
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

21 June 2018
Version 1.79

Title word cross-reference

[SW13].

(2, 0, 0) [WX13]. (2, l) [GLY11]. (2p + 1) [LLL+11]. (2P2, H) [DP18]. (a, b, k) [ZJ11].
(Δ + 1) [WLW11, ZW10]. (g, f, n) [Liu10].
(k, l) [DFdFT16]. (k, m) [ZSY13]. (X, S) [YW11]. (n, k) [CLS13, WXZ+12, YLG10].
(P5, H) [DP18]. (→, 3) [SeF14]. (s, t) [DL13].
(t, n) [QD16]. 0/1 [OBT12]. 1 [AIR17, AMRR11, CZZ+12, Cza13, Did13, EKN11, SSK12, Wu14, XL15, ZW11, ZL12, ZLLZ18].
16 [Mil15]. 2 [AMT12, CLZ18, Che16c, CLS13, DFMS10, EAA+16, EKN11, FY14, Jan12b, KR16,
KM13, LZ10a, LH11, LT13c, LM15, NN17, OM17, Och17, Sch13b, Shi12, Tak16, TXQ11,
TZ11, Wid17, XG11, YBMK15, vGLM12].
2/3 [Vid13]. 22 [MNP12]. 24 [Ehl17]. 2k [Sun16]. 2n [GKM14]. 2w [Bae13].
2\sqrt{2} [GKW15]. 3 [AD18, BS11, DS15, Dur13, FWS13, GH14, JSZC15, Kat16, Lei17, Mil15,
NS11, NT14, Xia10, YL11a, YYYZ12,
*B [KMMN15, KP14b]. b [Fuj16]. B+
[YBM+10], β [Dur12]. c [vBCH+15]. PS
[Pa15a, Pas15b]. d
[Ezr10, LT13b, LT15b, QD16, RV13]. D^2
[JKY15]. ∆ [ZW10]. ∆ = 9 [CL15]. ∆ ≥ 6
[WLW11]. d \times d [KA17]. e [MNV11].
E = I + T [BV11]. e [Aka14, Ezr10]. f
[ZZ18]. g [WH16]. γ [Dur12]. GF(2)
[VSP18]. GF(2)[x] [SF12]. GF(2^m)
[NCP18, nXCL14]. GF(3^m) [PCH13].
GF(m^2) [CLY11]. GF(p) [FLMQ10]. GF(q)
[LPdS10]. H [Szy12, GHvHP13]. H_2 [SR11].
{k} [ALT15, HK16, LT13b, LT15a, LT15b,
SGM13, Tur12, ALT15, BK10, BYK14,
BT16a, BR16, BN10b, BJMC17, CLZ18,
CCH14b, CP10, DM13, DW10a, DG14,
DT10, DK14, EFKR10, FLPS15, FGKU15,
GGG+14, GGF13, Gra15, HLY11, HL12,
Hil14, JKY15, Joh14a, KSK13, KZP10,
KP14b, KM16b, Kun18, Lau18b, LTL14,
Lee10, LSW17, Li10, ML10b, Mor11, NR17,
Pra12, Pue11, SW13, SSS15, SKA17,
Tsu13, WZL12, Xav12, YL16b, Zal11,
ZH10, ZZXL11, ZLS^+17]. k = 2 [SSS15].
K_4 [LSK17, WWW18]. kP + IQ [LZ12]. L
[LM16]. L(2,1) [DL13, JSR11, PG12].
L(δ_1, δ_2, 1) [Cal13]. L(j, k) [WL12]. L_1
[DGKS14]. λ^2 [CLM12]. λ_2 [LWXZ14]. m
[Kok17, LX13c]. M(k) [WWZ15]. F_2 [AH17].
F_3^{m} [CCH14b]. Z [GSPD17]. GF(2^m)
[CLCh11]. m ≤ 3 [Hav10]. n
[BN10b, GH14, Kok17, LWL11, LL10c,
RARM12, SD13, WH16, YYYZ12, YYYZH13].
O(1) [YBMK15]. O(1.587^n) [MTA10].
O(d_3) [KA17]. O(n) [CG10b]. O(n^2)
[BCNPL14, CPW11, Pol18]. O^*(1.84^k)
[CCF14]. ω [FS14, IL12]. P [Pan11, NHK15].
P_3 [WNCF10]. P_3
[MS18b, TV13, Tu15, TZ11]. P_4
[BDNVP15, BKN+12]. P_5 [BL14]. P_6
[Mos13a]. π [vG18]. π/3 [BF17]. Q
[MS16, CA17, Sal12]. r
[AK10, BGJ+16, BWZ12, KdER+14, LZ10a].
r = m - 1 [LP10]. S_0(132) [Vaj18]. Σ
[BR10b]. TF2|ν = 1, c = 2|C_{max} [LHW+16].
W[1] [MS18b]. X [TX11].

- acyclicity [Dur12]. - approximation
[EK11, GKW15, Tak16, YBMK15].
- arboricity [NN17]. - ary
[GH14, YYYZ12, YYYZH13, Bae13].
- Attribute-Anonymity [SSS15].
- automata [IL12]. - bent [GSPD17].
- bottleneck [YW11]. - calculus [vG18].
- CNFs [BT16a]. - code [TX11]. - colorable
[Hoc11, WX13, ZLSX16]. - coloring
[AD18, NS11]. - colorings [Szy12, ZZ18].
- coloured [vGLM12]. - colouring [Lei17].
- connected
[CLZ18, DFMS10, GLY11, LZ10a, Wid17].
- Connection [LM15]. - connectivity
[GH14, LW11, YYYZ12, YYYZH13]. - Curry
[SeF14]. - cycle [WL11]. - cycles [Zha10b].
- deleted [ZSY13]. - dimensional
[Jan12b, LL10c, QD16, RARM12, RV13,
WH16, YBMK15, ZHXS10]. - discrepancy
[Aka14]. - disjoint [Che16c, LL10c].
- distance [Kun18]. - DNF [Lau18b].
- dominating [BYK14]. - domination
[DW10a, ALT15]. - edge [NT14, Tak16].
- edge-colored [OM17].
- edge-connectivity [Sch13b]. - element
- factors [GGG+14]. - fault
[AMRR11, SSK12]. - flows [DS15, YL11a].
- free [LO13c, Mos13a, BL14, DP18,
GHvHP13, LSK17]. - Gabriel [KSV15].
- gap [LWXZ14]. - good-neighbor [WH16].
- gram [Sal12]. - hard [MS18b]. - hardness
[Lan11]. - heavy [CLZ18]. - hop
[KM16b, LZ10a]. - hulls [KP14b]. - intervals
[vBCH+15]. - isogenies [Moo11]. - labeling
[KS13, PG12, Cal13, JSR11]. - labelings
[DL13, WL12]. - laden [BKN+12].
- languages [FS14]. - length [DG14]. - letter
- matching [Fuj16]. - means
Advantages [Sto16]. adversary [LXLY12].

advice [Miy14]. AES [DK10, eSKA10].

Agreement [Shi15, BIR16, CDPB+10, MT18, Nos11, Nos14]. Aiding [RM18].

AKF [KDH15]. al [PLPW13]. algebra [BNRC10, Str16, GN10]. algebraic [GNG11, KSBT13].

Algorithm [HZSL05, WZQH16, AK10, Ada11, Aku10, AR13a, Ale13, AR13b, Ara10, AGW13, Bae13, BGI+12, BL12, BMB16, BP11, Bir11, Bol14, BES17, CCF14, CC13, CJ11, CdA13, CCL10, CZD14, CCXW12, CCT14, CNP15, CP10, Deo12, DJZ+15, Dur13, EN17, EK13, EKN11, FV13, FB10, FS12, GL11, Ger12, GM13a, Gh14, GM15, GK10, GM13b, GPT16, HCCG15, HHJ+12, HJW+96, HMS16, HAM11, Hou10, HHTL10, IS10, Ill13, IH18, JAH16, JSO11, JSR11, Kak15, Kat16, KC11, KT16, KM16a, KN13c, KKR+13, KM16b, Kun18, Kut12, Lee10, LiCyChL10, LTWS11, LFZJ14, LSS15, LT15b, LFW+18, LLWH13, LXX14, M.15, MK16, Man10, MNV11, MLI0a, Mat15, MK11, Min11, Mon15, MOW17, MN14, NB12, NG10, NHK15, NT14, iP13, PP13, PC18, Pia16].

algorithm [PR17, RR16, RS12b, Rza14, SS18, Sh12, Sor1, SWZ12, Svi12, TLL16, TN11, Tak16, TJ18, TCX10, TFY11, TVB15, TZ11, Tu15, Vyg11, WS10, WCZZ12, WWBB15, Waw14, XN12, XTTH12, nXCL14, YZZX12, YLZZ18a, YBMK15, YW12, YL17, Zeh16, ZHZ10a, ZGLY12, ZXJ+11, EFKR10, LEI15].

algorithm-based [GPT16].

Algorithmic [CCKP13, Pra12, BFRV15, DS16].

Algorithms [BFP18, Gav11, AMMY10, Bab17, BK10, BLYL17, BYK14, BDH+11, BRFG10, BI14, BFLM15, CC12, CCH+14a, CZCD13, CP13, Dan17, DDK+15, DG14, Doe13, EL10, FLRS11, FY14, Fji16, GKM+15, GG13, GJ14, Jan12b, KMK18, KV10, Kim10, KK15b, KMMN15, Kra12, Las17, LZ10a, LXD12, LZY14, LL14, LS11, LLL18b, LMS14, LV15, LC17, LFXH17, LM11, MO12, MLW11, Mor11, NS11, OKM13, OG10, OZL16, PYHA10, PNP+17, Sal12, Tur13, YBHK13, YC11, ZIN10, ZX111].

aliasing [LR10]. aligned [Shi13]. alignment [DM10]. all-one [nXCL14]. all-pairs [OG10].

alliance [YBHK13]. Allocation [YWcW+14, FP18, Jia11]. almost [BKS16, Eth17, Eml10, FS13a, Zho16, LFW+18].

Analogue [BHL13]. analysed [XZ10].

anarchy [YSGY10]. ancestor [FH10]. ancestors [GBH10]. AND-circuits [Mor11]. and/or [SD13, MTA10]. Android [CC14]. Angle [BF17, DKI+12].

Angle-constrained [BF17]. angular [FMH11]. anisotropic [MG16].

Annotating [CV12]. annotation [DVQ10, KC17, NVB15]. anonymity
[GGG+14]. **Average**
[Sal12, Cho12, EO13, GFG11, KPSZ11, Li12, LL16, MWZ12, YL11b, CGJ10]. averaging
[CG15]. **AVL** [ALT16], avoiding
[BV10, CH12]. aware
[AZ14, AHLS18, ZGLY12]. axes [AAJ15].
axiomatization [AGI15]. axioms
[GNV14, KL10]. axis
[AJ15]. axis-parallel
[Erz10].

backbone [JT15, ZJX+11]. backbones
[JT15]. **Background** [ZD18]. backward
[Sal12]. bacteria [LTWS11]. bag
[ADG10, KL10]. bag-set [ADG10]. bakery
[Ara10]. Balanced
[FP18, AADB+18, Bog10, CGLS16, DM16, FLMQ10, SWF18]. Balancedness
[MS18a]. balancing
[AY12b, DHW11]. ball [ZLS+17].
Bandwidth [STU12, LL10b, WCW11].
banner [Mos13a]. Base
[HM13, LST11].
Based [XWL16, ASTD14, AdFEGRI11, ARPS15, Aku10, ASM17, AC10, AMN+10, ABS12, Bab17, Bol10, CPHS18, CYQ13, CZD14, CTHP13, CZZ+10, CDM+11, DWQ10, Dra16, jDX11, EH18, EZ15, Fay16, Gal13, GW11, GKKC11, GPT16, GW16, HF14, HLR11, HLTT10, JKY15, yJxW16, JK18, JCC11, KSBT13, KM10, KC17, LXYL12, LK14, LCC17, LZZX10, LFZJ14, Li15, LPdS10, LH10, LMCG16, MG16, MHFMSa11, MMZ12, MM13, Mes15, MGPI12, MS13, NS11, PLPW13, PYYC16, QYYWX16, SZZ+17, Sun16, TNN11, TPL16, TWW17, Tia15, VN17, WYY11, XPC+10, XW12, XWS17, XZ17b, YCL11, YHLC12, YYYZ12, YZH14, YL11b, ZpH15, ZJX+11, ZZ13, LZJX10, MGNAB11]. bases
[FY14, Lag14, LL10d]. basis
[CLY11, CCH14b, FS12, Ghi14, LLP+18, LiCyChL10]. **Batch**
[MM12, FL16, FTYL14, GY15, LY11, LYF11, LZY12, LZLY12, LZ14, MZC11, SP18].
batching [FCNY10, Oro11, TFY11, Zhu12].
Bayesian [DJRB15]. **BCCSP**
[AdFEGRI11]. **BDD** [LWXZ14, YKD+12].
be [AIR17, Att17, CLZ18, DF11, MN15, WZL12, YL16b]. Beam
[VAC13]. beat
[Pol18]. Bee
[WKH16, GL11]. behavior
[Lee10]. behaviors [ZZ11]. behavioural
[vB12]. Bell
[QD16]. Benczúr
[Ber17]. bent
[BPRMS14, DZQF13, GPSD17, GNG11, P15a, P15b]. Bernstein
[DG11]. best
[FT15]. best-response
[FT15]. Beth
[CTHP13]. better
[BCNPL14, CSX16]. between
[Bar13, BDNVP15, DD14, HLR11, Jan12a, yJxW16, Kle13, KK11, Mos13b, MOW17, NB12, SC12, Sim16]. bi
[CGLS10]. bi-enhancement
[CGLS10]. Biased
[LREIMBMV16, LLP+18]. **Biclique**
[KDH13, Gav11]. bicliques
[BRFGL10, CK12a, Dam14]. Bicolored
[CK12a, DBFMP17, GGG+14]. biconnected
[CY17]. bidding
[EL10]. bidirectional
[Vay13]. bijections
[Bar13]. bilinear
[OKM13, ZY17]. bin
[CP15, HPY+10, Jan12b, LMU15].
bin-packaging [CP15]. **Binary**
[BFKL13, BC15, DCH12, DHR13, EP16, GG13, JS18, KKC13, KM12, Luc10, LEP10, MA15, Mil15, MR10, YKD+12, ZST13].
binomial [CG10a, Pas15a, Pas15b]. bins
[AY12b, BTW15]. biometrics
[LXLY12, SS17]. **biometrics-based**
[LXLY12]. **bipanconnectivity** [Che10b].
bipartite [BK10, Che10c, CL15, CGLS10, DP17, Dan14, DEL10, FS13a, KO16, Ku12, LC17, Miy14, Mor16, MT10, NN17, PP10, P16, STU12, TAK16, XPC+10, ZZ18, CLM12, GM13b, KV10]. bipolar
[GS17].
bisection [Aku10, GY10]. bisector
[EH18]. bisimilarity
[AS10, AGI15, Kie13]. bit
[ASM17, BG11, JS18, L1ChL11, LMCG16, RH10, VN17, nXICL14, YA13]. bit-parallel
[L1ChL11, nXICL14]. bit-parallelism
[ASM17]. bit-rate
[YA13]. bit-vector
[JS18]. Bitcoin
[Bee16]. bitwise
[CdA13]. bivariate
[AH17]. Black

Block-wise [EFMA10], blocking [MO15]. blocks [MS12]. Bloom [PRM14, CRJ10, Gra18, PRM16]. Boolean [AMT12, CKK13, DKKY10, GJ11, Lag14, MTA10, Fie11, FGvL11, GKM14, GD13, GNG11, GY10, HYC12, KM11, KTUY17, MNP12, Sar11, SKN11, SKK10, Vir11, WB12, WWBC14].

