A Complete Bibliography of Publications in the
International Journal of Parallel Programming

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

28 June 2017
Version 2.27

Title word cross-reference

[CS16], + [SBC17]. 0 [LS92], 1 [LS92], 2 [CTB14, ES11, IBA11], 3
[BC15, HPVRPF15, HF14a, HF14b, JGM15, SJKA99, SBC17]. < [JS06a], > [JS06a]. (R)
[BKT08, SM09]. 3.0 [KaM10, OP10].

95 [KaM10].

A. [Swa88]. Abingdon [AM95],
abstraction [VR88]. Abstractions
[BCL14, LQWP10, YAI95]. Accelerated
[KLK16, SBC17]. Accelerating [FJZ+15,
HF14a, HF14b, MAWD+16, PTD+12].
Acceleration [BC10, MCFM12, STM15].
Accelerator [EK17, FVvL+16]. Access
[FG97, Joh94, OOR13, ZK07]. Accesses
[GV95, LPB13]. Accumulations [MM16].
Accumulative [IH04]. Accuracy
[CEP97, KP04]. Accurate [RGB08, TA99].
Accurately [BGdS09, Low00]. Achieving
[AMP+05, GAR+16, GS90, Won02].
Acknowledgment [Nic14]. ACOTES
[MAB+11]. Activity [FR95]. ACTS

[SSMO96]. 16 [Swa88]. 18th [DB08].

[AG15]. 2014 [Bro15]. 2DT [BARSW95].
2DT-FP [BARSW95].
MO91, NN95, OATGEL15a, QZP15, STM15, VSDK99, qWIJzKhC17, WS08, WEJS94.

Approaches [BUMS02, JCH+08].

Appropriate [Gen16]. Approximate [HZL16, Iqb91, VCP+16]. Arbitration [BS91]. ArchC [ARB+05]. Architectural [LSHK09, NP01, SEP08, TCUV14, WGF+16].

Architecture [AP86, ARB+05, BGGT02, CHCL14, CDC09, DB08, DLRS13, FCJV99, GL92, HTZ+97, JLDS16, MB12a, MB99, N4MMMW16, NAP02, RD08, STF+12, Sjt13, CB86, GkMB87].

Architecture-Agnostic [NAP02].

Architectures [BG96, BFG+10, CPG01, CND95, CJA00, GBPK07, Ged13, GGV17, HCEP98, HP13, LAD15, MCE13, MGJ+09, NFC+09, NdmCdMMW16, PJS+05, PG16, Sjbv06, TJY99, TF94, ZLA04, LRG+91].

Area [Roy10, SWZ+15]. Argument [ABASS12, NG92]. Argument-Fetching [NG92]. Arithmetic [ABASS12]. Arnoldi [Lea15]. Array [AM04, BG96, CI96, Fea91, GV95, Gs06, SMM+94, Tg05].

Array-oriented [CI96]. Arrays [EHKT07]. Arrival [FPY08b, QA11]. Art [KPS14, Lhl+16]. Assembly [ABT+00].

Asynchronous [Bbc07, Df98, Gss10, Cg94].

Atmospheric [Sms+13]. Atomic [Sw16, Win89]. Attempting [Gyl92].

Attribute [M091]. Auto [Ccgu+14, Ged13].

Auto-Tuning [Ccg+14, Ged13].

Automata [Br97]. Automatic [Aab+16, AIP03, Alg+95, Bgtg02, Cz12, CzTm03, CoJ95, CAz02, Em14, Fcrv16, Gk94, Gvb+06, Grv+14, Gms00, Hhc+15, Jw16, LqwP10, SrS06, Shk13, Ssb+17, Tfk16, Tg05, VdSgbw08, KmV87].

Aware [Aab+16, Alv03, Ctk+11, Fpcd14, JqwG15, LqwP10, LGy16, Qa11, YhgW16, MEP07]. Awareness [Rgb+08]. axioms [Fk87].

B [Ap86, Wzth13]. B-Queue [Wzth13]. B-Spline [Ap86]. Backtracking [Bma02, Srv88]. Backtracking-Based [Bma02]. Backup [Xzx+15]. BACO [Vms15]. Balance [YhgW16]. balanced [Dpl+86]. Balancing [Asw+15, AnWm99, EwHs11, Hr11, Jk03, Rlh14, RsJ+14, Sr15]. Bandwidth [Fpy08a, Kseg14]. Bank [Gg13]. bards [Par6a]. Barrier [Gh98, Htk98, Jhlm01, Lw91, Lw90, Br86, HfM88]. Barriers [Ge90, Smc94]. Based [Aa15, Bma02, Clj16, Cnd95, Cdc09, Cpmc96, Dk16, DeB87, DgmP09, FmLr17, Fc16, Fr95, Fjz+15, Fc11, Fpcd14, Fcrv16, GbPk07, Gmb06, Ggv17, Fg14, Gl92, Hzl16, HmWhr97, Hf14a, Hf14b, Hhc+15, Jk12, Kbd03, KkmS99, Kf99, Kt01, KjpN10, Llm+12, Llm16, Lpf16, Lj09, Lll+15, Lwp04, Lcl17, Mldp02, Dm17, Mcfm12, Mpr+05, NyhA14, Nrr99, Ob13, Pc13, Qzp15, Rlhl14, RsJ+14, Sab11, Ss17, SuCv17, Shz+14, Sw95, Swf+17, Tss99, Tfk16, Tsk06, Tg05, Ukt00, Us05, Wll+08, Wl16, YhgW16, Zld15, Zwjk05, Zxy+15, urhh14, Bbr11a, Bc10, Kwa+10, Km86, Lp94, Lj08, Mlb12, Oatg15a, Pan08, Rd08, Rk13, Sl14, Mil88]. basis [Ft87, Sch92]. be [Dm87, BgmR11]. Behavior [Lgy16, Tmht96]. Behavioral [Tlsg05, Vms15]. Belief [Mxp14].

Benchmark [Sgj+03, Am95].

Benchmarks [Tsb03]. better [Par86c].

Between [Bs07, Ahkr01]. Bias [Dkb+09].

Bidomain [XodFv+09]. Big [Dx14].

Billions [qWljZKc17]. Binaries
Binary
ABvK+13, DPS90, LSA+07, MA87.

Binding
[Con88]. biological [ECSS88].

Biotechnology
[BR14a]. Bipartite [BM90].

BitTorrent
[JI08]. Black [IS03].

Blackboard
[Dav87]. Blade [SKG09].

Block
[GRV+17, HCEP98, IS03, LF15, Low00, MP95, TSS99].

Block-Based
[TSS99].

Block-Structured
[HCEP98, MP95]. Blocked [SNB04].

Blocks
[CBR17]. Blue [ASA+07].

Boltzmann
[SNB04].

Bottom-Up
[SKG09].

Bottom-Up
[SKG09]. Bound
[Hum91, JGA+88]. Boundaries [SNB04].

BPLG
[LAD15].

Branch
[BA04, CHYP96, CEP97, Hum91, JSHP97, KM01, LJ08, LLSS03, TF96, JGA+88].

Branch-and-Bound
[Hum91, JGA+88].

Breath
[GRV+16]. Breath-First
[GRV+16]. Breakdown [LSHK99]. Brief
[KPS14].

Bringing
[GHM14]. Broadband
[GS07]. Broadcast [FPY08, LS05, LM00].

Broadcasting
[BB90].

BSP
[AGT17, FG16, HMF+13]. BSP-Why
[FG16].

Buffer
[YJY16]. Bug
[WLWZ15].

Building
[CBR17]. Burstiness
[SNB04].

Bus
[BM09].

Bypassing
[MS09, OVA04].

Byzantine
[KF99].

Byzantine
[KF99].

C
BG03, CAZ02, GH96, HTZ+97, PB04, SSB+17, YBRM14. Cache
CM90, JQW15, KKZN12, KSEG14, KD15, LTL15, LG16, LIE05, NIO+03, NB98, PMHC03, RLPN+02, Roy10, SB04, SS01, SS17, SJT13, TKN+08, TFMP97, YBDJ17. Cache-Coherent
[SS01].

Cache-Integrated
[KKZN12]. Caches
[BBGM95, MKAP05, PO07, TFMP97, WMC98]. Calculating
[LBT17]. Call
[JK12]. Calling
[JK12]. can
[DM87].

Capabilities
[OATGEL15b]. Capturing
[FM09]. Carbon
[CDC09]. Cardiac
[XOdFV+09]. Cartesian
[AKHD13]. CAS
[MMG04].

CASE-DSM
[MMG04]. Case
[BBT08, CG94, CML04, DE00, LDHL05, SPS14, TESK06, KM86]. Categorization
[LYL+14].

Causality
[MKAP05].

CCAP
[JQW15]. ccNUMA
[NP01]. Cell
[WO+07, BGMR11, GSC07, OOS+08, Sca11, SKG09]. Cell/B.E.
[Sca11]. Centers
[LVM16]. Central
[FG16]. Centric
[CM06, FPCD14, KPS14]. Cetus
[BM+13, RMG+13]. Challenges
[Be94]. Channel
[GL92, WQY+17]. Channels
[KL16]. Characteristics
[SH96, Tic90]. Characterization
[AVM+16].

Characterizing
[BDG09]. Check
[SNB04]. Checking
[HM90, TPS05]. Checkpointing
[LNP91, RMG+13].

Chemistry
[CGN+09]. Chinese
[FCZ16].

Chip
[GRV+17, GG13, GSC07, KKZN12, KSEG14, KT01, LS07, MV+06, OP12, PM07, TESK06, ZK07, ZG+15, ZCO9, AH08].

