
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

06 November 2018
Version 2.00

Title word cross-reference

2 [VSS+13, Wal18], 256^4 [IKY+10]. 3
[ARR99, BGM15, CSGM17, GGS01, HSLK11, KC18, PR95, THL88]. ^2
[AMC+18]. ^3 [KPST18]. a [TSK88]. d = 2
[BRT+92]. CH + H_2 ⇔ CH_3 ⇔ CH_2 + H
[ASW91]. CuO_2 [SSSW91]. ILU [SZ11]. k
[TNLP13]. K_2 [CBW95]. LU
[BLRR01, DD89, DD91, YZC+15]. M × N
[BYCB05, DP05, JLO05]. N
[HJ96, SWW94, DAB+12]. * [NC18].

-Body [HJ96, SWW94, DAB+12]. -D
[ARR99, GGS01, PR95, THL88].

0th [RAGW93].

100 [IHMM87]. 100k [INY+14]. 10P
1A [HXW+13]. 1s [McN89].
Adapting [DE03]. Adaptive
[AH93, CKPD99, CW05, EDSV06, FSC+11, HT04b, JSSZ09, Kal09b, RV15, SR05, TRS13, VR00, Wri12, LST15, LPB+16, FSC+11].
Adaptive-CoMPI [FSC+11]. Additive
[PR95]. Address [MHW15, SBG10].
Addressing [SWA+14]. adjoint [YWL+14].
adjoint-based [YWL+14]. Administration
[SDA+01]. Adsorption [CH94]. Advanced
[Ano87a, MA15, TC10, Don89]. Advances
[KKDV03, KKD05, LK10, NPT+06, BC14].
Aerodynamics [YM91]. Aerospace
[MAB07]. Agenda [Ano87b]. agent
[DD91]. 860 [HGD91, KR95]. 87545
[Bus87].
Algorithm
[AH93, AEPR92, ARR99, BCCL09, Bai88, BMT89, CBW95, CBV97, DB00, GJMS88, GCD97, HA91, HT04b, IJ93, JL89, KKY+90, KC92a, KC92b, LP10, LRBS89, LJC+10, Mar87a, Mor89a, SCB+95, SD87, TRS+10, UF89, WCE95, ABH+18, AHB+16, GMB15, DSH+16, GHL15, KWEF18, MJGL13, NMAE13, UZM+14, YZC+15, YB12].
algorithm-based [YZC+15]. Algorithms
[AM00, BG02, Cha88, CDT05, CAK+07, Fro91, GD09, GKMTO0, Hdv18, KLJ87, MS09, MPS15, NKS9, NKS9, PM+04, RRV06, SC04a, Shn88, Wad99, CdlVL+18, ESW+12, FTB13, NCC18, McR87]. aligned
[RWM17]. Alinea [MA15]. All-Gather
[TRS+10]. All-to-All [BJ92]. Alliant
[DD91]. Allocation [AAF+01, FBBC03, WPBB01, YB07, Jea13, MRD+15, SPNB14].
Alpha [KAP+04]. Altera [RGB+18].
Alternative [SWHP05]. Amazon [Pap11].
AMBLE [HBSP08]. Amdahl
amines [PUR94]. ammonium [PUR94]. Amplitude [BGK+90]. AMR [RV15, SZC12]. analogs [PUR94]. Analysis [ACD07, BBC+00, Del93, DH96, DEF08, EGMP93, Eyr06, GHM+10, GNB10, HVWS09, HVSW09, HLW00, IMW+13, IHHM87, Ish91, LM03, LWL05, MB87, Mc90, RS03, SQQ08, SCB+95, SE92, SC09, SFGC09, SBG10, SBS06, THDC09, WBF04, YRA+02, ZRC+06, BBHD14, BCLP17, IMH+11, IMH+12, JKD+11, LH18, MPD+12, MP18, MCR+17, MJ16, MRD+15, PF16, STP+13, SDJ17, TKA+17, TDM+17, LS90]. Analytic [MA89]. Analytical [FFR+10]. Analyze [KKB98]. Analyzers [Ano01a]. Analyzing [BRU05, NC18, UZM+14, WPBB01]. Anatomy [FTK01, KWEF18, YFH+96]. Andabyss [Spr06]. Animal [UB95]. animated [LSS93]. Animation [SS89]. Annex [Ano02f, Ano02h, Ano02g, Ano02i, Ano02j, Ano02e]. Announcements [Ano92a, Ano92c, Ano92d]. Aperture [MPG93, ZCZ+13, SVBP13]. API [BH00]. Appendix [Ano01a, Ano02f]. Appendixes [Ano01a]. AppLeS [SBWS99]. Application [AS00, Bar09, BKR098, BCC+01, BWB+10, BPK+07, BB02, CGW09, DW97, DFMD04, FTB13, FSC+11, GHM+10, GHZ10, Kal09a, KKB98, KS09a, MSHPV18, Mic09, MS95, NKR90, OCC+08, PFK09, PCH+10, SC09, TM99, TKA+17, CMS+11, DEL+12, MCR+17, Osz16, SHK+18]. Application-based [MSHPV18]. application-level [DEL+12]. Application-tailored [FTB13]. Applications [AGR+03, Ano91b, Ano92g, Ano92e, Ano92f, Ano93a, Ano94a, Ano95b, Ano95a, Ano96a, Ano97b, Ano97c, Ano97a, BGG05, BP01, BDP01, BV11, BM12, BM13, BBH+06, BRU05, BJ92, BJK07, Bus87, CBL10, Cot04, Cza03, Dar99, Dec10, DH96, DE03, FGC+05, Fra05, GKP97, GMLP08, GG14, HT04a, HLW00, HRM89, JMC05, KBA00, Key09, KUE+00, LDGR03, Lee03, LM03, kLCCW07, MKG90, MYCR06, Mar87a, MAB07, ME14, MYC92, Mor89b, NFK98, NPT+06, RBMF87, SC04b, SNNM92, SVN09, SBG10, SKC10, TXD+07, TLG98, TAR+08, Wal03, WWA+11, WBF04, ZOF90, dSSB+08, ASHH16, Ano94c, ABD+18, BH17, BRGR11, BPR18, BSQ+14, BEK+18, BGB+18, BG11, CDRV15, CBD+17, DAB+12, DMQS12, ECG+13, GCS13, HGWN14, JRT16, KPR17, LRG+16, LWT+11, MGB12, MCR+17, MDH+18, MCU+13, PH91, PNFC16, RV15]. applications [SDJ17, SKZ+18, SLG95, SMZ+18, TNLP13, THG+11, UZM+14, WDW+12, Ano98b, Ano99, Ano91a, Ano98a, Ano00, Ano01b]. Applications-Information [Ano92g]. Applied [vLR+03, BE17]. Applying [Dem90, LDGR03, MBHF15]. Approach [BYCB05, DZ07, FBW+87, KS09b, LDB+06, NTKP06, Sha88, uITH07, Spr06, DCM+17, FTB13, GS18, HGWN14, MGB12, MP18, MJ16, PNFC16]. Approaches [SWHP05, MJ13]. Approximate [Cho01, HFV+12]. Approximation [DGJ09]. Aqueous [PRT90]. Architectural [Gro03, TXD+07]. Architecture [BAA+06, Hua03, HWP03, Ish91, KBA00, KFM+10, SC04b]. Architectures [BFL99, GD09, HD05, HaV18, HLW00, HSLK11, MS02, RWS13, RS03, SSSQ08, BSK14, HFV+12, IMH+11, IMH+12, JO99, KILL13, LNSMA15, STP+13, Udd17, VOL+14, YFS+14]. Area [DFP+96, MYCR06, MAJS03, NBB+96, Rad18]. Argonne [Don89]. ARION [HLP+03]. Arithmetic [BSBF89, Gro03]. ARMC1 [NTKP06].

Chemistry [ATD+88, Bro88, EDS95, Mar88a, NFK98, TMW+99]. Chesapeake
[WLVL+96]. China [SKC10]. chip
[KDH18, VEMR17], chips [LTPK17]. Cholesky [Jea13]. Chroma [JC12].
Chromodynamics [Liu90], CICE
[CMHB15]. Circular [AEFR92].
Circulation [KM95, LSL05]. CLAS
[DZDR95]. Class [McN89]. Classification
[Tho90, WEPB12]. Client [kLCCW07].
Client-Side [kLCCW07]. Climate
[CC95, KJH96]. CM
[ANR97, DSH+16]. Clusters
[AWS01, BG09, DVB05, CAG+07, CWG09, CDCV06, DT99, DT11, DT17, Gir02, KS05, LDB+06, MWC+05, PPK+04, PC08a, SG09a, Ste01, YB07, Cvg11, DTD14, EEL15, HLS+17, JRT16, JC12, MBC+18, Pap11].
CM [CC95, KJH96]. CM-2 [CC95]. CM-5
Co [ABD+18, GD09, Mat03, BPR18, Jon12, UCZ+15]. Co-Design [GD09, UCZ+15].
Co-reservation [Mat03]. Co-scheduling
[ABD+18, Mat03, BPR18, Jon12]. Coarse
[BGB+96, DZRR99]. Coarse-Grained
[BGB+96, DZRR99]. Coastal [Cow08].
Code [ADS9, AJL+97, BBA87, BH00, CK01, CEL+07, Del93, DZDR95, HL10, HE01, LFW05, MMD98, MS02, MT89, MFB+11, MSK92, PPR03, Pla09, YW93, BSH+16, DAC+14, FU12, HIT+14, INY+14, JK+11, MBvG13, MG+15, SSR+14, TRS13].
Codes [AS00, BGB+18, CL95, DL97, IHMM87, MCW+00, Ren92, SWW94].

coexistence [ABA+18]. Coherent
[WLVL+96, HBS08, NBF+96]. Collaborative
[YY+96]. Collapse
[BBD06, FCLG07, KLM+10, LCZ+15, TRG05, VFD04, KMH+14, SCB14].
Collectives [WLH16]. Collide [NBF+96].
collision [VAL+14]. Color
[IMH+11, IMH+12, Tho90]. Color/Albedo
[Tho90]. Columbia [MAB07, HBC+08].
Combatant [BCS11]. combination
[ASHH16]. Combinatorial [BG11].
Combined [YK04, BLO18]. Combining
[Gir02, Mon12, SCB14]. Coming [de 89].
commercial [MRD+00].
Commercialization [SG09b]. Common
[BMG07]. Communication
[BCG+10, BYCB05, BS+07, BBDR95, HC10, INY+14, JLO05, LR09, LRO10, LRT07, NTKP06, PLS05, QH08, RW03, SWHP05, TRG05, TGT05, BBH+13, DGB+14, IYK16, OGM+16, RM17].
Communication-overlap [INY+14].
Communication/Computation
[BBDR95]. Communications
[ANO87e, BMR06, Bus87, VFD04, SCB14].
Communicators [GDF05]. Community
[DBA+09, HBSM03, CJK+05, DV+12, DEE+12, DJC05, ESW+12, HVK05, JLO05, MS05, MW12, TD08, WD05].
Comparative [MOK00]. Comparing
[BF01]. Comparison [BSK14, CAK+07, Gen88, HC10, Jon92, KM95, Mat95, SR98].
Comparisons [Mak00]. Compensation
[MSW07]. Co-MPI [FSC+11].
Compilation [BJK07, CW05, PG18].
Compiler [CW05]. Compilers
[ANO01, YHG+07]. Complete [LW01].
Completion [CY08]. Complex [ASHH16, Dar99, GKB93, GHZ10, PD04, SCG17].
complex-entry [SCG17]. Complexity
[BMR06, BGB+96, DF08, Spr06, BRGR11].

Component
[BAA+06, DF08, KBA00, KFM+10, MGB12, PGTS10, PPR03, SVN09].

Component-Based [PGTS10, MGB12].

Components [CTD+05, WSD+14].

Composing [HGWN14]. composite components [NMAE13]. composite [LPB+16].

Composition [Cot04, DLB07].

Compositional [AWS01, BBD00, KR94, KR95].

Compilation [BBDR95, CBW95, Cha99, ISD89, GWKN08, Her88, HS93, JP93, Nag89, SSNM92, Ste09a, Ste09b, Tis97, WSCZ05, SVBP13, WEPR12, ABB+94, KT94, TR92].

Computational [Blo87, CD97, Cha88, CDH+97b, DVW+12, DFMD94, DGJ09, DT99, DGH+93, Duk91, EGMP93, FBW+87, Gen88, HBSM03, HOPPB2, HL10, JL89, NKF98, Num04, PK04, RBMF87, SK90, SG07, SBWS99, SW04, TMW+99, VR00, Wi92, WPBB01, YMY91, YK07, Ytt97, AFL+18, BSW+14, CGGC+16, CBA+18, JKWB18, TBA+17, VRRL18].

Computations [BBR10, Ber92, Duk91, MA15, MCG04, SD87, BCY11, BCLP17, HDL+15].

compute [KL13]. Computer [BEF+95, Bus87, CKE08, Cla91, Don89, GL09, HKKK88, HD05, JL89, KT99, MM90, PS87, TWK87, VCS9, WBMY90, AHB+16, BAML+16, BE17, HIT+14, HLS+17, INY+14, KMM16, Kum89, MBHF15, PNFC16, TAM+16]. Computer-Aided [MM90].

Computers [Ano87f, BOD+91, BBA87, BH99, CDH+93, CDP+94, ED895, FG97, FFP97, GP93, Gun00, IS96, Jon92, Meu88]. Computing [ATN+00, Ano87a, Ano87d, Ano94c, Ano95b, Ano98b, Ano98a, Ano99, Ano00, Ano01b, Aus92, BV11, BM12, BM13, BGI+99, BAA+06, BRT+92, Bus87, CWH99, DF18, Dar00, Dem90, Don89, DT99, DMT01, DT11, DT17, DCL+08, Ede93, EDSV06, EW06, Eyr96, EFG+05, FGJ+04, Ga88, GMH+10, GW910, GNTLH97, GL97, HME90, Her99, HZ99, JSSZ09, Joh01, KDH11, KEO4a, KT99, Kec04, KHK+09, KS05, LS90, LJC+10, LD07, MPS15, Mah90, MYCR06, Mar87a, Mat95, ME14, PP90, PA11, Rao02, RAGW93, Sab91, Sal87, SKB01, Ste01, Ste04, SPF02, SKC10, THTC09, Wal03, YBA+03, ABH+18, AMB+18, BE17, BLOR18, BAP+12, DTD14, DHL16, DAC+14. ECG+13, EKD+12, Fem90, FKA+17, GR17, Har11, IYK16, IFA15, JDS+17, KT94, LBB17, MC9+13, PPC+16, SWA+14, STS17, TNPL13].

Computing [VSH14, WZHG17, ZKRA14, Lee03, Ano94a, Ano95a, Ano96a, Ano97b, Ano97c, Ano97a].

Computing- [Ano94c, Ano95b].

Computing/Numerical [THDC09].

concurrency [DGB+14]. Concurrent [AH93, BMWD87, Fro91, BRGR11].

Conference [Gaf88, OL05, KKD03].

Configuration [AEPR92, LTPK17, LBB17].

Configuring [PP6+04]. Confined [ACG+90]. Confinement [BGB+18].

Conjugate [AH93, CSV91, MG87, DHL16, KMKM16, PSV+16, PF16].

conjugate-gradient [DHL16]. Connecting [BKS+07].

Connection [Ano87d, Don87, BJ92, CCR95, GKH+91, HZ91].

Conquer [Cza03].

Consensus [KDE18].

Consistent [KS09a].

Consortium [G9].

Constant [MP94].

Constrained [FSS13, LJC+10, NKR90, IK18].

constraint [DAB+12]. constraint-based [DAB+12].

