A Complete Bibliography of Publications in *IMA Journal of Numerical Analysis*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

26 January 2019
Version 1.73

Title word cross-reference

(k,l) [329,330]. \(-1 \) [1065]. 1
[369,385,427,1027,1139]. \(1/x \) [276]. 10
[836]. 2 [445,708,1018,1158]. 3
[55,186,263,630,930,1068,1153,1284,1412]. 4
[39]. \([1,\infty) \) [276]. \(a \) [940,1544]. \(\alpha \) [1376].
\(ap \) [1271]. \(AX + YB = C \) [1637]. \(B \) [839]. \(R^3 \) [989]. \(H(\text{div}) \) [1246,1247]. \(C^0 \) [409,217,287]. \(C^1 \) [1339,1458]. \(C^2 \) [539,1153,1340]. \(C_1 \) [1262]. \(\mathcal{F} \) [524]. \(Z \) [474]. \(\chi \) [7]. \(D \) [130,164,1433]. \(DG(p) \) [867]. \(\epsilon \) [866,1488]. \(G^1 \) [669]. \(G^2 \) [669]. \(\gamma \) [1055]. \(H \) [899,1325,1345,1561,519,527,1467]. \(H(\text{div}) \) [832,1069]. \(H^1 \) [731,1261,509,1049,1295,1514]. \(H^2 \) [419,509]. \(H^s(0,L) \) [142]. \(H_1 \) [626]. \(H_\infty \) [1222]. \(H^1_\infty(I^3) \) [743]. \(hp \) [1244,355,749,1198,1199,1197]. \(k \) [525]. \(l \) [497]. \(L(L^2) \) [564]. \(L^2 \) [361,582,1098,146,808]. \(L^2(H^1) \) [962]. \(L^\infty(L^2) \) [747]. \(L^\infty(L^\infty) \) [867,868]. \(L_1 \) [969,1567,1313,1331,1569,1574,1606,1637]. \(L_2 \) [345,731,1048,486,1573]. \(L_\infty \) [1331]. \(L_p \) [1071,1168,1169,1568]. \(\lambda \) [753]. \(LDL^T \) [1360,772,524]. \(LR \) [829]. \(LU \) [959,992,1470]. \(M \) [450,449,822]. \(A - \varphi \) [481]. \(T - \Omega \) [481]. \(\mathcal{H} \) [675]. \(P \) [403,404,462,956,56,184,219,552,847,868,1151,1373,1402,1467]. \(p(x) \) [536]. \(Q \) [1621,1305]. \(qd \) [829]. \(QR \) [388,909]. \(R \) [492]. \(R^3 \) [1183]. \(\mathcal{R} \) [873]. \(rp \) [1271]. \(S \) [702]. \(T \) [718]. \(\theta \) [998,381,816,815,1107,1119,1525]. \(V \) [1596]. \(\varphi \) [1589]. \(\vartheta \) [997]. \(W(a,x) \) [757]. \(W^{1,\infty} \) [529]. \(X \) [319,1164,1451].
\[x^{(i+1)} = Px^{(i)} + q \]
\[XY = A \]
\[y'' = f(t, y) \]
\[y' = f(x, y) \]
\[y'' = f(x, y) \]
\[z^{-1} = 310, 1167, 1291 \]
\[Z_2 [958] \]
\[|c| [1] \]

-acceptability [940]
algebraic [329, 330]
algorithm [1488]
average approximation [1071]
algorithms [998]
-BEM [219]
-Bernstein [1305]
boundedness [868, 867]
-condition [1085]
-conforming [1069]
-convergence [529]
-Cycle [1596]
decompositions [450, 449, 992]
-elliptic [899, 519]
-error [564, 747]
-factorization [524]
-functions [1589]
-Galerkin [1295]
-Hessian [708]
-interior [287]
-Laplacian [56, 184, 536]
-linear [492]
matrix [675, 718, 822]
-methods [7]
narrow [527]
norm [419, 808]
norms [1373]
-order [1621]
-part [525]
-partitions [130]
-projection [731]
-rational [753]
scheme [997]
series [839]
solutions [868, 1637]
spline [1164, 1451]
-splines [319, 1262]
stability [462, 731]
-stable [403, 404, 956, 1544]
-structure [552, 1151]
symmetry [958]
-transform [474]
-transformation [1433]
-triangulation [1376]
type [702, 524]
-uniform [866]
-uniformly [1]
-version [749, 847, 1244, 1402]
-weighted [1345]

17 [1465]

2 [185, 1149].
26 [73].
31 [1601].
3D [1511].
5 [404, 617].
65130 [459].

83d [1149].
86d [617].
87c [404].
9 [459].
90d [573].
90i [459].
98d [1465].

Abel [348, 1122, 1123].
abscissa [1193, 1194].
absolute [1008, 1175, 1527].
absorbing [1147].
abstract [233].
Accelerated [127].
accelerating [923].
Acceleration [1067, 292, 926, 938, 1175, 1176].
accelerator [619].
acceptability [940].
accrative [245, 246].
accumulation [434].
Accuracy [1248, 111, 403, 404, 866, 943, 960, 1200, 1443].
Accurate [520, 569, 644, 693, 757, 781, 930, 1140, 1243, 1268, 1490, 1491, 1551, 1623, 1632].
achieve [544].
acoustic [199, 223, 257, 712, 1211, 1270, 1443, 1510, 1575].
active [236].
Adams [845].
Adams-type [845].
adapted [1102].
addition [679].
additional [222, 1230].
Additive [850, 1402, 96, 437, 873, 996, 1118, 1229, 1558, 1607].
additively [398].
ADER [1500].
ADER-WAF [1500].
adhesion [496, 750].
ADI [1297].
adjoin [264, 1081, 1162, 1413, 1473, 1553].
advected [1044].
advection [615, 632, 640, 712, 1211, 1270, 1443, 1510, 1575].
advection-diffusion [1211, 1270].
adverse [249].
Afem [372].
affine [1264].
after [490].
aggregated [1468].
ad [1396].
Ale [1140, 1031].
Ale-Fem [1140].
algebra [1519].
algebraic [145, 329, 330, 347, 380, 467, 709, 778, 809, 823, 1018, 1090, 1097, 1284, 1387, 1412, 1435, 1437, 1486].
algebraically [468].
1152, 1174, 1230, 1301, 1322, 1327, 1488, 1537, 1543, 1567, 1573, 1586, 1594, 1609, 1622.

Algorithms
[554, 1202, 1228, 51, 52, 75, 197, 472, 823, 829, 1067, 1203, 1208, 1341, 1344, 1369, 1439, 1453, 1467, 1503, 1511, 1593, 1589, 1620, 1621, 1630].

alignment [49]. Allen [153, 236, 682, 791].

alloy [150, 151, 238, 1007].

alloys [1618].

alpha [533].

Alternate [506, 1208, 1209].

alternating [230, 309, 406, 446, 445, 769, 1359].

Ampère [108].

analyses [169, 394, 850].

analytical [8, 145, 817].

Andrew [361].

anisotropic [412, 81, 163, 165, 549, 640, 646, 647, 762, 791, 1048, 1049, 1110, 1156, 1156, 1162, 1187, 1190, 1234, 1255, 1258, 1262, 1266, 1271, 1341, 1353, 1375, 1378, 1413, 1484, 1553, 1559, 1594, 1596, 1590, 1593, 1598, 1610, 1617, 1625, 1633, 932, 933, 1532].

Analytic [1523, 35, 46, 974, 1316, 1364].

analytical [8, 145, 817].

Andrew [803].

arbitrary [974, 986, 1002, 1042, 1044, 1061, 1071, 1094, 1109, 1131, 1314, 1141, 1157, 1226, 1238, 1252, 1261, 1278, 1289, 1312, 1315, 1353, 1355, 1367, 1382, 1393, 1427, 1476, 1491, 1513, 1542, 1567, 1568, 1569, 1572, 1578, 1581, 1583, 1591, 1607, 1612].

arbitrarily [1403].