call [DJRdSS15, SSSdM15, ZCT+12].
call-by-need [SSSM15]. Camellia [Blo15].
Camellia-192 [Blo15]. camera [JSZC15].
can [Att17, Bon13, DF11, FIPS11].
candidate [CY18]. cannot [AIRdSP15].
canonical [Bar10]. Capacitated [CPW11, RX17].
capped [Gou15]. CAPTCHA [KC17].
CAPTCHA-based [KC17]. captures [AT15].
cardinality [BES17, CYK15, Pet12].
cares [CP10, NR17, ZZH10a]. Carlo [LoF14].
carry [GK10]. carry-less [GK10].
Cartesian [SSW16, Che11, DM13, LJL18, LZCM10, SSW15, TWZ17, XS15, ZLCM10].
cascades [Cha11]. cascading [NLZX14].
Case [RK15, ARdSP15, KN13a, KM13, SS17].
cases [SI18, WS16]. cash [BB15].
causal [CZZ+10]. Cayley [CLS13, LM15, YLM10, YL11a].
CBC [ZWWL12].
CBC-MAC [ZWWL12].
CCA2 [Gal13, ZY17].
CCA2-secure [ZY17]. CCM [SKK10].
cell [YWC11]. cells [KPR18]. cellular [ADF13, ZCT+12].
Center [ABS12, GHL18]. Center-based [ABS12].
centerpoints [AG15]. centers [SLL13].
centrailities [LTI14]. certain [Ama10, CZ13, Tur12]. Certificateless [YW14, ZY17].
certification [CRTU15].
chair [BG12, BG15]. Chaitin [BHL13].
characterizations [Dur12]. characterized [Koc18]. Characterizing [KHKS16].
chasing [WYLP17]. Chebyshev [LPdS10, LMGCG16]. Checking [GQ17, CHK13, DLMV10, Dem18, DBB12, GXZZ13, JUY15, SC12, YYK17].
choice [MLL+18, MT18, WMLN10].
Choosability [GHvTH13, CHR10, Zha10b, Zha13].
choosable [Ma15]. chord [CG10a].
chordal [AKH16, BP11, BFLM15, CGLS10, KP13, LN11, Lei17, PP10, PG12, WLM11].
chordal-bipartite [CGLS10]. chordality [DEG+12].
chronic [AH11, BS17, DGSN15, DN12, DS14, FH12, HRW11, JSR10, WWW18, XZW15]. cipher [KDH15, LC13, LYHH14, MNP12, Sar11, WWBC14]. ciphers [KM10, SKK10, WB12].
Ciphertext [KA17, XWLJ16, XWS17].
Ciphertext-only [KA17].
Ciphertext-Policy [XWLJ16, XWS17].
circle [HMS16, NG10].
Circuit [Rud17, XWS17, XWLJ16, DKKY10, IM17, Jan12a, VSP18, ZDQ+17].
circuits [ASTD14, Ale13, Ber11, GJ11, HP18, Mor11, Pod12].
Circulant [vzGS15, CT16a, Den14, GSR+14].
circumference [FL13b]. class [ABS13, Che10c, GSR+14, GNG11, KP13, MY18, Pas15a, Pas15b, SWF18].
classes [AH11, Dar15, IL12, Joh14b, KZ12, LV15, Mos13b].
classical [Bar13].
classification [SLdAMP17, SaBG17, MS15]. classifier [GE12, PR17, STAR15].
classes [SR11].
claw [CZ16, Hua14, LS15, LSK17].
claw-free [LS15].
claw-heavy [CZ16, Hua14]. CLEFIA [TS16, WB12].
CLEFIA-type [WB12].
Clique [Con14, Juk12, Wid17, Iba17, LS11, LS15, LSK17, LV15, Val10, YLL17].
clique-covering [Val10]. Clique-heavy [Wid17].
clique-independent [LS11].
clique-separator [Iba17].
clique-transversal [LS11, LS15, LSK17].
Clique-width [Con14]. Cliquids
[Lau18a, BP11, BKN+12, Kut12, VML18].

CLL [ZZZ15], clones [Lag14], closed [BK13, CGG14, Dar15, MDB14], closest [DGKS14], closure [HS15, MDB14, vB12], Closures [SSS10, Vág18], Cloud [XWLJ16, PCK10], clouds [Jia11], Cluster [Man10, BD11, BDNVP15, LSS15, TZF16, WZQH16, XPC+10], clustered [BL12, BLYL17], clustering [ABS12, DD14, JKY15, LFZJ14, LLWH13, ZD18, ZXJ+11], clusterings [QK15], clusters [BLM10, Dam16, SLL13, ZZJ11], CMAC [SKK10], CNFs [BT16a], coarse [BG12, BG15], coarse-grained [LH10], coarseness [DBFMPLV17], cocomparability [KM16a], Codd [KL10], code [CWW10, MNV11, Mil15, TX11, ZLM17, ŻGH10], coded [ZST13], codes [AAB+16, BB11, GM12b, HHL15, Jia18, Kle13, LZ15, RV10, RV17, SQLS17, VV11, Vid13, WS10, KR16], coding [Bae10, KK15b, LLP+18, Maß15, SpDR13], coefficient [SWW16], coefficients [AH17, LT18], cographs [PP10], coincide [AIS10], collaborative [GWJ11], collapsing [SO10], collection [FC14], collective [SZC+17], collision [AKY13, WS13], Collisions [VNP10, LT13a], colony [GL11], color [BKPP18, FX11, MK18], color-spanning [FX11], colorability [Koc18, WLW11, ZW10], colorful [Hoc11, San11, WX13, XLZ16, ZLSX16], Colored [SGM13, AADB+18, OM17, Tsz18, WD11], Colorful [PT12], Coloring [BGP12, Rom11, AD18, BJJ15, BGR13, BDNVP15, DŠ16, DX10, FKL+11, FS13a, FL12, FL13a, FM11, FA17, Go18, GJ14, Hal10, JTT15, KSK13, KLMP18, LRS11, LSZX15, MSM14, MKI11, NS11, RZ10, SSW15, SSW16, Shi18, SWZ12, WW11, XZX14, Xu11, YeCM14, LM11], colorings [CL15, Cza13, LZX17, Szy12, YYY16, ZL11, ZW11, ZL12, ZZ18], colors [FA17], coloured [AC12, vGLM12], colouring [AH11, DP18, HOV13, Lei17, Qi17, SK12], colourings [Fie11, Rac10], combination [SWLX15], combinatorial [ADF13, FMM11, KKS11, Lib10], combinatorially [Iva16], combinatorics [KTV13], Combined [HYYZ15, MK14], Combining [MZQL14, YLLL16], comment [CWYP14, Jha15, TSH12], Comments [BB11, LMU15, Par11, XWS17], commitment [ZC12], Common [FKR+16, Pol18, AK14, BBDS12, BVDP10, DG14, Dur13, FH10, FGG15, Gra15, IH18, Kos17, SP18], common-multiplicand [SP18], Communication [AJLM11, SCL+11, JF15, Juk12, Kor12, ML10a, YYZH13], Communication-efficient [AJLM11, SCL+11, ML10a], communications [BB11, RV10], communities [WDH16], commutativity [Nan15], Comorphisms [Tut13], Compact [ZZH16, FG14, KR10, YN10], compacted [BV11], comparability [Och17], compare [BV12], compare-by-hash [BV12], comparison [YYDL11], comparions [ACK11, HH11, SM17], compartmented [EZ15], compatible [KPSZ11], competitive [AFPT10, SM13, TSH12], compiler [LWS10], Compiling [CR10], complement [JLM10], complemented [JLM10], complements [PP10], Complete [AdFEGRI11, AGB15, AHK+17, BH17, Che11, Che17, CG10b, DFDFT16, DEL10, GN10, GI18, GZM15, HWA12, KM12, ML10b, NN17, Par16, Pér17, SeF14, WWZ15, YeCM14, ZST13, Och17], completely [HL16], Completeness [Luc15, GNV14, LZX17, Rom11, SW12, YWWW14], completion [CK12b, FL16, ...]
complex [AABB17, CNKS15, LTT14].
complexities [TWZ17]. Complexity [Csi12, DW10b, Ivá16, LHW*16, Pu16, Xu12, ACK11, AD13, ALT15, AT15, BBKS17, BBDS12, BvK15, Bol10, Bol14, Bor16, CCRS14, CHK13, CLY11, DS15, DS6, DDKY10, DW12, DCH12, DKC12, Duc18, EP16, FS14, Fin15, GGI11, HK16, HKT17, IM17, JKS10, JT15, JS18, Juk12, KPSZ11, Kra12, LT10b, LT13c, LXJ+14, MOS16, Mon10, Mon12, NVB15, Rac10, RDX13, Kar17, Sal12, SS12, Sch13a, SDM14, Shi12, Shi18, Sto16, Vay13, VSP18, Wij10, Ya13, YKK17, Zha10a, vBCH+15].

component [CGJY12, HYYZ15, MK11, NT14].
components [BKMT14, CC14, CNKS15, Pea16].

Composable [CD10]. Composing [LABKS17]. composition [YeCM14].

Compositional [FOSC18, Mos13b]. compositions [Vv11]. compress [LC13]. Compressed [CD10, BGI+12, SSS12, Fay16].

compressible [BFKL13]. compression [Aku10, KN13c, LK14, LKR17, RK15, YA13].

computable [FWS13, Tys13]. computably [BHL13].

Computing [AABB18, Ber12, BHL17, CCF+12, CT11, EH18, FHvH+15, FX11, FIV15, Iba17, KP13, Kob15, Kos16, LT13b, LT15a, MMM11, MTT12, TLWZ16, XWLJ16, Ale13, Ama10, BKZ15, Bir11, Bor16, CCRS14, DLRS14, Duc18, EN17, GS10a, JT16, LQL+17, LT15b, MOW17, NG10, TLL16, TQ18, vJL13].

concept [Dar15, PYYC16], concept-based [PYYC16], concerning [KK11, Nin15].

concise [FL13a, CD10]. concisely [RJS+10].

concurrency [DMS11]. Concurrent [ZC12, Att17, CVZ11, XLIW16]. condition [BIR16, Cal15, CLZ18, HL16, Hua18, MY13, Nin13, TD14, WZ12, ZSY13].

congruence [KKS15]. Conjecturally [Tys13].

conjecture [Bol14, FL12, GV14, GR13, GR14, Nin15, PPH18, zSNbL11, Wu13, YK+12].

conjunctive [Ksh11, SM17, Wij10].

connected [BKMT14, CLZ18, Cha11, CO13, DFMS10, GKH+18, GLY11, JT15, Jor12, KP13, Koc18, LZ10a, LLW15, NT14, PP10, PI13, Pea16, SS12, Tak16, WZL12, Wij17, YL16b, ZF10].

connectedness [DJ15, GSI2]. Connecting [SS10a].

Connection [LM15, DD14, Jan12a, Klc13]. connections [GK+18]. Connectivity [CCYW16, CBSV11, DEG+12, EKN11, GH14, GQG10, HL12, Ili13, IN12, KVK18, KLS10, LLI18a, LJJ18, MZ11, NFW15, Nin16, Sch13b, WSW12, XPC+10, YLM10, YZZ17].

coNP [Ama10, Che17, Par16].

conquer [AR13a].

coNP-complete [Che17, Par16].

consecutive [CCL10, KKR+13, HCCG15].

consensus [SCL+11, TLL18, VLV15, APR13].

consistency [CLR13, EGK13, LABKS17].

