Title word cross-reference

1-Million [GC97].

N [Rob05].

1031 $-$ 1/9 [Hig86].

12th [CF00]. 13th [AH00]. 14th [KK99].

16-Way [Ano01u, AK00]. 16kB [RMS02].

16way [KI01, MSN+01, NTN+01, SYA+01, SUK+01, UMT+01]. 17th [IEE05]. 1998 [DeG98, JR98]. 1UAXe [Ano00m].

2 [Ano02b, BH04, CL03, LMOT02, MS03, McN06b, RMC04, SzUK+04, Tho03, WCW+04a, WCW+04b, WCW+04c].

2.2 [Pra98].

2000 [Hug00a]. 2001 [Ano00g, CMM01]. 2004 [ACM04a]. 2005 [MHTH07].

256KB [RG02]. 25th [DeG98]. 2nd [RG02].

32 [Ano04, BDE+04].

3300-Itanium-Prozessoren [Ano01f]. 37th [IEE04].

390 [GEAS00].

3D [Wal02]. 3MB [WWC02].

3rd [ACM06, WWC02].

4way [USK+01].

512 [Fis83, Fis98]. 5L [IBM00]. 5th [Ano03].

6-Issue [FO02]. 64 [AAC+04, Ano97, Ano98a, Ano98b, Ano99c, Ano00b, Ano00e,
Ano00d, Ano00i, Ano00j, Ano00n, Ano00p, BCC++, CFLZ99, Chr96, CHN99, De 06, DBWA00, Die99, Don06, Dos99, Dov99, Dul98, DKK++, Fan99, FCLZ99, Gig06, Gru00, Gwe97, Gwe99b, Gwe00a, Hew00a, Hew00b, Ha97, Ha98, HKST99, Har00, HKN++0, HP03b, HP06, HMR++, HMSN01, IBM00, IKN03, Int99, Int00a, Int00b, Int00c, Int00d, Jar99, Jar01, KV01, Kn09a, Kn09b, Kre01b, KKL++0, Mar00, ME02, RT00, RS00, SCV01a, SCV01b, SNN+, SR00, Son98, ST99, TBGD99, TRD++, Tho98, UFG++, WWCW00, WiL00, ZRMH00a, ZRMH00b, ZRMH00c, ZRMH00d, ZT00.

64-Bit
[AMD01, Ano00n, Ano01g, Ano01z, Cha06, AMD99, Ano99e, Ano00f, Ano00g, Ano00h, Ano01a, Ano01-27, ET03, Gok96, Pop02].

64-Bit-Architektur [Ano00g].

64-Bit-CPUs [Ano01n].

64-Bit-Welt [Ano01i].

64-Way [Ano00b, Ano00p].

64b [BMS02, NH02].

64bit [Ano01b].

64TM [AMD00, AMD01].

70-443 [MHTH07].

733MHz [Kre01b].

800MHz [Kre01b].

82460GX [DGMM00].

99 [ACM99].
[Cam03, Fis83, HKN+00, SMJ99, TLS90, Fis98, SJSS00]. Architektur
[Ano00g, Ano01e, Ano01y, Ano01m]. Area
[CMM01]. Arena [Ano01q]. Aren’t [VL97]. ARITH [IEE05]. ARITH-17 [IEE05]. Arithmetic
[CHN99, IEE05, KK99, TOML04, Ano02c, LMOT01, LMOT02, dDDL04]. Arms
[Gea06]. arrived [Ano01a, Ano01b]. Article
[Ano01p]. Assembly [TBGOD99, AMR00]. Assistance [Int00k]. Association
[Ano00m]. AT75C310 [Ano00m]. Athlon
[Ano99a]. Atlanta [ACM99]. attracts
[Ano00k, Ano01r]. Attributes [Cam03]. Auch [Ano01i]. Aufgabe [Ano01y]. August
[AH00, CF00, IEE97, IEE99, IEE00]. Australia [KK99]. Automatic
[AGMM00, NTN+01, ZWG+97]. Availability [Qua00a, Qua00b]. Avenue
[Ano00m]. AVP [Ano00l]. Awards
[Kro00a]. aware [GDN00]. AzusA
[Ano01u, AK00, KI01].

Back [GC97]. Backend [Liu06]. Backup
[Ano00]. backward [Ano01z]. Bandwidth
[Die99, RG02]. Barcelona [DeG98]. BART
[CMM01]. Based
[Ano00n, Int00j, TOML04, WWC02, Ano00e, Ano06, BDE+04, BMM+99, BM00, CHT02, JM02, KW01, Kob01, Pon05, TBB01, WWC+04a, WWC+04b, WWC+04c]. Basic
[Fis79, Kre01a, McN06a]. Basics [Kni99a]. Basics/Introduction [Kni99a]. Basis
[Ano99b, Ano00e, Ano01f]. Bay
[CMM01]. be [Ano98b, Ano00h]. Bea [Ano01c]. Beam
[Pin06]. Beats [Ano00i]. Behind [Col05]. Benchmark
[Ano00z]. Best [Ano00m]. Betriebssysteme [Ano01i]. better
[Ano01z]. Beyond [Fis79, Tho98]. bieten
[Ano00i]. big [Ano00a]. Billion
[Ser02]. Binary
[CHN99, GEAS00, Lew99, SmWHA00]. Bioinformatics [Anw06]. Biological
[KA06]. Biopolis [Ano06]. Bit
[AMD01, Ano00g, Ano00h, Ano01g, Ano01i, Ano01n, Ano01z, Cha06, Rob05, Wal02, AMD99, Ano99e, Ano00f, Ano00h, Ano01a, Ano01-27, ET03, Gok96, Pop02, Sco01, Wal02]. bleiben [Ano01q]. BLISS [Bre92]. Blocks
[Ano00m, Ano01s, Fis79]. boolean [VB01]. Boost
[Ano00]. boosts [Ano01]. booting
[Dor99]. bottles [CDK00]. bow
[Haa97]. Box
[Ano00l]. Branch
[SMJ99, DH98, HSS99, YP98]. breaking
[CH03]. breite [Ano01e]. Bridge
[Ano00l]. Bridging
[ACM04a, VDBN98]. Briefs
[GC97, Leh00a, Leh00b]. Bright
[Ano02a]. Bus
[SDC01]. Business
[GC97, Anoxx]. buyers
[Ano98a]. Bypassed
[FO02]. Bytes
[CMM01].