Arbitrary [549, 118, 530, 667, 705, 771, 871, 1116, 1128, 499].

arbitrary-order [549].

arcs [1611].

arguments [1255].

arising [31, 29, 293, 340, 627, 676, 775, 809, 835, 898, 907, 1015, 1097, 1296, 1337].

arithmetic [1272, 1273, 1427].

Arnold [361].
boundary [1548, 1584, 933].
boundary-concentrated [612].
boundary-finite [904]. boundary-locus [130]. boundary-value [269, 420, 807, 1224].
Bounded [1441, 438, 1347, 1364, 1628].
Boussinesq [664, 1287]. box [654, 691, 724, 1336]. Branch [39, 341].
branched [495]. breaking [957, 1226, 1595].
Burniston [46]. Burniston-Siewert [46].

Cahn [153, 95, 236, 551, 682, 791, 792, 1061, 1245].
Cahn/Cahn [153]. calculation [231, 964, 473, 800, 1120]. calculus [1374].
Call [61]. Camassa [1564]. canonical [59].
capillarity [357]. capillary [191].
capturing [1371]. Caputo [1477].
Carathéodory [621, 622, 1232].
cardinality [372]. Carlo [771, 1053, 1145].
cartoon [626]. case [34, 249, 562, 653, 658, 657, 900, 1334, 1336].
Cauchy [233, 463, 487, 1065, 1306, 1321].
central [311, 1082, 1210].
certain [482, 556, 634, 769, 898, 1015, 1304, 1592].
chain [1278]. chains [1064]. Change [589, 952, 545, 595, 1358, 1611, 1629].
channel [995]. chaos [1505].
close-to-touching [483]. Closed [890, 164, 770, 1390]. Closed-form [890].
closest [463]. Closing [431]. closure [75].
clustering [1034]. codes [390, 844, 1420]. coefficient [815, 973, 1000, 1249, 1315, 1385, 1575].
collocation-type [1047]. combination [790, 1357]. combinations [782]. combined [257, 1543]. committed [1534].
commutator [234]. commutator-free [234].
Compact [315, 730, 546, 714, 1460]. compactly [424]. companion [526].
Comparison [183, 367, 46, 144, 363, 715].
Comparisons [696, 1422]. compatible [243, 688]. complement [762].
complementarity [125, 1563, 1562].
complementary [1497]. complete [253, 1536]. completely [497, 1606].
completion [36, 406]. Complex [99, 938, 84, 197, 530, 613, 754, 823, 955].
Complexity [743, 795, 370, 502].
Component [150, 151, 152, 238, 1559].
Componentwise [1563, 426, 1373].
Composite [1314, 272, 477, 1586].
Computable [22, 21, 25, 88, 870, 1072, 1556, 20, 1541].
Computational [417, 542].
Computations [862, 502, 1145, 1155]. computed [534, 608].
computer [843, 842]. computerized [1322].
computers [1272].
conduction [20]. conductivity [602].
configuration [1020]. conformal [387, 620, 715, 1022, 1078].
Conforming [352, 831, 995, 81, 295, 376, 615, 738, 832, 1069, 1096, 1255, 1259]. conjecture [1291].
Conjugate [1161, 123, 839, 955, 1344, 1438, 1543, 1627].
conjugate-gradient [955]. connected [1022, 1205]. connecting [225, 1227].
conserving [419]. consistency [1413, 1510].
consistent [561]. consolidation [1393].
Constraining [1025]. constraints [370, 516, 1174, 1315].
Constructive [958]. context [1152, 1424]. contingent [1640, 547].
continuation [703, 752, 918, 1317].
continued [495]. Continuous [662, 1377, 1450, 23, 324, 355, 705, 975, 1062, 1109, 1348, 1507, 1567].
continuum [1091, 1278]. contour [1576]. contours [251].
contraction [1222]. contrast [325].
convection-diffusion [109, 145, 296, 351, 376, 418, 601, 667, 726, 744, 826, 1000, 1005, 1099, 1101, 1127, 1126, 1141, 1140, 1155, 1199, 1233, 1391, 1430, 1553, 1579, 1598, 521].
convection-diffusion-reaction [480].
Convection-diffusion-type [1481].
convection-dominated [132, 1086].

Convergence
[1057, 1114, 1141, 1139, 1138, 1146, 1175, 1198, 1197, 1225, 1242, 1254, 536, 1311, 1319, 1331, 1329, 1333, 1343, 1344, 1358, 1398, 1403, 1408, 1414, 1434, 1451, 1501, 1503, 1506, 1553, 1558, 1620, 1621, 1627, 933].

Convergent

Conversion
[1499].

Convexity
[900, 545].

Convexity-preserving [900].

Convolution
[396, 833, 393, 834, 1112, 1121, 1122, 1351].

Cook
[1061].

corresponding
[692, 1008].

Corrigendum
[154, 245, 404, 573, 1246].

corresponding
[692, 1008].

Cosine
[1611, 353, 459, 460].

Cotes
[1083, 1592].

countercounterexample [817].

counterpart [134].

coupled
[89, 210, 211, 273, 416, 614, 631, 648, 683, 904, 1012, 1102, 1113, 1142, 1267, 1353, 1391, 1539].

Coupling
[365, 6, 48, 195, 294, 334, 368, 378, 557, 656, 738, 739, 1013, 1091, 1163, 1196, 1375].

couplings [451].

covariant [533].

CQ [139].

CQ-BEM [139].

Crack
[395].

Cracks
[187].

Craig
[1598].

Crank
[501, 782, 970, 1133, 1358].

Crank-Gupta
[501].

criss-cross [322].

criteria [1206].

criterion [181].

critical
[546, 630].

Criticality
[1145].

cross
[222, 259, 322, 694].

cross-diffusion [222].

cross-section [259].

Crouzeix
[1038, 1098].

cubature
[196, 692, 1144].

Cubic
[1164, 32, 134, 370, 477, 510, 693, 1009, 1153, 1299, 1340, 1448, 1451, 1458].

curl
[113, 441, 899, 519].

curl-curl [441].

current
[6, 202, 201, 259, 625, 1359, 1367, 1449].

curse
[1559].

Curtis
[1600, 1601, 12, 565].

curvature
[166, 491, 649, 682, 707, 1044, 1264].

curves
[157, 161, 871, 1375].

cut
[327].

Cycle
[1596].

Cyclical
[504].

cylinder
[757].

Curvature
[1055].

data-reduction
[1131].

DDFV
[55, 270].

declining
[775].

decomposable
[1308].

decomposing
[626].

decomposition
[93, 215, 224, 259, 377, 680, 734, 754, 763, 799, 850, 1128, 1467, 1512, 1613].

decompositions
[223, 450, 449, 569, 713, 907, 992, 1471, 1624].

decoupled
[136].

Decoupling
[1177].

Dedication
[951].

defect
[262].

defect
[272, 655, 147].

defered
[655, 830].

deficient
[192].

define
[846, 1332, 1421].

definiteness
[181].

defocusing
[3].

Degasperis
[452].

Degenerate
[962, 9, 364, 703, 748, 786, 1000, 1449, 1545, 1555].

degree
[355, 418, 990].

