
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

27 May 2020
Version 1.54

Title word cross-reference

(001) [dLdOdAD12]. (100) [MFK+12]. (1 ≤ n ≤ 6) [UDVD10]. (2 ≤ n ≤ 8) [BLRdA+10]. (3 + 2) [WLS+19]. (3 + 3) [LFTL18]. (A = N, B) [ASW13].
(k + l + m = 4) [KYLC19]. (m + n = 3) [UKF+11]. (m = 5, n = 2) [MHHPR+17]. (m = 6, n = 3) [MHHPR+17]. (n = 1, 2) [Men10]. (n = 1, 2, 3) [EML+11]. (n = 1−−4) [LL11]. (n = 1−−7) [CAZ+11]. (n = 2, 3) [DTEMK11]. (n = 2−−10) [WJL+11]. (n = 2−−34) [QSLY10]. (N = 28) [GD11]. (r, s) [Bib13]. (φ−ψ) [MAW+18]. + [Buc12a, CdAFS+12, DMAB12, FRNM12, GKT+12, KT12b, LWWZ13, MEEA+13, MPRCEG12, MOH+12, RSN12, SÁBA+12, SD12, WZH13, XZL+12, YGL+11, YZ10, ZH12]. 1 [BEM12, DFK16, JW19, PSKV19]. 1/3 [KLZQ15]. 13 [LXD13]. 14 [YD17].
16 [GAPK+19a]. 18 [YD17, GAPK+19b]. 18 [GWZ+14a]. 2 [ABTW14, CPL15, HMA+19, HGB08, IK14, LLZaH14, LD17, NF11, PSKV19, SPD+18, SSdS17, YSW11]. 2(N + 1)² [MC18a]. 2n [BBYZ18].
$2n + 2\pi$ [MB13]. $2n = 68, 70, 78$, [WLZ$^{+12a}$]. $2p\pi$ [VLFG12]. 3 [ABTW14, BMX$^{+19}$, GWJ12, KSO19, LQZZ12, LD17, RLW$^{+13}$, SM14c, VVY18]. 30 [GGD12, SLZ$^{+12}$]. 3d [ALA15, DD17, RZC13]. 3σ [VLFG12]. 4 [ABTW14, CD12, GAPK$^{+19b}$, GB13, GWJ12, HCL13, LKN13, SM14c, WLS$^{+19}$]. 4σ [VLFG12]. $4f\pi$ [VLFG12]. $4f\sigma$ [VLFG12]. 5 [ABTW14, BGM15, BJdIMAV12, CDSK12, HDQ$^{+13}$, MPE15, SM14d, SM16]. 5σ [VLFG12]. $5 \leq n \leq 7$ [LCZ15]. 6 [CWSZ13, HDQ$^{+13}$, LdMdCdA$^{+12}$, MPE15, MJ14, MMV$^{+19}$, PII18, PAKA15, SS18a, VBO$^{+15}$]. 6; $y = 1, 2$ [BCGC12]. 6σ [VLFG12]. $6j$ [RBD$^{+10}$]. 7 [CHV14, GGJD13, SR13, WCS$^{+13}$]. 7π [KMF$^{+11}$]. 7σ [KMF$^{+11}$]. 8 [YCI13]. 8σ [WLZ$^{+12a}$]. 8 π [KMF$^{+11}$]. 8 σ [KMF$^{+11}$]. 8 $\leq n \leq 14$ [NW12]. 9 [AIi14, SBB16]. $<\text{BTH18}$. $=\text{BPG}$ [CD12, GAPK13]. $=\text{BPG}$ [MLYe]. $=\text{SSAM13, ZCG}$ [ZCG$^{+11}$, SZZZ11, SLZH12, SSW16, SWS12, TFB11, WCY$^{+10}$, WSL$^{+11}$, XZZ$^{+10}$, XWC11a, XWCY11, YK11, YIY$^{+13}$, YL11, ZQJW13]. $>\text{BTH18}$. $[2 + 2] [\text{MBS}^{+18}]$. $[2 + 4] [\text{LLF17}]. [2, 7] [\text{WWL}^{+11}]$. $[2n, 2]$ [LS12]. $[3 + 2] [\text{ZRG}^{+19}]$. $[3 + 3] [\text{ZQW}^{+17}]$. $[4 + 2] [\text{HZZ}^{+19}]$. $[4 + 3] [\text{XZG}^{+18}]$. $\dagger [\text{ADB10, AGRI}^{+12}, \text{BD12, BCK19, BHY}^{+11}, \text{Ber13a, BGI1c, DWJZ11, DZ11a, DCHC11, FBM}^{+10}, \text{GWH17, GFB12b, GR10, HMI}^{+15}, \text{HHC10, HDC}^{+11}, \text{JMP19, KH12, KMF}^{+11}, \text{KH10, LCL}^{+10a}, \text{LP10b}, \text{LGP}^{+11}, \text{LPG}^{+12}, \text{LLC}^{+11}, \text{LLZ10, LdAA}^{+11}, \text{Ma14, MT11, MRR11}, \text{NW1T19, NWQ1X11, NZL15, RGF12P^{+16}, RI19, RR11, RRC11}, \text{SLZ}^{+11a}, \text{SLX}^{+11}, \text{SLZH12, SS112}, \text{SSW16, SWS12, TFB11, VIK13, WLG}^{+11}, \text{XWCY11, YLW}^{+13}, \text{ZQJW13, ZLW16, ZGC}^{+17}]$. $++ [\text{ZPM}10]$. $+ [\text{BN12}]. - [\text{ADB10, BCK19, CS17, DZO11, DSZB18, FT15, KMM16, LCL}^{+10b}, \text{LKL15, Ma14, MPM15, MC13a, MEA}^{+13}, \text{MRR11}, \text{RWW}^{+19}, \text{RGRI12}, \text{SSAM13, TFB11, XWCY11, YGLL10}]. - [\text{ZLZ16}]. 0, \pm [\text{ZPR10}]. 1 [\text{DS18}, \text{Kan11, LGW11, MND19, OD12, RR19, SBMM11, STL12, SY17, TSL11}]. 1, 3 [\text{DSS18, ARG11}]. 13 [\text{TKSK17}]. 14 N [\text{BJ12}]. 1 \Sigma^+ [\text{LJSS12, SPO}^{+11}, \text{SLZ}^{+11b}, \text{SLZ}^{+11c}, \text{YLC17}]. 1 \Sigma^+_g [\text{YLC17}]. 2 - \text{FRNM12, LV12, LGW11, MCV11, NCMC}^{+18}, \text{PBR18, RRC011, SH13}, \text{SLS}^{+12}, \text{YLC17, ZGC}^{+17}]. 2^+ [\text{ASH13, BJJ17, CRB}^{+12}, \text{CLMY12, GR11}, \text{LWL}^{+12}, \text{MRT11, MG12, NZ1G15, OPC17, RGF12P^{+16}, VO12}, \text{YLW}^{+13}]. 2^- [\text{Fuk12, SBS18}]. 2^- [\text{LGW11}]. 2^\Pi [\text{SZS}^{+10}, \text{SLS}^{+11}]. 2^\Pi_g [\text{SSAM13}]. 2^\Pi_u [\text{RS12a}]. 2^\Sigma^+ [\text{SLZ}^{+11a}]. 2^\Sigma_u^+ [\text{ZCZ}^{+17}]. 2^\Sigma_u^+ [\text{RS12a}]. 2^\Sigma_u^+ [2 \Sigma_u^{0+}] [\text{GWH17}]. 3^- [\text{ACMR10, CD}^{+12}, \text{DVM11}, \text{DSS19}, \text{GWZ}^{+14a}, \text{HHL}^{+12b}, \text{MCK17}, \text{OD12}, \text{ZGC}^{+17}, \text{ZPB12}]. 3^+ [\text{CRB}^{+12}, \text{DSZB18}, \text{SS13}]. 3^- [\text{Bou12b}, \text{WZC}^{+12}]. 3^\Delta_u [\text{SX}^{+12}]. 3^\Delta_g [\text{SX}^{+12}]. 3^\Sigma^- [\text{SSAM13}, \text{ZGC}^{+17}]. 3^\Sigma^+_u [\text{SS}^{+12}]. 4^- [\text{Kin13}, \text{RCGLV}^{+14}, \text{SLS}^{+12}]. 4^+ [\text{NCMC}^{+18}, \text{ZCG10}]. 4^\Sigma [\text{LDABB}^{+15}]. 6^+ [\text{DI18}, \text{ZCG10}]. \dagger \dagger [\text{WSML16}]. \dagger \dagger \text{CAAI12, PGG12}]. \dagger \dagger \text{DSS18, DSS19, SMBM11}. 11 \text{[DS11, MC17]}. 14^v \text{[MLY}^{+16}, \text{ZSHL16, ZLY}^{+14}]. \dagger \dagger \text{[MLY}^{+16}, \text{ZLY}^{+14}]. \dagger \dagger \text{[KMB}^{+16}, \text{LZ1F231}, \text{Qu13, UJSJ13, Con10, GWM11, JWG}^{+12}, \text{LV12, RS11b}, \text{SC12a, SKM11, YLW}^{+13}]. 3^\Sigma_u^- [\text{SX}^{+12}]. 3^- [\text{GWM11}]. \dagger \dagger \dagger
[MYL18, ZLY14]. V1' [ZLY14]. 0 [BMX19, CMCN11]. 0.5 [MGP16]. 1
[BMX19, MKD19, RDM11, SY10, VFI3a, YXM18]. 1-x [KA13]. 1-x/3
[Onl12]. 1.5 [MGP16]. 10 [LZW15]. 2+ [MCK17]. 11 [CS18, MLY16]. 12
[GAP19b, KGGM18, HWL16, KGK13, MJ16a, MPD10, VPFD10, XCY15].
120 [CTDOLA10]. 13 [MMBK12, SFA19, TW10, VDG13]. 144 [BDF16]. 15
[HLMO11]. 16 [CS18, TFB11]. 18 [BMX19, MKD19, RDM11, SY10, VF13a, YXM18].
190 [KA13]. 1 [BLdV19].
8 [Oni12]. 1 [MGP16]. 10 [LZW15]. 2+ [MCK17].
11 [CS18, MLY16]. 12 [GAP19b, KGGM18, HWL16, KGK13, MJ16a, MPD10, VPFD10, XCY15].
120 [CTDOLA10]. 13 [MMBK12, SFA19, TW10, VDG13]. 144 [BDF16]. 15
[HLMO11]. 16 [CS18, TFB11]. 18 [BMX19, MKD19, RDM11, SY10, VF13a, YXM18].
190 [KA13]. 1 [BLdV19].
AEKGZ12, BMR +13, DB15, FV11, GNMM +12, LCB10, MMA10, Nik11, NRG11, RVPN12, RNV +12, SD13a, VSS11, Yam10, ZZZ +11. Π, α [HHL +12b]. π + σ [WLC +17]. π σ* [KGVG11]. pK a [PWY +18]. τ [Dau16, SAHA +16]. Ψ α [GS10]. q [Agb12]. q = 0 [SM14c]. → Buc12a, Coo12, GTK +12, LCB10, MPRCG12, NWQX11, YGL +11, YZ10, ZH12.

rmSU (2) [Bra10]. S [HR12, MMM19]. S = 1/2 [KLZQ15]. σ [LW18, SPIL14, SC18, ZHL +19, CC11b, Ang10, Che12, DCdG10, JLG +12, Yam10]. Σ− [LSL +12]. σ_kole [VVJ15]. σ π [ZXY13, DMWY11]. sp^2 [OCGM +19, PNC19]. \sqrt{3} \times \sqrt{3} [OD16]. T [XCL +18]. \times [PWL +10, ZWYY10]. → [GW18, KMM16, ZWL18]. v = 0, 1 [LZFZ13]. \varphi = 0 [CC11b]. W(l, m, n; α, β, γ) [WY13]. \wedge [ZQYW13, LYL +17]. X

* [LCB10].

-chloro-acetic [DDC +12]. -chloroaniline [HLZ +14].

-cyclodextrin [NMHPVG12, SVRG12]. -cyclodextrins [PEA +12].

2 [Boe12, EKD12, KK14a, LJK+18, LV12, Men10, MEEA+13, SAHA16, Tan12, WWX+11, Zha14]. 2-
[KAOB11, NVPCJ+13, ÖEB11, YLW+13, Tan12].
2-adamantyl-thiazolidine-4-one [MBBT+12]. 2-amino [RJY+10].
2-amino-3-methylimidazo [MLPT10]. 2-azidoethanamines [SM10b].
2-dichloromethylbenzimidazole [PMC11]. 2-dihydro-3H-pyrazol-3-one [TAY11]. 2-dione [OPP+14]. 2-dioxetanone [dSdS13b].
2-ethoxypyridine [MCC12]. 2-furoic [GIO12]. 2-hydroxy-3-methylbenzylidene [TAY11].
2-hydroxybenzylamine [AF+10]. 2-methyl-3-hydroxylbutyryl-coA [MFR10].
2-methyl-4-nitroaniline [KC11]. 2-pyridone [HHCA10, MCC12]. 2-RDM [KK14a]. 2-substituted [Tug13]. 2.0
[CYC+15]. 200 [KAR12a]. 2D [BCNR18]. 2E [KDC+12]. 2H
[FRNM12, VHTEG15]. 2R [CPL15].

3 [CWW+16, LKZ+16, SC12b]. 3-SC12b]. 3-alkylthiophene [BMR+13].
3-aminoacrylaldehyde [NRS+11]. 3-bisphosphate-D-glyceric [SLA12].
[KZ+16]. 3-dihydro- [SC12b]. 3-dihydrobenzimidazole-2 [KKG12].
3-dihydropyridines [ZYSW17]. 3-dimethylallene [CPL15]. 3-diphenyl-4- [YWJ+11]. 3-dipolar [BL11, YNLD18]. 3-disubstituted [XxBa19].
3-imino-propen-1-ol [HNH+12]. 3-imino-propenylamine [RJA+10].
3-mesityl-3-methylcyclobutyl [KDC+12]. 3-methyl-1-pyridin-2-y1-5-pyrazolone [PGG12].
3-Methyl-3-phenyl-cyclobutene [SC12a, SC12b, DDY12].
3-methyl-4-nitropyridine [KC11]. 3.5 [Jan13]. 32 [Tas14]. 34th [RA10b].
3A [LZFZ13]. 3C [TCC10]. 3C-SiC [TCC10]. 3d
[GE12a, BL19, CCL10, XFW+14]. 3D-aromaticity [BL19]. 3D-QSAR
[XFW+14]. 3G [GZSMFN16, VRO+12]. 3H [TAY11]. 3ylmethylene
[SC12a].

4 [EKN10]. 4- DDY12, RS11b, SC12a, SC12b, TAY11]. 4-addition [LW13].
4-butanetrol [LL17]. 4-chloro-3- [DRK12]. 4-chlorophenol [ASW13].
4-chlorophenyl [ÖEB11]. 4-dieniminium [BMX+19]. 4-dienone
[KAOB11]. 4-dihydrolutidine [TM13]. 4-dimethyl-aminobenzonitrile
[NMHPV12]. 4-dimethylaminophenyl [FO10]. 4-dimethylcyclobutene
[MB13]. 4-Dimethylphenyl [Tan12]. 4-dinitrophenyl [RNdA+10]. 4-diols
[SBEH11]. 4-dioxane [Cha10]. 4-dithio-5-fluorouracil [NA12]. 4-fluoro
[YWJ+11]. 4-hydrogen [SMRK18]. 4-hydroxybutyloxy [RS11b].
4-methylcyclohexylidene [KGV11]. 4-phenylazoaniline [NVPCJ+13].
4-triazol-3-one [LY12]. 4-triazole [LLW+11]. 4-triazolin-2 [IK14].
4-trifluoromethylphenyl [SAHAA16]. 4-X-2-hydroxybenzaldehydes [EKN10]. 400K [KAR12a]. 4965 [SKHN13].

9- [CRSB12].

= [AGOP18, AM18, BLL13, BHA19, BBYZ18, CW15, CDL19, DPDR11, DD17, DHYC19, EM15, EM16, EAV16, GW11, HNBG15, HNS18, HW16, JLG12, KSSK16, KMM16, Kuz19, LJJ11, LC16, LL18, LW19, LGW11, LXD13, MLY16, MLW10, MZL17, NBL12, PSK16, PP19a, Pan16, PCD14, PAK15, RWW19, RBT19, SB18, SMC18, SK10, SPL14, SM17, SYQ10, TW10, TL15, VO12, WS16, WZW17, WLL19, XYL18, XZ112, XCL18, YLW112, ZHL19, ZCTG18, ZLY14, dOR10]. =4 [BEM11]. =H [RLTAT19].

activity

acute

acute

acyclic

acylbenzothiazolon

acylhydrazones

acylium

acylphloroglucinols

adamantane

adamantane-based

adapted

Adaptive

adatoms

added

Addition

addition-substitution

additions

additive

additives

Additivity

address

adduct

Adducts

adenine

adenine-thymine

adenine-uracil

adenosine

adenosylmethionine

adenosine-triphosphate

adhesion

adiabatic

adjustable

Adapting

admissible

adsorbed

Adsorption

adsorptive

Advances

aerobic

aerogen

aerogen-bonding

affected

affects

affinities

affinity

agent

aggregation

agostic

AgSi

AgSi
Aiming [BBB16]. Al
[CWS15, CDL+19, HHL12a, HHL14, JLL11, LXD13, MILW10, MFK+12, Oni12, Sat11b, TW10, XWC11a, CRB+12, DCDD10, DSZB18, KYLC19, LLZZ10, MCP10, NH11, Pan19, Sat11a, Sul+11, TZD+19, VDG13, WJL+10, PS13b].
Alanine [VO12, ZPR10]. AIB [RRRV19]. alcohol [Pli18, SCL19, dCDC+11].
alcoholamines [LCT14]. alcohol [Pli18, SCL19, dCDC+11].
alcoholamines [LCT14]. alcoholamines [LCT14].
AlCoN [AAAM12]. aldehyde [AG10a, LCS+12, PWH+12, ZSS+13]. Alder [CM12, Iku17, LW11, MIKH19, ZLWL16, ZXY13]. aldose [SSdS17].
aldose-ketone [SSdS17]. Algebra [RW12, Lya14]. algebra [SCLCPB12, SABA+12].
algebraic [WH12]. algorithm [AFM+10, CGG18, GI11d, IG11, MCP10, SGH10]. algorithms [CL08, TB15].
Alkali [ˇCFˇC11, Ber13a, HWL16, HWWW18, SHE10, SM14c, UDS19a, UDS19b].
alkali-atoms [UDS19a]. alkali-based [UDS19b]. alkalide [SM17].
alcanes [GZBH18]. alkenes [GZBH18].
alkene-3-quinolinecarbonitriles [ZFW+13]. alkenes [GZBH18].
alkenes [CAAI12, KBJ17, YZZ16, ZYSW17]. alkyl [ESS13, LYW11].
alkylation [IUMVB10]. alkenyl [VGGPdL19]. alkylthiophene [BMR+13].
aluminosilicates [DCFD10]. Aluminum [ALK18, AGB19, ALK19, HTM10, IIW+11, Kar12b, MMC19, MS14b, MM11, PMH+16, SM19].
Alzheimer [Bal16, MPT12]. Am [PKK14]. AM05 [MA10]. AM1 [PI13].
ambient [Ma14, WCGD12]. ambiguity [Fin14b]. amphiphilic [MAN15].
Amino [DSCO+13, AM13b, Coo12, CF17, Cza18, DBJ10, Jal10, KyH13a, KSS12, MLPT10, Mit11b, NGH+12, Pog12, QZ13, RJY+10, Ril10, TAY11, VHTEG15, WHM14, YSW11, ZCC11]. amino-2H-imidazole [VHTEG15].
aminoacetonitrile [CdLdSC18, NC11]. aminoacrylaldehyde [NRS+11].
aminobenzonitrile [NMHPVG12]. aminocarbonothioyl [KDČ12].
aminoguanidine [RCM+19]. aminonitropyrazole [RGST12]. aminonitropyrazole-2-oxides [RGST12]. aminophenanthridine [VBO+15]. aminopyridine [NFQ+11]. aminopyridine-containing [NFQ+11]. ammonia

[EO11, MNV+17, MFOH18, NZLG15, RRVJ10, VPOG19, ZMB+17]. amorphous [LRKM10, RKM12]. amphiphile [KKH+13]. amplification [MJM19]. amplifier [Val13]. amplitude [XXJ+16]. amplitudes [MPT11]. ammonium

[EO11, MNV+17, MFOH18, NZLG15, RRVJ10, VPOG19, ZMB+17]. amorphous [LRKM10, RKM12]. amphiphile [KKH+13]. amplification [MJM19]. amplifier [Val13]. amplitude [XXJ+16]. amplitudes [MPT11]. ammonium
azopyrroles [Jac12]. azosulpha [EAK+10b].

MSNP18, MG12, NDM+12, PCD14, PBR18, RZSZ18, RLER14, RVO+14, RLZ12, SKTI15, SXH18, SZZ+10, SLZ+11c, SLZ+11a, SLS+11, TCG17, TWR15, UGWL18, UV18b, VSS11, VRO+12, WSV10, YMI14, Zak13, ZF15.

SBD$^{+16}$, SCZH16, SC18, Tav12, TDOD17, TYL10, TXL10, TL15, UV18b, WWC17, WLL11, WLWT12, WWD$^{+15}$, WHM14, WWX$^{+11}$, XZYS10, XCL$^{+18}$, YM12, Yak11, YYW$^{+12}$, ZLWZ16, ZMB$^{+17}$, dCSDdMC13, dSdSPG11, dCDC$^{+11}$, dLRR11. Beyond [Chu12, DCD11, Dob14, EAA17, ZWE12, CTVA12, MA10, RB18, SK17a, Var14, VVN$^{+16}$]. BGlU1 [WHS$^{+13}$]. BH [Kim13, XZZ$^{+10}$, SLZ$^{+11a}$]. bi [MMR$^{+10}$, MHHP$^{+17}$]. bi-cations [MMR$^{+10}$]. biaryl [TPdMB12]. Bias [BVRM10, CCC19]. Bias-exchange [BVRM10]. BiBO [MLK17]. bicyclam [SK11]. bicyclic [DZ11b, JA12, MMM19]. bicyclo [Sat11b, WLS$^{+19}$]. bidipyrrins [JWG$^{+12}$]. biexciton [LEU$^{+11}$]. BiFeO [LBqD$^{+19}$]. bifunctional [XZ11]. bifurcated [dOdcCMudAR11]. bifurcation [MHO$^{+15}$, YW11b]. Big [CF11, MSAB19]. Biginelli [LCZL11]. bilayer [KMT$^{+12}$, SMK$^{+12}$, SIT$^{+12}$, YINM13]. bilayers [MP12, MCKD11]. bilinear [MPMCM$^{+11}$]. bimetallic [GB18, MHHP$^{+17}$]. Bimolecular [LQ13, DAA16, WLWL14]. binary [AD17, CLL$^{+11}$, GE12a, Kan18, LMC19, MS14b, RKCK19]. Binding [ESLM19, GB18, RWW$^{+19}$, ZFW$^{+13}$, ATS$^{+11}$, BLB$^{+18}$, BBM17, BJ17, CSSK$^{+12}$, DPK18, DTF$^{+11}$, DMG10, EKN10, FYhCi11, GM11, GGD12, KKM$^{+12}$, KB19, LCT14, LNI12, MS14a, MZB$^{+13}$, MPTR12, MS14c, OT14, PSK$^{+16}$, PP14, SH19, SAHAI12, Shi13, SKh18, SW12, SJW13, VBK18, WTH$^{+11}$, WDJ$^{+17}$, XZ11, dCSDdMC13]. Binuclear [RALK18, SS19a, WLS$^{+19}$, ZLY$^{+14}$]. bio [Swa13]. bioactivation [MMA13]. bioactive [MKHM11, dSSdSGA12]. bioactivity [MKHM11]. Biochemistry [AM13a, KRH13, KyH13a, KGK13, LSR$^{+13}$, OM13b, PSK$^{+13}$, PPK$^{+13}$, SKhN13, Shi13, TYN13, XTLA13, YYI$^{+13}$, YYI$^{+13}$]. biodiesel [MCRS16]. bioenergetics [Blo15]. biogenic [MBTVR12]. bioinformatics [RNP13]. bioorganic [BBA$^{+16}$]. biological
[Br11a, CWL$^{+13}$, CAPGA18, Ch12, LB14a, MG12, MMP11, XHZXX10]. biologically [ASHF13, KMG12, KSD10, VO11]. bioluminescence [CYLL11]. biomimetic [ADR$^{+18}$, WRW$^{+18}$, ZSH16]. biomolecular [Mit11b, SKV12]. biomolecules [BMTT11, Dm12, IKS08, IKS10]. biophysical [WSV10]. Biophysics [AM13a, KRH13, KyH13a, KGK13, LSR$^{+13}$, OM13b, PSK$^{+13}$, PPK$^{+13}$, SKhN13, Shi13, TYN13, XTLA13, YYI$^{+13}$, YYI$^{+13}$]. biorelated [LGZC15]. biorthogonal [BVP14]. bipartition [Du12]. Biphenyl
bisimide [JR19]. bismuth [MS14b, MHHPR+17, MLK17]. bisphenol [BLWJ17]. bismphenol-F [BLWJ17]. bisphenyls [SN11]. bisphospo [SLA12]. Bistability [SS19a]. bit [Ish14]. bithiazole [SAHA16]. bithiazoline [Qu13]. BiVO$_2$ [DWX+16]. Björn [Pyy11, SA11b, Sha11b, SL11]. block [GDM+10, JHL+18, KS19, MAA10]. block-copolymer [GDM+10]. blockade [ZX12]. blocks [LLZ+14, Sza13, XWP+18]. blue [Kry10, LXW+14, SLS+14, SHW+13, TU10, dOR10]. blue-emitting [SHW+13]. blue-green [SLS+14]. blue-shifted [Kry10]. blue-shifting [dOR10]. BN [LGHL11, BSS15, FKL+12, GLT13]. BnHn$_2$ [LCZ15]. BnHn$_2$- [LCZ15]. bodipy [TPT19]. body [ARG11, BSO16, DLP17, Fri12, GR11, Hog13, IM15, KRG+13, LV12, Lin14, Lya14, Per10a, RAN18, RAGM10, SK17b, SIB+13, SHKS15, Zak16]. body-fixed [IM15]. Bond [CP13, FC19, GRLA18, HS15, Mar11, MPMCM+11, RL12, SB10b, ZZZ12, ZFC12, dFR15a, AV19, AGB19, ABKJ18, AD17, AG19, ASK15, AMMB+18, BCP10, Bla15, Bou12b, BWB+18, CC11a, Che12, CYC+15, Coo12, CF17, DL17, EKN10, EMS16, FGD+19, FKC12, GIO12, GI11b, Gin10, GWME18, GPM+15, GZBH18, HNH+12, HHL12a, HHL14, HAX+18, JLG+12, JLE10, Kal18, KZA+17, Kan18, KK14a, KK11a, KM12c, KN15, Kuz19, LZZ+11, LW18, LW15, MNV+17, MTR+19, MGB18, MBSMCJ18, MBA+19, MML11b, ND11, Nal12, NH12, NRGS11, NRP+11, NRHJ11, OKR12, OK16, OHDA13, PGM12, PCK19, RJA+10, RI19, RB11b, RKCK19, SS10, SSK+12, SH18b, Sch10b, Sch13, SMEH16, SRA+11, SCL19, SBSD18, SC18, TL15, Tob19, TCA10, VVJ15, WCGD12, WTP+15, WLC+17, XHZXXZ10, XX12, XCD18, YY+13]. bonding [YL10, YS18, YZZ16, ZAE10, ZZX10, ZCC11, ZYL+14, dFR15b, dSNBG08, LCM+11]. Bond-dissociation [SB10b]. Bond-extended [MPMC+11]. bonded [CdLdSC18, CCP18, DLM12, DMBL16, DB15, GCD13, IKS08, IKS10, KS18, LJ+11, LJW+11, MT10, Mt11a, MS14c, OA13, RNE10, SGK12, SPIL14, ZLZ+14, ZFS+11, dSCC12]. Bonding [Con10, Mil12, TFM19, XWC12, ZPR10, ABM+19, AM10, AG19, BHA19, BMX+19, BG11b, Buc10, CLXZ12, CPF12, CG12, CCL+16, Cha10, CNG11, DMS+10, DB15, EPS+16, EAV16, Fin14b, FC19, GI14, GLXL18, Gin10, GORW19, GPM+15, HSYM11, HYD11, JN13, KK13, KdPNN16, Kry10, KM19, LFR+17, LFP+19, LW19, LW18, LD4V16, LYD+18, MCCGM+19, MS14a, MPD+15, MT10, MC12, MK11, NML15, NE11, Pan16, PK13b, RJY+10, RIV11, RCS10, SM19, SJZ+18, SYY16, SC18, UD10, WSM16, W11, XZYS10, YZW15b, YR+11, ZFC+17, dOdCMUdALR11, CFV18, GAK+19]. Bonding/ [CFV18]. bonding/antibonding [CCL+16]. bondons [PO15]. bonds [ABS13, AKHS13, AM18, ALHC18, BLR12, BL11, CG12, CDL+19, DR18, DLM12, DLLA10, ED16, EEMSS14, HB14, IROW10, JLZ+17, KKC14, KKG12, LLF+12, LG+12, LZD+11, LZZ+12, MK11, MK12, MAT19, MJ16b, MGB18, MB15, NBL12, NZ13, OS10b, PRFR17, RR10, Ril10, SSI+10, SSK+12, Sch13, SMP10, SIS+08, SPIL14, SS11, SM14a, SW12, SCZH16,
C [AM18, Ban12, BDF+18, BCP10, BGFD14, BBYZ18, yBZfC18, CJMC19, DQZF12, GWM11, GZW16, GB13, GCD13, JLL+18, JLG+12, Kal18, KN12, KN15, LKN13, LCS+11a, MLY+16, MGD11, NBL12, OGvSG18, PAKA15, PP14, SUL+11, USL+13, VF13a, VLK+11, WLZ+12a, WLZ+12b, WZW17, WSL+11, YK11, YZL+10, YLZ+17, YL11, ZQIW13, ZHL+19, ZW15, ZLWZ16, ZCTG18, TSKN12, YB11, BHA19, yBZfC18, CCEGK12, CWL+13, CRSB12, CTDOLA10, DFK16, DSFT17, EML+11, FBRBR12, FBO+11, GB13, HV11, HLH19, HHL+12b, IMS+13, JB18, JCCZ12, KWC10, KZA+17, Kan11, KK11b, KK12a, Ki12, LCI+10a, MBH+19, MPTZ13, SBB16, VPT10, YIY+13].

Cabalol [dGR14]. CACA [Ser11a]. cacao [dAGNJT12]. CaCuO [Fuk12]. caffeine [LCG12, PRG+10, ST15, PRG+10]. cage [yBZfC18, CS13, DI18, GAPK+19b, JL12a, SL10, WLZ+12a, KK12a]. cage-like [JL12a]. caged [PAKA15]. cages [NW12, XYL+18]. calcite [SC1]. calcium [Ish14, RCGLV+14]. calcium-doped [RCGLV+14]. calculate [ZLE17]. Calculated [SP0+11, Dw13, FKL+12, MFK+12, VMC11, WWC17]. Calculating [FYHC11, KC11, WB17, ARH+13, CML+16, MGK+11, SA11a]. Calculation [FZC14, KKS+11, MHO+15, Rit12a, SHS+13, VLF12, VO11, YS012, AM12, BVCAP12, BBYZ18, Boe12, CP10, DK13, FLCHL10, FBM+10, FSB16, GWZ+14a, GCDNGS12, HMI+15, Han19, IK18, KMK+16, KHH10, Kri13, ILBqD+19, LIK15, LSKM19, MGK+12, Mam13, MA12, Mit11c, dMOB12, PS10a, Per10b, PCR+11, Rit12b, SBM16, SMGF19, ST15, SRS1Z6, TTT13, VF13a, WZHZ13, XCD18, YK13, YM14, YHI4b, YLYC18].

calculational [SC12a]. Calculations [KH10, KV11, LK13, SR19, TWHZ14, dHLdS12, AV19, AK17, AFA13, ADB10, ACMRN10, AGG+18, BCK19, Bas11, BB10, Bou12b, BJJ12, Buc11b, Bud12, COCF+14, CK17, CSTA16, CFC11, Dau16, DSL15, DAE+12, DWX+16, DZO12c, DZO12a, DFF+13, ESS13, Eng16, FSK+11, GAPK+19b, GVPCK10, GSaY11, GZF13, Gr13, GJ18, GE12b, HK11, HHCA10, HH18, HS11b, HL19, HNSB18, HZS14, IKC18, JH13, KAR12a, KK14a, KG17, KRK+17, KPCV18, KSS12, KU13, KJ15, KJ16a, Km13, KYH+13b, KP+11, KKG12, LR+11, LRR19a, Leh19a, Leh19b, Leh19c, LCI+10a, LC16, LY+19, LCK+16, LLZ+12, LNI12, MCCGM+19, MJ16a, MVC13, Mit11b, Mit11a, MFLP12, MSY+12, MPT11, MPTZ13, MJM19, NS19, NKW19, NMSR14, NZLG15, yOITn15, OKK10, OCGM+19, OPP+14, OH19, OSJ+12, Pan19, PP19a, PK16, PBR18, PB10, RS12a]. calculations
CASPT2 [BDFM10, BDR12, ČFČ11, GLOGM+11, KZZ13a, LCL+11, LGP+12, MR11, Pul11, RS12b, SKTI15, SZZ+12].
CASPT2//CASSCF [GLOGM+11]. CASSCF [BDFM10, DAR+11, GLOGM+11, Lar11, Ols11a, PE11, RS12b, RSN12, SZZ+12, SBL11].
CASSCF/CASPT2 [SZZ+12, BDFM10]. CASSCF/MRCI [DAR+11].

Catacondensed [RB08, RB11a]. catalysed [SMRK18, ZYSW17]. catalysis [BvWG14, KJ14, MMM+12, MCRS16, PIS18, SLS+15, XDM+10].
catalyst [ENV15, Esr18, EM19, GB18, Hog13, JXX+15, LCM+11, TM19, Var14, ZQW+17, ZBG+19]. catalysts [BAB+18, TFZ+15, WR14a].
Catalytic [BD14, PM17, SS18b, AGOP18, BGFD14, CLY12, DMBJ15, ED16, GGZZ16, GSB10, HSN+11, HSYM11, LPOP12, MLW+14, MMP+18b, NEEV15, TK16a, TTD13].
catalyze [XGH18a]. catalyzed [AKC10, AZD+11, CAPGAIG18, CWZ+10, Che12, GCZ+14, HZZ+19, JL12b, JSLH14, KUTS10, LGM+18, LZZ12, LQ13, LYR+17, LLF17, LD17, LTL18, LFTL18, LMCZ11, LCZL11, LW13, LW15, LKZ+16, MPGGS19, MCC13b, PRFR17, SH18b, SHL+13, SR11a, SLS+15, TTD13, TFA10, WML10, WWLZ17, WZZL10, WRW+18, XZG+18, YS18, ZCZ+12, ZSHL14, ZQW+17, ZSS+13, ZLY+14, ZPW16].
catechin [MBTV12]. catecholamines [MBTV12].
cathode [KLK13, Kim18].
Cation [ZLWZ16, ATS+11, Ber13a, BMX+19, DWJZ11, DAE+12, HV11, LCL+10a, LLC+11, MMMM12, MS14c, ONBP11, OCGM+19, PDR+14, PsS10, SPSA11, SZZ+12, XZL+12, YM12, ZFC12].
cation-exchange [SLS+11].
cation-exchanged [PvS10].
cationic [BCGC12, FTB11, ZQJW13]. cations [BMF13, ESLM19, GK12, HFA+19, IGMK11, LGP+11, LPG+12, MMR+10, MKM11, NKWT19, PDR+14, SHE10, WLWT12, YLW+13, ZLWZ16].
caused [HYH+10]. causes [ABP13, MFM18]. causing [MFR10].
CCSD [CK13, VV13, BL12, CPF+11, DVP18, JdOS16, SLS+11, TD19, VV12].
CD [SZY17, ASHF13, XZZ+10, XWC11a, LKLW11, XWC11a].
cefotaxime [LB11].
Cell [KMT+12, CBW+13, JK12, LGS+16, MANP17, QJ13, SSS15, TGRP19, WLL+13, WWB+14]. Cell-penetrating [KMT+12].
cells [AGJ12, BDG17, FFPD16, FM16, cLqFtW+14, LYS+19, MY17, PMAP12, SG19, TZ11, ZAP11, Zha17].
cellular [Kuv10]. cellulose [FNBK17].
center [Buc10, Buc11a, CRASD12, CN12, Hog10, HZS14, Koc13a, MSNP18, Tal11, Yam10, YD17]. centered [GAPK+19a, KFS13, Zak13]. centers [ASD14, YGLL10]. centrifugal [CLXD15, IIH16, ZLJ11].
centrosymmetric [KPT+17].
century [Pup11b]. CeO [QCB+10]. ceria [KJ14].
ceric [BSPK11]. cerrado [CCA+12]. cesium [MMR+10].
CF [AYL14, Mor11, Mor11]. CFCI [DoCMuDLR11]. CFP [KyH13a]. CGR
[HXDY16]. **CH** [ACMRN10, CdAFS⁺12, CRSB12, DQZF12, LJL⁺11, LXLL11, Men10, NBL12, dMOB12, TSL11, XWCY11, BMR⁺13, BHV⁺11, BZZ15, BXZ⁺19, DS12, DZ1a, FRNM12, GZMC11, HHL⁺12b, KAR12a, Les12, LP10b, LKLW11, MEEA₊13, dMOB12, Puz10, SK14, SD12, SZZ⁺12, STL12, SLZH12, TSL11, VLK⁺11, WZHZ13]. **CH/CHBr** [BMR⁺13]. chain [Cal10, DSCO⁺13, DW12, EPS⁺16, IKS08, IKS10, Lak10, LGL⁺19, PP19b, WW11].

chains [BEM11, CEM14, CEV10, CFGC11, DSFT17, MAT19, NRI15, PL18a, TIKL13, WZ10b, Yak10, ZY13].

chalcogen [BHA19, EMSB15, EMS16, MZLM17, Sch13, ZFS⁺11]. Chalcogen-bonded [EMS16].

chalcogen-chalcogen [EMS16]. chalcone [EM17]. chalcones [XLZ⁺19].

chameleonic [SSK⁺12]. change [DSWL11, KCK14, MSK⁺12]. changes [FBD⁺13, GMP⁺11, YSG10].

changing [DLG12]. channel [AGRI⁺12, LZFZ13]. channel-charybdotoxin [AGRI⁺12].

channels [Les12, RBGGM18, STL12]. chaos [KC18].

chaos-driven [KC18]. chaotic [Gan14, YW16]. character [CCL⁺16, CFV18, CJMC19, CAO18, MOG18].

characteristic [KK12a, MKHM11, OCL⁺18]. characteristics [BF11, BSO11, EBH11, Nic11, Ril10, SM17, SMGZ13, YZW15b, ZLS⁺18].