Constraints [CY08, GSHL03, BLOR18, LCZ+15].

construction [PS12]. consumption
[BLOR18, CGGC+16]. Contaminant
[ABF+99]. content [LFB+15, MRD+15].
content-aware [MRD+15]. Context
[KDH11, QH08, YBA+03, CZR+11].
Context-Aware [YBA+03].
context-based [CZR+11]. Contributors
[Ano91b, Ano91a, Ano92g, Ano96c, Ano96a,
Ano97b, Ano97c, Ano98a]. Control [AK91,
AK93, Dar00, DFH+96, VR00, WDW+12].
Controlled [DS+91]. controlling [OF17].
converge [CCBL18]. Convergence
[BRR10, DFS+05]. convex [SH93].
Cooperative
[DBA+09, DCL+08, kLCCW07, IK18].
Coordinate [YBA+02]. Coordinated
[FP02]. coprocessor [VEMR17].
coprocessors [HLS+17]. Copy [SWHP05].
CORBA [PPR03]. Core
[Bri09, DFS+05, MS05, BBG+14, BH12,
CAE+13, DEE+12, KDH11, KILL13,
LM+12, LDW+12, LNSMMA15, MSPS15,
PSV+16, SSR+14, TKA+17, Udd17,
VEMR17, VOL+14, YFS+14, GLZS14].
cores [FU12, INY+14, IYL+16]. Cornell
[Mer87]. correction [YFS+14].
Correlating [CS14]. correlation
[CLG13, GHL15]. Correspondence
[BH09, IS96, PTGb02, WL892]. Cortical
[WW92]. Coscheduling [BL99, CAK+07].
Cost [LJC+10, PPK09, TR17].
Cost-Constrained [LJC+10]. Coulomb
[DGD+04]. Coupled [HAF+96, IKY+10,
JDD18, KT99, LJO05, PK04, KC18].
Coupler [CJ+05, CVJ12]. Coupling
[HD05, JLO05, LJO05, PPR03]. CPL6
[CJ+05]. CPU
[BL99, GHL15, HTD+14, SHK+18].
CPU-GPU [HTD+14]. CPU-MIC
[SHK+18]. CPUs [KDH11, TKA+17].
Crash [HTSK90, CEL+97]. Cray
[ABF+08, AEPR92, DD89, DD91, Del93,
GCL93, LT88, Ma00, MYC92, MSK92,
THL88, YW93, ABF+99, DH96, Lai93,
McN89, SBBS06]. Cray-1s [McN89].
CRAY-2 [DD89, DD91, GCL93].
CRAY-T3E [Ma00]. creation [KILL13].
Creutz [BRT+92]. Crisis [BE07]. Criteria
[BKRS09]. critical [SDJ17]. critical-path
[SDJ17]. Cross [PLS05, CLG13, WVL+16].
cross-bundle [WVL+16]. cross-correlation [CLG13].
Cross-Platform [PLS05]. crowd
[VOL+14]. CRPC [CDP+94]. crucial
[SZ11]. Crystal [Cla91]. crystalline
[HXW+13]. crystallisation [WSD+14].
Crystallography [CDH+93]. CUDA
[DSH+16, GDK15, SDJ17, ZZG+14].
CUDA-accelerated [GDK15].
CUDA-enabled [DSH+16]. CUMULVS
[GKP97, KWB06]. Current
[Cap09, GFP05, GCSK13, LVA+13].
CYBER [ABAS87, Mnc89]. cycle
[AHB+16]. CYDRA [HRM89]. CYDRA-5
[HRM89].
Divisible [DLG06, MYCR06].
Division [Bus87, Don89a]. DNA
[DTDP14, HB90, MP18, PRT90]. Docking
[GHM+10]. DOE [HB803]. Domain
[Cha88, CDH+97b, GCD97, Lai93a, Men88, WCD99, CSGM17]. Domain-Specific
[CDH+97b]. Donation [TCW06].
Donation-Based [TCW06]. Double
[PRT90a]. Drift [BFNV07]. Drift-Diffusion
[BFNV07]. Drive [HE01, PPS09]. Driven
[CHZ02, DCL+08, YB07, DAB+12]. drug
[MPSI15]. Dual [BBC+00, Ish91].
Dual-Level [BBC+00]. Duration [CY08].
DV [TKSK88]. DV-X [TKSK88]. Dynamic
[AAF+01, ABAS87, BCM+03, BGO0, CY08,
DLY+98, DFM94, GFD05, HWP03.
SCB+95, SVN09, TM99, LGDH16, MJD16,
SCB14]. Dynamical [DFS+05, FBW+87,
HT04b, MS05, SWW94, DDE+12, LMT+12].
Dynamics [ACD07, BMT98, CGB+94,
Cha88, CWG90, DQFW90, DGD+04, Gen88,
Gn00, HLI0, HSFLK11, JL89, KYY+90,
MP94, Nak99, NHG+96, PRT90, RBMF87,
SK90, ABH+18, CHW+15, HXW+13].

E-Science [HWP03, HT04a]. Early
[GKN+96, GNTLH97, HGD91, Kal09a,
SLG95]. Earth [DVW+12, ESW+12,
C10+05, CVJ12, DEL+12, IKY+10].
earthquake [AHB+16, CMS+11, BAM+16].
earthquake-cycle [AHB+16]. EC2 [Pap11].
ECG [Arn07]. ECJ [CdVL+18]. Ecological
[WBG06]. Econometric
[ABAS87, GP03, PS87]. Economic
[BE07, LC90, NKR90, SG07].
Economic-Based [SG07]. Economics
[AQ1]. Ecosystem [WBG06]. Edgy
[CK01]. edge [CSGM17, Rad18].
edge-emitting [Rad18]. edge-FEA
[CSGM17]. editor
[DT18, DT17, WD18, dA03]. Editorial
[CDH+97a, Don92, DT09, Mar92, Mar94,
Wit92]. Editors [BM13]. Education
[Mah90, Sab91, KT94]. Effective

[BCK+89, Pan97]. effectiveness [TR17].
Effects [WBMY90, Hai93]. Efficacy
[GWKN08]. Efficiency
[ABAS87, DFS+05, GHM+10, ATD17,
ECG+13, JdSA+17, MJD16, UZM+14].
Efficient [ACG+90, AEPR92, BR17,
CDG+14, DMT97, GML80, HS93, KCS2a,
KCS2b, KUE+00, LRO9, LRO10, LP10,
MG87, MFP+17, OW08, SC04a, TD08,
LC90, NKR90, SG07].
eigen-solver [HTD+14]. Eigenvalue
[HS93, Tis97, UF89]. Eigenvalues
[HC2a, HC2b]. Elastic [ACD07].
Electromagnetic [DP+97, CMN12].
electromagnetics [CSGM17, OGM+16].
Electromagnetism [BGG05]. Electron
[FFR+10, KYY+90]. Electronic
[FWZ91, TMW+99, HHT+14, HHT+14].
electrophysiology [BSW+14].
Electroweak [BG+90]. Element
[AJL+97, BBA87, DFS+05, EGG05, FSN08,
GCD97, KM95, MMD8, MS02, THC+96,
de89, AFL+18, BSW+14, DDE+12,
MGS+15, Mon12]. Eliminating
[HME90]. embedded [KPR17, KK01]. Embedded/
[KK01]. emergency [GDS17]. emerging
[HFV+12, IMH+11, IMH+12]. emitting
[Rad18]. Empirical [VD04, CBM13].
emulation [BAP+12, LST15]. Enabled
[CD06, CD97, CBB+04, DD06, MMW+08,
DHS+16]. Enabling
[AGR+03, DGB+14, FK01, Ste09b].
Encoder [BKRSR09]. Encoding [DLY+98].
End [BV11, GHM+10, LD07, KNK98,
PA11, RO02, SC09]. End-To-End
[GHM+10, RO02, SC09]. Endangered
[BB02]. Endmember [HC08]. endpoints
[DGB+14]. energetic [GSK+15]. energies
[PR94]. Energy [BEH+90, EGC+13,
HTSK90, IHMM87, LTPK17, LWT+11,
MIR90, SGFC09, YCH90, ZOF90, ATD17,
BRGR11, BLO18, JdSA+17, Kit90].
Energy-optimal [LTPK17]. Engine
[DCL+08, HBSP08, WZHG17, SS10].

Environmental [DLY+98, TMMR10]. Environments [Ano01a, CWHP99, CDH+97, DD06, Dec10, DFH+96, DCL+08, Eyr06, FSS13, Gan88, HBSP08, Mat95, MA9, RF01, THC+96, WvNM+06, ADMP18, CCBS11, HI12, HI13, HI15, NC18]. Epidemic [KDN18]. epidemiological [BEW16]. Epiphany [VEMR17]. epistasis [WLG+18]. Equation [BFL10, BEF+95, Fro91, IKY+10, Key09]. Equation-Based [Key09]. Equations [Meu88, SB100, SW1687, KS89, RMS+18, ZZG+14]. Equilibration [NKR90].

ETA [DD89]. ETA-10P [DD89]. Ethylene [DVC88]. Eulerian [INT+14]. European [SD89, MHW15, PHB04]. EUROPVM [OL05]. EUROPVM/MBPI [OL05].

EuroPVM MPI [KDV03]. EV7 [KHP+04]. evacuation [GDS17]. Evaluate [WGI90]. Evaluating [BBDR95, GFD05, LRG+16, VCS9, YFS+14]. Evaluation [ATN+00, ABF+08, Ano87b, BCK+99, BIC+10, BFN07, BG02, BDG+00, CDQ04, CLP+99, KHP+04, RBL08, SWHP05, WOG95, YIN+11, AKP+18, BBG+14, HIT+14]. Evaluations [PPR09]. Event [NRR97, BEW16, DAB+12]. event-based [BEW16]. event-driven [DAB+12]. Events [BG00]. Eviction [BH06]. Evolution [DAC+14, LBP18, WJS+90]. evolutionary [CdV+18, HDV18]. Exact [ZK93]. Example [NNB+96]. ExaSAT [UCZ+15]. Exascale [AF09, Cap09, CGG+09, DBA+09, DBM+11, GD09, GL09, Her09, Kai09, KS09a, KS09b, LAV09, Luc09, Lus09a, MMN09, PPS09, SG09b, SC09, Ste09b, BCR+14, SWA+14, UCZ+15, VFI+15, YB12]. Excited [WLC91]. Excited-State [WLC91].

Experiences [DD06, GKN+96, Reu92, ZKRA14]. Experiment [HME90]. Experimental [BCC+06, EGMP93, JW06, KCB98, KJL87]. Experimentation [Ano87a].

Experiments [AAF+01, AK91, Gir02, PR95]. Explicit [WB06]. Exploiting [Bri10, SCR11, WWA+11, LFB+15].

Exploration [KPM+96]. Explore [JLL04]. Exploring [CBD+17, HAF+96, IMS16].

Expression [RS03]. Expressions [BBDR95]. Extended [Ano02b].

Extending [GRC08, Pap11, LRG+16].

Extendible [CJK+05]. Extension [SVN09, ABH+16]. Extraction [CBL10, HC08]. Extreme [Her09, Key09, KC92a, KC92b, PSS15, ZKRA14, AMB+18, BEK+18, DCM+17, KDN18].

Extreme-scale [ZKRA14, AMB+18, BEK+18, DCM+17].
face [CdVL+18]. Facility [Ano87a, Don89].
FACOM [IHIM87]. Factor [DH96].
Factorization [DD89, DD91, Jea13].
factorizations [DEKV92]. Failure
[GCSD13, KS05, BBI+13, BBG+18,
KDNE18]. failures [Swa+14, TNLP13].
Finite [CKPD99, MBHF15]. Fast
[BGM15, BEW16, BM17, CvG11, DIB00,
PS12, SWW94, IYK16, KDH18, SCR11,
TKSK88, TDM+17, YB12, CKE08, KNP+87,
LDW+12, MJ04]. Fault [BHK+06, Cap09,
FD04, FGC+05, GKP97, GL04, JSSZ09,
KWB06, WvNM+06, ASHH16, LRG+16,
MSHPV18, SKZ+18, SMZ+18, YZC+15].
fault-tolerance [SMZ+18]. Fault-Tolerant
[BHK+06, FD04, WvNM+06, ASHH16].
faults [RMS+18]. Faulty [LK01]. FEA
[CAGM17]. Feasibility [KRD+94, KR95].
Feature [PTGB02, STP+13].
Feature-based [STP+13]. features
[CH13, IMS16, PNFC16, PUR94, ZKRA14].
February [Sc92]. federation [Har11].
Feedback [CGB+94]. Feedback-Scaling
[CGB+94]. Fermi [NTD10]. Fermions
[ZK03]. Fernbach [Mar91]. FETI [GCD97].
FFT [Bai88, GGS01, KMPJ08, Wad99].
FFT-Based [GGS01]. Field
[HC08, HLSK11, PUR94, VSHN14]. File
[BIC+10, GCCC+03, LRT07, kLCCW07,
HLW+16]. Film [MD99]. films [GSK+15].
filter [LGDH16]. filtering [LMT+12].
Financial [BE07, HZ91]. Finding
[FCLG07]. Fine [ACM88, BBG+10, LH18,
WvNM+06, HTD+14]. Fine-Grain
[ACM88]. Fine-Grained
[BBG+10, WvNM+06, LH18, HTD+14].
Finite [AJL+97, BBA87, CC95, CBV97,
EGG05, GCD97, KM95, MMD08, MS02,
MS05, PLS05, THC+96, THL88, de 89,
AFL+18, BSW+14]. Finite-Element
[MS02, BSW+14]. Finite-Volume [MS05].
First
[DQFW90, GKN+96, TMWS91, HIT+14].
first-principles [HIT+14]. fixed [BSK14].

Flames [EDS95, SG91]. FLASH
[DAC+14, JKD+11]. Flexible
[GMLP08, CVJ12, DGB+14]. Flink
[KWEF18]. FLO67 [WLB92]. Floating
[BSBF89, LH18]. floating-point [LH18].
flood [HPW+16]. Flow
[ABF+99, DD06, HKK88, PGTS10, RKKC90,
SS89, SK90, KDH18, LSS93, WDM+12].
Flowfield [MKG90]. Flows
[CB95, GMG01, MYC92]. Fluid
[Cha88, DFMD94, Gen88, HL10, JL99,
KT99, LWL05, PGTS10, RBMF87, SWW94,
SS89, SK90, YW93, KC18, LSS93].
Fluid-Structure [KT99, KC18].
Fluorinated [DFC90]. Fock
[CLM+16, KKCB98, TMW+99]. focused
[JRT16]. Footprint [JMC05]. force
[PUR94]. Forecasting [MHW15].
Forecasts [MHW15]. forests [PNFC16].
format [GG14, GGO16]. Forming [CM97].
Fortran [KR95, DL97, KR94]. Fortran90
[LJO05]. Forum [Don02a, Don02b].
Forward [AK93, LSc09, THL88].
Foundation [Web91, Bls87]. Four [Tho90].
Four-Band [Tho90]. Fourier
[KNP+87, LDW+12, MJ04]. FPGA
[HC08, MHS11, PC08a, RGB+18]. FPS
[LT88]. Fracture [BG00, LPB+16].
Framework [CAK+07, DGJ09, IYV04,
PGTS10, SSB+05, SB04, TMMR10,
vLRA+03, FKA+17, MBC+18, PPC+16,
SE12, SMZ+18, YWL+14, CTD+05].
Frankenstein [WIt92]. Free
[MT89, LBB17]. Free-Lagrange [MT89].
freedom [TAM+16]. Frequency
[TC10, CGM17]. Frontwidth [BMWD87].
FTS [BE18]. Fueling [Her91]. Fujitsu
[Ish91]. Full
[AEP12, JRT16, LK01, RAB+15, THC+11].
Full-wave [JRT16]. Fully
[HR97, YW93, CH13]. Fun [RAGW93].
Function [ODD07, PPK09, ZOF90].
Functional [LR07]. Functions [LS06].
Fundamental [MR90]. Fusion [ACG+90].
BGB +18, DSD +91, FWSW02, FP02, YK04. Future [BSBF89, HBSM03, Wil87, BAP +12, DPA +18]. FV [LMT +12]. FV3 [SDF +17].

FVCOM [Cow08]. FX [DD91]. FX /80 [DD91].

G [MCS +20]. G2 [Cot04]. Galaxies [Her91, NBB +96]. Games [EGMP93].

general-purpose [BE17]. generalized [HT +14, GLGBL +11]. Generation [DE03, HT04a, KMP08, BAP +12, TRS13, ZKRA14]. Generator [CMS +04, DL09].

Generic [CAK +07]. Genetic [RS03, NMAE13]. genome [GBK +15].

gnome-wide [GBK +15]. genomic [MBC +18]. Geodesy [BG90].

geographically [CvG11]. geophysical [CMN12]. GFLOP [SBF90]. Glass [YSSN90].

