
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 October 2017
Version 1.52

Title word cross-reference

2 [VSS+13], 256\textsuperscript{4} [IKY+10]. 3
[BGM15, CSGM17, GGS01, HSLK11].
$CH + H_2 \Rightarrow CH_3 \Rightarrow CH_2 + H$ [ASW91].
CuO\textsubscript{2} [SSSW91]. $d = 2$ [BRT+92]. $ILU$
[SZ11]. $k$ [TNLP13]. $K_2$ [CBW95]. $LU$
[YZC+15]. $M \times N$ [BYCB05, DP05, JLO05].
$N$ [DAB+12, HJ96, SWW94].

-Body [HJ96, SWW94, DAB+12]. -D
[GGS01].

/1 [CHZ02].

0th [RAGW93].

100 [IHM87]. 100k [INY+14]. 10P [DD89].

2 [CL95, CC95, CLM+16, DD89, DD91]
GCL93, HGMW12, LT90, LYL+16, Mor89a. 200/VF [DD89]. 2003 [OL05]. 2004 [DT06].

3 [ARR99, BG00, CM97, JLO05, PR95, THL88]. 3-D [ARR99, BG00, CM97, PR95, THL88]. 3.0 [BRM03]. 3090 [DD89]. 3090-200 [DD89]. 31G* [PUR94]. 3800 [WOG95]. 450 [MAB+13].

5 [HRM89]. 5/SE [KJH96].

6 [Pla09, PUR94]. 6-31G* [PUR94]. 623 [LYL+16]. 64-core [VEMR17].

90 [DL97].


Ad [BG02, CHZ02, IBC+10, TNBG07].

Ad-Hoc [IBC+10]. Ada [Kok88]. Adapted [PMS+04]. Adapteva [VEMR17].

Adapting [DE03]. Adaptive [AH93, CKPD99, CW05, EDSV06, FSC+11, HT04b, JSSZ09, Kal09b, RV15, SR05, TRS13, VR00, Wri12, LST15, LPB+16, FSC+11].

Adaptive-CoMPI [FSC+11]. Additive [PR95]. Address [MHW15, SBG10].


Amplitude [BGK+90]. AMR [RV15, SZC12]. analogs [PUR94]. Analysis [ACD07, BBC+00, De93, DBH96, DF08, EGMP93, Eyr06, GNM+10, GNB11, HVWS09, HVWS09, HLW00, IMW+13, IHM87, Ish91, LM03, LWL05, MB87, Mic09, RS03, SSQ08, SCB+95, SE92, SC09, SGFC09, SBG10, SBBS06, THDC09, VS03, WBB04, YRA+02, ZRC+06, BBDH14, BCLP17, IMH+11, IMH+12, JKD+11, MPD+12, MJGD16, MRD+15, PF16, STP+13, TKA+17, LS90]. Analytic [MA89].
Analytical [FFR+10]. Analyze [KKCB98].
Analyzers [Ano01a]. Analyzing
[BRU05, UZM+14, WPBB01]. Anatomy
[FKT01, YFH+96]. Andabyss [Spr06].
Animal [UB95], animated [LS93].
Animation [SS89]. Aperture
[MPG93, ZCZ+13, SVBP13]. API [BH00].
Appendix [Ano01a]. Appendixes
[Ano01a]. AppLeS [SBWS99]. Application
[AS00, Bar09, BKRS90, BCC+01, BWB+10, BPK+07, BB02, CWG09, DW97, DFMD94, FTB13, FSC+11, GHM+10, GHZ10, Kal09a, KKCB98, KS09a, Mic09, MS05, NKR90, OCC+08, PPK09, PHC+10, SC09, TM99, TKA+17, CMS+11, DEL+12, Ozs16].
application-level [DEL+12].
Application-tailored [FTB13].
Applications [AGR+03, BGG05, BP01, BD01, BV11, BM12, BMB+06, BRU05, BJ02, BJK07, CBL10, Cot04, Cza03, Dar09, Dec10, DH96, DE03, FG+05, Fra05, GKP97, GMLP08, GG14, HT04a, HLT00, HRM89, JMC05, KBA00, Key09, KUE+00, LDGR03, Lee03, LM03, KKCCW07, MKG90, MYCR06, MAB07, ME14, MYC92, Mor89b, NFK98, NPT+06, SC04b, SSNM92, SVN09, SBG10, SKC10, TXD+07, TLG98, TAR+08, Wal03, WAA+11, WBF04, ZOF90, dSSB+08, ASHH16, BRGR11, BSW+14, BG11, CR1D5, DAB+12, DMQS12, ECC+13, GCKS13, HGWN14, JRT16, KPR17, LRG+16, LWT+11, MGB12, MCV+13, PH01, PNFC16, RV15, SLG95, TNLP13, THC+11, UZM+14, DW+12, Ano98a, Ano99, Ano00, Ano11]. Applied
[vLRA+03, BE17]. Applying
[Dem90, LDGR03, MBHF15]. Approach
[BYCB05, DZ07, FV87, KSB09, LDB+06, NTP06, Sha88, uIT07, Spr06, DCM+17, FTB13, HGWN14, MGB12, MJ16, PNFC16]. Approaches
[SWHP05, MJGL13]. Approximate
[Cho01, HFV+12]. Approximation
[DGJ09]. Aqueous [PRT90]. Architectural
[GR03, TXD+07]. Architecture
[BAA+06, HWP03, Hua03, Ish01, KBA00, KFM+10, SC04b]. Architectures
[BFL99, GD09, HD05, HLT00, HSLK11, MS02, RW03, RS03, SSQ08, BSK14, HFV+12, IMH+11, IMH+12, JO92, KILL13, LNSMA15, STP+13, Udd17, VOL+14, YFS+14]. Area
[DFP+96, MYCR06, MAJJS03, NBB+96]. ARION [HLP+03]. Arising [Ma00].
Arithmetic [BSB89, Gro03]. ARMCI
[NTKP06]. Army [Aus92]. Array
[BBDR95, CYT+02, JO92]. Arrays
[HC08, NPT+06, DFT+15]. Arrival [Wit92].
ASCI [PK04]. Aspects [RW03, ZOF90]. Aspen [SVBP13]. Assessing
[ACM88, MWC+05]. Assessment [ZOF90].
Assist [BB02]. association [GDKWS15].
astronomy [CLG13, VFJ+15].
Asynchronous [TNBG07, BBDH14, PH91].
Asynchrony [WAA+11]. Atmosphere
[DEE+12, HAF+96, MS05, MW12, TD08]. Atmosphere-Ocean [HAF+96].
Atmospheric
[ARR99, DFS+05, GGS01, WD05]. Atomic
[BH90, IHM87, LRT97, SYF96]. Atomistic
[NKI+08, GSK+15]. Attributes [De93].
Audio [TC10]. August [DT13]. Auto
[THC+11, CH13, TRS13]. Auto-tuning
[THC+11, CH13, TRS13]. Automata
[AKP08, MHS11, RE87, GDS17].
Automatic [BHK+06, CBL10, CDCV06, Cza03, KMPJ08, MJ04, Yel04, CH13].
Automaton [YCYZ07]. Automobile
[HTSK90]. Autonomous [SKB01].
Autotuning [OV13, BHK+13, CBM13].
Availability [Pra01]. Aware
[KKC+06, TCM06, YBA+03, CZR+11, HTD+14, HLT+16, KPR17, MRD+15, SS10].
Awareness [HSBP08]. Axisymmetric
[SG91].
B [Ano01a]. Babel [EKD+12]. Back
[BPBL11, BIC+10]. Balance [BG09].
Balanced [BFNV07]. **Balancing** [GS05, GLGLB11, ZBMK11]. **Band** [Tho90]. **Based** [AM00, CY08, CLP+99, DCL+08, FSC+11, GGS01, GRC08, Gro03, Gus04, Key09, MWM+08, Nak99, Num04, PGT310, PP09, PBA09, QH08, SG07, TCW06, TC10, VDB04, WPB01, ATL15, BGM15, BE17, BEW16, BAP+12, CBRM13, CZR+11, DSH+16, DAB+12, FTB13, GDS17, HTD+14, HLL+03, Hua03, JKD+11, LM03, MGB12, MJGL13, PSV+16, STP+13, SPNB14, TR17, YZC+15, YWL+14, ZZG+14]. **Basic** [Gir02, JO92, KJH96, Don02a, Don02b]. **Batched** [HDL15]. **Bay** [WLVL+96]. **Beambeam3D** [SSQ08]. **Beamforming** [CY+02]. **Bearing** [FFNP97]. **Behavior** [AK93]. **BenchFriend** [CS14]. **Benchmark** [DL09, HC10, DHL16, PSV+16, PF16]. **Benchmarking** [BRT+92, HBC+08]. **Benchmarks** [BCK99, Gus04, MSG92, SGFC09, WGI90, WOG95, WG07, BWB+10, CS14, BBB+91a]. **benefit** [WLHF16]. **Benefits** [ACM88]. **Beowulf** [SS99]. **Best** [BPBL11, Lee03]. **better** [CD+13, GGO16, SZ11]. **between** [SKS+13]. **Beyond** [Hab90, SBF90, INY+14]. **Big** [YIN+11]. **Biggest** [Ste09a]. **Binary** [DIB00, LK01]. **Biofluid** [KCC90]. **Bioinformatic** [GMH+10]. **Bioinformatics** [TXD+07]. **Biological** [FFR+10, WW92]. **Biology** [SSNM92]. **Biomedical** [KHK+09]. **Biomembranes** [SABK94]. **BLAS** [BG11, DD89, DD91]. **Blast** [Don02a, Don02b]. **Block** [Arn07, BS88, DEK92, RV15]. **Block-Sorting** [Arn07]. **block-structured** [RV15]. **Blocked** [BELF07]. **Blocks** [HC08]. **Bloom** [LGK16]. **Blue** [GNB11, KMH+14, MAB+13, SSU+12, YIN+11]. **BlueGene** [dSSB+08]. **BlueGene/L** [dSSB+08]. **Board** [SPS08]. **Body** [HJ96, Nak99, RTRG+07, SWW94, TMWS91, DAB+12]. **Boltzmann** [SBBS06, Mon12, OKTR11]. **Bone** [HOPB92]. **Boundary** [uITH07, SG91]. **Boundary-Value** [uITH07]. **BPEL** [MWM+08]. **brick** [LPB+16]. **Bridging** [SS99]. **Brink** [Spr06]. **Broadcast** [BJ92, YSP+05]. **BSC** [LAV09]. **Build** [CD06]. **Builder** [DL97]. **Building** [CDH+97b, FD04, LJO05, SW04, Wit92, vLRA+03]. **Bulk** [DGP+97, MAJJS03, Jon12, WD+W]. **bundle** [WLVL+16]. **Butterfly** [Kum89]. **Byte** [WG07].

C [LJC+10, Poz97]. **C90** [ABF+99]. **Cache** [BH06, GHM+10, MBW87, SC04a, Wad99]. **Cache-Coherent** [Wad99]. **Cache-Efficient** [SC04a]. **Caching** [kLCCW07]. **Cactus** [AAF+01]. **calcium** [CHW+15]. **Calculation** [ACG+90, BGK+90, TMWS91, HIT+14]. **Calculational** [ZOF90]. **Calculations** [CDD+90, Gen88, Liu90, TMW+99, YCH90, ZK93, CLM+16, HLT+14, TKS88]. **Call** [DBA+09]. **Caltech** [Din91]. **Caltech/JPL** [Din91]. **CAM** [TD08, DIF+12, LMT+12]. **Campus** [GANLH97]. **Campus-Wide** [GANLH97]. **Can** [Pan97, VFJ+15]. **Cancers** [GBK93]. **Candidate** [MCS+06]. **Cane** [YW+14]. **capabilities** [MS16]. **Capability** [GS09, BBH+13, DVW+12]. **Capacity** [BL99]. **Carcinogens** [HB90]. **cardiac** [BSW+14]. **Cards** [Gro03]. **Carlo** [BRE+90, CH94, DFT+15, FSS13, LM03, LPB+16, MWAR87, MB87, SABD13, SSSW91, SSR+14, VSS+13, ZK93]. **Carolina** [LC90]. **Case** [BF01, BDFVP15, CBW95, CDH+97b, GLGLB+11, GL97, HL10, HE01, HLP+03, PPK+04, SG09a, WGI90, WL92, WW92, BSW+14, CGGC+16, CMS+11, MBvdG13, OF17, TKA+17, THC+11, YWL+14]. **CBVE** [WLVL+96]. **CCDSC** [DT13]. **CCGSC** [DT11]. **CCSM4** [CVJ12].
commercial [MRD +15].

Communication [SG09b].

