Title word cross-reference

(10^{31} - 1)/9 [Hig86]. 81-Million [GC97].
TM [AMD99]. N [Rob05].

-Bit [Rob05].
00 [ACM00].

1.5 [SR03]. 11i [TOML04]. 12th [CF00].
13th [AH00]. 14th [KK99]. 16-Way
[Ano01u, AK00]. 16kB [BMS02]. 16way
[KI01, MSN+01, NTN+01, SYA+01,
SUK+01, UMT+01]. 17th [IEE05]. 1998
[DeG98, JR98]. 1UAxe [Ano00m].

2 [Ano02b, BH04, CL03, LMOT02, MS03,
McN06b, RMC04, SzUK+04, Tho03,
WCW+04a, WCW+04b, WCW+04c]. 2.2
[Pra98]. 2000 [Hug00a]. 2001
[Ano00g, CMM01]. 2004 [ACM04a]. 2005
[MHTH07]. 256KB [RG02]. 25th [DeG98].
2nd [RG02].

32 [Ano04, BDE+04].
3300-Itanium-Prozessoren [Ano01f]. 37th
[IEE04]. 3D [Wal02]. 3MB [WWC02]. 3rd
[ACM06, WWC02].
4way [USK+01].

512 [Fis83, Fis98]. 5L [IBM00]. 5th [Ano03].

6-Issue [FO02]. 64 [AAC+04, Ano97,
Ano98a, Ano98b, Ano99c, Ano00b, Ano00e,
Ano00d, Ano00i, Ano00j, Ano00n, Ano00p, BCC+00, CFLZ99, Chr96, CHN99, De 06, DBWA00, Die99, Don06, Dos99, Dov99, Dul98, DFK+99, Fan99, FCLZ99, Gig06, Gru00, Gwe97, Gwe99a, Gwe99a, Haa97, Hal98, HKST99, Har00, HKN+00, HP03b, HP06, HMR+00, HSW01, IBM00, IKN03, Int99, Int00a, Int00b, Int00c, Int00d, Jar99, Jar01, KW01, Kn99a, Kn99a, Kre01b, KKL+00, Mar00, ME02, RT00, RS00, SCV01a, SCV01b, SSN+01, SR00, Son98, ST99, TBGOD99, TRD+00, Tho98, UFG+99, WWCW00, WfL00, ZRMH99a, ZRMH99a, ZRMH99b, ZRMH99b, ZRMH99c, ZRMH99d, ZT00].

64-Bit [AMD01, Ano00n, Ano01g, Ano01z, Cha06, AMD99, Ano99e, Ano00f, Ano00g, Ano00h, Ano01a, Ano01b, ET03, Gok96, Pop02].

64-Bit-Architektur [Ano00g].

64-Bit-CPUs [Ano01n].

64-Bit-Welt [Ano01i].

64-Way [Ano00b, Ano00p].

64b [BMS02, NH02].

64bit [Ano01b].

64TM [AMD00, AMD01].

6M [RMC04].

70-443 [MHTH07].

733MHz [Kre01b].

800MHz [Kre01b].

82460GX [DGMM00].

`99 [ACM99].

abstract [VDBN98].

Abstraction [Int00c].

accelerate [EMM00].

Access [BMS02, BC04, CDK00].

Accurate [DH98, SmWHA00, GDN00].

Achieving [SRM+00].

ACM [ACM99].

Acquires [GC97].

Activities [Ave06, Hun06].

Adaptive [Chu06c, YP98].

Add [Kre01a, Rob05].

Address [LCHY03, QD98].

Addx [Ano00m].

Adelaide [KK99].

administration [Fon05].

Adopts [Ano01s].

Advanced [KKL+00, LCHY03, Boh98, NIS00].

Advantage [Geo06].

Advantages [Cha06, Dov99, Int00a].

AES [WWCW00].

Again [Ano01d].

AIX [Ano98b, IBM00].

ALAT [LCHY03].

Algorithms [CHI+03, Har00, Int00i, Int03a, Int03b, ST99].

allein [Ano01i].

Allianz [Ano01e].

allocation [RDGO8].

Alpha [Ano00i, Ano01y, Kar07].

Alpha-Architektur [Ano01y].

AlphaServer [Ano02a, alter [Anoxx].

Alternative [Ano01c, Liu06,YP98].

Am [Ano01n].

Amazing [GC97].

AMD [AMD01, Ano01z].

Analysis [Ano01t, Cam03, SmWHA00, Sve02].

Analyzer [Ano01z].

anatomy [GO98].

Anbieter [Ano01y].

angepasst [Ano01i].

Annual [USE02].

ante [Ano01n].

Anwendungen [Ano01i].

AOL [Ano01w, GC97].

API [Ano00l].

Apio [Ano00m].

Application [Fis79, Int99, Int00e, Int00d, WYX+08].

Applications [Ano02d, BBC+02, FURM00a, FURM00b, IBM00, JM02, KKH+01, Sto02, TBB01, BDE+04].

Applied [SDC01].

Applikationen [Ano01i].

Approach [HP03a, HPAD+06, EMM00, FFY05].

approaches [Ano99c].

Approaching [Ser02].

apps [Ano00k, Ano01r].

April [ACM00, KK99, NIS00].

architectural [mWH98].

Architecture [AMD99, AMD01, AAC+04, Ano99e, Ano02a, ACM+04b, BBC+02, CFLZ99, Cha06, CHI+03, DeG98, Dos99, Dul98, CFLZ99, Grun00, Hew00a, Hew00b, HKST99, HP03a, HP03b, HPAD+06, HMR+00, Int99, Int00e, Int00f, Int00g, Int00h, Int00d, Int03a, Int03b, Jar99, Kn99a, KFL99, KKL+00, Li01, Mar01b, McNo6a, Moo06, SR98, SYA+01, SCHL03, SLHC04, TBGOD99, TBB01, UFG+99, Wir99, WfL00, ZRMH00b, ZRMH00c, ZRMH00d, Ano00g, Ano02c, ACM+98, BGM+00, BC04, CDK00, ET03, FFY05, GEAS00, HDL+07, IKN03, Sco01, Tri00, ZRMH00a, Dor99].

