A Complete Bibliography of Publications in *IMA Journal of Numerical Analysis*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

21 January 2022
Version 1.85

Title word cross-reference

\((k,l)\) [400, 401], \(-1\) [1262]. 1
[444, 463, 513, 1218, 1349]. 1/2 [571]. \(1/x\) [334]. 10 [997]. 2 [532, 846, 1209, 1371]. 3
[68, 226, 320, 747, 1108, 1265, 1366, 1512, 1660]. 3/4 [1461]. 4 [49]. [1, \(\infty\)] [334]. \(1/2\)
[648]. 2 [1055]. \(A\) [1118, 1804]. \(ap\) [1497]. \(AX + YB = C\) [1911]. \(B\) [1000]. \(R^3\)
[1175]. \(H(\text{div})\) [1469]. \(C^0\) [262, 351, 491]. \(C^1\)
[1574, 1710]. \(C^2\) [639, 1575, 1366]. \(C_1\) [1487]. \(F\)
[624]. \(Z\) [563]. \(\chi\) [7]. \(D\) [157, 201, 1683].
\(DG(p)\) [1032]. \(dG(s)\) [877]. \(\epsilon\) [99, 1031, 1744].
\(G^1\) [796]. \(G^2\) [796]. \(\gamma\) [1284]. \(H\)
[1070, 1560, 1580, 1825, 618, 627, 1039, 1719].
\(H(\text{div})\) [993, 1266, 1468]. \(H^{-1}\) [763]. \(H^1\)
[14, 606, 875, 1243, 1486, 1525, 1772]. \(H^2\)
[306, 504, 606]. \(H_0^1(L)\) [175]. \(H_1\) [743]. \(H_\infty\)
[1440]. \(H_p^1(I^d)\) [888]. \(hp\)
[28, 263, 429, 724, 994, 1072, 1412, 1414, 1770, 1909, 648, 894, 893, 1466]. \(K\)
[805, 625]. \(l\) [592]. \(L(L^2)\) [669]. \(L^2\)
[181, 354, 435, 689, 965, 1305]. \(L^2(H^1)\) [761].
\(L^2(H_1^1)\) [1144]. \(L^\infty(L^2)\) [892, 1740]. \(L^\infty(L^\infty)\)
[1032, 1033]. \(L^q\) [1743]. \(L_1\) [1154, 1832, 1547, 1566, 1834, 1839, 1872, 1911]. \(L_2\)
[416, 875, 1242, 578, 1838]. \(l_\infty\) [1566]. \(L_p\)
[1268, 1381, 1382, 1833]. \(\lambda\) [898]. \(LDL^T\)
[1599, 919, 624]. \(LR\) [990]. \(LU\)
[1140, 1180, 1723]. \(M\) [537, 536, 983]. \(A - \varphi\)
[573]. \(T - \Omega\) [573]. \(\mathcal{H}\) [802]. \(O(\varepsilon^{-3/2})\) [586].
\(P\) [483, 484, 550, 1135, 69, 224, 259, 264, 346, 655, 1009, 1033, 1039, 1292, 1362, 1617, 1648, 1719]. \(p(x)\) [636]. \(P_1\) [352, 729]. \(Q\)
[1889, 1539]. \(qd\) [990]. \(QR\) [466, 1083]. \(QZ\)
approximation [832, 845, 858, 879, 895, 896, 916, 1035, 1050, 1056, 1071, 1094, 1099, 1100, 1107, 1127, 1128, 1147, 1160, 1172, 1191, 1200, 1235, 1238, 1258, 1268, 1299, 1318, 1319, 1341, 1351, 1370, 1425, 1444, 1459, 1476, 1486, 1506, 1519, 1546, 1549, 1592, 1594, 1608, 1627, 1639, 1677, 1729, 1733, 1743, 1748, 1771, 1802, 1832, 1833, 1834, 1837, 1843, 1846, 1848, 1856, 1874, 1879].

approximations [11, 12, 37, 48, 135, 143, 142, 202, 205, 203, 217, 234, 349, 371, 372, 432, 547, 548, 571, 595, 606, 620, 656, 735, 745, 742, 830, 853, 855, 870, 891, 892, 889, 914, 972, 1118, 1152, 1184, 1187, 1186, 1189, 1240, 1250, 1278, 1279, 1292, 1293, 1347, 1381, 1382, 1393, 1443, 1493, 1494, 1515, 1526, 1600, 1633, 1644, 1651, 1665, 1683, 1701, 1718, 1763, 1770, 1769, 1772, 1829, 1850, 1907, 1912, 621].

Arbitrarily [1649]. Arbitrary [652, 144, 630, 794, 842, 918, 1037, 1326, 1338, 594].

Arbitrary-order [652]. arcs [1878].

arguments [1479]. arising [38, 34, 359, 411, 744, 803, 926, 966, 996, 1069, 1081, 1206, 1302, 1526, 1572].

arithmetic [1075, 1498, 1499, 1677].

assimilation [1104]. associated [64, 65, 72, 983]. assumptions [866, 1907].

asymmetric [1374]. asymmetry [1689].

Asymptotic [461, 704, 896, 1398, 1509, 1663, 1816, 1848, 21, 61, 89, 458, 751, 897, 901, 959, 1101, 1152, 1234, 1321, 1363, 1693, 1855].

asymptotic-preserving [901].

axisymmetric [192, 246, 871, 1491, 1492].
central-upwind [378]. centre [1167].
Centred [1767, 454, 771, 1018, 1034].
certain [574, 660, 751, 915, 1069, 1206, 1536, 1857].
CG [1504]. chain [1506, 1826]. chains [1261].
 Change [699, 1130, 645, 706, 1597, 1878, 1899].
changes [721]. changing [838]. channel [1517].
chains [1261]. Change [699, 1130, 645, 706, 1597, 1878, 1899].
chemotaxis [1622]. choice [581, 1158, 1591].
Cholesky [472, 1723, 1899]. choosing [292, 1272].
Chordal [825]. Christoffel [630]. CIP [1855].
circle [390, 569, 927]. circular [820, 1380].
claims [1914, 649]. classical [123, 134].
classification [1063]. classical [123, 134].
classification [1063]. classical [123, 134].
classification [1063]. classical [123, 134].
Clement [102]. Clement-type [102]. Clenshaw [671, 1867, 13, 1866].
close [575]. close-to-touching [575]. Closed [1058, 201, 916, 1636].
Closed-form [1058]. closest [766]. Closing [379]. closure [89].
clustering [1226]. coarse [729]. codes [468, 1006, 1670].
coefficient [546, 974, 1159, 1189, 1461, 1471, 1549, 1630, 1840].
coefficients [93, 304, 487, 489, 513, 725, 829, 911, 1090, 1109, 1160, 1169, 1168, 1195, 1433, 1448, 1476, 1541, 1590, 1763, 1815, 1891, 1906, 618].
coercivity [168]. collection [1672].
computerized [1557]. computers [1498]. Computing [158, 342, 341, 705, 1046, 1150, 1744, 1745, 1895, 1908, 73, 281, 481, 539, 575, 787, 854, 1022, 1388, 1409, 1508, 1682, 1871].
conditional [705]. conditioned [140, 907, 1738]. conditioning.
discontinuities
Discontinuous
Discontinuous
Discretization
Discretizing
discretized
Discretizing
Discrete
discs
disk
Dispersion
dispersion-managed
dispersions
dispersivity
dispersivity
Dissipative
Dissipativity
dissipation
dissipated
dissipative
Displacement
Dissipation
Displacement
Divergence
Divergence
Divergence
Divergence-preserving
diverse
Divide
Divided
Dividing
domains
dominated
Donaldson
Doppler
double
double-well
doubling
doubly
Douglas
downdating
DPG
drift
drift-diffusion
drift-
ux
Driven
Drift
Dual
Dual-primal
Duality
dumbbell
Dynamic
eigenvalue
eigenvalues
eigenvalue
eigenvalues
eigenvectors [1745]. Elastic [1569, 176, 208, 210, 211, 300, 435, 473, 590, 599, 1358].
elasticae [1650]. elasticity [293, 437, 536, 928, 1254, 1450, 1826, 1845, 1865].
elastoacoustic [110]. elastodynamics [90, 96, 902]. elastoplastic [247]. electric [264, 741]. electrical [331, 1157].

element [1260, 1258, 1269, 1270, 1273, 1279, 1283, 1289, 1297, 1305, 1306, 1328, 1330, 1337, 1336, 1356, 1369, 1370, 1376, 1399, 1404, 1412, 1414, 1410, 1419, 1429, 1431, 1450, 1458, 1468, 1469, 1477, 1481, 1486, 1496, 1505, 1516, 1522, 1525, 1526, 1537, 1545, 1560, 1561, 1581, 1592, 1593, 1601, 1608, 1615, 1619, 1621, 1622, 1625, 1628, 1637, 1654, 1664, 1665, 1691, 1718, 1733, 1735, 1734, 1746, 1760, 1762, 1769, 1800, 1822, 1813, 1814, 1831, 1864, 1865, 1874, 1882, 1901, 1898, 1904, 1907, 594].

energy-based [1762]. Energy-corrected [1163]. energy-dependent [591].

energy-stable [1904]. enhanced [1777]. enhancement [239, 984, 1415]. Enhancing [1856]. Enlarged [41]. enriched [729].