consistent [KP12, Wij10]. Constant [BK10, Yam14, CVZ11, CO17, EFKR10, HLT10, LGT17, MMK18].
constant-round [CVZ11]. Constant-space [Yam14]. Constrained
[FR12, AGHY12, AMP13, BF17, BVD10, Deo12, HKT17, FR12].
Constraints [Fuj16, GHK11, HHK17, Las17, Mar11, ZZ11].
Constraints [GS17, KM13, LL13, MU15, YR16].
Construct [Han17, WT13]. Constructing [NII+15, LLL18b].
Consumption [AMN+10, Oro11]. Contacts [STAR15].
Contagion [SF17], containing [BC15, Zal11]. Containment
[SM17, ADG10, ACK11, Par16]. contains [FC14]. context [CE13, CVV10, Esi11, EGK13, Fil11, JOS10, Luc15, RS10, SS18].
context-free [CE13, Esi11, EGK13, Fil11, JOS10, RS10, SS18]. context-sensitive [Luc15]. contextual [SSS10]. contiguous [LL13]. Continuous [CYH15, Che18b, CW15, GXZZ13, yJxW16].
Continuous-time [CYH15, GXZZ13]. contour [GHC15]. contractible [DFMS10].
Contracting [DP17]. contraction [Cou14, GM13b]. contrast [BL10, LW10].
Control [BD16, BLM10, BRC10, BT16b, LZ10b, Ria17, ZCT+12, MGB11].
Controller [PP14]. Convergence [FT15, ZDO+17], convergences [SSS10].
Convertible [LHH11]. convex [Che18b, IM12, MMM11, Ooro11, STU12, Tiw14].
convexifications [ACLS12].
Convolutional [LCC17]. convolutions [FB10]. cooperative [RX17].
Coordination [GL13, LYF11].
Coppersmith [Dra16]. core [ZLS+15].
Cores [BWZ12]. corivity [ZLS+15].
Cornaz [BGR13]. Correcting [Shp13, RV17]. correction [AW12, SSZW16, Sun16]. correlated [Jia16].
Correlation [CP16, DM10, yJxW16, KYC13, WWBC14].
correlations [Sar14]. Correspondence [Fin15, BDNVP15, SC12]. corridor [Xu12].
Corrigendum [GR14, KMN18, LPWZ14, Pas15a, SSW16, Zha13]. coset [Las17]. cost [ALT16, CDKB+10, GLO12, HKT17, KT11, KT12, LLG14, MY13, YL11b]. costly [DF11]. costs [Bae10, SL15, ZZBX16].
coteries [Jia11]. COTS [AMN+10].
COTS-based [AMN+10]. count [ARDSP15, Bab17, JLDG+14, LR10].
Counter [GK10, Fay16]. counterexample [Boi14, GR13, GR14]. Counterexamples [Ket11, SSSM11, YKD+12]. Counting
[BK13, Elm15, GPR10, LS14, PT11, AGZP15, DTS15, DFRS13, Kut12, LH10, LC17, PRM16, YK11, ZST13].
counts [DEG+12]. coupon [FC14].
coupons [FC14]. Cover [BI14, AK14, BT16b, FGG+10, FLRS11, Kat16, Kobi15, Lam11, Mor11, T121, TY13, Tu15, ZLS+17, CP13, GMY13]. coverage [CdA13, GM15, Shi13, YTYZ15, ZC10].
Covering [Ber17, BHKK11, KK16, KPR18, LW107, LPWZ14, M015, Va110, WL11b, WL12, WC15, ZL11]. covers [BFRV15, Che10c, Che12, Che16c, LL10c, PI13]. CP
[EN17, TY16a]. CP-rank [EN17]. CPL [YWWW14]. crash
[AJLM11, FCLCR17, ML10a].
crash-quescent [AJLM11].
crash-recovery [FCLCR17, ML10a].
CRC32 [Gue12]. CRC32C [Gue12].
Credibility [SLWX15]. credit [Per17].
criticality [CSX16, EGK13, RZ14]. cross [SS17]. cross-matching [SS17]. crossed
[BJ18, CWYP14, CZWP17, DY10, DZYF12, NFW15, Nin16, PCY16, YDT10, ZHX13].
crossing [DKL+12, KT16]. Cryptanalysis
[MZ15, SM10a, SM10b, TY16a, WWYY11, WYW14, AP11, BMB16, DSD18, Kar13, KD13, LF+16, SD14, Sun11, WWBC14]. cryptographic [CR10, MMZ12, MM13, Mes15, PLPW13, WT13].
cryptography [HH15, LWL10, VN17, LZJX10].
cryptosystem [Gal13, GV14, MM13].
cryptosystems [FWS13].
CSAT [Mat12].
CSL [GXZZ13].
CSP [FOSC18].
CU [CWY15].
cube [BJ18, CCH14b, DY10, DZFYJ2, GH14, GZJ14, LWL11, NFW15, Nin16, YYZ12].
cubes [AAB16, CWYP14, CCYW16, CZWP17, CN18, Fu10, LYHC10, PCY16, PI13, YDT10, YWY12, ZHX13].
cubic [LS11, MOW17, Tak11].
cubic-time [MOW17].
Curry [SeF14].
curve [FWS13].
cut [BES17, CCF14, GHK18, Ind15, RS12, XIA10].
cuts [Ber12, KLS13, KR14, Xia10].
cutting [Br^a15b, JSO11, Juk12, LT18, M.15].
cutting-sticks [M.15].
cycle [CM17, CZZ12, DY10, DX11, GBH12, KN13c, LL10d, Tsa11, WLW11, XL15, Yns11, Zeh16].
cycle-embedding [Tsa11].
cycle-radius [GBH12].
Cycles [Che10a, AMMY10, Cai15, CHF15, DP17, FL12, Hou10, Hua14, Hua18, JSR10, Kot12, LCM10, MCS12, Nin15, WX13, XS15, ZLCM10, Zha10b, Zha13].
cyclic [Bar13, LH10, QLS17].
Cyclically [HN10, vZBSY16].
cycloptic [KZ12].
D [EAA16, JSZC15].
daemon [CCT14].
DAGs [FWC15].
Dantzigr [CFMT16].
dart [KS12].
Data [CZD14, BL10, BVF12, BOV15, CdA13, DG16, DDPBT11, ED17, FKC13, GL15, GS10b, GHL18, HLY11, IMCP15, KR10, KZP10, KWH16, SLL13, Tsu18, Vrg15].
data-flow [CdA13].
data-link [DDPBT11].
databases [GHK11, KN13a, KR16, SS17].
dates [OZL16].
de-randomization [DTS15].
Deadlock [GS10c].
Deadlock-freeness [GS10c].
decline [SWLX15].
Decidability [GS12, CS16a].
declarative [BE16, CYH15, Oan11].
Deciding [BJKZ14].
Decision [SLdAMP17, BCS15, CWY15, GJR10, JKS10, SLC15].
declaring [Vid13, WS10].
Decomposition [MRZ10, Bar10, CT16a, NHK15].
deconstructions [EN17].
decrease [RR16].
decrementation [CPS14].
decryption [SM10a, SM10b].
Decycling [LRSS17, LKF15].
DED [BB11, RV10].
deduplication [BVF12].
Deepest [LCC17, YLZZ18a, YLZZ18b].
defect [MQL14], defined [hxICL14], defining [MMKK18].
definite [AMT12].
definition [WL10].
definitive [DMS12].
defogging [GPT16].
degenerate [BS17].
Degree [CFJ12, HL16, Cai15, CLZ18, CQ12, Dam14, FGvL11, Hoc11, HKW18, Hua18, JI15, LS15, MRZ10, Nin13, Rac10, RZ10, WW11, WLW11, ZW10].
degrees [MS18c, Zha11].
Delauanay [AP14].
delay [BEFP11, WD16].
dclerical [LYF11, LZCX12, TFY11].
demand [AHLS18, NLXX15].
demand-aware [AHLS18].
demosaicing [YLGC16].
Denial [Bee16].
dense [Szy12, VSP18].
denset [BK10, CCH14a].
Density [Did13, BI14, SH17, SS10b].
dependence [AAC10].
dependencies [PH11].
Dependency [CZZ10].
dependent [FM18, GM12a, JC10, KY12, LZCX12, MKI11, Mos11b, SLC15].
deposits [Bee16].
depreciable [ZXL11].
depth [CWY15, GJ11, JSZC15, MS18c, PP17, Pod12].
depth-first [PP17].
derivation [VYK17].
derived [DCH12].
deriving [CLQS12, GN14].
descents [Che18b].
design [MQL14, VL15].
designated [SY15a].
designs [AHLS18, GD13, KDH15].
destination [Kar17].
DOM [Ama10]. DOM-trees [Ama10].
domain [Str16]. domains [Gil14]. domatic [TLWZ16].
Dominating [BdSL15, NS11, AKH16, BU17, BYK14,
CCT14, Den14, GG18, HHL15, Joh14a,
KP13, Krz13, KM16b, Kun18, LZ10a,
LMS14, LLV15, RR16, SS12, Shi12, Waw14].
Domination [MC15, ZLCM10, ALT15,
BL14, BFLM15, BH17, CCKP13, gCF15,
CPW11, DW10a, Den14, DNN11, Jha15,
KM14, LX17, LCM10, PP13, Fra12, VK18,
XS15, ZLS18]. don’t [CP10, NR17, ZHZ10a].
Double [CP10, NR17, ZHZ10a]. Double-Base [LST11].
Doubling [MSZ11]. Doubly [FR12, Laz10, PP10].
Doubly-Constrained [FR12].
doubly-exponential [Laz10].
Downhill [gCF15]. Drawing [BBD12, Fra10].
drawings [Ang17, CY17, DKL12, FDD12, Did13, LM16].
Drazin [ZQJ15]. driven [MG16]. DSA [Dra16].
DSS [JK18]. dual [SQLS17].
dually [BFLM15, Lei17, PG12]. due [GM13a].
due-window [GM13a]. duplicate [CJ11].
duplicating [CR14]. duplication [BV10].
duplication-random [BV10].
durations [VML18]. Dynamic [DJRB15, HPY10, HH15, AC10, KR10,
OG11, RK15, RJST10, WWW12, XL15,
YBM10, ZLM17, ZJZ11].
Dynamics [LLWH13, Che16a, FT15, ZKXY10].
e-cash [BB15]. E-passport [LZJX10]. E0L [DK14].
EAC [LZJX10]. each [FC14, WCW11, Yus11].
earliness [MM15b].
early [DJS13, HLY11, LLY12]. easier [KL18, ZDQ17].
Eavesdropping [MP13].
EC [Dra16, Bae13]. Eccentricity [DEG12].
eccentricity [MWZ12].
EDCA [YWCW14]. EDF [DJS13]. Edge [Che10b,
FS13a, Fu10, KSK13, LX13a, WD11, BJH15,
BT16b, CBSS11, CL15, Cou14, DS16, DX10,
EKN11, Fie11, GG18, HOV13, LYHC10,
MG16, MK16, Ma15, MK11, NT14, OM17,
Sch13b, Sun16, Tak16, VK18, WZL12, XN12,
Xu11, Yan14, YeCM14, YL16b, ZL11, ZW11,
ZL12, ZW10, BBKS17, LM11].
edge-colouring [HOV13]. edge-connected [YL16b, ZF10].
edge-connectivity [EKN11]. edge-disjoint [LYHC10, Yan14].
Edge-fault [XL13a]. Edge-fault-tolerant [Che10b, Fu10]. edge-vertex [VK18].
edge-weighted [BJH15]. edges [Ber17, Che10a, Che12, Che16c, CL13,
CHF15, DFMS10, Fie11, Zha18, ZLLZ18].
Edit [Shi15, Dan16]. edit-optimal [Dan16]. editing [BD11, LSS15, Man10].
Editorial [Ano18g, Ano18h, Ano18i,
Ano10a, Ano10b, Ano10c, Ano10d, Ano10e,
Ano10f, Ano10g, Ano10h, Ano10i, Ano10j,
Ano10k, Ano10l, Ano10m, Ano10n, Ano10o,
Ano10p, Ano10q, Ano10r, Ano10s, Ano10a,
Ano11b, Ano11c, Ano11d, Ano11e, Ano11f,
Ano11g, Ano11h, Ano11i, Ano11j, Ano11k,
Ano11l, Ano11m, Ano11n, Ano11o, Ano11p,
Ano11q, Ano11r, Ano11s, Ano12a, Ano12b,
Ano12c, Ano12d, Ano12e, Ano12f, Ano12g,
Ano12h, Ano12i, Ano12j, Ano12k, Ano12l,
Ano12m, Ano12n, Ano12o, Ano12p, Ano12q,
Ano12r, Ano12s, Ano13a, Ano13b, Ano13c,
Ano13d, Ano13e, Ano13f, Ano13g, Ano13h,
Ano13i, Ano13j, Ano13k, Ano13l, Ano13m,
Ano13n, Ano13o, Ano14b, Ano14c, Ano15a,
Ano15b, Ano15c, Ano15d, Ano15e, Ano15f,
Ano15g, Ano15h, Ano15i, Ano15j, Ano16a].
Editorial [Ano16b, Ano16c, Ano16d, Ano16e, Ano16f,
Ano16g, Ano16h, Ano16i, Ano16j, Ano16k,
Ano16l, Ano17a, Ano17b, Ano17c, Ano17d,
Ano17e, Ano17f, Ano17g, Ano17h, Ano17i,
Ano17j, Ano17k, Ano17l, Ano18a, Ano18b,
Ano18c, Ano18d, Ano18e, Ano18f]. Effect [NB12, CC14, WP12]. effective [CS16b].
effects [DK10, FT15, JC10]. efficiency [Bog10, SLL13, SLS16]. Efficient
[BL10, BYK14, CC12, CPHS18, CPTZ13, DE14, Den14, DG14, GHK11, GK10, HZSL05, Ill13, IL12, yJxW16, LLP +18, LZ12, MV13, MN14, OG10, PYHA10, Sim16, WJS10, XLWZ16, ZHXS10, AILM11, BGI +12, BL14, BFLM15, CJ11, CdA13, CIK +13, jDX11, HHJ +12, eSKAI10, Lee10, LH10, ML10a, Mes15, Pea16, QX10, SCL +11, TLL16, Tur13, VN17, XTH12, YA13, YiN10, YMSA14].

Efficiently [FWS13, MT10].
eigenvalues [XZ17a].
eight [Cal13, RZ10, Sun11].
eight-regular [Cal13].
eight-round [Sun11].
edication [Sar11].
encoding [FG14, JS18, SPdR13, Sun16, YiN10].
enumerated [BHLM13, CVV10].
enumerable [BHLM13, CVV10].
eumerating [AKH16, Dam14, VML18].
Enumeration [CGLS16, FLMQ10, Lau18a, Mat15, YL17].
envelope [Lu15].
environments [SCL +11].
envy [Bra15b].
envy-free [Bra15b].
EPTAS [KS10].
equal [EO13, FPY12, LZLY12, LX17].
equal-length [FPY12, LZLY12].
equality [Li15, SSS12].
equation [CYQ13, YCL11].
equations [Che16a, VSP18, ZZZ15].
equidistribution [Vaj18].
equilibrria [DHW13, MM15a, PPN +17, THS12, WDT13, SM13].
equilibrium [CJ11, WCJ15].
equimatchable [DE14].
equipment [ZZXL11].
equitable [FKL +11, GZM15, NN17].
Equivalence [Den18, SSS10].
Equivariant [Las17].
Erdos [FL13b].
EREW [So10].
Erratum [HAM11, KT12].
error [CZD14, GHC15, HIK12].
ers [RV17, SLdAMP17].
establishment [TC11].
estimation [LT14, LQ +17, MZQL14].
estimators [CKY15].
eternal [FGG +10, BSL15].
Euclidean [BLC10].
Euler [DCH12].
Eulerian [CGJY12, Val10].
evaluating [YWW14].
Evaluation [BKMT14, AM +10].
est [BHKK10, GHK11, SC12, TC17].
evasive [Agg15].
Even [BD11, AdFEG11, BKPP18, CHF15, SSS15].
event [AL18, CS16b, YWWW14].
event-recording [AL18].
Every [ZYC13].
evidence [SWLX15].
evolution [BSM14].
evolutionary [LFJ14].
Evolving [WML10].
Exact [BRFGL10, CCH +14a, iP13, Rza14, vdBCD17, AY12a, BLC10, CP13, DHTP10, Fin15, JSR11, Kut12, LFHX17, NS11, WP11, ZZZ11].
exactly [MTT12].
Excessively [CGR14].
exchange [LWS10, XWW12, YL16a].
Exchanged [BJ18, CCYW16, Jha15, KM14, LX13b].
entanglement-resistant [Ito14].
entanglement-based [XZ17].
enumerable [BHLM13, CVV10].
enumerating [AKH16, Dam14, VML18].
Enumeration [CGLS16, FLMQ10, Lau18a, Mat15, YL17].
envelope [Lu15].
environments [SCL +11].
envy [Bra15b].
envy-free [Bra15b].
EPTAS [KS10].
equality [EO13, FPY12, LZLY12, LX17].
equality-length [FPY12, LZLY12].
equality [Li15, SSS12].
equation [CYQ13, YCL11].
equations [Che16a, VSP18, ZZZ15].
equidistribution [Vaj18].
equilibrria [DHW13, MM15a, PPN +17, THS12, WDT13, SM13].
equilibrium [CJ11, WCJ15].
equimatchable [DE14].
equipment [ZZXL11].
equitable [FKL +11, GZM15, NN17].
Equivalence [Den18, SSS10].
Equivariant [Las17].
Erdos [FL13b].
EREW [So10].
Erratum [HAM11, KT12].
error [CZD14, GHC15, HIK12].
ers [RV17, SLdAMP17].
establishment [TC11].
estimation [LT14, LQ +17, MZQL14].
estimators [CKY15].
eternal [FGG +10, BSL15].
Euclidean [BLC10].
Euler [DCH12].
Eulerian [CGJY12, Val10].
evaluating [YWW14].
Evaluation [BKMT14, AM +10].
est [BHKK10, GHK11, SC12, TC17].
evasive [Agg15].
Even [BD11, AdFEG11, BKPP18, CHF15, SSS15].
event [AL18, CS16b, YWWW14].
event-recording [AL18].
Every [ZYC13].
evidence [SWLX15].
evolution [BSM14].
evolutionary [LFJ14].
Evolving [WML10].
Exact [BRFGL10, CCH +14a, iP13, Rza14, vdBCD17, AY12a, BLC10, CP13, DHTP10, Fin15, JSR11, Kut12, LFHX17, NS11, WP11, ZZZ11].
exactly [MTT12].
Excessively [CGR14].
exchange [LWS10, XWW12, YL16a].
Exchanged [BJ18, CCYW16, Jha15, KM14, LX13b].

grained/Hessian-enhanced [JZ18]. Grained [LH10]. Gram [PYW+13, Sal12]. Grammar [Aku10]. Grammar-based [Aku10]. Grammars [BRMP13, CVV10, EGK13, Fil11]. Graph [AX18, AMMY10, BGG+16, Ber17, BP11, BGR13, BMJ17, BPP+18, CSG18, DDK+15, DW10, DGR15, Did13, EKN11, Fra10, FL13b, FS13b, GM15, GKS13, HH12, HWJ96, HHL15, HAM11, Iba17, IN12, JLOM17, KO16, KRV16, LIZ+15, LLL18a, LV15, MWZ12, MCM12, MHPMSa11, MPU17, NPR17, NG10, RR16, Rza14, Sh18, XZ17a, YeCM14, YYY16, YUS11, ZLS+17, Zho15]. Graph-theoretic [CGS18]. Graphs [Hoc11, JLDSo+14, LM15, MC15, ZYL15, AKH16, ADKM12, AKH+17, AGHY12, Ang17, ALT15, AMRR11, ADH14, BK10, BKPP18, BU17, Bar10, BPW12, BYK14, BS12, BDF+18, BDNPV15, BGP12, BES17, BdSL15, BG12, BL14, BG15, BFLM15, BKN+12, BS17, CZ16, CLZ18, CBVS11, CS16a, CKL10, CHR10, Cha11, CCKP13, CY17, Che10c, Che11, CQ12, CL15, gCF15, CT16a, CCXW12, CLS13, CGLS16, CG10a, CGLS10, CO13, CG10b, Cza13, DP17, DP18, Dam14, DFMS10, DGSN15, DE14, DZ12, Den14, DEL10, DJ15, DNL11, DX10, DRdSSI2, DS14, FK10, FKL+11, FS11, FL13a, FHvTH+15, Fie11, FH12, FH10, FGvL11, Gav17, GKP16, GHvTH13, Goh18, GSR+14, Gro15, GL11, GGG10, GLLX12, GLXG13, GZM15, HL12, HHJ+12, HRW11, Hou10, Hua14, Il13, IK10, JN12, JT15, JT16].

