A Complete Bibliography of Publications in the
International Journal of Parallel Programming

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 October 2017
Version 2.28

Title word cross-reference

* [CS16], + [SBC17], 0 [LS92], 1 [LS92], 2 [CTB14, ES11, IBA11]. 3
[BC15, HPVRPF15, HF14a, HF14b, JGM15, SJKA99, SBC17]. < [JS06a], > [JS06a], (R)
[BKT08, SM09]. TM [BKT08]. t1 [GLLH17]. m [DPL86].

1000 [SSMO96]. 16 [Swa88]. 18th [DB08].

2DT-FP [BARSW95].

3.0 [KaM10, OP10].

95 [KaM10].

A. [Swa88]. Abingdon [AM95].
abstraction [VR88]. Abstractions [BCL14, LQWP10, YAI95]. Accelerated
[KLK16, SBC17]. Accelerating [FJZ+15, HF14a, HF14b, MAWD+16, PTdSF+12].
Acceleration [BC10, MCFM12, STM15].
Accelerator [EK17, FVvL+16]. Access [JG97, Joh94, OOR13, ZK07]. Accesses
[GV95, LPB13]. Accumulations [MM16].
Accumulative [HI04]. Accuracy
[CEP97, KP04]. Accurate [RGB+08, TA99].
Accurately [BGdS09, Low00]. Achieving
[AMP+05, GAR+16, GS90, Won02].
Acknowledgment [Nic14]. ACOTES
[MAB+11]. Activity [FR95]. ACTS
Acyclic [Hue97, ZLJA12].
Adaptability [SA10]. Adaptation
[CCL12, SJT13]. Adapting
[EFED05, JMSG02]. Adaptive
[BFRPVR, DJS12, GLLIH17, GRV+17,
GH99, HHW10, HP13, HR11, KSEG14,
LM+12, LJEO5, PSM97, RA09, SHC15,
ZLD15]. Address
[SS01, TAY+12, HR11].
Addressing
[GG13]. Adjoining
[PS92, PW92]. ADL
[PC13]. ADL-Based
[PC13]. Admission
[NYHA14]. Advance
[SL14]. Advanced
[DLRS13, MAB+11, LF15, NdMMW16].
Advantage
[TKN+08]. Affine
[Fea92b, KP95, LM00, Mon97, Fea92a].
Affinity
[GRC+14]. Again
[MP04]. Age
[DKB+09]. Agent
[FLMR17, WLL+08].
Agent-Based
[FLMR17]. Agents
[ES06]. Aggregation
[LSA+07, SB03]. Aggressive
[SK14]. Agnostic
[AVM+16, NAP02]. ALE
[HAAn+11]. Algebra
[CCG+14, CBR17, MP04].
algebraic
[SS89]. Algorithm
[AFO+08, AKT+14, BM09, CL96, Cra88,
DMMS91, DWS16, DZW10, GF14, HNC+16,
IP90, IKN00, KBD03, LL+12, LMP98,
LF15, MNN15, Mer86, MB12b, MVD+14,
NFC+09, NB15, NRR99, NdMMW16, PS92,
RK92, SI11, SWL05, Sp92, EG86, FeC87,
GZ87, GT86, Hua89, JGA+88, LS92, Sch92,
SRV88]. Algorithm-Based
[NRR99]. Algorithmic
[EK17, DM17, SHK13]. Algorithms
[AT91, AMAH01, AK17, AGT17, BR14b,
CAP98, Dam07, DWS90, EOS8, FG16, Ged13,
GF14, IBA11, Iq91, uHKAMFM16a, uHKAMFM16b, KPS14,
LTSD15, Liv91, ÖO07, RG15, SH87, SSS92,
SKAT91, SR90, Zey05, ZLD15, DPL86,
ECSS88, HFMM88, SDJS98, Swa88, Zha89].
Alias
[LC11, WGW04]. Alignment
[FPY08a]. All-Parses
[IP90]. All-Port
[IBA11]. All-to-All
[QA11]. Allocation
[BE14, CND95, LkCH94, NG92, ZLD15, EO88, NP98].
Alloyed
[LLSS03]. Allpairs
[SFAG14]. Alltoall
[QA11]. Alone
[DJR16]. Alternative
[KF99, FC87]. Alternatives
[Bel94, MB99, NPT86]. Amdahl
[Ano87a, PM07]. AMR
[ALC+07]. Analyses
[CI96, GV95]. Analysis
[AK96, AB70, AFO+08, AW98, BG96,
BFRPVR15, C5C+00, CA02, CPL+10,
Fea91, GH96, KP89, LY95, LHF+15, LC11,
MP91, MHL95, MP04, PPEP08, RRH03,