Delay
[816, 129, 131, 190, 283, 313, 818, 817, 905, 1107, 1525, 1594, 1625, 932, 1531].
Devolves [46]. Delves-Lyness [46].
denominator [538]. density [375, 625, 711].
depend [1501]. dependent [6, 27, 151, 208, 212, 301, 445, 520, 605, 816, 858, 877, 888, 999, 1020, 1028, 1132, 1201, 1472, 1555].
derivation [1029]. derivative [423, 465, 540, 696, 780, 1089, 1307, 1364, 1477, 1631].
derivative-free [423, 465, 1089].
derivatives [251, 597, 1214, 1221, 1328, 1488, 1489, 1518, 1556, 1612]. derived [1188]. Descent [33, 244, 491, 492, 500, 517, 1627].
describing [214]. Design [1037, 748, 1491].
Dimension [851, 145, 419, 509, 646, 730, 865, 1199, 1201, 1293, 1476].
dimensionality [1559]. dimensionally [22]. dimensions [9, 87, 115, 141, 180, 642, 674, 831, 1086, 1104, 1116, 1208, 1209, 1327, 1512].
diminishing [838, 840]. diodes [26]. Dirac [369]. Direct [476, 639, 494, 800, 855, 1042].
Dirichlet-to-Neumann [137]. disc [853].
Discrete-time discretization discretized discretizing discs disk dispersive Displacement dissipation dissipative Dissipativity distributed div divergence divergent Divided Dividing Domain domainer dominated doubled double-well doubledown downdating DPG drift divided diffusion flux driven drops Dual Dual-primal
essential [1162].

estimate [16, 214, 332, 421, 564, 582, 629, 1041, 1085, 1098, 1541, 1618, 1635].

Estimating [711].

estimation [38, 57, 82, 239, 281, 325, 342, 431, 570, 574, 973, 1045, 1048, 1049, 1092, 1175].

estimator [287, 480, 481, 1256, 1300].

estimators [372, 1005]. Euler [755, 832, 859, 1057, 1082, 1181, 1249, 1252, 1558].

Euler-type [1181]. Eulerian [1553, 1555].

exchange [443]. Existence [675, 468, 975, 1335]. expansion [695, 1041, 1101, 1222, 1552].

expansion-contraction [1222].

expansions [13, 925, 949, 950, 1184, 1386].

Expected [689]. experiments [185].

Explicit [1608, 1624, 30, 28, 342, 801, 802, 876, 1137, 1166, 1284, 1464, 1465].

exploration [1396]. Exponential [885, 1408, 42, 234, 276, 336, 380, 462, 661, 919, 940, 1008, 1108, 1118, 1146, 1166, 1173, 1198, 1197, 1229, 1428, 1429, 1436, 1562]. exponential-fitting [462, 1436].

Gordon [102x239]. GMWB [795, 886, 918, 985, 1045, 1627, 1583].
gives [545].
grading [512]. gas [767]. gauge [432, 1133].
Gauss [237, 329, 659, 890, 1216, 1276, 1332, 1463, 1462, 1490, 1515, 1574].
Gauss-type [1463, 1462]. Gaussian [99, 166, 359, 765, 1173, 1179, 1214, 1274, 1303, 1471, 1517].
general [269, 328, 418, 429, 549, 566, 583, 594, 647, 913, 921, 1307, 1346, 1366].
general-order [1307]. generalization [393, 467, 487, 955]. Generalizations [1151].
Generalized [309, 555, 650, 935, 1035, 1112, 1564, 214, 216, 709, 782, 931, 988, 1021, 1091, 1221, 1287].
generated [349]. generates [761].
generating [389]. generation [807, 1609].
GMWB [917]. Golub [1152]. good [1175].
gradient-like [35, 415].
gradiemultigrid [1543]. gradients [494]. grading [81, 731]. Gram [761].
h [873]. h-p [873]. Hadamard [537, 634, 1083, 1483]. Hahn [1442]. half
1284, 1444]. half-explicit [1284]. half-line
1444]. Hamilton [293, 311, 962, 1213].
Hamiltonian [457, 562, 1076, 1105, 1401].
Hammerstein [719, 1047]. hand
1482, 1501]. Handling [491, 498]. hanging
24]. Hankel [438, 941]. Hardy [1491].
harmonic [481, 737, 1137, 1359]. Hartree [1020]. having [475]. HDG
410, 448, 450, 449, 485, 1346, 418]. heat
20, 211, 273, 407, 1037]. Heath [1039].
Hele [629]. Helmholtz
138, 258, 413, 485, 713, 1237, 1454, 1590].
hemivariational [496]. Hermite
98, 556, 659, 740, 1376, 1524].
Hermite-type [556]. Hermitian [127, 704].
Hessian [708, 1585]. Hessians [434].
Heston [43]. Heterogeneous
301, 2, 549, 647, 1386]. hexagons [783].
hexahedral [199]. Hierarchical
138, 356, 289, 314, 1143]. High
High-accuracy [403, 404]. high-contrast
325]. High-dimensional [440, 1599].
high-frequency [138]. High-order
258, 523, 572, 573, 1030, 1147, 1223, 1259, 1623, 79, 234, 242, 251, 730, 855, 866, 1073, 1481, 1480, 1588].
Higher
1023, 1031, 177, 1381, 1417, 1544, 1617, 1535].
integration [12, 122, 190, 348, 354, 373, 550, 600, 727, 733, 743, 771, 789, 838, 991, 1020, 1039, 1188, 1275, 1417]. integrator
L.M.F.-based [390]. L.s.d [1522].
Lagrange [132, 326, 881, 1338, 1339, 1524].
Lagrangian [198, 928, 1345, 1553, 1555].
Lagrangians [691, 1066].
Laguerre [925, 1314, 1171, 1564]. Laguerre-type [925]. Lambert [1385]. Lamé [1256].
laminar [929, 1391]. Landau [598, 135, 136, 443].
Langevin [1026, 1220]. Langevin-type [1220].
LAPACK [879]. Laplace [101, 327, 673, 1186, 1187, 1368, 1425, 1454].
Laplacian [56, 76, 184, 247, 1053, 1258, 536].
large [639, 779, 966, 967, 1089, 1152, 1193, 1194, 1301, 1435, 1589, 1633].
large-scale [639, 779, 1089, 1193, 1194, 1435].
large-time [967].
lattice [344, 432, 1132].
Law [284].
Lawson [41].
Layer [1116, 1508].
Layer-adapted [1102].
Layers [1108, 1198].
LBB [814]. LCP [918].
LCH [1304, 1521]. leapfrog [935].
Least [478, 544, 1212, 1629, 114, 188, 277, 388, 444, 475, 479, 490, 690, 1109, 1152, 1174, 1221, 1282, 1281, 1399, 1408, 1469, 1482, 1578, 1621].
Least-change [1629].
Least-squares [478, 114, 277, 388, 444, 479, 490, 1399, 1482].
Lebesgue [835, 1495].
Leg [815].
Legendre [841, 1087, 1314, 1170, 1307].
Legendre-Laguerre [1314].
Leslie [588].
level [414, 447, 644, 649, 960, 996, 1191, 1264, 1427, 1494, 1607].
level-index [447, 1427].
Lévy [1024, 1490].
lexicographic [890].
Lie [380, 546, 806, 1183, 1554, 1602].
Lie-algebraic [380].
Lifshitz [508].
Lifshitz [135, 136, 443].
like [35, 415, 878, 1087, 1088, 91, 942, 1403].
Limit [1479].
limiting [491, 492].
limits [318].
Lindelöf [926].
line [33, 392, 423, 927, 1444, 1515].
methods

methods

methods-overcoming

metric

micromagnetism

mild-weak

mimetic

mini

mini-element

minimal

minimax

minimization

minimum

Mitchell

Mixed

mixing

mobility

model

modeling

models

modes

Modiication

modifications

modiﬁed

Modulated

modulus

molecular

Molliﬁcation

Moment

Moment-free

Monge

Mono

Mono-implicit

Monotone

monotonicity

Monotone

monotonicity-preserving

Monte

Morse

mortar

mortaring

Morton

motion

moving

moving-boundary

MPFA

MR

Multi

multi-component

methods

Methods

method

[499].
21

problem
[1293, 1310, 1317, 1333, 1337, 1345, 1380, 1393, 1472, 1474, 1477, 1482, 1484, 1497, 1508, 1520, 1543, 1545, 1556, 1550, 1585, 1604].