Characterization [EA12, JLL11, AT18, DAA16, Den13, JLL⁺18, LMC19, MC11a, NC11, PWP⁺18, SBAT16, TTM16, ZWZK19]. characterize [GfWlZ11]. characterizing [MAW⁺18]. characters [CC11a, MMF⁺13, XWC11a, YMY⁺13]. Charge [CS17, DPRK12, EPS⁺16, GI11a, GWME18, GHS12, JdL08, KT12b, MOG18, SSKS12, SM14a, TMM⁺14, Zen11, AS19, BHV⁺11, CLMY12, DTFK15, DS11, ELC08, FSBA12, Gao12, GNM⁺12, Gin10, GGD12, GHCMMQ17, JR19, KUS19, KBMM10, LYS⁺19, LXY⁺12, MGK⁺12, MSG16, MANP17, MPL⁺11, NDH10, NMV⁺14, OK19, PK13a, PSC15, PETB18, QJ13, RS12a, SSIK11, Sch15, SRA⁺11, TCG13, TCS10, WDJ⁺17, WDS19, ZY13, ZB18, ZWS11].

charge-transport [ZB18]. Charged [TGRP19, BGM15, BMF13, CAZ⁺11, DCBB11, EPS⁺16, HITU16, KWWH18, LZX12, MMBK12, RTG⁺19, SS10].

Charged-cell [TGRP19]. charges [CG12, CB10, GSR12, GFRdG11, KKS⁺11, Sch15, TMC18, TC12, ZZZ⁺18].

CHARMM [HSS⁺11, PSPS11]. CHARYMM [HSS⁺11, PSPS11].

chelated [ZPW16]. chelates [NZAVR10]. chelating [NFD⁺10, NFO⁺11].

chelation [Ball16]. chelator [DP16]. chelators [MPTR12]. chelotropic [CJGTL12].

Chem [BR16, COP16, HS15, Man16, dFR15a]. Chemical [AGNS14, Brä14, DVC14, Joh17, KKH⁺13, LLM13, MNE⁺13, NYA⁺13, NDLC19, PM16, SC10b, TIN13, TM13, TCCI10, Tsu15, Zil14, ABS13,
ASMP15, AD17, AMMB+18, BF11, Bal16, BL10, BL11, BG11b, Brä13, BVRM10, CJBMMAPR19, CKL16, CLXD15, CFGC11, CPAT11, DKZ+10, DPK18, DSL15, DPRK12, DK16, DMS+10, DLM+11, DMBL16, DSFT17, EAK+10b, EML+11, EMED+12, EMEPD15, FBO+11, FBD+13, Gag11, GP13a, GRCGRRHT19, GFPAV19, GA19, GI11a, GhZA10, Gru17, HMA+19, Hop15, HAX+18, JN13, KWC10, KBGC12, KMK+16, KM12c, KUTS10, KK11d, LZZ12, LYR+17, MC11a, MPE15, MTR+19, MC14, MG12, MQA17, MKM11, MBBT+12, MML11b, MGP16, NC11, Na12, NZ13, Ném14, NVPcJ+13, NRP+11, OS10b, OWD18, OSJ+12, ØEDB11, PWY+18, PO15, Qu13, RLW+13, RGTS11, RNE10].

chemical [RMP+14, RR19, RBTL19, SSI+10, SSK+12, SBEH11, SKHN13, SC12a, SW10, SN15, SM19, SC10a, She14, Shi13, SIS+08, SKM11, SR13, Sko16, SFY12, SBKJ18, SRA+11, SK10, SSB+12b, TFBG14, TYN3, Tap15, TMC18, TKS1K7, UTTn13, UJSJ13, VOK+18, VO11, VO12, WYM15, WLD+10, WL WL14, YNL18, YSS+10, YYY+13, YB11, ZBK15, ZZC12, dHldS12, vL13, vLRRK15].

Chemiluminescence [dSM19a].
Chemisorption [OD16].
Chemometrics [LSR+10a, LSR+11].
Chemosensor [LWZ+14].
CHEMIST [STL12].
Chiral [YWR+18, BdtG11, CPL15, KGVG11, LPM+11, LMCZ11, LW13, QCW+12, SFW12, WTZ+11, YYW+12, ZSS+13].
Chirality [Luz11b, SD13a].
Chiroptical [Cap16].
Chirp [GRLA18].
CHITEL [RA10b].
Chloramine [SZL+15].
Chloride [EHKD11, EKD12, MMM+12, SK11, dOLdW13].
Chlorides [BLM+12, HSN+11].
Chlorinated [FBO+11, KZA+17].
Chlorine [DWGX12, cLqFtW+14, MOY13, XXbX+13].
Chlorins [CJSNLM11].
Chloro [DDCY12, DPRK12, PSK19].
Chloroalkenes [MLB+12].
Chloroalnine [HLZ+14].
Chlorobenzaldehyde [SRA+11].
Chlorobenzene [SGL19, SC18].
Chlorobenzofuran [ASMP15].
Chloroethyl [CZJZ12].
Chloroethylnitrosoureas [ZMZ13].
Chlorophenol [ASW13].
Chlorophenyl [OEDB11].
Chlorourine [KdPNN16].
Chlorotrifluoroethylene [OCB+10].
CHN [RB11b].
CHNC [DW12].
CHO [DZI1a, Sch10b].
Choice [AGPDZ13, FSB16].
Cholesky [BVA+14, CPF+11].
Choosing [KBJ17].
Chou [QZH13].
Chromogens [JA12].
Chromophore [BF11, BSM+15, GLOGM+11, LORR+12, TCM+12].
TW10, TFMC19, TPCJ+12, UKF+11, VSMK13, WJL+11, WCS+13.
custers [WJL+10, XGH1a, XWC11a, XWC11b, XF19, YSK+12, YGLL10,
YZW15b, YJ17, YZ12, YC13, ZWSF16, ZRR+11, ZCW16, ZCP11].
custers-continuum [DQZF12]. CN
[EMSB15, LZZ+11, Oui12, ZLWZ16, CP10]. CNaY [LZZ+11]. CNC [Zha10].
CNH [Tap15]. CO
[BGFD14, BAA+18, BDR12, DPDR11, DWPK14, GGJD13, WZC+12,
WRW+18, Kim19, VDG13, YL11, BD14, BGFD14, BLdV19, CRSB12,
CCS13, Esr18, EM19, FTB11, GSB10, HDC+11, LCT14, LZW+18, MPM15,
MMP+18b, RDB18, RDB19, RBT19, SCLCPB12, SAHA12, SLS13, Str18,
Str19, SCTW10, WLG+11, WZC+12, ZCW16, AAA12, CRB+12, GZMC11,
Kim18, MRT11, NKWT19, ZYSW17, WRW+18], Co- [GZMC11]. Co-based [Kim18]. CO-photolysis [BGFD14]. CO/ [WRW+18]. Co/Ni [AA12].
CoA [LZZ12, MLW+14, MFR10]. coadsorptions [SR19]. cobaloxime
[YL2b]. cobaloxime-catalyzed [YL2b]. cobalt [YL2b, SS19a]. COCH
[Men10]. COCl [SKS11]. cocrystal [DGR+16, LZZ+13]. cocrystallization
[KAOB11]. code [FMPM+14, GCK+17, MML+16, dMOB12]. Coding
[FAK19, CLC10, CLL+11]. codoping [YHL+13]. coefficients
[AFM+10, FLCHL10, FBH+10, KH12]. coenzyme [SL+10]. cofactor
[LZZ12]. cofactor-independent [LZZ12]. cofactors [KGK13]. cognition
[Val13]. coherence [She14, SMHT13, ZBK15]. Coherent
[Coo12, Mar13, SMMT13]. coinage [DMBJ15]. cold [JS13]. collagen
[EPS+16, PWH+12, SGG+10]. colleague [Sau11, SL11]. collected [RA10b].
Collective [MLP10, BM10]. collinear [SABA+12]. Collins [Sit15].
collision [LWWZ13, LPM+11, MGK+11, SABA+12]. collisions
[BMTT11, BHV+11, DSC+11, dDGNB10, LdAA+11]. comb [MPC10].
Combination [KYH+13b, SN15, Buc10, CK13, DQZF12, SZS+10, SLZ+11c,
SLS+11, VV12, VV13]. combinations [Boe12]. combine [Lin14].
Combined
[IK18, SJJZL12, TAY11, KP11, MLP10, NZ13, Tan13, ZLWY13, BBB+12b].
combines [WZX15b]. Combining [PC16]. combustion [MPGS19].
CoMFA [MGK+12]. Comment [BR16, CK13, Cin20, COP16, FKBG19,
Fer19, HS15, KBG17, Ld14, Lan13a, Man16, MBSAG16b, MMB20, PS14,
Tou13, VUC13, dSSF16a, dFR15a, HYZS19, PS13b, VV13, XTAL14].
commentary [Ols11a]. comments [Brä11b]. commercial [FT15].
Common [VSL+15, ESLM19, LCH14]. compact [LQZZ12, LLZa14].
compactification [DTF+11]. Comparative [BLRdA+10, BO11, CLH14,
DTEMK11, FDG18, LJJ+11, LL19, LL17, MMF+13, NS10a, PI13, SD16a,
DAGNJT12, CCBR+12, FFF10, HNH+12, KMI2a, KKM+12, LCCH10,
LZZ10, ONBP11, PRPU+13, RS11b, YM13, ZLZ+14, ZLY+14, dSdPG11].
comparing [HXDY16]. Comparison [AM13a, BPT12, CDSK12, Han19,
JdOS16, MR11, RALK18, SSP+17b, SMHT13, UV18b, YF16, ZHL+19,
ABL11, BLL+13, BGKK16, CCCI9, GP13a, HDQ+13, Kan11, KC16,
LdBF+12, LZFZ13, OKR12, dSMRPSF18, SD13a, Sch13, SG19, SBKJ18,
VOK+18, FMCA11, FC19, RCM+19, SCZH16, ZZL+11. Comparisons [CA17, PGG12]. compass [ZBK15]. compatibility [Fin17]. compensating [FUE+12]. compensatory [Chu12]. Competition [GE12a, SM17, TL15, GHS12, LFP+19, NRGS11, YZZ16]. Competitive [LLG+12, AMMB+18, SBKJ18]. compilation [TB15]. complementary [Yak11]. complemented [WJY15]. complete [CHH+19, CC19, GS10, LV12, SGB11, SXH18]. Complex [GLT13, IA13, JH13, KBF+13, ONK+13, BS16, Bou12b, Cho16, DSD18, DI15, DZO12b, FDN10, GRLA18, GR10, IKC18, JLG+12, JR19, KRG+13, LZ12, LV16, LLG+12, LSR+13, LbdV16, LDADB+15, LKZ+16, MNC12, MIN13, MMT+13, MSBF18, NS10a, NTGC19, NBI+10, NMP14, OAA19, PEA+12, PWY+18, Puz17, Qu13, RW11, SS19a, SY10, Sat11b, Sic16, SLS+15, VDG13, VPOG19, WRW+18, XZ11, XCD18, XCL+18, YSS+10, YY1+13, YSK+12, YS13, YW16, ZSASS13, ZSHL16, dCSDdMC13, dOdCMUdALR11]. Complex-scaling [JH13]. complex-valued [YW16]. complexant [XWCY11]. Complexation [ESLM19, SHE10, ZKKR11, ZAE10]. Complexes [ALMY18, GHGF12, AC19, ADR+18, AM18, BHMN19, BPG+10, BAP12, BHA19, BBZ13, BLdV19, BPK19, BCS+12, BB16, BSV12, CRB+12, CPF12, CTW12, Con10, CLMY12, CADS18, DSD18, Den19, DPPR11, DG19, DCG10, DDG+11, ED16, ESS13, EMSB15, EMS16, FBRBR12, For12, FBD+13, HSI11b, HL19, HYD11, HZZW11, JW19, KRR+17, KV11, Kry12c, KBMM10, LJL+11, LYW11, LXW+14, LRY+17, LYL+12, LXD13, Lt10, MZB+13, MCE11, MNV+17, MC17, MKG19, MC12, Men10, MG12, MKM11, MS14c, MP+10, OAC17, OPP+14, OVT+16, Owei17, PCM12, PRG+10, PAKA15, RFEGPP+16, RB11b, SS10, SVRGV12, SG19, SGKG12, SRAS16, SAHA12, SLS+14, SK11, SSP+17b, SPL14, SHW+13, SM17, SK12b, SS13, TTD13, TMM+14, TL15, UDVD10, VO12, WLS+19, WXZ+11, WZW17, WHM14, Wu11]. complexes [YZL+10, YZL+11, YZW+15a, YWH+12c, YZZ16, ZPR10, ZQCJ10, ZLLS10, ZQJW13, ZLZ+14, ZZC15, ZHL+19, ZSQ+10, ZFS+11, ZLW16, ZSZ14, ZQP17, ZBB17]. Complexity [GN19, EMED+12, LRMAA19, SMOD11]. compliance [NH18]. component [AB18, CW16, FZC14, KKT13, KKT14, MHT+08, MM19, SN15]. components [LVP12a, NIK19, Na12, RLZ12]. composed [TK16a]. Composite [KO10, ZJS13, CC19, Mor12]. Composite-system [KO10]. composites [KT12b]. composition [GLH+12, GbZ10, IBA+11, Ld14, LKN13, QZH13, XTLA13, XTLA14]. composition-dependent [LKN13]. Compound [ZST+10, KWC10, LLLB13, MQA17, PGG12, RCM+19, SKS10, SSW16, TYL10, TXL10, WR14b, VIL13]. compounds [AMK10, ASD18, BG13, BH10a, Buc11b, CCA+12, CHV14, FC19, GZMC11, HZG12, KM12b, LOHB13, LV19, LTdS+10, LTL18, LWJL10, MLA+11, MPMCM+11, MW16, Mor12, MSR+11, OPAV18, OG19, Pan19, PP19a, PI13, PI12, Pie11, PP19b, RDM+11, RRK16, RR19, SMC18, SLC+18, Shi13, TSvL+16, TWR15,
VPGC12, WCY+10, WWQG17, WLL19, YLWrL12, ZFC+17].

Comprehensive [LKN13, RYM12, WJY15, BTH18, FKC12, KI15, SL10].

configuration-interaction [JH15].
configurations [Buc12b, FM16, RSN12].
confined [CKB18, CB19, FABR12, GT13, JZZH17, KSC15, MNS11, MR18a, MR18b, OPC17, PJ19, RBVAG18, SA18, SL13]. Confineent [Bay19, GBS17, HS15, dFR15a, BPSM12, CDS18, COP16, GZF13, GKGM18, MAPS18, Roy15, Roy16, TFSRM11, dSSF16b, dSSF16a, dFR15b, dSMT18].
conflicting [Yam10].
conflicts [She14].
confluent [PMGMGR12].
conformation [Ire12, PK13a].
Conformational [BLWJ17, BCF11, BSV12, EAH13, JN13, JB18, NRS11, OSJ12, YSG10, AB16b, AM13a, BTH18, CCC19, DSWL11, DFV12, GJ18, HHYC18, KM12b, LBM11, MMW19, MUPC10, NJA12, OM–D13a, Pie12, SAS12, WZX11, RCM10].
conformationally [UJSJ13].
conformations [BMR13, CLMY12, MKSG13, NRI15, ZFW13].
conformer [KKH18].
conformers [OPP14, RJY10, WZX11].
confused [HM10a].
Congested [Dil13].
Congress [NYA13, RA10b].
Conical [MSH13, BMX19, GSaY11, HV11].
Conjecture [Koc13b, Sit15].
conjugate [JSLH14, LCM11].
conjugated [ALRAE11, DI18, FZH18, GNM12, MSG16, MMA10, RNV12, TKS11, Wan11].
conjunction [KDOR17].
connected [TKS11].
connecting [Pat15].
connection [CH17, KUY16, MBA19, PL11].
connected [SUT12].
continuous [Ale13, Ban12, Mor13].
Continuum [AF19b, JCC10, Cam10, Cam12, Cap16, Car19, COCF14, CML16, DZO12c, DQZF12, FRGC10, GMA19, Kit15, Li15, LSKM19, PCR11, RTG19, RFEGPP16, SL10, SLS19, WML11].
consideration [Fuk12, HYZ13].
considerations [GAPK19a, NGS11, PMC11].
considering [Sut12].
consistent [Fin15, GRD11, ISN13, Mor12, SY10, SZS10, SLZ11c, SLZ11a, SHMR11, WDJ17].
consisting [KKH13].
constant [Buc12a, DNCKCS12, MVC13, Nag17, NZLG15, Shi18, WFS13].
constants [ATL14, BCHN16, BJ12, CAAI12, CCP18, CFCG11, CSP10, CTD12, CGIA12, CJOOW11, Cyh11, DCOC19, KP10, Kin13, LJSS12, MPTZ13, NH18, NB17, dMOB12, Per10b, RRRK16, SGB11, SYL18, SLZ11b, SX812, SLS12, SS12, SM10b, SWS12, UV18b, VLFG12, VO11, WZHZ13, Wit18].
constituent [MKHM11].
constrained [Lev10, SSB12a, WCM14].
constrained-search [Lev10].
constrain [PSMD16].
constraints [CM16, Fin17, MB12, Oht13].
Constructing [Beh15, KFY12].
construction [Pop15, SX15, WR14a, MBP11, RVO14].
Contact [LJK18, DK13, ZYS10].
contacts [EAA17, GI14].
containing [Con10, DLLA10, FBU11, HZG12, LWJL10, MPD15, MB15, NCMC18, NFD10, NFQ11, RRRK16, RR19, SDM12, SCTW10, YGLL10, YZZ16].
contamination [Bla15, GXZ14].
content [ALRA10, Sha11a, TRZ19].
context [BBM17].
continuation [RW11].
continuous [Ale13, Ban12, Mor13].
Continuum [AF19b, JCC10, Cam10, Cam12, Cap16, Cap19, COCF14, CML16, DZO12c, DQZF12, FRGC10, GMA19, Kit15, Li15, LSKM19, PCR11, RTG19, RFEGPP16, SL10, SLS19, WML11].
corrosion-inhibition

Coulomb

Coulombic-like

coumarins

Covariant

coumarins

Counter-ion

Coulombic

coupling

Cover

Coupled-cluster

Coupled

couplings
[LQZZ12, MPT11, MPTZ13, LLZaH14]. curved [DI18]. curves
[DHZS11, GM11, PPDF11, SAS+12, Vik11b]. cusp [RLER14]. CuT1
[VLG12]. cutoff [KdSM+10]. cutting [LCK+16]. CX [LGW11]. cyanates
[LGOS17]. cyanide [CMCN11, DR18, GZW16, WWLZ17, ZW15]. cyanins
[ESLM19]. cyano [KPL+17, RS11b]. Cyanoacetaldehyde [KS19].
cyanobenzenes [EMK14]. cyanogen [BMBD10]. cyanospherands [ELC08].
cyanuric [EMK14]. cyanogen [BMBD10]. cyanospherands [ELC08].
cyanobenzenes [EMK14]. cyanogen [BMBD10]. cyanospherands
[ELC08]. cyanuric [EMK14]. cyanogen [BMBD10]. cyanospherands
[ELC08].
37

FSB16, GFP19, GCK + 17, GM11, GJ18, GHCMCMQ17, GWME18, GD11, GCZ + 14, HMA + 19, HR19, HHC10, HZ + 19, HMM + 10a, HMM + 10b, HKIH13, HZZ11, IN15, JR12, JPP + 11, Jan13, JW18, Jeo18, JW19, Jou13, KK13, KME + 18, KPC18, KJ16a, KJ16b, KKL + 16, Kit15, KYLC19, KOR17, KJ14, Kri13, KFS13, KG08, KZ + 13, KFJ + 18, Kuz19, Lat13, LPO + 12, LSR10b, Leh19a, Leh19b, LW11, LC16, LSP + 16, LLW + 11, LCK + 16, LZN16, LN12, MYZ + 10, MLW + 14, MJ16a, MFK + 12, Mas10, MKSG13, ML17, MJ11, MBB + 12, MBSM18, MNS11, MKW11, MJ19, Nag15, NH17, NAK + 17, NDP10, NL11, NM14, NMS14, NIT16, OD16, POLV12, PI13, PK13a, PABSK16, PP16, PTH11, PL11, PCV19, PR10b, PNS16, PFR17, PFD13, Per18, PJP10. density

[PMAP12, PI16, PC13, QHS11, RLER13a, RCM + 19, RPVM10, RGT11, RMB18, RBV18, Rud12, RSCS10, RLZ12, RS13, RKCK19, S10, SLG11, SB18, SFC16, SLC + 18, SN12, SAHG11, S1L + 18, S1S + 08, SD12, SSP + 17b, Sri19, SRA + 11, SK12b, SX15, Tan13, TA10, TCA10, TRP19, TLC + 17, TRZ + 19, UV18a, VPGC12, Vik13, VBO + 15, VSL + 15, WKE17, WW11, WJY15, WDJ + 17, WTZ + 11, WR15, XNL + 14, XSL12, XxBhD19, XG1h + 18b, YHL + 19, YHH12a, YWH12b, YR + 11, Yu13, YF16, ZT13, ZK11, ZQ11, ZL11, ZS13, ZG + 16, ZS14, ZK17, Z118, Zho18, dCGMV12, CTO10, LLZ + 12, Ven12]. density-based [ZK17]. density-dependent [IN15]. Density-functional [FZX18, BDF + 16, BDF + 18, BLKB11, CF14, DW12, JR12, LN12, MYZ + 10, WR15]. Density-functional-theory [SVRG12]. Density-matrix [EM16, Kit14, Kit15].

deoxygenated [TYN13]. deoxyguanosine [SKM11].
deoxyribonucleoside [MB14]. Dependence

[AG10a, BL17, Buc12a, BN11, BS12, CAA12, GL12, KP11, KSG + 12, KKH + 13, LZF13, Mar11, M113, MKSG13, PM11, Ru12, WR15].
dependent [ASD18, Bae16, Bae14, BDF + 16, BDF + 18, CP10, CEF14, CW11, CW13b, DCZ17, DM16, FMD + 10, GFP19, GSR12, HS14, HHC10, HKZ15, IN15, IL10, IG11, JPP + 11, LKN13, LV9, LBqD + 19, LMZ15, Luz13, MJ19, NMS + 10, NS17, NNS17, NDP10, Oht13, PVS11, PV12, PSC15, PJP10, PMA12, PI16, SFC16, SLC + 18, SS13, SL13, Sko16, SW + 13, Vik11a, Vik11b, WKE17, WY17, YLC18, ZQ11, ZG + 17, ZLE17, ZS14, ZS18, Zho18]. dephasing [Gan14].

Depicting [LB16]. depolarization [AEM + 12]. deposited [SAHG11, SAHA12]. deposition [TFBG14]. deprotonation [CF10, Kry12b, PGSM18, Shi18, WX + 11]. depth [LYS + 19].

Depurated [Cin20, MMM16, MMM20]. derivation [BR10, BR16, Bra10].

Derivative

[HSN18, BSS19, DW14, KG11, LWZ + 14, TPT19, WLZ + 12b]. derivatives [ALMY18, BSS15, CWL + 13, CCL + 16, CFV18, CWB + 13, CS14, DKZ + 10, DWZ15, DCK + 12, EI11, FSQ + 11, GTR11, GB13, HNH + 12, HMA + 19, HS1b, HLB9, ILBS10, JLZ + 17, JB11, JFD10, KZ + 17, KK + 12, KSN + 10, KCG12, LGM + 18, LWL + 12, LYS + 19, LW19,
LCCH10, LWH+12, LCH+11, LCS+11b, LW15, MLY+16, MNV+17, MLPT10, MDNDO+16, MBBT+12, NRHJ11, OAA19, PPK+13, QHS11, RYM12, RBZ15, RMP+14, SF13, SST011, SRMB15, TZ11, TKS17, Val17, VV18, VMC11, VHTEG15, VBO+15, WGLX10, WLL+13, WJ11, YWR+18, ZASP11, ZZX10, ZZR+12, ZYL+13, ZMB+17, ZFC12. derived [CADSG18, MAN15, NH18, PAKA15]. describe [CB10, MMG15, PABSK16, Sza13]. describing [Gar08, JCC10, dGR14]. description [AB18, DVDBM11, DCFD10, DMBL16, Fer19, FGD+19, GC19, HFdGC14, KO14, LORR+12, MPMMC+11, MBA+19, Nas19, NGSI11, SIM14, SFL+10, TCA10, TRZ+19, ZZ18]. descriptions [PC16, PCK19]. descriptor [AKR12, FDG18, PUGSFM18]. descriptors [GI10, GI11b, GI11c, GI11e, JS18, LV19, LNV+18, Nag16b, Nal15, OPAVM18, PH12, Pog12, TFA10].

Development [KSN+10, Lin14, NSN17, NNSN17, SR11b, SKV12, SZ15, GEL18, Kap12, KKL+16]. developments [AMMC19, HJK14, Jør18, Mur12]. device [yBZfC18]. devices [Jan10]. dfppy [ZQJW13]. DFT [YSK+12, AEKGZ12, AFC+10, ACF+11, BVCAP12, BPVD11, BP13, Bas11, BZBZ13, BLRda+10, BAA+18, BS14, BDR12, BAB+18, BJ12, BO11, BW13a, BW13b, BS12, BSPK11, CRB+12, CR18, CPF12, ÇAS13, CRSB12, CW16, CCL+10, CKY18, CKB18, CFGC11, DSCO+13, DSD18, DCD10, DCFD10, Dw13, DAE+12, DPR11, DP16, DdG+11, DB15, DFF+13, EG10, ESD16, ESS13, EFO11, EO11, ES17, EM19, ESBVY12, FSQ+11, FY11, FRNM12, FPRGMBHGB12, GAPK+19b, GC18, GJ18, HS11b, HFdGC14, HNBS18, HhGqZZ17, JPPA10, Jan10, JL12b, JB11, JLL1, KMS+11, KP10, KP11, Kar12b, KBF+13, KAG08, KMM+18, KG17, KI15, KKG12, KBMM10, LJ13, LGM+18, Les12, Lev16, LYW11, LLP+13, LLF17, LWZ+18, LTL18, LW+19, LGW11, DVMC19, LKZ+16, LGS+16, MXY18, MCP10, Mar12, MCC12, MGH19, Mas10, MMP+18b]. DFT [MMJ+19, MFZ+18, MCL11, MS17, MML+11a, MMM+12, MAN15, Nag16a, NEE15, OKK10, OGvS18, OCB+10, OCGM+19, OPP+14, OVT+16, PS10a, PTS+11, PK13a, PWL+10,
DFT-based [BP13, Dw13, MCP10]. DFT-D [BAB18], DFT-D3 [SSB19].
DFT/M08 [Vie17]. DFT/M08-HX [Vie17].
DFT/TDDFT [BAA18, YZW15a, ZSAP11]. DFT/UFF [JLL11].
DFTB3 [PSC15]. dG [XLGA12]. di-anionic [DHYC19]. di-enol [Val17].
di-lanthanide [OAC17]. Diabatic [CHM17, ART08, DMAB12, DM12, KUY16, MHOG18, MKD19, SHS13].
diacetyl [TM13]. diagonalization [GBK18, Man16, MBSAG16a, MBSAG16b].
diagonalizations [CKY18].
diagrams [FMKJ14, Jen13].
diaza [ZLS18]. diaza-benzo [ZLS18].
diazaadamantane [KMK16, KMM18].
diazadiborinine [GC18].
diazine [BHA19, CW16]. diazo [LTL18, LDW11].
diazonium [Bon17].
diazotization [LLW11].
dibenzoanthracene [VPG12].
dibenzthiophene-like [VPG12].
diborane [ZYL14].
diborane··· [SSB19].
dicarbon [FC19].
dications [Buc12b, GNM12].
dichalcogen [KM19].
dichloro [LC51a].
dichloro-germylene [LC51a].
dichloroketene [CHH19].
dichloromethylbenzimidazole [PMC11].
dichloropropene [ASMP15].
dichlorosilylene [LLLB13].
dichoatomi [TFZ15].
dicopper [RH10b, RNDA10].
dicyclobutadieno [LWY19].
dielectric [CN12, KP10, KT12b, Ng12].
dienn [B10a].
dicontinuum [KK19].
dicopper [BH10b, RNDA10].
dielectric [LB19].
Diels [CM12, Iku17. LW11, MIKH19, ZLWL16, ZXY13].
Diels-Alder [MICH19].
dien [WLS19].
diene [EI11].
dienes [LW11, LKZ16].
dienniminium [BMX19].
diennone [KAO11].
dihynyl[15].
diethyldichalcogens [Dum12].
difference [AD17, Fin16a, Kim16, LCZ15, WH18].
differences [ALK19, BWB18, BB16, MK10a].
Different [MAT19, ABP13, ABA11].

dihydropyrrolones [VGGPdL19]. dihydrothiophene [HL19]. dihydroxyacetone [BGJSM+18].

dihydroxybenzene [YY18a]. diimide [HSS18]. diiso [LKOS17].

diketonato [AC19], diketone [SKS10]. diketopyrrolopyrrolyl [MSG16, PWP+18, WWB+14]. diketopyrrolopyrrole-analogue [PWP+18].

dimetal [ZFC+17]. dimetallocene [LYD+18]. dimethyl-germylidene [TXL10].

Dimeter [Rua10]. Dimerization [LS10b, LS19, Rua10, SKTI15, TFA10].

dimers [AM13a, BF11, CHL+19, GIO12, HM12, KSH18, MPT11, NTGC19, NV10, NHB12, PMMGL+11, SH19, SXH18, SKY+13, SS13, TNN16, TBB+19, Zak13].

dimetallic [LYD+18]. dimetallocene [LYD+18].

dimetallic [LYD+18]. dimetallocene [LYD+18].

dioxetane [VOK+18]. dioxetanes [dSD+13b].

dioxane [Cha10, CNSK11]. dioxetane [dSD+13b].

Dioxigen [dSD+13b]. Dioxigenation [ADR+18, ASD18].
BGL$^{+16}$, Bra10, BEPZ10b, CNBPR$^{+11}$, CCC19, CYLL11, COP16, DKS11, DK13, GWZ$^{+14b}$, GZMC11, HV11, HR19, HSN$^{+11}$, IGMK11, JN13, JLG$^{+12}$, Lad14, LSR10b, LZ12, LPOP12, LWL$^{+12}$, LLC$^{+11}$, LWJL10, LB19, MNP19, MG12, MS10, MJK12, MPT11, MW15, NTCG18, ND10, OKK10, OA13, PCMG12, RY12, RMTG11, RRK16, RR19, SD13a, SIM14, SM19, SAHAA16, SPIL14, SK10, STU19, TJS17, WWL$^{+11}$, XT12a, XTLA13, XTLA14, XWCY11, XZ$^{+16}$, YRN11, YKN13, YD17, ZGSM15, ZKW$^{+17}$, dSSF16, dAVdM17, Jan10, JWG12, ZAE10.

Effective [AST19, CEM14, Liu15b, May14, TSvL$^{+16}$, Vik11b, YHL13, BCGC12, CCBR12, Dw13, GbZA10, KUY16, MPTZ13, MZST16, PGGRMP10, TG16, ZE18, Liu16].

Effectively [ABM19]. Effects [ABA11, BS16, Bla15, CAO18, KSAK17, LLZ$^{+12}$, MSRn$^{+11}$, PETB18, AGOP18, ACF$^{+11}$, Ali14, AEM$^{+12}$, ALMY12, BHMN19, BH10a, BSO16, Chr10, CFGC11, DCD11, DPDR11, DWZZ15, DLLA10, EKGD11, EEMSS14, EAV16, Fer11, GR11, GBS17, GWM11, GZF13, GR10, GRCATG19, HZW18, Ire12, IROW10, IK14, JA12, JHSG18, KI15, KRG$^{+13}$, LDKB15, LGHL11, LD$^{+11}$, MNZPT19, MZLM17, MKHM11, MRRU13, MPE11, NG11, NMHPGV12, Ooni10, OGvSG18, OK19, PCR$^{+11}$, PWP13, QHS11, RLTH19, RP11b, RFN$^{+12}$, RS12a, RSN12, RSM12, Rda11, Rii10, SH18a, SKTI15, SP19, TKI16a, TV13, TFZRM11, TH12, Tob10, VFCSC17, VSMK13, WDR$^{+11}$, WLC$^{+11}$, XX12, XLGA12, XDM$^{+10}$, YZW$^{+15a}$, YMY$^{+13}$, YT14, YFY17, ZH12, ZLS$^{+18}$, ZBG19, ZYL13, ZBBB17, ZFC12, dCDC$^{+11}$, dSMT$^{+18}$, dSNBG08, SMK$^{+12}$].

Efficiency [Cal10, AGOP18, ATPRV11, BGD17, Mai14, THSR13, VRO$^{+12}$]. Efficient [BL16, KI15, SHW$^{+13}$, SCBP17, YM14, ZWSF16, ZRLV10, CKB$^{+19}$, FZH$^{+18}$, FM16, IJS$^{+17}$, LCK$^{+16}$, OAA19, SKLC19, SGH10, SAHAA16, WTP$^{+19}$, WZX$^{+15b}$, ZCX$^{+16}$, ZKW$^{+17}$, dSM19a].

EGEE [LG10].

Ehrenfest [KUY16].

eigenfunctions [PMGMGR12, PBR18].

eigenstates [KB12].

eigenvalue [Mit11c].

eigenvalues [Mit11c].

eigenvector [LHX$^{+19}$].
eight [SALK19].
eight-vertex [SALK19].

Einstein [DCD11].

elastic [Per10b, UV18b]. Electric [CB19, MJM19, SS12, BL16, CHL$^{+19}$, CKB18, DB15, EBR11, GM18, GV11, KA11, KT12b, LB19, MM19, PCD14, SMEH15, SMEH16, SM19, VRO$^{+12}$, YSO12, Zha17].
electrical [GKS10].
electrode [OCL$^{+18}$].
electrodes [HWL16].
electrocatalysis [MLW16].
electrocatalytic [FFPD16].
electrochemical [AVG19b, NBZG16].
electrochemistry [FFPD16].
electrode [KJ15, Tug13].
electrodes [Che13].
electrodynamics [FN16, IFT14, Lin14, Liu15b, Liu16].
electrolyte [DLO16].
electrolytes [AVG19a, MNE$^{+13}$, Pha19].
electromagnetic [Bas14, NTGC19].

Electron [Bas11, DZO12c, DJ18, DSV15, LC16, LRMA19, LZ10, MT11, PUH$^{+11}$, PI16, RVNP12, RBV18, SLG11, VBC$^{+12a}$, AA11, AOT$^{+18}$, Ali14, AEM$^{+12}$, AGG$^{+18}$, ALRAE11, AM18, ARH$^{+13}$, AST16, AT18, BL$^{+13}$, BHNN19, Ber13a, BL10, BL11, BSS19, BKM15, Buc10, Buc11a, CMR13, CW13a, CM15, CG12, CH17, CS13, CSTA16, DLCB15, DAA16, DLJT14, DTEMK11, Di13, DOZ12a, DLLA10,
Dum12, DSSM18, ETGLMJ+19, FYhC11, Fin15, FA17, FMMD+10, GAPK+19b, GSaY11, GTR11, GS10, HSN18, JdL08, Jan10, Joh17, KWLS15, Kar12c, Kha16, KPL+17, Kit15, Kri13, KM19, Kuz19, Lar10, LCH14, LZZ+11, LWY13, LYL+12, LG12, Lu10, MGK+11, MR12, MW16, MJ16b, MPD+10, MPZWD10, MGB18, MJ11, MNS11, NA14, NCMC+18, NIK19, NBGZ16, NAK+17, Nes11, Ng12, NDM+12, NE11, NRGS11, NMV+14.

Electron [OAT+13, POLV12, PL11, Pir13, PNC19, RBGGM18, RNV+12, RCM10, RAGM10, RS13, RKCK19, SDS19, SDS20, SS10, SBMM11, SBM16, SYK+12, SPD+18, SSAM13, SHS+13, SM12, Sit15, SL13, ScBsR+10, SBKJ18, Sin18, SP19, Tob19, TC12, VF13a, VBC+12b, WLS+19, WWD+15, WH12, XZYS10, YNL18, YM14, YRN+11, YHLC15, YD17, ZDZO10, ZFS+11, ZZZ+18, ZSJ14, ZJS13, dA12, dCDC+11]. **Electron-density** [RBVAG18]. **Electron-group** [WH12]. **Electron-muon** [RAGM10]. **Electron-N** [SSAM13]. **Electron-pair** [LRMAA19, MT11, WH12]. **Electron-proton** [DLCB15]. **Electron-rich** [YNLD18]. **Electron-withdrawing** [BSSS19]. **Electronegativity** [CG12, GI11b, GI11c, GI11e, GI11f, Kan18, TSBSM12]. **Electronic** [JL12a, KG17, KRK+17, KMF+11, KSY+12, KZZ13a, KHH10, KAOB11, KMM16, Kri13, KO12, KU16, Lai11, Leh19c, LL11, LLBqD+19, LMZY15, LL19, LLZ+14, LDbV16, DVMC19, LHL+15, LZ10, Lya14, MSG16, MLC+11, MC11b, May14, MMWA11, MUNZVR12, MBA+13, MPZWD10, MGB18, Mil12, MS17, MKD19, MA11a, MA11b, MMRA10, MJ11, MB13, MPT11, MPTZ13, MM13, MW15, MSRn+11, MCRS16, MC18b, NS19, NA12, NIT16, NZAVR10, OGvSG18, PE11, PCR+11, PAPA15, PMA12, QJ13, QC+10, RMLPGGH16, RS12a, RMJ11, RRRV19, RNC+14, RMTG11, Rs14, RMY+13, SRPD16, SR12, SD13a, SB10a, SLC+18, SYL+18, SLS+14, SX1+12, SLS+S, SLS13, SIS+08, SRS+17, SSTÖ11, SR11b, SZZ+12, ScBsR+10, SSW16, SK12b, TYN13, TZ11, TV13, TD11, TBB+19, TFB11]. **Electrolyte** [TRZ+19, TG13, UTThn13, VAr14, VPA11, VLF12, WWC17, WFS13, WDS19, WJL+10, YZL+10, YZL+11, YZW15b, YH14b, ZQCI10, Zha10, ZLLS10, ZZR+12, ZCG+16, ZQXP17, Zho18, ZCP11, dSSF16b,
dSSF16a, Bou12b, Lad14]. electrons [BEM12, BMB10, BB10, BMB16, Dw13, Fer19, Ign11, Ign12, ISRK12, KK13, KK14a, KV19, Kry12c, Nas19, Nes10, QCB+10, RP11a, RPVM10, RS13, SALK19, She12, SS19b].
electrons-Nd [BB10].

Electronuclear [SL13].
electrophilic [Buc11b, YSA+11].

Electrophilicity [PC13, IG11].
Electrostatic [HL19, NMHPVG12, TH12, TCS10, AC19, CDSK12, DPRK12, IG11, KK5+11, KRG+13, PK13a, TYN13, ZCZ+12].
electrostatics [BWE16].

Element [OVT+16, OVT+16].
elementary [EMED+12, EMED+12, EMEPD15, SOF+10, Zil14].
elements [A¨O12b, ˇCW13a, GI10, LXD13, NZ13, RRK16, SW10, TMC+13, eleven [DCFD10].

