
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

18 March 2019
Version 1.85

Title word cross-reference

[SW13]. #P [Mil19]. #P-completeness [Mil19].

(2, 0, 0) [WX13]. (2, t) [GLY11]. (2p + 1) [LLL+11]. (2P2, H) [DP18]. (3 + ε)k [LX19].
(a, b, k) [ZJ11]. (Δ + 1) [WLW11, ZW10].
(g, f, n) [Liu10]. (k, l) [DFdT16]. (k, m) [ZSY13]. (k, s) [PS19a]. (X, S) [YWC11].
(n, k) [CLS13, WXZ12, YLG10]. (Ps, H) [DP18]. (→, 3) [SeF14]. (s, t) [DL13, FLP18]. (t, n) [QD16]. 0/1
[OBT12]. 1 [AIR17, AMRR11, Cha19, CZZ12, Cza13, Did13, EKN11, LTK+19, SSK12, Wu14, XL15, ZW11, ZL12, ZLLZ18].
16 [Mil15]. 2 [AMT12, ACL18, CLZ18, Che16c, CLS13, DFMS10, EAA+16, EKN11, FY14, Jan12b, KR16, KM13, LZ10a, LH11, LT13c, LM15, NN17, OM17, Och17, Sch13b, Shi12, Tak16, TXQ11, TZ11, Wid17, XGX11, YBMK15, vGLM12]. 2/3 [Vid13]. 22
[MNP12]. 24 [Ehl17]. 2k [Sun16]. 2n [GKM14]. 2w [Bae13]. 2k − c log k [Lam11].
2p [EP16]. 2p [KZ12]. 2π/5 [BF19]. 2√2 [GKW15]. 3 [AD18, BS11, DS15, Dur13, FWS13, FM19, GH14, JSZC15, Kat16, Lei17, Mil15, NS11, NT14, PI19, Xia10, YL11a, YYZ12, YYYY13, Zha10b, ZHXS10]. 3 × 3 [GSA+19, OKM13]. 4
[AD18, LS15, ZLSX16]. 4n [CCT14]. 5 [CQ12, Kar13, Moo11, WLW11, Zha10b]. 6 [Hoc11, WLW11, Zha10b, ZW10]. 7

[DN12, WW11]. 7 – [3] [SWZ12]. 7/6
[BFRV15]. [a, b] [YH19]. * [BKS16, WH16].
\mathcal{R} [ZZ15]. α [KMMN15, KP14b]. b [Fu16].
B^+ [YBM$^+$10]. β [Dur12]. c [vBCH$^+$15]. C_7
[PS19b]. \mathcal{P}_S^- [Pas15a, Pas15b]. d
[Ezr10, LT13b, LT15b, QD16, RV13]. D^2
[JKY15]. Δ [ZW10]. $\Delta = 9$ [CL15]. $\Delta \geq 6$
[WLW11]. $d \times d$ [KA17]. e [MN11].
$E = I + T$ [BV11]. ϵ [Aka14, Ezr10]. f
[ZZ18]. F_2^m [GSA$^+$19]. g [WH16]. γ [Dur12].
$GF(2)$ [VSP18]. $GF([2]^m)$ [NCP18, nXICL14]. $GF(3^m)$ [PCH13].
$GF(n^2)$ [CLY11]. $GF(p)$ [FLMQ10]. $GF(q)$
[LPdS10]. H [Szy12, GLPR19, GHvH13].
H_1 [SR11]. $\{k\}$
[ALT15, HK16, LT13b, LT15a, LT15b,
SGM13, Tur12, ALT15, ALT18, BK10,
BYK14, BT16a, BIR16, BN10b, BMJC17,
CLZ18, CCH$^+$14a, CP10, DM13, DW10a,
DG14, D10, DK14, EFKR10, FLPS15,
FGKU15, GLPR19, GGG$^+$14, GGF13, Gra15,
HLY11, HL12, Hill14, JKY15, Joh14a, KSK13,
KZP10, KP14b, KM16b, Kun18, Laut18b,
LLT14, Lee10, LSW17, Li10, ML10b, Mor11,
NR17, Nut18, Pra12, Pue11, SW13, SSS15,
SSKA17, Suk19, Tusu13, WZL12, Xav12,
YL16b, Zal11, ZJN10, ZXZL11, ZLS$^+$17].
k = 2 [SSS15]. K_4 [LSK17, WW18].
k$p + IQ$ [LZ12]. L [LM16]. L(2, 1)
[DL13, JSR11, PG12]. $L(\delta_1, \delta_2, 1)$ [Cal13].
$L(j, k)$ [WL12]. L_1 [DGK14]. λ' [CLM12].
L_2 [LWX14]. m [Kok17, LX13c, Nut18].
$M(k)$ [WW15]. F_2 [AH17]. F_3^m [CCH14b].
Z [GPD17]. $GF(2^m)$ [LiChL11]. $m \leq 3$
[Hav10]. n
[BN10b, GH14, Kok17, LWL11, LL10c,
RARM12, SD13, WH16, YYYZ12, YYYH13].
$O(1)$ [YBMK15]. $O(1.587^\alpha)$ [MTA10].
$O(d^3\alpha^2)$ [KA17]. $O(n)$ [CG10b]. $O(n^2)$
[BCNPL14, CPW11, Pol18]. $O^*(1.84^k)$
[CCF14]. ω [FS14, IL12]. P [Lau11, NHK15].
p^2 [WXCK19]. P_2 [WNFC10]. P_3
[MS18b, TY13, Tu15, TZ11]. P_4
[BDNVP15, BKN$^+$12]. P_5 [BL14]. P_6
[Mos13a]. π [vG18]. $\lambda/3$ [BF17]. Q
[CB18, MS16, CA17, Sal12]. r
[AK10, BGJ$^+$16, BWZ12, KdER$^+$14, LZ10a].
$r = m - 1$ [LP10]. $S_n(132)$ [Vaj18]. Σ
[BR10b]. st [SS19a]. $TF_2^n = 1, c = 2|C_{max}\times$
[LHW*16]. W_1 [MS18b]. X [TX11].

- acyclicity [Dur12]. - Approximation
[ACL18, EK11, GKW15, Tak16, YBMK15].
- arboricity [NN17]. - ary
[GH14, YYYYZ12, YYYYH13, Bae13].
- Attribute-Anonymity [SSS15].
- automata [IL12]. - bent [GPD17].
- bottleneck [YWC11]. - calculus [vG18].
- CNFs [BT16a]. - code [TX11]. - colorable
[Hoc11, WX13, LZXS16]. - coloring
[AD18, NS11]. - colorings [Szy12, ZZ18].
- coloured [vGLM12]. - colouring [Lei17].
- connected [CLZ18, DFS10, GLY11,
LZ10a, Nut18, Wid17]. - Connection
[LM15]. - connectivity [HL12]. - covered
[GH14, LWL11, YYYYZ12, YYYYH13]. - Curry
[SeF14]. - cycle [WLW11]. - cycles [Zha10b].
- deleted [ZSY13]. - dimensional
[Jan12b, LL10c, QD16, RARM12, RV13,
WH16, YBMK15, ZXHS10]. - discrepancy
[Aka14]. - disjoint [Chel16c, LL10c, PI19].
- distance [Kun18, Suk19]. - DNF
[Lau18b]. - dominating [BYK14, Nut18].
- domination [BYK14, AL15].
- dominations [ALT15]. - edge
[GLPR19, NT14, Tak16]. - edge-
[SSS19a]. - edge-colored [OM17]. - edge-connected
[Mou19]. - edge-connectivity [Sch13b].
- entropy [CA17]. - extra [GH14]. - factors
[GGG$^+$14]. - fault [AMRR11, SS12]. - flows
[DS15, YLY11a]. - free [LX13c, Mos13a, BL14,
DP18, GLPR19, GHvH13, LSK17].
- Gabriel [KSV15]. - gap [LWXZ14].
- good-neighbor [LTK$^+$19, WH16]. - gram

AKF [KDH15]. al [PLPW13]. algebra [BNRC10, Str16, GN10]. algebraic [GN11, KSBT13]. Algorithm [HZSL05, WZQH16, AR18, AK10, Ada11, Aku10, AR13a, Ale13, AR13b, Ara10, Ars18, AGW13, ACL18, Baec13, BGI+12, BL12, BMB16, BP11, Bir11, Bol14, BES17, CCF14, CC13, CJ11, CaD13, CR18, CCL10, CZD14, CCXW12, CCT14, CNPS15, CP10, Deo12, DJZ+15, Dur13, EN17, EGK13, EKN1, FBD18, FZ13, FCLCR17, FKR+16, FGG+10, FLP+18, FY13, FB10, FS12, GL11, Ger12, GM13a, Ghi14, Gio18, GM15, GK10, GM13b, GPT16, GJ19, HCCG15, HIHJ+12, HWJ96, HMS16, HAM11, Hou10, HHT10, IS10, Ili13, Ili18, JAH16, JSo11, JSR11, Kak15, Kat16, KC11, KT16, KM16a, KN13c, KKR+13, KM16b, Kun18, Kut12, Lee10, LiCyChL10, LTWS11, LFZJ14, LSS15, LT15b, LFW+18, LLWH13, LXX14, M.15, MK16, Man10, MNV11, ML10a, Mat15, MK11, Min11, Mön15, MOM17, MN14, NB12]. Algorithm [NG10, NHK15, NT14, iP13, PP13, PC18, PI19, Pea16, PR17, RR16, RS12b, Rza14, SS18, Shi12, Sor10, SW12, SW19, Svi12, TLL16, TNN11, Tak16, T18, TCX10, TFI11, TVB15, Ts19b, TZ11, Tu15, Vg11, WS10, WCZZ12, WWB15, Wav14, XN12, XTTH12, nXIC14, Yam19, YZZX12, YLZZ18a, YBMK15, YW12, YL17, Zeh16, ZHH10a, ZGLY12, ZJX+11, EFKR10, LREIMBMV16]. algorithm-based [GPT16]. Algorithmic [CCKP13, Pra12, BFRV15, Car19, DS16].

Algorithms [BFP18, Gav11, AMMY10, Bab17, BK10, BLY17, BYK14, BDI+11, BRFGL10, BI14, BFLM15, CC12, CCH+14a, CZCD13, CP13, Dan17, DDK+15, DDER18, DG14, Doe13, EL10, FLRS11, FY14, Fuj16, GKM+15, GG13, GJ14, Jan12b, KMK18, KV10, Kim10, KK15b, KMMN15, Kra12, Las17, LZ10a, LXDX12, LZY12, LLG14, LS11, LLL18b, LMS14, LV15, LC17, LFXH17, LMI1, MO12, MLW11, Mor11, NS11, Nut18, OKM3, OG10, OZL16, PYHA10, PPN+17, Sal12, Tur13, YBH1K3, YC11, ZJ1N10, ZXXL11]. aliasing [LR10]. aligned [Shi13]. alignment [DM10]. all-one [nXIC14]. all-pairs [Ars18, MN19, OG10]. alliance [YBH1K3]. Allocation [YWcW+14, FP18, Jia11]. almost [BKS16, Ehl17, Elm10, FS13a, Zho16, LFW+18]. almost-increasing [Elm10]. almost-universal [BKS16]. alphabet [AdFEGR11, CK11a, CD19, Kos16].

Alphabetic [Bae10]. alphabets [HN10, LNP11, LGT17, NH+15]. alternate [SW12]. alternating [KDH15, Tsa11, Tsa15, ZXY10, ZX10].

Alternative
associative [BKZ15], assortative [SW18], assumption [JSO11], asymmetric [BGL10, RV17], asymptotic [TD14], asymptotically [Ama11], asynchronous [BR10b, vG18], AT-free [BFLM15], atomic [BR10b, Che18b], atoms [Ivá16, KP12, SM17], attack [ABPS15, AT18, ASM17, Bee16, Blo15, GSY15, KA17, LR18, LC13, LYHH14, Men12, MNP12, OPS14, TC11], attacking [GJ19], Attacks [KN13a, ACD18, Dra16, GLMS18, KM10, Kim10, RS15, TS16, TY16b, WS13, WWBC14], attestation [CWW10], attractor [MTA10], attractors [AMT12], Attribute [XWL16, XWS17, SSS15], Attribute-Based [XWLJ16, XWS17], auctions [Ger19], augmentation [IZ10, ZZ14], augmented [CN18, Fu10], augmenting [EKN11], authenticated [LWS10, LHH11, Nos11, Nos14], authentication [ASA13, Jia16], autocorrelation [EP16], automata [ADF13, AY12a, AL18, BN10a, DK14, HS19, HHK17, IL12, Kos18, RS12a, VB15, Vrg15, ZHZ16], automated [CNKS15]. Automatic [Ghi14, Li15, JKSS19, SSZW16, YEMR19], automaton [EGKL11, Fre10, FG14], Automorphism [DZ12], automorphisms [YTN10], autoregressive [CZD14], auxiliary [GGG+14], Average [Sal12, Cho12, EO13, GFG11, KPSZ11, Li12, LI16, MWZ12, YL11b, CGJ10], averaging [CG15], AVL [ALT16], avoiding [BV10, CH12], aware [AZ14, AHL18, VB19, ZGLY12], axes [AAJ15], axiomatization [AGI15], axioms [GNV14, KL10], axis [Ezr10, MM19a], axis-parallel [Ezr10, MM19a].

backbone [JT15, ZXJ+11], backbones [JT15]. Background [ZD18], backward [Sal12], bacteria [LTWS11], bag [ADG10, KL10], bag-set [ADG10], bakery [Ara10]. Balanced [FP18, AADB+18, Bog10, CGLS16, DM16, FLMQ10, Kam19, LW19, SWF18, YZ19]. Balancedness [MS18a], balancing [AY12b, DHW11], ball [ZLS+17], Bandwidth [STU12, LL10b, WCW11], banner [Mos13a], Base [HM13, LST11], Based [XWLJ16, ASTD14, AdFEGRI11, ABPS15, AT18, Aku10, ASM17, AC10, AMN+10, ABS12, Bab17, Bol10, CPHS18, CYQ13, CZD14, CTHP13, CZZ+10, CDM+11, DWQ10, Dra16, jDX11, EH18, EZ15, Fay16, Gal13, GWJ11, GKCK11, GPT16, GS19, GW16, HF14, HL11, HHTL10, JKY15, yJxW16, JK18, JCC11, KSBT13, KM10, KC17, LXYL12, LK14, LCC17, LZJX10, LFZJ14, Li15, LPdS10, LH10, LMCG16, MG16, MFHMSa11, MMZ12, MM13, Mes15, MGPI12, MS13, MHIU18, NS11, PLPW13, PYYC16, QYWX16, RPL19, SZC+17, Sun16, TNN11, TPL16, TWW17, Tia15, VN17, WWYY11, XPC+10, WX12, XWS17, XZ17b, YCL11, YHLC12, YYZ12, YZH14, YL11b, ZpH15, ZMZ19, ZXJ+11, ZZ13, LZJX10, MGNAB11], bases [FY14, Lag14, LL10d], basis [CLY11, CCH14b, FS12, Ghi14, LLP+18, LiCyCh10]. Batch [MM12, FL16, FTYL14, GY15, LY11, LYF11, LZY12, LZLY12, LZ14, MZC11, SP18], batching [FCNY10, Oro11, TFY11, Zhu12], Bayesian [DJRB15], BCCSP [AdFEGRI11]. BDD [LWZX14, YKD+12, ZZ19], be [AIR17, Att17, CLZ18, DF11, MN15, WZL12, YL16b], Beam [VAC13], beat [JS19, Pol18]. Bee [WZQH16, GL11], behavior [Lee10], behaviors [ZZ11], behavioural [vB12], Bell [QD16], Benczúr [Ber17], bent [BPRMS14, DZQF13, GPD17, GNG11, PZ12, Pas15a, Pas15b, PGZB19], Bernstein [DZ11], best [FT15], best-response
bound

[AS18, ADFM13, Ber11, BGL10, BCKM15, BGSM10, Dar15, FZ13, Ger12, GD13, GNG11, GY10, HYC12, KM11, KTUY17, MCS12, PP14, Pod12, PS19b, Pud12, Shr19, VK18, XGX11, Zha10a, Zho15, vZBSY16].