Common [ZM07].

Communication [BCG +10, BYCB05, BKS +07, BBDR95, HC10, INY +14, JLO05, LW09, LRO10, LRT07, NTKP06, PL500, QH08, RW03, SWHP05, TRG05, TGT05, BBH +13, DGB +14, YKI16, OGM +16].

Communication-overlap [INY +14].

Communication/Computation [BBDR95].

Communicators [GFD05].

Community [DBA +09, HBSM03, CJK +05, DVW +12, DEE +12, DJC05, ESW +12, HVKI05, JLO05, MS05, MW12, TD08, WD05].

Comparative [MOK00].

Comparing [BF01].

Comparison [BSK14, CAK +07, Gen88, HC10, Jon92, KM95, Mat95, SR98].

Comparisons [Ma00].

Compensation [MSMW07].

CoMPI [FSC +11].

Compilation [BJK07, CW05].

Compiler [CW05].

Complete [LK01].

Completion [CY08].

Complex [ASHH16, Dar99, GKB93, GHZ10, PK04, CSGM17].

complex-entry [CSGM17].

Complexity [BM06, BGB +96, DF08, Spr06, BRGR11].

Component [BAA +06, DF08, KBA00, KFM +10, MGB12, PGTS10, PPR03, SVN09].

Component-Based [PGTS10, MGB12].

Components [CTD +05, WSD +14].

Composing [HGNW14].

composite [NMAE13].

composites [LPB +16].

Composition [Cot04, DLB07].

Compositional [AWS01, BBD00, KR94, KR95].

Compounds [FWZ91].

Compression [Arn07, DLY +98, DF08, FSC +11, CGGC +16, IFA15, Oza16].

Compressors [GMWG10, YK07].

Compromised [LJC +10].

Compromised-Time-Cost [LJC +10].

Computation [CBW95, Chua99, GWKN08, Her88, HS93, JP93, SSNM92, Ste99a, Ste99b, Tis97, WSCZ05, SVBP13, WEPB12, ABB +94, KT94, TR92].

Computational [CD97, Cha88, CDH +97b, DVW +12, DFMD94, DGJ09, DT99, DGH +93, Duk91, EGMF93, FBW87, Gen88, HBSM03, HL10, JL89, NFK98, Num04, PK04, SK90, SG07, SBWS99, SW04, TMW +99, VR00, WIT92, WPBB01, YM91, YK07, Ytt97, BSW +14, CGGC +16, HOPB92, TBA +17].

Computations [BBR10, Ber92, Duk91, MA15, MCG04, BCYS11, BCLP17, HDL +15].

compute [KL13].

Computer [BEF +95, CKE08, Cla91, GL09, HD05, JL89, KT99, MM90, Pet87, TW87, WBM90, AHB +16, BAM +16, BE17, HKK88, HIT +14, HLS +17, INY +14, KM16, Kurn89, MBHF15, PNFC16, TAM +16].

Computer-Aided [MM90].

Computers [BOD +91, BH99, CDH +93, CDP +94, EDS95, FG97, FFNP97, GP93, Gun00, IS96, Jon92, Meu88].

Computing [ATN +00, Ano98a, Ano99, Ano00, Ano01a, Ano01b, Aus92, BV11, BM12, BM13, BGI +99, BAA +06, BRT +92, CWHP99, Dar00, Dem90, DT99, DMT01, DT11, DT17, DCL +08, Ede93, EDS06, EW06, Ewi88, Eyr06, FGC +05, FJG +04, GHM +10, GMWG10, GNTLH97, GL97, HME90, Her90, JLL04, JSSZ09, Joh01, KDH11, Kep04a, KT99, Kuc04, KKH +09, KS05, LS90, LJC +10, LD07, MPS15, Mal90, MYC06, Mat95, ME14, PP09, PA11, Rao02, RAGW93, Sab91, SKB01, Ste01, Ste04, SPF02, SKC10, THDC09, Wal03, YBA +03, BE17, BAP +12, DTDP14, DHL16, DAC +14, ECC +13, EKD +12, Fer90, FKA +17, GR17, Har11, YIK16, IFA15, KT94, MCR +13, PPC +16, SWA +14, STS17, TNL13, VSHN14, ZKRA14, Lee03].

Computing/Numerical [THDC09].

concurrency [DGB +14].

Concurrent [AH93, Fro91, MBW87, BRGR11].
Conference [OL05, KKD03].
Configuration [AEPR92]. Configuring
[PPK+04]. Confined [ACG+90].
Conjugate [AH93, CSV91, MeL97, DHL91,
KMM16, PSV+16, PF16].
conjugate-gradient [DHL91]. Connecting
[BKS+07]. Connection
[BJ92, CC95, GKH+91, HZ91]. Conquer
[Cza03]. Consistent [KS99a]. Consortium
[GS99]. Constant [MP94]. Constrained
[FSS13, LJC+10, NKR90]. constraint
[DAB+12]. constraint-based [DAB+12].
Constraints [CY08, GSHL03, LCZ+15],
construction [PS12], consumption
[CGGC+16]. Contaminant [ABF+99].
content [LFB+15, MRD+15].
content-aware [MRD+15]. Context
[KDH11, QH08, YBA+03, CZR+11].
Context-Aware [YBA+03].
context-based [CZR+11]. Contributors
[Ano96b, Ano96c, Ano97b, Ano97c, Ano98b].
Control [AK91, AK93, Dar00, DFH+96,
VR00, WDW+12]. Controlled [DSD+91].
controlling [OF17]. Convergence
[BBR10, DFS+05]. convex [SH93].
Cooperative
[DBA+09, DCL+08, kLCCW07].
Coordinate [YRA+02]. Coordinated
[FP02]. coprocessor [VEMR17].
coprocessors [HLS+17]. Copy [SWHP05].
CORBA [PPR90]. Core
[Bri10, DFS+05, MS05, BBG+14, BH12,
CAE+13, DEE+12, KDH11, KILL13,
LM+12, LDW+12, LNSMMA15, MSPS15,
PSV+16, SSR+14, TKA+17, UdD17,
VEMR17, VOL+14, YFS+14, GLZS14].
cores [FU12, INY+14, LYL+16]. correction
[YFS+14]. Correlating [CS14]. correlation
[CLG13, GHL15]. Correspondence
[BH99, IS96, PTGB02]. Cortical [WW92].
Coscheduling [BL99, CAK+07]. Cost
[LJC+10, PPK09, TR17].
Cost-Constrained [LJC+10]. Coulomb
[DGD+04]. Coupled
[HAF+96, IY+10, KT99, LJO05, PK04].
Coupler [CJ+05, CVJ12]. Coupling
[HD05, JLO05, LJO05, PPR03]. CPL6
[CJ+05]. CPU [BL99, GHL15, HTD+14].
CPU-GPU [HTD+14]. CPUs
[KDH11, TKA+17]. Crash
[HTSK90, CEL+97]. Cray [ABF+08,
AEPR92, DD89, DD91, Del93, GCL93, LT88,
Ma00, MYC92, MSK92, THL88, YW93,
ABF+99, DH96, Lani93, SBBS06]. CRAY-2
[DD89, DD91, GCL93]. CRAY-T3E [Ma00].
creation [KILL13]. Creutz [BRT+92].
Crisis [BE07]. Criteria [BKRS09]. Cross
[PLS05, CLG13, WVL+16]. cross-bundle
[WVL+16]. cross-correlation [CLG13].
Cross-Platform [PLS05]. crowd
[VO+14]. CRPC [CDP+94]. crucial
[SZ11]. Crystal [Cla91]. crystalline
[HXW+13]. crystallisation [WSD+14].
Crystallography [CDH+93]. CUDA
[DSH+16, GDKWS15, ZZG+14].
CUDA-accelerated [GDKWS15].
CUDA-enabled [DSH+16]. CUMULVS
[GKP97, KWB06]. Current
[Cap09, GFD05, GCSK13, LVA+13].
CYBER [ABA+7]. cycle [AHB+16].
CYDRA [HRM89]. CYDRA-5 [HRM89].
D [VSS+13, ARR99, BGM15, BG00,
CSGM17, CM97, GGS01, HSLK11, KR94,
KR95, PR95, THL88]. DAG [TR17].
DAG-based [TR17]. DAMPVM [Cza03].
DAMPVM/DAC [Cza03]. Data
[ACF+11, AF09, BCG+10, BCM+03, BH06,
CFK+94, CBW95, DP05, DH96, DZ07,
DT17, DFT+15, Fei99, Fo90a, GMLP08,
GG11, HJ96, JW06, Joh01, KBH88, KUE+00,
LR07, MAJJS03, RRV06, SS89, SS10, VS03,
WHL03, ZRC+06, APD+15, AT+15,
FK+17, HLW+16, LGDH16, MRD+15,
Ozs16, PH91, STP+13, SZ11, WD+15].
Data-Intensive
[GMLP08, KUE+00, ACF+11, FKA+17].
Data-Parallel [HJ96]. Database [MS9].

derivatives [Ha93]. Derived [SWHP05].
deriving [MBvdG13]. Design [AEG+03, BGI+99, BBH+13, BRM03, BH06, CE00, CLP+99, CTD+05, Dar00, DZRS99, DHF+96, DJC05, EGMP93, FGC+05, GMJ88, GCCC+03, GHM+10, GD09, KS09b, PPK09, BG11, UZM+14, UCZ+15].

Designing [SWHP05, SKS+13]. Detailed [ED95, SBSB06]. Detection [CB10, YZC+15, BSS15, HGMW12, VOL+14, ZCZ+13]. Detector [DZDR95].


Development [Ano01a, BCC+01, BBDO0, Dar09, HL00, HRM89, Kal09a, LC90, LD07, MM90, PPS09]. Development/Tuning [Kal09a]. Developments [YSS+06]. device [Lai93, OF17]. Devices [PHC+10, RKKC90]. diagnosis [DCM+17].


dispel4py [FKA+17]. Dissemination [GL97]. Dissolution [Cl91]. Distance [HME90, KR11]. Distributed [AKP08, AF09, BGG05, BFL99, BG02, CWH09, CYT+02, CB95, Dec10, DFM94, DCCS10, EDV06, GKN+96, GGS01, Gir02, HC10, HD05, JMP02, KT99, LWOB97, MYCR06, MVAR87, Mat95, MCW+00, NKP+00, QWICO2, RAO02, SWG+03, SPNB14, YRA+02, ZRC+06, dPIdA03, JRT16, JO92].

Distributed-Memory [MCW+00]. Distributing [CBSB01]. Distribution [TCW06, TC10]. Distributions [DZ07].

Divide [Cza03]. Divide-and-Conquer [Cza03]. Divisible [DLG06, MYCR06].

DNA [DTD14, HB90, PRT90]. Docking [GHH+10]. DOE [HBSS03]. Domain [Cha88, CDH+97b, GCD97, Lai93, Meu88, WCDS99, CSGM17]. Domain-Specific [CDH+97b]. Donation [TCW06].

Donation-Based [TCW06]. Double [PRT90]. Drift [BFNV07]. Drift-Diffusion [BFNV07]. Drive [HE01, PPS09]. Driven [CHZ02, DCL+08, YB07, DAB+12]. drug [MPSI15]. Dual [BBC+00, Ish91].