ELF [Fin14a].
eliciting [TPT19].
elimination [BLM+12, FZC14, MM19, MLB+12, Zha10].
elongated [ALHC18].

Elimination [KdSM+10, XLA12].
else [Kry10].
Elso [COP16, HS15].
elucidating [Kaw15].
elucidation [MMP+18b, SBKJ18].
elusive [SSP14].
eymphyletrine [RGS+13].
embedded [BA13, Lan10, LC19, SMV11, SRN+19, JLL11].

Embedding [ABS11, DB13a, QB15, AB16a, GCK+17, HJK14, SRN+19, TGRP19].

Embeddings [AF19b].
emeraldine [RMTG11].
Emergence [LFP+19].
 emergent [SMMT13].
Emerging [AH19, GP13a].
emission [BS11, BSO11, CFP+10, LXW+14, ORJ18, PKS+13, dSds13a].
emissive [ZKWZ17].
emitter [OAA19].
emitting [MUNZVR12, NZAVR10, SHW+13].

empirical [Hat13].
Employing [Tob19].
enable [LSKM19], enal [HHZ+19].
enantioselective [LC19].
enantioselectivity [LC19].

encapsulated [CWL+13, JL12a, KG08, TPT+13, WW11, ZLWL16].
Encapsulation [RR11].
endic [ZPW16].
Endo [Jal10].

Endohedral [JW19, ACL12, BBYZ18, GAPK+19a, HLB19, JLL+18, LYW+19, MS17, SCTW10, WLZ+12a, WSL+11, YL11].
endohedrally [NW12].
endohedrals [YK11].
en [IK14, Sat11b].
Energetic [GB13, GAMM10, HLB19, HM11, HZW11, Kar15, LCCH10, LL17, MTS15, SRA+11, TCSD12].

Energetics [MNC12, ACMR110, C4AF24, C4dLdSc18, DCBB11, GCD13, KUTS10, PNMGL+11, Puz10, QTC10, TBA13].

Energies [BBKO16, LBW11, SCZG12, ASHF13, AC12, Ali19a, ABA11, BVCAP12, Bla15, CFOC+10, CHH+19, DZ10a, DZO12a, EKN10, FLvLA15, FYhC11, FC19, GMA+19, GM11, GFRgdG11, HNH+12, HL19, HM10b, IKN13, Kin13, KKS+11, KB19, LDKB15, LORR+12, M3M9, Mas10, MS14c, NA14, Na13, NV10, OKR12, OK16, Pea11, PBB15, SH19, SR19, SOM10, SZL+14, Tsu15, V9F13a, VLFG12, WW18, ZW17, WR15, XX12, YCÖ+11, YWH+12c, ZZX10, ZC11, ZC12].

Energy [CC11a, FFA16, AV19, AG10b, AK17, AB18, A0LB12, AEM+12, ART08, AZD+11, AST16, ALK19, BXR+13, BVPD11, BP13, BAP12, BSS16, BBL12, Ber13c, BVA+14, Bou12b, Bud12, CPF+11, CWW12, CNBPR+11, CDS+18, CCL+16, CFV18, CLH14, CSG14, COP16, DK13, DB11, DHZS11, EMK14, Fin16a, FMMD+10, GST11, Gra08, Gra11, HR19, Han19, HJRO13,

F [yBZIC18, CS18, DPPD11, DSSM18, DSSM19, EMSB15, GWM11, GKT+12, GB13, HNBG15, JLG+12, KAR12a, KMM16, Kuz19, LJJ+11, LGH11, LZZ+11, LMZ+11, LLG+12, LC16, MEEA+13, PP14, RLTA19, SB18, SSK10, SPIL14, SYO+10, SZZ+14, TMC18, TL15, WZW17, XZZ+12, MLPT10, YZV+15a, BLWJ17, DMAB12, DZ101, GKT+12, LGHL11, Ma14, MGB18, Pup11b, Sik18, SZ15, TNN16, YGL+11, ZHL+19, ZCG10]. F12 [BL12, yOITn15]. Fabricio [COP16]. fac [AC19]. face [DMWY11, DLG12]. Factor [Tri14, Kan17]. factors
first-row
first-shell
Fischer
fit
fixating
flavonols
first-row
flexible
five-electron
fixating
flexible
five-electron
fixating
five-electron
fixation
fixed
flavonoid
flexible
five
five-electron
five-electr
CNSK11, CH17, CM12, CZLD17, CC19, CK17, CF14, CTDOLA10, CSTA16, CD12, DWJZ11, DCCB11, DKS11, DW12, DZ11a, DGR+16, DG19, DSZB18, DQZF12, ED16, FCS13a, FCS13b, FZX18, FO10, FDNR10, Fin17, FA17, FSB16, GFPAV19, GCK+17, GMR18, GM11, GGD12, GHCBCMQ17, GD11, GCZ+14, HMA+19, HR19, HHCA10, HLZ+14, HZZ+19, HMM10a, HMM10b, HKHI13, HYD11, HZZW11, IN15, JR12, JPP+11, JA12, JS17, JW18, KME+18, Kar13, KPCV18, KK14b, KKL+16, KSAK17, KYLC19, KSG+12, KJ14, Kri13, Kry12c, KG08, KM1+13, Lat13, LPO+12, LSR10b, Leh19a, Leh19b, LIW11, LWL+12, LWX+14, LLW+11, LCK+16. functional [LDZG16, LLLZ+12, LSC+18, LNI12, MYZ+10, MLW+14, MJ16a, ML+11, MFK+12, MA10, MUNZVR12, MG12, MKSG13, MLK17, MLB+12, MBBT+12, MM13, MKWI11, MMJ+19, MCRS16, MOH+12, Nag15, Nag17, NH18, NDP10, NTNL10, NL11, NMR14, NDM+12, NZAVR10, OD16, POLV12, PS10b, PS14, PI13, PMH+16, PABSK16, PP16, PTH11, PR10b, Pir13, PU14, PJP10, PMAP12, PI16, PC13, QHS11, RGFPZD13, RS12b, RC19, RPVM10, RMB18, Rud12, RSCS10, SB18, SA18, SGL+16, SVRGV12, SLC+18, SN12, SAHG11, SHL+13, SJZ+18, SIS+08, SDM12, SRMB15, Srl9, SI10, TOSN12, Tan12, Tin13, Tan13, TDOM17, TFZ+15, TCL+17, UV18a, UMS13, VPGC12, Ven12, VUC13, Vkl3, VBO+15, WKE17, WJL+11, WW11, WYJ15, WYJ15, WYJ15, WZ+11, WR15, Wit18, XNL+14, XSLF12, XGH+18b, YLH+19, YWH12a, YWH12b]. functional [Yu13, YL11, ZT13, ZKRR11, ZQCJ10, ZLWY13, ZCX+16, ZBG+19, ZRR+11, ZMZ13, ZCG+16, ZSZ14, ZSZ14, dCSDdMC13], functionality [ATS+11]. Functionalization [ZWWY10, JNY17, YLH+19]. functionalized [LRKM10, MSOV13, MLW16, OD16, Pil18, SPPT15, TDOM17, WLZ+12b, ZK12, ZBG+19]. functionals [AF16, Ali19b, AK11, DCD10, DCFD10, Fin16a, HFDGC14, Jan13, Jou13, KOR17, LAC14, LCT14, LSP+16, LORR+12, Lu15, MXC18, PSMD16, PRFR17, SFC16, SMTP11, SOF+10, SSP+17b, SGC13, SX15, TA10, TCA10, UV18b, VSL+15, YF16, YFY17, dSdS13a]. Functions [GLT13, IA13, KB+13, OK+13, CSZM10, CML+16, FRGC10, GBK18, GBS17, GTR11, GN19, GS10, HITU16, HGB08, Hog13, Hor13, KH10, Kar13, MPV+11, MSNP18, MJ11, NS13, NDLC19, Oh13, OH19, FBSK16, RZSZ18, SPO+11, SZ+10, SLZ+11c, SLZ+11a, SKL10, VSL+15, WH12, YMI14, vLRRK15]. Fundamental [Bri13, Hor13, IFT13, MSH13, Mar13, YK13, ZIS13, Bio15, CK13, Gl11b, Gl11c, Gl11e, VVV10, VV12, VV13]. fungal [VGS10]. furoic [GIO12]. Further [Jor18, ZLW16]. furylfulgide [LZZ+17]. furylfulgimide [LZZ+17]. fused [RGTS11, WDS19, Yam11]. future [BJ17, MGN14, Sic16]. fuzziness [Tch16].

galactosyl [LQ13], galanthamine [PK13a], gallium [ALK19, KP11], gamma [MMC+19], gamma-AlOOH [MMC+19], GaN [CWW+16, KO12], gap [RKCK19, SSB12a, SSP+17b, YHL+13], GAPDH [SLA12], garnet [VPFD10], garnets [DD17, DZ11a, FDMR11, LNGW14, NZLG15, ZDF13, AEAS+19, BGL+16, BLM+12, CFCO+10, CRSB12, Che12, CF17, DLG12, DCOC+19, EHKK11, FBRB12, GMT18, HDC+11, HDQ+13, IKC18, JEA13, JWJ+12, KS11, KZZ13b, KDO17, LGZC15, LW19, LGW11, LG12, LdAA+11, MPD+15, MCC12, MB14, MOSK10, MB15, MURR13, MML+11a, MLB+12, MMM+12, MJ11, Mor11, NKTW19, PSK16, PK16, PB10, RP16, RC10, RNE10, SF13, SMIC18, SD16b, Ser11a, Ser11b, SK12a, SZZ+19, SYS14, SsdS17, TWR15, VFI3a, VV18, VSMK15, WXZ+11, WX11, WLG+11, WWLZ17, WLL19, XGH18a, Y117, YC13, ZL10, dSdSPG11, dSMT+18], Gas-phase [DD17, DZ11a, FDMR11, LNGW14, NZLG15, AEAS+19, BLM+12, CFOC+10, CRSB12, GMT18, LGW11, MCC12, MOSK10, MML+11a, WXZ+11, WX11, WWLZ17, ZL10, MJ11], Gasb [KMU+13], gases [BAP12, JIMPP19], gate [CKB+19, TB15, TP19], gates [MR12, ZPR10], Gauge [Kub12, ALB18, Bra10], Gauge-including [ALB18], Gaussian [AS19, BC15, BC16, Boe12, CML+16, GTR11, HITU16, HIL13, Kut13, Mat02, Mat10, MSNP18, NDM+12, OHDA13, PCD14], Gaussian-type [HITU16], Gbar [Boe12], GC [NMS+10], Gd [WSL+11, XYL+18, CWL+13], Gd-encapsulated [CWL+13], GDP [MTM+13], Ge [LCS+11a, MPD+10, XCL+18, ZHL+19, LLLB13, MSVMCI10, UKF+11, ZCX+16], Ge- [ZCX+16], gear [KKH+13], gear-shaped [KKH+13], GeCNT [SD16a], geminals [TK13], GEN1INT [GTR11], General [GBK18, PIS18, Rit12b, FRGC10, MMG15, Pie12, ZLJ11], generated [NH18, PE11], Generating [A¨O12b, BW15, Fuk12, LLM+11, MJSC18], generation [BAX+19, CML+16, GFRdG11, HMA+18, KYLC19, LHX+19, MML+16, OD12, TXK+19, ZL11], generator [AHT12], genetic [AFM+10, CL08], genome [Kuv10], Geometric [KMM16, MR12, SJÖ15, CD12, GTR11, LW13, LB18, RW12, Sch10b], Geometrical [CSMZ10, GHCMC10, WJ1+10, EKN10, KKL2a, LL11, MBBT+12, MM13], Geometries [SZL+14, Buc11a, MHT+08, ZYL+13, ZCP11], Geometry [CL11, CWSZ13, Jor15, Jer18, MCE11, Cyb11, GP13b, KYH+13b, LW110, MG12, MJ14, MMY+19, NBL+14, Sch15, SN11, WJL+11, Y11Y+13, ZBBB17], germanene [BHAH+18], germanic [TXL10], germylene [LCS+11a, LCS+11b], germylidene [LLLB13, TXL10], GFP [KyH13a, LORR+12], GFP-like [LORR+12], GFP-X-CFP [KyH13a], GGA [FCS13a, FCS13b, KSG+12], ghost [PP16], giant [ZX12], GIAO

Global [BPVDB11, GTSC+19, HJ13, OPAVM18, YLC17, GI10, GI11b, GI11c, KLYC19, KMNSP19, Kuh13, MCP10, MDNDO+16, SRS+17, YLYC18, ZWL18].

globalar [MSK+12]. Glu [TK16a]. glucan [PTD+12].

glycolaldehyde [BYAT13]. glycosidases [PRFR17]. glycosidic [PRFR17].

glycosylation [LQ13]. Glyoxal [SMA11].

glyphosate [CRB+12].

goals [Bra14]. Godelian [Bra11a].

goethite [HCH+18].

gold [BvWG14, FTB11, LC16, LTL18, LIK15, MFOH18, ONBP11, RWW+19, SDY16, ZTL13, ZY+13, ZHI17]. Goldstone [PO15].

good [TSBSM12].

Gradient [WR14a, ISN13, KF19, MM19, MAF19, MBA+19, SRMB15, dCGAMV12].

gradients [BVA+14, Cam10, NDP10, SGH10]. grafted [DSRD12].

gramicidin [SMK+12, SIT+12].

graph [Bij13, GRD11, XXJ+16].

graphene [AOP18, ABP13, ASW13, BAP13, BS016, CA17, CAO18, DI10, ENV15, EM19, FFPD16, GMT16, HBMM11, ISRK12, JNY17, KK19, LWX+14, MFOH18, ONBP11, RWW+19, SDY16, ZTL13, ZY+13, ZHI17].

Goldstone [PO15].

graphene-based [BSO16]. Graphenic [TBRIS12, TBRIS10, TBRIS11].

Graphenic-Type [TBRIS12, TBRIS10, TBRIS11].

graphical [CLC10, HW12, LQZ+12, LLZaH14, LSKM19, PUGSFM18, RNP13, WH12, YSW11].

graphically [SGH10].

graphs [CDSK12, DZ11b, Du12, GA19, PR10a, Pal10, PL11, Tra19].

graphyne [BS15, CA17].

green [BSM+15, MKH11, SLS+14, SD13c, ZWLC12, RZ+17, SS12].

green-function [SD13c]. greenhouse [Mor11].

grid [CKYR18, FLCHL10, GMR18, LG10, LCK+16, SA11a].

grid-based [CKYR18, LCK+16].

grid-cutting [LK+16].

grids [RL12].

Grignard [KDOR17, SA18].

Ground [MM13, RAGM10, ADB10, BPVDB11, BG11b, BG11c, CHM+14, DGA+13, HM12, HMA+18, Ign11, Ign12, KK14b, KLYC19, Kri13, LP10b, LJSS12, LdAA+11, MPM15, MQG13, MPT11, MPTZ13, Nic11, OH19, RCO11, SFM13, SGC13, SR11b, SS12, SK12b, SYZ17, TBB+19, TXK+19, THV+14, Zak13, CJOOW11, MNS11, VPA11].

ground-state [Ign12, KLYC19, THVP14, Zak13].

group [AG10a, AMK10, BLD19, BLM+12, CWS15, EAA17, ED16, Eng16, GAPK+19a, GRD11, JLG+12, LSR10b, LdMDCa+12, L2Z10, LXD13, LYD+18, NZ13, PBR18, SH18a, SSA18, TMC+13, THVP14, WH12, YKM+15, YD17, ZLC12].

group-12 [THVP14].

group-13 [LYD+18].

groups [ATS+11, ABA11, BSSS19, CMR13,
FNBK17, KPL+17, KSAK17, LPO+12, NHG+12, Ril10, ScBsR+10, Tri14. growing [CD12]. growth [VP12b]. Grx3 [Dum12]. Grx3-like [Dum12].

GTP [MNT+13]. guanidine [LW13]. guanidine-catalyzed [LW13].

GW [RAMB18].

H [BDF+18, BGFD14, BJ17, BTH18, Buc12a, BSPK11, CRSB12, CS17, DMAB12, DPDR11, DZO11, DZO12b, DQZF12, EML+11, EMS16, FBRBR12, GWM11, GB13, GR10, GKM18, HJRO13, JCCZ12, JLG+12, KWC10, Kall18, Kuo11, KI12, KSSK16, KSST12, KRG+13, LZ12, LCL+10a, LCL+11, LZZ+11, LMZ+11, LBY+14, LZW+15, LCZ15, LXD13, LdAA+11, LEU+11, MLY+16, MC12, MMBK12, MPRB+10, NC18a, NBL12, NL11, NMP14, NH11, OCL+18, PTS+11, Pan16, QSLY10, RLTAT19, RFEGPP+16, RGR12, SBAT16, Sat11b, SZZZ11, SCTW10, SZL+14, SZ15, SYZ17, TBRIS12, TG13, VLY+10, WZW17, WLLL14, WWGW18, XLLL10, XCL+18, XF19, YYY+13, YSK+12, YLYC18, ZGSM15, ZGZ+17, ZWL18, ZHL+19, AC12, AST19, BN12, BDFM10, BPVD11, BP13, BPG+10, BAPI2, BEMP1, BHV+11, Buc12a, CLXZ12, CP10, CC11b, Cor16, DLOC15, DSD18, Den13, DMS+10, DLM12].

[BMBD10, For12, LC16, MML+11a, RYM12, RKCK19]. Hall [Bra10]. halo [EMK14, LGP+11]. halo- [EMK14]. haloalkane [ZCG+12].

haloammonium [XZL+12]. Halogen [DLP17, SC18, VVY18, BLL+13, Buc11b, CLXZ12, DPK18, DWZZ15, EMB15, FGD+19, GLXL18, JLG+17, KKC14, Kuo19, LCL+11, LLG+12, LDZ16, LZD+11, LLZ+12, MS14c, Sch13,
heteropentamers [MOE+11]. heteropolycyclic [TXL10].
heteroporphyrins [RBZ15]. heterostructures [MFZ+18]. hex [Sat11b].
hex-2-ene [Sat11b]. hexaazaisowurtzitane [DGR+16].
hexaazaisowurtzitane/nitroguanidine [DGR+16]. hexacarbalane [ALK18]. hexafluoroacetylacetonate [dARAV12].
hexafluorocyclohexane [HWWW18]. hexagonal [KC19a, LFP+19, NBL+14, PL18a, UV18a, UV18b]. hexahydro [MJ11].
Hierarchy [ZLE17, PC13]. HIF [MGK+12]. HIF-1 [MGK+12]. High [Dun15, Kin13, MPRB+10, ZCG10, Beh15, BHH+13, CKB+19, CRFR11, CLH14, CXYR18, CML+16, DBTA19, DSFT17, DSSM18, Fer11, HSN18, Jeo18, JW19, KG17, KMU+13, LCL+10a, cLqFtW+14, LMC19, Luz08, Lya19, Mai14, MDC15, Mil12, NKKN15, RGTS11, RNE10, SSP+17b, SZL+14, WCGD12, fXxBhD19, XZZ+10, XCD18, YHY11, ZY13, YM14]. high- [Fer11]. high-dimensional [Beh15, DBTA19]. high-efficiency [Mai14]. high-energy [CLH14, XZZ+10]. high-energy-density [Jeo18, fXxBhD19]. high-harmonic [CML+16].
high-level [LCL+10a, RNE10, SZL+14]. High-lying [ZCG10, DSSM18].
high-order [Luz08]. high-performance [BHH+13, CKB+19, cLqFtW+14, Lya19, NKKN15]. High-precision [Kin13].
homolytic [KZA+17, OKR12, OK16].

hydrogen-bond [OHDA13, SCL19]. **Hydrogen-bonded**
[SGKG12, CdLdSC18, CCP18, KS18, LJW+11, MT10, OA13, RNE10, ZLZ+14, dSCC12].

Hydrogen-like [DB15].

Hydrogenase [BGFD14, BAA+18, MG10, DMG10].

Hydrogenation [IIW+11].

Hydrogenic [DLRMFY10, DBTA19].

Hydronium [DE18].

Hydrophobic [NHG+12, SMK+12].

Hydroquinone [NP18].

Hydroxamate [TPdMB12].

Hydroxamic [KK11a].

Hydroxide [DE18, RGR12, WZZL10].

Hydroxides [DCDD10].

Hydroxy [TAY11, YLW+13].

Hydroxyacetone [SSdS17].

Hydroxyantraquinone [JB11].

Hydroxybenzaldehydes [EKN10].

Hydroxybenzenes [ATM17, KM12a].

Hydroxybenzylamine [ARC+10].

Hydroxycarbene [Buc12b].

Hydroxycarbonyls [SSdS17].

Hydroxycinnamoyl [MLW+14].

Hydroxycinnamoyl-CoA [MLW+14].

Hydroxyfullerene [KK11c].

Hydroxyl [TWHZ14, CGIAI12, FNBK17, CAR12a, LLP+13, LCM+11, Ril10, XNL+14, YM13, YY18a, ZZC12].

Hydroxyl-thiourea [LCM+11].

Hydroxylapatite [UV18a, UV18b].

Hydroxylated [MDNDO+16].

Hydroxylations [SSI+10].

Hydroxybutyloxy [RS11b].

Hydroxybutyryl [MFR10].

Hydroxymatairesinol [SBEH11].

Hydroxymethylnitriole [KAOB11].

Hydroxyphenalenone [OA13].

Hydroxypropanal [SSdS17].

Hydroxyquinoline [CHV14].

Hylleraas [OH19, PSGK17].

Hyper [LXW+12, DW12, FKL+12, KP11, Kha16, Mar12, XWCY11].

Hyper-netted-chain [DW12].

Hyper-radial [Kha16].

Hyperbolic [AY15, GE12h, SDL+15, dAB17].

Hyperbolic-type [AY15].

Hyperbolical [WC14].

Hyperconjugative [CSP+10].

Hyperfine [Bou11, Bou12a, Knu13, Wit18].

Hypergeometric [PMGMGR12].

Hyperpolarizabilities [AK11, CEFMK12, NKF+13, OCL+18, YMY+13, dWLC14].

Hyperpolarizability [BHMM19, FSB16, GXZ+14, Kar12b, Mar11, RVO+14, WWL+11].

Hyperspherical [BAP12, PML+11, RPBB11].

Hypersurfaces [PBM10].

Hypervirial [ATPRV11, VATPR11, VAT12].

Hypochlorous [TV13].

Hypoelectronic [SALK19].

I-converting [dSSdSGA12].

I-motifs [KUS19].

I. [KK12b].

IB [DWX+16].

Ibuprofen [XNL+14].

Ice [Mil12, Wan13].

Ices [LRP+11].

ICN [BMBD10, McCL13a].

Iconicity [Tch16].

Icosahedral
[DVMC19, SR12, XCY15]. **icosahedron** [SLZ⁺12]. icsahedron-based [SLZ⁺12]. identical [XZL⁺12]. identifies [ST15]. identify [MVG18].

Identifying [BB16]. identities [Cin11a, Cin11b]. Identity [Cin11a, Cin11b].

II [Bal16, DSD18, DCdG10, FBD⁺13, LYW11, LGW11, LGS⁺16, MGK19, NNSN17, NFQ⁺11, OAA19, RNA⁺10, SLC⁺18, SG19, TFA10, WHM14, WR⁺18, YZL⁺10, ZSASS13, ZLLS10, dCSDMC13, dARAV12, dCDC⁺11, ADR⁺18, Boul11, Boul12a, Cam10, CPF12, Ire12, Jor18, Kry12b, Lehi19b, LS⁺13, OH13, PD11, PEA⁺12, PV12, Q10, SGL19, YY⁺13, YY⁺13, YSK⁺12, YWR⁺18].

III [Eng16].

III [CadSG18, EG10, LVdSD14, MSOV13, MMS19, PCD14, RPM⁺14, SLS⁺14, SSP⁺17b, SWH⁺13, WXB⁺11, ZQCI10, ZQJW13, ZSYW17, ZSQ⁺10, AC19, AMK10, Cam12, CWS15, Lyr⁺17, NMS⁺10].

III [Eng16].

ill-defined [Gru17]. **ill-posed** [BMB12]. **Illustrative** [Mai14].

Image [Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, Ano13y, Ano13z, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano14y, Ano14z, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano14y, Ano14z, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano14y, Ano14z, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w]. Image [Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano14y, Ano14z, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w]. Image [Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w]. Image [Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w]. Image [Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w]. Image [Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w]. Image [Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w].
Ano19x, Ano19y, Ano19z, Ano19-27, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19l, Ano19m, Ano19n, Ano19p, Ano19q, Ano19r, Ano19s, Ano19t, Ano19u, Ano19v, Ano19w, Ano19x, Ano19y, Ano19z, Ano19-27, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19l, Ano19m, Ano19n, Ano19p, Ano19q, Ano19r, Ano19s.

SYQ$^+$10, SW12, VC13, WXB$^+$11, XWC11b, ZLLS10, ZHI17]. Influences [SKY$^+$13, DLLA10, FBD$^+$13, OG19, YTY19]. influencing [BMX$^+$19].

Infrared [CLMY12, ZQXP17, DSFT17, GIO12, IROW10, KV11, MTS15, NDM$^+$12, UTTn13, VVVB10, YWR$^+$18, dARAV12]. Inheritance [YDW13]. inhibition [EI11, PCF$^+$18, THSR13]. inhibitive [LZB10]. inhibitor [SKHN13, SKS10]. inhibitors [DSWL11, EAK$^+$10b, EAK$^+$10a, KMRG13, KKG12, MGK$^+$12, RDM$^+$11, ST15, SLA12, TPdMB12, WLL$^+$13, XFW$^+$14, YYW$^+$12, ZFW$^+$13, dOdONM12]. InI [BD12]. Initial [BLWJ17, BS16, LCK$^+$16, Liu15a, TJS17]. initialization [ZWSF16]. Initially [SWS$^+$14]. initiated [LLW$^+$12]. Initio [CS13, LC16, PMH$^+$16, PK16, ABKJ18, AEM$^+$12, ATS15, BLR12, BHV$^+$11, BMB10, BR15, Boul11, BM10, Buc11a, Buc11b, CTVA12, CCBR$^+$12, CHM$^+$14, CCS13, CK17, DG19, DZO12a, DCdG10, DFV$^+$12, DOE$^+$14, DM16, EG10, For12, FBU$^+$11, FSK$^+$11, GW18, GMP$^+$11, HMI$^+$15, HHCA10, HDF11, HL19, HHL$^+$12b, IKC18, KAR12a, KDC12, KP11, KK14b, KSST12, KLU$^+$13, KUY16, LSR$^+$10a, LSR$^+$11, LVdSdM14, Les12, LJW$^+$11, LL11, LV12, LVR$^+$17, LLLB13, LdAA$^+$11, MC11a, MHT$^+$08, MP12, MOE$^+$11, MMKB12, MPD$^+$10, MPZWD10, Mit11a, MSY$^+$12, MLK17, MLB$^+$12, MLB$^+$10, NS19, NDM$^+$12, NRHJ11, OT14, ONBP11, Pah19, QSLY10, RLW$^+$13, RRVJ10, RS12a, RRRV19, Rib10, RNC$^+$14, RAMB18, Ser11a,
Initiation [Wu11, WLWL14, YKM+15, YZL+11, Yu13, ZDZO10, ZZL+11, ZLZ+14, ZF15, ZXY13, ZZZ+18, ZRL10, DAE+12, GWJ12, MPM15, SW12, Wag14].

[BMRM19, BMF+14, BGJSM+18, KSO19, MCCGM+19, Swa13, YSA+11].

Inserted [KRH13, LWL19]. Insertion [DPDR11, RRVJ10, SMC18].

Insight [Wu11, WLWL14, YKM+15, YZL+11, Yu13, ZDZO10, ZZL+11, ZLZ+14, ZF15, ZXY13, ZZZ+18, ZRL10, DAE+12, GWJ12, MP15, SW12, Wag14].

Innovation [DMWY11, HFL+17, She12, She13, TFZ+15, WLL+13, BQMD15, DGR+16, EM17, KCD15, MNV+17, MC17, MMSC19, RNDA+10, SAG13, SAC18, SC11, VHTE15, YWI+11, AF16, Tan13].

Insights [CP13, CADSG18, GJ18, HBLS18, MS14a, MC18b, SLA12, TCBS14, VBO+15, Bal16, BHA19, DIB10, LKZ+16, MNE+13, NP18, Pan16, SMZ19, SR11a, ŠKB18, YHLC15, dSM19a, dARAV12, KMS+11, QTTL10].

Int [BR16, COP16, HS15, Man16, dFR15a]. Integral [HSN18, HFBC19, KSST12, LWY13, Mak15, RCGIV+14, SGC13, YK13, ZLR15].

Integrals [AE12, AA15, GTR11, GS10, Hog10, YM14, YSO12].

Integrated [Cap16, HCH+18]. Integration [BG11a]. Integrations [Koc13a].

Intelligence [Ezz10, SRS+17]. Intense [DLCB15, SRPD16].

Intensities [VVVB10]. Inter [Tav11]. Interact [NCM+18]. Interacting [Cap16, DM12, Dill13, KWWH18, Nes10, RP11a, RS13, SGL+16].

Interaction [ASHF13, DWP14, EG10, JLS13, MYZ+10, MRT11, RNB+10, SPD+18, SK11, TBRIS10, ZT13, Ali19b, Bae14, BLL+13, Bas11, BEM11, Ber13b, CAZ+11, CCL+13, CGM12, CGG18, CRSB12, Cha10, CC11a, CYL+18, CP16, DC14a, DVDBM11, DTVP+12, DLG12, DWZ15, ECO8, Eng16, EBH11, EA16, FZ18, GWZ+14b, GD11, HFD11, HIL10, JFT13, JH15, JLG12, KMM+18, KV19, KPH+12, LLG+12, LdV16, Luz08, MMR+10, Mar12, MMC+19, NL11, NV10, NFQ+11, OA12, PSK+16, PBR18, RYM12, REN+12, RFMC19, RS11b, RRO11, SSB19, SA18, SD13a, SD16b, SKHN13, SYL+18, Sha11b, SLZ+11c, SS11, SM14d, SWS12, SZL+14, SY16, SCZH16, TK16b, TG16, VHTE15, VV16, WLI11, WZ17, WWQ17, WGI8, Wn10, XbX+13, ZST+10, ZE12, ZS12, ZMB+17, TBRIS11, TBRIS12, YL10].

Interactions [KMM17, MKF+12, dCDS+11, AGR12, BMR+13, BPF12, BMM19, BLW17, BDG17, BL19, BWE16, Buc12b, CNBP+11, CldSc18, CNSK11, CCS13, CKL16, Ch12, CSP+10, Cys11, DIB10, Doh14, DLP17, EAA17, EA12, EMS16, FNK17, FRCG10, FKC12, HCH+18, HMA+19, HYD11, Jd10, JEA13, JLZ+17, KdpN16, KMK+16, KP12, KKG12, Kry12a, Kuy10, Kuz19, LMZ+11, LC16, LYW+19, LZ+13, LDZ16, LB18, MBZ+13, MHZ18, MS12, MIKH19, MPS18, MPD+10, MPZ10, MS10, MSY+12, MZL17, MAW+18, MRR13, MMSC19, NH18, Nal13, RRI15, OA13, PML+11, PASK16, PP16, Pie12, PETB18,
RK14, Ril10, Riv11, RGR12, SB18, Sch15, SSAM13, SM14b, SM14c, SS13, TH12, TDOD17, TCS10, Var11, VBC+12b, VSMK15, Yak11, YJ17, Yu13, YF16, YFY17, Zak13, ZRY+13, ZFS+11, ZLWZ16, dCSDdMC13.

Investigations [Bou12a, BL12, Cas15, DSSM19, Kim13, KRG13, Mag14, MSNP18, NMIP14, SZS10, SLZ11b, SLZ11c, SLZ11a, SLS11, SM14c, SM14d, VSN11, WFS13, YL11, ZZR12, ZFS11].

iodo [LZD11]. iodo-perfluorobenzene [LZD11]. ion [ABS13, AB16a, Ali19a, BS14, CDS11, COP16, DLO16, DCHC11, EHKD11, EKD12, FBRBR12, FDMR11, GFB12b, GH11, HMI15, HLJZ11, HFL17, IAA15, KMS11, KME18, KLK13, Kim18, KUS19, KHH10, LJ18, MS14a, MHZ18, MPTR12, MHOG18, MNC12, Ng12, Oni10, Oni12, SSP17a, SZS10, SLZ11a, SLS11, SLZH12, Vik13, WFS13, XLGA12, YW11a, dSSF16b, dSSF16a, SSP14]. ion-covalent [ABS13, AB16a]. ion-neutral [FBRBR12]. ion-pair [SSP17a]. ion-stabilized [KUS19]. Ionic [BWW10, AFC10, AVG19b, AVG19a, Ber13c, Bu12a, DLZ11, HFL17, KMS11, MFK12, MHOG18, ND10, R119, RF10, WZZL10, XWC10, ZPZ15, dOLdV13]. Ionization [MAPS18, VAT12, AB12, CHH19, DLCB15, DVP18, FM11, GZMC11, HM13, Kit17, LDKB15, PUV11, PM16, SVPTM10, SOM10, TGRP19, VF13a, YÇ011]. ionized [Glu13]. ionochromic [FBU11]. ions [ASHF13, BMTT11, BPK11, CCM08, DSC11, DP16, FBRBR12, KWL15, KWWH18, KLK13, KFY12, L12Z10, MGK11, NC11, RP16, SB16, SKL10, WLG11, WHM14, Y12, ZCG10].

IR [KK12a]. IQA [JNY17, MC17]. IQF [MC17]. Ir [ZZJW13, BBR12b, BW18, CWF11, DSD18, HMM13, KB110, MK11, ÖED11, R18B, RDB19, VPFD10, ZQJC10, SHW13, TGA11].

Kinetic-energy-density [SFC16]. kinetic-energy-releases [Han19].
kinetically [fxxBhD19]. kinetics
[ACMRN10, BMB12, BLM+12, CdAFS+12, CodF+11, DS12, EML+11, HWHZ11, MXC18, MCC12, MPRCEG12, MML+11a, MLB+12, MMM+12, PRFR17, RLW+13, Var14, WIL14, ZZW11]. kinks [Yak10]. Kirchhoff
[Cin11a, LSW19, LWY19, PR10a, Pal10, PR11b, PR11a, PL18a, WZ10b]. Kitaev [TSS+15]. KOH [VLK+11]. KOH/DMSO/CH [VLK+11]. Kohn
[AT18, BW18, Bar11, Gan14, KiSM+10, KFJ+18, LB14b, Lev10]. kojic
[LJ16]. Kr
[KDOR17, EAV16]. Kramers [BMB18, Bar11, Gan14, KdSM+10, KFJ+18, LB14b, Lev10].
kynurenine
[BS11]. L
[CCL+10, DPDR11, MLW10, ZQJW13, WHM14, KSG+12, PUH+11, QTCL10, ZYL+13]. L-
[PUH+11, QTCL10]. L-ascorbic [ZYL+13]. l-cysteinate
[WHM14]. L99A
[DFF+13]. L99A/M102Q
[DFF+13]. LaAlO
[Oni10]. labile
[YIY+13]. laboratory
[IM15]. laboratory-
[IM15]. ladder
[CMI14, Jan13]. ladder-like
[CMI14]. Ladik
[XTLA14]. LaF
[LAN10]. Lagrange
[Mit11c, KRC+16, OPC17]. Lagrange-mesh
[OPC17]. Lagrange-type
[Mit11c]. Laguerre
[SMOD11]. Lamb
[Rit12a, Rit12b]. Lamé
[MFLK10]. landscape
[DVC14, PP14]. landscapes
[AG10b]. language
[Tch16]. LaNiInH
[OA12]. Lanthanide
[XYL+18, FS11, OAC17, SSW16, TG13, VBKE18, WLG+11]. Laplacian
[CWW12, LGL+19, LZZ19]. Laplacian-based
[CWW12]. Laplacians
[LWY19]. Large
[DFF+13, SN15, BHMN19, BBD+12a, BBD16, CKYR18, DFV+12, GFRG11, HSS18, KP11, KYH+13b, LSKM19, MSS11, Mit11c, OCL+18, PBB15, QXS+15, RAMB18, TY17, Tok16, UDS19b, XXJ+16, YFY17, ZWSF16]. large-amplitude
[XXJ+16]. Large-scale
[DFF+13, SN15, CKYR18, RAMB18]. larger
[JLL+18, MSNP18, RVNP12]. Laser
[BN11, RP11b, DLCB15, GV19, GRLA18, HYH+10, IAA15, NWQX11, SRPD16, SVPTM+10]. later
[Mur12]. lateral
[LEU+11, SIT+12]. Latin
[CJBMMP19, GRGRRHT19, MCCGM+19, MNCV19, RA10b]. lattice
[DTFK15, Ng12, PKH13b, VBC+12a]. lattices
[DB13b, VBC+12a]. law
[BR10, BR16]. layer
[Kim18, RTG+19]. layer-structured
[Kim18]. layers
[ATS15, Dw13]. laying
[KHH10]. LCAO
[Nal13]. Lck
[XFW+14]. LDA
[Fuk12]. Lead
[VDG13, CAA19, MW15, Per10b, VVY18]. Leading
[LG12, KMS+11, YY18a]. Leading-order
[LG12]. learned
[LSP+16]. learning
[BR15, CLKD15, FLvLA15, MJSC18, NDLC19, Rup15a, Rup15b, SKLC19, STM17, vLRRK15]. Lee
[LG16]. Legendre
[Win10]. Leibler
[LSS19, LNV+18]. length
[Mar11, PE11, RKCK19, Sch10b]. Lennard
[CAPL12]. lesion
[SM13]. lessons
[PR10b]. Letter
[HS15, PS14, Sha11a, dFR15a]. Letters
[CK13, COP16, Lad14, Lun13a,

Lobatto [Rom10]. Local [AKR12, FSST16, IN15, RB18, ZXY13, AT1+14, AK11, CCL+16, DNKCS+12, Fin17, FKC12, Glu13, ISN13, KK12a, Lya14, MDNDO+16, OS10b, OPAVM18, PK13b, PSPS11, RPBB11, RPVM10, SMGZF19, SN15, SACA18, Zha17, Kut13, YSS+10].

Locality [RCP14, LNV+18]. Localization [GB10, AOT+18, AT18, BEM12, BL10, BL11, GNM+12, KC18, MGB18, MFLP12, OAT+13]. Localized [ABS13, NB19, AEKGZ12, ALK18, BMB10, IK18, PABS16, SSB19, DG19].

Lobatto [Rom10]. Local [AKR12, FSST16, IN15, RB18, ZXY13, AT1+14, AK11, CCL+16, DNKCS+12, Fin17, FKC12, Glu13, ISN13, KK12a, Lya14, MDNDO+16, OS10b, OPAVM18, PK13b, PSPS11, RPBB11, RPVM10, SMGZF19, SN15, SACA18, Zha17, Kut13, YSS+10].

Locality [RCP14, LNV+18]. Localization [GB10, AOT+18, AT18, BEM12, BL10, BL11, GNM+12, KC18, MGB18, MFLP12, OAT+13]. Localized [ABS13, NB19, AEKGZ12, ALK18, BMB10, IK18, PABS16, SSB19, DG19].

