
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

09 February 2022
Version 1.89

Title word cross-reference

[SW13]. #P [Mil19]. #P-completeness [Mil19].

(2, 0, 0) [WX13]. (2, l) [GLY11]. (2p + 1) [LLL+11]. (2P2, H) [DP18]. (3 + ek) [LX19].
(a, b, k) [ZJ11, ZXS19]. (Δ + 1) [WLW11, ZW10]. (g, f, n) [Liu10]. (k, l) [DFdFT16]. (k, m) [ZSY13]. (k, s) [PS19a].
(λ, S) [YWC11]. (n, k) [CLS13, WXZ+12, YLG10]. (P3, H) [DP18].
(→, ℰ) [SeF14]. (s, t) [DL13, FLP+18]. (t, n) [QD16]. 0/1 [OBT12]. 1
[AIR17, AMRR11, Cha19, CZZ+12, Cza13, Did13, EKN11, LTK+19, SSK12, Wu14, XL15, ZW11, ZL12, ZLLZ18]. 1.5 [EKN11].

[AMT12, ACL18, CLZ18, Che16c, CLS13, DFMS10, EAA+16, EKN11, FY14, Jan12b, KR16, KM13, LZ10a, LH11, LT13c, LM15, NN17, OM17, Och17, Sch13b, Shi12, Tak16, TXQ11, TZ11, Wid17, XGX11, YBMK15, vGLM12]. 2/3 [Vid13]. 22 [MNP12]. 24
[Ehl17]. 2k [Sun16]. 2n [GKM14]. 2w
[Bae13]. 2k − clog k [Lam11]. 2p [EP16]. 2pm
[KZ12]. 2π/5 [BF19]. 2√2 [GKW15]. 3
[AD18, BS11, DS15, Dur13, FWS13, FM19, GH14, JSZC15, Kat16, Lei17, Mil15, NS11, NT14, PH19, Xia10, YL11a, YYYZ12, YYYZ13, Zha10b, ZHXS10]. 3 × 3
[GS+19, OKM13]. 4
[AD18, LS15, ZLSX16]. 4n [CCT14]. 5
[CQ12, Kar13, Moo11, WLW11, Zha10b]. 6
[Hoc11, WLW11, Zha10b, ZW10]. 7
[DN12, WW11]. 7 – [3] [SWZ12]. 7/6
[Tak16]. 8 [Mou19]. 9 [Zha10b]. 2
[BFRV15]. [a, b] [YH19]. * [BKS16, WH16], R
[ZZZ15]. α [KMMN15, KP14b], b [Fuj16],
B⁺ [YBM⁺10], β [Dur12], c [vBCH⁺15], C7
[PS19b]. Ps⁻ [Pas15a, Pas15b]. d
[Ezr10, LT13b, LT15b, QD16, RV13]. D²
[JKY15]. Δ [ZW10]. Δ = 9 [CL15]. Δ ≥ 6
E = I + T [BV11]. e [Aka14, Ezr10]. f
[ZZ18]. F2m [GSA⁺19]. g [WH16]. γ [Dur12].
GF(2) [VSP18]. GF(2) [VSP18]. GF(2)
[NCP18, nXlCL14]. GF(3m) [PCH13].
GF(m²) [CLY11]. GF(p) [FLMQ10]. GF(q)
[LPdS10]. H [Szy12, GLPR19, GHvHP13].
Hₙ [SR11]. {k}
[ALT15, HK16, LT13b, LT15a, LT15b,
SGM13, Tur12, ALT15, ALT18, BK10,
BYK14, BT16a, BIR16, BN10b, BJMC17,
CLZ18, CCH⁺14a, CP10, DM13, DW10a,
DG14, DT10, DK14, EFKR10, FLP315,
FGKU15, GLPR19, GGG⁺14, GGF13, Gra15,
HLY11, HL12, Hill14, JKY15, Joh14a, KSK13,
KZP10, KP14b, KM16b, Kun18, Lau18b,
LLT14, Lee10, LSW17, Lil10, ML10b, Mor11,
NR17, Nut18, Pra12, Pue11, SW13, SSS15,
SSKA17, Suk19, Tsz13, WZL12, Xav12,
Y1L16b, Zal11, ZJN10, ZZX11, ZLS⁺17].
k = 2 [SS15]. K₄ [LSK17, WWW18].
kP + IQ [LZ12]. L [LM16]. L(2, 1)
[DL13, JSR11, PG12]. L(δ1, δ2, 1) [Cal13].
L(j, k) [WL12]. L₁ [DGKS14]. X [CLM12].
λ₃ [LWXZ14]. m [Kok17, LX13c, Nut18].
M(k) [WWZ15]. F₂ [AH17]. F₃m [CCH14b].
Z [GPSD17]. GF(2m) [LCh1L11]. m ≤ 3
[Hav10]. n [BN10b, GH14, Kok17, LWW11,
L110c, MPRC19, RAR12, SD13, WH16,
YYZ12, YYZH13]. O [MPRC19]. O(1)
[YBMK15]. O(1.587m) [MTA10]. O(d₁3d²)
[K17]. O(n) [CG10b]. O(n²)
BCNPL14, CPW11, Pol18]. O*(1.84k)
[CCF14]. ω [FS14, IL12]. P
[Lan11, Tei19, NHK15]. p² [WXCK19]. P₂
[WNFC10]. P₃ [MS18b, TY13, Tu15, TZ11].
P₄ [BDNPVP15, BKN⁺12]. P₅ [BL14]. P₆
[Mos13a]. π [vG18]. π/3 [BF17]. Q
[CB18, MS16, CA17, Sal12]. r
[AK10, BGI⁺16, BWZ12, KIE⁺14, LZ10a].
r = m – 1 [LP10]. Sₙ(132) [Vaj18]. Σ
[BR10b]. st [SS19a]. TF2ν = 1, c = 2Cmax
[LHW⁺16]. W[1] [MS18b]. X [TX11].
-acyclicity [Dur12]. Approximation
[ACL18, EKN11, GKW15, Tak16, YBMK15].
arboricity [NN17]. ary
[GH14, YYYY12, YYYY13, Bae13].
Attribute-Anonymous [SS15].
-automata [IL12]. -bent [GPSD17].
-bottleneck [YW11]. -calculus [vG18].
-CNFs [BT16a]. -code [TX11]. -colorable
[Hoc11, WX13, ZLS16]. -coloring
[AD18, NS11]. -colorings [Szy12, ZZZ18].
-coloured [VGLM12]. -colouring [leet17].
-connected [CLZ18, DFS10, GLY11,
LZ10a, Nut18, Wh17]. -connection
[LM15]. -connectivity [HL12]. -covered
[YH19]. -critical [Li10, ZJ11, ZS19].
-cube [GH14, LWW11, YYYY12, YYYY13].
-Curry [SeF14]. -cycle [WL11]. -cycles
[Zha10b]. -deleted [ZYY13]. -dimensional
[Jan12b, LL10c, QD16, RAR12, RV13,
WH16, YBMK15, ZXX10]. -discrepancy
[Aka14]. -disjoint [Che16c, LL10c, P119].
-distance [Kun18, Suk19]. -DNF [Lau18b].
-dominating [BYK14, Nut18].
-dominatiom [DW10a, ALT15].
-dominations [ALT18]. -edge
[GLPR19, NT14, Tak16]. -edge [SS19a].
-edge-colored [OM17]. -edge-connected
[Mou19]. -edge-connectivity [Sch13b].
-entropy [CA17]. -extra [GH14]. -factors
[GGG⁺14]. -fault [AMRR11, SSK12]. -flows
[DS15, YL11a]. -free [Li13c, Mos13a, BL14,
DP18, GLPR19, GHvHP13, LSK17].
-Gabriel [KSV15]. -gap [LWXZ14].
[HN10, LNP11, LGT17, NII+15]. alternate
alternating [Den19, KD15, Tsa11, Tsa15, ZXY10, ZX10]. Alternative
[CG15, AAC+10, GLO12, ST18], always
[BKS16, BvdZ19]. always-connected
[BvdZ19]. Amdahl [YBC11], among
[Mis15, SS17]. Amortized [ALT16].
Analogues [BHM13]. analysed [XZ10].
Analysis [AR13b, BS11, Cho12, HKK12, JF15, Ada11, ABPS15, AT18, Bol10, CRJ10, FOSC18, FS12, Gra18, JKY15, JB16, KRV16, LR10, LLG10, MS13, NZX19, SB19, SL19, WWS12, WZH16, Waw14, Wit14, WDH16, XZBX16, YWC11, YL16a, YK15, ZW14, ZZ19, Zun18, LSL11]. analytic
[Mat12]. Analyzing [FG18a]. anarchy
[DE19, YSGY10]. ancestor
[FH10]. ancestors
[GBH10]. AND-circuits
[Mor11]. and/or
[SD13, MTA10]. Android
[CC14]. Angle
[BF17, AGARCS+19, BF19, DKL+12]. Angle-constrained
[MFHL11]. anisotropic
[MG16]. Annotating
[CV12]. annotation
[DWQ10, KC17, NVB15]. annulus
[AAB+19]. anonymity
[HLR11, SSS15]. anonymous
[BEPF11]. answering
[KP12, Wij10]. answers
[Ama10]. Anti
[ZJ16, BF18, WZS+18]. Anti-Collusion
[ZJ16, WZS+18]. anti-powers
[BF18]. Antimagic
[Bar10, Sli12]. antisymmetric
[SY15b]. any
[CV10, Tys13]. App
[LCC17, HPP17]. applicability
[Tho12]. Application
[LQL+17, BDNVP15, CFJ12, CA17, HH15, Kim10, RK15, SL19, XZ17b, ZL17, ZD18]. applications
[BT16a, BT16b, CW13, LWH13, VB19, WD11]. applicable
[SSSM11]. apply
[Bol14]. Applying
[MN19]. approach
[AR13a, AC10, AMN+10, CLR13, CPHS18, CNKS15, DJRB15, GPT16, LH10, PCK10, YWW14, YTTY15, ZMZ19]. approval
[BT16b]. Approximability
[MM19a, vBCH15, HKT17, MS15]. Approximate
[Dat15, DFRS13, GGF13, AGW13, DTS15, Fill18, RS12b, Sim16, ZAM17, ZHJ+11]. approximately
[HKW14]. Approximating
[BV19, Gou15, JT10, KZ13, LM17, SL15, ZLB11, BTW15, Wu14]. Approximation
[AC18, Ceday13, DDK+15, GKM+15, GHRT17, GM15, KMK18, KV10, LLG14, LSI11, LLL18b, LV15, YC11, BK10, BU17, BL12, BLY17, BDK+11, BC13, BI14, BK18, CR18, Cvi13, DG+17, Doe13, DJZ+15, EK11, Fuj16, GS10a, Gen14, GKW15, HM10, KS11, LX12, LM11, M15, MK11, Mmm15, Mor11, NRP17, Nut18, SW13, Tak16, Tat19, Tz11, YBM15]. approximations
[Cha13, Cha19]. APX
[Lee17]. APX-hardness
[Lee17]. arbitrarily
[BPW12]. Arbitrary
[Bra15a, BKS16, BDP18, GNV14, KKO10]. Arboreal
[DGK+17]. arborescences
[KK15a]. arboricity
[BU17, CQ12, GZM15, NN17, WWLC14]. arc
[CGJY12, GKM+15, LX13c, LLL18, XZW15]. arc-chromatic
[XZW15]. architectural
[CV12]. architecture
[GCH+10]. architectures
[Pie15]. arcs
[GLLX12]. Area
[CY17, PP14]. Area-universal
[CY17]. areas
[BNRC10]. argument
[Fre14]. argumentation
[DW10b, NAD19]. arithmetic
[ACK11, IM17, Jan12a, JS18, SM17]. Armstrong
[KL10]. arrangement
[EH18, RV13, ZK11]. arrangements
[AD18, CW13, KPR18]. array
[Liu15, LGT17, R15, TN11, TX11, YYY12, YYYY13, ZDQ+17]. array-based
[YYY12]. arrays
[GRSS17, GS10c, KM10, KTV13]. art
[IM12]. Arthur
[Ned17]. ARTICLE
[Zha10b]. artificial
[GL11]. ary
[Bae13, GH14, YYYY12, YYYY13]. aspect
[AAOW15, CHK13, GXZZ13, GP17, Lu15].

chair [BG12, BG15]. Chaitin [BHL13].

characterizations [Dr12]. characterized [Koc18]. Characterizing [KHKS16].

changing [BL10, Rac10]. Channel [CK11b, ABPS15, JF15]. channels [DDPBT11, TK15]. Characterization [DRdSS12, GLY11, Pe15, AAC +10, BGL13, DEL10, LN11, LX17, MS12].

characterizations [Dr12]. characterized [Koc18]. Characterizing [KHKS16].

characterizations [Dr12]. characterized [Koc18]. Characterizing [KHKS16].

characterizations [Dr12]. characterized [Koc18]. Characterizing [KHKS16].