Boundary [LP13a]. Bounded [MZC11, BEFP11, BU17, BDF+18, BM19, BN10b, DDER18, DTS15, EL10, Feg19, Fie11, FGvL11, GKM14, GJ15, HMS16, IS10, JT15, Jan12b, JSR10, Kor12, LLL18b, MSZ11, MRZ10, Nis92, Pod12, Rac10, RR16, SLDAMP17, TCXT10, XZW15, vE17, CFJ12]. bounded-degree [JT15].

Boundedness [Oan11]. Bounding [DMS12, Fre14, JF15]. Bounds [GW18, KR16, LST11, Q17, XS15, ASTD14, BU17, BT16a, BS17, Cha12, CA17, CP16, DKKY10, DEH+19, Fil11, GW16, KS11, Kos17, LEP10, MO12, Par11, SI18, VSP18, WXZ+12, WLLS08, Wit14]. box [DW12, Sto16]. boxes [BCNPL14, Ezr10, KSBT13, Shp13, eSKAI10]. Boyce [KL10].

Cartesian [SSW16, Che11, DDL18, LZCM10, SSW15, TWZ17, XS15, ZLCM10]. cascades [Cha11]. cascading [NLZ14].

certified [TVB15]. ChaCha [NA19]. chaff [NTD16]. Chain [EAA+16, LP13b, DKZ18, FHvH+15, GW18, K016, MO12, RD13].

Characterization
characterizations [Dur12]. characterized [Koc18]. Characterizing [KHKS16].
chasing [WYLP17]. Chebyshev
[LPdS10, LMC16].

Checking [GQ17, CHK13, DLMV10, Dem18, DBB12, GXZZ13, JUY15, NAD19, SC12, YYK17].
Checkpointing [XMLL11]. checkpointing [CZZ12].

Chinese [GWL18, HF14, LCC17, PYW13].

choice [LLP18, MT18, WMLN10].

Choosability [GHvtHP13, CHR10, Zha10b, Zha13].

chordal-bipartite [CGLS10].

Clique [XWLJ16, ZJ16, AT18, PCK10, WZS18].

clouds [Jia11]. Cluster
[Man10, BD11, BDNVP15, SLS15, TZF16, WZQH16, XPC10].

clusters [QK15].

CMAC [SKK10].

co-banners [Mos13a].

co-chair-free [BG12, BG15].

co-clones [BG12, BG15].

coarse [LH10].

coarseness [DBFMPLV17].

co-comparability [DM19, KM16a].

Codd [KL10]. code
[CWW10, GMS19, MNV11, MIL15, TX11, ZLM17, ZGH10].

codes [AAB16, BB11, GW18, GM12b, Har18, HHL15, Jia18, Kel13, LZ15, Mol18, RV10, RV17, SQLS17, VV11, Vid13, WSI10, KR16].

coding [Bae10, KKL5b, LLP18, Maß15, SPD13].

coefficient [SWW16]. coefficients
[AH17, LT18].

collusion [JPB19, PP10].

coincide [AIS10]. collaborative [GWJ11].

collapsing [SO10]. collection [FC14].

collective [ZSC17]. collision
[AKY13, WS13].

Collisions [VNP10, LT13a].

colony [GL11].

CLEFIA [TS16, WB12].

CLEFIA-type [WB12]. Clique
[Con14, Juk12, WID17, Iba17, LS11, LS15, LSK17, LV15, Val10, YL17].

clique-covering [Val10]. Clique-heavy
[Wid17]. clique-independent [LS11].

clique-separator [Iba17].

clique-transversal [LS11, LS15, LSK17].

Clique-width [Con14].

CLL [ZZZ15].

Clone [SKK10].

CNFs [BT16a].

co-banners [Mos13a].

co-chair-free [BG12, BG15].

co-clones [Tag14].

coarse [LH10].

coarseness [DBFMPLV17].

co-comparability [DM19, KM16a].

Codd [KL10]. code
[CWW10, GMS19, MNV11, MIL15, TX11, ZLM17, ZGH10].

codes [AAB16, BB11, GW18, GM12b, Har18, HHL15, Jia18, Kel13, LZ15, Mol18, RV10, RV17, SQLS17, VV11, Vid13, WSI10, KR16].

coding [Bae10, KKL5b, LLP18, Maß15, SPD13].

coefficient [SWW16]. coefficients
[AH17, LT18].

collusion [JPB19, PP10].

coincide [AIS10]. collaborative [GWJ11].

collapsing [SO10]. collection [FC14].

collective [ZSC17]. collision
[AKY13, WS13].

Collisions [VNP10, LT13a].

colony [GL11].

Fil11, JOS10, RS10, SS18].
Plain text representation of the document:

YWY12, ZHX13. cubic
[LS11, MOW17, Tak16, TY13, XXZ14]. cubic-time [MOW17].
CuCoTrack [RPL19]. Curry [SeF14].
curve [FWS13]. curves
[HZX16, Moo11, RS12b, TXQ11, ZHXS10].
cut [BES17, CCF14, GHK + 18, Ind15, Rus18, Sax10, Zel11, Zha18]. cuts
[Ber12, KLS13, KR14, Xia10]. cutting
[Brã15b, JSO11, Juk12, LT18, M.15]. cutting-sticks [M.15].
cycle [CM17, CZZ + 12, DY10, DX11, GBH12, KN13c, LL10d, SS19b, Tsa11, WLW11, XL15, Yus11, Zeh16]. cycle-embedding [Tsa11]. cycle-radius [GBH12]. Cycles
[Che10a, AMMY10, Cai15, CHF15, DP17, FL12, Hou10, Hua14, Hua18, JST10, Kot12, LZCM10, LW19, MCB12, Nin15, WX13, XS15, YZRC18, ZLCM10, Zha10b, ZW10, Zha13]. cyclic
[Bar13, LH10, SQLS17]. Cyclically
[HN10, vZBSY16]. cyclotomic
[KZ12, WXCK19].

D [EAA + 16, JSZC15]. DAA [CL10].
daoen [CCT14]. dag [LR319]. DAGs
[PWC + 15]. Dantzig [CFMT16]. dart
[KS12].
Data [CZD14, SL19, ZJ16, BL10, BVP12, BOV15, Ca13, DG16, DDPBT11, ED17, FKC13, GL15, GS10b, HL18, HLY11, IMCP15, KR10, KZP10, KWH16, SLL13, Tsu18, Vrg15, WZS + 18, ZM19].
data-flow [CdA13]. data-link [DDPBT11]. databases
[GHK11, KN13a, KRV16, SS17]. dates [OZL16]. DCell [L19]. DDoS
[AT18]. de-parallelization [YEMR19].
de-randomization [DTS15]. Deadlock
[GS10c]. Deadlock-freeness [GS10c].
decay [SWLX15]. Decidability
[GS12, CS16a]. decidable
[BE16, CY15, FG18b, Oan11]. Deciding
[BJKZ14, Fü19]. Decision [SLdAMP17, BCS15, CWY15, GJR10, JKS10, SLC15].
decoding [Vid13, WS10]. decomposing
[STMD18]. Decomposition
[MRZ10, Bar10, CT16a, NHK15]. decompositions [EN17, SS19a]. decrease
[RR16]. decrementation [CGG14].
decryption [SM10a, SM10b]. Decycling
[LRSS17, LKF15]. DED [BB11, RV10].
deduplication [BV12]. Deep
[LCC17, YLZZ18a, YLZZ18b]. defect
[MZQL14]. defense [AT18]. defined
[nXlCL14]. defining [MMKK18]. definitive
[AMT12]. definition [LW10L]. definitive
[DMS12]. defogging [GPT16]. degenerate
[BS17, DGG + 19]. Degree
[CFJ12, HL16, YZRC18, BM19, Cai15, CLZ18, CQ12, Dan14, FGvL11, Hoc11, HKW18, Hua18, JT15, LS15, Man19, MRZ10, Nin13, Rac10, RZ10, SW18, WW11, WLW11, YH19, ZW10]. degrees
[MS18c, Zha11]. Delaunay [AP14]. delay
[BEFP11, WD16]. delayed [LMCG16].
Delay [BGL10]. Delegation
[XWLJ16, XWS17]. deleted [ZSY13].
deletion [BD11, BDNVP15, CGJY12, Tsu19b, CP13, LF + 18]. delivery
[LYF11, LZCX12, TFY11]. demand
[AHLS18, NLXX15]. demand-aware
[AHLS18]. demosaiing [YLGC16].
Denial
[Bee16]. dense [Syz12, VSP18]. densest
[BK10, CCH + 14a]. Density
[Did13, AT18, BI14, SH17, SS10b].
dependence [AAC + 10]. dependencies
[PH11]. Dependency [CZZ + 10].
deck[FM18, GM12a, JC10, KMS19, KY12, LCZ12, MK11, MS11b, SLC15]. deposits [Bee16]. depreciable [ZZXL11]. depth
[CRY15, GJ11, JSZC15, MS18c, PP + 17, Pod12, Szi18]. depth-first
[PPN + 17]. derivation [YY17]. derived
[DCH12]. deriving [CLQS12, GNV14].
descents [Che18b]. description [XZ18].
Design [PGZB19, MZQL14, VLV15].
designated [SY15a]. designs
[AHLS18, GD13, KDH15]. destination
[Kar17]. Desynchronization [ASA13].
Detecting [FLPS15, RS10, SML + 10].
detection [CWW10, Ksh11, PYYC16, SCL+11, ZLM17].
detector [BR10b, MG16]. deteriorating [LJ15, MZC11]. deterioration
[LL10a, ZLM17]. determinacy [Had18, Le 19]. determinants [Bir11].
determination [JK19]. Determining [MTA10]. determinism [KZP10].
Deterministic [Cha13, DP12, LZ10a, BN10a, BDPP18, FS14, LV13, JKS10, KK15b, KP14a, Kos18,
NLZX14, SSSM11, TK15, YYK17]. Developing [Far10]. developments
[SeF14]. DFA [Val12]. DFS [JLMO17]. DHA [AKY13]. DHA-256
[AKY13].
diagnosability [Che18a, CLQS12, CLS13, GHL18, LTK+19, Tsa15, WH16, YYDL11, ZX10].
Diagnosable [TC17]. diagonal [Pie15].
diagrams [CV12, LT13c, MK14]. Diameter [CFJ12, AR18, BDF+18, BK18, Che10b, DGR15, FX11, KMK18, ML10b, WL12, ZFJZ11, Zun18]. diameters [PC19].
dichotomy [BR12, BM19, DFdFT16, KP12, Mar11]. Did [Kar17]. difference [Li15, SWF18].
different [DKNQ18, Ger19]. Differential [DMSD18, LSLY11, LYHH14, Sun11, ZW14, Blo15, Bog10, GLMS18, MNP12, SB19, SDM14, SpdR13, TS16].
[WWBB15]. diffusion [AFPT10, GHC15, MG16, SM13, THS12, WB12].
diffusion-driven [MG16]. digit [KWH16].
digraph [Bor16, GJZ+12]. digraphs [AALL16, BJH15, BGP12, Cro15, JLMO17, LX13c, LKF15, LjL18, Nin15, PT11, RT13, SZA18, XZW15, CLM12]. dihedral [YLI1a].
dilation [SI18]. Dilemma [Pel10]. Dillon
[BPRMS14]. dimension
[FHvitH15, Gill14, GSR+14, HM13, Lai16b, MSZ11, Mos11a, ZLN19]. dimensional
[IK15b, Jan12b, KS10, LL10b, LL10c, PYHA10, PYTH11, QD16, RARM12, RV13, TNN11, WL11a, WH16, YBMK15, ZHXS10, Zho16]. dimensionality [GL15].
dimensions [Jor12]. Diophantine [Tys13].
direct [CBSV11, EGKL11, JKS10, LZ15, Mei18]. Directed
[JSZC15]. directions [Ang17]. discarding
[DS13]. disconnected [MK16]. discount
[Rud17, CR18, CHK13, Che18b, Fil18, FIV15, yJxW16, KZP10, LFXH17, MM13, Mes15, TPL16, Nan15].
discretely [PYHA10]. discretely-scaled [PYHA10].
discriminant [ZpH15]. discriminative
[HYYX15]. diseases [VB19]. disequalities
[SR11]. disequality [HHK17]. Disjoint
[LS10, Che10c, Che12, Che16c, KKK14, Kot12, KN13c, Lai16a, LYHC10, LX19, LL10c, LW19, PI13, PI19, Pul16, Sch15, SW19, YZRC18, Yan14, ZGL11, Zha11, ZZ14].
disjunction [MMP15]. disjunctive
[MU15]. disk
[DDK+15, DGR15, DPR17, TX11]. disks
[Shi13]. disparity [FBD18]. displacement
[KK16]. disproving [Li15]. dissecting
[YK13]. distance
[AIR17, AD11, CR18, Fil18, GWL18, Hru12, JF15, Joh14a, Em18, Luc10, LEP10, LP13b, MN19, Mil15, MOV17, QR15, Sut19, TLL16, TLL18, WL11b, WP11, XZ17a, Shi15].
distance- [Joh14a]. distances
[AG19, Ars18, Hill14]. distinct
[FLPS15, GPR10, ZYL15]. distinguishers
[AY14, AP11]. Distinguishing
[KM10, CL15, HYC12, YeCM14, YR16].
distortion [HM10, KM12]. Distributed
[Sch14, BVF12, CCT14, Far10, FKC13,
FCLCR17, GS12, Kak15, Ksh11, LQL+17, TNN11]. Distribution [EAA+16, CKP16, LLP+18, MP13, YL11b].

distributions [MH3U18, PPN+17, Suz18, XTT12].

divide [AR13a]. divisible [HM18].

Division [HZSL05, Bir11, MN14]. division-free [Bir11]. DNF [Lau18b].

Division-free [H1M18]. DNF [Lau18b].

do [SW18, Tys13].

DOM [Ama10]. DOM-trees [Ama10]. domain [BBR+18, Str16]. domains [Gil14].

domatic [TLW16]. Dominating [BdSL15, NS11, AKH16, BU17, BYK14, BM19, CCT14, Den14, GG18, HHL15, Jhl14a, KP13, Krz13, KM16b, Kun18, Lz10a, LMS14, LLW15, Nut18, RS19, RR16, SS12, Sli12, SW19, Suk19, Waw14].

Domination [MC15, ZLCM10, AR18, ALT15, BL14, BFLM15, BH17, CCKP13, gCF15, CPW11, DW10a, Den14, DLN11, FM19, Jha15, JPB19, KM14, LX17, LZCM10, PP13, Pra12, Sie19, VK18, X1S15, ZLJS18, ZS18].

dominations [ALT18]. don't [CP10, NR17, ZZH10a]. Double [ZLJS18, BS11, TX11, LST11].