KJ16a, KJ16b, Kit14, Kit15, Kit17, KFS13, KFJ+18, Lan10, Lat13, SHS+13, YKM+15]. Matrix-covariant [Luz08]. matter
[AGNS14, BL10, Ném14, OK16, RNdA+10, TH12, ZXY13]. measurement [Ezz10]. measurements [Bra19, KDA+11, ZPM10]. measures
[Ale13, DTPC17, IOO18, Kan18, LS17, LSS19, Lat13, LRMAA19, Luz13, MR18b, SLG11, YOS15, ZYL+14]. MeB
[CF11]. mechanical [CF11]. mechanisms [CGIAI12, LLF17, LFTL18, PWL10, XZG18, AGNS14, CWZ10, FTB11, HLJZ11, HZZ+19, HNBS18, HYZ13, JLS13, LNGW14, LD17, MXC18, MMP+18b, MB12, NZL15, OD12, PTS+11, PRG+10, RFEGPP+16, SYK+12, SSK+12, SS18a, VHTEG15, WLWT12, YSS+10, ZPB12, ZMZ13, ZSHL16]. Mechanistic
[Buc12b, GRT18, LTL18, LKZ+16, NPI8, SGL19, WRW+18, dSM19a, AASU+17, AEAS+19, RNdA+10, VPOG19, dLIAI+12]. mecha
mechanochemistry [QBRA18]. mediated [CF11]. mediated [Dau16, FDMR11, GWM19, WTP+19, ZL10]. mediating
[ABTW14, BBKO16, MSK11, WvRSW+11, Zha14]. membrane
MMG15, MdAdCS12, MMM16, MR11, MAF19, Mit11a, MBSMJ1C18, MAA10, MB12, NZ13, NL11, Ols11a, Pon19, Pul11, SBMM11, SY10, SA11a, SSB12a, SN15, SGH10, SLZ+11a, SHMR11, Szc18, TKN13, VAT12, WVL17, XLGA12, Xu16, Xu19, YKN13, YŞÖ12, ZE18, ZCG+17, ZL10, SP19.

[Agb12, Ale13, Ali19a, ACL12, AT18, BMK14+14, BdTG11, BCHN16, BRS10, BAX19, BDG17, BBB16, BB10, Cam12, CM17, CPL15, CRSB12, CKB18, CB19, CK17, CF17, DIOG12, DK13, DSRGD12, Dil13, DCR10, EML11, EMS16, GFB12a, GMR18, Gin10, GS11, GHP11, HRT12, HMH13+13, HST13, HNBG15, HYH18+10, HMA18, Jen13, JMX15, Jeo18, JZP17, JCCZ12, KBGC12, KBG17, KKL16, Kim16, KKH13, KKS11, KKT13, KKT14, LKDC11, Leh19b, Leh19c, LHX19, LSKM19, LLP17, Luz12, MSG16, MCE11, MK10a, Mar12, May14, MFLK10, MCL11, MGB18, MSM16, Mit11a, MB15, MJ11, MCK17, ME11, Na15, NS10b, OKK10, OA13, OD16, PL11, PWW18, PKK14, PWP13, PB10, Puz16, Puz17, RBGGM18, RGT11, RWW19, RC11, Roy14, RAK10, SGB11, SD16b, SSKS12, SA11a, SKG11, SMEH15, Sha18, SB16, SMR14, SRN19, Sto18, SYY16, Sut12, SCZH16, SV11, THL15, TK16b, TH12, TXK19, TFMC19, Tou11a, UGW18, VO11, XHZXXZ10, YZZ16, YD17, ZS11, ZDF13, ZP16, ZCC11, ZZZ18+18, ZS12, ZI19, dSCC12, dSTH17]. Møller [RS11a, BVA14, NMIP14, RS09, TH13]. molten [BM10, DLZ11]. moment [AM10, Ber13a, DPRK12, GI11a, GI11c, LMC19, MD11, TW10].

Momentum [SH19, ALRA10, Ash18, AKR12, HSN18, MOY13, TCG17, TÁ10, YOS15].

Moniliophthora [PTD12]. mono [Buc12b, DHYC19, Jac12, MMR10, PS13a, ZQXP17, BL10]. monoacetylides [DD17].

monoamines [MBTVR12]. monoanions [CYL19]. monoatomic [Bar11].

monoboronyl [MLK17]. monoclinic [DWX16]. monocyclic [Du12].

monohalogenated [MNV17]. monoxide [AKC10, Hog13].

monolayer [UDS19b]. monolayers [KC19a, MDP12, RZC13, TTM16]. monolithiated [WWL11]. Monomer [Cas15, BHA19, JWG12, MM13, BMR13].

monomeric [Rua10]. monomers [MBA13, UJSJ13]. Monomeric [ZW15, GZW16, ZCTG18].

monomolecular [MOSK10]. Mononitride [DSH13, HD11, KLE19].

monooxygenase [SSI10]. monophosphates [PAD10]. monosulfur [WJ11].

monovinyl [dLIA12]. monoxide [AKC10, Hog13]. monoxides [TG13].

Monte [ÁFV12, ABG12, ANC15, ASK15, Cal10, CKB19, CCC19, CP16, HCH18, Hog13, HBU4, HM12, JCCZ12, PDR14, PSI18, RCGLV14, SGC13, SCBP17, Wag14, WCM14, ZLR15, ZCC11].

Mostar [ACT19]. motif [SLZ12, YD17]. motifs [CJMC19, KUS19, Kry10]. motion
[Cam10, DKR10, KCDC15, KC18, MMCN+11, MMSC19, SRPD16, Sut12].
motions [HZW18, XXJ+16, YYW11a]. motors [OWD18]. moving [FAFRi2].
MP2 [KBMM10, LKWL11, NMIP14, yOITn15, RSM12, SZ11, Tav12, Yu13].
MRCC [NYS+10]. MRCI
[DAr+11, LJSS12, Mit11a, ONBP11, SLZ+11b, SLZ+11a]. MRI [GSPR19].
Mu [GJ18]. Mu/H [GJ18]. Multi [KKT13, KKT14, Koc13a]. multi-center
[Koc13a]. Multi-component [KKT13, KKT14]. multiband [PK13b].
Mu [GJ18]. Mu/H [GJ18]. Multi [KKT13, KKT14, Koc13a]. multi-center
[Koc13a]. Multi-component [KKT13, KKT14]. multiband [PK13b].
multidimensional [Kha16, SIB+13]. multielectron [Kry11b, Kry12b].
multiexcited [SCZG12]. multimode [RGPZD13]. multiobjective
[SSB12a]. multiparameter [GMGRMP12, IHH16]. Multipartitioning
[RS09, RS11a]. Multiphoton [NWQX11]. Multiple
[HHGqZZ17, PBM10, PP14, DB12, GFReG11, Ish14, JW19, MGB18,
NMV+14, RWK+19, YGLL10]. Multiple-pathways [PP14]. Multiplets
[BMB16]. Multicentric [LSW19, LWY19, PL18a]. multiplicities [Nal12].
multiply [HDOS12]. multiply-valued [HDOS12]. Multiple
[Tal11, LBW11, YSO12]. multipoles [TH12]. Multireference
[CYLL11, KB19, LP10b, RMG+19, SWS12, BVP13, GSy11, HFD11,
JNz+14, Kon10, MDaCS12, SYL+18, SLZ+11c, SZL+14, dSM19a].
Multiscale [AHC+18, MAs14, ZP16, CLKD15, CwCW+11, MGN14, TTM16].
Multistep [SAS+12, Si16]. Multithreaded [MAF19]. multitopic
[SSP+17a]. multivacancy [FMF18]. multiwalled [LV19, MNS11].
multiwavelet [HS11a]. munchêne [GHCMCMQ17]. muon [RAGM10].
muonic [UGWL18]. muscimol [Ser11a]. mustard [VSMK15]. mutagenesis
[CSVCB12]. mutagens [MLPT10]. mutant [dAGNJT12]. mutation
[SSB12a]. mutations [DMG10, MFR10, MG10]. mutipathways [SWS+14].
Mutual [Mat02, MAT19, Mat10]. Mycobacterium [ST15]. myoglobin
[CHSO13].
[MPB11, IAA15, KYS13, YWR+18, ZQCG10, dARAV12]. Near-exact [MPB11], near-infrared [YWR+18, dARAV12]. near-IR [ZQCG10].
[DSC+11, yBZIC18, CDS+18, IAA15, Kry10, MMRR10]. negatively
[DCB11, KWWH18]. neglect [HVR18]. neglecting [Fe19, Na19].
neopentyl [MML+11a]. nested [Cal10]. Net [RLZ12]. netted [DW12].
network [Beh15, BGK16, FCC11, MDC15, WZX15b, dAVdM17].
network-based [MDC15]. networks
[CRA+11, CL08, LFF+10, LZZ19, MPD+15]. Neural
[BGKK16, MDC15, Beh15, CRA+11, CL08, FCC11, LFF+10, WZX15b].
neuraminidase [PCF+18]. neuraminidases [YYW+12]. neuropeptides
dSSdSGA12. neuroneutral
[RFMC19, BCGC12, BGMD15, CAZ+11, DHYC19, EPS+16, FBRBR12,
Gra11, MMRR10, ONBP11, PSPS11, RTG+19, TCM+12, Val17, ZQCG10].
neuron [CD15, Kar12c, Zag11]. neutrons [Kar15]. newly [VVY18]. News
[BDF+16, BHH+13, CYC+15, DOE+14, FMM+14, KRC+16, LCZL15,
MML+16, MRS15, NKK15, yOH15, QXS+15, SDP+16, TY17, YAF+15,
ZH15, ZWSF16]. NEXAFLS [LR+11]. Next
[BAX+19, HMA+18, TXK+19, KRH13, LHX+19]. Next-generation
[BAX+19, HMA+18, TXK+19, LHX+19]. Ng [SMC18]. NH
[AM18, yBZIC18, EMSB15, MPRCEG12, WZM+13, XWC11, XF19,
CCL+13, CRSB12, CCL+10, LV12, LLG+12, MWH15, MPRCEG12, OKR12,
RNB+10, SLZH12, SW12, XZL+12, RRVJ10, RB11b]. NH-tautomeric
[CCL+10]. NHC [Pam16]. NHS [NRP+11]. Ni [AO12a, KYLC19, YL11,
AAA12, BXR+13, FBD+13, GP13b, GZMC11, Kim18, LWX+14, MRT11,
NKWT19, SFA19, SLC+18, SLZ+12, WJL+10, WRW+18]. Ni-
[Kim18]. Ni-based [GZMC11]. Ni-loaded [LWX+14]. niacin [PDNC14]. NiAl
[CJOOW11]. Nickel
[ASD18, LSCMSFC19, DZO12a, SDR+13, VSMK13, TFA10, dCSdDMC13].
Nickel-substituted [ASD18]. Nicolaides [Ban12]. Nicotinamide
[MDP12]. nicotine [SGK12]. NICS [XWC10]. Nikolai [Pup11b]. Nile
[FSBA12, MRA11]. Nimrod [Brä12]. nine [PMEP19]. nitramines
[MOSK10, OB19]. nitrate [HM11, ZL10]. nitrates [HZZW11]. nitrification
[LLW+11]. nitric [BGMD15, MNE+13, ONBP11]. nitride [CJC19, Che13,
DHZ11, ES17, ETS18, FZL18, GWG+14b, GAMM10, Ish14, TTT18, WG18].
nitrite [CMNC11, NAK+17, YNL18]. nitriles [RFN+12]. nitriles [BL10].
nitro [CLY12, WGLX10, ZCC11]. nitroaniline [KC11]. nitrobenzene
[SS18]. nitroethyrene [BBAL12]. nitrogen
[BHMM19, BS011, EAV16, EM19, GZ14, HGZ12, HNBG15, KC19a, LZW+15,
M514b, PPDC11, PP19b, RD14, VKF+19, WLL19, YZZ16, ZKRR11].
nitrogen-containing [HZG12]. nitrogen-doped [EM19, HNBG15].
nitrogen-heterocyclic [GZ14]. nitrogen/phosphorus [BHMM19].
nitrogenase [CR18, VPOG19]. nitrogens [XxhD19]. nitroguanidine
[DGR+16]. nitrones [ABM+19]. nitropentaamminecobalt [MMSC19].
Nuclear

nucleic [Kuv10, TBST10, YDW13, ZDZO10].
nucleobase [ZKWZ17].
nucleobases [CAO18, Cys11, DSVP15, KZA+17, LCH14, TD19, WG18].
nucleophilic

nucleoside [HHY+18, VFCSC17].
nucleosides [BS14].
nucleotide [Lak10].
nucleotides [LQZZ12].
nucleus [FAFR12, SL13].
number [Bib13, GGJD13, Kon11, LSW19, LZZ19, MK10a].
numbers [MHHPR+17, MKM11].
numerical [FKBG19, HV11, JW18, AE¨O12, BKM15, CLC10, HYZS12, HYZS19, Jør18, Leh19a, Leh19b, Leh19c, MM10, PUGSF18, RZSZ18, Sit15, TD11, Zak13, RW11].
nutshell [BW13a, BW13b, Rup15b].
Nylon [BWB+18].
nystatin [VGS10].

O [AM18, BPG+10, BZZ15, BJ17, BSPK11, CS17, Con10, Den13, DZO11, FBRBR12, FTB11, GC18, GCD13, HLMO11, HSYM11, Kal18, KKL13, KSSK16, Kim19, KSST12, KLZQ15, KRG+13, LFP+10, MGA+13, MMA+13, MGD11, MGP16, NTLN10, OPP+14, PL18b, QSLY10, RFEGPP+16, RNB+10, RGR12, SB18, SYK+12, SK14, SA11b, SL11, SSP14, SZZZ11, SM17, SW12, VPFD10, WSML16, XF19, YIY+13, YLY+13, ZYY+13, dHLdS12, ACMRN10, BAMA12, BXZ+19, CdAFS+12, CJMC19, CTW12, Con10, DMMG10, DCHC11, EML+11, Esr18, Fuki12, dGNB10, HSYM11, LLL16, MCC+19, MKW11, MOH+12, PWL+10, PC16, PRPU+13, PL18b, RSL10, ŞBAT16, SMEH15, STL12, SLHZ12, STU19, TSL11, WZC+12, XCL+18, YY18a, ZCG+17, ZPB12, ZSHL16, dOdCMuALR11].

Obtaining [O1s [LdBF+12]].

Obtained

[CDSK12, LTdSJ+10, LSR+13, MPM15, Mas10, OK16, UV18a, ZZZ+18].

Obtaining [SY10].

Occasion [RA10b].

Occurrence [DKR10].

Odd [LPI17, Var14, She12].

Odd-hydrogen [Var14].

OEC [YIY+13].

OEt [DPDR11].

Off [CN12, MSNP18].

Off-center [CN12, MSNP18].

OH [EMSB15, EMS16, FRNM12, KLZQ15, LZZ+11, MBA+13, dMOB12, RWW+19, SW12, VV18, VK+11, YIY+13, YSK+12, ZCG+17, IAyL14, ACMRN10, BAMA12, BZZ15, CAH12, CRSB12, DS12, DSZB18, HWZH11, KZZ13b, LJK15, MNC18, MK11, MCCN+11, NP18, NL11, dMOB12, PGG12, RGR12, Sch12a, SMEH15, SD12, SKM11, SM16, SZL+15, TIN13, TBH11, WXZ+11, EK10, RRVJ10, dSNBG08].

OL [VLK+11].

OLED [OAA19].

ol [HNH+12].

ol [HNH+12].

OLi [YLA12, SM17].

oligooacene [Kim16].

oligooisothianaphthenes

One [Ber13a, CG12, Dum12, LCH14, Bud12, CAZ+11, CM15, CLY12, CYK17, FCS13a, FCS13b, GTR11, GH1e, GAMM10, GS10, HZS14, Kri13, LW15, Luz11a, MSC10, MBBT+12, PVS12, RZSZ18, SC12b, SZZ+19, SW+14, TAY11, VBC+12a, VBC+12b, WWCl7, WLZ+12b, YF16, ZZZ+18, TC12].

One- [CG12, WLZ+12b]. one-center [HZS14]. one-dimensional [CYK17, MSC10, RZSZ18, VBC+12a, VBC+12b]. One-electron [Ber13a, Dum12, LCH14, CM15, GTR11, GS10, Kri13]. one-mode [PVS12]. one-parameter [FCS13a, FCS13b, YF16]. one-photon [Bud12]. one-pot [LW15]. one-to-one [CG12, WLZ+12b]. one-two [TC12].

Onicescu [OH19]. ONIOM [EFO11, EO11, KYH+13b, MTL+12, ŠK18].

ONO [XX12]. onset [LB14a]. onto [CA17, CAO18, SFW12, SRS+17, Sta10].

OO [SBSD18, SSK+12]. OOH [NP18, PGG12]. OPAL [CwCW+11].

Optical [LRKM10, YBMK12, AMK10, ABA11, BF11, BSM+15, BSO16, CPL15, CZLD17, DWX+16, FSQ+11, FZX18, FBU+11, GAPK+19b, GDM+10, GPK18, GRCATG19, Hat13, HWL16, HWW18, HSS18, IGK11, JdOS16, JFDD10, KC11, KPL+17, KL11, KMU+13, LYW11, LZW+15, LYL+12, MPC10, MNP19, Mas14, MPJ12, MFZ+18, MA11a, MMF+13, NKF+13, NMHPVG12, OGVSG18, RKM12, RRRV19, ŠBAT16, SSK12, SLS+14, SM17, SYQ+10, WLZ+12a, YK11, YLWrL12, YHL15, QS+10].

open-close [HNH+12]. Open-shell [CP16, JEA13, NSN17, QSY+15, RAMB18, Sha18, YMY+13, dGR14, GXZ+14]. open-source [DSM+19b, GCK+17, QSY+15, RAMB18]. Opening [TFBG14, AMMB+18, BAX+19, KMS+11, MBSMJ18, QB15, TXK+19].

openings [KUTS10]. OpenMP [WMK+19]. Operator [BPL13, GPVC10, RSM12, RAN18, Sk17a, Sut12, VVN+16].

Optical [LCR10, YBMK12, AMK10, ABA11, BF11, BSM+15, BSO16, CPL15, CZLD17, DWX+16, FSQ+11, FZX18, FBU+11, GAPK+19b, GDM+10, GPK18, GRCATG19, Hat13, HWL16, HWW18, HSS18, IGK11, JdOS16, JFDD10, KC11, KPL+17, KL11, KMU+13, LYW11, LZW+15, LYL+12, MPC10, MNP19, Mas14, MPJ12, MFZ+18, MA11a, MMF+13, NKF+13, NMHPVG12, OGVSG18, RKM12, RRRV19, ŠBAT16, SSK12, SLS+14, SM17, SYQ+10, WLZ+12a, YK11, YLWrL12, YHL15, QS+10].

optimized [ANC+15, KPH+12, SXH18]. Optoelectronic [AFA13, JR19, BHAH+18, KA13, MANP17, OAA19]. orbit [Ash18, Ber13b, BDR12, CYL+18, KV19, LWL+12, MLK17, MC18b, RS12a].

Orbital [BT15, Kon10, MMM20, AOT+18, AK17, Ash18, ABA11, Bar11, CPF+11, Cin20, DVDBM11, Fin17, FA17, FMPM+14, FC19, GR10, Hog10,
HVR18, IKN13, IK18, JH15, KK14a, KLK13, KCK14, Kit17, KKT13, KKT14, KPH +12, KUY16, LB18, MSNP18, MMM16, MAF19, MFLP12, MSY +12, MAA10, Mur12, Nag15, OT14, OAT +13, Pir13, PU14, PNC19, RMC19, SIM14, Tal11, TD11, Tsu15, XHZXXZ10, YPDW14, BT17.

orbital-free [AK17, Fin17, FA17, Nag15]. Orbital-Specific [MMM20, Cin20, MMM16].

Orbitals [GZSMFN16, ABS11, Boe12, CCL +16, CFV18, CC12, DZO11, EBR11, FK18, Fuk12, GZF14, GW13, GE12b, LSR +10a, LSR +11, Mat02, Mat10, May14, Mit11a, NZ13, Nik11, NB19, RMG +19, RRCO11, RLZ12, SOM10, TH13, Tsu15, WWL17, YZZH15]. Order [AF16, ABA11, BR10, BR16, BVA +14, DAC12, DCHC11, Dun15, EG10, FSQ +11, Gin10, HSS18, KC11, KK13, KM12c, LKDC11, LCL +10b, LPG +12, LYL +12, LG12, Luz08, MSNP18, MMF +13, NKF +13, PDR +14, Per10b, RL12, RS09, RS11a, SN15, TH13, UV18b, VRO +12, WLZ +12a, ZSQ +10].

order-disorder [PDR +14]. ordered [CPL15, HW12]. Ordering [GA19, AM10, GE12a]. orders [KK14a].

Organic [SA11b, WTW +15, BF11, BDG17, BWE16, CKL16, FM16, GNM +12, GRCATG19, HKZZ15, JPPA10, KMK +16, KSO19, LSR +10a, LSR +11, LV19, LYS +19, MXC18, MPMCM +11, MUNZVR12, MAP +10, MCL11, MLW16, NZVR10, OPAM18, PFDm13, PWY +18, PETB18, Puz17, RdPW +14, SFL +10, SB16, SAHAA16, TCA10, Val17, WWB +14, ZB18].

Part
[Ban12, GI11b, Jør18, Mor13, BR08, BR12a, For12, GI11c, RB08, RB11a].
Partial [MCKD11]. partially [AA11]. Participants
[Ano12r, Ano10a, Ano10b, Ano10c, Ano10d, Ano11d, Ano11c]. particle
[ATPRV11, BPL13, DTF+11, FMPM+14, Kon11, MGM11, RMC19, SK17b, VATPR11, VAT12]. particles [SKLC19, ZJS13]. particular [MT10].
Partition [GORW19, FC19, Tou11a, ZZZ+18]. Partitioning
[Vyb08, MBSMJ18, Ols11b]. partner [MPB11]. partners [KB12]. Passage
[Zak16, Sat11a]. passing [LW18]. passion [Pup11b]. passivated
[GMT16, SS18b]. passivation [MSVMCI10, TCCI10]. Path [RCGLV+14, YK13, HFBC19, KSST12, Mak15, NKWT19, SGC13, WB17, ZLR15].
path-integral [ZLR15]. pathogenic [KRH13]. pathway
[KRG+13, ZJC+13]. pathways
[ASD14, JL12h, MJ16a, PP14, RBZ15, SYK+12, TKS11, VC13]. pattern
[BS14, CD12, GPM+15]. patterns
[DTFK15, LBDV16, MK12, MC18a, SM13, ZPR10]. Pauli
[CM15, CM16, Fin15, Fin16b, FDA16, LSC+18, Nag10, PM16]. Pb
[NFQ+11, Per10b]. PBEint [FCSI3a, FCSI3b]. PBEP86 [FYF17]. PbI
[VVY18]. PCM [AMMK11, PS10a, VSN+11, XX12]. PCMSolver
[OPS10, Tch16]. penetrable [RBVAG18]. penetrating [KMT+12].
penicillamine [MVG18]. penta [BMX+19]. penta-2 [BMX+19].
pentaaqua [dCSDdMC13]. pentacene [MIN13, IMS+13]. pentacene/C
[MIN13, IMS+13]. pentacoordinate [XCL+18, Yam10]. Pentagon
[KK11b, LYW+19]. pentagonal [SALK19, WZ10b, Yam10]. pentahalogeno
[ZFC12]. pentalene [RALK18]. pentapeptide [MRT11]. Pentapnictogen
[CYL+19]. pentazolides [XZZ+10]. pentoxide [Den13]. peptide
[CF17, FMKJ14, KMT+12, MAW+18, QZH13, QTCL10, SSK11, Sch10b]. peptides
[KyH13a, MAD12, MLB+10, SW12]. perfect [UDS19b].
perfluorobenzene [LZD+11]. Performance
[DCDD10, KME+18, LORR+12, LDZG16, RAMB18, Zak13, AF19a, AM13b, BSSS19, BHH+13, CKB+19, DCFD10, DGA+13, FV11, FB17, cLqFtW+14, LZZ+13, Lya19, Mar12, NKKN15, dMPRF18, dSdS13a]. performances
[ADR+18, TCA10]. perhalogenated [YZZ16]. perhydroxyl [YM13].
Pericondensed [BR08, BR12a]. Periodic
[BCHN16, DMBJ15, Fuk12, Gar08, GMT16, GI10, KBGC12, Kut10, LPO+12, MMA10, NL11, RDB19, SW10, Tan13, TGRP19]. periodically [Xu16].
Periodicity [IKS08, ISTM13, IKS10]. periododane [TM19]. permeability
[Pit12]. permutation [Fer19, Nas19]. perniciosa [PTD+12]. perovskite
[Oni10, Oni12, OH12, OH13, VVY18, WTP+19]. perovskites
[Kan17, KSO19]. peroxidase [ZST+10]. peroxide
[FMCA11, NEEV15, SSP14]. peroxides [LDMCdA+12]. peroxytungstates

platinum [LPOP12, MM13, PEA+12, PP10, XZ11, ZCX+16, OAA19]. plausible [VFSCS17]. Plesset [BVA+14, EG10, NMIP14, RS09, RS11a, TH13]. plot [MAW+18]. plus [PS10a, PSGK17]. PM3 [PI13]. PMe [BAA+18].

plausible [VFCSC17]. Plesset [BVA+14, EG10, NMIP14, RS09, RS11a, TH13]. plot [MAW+18]. plus [PS10a, PSGK17]. PM3 [PI13]. PMe [BAA+18].

porphyrin-based [CJBMMAPR19]. porphyrins [CMR13, CJSNL11, GLPA10, MSOV13, QJ13, TTD13, VC13, Yam11].

portable [Lya19]. portisin [COfF+11]. Pöschl [HR12, HFZ12, JZP17].

posed [BMB12]. Position [YOS15, ALRA10, KPL+17]. positions [MAT19, SY10]. Positive [FBRBR12, MMRRA10].

positive [FBRBR12, MMRRA10]. positron [KKT13, KKT14, OT14, SSA18]. positronic [GS11, NGS11, ZS11].

possibility [FBRBR12, MMRRA10]. possible [BMB12, KKC14, Kar15, LDZG16]. Post [SZ11, MSNP18, SYY16].

potassium [Ish14, MMV+19]. potassium-iodide [MMV+19]. potency [DKZ+10].

Potential [BAP12, Ber13c, DHZS11, FKBG19, LDADB+15, McC13a, MMM20, SB16, XZZ+10, ZLR15, AB16a, AHN16, AC19, Agb12, AOB12, ART08, AST19, AS15, BPVDB11, BP13, CDSK12, CJBMMAPR19, CNBPR11, CSS16, CYL+18, CB19, DTVP+12, DB12, EMK14, Fin15, Fin16b, FA17, FB17, FMMD+10, FB+11, FNT16, Fuk12, GSZ10, Glu13, GOWR19, Haj18, HDOS12, HR12, HYZS12, HYZS9, HJRO13, HNBBG15, HFZ12, IHH16, IOO18, JZP17, KC18, KMRG13, KMM16, KRG+13, LFF+10, LV12, LKJ13, L118, LDZG16, MPD+15, MDC15, MCP10, MOE+11, MOLF11, MGD11, MPRLCEG12, MPT11, MPTZ13, Nag10, NTCG18, NMP14, NMPVU12, OOI+19, PGGMRP10, PML+11, PSV11, PM16, PKK+16, PSC17, QD10, RSL10, RCP14, RDM+11, Roy14, Roy15, Roy16, RS13, SAS+12, SCLCPB12, SMOD11, SM11, ST15, SXH18].

potentially [CWL+13, FGD18]. potentials [AGJ12, BW18, BC15, BC16, Beh15, BBA+16, Cal10, Cin20, ESI13, GMGRP12, GH11, HH13, KH12, KWWH18, Kry12a, K13G, LP10b, LH15, MM16, MZST16, MPB11, PDR+14, PGMGR12, PMGMR15, PM16, RS13, SST+12, Tug13, VLG12]. power [LSC+18, CKB+19].

Prediction [DFV+12, LC12, SGB11, SSP14, Ali19b, BB16, BBA+16, CPL15, DGA+13, GB18, LCL+10b, LP+12, PCD14, PWY+18, RMLPPG16, SLC+18, SRAS16, SBKJ18, VPD10, VRO+12, WZ15b, XYL+18, YC13, ZYSW17, ZW15, dOLd13, MGD11]. predictions [Bou11, Bou12a, KKH18, TKS17, WLL19].

Preface [ACL10, ABC12, Ano13-49, BSS14, DC10, DBMPB11, HLD514, HB18, NYA+13, NT15, Rei15, RSV10, Rup15a, RA16b]. preference [EAH13, JN13]. preferences [KM12b, LB18, MAW+18, NRS+11, NJA+12].
AFM$^{+10}$, AMK10, AMAM18, ABA11, BL16, BHAH$^{+18}$, BSM$^{+15}$, BGKK16, Bon17, Bou12b, BH10b, Cap16, CodF$^{+11}$, CGM12, CdLdSC18, CWB$^{+13}$, CWW$^{+16}$, CZLD17, CKB18, CB19, CSMZ10, Cor16, CADSG18, CHV14, DKS11, DCFD10, DA$^{+12}$, DWX$^{+16}$, DHYC19, DWGX12, FZX18, FZC14, FPBMHG12, FBU$^{+11}$, GAPK$^{+19b}$, GLF$^{+12}$, GWZ$^{+14a}$, GMT16, GMR18, GB13, GKG18, GRCATG19, GMM$^{+18}$, HWL16, HWWW18, IGMK11, JA12, Jac12, JL12a, JWG$^{+12}$, JR19, Jou13, JFDD10, KBGC12, KA13, KV19, KRK$^{+17}$, KMF11, KCK14, KJ15, KSSK16, KPL$^{+17}$, KL11, KLYC19, KSY$^{+11}$, KP12, KLZQ15, KMK$^{+13}$, KM11d, CMP19, LRKM10, Laz14, LZI12, LVdSdM14, LCH14, LZB10, LW$^{+11}$, LX$^{+14}$, LZW$^{+15}$, LC16, LL19, LZZ$^{+13}$, LZZ$^{+14}$, LZ$^{+17}$, DVMC19, LHL$^{+15}$.

properties

[MLY$^{+16}$, MMP$^{+18a}$, MCCGM$^{+19}$, MKH19, MSG16, MZ$^{+13}$, ML$^{+11}$, MANP17, MNP19, MPT12, MP$^{+11}$, MF$^{+18}$, MG12, Mil12, MS17, MHHPR$^{+17}$, MA11a, MA11b, MLD10, MBA$^{+19}$, MDF$^{+13}$, N15, MShi$^{+11}$, MC18b, N$^{+14}$, NBI$^{+10}$, NMHP$^{+12}$, NB19, NDM$^{+12}$, OAA19, OGV18, OCB$^{+10}$, OK19, OMD13a, Pan19, PP$^{+19a}$, Pi19, PCD14, PF$^{+13}$, Pog12, PAK$^{+15}$, PMAP$^{+12}$, PK$^{+13}$, QHS11, QJ13, QC$^{+10}$, RML$^{+16}$, RR$^{+19}$, RGS11, RZ$^{+13}$, RC11, RSC10, RBL15, SD13a, SMO$^{+11}$, SSK$^{+12}$, SLS$^{+14}$, SB16, SX$^{+12}$, SLS$^{+12}$, SLSZ$^{+13}$, SR$^{+13}$, SSO$^{+11}$, SBB$^{+16}$, SM$^{+14b}$, SM14d, SM17, SR$^{+19}$, SY$^{+10}$, TIK11, T11, T11, TBRIS$^{+10}$, TB11, TR$^{+19}$, TCG$^{+13}$, T$^{+11}$, TBRIS$^{+11}$, TFM$^{+19}$, THV$^{+14}$, TFB$^{+11}$, TR$^{+19}$, TBRIS$^{+10}$, UTTn13, VO$^{+18}$, VMC11, VR$^{+12}$, VBO$^{+15}$, WGLX10, WX$^{+11}$, WL$^{+12a}$, WL$^{+12b}$, Wan13, WDS19, Wu11, X$^{+19}$.

properties

[YK11, Yam11, YZL$^{+10}$, YZL$^{+11}$, YL$^{+12}$, Y$^{+15a}$, YBM$^{+12}$, YZW$^{+15b}$, ZZX10, ZLS10, ZR$^{+12}$, ZQ$^{+13}$, ZKW$^{+17}$, ZS$^{+10}$, ZL$^{+12}$, ZCG$^{+16}$, ZS12, ZCP11, dS$^{+11}$, dS$^{+18}$, dOL$^{+13}$, vL13, vLRK15].

properties/activities

[MP$^{+11}$].

property

[BXR$^{+13}$, CWL$^{+13}$, CJSNL$^{+11}$, FSQ$^{+11}$, GHI$^{+11}$, GMP$^{+11}$, MY$^{+12}$, MCL$^{+11}$, MNP11, Nic11, Pea11, RGT12, ZY$^{+11}$].

property-specific

[Nic11].

proportions

[Lu15].

proposed

[TCA$^{+10}$].

propyl

[CMM11].

propylene

[LS19, WML10].

protease

[VHTE15, dAGN12].

proteases

[SK10].

protected

[MC18b].

Protection

[CAPGA18, BSS15, GAI19].

Protein

[PT$^{+13}$, AGR$^{+12}$, CR$^{+18}$, CH$^{+13}$, CS$^{+12}$, DFF$^{+13}$, GSR12, HX$^{+16}$, KFY$^{+12}$, KKG12, L$^{+14}$, MYZ10, MRT11, MRS$^{+15}$, M$^{+12}$, P$^{+15}$, TYN13, TCM$^{+12}$, TH$^{+11}$, Y$^{+11}$, ZPM10, ZWL12, ZTC11, dA$^{+12}$, T$^{+11}$].

protein-coupled

[CS$^{+12}$].

Protein-nucleic

[TB$^{+10}$].

proteins

[LDKB$^{+15}$, LK$^{+16}$, NT$^{+16}$, QZH$^{+13}$, RP$^{+16}$, RA$^{+10}$, Sch$^{+10}$, TCS$^{+10}$, YSG10].

protic

[HFL$^{+17}$].

ProtNA

[TB$^{+10}$].

ProtNA-ASA

[TB$^{+10}$].

protochlorophylide

[SR11a].

protocol

[BDF$^{+18}$, CwC$^{+11}$, SCB17].

protocols

[CO$^{+14}$].

Proton

[SC$^{+15}$, DLC15, DLM12, DSZ18, FDM11, IKS$^{+8}$, IKS$^{+10}$, KAO$^{+11}$, Kry$^{+11}$, Kry$^{+12}$, LZZ$^{+12}$, LYL$^{+12}$].
MPE15, MNC12, MGP16, NMS⁺10, RY12, SPPT15, SYK⁺12, Sat11a, Tav11, Tav12, TH12, VF13a, Wan13, WJ11, XDM⁺10, YY18a, ZZ18.

[AHC⁺¹⁸, AMMK₁₁, DMG₁₀, Exn₁₁, GFRdG₁₁, MOLF₁₁, MG₁₀, SD₁₆a, SD₁₆b, ST₁₅, SLA₁₂, TIKN₁₁, UYN⁺¹₃, VHTEG₁₅, ZKW₁₇, dAGNJT₁₂].

QM/MM-ER [TIGN₁₁]. QM/MM/MD [AHC⁺¹⁸]. QM/polarizable [Cap₁₆]. QM/QTAIM [BTH₁₈]. QMMM [HCH⁺¹₈]. QR [BB₁₀, Bou₁₂b].

