A Complete Bibliography of Publications in *IMA Journal of Numerical Analysis*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

08 June 2023
Version 1.92

Title word cross-reference

\((k, l)\) [434, 435], \(-1\) [1357], 1
[479, 500, 555, 1310, 1458], 1/2 [615]. 1/x
[364]. 10 [1310, 1458]. 3
[77, 243, 349, 801, 1194, 1360, 1479, 1635, 1787]. 3/4 [1583]. 4 [53]. [1, \(\infty\)] [364]. \(1/2\)
[698]. 2 [1137]. \(A\) [1204, 1940]. \(\alpha\) [1746]. \(ap\)
[1620]. \(AX + YB = C\) [2054]. \(B\) [1072]. \(R^3\)
[1265]. \(C^0\) [284, 383, 531, 1384]. \(C^1\)
[1570, 1698, 1840]. \(C^2\) [687, 1700, 1479]. \(C_1\)
[1609]. \(F\) [670], \(Z\) [606]. \(\chi\) [9]. \(D\)
[171, 216, 1811]. \(DG(p)\) [1112]. \(dG(s)\) [939]. \(\epsilon\)
[111, 1111, 1877]. \(G^1\) [851]. \(G^2\) [851]. \(\gamma\)
[1382]. \(H\)
[1154, 1684, 1705, 1964, 664, 673, 1120, 1850]. \(H(\text{curl})\) [1083]. \(H(\text{div})\)
[815, 1084, 1064, 1361, 1591, 1590]. \(H^{-1}\)
[818]. \(H^1\)
[16, 49, 652, 937, 1336, 1608, 1648, 1906]. \(H^2\)
[334, 545, 652]. \(H^p(0, L)\) [190]. \(H_1\) [797]. \(H_\infty\)
[1558]. \(H^p_0(\Omega)\) [952]. \(hp\)
[30, 286, 464, 778, 1066, 1156, 1526, 1528, 1904, 2052, 698, 958, 957, 1588]. \(K\)
[862, 671]. \(I\) [637]. \(L(L^2)\) [719]. \(L^2\)
[49, 196, 386, 470, 741, 1035, 1411]. \(L^2(H^1)\)
[816]. \(L^2(H^1)\) [1230]. \(L^\infty(I; L^2(\Omega)^d)\) [240].
\(L^\infty(L^2)\) [956, 1873, \(L^\infty(L^\infty)\) [1112, 1113].
\(L^p\) [946, 1095]. \(L^q\) [1876]. \(L_1\) [1242, 1971, 1670, 1690, 1973, 1978, 2014, 2054]. \(L_2\)
[451, 937, 1335, 623, 1977]. \(l_\infty\) [1690]. \(L_p\)
[1363, 1494, 1495, 1972]. \(\lambda\) [962]. \(LDLT^T\)
[1724, 985, 670]. \(LR\) [1060]. \(LU\)
[1130, 1226, 1271, 1854]. \(M\) [579, 578, 1053].
\(A - \varphi\) [617]. \(T - \Omega\) [617]. \(H\) [859]. \(O(\varepsilon^{-3/2})\)
applied [116, 170, 256, 257, 528, 898, 1008, 1117, 1329, 1407, 1414, 1506, 1586, 1764, 1964].

approximate [198, 444, 537, 578, 720, 790, 825, 1158, 1305, 1507].

Arbitrarily [1776]. Arbitrary [702, 158, 676, 849, 899, 984, 1118, 1380, 1433, 1446, 640]. Arbitrary-order [702].

arcs [2020]. arguments [1601]. arising [40, 36, 304, 392, 445, 798, 865, 993, 1036, 1068, 1153, 1167, 1298, 1408, 1649, 1696].

arithmetic [1159, 1621, 1622, 1805].

Augmented [767, 880, 1191, 1918, 74, 222, 452, 609, 694, 1013, 1099, 1324, 1358, 1386, 1705].

Auxiliary [664, 1682]. Average [1626, 375].

averages [817, 1366]. averaging [616, 1642, 1761]. Avoiding [56, 57, 228].

axisymmetric [207, 265, 932, 1613, 1614].

Backward [304, 321, 1443, 672, 37, 65, 187, 516, 700, 892, 1309, 1500, 1539, 1553, 1868, 1884].

band [609, 673]. Banded [1070]. Barlow
Bridging [1369]. Brinkman [61, 68, 123, 121, 489, 904, 1252, 1570].
Broken [224, 415]. Brownian [467, 1147, 1962].
Bridging [1369]. Brinkman [61, 68, 123, 121, 489, 904, 1252, 1570].
Brownian [467, 1147, 1962].
Bulk-surface [59, 782, 802]. bundle [1561].
Burgers’ [1764, 1385, 1737]. Burgers-like [1385]. Burniston [66].
Burniston-Siewert [66].
Cahn [203, 39, 44, 111, 133, 311, 373, 542, 697, 704, 868, 1015, 1016, 1093, 1353, 1393, 1589].
Cahn/Cahn [203]. calculating [884].
calculation [301, 332, 605, 1026, 1438]. calculus [1744].
Calculus [1744].
calling [884].
calculator [1737]. Caputo [1862].
Cardinal [67]. cardinality [484]. Carlo [614, 984, 1286, 1343, 1368, 1466].
Cauchy [306, 594, 624, 1357, 1663, 1679].
Cauchy-type [624]. cavity [877]. cell [491, 826, 929, 959, 1065, 1115].
cell-centred [491, 826, 1115]. centered [812].
central [411, 1377, 1544].
central-difference [1544]. central-upwind [411].
centre [1255].
Centred [1901, 491, 826, 1096, 1115].
certain [618, 710, 805, 981, 1153, 1298, 1659, 1998].
CG [1627, 2027]. chain [1368, 1629, 1965].
chains [302, 1356]. Change [752, 1216, 693, 759, 1722, 2020, 2042].
changes [774]. changing [895]. channel [1274].
chaos [1897].
Characteristic [345, 109, 372].Cheap [1332]. chebfun [1640].

