
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

28 January 2019
Version 1.83

Title word cross-reference

[SW13]. P [Mil19]. P-completeness [Mil19].

(2, 0, 0) [WX13]. (2, ε) [GLY11]. (2p + 1)
[LLL11]. (2P2, H) [DP18]. (3 + ε)k [LX19].
(a, b, k) [ZJ11]. (Δ + 1) [WLW11, ZW10].
(g, f, n) [Liu10]. (k, l) [DFdFT16]. (k, m)
[ZSY13]. (k, s) [PS19a]. (X, S) [YWC11].
(n, k) [CLS13, WXZ12, YLG10]. (P3, H)
[DP18]. (→, ∃) [SeF14]. (s, t)
[DL13, FLP18]. (t, n) [QD16]. 0/1 [OBT12].
[AMR11, CZZ12, Cza13, Did13,
EKN11, SSK12, Wu14, XL15, ZN12, ZLLZ18]. 1.5
[EKN11]. 10 [CL15, KSV15].
16 [Mil15]. 2 [AMT12, ACL18, CLZ18].
Che16c, CLS13, DFMS10, EAA16, EKN11,
FY14, Jan12b, KR16, KM13, LZ10a, LH11,
LT13c, LM15, NN17, OMI17, Och17, Sch13b,
Sli12, Taka16, TXQ11, TZ11, WID17, XG11,
YBM15, vGLM12]. 2/3 [Vid13]. 22
[MNP12]. 24 [Ehl17]. 2k [Sun16]. 2n
[GKM14]. 2w [Bae13]. 2k − c log k [Lam11].
2p [EP16]. 2p2m [KZ12]. 2√2 [GKW15]. 3
[AD18, BS11, DS15, Dur13, FWS13, FM19,
GH14, JSZC15, Kat16, Lei17, Mil15, NS11,
NT14, Ph19, Xia10, YL11a, YYYZ12,
YYZH13, Zha10b, ZHXS10]. 3 × 3 [OKM13].
4 [AD18, LS15, ZLSX16]. 4n [CCT14]. 5
[CQ12, Kar13, Moo11, WLW11, Zha10b]. 6
[Hoc11, WLW11, Zha10b, ZW10]. 7
[DN12, WW11]. 7 – [3] [SWZ12]. 7/6
[KSK13, Cal13, JSR11, PG12]. -labelings
[DL13, WL12]. -laden [BKN+12].
-languages [FS14]. -length [DG14]. -letter
[Dur13]. -line [BS1]. -manifold [LT13c].
-matching [Fu16]. -means [JKY15, LSW17]. -median [Wu14]. -minor
[WWW18]. -mismatch [CP10]. -mismatches [GGF13, Gra15]. -move
[CLM12]. -ordered [Li10]. -orientations [LLL+11]. -packing
[Shi12, WNFC10]. -pacing [KMMN15]. -partite [BWZ12, ML10b]. -path
[FLP+18, Kat16, ZLS+17]. -periodic
[AMT12]. -planar
[Cza13, Di13, ZW11, ZL12, ZLLZ18]. -quasi-Horn [Pue11]. -query
[DL13]. -resolution [CB18, MS16]. -restricted
[MNV11, WZL12, YL16b]. -rollback
[CZT+12]. -round [Blo15, Kar13]. -sampling
[JKY15]. -SAT
[PS19a, SW13, XGZ11]. -search [XZL11]. -server
[EFRK10, Hil14]. -set
[BIR16, CCH+14a, Mor11, AK10]. -shapes
[KP14b]. -sink [XL15]. -sorter [Eh17]. -space
[Ezr10, Jan12b]. -sparse
[BDNVP15]. -stage [HL11]. -star
[CLS13, NHK15, YLG10, WXZ+12]. -stars
[BG1+16]. -subcoloring
[Och17]. -subgraph
[BK10]. -Subset
[Xav12]. -sumset
[BFV15]. -terminal
[LT13b, LT15a, LT15b]. -total-colorability
[WLW11, ZW10]. -trapezoid
[LT13b, LT15b]. -tree
[YBM+10]. -trees
[CLS13]. -trivial
[Tur12]. -tuple
[ALT15, ALT18, Pra12]. -utilities
[OB12]. -valued
[KM13]. -vertex
[FX19]. -vertex-[Sch13b]. -vertex-colored
[OM17]. -visibility
[LM16]. -way
[Xia10]. -wheel
[KdER+14].

1 [Tho18]. 1-median
2 [CCRS14, MB14]. 2-FTP
[MB14]. 2-K-reliability
[CCRS14]. 256 [AKY13].
2D
[EFmA10].
3 [GSY15]. 3-choosability
[Zha13].
42-step
[AKY13].
5- [Zha13]. 59 [HMA11]. 5D
[KUY17].
6- [Zha13].
802.11e
[YWeW+14].
9-cycles
[Zha13].

= [MST16].

ABE
[TY16a]. Abelian
[CIK+13]. above
[CGJ10, GY10, Vd13]. absent
[WJS10].
Abstract
[vGGS11, DLMV10, GCNR10]. abstraction
[AK13]. accelerate
[VLV15]. acceleration
[Bab17]. acceptor
[HI12].
Access
[MGNAB11, AC10, CPTZ13, Csi12, Ria17]. according
[MSV14]. achieving
[ML10b].
Ack
[Per17]. Ack-complete
[Per17]. acquaintances
[CS16b]. acquisitions
[Gou15]. activated
[ZDQ+17]. activation
[CC14, ZBX16]. activities
[JC10].
Activity
[SSW16]. ACTL
[XZ17b].
Acyclic
[Fl11, FH12, HRW11, DX10, FH10, GKP16, GKW15, M15, MMS15, P11, RT13, SM17, SY15b, Xu11]. Acyclically
[ZLSX16, Hoc11]. acyclicity
[Dur12]. ad
[HKW18, Kor12]. ad-hoc
[HK18].
adaptive
[AZ14, CY18, DG16, GKC11, Nic19, Oan11, SaBG17, TWW17, YIK17]. adaptively
[Ehm15]. adaptivity
[ZZ11].
Addendum
[BG15, BW13, HAM11].
addition
[DR15, Laz10]. additional
additive

adjacent

adjacent-vertex-distinguishing

adjusting

adjustment

advanced

advantages

adversary

advice

AES

Ane

Ane-evasive

after

after-the-fact

against

agent

agents

aggregate

aggregation

agreeable

Agreement

Aiding

AKF

algorithm

algorithm-based

Algorithmic

Algorithms

aliasing

aligned

alignment

all-one

all-pairs

alliance

Allocation

almost

almost-increasing

almost-universal

alphabet

Alphabetic

alphabets

alternate

alternating

Alternative

analogy

analysed

Analysis

analytic

analytic-based

analyzing

analyzing-based

applying

approximate

approximation

approximations

approximations-based

approximations-based-algorithm

approximations-based-algorithm-algorithms

approximations-based-algorithm-algorithms-based

approximations-based-algorithm-algorithms-based-algorithm

approximations-based-algorithm-algorithms-based-algorithm-based

approximations-based-algorithm-algorithms-based-algorithm-based-algorithm

approximations-based-algorithm-algorithms-based-algorithm-based-algorithm-based

WWS12, WZQH16, Waw14, Wit14, WDHI6, XZBX16, YWC11, YL16a, YK15, ZW14, Zun18, LSLY11. analytic [Mat12].
Analysing [FG18a]. anarchy [YSGY10]. ancestor [FH10]. ancestors [GBH10].
AND-circuits [Mor11]. and/or [SD13, MTA10]. Android [CC14].
answering [KP12, Wij10]. answers [Ama10]. Anti [ZJ16, BFP18, WZS+18]. Anti-Collusion [ZJ16, WZS+18].
anti-powers [BFP18]. Antimagic [Bar10, Sli12]. antisymmetric [SY15b]. any [CVV10, Tys13].
App [LCC17, HPP17]. applicability [Tho12]. Application [LQL+17, BDNVP15, CFJ12, CA17, HH15, Kim10, RK15, SL19, XZW15b, ZLM17, ZD18].
applications [BT16a, BT16b, CW13, LLWH13, WD11]. applicative [SSSM11]. apply [Bol14].
approach [AR13a, AC10, AMN+10, CLR13, CPHS18, CNKS15, DJRB15, GPT16, LH10, PCK10, YWWW14, YTYZ15]. approval [BT16b]. Approximability [MM19a, vBCH+15, HKT17, MS15].
Approximate [Dat15, DFRS13, GGF13, AGW13, DTS15, Fil18, RS12b, SIm16, ZA17, ZXJ+11].
approximately [HKW14]. Approximating [Gou15, JT10, KKZ13, LM17, SLC15, ZLB11, BTW15, Wu14]. Approximation [ACL18, CZCD13, DDK+15, GKM+15, GHRT17, GM15, MK18, KV10, LL14, LS11, LLI18b, LV15, YC11, BK10, BU17, BL12, BLY17, BDH+11, BC13, BI14, BK18, CR18, Civ13, DGK+17, Doe13, DJZ+15, EKN11, Fu16, GS10a, Gen14, GKW15, HM10, KS11, LXDX12, LM11, M.15, MK11, Mön15, Mor11, NPR17, Nut18, SW13, Tak16, Tat19, TZ11, YBMK15].
Arboreal [DGK+17]. arborescences [KK15a]. arboricity [BU17, CQ12, GZM15, NN17, WWLC14].
Area [CY17, PP14]. Area-universal [CY17]. areas [BNRC10]. argument [Fre14]. argumentation [DW10b].
attacks [Ivá16, KP12, SM17]. attack [ABPS15, AT18, ASA13, BLS16, BLS15, GSY15, Kλ17, LR18, LC13, LYHH14, YW12, MNP12, OPS14, TC11]. Attacks [KN13a, ACD18, Dra16, GLS18, KM10, Kim10, RS15, TS16, TY16b, WS13].
attestation [CWW10].

attractor [MTA10]. attractors [AMT12].

Attribute [XWLJ16, XWS17, SSS15].

Attribute-Based [XWLJ16, XWS17].

augmentation [IZ10, ZZ14]. augmented [CN18, Fu10]. augmenting [EKN11].

authenticated [LWS10, LHH11, Nos11, Nos14].

authentication [ASA13, Jia16].

autocorrelation [EP16].

automata [ADF13, AY12a, AL18, BN10a, DK14, HHK17, IL12, Kos18, RS12a, VB15, Vrg15, ZZH16]. automated [CNKS15].

Automatic [Ghi14, Li15, SSZW16].

automaton [EGKL11, Fre10, FG14].

Automorphism [DZ12].

automorphisms [YTN10].

auxiliary [GGG14].

Average [Sal12, Cho12, EO13, GFG11, KPSZ11, Li12, LL16, MWZ12, YL11b, CGJ10]. averaging [CG15].

AVL [ALT16]. avoiding [BV10, CH12]. aware [AZ14, AHS18, ZGY12]. axes [AAJ15].

backbone [JT15, ZXJ11]. backbones [JT15].

Background [ZD18].

backward [Sal12].

bacteria [LTWS11].

bag [ADG10, KL10]. bag-set [ADG10]. bakery [Ara10].

Balanced [FP18, AADB18, Bog10, CGLS16, DM16, FLMQ10, LW19, SWF18].

Balancedness [MS18a].

balancing [AY12b, DHW11]. ball [ZLS17].

Bandwidth [STU12, LL10b, WCW11].

banner [Mos13a].

Base [HM13, LST11].

Based [XWLJ16, STD14, AdFEGRI11, ABPS15, AT18, Aku10, ASM17, AC10, AMN10, ABS12, Bab17, Bol10, CPHS18, CYQ13, CZD14, CTHP13, CZZ10, CDM11, DWQ10, Dra16, jDX11, EH18, EZ15, Fay16, Gal13, GWJ11, GKC11, GPT16, GW16, HF14, HLR11, HHTL10, JKY15, yJxW16, JK18, JCC11, KSBT13, KM10, KC17, LXY12, LK14, LCC17, LJJX10, LFZJ14, Li15, LPdS10, LH10, LMC16, MG16, MHHFSo11, MMZ12, MM13, Mes15, MGPI12, MS13, MHIU18, NS11, PLPW13, PYYC16, QYWX16, SZC17, Sui16, TNN11, TPL16, TW17, Tia15, VN17, WWYY11, XPC10, XW12, XWS17, XZ17b, YCL11, YHLC12, YYYZ12, YZ14, YL11b, ZpH15, ZXJ11, ZZ13, LZJX10, MGNAB11].

bases [FY14, Lag14, LL10d]. basis [CL11, CCH14b, FS12, Ghi14, LLP18, LlCyChL10]. Batch [MM12, FL16, FTYL14, GY15, LY11, LWF11, LZL12, LZL12, LZ14, MZC11, SP18].

batching [FCNY10, Oro11, TFY11, Zhu12].

Bayesian [JRB15].

BCCSP [AdFEGRI11].

BDD [LWXZ14, YKD12].

be [AIR17, Att17, CLZ18, DF11, MN15, WZL12, YL16b].

Beam [VAC13].

beats [JS19, Pol18].

Bee [WZQH16, GL11].

behavior [Lee10]. behaviors [ZZ11].

behavioural [vB12].

Bell [QD16].

Benczúr [Ber17].

bent [BPRMS14, DZQF13, GPS17, GNG11, PZ12, Pas15a, Pas15b, PGZB19].

Bernstein [DZ11].

best [FT15]. best-response [FT15].

Beth [CTHP13].

better [BCNPL14, CSX16].

between [Bar13, BDNVP15, DD14, Fe19, HLR11, Jan12a, yJxW16, Kle13, KK11, MHIU18, Mos13b, MOW17, NB12, SC12, Sin16].

bi [CGLS10].

bi-enhancement [CGLS10].

Biased [LREIMBV16, LLP18].

bichromatic [AABBCC19].

biclique [KDH13, Gav11].

bicliques [BRFGL10, CK12a, Dam14].

Bicolored [CK12a, DBFMPL17, GGG14].

biconnected [CY17].

bidding [EL10].

bidirectional [Vay13].

bijections [Bar13].

bilinear [OKM13, ZY17].

bin [CP15, HPY10, Jan12b, L ltU15].

bin-packing [CP15].

