on the

Wang:2014:TSV

Winkler:2010:LED

Witwicki:2018:DFT

Wu:2011:TAH

Wen:2010:GSE

Wang:2011:DFT

Wang:2015:CST

Walter:2017:ATD

Wei:2017:PEE

[WLC+17] Yuan-Xin Wei, Hai-Bei Li, Jian-Bo Cheng, Wen-Zuo Li, and Qing-Zhong Li. Prominent enhancing effects of substituents on the strength of \(\pi\cdots\sigma\)-hole tetrel bond. *International Journal of Quantum Chemistry*, 117(23):??, December 5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Wu:2010:QCS

Wang:2011:TSR

Wang:2019:FPS

Wang:2011:TSI

Wang:2013:ISR

Wen:2019:TPN

Ya Wang, Yang Liu, and Xiaonan Zheng. Pseudo Jahn–Teller origin tracking for symmetry breaking in halogen-

REFERENCES

[WZHZ13] Li Wang, Jianxiang Zhao, Hongqing He, and Jinglai Zhang. Rate constants calculation of hydrogen abstraction reactions CH$_3$ CHBr + HBr and CH$_3$CB$_2$ + HBr. *International Journal of Quantum Chemistry*, 113(7):997–1002.

REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[XF19] Zhen-Zhen Xu and Hong-Jun Fan. A theoretical investigation on the structures of \((\text{NH}_3)_n \cdot (\text{H}_2\text{SO}_4) \cdot (\text{H}_2\text{O})_{0–14}\) clusters. *International Journal of Quantum Chemistry, 119*(7): e25850:1–e25850:??, April 5, 2019. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Xie:2012:CIE

Xu:2010:QCT

Xue:2019:ASP

Xie:2012:WOD

Xiao:2014:TKS

Xia:2018:QMS

[XS18] Xiuli Xia and Yuanzhi Shao. Quantum mechanical studies of full-shell noble metal nanoclusters in water. *Intern

Xu:2010:AIS

Xu:2011:BCM

Xu:2011:TSI

Xu:2011:CSE

Xu:2018:QBS

REFERENCES

Xiaohong:2012:PSS

Xu:2013:TAH

Xu:2016:QST

Xi:2018:LMB

Xu:2011:DSN

REFERENCES

Yu:2017:NSM

Yu:2013:ICN

Yu:2016:COP

Yu:2017:DPN

Yin:2011:SDF

Yao:2010:DBB

Wen-Zhi Yao, Jin-Chang Guo, Hai-Gang Lu, and Si-Dian Li. D_{sch} B_{2} (BS)_{2}^{−/2−} and T_{d} B(BS)_{4}^{-}: Boron sulfide clusters containing BB multiple bonds and B− tetrahedral cen-

Takeshi Yanai, Yuki Kurashige, Wataru Mizukami, Jakub Chalupský, Tran Nguyen Lan, and Masaaki Saitow. Reviews: Density matrix renormalization group for ab initio calculations and associated dynamic correlation methods: a review of theory and applications. *International
REFERENCES

Yi:2013:EMC

Yang:2012:SPN

Hui Yang, Ying Li, Di Wu, and Zhi ru Li. Structural properties and nonlinear optical responses of superatom compounds BF\(_4\)-M (M = Li, FLi\(_2\), OLi\(_3\), NLi\(_4\)). *International Journal of Quantum Chemistry*, 112(3):770–778, February 5, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Yuan:2018:GPE

Yu:2017:HRM

Yadav:2012:QTS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>[YNLD18]</td>
<td>Wassila Yahia, Abdelmalek Khorief Nacereddine, Messaoud Liacha, and Abdelhafid Djerourou</td>
<td>A quantum-chemical DFT study of the mechanism and regioselectivity of the 1,3-dipolar cycloaddition reaction of nitrile oxide with electron-rich ethylenes.</td>
<td>International Journal of Quantum Chemistry</td>
<td>118(11)</td>
<td>e25540:1–e25540:??</td>
<td>June 5, 2018</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

Yakubovich:2010:CCP

Yamanaka:2012:SRM

Yukcu:2012:CEM

Yamaguchi:2010:TCB

Yu:2011:NGR

Yoshikawa:2014:NRD

Yamabe:2019:AIR

Yu:2013:IIF

Yurovsky:2013:SWY

Yurovsky:2015:ESW

[YWH+12c] Lei Yu, Yuhua Wang, Zhengguo Huang, Hongke Wang, and Yumei Dai. Structures, vibrational frequencies, topologies, and energies of hydrogen bonds in cysteine-formaldehyde...