chemotaxis [1748]. choice [626, 1246, 1716].
Cholesky [509, 1854, 2042]. choosing [319, 1367].
circular [877, 1493]. claims [2057, 699].
classes [1147]. classical [136, 147]. classification [1791].
Clement [114]. Clement-type [114].
close-to-touching [620].
Closed [1141, 216, 303, 982, 1762].
Closed-form [1141]. closest [821].
Closing [412].
closure [99].
clustering [1319].
codes [505, 1078, 1798].
coefficient [589, 1044, 1247, 1280, 1583, 1593, 1672, 1756, 1979].
coefficients [104, 332, 526, 529, 555, 681, 779, 886, 976, 1176, 1195, 1248, 1257, 1256, 1286, 1549, 1568, 1598, 1664, 1715, 1897, 1954, 2034, 2049, 664].
coercivity [183].
collection [1800].
Collective [1511].
Collocation [50, 1290, 1402, 1888, 23, 141, 267, 298, 300, 310, 393, 403, 402, 406, 408, 539, 624, 710, 735, 921, 960, 997, 1009, 1040, 1068, 1117, 1254, 1264, 1274, 1334, 1370, 1373, 1385, 1448, 1473, 1538, 1650, 1833, 1846, 1845, 1883, 1940, 1899, 1990, 1090].
collocation-type [1334]. combination [1012, 1721].
combinations [1003].
combinatorial [1616]. combined [343, 483, 1939].
committed [1929].
commutator [309, 308]. commutator-free [309, 308].
commuting [815].
Compact [415, 935, 696, 914, 1843].
compactly [551].
companion [672].
Comparison [239, 477, 66, 192, 456, 472, 915].
Comparisons [887, 1800]. compatible [325, 744, 877]. complement [972, 1834].
complementary [1889]. complete
deformations
curves
curvature
Curves
delay-integro-differential
degenerate
degenerate
Cylinder
definiteness
deficiency
Definition
definiteness
definition
Deformation
Degenerate
degeneratesingular
degree
delay-integro-differential delays
differentiation [2037, 2056, 1196, 1930]. differential [2037, 2056, 1196, 1930].

dilute [221]. Dimension [1089, 194, 545, 652, 826, 935, 1109, 1528, 1531, 1646, 1861].
diminishing [1071, 1073]. diodes [33].
Dirac [479, 1654, 2028]. Direct [610, 811, 633, 1026, 1098, 1328]. direction [300, 524, 575, 574].
directional [334]. directions [1002]. Dirichlet [990, 13, 180, 483, 838, 847, 989, 988, 1488, 1551, 1645, 1740].
discovered [1060]. discrepancy [1246].
discrete-time [835]. Discretising [60].
Discretizing [518, 561]. discs [620]. disk
dispersion [120]. dispersion-managed [120]. dispersive [322, 1080, 1351]. Displacement [1152].
dissimilar [1835]. dissipation [411]. dissipative [1088, 1163, 1182, 1318].
div [894, 904, 1397, 1684]. Divergence [900, 77, 151, 853, 905, 1063, 1979, 1379, 1732, 2036].
divergence-conforming [905]. divergence-free [853, 1063, 1397, 1639, 1732, 2036].
Divergence-preserving [900]. DPG [910].
drivative [465, 500, 498, 942, 1583, 1595].
drift-diffusion [456, 500, 498, 942, 1583, 1595].
drivative flux [942]. driven [467, 484, 499, 1147, 1307, 1425]. drops [1106]. Dtn [1237].
Doppler [1477]. double [1148, 1342, 1608].
double-well [1068]. doubling [811, 1054].
doubly [1538]. Douglas [525, 1692].
downdating [1755]. DPG [910].
drift [332, 456, 500, 498, 942, 1583, 1595].
drift-diffusion [456, 500, 498, 942, 1583, 1595].
drift-flux [942]. driven [467, 484, 499, 1147, 1307, 1425]. drops [1106]. Dtn [1237]. Dual [1903, 311, 856, 1607, 1705].
dynamical [295, 518, 1173]. Dynamics [4, 417, 834, 841, 978, 1201, 1202, 1303, 1366, 1912].

E-based [8]. EBT [1065]. Eckhoff [1675].
eddy [8, 265, 264, 701, 1723, 1733, 1828].
edge [119, 1237, 1423, 1427, 1784, 1903, 639].
edged [1740]. edges [113]. Editorial [91, 751, 1890, 1574].
eigenvalues [82, 350, 354, 371, 519, 645, 682, 916, 1238, 1320, 1448, 1523, 1604, 1719, 1878].
elastoplastic [266]. electric [287, 795].
electrical [361, 1245]. electrically [345].
electroless [975]. electrolytes [178].
Electromagnetic [1236, 1080]. electron [1303]. electrophysiology [67].
functions
functions
fundamental
furnace
Further
FV
FV-FE
G
Galerkin
Galerkin
Galerkin-Chebyshev
Galerkin-like
games
gamma
GAOR
gap
gas
gauge
Gauss
Gaussian
Gaver
Gauss-type
Gauss
Geodesic
Geometric
Gaussian
generated
Generating
generation
generator
genesis
Gennes
Geodesic
Geometric
Geometrically
generates
generation
Givens
gives
given
Givens
Glover
Governing
Grad
Grad-div
Grad-grad
Gradient
Gr¨unwald
GSVD
Guaranteed
Guaranteed
guarantees
Guaranteed
Givens
Globo
Globus
Global
Global
Global
Global
Global
Global
global
globally
global-best
globally
global
Globus
Global
Global
Global
Global
Global
Globo
Globus
Global
GI...

interactions [139]. interest [1325].
invoking [1604]. investigation [1431]. involutive [1413, 1911]. involved [750, 755].
Jacobi/elliptic [392]. Jacobian [626, 1099].
Jarrow [1325]. Jin [1790]. John [98, 986].
jumps [2049]. June [98].
Kamel [1122]. Kantorovich [1059, 1957].
kernels [359, 403, 418, 508, 539, 1388, 1507, 1883].
Kolmogorov [586]. Korteweg [608, 734, 965, 1146, 1339, 1636, 1779].
Kronrod [1550]. Krylov [858, 1062, 1520, 1675].
Kublanovskaya [986]. Kuramoto [6, 36, 515, 1432].
Kutta-composition [734]. Kutta-type [1419].
L [1137, 1444]. L-shaped [1444]. L. [84].
L.M.F. [505]. L.M.F.-based [505]. l.s.d [1914]. L1 [1464].
Lagrange [83, 105, 174, 257, 316, 319, 430, 747, 1128,

Meshing [77]. metastable [469, 1871].

Method

method

Methods

methods

[2034, 2039, 2045, 2047, 2051, 2056, 640, 1944].

Methods

minimax [661, 1493, 2053]. minimization [224, 229, 246, 253, 473, 649, 1017, 1018, 1099, 1297, 1467, 1687, 1786, 1882, 1895, 1898].

modelling [33, 161, 635, 951, 1748, 1802]. models [29, 221, 371, 583, 744, 768, 801, 959, 1020, 1723, 1738]. modes [1118].

Modification [1109, 831, 1477].

modifications [1658]. modified [175, 546, 971, 992, 1038, 1217, 1226, 1408, 1411, 1491, 1610, 1833, 2033, 2039, 1926, 1213, 2005].

Modulated [1757, 1143]. modulus [713].

Mono-implicit [485]. Monodromy [764].