C [Ano02d, IBM00, Kuli06, dD00b, dD00a]. CA
[IEE03, ACM00, CF00, IEE02, Ano01s]. Cache
[BMS02, BH04, Int00a, RG02, RMC04, WWC02, BC04, CL03]. cached
[LC99]. Caches
[VLC97]. California
[IEE97, IEE99, IEE00, USE00, USE02]. Call
[Gea00, Ano01k]. Canada
[Ano00i]. Candidate
[NIS00]. Cape
[IEE05]. Carlo
[SCL06]. Cartridge
[Sam00, SCV01a, SCV01b]. Case
[Kuli06]. CD
[Ano00l]. Celebrates
[Ano01d]. cell
[WSO+06]. Center
[Ano01d, Sha03]. Centric
[BH04]. CEO
[Ano01w]. CERN
[Pin06]. CGO
[IEE03]. Challenge
[Kre01a]. Challenges
[Cha06, Li01, Ser02, Smi00, Wir99, SK01]. Chancen
[Ano00i]. chances
[Ano00d]. changes
[Ano00]. characterization [HDL+07]. Chassis
[Ano00]. Chip
[Ano01i, DGMJ00, GC97, Pau01, Ano98b, Ano00a, Ano01w, BGM+00, WWC02]. Chipmaker
[Ano01z, Anoxx]. Chips
[Col05, IEE97, IEE99, IEE00, Ano00e, Ano00f, Pop02, Ano99b, Ano00e]. Choice
[Kro00a]. Choices
[Ano00k, Ano01r]. Chronicles
[Col05]. Circuits
Considerations [ZRMh00b, ZRMH00c, ZRMH00d, ZRMH00a]. constraints [EFKR01]. Control [CMM01, SMJ99]. Controlled [SLHC04]. Convergence [GC97, GEAS00]. coprocessors [CS00]. Core [AWB02, MP01, MB05, McN06b, Sha00a, Sha00b, WAB02]. Corp [Ano00m]. Corporation [Ano00l, Ano00m, Ano00l]. correct [dDDL04]. correlating [HSS99]. cost [Anoxx, Ano10z, Sib98a]. cost-efficient [Sib98a]. could [Anoxx]. counted [Kro00a]. Counter [Geo06]. CPR [SMJ99]. CPU [Ano00b, Ano00p, Ano11z, Ano11-27]. CPU2000 [HDL+07]. CPU2006 [HDL+07]. CPUs [Ano10n, Ano00c, Ano00c]. Cramping [Moo65]. creature [Ano01w]. Criteria [Roo06]. Critic [Lew99]. current [CDK00]. custom [AMR00]. customizable [FBF+00]. Cycle [BMS02]. Cycles [HMSW01].

Data [AMD99, BC04, BH04, Sha03, VL97, BMM99, CDK00, DKM01, EMM00, HSS99]. Database [Anw06, Gok96, MTH07]. Databases [Anw00j, MLH+00]. Datapath [FO02]. Datenbanken [Anw00j]. day [Haa97]. Deals [Ano98a]. Death [Tuo02]. Debug [JPG02]. Debut [Ano10m]. December [IEE04]. Decision [Cla06, SmWHA00]. Decryption [Int00i]. Defining [War97]. delay [EFKR01]. demonstrates [Ano00c]. demonstriert [Ano99b, Ano00c]. demos [Ano00f]. Demystifying [Son98]. Denver [ACM01]. Departments [Ano99a, Ano10d]. Deshalb [Ano10y]. Design [ACM99, ACM00, CB01, DTZ90, EM00, Gok96, Gwe99c, Roo06, Ser02, ZRMh00b, ZRMH00c, ZRMH00d, LLC99, ME02, SR00, SK01, ZRMH00a]. designed [BDE+04]. Designing [DBWA00, MTH07]. Designs [Ano00m]. Desktop [FURM00a, FURM00b]. Detailed [Jar99]. details [Haa97]. Developer [Int99, Int00b, Int00j, Int00e, Int00f, Int00g].
Pin06, RS00, TRD+00, USE00, RT00, SR00].

Fisherman [IEE03]. FLAME [VBLvdG08].

Floating [CHN99, Int00k, TOML04, Ano02c, LMOT01, LMOT02].

Floating-Point [CHN99, TOML04, Int00k, Ano02c, LMOT01, LMOT02].

Floating-Point [CHN99, TOML04, Int00k, Ano02c, LMOT01, LMOT02].

Flow [CWY+08]. Focuses [Die99]. forces [Ano00c]. forecast [Gwe97, Gwe00a]. Forefront [Ano00b, Ano01h]. formats [AMR00]. forthcoming [Ano00f].

Forecast [Gwe97, Gwe00a]. Forefront [Ano00b, Ano01h]. formats [AMR00]. forthcoming [Ano00f].

Fortran [Hew01, Ano02d]. Forum [AMD09, Han97]. four [Sco01]. fourth [Ano00g]. framework [AMC+03, mWH98].

France [Ano03]. Francisco [IEE02, IEE03].

FreeBSD [Ano00l]. Freemont [Ano00m].

Frequency [RMC04]. Frontiers [ACM06].

fruhestens [Ano00g]. Fullchip [MLH+00].

Fully [FO02]. Fully-Bypassed [FO02].

function [Mar03a]. Functions [AAC+04, BM05, HKST99, HKN+00, Mar00, ST99, Tho03, dDDL04].

dimensional [Anoxc].

Fused [BM05, Kre01a].

Fused-mac [BM05]. Fuss [Ano01q].

Future [Ano02a, Cam03, Roe98, SK01, Mat04, Ano01a, Ano01b, Tho98].

Gang [Ano01h]. Garbage [HMSW01].