Chip-Multiprocessors
[GRV+17]. choice
[BS89].

Cholesky
[GN89]. church
[An10].

Circuit
[WPC07].

Clairvoyant
[SY08]. Class
[BE13, MP+13, P+15]. Class-Based
[MP+13].

Classification
[CHYP96, Mon97, QZP15]. Climate
[HNC+16, LHF+16]. Cloaking
[MS99].

CLOMP
[BDG09]. Closure
[CAP88, K95, PRS96, V98]. Cloud
[HIZ16, HC17, JWQ15, KJH14, RLH14, WQY17, XZ+15, uRHH14]. Clouds
[LT+12].

Cluster
[CYS16, EAT14, ES11, FPCD14, L09, LTL15, LSY15, MLD+02, NIK00, SCB+14]. Cluster-Based
[FPCD14, L09].

Clustered
[CPG01, GBK07]. Clustering
[BAJW14, CAP88, DMC91, FCZ16].

Clusters
[BS03, BC15, FPY08, GCD+03, GSY+13, HC17, HOZ06, QA11]. CMP
[LTL15].

CMPs
[BHJ06, FC11, KKZN12, LGY16]. Co
Co-Generation [MPR+05]. Co-operation [NB15]. Co-Scheduling [GRAG00]. Coarse [NIO+03, PSM97, AD89]. Coarse-Grain [PSM97], Code [ABTZ00, BTB+13, CPG01, GBLG10, GK94, JS10, KaM10, KAMAMA17, LF15, LC11, MGW99, MCA98, MP04, NRB94, Ō007, PB04, TFEK16, TF94, WNMW16].

Co-Generation [MPR+05]. Co-operation [NB15]. Co-Scheduling [GRAG00]. Coarse [NIO+03, PSM97, AD89]. Coarse-Grain [PSM97], Code [ABTZ00, BTB+13, CPG01, GBLG10, GK94, JS10, KaM10, KAMAMA17, LF15, LC11, MGW99, MCA98, MP04, NRB94, Ō007, PB04, TFEK16, TF94, WNMW16].

Codes [CAZ02, ELGE17, HTK98, KF99, RMG+13].

Coding [DLRS13, MB12b, SSEA14, YMW+17].

Collaborative [Gen16, VSDK09, WLWZ15].

Collection [Cra88, AH86].

Collective [FPY08b, IBA11].

Collector [Fos89, LWLG11].

Combining [ABASS12, GV95, HSCI+16, LLSS03, RK92, SMC94, WMC98].

Coming [LS07].

Commands [GYL92].

commentary [Lin88a].

Comments [Swa88].

Commercial [NYHA14, RLPN+02].

committed-choice [BS89].

communicating [Mai87, RS90].

Communication [AH08, CTB14, GAR+16, GL95, IBA11, IKN00, JQJ+16, KHH08, KKZ12, KT01, KTT+09, LM00, MMN15, MEP07, MO91, PSM97, RGB+08, TOM+11, TA99, WZTH13, MO90].

Communication-Avoiding [MMN15].

Communication-Driven [TOM+11].

Communications [Mon97].

Compaction [DH00].

Compactors [ZC09].

Comparative

[BFRPVR+15, HPVRPF15, LMAPS05].

Compare [FLD15, Sun11].

Compare-and-Swap [FLD15, Sun11].

Comparison [BS07, HMF+13, OP10, SS01, ECSS88, FT87, GE89, Hua89, Kas86].

Compatibility [CS97].

Competitive [Gen16].

Compilation [AVLV03, GBLG10, HmWHR97, JB98, KL00].

Compile [KRW+05, vDSGBP908].

Compile-Time [KRW+05].

Compile/Run [vDSGBP908].

Compile/Run-time [vDSGBP908].

Compiler

[BML+13, BKT08, CGN+09, CTK+11, CP04, CFB94, CEH13, EM13, FM+11, GBC+08, HTK98, JCD+14, Ken94, KTT+09, LEL+99, MCG+04, MO91, MCA98, MAB+11, PB04, RMG+13, RBES00, SSP+00, SBC17, SG00, TMHT96, TJY99, YZ13].

Compiler-Assisted [RMG+13].

Compiler-Generated [JCD+14, MCA98].

Compiler-Parallelized [HTK98, TMHT96].

Compiler-Towards [SSP+00].

Compilers [MPR+05, ME15, SGK12].

Compiling [HTZ+97].

Complete [BD97].

Complexity [DFH17].

Component [EFED05, MLdlP02].

Components [DKB+09, JR16].

Composable [AMP+05].

Composition [GVB+06, HHC+15, RK13].

Compositional [EHKT07, TLSG05].

Comprehensive [OATGEL15a].

Compressed [KK11].

Compression

[BAJW14, HNC+16, KKMS99, TSS99].

Computation

[BE14, CTA00, DMMS91, FLMR02, HSCI+16, LEA15, MCWK01, NdMM09, Ric90, Skb91, KMB97, MAC07].

Computational [HLK+09, PLL+15].

Computations

[HI04, NRT89, PMHC03, SBC17, VCP+16, LRG+91, SS89, TMK89, Wai87].

Compute [SR15].

Computer

[ACC+02, DB08, DMC91, Kuc94, MCE13, MGJS15, MB12a].

Computers

[Bel94, HOZ06, MLdlP02, Ano87d, Gao86].

Computing

[ACD+16, Ano16b, BE14, Car09, CTF13, CSTD93, DFH17, Den94, FKT12, HMF+13, HLS15, HS16, KJHB14, LRG14, MB12a, OATGEL15b, OG11, PLN+04, RLH14]
NAP02, NLRH07, OK99, PMHC03, RG15, RS90, Ric90, RSJ+14, SNJ04, SS99, SL14, SQH92, SR04, SH15, SASH12, TESK06, TFMP97, WB87, XH98, YA95, vdSGBK8, CG94, Gao86, Kas86, Win89.

Data-Centric [FPCD14, KP01].

Data-Driven [DTLW16, TESK06].

Data-Flow [Ano16d].

Data-Intensive [LWLG11].

Data-Parallel [AJF16, SQH92].

Data-Sharing [SNB04].

Database [SB90, STM15, VK88].

Data-Inspired [OGP+16].

Datasets [MV17].

Debugging [BBGM95].

Decomposed [WEJS94].

Decomposition [BUMS02, QZP15].

Decomposition-Based [QZP15].

Decoupled [ZLJA12].

Deductive [FG16].

Deep [GVB+06].

Defect [OB13].

Defined [KWA+10, DM87].

De finite [GHLN86].

Definition [OK99].

Degree [AK17].

Delay [BMA02, NST89].

demand [JK86].

demand-driven [JK86].

Demonstrating [ACC+02].

Denotational [Hud86].

Dense [KFC08, MVB+06].

Dependence [ABTZ00, DV97, GL95, HOZ06, Lin91a, MP91, MMG04, MBE03, MVD+14, NIK00, OATGEL15b, OG11, PLN+04, SNB04, SW16, SB91, TTF+08, qWlJzKhC17, AH86, GS90, GT86, PW87, RB86, RS90, TKM89, Tho87, Sek09].

Dependences [CDRV98].

Dependencies [AKHD13].

Divisible [RSJ+14].

Divisible [RSJ+14].

Domain [GF14, TFEK16, WL16, RK13].

Domain-Based [GF14].

Dominance [Spr92].

Dominating [DWS16].

Double [KJPN10, LLM+12].

Downsampling [LTSD15].

DRAM [ZLJ+17].

Driven [CPMC96, DTLW16, GRC+14, RNJ+12, TOM+11, TESK06, XH98, JK86, Kas86].

Drives [YJY16].

dRuby [Sek09].

DSM [BAP01, MMG04, WLL+08].

DSMs
Dynamic
[ABvK+13, CPG01, CS97, CML04, EWHs11, Hue97, JK12, JCD+14, KRW+05, LSA+07, LTF+12, LSYG15, LGY16, LMPs05, Lys08, MRLR16, MTT15, NBA13, NLRH07, OVA04, PO07, PO07, RD08, RRH03, SSNS16, SR04, SJT13, TCUV14]. Dynamically [CHPC96, GMB+11].

Eager [SAL16], Early [PYC16, TA99].

EARTH [HTZ+97, HMT+96].

EARTH-MANNA [HMT+96].

Economics [YBDJ17].

Editors
[SMM11, HF06, AM07b, CHS99, CmHS99, EmH97, FmH96, GS05, HN94].

Effect [NPD89, BCK98]. Effective
[CPMC96, HGT+12]. Effectiveness
[MHL95, PYC16, SB30]. Effects
[HRH08, TF96]. Efficiency
[STF+12, SWZ+15]. Efficient
[ABvK+13, BR97, BEPI3, BCL14, BFG+10, CPT14, CL96, EAT14, FPY08a, Fea92b, FVvL+16, GG14, GS06, GR98, GmWH98, IP90, IBA11, JGM15, KP05, LNP91, LS05, LNG12, LWW11, NRR99, NdMMW16, QRW00, Roy10, SRS06, SSNS16, SL14, SSP+96, SO89, SKAT91, SCH15, SHZ+14, SJT13, TFF+08, WZTH13, XZX+15, YJJ16, Fea92a, Hua89].

Efficiently [EGJS15, HR11, JMSG02].

Elastic [GG13, YBDJ17]. Element [RG15].

