
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

10 August 2024
Version 2.08

Title word cross-reference

#COVIDisAirborne [DCK+23].

-Body [HJ96, SWW94, INS+20, RTRG+07, DAB+12, FT19]. -D [SSCF19, ARR99, GGS01, PR95, THL88].

1
-matrix [YIYD19]. -ULV [MY24].

0th [RAGW93].

3 [BG00, CM97, JLO05]. 3-D [BG00, CM97]. 3.0 [BRM03]. 3090-200 [DD89]. 3090-200/VF [DD89]. 31G* [PUR94]. 3800 [WOG95].

416 [THL88]. 450 [MAB+13]. 4d [EM23].

5 [HRM89]. 5/SE [KJH96]. 5d [EM23].

80 [DD91]. 860 [HGD91, KR95]. 87545 [Bus87].

90 [DL97].

Application-based [MSHPV18].

Application-level [DEL+12].

Application-tailored [FTB13].

Applications [AGR+03, Ano91b, Ano92g, Ano92e, Ano92f, Ano93a, Ano94a, Ano95b, Ano95a, Ano96a, Ano97b, Ano97c, Ano97a, BGG05, BP01, BDP01, BV11, BM12, BM13, BBT23, BBH+06, BRU05, BJ02, BJK07, Bus87, CBL10, Cot04, Cza03, Dar99, Dee10, DH96, DE03, FGC05, Fr05, GKP97, GMLP08, GG14, HT04a, HW00, HRM89, JMC05, KBA00, Key09, KUE+00, LDGR03, Lee03, LM03, kLCCW07, MKG90, MYCR06, Mar87a, MAB07, ME14, MYC92, Mor89b, NFK98, NPT+06, BMF87, SC04b, SSNM92, SVN90, SBG10, SKC10, TXD+07, TLG98, TAR+08, Wal03, WWA+11, WBFB04, ZOF90, dSSB+08, AAB+21b, Akb24, ASHH16, Ano94e, dRADS+18b, ABD+18, AGHR19, BH17, BGR11, BPR18, BSW+14, BEK+18, BGB+18, BG11, CSS24, CDRV15, CSC4, CRS+19, CBD+17, DAB+12, DMQS12, ECG+13, EZJ+19, GCSK13, HGWN14, IMB+19, JRT16].

applications [KPR17, LRG+16, Lap22, LSES20, LWT+11, MGB12, MBF+19, MCR+17, MDH+18, MCU+13, MBF+21, PH91, PNFC16, RV15, RSCC+24, SDJ17, SKZ+18, SIC+19, SLG95, SMZ+18, TM23, TNL13, THC+11, TNCC21, UZM+14, VMP20, WD+12, WD19, WD24, ZMG+21, Ano98b, Ano99, OMD92, Ano91a, Ano98a, Ano00, Anol1b].

Applications- [Ano91b, Ano92e, Ano92f, Ano93a].

Applications-Information [Ano92g].

Applied [vLRA+03, BE17, IKMS+19, MAAC+24, MPB+22]. Applying [Dem90, LDGR03, LSES20, MBHF15].

Approach [BYCB05, DZ07, FBA+87, KS09b, LFB+06, NTKP06, Sha88, uITH07, Spr06, DCM+17, FTB13, GS18, HLC+19, HGWN14, IGDQO19, KBY+19, MGB12, MP18, MJD16, PNFC16, ZB20].

Approaches [SWHP05, MIGL13, VSW+22].

Approximate [Cho01, HBF+12, MGF20].

Approximation [DGJ09, LSLR+20].

Aqueous [PTT90].

Architectural [Gro03, TXD+07].

Architecture [BAA+06, Hua03, HWP03, Ish91, KBA00, KFM+10, SC04b, BHZ+23, HCCG20, MMDA19, RHK21, VDF+23].

Architectures [BFL99, GD09, HD05, Hdv18, HLW00, HSLK11, MS02, RW03, RS03, SSO8, AKC+19, BS14, AAT+20, GGJM+19, HBF+12, HMM+12, INS+20, JO92, KILL13, LNSMMA15, PB23, STP+13, Udd17, VOL+14, YFS+14].

Area [DFP+96, MCR06, MAJS03, NBB+96, Ade21, Rad18].

Argonne [Don89].

ARION [HLP+03].

Arising [Ma00].

Arithmetic [BBLF89, Gro03, AAB+21a, LH19].

ARMCI [NTKP06].

Army [Aus92].

Array [BBDR95, CYT+02, JO92].

Arrays [HC08, NPT+06, CBD+17, DFT+15, Wal18].

Arrival [Wit92].

art [KNPS21].

Artificial [Ano87d, YIME19].

ASCII [PK04].

Aspects [RW03, ZOF90].

Aspen [SVBP13].

Assessing [ACM88, MWC+05, TDG+19].

Assessment [ZOF90, ABL+22].

assimilation [DBD+23, FR22].

Assist [BB02].

association [GDKWS15].

assuring [IGA24].

astronomy [CLG13, VJF+15].

astrophysical [FT19].

Asynchronous [ALE+20, TNBG07, BBHD14, MC21, NCA21, PH91, RWM17, TNCC21].

Asynchrony [WWA+11, QAL+23].

Atmosphere [DEE+12, HAF+96, MS05, MW12, TD08, AGC+19, EAG+19].

Atmosphere-Ocean [HAF+96].

Atmospheric [ARR99, DFS+05, GGS01, WD05, AWMG19].
[Don02a, Don02b], Block [Arn07, BS88, ZMG+21, DEKV92, GDM+23, MC21, RV15].
Block-Structured [Arn07]. Block-Structured
[ZMG+21, GDM+23, RV15]. Blocked
[BELF07, LSLR+20]. Blocks [H08].
Bloom [LGDB16]. Blue [GNB11, KMH+14, MAB+13, SSU+12, YIN+11], BlueGene
[dSSB+08]. BlueGene/L [dSSB+08].
Board [SPTT08]. BOAST [VPG+18].
Body
[HJ96, Nak99, RTRG+07, SWW94, TMWS91, DAB+12, FT19, INS+20, VIKM+22].
Boltzmann
[SBBS06, CGST19, HBKR21, Mon12, OKTR11, RWM17, WKLW21, YZZW21].
Bond [THDS19]. bond-order [THDS19].
Bone [HOPB92]. Book
[Bus87, Con88, Don87, Mar87a, Mar87b, Mar88a, McR87, Nag89]. Boundary
[uIT07, SG91, Ade21, KSF22].
Boundary-Value [uIT07]. box
[SK20, UK+23]. BPEL [MMW+08].
Breaking [SKE+23]. brick [LPB+16].
Bridging [SS09]. Brink [Spr06]. broad
[Rad18]. broad-area [Rad18]. Broadcast
[BJ92, YSP+05]. Brownian [NS20].
brownout [MPM+20]. BSC [LAV09]. BSP
dAVCM+19]. BSP/CGM [dAVCM+19].
budget [CCR20]. buffer [LBB17]. Build
[CD06]. Builder [DL97]. Building
[CDH+97b, FD04, LJ006, SKZ+18, SW04, Wit92, vLRA+03]. Bulk
[DGP+97, MAJJS+03, Jon12, WD+12].
bundle [WVL+16]. Butterfly [Kum89].
Buzbee [Bus87]. Byte [WGO7].
C [A02, A02], dRADS+18b, BLC17, CMMW23, LJC+10, LNK22, MYG23, Poz97, TDM+17]. C-grid [MYG23]. C90
[ABF+99]. Cache
[BMWD87, BH06, GHM+10, MK24, SC04a, Wad99, ABD+18, ABG+19, CHT+19].
Cache-Coherent [Wad99].
Cache-Efficient [SC04a]. cache-oblivious
[CHT+19]. Cache-optimized [MK24].
cache-partitioned [ABD+18, ABG+19].
caches [CSC19]. Caching [KLCC20].
Cactus [AAF+01]. Caffe [MPB+22].
calcium [CHW+15]. Calculation
[ACG+90, BGK+90, TMWS91, HIT+14].
Calculational [ZOF90]. Calculations
[CDD+90, Gen88, Liu90, TMW+99, YCHH90, ZK93, CLM+16, HTO+14, LD24, QXS+20, SDI+19, TSK+88].
Calibrating
[ABH+18]. Call [DBA+09]. Caltech
[Dim91]. Caltech/JPL [Dim91]. CAM
[TD08, DEE+12, LMT+12]. Campus
[GNTL+97]. Campus-Wide [GNTL+97].
Can [Pan97, VFJ+15]. Canada [Num87].
Cancers [GKB93]. Candidate [MCS+06].
Cane [YWL+14]. capabilities [IMS16].
Capability
[GS09, BBH+13, CYZ+20, DVW+12].
capable [RWM17]. Capacity [BL99].
Carcinogens [HB90]. cardiac [BSW+14].
Cards [Gro03]. Carlo
[BEH+90, CH94, DFT+15, FSS13, LM03, LPB+16, MWAR+87, MB87, MFP+17, SABD13, SSWW91, SSR+14, V5S+13, ZK93].
Carolina [LC90]. Case
[BF01, BDFVP15, CBW95, CDH+97b, GLGB+11, GLH7, HL10, HE01, HLP+03, MT89, PPK+04, SG09a, WGI90, WLB92, WW92, BS+14, CGGC+16, CMS+11, DTL19, GGMJF+20, IGA24, IM+19, MBvdG13, MCR+17, OF17, TKA+17, THC+11, WZH+20, YWL+14]. cases
[CDL+19]. cat [YIME19]. cat-scale
[YIME19]. CBVE [WVL+96]. CCDSC
[DT13]. CCGSC [DT11]. CSM4 [CVJ12].
CEBAF [DZDR+95]. Cell
[EGG05, WET+19, BPBL11]. Cell/B.E.
[BPBL11]. cells [RPB+19]. Cellular
[AKP08, BCZM07, MHS11, GDS17]. Center
[AAB+21c, Ali88, ISD89, Mre87, RS88, MP95, OLOF23, Aus92, ABB+94, BBW90, DGH+93, KT94, LC90, Mai87, Mir90, Nas92, Sci92, TR92]. Centers
SSR^+14, TRS13, TGP19, VRB^+19]. Codes [AS00, BGB^+18, CL95, DL97, IHMM87, MCW^+00, Ren92, SWW94, ESD^+22].

coodesign [VDF^+23], coexistence [CBA^+18]. Coherent [Wad99, PS12]. Collaboration [SG09b]. Collaborative [DFH^+96, HBS08, NBB^+96].

Collaboratory [YFH^+96]. Collapse [Gun00, HTSK90]. Collection [DT06]. Collections [HLP^+03]. Collective [BMR06, FCLG07, KFM^+10, LCZ^+15, TRG05, VFD04, KMH^+14, SCB14].

Commercialization [SG09b]. Common [ZM07]. Communication [BCG^+10, BYCB05, BKS^+07, BBDR95, FIMU19, HC10, INY^+14, JLO05, LR09, LRO10, LRT07, NTKP06, PLS05, QH08, RW03, SWHP05, TRG05, TGT05, BGO20, BBH^+13, CSC19, DGB^+14, IYK16, NOM^+19, OGM^+16, RW03].

Communication-overlap [INY^+14]. Communication/Computation [BBDR95].

Communicating [Ano87e, BMR06, Bus87, VFD04, SCB14]. Communicators [GFD05]. Community [DBA^+09, HBSM03, CJK^+05, DVW^+12, DEE^+12, DJC05, ESW^+12, HVKW05, JLO05, MS05, MW12, TD08, WD05].

complex-entry [CSG17]. complexes [HLK^+23]. Complexity [MRD^+06, BGB^+96, DF08, Spr06, BRGR11]. Component [BAA^+06, DF08, KBA00, KFM^+10, MGB12, PGTS10, PPR03, SVN09].

COMPSSs [CCBL18]. Comput [Ano24]. Computation [BBDR95, CBW95, Chn99, lsd89, GWK08, Her88, HS93, JP93, Nag89, SNM92, Ste09a, Ste09b, Tis97, WSC05, SVBP13, WEPB12, ABB^+94, KT94, TR92].

Computational [Bl87, CD07, Cha88, CDH^+97b, DVW^+12, DFMD94, DJO99, DT99, DGH^+93, Duk91, EGMP93, FBW^+87, Gen88, HBSM03, HOPB92, HL10, JL89, NFK98, Num04, PK04, PBE^+19, RBMF87, SK90, SG07, SBWS99, SW04, TMW^+99, VR00, Wit92, WPPB01, YM91, YK07, Ytt97, AFL^+18, BSW^+14, CGGC^+16, CBA^+18, DCK^+23, DTL19, JKBW18, PDDL22, TBA^+17, VRRL18].
Computations

[BBR10, Ber92, Duk91, MA15, MCG04, SD87, ALE+20, Ano24, BCYS11, BCLP17, DKMT18, HDL+15, MK24]. compute [KL13].

Computer

[BKN09, Bus87, CKE08, Cla91, Don89, GL09, HKK88, HD05, JLS99, KT99, MM90, PS87, TKW87, VC89, WBMV90, AHB+16, BAM+16, BE17, HIT+14, HLS+17, INY+14, KMM16, Kum89, MBHF15, PNFC16, TAM+16].

Computer-Aided

[Ano87f, BOD+91, BBA87, BH99, CDH+93, CDP+94, EDS95, FFNP97, GP93, Gun00, IS96, Jon92, Meu88, CGST19].

Computing

[ATN+00, Ano87a, Ano94a, Ano95b, Ano98b, Ano99, Ano00, Ano01b, Aus92, BV11, BM12, BM13, BGI+99, BQOS21, BAA+06, BBT23, BRT+92, Bus87, CWHF99, DF18, Dar00, Dem90, Don89, DT99, DMT01, DT11, DT17, DCL+08, EdE+93, EDSV06, EW06, EW22, ESD+22, Ewi88, Eyr06, FG+05, FGJ+04, Gaf88, GHM+10, Ger21, GMWG10, GNTLH97, GL97, HME90, Her99, JLL04, JSSE09, Joll91, KDH11, Kep04a, KT99, Kuc04, KKH+09, KS05, LS90, LJC+10, LD07, MPS15, Mah90, MYCRC06, Mar87a, Mat95, ME14, PPK09, PA11, Rao02, RAGW93, Sal01, Sal87, SKB01, Ste01, Ste04, SFP02, SK10, THDC09, Wal03, YBA+03, ABH+18, AFGQO19, AMB+18, ARPY19, BHZ+23, BAI20, BE17, BTRZ+19, BBA+21, BLOR8, BAP+12, CSS24, CGW19, CEC20, DTDP14, DHL16, DT19, DT23, DAC+14].

computing [ECG+13, EDB19, EB23, EKD+12, Fem90, FKA+17, GR17, GSND20, Har11, HLHK24, IYK16, IFA15, JdSA+17, KT94, LDLD19, LBB17, MEK+19, MDW+23, MFB+19, MCF+13, MBF+21, PPC+16, RRJ+20, SWA+14, STS17, TNL13, VSHN14, WZHG17, WD19, WD24, ZKRA14, Lee03, Ano94a, Ano95a, Ano96a, Ano97b, Ano97c, Ano97a]. Computing- [Ano94c, Ano95b]. Computing/Numerical [THDC09]. concept [RTRZ22].

concurrency [DBG+14]. Concurrent [AH93, BMWDS7, Fro91, BRGR11].

Conference [G af88, OL05, KKD16].

Configuration [AEPR92, LTPK17, LBB17]. Configuring [PPK+04]. Confined [ACG+90]. Confinement [GBG+18].

Conjugate

[AH93, CSV91, MG87, DHL16, IVG+20, IGA24, KMM16, PSV+16, PF16].

conjugate-gradient [DHL16]. Connecting [BKS+07].

Connection [Ano87d, Don87, BJ92, CC95, GKH+91, HZ91]. Conquer [Cza03]. consensus [KDNE18].

conservation [LH19]. Consistent [KS09a].

Consortium [GS09]. Constant [MP94].

Constrained

[FSS13, LJC+10, NKR90, IK18]. constraint [DAB+12]. constraint-based [DAB+12].

Constraints [CY08, GSHL03, BLOR18, CCRV20, LCZ+15]. construction [PS12].

[KDHI11, QHI08, YBA+03, CZR+11]. Context-Aware [YBA+03].

context-based [CZRI+11]. continuous [AWWG19]. continuum [BTRZ+19].

contrast [RPdB+19]. Contributors

[Ano91b, Ano91a, Ano92g, Ano96c, Ano96a, Ano97b, Ano97c, Ano98a]. Control

[AK91, AK93, Dar00, DFH+96, VR00, HRW19, RRJ+20, WDV+12]. Controlled [DSD+91]. Controllers [MFOAGE18]. controlling [OF17]. converge [CCBL18].

Convergence [BRR10, DFS+05]. convex [SH93]. Convolutional [BDC21].

Cooperative

[DBA+09, DCL+08, kLCCW07, IK18]. Coordinate [YRA+02]. Coordinated [FP02]. coprocessor [VEMR17].
coprocessors [HLS+17]. Copy [SWHP05]. CORBA [PPR03]. Core
[Bri10, DFS+05, MS05, AKC+19, BBG+14, BH12, CAE+13, DEE+12, DDKK19, INS+20, KDHI11, KILL13, LMT+12, LDW+12, LNSMMA15, MSPSII5, PSV+16, SSR+14, TKA+17, Udd17, VEMR17, VRB+19, VOL+14, YFS+14, GLZS14]. cores [DJJ+19, FU12, INY+14, LYL+16, LM23, OY22]. Cornell [Mer87].
coronavirus [TGS+22], coronavirus-2 [TGS+22]. correction [AG18, YFS+19, Mer87].
Correlating [CS14], correlation [CLG13, GHL15]. Correspondence
[BH99, IS96, PTGB02, WLB92].
Corrigendum
[Ano19, Ano20a, Ano20b, Ano22a]. Cortical
[WW92]. Coscheduling [BL99, CAK+07]. Cost
[LJC+10, PPK99, TR17].
Cost-Constrained [LJC+10]. Coulomb
[DDH+04]. Coupled [HA+96, IY+10, JDD18, KT99, LJ05, PK04, BG22, KC18, NOM+19, SKP+22, YJZN22].
Coupling [CJK+05, CVJ12]. Coupling
[HD05, JLO05, LJ005, MTW+22, PPR03, EW22]. CoV
[BGB+22, CNW+23, DCK+23, ZBH+23, CDG+21]. COVID
[ds21, ABL+22, JMM+21, IWL+23, OWC+21]. COVID-19
[ds21, ABL+22, JMM+21, IWL+23, OWC+21]. CPL6
[CJK+05]. CPU
[BL99, BJWS20, GHL15, HTD+14, PFGDM20, SHK+18, TM23, VRB+19].
CPU-GPU [HTD+14, TM23]. CPU-MIC [SHK+18]. CPUs
[HBKR21, KDHI11, SFLC18, TKA+17].
Crash [HTSK90, CEL+97]. Cray
[ABF+08, AEPR92, DD89, DD91, Del93, GCL93, LT88, Ma00, MYC92, MSK92, THL88, VW93, ABF+99, DH96, Lai93, McN89, SBBS06]. Cray-1s [McN89].
CRAY-2 [DD89, DD91, GCL93].
CRAY-T3E [Ma00]. CRE2017 [Mas19].
CRE2019 [KM20]. creation
[EB23, KILL13]. Creutz [BRT+92]. Crisis
[BE07]. Criteria [BKRS09], critical
[SDJ17], critical-path [SDJ17]. Cross
[PLS05, CLG13, LSLR+20, SK20, WVL+16].
cross-bundle [WVL+16].
cross-correlation [CLG13], cross-machine
[SK20]. Cross-Platform [PLS05]. crowd
[VOL+14]. CRPC [CDP+94]. crucial
[TGS+22, SSCF19]. Crystal [Cla91].
crystallisation [HXW+13]. crystallisation
[WSD+14]. Crystallography [CDH+93].
CUBE [JBOT19]. CUDA
[DSH+16, GDKWS15, KKB+21, KNPS21, MV20, SDJ17, TM23, ZZG+14].
CUDA-accelerated [GDKWS15].
CUDA-enabled [DSH+16]. CUDA/HIP
[TM23]. CUMULVS [GKP97, KWB06].
Current
[Cap09, GFD05, GCSK13, IVA+13].
cutting [HLZ+20]. CYBER
[ABAS87, McN89]. cycle [AHB+16].
CYDRA [HRM89]. CYDRA-5 [HRM89].