...
contained [Tel19]. containing [BC15, MM19b, Zal11]. Containment [SM17, ADG10, ACK11, Par16, SV19].

[PPN+17]. derivation [YYK17]. derived [DCH12]. deriving [CLQS12, GNV14].
descents [Che18b]. description [XZ18].
Design [PGZB19, MZQL14, VL15].
designated [SY15a]. designs [AHLS18, DCH12, GNV14].
destination [Kar17].
Desynchronization [ASA13].
Detecting [FLPS15, RS10, SML+10].
detection [CWW10, Ksh11, PYYC16, SCL+11, ZLM17].
detector [BR10b, MG16]. deteriorating [LL10a, YZH14]. deterioration [LL10a, YZH14].
determinacy [Had18, Le19].
Determine [KSBT13].
Determinism [KZP10].
Deterministic [Cha13, DP12, ZL18, BN10a, BDPP18, FS14, LV13, KKS10, KK15b, Kos18, NLZX14, SLY11, YYK17].
Developing [Far10]. developments [SeF14].
DFA [Val12]. DFS [JLMO17].
DHA [AKY13]. DHA-256 [AKY13].
diagnosability [Che18a, CLQS12, GHL18, LTK+19, Tsa15, WH16, YYDL11, ZZ10].
Diagnosable [TC17]. diagonal [Pie15].
diagrams [CV12, LT13c, MK14]. Diameter [CFJ12, AR18, BDF+18, BK18, Che10b, DGR15, FX11, KMK18, ML10b, WL12, ZFJZ11, Zun18]. diameters [PC19].
dichotomy [BR12, BM19, DFdFT16, KP12, Mar11].
Did [Kar17]. difference [Li15, Mat19, SWF18]. different [DKNQ18, Ger19]. Differential [DMSD18, LSYY11, LH14, Sun11, ZW14, Blo15, Bog10, GLMS18, MNP12, SB19, SDM14, SPdR13, TS16].
diffusion-driven [MG16]. digit [KWH16].
digraph [Bot16, GZJ+12]. digraphs [AALL16, AKMR19, BHH15, BPG12, Cro15, JLMO17, LX13c, LKF15, LJJL18, Nin15, PT11, RT13, SZ18, XZW15, CLM12].
dihedral [LY11a]. dilation [SI18].
Dilemma [Pel10]. Dillon [BPRMS14].
dimension [FHtvH+15, Gil14, GSR+14, HM13, Lai16b, MSZ11, Mos11a, ZLN19].
dimensional [IK15b, Jan12b, KS10, LL10b, LL10c, PYHA10, PYTH11, QD16, RARM12, RV13, TNN11, WL11a, WH16, YBMK15, ZHXS10, Zho16]. dimensionality [GL15].
dimensions [Jor12]. Diophantine [Tys13].
direct [CBSV11, EGKL11, JKS10, LZ15, Mei18].
Directed [BBK17, CGLS16, DJ15, FH10, FLP+18, GKPP16, KVK18, Kob15, LS14, LT15a, LC1M10, MMS15, SY15b, Zeh16, ZLC1M10, WWBB15]. Direction [Win13].
Direction-reversing [Win13]. directional [JSZC15]. directions [Ang17].
disconnected [MK16]. discount [ZPX11]. discounted [ZLZX19].
discrepancy [Aka14]. Discrete [Rud17, CR18, CHK13, Che18b, Fil18, FIV15, yJxW16, KZP10, LFXH17, MM13, Mes15, TPL16, Nan15].
discretely [PYHA10]. discretely-scaled [PYHA10].
discriminant [ZpH15]. discriminative [HYVY15]. diseases [VB19].
disequalities [SR11]. disequality [HHK17]. Disjoint [LS10, Che10c, Che12, Che16c, KKKS14, Kot12, KN13c, Lai16a, LYHC10, LX19, LL10c, LW19, PI13, PI19, Pul16, Sch15, SW19, YZRC18, Yan14, ZGL11, Zha11, ZZ14]. disjunction [MMP15].
disjunctive [MU15]. disk [DDK+15, DGR15, NPR17, TX11].
disks [Shi13]. disparity [FBD18]. displacement [KK16].
disproving [Li15]. dissecting [YK13].
distance [AIR17, AD11, CR18, Fil18, GWL18, Hru12, JF15, Joh14a, Kun18, Luc10, LEP10, LP13b,
MN19, Mil15, MOW17, QK15, Suk19, TLL16, TLL18, WL11b, WP11, XZ17a, Shi15.

Edit [FS13a, DS16, MK11, LM11].

e-edge-weighted [BJH15]. edges [Ber17, Che10a, Che12, Che16c, CSL13, CHF15, DFMS10, Fie11, MBW19, Zha18, ZLL18].

Edit [Shi15, Dam16]. edit-optimal
[Dam16]. **editing** [BD11, LSS15, Man10].

Editorial [Ano18g, Ano18h, Ano18i, Ano10a, Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano10k, Ano10l, Ano10m, Ano10n, Ano10o, Ano10p, Ano10q, Ano10r, Ano10s, Ano11a, Ano11b, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano11o, Ano11p, Ano11q, Ano11r, Ano11s, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano12r, Ano12s, Ano13a, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano14a, Ano14b, Ano14c, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano16a].

Editorial [Ano16b, Ano16c, Ano16d, Ano16e, Ano16f, Ano16g, Ano16h, Ano16i, Ano16j, Ano16k, Ano17a, Ano17b, Ano17c, Ano17d, Ano17e, Ano17f, Ano17g, Ano17h, Ano17i, Ano17j, Ano17k, Ano17l, Ano18a, Ano18b, Ano18c, Ano18d, Ano18e, Ano18f, Ano18g, Ano18h, Ano18i, Ano19a, Ano19b, Ano19c, Ano19d, Ano19e, Ano19f, Ano19g, Ano19h, Ano19i, Ano19j, Ano19k, Ano19l, Ano19m].

Effect [NB12, CC14, WB12]. **effective** [CS16b, Tsz19a]. **effects** [DK10, FT15, JC10].

Bog10, SLL13, SLS16, Vou19]. **Efficient** [BL10, BYK14, CCI12, CPHS18, CPTZ13, DGG+19, DE14, Den14, DG14, GHK11, Gk10, HZSL05, Il13, IL12, yJxW16, LLP+18, LZ12, MV13, MN14, OG10, PYHA10, Sim16, WJS10, XLWZ16, ZHXS10, AR18, AJLM11, BGI+12, BL14, BFLM15, BM19, CCI11, CdA13, CIK+13, jDX11, HM18, HHJ+12, eSKAI10, Lee10, LKC+12, LH10, ML10a, Mes15, Pca16, QX10, SCL+11, TLL16, Tat19, Tur13, VN17, XTH12, YA13, YiN10, YMSA14]. **Efficiently** [FWS13, MT10]. **eigenvalues** [XZ17a].

eight [Cal13, RZ10, Sun11]. **eight-regular** [Cal13]. **eight-round** [Sun11]. **election** [BEFP11, FCLCR17, LZ10b, MS19, Vay13].

elegant [ZYC13]. **element** [DZ11, Zal11]. **element-wise** [DZ11]. **elementary** [YGK12]. **elements** [DT10].

Eliminability [Ind15]. **elliptic** [Moo11, ZHXS10]. **ellipticity** [ZZ13]. **embeddable** [WWLC14]. **embedded** [AHRI10, ABPS15, AMN+10]. **Embedding** [CHF15, DY10, DZFY12, RRR12, YDT10, BR10a, CZWP17, DX11, GL15, KM12, Tsa11]. **embeddings** [BR10a, HM10].

Emerging [DWQ10]. **empirical** [Sar14].

employed [MGPI12]. **emptiness** [HHK17, Lan11]. **empty** [NM10]. **emulators** [HP19]. **enciphering** [Sar11].

Encoding [FG14, JS18, SPdR13, Sun16, YiN10]. **encodings** [GSS16, vG18]. **encrypted** [ED17].

Encryption [XWLJ16, CW12, Fay16, HLR11, LM91, LPdS10, LHH11, Mes15, Sar11, SY15a, TPL16, WWYY11, XWS17, YL11b, ZY17].

end [WBC+12]. **endomorphism** [FWS13].

Energy [VN17, AMN+10, AZ14, HM18, NB12, Pér17, SO19, SLL13, YA13]. **energy-aware** [AZ14]. **energy-efficient** [HM18]. **Enhance** [NTD16, ABPS15].

Enhanced [CD19, PP14, AC12, JZ18, TC17, YW14]. **enhancement** [CGLS10]. **Enhancing** [YBM+10]. **Ensemble** [MS15, HHL15].

ensuring [SS17]. **ensures** [CZZ+12].

entanglement [Ito14].

entanglement-resistant [Ito14].

Entropy [BI14, CA17, DKZ18, JCC11, Tsz19a].

entropy-based [JCC11]. **enumerable** [BHL13, CVV10].

Enumerating [AKH16, Dam14, VML18].

Enumeration [CGLS16, FLMQ10, Lau18a, Mat15,YL17].

envelope [Lu15]. **environments** [SCL+11].

envy [Brá15b]. **envy-free** [Brá15b].

epidemic [YC19]. **EPTAS** [KS10].

equal

FPGA [eSKAI10]. FPT [FLP+18, GM13b, Kat16, LFW+18, RR16, WWB15, XN12].

Frank [Ber17]. Fréchet [CR18, Fil18]. Free [PYW+13, Ser10, Bir11, BBDS12, Bra18, BG12, BL14, BG15, BFL15, Brâ15b, Cî13, DP18, DM13, DY10, ŸS11, EGK13, Fil11, GLPR19, GHvthP13, HN10, JOS10, LX13c, LS15, LSK17, MNV11, Mos13a, RS10, Ria17, SS18, SS16, Sic19, SWZ12, WWW18, YL16b].

Frobenius [ABH+14]. FSMS [YYK17]. FTP [MB14]. Fugue [AP11]. full [AABBCC19, BR12, LC13, TY16b]. Fully [GP17, XPC+10, FH12, Ket11]. Function [EFKR10, AKY13, AP11, CS10, FV13, Fuj16, GLW12, Han17, LLI0a, LK14, Li12, LL16, MT18, MGP12, Pie15, Sar11, VPN10, WS13, WYW14, ZOQ+17]. functional [Dem18, FS12, PYYC16]. functions [Ama11, BPRMS14, Ber17, BS11, BC13, CKK13, Che18b, CGL16, CW12, DKKY10, DZQF13, Fil13, FLMQ10, GPSD17, GNG11, IK15b, Kiss19, MNV11, MS13, Mor11, PZ12, Pas15a, Pas15b, PGZ19, SWF18, Sim16, STMD18, Tys13, Vir11, WT13, ZLB11, ZQJ+15]. fundamental [Sax10]. fusion [YLGC16]. Fuzzy [MGNAB11, NTD16, RAT13, TWW17].

generalisations [Lei17]. generalised [BS17, FCWZ18]. generalization [AT15, ACL18, SZ18]. generalizations [BT16b, DKC12]. Generalized [Che18b, LX13b, Ma15, Par11, TY16b, WLLS08, ZW14, BPRMS14, Ber12, BS11, CT16a, CXX12, DZA15, GLW12, KSK13, KS12, Kun18, LLI18a, LKF15, Mol18, MHIU18, SMLS17, WWW13, WXCK19, nXICL14, YZZX12, ZI1N10, JP11].

labelings [DL13, FS11, JN12, WL12].
lambda-calculi [SSSM11]. language [AL18, CE13, CVV10]. languages
Locating [IMCP15, vISS10, HHL15, XS15].

Locating-dominating [HH15].

Location [jDX11, JK19, LXDX12, RX17, TL12, XL15].

Location-based [jDX11].

Logical [LG18, TNN11].

Logics [Ind15].

Logs [YWWW14].

Long-standing [Bol14, YKD12].