Quantization [HKLW₁₃, Kle₁₁, SD₁₃b]. quantized [Tou₁₁b]. Quantum [Bal₁₆, BSS₁₆, BL₁₀, BR₁₆, Bra₁₉, Brₐ₁₃, CJBMMAPR₁₉, Cav₁₃, CKL₁₆, Ch₁₆, Cho₁₉, COP₁₆, DKZ⁺¹₀, DLEC₁₅, DF₁₆, DLM⁺¹₁, DC₁₄b, EAK⁺₁₀b, EML⁺¹₁, EMEPD₁₅, Ezz₁₀, FMKJ₁₄, For₁₇b, GBZ₁₀, GGZ₁₆, HGB₀₈, HS₁₅, Hog₁₃, HB₁₄, Hop₁₅, IFT₁₃, IAK₁₃, IOO₁₈, IK₁₄, Jen₁₃, JXX⁺₁₅, KWC₁₀, KYS₁₃, KMK⁺¹₆, KYH⁺¹₃b, KUTS₁₀, LB₁₄a, LZZ₁₂, Luz₁₁b, Mak₁₅, Man₁₆, MME⁺¹₈b, MNE⁺¹₃, MBTVR₁₂, NTCK₁₃, Nic₁₄, OWD₁₈, ØEDB₁₁, PH₁₂, PWY⁺¹₈, PEBT₁₈, PKK⁺¹₆, PSDK₁₇, Puz₁₇, Qu₁₃, RGT₁₁, Rit₁₁, RMP⁺¹₄, SAG₁₃, Shi₁₃, SR₁₃, SG₁₄, SKB₁₈, SBKJ₁₈, SY₁₇, SSB⁺¹₂b, Tap₁₅, TFSRM₁₁, UJSJ₁₃, VV₁₆, VBJK₁₈, Wag₁₄, WDSL₁₄, WYL₁₃, WZX⁺¹₅a, WWX⁺¹₁, WCM₁₄, WLD⁺¹₀, XS₁₈, XZJ⁺¹₆, Xu₁₆, YM₁₂, YW₁₁b, YZ₁₂, YBI₁, ZCC₁₁, ZJS₁₃, dFR₁₅a, dFR₁₅b, dSMT⁺¹₈, ASMP₁₅, ABG₁₂]. quantum [ANC⁺¹₅, ASK₁₅, BF₁₁, Ban₁₂, BAX⁺¹₉, Blo₁₅, BGL⁺¹₆, BHH⁺¹₃, BT₁₅, BT₁₇, BM₁₆, BBB⁺¹₂b, Bra₁₀, Brₐ₁₂, Buc₁₂a, BN₁₁, CD₁₈, CKB⁺¹₉, CM₁₆, CK₁₂, CSG₁₄, CW₁₃b, Cho₁₅, CYK₁₇, Coo₁₂, CPAT₁₁, CN₁₂, Dau₁₆, DPK₁₈, DLS₁₅, DPR₁₂, Dil₁₃, DMBL₁₆, DSFT₁₇, EAH₁₃, FLCHL₁₀, FBO⁺¹₁, FNT₁₆, FSST₁₆, Gag₁₁, Gan₁₄, GWZ⁺¹₄a, GRGRRHT₁₉, GB₁₀, GS₁₁, GR₁₀, HR₁₃, HS₁₁a, HITU₁₆, HS₁₁c, HEVMSA⁺¹₉, HM₁₂, Hor₁₃, HMA⁺¹₈, IFT₁₄, Ish₁₄, JN₁₃, JHSG₁₈, JMX⁺¹₅, Kap₁₂, KB₁₂, KDC₁₅, KC₁₈, Kar₀₉, Kar₁₀, Kha₁₆, KCC₁₃, Kit₁₄, Kit₁₅, Kle₁₁, KN₁₅, KK₁₁d, LS₁₇, LSS₁₉, LV₁₉, LSR⁺¹₃, LCZL₁₅, LHX⁺¹₉, Lin₁₄, Liu₁₅b, Liu₁₆, LSKM₁₉, LEU⁺¹₁, Luz₁₁a, Ma₁₄, MC₁₁a, MR₁₂, Mān₁₄, MDC₁₅, MPE₁₅, Mar₁₃, MSC₁₀, MML⁺¹₆, MPD⁺¹₀, MQG₁₃, MPL⁺¹₁, MBTVR⁺¹₂]. quantum [Mor₁₃, MLD₁₀, MB₁₂, MGP₁₆, NC₁₁, NKK₁₅, NS₁₀b, NGS₁₁, NBZG₁₆, Né₁₄, Nic₁₁, NVPCJ⁺¹₃, NMS₁₄, NRP⁺¹₁, NJA⁺¹₂, Nym₁₄, OPS₁₀, OK₁₉, OM₁₃b, OSJ⁺¹₂, PABSK₁₆, PTH₁₁, PMGMGR₁₂, PMHM₁₉, Pup₁₁b, RP₁₁a, RP₁₁b, RL₁₂, Rei₁₅, RDM⁺¹₁, RNE₁₀, RNBP⁺¹₀, Rup₁₅a, Rup₁₅b, .]
SDS19, SDS20, SOF⁺10, SBEH11, SKHN13, SC12a, SPSA11, SN15, SK17b, SKLC19, SD13b, Sha18, She13, SIB⁺13, SHKS15, SKM11, SSA18, SGC13, Sjö15, SS19b, SFY12, SRA⁺11, STU19, SZ15, SCBP17, SPM⁺15, Tch13, TBB⁺19, TK16b, TH12, TXK⁺19, TFA10, Tri14, TB15, UTTn13, UV18b, VPFD10, VMR11, VVVB10, Vik11a, VOK⁺18, VO12, WYM15, WR14b, YNL18, YÇÖ11, YZ13,YW11a,YS13,YH14a,YW16,YLC17,YLYC18,ZS11,ZX12, ZGSM15, ZH15, ZWSF16, ZZZC12, ZWE12, ZRLV10, dHLdS12].
quantum
[dSTH17, vLRRK15, AGNS14, BMRM19, DMS⁺10, GP13a, SP19, ZBK15].
Quantum-chemical [DLM⁺11, ÖEDB11, Qu13, BF11, DMBL16, DSFT17, MGP16, Ném14, NVPCJ13, SN15, VOK⁺18, YNLD18, DMS⁺10].
Quantum-chemical-aided [GbZA10].
Quantum-classical [Cho16, Cho19, Mak15, SPSA11].
Quantum-matter [Tap15].
quantum-mechanical [LV19, VPFD10].
quantum/classical [CP11].
Quantumness [CD15].
quantum/classical [LPDR11, DQZF12, GWM11, NBL12, Pan16, CPL15, ESS13, GWM11, LL17, PCR⁺11, ZSHL14].
Racs [LPDR11, DQZF12, GWM11, NBL12, Pan16, CPL15, ESS13, GWM11, LL17, PCR⁺11, ZSHL14].
Radicals [TWHZ14, lAyL14, Buc12b, CGIAI12, DI11, DFK16, HXX15, KK14a, KDA⁺11, LCL⁺11, LVP12b, MCM12, OKR12, dMOB12, PM17, RCM⁺19, SSI⁺10, SK14, SS18a, SPSA11, Sch12a, SB16, SLZ⁺11b, SLZ⁺11c, SLS⁺12, SKM11, SWS⁺14, WTLW14, XNL⁺14, YM12, YY18a, YSS⁺10, Zha14, Zha15, ZBL15, ZLW16, ZJC⁺13].
Radicals [TWHZ14, lAyL14, Buc12b, CGIAI12, DI11, DFK16, HXX15, KK14a, KDA⁺11, LCL⁺11, LVP12b, MCM12, OKR12, dMOB12, PM17, RCM⁺19, SSI⁺10, SK14, SS18a, SPSA11, Sch12a, SB16, SLZ⁺11b, SLZ⁺11c, SLS⁺12, SKM11, SWS⁺14, WTLW14, XNL⁺14, YM12, YY18a, YSS⁺10, Zha14, Zha15, ZBL15, ZLW16, ZJC⁺13].
Radicals [TWHZ14, lAyL14, Buc12b, CGIAI12, DI11, DFK16, HXX15, KK14a, KDA⁺11, LCL⁺11, LVP12b, MCM12, OKR12, dMOB12, PM17, RCM⁺19, SSI⁺10, SK14, SS18a, SPSA11, Sch12a, SB16, SLZ⁺11b, SLZ⁺11c, SLS⁺12, SKM11, SWS⁺14, WTLW14, XNL⁺14, YM12, YY18a, YSS⁺10, Zha14, Zha15, ZBL15, ZLW16, ZJC⁺13].
Radicals [TWHZ14, lAyL14, Buc12b, CGIAI12, DI11, DFK16, HXX15, KK14a, KDA⁺11, LCL⁺11, LVP12b, MCM12, OKR12, dMOB12, PM17, RCM⁺19, SSI⁺10, SK14, SS18a, SPSA11, Sch12a, SB16, SLZ⁺11b, SLZ⁺11c, SLS⁺12, SKM11, SWS⁺14, WTLW14, XNL⁺14, YM12, YY18a, YSS⁺10, Zha14, Zha15, ZBL15, ZLW16, ZJC⁺13].
Radicals [TWHZ14, lAyL14, Buc12b, CGIAI12, DI11, DFK16, HXX15, KK14a, KDA⁺11, LCL⁺11, LVP12b, MCM12, OKR12, dMOB12, PM17, RCM⁺19, SSI⁺10, SK14, SS18a, SPSA11, Sch12a, SB16, SLZ⁺11b, SLZ⁺11c, SLS⁺12, SKM11, SWS⁺14, WTLW14, XNL⁺14, YM12, YY18a, YSS⁺10, Zha14, Zha15, ZBL15, ZLW16, ZJC⁺13].
Radicals [TWHZ14, lAyL14, Buc12b, CGIAI12, DI11, DFK16, HXX15, KK14a, KDA⁺11, LCL⁺11, LVP12b, MCM12, OKR12, dMOB12, PM17, RCM⁺19, SSI⁺10, SK14, SS18a, SPSA11, Sch12a, SB16, SLZ⁺11b, SLZ⁺11c, SLS⁺12, SKM11, SWS⁺14, WTLW14, XNL⁺14, YM12, YY18a, YSS⁺10, Zha14, Zha15, ZBL15, ZLW16, ZJC⁺13].
Radicals [TWHZ14, lAyL14, Buc12b, CGIAI12, DI11, DFK16, HXX15, KK14a, KDA⁺11, LCL⁺11, LVP12b, MCM12, OKR12, dMOB12, PM17, RCM⁺19, SSI⁺10, SK14, SS18a, SPSA11, Sch12a, SB16, SLZ⁺11b, SLZ⁺11c, SLS⁺12, SKM11, SWS⁺14, WTLW14, XNL⁺14, YM12, YY18a, YSS⁺10, Zha14, Zha15, ZBL15, ZLW16, ZJC⁺13].

Re [WZH13, AFM+10, Buc12a, CAAI12, CGIAI12, DCOC+19, FLCHL10, FBM+10, MCV13, MIKH19, NZLG15, dMOB12, ZLWL16, ZXY13, SSP14]. Reacting [Gin10]. Reaction [BvWG14, Kaw15, LNW14, NZLG15, SKS10, SR18, VPG12, WWL17, ZSHL16, ZPWL16, ABM+19, AGOP18, 1AyLi14, AHi10a, AG10b, AASU+17, AEAS+19, AGNS14, AFM+10, ASD14, BPT12, BAMA12, BZZ15, BLW17, BXZ+19, Buc12a, CLXD15, DS12, DAA16, DPDR11, DJ1a, DSZB18, EHkDI11, EKDI12, EM17, FBH+10, Fra17, FUE+12, GWZ+14a, GZF13, GKT+12, HS+11, HX15, HHL+12b, HhGqZZ17, Iku17, IK14, JW+12, JAB12, KAR12a, KI15, KI12, LGM+18, LKOS17, Ls12, LZ22, LFZ13, LL+13, LWZ13, LD17, LZW+18, LFTL18, LS19, LLC+11, LCCH11, LW+10, LKLW11, LCZL11, LCS+11a, LCH+11, LCS+11b, LXXL11, MGM11, MOH+15, Met11, MEA+13, MPRECI12, MML+11a, MLB+12, M13, Mor11, MKW11, MOH+12, NMS+10, NKWT19, NWX11, Nym14, PTS+11, PDNC14, PWH+12, PL18b, RY12, RSL10, RMP+14, SYK+12, Ssk+12, SG13, SK14, SKS11, SD12, SIC+16, SR11a, STL12].

Reactions [SLZ12, STU19, SWS+14, SZ15, SYZ17, SHMR11, TM13, TSL11, Tsl15, TGA11, ZXZ+11, WWZ13, WX+11, WJ11, XHG18a, XZL+12, XDL+10, YM12, YNL18, YV18a, YK13, YGL+11, YZ10, YLC17, YLYC18, ZRGE+19, ZZW11, ZHI12, ZHA14, ZLWL16, ZCG+17, ZYSW17, ZWL18, ZPB12, ZXY13, ZSS+13, ZJC+13, Zl14, dHLdS12].

Reactants [SHMR11].

Reactions [KKH+13, LLML13, MNE+13, OD12, TIN13, TM13, ACMR10, AMMB+18, BRS10, BS14, BAX+19, Buc11b, CdaFS+12, CM12, Chr10, Cjgtl12, DWJ11, DAA16, DFK16, EMED+12, EMEDP15, FRNM12, FDMR11, GGZ16, GB18, HDC+11, HLJ11, HB14, Hop15, HX15, HLC13, Kan11, KZZ13b, KMM16, LJK+18, LW11, LLF17, LGW11, LSG+14, MXC18, MIKH19, MAP+10, MBSMJ18, NKWT19, NAK+17, dMOB12, RLW+13, Sch12a, SHS+13, SKM11, SWS+14, TFZ+15, Var14, WLG+11, WLT12, WZHH13, WPLL14, XLLZ10, YSS+10, YS18, ZGSM15, ZXY13, ZQXP17].

Reactants [MG10].

Reactants [Cho15, dDGNB10, RCM+19, RL12, Ser11b, XCD18]. Reactivities
Reactivity

[YM13, LLZZ10, MDNDO+16]. Reactivity

[JS18, KSC15, OPF11, PMH+16, TWHZ14, TV13, BVRM10, Cha11, DVC14, DNCKCS+12, ESBVJY12, GFPAV19, GTSC+19, GGP13, HMA+19, HR19, Hög13, JWJ+12, KP10, KO14, MMIM12, MUNZVR12, MAP+10, MBA+13, MBBT+12, MBSMJ18, MCRS16, NAK+17, NE11, NZAVR10, OPAVM18, RGS+13, RBLZ15, RBTL19, SMGZF19, Ser11a, SC10b, TM19, WJ11, YSK+12, YXM+18, RdA11]. reagent [BPT12, LWWZ13]. reagents [VOK+18]. Real

[BCK19, Fri12, Liu14, MM19, RLTAT19, SH18a, CSG14, DAC12, FSST16, GAPK+19b, Lehi19c, MCCGM+19, MPTZ13, MZST16, NSN17, NNSN17,]
OCGM$^+$19, RR19, RTT10, SN15, SS12, ZE18, ZKKR11, ZQXP17.

relaxation [BMF$^+$14, EBR11, FKL$^+$12, GSPR19, Kit17, Ng12, RMJ11, SIM14, YT14, ZP16]. **relaxed** [RSI10]. **relaxivity** [GSPR19]. **release** [SYK$^+$12]. **released** [MAPS18]. **releases** [Han19]. **Relevance** [Eng16].

relevant [ASHF13, KSD10, MPTR12, Wag14]. **reliable** [AB18, TKSK17]. **reliably** [Kuz19]. **reloaded** [Cav13]. **Remarks** [LF15].

remediation [RdPW$^+$12]. **remembrance** [Mer11]. **Removal** [ASW13, HNBS18, ZC12]. **Renner** [DMAB12, GFB12a, HV11]. **renormalization** [YKM$^+$15]. **Rényi** [HN12, OH19].

reorganization [Gin10, MB13]. **repair** [ZTC11]. **Replica** [MRS15]. **Replica-exchange** [MRS15].

Reply [HYZS19, Lun13a, MMM20, PS13b, VV13, XTLA14, dFR15a]. **Report** [HDÖS12].

representation [DJ95, FLvLA15, RSL10, DJ12]. **representative** [MK10a]. **representing** [ABS13, Gin10]. **reproducing** [PNC19]. **repulsion** [ALRA10, BWE16, Dil13, HSN18]. **repressive** [DB13b, GWHH17].

requirements [WLL$^+$13]. **research** [CJBMMAPR19, IAK13, dGR14]. **researching** [LYS$^+$19].

Residue [DMG10, MG10]. **residues** [NFQ$^+$11]. **resin** [NFD$^+$10]. **resin-divalent** [NFD$^+$10].

resins [NFQ$^+$11]. **resistance** [yBZfC18, Cin11a]. **resistances** [CEM14].

resolution [DSFT17, JXX$^+$15, Man16, MBSAG16a, MBSAG16b, SYK$^+$12]. **resolved** [AT18, LMZY15]. **Resonance** [TTD13, AK11, BVP13, BRBR811, BH10a, DSSM19, JH13, KH10, KYS13, LDKB15, MZB$^+$13, PCMG12, SBMM11, YJ17, ZPM10, ZP16]. **resonances** [CL18, IROW10, LA11, SY10, SSAM13, WB17, YZ12, ZY13]. **resonant** [MVC13]. **Resonating** [ASK15, BCP10]. **respect** [MBTVR12]. **Response** [MBSAG16b, SRN$^+$19, dSSF16a, AMAM18, BSO16, Cam12, FZC14, GMR18, GC19, HSS18, ISN13, IN15, KG17, KL11, KFJ$^+$18, Laz14, MM19, TPT19, UYN$^+$13, Yam11, YPDW14]. **responses** [LYL$^+$12, YLWrL12].

responsive [OAC17]. **Resta** [AT18]. **restricted** [ABLTI1, GZF14, GRD11, KYH$^+$13b, NNSN17, UJSJ13]. **restrictive** [HMHI0b]. **result** [SS10]. **resulting** [GPM$^+$15]. **results** [CSSK$^+$12, FLCHL10, JdOS16, KSG$^+$12, Sit15]. **retarded** [FNIT16].

retention [KMS$^+$11]. **retinal** [LCB10]. **Retraction** [GWJ12]. **retrieves** [ABM$^+$19]. **revealed** [GSPR19, LYW$^+$19, MJM19, RDB19, SYK$^+$12, SM14b, WW11, YYI$^+$12, YIY$^+$13]. **reversal** [NSN17, NNSN17]. **reverse** [SKHN13, TFZ$^+$15, WLWL14]. **Review** [Ban12, Brä12, CD15, CSG14, CLXD15, DVC14, DSL15, DC14b, Dun15, FZC14, For17b, HJ13, HFdGC14, IN15, LJ13, Lin14, Mal14, MC14, Nym14, PM16, RNP13, SMMT13, SBD$^+$16, Tay12, Vai13, WR14b, WCM14, ZP16, dGR14, AHC$^+$18, Beh15, CJBMMAPR19, LFF$^+$10, Leh19c, Lii1, Lin12,
Liu15b, LC19, MWH15, Mor13, RMC19, RF10, Sch10a, TRZ+19, YZ13, YKM+15, Kry11a, Mas11, Mue12, Liu16. **Reviewers** [Cav17]. **Reviews** [AB16a, AGNS14, AMAM18, Ba6e, BW18, BC15, Beh15, BVB16, BM16, BBA+16, BS16, BW13b, Cap16, COCF+14, CM15, CSS16, CKL16, DMB16, D’y16, FFP16, GGZZ16, HKZZ15, Hop15, HXX15, JW18, Jia15, KCC13, KKL+16, Laz14, Li15, LGZC15, LSP+16, LMZY15, Liu15a, Liu15b, LKd+16, MHO+15, MDC15, MWH15, MW16, MMA13, Mos14, MZST16, NBZG16, OWD18, PDR+14, Ped16, PSMD16, Per18, PETB18, PI16, Rup15b, SFC16, Sch13, SB16, SHKS15, SG14, Sjö15, SC18, Var14, WZX15b, YZ13, YKM+15, YZW15b, YH14b, YHLC15, ZF15, ZP15, ZBK15, ZB18, vL13, SGJ10]. **revisited** [DVDBM11, OPC17]. **Revisiting** [DHYC19, GGP13, MJ16a, NS10b, Sha18, VVJ15, VPOG19]. **Rg** [LL18, BPG+10]. **Rh** [PP19a, BTH18, BLRdA+10, MMRRA10, PRPU+13, RYW+15, SBB16]. **Rh-doped** [RYW+15]. **rhenium** [DG19, ZW+15a]. **rhodamines** [Zho18]. **rhodanine** [EAK+10b]. **rhodium** [DSH+13, SH18b, WML10, ZZC15]. **rhodium-catalyzed** [DSH+13, LRR+17, MMRRA10, SH18b, WML10, ZZC15]. **rhombic** [LFP+19]. **rhubarb** [JB11]. **ribbon** [WWL+11]. **ribbons** [SPD+18]. **ribose** [ZKWZ17]. **rice** [ZKWZ17]. **ring-opening** [LL18, BPG+10, MBSMJC18, TXK+19]. **ring-polymer** [YT14]. **rings** [ABTW14, BR08, BR12a, BBKO16, MMM19, RB08, RB11a, RNv+12, TKS11, VC13, WvRSW+11, WWD+15]. **rippling** [MFM+18]. **RISM** [KSS12]. **Ritz** [DSM18, MB12, SBM16]. **rival** [PC16]. **Ru** [KDOR17, LL18, SMC18]. **RNA** [BS14, CLL+11, CAO18, DSVP15, KZA+17, LLLT12, MYZ+10, MMR+10, TD19, ZKWZ17]. **Ro** [Roy14]. **Ro-vibrational** [Roy14]. **road** [HJK14, PP16]. **Robust** [AAAM12, LYW+19]. **robustness** [Fin14a]. **Roby** [ABKJ18]. **roentgenium** [DR18]. **Role** [BHAI+18, BR12b, CAPGAIG18, CM16, HSYM11, PCL08, WLS+19, AM13b, BWJ17, CG12, CHSO13, DS11, EMK14, ETGLMJ+19, EMB15, FNBK17, GbZA10, GLOGM+11, JNY17, KGVG11, KKG12, LSv+10, LSR+11, LQ13, MIKH19, MAW+18, MOV13, MMS19, Per10a, PWH+12, RMM11, SFL+10, SHE+13, SSP14, SC11, SC18, Var14, WCGD12, ZQW+17, ZWE12, dAvdM17, LWL+12, MB12]. **roles** [JLG+12]. **room** [LL19, TD11]. **room-temperature** [LL19]. **Roos** [Pyy11, SA11b, Sh11b, SL11]. **Rosa** [dGR14]. **Rosen** [PSGK17, Tou11a, ZHF12]. **rosiglitazone** [HSS+11]. **rotamer** [COf+11].
rotamers [HNH⁺12]. rotary [OWD18]. rotary [HRT12, KBG17, Sta10].
rotation [AÖ12b, CPL15, DDF⁺12, HK11, HRT12, KBG17, QD10, Sut12].
rotation-vibration [HRT12, QD10]. rotational
[AEÖ12, CCBR⁺12, DCR10, Puz17, RMJ11, SPO⁺11, VLM⁺10]. rotations
[JdOS16, KMS⁺11]. rotovibrational [PBB15]. route
[BMF13, HGB08, SRS⁺17]. routes [VPGC12]. Rovibrational
[LLP17, AM12, FT15, VLFG12]. rovibrationally [PBB15].
route [BMF13, HGB08, SRS⁺17]. routes [VPGC12]. Rovibrational
[LLP17, AM12, FT15, VLFG12]. rovibrationally [PBB15].
route [BMF13, HGB08, SRS⁺17]. routes [VPGC12]. Rovibrational
[LLP17, AM12, FT15, VLFG12]. rovibrationally [PBB15].
route [BMF13, HGB08, SRS⁺17]. routes [VPGC12]. Rovibrational
[LLP17, AM12, FT15, VLFG12]. rovibrationally [PBB15].
route [BMF13, HGB08, SRS⁺17]. routes [VPGC12]. Rovibrational
[LLP17, AM12, FT15, VLFG12]. rovibrationally [PBB15].
route [BMF13, HGB08, SRS⁺17]. routes [VPGC12]. Rovibrational
[LLP17, AM12, FT15, VLFG12]. rovibrationally [PBB15].
route [BMF13, HGB08, SRS⁺17]. routes [VPGC12]. Rovibrational
[LLP17, AM12, FT15, VLFG12]. rovibrationally [PBB15].
route [BMF13, HGB08, SRS⁺17]. routes [VPGC12]. Rovibrational
[LLP17, AM12, FT15, VLFG12]. rovibrationally [PBB15].
route [BMF13, HGB08, SRS⁺17]. routes [VPGC12]. Rovibrational
[LLP17, AM12, FT15, VLFG12]. rovibrationally [PBB15].
route [BMF13, HGB08, SRS⁺17]. routes [VPGC12]. Rovibrational
[LLP17, AM12, FT15, VLFG12]. rovibrationally [PBB15].
route [BMF13, HGB08, SRS⁺17]. routes [VPGC12]. Rovibrational
[LLP17, AM12, FT15, VLFG12]. rovibrationally [PBB15].
route [BMF13, HGB08, SRS⁺17]. routes [VPGC12]. Rovibrational
[LLP17, AM12, FT15, VLFG12]. rovibrationally [PBB15].
scavenger [GAI19]. scavengers [MVG18]. scavenging [JB11, LCG12, PGG12, PM17, RCM+19]. scenario [CSS16]. scènes [Kry10].

semicircles [LQZZ12]. semiclassical [CPAT11]. semiclassical [EM16, FLCHL10, LBW11, Liu15a, NTCG18, RBD+10, SABA+12].
semiconductor [DLJT14, Fer11, KP11, Kar12b, SAHG11, VVY18].
semiconductors [BWE16, Eng16, HKZZ15, WDS19, YHL+13].
semidirect [Tri14].
Semiempirical [Bou11, GI10, HVR18, VS19, BO11, KDC+12, MSVMCI10, dSMPRSF18, RS11b, SM14a, WKE17]. Semilocal [PSMD16, SFC16].
Semiquantal [OHDA13].
semirandom [Pog12].
semiregular [Bib13].
Sensing [NEEV15, IKC18, Man16, MBSAG16a, MBSAG16b, dSMT+18]. sensitive [CC11a, MPJ12, PJP10]. sensitivity [Bon17, OB19, ORJ18, YZ13].
sensitized [AGJ12, BDG17, FM16, cLqFtW+14, MY17, MANP17, PMAP12, QJ13, SG19, SSS15, WWB+14, Zha17]. sensitizers [CWB+13, LGS+16, SG19, SSS15]. sensor [HNBG15]. sensors [FBU+11].
SeO [ZLY+14]. separated [LJK+18, ZZ18]. Separation [Nal13, BLKB11, MPD+15, PETB18, SSP+17a, WH18]. separations [PWP13].
Sequence [NMS+10, CLC10, HW12, YSW11].
Sequence-dependent [NMS+10]. sequences [Gar08, GFWIZ11, HXDY16, KA11, Ld14, LQZZ12, LLZH14, XTLA13, XTLA14]. sequencing [Che13].
Sequential [MMBK12, KB12, MFB11].
Ser-His-Glu [TK16a]. series [BDPT12, CWS15, CYK17, DSRGD12, DB13a, HFBC19, LSC+18, MBBT+12, MBSMJC18, MSRn+11, RZSZ18, SU-11, SK12b, SZL+14, XFW+14, YZL+10, ZQJW13, vLRRK15]. serine [CLMY12]. serine- [CLMY12]. serotonin [CSVCB12, CSSK+12]. Serrano [Mer11].
Serrano-Andrés [Mer11]. SERS [TSBSM12]. serve [Fin14b]. serving [DSRGD12]. set [Ali14, BCAP12, CHH+19, CC19, Chu12, DCZ17, Fuk12, HZG12, JA12, JH15, KRC+16, KME+18, KYS13, KB19, LV12, LWL+12, MG12, NDM+12, PWP13, Rud12, SKTI15, SXH18, SZS+10, SLZ+11c, SLZ+11a, SLS+11, TPdMB12, TWR15, VPA11, VSS11, YFY17]. sets [ANC+15, ABA11, BL16, GS10, HH18, Hll13, MSNP18, PCD14, RLER14, RVO+14, UGLW18, UV18b, VRO+12, Zak13, ZF15]. seven [BR08, BR12a, RB08, RB11a, RNV+12]. Seventh [NYA+13]. Several [Tch16, MMM+12, SLZ13, ZYS10, YII+13]. sextet [AM12, RB18].
sextuple [SLZ+11a]. SGSA [SOF+10]. SH [BDF+16, BXZ+19, CdAFS+12, dSNBG08]. shallow [CN12, Fuk12]. Sham [BW18, Bar11, Gan14, KsdSM+10, KFJ+18]. Shannon [DBTA19, JZZH17, Nag15, NTCG18, Sit15, SDL+15]. Shape [CL18, NMV+14, BXR+13, BV3P13, KP11, LKN13, SSAM13, XWCY11].
soliton

sites

d singularities

SiO

Siroheme

Siroheme-containing

sites

slab-sized

Slater-type

Sm

Small

Sn

SnAO

SOA

soaking

sodium-water

softer

solubility

solutes

Solution

soliton

soliton-like

solubilities

solubility
ZWLC12, ZLE17, ZSZ14, ZQXP17, ZI19, dARAV12. **Spectral** [LLH15, Mys12, CdLdSC18, FBU+11, KP12, KM19, LYR+17, SMGZi3, XLZ+19]. **spectral-luminescent** [KP12]. **Spectral/structural** [LLH15].

Spectroscopic [ABKJ18]. **Spectroscopic** [BH10b, Jac12, Mag14, NC11, NVPCJ+13, SZS+10, SLZ+11c, SLZ+11a, SLS+11, SXS+12, SLS+12, WFS13, BD12, CHM+14, CWB+13, CJOOW11, DAE+12, GFB12a, KSSK16, LJSS12, LZZ+17, MG12, MPTZ13, QHS11, RNDA+10, Sch10b, SYL+18, SLSZ13, SWS12, Tas14, VLG12, VLF12, VBO+15, WXZ+11, YZL+10, YZL+11, ZLS10, ZR13, dSdSPG11].

Spectroscopical [MSBF18]. **Spectroscopical** [MSBF18]. **Spectroscopes** [KKT13, MOY13, McC13a, OA13]. **spectroscopy** [Ber13a, BDR12, BWB+18, For17b, GFB12b, LdBF+12, Mas10, MML11b, ORJ18, Ped16, Puz17, SA11b, UTTn13, YJ17, ZPZ15, Rda11]. **spectrum** [AA11, BS16, BBB+18, BBB+18b, Bou12b, CWF11, CRSB12, DSD18, DHZS11, DWGX12, HHCA10, HRT12, HMH+13, HYH+10, JCC10, KBG17, NDM+12, QD10, RS12a, SBKJ18, WWC17, Zha17]. **Speculation** [KRH13]. **spent** [HB14]. **spermine** [SGB11]. **Spherical** [Kit15, PML+11, Roy15, CH17, CB19, CN12, GAPK+19b, Nik11, OHDA13, ORJ18, Ped16, Puz17, SA11b, UTTn13, YJ17, ZPZ15, Rda11]. **Spherical-harmonics** [Kit15]. **spherically** [JZZH17, Nag16b]. **spheroconal** [MFLK10]. **spheroidal** [OPC17]. **Spin** [BDR12, DCDG10, JR12, Kek11, Luz11a, MLK17, NKWT19, SAHG11, SAHA12, Swa13, YZI+12, ATL+14, ASH18, Ber13b, Bha15, Bra10, CR18, CCP18, CYL+18, CFGC11, CST+10, CDT12, DS11, DM16, FSST16, GXZ+14, GLXL18, GFDG11, Joh17, Kap12, KK14a, KV19, KSN+10, KYH+13b, LVDSDM14, LWL+12, LBI9, Luz12, MRI2, MPRB+10, Mos14, MC18b, NSK17, NNSN17, OS10b, PBR18, Pon19, Qu13, RS12a, SBRK18, WWC17, Zha17]. **spin-dependent** [DM16, NSN17, NNSN17]. **Spin-free** [Kek11, Luz11a, Luz12]. **spin-Hamiltonian** [TD11]. **Spin-inversion** [NKWT19]. **Spin-orbit** [MLK17, ASH18, CYL+18, KV19, MC18b, RS12a]. **spin-projection** [KYH+13b]. **spin-restricted** [KYH+13b]. **spin-spin** [CCP18, CFGC11]. **spinless** [NF11]. **spiro** [LLLB13]. **spiro-heterocyclic** [LLLB13]. **spiroborate** [QCW+12, WTZ+11]. **spiroiminodihydantoin** [SM13]. **spline** [HZS14]. **split** [GRD11, WLS+19]. **split-graph** [GRD11]. **splitting** [GWM11, HYH+10, SYK+12, SSK+12, Tan13, WTP+19, YYY+12]. **Spontaneous** [CCM08]. **spread** [BEM12]. **square** [LGHL11]. **squared** [FGC11]. **squeeze** [PSK17]. **SR** [MC18b, MPD+15, MGP16, Oni10]. **Sr-doped** [Oni10]. **SrBi** [HLMO11]. **Src** [ZFW+13]. **SrH** [HMI+15]. **SrTiO** [OH13, WCL+17, OH12]. **SS** [SZZ+12]. **SSH** [DTFK15]. **stabilities** [AF16, MS17, SFW12, SUL+11, SM14c, ZYL+13, dAVdM17]. **Stability** [GV11, KZA+17, Kry11b, LWL19, MC12, PMEP19, TLC+17, USL+13, BMX+19, Boe12, CCC19, CYL+19, CWSZ13, DVC14, FBRBR12, GJ18, GB13, GAMM10, GWJ12, HLB19, Iri12, KK11b, Kry12b, LGHL11, LCZ15, LGS+16, LGL19, LGZ19, LGZ+19, LSV+19, YST+19, YZL+10, YZL+11, ZLS10, ZR13, dSdSPG11].
MNV +17, MC17, MCARL11, MMW19, MJ14, MMV +19, MM10, MS14b, MHHP+17, Ng12, NR15, ONK +13, Owei17, Pat15, PP19b, RSN12, SDS19, SDS20, SFNC+18, WJL+11, WCS +13, WJL +10, YZ13, ZBBB17, GCD13. Stabilization [YZZ15, HR19, JdL08, MK11, OKR12, SBMM11, YD17]. stabilized [KUS19, LW18, XGH18a]. stabilizer [OKK10]. Stabilizing [GAPK+19a, MK12, PCML08]. Stable [Sat11b, BMF13, MPM15, MAN15, PAPCM+16, fXxBhD19, ZCG +16].

State [Nic11]. State-of-the [NBZG16]. State-of-the-art [PB10]. State-to-state [HXX15]. statement [Brä14]. states [Agb12, AM12, Ali19b, ADB10, ARG11, ALA15, AY15, Ban12, BG11b, BG11c, Buc11a, Cam10, CR18, CHM +14, CM16, CHSO13, Coo12, Cor16, DM12, DS11, DAR +11, DLRMFY10, DTPC17, DG19, DCHC11, DSSM18, DSSM19, FSK +11, GFB2b, GFRdG11, HK11, HGB08, HFD11, HMA +18, HJ13, KHC10, KT12a, KMF +11, KK14b, Kim16, KGVG11, Kit15, KZZ13a, KHH10, KHT13, KKT14, LAD14, LVdSDM14, LV16, LCL +10a, LP10b, LCL +11, LNP +11, LPG +12, LGZC15, LDADB +15, MPM15, MMWA11, MT11, MSM16, MQG13, MKD19, MPB +10, Mor13, NMS11, MB12, NIS19, Nai15, NDP10, Nic11, PE11, PSDK17, PRPU +13, Pup11a, RS12a, RAN18, SBMM11, SBM16, SFW12, SGG +10, SYL +18, SXS +12, SLS +12, SLSZ13, SR11b, SZ +12, SF12, SK12b, SCZG12, Swa13, Sza13, TTT13, TA10, TBB +19, TD19, VLFG12, VO12, WFS13, WCI4, WJL +10]. states [XTLA13, XTLA14, ZCG10, Zil14]. Static [CCGK12, CELM12, KA11, MNS11, BL16, FKL +12, FS16, GH11, IO108, LXW +12, dWLC14, MA11b].