Double-Base [LST11]. doubling [MS12].

doubly [FR12, Laz10, PP10]. Doubly-Constrained [FR12].

doubly-exponential [Laz10]. down [LTK+19]. Downhill [gCF15]. Drawing [BB10+12, Fra10].

drawings [Ang17, CY17, DKL+12, Did13, LM16].

Drazin [ZQJ+15]. driven [MG16]. DSA [Dra16].

dSS [JK18]. dual [Har18, SQL17]. dually [BFLM15, Lei17, PG12]. due [GM13a].

duplication-random [BV10].

Dynamics [LWH13, Che16a, FT15, ZKXY10].

e-cash [BB15]. E-passport [LZJX10]. E0L [DK14]. EAC [LZJX10]. each [FC14, WCW11, Yus11]. ear [SS19a].

earliness [MM15b]. early [DJS13, HLY11, LZLY12]. easier [KL18, ZDQ+17]. Eavesdropping [MP13].

EC [Dra16, Bae13]. Eccentric [DEG+12]. eccentricity [MW12]. EDCA [YW+14].

Edge [Che10b, FS13a, Fu10, KSK13, LX13a, LW19, WD11, BJH15, BT16b, CBSV11, CL15, Cou14, DS16, DX10, EKN11, Fie11, FM19, GLPR19, GG18, HOV13, LYHC10, LX19, MG16, MK16, Maf15, MK11, Mou19, NT14, OM17, SS19a, Sch13b, Sun16, Taki16, VK18, WZL12, XN12, Xu11, Yan14, YeCM14, YL16b, Z11, ZW11, ZL12, ZF10, BBKS17, LM11].

Edge-coloring [FD11].

Edge-fault-tolerant [Che10b, Fu10]. edge-vertex [VK18].

edge-weighted [BJH15]. edges [Ber17, Che10a, Che12, Che16c, CLS13, CHF15, DFMS10, Fie11, MBW19, Zha18, ZLZ18].

Edit [Shi15, Dam16]. edit-optimal [Dam16]. editing [BD11, LSS15, Man10].

Indexed [DK14]. Index [DK14]. Indexing [DK14].
Ano11q, Ano11r, Ano11s, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano16a.

Editorial
[Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h, Ano18i, Ano18j, Ano18k, Ano19a, Ano19b, Ano19c, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i].

Effect
[NB12, CC14, WB12].
effective
[CS16b, Tsu19a].
effects
[DK10, FT15, JC10].
efficiency
[Bog10, SLL13, SLS16, Von19].
Efficient
[BL10, BYK14, CC12, CPHS18, CPTZ13, DK10, HZSL05, Ili13, IL12, JXW16, LLP18, LZZ12, MV13, NN14, OG10, PYHA10, Sim16, WJS10, XLWZ16, ZHSX10, AR18, AJLM11, BGI+12, BL14, BFLM15, BM19, CJ11, CdA13, CK+13, jDX11, HM18, HHJ+12, eSKA110, Lec10, LKC+12, LH10, ML10a, Mes15, Paa16, QX10, SCL+11, TLL16, Tt19, Tur13, VN17, XTH12, YA13, YiN10, YMSA14]. Efficiently
[FWS13, MT10]. eigenvalues
[XZ17a].
eight
[Cal13, RZ10, Sun11]. eight-round
[Cal13]. eight-round
[Sun11]. election
[BEFP11, FCLCR17, LZ10b, MS19, Vay13]. elegant
[ZYC13]. element
[DZ11, Zal11].
element-wise
[DJ11]. elementary
[YGK12]. elements
[DT10]. ELI
[KD13]. Eliminability
[Ind15]. elliptic
[Moo11, ZHSX10]. ellipticity
[ZZ13].
embeddable
[WWLC14]. embedded
[AHR10, ABPS15, AMN+10]. Embedding
[CHF15, DY10, DZFY12, RRR12, YDT10, BR10a, CZWP17, DX11, GL15, KM12, Tsa11]. embeddings
[BR10a, HM10]. emerging
[DWQ10]. empirical
[Sar14]. employed
[MP12]. emptiness
[HHK17, Lan11]. empty
[NMB10]. emulators
[HP19]. encryption
[FG14, JS18, SPdR13, Sun16, Yin10]. encodings
[GSS16, vG18]. encrypted
[ED17]. Encryption
[XWLJ16, CW12, Fay16, HL11, LM91, LPdS10, LHH11, Mes15, Sar11, SY15a, TPL16, WWWY11, XWS17, YL11b, ZY17]. end
[WBC+12]. endomorphism
[FWS13]. Energy
[VN17, AMN+10, AZ14, HM18, NB12, Per17, SO19, SLL13, YA13]. energy-aware
[AZ14]. energy-efficient
[HM18]. Enhance
[NTD16, ABPS15]. Enhanced
[CD19, PP14, AC12, JZ18, TC17, YW14]. enhancement
[CGLS10]. Enhancing
[YBM+10]. Ensemble
[MS15, HHL15]. ensuing
[SS17]. ensures
[CZ+12]. ensuring
[Nin13]. entanglement
[Ito14]. entanglement-resistant
[Ito14]. Entropy
[BI14, CA17, DKZ18, JCC11, Tsa19a]. entropy-based
[JCC11]. enumerable
[BHLM13, CVV10]. Enumerating
[AKH16, Dan14, VML18]. Enumeration
[CGLS16, FLMQ10, LMM15, YL17]. envelope
[Lu15]. environments
[SCL+11]. envy
[Br15b]. envy-free
[Br15b]. epidemic
[YC19]. EPTAS
[KS10]. equal
[EO13, FPY12, LLY12, LX17]. equal-length
[FPY12, LLY12]. equality
[For19, Kan19, Li15, SSS12]. equation
[CYQ13, YCL11]. equations
[Che16a, LXT19, VSP18, XLT+19, ZZZ15]. equidistribution
[Vaj18]. equilibria
[DHW13, MM15a, PPN+17, TSH12, WDT13, SM13]. equilibrium
[CJ11, WC15]. equimatchable
[DE14].

[FLP +18, BGJ +16, Bol14, Cai15, CKK13, DY10, YKD +12, Zeh16]. long-standing
[Bol14, YKD +12].

Longest
[FGKU15, Pol18, BBDS12, BVDP10, Cha12, DG14, Dur13, Elm10, Gra15, IH18, Kos17, RK15, SY15b, CT11]. long-standing
[Bol14, YKD +12]. Longest
[FGKU15, Pol18, BBDS12, BVDP10, Cha12, DG14, Dur13, Elm10, Gra15, IH18, Kos17, RK15, SY15b, CT11].

Lookahead
[LZ78, LZ77-type [KS19], LZ77].

Lower
[Fil11, LEP10, MO12, AS18, AGW13, Ber11, BGL10, BCKM15, BT16a, CA17, CP16, CYQ13, YCL11, EN17, Kun17, Lu15, Pod12, PS19b, Pud12, ZWWL12].

Lower-variance [AGW13].

LP
[DGK +17, GKW15, Vid13].

LP-rounding [GKW15].

LPmkr [LP10].

LTL [MDB14].

Lucky
[ADKM12].

Lyapunov
[CYQ13, YCL11].

Lyndon
[SZ17].

LZ77
[KS19].

LZ77-type [KS19].

LZ78
[FB10, NII +15].

M
[Tho18].

M/G/1
[Tho18].

MAC
[EMS15, OPS14, ZWWL12].

Machine
[LL13, DKNQ18, FL16, FTYP14, GLW12, HKW14, HY14, LL10a, LZCX12, LJ5, MY13, Oro11, OZ16, TCX10, TFI11, WCI15, YW12, YZH14, ZvD10, ZLX19].

Machines
[AAC18, CK12b, EZH16, FCYN10, FY12, GM12a, GM13a, HM18, HL17, Ly11, LZY12, LZY12, LZ14, MZC11, MLW11, MM12, WC15, ZB16, XCY12, HY12].

Mahonian
[KV16].

Majority
[KdER +14, STMD18]. majority-decomposing [STMD18]. makes
[BP11, Dan14, Gy10, KKO10, LS14, MKI11, NH15, Sch12, Shi12, VML18, YL17].
maximally [WZL12].
Maximin [LZ10b].
maximization [DM10].
maximize [LZLY12].
maximizing [EDS11, Fuj16, Lee17, GMM15].
Maximum [AK14, BCNPL14, CP11, FS11, GG18, Mos13a, BES17, BN10b, CQ12, DDK+15, DMS12, GHK+18, GKW15, GP17, Hoc11, Joh14b, KTUY17, KM16a, LL14, LY11, MBW19, MMM+17, MU15, MRZ10, MM15b, NPR17, NG10, Pet12, Rac10, RZ10, STY12, SW18, WW11, WLW11, XZW15, ZW10, BG12, BG15, Shi15, Xav12].
Maximum-weight [BCNPL14].
may- [SSS10].
McFarland [GNG11].
LWXZ14, Man19, MN17, Mon15, MM15b, Ned17, Pas15a, Pas15b, Pie15, RS15, Sch13a, SeF14, Shi13, Shr18, Svi12, Tsa11, Vou19, WP11, Xav12, YRR16, YYW12, YC19.

Notes [CP15, GLXG13, HL17, KLMP18, Nin15, vE17]. notions [IM17]. Novel [nXICL14, FBD18, GCH +10, MGPI12, SaBG17, Sun16, YGK12].

Nowhere [YL11a]. Nowhere-zero [YL11a].

NP [ADKM12, BT16b, Che17, DFdFT16, FK17, GQ17, GI18, HKH17, HWA12, LZSX17, LY19, MM19b, MI17, Rom11, Zha11, Och17]. NP-complete [Che17, DFdFT16, GI18, HWA12, Och17].

NP-complexity [LZX17, Rom11]. NP-hard [GQ17, ADKM12, FK17, HKH17, LY19]. NP-hardness [BT16b, MM19b, MI17].

NP-pairs [Zha11]. Number [LST11, ADKM12, AD13, AH11, BKMT14, Bor16, BS17, BPP +18, CCCN19, CY18, Den14, DN12, DS14, Fie11, F ¨ur19, GMM15, HKW18, HYC12, IM12, JP11, Jha15, JSR10, KM14, L ±P +18, LZLY12, LLL18b, LKF15, LZCM10, LDW14, MY18, MBW19, MKI11, iP13, SLdAMP17, TLWZ16, VK18, WWBB15, X515, XZW15, YK15, ZLCM10, Zho15, ZS18, vL13, vZBSY16].

numbering [MMS15]. numberings [SS19a]. Numbers [LST11, ADKM12, AD13, AH11, BKMT14, Bor16, BS17, BPP +18, CCCN19, CY18, Den14, DN12, DS14, Fie11, F ¨ur19, GMM15, HKW18, HYC12, IM12, JP11, Jha15, JSR10, KM14, L ±P +18, LZLY12, LLL18b, LKF15, LZCM10, LDW14, MY18, MBW19, MKI11, iP13, SLdAMP17, TLWZ16, VK18, WWBB15, X515, XZW15, YK15, ZLCM10, Zho15, ZS18, vL13, vZBSY16].

numeral [GKCK11]. OBDD [Bol10]. OBDD-based [Bol10].

Online [AMP13, EHZ16, FL16, FCNY10, FTYL14, GZ13, Hal10, Hav10, IZ10, LY11, ZLCM10, LDW14, MY13, WBC +12, YXW13, ZXZ11, ZCT +12, CXD +13, Che16a, DKNQ18, DHW11, EGK +12, EL10, FK10, HIMS16, MO12, MLW11, Myi14, MLX15, NZX19, Qi17, SF13, TCXT10, YCL11, YW12]. only [KA17, Sar11]. ontology [BBR +18].

Optimal [Cal13, DM10, EGK +12, FC14, GLO12, GMS19, HM18, JKS10, KLS13, KM12, LGT17, MLW11, NLX15, PPN +17, YYW12, YZZ12, AR13a, Ale13, Che11, CN18, Dan16, Dar15, DDPB11, EP16, Gou15, HHI12, HHL15, HP19, JN12, KMMN15, KM16b, Kun18, LJJ18, LRS19, Suk19, TCXT10, Ts11, Tsu13, Yan14, YW12, Zho16]. optimality [LMSN16, MPU17, XM111, CLM12]. optimally [HHJ +12]. optimiser [LTWS11].

optimization [AMP13, FS12, GL11, Gav11, Lib10, Ser10]. optimizer [JK18]. Optimizing [GN10].
Optimum [TJ14, Vy11, PR17].
Optimum-Path [PR17]. option [CX18].
options [ZPX11]. oracles [WWYY11].
orbit [CYH15]. Order
[KP14b, AKY13, AAC+10, CT16b, CNPS15, Elm12, Lam11, MP15, YL11b]. Order-
[KP14b]. order-preserving
[CT16b, CNPS15, YL11b]. orderable
[PG12]. ordered [Aku10, CG15, CCF+12, KZP10, LABK17, Li10, MS16]. ordering
[WCZZ12]. orderings [CD19, GKPP16]. orders
[´Esi11, FMHL11, Tur12, XYW13, YK15].
ordinals [JKSS19, vB12]. Ore
[BvK15]. orientation
[AD13]. orientations
[GBH12, LLL+11, ML10b]. Oriented
[DN12, OM17, Ale13, AH11, DS14, GLLX12, LKR17]. orienteeing
[GKM+15]. orthoconvex [NMB10]. orthogonal
[AGÁRC+19, LWZ07, LPZW14, SZ18]. other
[BNRC10, JKY15, Kle13]. OTIS
[MHFMSa11, SHFMSA11]. OTIS-mesh
[SHFMSA11]. out-arcs [GLLX12]. out-degrees
[XZW15]. outer
[CCXW12, KP13, LLW15, ZLLZ18]. outer-
[ZLLZ18]. outer-connected
[KP13, LLW15]. outer-planar [CCXW12]. outerplanar
[LL10d]. outerplane [CY17]. outliers
[AAB+19]. output
[CZD14, LXX14, NG10, iP13, PZ12]. output-sensitive
[LXX14]. outputs
[HYC12]. overflow [ABS13]. overlapping
[CT11, SO10, TLL16, TLL18].
P [AT15]. P2P [CF12, FKC13].
P2P-FISM [FKC13]. PAC [Dar15, Zha10a].
package [FC14]. packed [GGF13]. packet
[ZGLY12]. Packing [AHK+17, BTW15, BGJ+16, BHKK11, Bra17, CP15, DLMN11, GJ15, HPY+10, HSM16, Jan12b, KK15a, KLMP18, LMU15, LX19, Shi12, Svi12, WNF C10, Yan14, ZSLW16, AK10]. packings [MO15]. PageRank
[Gro15, Lof14]. pages [Ars19]. paging
[DEH+19, KMMN15]. Paillier
[DGKS14]. Paired
[Che12, Che16c, LTWS11]. Paired-bacteria
[LTWS11]. pairing
[TXQ11, ZY17]. pairings [QYWX16]. Pairs
[STMD18, Ars18, KYC13, MN19, OG10, Zha12]. palindromes
[GPR10]. Palindromic
[GSS16, IH18]. palstars
[RSwW11]. pancake
[IK10, DZ12]. Pancyclic [GLLX12]. Pancyclicity
[LWL11, HMFSa11, Fu10, GLXG13, SHFMSA11, Wid17]. paper
[KK11]. Parallel
[BRMP13, Che11, PCH13, SM19, AR13a, ACL18, BJ18, CZCD13, CK12b, DLRS14, Ezz10, FL16, FCNY10, FTYL14, FPY12, GY15, Ger12, GM12a, GM13a, GBH12, HKW14, Hii14, LY11, Lich11, LYF11, LZY12, LZ14, MM19a, MM15a, MZC11, MM12, Sor10, TFY11, WDT13, nXICL14, YSGY10]. parallel-batch
[FL16, FTYL14, GY15, LY11, LYF11, LZY12, MZC11]. parallel-batching
[FCNY10, TFY11]. parallelepipeds
[Koc12]. parallelism
[ASM17]. Parallelization
[Ito14, YEMR19]. parameter
[CZD14, CP13, GPT16, IS10, KT16, LMS13, MZ15, Tu15, Vid13]. Parameterized
[CJGJ12, FGG+10, GJ14, LZ10b, AK14, BBKS17, BBDS12, BD11, CCF14, CLR13, LNP11, MS18b, PS19a, Tsu19b, vBCH+15]. parameterizing [XTTH12]. parameters
[GD13]. Parametric
[Che17, AL18, DM16, DKNQ18, GHRT17, HK17, DRR11]. parametrization
[RS12b]. Parikh
[EGKL11]. parities
[BGSM10]. Parity
[BS12, Had18, Le 19, SB13, TX11]. parsing
[BRMP13, FB10]. parsings
[KS19]. Partial
[DLMV10, Mac19, BR10a, Elm12, FLRS11, IMCP15, MS12, Par16, Pér17, Qi17, ST18]. partial-observation
[Pér17]. partially
[JLMO17]. particle
[TZF16]. partite
[BWZ12, ML10b]. partition
partitionable [BPW12]. partitioned [Mor16]. Partitioning
BKN+12, MO12, AP11]. partitions [AS18, KLS13, OBT12]. party
TC11, XLWZ16]. Pascal [KK11], passing
[BRI10b, Che10a]. passive [ABPS15].