Elements [qWJJzKCH17]. Eliminate
[KT+99]. Eliminating [HTK98]. Elliptic
[Bos12]. Embedded [AF15, CHB06, CFF+10, DLRs13, Giv07, Giv08, LMPs05, MCE13, MGJS15, MAB+11, Pan08, PP10, PO07, PPEP08, TLSG05, TFEK16, US05]. Embedding [Li03, CSG89]. Emerging
[HP13]. Empirical
[CCG+14, LHL05, SSM096]. Employing
[CS97]. Emulator [WCC16]. Enable
[HP13, ID08, TAY+12]. Enabled
[FKM+11, GSY+13, RA09]. Encore
[GTK+88]. Encryption
[KBD03, NDMMW16]. End
[LSHK09].

End-to-End [LSHK09]. Energy
[AVL03, CPT14, EAT14, FVvL+16, SJT13, VC+16].

Energy-Constrained [VC+16].

Energy-Efficient
[EAT14, FVvL+16, SJT13]. Engine
[BC15, Gse07]. Engineering
[CPT14, KaM10]. Engines [MCFM12].

Enhanced [ABASS12, GRAG00].

Enhancement
[AMP10, CYS16, KP01, LCL17].

Enhancing
[ACC+01, MP95]. Ensembles
[ASW+15]. Enterprise [LVM16].

Enumeration
[AG98]. Environment
[AFM+06, AA15, BFG+10, MFG+08, SQH92, vDSGBW08]. Environments
[BCS+09, BFRPVR+15, Car09, CCL12, HH10, KJHB14, LLM16, TFF+08, BCL90, Con88]. Epidemic
[LEA15]. Equation
[CTB14, ES11]. Equations
[LM00, XoDFV+09]. Equivalences
[Mai87].

Era
[ABB+10, DX14]. Erlang
[BDH+14].

Erratum
[Ano03, HF14b, uHKAMFM16a].

Error
[DFC+07]. Estimating
[HGT+12].

Estimation
[DKB+09, KMGP01, LPF16, LLL+15, MVD+14, TSS99]. Evaluating
[AM95, BCK98, SCB+14, TF96].

Evaluation
[AMA+01, BML+13, BS15, BFG+10, CCL12, CD09, FC11, GBP07, IP+05, JCH+08, KH10, LCL17, ME15, NR94, OATGEL15a, PVAE98, SSM096,
Full [AK90a, MVD+14]. Fully [LF15].
Functional [ACC+01, AJF16, BARSW95, BFS05, GMP89, GS06, Hud86, Mat17, PC13, Gol88, Wai87]. Functions [ACC+01, CFT+06]. Fusion [EM14, Ken01, LZ17]. Fuzzy [GE90].

GrADS [BCC+05]. Grain [BG96, DV97, NR89, NIO+03, PSM97]. Grained [CTK+11, GL92, AD89]. Grammar [MO91]. Grammars [PW92].

Granularity [PSM97]. Graph [BCL90, CBR17, CZTM03, GAR+16, GP94, JK12, SSP+96, Spr92, TH17, WZB+92, GZ87].

Guest [AG15, CTP13, DPT17, EA09, FKT12, Gre16, HK14, HF06, MCE13, MGJS15, MGD+14, MA10, OG11, PP10, SM11, SGK12, SS10, Ano09a, Ayg03, AM07b, Ban04a, Ban04b, Car09, EmH97, FrH96, Fur95, GSA08, Gau96, GS05, Giv07, Giv08, HN94, JS06a, JS06b, Joe99, Joe03, McK07, Mis09, Ora03, Pan08, Seh98, Wei01, Wei02].

Guided [MTT15].

H [Roy10]. H-NMRU [Roy10]. Hadoop [Mat17]. Handle [ELGE16]. Handling [DFC+07, RBES00]. Hard [FJO+16].

Hardware [AVM+16, CPMC96, GV99, KT01, Lys08, MSA+07, NdMM09, NdMMW16, SWZ+15, SD11, SH15, STM15, WS14, ZLA04, vNR11].

Hardware-Agnostic [AVM+16]. Hardware-Based [CPMC96, KT01]. Hardware-Supported [SD11]. Hardware/Software [GV99, Lys08, SWZ+15, STM15].

Heuristics [KPS14, CSG89]. HICOR.
Hierarchical

Hierarchically

Hierarchies

High

High-Level

High-Performance

High-Productivity

High-Scalability

Higher

Higher-order

Homogeneous

Horizontal

Hotspotting

Hydrodynamics

Hypercubes

Hypercube-Based

Hyperthreading

I/O

ICCG

IDE

If

ILP

Image

Images

Immune

Immune-based

Imperfectly

Imperfectly-Nested

Implementation

Implications

Importantly

Important

Increasing

Incremental

Independent

Infinite

Information

Infrastructure

Inheritance

Installation

Inspiration

Input
TF94, CMW+94, NP98]. Instruction-level [NN95]. Instruction-Set [API03].
Intra [BGGT02]. Intra-Register [BGGT02]. IntraModule [MO91]. Introducing [SFAG14]. Introduction [Ano00a, Ano00b, Ano00c, Ano01, Ayg03, AM07a, AM07b, Ban94, Ban04a, Ban04b, Car09, CHS99, CmHS99, DB08, EmH97, EA09, Evr00, FnH96, Fur95, GSA08, Gau96, Giv07, Giv98, HmWHR97, HF06, JS06a, JS06b, Joe99, Joc03, LY98a, LY98b, McK07, MPZ06, Mis09, MA10, Ora03, Pan08, Pin95, Pin99, SMN11, SeH98, Ve01, Ve02].
intrusive [XY+15]. Invalidate [BAP01]. Invasive [SR15]. invented [Par86b].
L [MSA+07]. Lab [ZC09]. Lab-on-Chip [ZC09]. Labeling [SH87, Swa88].

Lagrangian [Rsv+05]. LALP [MCFM12]. LALR [BNW90]. Language [ARB+05, BARSW95, BCLI7, CFB94, FCZ16, Fos89, GS06, Hud86, KS97, MCFM12, MPR+05, SM90, TFEK16, WL16]. Languages [CK02, Lan90, PS92, NPD89].
Laplace [CTB14]. Large [HC17, HR11, KKZN12, LTS15, LSA+07, SGJ+03, SF+17, ZWJK05]. Large-Scale [HC17, KKZN12, SF+17]. Latency [AK96, Bos12, HZL16, JG97, LSHK09, MEP07]. Lattice [HLPI11, SMN09, SKG09]. law [Ano87a, PM07]. layer [OATGEL15b].
Level [AG06, Ano16a, BCL17, Bro15, DPT17, GBLIG10, Goe16, Jan15, KP05, LLW+17, LQWP10, MCFH98, MKAP05, SSB+07, SSEA14, SH96, SÚCV17, SMM94, SASH12, Tou05, XODFV+09, ZLJ+17, BC10, HK14, NN95, WS08]. Levels [Gsc07].
Leveraging [LTL15]. LH [CS16]. Libraries [GJK+05]. Library [BBR11a, LAD15, SÚCV17, YKLD17, YBRM14]. Life
Light [CM06]. Light-Weight [CM06]. Limit [KEKK16, LS98]. Limited [JMSG02, uHKAMFM16a, uHKAMFM16b, GT86]. Limits [SS99]. Line [SR90, TFMP97, ZC09]. Linear [CCG14, CBR17, DWS16, FLMR02, JLMW15, KS90, KFC08, LDHL05, MP04, SMM94, Gao86].

Linked [HGT12, HTmG12, vdSGBW08]. Links [NIK00].

List [AF15, DS97, EM14, LBT17, SL14, vdSGBW08]. List-based [SL14].

Load [ASW15, BG96, EWHS11, JK03, RHL14, RSJ14, YHGW16].

Load-Balance-Aware [YHGW16]. Load-Store [BG96]. Local [LLSS03].

Logic [AR16, AVPG00, KBD03, Lin91a, SAB11, BH87, Con88, Kas86, SRV88, Tin88]. Logic-Based [KBD03]. Look [MP04].

Loop [AMP01, AAB16, BE14, JG97, KP01, LS98, LM00, PMHC03, Won02, XH98].

Locality [AMP01, AAB16, BE14, JG97, KP01, LS98, LM00, PMHC03, Won02, XH98].

Logic [AR16, AVPG00, KBD03, Lin91a, SAB11, BH87, Con88, Kas86, SRV88, Tin88]. Logic-Based [KBD03]. Look [MP04].

Load-Balance-Aware [YHGW16]. Load-Store [BG96]. Local [LLSS03].

Logic [AR16, AVPG00, KBD03, Lin91a, SAB11, BH87, Con88, Kas86, SRV88, Tin88]. Logic-Based [KBD03]. Look [MP04].

Loop [AMP01, CL96, DH00, GVB+06, GMB95, GL95, HC17, IKN00, LSL94, LCL17, NG92, RAP95, WM98, YA95, LP94].

Loops [Col95, GL95, MS11, MJ02, OGP16, QRW00, Sar01, TFNG09, Wol86, YKM03, LAV98].

Loosely [LLM16]. Loss [HDL16].

Lossless [HNC16]. Loss [Bos12, FVvL16, HL16, NBN15, PO07, Roy10, SWF17].

Low-Latency [Bos12]. Low-Power [NBN15, PO07]. Low-Radix [SWF17].

LTE [LF15].

Many-Core [uHKAMFM16b, LZ17, SASH12, SA10, vNR11, NdMCdMMW16]. Many-Cores [CTK11]. Many-Field [QZP15].

Manycore [HMF13]. Map [LF86]. Mapping [HtBK10, MEP07, RGB+08, SDJS98, LRG1, NK88, PW87]. MapReduce [LSYG15, LHL16, MM16, Mat17, SHC15, VCP+13, ZC17].

Maximal [BCC00]. Maximum [Gao86]. Mean [AK96]. Measurements [JJIL15].

Mechanism [CHYP96, EM14, GMB96, Sek99, SHC15].