Dual-Level [BBC+00]. Duration [CY08].
Equation-Based [Key09]. Equations [Meu88, SBF90, Syz87, KS89, ZZG+14].
Equilibrium [NKR90]. Equilibrium [JP93, NK89]. Era [BM13, ME14, BM12].
ETA [DD89]. ETA-10P [DD89]. Eulerian [INY+14]. European [MHW15, PHB04].
EUROPVM [OL05]. EUROPVM/mpi [OL05]. EuroPVM MPI [KKDV03]. EV7 [KHP+04]. evacuation [GDS17]. Evaluate [WG190]. Evaluating [BBDR95, GFD05, LRG+16, YFS+14].
Evaluation [ATN+00, ABF+08, BCK89, BIC+10, BFNV07, BG02, BDG+00, CDQS04, CLP+99, KHP+04, RBL08, SWHP05, WOG95, YIN+11, BBG+14, HIT+14].
Evaluations [PPK09]. Event [NRR97, BEW16, DAB+12]. event-based [BEW16]. event-driven [DAB+12]. Events [BG00]. Eviction [BH06]. Evaluation [DAC+14, WJS+90]. Exact [ZK93].
Example [NBB+96]. ExaSAT [UCZ+15].
Exascale [AF09, CGG+09, DBA+09, DBM+11, GD09, GL09, Her09, Kal09b, KS09a, KS09b, LAV09, Luc09, Lus09a, MMN09, PP09, SG09b, SC09, Ste09b, BCR+14, SWA+14, UCX+15, VFJ+15, YB12]. Excited [WLC91].
Excited-State [WLC91]. Excitement [RAGW93]. Executing [WG07]. Execution [MS09, AHB+16, DAB+12, KILL13, TKA+17]. executions [RV15]. exhaustive [PS12]. Expand [GCC+03]. Expansions [KMPJ08]. Expect [Pan92]. Experience [HGD91, YHG+07]. Experiences [DD06, GKN+96, Reu92, ZKRA14].
Experiment [HME90]. Experimental [BCC+06, EGMP93, JW06, KKCB98, KL87]. Experiments [AAF+01, AK91, Gir02, PR95]. Explicit [WBG06]. Exploiting [Bri10, SCR11, WWA+11, LFB+15].
Exploration [KPM+96]. Explore [JLL04]. Exploring [HAF+96, IMS16]. Expression [RS03]. Expressions [BBDR95].
Extending [GRC08, Pap11, LRG+16]. Extensible [CJK+05]. Extension [SVN09, AHB+16]. Extraction [CBL10, HC08]. Extreme [Her09, Key09, KC92, MPS15, ZKRA14, DCM+17].
Extreme-scale [ZKRA14, DCM+17].
Fault [BHK+06, Cap09, FD04, FGC+05, GKP97, GL04, JSSZ09, KWB06, WvNM+06, ASHH16, LRG+16, YZC+15].
[BBG+10, WvNM+06, HTD+14]. **Finite**
[AJL+97, CC95, CBV97, EGG05, GCD97, KM95, MMD98, MS02, MS05, PLS05, THC+06, THL88, BSW+14].
**Finite-Element** [MS02, BSW+14].
**Finite-Volume** [MS05]. **First**
[DQFW90, GKN+96, TMWS91, HIT+14]. **first-principles** [HIT+14], **fixed** [BSK14].
**Fluid** [EDS95, SG91]. **FLASH**
[DFC90]. **Fluid-Structure**
[CLM90, SK90, LSS93, WDW+94]. **Forecasting**
[HR97, YW93, CH13]. **Fun**
[MS02, BSW+14].
**Flowfield** [MKG90]. **Flows**
[CB95, GMWG10, MYC92]. **Fluid**
[Cha88, DFMD94, Gen88, HL10, JL89, KT99, LWL05, PGTS10, SWW94, SS90, SK90, VWW93, LSS93]. **Fluid-Structure**
[KT99]. **Fock**
[CLM90, KKC90, TMW+99]. **focused**
[JRT16]. **Footprint** [JMC05], **force**
[PUR94]. **Forging** [MHW15].
**Forecasts** [MHW15]. **forests** [PNFC16]. **format**
[GG14, GGO16]. **Forming** [CM97].
**Fortran** [DL97, KR94, KR95]. **Fortran90**
[LJO05]. **Forum**
[Don02a, Don02b]. **Forward**
[AK93, Lunc90, THL88].
**Foundation** [Web91]. **Four**
[Tho90]. **Four-Band**
[Th090]. **Fourier**
[KNP87, MJ04, LDW+12]. **FPGA**
[HCO8, MHS11, PC08a]. **FPS** [LT88].
**Fracture** [BG00, LPB+16]. **Framework**
[CAK+07, DGJ90, IVY94, PGT90, SS+05, SB04, TMW91, vLRA+03, FKA+17, PCC+16, SE12, YWW+14, CTD+05].
**Frankenstein** [Wit92], **freedom** [TAM+16].
**Frequency** [TC10, CSGM17]. **Frontwidth**
[MBS87]. **Fueling** [Her91]. **Fujitsu** [Ish91].
**Full**
[AEPR92, JRT16, LK01, RAB+15, THC+11]. **Fully**
[HR97, YW93, CH13]. **Fun**
[RAGW93].
**Function** [ODD07, PPK09, ZOF90].
**Functional** [LR07]. **Functions** [LS06].
**Fundamental** [MR90]. **Fusion**
[ACG+90, DSD+91, FWSW02, FP02, YK04].
**Future** [BSB89, HBSM03, BAP+12]. **FV**
[LMT+12]. **fv3** [SDF+17]. **FVCOM**
[Cow08]. **FX** [DD91]. **FX/80** [DD91].

**G** [MCS+06]. **G2** [Cot04]. **Galaxies**
[Her91, NBB+96]. **Games** [EGMP93].
**GANESH** [BPK+07]. **Gap** [SS99]. **Gas**
[CH94, MFG90]. **Gases** [WBMY90]. **Gate**
[HC08]. **Gather** [TRT+10]. **Gauge**
[Mor89a]. **GEMM** [NTD10]. **Gene**
[MAB+13, RS03, YIN+11, GNB11, KMH+14, SSU+12]. **Gene/P**
[MAB+13, GNB11, SSU+12]. **Gene/Q**
[KMH+14]. **General**
[PLS05, BE17, MMHL11]. **general-purpose**
[BE17], **generalized**
[HIT+14, GLGLB+11]. **Generation**
[DE03, HT04a, KJP08, BAP+10, TRS13, ZKRA14]. **Generator**
[PM+04, DL09]. **Generic** [CAK+07]. **Genetic**
[RS03, NMAE13]. **genome** [DRTC15].
**genome-wide** [DRTC15]. **Geodesy**
[BSB89, HBSM03, BAP+10]. **Geoplasma**
[MGG05], **geophysically** [GcG11].
**geophysical** [CMNI]. **GFLOP** [SBF90].
**Glass** [YSN90]. **Global**
[ATN+00, CZR+11, DBA+09, GS05, MHW15, SBG10, TH090, WBMY90, DFT+15, TAM+16, WD+15, NPT+06].
**Global-Address-Space** [SBG10]. **Global-aware** [CZR+11]. **Globalized**
[GKMT00]. **Globally** [SH193]. **Globus**
[FK97]. **GloVE** [DPdA03]. **Glow** [YW93].
**Glutons** [BOD+91, BDO+90]. **Going**
[Her09]. **Goodput** [BL09]. **GPFS** [BIC+10].
**GPGPU** [SDF+17], **GPGPUs**
[APD+15, KDH11]. **GPU**
[ATL+15, BGM15, CSMG17, CS14, EEL15, GHL15, GDKWS15, GGO16, HTO+14, JC12, LPB+16, MD+12, MJGL13, OKTR11, OF17, PS12, PNFC16, RV15, SPTT08, SE12,
SKS+13, WD+12, YLL+14, ZZG+14.
GPU-accelerated [CSGM17]. GPU-based
[ATL+15, MJGL13]. GPUDirect
[OGM+16]. GPUs
[HDl+15, HPW+16, PF+16, TKA+17].
Gradient
[AH93, CSV91, Mel87, DHL16,
KMM16, PSV+16, PF+16]. Gradient-like
[CSV91]. GrADS [BCC+01]. Grain
[ACM88]. Grained [BBG+10, BGB+96,
DZRS99, WvNM+06, HTD+14]. Grand
[BRE+90, CBB+96, DSD+91, Kit90].
granularity [LQJG16]. GRAPE [CKE08].
Graph [CDT05, GLZS14]. graphic
[LQJG16]. Graphical [DMQS12, KDO16].

Graphics
[GLGLB+11, LP10, MA15, NTD10, BE17,
CLG13, GHHS15, Mon12, RDG12, ZCZ+13].
Graphs [LK01]. Gravitational
[SWW94]. Gravity [Han91]. Great [BAM+16].
Green [ODD07]. Greenbook' [HBSM03].
Greenhouse [WBMY90]. Grid
[CKP99, Lee03, SBWS99, ASHH16,
BCYS11, PPC+16, PS12, AEG+03, AAF+01,
AGR+03, BCCL09, BCM+03, BCC+01,
BP6+07, BSCC03, BCC+06, CD06, CBSB01,
CBB+04, CBL06, CCB511, CYO8, DCL+08,
FkT01, GHM+10, GRC08, GHZ10, HBSP08,
HT04a, HLP+03, HWP03, Hua03, KHK+09,
LM03, MWM+08, Mat03, MCS+06, PPK09,
PBD+01, PHB04, QH08, RIF01, RTRG+07,
SWG+03, Wa03, WBF04, WPB01,
WHL03, WvNM+06, YBA+03].

Grid-Based
[GRCO8, QH08, LM03]. Grid-Enabled
[CBB+04, MWM+08].
Grid-Ireland
[MCS+06]. Grid5000
[BCC+06]. Gridded
[ZM07]. GridLab
[AGR+03]. GridPACK
[PPC+16].
GridRPC [CJ06]. Grids
[DT99, DT11, Job01, Ma00, VR00,
 MMHJ11, MGB12, BKS+07, BBH+06,
 Dee10, Fra05, GMLP08, IKY+10, MS09,
 SG07, SW04, TCW06, vLRA+03].
GridSolve
[YSS+06]. Groundwater
[ABF+99, MMD98]. group
[BCR+14].

Growth [Cla91, YCZM07]. Guest
[BM13, DT17, dA03]. Guided
[FBB03]. Gyrofluid
[KPM+96]. gyrokinetic
[IMW+13, INY+14].

Hadron
[GKH+91, Liu90]. Harbor
[BBC+00]. Hardware
[BH06, KS09b, Spr06, HDL+15, MCU+13].
Harmonics [KMPJ08]. Hartree
[CLM+16, KKCB98, TMW+99]. Head
[GKB03]. Heavy [QH08, Ren92].
Heavy-Ion [Ren92]. Helium
[Fro91]. Helix
[PRT90]. Helmholtz
[BEF+95]. Hermetic
[VK7]. Heterogeneity
[TCW06]. Heterogeneity-Aware
[TCW06]. Heterogeneous
[BM13, BLRR01, BMRR06, BG09, CHZ02,
Dee10, EGG05, KT99, KS05, LR07, LR09,
LR010, ME14, NNB+96, RRV06, RAGW93,
VLO+08, CMS+11, HGWN14, IMW+13,
LST15, LDW+12, UZM+14, BM12].
HeteroMPI
[VLO+08]. Heuristic
[SG07]. Heuristics
[CJ06]. Hierarchical
[DD06, GJM88, HJ96, HWP03, PBA90,
SG09a, WT99, DSH+16, MJD16, ZBMK11].
Hierarchy
[HL10, YK04]. High
[An98a, An99, An000, An01b, ARR99,
AUS92, BV11, BGI+99, BCC+01, BAA+06,
BRE+90, BEF+95, BRT+92, CWHPP99,
CC95, CDP+04, CSY10, CB05, CJK+05,
DTD14, DFS+05, DGJ09, DBA+09,
DHL16, EKD+12, FG+05, FGJ+04,
GHM+10, GHIL15, GMWG10, GSK+15,
HSLK11, IS96, IKY+10, KD111, KBA00,
Kep04a, KWB06, Kuc04, KMM16, LST15,
LPB+16, LD07, MAB07, MSPS15,
NKN+08, NKF08, NTP06, PPK+04,
PPK09, PA11, Poz97, Pra01, QWC02,
Sab91, STS17, SKB01, Ste01, Ste04, SKC10,
TR17, THL88, TMW+99, THDC09, WAD99,
WLC91, WOS08, YSP+05, BAIM+16,
BAP+12, CZR+11, DVW+12, DAC+14,
ECG+13, Fer90, GR17, Har11, IYK16,
Investigation [BGM15]. Investigating [CW05].
Investigation [CK01]. Investigations
[Mav02]. Invocation [DP05]. Involving
[MBF+11]. IO [BIC+10, LRT07]. Ion
[Reu92]. Iowa [BCYS11]. IPC [Udd17].
iPSC [HGD91, KR94, KR95]. iPSC/860
[HGD91, KR94, KR95]. Ireland [MCS+06].
Irregular
[Cza03, Man97, TRS+10, KPR17, MMHL11].
Ischaemic [SKS+13]. Ising [BRT+92].
Isolating [ALL13]. Issue
[BPBL11]. Just
LAM [SSB+05], LAM/MPI [SSB+05].
Laminar [EDS95, SG91]. Land [HVKI05].
Language [CCZ07, LD07, Pan92, Sha88, CH13, EKD+12].
Languages [Ka09b, KKS04, YHG+07, J092].
Large [AS00, AK91, AGL87, BAM+16, BGG05, BDP01, BCCL09, Ber92, BWB+10, BCC+06, CWHP99, CK01, Ede93, Ewi88, Fra05, FBW87, GDKWS15, GMWG10, Gun00, HLSK11, Joh01, KNP87, KUE+00, LT88, LM03, LDW+12, LC06, MC90, MR04, MRD+15, Mor89b, NKR90, PPK+04, Pet87, SE92, TRS+10, UFS9, VS03, WT99. YRA+02, ZRC+06, BCYS11, CvG11, DCD+13, EEL15, FU12, HIT+14, MBHF15, MJ16, RDG12, STP+13, VOL+14, ZBMK11].
Large-Scale [AS00, AK91, BDP01, Ber92, CWHP99, Ewi88, Fra05, Gun00, HLSK11, Joh01, KUE+00, LC06, Mor89b, NKR90, YRA+02, ZRC+06, BAM+16, GDKWS15, GMWG10, LM03, LDW+12, MRD+15, EEL15, MBHF15, MJ16, STP+13, VOL+14].
Latent [WAW+11]. Lattice [BGK+90, Din91, JC12, Mor89a, MSK92, Liu90, Mon12, OKTR11, SBSB06]. Law [HE01].
LBLAS [KJH96, J092]. Leading [OCC+08, SQS08]. Learned [PK04].
Learning [AH93, AK93, CBM13, EEL15].
Leasing [EW06]. Legion [GNTLH97].
Length [DLY+98, BSK14]. lesions [SKS+13]. Lessons [PK04]. Level [BCC+01, BBC+00, DD99, DD01, YK04, DEL+12, LRG+16, Udd17].
Leveraging [CH13, LYL+16]. Liber8Tion [Pia09].
Libraries [DMT01, GFD05, LDB+06, PBD+01, PMS+04]. Library [BK07, CE00, MA15, DEL+12, JC12, Poz97].
Ligature [KBA00]. Lightspeed [PPK+04]. lightweight [SSU+12]. like [CSV91].
Limited [KR11, TW87]. limits [THH+13].
Linda [Mat95, SSNM92]. Line [LWOB97].
Linear [AGL87, BS88, BDL+07, CDQS04, CL95, CDP+94, Don02a, Don02b, Ede93, GJM88, JO92, KVV+90, KJH96, MC90, Ma00, MA15, Man97, NZ93, Poz97, WT99, CvG11, FTRB13, Kvm89, MBvdG13, RDG12].
Link [TLG98, Pet87]. LINPACK [DL09].
Linux [ALL13, Ano01a, CK01, GSHL03, Jon12, LVL05, SG09a, YIN+11]. Liquid [DQFW90]. Livermore [WGI90]. Living [GHZ10]. Load [BG09, BFN07, G505, GLGLB+11, MYCR06, ZBMK11]. Load-Balanced [BFN07]. Loads [DLG06], Local [BRT+92, MYCR92, PNFC16, JO92, KJH96].
Low-Storage [KR11]. LU [BLRR01, DD99, DD91, Tis97].
Machine [BR03, CC95, CSV91, CBV97, EEL15, KKD03, MC90, SS89, Wit92, ZK93, BAP+12, CBM13, SSU+12, BJ92, GKH+91, HZ91, KKD05, LK10, LPG88]. machine-learning-based [CBM13].
Making [BPBL11, De010, GWKN08, BKH+13, KT94].
Man [Wit92]. Manage [HBSP08, ESW+12]. Management [AF09, AD93, BPK+07, DD06, Dar00, HTSK90, MWM+08, MFK09, PPK04, SE92, YB07]. Managing [Spr06].
Many [GLZS14, TMWS91, BH12, LNSMMA15, MISP15, PSV+16, Udd17,
Many-Body