D
[KL94, KR95, SSCF19, VSS+13, AKW19, ARR99, ARPY19, BG01, CSGM17, CM97, FIMU19, GGS01, HSLK11, KC18, PR95, THL88, WA18].
D-DM [ARPY19].
DAC [Cza03]. DAG [TR17]. DAG-based
[TR17]. Daily
[Mar89b]. DAME [PG18].
DAMPVM [Cza03]. DAMPVM/DAC
[Cza03]. DARE [CGT+18]. Data
[ACF+11, AF09, Ano87e, BCG+10, BHK+88, BCM+03, BCH+23, BH06, CFK+94, CBW95, DP05, DH96, DZ07, DT17, DFT+15, Fe99, Fe09a, GMLP08, GG11, HJ96, JW06, Joh01, KUE+00, LR07, MAJ503, RRV06, SS89, SS10, TLdS22, VS03, WHL03, ZRC+06, AKW19, APD+15, ATL+15, AMB+18, BTRZ+19, CDL+19, CCB18, DBD+23, DCN17, DT19, DT23, EMP+18, FKA+17, FAB+21, FR22, FFZ+23, GKR+22, HLV+16, IGBBR23, KV19, KSM23, LD24, Lap22, LGDH16, LM23, MRD+15, OLOF23, OWC+21, OZ16,
PDDI22, PB23, PH91, PBB*20, PG18, QAL*23, RW17, STP*13, SZ11, TDG*19, TDM*17, UBK*23, WDH*15, Akb24.

Data-driven [BCH*23, TLD*22, BTRZ*19, IGBBR23, OWC*21]. Data-Intensive [GMLP08, KUE*00, ACF*11, FKA*17].

Data-Parallel [HJ*96]. Database [MS09]. Databases [RGB*18]. Dataflow [ACM88, Sha88, JDD18, WZHG17].

Delay [Ra02]. delta [DCK*14]. Demand [EWO6, dPlA03]. Demystifying [TNCC21]. Dense [Ano02k, BGG05, BDL*07, Ede93, LRLG19, MY24, MBvdG13, SCR11, TQOA23].
density [HBKR21, LNSMMA15, QSX*20]. density-functional [QSY*20].

Department [Kit90]. dependencies [ELEB21]. Dependent [MBF*11].

Deployable [GCL93]. Deploying [CDVL*18]. Deployment [CDCV06, GCL93, GMLP08]. deposited [GSK*15]. Deposition [MD99]. depth [JADAD19]. derivatives [Ha93]. Derived [SWHP05, MDH*18]. deriving [IGDQO19, MBvdG13]. describing [ABH*18]. Design [AEF*03, BGI*99, BBH*13, BBMB19, BRM03, BH06, CE00, CLP*99, CTD*05, Dar00, DZRS99, DFH*96, DJC05, EGMP93, FGC*05, GJMS88, GCCC*03, GHM*10, GD09, KS09b, PPK09, SD87, AAA*22, BG11, DTL19, FAB*21, Ger21, JMM*21, UZM*14, UCZ*15, AAB*21c, Mar87a].

Designing [RWM17, SWHP05, SKS*13, ZWS21]. Desmos [SDI*19]. Detailed [EDS95, SBBS06, CHWS20]. Detecting [CSC24, JRP*23]. Detection [CBL10, YZC*15, AG18, BSS15, HGMW12, KDNE18, VOL*14, WLG*18, ZCZ*13].

Detector [DZDR95, Ano19, BBG*18]. Determination [BHK*88, CSY10]. Determined [CGB*94]. Deterministic [DR06, DMSMG18, MV20, SLL*19]. DEUS [RAB*15]. developed [CV12].

Developing [THDC09, PPC*16]. Development [Ano01a, BLU*22, BCC*01, BBD00, Dar99, GKR*22, HL00, HRM89, Kal09a, LC90, LD07, MM90, MS19, PPS90, Eri88].

Development/Tuning [Kal09a]. Developments [YSS*06]. device [Lai93, OF17, SKP*22]. Devices [PHC*10, RKKC90, Rad18]. DG [MV20].

Diet [CD06]. Difference [CC95, THL88, EKF*19, WKLW21]. different [LWT*11]. Differential [Key09, Meu88, KS89, RMS*18].
differentiation [HHSM19]. diffraction [EEL15]. Diffusion [BFNV07, EDS95, SG91, TWK87, BG22, LMT*12].

Diffusion-Limited [TWK87]. diffusion/filtering [LMT*12]. Digital [ABL*22, MPG93, YFH*96, GHL15].
dilation [LST15]. Dimensional [BCZM07,
KRR19, LSS93, PLJD24, YFS+14.

Dirac [PHF21]. Direct [BT90], CM97, HVWS09, HVSW09, LWL05, KMJ+23.

Distances [KTWL18]. Distributed [AKP88, AF90, BGG05, BFL99, BFG02, CHP99, CYT+02, CLF87, CB95, Dec10, DFMD94, DCSS10, EDV06, GKN+96, GGS01, Gir02, HC10, HD05, HD18, JMP02, K199, LWOB97, MYCR06, MWAR+87, Mat95, MCW+00, Nag89, NKP+00, OMD823, QWIC02, Ra02, RBM87, SWG+03, SPNB14, YIYD19, YRA+02, ZRC+06, dPDF02, ABH+18, CBD+17, EDB19, GEKO19, IGBBR23, JTR16, JO92, RACE+20, THDS19, VMPW20].

Distributed-Memory [MCW+00, YIYD19]. Distributing [CBSB01]. Distribution [CBSB01]. Distributions [DZ07]. diverse [AGK+23, PBB+20].

Divide [Cza03]. Divide-and-Conquer [Cza03]. dividends [DTL19]. Divisible [DLG06, MYCR06]. Division [Bus87, Don89]. DNA [DTDP14, GPO+20, HB90, MP18, PRT90].

Docking [GHM+10]. DOE [HSB03]. Domain [Cha88, CDH+97b, GCD97, Lai93, Meu88, WCDS99, CSGM17, IKMS+19, KLR+21, PHF21, YJZ92].

Drift-Diffusion [BF07]. Drive [HE01, PS09]. Driven [CHZ02, DCL+08, YB07, BTRZ+19, BCR+23, CDG+21, DAB+12, IGBBR23, OWC+21, TLD822, TGS+22]. droplet [ABL+22]. droplet/aerosol [ABL+22].

drug [GVR+21, JMM+21, LWL+23, MS0115]. Dual [BBC+00, FT91, Ish91]. Dual-Level [BBC+00]. Duration [CU08]. DV [TKS88]. DV-X [TKS88]. Dynamic [AAF+01, ABAS87, BCM+03, BBG00, CY08, DLY+98, DFMD94, GFD05, HWP03, IMB+19, MAAC+24, SCB+95, SVN09, TM99, FFZ+23, LGDH16, MJD16, PMP+20, SCB14].

Dynamical [DFS+05, FBW+87, HT04b, BS05, SWW94, DEE+12, DD019, LMT+12]. Dynamics [ACD07, BMT89, CBG+94, Cha88, CWG09, DQF90, DGD+04, Gen88, Gun00, HL10, HSLK11, JL98, KTV+90, MP94, NAK99, NHG+96, PRT90, RBM87, SK90, ABH+18, AKC+19, AKW19, BHZ+23, CDG+21, CHW+15, HXW+13, KF190, KKL+19, KNPS12, PDDI22, PGK+24, PIR+20, SKE+23, SDI+19, ZBH+23].

Earth [DVW+12, ESW+12, MEX+19, CTD+05, CVJ12, DEL+12, IKY+10]. earthquake [AHB+16, CMS+11, MWT+22, BAM+16].

ECJ [CDVL+18]. Ecological [WBG06].
Econometric [ABAS87, GP93, PS87].
Economic [BE07, LC90, NKR90, SG07].
Economic-Based [SG07]. Economics [AK91]. Ecosystem [WBG06, AFGQO19].
Eddy [CK01]. edge [BTRZ19, CSGM17, Rad18].
edge-emitting [Rad18]. edge-FEA [CSGM17]. edge-to-cloud [BTRZ19].
editor [DT18, DT19, WD18, WD19, WD24, dA03]. Editorial
[Cho23, CDH19, WD19, Mon12, PKC23, PH19, RTRZ22, SMK20, ŠCKW19, VSW22, WZH20]. elements [ZB20]. Eliminating
[HME90]. embedded [KPR17, KK01]. Embedded/
[KK01]. EMD [LSES20].
EMD/HHT [LSES20]. emergency
[GDS17]. emerging [AAT20, HFV12, IMH11, IMH12, WD19]. emission
[VBVD22]. emitting [Rad18]. Empirical
[VDB04, CMB13]. Empowering [GVF18].
emulation [BAP12, LST15]. Enabled
[CD06, CD97, CBB10, DD06, MWM10, Ano22a, DSH16, DCK23, LDLD19, NBE22]. Enabling
[AGR03, BTRZ19, DBD23, DGB14, FKT01, JMM21, MBE21, PB23, PBB20, Ste09b, SKP22, AAB21b]. Encoder
[BKRSR09]. Encoding [DLY98].
encryption [KV97, Lap22]. End
[BV11, GHM10, LD07, NKN10, PA11, PKC23, Rao02, SC09]. End-To-End
[GHM10, Rao02, SC09, PKC23].
Endangered [BB02]. Endmember [HC08].
endpoints [DGB14]. energetic [GSK15].
energies [PUR94]. Energy
[BEH90, ECG13, HTS90, HMM87, KLR21, LTPK17, LWI11, Mir90, SGFC09, YCHH90, ZOF90, ATD17, BDC21, BRGR11, BLOR18, BBMB19, CHT19, EJD19, JdSA17, LWI23, LRLG19, MBT24, SKSG19, KIT90]. energy-efficient
[BBMB19]. Energy-optimal
[LTPK17]. energy-saving [SKSG19]. Engine
[DCL08, HSPP08, WZH17, SS10].
Engine-Driven [DCL08]. Engineering
[Bro88, Dar00, DW97, Joh01, MMS88, Nas92, PK04, ADMP18, EHTW21, LSDL23, VMPW20, WH20, Mar88a]. Enhance
[WVL16]. Enhanced [BPK07].
Enhancement [AAC97, WT99].
Enhancements [BDG95]. Enhancing
Ensemble [FSC+11, HLW+16, KSM23, VIKM+22, Akb24].
Ensemble [BBR10, FR22, PB23, VSS+13].
ensemble-based [FR22]. Entity [BGF02].
Entropy [CBW95]. entry [CSGM17].
Environment [AAF+01, CCH+88, DD91, DL97, DLB07, GL97, MM90, dPIdA03, ABH+18, ASAK19, ARPY19, KKL+19, LSS93, WLV+96].
Environmental [DLY+98, TMMR10, OLOF23].
Environments [Ano01a, CWH99, CDH+97b, DD06, Dec10, DFH+96, DCL+08, Eyr06, FSS13, Gan88, HBSP08, Mat95, MA89, RIF01, TH+96, WvNM+06, ADMP18, CCB11, HI12, HI13, IVG+20, HI15, NC18].
Equation-Based [Key99]. Equations [Meu88, SBF90, SWM87, KS89, RMS+18, ZZG+14].
Equilibrium [JP93, NK89]. equipped [EM23]. equivalent [GKR+22]. Era [BM13, ME14, WD21, BM12, Con88].
Erratum [KR95]. error [BSS15]. Errors [FCLG07, LF+15, SLL+19, YZC+15].
Estimates [LS06, MC89]. estimating [BDC21].
Evaluation [ATN+00, ABF+08, Ano87b, BCK+89, BIC+10, BFNV07, BG02, BDG+00, CDQS04, CLP+99, KHP+04, NOM+19, RBL08, SWHP05, WOG95, YIN+11, AKP+18, BBG+14, HIT+14, JCK21, KKB+21, NMI+19]. Evaluations [PPK09].
Event [NRR97, BEW16, DAB+12]. event-based [BEW16]. event-driven [DAB+12]. Events [BG00, JDAD19].
Eviction [BH06].
Evolution [DAC+14, LBP+18, WJS+90, CNW+23].
evolution-AI-based [CNW+23].
evolutionary

[CDVL+18, JCK21, ZBH+23, Hdv18]. Exa [MAF+22]. ExaAM [TBB+22]. Exact [ZK93].
EXAGRAPH [AAB+21b].
ExaLearn [AAB+21c]. Example [NBB+96, HPS+22]. ExaSAT [UCZ+15].
Exascale [AAB+21c, AF09, Cap09, CGG+99, DBA+09, DBM+11, ESD+22, GD09, GL09, HCC+22, Her09, Kal09, Ks09a, Ks09b, LAV09, Luc09, Lus09a, MN90, PPS09, SG09b, SC09, Ste09b, AAB+21b, BCR+14, KFM+21, MEK+19, MBT+24, MEF+21, MAF+22, SKE+23, SWA+14, UCZ+15, VFJ+15, YB12, EW22, Ger21, SKP+22].
Excited [WLC91].
Excited-State

[WLC91]. Excitement [RAG93]. executed [LSES20]. Executing [WG07].
Execution [MS09, AHB+16, DAB+12, DBD+23, ELEB21, JDD18, KILL13, RCEA+20, TKA+17]. executions [RV15].
Exhaustive [PS12]. Expand [GCC+03]. expansion [AMC+18].
Expansions [KMP08]. Expect [Pan92]. Expectation [Amd88].
Experience [HG91, YHG+07].
Experiences [DD06, GKN+96, Reu92, RSCT+24, ZKRA14].
Experiment [HME90].
Experimental [BCC+06, EGMP93, JW06, KCKB98, KLJ87, PB19].
Experimentation [Ano87a].
Explicit

[WB06, EAG+19, LNR+24, AGC+19].
Exploiting

[Bri10, JPV23, QAL+23, SCR11, ...]
WFA+11, LFB+15]. Exploration
[KPM+96, BBMB19]. Explore [JLL04].
Exploring
[CCO+19, CBD+17, HAF+96, IMS16].
explanations [HCC+22]. Expression [RS03].
Expression [BBDR95]. expressive
[CRS+19]. Extended [Ano2b]. Extending
[GR08, Pap11, LRG+16]. Extensible
[CJK+05, KHS+19]. Extension
[SVN09, AHB+16]. Extraction
[CBL10, HC08]. Extreme
[Her09, Key09, KC92a, MPS15,
ZKRA14, AAA+22, AMB+18, BEK+18,
DCM+17, FAB+21, HRW19, INS+20,
KDNE18, PBE+19, WD21]. Extreme-scale
[ZKRA14, AMB+18, BEK+18, DCM+17,
FAB+21, INS+20]. extremely [Ad21].

face [CdV+18]. Facility [Ano87a, Don89].
FACOM [HIHM87]. Factor [DH96].
Factorization [DD99, DD91, IGDQ019,
Jea13, LM23, MY24, YIDY19].
factorizations [DEKV92]. Failure
[GCSD13, KS05, Ano19, BBH+13, BBG+18,
KDNE18]. failures [SWA+14, TNLP13]. far
[KKB+21]. farm [KBY+19]. Farming
[CKPD99, MBHF15]. Fast
[BGM15, BEW16, BMT89, Cg11, DIB00,
NDR20, PS12, PFDM20, WW94,
TQOA23, IYK16, KKB+21, KD18,
RTRZ22, SCR11, TKSK88, TDM+17, YB12,
CKE08, KNP+87, LDW+12, MJ04]. Fault
[BHK+06, Cap09, FD04, FGC+05, GKP97,
GL04, JSSZ09, KWB06, WVM+06,
ASHH16, AG18, BBA+21, LRG+16,
MSHPV18, MTW+22, SKZ+18, Sta19,
SMS+18, YZG+15]. fault-to-structure
[MTW+22]. fault-tolerance [SMZ+18].
Fault-Tolerant
[BHK+06, FD04, WVN+06, ASHH16].
faults [RMS+18]. Faulty [LK01]. FEA
[CJPM17]. Feasibility
[KR94, KR95, CCO+19]. Feature
[PTGB02, STP+13]. Feature-based
[STP+13]. features
[CH13, IMS16, PNFC16, PUR94, ZKRA14].
February [Sci92]. federation [Har11].
Feedback [CGB+94]. Feedback-Scaling
[CGB+94]. Feel [WZS21]. Feel-the-Way
[ZWS21]. FEM [MK24, RMV+19]. Fermi
[NTD10]. Fermions [ZK93]. Fermbach
[Mar91]. FETI [GCD97, RMV+19]. FFT
[BS88, GG01, KMPJ08, Wad90].
FFT-Based [GG01]. Fidelity
[SKP+22, TBB+22]. Field
[HC08, HSLK11, KKB+21, PUR94, VSH14].
fight [ABL+22]. File [BIC+10, GCCC+03,
LRT07, kLCC07, HLW+16]. Film [MD99].
films [GSK+15]. filter [LGDH16]. filtering
[LMT+12]. Finalists [dS21]. Financial
[BE07, HZ91]. Finding
[DRAD+88b, FCLG07, PB23]. Fine
[ACM88, BBG+10, LH18, WBNM+06,
HTD+14, KSF22]. Fine-Grain [ACM88].
Fine-Grained [BBG+10, WVN+06, LH18,
HTD+14, KSF22]. Finite
[AJL+97, BBA87, CC95, CBV97, EGG05,
GCD97, KM95, MMD98, MS02, MS05, PH19,
PLS05, THC+96, THL88, de 89, AFL+18,
BSW+14, DWT+19, EKF+19, KPM+21,
KSM23, LH19, MS+24, PKC23, RTRZ22,
SMK+20, SCKW19, VSW+22, WKLW21].
Finite-Element [MS02, BSW+14, KSM23].
Finite-Volume [MS05, LH19]. First
[DFQW90, GKN+96, TMWS91, HIT+14,
MMDA19]. first-principles [HIT+14].
fitness [BHZ+23]. Fitness [JCK21]. fixed
[BS14]. Flames [EDS95, SG91]. FLASH
[DAC+14, JKD+11]. Flexible
[GMLP08, CVJ12, DGB+14]. Flink
[KWEF18]. FLO67 [WLB92]. Floating
[BSBF89, CDL+19, LH18]. floating-point
[CDL+19, LH18]. flood [HPW+16]. Flow
[ABF+99, DDO6, HKK88, PGTS10, RKKC90,
SS89, SK90, CDL20, FIMU19, HHS119,
KDH18, LNR+24, LSS93, WDV+12, ZB20].
Flowfield [MKG90]. Flows [CB95,
GMW10, MYC92, PGK+24, dFRD+23].
Fluid [Cha88, DFMD94, Gen88, HL10, JL89, KT99, LWL05, PGTS10, RBMF87, SWW94, SS89, SK90, YY93, KC18, LSS03, PDDI22, PGK+24]. Fluid-Structure [KT99, KC18], fluids [HBKR21].

