A Complete Bibliography of Publications in *IMA Journal of Numerical Analysis*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 October 2017
Version 1.70

Title word cross-reference

\((k,l)\) [296, 297], \(-1\) [980], \(1\) [331, 346, 386, 945, 1048], \(1/x\) [246], \(10\) [765], \(2\) [402, 651, 937, 1066], \(3\) [44, 164, 234, 580, 853, 983, 1061, 1184, 1304], \(4\) [35], \([1,1]\) [246], \(A\) [863, 1433], \(α\) [1269], \(ap\) [1171], \(AX + YB = C\) [1524], \(B\) [768], \(R^3\) [911], \(C^0\) [193, 257], \(C^1\) [1236, 1348], \(C^2\) [493, 1061, 1237], \(C_1\) [1163], \(F\) [478], \(Z\) [430], \(x\) [6], \(D\) [112, 144, 1325], \(DG(p)\) [794], \(ε\) [793, 1377], \(G^1\) [617], \(G^2\) [617], \(γ\) [998], \(H\) [825, 1223, 1242, 1450, 473, 481, 1357], \(H^1\) [670, 1162, 464, 965, 1195, 1403], \(H^2\) [378, 464], \(H^s(0,L)\) [124], \(H_1\) [576], \(H_∞\) [1126], \(H^1_0(I^d)\) [680], \(hp\) [1148, 320, 685, 1104, 1105, 1103], \(k\) [479], \(l\) [452], \(L(L^2)\) [517], \(L^2\) [324, 1010, 128, 742], \(L^2(H_1^1)\) [885], \(L^∞(L^2)\) [683], \(L^∞(L^∞)\) [794, 795], \(L_1\) [892, 1455, 1211, 1229, 1457, 1462, 1493, 1524], \(L_2\) [312, 670, 964, 442, 1461], \(l∞\) [1229], \(L_p\) [985, 1076, 1077, 1456], \(λ\) [689], \(LDL^T\) [1255, 708, 478], \(LR\) [761], \(LU\) [882, 914, 1360], \(M\) [406, 756], \(A - \varphi\) [437], \(T - Ω\) [437], \(H\) [623], \(P\) [363, 364, 418, 879], \(45, 162, 195, 506, 775, 795, 1266, 1294, 1357], \(p(x)\) [490], \(Q\) [1508, 1204], \(q\) [761], \(QR\) [349, 835], \(R^3\) [1091], \(R\) [799], \(rp\) [1171], \(T\) [660], \(θ\) [919, 342, 750, 749, 1019, 1030, 1414], \(V\) [1483], \(δ\) [918], \(W(a,x)\) [693], \(W^{1,∞}\) [483], \(X\) [287, 1072, 1342], \(x^{(i+1)} = P_{x^{(i)}} + q\) [78], \(XY = A\) [1523], \(y'' = f(t,y)\) [363, 364], \(y' = f(x,y)\) [417], \(y' = f(x,y)\) [417], \(y'' = f(x,y)\) [765], \(y'' = f(x,y)\) [415, 416], \(z\)
-acceptability [863]. -algebraic [296, 297].
algorithm [1377]. -approximation [985].
-approximations [919]. -BEM [195].
-Laplacian [45, 162, 490]. -matrices [1450].
-transform [430]. -transformation [1325]. -triangulation [1269]. -type [478].
-uniform [793]. -version [685, 775, 1148, 1294]. -weighted [1242].

17 [1355].

2 [163, 1058]. 26 [62].

31 [1488]. 3D [1400].

5 [364, 567].

65130 [415].

7 [526].

83d [1058]. 86d [567]. 87c [364].

9 [415]. 90d [526]. 90i [415]. 98d [1355].

accumulation [392]. Accuracy [1150, 95, 363, 364, 793, 866, 883, 1334].

Accurate [474, 522, 594, 638, 693, 717, 853, 1049, 1147, 1168, 1379, 1380, 1440, 1510, 1519]. achieve [498]. acoustic [175, 199, 230, 660, 931, 932, 983, 1276].
addition [626]. additional [198, 1134].

Algorithms [508, 1107, 1132, 64, 173, 428, 465, 504, 554, 584, 586, 673, 739, 757, 761, 982, 1108, 1113, 1238, 1241, 1263, 1331, 1343, 1357, 1392, 1400, 1480, 1507, 1508, 1517].
alignment [40]. Allen [135, 211, 628, 727].
auto-correction [1216]. auto-correlation [98]. Automatic
[392, 306]. autonomous [388, 897]. Auxiliary [473]. Average [1176]. averages
[590, 987]. averaging [436, 1189]. axisymmetric [178, 1166].