passport [LZJX10]. password [LWS10].

password-authenticated [LWS10]. past
[LZX12]. past-sequence-dependent
[LZX12]. Path [BPW18, Che10a, Che10c, Che12, Che16c, CZWP17, CDM+11, FLP+18, GBL18, Kat16, LS14, LT15a, LL10c, MMM11, PI13, PI19, SY15b, WL11b, WL12, ZLS+17, ZLNB19, PR17].

pathbreadth [Duc18]. Paths [Feg19, AHK+17, BGJ+16, Bon13, CS16a, DP17, Ghi14, Lai16a, XS15, ZJN10, ZGL11, ZLLZ18].

pathwidth [BvdZ19, Kob15].

Pattern [AD11, BCKM15, ZHZ10b, ACK11, BV10, BPPS18, CNPS15, DGG+19, GGF13, GG13, KKR+13, LS10, NR17, ZA17]. patterns
[BL10, CDR14, JOS10, RS10, SK11, Sch13a, Vaj18, WYLP17, YZHZ13, ZHZ10a].

paucity [Lut14]. pay [Ria19]. pay-TV
[Ria19]. payoff [Gen14]. PCA
[EFMA10, HYZZ15, MI17]. PCA/LDA
[EFMA10]. Pearson [DM10]. peeling

perceivable [BBB+17]. Percolation
[KeDER+14]. Peres [IP13]. Perfect
[LZ15, TGF16, AAB+16, CFMR18, Han17, Mol18, YEMR13, Zho15, WX12]. Perfectly
[San11]. Performance
[YWC11, AMN+10, BML10, BDH+11, PRM14, PRM16, RS12b, SCB13].

perimeter [Gil14]. period
[BC15, Par11, WLLS08, WXCK19].

periodic [AMT12, ABP11, KC11].

Periodicity [GRSS17, Jia18]. periods
[CJK+13]. permanent [BHL17, Jan12a].

permanents [BHKK10]. permutation
[BK10, HWJ96, HAM11, HHTL10, KO16, KKR+13, LK14, LC17, vZBSY16, BCKM15].

permutation-based [LK14]. permutations [BRI10a, Bar13, Kar13, Kok17, MR10, Rus18, VV11, Zal11]. Permuted
[CS10]. permuting [YEMR13]. Perona
[MMKK18]. Perron [ABH+14]. person
[BBB+17]. Personalized [HPP17].

perspective [CGS18, LWSX18, MK11, SO19].

perturbation [ABS12]. pessimistic
[Che18a, GBL18, JP11, Tsa15]. Petersen
[KS13]. Petri [AC12, BE16, FS14]. phase
[LQ1+17, ZZ11]. phrase [PYW+13].

phylogenetic [CDD+11, HMM18, vISS10]. Physarum
[Bon13]. PI [MBW19]. pieces
[LL18b]. piecewise [HS19, KKS15].

piecewise-testable [HS19]. pigeonhole
[BGL10]. Pisot [CZ13]. pitfalls [YMSA14].

place [YEMR13, GGS11]. place/transition
[vGGS11], placed
[KK16]. placement [HM18, YC11]. plain
[QX10]. Planar
[BRI10a, Lu15, WX13, AR18, ADKM12, BCNPL14, BV19, CHR10, CQ12, CL15, CCXW12, Cza13, DG16, Diet13, Fra10, FM19, HRW11, LL14, LSK17, LM16, Mou19, Och17, RZ10, SS10a, WW11, Wa14, XL16, Zha10b, ZW11, ZL12, Zha13, ZLLZ18].

planarity [AHR10]. plane
[AHK+17, AADB+18, DX10, FMLH11, Jor10, Juk12, Pe18, WW11, YN10, ZW10].

planes [LT18]. plus [MY13]. PMC
[Che18a, Tsa15]. point
[AADB+18, BR10a, DFBMP17, FMLH11, FV13, GGG+14, LL14, MM19b, NMB10, NTD16, ZXH10, vGLM12]. point-set
[BRI10a, FV13]. pointing [SSZ16]. points
[GGG+14, Man10, Moo11, ZCC+11].

policies [NLX15]. Policy [XWLJ16, DJS13, LMSN16, TY16a, WDT13, XWS17].

Pollination [WZQH16]. Pollinator
[WZQH16]. polygon
[BBB+17, KM11, NMB10]. polygonal
[Lu15]. polygons [AAJ15, EH18, IM12, LWZ07, LPWZ14, TJ14]. polyhedra
[AGÁRCS+19, Has13]. **polylogarithmic** [GS10a]. **Polynomial**
[AR18, BFLM15, HCCG15, BES17, Brá15b, CYH15, CLY11, CCH14b, DFdFT16, EN17, EKG13, Gil18, Gio18, GP17, GMY13, HYC12, KLS13, LiCyChL10, LT15b, MS18a, Man10, Mil19, Tat19, WWBB15, nXiCL14]. **Polynomial-time**
[AR18, BFLM15, HCCG15, BES17, CYH15, EN17, GP17, LT15b]. **polynomials**
[AH17, GJR10, LPdS10, Mon12]. **polyomino** [Bra17]. **polytope** [KT18].
pooling [KD13]. **popularity** [YBMK15]. **position** [FM18, GM12a, KMS19, KY12, Mos11b, NII+15, Vou19, YZH14]. **position-based** [YZH14]. **position-dependent** [FM18, GM12a, KMS19, KY12, Mos11b]. **Positional** [MN19]. **positive** [CRJ10, HKK12, JT10, Mat15, MN14]. **positively** [EH18]. **positivity** [GQ17]. **possible** [BR12, SKN11]. **Post** [Fin15, Tho12]. **potential** [BDNVP15, Che18b]. **Power**
[BLM10, AT18, BB11, BHL17, DCH12, HKW18, IM17, KSBT13, RV10, Str16, YK13]. **powerful** [YBH13]. **powers** [BFP18, FL12, XZ17a]. **PPP** [BJP+19].
Practical
[OPS14, DHPT10, LWX18, Val12, YTYZ15]. **PRAM** [Sor10]. **pre** [AH17, BBR+18]. **pre-processing** [BBR+18]. **pre-test** [AH17]. **precedence** [BRMP13]. **Precision**
[HZSL05, MN14, TLS+18]. **preclusion** [YWL15]. **precomputation** [LZ12]. **predicates** [Ksh11]. **Predictability**
[CGG10]. **Prediction**
[ST18, CY18, FK10, STAR15, YMJ17]. **predictor** [ARdSP15]. **preemptive** [vBCDH17]. **preferences** [GS17]. **Prefix**
[DHR13, OG10]. **Preimage**
[LP10, WS13, GSY15, MS13]. **prenex** [Har16]. **prescribed** [Che10a, YZ19].
presence [FG18a, TVB15]. **preservation** [AL18]. **preserve** [CS16a]. **preserving**
[ACLS12, Bar13, CT16b, CNPS15, FWH14, GBH12, YL11b]. **prevention** [VB19].
previous [Tsu19a, CT11]. **Price** [YSGY10]. **pricing** [DJRB15, EKG+12, NLXX15].
primal [MP15]. **primary** [Wij10]. **prime** [Agg15, BHL17, CKK13, Den14, DCH12, Shp13]. **prime-power** [DCH12].
primitivity [ZV14]. **principle** [BGL10]. **Priority**
[BC13, CSX16, ZSLW16, vBCDH17, CGG10]. **prisms** [CCCN19]. **Prisoner**
[Pe10]. **Privacy** [SS17]. **private** [AS18, DSPSHJNA18, IK15a]. **private-keys** [K15a]. **Probabilistic**
[BCS15, TL12, CDPB+10, DLO12, DDB12, Ger12, Gio18, HS15]. **probability**
[IF15, WWS12]. **probe** [CGLS10, DFdFT16, Nic19]. **Problem**
[JK18, AR18, AD16, AR13a, APR13, AL18, AMMY10, Bab17, BK10, BLC10, BL12, BLYL17, BGM+16, BHM+10, BBKS17, BR12, BTW15, BBDS12, BRG13, BDNVP15, BES17, BdSL15, BH17, CV12, CCF14, Cha12, CCL10, CCH+14a, CFJ12, gCF15, CCT14, CGJY12, DFdFT16, Deo12, Doe13, DKNQ18, FKR+16, GLW12, GKM+15, GH15, GHRT17, GLO12, Gra15, GMY13, GJ14, HK16, HKW14, HL17, HKH17, Hen16, Hli14, HK17, IH18, JKSS19, JT15, JP19, Juk12, KKKZ13, KS11, KV10, Kos17, LMU15, LHW+16, Lan11, Laz10, LXDX12, LLG14, LS15, LSK17, LSS15, LFW+18, LXJ+14, LM11, M.15, Man10, MU15, Mö15, MSM14, MK11, Mes15, Min11, MS15, Möm15, Mon15, Mor11, Nan13, OG10, PP13, PC18, Pé17, Pul16, RS19, RH10, SS19b, TLL18, Tak16, TCXT10, TZ11, TY13, Tu15, WWWZ13]. **problem**
[AAOW15, AR12a, BNRC10, BFLM15,
[DLRS14]. regression [BMI14, JZ18, Kis19].
regret [KKZ13, XL15]. Regular
[AGHY12, JOS10, Bae13, BMJC17, Cal13,
CG14, CO13, CGR14, DFRS13, Kim10,
LFXH17, RS10, SM19, Shi12, YK13, Yam19,
YC19, ZHZ16]. regularized [Min11].
Reingold [GGI11]. reject [JF15].
rejection [EZH16, FM18, GM12a, KMS19, MY13,
OZL16]. related
[CCH14a, DJ15, DMSD18, GLMS18, HK16,
MNP12, PPH18, RS15, SB19, STU12].
related-key [GLMS18, RS15, SB19].
Relating [CB18]. Relations [HLR11, Mei18, Vág18].
Relationship [Suk19]. relative
[HBL14, IM17, Par11, WLLS08].
relaxations [GE12]. Relaxed
[Kun17, DL13, FKL11, Möm15] release
[AS18, LZCX12, OZL16].
Reliability [CWW10, CCRS14, Ger12, LT13b, LT15a,
LT15b]. reliable [Chr19]. Remainder
[HF14]. remark [Wij10]. Remila [Svi12].
rendezvous [BDPP18]. rental
[MX18, YZZX12, ZFX11]. reoptimization
Repeated [Ksh11]. repeater [BHM10].
repeats [CCF12]. repetition
[BBDS12, HN10]. repetition-free [HN10].
repetitions [BC15, KKO10, Pel15].
replacement [BOV15, LMSN16, YEM19].
replenishment [YXW13]. replication
[RJS10]. reporting [DGKs14, DG16].
represent [CR14]. representation
[JAH16, Pas15a, Pas15b, SD13, Tys13,
Wai10, Zh15]. representations
[Zha11, ZHZ16]. representatives
[AGHY12]. representing
[BBB17, KR10, KR14]. reproducible
[CW12]. requests [Hil14]. required
[WCW11]. requirement [MZQL14].
requirements
[CV12, HKW18, KVK18, ZJ11]. requires
[Laz10]. Research [ZLM17]. reset [JUY15].
residual [LT15b, Zh15]. Residuation
[GS17]. residues [Bar12]. resilience
[ABPS15, DDPBT11]. resilient
[GV14, YL16a, ZY17]. resistance [LP10].
resistant [It14]. resolution
[BGL13, BT16a, CB18, DKL12, Lau18a,
Lau18b, MS16, Pud12, BGL10]. resolving
[Lai16b]. Resource [AIS10, eSKA110, IZ10,
Jia11, Oro11, XCYZ11]. resources [NZX19].
respect [SeF14]. response [FT15].
Responsive [Le18]. restarts
[FCNY10, Win13]. Restricted
[VV11, DW12, Für19, GKW15, GBH10,
Li18, MNV11, MV13, Nín13, Pdl10, RS12a,
WZL12, WS16, YL16b]. result
[EZH16, ED17, HI18, Li10, Tsa11, WYL17].
resulting [ZQJ15]. results
[AD16, AX18, BFRV15, DBFMPLV17,
DRD11, DX10, JKS10, PH11].
RETRACTED [Zha10b]. retransmission
[TK15]. retrieval [Ars19, Tsu13]. reusable
[CNKS15]. revenue [NZX19]. reversal
[BN10a]. reversals
[BN10a, DK14, FKR16, Rus18]. Reverse
[Ger19]. reversible [ASTD14, GY19].
reversing [Win13]. review [YM17].
revised [WYL17]. Revisit [FL13b].
revisited [FR12, HYP10, LT13a, MZ15,
NT14, Ria17, Ria19, RV13, SS10b, TS16,
ZHZ14, ZCT12, WBC12]. Revisiting
[GLMS18, Nic19]. revocation [Ria19].
reward [CX18, ZXXL11]. rewiring
[SW18]. rewrite [Vág18]. rewriting
[Fil13, FG18b, Ket11, Luc15, LG18, SO10, Vág18].
RFID [JF15, JB16]. rich [GSS16]. right
[Bae13, JT10, Kim10]. right-hand [JT10].
right-to-left [Bae13, Kim10]. rigid
[Jor10, Jor12]. rigidity [KHKS16]. ring
[GW18, LG14]. rings
[BEFP11, BHKK10]. risk [CX18, ZXXL11].
risk-reward [CX18, ZXXL11]. risks [SS17].
RNS [Pie15]. road
[FBD18, SZC17, Rom11]. robot
[CDPB10]. robots [FIPS11]. Robust
[MG16, AHS18, EAA16, LXDX12].
robustly [GM12b], robustness [Lib10, Mei12]. role [LXJ+14, MGNAB11].
Role-Based [MGNAB11]. rollback [CZZ+12].
Roman [TLVZ16, ZLSJ18, ZS18]. Root [Pa110, Gil18, ZLY13]. Root-restricted [Pa110].
roots [CCH14b, Mil19, ZKXY10, ZYL15, Zha18].
rotation [ALT16, Luc10, LEP10]. rotations [LP13b, Pa110].
router [MPU17]. Routing [Liu15, YTN10, YYYZ12, YYZH13, CN18, IK10, SM19].
RSA [IK15a, MZ15, SM10a, SM10b].
RSBFs [SLF19]. Rule [MS15, DKL18].
rules [BR12, Ket11, TWW17]. rumor [DF11, Win13]. run [BFKL13, GSS16].
run-length [BFKL13, GSS16]. running [AHR10]. runs [Kos16]. runtime [Che17, FG118b, YEMR19].
S [KSBT13]. S-boxes [KSBT13].
safety [BJKZ14, BD16]. sales [Gou15]. salesman [BL12, BLYL17, Möm15, Mon15].
sampling [BOV15, JKY15, Kun17]. sandwich [Ber12].
SAR [LFZ14]. Sarkar [BB15].
SAT [Kra12, MS13, PS19a, SW13, XG11, XZ17b].
SAT-based [MS13, XZ17b]. satisfaction [DGK+17, Las17, Mat11, ZZ11].
Satisfiability [GW16, ZST13, BB12, LP13a]. satisfying [SSK12].
saturated [GNV14]. Scalable [LLK10, SS16, SLL13, VB19].
Scalar [Bae13, HZ16].
scale [SS16, YWC11, ZCC18]. scale-free [SS16].
scaled [PYHA10, PYTH11]. scanning [ZLM17].
Scattered [CVV10].
schedulability [ABPS15, CSX16, Par11, WLLS08, vdBCDH17]. schedulers [CGG10].
Scheduling [GM12a, JC10, LLI15, Oro11, XCYZ11, AZ14, ACL18, CZCD13, CXD+13, CSX16, DJS13, DKNQ18, DJZ+15, EZH16, FL16, FCNY10, FTY14, FS12, FPY12, GLW12, GY15, GL13, Hav10, HL17, HYK14, KC11, LL10a, LY11, LYG11, LZY12, LZ14, LL13, LZCX12, MY13, MZC11, MLY12, MM12, OZL16, PP14, RDX13, SF13, Sun19, TCXT10, Tho18, TFY11, WBC+12, XZBX16, ZX10, XMLL11, YW12, YXW13, YZH14, ZvedV0, ZLZX19, ZZJ11, ZGLY12, Zha12, vdBCDH17]. schema [WYLP17].
Scheme [ZJ16, CL10, CTHP13, CKY15, DWQ10, DKNQ18, jDX11, EAA+16, EZ15, GS19, HKK12, KDH15, KWH16, LXLY12, LKC+12, LZX10, LHH11, LWW10, LG10, Nos14, OPS14, SW13, SPrD13, TY16a, Tat19, TD14, WWY11, WZS+18, WY11, YA13, YMSA14, YW14, ZY17]. schemes [ADFM13, EP11, FMP12, GHRT17, IN12, LZ12, Nic19, QYWX16, Sar11].
SCS [GKM14]. SD [BS11].
SD-functions [BS11]. search [CBHW10, CYQ13, DT10, DHW13, JB16, LH10, SY15a, SO19, Suz18, VAC13, WIT14, XXZL11, CG10b].
Searching [DLRS14, CW13, KZP10]. SEC [BB11, RV10].
Second [AKY13, MP15].
second-order [MP15]. Secondary [SLF19].
secret [EZ15, HF14, HH15, LXY12, Mas17, QD16, TD14].
secrets [HRS13]. Secure [MC15, ZJ16, Gal13, JPB19, KVK18, LX17, WZS+18, ZY17]. securing [CR10].
Security [BB15, JB16, JK14, Nos11, Nos14, SB19, YMSA14, CTHP13, EMS15, HLR11, HRS13, JK19, LH11, NTD16, QYWX16, RH10, SY15a, YL16a, YW14, ZGLY12, XV12].
security-aware [ZGLY12]. sedenions
37