Enright [1041]. ensemble [980]. ensemble-proper [980]. ensembles [981].

ensuring [764]. enthalpy [706, 740, 1283, 1727, 1807]. enthalpy-type [1727]. Entries [74, 1119, 1606]. entropy [902, 1584, 1892]. Envelope [904, 1].
enveloping [1368]. environment [725].
epidemic [1321]. equal [870, 877].
equal-order [870]. equality [1387, 1451].
equally [1529]. equation
[1, 3, 5, 20, 39, 42, 95, 99, 112, 120, 127,
129, 132, 131, 134, 162, 164, 177, 179, 224,
255, 264, 315, 332, 335, 344, 343, 372, 384, 411,
419, 432, 444, 450, 453, 458, 473, 474, 477, 487,
496, 488, 514, 519, 530, 539, 545, 564, 577, 591,
592, 598, 635, 651, 654, 660, 683, 707, 709, 711,
712, 725, 748, 754, 756, 770, 774, 779, 783, 782,
800, 811, 826, 846, 861, 879, 885, 886, 892, 921,
931, 943, 958, 971, 974, 982, 983, 995, 1008,
1015, 1016, 1048, 1061, 1062, 1088, 1086].
equation
[1085, 1112, 1134, 1159, 1154, 1174, 1177,
1229, 1246, 1250, 1260, 1259, 1258, 1265,
1277, 1290, 1301, 1314, 1325, 1340, 1353,
1370, 1383, 1388, 1400, 1401, 1413, 1441,
1454, 1458, 1465, 1463, 1464, 1467, 1480,
1484, 1513, 1542, 1545, 1581, 1612, 1634,
1638, 1654, 1652, 1653, 1687, 1688, 1694,
1772, 1821, 1816, 1829, 1840, 1844, 1855,
1874, 1872, 1878, 1898, 1905, 1910, 1911].
Equations
[23, 1144, 7, 9, 22, 34, 35, 33, 57, 60, 67, 93, 96,
97, 98, 100, 108, 109, 130, 128, 135, 137, 138,
142, 147, 149, 148, 156, 158, 160, 168, 172,
174, 194, 195, 196, 197, 198, 192, 200, 231,
232, 235, 239, 242, 244, 248, 251, 254, 256,
255, 258, 261, 265, 267, 266, 283, 282, 284,
294, 295, 298, 303, 304, 320, 342, 367, 370,
369, 373, 371, 375, 378, 379, 380, 402,
409, 415, 423, 430, 440, 452, 463, 462, 471,
470, 469, 475, 478, 503, 504, 493, 511, 515].
equivalent [870]. equidistributing [1876]. equidistribution [459].
equilateral [1100]. Equilibrated
[761, 573, 1480]. equilibration [335].
equilibration-based [335]. equilibria
[1660]. Equilibrium
[1646, 43, 199, 711, 1271, 1663]. equispaced
[133, 696, 829]. Equivalence
[1520, 1531, 1868, 1869].
equivalence-preserving [1531]. Errata
[547, 697, 1360]. Erratum [64, 324, 386, 733,
849, 1033, 1178, 1299, 1408, 1717, 1867, 318].
Error
[20, 37, 48, 71, 72, 104, 146, 174, 305, 358, 417,
428, 487, 530, 564, 740, 770, 858, 943, 1018,
1153, 1212, 1250, 1285, 1308, 1343, 1434,
1487, 1498, 1499, 1535, 1577, 1581, 1589, 1620,
1651, 1654, 1676, 1729, 1732, 1810, 619, 25,
27, 29, 26, 30, 31, 92, 94, 102, 103, 109, 112,
113, 135, 177, 185, 187, 192, 207, 226, 250,
256, 257, 258, 289, 335, 344, 351, 349, 394,
395, 398, 413, 416, 440, 444, 451, 506, 502,
Galerkin
Galerkin-Chebyshev
Galerkin-finite
Galerkin-like
games
gamma
GAOR
gap
gas
gauge
gauss
Gauss
Gauss-type
Gaussian
general
general-order
generalization
generated
generating
generation
generator
genesis
Gennes
Geodesic
geodesics
Geometric
Geometrically
dependences
geometries
Geometry
Gevrey
Gibbs
Gilbert
given
Givens
given
Global
globally
GMRES
Golub
Gordon
Gottlieb
governed
governing
Grad
Grad-div
graded
gradient-like
gradient-multigrid
gradients
grading
Gram
graph
graphs
Green
Gregory
Grid
grids
Gross
ground
groundwater
Group
groups
growing
growth
GSVD
Guaranteed
guarantees
guard
Gupta
Gurtin
gyrokinetic
gyrokinetic-waterbag
H
Hadamard
Hahn
half
half-explicit
half-line
Hall
Hamilton
Hamiltonian
Hammerstein
hand
Handling
hanging
Hankel
Hardy
harmonic
Hartree
having
HDG
heat
Heath
heating
Hele
Handling
hanging
Hankel
Hardy
harmonic
Hartree
having
HDG
heat
Heath
heating
Hele
746.
Index

industry [966].

induction [246, 1214, 1300].

inequality [502, 590, 744, 746, 784, 914, 1059].

Inertial [1795].

Inexact [279, 299, 40, 116, 230, 229, 297, 494, 586, 841, 862, 968, 1851].

inextensible [208, 210, 212].

infinite [355, 1254, 180, 1392, 619].

infinite-dimensional [1690].

ininitely [1541].

information [229].

Ingersoll [571].

inhomogeneous [788, 1153, 1722].

instability [1689, 1728]. Instance [1230].

integrals [310, 476, 574, 637, 659, 671, 705, 751, 828, 1064, 1069, 1124, 1282, 1396, 1556, 1682, 1737, 1857].

integrating [52, 53].

integrator [164, 651, 701, 1513, 1827, 1873].

integrator-based [187].

integrators [283, 282, 313, 379, 407, 414, 544, 760, 1000, 1038, 1060, 1066, 1225, 1267, 1275, 1274, 1328, 1397, 1488, 1531, 1647, 1672, 1751, 1778].

integro [142, 836, 861, 1002, 1080, 1259, 1298, 1345, 1359, 1360, 1465, 1525, 1527, 1593, 1621, 1750, 1847, 1894].

integro-differential [142, 836, 861, 1002, 1080, 1259, 1298, 1345, 1359, 1360, 1465, 1525, 1593, 1621, 1750, 1847].

integrodifferential [160, 370].

integroparabolic [5].

intensities [245].

interacting [1569].

interaction [106, 813, 816, 867, 1076, 1077, 1294, 1537, 1860].

interactions [126].

interface [396, 395, 393, 404, 673, 874, 986, 1089, 1108, 1270, 1338, 1691].

interfaces [196, 350, 749, 772, 1619].

Interior [396, 965, 351, 394, 490, 811, 894, 893, 919, 971, 1093, 1150].

interior-penalty-stabilized [396].

interlocking [542].

intermediate [1901].

interpolant [387, 640].

interpolants [952, 1377, 1383, 1384, 1519, 1550, 1702].

interpolate [1118].

interpolating [50, 1529, 1783].

interpolations [1903].