Global [ATN +00, AID89, CZR +11, DBA +09, GSS05, MHW15, SBG10, TH09, WBSMY90, DFT +15, TAM +16, WDH +15, NPT +06].

Global-Address-Space [CBG10].

Global-aware [CZR +11]. Globalized [GBK +10].

Globaly [SBG93]. Globus [FK97]. Glove [BdF93]. Glow [YWW93].

Glouns [BD +01]. Beh +01]. Going [Her09]. Goodput [BLL99].

GPU [ATL +15, BGM15, CSGM17, CS14, EEL15, GHL15, GKKW05, GGO16, HTD +14, JCC12, JKBW18, KTWL18, LPB +16, MPD +12, MJGL13, OKTR11, OF17, PS12, PNN +16, RV15, SZC12, SPTT08, SE12, SKS +13, WDV +12, YLL +14, ZZZ +14].

GPU-accelerated [CSGM17]. GPU-based [ATL +15, JKBW18, MJGL13]. GPUDirect [OGM +16]. GPUs [ATD17, AKP +18, HDL +15, HPW +16, PF16, TKA +17].

Gradient [AH93, CSV91, MG87, DHL16, KMM16, PSV +16, PF16]. Gradient-like [CV91]. GrADS [BCC +01]. Grain [ACM88]. Grained [BBG +10, BGB +96, DZRS09, WvNM +06, HTD +14, LH18].

Grand [BEH +90, CBB +96, DSD +91, Kit90]. granularity [LQG16]. GRAPE [CKE08].

Graph [CDT05, GLZS14]. graphic [LQG16]. Graphical [DMQ12, KDO16].

Graphs [CLF87, GLGBL +11, LPS10, MA15, NTD10, RBMF87, Sal87, BE17, CLG13, GHHS15, Mon12, RDG12, WBM17, ZZZ +13].

Graphs [LK01]. Gravitational [SWW94]. Gravity [Ham91]. Great [BAM +16]. Green [OOGD7]. Greenbook [HBSM03].

Greenhouse [WBMY90]. Grid [CKP99, Lee03, SBWS99, ASH +16, BCYS11, MCR +17, PPC +16, PS12, AEG +03, AAF +01, AGR +03, BCL +09, BCM +03, BCC +01, BPP +07, BSCC03, BCC +06, CD06, CBSB01, CBB +04, CBB06, CBBS11, CY08, DCL +08, FKT01, GHM +10, GRC08, GHZ10, HSBS08, HT04a, HLP +03, Hua03, HWP03, KH +09, LM03, WWM +08, Man03, MCS +06, PPK09, PBD +01, PHB04, QH08, RIF01, RTRG +07, SWG +03, WAl03, WBB04, WBPP01, WHL03, WvNM +06, YAB +03].

Grid-Based [GRC08, QH08, LM03].

Grid-Enabled [CBB +04, WWM +08].

Grid-Ireland [MCS +06]. Grid’5000 [BCC +06]. Gridded [ZM01]. GridLab [AC +03]. GridPACK [PP +16].

GridRPC [CJ06]. Grids [DT99, DT11, JH01, MA00, VR00, MMHL11, MGB12, BKS +07, BBH +06, Dee10, Fra05, GMLP08, ILY +10, MS09, SG07, SW04, TCW06, vLRA +03].
[BCZM07, Blo87, Cla91]. Guest
[DT18, BM13, DT17, WD18, dA03].
guidance [SDJ17]. Guided
[FBBC03, BEK+18]. GWAS [WLG+18].
Gyrofluid [KPM+96]. gyrokinetic
[IMW+13, INY+14].

Hadoop [CdVL+18]. Hadron
[GKH+91, Liu90]. HAMR [WZH17].
Harbor [BBC+00]. hard [RMS+18].

Hardware
[BH06, KS09b, Spr06, HDL+15, MCD+13].
Harmonics [KMPJ08]. Hartree
[CLM+16, KKC98, TMW+99]. Head
[GKB93]. Heavy [QH08, Reu92].
Heavy-Ion [Reu92]. Helicity [DVC88].
Helium [Fro91]. Helix [PRT90].
Helmholtz [BEF95]. hemodynamics
[AFL+18]. Hermetic [YK07]. Hermitian
[RDG12]. Heterogeneity [TCW06].
Heterogeneity-Aware [TCW06].
Heterogeneous [BM13, BLRR01, BMR06,
BG09, CHZ02, CLBS17, Dee10, EGG05,
KT99, KS05, LR07, LR09, LRO10, ME14,
NBB+96, RAGW93, RRV06, VLO+08,
CMS+11, HGWN14, IMW+13, LST15,
LDW+12, MFP+17, NC18, UZM+14, BM12].
HeteroMPI [VLO+08]. Heuristic [SG07].
Heuristics [CJ06]. Hi [TDM+17]. Hi-C
[TDM+17]. Hierarchical [DD06, GJMS88,
HJ96, HWP03, PBA09, SG09a, WT99,
DHS+16, MJJD16, Wall18, ZBMK11].
Hierarchy [HL10, YK04]. High
[Ano87d, Ano87f, Ano94a, Ano94c, Ano95b,
Ano95a, Ano96a, Ano97b, Ano97c, Ano97a,
Ano98b, Ano98a, Ano99, Ano00, Ano01b,
ARR99, Aus92, Bai88, BV11, BGI+99,
BCC+01, BAA+06, BEH+90, BEF+95,
BRT+92, CWHP99, CC95, CDP+94, CSY10,
CB95, CJK+05, DTD14, DFS+05, DGG09,
DBA+09, DHL16, ISD89, EKDI+12, FGC+05,
FGJ+04, GHM+10, GHL15, GMWG10,
GSK+15, HSLK11, IS96, IKY+10, KDH11,
KBA00, Kep04a, KWB06, Kuc04, KMM16,
LST15, LPB+16, LD07, MAB07, MEMP15,
NKN+08, NF08, NTKP06, PPK+04,
PPK09, PA11, Poz97, Pra01, QWIC02,
Sab91, STS17, SKB01, Ste01, Ste04, SKC10,
TR17, TNL18, TMW+99, THDC09, Wad99,
WLC91, WLG+18, WOS08, YSP+05,
BAM+16, BLC17, BAP+12, CZR+11,
DVW+12, DAC+14, ECG+13, Fem90, GR17,
Har11, IYK16, IFA15, JRT16, MCD+13,
OMI+16]. high [PPC+16, PSV+16, PF16,
TNLP13, Udd17, WDH+15, Mar87a].
High-Cost [PPK09]. High-End
[BV11, NKN+08, PA11]. high-intensity
[JRT16]. High-Level [BCC+01, Udd17].
High-Order [CC95, OGM+16].

High-Performance
[Bai88, BAA+06, BRT+92, CSY10, DJG09,
DBA+09, ISD89, HSLK11, IKY+10, KWB06,
PPK+04, Sab91, TMW+99, THDC09,
DTD14, DHL16, EKD+12, GHL15,
GMWG10, GSK+15, KDH11, KMM16,
LST15, LPB+16, SKC10, TR17, WLH+18,
BAP+12, CZR+11, DAC+14, ECG+13,
Fem90, GR17, Har11, IYK16, IFA15,
PPC+16, PSV+16, PF16, TNLP13].

High-Pressure [WLC91].
High-Resolution [DFS+05]. High-Speed
[Ano87d, BAA+16, Mar87a].
High-Throughput [GHM+10].
High-Wave [BEF+95]. Higher [Mah90].
Highly [BCC+06, Sm90, PS12]. History
[MT89, ZC92, Bra91]. Hitachi [WOG95].
HLA [RTRG+07]. Hoc
[IBC+10, TNBG07, BG02, CHZ02].
HOMME [CAE+13]. homogeneous
[IMW+13]. Homotopy [DZRS99]. Hop
[TNBG07]. Hoshen [CBV97]. Hosted
[HBSM03]. Hough [GLGB+11]. HPC
[BBG+18, CCBL18, GCSK13, Kep04b,
KKH+09, MDH+18, SSQ08, SGFC09].
HPCC [CBB+96]. HPCG [LYL+16]. HPF
[BF01, DL97]. **HPF-Builder** [DL97].

HPVM [CLP+99]. **HPVM-Based** [CLP+99]. **human** [ABH+18, BE17].

Hybrid [BBG+10, BBH+06, CGW09, MS02, RW03, BSK14, BBG+14, CAE+13, GLH15, GGO16, HTD+14, HLW+16, LYL+16, NMAE13, STP+13, SZC12, SDJ17, SMZ+18, SHK+18, WSD+14]. **hybrid-core** [BBG+14]. **hydrodynamic** [SZC12].

Hydrodynamics [LRBS89, PGTS10]. **Hypercubes** [Din91, KLJ87]. **Hypercubes** [DK97, RV15]. **Hyperbolic** [FG97, RV15]. **Hypercube** [Din91, KLJ87].

Hypermagnetic [DF08, HC08, PC08a, HC08, BE07]. **Hypercubes** [LK01].

Immersive [Cho01, CTD96]. **Images** [Ald89, BRM03, CL95, CLF87, Cho01, CTD+05, FD04, HJ96, IBC+10, KLJ87, LMT+12, LT90, MC90, MS02, MG87, MS05, DDD07, SYF96, Ti97, ZZG+14, BG11, GDS17, KTWL18, LNSMMA15, MHW15, NMAE13, OKTR11, OGM+16].

Implementations [Ano01a, RR96, BDFVP15, KWEF18, LWT+11]. **Implementing** [CDT05, LRT07, YFH+96]. **Implications** [RES87]. **Implicit** [GKMT00, MS02, KC18]. **Importance** [BCG+10, SC09]. **Important** [TC10]. **improve** [JdSA+17, LFB+15].

Improved [Ano87b, CMHB15, FSN08, NTD10, DMSMG18, INY+14]. **Improvement** [SVN09, KMM16].

Improving [BL99, BJK07, CGGC+16, DAB+12, JMC05, KL13, MJD16, MW12, YK04]. **in-memory** [WZHG17]. **Incomplete** [ILJ93, Ka90b]. **Increased** [WBM90]. **Increasing** [PHC+10, WW92]. **Independent** [BRU05].

Index [Ano96b, Ano97d, Ano98b, Ano99, Ano00, Ano01b, Ano02n, Ano02l, Ano02m, HC08, BE07]. **Industrial** [DGP+97, GMWG10, LDGR03].

inefficiency [HGMW12]. **Inequality** [NK89]. **Inertial** [BBG+18]. **Infer** [RS03]. **inference** [KPST18]. **Infiniband** [SWHP05, OF17].

Influence [CK01, Ede93]. **Information** [Ano91b, Ano91a, Ano92g, Ano96c, Ano96a, Ano97c, Ano98a, BH06, CHZ02, FWSW02, FP02, IMS16].

Information-Driven [CHZ02]. **Information-Theoretic** [FWSW02].

Infrastructure [FK97, HLP+03, Wal03]. **Infrastructures** [HdV18]. **Initial** [WLVL+96]. **Initiated** [SSB+05]. **Initio** [ASW91]. **injection** [CIW17, WSD+14].

Innovative [MPS15]. **input** [LCZ+15, WVL+16]. **input/output** [LCZ+15, WVL+16]. **Instance** [LJC+10].

Instance-Intensive [LJC+10]. **instances** [TR17]. **Institute** [Duk91, EM89, IHM87].

Instruction [HRM89]. **Instrument** [CBB+04]. **Instrumentation** [TM99].

Integer [Gro03]. **Integrate** [BFLL99].

Integrated [CFK+94, GLZS14, MHW15, WBG06]. **Integration** [ACD07, QWIC02].

Integrative [KHK+09]. **Intel** [GLZS14, HGD91, HLS+17, KLJ87, KR94, KR95].

Intelligence [Ano87d]. **intensity** [JRT16].
Intensive [GMLP08, KUE+00, LJC+10, Mah90, ACF+11, FKA+17]. \textbf{Inter} [FWZ91].

\textbf{Inter-Semiconductor} [FWZ91].

\textbf{Interacting} [KWB06]. \textbf{Interaction} [AEPR92, Liu90, KC18]. \textbf{Interactions} [TMW91]. \textbf{Interactive} [CWHP99, CLF87, KPM+96, LSS93, RBMF87, RTRG+07, SS89, THC+96, VR00, WBFB04]. \textbf{Interchange} [YK04]. \textbf{Interests} [CdVL+18]. \textbf{Interface} [Ano93d, Ano94b, BDG+00, KFM+10, LWOB97, MP98, SLG95, ESW+12, IMS16, ZKRA14, BC14, BBH+06, BRU05, Cot04, GL04, IBC+10, KKD05, LK10, SWHP05, TGT05]. \textbf{Interference} [KCC+06]. \textbf{Interference-Aware} [KCC+06].

\textbf{Interleaving} [KNP+87]. \textbf{International} [Ano91b, Ano92g, Ano92e, Ano92f, Ano93a, Ano94a, Ano95b, Ano95a, Ano96a, Ano97b, Ano97c, Ano97a, Ano98a, Gaf88, Lee03, Ano98b, Ano99, DBA+09, DBM+11, Ano91a, Ano00, Ano01b]. \textbf{Internet} [EDSV06, Rao02]. \textbf{Interoperability} [Kal09b, LDB+06, EKD+12]. \textbf{Interpolation} [JLO05, SBB06]. \textbf{Interpretation} [Fei99].

\textbf{Intrepid} [BWB+10]. \textbf{Introduction} [Ano02o, BM13, DT99, DT13, Hau94, Nag93, OV13, SB18, SDS12, Ste01, Tur95]. \textbf{Inverse} [Cho01]. \textbf{Inversion} [BGM15].

\textbf{ischaemic} [SKS+13]. \textbf{Ising} [BMT89, BRT+92]. \textbf{island} [NC18]. \textbf{island-based} [NC18]. \textbf{isolating} [ALL13]. \textbf{Issue} [BV11, BM13, BE18, DT97, DT99, DT06, DT13, DT17, Fo90b, Hau94, MP98, ME14, Nag93, OV13, PA11, Ye04, BH17, HdV18, SDS12]. \textbf{issued} [CSGM17]. \textbf{Issues} [AD93, BMWD87, CLSS09, CEL+97, Dem90, EGMP93, Men00, GCSK13]. \textbf{Italy} [OL05]. \textbf{Iterated} [RR96]. \textbf{Iterative} [BDL+07, CSV91, CMN12, CM97, FFR+10, MC90, MCW+00, PHC+10, SC04b, SCFK04, AKP+18, CSGM17, CvG11].

\textbf{Jacobi} [BBDD14]. \textbf{Jaguar} [BWB+10]. \textbf{Jam} [MCG04]. \textbf{Japan} [EM89, HMM87]. \textbf{Java} [BJK07]. \textbf{Jini} [Hua03]. \textbf{Jini-Based} [Hua03]. \textbf{JISGA} [Hua03]. \textbf{job} [GJM18].

\textbf{Josephson} [IKY+10]. \textbf{Journal} [Ano91b, Ano91a, Ano92g, Ano92e, Ano92f, Ano93a, Ano94a, Ano95b, Ano95a, Ano96a, Ano97b, Ano97c, Ano97a, Ano98a, Gaf88, Lee03, Ano98b, Ano99, DBA+09, DBM+11, Ano91a, Ano00, Ano01b]. \textbf{JPEG} [BKRS90, CLBS17]. \textbf{JPL} [Din91].

\textbf{Just-in-Time} [BPBL11].

\textbf{K-computer} [INY+14]. \textbf{Kepler} [HPW+16]. \textbf{Kernel} [TM99, ALL13, Jon12, LNSMMA15].

\textbf{Kernels} [BELF07, IYV04, MAB+13]. \textbf{key} [KES+17]. \textbf{keys} [BSK14]. \textbf{Kinetics} [ARR99]. \textbf{Knowledge} [AEG+03, Cap09, vLRA+03, ECG+13, KT94]. \textbf{Known} [Ano92b]. \textbf{Kopelman} [CBV97]. \textbf{Krylov} [GKM00, ATL+15, AKP+18, CMN12]. \textbf{Kutta} [KPR17, RR96].