problems

problems
[746, 744, 754, 756, 762, 766, 769, 793, 797, 807, 825, 830, 855, 863, 866, 870, 891, 895, 896, 897, 900, 915, 920, 934, 956, 966, 987, 986, 993, 994, 996, 1004, 1014, 1015, 1032, 1030, 1031, 1035, 1036, 1038, 1043, 1056, 1059, 1066, 1073, 1084, 1102, 1108, 1127, 1140, 1142, 1154, 1158, 1188, 1195, 1193, 1194, 1198, 1199, 1201, 1205, 1210, 1224, 1239, 1266, 1277, 1282, 1281, 1324, 1325, 1337, 1342, 1359, 1361, 1367, 1372, 1391, 1399, 1411, 1417, 1422, 1430, 1440, 1448, 1466, 1481, 1480, 1484, 1485, 1486, 1505, 1539, 1542, 1544, 1547, 1548, 1563].

problems
[1554, 1580, 1584, 1613, 1614, 1615, 1616, 1617, 1633, 498, 519, 521, 1534, 1528, 1529].

procedure
[1330, 1613].

Procesi
[452].

process
[619, 1007, 1334].

Spline [371, 848, 1405, 230, 303, 476, 478, 510, 539, 553, 668, 693, 770, 776, 979, 988, 1164, 1238, 1339, 1297, 1430, 1448, 1451, 1483, 1518].
spline-fitting [470]. splines [178, 180, 182, 289, 300, 314, 319, 466, 513, 554, 586, 669, 860, 908, 990, 1009, 1109, 1131, 1153, 1250, 1262, 1299, 1336, 1376, 1456, 1458, 1457, 1459]. split [398, 548, 740].

splittings [890, 525]. splittings-convergence [850]. spreading [149]. Spurious [608, 920, 802, 942, 1240, 1406, 1475]. SQP [760, 780]. square [359, 374, 408, 558].

Squared [563]. squares [114, 188, 277, 388, 444, 475, 478, 479, 490, 544, 545, 690, 1109, 1152, 1174, 1212, 1221, 1282, 1281, 1399, 1408, 1469, 1482, 1578].

Stable [165, 166, 386, 568, 801, 1120, 23, 403, 404, 468, 772, 837, 846, 956, 960, 1003, 1058, 1082,
stage [1191, 1423]. staggered [441].
Steady [1595, 100, 145, 635, 966].
Steady-state [1595, 100, 635].
Steady-state/Hopf [1595]. steepest step [491, 492, 500, 517]. Stefan [275, 422, 509, 575, 627, 624, 895, 1084, 1154, 1292, 1293, 1474, 1547].
step-size [532]. steplength [752, 1352].
stepping [1006, 1112, 1241, 1242, 1452].
steps [548, 1612]. stepsize [335, 844]. stiffness [373, 489, 591, 875, 897, 921, 1269, 1534].
Stochastic [256, 1118, 135, 247, 249, 313, 358, 397, 399, 408, 458, 635, 778, 910, 1001, 1006, 1040, 1106, 1117, 1157, 1219, 1229, 1252, 1254, 1326, 1505, 598]. stochastically [48].
Strang-type [309]. strategies [903, 1006, 1025, 1304, 1577]. strategy [1131, 1192]. stream [207].
stream-function [207]. streamline [826, 1478]. streamline-diffusion [1478].
Structure [1113, 475, 552, 684, 725, 904, 1151, 1375, 1566, 1618].
Sturm [194, 231, 267, 652, 711, 753, 797, 896, 1342].
Sub [289, 1241]. sub-diffusion [1241].
Sub-Grid [289]. subcribing [593].
subdiffusion [969, 970, 993]. subdivision [543, 806, 1369, 1602, 1603]. Subgrid [813, 121]. subgrid-scale [121]. subject [516, 1629].
submatrix [1571]. subsequent [773]. subsonic [1479]. subspace [674, 957].
Sufficient [672]. sum [545]. sums [276, 1008, 1572]. sup [289, 1058, 1178]. super [582].
super-convergence [582]. Supercloseness [1108, 1126]. superconducting [633, 1476].
superconductivity [293, 625, 630].
superconductors [167].
Superconvergence [601, 824, 1047, 1096, 1201, 1355, 190, 278, 305, 1127, 1403, 1460, 1483, 1592].
Superconvergent [1080, 1631, 450, 449, 1346]. superlinear [1331]. superposition [49].
supersmoothness [1457]. supported [424].
Supraconvergence [142].
supraconvergent [726]. surface [134, 300, 553, 554, 614, 631, 670, 770, 979, 1030, 1302].
surface-fitting [553]. surfaces [106, 218, 345, 527, 583, 606, 607, 706, 843, 842, 849, 964, 1030, 1031, 1125, 1270].
surfaceant [149]. survey [1305, 1417].
Sushi [647]. SVD [578]. SWIFT [399].
switching [39]. Symm [637, 1078, 1611].
symmetric [183, 368, 437, 447, 451, 449, 590, 1360, 682, 837, 929, 948, 956, 974, 980, 1097, 1144, 1185, 1195, 1200, 1251, 1265, 1283, 1301, 1330, 1379, 1427, 1490, 1491].
Symmetrization [1129, 148]. symmetry
symmetry-breaking [1226, 1595].
Symplectic
[562, 122, 343, 408, 1105, 1220, 1263].
symplecticity [839].

Systems
[878, 35, 94, 123, 126, 183, 197, 225, 236, 301, 347, 354, 353, 359, 373, 389, 390, 400, 457, 489, 495, 518, 542, 552, 562, 569, 617, 618, 639, 663, 703, 706, 778, 784, 792, 838, 861, 879, 885, 905, 912, 955, 959, 1006, 1051, 1088, 1100, 1151, 1160, 1161, 1177, 1197, 1200, 1251, 1267, 1284, 1304, 1326, 1375, 1395, 1519, 1538, 1562, 1610, 932].
Szego
[1303, 522].