Gateway [Ano00m]. gating [BM00].

GCC [Ave06, Liu06]. Gcom [Ano00m]. Gears [Nan98].

Gelato [Ano06, Geo06]. GEM [BCD+92].

General [USE02]. generating [SS03].

Generation [AWB02, Ano06, BMS02, HN01, IEE03, NH02, SR03, TRD+00, WAB02, Dor99, RT00].

Generator [BCC+00]. Georgia [ACM99].

German [Mar03b, Ano00c, Ano00e, Ano00d, Ano00g, Ano00i, Ano00j]. Get [Hug00b, Ano08a].

[Ano00f].

GHz [SR03]. GNUPro [Ano00m]. good [Ano00d].

GPT [Chu06a]. Grace [GC97].

Grid [Lee06, Hum06, Pin06, Tak06, Wol04].

Grids [Joh06b].

Growth [GC97]. Guest [Cra00].

GUI [Ano00m]. Guide [Ano04, Eng00, Int99, Int00b, Int00h].

Guidelines [DBWA00]. gute [Ano00d].

H-P [Han97]. Hackers [GC97]. Hammer [Ano01z, Ano01z]. handle [Ano01-27].

Handling [Int00k, dD00b, dD00a]. hangs [Ano00i]. hangt [Ano00i].

Hardware [Ano01d, Ano01e, CWY+08, Int00d, MSP98, SRM+00, SUK+01, USK+01, UMT+01, Ano99].

Hardware [Ano01e].

Hardware-Software [MSP98].

Harter [Ano01v]. Haskell [LLC99]. HAVEGE [SS03].

Heads [GC97]. Heat [GC97].

Height [SMJ99].

Help [Ano01w].

Helper [WCW+04a, WCW+04b, WCW+04c].

Herald [Ano01a, Ano01b]. Herausforderer [Ano01i]. here [Kro00a].

Heuristic [SS03].

Hewlett [An00c, Ano01u]. hierarchies [YAK00].

Hierarchy [MSP98].

High [ACM01, ACM04a, Ano00c, HKN+00, SR00].

High-end-Server-Arena [Ano01q].

High-Performance [Gig06, CBF01, SCV01b].

Highend [Ano01e].

Higher [AH00, RMC04]. Highly [AAC+04, HKN+00, SR00].

Highly-parallel [SR00].

History [RF92, Bre02]. Hitched [Hug00b].

Horizontal [Fis79]. Horribly [Lew99].

Host [Hum06, Lee06].

Hot [IEE97, IEE99, IEE00].

Hotel [IEE02].

HP [Ano00c, Ano01q, Ano98a, Ano00c, Cla06, GC97, Hew01, Kul06, LMOT01, LMOT02, POY+01, Pon05, She06, Tho03, TOML04].

HP-UX [Kul06, LMOT01, LMOT02, POY+01, Tho03, TOML04].

HP/UX [She06].

HPC [Hum06].

Hyper [McN06b, SiB98a, SiB98b].

Hyper-Ring [SiB98a, SiB98b].

Hyper-Threading [McN06b].

Hyperblocks [EMM00].

Hyperthreading [Pop02].
Interface [Era06, Int00b, Dor99].
International [ACM00, AH00, CF00, DeG98, IEE02, IEE03, IEE04]. Internet [GC97, TH99]. Interoperability [DBWA00].
Interval [KvG01], introduced [Ano99a].
Introduces [Ano01d]. Introducing [Cra00, HMR00]. Introduction [Cra00, Kni99a, Mar03b].
Inverse [Mar05]. Investigations [She06]. ISA [Die99]. Ischia [ACM06]. ISP [Ave06]. ISPD [ACM00]. ISPD-00 [ACM00].
ISSCC [IEE02]. Issue [FO02, Kob01, Ano99e, mWH98, RF93]. issues [GEAS00]. Italy [ACM06]. Itanium [Ano00b, Ano00c, Ano00p, Ano01c, Ano01f, Ano01e, Ano01i, Ano01q, Ano01v, Ano01y, Ano02b, Ano06, BH04, Cam03, CL03, McN06b, Wa02, Ano99a, Ano99b, Ano99d, Anoxx, Ano00a, Ano00c, Ano00e, Ano00f, Ano00g, Ano00h, Ano00k, Ano00m, Ano00o, Ano01a, Ano01d, Ano01g, Ano01h, Ano01n, Ano01k, Ano01m, Ano01o, Ano01j, Ano01i, Ano01p, Ano01r, Ano01u, Ano01s, Ano01x, Ano01z, Ano01b, Ano01-27, Ano02a, Ano02c, Ano04, AK00, Ave06, BDE+04, BBC+02, BMS02, Cam03, CH03, Cha06, Cla06, CHT02, CHI+03, Cra00, DTZ00, Int00n, DSR01, Eng00, ET03, FO02, Geo06, Gep01, Gwe00a, Gwe00b, Hew01, HP03b, HP06, HKS+04, Int00j, Int00h, Int00i, Int00k, Int00l, Int00m, Int03a, Int03b, JMO2, Joh06b, Jur06, KKH+01, KNH+01, Kob01, KI01].
Itanium [Kre01a, Kre01b, Ku06, Lau06, Li01, LMOT01, LMOT02, Liu06, Mar03a, MLH+00, MS03, MB05, McN06a, MSN+01, Moo6, NTN+01, POY+01, Pau01, Pon05, Pop02, Qua00a, Qua00b, RG02, Roo06, RMC04, Sam00, SCVO1a, SCVO1b, Sco01, SYA+01, SCHL03, SLHC04, Sha03, Sha99, Sha00a, Sha00b, SA00, SUK+01, SzUK+04, SR03, Swe02, Tho03, TOML04, Tri00, TBB01, Tsu01, USK+01, UMT+01, WCW+04a, WCW+04b, WCW+04c, WWC02, WAB02].
Itanium-2 [LMOT02, WCW+04a, WCW+04b, WCW+04c]. Itanium-based

[Ano06, Int00j, TOML04, BDE+04, CHT02, JM02, Kob01, Pon05, TBB01].
Itanium-Chips [Ano99b, Ano00c]. Itaniumentwicklung [Ano01o].
Itanium(TM) [GHH+01, HDL+07].

iWarp [GO98]. IX [IEE97].
J2SE [Ano00m]. Jahren [Ano01m].
January [Hug00a]. Java [AGMM00, CLS00, GC97, IKN03, KKN06, MP01, Tho98]. Job [CMM01]. Jolla [CMM01].
Jahren [Ano00m]. J2SE [Ano00m]. Jahres [Ano01m].