sign-definite [AMT12]. signals [DM10].
signature [LKC+12, Nos14, QYWX16,
XLWZ16, YMSA14, YW14]. signatures
[Tia15]. signcryption [EZ15]. Signed
[KWH16, DW10a, IMCP15, Rus18].
significant [BG11]. Signum [ZDQ+17].
Signum-function [ZDQ+17]. silent
[Joh14a]. SIMECK [SB19]. similar
[MY18]. similarities [KK11]. similarity
PCK10]. Simon [KKS15]. Simple
[JLMO17, Nan13, SS19a, BBB+17, BP11,
Bir11, BR10b, EH18, EGKL11, Fre14, FM11,
FA17, Had18, IL12, IM12, JSO11, KM11,
Le 19, LMSN16, LTWS11, MM11, ML10a,
MT14, Pet12, Sch13b, TJ14, Wal10].
simple-path [MM11]. simpler
[Bol14]. simplicial [Has13]. simplification
[Fil18]. simplified [LSW17, LL16]. simply
[Sch14]. simulation [AdFEGRI11, SSM11].
Simultaneous [YLGC16]. Single
[LL10a, LZX12, PI13, ZLZX19, ÁCLS12,
CK11a, DJ15, DP12, FL16, GLW12, GPT16,
HKW14, HYK14, LSLY11, LJ15, MY13,
MZR11, OZL16, RV17, SD13, TCXT10,
TFY11, TL12, YW12]. single-level [SD13].
Single-machine [LL10a, LZX12].
Single-source [PI13]. single-vertex
[ACLS12]. Singleton
[AMT12, AdFEGRI11, MTA10]. sink
[XL15]. site [CS16b]. six [YL15]. Size
[LRS19, Rud17, BGL13, CB18, DMS12,
Elm12, GJ11, Han17, Har16, Has13, Luc10,
Pud12, RR16, Sun19]. Size-optimal
[LRS19]. sizes [HM18]. skeleton
[EH18, MK16]. skeletal [NAD19]. ski
[FX18, YZZX12, ZPX11]. ski-rental
[YZZX12, ZPX11]. skyline
[LXX14, SSKA17]. slide [LC13]. sliding
[BJK15, HLT10]. slopes [AD18]. Slot
[YWCW14, WCW11]. SM3 [WS13]. Small
[Bra17, AG19, Aka14, BvdZ19, DD14,
GKS13, HN10, Kobl5, LT18, MZ15]. smaller
[Tsu19a, ZFJZ11]. smallest
[Ama11]. smart [LL10, CL10]. Smooth
[CDM11]. SMS4 [LSLY11]. snake
[RRI12]. snow [SML10]. social
[AFPT10, CS16b, EDS11, Lee17, ZD18]. soft
[BLM10, GS17, SS17]. software
[ABPS15, MZQL14, MK11, SF12]. solid
[AGÁRCS+19]. Solitaire [KTUY17].
Solomon [WS10]. solution
[CYQ13, JAH16, WWWZ13, YCL11, ZZZ15].
solutions [BLC10, BDNVP15, Car19]. solve
[BGR13]. Solving [WFMT16, GKM14, SB13,
Che16a, LXT19, XLT+19, ZDQ+17]. Some
[AX18, BS17, BFRV15, DRD11, DX10,
Durst2, HXZ16, Joh14b, PP18, vE17,
ALT18, CFMR18, DJ15, Har18, Ind15,
KS18, LMS14, LV15, Mat15, Vaj18, WWZ15,
WS16, YK11, ZHXS10]. sort
[zStBn11, WL11a, YWW15, vZBSY16].
sortable [HI11]. sorted [Edh17]. sorter
[EEdh17]. Sorting [Ros18, Dha14, Ger12,
HHT10, LGT17, SKN11]. sorts [PWC15].
Source [ZL17, PI13, ZGH10]. Source-wise
[ZL17]. Space [LFH17, BHKK11, Bol10,
BG11, Cha12, DG16, DTS15, Ezr10, FIV15,
GJ15, HSM16, Jan12b, Laz10, LKK10,
MPU17, Nis92, PCK10, Pea16, Tsu13,
WWBB15, Yam14, Zho16]. space-bounded
[DTS15, Nis92]. space-efficient [Pea16].
spaces [HMS18, KZP10, KS10, MSZ11].
spam [Ars19]. span [CPTZ13, JT16].
Spanners [FGvL11, BF17, ZL17, ZL18].
Spanning [CFJ12, AKH+17, CWYP14,
Cie11, Dat15, FX11, GR13, GR14, HL16,
KM1K18, LYHC10, MY18, PC19, FP10,
Suk19, ZY12, ZHXS13, KT18]. SPARQL
[ZIY14]. Sparse [GE12, BV19, BDNVP15,
BMI14, CHR10,Čv13, DGSN15, GJR10,
MI17, Mi19, MRZ10, YL17, ZpH15].
sparsification [DZ11]. spatial [SSKA17].
spatio [HPP17]. spatio-temporal [HPP17].
special [SI18, WS16]. specializers [Glü10].
specific [GHK11, LLL18b]. specifications
[DIa15, DBB12]. specified
[Ama10, Hua18, SS12]. SPECK [LFW+16].
spectral [AT18, GS10b]. spectrum [AC10].
speed [XCYZ11]. speed-up [XCYZ11].
Speeding [Gue12]. speeds [DKNQ18].
Speedup [ABP11, LChL11, vdBCH17].
[CP13, DRdSS12, LN11, Che18a].
Split-Star [Che18a]. splitting
[AY12b, GPSD17]. Sponsored
[DHW13]. spread [EDS11]. spreading
[DF11, Win13]. squad [YNH+14]. squad
[Kar13, AAB+19, BGI+12, DL13, GH15,
GJ15, JZ18, Mac19, ZKXY10, ZCC+11].
square-freeness [BGI+12]. squares
[BMI14, CZD14, LN11, Min11]. squaring
[NCP18]. Squeeziness [CH12, CHP19].
SRPT [FS12]. stability [ABS12].
stabilization [FZ13]. Stabilizing
[DDPBT11, BYK14, CCT14, HHJ+12,
Joh14a, Kak15, NK15, Shi12, SW19, Tur13,
YBH13]. stable
[BKN+12, DW10b, Muy14, OBT12]. stack
[YEMR19]. stacks [SD13]. stage
[DJZ+15, DW10b, LH11, Mas17, Zlu12].
standard [FTYL14, LM91, Mas17, TS16,
WWBC14, YW14]. standing
[Bol14, YKD+12]. Star [XXZ14, CLS13,
Lai16a, LWZ07, NHK15, RSwW11, WXZ+12,
YLG10, YeCM14, Che18a]. star-shaped
[LWZ07]. stars [BGJ+16]. starting [Mac19].
starwidth [vE17]. stashes [MN16]. STAT
[KV16]. state [Att17, MPGL12, QD16,
TZF16, ZLB11, HYC12]. stateless [AGI15].
statements [GNV14]. states [BE16, NB12].
Static [KR16, OG11, RK15]. station
[PC18]. stationary [CKP16]. statistical
[Car19, KN13a, KD13]. statistically [ZC12].
Statistics [Bar13]. Statistics-preserving
[Bar13]. Statman [SW12]. stealing [LSL16].
steganography [GKCK11, Sun16]. Steiner
[WWBB15, AABCC19, BLC10, GS10a,
Vyg11]. step [AKY13, BR12, FV13, WS13].
step-reduced [WS13]. steps [GKM14].
Stern [ACD18]. sticks [M.15]. stochastic
[Ada11, EGK13, SS18]. stock
[JSO11, LLL18b, TWW17]. straight
[BR10a, BGI+12, Di13, EI18, SS12].
straight-line [BR10a, BGI+12, Di13, SS12]. strategies
[GLO12, Pcl10]. strategy
[FC14, KD13, THS12, BGM16]. stratified
[CCKP13]. stream [KM10, LKR17].
streaming [BBD+12, Cha12, Zel11]. streams
[BOV15, FKC13, VML18]. strengthened
[Waw14]. Stretching
[BVF12]. Stribog [AY14]. strict
[CSS+12, GQ17, KdER+14]. String
[GFG11, ASM17, AGW13, BFKL13, CD19,
CI+13, Deo12, DHT10, FB10, Sa12,
TLL18, APR13]. strings
[AIR17, BFP18, BGI+12, DGG+19, DHR13,
GK14, LS10, Muy14, MR10, PYHA10,
PYTH11, SS12, Zal12, ZZ14]. strip [Svi12].
strip-packing [Svi12]. striping [EMS15].
strips [Jia18]. Strong
[CLS13, HOV13, ML10b, WW18, YZZ17,
AG15, CGY12, DSN15, Duc18,
NN17, BT16a, GW16]. Strongly
[Tat19, EGK13, FK17, LN11, PG12, Pea16].
structure [CPTZ13, JAH16, KR10,
KMM15, LXY12]. structured
[Dia15, LMU15, Tut13]. Structures
[ZZ14, AALL16, CNKS15, Csl12, DG16,
SF17, Ts18, WMLN10]. study
[MK11, SS17]. Sturmian [Pel15]. sub
[YNH+14]. sub-generals [YNH+14]. subclass
[GNG11, Pe11]. subclasses
[ALT18]. subcoloring [Och17]. subcubic
[BPP+18, FL13a, JT16]. subdivided
[FH12]. SUBEXP [Mos11a].
SUBEXP-dimension [Mos11a].
Subexponential [FLRS11]. subformulas
[SW13]. subgraph [AK14, ABP11, BK10,
GK15, KS11, Mui15, SL12, Tak16].
subgraphs [CZ16, Koc18, KL18, LLL18b,
MT10, NN13, SS12, WD17]. subgroups
[ASTD14]. subject [Fuj16, Fe14].
sublinear [BKMT14, Cha13, Sor10, Wu14].
sublinear-time [Cha13]. submodular
Subnetwork \[\text{[YWL15]}\].

Subposets \[\text{[BP14]}\].

Subsequence \[\text{[Pol18, BBD12, BVD10, Cha12, DG14, Dur13, Elm10, IH18]}\].

Subset \[\text{[Xav12, CP11, Elm12, FC14, Fre10, HK16, Nan13, Ned17, XN12]}\].

Subset-sums \[\text{[Nan13]}\].

Subsets \[\text{[EO13, SS18, Tiw14, vzGS15]}\].

Subspace \[\text{[LR18]}\].

Substitutability \[\text{[CM18]}\].

Substitution \[\text{[RK15]}\].

Substring \[\text{[Gra15, OG10, Yam19]}\].

Substring-prefix \[\text{[OG10]}\].

Substrings \[\text{[DG14, FGKU15]}\].

Subtree \[\text{[CCF12, Shi15]}\].

Subwords \[\text{[Wal10]}\].

Successor \[\text{[Zho16]}\].

Succinct \[\text{[Tsu18, BN10a]}\].

Succinctly \[\text{[Att17]}\].

Sudan \[\text{[WS10]}\].

Suffix \[\text{[Dha14, KTV13, LNP11, LGT17, OG10, RK15]}\].

Suffix-prefix \[\text{[OG10]}\].

Sum \[\text{[AG`ARCS19, AX18, BDNVP15, CCXW12, CKY15, CK12b, DS15, DS16, Hua18, JKS10, JN12, Li12, LL16, Mei18, Ned17, Shi13, YZRC18]}\].

Sum-optimal \[\text{[JN12]}\].

Sum-product \[\text{[CCXW12]}\].

Summarization \[\text{[Lei18]}\].

Summation \[\text{[KKS14]}\].

Sum \[\text{[Nan13, Tiw14]}\].