Mechanisms [GBP97, Gen16, MO90].

Mechanism [CHYP96, EM14, GMB96, Sek99, SHC15].

Mechanisms [GBP97, Gen16, MO90].

Mechanism [CHYP96, EM14, GMB96, Sek99, SHC15].

Mechanisms [GBP97, Gen16, MO90].

SH15, SY08, SASH12, TMHT96, TA99, VSH+11, WS14, WQY17, qWJzKhC17, YBRM14, ZK07, ZLD15, ZLJ+17, ZSH+12, Con88, EO88, FcF87, GHLN86, GS90, GT86, Hem89. Memory-Level [SASH12]. Merge [JK03].

ML [AGT17]. Mobile [ES06]. Mode [BEG+10, OP12, SDJS98]. Model [AG06, AK96, BAF94, Bds07, CND95, DMMS91, DTLW16, DFA+09, FCI6, FPCD14, HPL11, LLM16, LHL+16, Liv91, OGP+16, OATGEL15b, RSY+05, RK13, TAY+12, TESK06, JKS+06]. Model-based [RK13]. Modeling [AA15, AMP+05, BS07, KMKJ92, LEA15, MCE13, MGJS15, MOL05, PCP+13, Pra86, TLG90]. Models [BSF05, Den94, FLMR17, HHC+15, ID08, KP05, Mat17, NAP02, RNJ+12, SMES13, S01, Sk91, VSM15, VCP+13, AD86, DM87].

Modern [KPS14, LG10, LQWP10, ME15]. Modifications [Hue97]. Modular [NdMM09]. Modules [DJR16, SQH92].

Modulo [AG98, EDA96, GRAG00, LJ08, Rau96]. Modulo-Scheduled [GRAG00]. Molecular [ACC+02, BS07]. Molecule [ZXY+15]. Motivation [HmWM97]. Movement [CFB94].

Moving [HAA+11]. MPI [AJF16, BS07, ES11, FPY08b, GJR09, GSY+13, HMK09, LWP04, MOL05, MANR09, NSS12, RA09, SS01]. MPI/PVM [ES11]. MPJ [JQJ+16]. MPSoC [ID08, RBG+08, SWZ+15]. Much [MT96].

Multi [AH08, AKHD13, ABvK+13, AML+10, ABB+10, BM09, CZ12, CTB14, DS97, D81, DTLW16, DJR16, FLD15, Ged13, GMB06, GGV17, GS06, HtBK+10, JCH+08, KBG+08, MXP14, MV17, MG15, MHCF98, NdMCdMMW16, OATGEL15b, QZP15, RC16, RD08, RK13, SSP+00, SSEA14, SSB+17, SFAG14, Sun11, VSDK09, WQJY17, XODFV+09, Zha10, ZGH+15, Ali85, AGT17]. Multi-app [MML16]. Multi-BSP [AGT17].

Multi-Core [ABvK+13, AML+10, ABB+10, GGV17, SSEA14, Zha10, CZ12, Ged13, MXP14, NdMCdMMW16, QZP15, RC16]. Multi-domain [RK13]. Multi-Fault
Multi-GPU [CTB14, SFAG14]. Multi-layer [OATGEL15b]. Multi-Level [MHCF98, SSP+00, XoAFV+09].
Multi-ML [AGT17]. Multi-Prefetcher [GMB06]. Multi-Processor
[HtBK+10, BM09, KBG+08, ZGH+15]. Multi-processors [AH08, D897].
Multi-Threaded [MG15, VS06, DS97]. Multi-Threaded [DU16].
Multi-Zone [JCH+08]. Multicluster [FCJV99]. Multicomputer
[FKD+97, Fos89]. Multicomputers [LNP91, SKAT91]. Multicore
[Ano16d, CHCL14, HHW10, HM+13, KJHB14, LLM+12, LL16, SS17, TKN+08, ZC17].
Multithreading [TFN14]. Multithreading [LEL+99, TESK06].
MUSE [AK92, AK90a, AK90b].

Nano [Mis09]. Nano/Bio [Mis09]. Nano/Bio-Inspired [Mis09]. Nanotube [CDC09].
[BB90]. Nearest [LT+12]. Nebelung [MF+08]. Need [KT01, Kuc94]. Negative
[DKB+09, WS15]. Neighbor [LT+12].

Nested [AMP10, EW96, MMS07, QRW00, Sar01, aMST07]. Nets [AMP10, GL95].
Net [GG14, GSS10]. Nets [KMjC02, RA94]. Netuno [TFN14].
[MF+08]. Need [KT01, Kuc94]. Negative
[DKB+09, WS15]. Neighbor [LT+12].

Network-Aware [FPC14]. Network-Failure-Tolerant [GCD+03].
Networks [AK17, BS15, CLJH16, IBA11, Li03, LS05, MVB+06, YMW+17, AD89].
NetWorkSpace [BCS+09]. Neural [AMAH01, FCZ16, LYL14, LJ08].
Neuromimetic [RNJ+12]. Neuronal [CPP+12]. Neuron [Zey05, SDJS98].
New-Age [DKB+09]. News [FCZ16]. Newton [CCL12]. Next [Dar05]. NMRU
[Roy10]. no [Swa88]. NoCs
[MEP07, TOM+11]. Node [GAR+16, LJ09].
Nodes [NBN+15]. Non
[CSTGL03, Spr92, Con88, LP94].
Non-overlapping [Spr92]. non-shared
[Con88]. non-singular [LP94]. Non-Strict
[CSTGL03]. Noncoherent [BBGM95].
noncyclic [JF98]. Nonnegative [DZW10].
Nonsingular [OK99]. Normal [TG05].
Note
[Ano14, Ano16a, Ano16b, Ano16d, Ano16c]. Novel [DMMS91]. NUMA [BFG+10].
Number [HR11]. Numerical
[EFED05, YKLD17, Zey05].

O [AKT+14, MG15]. **O2000** [CML04].
Object [BBC07, DJR16, GS11, GS13].
Object-Oriented [GS11, GS13]. Objects [GK94]. Obtain [NRR99]. occam [Cam89].
ODE [MLdlP02]. Off [ZK07]. Off-Chip [ZK07]. **OffSCheduler** [LSYG15]. OMP [SGJ+03]. OMP2001 [TSB03]. On-Chip [GG13, KKZN12, MVBl06, AH08].

Open [AML+10, Cie91]. OpenCL [JSS+15, SSB+17]. OpenHMPP [AAB+16].
OpenMP [AM07b, ABB+10, BD07, BGD09, BFG+10, BS07, BEG+10, DFC+07, DFA+09, FM09, GSA08, HMK09, HAA+11, JCH+08, KaM10, KSJ14, MG15, MFG+08, MBE03, MMS07, NIO+03, OSS+08, OP10, WPC07, YKLD17, aMST07]. OpenMP/ MPI [BEG+10, HMK09]. OpenUH [CEH13]. Operating [CYS16, NP01].

Operation [FLD15, NB15]. Operational [Cam89]. operationally [DM87].
Operations [ABASS12, FPY08b, IBA11, ML15].
Operators [DM17]. Opportunistic [VMW+17]. OPS5 [GTK+88]. Optical [DMC91].

Optimal [AG98, BB90, DV97, DPF90, DPL86, GAR+16, MA87, Mer86, NG92, SM94, YKM03, ZLJ+17, EG86, RB86]. optimality [Gai89]. Optimisation [PPEP08].

Optimised [Zha10]. Optimization [CFB94, CPM96, CS97, CRM17, GLLH17, GmWHR98, HTwG+12, LDHL05, LM00, MO91, NIO+03, NdmCdMMW16, O007, PCP+13, RLH14, SRS06, SSEA14, Sca11, SHZ+14, YHG16]. Optimization-Based [SHZ+14]. Optimizations [BKTO8, BG96, ID08, KSEG14, LEL+99, MV17, MS11, SB90, SLZB13]. Optimize [ZLAV04]. Optimized [LF15, MGW99, Sar01]. Optimizer [LSYG15]. Optimizing [BBR11b, CGN+09, uHKAMFM16b, MBE03, ZSH+12, M909, uHKAMFM16a].

Optimum [EDA96]. Option [Ger10]. OR-[SH96]. OR-Parallel [AK90b, Lin91a, Ali86, Cie91, Tin88].

OR-Parallelism [AK90a]. Order [BS15, MSJ01, NP09]. Ordering [IS03, DM87]. orders [Pra86]. OREGAMI [LRG+91]. Organization [AM04].

Oriented [GS11, GS13, IWM16, RGB+08, SRS06, AKT+14, CZ12]. Origin [mpr+05]. OS-Based [FC11]. OSD [AGPGF14].
Other [OP10, SS89]. Out-of-Order [BS15, MSJ01]. Output [CDRV98].

Output-Dependences [CDRV98]. Overhead [CTB14, KRW+05, SJBV06]. Overheads [BGdS09, LJ08]. Overlapping [IKN00, Spr92]. Overview [BML+13].