Longest [FGKU15, Pol18, BBDS12, BVDP10, Cha12, DG14, Dur13, Elm10, Gra15, H18, Kos17, RK15, SY15b, CT11].

Lookahead [LZY12].

Lookup [PRM14].

Loop [MNV11, Li15, YEMR19].

Loop-free [MNV11].

Loops [Far10].

Loose [HS15].

Loss [DJS13, B10].

Lossy [CW12].

Lost [CBHW10].

Lot [HYK14, ZLZX19].

Lovász [KK11].

Low [AT18, MSZ11, Mar11, YA13, BB11, BI14, CYL11, EN17, Kun17, RV10].

Low-complexity [CLY11].

Low-density [BI14].

Low-derivation [MSZ11].

Low-level [Mar11].

Low-rank [Kun17].

Lower [Fil11, LEP10, MO12, AS18, AGW13, Ber11, BGL10, BCKM15, BT16a, CA17, CP16, DE19, Gy10, GW16, Kos17, Lu15, Pod12, PS19b, Pud12, Zha10a, Zho15].

Lower-variance [AGW13].

Lowest [NB12].

LP [DGK+17, G15, V13].

LP-rounding [G15].

LPmkr [LP10].

LTL [DBB14].

Lucky [ADMKM12].

Lunch [Ser10].

Lyapunov [CYQ13, YCL11].

Lyndon [SH17].

LZ77 [KS19].

LZ77-type [KS19].

LZ78 [FB10, NII+15].

M [Tho18].

M /G/1 [Tho18].

Ma [EAE21].

MAC [EMS15, OPS14, ZWWL12].

Machine [LL13, DKNQ18, FL16, FTYL14, GLW12, HK14, HYK14, LL10a, LZCX12, LJ15, MY13, Orl11, OZL16, TCXT10, TFX11, WC15, YW12, YZH14, Zvd10, ZLZX19].

Machines [ACL18, CK12b, EZH16, FCNY10, FPY12, GM12a, GM13a, HM18, HL11, L12, LZLY12, LZ14, MZC11, MIW11, MM12, WC15, XZB16, XCYZ11, HYC12].

Mahonian [KV16].

Main [EAE21].

Maintenance [L15].

Maiorana [GG11].

Majority [KdER+14, STMD18].

Majority-decomposing [STMD18].

Makes [BvK15].

Makespan [CLP10, FCNY10, FTYL14, KM13, SF13].

Malicious [ZLM17].

Malik [MMKM18].

Malleable [CVZ11, Hav10, ZC12].

Management [ABS13, jDX11, NZX19].

Manhattan [CD+11, SKA17].

Manifold [LT13c].

Manoussakis [Nin15].

Many [LL10c, Che10c, Che12, Dami7, FIPS11, HRS13, Krz13, PI19, YR16, ZQ*15].

Many-to-many [LL10c, Che10c, Che12].

Map [LMCG16, STAR15].

Mapping [Mis15, KSBT13].

MapReduce [PT12].

Maps [G17].

Marek [Tar14].

Margin [EMS15].

Markdown [NLX15].

Market [DH13, TWW17].

Markets [CJ11].

Marking [CS16a, HKK12].

Markov [AAOW15, BCS15, CHK13, GXZZ13, GP17].

Markup [NLX15].

Marriage [Miy14].

Marty [YBC11].

Masking [CH12].

Massey [LLG10].

Massive [HYL11].

Mastermind [JP11].

Match [Bab17].

Match-count [Bab17].

Matches [Yam19].

Matching [Ada11, ASM17, AD11, AGW13, BFKL13, CFMR18, CT16b, CNPS15, CS10, DGG+19, DHPT10, FK17, Fre10, Fuj16, Fü19, G17, GGF13, G13, GFG11, KKR+13, LS10, LRS17, LMS14, MK11, Miy14, NR17, Pet12, Pul16, SS17, Sal12, Sch13a, YGK12].
Normal [KL10, Val10, Att17, Har16, TY16a]. Normalised [CHP19]. NORX [NA19].

Note [CGJ10, GY10, LWJ07, LPWZ14, WWZ15, AFPT10, AB15, ADFM13, BLYL17, BDH+11, BGR13, Bor16, BM14, BL14, Brå15b, BK18, Cha12, CM17, CL10, CW13, CZWP17, CLP10, Civ13, CK12b, CIK+13, Cro15, Cza13, DZQF13, DT10, DZ11, DX11, Duc18, EDS11, Ezr10, FKL+11, Fra10, FM19, GLW12, Gal13, GPSD17, GY15, Gen14, GMM15, GR19, Gra15, Gro15, GJ15, Har16, HP18, IN12, Kam19, KYC13, KMN18, Kot12, Kra12, KY12, Lau18b, LL14, LSZ15, Lib0, LWXZ14, Man19, MN17, Mon15, MM15b, Ned17, Pas15a, Pas15b, Pie15, RS15, Sch13a, SeF14, Shi13, Shr18, Svi12, Tsa11, Vou19, WP11, Xav12, YYR16, YW12, YC19].

Notes [CP15, GLXG13, HL17, KLMP18, Nin15, vE17]. notions [IM17]. Novel [nXlCL14, FBD18, GCH+10, MGPI12, SaBG17, Sun16, YGK12, YWcW+14].

November [ANO19]. Nowhere [YL11a]. Nowhere-zero [YL11a]. NP} [Tel19, ADKM12, BT16b, Che17, DFdFT16, FK17, GQ17, GI18, HHK17, HWA12, LZX17, LY19, MM19b, MI17, Rom11, Zha11, Och17]. NP-complete [Che17, DFdFT16, GI18, HWA12, Och17]. NP-completeness [LZX17, Rom11].

NP-hard [GQ17, ADKM12, FK17, HHK17, LY19]. NP-hardness [BT16b, MM19b, MI17]. NP-pairs [Zha11]. Number [LST11, ADKM12, AD13, AH11, BKM14, Bor16, BS17, BPP+18, CCL19, CY18, Den14, DN12, DS14, EAE21, Fie11, Fie19, GMM15, HKW18, HYC12, IM12, JP11, Jha15, JSR10, KM14, LLP+18, LZL12, LLL18b, LKF15, LZCM10, LDW14, MY18, MBW19, MKI11, Mat19, iP13, SLdAMP17, TLWZ16, VK18, WWBB15, XS15, XZW15, YK15, ZLCM10, Zho15, ZS18, vIL13, vZBSY16]. numbering [MMS15]. numberings [SS19a]. Numbers [LM15, CKL10, CZ13, LX17, WXZ+12]. numeral [GCCK11].

Parameterized [CGJY12, FGG+10, GJ14, LZ10b, AK14, BBKS17, BBDS12, BD11, CCF14, CLR13, GR19, LNP11, MS18b, PS19a, Tsd19b, vBCH+15].

planarity [AHR10]. plane
[AHK+]17, AADB+18, DX10, FMHL11,
Jor10, Juk12, Pe18, WIL11, YIN10, ZW10).
planes [LT18], plus [MY13], PMC
[Che18a, Tsa15]. point
[AADB+18, BR10a, DBFMPLV17, FMHL11,
FV13, GGG+14, LL14, MM19b, NMB10,
NDT16, ZHXS10, vGLM12]. point-set
[BR10a, FV13]. pointing [SSZW16]. points
[GGG+14, Man10, Moo11, ZCC+11].
policies [NLXX15]. Policy
[XWLJ16, DJS13, LMSN16, TY16a, WDT13, XWS17].
pollination [WZQH16]. Pollinator
[WZQH16], poly [Tel19]. polygon
[BBS+17, KM11, NMB10]. polygonal
[Lu15]. polygons [AAJ15, EH18, IM12,
LWZ07, LPWZ14, T14]. polyhedra
[AGARCS+19, Has13]. polylogarithmic
[GS10a]. Polynomial
[AR18, BFLM15, HCCG15, BES17, Brâ'15b,
CYH15, CLY11, CCH14b, DFdFT16, EN17,
EGK13, GR19, Gil18, Gio18, GP17, GMY13,
HYC12, KLS13, LiCyChL10, LT15b, MS18a,
Man10, Mil19, Tat19, WBB15, nXiCL14].
pollinator [WZQH16]. Polygon
[BBS+17, KM11, NMB10]. polygonal
[Lu15]. polygons [AAJ15, EH18, IM12,
LWZ07, LPWZ14, T14]. polyhedra
[AGARCS+19, Has13]. polylogarithmic
[GS10a]. Polynomial
[AR18, BFLM15, HCCG15, BES17, Brâ'15b,
CYH15, CLY11, CCH14b, DFdFT16, EN17,
EGK13, GR19, Gil18, Gio18, GP17, GMY13,
HYC12, KLS13, LiCyChL10, LT15b, MS18a,
Man10, Mil19, Tat19, WBB15, nXiCL14].
pollinator [WZQH16]. Polygon
[BBS+17, KM11, NMB10]. polygonal
[Lu15]. polygons [AAJ15, EH18, IM12,
LWZ07, LPWZ14, T14]. polyhedra
[AGARCS+19, Has13]. polylogarithmic
[GS10a]. Polynomial
[AR18, BFLM15, HCCG15, BES17, Brâ'15b,
CYH15, CLY11, CCH14b, DFdFT16, EN17,
EGK13, GR19, Gil18, Gio18, GP17, GMY13,
HYC12, KLS13, LiCyChL10, LT15b, MS18a,
Man10, Mil19, Tat19, WBB15, nXiCL14].
Doe13, DKNQ18, FKR+16, GLW12, GKM+15, GH15, GHRT17, GLO12, Gra15, GMY13, GJ14, HK16, HKW14, HL17, HHK17, Hen16, Hil14, HK17, IH18, JKSS19, JT15, JP19, Juk12, KKK13, KS11, KV10, Kos17, LMU15, LHW+16, Lan11, Laz10, LXD12, LLG14, LS15, LSK17, LSS15, LFW+18, LXJ+14, M.15, Man10, MÖ15, MSM14, MK11, Mes15, Min11, MS15, Möm15, Mon15, Mor11, Nan13, OG10, PC18, Per17, Pul16, RS19, RH10, SS19b, TLL18, Tak16, TCXT10, TZ11, TY13, Tu15, WWWZ13].

problems [AAOW15, AY12a, BNRC10, BFLM15, CCH+14a, CXD+13, CYH15, CP15, DDER18, DJ15, DLN11, DTS15, FR12, FH10, FLRS11, GHK+18, Gav11, GBH10, HK16, JKY15, KK15b, Las17, Lib10, LL10b, LM14, LZ10b, LWXZ14, LP13a, Man19, Mar11, MT18, MLW11, NVB15, Nut18, RDX13, STY12, TPL16, Xu12, YK11, ZS18].

Procedural [CdA13].

Procedural [BB11, KMN18, KMS19, LPWZ14, SSW15, JCC11, MG16, TPL+18].

Programs [BCS15, GEGK13, FCWZ18, vGGS11].

Processing [GR14, HAM11, KT12, Pas15a, Zha13, BBR+18, FM18, GM12a, HLY11, KMS19, KY12, LL13, Mos11b, TCXT10, Tho18, WDT13, YSGY10, ZZJ11].

Processing [CBSV11, GQG10, HS19, LLL18a, Me12, TW17, WSW12, ZLCM10].

Programs [MIM16, CPTZ13, Glä10].

Programming [GLMS18, GE12, JS19, LL17, MSM14, WMLN10, WWWZ13].

Programs [Att17, BGI+12, CC14, Dem18, JT10].

Projection [Has13].

Proof [Zha11, ADF13, Ber17, Bon13, BR10b, CVZ11, EAE21, FL12, FL13a, GR13, GR14, Had18, Kra12, Le 19, LMSN16, Pcl15, ST18, SW12].

Proofs [FK10, Ito14, Juk12, KS18, Lau18a, Me12, Pud12, Yam14].

Propagations [CHP19, TVB15].

Proper [AD13, BK10, BES17, BdSL15, CL15, CSS15, PP13, YeCM14, YY16].

Properties [AC12, BD16, Den19, HCWH15, LP13a, MIFMS11, SHFMS11, SLF19, WT13].

Property [CCL10, Ési11, FMMH11, JS011, WWWZ15].

Proportionally [PYTH11].

Proportionally-scaled [PYTH11].

Provision [GL13].

Proximity [MWZ12, ADH14].

Proxy [Tia15, YMSA14].

Prp [Tel19].

Pruning [HLY11].

Pseudo [LPS11, KM10, WS13].

Pseudo-collision [WS13].