Architectures

[ACM98, BGM+00, BC04, CDK00, ET03, FFY05, GEAS00, HDL+07, IKN03, Sco01, Tri00, ZRMH00a, Dor99].
[Cam03, Fis83, HKN+00, SMJ99, TLS90, Fis98, SJS00]. Architektur
[Ano00g, Ano01e, Ano01y, Ano01m]. Area
[CM01]. Arena [Ano01q]. Aren’t [VL97].
ARITH [IE05]. ARITH-17 [IE05].
Arithmetic
[CHN99, IEE05, KK99, TOML04, Ano02c, LMT01, LMOT02, dD004]. Arms
[Gea06]. arrived [Ano01a, Ano01b]. Article
[Ano01p]. Assembly [TBGD99, AMR00]. Assistance
[Ano00m]. AT75C310 [Ano00n]. Athlon
[Ano99a]. Atlanta [ACM99]. attracts
[Ano00k, Ano01r]. Attributes [Cam03].
Auch [Ano01i]. Aufgabe [Ano01y]. August
[AH00, CF00, IEE97, IEE99, IEE00].
Australia [KK99]. Automatic
[AGMM00, NTN+01, ZWG+97].
Availability [Qua00a, Qua00b]. Avenue
[Ano00m]. AVP [Ano00l]. Awards
[Kro00a]. aware [GDN00]. Azusa
[Ano01u, AK00, KI01].

Back [GC97]. Backend [Liu06]. Backup
[Ano00l]. backward [Ano01e]. Bandwidth
[Die99, RG02]. Barcelona [DeG98]. BART
[CM01]. Based
[Ano00n, Int00j, TOML04, WWC02, Ano00e, Ano06, BDE+04, BGM+00, BMM99, BM00, CHT02, JM02, KW01, Kob01, Pon05, TBB01, WCW+04a, WCW+04b, WCW+04c]. Basic
[Fis79, Kre01a, McN06a]. Basics [Kni99a].
Basics/Introduction [Kni99a]. Basis
[Ano99b, Ano00e, Ano01f]. Bay [CM01].
be [Ano98b, Ano00h]. Bea [Ano01c]. Beam
[Pin06]. Beats [Ano00h]. Behind [Col05].
Benchmark [Ano01d]. Best [Ano00m].
Betriebssysteme [Ano01i]. better
[Ano01z]. Beyond [Fis79, Tho98]. bieten
[Ano01c]. big [Ano00a]. Billion [Ser02].
Binary
[CHN99, GEAS00, Lew99, SmWHA00].
Bioinformatics [Anw06]. Biological
[KA06]. Biopolis [Ano06]. Bit [AMD01,
Ano00g, Ano00h, Ano01g, Ano01i, Ano01n,
Ano01z, Cha06, Rob05, Wal02, AMD99,
Ano99e, Ano00f, Ano00h, Ano01a, Ano01-27,
ET03, Gok96, Pop02, Sco01, Wal02].
bieten [Ano01q]. BLISS [Bre02]. Blocks
[Ano00m, Ano01s, Fis79]. boolean [VB01].
Boost [Ano01f]. boosts [Ano01w]. booting
[Dor99]. bottlenecks [CDK00]. bow
[Han97]. Box [Ano00l]. Branch
[SMJ99, DH98, HSS99, YP98]. breaking
[CH03]. breite [Ano01e]. Bridge [Ano00l].
Bridging [ACM04a, VDBN98]. Briefs
[GC97, Leh00a, Leh00b]. Bright [Ano02a].
Bus [SDC01]. Business [GC97, Anoxx].
buyers [Ano98a]. Bypassed [FO02]. Bytes
[CM01].
[CMM01]. Clock [AWB02, DTZR00, RT00, TRD+00, WAB02, BM00]. ClustalW [Chu06c]. Cluster [Ano99b, Wol04, Ano00c, Ano00e]. Clusters [Joh06b]. CLX [CMM01]. CO [ACM01].

Cod [IEE05]. Code [AMR00, Ano01s, BCC+00, IEE03, Kul06, LC99, VBLvdG08, WWK+01]. Codes [Roo06]. Collection [HMSW01, SDC01]. COM [Ano00m]. COMAs [QD98]. Comes [Ano00g]. Coming [Wol04]. communities [ACM04a]. Compact [SDC01]. Company [GC97]. Compaq [Ano01q, Ano01y, Ano00a, Ano00o, Ano01x]. Comparative [Cam03, HDL+07]. Compare [Ano01d]. compatibility [Ano012]. compilation [GDN00]. Compiler [Ano01i, BCC+00, BCD+92, DKK+99, DSR01, Fan99, Gwe99c, Hua06, LC99, Roo06, SLHC04, ZRMh00b, ZRMH00c, ZRMH00d, CDK00, IKN03, ZRMH00a].

Compiler-driven [LC99]. Compilers [Ano02d, KFL99, Moo06, CF00, FFY05]. Compiling [Hua06, Li01]. Complex [Lew99]. Complexity [SRM+00]. Components [Moo65]. Comprehensive [WL00]. compression [LC99, Luc00]. Computable [GC97]. Computer [BM05]. Computation [HKST99]. Computations [EMM00]. Computer [Ano00m, DeC98, HP03a, HPA+06, IEE05, KK99, Mär93b]. Computers [Ano03].

Computing [ACM01, ACM04a, ACM06, Ano00m, Ano01e, Ano01g, Ano01t, Gep01, GH+01, KBC+97, KvG01, Mar05, Pin06, SC00, Tak06, Tan06, Anoxx, CH03, CF00, CHT02, FFY05, GHH+02, GO98, SCV01b, WSO+06]. Conference [ACM99, ACM04a, AH00, Ano03, Ano06, IEE02, NIS00, USE02, ACM06, Pop02]. Confronts [Die99]. Confusion [GC97]. Connect [Ano00]. consider [SCV01b]. Considerations [ZRMh00b, ZRMH00c, ZRMH00d, ZRMH00a]. constraints [EFKR01]. Control [CMM01, SMJ99]. Controlled [SLHC04]. Convergence [GC97, GEAS00]. coprocessors [CS00]. Core [AWB02, MP01, MB05, McN06b, Sha00a, Sha00b, WAB02]. Corp [Ano00m].

Corporation [Ano00l]. cost [Ano00a, Ano00b, Ano01z, Ano01-27]. CPU2000 [HDL+07]. CPU2006 [HDL+07]. CPUs [Ano01n, Ano00c, Ano00e].

Cramming [Moo65]. creature [Ano01w]. Criteria [Roo06]. Critic [Lew99]. current [CDK00]. custom [AMR00]. customizable [FBF+00]. Cycle [BMS02]. Cycles [HMSW01].

Data [AMD99, BC04, BH04, Sha03, VL97, BMM99, CDK00, DKM01, EMM00, HSS99]. Database [Anw06, Gok96, MHTh07]. Databases [Ano00j, MLH+00]. Datapath [FO02]. Datenbanken [Ano00j]. day [Haa97]. Deals [Ano98a]. Death [Tuo02]. Debug [JPG02]. Debut [Ano01n].

December [IEE04]. Decision [Cla06, SmWHA00]. Decryption [Int00i]. Defining [War97]. delay [EFKR01]. demonstrates [Ano00e]. demonstriert [Ano99b, Ano00e]. demos [Ano00f].