ParaGraph [BCL90]. Parallel [AMAH01, AM04, AK17, ACD+16, ABvK+13, AA15, Ano16a, AVPG00, AJF16, BR14a, Bel94, BAF94, BASW95, BGM11, BS03, BNWL90, BR14b, BUMS02, BDH+14, Bro15, CGN+09, CPP+12, CY14, CB86, Cra88, CSTL03, CAP88, CPL+10, Dam07, DPT17, DMMS91, DE00, DS97, DS16, Den94, DX14, DZW10, DGM09, ECSS88, EHKT07, EK14, EK17, ES11, FCRC16, GBLG10, Ger10, GS11, GS13, GF14, GYL92, Grc16, GTK+88, HSCI+16, HK14, HMF+13, HP13,
[BCS+09, BS07, Car09, KaM10]. Profile
[CMW+94, CPMC96]. Profile-assisted
[CMW+94]. Profile-Driven [CPMC96].
Profiling [CPMC96, LPF16, ZSH+12].
Program [Dar05, KKMS99, MCFM12,
SNB04, SLZB13, CRM92]. Programmable
[CDC09, Dan07]. Programming
[AGT17, Ano16a, AVPG00, BBC07,
BARSW95, BCL14, BCL17, CBR17, DPT17,
DK16, DeB87, DX14, EK14, GMP89,
GJK+05, Gre16, GRR98, HSCI+16, HK14,
Hud86, KS97, KBG+08, LHL+16, Lin91a,
Lub90, MRLR16, NAP02, PLN+04,
PVAE98, SQH92, SS01, SFAG14, Swa88,
UKT00, YBRM14, ACD+14, BCL90,
BCK98, Ken94, Par86a, Par86c, Tin88].
Programs [AR16, AJF16, BAF94, BS03,
BDH+14, CB01, CZ12, DJR16, EHKT07,
FCRC16, FJO+16, Jan15, JW16, JLMW15,
KSJ14, LMP98, LBT17, Low00, MGW99,
MOL05, MBE03, NS97b, OB13, SHK14,
SJA99, SK97, SO89, WP00, BS99, Con88,
Gai89, Gol88, JB98, Kas86, SRV88].
Project [BCC+05, MAB+11]. PROLOG
[Ali86, AK90a, AK90b, Cie91, SB90, SH96,
TSS86]. PROMIS [SSP+00]. Promoting
[WLW+17]. proof [FeF87]. Propagation
[LMP98, MXP14]. Properties [MAJD16].
Proposal [DFC+07, DFA+09]. Protein
[FIZ+15, KLK16]. Protocol
[BAP01, DeB87, GSY+13, RA09].
Protocol-Based [DeB87]. Protocols
[SB91, BCK98]. Provide [SS17]. Proximity
[LTL15]. Pseudosimulation [GT86].
PTAS [JLMW15]. pull [Par86c]. Purge
[SAL16]. Purpose [WP00]. Push
[RGK04, Par86c]. PyACTS [DGMP09].
Python [DGMP09].

QCD [SKG09]. QoS [AH08, SS17, uRHH14].
QoS-supported [AH08]. Quantifying
[MHCF98]. Quantitative [LAV98, Sca11].
Quantum [PG16]. Query [STM15]. Queue
[NSS12, WZTH13, ZLD15, CRM92].
Queue-Based [ZLD15]. Queuing
[RKG04, AD86]. Queues [GL92, LLM16].
Queuing [WZTH13].

R [TRL09]. Race [KSJ14, MTT15]. Radiating
[LG10, Zey05]. Radiation-Induced [LG10]. Radio
[vNR11]. Radios [KWA+10]. Radiology
[SWF+17]. Railway [PFLR02]. Random
[AK17, GAR+16]. Randomized
[DS97, LIO3, JGA+88]. Ranking
[DS97, uRHH14]. RANSAC [HPVRPF15].
Rapid [TCUV14]. Rate [HCEP98]. Ray
[STF+12]. Ray-Traversing [STF+12].
RDMA [GSY+13, LWP04, RA09].
RDMA-Based [LWP04].
RDMA-Enabled [GSY+13, RA09].
Reachability [WZB+92]. Reaction
[HFI4a, HFI4b]. Read [MV17]. Real
[EWHS11, FJO+16]. Real-Time
[FJO+16, EWHS11]. Really [Kuc94].
Rearrangement [SBV06]. Recognition
[PR99, SS92, SHK13]. Recognizing [PS92].
Reconfigurable
[GMB+11, GBC+08, KBD03, NOMM16,
NBN+15, PJS+05, TKN+08, ZC09, CB86].
Reconfiguration [SA10]. Recovery
[JSHP97, LJO9, NBD98]. Rectangles
[Spr92]. RECU [YBDJ17]. Recurrence
[LMO0, Gao86]. Recurrences [SKA96].
Recursions
[uHKAMFM16a, uHKAMFM16b]. Recursive
[GMS00]. Red [IS03]. Red-Black [IS03]. Reduce [MKAP05].
Reduced [DV97, MB12b, OOR13].
Reducing
[CEP97, CK02, CTB14, FCJV99, ZK07]. Reduction
[ABASS12, AVLV03, JS10, KRW+05, LHF+15, LJO8, ML15, PO07,
SK97, SWL05, JK86]. Redundant
[CH95, EAT14, GV95, KTT+99].
Refactoring [BDH+14]. Referees [Lin92,
Lin88b, Lin91b, Lin86, Lin87, Lin89, Lin90].
Reference [ALG+95, RRH03, WGW04].
Scientific [DGMP09, IPR+05, MV17, SSB+17, TTF+08, WSO+07]. SCnC [SSNS16]. Scratchpad [CHCL14].
SDRAM [LPB13]. Search [GAR+16, Ged13, Hum91, KS00, LX95, MB12b, MVD+14, AD89, DPL86, KR87, RK87].
Searches [LTF+12]. Second [SS10]. Section [Ano16d, Ano16c]. Segmentation [LF15].
Seismic [PTdSF+12, Wai87]. Selected [KPS14]. Selecting [Low00].
Selection [DE00, GAR+16, uRHH14]. Selective [KMG01, TFMP97]. Self [DWS16, EFED05, FKM+11, HHW10, HC17, KFC08, LSL94, LJ05, NSS12].
Self-Adapting [EFED05]. Self-Monitored [LJE05]. Self-Scheduling [LSL94, HC17].
Semantic [HHC+15, LQWP10].
Sensor [CPT14, NBN+15]. Separation [SS92]. Sequence [SO89, ECSS88, Hua89].
Sequences [AK17, FJZ+15]. Sequential [FCRC16, LNF12, TFNC09, WNM16, Ali86]. Serial [NIK00].
Server [AFM+06, CYSL14, LJ09]. Servers [EAT14, NYHA14, RC16, WLV+17].
Service [LJ09, uRHH14]. Services [HDL16, HHC+15]. Set [API03, CZTM03, GFL00, HCEP98, MBR6, SRS06, WGW04].
Sets [DWS16, FR95, LHF+15, NRR99, SS92, EG86]. several [Hem89].
SGI [CML04, IPR+05]. Shape [CAZ02]. Share [TV15].
Shared [BS03, BS91, CCG+14, Cra88, GV99, GG13, HR11, LSL94, Lvb90, MMG04, MBE03, NIK00, NAP02, SNB04, SR15, SMC94, SS01, SS17, SMO96, SY08, WQJ17, YBRM14, ZLD15, Con88, FcF87, GHLN86, Hem89].
Shared-address [HR11]. Shared-Memory [BS03, CCG+14, GV99, LSL94, NIK00, NAP02, SMC94, YBRM14, GHLN86].
Sharing [CML04, GM79, SBNO4, YBDJ17].
Shifting [DH00]. SHMEM [SS01].
Shortest [AT91, OATGEL15a]. Shortest-Path [AT91]. shuffle [GE89].
Signal [FVvL+16, NS97b]. Signals [vNR11].
Significance [VCP+16]. SIMD [GS90, KJHB14, SBV06, SDJS98].
Similarity [Ged13]. Simple [CL06, WS08, LS91]. simplicial [EG86].
Simplifying [MCA98]. Simulating [BH87].
Simulation [ABvK+13, AA15, Dem11, KWA+10, KP05, LJ05, MCE13, MGJS15, MANR09, PPQV16, SAB11, ZY05, ZWJK05, GT86].
Simulation-Based [ZWJK05, KWA+10].
Simulations [ASW+15, CGN+09, HLP11, HF14a, HF14b].
Simulator [WPC07]. Simulators [MPR+05, PC13, TCUV14]. Simultaneous [L+99, WS08].
Single [CB01, Fos89, HF14a, HF14b, PM07].
Singular [BUM02, LP94]. SISAL [AM95].
Size [Low00]. SKA1 [FVvL+16].
SKA1-Low [FVvL+16]. Skeleton [DK16, EK14, GRC+14, GGV17, HI04, DM17, SFAG14]. Skeleton-Based [GGV17].
Skeleton-Driven [GRC+14]. Skeletons [CPT14, EM14, EK17, JCD+14, SM16].
SkeTo [EM14]. Skewing [Won02, Wol86].
Sliding [NDM09]. Sliding-Window [NDM09]. Slots [BMA02]. SLR [BNWL90].
Smith [FJZ+15, HMF+13, TG05]. SMPs [BS03].
SMT [KLG08]. Snow [TRL09]. SOC [LVM16, AM+10, KHH08, KBG+08].
Social [CLJH16]. socket [RC16]. Software [AVM+16, BTB+13, CFF+06, Dar05, DJS12, EFED05, GRAG00, HTK98, KWA+10].
Utility [YBDJ17]. Utilization
[JHLM01, MGW99, ZLAV04]. Utilizing
[CPL+10].