Interpolatory [1737, 222, 963, 1868].

interval [531, 631, 1611, 1282, 1785].

introduced [1120].

introduction [1342].

invariance [844].

invariant [344, 1741].

inverse [456, 497, 524, 777, 800, 802, 841, 939, 1406, 1606, 1616, 1692].

inverse-type [939].

inverses [1220, 1782].

Inversion [692, 938, 364, 1470, 1609].

inverting [1482].

investigation [1324].

involutive [1307, 1777].

involved [697, 702].

Involving [1044, 91, 214, 704, 1391].

IRK [848].

irregular [1425, 1473, 1476, 1743, 1125].

irreversible [623].
isoclinal [1394].
Isogeometric [353, 356, 94, 355, 516].
isolated [42]. Isoparametric
[66, 845, 364, 797]. isothermal [1197].
Isotropic [1144]. Iterated
[941, 292, 369, 1119, 1578]. iterates [414].
iteration
[154, 153, 152, 209, 559, 586, 803, 835, 841,
940, 1102, 1261, 1276, 1406, 1745, 1794].
iterations [1300, 1689]. Iterative
[562, 733, 734, 1045, 1158, 1680, 625, 119,
121, 223, 241, 566, 753, 914, 988, 1201, 1216,
1475, 1638, 1799, 1880, 1881]. iteratively
[286]. IV [1099].

J [484, 547, 679, 733, 1360, 1717]. Jacobi
[1144, 1431, 348, 359, 378, 685, 1693, 1775].
Jacobi/elliptic [359]. Jacobian [581, 1020].
Jarrow [1232]. Jin [1663]. John [88, 920].
[1867]. jump [1518, 649]. jumps [1906].
June [88].

Kamel [1041]. Kantorovich [989, 1818].
Kármán [440]. Keller [269, 1622]. kernel
[592, 660, 1465, 1609, 1636, 1696, 1697, 1816,
1872]. kernels
[329, 370, 471, 499, 1393, 1750]. kind
[46, 130, 231, 235, 310, 371, 372, 941, 940,
1086, 1162, 1333, 1385, 1395, 1535, 1698,
1696, 1697, 1754, 1791]. kinetic [304, 1768].
Kirchhoff [167, 1814]. Klein
[519, 1732, 1771, 1811, 1885]. knots
[696, 1082, 1319, 1459, 1529]. Kohn [715].
Kolmogorov [543]. Korteweg
[564, 901, 1062, 1246, 1513, 1652]. Kronrod
[1434]. Krylov [801, 1406, 1552].
Kublanovskaya [920]. Kuramoto
[5, 34, 477, 1325]. Kuramoto-Sakaguchi
[5]. Kutta [677, 678, 679, 1673, 1717, 158,
168, 231, 389, 401, 413, 421, 448, 449, 559,
555, 556, 557, 558, 678, 680, 719, 959, 1006,
1042, 1078, 1087, 1117, 1239, 1313, 1379,
1488, 1514, 1587, 1632, 1646, 1660, 1688,
1716, 1804, 1842, 1894, 1110, 1791, 1785].
Kutta-type [1313].

L [1055, 1336]. L-shaped [1336]. L [74].
L.M.F. [468]. L.M.F.-based [468]. l.s.d
[1780]. Lagrange
[94, 159, 239, 299, 396, 694, 1047, 1139, 1272,
1364, 1573, 1574, 1783]. Lagrangian
[242, 945, 1020, 1105, 1231, 1580, 1817, 1819].
Lagrangians [823, 1263]. Laguerre
[1101, 1548, 1834, 1829]. Laguerre-type
[1101]. Lambert [1630]. Lamé [1480].
laminar [1183]. Lanczos [1107, 1532].
Landau [709, 162, 164, 530, 651, 1356].
landscape [610]. Langevin
[1217, 1271, 1438]. Langevin-type [1438].
LAPACK [1045]. Laplace [127, 397, 510,
683, 800, 1136, 1400, 1401, 1609, 1675, 1705].
Laplacian [849, 69, 91, 224, 303, 346, 636,
850, 1249, 1482, 1492]. Laplacians [1012].
Large
[462, 230, 757, 932, 1151, 1152, 1288, 1365,
1400, 1407, 1408, 1532, 1686, 1854, 1906].
large-scale
[757, 932, 1288, 1407, 1408, 1686].
Large-time [462, 1152]. largest
[1178, 1179]. later [920]. lateral [1569].
lattice [415, 519, 1342]. Laurent [1382].
law [344]. laws [464, 477, 529, 561, 839,
1001, 1032, 1033, 1074, 1190, 1215, 1415,
1420, 1658, 1676, 1708, 1767, 1892]. Lawson
[52, 1513]. Lawson-type [1513]. Lax
[1326, 1766]. Layer [1309, 1770].
Layer-adapted [1309]. layers [1317, 1412].
LBB [973]. LCP [1093]. leading
[1536, 1779]. leapfrog [1113]. Least
[568, 644, 1430, 1899, 140, 228, 336, 466, 531,
565, 569, 582, 822, 1289, 1319, 1365, 1387,
1425, 1439, 1510, 1509, 1645, 1656, 1722,
1736, 1843, 1889]. Least-change [1899].
Least-squares [568, 140, 336, 466, 531, 569,
582, 1425, 1645, 1736]. Lebesgue
[595, 996, 1139, 1753]. leg [974]. Legendre
[1003, 1075, 1286, 1548, 1383, 1541].
Legendre-Laguerre [1548]. Leja