Takens
[226, 958, 957, 1595].
taut
[1327].
Taylor
[289, 1169, 1427].
technical
[809].
technique
[290, 299, 1155, 1357].
techniques
[138, 543, 593, 756, 1129].
temporal
[985].
Tensor
[670, 405, 964, 1478, 1624].
Tensor-product
term
[247].
terms
[386, 750, 891, 1240, 498].
test
[296, 488, 897, 1422, 1520].
Testing
[1438, 439, 1537].
tetrahedral
[1048, 1402, 1458].
textile
[809].
texture
[626].
their
[91, 392, 489, 662, 906, 1132, 1216, 1234, 1453, 1483, 1553, 1589].
theorem
[91, 944, 1335].
theorems
[724, 1290, 1554].
theoretic
[1491].
Theory
[280, 432, 533, 613, 734, 797, 898, 939, 1085, 1097, 1446, 1546].
There
[561].
thin
[22, 149, 776, 1416, 1456].
third
[37, 419, 1632].
third-kind
[37].
third-order
[419, 1632].
Thomas
[34, 566].
three
[87, 180, 642, 820, 831, 859, 960, 1156, 1209, 1353, 1423, 1422, 1512].
three-body
[1422].
three-dimensional
[820, 859, 1353].
three-dimensions
[87].
three-fields
[1156].
three-stage
[1423].
three-time-level
[960].
Time
[18, 137, 727, 791, 1186, 6, 45, 54, 95, 208, 205, 212, 214, 445, 472, 497, 520, 523, 593, 598, 607, 627, 655, 658, 657, 701, 705, 725, 737, 741, 820, 834, 855, 858, 860, 866, 872, 885, 942, 960, 966, 967, 968, 991, 999, 1006, 1016, 1020, 1028, 1031, 1036, 1054, 1060, 1112, 1124, 1125, 1133, 1137, 1201, 1241, 1242, 1358, 1359, 1374, 1388, 1425, 1449, 1452, 1472, 1514, 1555, 1594, 1612].
time-accuracy
[866].
time-dependent
[6, 208, 212, 445, 520, 858, 999, 1020, 1028, 1133, 1201, 1472, 1555].
time-discrete
[855].
time-discretization
[593].
time-domain
[137, 725, 1060].
time-evolution
[855].
time-fractional
[968].
time-harmonic
[1137, 1359].
time-parallel
[855].
time-periodic
[1472].
time-space
[472].
time-splitting
[523, 1054].
time-stepping
[1006, 1241, 1452].
time-subcycling
[593].
time-varying
[885].
Timoshenko
[871].
Toda
[344].
Toeplitz
[389, 393, 785].
Toint
[1330].
tolerance
[876].
tomography
[971, 1322].
topology
[1366].
torsion
[203].
Total
[158, 160, 840, 171, 260, 261, 1300].
touching
[483].
TPFA
[582].
Trace
[1466, 1362].
Tracking
[1301, 1084].
trajectory
[469, 1188].
transfer
[714, 789].
transform
[474, 841, 1368, 1442, 1490].
transformation
[231, 1187, 1249, 1341, 1425, 1433, 1634].
transformations
[115, 298, 1195, 1279].
transforms
[59, 99, 349, 946, 1186, 1600, 1601].
transient
[201, 384, 904, 1453].
transition
[705].
transmission
[258, 334, 863, 984].
transport
[16, 269, 430, 701, 734, 1090, 1097, 1145].
Transportation
[928].
trapezoidal
[548, 1159, 1384].
treatment
[701, 1034, 1532].
tree
[1051].
tree-based
[1051].
Trees
[336, 1366].
Trefftz
[1036].
trial
[8].
triangle
[924].
triangular
[115, 541, 1211, 1402, 1471].
triangularization
[1516].
triangulation
REFERENCES

[171, 260, 261, 840]. Variational
[860, 1020, 1365, 1374, 1493, 119, 167, 166,
256, 264, 417, 433, 496, 627, 629, 729, 768,
869, 891, 892, 1004, 1076, 1075, 1086, 1246,
1247, 1263, 1277, 1392, 1401, 1494].
variational-hemivariational [496].
variational-iterative [1392].
Variational-splitting [1020]. varieties
[1537]. varying [375, 885]. Vector
[796, 113, 671, 1488, 1501]. Vector-valued
[796]. vectors [578, 761]. velocity
[337, 1098]. Vera [773]. Verification [298].
version [174, 218, 749, 748, 847, 873, 901,
1244, 1402, 1590]. versions [1467]. versus
[476, 788, 799, 876]. vertex [726, 731].
very [463]. via
[406, 459, 460, 569, 807, 855, 964, 1186, 1187].
variation [199, 871]. vibrations [172].
Vibro [1335]. Vibro-impact [1335]. VIEs
[37]. viewpoint [685]. Virtual
[728, 337, 352, 499]. viscoelasticity
[19, 1062]. viscoplastic [1066]. viscosity
[820, 888]. viscosity-splitting [820].
viscous [1002, 1311]. volatilities [910].
volatility [1136, 1319]. Volterra
[129, 133, 189, 235, 303, 302, 306, 304, 305,
497, 560, 811, 906, 911, 953, 987, 1121, 1122,
1123, 1135, 1148, 1149, 1181, 1354, 1414, 1420,
1492, 1522, 1582, 1606, 1625, 1496, 1532].
Volterra-type [560, 1414]. Volume
[62, 56, 64, 89, 222, 221, 227, 269, 273, 357,
367, 377, 385, 384, 383, 398, 430, 453, 579,
582, 583, 645, 646, 649, 648, 726, 869, 910,
993, 1234, 1245, 1255, 1267, 1391, 1456, 1557,
1615, 1616, 1617, 1624, 1640, 66, 69, 71, 73].
volume-preserving [1624]. volumes [498].
volumetric [1068]. Vortex [1455, 1628].
vortices [633, 1476]. vorticity
[47, 207, 1134]. Vries [893, 1052, 1405].
water [80, 200, 262, 1337]. waterbag [220].
Wave
[257, 195, 374, 396, 458, 658, 657, 656, 659,
680, 747, 834, 855, 892, 904, 931, 964, 1036,
1063, 1105, 1147, 1244, 1337, 1575, 1590].
Wave-number [257]. wave-structure
[904]. waveform [1383, 1594]. waveguide
[1068]. Wavelet [215, 399, 405, 1468].
wavelet-based [399]. wavelets [1253].
Wavenumber [1137]. waves [641]. Weak
[122, 313, 397, 416, 470, 1026, 1229, 43, 121,
241, 296, 828, 1237]. weakly
[218, 235, 303, 393, 463, 556, 911, 1243, 1267,
1317, 1467, 1492, 1496]. Weber [757].
weage [101]. Weierstrass [473]. weight
[396, 1173, 1303]. Weighted [324, 1302, 77,
146, 640, 771, 877, 1260, 1345, 1491].
weights [1303, 1515]. Weiner [1171].
Weiner-Hopf [1171]. Well
[1244, 378, 463, 761, 1261, 1380].
well-conditioned [761]. well-posed
[463, 1380]. Well-posedness [1244].
well-reservoir [378]. Wendroff
[1116, 1508]. Wendroff-type [1116]. were
[829]. Westervelt [991]. which [785, 1638].
whole [1515]. Wick [1157]. wide [1329].
wider [784]. widths [456]. Wiener
[594, 789]. Willmore [166]. Wilson [412].
Wiener-Hopf [361]. withdrawal [917]. without
[1055, 1272, 1328, 1434]. work [587, 592].
Wrap [861]. Wrap-around [861].
years [773].
Zakharov [872, 1479]. zeros [46, 543, 790,
941, 1170, 1171, 1397].

References

for the $|c|$-uniformly quasiconvex enve-

Ahmed:1985:FAP

Ahmed:2017:AFS

Ahn:2009:DFC

Ainsworth:1997:PPC

Ainsworth:2012:CEB

Ainsworth:2001:CEB

[38] Alejandro Allendes, Francisco Durán, and Richard Rankin. Error estimation for low-order adaptive finite element approximations for fluid flow

REFERENCES

academic.oup.com/imajna/article/37/4/1902/2929533. See erratum [51].

REFERENCES

REFERENCES

Anonymous:2004:R

Anonymous:2005:IV

Anonymous:2005:R

Anonymous:2006:IV

Anonymous:2006:R

Anselone:1987:DCA

Antil:2018:PEA

Antil:2018:SAW

REFERENCES

44

[91] Ioannis K. Argyros. On a new Newton-Mysovskii-type theorem with applications to inexact Newton-like meth-
Arioli:2018:FEM

Arioli:2013:DFS

Arioli:1992:SCC

Aristotelous:2015:ASO

Arnal:2008:NAM

Asaturyyan:2001:LSP

REFERENCES

Baart:1982:UA

Baart:1986:QTT

Babolian:1981:FGS

Bachmayr:2018:PPS

Badea:2004:SNM

Badea:2014:GCR

Badia:2014:EAD

Badia:2014:CTW

Santiago Badia and Juan Vicente Gutiérrez-Santacreu. Convergence towards weak solutions of the Navier–Stokes equations for a finite element approximation with numerical

REFERENCES

Barrett:1998:FEA

Barrett:1999:IEB

Barrett:2002:FEA

Barrett:2018:CFE

Barrett:2018:FEA

Barrett:1991:FEA

Barrett:1984:FEM

Beatson:2014:PCS

Behforooz:1981:ECI

Behie:1983:CFI

Belenki:2012:OAF

Belhachmi:2004:RPE

Belhachmi:2006:FEA

Belhachmi:2006:CFE

REFERENCES

oxfordjournals.org/cgi/reprint/26/4/790.