B [303, 706, 910, 1407]. B-series [303].
B-spline [706, 910, 1407]. back [562].
Backward [1036, 480, 502, 645, 944, 1082,
1111, 1123, 1371]. Bakhalov [1011].
Bakhalov-Shishkin [1011]. balance [673].
Banach [631, 1135, 1449]. band [431, 481].
Banded [766]. Barlow [1503]. barotropic
[1011]. Barzilai [460, 459, 1248]. basis
[106, 156, 286, 321, 383, 439, 640, 641, 655,
660, 877, 985, 1052, 1214, 1265, 1484, 1511].
BDDC [320]. BDF [865]. BDF-like [865].
Beam [1397]. beams [1308]. Bean [575].
bed [394]. behaviour [345, 452, 544, 559, 649,
1022, 1181, 1493]. Bellman [885, 1118].
Bellman-type [1118]. Beltrami [294]. BEM
[5, 121, 195, 263, 623]. bending [1162].
benefit [843]. Bernstein [1202, 1204].
Bessel [1488, 1487]. Best [1213, 1469, 250, 324, 1020, 1076, 1077, 1189].
between [39, 163, 641, 1388]. beyond [515].
Bézier [433]. BFGS [1509]. bi [733].
bi-variate [733]. bicubic [116]. bidiagonal
[788, 1085]. bidimensional [1273]. BIE
[606, 607]. bifurcation [35, 496, 589, 1130, 1291]. Bifurcations
[1354, 1355, 360, 735]. bifractal
[244, 257, 658, 681, 690, 759, 1052, 1494].
bilateral [125]. bilinear [644]. binary [926].
Birkhoff [12]. bisection [670]. bivariate
[1163, 1347]. Black [910, 1446, 856]. Block
[173, 1224, 108, 218, 434, 450, 1255, 720, 788,
1030, 1040, 1088, 1497]. Block-diagonal
[1224, 434]. block-tridiagonal [450]. blocks [25, 1085]. blow-up
[633]. bmo [65]. bodies [232]. body
[451, 815, 1314]. Bogdanov
[202, 881, 880, 1482]. Boltzmann [639].
Boor [1496]. bordered [1497]. borders
[720]. Borwein [460, 459, 1248]. bound
[132, 134, 588, 729, 1073, 1265, 1326].
bound-constrained [729]. boundaries
[372]. Boundary
[830, 857, 974, 3, 7, 46, 66, 74, 90, 112, 137,
141, 172, 177, 188, 194, 199, 204, 205, 214,
215, 230, 239, 301, 330, 328, 336, 344, 357,
361, 362, 372, 379, 387, 407, 410, 420, 482,
483, 521, 529, 563, 566, 579, 592, 603, 614, 668,
675, 699, 741, 764, 794, 795, 797, 799, 800, 815,
821, 826, 828, 887, 901, 948, 950, 1005, 1050,
1056, 1062, 1093, 1104, 1128, 1143, 1149, 1165,
1192, 1234, 1251, 1287, 1334, 1339, 1359, 1367,
1370, 1369, 1373, 1374, 1401, 1437, 1472, 856].
boundary-concentrated [563].
boundary-finite [830]. boundary-locus
[112]. boundary-value [239, 379, 741, 1128].
Bounded [1333, 396, 1244, 1259, 1515].
Bounded-norm [1333]. boundedness
[794, 795]. Bounds
[884, 18, 20, 22, 19, 23, 73, 123, 126, 189, 376,
428, 488, 683, 897, 896, 986, 1174, 1172, 1173,
1202, 1203, 1256, 1260, 1269, 1318, 1371,
1390, 1438, 1445, 1451, 1453]. Boussinesq
[612, 1187]. box [604, 665, 1233]. Branch
[35, 308]. branched [450]. breaking
[880, 1130, 1482]. bridge [1448]. Brinkman
[900]. Broken [150, 283]. Brownian [1448].
Broyden [1517]. bubble [644, 713]. bulk
[581]. bulk-surface [581]. Burgers’
[1285, 999]. Burgers-like [999]. Burniston
[38]. Burniston-Siewert [38].

Cahn
[135, 79, 211, 505, 628, 727, 728, 976, 1149].
Cahn/Cahn [135]. calculation
1210, 1282, 1285, 1299, 1297, 1298, 1328, 1329, 1334, 1403, 1446, 1441, 1452, 1463, 1467, 1477, 1494, 1493, 1498, 1523, 1524, 1525, 574, 595, 659, 891, 940, 969, 1013, 1120, 1163, 1172, 1173, 1202, 1239, 1247, 1269, 1296, 1299, 1318, 1366, 1438, 18, 20, 22, 19, 23, 68, 73, 74, 93, 126, 132, 134, 148, 164, 182, 188, 189, 190, 254, 257, 259, 292, 309, 312, 331, 337, 380, 376, 369, 436, 437, 464, 482, 488, 500, 517, 518, 520, 523, 527, 563, 579, 629, 630, 668, 685, 682, 683, 700, 742, 754, 758, 797, 802, 825, 827, 847, 897, 986, 918, 919, 925, 926, 935, 944, 945].

Evaluation [450, 87, 156, 158, 226, 332, 438, 491, 686, 820, 902, 1151, 1168, 1173, 1263].

evolution [43, 122, 143, 489, 783, 810, 1094, 1095]. evolutionary [500, 550]. evolving [557, 558, 582, 1036].

Exact [824, 1263, 394, 933, 1287, 1306]. exactly [1187]. exactness [266]. example [1507].

exchange [400]. Existence [623, 424, 897, 1232]. expansion [640, 957, 1013, 1126, 1441].

expansion-contraction [1126].
finite-element-based [117]. finite-part
[491, 509, 584, 996, 1372, 1479]. finite-range
[1003]. Finite-volume
[344, 45, 243, 346, 345, 389, 409, 532, 534,
596, 666, 836, 1149, 1503].

Finite-volume-element [203]. First [1359,
13, 171, 226, 273, 274, 326, 329, 359, 567,
568, 723, 867, 1013, 1034, 1089, 1336, 1337].

First-kind [274]. First-order
[1359, 13, 326, 329, 567, 568, 867, 1013]. fits
[128]. Fitted [139, 548, 13, 836, 1329, 1446].

fitting
[418, 432, 435, 446, 467, 507, 508, 1328].
fixed [482, 1111, 1354, 1355, 1425]. Fletcher
[29, 458]. Flexible [448, 384]. floating
[626, 815]. floating-point [626]. flow
[21, 34, 149, 181, 233, 256, 375, 406, 559, 561,
578, 599, 628, 634, 664, 665, 676, 776,
814, 917, 922, 981, 1005, 1162, 1300, 1428].

flow-box [665]. flows [27, 26, 144, 189, 374,
420, 586, 690, 960, 1031, 1301]. fluid
[34, 70, 559, 629, 630, 676, 677, 1268, 1428].

fluid-structure [630, 1268]. fluidized [394].
fluids [190, 814]. flux [127, 138, 140, 381,
673, 829, 848, 958, 1244, 1356]. fluxes
[1102, 1157]. Fock [939]. forces [131]. form
[78, 265, 545, 789, 816, 1031]. formal [38].
formalism [390]. forms [359]. formula
[91, 468, 1379, 1422, 1479]. formulæ
[335, 484, 509, 524, 525, 526, 637, 773, 824,
1053, 1096, 1202, 1245, 1258, 1353, 1352].

formulas
[121, 289, 315, 645, 940, 1176, 1380].
formulation [148, 183, 200, 220, 265, 304,
337, 579, 575, 1098, 1165, 1223, 1436].
formulations [146, 231, 437, 546, 668, 764].
forth [562]. Fortin [19]. forward
[1111, 1123]. Four [1338, 1315, 1328].

four-step [1328]. Fourier
[456, 625, 791, 869, 872, 990, 1044, 1077,
1151, 1207, 1279, 1341, 1379].
Fourier-finite-element [791].
Fourier-series [456]. Fourth [214, 361, 534,
638, 682, 704, 731, 1059, 1106, 1329, 1339].