Super-connected \[\text{[ZF10]}\].

Superclass \[\text{[BL14]}\].

Superelliptic \[\text{[AAL16]}\].

Superiority \[\text{[JY12a]}\].

Supermodular \[\text{[Ber17]}\].

Superstring \[\text{[FKR16]}\].

Supervised \[\text{[GS10b, HYYZ15, SaBG17]}\].

Supply \[\text{[RDX13]}\].

Support \[\text{[JZ18, QK11, OG11]}\].

Supporting \[\text{[HY11]}\].

Supports \[\text{[CK11a, Yi110]}\].

Suppression \[\text{[QK15]}\].

Surfaces \[\text{[LT13c, WWLC14]}\].

Surjective \[\text{[ADF13]}\].

Swap \[\text{[FG14]}\].

Swapped \[\text{[MHFMSa11, XPC10]}\].

Sweep \[\text{[GM15]}\].

Sweeps \[\text{[TJ14]}\].

Switching \[\text{[WB12]}\].

Sylvester \[\text{[Che16a]}\].

Symbol \[\text{[Kim10]}\].

Symbolic \[\text{[VB15]}\].

Symmetric \[\text{[Ara10, Ber17, DKKY10, FLMQ10, GD13, KS18, OBT12, SKK10, XPC10]}\].

Synchronization \[\text{[YNH14]}\].

Synchronizing \[\text{[YNH14]}\].

Synchronous \[\text{[vG18]}\].

Synthesis \[\text{[GS12, MIM16, Sch14]}\].

System \[\text{[CC14, GKK11, LKT19, M11, MS19, Ria19, STAR15, TW17, TC17, XLT19, ZLB13, Zha11, BD16]}\].

Systems \[\text{[AMN10, ABH14, BR10b, CVZ11, CZD14, CW15, CSX16, CGG10, DBB12, DK14, FLCR17, Lazz10, MSV14, Ria19, SO10, Vag18, VSP18, ZDQ17, ZLN19, vGGS11, LST11]}\].

Systolic \[\text{[GS10c]}\].

T \[\text{[eSKAI10]}\].

T-Boxes \[\text{[eSKAI10]}\].

Tables \[\text{[PRM14]}\].

Tactics \[\text{[CV12]}\].

Tag \[\text{[JB16, PCK10, YBM15]}\].

Tagged \[\text{[HK12]}\].

Tail \[\text{[Wit14]}\].

Taking \[\text{[BR12]}\].

Tamari \[\text{[BP14]}\].

Tarai \[\text{[IK15b]}\].

Tardiness \[\text{[GLW12]}\].

Target \[\text{[Pel18]}\].

Tasks \[\text{[KC11, ZZJ11]}\].

Technique \[\text{[DJS13, PYYC16, TS16, ZLM17]}\].

Techniques \[\text{[HXX16, Li15, VN17]}\].

Teleportation \[\text{[TZF16]}\].

Template \[\text{[BPPS18]}\].

Templates \[\text{[Las17, XZ17b]}\].

Temporal \[\text{[DRD11, BVDZ19, HPP17, KK15a, Mos13b, SWL15, CFMT16]}\].

Temporary \[\text{[YXW13]}\].

Tensor \[\text{[GM12b, Me12]}\].

Term \[\text{[Ars19, Fil13, FG18b, LG18, SO10, Vag18]}\].

Term-weighting \[\text{[Ars19]}\].

Terminal \[\text{[GS10a, KR14, LT13b, LT15a, LT15b, ZY12]}\].

Termination \[\text{[IK15b, MP15]}\].

Terms \[\text{[IM12]}\].

Ternary \[\text{[DHR13, LWL11]}\].

Tessellations \[\text{[AP14]}\].

Test \[\text{[AH17, BGI12, BPPS18, Ghi14, GJR10, SSS12, Sch13b, GMY13]}\].

Testability \[\text{[KKS15]}\].

Testable \[\text{[KR16, GM12b, HS19]}\].

Tester \[\text{[SY15a]}\].

Testing \[\text{[ABH14, CDP16, CLR13, AHR10, AGZ15, CaA13, CM18, DJ15, IL12, Jan12a, RM18, SLC15, SSZW16]}\].

Tests \[\text{[KR16, vdBCD17]}\].

Text \[\text{[GGF13, Lei18, PYW13, ZK15, ZD18]}\].

Texts \[\text{[BFKL13, YMJ17]}\].

Th \[\text{[HK16]}\].

Their \[\text{[BJMC17, DKC12, IK15a, NVB15]}\].

Theorem \[\text{[BD16, Ber17, Dem18, EGKL11, FL13b, GSZ13, IM12, Mor16, Pud12, Ser10,}]}\].
Shr18, SW12, SSK12, HF14, KS12].

Thorup [HP19]. Three [Koc18, AR18, EP16, EZHI16, HI11, Jor12, PI13, Vaj18].

three-disjoint [PI13]. three-level [EP16].

Threshold [ZZ11, CPTZ13, FGMP12, GS19, HF14, HH15, KLS10, NLZX14, Pod12, QD16, Tho18, TD14, YM161].

thresholds [AD11, ZA17].

Thin [Mou19].

Thorup [HP19]. Three [Koc18, AR18, EP16, EZHI16, HI11, Jor12, PI13, Vaj18].

three-disjoint [PI13]. three-level [EP16].

Threshold [ZZ11, CPTZ13, FGMP12, GS19, HF14, HH15, KLS10, NLZX14, Pod12, QD16, Tho18, TD14, YM161].

thresholds [AD11, ZA17].

Thin [Mou19].
LP13b, MS16, SLdAMP17, Suz18, Tsu18, VB15, VK18, WYLP17, XLZ16, YBM+10, ZY12, vISS10, CFJ12, KT18, Shi15.

tree-automatic [JKSS19]. tree-colorable [XLZ16].
tree-core [ZLS+15].
tree-coritivity [ZLS+15]. tree-like [BGL10, BGL13, Lau18a, MS16].
tree-width [Feg19].
Trees [Krz13, AABCC19, AHK+17, Aku10, AB15, ALT16, Ama10, BR10a, BSM14, BBD+12, CWYP14, Che11, CLS13, CCF+12, DM13, DZFY12, FH10, GS10a, GHK+18, GI18, GR13, GR14, HBL14, HL16, HMSS18, KM12, LNP11, LX17, LYHC10, Luc10, MY18, Maß15, Mis15, Mou19, PC19, PP10, PPN+17, Rus18, SLC15, SM13, Suk19, Tur13, Vyg11, YLM10, ZHX13, ZLJS18, vGLM12, vIL13].
treespace [CDD+11].
treewidth [CO17, MS18b, RR16].
Triangle [ZZ14, LX19, Möm15, PT12, SWZ12, Yan14, YL16b].
triangle-free [SWZ12, YL16b].
triangles [HRW11, Koc18, Zha10b, ZL12, Zha13].
triangulated [LT13c]. triangulation [AAJ15, LL14, SI18]. triangulations [LFXH17, YN10, ZLSX16].
tries [BV11, NII+15]. Triggering [Cha11].
trinet [MOW17].
trinomials [LlChL11, PCH13].
trip [ARdSP15, ZL17, ZL18, ZLNB19].
tripartite [GZM15, NN17].
triple [Att17].
triples [Nin13].
trivial [Ale13, Lat14, OBT12, Tur12].
TSP [BC13].
tuple [ALT15, ALT18, Pra12].
Turski [Tar14].
TV [Ria19].
Tweakable [Sar11].
TWINE [KDH13, TY16b].
twisted [CCYW16, LYHC10, PC19, WYW12].
Two [AIR17, BN10a, LZ10a, LL10b, TLL18, WL11a, Zho16, AADB+18, BT16b, CX18, CK12b, CV10, Dem18, DKNQ18, DJZ+15, FCNY10, GM12b, GBH10, JLdSO+14, KYC13, KT16, KP12, KS10, MLW11, MRZ10, NB12, Nic19, QYWX16, RDX13, SM10b, SI18, SW19, TNN11, TJ14, TC11, TX11, Vág18, WL11b, WL12, WCJ15, XZ17a, XCYZ11, YZRC18, ZvdV10, ZLB11, Zhu12].
Two-dimensional [WL11a, Zho16, KS10, LL10b, TNN11].
two-layer [KT16].
two-level [KYC13].
two-machine [ZvdV10].
two-option [CX18].
two-party [TC11].
two-probe [Nie19].
two-stage [DJZ+15].
two-state [ZLB11].
Two-string [TLL18].
Two-way [BN10a].
type [AB15, ACD18, CZ16, CC14, GJ19, KS19, Li10, LH11, Nin13, SC12, WB12].
type-inhabitation [AB15].
types [OG11].
typing [OG11].
TYT [LIChL10].
ubiquitous [LLK10].
ultralightweight [ASA13].
unambiguous [HS15, IL12].
Unbounded [LYF11, FL16, FTYL14, LY15, MSV14, TFY11].
uncertainty [JCC11, NLXX15].
unconditionally [Tys13].
Undecidability [MSV14].
undecidable [AL18, Ési11, KQ11, Sch14].
underlying [YM17].
directed [BS12, Cha11, Gro15].
unfair [CCT14].
unicyclic [ZLY13].
unidirectional [HCWH15].
unified [CKY15].
uniform [CKP16, CFJ12, DKNQ18, KS10, LZ14, WWS12, WCJ15].
Uniformly [ZCC+11].
Unifying [FCWZ18].
unigraphs [Bar12].
Union [GI18, OG11, Ale13].
Union-Find [GI18].
unique
[AD16, CFMR18, KL18, Mac19, ZLNB19].
uniquely [Für19].
unit
[DDK+15, DGR15, EZH16, GM13a, HPY+10, Hll14, KK16, LZY12, NPr17, Sun19].
unit-size [Sun19].
unit-time [GM13a].
Universal [Fil18, SpdRI3, vGLM12, BKS16, CY17, Csi12, Mei18].
universally [HP19].
unknown [AJLM11, ZMZ19].
Unpaired [Che10c].
unpartitioned [DFdFT16].
unranking [RT13].
unrelated [ACL18].
unreliable [JUY15].
Unrestricted [CG10b].
unsigncryption [EZ15].
unsupervised [PdAL18].
update [DLO12, GLO12, HLT10].
updates [Gil18].
upgrading [LXJ+14]. Upper
[ASTD14, CA17, DW10a, DEH+19, GNG11, SI18, CP16, DKKY10, GD13, KTUY17, VK18, VSP18, XGX11, vZBSY16]. upward [AHR17]. usability [ZGH10]. usage [HPP17, Sto16]. Use [LG18]. Userrank [GWJ11]. Who [CS16b, HKW18]. Using [Moo11, RK15, SLL13, Vrg15, ACLS12, CLT14, CCH14b, DM16, Dem18, FB10, Ghi14, GJ14, HPP17, JUY15, Kim10, LXLY12, LLP18, LSLY11, NTD16, Par11, QD16, RR16, Rus18, Sar11, SpdR13, TNN11, TVB15, WLLS08, nXlCL14, YEMR13, YMJ17, YEMR19, ZZ18b]. utilities [OBT12].}
References

Aleksandrowicz:2017:RHC

Abu-Affash:2019:BBF

Amtoft:2010:ACW

Aichholzer:2018:CBI

Aigner:2015:TAP

Algefari:2016:SDG

REFERENCES

REFERENCES

Al-Bawani:2013:BOM

Anand:2010:NFB

Aman:2012:PEM

Anastasiadis:2018:BTA

Afrati:2011:CTP

Azar:2018:AAAG
REFERENCES

Abrego:2012:VPC

Atallah:2011:PMH

Ahadi:2013:CPO

Aggarwal:2016:IHR

Angelini:2018:CAL

Adamczyk:2011:IAG

Alon:2010:NCD

Ashok:2015:SC

Abdel-Ghaffar:2019:SBS

Aldana-Galvan:2019:MSA

Aggarwal:2015:AES

Akshay:2012:RSR

Aceto:2015:GCA

Luca Aceto, Eugen-Ioan Goriuc, and Anna Ingolfsdot-

Avin:2018:RTR

Abbasi:2010:IRT

Amir:2017:TSH

Aceto:2010:RBG

Arevalo:2011:CEC

Abu-Khzam:2010:IKA

Avni:2013:WDA

Abu-Khzam:2014:MCI

Akavia:2014:ESS

Abu-Khzam:2016:EMD

Akutsu:2010:BAG

AlTawy:2013:SOC

Andre:2018:LPP

Alevizos:2013:OAC

Argiroffo:2015:CDT

Argiroffo:2018:CTT

Amani:2010:CHC

Amani:2011:MTF
Asahiro:2010:WNN

Andrade:2010:CBA

Avitabile:2013:OCO

Arockiaraj:2011:WFH

Akutsu:2012:SPA

Angelini:2017:MDG

Anonymous:2010:EBa

Anonymous:2010:EBb

Anonymous:2010:EBc

Anonymous:2010:EBd

Anonymous:2010:EBe

Anonymous:2010:EBf

Anonymous:2010:EBg

Anonymous:2010:EBh

Anonymous:2010:EBi

Anonymous:2010:EBj

??, July 1, 2010. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

Anonymous:2010:EBk

Anonymous:2010:EBl

Anonymous:2010:EBm

Anonymous:2010:EBn

Anonymous:2010:EBo

Anonymous:2010:EBp

Anonymous:2010:EBq

Anonymous:2010:EBr

Anonymous:2010:EBs

Anonymous:2011:EBa

Anonymous:2011:EBb

Anonymous:2011:EBc

Anonymous:2011:EBd

Anonymous:2011:EBe

Anonymous:2011:EBf

Anonymous:2011:EBg

Anonymous:2011:EBh

Anonymous:2011:EBi

Anonymous:2011:EBj

Anonymous:2011:EBk

Anonymous:2011:EBl

Anonymous:2011:EBm

Anonymous:2011:EBn

Anonymous:2011:EBo

Anonymous:2011:EBp

Anonymous:2011:EBq

Anonymous:2011:EBr

Anonymous:2011:EBs

Anonymous:2012:EBa

Anonymous:2012:EBb

Anonymous:2012:EBc

Anonymous:2012:EBd

Anonymous:2012:EBe

Anonymous:2012:EBf

Anonymous:2013:EBd

Anonymous:2013:EBe

Anonymous:2013:EBf

Anonymous:2013:EBg

Anonymous:2013:EBh

Anonymous:2013:EBi

Anonymous:2013:EBj

Anonymous:2013:EBk
Anonymous:2013:EBI

Anonymous:2013:EBm

Anonymous:2013:EBn

Anonymous:2014:EBa

Anonymous:2015:EBa

Anonymous:2015:EBc

Anonymous:2015:EBd

Anonymous:2015:EBe

Anonymous:2015:EBf

Anonymous:2015:EBg

Anonymous:2015:EBh

Anonymous:2015:EBi

Anonymous:2016:EBa

Anonymous:2016:EBb

Anonymous:2016:EBc

Anonymous:2016:EBd

Anonymous:2016:EBe

Anonymous:2016:EBf

Anonymous:2016:EBg

Anonymous:2016:EBh

Anonymous:2016:EBi

Anonymous:2016:EBj

Anonymous:2016:EBk

Anonymous:2016:EBl

Anonymous:2017:EBa

Anonymous:2017:EBb

Anonymous:2017:EBc
Anonymous:2017:EBd

Anonymous:2017:EBh

Anonymous:2017:EBe

Anonymous:2017:EBi

Anonymous:2017:EBf

Anonymous:2017:EBj

Anonymous:2017:EBg

Anonymous:2017:EBk

Anonymous:2017:EBI

Anonymous:2018:EBd

Anonymous:2018:EBa

Anonymous:2018:EBe

Anonymous:2018:EBb

Anonymous:2018:EBc

Anonymous:2018:EBf

Anonymous:2018:EBg
Anonymous:2018:EBh

Anonymous:2018:EBi

Anonymous:2018:EBj

Anonymous:2018:EBk

Anonymous:2019:EBa

Anonymous:2019:EBb

Anonymous:2019:EBc

Anonymous:2019:EBd

Anonymous:2019:EBe

Anonymous:2019:EBf

Anonymous:2019:EBg

Anonymous:2019:EBh

Anonymous:2019:EBi

Aumasson:2011:CHF

Aurenhammer:2014:SDT

Amir:2013:HCS
Alam:2013:DCA

[AR13a]