Monotone [1479, 165, 338, 595, 1034, 1042, 1389, 1425, 1455, 1540, 1879, 1938].

monotonic [637, 687, 688, 1023, 2014].

monotonicity [692]. Monotonous [45].

mortaring [1108]. Morton [1325]. motion [304, 467, 1611, 1649]. motions [1147].

Multidimensional [1374, 400, 744, 849, 918, 1698, 1737, 1768]. multidomain [912, 1517]. multifacility [660].
25

[994]. multilag [175, 1217]. Multilevel
[1368, 2, 43, 244, 645, 964, 1162, 1525, 1549,
1834, 1868, 2013]. Multiplicative
[1701, 134, 814, 1326, 1420, 1435]. multiplier [83, 430]. multipliers
[105, 319, 1167, 1367]. multiply [1305]. multiply-connected [1305]. multipole
[1612]. multiprocessor [503]. multiquadric [235, 858]. Multiscale
[1391]. Multistep
[462, 1132, 1200, 1209, 35, 185, 355, 463, 606, 683, 1221, 1378, 1439, 1441, 1618, 1786, 1884, 1920, 1922]. multivalue
[436]. multivalued [1540]. Multivariate
[1541, 610, 703, 952, 1032, 1214, 1987]. Mysovskii [129].

Naghdi [272]. Nagumo [67]. narrow
[535, 673]. Natural [287, 176, 1722]. Navier
[697, 9, 25, 24, 120, 150, 161, 233, 271, 267, 270, 288, 378, 452, 848, 861, 863, 917, 931, 1049, 1084, 1102, 1134, 1151, 1259, 1341, 1384, 1475, 1661, 1707, 1782, 1832, 665]. Near
[259, 1493, 1494, 1495, 1642, 1787]. Near-best
[1494, 1495, 1642].

Near-minimal [259]. Near-minimax
[1493]. nearest [337, 619, 1127, 1705]. nearly
[854, 866, 1349, 1697, 1698]. nearness [47]. negative
[326, 354, 907]. nematic [178]. nets [983]. network
[991, 1033]. networks [1556, 1557]. Neumann
[116, 115, 158, 180, 209, 213, 244, 280, 343, 497, 837, 877, 1488, 1552, 1904, 1959, 1984]. neural
[991, 1033, 1556, 1557]. neutral
[45, 417]. neutron [1466]. newest [937].

Newton
[522, 590, 716, 729, 750, 755, 787, 1472, 1848]. no-fill [750, 755]. nodes
[31, 424, 813, 1549, 1846, 1845, 1907]. noise
[111, 323, 814, 1097, 1268, 1307, 1326, 1420, 1425, 1435, 1468, 1569, 1699, 1961]. noisy
[154, 809]. Non

Non-autonomous [1249]. non-conforming
[113, 785, 1407, 1601]. non-Fickian [232]. non-Gaussian [1097]. non-globally
[1233]. non-interior [1179]. non-linear
[1540]. non-negative [326]. non-Newtonian [486]. non-overlapping
[1446]. non-periodic [174]. non-self-adjoint
[1488, 1953]. non-separable [1594]. Non-smooth
[1637, 1255, 2051]. non-standard [1454]. non-stationary [719]. non-symmetric
[1248, 1408, 1523]. Non-variational [350]. Non-asymptotic
[341]. Nonautonomous
[355, 309, 308, 557, 1174, 1301]. noncoercive [497]. noncompact
[506, 1496]. Nonconforming
[1760]. nonconstant [1195]. noncontractive [1676]. nonconvex
Pointwise-in-time [1244].

Pointwise-integral [482]. Poisson [124, 142, 192, 274, 477, 723, 836, 877, 888, 1091, 1323, 1345, 1407, 1511, 1559, 1665, 2048].

poroelasticity [867, 1291]. porous [21, 268, 381, 466, 945, 947, 1710]. posed [338, 594, 1751]. posedness [1588].

positive-semidefinite [1723]. positive-type [1464]. Positivity [1163].

Predictor-corrector [1921, 1923, 1925, 1924]. prescribed [424, 548, 674]. presence [199].

pressure [112, 382, 438, 445, 900, 931, 928, 1115, 1138, 1324, 1411, 1483, 1570].

pressure-correction [1115]. pressure-dependent [1138].

Pythagorean-hodograph [850, 852].

Quadratures [1440, 1927, 1991, 2042].

Quadrilateral [49, 535, 2024, 2025, 2041].

quarkonial [642]. Quartic [1095, 749].

quasi-square [468]. quasi-static [1947].

quasimatrix [1908]. quasinonlocal [1396].

Quasioptimal [484]. queueing [860].

Quintic [238, 851, 850, 1652].

Randomized [703, 1143, 1594, 1987, 952, 1932]. Range [319, 1367, 1124, 1396, 1688, 1810].

range-dependent [1124]. Range-relaxed [319, 1367]. rank [317].

rank-deficient [251]. rank-one [1634].

rank-revealing [725]. rapid [17, 1185, 1186, 1213, 1420, 1802].

Rates [922, 1770, 60, 159, 285, 527, 1038, 1138, 1147, 1340, 1600, 1740]. rates [18, 233, 312, 352, 353, 373, 393, 762, 938, 1020, 1233, 1325, 1595, 1742, 1791, 1897, 1961, 1979].

Raviart [722, 1323, 1411]. Rayleigh [1781].

RBF [420, 419]. Reaction [19, 117, 400, 496, 575, 616, 901, 1027, 1302, 1310, 1311, 1336, 1387, 1415, 1417, 1428, 1457, 1461, 1525, 1759, 1780, 2000].

reaction-diffusion [19, 117, 575, 1428, 1461, 1525, 1759, 1780, 2000].

Reaction-diffusion-type [1866].