Graphs [Jor12, JRS10, JSR11, KSV15, KP13, KSK13, Kob15, KHKS16, SK12, KM16a, LLL+11, LN11, Lei17, Li10, LSS15, LZS17, LS11, LS15, LSK17, LT13b, LS14, LT15a, LS15, LL15, LT15b, LC17, LM16, LL10d, Liu10, LDW14, MMS15, MS12, ML10b, MRZ10, Mor16, Mos13a, NN17, NHHK15, Och17, PP10, PG12, PP13, PI13, Pra12, Pull16, RRR12, RZ10, San11, SS16, Sch15, SS10a, zSNbL11,
SSW15, SSW16, STU12, SK12, Sli12, SY15b, SWZ12, SSK12, Tak16, TLWZ16, Tsa11, Tsa15, TY13, Tur13, Vrg13, WD11, WL11b, WW11, WXZ+12, WL12, WZL12, WSW12, WX13, WWLC14, WWZ15, WYL17, WW18, Waw14, Wid17, WLW11, XXZ14, Xu11, XLZ16, YBH13, YLM10, YLG10, YL11a, YL17, YL16b, Zel11, ZXY10, Zha10b, ZW10, ZL11, ZGL11, ZL12, Zha13, ZLY13, ZZ18, Zha18, ZLLZ18, ZF10.

Hybrid-Constrained [FR12].
hybridization [vIL13]. hyperbolicity [FIV15].
hypercube [Che10a, CG10a, LX13a, MÖ15, YTN10, ZFJZ11].
hypercube-like [LX13a]. hypercubes [Che10b, Che16b, CHF15, DX11, HCWH15, Jha15, KM14, LX13b, LL10c, Liu15, MZ11, RRR12, RARM12, WH16, YZZ17]. hyperelliptic [FWS13, TXQ11].
Hypothesis [BT16a, GW16].
[CK12b, GM12a, GM13a, HL17, MLW11, MM12, XZBX16, XCYZ11]. Identification [CW15, CZD14, CTHP13, PYW+13]. identifying [Jia18]. Identity [Tia15, CTHP13, HLR11, Jan12a, MM13, QXYW16, WWYY11, XL12, LX1X10]. Identity-based [Tia15, CTHP13, HLR11, MM13, QXYW16, XL12, LX1X10]. IFF [MMZ12]. image [GKCK11, GPT16, KC17, LFZJ14, Sm16, YA13, YLG16].
[CJ11, CLY11, GK10, eSKA10, PT12, Pie15, SF12, ZDQ+17]. implicants [CKK13]. implication [GR13, GR14, LS10]. implicit
标签 [Bar10, Cal13, JSR11, KSK13, PG12, Sl12, WL11b, WP11].
标签 [DL13, FS11, LN12, WL12]. 负荷 [BKN+12]. 落 [ZvdV10].
标签 [BB11, KMN18, FPWZ14, SSW16]. 信 [CK11a, Dur13].
标签 [GR14, HAM11, KT12, Pas15a, Zha13].
标签 [MS16, EP16, KYC13, Mar11, MOW17, SD13]. 标准-1 [MOW17].
标签-有序 [MS16]. 平 [DKL+12].
标签 [Wit14]. 利润 [Kun17].
标签 [BGL13, BGL13, Lau18a, LX13a, LLWH13, MS16]. 可能性 [GP17].
标签 [MGPI12]. LILI-128 [MGPI12]. 限制 [MS18c]. 限制-深度 [MS18c]. 限制 [WWBB15, DLN11, FCNY10, XZBX16].
限制 [GV14, BVF12]. Lin [CGJ10]. Lin-2 [CGJ10].
标签 [AG15]. Line [GKS13, KPR18, AD18, BR10a, BG1+12, BS11, CW13, Did13, FIPS11, FPY12, Jan12b, LLL+11, LNP11, Man10, SSS12, TFY11, ZvdV10, ZZXL11, Zho15].
标签 [BGJ+16, DG16, DCH12, DKL12, FGMP12, LC17, LF+16, XZ17b, AABBB17, BHKK11, Beg10, CQ12, Dur13, DSM18, EP16, Esi11, GE12, GGI11, GPR10, HII1, HWJ96, HAM11, Iba17, Ind15, KZ12, KM16a, KKR+13, KM16b, Kun18, Liu15, LJ15, NII+15, PP13, PR17, SW12, SW16, VSP18, WWLC14, YZ17, ZDQ+17, Zho16, vBDCH17].
标签 [KM12, TJ18]. 连接 [DDPBT11, KM11, Rus18, VML18, ZKXY10, ZQJ+15].
连接-切 [Rus18]. 连接 [JKL18]]. 连接 [SD13]. 连接 [MM15a]. LILS [AR13a].
连接 [DLO12, GLO12, Q17, SD13]. 活锁 [FOS18]. 无 [BJKZ14]. 负荷 [AY12b, DHW11, FM18, GJ14, YZH14].
加载 [LLG14]. 负荷 [ZYL14].
[AW12, KK11, AALL16, CC12, CLS13, FOSC18, GJR10, HCCG15, Jia11, Kak15, LSZX15, LZX15, Shi18, Waw14, YWWW14, YLLL16]. local-improvement [HCCG15]. locality [DLO12, LWXS18]. localized [SLS16]. Locally [DLO12, LWXS18]. localized [SLS16]. Locally [DLO12, LWXS18].

matchings [HOV13, Zho15]. matrices [HR12]. Matrix [KSSS11, CPHS18, CYQ13, DZ11, Kun17].
MCS12, OKM13, SWW16, YCL11, ZQJ +15].
matrix-valued [DZ11]. matrix-vector
[CPHS18]. Max
[YN12, BNR10, HKW18, KZ13, Zel11, XGXL1, CGJ10, Doe13, LM11].
max-algebra [BNRC10]. max-cut [Zel11].
Max-optimal [YN12]. max-power
[HKW18]. Maximal
[BP11, Dam14, GY10, KKO10, LS14, MKI11, NHK15, Sch15, Sh12, VM18, YL17].
maximally [WZL12]. Maximin [LZ10b].
maximization [DM10]. maximize [LZLY12].
maximizing [EDS11, Fuj16, Lec17, GMM15].
McFarland [GNG11]. mean
[CM17, Gen14, LLWH13]. mean-payoff
[Gen14]. mean-shift-like [LLWH13].
means [JKY15, LSW17]. measure
[CH12, yxJW16, JCC11]. measures
[LX13b, MTT12, TLS +18, YHLC12].
mechanism [CWV15, GL13, PLPW13, WB12, YWCW +14]. mechanisms [MM12].
median [Ch13, Wu14]. medians
[HMS18]. meet [GH15]. meet-all [GH15].
meets [CP13]. membership
[AJLM11, Pue11]. membranes [AC12].
Memory [DW12, SD13, Sto16].
Memory-restricted [DW12]. Memoryless
[Had18, LT13a]. Menger [YZZ17]. Menu
mesh [DZFY12, SHFMSA11, WWS12].
meshes [YDT10]. meshes/tori [YDT10]. Meshram [PLPW13]. message
[BR10b, CZZ+10, Jia16, KVK18, MSV14].
message-passing [BR10b]. meta [JK18].
meta-heuristic [JK18]. method
[Ber11, CT16b, CY18, Dra16, KSBT13, Lof14, Mei12, WT13, ZHXS10, DHW13].
methods [Kle13, KK11]. metric
[BC13, Cha13, DGKS14, FIV15, FI15, GS10a, KLS10, Lai16b, MSZ11, Wu14].
metrics [KL13, ZGH10]. Metropolis
[BN12]. millionaire [MN15]. mimicking
[KR14]. min
[DKZ13, KZ13, Zel11, LMS16, Doe13].
min- [Zel11]. min-entropy [DK18].
min-max [KZ13, Doe13]. miner [APB11].
minimal
[AKH16, BPW12, BYK14, BP11, CCT14, DMS12, Fre10, KVK18, Krz13, YBZ13].
minimally [GL11]. Minimax [XL15].
minimising [MM+17]. minimization
[BBK17, CLP10, KT15, KM12, LH11, Val12, HCCG15]. minimize
[FL16, FCY10, FTYL14, LY11, L214, MY13, YW12, YZH14]. Minimizing
[FM18, HKW14, HKW18, Kor12, CK12b, NLZ14, MM15b]. Minimum
[CFJ12, KT11, KT12, LX13c, LL10d, RAR12, Rud17, BM14, BDNVP15, CM17, FX11, HM10, HKW18, HKT17, KS11, KP13, KR14, LZ10a, LLL18b, MKI11, Mil15, Mor11, RR16, SI18, Sh13, Tak16, Waw14, WCW11, Xia10, Xu12, ZY12, ZLS +17, BI14]. minimum-sum [Sh13]. Mining
[FKC13, BL10, CZZ+10, TLS +18].
mapping-based [CZZ+10]. Minkowski
[Tiw14]. minor [WW18]. Minterm
mirror [BV10, Che18b]. mismatch [CP10].
mismatches
[FGK15, GGF13, Gra15, NR17]. missing
[CLS13]. mistake [BSM10].
mistake-bound [BSM10]. MitM
[TY16b]. mix [MM15a]. mix-weighted
[MM15a]. MixColumns [DK10]. mixed
[CS16, JF15, LL17]. mixed-criticality
[CS16]. mixing [NB12]. MJRTY
[AR13b]. MM [WH16]. MMH [BSK16].
CGS18, CA17, CS16b, DP12, EGK+12, FKC13, JAH16, KK15b, MTA10, PYYC16, RAT13, SF17, TWW17, WD16, YA13, YTYZ15, YYYZ12, vISS10.

NP-complete [Che17, DFdFT16, GI18, HWA12, Och17].
NP-completeness [LZSX17, Rom11].
NP-hard [GQ17, ADKM12, FK17, HHK17].
NP-hardness [BT16b, MI17, Zha11].
Number [LST11, ADKM12, AD13, AH11, BKMT14, Bor16, BS17, BPP+18, CY18, Den14, DN12, DS14, Fie11, GMM15, HKW18, HYC12, IM12, Jha15, JSR10, KM14, LLP+18, LZLY12, LLL18b, LKF15, LZCM10, MI12, JP11, Jha15, JSR10, KM14, LLP+18, LZLY12, LLL18b, LKF15, LZCM10, LDW14, MY18, MKI11, iPi3, SLdAMP17, TLW16, VK18, WWBB15, XS15, XZW15, YK15, ZLCM10, Zho15, vIL13, vZBSY16].
numbering [MMS15].
Numbers [LM15, CKL10, CZ13, LX17, WXZ+12].
umeral [GKCK11].
OBDD [Bol10].
OBDD-based [Bol10].
[BNRC10, JKY15, Kle13]. OTIS
[MHFMSa11, SHFMSA11]. OTIS-mesh
[SHFMSA11]. out-arcs [GLLX12].
outdegrees [XZW15]. outer
[CCXW12, KP13, LLW15, ZLLZ18]. outer-
[ZLLZ18]. outer-connected
[kP13, LLW15]. outer-planar [CCXW12].
outerar [LLW15]. outer-connected
outdegrees [XZW15]. outer-degree
[CCXW12, KP13, LLW15]. outer-connected
outer-planar [CCXW12]. outer-planar
[LL10d]. outer-connected
outer-connected [XP13, PZ12].
output [CZD14, LXX14, NG10, iP13, PZ12].
output-sensitive [LXX14].
over [ABS13]. overlapping
[CT11, SO13, TLL16, TLL18].
Pa [AT15]. P2P [CFJ12, FKC13].
P2P-FISM [FKC13]. PAC [Dar15, Zha10a].
package [FC14]. packed [GGF13]. packet
[ZGLY12]. Packing [AHK+17, BTW15, BGG16, BHKK11, Bra17, CP15, DLM11, GJ15, HPY+10, HSM16, Jan12b, KK15a, KLM18, LMU15, Shi12, Svi12, WNFC10, Yan14, ZSLW16, AK10]. packings [MO15].
PageRank [Gro15, Lof14]. PageRank
Paillier-based [Gal13]. pair [DGKS14].
Paired [Che12, Che16c, LTWS11].
Paired-bacteria [LTWS11]. pairing
[TXQ11, ZY17]. pairings [QYWX16]. pairs
[KYC13, OG10, Zha11]. palindrome
[KPR10]. Palindromic [GSS16, IH18].
palstars [RSwW11]. pancake [IK10, DZ12].
Pancyclic [GLLX12]. Pancyclicity
[LWL11, MGFMSA11, Fu10, GLXG13, SHFMSA11, Wie17]. paper [KK11].
Parallel [BRMP13, Che11, PCH13, AR13a, BJ18, CZCD13, CK12b, DLRS14, Ex10, FL16, FCNY10, FYL14, FPY12, GY15, Ger12, GM12a, GM13a, GBH12, HKW14, Hil14, LY11, Lich11, LY11, ZLY12, LZ14, MM15a, MZC11, MM12, Sor10, TFY11, WDT13, nXICL14, YSGY10]. parallel-batch [FL16, FYL14, GY15, LY11, LYF11, LZY12, MZC11].
parallel-batching [FCNY10, TFY11]. parallelepips [KOC12]. parallelism
[ASM17]. Parallelization [Ito14].
parameter [CZD14, CP13, GPT16, IS10, KT16, LMS13, MZ15, Tu15, Viz13].
Parameterized [CGJY12, FGG+10, GJ14, LIZ10b, AK14, BBKS17, BBS12, BD11, CCF14, CLR13, LNP11, MS18b, vBCH+15].
parameterizing [XTTH12]. parameters
[GD13]. Parametric [Che17, AL18, DM16, DKNQ18, GHRT17, HK17, DRDI11].
parametrization [RS12b]. Parikh
[EGKL11]. parities [BGSM10]. Parity
[BS12, Had18, SB13, TX11]. parsing
[BRMP13, FB10]. Partial
[DLMV10, BR10a, Elm12, FLRS11, IMCP15, MS12, Par16, Per17, Qi17, ST18].
partial-observation [Per17]. partially
[LM101]. particle [TZF16]. partite
[BW12, ML10b]. partition
[GSR+14, JLSD+14, ZBL11].
partitionable [BFW12]. partitioned
[M18]. Partitioning
[BKN+12, MO12, AP11]. partitions
[AS18, KLS13, OBT12]. party
[TC11, XLW16]. Pascal [KK11]. passing
[BR10b, Che10a]. passive [ABPS15].
password [LZJX10]. password-authenticated
[LW10]. past
[LZC12]. past-sequence-dependent
[LZC12]. Path [BKPP18, Che10a, Che10c, Che12, Che16c, CZWP17, CDN+11, Gol18, Kat16, LS14, LT15a, LL10c, MIM11, PI13, SY15b, WL11b, WL12, ZLS+17, PR17].
pathwidth [Duc18]. paths [AHK+17, BGJ+16, Bon13, CS16a, DP17, Ghi14, Lai16a, XS15, ZJN10, ZGL11, ZLLZ18].
pathwidth [Kob15]. Pattern
[AD11, BCKM15, ZZZ10b, ACK11, BV10, CNPS15, GGF13, G13, KKR+13, LS10, NR17, ZA17]. patterns
[BL10, CSG14, JS10, RS10, SKN11, Sch13a, Va18, WYLP17, YYZ13, ZZZ10a].
payoff [Lut14]. payoff [Gen14]. PCA
[EFMA10, HYZZ15, MI17]. PCA/LDA
[EFMA10]. Pearson [DM10]. peeling
Nos14, TC11, TK15. **Prototype** [BD16].

provability [HRS13, LHH11, WB12]. **prover** [Ito14, BGL10]. provers [Den18, Yam14].