[Vol+14, YFS+14]. Many-Body

[TMWS91]. many-core

[BH12, LNSMM15, MСПS15, PSV+16, Udd17, VOL+14, YFS+14]. manycore

[HFV+12]. Mapping

[CDRV+15, QHO+8, Jea13, KPR17].

Mappings [PTG02]. Marenosstrum

[RBl08]. Market [NKK+98, WPBB01].

Market-Based [WPBB01]. Markets

[IJJ93]. Massive [GNB11, dSSB+08].

Massive-Scale [GNB11]. Massively

[BBDR95, CH94, CBW95, CB95, Dem90, HVWS09, HVW09, HS93, HZ91, JLL98, Jon92, LPJ08, MA15, MPG93, Mon89, NZ93, PK04, SBF90, SCB+95, SK92, TMW+99, AHB+16, BCLP17, NMAE13].

match [Oza16]. Matching [ZC92, HFV+12].

Materials [EGG05, GKN+96, KYY+90, Nak99, WLC91, ZOF90, MPD+12].

Mathematical [Mon89]. MATLAB

[BK07, Luk99, ZZG+14]. Matrices [KC92].

Matrix [AGL87, Chu99, DL09, GG11, IYV04, MCG04, NKR90, DEK92, GG14, GGO16, HIL+15, SCR11, YLL+14].

Matrix-vector [GG11, GO16, YLL+14].

matter [GHH15]. Maximization

[GLGB+11]. MCell [CBSB01, CBB+04].

MCHF [SYF96]. Means [BRT+92].

Measure [BH06]. Measurement

[MSMW07, FU12]. Measuring

[FGJ+04, Har11, KKS04, SB04].

mechanically [MBvdG13]. Mechanics

[HOP92, Her88, Ytt97]. Mechanism

[DZRS99]. Media [PGTS10].

medical [THH+13]. Medicine [SSM92].

Mediterranean [CDG+14]. Medium

[MHW15]. Meetings [An098c]. Melting

[MWC+05]. Member [HTSK90].

memoization [CGGC+16]. Memoriam

[Mar91]. memories [TKSK88]. Memory

[AH93, AD93, BFL99, Bri10, BEF+95, CDT05, CWG09, CB95, FSS13, GJM88, GSHL03, Gir02, HCL0, HL10, HD05, JLL04, JMC05, MWAR87, MCW+00, MBW87, NPT+06, NTKP06, WT99, YRA+02, YK04, YIN+11, ZC92, BH12, DEK92, HTD+14, HGMW12, JO92, KDO16, LFB+15, LCZ+15, SPNB14, SS10].

Memory-Aware

[SS10]. Merging [YBA+03]. Mesh

[DFS+05, HT045, Mar02, MCW+00, SR05, WCE95, WCD99]. Mesh-Iterative

[MCW+00]. Meses [Ytt97]. Meso

[GGS01]. Meso-Scale [GGS01]. Message

[An94, CWG09, KKD03, MP98, BB+14, ZKRA14, BC14, BBI+06, BRU05, Cot04, GL04, IBC+10, KKD05, LK10, SWHP05, SLG95, TG05].

Message-Passing

[An94, CWG09, MP98, SLG95]. Messages

[JW06]. Messaging [KFM+10].

Metacomputing [FK97, GS99].

Metaheuristics [QHO+8]. metal [NMAE13].

metal/polymer [NMAE13]. Metals

[Cla91]. Metascheduling [Mat03]. Method

[DP05, FCLG07, Man97, SG91, Tis97, BBDH14, MMHL11, OKR11, TSKK88, YB12, CKE08, SBB06].

Methods

[AD93, ACG+90, AGL87, CC95, CSV91, FWSW02, HOPP92, HJ96, MC90, Me87, Meu88, MBW87, MR90, PH+10, RR96, SCFK04, TXD+07, TLL88, CMN12, IYK16, Lai93, Mon12, UZM+14].

Metric

[HE01, DHL16]. Metrics

[CS+11, Num04, Ste04]. MHD [ACG+90].

MIC [HLS+17]. Micro

[BWB+10, SSK+13].

Micro-benchmarks [BBW+10].

micro-isaehemic [SKS+13].

Microbenchmarks [JLL04].

Microprocessors [WT99]. Microscopic

[YFH+96]. microscopy [TACA+17].

Microtasked [MRSK9]. Microtasking

[HA91]. microthreaded [Udd17]. MICS

[TCA+17]. Middleware [BA01, CKPD99, CDCV06, EDSV06, MCM+06].

Migration

[KL87, UB95]. millions [LYL+16]. MIMID

[AH93, BOD+91, FFNP97]. Mimicking

[ACD07]. Mini [Gen88].

Mini-Supercomputers [Gen88].
Minimization [Rao02, LPB+16].
Minnesota [Aus92]. MiPAX [HKK88].
MIPSPro [CW05]. Missions [SKB01].
Mixed [BDL+07], MM2 [PUR94]. Mobile
[FP02, QWIC02, YBA+03]. Mode [LRT07].
Model [ATN+00, ACD07, ABA+07, BFLL99,
BE07, BFNV07, BG02, BRT+92, CBW95,
GS05, GP93, Ish91, JLO05, Kep04a, KJ05,
KMD5, LR07, LPJ98, PPR03, SSSW91,
SG09b, SG09a, SR05, Ste09a, TD08, VFD04,
WB06, WH03, CDG+14, CMHB15,
DAB+12, GDKWS15, IYK16, SDF17,
TNLP13, WDH+15, YWL+14, Cow08,
CJ05+05, DVW+12, DEE+12, DJS05,
ESW+12, HVKI05, JLO05, LJ005, MS05,
MW12, PL005, WD05]. Modeled [WJS+90].
Modelling [STS17]. Models
[ARR99, BV11, BRGR11, BR03, BBD00,
DGD+04, DFC90, Gir02, HD05, HAF+96,
IIJ93, Kalo9b, LJO05, LR09, LR010, MA89,
PA11, Pet87, RW03, Ste04, Ste09b, UB95,
VDB04, WOS08, WW92, ZC92, DTD14,
DEL+12, HLS+17, VSHN14]. Modern
[BDG+00, ESW+12]. Modified [HB90].
Modisazure [ACF+11]. Module [PLS05].
Modulo [Gro03]. Molecular
[BYT91, CGB+94, CH94, CWG09, CSY10,
DFQFW90, DG+04, DFC90, KVV+90,
MP94, Nak99, NHG+96, HXW+13].
Monitor [BH06, SS+12]. Monitoring
[LW0897, MR04, PHB04, SC09, Sp06,
VR00]. Monte [BRE+90, CH94, DFT+15,
FSS13, LM03, LPB+16, MVAR87, MB87,
SABD13, SSSW91, SS+14, VSS+13, ZK93].
mortar [LPB+16], MOSFET [VSS+13].
MOTEUR [GMLP08]. Motions [DFC90].
moulded [WSD+14]. Moveout [LT90].
MP [AEPR92, Del93, DH96, Lai93, LT88,
MYC92, MS92, YW93]. MP/146
[THL88]. MPH [HD05]. MPI
[An04, An01a, BB+10, BBG+10, BBS99,
BB+14, BF01, BDH14, BBH+13,
BIC+10, BHK+06, BBC+00, BM03, BRI10,
CBL10, DLB07, DGB+14, FD04, FCLG07,
FSC+11, GFD05, HIC10, HGMW12, IMS16,
KMH+14, LRG+16, LRT07, LLCC07,
MS02, OGM+16, RTRO+07, SCB14, SC04b,
SLG95, YSP+05, ZKRA14, SZC12]. MPI-2
[HGMW12]. MPI-Based [FSC+11].
MPI-IO [BI+10, LRT07]. MPI-OpenMP
[MS02]. MPI/OpenACC [OGM+16].
Mpi/Openmp/GPU [SZC12]. MPI2
[MP98]. MPICH
[BHK+06, Cot04, GL97, TRG05].
MPICGH-G2 [Cod04]. MPICLICH-V
[BHK+06]. MRI [SKS+13]. Much
[RAGW93]. Multi
[BKRS09, BH12, BRI10, KDH11, OKT11,
SSR+14, TNB07, YK04, APD+15, BGM15,
CAE+13, CZR+11, DAC+14, KILL13,
LDW+12, LVA+13, LNSMMA15, PSV+16,
TAK+17, VSS+13, VUL+14, YFS+14].
multi- [PSV+16]. Multi-Core
[Bri10, BH12, KDH11, SS+14, CAE+13,
KILL13, LDW+12, LNSMMA15, TAKA+17,
VOL+14, YFS+14]. Multi-Criteria
[BKRS09]. multi-GPGPUs [APD+15].
Multi-GPU [OKT11, BGM15].
Multi-Hop [TNB07]. Multi-Level
[YK04]. multi-order [CZR+11].
multi-physics [DAC+14]. multi-processor
[BGM15]. multi-subband [VSS+13].
multi-threaded [LVA+13]. Multiblock
[KDL01, Ytt97]. Multibody [BGM15].
Multicommodity [NK89].
Multicomponent [NK89]. Multicore
[BKM05]. Multidimensional
Multiunit [KDO16, RDG12, SKS 15, Mor89b, Nak99, BDFVP15, HGWN14, KDO16, RDG12, SKS13]. multiplication [GGO16, SCR11, YLL+14]. Multiply [GG11].

Multipole [CKE08, KMPJ08, IYK16, YB12].

Multiprocessing [DD91, YM91].

Multiprocessor [BS88, DEKV92, KPR17].