Fortran [KR95, DL97, KTP+24, KMJ+23, KR94].

Fortran90 [LJO05]. Forum [Don02a, Don02b]. Forward [AK93, Luc09, THL88, HRW19].

Framework [CAK+07, DGJ09, IYY04, PGTS10, SSB+05, SB04, SKP+23, TMMR10, vLRA+03, FKA+17, FR22, GEKO19, GDM+23, IGA24, JBOC19, MCB+18, MTW+22, MS19, PPC+16, PB19, SE12, SMZ+18, TDG+19, YWL+14, CTD+05]. frameworks [LNR+24]. Frankenstein [Wit02]. Free [LWL+23, MT89, KSM23, LBB17, PHF21, SMK+20, VIKM+22, VSW+22].

Fujitsu [Ish91]. Full [AEP+92, JRT16, LXK01, Auo22a, NBE+22, RAB+15, THC+11]. full-physics [Auo22a, NBE+22]. Full-wave [JRT16].

Fully [HR97, YY93, CH13, EAG+19]. Fun [RAGW93]. Function [ODD07, PP90, ZOF90, EKF+19]. function-generated [EKF+19].

G [MCS+06]. G2 [Cot04]. Galaxies [Her91, NBB+96]. Galerkin [AWW91, MSP+24]. Games [EGMP93].

Gate [HC08]. Gather [TR+10]. Gate [Mor89a]. Gaussian [LSDL23]. GEM [NTD10]. Gene [MAB+13, RS03, YIN+11, GNB11, KMH+14, SSU+12]. Gene/P [MAB+13, GNB11, SSU+12]. Gene/Q [KMH+14]. General [IGA24, PL05, VC89, BE17, CRS+19, MMH11, WWC+24].

general-purpose [BE17]. generalized [HTD+14, HPA+22, NS21, GLG+11].

generated [EKF+19]. Generation [DE03, HT04a, KMP08, BAP+12, HBKR21, LDLD19, MF+19, MDM21, TRS13, VRB+19, WD24, ZKRA14]. generative [JMM+21]. Generator [PMS+04, DL09].

Genomic [MBC+18]. GenSLMs [ZBH+23]. Geodesy [BG05]. geographically [CvG11]. geophysical [CMN12].

geosciences [MTW+22, SCS+19]. GFLOP [SBF90]. Glass [YSN90]. Global [ASTN+00, ABD89, CZR+11, DBA+09, GS05, MHW15, SBF10, T090, WBM19, DFT+15, TLD22, TAM+16, WD+15, NPT+06].
Global-Address-Space [SBG10].
Gordon [BBB+17, dS21]. gossip [CGW19]. gossip-inspired [CGW19].
GPU-accelerated [AWWG19, Ano22a, ATL+15, ARPY19, BGM15, BJWS20, CSGM17, CS14, DAD+22, EM23, EEL15, GHL15, GDKWS15, GGO16, HTD+14, IJB22, JC12, JKBW18, JCK21, KTLW18, KKL+19, KNPS21, LPB+16, LM23, MC21, MPI+12, MJGL13, MGFP20, NBE+22, OKTR11, OF17, PKG+24, PKC+23, PS12, PNFC16, PFGDM20, RV15, RPd+19, SCD12, SPTT08, SE12, SKS+13, SDI+19, SK20, SSSF19, TM23, VSW+22, VMPW20, WD+12, YLL+14, ZZG+14].
GPU-equipped [AWWG19, CSGM17, IJB22, KNPS21].
GPU-based [ATL+15, JKBW18, JCK21, MJGL13, PKG+24, SDI+19].
GPU-enabled [Ano22a, NBE+22].
GPU-equipped [EM23]. GPUDirect [OGM+16]. GPUs [Ano24, ATD17, AKP+18, BLU+22, DEQO21, EHTW21, FT19, HDL+15, HBRK21, HPW+16, KMK+23, MY24, NACA21, NS21, PF16, SFLC18, TKA+17, WWC+24]. Gradient [AH93, CSV91, MG18, DHL16, IVG+20, IGA24, KSM23, KMM16, PSV+16, PF16]. Gradient-like [CSV91]. GrADS [BCC+01].
Grain [ACM88]. Grained [BBG+10, BGB+96, DZRS99, WvNM+06, HTD+14, KSF22, LH18]. Grand [BEH+90, CBB+96, DSD+91, Kit90].
granularity [LQJG16, SKS+19]. GRAPE [CJE08]. Graph [AAB+21b, BBT23, CDT05, JRP+23, Akb24, CSC19, GLZS14].
graphic [LQJG16, PH19, YZZW21].

Green [OOD+07]. Greenbook’ [HBS+03]. Greenhouse [WBIY90]. Grid [CKPD99, Lee03, SWG99, ASH16, BCS+11, HLN+20, MCR+17, MYG23, PPC+16, PS+12, AG+01, AGR+03, BCC+09, BCM+03, BCC+01, BPK+07, BSCC+03, BCC+06, CD06, CBSB01, CBB+04, CBL06, CCB+11, CY08, DCL+08, FKT01, GHM+10, GRC08, GHZ10, HBS+08, HT04a, HLP+03, Hua03, HWP03, KH+09, LM03, MWM+08, Mat03, MCS+06, PPK09, PBD+01, PHB04, QH08, RIF01, RTRG+07, SWG+03, Wb03, WBF04, WPB01, Wb03, WvNM+06, YBA+03].

Grid-Based [GRC08, QH08, LM03].
Grid-Enabled [CBB+04, MWM+08].
Grid-Ireland [MCS+06]. Grid’5000 [BCC+06]. Gridded [ZM07]. GridLab [AGR+03]. GridPACKTM [PPC+16].
GridRPC [CJ06]. Grids [DT99, DT11, Joh01, Ma00, VR00, MML11, MGB12, St+19, BKS+17, BBH+06, Dec10, Fra05, GLM+08, IKY+10, MS09, SG07, SW04, WCW06, vLRA+03].

Hadoop [CdVL+18]. Hadron [GKH+91, Liu90]. Haidar [Ano24]. HAMR
[WZHG17]. Harbor [BBC+00]. hard
[RMS+18]. Hardware
[BH06, KS09b, Spr06, Ano24, BLU+22,
HDL+15, MCU+13, MFOAGE18, RTRZ22].
hardware-accelerated [BLU+22]. Hari
[NS21]. Harmonics [KMPJ08]. Harnessing
[HLH+19]. Hartree
[CLM+16, KKC98, MMDA19, TMW+99].
Head [GKE93]. Heavy [QH08, Reu92].
Heavy-Ion [Reu92]. Helicity [DVC88].
Helium [Fro91]. Helix [PRT90].
Helmholtz [BEF+95]. hemodynamics
[AFL+18]. Hermetic [YK07]. Hermitian
[RDG12]. Heterogeneity [TCW06, WD21].
Heterogeneity-Aware [TCW06].
Heterogeneous [BM13, BLRR01, BMR06,
BG09, CHZ02, CLBS17, Dec10, EGG05,
KT99, KS05, LR07, LR09, LR10, ME14,
NBB+96, RAGW93, RRV06, TM23,
VLO+08, dRADS+18a, BHZ+23, BJWS20,
CMS+11, CGST19, EDB19, GBB18,
HGWN14, IMW+13, INS+20, LST+15,
LDW+12, MFP+17, NC18, OLOF23, PB23,
SB19, UZM+14, ZSL+23, BM12].
HeteroMPI [VLO+08]. Heuristic [SG07].
Heuristics [CJ06]. HHT [LES20]. Hi
[TDM+17]. Hi-C [TDM+17]. hierarchic
[EB19]. Hierarchical [DD06, GMJS88,
HJ96, HWP03, IGDOQ19, PBAL09, SG09a,
WT09, DSH+16, GBB18, HPA+22,
LSLR+20, MJD+16, Wall18, ZBMK11].
Hierarchy [HL10, YK04]. High
[Ano87d, Ano87i, Ano94a, Ano95b, Ano95a, Ano96a, Ano97b, Ano97c, Ano97a,
Ano98b, Ano98a, Ano99, Ano00, Ano01b,
Ano24, ARR99, Aus92, Bai88, BV11,
BGI+99, BCC+01, BAA+06, BBT23,
BEH+90, BEF+05, BRT+92, CWHP99,
CC95, CDP+94, CSY10, CB05, CJK+05,
DTP14, DFS+05, DGJ09, DBA+09, DHL16,
ISD89, EKD+12, FGC+05, FGG+04, GBB18,
GHM+10, GHL15, GVR+21, GMWG10,
GSK+15, HLRK24, HSLK11, IS96, IKY+10,
KDH11, KBA00, Kep04a, KWB06, KFM+21,
Kuc04, KMM16, LST15, LB16+16, LD07,
MAB07, MSPS15, NKL+08, NFK98,
NTPK06, PPK+04, PPK09, PA11, Poz97, Pra01, QWIC02, Sab91, SSTS17, SKB01,
Ste01, Ste04, SKP+22, SKC10, TR17,
THL88, TMW+99, THLC09, VRE+19,
Wad99, WLC91, WLG+18, WOS08,
YS+05, AAG+23, AFGQO19, AGHR19,
BAM+16, BLU+22, BLC17, BBA+21]. high
[BAP+12, CSS24, CGW19, Cec20, CZR+11,
CNW+23, DVW+12, DAD+22, DAC+14,
ECC+13, EB23, Fem90, FMR+20, GPR17,
GSSD20, Har11, HBRK21, IYK16, IFA15,
JRT16, KSM23, LDLD19, LH19, MDW+23,
MCU+13, MK24, OGM+16, PPC+16,
PSV+16, PKC23, PF16, SKCW19, TLds22,
TNLP13, Ud17, VSW+22, WDH+15,
WD19, WD24, Mar87a]. High-Cost
[PPK09]. high-density [HBRK21].
High-End [BV11, NKL+08, PA11].
high-intensity [JRT16].
High-Level
[BCC+01, GBB18, Udd17]. High-Order
[CC95, KFM+21, KSM23, LH19, MK24,
OGM+16, PKC23, SKCW19, VSW+22].
High-Performance [Bai88, BAA+06,
BBT23, BRT92, CSY10, DGJ09, DBA+09,
ISD98, HSLK11, IKY+10, KBW06, PPK+04,
Sad91, TMW+99, ThDC09, TDP14,
DHL16, EKD+12, GHL15, GMWG10,
GSK+15, KDH11, KMM16, LST15, LB16+16,
SKC10, TR17, VRE+19, WLG+18,
AAG+23, AFGQO19, BAA+21, BAP+12,
CSS24, CGW19, Cec20, CZR+11, DAC+14,
ECC+13, EB23, Fem90, FMR+20, GR17,
GNSD20, Har11, IYK16, IFA15, MDW+23,
PPC+16, PSV+16, PF16, TNLp13].
high-precision [DAD+22]. High-Pressure
[WLC91]. High-Resolution [DFS+05].
high-risk [CNW+23]. High-Speed
[Ano87d, BAM++16, Mar87a].
High-Throughput
[GHM+10, GVR+21, AGHR19].
High-Wave [BEF+95]. Higher [Mai90].
Highly [Ade21, BG22, BCC+06, HBRK21,
HLK+23, Sim90, KKB+21, PS12, WKLW21. HIP [KNPSM21, TM23]. HipBone
GPO+10, TNG07, BG02, CHZ02. hole
HLZ+20. HOMME [CAE+13, DDKK19]. homogeneous [IMW+13]. Homotopy
DZRS99. HONPAS [QXF+20]. Hop
TNBG07. Hoshen [CBV97]. Hosted
HBSM03. Hough [GLG0+11]. hp
KBY+19. hp-adaptive [KBY+19]. HPC
Ano19, dS21, AGK+23, ABG+19, BBMB19, BBG+18, CRS+19, CYZ+20, CCLL18, GCSDK13, GGMJF+20, Keo04b, KV19, KKH+09, Lap22, MDH+18, NMI+19, PMP+20, SSQ08, SGFC09, TNCC21, ZWS21. HPC-Based [dS21]. HPCC
CBB+19. HPCG [LYL+16]. HPF
BF01, DL97. HPF-Builder [DL97]. HPG
GPO+20, IMB+19. HPG-HMapper
GPO+20. HPVM-Based [CLP+99]. human
ABH+18, BE17, GGMJF+20. Hut
INS+20. Hybrid [BBG+10, BBH+06, CWG09, MS02, MV20, MGFP20, RW03, BSK14, BBG+14, CAE+13, GHL15, GGO16, HTD+14, HLW+16, IVG+20, LYL+16, NOM+19, NMAE13, QMX+20, RMV+19, STP+13, SZC12, SDJ17, SMZ+18, SHK+18, TM23, THDS19, WSD+14]. hybrid-core
GPO+20. Hyperbolic
FG07, CHF+19, LH19, RV15. Hypercube
Din91, KLJ87. Hypercubes [LK01]. HYPERDOCK [ILCLG20]. Hypergraph
DF08, HC08, PC08a, SPTT08, VLO+08]. I-WAY [DFP+96, GKN+96, NBB+96]. I/O
BCP+20, DLY+98, DEL+12, IBC+10, KKCB98, KES+17, LPJ98, MMD98, MS95, NFK98, OWO98, PH91, SW10, SR98, TCG98, TD08, TNCC21, WWA+11]. IA
PSV+16. IA-based [PSV+16]. IBM
GD09, Moh09. II
Don02b, JP93, TDM+17. LBPCA
KM20, Mas19. illuminate [CDG+21]. ILU
Ma00. Image
AAC+97, BC01, CSY10, DIB00, DF08, PTGB02, Sa87, SPTT08, BGM15, TKA+17, THH+13, VBD22, ZCZ+13. Imagery
HC08, PC08a. Images
VLO+08, RPD+19, SKS+13. Imaging
Ald89, BRU05, Chuf99, GJMS88, LC90, NMAE13, BHK+88. Impacts [JPV23]. Implementation [AEPR92, BS99, BCZM07, BBA87, BIC90, MS05, MS95, MS06, NMI+19, ODD07, SYF96, Tis97, ZZZ+14, dRADS+18a, BG11, GDS17, HF24, KTWL18, LNSMA15, MV20, MHW15, NMAE13, OKTR11, OGM+16, VMPW20, YZZW21]. Implementations
Ano01a, RR96, BDFVP15, ESD+22, KWEF18, KSM23, LWT+11, MK24]. implemented [BBDH14, PH19]. Implementing
CDT05, KV19, LRT07, YFH+96. Implications [RES87]. Implicit
[GBK100, MS02, NS21, EAG+19, HLZ+20, KTP+24, KC18, AGC+19]. Importance
[BCG+10, SC09]. Important
[TC10, FAB+21]. improve
[JDsA+17, LFB+15]. Improved
[ANO87b, CMH+15, FSN+08, NTD+10, DMSMG+18, INY+14]. Improvement
[SVN09, KMM+16]. Improving
[ARFY+19, BLP+19, BJ+06, CGGC+16, DAB+12, ILCL+20, JMC+05, KL+13, MJ+16, MW+12, YK+04, CSC+24]. in-depth [JDA+19].
in-memory [WZH+17]. In-Network
[OMDS23]. in-situ [MBF+19]. Incomplete
[HJ+93, K+09b, M+21]. Increased
[DTL+21, WBM+90]. Increasing
[CLV+24, PHC+10, WW+92]. Independent
[BRU+05, CCR+20]. Index
[AN+96b, AN+97d, AN+98b, AN+99, AN+00, AN+01b, AN+02a, AN+02b, AN+02m, HC+08, BE+07]. INDIANA
[OMDS+23]. induction
[J+21]. Industrial
[DP+97, GMGW+10, LDR+03, JB+19, VM+20]. inefficiency
[HGM+12]. Inequality
[NK+89]. Inertial
[BGB+18]. infection
[ABL+22]. Infer
[RS+03]. inference
[K+01, Ede+93]. Information
[AN+91b, AN+91a, AN+92g, AN+96c, AN+96a, AN+97b, AN+97c, AN+98a, BH+06, CHZ+02, FWSW+02, FP+02, IMS+16]. Information-Driven
[CHZ+02]. Information-Theoretic
[FWSW+02]. Infrastructure
[FK+97, HLP+03, OMDS+23, W+03].
[HD+18]. inherently
[MY+24]. inhibitors
[BGB+22]. Initial
[WLVL+96]. Initiated
[SSB+05]. Initio
[AW+91, HYY+22, LD+19, SKE+23]. injection
[CW+17, WSD+14]. Innovative
[MPS+15]. input
[Lap+22, LCZ+15, WVL+16]. input/output
[LCZ+15, WVL+16]. inspired
[CGW+19]. Instance
[LJC+10]. Instance-Intensive
[LJC+10]. instances
[TR+17]. Institute
[Duk+91, EM+89, HMM+87]. Instruction
[HRM+89]. Instrument
[CBB+04]. Instrumentation
[TM+99]. Int
[AN+24]. Integer
[GRO+03, DAD+22, OYY+24].
Integrate
[BFLL+99]. Integrated
[CFK+94, GLZS+14, MHW+15, WBG+06, FT+19, PLJ+24].
Integrating
[TGS+22]. Integration
[ACD+07, QW+02, BTR+19]. Integrative
[KHK+09]. Intel
[GLZS+14, HGD+91, HLS+17, KLJ+87, KR+94, KR+95, LSE+20, SB+19]. Intelligence
[AN+87d]. Intelligent
[TGS+22]. Intel(R)
[MMD+19]. intensity
[JRT+16, LH+19].
Intensive
[GLP+08, KUE+00, LJC+10, Mal+90, ACF+11, FKA+17]. Inter
[FWZ+91]. Inter-Semiconductor
[FWZ+91]. Interacting
[KW+06]. Interaction
[AEPR+92, Liu+90, HYY+22, KC+18].
Interactions
[TM+91, PG+20]. Interactive
[CWH+99, CLF+87, KPM+96, LSS+93, RBMF+87, RTRG+07, SS+89, TH+96, VR+00, WBF+04]. Interchange
[YY+04].
interconnect
[SD+19]. interest
[CdVL+18]. Interface
[AN+93d, AN+94b, BDG+00, KFM+10, LWO+97, MIP+98, SLG+95, ESH+12, IMS+16, KTP+24, ZK+14, BC+14, BBH+06, BR+05, Cot+04, GL+04, IBC+10, KKV+03, KKD+05, LK+10, SWH+05, TG+05].
interfaces
[BG+22]. Interference
[KCC+06, TNCC+21, CSC+24].
Interference-Aware
[KCC+06].
Interleaving
[KNP+87]. International
[AN+91b, AN+92g, AN+92e, AN+92f, AN+93a, AN+94a, AN+95b, AN+95a, AN+96a, AN+97b, AN+97c, AN+98a, BH+06, CHZ+02, FWSW+02, FP+02, IMS+16].
Linda [Mat95, SSNM92], Line
[LWOB97, Ade21], Linear
[AGL*87, BS88, BDL*07, CDQS04, CL95, CDP+94, Don02a, Don02b, Ede93, GJMS88, JO92, KVV+90, KJH96, MC90, MA00, MA15, Man97, NZ93, PB19, Poz97, WT99, de 89, AAB+21a, ATD17, CvG11, F TB13, AAT+20, Kun89, LRLG19, MY24, MBvdG13, ML20, RDG12, SPHW18], Link
[TLG98, PS87], LINPACK [DL09], Linux
[ALL13, Ano01a, CK01, GSHL03, Jon12, LWL05, SR90a, YIN+11], Liquid
[DFQFW90], Livermore [WGI90], Living
[GHZ10], Load
[BG09, BFNV07, GS05, GLGLB+11, MYCR06, CVYC+C4, ZBMK11], Load-Balanced [BFNW07], Loads
[DLG06], Local
[BRT+92, MYC92, MTW+22, PNFC16, RRJ+20, JO92, KJH96], Local-Creutz
[BRT+92], Locality [AKW19, BPBL11, PHC+10, Akb24, KSM23],
locality-enhancing [Akb24]. Localization
[CYT+02, MJGL13, VIKM+C2], Localized
[WCE95], Logical
[Chu99, SR98], Looking
[AK93], Loop
[IS96, YK04, RACE+20, WKLW19], Loops
[WGI90, RRJ+20]. Loss
[ZOF90], Lossless
[Arn07]. lossy
[COC+19, CDL+C9, TDG+C9, UBK+C23], Low
[DF08, KR11, HF24, MK24, PKC23],
Low-Complexity [DF08],
low-order-precision [HF24],
low-order-refined [PKC23], low-overhead
[MK24], Low-Storage [KR11], lower
[RTRZ22]. Lu [Tis97], Luszczek [Ano24],
M2L [KKB+21]. Machine
[AAB+21c, BR03, CC95, CSV91, CBV97, EEL15, IKMS+C9, KFJ20, MC90, SS89, Wit92, ZK93, BAP+C2, CBM13, DMJS19, DEQO21, EJD+19, KWEF18, MP18, NSI20, SK20, SSU+C2, BJ92, GKH+C9, HD91, KKV03, KKD05, LK10, LPG88, Don87], machine-learning-based [CBM13],
machinery [TGS+C2], Machines
[AH93, BBDR95, CDT05, CB95, HC10, HGWN14, Jea13, KS89], macromolecular
Multi-block [KDL01, Ytt97]. Multi-body [BGJ+99]. Multicommodity [NK89].
Multicomponent [HD05, SVN09]. Multicomputer [Man97]. Multicomputers [MOK00].
Multicore [CWG09, BS14, DTFDP14, DDKK19, LWT+11, MPD+12, MBC+18, OPW+12, RSCC+24, THH+13]. Multicores [BH17]. Multithreading [BBG+10]. Multithreading
BBG+10]. Multithreading [HFV+12, LD24]. Multithreading [BGJ+10]. Multithreading