Proving [Sar14, BD16, Li15, LG18].

provision [GL13]. **Proximity** [MWZ12, ADH14]. **proxy** [Tia15, YMSA14].

PTAS [JKY15, MB14, ZLS17]. Public [LPdS10, QX10, SY15a, VN17, ZY17].

Pushdown [CO17, CS16a, DBB12, DK14, Lan11]. Puzzle [HWA12]. pyramids [TWZ17].

Quadratic [Deo12, CK12b, vL13, LREIMBMV16]. Quadratic-time [Deo12]. quality [CV12, ZGH10]. quantified [JS18, Mar11]. quantities [KT11, KT12]. quantum [AY12a, Ber11, DT10, LLP+18, LFZJ14, LQ+17, Mon10, Mon12, QD16, RS15, TZF16, Yam14, Zha10a].

Query [ADG10, DGKS14, ED17, HLY11, KR16, KP12, Mon10, Mon12, Wij10, Yin10, Zha10a]. querying [SZC+17, Vrg15].

question [SB13]. question [Cho12]. queueing [AZ14]. queues [MSV14, SD13, Tho18].

RAMs [Bra15a]. Ramsey [Pud12]. Random [EAA+16, LREIMBMV16, BV10, BWZ12, DPS11, DF11, FP18, HL12, KM10, MT18, iP13, RT13, WWYY11, Win13, XGX11, ZZ11, CDM+11]. randomization [DTS15]. Randomized [AY12b, BG11, EL10, KK15b, AGW13, Cha12, HI12, JKS10, MO12, Sor10, Wit14, YZZX12, Zeh16].

Ranking [CKL10, RT13, CC12, PCK10]. rankings [JZJN10]. Raphson [ZKXY10].

SD-functions [BS11]. search [CBHW10, CYQ13, DT10, DHW13, JB16, LH10, SY15a, VAC13, Win14, XXZL11, CG10b].
Searching [DLRS14, CW13, KZP10]. SEC [BB11, RV10]. Second [AKY13, MP15].
second-order [MP15]. secret [EZ15, HF14, HH15, LXLY12, Mas17, QD16, TD14].
secrets [HRS13]. Secure [MC15, Gal13, KVK18, LX17, ZY17].
segment [KPR18]. segmentation [LFZJ14]. segments [AD18].
segregation [ABS13]. Selecting [Doc13, KKZ13]. selection [AC10, Chai13, CA17, GE12, GPT16, HYYZ15, yJxW16, PdAL18]. selector [SaBG17].
Self [Glü10, Kak15, Tur13, YBHK13, BYK14, CCT14, FZ13, HHJ+12, Joh14a, MY18, MMK18, NK15, Shi12, SLS17].
semantics [ADFEGRI11, ADG10, AGHY12, BR10a, Bu17, IR16, CCL10, CCH14b, WCJ15]. semantic [HLR11, LT18].
semi-automated [CNK15]. semi-external [Dha14]. Semi-online [CXD+13, MLW11, SF13, TCXT10].
Sensitivity [Vir11, Ama11, Lit12, LL16]. sensor [jDX11, LKC+12, SKK10, VLF15, YA13, YTYZ15]. sensors [CWW10, KK16].
Sequence [NVB15, Bra15a, GGI11, Gou15, KZ12, KYC13, LZCX12, WJS10]. sequences [AABB17, BH11, BMW13, Dam14, DCH12, DK12, EP16, Ehl17, HYC12, JUY15, KPSZ11, LH11]. sequential [DMS11, LABKS17]. sequentially [Mos13b].
Set [Bi14, KP14a, ADG10, AGHY12, BR10a, Bu17, IR16, CCL10, CCH14b, WCJ15]. set [KM11].
setup [Jia16]. seven [HI11]. several [BTW15, Lal16b]. shallow [LR10, SO10].
Shop [ZZ13, Zun18, AP14, MMKK18]. shape-defining [MMK18]. shaped [LWZ07]. shapes [KP14b]. Sharing [HRS13, EZ15, FGMP12, HF14, LXLY12, Mas17, QD16, TD14]. shift [DLRS14, LLWH13]. shifted [CCH14b].
shop [CZCD13, DJZ+15, ZvdV10]. shops [CZCD13, DJZ+15, ZvdV10].
Short [FK10, AB15, Ber17, Bon13, Duc18, KY12, Ned17, ZW10]. Shorter
[Zal11, ZHZ10b]. shortest
[AD16, Bon13, CS16a, Lai16a, RAT13, TJ18, WJS10, Yus11, FKR+16]. should [SSS10]. should-
[SSS10], shrinking [Koc18].
side-channel [ABPS15]. Sidelnikov
[BWM13]. sides [JT10]. sign [AMT12].
sign-definite [AMT12]. signals [DM10].
signature [LKC+12, Nos14, QYWX16, XLWZ16, YMSA14, YW14]. signatures
[Tia15]. signcryption [EZ15]. Signed
[KWH16, DW10a, IMCP15, Rus18]. significant [BG11]. Signum [ZDQ+17].
Signum-function [ZDQ+17]. silent
[Joh14a]. similar [MY18]. similarities
[KK11]. similarity [PCK10]. Simon
[KKS15]. Simple
[JLMO17, Nan13, BBB+17, BP11, Bri11, BR10b, EH18, EGKL11, Fre14, FM11, FA17, Had18, IL12, IM12, JSO11, KM11, LMS16, LTWS11, MIM11, ML10a, NT14, Pet12, Sch13b, TJ14, Wal10]. simple-path
[MIM11]. simpler [Bol14]. simplicial
[Has13]. simplification [Fil18]. simplified
[LSW17, LL16]. simply [Sch14]. simulation
[AdFEGRI11, SSS11]. Simultaneous
[YLGC16]. Single
[LL10a, LZX12, PI13, ALS12, CK11a, DJ15, DP12, FL16, GLW12, GPT16, HKW14, HYK14, LSLY11, LJ15, MY13, MZC11, OZL16, RV17, SD13, TCXT10, TFY11, TL12, YW12]. single-level
[SD13]. Single-machine
[LL10a, LZX12]. Single-source
[PI13]. single-vertex
[ALCS12]. Singleton
[AMT12, AdFEGRI11, MTA10]. sink
[XL15]. site [CS16b]. six [ZY15]. Size
[Rud17, BGL13, DMS12, Eln12, GJ11, Han17, Har16, Has13, Luc10, Pud12, RR16]. skeletons
[EH18, MK16]. ski
[CX18, YZZX12, ZPX11]. ski-rental
[YZZX12, ZPX11]. skyline
[LXX14, SSKA17]. slide [LC13]. sliding
[BKZ15, HLT10]. slopes [AD18]. Slot
[YWCW+14, WCW11]. SM3 [WS13]. Small
[Bra17, Aka14, DD14, GKS13, HN10, Kob15, LT18, MZ15]. smaller [ZFJZ17]. smallest
[Ama11]. smart
[LK10, CL10]. Smooth
[CDM+11]. SMS4 [LSLY11]. snake
[RRR12]. snow [SML+10]. social
[AFPT10, CS16b, EDS11, Lee17, ZD18]. soft
[BLM10, GS17, SS17]. software
[ABPS15, MZQL14, MK11, SF12]. Solitaire
[KTUY17]. Solomon
[WS10]. solution
[CYQ13, JAH16, WWWZ13, YCL11, ZZZ15]. solutions
[BLC10, BDNPV15]. solve
[BGR13]. Solving
[CFMT16, GKM14, SB13, Chel16a, ZDQ+17]. Some
[AX18, BS17, BFRV15, DRR11, DX10, Dur12, HZWX16, Joh14b, PPH18, vE17, DJ15, Ind15, LMS14, LV15, Mat15, Vaj18, WWZ15, WS16, YK11, ZHXS10]. sort
[LSLY11, YW12]. sortable
[HI11]. sorted
[Ehl17]. Sorting
[Rus18, Dha14, Ger12, HHTL10, LGT17, SKN11]. sorts
[PWC+15]. Source
[ZL17, PI13, ZGH10]. Source-wise
[ZL17]. Space
[LFXH17, BHHK11, Bol10, BG11, Cha12, DG16, DTS15, Ezz10, FIV15, GJ15, HNS16, Ind12b, Lz10, LKK10, MPU17, Nis92, PCK10, Pea16, Tsu13, WWBB15, Yam14, Zho16]. space-bounded
[DTS15, Nis92]. space-efficient
[Pea16]. spaces
[HMS18, KZP10, KLS10, MSZ11]. span
[CPTZ13, JT16]. Spanners
[FGvL11, BF17, ZL17, ZL18]. Spanning
[CFJ12, AHK+17, CWYP14, Che11, Dat15, FX11, GR13, GR14, HL16, MKM18, LYHC10, MY18, PP10, ZY12, ZHXS13, KT18]. SPARQL
[ZV14]. Sparse
[GE12, BDNPV15, BM14, CHR10, Cix13, DGSN15, GJR10, MI17, MRZ10, YL17, ZPH15]. sparsification
[BD11]. spatial
[SSKA17]. spatial [SSKA17]. spatio
[HPP17]. spatio-temporal
[HPP17]. special
[SI18, WS16]. specializers
[GLF10]. specific
[GHK11, LLL18b]. specifications
[Dia15, DBB12]. specified
[Ama10, Hua18, SS12]. **SPECK** [LFW+16].
spectral [GS10b]. spectrum [AC10]. speed
[XCYZ11]. speed-up [XCYZ11]. Speeding
[Guc12]. speeds [DKNQ18]. Speedup
[ABP11, LiChL11, vdBCDH17]. **Sphere**
[MS15]. spider [BKPP18]. spin [ZLB11].
spined [ZFJZ11]. Split
[CP13, DRdSS12, LN11, Che18a].
Split-Star [Che18a]. splitting
[AY12b, GPSD17]. **Sponsored** [DHW13].
spread [EDS11]. spreading [DF11, Win13].
squad [YNH+14]. **Square**
[Kar13, BG1+12, DL13, GH15, JG15, JZ18,
ZKXY10, ZCC+11]. **square-freeness**
[BG1+12]. **squares**
[BM14, CZD14, LN11, Min11]. **squaring**
[NCP18]. **Squeeziness** [CH12]. **SRPT**
[FS12]. **stability** [ABS12]. stabilization
[FZ13]. Stabilizing [DDPBT11, BYK14,
CCT14, HHJ+12, Joh14a, Kak15, NHK15,
Shi12, Tur13, YBH13]. **stable**
[BKN+12, DW10b, Miy14, OBT12]. **stacks**
[SD13]. **stage**
[DJZ+15, DW10b, LH11, Mas17, Zhl12].
standard [FTYL14, LM91, Mas17, TS16,
WWBC14, YW14]. **standing**
[Bo14, YKD+12]. **Star** [XXZ14, CLS13,
Lai16a, LHZ07, NHK15, RSZW11,
WXZ+12, YLG10, YeCM14, Che18a].
star-shaped [LW207]. **stars** [BG1+16].
starwidth [vE17]. **stash**s [MN16]. **STAT**
[KV16]. **state** [Att17, MPG12, QD16,
TZF16, ZLB11, HYC12].**stateless** [AGI15].
statements [GNV14]. **states** [BE16, NB12].
Static [KRV16, OG11, RK15]. **station**
[PC18]. **stationary** [CKP16]. **statistical**
[KN13a, KD13]. **statistically** [ZC12].
Statistics [Bar13]. **Statistics-preserving**
[Bar13]. **Statman** [SW12]. **stealing**
[SLS16]. steganography [GKCK11, Sun16].
Steiner [WWBB15, BLC10, GS10a, Vgy11].
step [AKY13, BR12, FV13, WS13].
step-reduced [WS13]. **steps** [GKM14].
sticks [M.15]. **stochastic**
[Ada11, EGK13, SS18]. stock
[JSO11, LLL18b, TWW17]. **straight**
[BR10a, BG1+12, Did13, EH18, SSS12].
straight-line
[BR10a, BG1+12, Did13, SSS12]. **strategies**
[GLO12, Pel10]. **strategy**
[FC14, KD13, THS12, BM16]. **stratified**
[CCKP13]. stream [KM10, LKR17].
streaming [BBD+12, Cha12, Zel11].
streams [BOV15, FKC13, VML18].
strengthened [Waw14]. **Stretching**
[BFV12]. Stribog [AY14]. **strict**
[ZZZ+12, QG17, KD+14]. **String**
[FGG11, AS17, AGW13, BFKL13,
CIK1+13, Deo12, DHPT10, FB10, Sal12,
TLL18, APR13]. **strings**
[AIR17, BFP18, BG1+12, DHR13, GKM14,
LS10, Lut14, MR10, PYHA10, PRHT11,
SSS12, Zal11, ZZ14]. strip [Svi12].
strip-packing [Svi12]. **striping** [EMS15].
strips [Jia18]. Strong
[CLS13, HOV13, ML10b, WW18, YZ17,
AG15, CGY12, DPS11, DG15, Dv18,
NN17, BT16a, GW16]. **strongly**
[EGK13, FK17, LN11, PG12, Pea16].
structure [CPTZ13, JAH16, KR10,
KMMN15, LXLY12]. structured
[Dia15, LUMU15, Tut13]. **Structures**
[ZZ14, AALL16, CNKS15, Csi12, DG16,
SF17, Tsu18, WMLN10]. study
[M11, SS17]. **Sturmian** [Pel15]. sub
[YNH+14]. **sub-generals** [YNH+14].
subclass [GNG11, Pue11]. **subcoloring**
[Och17]. **subcubic** [BPP+18, FL13a, JT16].
subdivided [FH12]. **SUBEXP** [Mos11a].
SUBEXP-dimension [Mos11a].
Subexponential [FLRS11]. **subformulas**
[SW13]. **subgraph** [AK14, ABP11, BK10,
GKW15, KS11, MU15, Sf12, Ta16].
subgraphs [CZ16, Koc18, KL18, LLL18b,
MT10, N13, SS12, WId17]. **subgroups**
[ASTD14]. subject [Fuj16, Se14].
sublinear [BKMT14, Cha13, Sor10, Wu14].
sublinear-time [Cha13]. **submodular**
HI11, Jor12, Pl13, Vaj18. three-disjoint
[ZZ11, CPTZ13, FGMP12, HF14, HH15,
KLS10, NLZ1X14, Pod12, QD16, Tho18,
TD14, YMA14]. thresholds [AD11, ZA17].