recovery [197, 196, 616, 924, 1347, 1346, 1375, 1570, 1730, 1837, 1997, 2044, 196].
Rectangular [735, 468, 891, 1423, 1863, 1993, 2017].
rectangularly [1665]. rectilinear [660].
Reefinal [414]. refined [31, 49, 846, 848, 1025, 1066]. refinement [1126, 1517]. reflection [978].
reformulation [162]. regime [696, 936, 1864]. region [70, 169, 1001, 1019, 1020, 1031, 1688, 1898, 2031]. regions [792, 1045, 1529, 1665, 1921, 172].
regularization [246, 480, 797, 1018, 1294, 1994].
Regularized [166, 224, 245, 312, 343, 631, 829, 1050].
relation [366]. relations [999].
relationship [69]. relative [764, 966, 1376].
relaxation [165, 1616, 2000]. relaxed [319, 1367].
reliability [583, 923, 1285].
reordering [1030, 1124]. Repeated [714, 1097]. Representation [976, 567, 696, 1085]. reproducing [1734].
reproduction [1983]. REQP [229].
Residual-based [315, 560, 1399, 1653].
Residual-type [1947]. residuals [119].
Retarded [1766, 1319]. retrieval [656]. revealing [725]. revelations [1914].
Riemann-problem-based [1900].
right [43, 1868, 1893]. right-hand [43, 1868].
right-hand-side [1893]. rightmost [1523].
rigid [206, 836, 1694]. Ritz [1718, 1781].
RK [1737]. RK4 [110]. RLW [1052].
Robbins [1667]. Robin [213, 1247].
Robust [425, 429, 533, 681, 854, 1291, 1404, 1525, 1765, 1831, 1894, 699, 15, 112, 496, 823, 900, 1264, 1324, 1361, 1411, 1526, 1558, 1710, 1725, 1941, 2052].
rod [1118]. role [362]. Ronald [1029]. root [659, 1359, 672].
root-finding [1359, 672]. roots [372, 1469].
Rosenbrock [1271]. Ross [615]. rotating [836, 1106]. rotation [718, 1438].
Sabin [658, 708, 1842]. saddle [168, 166, 1842].

thin-walled [83, 872]. third [50, 545, 2046].
third-kind [50]. third-order [545, 2046].
Thomas [45, 722]. three
[62, 120, 236, 820, 936, 1504, 1543,
1717, 1801, 1859, 1869, 1904, 2048].
three-body [1800]. three-dimensional
[936, 1049, 1403, 1717, 1859, 2048].
three-dimensions [120]. three-field [1399].
three-fields [1482]. three-stage [1801].
three-term [1159]. three-time-level
[1227]. Tikhonov [319]. Time
[25, 180, 184, 193, 930, 998, 1015, 1514, 8, 24,
44, 64, 76, 110, 111, 122, 133, 183, 186, 187,
271, 268, 275, 278, 279, 288, 377, 499, 532, 574,
604, 637, 666, 669, 698, 734, 757, 762, 772, 798,
976, 833, 837, 893, 899, 931, 928, 939, 944,
949, 1049, 1062, 1067, 1084, 1098, 1102, 1104,
1111, 1119, 1133, 1161, 1171, 1190, 1206, 1227,
1231, 1239, 1240, 1241, 1244, 1260, 1267, 1278,
1287, 1293, 1299, 1303, 1311, 1314, 1321, 1330,
1344, 1351, 1390, 1409, 1429, 1442, 1443, 1451,
1456, 1468, 1531, 1585, 1586, 1699, 1715].
time
[1722, 1723, 1738, 1744, 1749, 1759, 1803,
1828, 1831, 1852, 1856, 1873, 1906, 1958,
time-accuracy [1111]. Time-dependent
[184, 193, 8, 183, 187, 271, 275, 574, 666, 931,
1102, 1161, 1231, 1278, 1303, 1311, 1451,
1531, 1856, 1958, 665, 1944]. time-discrete
[1906]. time-discretization [762].
Time-domain [180, 928, 1351].
time-evolution [1098]. time-fractional
[44, 532, 1171, 1241, 1293, 2050].
time-harmonic [1390, 1456, 1723].
time-marching [1084]. time-parallel
[1098]. time-periodic [1856]. time-space
[604, 939]. time-splitting [669, 1344].
time-stepping
[734, 1287, 1409, 1585, 1586, 1715, 1749, 1831].
time-subcycling [757]. time-varying
[1133]. Timoshenko [1118]. Toda [450].
variational-hemivariational [635].

variational-iterative [1764].

vectors [736, 971, 1876]. Vector-valued [1021]. vectors [736, 971, 1876]. Vector-Laplace [1222].

vertex-centered [812]. very [594]. via [184, 379, 524, 590, 591, 725, 756, 1034, 1098, 1236, 1504, 1514, 1515, 1595, 1616].

Warming-Beam [1900]. water [109, 110, 263, 348, 1114, 1696]. waterbag [290].

Wave-number [343]. wave-packet [1536]. wave-structure [1160].

wave-thermoelastic [1161]. wave-type [1136, 1139, 1465]. waveform [1754, 2000].

waveguide [1360]. Wavelet [281, 400, 641, 516, 523, 822, 1851, 1987].

Wavelet-based [641, 516].

Wavelet-Fourier [400]. wavelets [1599].

Wavenumber [517, 1456]. waves [186, 819].

Weak [162, 413, 512, 541, 601, 1309, 1569, 1641, 60, 161, 320, 395, 1059, 1579]. weakly [286, 310, 403, 508, 539, 594, 710, 1172, 1388, 1587, 1615, 1674, 1850, 1883, 1888].

Weber [967]. wedge [140]. Weierstrass [605].

weight [511, 1499, 1658].

Weighted [428, 1656, 103, 196, 817, 984, 1124, 1225, 1541, 1607, 1705, 1881, 1882]. weights [884, 1286, 1658, 1907].

Weiner [1497]. Weiner-Hopf [1497]. Well [1588, 492, 594, 971, 1608, 1751].

well-conditioned [971]. well-posed [594, 1751].

Well-posedness [1588].

well-reservoir [492]. Wendroff [1433, 1900]. Wendroff-type [1433].

Wentzell [188]. were [1060]. Westervelt
[1267]. which [1006, 2055]. white
[323, 1097, 1425]. whole [1007]. Wick
[1483]. wide [1688]. wider [1005]. widths
[586]. Wiener [758, 1010]. Willmore [218].
Wilson [535]. Wimbledon [98, 98].
Winther [470]. withdrawal [1178].
without
[549, 923, 1345, 1621, 1687, 1812, 2050].
work [750, 755]. worst [631, 1657].
worst-case [631]. Wrap [1105].
Wrap-around [1105].

Xin [1790].

years [986]. yielding [946].

Zakharov [1119, 1864]. zeros [66, 691, 1012,
1205, 1496, 1497, 1769, 1794].

References

CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic). URL http://imajna.oxfordjournals.org/content/35/1/133.

parabolic semilinear stochastic PDEs. *IMA Journal of Numerical Analysis*, 43

1991. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

approximation of a class of singular two-point boundary value problems.
ISSN 0272-4979 (print), 1464-3642 (electronic).