Demystifying [Son98]. Denver [ACM01]. Departments [Ano99a, Ano01d]. Deshalb [Ano01y]. Design [ACM99, ACM00, CB01, DTZR00, EM00, Gok96, Gwe99c, Roo06, Ser02, ZRMh00b, ZRMH00c, ZRMH00d, LL99, ME02, SR00, SK01, ZRMH00a]. designed [BDE+04]. Designing [DBWA00, MHTh07]. Designs [Ano00m]. Desktop [FURM00a, FURM00b].

Detailed [Jar99]. details [Haa97]. Developer [Int99, Int00b, Int00j, Int00e, Int00f, Int00g, Int00h, Pop02]. Developers [Ano00m].
Developing [Sto02, TB031]. Development [POY‘01, UFG‘99]. diagrams [SmWHA00]. dictionary [Luc00]. Diego [ACM00, USE00]. DIG64 [DBWA00]. dimensional [SJ00]. Direct [MSP98].

Directed [Sm00, IEE03]. Discloses [AMD99, Gwe99b]. Disclosures [Hew00a].
discounts [An00a]. Distributed [Joh06a].

Distribution [TRL00, RT00]. Divide [Int03a]. Division [CHI‘03, Har00, Int03b, Rob05]. double [dDDL04]. double-extended [dDDL04].

DVD [GC97]. Dynamic [Gwe99c, Ram93, BDE‘04, BM00, CLS00, QD98, WWK‘01]. Dynamics [KA06].

earliest [An00a]. EarthLink [An01w].

EasysChef [An00]. ebnen [An01e]. edition [An00m]. Editor [Cra00].

Effective [KK06, VB01]. Efficient [CW‘08, SmWHA00, Sib98a]. Einblick [An01v]. Einführung [Mär03b].

Electronic [An00l, An09a]. elementary [Mar00, Mar03a, dDDL04]. Elements [Gwe99c]. ELI [Fis83, Fis98]. ELI-512 [Fis83, Fis98]. Elimination [WIL00, KKN06]. Embedded [FFY05, Le00a, Le00b, FBF‘00, Ha97, LC99].

embedding [LLC99]. emphasis [IEE03]. empirically [SS03]. Employs [An00b, An00p]. Encryption [GC97, NIS00]. end [An01q]. Ende [An01m]. Engineering [An00m].

Enhanced [An00]. Enough [VL97].

Enterprise [An00k, An01r]. entschieden [An01y]. Entwicklung [An01m, An01o]. Environment [KBC‘97, UFG‘99, SCV01b, VVP‘04].

Epic [An01e, AMR00, ACM‘98, ACM‘04b, BC04, ET03, SR08, SMJ99, SC00, SzUK‘04, Son98, Mat04, An01e].

Epic- [An01e]. Erfolg [An00i].

erfolgreich [An00]. erkaufen [An01y]. erst [An00]. Evaluating [De 06]. Exam [MTH07]. Exception [Int00k, dD00b, dD00a]. Execution [An04, ACM‘04b, BDE‘04, ZT00, ACM‘98, SR00, WWK‘01]. Exits [TLS90].

Expensive [Lew99]. Experience [Jur06].

Experiences [Joh06b, USE00]. experimental [WCW+04a, WCW+04b, WCW‘04c].

Explanation [Kre01a]. Explicit [VDBN98]. Explicitly [An01e, SC00, Haa97]. explicitly-parallel [Haa97]. Explicitly-Parallel-Instruction-Computing- [An01e].

EXPO [An00e, AMR00, ACM‘98, ACM‘04b, BC04, ET03, SR08, SMJ99, SC00, SzUK‘04, Son98, Mat04, An01e].

Eyelet [An00m].

face [An01w]. factor [Hig86].

Factorization [QOV09]. Family [An04, Hew01, POY+01]. fassen [An01q].

Fast [Lew99, Mar05, dDDL04, Mar03a].

Fast-Start [Mar05]. FBI [An01w].

Feature [SCV01b]. Features [An00b, Gwe99b, Kni99b, Qua00b].

February [IEE02]. Feedback [Sm00, IEE03]. Feedback-Directed [Sm00, IEE03]. feiert [An01m].

Field [SzUK‘04]. Field-Testing [SzUK‘04]. File [FO02]. Filesystem [Joh06a]. FileZerver [An00m]. Finalists [WCCW00]. find [An01w]. Finding [Mat04].

Finnish [An00m].

Firms [GC97]. Firmware [Dor99, MSN‘01]. First [An01g, An01t, Gep01, Haa97, Kre01b, Pin06, RS00, TRD+00, USE00, RT00, SR00].
Fisherman [IEE03]. FLAME [VBlvdG08].
Floating [CHN99, Int00k, TOML04, Ano02c, LMOT01, LMOT02].
Floating-Point [CHN99, TOML04, Int00k, Ano02c, LMOT01, LMOT02]. Floorplan [MLH+00]. Flow [CWY+08]. Focuses [Die99]. forces [Ano00c]. forciert [Ano00c]. forecast [Gwe97, Gwe00a]. Forefront [Ano00b, Ano01a]. Formal [Har00, VB01]. formats [AMR00], forthcoming [Ano00f].
Fortran [Hew01, Ano02d]. Forum [AMD99, Han97]. four [Sco01]. fourth [Ano00g]. framework [AMC+03, mWH98].
France [Ano03]. Francisco [IEE02, IEE03].
Fremont [Ano00m]. Frequency [RCM04].
Frontiers [ACM06]. fruehestens [Ano00g].
Fullchip [MLH+00]. Fully [FO02].
Fully-Bypassed [FO02]. function [Mar03a]. Functions [AAC+04, BM05, HKST99, HKN+00, ST99, Mar00, Tho03, dDDL04]. fundamental [Anox]. Fused [BM05, Kre01a].
Fused-mac [BM05]. Fuss [Ano01q]. Future [Ano02a, Cam03, Roe98, SK01, Mat04, Ano01a, Ano01b, Tho98].
Gang [Ano01h]. Garbage [HMSW01].
Gateway [Ano00m]. gating [BM00]. GCC [Ave06, Liu06]. Gcom [Ano00m]. Gears [Nan98]. Gelato [Ano06, Geo06]. GEM [BCD+92]. General [USE02]. generating [SS03].
Generation [AWB02, Anw06, BMS02, HN01, IEM03, NH02, SR03, TRD+00, WAB02, DOR99, RT00].
Generator [BCC+00]. Georgia [ACM99].
German [Mär03b, Ano00c, Ano00e, Ano00d, Ano00g, Ano001, Ano00j]. Get [Hug00b, Ano98a]. GETS [Ano00f]. GHz [SR03]. GNUPro [Ano00n]. good [Ano00d]. GPT [Chu06a]. Grace [GC97].
Grid [Lee06, Hum06, Pin06, Tak06, Wot04].
Grids [Jol06b]. Growth [GC97]. Guest [Cra00]. GUI [Ano00m]. Guide [Ano04, Eng00, Int99, Int00b, Int00h].
Guidelines [DBWA00]. gute [Ano00d].
Hackers [GC97]. Hammer [Ano01z, Ano01z]. handle [Ano01-27].
Handling [Int00k, dD00b, dD00a]. hangs [Ano00i]. hangt [Ano00i]. Hardware [Ano01d, Ano01e, CWY+08, Int00d, MSP98, SRM+00, SUK+01, USK+01, UMT+01, Ano99b]. Hardware- [Ano01e].
Height [SMJ99]. heisser [Ano01v]. helped [Ano01w]. Helper [WCW+04a, WCW+04b, WCW+04c].
herald [Ano01a, Ano01b]. Herausforderer [Ano01i]. here [Kro00a]. heuristic [SS03].
Hewlett [Ano00c, Ano01a]. hierarchies [YAK00]. Hierarchy [MSP98]. High [ACM01, ACM04a, Ano01q, Gig06, Int00i, Qua00a, Qua00b, RG02, SRM+00, TBB01, ZRMH00c, ZRMH00d, CBF01, SCV01b].
High-Availability [Qua00a].
High-end-Server-Arena [Ano01q].
High-Performance [Gig06, CBF01, SCV01b]. Highend [Ano01e]. Higher [AH00, RMC04]. Highly [AAC+04, HKN+00, SR00]. highly-parallel [SR00]. History [RF92, Bre02]. Hitched [Hug00b]. Horizontal [Fis79]. Horribly [Lew99]. Host [Hum06, Lee06]. Hot [IEE97, IEE99, IEE00]. Hotel [IEE02]. HP [Ano00c, Ano01q, Ano98a, Ano00c, Cla06, GC97, Hew01, Kul06, LMOT01, LMOT02, POY+01, Pon05, She06, Tho03, TOML04].
HP-UX [Kul06, LMOT01, LMOT02, POY+01, Tho03, TOML04]. HP/OSLO [She06]. HPC [Hum06]. Hyper [McN06b, Sib98a, Sib98b]. hyper-ring [Sib98a, Sib98b]. Hyper-Thread [McN06b]. hyperblocks [EMM00].
hyperthreading [Pop02].
IA [Ano99b, Ano99c, Ano00i, Ano00m].