Multiprocessors [AD93, DD91, Gir02, Wad99].

Multiprogramming [MA89].


Multiunit [GCL93]. Musings [Luc09].

N [RTRG+07]. N-Body [RTRG+07].

NAMD [NHG+96]. Nankai [BAM+16].

nanometre [CHW+15]. Nanophase [Nak99]. NAS [BBB+91a]. NASA [MAB07, PLS05]. National [ABF+08, BBB+91b, DGH+93, HGD91, UB95, BEW16, All88, Mir90, Web91].

Navier [Mav02, SBF90]. nCube [CL95].

Near [Arn07]. Near-Lossless [Arn07].


Network [ACD07, AM00, AB01, BL99, BSCC03, BGF02, CD06, CD97, CK01, Chu99, DD06, DFMD94, LC06, MOK00, NZ93, PHB04, RS03, WEPB12, OF17, VEMR17].

Network-Based [AM00].

Network-Enabled [CD97, DD06].

network-on-chip [VEMR17].

Network-theoretic [WEPB12].

Networked [FWSW02]. Networks [AKP08, CHZ02, FP02, Gm00, JMP02, MAJJS03, QWIC02, RE87, TNBG07, VLO+08].

Neural [AM00, Her88, RE87].

Neuroimaging [MRD+15].

neutron [BSH+16, DFT+15, SSR+14].

Newton [GKM10].

next-generation [ZKRA14].

next-generation [ZKRA14].

NMR [KBH88].

Node [KHP+04, KL13].

nodes [TLP13].

NOE [CGB+94].

NOE-Restrained [CGB+94].

noise [ALL13, WLFH16].

Non [BCG+10, CAK+07, GSHL03, uITH07, RGD12].

Non-Data-Communication [BCG+10].

Non-Dedicated [CAK+07, GSHL03].

non-Hermitian [RG12].

Non-Polynomial [uITH07].

nonblocking [WLFH16].

Nonequilibrium [YW93].

Nonlinear [AK91, ABA87, HT04b, KVV+90, JRT16].

Nonsymmetric [KC92, MC90, Ma00].

Normal [YRA+02, Haj93].

Northern [UB95].

Note [DT17].

Novel [CGB+94, DGJ09, FWZ91, SG07, HTD+14, PNFC16].

Novo [NKIN+08].

NSF [Bra91, Sci92].

NT [Ano01a, CLP+09].

Nuclear [FSS13, IHW87].

NUMA [Jea13, OPW+12].

Number [FG97, FU12].

Numbers [BEF+95].

Numerical [ABF+99, ABB+94, DMT01, DE03, Ed03, Ede93, IJ93, LWL05, PR95, PPR03, PBD+01, Poz97, RAB+15, RIF01, RKK90, SG91, BSS15, MAB+13, SDF+17].

Numerically [Mah90, WJS+90].

O [DLY+98, DEL+12, IBC+10, KKC98, KES+17, LPJ98, MMD98, MS95, NFK98, OWO98, PH91, SW01, SR98, TGL98, TDO8, WWA+11].

Oak [ABF+08, DGH+93, HGD91].

Object
[NHG+96, SE12]. Object-Oriented
[NHG+96]. Objective [PPK09].
observable [RAB+15]. observations
[ZKRA14]. obstacle [CCBS11]. Obstacles
[MBF+11]. Occupancy [GLGB+11].
Ocean [Cow08, HAF+96, KJ05, KM95,
WSCZ05, CDG+14, JO90]. October [OL05].
ODE [BCCLO9, BH99, KR11]. Off [SR05].
Offload [BRU05]. Offloading [GWKN08].
Ohio [BBW90]. Oil [KR94, KR95].
On-Board [SPTT08]. on-Demand [EW06].
On-Line [LWO97]. One
[GFD05, LRT07, TGT05, Udd17]. One-IPC
[Udd17]. One-Sided
[GFD05, LRT07, TGT05]. Online [LC06].
Onto [QH08]. Open
[LWO97, BSW+14, GCSK13, AEG+03].
OpenACC [MGS+15]. OpenDDA
[DGJ09]. Opening [PRT90]. OpenMOC
[BHH+16]. OpenMP
[BFO1, BBHD14, BBC+00, MS02, OPW+12].
Operating
[CW01, EDSV06, HI12, HI13, IH15].
Operation [BBR10, BHD09]. Operations
[FCLG07, GFD05, MS09, TRG05, TGT05,
GG14, KMH+14]. Operators
[FSN08, ZM07, LMT+12]. Opportunities
[Cap09, KMW+13]. optical [GSK+15].
Optimal [BR03, FG97]. Optimisation
[VSS+13]. Optimization
[ABB+94, BFLJ09, BGB+96, BLF07,
HL10, HA91, IYY04, KMH+14, LT88,
PPO99, RW03, SCB+95, SR05, TXD+07,
TRG05, YLL+14, BRGR11, BH12, IMW+13,
KES+17, NAEME13, UZM+14, YWL+14].
Optimizations
[PSV+16, DCD+13, Jea13, PUR94].
Optimize [KKCB98]. Optimized [MSK92].
Optimizing
[FSS13, GGL11, KILL13, MAB+13, MCG04,
Mor89a, TGT05, WCE95, WCDS99].
Optorsim [BCM+03]. Order
[CC95, uTH07, THL88, CZR+11, OGM+16].
Organic [CBL06]. Organization
[FWSW02, FKT01]. Organized [BGF02].
Organizing [CBL06, GHZ10]. Oriented
[NHG+96, CMN12, Hua03]. Orography
[GS05]. Our [WW92]. Outlooks [RAB+15].
Overarching [Kep04b]. Overview
[MSMW07]. Overheads [BCG+10, GNB11].
Overlap [BBDR95, BRU05, INY+14].
Overlapping [PR95]. Overview
[AGR+03, DFP+96, DJC05].
P [MAB+13, GNB11, SSU+12]. P4 [Mat95].
PACE [NKP+00]. Pacific [JO90]. Package
[RIF01, SYF96]. Pair [Fro91]. PAM
[CGL+97]. PAM-CHAR [CEL+97].
PANORAMA [DCM+17]. Papers
[Lee03, Moh09, OL05, DT11, KKD03].
Par-BF [LGDH16]. Paradigm
[BGB+96, DCL+08]. Parallel
[AWS01, AAC+97, AS00, APD+15, AK91,
AM00, AHF+16, AERP92, ABB+94, BGG05,
BDP01, BCCLO9, BBB+91a, BOD+91,
BYCB05, BK07, BBDR95, BBC+00,
BSH+16, BG00, BEF+95, BGB+96, BH99,
CCH+88, CZZ07, CE00, CDH+93, CL95,
CCBS11, CH94, CBW95, Cho01, CSV91,
Chu99, CEL+97, CB95, CM97, CJK+05,
DEKV92, DLY+98, Dem90, DIB00, DFS+05,
DZRS99, DMT01, DZDR95, Der93, EGG05,
ED98, FG97, GCC+93, GKN+96, GKP97,
GDS17, GP93, GGS01, GL97, GKM00,
HVWS09, HVSW99, HR97, HLW00, HJ96,
HT04b, HS93, HZ91, IBC+10, JLO05, JLS9,
Jon92, KDL01, KC92, KT99, KSK88, KR11,
KKD03, KS05, LJO05, LPJ98, LWO97,
Lus09b, MC90, MS05, MMD98, MA15,
MS02, MSMW07, MWAR87, MGP93, Mat95,
Max02, MD99, MVC+05, Melee88, MBF+11,
Mon89, Mor89b, MSK92, MS95]. Parallel
[NK89, NKR90, NKN+08, NHG+96, N93,
NKF98, NKP+00, OW908, ODDO07, Pan92,
Pan97, PR95, PR03, PC08a, PK04, RW03,
RR96, RS03, SBF90, SW94, SABD13,
SW01, SS99, SPTT08, Sh88, SCB+95, SM06,
SR98, Sim90, SSNM92, SG91, SK92, SBG10,
Syz87, TBA+17, TLG98, TMW+99, TR92, Tis97, TD08, UB95, VLO+08, VSHN14, WSCZ05, WG07, YRA+02, YHG+07, YW93, YCZM07, Ytt97, ZK93, ZCZ+13, BH12, BCLP17, CMHB15, DAB+12, DEL+12, GHL15, GHS15, HKK88, HLW+16, HLS+17, IMH+11, IMH+12, KT94, KES+17, Kum89, LPG88, LGDH16, LWT+11, MJD16, NMAE13, TRS13, WVL+16, WEPB12, DP05, KJ05, KKD05, KL10.

Parallel-algorithm [AHB+16].

parallelisation
[BSW+14, VSS+13, WSD+14]. Parallelism [ACM88, CFK+94, MYC92, dSSB+08, Jon12]. Parallelization [AJL+97, CBV97, Cow08, Cza03, DGP+97, GCD97, HE01, KM05, LP10, IVA+13, MCV+00, Ren92, WBG06, CDG+14, Osz16, SZC12].

Parameter [FBBC03, SH03]. Parameterizations [WD05]. Parameters [LR09]. ParaScope [CCH+88].


Partitions [WCE95]. Passing [Ano94, BC14, BBH+06, BRU05, CGW09, Cot04, GL04, IBC+10, KKD05, KL10, MPI98, SWHP05, TGT05, ZKRA14, SLG95]. PASSION [KKCB98]. Passive [MBF+11].

Patch [BH00]. Path [Luc09]. Paths [Rao02]. patients [SKS+13]. Pattern [BE07, APD+15, SKS+13]. Patterns [Cho01, GRC08, GKB93, SR98, BRR17, EEL15, HGMW12, WEPB12]. Patterns/Operators [GRC08].

PC [CDT05, CK01, LWL05, Ste01]. PCs [AWS01]. PDEs [Ma00]. Peaks [TC10].


polymer [NMAE13]. Real-Time [KK01]. Restart [SSB+05]. s [LYL+16].

Segmentation [Kal09a]. Tuning [Kal09a]. verification [BRR17]. Vf [DD89].

PERFECT [BCK89]. Performance [AS00, ATN+00, Ano98a, Ano99, Ano00, Ano01a, Ano01b, ARR99, Aus92, BGI99, Bar09, BAA+06, BCK99, BBDH14, BWB+10, BFNV07, BRM03, BRT+92, BDD00, BDC+00, BLES07, CDQS04, CWHP09, CC95, CK01, CDP+94, CAX+07, CSY10, CEL+97, CB95, CKJ+05, Dar00, De93, DH96, DG+04, DGJ09, DBA+09, FG+05, FGJ+04, FSC+11, FSN08, FFR+10, FU12, Gun00, HIT+14, HVWS09, HVSW09, HR97, HL00, HLW00, HSLK11, IS96, IXY+10, IHM87, JLL04, JMC05, KBA00, Kep04a, KEP+04, KJ05, KDL01, KWB06, KS09a, Kuc04, KUE+00, LR07, LR09, LS90, LWL05, LD07, MSMW07, Mav02, MA89, Men00, MJ04, MNN09, MSK92, NF98, NPT+06, NTKP06, NKP+00, Num04, OCC+08, PPK+04, PF16, Poz97, PL05, QWIC02, RIF01, RL08, SB90, Sab91, SWHP05, SSQ08, SCB+95, SM06, SVN09, SC09].

Performance [Sp06, SKB01, Ste01, Ste04, SBG10, SFP02, SBS06, SW04, THC+96, TMW+99, TAR+08, THDC09, VR00, VDB04, Wad99, WTB04, WGB07, WD05, Yel04, YK04, YIN+11, YSP+05, ZLGS99, BRGR+11, BSH+16, BAP+12, CGGC+16, CS14, CZR+11, CMHB15, DTD14, DCM+17, DVW+12, DH16, DAC+14, ECG+13, EKD+12, Fer90, GHL15,
Production [MSK92, SH93]. Productivity [Bar09, FGJ+04, KKS04, Kep04a, Kep04b, Kuč04, SB04, Ste04]. Profiling [MSMW07, SGFC09]. Program [Kit90, NHG+96, WG07, Fer90, KJ05, Web91]. Programmability [CCZ07, CLSS09]. Programmable [HC08]. Programme [HT04a]. Programming [BBG+10, BV11, BF01, BDG+00, CCH+88, CWG09, Cza03, EGG05, Gir02, Kal09b, KKS04, Kok88, Lus09b, Mat95, NPT+06, PA11, PBAL09, Poz97, RW03, Sha88, SCB+95, Syz87, VEMR17, WL92, GDKWS15, HLS+17, MGB12]. Programs [ACM88, DLB07, GL04, HC10, LWOB97, N98]. Progress [AGL87, BRU05, CAE+13]. Project [BH8+10, CBB+96, PK04, Wit92, BCC+01, DBA+09, DBM+11, Mic09, OKTR11, Pet87, PHL04]. projects [ACF+11]. Promising [Gir02]. Propagation [GKN+96].