Steric, steric, stilbazolium, stoichiometric, storage, stories, strained, strategies, strength, strongly, strontium, structural, structure, structure-dependence, structure-property.
structure-stability [DVC14]. structured [Kim18]. Structures [CdAFS+12, GLT13, GCD13, IAIa, JL12a, KBF+13, LFP+19, LHL+15, MS17, ONK+13, SM16, YWH+12c, ACMRN10, ALK18, ALK19, BMB10, Brä11a, BSO16, DWGX12, DM16, GR11, GLF+12, GZ14, GWJ16, HWL16, HWWW18, HM10a, JMPP19, Kim13, KSSK16, KYLC19, KMM16, Lad14, LL11, LWL+12, MZB+13, MK10a, MLW16, MUNZVR12, MUPC10, MM17, NH18, NZAVR10, OCGM+19, Puz16, QJ13, SSK+12, SIS+08, SACA18, SZZZ11, SKY+13, SCZG12, TSKN12, TYN13, TBB+19, WGLX10, WDS19, WJL+10, XTLA13, XTLA14, XWC10, XF19, YIY+13, YZL+10, YZL+11, YZW+15a, YC13, ZLS10, ZZR+12, ZL12, ZQXP17, dHLdS12]. Structuring [KRG+13]. studied [AMMK11, BL10, CK17, DCHC11, FBO+11, SJZ+18, TTM16, ZL10, dSdS13b]. Studies [PCF+18, Roy13, ACF+11, AMK10, AVG19b, BD12, Buc11b, CJBBMA19, CCA+12, ČAS13, CYLL11, CTW12, CWB+13, CSVC12, CSSK+12, DSWL11, DSZB18, DB15, EAK+10b, EAK+10a, EI11, For12, GGD12, GKT+12, GZBH18, HTM10, HNBG15, Hop15, HWL16, JL12b, KDC+12, KMM+18, KA13, KSY+11, KAÖB11, Les12, LWL12, LSR+13, LBY+14, LGZ15, LWJL10, LKLW11, MANP17, MLPT10, MAP+10, MMM+12, MSAB19, NTCK13, ONBP11, ÖEDB11, PBM10, PTD+12, PETB18, PAPCMM+16, RJY+10, RJA+10, RGTS11, RNdA+10, Rii10, Riv11, RGS+13, RGR12, Roy14, SMK+12, SD16a, SC12a, SJZL12, SIS+08, SK12b, SZ15, SSB+12, TIKN11, TOSN12, TYN13, TAY11, Tan12, TIN13, TLX10, THSR13, UJSJ13, VGGPdL19, VPOG19, WZX11, WTH+11, Wan13, WZM+13, WYW13, WLH+19, WHM14, Wit18, WWGW18, XS18, XFW+14, YZL+10, YZW+15a, YB11, ZEL+11, ZZX10, ZQJW13, ZLOWY13, ZLZ+14]. studies [ZWL18, ZSZ14, dAGNJT12, YWY+12]. Study [Bar11, BWB+18, CH17, CYL+18, IFT13, IFT14, SGL+16, SS19b, ZCP11, AC19, AFC+10, IAYL14, AM12, AASU+17, AEAS+19, AT17, AKC10, ASW13, AVG19a, ASD14, AMAC12, AG19, BMK+14, BD14, BF11, BCGC12, BDF+16, BDF+18, Bas11, BAMA12, BLB+18, BRL12, BS11, BEM11, BBZ13, Ber13a, BL11, BLRD+10, BHIA+18, BS14, BSSS19, BZZ15, yBZFC18, BZX+19, BDG17, BLdV19, BMF13, Bon17, BGJS+18, BDR12, BCF+11, BPM12, BLM+12, BJ17, BJdlMAV12, BTH18, Buc10, BO11, BVRM10, BCS+12, BB16, BSV12, BSPK11, CRB+12, CMR13, CAZ+11, CLXZ12, CCL+13, Cao17, CPLL15, CPF12, CCBR+12, CHM+14, CHI+19, CG12, CW16, CM12, CCL+10, Che12, CCS13, CWW+16, CZLD17, CLY12, CS13, CWS15, CZCW19, CK13, CFGC11, CGIAI12, CAPL12, CPAT11, CJOOW11, CD12, CS18, DWJZ11, DCBB11, DIOG12]. study [DMAB12, DAR+11, DSD18, DKS11, DPK18, DS12, DCDD10, DSRGD12, DPRKI2, DPDR11, DTEMK11, DZ11a, DLO16, DG19, DMS+10, DCdG10, DDF+12, DdG+11, DQZF12, DWGX12, DSH+13, DCR10, DSFT17, DFF+13, EG10, ESDO16, ELC08, EAH13, EFO11, EO11, ETGLMJ+19, EBH11, EA12, ENV15, ES17, Esr18, EM19, ESBVJY12, FSQ+11, FZ18, FFF10, FO10, FM16, FTB11, FRNM12, FDNR10, Fin14a, FTI5, FPFRGHMB12, FUB+11,
Gag11, GBS17, GWM11, Gao12, GLF+12, GGJD13, GZW16, GHGF12, Gk12, GLXL18, GIO12, GFB12b, GC18, GP13b, GMT16, GMT18, GS11, GLOGM+11, GHCMCMQ17, GB18, GWME18, GD11, GSB10, GT13, GTSC+19, GGP13, GLPA10, GCZ+14, HNH+12, HMA+19, HK11, HDCF+11, HLJZ11, HZZW11, HFL+17, HHL+12b, HhGqZ17, IIW+11, Iku17, IGMK11. study [IM15, JPPA10, JN13, Jal10, Jan10, JB18, JS17, JCCZ12, JSLH14, JLZ+17, JB11, JW+12, JFDD10, KM12a, KS11, KWC10, KWC11, KP11, KFB+13, KKM+12, KI15, KK14b, KSA17, KZZ13a, KZZ13b, KUTS10, KKT13, KKT14, KG08, KO12, KM+13, KK11d, KBMM10, Lan10, LGM+18, LLM13, LKOS17, LJK+18, LvSdM14, LPOP12, LZB10, LCL+11, LJJ1+11, LW11, LW11, LJJ1+11, LJJ1+11, LW11, LJJ1+11, LJJ1+11, LW11, LGP+11, LLP+13, LWX+14, LLL16, LRR+17, LLL17, LZW+18, LTL18, LTL18, LLL16, LLC+11, LGW1, LCZ15, LL19, LCCH10, LLZ10, LCCH11, LJSS12, LXW+12, LWZ+14, LL17, LLW+12, Lu10, LWC+10, LCS+11a, LCH+11, LCS+11b, LXL11, LLL13, LW13, DVMC19, LKZ+16, MYZ+10, MLV+14, Ma14, MY17, MAD12, MKB19, MSG16, MZB+13, MFB11, MK10b, MK12, MLC+11, MCP10, MMR+10, MCC12, MVG18, MP12, MTL+12, MWW19, MOY13, MMWA11, MMC+19, MUNZVR12]. study [MUPC10, MDNDO+16, Men10, MFZ+18, MCL11, MKSG13, MS17, MHHPR+17, MM11, MSK+12, MPL+11, MGDI11, MTS15, MPRCG12, MMRA10, MML+11a, MBT+12, MBB+12, Mor11, MM13, MG10, MMF+13, MSN1+11, MSOV13, MCRS16, MOH+12, ND11, NS10a, NHG+12, NDH10, NBL12, NAK+17, NTNL10, NL11, NFQ+11, NHB12, NRGS11, NRS+11, NRH+11, NRHIJ11, NJA+12, NIT16, NZAV10, NEE15, OAC17, OPC17, OAA19, OH12, OH13, OCB+10, OPP+14, OMD13a, OM13b, OD12, ODM12, POLV12, PSL3a, PEA+12, PTS+11, PWP+18, PDCN14, PM+16, PE11, PWL+10, PSV19, PK13b, PKK14, PRG+10, PAD+10, PRPU+13, PM17, Puz10, QHS11, QCW+12, Qu13, RMY12, RFN12, RGPZ13, RR10, RSA12, RSN12, RSM12, RCM+19, RD14, RR19, RGST12, RDB19, RYW+15, RI19, RC10, RJLPG13, RDM+11, RBVAG18, RNE10, RNB+10]. study [RS11b, RRB12, SF13, SB18, SSB19, SIT+12, SK14, SD16b, SBEH11, SSK11, SRGV12, SB10a, SKHN13, Sat11b, Sch12a, SK17b, Ser11a, Ser11b, SLS+14, SKSI11, SLH+13, SLSZ13, SHE10, Shi13, Shi18, SL10, SKM11, SM13, SR13, SSTO11, SLA12, SK11, SR18, SSA18, SSP+17b, SB18, SMA11, SZ11, SBB16, SZZ11, SZZ+12, SLZH12, SHW+13, Siri18, SMGZ13, SK10, STU19, SYQ+10, SWS12, SWS+14, SZL+14, SZL+15, SGL19, SY16, SCZH16, SS13, TK16a, TV13, Tav11, Tav12, TM13, TT10, TDOD17, TU10, TYL10, TSL11, TFZ+15, TJS17, TFA10, TSH17, TFB11, TCC10, TGA+11, Tug13, TWR15, TPT+13, TPT19, UKF+11, UMS13, VF13b, VPGC12, VFSC17, Var11, VHTG15, VVN+16, VLM+10, Ven12, VSMK13, VSMK15, VV12, VV13, Vie17, Vik13, VKF+19, VG13, VS19, VO11]. study
\[\text{VO12, WML10, WXZ}^+_{11}, WJL}^+_{11}, \text{Wan11, W} \text{vRSW}^+_{11}, \text{WLL11, WLG}^+_{11}, \text{WLWT12, WLZ}^+_ {12a}, \text{WLZ}^+_{12b}, \text{WWHZ13, W} \text{HS}^+_{13}, \text{WHY}^+_{14}, \text{WJY15, W} \text{TW}^+_{15}, \text{WDJ}^+_{17}, \text{WWQG17, WG18, \text{WZZL10, W} \text{TZ}^+_{11}, \text{WWX}^+_{11}, \text{WLD}^+_{10}, \text{Wu11, WSL}^+_{11}, \text{WZC}^+_{12}, \text{WRW}^+_{18}, \text{XNL}^+_{14}, \text{XX12, XSLF12, XGH18a, XLZ10, XZCH11, XZ11, XWC11b, XGH}^+_{18b}, \text{YM12, YMI3, YNL18, YYS15, YY18a, YY18b, YZL}^+_{11}, \text{YY18a, YZ12, YZ16, YLZ}^+_{17}, \text{YZ10, ZK} \text{RK11, ZSAP11, ZSASS13, ZAE10, ZLR15, ZRG}^+_{19}, \text{ZWYY10, Zha10, ZLS10, ZZW11, ZLZ}^+_{14}, \text{Zha14, Zha15, ZLWL16, ZCX}^+_{16}, \text{ZKWZ17, ZBG}^+_{19}, \text{ZSQ}^+_{10}, \text{ZPB12, ZSS}^+_{13}, \text{ZLZ16}, \text{ZTC11, ZQXP17, ZLY}^+_{14}, \text{ZPW16, ZBB17, ZDZL11, dSdPG11, dSdS13a, dLR11, dOR10, dODON12, dLIAI}^+_{12}, \text{BVP13, SW12]. Sturmian [FRGC10, SS12]. styrene [DPDR11, MCC13b]. styryl [TPT19]. styryl-bodipy [TPT19]. styrylnaphthalene [Bud12]. styrylnaphthalenes [BO11]. styrylquinolines [BO11]. subcluster [ALA15]. subgroup [BSPK11]. subphthalocyanines [PZ19]. subsidiary [LWY13]. Subspace [TG16]. subspaces [TLC17]. Substituent [BHMM19, EHKD11, EEMSS14, MKHM11, RY12, YRN}^+_{11}, dSNBG08, DWZZ15, EAV16, JNY17, Val17, XX12, ZBG}^+_{19}, \text{ZYL}^+_{13}, \text{ZBB17}]. substituents [AG10a, AMK10, LZZ}^+_{18}, SN11, WDS19, WLC}^+_{17}. substituted [AAA12, ASD18, BG13, CLXZ12, EHKD11, EKD12, IGMK11, IUMVB10, JLL11, KMM17, LLQD19, MXC18, NAK}^+_{17}, \text{NZAVR10, PS13a, PP19b, PSK}^+_{13}, \text{RLTAT19, SSKS12, SN12, SMGZ13, SZL}^+_{14}, SC18, TT10, Tug13, VSN}^+_{11}, \text{ZLY}^+_{14}. Substitution [SPIL14, Buc10, Buc11a, Buc11b, EMS16, HLJZ11, JLG12, ND10, RFN}^+_{12}, Ri10, RB11b, dAB17]. Substitutional [BSO11, KSS}^+_{19}. Substrates [dSSdGA12, FBD13]. subsystem [MA10, NS10b, Sha11a, YKN13, ZS11]. subsystems [GHP11, HS11c]. subunits [Sch15]. subvalence [dCDC14]. Successes [Swa13]. successive [SM14b]. such [Ser11a]. sudden [CLXD15]. suddenly [MAPS18]. sufficiently [NK10a]. sugar [BS14, SKM11]. sulfate [CAP12, FMP}^+_{17}. sulfamate-methane [CAPL12]. sulfated [MCR16]. sulenate [ZAE10]. sulfide [BAP13, DWJZ11, JAB12, MA11a, MTS15, SSP14, TCD12, YGLL10, YLZ}^+_{17}. sulfinyl [SF12]. sulfit e [SM12, SBS18]. sulfonamide [TPdMB12]. sulfoxide [LD16b, ZAE10]. sulfur [CK17, Di11, DSFT17, GFRdG11, GCD13, KM19, LKd}^+_{16}, NFD}^+_{10}, NFO}^+_{11}, On12, SFW12, SCB}^+_{14}, dLdODAD12]. sulfur- [NFO}^+_{11}. sulfur-containing [NFD}^+_{10}. sulfur/selenium [KM19]. Sulfuric [dLdODAD12]. sulphonamides [EAK}^+_{10a}. sulphuric [SMRK18]. sumanene [ONK}^+_{13}. Sup [LJ16]. super [Man16, MBSAG16a, MBSAG16b]. super-resolution [Man16, MBSAG16a, MBSAG16b]. Superacidity [VV18]. superacids [CS18, Val17]. superalkali [TL15, WCY}^+_{10}. superalkalis [STM18, Srl18]. superatom [JHL}^+_{18}, YLWR12]. Superatomic [MCK17, GAPK}^+_{19b}, MC18b, TFM19]. superatoms
LDKB15, LZZ+11, LCCH11, Lun13a, Lun13b, MR11, MFM18, NMIP14, QSX+15, RAN18, RNdA+10, SDS19, SDS20, SW10, Tou13, VLK+11, Xu16, Xu19, ZX12, ZWL18]. **Systematic** [KSS12, WR15]. **Systems** [GLT13, IA13, KBF+13, ONK+13, ARG11, ACT19, Bae16, BR08, BR12a, BBB+12a, Brä11a, BTPT12, BWE16, BBA+16, Cap16, CBM1APR19, CAPGAIG18, CH17, CS13, CP11, CP16, DMAB12, DLRMYF10, DBTA19, DCDD10, DI18, Dun15, DB15, Fer19, Fin16b, FSST16, GB10, HS11a, HITU16, HfdGC14, HKLW13, IFT14, JE10, KH12, Kha16, KCC13, KSD10, KSN+10, KYH+13b, Kon11, Kry11b, Kry12b, KM19, Lad14, LS17, LV16, LGZC15, LC19, LRMAA19, LZD+11, LNI12, MCCGM+19, MMM19, MANP17, MNP19, MC11b, MSAB19, Nag16b, NKF+13, NDH10, Nas19, NGS11, NYS+10, OMP11, Per10a, PBB15, QTCL10, RB08, RB11a, RAMB18, RAGM10, Roy15, RS13, SLG11, SBAT16, SM11, SK17b, SKLC19, SHKS15, Sko16, SKV12, SMRT13, SW18, Swa13, TFSRM11, TRZ+19, TC12]. **systems** [VOAH18, WCM14, XTLA13, XTLA14, YY1+12, YWH12b, YFY17, Zak16, ZWE12, dGR14, dOR10]. systems* [Mam14]. Szeged [Tra19].

\[T \text{BL12, BTH18, CPF+11, SLS+11, ZHL+19, GWM11, BBM17, BTH18, SD13c, WLL+13, ZLL10, YGGL10, dOR10}. \] **T-cell** [WLL+13]. **T-junction** [SD13c]. T4 [SLL+13]. **Table** [Gar08, GI10, Kut10]. **Tables** [Rus14]. **TACA** [Ser11a]. **tailed** [GBZA10]. **tailing** [AV19, BHAH+18, MMA10]. **take** [PUG1M18]. **tame** [DBI3a]. **tardy** [FK18]. **target** [HM10b]. **targets** [PUH+11]. **tartaric** [LCZL11]. **tautomer** [dAVdM17]. **Tautomer** [SOM10, CCL+10, NJA+12, TSH17]. **tautomerism** [HS11b, PS13a, VF13b]. **tautomerization** [JS17, YY18b]. **tautomerizations** [MPGS19]. **tautomers** [KAOB11, LCH14, Tav11, Tav12, ZRL13]. **Tayloring** [PPJ08]. **TB** [ZCP11]. **tBu** [HH12a, HH14, PP14]. **Te** [ZLY+14]. **TCDD** [WWX+11]. **TCNE** [TD11, KBMM10]. **TCNE-methylsubstituted** [KBMM10]. **TD** [AFC+10, BDR12, JPP10, AOF+11, BVCAP12, FPRU12, KI15, LJ13, Mas10, dSM19a]. **TD-DFT** [KI15, GLS+16, dSM19a]. **TDDFT** [WKE17, BGD14, BAA+18, BHAH+18, ESDO16, HKLW13, HH10, LW11, LZ10, MMW11, PJP08, PSK+13, VSN+11, YZW+15a, ZSAP11]. **Te** [AM18, BHA19, WSML16, WXC11a]. **tea** [MKHM11]. **Technical** [MMP11]. **technique** [KdSM+10, LK13, MJSC18, SR12, SOF+10]. **techniques** [DW12, LSR+10a, LSR+11, MQG13, Osl11b, RW11, SKV12]. **technology** [YSA+11]. **Teller** [DMAB12, AGPDZ13, DMAB12, GFB12a, HR12, HFZ12, JZP17, RGPZ13, SBD+16, TPCJ+12, WLZ18, YYY+13, ZFC12]. **Teller/REN** [DMAB12]. **telluride** [KoG08, MW15]. **tellurium** [ESDO16, RR19]. **tellurium-containing** [RR19]. **temezolomide** [KdPNS16, KM17]. **Temperature** [Buc12a, GFP19, KKH+13, MKSG13, PMGL+11, Boc12, CAA12, CS17, Dun15, KAR12a, ILBQ+19, LL19, MOH+12, Nag17, TD11,
Temperature-dependent [GFPAV19, ILBqD+19].
Temperature-programmed [ÁFV12].
temperaturest [SMP10].
Trends [SPM+15, BL19, Fin14b, JMX+15, LHX+19,
Lya14, NIT16, XXJ+16, XWP+18, YXM+18].
Tensorial [SD13c].
tentative [FYF12].
terephthalate [TIN13].
term [IIH16, Ols11b, ZLJ11].
terminal
[SLG+15].
terminated [dLDoAD12].
Terms [Gin10, Glu13, KL11, PE11].
ternary [KYLC19, MS14b, OGvS18].
tert [AMAC12, Pl18].
tertiary [MMA+12, PCML08, SAG13].
test [DAA16, Mar12, PWP13].
Testing
[FSC13b, KK14a, FCS13a].
testosterone [KKM+12].
tetra [QJ13, SSA18].
tetraammine [MGK19].
tetraanions [DZO12a].
tetrabenzo porphyrin
[LSG+16].
tetracarbide [PKK14].
tetracarbindane [ALK19].
tetracarbon
[ALK19].
tetrachloride [YSA+11, ZSZ14].
tetracoordinate [YD17].
tetrad [DKS11].
tetra [DKS11, DKS11].
tetrafluoroborate [MKF+12].
tetrafluoromethane [VVJ15].
tetrahedral [GAPK+19a, IIW+11,
MPSB+10, Pup11a, RFE1PP+16, TGA+11, WWQG17, YGL10].
tetrahydrofuran [dSdSPG11].
tetrakis [ZSASS13].
tetramer [FRNM12].
tetramers [MFOH18].
tetramethyltin [DAE+12].
tetranitride [XXJ+16].
tetranitrooctahydroimidazo [CC11a].
tetraphene [ZLS+18].
tetraphene-bridged [ZLS+18].
tetraphenylbutadiene [VS+18].
tetraphenylidodiphenophosphate [SLS+14].
tetrapyrrole [ZQJC10].
tetrasulfonate [DZQ12a].
tetrasulfur [XXJ+16].
tetrazole [PP19b].
 Tetrel [XCL+16, WLC+17, ZHL+19].
 TH
[ZHL+19, DOR10, JLL+18, LNGW14, LYW+19, NZLG15].
Th-based
[LYW+19].
THDDP [SSKS12].
THDP [SSKS12].
Their
[She14, ALK19, ALB18, AM10, BPT12, Buc12b, BO11, BSO11,
CJBMMAPR19, CCL+16, CFV18, CTW12, DSC+11, For12, GTR11,
GWZ+14a, GI10, HS11b, HWY19, MMW19, MK11, MMSC19, PR10a,
PL11, PSKV19, RBD+10, RBZ15, RLR14, Ru10, SACA18, SM14c,
VGGPDL19, WJ11, XSLF12, YZL+11, ZR13, ZGSM15, ZF15, ZYL+13].
them [WXB+11].
Theobroma [dAGNJT12].
theorem
[GW13, Lev10, Nag10].
theorems [LB14b, Tch16, ZW12].
theoretical
[AB18, IOO18, YOS15].
Theoretical
[LYW+19].
Ály14, AM12, Ali14, Ali19b, ÀIGVZW12, ACMRN10, AAA12, AMMC19,
AMAC12, BD12, Bar16, BAMA12, BGMD15, BHA19, BS11, BZZ15,
BXZ+19, Boc12, BMF13, Br14a, BLM+12, BWE16, CMR13, CWF11,
CAZ+11, CPL15, Cas15, COCF+14, CNK11, CWZ+10, CTW12, CWB+13,
CWS15, CS18, DIOG12, DSOC+13, Den13, DSRG12, DSW11, DWX12,
DSH+13, EAK+10a, ESD16, ETGLMJ+19, FM16, Gao12, GZW16, GKL12,
GCDNS12, GIO12, GFB12b, GMT16, GMT18, GDM+10, GSB10, HTM10,
HK11, HDO+13, HDL11, HLM011, HMMH+13, HLJZ11, HZG12, HLYC+18,
HHL12a, HWL16, HM10a, HWHZ11, IIW+11, IGK11, IRO10, JHS18,
JFT13, JSL14, JLZ+17, JWG+12, JFDD10, KS11, KB13, KWC11, KA13,
K12, KSS16, KSY+11, KZZ13a, KZZ13b, KHH10, KOAB11, LR1C11,
LOHB13, LJ16, LCL+10b, LZB10, LGP+11, LMZ+11, LPG+12, LSR+13,
KC18, Kar13, KKL+16, KSAK17, Kit14, KM12c, KYLC19, KdSM+10, KJ14, KU+13, KFJ+18, KLE+19, Lar12, Lat13]. theory
[LPO+12, LCL+10b, LW11, LWL+12, LPG+12, LBY+14, LHX+19, LLW+11, Lin14, LDZG16, LLZ+12, Lya14, LKd+16, MYZ+10, MLW+14, MJ16a, Mam14, MLC+11, MFK+12, Mas14, MW16, MLK17, MLB+12, MBT+12, Mor13, MJM19, MCRS16, Mur12, Nag15, Nag17, NSN17, NNSN17, Nal13, NS10b, NAK+17, NTLN10, NL11, NMI14, OK16, OD16, PS10b, PS14, PK13a, PABSK16, PP16, Pat15, PTH11, PR10b, PUB15, PU14, PM16, PJP10, PMAP12, PI16, PCl13, QBRA18, RGPZD13, RCM+19, RB18, RMG+19, RMC19, RAMB18, RS09, RS11a, Rud12, SVRGV12, SLC+18, SN15, SN12, Sha18, SLS+10, SLZ+12c, SHL+13, SJZ+18, SM12, Sto18, SK12b, SD13c, SS13, TFBG14, TIN13, Tan13, TTD13, TH12, TDOD17, TG16, TXK+19, TLC+17, UV18a, VPGC12, Var11, VUC13, VBO+15, WKG17, WJY15, WI14, XNL+14, XGH+18b, YKM+15, YLH+19, YWH12a, YWH12b, ZS11, ZQCJ10, ZLY13, ZC+16, ZBM16, ZL12b, ZSB12, ZSL12, ZSL11, ZSHL+13, SJZ+18, Zho18, dCSDdMC13, dSTH17, BM10, SP19]. theory-based
[KSAK17, WJY15]. there
[GI11f, SMR14, TKSK17]. Thermal
[CEV10, FBM+10, NG11, AFM+10, AMMB+18, Chu12, Liu15a, MVC13, MCC12, Mar13, MOSK10, MML+11a, MB13, PP19b, RRRV19, YZ13]. thermalization
[Nes11]. thermally
[GMM+18]. Thermochemical
[Kim19, Rus14]. Thermochemistry
[ABTW14, SBAT16, AK11, BYAT13, CT14, HZG12, Rus14, WZX15b]. Thermodynamic
[JAB12, VOAH18, XNL+14, COCF+14, DWGX12, Kim13, LZZ+13, OSJ+12, Pan19, PP19a, RMLPGGH16, Tav11, TSH17, dOLdV13]. Thermodynamical
[Nag17]. Thermodynamics
[ML16, PK16, BvWG14, Bra19, DP11, PD11, PRFR17, RTG+19, WSCL11]. thermoelectric
[KG17]. these
[MMP19, Ril10]. THF
[HHL12a, HHL14, AG10b, RTT10]. thiadiazole
[VMC11]. thiazol
[DDC12, SC12a, SC12b]. thiazolidine
[MBBT+12]. thiocarbonyl
[BH10a, PJP08, dCSDdMC13]. Thioflavin
[BBM17]. thioguanine
[SS18a]. thioketones
[MMW19]. thiol
[JS17, KV11, OD16]. thiol-functionalized
[OD16]. thiocarbonyl
[BC10]. thiourea
[LCM+11]. third
[KWC11, MMF+13, NKF+13, RS09, RS11a, WLZ+12a]. third-order
[MMF+13, NKF+13, WLZ+12a]. third-row
[KWC11]. Thoughts
Threading [WMK+19]. Three

[DMS+10, FMMD+10, HYH+10, Kry10, LQZZ12, MPD+15, MMP+18b, RAN18, ARG11, Buc10, Buc11a, CG12, GSaY11, Hog13, KV19, LWY13, Mat02, Mat10, MUPC10, RZSZ18, RAGM10, SD13b, SYL+18, SKY+13, WvRSW+11, WLZ+12b, Zha14, JA12].

Three-body [RAN18, ARG11, Hog13, RAGM10]. three-center [Buc10, Buc11a].

Three-dimensional [DMS+10, MPD+15, RZSZ18, SD13b]. three-electron [Buc11a, CG12, LWY13]. three-membered [Zha14].

Three-peak [HYH+10].

Three-photon [WLZ+12b].

Three-state [GSaY11].

Three-unit [LQZZ12].

Three-body

Three-dimensional

Three-membered

Three-peak

Three-photon

Three-state

Three-unit

threshold

through-bridge

through-space

throughput

threonine

Tietz

Ti

TiCl

Tietz

tight

tight-binding

Time

Time-dependent

Time-independent

Time-reversal

tolerance

tomentosin

torsion
[DSCO$^{+13}$, GWME18]. torsional [CMCN11, MMCN$^{+11}$, RA10a]. Total [NA14]. Townes [HYH$^{+10}$]. toxic [SD16b]. toxicity [PI13]. tpy
[LWL$^{+12}$, ZQJW13]. Tr [CDL$^{+19}$]. tracking [WLZ18]. trail [dGR14].
trains [SVPM$^{+10}$]. traits [LSC$^{+18}$]. trajectories [Cho15, Cho16, YS13, YH14a]. trajectory [MMG15, SPSA11, MMCN$^{+11}$, RA10a].
transfer/induction [dCDC$^{+11}$]. Transferability [GSR12, STM17, RLER10]. transferred [HSN18]. transfers [KyH13a, YYS15, YY18a]. transform [SYF12, Y$^{+12}$]. transformation [DMAB12, DM12, DK13, HHYC$^{+18}$, IM15, Jør15, Jør18, Man13, Ru10, SN15, TS$^{+15}$]. transformed [Hor13]. transistors [SAHA16].
transmembrane [KMT$^{+12}$]. Transmission [RBGGM18, CDT12, NTC18, NA12, SD13c]. transmitted [Cho15].
Transport [Yam11, DCZ17, DLZ11, ETGLMJ$^{+19}$, Gao12, Jan10, JR19, KM12c, MSG16, MMP11, OH12, OH13, PFdm13, RBGGM18, RRRV19, SSKS12, SSB12a, WDS19, ZYE$^{+11}$, ZQJW13, ZY13, ZB18]. transporting [MCL11]. Trap [YZZH15]. trapped [TG13]. Trapping [PDNC14, LL18].
treatment [AEKG12, BHV$^{+11}$, ISN13, Jør18, KL11, Kry12a, Mam13, MSNP18, PMGMGR12, SKG11, SSAM13, WJY15, AM13b]. trees [AD17, Bib13, DZ11b, Du12, LSW19, LWY19, LZZ19, PL18a]. trends [BCHN16, DMBJ15, MT10]. tri [AM18]. tri-coordinated [AM18]. triad [AM18].
TBRIS11, TFZ+15, XLGA12, YD17, ZZL+11]. types
[LMZ+11, RDB19, SMMT13, SKY+13]. typical [ZZL+11]. tyrosine
[TBHL11]. tyrosyl [ST15].

U [BB10, OGvSG18, WDJ+17]. UB3LYP [YSK+12]. UBD [NYS+10].
UBHandHLYP [YSK+12]. UC [LLZah14]. UC-Curve [LLZah14]. UCC
[NYS+10]. ULO-MRCC [NYS+10]. ultra [NWQX11]. ultra-short
[NWQX11]. ultrafast [PETB18]. ultrashort [Vik13]. Uncatalyzed
[CF17, DP12]. Uncertainty [ORJ18, Rus14, Coo12, OOI+19, RBGGM18].
uncharged [MP12]. Uncontracted [HH18, UGWL18]. Unconventional
[SS11, MC14, ZYL+14]. Understanding [CRB+12, LSP+16, LG15,
Kim16, LKN13, May14, PWH+12, SB16, TBHL11, XZCH11]. uneasy
[fXxBhD19]. Unexpected [BTH18, Cor16]. unicyclic
[DZ11b, GA19]. Unified [Mam13, PMGMR12, DP11, GTR11, PD11]. uniform
[LG12, RL12]. unimolecular [MLB+12, RLW+13, WLWL14]. Unique
[GPM+15, MOLF11, YD17, AEKGZ12]. uniqueness [She14]. unit
[CHL+19, LQZZ12, MYZ+10, Sch10b]. Unitary
[NS13, GRD11, PBR18, SN15]. united [CC11b]. units
[ALK19, BBKO16, LSKM19, MPD+15, ZH15]. universal [BVP14, CD18].
unnatural [OM13b]. UNO-
[NYS+10]. Unoccupied [ALA15]. Unpaired
[KK13, KK14a, BMB16, QCB+10]. unpolarized [SFM13]. Unraveling
[AGNS14]. unrestricted [AHT12, NSN17, Tob19]. unsaturated
[OPAVM18, SAG13, VF13a, YSW17]. Unsaturation [WLS+19]. Unstable
[Bai12, Mor13]. unsupported [NZ13]. unsymmetrical [FDN10]. unusual
[MBSMJ18]. unusually [BMF13, XCD18]. UO [MTR+19]. Update
[KRC+16]. Updates [BDF+16, BHI+13, CYC+15, DOE+14, FMPM+14,
KRC+16, LCZ15, MML+16, MRS15, NKK15, yOITn15, QXS+15,
SDP+16, TY17, YAF+15, ZH15, ZWSF16]. upon [CRSB12, MS14a]. upper
[FD16]. uptake [DLLA10]. uracil
[KS18, MYZ+10, MZB+13, MR11, YPDW14, ILBS10]. uracil-dimer [KS18]. Uranyl
[ZKKR11, KRK+17, Lu10, Lu10]. urrea [EBH11, LWZ+14]. urease
[BMB12]. urils [MGK19]. Use
[GE12b, CP11, FT15, KJ14, MR11, SIM14, Sic16, SV11]. used
[AGJ12, KDA+11, MUNZVR12, NZAVR10, PSPS11, Sza13]. useful [FDG18].
uses [ZF15]. Using [CRA+11, TWHZ14, AAHN16, AA11, Ale13, AC12,
ABKJ18, AFM+10, ASW13, BLRD+10, Boe12, BVA+14, BWB+18,
CRFR11, CG12, CNK11, CK17, CF14, CAPL12, DK13, DCHC11, DFV+12,
DQZF12, ESDO16, EM19, Fuk12, FC19, GR]
RTG+19, RZZS18, RFEGPP+16, RSCS10, RRCO11, SAS+12, SA18, SY10, SOF+10, SN12, SSAM13, SZS+10, SLZ+11c, SLZ+11a, SL5+11, SB10b, SM12, S18, SK12, TN16, TMC18, TG13, TWR15, Val17, WML10, WB17, WDJ+17, WH12, XTLA13, XTLA14, Xu19, ZWSF16, ZS12]. using [ZZ18, ZCP11, dLAB17]. uteroferrin [KSY+11]. utilizing [KFS13, Tou11a]. UV [AFC+10, BSS15, Bou12b, ÇAS13, DSD18, FPRGMHGB12, MSBF18, PJP08, PJP10]. UV-Vis [DSD18]. UV-visible [Bou12b]. UV/VIS [PJP10, PJP08]. uvarovite [MPZWD10, VFDF10].

[Ano16o, Ano16p, Ano16q, Ano16r, Ano17a, Ano17b, Ano17m, Ano17n, Ano17t, Ano17u, Ano17v, Ano17w, Ano17x, Ano17y, Ano17z, Ano17d, Ano17c, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17o, Ano17p, Ano17q, Ano17r, Ano17s, Ano17u, Ano17v, Ano17w, Ano17x, Ano17y, Ano17z, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano17o, Ano17p, Ano17q, Ano18a, Ano18r, Ano18s, Ano18t, Ano18b, Ano18o, Ano18u, Ano18v, Ano18w, Ano18x, Ano18y, Ano18z, Ano18-27, Ano18-28, Ano18-29, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h, Ano18i, Ano18j, Ano18k, Ano18m, Ano18n, Ano18o, Ano18p, Ano18q, Ano19a, Ano19b, Ano19c, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19l, Ano19m, Ano19n, Ano19p, Ano19q].

Volume [Ano19r, Ano19s, Ano12o]. vortex [GKS10]. vorticity [BL19, HMH10a].

W [W1BD [VF13a]. W2 [OKR16]. W2w [OKR12]. Waals [BPG+10, BAP12, Ber13b, GRCATG19, KKL+16, NRI15, PABSK16, SZS+19].

waistline [TMC+13]. walks [PR10a]. walled [Bas11, ETGLMJ+19, HNBG15, KG08, MSOV13, SD16a].

waves [Bas11, ETGLMJ+19, HNBG15, KG08, MSOV13, SD16a].

We [HNBS18, MLY+16, ZLY+14, GAPK+19b, SX8+12].

Wannier [PABSK16]. warm [DW12, Ng12].

Watch [ZLWY13]. Water [Kim18, RFEGPP+16, WW11, XMZ+12, AF16, ATS15, BBB+12b, BPSM12, BCS+12, Cha10, CNSK11, Chu12, CK17, CAPL12, DKP18, DE18, EOF11, EO11, FMCA11, FUE+12, GSZ10, GLPA10, HDQ+13, HS11b, KK11c, KV11, LFF+12, LLM13, LWJ+11, LNGW14, LCB10, Ma14, MAD12, MFB11, MK10a, MK10b, MPE15, Mar12, MTL+12, MPV+11, MOE+11, MD11, MRA11, NS10a, OHD13, OD12, PW10, PCMG12, QSLY10, RRVJ10, RAK10, SYK+12, SSK+12, SMEH15, SMEH16, SK12a, SJZ+18, SL10, SCL19, SW12, SJW13, SHMR11, TGRP19, Var14, WCDG12, WDD+15, WTP+19, WSV10, XJ18, XGH18a, YY18a, YYI+12, YT14, ZKW17, Zak13].

Wave [AB16a, HDFLASH12, Kut13, NS13, TKN13, TH13, YKN13, Bae16, BR12b, CW13b, Cho19, CMZ10, D’y16, GBS17, Gao11, GTK+12, HR12, Hug13, IK18, KRC+16, KH10, Kar13, NTGC19, Oht13, OHDA13, OH19, RZ17, RW11, SSAM13, SGG10, Tobi19, WC14, WH12, YLC18, ZHF12, ZCG+17].

Wave-function-based [AB16a]. wave-functions [Hog13]. wave-packet [Bae16].

wavefunction [CH17, DAC11, GWHH17, ZWSF16].

wavefunctions [AC12, Lai11, Yur13, Yur15]. wavelengths [JdOS16].

Wavelet [SFY12, GSPR19]. wavepacket [GWZ+14a, HKZZ15, Han19].

Welcome [Ano13-49]. well [DB12, Fuku12, HB14, KC16, KC18, NTG18, SDL+15, WZX+15a, Xu16, Xu19]. wells [BN11]. wet [ZK12].
REFERENCES

References

Afaq:2011:CPR

Avery:2015:REM

Arif:2012:TIH

Arif:2012:RHM

Abdelmonem:2016:DSI

[AAHN16] Mohamed S. Abdelmonem, Aafa Abdel-Hady, and Ibrahim Nasser. Dealing with the shifted and inverted Tietz–Hua oscillator potential using the J-matrix method. Inter-
REFERENCES

Almatarneh:2017:CMS

Abarenkov:2016:TRW

Abbat:2016:ESC

Alipour:2018:ITA

Avci:2011:EDB

[ABP13] Vladislav Antonov, Dobrina Borisova, and Ana Proykova. Vacancy spatial distribution causes different magnetism in

and mer tris(β-diketonato) iron(III) complexes: a density
functional theory study and molecular electrostatic poten-
tial analysis. *International Journal of Quantum Chemistry,*
IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[ACF+11] Yue-Jie Ai, Gang-Long Cui, Qiu Fang, Wei-Hai Fang,
and Yi Luo. Exploring concerted effects of base pairing
and stacking on the excited-state nature of DNA oligonu-
cleotides by DFT and TD-DFT studies. *International
Journal of Quantum Chemistry,* 111(10):2366–2377, Au-
gust 15, 2011. CODEN IJQCB2. ISSN 0020-7608 (print),
1097-461X (electronic).

[Adamo:2010:P] Carlo Adamo, Henry Chermette, and David Loffreda. Pref-
ce. *International Journal of Quantum Chemistry,* 110(12):
2101, October 2010. CODEN IJQCB2. ISSN 0020-7608
(print), 1097-461X (electronic).

eralized oscillator strength of endohedral molecules. *Inter-
national Journal of Quantum Chemistry,* 112(18):3119–
3130, September 15, 2012. CODEN IJQCB2. ISSN 0020-
7608 (print), 1097-461X (electronic).