Kaspersky [Ano00i], katapultieren [Ano00e]. Kernel [CMM01, EM00, Hua06, Int00i, Pra98, ME02]. Kernels [CFLZ99, FCLZ99]. Keynote [Gee06].
Killer [Ano00d]. Kit [Int00j]. MHTh07. kommen [Ano01n]. kommt [Ano00g].
Konkurrenten [Ano01q]. Korner [Pra98].
Kylix [CMM01].

L3 [RMC04]. Lab [Ano00l]. Landmark [Col05]. Lands [Ano01t]. Gep01. Language [ACM99, TBGOD99, Bre02, LLC99].
Languages [CF00]. Large [Dov99]. Larger [RMC04]. last [Ano01a, Ano01b]. late [Ano00g]. Launch [Gwe00b]. Launches [Ano01j]. launching [Ano01-27]. law [CH03, Boh02, Tu002]. Layer [Ano04, BDE+04, Int00c]. Layout [Joh06a, MLH+00]. LCPC'99 [CF00].
learned [Kar07]. Leise [Ano01n].
Leistungssteigerungen [Ano01y]. less [Ano01z]. lessons [Kar07]. Level [Chu06b, FURM00a, FURM00b, RF92, RG02, SR98, SRM+00, WWC02, CDK00, RF93, SS03, YP98, YAK00]. Levels [SRM+00]. Liberty [VVP+04]. Libm
[BBC+02, CFLZ99, FCLZ99, Kul06, Ano00c].

Portland [AH00, IEE04]. Portierung [Ano00c]. Positions [Pau01]. potential [WSO+06]. power [BM00, CH03]. Power4 [Die99]. PowerEdge [Ano01s]. PowerRAC [Ano00l]. Practical [CWY+08, Jur06].

Practicing [CLS00]. Pre [CFLZ99, FCLZ99, UFG+99]. Pre-silicon [CFLZ99, FCLZ99, UFG+99]. Precision [Mar00, Mar03a, dDDL04]. predicate [EMM00, SnWHA00]. Predicated [ACM+04b, ACM+98, WWK+01].

prediction [DH98, YP98]. predictors [HSS99]. prefetch [AMC+03]. prefetches [DKM01]. Prefetching [VL97].

Preliminary [AMD01]. Preparations [Pin06]. Prepares [Ano00b, Ano00p]. prepass [IKN03]. prescient [AMC+03].

Presentation [Hum06, Lee06]. Presses [CMM01]. prevent [CL03]. principles [ET03]. Prize [GC97], procedures [VB01].

Proceedings [ACM99, ACM00, ACM04a, AH00, USE00, USE02, CF00, KK99, ACM06, Ano06, DeG98, IEE03, IEE04, IEE05].

Process [Ser02]. Processing [HKS+04, RF92, BC04, FBF+00, SJS00].

Processor [Ano99d, Ano00b, Ano00f, Ano00m, Ano00l, Ano00p, Ano02b, Ano04, BH04, CL03, DTZR00, Int00n, DSR01, Fis79, GHH+01, Hew01, HN01, HP03b, HP06, Int00h, Int00i, Int00k, Int00l, Int00m, JGP02, JGMP02a, JGMP02b, Kre01b, MS03, MB05, POY+01, Qua00a, Qua00b, RMC04, Sam00, SCV01a, SCV01b, Sha99, Sha00a, Sha00b, SA00, SDC01, WAB02, Anoxx, Ano00g, Ano00k, Ano01a, Ano01r, Ano01z, Ano01b, BM00, CDK00, EFKR01, GHH+02, Haa97, Kar07, Pop02, Sco01, WCW+04a, WCW+04b, WCW+04c, WSO+06]. Processor-Based [Ano00n, WCW+04a, WCW+04b, WCW+04c].

Processors [Ano01h, Ano01s, Cra00, McX06b, Neu06, Ram93, SR98, Ano00h, ET03, Haa97, HKLS00, LC99, WYX+08, ZRMH00c, ZRMH00d].

Product [Ano00b, Ser02]. Products [Ano01l, Ano00m, Ano01u, Ano01s, Kob01].

Professional [Ano00l]. profiling [ZWG+97]. profit [Ano00j]. profitieren [Ano00j]. Program [Int00m, Luc00].

Programmatic [Dov99]. Programmer [Int00h]. Programmers [AMD01, ET03].

Programming [ACM99, TBGOD99, TBB01, Bre02].

Progress [Ano00m]. Project [EM00, Liu06]. Projects [Lau06].

Promotion [LCHY03]. Properties [SDC01]. Prospects [Cam03]. Protocol [SDC01]. Prototype [Ano00a]. Provided [Ano01u]. Proving [AH00]. Prozessor [Ano01m]. Prozessor-Debut [Ano01m].

Professoren [Ano01f, Wal02]. Publisher [Hug00a, Hug00b].

Publishing [Ano00l, Ano00m]. punkten [Ano01e].

Purposes [CFLZ99, FCLZ99]. Putting [HP03b].

quad [Mar03a]. Quantitative [HP03a, HPAD+06].

Quarter [Ano00g]. Quick [Ano00l]. quietly [Ano01-27].

R&D [Hum06, Lau06]. RackMount [Ano00m].

RackMount-1UAXe [Ano00m].

Raises [Kre01b]. Rambus [MSP98].

RAMpage [MSP98]. random [SS03].

Rapid [CMM01]. RAS [Ave06, MSN+01].

Rave [Ano00n].

Read [BMS02]. Reader [Kre00a].

real [Haa97]. reality [Ano00d].