IA [Ano99b, Ano99c, Ano00i, Ano00m],
International [ACM00, AH00, CF00, DeG98, IEEE02, IEEE03, IEEE04]. Internet [GC97, TH99]. Interoperability [DBWA00]. Interval [KvG01]. introduced [Ano99a]. Introduces [Ano01d]. Introducing [Cra00, HMR +00]. Introduction [Cra00, Mar03b]. Inverse [Mar03b]. Investigations [She06]. ISA [Die99]. Ischia [ACM06]. ISP [Ave06]. ISPD [ACM00]. ISPD-00 [ACM00]. ISSCC [IEE02]. Issue [FO02, Kob01, mWH98, RF93]. issues [GEAS00]. Italy [ACM06]. Itanium [Kre01a, Kre01b, Kul06, Lau06, Li01, LMOT01, LMOT02, Liu06, Mar03a, MLH +00, MS03, MB05, McN06a, MSN +01, Moo06, NTN +01, POY +01, Pau01, Pon05, Pop02, Qua00a, Qua00b, RG02, Roo06, RMC04, Sam00, SCAV01a, SCAV01b, Sco01, SYA +01, SCHL03, SLHC04, Sha03, Sha99, Sha00a, Sha00b, SA00, SUK +01, SzUK +04, SR03, Sve02, Tho03, TOM04, Tsh00, TBB01, Tsu01, USK +01, UMT +01, WCW +04a, WCW +04b, WCW +04c, WWC02, WAB02]. Itanium-2 [LMOT02, WCW +04a, WCW +04b, WCW +04c]. Itanium-based [Ano06, Int00j, TOM04, BDE +04, CHT02, JM02, Kob01, Pon05, TBB01]. Itanium-Chips [Ano99b, Ano00c]. Itanium-Entwicklung [Ano01a]. Itanium(R) [GHH +02, HDL +07]. Itanium™ [AWB02, GHH +01, HN01, NH02, SDC01]. iWarp [GO98]. IX [IEE97]. J2SE [Ano00m]. Jahren [Ano01m]. January [Hug00a]. Java [AGMM00, CLS00, GC97, IKN03, KKN06, MP01, Tho98]. Job [CMM01]. Jolla [CF00]. Journal [RF93]. Judge [GC97]. JUDO [CLS00]. June [DeG98, IEE05, USE02]. Juni [Ano01m]. Just [IKN03]. Just-In-Time [IKN03]. Kaspersky [Ano00l]. katapultieren [Ano01c]. Kernel [CMM01, EM00, Hua06, Int00i, Pra98, ME02]. Kernels [CFLZ99, FCLZ99]. Keynote [Gea06]. Killer [Ano00d]. Kit [Int00j, MHTH07]. kommen [Ano01n]. kommt [Ano00g]. Konkurrenten [Ano01q]. Korner [Pra98]. Kylix [CMM01]. L3 [RMC04]. Lab [Ano00l]. Landmark [Col05]. Lands [Ano01t, Gep01]. Language [ACM99, TBGOD99, Bre02, LLC99]. Languages [CF00]. Large [Dov99]. Larger [RMC04]. last [Ano01a, Ano01b]. late [Ano00g]. Launch [Gwe00b]. Launches [Ano01l]. launching [Ano01n]. law [CH03, Boh02, Tuo02]. Layer [An04, BDE +04, Int00c]. Layout [Joh06a, MLH +00]. LCPC'99 [CF00]. learned [Kar07]. leise [Ano01m]. Leistungssteigerungen [Ano01l]. less [Ano01z]. lessons [Kar07]. Level [Chu06b, FURM00a, FURM00b, RF92, RG02, SR98, SRM +00, WWC02, CDK00, RF93, SS03, YP98, YAK00]. Levels [SRM +00]. Liberty [VVP +04]. Libm [TOM04, LMOT01, LMOT02]. Library
Int00k, LMOT01, LMOT02. Politics [Col05]. Port [Ano98b], Portable [Sto02]. portas [Ano01a]. Porting [BBC+02, CFLZ99, FCLZ99, Kul06, Ano00c].

Portland [AH00, IEE04]. Portas [Ano01n]. Porting [BBC+02, CFLZ99, FCLZ99, Kul06, Ano00c]. Practical [CWY+08, Jur06].

Practicing [CLS00]. Pre [CFLZ99, FCLZ99, UFG+99]. Pre-silicon [CFLZ99, FCLZ99, UFG+99]. precision [Mar00, Mar03a, dDDL04], predicate [EMM00, SmWAH00]. Predicate [ACM+98b, ACM+98, WWK+01].

prediction [DH98, YP98], predictors [HSS99], prefetch [AMC+03]. prefetches [DKM01]. Prefetching [VL97]. Preliminary [AMD01]. Preparations [Pin06]. Prepares [Ano00b, Ano00p]. prepass [IKN03]. prescient [AMC+03].