Pseudo-random [DPS11, KM10].

Pseudometrics [vB12].

Pseudorandom [Nis92, DCF12, Kis19, LMCG16].

Pseudorandomness [LLG10].

PSPACE [BH17, GN10].

PSPACE-complete [GN10].

PTAS [JKY15, MB14, ZLS+17].

Public [LpS10, QX10, SY15a, VN17, ZY17].

Public-key [LPdS10, QX10, VN17, ZY17].

Publications [BvK15].

Pump [LL17].

Pumpkin [Tsu19b], Pure [BR12, JS19, MM15a, THS12].

Pure-strategy [THS12].

Purely [XLZ16].

Pushdown [CO17, CS16a, DBB12, DK14, Lan11].

Puzzle [HWA12, LY19].

Pyramid [TWZ17].
QoS [ZZJ11]. QPTAS [LL14]. Quadratic [Deo12, CK12b, vLL13, LREIMBMV16].
Quadratic-time [Deo12]. quality [CV12, ŽGH10]. Quantified [KS18, JS18, Mar11]. quantities [KT11, KT12]. quantum [AY12a, Ber11, DT10, Har18, LLP +18, LFZJ14, LQL +17, Mon10, Mon12, QD16, RS15, TZF16, Yam14, Zha10a].
Query [ADG10, DGS14, ED17, HLY11, KR16, KP12, Mon10, Mon12, Wij10, YIN10, Zha10a]. querying [SZC +17, Vrg15].
question [SB13]. queue [Cho12]. queueing [AZ14]. queues [MSV14, SD13, Tho18].
Quick sort [Fre14]. quiescent [AJLM11]. quintuple [Moo1].
quotients [DCH12, DKC12].
rainbow [HL12]. RAMs [Bra15a]. Ramsey [Pud12]. Random [EA +16, LREIMBMV16, ABH19, BV10, BWZ12, DFP11, DF11, FP18, HL12, KM10, MT18, RT13, WWYY11, Win13, XGX11, ZZ11, CDM +11]. randomization [DTS15]. Randomized [AY12b, BG11, EL10, KK15b, AGW13, Cha12, HI12, JKS10, MO12, Sor10, Wit14, YZZX12, Zeh16].
Reachability [AAOW15, Bol10, CO17, Lax10]. reachable [Bor16]. Reaching [Pel18]. reactive [FCWZ18]. read [FG18a]. readers [Tho18].
Recognition [DGK +17, LCC17, NMB10, DE14, DRdSS12, EMF10A, ZPH15].
Recognizability [KQ11]. recognizable [CK11a, KQ11]. Recognizing [GI18].
recommendation [GWJ11, HPP17]. recommendations [CS16b]. reconciliation [HMSS18]. reconstruction [HH15, IK15a]. recording [AL18]. recourse [AMP13].
Recovering [ABB17]. recovery [FCLCR17, LJ19, ML10a, MPG12].
rectangle [DGKS14, MCI12]. rectangles [Ale13, MM19a, MM19b]. rectangular
rectilinear \cite{KM11}. recurrences \cite{AABB17}. recursion \cite{GY19}. Recursive
\cite{CFMT16, CCXW12, LXLY12, CT16a}. recursively \cite{CVV10}. Red
\cite{HBL14, CCL10}. Red-black \cite{HBL14}. Reduced \cite{JUY15, AKY13, AY14, DMSD18, Gav17, LJP19, LFW16, MS13, WS13}. reduced-round \cite{AY14, LJP19, LFW16}. Reducing \cite{DGR15, KZP10, DF11}. reduction \cite{GL15, GK10, GHC15, IM17, KKS11, NCP18, Pet12, SeF14, SC12, YK11, ZZ19}. Reductions \cite{BJP19}. redundant \cite{KHKS16}. Reed \cite{WS10}. Reference \cite{LR10, DLO12, LH10}. Refined \cite{Dam17, YK15}. Reindenold \cite{GGI11}. reject \cite{JF15}. rejection \cite{EZH16, FM18, GM12a, KMS19, YM13, YK13, YZ19}. related \cite{CCH14a, DJ15, DMSD18, GLMS18, HK16, MNP12, PPH18, RS15, STU12}. related-key \cite{GLMS18, RS15, SB19}. Related \cite{CB18}. Relations \cite{HLR11, Me18, Vag18}. Relationship \cite{Suk19}. relative \cite{HBL14, IM17, Par11, WLLS08}. relaxations \cite{GE12}. Relaxed \cite{Kun17, DL13, FKL11, Mohn15}. release \cite{AS18, LZCX12, OZ16}. Reliability \cite{CWW10, CCRS14, Ger12, LT13b, LT15a, LT15b}. reliable \cite{Chr19}. Remainder \cite{HF14}. remark \cite{Wij10}. Remila \cite{Svi12}. rendezvous \cite{BDPP18}. rental \cite{CX18, YZZX12, ZPX11}. reoptimization \cite{Mon15}. reordering \cite{SF13}. Rep \cite{Man19}. Repeated \cite{Ksh11}. repeater \cite{BHM10}. repeats \cite{CCF12}. repetition \cite{BBDS12, HN10}. repetition-free \cite{HN10}. repetitions \cite{BC15, KKO10, Pdl15}. replacement \cite{BOV15, LMSN16, YERM19}. replenishment \cite{YXW13}. replication \cite{RJS10}. reporting \cite{DGKS14, DG16}. represent \cite{CR14}. representation \cite{JAH16, Pas15a, Pas15b, SD13, Tys13, Wall10, ZPl15}. representations \cite{Zha11, ZZ16}. representatives \cite{AGHY12}. representing \cite{BBB17, KR10, KR14}. reproducible \cite{CW12}. requests \cite{Hil14}. required \cite{WCW11}. requirement \cite{MZQL14}. requirements \cite{CV12, HKW18, KV18, ZZ11}. requires \cite{Laz10}. Research \cite{ZLM17}. reset \cite{JUY15}. residual \cite{LT15b, ZPl15}. Residuation \cite{GS17}. residues \cite{Bar12}. resilience \cite{ABPS15, DDPBT11}. resilient \cite{GV14, YL16a, ZY17}. resistance \cite{LT10}. resistant \cite{Ito14}. resolution \cite{BGL13, BT16a, CB18, DKL11, Lau18, Lau18b, MS16, Pud12, BGL10}. resolving \cite{Lai16}. Resource \cite{AIS10, eSKAI10, IZ10, Jia11, Oro11, XCYZ11}. resources \cite{NZX19}. respect \cite{SeF14}. response \cite{FT15}. Responsive \cite{Le18}. restarts \cite{FCNY10, Win13}. Restricted \cite{VU11, DW12, Fur19, GKW15, GBH10, Ljl18, MNN11, MV13, NIn13, PS11, RS12a, WZL12, WS16, YL16b}. result \cite{AE21, EZH16, ED17, IH18, Li10, SV19, Ti19, Ts11, WYLP17}. resulting \cite{ZQ15}. results \cite{AD16, AX18, BFRV15, DBFMPLV17, DRD11, DX10, JKS10, PH11}. RETRACTED \cite{Zha10b}. retransmission \cite{TK15}. retrieval \cite{Ars19, Tsu13}. reusable \cite{CNKS15}. revenue \cite{NZX19}. reversal \cite{BN10a}. reversals \cite{BN10a, DK14, FKR16, Rus18}. Reverse \cite{Ger19}. reversible \cite{ASTD14, GY19}.
reversing [Win13], review [YMJ17].
revised [FR12, HPY+10, LT13a, MZ15, NT14, Ria17, Ria19, RV13, SS10b, TS16, YZH14, ZCT+12, WBC+12]. Revisiting [GLMS18, Nic19]. revocation [Ria19].
reward [CX18, ZZXL11]. rewire [YMJ17].
revised [WYLP17]. Revised [FL13b].
revisited [FR12, HPY+10, LT13a, MZ15, NT14, Ria17, Ria19, RV13, SS10b, TS16, YZH14, ZCT+12, WBC+12]. Revisiting [GLMS18, Nic19]. revocation [Ria19].
reward [CX18, ZZXL11]. rewire [YMJ17].
revised [WYLP17]. Revised [FL13b].
revisited [FR12, HPY+10, LT13a, MZ15, NT14, Ria17, Ria19, RV13, SS10b, TS16, YZH14, ZCT+12, WBC+12]. Revisiting [GLMS18, Nic19]. revocation [Ria19].
reward [CX18, ZZXL11]. rewire [YMJ17].
HHTL10, LGT17, SKN11. sorts [PWC+15].
strips [Jia18]. Strong
[CLS13, HOV13, ML10b, WWW18, YZZ17, AG15, CGJY12, DPS11, DGSN15, Duc18, NN17, BT16a, GW16]. Strongly
[Tat19, EGK13, FK17, LN11, PG12, Pea16]. structure [CPTZ13, JAH16, KR10, KMMN15, LXLY12]. structured
[Dia15, LMU15, Tut13]. Structures
[ZZ14, AALL16, CNKS15, Csi12, DG16, SF17, Tsu18, WMLN10]. study
[BPP +18, FL13a, JT16]. subdivided [FH12]. SubEXP [Mos11a]. SUBEXP-dimension [Mos11a]. Subexponential
[FLRS11]. subformulas [SW13]. subgraphs [CZ16, Koc18, KL18, LLL18b, MT10, Nin13, SS12, Wid17]. subgroups
[ASTD14]. subject [Fuj16, SeF14]. subject-sums [Nan13]. subsets
[EO13, SS18, Tiw14, vzGS15]. subspace [LR18]. substitutability [CM18]. substitution [RK15]. stringing
[gra15, OG10, Yam19]. substring-prefix [OG10]. substrings [DG14, FGKU15]. subtree [CCF +12, Shi15]. subwords
[Wal10]. successor [Zho16]. Succinct
[Tsu18, BN10a]. succinctly [Att17]. Sudan
[WS10]. Sufficient
[Dam16, YL16b, Cai15, TD14]. suffix
[Dha14, KTV13, LNP11, LGT17, OG10, RK15]. suffix-prefix [OG10]. sum
[AGÁRCS +19, AX18, BDNVP15, CCWX12, CKY15, CK12b, DS15, DS16, Hua18, JKS10, JN12, Li12, LL16, Mei18, Ned17, Shi13, YZRC18], sum-optimal [JN12].
sum-product [CCWX12]. summarization [Lei18]. summation [KKKS14]. sums
[Nan13, Tiw14]. sumset [BFRV15]. Super
[GGQ10, ZF10, CV19, CCYW16, MZ11, Nin16, WSW12, YL16b]. Super-connected
[ZF10]. superclass [BL14]. Supereulerian
[AALL16]. Superiority [AY12a]. supermodular [Ber17]. Superstring
[FKR +16]. supervised
[GS10b, HYZY15, SD19, SaBG17]. supply
[RDX13]. support [JZ18, KQ11, OG11]. Supporting
[HLY11]. supports
[CK11a, YiN10]. Suppression [QK15]. surfaces [LT13c, WWLC14]. Surjective
[ADF13]. swap [FG14]. swapped
[MHFMSa11, XPC +10]. sweep [GM15]. sweeps [TJ14]. switching [WB12]. Sylvester
[Che16a]. symbol [Kim10]. Symbolic
[VB15]. symmetric
[Ara10, Ber17, DKKY10, FLMQ10, GD13, KS18, OBT12, SKK10, XPC +10]. synchronization [YNH +14].
synchronous
[vG18]. synthesis [GS12, MM16, Sch14]. system
[CC14, GKK11, LLK10, LXT19, MK11, MS19, Ria19, STAR15, TW17, TC17, XLT +19, ZLB11, Zha11, BD16]. systems
[AMN +10, ABH +14, BR10b, CVZ11, CZD14, CW15, CSX16, CGG10, DBB12, DK14, FCLCR17, Laz10, MSV14, Ria19, SO10, Vâg18, VSP18, ZDQ +17, ZLNB19, vGGS11, LST11]. systolic
[GS10c]. T [eSKAI10]. T-Boxes [eSKAI10]. Tables
[PRM14]. tactics [CV12]. tag
[JB16, PCK10, YBMK15]. tagged [HKK12]. tail
[BR12]. Taking [BR12]. Tamari
[BP14]. tarai [IK15b]. tardiness [GLW12]. target
[Pe18]. tasks [KC11, ZZJ11]. technique
[DJS13, PYYC16, TS16, ZLM17].
techniques [HZX16, Li15, VN17].
teleportation [TZF16]. Template [BPPS18]. templates [Las17, ZX17b].
Temporal [DRD11, BvdZ19, HPP17, KK15a, Mos13b, SWLX15, CFMT16].
temporary [YXW13]. tensor [GM12b, Mei12].
term [Ars19, Fil13, FG18b, LG18, SO10, Vag18].
term-weighting [Ars19].
terminal [GS10a, KR14, LT13b, HR17, Mos13b, SWLX15, CFMT16].
termination [IK15b, MP15]. terms [IM12].
ternary [DHR13, LWL11].
tessellations [AP14].
test [AH17, BGI12, BPPS18, Ghi14, GJR10, SSS12, Sch13b, GMY13].
testability [KKS15]. Testable [KR16, GM12b, HS19]. tester [SY15a].
testing [ABH14, CKP16, CLR13, AHR10, AGZP15, CdA13, CM18, DJ15, GR19, IL12, Jan12a, RM18, SLC15, SSZW16].
tests [KR16, vdBCDH17].
text [GGF13, Lei18, PYW13, RK15, ZD18].
texts [BFKL13, YMJ17]. th [HK16].
their [BJMC17, DKC12, IK15a, NVB15].
theorem [BD16, Ber17, Dem18, EGKL11, FL13b, Gsz13, IM12, Mor16, Pud12, Ser10, Shr18, SW12, SSK12, HF14, Ks12].
theoretic [CGS18, CH12]. theories [FCWZ18].
theory [BNRC10].
time-bound [ADFM13].
time-constrained [AGHY12].
Time-varying [ZKXY10, LXT19, SWW16, ZQJ15].
times [CK12b, FM18, GM12a, KMS19, KY12, Lzcx12, Mos11b, TFY11].
Toeplitz [CPHS18].
token [TNN11].
token-based [TNN11].
tokens [Ara10, DP12].
tolerance [Lx13a, Lx13b, WMS12, YLG10, Zxy10, Zx11].
tolerances [Lib10].
tolerancy [BF19].
tolerant [Che10b, JDX11, Far10, Fu10, IK10, LXDX12, MPRC19, Pel10, Tsai11, WDH16, Yz19, YC11].
tool [PdAL18].
tools [JK18].
Top [SSKA17, Tsai13, HLY11, LRT14, LRS19, SGM13].
Topo [SSKA17, Tsai13, HLY11, LRT14, SGM13].
Topological [GKPP16, MMS15, PWC15].
topologies [CLR13].
topology [TNN11, VLV15].
tori [YDT10].
toroidal [Xul11].
torus [Che16c, Dza15].
Total [Goll18, Lh11, RZ10, WW11, AG19, ALT18, Byk14, BH17, BS17, CHR10, Cho12, Cza13, FL16, FL13a, FM18, GLW12, HKW14, KS13, KMS19, LZ14, MY13, Pra12, SS12, WLW11, XS15, Yyr16, YW12, Yzh14, Zw10, Zlx19].
Toughness [ZJ11, Liu10, ZSY13].
tournaments [CGJY12].
Trace [ABPS15, Pas15a, Pas15b].
Trace-based [ABPS15].
traceable [Tur12].