Remotely [VLO+08]. Renaming
[BPBL11]. rendering [BH12]. Replication
[BCM+03, BCR+14]. Representations
[AS00, WW92]. Request [DD06].
Requirements [LPJ08]. Research
[Aus92, ABB+94, Cap09, CDP+94, Duk91,
IHM87, KHK+99, Mir90, Pan97, SG09b,
SKC10, TR92, BBW90, KT94, EM89].
reservation [Mat03]. Reservoir
[AW50, Ewi88, KR94, KR95, PR95, ZC92].
Resilience [CGG+99, BCR+14, LFB+15].
Resilient [KS05]. Resolution
[DFS+05, HB90, MAB07, WOS08, CHW+15,
DVW+12, WDH+15]. Resource
[AAF+01, EW06, FBB03, MFK09, Mat03,
WPBB01, YB07, CDRV15, MRD+15].
Resources [QH08]. Response
[BBC+00, ZOF90]. restoration [APD+15].
Restrained [CGB+94]. Results
[BM06, GNTLH97, Jea13, PUR94,
WLVL+96, BRGR11, BSH+16]. Rethinking
[KES+17]. Retracted [IMH+12].
Retrospective [Mar88]. Revisited
[MS09, SZ11]. RF [HTWS08, YY93]. ride
[VFJ+15]. Ridge
[ABF+08, DGH+93, HG09]. Rigid
[Nak99]. Rigid-Body-Based [Nak99].
Rings [RVR06]. RISC [Gro03].
RISC-Based [Gro03]. RNA [SCB+95].
Roadmap [THDC09, DBM+11]. Rocks
[Pap11]. Role [Pan97, Sab91]. Roles
[MMS88]. Rolling [FFNP97]. Routines
[CDQS04]. Routing [CHZ02, MOK00].
Run [DLY+98, LYL+16]. Runge
[KR11, RR96]. Running [Fra05, MGB12].
Runtime [AJL+97, BH00, Dar99, Kal09b,
LS06, HI12, HI13, IH15].

S [Lai93, WOG95]. S-3800 [WOG95].
S-MP [Lai93]. SAMCEF [GCD97].
Sampling [MR04]. SAR [AAC+97]. SARA
[SBWS99]. Satellites [BKS+07]. Saving
[TNBG07]. SCALA [SFP02]. Scalability
[BCYS11, DR06, FSC+11, GS05, HLW00,
MWC+05, YIN+11, DAB+12, MW12].
Scalable
[CD06, CHZ02, DW97, DMT01, FKT01,
HGRM12, IBC+10, JSSZ99, MCW+00,
MS05, MAJJS03, SFP02, WLB92, ZLGS99,
ZRC+06, dPIA03, DEE+12, YB12]. Scalar
[Ish91, OCC+08, FU12, KS89]. scalar-type
[FU12]. Scale [AS00, AK91, BD01, Ber92,
BCC+06, CWHP99, Ewi88, Fra05, GG501,
Gun00, GNB11, Her09, HLW00, HSLK11,
Joh01, Key09, KUE+00, LTL88, LC06,
MRP15, Mor89b, NKR90, Nak99, Pet87,
YRA+02, ZRC+06, dSSB+08, BAM+16,
DCM+17, EEL15, GJKWS15, GMW10,
HIT+14, LM03, LDW+12, MBHF15, MJ16,
MRD+15, SLP+13, VOL+14, ZRAA14].
shales [BEW16]. Scaling [CGB+94, CK01,
CLM+16, GHHS15, ZM07, GR17, INY+14].
Scattering [MBF+11]. scene [SAD+13].
Schedule [SBWS99]. Scheduler
[LS06, TR17]. Scheduling
[ATN+00, BKR09, BKR+07, BR03,
BBH+06, CJ06, CKB09, CBL06, DRL06,
Ety06, JW06, KCC+06, LJC+10, MYCR06,
SG07, TR17, WnVM+06, Jon12, LQG16,
Mat03, OPW+12]. Scheme
[BG00, GS05, KPR17]. Schemes
[BS88, BS15, SC12]. Schrödinger
[BLLF99, IKY+10]. Schwarz
[GMKT00, PR95]. SCIARA [SDF+17].
SCIARA-fv3 [SDF+17]. Science
[ALL88, CD97, CDH+97b, Duk91, GKN+96,
GL09, HBSM03, HT04a, Joh01, Nas92,
Sab91, Web91, WWA+11, ACM+11,
CMS+11, HWP03]. Sciences
[NKR90, DGH+93]. Scientific
[AS00, BAA+06, BJ07, DT99, DT11,
DT17, Fol90a, GL97, HME90, Hab90,
HLB+03, JLL04, JMC05, KPM+96, KBW06,
LS90, OCC+08, SE92, vLRA+03, ASH16,
CMS+11, DMQ12, DCD+13, DAC+14,
EKD+12, FKA+17, WLT+11, MGB12].
sclerosis [SKS+13]. screening [MPS15].
SE [DEE+12, KJH96]. Sea
[Don02a, Don02b]. Subroutines
[Phase96, JO92]. Subsetting [ZRC+06].
Substitution [DTDP14]. substructures
[SCR11]. Summary [Moh09]. Supercluster
[MB89]. Supercomputer
[BBW90, CL95, CLP+99, MKG90, MM90, MA89, Mir90, Mor89a, MR90, Nas92, Sci92, SB04, Web91, WOC99, Bra91, Fu12, KMH+14, Duk91, MAB07].
Supercomputer [OCC+08].
Supercomputers
[ABF+99, AGL87, BSB89, BCK98, BWB+10, BYT91, CDD+90, DD87, Gen88, Mel87, NKN+08, YMD91, ZC92, DCD+13, HI12, HI13, PH91, ZBMK11, Gen88].
Supercomputing [All88, DFP+96, EM89, GKN+96, LC90, MM88, NBB+96, SABK94, Aus92, BBB+91b, Bra91, BBW90, KT94, MP95, TR92, All88].
Superconductors [JP93]. Supersonic [MYC92]. supervised
[HGWN14]. Supplemented [SSB89].
Support [BBG+10, BV11, BCC+01, CBB+04, CFK+94, Dar99, Gro03, YSP+05].
Supporting [ZRC+06]. SUPRENUM
[MST88]. surface [BCYS11]. survey
[GR17]. Sustained [MSK92, TAR+08].
Swapping [Sco04b]. SwinDeW [LJC+10].
SwinDeW-C [LJC+10]. SX
[LT90, Mor89a]. SX-2 [LT90, Mor89a].
Symmetric [Jea13]. Symmetric
[BBG09, Gir02]. synchronised [MBHF15].
Synchronization [TGT05, SPN14].
Synchronous [DGP+97, Jon12, WDW+12].
syntax [Joa02b]. Syntax
[CBB+96, Kep04a, Wir12]. Synthetic
[MPG93, SVBP13, ZCZ+13]. System
[AM00, BGI+99, BCJ01, CL95, CTD+05, CJK+05, DVW+12, DJCO5, ESW+12, GHM+10, GS99, GHZ10, GNB11, HLP+03, JLO05, JLL04, LDB+06, MWM+08, MST88, SSB+05, SG09a, uTH07, SBG10, SFP02, WLVL+96, CVJ12, DEL+12, HLW+16, IBC+10, JC12, LDW+12, SKS+13, SH93, TNLP13, DCCS10, EDSV06, GCCC+03, MHW15, SM06, WSCZ05].
System-Initiated [SSB+05]. Systems
[ATN+00, AGL87, BGG05, BCCL09, BV11, BS88, BHdR09, BSCC03, BRT+92, BDL+07, CJ06, Cap09, CW01, CY08, CBW95, Das00, Del93, DFH+96, GJM88, GNB11, Her09, HT04b, Kal09b, KK01, KR11, LP10, MC90, Ma00, Man97, MCW+00, MR04, NKP+00, Sim90, SDA+01, SKB01, WT99, YRA+02, dPla03, BCR+14, BAP+12, CSGM17, CAE+13, CvG11, DH16, FU12, GCSK13, HI12, HI13, IFA15, IH15, Kum89, LST15, LWT+11, LVA+13, OPW+12, RV15, RDG12, TKA+17, YB12].

T3D [ABF+99]. T3E
[BBBS99, Ma00, SSSB06]. Tables [vLRA+03].
tailored [FTB13]. tale [Hea15]. Target
[BG02]. Task [BR03, CKPD99, CFK+94, PBAL09, MHF15, OPW+12]. Task-Based
[PBAL09]. Tasking [JMP02]. Tasks
[GHZ10, WvNM+06, HTD+14]. Tau [SM06].
Taxol [CGB+94]. TCGMSG [Mat95].

Technical [Don02a, Don02b]. Technique
[ODO07, WGI90, ASH91]. Techniques
[Arn07, BDL+07, FFR+10, KM95, INY+14, UZM+14]. Technologies [AB01, Dar99].
Technology [BB02, Dar00, VFJ+15].
Telescopes [Wir12]. Televisualisation
[HME90]. Template [Poz97]. Temporal
[BBPL11, CY08, STP15, WO+15].
Teraflop [HLW00]. Teraflop-Scale
[HLW00]. Teraflops [SS99, TAR+08].

TeraGrid [Har11]. Terapixel [ACF+11].

Testbed [BCC+06]. Testing
[CTD05, KDL01]. Texas [NAS92]. texture
[IMH+11, IMH+12]. T flop [LYL+16].
T flop/s [LYL+16]. Their
[LRO10, RE87, Haj93, PUR94]. Thelma
[OKTR11]. Theme [Hau93]. Theoretic
[FWSW02, WEPB12]. Theoretical
[ASW91]. Theory [BR03, Mor89a].
Thermochemical [vLRA+03].
Thermodynamics [GKH+91]. Thin

[LRG+16]. User-Provided [LS06]. Users [Pan97]. Using [BKS+07, BCR+14, BBC+00, CGB+94, CWH+99, CDH+93, CL95, CKE08, CYT+02, CBV97, CW05, FD04, GLZS14, GNTLH97, HAF+96, HLW00, HE01, HC08, JLO05, Joh01, KDH11, KBH88, LRT07, LWL05, Man97, MAB07, MCG04, MSK92, QWIC02, QH08, Rao02, SBWS99, TM99, THL88, VLO+08, VS03, WGB09, WOG95, APD+15, BE17, BCSY11, CGGC+16, DFT+15, FSC+11, GDKWS15, IMH+11, JCL12, KDO16, KL13, LST15, LPB+16, MJD16, MJGL13, Pap11, PNFC16, SABD13, SKS+13, YZC+15].


V [BHK+06]. validation [SCB+14]. Value [Ber92, uITH07, SG91, KES+17]. Variable [BBR10, BGB+96, BSK14, ZZG+14].

Variable-Complexity [BGB+96].

Variational [NK89]. Vector [AGL87, CSV91, DD91, Fro91, LT88, MC90, Mel87, MCG04, OCC+08, G111, GGO16, KS89, SCR11, YLL+14]. Vectorization [Ren92, Ha93]. Vectorized [IHM87, MB87, TSKS88, YW93].

Vectorizing [HKL95]. Venice [OL05]. Verbs [OF17]. Verification [CY08].

Version [JL005]. Versus [PC08a, RTRG+07, GLGLB+11]. Very [HRMS9, KNP87]. VF [DEKV92, DD91].

VF/600J [DEK92]. Via [MR04, ATL+15, BWB+10, CSV91, Mat03]. viability [LFB+15]. Vibrational [DFC90].

Video [DFP+03]. Video-on-demand [DFP+03]. View [Kep04b, DFT+15].

Virginia [GNTLH97]. Virtual [BAP+12, BFG+95, DFH+96, FKT01, HW903, KKD03, KKD05, LK10, THC+96, WLV+96, MSPSI15, SSU+12, CBB+04].

Virtual-machine-based [BAP+12]. virtualization [KL13]. Vis5D [HAF+96].

viscosity [ZZG+14]. Vision [Hab90, LAV09, Sha88, BE17, MBHF15, PNFC16, LPG88].

vision-based [BE17]. Visual [DFP+96, DL97, Koi90, WW92, APD+15].

Visualization [DFC90, Fol90a, GKP97, Hab90, HSBS03, KWB06, SS89, SK90, ZLGS99, BCLP17, LSS93, HSBS03].

Visualizing [GKB93, Vivo] [CBC95]. void [MPD+12]. volatile [CDV95].