Rechnerarchitektur [Mär03b].

Reciprocal [Int03b]. Recompile [ZT00].

Recursion [YAK00].

Reduce [HMSW01].

Reduced [SRM*00].

Reduction [SMJ99].

Redundant [WFL00].

Register [FO02, RDG08].
SCHL03, SLHC04, WWK+01, LCHY03.

registers [DKM01]. reicht [Ano01i].

Rejects [GC97]. Relational [Gok96].

Release [Hew01]. Released [Kre01b].

Releases [Eng00]. Reliability [Qua00a, Qua00b]. Remainder [CHI+03, Int03a]. Remarks [Kob01].

repeating [WWK+01]. Repeater [MLH+00]. Report [EM00].

representation [BMM99]. Research [Ano00m, SSN+04]. Resort [USE00].

Resources [Fis79]. Restore [Ano00l].

Restrictions [GC97]. results [Kro00a, SzUK+04]. retargetable [AMR00].

Retrospective [mWH98, YP98]. revealed [Haa97]. ring [Sib98a, Sib98b]. RISC [Ano00d, Ano00c, Ano01c, Ano01y, Ano00c, Ano00d, WWCW00, ZT00]. Risc-Anbieter [Ano01h]. RISC-Killer [Ano00d].

Risc-Systemen [Ano01c]. rising [CH03].

Rival [Pau01]. RNC5 [Ano03]. Roadmap [AEJ+02]. Roadmaps [Cam03]. Rogue [Ano00l]. Root [CHI+03, Int03a, Int03b].

rotating [DKM01]. rounding [dDDL04].

RSA [Int00l]. RTL [MLH+00]. Rückzug [Ano01q]. Running [Ano00n]. runtime [IEE03].

S7 [Kul06]. Sackgasse [Ano01y].

SafeWrite [Ano00m]. SAL [Int00c]. San [ACM00, IEE02, IEE03, USE00].

satisfaction [VB01]. Says [Die99, Ano98b].

SC2001 [ACM01]. Scalability [She06].

Scalable [VBLvdG08, BGM+00, Sib98a].

Scaling [Neu06]. Scheduled [Roo06].

Scheduling [Chu06c, Fis79, KW01, Ram93, BMM99, EFKRO1, KIN03, WWK+01].

schemes [LC99]. Scientific [CHT02, GHH+01, GHH+02, Kvo01, Tan06, WYX+08, WSO+06]. SCO [Nan96].

Scriptics [Ano00l]. Sea [GC97, Ano01w]. second [CHI03]. Security [CWY+08, De 06, Int00l, Tak06, Kar07].

sein [Ano01i]. seiner [Ano01m]. self [MHTH07]. self-paced [MHTH07].

semantics [MP01]. Semiconductors [AEJ+02, Gep01]. September [Ano03].

Series [SSN+01]. Server [Ano09b, Ano00b, Ano00c, Ano01i, Ano00j, Ano00k, Ano00m, Ano00l, Ano00o, Ano00p, Ano01q, Ano01v, Ano01r, Ano01u, Ano01x, AK00, DGMM00, Int00a, Kob01, KI01, Kro06, MSN+01, NTN+01, SYA+01, SUK+01, Tsu01, USK+01, UMT+01, MTHH07].

Server-Markt [Ano00l]. Server-Verbund [Ano99b, Ano00c]. Server/Workstation [DGMM00]. Servers [Int00b, Ano98a, Ano00a, Pon05]. Services [Ano00m]. Session [War97]. Set [DGMM00, Int00g, Gwe99a]. sets [Ano00c].

setzt [Ano00c, Ano01c]. SG [Ano00e, Ano99b, Ano00e]. ships [Ano98b].

Shoah [Ano00m]. Show [Ano01d]. Shows [Gwe99c, Ano01w]. sich [Ano00g, Ano01y].

sieben [Ano01m]. SIGGRAPH [Ano01d]. sign [KKN06]. SIGPLAN [ACM99].

Silicon [Boh98, CFLZ99, FCLZ99, UFG+99].

SIMP [TH99]. Simulation [KA06, VVP+04, SCL06]. Singapore [Ano06, Lee06]. Single [BMS02, BGM+00].

single-chip [BGM+00]. Single-Cycle [BMS02]. Sixty [Sco01]. Sixty-four [Sco01].

size [AMR00]. skip [Ano00a]. SMK&A [Ano00m]. SNA [Ano00m]. SoftSDV [UFG+99].

Software [Ano00l, Ano00m, Int00a, Int00e, Int00f, Int00g, Int00h, Int00k, Int00l, Int00m, KNH+01, MSP98, Moe06, SSN+01, USE00, UFG+99, Wir99, Ano00f, Ano01k, DKM01, RDG08, SS03, Tri00].

Softwarehersteller [Ano01c]. Solid [IEE02]. Solid-State [IEE02]. soll [Ano01c, Ano01d]. solution [SCV01b].

Solutions [Ano00l, Gig06]. solve [CDK00]. Some [BM05]. SonicMQ [Ano00m]. SOT [Ano00m]. Source [Ano00c, Ano00h].

sowiet [Ano01m]. Spain [DeG98]. Speaks [CMM01]. SPEC [HDL+07]. Special [Ano99e, Kob01, SCV01b, IEE03, RF93].
UltraSPARC [Cam03, Cam03]. Umstieg [Ano01y]. Understanding [Dos99, ET03]. University [IEE97, IEE99, IEE00]. UNIX [Ano00l, Ano00b, Ano00p, Ano98b, Ano00k, Ano1rf, Nan98, Pan01]. Unixes [Kra98]. UnixWare [Hug00b, Nan98]. Unsigned [Rob05]. Unveil [GC97]. Unveils [Ano99d]. Update [Ano98c, Int00n, Era06, Liu06, Pin06, Wic06]. Updated [TOML04]. Updating [QOV09]. upFRONT [CMM01]. USA [AH00, CF00, IEE02, IEE05, NIS00, USE00, USE02]. Use [Ano01d, GC97, Ano00i, VB01]. User [Chu06b, SS03]. User-Level [Chu06b, SS03]. Using [CWY08, Kni99b, LCHY03, MHTH07, SCL06, dDDL04]. UX [Kul06, LMOT01, LMOT02, POY01]. Tho03, TOML04].