transducer [TK15]. transductions [MS18a]. transform [CK11b, DGG19, MN19, Nan15].

transformation [BGR13, FBD18, SKN11].

translation [vGGS11].

transitive [Ama11, Vag18].

transitive [Ama11, Vag18].

tree-automatic [JKSS19]. tree-colorable [XLZ16].

tree-coritivity [ZLS15]. tree-like [BGL10, BGL13, Lau18a, MS16].

tree-width [Feg19].

trees [BGL10, BGL13, Lau18a, MS16].

tree-like [Feg19].

trees [BGL10, BGL13, Lau18a, MS16].

treespace [CDD11].

treewidth [CO17, MS18b, RR16].

Triangle [ZZ14, LX19, Möm15, PT12, SWZ12, Yan14, YL16b]. triangle-free [SWZ12, YL16b].

tries [BV11, NII15]. Triggering [Cha11].

trinet [MOW17].

trinomials [LlChL11, PCH13].

trip [ARdSP15, ZL17, ZL18, ZLNB19].

tripartite [GZM15, NN17].

triples [Nin13].

trivial [Ale13, Lut14, OBT12, Tur12].

tuple [ALT15, ALT18, Pra12].

Turski [Tar14].

TV [Ria19].

Tweakable [Sar11].

TWINE [KDH13, TY16b].

twisted [CCYW16, KYC13, KT16, KP12, KS10, MLW11, MRZ10, NB12, Nic19, QYW16, RDX13, SM10b, SI18, SW19, TNN11, TJ14, TC11, TX11, Vag18, WL11b, WL12, WCJ15, XZ15, XCYZ11, YZRC18, ZvdV10, ZLB11, Zhu12].

Two-dimensional [WL11a, Zho16, KS10, LI10b, TNN11].

two-layer [KT16].

Two-way [DN10a].

two-state [CX18].

two-string [DN10a].

two-stage [DN10a].

two-state [DN10a].

two-state [DN10a].

two-stage [DN10a].

two-stage [DN10a].

two-stage [DN10a].

two-stage [DN10a].

Two-way [DN10a].

type inhabitation [AB15].

type inhabitation [AB15].

type inhabitation [AB15].

type inhabitation [AB15].

typing [OG11].

TYT [LiCyChL10].

ubiquitous [LLK10].

ultralightweight [ASA13].

unambiguous [HS15, IL12].

Unbounded [LYF11, FL16, FYL14, GY15, LY11, MS14, TFY11].

uncertainty
unconditionally [Tys13]. Undecidability [MSV14].
undecidable [AL18, Ėsi11, KQ11, Sch14].
underlying [YMJ17]. unidirected [BS12, Chai11, Gro15]. unequal [Til19].
unfair [CCT14]. unicyclic [ZLY13]. unidirectional [HCWH15]. uniﬁed [CKY15]. uniform [CKP16, CFJ12, DKNQ18, KS10, LZ14, WWS12, WCJ15].
unit-size [Sun19]. unit-time [GM13a]. Universal [Fil18, SPdR13, vGLM12, BK16, CY17, Csi12, Mei18]. universally [HP19]. unknown [AJLM11, ZM19].
variant [ZFJZ11]. Variants [BDVP10, BJMC17, CB18, VNP10]. variation [Mis15]. various [ZQJ+15].
Varying [GKCK11, LXT19, SWW16, ZKXY10, ZQJ+15]. vault [NTD16]. VByte [LKR17]. VC [Gil14, Joh14b, ZLN19].
Vertex [BJH15, DKL+12, KP14a, PCY16, Ėsi12, AK14, BGJ+16, BDF+18, Che10c, CL15, FGG+10, Fu10, GLX12, GLXG13, GZM15, Ili13, Kat16, Koby15, Lam11, LX19, Liu9, MSM14, Mon15, NN17, OM17, Sch13b, SK12, Tsu19b, TZ11, TY13, Tu15, VK18, YeCM14, Yus11, ZJ14, ZLS+17, CP13].
vertex-colouring [SK12]. vertex-disjoint [Che10c, ZZ14]. vertex-distinguishing [YeC14]. vertex-pancyclicity [Fu10].
Vertex-transitivity [PCY16, Liu9]. vertices [Bor16, BM19, Che16b, CZWP17, DX11, Fie11, HW96, HAM11, Hua18, IM12]. very [LT18, Ya13]. vF2 [GWL18]. via [AC12, CFMT16, CK11b, DLMV10, DGR15, DT10, DZ11, DMS11, Fil13, HYY15, Mor11, SC12, YLG16, ZKXY10]. video [DWQ10]. videos [SML+10]. view [ZML19].
vincular [Vaj18]. violations [FG18a, Wij10]. Virtex [eSKAI10].
References

Ashrafi:2016:NEP

Ahn:2019:MWA

Aleksandrowicz:2017:RHC

Abu-Affash:2019:BBF

Aichholzer:2018:CBI

Aigner:2015:TAP

Wolfgang Aigner, Franz
REFERENCES

REFERENCES

[Aggarwal:2016:IHR] Divesh Aggarwal and Chandan Dubey. Improved hardness results for unique shortest vector problem. In-
Angelini:2018:CAL

Adamczyk:2011:IA

Acerbi:2013:SMC

Afrati:2010:QCU

Foto N. Afrati, Matthew Damigos, and Manolis Ger-

Aronov:2014:MWP

Ahadi:2012:CLN

Alon:2010:NCD

Ashok:2015:SC

Abdel-Ghafar:2019:SBS

Aldana-Galvan:2019:MSA

REFERENCES

Allem:2017:PTF

Aichholzer:2017:PPS

Avin:2018:RTR

Abbasi:2010:IRT

Amir:2017:TSH

Aceto:2010:RBG

Arev:2011:CEC

Abu-Khzam:2010:IKA

Avni:2013:WDA

Abu-Khzam:2014:EMD

Amiri:2019:RCA

Akutsu:2010:BAG [Aku10]

AlTawy:2013:SOC [AKY13]

Andre:2018:LPP [AL18]

Argiroffo:2015:CDT [ALT15]

Amani:2016:ARC [ALT16]

Asahiro:2010:WNN

Andrade:2010:CBA

Akrami:2019:RBM

REFERENCES

Anonymous:2011:EBd

Anonymous:2011:EBe

Anonymous:2011:EBf

Anonymous:2011:EBg

Anonymous:2011:EBh

Anonymous:2011:EBi

Anonymous:2011:EBj

Anonymous:2011:EBk

Anonymous:2011:EBl

Anonymous:2012:EBb

Anonymous:2012:EBc

Anonymous:2012:EBd

Anonymous:2012:EBe

Anonymous:2012:EBf

Anonymous:2012:EBg

Anonymous:2012:EBh

Anonymous:2012:EBq

Anonymous:2013:EBb

Anonymous:2012:EBr

Anonymous:2013:EBc

Anonymous:2012:EBs

Anonymous:2013:EBd

Anonymous:2013:EBa

Anonymous:2013:EBe

REFERENCES

Anonymous:2013:EBn

Anonymous:2014:EBa

Anonymous:2014:EBb

Anonymous:2014:EBc

Anonymous:2015:EBa

Anonymous:2015:EBb

Anonymous:2015:EBc

Anonymous:2015:EBd

Anonymous:2017:EBf

Anonymous:2017:EBg

Anonymous:2017:EBh

Anonymous:2017:EBi

Anonymous:2018:EBa
Anonymous:2018:EBb

Anonymous:2018:EBc

Anonymous:2018:EBd

Anonymous:2018:EBe

Anonymous:2018:EBf

Anonymous:2018:EBg

Anonymous:2018:EBh

Anonymous:2018:EBi

Anonymous:2019:EBf

Anonymous:2019:EBg

Anonymous:2019:EBh

Anonymous:2019:EBi

Anonymous:2019:EBj

Anonymous:2019:EBk

Anonymous:2019:EBm

Anonymous:2019:N

REFERENCES

REFERENCES

Al-Ssulami:2017:FSM

Abdessaied:2014:UBR

Avis:2015:GEC

Agrawal:2018:LRC

Attie:2017:FSC
REFERENCES

An:2018:SRI

Ambainis:2012:SEQ

Aspnes:2012:RLB

AlTawy:2014:IDR

Andrews:2014:RAW

Baba:2017:AFB

Baer:2010:ACE
Michael B. Baer. Alphabetic coding with expo-
REFERENCES

CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

Yoo-Jin Baek. Scalar re-
decoding and regular 2^n-ary right-to-left EC scalar mul-

Michael D. Barrus. An-

Michael D. Barrus. Havel–Hakimi residues of uni-
grahs. *Information Pro-

Jean-Luc Baril. Statistics-
preserving bijections be-

Dragana Bajic and Alis-

Joao M. M. Barguil and

REFERENCES

Bouchard:2018:DRN

Braga:2015:EDS

Best:2016:EHS

Beekman:2016:DSA

Bakr:2016:LBM

Bannai:2012:EAT

Barbero:2016:LVK

Beyersdorff:2013:CTL

Bouyer:2016:SSL

Borowiecki:2012:CCC

REFERENCES

[BHL17] Andreas Björklund, Thore Husfeldt, and Isak Lyck-

Bang-Jensen:2015:VCE

Basin:2014:DSL

Broelemann:2017:VRN

Ban:2019:RP

Backer:2010:CFA

Bailey:2010:EIM

Bao:2012:IAA

Bertini:2010:PPC

Blondeau:2015:IDA

References

[BN10b] Peter Brass and Hyeon-Suk Na. Finding the maximum

Bezem:2010:HPM

Bogdanov:2010:DLE

Bollig:2010:ESC

Bollig:2014:SCL

Bonifaci:2013:PCC

Borassi:2016:NCC

Braverman:2015:WSR
Vladimir Braverman, Rafail Ostrovsky, and Gregory
REFERENCES

Berry:2011:SAG

Baril:2014:MSM

Bueno:2018:HFG

Bjilsma:2018:TMT

Bajric:2014:GBF

Baudon:2012:MAP

Olivier Baudon, Jakub Przybyło, and Mariusz

Bagheri:2010:PSL

Bonnet:2010:SPN

Baumeister:2012:TFS

[BR12] Dorothea Baumeister and Jörg Rothe. Taking the final step to a full dichotomy of the possible winner problem in pure scoring rules.