Volume [Ano96a, Ano97a, Ano99, Ano00, Ano01b, MS05, PLS05, BH12, GLH15].

Volunteer [KDH11]. Voronoi [EGG05].

Vortex [JP93]. VP [IHM87]. VP-100 [IHM87]. VP2000 [Ish91].

Wakeup [TNBG07]. ward [DSH+16].

water [LVA+13]. Watermarking [TC10].

Wave [BBC+00, BFG+95, GKN+96, JRT+16, TAM+16, VFJ+15]. Wavefront [HLW00].

WAY [DFP+96, GKN+96, NBB+96].

WBTK [JLL04]. WE-AMBLE [HBSP08].

Weakest [TLG98]. Weather [MHW15, WOS08]. Web [Men00, WHL03].

WEBCOM [MCS+06, DCCS10].


Wide [DFP+96, GNTLH97, MYCR06, MAJJS03, NBB+96, GDKWS15]. Wide-Area [DFP+96, MYCR06, NBB+96]. Wideband [CYT+02].

Wigner [TC10]. Windows [Ano01a, CLP+99]. Within [QH08].

without [ECC+13]. Wizard [SGB+10].

Word [HRM89]. Work [Dec10]. Workflow [CBO8, Dec10, DCL+08, DCCS10, GMLP08, GRC08, HTWS08, HSBS08, MWM+08].

Workflows [BKR+09, LJC+10, QH08, CMS+11, DCM+17, TR17, TBA+17].

Workload [Del93, SC09, TCW06, Har11].

Workshop [Lee03, DT11, LS90].

Workstations [VLO+08, RDG12]. World [TAR+08, HPW+16]. Worm [AAM+01].

Wrapper [LD07]. Write [BPBL11, BIC+10]. Write-Back [BPBL11, BIC+10].

WS [HTWS08].
REFERENCES

WS-RF [HTWS08].

X [CDH+93, De93, EEL15, LT88, TKS88, THL88, YW93]. X-MP
[De93, LT88, THL88, YW93]. X-MP/416 [THL88]. X-Ray [CDH+93, EEL15]. X1
[SBBS06]. XMU [LT90]. XT3 [ABF+08]. XXIst [BHdR09]. XXL [BHdR09].

Y-MP
[AEP92, De93, DH96, MYC92, MSK92]. Yale [SSNM92]. Yau [Tis97]. Yellowstone
[UB95].

Zebiak [YWLI+14]. Zeolite [CH94]. Zero
[SWHP05]. Zero-Copy [SWHP05].

References

Addison:1997:PSI


Allen:2001:CWE


Apon:2001:NT


Ando:1987:ECS


Averick:1994:NOC

REFERENCES


REFERENCES


REFERENCES

CODEN IJSAE9. ISSN 0890-2720.


Anonymous:1997:ICb


Anonymous:1998:IIJ


Anonymous:1998:IC


Anonymous:1998:M


Anonymous:1999:IIJ


Anonymous:2000:IIJ


Anonymous:2001:AAL


Anonymous:2001:IIJ

REFERENCES

Anonymous:2002:I


Aldinucci:2015:PVD


Arnavut:2007:LNL


Aro:1999:HPC


Adve:2000:ARM


Ali:2016:CSA


Aoyagi:1991:ITS

M. Aoyagi, R. Shepard, and A. F. Wagner. An ab initio

**Anzt:2015:AGB**


**Aida:2000:PEM**


**Austin:1992:CSU**


**Abate:2001:PCR**


**Baker:2001:M**


**Bernholdt:2006:CAH**


Baker:2001:P


Bamzai:2012:P


Baba:2016:LSH


Bridges:2012:VMB


Barkai:2009:APS

Biagioni:2002:ARS


Bailey:1991:NPB


Barrett:1991:CSS


Bova:2000:DLP


Bethune:2014:PAA


Bouchitte:1995:EAE


Balaji:2010:FGM


Barrett:2014:EMM


Bouteiller:2006:HPS


Bland:2013:PFR


Belgin:2010:OSE

REFERENCES


REFERENCES


Boduroğlu:2007:PRM


Bakken:2017:RTT


Bristeau:1995:SHE


Buttari:2007:POM


Berry:1992:LSS


Bauer:2016:FEB

Berthou:2001:COH


Baraglia:1999:OPM


Bounanos:2007:LBD


Breitenfeld:2000:PIS


Brooks:2002:TME


Beltrán:2009:HBL


Buluç:2011:CBD

[BG11] Aydin Buluç and John R. Gilbert. The Combinato-
REFERENCES


REFERENCES

Byrne:1999:CPO


Buck:2000:ARC


Buck:2006:NHM


Bethel:2012:MCM


Berthou:2009:XSX


Bouteiller:2006:MVP

REFERENCES


References


REFERENCES

tronic). URL http://hpc.sagepub.com/content/20/1/5.full.pdf+html.


[Brandt:1991:CSH] L. E. Brandt. Centers of supercomputing — a history and


REFERENCES


Brightwell:2005:AIO

Berry:1988:MSS

Bailey:1989:FPA

Bhatti:2003:NQG

Boyd:2016:PPR

Banerjee:2014:CSH
References


[BSS15]


[Bernabeu:2014:CCS]


[BWB+10]


[BYCB05]


[BV11]


Carpenter:2013:PTA


Choi:2007:PCC


Cappello:2009:FTP


Cortese:1995:HPS


Crutcher:1996:RSI


Casanova:2004:VIS

Henri Casanova, Francine Berman, Thomas Bartol, Erhan Gokcay, Terry Sejnowski,

Chakravarti:2006:SOS


Casas:2010:APD


Chaimov:2013:TML


Casanova:2001:DMS


Constantin:1997:PHK

Chirravuri:1995:MPA


Chang:1995:PMH


Chau:2011:PSO


Carter:2006:Pb


Carter:2006:Pa


Callahan:1988:PPP


Chamberlain:2007:PPC

B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programmability and the Chapel language. The International Journal of High
Casanova:1997:NNE

Caron:2006:DST

Chouhan:2006:AMD

Carreras:1990:PTC

Cordoba:2014:EPR

Chang:1993:UPC


REFERENCES


REFERENCES


REFERENCES


REFERENCES

Coupez:1997:DSP

Craig:2015:IPP

Commer:2012:IKS

Callaghan:2011:MHS

Cotronis:2004:CMP

Cowles:2008:PFC
Che:2014:BCP

Camargos:2017:GAI

Chronopoulos:1991:SPS

Chung:2010:HPT

Collins:2005:DIC

Collignon:2011:FIS
[CvG11] Tp Collignon and Mb van Gijsen. Fast iterative solution of large sparse linear systems on geographically separated clusters. The International Journal of High Performance Com-
REFERENCES


Chapin:2001:OS

Chen:2008:ACD

Carrillo:1999:ILS

Cooper:2005:IAC

Chen:2008:ACD
REFERENCES


Anshu Dubey, Katie Antypas, Alan C. Calder, Chris Daley, Bruce Fryxell, J. Brad Gallagher, Donald Q. Lamb,


REFERENCES


Downes:2010:DRS


Dubey:2013:POB


Deelman:2017:PAP

Ewa Deelman, Christopher Carothers, Anirban Mandal, Brian Tierney, Jeffrey S. Vetter, Ilya Baldin, Claris Castillo, Gideon Juve, Dariusz Król, Vickie Lynch, Ben Mayer, Jeremy Meredith, Thomas Proffen, Paul Ruth,

Dawson:1987:PMP


Dayde:1989:LBL


Dayde:1991:ULB


Dail:2006:EHR


Darema:2000:P


Dongarra:2003:SAN


Deelman:2010:GCM

[Ee10] Ewa Deelman. Grids and clouds: Making workflow applications work in heterogeneous distributed environments. The International
REFERENCES


Dennis:2012:CSS


Dackland:1992:PBM


Delic:1993:PAC


Dennis:2012:ALP


Demos:1990:IAM


Du:2008:LCP

REFERENCES

Dixon:1990:QCM


Diachin:1996:CVE


Deshpande:1994:ADN


DeFanti:1996:OWW


Dennis:2005:HRM


Dun:2015:DDM


REFERENCES


[102x681] Dongarra:2016:HPC


[167x646] Dongarra:2009:PLB


[223x273] Ding:1991:SLQ


[377x278] Dekeyser:1997:HBV


REFERENCES


REFERENCES


REFERENCES


Dang:2016:CEH


Dongarra:1997:PSI


Dongarra:1999:SII


Dongarra:2001:P

Dongarra:2006:SIT


Dongarra:2009:E


Dongarra:2011:SPW


Dongarra:2013:IAS


Dongarra:2017:GEN


Darriba:2014:HPC

REFERENCES

sagepub.com/content/28/1/112.full.pdf+html.


[EMDiouri:2013:EEH] Mohammed EM Diouri, Ghislain L. Tsafack Chetsa, Olivier Glück, Laurent Lefèvre, Jean-Marc Pierson, Patricia Stolf,

**Edelman:1993:LDN**


**Ern:1995:DCM**


**ElMaghraoui:2006:IOS**


**Ekeberg:2015:MLU**


**Eder:2005:MPP**


**El-Gamal:1993:CIS**

[M. A. El-Gamal, R. D. McKelvey, and T. R. Palfrey. Computational issues in the statistical design and analysis of...


REFERENCES


REFERENCES


/Friedlander:2002:SIF


/FroeseFischer:1991:CVA


[Filgueira:2011:ACE]

Rosa Filgueira, David E. Singh, Jesús Carretero, Alejandro Calderón, and Félix García. Adaptive-CoMPI: En-


REFERENCES

Ferreira:1991:SES

García-Carballeira:2003:DEP

Geradin:1997:PSF

Gantes:1993:SDP

Gainaru:2013:FPH

Geist:2009:IEC

González-Domínguez:2015:LSG
Jorge González-Domínguez, Jan Christian Käsens, Lars Wienbrandt, and Bertil Schmidt. Large-scale genome-wide asso-

**Giitsidis:2017:PIA**


**Gentzsch:1988:CSM**


**Gabriel:2005:EDC**


**Guo:2011:OSD**


**Guo:2014:ASS**


**Guo:2016:HFB**

Dahai Guo, William Gropp, and Luke N. Olson. A hybrid format for better performance of sparse matrix-vector multiplication on a GPU. *The Inter-
Giraud:2001:PDF


Gray:2015:SSM


Gates:2015:HPH


Garzon:2010:EEC


Groen:2010:LAS


Giraud:2002:CSD

L. Giraud. Combining shared and distributed memory pro-

**Gallivan:1988:IHM**


**Gray:1993:VCP**


**Gottlieb:1991:HTC**


**Gropp:2000:GNK**


**Geist:1996:EED**


**Geist:1997:CPF**

Gropp:1997:SMC


Gropp:2004:FTM


Geist:2009:MCS


Gomez-Luna:2011:LBV


Gao:2014:UIM


Glatard:2008:FEW

Gourdain:2010:HPC

Gilli:1993:EMS

Geist:2017:SHP

Gomes:2008:EGB
Grossschadl:2003:ASL


Gray:1999:MIS


Ghan:2005:LBS


Gropp:2009:NCC


Gine:2003:DMC


Grigoriev:2015:HPA


Gunther:2000:DPC

[Gun00] Neil J. Gunther. The dynamics of performance collapse in large-scale networks and computers. *The International Journal of High Per-
REFERENCES


Gustafson:2004:PBB


Gurun:2008:ECO


Hsu:1991:MAO


Hab:1990:SVW


Hibbard:1996:ECA


Hajivassiliou:1993:SNR


Hamber:1991:SDQ


Hart:2011:MTW

David L. Hart. Measuring TeraGrid: workload

### Hausheer:1993:ITI


### Hingerty:1990:ARS


### Hood:2008:BCS


### Hamann:2003:NVG


### Herrero:2008:WAW


### Hsueh:2008:FPG

[HC08] Mingkai Hsueh and Chein-I Chang. Field programmable gate arrays (FPGA) for pixel purity index using blocks of skewers for endmember extraction in hyperspectral imagery. *The International Journal of High Performance Com-
REFERENCES


L. Hernquist. The fueling of active galaxies. The Inter-
REFERENCES

Heroux:2009:SCE

Halappanavar:2012:AWM

Heath:1991:EEI

Hermanns:2012:SDM

Hugo:2014:CMS

Hoefler:2012:OSR
Torsten Hoefler and Kamil Iskra. Operating systems and runtime environments on supercomputers. The International Journal of High Performance Computing Applications,
Hoefler:2013:OSR

Hasegawa:2014:PEU

Hu:1996:DPI

Hara:1988:FSP

Hey:2000:DPP

Hauser:2010:OCF


Zsolt Horváth, Rui Ap Perdigão, Jürgen Waser, Daniel Cornel, Artem Konev, and Günther Blöschl. Kepler shuffle for real-world flood simulations on GPUs. The International Journal of High Performance Com-
REFERENCES


Heath:1997:PFP


Hsu:1989:ADV


Huo:1993:EMP


Hunter:2011:LSP


Hey:2004:USP


Huang:2004:PAM


Haidar:2014:NHC

Azzam Haidar, Stanimire Tomov, Jack Dongarra, Raffaele Solcà, and Thomas Schulthess. A novel hybrid CPU-GPU generalized eigensolver for elec-


REFERENCES

Huan:2003:VDH


Hou:2013:PMD


Hutchinson:1991:FSM


Isaila:2010:SMP


Ibtesham:2015:CCS


Iskra:2015:OSR

REFERENCES

/IHC.sagepub.com/content/29/1/3.