KdOCR+20, MRD+15]. neuromorphic
neutron [CHWS20].

neutron [BSH+16, DFT+15, SSR+14].

Newton [DTL+21, GKM00].

Newton-multigrid [DTL+21].

Next [DE03, HT04a, MFB+19, WD24, ZKRA14].
	next-generation [MFB+19, WD24, ZKRA14].

NMR [BHK+88].

No [An087c].

Nodal [FSN08, MSP+24].

Node [KHP+04, BGO20, IK18, KL13].

node-level [IK18].

nodes [HYH+20, TNLP13].

NOE [CBG+94].

NOE-Restrained [CBG+94].

noise [ALL13, WLFH16].

Non [BCG+10, CAK+07, GSHL03, uITH07, AWGW19, RDG12, SLL+19].

Non-Data-Communication [BCG+10].

Non-Dedicated [CAK+07, GSHL03].

non-deterministic [SLL+19].

non-Hermitian [RDG12].

non-hydrostatic [AWGW19].

Non-Polynomial [uITH07].

nonblocking [DIJ+19, WLFH16].

Nondeterminism [BBT23, CRS+19].

Nonequilibrium [YW93].

nonhydrostatic [AGC+19].

noninteracting [PMF+20].

noniterative [IMB+19].

Nonlinear [AK91, ABAS87, HT04b, KVY+90, DTL+21, GEKO19, JRT16, KLR+21].

nonstationary [DTL+21].

Nonsymmetric [KC92a, KC92b, MC90, Ma00].

Normal [YRA+02, Haj93].

Northern [UB95].

Notice [An01a, Ano24].

Novel [CBG+94, DGJ09, FWZ91, SG07, Cak20, HTP+14, PNC16, VDF+23].

Novo [NKL+08].

NSF [Bra91, Sch92, Sal87].

NSF-Sponsored [Sal87].

NT [An01a, CLP+99].

NuChart [TDM+17].

NuChart-II [TDM+17].

NuCl [TDM+17].

NuCh [TDM+17].

Nuclear [FSS13, IHMM87, BHZ+23, DLDDL19, LD24].

nucleon [LDL19].

NUMA [Jea13, MKM+19, OPW+12].

Number [An092h, FG97, FU12].

Numbers [BEF+95].

Numerical [ABF+99, ABB+94, DMT01, DE03, Ede93, IJ93, LWL05, Nag89, PR95, PPR03, RDF+01, Poz97, RAB+15, RIO11, RKKC90, SG91, THDC09, AAB+21a, AAA+22, BGA+21, BSS15, IGA24, KMM+23, MAB+13, MKM+19, SDF+17].

Numerically [Mah90, WJS+90].

Nvidia [BLU+22, KNS21, RTRZ22].

NWChem [JDD18].

O [BCP+20, DLY+98, DEL+12, IBC+10, KKC98, KES+17, LPJ98, MMD98, MS95, NFK98, OWO98, PH91, SW01, SR98, TLC98, TD08, TNCC21, WWA+11].

Oak [ABF+08, DGH+93, HGD91].

Object [NHG+96, SE12].

Object-Oriented [NHG+96].

Objective [PPK09].

oblivious [CHT+19].

observable [RAB+15].

observations [ZKRA14].

obstacle [CBBS+11].

Obstacles [MBF+11].

Occupancy [GLGB+11].

Ocean [Cov08, HAF+96, KJ05, KN95, WSCZ05, CDG+14, EMP+18, KTP+24, JO90].

Oceanographic [CBA+18].

October [OL05].

ODE [BCC+09, BH99, KR11].

Offline [An087a].

Offload [dRADS+18a].

Offloading [GWKN08, HCCG20].

Ohio [BBW90].

Oil [KR94, KR95].

OLCF [An022a, NBE+22].

On-Board [SPTT08].

on-Demand [EW06].

On-Line [LWOB97].

On-the-fly [GSA+19].

One [GFD05, LRT07, TGT05, Udd17].

One-IPC [Udd17].

One-Sided [GFD05, LRT07, TGT05].

Ongoing [MEK+19].

Online [FAB+21, LC06].

Onto [QH08].

Open [LWOB97, BS+14, CGW19, GCSK13, AEG+03].

OpenACC [MGS+15, OGM+16, QHH+17].

OpenCL [ASA+19, CLBS17, RGB+18, RJJ+20].

OpenDDA [DGJ09].

Opening [PRT90].

OpenMOC [BSH+16].

OpenMP [SZC12, BF01, BBDH14, BBC+00, CLVYC+24],
HHSM19, LRLG19, MS02, MV20, MMDA19, OPW+12, TM23, THDS19.
OpenMP-parallel [HHSM19]. Operating [CW01, EDSV06, HI12, HI13, HI15].
Operation [BBR10, BHdR09]. operational [CBA+18]. Operations [FCLG07, GFD05, MS09, TRG05, TGT05, Akb24, GG14, KH14, ŠCKW19].
Optimization [AKP+18, ABB+94, BFLL99, BGB+96, BELF07, CGST19, HL10, HA91, IYY04, KMH+14, LT88, PPK09, RW03, SCD+19, SCB+95, SR05, TXD+07, TRG05, YLL+14, ABD+18, BRGR11, BH12, FIMU19, IMW+13, KES+17, NMAE13, PB23, SDJ17, SHK+18, UZM+14, WD21, YWL+14].
Optimizations [PSV+16, DCD+13, Jea13, PUR94, WKLV19]. Optimize [KKB98, GVF+18]. Optimized [MSK92, THDS19, IK18, MK24].
Optimizing [AKC+19, DDKK19, FSS13, GG11, KILL13, MAB+13, MCG04, Mor89a, NSI20, TGT05, WCE95, WCDS99, BJWS20, EJD+19].
PAPI [JDAD19]. papillomavirus [ABH+18]. Par-BF [LGDH16]. Paradigm [BGB+96, DCL+08]. Parallel [AWS01, AAC+97, AS00, APD+15, AK91, AM00, AHB+16, AEPR92, ABB+94, BGG05, BD01, BCCL09, BBB99, CCH94, CBW95, Cho01, CV91, Chn99, CEL+97, CB95, CM97, CJK+05, DEKV92, DLY+98, Dem90, Di00, DFS+05, DZRS99, DMT01, DZDR95, Ed93, EG05, EDS95, FG97, Ga88, GCCC+03, GKN+96, GKP97, GDS17, GP93, GGS01, GL97, GKM100, HKK88, HVWS09, HVSW09, HR97, H418, HLV00, H396, HT04b, H893, HZ91, IBC+10, JLO05, JL89, Jon92, KDL01, KCK9a, KCK9b, KTT99, Kok88, KR11, KS05, LD24, Lap22, LJ005, LPJ98, LWOB97, Lus09b, MC90, MS09, MMD98, MA15, MS02, MSMW07, MT89, MWAR+87, MP93, Mat95, Mav02, MD99].
Parallel [MWC+05, McR87, Meu88]. MBF+11, Mon89, Mor89a, MSK92, MS95, NK89, NKR90, NKN+08, NHa+96, NZ93, NFK98, NKP+00, OW098, ODD07, Pan92, Pan97, PR95, PPR03, PC08a, PK04, RW03,
RR96, RS03, SBF90, SWW94, SABD13, SW01, SS89, SPTT88, Sha88, SCB+95, SM06, SR98, Sim90, SSNM92, SG91, SK92, SGB10, SMW87, TBA+17, TLC98, TMW+99, TR92, Ts97, TD08, UB95, VLO+08, VSHN14, WSCZ05, WG07, YRA+02, YHG+07, YY93, Ytt97, ZK93, ZCZ+13, Acd21, AKW19, dRADS+18a, dRADS+18b, BLC17, BH12, BCLP17, CSCI9, CMHB15, DKMT18, DAB+12, DEL+12, DCLS19, EJD+19, GBB18, GHL15, GKR+22, GHHS15, HLW+16, HLZ+20, HLS+17, HHSN19, IVG+20, IGA24, IMH+11, IMH+12, ICPSG18, ILCLG20, IJB22, IKM+19, JdSA+17, KT94, KHS+19, KRR19, KES+17, KDH18, Kum89, LGP88, LGDH16, LSLR+20, Parallel
[BSW+14, RACE+20, VSS+13, WSD+14].
Parallelisation
[ACM88, CFK+94, MYC92, VRRL18, dSSB+08, DMSM18, DTL+21, Jon12, KDN18, RSCC+24].
Parallelization
[ALJ+07, CDL20, CBV97, Cow08, Cza03, DGP+97, GCD97, HE01, KM95, LP10, LVA+13, MOW+00, Ren92, WBG06, CIW17, CDG+14, KSF22, MFF+17, MMDA19, Osz16, SZC12].
Parallelizing [ALF+18]. Parameter
[FBB03, JK20, SH93].
Parameterizations [WD05, AJ24].
Parameters [LR09]. ParaScope [CCH+88].
PARCOACH [SCB14]. Park [UB95].
Parkbench [HL00]. Parmetis [LDGR03].
PARSEC [ML20]. Part
[HVWS09, HVWS09, SR05]. Parthenon
[GDM+23]. Partial
[Key09, Meu88, RMS+18, KS89, YZC+15].
Participate [Mar87c]. Particle [DR06, DDM87, MB87, MD99, MR90, PGTS10, ABH+18, HF24, MBF+21, NSI20, WET+19].
particle-in-cell [WET+19]. particles
[PMP+20]. Partition [LQJG16].
Partitioned [MHW15, SBG10, ABD+18, ABG+19, LGDH16]. Partitioner [SR05].
Partitioner-Centric [SR05]. Partitioning
[LR07, SR05, WCD93, Ytt97, BJWS20, SABD13]. Partitions [WCE95]. Passing
[Ano93d, Ano94b, BC14, BH97+06, BRU05, CGW09, Cot04, GL04, IBC+10, KKD03, KKD05, LP98, SWHP05, TGT05, SMZ+18, ZKRA14, SLG95]. PASSION
[BH00]. Path [Luc09, MAF+22, SJ71].
Paths [Rao02]. patients [SKS+13].
Pattern [BE07, APD+15, SKS+13].
Patterns [Ch01, GC08, GKB93, SR98, dRADS+18b, BRR17, DKMT18, EEL15, HGMW12, WEPB12].
Patterns/Operators [GC08].
PC
[CDT05, CK01, LKL05, S01]. PCISPH
[VMPW20]. PCs [AWS01]. PDE
[CCO+19, CHT+19, DTL+21, FMR+20].
PDEs [Ma00]. peak [OY22]. Peaks [TC10].
PeleC
[dFRD+23]. PERFECT [BCK+89].
Perform [Ano24]. Performance
[AS00, ATNN+00, Ano87b, Ano87f, Ano94a, Ano94c, Ano95b, Ano95a, Ano96a, Ano97b, Ano97c, Ano97a, Ano98b, Ano89a, Ano99, Ano00, Ano1a, Ano1b, ARR99, Ano92, Bai88, BGI+99, Bar09, BAA+06, BCK+89, BBH14, BBB+10, BBT23, BGB+18, BBA87, BFNV07, BRM03, BB+92, BBDO0, BDG+00, BELL07, CDQ04, CWH99, CC95, CK01, CDP+94, CAK+07, CSY10, CEL+97, CBR95, CJK+05, Dar00, De93, DH96, DGD+04, DJ09, DBA+09, ISD89, EHTW21, EAG+19, FGC+05, FGI+04, FSC+11, FSN08, FFR+10, FU12, Gun00, HIT+14, HVWS09, HVWS09, HR97, HL00, HLW00, HSLK11, IS96, IKY+10, IHMM87,
Performance [MMN09, MSK92, NFK98, NPT’06, NTKP06, NKP’00, Num04, OCC’08, PPK’04, PB19, PF16, Poz97, PLs05, QHCC17, QWIC02, RIF01, RBL08, RDPK22, SBF90, Sab91, SWH05, SSQ08, SCB’95, SM06, SVN09, SC09, Spr06, SKB01, Ste01, Ste04, SBG10, SFP02, SBBs06, SW04, SB19, THC’96, TMW’99, TAR’08, THDC09, VC89, VR00, VDB04, Wad99, WT99, WCS’23, WBFB04, WG07, WD05, Ye04, YK04, YIN’11, YSP’05, ZLGs99, AKC’19, AAG’23, ATD17, AKP’18, AFGQO19, BLC17, BBA’21, BRGR11, BCP’20, BSH’16, BAP’12, CGGC’16, CSS24, CGW19, Cce20, CMMW23, CS14, CzR’11, CMHB15, CHWS20, DTPD14, DCM’17, DWT’19, DVW’12, DHL16, DAC’14, ECG’13, EB23, EKF’19, EKD’12, Fem90, FMR’20, GVf’18, GHL15, GR17, GMWG10, GSND20, GS18, GDM’23, GSK’15, GGO16, Har11, HLW’16, HPA’22, HCCG20, HLR24]

performance
[IYK16, IFA15, IGBB23, INS’20, JKD’11, JDA19, KDH11, KL13, KNPS21, KMM16, LDL19, LST15, LPB’16, LWT’11, LSLD23, MAB’13, MDW’23, MSPSI15, MCI’13, MW12, MSK21, NME13, OY22, PPC’16, PSV’16, PB23, SFLC18, SSR’14, SZ11, STS17, SK20, SKC10, TR17, TGP19, TKA’17, TNLP13, Ucz’15, VRB’19, WLG’18, WKLW19, WLFH16, WID19, WD21, WD24]

performance-portable [CMMW23]

Periodic [ZBMK11]. PERMAS [AJL’97]

persistent [KV’19]. Perspective [Bar09, YHG’07, PS12]. Perspectives [Ano92n, MP95, Sab91]

perturbation
[KdOCR’20, LWL’23]

perturbation-based [LWL’23]

perturbative [MFP’17]. Pervasive [Ald89]. petafl0p [RWM17]. petafl0ps [TAM’16]. Petascale [Cap09, Her09, HXW’13, WWA’11, JKD’11, MKM’19].

PHAST [MPB’22]. PHAT [MJGL13]. Phi [HCCG20, LSES20]. PhiTM [MMDA19].

Photon [MWAR’87]. phylogenet1c [KPST18]. Physical [Chu99, SR98, WD05].

Physical/Logical [Chu99].

Physical-Logical [Chu99].

Physical/Logical [Chu99].

Physical/Logical/Point-to-Point [Pan97].

Plasmas [BBD23, PMS’04, PLs05].