Thue [KMN18, GSZ13, MN17]. Tight
[BK17, GW16, HYC12, KO17, E2H16,
GY10, Jan12a, MCS12, vZBS16]. tighter
[FZ13, XG11]. Time [BT16a, GW16,
MPP17, ZKXY10, AHR10, AGHY12,
AM11, ADFM13, BCNPL14, BKMT14,
BLM10, BRFG10, BES17, BFL15,
Cha13, CBHW10, CHK13, CYH15, Che18b,
CG10b, CGG10, CP13, Deo12, EN17, FL16,
FZ13, FCWZ18, GXZZ13, GM13a, GMM15,
GFG11, GP17, GPR10, HCCG15, Han17,
HKW14, HW196, HAM11, HLT10, Iba17,
KLS13, KM16a, KRR13, KM16b, Kun18,
Kut12, LK10, LKC12, LY11, L1Z14, LH11,
LT15b, LC17, MY13, MQ114, MM17,
MS18a, Man10, MS18b, MTA10, MOW17,
NR12, NI15, PP13, PR17, RZ14, Sor10,
SW12, SWW16, TACT10, WC11, Wu14,
YW12, YL17, ZvdV10, ZQ115, ZDQ17,
Zho16, ZZ11, ZGL12, vBCH17].

time-bound [ADFM13]. time-constrained
[AGHY12]. Time-varying
[ZKXY10, SWW16, ZQ115]. times
[CK12b, FM18, GM12a, KY12, LZX12,
Mo11b, TFY11]. Toettlez [CPH18].

token [TNN11], token-based [TNN11].

tokens [Ara10, DP12]. tolerance [LX13a,
LX15b, WWS12, YLG10, ZXY10, Z11].
	tolerances [Lib10]. tolerant
[Che10b, jDX11, Far10, Fu10, IK10,
LXD12, Pel10, Tsa11, WD16, Y11].

tool [PdAL18]. tools [JK18]. Top
[SSKA17, Tsz13, HYL11, LTT14, SGM13].

Top-
[SSKA17, Tsz13, HYL11, LTT14, SGM13].

Topological [GKPP16, MMS15, PWC15,
WCZZ12, FS14, MDB14]. topologies
[CLR13]. topology [TNN11, VL15]. tori
[YD10]. toroidal [Xu11]. torus

[Che16c, DZA15]. Total
[Go18, LHI1, RZ10, WW11, BYK14, BH17,
BS17, CHR10, Cho12, Cza13, FL16, FL13a,
FM18, GLW12, HKW14, KSK13, LZ14,
MY13, Pra12, S12, WLW11, XS15, Y1R16,
YW12, YZH14, ZW10]. Toughness
[ZZ11, Liu10, ZSY13]. tournaments
[CGJY12]. TPTL [BJKZ14]. Trace
[ABPS15, Pas15a, Pas15b]. Trace-based
[ABPS15]. traceable [Tur12]. traces
[MK14]. tracing [MK16]. tractable
[LMS13]. trade [LST11]. trade-offs
[LST11]. trails [BK13]. train [Kar17].

trajectories [GP17], transducer [TK15].

transitions [ZS18a]. transfer [Ria17].

transform [CK11b, Nan15].

transformation [BGR13, SKN11].

transverse [ZGSS1]. transitions [ZZ11].

transitive [Ama11, V1g18]. transitivity
[PCY16]. Translation [ZC18].

translations [Dia15], translations
[GFG11], transmission [KV18].

transportation [Zha12]. transpose [TC17].

transposition [TLL16, TLL18, YLM10].

transpositions [DHR13, vZBS16].

transversal [KN13, LS11, LS15, LS17].

transversals [LV15]. trapdoor [CW12].

trapezoid [CG10b, lil13, LT13b, LT15].

traveling [BL12, BLY17, Mön15, Mon15].

TrCBB [ZWW12]. Tree [WWBB15,
ZLS15, ACK11, BLC10, BMH10, BGL10,
BGL13, DKL12, FS13b, GBH10, HHH17,
JKS10, KLS13, KM16b, Kun18, Lau18a,
LP13b, MS16, SLA17, Ts18, VB15,
VK18, WIL17, XLZ16, YBM10, YZ12,
Y1S10, CFJ12, KT18, Sh15].

tree-colorable [XLZ16]. Tree-core
[ZLS15]. tree-corativity [ZLS15].

tree-like [BGL10, BGL13, Lau18a, MS16].

Trees
[Kr13, AHK17, Aku10, AB15, ALT16,
Ama10, BR10a, BSM14, BB12, CWYP14,
Che11, CLS13, CCF12, DM13, DZFY12,
FH10, GS10a, GHK18, GI18, GR13, GR14,
vault [NTD16]. VByte [LKR17]. VC [Gil14, Joh14b]. VC-dimension [Gil14]. vector [AD16, CPHS18, JZ18, JS18, Laz10, PCK10, RJS+10]. vectorial [DZQF13, Pas15a, Pas15b]. vectors [RJS+10, YGK12]. velocities [BDPP18].

Wolfe [CFMT16]. word [DWQ10, GPR10, Han17, Hen16, KN13b, SH17, Wall10]. words [BC15, GSS16, HN10, KM10, KV16, MV13, Par16, Pel15, WJS10, ZZH10b]. work [AR13a, SLS16, EFKR10]. work-optimal
References

[AAR13a] Workflow [GW16]. Works
[LWXS18]. World [MST16]. Worlds
[GKS13]. Wraparound [TNN11]. Writers
[Tho18].

XPath [KRV16].

Yields [Ehl17]. Young [ASTD14].

Zen [HWA12]. Zeolites [Jor10]. Zero [DS15, DS16, Mos11a, SWF18, WWBC14, YL11a].
Zero-sum [DS15, DS16], zeta [CK11b].

Zhang [SWW16, ZKXY10, ZQJ+15]. ZNN [ZQJ+15, ZDQ+17].

References

REFERENCES

Algefari:2016:SDG

Akshay:2015:RPM

Apostolico:2011:SPS

Agosta:2015:TBS
Awasthi:2012:CBC

Al-Bawani:2013:BOM

Anand:2010:NFB

Aman:2012:PEM

Afrati:2011:CTP

Abrego:2012:VPC

Luca Aceto, David de Frutos Escrig, Carlos Gregorio-Rodríguez, and Anna Ingolfsdottir. Complete and ready simulation semantics are not finitely based over BCCSP, even with a singleton alphabet. *Information Processing Letters*, 111(9):408–413, April 1, 2011. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

Ashok:2015:SC

Aggarwal:2015:AES

Akshay:2012:RSR

Aceto:2015:GCA

Atallah:2013:LVR

Alipour:2015:VTC

Andres:2011:GCN

REFERENCES

REFERENCES

REFERENCES

Akutsu:2010:BAG

AI-Tawy:2013:SOC

Alevizos:2013:OAC

Argiroffo:2015:CDT

Andre:2018:LPP

Amani:2016:ARC

REFERENCES

REFERENCES

Anonymous:2010:EBq

Anonymous:2010:EBr

Anonymous:2010:EBs

Anonymous:2011:EBa

Anonymous:2011:EBb

Anonymous:2011:EBc

Anonymous:2011:EBd

Anonymous:2011:EBe

Anonymous:2011:EBf

Anonymous:2011:EBg

REFERENCES

April 1, 2011. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

Anonymous:2011:EBh

Anonymous:2011:EBi

Anonymous:2011:EBj

Anonymous:2011:EBk

Anonymous:2011:EBm

Anonymous:2011:EBn

Anonymous:2011:EBo

Anonymous:2011:EBp

Anonymous:2011:EBq

Anonymous:2011:EBr

Anonymous:2011:EBs

Anonymous:2012:EBa

Anonymous:2012:EBb

Anonymous:2012:EBc

Anonymous:2012:EBd

Anonymous:2012:EBh

Anonymous:2012:EBe

Anonymous:2012:EBi

Anonymous:2012:EBf

Anonymous:2012:EBj

Anonymous:2012:EBg

Anonymous:2012:EBk

Anon Anonymous: 2013: EBa

Anon Anonymous: 2013: EBb

Anon Anonymous: 2013: EBc

Anon Anonymous: 2013: EBd

Anon Anonymous: 2013: EBd

Anon Anonymous: 2013: EBf

Anon Anonymous: 2013: EBg

Anon Anonymous: 2013: EBh

REFERENCES

[Anonymous:2013:EBi]

[Anonymous:2013:EBj]

[Anonymous:2013:EBk]

[Anonymous:2014:EBa]

REFERENCES

Anonymous:2014:EBc

Anonymous:2015:EBa

Anonymous:2015:EBb

Anonymous:2015:EBc

REFERENCES

Anonymous:2016:EBf

Anonymous:2016:EBg

Anonymous:2016:EBh

Anonymous:2016:EBi

Anonymous:2016:EBj

Anonymous:2016:EBk

Anonymous:2016:EBl

REFERENCES

REFERENCES

Anonymous:2018:EB

Anonymous:2018:EBf

Aumasson:2011:CHF

Anonymous:2018:EBi

Anon:2018:EB

Anonymous:2018:EBh

Alam:2013:DCA

Alonso:2013:ABM

Ara2018:HFB

Alves:2015:CFT

Alda:2018:LBR

Ahmadian:2013:DAR

Ambainis:2012:SEQ

Aspnes:2012:RLB

AlTawy:2014:IDR

Andrews:2014:RAW

Baba:2017:AFB

Baer:2010:ACE

Baek:2013:SRR

Barrus:2010:ALC

Barrus:2012:HHR

Barguil:2015:SIS

Baran:2012:FSG

Baril:2013:SPB

Bajic:2011:CIS

REFERENCES

Banerjee:2017:RSP

Binucci:2012:DTS

Blin:2012:PCR

Berczi:2017:DHH

Baste:2017:PCE

Bollig:2013:PFA

Badkobeh:2015:IBW

Bliznets:2015:KLB

Barbay:2014:MWP

Bernardeschi:2016:VSP

Cinzia Bernardeschi and Andrea Domenici. Verifying safety properties of a nonlinear control by interactive theorem proving with the Prototype Verification System. *Information Pro-

[Braga:2015:EDS]

REFERENCES

www.sciencedirect.com/science/article/pii/S0020019015000216

Boyaci:2017:PTA

Bakhshesh:2017:ACS

Badkobeh:2013:BJS

Brandstadt:2015:PTA

Badkobeh:2018:AAP

Bulteau:2015:SAR

Bollig:2011:ROM

Brandstadt:2012:MWI

Barbero:2016:LVK

Beyersdorff:2010:LBP

REFERENCES

Beyersdorff:2013:CTL

Bouyer:2016:SSL

Borowiecki:2012:CCC

Bonomo:2013:NCJ

Buhrman:2010:LPM

Becher:2011:EBS

Bresar:2017:GTD

Bjorklund:2010:EPR

Bjorklund:2011:CPL

Bjorklund:2017:CPM

Bjorklund:2010:Rtc

Bonchis:2014:IAA
Cosmin Bonchis and Gabriel Istrate. Improved approximation algorithms for low-density instances of the Min-

Backer:2010:CFA

Bjorklund:2013:CCT

Bringmann:2018:NHD

Berenbrink:2014:ENC

Bravo:2012:PEL

Bampas:2018:PEL

Evangelos Bampas, Christina Karousatou, Aris Pagourtzis, and Katerina Potika. Path multicoloring in spider graphs with even color mul-

Bibak:2016:MAM

Basin:2015:GCA

Bailey:2010:EIM

Bao:2012:IAA

Brandstadt:2014:NED

Bae:2010:ESE

REFERENCES

0020-0190 (print), 1872-6119 (electronic).

Balcerzak:2010:TWD

Brass:2010:FMB

Bezem:2010:HPM

Bogdanov:2010:DLE

[Bog10] Andrey Bogdanov. On the differential and linear efficiency of balanced Feis-
REFERENCES

Baudon:2012:MAP

Bagheri:2010:PSL

Bonnet:2010:SPN

Baumeister:2012:TFS

Brand:2015:ASR

Brânzei:2015:NEF

Brand:2017:SPP
Michael Brand. Small polyomino packing. *Information
REFERENCES

Binkele-Raible:2010:EET

Barenghi:2013:PPO

Bogdanov:2011:ALG

Berwanger:2012:PGU

Broere:2017:SBG

Bastkowski:2014:FME

Bonacina:2016:IRW

Bredereck:2016:NHT

Bansal:2017:TAB

Baril:2010:WMD

Boldi:2011:IEF
Paolo Boldi and Sebastiano Vigna. \(E = I + T \) : The internal extent formula for compacted tries. *Information Processing Letters*, 111
REFERENCES

Chao:2011:ECD

Cariow:2013:AFM

REFERENCES

Choi:2014:TES

Chang:2014:EAP

Cao:2014:IP

Christou:2012:CAS

Cho:2014:FCR

Chang:2013:AAS

Chang:2010:IAR

Canale:2014:CCK

Chiu:2014:MSS

Cheng:2012:RSP

Cheng:2016:LET

Colantonio:2010:CCC

Alessandro Colantonio and Roberto Di Pietro. Concise: Compressed ‘n’ Composable Integer Set. *Information...
REFERENCES

Chaim:2013:EBA

Caceres:2011:WPT

Crescenzi:2011:SMM

Clement:2010:CPA

Carayol:2013:FRC

Jakarin Chawachat, Jittat Fakcharoenphol, and Wuttana Jindaluang. The non-uniform Bounded Degree Minimum Diameter Spanning Tree problem with an application in P2P network-
Caprara:2016:STK

Cipriano:2010:MHC

Crespelle:2010:UCB

Chassein:2015:AF

Cucu-Grosjean:2010:PFJ

Cegielski:2014:LRS
REFERENCES

REFERENCES

Clark:2012:SIT

Chang:2013:DST

Chen:2010:CPT

Chen:2010:EFT

Chen:2010:UMM
Xie-Bin Chen. Unpaired many-to-many vertex-disjoint

Crockemore:2013:NEC

Chapuy:2011:SRS

Civril:2013:NHS

Cechlarova:2011:EIE

Cygan:2011:CAF

Couturier:2012:BIS

REFERENCES

REFERENCES

Cranston:2013:HCR

Chatterjee:2017:PR

Courcelle:2014:CWE

Clifford:2010:FAM

Clifford:2011:MSI

Cygan:2013:SVD

Chung:2015:NIP

Yerim Chung and Myoung-Ju Park. Notes on inverse bin-packing problems. *Information Processing Let-

Yannick Chevalier and Michael Rusinowitch. Compiling and securing cryptographic protocols. In-
Christensen:2010:NAF

Croitoru:2015:NQK

Courtieu:2015:IGC

Clifford:2010:PFM

Carayol:2016:MSP

Chen:2016:EAS

REFERENCES

Csirmaz:2012:CUA

Chen:2016:GFP

Crochemore:2011:CLP

Chen:2016:HDG

Chhabra:2016:FMO

Chin:2013:SMB

Canete-Valdeon:2012:APD

[CV12] José M. Cañete-Valdeón. Annotating problem dia-

Chang:2014:CIS

Chen:2018:RRM

Chung:2018:FIP

Chung:2018:FIP

Chen:2015:CTO

Chen:2013:INS

Cheng:2013:CCP

Cai:2016:FTI

Czap:2013:NTC

Chen:2013:AAP

Yong Chen, An Zhang, Guangting Chen, and Jian-

Chen:2014:DFB

Chen:2017:NPE

Damaschke:2014:EMB

REFERENCES

DasGupta:2014:CBS

Das:2015:AAM

Dolev:2011:SDL

Demange:2014:ERE

Dankelmann:2012:ECC

Didimo:2010:CCB

Walter Didimo, Peter Eades,

Demba:2018:ECT

Deng:2014:EDS

Deorowicz:2012:QTA

Doerr:2011:QRR

Dantas:2016:UPP

Das:2010:NCN

REFERENCES

Dudek:2013:ACR

Deorowicz:2014:EAL

Demaine:2017:ASR

Das:2014:RIM

Das:2016:LSA
REFERENCES

Paul Dütting, Monika Henzinger, and Ingmar Weber. Sponsored search,

Diaconescu:2015:ETS

Didimo:2013:DSL

Dietzfelbinger:2015:TSC

Dugar:2015:DPC

Das:2013:LRE

Dong:2015:AAP

Jianming Dong, Yiwei Jiang, An Zhang, Jueliang Hu, and Hui Luo. An approximation algorithm for

[Dunkelman:2010:EOL]

[Duris:2014:FPA]

[Du:2012:LCP]

[Demenkov:2010:NUB]

[Didimo:2012:VA]

[Dolgui:2018:GPS]

Alexandre Dolgui, Vladimir Kotov, Aliaksandr Nekrassovich, and Alain Quillard. General parametric

[Dabrowski:2014:SNF] Przemyslaw Dabrowski, Grzegorz Labuzek, Tomasz Rachwałik, and Janusz Szmidt. Searching for nonlinear feedback shift registers with parallel comput-
DiLena:2010:OGA

Dean:2013:BCT

Darwish:2016:IBF

Duarte:2011:ICS

Dietrich:2012:BMS

Dwivedi:2018:DLR

REFERENCES

118

Dybizbanski:2012:OCN

Doerr:2013:IAA

Dieudonne:2012:DNE

Dabrowski:2017:CBG

Dabrowski:2018:CFF

David:2011:HSN
REFERENCES

REFERENCES

Diochnos:2012:MIL

Dorn:2010:NSE

Sebastian Dorn and Thomas Thierauf.