REFERENCES

Islam:2016:EMT


Ibrahim:2013:AOG


Idomura:2014:COT


Ilin:1996:CLS


Ishiguro:1991:QMA


Ibeid:2016:PMC

REFERENCES

ISSN 1094-3420 (print), 1741-2846 (electronic).

**Im:2004:SOF**

**Joo:2012:LQG**

**Jespersen:1989:CFD**

**Jalby:2004:WNS**
REFERENCES

Jacob:2005:CPI


Jin:2005:IPR


Jones:2002:TDS


Johnson:1990:MPO


Johnson:1992:LBL


Johnston:2001:UCD


Jones:1992:PSS

REFERENCES


Jaros:2016:FWN


James:2009:AFT


Kahaner:2007:P


Kale:2009:EAD

REFERENCES


Kerlick:2001:PTP


Kemal:2016:MSA


Kepner:2004:HPC


Kepner:2004:HPO


Koukas:2017:RKV


Keyes:2009:PDE


Kumar:2010:ACC

[KFM+10] Sameer Kumar, Ahmad Faraj, Amith R. Mamidala, Brian Smith, Gabor Dozsa, Bob Cernohous, John Gunnels, Douglas Miller, Joseph Ratter-


Kramer:1996:LBL


Katz:2001:ERT


Kandaswamy:1998:ESA


Kranzlmuller:2005:RAP


Kranzlmuller:2003:RAP


Kennedy:2004:DMP


Kao:1987:EIM

[KL87] S. T. Kao and E. L. Leiss. An experimental implementa-


REFERENCES


Keyes:2013:MSC


Kim:1987:DIV


Koide:1990:VSC


Kok:1988:PPA


Kerbel:1996:ISE

REFERENCES

CODEN IJSCFG. ISSN 1078-3482.


[KPR17]


[KS89]


[KR94]


[KR95]

[KS09a] William Kramer and David Skinner. Consistent application performance at the exascale. The International Journal of High Performance Com-
REFERENCES


Kramer:2009:EAS


Kennedy:1994:CSM


Kimura:1999:DPC


Kuck:2004:PHP


Kurc:2000:EPP


Kumar:1989:STL

Kalia:1990:QMD


Kohl:2006:CIH


Kepner:2007:P


Lai:1993:DDM


Labarta:2009:BVT


Lee:1990:NCS


Liu:2006:RLS

REFERENCES


REFERENCES


116

REFERENCES

[Lastovetsky:2010:RAP]

[Li:2003:ALS]

[LNSMMA15]

[Lauritzen:2012:IND]

[LP10]

[Lopez-Novoa:2015:EIK]

[Li:2010:EPS]

[Lim:2016:HPS]
REFERENCES

1094-3420 (print), 1741-2846 (electronic).


[LPG88] Little:1988:SPV


[LPJ98] Lockey:1998:CRM


[LQJG16] Liu:2016:SPG


[LRG+16] Laguna:2016:EEU


[LR07] Lastovetsky:2007:DPF


[LR09] Lastovetsky:2009:AEE

[LR07] Alexey Lastovetsky, Vladimir Rychkov, and Maureen O’Flynn. Accurate heterogeneous com-


Leiss:1990:TDD


Lucas:2009:MPF


Lusk:2009:STE


Luszczek:2009:PPM


Liu:2005:PAL


Ludwig:1997:OIL

[LWOB97] T. Ludwig, R. Wismüller, M. Oberhuber, and A. Bode. An open interface for the online monitoring of parallel and
REFERENCES


Lively:2011:EPC


Liu:2016:THR


Ma:2000:CIP


Magoulès:2015:AAL


Mavriplis:2007:HRA

Malas:2013:OPS


Mahaffy:1990:DNI


Mohammed:2003:SBD


PCFL. ISSN 1094-3420 (print), 1741-2846 (electronic).

Manneback:1997:SIS


Martin:1988:R


Martin:1991:MSF


Martin:1993:E


Mattson:1995:PEP

Timothy G. Mattson. Programming environments for parallel and distributed computing: a comparison of P4, PVM, Linda, and TCGMSG.
REFERENCES


Mateescu:2003:QSG

Mavriplis:2002:PPI

Martin:1987:SVM

Migliori:2011:PCT

McDonagh:2015:ASS

Marker:2013:CSM
REFERENCES

Montry:1987:CMM


Ma:1990:IIM


Mellor-Crummey:2004:OSM


Morrison:2006:WGC


Meswani:2013:MPP


McManus:2000:SSP

REFERENCES


**Markidis:2015:OAN**


**Murtaza:2011:CAS**


**Mozdzynski:2015:PGA**


**Michielse:2009:AAP**


**Mirkovic:2004:APT**

REFERENCES

[126]


REFERENCES

Mertz:1994:MDC


Maartensson-Pendrill:1995:TTS


Martin:2012:AAV


Mastin:1993:MPD


MF:1998:SIM


Magoules:2015:IAE


Moriarty:1990:SMS


Mendes:2004:MLS

[MR04] Celso L. Mendes and Daniel A. Reed. Monitoring large systems via statistical sampling.
REFERENCES


K. J. M. Moriarty, S. Sanielevici, and D. W. Kuba. Parallel processing and the sustained production performance of the CRAY Y-MP: Benchmarks us-
REFERENCES


REFERENCES

Ma:2008:GEW


Moon:1992:MLP


Marchal:2006:SSS


Nagurney:1993:ISI


Nakano:1999:RBB


Nassersharif:1992:SET


Norman:1996:GCW

|NBB+96| Michael L. Norman, Peter Beckman, Greg Bryan, John Dubinski, Dennis Gannon, Lars Hernquist, Kete Keahey, Jeremiah P. Ostriker, John Shalf, Joel Welling, and Shelby Yang. Galaxies collide on the I-WAY: An example of heterogeneous wide-area collaborative supercomputing. The International Journal of Supercomputer Applications and...
REFERENCES


[NKR90] A. Nagurney, Dae-Shik Kim, and A. G. Robinson. Serial and parallel equilibration of large-scale constrained matrix problems with application to the social and economic sciences. *The International Journal of Supercomputer Applications*, 4...
REFERENCES


REFERENCES


Orlando:2005:PSP


Oldfield:1998:EPS


Ozsoy:2016:EPL


Pavan:2011:SIP

REFERENCES


Antonio Plaza and Chein-I Chang. Clusters versus FPGA for parallel processing of hyperspectral imagery. *The International Journal of High Per-


Pichel:2010:ILI


Post:2004:SPM


Puschel:2004:SGP


Pianu:2016:NAT

[PNFC16] Daniele Pianu, Roberto Neri, Claudia Ferraris, and An-

Pozo:1997:TNT


Palmer:2016:GFD


Papadopoulos:2004:CLH


Park:2009:OHC


Perez:2003:PCC

ISSN 1094-3420 (print), 1741-2846 (electronic).

**Patra:2009:ESS**

**Pavarino:1995:NEO**

**Pohorille:1990:DDA**

**Perrotte:2012:FGP**

**Park:2016:OHP**

**Pineda-Torres:2002:IFS**
Ivo H. Pineda-Torres, Ibrahim Gokcen, and Bill P. Buck-

**Profeta:1994:RES**


**Quan:2008:MHC**


**Qi:2002:HPS**


**Reverdy:2015:DFO**


**Rao:2002:NEE**

Nageswara S. V. Rao. Netlets for end-to-end delay minimization in distributed computing over the Internet using two-


REFERENCES


[SABD13] José R. Sanjurjo, Margarita Amor, Montserrat Bóo, and


[SBWS99] Alan Su, Francine Berman, Richard Wolski, and Michelle Mills Strout. Using AppLeS to schedule simple SARA on the

**Sellappa:2004:CEM**


**Sievert:2004:SMP**


**Skinner:2009:IEE**


**Shapiro:1995:OPA**


**Saillard:2014:PCS**


**Strout:2004:STS**

Michelle Mills Strout, Larry Carter, Jeanne Ferrante, and

SSSTCSAICS:1992:NSC


Shantharam:2011:EDS


Skjellum:2001:SA


Spataro:2017:NSF


Simon:2012:ISI


Sirovich:1992:MAL

L. Sirovich and R. Everson. Management and analysis of


REFERENCES


Javier Setoain, Manuel Prieto, Christian Tenllado, and Francisco Tirado. GPU for parallel on-board hyperspectral im-


Sterling:2009:BNN

Sterling:2009:MCE

Saltz:2013:FBA

Spataro:2017:HPC

Spafford:2013:MSA

Sivagama:2009:DCE
[SVN09] Sundari M. Sivagama, Sathish S. Vadhiyar, and Ravi S. Nanjundiah. Dynamic component extension: a strategy for perfor-

**Schikuta:2001:F**


**Swany:2004:BPT**


**Snir:2014:AFE**


**Smith:2003:DQP**


**Sthanararaman:2005:DZC**

REFERENCES


[Salmon:1994:FPT]

[Stathopoulos:1996:PIM]

[Syzmanski:1987:PPR]

[Smith:2011:STS]

[Schive:2012:DUH]

[Tsuboi:2016:TDF]
Seiji Tsuboi, Kazuto Ando, Takayuki Miyoshi, Daniel Peter, Dimitri Komatitsch, and Jeroen Tromp. A 1.8 trillion degrees-of-freedom, 1.24 petaflops global seismic wave simulation on the K computer. The International Jour-
Tiyyagura:2008:TSP


Trivedi:2006:HAW


Tseng:2008:EPC


REFERENCES


**Thompson:1990:GFB**


**Tisseur:1997:PIY**


**Teodoro:2017:APA**


**Tago:1988:VCU**


**Thakur:1998:PAW**


**Tamches:1999:UDK**


**Tryby:2010:SFE**

References

Tilson:1999:HPC


Tawa:1991:AFP


Thakur:2007:AWP


Thanakornworakij:2013:RMS


Timson:1992:CSC


Taufer:2017:SDB

REFERENCES

ISSN 1094-3420 (print), 1741-2846 (electronic).


REFERENCES


[VDB04] Richard Vuduc, James W. Demmel, and Jeff A. Bilmes. Statistical models for empirical
REFERENCES


Vigueras:2014:ACD


Vonderrous:2014:PCP


Valin:2013:OPM

REFERENCES

Walsh:2003:PGC


Wismuller:2004:PAT


Wang:2006:PSE


Washington:1990:CSG


Walshaw:1999:MMP


Walshaw:1995:LAO


Worley:2005:PPP

[WD05] Patrick H. Worley and John B. Drake. Performance portabil-


REFERENCES


REFERENCES


Wang:1999:PEM

Wang:2016:EPI

Wrzesinska:2006:FTS

Witten:1992:IOU

Widener:2011:ELA

Yeo:2007:PUD
Chee Shin Yeo and Rajkumar Buyya. Pricing for utility-driven resource management and allocation in clusters. The International Journal of High Performance Com-
REFERENCES


Ye:1990:TEC [YCHH90] Y.-Y. Ye, C.-T. Chan, K.-M. Ho, and B. N. Harmon. Total energy calculations for structural phase transforma-


REFERENCES


REFERENCES

3420 (print), 1741-2846 (electronic). URL http://hpc.sagepub.com/content/18/2/237.full.pdf+html.

Yasar:2007:CMH


Yang:2014:OQD


Yarrow:1991:MSC


Yu:2005:HPB


YarKhan:2006:RDG


Ytterstrom:1997:TPS


Young:1993:FVC


Yuan:2014:OFA


Yao:2015:DSE


Zheng:2011:PHL


Zhu:1992:HMM

Jianping Zhu and Yung Ming


Marco Zaider, David E. Orr, and John L. Fry. Calculational aspects of the assessment of dielectric response function and energy loss in materials: Ap-
CODEN IJSAE9. ISSN 0890-2720.

(Zhang:2006:SSD)

(Zheng:2014:IMS)