Yang:2011:NIP

Ye:2018:CTD

Yang:2012:UCR

Yang:2018:FPE

Yamabe:2018:DSP

[YY18a] Shinichi Yamabe and Shoko Yamazaki. A DFT study of proton transfers for the reaction of phenol and hydroxyl radical leading to dihydroxybenzene and H2O in the water cluster. *International Journal of Quantum Chemistry, 118*
REFERENCES

(6), March 15, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Yamabe:2018:TRC

Yamaguchi:2012:SHM

Yamaguchi:2013:CBBa

Yamabe:2015:DSH

Yuan:2010:QCT

REFERENCES

Chemistry, 110(10):1842–1847, August 15, 2010. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[YZW+15a] Xiao-Zhu Yang, Ting-Ting Zhang, Jia Wei, Jian-Feng Jia, and Hai-Shun Wu. DFT/TDDFT studies of the ancillary ligand effects on structures and photophysical properties of rhenium (I) tricarbonyl complexes with the imidazo[4,5-f]-1,10-phenanthroline ligand. *International Journal of Quantum Chemistry, 115(20):1467–1474, October 15, 2015. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).*
References

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Zagoulaev:2011:MNS

Zakharov:2013:PNA

Zakharov:2016:EEC

Zoppi:2018:RCT

Ziegler:2017:CSS

Zhang:2019:DFT

REFERENCES

[ZCG+17] Yuan Zhang, En Cao, Shoubao Gao, Xin Huang, Qingtian Meng, and Yuzhi Song. Exploring the reaction dynamics of O(^3P) + H2 + (X^2Σ^+_g) OH^+ (X^3Σ^-) + H(^2S) reaction with time-dependent wave packet method. International Journal of Quantum Chemistry, 117(7):??, April 5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Zamani:2013:GSS

Zou:2011:DSA

Zakrzewski:2010:IEP

Zaitsevskii:2018:PEE

Zenkov:2011:CTT

Zhang:2015:REB

Zou:2012:BPJ

Zhang:2017:MMB

Zhao:2011:TIW

Zeng:2013:BCQ

Zhang:2015:QDR

Jing Zhang, Shoubao Gao, Yuzhi Song, and Qingtian Meng. The quantum dynamics of the reactions N + H₂ (HD, D₂) and their vibrational excitation effect. *International Journal of Quantum Chemistry*, 115(4):231–238,
February 15, 2015. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[Zha17] Yan Zhang. Quantitative investigation of local electric field through absorption spectrum in dye-sensitized solar cells:
REFERENCES

Zhang:2012:AAW

ZHI17

Zhang:2019:CHH

Jingru Zhang, Qingze Hu, Qingzhong Li, Steve Scheiner, and Shufeng Liu. Comparison of σ-hole and π-hole tetrel bonds in complexes of borazine with TH$_3$F and F$_2$TO/H$_2$TO (T = C, Si, Ge). *International Journal of Quantum Chemistry*, 119(11):e25910:1–e25910:??, June 5, 2019. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Zhou:2018:WLE

Zuehlsdorff:2019:MAS

Zheng:2017:TME

Zhang:2017:PPI

Zhao:2010:MGP

Zhao:2012:TIS

Zhang:2017:HEC

REFERENCES

Zhang:2013:PST

Zhao:2016:CAR

Zhu:2014:CDS

[ZLY+14] Bo Zhu, Zhong Ling Lang, Li Kai Yan, Muhammad Ramzan Saeed Ashraf Janjua, and Zhong Min Su. A comparative DFT study on the mechanism of olefin epoxidation catalyzed by substituted binuclear peroxotungststates ([$\text{SeO}_4\text{WO(O}_2\text{MO(O}_2\text{)}_2]^{n-}$ (M = TiIV, VV, TaV, MoVI, WVI, TeIV, and ReVII)). *International Journal of Quantum Chemistry*, 114(7):458–462, April 5, 2014. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Zhang:2014:CSS

Zierkiewicz:2017:NIB

of Quantum Chemistry, 117(11):??, June 5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Zheng:2017:IVS

Zhang:2013:DYG

Zeroual:2019:MSM

Zimmermann:2010:EEA

Zhao:2011:DFS

Jing Zhang, Xiang Sheng, QianQian Hou, and Yongjun Liu. Theoretical investigation on the dissociation of (R)-benzoin

Zhao:2016:RMM

Zhao:2010:TSS

Zhao:2013:TSM

Zazza:2010:CHP

Zhekova:2014:PRM

Zaitsevskii:2013:ICG

Zheng:2011:TSM

Zhao:2015:MCC

Zicovich-Wilson:2012:BWT

Zhang:2018:NGP

Yong Zhang, Jiemin Wang, and Wentao Li. New global potential energy surface of the MgH2 system and dynamics studies of the reaction H + MgH → Mg + H2. *International Journal of Quantum Chemistry*, 118(18):e25687:1–e25687:??, September 15, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Zhao:2013:LHR

Zhang:2013:PRP

Zhao:2013:CIG

Zhuo:2014:SMM

Zhang:2017:TPS

Zeng:2011:IAS

Zhang:2012:TIE

Zhang:2011:DDS

Zhang:2010:TSH

Zhao:2018:MAM