Doron:2015:RSB

Dean Doron and Amnon Ta-Shma.

Ducoffe:2018:SNC

Guillaume Ducoffe.

Duris:2012:SCA

David Duris.

Duraj:2013:LAL

Lech Duraj.

Delic:2010:USD

Dejan Delić and Changping Wang.
Upper signed

[DZ11] Petros Drineas and Anastasios Zouzias. A note on

References

6. Ertem Esiner and Anwita-man Datta. On query result integrity over encrypted data. *Information Process-
Even-Dar:2011:NMS

Emek:2010:ACS

Eftekhari:2010:BWK

Ehsani:2012:OOP

Esparza:2013:SPA

Esparza:2011:PTS

Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger. Parikh’s theorem: a simple and direct automaton construc-
REFERENCES

124

Eder:2018:CPW

Ehlers:2017:MAS

Epstein:2010:RAO

Elmasry:2010:LAI

Elmasry:2012:SSP

Elmasry:2015:CIA

Amr Elmasry. Counting inversions adaptively. *In-

Even:2011:AAA

REFERENCES

REFERENCES

Kundi:2010:REI
Dur e Shahwar Kundi, Arshad Aziz, and Nasar Ikram.

Enos:2015:IBS

Epstein:2016:OSU

Ezra:2010:NAW

Frieze:2017:RCS

Farrag:2010:DFT

Fay:2016:ICM
Robin Fay. Introducing the counter mode of operation to Compressed Sensing based encryption. Information Pro-
REFERENCES

Freschi:2010:FAC

Fang:2014:OSC

Fredriksson:2014:CES

Freschi:2010:FAC

Fang:2014:OSC

Foster:2018:UTT

Fu:2010:OST

Fernandez-Campusano:2017:DLE
Christian Fernández-Campusano, Mikel Larrea, Roberto Cortiñas, and Michel Raynal. A distributed leader election algorithm in crash-recovery and omis-
REFERENCES

Fomin:2010:PAE

Flouri:2015:LCS

Farras:2012:LTM

Fischer:2010:NCA

Fiedorowicz:2012:ACI
REFERENCES

[FIPS11] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. How many

REFERENCES

Fici:2016:GAS

Fujita:2013:REG

Feng:2012:PCM

Fang:2016:OPB

[FLMQ10] Shaojing Fu, Chao Li, Kanta Matsuura, and Longjiang Qu. Enumeration of balanced symmetric functions over GF(p). *Information Processing Letters*, 110(14–
REFERENCES

REFERENCES

REFERENCES

Fujii\text{wara:2012:IAS} [FS12]

Feder:2013:ECA [FS13a]

Fujito:2013:HGG [FS13b]

Finkel:2014:TCL [FT15]

Feldman:2015:CBR [FTYL14]

Fu:2014:OSU [FTYL14]
REFERENCES

REFERENCES

REFERENCES

Guttmann-Beck:2012:SPO

Chen:2015:DDP

Guo:2010:KNA

Gulavani:2010:RAI

Ghosh:2013:NUB

Goldberg:2012:SWV

Gentilini:2014:NAM

Raffaella Gentilini. A note on the approximation of

Gerbessiotis:2012:IRB

Grabowski:2011:SMI

Giaquinta:2013:APM

Gao:2018:MMK

Giaquinta:2013:NAB

Garrio:2014:MGF

D. Garijo, M. A. Garrido, C. I. Grima, A. Márquez, A. Moreno-González, J. R.

Grimson:2011:EES

Gandhi:2018:MLT

Giudici:2017:ASP

Gu:2018:PDD

Gelle:2018:RUF

REFERENCES

141

[102x681]REFERENCES
[102x681]141

[GK10] Shay Gueron and Michael Kounavis. Efficient implementation of the Galois Counter Mode using a carryless multiplier and a fast reduction algorithm. Information Processing L-
Geetha:2011:VRN

Golovnev:2014:SSB

Gavalas:2015:AAA

Gerbner:2016:TOW

Govorcin:2013:LGO

Grandoni:2015:LRI

Fabrizio Grandoni, Tomasz Kociumaka, and Michal Włodarczyk. An LP-

Gafarov:2012:NSM

Guo:2013:NVP

Gu:2011:CMC

Gerstl:2012:SPI

Goldreich:2012:TPT

Gerstl:2013:IAD

Enrique Gerstl and Gur Mosheiov. An improved algorithm for due-window assignment on parallel iden-
REFERENCES

Guillemot:2013:FFA

Gorain:2015:AAS

Gerstl:2015:NMW

Gelade:2010:ORA

Gupta:2011:UBA

Gyssens:2014:CSA

Golumbic:2018:TCR

Gourves:2015:AOS

Grinberg:2017:FPT

Groult:2010:CDP

Gangopadhyay:2017:NNS
www.sciencedirect.com/science/article/pii/S0020019017300017

Guo:2016:GAB

Gaubert:2017:CSP

Guo:2010:SCK

Gopalan:2013:CPI

Gopalan:2014:CCP

Grabowski:2015:NLC

Szymon Grabowski. A note on the longest common substring with k-mismatches problem. Information Processing Letters,
REFERENCES

Paul Gastin and Nathalie Sznajder. Decidability of
REFERENCES

[Gadducci:2017:RBP]

[Grigorious:2014:PDC]

[Guo:2016:PRW]

[Guo:2015:IPA]

[Grytczuk:2013:OVT]

[Gueron:2012:SCC]
Shay Gueron. Speeding up CRC32C computations with Intel CRC32 instruction. *Information Processing Letters*, 112(5):179–185,

REFERENCES

Harwath:2016:NSP

Hasan:2013:FSP

Havill:2010:OMJ

Holenderski:2014:RBT

Haddadi:2015:PTL

Hung:2015:HPU

Henry:2016:NWP
REFERENCES

[Harn:2014:MTS]

[Harn:2015:DTS]

[Hedetniemi:2012:SSA]

[Honkala:2015:EOD]

[Huang:2010:IAS] Yen-Lin Huang, Cheng-Chen Huang, Chuan Yi

Hanamura:2011:PSL

Hirsch:2012:ORA

Hildenbrands:2014:SPP

Haase:2016:CLS

Holzhauser:2017:FPK

Hwang:2012:AFP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Huang:2005:EMP

Liusheng Huang, Hong Zhong, Hong Shen, and Yonglong Luo. An efficient multiple-precision division algorithm. In Hong Shen and Koji Nakano, editors, Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, 2005. PDCAT 2005: 5–8 December 2005, Dalian, China, pages 971–974. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2005. ISBN 0-7695-2405-2. LCCN QA76.58 .I5752 2005. The authors present an integer-division algorithm that runs three to five times faster than Knuth’s 1981 original. However, there is an error in the renormalization algorithm that is corrected in [MN14], while retaining the speedup.

Hu:2016:STF

Ibarra:2017:CCS

Inenaga:2018:HRN

Iwasaki:2010:FTR

REFERENCES

Imai:2015:IRR

Ishiu:2015:THD

Isaak:2012:EIT

Ilic:2013:EA

Iwerks:2012:AGT

Ikenmeyer:2017:RPR
REFERENCES

Iwama:2010:OKR

Jaddi:2016:SRG

Jansen:2012:TTH

Januszewski:2012:LAS

Jannati:2016:SAR

Ji:2010:SJD

REFERENCES

CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

[Jia18] Minghui Jiang. Periodicity of identifying codes in

[JLMO17] Benson Joeris, Nathan Lindzey, Ross M. McConnell, and Nissa Osheim. Simple DFS on the complement of a graph and on

[Jamison:2012:MOS]

[Johnen:2014:FSS]

[Johnson:2014:SNM]

[Jordan:2012:HCM]

[Gerold Jäger and Marcin Peczarski] Gerold Jäger and Marcin Peczarski. The number of

Jonas:2018:CQB

Jansen:2011:SOA

Junosza-Szaniawski:2010:GCN

Junosza-Szaniawski:2011:CEA

Jia:2015:DIE

Jonsson:2010:AIP

REFERENCES

Janczewski:2015:CCB

Janczewski:2016:HCS

Jukna:2012:CPC

Jourdan:2015:RCS

Jiang:2018:GHE

Khazaei:2017:COA

Kakugawa:2015:SSD

Kalinich:2012:FWP

Kara:2013:SRC

S:2017:DTR

Katrenic:2016:FFA

Kim:2011:NFS

Kwon:2017:CBI

Shinil Kwon and Sungdeok Cha. CAPTCHA-based image annotation. *Information Processing Letters*, 128(??):27–31, December 2017. CO-
171

REFERENCES

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kubica:2013:LTA</td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

Katz:2011:SBR

Kumamoto:2012:ODE

Kolliopoulos:2013:VCM

Klaivar:2014:DNE

Kohler:2016:LT

Kundu:2016:LT

Kazemi:2018:AA

Kovacs:2015:OSA

Kosinski:2018:CT

Kantor:2013:ASD

Kapoor:2013:MFW

Krithika:2013:ADC
Kiyomi:2016:FCG [KO16]

Kobayashi:2015:CPD [Kob15]

Kochol:2018:TCC [Koc18]

Kokosinski:2017:GPI [Kok17]

Korman:2012:MIA [Kor12]
REFERENCES

Korman:2018:LSC

Koukouvinos:2011:ACV

Katanajainen:2010:CDS

Khan:2014:MNR

Kol:2016:BQL
Krajicek:2012:NSA

Kostylev:2016:SAN

Krzywko:2013:THM

Kulik:2010:TNE

Katrenic:2011:IAB

Kochol:2012:BTG

Karaahmetoglu:2013:NMD

Osman Karaahmetoglu, Muharrem Tolga Sakalli, Ercan Bulus, and Ion Tutanescu. A new method to determine algebraic expression

Kshemkalyani:2011:RDC

Khennoufa:2013:ECT

Kaiser:2015:GGH

REFERENCES

Khoshkhah:2018:FSS

Ku:2017:RLS

Kuchrov:2013:CSA

Kuchrov:2018:CSA

REFERENCES

Kenkre:2010:AAB

Kitaev:2016:MSW

Kishore:2018:MCR

Kuo:2016:SDD

Kuo:2012:SNP

See Mos11b.

Ke:2013:NBS

Lampis:2011:KO

Lange:2011:HEP

Lasota:2017:EAC

Lauria:2018:NAK

Lazic:2010:RPB

Lu:2013:CSA

Lin:2017:LTA

Lee:2017:DCN

Lee:2017:AHM

Leitert:2017:DCD

Leiva:2018:RTS
Luccio:2010:LBR

Liu:2016:LCR

Liu:2017:SCE

Li:2014:SIS

Lucas:2018:ULM

www.sciencedirect.com/science/article/pii/S0020019018300772

Liu:2016:LCR

Liu:2017:SCE

Li:2014:SIS

Lucas:2018:ULM

www.sciencedirect.com/science/article/pii/S0020019018300772
REFERENCES

REFERENCES

Li:2012:ASW

Li:2015:APD

Li:2015:SW

Luo:2015:SVM

Lin:2018:CPD

REFERENCES

REFERENCES

Liu:2010:MMD

Liu:2010:MCB

Lin:2013:MSC

Levcopoulos:2014:NQM

Li:2016:SWS

Li:2017:IFP

Li:2011:SBP

Yin Li, Gong liang Chen, and Jian hua Li. Speedup of bit-parallel Karatsuba multiplier in GF(\(2^m\)) generated by trinomials. Information Processing Letters, 111(8):390–394, March 15, 2011. CODEN IFPLAT. ISSN
REFERENCES

0020-0190 (print), 1872-6119 (electronic).

See [LLG10] for proofs of requirements on the number of rounds.

[LMS14] Min Chih Lin, Michel J. Mizrahi, and Jayme L. Szwarcfiter. Fast algorithms for some dominating induced matching problems. *Information Processing Let-
REFERENCES

Lee:2016:SPO

Mun-Kyu Lee, Pierre Michaud, Jeong Seop Sim, and Dae-Hun Nyang. A simple proof of optimality for
IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic). URL http://www.sciencedirect.com/
science/article/pii/S0020019015001593.

Lambert:2015:CHS

Thomas Lambert, Loris Marchal, and Bora Uçar. Comments on the hierarchically structured bin packing
science/article/pii/S002001901500166X.

Lin:2017:AWN

Min Chih Lin, Julián Mestre, and Saveliy Vasiliev. Approximating weighted neighborhood independent
sets. Information Processing Letters, 130(?):11–15, February 2017. CODEN IFPLAT. ISSN 0020-0190
science/article/pii/S0020019017301709.

Le:2011:GCS

Van Bang Le and Ngoc Tuy Nguyen. A good characterization of squares of strongly chordal split graphs.
Information Processing Letters, 111(3):120–123, January 1, 2011. CODEN IFPLAT. ISSN 0020-0190
(print), 1872-6119 (electronic).

Lee:2011:LCP

Taehyung Lee, Joong Chae Na, and Kunsoo Park. Online construction of parameterized suffix trees for
0020-0190 (print), 1872-6119 (electronic).

Lofgren:2014:CMC

Peter Lofgren. On the complexity of the Monte Carlo method for incremental PageRank. Information
(electronic). URL http://

[LMSN16]

[LN11]

[LMU15]

[LNP11]

[Lof14]
REFERENCES

Min-Sheng Lin and Sheng-Huang Su. Counting maximal independent sets in directed path graphs. Information Processing Letters, 114(10):568–572, October 2014. CODEN IF-

REFERENCES

REFERENCES

Liu:2010:NDC

Li:2011:PTC

Li:2010:GCP

Lu:2018:WLS

Liu:2014:NBP

Lingas:2007:NCM

Li:2013:EFT
Xiang-Jun Li and Jun-Ming Xu. Edge-fault tolerance of hypercube-like networks. *Information Pro-

[LZ10a] Xiuying Li and Zhao Zhang.