Binary [BFKL13,
AG19, BC15, DCH12, DHR13, EP16, GG13, JS18, KYC13, KM12, Luc10, LEP10, Maß15, Mil15, MR10, WXCK19, YKD+12, ZST13. binomial [CG10a, Pas15a, Pas15b]. bins [AY12b, BTW15]. biometrics [LXLY12, SS17]. biometrics-based [LXLY12]. bipanconnectivity [Che10b]. bipartite [ALT18, BK10, Che10c, CL15, CGLS10, DP17, Dar15, DEL10, FS13a, KO16, Kut12, LSP14, Mor16, MT10, NN17, PP10, Pul16, STU12, Tak16, XPC+10, ZZ18, CLM12, GM13b, KV10]. bipolar [GS17]. Birthday [ACD18]. bisection [Aku10, GY10]. bisector [EH18]. bisimilarity [AIS10, AGI15, Kie13]. bit [ASM17, BG11, JS18, LlChL11, LMCG16, RH10, VN17, nXlCL14, YA13]. bit-parallel [LCh11, nXlCL14]. bit-rate [YA13]. bit-vector [JS18]. Bitcoin [Bee16, DSPSHJNA18]. bitwise [CdA13]. bivariate [AH17]. Black [JP11, Sto16, DW12, HBL14, Shp13]. Black-box [Sto16, DW12]. black-boxes [Shp13]. Black-peg [JP11]. BLACK [VNP10]. blind [BBB+17]. Block [EFMA10, HCCG15, Ana11, HHTL10, LM91, LC13, LHYH14, MNP12, Sar11, SKN11, SKK10, Vir11, WB12, WWBC14]. block-interchanges [HHTL10]. Block-wise [EFMA10]. blocking [MO15]. blocks [MS12]. Bloom [PRM14, CRJ10, Gra18, PRM16]. blue [CCL10]. Board [Ano18g, Ano18h, Ano18i, Ano10a, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano10k, Ano10l, Ano10m, Ano10n, Ano10o, Ano10p, Ano10q, Ano10r, Ano10s, Ano11a, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano11o, Ano11p, Ano11q, Ano11r, Ano11s, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano14a, Ano14b, Ano14c, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano16a]. Board [Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano16l, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18j, Ano18k, Ano19d, Ano19a, Ano19b, Ano19c]. body [KHKS16]. body-hinge [KHKS16]. Bohr [Ask14]. Boolean [AMT12, CKK13, DKKY10, GJ11, KS18, Lag14, MTA10, MGPI12, Sim16, Vir11, WT13]. Bootstrap [KdER+14]. Borderedness [FWH14]. Borderedness-preserving [FWH14]. borders [RSwW11]. both [AIR17, OG11]. Bottleneck [AABCC19, BLC10, YWC11]. bound [AS18, ADFM13, Ber11, BGL10, BCKM15, BGS10, Dar15, FZ13, Ger12, GID13, GNG11, HYC12, KM11, KTUY17, MCS12, PP14, Pod12, PS19b, Pud12, Shr19, VK18, XGX11, Zha10a, Zho15, vZBSY16]. Boundary [LP13a]. Bounded [MZN11, BFP11, BU17, BDF+18, BM19, BN10b, DER18, DTS15, EL10, Feg19, Fie11, FGvL11, GKM14, GJ15, HMS16, IS10, JT15, Jan12b, JSR10, Kor12, LLL18b, MSZ11, MRZ10, Nis92, Pod12, Rac10, RR16, SLdAMP17, TCXT10, XZW15, vE17, CFJ12]. bounded-degree [JT15]. Boundedness [Oan11]. Bounding [DMS12, Fre14, JF15]. Bounds [GWL18, KR16, LSL1, Qi17, XS15, ASTD14, BU17, BT16a, BS17, Cha12, CA17, CP16, DKKY10, DEH+19, Fill11, GW16, KS11, Kos17, LEP10, MO12, Par11, SI18, VS18, WXZ+12, WLLS08, Wit14]. box [DW12, Sto16]. boxes [BCNPL14, Ezr10,
Ciphertext-only [KA17].
Ciphertext-Policy [XWLJ16, XWS17].
circle [HMS16, NG10].
Circuit
[Rud17, XWS17, XWLJ16, DKKY10, IM17, Jan12a, VSP18, ZDQ+17].
circuits [ASTD14, Ale13, Ber11, GJ11, HP18, Mor11, Pod12].
Circulant
[vzGS15, CT16a, Den14, GSR+14].
circular [PS19b].
circumference [FL13b].
clairvoyant [Sun19].
class [ABS13, Che10c, GSR+14, GNG11, KP13, MY18, Pas15a, Pas15b, SWF18].
classes [AH11, Dar15, IL12, Joh14b, KZ12, LV15, Mos13b].
classical [Bar13].
Classification [MHIU18, SLdAMP17, SaBG17, MS15].
classifier [GE12, PR17, STAR15].
classes [SR11].
claw [CZ16, Hua14, IL12, Joh14b, KZ12, LV15, Mos13b].
claw-free [LS15].
claw-heavy [CZ16, Hua14].
CLEFIA [TS16, WB12].
CLEFIA-type [WB12].
Clique
[Cou14, Juk12, Wid17, Iba17, LS11, LS15, LV15, Val10, YL17].
clique-covering [Val10].
Clique-heavy
[Wid17].
clique-independent [LS11].
clique-separator [Iba17].
clique-transversal [LS11, LS15, LSK17].
clique-width [Cou14].
Cliques
[Lau18a, BP11, BK+12, Kut12, VML18].
CLL [ZZZ15].
clones [Lag14].
closed [BK13, CGG14, Dar15, MDB14].
closest [DGKS14].
closure [HS15, MDB14, vB12].
Closures [SSS10, Vágl8].
Clud
[XWLJ16, ZJ16, AT18, PCK10, WZS+18].
clouds [Jia11].
Cluster
[Man10, BD11, BDNPV15, LSS15, TZF16, WZQH16, XPC+10].
clustered
[BL12, BLYL17].
clustering [ABS12, DD14, JKY15, LFZJ14, LLWH13, ZD18, ZX+11].
clusterings [QK15].
clusters [BLM10, Dam16, SLL13, ZZJ11].
CMAC
[SKK10].
CNFs [BT16a].
co [BG12, BG15, Lag14, Mos13a].
co-banana [Mos13a].
colour [BG12, BG15].
colours [BG12, BG15].
colourable [Hoc11, San11, WX13, XLZ16, ZLSX16].
Colored
[SGM13, AADB+18, OM17, Tsu18, WD11].
Colorful [PT12].
Coloring
[BP12, Rom11, AD18, BJI15, BGR13, BDNPV15, DS16, DX10, FKL+11, FS13a, FL12, FL13a, FM11, FA17, GJ14, Hal01, JT15, KSK13, KLMP18, LS11, LSZX15, MSM14, MKI11, NS11, RZ10, SSW15, SSW16, Shi18, SWZ12, WW11, XXZ14, Xu11, YeCM14, LM11].
colorings
[CL15, Cza13, LZX17, Szy12, YYP16, ZL11, ZW11, ZL12, ZZZ18].
color [FA17].
coloured [CA12, vGLM12].
colouring
[AH11, DP18, HOV13, Lei17, Qi17, SK12].
colourings [Feg19, Fie11, Rac10].
combination [SWLX15].
combinatorial
[ADF13, FMHL11, KKS11, Lib10].
combinatorially [Iva16].
combinatorics
[KTV13].
Combined
[HYYY15, MK14].
Combining
[MZQL14, YLLL16].
comment
[CWYP14, Jha15, THS12].
Comments
[BB11, LMU15, Par11, WZS+18, XWS17].
commitment [ZC12]. Common
[FKR + 16, Pol18, SW18, AK14, BBDS12, BVD10, DG14, Dur13, FH10, FGKU15, Gra15, HI18, Kos17, MM19b, SP18].
common-multiplicand [SP18].
Communication
[AJLM11, SCL + 11, JF15, Juk12, Kor12, ML10a, Shr18, Shr19, YYZH13].
Communication-efficient
[AJLM11, SCL + 11, Pol18, SW18, AK14, BBDS12, BVDP10, DG14, Dur13, FH10, FGKU15, Gra15, HI18, Kos17, MM19b, SP18].
Communication-ecient
[AJLM11, SCL + 11, ML10a].
communications
[BB11, RV10].
communities
[WDH16].
commutativity
[Nan15].
Comorphisms
[Tut13].
Compact
[ZZH16, FG14, KR10, YiN10].
compacted
[BV11].
comparability
[Och17].
compare
[BVF12].
compare-by-hash
[BVF12].
Comparison
[KS19, YYDL11].
Comparisons
[ACK11, HI11, SM17].
compartmented
[EZ15].
compatible
[KPSZ11].
Competitive
[NZX19, AFPT10, SM13, TSI12].
compiler
[LWS10].
Compiling
[CR10].
complement
[JLMO17].
complementary
[CCCN19].
complemented
[JLMO17].
complements
[PP10].
Complete
[AdFEGRI11, AGH15, AHK + 17, BH17, Che11, Che17, CG10b, DFdFT16, DEL10, GN10, GI18, GZM15, HWA12, KM12, ML10b, NN17, Par16, Pér17, ScF14, WWZ15, YeCM14, ZST13, Och17].
completely
[HL16, PC19].
Completeness
[Luc15, GNV14, LZX17, Mil19, Rom11, SW12, YWWW14].
completion
[CK12b, FL16, HKW14, Kun17, LZ14, LH11, MY13, YW12, ZLZX19].
complex
[AABB17, CNKS15, LTL14].
complexities
[TWZ17].
Complexity
[ALT18, Csi12, DW10b, Ivá16, LHW + 16, Pul16, Xu12, ACK11, AD13, ALT15, AT15, BBKS17, BBDS12, BvK15, Bol10, Bol14, Bor16, CCRS14, CHK13, CLY11, DS15, DS16, DKKY10, DW12, DCH12, DKDC12, Duc18, EP16, FS14, Fin15, FG18b, GGI11, HK16, HKT17, IM17, JKS10, JT15, JS18, Juk12, JSR11, KZ12, KSD18, KLMP18, KP12, KPSZ11, Kra12, LZ10b, LT13c, LFXH17, Lof14, LK + 14, MMP15, MM15a, Miy14, MOS16, Mon10, Mon12, NVB15, PS19a, Rac10, RDX13, KAll17, Sal12, SS12, Sch13a, SDM14, Shi12, Shi18, Shr18, Shr19, Sto16, Vay13, VSP18, Wijing10, WXCK19, Ya13, YYK17, YKD + 12, Zha10a, vBCH + 15].
Component
[CGJY12, HYYZ15, MK11, NT14].
Components
[BKMT14, CC14, CNKS15, Pea16].
Composable
[CD10].
Composing
[LABKS17].
composition
[YeCM14].
Compositional
[FOSC18, Mos13b].
compositions
[VV11].
compound
[CX18].
compress
[LC13].
Compressed
[CD10, BGI + 12, SSS12, Fay16].
compressible
[BFKL13].
compression
[Aka10, KN13c, LK14, LKR17, RK15, YA13].
compresse
[YLCG16].
compromise
[jDX11].
compromise-tolerant
[jDX11].
computable
[FWS13, Tys13].
computably
[BHLM13].
Computation
[ADKM12, BJ18, CIK + 13, DM16, FB10, GP17, KKSS11, LXX14, Nis92, QK15, Sim16, TXQ11, WJS10].
computational
[Car19, HRS13, JTI5, SDM14].
computations
[Bee16, CZ13, Gue12].
compute
[Bon13, KM16a].
computer
[MN15].
Computing
[AADB + 18, Ber12, BHL17, CCF + 12, CT11, EH18, FHvtH + 15, FX11, FIV15, Iba17, KP13, Kobi15, Kos16, LT13b, LT15a, MM13, MTT12, TLZW16, XWLJ16, Ale13, Ana10, BKZ15, Bir11, Bor16, CCRS14, DLRS14, Duc18, EN17, GS10a, JTI6, LQL + 17, LT15b, MOW17, NG10, TLL16, TJ18, vIL13].
concept
[Dar15, PYYC16].
concept-based
[PYYC16].
concerning
[KK11, Nin15].
concise
[FL13a, CD10].
concisely
[RJS + 10].
concurrency
[DMS11].
Concurrent
[ZC12, Att17, CVZ11, XLIWZ16].
condition
[BIR16, Cal15, CLZ18, HL16, Hua18, MY13, Nin13, TD14, WZL12, YH19, ZSY13].
Conditional [YLM10, YYDL11, ZX10, ZXL11, CLQS12, CHF15, GXZZ13, GNV14, LWL11, WH16, YLG10, YZZ17, ZXY10].

conditions [Dam16, Shi18, YZRC18, YL16b].

KT12, LLG14, MY13, YL11b. costly [DF11]. costs [Bae10, SLC15, XZBX16].
coteries [Jia11]. COTS [AMN+10].
COTS-based [AMN+10]. count [ARdSP15, Bab17, JLdSO+14, LR10].
Counter [GK10, Fay16].
Counts [ARdSP15, Bab17, JLdSO+14, LR10].
coupons [FC14].
Cover [BI14, AK14, BT16b, FGG+10, FLRS11, Kat16, Kob15, Lam11, MM19b, Mor11, PI19, TZ11, TY13, Tu15, ZLS+17, CP13, GMY13].
Coverage [CdA13, GM15, Shi13, YTTY15, ZC10].
Covered [YH19].
Covers [BFRV15, Che10c, Che12, Che16c, LL10c, PI13].
Cut [BES17, CCF14, GHK+18, Ind15, Rus18, Sax10, Zel11, Zha18].
Cuts [Ber12, KLS13, KR14, Xia10].
Cutting-sticks [M.15].
Cyclically [HN10, vZBSY16].
Cryptanalysis [MZ15, SM10a, SM10b, TY16a, WWYY11, WYY14, AP11, BMB16, DMSD18, Kar13, KD13, LFW+16, SDM14, Sun11, WWBC14].
Cryptographic [CR10, MMZ12, MM13, Mes15, PLPW13, WT13].
Cryptography [HH15, LWL10, VNY17, LZJX10].
cryptosystem [ACD18, Gal13, GV14, MM13].
cryptosystems [FWS13]. CSAT [Mat12].
CSL [GXZZ13]. CSP [FOSC18]. CU [CWA15].
cube [Bj18, CCH14b, DY10, DZFY12, GH14, GZJ+12, LWL11, NFW15, Nin16, PI19, YYYZ12, YZK13, ZFJZ11].
cubes [AAB+16, CV19, CYFP14, CCYW16, CZWP17, CN18, Fu10, LYHC10, Mol18, PCY16, PC19, PI13, YDT10, YWY12, ZHX13]. cubic [LS11, MOW17, Tak16, TY13, XZ14].
cubic-time [MOW17]. Curry [SeF14].
curve [FWS13]. curves [HZX16, Moo11, RS12b, TXQ11, ZHXS10].
cut [BES17, CCF14, GHK+18, Ind15, Rus18, Sax10, Zel11, Zha18].
cuts [Ber12, KLS13, KR14, Xia10].
cutting [Br15b, JSO11, Juk12, LT18, M.15].
cutting-sticks [M.15].
cycle [CM17, CZZ+12, DY10, DX11, GBH12, KN13c, LL10d, Tsa11, WL11, XL15, Yus11, Zeh16].
cycle-embedding [Tsa11].
cycle-radius [GBH12].
cycles [Che10a, AMMY10, Cai15, CHF15, DSTM10, FL12, Hou10, Hua14, Hua18, JSR10, Kot12, LZCM10, LW19, MCS12, Nin15, WX13, XS15, YZRC18, ZLCM10, Zha10b, ZW10, Zha13].
cyclical [Bar13, LH10, SQL17].
Cyclically [HN10, vZBSY16]. cyclotomic [KZ12, WCKX19].
D [EAA+16, JSZC15].
daemon [CCT14]. DAGs [PWC+15].
Dantzig [CMFT16].
dart [KS12].
Data [CZD14, SL19, ZJ16, BL10, BVF12, BOV15, Cd13, DG16, DDPBT11, ED17, FKC13, GL15, GS10b, GHL18, HLY11, IMCP15, KR10, KZIP10, KWH16, SLL13, Tsu18, Vrg15, WZS+18].
data-flow [Cd13].
data-link [DDPB11].
databases [GHK11, KN13a, CRV16, SS17].
dates [OZL16].
DCell [Liu19].
DDoS [AT18].
derandomization [DTS15]. Deadlock
Deadlock-freeness \cite{GS10c}. Decidability \cite{GS12, CS16a}. Deciding \cite{BJKZ14}. Decision \cite{SLdAMP17, BCS15, CWY15, GJR10, JKS10, SLC15}. Deciding \cite{Vid13, WS10}. Decomposition \cite{MRZ10, Bar10, CT16a, NHK15}. Compositions \cite{EN17}. Decrementation \cite{RR16}. Decryption \cite{SM10a, SM10b}. Decycling \cite{LRSS17, LKF15}. DED \cite{BB11, RV10}. Deduplication \cite{BVF12}. Deep \cite{LCC17, YLZZ18a, YLZZ18b}. defect \cite{MZQL14}. defense \cite{AT18}. defined \cite{nXICL14}. defining \cite{MMKK18}. definite \cite{AMT12}. definition \cite{WL10}. definitive \cite{DMS12}. defogging \cite{GPT16}. degenerate \cite{BS17}. Degree \cite{CFJ12, HL16, YZRC18, BM19, Cai15, CLZ18, CQ12, Dnm14, FGvL11, Hua18, JT15, LS15, MRZ10, Nin13, Rac10, RZ10, SW18, WW11, WLW11, YH19, ZW10}. degrees \cite{MS18c, Zha11}. Delaunay \cite{AP14}. Delay \cite{BEFP11, WDH16}. delayed \cite{LMCG16}. Delayer \cite{BGL10}. Delegation \cite{XWLJ16, XWS17}. deleted \cite{ZSY13}. deletion \cite{BD11, BDNPV15, CGYJ12, CP13, LFW+18}. delivery \cite{LYF11, LZCX12, TFY11}. demand \cite{AHLS18, NLXX15}. demand-aware \cite{AHLS18}. demosaicing \cite{YLCG16}. Denial \cite{Bee16}. dense \cite{Szy12, VSP18}. densest \cite{BK10, CCH+14a}. Density \cite{Did13, AT18, B14, SH17, SS10b}. dependence \cite{AAC+10}. dependencies \cite{PH11}. Dependency \cite{CZZ+10}. dependent \cite{FM18, GM12a, JC10, KY12, LZCX12, MK11, Mos11b, SLC15}. deposits \cite{Bee16}. depreciable \cite{ZXL11}. depth \cite{CWY15, GJ11, JSZC15, MS18c, PPN+17, Pod12, Suz18}. depth-first \cite{PPN+17}. derivation \cite{YYK17}. derived \cite{DCH12}. deriving \cite{CLQS12, GNV14}. descents \cite{Che18b}. description \cite{XZ18}. Design \cite{PGZB19, MZQL14, VL15}. designated \cite{SY15a}. designs \cite{AHLS18, GD13, KDH15}. destination \cite{Kar17}. Desynchronization \cite{ASA13}. Detecting \cite{FLPS15, RS10, SML+10}. detection \cite{CW10, Ksh11, PYYC16, SCL+11, ZLM17}. detector \cite{BR10b, MG16}. deteriorating \cite{LJ15, MZC11}. deterioration \cite{LL10a, YZH14}. determinacy \cite{Had18, Le19}. determinants \cite{Bir11}. determine \cite{KSBT13}. Determining \cite{MTA10}. determinism \cite{ZP10}. Deterministic \cite{Cha13, DP12, ZL18, BN10a, BDPP18, FS14, FV13, JKS10, K15b, KP14a, Kos18, NLX14, SSSM11, TK15, YYK17}. Developing \cite{Far10}. developments \cite{SeF14}. DFA \cite{Val12}. DFS \cite{JLMO17}. DHA \cite{AKY13}. DHA-256 \cite{AKY13}. diagnosability \cite{Che18a, CLQS12, CLS13, GHL18, Tsa15, WH16, Y YD11, ZX10}. Diagnosable \cite{TC17}. diagonal \cite{Pie15}. diagrams \cite{CV12, LT13c, MK14}. Diameter \cite{CFJ12, AR18, BDF+18, BK18, Che10b, DGR15, FX11, KMK18, ML10b, WL12, ZFJ11, Zun18}. diameters \cite{PC19}. dichotomy \cite{BR12, BM19, DFdFT16, KP12, Mar11}. Did \cite{Kar17}. difference \cite{Li15, SWF18}. different \cite{DKNQ18}. Differential \cite{DSMD18}. Differential-linear \cite{DSMD18}. differentially \cite{AS18}. differentiation \cite{HH1}. Diffie \cite{RH10}. Diffusing \cite{WWB15}. diffusion \cite{AFPT10, GHC15, MG16, SM13, THS12, WB12}. diffusion-driven \cite{MG16}. digit \cite{KWH16}. digraph \cite{Bor16, GZJ+12}. digraphs \cite{AAL16, BJH15, BGP12, Cro15, JLMO17, LX13c, LKF15, LLL18, Nin15, PT11, RT13, SZ18, ZWX15, CLM12}. dihedral \cite{YL11a}.
KR10, OG11, RK15, RJS+10, WWWZ13, WZS+18, XL15, YBM+10, ZLM17, ZZJ11.