Bellavia:2015:SLC

Bellen:1990:SAR

Bellen:2002:PSN

Bellettini:1996:NSM

Beldir:2011:ECN

Belward:1985:FSA

Ben-Artzi:2018:DFO

Bendali:2014:LAR
Abderrahmane Bendali, Yassine Boubendir, and Nicolas Zeribib. Localized adap-

Benouahmane:2019:NMC

Benzi:2008:BPR

Bermejo:2010:SLG

Bermudez:2006:ASA

Bermudez:1991:SSW

Bermudez:2012:NST

REFERENCES

Bermúdez:2010:NAF

BermúdezdeCastroLopez:1982:MME

Bernardi:1990:SGS

Bernardi:1987:MMT

Bernardi:2001:EIM

Bernardi:1992:MSE

Bernardi:1987:MME

Bernardi:2013:PAF

[209] Christine Bernardi, Frédéric Hecht, Hervé Le Dret, and Adel Blouza. A posteriori analysis of a finite element discretization of a Naghdi
REFERENCES

Bernardi:2010:NFE

Bernardi:2016:SDD

Bernardi:2015:PEA

Berrone:2008:TSP

Berselli:2015:OEE

Bertoluzza:2000:WSP

Betcke:2007:GFD

Bley:1990:NCC

Beyn:1994:NAH

Bi:2011:FVE

Bialaeki:1991:SCM

Bialaeki:2004:PGM

Bialaeki:2003:OSC

REFERENCES

[245] Andrea Bonito and Joseph E. Pasciak. Corrigendum to the paper “Numeri-

Bonito:2017:NAF

Bonizzoni:2014:MEM

Bonnaillie-Noel:2016:ENC

Bonnans:2006:EES

Bornemann:2007:MUN

Bornemann:2013:OCH

REFERENCES

oxfordjournals.org/content/36/1/463.

Bouche:2015:CCD

Bouchut:2014:CTV

Bouchut:2017:CTV

Bouharguane:2018:SMD

Boulmezaoud:2005:MSE

Boulton:2007:NVA

Boulton:2016:CQM

Bradji:2008:DCH

Braess:1986:NSB

Braess:1983:NSO

Braess:2005:AXE

Brannigan:1981:TCB

REFERENCES

REFERENCES

REFERENCES

oup.co.uk/imanum/hdb/Volume_16/Issue_01/160093.sgm.abs.html.

REFERENCES

REFERENCES

REFERENCES

Buhmann:1988:CUQ

Buhmann:1992:DDN

Buhmann:2010:NRB

Bultheel:2010:RQF

Burke:2003:RSC

Burke:2008:SSR
REFERENCES

Burman:2009:WEE

Burman:2017:CDG

Burman:2009:WEE

Burman:2018:RFE

Burman:2010:IPS

Burrage:1985:SPS

Burrage:1987:ASG

Burrage:1988:ASR

Burrage:1988:OPI

[331] Kevin Burrage. Order properties of implicit multivalue methods for ordi-
REFERENCES

[339] Baruch Cahlon and Darrell Schmidt. Piecewise polynomial approximate so-

Cameron:1983:SDA

Cameron:1985:API

Campos:2011:QFI

Cances:2018:TGM

Cangiani:2014:ADG

Cangiani:2017:CNV

Cano:2010:MCM

abstract/30/2/431; http://imajna.oxfordjournals.org/cgi/reprint/30/2/431.

REFERENCES

REFERENCES

[381] Jan Cermák. The stability and asymptotic properties of the Θ-methods for...
REFERENCES

Chadha:2011:RGE

Chainais-Hillairet:2011:FVS

Chainais-Hillairet:2007:ABF

Chainais-Hillairet:2003:CFV

Chalabi:1992:SUS

Challis:1982:NMC

Chamberlain:1988:FLL
REFERENCES

Chan:1991:TPT

Chan:2001:FM

Chandler-Wilde:1989:AGT

Chandler-Wilde:1993:SUS

Chapko:2000:NSH

Chappell:2011:CQG

REFERENCES

with reduced quadrature weight com-
putation. *IMA Journal of Numer-
ical Analysis*, 31(2):640–666, April
2011. CODEN IJNADH. ISSN
0272-4979 (print), 1464-3642 (elec-
oxfordjournals.org/content/31/2/
640.full.pdf+html.

Benoit Charbonneau, Yuriy Svyry-
dov, and P. F. Tupper. Weak
convergence in the Prokhorov met-
ic of methods for stochastic dif-
terential equations. *IMA Journal
of Numerical Analysis*, 30(2):579–
594, April 2010. CODEN IJNADH.
ISSN 0272-4979 (print), 1464-3642
oxfordjournals.org/cgi/content/
abstract/30/2/579; http://imajna.
oxfordjournals.org/cgi/reprint/
30/2/579.

Philippe Chartier and Ander Mu-
rua. Preserving first integrals and
volume forms of additively split sys-
tems. *IMA Journal of Numeri-
cal Analysis*, 27(2):381–405, April
2007. CODEN IJNADH. ISSN
0272-4979 (print), 1464-3642 (elec-
oxfordjournals.org/cgi/content/
abstract/27/2/381; http://imajna.
oxfordjournals.org/cgi/reprint/
27/2/381.

Ki Wai Chau and Cornelis W. Oost-
erlee. On the wavelet-based SWIFT
method for backward stochastic dif-
terential equations. *IMA Journal

[397] Charbonneau:2010:WCP

[399] Chau:2018:WBS

of Numerical Analysis*, 38(2):1051–
1083, April 18, 2018. CODEN IJ-
NADH. ISSN 0272-4979 (print),
academic.oup.com/imajna/article/
38/2/1051/3947812.

Joseph Páez Chávez. Discretiz-
ing dynamical systems with Hopf-
Hopf bifurcations. *IMA Journal
of Numerical Analysis*, 32(1):185–201,
January 2012. CODEN IJNADH.
ISSN 0272-4979 (print), 1464-3642
oxfordjournals.org/content/32/1/
185.full.pdf+html.

M. M. Chawla. A new fourth-order
finite-difference method for computing
eigenvalues of fourth-order two-point
boundary value problems. *IMA Journal
of Numerical Analysis*, 3(3):291–
293, 1983. CODEN IJNADH. ISSN
0272-4979 (print), 1464-3642 (elec-
tronic).

M. M. Chawla and C. P. Katti. A finite-
difference method for a class of singu-
lar two-point boundary value problems.
IMA Journal of Numerical Analysis, 4
(4):457–466, October 1984. CODEN
IJNADH. ISSN 0272-4979 (print),
1464-3642 (electronic).

M. M. Chawla and P. S. Rao. High-
accuracy P-stable methods for $y'' = f(t, y)$. *IMA Journal of Numerical
IJNADH. ISSN 0272-4979 (print),
1464-3642 (electronic). See corrigendum [404].