methods

mixed-primal [55]. mixing [312]. mobility [186]. mode [126, 1680]. model
[570, 573, 591, 1195, 1249, 1355]. Morley
[857, 1874]. Morse [498]. mortar
non-overlapping [1338]. non-periodic [159]. non-self-adjoint [1375].
non-separable [1472]. Non-smooth [1514, 1167, 1908]. non-standard [1345].
non-stationary [669]. non-symmetric [1160, 1302, 1472].
non-smooth [1514, 1167, 1908]. non-standard [1345].
non-stationary [669]. non-symmetric [1160, 1302, 1409].
nonasymptotic [312]. Nonautonomous [326, 283, 282, 515, 1088, 1209].
noncoercive [460]. noncompact [469, 1383].
nondefectivity [1797]. nondiscrete [1300].
non-equilibrium [1271]. nonhomogeneous [11, 783].
Nonlinear [1584, 621, 3, 19, 25, 35, 33, 55, 105, 128, 228, 249, 259, 261, 266, 422, 487, 507, 522,
554, 568, 581, 582, 585, 606, 620, 646, 669, 711, 713, 716, 770, 779, 790, 792, 803, 807,
822, 861, 862, 863, 873, 881, 884, 886, 887, 950, 958, 966, 1016, 1032, 1033, 1059, 1060, 1061, 1112, 1115, 1134, 1140, 1173, 1172, 1182, 1188, 1192, 1196, 1288, 1297, 1324, 1405, 1407, 1408, 1415, 1422, 1435, 1436, 1462, 1481, 1522, 1566, 1587, 1634, 1653, 1701, 1741, 1746, 1771, 1772, 1811, 1826, 1850, 1874, 1899, 1894, 1910].
nonlinearities [1147, 1585]. nonlinearity [441].
Nonlocal [12, 285, 59, 477, 499, 691].
nonnatching [113, 330]. nonmonotone [508, 1013]. nonnegative [467, 578, 1008].
nonnormality [270]. nonoscillatory [348].
Nonoverlapping [328, 1880]. nonperiodic [1529]. nonpolygonal [30]. nonpositive [583].
nonresidual [448]. Nonsimple [1713]. nonsingular [938]. nonsingularity [1797].
nonstiff [1495]. nonsymmetric [984, 1290].
O.D.E. [468]. observability [764].
observation [44]. obstacle
singularities
[171, 1028, 1030, 1080, 1248, 1337, 1556].
singularity [1617]. singularly
[57, 71, 394, 459, 485, 708, 799, 1218, 1219, 1236, 1243, 1255, 1309, 1311, 1336, 1352, 1411, 1429, 1428, 1735, 1734, 1739, 1805, 1808].
SIP [1362, 618]. SIP-DG [618].
Sivashinsky [34, 1325]. sixth
[688, 971, 1135]. sixth-order
slice-based [1427]. slip [784]. Sloan [940].
Slobodeckij [778]. slow [1649]. slowly
[1471]. Smale [498, 1284]. small
[310, 762, 1536, 1613]. smallest
[310, 762, 1536, 1613]. smallestest
[1836].
Smolyak [653]. Smoothed [512]. Smoothing [1879, 494, 578, 644, 1058, 1789].
Smoothing
[963, 1868, 340, 663, 918, 1442, 1447, 1709].
snapshot [1690]. Sneyd [1863]. Sobolev
[118, 209, 382, 595, 918, 973, 1268].
Sobolev-type [1268]. softmax [281].
software [115, 382, 381, 595, 611, 722, 855, 918, 973, 986, 1004, 1268, 1452, 1520, 1609, 1748, 1749, 1762]. spanning [1607]. Sparse
[995, 1746, 47, 67, 143, 433, 485, 497, 512, 697, 702, 701, 700, 955, 956, 1149, 1226, 1311, 1409, 1565, 1596, 1629, 1763, 1762, 1854].
Sparsified [214]. Spatial
[1396, 217, 239, 295, 296, 795, 1463].
spatially [826]. SPD [695]. SPDEs
[344, 1328, 1822]. special
[766, 848, 1681, 1785]. specified [569, 1227]. spectral [1280]. Spectral
[1251]. spectrum [1368, 1375, 1726]. speed
[392]. sphere
[221, 759, 824, 1098, 1249, 1353, 1364, 1640].
Strang [468]. Strang-type strategies [1074, 1196, 1216, 1536, 1842].
strategy [1341, 1406]. Stream [1602, 251].
stream-function [251]. streamline [987, 1731]. streamline-diffusion [1731].
stress [435, 867, 929]. stresses [536].
stretched [1299]. strict [221, 339]. string [1562].
strip [1426]. strip-based [1426].
stroboscopic [1635]. Strong [228, 265, 571, 1147, 1146, 1304, 1318, 1376, 1822, 1461, 1518, 1587].
strongly [552, 574, 938, 1172, 1260, 1323, 1581].
structural [243, 865, 866]. structurally [1387].
Structure [871, 1323, 259, 565, 655, 816, 815, 867, 1076, 1362, 1502, 1537, 1619, 1831, 1886].
Structure-preserving [871, 1886].
structured [675, 1797]. studies [235].
Study [774, 800]. Sturm [236, 278, 325, 777, 898, 953, 1066, 1577].
Sub [355, 1463]. sub-diffusion [1463].
Sub-Grid [355]. subcycling [704].
subdiffusion [1154, 1155, 1156, 1181].
subdivision [643, 963, 1098, 1447, 1448, 1610, 1868, 1869].
Subgrid [972, 147]. subgrid-scale [147].
subject [615, 1899]. submatrix [1836].
Subsampled [230, 297]. subsequent [920].
subsonic [1732]. subspace [801, 1137].
space-breaking [1137].
spacebreaking [1426, 1427]. subtraction [808].
successive [735, 1017, 1378].
Sufficient [799]. suitable [516]. sum [229, 281, 645, 730].
super-linear [689, 681]. Supercloseness [1317, 1336]. superconducting [750, 1729].
superconductivity [359, 741, 747].
superconductors [265].
Superconvergent [1279, 1901, 537, 536, 847, 1582].
superlinear [1566]. superposition [62].
supersmoothness [1709]. supported [509].
Supraconvergence [175].
Symm [754, 1277, 1878]. Symmetric [870, 223, 443, 524, 534, 538, 536, 700, 1599, 811, 998, 1107, 1126, 1135, 1160, 1166, 1302, 1354, 1399, 1409, 1415, 1475, 1490, 1511, 1532, 1565, 1624, 1677, 1747, 1748].
Symmetrization [1339, 183]. symmetry [49, 642, 1138, 1444, 1860].
symmetry-breaking [1444, 1860].
Symplectic
[667, 148, 414, 488, 1313, 1438, 1488].
Szegö [1535, 622].
technique [356, 365, 863, 1368, 1596].
techniques [166, 367, 643, 704, 902, 1339].
temperature [1590].
temperature-dependent [1590]. temporal
[1171]. Tensor [797, 345, 485, 670, 1149,
1603, 1731, 1746, 1893]. Tensor-product
[797, 1731, 1893]. term [294, 303, 1075].
terms [464, 895, 1059, 1658, 1676, 593]. test
[362, 580, 1068, 1672, 1778]. Testing
[1689, 526, 1797]. tetrahedra [1615].
tetrahedral [1242, 1648, 1710]. textile
[966]. texture [743]. th [1292, 1293]. their
[116, 470, 581, 789, 1080, 1342, 1434, 1455,
1704, 1737, 1817, 1854]. theorem
[116, 1122, 1570]. theorems
[866, 1520, 1818]. theoretic [1748]. Theory
[339, 519, 633, 725, 742, 879, 953, 1069, 1117,
1284, 1304, 1697, 1806]. There [666].
thermistor [863]. thermoelastic [1077].
thin [27, 184, 815, 927, 1665, 1708].
thin-walled [815]. third [46, 504, 1903].
third-kind [46]. third-order [504, 1903].
Thomas [42, 672]. three [108, 220, 765, 979,
992, 1024, 1075, 1079, 1141, 1295, 1369, 1427,
1592, 1673, 1672, 1770, 1905]. three-body
[1672]. three-dimensional
[979, 1024, 1592, 1905]. three-dimensions
[108]. three-field [1295]. three-fields
[1369]. three-stage [1673]. three-term
[1075]. three-time-level [1141]. Tikhonov
[292].
Time
[23, 165, 169, 178, 869, 931, 947, 1400, 6, 22,
57, 67, 98, 99, 110, 120, 168, 171, 172, 252,
249, 256, 258, 259, 265, 347, 462, 492, 532,
561, 592, 620, 623, 648, 704, 709, 719, 744, 742,
780, 783, 782, 836, 842, 870, 867, 877, 882, 886,
979, 995, 1019, 1023, 1025, 1031, 1038, 1051,
1077, 1085, 1104, 1120, 1141, 1145, 1151, 1152,
1153, 1156, 1177, 1196, 1207, 1211, 1219,
1222, 1228, 1237, 1250, 1256, 1289, 1303, 1322,
1334, 1335, 1343, 1347, 1416, 1463, 1464, 1590,
1597, 1598, 1613, 1618, 1623, 1633, 1675].
time [1700, 1703, 1721, 1725, 1740, 1772,
1819, 1859, 1873, 1879, 1885, 1907, 619].
time-accuracy [1031]. Time-dependent
[169, 178, 6, 168, 172, 252, 256, 532, 620, 870,
1023, 1077, 1145, 1187, 1211, 1219, 1343,
1416, 1725, 1819, 619]. time-discrete [1772].
time-discretization [709]. Time-domain
[165, 867, 1256]. time-evolution [1019].
time-fractional [492, 1085, 1153, 1907].
time-harmonic [1289, 1347, 1598].
time-parallel [1019]. time-periodic [1725].
time-space [561, 877]. time-splitting
[623, 1250]. time-stepping
[1196, 1303, 1463, 1464, 1590, 1623, 1703].
time-subcycling [704]. time-varying
[1051]. Timoshenko [1037]. Toda [415].
Toeplitz [467, 471, 938]. Toint [1565].
tolerance [1042]. tomography [1157, 1557].
tool [805]. topology [1607]. torsion [247].
Total [195, 197, 1001, 209, 317, 318, 1530].
touching [575]. TPFA [689]. Trace
[849, 850, 1136, 1718, 1601]. Tracking
[1532, 1283]. trajectory [557, 1402].
transfer [591, 855, 942]. transform
[546, 563, 1003, 1609, 1693, 1747].
transformation
[278, 1401, 1471, 1576, 1675, 1683, 1908].
transformations [141, 364, 1409, 1507].
transforms
[72, 124, 420, 1124, 1400, 1866, 1867].
transient [245, 461, 1076, 1704]. transition
[842]. transmission
[315, 405, 1028, 1170, 1864]. transport
[20, 55, 327, 517, 836, 879, 943, 1290, 1291,
1302, 1355]. Transportation [1105].
trapezoidal [650, 1372, 1629]. treatment
[836, 1226, 1791]. tree [1245]. tree-based
[1245]. Trees [407, 1607]. Trefftz [1228].
tria [8]. triangle [1100]. triangular
[141, 641, 1429, 1648, 1724].
triangularization [1774]. triangulation
[1620]. triangulations [717]. trick [745].
tridiagonal [589, 1706]. Trigonometric
[1038, 1422, 133, 379]. trilinear [441].
Trivariate [311]. Trotter [646]. true [1907].
Truncated [949]. Truncation
[1373, 571, 917, 1292, 1293, 1787]. Trust

two- [108]. two-by-two [153].
two-dimensional [123, 218, 265, 315, 328, 369, 778, 782, 1040, 1181, 1281, 1344, 1350, 1395, 1515, 1863, 1864]. two-factor [1346].