v1.0 [Ano00l]. v2 [TOML04]. v2.5 [Hew01]. VA [Kro99]. Validated [KyG01]. Validation [CFLZ99, FCLZ99]. Value [BM00]. Value-based [BM00]. values [HS99]. VARStation [Kro99]. Vendor [Ano98b]. Verbund [Ano99b, Ano00e]. Verification [Har00, VB01]. Verified [Gru00]. version [VVP04]. verspatet [Ano01a]. Versnutrition [Ano01m]. Versus [Fis83, Fis98]. Via [Rob05, VBLvdG08, WCW04a, WCW04b, WCW04c]. Videomodem [Ano00m]. vierten [Ano00g]. Virtual [WCW04a, WCW04b, WCW04c]. Virtualization [Chu06b, Don06]. virtualizing [Kar07]. Visualisierungsalgorithmen [Wal02]. VLIW [AMR00, FBF00, FFY05, Ram93, VB01]. Volume [Int00e, Int00f, Int00g, Int00h]. voted [Kro00a].

Wars [GC97]. Wave [Ano00l]. Wavefront [BMM99]. Way [Ano00b, Ano00p, Ano01a, AK00]. Weblogic [Ano01c]. Week [Anoxx]. Weg [Ano01e]. Welt [Ano01i]. Weltrekordrechner [Ano01f]. werden [Ano01i]. Were [War97]. Wettbewerb [Ano01y]. Wharf [IEE03]. White [AMD00]. wide [HKLS00]. wide-window [HKLS00]. Widersacher [Ano00d]. Wields [Ano01z]. WIESSE [USE00]. Will [Ano01h, GC97, Ano98b, Ano00a, Ano00h, Ano0ie, Ano01q, Pop02]. Win [CMM01]. window [HKLS00]. Windows [Wal02, Ano00b, Ano00n, Ano01-27, Ano02d, KKH01]. wird [Ano01y]. within [LLC09]. Wolfram [Ano00a]. Wonderful [Pra98]. Word [Fis83, Fis98]. Work [Dul98, Gwe99e, Haa97]. work-a-day [Haa97]. worker [Ano01w]. Workloads [HKS04]. workqueuing [VBLvdG08]. Workshop [CF00, USE00]. Workstation [Ano00l, DGMM00, Kob01, Kro99, Ano01j]. Workstations [Pan01]. World [Cam03, Pra98].

X [Ano00l]. x86 [AMD99, AMD00, AMD01]. x86-64TM [AMD00, AMD01]. Xen [De06, Don06]. Xeon [Jur06, Pop02]. XMP [Kro99]. XMT [VDBN98]. XP [Wal02].

York [NIS00]. Yosemite [Ano00l].

zum [Ano01y]. zur [Ano01y]. zwei [Ano01m].

References

Akutin:2004:HOM

Yuri Akutin, Cristina Anderson, Marius Cornea, Alexey Ershov, Evgeny Gladkov, Evgeny Gvozdev, Bob Hanek, John Harrison, Alexander Isaev, Andrey Kolesov, Alexey Kovalev, Elena Luneva, Sergey Maidanov, An-
REFERENCES

August:2004:IPS

ACM:2006:PCC

Allan:2002:TRS

Artigas:2000:ALT

Aagaard:2000:TPH

Aono:2000:AWI

Aamo
dt:2003:FMO

AMD:1999:ADN

AMD:2000:XTW

AMR:2000:CSM

Anonymous:1997:OI

Anonymous:1998:HOM

Anonymous. HP offers Merced deals. NetServer buyers to get discounts on IA-64 servers. Information Week, 682:34, May
REFERENCES

Anonymous:1998:IPA
Anonymous. IBM to port AIX to IA-64, vendor says Unix operating system will be ready when chip ships in 2000. Information Week, 697:24, August 24, 1998. CODEN INFWE4. ISSN 8750-6874.

Anonymous:1998:MNM

Anonymous:1999:DNI

Anonymous:1999:HIC

Anonymous:1999:IAR

Anonymous:1999:MNI

Anonymous:1999:SI

Anonymous:19xx:TWI

Anonymous:2000:CWS
Anonymous:2000:FPF

Anonymous:2000:HPS

Anonymous:2000:IRK

Anonymous:2000:ICL

Anonymous:2000:IPG

Anonymous:2000:IVS

Anonymous:2000:LBW

Anonymous:2000:LIS

Anonymous:2000:NCF

[Ano00j] Anonymous. Neue Chancen für Intel-Server — Datenbanken profitieren von IA-64. (German)

Anonymous:2000:TUS

Anonymous:2001:BTL

Anonymous. 64-bit technology: At long last Intel’s Itanium processor has arrived to herald a mass-market future for 64-bit technology. Personal computer world, 24(2):144–148, ????. 2001. CODEN PCWODU. ISSN 0142-0232.

Anonymous:2001:TLL

Anonymous. 64-bit technology: At long last Intel’s Itanium processor has arrived to herald a mass-market future for 64-bit technology. Personal computer world, 16(9):144–148, 2001.