Machado, and Orlando Roberto-Neto. Theoretical cal-
culations of structures, energetics, and kinetics of O(3P)
+ CH₃OH reactions. *International Journal of Quantum
Chemistry,* 110(11):2037–2046, September 2010. CODEN
IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Mostar indices of carbon nanostructures and circumscribed
donut benzenoid systems. *International Journal of Quan-
tum Chemistry,* 119(24):e26043:1–e26043:??, December 15,
2019. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-
461X (electronic).
REFERENCES

REFERENCES

Amzallag:2012:IEE

Akdemir:2012:NAE

Alipour:2016:OSW

Agbaglo:2019:PEC

Andreussi:2019:CEC

Aliabad:2013:OPK

[AFA13] Hossein Asghar Rahnamaye Aliabad, Marjan Fathabadi, and Iftikhar Ahmad. Optoelectronic properties of KDP by

Adrover:2010:IIF

Antunes:2010:DPT

Alvarez-Falcon:2012:DMC

Alagona:2010:DWR

Alagona:2010:FEL

REFERENCES

Ayala:2019:TSB

Agboola:2012:BSD

Alexandrou:2019:EFD

Aguilera-Granja:2015:SMV

Andres:2018:FAN
REFERENCES

Anne:2012:CRP

Andres:2014:RUR

Aguilar-Galindo:2018:ECE

Andjelkovic:2013:CEC

Aparicio:2012:SSI

[AK17] Fahhad H. Alharbi and Sabre Kais. Kinetic energy density for orbital-free density functional calculations by axiomatic

REFERENCES

REFERENCES

Arruda:2015:MAB

Angeli:2010:ADP

Anonymous:2010:LPa

Anonymous:2010:LPb

Anonymous:2010:LPc

Anonymous:2010:LPd

Anonymous:2011:BCV

REFERENCES

Anonymous:2011:DMBb

Anonymous:2011:DMBa

Anonymous:2011:LPa

Anonymous:2011:LPb

Anonymous:2012:CIVa

Anonymous:2012:CIVb

Anonymous:2012:CIVc

Anonymous:2012:CIVd

Anonymous:2012:CIVe

Anonymous:2012:CIVf

Anonymous:2012:CIVg

Anonymous:2012:CIVh

Anonymous:2012:ICVa

Anonymous:2012:ICVb

September 15, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Anonymous:2012:LP

Anonymous:2013:CIIi

Anonymous:2013:CIIj

Anonymous:2013:CIIk

Anonymous:2013:CIIl

Anonymous:2013:CIIm

Anonymous:2013:CIIIn

Anonymous:2013:CIVb

Anonymous:2013:CIVt

Anonymous:2013:CIVu

Anonymous:2013:CIVv

Anonymous:2013:CIVw

Anonymous:2013:CIVx

Anonymous:2013:CIVc
Anonymous:2013:CIVd

Anonymous:2013:CIVe

Anonymous:2013:CIVf

Anonymous:2013:CIVg

Anonymous:2013:CIVh

Anonymous:2013:CIVi

Anonymous:2013:ICV
Anonymous:2013:PWI

Anonymous:2014:CIC

Anonymous:2014:CIIa

Anonymous:2014:CIIj

Anonymous:2014:CIIk

Anonymous:2014:CIII

Anonymous:2014:CIIIm

REFERENCES

Anonymous:2014:CIIId

Anonymous:2014:CIIe

Anonymous:2014:CIIf

Anonymous:2014:CIIg

Anonymous:2014:CIIh

Anonymous:2014:CIIi

Anonymous:2014:CIVa

Anonymous:2014:CIVi

Anonymous:2014:CIVj

Anonymous:2014:CIVk

Anonymous:2014:CIVm

Anonymous:2014:CIVn

Anonymous:2014:CIVO

Anonymous:2014:CIVq

Anonymous:2014:CIVb

Anonymous:2014:CIVr

Anonymous:2014:CIVs

Anonymous:2014:CIVt

Anonymous:2014:CIVu

REFERENCES

Anonymous:2015:CIIa

Anonymous:2015:CIIb

Anonymous:2015:CIIc

Anonymous:2015:CIId

Anonymous:2015:CIIe

Anonymous:2015:CIVj

Anonymous:2015:CIVk

REFERENCES

Anonymous:2015:CIVs

Anonymous:2015:CIVt

Anonymous:2015:CIVu

Anonymous:2015:CIVv

Anonymous:2015:CIVw

Anonymous:2015:CIVa

Anonymous:2015:CIVx

REFERENCES

Anonymous:2015:CIVd

Anonymous:2015:CIVe

Anonymous:2015:CIVf

Anonymous:2015:CIVg

Anonymous:2015:CIVh

Anonymous:2015:CIVi

Anonymous:2015:IIa

REFERENCES

Anonymous:2015:IIb

Anonymous:2015:IIc

Anonymous:2015:IId

Anonymous:2015:IIf

Anonymous:2015:IIf

Anonymous:2015:IIf

Anonymous:2015:IIg

Anonymous:2015:IIi

Anonymous:2015:IIj

Anonymous:2015:IIk

Anonymous:2015:IIl

Anonymous:2015:IIm

Anonymous:2015:IIo

Anonymous:2015:IIp

Anonymous:2015:IIp

REFERENCES

Anonymous:2015:IIq

Anonymous:2015:IIr

Anonymous:2015:IIs

Anonymous:2015:IIt

Anonymous:2015:IIu

Anonymous:2015:IIv

Anonymous:2015:IIw

REFERENCES

CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

15, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Anonymous:2016:CIVp

Anonymous:2016:CIVq

Anonymous:2016:CIVr

Anonymous:2016:CIVs

Anonymous:2016:CIVt

Anonymous:2016:CIVu

Anonymous:2016:CIVv

REFERENCES

5, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Anonymous:2016:CIVb

Anonymous:2016:CIVw

Anonymous:2016:CIVx

Anonymous:2016:CIVy

Anonymous:2016:CIVz

Anonymous:2016:CIVaa

Anonymous:2016:CIVab

REFERENCES

Anonymous:2016:CIVc

Anonymous:2016:CIVd

Anonymous:2016:CIVe

Anonymous:2016:CIVf

Anonymous:2016:CIVg

Anonymous:2016:CIVh

Anonymous:2016:CIVi

Anonymous:2016:CIVj

Anonymous:2016:Ila

Anonymous:2016:Ilb

Anonymous:2016:Ilc

Anonymous:2016:Ild

Anonymous:2016:Ile

Anonymous:2016:Ilf

REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Anonymous:2016:IIn

Anonymous:2016:IIo

Anonymous:2016:IIp

Anonymous:2016:IJq

Anonymous:2016:IJr

Anonymous:2016:IJs

Anonymous:2016:IJt

Anonymous:2016:IIu

Anonymous:2016:IIv

Anonymous:2016:IIw

Anonymous:2016:IIx

Anonymous:2016:IIy

Anonymous:2017:CIVa

Anonymous:2017:CIVb

Anonymous:2017:CIV1

Anonymous:2017:CIVm

Anonymous:2017:CIVn

Anonymous:2017:CIVo

Anonymous:2017:CIVp

Anonymous:2017:CIVq

Anonymous:2017:CIVr

REFERENCES

Anonymous:2017:CIVs

Anonymous:2017:CIVt

Anonymous:2017:CIVu

Anonymous:2017:CIVc

Anonymous:2017:CIVd

Anonymous:2017:CIVv

Anonymous:2017:CIVw

Anonymous:2017:CIVx

Anonymous:2017:CIVy

Anonymous:2017:CIVz

Anonymous:2017:CIVe

Anonymous:2017:CIVf

Anonymous:2017:CIVg

Anonymous:2017:CIVh

REFERENCES

15, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Anonymous:2017:CIVi

Anonymous:2017:CIVj

Anonymous:2017:CIVk

Anonymous:2017:IIa

Anonymous:2017:IIb

Anonymous:2017:IIc

Anonymous:2017:IId
Anonymous:2017:IIe

Anonymous:2017:IIf

Anonymous:2017:IIg

Anonymous:2017:IIh

Anonymous:2017:IIi

Anonymous:2017:IIj

Anonymous:2017:IIk

Anonymous:2017:IIl

REFERENCES

Anonymous:2017:IIu

Anonymous:2017:IIv

Anonymous:2017:IIw

Anonymous:2017:IIx

Anonymous:2018:CIVa

Anonymous:2018:CIVb

Anonymous:2018:CIVm

Anonymous:2018:CIVn

Anonymous:2018:CIVO

Anonymous:2018:CIVp

Anonymous:2018:CIVq

Anonymous:2018:CIVr

Anonymous:2018:CIVs

Anonymous:2018:CIVt

Anonymous:2018:CIVu

Anonymous:2018:CIVv

Anonymous:2018:CIVw

Anonymous:2018:CIVx

Anonymous:2018:CIVc

Anonymous:2018:CIVy

Anonymous:2018:CIVz

Anonymous:2018:CIVaa

Anonymous:2018:CIVab

Anonymous:2018:CIVac

Anonymous:2018:CIVd

Anonymous:2018:CIVe

Anonymous:2018:CIVf

Anonymous:2018:CIVg

Anonymous:2018:CIVh

Anonymous:2018:CIVi

Anonymous:2018:CIVj

Anonymous:2018:CIVk

Anonymous:2018:CIVl

Anonymous:2018:E

Anonymous:2018:IIa
Anonymous: 2018: IIb

Anonymous: 2018: IIc

Anonymous: 2018: IId

Anonymous: 2018: IIm

Anonymous: 2018: IIf

Anonymous: 2018: IIG

Anonymous: 2018: IIH

Anonymous: 2018: III

Anonymous:2018:IIj

Anonymous:2018:IIk

Anonymous:2018:IIm

Anonymous:2018:IIn

Anonymous:2018:IIo

Anonymous:2018:IIp

Anonymous:2018:IIm
REFERENCES

REFERENCES

Anonymous:2019:CIVp

Anonymous:2019:CIVq

Anonymous:2019:CIVr

Anonymous:2019:CIVs

Anonymous:2019:CIVt

Anonymous:2019:CIVu

Anonymous:2019:CIVv

Anonymous:2019:CIVg

Anonymous:2019:CIVh

Anonymous:2019:CIVi

Anonymous:2019:CIVj

Anonymous:2019:CIVk

Anonymous:2019:CIVl

Anonymous:2019:IIa

Anonymous:2019:IIb

Anonymous:2019:IIc

Anonymous:2019:IId

Anonymous:2019:IIf

Anonymous:2019:IIf

Anonymous:2019:IIf

Anonymous:2019:IIf

Anonymous:2019:IIi

Anonymous:2019:IIj

Anonymous:2019:IIk

Anonymous:2019:IIl

Anonymous:2019:IIm

Anonymous:2019:IIn

Anonymous:2019:IIo
Anonymous:2019:IIP

Anonymous:2019:IIQ

Anonymous:2019:IIR

Anonymous:2019:IIS

Anonymous:2019:IIr

Anonymous:2019:IIu

Anonymous:2019:IIv

REFERENCES

REFERENCES

[ASD18] Amr A. A. Attia and Radu Silaghi-Dumitrescu. Nickel-substituted iron-dependent cysteine dioxygenase: Implica-

[Asher:2018:AVO]

[Ahlstrand:2013:IEB]

Emma Ahlstrand, Daniel Spångberg, Kersti Hermansson, and Ran Friedman. Interaction energies between metal ions (Zn$^{2+}$ and Cd$^{2+}$) and biologically relevant ligands. *International Journal of Quantum Chemistry*, 113(23):2554–2562, December 5, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[Azadi:2015:RVB]

[Ahubelem:2015:FBC]

[Astakhov:2016:PIA]

Alcoba:2011:CCE

Aquino:2011:FCB

Aschauer:2015:ISS

Afonin:2019:BCI

Asha:2019:PBI

Asha:2019:ESS

Aydogdu:2015:BSS

Aschi:2011:EEB

Boyko:2013:CBS

Bertini:2018:PFE

Breuza:2018:MSZ

Baer:2014:TDM

Baeck:2016:TRB

Balasubramanian:2016:QCI

Batiha:2012:TSR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BCF+11] Natércia F. Brás, Luís Cruz, Pedro A. Fernandes, Victor De Freitas, and Maria João Ramos. Conformational study of two diastereoisomers of vinylcatechin dimers in a methanol...

Emily Burrell, Jared C. Clark, Mathew Snow, Heidi Du-
mais, Seong cheol Lee, Brad J. Nielson, Derek Osborne, Lu-
cia Salamanca-cardona, Logan Zemp, Ryan S. Dabell, and
Jaron C. Hansen. Computational study of hexanal peroxy
radical–water complexes. *International Journal of Quan-
IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Amartya Banerjee and Kalyan Kumar Das. Theoretical
spectroscopic studies of InI and InI+. *International Jour-
nal of Quantum Chemistry*, 112(2):453–469, January 15,
2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-
461X (electronic).

Subhi Baishya and Ramesh C. Deka. Catalytic activities
of Au$_{6}$, Au$_{6}^{-}$, and Au$_{6}^{+}$ clusters for CO oxidation: a den-
sity functional study. *International Journal of Quantum
Chemistry*, 114(22):1559–1566, November 15, 2014. CO-
DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Oscar Baseggio, Martina De Vetta, Giovanna Fronzoni,
Mauro Stener, and Alessandro Fortunelli. Software news &
updates: a new time-dependent density-functional method
for molecular plasmonics: Formalism, implementation,
and the Au$_{144}$ (SH)$_{60}$ case study. *International Jour-
nal of Quantum Chemistry*, 116(21):1603–1611, November 5,
2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-
461X (electronic).

Oscar Baseggio, Martina De Vetta, Giovanna Fronzoni,
Daniele Toffoli, Mauro Stener, Luca Sementa, and Alessan-
dro Fortunelli. Time-dependent density-functional study
of the photoabsorption spectrum of Au$_{5}$ (SC$_{2}$H$_{4}$C$_{6}$H$_{5}$)$_{18}$
anion: Validation of the computational protocol. *Interna-
tional Journal of Quantum Chemistry*, 118(22):e25769:1–
REFERENCES

e25769:??, November 15, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

REFERENCES

[BG11c] Antonio Carlos Borin and João Paulo Gobbo. Electronic structure of the ground and low-lying electronic states
REFERENCES

Bo:2016:EQS

Begum:2015:TIN

Braida:2010:ESE

Burke:2010:SPP

Bugeanu:2019:PRM

BenAissa:2019:TDF

Mohamed Ali Ben Aissa, Sabri Hassen, and Youssef Arfaoui. Theoretical density functional theory insights into the nature of chalcogen bonding between CX$_2$ ($X = S$, S, Se).

[Bib13] Khodakhast Bibak. The number of spanning trees in an
(r, s)-semiregular graph and its line graph. *International
Journal of Quantum Chemistry*, 113(8):1209–1212, April
15, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-
461X (electronic).

and DFT calculations of 14N nuclear quadrupole coupling
constants. *International Journal of Quantum Chemistry*,
112(10):2281–2286, May 15, 2012. CODEN IJQCB2. ISSN
0020-7608 (print), 1097-461X (electronic).

study of fluoroquinolone binding to Mg(H$_2$O)N$^{2+}$ and its
applicability to future drug design. *International
CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[BJdlMAV12] Claudia Briones-Jurado, Pablo de la Mora, and Esther
Agacino-Valdés. Density functional theory study of Au$_n$
($n = 1–5$) clusters supported on montmorillonite. *International
Journal of Quantum Chemistry*, 112(22):3646–3654,
November 15, 2012. CODEN IJQCB2. ISSN 0020-7608
(print), 1097-461X (electronic).

[BKMK15] Khaled Bodoor, Jacek Kobus, and John Morrison. A
numerical solution of the pair equation of a model
two-electron diatomic system. *International Journal of Quan-
IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[BL10] Sławomir Berski and Zdzisław Latajka. Quantum chemical
topology: The electronic structure of the alkaline nitrites
MONO (M = Li, Na, K) studied by means of topological
analysis of the electron localization function. *International
REFERENCES

Xiangbin Bai, Qingzhong Li, Ran Li, Jianbo Cheng, and Wenzuo Li. Is a MH (M = Be and Mg) radical a better electron donor in halogen-hydride interaction?: a theoretical comparison with HMH. *International Journal of Quantum Chemistry*, 113(9):1293–1298, May 5, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Blomberg:2015:PHQ

Belarmino:2012:HBB

Bertin:2010:CTS

Bian:2017:IRM

Bryk:2010:NCP

Bonfanti:2016:TRC

REFERENCES

2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Bin:2019:DBP

Burileanu:2011:LFD

Barbatti:2012:DHH

Budyka:2011:CSD

Bochicchio:2017:SFM

Boettger:2012:TCZ

Jonathan C. Boettger. Theoretical calculation of the zero-temperature isotherm and phase stability of silver up to 2 Gbar using the linear combinations of Gaussian type orbitals method. *International Journal of Quantum Chemi-

REFERENCES

of intermolecular forces for van der Waals complexes of the type $\text{H}_2\text{X}_n\text{-Rg}$, with $\text{X} = \text{O, S}$ and $n = 1, 2$. *International Journal of Quantum Chemistry*, 110(3):777–786, March 5, 2010. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

February 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Barbatti:2016:EDI

Bhattacharya:2015:PNO

Bulusheva:2011:SSN

Bulusheva:2016:RMB

Buzko:2011:DSC

Brandas:2014:P
REFERENCES

Bhattacharya:2015:PBD

Bengtson:2016:QNE

Bhattacharya:2019:EEW

Butchosa:2012:CDE

Boguslawski:2015:POE

REFERENCES

Bhattacharya:2013:FSM

Bhattacharya:2014:ETD

Bulo:2010:BEM

Beret:2014:RCP

Burke:2013:EDN

Burke:2013:TRD

Bielinska-Waz:2015:SMG

Banafsheh:2018:RNK

Brela:2018:SHB

Bruckner:2016:TII

Bagus:2010:IAM

Bai:2013:FPI

[BXR+13] Jing Bai, Nan Xu, Jean-Marc Raulot, Claude Esling, Xiang Zhao, and Liang Zuo. First-principles investigation

Bian:2019:TSA

Bleda:2013:CTG

Benmachiche:2013:ESC

Bian:2015:TSA

Cortes-Arriagada:2017:APA

Cavasotto:2019:CCD

Castaneda-Arriaga:2012:IMD

Cortes-Arriagada:2018:ILP

Calvo:2010:ENM

Cammi:2010:CCT
Cammi:2012:CCT

Cao:2017:TSE

Cortes-Arriagada:2018:EAC

Cappelli:2016:RIQ

Castaneda-Arriaga:2018:RPC

Costantini:2012:MDS

Alessandro Costantini, Margarita Albertí, Fernando Pirani, and Antonio Laganà. A molecular dynamics study of sodium dodecyl sulfate-methane system in water using

Caricato:2019:CCT

Catikkas:2013:DFR

Casanova:2015:TIP

Cavalleri:2013:QCR

Cavalleri:2017:ERR

Cao:2011:TSI

Lu-Jie Cao, Hong-Qi Ai, Li-Ming Zheng, Su-Na Wang, Mei-Juan Zhou, Ji-Feng Liu, and Chong Zhang. Theoretical study on the interaction of neutral and charged

Courcot:2010:WAC

Choluj:2019:EPM

Chen:2011:FPI

Corongiu:2011:EDA

Clementi:2012:NOH
Chinini:2019:ACM

Carregal:2012:IVS

Cassam-Chenai:2012:IER

Coutinho:2011:1

Cezar:2019:SES

REFERENCES

Chaudhuri:2018:NSS

Chen:2013:ISI

Curotto:2012:DFS

Verónica Ferraresi Curotto and Reinaldo Pis Diez. Density functional study on the geometric features and growing pattern of B$_n$P$_m$ clusters with $n = 1–4$, $m = 1–4$, $n + m \leq 5$. *International Journal of Quantum Chemistry*, 112(19):3261–3268, October 5, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Chatzidimitriou-Dreismann:2015:RQC

Carbo-Dorca:2018:TUQ

Cardoso:2012:CRS

Daniely Verônica Viana Cardoso, Luiz Fernando de Araújo Ferrão, Rene Felipe Keidel Spada, Orlando Roberto-Neto, and Francisco Bolivar Correto Machado. O(3P) + CH$_3$SH reactions: Structures, energetics, and kinetics. *International
REFERENCES

REFERENCES

Carmona-Espindola:2012:SDF

Carmona:2014:ERL

Chetverikov:2010:TSS

Centeno:2011:BBM

Cornaton:2014:DHD

Czapla:2017:UPB

[CF17] Marcin Czapla and Sylwia Freza. Uncatalyzed peptide bond formation between two double amino acid molecules

Chaquin:2012:OTT

Chakraborty:2018:EAB

Cordova-Gomez:2012:MRC

Castro:2012:BKI

Chauhan:2017:SAC

Chaudhari:2010:HBI

Chatterjee:2011:ESR

Chen:2012:TSH

Chen:2013:DST

Chang:2019:TSP

Chen:2019:SJD

[CHL+19] Wei-Hong Chen, Hui-Min He, Ying Li, Hui Yang, Jia-Yuan Liu, Dan Yu, Di Wu, Zhong-Jun Zhou, Wei-Ming Sun, Feng-Long Gu, and Zhi-Ru Li. Small Janus dimer as electric field manipulated molecular clam switch and electric
REFERENCES

REFERENCES

REFERENCES

(5):975–980, April 2010. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

Chu:2015:RVC

Cao:2012:CSR

Cheng:2012:CSC

Chemouri:2012:DFT

Chakraborty:2015:RSO

Chakraborty:2016:RGP

[CM16] Romit Chakraborty and David A. Mazziotti. Role of the generalized Pauli constraints in the quantum chemistry of

[Candidan:2017:PAI]

[Castro:2011:ANM]

[Coccia:2016:GCB]

[Caicedo:2013:TSN]

[Cristea:2012:CSD]

Cooper:2012:CSC

Cruz:2016:LEC

Corongiu:2016:UPN

Carbonnierie:2010:TIT

Clavero:2011:DMQ

REFERENCES

[CPL15] Maria C. Caputo, Stefano Pelloni, and Paolo Lazzeretti. Theoretical prediction of the optical rotation of chiral...

Cao:2018:IPD

Caetano:2011:UNN

Caetano:2012:UIP

Cerqueira:2011:VIV

Chashchikhin:2012:DMB

Vladimir Chashchikhin, Elena Rykova, Andrei Scherbinin, and Alexander Bagaturyants. DFT modeling of band

Chuvylkin:2010:GPN

Contreras:2010:NSS

Chang:2016:RME

Cordova-Sintjago:2012:MDL

Cuevas-Saavedra:2016:AOZ
Cordova-Sintjago:2012:HSH

Çiftcioğlu:2014:CET

Cruz-Torres:2010:HSI

Carbonniere:2012:VAB

Chen:2012:TSA

Ya Kun Chen, Wei Quan Tian, and Yan Alexander Wang. Theoretical studies of Au\textsubscript{m} and PtAu\textsubscript{m} clusters and their N\textsubscript{2} and O\textsubscript{2} adsorption complexes. *International Journal of Quantum Chemistry*, 112(1):65–77, January 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).
REFERENCES

REFERENCES

Cancio:2012:LBM

Chen:2016:SEM

Chen:2010:TMS

Cybulski:2011:VCG

Chen:2015:SNU

REFERENCES

Chou:2017:VIS

Chen:2018:SSO

Chen:2019:PHM

Chen:2011:MTS

Cysewski:2011:NNN

Czapla:2018:SAA

deArmino:2017:QFF

Datta:2011:SPD

Datta:2012:LOR

Dhouib:2012:DIC

DeAndrade:2012:CMQ

DeOliveira-Filho:2011:CMS

REFERENCES

Duarte:2012:PBS

Das:2014:GHI

Duca:2014:RQM

Dai:2011:DFTb

Debnath:2011:BMF

deCourcy:2011:IWA

[dCDC+11] Benoît de Courcy, Jean-Pierre Dognon, Carine Clavaguéria, Nohad Gresh, and Jean-Philip Piquemal. Interactions

Demichelis:2010:PDF

Domingo:2010:SCF

Demichelis:2010:PED

delCampo:2012:RDG

Dong:2011:LPO

[Hua Dong, Bo-Zhen Chen, Ming-Bao Huang, and Hai-Bo Chang. O-loss photodissociation of the OCS$^+$ ion in the low-lying electronic states studied using multiconfiguration second-order perturbation theory. *International Journal
REFERENCES

Demir:2012:ETI

DosSantosGrasel:2012:AAN

DosSantosRodrigues:2011:DSV

Garrido:2010:IOV

REFERENCES

Dhillon:2018:CPS

Denis:2013:TCH

Denis:2019:ESS

Defranceschi:2011:O

Dziedzic:2013:LSD

Diniakhmetova:2016:QCM

[DFK16] Diana Radikovna Diniakhmetova, Anna Konstantinovna Friesen, and Sergey Viktorovich Kolesov. Quantum chemical modeling of the addition reactions of 1-n-phenylpropyl

daSilvadosSantos:2015:LER

daSilvadosSantos:2015:QCH

DosSantos:2012:PCP

Dmitriev:2019:IDF

Doemer:2013:APC

deGraaf:2014:RMD

Ding:2016:MDS

daHora:2012:CSR

Dong:2019:RSE

REFERENCES

2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[DK13] M. Dehestani and Z. Kalantari. The calculation of vibrational energy levels of polyatomic molecules including an-

Dekhtyar:2010:DMM

Deepa:2011:SPE

DYachkov:2010:QCM

Daud:2015:QCE

deLima:2012:SHA

Guilherme Ferreira de Lima, Cláudio de Oliveira, Heitor Avelino de Abreu, and Hélio Anderson Duarte. Sulfuric and hydrochloric acid adsorption on the reconstructed sulfur terminated (001) chalcopyrite surface. *International Jour-
REFERENCES

Ding:2012:DCF

Deng:2014:SCE

Dumont:2010:EER

daLaLuz:2012:TDE

Dolin:2011:QCM

REFERENCES

REFERENCES

REFERENCES

[DOE+14] Roberto Dovesi, Roberto Orlando, Alessandro Erba, Claudio M. Zicovich-Wilson, Bartolomeo Civalleri, Silvia Casassa, Lorenzo Maschio, Matteo Ferrabone, Marco De La Pierre, Philippe D’Arco, Yves Noël, Mauro Causà, Michel
REFERENCES

REFERENCES

REFERENCES

[DeSouza:2018:DSM]

[daSilva:2013:APD]

[daSilva:2013:CDS]

[daSilva:2011:TST]

[Dudek:2017:CSC]

Du:2013:TSE

Deglmann:2015:RAQ

daSilva:2019:MIE

DiRemigio:2019:POS

Pinheiro:2018:MZO

dosSantos:2008:SEO

Derrar:2012:TSS

dosSantos:2012:MMB

daSilva:2016:LER

REFERENCES

Du:2012:TSA

Dai:2011:DFTa

dWergifosse:2014:EMS

Dupont:2014:IMC

Ding:2016:PEO

REFERENCES

Dolgounitcheva:2012:ESB

Dolgounitcheva:2012:EDE

Esrafili:2012:CII

Echeverria:2017:IIG

Elroby:2013:CPM

REFERENCES

Ellis:2016:DFA

Esrafili:2014:SEC

Erdogan:2011:ODSa

El-Gogary:2010:IAD

Ebrahimi:2011:SER

Eddy:2011:ETS

[EL11] Nnabuk O. Eddy and Benedict I. Ita. Experimental and theoretical studies on the inhibition potentials of some derivatives of cyclopenta-1,3-diene for the corrosion of mild

Eilmes:2014:EMV

Ebrahimi:2012:SER

Ebrahimi:2010:OHI

Elroby:2008:SCD

Elliott:2016:DMP

Elango:2011:QCD

Esrafili:2016:HCC

Esrafili:2015:DRH

Engel:2016:RSC

Esrafili:2015:ASD

Estevez:2019:CCM

Esrafili:2018:SSA

Emelyanova:2013:DCR

Espinosa-Torres:2019:TSE

Exner:2011:CIP

FerreiraDaCunha:2010:TRC

Fedoseeva:2011:ESC

Fantuzzi:2012:PMI

Freidzon:2011:ISS

Fuster:2019:ACC

References

Fazio:2016:RCE

Franchini:2019:VBD

Finzel:2014:ERD

Finzel:2014:HDA

Finzel:2015:SAP

Finzel:2016:ADB

REFERENCES

August 5, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[FKL+12] Matteo Ferrabone, Bernard Kirtman, Valentina Lacivita, Michel Rérat, Roberto Orlando, and Roberto Dovesi. Vibrational contribution to static and dynamic (hyper)polarizabilities of zigzag BN nanotubes calculated by

Faginas-Lago:2010:DCR

Faber:2015:CSR

Ferdowsi:2016:TSM

Ferreira:2011:EEI

Figueroedo:2014:QTP

Flores-Moreno:2010:TAN

Fernandez:2017:MSA

Flores-Moreno:2014:SNU

Feng:2017:RHG

Fukuda:2016:CMR

REFERENCES

[Fellah:2010:DFS]

[Ford:2012:VSB]

[Fortenberry:2017:ESI]

[Fortenberry:2017:RQA]

[Franco-Perez:2012:UVP]

[Frank:2017:SMR]

Alexandra Ya. Freidzon, Andrei A. Safonov, Alexander A. Bagaturyants, and Michael V. Alfimov. Solvatoflu-

[FTB11] Eva M. Fernández, Maria B. Torres, and Luis C. Balbás. First principles study of CO adsorption–CO\(_2\) desorption mechanisms on oxidized doped-gold cationic clusters...
MAu$_n$O ($M = Ti, Fe; n = 1, 4, 7; m = 1, 2$). International Journal of Quantum Chemistry, 111(2):510–519, February 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Fukushima:2012:MDA

Fukushima:2012:CAU

Felix:2011:DPH

Felix:2011:DPH

Fan:2011:CEB

Hong-Yi Fan, Hong-Chun Yuan, and Jun hua Chen. Calculating electron binding energies for quadratic fermion Hamiltonian by virtue of the IEO method. International
REFERENCES

REFERENCES

[Galano:2019:CSP]

[Goncalves:2010:ESB]

[Ganesan:2014:IDO]

[Gao:2011:MWF]

[Gao:2012:TSC]

[Gam:2019:SHC]
Franck Gam, Ramiro Arratia-Pérez, Samia Kahlal, Jean-Yves Saillard, and Alvaro Muñoz-Castro. Stabilizing heteroatom-centered 16-vertex group 11 tetrahedral architectures: Bonding and structural considerations to-

Gam:2019:SLC

Garai:2008:MFD

Ghosh:2010:LSD

Gomez:2013:ESE

Gormley:2018:BMS

Chen Guo, Zhong-Hua Cui, and Yi-Hong Ding. Structures, energetics, and isomerism of [Be, C, O, S]: Stability

Ghalami-Choobar:2012:TCP

Genova:2017:EOS

Guo:2014:DFT

Granja:2011:DFS

Grether:2012:GBP

REFERENCES

Giro:2010:TAA

Gruner:2012:CBO

Guseinov:2012:UNG

Goings:2018:PCD

Garcia-Fernandez:2012:PJT

Ghanmi:2012:TSL

Gazquez:2019:TDA

Greco:2011:FGB

Guo:2011:NWN

Goel:2012:DFS

Garcia:2012:CCC

Gottlieb:2011:NMS

Gross:2012:CCH

Ghosh:2010:SEG

Ghosh:2011:CTA

Ghosh:2011:DSDa
Dulal C. Ghosh and Nazmul Islam. Determination of some descriptors of the real world working on the fundamental

[GI14] Dawid Gaszowski and Marek Ilczyszyn. Nature of Brønsted acid–noble atom contacts: a reevaluation of hydrogen

Gineityte:2010:TRR

Ghalla:2012:TSP

Goli:2018:HIN

Garifzianova:2012:TSF

Gordeychuk:2018:SBV

García-Martínez:2012:ESS

Graham:2018:DCT

Gurgel:2011:BPP

Ghosal:2018:DFE

Ghigo:2016:TEP

Ghigo:2018:MDG

Ghosh:2019:CAT

Gerasov:2012:SWP

Gomez:2019:PPH

Galynska:2013:EPN

REFERENCES

Ghatee:2013:PAS

Goswami:2015:UBP

Gonzalez:2010:NQE

Sergio A. González and Andrés Reyes. Nuclear quantum effects on the He\textsubscript{2} H+ complex with the nuclear molecular orbital approach. *International Journal of Quantum Chemistry*, 110(3):689–696, March 5, 2010. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Gaied:2011:MBE

W. Gaied and M. Ben El Hadj Rhouma. Many-body effects on structures of small Ca2+ Ar\textsubscript{n} clusters. *International Journal of Quantum Chemistry*, 111(3):652–660, March 5, 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Grassi:2008:RBA

Grassi:2011:RBA

Gotz:2019:VWE

Garcia-Revilla:2019:LAC

Gordon:2011:PRA

Garzon-Ramirez:2018:BSD

Grunenberg:2017:IDC

Guseinov:2010:EOE
Israfil I. Guseinov and Ercan Sahin. Evaluation of one-electron molecular integrals over complete orthonormal sets

Wei Gao, Bin-Bin Wang, Xue-Jin Hu, and Yong-Chang Han. The “bound wavefunction” on the repulsive excited $^2\Sigma_u^+(2\sigma_u)$ state of the HD$^+$ molecule. *International Journal of Quantum Chemistry*, 117(15):??, August 5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Jing-Hua Guo, Hong Zhang, Yoshiyuki Miyamoto, and Xin-Lu Cheng. The effect of ionization and CH$_3$ ligand for

García:2016:SBO

Gao:2016:TSM

Hajigeorgiou:2018:EHH

Han:2019:CBA

Hatanaka:2013:EOA

REFERENCES

REFERENCES

Huang-Fu:2012:ESM

Hazra:2008:QAS

Hanson-Heine:2018:UCP

Hammoutene:2010:ESP

Huo:2017:MES

Ho:2012:TSA

Huo:2012:DID

Ho:2014:CTS

Hernandez-Hernandez:2018:TEE

Hill:2013:GBS

Hayat:2019:CBE
REFERENCES

Hashimoto:2016:AEV

Heiles:2013:RGO

Hedegaard:2014:PPE

Hermoso:2013:ENS

Hamdan:2011:TSV

He:2011:TSM

Hao:2011:TAS

He:2014:DFT

Hu:2010:TSS

Huang:2010:KEM

Huang:2011:KEMa

Hongo:2012:BQM

Huang:2018:NGQ

Hajji:2019:CFP

Higuchi:2010:CVV

[HNBG15] Yuriy Hizhnyi, Sergii G. Nedilko, Viktor Borysiuk, and Viktor A. Gubanov. Computational studies of boron- and

REFERENCES

Hopmann:2015:RQC

Horikoshi:2013:CFM

Hamzavi:2012:EWS

Haag:2013:RTQ

Hamid:2019:SES

Hamzavi:2012:RVS

REFERENCES

Hamada:2011:TDS

Hasanein:2011:DCA

Heidarzadeh:2011:QDB

Heger:2015:LEC

Hirate:2011:QEC

REFERENCES

Hou:2018:IES

He:2016:GCR

Hu:2015:RSS

Huang:2011:DFT

Hu:2010:TPA

[He:2018:PPA]

[IAM:2013:CSP]

[I2015:PHN]

[IIS+17] Muhammad Irfan, Javed Iqbal, Sana Sadaf, Bertil Eliasson, Usman Ali Rana, Salah Ud din Khan, and Khur-

Ichikawa:2011:TSH

Izadyar:2014:QCA

Ishimoto:2018:CPW

Ingale:2018:OCG

Imamura:2013:FDF

Isaev:2008:PPC

Isaev:2010:EPP

Ikuma:2017:TSR

Improta:2010:TDT

Islampour:2015:EST

REFERENCES

Jantschi:2018:CSC

Jaramillo:2010:CDE

Jiang:2012:DMC

Jalbout:2008:CTS

Jorge:2016:CBO

Jones:2010:BBO

Travis E. Jones and Mark E. Eberhart. The bond bundle in open systems. *International Journal of Quantum Chemi-

[JH13] Li Guang Jiao and Yew Kam Ho. Complex-scaling calculations for resonance states of He with screened Coulomb

Jiao:2015:ALC

Jiang:2018:FAN

Jakowski:2018:TAN

Jiang:2015:RFP

Jensen:2012:ATF
Stephanie Jensen and Dmitri Kilin. Anatase (100) thin film surface computational model for photoelectrochemical cell. *International Journal of Quantum Chemistry*, 112(24):

Ji:2012:SMP

Jiang:2012:DSC

Jing:2012:HBH

Jungsuttiwong:2011:CAB

Peng Jin, Chang Liu, Ying Li, Lanlan Li, and Yujun Zhao. Th@C$_{76}$. Computational characterization of larger actinide endohedral fullerenes. *International Journal of Quantum Chemistry*, 118(5), March 5, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Jin:2018:TCC
Jin:2013:IMB

Jiao:2017:TSI

Jesus:2019:EFS

Jenkins:2015:BST

Jahani:2013:CAT

Jacquemin:2011:ASA

Jacquemin:2010:ASR

Jacob:2012:SDF

Joshi:2019:OCT

Jayasree:2017:DFE

Jerbi:2018:RDD

Jiang:2014:TSM

Jensen:2018:TRN

Jiang:2019:EEC

Jin:2012:TSP

Ji:2012:TSR

REFERENCES

Kalemos:2018:NCB

Apostolos Kalemos. The nature of the chemical bond in borazine (B$_3$N$_3$H$_6$), boroxine (B$_3$O$_3$H$_3$), carborazine (B$_2$N$_2$C$_2$H$_6$), and related species. *International Journal of Quantum Chemistry*, 118(16):e25650:1–e25650:??, August 15, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Kang:2011:CSB

Kang:2017:FPE

Kang:2018:CBM

Kosar:2011:TES

REFERENCES

Kaplan:2012:ESD

Karwowski:2009:IPQ

Karwowski:2010:EIP

Kaliginedi:2012:KPR

Karamanis:2012:IDM

Karlsson:2012:IHA

REFERENCES

15, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[KCC13] Munmun Khatua, Debdupta Chakraborty, and Pratim Kumar Chattaraj. Reviews: Density dynamics in some quan-
REFERENCES

Attila Kovács, Jan Cz. Dobrowolski, Sławomir Ostrowski, and Joanna E. Rode. Benchmarking density functionals in conjunction with Grimme’s dispersion correction for noble gas dimers (Ne$_2$, Ar$_2$, Kr$_2$, Xe$_2$, Rn$_2$). *International Journal of Quantum Chemistry*, 117(9):??, May 5, 2017. CO-
REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

Kinzel:2011:RSP

Kar:2010:CDW

Kar:2012:DCL

Khan:2016:ESM

Korek:2010:TCL

Kim:2012:TSR

[KI12] Joonghan Kim and Hyotcherl Ihee. Theoretical study on the reaction of butadiynyl radical (C$_4$H) with ethylene (C$_2$H$_4$) to form C$_6$H$_4$ and H. *International Jour-

Kim:2016:CPD

Kim:2016:PPD

Kaur:2011:HBC

Khamatgalimov:2011:ESS

Khokhriakov:2011:IHS

Kumar:2011:QCS

Khamatgalimov:2012:IIF

Klein:2012:GKC

Karafiloglou:2013:UES

Karafiloglou:2014:UES

Kim:2014:DFM

Kaczmarek-Kedziera:2019:IPS

Kalescky:2014:CHD

Kretschmer:2012:RHB

Koseki:2013:CCR

Kanal:2018:SAS

Koyanagi:2014:CVE

Kirtman:2011:CMT

Klein:2011:SFQ

Kupka:2019:PMD

Kim:2013:IDM

Kong:2015:EPM

Kabanda:2012:CSD

Kabanda:2012:CPA

Klein:2012:MCR

Kumar:2019:EEE

[KMM16] Vitaliy V. Koval, Ruslan M. Minyaev, and Vladimir I. Minkin. Geometric and electronic structures of silicon fluorides $SiF_n^{(3-n)-}$ ($n = 4–6$) and potential energy surfaces for dissociation reactions $SiF_3-SiF_4 + F^- + SiF_6^{2-} \rightarrow SiF_5^- + F^-$. *International Journal of Quantum Chemistry*, 116(18):1358–1361, September 15, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Kulatov:2013:MKO

Kryachko:2015:VFF

Klein:2010:CSM

Kula:2012:TSE

Karlicky:2014:PCT

REFERENCES

Kang:2016:SNU

Kulkarni:2013:SDE

Kaiyawet:2013:CBB

Kristyan:2013:TVC

Khungar:2017:PRP

KRK⁺¹⁷ Bharti Khungar, Ankita Roy, Anand Kumar, Biswajit Sadhu, and Mahesh Sundararajan. Predicting the redox properties of uranyl complexes using electronic structure

Kryachko:2010:TCM

Kryachko:2011:BR

Kryachko:2011:SPM

Kryachko:2012:MMI

Kryachko:2012:SPM

Krykunov:2012:IHT

[Kry12c] Mykhaylo Krykunov. Impurity Hamiltonian for transition metal complexes based on the exact exchange for correlated

Kakkar:2011:TSK

Kruse:2018:HAE

Kaur:2019:CBB

Kishida:2017:EIC

Khatua:2015:RDC

Kis:2010:ESB

Koitz:2012:SDM

Kitagawa:2010:DAS

Kumar:2019:NAP

Kido:2012:SAA

REFERENCES

Kaur:2019:SDS

Kim:2016:TIS

Koizumi:2012:IPI

Koizumi:2011:TSE

Katriel:2012:HRD

Kozhushner:2012:CTC

[Mortko Kozhushner and Leonid Trakhtenberg. Charge transfer in composites “dielectric + metal nanoparticles”:]

Kawaguchi:2012:MDA

Kubo:2012:GFO

Kohagen:2019:NIS

Kutzelnigg:2010:PTS

Kutzelnigg:2013:FWF

Khordad:2019:MPT

Kalamse:2010:QCS

Kalamse:2011:TST

Kar:2015:DPT

Kar:2018:PNC

Kawatsu:2013:CBB

[KyH13a] Tsutomu Kawatsu and Jun ya Hasegawa. Computational biochemistry and biophysics: Excitation energy transfer in GFP-X-CFP model peptides (X = amino acids): Direct

[Kitagawa:2013:CQC]

[Koh:2019:GGS]

Pin Wai Koh, Tiem Leong Yoon, Thong Leng Lim, and Yee Hui Robin Chang. The generation of ground-state structures and electronic properties of ternary Al\textsubscript{k} Ti\textsubscript{l} Ni\textsubscript{m} clusters (\textit{k} + \textit{l} + \textit{m} = 4) from a two-stage density functional theory global searching approach. *International Journal of Quantum Chemistry*, 119(10):e25884:1–e25884:??, May 15, 2019. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[Kato:2013:CQC]

[Kaliyeva:2017:SCD]

October 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

[Lakhno:2010:DSH]

[Lanza:2010:TSL]

[Larsson:2010:SCD]

[Larsson:2011:AC]

[Larsson:2012:MTI]

[Lathiotakis:2013:CMB]

[Ai:2014:TSR]
Lazzeretti:2014:TRI

Ladik:2014:QMB

Laestadius:2014:HKT

Lutz:2018:IGP

Luo:2019:IEF

Lobayan:2016:DED

Rosana M. Lobayan, Roberto C. Bochicchio, and Carlos Pérez del Valle. Depicting electronic distributions from

REFERENCES

2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Lu:2011:TSMb

Lewis:2014:OER

Lim:2016:IIG

Li:2010:AXB

Li:2010:TPH

Rongbao Liao, Lanlan Chai, and Yun Zhu. A theoretical study on the stability difference of the borane $\text{B}_n\text{H}_{2n-2}$ and carborane $\text{C}_2\text{B}_{n-2}\text{H}_{n}$ ($5 \leq n \leq 7$) clusters. *International Journal of Quantum Chemistry*, 115(4):216–223, February 15, 2015. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Jose Maria Lucas, Jaime de Andrés, Margarita Albertí, Josep Maria Boíll, and Antonio Aguilar-Navarro. An ab initio theoretical approach to the gas phase decomposition of C_3H_7^+ produced in ground state $\text{Li}^+ + \text{i-C}_3\text{H}_7\text{Cl}$ collisions. *International Journal of Quantum Chemistry*, 111(2):493–504, February 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

E. V. Ludeña, L. Echevarría, J. M. Ugalde, X. Lopez, and A. Corella-Madueño. Model for a biexciton in a lateral

[LGHL11] Rui Li, Li-Hua Gan, Qun Hui, and Qian Li. The effects of atom pyramidalization and square distribution on the stability of F_4Fe-(BN)_n polyhedrons. *International Journal of

Lei:2019:NLM

Lawal:2018:DSA

Li:2011:TSL

Li:2012:CSL

Lv:2016:TFR

Liang:2011:GPH

Li:2015:RTS

Luo:2015:SEP

Li:2019:STE

Li:2011:BR

Li:2015:ROC

REFERENCES

2015. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic). See erratum [Liu16].