Two-grid [422]. Two-level [1184, 1752, 497, 1405, 1874].
two-parameter [278, 1551]. two-phase [19, 38, 431, 871, 1065, 1367, 1585].

Two-point [215, 4, 275, 291, 481, 482, 732, 964, 1036, 1460, 1699, 1730, 1735, 1754, 1808].

two-scale [1484, 1311]. Two-sided [257].

type-6 [1710]. type-II [747].

ultraspherical [1002]. Unbiased [1249].

unbounded [1139, 1548]. uncertain [1346, 1554]. uncertainty [44, 569, 943, 1149]. Unconditional [1024].

unconditionally [164, 1192, 1346, 1350].

Uniform [469, 579, 592, 656, 1209, 1351, 1464, 1545, 1702, 1819, 1892, 1891, 263, 337, 470, 764, 799, 1031, 1104, 1236, 1428, 1633, 1649].

uniform-in-time [1104]. Uniformly [1903, 1, 28, 498, 532, 1352, 1739].

valued [241, 952, 1208, 1278, 1869]. values [1142, 1671]. Vandermonde [1044, 1798].
Vandermonde-like [1044]. vanishing [375].
Variable [306, 63, 120, 261, 347, 414, 429, 503, 513, 546, 587, 974, 1169, 1168, 1322, 1510, 1630, 1878, 1889, 1907].
1025, 1211, 1225, 1606, 1618, 1623, 1650, 1751, 145, 178, 205, 203, 313, 321, 502, 520, 590, 730, 744, 746, 873, 914, 1035, 1059, 1061, 1193, 1275, 1274, 1285, 1468, 1469, 1488, 1505, 1531, 1638, 1647, 1721, 1746, 1752].
variational-hemivariational [590].
[952, 139, 798, 1012, 1136, 1447, 1744, 1759].
[758, 868, 875]. vertex-centered [758]. very [551]. via [169, 348, 486, 547, 548, 675, 703, 964, 1019, 1149, 1400, 1401, 1473]. vibration
[243, 1037]. vibrations [210]. Vibro [1570].
Vibro-impact [1570]. VIEs [46].
viscous [1191, 1545]. Vlasov [681].
volatilities [1084]. volatility [1346, 1554].
Volterra-type [665, 1662]. Volume
volume-preserving [1893]. volumes [593].
volumetric [1265]. Vortex [1707, 1897].
vortices [750, 1729]. vorticity [60, 251, 1344]. Vries [564, 1062, 1246, 1513, 1652].

W [88]. Waals [184]. Wachpress [936].
waterbag [267]. Wave [314, 214, 238, 450, 474, 479, 545, 715, 756, 783, 782, 781, 786, 809, 892, 931, 995, 1019, 1054, 1055, 1061, 1076, 1077, 1109, 1149, 1228, 1260, 1313, 1358, 1466, 1572, 1581, 1840, 1855, 1873].
Wave-number [314]. wave-structure [1076]. wave-thermoelastic [1077].
wave-type [1054]. waveform [1628, 1859].
waveguide [1265]. Wavelet
[260, 367, 595, 478, 485, 767, 1720].
Wavelet-based [595, 478].
Wavelet-Fourier [367]. wavelets [1477].
Wavenumber [479, 1347]. waves [171, 764].
wedge [127]. Weierstrass [562]. weight
[474, 1386, 1535]. Weighted
[394, 1533, 92, 181, 762, 918, 1043, 1139, 1425, 1485, 1580, 1748, 1749]. weights
[827, 1195, 1535, 1773]. Weiner [1384].
Weiner-Hopf [1384]. Well
[1466, 455, 551, 907, 1486, 1625].
well-conditioned [907]. well-posed
[551, 1625]. Well-posedness [1466].
well-reservoir [455]. Wendroff
[1326, 1766]. Wendroff-type [1326].

Xin [1663].

years [920].

Zakharov [1038, 1732]. zeros [58, 643, 944, 1119, 1383, 1384, 1643].

References

Acost:2019:FEA

Actis:2016:NDF

Adam:1991:PIR

Adam:2019:SNM

REFERENCES

Javier A. Almonacid, Hugo S. Díaz, Gabriel N. Gatica, and Antonio Márquez. A fully mixed finite element method for the coupling of the

Alonso-Mallo:2017:AOR

Alonso-Mallo:2018:AOR

Altmayer:2017:DHM

Alvarez:2021:MPF

Amiraslani:2009:LMP

Amrein:2017:AST

Anastasselou:1986:FCD

Anaya:2020:VEM

Anaya:2017:PVF

Anderson:2015:ARB

Andreani:2008:TRS

Andreani:2017:SOS

Andreani:2017:ESO

REFERENCES

Andreev:2004:IFE

Andreev:2013:SSS

Andreianov:2012:DDG

Andreianov:2006:FVA

Angermann:1992:PES

Angermann:1995:EEF

Annaby:2015:EEA

REFERENCES

REFERENCES

Anonymous:2004:R

Anonymous:2005:IV

Anonymous:2005:R

Anonymous:2006:IV

Anonymous:2006:R

Anonymous:2021:JWB

Anselone:1987:DCA

Antil:2020:PCE

Antil:2018:PEA

[91] Harbir Antil and Enrique Otárola. An a posteriori error analysis for an opti-

REFERENCES

Araujo:2015:SFD

Araya:2011:FEA

Araya:2007:SFE

Araya:2016:LOL

Araya:2021:MPE

Araya:2020:NAT

Araya:2019:AAH

Arbenz:1982:CFE

Arbogast:2014:PEE

Ardenghi:2009:SGM

Arendt:2022:GAL

Argyros:1998:NNM

Arioli:2018:FEM

Arioli:2013:DFS

REFERENCES

Axelsson:1981:SEE

Axelsson:1997:MPP

Ayuso:2007:IAM

Azaiez:2006:MSE

Azaiez:2008:MSE

Baart:1982:UA

Baart:1986:QTT

[149] Journal Zhong-Zhi Bai and Gui-Qing Li. Restrictively preconditioned con-

[164] Lubomír Banas, Marcus Page, Dirk Praetorius, and Jonathan Rochat. A

[171] Pratyuksh Bansal, Andrea Moiola, Ilaria Perugia, and Christoph Schwab.