REFERENCES

Martin:2011:LLD

Mashhadi:2017:NMS

Massberg:2015:GHC

Matsuki:2012:ACC
Norichika Matsuki. An analytic criterion for CSAT.

Matsubara:2015:EAA

Moezkarimi:2014:PGF

Merouane:2015:SDG
REFERENCES

[206]

Malekesmaeili:2012:TBL

[206]

Meir:2012:RMP

Meir:2018:DSU

[206]

Mennink:2012:IFH

[206]

Meshram:2015:EIB

Maiseli:2016:RED

Martinez-Garcia:2011:FRB

Mihaljevic:2012:ISR

Magdon-Ismail:2017:NHI

Milshtein:2015:NBC
Mota:2016:PSM

Minh:2011:RLS

Misra:2015:MAN

Miyazaki:2014:ACO

Mahmood:2011:ISI

Mikulski:2014:FHD
Manak:2016:EET

Matsumoto:2011:AAD

Martin:2010:SCE

Miao:2010:SOC

Min:2011:OSO

Mor:2012:BSI

Meshram:2013:IBC

REFERENCES

[M15] Marco Magirius, Martin Mundhenk, and Raphaela Palenta. The complexity of primal logic with disjunction. Information Pro-

[MN17] Robert Mercas and Dirk Nowotka. A note on Thue games. Information Pro-
Minier:2012:RKI

Mansour:2011:LFG

Mathieu:2012:LBR

Mathew:2015:HPB

Momke:2015:IAA

Montanaro:2010:NQQ

Mosca:2013:MWI

Moszkowski:2013:IBC

Molinero:2016:CE

Moulton:2017:CTA

Maitra:2013:ESK

Mesnard:2015:SOF

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Description</th>
</tr>
</thead>
</table>
| Mahajan:2016:LOR | Meena Mahajan and Anil Shukla. | Level-ordered Q-resolution and tree-like Q-

Maneth:2018:BMT

Marcion:2018:ITH

Moser:2018:LDD

Matsui:2014:FPF

Maha:2016:VVM

Muller:2014:UA

Maheshwari:2011:LIN

Mubayi:2010:FBS

Meir:2018:CAP

Melkman:2010:DSA

Mapa:2015:MAS
Mansour:2013:EGR

Ma:2012:PAE

Ma:2013:OSS

Ma:2013:EGR

[Ma:2018:NST

Ma:2011:SCE

Meng:2015:CRS

Ma:2013:EGR
Miao:2011:BPB

Ma:2014:CRI

Nanongkai:2013:SFS

Nandi:2015:CDF

Nakade:2012:EIE

Niehues:2018:FMR

Nederlof:2017:SNM

Ning:2015:CEC

Nash:2010:OSA

Neggazi:2015:NSS

Nakashima:2015:CLT

Ning:2013:FTD

Ning:2015:NCM

Ning:2016:SCE

Nisan:1992:PGS

Ni:2015:OOM

Nie:2014:IMC

Nandy:2010:RLE

Nakprasit:2017:SEV

Keaitsuda Maneeruk Nakprasit and Kittikorn Nakprasit. The strong equitable
Nose:2011:SWA [Nos11]

Nose:2014:SWS [Nos14]

Nandy:2017:FAM [NPR17]

Nose:2014:SWS [Nos14]

Narayanaswamy:2011:DSB [NS11]

Nguyen:2016:EFV

Nanasi:2015:SAH

Oanea:2011:BAN

Olsen:2012:NTN

Ochem:2017:SNC

Pascal Ochem. 2-subcoloring is NP-complete for planar comparability graphs. Information Processing Let-
Ohlebusch:2010:EAA

Ortin:2011:UIT

Oh:2013:IBA

Ochem:2017:OEC

Orumiehchiha:2014:PAN

Oron:2011:SBM

REFERENCES

Ou:2016:FAS

Pallo:2010:RRK

Park:2011:CGR

Pasalic:2015:CNN

Pasalic:2015:NNV

Papadopoulos:2018:FAG

Park:2013:PMT

Panda:2018:FWT

Pearce:2016:SEA

cubes of connected graphs.

Piestrak:2015:NRA

Stanislaw J. Piestrak. A note on RNS architectures for the implementation of the diagonal function.

Pang:2013:IMA

Liaojun Pang, Huixian Li, Qingqi Pei, and Yuemin Wang. Improvement on Meshram et al.'s ID-based cryptographic mechanism.

Podolskii:2012:ELB

Vladimir V. Podolskii. Exponential lower bound for bounded depth circuits with few threshold gates.

Podolskii:2012:ELB

Adam Polak. Why is it hard to beat $O(n^2)$ for longest common weakly increasing subsequence?

Panda:2010:LCS

B. S. Panda and D. Pradhan. Locally connected spanning trees in cographs, complements of bipartite graphs and doubly chordal graphs.

Panda:2013:LT

B. S. Panda and S. Paul. A linear time algorithm for liar’s domination problem in proper interval graphs.

[PRM14] Salvatore Pontarelli, Pedro Reviriego, and Michael Mitzenmacher. Improv-

REFERENCES

Qin:2016:VTQ

Qi:2017:BPO

Queyroi:2015:SDC

Qian:2010:NIM

Qin:2016:STI

Rackham:2010:CCC

Rajasingh:2012:MWH
Indra Rajasingh, Micheal Arockiaraj, Bharathi Rajan, and Paul Manuel. Minimum wirelength of hypercubes

Reis:2018:AET

Roman:2011:NCR

Roayaei:2016:FAM

Rajasingh:2012:EHN

Rampersad:2010:DPF

Reidenbach:2012:MHA

Rueda:2012:PAP

Roetteler:2015:NQR

Rampersad:2011:ISB

Rizzi:2013:RUR

Rudow:2017:DLM

Rusu:2018:SSP

Radonjic:2010:ISD

Rotter:2013: DAR

Radonic:2017: ICC

Rodrigues:2017: NCC

Roussel:2010: TCP

Rovan:2014: MTC

Rzazewski:2014: EAG

REFERENCES

Sergey:2012:CBT

Steyaert:2013:BFI

Schmidt:2013:STV

Schmid:2013:NCM

Schewe:2014:DSS

Schaudt:2015:DMI

REFERENCES

REFERENCES

[Shi13] Chan-Su Shin. A note on minimum-sum coverage by

Shin:2015:TED

Shitov:2018:CGC

Skowronek-Kaziow:2012:MVC

Simion:2016:ECA

Szalachowski:2010:CCG

Saettler:2017:DTC

Saettler:2015:ADT

Sliva:2012:ALG

Sousa:2013:GDC

Suksompong:2016:ELW

Sarkar:2010:CRM

Sarkar:2010:CRT

Small:2013:NEC

Sherkhonov:2017:CA

Shen:2010:DEN

[SS10a] Pascal Schweitzer and Patrick Schweitzer. Connecting face hitting sets in pla-

Simon:2010:OIH

Schaudt:2012:CCD

Sanders:2016:SGS

Sadhya:2017:PRE

Sakharov:2018:VAS

Su:2012:FHG

Son:2017:TMS

Schmidt-Schauss:2010:CMS

Schmidt-Schauss:2012:FET

Scott:2015:AAH

Schmidt-Schauss:2011:CAS

Shiau:2015:ICC

REFERENCES

Shrestha:2012:BCB

Shieh:2012:IMI

Sung:2011:DCE

Sun:2016:NEB

Sviridenko:2012:NKR

Srivathsan:2012:APS

Schmitt:2013:EIS

Manuel Schmitt and Rolf Wanka. Exploiting indepen-

Yinglei Song and Menghong

Sun:2018:GOF

Su:2017:GBC

Szymanska:2012:CDH

Takazawa:2016:AAM

Tarlecki:2014:WMT

Tang:2011:EKA

Qiang Tang and Liqun Chen. Extended KCI attack against two-party key establishment protocols. *Information Processing Let-
Tsai:2017:DEE

Tao:2010:OSO

Tiplea:2014:NSC

Tian:2011:LAS

Thomas:2012:APL

Thomasian:2018:VSM
Alexander Thomasian. Vacationing server model for M/G/1 queues for rebuild processing in RAID5

REFERENCES

Hoda Taheri, Peyman Neamatollahi, and Mahmoud Naghibzadeh. A hybrid token-based distributed mu-

Dekel Tsur. Succinct data structures for nearest colored node in a

Tu:2015:FPA

Turetsky:2012:TSW

Turau:2013:SSA

Tutu:2013:CSI

Tseng:2015:BUC

Tan:2017:NAN

REFERENCES

Tiwary:2017:ECC

Thomasian:2011:CDP

Tang:2011:FPC

Tu:2013:VCI

Tan:2016:CCA

Tolba:2016:GMA

Tyszka:2013:CCF
Apoloniusz Tyszka. Conjecturally computable func-

Tu:2011:FAA

Tan:2016:PQT

Vadlamudi:2013:IBS

Vagvolgyi:2018:IRT

Vajnovszki:2018:ESL

Vallee:2010:NEC

Valmari:2012:FBP

Vaya:2013:RCL

vanBreugel:2012:BPC

Veanes:2015:STA

vanBevern:2015:APC

vonderBruggen:2017:ESF

REFERENCES

Virza:2011:SVB

vanIersel:2010:LTP

Venkatakrishnan:2018:IUB

Vecchio:2015:GTD

Viard:2018:EMC

Vollala:2017:EEM

Vidali:2010:CVB

[VNP10] János Vidali, Peter Nose, and Enes Pašalić. Collisions for variants of the BLAKE

Walczak:2010:SRS

Wawrzyniak:2014:SAL

Wang:2012:OSO

Wang:2012:PCE

Wu:2015:INE

REFERENCES

Wijsen:2010:RCC

Winzen:2013:DRQ

Witt:2014:FLT

Wu:2010:ECS

Wang:2011:TDH

Wang:2011:GPC

ters, 110(22):992–997, October 31, 2010. CODEN IFPLAT. ISSN 0020-0190
(print), 1872-6119 (electronic).

[WS13] Gaoli Wang and Yanzhao Shen. Preimage and pseudo-
collision attacks on step-
reduced SM3 hash func-
tion. *Information Process-
ing Letters*, 113(8):301–306,
April 30, 2013. CODEN IF-
PLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0020019013000513.

[Wang:2016:SSC] Chao Wang and René Sit-
ters. On some special
cases of the restricted as-
signment problem. *Informa-
tion Processing Letters*, 116(11):723–728, November 2016. CODEN IF-
PLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0020019016300916.

[Wang:2012:SCK] Hechao Wang, Erfang Shan,
and Wei Wang. On the super
connectivity of Kro-
necker products of graphs.
*Information Process-
ing Letters*, 112(10):402–405, May
31, 2012. CODEN IF-
PLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0020019012000388.

Tan. A new method to
construct Boolean func-
tions with good crypto-
graphic properties. *Informa-
tion Processing Letters*, 113(14–16):567–571, July/
August 2013. CODEN IF-
PLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0020019013001348.

Shen. Preimage and pseudo-
collision attacks on step-
reduced SM3 hash func-
tion. *Information Process-
ing Letters*, 113(8):301–306,
April 30, 2013. CODEN IF-
PLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0020019012000388.

Tan. A new method to
construct Boolean func-
tions with good crypto-
graphic properties. *Informa-
tion Processing Letters*, 113(14–16):567–571, July/
August 2013. CODEN IF-
PLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0020019013001348.

[Wu:2013:IVC] Yunjian Wu. An improve-
ment on Vizing’s conjec-
ture. *Information Process-
ing Letters*, 113(3):87–88,
February 15, 2013. CODEN IF-
PLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0020019012002979.

mating metric 1-median in
sublinear time. *Information Process-
ing Letters*, 114(4):
163–166, April 2014. CODEN IF-
PLAT. ISSN 0020-0190
(print), 1872-6119 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0020019013003074.
Wang:2011:TCP

Watel:2015:FAP

Wen:2014:MZC

Wang:2014:LAG

Wang:2012:FTA

Wang:2018:SCI

REFERENCES

Wang:2013:DPS

Wang:2013:PGC

Wang:2011:CIB

Wang:2015:NPS

Wang:2017:RR

Xiao:2010:FSS

Xing:2015:BLT

Xie:2012:EAP

Fang Xie, Yuzhong Zhang, Qingguo Bai, and Zhe Xu.

Yahiaoui:2013:SSA

Yu:2010:ETD

Yazdi:2015:AAD

Yan:2011:AAF

Yi:2011:IGB

Yang:2010:EMT

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume/Issue/Pages</th>
<th>Date</th>
<th>DOI</th>
</tr>
</thead>
</table>

Ye:2013:PPP

Yamanak:a:2010:CEP

Yuan:2012:NEC

Yu:2012:IMB

[YL16a] Zheng Yang and Shuangqing Li. On security analysis of an after-the-fact leakage...

Yang:2018:DLA

Yang:2018:LGI

Yu:2010:PAP

Yu:2014:SPE

Yu:2017:RPU

Yamashita:2014:FSS

Yonta:2010:RAH

Yang:2015:PIC

Yu:2012:NOO

Yu:2014:CSS

Yan:2011:PAB

REFERENCES

Yao:2014:NHS

Yang:2015:SPB

Yu:2013:OIR

Yang:2011:CDH

REFERENCES

Yenigun:2017:CCE

Yang:2016:NGP

Yu:2012:RWA

Yu:2014:MMS

Yang:2017:SMC

Weihua Yang, Shuli Zhao, and Shurong Zhang. Strong Menger connectivity with conditional faults of folded hypercubes. Information Processing Letters, 125(??):
REFERENCES

Yang:2012:ORA

Yang:2012:ORA

Zhang:2010:SCP

Zhang:2012:CNM

Zhang:2012:CNM

Zalinescu:2011:SSC

Zalinescu:2011:SSC

Zhang:2011:UIP

Zhou:2010:SCS

Zhou:2011:SCN

Zivkovic:2010:IUS

Zhang:2010:ILB

Zhang:2011:FMI

Zhu:2012:ISA

Zhang:2010:RA

Zhang:2011:PSR

Zhang:2013:CSC

See [Zha10b].

Zhang:2018:LMR

Zhou:2015:NLB

Zhou:2016:TDR

Zhu:2012:TSS

REFERENCES

[ZLN12] Xin Zhang and Guizhen Liu. On edge colorings of 1-planar graphs without adjacent triangles. In-
Zhu:2017:SWR

Zhu:2018:DIR

Zhang:2018:LPE
REFERENCES

REFERENCES

Zhang:2011:SRP

Zhang:2015:IMZ

Shi:2011:OCB

Zhang:2016:PHG

Zawidzki:2013:SPM

Zhou:2013:TCF
Sizhong Zhou, Zhiren Sun, and Hui Ye. A toughness condition for fractional (k,m)-deleted graphs. In-
REFERENCES

REFERENCES

Zhang:2012:TAL

Zhou:2010:CDA

Zhou:2011:CFT

Zong:2011:HNN

Zhang:2010:KCF

Zhang:2011:OAG

Zhang:2012:MST

[ZY12] Tongquan Zhang and Ying Yin. The minimum spanning tree problem with non-
REFERENCES

Zhou:2017:LRC

Zhou:2013:ELO

Zhang:2015:GSD

Zhao:2011:TBR

Zunic:2013:SEB

Zhang:2014:TSS

[ZZ14] Zan-Bo Zhang and Xiaoyan Zhang. Triangle strings: Structures for augmentation of vertex-disjoint triangle sets. *Information Pro-

Zhang:2016:CRA

Zhu:2011:IAF

Zhang:2011:RRM