Presentation [Hun06, Lee06]. Press [CMM01], prevent [CL03]. principles [ET03]. Prize [GC97], procedures [VB01].

Proceedings [ACM99, ACM00, ACM04a, AH00, USE00, USE02, CF00, KK99, ACM06, Ano06, Dec98, IEE03, IEE04, IEE05].

Process [Ser02]. Processing [HKS+04, RF92, BC04, FBF+00, SJS00].

Processor [Ano99d, Ano00b, Ano00f, Ano00m, Ano00l, Ano00p, Ano02b, Ano04, BH04, CL03, DTZR00, Int00m, DSR01, Fis79, GHH+01, Hew01, HD01, HP03b, HP06, Int00h, Int00i, Int00k, Int00l, Int00m, JG02, JG02a, JG02b, Kre01b, MS03, MB05, POY+01, Qua00a, Qua00b, MCM04, Sam00, SCV01a, SCV01b, Sha99, Sha00a, Sha00b, SA00, SD01, WAB02, Anox, Ano00g, Ano00k, Ano01a, Ano01r, Ano01z, Ano01b, BM00, CDK00, EFKR01, GHH+02, Haa97, Kar07, Pop02, Sco01, WCW+04a, WCW+04b, WCW+04c]. Processors [Ano01h, Ano01s, Cra00, McN06b, Neu06, Ram93, SR98, Ano00h, ET03, Haa97, HKLS00, LC99, WYX+08, ZRMH00c, ZRMH00d]. Product [Ano00b, Ser02]. Products [Ano00l, Ano00m, Ano01u, Ano01s, Kob01].

Professional [Ano00l]. profiling [ZWG+97]. profit [Ano00]. profitieren [Ano00]. Program [Int00m, Luc00].

Programmatic [Dov99]. Programmer [Int00h]. Programmers [AMD01, ET03].

Programming [ACM99, TBG099, TBB01, Bre02].

Progress [Ano00m]. Project [EM00, Liu06]. Projects [Lau06].

promotion [LCHY03]. Properties [SDC01]. Prospects [Cam03]. Protocol [SDC01]. Prototype [Ano00n]. Provided [Ano01u]. Proving [AH00].

Prozessor-Debut [Ano01m]. Prozessoren [Ano01f, Wal02]. Publisher [Hug00a, Hug00b]. Publishing [Ano00l, Ano00m]. punkten [Ano01e].

Purposes [CFLZ99, FCLZ99]. Putting [HP03b].

quad [Mar03a]. Quantitative [HP03a, HPAD+06]. Quartal [Ano00g].

quarter [Ano00g]. Quick [Ano00l]. quietly [An01-27].

R&D [Hum06, Lau06]. RackMount [Ano00m]. RackMount-1UAXe [Ano00m].

Raises [Kre01b]. Rambus [MSP98].

RAMpage [MSP98]. random [SS03]. Rapid [CMM01]. RAS [Ace06, MSN+01].

Rave [Ano00n]. Read [BMS02]. Reader [Kre00a]. ready [Ano98b, Ano00h]. Real [Ano03]. reality [Ano99c]. Rechner [Ano00g]. Rechnerarchitektur [M¨ar03b].

Reciprocal [Int03b]. Recompilation [ZT00]. recursion [YAK00]. Recycle [HMSW01].

Red [Ano00m]. Reduced [SRM+00]. Reduction [SMJ99].
Redundant [WIL00]. Reference
[Ano04, Int00g, Int00l, Int00m]. Refuses
[Ano00o, Ano01x]. Register [FO02, RDG08,
SCHL03, SLHC04, WWK+01, LCHY03].
registers [DKM01]. reicht [Ano01i].
Rejects [GC97]. Relational [Gok96].
Release [Hew01]. Released [Kre01b].
Releases [Eng00]. Reliability
[Qua00a, Qua00b]. Remainder
[CHI+03, Int03a]. Remarks [Kob01].
renaming [WWK+01]. Repeater
[MLH+00]. Report [EM00].
representation [BMM99]. Research
[Ano00m, SzUK+04]. Resort [USE00].
Resources [Fis79]. Restore [Ano00l].
Restrictions [GC97]. results
[Kro00a, SzUK+04]. retargetable [AMR00].
Retrospective [mWH98, YP98]. revealed
[Haa97]. ring [Sib98a, Sib98b]. RISC
[Ano00d, Ano00c, Ano01c, Ano01y, Ano00c,
Ano00d, WWCW00, ZT00]. Risc-Anbieter
[Ano01y]. RISC-Killer [Ano00d].
Risc-Systemen [Ano01c]. rising [CH03].
Rival [Pau01]. RNC5 [Ano03]. Roadmap
[AEJ+02]. Roadmaps [Cam03]. Rogue
[Ano00]. Root [CHI+03, Int03a, Int03b].
rotating [DKM01]. rounding [dDDL04].
RSA [Int00i]. RTL [MLH+00]. Ruclzug
[Ano01q]. Running [Ano00n]. runtime
[IEE03].

S7 [Ku106]. Sackgasse [Ano01y].
SafeWrite [Ano00m]. SAL [Int00c]. San
[ACM00, IEE02, IEE03, USE00].
satisfiability [VB01]. Says [Die99, Ano98b].
SC2001 [ACM01]. Scalability [She06].
Scalable [VBLvdG08, BGM+00, Sib98a].
Scaling [Neu06]. Scheduled [Roo06].
Scheduling [Chu06c, Fis79, KW01, Ram93,
BMM99, EFKRO1, IKN03, WWK+01].
schemes [LC99]. Scientific
[CHT02, GHII+01, GHII+02, KvG01, Tan06,
WYX+08, WSO+06]. SCO [Nan98].
Scriptics [Ano00l]. Sea [GC97, Ano01w].