Dynamics

[LLWH13, Che16a, FT15, ZKXY10].

e-cash [BB15]. E-passport [LZJX10]. E0L [DK14]. EAC [LZJX10]. each [FC14, WCW11, Yus11]. earliness [MM15b].

Early

[LLWH13, Che16a, FT15, ZKXY10].

ECC

[DK14].

EAC [LZJX10].

each [FC14, WCW11, Yus11].

Earliness [MM15b].

Early [DJS13, HLY11, LZLY12].

easier [KL18, ZDQ+17].

Eavesdropping [MP13].

EDCA [YWcW+14].

EDF [DJS13].

Edge [Che10b, FS13a, Fu10, KSK13, LX13a, LW19, WD11, BJH15, BT16b, CBSV11, CL15, Cot14, DS16, DX10, EKN11, Fie11, FM19, GG18, HOV13, LYHC10, LX19, MG16, MK16, Ma15, MK11, Mou19, NT14, OM17, Sch13b, Sun16, Tak16, VK18, WZL12, XN12, Xu11, Yan14, YeCM14, YL16b, ZL11, ZW11, ZL12, ZF10, BBK17, LM11].

Edge-colored [WD11].

Edge-coloring [FS13a, DS16, MK11, LM11].

Edge-connected [YL16b, ZF10].

Edge-connectivity [EKN11].

Edge-disjoint [LY16b, LX19, Yan14].

Edge-fault-tolerant [Che10b, Fu10].

Edge-vertex [VK18].

Edge-weighted [BJH15].

Edit [Shi15, Dam16].

Edible [BD11, LSS15, Man10].

Electoral

[BB15, CPTZ13, DE14, Den14, DG14, GHK11, GK10, HZSL05, IL12, yJxW16, LLP+18, LZ12, MV13, MN14, OG10, PYHA10, Sim16, WJS10, XLWZ16, ZHXS10, AR18, AJLM11, BGI12, BL14, BFLM15, BM19, CJ11, CdA13, CIK+13, jDX11, HM18, HHJ+12, eSKAI10, Lee10, LKC+12, LH10, ML10a, Mes15, Pea16, QX10, SCL+11, TLL16, T19, T13, VN17, XTH12, YA13, YiN10, YMSA14].

Efficiently [FWS13, MT10].

Eigenvalues [ZL17a].

Eight [Cal13, RZ10, Sun11].

Eight-regular [Cal13].

Eight-round [Sun11].

Eliminability [Ind15].

Elliptic [Moo11, ZHXS10].

Ellipticity [ZZ13].

Embeddable [WWLC14].

Embedding [AHRI10, ABPS15, AMN+10].

Edge [Che15, DY10, DZF12, RRR12, YDT10, BR10a, CZWP17, DX11, GL15, KM12, AN12h, AN12i, AN12j, AN12k, AN12l, AN12m, AN12n, AN12o, AN12p, AN12q, AN12r, AN12s, AN13a, AN13b, AN13c, AN13d, AN13e, AN13f, AN13g, AN13h, AN13i, AN13j, AN13k, AN13l, AN13m, AN13n, AN14a, AN14b, AN14c, AN15a, AN15b, AN15c, AN15d, AN15e, AN15f, AN15g, AN15h, AN15i, AN15j, AN16a].

Editorial

[AN16b, AN16c, AN16d, AN16e, AN16f, AN16g, AN16h, AN16i, AN16j, AN16k, AN16l, AN17a, AN17b, AN17c, AN17d, AN17e, AN17f, AN17g, AN17h, AN17i, AN17j, AN17k, AN17l, AN18a, AN18b, AN18c, AN18d, AN18e, AN18f, AN18g, AN18h, AN19a, AN19b, AN19c].

Effective [NB12, CC14, WB12].

Efficient

[BL10, BYK14, CC12, CPTZ13, DE14, Den14, DG14, GHK11, GK10, HZSL05, IL12, yJxW16, LLP+18, LZ12, MV13, MN14, OG10, PYHA10, Sim16, WJS10, XLWZ16, ZHXS10, AR18, AJLM11, BGI12, BL14, BFLM15, BM19, CJ11, CdA13, CIK+13, jDX11, HM18, HHJ+12, eSKAI10, Lee10, LKC+12, LH10, ML10a, Mes15, Pea16, QX10, SCL+11, TLL16, T19, T13, VN17, XTH12, YA13, YiN10, YMSA14].

Efficiently [FWS13, MT10].

Eigenvalues [ZL17a].

Eight [Cal13, RZ10, Sun11].

Eight-regular [Cal13].

Eight-round [Sun11].

Elliptic [Moo11, ZHXS10].

Ellipticity [ZZ13].

Embeddable [WWLC14].

Embedding [AHRI10, ABPS15, AMN+10].

Edge [Che15, DY10, DZF12, RRR12, YDT10, BR10a, CZWP17, DX11, GL15, KM12, AN12h, AN12i, AN12j, AN12k, AN12l, AN12m, AN12n, AN12o, AN12p, AN12q, AN12r, AN12s, AN13a, AN13b, AN13c, AN13d, AN13e, AN13f, AN13g, AN13h, AN13i, AN13j, AN13k, AN13l, AN13m, AN13n, AN14a, AN14b, AN14c, AN15a, AN15b, AN15c, AN15d, AN15e, AN15f, AN15g, AN15h, AN15i, AN15j, AN16a].

Editorial

[AN16b, AN16c, AN16d, AN16e, AN16f, AN16g, AN16h, AN16i, AN16j, AN16k, AN16l, AN17a, AN17b, AN17c, AN17d, AN17e, AN17f, AN17g, AN17h, AN17i, AN17j, AN17k, AN17l, AN18a, AN18b, AN18c, AN18d, AN18e, AN18f, AN18g, AN18h, AN19a, AN19b, AN19c].

Effective [NB12, CC14, WB12].

Efficient

[BL10, BYK14, CC12, CPTZ13, DE14, Den14, DG14, GHK11, GK10, HZSL05, IL12, yJxW16, LLP+18, LZ12, MV13, MN14, OG10, PYHA10, Sim16, WJS10, XLWZ16, ZHXS10, AR18, AJLM11, BGI12, BL14, BFLM15, BM19, CJ11, CdA13, CIK+13, jDX11, HM18, HHJ+12, eSKAI10, Lee10, LKC+12, LH10, ML10a, Mes15, Pea16, QX10, SCL+11, TLL16, T19, T13, VN17, XTH12, YA13, YiN10, YMSA14].

Efficiently [FWS13, MT10].

Eigenvalues [ZL17a].

Eight [Cal13, RZ10, Sun11].

Eight-regular [Cal13].

Eight-round [Sun11].

Elliptic [Moo11, ZHXS10].

Ellipticity [ZZ13].

Embeddable [WWLC14].

Embedding [AHRI10, ABPS15, AMN+10].
embeddings [BR10a, HM10].
emerging [DWQ10]. empirical [Sar14].
employed [MPG12]. emptiness [HHK17, Lan11]. empty [NMB10].
emulators [HP19]. enciphering [Sar11].
ectorings [FG14, JS18, SPdR13, Sun16, YiN10].
nings [GSS16, vG18]. encrypted
Encryption [XWLJ16, CW12, Fay16, HLR11, LM91, LpDS10, LHH11, Mes15, Sar11, SY15a, TPL16, WWYY11, XWS17, YL11b, ZY17].
end [WBC12]. endomorphism [FWS13].
Energy [VN17, AMN10, AZ14, HM18, NB12, Pér17, SLL13, YA13]. energy-aware [AZ14]. energy-efficient [HM18]. Enhance [NTD16, ABPS15]. Enhanced [CD19, PP14, AC12, JZ18, TC17, YW14].
Enhancing [CGLS10]. Enhancing [YBM10]. Ensemble [MS15, HHL15].
ensuing [SS17]. ensures [CZZ12]. ensuring [Nin13].
entanglement [Ito14]. entanglement-resistant [Ito14]. Entropy [BI14, CA17, DKZ18, JCC11].
envelope [Lu15]. environments [SCL11].
envy [Brã15b]. envy-free [Brã15b].
equations [Che16a, VSP18, XLT19]. ZZ15].
ecidistribution [Vaj18]. equilibria [DHW13, MM15a, PPN17, THS12, WDT13, SM13].
Erdos [FL13b]. EREW [Sor10]. Erratum [HAM11, KT12]. error [CZD14, GHC15, HKK12, KSD18, WXCK19].
estimation [LLT14, LQL17, MZQL14]. estimators [CKY15]. eternal [FGG10, BDLS15]. Euclidean [BL10, GWL18]. Euler [DCH12].
Eulerian [CGJY12, Val10]. evaluating [YWWW14]. Evaluation [BHK10, Car19, GHK11, SC12, TC17].
evasive [Agg15]. Even [BD11, AdFEGRI11, BKPP18, CHF15, SSS15]. event [AL18, CS16b, YWWW14].
event-recording [AL18]. Every [ZYC13]. evidence [SWLX15]. evolution [BSM14]. evolutionary [LFZ14]. Evolving [WMLN10]. Exact [BRF10, CCH14a, iP13, Rza14, vBCT17, AY12a, BLC10, CP13, DHPT10, Fin15, JSR11, Kut12, LFXH17, NS11, WP11, ZZ11].
Expansion [TS16, Vid13]. expansions [DD14]. expected [BEFP11, MMM17, VSP18].
Exploring [CS16b, BvdZ19]. exponent [KKO10, SM10a]. Exponential
[Bol10, BT16a, GW16, Pod12, Bae10, BRF10, BG11, CP13, Kut12, LAz10].
exponential-time [BRF10, CP13]. exponentially [BN10a]. exponentiation [SP18, Shp13, VN17]. exponents [BPRSM14, SM10b]. expressed [Att17].
expression [KSBT13, Yam19, ZZH16].
expressive [Str16]. \textsc{EXPTIME} [Kie13]. \textsc{EXPTIME-hard} [Kie13]. Extended
[TC11, BKN+12, Ket11, LLG10, ZW14].
extendible [Koc12]. Extending
[SR11, BH11]. Extension [MK16, TWZ17, AT15, Kos17, LfCyChLi10, Mor16].
extensional [PT11, RT13]. extensionality [SSSM11]. extensions [HI11]. extent
[BV11]. external [Dha14]. externalities [EGK+12]. extra [GH14]. Extracting
[CNKS15, SML+10]. extraction
[JSZC15, YLLL16]. Extremal [ZS18].

F_2 [GWL18]. F_4 [Har18]. F_4-codes [Har18]. face [EFMA10, SS10a, ZpH15].
facilitates [BTW15]. Facility
[YC11, LXD12, RX17, TL12]. fact
[YL16a]. factor
[BK10, MfFmsa11, SCB13, TZ11].
factoring [AH17, CD19, MM13]. factorization
[Mes15, TPL16].
factorizations [SZ18]. factors
[GGG+14, KN13b, vdBCDH17, CT11]. failure
[BI10b, SCL+11, WWS12]. failures
[MLZ14, TX11]. fair
[AZ14, Ara10, Bee16, KC11]. fairness
[ZZ11]. false
[CRJ10, GHC15, HKK12, JF15].
false-positive [HKJ12]. false-reject
[FI15]. families [LZL12, ZLLZ18]. family
[FS10, LYF11, Ml18]. Fan
[CZ16, N13, Bra18, Li10]. fan-crossing
[Bra18]. Fan-type [CZ16, Nn13, Li10]. fans
[AMRR11]. Fast
[BEFP11, CY18, Joh14a, KKK14, LMS14, NCP18, SSS12, SP18, Val12, Ardp15, Ar18, CC13, CWV15, CNPS15, CK11b, GK10, LT14, LTS11, PC18, WCW11].

Faster [ASM17, Dha14, Fuj16, KP14a, LKR17, LXX14, NPR17, OZL16, TXQ11, Vyg11, BD11, CPW11, FB10, GM13b, HZX16, Kat16, KT16, LSS15, SW13, Yam19, ZZH10a, ZHXS10]. Fault

[IK10, Pel10, WWS12, AMR11, Che10b, CH12, DDPBT11, DY10, Far10, Fu10, Kim10, LSLY11, LWL11, LXDX12, LX13a, LX13b, SSK12, Ts11, YLG10, ZXY10, ZX11, LSLY11, YC11]. fault-free [DY10]. fault-resilience [DDPBT11].

Fault-tolerant
[IK10, Pe10, Far10, LXDX12, Ts11, YC11]. faults
[IS10, SM19, TVB15, WD11, YZ17]. faulty
[Che10a, Che12, Che16b, Che16c, CZWP17, CHF15, DY10, DX11, YDT10]. favorable [Dam14]. FC [CÉ13]. FC-rank
[CÉ13]. feasibility [LL17, LXJ+14]. feasible
[HM13]. Feature
[PdAL18, yJxW16, SaBG17, YLLL16, ZD18]. features
[yJxW16]. Feedback
[KP14a, BDF+18, DLRS14, LX13c, WXZ+12, XN12].

Favistel
[ZW14, Bog10, BS11, Kar13, KDH15].

Fermat
[DKC12]. few
[Ang17, NR17, Pod12]. fewer
[FA17, GKM14]. FFT [Bab17]. FFT-based
[Bab17]. Fibonacci
[AAB+16, LLP+18, Mol18, Wal10]. Fibonacci-number
[LLP+18]. field
[CK11a]. fields
[BMW13]. \textsc{FIFO}
[DDPBT11, SD13]. \textsc{FIFO-queues}
[SD13]. file
[DHW11]. filter
[CRJ10, PRM16]. filtering
[CDZ14, CP10, GWJ12]. filters
[Gra18]. filtration
[CT16b]. final
[BR12].