[6] Juan A. Acebrón, Mikhail M. Lavrentiev, Jr., and Renato Spigler. Spectral analysis and computation for the
CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic). URL http://www3.oup.co.uk/imajum/hdb/Volume_21/Issue_01/210239.sgm.abs.html;
REFERENCES

Aceto:2022:FAA

Acevedo:2011:BMF

Achdou:1993:MNS

Acker:1988:CRA

Acosta:2012:DSS

Acosta:2014:EPN

Acosta:2019:FEA

Actis:2016:NDF

REFERENCES

Adam:1991:PIR

Adam:2019:SNM

Adcock:2012:HOR

Adcock:2019:OSR

Adler:2016:FOS

Adler:2002:NMR

Agelas:2022:CNF

Ainsworth:2001:CEB

Ainsworth:2002:USF

Ainsworth:2011:CFE

Ainsworth:2017:CEB

Aitchison:1984:NMP

Akinola:2014:CJB

Akrivis:2018:SII

Akrivis:2016:LIS

Akrivis:2018:MNA

Akrivis:2021:LFE

Akrivis:2022:EEF

Akrivis:2011:LIM

Akrivis:1993:FDD

Al-Baali:1985:DPG

AlDaas:2019:EGS

Al-Maskari:2022:TFC

Al-Zanaidi:1996:MET

Alaiz:2015:CMN

Ali:2020:OCE

Ali:2022:EHS

Allaei:2017:CMT

REFERENCES

Anastasselou:1986:FCD

Anaya:2020:VEM

Anaya:2017:PVF

Anderson:2015:ARB

Anaya:2017:ESO

Andreani:2008:TRS

Andreani:2017:SPG

REFERENCES

REFERENCES

CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

Anonymous:2002:IV

Anonymous:2002:R

Anonymous:2004:E

Anonymous:2004:IV

Anonymous:2004:R

Anonymous:2005:IV

Anonymous:2005:R

Anonymous:2006:IV

Anonymous:2006:R

Anonymous:2021:JWB

Anselone:1987:DCA

Antil:2023:AFH

Antil:2020:PCE

Antil:2018:PEA

Antil:2018:SAW

Antil:2016:AEE

Antolin:2019:PEU

REFERENCES

REFERENCES

Arbogast:2022:SAT

Ardenghi:2009:SGM

Arendt:2022:GAL

Argyros:1998:NNM

Arioli:2018:FEM

Arioli:2013:DFS

Arioli:1992:SCC

Arising:2015:ASO

Andreas C. Aristotelous, Ohannes A.

[140] K. Atkinson and F. de Hoog. The numerical solution of Laplace’s equa-

Atkinson:1993:DCM

Atkinson:1985:NEP

Atkinson:1989:DGM

Atkinson:2000:PRE

Atkinson:1994:NSN

Austin:2017:NSS

Awanou:2015:SFE

Axelsson:1981:SEE

Axelsson:1997:MPP

Ayuso:2007:IAM

Azaiez:2006:MSE

Azaiez:2008:MSE

Azmi:2022:CMI

Baart:1982:UAC

Baart:1986:QTT

[163] Journal Zhong-Zhi Bai and Gui-Qing Li. Restrictively preconditioned con-

[170] C. T. H. Baker and M. S. Derakhshan. Convergence and stability of quadrature methods applied to Volterra equa-

Banas:2014:DUC

Banas:2014:TDD

Banas:2008:HMT

Banjai:2015:FDK

Banjai:2019:RKC

Banjai:2022:TDA

Banjai:2012:PMM

[185] Lehel Banjai and Daniel Peterseim. Parallel multistep methods for linear evolution problems. *IMA Jour-
REFERENCES

REFERENCES

REFERENCES

Barrett:2010:NAG

Barrett:2014:SPF

Barrett:2017:SVA

Barrett:2020:NAC

Barrett:2015:SSN

Barrett:2009:NAC

REFERENCES

REFERENCES

1988. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

Barucq:2021:SDW

[230] Hélène Barucq, M’Barek Fares, Carola Kruse, and Sébastien Tordeux. Spar-
sified discrete wave problem involving a radiation condition on a pro-
343, January 2021. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642
5627734.

Barzilai:1988:TPS

[231] Jonathan Barzilai and Jonathan M. Borwein. Two-point step size gradi-
CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

Bauermeister:2010:FEA

702–730, July 2010. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642
(electronic). URL http://imajna.oxfordjournals.org/cgi/content/
abstract/30/3/702; http://imajna.oxfordjournals.org/cgi/reprint/
30/3/702.

Bause:2005:OCR

[233] Markus Bause. On optimal convergence rates for higher-order Navier–Stokes approximations. I. Error esti-
mates for the spatial discretization. *IMA Journal of Numerical Analysis*, 25
(4):812–841, October 2005. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic). URL http:

Beatson:1997:FER

[234] R. K. Beatson and W. A. Light. Fast evaluation of radial basis func-
343–372, July 1997. CODEN IJNADH. ISSN 0272-4979 (print), 1464-
Issue_03/170343.sgm.abs.html.

Beatson:1992:UIR

[235] R. K. Beatson and M. J. D. Powell. Univariate interpolation on a regular fi-
CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

Beatson:2007:FEP

427–450, July 2007. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642
(electronic). URL http://imajna.oxfordjournals.org/cgi/content/
27/3/427.

Beatson:2014:PCS

[237] R. K. Beatson, Wolfgang zu Castell, and Yuan Xu. A Pólya crite-

REFERENCES

REFERENCES

Benouahmane:2019:NMC

Benzi:2008:BPR

Bermejo:2010:SLG

Bermudez:2012:NST

Bermúdez:2010:NAF

REFERENCES

Bermudez de Castro López: 1982: MME

Bernardi: 1990: SGS

Bernardi: 2014: PAS

Bernardi: 2001: EIM

Bernardi: 1992: MSE

Bernardi: 1987: MMT

Bernardi: 2013: PAF

Bernardi:2010:NFE

Bernardi:2016:SDD

Bernardi:2015:PEA

Bernkopf:2023:SDH

Berrone:2008:TSP

Berselli:2015:OEE

Berselli:2022:STD

[287] Alexei Bespalov and Norbert Heuer. Natural p-BEM for the electric field integral equation on screens. *IMA Jour-
REFERENCES

Bessaih:2019:SCT

Besse:2021:EPM

Besse:2017:DGF

Besse:2015:DFI

Bessemoulin-Chatard:2014:FVS

Betcke:2014:SDN

Betcke:2007:GFD
[294] Timo Betcke. A GSVD formulation of a domain decomposition method for pla-
References

REFERENCES

Blanes:2018:CAH

Blank:1995:SCW

Blank:2013:NAC

Blaschke:1997:CRI

Blechta:2020:LN

Blowey:1996:NAM

Boffi:2017:RB

REFERENCES

Bollapragada:2019:EIS

Bonelle:2015:ACD

Bonettini:2011:IBC

Bonito:2017:NAL

Bonito:2017:CPN

Bonito:2023:NAL

Bonito:2017:NAF

REFERENCES

oxfordjournals.org/cgi/content/abstract/30/1/94; http://imajna.oxfordjournals.org/cgi/reprint/30/1/94.