\textbf{L} [dSSB+08]. \textbf{LA-MPI} [YSP+05]. \textbf{Laboratory} [ABF+08, Bus87, BBB+91b, Don89, DGH+93, HGD91]. \textbf{Lagrange} [MT89]. \textbf{LAM} [SBB+05]. \textbf{LAM/MPI} [SBB+05]. \textbf{Laminar} [EDS95, SG91]. \textbf{Land} [HVKW05]. \textbf{Language} [CC207, LD07, Pan92, Sha88, CH13, EKD+12]. \textbf{Languages} [Kal99b, KKS04, YHG+07, J092]. \textbf{Large} [AS00, AK91, AGL+87, BAM+16, BGG05, BDP01, BCCL09, Ber92, BBB+10, BBA87, BBC+06, CWHP99, CK01, Ede93, Ewi88, Fra05, FBW+87, GDKWS15, GMW10, Gun00, HSLK11, Joh01, KNP+87, KUE+00].
LT88, LM03, LDW+12, LC06, MC90, MR04, MRD+15, Mor89b, NKR90, PPK+04, PS87, RGB+18, SE92, SD87, TRS+10, UF89, VS03, WTI99, YRA+02, ZRC+06, ABH+18, BLO18, BCYS11, CvG11, DCD+13, EEL15, FU12, HIT+14, MBHF15, MJ16, RGD12, STP+13, VOL+14, ZBMK11.

manycore [HFV+12, LTPK17, MBC+18].

manycores [BH17]. Mapping [CDRV15, QH08, DCN17, GJM18, Jea13, KPR17].

Massive-Scale [GNB11]. Massively [BBDR95, CH94, CBW95, CB95, Dem90, HVWS09, HVSW09, HS93, HZ91, JL89, Jon92, LPJ98, MA15, MPG93, Mon89, NZ93, PK04, SBF00, SCB+95, SK92, TMW+99, AHB+16, BCLP17, KDH18, NMAE13].

match [Ozs16]. Matching [ZC92, HFV+12].

Measure [BH06]. Measurement [MSMW07, FU12]. Measuring [FGJ+04, Har11, KKS04, SB04].

Mediterranean [CDG+14]. Medium [MHW15]. Meetings [Ano91c, Ano91d, Ano91e, Ano92i, Ano92j, Ano92k, Ano92l, Ano92m, Ano93b, Ano93c, Ano98c].

Melting [MWC+05]. Member [HTSK90]. memetic [NC18]. memoization [CGGC+16]. Memoriam [Mar91].

memories [TKSK88]. Memory [AH93, AD93, BFLL99, BMWD87, Bri10, BEF+95, CDT05, CWG09, CB95, FSS13, GJMS88, GSHL03, Gir02, HL10, HD05, JLL04, JMC05, MWAR+87, MCV+00, NPT+06, NTKP06, WT99, YRA+02, YK04, YIN+11, ZC92, BH12, DEKV92, DCN17, HTD+14, HGMW12, IK18, J092, KDO16, LFB+15, LCZ+15, SPNB14, WA18, WZHG17, SS10].

Memory-Aware [SS10]. Merging [YBA+03]. Mesh [DFS+05, HT04b, MV02, MCW+00, SR05, WCE95, WCDS99].

Mesh-Iterative [MCW+00]. Mesos [Ytt97, KC18]. Meso [GGS01]. Meso-Scale [GGS01]. Message [Ano93d, Ano94b, CWG09, MPI98, BBG+14, SMZ+18, ZKRA14, BC14, BBH+06, BRU05, Cot04, GL04, IBC+10, KKD05, LD10, SWHP05, SLG95, TGT05].

Message-Passing [Ano93d, Ano94b, CWG09, MPI98, SMZ+18, SLG95]. Messages [JW06]. Messaging [KFM+10].

Metacomputing [FK97, GS99].

Metaheuristics [QH08, TPG+18]. metal [NMAE13]. metal/polymer [NMAE13].

Metals [Cla91].

Metascheduling [Mat03].

Method [DP05, FCLG07, Man97, SG91, Tis97, de89, BBDH14, MMHL11, OKTR11, TKS88, YB12, CKE08, SBB06].

Methods [AD93, ACG+90, AGL+87, BMWD87, CC95, CSV91, FWSW02, HOPB92, HJ96, MC90, MG87, Men88, MR90, HFC+10, RR96, SCFK04, TXD+07, THL88, CMN12, IYK16, JPSA+17, La93, Mon12, UZM+14, Nag89].

Metric [HE01, DHL16]. Metrics [CMS+11, Num04, Ste04]. Mexico [Bus87].

MHD [ACG+90]. MIC [HLS+17, SHK+18].

Micro [BBW+10, SKS+13].

Micro-benchmarks [BBW+10].
micro-obsessive [SKS+13].

Microfluidic [BH12]. Microprocessors [WT99].

Microscopic [YFH+96]. microscopy
KTWL18, KILL13, LDW+12, LVA+13, LNSMMA15, PSV+16, TKA+17, VSS+13, VOL+14, YFS+14]. Multi- [PSV+16].
Multi-Core [Br+10, BH12, KDH11, SSR+14, CAE+13, KILL13, LDW+12, LNSMMA15, TKA+17, VOL+14, YFS+14].
Multi-Criteria [BKRSR99].
Multi-component [HD05, SVN99]. Multicomputer [Man97].
Multicomputers [MOK00]. Multicore [CWG09, BS+14, DTPD14, LW+11, MPD+12, MBC+18, OPW+12, THH+13].
Multidomain [KS+05]. Multifrontal [AD+99, AD93, BMW+87].
Multigrid [MT+97, SC04a, ZZG+14]. Multilevel [DVG+97, EGG05, WCD+99].
Multimodal [FWSW02]. Multiparadigm [AS00]. Multiphase [ZC92]. Multiphysics [KMW+13, LJO+05, MCW+05, PK+04].
Multiple [DL+06, MYCR06, Mor89b, Nak99, BL+18, BDFV+15, HG+14, KDO+16, MDH+18, RDG12, SKS+13].
Multipole [CKE+08, KMPJ+08, IKY+16, YB+12].
Multiprocessing [A+87a, DD91, YM91].
Multiprocessor [AD+89, BS+88, DEKV92, KPR+17].
Multiprocessors [AD+93, DD91, Gt+92, Wad99].
Multiprogramming [M+89].
CAK+07, GSHL03, uITH07, RDG12.
Non-Data-Communication [BCG+10].
Non-Dedicated [CAK+07, GSHL03].
non-Hermitian [RDG12].
Non-Polynomial [uITH07]. nonblocking
[WLFH16]. Nonequilibrium [YW93].
Nonlinear
[AK91, ABAS87, HT04b, KKVY+90, JRT16].
Nonsymmetric
[KC92a, KC92b, MC90, Ma00]. Normal
[YRA+02, Ha93]. North [LC90].
Northern [UB95]. Notice [DT17, DT18, WD18]. Notice [Ano17a].
Novel [CGB+94, DGJ09, FWZ91, SG07, HTD+14, PNFC16]. Novo [NKIn+08]. NSF
[Bra91, Sci92, Sa87]. NSF-Sponsored
[Sal87]. NT [Ano01a, CLP+99]. NuChart
[TDM+17]. NuChart-II [TDM+17].
Nuclear [FSS13, IHMM87]. NUMA
[Jea13, OPW+12]. Number
[Ano92h, FG97, FU12]. Numbers
[BRR+95]. Numerical
[ABF+99, ABB+94, DMT01, DE03, Ede93, JJ93, LWL05, Nag89, PR95, PPR03, PBD+01, Poz97, RAB+15, RIF01, RKKC90, SG91, THDC09, BSS15, MAB+13, SDF+17].
Numerically [Mah90, WJS+90].
NWChem [JDD18].

O [DLY+98, DEL+12, IBC+10, KKCB98, KES+17, LPJ98, MMD98, MS95, NFK98, OWO98, PH91, SW01, SR98, TLG98, TD08, WWA+11]. Oak
[ABF+08, DGH+93, HGD91]. Object
[NHG+96, SE12]. Object-Oriented
[NHG+96]. Objective [PPK09].
observable [RAB+15]. observations
[ZRK14]. obstacle [CCBS11]. Obstacles
[MBF+11]. Occupancy [GLGLB+11].
Ocean [Cow08, HAF+96, JO90, KJ05, KM95, WSCZ05, CDG+14]. oceanographic
[CBA+18]. October [OL05]. ODE
[Ano87a]. Offload [BRU05]. Offloading

[GWKN08]. Ohio [BBW90]. Oil
[KB94, KR95]. On-Board [SPTT08].
on-Demand [EW06]. On-Line [LWOB97].
One [GDF05, LRT07, TGT05, Udd17].
One-IPC [Udd17]. One-Sided
[GDF05, LRT07, TGT05]. Online [LC06].
Onto [QH08]. Open
[LWOB97, BSW+14, GCS13, AEG+03].
OpenACC [MGS+15, OGM+16, QHC17].
OpenCL [CLBS17, RGT+18]. OpenDDA
[DGJO9]. Opening [PRT90]. OpenMOC
[BSS+16]. Openmp [SZC12, BF01, BBDH14, BBC+00, MS02, OPW+12].
Operating
[WC01, EDSV06, HI12, HI13, HI15].
Operation [BBR10, BSR09]. operational
[CB+18]. Operations [FCLG07, GDF05, MS09, TRG05, TGT05, G11, KMI+14].
Operators
[FSN08, GRC08, ZM07, LMT+12]. Opportunities
[Ano87a, Cap09, KMW+13].
optical [GSK+15]. Optimal
[BR03, FG97, LTPK17]. Optimisation
[BGR+18, VSS+13]. Optimization
[AKP+18, ABB+94, BLL99, BGB+96, BELF07, HL10, HA91, IVY04, KMI+14, LT88, PPK09, RW03, SCB+95, SR05, TXD+07, TRG05, YLL+14, ABH+18, BRGR11, BH12, IMW+13, KES+17, NMAE13, SDJ17, SHK+18, UZM+14, YWL+14]. Optimizations
[PSV+16, DCD+13, Jea13, PUR94].
Optimize [KKCB98]. Optimized
[MSK92, IK18]. Optimizing
[FK91, KILL13, MAB+13, MCG04, Mor89a, TGT05, WEC95, WCDS99].
Optorsim [BCM+03]. Order
[CC95, uITH07, THL88, CZR+11, OGM+16].
ordering [Wai18]. ordinates [DMG18].
Organic [CBL06]. Organization
[FWSW02, FKT01]. Organized [BGF02].
Organizing [CBL06, GZ10]. Oriented
[Hua03, N FG+96, CMN12]. Orography
[GS05]. OSWALD [RGB+18]. other
Our [WW92]. Overheads [RAB+15]. output [LCZ+15, WVL+16].
Overlap [BBDR95, BRU05, INY+14]. Overlapping [PR95]. Overview [AGR+03, DFP+96, DJC05].

Panel [Sal87]. PANORAMA [DCM+17].
Papers [Lee03, Moh09, OL05, DT11, KKD03].
papillomavirus [ABH+18]. Par-BF [LGDH16]. Paradigm [GBG+96, DCL+08].
Parallel [AWS01, AAC+97, AS00, APD+15, AK91, AM00, AHB+16, AEPR92, ABB+94, BGG05, BDP01, BCCL09, BBB+91a, BCZM07, BOD+91, BYCB05, BK07, BBDR95, BBC+00, BSH+16, BG00, BEF+95, BGR+96, BH99, CCH+88, CCZ07, CE00, CDH+93, CL95, CCBS11, CH94, CBW95, Cho01, CSV91, Chn99, CEL+97, CB95, CM97, CJK+05, DEKV92, DLY+98, Dem90, DIB00, DFS+05, DRZS99, DMT01, DZDR95, Ede93, EGG05, EDS95, FG97, Gaf88, GCCC+03, GKN+06, GKP97, GDS17, GP93, GGS01, GL97, GKT00, HKK88, HVWS09, HVSW09, HR97, Hdv18, HLW00, Hj96, HTo4b, HS93, HZ91, IBC+10, JLO05, JLR9, Jon92, KDL01, KC92a, KC92b, KT99, Kok88, KR11, KS05, LJO05, LPJ98, LWOB97, Lus09b, MC90, MS09, MMD09, MA15, MS02, MSW07, MT89, MWAR+87, MPG93, Mat95, May02, MD99, MWC+05, McR87].
Parallel [Meu88, MFB+11, Mom89, Mor89b, MSK92, MS95, NK98, NKR00, NKIN+08, NHG+96, NZ93, NFK98, NKP+00, OW098, ODD07, Pan92, Pan97, PR95, PPR03, PC08a, PK04, RW03, RR96, RS03, SBF90, SWW94, SABD13, SW01, SS89, SPTT08, Sha88, SCB+95, SM06, SR98, Sim90, SSNM92, SG91, SK92, SBG10, SMW87, TBA+17, TLG98, TMW+99, TR92, Tis97, TD08, UB95, VLO+08, VSHN14, WSCZ05, WG07, YRA+02, YHG+07, YW93, Ytt97, ZK93, ZCZ+13, BLG17, BH12, BCLP17, CMH05, DAB+12, DEL+12, GHL15, GHHS15, HLW+16, HLS+17, IMH+11, IMH+12, JSD+17, KT94, KES+17, KDH18, Knu96, LPG88, LGDH16, LWT+11, LB18, MJ16, MNAE13, SMZ+18, TRS13, TPG+18, WVL+16, WEPB12, DP05, KJO5, KKD03, KKK05, LKO10, NAG89].
Parallel-algorithm [AHB+16].
parallelisation [BSW+14, VSS+13, WSD+14]. Parallelism [ACM88, CFK+94, MYC92, VRRL18, dSSB+08, DMSMG18, J12, KDNE18].
Parallelization [AJL+97, CBV97, Caw08, Cza03, DG+97, GC97, HE01, KM95, LP10, LVA+13, MCW+00, Reu92, WBG06, C1W17, CDG+14, MFP+17, OS16, SZC12].
Participate [Mar87c]. Particle [DR06, DDM87, MB97, MD99, MR90, PGTS10, ABH+18]. Partition [LQJG16].
Partitioned [MHW15, SBG10, ADB+18, LGDH16].
Partitioner [SR05]. Partitioner-Centric [SR05]. Partitioning [LR07, SR05, WCD09, Ytt97, SABD13].
Partitions [WCE95]. Passing [Ano03d, Ano94b, BC14, BBH+06, BRU05, CWG09, Cot04, GL04, IBC+10, KKD03, KKK05, LKO10, MIP98, SWHP05, TGT05, SMZ+18, ZKRA14, SLG95]. PASSION [KKB98]. Passive [MB+11]. Patching
[BH00]. Path [Luc09, SDJ17]. Paths [Rao02]. patients [SKS+13]. Pattern
[BE07, APD+15, SKS+13]. Patterns
[Cho01, GRC08, GKB93, SR98, BRR17, EEL15, HGMW12, WEPB12].

Patterns/Operators [GRC08]. PC
[CDT05, CK01, LWL05, Ste01]. PCs
[AWS01]. PDEs [Ma00]. Peaks [TC10].

PERFECT [BCK’89]. Performance
[AS00, ATN+00, Ano87b, Ano87f, Ano94a, Ano94c, Ano95b, Ano96a, Ano97b, Ano97c, Ano97a, Ano98b, Ano98a, Ano99, Ano00, Ano01a, Ano01b, ARR99, Aus92, Bai88, BGI+99, Bar09, BAA+06. BCK’89, BBH14, BWW+10, BGB+18, BBA87, BFNV07, BMR03, BRT’92, BBD00, BDG+00, BELF07, CDQS04, CWHP99, CC95, CK01, CDP+94, CAK+07, CSY10, CEL’07, CB95, CKJ’05, Dar00, Del93, DH96, DGD+04, DGJ99, DBA+00, ISD89, FGC+05, FGV+04, FSC’11, FSN08, FFR’10, FU12, Gun00, HIT+14, HVWS09, HVSW09, HR97, HL00, HWW00, HSLK11, IS96, IKY’10, IHMM87, JLL04, JMC05, KBA00, Kep04a, KHP+04, KJ05, KDL01, KWB06, KS09a, Kuc04, KUE+00, LR07, LR09, LS90, LWL05, LD07, MSMW07, Nav02, MA89, Men00, MJ04, MMN09, MSK92, NFK98, NPT+06, NTKP06, NKP+00, Num04].