V [IPR+05]. V-Class [IPR+05].
Valedictory [Lin92]. Validation
[AML+10]. Validity [OK99]. Valuations
[Ger10]. Value [AK96, BUMS02, LS98,
LEG11, SS99, SW95, SK14]. Value-Based
[SW95]. Variable [AW98, EM14, MV17].
Variable-Length [EM14]. Variables
[JW16, PPQV16]. Vector [BBR11a, TSS99].
Vectorization [BGGT02, CRM92].
Vectorizing [CK02, SG00]. Verification
[AG06, BFS05, CHB06, CFF+06, FG16,
LMPS05, SRS06, US05].
Verification-Oriented [SRS06]. verified
[KFC08]. Verifying [Win89]. Versatile
[KSJ14]. Version [YAI95]. versioned
[SSB+17]. Vertices [LW97]. via
[EDA96, HCEP98, SSP+96, ZK07]. Video
[DLRS13, KBD03, SSEA14, TSS99]. Virtual
[EGJS15, HHW10, JQWG15, LCU92,
LVM16, PO07, SHZ+14]. Virtualization
[LLW+17, ZXY+15]. Virtualized
[VF112]. Visibility [DPS90]. Vision
[NFC+09]. Visual [CPT14]. Visualization
[SJKA99]. VLIW [ABASS12, CND95, CS97,
GBP07, ZLAV04]. VLSI [PP10]. VOD
[LJ09]. Volatile [CCL12]. VORD [KSJ14].
vs [NAP02]. Vshadow [LLW+17].

Wait [FLD15, LFD17, Sun11]. Wait-Free
[FLD15, LFD17, Sun11]. Warm [LJE05].
Warm-Up [LJE05]. Warp [Lys08].
Waterman [FJZ+15, HMP+13]. Wave
[LS07]. Waveform [CCL12]. Wavefront
[Wol86]. Wavelet [BC15]. way [DPL86].
Weak [BAP01]. Weakly [DWS16]. Web
[HHC+15, NYHA14]. Weight [CM06].
Weighted [Ken01]. Which [Gen16]. while
[Col95, GL95]. while-Loops [Col95]. Who
[JK12]. Window [DM17, NdMM09].
Window-Based [DM17]. Winograd
[uHKAMFM16a, uHKAMFM16b]. within
[LLL+15]. Without [LPB13]. Word
[FLD15, Sun11]. Work [AK92].
WorkCrews [VR88]. Workflows
[TTF+08]. Working [FR95]. Worklist
[GRC+14]. Workload [OP12]. Workloads
[VCP+13]. Workshop [SS10]. Workstation
[NIK00]. Workstations [LS05]. World
[GHM14, HLP11, LLW+17]. Wormhole
[LNP91]. Write [MV17]. Written [KaM10].

XDP [CFB94]. Xeon [ELGE17]. XI
[MCE13].

Y-Invalid [BAP01]. Yield [SS17].
YuruBackup [XXZ+15].
Zone [JCH+08, MS11].

References

Anane:2015:TBE

Andion:2016:LAA
José M. Andión, Manuel Arenaz, François Bodin, Gabriel Rodríguez, and Juan Touriño. Locality-aware automatic paral-

Abboud:2012:CHR

Ayguade:2010:EOS

Amme:2000:DDA

Almer:2013:PDB

REFERENCES

Attali:2001:EFI

Aldinucci:2014:DPP

REFERENCES

Aldinucci:2016:PEP

Almeida:1986:PAS

Arras:2015:LSE

Aiello:2006:EOS
REFERENCES

[AFO+08]

[AG98]

[AG15]

[AGPGF14]

[AG06]
REFERENCES

Allombert:2017:MMP

Ali:1986:GGC

AlFaruque:2008:QSC

Arnold:2001:EIB

Aubrey-Jones:2016:SMI

REFERENCES

Albonesi:1996:MVA

Alam:2017:PAG

REFERENCES

Abraham:1998:MST

Ali:2013:MFT

Arunagiri:2014:FTO

Ayguade:1995:ARP

Ali:1986:PEP

Part of the BC-machine project, SICS, Sweden.

Abramson:1995:EPS

Al-Mouhamed:2004:AOP

Al-Mouhamed:2001:ENG

Ayguade:2007:SIO

Ayguade:2007:I

Ahmed:2001:STL

August:2005:ASC

anMey:2007:NPO

August:1999:PRI

David I. August, Wen mei W. Hwu, and Scott A.

Anonymous:1986:CLF

Anonymous:1986:EJT

Anonymous:1986:IA

Anonymous:1987:AL

Anonymous:1987:C

Anonymous:1987:FDL

Anonymous:1987:ICI

Anonymous:1987:SP

Anonymous:1992:IAS

Anonymous:2000:GEI

REFERENCES

Anonymous:2000:Ia

Anonymous:2000:Ib

Anonymous:2000:I

Anonymous:2003:E

Anonymous:2014:EN

Anonymous:2016:ENH
REFERENCES

Anonymous:2016:ENS

Anonymous:2016:ENSb

Anonymous:2016:ENSa

Awasthi:2012:MDP

Ajjanagadde:1986:SAB

Atasu:2003:AAS

Areias:2016:LFH

Azevedo:2005:AAD

Ahn:2015:FAP

Adamson:1991:GPA

REFERENCES

Ben-Asher:1994:UTC

Banerjee:1994:EI

Banerjee:2004:GEIa

Banerjee:2004:GEIb

Banor:2014:MCU

REFERENCES

REFERENCES

0885-7458 (print), 1573-7640 (electronic).

Belgin:2011:LPB

Benoit:2011:ORS

Bordoloi:2010:GBA

Bernabe:2015:AEM

Barthou:2000:MSE

Berman:2005:NGS

Bianchini:1998:EEC

Ricardo Bianchini, Enrique V. Carrera, and Leonidas Kontothanassis.

Bailey:1990:PGE

Bourgoin:2014:EAG

Bourgoin:2017:HLD

Mathias Bourgoin, Emmanuel Chailloux, and

Bell:1994:SPC

Bilardi:2013:ESD

Broquedis:2010:FEO

Boton-Fernandez:2015:CAA

Bruschi:2005:FFV

Francesco Bruschi, Fab-

Bodik:1996:ADF

Bulic:2003:EAC

Bronevetsky:2009:CAC

Bik:2002:AIR

REFERENCES

REFERENCES

[Bos:2012:LLE] Joppe W. Bos. Low-

Bansal:1989:TGT [BS89] Arvind K. Bansal and

REFERENCES

Bachir:2013:MUF

Braun:2002:PAS

Camilleri:1989:OSO

Cybenko:1988:PPU

Carriero:2009:GEI

Nicholas Carriero. Guest

Corbera:2002:NSA

Chiarulli:1986:PMT

Chakrabarti:2001:SSA

Che:2017:PGG

Shuai Che, Bradford M. Beckmann, and Steven K. Reinhardt. Programming GPGPU graph applications with linear algebra

Camara:2014:EIL

Charr:2012:AEM

Chilstedt:2009:DEC

Calland:1998:RAO

Chapman:2013:EDO

Barbara Chapman, Deepak Eachempati, and Oscar Hernandez. Experiences developing the OpenUH

Cao:2009:OCP

Chao:1995:MRD

Chen:2006:VAM

Chen:2014:PCS

Chang:1996:UPE

Conte:1999:EIa

REFERENCES

Chang:1996:BCN

Creusillet:1996:IAR

Ciepielewski:1991:SPP

Corporaal:2000:CCT

Chauhan:2002:RVP

Clapp:1990:CCR

Chen:1994:PAI

Capitanio:1995:HBM

Collard:1995:APW

Conery:1988:BEP

Cleaveland:1988:TTC

REFERENCES

http://ipsapp009.lwwonline.com/content/getfile/4773/13/4/fulltext.pdf;

Yong Cao, Debprakash Patnaik, Sean Ponce, Jeremy Archuleta, Patrick Butler, and et al. Parallel mining of neuronal spike streams on graphics processing units. *International Journal of Parallel Programming*.
REFERENCES

REFERENCES

REFERENCES

Caragea:2011:RAC

Cascaval:2013:GEC

Carretero:2014:PDP

Chiang:2016:OSE

Ching:2012:APA

[DB08] Alberto F. De Souza and Rajkumar Buyya. Introduction to the Special Issue on the 18th International Symposium on Computer Architec-

Duran:2007:PEH

Duran:2009:PEO

Drummond:2009:PPB

Darlington:2017:TCH

tronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
28&issue=5&spage=499.

[DJR16] Ralph Duncan, Peder
Jungck, and Kenneth
Ross. Using packet pro-
cessing object modules in-
terchangeably as stand-
alone programs or “multi-
app” components. Interna-
tional Journal of Paral-
lel Programming, 44(1):
26–45, February 2016. CO-
DEN IJPPE5. ISSN
0885-7458 (print), 1573-
7640 (electronic). URL
http://link.springer.
com/article/10.1007/
s10766-014-0332-7.

[DJS12] Ákos Dudás, Sándor Juhász,
and Tamás Schrádi. Soft-
ware controlled adaptive pre-execution for data
prefetching. International Journal of Parallel Pro-
gramming, 40(4):381–396,
August 2012. CODEN
IJPPE5. ISSN 0885-7458
(print), 1573-7640 (elec-
tronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
40&issue=4&spage=381.

[DLRS13] Tiago Dias, Sebastián
López, Nuno Roma, and
Leonel Sousa. Scalable
unified transform archi-
tecture for advanced video
coding embedded systems.
International Journal of
Parallel Programming, 41
REFERENCES

Degano:1987:POM
Pierpaolo Degano and Sergio Marchetti. Partial ordering models for concurrency can be defined operationally. *International Journal of Parallel Programming*, 16(6):451–478, December 1987. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL http://www.springerlink.com/content/a82m6m2t504k4k4m/.