REFERENCES

REFERENCES

Bozzini:2015:IVS

Bradji:2007:ODC

Bradji:2008:DCH

Braess:1986:NSB

Braess:1983:NSO

Braess:2005:AES

Braess:2020:EBP

Brandts:2006:NLS

References

REFERENCES

REFERENCES

Brunner:1989:NST

Brunner:1986:PSC

Brunner:2009:DGA

Brunner:2010:SPC

Brunner:2011:ACS

Brunner:2012:GCL

Brunner:2012:GCL

Brutman:1986:GAP

Brutman:1990:IPA

Bryson:2005:SDC

Buffa:2017:RSL

Buffa:2009:CEB

Buchholz:2018:CGB

Buffa:2009:CEB

[430] Erik Burman and Peter Hansbo. Interior-penalty-stabilized Lagrange

REFERENCES

Caillaud:2023:EEF

Calvo:1999:CMT

Calvo:1996:GEE

Calvo:2002:HOS

Camacho:2015:PPE

Camano:2018:EAA

[460] Andrea Cangiani, Emmanuil H. Georgoulis, and Stephen Metcalfe. Adap-

REFERENCES

[474] Carsten Carstensen and Stefan A. Funken. Coupling of mixed finite el-

REFERENCES

REFERENCES

REFERENCES

[501] A. Chalabi. Stable upwind schemes for hyperbolic conservation laws with

REFERENCES

[516] Ki Wai Chau and Cornelis W. Oosterlee. On the wavelet-based SWIFT

REFERENCES

Choquet:2011:AFV

Chouly:2018:RBP

Christiansen:2011:DMK

Christiansen:2013:VEA

Christianson:1992:AHR

Christie:1981:PAN

Christie:1991:ERS

Chu:1990:SAI

REFERENCES

REFERENCES

[596] Andrew R. Conn, Katya Scheinberg, and Luís N. Vicente. Geometry of

[Coope:1993:CIN]

[Coope:1984:GAS]

[Coope:1986:ESA]

[Coope:1987:SRK]

[Coppe:2022:ASA]

REFERENCES

[643] Stephan Dahlke, Thorsten Raasch, Manuel Werner, Massimo Fornasier, and Rob Stevenson. Adaptive frame methods for elliptic operator equations: the steepest descent ap-
REFERENCES

Dahmardah:1983:FSS

Dai:2015:CQO

Dai:2006:CBB

Dai:2002:RLC

Dai:2003:AMG

Dallmann:2016:LPS

[650] Helene Dallmann, Daniel Arndt, and Gert Lube. Local projection stabiliza-
REFERENCES

130

Oleg Davydov and Larry L. Schumaker. Interpolation and scattered

REFERENCES

REFERENCES

Dell’Accio:2016:AOT

Dellnitz:1992:CBP

Dellnitz:2002:FZM

Demetriou:1991:LSS

Demetriou:1991:MSS

Demetriou:1991:MSS

Derevianko:2023:EEE

Descombes:2013:LTS

[696] Stéphane Descombes and Mechthild Thalhammer. The Lie–Trotter splitting

Deugoue:2021:FDF

Devaud:2020:PGS

dHalluin:2005:RNM

Dharmaraja:2010:OST

DiFratta:2020:LSO

DiPietro:2017:AOM

[710] Teresa Diogo, Sean McKee, and Tao Tang. A Hermite-type collocation

REFERENCES

REFERENCES

[734] Vassilios A. Dougalis and Ángel Durán. A high-order fully discrete scheme

REFERENCES

[748] Huoyuan Duan, Roger C. E. Tan, Suh-Yuh Yang, and Cheng-Shu You. An

Dziuk:2012:RKT

Eastwood:1987:SBN

Ecevit:2019:GBH

Edelmann:2022:FEA

Effland:2022:CCA

Egger:2010:HMD

Egger:2013:AHD

Egloffe:2015:RWR

Eibner:2006:LEA

Eigel:2010:MFP

Eigel:2018:PEC

Eikeland:2021:AEC

Eisenmann:2022:VAS

ElAlaoui:2007:PPA

El-Gebeily:1998:FDM

ElTarazi:1985:EIM

ElTarazi:1985:IMS

ElTarazi:1986:MPA

Ellacott:1981:CSA

Ellacott:1983:CFE

Ellacott:1983:PCF

Elliott:1985:COS

Elliott:1987:EAE

REFERENCES

REFERENCES

REFERENCES

Ern:2019:EFP

Ern:2009:DGM

Ern:2020:QOV

Ervedoza:2016:NME

Ervin:2006:ABE

Escande:2016:FCL

Escande:2022:FWD

[822] Paul Escande and Pierre Weiss. Fast wavelet decomposition of linear oper-

REFERENCES

Falletta:2012:STB

Falletta:2014:STB

Fang:2020:FEM

Fang:2022:QRE

Faou:2009:GHW

Faou:2018:CNG

Faou:2015:AES
Farago:2009:CDP

Farago:2012:DMP

Farhloul:2001:RMF

Farhloul:1998:MFE

Farhloul:2008:RMF

Farmer:1985:MPM

Farouki:2015:SPI

[850] Rida T. Farouki, Carla Manni, Maria Lucia Sampoli, and Alessandra...

[857] Dario Fasino and Gabriele Inglese. Discrete methods in the study of an inverse

REFERENCES

Fercoq:2019:ARA

Fernandez:2020:SSU

Fernandez:2016:CEA

Ferreira:2012:LCN

Ferreira:2003:ANS

Ferreira:2009:LCN

Ferriss:1985:NSD

REFERENCES

REFERENCES

REFERENCES

[899] Donald A. French and Søren Jensen. Long-time behaviour of arbitrary order continuous time Galerkin schemes

Frerichs:2022:DPR

Frittelli:2019:PIP

Fritz:2013:IFE

Froese:2017:NMH

Fu:2019:PFS

Fu:2023:UBD

Fu:2023:TPL

Zhenwu Fu, Wei Wang, Bo Han, and Yong Chen. Two-point Landweber-type method with convex penalty terms

[928] Carlos García, Gabriel N. Gatica, and Salim Meddahi. Finite element semidiscretization of a pressure-stress for-
mulation for the time-domain fluid-
structure interaction problem. IMA Jour-

REFERENCES

[956] Emmanuil H. Georgoulis, Omar Lakkis, and Charalambos Makridakis. A posteriori $L^\infty(L^2)$-error bounds for finite element approximations to the wave equation. *IMA Journal of...
REFERENCES