Alonso:2013:ABM

[AR13b]

Abrishami:2018:PTA

[AR18]

Arslan:2018:FAA

Baril:2013:SPB

Bajic:2011:CIS

Barany:2012:FSG

Barguil:2015:SIS

Banerjee:2017:RSP

Binucci:2012:DTS

REFERENCES

Blin:2012:PCR

Biletskiy:2018:BBD

Berczi:2017:DHH

Bollig:2013:PFA

Bast:2017:PCE

Badkobeh:2015:IBW

REFERENCES

Bekkman:2016:DSA

Bereg:2012:CGH

Bakhshi:2011:FLE

Bernath:2017:CSS

Boyaci:2017:PTA

REFERENCES

1077, November 15, 2010. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

REFERENCES

[BI14] Cosmin Bonchis and Gabriel Istrate. Improved approximation algorithms for low-density instances of the Min-

[BJMC17] Klaus Broelemann, Xiaoyi Jiang, Sudipto Mukherjee, and Ananda S. Chowdhury. Variants of k-regular nearest neighbor graph and their

REFERENCES

Boutsidis:2014:NSL

Brandstatter:2013:ASS

Bezem:2010:HPM

Bogdanov:2010:DLE

Bollig:2010:ESC

REFERENCES

Dorothea Baumeister and Jörg Rothe. Taking the final step to a full dichotomy of the possible winner problem in pure scoring rules.
Brand:2015:ASR

[Brand:2017:SPP]

Barenghi:2013:PPO

Binkele-Raible:2010:EET

Brânzei:2015:NEF

[Brân15b]

Binkele-Raible:2010:EET
REFERENCES

[Bogdanov:2011:ALG]

[Bastkowski:2014:FME]

[Berwanger:2012:PGU]

[Bonacina:2016:IRW]

[Broere:2017:SBG]

[Bredereck:2016:NHT]
Bender:2015:PIS

Bansal:2017:TAB

Baril:2010:WMD

Boldi:2011:IEF

Bhaskara:2019:APC

Bonizzoni:2010:VCL
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVdZ19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[CA17]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BVW12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BYK14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cai:2015:SCI

Calamoneri:2013:OLE

Carvalho:2019:SEA

Cao:2011:ECD

Chang:2012:EAL

Chia-Jung Chang and Kun-Mao Chao. Efficient algo-

Cheng:2012:RSP

Chang:2016:LET

Colantonio:2010:CCC

Clare:2019:ESF

Chaim:2013:EBA

Caceres:2011:WPT

REFERENCES

101

Cipriano:2010:MHC

Crespelle:2010:UCB

Chassein:2015:AFO

Cucu-Grosjean:2010:PFJ

Cegielski:2014:LRS

Crowston:2010:NML

Crowston:2012:PES
R. Crowston, G. Gutin, M. Jones, and A. Yeo. Parameterized Eulerian strong

[Chang:2011:TCU] Ching-Lueh Chang. Triggering cascades on undirected connected graphs. *In-
REFERENCES

Chakrabarti:2012:NRS

Chang:2013:DST

Chang:2019:VAM

Chen:2010:CPT

Chen:2010:EFT

Chen:2010:UMM

[Che18a] Jing Chen. The pessimistic diagnosability of Split-Star Networks under the PMC model. *Information Processing Letters*, 136(??):80–82, August 2018. CODEN IFPLAT. ISSN 0020-0190.
REFERENCES

PLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

Christensen:2019:ORR

Crochemore:2013:NEC

Cechlarova:2011:EIE

Chapuy:2011:SRS

Civril:2013:NHS

Cheng:2013:SLD

Chaturvedi:2017:NFM

Chen:2018:ORA

Chiou:2011:MIL

Cai:2018:IDC

REFERENCES

[CO13] Cranston:2013:HCR

[CP10] Clifford:2010:FAM

Raphaël Clifford and Alexandru Popa. Maximum subset intersection. *Informa-
REFERENCES

Cygan:2013:SVD

Chung:2015:NIP

Chen:2016:CLB

Chen:2013:EIS

Cygan:2011:CDF

Marek Cygan, Marcin Pilipczuk, and Jakub Onufry Wojtaszczyk. Capacitated domination faster than $O(n^2)$. Information Processing Letters, 111(23–
REFERENCES

Chen:2012:LAP

Chevalier:2010:CSC

Chan:2018:IAA

Christensen:2010:NAF

Croitoru:2015:NQK

Courtieu:2015:IGC

REFERENCES

REFERENCES

[Chhabra:2016:FMO]

[Cai:2019:SCF]

[Chin:2013:SMB]

Chen:2018:RRM

Chen:2013:SOH

Chang:2017:AUD

See [ZHX13].

Chen:2013:INS

Yuhuan Chen, Chenfu Yi, and Dengyu Qiao. Improved neural solution for the Lyapunov matrix equation based on gradient search. *Information Pro-
REFERENCES

Cai:2016:FTI

Czap:2013:NTC

Chen:2017:NPE

Hon-Chan Chen, Yun-Hao Zou, Yue-Li Wang, and Kung-Jui Pai. A note on path embedding in crossed cubes with faulty

Ci:2010:DMB

Damaschke:2016:SCE

Damaschke:2017:RAH

Darnstadt:2015:OPB

Datta:2015:ASC

Dubslaff:2012:MCP

Diaz-Banez:2017:NRC

Du:2012:LCB

DasGupta:2014:CBS

Das:2018:NAP

REFERENCES

REFERENCES

Demba:2018:ECT

Deng:2014:EDS

Deorowicz:2012:QTA

Doerr:2011:QRR

Dantas:2016:UPP

Das:2010:NCN

Dudek:2013:ACR
Andrzej Dudek, Alan Frieze,

Deorowicz:2014:EAL

Das:2016:LSA

Daykin:2019:EPM

Demaine:2017:ASR

Das:2014:RIM

Ananda Swarup Das, Prosenjit Gupta, Kishore Kothapalli, and Kannan Srinathan. On reporting the L_1 metric closest pair in a query

REFERENCES

124

[102x681] REFERENCES
[102x681] 124
[179x646](print), 1872-6119 (electronic).

REFERENCES

Dong:2015:AAP

Dunkelman:2010:EOL

Duris:2014:FPA

Du:2012:LCP

Demenkov:2010:NUB

Didimo:2012:VAC

Dolgui:2018:GPS

Dziembowski:2018:QCR

Dai:2013:RLS

Max Dietrich, Catherine McMartin, and Charles Semple. Bounding the maximum
REFERENCES

Dwivedi:2018:DLR

Dybizbanski:2012:OCN

Doerr:2013:IAA

Diedonne:2012:DNE

Dabrowski:2017:CBG

Dabrowski:2018:CFF

[DP18] Konrad K. Dabrowski and Daniël Paulusma. On colouring (2\(P_2,H\))-free and

[DX10] Wei Dong and Baogang Xu. Some results on

Dong:2013:NVB

Ehdaie:2016:HCR

Even-Dar:2011:NMS

Emek:2010:ACS

Eftekhari:2010:BWK

Esiner:2017:QRI

Ehsani:2012:OOP
[EGK+12] Shayan Ehsani, Mohammad Ghodsi, Ahmad Kha-jenezhad, Hamid Mahini,

REFERENCES

REFERENCES

Ezra:2010:NAW

Frieze:2017:RCS

Farrag:2010:DFT

Fay:2016:ICM

Freschi:2010:FAC

Fan:2018:NDT

Fang:2014:OSC

REFERENCES

Fiedorowicz:2012:ACI

Fernau:2015:CMD

Fildorowicz:2011:AEC

Filmus:2011:LBC

Filmus:2013:ISF

Filtser:2018:UAS

Finkel:2015:ECI

REFERENCES

Flocchini:2011:HMO

Fischer:2010:WL

Fournier:2015:CGH

Fakcharoenphol:2010:SPO

Folwarczny:2017:IMS

Farzanyar:2013:PFM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Frati:2010:NIP

Fredriksson:2010:BMA

Fredman:2014:ISB

Fujito:2013:HGG

Feder:2013:ECA

Fujito:2013:HGG

REFERENCES

Finkel:2014:TCL

Feldman:2015:CBR

Fu:2010:EFT

Fujii:2016:FAA

Furst:2019:HDE

Fournier:2013:DAF

Hervé Fournier and Antoine Vigneron. A determinis-

Fan:2014:BPH

Fu:2014:HAB

Feng:2013:ECE

Freivalds:2010:NFN

Feng:2013:TBS

REFERENCES

REFERENCES

Gu:2014:ECA [GH14]

Gelernter:2015:GLS [GH15]

Guo:2015:JFC [GHC15]

Ghiduk:2014:AGB [Ghi14]

Grimon:2011:EES [GHK11]

Gandhi:2018:MLT [GHK+18]
Rajiv Gandhi, Mohammad Taghi Hajiaghayi, Guy Kortsarz, Manish Purohit, and Kanthi Sarpatwar. On maximum leaf trees and connections to connected maximum cut problems.
REFERENCES

Gu:2018:PDD

Gelle:2018:RUF

Giudici:2017:ASP

Gilbers:2014:VDP

Gillis:2018:MUP

REFERENCES

Shay Gueron and Michael Kounavis. Efficient im-

Grandoni:2015:LRI

Gao:2011:IAB

Gao:2015:IIN

Guo:2012:PAV

Gerault:2018:RAR

REFERENCES

REFERENCES

Gutierres:2019:OGC

Gutin:2013:NEP

Gelade:2010:ORA

Gupta:2011:UBA

Gyssens:2014:CSA

Golumbic:2018:TCR
<table>
<thead>
<tr>
<th>References</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Date</th>
<th>Digital Object Identifier (DOI)</th>
</tr>
</thead>
</table>

Gamard:2017:PRA

Gamzu:2010:PAC

Gnecco:2010:SWS

Gruner:2010:DFH

Gastin:2012:DWC

Gadducci:2017:RBP

Gupta:2019:DTB
Ishu Gupta and Ashutosh Kumar Singh. Dynamic threshold based information leaker identification

Guzel:2019:NMF

Guo:2015:IPA

Grytczuk:2013:OVT

Gueron:2012:SCC

REFERENCES

REFERENCES

CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

Honma:2011:EAL

Han:2017:CPW

Harada:2018:NQC

Hasan:2013:FSP

Havill:2010:OMJ

Harwath:2016:NSP

Holenderski:2014:RBT

Mike Holenderski, Reinier J. Bril, and Johan J. Lukkien. Red-black

[Hedetniemi:2012:SSA] Sandra M. Hedetniemi, Stephen T. Hedetniemi, Hao Jiang, K. E. Kennedy,

Heam:2017:EPT

Hil14

R. Hildenbrandt. A k-server problem with paral-
Haase:2016:CLS

Holzhauser:2017:FPK

Hasani:2014:MTW

[Han:2011:SEP] Xixian Han, Jianzhong Li, and Donghua Yang. Supporting early pruning in

Heggernes:2010:HAM

Hitchcock:2013:BIF

Halacsy:2018:OEE

Hokama:2016:BSA

Huber:2018:GMR

Harju:2010:CRF

REFERENCES

[HPY+10] Xin Han, Chao Peng, Deshi Ye, Dahai Zhang, and Yan Lan. Dynamic bin packing with unit fraction items revisited. *Information Processing Letters, 110*(23):

REFERENCES

Liusheng Huang, Hong Zhong, Hong Shen, and Yonglong Luo. An efficient multiple-precision division algorithm. In Hong Shen and Koji Nakano, editors, Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, 2005. PDCAT 2005: 5-8 December 2005, Dalian, China, pages 971–974. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2005. ISBN 0-7695-2405-2. LCCN QA76.58 .I5752 2005. The authors present an integer-division algorithm that runs three to five times faster than Knuth’s 1981 original. However, there is an error in the renormalization algorithm that is corrected in [MN14], while retaining the speedup.

REFERENCES

Idalino:2015:LMS

Izsak:2012:NLS

Indrzejczak:2015:ECH

Ivan:2016:CAC

[Szabo16] Szabolcs Iván. Complexity of atoms, combinatori-

REFERENCES

[JKY15] Ragesh Jaiswal, Mehul Kumar, and Pulkit Yadav. Improved analysis of D²-sampling based PTAS for k-means and other clustering problems. Information Pro-

Joos:2014:GIC

Joeris:2017:SDC

Joeris:2014:SDC

Johnson:2014:SNM

Johnen:2014:FSS

Johnen:2014:FSS

Johnson:2010:GGR

REFERENCES

181

Jor12

JOS10

JPB19

JS18

JS19

JSO11
Klaus Jansen and Roberto Solis-Oba. A simple OPT +1 algorithm for cutting stock under the modified integer round-up property assumption. Information
REFERENCES

Junosza-Szaniawski:2010:GCN

Junosza-Szaniawski:2011:CEA

Jia:2015:DIE

Jonsson:2010:AIP

Janczewski:2015:CCB

Janczewski:2016:HCS

REFERENCES

Jukna:2012:CPC

Jourdan:2015:RCS

Jiang:2018:GHE

Khazaei:2017:COA

Kakugawa:2015:SSD

Kalinich:2012:FWP

Kamiyama:2019:NBF
Naoyuki Kamiyama. A note on balanced flows in equality networks. Information
REFERENCES

Kim:2010:NFA

Kissel:2019:KRC

Kulich:2011:PPS

Kamiyama:2015:PAT

Kiraly:2015:RDA

Kapelko:2016:DCU

Kaski:2014:FMS

Petteri Kaski, Mikko Koivisto, Janne H. Korhonen, and Igor S. Sergeev. Fast mono-

Kowaluk:2018:USE

Klein:2013:CBH

Kim:2018:NCP

Kozma:2010:CTG

Karpinski:2013:OCP

Keller:2010:DAS

Katz:2011:SBR

Kumamoto:2012:ODE

Kolliopoulos:2013:VCM

Klavzar:2014:DNE

Kohler:2016:LTA

Kundu:2016:LTA

Kazemi:2018:AAC

Kovacs:2015:OSA

Kosinski:2018:CT

Kovalyov:2019:CPF

Kantor:2013:ASD

Kapoor:2013:MFW
Kalpesh Kapoor and Hi-

Zbigniew Kokosiński. On generation of permutations of m out of n items. *Information Processing Letters*, 124(??):1–5, Au-

Keil:2013:CMO

Kociumaka:2014:FDF

Krasnoshchekov:2014:OHS

Korman:2018:LSC

Koukouvinos:2011:ACV

Kirsten:2011:RSR

REFERENCES

CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

Katrenic:2011:IAB

Kochol:2012:BTG

Kauers:2018:SPS

Kosolobov:2019:CLT

Karaahmetoglu:2013:NMD

Keszocze:2018:CEM

Kshemkalyani:2011:RDC

[196]