Performance
[OCC+08, PPK+04, PF16, Poz97, PL05, QHC17, QW012, RIF01, RBL08, SBF90, Sab91, SWHP05, SSQ08, SCA’95, SM06, SVN09, SC09, Spr06, SKB01, Ste01, Ste04, SB10, SFP02, SBBS06, SW04, THC’96, TMW’99, TAR’08, THDC09, VCA90, VR00, VDB04, Wad99, WT99, WBF04, WG07, WD05, Yel04, YK04, YIN+11, YSP+05, ZLGS99, ATD17, AKP+18, BLC17, BRGR11, BSH+16, BAP+12, CGGC+16, CS14, CZR+11, CMHB15, DTP+14, DCM’17, DVW+12, DH16, DAC+14, ECG+13, EKD+12, Fem90, GHL15, GR17, GMWG10, GS18, GSK+15, GGO16, Har11, HLW+16, IYK16, IFA15, JKD+11, KDH11, KL13, KMM16, LST15, LPB+16, LWT+11, MAB+13, MPSIS15, MUC+13, MW12, NMAE13, PPC+16, PVS+16, SSR+14, SZ11, STS17, SKC10, TR17, TKA+17, TNL13, UCZ+15, WLG+18, WLFH16]. Periodic
[ZBMK11]. PERMAS [AJL’97].

Perspective [Bar09, YHG’07, PS12]. Perspectives
[Ano92n, MP95, Sab91]. Perturbative
[MFP]. Pervasive
[Ald89]. Petaflop
[RWM17]. Petaflops
[TAM’16]. Petascale
[Cap09, Her09, HXW+13, WWA+11, JKD+11]. Petascale/Exascale
[Cap09]. PGAS
[GDKWS15]. pH
[MP94]. Phase
[CBL10, CDH+93, FZ91, HSLK11, YC90, KDH18, VSN14]. phase-field
[VSN14]. PHAT
[MJL13]. Photon
[MW+87]. phylogenetic
[KPS18].

Physical
[Chu99, SR98, WD05].

Physical/Logical
[Chu99]. Physician
[Wit92]. Physics
[DSD+91, KDH11, MR90, DAc+14, GHHS15]. Pieces
[Mar87d]. Pipeline
[BFR99, BRKRS10]. Pipelined
[TRS+10]. pipelining
[LJG16]. Pittsburgh
[RS88]. pivoting
[ZYC15].

Pixel
[HC08]. Planet
[Mar89b]. Planning
[CDCV06]. Plasma
[CD+00]. Fiducial
[FS05]. Plasmas
[ACG+90, DDM87]. plastic
[WSD+14]. plate
[NMAE13]. Platform
[LJC+10, PMS+04, PL05]. Platform-Adapted
[PSM+04]. Platforms
[BLR01, BMR06, Eyr06, MYCR06, OCC+08, BG+18, BSH+16, IYK16, IMW+13, MDP+12, MFP+17, PPC+16, SHK+18, UZM+14]. Play
[Pan97]. PLW
[LD07]. pMATLAB
[BK07]. POEMS
[BB00]. Point
[BSBF89, HC10, Ma00, LH18].

Point-SSOR
[Ma00]. Point-to-Point
[HC10]. Pointers
[LRT07]. points
[CvdV+18]. Poisson
[GGS01]. policies
[BL018]. Policy
[EW06]. Pollution
[DFH+96]. Polyacetylene
[ZOF90].
Polymers [AEPR92]. polymer [NMAE13].
Polymers [DFC90]. Polynomial [uITH07].
Polytetrafluoro [DVC88]. Porous
[PGTS10, MPD+12]. Portability
[WD05, GS18, QHC17]. Portable
[BDG+00, FCLG07, GL97, PLS05]. Portals
[BRM03]. Porting
[MCR+17, Mic09, SHK+18]. pose [BE17].
Positive [Ald99]. Post [BBH+13].
Post-failure [BBH+13]. Potentials
[DGD+04]. Power [B HdR09, Dem90, TNBG07, CGGC+16, PMP+16, UZM+14].
Power-Saving [TNBG07]. Powerful
[Mor89a]. PowerPC [MAB+13]. PRACE
[Mic09]. Practical [Cho01]. Practice
[BR03]. Practices [PK04]. Pragmatic
[DCD+13, Eyr06]. Precision
[Ano02b, BD+07, LH18]. Preconditioned
[MG87]. Preconditioner
[BB99, de 98, RMS+18]. Preconditioners
[CE00, Cho01, Ma00]. Predict [VS03].
Predicting [BE07, WLC91, M CU+13].
Prediction [FFR+10, HL00, KUE+00, NKP+00, SCB+95, BAM+16, GCSK13].
Predictions [RF01]. preeminent [YB12].
Preemptive [BBH+06]. Preface
[Ano17b, Bak01, Bami12, BO08, CCF+06, CDD+06, DJZ08, DDS00, DKD07, DT07, DT01, Don02a, Don02b, Fow05, IK02, Kah07, KZ07, MD06, OL05, Pat05, PC08b, Wal03, YD07, dA03]. Prefetching
[BIC+10, CZR+11]. prefix [Ozs16].
Preprocessing [DMT97]. Preprocessors
[Ano01a]. Pressure [WLC91]. Pricing
[YB07]. Prime [Ano92h, Sim90]. Principal
[DF08]. Principles
[DQFW90, GKN+96, TMWS91, HIT+14].
Priori [Cho01]. Privacy [Mar89a]. Prize
[BBD+17]. probabilities [Ha93]. Problem
[CDH+93, CSV91, DL09, UF89, CCBS11].
Problems
[BGG05, CD97, FG97, FBW+87, GGS01, MR90, NK89, NKR90, SWW94, uITH07, TRS+10, TMMR10, KC18, La93, MBHF15].
Procedure [CBG+94]. Process
[AM00, FGC+05, GCL93, SC04b, KILL13, WSD+14]. Processes [MWC+05, GSK+15].
Processing
[AK91, FP02, GLGLB+11, KHP+04, LP10, MA15, MT89, Mor89b, MSK92, NTD10, OW09a, PC08a, PMS+04, Sal87, SPTT08, SWG+03, VLO+08, YW93, BE17, BLC17, CLG13, CMN12, DMQS12, GHSHS15, KDO16, LQJG16, PH91, RDG12, RWM17, ZCZ+13].
Processor [MPG93, RRV06, SB90, SK92, BGM15, MAB+13, Mon12]. Processors
[Bri10, BDG+00, LR07, LT88, MWAR+87, Mor89b, TMW+99, BBG+14, CZR+11, MBC+18, MSPS15, P5V+16, THH+13].
Product [MC04, Eri88]. Production
[MSK92, MDH+18, SH93]. Productivity
[Bar09, FGJ+04, KKS04, Kep04a, Kep04b, Kuc04, SB04, Ste04]. Profiling
[MSMW07, SGFC09]. Program [Kit90, NHG+96, WG07, Fem90, KJ05, Web91].
Programmability [CCZ07, CLS09].
Programmable [HC08]. Programme
[HT04a]. Programmer [BEK+18].
Programmer-guided [BEK+18].
Programming
[BBG+10, BV11, BF01, BDG+00, CCH+88, CWG09, Cza03, EGG05, Gau88, Gir02, Kal09b, KKS04, Kok88, Lus09b, Mat95, NPT+06, PA11, PBAL09, Poz97, RW03, Sha88, SCB+95, SMW87, VEMR17, WLB92, BH17, CCEB18, GDKW15, HLL+17, LBP18, MGB12, MDH+18]. Programs
[ACM88, DL07, GL04, HC10, LWO97, NZ93]. Progress
[AGL+87, BRU05, CAE+13]. Project
[BHK+06, CBB+96, PK04, BCC+01, DBA+09, DBM+11, Mic09, OKTR11, PS87, PHB04, WIt92], projects [ACF+11].
Promising [Gir02]. Propagation
[GKN+96]. Properties
[ACF+90, DFS+05, WLC91, ZM07], proposal [ZKRA14]. prospectus [Bra91].
Protein [ACD07, BHK+88, Jou92, RGB+18,
DSH+16. Protocol [TNBG07].
Prototypical [WLVL+96]. Provided
[LK96]. Providing [GKP97]. Proximal
[NZ93]. Purity [HC08]. Purpose
[CK08, Gus04, BE17]. Purpose-Based
[Gus04]. Pushing [THH+13]. PVM
[BDG+95, Mat95, SYF96]. PVMGeant
[DZDR95]. PVODE [BH99]. PyCOMPSs
[TBA+17]. Python
[FKA+17, LD07, TBA+17].

Q [KMH+14]. Quality [Mat03]. QCD
[Din91, JC12]. QCDOC [DG+04]. QM
[MFP+17]. QM/MM [MFP+17]. QoS
[BSCC03]. Quadrics [YSP+05]. Quadtree
[CL95]. Quality [PK04]. quantitative
[WLG+18]. Quantized [Ham91]. Quantum
[DFC90, FBW+87, IKY+10, KKV+90,
Liu90, SSSW91]. Quarks
[BOD+91, BEH+90]. Quartic [nITH07].
quasi [YLL+14, quasi-diagonal [YLL+14].
Quasigeostrophic [KM95]. Quda [JC12].
Query [SWG+03]. Querying [CHZ02].
Questions [FS09]. Queuing [Ish91].

RA [AMC+18]. Radar
[MPG93, SVBP13, ZCZ+13]. Radio
[CBB+96, CLG13, VFJ+15]. radiosity
[SABD13]. Radiotherapy [DCS10].
RaftLib [BLC17]. Raid [Pia09]. Raid-6
[Pia09]. railway [CGGC+16]. random
[FNFC16]. Randomly [CYT+02]. Range
[BBA87, MHW15]. Ranger [BWB+10].
ranking [AMC+18, DHL16]. Rare [BB02].
rare [BBG+14]. rationale [BBH+13]. ray
[EE15, PS12, CDH+93]. raycasting
[BH12]. rays [PS12]. Reaching [CIW17].
Reacting [LP10, MYC92]. Reaction
[Koi90]. Reactions
[ASW91, Ren92, TWK87]. Reactive
[PGTS10]. Reactor [FSS13]. Read
[RWM17]. Reading [An02r, An02s].
Ready [Sim90]. Real [BE17, KK01, NRR97,
ODD07, TAR+08, VR00, WLC91, Wri12,
HPW+16, MJGL13, WZHG17]. Real-Time
[KK01, NRR97, VR00, Wri12, BE17,
MJGL13, WZHG17]. real-world [HPW+16].
Realistic [BR03, LC06]. Reciprocating
[YK07]. Recognition
[BE07, RES87, CdVL+18, SKS+13].
Reconfigurable [BCC+06].
Reconfiguration [Lk01]. Reconstruction
[CSY10, FFR+10, BGM15, THH+13].
Recovery [BB02, BBH+13, rectangle
[Ha93]. Recurrent [SMW87].
Redistribution
[DP05, JW06, RRV06, SS10]. reduce
[APD+15]. Reduced [BFLL99].
Reduced-Dimensionality [BFLL99].
Reducing
[BLOR18, CdVL+18, DLY+98, JMC05].
Reduction [NRR97, ATL+15]. References
[An02q, An02q]. Refinement
[BDL+07, HT04b, SR05]. region [SPNB14].
region-based [SPNB14]. Regional
[KM95, CDG+14, WSCZ05]. Regression
[VS03]. Relational [MS09]. Relative
[PUR94, VC89]. Relativity [RIF01].
Reliability [TNLP13, BEK+18].
Remeshing [LDGR03]. Remote
[BB02, DP05, NTKP06, HGMW12].
Remotely [VLO+08]. Renaming
[BPBL11]. rendering [BH12]. Replication
[BCM+03, BCR+14]. Report [Buz89, Sal87].
Representations [AS00, WW92, DF18].
Request [DD06]. required [CdVL+18].
Requirements [LPJ98]. Research
[An07a, Aus92, ABB+94, Bus87, Cap09,
CPD+94, Don89, Duk91, HMM87,
KHK+09, Mar88a, Mir90, Pan97, SG09b,
SKC10, TR92, BBW90, KT94, EM89].
reservation [Mat03]. Reservoir
[AWS01, Ewi88, KR94, KR95, PR95, ZC92].
Resilience
[CGG+09, BCR+14, CBD+17, LFB+15].
Resilient [BPR18, KS05, RMS+18].
Resolution [DFS+05, HB90, MAB07,
WOS08, CHW+15, DVW+12, WD+15].
resonance [JKBW18]. Resource
[AAF+01, EW06, FBB03, MFK09, Mat03, WPBB01, YB07, CDV15, MRD+15].
Resources [QHO8]. Response
[BBC+00, ZOF90], Restart [SSB+05].
restoration [APD+15]. Restrained
[CGB+94]. Results
[BMR06, GNTLH97, Jea13, PUR94, WVL+96, BRGR11, BSH+16]. Rethinking
[KES+17]. Retracted [IMH+12].
Retrospective [Mar88b]. reverse
[QHC17]. Review
[Bus87, Con88, Mar88a, Nag89]. Reviews
[Don87, Mar87a, Mar87b, McR87].
Revisited [MS09, SZ11]. RF
[HTWS08, YW93]. ride [VFJ+15]. Ridge
[ABF+08, DGH+93, HGD91]. Rigid
[Nak99]. Rigid-Body-Based [Nak99].
Rings [RRV06]. RISC [Gro03].
RISC-Based [Gro03]. RNA [SCB+95].
road [TDM+17]. Roadmap
[THDC09, DBM+11]. Rocks [Pap11]. Role
[Pan97, Sab91]. Roles [MMS88]. Rolling
[FFNP97]. Routines [CDQ504]. Routing
[CHZ02, MOK00]. Run [DL+98, LYL+16].
Runge [KR11, RR96]. Running
[Fra05, MGB12], runs [CDVL+18].
Runtime [AJL+97, BH00, Dar99, Kal09b, LS06, PG18, HI12, HI13, IH15].
Runtime-compilation [PG18].
S [Lai93, WOG95, LYL+16]. S-3800
[WOG95]. S-MP [Lai93]. SAMCEF
[GCD97]. Sampling [MR04]. San [Mai87].
SAR [AAC+97]. SARA [SBWS99].
Satellites [BKS+07]. saturation [CIWI17].
Saving [TNBG07]. Scala [SFP02].
Scalability
[BCYS11, DR06, FSC+11, GS05, HLW00, KC18, MWC+05, YIN+11, DAB+12, MW12].
Scalable [CD06, CHZ02, DW97, DMT01, FK01, HGMW12, IBC+10, JSSZ09, MCW+00, MS05, MAJJS03, SDJ17, SFP02, WLB92, ZLGS99, ZRC+06, dPIdA03, DEE+12, TDM+17, YB12].
Scalar
[Ish91, OCC+08, FU12, KJS99]. scalar-type
[FFU12]. Scale [AS00, AKJ1, BDP01, Ber92, BBA87, BCC+06, CWHP99, Ewi188, Fra05, GGS01, Gun00, GNB11, Her09, HLW00, HSLK11, Joh01, Key09, KUE+00, LT88, LC06, MPS15, Mor89b, NKR90, Nak99, PS87, SDA7, YRA+02, ZRC+06, dSSB+08, AMB+18, BAM+16, BLO18, BEK+18, DCM+17, EEL15, GDDKWS15, GMV10, HIT+14, LM03, LDW+12, MBGF15, MJD16, DRD+15, STP+13, VOL+14, ZXKRA14].
scales [BEW16]. Scaling [CGB+94, CKO1, CLM+16, GHHS15, ZM07, GR17, INY+14].
Scattering [MBF+11]. scene [SABD13].
Schedule [SBWS99]. Scheduler
[LS06, TR17]. Scheduling
[ATN+00, BKR09, BP+07, BR03, BBH+06, CJO6, CKP99, CBL06, DLG06, Eyr06, JWO6, KCC+06, LJC+10, MYCR06, SG07, TR17, WvNM+06, ABD+18, BPR18, Jon12, LQG16, Mat03, OPW+12].
Scheme
[BGO00, GS05, DMSMG18, KPR17].
Schemes [BS88, BS15, SZC12].
Schrödinger [BFLL09, IKY+10]. Schwarz
[GKMT00, PR95]. SCAR [SDF+17].
SCIARA-fv3 [SDF+17]. Science
[All88, Blo87, CD97, CDH+97b, Don89, Duk91, GKN+96, GLO9, HSBM03, HT04a, HWP03, Joh01, Mai87, Mer87, Nas92, RS88, Sab91, Web91, WWA+11, ADMP18, ACF+11, CMS+11]. Sciences
[NKR90, DG+93]. Scientific [AS00, BAA+06, BBA87, BJK07, DT99, DT11, DT17, Fol90a, Gaf88, GL97, HME90, Hab90, HLP+03, JLL04, JMC05, KPM+96, KW06, LS09, Mar87a, OCC+08, Sal87, SE92, vLR+03, ASHH16, CMS+11, CBD+17, DPA+18, DMQS12, DCD+13, DAC+14, EKD+12, FKA+17, LWT+11, MGB12].
sclerosis [SKS+13]. screening [MS015].
SE [DEE+12, KJH96]. Sea
[LP98, CDG+14]. Search [VDB04, FTB13].
Search-Based [VDB04, FTB13]. Searches

September [OL05]. Sequence [Jon92, MP18]. sequencing [MBC+18]. Sequential [WG07]. Serial [NK89, NKR90]. Series [ACD07, Mar88a]. Server [CD97, DD06]. Servers [CD06]. Service [HLP+03, Hua03, Mat03, WHL03]. Service-based [HLP+03].