Fourth-order [214, 361, 534, 638, 682, 704,
731, 1059, 1106, 1339]. Fox [50, 539]. fractal
[399]. fractals [10]. Fractional
[1034, 77, 219, 288, 314, 673, 748, 891, 915,
918, 919, 977, 985, 1095, 1146, 1148, 1367].

fractional-order [1055]. fractional-step
[918, 919]. fractions [226, 450]. fracture
[256]. fractured [256]. frame [455, 1358].
framework [778]. Francis [709]. Fredholm
[88, 171, 276, 440, 898, 1080]. free
[7, 22, 215, 382, 421, 483, 564, 619, 644, 716,
762, 834, 1001, 1005, 1020, 1062, 1142, 1175,
1187, 1223, 1468, 1511]. free-boundary [7].
frequencies [270]. frequency
[120, 515, 800]. frequency-independent
[800]. frictional [125]. frictionless [17].
friendly [1324]. front [997]. front-tracking
[997]. Full [16, 254, 1276].

full-discretization [254]. Fully
[1, 121, 535, 414, 786, 819, 829, 919, 960,
1056, 1093, 1510, 475]. function
[183, 226, 286, 332, 429, 468, 640, 641, 655,
693, 863, 927, 933, 985, 1119, 1206, 1214,
1239, 1380, 1484]. function-evaluation
[332]. functional [197, 277, 305, 624, 1526].
functionals [545, 1109, 1230]. functions
[38, 156, 251, 269, 350, 383, 448, 449, 485,
484, 492, 507, 588, 653, 711, 717, 733, 739,
763, 820, 852, 877, 985, 1015, 1020, 1042,
1067, 1142, 1143, 1168, 1175, 1202, 1214,
1259, 1289, 1313, 1324, 1422, 1455, 1457].
fundamental [813, 916, 1222]. furnace
[178]. Further [15, 171, 1171, 1411].

Galerkin
[1146, 13, 22, 66, 79, 88, 93, 100, 103, 114, 130,
148, 174, 196, 205, 264, 265, 273, 294, 301,
316, 320, 352, 357, 378, 383, 387, 398,
399, 407, 420, 436, 464, 506, 517, 520, 560, 590,
605, 628, 649, 667, 685, 684, 681, 682, 724, 742,
747, 826, 825, 827, 837, 898, 909, 952, 956, 957,
975, 977, 999, 1011, 1040, 1045, 1066, 1106,
1116, 1139, 1141, 1148, 1153, 1164, 1192, 1195,
Galerkin-Chebyshev [999].
Galerkin-like [1295].
games [222]. gamma [226]. GAOR [1450].
Gauss-type [1353, 1352]. Gaussian [83, 322, 701, 1081, 1087, 1119, 1174, 1202, 1361, 1406].
generation [354, 423, 443, 878].
Generalized [278, 509, 600, 858, 951, 1023, 1452, 190, 192, 652, 718, 854, 910, 940, 1003, 1125, 1187].
generated [315]. generates [697].
generating [350]. generation [741, 1496].
Geometrically [1096, 264]. geometries [970]. Geometry [421, 798, 1425].
Gevrey [1028]. Gilbert [117, 118, 549].
Givens [516]. gives [499].
Global [102, 274, 309, 523, 527, 802, 822, 1321, 1385, 1435, 29, 652, 696, 812, 844, 907, 961, 1514, 1471].
globally [152, 821]. GMRES [106, 1390].
GMWB [843]. Golub [1060]. good [1083].
Gordon [390, 1402]. Gottlieb [1216].
gradient-like [31, 374].
gradient-multigrid [1432]. gradients [449].
grading [67, 670]. Gram [697].
graph [803]. grid [157, 180, 343, 588, 741, 821, 1016, 1050, 1252, 598]. grids [74, 547, 644, 733, 763, 1006].
Gross [555, 678]. groundwater [1005]. group [593, 1489]. groups [740, 1323, 1443].
gyrokinetic [196]. gyrokinetic-waterbag [196].
h [799]. h-p [799]. Hadamard [491, 584, 996, 1372]. half [1184, 1335].
half-explicit [1184]. half-line [1335].
Hamilton [262, 280, 885, 1118].
Hamiltonian [413, 515, 989, 1017].
harmonic [437, 675, 1254]. Hartree [939].
hemivariational [451]. Hermite [82, 510, 608, 678, 1269, 1413].
Hermite-type [510]. Hermitian [109, 648].
Hessian [651, 1473]. Hessians [392].
Heterogeneous [270, 1, 503, 597, 1279].
hexagons [719]. hexahedral [175].
Hierarchical [120, 321, 282, 1052]. High [231, 310, 363, 364, 477, 525, 526, 1056, 1127, 1160, 1468, 1510, 12, 120, 216, 224, 251, 669, 766, 783, 793, 849, 850, 872, 873, 1370, 1369, 1477, 1476]. High-accuracy [363, 364].
High-dimensional [1486]. high-frequency [120]. High-order [231, 477, 525, 526, 1056, 1127, 1160, 1510, 216, 224, 669, 783, 793, 1370, 1369, 1476].
Higher [942, 155, 1274, 1309, 1433, 1504, 1424].
Higher-order [942, 155, 1309, 1504, 1424]. highly [270, 276, 413, 515, 518, 869, 870, 1006, 1175, 1441, 1487, 1488].
highly-oscillating [869, 870]. Hilbert [705, 1110, 1262, 1395, 1406]. Hilliard [976, 79, 135, 505, 728, 1149].

Least-change [1516]. Least-squares [434, 98, 247, 349, 401, 431, 435, 446, 636, 1020, 1060, 1082, 1125, 1182, 1181, 1292, 1300, 1359, 1371, 1466, 1508].

Legendre [1384]. leg [749]. Legendre-Laguerre [1212].

Legendre-Laguerre [1212]. Leja [1384].

Legendre-Laguerre [1212]. Leja [1384].

[341, 500, 740, 1091, 1443, 1489]. Lie-algebraic

Lifshitz [549]. like [31, 374, 804, 999, 1000, 76, 865, 1295]. limited [447]. limiting [711, 848]. limits [286].