Find
[GI18, KL18, Lee10]. Finding
[BN10b, HLT10, KO16, LLW15, MT10, SH17, Xia10, ZGL11, BRFGL10, BP+18, CM17, EO13, Gil18, HWJ96, HAM11, MIM16, PH19, Pea16, Kar17, Sax10, SY15b, Yam19, ZKXY10]. fingerprints
[PRM16].

Finite
[Att17, BB12, CGLS16, GWL18, Had18, Li15, R10, SW12, Tys13, ZDQ+17, HYC12]. finite-fold
[Tys13]. Finite-state
[Att17, HYC12]. finite-time
[ZDQ+17]. finitely
[AdFGR11]. firing
[YNH+14].

first
[PPN+17, RK15, Suz18, ZZ13, CG10b].

Fisher [ZpH15]. Fishing
[BSM14]. FISM
WLLS08, ZW14, BPRMS14, Ber12, BS11, CT16a, CCWX12, DZA15, GLW12, KSK13, KS12, Kun18, LLI18a, LKF15, Mol18, MHIU18, SQLS17, WWWZ13, WXCK19, nXICL14, YZZX12, ZJN10, JP11.

Generalizing [CSX16, CKY15].

Generals [YNH+14].

Generate [BP11, CVV10].

Generals [YNH+14].

Generate [BP11, CVV10].

Generated [CLS13, DKC12, LlChL11, YLM10].

Generating [Ghi14, Kok17, MV13, iP13, RT13, SS16].

Generator [Nis92].

Generically [Jor10].

Genetic [GPT16, LREIMBMV16, Ghi14, JAH16, WMLN10].

Genomic [WJS10].

Genus [FWS13, TXQ11].

Geodesic [LT13c, LFXH17].

Geodesics [BP14].

Geodetic [BPP+18, CCCN19].

Geometric [HMSS18, AHK+17, GGG+14, MM19a, MM19b, MB14, YBMK15].

Girth [LDW14].

Given [AALL16, JLDSo+14, SW18].

Global [DM10, GL11, HKH17, KHKS16, YBH13, YLLL16, ZST13].

Globally [Jor10].

GLS [HZX16, ZHX10].

GLV [ZHX10].

GMAC [SKK10].

Good [SQLS17, GM12b, LN11, WT13, WH16].

Google [BvK15].

Gossip [GH15].

Gossipers [GH15].

Gossiping [Vay13].

GOST [LC13, WYW14].

Grade [GL13].

Graded [AIS10].

Gradient [JZ18, CYQ13, XLT+19, YCL11, ZKXY10].

Gradient-based [YCL11].

Gradient/Hessian [JZ18].

Gradient/Hessian-enhanced [JZ18].

Grained [LH10].

Gram [PYW+13, Sal12].

Grammar [Aku10].

Grammars [Aku10].
graphs
[YL16b, YH19, Zel11, ZXY10, Zha10b, ZW10, ZL11, ZWL11, ZL12, Zha13, ZLY13, ZZ18, Zha18, ZLLZ18, ZF10, ZX11, ZJ11, ZSY13, ZLS+15, vE17, vzGS15]. Gray
[MNV11, VV11]. greater [DN12]. greatest [ZZZ15].

Gray [MNV11, VV11].

greater [DN12].
greatest [ZZZ15].

Greedily [BKZ15].

Green [SLL13].

grid [JKL18, RARM12, ZCC+11].

groups [Cal13, DN12, Jia11].

Gromov [FIV15].

ground [AGI15].

ground-complete [AGI15].

guarding [Xu12]. guards [TJ14].

guesses [JP11].

GUI [RM18].

guillotine [ZSLW16]. Guruswami [WS10].

H [Gav17]. Hakimi [Bar12]. Hales [Shr18]. half [FC14]. halfspaces [BN10b].

halflines [DS12, Min11]. Halin [DS14].

Hall [Mor16].

ham [Ber12].

ham-sandwich [Ber12].

Hamiltonian [AMR11, CLZ18, CT16a, HCHW15, KSV15, LW19]. hamiltonicity [CZ16, DZA15, SSK12, Che16b, CO13, Nin13, Val10].

Hammerstein [CW15].

Hamming
[AG19, AIR17, Ars18, AD18, AD19, Adk15, FX11, FK17, HHHK17, Kie13, MS18b, Pol18, SSS15, GQ17].

Hardness
[HM10, MN16, AD16, Ama14, APR13, BT16b, BK18, BPP+18, Ci13, EO13, IH18, JT16, Jan12a, Lan11, Lee17, MM19a, MM19b, MI17]. hardness-randomness [Jan12a].

Hash
[BVF12, EAA+16, AKY13, AP11, Han17, MS13, VNP10, WS13, WYW14].

hashing [ASM17, LWXS18]. Hasse [MK14].

HAVAL [GY15].

HAVAL-3 [GY15].

Havel [Bar12]. having [Knz13, MRZ10].

HC_AB [ZXJ+11]. head [RS12a]. heaps [NII+15].

Heapsort [Kle13]. Heath [KL10].

heavy [CZ16, CLZ18, Hua14, Wid17].

hedonic [OBT12]. Helios [MS19].

Hellman [RH10]. help [AK13].

herding [Men12].

Herman [FZ13].

Hessian-enhanced [ZJ18].

heterogeneous [CGG10].

heuristic [JK18, ZSLW16, ZLM17, ZXJ+11].

Heuristical [LLT14].

heuristics [SW18, Wit14].

HEVC [CWY15, CY18].

hexagonal [GS10c, SWZ12].

hiding [KWH16, LXY12, ZC12].

hierarchical [ADFM13, CPTZ13, CXD+13, HL17, NZX19, QK15, WCJ15].

hierarchically [LMU15].

hierarchies [SLL13].

hierarchically [HS15].

higher [KZ12].

higher [IK15b].

higher-dimensional [IK15b].

Highly [Ara10, Jor12, AABB17, BFKL13, KN13a].

highly-complex [AABB17].

Highly-fair [Ara10].

HIGHT [WWBC14].

Hill [KA17, YBC11].

hindsight [ST18].

hinge [HJ196, HAM11, KHKS16].

hitting [CCL10, Dar17, MM19a, MM19b, SS10a].

HMMs [NVB15].

hoc [HKW18, Kor12].

hole [BG12, BG15].

hole-sets [HP19].

Horn [BBK17, Pue11].

HORSIC [LKC+12].

houses [CJ11].

Holographic [FY14, YK11].

home [BE16].

homing [WL11a].

homogeneous [WD11].

homomorphic [CW12].

homomorphism [Rza14].

homomorphisms [FW14, OM17].

homophonic [SPdR13].

honeycomb [DZA15].

hop [Cho12, KM16b, LZ10a].

hopsets [HP19].

Horn [BBK17, Pue11].

HORSIC [LKC+12].

houses [CJ11].

housing [CJ11].

HsMM [XTTH12].

Hu [ZZ13].

hub [LDW14].

Huffman [Ma15, Sun16].

hulls [KP14b, MIM11].

Hungarian [DHW13].

Hybrid
[XWLJ16, YWcW+14, CPHS18, DJZ+15, TNN11, XWS17, FR12, LREIMBMV16].

Hybrid-Constrained [FR12].

hybridization [vIL13].

hyperbolicity
hypercube [Che10a, CG10a, LX13a, MO15, YTN10, ZFJZ11].

hypercube-like [LX13a]. hypercubes

[Che10b, Che12, Che16b, CHF15, DX11, HCWH15, Jha15, KM14, LX13b, LL10c, Liu15, LW19, MZ11, RRR12, RARM12, WH16, YZZ17]. hyperelliptic

[FWS13, TXQ11]. hypergeometric

[YL11b]. hypergraph

[MTT12, SS10b]. hypergraphs

[BBK17, BNRC10, BWZ12, DFRS13, Dur12, FM11, FA17, Hal10, MMM11, Szy12, Xia10]. hypermeshes

[YYDL11]. hyperpath

[RAT13]. hypersequent

[Ind15]. Hypothesis

[BT16a, GW16]. IC

[LM16]. IC-planar

[LM16]. ID

[EZ15, MMZ12, Mes15, PLPW13, TPL16]. ID-based

[EZ15, MMZ12, Mes15, PLPW13, TPL16]. idealness

[TD14]. identical

[CK12b, GM12a, GM13a, HL17, MLW11, MM12, XZBX16, XCYZ11]. Identification

[CW15, CZD14, CTHP13, PYW+13]. identifying

[Jia18]. Identity

[Tia15, CTHP13, HLR11, Jan12a, MM13, QYW16, WWYY11, XW12, LZJX10]. Identity-based

[Tia15, CTHP13, HLR11, MM13, QYW16, XW12, LZJX10]. IFP

[MMZ12]. image

[GKCK11, GPT16, KC17, LFZJ14, Sun16, YA13, YLGC16]. images

[MHIU18]. Imbalance

[LMS13]. immunity

[GN1G1]. Impact

[SF12, SCB13]. implement

[BR10b]. implementation

[CJ11, CLY11, GK10, eSKA110, PT12, Pie15, SF12, ZDQ+17]. implicants

[CKK13]. implication

[GR13, GR14, LS10]. implicit

[Cai15, CZ16, CLZ18, Hu14a, Hu18]. implicit-heavy

[CZ16]. importance

[MK11]. Impossibility

[CRTU15]. Impossible

[Blo15, MNP12, SDM14]. imprecisions

[TL5+18]. impression

[YLZZ18a, YLZZ18b]. improbable

[TS16]. Improved

[Ada11, AD16, BI14, CYQ13, Che16a, DM16, Doc13, GL11, IK15a, JKY15, KS11, LSW17, LXDX12, LHH11, LM11, Mor11, Nut18, SF13, TS16, VSP18, WWBC14, YCL11, AK10, BL12, CR18, CCL10, FS12, GL15, Ger12, GM13a, GSY15, HHTL10, LFW+18, Luc10, Möm15, PPH18, Shi12, TJ18, VKN18, YWW14, Zha10a, ZGLY12, ZL18]. Improvement

[PLPW13, BMB16, HCCG15, Wu13]. Improving

[AHR10, BT16a, DHPT10, PC19, PRM14, PRM16, ZZJ11, ZGH10, BDH+11]. In-place

[YEMR13]. inapproximability

[LSW17, MI17, NLZX14, STY12]. Incidence

[SSW15, SSW16]. inclusion

[IL12, Kak15, SS10b]. incomparable

[DK14, SS16]. compatibility

[MCS12]. incompatible

[LZLY12]. incompleteness

[Ama10]. incompressibility

[KK11]. Increasing

[Men12, Pol18, Cha12, Dur13, Elm10, NB12]. Incremental

[VAC13, BL10, GL15, Lof14, PR17]. IN D-CCA2 [Gal13]. indeg

[AX18]. indegrees

[XZW15]. independence

[GNV14]. Independent

[BDF+18, BG12, BG15, CWYP14, LYHC10, ZHX13, Che11, CK12a, DDK+15, DrdSS12, DM19, GR13, GR14, Han17, HL16, JH14a, KM16a, LX17, LS11, LS14, LMV17, LC17, Mos13a, NPR17, NG10, PC19, PPN+17, Sch15, SW13, Szu18]. index

[AX18, DGŠN15, HRW11, KKS15, WW18, ZGH10]. Indexing

[MR10, PYHA10, PYTH11]. indices

[HH12]. indivisible

[Lee17]. induced

[AK14, BGJ+16, Gav11, HOV13, LMS14, Nin13, SS12, Vág18, ZGL11]. inductive

[Dem18]. industrial

[MK11]. Inefficiencies

[CGS18]. Inefficiency

[WDT13, WCJ15, XZBX16]. Inequalities

[Fil13, PPH18, SW16]. inequality

[DZ11, Möm15]. inequivalence

[OKM13]. Inexact

[LL17]. Inf

[KMN18, LPWZ14, SSW16]. infeasibility

TC11, VN17, Wij10, XW12, YL16a, ZY17, key-correlations [Sar14]. keys
[HBL14, IK15a]. keystream [MGPI12].
key [SY15a, SZC17]. kind [YLG10, ZX1Y10]. kinship [XZ18]. Kleene [Str16].
Kleenean [Pal10]. Knapsack [CFMT16, ACD18, GHRT17, HK17, IZ1O, KS10]. König [Mis15]. Kraus [GQ17].
Krawtchouk [ZCC18]. Kronecker [GQG10, WSW12].
labeling [Bar10, Cal13, IN12, JSR11, KSK13, PG12, SL11b, WL11b, WP11].
labelings [DL13, FS11, JN12, WL12]. laden [BKN12]. lags [ZvdV10]. Lai [LLG10].
lambda [SSSM11]. lambda-calculi [SSSM11]. language [AL18, CE13, CVV10].
languages [CGR14, FS14, FYS10, JOS10, Lan11, RS10, SS18, YK13]. large
[LNP11, NII15, SLL13, TFY11, YWC11, YL17]. large-scale [YWC11]. largest
[HK16, NMB10, SH17, Tiw14, ZX17a, ZLY13, Zha18, MS15]. last [DK10].
[KDH13, MNP12]. LCM [vzGS15]. LCP [Fis10, LGT17]. LCS [Dec02, FR12, WWWZ13]. LDA [EFMA10].
LDAG [WCZZ12]. leader [BEPF11, FCLCR17, Vay13]. leaf [GHK18]. Leakage [ZY17, GV14, YL16a].
Leakage-resilient [ZY17, GV14]. learn [YBC11]. Learning [BGSM10, Pue11, SF17, DST12, GS10b, JC10, Min11, Mon12, PR17, PH11, SB13, YLZZ18a, YLZZ18b, Zha10a].
leasing [ZXXL1]. least [BF17, BM14, CQ12, CZD14, HHK17, JZ18, Min11, ZW10].
length [BFKL13, Ch12, D14, EP16, FPY12, Ghi14, GKM14, GSS16, HYC12, KZ12, LZY12, LZY12, LLL18b, MCS12, Mil15, Vaj18, WX13, ZHZ10a, ZHZ10b]. length-bounded [LLL18b]. length-three [Vaj18]. lengths [Ma15]. less [GK10].
[FG18a]. linearly [Fie11]. lines [KM12, TJ18]. link [DDPB11, KM11, Rus18, VML18, ZKXY10, ZQ115].
link-cut [Rus18]. Linkage [JKL18]. linked [SD13]. links [MM15]. LIS [AR13a]. List
[DLO12, GLO12, Qi17, SD13]. lists [SL19].
livelock [FOSC18]. liveness [BJKZ14].
load [AY12b, DHW11, FM18, GJ14, YZH14].
loading [LLG14]. lobster [ZYC13].
load [AY12b, DHW11, CC12, CLS13, FOSC18, GJR10, HCCG15, Jia11, Kak15, LSZX15, LZSX17, Shi18, Waw14, YWWW14, YLLL16]. local-improvement [HCCG15]. locality [DLO12, LWXS18].
localized [SL16]. Locally [AW12, KK11, AALL16, CC12, CLS13, FOSC18, GJR10, HCCG15, Jia11, Kak15, LSZX15, LZSX17, Shi18, Waw14, YWWW14, YLLL16].
locating [IMCP15, vISS10, HHL15, XS15]. locating-dominating [HHL15]. location [jDX11, LXDX12, RX17, TL12, XL15]. location-based [jDX11]. locked [DSPSHJNA18]. log [BH17, HPP17, Shr19, RJS+10].
log-complete [BH17]. log-rank [Shr19]. Logarithm [Rud17, MM13, Mes15, TPL16].
Long [FLP+18, BGJ+16, Bol14, Cai15, CKK13, DY10, YKD+12, Zeh16]. long-standing [Bol14, YKD+12].
Longest [FGKU15, Pol18, BBDS12, BVD10, Cha12, DG14, Dur13, Elm10, Gra15, IH18, Kos17, RK15, SY15b, CT11]. look [LP13b, ZWWL12]. lookahead [LYZ12].
lost [CBHW10]. Lot [HYK14, ZLZX19].
Lovász [KK11]. Low [AT18, MSZ11, Mar11, YA13, BB11, BI14, CL11, EN17, Kun17, RV10].
Low-level [Mar11]. low-rank [Kun17]. Lower [Fil11, LEP10, MO12, AS18, AGW13, Ber11, BGL10, BCKM15, BT16a, CA17, CP16, GY10, GW16, Kos17, Lu15, Pod12, PS19b, Pud12, Zha10a, Zho15].
lower-variance [AGW13]. lowest [NB12].
LP [DGK+17, GKW15, Vid13].
LP-rounding [GKW15]. lp231 [LK14].
majority-decomposing [STMD18]. makes [BvK15]. makespan [CLP10, FNCY10, FTYL14, KM13, SF13].
malicious [ZLM17]. Malik [MMK18]. malleable [CVZ11, Hav10, ZC12].
management [ABS13, jDX11, NZX19].
Manhattan [CDM+11, SSKA17]. manifold [LT13c]. Manoussakis [NN15]. Many [LL10c, Che10c, Che12, Dam17, FIPS11, HRS13, Kroz13, PI19, YYR16, ZQ1+15].
Many-to-many [LL10c, Che10c, Che12]. map [LMDG16, STAR15]. Mapping [Misp15, KSTB13]. MapReduce [PT12].
Marking [CS16a, HHH12]. Markov [AAOW15, BCS15, CHK13, GXXZ13, GP17].
markup [NLXX15]. marriage [Miy14].
minimum-sum [Shi13]. Mining [FKC13, BL10, CZZ+10, TLS+18].