Matteis:2017:PPW

Dehne:1991:OCM

Dehne:1991:OCM

Das:1991:PSA

deStGermain:2003:PAI

El-Gindy:1986:OSP

Egger:2015:ERV

Emoto:2007:CFD

Ernsting:2014:SFS

Ernsting:2017:DPA

Estebanez:2016:NDS

Alvaro Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano. New data

Estebanez:2017:UXP

Emoto:2014:AFM

Ebcioğlu:1997:GEI

Ellis:1988:APM

Evripidou:2006:MMA

Ewedafe:2011:PID

Evripidou:2000:I

Engelhardt:1996:PIP

ElKabbany:2011:DLB

Fensch:2011:EBC

Christian Fensch and

Feautrier:1991:DAA

Feautrier:1992:SESa

Feautrier:1992:SESB

Feautrier:2006:SSS

Fortin:2016:BWT

Fummi:2005:E

REFERENCES

Frieb:2016:PAH

Feng:2015:ASW

Francez:1987:FA

Fillo:1997:MMM

Fursin:2011:MGM

Karl Furlinger and Shirley Moore. Capturing and analyzing the execution control flow of OpenMP applications. *International Journal of Parallel Programming*, 37(3):266–
REFERENCES

Keith A. Faigin, Stephen A. Weatherford, Jay P. Hoeffinger, David A. Padua, and Paul M. Petersen. The Polaris internal representation. *International
REFERENCES

[Guo:2008:CIR]
REFERENCES

Gedik:2013:ATS

Gentleman:2016:CPC

Gonzalez:2014:ATD

Griebl:2000:ISS

Gerbessiotis:2010:POP

References

Gaspar:2014:BCW

Givargis:2008:GEI

Gregor:2005:GPH

Genaud:2009:FMP

Stéphane Genaud, Emmanuel Jeannot, and Choopan Rattanapoka.

[Guzman:1987:PSA]

[Giao:2017:AOM]

Granston:1995:LTP

Gendler:2006:PBM

Grasset:2011:MHD

Giacalone:1989:FSI

Gupta:2000:APR

REFERENCES

Gyllenhaal:1998:OMD

Geist:1989:TSP

Goldberg:1988:MEF

Girkar:1994:HTG

Govindarajan:2000:ECS

REFERENCES

REFERENCES

issn=0885-7458&volume=17&issue=2&spage=95.

Granston:1995:CFD

Gornish:1999:IHS

Govindarajan:1992:AGP

Girbal:2006:SAC

Gilbert:1987:PGP

Hussain:2011:PIA

Halstead:1986:AML

Han:2017:SLS

Hao:1998:IIF

Hemmendinger:1989:IMS
REFERENCES

Harris:2006:GEI

Holmen:2014:ASI

Hensgen:1988:TAB

Huang:2012:EEP
Huang:2015:ACH

Haase:2010:SDV

Hains:2014:GEH

Hudak:2009:CSI

Hawick:2011:RLS

K. A. Hawick, A. Leist, and D. P. Playne. Regular lattice and small-world spin model simulations using CUDA and GPUs. *International
REFERENCES

REFERENCES

Hwu:1994:GE
Hwu:1994:GE

Huang:2016:CFL

Holobar:2006:DJJ

Heinecke:2013:EAE

Hidalgo-Paniagua:2015:CSP

http://ipsapp009.lwwonline.com/content/getfile/4773/20/3/fulltext.pdf;

[HSCI+16] Rachid Habel, Frédérique Silber-Chaussumier, François Irigoïn, Elisabeth Brunet, and François Trahay. Combining data and computation distribution di-

Holzenspies:2010:RTS

Han:1998:EBS

Huang:2012:POT

Hendren:1997:CCE

Huang:1989:SEP

Hudak:1986:DSP

Huelsbergen:1997:DRR

Hunt:1987:EAU

Huntbach:1991:PBB

Han:2016:SSB

[HZL16] Rui Han, Jianfeng Zhan, and Jose Vazquez-Poletti

Imre:2011:ESR

[IBA11]

Issenin:2008:UFM

[IKN00]

Iwasaki:2004:NPS

[IH04]

Ishizaki:2000:LT

REFERENCES

REFERENCES

Jannesari:2015:DHL

[Jan15]

John:1998:CCP

[JB98]

Jimborean:2014:DSP

[JCD+14]

Jin:2008:PEM

[JCH+08]

Jenks:1997:EL
Stephen Jenks and Jean-Luc Gaudiot. Exploit-

Janakiram:1988:RPB

Jodra:2015:ETG [JGLM15]

Jung:2001:TPB [JHLM01]

Jin:2015:IPB [JJIL15]

Jayaraman:1986:PRM [JK86]

Bharat Jayaraman and Robert M. Keller. Primitives for resource management in a demand-driven reduction model. *Inte-
REFERENCES

Jeon:2003:PMS

Jalan:2012:TTW

Jindal:2016:EGS

Jelic:2015:FPI

Joisha:2002:EAJ

Pramod G. Joisha, Samuel P. Midkiff, Mauricio J. Ser-

[Joe:1999:GEI]

[Joe:2003:GEI]

Johnson:1994:PAM

Javed:2016:TSJ

Jin:2015:CCC

Jesshope:2006:GEI

Jesshope:2006:SIM

Jeyapaul:2010:CTT

Jourdan:1997:RRB

Jaaskelainen:2015:PPP

Pekka Jääskeläinen, Carlos Sánchez de La Lama, Erik Schmetter, Kalle Raiskila, Jarmo Takala,

Kriaa:2008:PPM

Keramidas:2015:RCR

Kennedy:1994:CTM

Kennedy:2001:FGW

Kistler:1999:TBA

Kolberg:2008:DLS

Kalla:2008:FFC

Ko:2014:SPD

Kumar:2010:FBH

Vinay B. Y. Kumar, Siddharth Joshi, Sachin B. Patkar, and H. Narayanan. FPGA based high performance double-precision

Kella:2011:AAP

Kirovski:1999:PBP

Kavadias:2012:CIN

Krall:2000:CTM

Kang:2008:ISE

Dongsoo Kang, Chen Liu, and Jean-Luc Gaudiot.

REFERENCES

Kelly:1996:TCI

Kromer:2014:NIM

Kumar:1987:PDF

Kumar:2005:CTP

Kale:1990:PSS
REFERENCES

(KTT+99) Atsushi Kubota, Shogo Tatsumi, Toshihiko Tanaka, Masahiro Goshima, Shin ichiro Mori, Hiroshi Nakashima, and Shinji Tomita. A technique to eliminate redundant inter-processor communication on parallelizing compiler TIN-PAR. *International
REFERENCES

Kuck:1994:WDU

Kempf:2010:ASB

Lobeiras:2015:BTB

Langlois:1990:SPC

Llosa:1998:QER

[LEA15] Zifan Liu, Nahid Emad.

Liao:2016:PBA

Liu:2015:DRA

Li:2016:MPP

Li:2003:PRE

Lindstrom:1986:SPR

REFERENCES

Lindstrom:1987:SPR

Lindstrom:1988:SC

Lindstrom:1988:SPR

Lindstrom:1989:SPR

Lindstrom:1990:SPR

Lin:1991:DFP
REFERENCES

Lu:2003:ABH

Loechner:2000:COA

Lee:1998:CPA

Loghi:2005:DFV

Mirko Loghi, Tiziana Margaria, Graziano Pravadelli, and Bernhard Steffen. Dynamic and formal verifi-

Lin:2012:ESC

Li:1991:ECM

Lowenthal:2000:ASB

Li:1994:SL

Langemeyer:2013:USM

Stefan Langemeyer, Peter Pirsch, and Holger Bliume. Using SDRAM memories for high-performance accesses to two-dimensional matrices without transpose. *International Journal of Parallel Program-
REFERENCES

Lattuada:2016:PET

Liao:2010:SAA

Lo:1991:OTM

Lee:2014:BCA

Lin:1991:PIS

Calvin Lin and Lawrence Snyder. A portable implementation of SIMPLE. International Journal of Parallel Program-
REFERENCES

Loots:1992:PAK

Lipasti:1998:EVL

Lin:2005:EBH

Laudon:2007:CWM

Lee:2007:DBI

Gregory L. Lee, Martin Schulz, Dong H. Ahn, Andrew Bernat, Bronis R. de Supinski, Steven Y. Ko, and Barry Rountree. Dynamic binary instrumentation and data aggregation on large scale systems. International

[LTL15] Guohong Li, Olivier Temam, and Zhenyu Liu. Cluster cache monitor: Leveraging the proximity data in
REFERENCES

Langr:2015:DAL

Lubachevsky:1990:SBR

Li:2016:SSO

Loechner:1997:PPT

Liu:2011:STE

Shaoxun Liu, Ligang Wang, Xiao-Feng Li, and Jean-Luc Gaudiot. Space-and-time efficient parallel garbage collector for data-intensive applications. International
REFERENCES

Liu:2004:HPR

Ly:1998:ib

Lin:1995:PPA

Li:2014:PTI

Liu:2004:HPR

Lin:1995:PPA

Li:2014:PTI

Lin:1995:PPA

Li:2014:PTI
Lysecky:2008:SPE

Lu:2017:IFM

Muller:2010:GEI

Munk:2011:APA

Main:1987:TFT

Michael G. Main. Trace, failure and testing equiv-
REFERENCES

REFERENCES

[MG15] Kshitij Mehta and Edgar

Melo:2014:GE

Marsolf:1999:UMS

Mitchell:1998:QML

Maydan:1995:EDD

Dror E. Maydan, John L. Hennessy, and Monica S. Lam. Effectiveness of

Miller:1988:ISB

Mishra:2009:GEI

Milicev:2002:CFR

Mutlu:2005:UFL

Michelogiannakis:2015:ESP

George Michelogiannakis

ManatasRuiz:2002:CBD

Manoj:2004:CDC

Mahfoudhi:2015:PCA

Matsuzaki:2016:PTA

REFERENCES

http://link.springer.com/article/10.1007/s10766-014-0310-0.