Platform-Adapted [PMS’04]. Platforms [BLR01, BMR06, Eyr06, MYCR06, OCC’08, dRADS’18a, ABG’19, BJWS20, BBG’18, BSH’16, Cce20, DDKK19, GSND20, IYK16, IMW’13, MDP’12, MFB’19, MFP’17, MFB’21, PPC’16, SHK’18, SB19, UZM’14, Ano19]. Play [Pan97]. PLW [LD07]. pMATLAB [BK07]. POEMS [BBD00]. Point [BSBF89, HC10, Ma00, MC21, CDL’19, LH18]. Point-block [MC’21]. Point-SSOR [Ma00]. Point-to-Point [HC10]. Pointers [LRT07]. points [CdVL’18]. Poisson
Pollution \cite{GGS01, KRR19, RTRZ22}. Polarizable \cite{KFJ20}. Policies \cite{BLOR18}. Policy \cite{EW06}. Pollution \cite{DFH96}. Polyacetylene \cite{ZOF90}. Polymers \cite{AEP92}. Polymer \cite{NAE13}. Polymers \cite{DFC90}. Polynomial \cite{uITH07}. Polytetrafluoroethylene \cite{OWC98}. Porous \cite{DVC88}. Portability \cite{WCSNKP}. POLYMER \cite{BGB98}. Portable \cite{OWC98}. Portable \cite{Mic89}. PowerPC \cite{Mor89b}. Power-Aware \cite{Haj93}. Problem \cite{CDH93, CSV91, DL09, UF89, CCBS11, RRJ20, SKE23}. Problems \cite{BBG95, CD97, FG97, FBW97, GGS01, MR09, NK91, NKR90, SWW94, uITH07, TRS10, TMR10, DTL21, KC18, LNR24, MC21, MBHF15, SHK18}. Power-Aware \cite{BRM03}. Portals \cite{BRM03}. Power-Aware \cite{BQOS21}. Power-Saving \cite{TNBG07}. Powerful \cite{Mic99}. PowerPC \cite{MAB13}. PRACE \cite{BR03}. Practices \cite{PK04}. Pragmatic \cite{DCD98}. Eyr06. Precision \cite{Ano02b, BDL07, AAB21, AFGQ019, Bai20, DAD22, HF24, LHI18, LM23, OY22, RTRZ22}. precisions \cite{HLR24}. Preconditioned \cite{MBHF15, SHK18}. Preconditioner \cite{BBMB19, YB07}. Preemptive \cite{BBMB19, YB07}. Productivity \cite{BBMB19, YB07}. Production \cite{MM92, MDH13. SH93}. Productively \cite{BBMB19, YB07}.
Programmability [CCZ07, CLSS09].
Programme [HT04a]. Programmer [BEK+18].
Programmer-guided [BEK+18]. Programming [BBG+10, BV11, BFO1, BDG+00, CCH+88, CWG09, Cza03, EGG05, Gan88, Gir02, Kal09b, KKSO4, Kok88, Lus09b, Mat95, NPT+06, PA11, PBAL09, Poz97, RWO3, Sha88, SCB+95, SMW87, VEMR17, WLB02, BH17, CCBL18, EDB19, GBB18, GDKS15, HLS+17, IVG+20, LBP18, MGB12, MDH+18, SB19, TM23].
Programs [ACM88, DLR07, GL04, HIC10, LWOB97, NZ93]. Progress [AGL+87, BRU05, CAE+13, DJJ+19, MEK+19].
Project [BHK+06, CBB+96, ESD+22, PK04, BCC+01, DRA+09, DBM+11, EW22, GER21, Mic09, OKTR11, PS87, PHB04, Wit92].
projection [MGFP20]. projects [ACE+11].
Promising [Gir02]. proof [RTZ22].
Propagation [GKN+96, ALE+20, ASAK19].
Prototypical [WLVL+96]. Provided [LS06]. Providing [GKP97, SLL+19].
Proximal [NZ93]. Pruners [SLL+19].
pulse [ASAK19]. Purity [HC08].
Purpose [CKE08, Gus04, BE17]. Purpose-Based [Gus04]. Pushing [THH+13]. PVM [BDG+95, Mat95, SYF96]. PVMGeant [DZDR95]. PVODE [BH99]. PyCOMPSs [TBA+17].
Python [FKA+17, GKR+22, LD07, RACE+20, TBA+17].
Questions [PPS09, CGW19]. Queuing [Ish91]. Quintessential [HCC+22].
Reactions [ASW91, Reu92, TWK87]. Reactive [PGTS10, ACK+19, LNR+24]. Reactor [FSS13]. Read [RWM17]. Reading [Ano02r, Ano02s]. Ready [Sim90]. Real [BE17, KK01, NRR97, ODD07, TAR+08, VR00, WLC91, Wri12, YIME19, BCH+23, EHTW21, HPW+16, MPB+22, MJGL13, WZH+17]. Real-Time [KK01, NRR97, VR00, Wri12, BE17, YIME19, BCH+23, MJGL13, WZH+17]. real-world [HPW+16]. Realistic
realizations [DEQO21]. realized [ABL+22]. Reciprocating [YK07].
Recognition
[BE07, RES87, CdVL+18, SKS+13]. Reconfigurable [BCC+06, RRJ+20].
Reconfiguration [LK01, IMB+19].
Reconstruction [CSY10, FFR+10, BGM15, SSCF19, THH+13, VBV+22]. Recovering
[OY22]. Recovery
[BP05, JW06, RRV06, SS10]. reduce
[APD+15, CGW19]. Reduced [BFL99]. Reduced-Dimensionality [BFL99].
Reducing [BDL+18, BGO20, CdVL+18, CSC19, DLY+98, JMC05, LM23].
Reduction
[NRR97, ATL+15, FAB+21, FFZ+23].
References [Ano02p, Ano02q]. refined
[PKC23, Sta19]. Refinement
[BDL+07, HT04b, SR05, GDM+23, ZMG+21, dFRD+23]. region [SPNB14].
region-based [SPNB14]. Regional
[KM95, CDG+14, MTW+22, WSCZ05]. Regression
[VS03]. related [BQOS21]. Relational
[MS09]. Relative
[PUR94, VCG9]. Reliability [BQOS21].
remediation [DK+22, CGW19]. released [ELEB21].
Reliability
[TNL+13, BEK+18, IGA24]. Remeshing
[LDGR03]. Remote
[BB02, DP05, NTKP06, HGMW12].
Remotely [LVO+08]. Renaming
[BPBL11]. rendering [BH12]. repeatable
[NDMR20]. Replication
[BCM+03, BCR+14, TGS+22]. replication-transcription [TGS+22].
Report [Buz89, Sal87]. Representations
[AS00, WW92, CR+98, DF18]. Reproducibility
[Bai20, IVG+20, MEK+19, NDMR20, PBE+19, SLL+19]. reproducible
[IGDQ019]. Request
[DD06]. required
[CdVL+18]. Requirements
[LJP08]. Research
[ANO87a, AUS92, ABB+94, BUS87, CAP09, CDP+94, DON89, DUK91, IHMM87, KH+90, MAR88a, MIR90, PAN97, SG09b, SKC10, TR92, BKW90, KT94, PPB+20, ESM89, dS21]. reservation
[GA+19, MAT03]. reservation-based [GA+19]. Reservoir
[AWS01, EWI88, KR94, KR95, PR95, ZC92, MS19]. Resilience
[BA+21, CGW+09, BCR+14, CBD+17, LF+15]. Resiliency
[AAA+22]. Resilient
[BP18, CGW19, KS05, RMS+18]. Resolution
[DFS+05, HB90, MAB07, WOS08, ANO22a, CHW+15, DVW+12, NBE+22, TGS+22, WD+15]. resolutions
[TL+22]. resolved [KBY+19]. resolving
[LNK+22]. resonance [JKBW18]. Resource
[AAF+01, EW06, FBCC03, MFK09, MAT03, WPBB01, YBY07, CDRV+15, M+14, PIR+20]. Resources
[QH08, ZSL+23]. respiratory
[DK+23, GGMJ+20, TGS+22]. Response
[BBC+00, ZOF90, B+23]. Restart
[SSB+05]. restoration [APD+15].
Restrained [CGB+94]. Results
[BMR06, GNLH+97, JEA13, PUR94, WL+96, BRGR11, BSH+16]. Rethinking
[KE+17]. Retracted [IM+12].
Retraction
[ANO24]. Retrospective
[MAR88a]. reused [JCK+21, QAL+23]. reveal
[ZBH+23]. Reverse
[HHS19, QHC+17, QAL+23]. Reverse-mode [HHS19]. Review
[BUS87, CON88, MAR88a, NAG89]. Reviewers
[ANO20c]. Reviews
[DON87, MAR87a, MAR87b, MCC87]. Revisited
[MS09, SZ11]. RF
[HTW08, YW93]. ride [FV+15]. Ridge
[ABF+08, DGH+93, HGD91]. Rigid
[NAK99]. Rigid-Body-Based [NAK99].
Rings
[RVR+06]. RISC
[GRO03]. RISC-Based
[GRO03]. risk
[ABL+22, CNW+23]. RNA
[SCB+95]. road
[TF+17]. Roadmap
[THDC09, DBM+11]. Rocks
[PAP11]. Role
Role-shifting [CLVYC+24, Pan97, Sab91, DMJS19].

Roles [MMS88]. roll [HRW91]. roll-forward [HRW91].

Routing [CHZ02, MOK00]. RTX [BLU+22]. Run [DLY+98, BDC21, LYL+16].

Rolling [HRW19]. roll-forward [HRW19]. roll-forward [HRW19].

Scaling [S-3800]. Scaling [S-3800]. Scaling [S-3800].

S-3800 [WOG95]. S-MP [La93]. SAM [LNK22].

SAMCEF [GCD97]. Sampling [MR04].

San [Mai87]. Santos [BCP+20]. SAR [AAC+97]. SAR [AAC+97]. SAR [AAC+97].

SARA [SBWS99]. SARS [SBWS99]. SARS [SBWS99].

SAR [SBWS99]. SARS [SBWS99]. SARS [SBWS99].

Satellites [BKS+07]. saturation [CIW17].

Saving [TNBG07, SKSG19]. Scala [SFP02].

Scalability [BCYS11, DR06, FSC+11, FMR+20, GS05, HLW00, KC818, MWC+05, YIN+11, DAB+12, MW12, SphW18, VKM+22].

Scalable [CD06, CH202, DW97, DMT01, FKTO1, HGMW12, IBc+10, JSSZ09, MCW+00, MS05, MAIJS03, SDJ17, SFP02, WLB92, ZLGS99, ZRC+06, dPldA03, BG22, BCH+23, DEE+12, EKF+19, AAT+20, GEK019, HLH+19, JMM+21, JBOT19, KHS+19, TDM+17, YB12, ZB20].

Scalar [Issh01, OCC+08, FU12, KS89]. scalar-type [FU12].

Scale [AS00, AK91, BD01, Ber92, BBA87, BCC+06, CWHP99, Ewi88, Fra05, GGS01, Gun00, GNB11, Her09, HLW00, HSLK11, Joh01, KMJ+23, Key09, KUE+00, LT88, LC06, MPS15, Mor89b, NKR90, Nak99, PS87, SD87, YRA+02, ZRC+06, dSSB+08, AAA+22, AMB+18, BAM+16, BLOR18, BEK+18, DCM+17, EM23, EEL15, FAB+21, FR22, GDKWS15, GMGW10, HIT+14, HYY+22, HRW19, IKMS+19, INS+20, JBOT19, LM03, LDW+12, LWL+23, MBHF15, MJD16, MRR+15, OLOF23, PDD22, STP+13, SIC+19, VOL+14, YIME19, ZSL+23, ZKRA14, ZBH+23].

scalan [BEW16, PBE+19]. Scaling [CGB+94, CK01, CLM+16, GHHS15, ZM07, GR17, INY+14, MKM+19, SKSG19].

Scattering [MBF+11]. scene [SABD13].

Schedule [SBWS99]. Schedule [SBWS99]. Schedule [SBWS99].

Scheduling [ATN+00, BKSR09, BPK+07, BR03, BBH+06, CJ06, CCRV20, CKPD09, CBL06, DLG06, Eyro06, JW06, JPV23, KCC+06, LJC+10, MYCR06, SG07, TR17, WvNM+06, AB+18, ABG+19, BPR18, CSC24, GSA+19, HLC+19, HPA+22, Jon12, LQJG16, Mat03, ML20, OPW+12, WHGT22].

schema [ICPSG18]. Schema [BG00, GS05, DMSMG18, IKMS+19, KPR17, KHS+19].

Schemes [BS88, BSS15, BBMB19, SZC12].

Schrödinger [BFLL99, IKY+10]. Schwarz [GKMT00, MK24, NAC21, PR05].

SCIARA [SDF+17]. SCIARA-fv3 [SDF+17].

SCIARA [SDF+17]. SCIARA [SDF+17]. SCIARA [SDF+17].

SCIARA [SDF+17]. SCIARA [SDF+17]. SCIARA [SDF+17].

SCIARA [SDF+17]. SCIARA [SDF+17]. SCIARA [SDF+17].

[AS00, BAA+06, BBA87, BJK07, DT99, DT11, DT17, Fol90a, Gaf88, GL97, HME90, Hab90, HLP+03, JLL04, JMC05, KPS+96, KBW06, LS90, Mar87a, OCC+08, Sal87, Se92, vLRA+03, ASHH16, CMS+11, CDL+19, CBD+17, DPA+18, DMS19, DMQ12, DT19, DT23, DCD+13, DAC+14, EKD+12, FKA+17, GSND20, IMB+19, JRP+23, LWT+11, MGB12, PBB+20, PBE+19, SIC+19, TM23, TGD+19].
CBB+04, CH94, DLY+98, DFMD94, FSS13, GGS01, Ham91, HKK88, HSLK11, HZ91, KDH11, KT99, KWB06, MD99, MHS11, NKi+n+08, PGTS10, PK04, RTRG+07, SSSW91, SKP+22, THC+96, AAA+22, AKC+19, AKW19, BEW16, CCO+19, CGST19, CDG+21, CMN12, CHWS20, DFT+15, FIMU19, FT19, GGMJF+20, HBKR21, HPW+16, HPS+22, IMW+13, IGBBR23, IJB22, JBOT19, KFJ20, KMJ+23, KMW+13, KBY+19, KHS+19, LVA+13, MBT+24, MFP+17, MAF+22, PPC+16, PMP+20, Rad18, RAB+15, THDS19, TGS+22, YWL+14. **Simulator** [BCM+03, CGGC+16, MSP+24, VSS+13, IKY+10].

simulators [AHB+16]. **Simultaneous** [ABAS87, DTL+21, TNLP13]. **Single** [BCJ01, OY22, TR17]. **Singular** [Ber92].

situation [GCSS13]. **Six** [WOG95, KRR19].

six-dimensional [KRR19]. **SKA** [VFJ+15].

skeletonisation [BE17]. **Skeletonization** [DIB00]. **Skewers** [HC08]. **skinny** [EHTW21]. **SLA** [QH08]. **Sloucing** [Lus09a]. **small** [JMM+21, PUR94, WZH+20]. **Smart** [MBF+11, Gro03]. **sMC** [KPS18]. **Smith** [RGB+18]. **Smoothed** [PGTS10, HF24].

SOA [DLC+08]. **SOA-Based** [DLC+08].

Social [NK90, KTLW18]. **Sodium** [DQFW90]. **Soft** [AG18, GHS15, RMS+18, YZC+15].

Software [ADMP18, Ano87c, Ano87f, BV11, BCC+01, BFNV07, CDP+94, Dar99, DW97, DE03, DBA+09, DBM+11, DGP+97, DJC05, Fol90a, GCD97, GKMTO0, Her09, KS99b, LROI0, LQJG16, LDB+06, MM90, PPS09, PA11, PK04, SG09b, AGK+23, CYZ+20, CSC19, DTL19, ESD+22, GSND20, JDAD19, JdSA+17, JC12, KNPS21].

Software-defined [ADMP18, AGK+23, JDAD19]. **Soil** [CWHP99, MTW+22]. **soil-structure** [MTW+22]. **Solaris** [Ano01a]. **Solid** [DQFW90, SK92]. **Solidification** [MWC+05, SHK+18]. **Solution** [BHK+88, BDL+07, CGB+94, MR90, PRT90, RS03, uITH07, TMMR10, CSGM17, CCBS11, CVG11, CMN12, ESW+12, MEK+19, RDG12]. **Solutions** [Fro91, WD19, WD24]. **Solve** [BCC109, CDHG+93, CDL20]. **Solved** [CSV91].

Solvers [BGG05, BH99, CM97, HR97, KDL01, MA02, PR95, AKP+18, AFL+18, BSW+14, CDL20, CHT+19, EKF+19, ESW+12, HHSM19, KTP+24, KC18, KRR19, KDD18, MV20, OGM+16, RMV+19, RWM17, SO23, YJZ+22, ZZG+14, dFRD+23].

Solvers [DR06, GGS01, Key09, KR11, ATL+15, EAG+19, FMR+20, IGA24, MSHP18, MSKM21, NCA21, RTRZ22, WKLW21].

solves [SZ11]. **Solving** [BS88, BEF+95, CD97, HT04b, IJ93, KS89, Kum89, Man97, NZ93, SBF90, WT99, Ade21, ALE+20, MY24, ML20]. **Some** [Gir02, PPS09]. **Sometimes** [RAGW93].

Sonic [WW92]. **Sorting** [Arn07, BSK14].

sound [MJGL13]. **Source** [CYT+02, BSW+14, MJGL13]. **sources** [PBB+20]. **Sowing** [LG97]. **Space** [BBFC03, JSSZ09, MHW15, ODD07, SBG10, DTL+21, FU12, HLW+16, MVP+12].

space-aware [HLW+16]. **space-parallelism** [DTL+21]. **Spaceborne** [SKB01]. **SPAI** [BBS99, Ma00].

spanning [dAVCM+19]. **spare** [HYH+20]. **Spark** [KWEF18]. **Sparse** [AD93, Ano02a, AGL+87, BJWS20, Ber92, BELF07, Cho01, GG11, HR97, IYV04, KC92a, KC92b, MC90, Ma00, Man97, MCG04, SZ11, SCFK04, UF89, WT99, ASH16, ATD17, BDC21, CVG11, GG14, GGO16, MSHP18, ML20, MGFP20, SCR11, TQOA23, WWC+24].

Sparsity [Cho01, IYV04]. **spatial** [FFZ+23, SPHW18, WDH+15]. **Spatially** [WBG06]. **Spatially-Explicit** [WBG06].
spatio [STP+13]. spatio-temporal [STP+13]. spawning [MAAC+24]. Special [Ano22b, BV11, BM13, BH17, BQSO21, BE18, CEC20, CKE08, DT97, DT99, DT06, DT13, DT17, DT19, DT23, HV18, KM20, MPI98, Mas19, MFB+19, ME14, Nag93, OV13, Par23, PA11, WH20, WD19, WD21, WD24, Yel04, dS21, SDS12].

Special-Purpose [CKE08]. specialization [CBM13]. specialized [EB23]. Species [BB02]. Specific [BH06, CDH+97b, PHF21].

Spectral [BG00, CB95, DFS+91]. Splotch [HGWN14]. SSOR [MAO00]. Stability [ACG+90, BE07, FWZ91, KdOCR+20].

Stabilized [GA24]. Stacking [BBR10]. Standard [Ano94b, Don02a, Don02b, MPI98, MSKM21, THH+13, Poz97].

Standards [Pan92]. Stanimire [Ano24]. StarPU [HGWN14]. stars [HLH+19].

StarSS [PBAL09]. State [CBV97, DKMT18, KNPS21, MYCR06, WLC01]. State-of-art [KNPS21]. Static [BLRR01, BR03, dRADS+18b, QXS+20, SCB14, TR17].

Stationary [SCF04]. Statistical [EGMP93, EJD+19, FWSW02, Her88, MR04, NNR97, VDB04, ZM07, UBE+23].