Mycielski [LDW14].

Normal [KL10, Val10, Att17, Har16, TY16a].

Note [CGJ10, GY10, LWZ07, LPWZ14, WWZ15, AFPT10, AB15, ADFM13, BLYL17, BDH11, BGR13, Bor16, BMI14, BL14, Brâ15b, BK18, Cha12, CM17, CL10, CW13, CZWP17, CLP10, Civ13, CK12b, CIK13, Cro15, Cza13, DZQF13, DT10, DZ11, DX11, Duc18, EDS11, FKL11, Fra10, FM19, GLW12, Gal13, GPSD17, GY15, Gen14, GMM15, Gra15, Gro15, GJ15, Har16, HP18, IN12, KNY12, KMN18, Kot12, Kra12, KY12, Lau18b, LL14, LSZX15, Lib10, LWXZ14, MN17, Mon15, MM15b, Ned17, Pas15a, Pas15b, Piel15, RS15, Sch13a, SeF14, Sh11, Shr18, Svi12, Tsa11, Vou19, WP11, Xav12, YYY16, YYW12, YC19].

Notes [CP15, GLXG13, HL17, KLMP18, Nin15, vE17].

Novel [nXlCL14, FBD18, GCH10, MGPI12, SaBG17, Sun16, YGKW14].

Nowhere [YL11a]. Nowhere-zero [YL11a].

NP [ADKM12, BT16b, Che17, DFdFT16, FK17, GQ17, GI18, HK17, HWA12, LSZX17, MM19b, MI17, Rom11, Zha11, Och17].

NP-complete [Che17, DFdFT16, GI18, HWA12, Och17].

NP-completeness [LSZX17, Rom11].

NP-hard [GQ17, ADKM12, FK17, HH17].

NP-hardness [BT16b, MM19b, MI17].

NP-pairs [Zha11].

Number [LST11, ADKM12, AD13, AH11, BKMT14, Bor16, BS17, BPP18, CENCN19, CY18, Den14, DN12, DS14, Fie11, GMM15, HK18, HYC12, IM12, JP11, Jha15, JSR10, KM14, LLP18, LZLY12, LLL18b, LKF15, LZCM10, LDW14, MY18, MK11, iP13, SLDAMP17, TLZW16, VK18, WWB15, XS15, XZW15, YK15, ZLCM10, Zho15, ZS18, vIL13, vZBSY16].

Numbering [MMS15].

Numbers [LM15, CK10, CZ13, LX17, WXZ12].

OBDD [Bol10]. OBDD-based [Bol10].

OBDDs [BG11]. object [Zun18]. objective [CG15, GL12, Ser10]. objects [Lai16b].

oblivious [CDP10, FIPS11, Ria17].

obnoxious [TL12]. observable [HVC12].

observation [Per17]. observations [LR18].

occurrence [Zh15]. odd [BC15, KN13c, MCS12, ZY13].

omni [JSZC15]. omni-directional [JSZC15].

On-line [FPY12, Jan12b, LNP11, ZvdV10, TYY11, XZL11].

One [zSi1bL11, SS10b, WX12, BN10a].

BDNP15, CL11, GJ15, HK17, LKC+12, MRZ10, Mos11a, PI19, PYHA10, PTH11, SM10a, WBC+12, XICL14, BVK15].

one-dimensional [PYHA10, PTH11].

One-inclusion [SS10b]. One-round [XW12].

one-space [GJ15]. one-time [LKC+12]. one-to-many [PI19].

one-to-one [BDNP15]. OneMax [D21].

ones [CCL10].

Online [AMP13, EHZ16, FL16, FCNY10, FTLY14, GZ13, Hall10, Hav10, IZ10, LY11, LZY12, LZLY12, MY13, WBC+12, YXW13, ZXX11, ZCT+12, CXD13, Che16a, DKNQ18, DHW11, EKG+12, EL10, FK10, HSM16, MO12, MIW11, Miy14, NLLX15, NZX19, Qi17, SF13, TCXT10, YCL11, YYW12].

only [KA17, Sar11].

ontology [BBR18].

opacity [CBS15]. open [CZCD13, MSV14, SB13].

operation [Fay16, GKS13, SKK10, TX11].

operations [FG18a, YKD12].

operator [BRMP13].

operators [ZST13, ZV14]. opinion [YLLL16].

OPT [JS011].

optical [LI15, TC17, YYY12, ZYH13].

Optimal [C13, DM10, EKG+12, FC14, GLO12, HM18, JKS10, KLS13, KMI2, LGT17, MLW11, NLXX15, PPN+17, YYW12, YZZ12, AR13a, Ale13, Che11, CN18].
optimality [LMSN16, MPU17, XMNL11, CLM12].

optimally [HHJ+12, optimiser [LTWS11].

optimization [AMP13, FS12, GL11, Gav11, Lib10, Ser10].

optimizer [JK18].

Optimizing [GN10].

Optimum [TJ14, Vyg11, PR17].

Optimum-Path [PR17].

options [ZPX11].

oracles [WWYY11].

orbit [CYH15].

Order [KP14b, AAK+10, CT16b, CNPS15, Elm12, Lam11, MP15, YL11b].

Order- [KP14b].

order-preserving [CT16b, CNPS15, YL11b].

orderable [PG12].

ordering [WCZZ12].

orderings [CD19, GKPP16].

orders [Esi11, FMHL11, Tur12, YXX13, YK15].

ordinals [vB12].

Ore [SSK12].

organizing [BvK15].

orientation [AD13].

orientations [GBH12, LLL+11, ML10b].

Oriented [DN12, OM17, Ale13, AH11, DS14, GLLX12, LKR17].

orienteeing [GKM+15].

orthoconvex [NMB10].

orthogonal [AGRC+19, LWZ07, LPWZ14, S18].

other [BNRC10, JKY15, Kie13].

OTIS [MHFMSa11, SHFMSA11].

OTIS-mesh [SHFMSA11].

out-arcs [GLLX12].

outdegrees [XZW15].

outer [CCXW12, KP13, LLW15, ZLLZ18].

outer-connected [KP13, LLW15].

outer-planar [CCXW12].

outerplanar [LL10d].

outerplane [CY17].

output [CZD14, LXX14, NG10, iP13, PZ12].

output-sensitive [LX14].

outputs [HYC12].

overflow [ABS13].

overlapping [CT11, SO10, TGL16, TLL18].
provable [HRS13, LHH11, WB12]. prover [Ito14, BGL10]. provers [Dem18, Yam14]. Proving [Gar14, BD16, Lii15, LG18].

provision [GL13]. Proximity [MWZ12, ADH14]. proxy [Tia15, YMSA14].

pseudometrics [vB12]. Pseudorandom [Nis92, DKC12, LMCG16].

Pseudorandomness [LG10]. PSPACE [BH17, GN10]. PSPACE-complete [GN10].

PTAS [JKY15, MB14, ZLS+17]. Public [LPdS10, QX10, SV15a, VN17, ZY17].

Public-key [LPdS10, QX10, VN17, ZY17]. publications [BvK15]. pump [LL17].

pure [BR12, JS19, MM15a, THS12].

pure-strategy [THS12]. purely [XLZ16].

Pushdown [CO17, CS16a, DBB12, DK14, Lan11].

Puzzle [HWA12]. pyramid [TWZ17].

QoS [ZZJ11]. QPTAS [LL14]. Quadratic [Deo12, CK12b, vIL13, LREIMBMV16].

Quadratic-time [Deo12]. quality [CV12, ZGH10]. Quantified [KS18, JS18, Mar11]. quantities [KT11, KT12].

quantum [AY12a, Ber11, DT10, Har18, LLP+18, LFZJ14, LQL+17, Mon10, Mon12, QD16, RS15, TZF16, Yami14, Zha10a].

quasi-kernels [Cro15].

queries [Fre10, GHK11, KP12, Pue11, PH11, SGM13, SM17, SSKA17]. Query [ADG10, DGKS14, ED17, HLY11, KR16, KP12, Mon10, Mon12, Wij10, Yin10, Zha10a]. querying [SZC+17, Vrg15].

question [SB13]. queue [Cho12]. queueing
33

related [EZH16, FM18, GM12a, MY13, OZL16].
related-key [GLMS18, RS15].
related-key [CB18].
Related [HLR11, Mei18, Vág18].
relative [HBL14, BM17, Par11, WLLS08].
relaxations [GE12].
Relaxed [Kun17, DL13, FKL+11, Mön15].
release [AS18, LZCX12, OZL16].
Reliability [CWW10, CCRS14, Ger12, LT13b, LT15a, LT15b].
Remainder [HF14].
remark [Wij10].
Remila [Svi12].
rendezvous [BDPP18].
rental [CX18, YZZX12, ZPX11].
reoptimization [Mon15].
reordering [SF13].
Repeated [Ksh11].
repeater [BHM+10].
repeats [CCF+12].
repetition [BBDS12, HN10].
repetitions [BC15, KKO10, Pel15].
replacement [BOV15, LMSN16].
replenishment [YXW13].
reporting [DGKS14, DG16].
represent [CGR14].
representation [JAH16, Pas15a, Pas15b, SD13, Tys13, Wal10, ZpH15].
representations [Zha11, ZH16].
representatives [AGHY12].
representing [BBB+17, KR10, KR14].
reproducible [CW12].
requests [Hil14].
required [WCW11].
requirement [MZQL14].
requirements [CV12, HKW18, KVK18, ZZJ11].
requires [Laz10].
Research [ZLM17].
reset [JUY15].
residual [LT15b, ZpH15].
Residuation [GS17].
residues [Bar12].
silence [ABPS15, DDPT11].
silent [GV14, YL16a, ZY17].
resistance [LP10].
resistant [Ito14].
resolution [BGL13, BT16a, CB18, DKL+12, Lau18a, Lau18b, MS16, Pud12, BGL10].
resolving [Lai16b].
Resource [AIS10, eSKAI10, IZ10, Jia11, Oro11, XCYZ11].
resources [NZX19].
respect [SeF14].
response [FT15].
Responsive [Lei18].
restarts [FCNY10, Win13].
Restricted [VV11, DW12, GKW15, GBH10, LJT18, MNV11, MV13, Nin13, Pal10, RS12a, WZL12, WS16, YL16b].
result [EZH16, ED17, IH18, Li10, Tsa11, WYLP17].
results [ZQJ+15].
RETRACTED [Zha10b].
retransmission [TK15].
retrieval [Ars19, Tsu13].
reusable [CNKS15].
revenue [NZX19].
reversal [BN10a].
reversals [BN10a, DK14, FKR+16, Rus18].
reversible [ASTD14].
reversing [Win13].
review [YMJ17].
revised [WYLP17].
Revisit [FL13b].
revisited [FR12, HPY+10, LT13a, MZ15, NT14, Ria17, RV13, SS10b, TS16, YZH14, ZCT+12, WBC+12].
Revisiting [GLMS18, Nic19].
reward [CX18, ZZZL11].
rewiring [SW18].
rewriting [Fil13, FG18b, Ket11, Luc15, LG18, SO10, Vág18].
RFID [JF15, JB16].
rich [GSS16].
right [Bae13, JT10, Kim10].
right-hand [JT10].
right-to-left [Bae13, Kim10].
rigid [Jor10, Jor12].
rigidity [KHKS16].
ring [GWL18, LLG14].
rings [BEFP11, BHKK10].
risk [CX18, ZZZL11].
risk-reward [CX18, ZZZL11].
risks [SS17].
RNS [Pie15].
road [FBDS18, SZC+17, Rom11].
robot [CDPB+10].
robots [FIPS11].
Robust [MG16, AHLS18, EAA+16, LXDX12].
robustly [GM12b].
robustness [Lib10, Mei12].
role [LXJ+14, MGNAB11].
Role-Based [MGNAB11].
rollback [CZZ+12].
Roman [TLWZ16, ZLJS18, ZS18].
Root [Pal10, Gil18, ZLY13].
Root-restricted [Pal10].
rooted [Gol18].
roots [CCH14b, Mil19, ZKXY10, ZYL15, Zha18].
rotation [ALT16, Luc10, LEP10].
rotations [LP13b, Pal10].
rotor [M PU17].
rotor-router [MPU17].
Round [Vay13, AY14, Blo15, CVZ11, DK10].
Roads [LXJ+14].
rooted [MGNAB11].
roots [CCH14b, Mil19, ZKXY10, ZYL15, Zha18].
rotation [ALT16, Luc10, LEP10].
rotations [LP13b, Pal10].
rotor [M PU17].
rotor-router [MPU17].
Round [Vay13, AY14, Blo15, CVZ11, DK10].
round-reduced [DMSD18], round-trip [ZL17, ZL18]. round-up [JSO11], rounding [GKW15], rounds [LYHH14, MP12, YYZH13], route [TJ18], router [MPU17]. Routing [Liu15, YTN10, YYYZ12, YYZH13, CN18, IK10, SM19]. RSA [IK15a, MZ15, SM10a, SM10b]. Rule [MS15, DKZ18]. rules [BR12, Ket11, TWW17]. rumor [DF11, Win13]. run [BFKL13, GSS16]. run-length [BFKL13, GSS16], running [AHR10]. runs [Kos16]. runtime [Che17, FG18b].

[Kak15, Tur13, YBHK13, BYK14, CCT14, HHJ+12, Joh14a, NIKH15, Shi12]. selfish
[GL13, WCG15]. semantic [HLR11, LT18].
semantics [AdFEGRI11, ADG10, AB15, BGM16, DW10b, KL10]. Semi
[CXD+13, CNKS15, Dha14, DW10b, FG18b, LQL+17, MLW11, PGZB19, SF13, TCXT10].
semi-automated [CNKS15]. semi-bent
[PGZB19]. semi-external [Dha14]. Semi-online
[CXD+13, MLW11, SF13, TCXT10].
semi-quantum [LQL+17]. semi-stable
[DW10b]. semigraphoid [GNV14].
semiquantum [MP13]. sensing
[YLGC16, Fay16]. sensitive
[Ars19, LXX14, LWXS18, Luc15, NG10]. Sensitivity
[Vir11, Ama11, Li12, LL16]. Sensitivities
[AdFEGRI11, ADG10, AB15, BGM16, DW10b, KL10]. Semantics
[AdFEGRI11, ADG10, AB15, BGM16, DW10b, KL10]. Semi
CKY15, CK12b, DS15, DS16, Hua18, JKS10, JN12, Li12, LL16, Mei18, Ned17, Shi13, YZRC18, sum-optimal [JN12].

sum-product [CCXW12], summarization [Lei18], summation [KKKS14], sums [Nan13, Tiw14], sumset [BFRV15], Super [GQQG10, ZF10, CV19, CCYW16, MZ11, Nin16, WSW12, YL16b], Super-connected [ZF10], superclass [BL14], Supereulerian [AALL14], Superiority [AY12a], supermodular [Ber17], Superstring [FKR16], supervised [GS10b, HYYZ15, SaBG17], supply [RDX13], support [JZ18, KQ11, OG11], Supporting [HLY11], supports [CK11a, YiN10], Suppression [QK15], surfaces [LT13c, WWLC14], Surjective [ADF13], swap [FG14], swapped [MHFMSa11, XPC10], sweep [GM15], sweeps [TJ14], switching [WB12], Sylvester [Che16a], symbol [Kim10], Symbolic [VB15], symmetric [Ara10, Ber17, DKKY10, FLMQ10, GD13, KS18, OBT12, SKK10, XPC10], synchronization [YNH14], synchronizing [YYK17], synchronous [vG18], synthesis [GS12, MIM16, Sch14], system [CC14, GCKK11, LLK10, MK11, MS19, STAR15, TWW17, TC17, XLT19, ZLB11, Zha11, BD16], systems [AMN10, ABH14, BR10h, CV11, CZD14, CW15, CSX16, CGG10, DBB12, DK14, FCLCR17, Lazi0, MSV14, SO10, Vág18, VSP18, ZDQ17, vGGS11, LST11], systolic [GS10c],

teleportation [TF16], Template [BPPS18], templates [Las17, XZ17b], Temporal [DRD11, BvdZ19, HPP17, KK15a, Mos13b, SWLX15, CFMT16], temporary [YXW13], tensor [GM12b, Mei12], term [Ars19, Fil13, FG15b, LG18, SO10, Vág18], term-weighting [Ars19], terminal [GS10a, KR14, LT13b, LT15a, LT15b, ZY12], termination [IK15b, MP15], terms [LM12], ternary [DH13, LWL11], tessellations [AP14], test [AH17, BGI+12, BPPS18, Ghi14, GJR10, SSS12, Sch13b, GMY13], testability [KKS15], Testable [KR16, GM12b], tester [SY15a], Testing [ABH14, CKP16, CLR13, AHR10, AGZP15, CdA13, CM18, DJ15, IL12, Jan12a, RM18, SLC15, SSZW16], tests [KR16, vdBCDH17], testability [KKS15], testable [GS10a, KR16, GM12b], tests [PRM14], tactics [CV12], tag [JB16, PCK10, YBMK15], tagged [HKK12], tail [Wit14], Taking [BR12], Tamari [BP14], tarai [IK15b], tardiness [GLW12], target [Pel18], tasks [KC11, ZZJ11], technique [DJS13, PYYC16, TS16, ZLM17], techniques [HZX16, Li15, VN17].