Anonymous:2001:BSI

Anonymous:2001:DNI

Anonymous:2001:ESW

Anonymous:2001:ESL

Anonymous:2001:FLI

Anonymous:2001:FNI

Anonymous. News analysis: The Itanium platform lands its
REFERENCES

Anonymous:2001:NNP

Anonymous:2001:NEI

Anonymous:2001:PIM

Anonymous:2001:SSC

Anonymous:2001:SRS

Anonymous:2001:TAA

Anonymous:2001:WSM

Anonymous:2002:ASI

Anonymous:2002:III

REFERENCES

2002. URL http://www.dig64.org/about/Itanium2_white_paper_public.pdf. [Ano02c]

Anonymous:2002:OFP

Anonymous:2002:OAI

Anwar:2006:SNG

Anderson:2002:CCS

Ferd E. Anderson, J. Steve Wells, and Eugene Z. Berta. The core clock system on the next generation Itanium™ microprocessor. In IEEE [IEE02], page ?? ISBN
REFERENCES

[Barroso:2000:PSA] Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas Nowatzky, Shaz Qadeer, Barton Sano, Scott Smith, Robert Stets, and Ben
REFERENCES

Buck:2004:DCC

Brooks:2000:VBC

Boldo:2005:SFC

Bharadwaj:1999:WSP

Bradley:2002:SCR

Bohr:1998:STL

REFERENCES

Bohr:2002:INT

Brender:2002:BPL

CC:2003:UPI

Chandrakasan:2001:DHP

Catthoor:2000:HSC

Carter:2000:LCP

Larry Carter and Jeanne Ferrante, editors. Languages and compilers for parallel computing: 12th International Work-

REFERENCES

Charney:2001:UJO [CMM01] Reginald Charney, Don Marti, and Gary A. Messenbrink. upFRONT: Job opening trends; the kernel speaks; win on thin; LJ index — March 2001; Linux bytes other markets: Bay Area Rapid Transit (BART): Under control with Linux; stop the presses: Kylix clix with CLX. Linux Journal, 84:8, 10, 12, 14, April 2001. CO-
References

DEN LIOFX. ISSN 1075-3583 (print), 1938-3827 (electronic).

REFERENCES

Doshi:2001:OSD

Dong:2006:XIV

Doran:1999:EFI

Doshi:1999:UIA

Dove:1999:PAI

Dulong:2001:MCI

Desai:2000:IPC

Dulong:1998:IAW

Carole Dulong. The IA-64 architecture at work. *Computer,*
REFERENCES

Engels:2001:PPS

Engels:2000:PPS

Eranian:2000:LIP

Eranian:2006:UPI

Eichenberger:2000:IAA

Evans:2003:IAP

Fang:1999:CTI

REFERENCES

Fetzer:2002:FBI

Fowler:1999:N

Flautner:2000:TLP

Flautner:2000:TLPb

Garber:1997:NBJ

Grun:2000:MAC

Peter Grun, Nikil Dutt, and Alex Nicolau. Memory aware compilation through accurate timing extraction. In ACM, editor, Proceedings 2000: Design Automation Conference, 37th, Los Angeles Convention Center, Los Angeles, CA,
Geary:2006:KGC

Gschwind:2000:BTA

George:2006:PMI

Greer:2001:SCI

Greer:2002:SCI

Gigante:2006:HPS

Gross:1998:IAP

Gokhale:1996:DOO

Grundy:2000:VOI

Gwennap:1997:IMI

Gwennap:1999:IPI

Gwennap:1999:IDN

Gwennap:1999:MSI

Linley Gwennap. Merced shows innovative design: Static, dynamic elements work in synergy with compiler. Microprocessor
REFERENCES

Report, 13(13):1, 6–10, October 6, 1999. ISSN 0899-9341.

Gwennap:2000:III

Gwennap:2000:LLI

Haavind:1997:PIP

Halhill:1998:II

Harrison:2000:FVI

Hoffehnner:2007:CCS

HP:2000:IAD

HP:2000:OIA

HP:2001:HFV
Higginbotham:1986:AF

Henry:2000:CWW

Harrison:2000:HOM

Huck:2000:IIA

REFERENCES

org/micro/mi2000/m5012abs.htm.

REFERENCES

d.html; http://www.loc.gov/catdir/toc/ecip0618/2006024358.html.

Heil:1999:IBP

Huang:2006:CLK

IBM:2000:MCC

IEEE:1997:HCI

IEEE:1999:HCS

Hughes:2000:PJ

Hughes:2000:PUL

[Hug00b] Phil Hughes. From the publisher: UnixWare and Linux get hitched. Linux Journal, 78:??, October 2000. CODEN LIJOFX. ISSN 1075-3583 (print), 1938-3827 (electronic).

Hung:2006:HPH

IEEE:2000:HCS

IEEE:2002:IIS

IEEE:2003:PCI

IEEE:2004:PIS

IEEE:2005:PIS

Inagaki:2003:IPS

Intel:1999:IAD

Intel:2000:AIC

[Int00a] Intel Corporation. The advantages of IA-64 for cache

Intel:2000:DIG

Intel:2000:ISAa

Intel:2000:ISAb

REFERENCES

Intel:2000:IIAa

Intel:2000:IIBa

Intel:2000:IICa

Intel:2000:IIDa

REFERENCES

ISBN ???? 76 pp. LCCN

REFERENCES

[Jarp:1999:IAD]

[Jarp:2001:OIP]

[Johnson:2002:OIB]

[Johnson:2006:SLO]

[Johnsson:2006:EIC]

[Josephson:2002:DMM]

[Josephson:2002:TMMa]

[Josephson:2002:TMMb]
REFERENCES

REFERENCES

Kennai:2001:WAI

Krishnaiyer:2000:AOI

Kawahito:2006:ESE

[KnH+01]

Knies:1999:IBA

Knies:1999:OUTU

Kobayashi:2001:RSI

Krause:1998:UM

REFERENCES

REFERENCES

Kastner:2001:IBI

Lau:2006:IPR

Larin:1999:CDC

Lin:2003:SRP

Lee:2006:HPN

Lehrbaum:2000:ESNa

Lehrbaum:2000:ESNc

Lewis:1999:BCFb

Li:2001:CIA

[Li01] Wei Li. Compiling for Itanium architecture: Triumphs

REFERENCES

Markstein:2003:FQP

Martin:2003:ERG

Markstein:2005:FSM

Vachharajani:2004:FPF

McNairy:2005:MDC

McNairy:2006:BII

McNairy:2006:HTD

REFERENCES

Mosberger:2002:ILK

Mackin:2007:MSP

McInerney:2000:MRI

Moore:1965:CMC

Moore:2006:OSI

Manson:2001:CSM

McNairy:2003:IPM

Mikayama:2001:ISR
REFERENCES

16way server RAS firmware.
NEC Technical Journal = NEC
gihō, 54(10):29–32, 2001. CO-
DEN NECGEZ. ISSN 0285-
4139.