second [CH03]. Security
[CYW+08, De 06, Int00i, Tak06, Kar07].
sein [Ano01i]. seiner [Ano01m]. self
[MTHH07]. self-paced [MTHH07].
semantics [MP01]. Semiconductors
[AEJ+02, Gep01]. September [Ano03].
Series [SSN+01]. Server [Ano99b, Ano00b,
Ano00e, Ano00i, Ano00k]. Ano00n,
Ano00l, Ano00o, Ano00q, Ano01v,
Ano01r, Ano01u, Ano01x, AK00, DGM100,
Int00a, Kob01, KI01, Kro00b, MSN+01,
NTN+01, SYA+01, SUK+01, Tsu01,
USK+01, UMT+01, MTHH07].
Server-Markt [Ano00i]. Server-Verbund
[Ano99b, Ano00c]. Server/Workstation
[DGM100]. Servers
[Int00b, Ano98a, Ano00a, Pon05]. Services
[Ano00n]. Session [War97]. Set
[DGM100, Int00g, Gwe99a]. sets [Ano00c].
setzt [Ano00c, Ano01c]. SGI
[Ano00e, Ano99b, Ano00e]. ships [Ano98b].
Shoah [Ano00m]. Show [Ano01d]. Shows
[Gwe99c, Ano01w]. sich [Ano00g, Ano01y].
sieben [Ano01m]. SIGGRAPH
[Ano01d]. sign [KKN06]. SIGPLAN [ACM99].
Silicon [Boh98, CFLZ99, FCLZ99, UFG+99].
SIMD [TH99]. Simulation
[KA06, VVP+04]. Singapore
[Ano06, Lee06]. Single [BMS02, BGM+00].
single-chip [BGM+00]. Single-Cycle
[BMS02]. Sixty [Sco01]. Sixty-four [Sco01].
size [AMR00]. skip [Ano00a]. SM&A
[Ano00m]. SNA [Ano00m]. SoftSDV
[UFG+99]. Software [Ano00f, Ano00m,
Int00a, Int00e, Int00f, Int00g, Int00h, Int00k,
Int00l, Int00m, KNH+01, MSP08, Mno06,
SSN+01, USE00, UFG+99, Wir99, Ano00f,
Ano01k, DGM01, RDG08, SS03, Tri00].
Softwareherstellern [Ano01c]. Solid
[IEE02]. Solid-State [IEE02]. soll
[Ano01c, Ano01e]. solution [SCV01b].
Solutions [Ano00l, Gig06]. solve [CDK00].
Some [BM05]. SonicMQ [Ano00n]. SOT
[Ano00m]. Source [Ano00c, Ano00h].
References

[BDE+04, SJS00, YP98]. two-dimensional [SJS00]. two-level [YP98]. two-phase [BDE+04].

UltraSPARC [Cam03, Cam03]. Umstieg [Ano01y]. Understanding [Dos99, ET03].
University [IEE97, IEE99, IEE00]. UNIX [Ano01d, Ano00b, Ano00p, Ano98b, Ano00k, Ano01r, Nan98, Pau01]. Unixes [Kra98].
UnixWare [Hug00b, Nan98]. Unsigned [Rob05]. Unveil [GC97]. Unveils [Ano99d].
Updated [VBP04]. Updating [QOV09].

Update [Ano98c, Int00n, Era06, Lin06, Pin06, Wie06].

v1.0 [Ano00l]. v2 [TOML04]. v2.5 [Hew01].

VA [Kro99]. Validated [KvG01].

Verification [Har00, VB01]. Verified [Gru00]. version [VVP+04]. verspatet [Ano00g]. Verspatung [Ano01m]. Very [Fis83, Fis98]. Via [Rob05, VBLvdG08, WCW+04a, WCW+04b, WCW+04c].

Video modem [Ano00m]. vierten [Ano00g]. virtual [WCW+04a, WCW+04b, WCW+04c]. Virtualization [Chu06b, Don06]. virtualizing [Kar].

Visualisierungsalgorithmen [Wal02].

VLIW [AMR00, FBF+00, FFY05, Ram93, VB01]. Volume [Int00e, Int00f, Int00g, Int00h]. voted [Kro00a].

Wars [GC97]. Wave [Ano00]. Wavefront [BMM99]. Way [Ano00b, Ano00p, Ano01u, AK00].
Weblogic [Ano01c]. Week [Anoxx]. Weg [Ano01e]. Welt [Ano01i].
Weltrekordrechner [Ano01f]. werden [Ano01i]. Were [War97]. Wettbewerb [Ano01y]. Wharf [IEE03]. White [AMD00].
wide [HKLS00]. wide-window [HKLS00].

Wierscher [Ano00d]. Wields [Ano01z].

WIES [USE00]. Will [Ano01h]. GC97, Ano98b, Ano00a. Ano00h, Ano01e, Ano01q, Pop02]. Win [CMM01].

window [HKLS00]. Windows [Wal02, Ano00h, Ano00n, Ano01-27, Ano02d, KKH+01].

world [Ano01y]. within [LLC99].

Wolf [Ano00a]. Wonderful [Pra98].

Word [Fis83, Fis98]. Work [Dul98, Gwe99c, Haa97]. work-a-day [Haa97]. worker [Ano01w]. Workloads [HKS+0]. workqueuing [VBLvdG08].

Workshop [CF00, USE00]. Workstation [Ano00l, Kob01, Kro99, Ano01j].

Workstations [Pau01].

York [NIS00]. Yosemite [Ano00l].

zum [Ano01y]. zur [Ano01y]. zwei [Ano01m].

References

[AAC+04] Yuri Akutin, Cristina Anderson, Marius Cornea, Alexey Ershov, Eugeny Gladkov, Evgeny Gvozdev, Bob Hanek,

REFERENCES

August:2004:IPS

ACM:2006:PCC

Allan:2002:TRS

Artigas:2000:ALT

[AK00] Fumio Aono and Masayuki
REFERENCES

Aamodt:2003:FMO

AMD:1999:ADN

AMD:2000:XTW

AMD:2001:PIA

Aditya:2000:CSM

Anonymous:1997:OI

REFERENCES

[Ano98b] Anonymous. IBM to port AIX to IA-64. vendor says Unix operating system will be ready when chip ships in 2000. Information Week, 697:24, August 24, 1998. CODEN INFWE4. ISSN 8750-6874.

[Ano00b] Anonymous. Compaq will skip Intel’s Itanium chip for big servers, and move straight to its successors. Computing (London
Anonymous:2000:FPF

Anonymous:2000:HPS

Anonymous. Hewlett-Packard setzt auf Linux — HP forciert die Portierung des Open-Source-Systems auf Intels Itanium und PA-RISC CPUs. (German) [Hewlett-Packard sets up Linux — HP forces the porting of open-source systems to Intel’s Itanium and PA-RISC CPUs]. *Computerwoche*, 27(2):26, ????, 2000. ISSN 0170-5121.

Anonymous:2000:IRK

Anonymous. IA-64 — der RISC-Killer? — Intels Widersacher haben gute Chancen. (German) [IA-64 — the RISC killer? — Intel’s opponent has good chances]. *Computerwoche*, 27(38):64–72, ????, 2000. ISSN 0170-5121.

Anonymous:2000:ICL

Anonymous. IA-64-Cluster unter Linux — SGI demonstriert einen Server-Verbund auf Basis von Intels Itanium-Chips. (German) [IA-64 cluster under Linux — SGI demonstrates a server based on Intel’ Itanium chips]. *Computerwoche*, 27(2):26, ????, 2000. ISSN 0170-5121.