Linearization [37, 1413, 1434]. linearized [976]. Linearly

[27, 26, 1035, 1278, 125, 288, 1185, 1382].

Lipschitz [9, 739]. Lissajous [227]. loading

[220]. Lobatto [1353].

Lobatto-Chebyshev [1353]. Local

[16, 81, 462, 631, 632, 1086, 1348, 1466, 1484, 72, 166, 249, 274, 282, 301, 320, 308, 500, 506, 563, 844, 903, 925, 1097, 1106].

Long-time [649]. loss [626]. Low [691, 1219, 1273, 34, 72, 120, 463, 1008]. low-order [1219, 1273, 34, 72, 463]. lower [1326, 1525]. lowers [1459]. lowest [519]. lowest-order [519]. lumped [1158].

Lyapunov [774, 1100, 1331, 1435]. Lyness [38].

Navier [6, 16, 72, 95, 104, 155, 184, 180, 183, 614, 625, 659, 754, 786, 812, 907, 1243, 1343].

Near [1075, 1076, 1077, 1189, 1304].

Near-best [1076, 1077, 1189].

Near-minimax [1075]. nearest [225, 806, 1242]. nearly [627, 973, 1235, 1236]. nearness [32].

Newton [14, 76, 80, 106, 212, 225, 245, 370, 487, 589, 600, 631, 632, 728, 760, 947, 949].
Nonlinear nonconservative
Pythagorean [616, 618].
Pythagorean-hodograph [616, 618].

Q [1368]. QR [709]. quadrant [411].
quadratures [1033, 1120].
quadrilateral [371, 1502, 1503, 1504].
Qualitative [710, 10, 610].
qualocation [528, 1194].
quantification [887].
quantiles [1180].
quartic [537]. Quasi [1102, 1124, 1517, 64, 146, 189, 194, 284, 322, 371, 420, 457, 663, 707, 749, 827, 1123, 1178, 1230, 1348, 947, 1473, 1516]. quasi- [64].
quasi-continuum [1178]. quasi-definite [1230].
quasi-geometric [749].
quasi-interpolation [284, 1348].
quasi-optimality [663]. quasi-square [322].
quasi-symplectic [1124].
quasicontinuum [514]. quasilinear [203, 420, 779, 826, 1193, 1437].
quasimatrix [1405]. quasinonlocal [1003].
Quasioptimal [334]. queueing [624].
quintic [160, 617, 616, 1199].

Rational [289, 719, 845, 896, 1325, 226, 415, 416, 485, 484, 493, 494, 492, 689, 730, 732, 863, 1100, 1202, 1422, 1457].
rational [36].
Raviart [519, 954, 1010]. Rayleigh [1299].
reaction [13, 69, 343, 403, 436, 735, 938, 945, 946, 965, 1014, 1016, 1022, 1047, 1051, 1103, 1281, 1298, 1481, 1369]. reaction-diffusion [13, 69, 403, 1022, 1051, 1103, 1281, 1298, 1481].
Reaction-diffusion-type [1369].
real [173, 353, 472, 753, 1070, 1076, 1080, 1081, 1404, 1415]. real-valued [173].
Realistic [488, 1453]. reconstruction [829, 992]. reconstructions [1249].
recovery [129, 128, 436, 471, 993, 1259, 1346, 1478, 1518, 128].
Rectangular [530, 322, 644, 1368, 1475, 1495].
rectangularly [1207]. rectilinear [469].
Recurrence [485]. recursive [729, 1108].
recursive-trust-region [729].
redistancing [594]. Reduced [692, 1265, 20, 280, 357, 660, 1417].
Reduced-basis [1265]. reducible [1470].
reduction [792, 834, 1042]. Redundancy [1347]. Reeves [29, 458].
Referees [52, 54, 56, 59, 61, 63].
Refinable [282]. refined [22, 612, 614, 763].
refinement [805, 1097]. reflection [703].
regime [500]. region [40, 110, 716, 729, 739, 1227, 1395, 1507].
regions [572, 750, 927, 1053, 1207, 1416, 113].
regression [421, 434, 1180, 1462].
regular [45, 157, 258, 308, 719]. regulability [64, 103, 1028, 454].
regularization [332, 576, 930, 1476]. regularized
solvability [661]. solve [379, 486, 878, 1127]. solver [394, 853, 1497].
Some [112, 127, 353, 1080, 1108, 1288, 1328, 1374, 20, 197, 278, 444, 521, 570, 649, 877, 961, 1079, 1480]. SOR [990, 1000].
Space-Time [16, 952]. spaced [1199].
SPD [536]. SPDEs [254, 1029, 1447].
splittings [778, 479].
spittings-convergence [778]. spreading [131]. Spurious [559, 846, 736, 865, 1144, 1298, 1365]. SQP [696, 716]. square [322, 336, 368, 511].
Squared [516]. squares [98, 166, 247, 349, 401, 431, 434, 435, 446, 498, 499, 636, 1020, 1060, 1082, 1117, 1125, 1182, 1181, 1292, 1300, 1359, 1371, 1466].
1068, 1069, 1085, 1103, 1153, 1167, 1184, 1203, 1224, 1268, 1288, 1408, 1427, 1497, 855]. Szego [1202, 476].

Takens [202, 881, 880, 1482]. taut [1225].

Taylor [1077, 1319]. technical [743].

technique [259, 268, 1063, 1252]. techniques [120, 497, 544, 692, 1040].

temporal [907]. Tensor [618, 1368, 1511]. Tensor-product [618, 1368, 1511].

tetrahedral [964, 1294, 1348]. textile [743]. texture [576].

their [76, 353, 445, 610, 832, 1043, 1120, 1138, 1343, 1442]. theorem [76, 867, 1232]. theorems [665, 1190, 1443].

third-order [378, 1519]. Thomas [30, 519].

three [72, 158, 592, 754, 762, 787, 883, 1064, 1114, 1315, 1314, 1401]. three-body [1314].

three-dimensional [754, 787].

three-dimensions [72]. three-fields [1064].

three-stage [1315]. three-time-level [883].

time-accuracy [793].

time-dependent [5, 184, 188, 402, 474, 786, 920, 939, 946, 1106, 1362, 1444]. time-discrete [1403].

time-discretization [549].