Chawla:1986:CHA

Chegini:2012:ATP

Chen:2012:MCA

Chen:1989:EEO

Chen:2017:MSC

Chen:2017:LFE

Chen:2016:RPE

REFERENCES

Cheung:2001:FEA

Cheung:2015:SAC

Chiang:1994:POS

Chien:1997:DGM

Chin:2011:MPO

Choquet:2011:AFV

Chouly:2018:RBP

REFERENCES

REFERENCES

Coleman:1996:SEF

Colombini:2015:NAV

Congreve:2013:DGF

Conn:2008:GSS

Coope:1993:CIN

Cooper:1984:GAS

Cooper:1986:ESA

Cooper:1987:SRK

Cooper:1992:WNS

Cooper:1983:ISI

Coquel:2012:CTS

Coquereaux:1990:IMC

Coughlan:2007:TLM

Cox:1981:LSS

Cox:1982:DVI

Cox:1991:ACB

Cox:1985:LSS
REFERENCES

REFERENCES

Cuminato:1992:UCC

Curtis:1981:PST

Curtis:1983:JMP

Curtis:1986:A

Curtis:2016:HNC

Curtis:2018:RLC

Curtis:2008:FPF

Custodio:2008:USG

Cuyt:1988:EBC

REFERENCES

CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

Dauner:1989:ATA

Davies:2004:SP

Davydov:2019:OSS

Davydov:2008:ISD

DeAsmundis:2013:SPS

DeBonis:2009:NMS
M. C. De Bonis and G. Mastroianni. Nyström method for systems of integral...

REFERENCES

deTeran:2016:BSP

Deckelnick:2010:HNB

Deckelnick:1998:FEE

Deckelnick:2000:CDF

Deckers:2015:CDT

Deckers:2009:RAO

Dedieu:2013:ASS

[548] Sohan Dharmaraja, Yinghui Wang, and Gilbert Strang. Optimal sta-

Vít Dolejsí, Miloslav Feistauer, Václav Kucera, and Veronika Sobotíková.

Dominguez:2011:SEE

Dond:2017:CAL

Dong:2017:UHD

Donnelly:1989:SBC

Dopico:2012:ASS

Dormand:1984:GEE

Dormand:1987:FRK

Dormand:1987:HOE

Dormand:1991:CHO

Dormand:1985:GEE

Doss:2005:QMU

URL http://imanum.oupjournals.org/cgi/content/abstract/25/1/139; http://imanum.oupjournals.org/cgi/reprint/25/1/139.

Droucette:1994:NMN

Driscoll:2016:RSC

Drmać:1999:PCS

Droniou:2003:CFV

REFERENCES

Droniou:2016:GSS

Droniou:2019:MFE

Droniou:2018:ILE

Du:2009:AMF

DuCroz:1992:SMM

Duan:2015:SSF

Dubeau:1985:PQS

REFERENCES

Duff:1983:ENW

Duff:1983:NWI

Duff:1993:ELF

Duff:2005:CE

Dujardin:2016:ABS

Dumas:2011:CCW

Duncan:1991:SES

Duncan:2007:OGD

Dunne:2009:FMN

Dunst:2015:CRT

Dunst:2015:OCE

Duran:2000:NIR

Duran:2012:SFE

Durand:2011:FDF

REFERENCES

Egloff:2015:RWR

Eibner:2006:LEA

Eigel:2010:MFP

Eigel:2018:PEC

ElAlaoui:2007:PPA

El-Gebeily:1998:FDM

[626] C. M. Elliott and S. A. Smitheman. Numerical analysis of the

Elliott:1981:FIA

Elliott:1983:EFF

Elliott:2013:FCA

Elliott:2011:NCA

[640] Alexandre Ern, Annette F. Stephansen, and Paolo Zunino. A discontinuous Galerkin method with weighted av-

Ervedoza:2016:NME

Ervin:2006:ABE

Escande:2016:FCL

Esser:2015:ARF

Eymard:1998:EEA

Eymard:2006:CCF

[661] Erwan Faou, Alexander Ostermann, and Katharina Schratz. Analy-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

ISSN 0272-4979 (print), 1464-3642 (electronic). URL http://imajna.oxfordjournals.org/content/36/2/543.

REFERENCES

Gaucyler:2011:CSS

Gaucyler:2017:NLT

Gavrilyuk:2007:ECP

Gensun:2005:CDR

Georgoulis:2019:PEB

Georgoulis:2009:DGM

REFERENCES

Georgoulis:2011:PEI

Georgoulis:2013:PEB

Georgoulis:2006:NDH

Georgoulis:2005:OEE

Gerisch:2010:AEE

Gerrard:1984:APC

Gervais:2002:NSC

REFERENCES

REFERENCES

Gill:2017:SSM

Giraud:2002:WMG

Giraud:1999:SCP

Girault:2004:DDM

Girault:1996:FEE

Gittelson:2012:RGF

Gladwell:1990:EMS

REFERENCES

REFERENCES

CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

REFERENCES

REFERENCES

Grote:2008:IPD

Grothaus:2016:NPD

Grune:2001:PAO

Guan:2012:ACS

Gudi:2011:IPM

Guermond:2001:SSG

Guermond:2009:LCF

REFERENCES

[821] Ben Yu Guo and V. S. Manoranjan. A spectral method for solving the RLW

REFERENCES

REFERENCES

REFERENCES

Hall:1981:SAT

Hammarling:1982:NSS

Han:1992:VPF

Handscomb:1984:SRI

Hansbo:2017:SFE

Hansen:2017:ADD

Hansen:2010:DSQ

Hansen:2002:SCM

REFERENCES

[888] Adrian Hirn, Martin Lanzendörfer, and Jan Stebel. Finite element approximation of flow of fluids with

[Hochmuth:2001:LBE]

[Hocking:2012:CFM]

[Hoffmann:1996:PSV]

[Holden:2009:CFD]

[Holden:2015:CFD]

[Hopkins:1989:NEC]

[Hoppe:1993:GCM]

REFERENCES

REFERENCES

Hovhannisyan:2010:SFA

Hsiao:2017:BCB

Hu:1998:GMT

Hu:1999:SRK

Hu:2004:PPS

Hu:1993:ADR

Huang:1981:CAO

[924] Daan Huybrechs, Arieh Iserles, and Syvert P. Nørsett. From high oscillation to rapid approximation V:

[940] A. Iserles and M. J. D. Powell. On the A-acceptability of rational approx-

REFERENCES

161

REFERENCES

REFERENCES

[979] Michael J. Johnson. Overcoming the boundary effects in surface

REFERENCES

REFERENCES

REFERENCES

Karlsen:2012:CMM

Karlsen:1999:USS

Kawohl:1998:CFE

Kay:2001:RLE

Kelly:2018:ATS

Kessler:2002:PEE

Kloeden:2009:ASV

Kloeden:2003:UAN

Knobloch:2011:SFE

Koch:2011:VST

Kohler:1993:EEG

Kokkinos:1990:OMA

Koley:2012:HOF

1031 Balázs Kovács and Christian Andreas Power Guerra. Higher order time discretizations with ALE finite elements for parabolic problems on

[1038] Christian Kreuzer and Mira Scheden-sack. Instance optimal Crouzeix–Raviart adaptive finite element methods for the Poisson and Stokes prob-

REFERENCES

REFERENCES

REFERENCES

177

Lederer:2018:PRS

Ledoux:2010:ENS

Lee:2012:STP

Lehmann:1986:CEB

Lehrenfeld:2018:AHO

Leimkuhler:2016:CAE

Leok:2012:PCV

179

REFERENCES

REFERENCES

Linke:2017:OVE

Linss:2000:AGF

Linss:2000:NSI

Linss:2004:EEF

Linss:2009:LAM

Lipman:2010:APS

Liu:2009:TSS

Liu:2006:MSR

Liu:2013:MPS

Liu:1990:SMN

Liu:2018:SES

Loach:1991:BLS

Lombardi:2011:IEE

Lopez:1983:SAB

[1111] Luciano Lopez. Stability and asymptotic behaviour for the numerical solution of a reaction-diffusion model