Status [MB87]. Steady [MYCR06].

Steady-State [MYCR06]. Steering [GKP97, KW06, VR00]. Stefan [CSV91],

stellar [HCC+22]. Stencil [HCCG20, APD+15, PHL21, WKLW19, YSF+14].

stencil-based [WKLW19]. stencil-reduce [APD+15]. stencils [SB19]. step [BOG20].

stepping [BSS15]. Stiff [BCCL09].

Stochastic [AK93, ABAS87, LP10, NZ93, CCRV20].

Stokes [Max02, SBF90, ZZG+14]. Storage [KR11, GG14]. store [KV19, KES+17].

Storm [WJS+90]. Strategies [BCM+03, FBBC03, GWKN08, MOK00, WPBB01, EMP+18, HCCG20, MRD+15, OPW+12, SCD+19, SIC+19, SDF+17, SKSG19].

Strategy [JPDV23, MCV+00, SVN09]. stratified [AMC+18]. stream [BLC17, DKMT18, LBB17]. streamed [GG14]. streaming [BRGR11, MAB+13].

stresses [PLJD24]. Strong [MKM+19, INY+14]. strongly [ZZG+14].

Structural [YCHH90, MJD16, PUR94].

Structure [BH06, CGB+94, CBL10, CSY10, FWZ91, Jon92, KTG99, Liu90, SBC+95, SYF96, TMW+99, HTD+14, HIT+14, HLK+23, KC18, LDDL19, LD24, MTW+22, SKE+23].

Structure-Specific [BH06]. Structured [LDGR03, MA00, SCR05, WBG06, Ytt97, GDM+23, LNR+24, RV15, ZMG+21].

Structures [BHK+88, DFC90, FFR+10, GCL93, GG11, HB90, HAH91, JP93, DSH+16, EMP+18, JKW18]. Studies [CHT+19, CBW95, DQFW90, HOPB92, HE01, LS06, SABK94, BCYS11, GDKWS15, LDDL19, SRR+14, PB19].

Study [ASW91, BF01, CDH+97b, DJJ+19, GLGLB+11, GL97, Hl10, HLS+17, JW06, KKCBS98, KR94, KR95, LC90, MMD98, PPK+04, Sci92, TXD+07, WGI90, WL929, WJS+90, WW92, BS+14, BDFVP15, CGGC+16, CMS+11, DTL19, IFM15, IMB+19, IGBR23, KC18, LFB+15, MBvdG13, MCR+17, OF17, RTRZ22, RRJ+20, SMK+20, TKA+17, THC+11, WZH+20, YWL+14].

Studying [BCM+03, BOD+91, VIKM+22]. subband [VSS+13]. subcellular [CHW+15].

Subdomains [FG97, SO23]. Subgrid [GS05]. Subprograms [Dor02a, Don02b].

Subroutines [KJH96, JO92]. Subsetting [ZRC+06, AMC+18]. substitution
successful [CBA+18]. Suggestions [Ano02r, Ano02s]. suite [WHGT22].

Summary [Moh09, Sal87]. Summations [NDMR20]. Summit [Ano22a, NBE+22].

Sunway [WZH+20]. Supercluster [HBC+08]. Supercomputer [ATD+88, Ano87b, Ano91b, Ano91a, Ano92a, Ano92e, Ano93a, Ano94a, Ano94c, Ano95b, Ano95a, Ano96a, Ano97b, Ano97c, Ano97a, BBW90, CL95, CLP+99, Con88, MKG90, Mai87, McN89, MM90, MA89, Mir90, Mor89a, MR90, Nas92, Sci92, SB04, Web91, WOG95, AGK+23, Ano22a, BHZ+23, BCP+20, Bra91, FU12, KMH+14, NBE+22, SDI+19, Duk91, MAB07, Mar88a].

Supercomputer [OCC+08].

Supercomputers [Ald89, ABF+99, AGL+87, Bai88, BSFB89, BCK+89, BWB+10, BYT91, Bro88, CDD+90, DDM87, Gen88, Mar89a, McN89, MG87, NKn+08, YM91, ZC92, DCD+13, EM23, HI12, HI13, IH15, PH91, SLL+19, WET+19, ZBMK11, Gen88, Bus87, Mar87b].

Supercomputing [Ald89, Bls87, DFP+96, EM89, Eri88, Gas88, GKN+96, LC90, Mar89b, McN87, MMS88, Nas92, NBB+96, Nun87, RS88, SABK94, An92, BB+91b, Bra91, BBW90, KT94, MP95, TR92, All88].

Superconductors [JP93]. Supersonic [MYC92]. Supervised [HGW14].

Supplemented [SBBS06]. Support [BBG+10, BV11, BCC+01, CFB+04, CFK+94, Dar99, Gro03, YSP+05, BCH+23, RMV+19, SKZ+18]. Supporting [ZRC+06].

SUPRENUM [MST88]. surface [BCS11, MCR+17]. surfaces [DF18].

surpassing [OY22]. Survey [BBT23, AAB+21a, ESD+22, GR17, JdSA+17].

survive [GGM+19]. Sustained [MSK92, TAR+08]. SVD [SN21, TQOA23].

Swapping [SC04b]. swarm [ABH+18].

SwinDeW [LJC+10]. SwinDeW-C [LJC+10]. SWIRL [VRB+19]. SX [LT90, Mor89a]. SX-2 [LT90, Mor89a].

Symbolic [Jea13]. Symmetric [BGG05, Gir02]. Symposium [Mar88a].

synchronised [MBHF15].

Synchronization [TGTT05, SPNB14].

Synonymous [DGP+97, Jon12, WDC+12]. syndrome [TGS+22]. syntax [JO92].

Synthesis [CBB+96, KEP04a, Wri12].

Synthetic [MPG93, SVBP13, ZCW+13].

System [AM00, BGI+99, BCJ01, CL95, CLF87, CTD+05, CJK+05, DVW+12, DJC05, ESW+12, GHM+10, GS99, GHZ10, GNB11, HLP+03, JLO05, JLL04, LDB+06, MWM+08, MST88, SSB+05, SG09a, uTHT07, SBG10, SFP02, WLVL+96, CVJ12, DEL+12, HLW+16, IBC+10, JDC+12, LDW+12, MEK+19, ML20, SKS+13, SF93, TNLP13, DCCS10, EDVS06, GCCC+03, MWH15, SM06, WSCZ05]. System-Initiated [SSB+05]. Systems [ATN+00, AGL+87, BGGO5, BCC+09, BV11, BS88, BHLR09, BSCC03, BRT+92, BDL+07, CJ06, Cap09, CW01, CYO8, CBW95, Dar00, Del93, DFH+96, GJMS88, GNB11, Her09, HT04b, Ka09b, KKK11, LP10, MC90, Ma00, Man97, MCW+00, MR04, NKB+00, Sim90, SDA+01, SKB01, VC89, WT99, YRA+02, de99, dPlA03, ABD+18, BG22, BLOR18, BBMB19, BCR+14, BAP+12, CSGM17, CAE+13, CAA+20, CyG11, DHL16, FU12, GKS13, GBB18, HI12, HI13, IFA15, IHI15, IK18, KTWL18, KUM99, LSES20, LST15, LRLG19, LWT+11, LVA+13, LH19, MY24, OPW+12, RV15, RDG12, SCD+19, TKA+17, WD19, WD24, YBL12, ZWS21].

T3D [ABF+99]. T3E [BBBS99, Ma00, SBBS06]. Tables [vLRA+03]. TailuLight [WZH+20].

tailed [FTB13]. tale [Hea15]. tall [EHTW+21]. Target [BG02]. targetDP [GS18]. Task [BR03, CKPD99, CFK+94, CCB18, PDD22, PBAO9, CLO20, CHT+19, EDB19, ELEB21, MBHF15, ML20,
OPW$^{+12}$, RSCC$^{+24}$, SMZ$^{+18}$.

Task-Based [PAL09, CCB18, CDL20, CHT$^{+19}$, EDB19, ELEB21]. **Task-parallel** [PD22, RSCC$^{+24}$, SMZ$^{+18}$]. **Tasking** [MP02, IK18]. **Tasks** [GH10, WvNM$^{+6}$, CCRV20, HTD$^{+14}$, HLH$^{+19}$]. **Tau** [SM06].

Taxol [CGB$^{+94}$]. **TCGMS** [Mat95]. **Technical** [Don02a, Don02b]. **Technique** [ODD07, WGI90, ASH16]. **Techniques** [Arn07, BDL$^{+7}$, FFR$^{+10}$, KM95, VS03, CSS24, INY$^{+14}$, MSHPV18, UZM$^{+14}$]. **Technologies** [AAB$^{+21c}$, AB01, Dar99]. **Technology** [BB02, Dar00, Mer87, VFJ$^{+15}$].

Teflwin(R) [DVC88]. **Telescopes** [Wri12].

Televisualization [HME90]. **Template** [Poz97, BLC17]. **templates** [AAT$^{+20}$].

Temporal [BPBL11, CY08, FFF$^{+23}$, PDDI22, QAL$^{+23}$, STP$^{+13}$, WDH$^{+15}$].

tensor [HPS$^{+22}$, LM23, ŚCKW19, OY22].

tensor-product [ŚCKW19]. **Teraflight** [HLW00]. **Teraflight-Scale** [HLW00].

Teraflops [SS99, TAR$^{+08}$]. **TeraGrid** [Har11]. **Terapixel** [ACF$^{+11}$]. **terminology** [CAA$^{+20}$]. **Tesla** [KTRZ22]. **Testbed** [BCC$^{+06}$]. **Testing** [CDT05, KDL01].

Texas [Nas92]. **texture** [IMH$^{+11}$, IMH$^{+12}$].

Tflop [LYL$^{+16}$]. **Tflop/s** [LYL$^{+16}$].

Thanks [Ano20c]. **Their** [LRO01, Mar87b, RES87, Haj93, PUR94].

Thelma [OKT11]. **Theme** [Har94].

Theoretic [FWSW02, WEPB12].

Theoretical [ASW91, OY22]. **Theory** [BR03, Mer87, Mor89a]. **Thermodynamical** [vLRA$^{+03}$]. **Thermodynamics** [GHK$^{+91}$].

Thin [MD99, GSK$^{+15}$]. **Thin-Film** [MD99].

Thinning [DIB00]. **third** [PFGDM20, Lee03]. **third-order** [PFGDM20]. **thousands** [GHHS15].

Threaded [BBG$^{+10}$, LVA$^{+13}$]. **threads** [CLVYC$^{+24}$, DJJ$^{+19}$].

Three [BCZM07, BWB$^{+10}$, CSY10, DD91, EGG05, LT90, MT89, TWK87, BE17, CRS$^{+19}$, LSS93, PLJD24, YFS$^{+14}$].

Three-Dimensional [BCZM07, CSY10, EGG05, LT90, MT89, BE17, LSS93, PLJD24, YFS$^{+14}$].

three-phase [CRS$^{+19}$]. **Throughput** [GHM$^{+10}$, McN99, AGHR19, CMN12, GVR$^{+21}$]. **throughput-oriented** [CMN12].

Tianhe [CLM$^{+16}$, HXW$^{+13}$, LYL$^{+16}$].

Tianhe-1A [HXW$^{+13}$]. **Tianhe-2** [CLM$^{+16}$, LYL$^{+16}$].

tightened [NOM$^{+19}$].

files** [TRS13]. **Tiling** [SCF04].

Time [ACD07, BPBL11, Kk01, LJC$^{+10}$, MBF$^{+11}$, Nak99, NRR97, Sim90, VR00, Wri12, BE17, BDC21, BSS15, BCH$^{+23}$, DTL$^{+21}$, LST15, MJGL13, QHCC17, QAL$^{+23}$, WZHG17, YIME19, YJZN22]. **Time-Dependent** [MBF$^{+11}$]. **time-domain** [YJZN22].

time-simultaneous [DTL$^{+21}$].

time-stepping [BSS15]. **times** [MP95].

Tingxing [Ano24]. **Tissues** [BCZM07].

Titanium [YHG$^{+07}$]. **Tokamak** [DSD$^{+91}$, KPM$^{+96}$]. **Tolerance** [Cap09, FGC$^{+05}$, GKP97, GL04, JSSZ09, KWB06, BBA$^{+21}$, LRG$^{+16}$, MSHPV18, SKZ$^{+18}$, SMZ$^{+18}$, YZC$^{+15}$].

Tolerant [BHK$^{+06}$, FD04, WvNM$^{+06}$, ASH16].

tomographic [BGM15]. **Tomography** [CDH$^{+97b}$, FFR$^{+10}$, VBV$^{+22}$].

Tomov [Ano24]. **Too** [RAW93].

Tool [LRO01, WBF04, Ytt97, Eri88, GPO$^{+20}$, IMS16, SDI$^{+19}$, TDM$^{+17}$, UZC$^{+15}$].

Toolbox [CD06, RMV$^{+19}$]. **Toolkit** [FK97, LJ005, Poz97, Pap11, LJ005, LJO05, NPT$^{+06}$]. **Tools** [CBM13, DW97, DMT01, DT06, GRC08, LDB$^{+06}$, MWC$^{+05}$, MM90, Pan97, PA11, SS89, SKZ$^{+18}$, WHGT22].

Toolset [NKP$^{+00}$]. **top** [WET$^{+19}$].

Top500 [Feit99]. **topological** [PHF21].

Topologies [MOK00, SW04]. **Topology** [Chn99, GJM18, KPR17].

Topology-aware [GJM18, KPR17].

toroidal [IMW$^{+13}$]. **Total** [YCHH90, RMV$^{+19}$]. **Toys** [SS99]. **Trace** [JKD$^{+11}$, NRR97, BDFVP15]. **Trace-based** [JkD$^{+11}$].

traces [LSES20]. **tracing** [PS12].

Tracking [BGF02, BG02, CYT$^{+02}$].

trait [WLG+18]. transcription [TGS+22]. Transfer

transformation [YCHH90, TGP19]. tuned [WKLW21, YB12]. traversal [FT19, GLZS14]. Tree [SWW94, FT19].

Trees [LK01, JCK21, KPST18, PB23, dAVCM+19]. Trends [Ano87e, Fol90a, Tho90, Bus87].

Triana [HTWS08]. triangle [PS12].

tuned [WKLW21, YB12]. Tuning [Cza03, Kal09a, MJ04, RDG12, TM99, VDB04, Yel04, BH12, CH13, KFJ20, TRS13, THC+11, WZH+20].

Turbine [MKG90, KBY+19]. Turbulence [CDD+90, KPM+96, LWL05, KJM+23, PGK+24].

Turbulent [CB95]. Turkey [BE07].

Turkish [BE07]. Turnaround [MP95].

Twenty [TSH+19]. TweTris [TSH+19].

Two [HE01, Rao02, Hea15, HLH+19, KS89, KDH18]. two-dimensional [KS89].

Two-Paths [Rao02]. two-phase [KDH18].

TwoFold [HLK+23]. Type [CK01, FU12, JP93].

Type-II [JP93].

typical [FU12].

Understanding [ALL3, BBN+10, GSN20, GNB21, WW92].

Unified [SMZ+18, AGC+19]. Unit [LP10, BHZ+23, CMMW23, LQJG16, OYO+24, RDG12, RWM17, YZZW21, ZCZ+13].

unit-accelerated [CMMW23]. unit-based [BH+23].

Units [GLGLB+11, MA15, NTD10, Tho90, AJ24, AAG+23, BE17, CLG13, CMN12, DQS12, GHHS15, HPS+22, KDO16, PH19, SFLC18, SO23, VBVD22].

universe [RAB+15].

University [Nas92, ATD+88, Aus92, GNTLH97, SSN92]. Unprecedented [NBE+22, Ano22a]. unpredictable [GSA+19]. Unroll [MC04].

unsplit [SZC12]. Unstructured [DMDT07, Mav02, MCW+00, WCE95, KC18, WDW+12]. unsupervised [ZCZ+13]. usable [KT94]. Usage [FC07, PIR+20].

Using [BHK+88, BKS+07, BCR+14, BBC+00, CGB+94, CWHP99, CDH+93, CL95, CKE08, CYT+02, CBV97, CW05, FD04, GLZS14, GNTLH97, HAF+96, HLMW00, HE01, HCO8, JLO05, Joh01, KDH11, LRT07, LWL05, Man97, MAB07, MCG04, MSK92, QWIC02, QHO8, Rao02, SBWS99, TM99, THL88, VLO+08, VS03, WGI90, WGR95, WOS08, BLU+22].
AJ24, ABH$^{+18}$, ASAK19, APD$^{+15}$, BE17, BCH$^{+23}$, BCYS11, BGB$^{+18}$, CGGC$^{+16}$, CSC24, CDL20, CIW17, CLBS17, DWT$^{+19}$, DFT$^{+15}$, EKF$^{+19}$, FSC$^{+11}$, FFZ$^{+23}$, GVR$^{+21}$, GDKWS15, HYH$^{+20}$, IMH$^{+11}$, JC12, KTP$^{+24}$, KMJ$^{+23}$, KDO16, KBY$^{+19}$, KTWL18, KL13, LPB$^{+16}$, LNK22, MDI$^{+18}$, MJ16, MJGL13, MGFP20, NS20, Pap11, PNFC16, PH19, RSCC$^{+24}$, SABD13, SOC23, SKS$^{+13}$, TM23, VSW$^{+22}$, VMPW20, VDF$^{+23}$, YZC$^{+15}$. Utility [LS06, YB07]. Utility-Driven [YB07]. utilization [DCD$^{+13}$]. utilizing [AAB$^{+21a}$, SKZ$^{+18}$].

V [BHK$^{+06}$]. V100 [RTRZ22]. vacuum [BLU$^{+22}$]. validation [SCB$^{+14}$]. Value [Ber92, Bus87, SG91, KV19, KES$^{+17}$]. variability [MSK$^{+21}$]. Variable [BBR10, BGB$^{+96}$, AMC$^{+18}$, Bai20, BSK14, ZG$^{+14}$]. Variable-Complexity [BGB$^{+96}$]. variants [CNW$^{+23}$]. variation [LTPK17]. Variational [NK89, DBD$^{+23}$].