Service-Oriented [Hua03]. Services [AEG+03, CBA+18, ECG+13, ZKRA14]. Sesam [BBA87]. Set [JLL04, PTG02]. sets [LG06]. Severe [WS+10]. shallow [LVA+13]. Shape [WCD99]. Shared [AH93, BMWD87, Br10, BEF+95, CDT05, CWG09, Gri02, HC10, LRT07, MWAR+6, NPT+06, WG07, ZC92, BH12, DEKV92, KDO16].

Shared-Memory [AH93, CWG09, BH12, DEKV92]. Shelf [LP98]. SHMEM [BBDH14]. Should [Pan92]. shuffle [HPW+10]. shutdown [BLOR18]. Side [HTSK90, kLCCW07]. Sided [GFD05, LRT07, TGT05]. Sidney [Mar91]. Sieves [CH94, Mon89]. Signal [FP02, PMS+04]. Signals [Arn07]. Silent [BSS15]. silico [MPSB15]. silicon [HXW+13]. similarity [LFB+13]. Simple [Kal09b, SC04b, SBWS99]. Simulation [BMT89, GMWG10]. Simulating [BEH+90, Din91, Ha93]. Simulations [AWS01, ABF+99, BD01, BHR09, BFNV07, CK01, Cla91, CB95, CM97, DCCS10, DZDR95, Ewi88, FFNP97, GCL93, GP93, HTSK90, IKY+10, Koi90, KR94, KR95, LP10, LWL05, LC06, MKG90, Nak99, PPK09, PR95, PS87, PHC+10, Reu92, RKKC90, TWK87, WBG06, WBMY90, BSW+14, CHW+15, DAC+14, HXW+13, JKD+11, JRT16, KDO16, KDH18, LPB+16, STS17, TAM+16, Udd17, VOL+14, WSD+14]. Simulation-Based [PPK09].

soft [GHHS15, RMS+18, YZC+15]. Software [ADM18, Ano87c, Ano87f, BV11, BCC+01, BFNV07, CD+94, Dar99, DW97, DE03, DBA+09, DBM+11, DGP+97, DJC05, Fol90a, GCD97, GKMT00, Her09, KSO9b,
LRO10, LQJG16, LDB+06, MM90, PP909, PA11, PK04, SG09b, JdS+17, JC12.

Software-defined [ADMP18]. Solid [CWHP99]. Solaris [Ado01a]. Solid [DQFW90, SK92]. Solidification

[MWC+05, SHK+18]. Solution [BK+88, BDL+07, CGB+94, MR90, PRD90, RS03, uITH07, TMR10, CSM17, CCBS11, CVG11, CMN12, ESW+12, RDG12].

Solutions [Fro91]. Solve [BCCL09, CDH+93]. Solved [CSV91].

Solver [BGG05, BH99, CM97, HR97, KDL01, Max02, PR95, AKP+18, AFL+18, BSW+14, ESW+12, KC18, KDH18, OGM+16, RWM17, ZZG+14].

Solvers [DR06, GG501, Key09, KR11, ATL+15, MSHPV18]. solves [SZ11]. Solving

[BS88, BEF+95, CD97, HT04b, IJ93, KS89, Kum89, Man97, N93, SBF90, WT99].

Some [Gir02, PPS09]. Sometimes [RAGW93]. Sonic [WW92]. Sorting

[Arn07, BSK14]. Source [Cyt+02, BSW+14, MJGL13]. Source

[GL97]. Space [FBBC03, JSSZ09, MHW15, ODD07, SGB10, FU12, HLW+16, MPD+12].

space-aware [HLW+16]. Spaceborne

[SKB01]. SPAI [BS99, Ma00]. Spark

[KWEP18]. Sparse

[AD93, Ano02a, AGL+87, Ber92, BELF07, Cho01, GG11, HR97, IVY04, KC92a, KC92b, MC90, Ma00, Man97, MCG04, SZ11, SCFK04, UF98, WT99, ASH16, ATD17, CVG11, G14, GGO16, MSHPV18, SCR11].

Sparsity [Cho01, IVY04]. spatial

[WDH+15]. Spatially [WB60].

Spatially-Explicit [WBG60]. spatio

[STP+13]. spatio-temporal [STP+13].

Special

[BV11, BM13, BH17, BE18, CKE08, DT97, DT99, DT06, DT13, DT17, HD18, MPI98, ME14, Nag93, OV13, PA11, Ye04, S3D12].

Special-Purpose [CEG08]. specialization

[CBM13]. Species [BB02]. Specific

[BH06, CDH+97b]. Spectral [BG00, CB95, DFS+05, FSN08, Tho90, DEE+12, MS+15].

Speed [Ano87d, BAM+16, Mar87a].

Spherical [KMPJ08]. Spiral [PMS+04].

Spline [Fro91]. Splines [uITH07]. Splitting

[IS96]. Splitch [DGRK17]. Sponsored

[Sil87]. Spotlight [MPG93]. Spread [GB93]. SRP [MJGL13]. SSOR [Ma00].

Stability [ACG+90, B07, FZW91].

Stacking [BR10]. Standard [Ano94b, Don02a, Don02b, MI98, TH+13, Poz97].

Standards [Pan92]. StarPU [HGWN14].

StarSs [PBAL09]. State

[CBV97, MYCR06, WLC91]. Static

[BLRR01, BR03, SCB14, TR17].

Stationary [SCFK04]. Statistical

[EGMP93, FWSW02, Her88, MR04, NRR97, VDB04, Z0M7]. Status [MB87]. Steady

[MYCR06]. Steady-State [MYCR06].

Steering [GKP97, KWB06, VR00]. Stefan

[CSV91]. stencils [APD+15, YFS+14].

stencil-reduce [APD+15]. stepping

[SBS15].

Stiff [BCCL09]. Stochastic

[AK93, ABAS87, LP10, NZ93]. Stokes

[Mav02, SBF90, ZZG+14]. Storage

[KR11, G14]. store [KES+17]. Storm

[WJS+90]. Strategies

[BMC+03, FBBC03, GWK08, MOK00, WPB01, MRD+15, OPW+12, SDF+17].

Strategy [MCW+00, SVN09]. stratified

[AMC+18]. stream [BLCR17, LBB17].

streamed [GG14]. streaming

[BRGR11, MAB+13]. strong [INY+14]. strongly [ZZG+14]. Structural

[YCHH90, MJ16, PUR94]. Structure

[BB06, CGB+94, CBL10, CSY10, F92, Jon92, KT99, L09, SCB+95, SYF96, TM+99, H14, HIT+14, KC18].

Structure-Specific [BH06]. Structured

[LDGR03, Ma00, SR05, WBG06, Ytt97, RV15]. Structures

[BHK+88, DFC90, FFR+10, GCL93, GG11, HB90, HA91, JP93, DSH+16, JKBW18].

Studies

[CBW95, DQFW90, HOPB92, HE01, LS06]
SABK94, BCYS11, GDKWS15, SSR+14.

Study
[ASW91, BF01, CDH+97b, GLGLB+11, GL97, HL10, HLS+17, JW06, KKC98, KR94, KR95, LC90, MMD98, PPK+04, Sci92, TXD+07, WGI90, WLW92, WJS+90, WW92, BS+14, BDFVP15, CGC+16, CMS+11, IFA15, KC18, LFB+15, MibdG13, MCR+17, OF17, TKA+17, THC+11, YWL+14].

Studying [BCM+03, BOD+91]. subband [VSS+13]. subcellular [CHW+15].

Subdomains [FG97]. Subgrid [GS05].

Subprograms [Don02a, Don02b].

Subroutines [KJH96, JO92]. Subsetting [ZRC+06, AMC+18]. substitution [DTDP14]. substructures [SCR11]. successful [CBA+18]. Suggestions [Ano02r, Ano02s].

Summary [Moh09, Sal87].

Supercomputer
[ATD+88, Ano87b, Ano91b, Ano91a, Ano92g, Ano92e, Ano93a, Ano94a, Ano94c, Ano95b, Ano95a, Ano96a, Ano97b, Ano97c, Ano97a, BBW90, CL95, CLP+99, Con88, MKG90, Mai87, McN89, MM90, MA89, Mib90, Mor89a, MR90, Nas92, Sci92, SB04, Web91, WOG95, Bra91, FU12, KMH+14, Duk91, MAB07, Mar88a].

Supercomputing [OCC+08].

Supercomputers [Ald89, ABF+99, AGL+87, Bai88, BSFB89, BCK+89, BVB+10, BYT91, Bro88, CDD+90, DDM87, Gen88, Mar89a, McN89, MG87, NKm+08, YM91, ZC92, DCD+13, HI12, HI13, HI15, PH91, ZBMK11, Gen88, Bus87, Mar87b].

Supercomputing [All88, Blo87, DFP+96, EM89, Eri88, Gan88, GKN+96, LC90, Mar89b, McN87, MMS88, Nas92, NBB+96, Num87, RS88, SAB94K, Ano92, BBB+91b, Bra91, BBW90, KT94, MP95, TR92, All88].

Superconductors [JP93]. Supersonic [MYC92]. supervised [HGWN14].

Supplemented [SBBSS06]. Support [BBG+10, BV11, BCC+01, CBB+04, CFK+94, Dar99, Gro03, YSP+05, SKZ+18].

Supporting [ZRC+06]. SUPRENUM [MST88]. surface [BCYS11, MCR+17].

Surfaces [DF18]. survey [GR17, JdSA+17].

Sustained [MSK92, TAR+08]. Swapping [SC04]. swarm [ABH+18]. SwinDeW [LJC+10]. SwinDeW-C [LJC+10]. SX [LT90, Mor89a]. SX-2 [LT90, Mor89a].

Symbolic [Jea13]. Symmetric [BGG05, Gir02].

Symposium [All88, Blo87, DFP+96, ATM+00, AGL+87, BCC99, Ma00, SBBS06]. Tables
[vLRA+03]. tailored [FTB13]. tale [Hea15].

Target [BG02]. targetDP [GS18]. Task
task-parallel [SMZ +18], Tasking [JMP02, IK18], Tasks [GHZ01, WvNM +06, HTD +14], Tau [SM06], Taxol [CGB +94], TCGMSG [Mat95], Technical [Don02a, Don02b], Technique [ODD07, WG190, ASH16], Techniques [Arn07, BDL +07, FFR +10, KM95, VS03], INY +14, MSHPV18, UZM +14], Technologies [AB01, Dar99], Telescopes [DVC88], Televisualization [HME90], Template [Poz97, BLC17], Temporal [BPBL11, CY80, STP +13, WD +15], Teraflop [HLW00], Teraflop-Scale [HLW00], Teraflops [SS99, TAR +08], TeraGrid [Har11], Terapixel [ACF +11], Testbed [BCC +06], Testing [CDT05, KDL01], Texas [NAS92], texture [IMH +11, IMH +12], Tiflop [LYL +16], Tiflop/s [LYL +16], Their [LR010, Mar87b, RES87, Haj93], PUR94], Thelma [OKTR11], Theme [Hau94], Theoretic [FWSW02, WEPB12], Theoretical [ASW91], Theory [BR03, Mer87, Mor89a], thermochemical [vLRA +03], Thermodynamics [GKH +91], Thin [MD99, GSK +15], Thin-Film [MD99], Thinning [DBB00], Third [Lee03], thousands [GHS15], Threaded [BBG +10, LVA +13], Three [BCZM07, BBW +10], CSY10, DD91, EGG05, LT90, MT89, TWK87, BE17, LS93, YFS +14], Three-Dimensional [BCZM07, CSY10, EGG05, LT90, MT89, BE17, LS93, YFS +14], Throughput [GHM +10, McN89, CMN12], throughput-oriented [CMN12], Tianhe [CLM +16, HXW +13, LYL +16], Tianhe-1A [HXW +13], Tianhe-2 [CLM +16, LYL +16], tiled [TRS13], Tiling [SCF04], Time [ACD07, BPBL11, KK01, LIC +10, MBF +11, Nak99, NRR97, Sim90, VR00, Wri12, BE17, BSS15, LST15, MJGL13, QHCC17, WZHG17], Time-Dependent [MBF +11], time-stepping [BSS15], times [MP95], Tissues [BCZM07], Titanium [YHG +07], Tokamak [DS +91, KPF +96], Tolerance [Cap09, FGC +05, GKP97, GL04, JSSZ09, KWB06, LRG +16, MSHPV18, SKZ +18], SMZ +18, YZC +15], Tolerant [BHK +06, FD04, WvNM +06, ASH16], tomographic [BGM15], Tomography [CDH +97b, FFR +10], Too [RAGW93], Tool [LRO10, WBF04, Ytt97, Eri88, IMS16], TDM +17, UCZ +15], Toolbox [CD06], Toolkit [FK97, LJO05, Poz97, Pap11, JLO05, LJO05, NPT +06], Tools [CBM13, DW97, DMT01, DT06, GRC08, LDB +06, MWC +05, MM90, Pan97, PA11, SS89, SKZ +18], Toolset [NKP +00], Top500 [Fei99], Topologies [MOK00, SW04], Topology [Chu99, GMV18, KPR17], topology-aware [GMV18, KPR17], toroidal [IMW +13], Total [YCH90], Toys [SS99], Trace [JKD +11, NRR97, BDFVP15], Trace-based [JKD +11], tracing [PS12], Tracking [BGF02, BG02, CYT +02], Trade [SR05], Trade-Off [SR05], Traffic [BG02], training [PNFC16], Training [AM00], trait [WLG +18], Transfer [MAJS03, ATL +15, KT94], Transfers [VS03], Transform [DL97, BDFVP15, GLGLB +11, LDW +12], transformation [WDW +12], Transformations [YCH90], Transforms [KNP +87, MJ04], Transition [YSN90], Translations [KMP08], transmission [ABH +18], transparent [CIW17], Transport [ABF +99, DR06, DSD +91, KVV +90, MMD98, MWAR +87, MB87, BSH +16, DMSM18, DFT +15, SSR +14], traversal [GLZS14], Tree [SWW94], Trees [LK01, KPST18], Trends [Ano87e, Fol90a, Tho90, Bus87], Triana
[HTWS08]. triangle [PS12]. triangular [SZ11]. Tridiagonal [BS88, Kum89].

Trillion [TAM+16], Trondheim [Buz89].

Trough [BAM+16]. truly [KT94]. TSF [WG07]. tsunami [AHB+16, BAM+16].

tuned [YB12]. Tuning [Cza03, Kal09a, MJ04, RDG12, TM99, VDB04, Yel04, BH12, CH13, TRS13, THC+11]. Turbine [MKG90].

Turbulence [CDF+90, KPM+96, LWL05]. Turbulent [CB95]. Turkey [BE07].