[178] Gabriel R. Barrerechea, Ernesto Castillo, and Ramon Codina. Time-dependent semidiscrete analysis of the

REFERENCES

REFERENCES

REFERENCES

Bartels:2013:SSA

Bartels:2016:BSS

Bartels:2016:SSA

Bartels:2021:SCE

Bartels:2018:SSA

Bartholomew-Biggs:1988:GCV

Barucq:2021:SDW

Barzilai:1988:TPS
REFERENCES

REFERENCES

Belenki:2012:OAF

Belgacem:2012:UCB

Belhachmi:2006:FEA

Belhachmi:2004:RPE

Bellavia:2015:SLC

Bellavia:2021:ACR

Bellavia:2020:SIN

[230] Stefania Bellavia, Natasa Krejić, and Natasa Krklec Jerinkić. Subsampled in-

Bendali:2014:LAR

Benitez:2022:PPS

Benouahmane:2019:NMC

Benzi:2008:BPR

Bermejo:2010:SLG

Bermudez:2006:ASA

Bermudez:1991:SSW
A. Bermúdez, C. Rodríguez, and M. A. Vilar. Solving shallow water equations by a mixed implicit finite element method. *IMA Journal of Nu-
REFERENCES

Bermudez:2012:NST

Bermudez:2010:NAF

BermudezdeCastroLopez:1982:MME

Bernardi:1990:SGS

Bernardi:2014:PAS

Bernardi:2001:EIM

Bernardi:1992:MSE

Bernardi:1987:MMT

Bernardi:2013:PAF

Bernardi:2010:NFE

Bernardi:2016:SDD

Bernardi:2015:PEA

Berrone:2008:TSP

Berselli:2015:OEE

[258] Luigi C. Berselli, Lars Diening, and Michael Ruzicka. Optimal error estimate for semi-implicit space–time discretization for the equations de-

REFERENCES

CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

REFERENCES

REFERENCES

[Bokil:2012:ASH]

[Bolin:2020:NSF]

[Bollapragada:2019:EIS]

[Bonelle:2015:ACD]

[Bonettini:2011:IBC]

[Bonito:2020:FEA]

[Bonito:2017:CPN]
REFERENCES

Bonito:2017:NAF

Bonizzoni:2014:MEM

Bonnaillie-Noel:2016:ENC

Bonnans:2006:EES

Bornemann:2007:MUN

Bornemann:2013:OCH

Bornemann:2013:OCH

REFERENCES

REFERENCES

Bradji:2007:ODC

Bradji:2008:DCH

Braess:1986:NSB

Braess:1983:NSO

Braess:2005:AES

Braess:2020:EBP

Brandts:2006:NLS
REFERENCES

References

[351] Susanne C. Brenner, Thirupathi Gudi, and Li yeng Sung. An a posteriori error estimator for a quadratic

Brenner:2020:FEM

Bressan:2011:IRD

Bressan:2021:BCA

Bressan:2018:ISS

Bressan:2013:IDS

Brett:2016:OCE

Brezinski:1983:ECC

REFERENCES

REFERENCES

Brownlee:2004:AOI

Brugiapaglia:2021:WFC

Brumm:2014:HMM

Brunner:1989:NST

Brunner:1986:PSC

Brunner:2009:DGA

Brunner:2012:GCL

Brunner:2001:GMC

Brunner:2010:SPC

Brunner:2011:ACS

Brutman:1986:GAP

Brutman:1990:IPA

Bryson:2005:SDC

Buchholz:2018:CGB

REFERENCES

Buckwar:2005:WAS

Buhmann:1992:DDN

Buhmann:2009:CEB

Buhmann:1988:CUQ

Buhmann:2020:EAN

Buffa:2017:RSL

Buhmann:2010:NRB

REFERENCES

Bujalska:1982:QS

Bujanda:2007:OCL

Bultheel:2010:RQF

Burke:2003:RSC

Burke:2008:SSR

Burman:2021:UHH

Kevin Burrage. Order properties of implicit multivalue methods for ordi-
REFERENCES

Busturc:1986:OOS

Caceres:2017:MVE

Cahlon:1992:NSF

[410] Baruch Cahlon and Darrell Schmidt. Piecewise polynomial approximate so-

Buscaglia:2012:IEF

Buscaglia:2015:FEM

Bustinza:2008:CLD

REFERENCES

REFERENCES

[431] X. Cao, S. F. Nemedjieu, and I. S. Pop. Convergence of an MPFA finite volume scheme for a two-phase porous

Cardenal:1998:SSQ

Carstensen:2015:MAC

Carstensen:2017:NFO

Carstensen:2008:CAF

Carstensen:2016:BAE

REFERENCES

[445] C. Cartis, N. I. M. Gould, and

REFERENCES

Chan:1991:TPT

Chan:2001:STP

Chandler:1987:UCG

Chandler-Wilde:1993:SUS

Chandler-Wilde:1989:AGT

Chang:1996:NPA

Chapko:2000:NSH
REFERENCES

REFERENCES

REFERENCES

[509] A. Chernih and Q. T. Le Gin. Multiscale methods with compactly supported radial basis functions for Galerkin approximation of elliptic

Choquet:2011:AFV

Chouly:2018:RBP

Christiansen:2011:DMK

Christiansen:2013:VEA

Christianson:1992:AHR

Christie:1991:ERS

Christie:1981:PAN

Chu:1990:SAI

REFERENCES

Chu:2015:FRF

Chu:1995:ETP

Chu:2018:HDF

Chung:2012:SDG

Cifani:2011:DGM

Cimrak:2005:EES

Clark:1988:LRI

Clavero:2006:UCA

C. Clavero, J. L. Gracia, and J. C. Jorge. A uniformly conver-
REFERENCES

gent alternating direction HODIE finite difference scheme for 2D time-
dependent convection–diffusion problems. *IMA Journal of Numeri-
oxfordjournals.org/cgi/content/abstract/26/1/155; http://imanum.
oxfordjournals.org/cgi/reprint/26/1/155.

direction scheme on a nonuniform mesh for reaction-diffusion parabolic problems.
IMA Journal of Numerical Analysis, 20 (2):263–280, April 2000. CODEN IJ-
oup.co.uk/imanum/hdb/Volume_20/
Issue_02/200263.sgm.abs.html; http://
www3.oup.co.uk/imanum/hdb/Volume_20/
Issue_02/pdf/200263.pdf.

NADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

October 2014. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642

[536] Bernardo Cockburn and Guosheng Fu. Devising superconvergent HDG
methods with symmetric approximate stresses for linear elasticity by M-
18, 2018. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (elec-
oup.com/imajna/article/38/2/566/3861276.

[537] Bernardo Cockburn, Guosheng Fu, and Weifeng Qiu. A note on the devis-
ing of superconvergent HDG methods for Stokes flow by M-decompositions.
IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic). URL https://
academic.oup.com/imajna/article/
37/2/730/2669997/A-note-on-the-
devising-of-superconvergent-HDG.

[538] Bernardo Cockburn and Francisco-
Javier Sayas. The devising of symmetric couplings of boundary element and
765–794, July 2012. CODEN IJNADH.
ISSN 0272-4979 (print), 1464-3642
oxfordjournals.org/content/32/3/765.full.pdf+html.

[539] G. M. Coclite, K. H. Karlsen, and
N. H. Risebro. Numerical schemes

Cocozza-Thivent:2006:FVS

Cocozza-Thivent:2017:NMP

Codenotti:1989:NQI

Cohen:2016:KWU

Cohen:2006:CPN

Cohen:2016:FDA

Colbrook:2020:EUT

Coleman:1989:ENM

Coleman:1989:NMR

Coleman:2003:OCC

Coleman:1996:SEF

Colombini:2015:NAV

Congreve:2013:DGF

Conn:2008:GSS

Cooper:1993:CIN

Cooper:1984:GAS

Cooper:1986:ESA

Cooper:1987:SRK

Cooper:1992:WNS

Cooper:1983:ISI

Coppe:2022:ASA

Coquel:2012:CTS

Coquereaux:1990:IMC

Coughlan:2007:TLM

[563] James J. Coughlan, Adrian T. Hill, and Hartmut Logemann. The Z-

[Courtes:2020:EEF]

[Cox:1981:LSS]

[Cox:1982:DVI]

[Cox:1991:ACB]

[Cox:1989:ALS]

[Cox:1991:A CB]

[Cox:2021:CHN]

[Cozma:2020:SOC]

Andrei Cozma and Christoph Reisinger. Strong order 1/2 convergence of full truncation Euler approximations to the Cox–Ingersoll–Ross process. *IMA Journal of Numerical Analysis*, 40

[594] Lourenco Beirão da Veiga and Gianmarco Manzini. A virtual el-

Yu-Hong Dai, William W. Hager, Klaus Schittkowski, and Hongchao Zhang. The cyclic Barzilai–Borwein method for unconstrained optimiza-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Deugoue:2021:FDF

Devaud:2020:PGS

dHalluin:2005:RNM

Dharmaraja:2010:OST

DiFratta:2020:LSO

DiPietro:2017:AOM

[653] Josef Dick, Gunther Leobacher, and Friedrich Pillichshammer. Randomized Smolyak algorithms based on digital sequences for multivariate in-
REFERENCES

[669] Vít Dolejsí, Miloslav Feistauer, Václav Kucera, and Veronika Sobotíková. An optimal $L(L^2)$-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary
REFERENCES

REFERENCES

Dormand:1987:FRK

Dormand:1987:HOE

Dormand:1991:CHO

Dormand:1985:GEE

Dormand:1987:FRK

DosReis:2022:SMV

Doss:2005:QMU

Doucette:1994:NMN

REFERENCES

[691] Qiang Du, Yunzhe Tao, Xiaochuan Tian, and Jiang Yang. Asymptotically compatible discretization of multidimensional nonlocal diffusion models...