Wakeup [TNBG07]. Walk [Wil87]. ward [DSH$^{+16}$]. water [EKF$^{+19}$, EAG$^{+19}$, IVA$^{+13}$, MYG23]. Waterman [RGB$^{+18}$]. Watermarking [TC10]. Wave [BBC$^{+00}$, BEF$^{+95}$, GKN$^{+96}$, ALE$^{+20}$, JRT$^{+16}$, TAM$^{+16}$, VFJ$^{+15}$]. Wavefront [HLW00]. Way [ZWS21, DF$^{+96}$, GKN$^{+96}$, NBB$^{+96}$]. WBTK [JLL04]. WE-AMBLE [HBS08]. Weakest [TLG98]. Weather [MHW15, WOS08, BBA$^{+21}$, MKM$^{+19}$, TLD$^{+22}$]. Web [Men00, WHL03]. WEBCOM [MCS$^{+06}$, DCCS10]. WEBCOM-G [MCS$^{+06}$]. weighted [HFV$^{+12}$]. Wendroff [YFS$^{+14}$]. western [CDG$^{+14}$, Nun87]. while [OY22]. White [Moh09]. whole [SKP$^{+22}$]. Wide [BBA$^{+87}$, DF$^{+96}$, GNTLH97, MYCR06].
MAJJS03, NBB+96, Ade21, GDKWS15].
Wide-Area
[DFP+96, MYCR06, NBB+96, Ade21].
Wideband [CYT+02].
Wigner [TC10].
Wind [KBY+19, MBT+24].
Windows [Ano01a, CLP+99].
Within [QH08, EAG+19, LNR+24].
without [ECG+13].
Word [HRM89].
Work [Dee10].
Work
ow [CY08, Dee10, DCL+08, DCCS10, GMLP08, GRC08, HTWS08, HBSP08, MMW+08, CRS+19, OWC+21].
Workflows
[BKRSR09, LJC+10, QH08, AGK+23, BTRZ+19, CMS+11, DCM+17, DPA+18, DMJS19, ELEB21, GSA+19, HLC+19, JRP+23, PBE+19, TR17, TBA+17, ZSL+23].
Workload
[Del93, JPV23, SC09, TCW06, Har11].
Workloads [ABG+19, CBA+18].
Workshop [BQOS21, Lee03, DT11, LS90].
Workstations [Sal87, VLO+08, RDG12].
World [TAR+08, HPW+16, MPB+22].
Worm [AAF+01].
Wrapper [LD07].
Write [BPBL11, BIC+10].
Write-Back [BPBL11, BIC+10].
WS [HTWS08].
WS-RF [HTWS08].
X [CDH+93, De93, EEL15, LT88, TKS88, THL88, YW93].
X-MP
[De93, LT88, THL88, YW93].
X-MP/416 [THL88].
X-Ray [CDH+93, EEL15].
X1 [SBBS06].
XcalableACC [NOM+19].
XcalableMP [NMI+19].
Xeon [HCCG20, LSES20, MMDA19].
XMU [LT90].
XT3 [ABF+08].
XX1st [BHdR09].
XXL [BHdR09].
Y-MP
[AEPR92, De93, DH96, MYC92, MSK92].
Yale [SSNM92].
Yau [Tis97].
years [BBD+17].
yeast [RPdB+19].
Yellowstone [UB95].
Z [TDG+19].
Z-checker [TDG+19].
Ze-
biak [YWL+14].
Zeolite [CH94].
Zero [SWHP05].
Zero-Copy [SWHP05].
Zimmermann [NS21].

References

REFERENCES

Addison:1997:PSI

Allen:2001:CWE

Aliaga:2023:CBG

Farhan:2020:MTS

Apon:2001:NT
Ando:1987:ECS

Averick:1994:NOC

Aupy:2018:CSA

Ashby:1999:NSG

Alam:2008:EOR

Aupy:2019:CSH

Acedo:2018:CLN

Ando:2022:DTD

Alakent:2007:MPD

Agarwal:2011:DIS

Deb Agarwal, You-Wei Cheah, Dan Fay, Jonathan Fay, Dean Guo, Tony Hey, Marty Humphrey, Keith Jackson, Jie Li, Christophe Poulain, Youngryel Ryu, and Catharine van Ingen. Data-intensive science: the Terapixel and Modisazure projects. *The Inter-

REFERENCES

Altenbernd:2018:SFD

Abdi:2019:AIE

Aupy:2019:MHT

Alam:2023:VSD

Ashcraft:1987:PSM
Allen:2003:EAG

Adeli:1993:CA

Ando:2016:PAE

Abdi:2024:AAP

Ast:1997:RPF

Amman:1991:PPL

Amman:1993:FLB

Akbudak:2024:HBL

Aktulga:2019:OPR

Allegretti:2008:CAD

Anzt:2018:OPE
Al-Kharusi:2019:LPD

Aldag:1989:ISG

Akbudak:2020:ACS

Aldag:1989:ISG

Akkman:2013:UIN

Ammar:2000:PA
Asc:2018:BDE

Asnicar:2018:NNE

Asnicar:2018:NNE

Anonymous:1987:ACR

Anonymous:1987:AIE

Anonymous:1987:AIE

Anonymous:1987:DNS

Anonymous:1987:NNT

Anonymous:1987:SHP

Anonymous:1991:IJSb

Anonymous:1991:IJSa

Anonymous:1991:Ma

Anonymous:1991:Mb
REFERENCES

Anonymous:1991:Mc

Anonymous:1991:Me

Anonymous:1992:An

Anonymous:1992:Ab

Anonymous:1992:Ad

Anonymous:1992:Ad

Anonymous:1992:Ad

Anonymous. The international journal of supercomputer applications-information

Anonymous:1992:LKP

Anonymous:1992:Ma

Anonymous:1992:Mb

Anonymous:1992:Mc

Anonymous:1993:IJS

REFERENCES

Anonymous:1993:Ma

Anonymous:1993:Mb

Anonymous:1993:MPI

Anonymous:1993:IJS

Anonymous:1994:MMP

Anonymous:1994:SAH

Anonymous:1995:IJSb
REFERENCES

Anonymous:1995:IJSa

Anonymous:1996:IJS

Anonymous:1996:IV

Anonymous:1996:ICa

Anonymous:1997:IJS

Anonymous:1997:IV

Anonymous:1997:ICa

REFERENCES

Anonymous:1997:IV

Anonymous:1998:IJH

Anonymous:1998:IIJ

Anonymous:2000:IIJ

Anonymous:2001:AAL

Anonymous. Appendixes: Appendix A: Linux, Windows NT, AIX, Solaris; appendix B: Compilers and pre-processors, MPI implementations, development envi-

Anonymous:2001:IIJ

Anonymous:2002:SB

Anonymous:2002:EMP

Anonymous:2002:Ab

Anonymous:2002:Ad

Anonymous:2002:Ae

Aldinucci:2015:PVD

Arna:2007:LNL

Avila:2019:ISG

Adve:2000:ARM

Aoyagi:1991:ITS

Al-Shorman:2019:UPP

Ali:2016:CSA

Almlof:1988:SCU

Anzt:2017:PEE

Anzt:2015:AGB

Aida:2000:PEM

Austin:1992:CSU

Abate:2001:PCR

Abdi:2019:GAC

Baker:2001:M

Mark Baker and Amy Apon. Middleware. *The International Journal of High Per-
REFERENCES

Bernholdt:2006:CAH

[BAAn06]

Baker:2001:P

[Bam12]

Bamzai:2012:P

Bailey:2018:HPF

[Bai88]

Bailey:2020:RVP

[Bai20]

Bailey:1988:HPF

[Bai88]
Baba:2016:LSH

Bridges:2012:VMB

Biagioni:2002:ARS

Bjorstad:1987:IPL

Benacchio:2021:RFT

Bailey:1991:NPB

Barrett:1991:CSS

Bova:2000:DLP

Browne:2000:CDP

Bell:2017:LBY

Gordon Bell, David H. Bailey, Jack Dongarra, Alan H. Karp, and Kevin Walsh.

Borghesi:2019:PSE

Bhowmick:2023:SGC
REFERENCES

REFERENCES

Buat:2017:SAV

Bell:2003:OGS

Bez:2020:PSD

Bougeret:2014:UGR

Bhushan:2011:SSL
Shanti Bhushan, Pablo Carrica, Jianming Yang, and Frederick Stern. Scalability studies and large grid computations for surface combatant using CFDSHIP-Iowa. *The Inter-
REFERENCES

Ben Youssef:2007:PIC

Barreda:2021:CNN

Beguelin:1995:REP

Besard:2015:CSM

Browne:2000:PPI
REFERENCES

[Bitar:1990:HEM]

[BEH+90]

[Ber92]

[Buttari:2007:POM]

Berthou:2001:COH

Baraglia:1999:OPM

Bounanos:2007:LBD

Breitenfeld:2000:PIS

Brooks:2002:TME

Beltran:2009:HBL

Marta Beltrán and Antonio Guzmán. How to balance the load on heterogeneous clusters. *The International Jour-
REFERENCES

Brooks:2002:SOD

Baboulin:2005:PDS

Baldini:1999:HPC

Bienz:2020:RCA

Amanda Bienz, William D. Gropp, and Luke N. Olson. Re-

REFERENCES

Brunet:1992:AAB

Budimlic:2007:ICJ

Benoit:2009:MCS

Bliss:2007:PPM

Benatia:2020:SMP

[BJWS20] Akrem Benatia, Weixing Ji,

REFERENCES

Michael W. Berry and Ahmed Sameh. Multiprocessor schemes for solving block tridiagonal linear systems. *The Intern-
REFERENCES

[BSPF89]

[BSCC03]

[BSS15]

Miguel O. Bernabeu, James Southern, Nicholas Wilson, Peter Strazdins, Jonathan Cooper, and Joe Pitt-Francis.
REFERENCES

Balouek-Thomert:2019:TCC

Buslee:1987:BRS

Buzbee:1989:RT

Balaji:2011:SIP

Bhatel:2010:UAP

REFERENCES

Bertrand:2005:APC

Brooks:1991:MSS

Childs:2020:TSV

Carpenter:2013:PT

REFERENCES

REFERENCES

Casanova:2001:DMS

Constantin:1997:PHK

Chirravuri:1995:MPA

Chang:1995:PMH

Conejero:2018:TBP

REFERENCES

Colbrook:1997:E

Cuny:1997:BDS

Albert Chan, Frank Dehne, and Ryan Taylor. CGMGRAPH/CGMLIB: Imple-

Chavez:2018:DMR

Clinckemaillie:1997:PIP

Chandy:1994:IST

Mani Chandy, Ian Foster, Ken Kennedy, Charles Koelbel, and Chau-Wen Tseng. Integrated support for task and data parallelism. *The International Journal of Su-
Cachau:1994:SST

Cappello:2009:TER

Calderon:2016:IPU

Calore:2019:OLB

Chalios:2018:D

Charalampos Chalios, Giorgis Georgakoudis, Konstantinos Tovletoglou, George Karakostantis, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. DARE. The International Journal of High Per-

[Cho23] Edmond Chow. Editorial. The International Journal of High Performance Comput-
REFERENCES

REFERENCES

Chau:2008:AFM Nguyen Hai Chau, Atsushi Kawai, and Toshikazu Ebisuzaki. Acceleration of Fast Multipole Method using special-purpose computer GRAPE. *The Inter-
REFERENCES

Casanova:1999:AST

Chang:1995:PIL

Clancy:1991:CSC

Corne|
REFERENCES

Chow:2016:SHF

Chien:1999:DEH

Chapman:2009:P1

Criado:2024:RST

Coupez:1997:_DSP

Thierry Coupez and Stéphane Marie. From a direct solver to a parallel iterative solver in 3-D forming simulation. *The International Journal of Supercomputer Applications and High Performance Comput-*
Craig:2015:IPP

Chalmers:2023:HPP

Commer:2012:IKS

Chen:2023:RAE

Jie Chen, Zhiwei Nie, Yu Wang, Kai Wang, Fan Xu, Zhiheng Hu, Bing Zheng, Zhennan Wang, Guodi Song, Jingyi Zhang, Jie Fu, Xiansong Huang, Zhongqi Wang, Zhixiang Ren, Qiankun Wang, Daixi Li, Dongqing Wei, Bin Zhou, Chao Yang, and

Connolly:1988:BRS

Cotronis:2004:CMP

Cowles:2008:PFC

Chapp:2019:TPW

Che:2014:BCP

Cicotti:2019:RCP

Pietro Cicotti, Manu Shantharam, and Laura Carrington. Reducing communication in parallel graph search algorithms with software caches.

Martin J. Chorley, David W. Walker, and Martyn F. Guest. Hybrid message-passing and shared-memory programming in a molecular dynamics application on multicore clusters.
REFERENCES

Carrillo:1999:ILS

Chen:2008:ACD

Chen:2002:SLT

Chen:2020:HSC

Czarnul:2003:PTA

References

Chen:2011:GAM

DeAmorim:2003:GEP

Dekate:2012:ISP

Dubey:2014:EFM

Dieguez:2022:EHP
REFERENCES

Dongarra:2011:IES

Downes:2010:DRS

Dubey:2013:POB
REFERENCES

Diener:2017:MMA

DD06

Dayde:2019:OHD

DDKK19

REFERENCES

[Dawson:1987:PMP]

[Darema:2000:P]

[deLaBourdonnaye:1989:EEM]

[Dongarra:2003:SAN]

[Deelman:2010:GCM]

[Dennis:2012:CSS]

REFERENCES

Daberdaku:2018:CVR

Dixon:1990:QCM

Diacchin:1996:CVE

Deshpande:1994:ADN

DeFanti:1996:OWW

deFrahan:2023:PAM
Marc T. Henry de Fra-
Dennis:2005:HRM

DGD+14

REFERENCES

Marco Danelutto, Peter Kilpatrick, Gabriele Mencagli, and Massimo Torquati. State access patterns in stream parallel computations. The International Journal of High Performance Computing Applications,
REFERENCES

122

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>DOI</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

Dongarra:1992:E

Dongarra:2002:PBLa

Dongarra:2002:PBLb

Damevski:2005:DRT

Deelman:2018:FSW

dePinho:2003:GDE

REFERENCES

REFERENCES

[DT01]

[DT06]

[DT09]

[DT11]

[DT13]

[DT17]

REFERENCES

[Dunnebacke:2021:ISP] Jonas Dünebacke, Stefan Turek, Christoph Lohmann, Andriy Sokolov, and Peter Zajac. Increased space-parallelism via time-simultaneous

[ECG+13] Mohammed EM Diouri, Ghislain L. Tsafack Chetsa, Olivier Glück, Laurent Lefèvre, Jean-Marc Pierson, Patricia Stolf,

REFERENCES

Eder:2005:MPP

El-Gamal:1993:CIS

Endrei:2019:SML

Eppeler:2012:HPL
Elliott:2019:ISP

Elshazly:2021:AEE

Einkemmer:2023:SLK

Eoyang:1989:SJI

Erisman:1988:STP

Evans:2022:SSI

Evans:2012:MSI

England:2006:RLP

Evans:2022:MCE

Ewing:1988:LSC

Eyraud:2006:PAS

Foster:2021:ODA

Faerman:2003:RAS

Friesner:1987:CAL

Falzone:2007:PMF

REFERENCES

ISSN 1094-3420 (print), 1741-2846 (electronic). URL http://hpc.sagepub.com/content/21/2/155.full.pdf+html.

REFERENCES

REFERENCES

Friedemann:2022:EFE [FR22]

Frattolillo:2005:RLS [Fra05]

FroeseFischer:1991:CVA [Fro91]

Filgueira:2011:ACE [FSC+11]

Fladrich:2008:IPN [FSN08]

REFERENCES

Felker:2013:OMC

Fortin:2019:DTT

Fabregat-Traver:2013:ATL

Fukazawa:2012:PMM

Fisher:2002:SIT

Ferreira:1991:SES

REFERENCES

Charis Gantes, Jerome J. Connor, and Robert D. Logcher. Simulation of the deployment process of multiunit deployable structures on a CRAY-2. The International Jour-
REFERENCES

[Gainaru:2013:FPH]

[Geist:2009:IEC]

[Gonzalez-Dominguez:2015:LSG]

[Grete:2023:PPP]

[Giitsidis:2017:PIA]
REFERENCES

Garcia-Gasulla:2020:RMS

Guo:2016:HFB

Gray:2015:SSM

Gates:2015:HPH

Garzon:2010:EEC
Jose Ignacio Garzon, Eduardo

Gottlieb:1991:HTC

Gropp:2000:GNK

Geist:1997:CPF

Gharat:2022:DNE

[Glatard:2008:FEW] Tristan Glatard, Johan Montagnat, Diane Lingrand, and Xavier Pennec. Flexible and efficient workflow deployment of data-intensive applications...

Gourdain:2010:HPC

Gupta:2011:UCO

Gilli:1993:EMS

Gonzalez:2020:HHD

REFERENCES

[Gun00] Neil J. Gunther. The dynamics of performance collapse in large-scale networks and computers. The International Journal of High Per-

REFERENCES

Hood:2008:BCS

HSP08

Herrero:2008:WA

HBSP08

Holzer:2021:HEL

Hsueh:2008:FPG

REFERENCES

Hamid:2010:CMB

Harris:2022:EMS

Hernandez:2020:OSS

He:2005:CMM

Haidar:2015:BMC

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hosono:2024:EIL</td>
<td>Efficient implementation of low-order-precision smoothed particle hydrodynamics</td>
<td>Natsuki Hosono and Mikito Furuichi</td>
</tr>
<tr>
<td>Halappanavar:2012:AWM</td>
<td>Approximate weighted matching on emerging manycore and multithreaded architectures</td>
<td>Mahantesh Halappanavar, John Feo, Oreste Villa, Antonino Tumeo, and Alex Pothen</td>
</tr>
<tr>
<td>Heath:1991:EII</td>
<td>Early experience with the Intel iPSC/860 at Oak Ridge National Laboratory</td>
<td>Michael T. Heath, George A. Geist, and John B. Drake</td>
</tr>
<tr>
<td>Huckelheim:2019:RMA</td>
<td>Reverse-mode algorithmic differentiation of an OpenMP-parallel compressible flow solver</td>
<td>Jan Huckelheim, Paul Holland, Michelle Mills Strout, and Jens-Dominik Müller</td>
</tr>
<tr>
<td>Hermanns:2012:SDM</td>
<td>Scalable detection of MPI-2 remote memory access inefficiency patterns</td>
<td>Marc-André Hermanns, Markus Geimer, Bernd Mohr, and Felix Wolf</td>
</tr>
</tbody>
</table>
REFERENCES

Tony Hey and David Lancaster. The development of Parkbench and performance prediction. The International Journal of High Performan
REFERENCES

Catherine Houstis, Spyros Lalis, Marios Pitikakis, George V. Vasilakis, Kyriakos Kritikos, and Antonis Smardas. A

Hong:2024:HPC

Huisie:2000:PSA

He:2016:EHP

Hu:2020:PA

REFERENCES

REFERENCES

REFERENCES

He:2009:PMAb

He:2009:PMAa

Huang:2003:VDH

Hori:2013:PMD

Hori:2020:OUS

Hirokawa:2022:LSI

[HYY+22] Yuta Hirokawa, Atsushi Yamada, Shunsuke Yamada, Masashi Noda, Mitsuharu Ue-
moto, Taisuke Boku, and Kazuhiro Yabana. Large-scale ab initio simulation of light-matter interaction at the atomic scale in Fugaku.