time-evolution [783].

time-space [428]. time-splitting [477, 969]. time-stepping [1145, 1146].

time-subcycling [544].

time-varying [811].

tolerance [802].

transfer [656, 725]. transform [430, 769, 1262, 1379]. transformation [207, 1095, 1151, 1238, 1317, 1325, 1521].

transformations [99, 267, 1101, 1179].

transforms [48, 83, 315, 869, 1094, 1487, 1488].

transient [177, 345, 830, 1343]. transition [649].

transmission [231, 301, 790, 906].

transport [239, 389, 646, 672, 1002, 1009, 1054].

trapezoidal [502, 1067, 1277]. treatment [646, 950, 1421].

tree [967].

trees [303].

tree-based [967]. Trees [303]. Trefftz [952].

trial [7].

triangle [850].

triangular [99, 495, 1116, 1294, 1361].

triangularization [1405]. triangulation [1269]. triangulations [556]. trick [578].

tridiagonal [450]. Trigonometric [1110, 91]. Trivariate [227]. Trotter [500].

Truncation [1068, 1417]. Trust [40, 110, 716, 729, 739, 1227, 1395, 1507].

Trust-region [40, 110, 1395].

trust-region-free [716].

tuned [648].

Turán [1120].

turning [129, 1351].

TV [576].

TVD [1398].

TVNE [1519].

two- [72]. two-by-two [108].

two-dimensional [82, 156, 231, 240, 271, 603, 606, 800, 915,
References

Acebron:2001:SAC

Acevedo:2011:BMF

Achdou:1993:MNS

Acker:1988:CRA

Acosta:2012:DSS

Acosta:2014:EPN

Actis:2016:NDF

Adam:1991:PIR

REFERENCES

[33] Sonia Seyed Allaei, Zhan-Wen Yang, and Hermann Brunner. Collocation

Andreev:2004:IFE

Andreev:2013:SSS

Andreev:2012:DDG

Andreianov:2006:FVA

Angermann:1992:PES

Angermann:1995:EEF

Annaby:2015:EEA

REFERENCES

Anonymous:2004:IV

Anonymous:2004:R

Anonymous:2005:IV

Anonymous:2005:R

Anonymous:2006:IV

Anonymous:2006:R

Anselone:1987:DCA

Antil:2016:AEE

Antonopoulos:2017:GFE

REFERENCES

REFERENCES

[95] Blanca Ayuso, Javier de Frutos, and Julia Novo. Improving the accuracy of the mini-element approximation to

Azaiez:2006:MSE

Azaiez:2008:MSE

Baart:1982:UAC

Babolian:1981:FSG

Badea:2004:SNM

Badea:2014:GCR

REFERENCES

[17] Lübovna Bañas, Zdzislaw Brzeźniak, Mikhail Neklyudov, and Andreas Prohl. A convergent finite-element-based discretization of the stochastic Landau–Lifshitz–Gilbert equa-
REFERENCES

REFERENCES

Barrett:1996:EBF

Barrett:1998:FEA

Barrett:1999:IEB

Barrett:2002:FEA

Barrett:1991:FEM

Barrett:1984:TFE

Barrett:1986:TFE

REFERENCES

Bause:2005:OCR

Beatson:2014:PCS

Beatson:2012:OAF

Belgacem:2012:UCB

Belhachmi:2004:RPE

Belhachmi:2006:FEA

Bellettini:1996:NSM

Bellavia:2015:SLC

Bellen:1990:SAR

Bellen:2002:PSN

Bellettini:1996:NSM
REFERENCES

Beltran:2011:ECN

Belward:1985:FSA

Bendali:2014:LAR

Benzi:2008:BPR

Bermejo:2010:SLG

Bermudez:2006:ASA

REFERENCES

[183] Christine Bernardi, Vivette Girault, and Yvon Maday. Mixed spectral el-

Bernardi:1987:MMT

Bernardi:2013:PAF

Bernardi:2010:NFE

Bernardi:2015:PEA

Berrone:2008:TSP

Berselli:2015:OEE

[190] Luigi C. Berselli, Lars Diening, and Michael Ruzicka. Optimal error estimate for semi-implicit space–time discretization for the equations de-

Bertoluzza:2000:WSP

Bertoluzza:2000:WSP

Berzins:1981:GCM

Berzins:1987:NCM

Bespalo:2010:HVB

Besse:2017:DGF

Bessemoulin-Chatard:2015:DFI

REFERENCES

Bessemoulin-Chatard:2014:FVS

Betcke:2014:SDN

Betcke:2007:GFD

Beyn:1994:NAH

Bi:2011:FVE

Bialecki:1991:SCM

Bialecki:2004:PGM

REFERENCES

[212] Barbara Blaschke, Andreas Neubauer, and Otmar Scherzer. On convergence rates for the iteratively regularized Gauss–Newton method. *IMA
REFERENCES

Bonizzoni:2014:MEM

Bonnaillie-Noel:2016:ENC

Bonnans:2006:EES

Bornemann:2007:MUN

Bormann:2013:OCH

Borsdorf:2010:PNA

Borwein:1992:FEG

REFERENCES

NADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

REFERENCES

REFERENCES

References

[255] Andreas Brenner, Eberhard Bänsch, and Markus Bause. A priori er-

Brenner:2017:GDH

Bressan:2011:IRD

Bressan:2011:IRD

Bressan:2013:IDS

Brett:2016:OCE

Brezinski:1983:ECC

Briggs:2002:FDA

Brunner:2011:ACS

Brutman:1986:GAP

Brutman:1990:IPA

Bryson:2005:SDC

Buckwar:2005:WAS

Buffa:2017:RSL

Buffa:2009:CEB
REFERENCES

[291] J. V. Burke, A. S. Lewis, and M. L. Overton. The speed of Shor’s R-

[299] Gustavo C. Buscaglia and Abdel-latif Agouzal. Interpolation estimate

REFERENCES

[341] Elena Celledoni and Arieh Iserles. Methods for the approximation of the matrix exponential in

REFERENCES

Chamberlain:1988:FLL

Chan:1991:TPT

Chan:2001:FM

Chandler:1987:UCG

Chandler-Wilde:1993:SUS

Chandler-Wilde:1989:AGT

Chang:1996:NPA

Chapko:2000:NSH

REFERENCES

REFERENCES

1464-3642 (electronic). See corrigen-
dum [364].

dum: “High-accuracy P-stable meth-
ods for $y'' = f(t,y)$” [IMA J. Numer.
87c:65078]”. IMA Journal of Numerical
Analysis, 6(2):252, 1986. CODEN IJ-
NADH. ISSN 0272-4979 (print), 1464-
3642 (electronic). See [363].