T [eSKA10], T-Boxes [eSKA10], Tables [PRM14], tactics [CV12], tag [JB16, PCK10, YBMK15], tagged [HKK12], tail [Wit14], Taking [BR12], Tamari [BP14], tarai [IK15b], tardiness [GLW12], target [Pel18], tasks [KC11, ZZJ11], technique [DJS13, PYYC16, TS16, ZLM17], techniques [HZX16, Li15, VN17].
FZ13, FCWZ18, GXZZ13, GM13a, GMM15, Gio18, GFG11, GP17, GPR10, HCCG15, Han17, HKW14, HWJ96, HAM11, HLT10, Iba17, KLS13, KM16a, KKR+13, KM16b, Kun18, Kut12, LLK10, LKC+12, LY11, LZ14, LH11, LT15b, LC17, MY13, MZQL14, MMM+17, MS18a, Man10, MS18b, MTA10, MOW17, NB12, NII+15, PP13, PR17, RZ14, Sor10, SWZ12, SWW16, TCXT10, WCW11, Wu14, YW12, YL17, ZvdV10, ZQJ+15, ZDQ+17, ZLZX19, Zho16, ZZJ11, ZGLY12, vdBCDH17. time-bound [ADFM13].

Topological [GKPP16, MMS15, PWC+15, WCZZ12, FS14, MDB14]. topologies [CLR13]. topology [TNN11, VL15]. tori [YDT10]. toroidal [Xu11]. torus [Che10c, DZA15]. Total [Gol18, LH11, RZ10, WW11, AG19, ALT18, BYK14, BH17, BS17, CHR10, Cho12, Cza13, FL16, FL13a, FM18, GLW12, HKW14, KSK13, LZ14, MY13, Pra12, SS12, WLW11, XS15, YYY16, YW12, YZH14, ZW10, ZLZX19].

TrCBC [ZWWL12]. Tree [WWBB15, ZLS+15, ACK11, BLC10, BHM+10, BGL10, BGL13, DKL+12, Feg19, FS13b, GBH10, HHK17, JKS10, KLS13, KM16b, Kun18, Lau18a, LP13b, MS16, SLdAMP17, Suz18, Tsu18, VB15, VK18, WYL17, XLZ16, YBM+10, ZY12, vISS10, CF12, KT18, Shi15]. tree-colorable [XLZ16]. Tree-core [ZLS+15]. tree-corility [ZLS+15]. tree-like [BGL10, BGL13, Lau18a, MS16]. tree-width [Feg19]. Trees [Krz13, AABCC19, AHK+17, Aku10, AB15, ALT16, Ama10, BR10a, BSM14, BBD+12, CWYP14, Che11, CLS13, CCF+12, DM13, DZFY12, FH10, GS10a, GKH+18, GI18, GR13, GR14, HBL14, HL16, HMSS18, KM12, LNP11, LX17, LYHC10, Luc10, LEP10, MY18, Maš15, Mis15, Mon19, PC19, PP10, PPn+17, Rus18, SLC15, SM13, Tur13, Vyg11, YLM10, ZHX13, ZJS18, vGLM12, vIL13].

treespace [CDD+11]. treewidth [CO17, MS18b, RR16]. Triangle [ZZ14, LX19, Móm15, PT12, SWZ12, Yan14, YLM16]. triangle-free [SWZ12, YLM16].

triangles [HRW11, Koc18, Zha10b, ZL12, Zha13].

Two-dimensional [WL11a, Zho16, KS10, LL10b, TLL18].

two-layer [KT16]. two-level [KJC13].

two-string [TLL18]. Two-way [BN10a].

type [AB15, ACD18, CZ16, CC14, KS19, Li10, LHI11, Nin13, SC12, WB12].

type-inhabitation [AB15].

types [OG11].

typing [OG11].

TYT [LiCyChL10].

ubiquitous [LLK10]. ultralightweight [ASA13]. unambiguous [HS15, IL12].

undecidable [AL18, Ésl11, KQ11, Sch14].

underlying [YMJ17].

directed [BS12, Cha11, Gro15]. unfair [CCT14].

unicyclic [ZLY13]. unidirectional [HCWH15].

unified [CKY15]. uniform [CP16, CFJ12, DKNQ18, KLS10, LZ14, WWS12, WCY+15]. Uniformly [ZCC+11].

Unifying [FCWZ18]. unigraphs [Bar12].

Union [GI18, OG11, Ale13].

Union-Find [GI18].

unique [AD16, CMF18, KL18].

unit [DDK+15, DGR15, EHZ16, GM13a, HPY+10, HI14, KK16, LZY12, NPR17, Sun19].

unit-size [Sun19].

unit-time [GA3a].

Universal [Fil18, SPdR13, vGL12, BKS16, CY17, Csi12, Me18]. universally [HP19].

unknown [AJL11]. Unpaired [Che10c]. unpartitioned [DFdFT16].

unranking [RT13]. unrelated [ACL18].

unreliable [JUY15].

Unrestricted [CG10].

unsigncryption [EZ15].

unsupervised [PdAL18].

update [DLO12, GLO12, HLT10]. updates [Gil18].

updating [LXJ+14].

Upper [ASTD14, CA17, DEH+19, GNL11, SI18, CP16, DKK10, GD13, KTV17, VV18, VSP18, XGG11, vZBSY16]. upward [AHR10].

usability [ZH10].

usage [HPP17, Sto16].

Use [LG18].

Userrank [GWJ11].

users [CS16b, HKW18].

Using [Moo11, RK15, SL13, Vrg15, ACLS12, Ara10, Bee16, CLY11, CTT14, CCH14b, DM16, Dem18, FB10, Gh14, GK10, GGC15, HPP17, JUY15, Kim10, LX12, LL9+18, LSY11, NTD16, Par11, QD16, R15, Rus18, Sar11, SPdR13, TNN11, TVB15, WLLS08, nX1CL14, YEMR13, YMJ17, ZZH10b].

utilities [OBT12]. utilization [PP14].

Vacationing [Tho18].

validity [vG18].

valuations [Br15].

value [SL15].

valued [CHK13, CGLS16, DZ11, KM13].

variable [Ghi14, L15, Vrg15, ZZH10a].

variables [FLPS15, Sch13a]. variance [AG13].

variant [ZFJ11].

Variants [BVDP10, BJMC17, CB18, VNP10].

variation [Mis15].

various [ZQJ+15].

Varying [VT13].
[GKCK11, SWW16, ZKXY10, ZQJ+15].

Vertex [BJH15, DKL+12, KP14a, PCY16, ÁCLS12, AK14, BGJ+16, BDF+18, Che10c, CL15, FGG+10, Fu10, GLLX12, GLXG13, GZM15, lli13, Kat16, Kob15, Lan11, LX19, Li19, MSM14, Mon15, NN17, OM17, Sch13b, SK12, TZ11, TY13, Tu15, VK18, YeCM14, Ys11, ZZ14, ZLS+17, CP13].

vertex-colouring [SK12]. vertex-disjoint [Che10c, ZZ14]. vertex-distinguishing [YeCM14]. vertex-pancyclicity [Fu10]. Vertex-transitivity [PCY16, Li19].

Weighted [AMMY10, BOV15, AR18, AZ14, BJJ15, BFLM15, BM19, CG15, EH18, FL16, FV13, GKP16, GMM15, GE12, HKW14, KM16a, Kos18, Kun18, Li12, LZLY12, LL16, LMV17, LL10d, MS12, MM15a, ZLZX19, ZpH15].

weighting [Ars19, DWQ10, PdAL18]. weightings [SK12]. weights [JAH16]. welfare [Lee17]. well [GS12].

winner [BR12, Kal12]. Wirelength [AMRR11, RAR12]. wireless [CWW10, Choi12, HKW18, KK15b, LKC+12, SKK10, VLV15, YA13, YW11, ZGLY12].

Wolfe [CFMT16]. word [DWQ10, GPR10, Han17, Hen16, KN13b, SH17, Wal10]. words [BC15, GSS16, HN10, KM10, KV16, MV13, Par16, Pel15, WJS10, ZHZ10b]. work
REFERENCES

[AR13a, SLS16, EFKR10]. work-optimal
[AR13a]. Workflow [GW16]. works
[LWXS18]. world [MST16]. worlds
[GKS13]. wraparound [TNN11]. write
[FG18a]. writers [Tho18].

XPath [KRV16].

yields [Ehl17]. Young [ASTD14].

Zen [HWA12]. zeolites [Jor10]. zero [DS15, DS16, Mos11a, SWF18, WWBC14, YL11a].
zero-correlation [WWBC14]. zero-difference [SWF18]. zero-one [Mos11a].
zero-sum [DS15, DS16]. zeta [CK11b].
Zhang [SWW16, ZKKX10, ZQJ+15]. ZNN
[ZQJ+15, ZDQ+17]. Zwick [HP19].

References

Ashrafi:2016:NEP

Aleksandrowicz:2017:RHC

Abu-Affash:2019:BBF

Amtoft:2010:ACW

Aichholzer:2018:CBI

Oswin Aichholzer, Nieves Atienza, José M. Díaz-Báñez, Ruy Fabila-Monroy, David Flores-Peñaloza, Pablo Pérez-Lantero, Birgit Vogtenhuber, and Jorge Urrutia. Computing balanced islands in two colored point sets
REFERENCES

Aigner:2015:TAP

Algefari:2016:SDG

Akshay:2015:RPM

Alves:2015:SNT

Apostolico:2011:SPS
Agosta:2015:TBS

Awasthi:2012:CBC

Al-Bawani:2013:BOM

Anastasiadis:2018:BT
M. Anastasiadis, N. Chatzis, and K. A. Draziotis. Birthday type attacks to the Naccache–Stern knapsack cryptosystem. *Information Processing Letters*, 138(??):35–38, October 2018. CODEN IFPLAT. ISSN 0020-
REFERENCES

Luca Aceto, David de Frutos Escrig, Carlos Gregorio-Rodriguez, and Anna Ingolfsdottir. Complete and ready simulation semantics are not finitely based over BCCSP, even with a singleton alphabet. Information Processing Letters, 111(9):408–413, April 1, 2011. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

Foto N. Afrati, Matthew Damigos, and Manolis Gergatsoulis. Query containment under bag and bag-set semantics. Information
Aronov:2014:MWP

Ahadi:2012:CLN

Abdel-Ghafrar:2019:SBS

Aldana-Galvan:2019:MSA

[Aggarwal:2015:AES] Divesh Aggarwal. Ane-

[Agg15]

[AGW13]

[AGHY12]

[AGZP15]

Allem:2017:PTF

Aic:2017:PPS

Ainv:2018:RTR

Abbasi:2010:IRT

Amir:2017:TSH

Aceto:2010:RBG

REFERENCES

AlTawy:2013:SOC

Andre:2018:LPP

Alevizos:2013:OAC

Argiroffo:2015:CDT

Amani:2016:AR

Argiroffo:2018:CTT

G. Argiroffo, V. Leoni, and P. Torres. Complexity of \(k\)-tuple total and total \(k\)-dominations for some subclasses of bipartite graphs. *Information Processing Letters*, 138(??):72–74, October 2018. CODEN IF-

REFERENCES

Akutsu:2012:SPA

Angelini:2017:MDG

Anonymous:2010:EBa

Anonymous:2010:EBb

Anonymous:2010:EBc

Anonymous:2010:EBd

Anonymous:2010:EBe

Anonymous:2010:EBf

Anonymous:2010:EBg

Anonymous:2010:EBh

Anonymous:2010:EBi

Anonymous:2010:EBj

Anonymous:2010:EBk

Anonymous:2010:EBl

Anonymous:2010:EBm

Anonymous:2010:EBn

Anonymous:2010:EBo

Anonymous:2010:EBo
October 31, 2010. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

Anonymous:2011:EBg

Anonymous:2011:EBh

Anonymous:2011:EBi

Anonymous:2011:EBj

Anonymous:2011:EBk

Anonymous:2011:EBm

Anonymous:2011:EBl

|---------------------|---------------------|
REFERENCES

Anonymous:2012:EB1

Anonymous:2012:EBm

Anonymous:2012:EBn

Anonymous:2012:EBo

Anonymous:2012:EBs

Anonymous:2012:EBr

Anonymous:2012:EBs
REFERENCES

Anonymous:2013:EBa

Anonymous:2013:EBb

Anonymous:2013:EBc

Anonymous:2013:EBd

Anonymous:2013:EBe

Anonymous:2013:EBf

Anonymous:2013:EBg

Anonymous:2013:EBh
REFERENCES

REFERENCES

Anonymous:2016:EBf

Anonymous:2016:EBg

Anonymous:2016:EBh

Anonymous:2016:EBi

Anonymous:2016:EBj

Anonymous:2016:EBk

Anonymous:2016:EBl

|-------------------|-------------------|
Anonymous:2019:EBb

Anonymous:2019:EBc

Anonymous:2019:EB

Aumasson:2011:CHF

Aurenhammer:2014:SDT

Amir:2013:HCS

Alam:2013:DCA

Alonso:2013:ABM

Abrishami:2018:PTA

Ara10

Arslan:2018:FAA

Arslan:2019:HST

Alda:2018:LBR

Ahmadian:2013:DAR

Abdessaied:2014:UBR

Avis:2015:GEC

Agrawal:2018:LR

Matthew Andrews and Lisa Zhang. Rate-adaptive weighted fair queueing for energy-aware schedul-

Dragana Bajic and Alison Burr. Comments on...