Georgoulis:2006:NDV

Georgoulis:2005:OEE

Gerisch:2010:AEE

Gerrard:1984:APC

Gervais:2002:NSC

Ghelardoni:2003:NSR

REFERENCES

REFERENCES

CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

Golub:2009:QAY

Gong:2021:DDP

Gong:2020:IEE

Gong:2019:CAF

Gong:2020:CCA

Gonon:2022:UEE

Gonzalez:1999:QPM

Goodman:1998:LPA

Goodsell:1997:MTM

Gopalakrishnan:2012:SEE

Gopalakrishnan:2020:MCM

Gordon:2012:SSC

Gorynina:2019:TSA

Goudon:2022:TCD

178

Gould:1991:ALS

Gould:2012:SDS

Gould:1986:ADS

Gourlay:1981:LCG

Gout:1985:RWT

Govaerts:1993:MBE

Gover:1985:ITM

Graham:2005:FED

Graham:1993:SIA
[1008] Ivan G. Graham and Kendall E. Atkinson. On the Sloan iteration applied to integral equations of the first

[Graham:1989:NPI]

[Graham:2019:DEE]

[Granter:1983:DZL]

[Granter:2015:NSN]

[Graser:2019:TDA]

[Graser:2015:NSN]

[Graser:2021:EUA]

REFERENCES

Graser:2019:TNN

Gratton:2023:ARM

Gratton:2008:RTR

Gratton:2020:CGR

Graves-Morris:1984:VVR

Greenberg:1995:OTN

Gregory:1982:PRQ

Griebel:2014:ABV

[1024] Michael Griebel and Helmut Harbrecht. Approximation of bi-variate

REFERENCES

[1060] Martin H. Gutknecht and Beresford N. Parlett. From qd to LR, or, how were the qd and LR algorithms discovered? *IMA Journal of Numerical Analysis*, 31(3):741–754, July 2011. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642

REFERENCES

REFERENCES

Heine:2006:CFS

Heinrich:2003:NMF

Heinrich:2006:FFE

Hell:2015:MDS

Helou:2023:SOC

Hemker:2000:USH

Henke:2014:BCS

REFERENCES

REFERENCES

[1134] Adrian T. Hill and Endre Süli. Approximation of the global attrac-

REFERENCES

Hoffmann:1996:PSV

Holden:2015:CFD

Hong:2021:ORC

Hopkins:1989:NEC
REFERENCES

REFERENCES

199

Jingwei Hu and Xiangxiong Zhang. Positivity-preserving and energy-
REFERENCES

Huang:2020:NAN

Huang:2017:SGM

Huang:2000:DRK

Huang:2009:SAG

Huang:1999:CAI

Huang:2002:MEM

Huang:1993:NPM

REFERENCES

Ilic:2010:RLA

Iliev:2002:SOA

Imbert-Gérard:2014:GPW

Ingham:1981:BIE

Iserles:1986:GLM

REFERENCES

REFERENCES

Jentzen:2020:SCR

Jepson:1984:IOD

Jerez-Hanckes:2022:SGM

Jerez-Hanckes:2017:EWS

Jiang:2022:AEF

Jiang:2016:CIE

Jimack:1992:SLT

Jimack:1996:OEA

[1240] P. K. Jimack. Optimal eigenvalue and asymptotic large-time approx-

REFERENCES

REFERENCES

REFERENCES

Kawohl:1998:CFE

Ketcheson:2015:ASR

Kessler:2002:PEE

Kazashi:2019:QMC

Kelly:2018:ATS

REFERENCES

Khalifa:1982:CQC

Khan:2021:RPE

Khor:1990:FRM

Khristenko:2023:STF

King:1986:NDF

Kirsch:1990:CAC

Kirsch:1994:ACF

Kiwiel:1985:EPF

Kiwiel:1986:MSC

<table>
<thead>
<tr>
<th>References</th>
<th>Details</th>
</tr>
</thead>
</table>
| Kunert:2001:PEE | Gerd Kunert. *A posteriori* L_2 error estimation on anisotropic tetra-

Kunert:2005:PEE

Kunkel:1989:ECS

Kunkel:1996:TBA

Kuo:1981:CMN

Kuznetsov:2022:RCG

Kwon:2022:CCE

Kyoya:2020:CCM

Kyprianou:2018:UWS

Kyza:2011:ECT

Lai:2002:FSD

Lakkis:2022:LSG

Lakkis:2012:GRA

Lamba:2007:AEM

Lamichhane:2009:ISS

Langdon:2001:BIM

Lanteri:2013:CDG

Larson:2020:SHO

Larsson:2011:FEA

Larsson:2010:CGM

Larsson:1991:FEM

Latouche:1994:NIN

Lehrenfeld:2018:AHO

Leimkuhler:2016:CAE

Leitao:2021:RRC

Lelièvre:2023:MPM

Lemaire:2021:BHH

Leok:2012:PCV

Leok:2011:DHV

REFERENCES

[1407] Qun Lin, Lutz Tobiska, and Aihui Zhou. Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson

[1436] Lian Hua Lu. The stability of the block \(\theta \)-methods. *IMA Journal of Nu-
REFERENCES

Ludwig:2014:FES

Lui:2009:LNO

Lund:1989:SSG

Lund:1984:SCM

Lyche:1988:DRS

Lyness:1989:ILR

Ma:2018:EEC

Ma:2022:AGF
REFERENCES

[Ma:1987:FPM]

[Ma:2006:PEE]

[Ma:2017:UMN]

[Ma:2018:WEA]

[Ma:2007:ASC]

[Mackenzie:2012:USS]

[1466] Sylvain Maire and Denis Talay. On a Monte Carlo method for neu-

REFERENCES

242

REFERENCES

Marsden:1984:CSI

Martins:1995:EBM

Maset:2013:SPE

Mason:1981:NMI

Mason:1983:NBA

Mason:1984:NBA

Mastroianni:1994:NIB

Mastroianni:1997:NIB

Mastroianni:2009:SNM

[1506] Gunar Matthies and Lutz Tobiska. Local projection type stabilization ap-

Mazya:1996:AAU

McKee:1983:DMB

McKee:2000:ETM

McLachlan:2015:CLP

McLean:1989:AEE

McLean:1994:FDS

McLean:2004:TDE

McLean:2003:SDP

McLean:2010:MNE

McLeod:1982:GDD

Meddahi:1999:MDM

Meddahi:2015:FEA

Meek:1982:TST

Meerbergen:2016:IRR

Meerbergen:2017:CPA

academic.oup.com/imajna/article/37/4/1831/2894467. See erratum [1522].

REFERENCES

REFERENCES

[1556] Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization

Mishra:2023:EGE

Mitchell:2016:HEC

Mittal:1991:HOF

Mommer:2006:SPF

Monjezi:2023:PBA

Monk:2022:HMS

Moore:1981:COA

Moore:1986:OAS

Moore:1995:CPP

Moore:1999:ACS

Moosmuller:2019:ISV

Moosmuller:2021:SNG

Mora:2005:WES

Mora:2022:VEM

Mora:2020:PPE

Morales:2012:SQP

Moret:1990:PNM

Morton:1993:DCD

Mu:2015:NWG

Muhr:2023:DGC

REFERENCES

oxfordjournals.org/cgi/reprint/30/2/555.