Ikengar:2002:P

Iverson:2018:VMM

Ivanovic:2019:MLD

Inamura:2010:HPQ

Imbernon:2020:HIV

Khaled Z. Ibrahim, Kamesh Madduri, Samuel Williams, Bei Wang, Stephane Ethier, and Leonid Oliker. Analysis and optimization of gyrokinetic toroidal simulations on homogeneous and heterogeneous platforms. The International Journal of High Performance Computing Appli-
REFERENCES

REFERENCES

Jurczuk:2021:FER

Jagode:2019:PSD

Jagode:2018:ANC

Jin:2017:SSM

Jeanot:2013:SMA

Jurczuk:2018:GBC

Jagode:2011:TBP

Heike Jagode, Andreas Knüpfer, Jack Dongarra, Matthias Jurrenz, Matthias S. Müller, and Wolfgang E. Nagel. Trace-based performance analysis

Jesperesen:1989:CFD

Jalby:2004:WNS

Jin:2005:IPR

Jacobs:2021:ER

REFERENCES

REFERENCES

Kahaner:2007:P

Kale:2009:EAD

Kale:2009:PME

Keahey:2000:LCA

Kirby:2019:WFS

S. K. Kim and A. T. Chronopoulos. An efficient parallel algorithm for extreme eigenvalues of sparse nonsymmetric matrices. The Inter-
REFERENCES

Kim:1992:EPAb

Kong:2018:SSI

Kreaseck:2006:IAS

Karimi:2011:HPP

Kronbichler:2018:FMP

Kerlick:2001:PTP

[KDL01] David Kerlick, Eric Dillon, and David Levine. Performance testing of a parallel multi-

Katti:2018:EFD

Kemal:2016:MSA

Kepner:2004:HPC

Kepner:2004:HPO

REFERENCES

Kougkas:2017:RKV

Keyes:2009:PDE

Kadupitiy:2020:MLP

Kumar:2010:ACC

Kolev:2021:EED

Kurb2009:HGC

Kerb2004:PEA

Kohl2019:SEC

Kulk2013:OPC

Kitchens1990:UDE

Tom Kitchens. The U.S. Department of Energy’s “grand challenge” program. *The In
Kerbyson:2005:PMP

Kramer:1996:LBL

Kohnke:2021:CFM

Kandaswamy:1998:ESA

REFERENCES

Kumahata:2016:HPC

Kurzak:2008:AGF

Keyes:2013:MSC

Kim:1987:DIV

Michelle Y. Kim, Anil Nigam, George Paul, Robert J. Flynn, and Garry H. Rodrigue. Disk interleaving and very large

Kondratyuk:2021:GAM

Koide:1990:VSC

Kok:1988:PPA

Kerb:1996:ISE

Kirmani:2017:ESS

Kuan:2018:MSA

Korch:2011:PLS

Kremer:1994:COR

Kormann:2019:MPS

Kaufman:1989:STD
REFERENCES

Kurzyniec:2005:FRH

Kramer:2009:CAP

Kronbichler:2023:EDL

Kennedy:1994:CSM

Kassen:2022:FGP

REFERENCES

Kimura:1999:DPC

Kang:2024:IBM

Klusek:2018:ISD

Kuc:2004:PHP

Kurc:2000:EPP

Kumar:1989:STL

Swarn P. Kumar. Solving

REFERENCES

sagepub.com/content/21/3/249.full.pdf+html.

[LBB17] Lai:1993:DDM

[Lap22] Lapworth:2022:PEI

[LC90] Labarta:2009:BVT

[LC06] Liu:2006:RLS

X. Liu and A. A. Chien. Re-

[LBP18] Lusk:2018:EMP

[LC90] Lee:1990:NCS

Lu:2015:CIO

Luszczek:2007:HPD

Langr:2024:PMD

Lusk:2006:IAS

Laframme:2003:APS

REFERENCES

[Lastovetsky:2010:RAP] Alexey Lastovetsky and Tahar Kechadi. Recent advances in...
REFERENCES

REFERENCES

REFERENCES

Lastovetsky:2010:AHC

Latham:2007:IMI

Lee:2006:USD

Lazowska:1990:WSC

Duff:1989:CEC

Lawson:2020:AEH

Gary Lawson, Masha Sosonkina, Tal Ezer, and Yuzhong Shen. Applying EMD/HHT analysis to power traces of applications executed on systems with Intel Xeon Phi.
196

REFERENCES

Luszczek:2023:CMT

Liu:2020:PHB

Lowther:1993:IAV

Lee:2015:HPE

Lescrenier:1988:LSU

REFERENCES

Menasce:1989:AMS

Ma:2000:CIP

Magoules:2015:AAL

Martin-Alvarez:2024:DSM

Mavriplis:2007:HRA

Malas:2013:OPS

REFERENCES

Joanne L. Martin. Book reviews: High-Speed Computing:
REFERENCES

REFERENCES

REFERENCES

Martin:1987:SVM

Martinez:2018:FGS

Migliori:2011:PCT

Mniszewski:2021:EPA

McDonagh:2015:ASS

Steven McDonagh, Cigdem Beyan, Phoenix X. Huang, and

Min:2024:TEW

Ma:1990:IIM

Ma:2021:PBI

Mellor-Crummey:2004:OSM

Marker:2013:CSM

REFERENCES

REFERENCES

Maha

REFERENCES

Moreton-Fernandez:2018:CAE

Miranda:2017:EPP

Moutafis:2020:HMP

Tieqiang Mo and Renfa Li.

REFERENCES

McRae:1988:CRS

Mohr:2009:SIW

Mackenzie:2000:CMN

Montry:1989:MPM

Monitzer:2012:CLB

Moriarty:1989:OSL

Moriarty:1989:PPL

REFERENCES

Mahinthakumar:2002:HMO

Mirin:2005:SIF

Mach:2009:PAE

Molano:2019:DFP

McIntosh-Smith:2018:ABF

Moriarty:1992:PPS

K. J. M. Moriarty, S. Sanielevici, and D. W. Kuba. Parallel processing and the sustained production performance
REFERENCES

Morgan:2021:UPV

Malony:2007:CMO

Melander:2024:MPN

McIntosh-Smith:2015:HPS

Mierendorf:1988:SS

REFERENCES

Mandell:1989:PPT

Mccallen:2022:CRG

Mantas:2020:HOC

Mirin:2012:IPS

Martin:1987:MCP

McManus:2005:ASM
Kevin McManus, Alison Williams, Mark Cross, Nick Croft, and Chris Walshaw. Assessing the scalability of multiphysics

Ma:2008:GEW

Ma:2024:IPH

Moon:1992:MLP

Marchal:2006:SSS

Middleco:2023:PCG

[Nag89]

[Nag93]

[Nak99]

[Nass92]

[Norm96]

[Norm22]
Matthew R. Norman, David A. Bader, Christopher Eldred, Walter M. Hannah, Benjamin R. Hillman, Christopher R. Jones, Jungmin M. Lee, Jr Leung, Isaac Lyngaaas, Kyle G. Pressel, Sarat Sreepathi, Mark A. Taylor,

REFERENCES

Nagurney:1989:PSV

Nagurney:1990:SPE

Nakano:2008:NUA

Nudd:2000:PTP

Narayanan:2013:HMP

[Nakao:2019:IEH]

[Nakao:2019:EXT]

[Nickolayev:1997:RTS]

[Novakovic:2021:IHZ]
Nikolic:2020:OPP

Nath:2010:IMG

Nieplocha:2006:HPR

Numrich:2004:PMB

Nunns:1987:SWC

Nielsen:1993:MPP

Salvatore Orlando and Domenico Laforenza. Preface: Selected

Ostapenco:2023:MEO

Ossen:2023:IND

Ootomo:2024:DIM

Olivier:2012:OTS

Oliker:2013:ISI

REFERENCES

Planas:2009:HTB

Peterka:2020:PRD

Pouhard:2019:CRS

Plaza:2008:CVF

Plaza:2008:P

Antonio Plaza and Chein-I Chang. Preface. The Inter-
REFERENCES

Pacella:2022:TPS

Phillips:2016:PAH

Ponte-Fernandez:2020:FST

Prabhu:2018:DRC

Pavlov:2024:GBM
Palmer:2010:CBF

Persons:1991:DAD

Pichler:2019:FEM

Primet:2004:GNM

Pichel:2010:ILI

Pieper:2021:DSL

Andreas Pieper, Georg Hager, and Holger Fehske. A domain-specific language and matrix-free stencil code for investigating electronic properties of Dirac and topological ma-

Persons:1991:DAD

Pichler:2019:FEM

Primet:2004:GNM

Pichel:2010:ILI

Pieper:2021:DSL

Andreas Pieper, Georg Hager, and Holger Fehske. A domain-specific language and matrix-free stencil code for investigating electronic properties of Dirac and topological ma-
Prades:2020:MRU

Post:2004:SPM

Plank:2009:RLC

Patil:2024:ITD

Putman:2005:CPP

Porcu:2020:HSB

Pianu:2016:NA

Poczo:1997:TNT

Palmer:2016:GFD

Papadopoulos:2004:CLH

Patra:2009:ESS
REFERENCES

Pineda-Torres:2002:IFS

Profeta:1994:RES

Qu:2023:ETD

Quan:2008:MHC

Qawasmeh:2017:PPR
Qin:2020:SPD

Qi:2002:HPS

Reverdy:2015:DFO

Radziunas:2018:MSB

Raw:1993:HCC

Rao:2002:NEE
[Rao02] Nageswara S. V. Rao. Netlets for end-to-end delay minimization in distributed computing over the Internet us-

Rodriguez:2008:EMP

Rogers:1987:DIG

Ries:2012:TSL

Rogowski:2022:PAR

Ramon-Cortes:2020:AAP

REFERENCES

[Renard:2006:DRA] Hélène Renard, Yves Robert,

Raghavan:2015:AEH

Rabenseifner:2003:COA

Robertsen:2017:DGP

Sabelli:1991:PRH

Sanjurjo:2013:PMC

Stouch:1994:SSB

Terry R. Stouch, Howard E. Alper, and Donna Bassolino-Klimas. Supercomputing studies of biomembranes. *The International Journal of Su-

[SBF90] Abdulmannan Saati, Sedat Biringen, and Charbel Farhat. Solving Navier–Stokes equations on a mas-

Su:2010:PPW

Su:1999:UAS

Sellappa:2004:CEM

Sievert:2004:SMP

Skinner:2009:IEE

Shapiro:1995:OPA

Saillard:2014:PCS

Serpa:2019:OSG

Strout:2004:STS

SSSTCSAICS:1992:NSC

Swirydowicz:2019:ATP

Kasia Świrydowicz, Noel Chalmers, Ali Karakus, and

Shantharam:2011:EDS

Sullivan:1987:ADL

Skjellum:2001:SA

Spataro:2017:NSF

Stegailov:2019:AIM

Vladimir Stegailov, Ekaterina Dlinnova, Timur Ismagilov, Mikhail Khalilov, Nikolay Kondratyuk, Dmitry Makagon, Alexander Semenov, Alexei Simonov, Grigory Smirnov, and Alexey Timofeev. Angara interconnect makes GPU-based desmos supercomputer an efficient tool for molecular dynamics cal-
REFERENCES

Schmitt:2017:SCP

Simon:2012:ISI

Sirovich:1992:MAL

Shahingohar:2012:FGA

Said:2018:LAP

Sun:2002:SPS
Xian-He Sun, Thomas Fahringer, and Mario Pautano. Scala: a performance system for scal-

Smooke:1991:NMA

Sonmez:2007:NEB

Seager:2009:CCM

Song:2009:EP

Somwaru:1993:GCA

Agapi L. Somwaru and Kenneth Hanson. Globally convex agricultural production system: parameter estima-
REFERENCES

Shapiro:1988:PPV

Szustak:2018:POS

Simmendinger:2019:ISG

Simon:1990:HPS

Shirayama:1990:FV

Strip:1992:SMM

REFERENCES

Stevens:2020:MBA

[SKE+23]

[SKB01]

Sterling:2001:HPC

[SKP+22]

Schade:2023:BEB

Suchyta:2022:EFH

Sun:2010:HPC

REFERENCES

Shende:2006:TPP

Sun:2020:SVM

Szymanski:1987:PPR

Subasi:2018:UFT

Sistek:2023:APB

Schreiber:2018:BSS

Symeonidou:2014:DRB

Sprunt:2006:MCP

Setoain:2008:GPB

Simitci:1998:CLP

Steensland:2005:PCM
Johan Steensland and Jaideep Ray. A partitioner-centric model for structured adaptive mesh refinement parti-

REFERENCES

Sterling:2001:IPC

Sterling:2004:PMM

Saltz:2013:FBA

Spataro:2017:HPC

Spaord:2013:MSA

Sivagama:2009:DCE

Schikuta:2001:P

Swany:2004:BPT

Snir:2014:AFE

REFERENCES

257

REFERENCES

Schive:2012:DUH

Tsuboi:2016:TDF

Tiyyagura:2008:TSP

Tejedor:2017:PPC

Turner:2022:EMA

Tuan:2010:AWB

Trivedi:2006:HAW

Tseng:2008:EPC

Tao:2019:ZCF

Tordini:2017:NIR

CONCLUSION

In conclusion, the work presented in this paper demonstrates the effectiveness of the proposed methodology for accelerating high-performance computing applications. The integration of AI-driven multi-resolution simulations with cryo-EM has significantly enhanced the capabilities of these applications in terms of both speed and accuracy. The results presented in this paper suggest that this approach holds promise for a wide range of applications in high-performance computing, including those related to molecular dynamics and protein folding.

FUTURE WORK

Future work in this area could include the development of more advanced AI models for multi-resolution simulations, as well as the integration of this technology with existing high-performance computing frameworks. Additionally, further research is needed to evaluate the scalability and performance of the proposed approach on larger and more complex datasets.

REFERENCES

REFERENCES

Tiwari:2011:ATF

Trefethen:2009:DHP

Teijeiro:2019:OPS

Treibig:2013:PLM

Terki-Hassaine:1988:MDF

Thompson:1990:GFB

[Tho90] W. Reid Thompson. Global four-band spectral classifi-
cation of Jupiter’s clouds: Color/albedo units and trends.

[Tis97]
Françoise Tisseur. Parallel implementation of the Yau and Lu method for eigenvalue computation.

[TKA+17]
George Teodoro, Tahsin Kurc, Guilherme Andrade, Jun Kong, Renato Ferreira, and Joel Saltz. Application performance analysis and efficient execution on systems with multi-core CPUs, GPUs and MICs: a case study with microscopy image analysis.

[TKSK88]

[TLdS22]
John A. Taylor, Pablo Larraondo, and Bronis R. de Supinski. Data-driven global weather predictions at high resolutions.

[TLG98]
Rajeev Thakur, Ewing Lusk, and William Gropp. I/O in parallel applications: The weakest link.

Tseng:2021:DAI

Thanakornworakij:2013:RMS

Teijeiro:2018:TCB

Tomas:2023:FTS

Timson:1992:CSC

REFERENCES

REFERENCES

REFERENCES

Uddin:2017:OIH

Umar:1989:MD

Sira-ul-Islam:2007:QNP

Ukidave:2014:APE

VanGendt:2022:PAP

Van-Catledge:1989:TGM

REFERENCES

CODEN IHPCFL. ISSN 1094-3420 (print), 1741-2846 (electronic). URL http://hpc.sagepub.com/content/29/1/37.

VanBeeumen:2022:ESM

Valencia:2008:PPR

vonLaszewski:2003:FBS

Verma:2020:PIU

Vigueras:2014:ACD
Videau:2018:B

Vetter:2000:RTP

Vazhkudai:2003:URT

Venkat:2019:SHP

Vondrous:2014:PCP
Alexander Vondrous, Michael Selzer, Johannes Hötzer, and Britta Nestler. Parallel com-

Worley:2005:PPP

Wyrzykowski:2018:GEN

Wyrzykowski:2019:GEN

Woo:2015:GCM

Wu:2012:CTU

Whalen:2012:NTC

Wang:2019:MGP

Weber:1991:NSF

Wong:2007:PPT

[WG07] Adam K. L. Wong and Andrzej M. Goscinski. The performance of a parallel TSP program and byte sequential benchmarks executing on a

Wilhelmson:1990:SEN

Wichmann:2019:PAO

Wichmann:2021:RBC

Wholey:1992:CFC

Wang:1991:PHP

Widener:2016:NPB

Wright:2012:ART

Wang:2005:PCR

Wienke:2014:TAS

Wang:1999:PEM

Wang:2016:EPI

Wrzesinska:2006:FTS

Gosia Wrzesińska, Rob V. van Nieuwoort, Jason Maassen, Thilo Kielmann, and Henri E. Bal. Fault-tolerant scheduling

REFERENCES

Ye:2007:PUD

Ye:1990:TEC

Yamin:2003:TMC

Yelasar:2007:P

Yelicke:2004:SIA
REFERENCES

Young:1996:ICM

You:2014:EMC

Yamazaki:2019:RTS

Yoshii:2011:PSE

REFERENCES

fully vectorized code for
onequilibrium RF glow dis-
charge fluid modeling and its
parallel processing on a CRAY
X-MP. The International
Journal of Supercomputer Ap-
plications, 7(1):50–63, March
1993. CODEN IJSAE9. ISSN
0890-2720. URL http://
journals.sagepub.com/doi/

Yuan:2014:OFA

[YZW21] Shijin Yuan, Shicheng Wen,
Hongyu Li, Xinfeng Zhang,
and Qin Liu. An optimization
framework for adjoint-based
climate simulations: a case study
of the Zebiak–Cane model. The Interna-
tional Journal of High Per-
formance Computing Applica-
CODEN IHPHCL. ISSN 1094-
3420 (print), 1741-2846 (elec-
sagepub.com/content/28/2/
174.

Yao:2015:DSE

[YWC14] Erlin Yao, Jiutian Zhang,
Mingyu Chen, Guangnuin
Tan, and Ninghui Sun. Detec-
tion of soft errors in LU de-
composition with partial piv-
oting using algorithm-based
fault tolerance. The Interna-
tional Journal of High Per-
formance Computing Applica-
CODEN IHPHCL. ISSN
1094-3420 (print), 1741-2846
(electronic). URL http://
journals.sagepub.com/doi/

Zwick:2020:SEL

[YZZW21] Yutong Ye, Hongyin Zhu,
Chaoying Zhang, and Bing-
hai Wen. Efficient graphic
processing unit implementa-
tion of the chemical-potential
multiphase lattice Boltzmann
method. The International
Journal of High Performance
Computing Applications, 35
CODEN IHPHCL. ISSN
1094-3420 (print), 1741-2846
journals.sagepub.com/doi/

Zyagin:2023:GGS

Maxim Zyagin, Alexander
Brace, Kyle Hippe,
Yuntian Deng, Bin Zhang,
Cindy Orozco Bohorquez,
Austin Clyde, Bharat Kale,
Danilo Perez-Rivera, Heng
Ma, Carla M. Mann, Michael

Zheng:2011:PHL

Zheng:2011:PHL

Zhu:1992:HMM

Zhu:2013:PUS

Zhu:2013:PUS

Zhang:1993:EMC

Zounmevo:2014:ESC

Zaki:1999:TSP

Zender:2007:SPC

Zhang:2021:ABS

Zaider:1990:CAA

Zhang:2006:SSD

X. Zhang, B. Rutt, Ü. Çatalyürek, T. Kurç, P. Stoffa, M. Sen, and J. Saltz. Supporting scalable and distributed data subsetting and aggregation in large-scale seismic data analysis. The International Journal of
REFERENCES

Zhou:2023:OMS

Zheng:2023:OMS

Zheng:2021:DPF