Dunne:2009:FMN

Dunst:2015:CRT

Dunst:2015:OCE

Duran:2000:NIR

Duran:2012:SFE

Durand:2011:FDF

Dussault:1998:APA

REFERENCES

[729] Erik Eikeland, Leszek Marcinkowski, and Talal Rahman. An adaptively enriched coarse space for Schwarz preconditioners for *P* 1 discontinuous Galerkin...

REFERENCES

Ellacott:1983:PCF

Elliott:1985:COS

Elliott:1987:EAE

Elliott:2005:FEA

Elliott:2021:UTC

Elliott:2009:NAT

Elliott:1981:FEA

Elliott:2017:ACS

[745] Charles M. Elliott and Hans Fritz. On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck

REFERENCES

Elman:2016:EIA

Elschner:1997:QMS

Elster:1995:GAB

Engel:2021:OFE

Engelborghs:1999:DCP

Erath:2019:AV

Erb:2020:SIS

REFERENCES

Escande:2022:FWD

Esser:2015:ARF

Evans:2020:HBS

Eymard:1998:EEA

Eymard:2006:CCF

Eymard:2010:DHA

REFERENCES

REFERENCES

Faou:2015:AES

Farago:2009:CDP

Farago:2012:DMP

Farhloul:2001:RMF

Farhloul:1998:MFE

Farhloul:2008:RMF

REFERENCES

REFERENCES

Fieldstein:1986:OUS

Feng:1998:ADD

Feng:2015:ASI

Feng:2018:AMF

Feng:2004:PEE

Fercoq:2019:ARA

REFERENCES

NADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

Fletcher:1987:HMN

Fletcher:2017:ALB

Fliege:1999:DPS

Floater:2006:CCS

Fonn:2015:HCA

Fornberg:2021:A

Fornberg:2021:CIA

Fornberg:2008:LPR

[829] Bengt Fornberg, Natasha Flyer, Susan Hovde, and Cécile Piret. Locality properties of radial basis function expansion coefficients for equi-

[Franz:2018:GDS]

[Franz:2019:NMC]

[Frasca-Caccia:2020:SBP]

[Freire:1999:NCD]

[Freitag:2008:TP1]

[French:1994:LTB]

[Frerichs:2022:DPR]

REFERENCES

REFERENCES

Fuhrer:2018:DMS

Fulton:2014:ESD

Funaro:1990:CAP

Fuselier:2017:RBF

Gabriel:2010:NAM

Gaier:1987:CTN

Gallistl:2015:MFE

Gallouet:2016:EEN

[858] Thierry Gallouët, Raphaëlle Herbin, David Maltese, and Antonín Novotný. Error estimates for a numerical approximation to the compressible barotropic

REFERENCES

Gara:2001:NFB

Garcia-Archilla:1995:TIN

Garcia-Archilla:2021:SPS

Garcia-Archilla:1995:ASC

Gardini:2018:VEM

REFERENCES

REFERENCES

REFERENCES

[893] Emmanuil H. Georgoulis and Andris Lasis. A note on the design of hp-

L. Giraud and J. Langou. When modified Gram–Schmidt generates a
REFERENCES

[922] Wei Gong and Buyang Li. Improved error estimates for semidiscrete finite
REFERENCES

REFERENCES

Gopalakrishnan:2020:MCM

Gordon:2012:SSC

Gorynina:2019:TSA

Gould:1991:ALS

Gould:2012:SDS

Gould:1986:ADS

Gourlay:1981:LCG

Gout:1985:RWT

Govaerts:1993:MBE

1993. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

[953] Leon Greenberg and Marco Marletta. Oscillation theory and numerical solution of fourth-order Sturm–Liouville

REFERENCES

Guillen-Gonzalez:2011:NEE

Gunzburger:2020:LRE

Gunzburger:2019:EAS

Guo:1985:SMS

Guglielmi:2006:SPC
REFERENCES

[990] Martin H. Gutknecht and Beresford N. Parlett. From *qd* to *LR*,
REFERENCES

173

Hairer:2017:BSS

Hairer:2014:EDI

Hairer:2013:CSS

Hajian:2019:TVD

Hale:2019:USM

Hale:2016:FFB

Hall:1992:AMCb

Hall:1992:AMCa
C. A. Hall and T. A. Porsching. Approximation methods in the computer numerically controlled fabrication of optical surfaces. II. Mollifica-
REFERENCES

1014 Eskil Hansen and Alexander Ostermann. Dimension splitting for quasilinear parabolic equations. *IMA Jour-

[1021] Bingsheng He, Min Tao, and Xiaoming Yuan. A splitting method for separable convex programming. *IMA Jour-

[1042] Desmond J. Higham. Global error versus tolerance for explicit Runge–

REFERENCES

REFERENCES

Hochmuth:2001:LBE

Hocking:2012:CFM

Hoffmann:1996:PSV

Hofmanova:2020:REI

Holden:2009:CFD

Holden:2015:CFD

Hong:2021:OR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1100] Daan Huybrechs, Arieh Iserles, and Syvert P. Nørsett. From high oscillation to rapid approximation V:

REFERENCES

Iliev:2002:SOA

Imbert-Gerard:2014:GPW

intHout:1997:SAR

intHout:2014:SCA

Ingham:1981:BIE

Iserles:1986:GLM

Iserles:1986:MDL

Iserles:1990:SDN

REFERENCES

Iserles:1991:CDC

Iserles:1990:TPR

Iserles:1981:ARA

Iserles:1992:ZHD

Iserles:1992:UAS

Iserles:1984:SAS

Iserles:1982:OSS

Iserles:2001:MMM

Iserles:2004:NQH

REFERENCES

Iserles:2005:NQH

Iserles:2014:SSD

Iserles:2008:HOR

Iserles:2009:HOR

Iserles:2008:D

Iserles:2007:CE

Jackiewicz:1987:SAM

Jackson:1989:OCS

Jeltsch:1998:ABS

Jennings:1982:BSV

Jenschke:2019:AMS

Jensen:2017:FEC

Jensen:2022:FEC

Jentzen:2021:SEA

Jentzen:2020:SCR

Jepson:1984:IOD

REFERENCES

REFERENCES

Kangal:2020:ENA

Kangal:2020:NAM

Kaps:1989:RMU

Karaa:2017:FVE

Karaegeorghis:1989:MFS

Karaegeorghis:1991:CCS

Karakashian:2017:TLA

Karakatsani:2012:PEE

[1185] Fotini Karakatsani. A posteriori error estimates for the fractional-step ¯-scheme for linear parabolic equa-
REFERENCES

[1192] Kenneth Hvistendahl Karlsen and Knut-Andreas Lie. An unconditional-

Kawohl:1998:CFE

Kay:2001:RLE

Ketcheson:2015:ASR

REFERENCES

REFERENCES

REFERENCES

Koley:2018:FDS

Koltracht:1990:CSL

Kopec:2015:WBE

Kopteva:2011:PEE

Koltracht:1990:CSL

Kopec:2015:WBE

Kopteva:2007:MNP

Kopteva:2011:PEE

Koshy:1985:URP

Kovacs:2018:HOE

Kovacs:2018:HOT
References

Kunkel:1996:TBA

Kuo:1981:CMN

Kwon:2022:CCE

Kyoya:2020:CCM

Kyprianou:2018:UWS

Kyza:2011:ECT

Lai:2002:FSD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Liao:2022:ABI

Lindner:2021:SCH

Linke:2017:OVE

Linss:2000:NSI

Linss:2004:EEF

Linss:2009:LAM

0272-4979 (print), 1464-3642 (electronic).