Anonymous:2000:IPG

Anonymous:2000:IVS

Anonymous:2000:LBW

Anonymous:2000:LIS

Anonymous:2000:NCF

Anonymous:2000:NES

Anonymous:2000:NPF

Anonymous:2000:NNI

Anonymous:2000:NPAa

Anonymous. 64-bit technology: At long last Intel’s Itanium processor has arrived to herald a mass-market future for 64-bit technology. Personal computer world, 24(2):144–148, ???. 2001. CODEN PCWODU. ISSN 0142-0232.

Anonymous. 64bit technology: At long last Intel’s Itanium processor has arrived to herald a mass-market future for 64bit technology. Personal computer world, 16(9):144–148, 2001.

Anonymous:2001:FNI

Anonymous:2001:HIB

Anonymous:2001:IIC

Anonymous:2001:ICS

Anonymous:2001:ILI

Anonymous:2001:IEJ

Anonymous:2001:IAP

Anonymous:2001:IES

Anonymous:2001:LMI

Anonymous:2001:IWI

Anonymous:2001:NES

Anonymous:2001:NPP

[Ano01s] Anonymous. New products: PowerEdge adopts Intel Itanium processors. cA blocks ma-

Anonymous:2001:NAI

Anonymous:2001:NNP

Anonymous:2001:NEI

Anonymous:2001:PIM

Anonymous:2001:SSC

Anonymous:2001:SRS

Anonymous:2001:WSM

Anonymous:2002:ASI

REFERENCES

REFERENCES

Anderson:2002:CCS

Beck:2002:POA

Brifault:2004:DCM

Bharadwaj:2000:IIC

Blickstein:1992:GOC

Baraz:2004:IEL

REFERENCES

REFERENCES

REFERENCES

public/doc/discussions/uniprocessors/ia64/mpr_merced_whats_new_dec96.ps.gz.

Cornea:2002:SCI

Chubb:2006:GS

Chubb:2006:VUL

Chung:2006:COA

Collard:2003:OPC

Clabby:2006:HIA
Joe Clabby. The HP Itanium architecture decision. Internet video program., October 24, 2006. URL http://itw.itworld.com/GoNow/a30051a154506a382798246a0.

Cierniak:2000:PJJ

Charney:2001:UJO
Reginald Charney, Don Marti, and Gary A. Messenbrink. upFRONT: Job opening trends;
REFERENCES

the kernel speaks; win on lin
on thin; LJ index — March
2001; Linux bytes other mar-
kets: Bay Area Rapid Tran-
sit (BART): Under control with
Linux; stop the presses: Kylix
clix with CLX. Linux Journal,
84:8, 10, 12, 14, April 2001.
CO-
DEN LIJOFX. ISSN 1075-3583
(print), 1938-3827 (electronic).

[Col05] Robert P. Colwell. The Pentium
Chronicles: The People, Pas-
sion, and Politics Behind Intel's
Landmark Chips. Wiley, New
York, NY, USA, 2005. ISBN
LCCN ???. US$24.95.

[Cra00] John H. Crawford. Guest
Editor’s introduction: Intro-
ducing the Itanium proces-
sors. IEEE Micro, 20(5):9–11,
September/October 2000. CO-
DEN IEMIDZ. ISSN 0272-1732
(print), 1937-4143 (electronic).
URL http://dl.acm.org/10.1145/340000/339694/
p270-chou.pdf.

[CS00] Yuan Chou and John Paul
Shen. Instruction path copro-
cessors. In The 27th Annual In-
ternational Symposium on Com-
puter Architecture, pages 270–
281. ACM Press, New York, NY,
USA, 2000. ISSN 0163-5964
(print), 1943-5851 (electronic).
URL http://delivery.acm.
org/10.1145/340000/339694/
p270-chou.pdf.

Yuan, Binyu Zang, Pen chung
Yew, and Frederic T. Chong.
From speculation to security:
Practical and efficient informa-
tion flow tracking using specula-
tive hardware. ACM SIGARCH
Computer Architecture News, 36
(3):401–412, June 2008. CO-
DEN CANED2. ISSN 0163-5964
(print), 1943-5851 (electronic).

[Demshki:2000:DII] Michael Demshki, Melvin Bene-
dict, Dong Wei, and Tomm
Aldridge. Designing interop-
erability into IA-64 systems:
DIG64 guidelines. Technical re-
port, Intel Corporation, Santa
intel.com/design/ia-64/idfdIG2/.

[dD00a] Christophe de Dinechin. C++
exception handling. IEEE
Concurrency, 8(4):72–79, Oc-
tober/December 2000. CO-
DEN IECMFX. ISSN 1092-3063
(print), 1558-0849 (electronic).
URL http://dl.acm.org/10.1145/350912/351168/
pdf; http://www.computer.
dl.org/concurrency/pd2000/p4072abs.htm.
REFERENCES

REFERENCES

Desai:2000:IPC

Dulong:1998:IAW

Engels:2001:PPS

Eranian:2000:LIP

Eichenberger:2000:IAA

English:2000:MNIb

Eranian:2006:UPI

Evans:2003:IAP

REFERENCES

[Grun:2000:MAC] Peter Grun, Nikil Dutt, and
REFERENCES

REFERENCES

Gigante:2006:HPS

Gross:1998:IAP

Gokhale:1996:DOO

Grundy:2000:VOI

Gwennap:1997:IMI

Gwennap:1999:IP1

Gwennap:1999:IDN

REFERENCES

REFERENCES

HP:2001:HFV

Higginbotham:1986:AF

Henry:2000:CWW

Harrison:2000:HOM

Hoflehner:2004:COT

Harrison:1999:CTF

Huck:2000:IIA

REFERENCES

Heil:1999:IBP

Huang:2006:CLK

Hughes:2000:PUL

Huang:2006:HPH

IBM:2000:MCC

IEEE:1997:HCI

IEEE:1999:HCS

IEEE, editor. Hot Chips 11: Stanford University, Stanford, California, August 15–17, 1999. IEEE Computer Society Press, 1109 Spring Street, Suite 300,

REFERENCES

Intel:2000:IIAd

Intel:2000:IPM

Intel:2000:IBL

Intel:2000:IPF

Intel:2000:IPMa

Intel:2000:IPMb

Doshi:2000:IPP

Intel:2003:DSR

REFERENCES

Josephson:2002:TMMb

Jacobowitz:1998:LE

Jurga:2006:PEP

Konagaya:2006:PSS

Karger:2007:PSL

Kennedy:1997:NPC

Knies:1999:TIA

Kondo:2001:OIS

REFERENCES

REFERENCES

CODEN NECGEZ. ISSN 0285-4139.

and Validated Numerics and Interval 2000, the International Conference on Interval Methods in Science and Engineering were jointly held in Karlsruhe, September 19–22, 2000.