Turkish [BE07]. Turnaround [MP95].

Two [HE01, Rao02, Hea15, KS89, KD18]. two-dimensional [KS89]. Two-Paths [Rao02]. two-phase [KD18]. Type [CK01, FU12, JP93]. Type-II [JP93].

typical [FU12].

Understanding [ALL13, BWB+10, GNB11, WW92].

Unified [SMZ+18]. Unit

[LP10, LQJG16, RDG12, RWM17, ZCZ+13]. Units [GLGLB+11, MA15, NTD10, Tho90, BE17, CLG13, CMN12, DMQS12, GHHS15, KDO16]. universe [RAB+15]. University [Nas92, ATD+88, Aus92, GNTLH97, SSN92]. Unroll [MCG04]. unsplit

[SZC12]. unstable [NC18]. Unstructured [DMM97, Mao02, MCW+00, WCE95, KC18, WDW+12]. unsupervised [ZCZ+13].

usable [KT94]. Usage [FCLG07]. Use

[Cho01, DD91, TKSK88, Mar87b]. Used [DFH+96]. User [FCLG07, LS06, LRG+16].

user-level [LRG+16]. User-Provided [LS06]. Users [Pan97]. Using

[BHK+88, BKS+07, BCR+14, BBC+00, CGB+94, CWHP99, CDH+93, CL95, CKE08, CYT+02, CBV97, CW05, FD04, GLZS14,

GNTLH97, HAF+96, HLW00, HE01, HC08, JLO05, Joh01, KD11, LRT07, LWL05, Man97, MAB07, MCG04, MSK92, QWIC02, QH08, Rao02, SBWS99, TM90, TML88, VLO+08, VS03, WGI90, WOG95, ABH+18, APD+15, BE17, BCYS11, BGB+18, CGGC+16, CIW17, CLBS17, DFT+15, FSC+11, GDKWS15, IMH+11, JC12, KDO16, KTML18, KL13, LST15, LPB+16, MDH+18, MJ16, MJGL13, Pap11, PNFC16, SABD13, SKS+13, YZC+15].

V [BHK+06]. validation [SCB14]. Value [Ber92, Bus87, uITH07, SG91, KES+17].

Variable [BRB+10, BGB+96, AMC+18, BSK14, ZZG+14]. Variable-Complexity [BGB+96]. variation [LTP17].

Variational [NK89]. vascular [JKB18].

Vector [AGL+87, Bai88, CSV01, DD19, Fro91, Gaf88, LT88, LRBS89, MC90, MG87, MCG04, OCC+08, GG11, GO16, KS89, SCR11, YLL+14]. Vectorization

[AD89, Reu92, Ha93]. Vectorized

[HMM87, MB87, TKSK88, YW93]. Vectorizing

[HVKW05]. Venice

[OL05]. Verbs

[OF17]. Verification

[CY08, BRR17].

Version [JLO05]. versioned [CBD+17].

Versus

[PC08a, RTRG+15]. GLGLB+11].

Very

[HRM89, KN+87]. VF

[DEK92, DD91, DD91]. VF/600J

[DEK92]. Via

[MR04, ATD+15, BWB+10, CSV01, Mat03, QHCC17]. viability

[LFB+15]. Vibrational

[DFC90]. Video

[dPID03]. Video-on-demand

[dPID03]. View

[Kep04b, DFT+15]. VII

[McN99],

Virginia [GNTLH97]. Virtual

[BAP+12, BEF+95, DFH+96, FKT01, HWP03, KKD03, KKD05, LK10, THH+96, WLVL+96, IK18, MSPSI15, SSU+12, CBB+04]. Virtual-machine-based

[BAP+12]. virtualization

[KL13]. Vis5D
References

Addison:1997:PSI

Allen:2001:CWE

Gabrielle Allen, David Angulo,
Ian Foster, Gerd Lanfermann, Chuang Liu, Thomas Radke, Ed Seidel, and John Shalf. [ABB+94]

Amy Apon and Mark Baker. [AB01]

Albert Ando, Paul Beaumont, Matthew Ando, and Christopher A. Sims. [ABAS87]

Guillaume Aupy, Anne Benoit, Sicheng Dai, Loïc Pottier, Padma Raghavan, Yves Robert, and Manu Shantharam. [ABD+18]

S. F. Ashby, W. J. Bosl, R. D. Falgout, S. G. Smith, A. F. B. Tompson, and T. J. Williams. [ABB+99]
a numerical simulation of groundwater flow and contaminant transport on

Alam:2008:EOR

Abed:2007:MPD

Agarwal:2011:DIS

Anderson:1990:MEC

Arvind:1988:ABF

Amestoy:1989:VMM

Amestoy:1993:MMI

AbdelBaky:2018:SDE

Alsairafi:2003:DDN

Ansaloni:1992:EPI

Aloisio:2009:TED

Auricchio:2018:PFE

Ashcraft:1987:PSM

Allen:2003:EA

REFERENCES

[AH93]

[AK91]

[AJL+97]

[AKP08]
REFERENCES

Anzt:2018:OPE

Aldag:1989:ISG

Allan:1988:CSS

Akkon:2013:UIN

Ammar:2000:PA

Asch:2018:BDE

REFERENCES

Anonymous:1987:NNT

Anonymous:1987:SHP

Anonymous:1991:IJSa

Anonymous:1991:Mc

Anonymous:1992:Aa

Anonymous:1992:Ab

Anonymous:1992:Ac

Anonymous:1992:Ad

Anonymous:1992:IJSb

Anonymous:1992:IJSc

Anonymous:1992:IJSa

Anonymous:1992:LKP

Anonymous:1992:Ma

Anonymous:1992:Mb

Anonymous:1992:Mc

Anonymous:1992:Md

Anonymous:1992:Me

Anonymous:1992:P

Anonymous:1993:IJS

Anonymous:1993:Ma

Anonymous:1993:Mb

Anonymous. Meetings. The International Journal of Su-

Anonymous:1996:IJS

REFERENCES

Anonymous:1996:IV

[Anonymous:1996:ICa]

Anonymous:1997:IJSa

Anonymous:1997:IJSb

Anonymous:1997:IJSc

Anonymous:1998:IJH

Anonymous. The International Journal of High Performance Computing Applica-

REFERENCES

Anonymous:2002:SB

Anonymous:2002:EMP

Anonymous:2002:Ab

Anonymous:2002:Ae

Anonymous:2002:AA

Anonymous:2002:ABa
Anonymous:2002:ABL

Anonymous:2002:ACa

Anonymous:2002:ACb

Anonymous:2002:DBB

REFERENCES

Anonymous:2002:SRb

Anonymous:2002:Ra

Anonymous:2002:Rb

Anonymous:2002:SRa

Anonymous:2017:N

Anonymous:2017:P

Aldinucci:2015:PVD
Marco Aldinucci, Guilherme Peretti, Pezzi, Maurizio Drocco, Concetto Spampinato, and Massimo Torquati. Parallel visual data restoration on multi-GPGPUs using stencil-reduce pattern. *The International Journal of High Per-
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
| [ATD+88] | Jan Almlöf, Donald G. Truhlar, H. T. Davis, Klavs F. Jensen, Matthew Tirrell, and Terry Lybrand. Supercomputer chemistry at the Univer-

- **Arnavut:2007:LN**
- **Aro:1999:HPC**
- **Aoyagi:1991:ITS**
- **Almlof:1988:SCU**
REFERENCES

Anzt:2017:PEE

Anzt:2015:AGB

Aida:2000:PEM

Austin:1992:CSU

Abate:2001:PCR

Baker:2001:M
Mark Baker and Amy Apon.

REFERENCES

Bridges:2012:VMB

Barkai:2009:APS

Biagioni:2002:ARS

Bjorstad:1987:IPL

Bailey:1991:NPB

Barrett:1991:CSS

Bova:2000:DLP

Browne:2000:CDP

Bell:2017:LBY

Bethune:2014:PAA

Bouchitte:1995:EAE

[Vincent Bouchitté, Pierre Boulet, Alain Darte, and Yves Robert. Evaluating array expressions on massively parallel machines with communication/computation over-

REFERENCES

sagepub.com/content/27/3/244.full.pdf+html.

Belgin:2010:OSE

Barnard:1999:MIS

Brown:1990:CSR

Blas:2014:RAM

Berman:2001:GPS

Bolze:2006:GLS

[Raphaël Bolze, Franck Capello, Eddy Caron, Michel Daydé, Frédéric Desprez, Emmanuel Jeannot, Yvon Jégou, Stephane Lanteri,
REFERENCES

Bahi:2009:PAS

Bahi:2009:PASS

[BCCL09] Marcos Buat, Anne Cadiou, Lionel Le Penven, and Christophe

Berry:1989:PC

Buffat:2017:SAV

[BCLP17] Marc Buffat, Anne Cadiou, Lionel Le Penven, and Christophe
REFERENCES

Bell:2003:OGS

Bougeret:2014:UGR

Bhushan:2011:SSL

BenYoussef:2007:PIC

Besard:2015:CSM

References

[Bakken:2017:RTT] Rune Havnang Bakken and Lars Moland Eliassen. Real-time three-dimensional skele-

Bland:2018:SIF

Bristeau:1995:SHE

Bitar:1990:HEM

Bernholdt:2018:PGR

Buttari:2007:POM

Alfredo Buttari, Victor Ei-jkhout, Julien Langou, and Salvatore Filippone. Performance optimization and modeling of blocked sparse kernels. *The International Jour-
REFERENCES

Berry:1992:LSS

Bauer:2016:FEB

Berthou:2001:COH

Bounanos:2007:LBD

Breitenfeld:2000:PIS

M. Scot Breitenfeld and Philippe H. Geubelle. Paral-
References

Budge:1996:CGP

Bird:2018:POI

References

Buck:2000:AR

Buck:2006:NHM

Bethel:2012:MCM

Balaaji:2017:SIP

Berthou:2009:XSX

Bassolino:1988:DPS

Bassolino, Hirata, Kitchen, Kominos, Pardi, and Levy. Determination of protein structures in solution using NMR data and IMPACT. *The Inter-
REFERENCES

[BK07] N. Travinin Bliss and J. Kepner. pMATLAB parallel MAT-

[Benoit:2018:REC] Anne Benoit, Laurent Lefèvre, Anne-Cécile Orgerie, and Issam Raïs. Reducing the en-

Beaumont:2001:SDH

Beaumont:2006:CR

Balaji:2012:AHC

Balaji:2013:GEI

Brower:1989:FAS

REFERENCES

Benoit:2018:RCS

Boeres:2003:TOS

Brandt:1991:CSH

Benoit:2011:MCR

Brightwell:2010:EDA

Brightwell:2003:DIP

REFERENCES

[Bus87] B. Buslee. Book review: Supercomputers: Value and Trends, Bill Buzbee, Computer Research and Applications Group, Computing and Communications Division,

Choi:2007:PCC

Cappello:2009:FTP

Cortese:1995:HPS

Cotelo:2018:SCO

Crutcher:1996:RSI

REFERENCES

REFERENCES

Casanov:2001:DMS

Constantin:1997:PHK

Chirravuri:1995:MPA

Chang:1995:PMH

Conejero:2018:TBP
Chau:2011:PSO

Carter:2006:Pb

Carter:2006:Pa

Callahan:1988:PPP

Chamberlain:2007:PPC

Casanova:1997:NNE

Caron:2006:DST

Chouhan:2006:AMD

Carreras:1990:PTC

Cordoba:2014:EPR

Chang:1993:UPC

Colbrook:1997:E

Reports on the EUROPORT Project to port 38 industrially relevant codes to parallel computers.

Cuny:1997:BDS

CDP+94

CDT05

CDV15

Chan:2005:CCI

Chavez:2018:DMR

Chan:2000:DLP

Clinckemaillie:1997:PIP

Chandy:1994:IST

Cachau:1994:SST

REFERENCES

[CJ06] Yves Caniou and Emmanuel Jeannot. Multicriteria schedul-

REFERENCES

[CMS+11] Scott Callaghan, Philip Maechling, Patrick Small, Kevin Miller, Gideon Juve, Thomas H.
REFERENCES

Connolly:1988:BRS

Cotronis:2004:CMP

Cowles:2008:PFC

Che:2014:BCP

Camargos:2017:GAI

Chronopoulos:1991:SPS

Anthony T. Chronopoulos, C. R. Swaminathan, and
REFERENCES

Chung:2010:HPT

Collins:2005:DIC

Collignon:2011:FIS

Craig:2012:NFC

Chapin:2001:OS

Cooper:2005:IAC

Chorley:2009:HMP

Carrillo:1999:ILS

Chen:2008:ACD

Czarnul:2003:PTA

Paweł Czarnul. Programming, tuning and automatic parallelization of irregular divide-and-conquer applications in

Chen:2011:GAM

Dekate:2012:ISP

Dubey:2014:EFM

Darema:1999:NST

Frederica Darema. New software technologies for the development and runtime support

Darema:2000:PET

Dongarra:2009:IES

Dongarra:2011:IES

REFERENCES

Downes:2010:DRS

Dubey:2013:POB

Deelman:2017:PAP

Diener:2017:MMA

Matthias Diener, Eduardo Hm Cruz, and Philippe Oa Navaux.
REFERENCES

Dayde:1989:LBF

Dayde:1991:ULB

Dayde:1991:ULB

Dayde:1989:LBF

Dawson:1987:PMP

Darema:2000:P

Armel de La Bourdonnaye. The element by element method as a preconditioner for linear systems coming from...

Dongarra:2003:SAN

Deelman:2010:GCM

Dennis:2012:CSS

Dackland:1992:PBM

Delic:1993:PAC

Deshpande:1994:ADN

DeFanti:1996:OWW

Dun:2015:DDM

Dinan:2014:ECC

REFERENCES

URL http://hpc.sagepub.com/content/28/4/390.

[Drake:1993:CCS]

[Dracopoulos:1997:BSP]

[Dykes:2017:S]

[Delic:1996:FAA]

[DH96] George Delic and Richard I. Haller. Factor analysis of applications performance data for the Cray Y-MP. The International Journal of Su-
REFERENCES

percomputer Applications and

[DL97] Jean-Luc Dekeyser and Christian Lefebvre. HPF-Builder: a visual environment to transform Fortran 90 codes to HPF. The International Journal of Supercomputer Applications and High Performance Com-

REFERENCES

Dorward:1997:TEU

[DMT97]

Dongarra:2001:NLT

[DMT01]

Dongarra:1989:ACR

[Don89]

Dongarra:1987:BRC

[Don87]

Dongarra:1992:E

[Don92]

Dongarra:2002:PBLa

Dongarra:2002:PBLb

Damevski:2005:DRT

Deelman:2018:FSW

Davenp ort:1990:FPM

Dahmani:2006:SMD

REFERENCES

REFERENCES

Dongarra:1999:SII

Dongarra:2001:P

Dongarra:2006:SIT

Dongarra:2009:E

Dongarra:2011:SPW

Dongarra:2013:IAS

Dongarra:2017:GEN

Dongarra:2018:GEN

Darriba:2014:HPC

Duke:1991:CSS

Dixon:1988:MMH

Dennis:2012:CPU

REFERENCES

REFERENCES

Ern:1995:DCM

ElMaghraoui:2006:IOS

Ekeberg:2015:MLU

El-Gamal:1993:CIS

Epperly:2012:HPL
[EKD+12] Thomas Gw Epperly, Gary Kumfert, Tamara Dahlgren, Dietmar Ebner, Jim Leek, Adrian Prantl, and Scott

[Eyr06] Lionel Eyraud. A pragmatic analysis of scheduling environments on new computing...

[Fem90] Sidney Fembach. A U.S.
REFERENCES

Fritzson:1997:RBS

Fritzsche:2010:APP

Faulk:2004:MHP

Fagg:2005:PFT

Fisch:2010:ONS

Fagg:1997:ONS

Fagg:1997:ONS

Fagg:1997:ONS

REFERENCES

sagepub.com/content/18/4/459.full.pdf+html.