Lipman:2010:APS

Liu:2009:TSS

Liu:2019:AMP

Liu:2006:MSR

Liu:2013:MPS

Liu:1990:SMN

Liu:2020:EPM
Liu:2018:SES

Liu:2020:SAM

Loach:1991:BLS

Lombardi:2011:IEE

Lopez:1983:SAB

Lopez-Fernandez:2013:GCQ

Lopez-Gomez:1992:SSM

LopezMarcos:1988:SCN

REFERENCES

Lyche:1988:DRS

Lyness:1989:ILR

Ma:2018:EEC

Ma:1987:FPM

Ma:2006:PEE

Ma:2017:UMN

Ma:2018:WEA

Mackenzie:2011:ASC

[1348] J. A. Mackenzie and A. Madzva-

Mackenzie:2007:ASC

Mackenzie:2012:USS

Mackenzie:1999:UCA

Madden:2003:UCN

Maes:2006:HBP

Maeztu:1989:SCF

[1354] J. I. Maeztu. On symmetric cubature

[Makroglou:1982:HOF]

[Makroglou:1983:EHM]

[Malek:1995:PCM]

[Malkmus:2018:GSM]

REFERENCES

REFERENCES

Martins:1995:EBM

Maset:2013:SPE

Mason:1981:NMI

Mason:1983:NBA

Mason:1984:NBA

Mastroianni:1994:NIB

Mastroianni:1997:NIB

Mastroianni:2009:SNM

Mastroianni:2014:GQR

[1386] Giuseppe Mastroianni, Incoronata Notarangelo, and Gradimir V. Milo-

REFERENCES

abstract/30/1/208; http://imajna.oxfordjournals.org/cgi/reprint/30/1/208.

Meng:2012:SLD

Mengi:2005:ACP

Messaoudi:1995:SPR

Metzger:2022:CFE

Meyer:2020:PEA

Micheletti:2008:UBA

Micula:2015:TCN

References

Miellou:2005:SCF

Miettinen:1995:ANM

Migliorati:2021:MAF

Mihai:2006:ASB

Mihai:2009:ASB

Miller:1995:PUM

Miller:1994:NNP

Miller:2001:LSM

REFERENCES

Milner:1996:MFE

Milovanovic:2011:GQR

Milovanovic:2019:QMN

Milstein:2001:NSD

Milstein:2002:PAS

Milstein:2009:EEG

REFERENCES

REFERENCES

Moore:1995:CPP

Moore:1999:ACS

Moosmuller:2019:ISV

Moosmuller:2021:SNG

Mora:2005:WES

Mora:2020:PPE

Morales:2012:SQP

REFERENCES

REFERENCES

Nigam:2012:HOC

Nocetto:2019:TSM

Nocetto:2009:SDW

Norton:2012:FEA

Nurnberger:1998:EAI

Ober-Blobaum:2017:GV1

Oberman:2018:NMM

Of:2006:FMM

REFERENCES

1992. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

REFERENCES

[1530] Jan Papez and Zdenek Strakos. On a residual-based a posteriori error es-
References

Perrin:2021:CFF

Phillips:2010:SRB

Phillips:1985:EMC

Phillips:1988:LCG

Phillips:1989:FSS

Phillips:1986:PSM

Pickering:1993:FSR

Pierre:2010:UCF

Pinar:2018:BPA

[1546] Miguel A. Piñar and Yuan Xu. Best polynomial approximation on the unit
REFERENCES

Pooley:2003:NCP

Porter:1993:RGM

Potra:1994:LOM

Potts:2001:NLA

Potzsche:2010:CIM

Poullikkas:1998:MFS

Powell:2005:PFD

Powell:2009:BDP

[1561] Catherine E. Powell and Howard C. Elman. Block-diagonal preconditioning for spectral stochastic finite-

REFERENCES

Rubensson:2021:LIF

Rump:2003:OSN

Rump:2015:VTD

Saedpanah:2015:CGF

Saito:2007:CUF

REFERENCES

Sanz-Serna:2009:MFE

Sanz-Serna:1991:NCR

Sanz-Serna:1992:NUT

Sanz-Serna:1986:CNS

Sanz-Serna:2019:SAA

Saranen:1992:QML

Sardella:2000:CFE

Saunders:1984:VIS

REFERENCES

Sheng:1989:SLP

Sheng:1994:GEE

Shih:2000:IMS

Shingle:2009:ISO

Sidi:2012:UFE

Sidi:1982:RA

Siebert:2011:CPA

Simoncini:2020:NSC

REFERENCES

Simoncini:2014:TNM

Singler:2011:CSA

Sinha:2007:UFE

Skrobanski:1990:BNM

Slevinsky:2018:UHA

REFERENCES

REFERENCES

[1710] Tatyana Sorokina and Frank Zeilfelder. Local quasi-interpolation by

Speleers:2008:MMP

Spence:1983:SPG

Spence:1982:NTP

Srivastav:1983:NSSb

Srivastav:1983:NSSa

Stein:1997:BHF

Stein:1998:EBH

Suli:2020:FDF

Sun:1995:FEMb

Sun:1995:FEMa

Sun:1996:OBP

Sun:2008:IQR

Sun:2001:NAE

Surla:1990:SUC

References

Tanaka:2017:PTA

Tanaka:2019:DAF

Tang:1993:NCM

Tao:2010:LCL

teRiele:1982:CMW

REFERENCES

REFERENCES

REFERENCES

[1778] P. F. Tupper. A test problem for molecular dynamics inte-
REFERENCES

NADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

REFERENCES

oxfordjournals.org/cgi/reprint/26/3/525.

Verdi:1985:NAH

Verfurth:1984:CCG

Vigo-Aguiar:2007:FSR

Viswanath:2001:GEN

Voller:1985:IFD

Vulanovic:2001:PMS

Walloth:2020:RTP

REFERENCES

281

Walz:1989:EBS

Wang:2019:FAE

Wang:2011:DGM

Wang:2020:VEM

Wang:2021:CNV

Wang:2017:FAC

Wang:2011:AEF

Wang:1995:ELL

for convection-diffusion equations and

Wang:2011:KTN

Wang:2011:UEF

Wang:1998:CEB

Wang:2004:NFF

Wang:2017:SCR

Wang:2007:BBP

Watson:1981:ALA

Watson:1982:NML

Watson:1984:DAR

Watson:1988:MCS

Watson:1988:SPS

Watson:1990:CAD

Watson:1991:AOS

Watson:2002:GNM

Weber:2017:CRF

REFERENCES

ISSN 0272-4979 (print), 1464-3642 (electronic).

REFERENCES

Xi:2020:MLM

Xiang:2011:CCF

Xiang:2013:ECC

Xie:2010:SEP

Xie:2012:AOE

Xie:2014:TMM

[1870] Hehu Xie. A type of multilevel

Xie:2005:ISE

Xu:2011:UBS

Xu:2022:ACN

Xu:2004:TLA

Xu:2016:ECR

Xu:2011:CBA

REFERENCES

Yalamov:1999:SPA

Yan:1990:CCV

Yan:2003:SPA

Yang:1999:IPM

Yan:2011:QFV

Yang:2013:QFV

Zakerzadeh:2016:HOA

Zanna:2015:EVP

Zhang:2004:SAR

Zhang:2012:CAM

Zhang:2006:DMP

Zhang:1996:CVM

Zhang:2020:MCF

REFERENCES

Zhang:1987:LCU

Zhang:1988:QNA

Zhang:2001:SDR

Zhao:2020:LOS

Zhao:1993:UTO

Zhao:2021:ESP

Zheng:2021:FAT

Zheng:2015:CAM

Zheng:2021:OOE

Zhou:2005:CNS

Zhu:2011:RPE

Zietak:1983:PMS

Zietak:1987:PSL

Zietak:1989:PAM

Zubik-Kowal:1997:MLP

Zvan:2001:FVA