Brand:2015:ASR

Branzei:2015:NEF

Brand:2017:SPP

REFERENCES

REFERENCES

Boldi:2011:IEF

Bhaskara:2019:APC

Bonizzoni:2010:VCL

Bodlaender:2015:GSM

Clymo:2018:RSW

Charron-Bost:2010:SLT

Cao:2011:ECD [CBSV11]

Chang:2012:EAL [CC12]

Cario:2013:AFM [CC13]

Choi:2014:TES [CC14]

Castonguay:2019:GNC [CCCN19]

Diane Castonguay, Erika M. M. Coelho, Hebert Coelho, and Juliano R. Nascimento. On the geode-

REFERENCES

Chawachat:2012:NUB

Chaplick:2018:SGU

Caprara:2016:STK

Cipriano:2010:MHC

Crespelle:2010:UCB

Chassein:2015:AF

Cucu-Grosjean:2010:PFJ

Cegielski:2014:LRS

Cohen:2010:BE

Cherniavsky:2016:EBF

Crowston:2010:NML

Crowston:2012:PES

Crowston:2014:EDP

Carles Creus, Guillem Godoy, and Lander Ramos.

Cohen:2010:BEC

Cherniavsky:2016:EBF

Creus:2014:EDP

Carles Creus, Guillem Godoy, and Lander Ramos.

REFERENCES

REFERENCES

Taolue Chen, Tingting Han, and Marta Kwiatkowska. On the complexity of model checking interval-valued discrete time Markov chains. Information Processing Letters, 113(7):210–216, April
REFERENCES

REFERENCES

Cechlarova:2011:EIE

Chapuy:2011:SRS

Couturier:2012:BIS

Croce:2012:NMS

Cepak:2013:BFL

REFERENCES

Choi:2010:NMM

Cheng:2012:DCD

Chang:2013:TCQ

Cheng:2013:SLD

Chiou:2011:MIL

Cai:2018:IDC

Junqing Cai, Hao Li, and Yuzhong Zhang. An implicit degree condition for \(k\)-connected 2-heavy graphs to be Hamiltonian. *Information Processing Letters*, 134(??):9–13, June 2018. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119
Chaturvedi:2017:NFM

Croitoru:2018:TS

Chen:2018:ORA

Constantinou:2015:ERC

Cho:2015:FAO

Cranston:2013:HCR

Chatterjee:2017:PRC

Courcelle:2014:CWE

Clifford:2010:FAM

Clifford:2011:MSI

Cygan:2013:SVD

Chung:2015:NIP

Chen:2016:CLB

REFERENCES

Chang:2018:EMB

REFERENCES

[CS12] Laszlo Csirmaz. Complexity of universal access struc-
REFERENCES

José M. Cañete-Valdeón. Annotating problem diagrams with architectural tactics for reasoning on quality requirements. *Information Processing Let-

Canete-Valdeón:2012:APD
Cai:2019:SCF

Csuhaj-Varju:2010:SCG

Cao:2011:CR

Choi:2012:LTF

Chen:2013:NSL

Chen:2015:IHS

Chen:2010:RWS

Cen:2015:FCD

Chen:2018:RRM

Chang:2014:CIS

Chen:2013:SOH

Chen:2018:RRM

Chen:2013:SOH

Chang:2017:AUD

Chang:2017:AUD

[YJCY17] Yi-Jun Chang and Hsu-Chun Yen. Area-universal drawings of biconnected outerplane graphs. Information Processing Letters, 118(??):1–5, Febru-
Chung:2018:FIP

Chen:2015:CTO

Cheng:2013:CCP

Chen:2013:INS

Cai:2016:FTI

Czap:2013:NTC

REFERENCES

IFPLAT. ISSN 0020-0190

REFERENCES

Du:2012:LCB

DasGupta:2014:CBS

Das:2018:NAP

Das:2015:AAM

Dolev:2011:SDL

Demange:2014:ERE

Dosa:2019:NLB

Didimo:2010:CCB

Dankelmann:2012:ECC

Demba:2018:ECT

Dolev:2019:UBM

Deng:2014:EDS
REFERENCES

[Deorowicz:2014:EAL] Sebastian Deorowicz and Szymon Grabowski. Efficient algorithms for the
REFERENCES

Das:2014:RIM

[DGK+17]

Das:2016:LSA

[DG16]

Daykin:2019:EPM

[DGKS14]

DiIanni:2015:RDU

Miriam Di Ianni, Luciano Gualà, and Gianluca Rossi. Reducing the diameter of a unit disk graph via node addition. *Information Processing Letters*, 115(11):845–850, November 2015. CODEN IFPLAT. ISSN 0020-
Debski:2015:SCI

Dutta:2013:PTB

Dhaliwal:2014:FSE

Dutting:2011:OFA

Dutting:2013:SSM

Durian:2010:IPE
Diaconescu:2015:ETS

Didimo:2013:DSL

Dietzfelbinger:2015:TSC

Dong:2015:AAP

Das:2013:LRE

Dugar:2015:DPC

Dunkelman:2010:EOL

Duris:2014:FPA

Du:2012:LCP

Demenkov:2010:NUB

Didimo:2012:VA

Dolgui:2018:GPS

Dziemowski:2018:QCR

Dai:2013:RLS

Dabrowski:2014:SNF

DiLena:2010:OGA

Dean:2013:BCT

Darwish:2016:IBF

Dyer:2019:CIS

Duarte:2011:ICS

Dietrich:2012:BMS

Dwivedi:2018:DLR

Ashutosh Dhar Dwivedi, Pawel Morawiecki, Rajani Singh, and Shalini Dhar. Differential-linear and related key crypt-

Matei David, Periklis A. Papakonstantinou, and Anastasios Sidiropoulos. How strong is Nisan’s pseudorandom generator? *Information Processing Let-
See [Nis92].

REFERENCES

REFERENCES

Dura:2013:LAL

Delic:2010:USD

Dvorak:2010:CSS

Doerr:2012:MRB

Ding:2010:VWW

Dong:2010:SRA

Du:2011:NCE

Dong:2012:AGP

Dong:2013:NVB
Ehdaie:2016:HCR

ElAtik:2021:CPM

Esiner:2017:QRI

Even-Dar:2011:NMS

Emek:2010:ACS

Eftekhari:2010:BWK
Ehsani:2012:OOP

Esparza:2013:SPA

Esparza:2011:PTS

Ehlers:2017:MAS

Ev en:2011:AAA

REFERENCES

Epstein:2010:RAO

Elmasry:2010:LAI

Elmasry:2012:SSP

Elmasry:2015:CIA

Eisenbarth:2015:SMM

Elbassioni:2017:PTA

Elkind:2013:HFS
Echenim:2011:MIS

Edemskiy:2016:LCB

Esik:2011:UPC

Kundi:2010:REI

Enos:2015:IBS

Epstein:2016:OSU
REFERENCES

Ezra:2010:NAW

Frieze:2017:RCS

Farag:2010:DFT

Fay:2016:ICM

Freschi:2010:FAC

Fan:2018:NDT

Fang:2014:OSC

Chengfang Fang and Ee-Chien Chang. Optimal strategy of coupon subset collection when each package contains half of the coupons. Information Processing Letters, 114(12):703–705, December 2014. CODEN IF-
REFERENCES

Fernandez-Campusano:2017:DLE

Fu:2010:OST

Feghali:2019:PBC

Fredriksson:2014:CES

Fan:2018:ALV
REFERENCES

141

REFERENCES

[Fin15] Olivier Finkel. The exact complexity of the infinite Post Correspondence Problem. Information Processing...

Fomin:2011:SAP

Fomin:2018:LDP

Frieze:2011:RCS

Fiszman:2018:MTL

See comments [KMS19].

Fu:2010:EBS

Floderus:2015:DMD

REFERENCES

REFERENCES

REFERENCES

[Fournier:2013:DAF] Hervé Fournier and Antoine Vigneron. A determinis-

Gulavani:2010:RAI

Ghosh:2013:NUB

Goldberg:2012:SWV

Gerstgrasser:2019:RAD

Gerbessiotis:2012:IRB

Gerstgrasser:2019:RAD

REFERENCES

Giaquinta:2013:APM

GG13

GG11

GG14

GG18

Gomez:2011:LCN
Domingo Gómez, Jaime Gutierrez, and Álvar Ibeas. On the linear complexity of the Naor-Reingold sequence. Information

[GHK+18] Rajiv Gandhi, Mohammad Taghi Hajiaghayi, Guy Kortsarz, Manish Purohit, and Kanthi Sarpatwar. On maximum leaf trees and connections to connected maximum cut problems. *In-
REFERENCES

Gu:2018:PDD

Gelle:2018:RUF

Gilbers:2014:VDP

Gillis:2018:MUP

Nicolas Gillis. Multiplicative updates for polynomial root finding. Information Processing Letters, 132(??):14–18, April 2018. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (elec-
REFERENCES

[Gueron:2010:EIG] Shay Gueron and Michael Kounavis. Efficient im-

Geetha:2011:VRN

Golovnev:2014:SSB

Gavalas:2015:AAA

Gerbner:2016:TO

Govorcin:2013:LGO

Golynski:2012:OSL

Galbey:2019:CEC

Glück:2010:SGP

Gafarov:2012:NSM

Guo:2013:NVP

Gu:2011:CMC

 REFERENCES

Guo:2010:SCK

Gopalan:2013:CPI

Ghosal:2019:NPP

Grabowski:2015:NLC

Grandi:2018:ABF

REFERENCES

Fabio Gadducci and Francesco Santini. Residuation for bipolar preferences in soft constraints. *Information
REFERENCES

Gupta:2019:DTB

Guzel:2019:NMF

Grigorious:2014:PDC

Grytczuk:2013:OVT

Guo:2015:IP

Guo:2016:PR

Guzel:2019:NMF

Grigorious:2014:PDC

Grytczuk:2013:OVT

Guo:2016:PR

Guzel:2019:NMF

Grigorious:2014:PDC

Grytczuk:2013:OVT

Gutin:2010:NMB

Geng:2015:NUP

Gluck:2019:CBT

Guo:2012:MBP

Guo:2015:EVA

Haddad:2018:MDF

Halldorsson:2010:OCH

Honma:2011:EAL

Han:2017:CPW

Harwath:2016:NSP

Harada:2018:NQC

Hasan:2013:FSP

Havill:2010:OMJ

[Hav10] Jessen T. Havill. Online malleable job scheduling for $m \leq 3$. *Information Pro-
REFERENCES

Holenderski:2014:RBT

Haddadi:2015:PTL

Hung:2015:HPU

Harn:2014:MTS

Harn:2015:DTS

REFERENCES

[169] HEDETNIELI:2012:SSA

[HHK17] HEAM:2017:EPT

[HHJ+12] HEDETNIELI:2012:SSA

[HHTL10] HONKALA:2015:EOD

[HIC10] HIRSC:2012:ORA

REFERENCES

Hoffmann:2018:MNM

He:2012:RCR

Hong:2016:DCC

He:2017:NHS

Herranz:2011:RBS

Hung:2010:FFI

REFERENCES

0020-0190 (print), 1872-6119 (electronic).