[365] Nabi Chegini and Rob Stevenson.
The adaptive tensor product wavelet
scheme: sparse matrices and the
application to singularly perturbed
problems. IMA Journal of Nu-
merical Analysis, 32(1):75–104, Jan-
uary 2012. CODEN IJNADH.
ISSN 0272-4979 (print), 1464-3642
(electronic). URL
http://imajna.
oxfordjournals.org/content/32/1/
75.full.pdf+html.

[366] Caihua Chen, Binghong He, and
Xiaoming Yuan. Matrix comple-
tion via an alternating direction
method. IMA Journal of Numer-
al Analysis, 32(1):227–245, Jan-
uary 2012. CODEN IJNADH.
ISSN 0272-4979 (print), 1464-3642
(electronic). URL
http://imajna.
oxfordjournals.org/content/32/1/
227.full.pdf+html.

[367] Chuan Miao Chen, Stig Larsson, and
Nai Ying Zhang. Error estimates of op-
timal order for finite element methods
with interpolated coefficients for the
nonlinear heat equation. IMA Journal
of Numerical Analysis, 9(4):507–524,
1989. CODEN IJNADH. ISSN 0272-
4979 (print), 1464-3642 (electronic).

[368] Chuchu Chen, Jialin Hong, and Li-
hai Ji. Mean-square convergence
of a symplectic local discontinuous
Galerkin method applied to stochastic
linear Schrödinger equation. IMA
Journal of Numerical Analysis, 37
(2):1041–1065, April 2017. CO-
DEN IJNADH. ISSN 0272-4979
(print), 1464-3642 (electronic). URL
https://academic.oup.com/imajna/
article/37/2/1041/2669981/Mean-
square-convergence-of-a-symplectic-
local.

[369] Huangxin Chen, Jingzhi Li, and
Weifeng Qiu. Robust a posteriori error
estimates for HDG method for convection–diffusion
equations. IMA Journal of Numer-
al Analysis, 36(1):437–462, Jan-
uary 2016. CODEN IJNADH.
ISSN 0272-4979 (print), 1464-3642
(electronic). URL
http://imajna.
oxfordjournals.org/content/36/1/
437.

[370] Jinhai Chen and Matthias Gerdts.
Numerical solution of control-state
constrained optimal control problems
with an inexact smoothing Newton
method. IMA Journal of Numerical
Analysis, 31(4):1598–1624, Oc-
tober 2011. CODEN IJNADH.
ISSN 0272-4979 (print), 1464-3642
Chen:2004:AIQ

Chen:1993:NAB

Chen:2006:TLS

Chen:2004:SUM

Chen:2016:WGM

Chen:2012:CEB

Chen:2012:AVD

Chen:2014:AMM

Chen:1994:EEF

Chen:2000:NMS

Cheng:2009:DFN

Chernih:2014:MMC

Cheung:2001:FEA

REFERENCES

Christianson:1992:AHR

Christie:1981:PAN

Christie:1991:ERS

Chu:1990:SAI

Chu:2015:FRF

Chu:1995:ETP

Chung:2012:SDG

Cifani:2011:DGM

Cimrak:2005:EES

Ivan Cimrák. Error estimates for a semi-implicit numerical scheme solv-

Clark:1988:LRI

Clavero:2006:UCA

Clavero:2000:ADS

Clenshaw:1988:SLI

Cockburn:2014:MHM

Cockburn:2017:NDS

Cockburn:2012:DSC

REFERENCES

Coleman:1989:ENM

Coleman:1989:NMR

Coleman:2003:OCC

Coleman:1996:SEF

Colembini:2015:NAV

Congreve:2013:DGF

Conn:2008:GSS

Coope:1993:CIN

Cooper:1984:GAS

Cooper:1986:ESA

Cooper:1987:SRK

Cooper:1992:WNS

Cooper:1983:ISI

Coquel:2012:CTS

Coquereaux:1990:IMC

Coughlan:2007:TLM

[33] Cox:1991:ACB

[34] Cox:1985:LSS

[36] Creuse:2013:PEE

[37] Creuse:2017:GEE

[38] Criscuolo:2014:NEC

REFERENCES

[470] Achiya Dax. The minimax solution of linear equations subject to linear co-
REFERENCES

[477] Mariano De Leo, Diego Rial, and Constanza Sánchez de la Vega. High-

[484] Karl Deckers. Christoffel–Darboux-type formulae for orthonormal rational functions with arbitrary complex poles. *IMA Journal of Nu-

[500] Stéphane Descombes and Mechthild Thalhammer. The Lie–Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application

dHalluin:2005:RNM

Dharmaraja:2010:OST

DiPietro:2017:AOM

Dick:2007:RSA

Diegel:2016:SCS

Diening:2014:LDG

[515] Matthew Dobson, Claude Le Bris, and Frédéric Legoll. Symplectic schemes for highly oscillatory Hamiltonian systems: the homogenization approach beyond the constant frequency case. *IMA Jour-
REFERENCES

Dormand:1984:GEE

Dormand:1987:FRK

Dormand:1987:HOE

Dormand:1991:CHO

Dormand:1985:GEE

Doss:2005:QMU

Doucette:1994:NMN

Driscoll:2016:RSC

Drmac:1999:PCS

Droniou:2003:CFV

Droniou:2016:GSS

Du:2009:AMP

DuCroz:1992:SMM

Duan:2015:SSF

Dubeau:1985:PQS

Duff:1983:ENW

REFERENCES

REFERENCES

REFERENCES

http://www3.oup.co.uk/imanum/hdb/Volume_21/Issue_01/pdf/210001.pdf

[584] David Elliott. An asymptotic analysis of two algorithms for certain Hadamard