[Foster:1997:GMI]

[Foley:1990:SDV]

[Follin:1990:AI]

[Fowler:2005:P]

[Friedlander:2002:SIF]
REFERENCES

[FTB13] Diego Fabregat-Traver and Paolo Bientinesi. Application-tailored linear algebra algorithms: a search-based ap-

Fukazawa:2012:PMM

Fisher:2002:SIT

Ferreira:1991:SES

Gaffney:1988:IBS

Gannon:1988:PES

Garcia-Carballeira:2003:DEP

Félix Garcia-Carballeira, Alejandro Calderon, Jesus Carretero, Javier Fernandez, and...

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>113</th>
</tr>
</thead>
</table>
REFERENCES

[GLGLB11] Juan Gómez-Luna, José María González-Linares, José Ignacio

Gomez-Luna:2011:LBV

Gao:2014:UIM

Glatard:2008:FEW

Gourdain:2010:HPC

Gupta:2011:UCO

Grimshaw:1997:CW

Andrew S. Grimshaw, Anh Nguyen-Tuong, Mark J. Lewis, and M. Hyett. Campus-wide computing: Early results using Legion at the University of Virginia. *The International Journal of Supercomputer Applications and

REFERENCES

Galli:1993:EMS

Geist:2017:SHP

Gomes:2008:EGB

Grossschadl:2003:ASL

Gray:1999:MIS

Ghan:2005:LBS

REFERENCES

Gropp:2009:NCC

Gray:2018:LAP

Gine:2003:DMC

Grigoriev:2015:HPA

Gunther:2000:DPC

Gustafson:2004:PBB
Gurun:2008:ECO

Hsu:1991:MAO

Hajivassiliou:1993:SNR

Haber:1990:SVW

Hamber:1991:SDQ

REFERENCES

REFERENCES

Mihai Horoi and Richard J. Enbody. Using Andahl’s

Heath:2015:TTL

Hertz:1988:SMN

Hernquist:1991:FA

Hertz:1991:EEI

Halappanavar:2012:AWM

Hernquist:1991:FA

122

Hermanns:2012:SDM

Hugo:2014:CMS

Hoefler:2012:OSR

Hasegawa:2014:PEU

Hu:1996:DPI
Yu Hu and S. Lennart Johnson. A data-parallel implementation of hierarchical N-body

Hara:1988:FSP

HKK88

Hey:2000:DPP

HL00

Houstis:2003:GSB

HLP+03

Huang:2017:SPP

HLS+17

Hauser:2010:OCF

REFERENCES

Hoisie:2000:PSA

Hart:1992:CMB

He:2016:EHP

Hab:1990:EDS

Hart:1997:PFP
Hsu:1989:ADV

Huo:1993:EMP

Huang:2004:PAM

Haidar:2014:NHC

REFERENCES

Huang:2003:VDH

Hou:2013:PMD

Hutchinson:1991:FSM

Isaila:2010:SMP

Ibtesham:2015:CCS

Iskra:2015:OSR

Kamil Iskra and Torsten Hoeffer. Operating systems and runtime environments on supercomputers. The International Journal of High Performance Computing Applications,
REFERENCES

Ishiguro:1987:PAV

Imrohoroglu:1993:NAS

Iyengar:2002:P

Iverson:2018:VMM

Imamura:2010:HPQ

Igual:2011:CTA

[IMH+11] Francisco D. Igual, Rafael Mayo, Timothy Hartley, Umit V.

Andrew Ilin and L. Ridgway Scott. Correspondence:
References

Jeannot:2013:SMA

Jurczuk:2018:GBC

Jagode:2011:TBP

Jespersen:1989:CFD

Jalby:2004:WNS

REFERENCES

REFERENCES

134

Kahaner:2007:P

Kale:2009:EAD

Kale:2009:PME

Keahey:2000:LCA

Kim:1992:EPAb

REFERENCES

Kemal:2016:MSA

Kepner:2004:HPC

Kepner:2004:HPO

Keyes:2009:PDE

Kumar:2010:ACC
REFERENCES

Kurc:2009:HGC

Kerbysen:2004:PEA

Kulkarni:2013:OPC

Kitchens:1990:UDE

Kerbyson:2005:PMP

Kurbaly:2009:PEA

Kerp：“04

Kulkarni:2009:HGC

Kerbyson:2005:PMP
Kramer:1996:LBL

Katz:2001:ERT

Kandaswamy:1998:ESA

Kranzlmuller:2005:RAP

Kranzlmuller:2003:RAP

Kennedy:2004:DMP

REFERENCES

(KMM16) Kiyoshi Kumahata, Kazuo Minami, and Naoya Maruyama. High-performance conjugate gradient performance improve-
REFERENCES

Kurzak:2008:AGF

Keyes:2013:MSC

Kim:1987:DIV

Koide:1990:VSC

REFERENCES

Kok:1988:PPA

Kerb:1996:ISE

KPR17

Kuan:2018:MSA

Kremer:1994:COR

KPR17

Kuan:2018:MSA

Kremer:1994:COR

REFERENCES

Korch:2011:PLS

Kaufman:1989:STD

Kurzyniec:2005:FRH

Kramer:2009:CAP

Kramer:2009:EAS

Kennedy:1994:CSM

Ken Kennedy and Kevin Timson. Centers of supercomputing — making parallel computing truly usable: research, education, and knowledge transfer at the Center for Re-

[2004] Rajiv K. Kalia, Priya Vashishta, Lin H. Yang, Fred W. Dech, and John Rowlan. Quan-

REFERENCES

Laflamme:2003:APS

Li:2012:LSF

Lee:2003:BAP

Levy:2015:SVE

Liu:2016:PBP

REFERENCES

Lam:2018:FGF

Liu:1990:HSI

Liu:2010:CTC

Larson:2005:MCT

Lin:2001:RCB

Lastovetsky:2010:RAP
REFERENCES

Laguna:2016:EEU

Lazowska:1990:WSC

Lastovetsky:2010:AHC

Lee:2006:USD

Latham:2007:IMI

Du:1989:CEC

REFERENCES

Lowther:1993:IAV

Lee:2015:HPE

Leiss:1990:TDD

Langer:2017:EOC

Lucas:2009:MPF

Lescrenier:1988:LSU

REFERENCES

Lusk:2009:STE

Luszczek:2009:PPM

Lobeiras:2013:PSW

Liu:2005:PAL

Ludwig:1997:OIL

Lively:2011:EPC

REFERENCES

Mab:2013:OPS

Mahaffy:1990:DNI

Maisel:1987:SSD

Mohamed:2003:SBD

Manneback:1997:SIS

Martin:1987:BRH

Martin:1987:BRS

Joanne L. Martin. Book reviews: Supercomputers and Their Use. The International Journal of Super-
REFERENCES

REFERENCES

Migliori:2011:PCT

McDonagh:2015:ASS

Marker:2013:CSM

Ma:1990:IM

Mellor-Crummey:2004:OSM

McNamara:1987:MMS

Brendan McNamara. The mass market for supercomput-
REFERENCES

158

McNamara:1989:STB

McRae:1987:BRC

Merelli:2017:PBA

Morrison:2006:WGC

Meswani:2013:MPP

McManus:2000:SSP

Kevin McManus, Mark Cross, Chris Walshaw, Steve John-

[Meredith:1987:STC] Dennis Meredith. Science and

Meurant:1988:DDM

Maccabe:2009:RM

Miranda:2017:EPP

Melhem:1987:TEI

Malawski:2012:CBA

Markidis:2015:OAN

Stefano Markidis, Jing Gong, Michael Schliephake, Erwin

[MJD16] Xinqiang Miao, Xianlong Jin, and Junhong Ding. Improving the parallel efficiency of...

Minotto:2013:GBA

MacDonald:2011:GMM

Mackay:1998:SPF

MacDonald:2011:GMM
REFERENCES

Mohr:2009:PE

McRae:1988:CRS

Montry:1989:MPM

Monitzer:2012:CLB

Moriarty:1989:OSL

REFERENCES

REFERENCES

Mirin:2005:SIF

Mach:2009:PAE

McIntosh-Smith:2018:ABF

Moriarty:1992:PPS

Malony:2007:CMO

REFERENCES

REFERENCES

Ma:2008:GEW

Moon:1992:MLP

Nagurney:1989:BRP

Nagurney:1993:ISI

Nakano:1999:RBB

REFERENCES

Nagurney:1989:PSV

[170]

Nakano:2008:NUA

[130]

Nudd:2000:PTP

[311]

Nagurney:1990:SPE

[311]

Narayanan:2013:HMP

Nieplocha:2006:AAP

[311]

Jarek Nieplocha, Bruce Palmer, Vinod Tipparaju, Manojku-

[NZ93] Soren S. Nielsen and Stavros A. Zenios. Massively parallel

[Oliker:2008:SAP]

[Onat:2007:PIR]

[Oden:2017:IV]

[Otten:2016:MOI]

[Obrecht:2011:TPM]

REFERENCES

Pancake:1992:WSW

Pan92

Pancake:1997:CUP

Pan97

Papadopoulos:2011:ECA

Pap11

Patrinos:2005:P

Pat05

Planas:2009:HTB

PBAL09

Petitet:2001:NLG

Plaza:2008:CVF

Plaza:2008:P

Phillips:2016:PAH

Prabhu:2018:DRC

Palmer:2010:CBF

Persons:1991:DAD

Primet:2004:GNM

Pichel:2010:ILI

Post:2004:SPM

Plank:2009:RLC

Putman:2005:CPP

Puschel:2004:SGP

[PMS+04] Markus Püschel, José M. F. Moura, Bryan Singer, Jianxin Xiong, Jeremy Johnson, David
REFERENCES

Pianu:2016:NAT

Pozo:1997:TNT

Palmer:2016:GFD

Papadopoulos:2004:CLH

Park:2009:OHC

Jin Woo Park, Si Hyong Park, and Seung Jo Kim. Optimiza-

Perez:2003:PCC

Patra:2009:ESS

Pavarino:1995:NEO

Pramanick:2001:HA

Pohorille:1990:DDA

Petersen:1987:CSL

Christian E. Petersen and Christopher A. Sims. Com-

Perrotte:2012:FGP

Quan:2008:MHC

Dang Minh Quan and D. Frank Hsu. Mapping heavy communication Grid-based workflows onto Grid resources within an SLA context using meta-

REFERENCES

REFERENCES

REFERENCES

Sunder:2006:DPA

C. Shyam Sunder, G. Baskar, V. Babu, and David Strenski.

Saati:1990:SNS

Abdulmanan Saati, Sedat Biringen, and Charbel Farhat.

Su:1999:UAS

Alan Su, Francine Berman, Richard Wolski, and Michelle Mills Strout.

Sellappa:2004:CEM

Sriram Sellappa and Siddhartha Chatterjee.
REFERENCES

[Sci92] Scientific Supercomputing Subcommittee, Technical Committee on Supercomputing Applications, IEEE Computer Society. NSF Supercom-

Shantharam:2011:EDS

Sullivan:1987:ADL

Skjellum:2001:SA

Spataro:2017:NSF

Schmitt:2017:SCP

Simon:2012:ISI

Horst Simon, Jack Dongarra,

[S07] Sun:2002:SPS

[SG07] Smooke:1991:NMA

[SG09a] Sonmez:2007:NEB

[SG09b] Seager:2009:CHS

Mark Seager and Brent Gorda. The case for a hierarchical system model for Linux clusters. The International Journal of High Performance Computing Applications, 23(4):
REFERENCES

Seager:2009:CCM

Song:2009:EPA

Somwaru:1993:GCA

Shapiro:1988:PPV

Szustak:2018:POS

Simon:1990:HPS

REFERENCES

[journals.sagepub.com/doi/pdf/10.1177/109434209000400108.]

Shirayama:1990:FVC

Strip:1992:SMM

Sterling:2001:HPC

Sun:2010:HPC

Solomou:2013:DPR

Shahzad:2018:BUF

[SKZ+18] Faisal Shahzad, Moritz Kreutzer, Thomas Zeiser, Rui Machado, Andreas Pieper, Georg Hager,

Skjellum:1995:EAM

Shende:2006:TPP

Szymanski:1987:PPR

Subasi:2018:UFT

Symeonidou:2014:DRB

Sprunt:2006:MCP

Brinkley Sprunt. Managing the complexity of performance

[Siegel2010:MMA] Stephen F. Siegel and Andrew R. Siegel. Madre: the
REFERENCES

Sankaran:2005:LMC

Shan:2008:PAL

Sittig:1992:PCM

Scalettar:1991:QMC

Stoess:2012:LVM

Sterling:2001:IPC

Sterling:2009:BNN

Sterling:2009:MCE

Saltz:2013:FBA

REFERENCES

Spataro:2017:HPC

Spafford:2013:MSA

Sivagama:2009:DCE

Schikuta:2001:P

Swany:2004:BPT

Snir:2014:AFE

Smith:2003:DQP

Santhanaraman:2005:DZC

Coden IHPCFL. ISSN 1094-3420 (print), 1741-2846 (electronic). URL http://hpc.sagepub.com/content/19/2/129.full.pdf+html.

Salmon:1994:FPT

Stathopoulos:1996:PIM

Smith:2011:STS

Barry Smith and Hong Zhang. Sparse triangular solves for

Schive:2012:DUH

Tsuboi:2016:TDF

Tuiyagura:2008:TSP

Tejedor:2017:PPC

Tuan:2010:AWB

Do Van Tuan and Ui-Pil Chong. Audio watermarking based on advanced Wigner distribution and important fre-
 REFERENCES

Jan Treibig, Georg Hager, Hannes G. Hofmann, Joachim Hornegger, and Gerhard Wellein. Pushing the limits for medical image reconstruction on recent standard multicore processors.

Françoise Tisseur. Parallel implementation of the Yau and Lu method for eigenvalue computation. The International Journal of Supercomputer Applications and...
REFERENCES

Teodoro:2017:APA

Tago:1988:VCU

Thakur:1998:PAW

Tamches:1999:UDK

Trybys:2010:SFE

Tilson:1999:HPC

[TMW+99] Jeffrey L. Tilson, Mike Minkoff,

[TMWS91]

[Tawa:1991:AFP]

[TNBG07]

[Teijeiro:2018:TCB]

Kevin Timson and Ann Redelfs. Centers of supercomputing — Center for Research on Parallel Computa-
REFERENCES

David C. Torney, Tony T. Warnock, and Peter Koll-
REFERENCES

Siraj ul Islam, Ikram A. Tirmizi, and Fazal Haq. Quar-

Ukidave:2014:APE

Van-Catledge:1989:TGM

Vuduc:2004:SME

Varghese:2017:PAE

Vadhiyar:2004:TAM

REFERENCES

Vermij:2015:CER

Valencia:2008:PPR

VonLaszewski:2003:FBS

Vigueras:2014:ACD

Videau:2018:B

REFERENCES

Vetter:2000:RTP

Vega-Rodriguez:2018:PCB

Vazhkudai:2003:URT

Vondrous:2014:PCP

Valin:2013:OPM

Wadleigh:1999:HPF

Walshaw:1995:LAO

Worley:2005:PPP

Wyrzykowski:2018:GEN

Wood:2015:GCM

Wu:2012:CTU

Weber:1991:NSF

Thomas A. Weber. The National Science Foundation Supercomputer Centers Program. The International
REFERENCES

Wang:1990:TEB

Witten:1992:EFP

Wong:2007:PPT

Wilhelmson:1987:WF

Woolf:2003:WSM

Whalen:2012:NTC

Wong:2007:PPT

Wilhelmson:1987:WF

Witten:1992:EFP

REFERENCES

Osman Yaşar and Hasan Dağ.
REFERENCES

Yelic:2004:SIA

Young:1996:ICM

You:2014:EMC

Yelic:2007:PLC

Yoshii:2011:PSE

Kazutomo Yoshii, Kamil Iskra, Harish Naik, Pete Beckman, and P. Chris Broekema. Performance and scalability evalu-

[YSN90] Fumiko Yonezawa, Shoichi Yonezawa:1990:GT

[YSN90] Fumiko Yonezawa, Shoichi Yonezawa:1990:GT

Yu:2005:HPB

Yu:2006:RDG

YarKhan:2006:RDG

Yuan:2014:OFA

Young:1993:FVC

Young:1993:FVC

REFERENCES

Yao:2015:DSE

Zheng:2011:PHL

Zhao:1992:HMM

Zounmevo:2014:ESC

Zaki:1999:TSP

Zender:2007:SPC

Zaider:1990:CAA

Zheng:2014:IMS