Lopez-Fernandez:2013:GCQ

Lopez-Gomez:1992:SSM

LopezMarcos:1994:NAP

Lorcher:2007:LWT

Lord:2004:NSS

Lord:2013:SEI

REFERENCES

[1127] Lars Ludwig and Hans-Görg Roos. Finite element superconvergence on

Lui:2009:LNO

Lund:1989:SSG

Lund:1984:SCM

Ma:2006:PEE

Lyche:1988:DRS

Lyness:1989:ILR

Ma:2018:EEC

Ma:1987:FPM

Ma:2006:PEE

REFERENCES

REFERENCES

Manouzi:2004:MFE

Marazzina:2008:SPD

Marin:2014:CTR

Marinov:1986:TEI

Markham:1990:CGT

Marletta:2010:NDM

Marquez:2015:SCF

Marsden:1984:CSI

Martins:1995:EBM

Maset:2013:SPE

Mason:1981:NMI

Mason:1983:NBA

Mason:1984:NBA

Mastroianni:1994:NIB

Mastroianni:1997:NIB

Mastroianni:2009:SNM

REFERENCES

Meddahi:1999:MDM

Meddahi:2015:FEA

Meek:1982:TST

Meerbergen:2016:IRR

Meerbergen:2017:CPA

Meerbergen:2018:EC

Meerbergen:1996:MTC

Gradimir V. Milovanovic, Miodrag M. Spalevic, and Miroslav S. Pranic. Error estimates for Gauss–Turán quadratures

Milstein:2001:NSD

Milstein:2002:PAS

Milstein:2007:DFB

Milstein:2003:QSM

Mirzaei:2012:GML

Mitchell:2016:HEC

REFERENCES

REFERENCES

199

Nicaise:2005:CAF

Nicaise:2008:PEE

Nie:1985:LMF

Nigam:2012:HOC

Nochetto:2009:SDW

Norton:2012:FEA

REFERENCES

[1269] P. Oliver. A family of linear multistep methods for the solution of stiff
204

References

[1278] Christoph Ortner and Hao Wang. A posteriori error control for a quasi-

[1280] Ortner:2011:NFE

REFERENCES

Osada:1992:MOS

Osborne:1992:EMC

Osborne:2010:ABL

Osborne:2000:NAV

Osborne:1999:NAS

Ostermann:1990:HEE

Ostermann:2000:NSD

[1294] Amiya K. Pani. A qualocation method for parabolic partial dif-
REFERENCES

REFERENCES

Pechstein:2013:WPI

Pejcev:2012:EBG

Pena:1996:PSL

Phillips:2010:SRQ

Phillips:1985:EMC

Phillips:1988:LCG

Phillips:1989:FSS

Phillips:1986:PSM

Poghosyan:2011:ACP

Pooley:2003:NCP

Porter:1993:RGM

Potra:1994:LOM

Potts:2001:NLA

Potzsche:2010:CIM

Poulikkas:1998:MFS

References

[1332] Stefano Pozza, Miroslav S. Pranič, and Zdenek Strakos. Gauss quadra-

REFERENCES

Pruess:1993:SPC

Pryce:1985:MEA

Pryce:1986:ECP

Pryce:1989:CIR

Pytlak:1994:CCG

Qi:2011:ALD

Qiu:2016:SHM

Quell:2000:NSE

Radu:2018:RMC

Raina:1983:COQ

Rasc:2009:RIF

Rathsfeld:1996:EEE

Raydan:1993:BBC

Rebollo:2018:TDM

Reddy:2015:RVR

Reginska:1986:SEA

Reifenberg:2000:NSB

215

REFERENCES

Reisinger:2013:ALD

Reisinger:2014:INT

Ren:2016:APS

Fang:2011:SAB

Repin:2011:GRE

Reusken:2015:ATF

Riess:1982:MPE

REFERENCES

Rovas:2006:RBO

Rump:2003:OSN

Rumpf:2015:VTD

Russo:2011:HFE

Sablonniere:1987:EBH

Saedpanah:2015:CGF

Saito:2007:CUF

Salane:1981:SMN

Salane:1981:SMN

Salaun:2015:LOF

Salaun:2015:LOF

Sander:2016:GFE

Sander:2016:GFE

Sandstede:1997:CEN

Sandstede:1997:CEN

Sanz-Serna:1981:LIV

Sanz-Serna:1981:LIV

Sanz-Serna:2009:MFE

Sanz-Serna:1991:NCR

Sanz-Serna:1992:NUT

Sanz-Serna:1986:CNS

Saranen:1992:QML

Sardella:2000:CFE

Saunders:1984:VIS

Sauter:2010:REA

Sauter:2014:RBI
REFERENCES

Schropp:2000:OSM

Schropp:2008:PRK

Schutz:2014:ACA

Scott:1988:EOC

Selwood:1996:CRC

Semper:1994:LFE

Seward:1984:SHO

Shampine:1983:EEM

REFERENCES

[1426] Wen Shen. Error bounds of finite difference schemes for multi-

Shen:2006:TAS

Sheng:1989:SLP

Sheng:1994:GEE

Shih:2000:IMS

Shingel:2009:ISO

Sidi:2012:UFE

Sidi:1982:RAT

Siebert:2011:CPA

[1434] Kunibert G. Siebert. A conver-

REFERENCES

REFERENCES

[1466] Olaf Steinbach, Barbara Wohlmuth, and Linus Wunderlich. Trace and

Stewart:1997:PCF

Stewart:1997:TMG

Stoll:2014:OSS

Strauss:2011:QPM
230 REFERENCES

[1481] Guang Fu Sun and Martin Stynes. Finite-element methods for singu-

Sun:1996:OBP

Sun:2008:IQR

Sun:2001:NAE

Surla:1990:SUC

Szyld:2014:SPI

Tadmor:2005:AFP

Tan:1987:CDE

[1496] Herman J. J. te Riele. Collocation methods for weakly singular second-kind Volterra integral equations with
REFERENCES

REFERENCES

REFERENCES

Vandereycken:2013:RGC

Vannieuwenhoven:2015:RA

Varah:1993:EPV

Vasconcelos:1998:PIM

Verdi:1985:NAH

Verfurth:1984:CCG

Vigo-Aguiar:2007:FSR

Viscor:2013:RFD

Viswanath:2001:GEN

Voller:1985:IFD

Vulanovic:2001:PMS

Walz:1989:EBS

Wang:2011:DGM

REFERENCES

Wang:2017:FAC

Wang:2011:AEF

Wang:1995:ELL

Wang:2011:KTN

Wang:2011:UEF

Wang:1998:CEB

REFERENCES

[1564] Zhong-Qing Wang and Xin-Min Xiang. Generalized Laguerre approximations and spectral method for the

REFERENCES

Wu:2014:PAE

Wu:2009:EEA

Wu:2005:SRS

Wu:2015:CAS

Wu:2012:CAO

Wu:1994:SSH

Wu:2012:CAV

Xie:2014:TMM

Xie:2005:ISE

Xu:2011:UBS

Xu:2004:TLA

Xu:2016:ECR

Xu:2011:CBA

Yalamov:1999:SPA

[1610] Plamen Y. Yalamov and Marcin Paprzycki. Stability and performance
REFERENCES

[1617] Min Yang, Jiangguo Liu, and Qingsong Zou. Unified analysis of higher-order finite volume methods

Yoshikawa:2017:EES

Ypma:1983:ERE

Yuan:1984:EOL

Yuan:1984:LOC

Zakerzadeh:2016:HOA

Zanna:2015:EVP

Zhang:2004:SAR

Zhang:2004:SAR

REFERENCES

Zhang:2012:CAM

Zhang:2006:DMP

Zhang:1996:CVM

Zhang:1987:LCU

Zhang:1988:QNA

Zhang:2001:SDR

Zhao:1993:UTO

Zheng:2015:CAM

[1633] Hui Zheng and Jinhiao Wu. Convergence analysis on multigrid meth-