Machanick:1998:HST

Philip Machanick, Pierre Salverda, and Lance Pompe. Hardware-
software trade-offs in a di-
rect Rambus implementation of the RAMpage memory hi-
erarchy. ACM SIGPLAN No-
tices, 33(11):105–114, November
1998. CODEN SINODQ. ISSN
0362-1340 (print), 1523-2867
(print), 1558-1160 (electronic).
URL http://delivery.acm.
org/10.1145/300000/291032/
p105-machanick.pdf;
http://www.acm.org:80/pubs/citations/
proceedings/asplos/291069/
p105-machanick/.

Hwu:1998:RIA

Wen mei W. Hwu. Retrospec-
tive: IMPACT: an architec-
tural framework for multiple-
instruction issue. In Gurindar
Sohi, editor, 25 years of the In-
ternational Symposia on Com-
puter Architecture (selected papers), pages 77–79. ACM
URL http://delivery.acm.
org/10.1145/290000/285960/
p77-hwu.pdf.

Nance:1998:UGM

Barry Nance. Unix gears up for
Merced. SCO's new UnixWare.

Byte Magazine, 23(5):45, May
1998. CODEN BYTDEJ. ISSN
0360-5280 (print), 1082-7838
(electronic).

Neuner:2006:ILS

Steve Neuner. An inside look at scaling Linux to 1024
processors. In Anonymous
[Ano06], page ?? ISBN ???
LCCN ???. URL http://
/www.ice.gelato.org/oct06/
pres_pdf/gelato_IEE06oct_
scaling1024_neunersgi.pdf.

Naffziger:2002:ING

Samuel D. Naffziger and Gary
Hammond. The implementation of the next generation 64b
Itanium™ microprocessor. In
IEEE [IEE02], page ?? ISBN ??
0743-1686. LCCN ???. URL http://cpus.hp.com/technical_references/
isscc_2002/isscc_2002_1.shtml;
http://www.intel.com/design/
Itanium2/techpubs/.

NIST:2000:TAE

NIST, editor. The Third
Advanced Encryption Stan-
ard Candidate Conference,
April 13–14, 2000, New York,
NY, USA. National Insti-
tute for Standards and Tech-
nology, Gaithersburg, MD,
csrc.nist.gov/encryption/
aes/round2/conf3/aes3conf.
htm; http://csrc.nist.gov/
encryption/aes/round2/conf3/
papers/AES3Proceedings-1.
REFERENCES

REFERENCES

Quintana-Orti:2009:ULF

Quach:2000:HAR

Quach:2000:IPF

Ramakrishna:1993:DST

Rong:2008:RAS

Rau:1992:ILP

Rau:1993:ILP

Riedlinger:2002:HBL

Reid Riedlinger and Tom Grutkowski. The high band-

Sharangpani:2000:IPM

REFERENCES

[SCV01b] William A. Samaras, Naveen Cherukuri, and Srinivas Venkatan-
man. Special feature: The IA-64 Itanium processor cartridge:
For high-performance computing in a multiprocessing system
environment, consider this innovative packaging solution. IEEE
Micro, 21(1):82–89, 2001. CODEN IEMIDZ. ISSN 0272-1732
(print), 1937-4143 (electronic).

[SDC01] Kanna Shimizu, David L. Dill, and Ching-Tsun Chou. A
specification methodology by a collection of compact prop-
erties as applied to the Intel(R) Itanium(TM) processor bus
CODEN LNCSD0. ISSN 0302-9743 (print), 1611-3349 (electronic). URL
http://link.springer-ny.com/link/service/series/0558/bibs/
2144/21440340.htm; http://link.springer-ny.com/link/
service/series/0558/papers/2144/21440340.pdf.

[Ser02] George Sery. Approaching the one billion transistor logic
product: Process and design challenges. Technical report,
Hewlett-Packard Corporation, Palo Alto, CA, USA, 2002. URL

[Sha99] Harsh Sharangpani. Intel Ita-
nium processor microarchite-
ture overview. Technical re-
port, Hewlett-Packard Corpora-
tion, Palo Alto, CA, USA, 1999.
Presented at Microprocessor For-
um, October 6–9, 1999.

[Sha00a] Harsh Sharangpani. Intel Ita-
nium processor core. In IEEE
[IEE00], page ?? ISBN ????
LCCN ???. URL http://www.
hotchips.org/index12.html.

[Sha00b] Harsh Sharangpani. The Ita-
nium processor core. In IEEE
[IEE00], page ?? ISBN ????
LCCN ???. URL http://www.
hotchips.org/index12.html.
Runner-up for best presentation
award.

[Sha03] Mary Shacklett. Itanium in the
data center. Enterprise Net-
works & Servers, 9(8):9, 14, Au-
gust 2003. ISSN 1058-5400.

[Sha06] Lee Shermerhorn. HP/OSLO
Linux scalability tracking and
investigations. In Anonymous
[Ano06], page ?? ISBN ????
LCCN ???. URL http://
/www.ice.gelato.org/oct06/
pres_pdf/gelato_IEC06oct_
REFERENCES

scaltracking_shermerhorn_hp.pdf.

Smith:2000:OCF

Schlansker:1999:CCB

Sias:2000:AEP

Song:1998:DEI

Schlansker:1998:EAI

Singer:2000:FIM

REFERENCES

Stinson:2003:GTG

Schlansker:2000:AHL

Seznec:2003:HUL

Shibata:2001:SIL

Story:1999:NAI

Stoughton:2002:DPA

REFERENCES

REFERENCES

Field G. Van Zee, Paolo Bertinessi, Tze Meng Low, and Robert A. van de Geijn. Scalable parallelization of FLAME code via the workqueuing model.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Zahir:2000:CCDa

Zahir:2000:CCDb

Zahir:2000:SHIa

Zahir:2000:SHIb

Zheng:2000:PRI

Zhang:1997:SSA