[1595] Andreas Neuenkirch and Michaela Szölgyenyi. The Euler–Maruyama

[1602] Serge Nicaise, Katharina Witowski, and Barbara I. Wohlmuth. An a posteriori error estimator for the...

Nie:1985:LMF

Nielsen:2009:PIL

Nigam:2012:HOC

Nochetto:2019:TSM

Nochetto:2009:SDW

Norton:2012:FEA

Nurnberger:1998:EAI

Ober-Blobaum:2017:GVI

Oberman:2018:NMM

Of:2006:FMM

Oh:2014:NAA

Oh:2021:HLA

Ohlberger:2002:AFV

Oki:2023:ISM

Oliver:1982:AEP

[1617] J. Oliver. The accurate evaluation of polynomial approximations to library

REFERENCES

ONeill:2021:LBN

Ortner:2011:NFE

Ortner:2014:PEC

Osada:1992:MOS

Osborne:1992:EMC

Osborne:2010:ABL

Osborne:2000:NAV

Osborne:1999:NAS

REFERENCES

Palagallo:1987:NBA

Palencia:1984:ETI

Pan:1994:MCC

Pani:1994:GMF

Pani:1999:QMP

Pan:2002:GME

Pani:2005:SFE

Pani:2005:SFE

[1657] Ching pei Lee and Stephen J. Wright. Random permutations fix a worst case for cyclic coordinate descent. *IMA
REFERENCES

266

Pejcev:2012:EBG

Pena:1996:PSL

Peralta:2020:AFE

Perrin:2021:CFF

Phillips:2010:SRB

Phillips:1985:EMC

Phillips:1988:LCG

REFERENCES

[1673] Rodrigo B. Platte. How fast do radial basis function interpolants of an-

REFERENCES

REFERENCES

[1719] Teresa Regińska. Superconvergence of external approximation of eigenvalues of ordinary differential opera-

Sanz-Serna:1991:NCR

Sanz-Serna:1992:NUT

Sanz-Serna:1986:CNS

Sanz-Serna:2019:SAA

Saranen:1992:QML

Sardella:2000:CFE

Saunders:1984:VIS

Sauter:2010:REA
oxfordjournals.org/cgi/reprint/30/3/832.

Sauter:2014:RBI

Sayer:1983:SAI

Schagen:1984:SEU

Schatzle:2000:PZC

Schechter:1995:RCN

Schittkowski:1983:NSC

Schlichting:2022:SGS

Schmitt:2001:EAR

Schmitt:2018:PHV

[1782] Dominik Schötzau, Carlo Marcati, and Christoph Schwab. Exponential convergence of mixed hp-DGFEM for

Shen:2006:TAS

Sheng:1989:SLP

Sheng:1994:GEE

Shih:2000:IMS

Shingel:2009:ISO

Sidi:2012:UFE

Sidi:1982:RAT

Siebert:2011:CPA

REFERENCES

REFERENCES

REFERENCES

[1845] R. P. Srivastav. Numerical solution of singular integral equations us-
REFERENCES

Stevenson:2021:SGD

Stevenson:2014:FOS

Stewart:1997:PCF

Stewart:1997:TMG

Stoll:2014:OSS

Strauss:2011:QPM

Streit:1989:EET

Strossner:2023:FGS

[1867] Guang Fu Sun and Martin Stynes. Finite-element methods for singularly perturbed high-order elliptic two-point boundary value problems. II.

Tadmor:2005:AFP

Taguchi:2022:EEA

Tan:1987:CDE

Tan:1989:CDE

Tan:2020:STP

Tanaka:2016:FAN

Tanaka:2017:PTA

Tanaka:2019:DAF

[1882] Ken’ichiro Tanaka and Masaaki Sugihara. Design of accurate formu-

[Tan:1993:NCM]

[Tang:2022:SAG]

[Tao:2016:VLI]

[Tarvainen:1999:TLS]

[Taylor:2010:LCL]

[teRiele:1982:CMW]

[Thatcher:1982:CSD]

REFERENCES

REFERENCES

REFERENCES

van der Houwen:1984:LMM

vanderHouwen:1987:PCM

vanderHouwen:1990:ISP

vanderHouwen:1986:SPC

VanDeun:2006:QFB

van Diejen:2021:CRH

van Dorsselaer:1994:ECS

van Dorsselaer:1994:ECS

REFERENCES

oxfordjournals.org/cgi/reprint/26/3/525.

Vulanovic:2001:PMS

Walker:2022:KPE

Walloth:2020:RTP

Walz:1989:EBS

Wang:2019:FAE

Wang:2020:VEM

Wang:2021:CNV

Wang:2021:CNV

REFERENCES

References

Wang:2004:NFF

Wang:2017:SCR

Wang:2007:BBP

Wang:2000:CNM

Wang:1996:CPA

Wang:2021:PAH

[1983] Holger Wendland. Local polynomial reproduction and moving least

[1990] Stephen J. Wright. Convergence of projected Hessian approximations in quasi-

Wu:2015:CAO

Wu:2012:CAO

Wu:2012:CAC

Wu:1994:SSH

Wu:2002:OCS

Wu:2022:OCS

Wu:2012:CAO

Wu:1993:LEE

Wu:1994:SSH

Wyns:2017:CAM

Xi:2020:MLM

Xia:2015:HDF

Xiang:2011:CCF

Xiang:2013:ECC

Xie:2010:SEP

Xie:2012:AOE

Xie:2014:TMM

REFERENCES

Yan:1990:CCV

Yao:2023:INC

Yi:2020:OEE

Yoshikawa:2017:EES

An-error-estimate-for-structure-preserving-finite.

Ypma:1983:ERE

Yuan:1984:EOL

Yuan:1984:LOC

Yuan:1991:MBA

Yun:2019:UCM

REFERENCES

Zakerzadeh:2016:HOA

Zanna:2015:EVP

Zhang:2012:CAM

Zhang:2006:DMP

Zhang:1996:CVM

Zhang:2020:MCF

REFERENCES

REFERENCES

Zheng:2021:OOE

Zhou:2005:CNS

Zhu:2011:RPE

Zietak:1983:PMS

Zietak:1987:PSL

Zietak:1989:PAM

Zubik-Kowal:1997:MLP

Zvan:2001:FVA

REFERENCES

3642 (electronic). URL http://www3.oup.co.uk/imanum/hdb/Volume_21/Issue_03/210703.sgm.abs.html;
http://www3.oup.co.uk/imanum/hdb/Volume_21/Issue_03/pdf/210703.pdf