Barany:2012:FSG

Barguil:2015:SIS

Blin:2012:PCR

Banerjee:2017:RSP

REFERENCES

www.sciencedirect.com/science/article/pii/S0020019011003371

Barbay:2014:MWP

Berard:2015:POM

Biedler:2011:NIP

Therese Biedl, Stepane Durocher, Holger H. Hoos, Shuang Luan, Jared Saia, and Maxwell Young. A note on improving the performance of approximation al-

Bernardeschi:2016:VSP

Bonamy:2018:IFV

Bock:2011:EFP

Bonomo:2015:OOC

Best:2016:EHS

Beekman:2016:DSA

REFERENCES

[Badkobeh:2013:BJS] Golnaz Badkobeh, Gabriele Fici, Steve Kroon, and

REFERENCES

[Brandstadt:2015:AMW]

[Bannai:2012:EAT]

[Beyersdorff:2010:LBP]

[Beyersdorff:2013:CTL]

[Barbero:2016:LVK]
REFERENCES

Bjorklund:2011:CPL

Bjorklund:2017:CPM

Barmpalias:2013:ACO

Barmpalias:2013:A

Bartoschek:2010:RTC

Bonchis:2014:IAA

Bird:2011:SDF

Bouzid:2016:NCB

Zohir Bouzid, Damien Imbs, and Michel Raynal. A nec-

Bhavani:2018:EFC

Bang-Jensen:2015:VCE

Basin:2014:DSL

Björkland:2013:CCT

Andreas Björklund and Petteri Kaski. Counting closed

Bringmann:2018:NHD

Berenbrink:2014:ENC

Bapam:2018:PMS

Bicak:2016:MAM

Bask:2015:GCA

David Basin, Felix Klaedtke, and Eugen Zalinescu. Greed-

Bailey:2010:EIM

Bao:2012:IAA

Bertini:2010:PPC

Blondeau:2015:IDA

REFERENCES

REFERENCES

Braverman:2015:WSR

Berry:2011:SAG

Baril:2014:MSM

Bueno:2018:HFG

Bijlsma:2018:TMT

Bajric:2014:GBF

Baudon:2012:MAP

Bagheri:2010:PSL

Bonnet:2010:SPN

Baumeister:2012:TFS

Brand:2015:ASR

Branzei:2015:NEF

REFERENCES

REFERENCES

[Bastkowski:2014:FME]

[Bonacina:2016:IRW]

[Bredereck:2016:NHT]

[Bender:2015:PIS]

[Bansal:2017:TAB]
Baril:2010:WMD

Boldi:2011:IEF

Bonizzoni:2010:VCL

Bodlaender:2019:EAC

Barreto:2012:HCS

Bodlaender:2015:GSM

Botelho:2012:CRP
REFERENCES

Belhoul:2014:ESS

Calamoneri:2013:OLE

Carvalho:2019:SEA

Clymo:2018:RSW
REFERENCES

REFERENCES

Canale:2014:CCK

Chiu:2014:MSS

Cheng:2012:RSP

Chang:2016:LET

Colantonio:2010:CCC

Clare:2019:ESF

Amanda Clare and Jacqueline W. Daykin. Enhanced string factoring from alphabet orderings. *Information Processing Letters*, 143(??):

Liliana Cucu-Grosjean and Joël Goossens. Predictability of Fixed-Job Priority schedulers on heterogeneous multiprocessor real-

Liliana Cucu-Grosjean and Joël Goossens. Predictability of Fixed-Job Priority schedulers on heterogeneous multiprocessor real-

REFERENCES

REFERENCES

Chen:2010:EFT

Chen:2010:UMM

Chen:2011:PCO

Chen:2012:PMM

Chen:2016:IND

Chen:2016:HHF

Chen:2016:PDP

References

[CHR10] Chang:2010:TCP

[Civ13] Civril:2013:NHS

[C<Cell11:EIE]

Couturier:2012:BIS

Chang:2010:RNG

Croce:2012:NMS

Chakraborty:2016:TWU

Cepek:2013:BFL

Cohen:2015:USG

Chen:2010:NCM

Chen:2015:AVD

Chen:2012:OBD

Choi:2010:NMM

Cheng:2012:DCD

Chang:2013:TCQ

Cheng:2013:SLD
[CLS13] Eddie Cheng, László Lipták, and Daniel E. Steffy. Strong local diagnosability of \((n,k)\)-

Chiu:2011:MIL

Cai:2018:IDC

Chaturvedi:2017:NFM

Croitoru:2018:TS

Chen:2018:ORA

Constantinou:2015:ER

Eleni Constantinou, Athanasios Naskos, George Kakarontzas, and Ioannis Stamoulis. Ex-

Cho:2015:FAO

Cranston:2013:HCR

Chatterjee:2017:PRC

Courcelle:2014:CWE

Clifford:2010:FAM

Clifford:2011:MSI

[CS10] Raphaël Clifford and Benjamin Sach. Permuted function matching. *Informa-
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
Choi:2012:LTF

Chen:2013:NSL

Chen:2015:IHS

Chen:2010:RWS

Cen:2015:FCD

Chang:2014:CIS

REFERENCES

[113] science/article/pii/S002001901400129X
See [ZHX13].

Chen:2018:RRM

Chung:2018:FIP

CX18

CXD+13

Chang:2017:AUD

Chen:2015:CTO

Chen:2013:SOH
REFERENCES

Cai:2016:FTI

Chap:2013:NTC

Chen:2013:AAF

Chen:2014:DFB

Chen:2017:NPE

REFERENCES

Ci:2010:DMB

Ci:2012:MCC

Damaschke:2014:EMB

Damaschke:2016:SCE

Damaschke:2017:RAH

Darnstadt:2015:OPB

Datta:2015:ASC

Dubsla:2012:MCP

Dias-Banez:2017:NRC

Du:2012:LCB

DasGupta:2014:CBS

Das:2018:NAP

REFERENCES

REFERENCES

(print), 1872-6119 (electronic).

Demba:2018:ECT

Deng:2014:EDS

Deorowicz:2012:QTA

Doerr:2011:QRR

Dantas:2016:UPP

Das:2010:NCN

Dudek:2013:ACR

Andrzej Dudek, Alan Frieze,

Deorowicz:2014:EAL

Das:2014:RIM

Das:2016:LSA

Demaine:2017:ASR

DiIanni:2015:RDU

Miriam Di Ianni, Luciano Gualà, and Gianluca Rossi. Reducing the diameter of a unit disk graph via node addition. *Information Processing Letters*, 115(11):845–850, November 2015. CODEN IFPLAT. ISSN 0020-
REFERENCES

Diaconescu:2015:ETS

Didimo:2013:DSL

Dietzfelbinger:2015:TSC

Dong:2015:AAP

Dugar:2015:DPC

Did:2013:DSL

DJRB15

REFERENCES

Dunkelman:2010:EOL

Duris:2014:FPA

Demenko:2010:NUB

Du:2012:LCP

Dolgui:2018:GPS

REFERENCES

DiLena:2010:OGA

Dean:2013:BCT

Darwish:2016:IBF

Dyer:2019:CIS

Duarte:2011:ICS

Dietrich:2012:BMS

Dwivedi:2018:DLR

[DMSD18] Ashutosh Dhar Dwivedi, Pawel Morawiecki, Rajani Singh, and Shalini Dhar. Differential-linear and related key crypt-
REFERENCES

Dybizbanski:2012:OCN

Doe:2013:IAA

Dieudonne:2012:DNE

Dabrowski:2017:CBG

Dabrowski:2018:CFF

David:2011:HSN

Matei David, Periklis A. Papakonstantinou, and Anastasios Sidiropoulos. How strong is Nisan’s pseudorandom generator? *Information Processing Let-
Draziotis:2016:EDL

Dixit:2011:SRP

Dourado:2012:CRR

Dybizbanski:2014:OCN

Dehghan:2015:CZS

Dehghan:2016:ACZ
REFERENCES

Delgado-Segura:2018:BPK

Doron:2015:RSB

Ducoffe:2018:SNC

Dorn:2010:NSE

Dor:2012:MIL

Duris:2012:SCA
REFERENCES

www.sciencedirect.com/science/article/pii/S0020019012001287

REFERENCES

PLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

[DZA15]

[DY10]

[DZ11]

[DZFY12]

[DZQF13]

[102x574] Dong:2010:ELF

[DZA15]

[DY10]

[DZA15]
Ehdaie:2016:HCR

Esiner:2017:QRI

Even-Dar:2011:NMS

Emek:2010:ACS

Eftekhari:2010:BWK

Ehsani:2012:OOP

Elmasry:2010:LAI

Elmasry:2012:SSP

Elmasry:2015:CIA

Elnbassioni:2017:PTA

Elkind:2013:HFS

Echenim:2011:MIS

References

- **Enos:2015:IBS**

- **Epstein:2016:OSU**

- **Ezra:2010:NAW**
REFERENCES

Frieze:2017:RCS

Farrag:2010:DFT

Fay:2016:ICM

Freschi:2010:FA

Fan:2018:NDT

Fang:2014:OSC

Fernandez-Campusano:2017:DLE

Fu:2010:OST

Foster:2018:UTT

Feghali:2019:PBC

Fredriksson:2014:CES

Fan:2018:AL

Frohn:2018:CR

Fomin:2010:PAE

Flouri:2015:LCS

Farras:2012:LTM

Fomin:2011:SBD

Fischer:2010:NCA

Fiedorowicz:2012:ACI

REFERENCES

[FIPS11] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. How many

REFERENCES

Fici:2016:GAS

Feng:2012:PCM

Feng:2013:CPT

Fujita:2013:REG

Fang:2016:OPB

Fu:2010:EBS
Shaojing Fu, Chao Li, Kanta Matsuura, and Longjiang Qu. Enumeration of balanced symmetric functions over GF(p). Information Processing Letters, 110(14–
REFERENCES

REFERENCES

Fabila-Monroy:2011:CPA

Filho:2018:CLL

Farhana:2012:DCL

Frieze:2018:BAT

Fung:2012:LSE

Frati:2010:NIP

Fredriksson:2010:BMA

Fredman:2014:ISB

Feder:2011:MGL

Fujimoto:2013:HGG

Fink:2014:TCL

REFERENCES

REFERENCES

Gavril:2011:AIB

Gavril:2017:NIG

Guttmann-Beck:2010:TRA

Guttmann-Beck:2012:SPO

Chen:2015:DDP

Guo:2010:KNA

Gulavani:2010:RAI

Grzegorek:2015:NOS

Grigorescu:2010:LDT

Geron:2010:EIG

Geetha:2011:VRN

Golovnev:2014:SSB

Gavalas:2015:AAA

Damianos Gavalas, Charalampos Konstantopoulos, Konstantinos Mastakas, Grammati Pantziou, and Nikolaos Vathis. Approximation algorithms for the

Gerbner:2016:TOW

Govercin:2013:LGO

Grandoni:2015:LRI

Gao:2011:IAB

Guan:2013:CMS

Gao:2015:IHN

|GL15| Xiaofang Gao and Jiye Liang. An improved incre-

Qiaoping Guo, Shengjia Li, Gaokui Xu, and Yubao Guo. Notes on vertex pancyclic-

Gerstl:2015:NMW

Gutin:2013:NEP

Gelade:2010:ORA

Gupta:2011:UBA

Gyssens:2014:CSA

Golumbic:2018:TCR

Martin Charles Golumbic. Total coloring of rooted path graphs. *Information Processing Letters*, 135(?):

REFERENCES

[156]

Guo:2010:SCK

Gopalan:2013:CPI

See corrigendum [GR14].

Gropowski:2015:NPU

Grandi:2018:ABF

Gamard:2017:PRA

Gamzu:2010:PAC

Gnecco:2010:SWS

Gruner:2010:DFH

Gastin:2012:DWC

Gadducci:2017:RBP

Grigorious:2014:PDC

Cyriac Grigorious, Sudeep Stephen, Bharati Rajan, Mirka Miller, and Albert
REFERENCES

Gregory Gutin and Magnus Wahlström. Tight lower bounds for the Workflow Satisfiability Problem based on the Strong Exponential Time Hypothesis. Information Processing-

REFERENCES

[160]

Haddad:2018:MDF

Han:2017:CPW

Halldorsson:2010:OCH

Harwath:2016:NSP

Harada:2018:NQC

Hasan:2013:FSP

Havill:2010:OMJ

Holenderski:2014:RBT

Haddadi:2015:PTL

Hung:2015:HPU

Henry:2016:NWP

Christopher S. Henry. The

[Harn:2014:MTS]

[Harn:2015:DTS]

[Hedetniemi:2012:SSA]

[Heam:2017:EPT]

[Honkala:2015:EOD]
Huang:2010:IAS

Hanamura:2011:PSL

Hirsch:2012:ORA

Hildenbrandt:2014:SPP

Haase:2016:CLS

Holzhauser:2017:FPK

Hwang:2012:AFP

[HKK12] Jinsoo Hwang, Jeankyung Kim, and Kichang Kim. Analysis of the false-positive error rate of tagged frag-
REFERENCES

He:2017:NHS

Herranz:2011:RBS

Hung:2010:FFI

Han:2011:SEP

Heggernes:2010:HAM

Hitchcock:2013:BIF

Halacsy:2018:OEE
REFERENCES

Huang:2019:TZE

Han:2017:PAR

HPY:+10

Herranz:2013:SMS

Hrubes:2012:NRD

Hou:2011:AIC

[IM12] Justin Iwerks and Joseph S. B. Mitchell. The art gallery theorem for simple polygons in terms of...

Ichimura:2010: Akira Ichimura and Maiko Shigeno. A new parameter for a broadcast algorithm with locally bounded...

REFERENCES

Jannati:2016:SAR

Ji:2010:SJD

Jung:2011:EBU

Duan:2011:ELB

Jannati:2015:AFR

Jha:2015:CDN

Jiang:2011:NLC
Jehn-Ruey Jiang. Nondominated local coteries for resource allocation in grids and clouds. Information
REFERENCES

[174]

Jiang:2016:MAC

[179]

Jiang:2018:PIC

[276]

Jouida:2018:DBO

[328]

Jain:2010:ODS

[388]

Jaiswal:2015:IAI
Joos:2014:GIC

Joeris:2017:SDC

Jamison:2012:MOS

Johnen:2014:FSS

Johnson:2014:SNM

Jordan:2010:GGR

Jordan:2012:HCM

[Tibor:2012:HCM] Tibor Jordán. Highly connected molecular graphs are rigid in three dimensions. *Information Process-
REFERENCES

REFERENCES

Jourdan:2015:RCS

Jiang:2018:GHE

Khazaei:2017:COA

Kakugawa:2015:SSD

Kalinich:2012:FWP

Kara:2013:SR

S:2017:DTR

Karthik C. S. Did the train reach its destination: the complexity of finding a witness. Information Pro-
REFERENCES

Katrenic:2016:FFA

Katrenic:2016:FPA

Kim:2011:NFS

Kwon:2017:CBI

Kocabas:2013:NSS

Kiwi:2014:SMB

Karakoç:2013:BCL

Karakoc:2015:AKA

Kiefer:2013:BBE

Kim:2010:NFA

Kulich:2011:PPS

Kamiyama:2015:PA

REFERENCES

Naoyuki Kamiyama and Yasushi Kawase. On packing arborescences in temporal
REFERENCES

REFERENCES

Kozma:2010:CTG

Karpinski:2013:OCP

Kolliopoulos:2013:VCM

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klavzar:2014:DNE</td>
</tr>
<tr>
<td>Kazemi:2018:AAC</td>
</tr>
<tr>
<td>Kohler:2016:LTA</td>
</tr>
<tr>
<td>Kovacs:2015:OSA</td>
</tr>
<tr>
<td>Kundu:2016:LTA</td>
</tr>
<tr>
<td>Kosinski:2018:CT</td>
</tr>
</tbody>
</table>
REFERENCES

Kantor:2013:ASD

Kiyomi:2016:FCG

Kapoor:2013:MFW

Kobayashi:2015:CPD

Krithika:2013:ADC

Kochol:2012:NEL

See [MN17].

Christos Koukouvinos, Veronika Pillwein, Dimitris E. Simos, and Zafeirakis Zafeirakopoulos. On the average complexity for the verification of compatible sequences. Information Processing Letters, 111
REFERENCES

Kirsten:2011:RSR

Katajainen:2010:CDS

Khan:2014:MNR

Kol:2016:BQL

Krajíček:2012:NSA

Kostylev:2016:SAN
REFERENCES

Keszočke:2018:CEM

Khennoufa:2013:ECT

Kaiser:2015:GGH

Krumke:2011:MCF

Krumke:2012:EMC

REFERENCES

See [KT11].

Kutzkov:2012:EET

Kenkre:2010:AAB

Kitaev:2016:MSW

Kishore:2018:MCR

Kuo:2016:SDD

Kuo:2012:SNP

REFERENCES

[193] science/article/pii/S0020019012000622. See [Mos11b].

Laihonen:2016:MDR

Lampis:2011:KOV

Lange:2011:HEP

Lasota:2017:EAC

Lauria:2018:CET

Lauria:2018:NAK

Lazic:2010:RPB

REFERENCES

Lu:2013:CSA
Lin:2017:LTA
Lee:2017:DCN

[Lee17] Euiwoong Lee. APX-hardness of maximizing Nash social welfare with indivisible items. *Information
REFERENCES

Leitert:2017:CDC

Leiva:2018:RTS

Luccio:2010:LBR

Liu:2016:LCR

Lin:2018:IFA

Liu:2017:SCE

REFERENCES

Li:2014:SIS

Lucas:2018:ULM

Louza:2017:OSS

Lin:2010:EAC

Lin:2011:TCT

Lin:2011:ICA

REFERENCES

Lai:2010:SMS

Lin:2010:TMT

Liu:2010:MMD

Liu:2010:MCB

Lin:2013:MSC

Levcopoulos:2014:NQM

Li:2016:SWS

Li:2017:IFP

Li:2011:SBP

Li:2010:ETI

Luo:2010:PAE

Li:2014:AAR

Lee:2010:SRT

Lai:2011:MOL

REFERENCES

[LWH13] Yiguang Liu, Stan Z. Li, Wei Wu, and Ronggang Huang. Dynamics of a mean-shift-like algorithm and its applications on clustering. Information Pro-

REFERENCES

See [LWZ07].