Eymard:2013:GOE

Eymard:2011:SFV

Ezquerro:2002:GDC

Ezquerro:1997:MCM

Fabiano:1995:FDA

Faermann:2000:LAS

Fairweather:1991:BMN

REFERENCES

NADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

REFERENCES

[618] Rida T. Farouki, Francesca Pelosi, Maria Lucia Sampoli, and Alessan-

REFERENCES

REFERENCES

Fornberg:2008:LPR

Fornberg:2010:CBP

Foucart:2017:BCA

Fox:1981:NSI

Franca:2002:SRF

Frank:2001:PIE

Frankel:1999:NTT

REFERENCES

Freire:1999:NCD

Freitag:2008:TPI

French:1994:LTB

Fritz:2013:IFE

Froese:2017:NMH

Fuchs:1993:GNR

Fulton:2014:ESD

Charles Fulton, David Pearson, and Steven Pruess. Estimating spectral density functions for Sturm–
References

REFERENCES

Ana I. Garralda-Guillem, Manuel Ruiz Galán, Gabriel N. Gatica, and Antonio Márquez. A posteriori error analysis of twofold saddle point variational formulations for nonlinear

REFERENCES

[682] Emmanuil H. Georgoulis, Paul Houston, and Juha Virtanen. An a posteriori error indicator for discontinu-

REFERENCES

[696] Philip E. Gill, Vyacheslav Kungurtsev, and Daniel P. Robinson. A
REFERENCES

REFERENCES

[711] Tim N. T. Goodman, Charles A. Micchelli, Giuseppe Rodriguez, and Sebastiano Seatzu. On the limiting pro-
REFERENCES

Govaerts:1993:MBE

Gover:1985:ITM

Graham:2005:FED

Graham:1993:SIA

Graham:1985:IGV

Graham:1989:NPI

Grant:1983:DZL

Graser:2013:TDA

Graser:2015:NSN

[728] Carsten Gräser, Ralf Kornhuber, and Uli Sack. Nonsmooth Schur–

and Numerics of Dynamics (Bristol, 1990).

Griffiths:2010:ARM

Grindrod:2010:PR

Grohs:2016:NTR

Grohs:2009:SIM

Grossmann:1986:FGG

Grote:2008:IPD

Grothaus:2016:NPD
Grune:2001:PAO

Guan:2012:ACS

Gudi:2011:IPM

Guermond:2001:SSG

Guermond:2009:LCF

Guglielmi:2003:SOL

Guglielmi:1998:DDS
Guglielmi:2006:SPC

Guglielmi:2001:GPN

Guglielmi:2015:ARS

Guillen-Gonzalez:2011:NEE

Guo:1985:SMS

Guo:2003:QME

Guo:2015:PED
REFERENCES

REFERENCES

REFERENCES

Hammarling:1982:NSS

Han:1992:VPF

Handscomb:1984:SRI

Hansbo:2017:SFE

Hansbo:2017:ADD

Hansen:2010:DSQ

Hansen:2002:SCM

Hansen:2009:NHO
REFERENCES

REFERENCES

[795] Christian Henke and Lutz Angermann. Erratum to the paper “$L^\infty(L^\infty)$-boundedness and convergence of DG(p)-solutions for nonlinear conservation laws with boundary conditions”. *IMA Journal of
REFERENCES

Herbin:2001:FVA

Herbst:1981:CEE

Hernandez:2009:AVM

Hewett:2015:FIB

Higham:1989:AEK

Higham:1991:GEV

REFERENCES

CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

REFERENCES

[825] Paul Houston, Ilaria Perugia, and Dominik Schötzau. An a posteriori er-

REFERENCES

143

REFERENCES

Huang:2009:SAG

Huang:1999:CAI

Huang:2002:MEM

Huang:1993:NPM

Huang:2012:APM

Huang:2005:GLL

REFERENCES

REFERENCES

REFERENCES

Iserles:1990:TPR

Iserles:1981:ARA

Iserles:1992:ZHD

Iserles:1992:UAS

Iserles:1984:SAS

Iserles:1982:OSS

Iserles:2001:MMM

Iserles:2004:NQH

Iserles:2005:NQH

Iserles:2014:SSD

Iserles:2008:HOR

Iserles:2009:HOR

Iserles:2008:D

Iserles:2007:CE

Jackiewicz:1987:SAM

Jackson:1989:OCS

Jacobs:1986:GCG

[878] D. A. H. Jacobs. A generalization of the conjugate-gradient method to solve

REFERENCES

REFERENCES

REFERENCES

Kacur:1997:NSC

Kadalbajoo:2014:RNB

Kaklis:1990:CPP

Kaltenbacher:2015:ETI

Kaps:1989:RMU

Karaa:2017:FVE

[923] Kenneth Hvistendahl Karlsen and
REFERENCES

[930] J. Thomas King and Diego A. Murio. Numerical differentiation by finite-

[938] Petr Knobloch and Lutz Tobiska.

REFERENCES

Lanteri:2013:CDG

Larsson:2011:FEM

Latouche:1994:NIN

Laurita:2012:QMC

LeTallec:1986:NSV

Leake:1989:AOS

[990] Randall J. LeVeque and Lloyd N. Trefethen. Fourier analysis of the SOR

REFERENCES

Liang:1999:FEM

Liao:2016:ET

Liesen:2016:PNI

Lin:2005:SEN

Linke:2017:OVE

Lin:2008:MNM

Linss:2000:AGF

REFERENCES

REFERENCES

1034 Ch. Lubich. Fractional linear multistep methods for Abel–Volterra inte-

Mackenzie:2012:USS

Mackenzie:1999:UCA

Madden:2003:UCN

Maes:2006:HBP

Maeztu:1989:SCF

Maire:2006:MCM

Makrelov:1985:CTM

REFERENCES

1985. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

REFERENCES

[1081] Giuseppe Mastroianni, Incoronata Notarangelo, and Gradimir V. Milo-
vanović. Gaussian quadrature rules with an exponential weight on the real semi-
oxfordjournals.org/content/34/4/1654.

oxfordjournals.org/content/35/1/107.

xoup.co.uk/imanum/hdb/Volume_20/
Issue_03/200359.sgm.abs.html; http://www3.oup.co.uk/imanum/hdb/
Volume_20/Issue_03/pdf/200359.pdf.

oxfordjournals.org/content/35/1/239.

xoup.co.uk/imanum/hdb/Volume_16/
Issue_01/160013.sgm.abs.html.