Han:2011:SEP

Heggernes:2010:HAM

Hitchcock:2013:BIF

Halacsy:2018:OEE

Hokama:2016:BSA

Huber:2018:GMR

Harju:2010:CRF

Tero Harju and Dirk Nowotnka. Cyclically repetition-free
REFERENCES

REFERENCES

Huang:2018:IDS

Houston:2012:ZPG

Ho:1996:LTA

Hwang:2012:TBL

Hou:2014:LSS

Huang:2015:CSI
Huang:2005:EMP

Liusheng Huang, Hong Zhong, Hong Shen, and Yonglong Luo. An efficient multiple-precision division algorithm. In Hong Shen and Koji Nakano, editors, Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, 2005. PDCAT 2005: 5–8 December 2005, Dalian, China, pages 971–974. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2005. ISBN 0-7695-2405-2. LCCN QA76.58 .I5752 2005. The authors present an integer-division algorithm that runs three to five times faster than Knuth’s 1981 original. However, there is an error in the renormalization algorithm that is corrected in [MN14], while retaining the speedup.

Hu:2016:STF

Ibarra:2017:CCS

Inenaga:2018:HRN

Iwasaki:2010:FTR

Ímai:2015:IRR

Ishiu:2015:THD

Isaak:2012:EIT

Ilic:2013:EA

Iwerks:2012:AGT

Ikenmeyer:2017:RPR

Christian Ikenmeyer and Stefan Mengel. On the relative power of reduction notions in arithmetic circuit complexity. Information Processing Letters, 130(??):7–10, February 2017. CODEN IFPLAT. ISSN 0020-
REFERENCES

Ivan:2016:CA

Iwama:2010:OKR

Jaddi:2016:SRG

Jansen:2012:TTH

Januszewski:2012:LAS

Jannati:2016:SAR

Ji:2010:SJD
Min Ji and T. C. E. Cheng. Scheduling with job-dependent learning effects

REFERENCES

Jiang:2018:PIC

Jobson:2018:LIG

Jouida:2018:DBO

Jain:2010:ODS

Jannati:2019:SOR

Jain:2019:IPT

Jaiswal:2015:IAI

Joos:2014:GIC

Joeris:2017:SDC

Jamison:2012:MOS

Johnen:2014:FSS

Johnson:2014:SNM

REFERENCES

Jordan:2010:GGR

Jordan:2012:HCM

Jain:2010:RPR

Jager:2011:NPG

Jha:2019:SDP

Jonas:2018:CQB

Jukna:2019:GCB

REFERENCES

Jansen:2011:SOA

Junosza-Szaniawski:2010:GCN

Junosza-Szaniawski:2011:CEA

Jia:2015:DIE

Jonsson:2010:AIP

Janczewski:2015:CCB
Janczewski:2016:HCS

Jukna:2012:CPC

Jourdan:2015:RCS

Jiang:2018:GHE

Khazaei:2017:COA

Kakugawa:2015:SSD

Kalinich:2012:FWP

[Kal12] Adam O. Kalinich. Flip-

REFERENCES

Kocabas:2013:NSS

Kiwi:2014:SMB

Karakoc:2013:BCL

Karakoc:2015:AKA

Ketema:2011:CIR

Kobayashi:2016:CRR

REFERENCES

Kiefer:2013:BBE

Kim:2010:NF

Kissel:2019:KRC

Kulich:2011:PPS

Kamiyama:2015:PAT

Kiraly:2015:RDA

Kapelko:2016:DCU

Rafal Kapelko and Evangelos Kranakis. On the displacement for covering a unit interval with randomly placed sensors. Information Processing Letters,
Kaski:2014:FMS [KKS14]

Kolpakov:2010:MRA [KKO10]

Kubica:2013:LTA [KKZ13]

Karandikar:2015:ISC [KKS15]

Kasperski:2013:AMM [KKZ13]

Kim:2018:NCP

Kozma:2010:CTG

Karpinski:2013:OCP

Keller:2010:DAS
Nathan Keller and Stephen D. Miller. Distinguishing at-

REFERENCES

www.sciencedirect.com/science/article/pii/S0020019013000823

Kapo:2013:MFW

Krithika:2013:ADC

Kiyomi:2016:FCG

Kobayashi:2015:CPD

Kochol:2012:NEL

Kochol:2018:TCC

Kokosinski:2017:GPI

Korman:2012:MIA

Kosolobov:2016:CRG

Kosolobov:2017:TLB

Kostolanyi:2018:DWA

Kotrbcik:2012:NDC

Kolaitis:2012:DCC

REFERENCES

Keil:2013:CMO [KPR18]

Kociumaka:2014:FDF [KP14a]

Krasnoshchekov:2014:OHS [KP14b]

Korman:2018:LSC [KPR18]

Kirsten:2011:RSR [KQ11]
D. Kirsten and K. Quaas. Recognizability of the support of recognizable series over the semiring of the integers is undecidable. Information Processing Letters, 111(10):500–502, April

Ariel Kulik and Hadas Shachnai. There is no EPTAS for two-dimensional
REFERENCES

Katrenic:2011:IAB

Kochol:2012:BTG

Kauers:2018:SPS

Kosolobov:2019:CLT

Karaahmetoglu:2013:NMD

Keszocze:2018:CEM

Kshemkalyani:2011:RDC

Khennoufa:2013:ECT

Kaisera:2015:GGH

Krumke:2011:MCF

Krumke:2012:EMC

Kobayashi:2016:FFP

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
| [KV10] | Sreyash Kenkre and Sundar Vishwanathan. Ap-

Kitaev:2016:MSW

Kishore:2018:MCR

Kuo:2016:SDD

Kuo:2012:SNP

Ke:2013:NBS

Ke:2012:NCQ

Pinhui Ke and Shengyuan Zhang. New classes of

REFERENCES

[202]

[Lange:2011:HEP]

[Lasota:2017:EAC]

[Lauria:2018:CET]

[Lauria:2018:NAK]

[Lazic:2010:RPB]

[Lu:2013:CSA]

[Lin:2017:LT]

Min-Sheng Lin and Chien-Min Chen. Linear-time algorithms for counting independent sets in bipartite permutation graphs. *Information Processing Letters*, 122(??):1–7, June 2017. CODEN IFPLAT. ISSN 0020-0190

Luccio:2010:LBR

Liu:2016:LCR

Lin:2018:IFA

Liu:2017:SCE

Li:2014:SIS

Lucas:2018:ULM
Louza:2017:OSS

Lin:2010:EAC

Lin:2011:TCT

Lin:2011:ICA

Lan:2016:CPI

Li:2010:FTR
REFERENCES

REFERENCES

References

Li:2011:SBP

Li:2010:ETI

Luo:2010:PAE

Li:2014:AAR

Lee:2010:SRT

Lai:2011:MOL

Li:2018:CGG
Xiaomin Li, Lan Lei, and Hong-Jian Lai. The connectivity of generalized graph products. *Information Processing Letters*, 136(??):37–

[LLT14] Erwan Le Merrer, Nicolas Le Scouarnec, and Gilles Trédan. Heuristical top-k:

[LM91] Xuejia Lai and James L. Massey. A proposal for

REFERENCES

Lofgren:2014:CMC

Lee:2010:PRL

Lozin:2013:BPS

Luccio:2013:CRN

Lima:2010:PKE

Lingas:2014:CNC

Li:2017:ADS

Kai Li, Daowen Qiu, Lvzhou Li, Shenggen Zheng, and Zhenbang Rong. Application of distributed semi-quantum computing

REFERENCES

www.sciencedirect.com/science/article/pii/S0020019017300522

Libkin:2010:DPM

Liang:2011:AA

Lin:2014:CMI

Liang:2015:CTS

Liang:2017:CTS

Li:2011:DF

Lin:2015:FAC

Min Chih Lin, Francisco J. Soulignac, and Jayme L.

Daniel L. Lu. Planar lower envelope of monotone polygonal chains. *Information Processing Let-

Feng Liu, ChuanKun Wu, and XiJun Lin. A new def-

Li:2011:PTC

Li:2010:GCP

Lu:2018:WLS

Lingas:2007:NCM

Li:2013:EFT

[Li:2013:GMF][LX13b] Li:2013:GMF

[LX19] [LX19] Li:2019:VKE

[Li:2017:CTE][LX17] Li:2017:CTE

Ladinek:2015:PCD

Liu:2010:DNC

Liu:2012:SMS

Li:2010:PES

Li:2012:OSE

Li:2017:NCL

Samaneh Mashhadi. New multi-stage secret sharing in

REFERENCES

Merouane:2015:SDG

Malekesmaeili:2012:TBL

Meir:2012:RMP

Meir:2018:DSU

Mennink:2012:IFH

Magdon-Ismail:2017:NHI

Mota:2016:PSM

Milshtein:2015:NBC

Minh:2011:RLS

Milovanov:2019:PCC

Misra:2015:MAN

REFERENCES

Miyazaki:2014:ACO

Mahmood:2011:ISI

Mikulski:2014:FHD

Manak:2016:EET

Matsumoto:2011:AAD

Martin:2010:SCE

Miao:2010:SOC

Huifang Miao and Guoping Lin. Strong orientations of

Min:2011:OSO

Mor:2012:BSI

Meshram:2013:IBC

Mavronicolas:2015:CPE

Mor:2015:NMM

Madireddy:2019:AHG

[Raghunath Reddy Madireddy and Apurva Mudgal. Approximability and hardness of geometric hitting set...

Madireddy:2019:NHG

Maiseli:2018:PMM

Malvestuto:2011:CSP

Mancini:2017:MME

Magirius:2015:CPL

Marenco:2015:TAN

Javier Marenco, Marcelo Mydlarz, and Daniel Severin. Topological additive numbering of directed acyclic
Meshram:2012:IBC

Mukhopadhyay:2014:EMP

Mitzenmacher:2016:HPS

Mercas:2017:NTG

Mäkinen:2019:APB

Veli Mäkinen and Tuukka Norri. Applying the Positional Burrows–Wheeler

Minier:2012:RKI

Mansour:2011:LFG

Mathieu:2012:LBR

Mathew:2015:HPB

Mollard:2018:EPC

Momke:2015:IAA

[Tobias Mömke. An improved approximation algorithm for the traveling salesman problem with relaxed triangle inequality. *Infor-
REFERENCES

Montanaro:2010:NQQ

Montanaro:2012:QQC

Monnot:2015:NTS

Moo dy:2011:UIQ

Morizumi:2011:IAA

Morsy:2016:EHT

Moser:2011:ZOS
Philippe Moser. A zero-one SUBEXP-dimension law for
Mosheiov:2011:PFG

Mosca:2013:MWI

Moszkowski:2013:IBC

Molinero:2016:CE

Mousavi:2019:TTE

Moulton:2017:CTA

REFERENCES

Maitra:2013:ESK

Menc:2017:TSO

Mesnard:2015:SOF

Moosa:2010:IPB

Montassier:2010:DSG

Mathew:2012:CPB
Sunil Mathew and M. S. Sunitha. A characterization of partial blocks in

Morawiecki:2013:SBP

Mkrtchan:2015:ALS

Marcilon:2018:ITH

Moser:2018:LDD

REFERENCES

Meyer:2019:ERV

Matsui:2014:FPF

Maheshwari:2011:LIN

Mubayi:2010:FBS
REFERENCES

Meir:2018:CAP

Melkman:2010:DSA

Moll:2012:CHW

Ma:2012:PAE

Mapa:2015:MAS

Mansour:2013:EGR

Ma:2013:OSS

Ma:2018:NST

Miao:2011:BPB

Ma:2014:CRI

See corrected proof [EAE21]. [MZQL14]
REFERENCES

Nederlof:2017:SNM

Ning:2015:CEC

Nash:2010:OSA

Neggazi:2015:NSS

Nicholson:2019:REA

Nakashima:2015:CLT

Ning:2013:FTD

Bo Ning. Fan-type de-

Ning:2015:NCM

Ning:2016:SCE

Nisan:1992:PGS

Ni:2015:OOM

Nie:2014:IMC

Nandy:2010:RLE

[NMB10] Subhas C. Nandy, Krishnendu Mukhopadhyaya, and Bhargab B. Bhattacharya. Recognition of largest empty orthoconvex...

Nakprasit:2017:SEV

Nose:2011:SWA

Nose:2014:SWS

Nandy:2017:FAM

Nicolae:2017:PMM

Narayanaswamy:2011:DSB

REFERENCES

Ochem:2017:OEC

Orumiehchiha:2014:PAN

Oron:2011:SBM

Orumiehchiha:2014:PAN

Pallo:2010:RRK

Park:2011:CGR

Parys:2016:WCP

Pawel Parys. Weak containment for partial words

Pasalic:2015:CNN

Pasalic:2015:NNV

Papadopoulos:2018:FAG

Pai:2019:IDC

Park:2013:PMT

REFERENCES

REFERENCES

Perez:2017:FIC

Pettie:2012:SRM

Panda:2012:LDC

Pasalic:2019:DMS

Puente:2011:NRL

Park:2013:SST
REFERENCES

REFERENCES

ISSN 0020-0190 (print), 1872-6119 (electronic).