Min Chih Lin, Francisco J. Soulignac, and Jayme L.

Lucas:2010:IKS

Lucas:2015:CCS

Lutz:2014:FPT

Lin:2015:AAC

Lu:2019:EDH

Liu:2010:NDC

Li:2011:PTC

REFERENCES

REFERENCES

Liang:2013:MFA

Li:2017:CTE

Lin:2019:VKE

Lu:2014:CR

Lai:2012:RHB
Liu:2014:FOS

Li:2011:OSU

Li:2011:UPB

Li:2010:TAM

Liu:2010:IST

Li:2011:UPB

Lin:2010:IST

Liu:2010:PCC

Hong Liu and Daming Zhu. Parameterized complexity

REFERENCES

0020-0190 (print), 1872-6119 (electronic).

Manaa:2010:CEP

Mehrnoush Malekesmaeili, Cedric Chauve, and Tamon Stephen. A tight bound on the length of odd cycles in the incompatibility graph of a non-C1P matrix.
Maretic:2014:LCU

Meir:2012:RMP

Mennink:2012:IFH

Meshram:2015:EIB

Maiseli:2016:RED
REFERENCES

Martinez-Garcia:2011:FRB

Mihaljevic:2012:ISR

Malekimajd:2011:POS

Morinaga:2018:CBN

Magdon-Ismail:2017:NHI

Milshtein:2015:NBC

Moshe Milshtein. A new binary code of length 16 and minimum distance 3. Information Processing Letters, 115(12):975–976, December 2015. CODEN IF-
REFERENCES

REFERENCES

[MML12] Baruch Mor and Gur Mosheiov. Batch scheduling of identical jobs on parallel identical machines. *In-
Meshram:2013:IBC

Madireddy:2019:AHG

Madireddy:2019:NHG

Maiseli:2018:PMM

Baraka Maiseli, Hubert

Malvestuto:2011:CSP

Mancini:2017:MME

Meshram:2012:IBC

Magirius:2015:CPL

Meshram:2012:IBC

Mukhopadhay:2014:EMP

Debapriyay Mukhopadhay and Subhas C. Nandy. Ef-

Mathieu:2012:LBR

Mathew:2015:HPB

Mollard:2018:EPC

Momke:2015:IAA

Montanaro:2010:NQQ

Montanaro:2012:QQC

Monnot:2015:NTS
[Mon15] Jerome Monnot. A note on the traveling salesman reoptimization prob-

Moszkowski:2013:IBC Ben Moszkowski. Interconnections between classes of sequentially compositional

REFERENCES

Moosa:2010:IPB

Montassier:2010:DSG

Mathew:2012:CPB

Morawiecki:2013:SBP

Mkrtchyan:2015:ALS

Mahajan:2016:LOR

Maneth:2018:BMT

Marcilon:2018:ITH

Moser:2018:LDD

Meyer:2019:ERV

Matsui:2014:FPF

Mahajan:2016:VVM

Muller:2014:UAO

[MSV14] Richard Müller, Christian Stahl, and Walter Vogler. Undecidability of accor-

Maheshwari:2011:LIN

Mubayi:2010:FBS

Meir:2018:CAP

Melkman:2010:DSA

Moll:2012:CHW

Mapa:2015:MAS

REFERENCES

Mansour:2013:EGR

Ma:2012:PAE

Ma:2013:OSS

Ma:2013:NST

Ma:2011:SCE

Meng:2015:CRS

REFERENCES

Subhas C. Nandy, Krishnendu Mukhopadhyaya, and Bhargab B. Bhat-

Nakprasit:2017:SEV

Nose:2011:SWA

Nose:2014:SWS

Peter Nose. Security weaknesses of a signature scheme and authenticated key agreement pro-

Nandy:2017:FAM

Nicolae:2017:PMM

Narayanaswamy:2011:DSB

REFERENCES

REFERENCES

Oanea:2011:BAN

Olsen:2012:NTN

Ochem:2017:SNC

Ohlebusch:2010:EAA

Ortin:2011:UIT

Oh:2013:IBA

Pawel Parys. Weak containment for partial words.

Pasalic:2015:CNN

Pasalic:2015:NNV

Papadopoulos:2018:FAG

Pai:2019:IDC

Park:2013:PMT

REFERENCES

REFERENCES

ISSN 0020-0190 (print), 1872-6119 (electronic).

Panda:2013:LTA

Park:2014:EUB

Peng:2017:ODF

Ponti:2017:ILT

Pradhan:2012:AA

REFERENCES

Pudlak:2012:LBS

Puente:2011:LSQ

Puleo:2016:CDM

Pang:2015:TSD

Peng:2010:EIA

Peng:2011:IOD

Peng:2013:FGP

Xi Peng, Zhang Yi, Xiao-Yong Wei, De-Zhong Peng,

Park:2016:TCB

Qi:2017:BPO

Queyroi:2015:SDC

Qian:2010:NIM

[QX10] Haifeng Qian and Shouhuai Xu. Non-interactive multisignatures in the plain public-key model with ef-
Qin:2016:STI

Rackham:2010:CCC

Rajasingh:2012:MWH

Ren:2013:CTS

Roh:2010:BSW

REIS

[RRR12] Indra Rajasingh, Bharati Rajan, and R. Sundara Ra-

Schmidt:2013:STV

Schewe:2014:DSS

Schaudt:2015:DMI

Soraluze:2011:CEF

Sokolov:2013:LLR

Shakiba:2014:CCI

Schubert:2014:NSR

Aleskay Schubert and Kenetsu Fujita. A note on subject reduction in (→,∃)-

Service:2010:NFL

Su:2012:IIN

Sun:2013:ISO

Supeesun:2017:LNS

Sanyal:2013:CTR

Sawada:2017:FLF

Joe Sawada and Patrick Hartman. Finding the largest fixed-density necklace and Lyndon word. *Information Processing Letters*, 125(??):15–19, September 2017. CODEN IF-
REFERENCES

REFERENCES

Shraibman:2018:NMC

Simon:2016:ECA

Shraibman:2019:CBL

Skowronek-Kaziow:2012:MVC

Sattari:2018:UBM

Szalachowski:2010:CCG
REFERENCES

Suksompong:2016:ELW

Sarkar:2010:CRM

Sarkar:2010:CRT

Small:2013:NEC

Sherkhonov:2017:CAC

Sabir:2019:PRR

Shen:2010:DEN

Yang Shen, LiZhuang Ma, Hai Liu, Yanxia Bao, and Zhihua Chen. Detecting and extracting natural snow from videos. Information
REFERENCES

Schweitzer:2010:CFH

Simon:2010:OIH

Schaudt:2012:CCD

Sanders:2016:SGS

Sadhya:2017:PRE

Sakharov:2018:VAS

Su:2012:FHG

Son:2017:TMS

Schmidt-Schauß:2010:CMS

Schmidt-Schauß:2012:FET

Scott:2015:AAH

Schmidt-Schauß:2011:CAS

Shiau:2015:ICC

Shiau:2016:CIC

Song:2016:ATM

Santiesteban-Toca:2015:NMC

Soeken:2018:PMD

[STMD18] Mathias Soeken, Eleonora Testa, Alan Mishchenko, and Giovanni De Micheli. Pairs of majority-decomposing functions. Information Processing Letters, 139(?):30–34, November 2018. CODEN IFPLAT. ISSN 0020-
REFERENCES

Storch:2016:BBC

Struth:2016:EPK

Shrestha:2012:BCB

Shieh:2012:IMI

Sung:2011:DCE

Sun:2016:NEB

Sun:2019:NCS

Hongyang Sun. Nonclairvoyant scheduling with conflicts for unit-size jobs.
REFERENCES

Lin-Zhi Shen, Jie-Jing Wen, and Fang-Wei Fu. A new class of zero-difference balanced functions. Information Processing Letters, 136(??):9–11, August 2018. CODEN IF-
REFERENCES

Song:2015:CDM

Sun:2016:ZNN

Sparl:2012:LTA

Shao:2015:SAS

Song:2015:FLA

Sun:2018:GOF

Tsai:2017:DEE

Tian:2011:LAS

Tao:2010:OSO

Thomas:2012:APL

Tiplea:2014:NSC

REFERENCES

Takehara:2012:CPS

Tian:2015:IBP

Tiwary:2014:LCS

Tan:2014:OSS

Tan:2018:IA

Thakkar:2015:NDT
Tian:2012:PSO

Tax:2018:IPM

Ta:2016:EAC

Tan:2016:CRD

Taheri:2011:HTB

Tan:2016:BIB

Tezcan:2016:ID

Tsai:2011:NOR

Tsai:2015:PDA

Tsur:2013:TDR

Tsur:2018:SDS
Dekel Tsur. Succinct data structures for nearest colored node in a tree. *Information Processing Letters*, 132(??):6–10, April 2018. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (elec-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Valmari:2012:FBP

Vaya:2013:RCL

vanBreugel:2012:BPC

Veanes:2015:STA

vanBevern:2015:APC

vonderBruggen:2017:ESF

REFERENCES

Voudouris:2019:NEP

Vrgoc:2015:UVA

Visconti:2018:IUB

Vajnovszki:2011:RCP

Vajnovszki:2011:RCP

vanZuylen:2016:TUB

vonzurGathen:2015:CGG

Walczak:2010:SRS

Wawrzyniak:2014:SAL

Wang:2012:PCE

Wang:2012:OSO

Wu:2015:INE

REFERENCES

Widel:2017:CHS

Wijsen:2010:RCC

Winzen:2013:DRQ

Witt:2014:FLT

Wu:2010:ECS

Wang:2011:TDH

Wang:2011:GPC

Wang:2012:GPC

Wang:2010:ECS

Wang:2010:IKP

Wu:2011:TCP

Wang:2010:MGS

Wang:2013:PPC

Wang:2016:SSC

Wang:2012:SCK

Wang:2013:NMC

Wu:2013:IVC

Wu:2014:AMM

REFERENCES

Wang:2011:TCP

[WW11]

Watel:2015:FAP

[WWBB15]

Wang:2014:LA

[WWW14]

Wen:2014:MZC

[WWC14]

Wang:2012:FTA

[WWBC14]

Wang:2018:SCI

Yiqiao Wang, Ping Wang, and Weifan Wang. Strong

[Wang:2012:BFN] Jian Wang, Xirong Xu, De-

Xavier:2012:NMS

Xavier:2010:FMW

Xu:2015:MRS

Xiao:2019:NGN

Xiang:2016:EMP

Xinyin Xiang, Hui Li, Mingyu Wang, and Xingwen

Xu:2016:PTC

Xu:2011:CSM

Xiao:2010:FSS

Xiao:2012:F

Xie:2012:EAP

Y. Xie, S. Tang, C. Tang, and X. Huang. An efficient algorithm for parameterizing HsMM with Gaussian...
REFERENCES

and Gamma distributions.

[XXZ14] Dezheng Xie, Huanhuan

REFERENCES

Yang:2014:VDP

Yuan:2013:PPP

Yu:2012:IMB

Yamanaka:2010:CEP
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
</table>

Liang Yang, Bing Liu, Hongfei Lin, and Yuan Lin.

Yang:2010:CCC [YLM10]

Yang:2018:DLA [YLZZ18a]

Yang:2018:LGI [YLZZ18b]

Yu:2017:RPU [YMJ17]

Yu:2014:SPE [YMSA14]

Kazuya Yamashita, Yasuki Nishitani, Sadaki Hirose, Satoshi Okawa, and

Yan:2011:PAB

Yao:2014:NHS

Yang:2015:SPB

Yu:2013:OIR

REFERENCES

Yang:2011:CDH

Yenigun:2017:CCE

Yu:2012:RW

Yu:2014:MMS

Xianyu Yu, Yulin Zhang, ...

Yan:2018:DSC

Yang:2017:SMC

Zalinescu:2011:SSC

Zhang:2010:SCP

REFERENCES

[ZDQ+17] Yunong Zhang, Yaqiong Ding, Binbin Qiu, Yinyan Zhang, and Xiaodong Li. Signum-function array activated ZNN with easier circuit implementation and

Zehavi:2016:RAL

Zelke:2011:IMM

Zhou:2010:SCS

Zhou:2011:SCN

Zivkovic:2010:IUS

Zhang:2011:FMI

REFERENCES

References

Zemke:2010:GAG

Zhang:2010:TVS

Zhang:2011:ECC

Zhang:2012:ECP

Zhu:2017:SWR

Zhu:2018:DIR
REFERENCES

304

tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0020019017301643.

Zhang:2011:APF

[JLB11] Jinshan Zhang, Heng Liang,
and Fengshan Bai. Approximating
partition functions
of the two-state spin system.
Information Process-
ing Letters, 111(14):702–
710, July 31, 2011. CODEN
IFPLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/

Zhang:2010:DNC

[ZLCM10] Xindong Zhang, Juan Liu,
Xing Chen, and Jixiang
Meng. Domination number
of Cartesian products of di-
rected cycles. Information
Processing Letters, 111(1):
CODEN IFPLAT. ISSN
0020-0190 (print), 1872-6119
(electronic).

Zhang:2018:DRD

[ZLJS18] Xiujun Zhang, Zepeng Li,
Huiqin Jiang, and Zehui
Shao. Double Roman domi-
nation in trees. Information
Processing Letters, 134(?):31–
34, June 2018. CODEN
IFPLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0020019018300139.

Zhang:2018:LPE

[ZLLZ18] Xin Zhang, Jingfen Lan,
Bi Li, and Qiang Zhu. Light
paths and edges in families
of outer-1-planar graphs.
Information Processing
Letters, 136(?):83–89,
August 2018. CODEN
IFPLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/

Zhang:2017:RDH

[ZLM17] Bo Zhang, Qianmu Li,
and Yuanyuan Ma. Research
on dynamic heuristic scan-
ing technique and the appli-
cation of the malicious
code detection model.
Information Processing
Letters, 117(?):19–24, Jan-
uary 2017. CODEN IF-
PLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/

Zhu:2015:TCT

[ZLS+15] Enqiang Zhu, Zepeng Li,
Zehui Shao, Jin Xu, and
Chanjuan Liu. Tree-core
and tree-coritivity of graphs.
Information Processing
Letters, 115(10):754–759,
October 2015. CODEN IF-
PLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S002001901500047.

Xin Zhang, Jingfen Lan,
Bi Li, and Qiang Zhu. Light
paths and edges in families
of outer-1-planar graphs. Information Process-
ing Letters, 136(?):83–
89, August 2018. CODEN
IFPLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/

Bo Zhang, Qianmu Li,
and Yuanyuan Ma. Research
on dynamic heuristic scan-
ing technique and the appli-
cation of the malicious
code detection model. Information Processing
Letters, 117(?):19–24, Jan-
uary 2017. CODEN IF-
PLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/

Enqiang Zhu, Zepeng Li,
Zehui Shao, Jin Xu, and
Chanjuan Liu. Tree-core
and tree-coritivity of graphs.
Information Processing
Letters, 115(10):754–759,
October 2015. CODEN IF-
PLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/
REFERENCES

Sizhong Zhou, Zhiren Sun, and Hui Ye. A toughness condition for fractional (k,m)-deleted graphs. Information Processing Letters, 113(8):255–259, April 30, 2013. CODEN IF-
Zunic:2018:SDO

Zhang:2014:POS

Zhang:2010:LTM

Zhang:2012:TAL

Liting Zhang, Wenling Wu, Peng Wang, and Bo Liang. TrCBC: Another look at CBC-MAC.
REFERENCES

Zhou:2010:CDA

Zhou:2011:CFT

Zong:2011:HNH

Zhang:2010:KCF

Zhang:2011:OAG

Zhang:2012:MST

Zhang:2018:CNB

Zhang:2010:FAM

Zhang:2010:PMW

Zhang:2016:CRA

Zhu:2011:IAF

Zhang:2011:RRM

Zhang:2015:GSE

Yan Zhang, Zhaohui Zhu, and Jinjin Zhang. On the