Liu:2012:MSS

Li:2011:ISS

Lykhin:2016:TRN

Labidi:2011:TAN

Li:2013:CDD

[LL18] Zhuo Zhe Li and An Yong Li. $\text{B}_4\text{Rg}_{2n}^{2+}$ ($\text{Rg} = \text{He–Rn, n = 1–4}$): In quest of the potential trapping ability of the aromatic ring. *International Journal of Quantum Chemistry, 118*(10):e25530:1–e25530:??, May 16, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Xiuhui Lu, Zhenxia Lian, Dongting Liu, and Weijie Bao. Ab initio study of the mechanism of forming a spiro-

Liang:2012:VRR

Ledyastuti:2013:CCR

Li:2013:DSR

Lumb:2017:RSB

Lian:2011:DFT

Long:2012:TSI

Lu:2012:ESW

Liu:2014:RDO

Li:2014:UCH

Liu:2010:CTS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lundberg:2012:DEH</td>
<td>Marcus Lundberg, Yoshio Nishimoto, and Stephan Irle</td>
<td>Delocalization errors in a hubbard-like model: Consequences</td>
</tr>
<tr>
<td>LNI12</td>
<td>Marcus Lundberg, Yoshio Nishimoto, and Stephan Irle</td>
<td>Delocalization errors in a hubbard-like model: Consequences</td>
</tr>
</tbody>
</table>

[Levamaki:2018:KLR]

[Lakehal:2013:TIY]

[List:2012:PPX]

[Lagana:2010:I]

[Li:2010:MCC]

Li:2019:IPS

Ludena:2018:LPP

Lopez-Sosa:2019:NCD

Liu:2014:BSR

Liu:2019:EGP

REFERENCES

IJJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic). See [LSR+10a].

Li:2013:CBB

Laguna:2019:EKL

Li:2019:MDK

Leite:2010:SNA

Li:2018:MSG

Lu:2010:TSE

Lu:2015:CBI

Lungu:2013:LER

Lungu:2013:SPM

Luzanov:2008:MCR

Luzanov:2011:SFQ

[Luz11a] A. V. Luzanov. Spin-free quantum chemistry: What one can gain from Fock’s cyclic symmetry. *International Jour-
REFERENCES

REFERENCES

Lu:2013:TSE

Lu:2015:TIP

Liu:2018:OAS

Lu:2010:TSM

Lozano:2012:TMA

Xiu Hui Lu, Ping Ping Xiang, Zhen Xia Lian, and Yong Qing Li. Theoretical study of mechanism of cycloaddition reaction between dimethyl-silylene carbene [(CH\(_3\))\(_2\)Si \(\equiv\) C:] and formaldehyde. *International Journal of Quantum Chemistry*, 111(14):3664–3672, November 15, 2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).
REFERENCES

Liu:2012:TSS

Li:2014:TIA

Lyakh:2014:SAT

Lyakh:2019:DSV

Lu:2018:TAC

Liu:2012:SON

[LYL+12] Yan Liu, Guo-Chun Yang, Chun-Guang Liu, Shi-Ling Sun, and Yong-Qing Qiu. Second-order nonlinear optical responses switching of N3N3N ruthenium carboxylate complexes with proton-electron transfer. \textit{International Journal of Quantum Chemistry}, 112(3):779–788, February 5, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Li:2017:CBS

[LYR+17] Xiaojun Li, Xiaohui Yang, Hongjiang Ren, Ping Sun, and Zhenhua Fang. The chemical bonding and spectral assignments of rhodium(III)-catalyzed closo-dodecaborate complexes: Ab initio study. \textit{International Journal of Quantum Chemistry}, 117(19):??, October 5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Li:2019:DPR

Li:2011:SOS

Li:2019:RMP

[LYW+19] Ying Li, Le Yang, Zhan Wei, Qinghua Hou, Lanlan Li, and Peng Jin. Robust metal-pentagon interactions in the Tb-based endohedral metallofullerenes revealed by DFT calculations. \textit{International Journal of Quantum Chemistry}, 119
Luzanov:2010:EIE

Lei:2012:BEA

Li:2010:TSI

Lu:2011:NMS

Li:2013:CAA
Wenliang Li, Hongsheng Zhai, Yan Feng, and Juan-Juan Zhao. A comparison of attack angle dependence of exchange channel of reaction H + HS ($v = 0, 1; j = 0$) on 3A'' and 3A' surfaces. *International Journal of Quantum Chemistry*, 113(24):2629–2633, December 15, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).
Li:2015:SNO

Li:2018:DSR

Li:2011:NSE

Li:2012:QCM

Lin:2013:IIT

Adelio R. Matamala and Alejandro A. Alarcón. A simple model for the calculation of HOMO and LUMO energy

Ma:2014:HSK

Magliano:2012:MDS

Mironov:2019:MPE

Magnani:2014:PSM

Maiti:2014:RAM

Makri:2015:PQC

Mamedov:2013:UAT

Mamedov:2014:IGP

Musavi:2015:RTN

Mandelshtam:2016:LEC

Manzoor:2017:CSO
Taniya Manzoor, Summera Asmi, Saba Niaz, and Altaf Hussain Pandith. Computational studies on opto-

REFERENCES

5, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Masunov:2010:TSC

Massa:2011:BR

Masiello:2014:PMT

Mathar:2002:MCT

Mathar:2010:EMC

Mammino:2019:DMP

Momen:2018:RWI

Mayer:2014:PEA

Mukherjee:2012:RRM

Morales-Bayuelo:2013:UER

Marquez:2014:SVI

Maria Belén Márquez and Silvia Antonia Brandán. A structural and vibrational investigation on the antiviral deoxyribonucleoside thymidine agent in gas and aqueous solution phases. *International Journal of Quantum Chemistry, 114*
Mohajeri:2015:INI

Messaoudi:2013:ERT

Mostafa:2019:DGR

Morales-Bayuelo:2012:TSC

Majid:2019:FPS
Muchova:2018:MDM

Markovich:2016:BCS

Markovich:2016:LER

Morales-Bayuelo:2018:ATS

Morales-Bayuelo:2012:QMS

Alejandro Morales-Bayuelo, Juan Torres, and Ricardo Vivas-Reyes. Quantum molecular similarity analysis and

Maciel:2011:IQC

Marmorino:2011:BEE

Mendez:2012:SBB

Mazumdar:2014:RCP

Mangondo:2017:ORS

REFERENCES

Munoz-Castro:2018:FHR

Munoz-Castro:2018:SMU

Martins-Costa:2011:SSD

Marquez:2012:DSG

McCoy:2013:CMS

Montero-Campillo:2013:MAS

Macleod-Carey:2019:ABP

Makshakova:2011:GVF

Munoz-Castro:2017:AAX

Alvaro Muñoz-Castro and R. Bruce King. Au$_{10}^{2+}$ and Au$_6$X$_2^{2+}$ clusters: Superatomic molecules bearing an SP$_3$-hybrid Au$_6$ core. *International Journal of Quantum Chemistry*, 117(5):??, March 5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Mavromoustakos:2011:PIL

Mi:2011:DSS

Manzhos:2015:RNN

Melendez:2016:TSG

Martini:2012:NPP

Molina-Espiritu:2013:ITA

Mennucci:2015:EFF

Mendizabal:2010:TSA

Menucci:2015:PMA

Merchan:2011:RDL

Metropoulos:2011:CMA

Malaspina:2011:ESF

Martins:2012:IBB

Mateus J. F. Martins, Ary R. Ferreira, Elena Konstantinova, Heitor A. de Abreu, Wladmir F. Souza, Sandra S. X. Chiara, Luís G. Dias, and Alexandre A. Leitão. Interactions between 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and γ-Al$_2$O$_3$ (100) surface calculated by

Mondal:2011:TSS

Malinovskaya:2011:GEA

Madhavan:2012:VAC

Masliy:2019:FAT

Madsen:2011:DMP

REFERENCES

Maruyama:2008:IIH

Malenov:2018:IMI

Mehranfar:2019:URN

Militzer:2012:BEP

Minami:2013:FDF

Mitin:2011:ICW

Mitin:2011:EAA

Mitin:2011:LTI

Moraes:2011:NFF

Milovanovic:2014:TIG

REFERENCES

Mitin:2011:ESC

Mineva:2013:TDM

Mu:2011:DFI

Moradi:2010:FES

Mora:2012:DFT

Manzoni:2011:DFT

Moskalenko:2010:CPC

Moon:2017:SOI

Marques:2010:ETS

Mang:2010:TDL

Ma:2014:DFT

Musho:2016:TOE

Ma:2016:EPP

Minicozzi:2010:CIP

Mirzaei:2011:CSA
REFERENCES

Motaghiani:2013:DFS

Melo:2019:RCE

Mujica-Martinez:2010:MBT

Minaev:2013:RDS

Meng:2012:SHD

Medvedev:2019:EAV

Magers:2019:HMC

Mitnik:2020:RCD

Markovic:2012:SRB

Muller:2011:HTT

Macchiagodena:2018:NAM

REFERENCES

Mazzone:2018:QMD

Marino:2010:IRC

Mora:2010:SES

[MMRRA10] M. A. Mora, M. A. Mora-Ramírez, and Manuel F. Rubio-Arroyo. Structural and electronic study of neutral, positive, and negative small rhodium clusters [Rh\textsubscript{n}, Rh\textsubscript{n}+, and Rh\textsubscript{n}−]. *International Journal of Quantum Chemistry*, 110(13):2541–2547, November 5, 2010. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Muya:2019:TIR

Miyakawa:2013:MDS

Milovanovic:2019:TEI

Matczak:2019:FHT

Mazur:2011:DTS

Meraj:2012:EDP

Mishra:2013:CCR

Mostafanejad:2014:TRB

Mazilov:2010:MMG

Matsuoka:2013:CMS

Martini:2012:MDS

Mukherjee:2011:NES

Monari:2010:HSS

Monge-Palacios:2012:APE

Mosyagin:2011:EIT

Marino:2012:SBP

Mosyagin:2013:GRE
[MPTZ13] Nikolai S. Mosyagin, Aleksander N. Petrov, Anatoly V. Titov, and Andrei V. Zaitsevskii. Generalized relativistic effective core potential calculations of the adiabatic potential curve and spectroscopic constants for the ground

Medina:2011:FSA

Meyer:2010:MIE

Miranda-Quintana:2017:IHC

Miranda-Quintana:2013:DTQ

Mercier:2011:CDM

Yannick Mercier and Mar Reguero. Comparison of the deactivation mechanism of 5-fluorouracil with that of its parent system, uracil: The need of the use of the MS-CASPT2 method. *International Journal of Quantum Chemistry*,
REFERENCES

[MS17] Alan Miralrio and Luis Enrique Sansores. Structures, stabilities, and electronic properties of fullerene C_{36} with en-
REFERENCES

484

[Mukherjee:2019:TSR]

[Mondragon-Solorzano:2018:SUV]

[Matamala:2010:DOD]

[Makarova:2016:CSS]

[Malhado:2013:CFM]
João Pedro Malhado, Riccardo Spezia, and James T. Hynes. Concepts and fundamental methods in molecular simulations: Conical intersection structure and dynamics for a model protonated Schiff base photoisomerization in
REFERENCES

Mhin:2011:TII

Mizukami:2012:SES

Minyaev:2016:PSD

Melichercik:2018:CGF

Muniz:2013:RAB

Muniz:2011:EAA

Mazurek:2011:FCL

Miranda:2010:HSP

Miyagi:2012:IFM

McDowell:2010:SMH

REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Mejia-Urueta:2012:DFS

Melendez:2010:TST

Murrell:2012:OLD

Moncada:2013:HIE

Mohallem:2019:PME

Mosyagin:2016:RGR

Nazari:2012:APF

Naghma:2014:TSC

Nagy:2010:PPD

Nagy:2015:FSI

Nagy:2016:EAD

Nagy:2016:EED

Nagy:2017:TTD

Ndassa:2017:URR

Nalewajski:2012:DTS

Nalewajski:2013:SED

Nalewajski:2015:PPC

[Roman F. Nalewajski. Perspectives: Phase/current information descriptors and equilibrium states in molecules. In-
REFERENCES

Nascimento:2019:CNP

Ng:2017:IEI

Nikolaienko:2019:LOO

Nelin:2010:RBC

Nascimento:2012:HBB

REFERENCES

REFERENCES

Nordholm:2011:ERE

Nurazar:2015:SCD

Nemeth:2014:PMD

Nesbet:2010:SDI

Nest:2011:CEE

Netz:2012:BDI
Nascimento:2011:SVD

Niu:2010:TIS

Niu:2011:TSI

Navarro:2011:TES

Ng:2012:OQE

REFERENCES

Nasertayoob:2011:TRQ

Nold:2011:TEH

Nakanishi:2018:PSG

Noureddine:2012:TSH

Najafabadi:2012:IHA

Nicolaides:2011:SPS

Nicolaides:2014:PQC

Nikolaev:2011:EMO

Nakamura:2019:PEL

Nozaki:2016:TSA

Nowroozi:2012:EOC

REFERENCES

Nieto-Malagon:2012:EPE

Niaz:2014:TIC

Nakanishi:2010:SDP

Nikodem:2014:LBW

Nychyporenko:2014:SLM

Oleg S. Nychyporenko, Olga P. Melnyk, Olexandr O. Viniychuk, Tetiana M. Pinchuk-Rugal, Volodymyr A. Brusentsov, Elena L. Pavlenko, Oksana P. Dmytrenko, Nikolay P. Kulish, and Olexiy D. Kachkovsky. Shape and

Nowroozi:2011:NSI

Nowroozi:2011:CTP

Nagaraju:2010:CSF

Nasertayoob:2010:RFQ

Nagy:2013:FWF

Pulak Naskar, Srijeeta Talukder, Subhasree Ghosh, and Pinaki Chaudhury. Controlling the isomerization dynamics of iodide acetonitrile dimer complex by optimally de-
Nguyen:2010:DFT

Nikolaev:2010:MIE

Nicolas-Vazquez:2013:NAP

Naumkin:2012:BCC

Niu:2011:MAR

REFERENCES

2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Ona:2013:OLC

Oliveira:2019:MOS

Ortiz:2010:DSF

Ortolan:2019:CCS

Oliveira:2018:LCH

Onishi:2012:TSH

Onishi:2013:CMN

Ou:2019:BCR

Ono:2013:FMS

Ohta:2013:NCT

OReilly:2016:DHA

Robert J. O’Reilly and Amir Karton. A dataset of highly accurate homolytic N — Br bond dissociation energies ob-
REFERENCES

Osella:2019:EEC

Okumura:2010:DCH

OReilly:2012:HCH

Olsen:2011:CMP

Olsen:2011:ATS

REFERENCES

Ostojic:2013:TSC

Otsuka:2013:CBB

Olvera-Neria:2011:NOA

Onishi:2010:ECC

Onishi:2012:MDN

Okumura:2013:CSP
[ONK$^{+}$13] Mitsutaka Okumura, Yasuyuki Nakanishi, Keiji Kinoshita, Satoru Yamada, Yasutaka Kitagawa, Takashi Kawakami,

Ogloblya:2010:PCC

Oung:2018:UQT

Ohrn:2010:I

Ohta:2010:ILP

Ohrn:2012:I

Ohrn:2012:SIS

REFERENCES

Partovi-Azar:2016:IPQ

Poltev:2010:DSP

Pomogaev:2015:SEP

Palacios:2010:KIR

Pandey:2016:TIR

Alvaro Posada-Amarillas, Rafael Pacheco-Contreras, Sharity Morales-Meza, Mario Sanchez, and J. Christian Schön. Computational studies of stable hexanuclear Cu$_l$Ag$_m$Au$_n$ ($l+m+n = 6; l, m, n > 0$) clusters. *International Journal of Quantum Chemistry*, 116(13):1006–1015, July 5, 2016. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Persson:2012:I

Perez-Badell:2010:MMH

Polyak:2018:AUG

Putz:2013:EKH

Penotti:2016:CRS

Paschoal:2014:NXX

Paiva:2018:SNI

Penotti:2019:RSD

Parreira:2012:HBR

Palermo:2008:RAR

Pipolo:2011:CFE

REFERENCES

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Polkehn:2018:RQD

PereiradosSantos:2013:IBD

Perez-Gonzalez:2012:SAM

Pacheco-Garcia:2010:ESE

Pena:2015:BSS

REFERENCES

REFERENCES

Pooja, R. Kumar, G. Kumar, R. Kumar, and Anil Kumar. Quantum information entropy of Eckart potential. In-

REFERENCES

Ian Pimienta and Konrad Patkowski. Heats of formation and thermal stability of substituted 1,1′-Azobis(tetrazole)

Palacios:2011:ALD

Pereira:2017:BDF

Poltev:2010:CSM

Poulain:2013:IPP

Pacureanu:2010:DPP
Pan:2010:DPC

Paine:2013:CST

Pan:2013:LER

Pan:2014:LEC

Petraglia:2015:FCD

Pooja:2017:QIE

Pooja, Aarti Sharma, Rama Gupta, and Anil Kumar. Quantum information entropy of modified Hylleraas plus exponential Rosen–Morse potential and squeezed states.
Promkatkaew:2013:CBB

Pan:2016:NIA

Petsis:2019:TSM

Perdew:2016:TRS

Prates:2011:CBP

Pantos:2013:PBS

Pinheiro:2012:HMS

Peach:2011:ECD

Pan:2011:DSM

Piris:2014:PNO

Mario Piris and Jesus M. Ugalde. Perspective on natural orbital functional theory. *International Journal of Quan-

Puzzarini:2016:PAM

Puzzarini:2017:PAC

Pidko:2010:MRC

Palma:2011:TDS

Palma:2012:TDS

Papas:2010:DWP

Brian N. Papas and Jerry L. Whitten. Dissociation of water on a palladium nanoparticle. *International Jour-

Peng:2010:MHD

Proud:2013:APE

Pan:2018:RWK

Philipp:2018:QCP

REFERENCES

e25561:1–e25561:??, June 15, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Pyykko:2011:BOR

Peng:2019:CIC

Quapp:2015:ESP

Quapp:2018:TTM

Quintanar:2010:SEP

Qu:2012:DSE

[QCW+12] Zhibo Qu, Xiaolan Chen, Donghui Wei, Diandian Ke, Lingbo Qu, Jinwei Yuan, Yunliang Bai, Fujun Wang, and

Qiang:2010:RVS

Qi:2011:SSE

Qi:2013:ESC

Qian:2010:IIW

Qin:2015:SNU

Rojas:2018:EFS

Rojas:2018:FSH

Rodriguez:2010:GST

Russo:2010:MSO

Radu:2018:BPT

REFERENCES

REFERENCES

Martín Regueiro-Figueroa, David Esteban-Gómez, Rosa Pujales-Paradela, Laura Caneda-Martínez, Andrés de Blas,

[RGS+13] Mehak Rohilla, Neetu Goel, Tej Vir Singh, P. Venugopalan, N. V. Suresh Kumar, and K. Tewari. Theoretical and ex-

[Ravi:2012:DSS]

[Ravi:2011:QCS]

[Rezaeian:2019:TSI]

[Riley:2010:ISC]

[Ritchie:2011:QMD]
REFERENCES 550

2011. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Ritchie:2012:CDF

Ritchie:2012:GSC

Rivelino:2011:TSH

Raissi:2010:IHBb

Rivera-Julio:2013:FPS

Raissi:2010:IHBA

H. Raissi, A. F. Jalbout, M. Yoosefian, Mustapha Fazli, A. Nowroozi, M. Shahinin, and A. De Leon. Intramolecu-

REFERENCES

Ramos:2019:PMO

Ray:2019:MPT

Rashev:2011:RRR

Ramirez-Montes:2016:TPE

Rozhenko:2014:ICF

Alexander B. Rozhenko, Sergiy S. Mykhaylychenko, Nadiya V. Pikun, Yuriy G. Shermolovich, and Jerzy Leszczynski. Intermediate carbene formation in the reaction of thioamides with phosphorus (III) derivatives: Quan-

Romanova:2011:SPD

Ryzhkov:2013:PAE

Roohi:2010:IBN

Rivalta:2014:PIS

Rey:2010:PDI

Nicolás A. Rey, Ademir Neves, Wagner B. de Almeida, Helio F. Dos Santos, and Luiz Antonio S. Costa. A promiscuous dicopper(II) system promoting the hydrolysis of bis(2,4-dinitrophenyl)phosphate: Gaining mechanistic insight by means of structural and spectroscopic DFT
REFERENCES

[Roy14] Amlan K. Roy. Ro-vibrational studies of diatomic molecules in a shifted Deng–Fan oscillator potential. Inter-
REFERENCES

Roy:2015:SCC

Roy:2016:CPS

Radhakrishnan:2011:EMF

Radhakrishnan:2011:LEE

Rhee:2016:PIM

Ragni:2011:AVM

REFERENCES

REFERENCES

Sierraalta:2018:NTI

Salin:2013:QCI

Shalabi:2012:SQM

Siddiqui:2016:IIB

Shalabi:2011:SQT

A. S. Shalabi, S. Abdel Aal, W. S. Abdel Halim, and M. S. Ghonaim. Spin quenching of transition metals deposited on

REFERENCES

Saracoglu:2012:EQC

Saracoglu:2012:EQA

Sutradhar:2018:HBB

Sousa:2014:RET

Swann:2017:EPQ

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Date</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SD16a]</td>
<td>Samanta and Das</td>
<td>Comparative QM/MM studies of H₂ adsorption on lithium doped single walled armchair and zigzag nanotubes: SiCNT, GeCNT, and SnCNT.</td>
<td>International Journal of Quantum Chemistry</td>
<td>116(20)</td>
<td>1467–1476</td>
<td>October 15, 2016</td>
<td>CODEN IJQCB2</td>
<td>ISSN 0020-7608 (print), 1097-461X (electronic)</td>
</tr>
<tr>
<td>[SDP+16]</td>
<td>Salvadori et al.</td>
<td>Software news &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shibl:2013:MAE

Sadhukhan:2019:CSQ

Sadhukhan:2020:CCS

Staykov:2016:ODP

Silvi:2011:I

<table>
<thead>
<tr>
<th>Reference</th>
<th>Citation</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>Digital Object Identifier (DOI)</th>
<th>ISSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sala:2010:REE</td>
<td>[SFL+10]</td>
<td>Fabio Della Sala, Eduardo Fabiano, Savio Laricchia, Stefania D’Agostino, and Manuel Piacenza</td>
<td>The role of exact-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sahraeian:2019:MSC

Shahbazian:2011:LEM

Shavitt:2011:PBR

Shahbazian:2018:RFQ

Shibl:2010:DSC

Sheka:2012:CSG

Elena F. Sheka. Computational strategy for graphene: Insight from odd electrons correlation. *International Journal
Sheka:2013:CMN

Shigemitsu:2013:CBB

Shil:2018:EDM

SHKS15

REFERENCES

REFERENCES

Sicilia:2016:PCM

Sikorska:2018:MFS

Silverstone:2014:CBE

Saitow:2014:IDO

Shoji:2008:TCB

REFERENCES

REFERENCES

Sellier:2017:HAB

Sellier:2017:SES

Sliwa:2018:OFE

Scivetti:2011:TSW

Saparpakorn:2013:CBB
Szarek:2010:FFA

Sellier:2019:MLS

Shukla:2011:HAA

Skouteris:2016:PTD

Shankar:2010:RMC

Shankar:2011:TSD

Scarborough:2015:ASB

Spiriti:2012:DAE

Sumimoto:2013:FDF

Shukla:2010:GWS

Siegahn:2011:BRM

Skouteris:2013:EMT

Silva:2012:IDT

Sciortino:2018:APV

Sagar:2011:EPD

Silva:2010:HMM

[SLS+19] Benjamin Stamm, Louis Lagardère, Giovanni Scalmani, Paolo Gatto, Eric Cancès, Jean-Philip Piquemal, Yvon
REFERENCES

Speranza:2014:CDH

Srivastava:2014:HOS

Srivastava:2014:IIS

[SM14c] Ambrish Kumar Srivastava and Neeraj Misra. Ab initio investigations on the stabilities of AuO$_q^-$ ($q = 0$ to 3; $n = 1$ to 4) species: Superhalogen behavior of AuO$_n$ ($n \geq 2$) and their interactions with an alkali metal. *International Journal of Quantum Chemistry*, 114(8):521–524, April 15, 2014. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Srivastava:2014:TIS

Srivastava:2016:SBL

Srivastava:2017:CBA

[SM17] Ambrish Kumar Srivastava and Neeraj Misra. Competition between alkalide characteristics and nonlinear optical

Senami:2019:EEC

Solimannejad:2011:GOC

Saha:2018:HNA

[SMC18] Ranajit Saha, Bijoya Mandal, and Pratim K. Chattaraj. HN_xBeF_3 ($\text{Ng} = \text{Ar–Rn}$): Superhalogen-supported noble gas insertion compounds. *International Journal of Quantum Chemistry, 118*(5), March 5, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Sen:2015:EFH

Sen:2016:HBE

Stanchev:2013:DSP

Sanchez-Marquez:2019:NIC

Saito:2012:MDSa

Squire:2013:TRC

Sanchez-Moreno:2011:EFL

Shields:2010:DTH

Squire:2014:TRC

Sarrami:2018:CIS

Santos:2011:ASY

Sulatha:2011:ICG

REFERENCES

Sendiuk:2018:ISD

Sladek:2014:SEI

Szalay:2015:TRT

Sauer:2011:CRV

Sagarik:2015:DPE

Sardar:2011:CTD

Soo:2010:ADC

Silva:2011:CIP

Song:2011:DFF

Sahoo:2012:FSS

Sadlej-Sosnowska:2010:TED

Solimannejad:2011:UHB

Stefanska:2012:EMD

Suzuki:2013:DFT

Sandhiya:2018:EMR

Szaleniec:2012:QCM

Saha:2019:NBH

Sun:2017:GPA

Saito:2010:TCB

REFERENCES

Santhanamoorthi:2011:LRC

Saito:2012:TCB

Saranya:2012:CTO

Silva:2014:PPR

Sadhu:2017:SSS

Sirirak:2017:CDF

Srikanth:2015:MDC

Sidir:2011:TSE

South:2016:DEE

Sathya:2015:SBV

REFERENCES

Stanek:2010:WFR

Song:2012:IRC

Suzuki:2017:MLA

Srivastava:2018:ABS

Stopkowicz:2018:PCC

Sugimoto:2019:MQS

[STU19] Hideya Sugimoto, Masanori Tachikawa, and Taro Udagawa. Multicomponent QM study on the reaction of HOSO...

Slanina:2011:CSM

Sutcliffe:2012:SDC

Swart:2011:ARM

Sanz-Vicario:2010:MFP

Santillan-Vargas:2012:DFT

Schwarz:2010:SSP

Sun:2012:CIW

Swart:2013:SSB

Sun:2012:MCI

Sun:2014:DSM

Su:2015:PTC

Sheng:2018:VCB

Shi:2012:SCM

De-Heng Shi, Wei Xing, Jin-Feng Sun, Zun-Lue Zhu, and Yu-Fang Liu. Spectroscopic constants and molecular properties of $A^3\Sigma^+_u$, $B^3\Pi_g$, $W^3\Delta_u$, and $B^3\Sigma^-_u$ electronic states of the N$_2$ molecule. *International Journal of Quantum Chemistry*, 112(5):1323–1342, March 5, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Samanta:2010:OPW

Saito:2012:PMW

References

(Sun:2015:RDP)

(Szalay:2013:PCC)

(Szczepanik:2018:SAP)

(Sun:2014:GVF)

(Sun:2015:TSD)

(Shi:2010:SIH)

Sun:2017:QRD

Song:2012:CCS

Sheng:2019:AAF

Song:2011:TSS

Tchougreeff:2010:CAE

REFERENCES

Tecmer:2019:MES

Trouillas:2011:TUP

Teillet-Billy:2010:IAG

Teillet-Billy:2011:EIA

Teillet-Billy:2012:EIA

Tsinberg:2013:SCT

Talukder:2017:SAB

Tchougreeff:2011:I

Tchougreeff:2013:EVF

Tchougreeff:2016:RSS

Topol:2012:MAK

[TCM+12] Igor Topol, Jack Collins, Vladimir Mironov, Alexander Savitsky, and Alexander Nemukhin. Modeling absorption of the kindling fluorescent protein with the neutral form
REFERENCES

Tsironis:2010:EAC

Tang:2012:SEE

Tchougreeff:2011:CES

Tripathi:2019:BAS

Tezsevin:2017:DFT

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>DOI</th>
<th>Abstract</th>
</tr>
</thead>
</table>
Tehrani:2016:RFM

Tarumi:2013:FWF

Taubert:2011:APC

Tulyabaev:2017:TRD

Tian:2015:CBH

Torres:2017:SFS

Teramae:2013:CCR

Tantardini:2019:DMP

Tao:2013:BAW

Teixeira:2018:ERC

Teixeira:2014:CDM

Tashakor:2016:FDI

Takahashi:2018:ESO

Tobola:2019:EBS

Tokmachev:2016:PPG

Takano:2012:DFS

Tsuneda:2015:RCR

Tchougreeff:2016:REH

Tezcan:2010:CSA

Tchougreeff:2013:RRT

Tsoneva:2016:NCD

REFERENCES

Tassi:2013:HFC

Thirumuruganandham:2010:LFV

Tugsuz:2013:DSS

Tarade:2013:RAH

Tian:2010:AMM

Tan:2014:PRH

Tyminska:2015:MCB

Tian:2019:NGQ

Tian:2010:TSMb

Tennyson:2017:SNU

Tian:2010:TSMa
Takano:2013:CBB

Tang:2011:FPI

Tang:2019:EZA

Ullah:2019:ADA

Ullah:2019:MBA

REFERENCES

REFERENCES

REFERENCES

[VGGPdL19] Pedro Villar, Lucía Guillade, Adán B. González-Pérez, and Angel R. de Lera. Computational studies on the forma-

REFERENCES

Vitkovskaya:2011:MVM

Velasco:2010:TSR

vonLilienfeld:2015:FSA

Vasini:2011:EVT

Veryazov:2011:HSA

Vyas:2011:CDC

Vyas:2012:ITS

Valencia-Ortega:2018:TPD

Vitkovskaya:2018:TCH

Velilla:2011:BSC

REFERENCES

REFERENCES

 Vyboishchikov:2008:PAE

Wagner:2014:PQM

Wang:2011:NMC

Wang:2013:FPS

Wang:2017:CFR

Wei:2014:AWB

REFERENCES

[WHS+13] Jinhu Wang, Qianqian Hou, Xiang Sheng, Jun Gao, Yongjun Liu, and Chengbu Liu. Theoretical study on the
REFERENCES

Wang:2011:DFT

Wang:2015:CST

Walter:2017:ATD

Wei:2017:PEE

Wu:2010:QCS

REFERENCES

[Wang:2011:TSR]

[Wang:2019:FPS]

[Wang:2013:ISR]

[Wen:2019:TPN]

Jin-Yun Wang, Chen-Sheng Lin, Min-Yi Zhang, Guo-Liang Chai, and Wen-Dan Cheng. Theoretical study on the one-, two-, and three-photon absorption properties of exohedral functionalized derivative of Sc$_3$N@C$_{80}$. *International Journal of Quantum Chemistry*, 112(4):1198–1208, February 5,
REFERENCES

2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

Weymuth:2014:RIQ

Weymuth:2015:SDT

Wu:2018:MSC

Wang:2011:MET

Wu:2011:TSS

Wang:2016:IEB

Donghui Wei, Mingsheng Tang, Wenjing Zhang, Jing Zhao, Ling Sun, Chufeng Zhao, and Homgming Wang. A density functional theory study of the enantioselective reduction of prochiral ketones promoted by chiral spiroborate esters.
Wu:2011:SPN

Wang:2011:SAT

Wang:2011:WCE

Wang:2014:MDO

Wallace:2017:CCC
Andrew J. Wallace, Bryce E. Williamson, and Deborah L. Crittenden. Coupled cluster calculations provide a one-to-one mapping between calculated and observed transition energies in the electronic absorption spectrum of zinc phthalocyanine. *International Journal of Quantum Chemistry*, 117(8):??, April 15, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

REFERENCES

Wang:2015:PPF

Wang:2013:QCS

Wang:2010:NAM

Wang:2010:KIL

Wu:2012:ACH

Wang:2013:RCC

[WZH13] Li Wang, Jianxiang Zhao, Hongqing He, and Jinglai Zhang. Rate constants calculation of hydrogen abstraction reactions CH$_3$ CHBr + HBr and CH$_3$CBr$_2$ + HBr. *International Journal of Quantum Chemistry*, 113(7):997–1002,
April 5, 2013. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Wei:2010:TSM

Xu:2018:HRS

Xu:2018:TBB

Xu:2015:TII

Xu:2010:PCP

DEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

[XS18] Xiuli Xia and Yuanzhi Shao. Quantum mechanical studies of full-shell noble metal nanoclusters in water. *Internation
REFERENCES

Xu:2010:PHE

Yoshii:2015:SNU

Yakushevich:2010:NDD

Yakushevich:2011:DSD

Yamaguchi:2010:VCA

Yamaguchi:2011:TPT

Yurdakul:2011:QCS

Yao:2012:OPH

Bian:2018:NDR

Jiangyu Bian, Yang Zhang, and Yingfei Chang. The negative differential resistance mechanism of a molecular device based on double-cage fluorinated fullerene C_{20}F_{18} \(\text{(NH)}_2 \) C_{20}F_{18}: a theoretical study. *International Journal of Quantum Chemistry*, 118(18):e25630:1–e25630:??, September 15, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Yuan:2013:TPS

Yakar:2011:CIV

Yu:2017:NSM

Yang:2013:ICN

Yu:2016:COP

Yu:2017:DPN

Yin:2011:SDF

Yao:2010:DBB

Wen-Zhi Yao, Jin-Chang Guo, Hai-Gang Lu, and Si-Dian Li. $D_{sch} B_2(\text{BS})_2^{−2/2}$ and $T_d B(\text{BS})_4^{−}$: Boron sulfide clusters containing BB multiple bonds and B$^{−}$ tetrahedral cen-
REFERENCES

Yamaguchi:2013:CBBb

Yasrebi:2017:TIW

Yaghobi:2011:NOP

Yang:2013:CFM

Yanai:2015:RDM

Meiling Yuan, Wentao Li, and Maodu Chen. Global X2 A$'$ potential energy surface of Li$_2$H and quantum dynamics of H + Li$_2$ (X$^1\Sigma^+_u$) Li + LiH (X$^1\Sigma^+$) reaction. *International Journal of Quantum Chemistry*, 117(14):??, July 18, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Hui Yang, Ying Li, Di Wu, and Zhi ru Li. Structural properties and nonlinear optical responses of superatom compounds BF\(_4\)-M (M = Li, FLi\(_2\), OLi\(_3\), NLi\(_4\)). *International Journal of Quantum Chemistry*, 112(3):770–778, February 5, 2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Yadav:2013:RHP

Yasuda:2014:ECT

Yoneda:2013:CMN

Yahia:2018:QCD

Ohnishi:2015:SNU

Yahya:2015:PMI

Yoshizawa:2020:MDP

Yang:2014:VOR

Yoosefian:2011:SES

Yang:2013:RIF

Yang:2018:CEP

REFERENCES

Kizashi Yamaguchi, Mitsuo Shoji, Toru Saito, Hiroshi Isobe, Satomichi Nishihara, Kenichi Koizumi, Satoru Yamada, Takashi Kawakami, Yasutaka Kitagawa, Shusuke Yamanaka, and Mitsutaka Okumura. Theory of chemical

Yurovsky:2015:ESW

Yang:2011:EQM

Yang:2011:QBC

Yang:2016:SQP

Yao:2012:BGDa

Yao:2012:BGDb
Yu:2012:SVF

Yang:2011:NIP

Ye:2018:CTD

Yang:2012:UCR

Yang:2018:FPE

Yamabe:2018:DSP

Yamabe:2018:TRC

Yamaguchi:2012:SHM

Yamaguchi:2013:CBBa

Yamabe:2015:DSH

Yuan:2010:QCT

Yin:2012:QMS

Yan:2013:RTE

Yang:2010:TSE

Yang:2011:IDS

Zborowski:2010:TSS

Zagoulaev:2011:MNS

Zakharov:2013:PNA

Zakharov:2016:EEC

Zoppi:2018:RCT

Ziegler:2017:CSS

Yuan Zhang, En Cao, Shoubao Gao, Xin Huang, Qingtian Meng, and Yuzhi Song. Exploring the reaction dynamics of $\text{O}^{(3P)} + \text{H}_2 + (X^2\Sigma^+_g) \text{OH}^+ (X^3\Sigma^-_g) + \text{H}(^2S)$ reaction with time-dependent wave packet method. *International Journal of Quantum Chemistry*, 117(7):??, April 5, 2017. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

REFERENCES

REFERENCES

[ZK12] Yuchi Zhang and Dmitri S. Kilin. Computational modeling of wet TiO$_2$ (001) anatase surfaces functionalized by

Zhang:2016:CAL

Zhang:2013:PST

Zhao:2016:CAR

Zhu:2014:CDS

[ZLY+14] Bo Zhu, Zhong Ling Lang, Li Kai Yan, Muhammad Ramzan Saeed Ashraf Janjua, and Zhong Min Su. A comparative DFT study on the mechanism of olefin epoxidation catalyzed by substituted binuclear peroxytungstates \(\text{[SeO}_4\text{WO(O}_2\text{)}_2\text{MO(O}_2\text{)}_2]^\text{−}\) (\(M = \text{Ti}^{IV}, \text{V}^V, \text{Ta}^V, \text{Mo}^{VI}, \text{W}^{VI}, \text{Te}^{VII}, \text{and Re}^{VII}\)). *International Journal of Quantum Chemistry*, 114(7):458–462, April 5, 2014. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Zhang:2014:CSS

Zierkiewicz:2017:NIB

Zhao:2013:DFT

Zerbetto:2016:TRM

Zhao:2012:TSR

Zerbetto:2010:CON

REFERENCES

Zhao:2011:DFS

Zhang:2013:IIS

Zadeh:2011:QTA

Zhikol:2012:ESI

Zarate:2011:DTS

Yong Zhang, Jiemin Wang, and Wentao Li. New global potential energy surface of the MgH$_2$ system and dynamics studies of the reaction H + MgH → Mg + H$_2$. *International Journal of Quantum Chemistry*, 118(18):e25687:1–e25687:??, September 15, 2018. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Hongying Zhuo, Hong Yu, Qingzhong Li, Wenzuo Li, and Jianbo Cheng. Some measures for mediating the strengths

Zhang:2017:TPS

Zhang:2011:TST

Zhai:2015:DES

Zhou:2018:ADE

Zhao:2012:BDE

REFERENCES

2012. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