Panda:2013:LT
BB. S. Panda and S. Paul.

Park:2014:EUB
Moonju Park and Xuefeng Piao.

Pei:2018:SII
Li-Dan Pei, Xiang-Feng Pan, and Fu-Tao Hu.

Peng:2017:ODF
Weiguang Peng, Ningning Peng, KengMeng Ng, Kazuyuki Tanaka, and Yue Yang.

Ponti:2017:ILT
Moacir Ponti and Mateus Riva.

Pradhan:2012:AA
D. Pradhan.

Pudlak:2012:LBS

Puente:2011:LSQ

Puleo:2016:CDM

Pang:2015:TSD

Peng:2010:EIA

Peng:2011:IOD

Peng:2013:FGP

Xi Peng, Zhang Yi, Xiao-Yong Wei, De-Zhong Peng,

P:2016:TCB

Qi:2017:BPO

Queyroi:2015:SDC

Qian:2010:NIM

[Haifeng Qian and Shouhuai Xu. Non-interactive multisignatures in the plain public-key model with ef-
Qin:2016:STI

Rackham:2010:CCC

Rajasingh:2012:MWH

Ren:2013:CTS

Roh:2010:BSW
Rial:2017:IFO

Rial:2019:CAS

Roh:2010:LVV

Risto:2015:USS

Reis:2018:AET

Roman:2011:NCR

Reviriego:2019:CCF

REFERENCES

Roayaei:2016:FAM

Rajasingh:2012:EHN

Rampersad:2010:DPF

Reidenbach:2012:MHA

Rueda:2012:PAP

Roetteler:2015:NQR

Rinemberg:2019:EDS

Rampersad:2011:ISB

Rizzi:2013:RUR

Rudow:2017:DLM

Rusu:2018:SSP

Radonjic:2010:ISD

REFERENCES

Rotter:2013:DAR

Radonjic:2017:ICC

Rodrigues:2017:NCC

Roussel:2010:TCP

Rovan:2014:MTC

Rzazewski:2014:EAG

Sasikala:2017:NAF

S. Sasikala, S. Appavu alias Balamurugan, and S. Geetha. A novel adaptive feature selector for su-

Sadeghi:2019:SAS

Sergey:2012:CBT

Steyaert:2013:BFI

Schmid:2013:NCM

Schmidt:2013:STV

Schewe:2014:DSS

Schaudt:2015:DMI

Oliver Schaudt. On disjoint maximal independent sets in

Shi:2012:SSA

Shin:2013:NMS

Shin:2015:TED

Shito:2018:CGC

Shparlinski:2013:CNE

Shraibman:2018:NMC

Shraibman:2019:CBL
Adi Shraibman. The corruption bound, log-rank,

Sattari:2018:UBM

Siebertz:2019:GDB

Simon:2016:ECA

Skowronek-Kaziow:2012:MVC

Szalachowski:2010:CCG

Saso:2011:PPI

Suksompong:2016:ELW

Sarkar:2010:CRM

Sarkar:2010:CR

Small:2013:NEC

Sherkhonov:2017:CA

Sabir:2019:PRR

Minjia Shi, Liqin Qian, Yan Liu, and Patrick Solé. Good self-dual generalized quasi-cyclic codes exist. *Information Processing Let-
REFERENCES

Seidl:2011:ECD

Schweitzer:2010:CFH

Simon:2010:OIH

Schaudt:2012:CCD

Sanders:2016:SGS

Sadhya:2017:PRE
Sakharov:2018:VAS

Schlipf:2019:SCE

Sheng:2019:ILK

Su:2012:FHG

Son:2017:TMS

Schmidt-Schauß:2010:CMS

Schmidt-Schauß:2012:FET

Manfred Schmidt-Schauß and Georg Schnitger. Fast

Scott:2015:AAH

Shiau:2015:ICC

See corrigendum [SSW16].

Shiau:2016:CIC

See [SSW15].

Song:2016:ATM

REFERENCES

Dimitri Surinx and Jan Van den Bussche. A monotone preservation result for Boolean queries expressed as a containment of conjunctive queries. *Information
REFERENCES

REFERENCES

Song:2015:CDM

Sun:2016:ZNN

Sparl:2012:LTA

Shao:2015:SAS

Sun:2018:GOF

Su:2017:GBC

[SZC+17]

[Tar14]

[Szy12]

[Tat19]

[Tak16]

Thomasian:2018:VSM

Tilé:2019:GRS

Takehara:2012:CPS

Tiwary:2014:LCS

Tian:2015:IBP

Tan:2014:OSS

Tan:2018:IAC

Tkakkar:2015:NDT

Tian:2012:PSO

Ta:2016:EAC

Ta:2018:TSC

Tax:2018:IPM

Tan:2016:CRD

Taheri:2011:HTB

Tsai:2011:NOR

Tsai:2015:PDA

Chang-Hsiung Tsai. The pessimistic diagnosability of alternating group graphs under the PMC model. *Information Processing Letters*, 115(2):151–154, February 2015. CODEN IFPLAT. ISSN 0020-0190

Volker Turau. Self-stabilizing algorithms for efficient sets

[TXQ11] Chunming Tang, Maozhi Xu, and Yanfeng Qi. Faster pairing computation on genus 2 hyperelliptic curves. *Information Processing Letters*, 111(10):494–499, April...

Vadlamudi:2013:IBS

Vagvolgyi:2018:IRT

Vajnovszki:2018:ESL

Vallee:2010:NEC

Valmari:2012:FBP

Vaya:2013:RCL

vanBreugel:2012:BPC

REFERENCES

Vianna:2019:SMB

vanBev:2015:APC

vonderBrug:2017:ESF

vanEe:2017:SNB

vanGlabbeek:2018:VES

[vG18] Rob J. van Glabbeek. On the validity of encodings of the synchronous in the asynchronous π-calculus. In-
REFERENCES

REFERENCES

Venkatakrishnan:2018:IUB

Vecchio:2015:GTD

Viard:2018:EMC

Vollala:2017:EEM

Vidali:2010:CVB

Voudouris:2019:NEP

Vrgoc:2015:UV
Domagoj Vrgoc. Using variable automata for querying

Visconti:2018:IUB

Vajnovszki:2011:RCP

Vygen:2011:FAO

vanzuyle:2016:TUB

von zur Gathen:2015:CGG

Walczak:2010:SRS

Bartosz Walczak. A simple representation of subwords of the Fibonacci word. *In-
REFERENCES

Wawrzyniak:2014:SAL

Wang:2012:PCE

Wang:2012:OSO

Wu:2015:INE

Wu:2011:MBR

Wang:2011:ECG

Wan:2013:INE

Wang:2016:GNC

Widel:2017:CHS

REFERENCES

Wijsen:2010:RCC

Winzen:2013:DRQ

Witt:2014:FLT

Wu:2010:ECS

Wang:2011:TDH

Wang:2011:GPC

Wang:2012:GPC

REFERENCES

Wang:2013:DPS

Wang:2013:PGC

Wang:2011:CIB

Wang:2015:NPS

Wu:2019:ELC

Wang:2012:BFN

Xu:2011:STI

Xu:2011:TUB

Xiao:2010:FMW

Xiao:2019:NGN

Xiang:2016:EMP
Xu:2016:PTC

Xu:2011:CSM

Xiao:2010:FSS

Xiao:2012:FAE

Xiao:2015:BLT

Xie:2012:EAP

REFERENCES

Com/Science/article/pii/S0020019014001082.

Xu:2010:RMS

Xing:2017:TLD

Xu:2017:LTA

Xu:2018:SKD

Chao Xu and Qian Zhang. The shortest kinship de-

Xie:2016:IAS

Xu:2015:MAC

Y:2013:LCE

Asnath Vicky Phamila Y. and R. Amutha. Low com-

Yamakami:2014:CSQ

Yamamoto:2019:FAF

Yang:2014:TOK

Yao:2011:WHM

Yahiaoui:2013:SSA

Yu:2010:ETD

Cui Yu, James Bailey, Ju-

REFERENCES

Yang:2013:PPP

Yusuf:2019:TAB

Yuan:2012:NEC

Yamanaka:2010:CEP

Katsuhisa Yamanaka and Shin ichi Nakano. A compact encoding of plane triangulations with efficient query supports. *Information Processing Letters*, 110

Yum:2011:ACO

Yang:2016:SAA

Yuan:2016:SCT

Yu:2017:LTA

Yang:2010:KCF

Yang:2016:SIF

Yang:2016:CLG

Yang:2018:LGI

Yu:2017:RPU

Yu:2014:SPE

Yang:2010:CCC

Yang:2018:DLA

YLM10

YLZZ18b

YMJ17

YMSA14

Yamashita:2014:FSS

Yuster:2011:SCE

Yu:2012:NOO

Yu:2010:PAP

Yuan:2014:CSS

[YW14] Yumin Yuan and Chenhui Wang. Certificateless sig-

Yang:2015:PIC

Yonta:2010:RAH

Yan:2011:PAB

Yao:2014:NHS

Yang:2015:SPB

Yang:2014:CIA

Yang:2012:OBL

Yu:2013:OIR

Haiyan Yu, Yinfeng Xu,

Yang:2011:CDH

YYDL11

Yenigun:2017:CCE

Yang:2016:NGP

Yu:2012:RWA

Cui Yu, Xiaofan Yang, LüXing Yang, and Jing Zhang. Routing and wavelength assignment for 3-ary n-cube communication patterns in linear array optical networks for n communication rounds. *Information Processing Letters*, 113(18):677–680, September 15, 2013. CODEN IFPLAT. ISSN 0020-0190
REFERENCES

REFERENCES

Zalinescu:2011:SSC

Zhang:2011:UIP

Zhang:2010:SCP

Zhang:2012:CNM

Zhang:2011:UIC

Zhang:2012:OCC

Zhu:2018:BFC

Zhang:2017:SFA

Zehavi:2016:RAL

Zelke:2011:IMM

Zhou:2010:SCS

Zhou:2011:SCN

Zivkovic:2010:IUS

Aleš Zivković, Uroš Goljat, and Marjan Heričko. Improving the usability of the source code quality index

Zhang:2010:ILB

Zhu:2012:ISA

Zhang:2010:RA

Zhang:2011:PSR

Zhang:2013:CSC

REFERENCES

Zhang:2018:LMR

See comment [CWYP14].

Zhou:2010:EDG

Zhou:2016:TDR

Zhou:2015:NLB

Zhu:2012:TSS

Zhou:2013:IST

See comment [CWYP14].

Chun Jiang Zhu and Kam-Yiu Lam. Source-wise
REFERENCES

Zh:2018:DIR

Zh:2018:APF

Zh:2018:LPE

Zh:2018:DRD

Zh:2011:APF

Zh:2010:DNC

Zh:2017:RDH

Zhang:2018:APF

Zhang:2018:LPE

Zhang:2018:DRD

Zhang:2010:DNC

Zhang:2011:APF

Zhang:2017:RDH

Bo Zhang, Qianmu Li, and Yuanyuan Ma. Research on dynamic heuristic scanning technique and the application of the malicious code detection model. Information Processing Letters, 117(??):19–24, January 2017. CODEN IF-

[Zhu:2019:WBL]

Zhao:2015:MWS

[ZpH15]
Zh:2018:EPW

Shi:2011:OCB
REFERENCES

Zhang:2016:PHG

Zawidzki:2013:SPM

Zhou:2013:TCF

Zunic:2018:SDO

Zhang:2014:POS

Zhang:2010:LTM

Zhang:2010:TCP

Zhang:2011:ECP

Zhang:2014:DAE

Zhang:2012:TAL

Zhou:2010:CDA

Zhou:2011:CFT

Zong:2011:HNH

Yu Zong, Guandong Xu, Ping Jin, Yanchun Zhang,

Zhou:2019:DCF

Zhang:2010:KCF

Zhang:2011:OAG

Zhang:2012:MST

Zhou:2017:LRC

Zhou:2013:ELO

[XZYL12] Xiangqian Zhou, Bing Yao, and Xiangen Chen. Every lobster is odd-elegant.
Zhang:2015:GSD

Zhao:2011:TBR

Zunic:2013:SEB

Zhang:2014:TSS

Zhang:2018:CNB

Zhao:2019:IAR