Khennoufa:2013:ECT

Kaiser:2015:GGH

Krumke:2011:MCF

Krumke:2012:EMC

Kobayashi:2016:FFP

Khoshkhah:2018:FSS

Khoshkhah and Dirk Oliver Theis. Fooling

Kawamura:2017:MSN

Kuchkov:2012:EET

Kuchkov:2012:EET

Kun18]

Kun17]

Kun18]

Kun18]

Kunjre:2010:AAB

Sreyash Kenkre and Sundar Vishwanathan. Approximation algorithms for the Bipartite Multicut problem. Information Process-
REFERENCES

See [Mos11b].
REFERENCES

Kolbe:2010:RND

Lev-Ari:2017:COS

Lai:2016:CAS

Laihonen:2016:MDR

Lampis:2011:KOV

Lange:2011:HEP

Lasota:2017:EAC

[Las17] Slawomir Lasota. Equi-

Lauria:2018:CET

Lauria:2018:NAK

Lazic:2010:RPB

Lu:2013:CSA

Lin:2017:LTA

Lee:2017:DCN

Lee:2017:AHM

Lee:2010:EAF

Lee:2019:MDI

Leiva:2018:RTS

Louza:2017:OSS

Lin:2010:EAC

Lin:2011:TCT

Li:2010:FTR
REFERENCES

Li:2012:ASW

Li:2015:APD

Libura:2010:NRT

Liu:2010:TFG

Luo:2015:SVM

Lin:2018:CPD

REFERENCES

Liu:2010:MMD

Liu:2010:MCB

Lin:2013:MSC

Levcopoulos:2014:NQM

Li:2016:SWS

Li:2011:SBP

REFERENCES

Li:2010:ETI

Luo:2010:PAE

Li:2014:AAR

Lee:2010:SRT

Lai:2011:MOL

Li:2018:CGG

Lichen:2018:AAC

Junran Lichen, Jianping Li, and Ko-Wei Lih. Approximation algorithms for

Lai:2018:EQK

LeMerrer:2014:HTF

Liu:2013:DMS

Lai:1991:PNB

Lucarelli:2011:IAA

Liu:2016:RCN

Lokshtanov:2013:IFP

Lin:2014:FAS

Min Chih Lin, Michel J. Mizrahi, and Jayme L. Szwarcfiter. Fast algorithms for some dominating induced matching problems. *Information Processing Let-
Lee:2016:SPO

Lambert:2015:CHS

Lin:2017:AWN

Le:2011:GCS

Lofgren:2014:CMC
Lee:2010:PRL

Lozin:2013:BPS

Luccio:2013:CRN

Lima:2010:PKE

Lingas:2014:CNC

Li:2017:ADS

Lou:2011:BTO

Lamberger:2013:MNC

Lee:2017:ISI

Lin:2013:CTR

Liu:2013:CGV

REFERENCES

Li:2011:PTC

Li:2010:GCP

Lu:2018:WLS

Liu:2014:NBP

Lingas:2007:NCM

Li:2013:EFT

REFERENCES

Li:2013:GMF

Liang:2013:MFA

Li:2017:CTE

Lin:2019:VKE

Li:2012:IAA

Lu:2014:CRU

Lai:2012:RHB

Lv:2019:IZN

Liu:2014:FOS

Li:2011:OSU

Liu:2019:HPN

Li:2011:UPB

Li:2010:PES

Zepeng Li, Enqiang Zhu, Zehui Shao, and Jin Xu. Online algorithms for scheduling unit length jobs on parallel-

Massberg:2015:GHC

Matsuki:2012:ACC

Matsubara:2015:EAA

Moezkarimi:2014:PGF

Ma:2019:MPI

Merouane:2015:SDG

Malekesmaeili:2012:TBL
Mehrnoush Malekesmaeili, Cedric Chauve, and Tamon

Martinez-Garcia:2011:FRB

Mihaljevic:2012:ISR

Morinaga:2018:CBN

Magdon-Ismail:2017:NHI

Milshtein:2015:NBC

Moshe Milshtein. A new binary code of length 16 and

Martin:2010:SCE

Manak:2016:EET

Miao:2010:SOC

Min:2011:OSO

Mor:2012:BSI

Baruch Mor and Gur Mosheiov. Batch scheduling

Meshram:2013:IBC

Mavronicolas:2015:CPE

Mor:2015:NMM

Madireddy:2019:AHG

Madireddy:2019:NHG

Maiseli:2018:PMM

Malvestuto:2011:CSP

Mancini:2017:MME

Magirius:2015:CPL

Marenco:2015:TAN

Meshram:2012:IBC
Mukhopadhyay:2014:EMP

Momtazi:2015:WWC

Mitzenmacher:2016:HPS

Mercas:2017:NTG

Makinen:2019:APB

Minier:2012:RKI

Monnot:2015:NTS

Moo11

Morizumi:2011:IAA

Mos13a

Raffaele Mosca. Maximum weight independent sets in...

Mahajan:2016:LOR

Maneth:2018:BMT

Marcilon:2018:ITH

Meyer:2019:ERV

Matsui:2014:FPF

Mahajan:2016:VVM

Meena Mahajan, Nitin Saurabh, and Sébastien

Moser:2018:LDD

Nandi:2015:CDF

Nakade:2012:EIE

Ning:2015:CEC

Niehues:2018:FMR

Nederlof:2017:SNM

Nash:2010:OSA

Neggazi:2015:NSS

Nicholson:2019:REA

Nakashima:2015:CLT

Ning:2013:FTD

Ning:2015:NCM

Ning:2016:SCE

Nisan:1992:PGS

[N. Nisan. Pseudorandom generators for space-

[Nose:2014:SWS] Peter Nose. Security weaknesses of a signature scheme and authenticated key agreement pro-
Nandy:2017:FAM

Nicolae:2017:PMM

Narayanaswamy:2011:DSB

Norouzi:2014:SEC

Nguyen:2016:EFV

Nutov:2018:IAA

[Ochem:2017:SNC] Pascal Ochem. 2-subcoloring is NP-complete for planar comparability graphs. Information Processing Letters, 128(?):46–48, Decem-
References

www.sciencedirect.com/science/article/pii/S0020019011001918

Papadopoulos:2018:FAG

Pai:2019:IDC

Park:2010:VSA

Pai:2016:VTF

Panday:2018:FWT

Pearce:2016:SEA
David J. Pearce. A space-efficient algorithm for find-
REFERENCES

Pasalic:2019:DMS

Puente:2011:NRL

Park:2013:SST

Pang:2013:IMA

Liaojun Pang, Huixian Li, Qingqi Pei, and Yunmin Wang. Improvement on Meshram et al.’s ID-based cryptographic mechanism. *Information Processing Letters*, 113(19–21):789–792, September/October 2013. CODEN IFPLAT. ISSN 0020-0190

Piestrak:2015:NRA

Pang:2013:IMA

Liaojun Pang, Huixian Li, Qingqi Pei, and Yunmin Wang. Improvement on Meshram et al.’s ID-based cryptographic mechanism. *Information Processing Letters*, 113(19–21):789–792, September/October 2013. CODEN IFPLAT. ISSN 0020-0190

Polak:2019:NLB

Policriti:2011:CEA

Pagh:2012:CTC

Policriti:2011:CEA

Puente:2011:LSQ

Puleo:2016:CDM
Pang:2015:TSD

Peng:2010:EIA

Peng:2011:IOD

Peng:2013:FGP

Park:2016:TCB

Pasalic:2012:MOB

Qin:2016:VTQ

Qi:2017:BPO

Queyroi:2015:SDC

Rackham:2010:CCC

Rajasingh:2012:MWH

Strahil Ristov and Damir Korenić. Using static suf-

Reis:2018:AET

Roman:2011:NCR

Reviriego:2019:CCF

Roayaei:2016:FAM

Rajasingh:2012:EHN

Rampersad:2010:DPF

Narad Rampersad and Jeffrey Shallit. Detecting patterns in finite regular and context-free languages. *In-

Reidenbach:2012:MHA [RS12a]

Rueda:2012:PAP [RS12b]

Roetteler:2015:NQR [RS15]

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Date</th>
<th>Digital Object Identifier (DOI)</th>
</tr>
</thead>
</table>

[SDM14] Mohsen Shakiba, Mohammad Dakhilalian, and Hamid Mala. On computa-

Schubert:2014:NSR

Service:2010:NFL

Su:2012:IIN

Sun:2013:ISO

Supeesun:2017:LNS

Sanyal:2013:CTR

REFERENCES

Shparlinski:2013:CNE

Shraibman:2018:NMC

Shraibman:2019:CBL

Sattari:2018:UBM

Skowronek-Kaziow:2012:MVC

Szalachowski:2010:CCG

Saso:2011:PPI

Stambouli:2019:DFA

Sherkhonov:2017:CAC

Sabir:2019:PRR

Shen:2010:DEN

Sakai:2010:WNO

Siala:2019:CSE

Sorenson:2010:RST

Seo:2018:FBM
REFERENCES

[SS16] Sanders:2016:SGS

[S19a] Schlipf:2019:SCE

[SS18] Sakharov:2018:VAS

[SSW16] See corrigendum [SSW16].
REFERENCES

Suzuki:2018:NDF

Suzuki

Sviridenko:2012:NKR

[Svi12]

Srivathsan:2012:APS

[SW12]

Srimani:2019:SSA

[SW19]

Stokes:2018:CGW

[SW18]

Schmitt:2013:EIS

Shen:2018:NCZ

Song:2015:CDM

Sun:2016:ZNN

Sparl:2012:LTA

Shao:2015:SAS

Song:2015:FLA

Yinglei Song and Menghong Yu. On finding the longest antisymmetric path in directed acyclic graphs. Information Processing Letters, 115(2):377–381, February 2015. CODEN IFPLAT. ISSN 0020-0190

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

Tian:2012:PSO [TL12]

Ta:2016:EAC [TLL16]

Tax:2018:IPM [TLS+18]

Tan:2016:CRD [TLWZ16]
Taheri:2011:HTB

Tan:2016:BIB

Tezcan:2016:IID

Tsai:2011:NOR

Tsai:2015:PDA

Tsur:2013:TDR

Tsur:2018:SDS

Tsur:2019:EEN

Tsur:2019:FPA

Tu:2015:FPA

Turetsky:2012:TSW

Turau:2013:SSA

Tutu:2013:CSI

Tseng:2015:BUC

Tan:2017:NAN

Tiwary:2017:ECC

Thomasian:2011:CDP

Tang:2011:FPC

Tu:2013:VCI

REFERENCES

REFERENCES

www.sciencedirect.com/science/article/pii/S0020019014002555

Rob J. van Glabbeek, Ursula Goltz, and Jens-Wolfram Schicke. Abstract processes of place/transition systems. Information Pro-

REFERENCES

[VNP10] Vidali:2010:CVB

[VNR10] Voudouris:2019:NEP

Andrea Visconti, Chiara Valentina Schiavo, and René Peralta. Improved upper bounds for
the expected circuit complexity of dense systems of linear equations over GF(2).

[190x507]Vajnovszki:2011:RCP

Wang:2012:PCE

Wang:2012:OSO

Wu:2015:INE

Wu:2011:MBR

Wang:2012:TOA
REFERENCES

[Winzen:2013:DRQ] Carola Winzen. Direction-reversing quasi-random ru-
REFERENCES

Witt:2014:FLT

Wu:2010:ECS

Wang:2011:TDH

Wang:2011:GPC

Wang:2012:GPC

Wei:2008:GRM

REFERENCES

Wen:2014:MZC

Wang:2012:FTA

WWW18

Wang:2013:DPS

REFERENCES

Xu:2011:TUB

Xiao:2010:FMW

Xu:2015:MRS

Xiao:2019:NGN

Xiang:2016:EMP

Xu:2016:PTC

REFERENCES

Xu:2012:CMC

Xie:2012:ORI

Xu:2016:CCP

Xie:2014:SCC

Xu:2010:RMS

See comments [XWS17].

Xiong:2017:CCC

See [XWLJ16].
Xing:2017:TLD

Xu:2017:LTA

Xu:2018:SKD

Xie:2016:IAS

Xu:2015:MAC

Y:2013:LCE

Yan:2011:AAF

Yu:2019:NGE

Yi:2011:IGB

Yang:2010:EMT

Yang:2014:VDP

Yang:2013:PPP

[YEMR13] Qingxuan Yang, John Ellis, Khalegh Mamakani, and Frank Ruskey. In-place per-

Yusuf:2019:TAB

Yuan:2019:DCF

Yamanaka:2010:CEP

Jiang:2016:EFS

Sheng yi Jiang and Lian xi Wang. Efficient feature selection based on correlation measure between continuous and discrete fea-
REFERENCES

Yuan:2011:HRS

Yamakami:2013:DPR

Yuan:2015:RAJ

Yoshinaka:2012:CLS

Yang:2011:NZF

Yum:2011:ACO

REFERENCES

Yang:2016:SAA

Yang:2010:KCF

Yuan:2016:SCT

Yu:2017:LTA

[YL16b] Yuan:2016:SCT
Yang:2010:CCC

Yang:2018:DLA

Yu:2017:RPU

Yang:2018:LGI

Yamashita:2014:FSS

Yu:2010:PAP

Yonta:2010:RAH

Yang:2015:PIC

Yuster:2011:SCE

Yu:2012:NOO

Yuan:2014:CSS

Yan:2011:PAB

Guofeng Yan, Jianxin Wang, and Shuhong Chen. Perfor-

Yenigun:2017:CCE

Yu:2012:RWA

Yu:2013:RWAA

Yang:2016:NGP

Yang:2019:FTP

Zhang:2017:SFA

Zehavi:2016:RAL

Zelke:2011:IMM

Zhou:2010:SCS

Zhou:2011:SCN

Zivkovic:2010:IUS

Zhang:2011:FMI

REFERENCES

Zhu:2012:ISA

Zhang:2010:ILB

Zhang:2010:RAC

Zhang:2011:PSR

Zhang:2013:CSC

Zhang:2018:LMR
REFERENCES

Zhou:2015:NLB

Zhou:2016:TDR

Zhu:2012:TSS

Zhang:2013:IST

See comment [CWYP14].

Zhou:2010:EDG

Zhou:2011:TCG

Zhu:2016:SAC

Zhongma Zhu and Rui Jiang. A secure anticollusion data sharing scheme.

Zemke:2010:GAG

Zhang:2010:TVS

Zhu:2018:DIR

Zhang:2011:APF

Zhang:2010:DNC

Zhang:2018:DRD

Zhang:2018:LPE

Zhang:2017:RDH

Zhu:2019:VDU

REFERENCES

Zhao:2015:MWS

[Zhao:2015:MWS]

Zhang:2011:SRP

[Zhang:2011:SRP]

Zhu:2018:EPW

[Shi:2011:OCB]

Zhang:2015:IMZ

Zhang:2015:IMZ

[ZSLW16]
317

Zawidzki:2013:SPM

Zhou:2013:TCF

Zunic:2018:SDO

Zhang:2014:POS

Zhang:2010:LTM

Zhang:2010:TCP

REFERENCES

Zhang:2010:KCF

Zhang:2011:OAG

Zhang:2012:MST

Zhou:2011:LRC

Zhou:2013:ELO

Zhang:2015:GSD

Zhao:2011:TBR

Chunyan Zhao and Zhiming Zheng. Threshold behaviors of a random constraint satisfaction problem with ex-

REFERENCES