REFERENCES

1983. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

REFERENCES

REFERENCES

http://www3.oup.co.uk/imanum/hdb/Volume_21/Issue_03/pdf/210621.pdf

[1124] Journal G. N. Milstein and M. V. Tretyakov. Quasi-symplectic meth-

Mirzaei:2012:GML

Mitchell:2016:HEC

Mittal:1991:HOF

Mommer:2006:SPF

Moore:1981:COA

Moore:1986:OAS

Moore:1995:CPP

Moore:1999:ACS

REFERENCES

REFERENCES

[1148] Kassem Mustapha and Dominik Schötzau. Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equa-
REFERENCES

[1156] Serge Nicaise and Karim Djadel. Convergence analysis of a finite volume

REFERENCES

REFERENCES

Olver:1983:EBA

Olver:1986:EBP

Olver:1982:PEB

Olver:2006:MFN

Olver:1982:PEB

Ortner:2011:NFE

Ortner:2014:PEC

Osada:1992:MOS

Osborne:1992:EMC

REFERENCES

ISSN 0272-4979 (print), 1464-3642 (electronic).

Osborne:2010:ABL

Osborne:2000:NAV

Osborne:1999:NAS

Ostermann:1990:HEE

Ostermann:2000:NSD

Oswald:1998:OMP

Oyarzúa:2014:EDF

[1187] Ricardo Oyarzúa, Tong Qin, and Dominik Schötzau. An exactly divergence-free finite element method for a generalized Boussinesq problem. *IMA Jour-
REFERENCES

http://www3.oup.co.uk/imanum/hdb/Volume_22/Issue_02/pdf/220231.pdf

[1211] Mustafa Ç. Pinar and Bintong Chen. l_1 solution of linear inequalities. *IMA*
REFERENCES

REFERENCES

0272-4979 (print), 1464-3642 (electronic).

Powell:2008:DNM

Powell:2010:CWR

Powell:1981:STP

Powell:1984:CSC

Pozza:2017:GQQ

Pozzi:2005:DDP

Pozzolini:2013:VIP

REFERENCES

[1242] Houduo Qi and Defeng Sun. An augmented Lagrangian dual approach...

REFERENCES

[1257] Arnold Reusken. Analysis of trace finite element methods for surface par-

Riess:1982:MPE

Rivlin:1983:ORD

Robinson:1992:VBE

Rodriguez:2004:MFE

Rivas:1996:NCU

Romani:2016:EEC

Roos:1996:NCU

Rovas:2006:RBO

[1265] D. V. Rovas, L. Machiels, and Y. Maday. Reduced-basis output bound

Sanz-Serna:1992:NUT

Sanz-Serna:1986:CNS

Saranen:1992:QML

Sardella:2000:CFE

Saunders:1984:VIS

Sauter:2010:REA

Sauter:2014:RBI

Sayer:1983:SAI

REFERENCES

203

Schagen:1984:SEU

Schatzle:2000:PZC

Schittkowski:1983:NSC

Schmitt:2001:EAR

Schoberl:2008:ASP

Schock:1985:ASC

Schonfelder:1981:ECP

REFERENCES

Schoombie:1982:SPG

Schoombie:1991:SPS

Schoombie:1981:EES

Schotzau:2001:ECG

Schotzau:2004:MHD

Schroll:1996:FDS

Schropp:2000:OSM
REFERENCES

REFERENCES

Simos:1991:SNF

Simos:2001:FAO

Simpson:1994:TEA

Singler:2011:CSA

Sinha:2007:UFE

Skrobanski:1990:BNM

Sloan:1986:PMI

Sloan:1981:SAC
REFERENCES

Sloan:1988:GMIa

Sloan:1988:GMIb

Sloan:1984:FVG

Sloan:1993:FOC

Slodicka:2006:TDS

Small:1988:CDN

Smarzewski:1983:UCC

Smith:1997:IAT

Smitheman:2010:SCM

References

[1359] Rob P. Stevenson. First-order sys-

[Stewart:1997:PCF]

[Stewart:1997:TMG]

[Stoll:2014:OSS]

[Strauss:2011:QPM]

[Streit:1989:EET]

[Stuart:1989:LII]

[Styles:2001:EEF]

REFERENCES

REFERENCES

Tao:2016:VLI

Tarvainen:1999:TLS

Taylor:2010:LCL

teRiele:1982:CMW

Thatcher:1982:CSD

Editors:2001:E

Ting:1981:CPB

Titarev:2007:AAA

Titley-Peloquin:2014:GCB

Tobiska:2015:RPE

Todd:1989:CPA

Todor:2009:NAE

Todor:2007:CRS

Toint:1988:GCC

Torelli:1993:SCQ

Toro:1997:URP

REFERENCES

[1413] Roel Van Beeumen, Wim Michiels, and Karl Meerbergen. Linearization of Lagrange and Hermite interpolating matrix polynomials. *IMA Jour-

[1436] V. R. Voller. Implicit finite-difference solutions of the enthalpy formulation of

REFERENCES

REFERENCES

Watson:1990:CAD

Weideman:2010:ICI

Weber:2017:CRF

Wendland:2001:LPR

Wesseling:1996:NSC
REFERENCES

[1496] X. Xu, W. Huang, R. D. Russell, and J. F. Williams. Convergence of de Boor’s algorithm for the generation of

Yalamov:1999:SPA

Yan:1990:CCV

Yan:2003:SPA

Yang:1996:PIN

Yang:1999:IPM

Yang:2011:QFV

Yang:2013:QFV

Yang:2016:UAH

Yoshikawa:2017:EES

Ypma:1983:ERE

Yuan:1984:EOL

Yuan:1984:LOC

Yuan:1991:MBA

Zakerzadeh:2016:HOA

Zanna:2015:EVP

Zhang:2004:SAR

Zhang:2012:CAM

Zhang:2006:DMP

Zhang:1996:CVM

Zhang:1987:LCU

Zhang:1988:QNA

Zhang:2001:SDR

Zhao:1993:UTO

Zheng:2015:CAM

Zhou:2005:CNS

Zhu:2011:RPE

Zietak:1983:PMS

Zietak:1987:PSL

Zietak:1989:PAM

Zubik-Kowal:1997:MLP

Zvan:2001:FVA