Morris:2007:SNO

Mol DACA

McNamee:1991:AGA

Midorikawa:2005:PNM

Mongenet:1997:ADC

REFERENCES

Mall:1991:FTA

Melvin:1995:EIS

Menon:2004:LLL

Moss:2005:CCB

Mendelson:2006:I

REFERENCES

Menouer:2016:MSD

Moshovos:1999:SMC

Meng:2011:PSI

Moreira:2007:BGS

José E. Moreira, Valentina Salapura, George Almasi, Charles Archer, Ralph Bellofatto, Peter Bergner, Randy Bickford, Mathias Blunrich, José R. Brunheroto, Arthur A. Bright, Michael Brutman, José G. Castaños, Dong Chen, Paul Coteus, Paul Crumley, Sam Ellis, Thomas Engelsiepen, Alan Gara, Mark Giampapa, Tom Gooding, Shawn Hall, Ruud A. Haring, Roger Haskin, Philip Heidelberger, Dirk Hoenicke, Todd Inglett, Gerrard V. Kopcsay, Derek Lieber, David Limpert, Pat McCarthy, Mark Megerian, Mike Mundy, Martin Ohmacht, Jeff Parker, Rick A. Rand, Don Reed, Ramendra Sahoo, Alda Sanomiya, Richard Shok, Brian Smith, Gordon G. Stewart, Todd Takken, Pavlos Vranas, Brian Wallenfelt, Michael Blocksome, and Joe Ratterman.

Carmen Martínez, En-

Monteiro:2014:PFS

Ma:2014:DPI

REFERENCES

Nicacio:2013:TSU

[NBA13]

Nanda:1998:MR

[NBD98]

Nylanden:2015:LPR

[NBN+15]

Nedjah:2016:PIC

[NdMCdMMW16]

Nedjah:2009:HPH

REFERENCES

REFERENCES

Nakano:2003:SCG

Ni:1988:PMH

Norden:2007:DDM

Novack:1995:HAI

Norris:1998:ECR

Cindy Norris and Lori L. Pollock. Experiences with cooperating register al-
Nikolopoulos:2001:AOS

http://ipsapp009.lwwonline.com/content/getfile/4773/21/2/fulltext.pdf;

Neiryck:1989:EAH

http://ipsapp009.lwwonline.com/content/getfile/4773/21/2/fulltext.pdf;

Nau:1986:EAM

http://ipsapp009.lwwonline.com/content/getfile/4773/21/2/fulltext.pdf;

Najjar:1994:EMG

Narasimhan:1999:UDF

Ragini Narasimhan, Daniel J.

REFERENCES

Ortega-Arranz:2015:CEN

Ossner:2013:GMB

Ortega-Arranz:2015:TML

Ozturan:2011:GEP

Orozco:2016:DIT

REFERENCES

[OBoyle:1999:NDT]

[OO07]

[OOR13]

[OOBrien:2008:SOC]

[OP10]
REFERENCES

Otoom:2012:WMI

Orailoglu:2003:GEI

Ortega:2004:DMI

Panda:2008:GEI

Parallax:1986:BPP

References

Park:2013:PMP

Pai:2007:FFE

Pavlidis:2016:HSQ

Pinter:1995:I

REFERENCES

[PP99] Steven Phillips and Anne Phillips:1999:PSR

REFERENCES

Pratt:1986:MCP

Palis:1992:NAR

Park:1997:AGT

Panesar:2006:DPP

Panetta:2012:ATD

Jairo Panetta, Thiago Teixeira, Paulo R. P. de Souza Filho, Carlos A. da Cunha Filho, David Sotelo, Fernando M. Roxo da Motta, Silvio Sinedino Pinheiro, Andre L. Ro-

[qWlJzKhC17] Xiao qing Wang, Xian long Jin, Da zhi Kou, and Jia lui Chen. A parallel approach for the generation of unstructured meshes with billions of elements on distributed-memory supercomputers.

[RA09] Mohammad J. Rashti and Ahmad Afsahi. A speculative and adaptive MPI rendezvous protocol over RDMA-enabled...

Rauchwerger:1995:SMR

Rau:1996:IMS

Rana:1986:ODS

Rohou:2000:HGC

Rahman:2016:ASO

REFERENCES

REFERENCES

REFERENCES

[RS90] John H. Reif and Scott A. Smolka. Data flow analy-

REFERENCES

IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
19&issue=3&spage=185.

Singh:1991:RET
www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
20&issue=3&spage=203.

Sourouri:2017:PCF

Surendra:2003:EFA
kluweronline.com/content/
getfile/4773/37/5/abstract.htm; http://ipsapp007.
kluweronline.com/content/
com/openurl.asp?genre=
article&issn=0885-7458&
volume=31&issue=6&spage=
469.

Stepoway:1988:PRF
www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
17&issue=1&spage=43.

Scarpazza:2011:TPT
Daniele Paolo Scarpazza.

Silva:2014:EDE

Schwab:1992:EPG

Shriraman:2011:ACH

So:1998:MCG

REFERENCES

Sehr:1998:GEI

Seki:2009:DRI

Shee:2008:AEH

Steuwer:2014:IA

Sreraman:2000:VCM

Saito:2003:LSP

Salapura:2012:GEP

Samal:1987:PCL

Shen:1996:HLC

Su:2015:SDD

Gong Su and Stephen Heisig. The scalability of disjoint data structures on a new hardware transactional memory system. *International...
REFERENCES

Shahbahrami:2006:ACR

Sasakura:1999:NIV

Sundararajan:2013:SCE

Schlansker:1997:TCP

Sun:2014:AVP

REFERENCES

Schlansker:1996:PCR

Singh:1991:EAP

Shi:2009:BIO

Skillicorn:1991:MPP

Schneider:2014:LBD

Shen:2013:ITI

Xipeng Shen, Yixun Liu,
Eddy Z. Zhang, and Poornima Bhamidipati.
An infrastructure for tackling input-sensitivity of

Schepke:2009:PLB

Schepke:2013:OMR

Sarojadevi:2004:CPE

Singh:1989:DEP

Sprague:1992:PAC

REFERENCES

Steinbrecher:2014:CSI

Seever:1992:PPE

Sosic:1990:P

Souravlas:2004:PTD

Schreiber:2015:ICB
Martin Schreiber and Christoph Riesinger. Invasive compute balancing for applications with shared and hybrid parallelization. International Journal of Parallel Programming, 43(6):1004–1027, December 2015. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-
Sanchez:2006:ETA

Somogyi:1988:BAS

SS89

Sarkar:1992:P

Saizides:1999:LDV

REFERENCES

Shan:2001:CMS

Sivakumaran:2017:PBY

Sotomayor:2017:ACG

Sankaraiah:2014:POV
S. Sankaraiah, Lam Hai Shuan, C. Eswaran, and Junaidi Abdullah. Performance optimization of video coding process on...

Sterling:1996:EEC

Sbirllea:2016:SEU

Saito:2000:DPC

Santos:2012:UEK

REFERENCES

Sukhwani:2015:HSA

Smiljkovic:2017:DSL

Sundell:2011:WFM

Stoltz:1995:DVB

Siek:2016:ARD

REFERENCES

[178]

Swain:1988:CSH

Su:2017:HLS

Song:2005:PTA

Sha:2015:PEH

Subramani:2008:DIS

REFERENCES

Srinivasan:2017:SIN

Tyson:1999:MRF

Tipparaju:2012:RTE

Tomic:2014:UDR

Trancoso:2006:CCM

REFERENCES

[TG05] Eric Hung-Yu Tseng and Jean-Luc Gaudiot. Automatic array partitioning based on the Smith...

Tung:2017:TSP

Thomsen:1987:IPE

Tick:1990:ECL

Tinker:1988:PPL

Tsai:1999:CTS
REFERENCES

182

REFERENCES

[TSS99] Min Tan, Janet M. Siegel, and Howard Jay Siegel. Parallel imple-

REFERENCES

Uchihira:2000:SBH

urRehman:2014:PCS

Vianna:2013:APM

Vassiliadis:2016:ESC
Vassilis Vassiliadis, Charalampos Chalios, Konstantinos Parasyris, Christos D. Antonopoulos, Spyros Lalis, Nikolaos Bellas, Hans Vandersanden, and Dimitrios S. Nikolopoulos. Exploiting significance of computations for energy-

REFERENCES

Weis:2016:ASF

Woo:2004:AAJ

Wang:2016:GDS

Wang:2008:DIA

Wing:1989:VAD

Wu:2017:VPP

Wu:2015:CTC

Wolf:1998:CLT

Wonnacott:2002:ASL

[Won02] David Wonnacott. Achieving scalable locality with

Wu:2000:CPG

Weng:2007:OIS

Wang:2008:DTS

REFERENCES

issn=0885-7458&volume=36&issue=2&spage=166.

Waliullah:2014:RCH

Williamson:2015:PIN

[WS14]
Waliullah:2014:RCH

Wolfson:1992:PPG

Williams:2007:SCK

[WZB+92]
Wolfson:1992:PPG

[WZTH13]
Wang:2013:BQE

[WZTH13]
Wang:2013:BQE

Yzelman:2014:MCH

Yu:2016:CBL

Yan:2016:EBM

YuKhan:2017:PPN

Yun:2003:TOS

References

1. Yao:2017:ONC

2. Yang:2013:IHP

3. Zhao:2009:LTL

5. Zhang:2015:HTP

Zhang:1989:PAM

Zhang:2010:COP

Zhang:2007:RCM

Zalamea:2004:SHT

Zhang:2015:QBA

Deli Zhang, Brendan...