Kastner:2001:IBI

Lau:2006:IPR

Larin:1999:CDC

Lin:2003:SRP

Lee:2006:HPN

Lehrbaum:2000:ESNa

Lehrbaum:2000:ESNc

Lewis:1999:BCFb

REFERENCES

ia64/index.htm; http://
dlib.computer.org/co/books/
co1999/pdf/r9120.pdf.

[Li01] Wei Li. Compiling for Ita-
nium architecture: Triumphs
and challenges. Technical re-
port, Hewlett-Packard Corpo-
ration, Palo Alto, CA, USA,
cs.colorado.edu/EPIC1/.

[Liu06] Shin-Ming Liu. Update on
the Osprey Project, the alter-
native GCC backend for Ita-
nium. In Anonymous [Ano06],
page ?? ISBN ?? LCCN ???
URL http://www.ice.gelato.
org/oct06/pres_pdf/gelato_
ICE06oct_osprey_liu_hp.pdf.

[LLC99] John Launchbury, Jeffrey R.
Lewis, and Byron Cook. On
embedding a microarchitec-
tural design language within
Haskell. In Proceedings of
the ACM SIGPLAN inter-
national conference on func-
tional programming (ICFP '99),
Paris, France, September 27–
29, 1999, volume 34(9) of ACM
SIGPLAN Notices, pages 60–
69. ACM Press, New York,
NY, USA, September 1999.
QA76.7 .A1095 v.34 no.9 1999.
URL http://delivery.acm.
org/10.1145/320000/317784/
p60-launchbury.pdf.

[LMOT01] Ren-Cang Li, Peter Markstein,
Jon P. Okada, and James W.
Thomas. The libm library
and floating-point arithmetic for
HP-UX on Itanium. Technical
report, Hewlett-Packard Cor-
poration, Palo Alto, CA, USA,
April 2001. ?? pp. URL http:
//h21007.www2.hp.com/dspp/
ddi/ddi_download_file_TRX/
1,1249,942,00.pdf; http:
//h21007.www2.hp.com/dspp/
technology_TechDocumentDetailPage_ IDX/1,1701,981,00.html.

[LMOT02] Ren-Cang Li, Peter Markstein,
Jon P. Okada, and James W.
Thomas. The libm library
and floating-point arithmetic for
HP-UX on Itanium-2. Technical
report, Hewlett-Packard Corpo-
ration, Palo Alto, CA, USA,
2002. ?? pp. URL ???.

[Luc00] Steven Lucco. Split-stream
dictionary program compres-
sion. ACM SIGPLAN No-
CODEN SINODQ. ISSN
0362-1340 (print), 1523-2867
(print), 1558-1160 (electronic).
URL http://delivery.acm.
org/10.1145/350000/349307/
amc.org/pubs/articles/proceedings/
pldi/349299/p27-lucco/p27-
lucco.pdf; http://www.acm.
org/pubs/citations/proceedings/
pldi/349299/p27-lucco/.
REFERENCES

Markstein:2000:IEF

Markstein:2003:FQP

Martin:2003:ERG

Markstein:2005:FSM

Vachharajani:2004:FPF

McNairy:2005:MDC

McNairy:2006:BII

McNairy:2006:HTD
REFERENCES

REFERENCES

REFERENCES

Nishioka:2001:AOS

Paul:2001:IIC

Pinsky:2006:GCC

Poniatowski:2005:LHI

Popovich:2002:ILN

Partel:2001:DHU

Pranevich:1998:KKW

Qiu:1998:ODA
Xiaogang Qiu and Michel Dubois. Options for dynamic address translation in COMAs. In *Proceedings of the 25th annual international symposium on Computer archi-

[Ano06] [QD98] [PQ98]
REFERENCES

Quintana-Ortí:2009:ULF

Quach:2000:HAR

Quach:2000:IPF

Ramakrishna:1993:DST

Rong:2008:RAS

Rau:1992:ILP

Rau:1993:ILP
REFERENCES

Riedlinger:2002:HBL

Rusu:2004:IPH

Robison:2005:BUD

Roelofs:1998:FL

Roothaan:2006:CDC

Rusu:2000:CGD

Sharangpani:2000:IPM

Samaras:2000:IPC

Schlansker:2000:EEP

Settle:2003:OII

Scott:2001:SFB

Samaras:2001:IIP

REFERENCES

Samaras:2001:SFI

Shimizu:2001:SMC

Sery:2002:AOB

Sharangpani:1999:IIP

Sharangpani:2000:IIP

Sharangpani:2000:IPC

Shacklett:2003:IDC

Shermerhorn:2006:HOL
REFERENCES

REFERENCES

Smith:2000:OCF

Schlansker:1999:CCB

Sias:2000:AEP

Song:1998:DEI

Schlansker:1998:EAI

Singer:2000:FIM

Stinson:2003:GTG

Schlansker:2000:AHL

Seznec:2003:HUL

[SS03] André Seznec and Nicolas Sendrier. HAVEGE: A user-level software heuristic for generating empirically strong random numbers. ACM Transactions on Modeling and Com-

Shibuya:2001:ISH

Svensson:2002:PAI

Senta:2001:ISS

Sias:2004:FTI

Takeda:2006:SMS

Tan:2006:TSC

Triebel:2001:PIB

Tal:1999:ALP

Thakkar:1999:ISS

Thompson:1998:JIP

Thomas:2003:IMF

Tirumalai:1990:PLE

Thomas:2004:LLF

Tam:2000:CGD

Triebel:2000:IAS

Tsukakoshi:2001:OIT

Tuomi:2002:LDM

REFERENCES

REFERENCES

Vishkin:1998:EMT

VanderWiel:1997:WCA

Vachharajani:2004:LSE

Wells:2002:CCS

[S. Wells, F. Anderson, and E. Berta. The core clock system for a next-generation Itanium processor. In IEEE [IEE02], page ?? ISBN ???. ISSN 0743-1686. LCCN ???. URL http://www.scs.org/isscc/.]

Walinoga:2002:MVI

Warton:1997:PSI

[John Warton. Panel session: If I were defining ‘Merced’. In IEEE [IEE97], page ?? ISBN ???. LCCN ???.]

Wang:2004:HTVa

VDBN98

VVP04

Wang:2004:HTVb

Wang:2004:HTVc

Wu:2000:CRL

Wichmann:2006:ULO

Wirt:1999:CNS

Wolfe:2004:GTC

Williams:2006:PCP

Weiss:2002:CSB

REFERENCES

Worley:2000:AFP

Wang:2001:RRS

[WYX+08] Li Wang, Xuejun Yang, Jingling Xue, Yu Deng, Xiaobo Yan, Tao Tang, and Quan Hoang Nguyen. Optimizing scientific application loops on stream processors. ACM SIGPLAN Notices, 43(7):161–170, July 2008. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Yi:2000:TLR

Yeh:1998:RAI

REFERENCES

[Zahr:2000:CCDa]

[Zahr:2000:CCDb]

[Zhang:1997:SSA]