Sca11, SSM+96, SO89, US05, WGW04,
dM03+03, AD86, GTK+88, NPD89, RS90,
KR87]. Analytical
[KWA+10, VCP+13]. Analyze
[ASW+15, Dem11]. Analyzing
[ALG+95, DF98, FM09, HRH08, SD11].
AND-parallel
[SRV88]. AND-Parallelism
[SH96, BS89]. AND/OR
[RK92]. Announcement
[BMGR11]. Annotation
[Int98, An92, An92]. Anomalies
[Jan15]. ANSI
[BG03]. Anti
[CDRV98]. Anti-
[CDRV98]. APCFS
[KK11]. APL
[GS90]. app
[DJR16]. Application
[ACC+02, API03, BGdS09, BS07, CHTM03,
Dam07, FJO+16, JCH+08, KS97, Mat17,
MP04, PG07, PB04, RSK09, Sek09, SKG09,
TOM+11, VMS15, BH87, CRM92, WB87].
Application-Dependent
[VMS15]. Application-Specific
[API03, TOM+11]. Applications
[An16a, BBR11b, CY14, CBR17, CHL14, CPT14, DPT17, DFH17,
DS16, GCMP09, EWH91, FM09, GHM14,
GS11, GS13, GRC+14, GGV17, Gr16,
HK14, HM09, HbB+10, HLK+09,
IPR+05, KMC02, KPRS96, LR14,
LLW+17, LQWP10, LWL11, MV17, Mar09,
MAJD16, MG15, MCW01, MAN09,
Mis09, OK99, PPQV16, RLP+02, RSJ+14,
RGB+08, SR15, SUVC17, SSB+17, SASH12,
SB03, TMHT96, WL16, ZK07, ZSH+12,
GKM13, SDJS98, SS89]. applicable
[Hun87]. Applied
[BUMS02, KaM10, Lin91a]. Approach
[AK90b, AVA+16, CHB06, FCZ16, FJO+16,
GYS, JQWG15, LTF+12, LLL+15, DM17,
Co-Generation [MPR+05, NB15].
Co-operation [NB15].
Co-Scheduling [GRAG00].
Coarse [NIO+03, PSM97, AD89].
Coarse-Grain [PSM97].
Code [ABTZ00, BTB+13, CPG01, GBLG10, G9K4, JS10, KaM10, KAMAMA17, LF15, LC11, MGW99, MCA98, MP04, NRB94, OO07, PB04, TFEK16, TF94, WNMW16].
Codes [CAZ02, ELGE17, HNKT98, KF99, MMG04, MO91, MCA98, MAB+11, PB04, RMG+13, RBES00, SSP+00, SBC17, SG00, TMHT96, TJJY99, YZ13].
Compiler [BML+13, BKT08, CGN+09, CTK+11, CP04, CFB94, CEH13, EM13, FKM+11, GBC+08, HTK98, JCD+14, Ken94, KTT+99, LEL+99, MMMG04, MO91, MCA98, MAB+11, PB04, RMG+13, RBES00, SSP+00, SBC17, SG00, TMHT96, TJJY99, YZ13].
SM09, SZ17, TRL09, TAY^+12, VCP^+16, WSO^+07, WGW04, Zha10, NK88, DB08.
Concatenation [Zey05]. Concept [KaM10].
Concurrency
[BAF94, Gen16, SB90, VSH^+11, WLWZ15, AD86, CP88, DM87, Pro86]. concurrency/synchronization [AD86]. Concurrent
[Ano16c, AR16, GMP89, PB01, SBC17, TSS86]. conjunction [Zey05].
Concatenation [BaK10].
Concurrency
[BADF94, Gen16, SB90, VSH^+11, WLWZ15, AD86, CP88, DM87, Pro86]. concurrency/synchronization [AD86]. Concurrent
[Ano16c, AR16, GMP89, PB01, SBC17, TSS86]. conjunction [Zey05].
Concatenation [BaK10].
NAP02, NLRH07, OK99, PMHC03, RG15, RS90, Ric90, RSJ+14, SNJ04, SS99, SL14, SQH92, SR04, SH15, SASH12, TESK06, TFMP97, WB87, XH98, YA195, vdSGBW08, CG94, Gao86, Kas86, Win89.

Data-Centric [FPCD14, KP01].

Data-Driven [DTLW16, TESK06].

Data-Flow [Ano16d].

Data-Intensive [LWLG11].

Data-Parallel [AJF16, SQH92].

Data-Sharing [SNB04].

Database [SB90, STM15, VK88].

Databases [WZB+92].

Dataflow [BS15, CZTM03, Fea91, LS98, NRB94, NG92, OGP+16, WGF+16].

Dataflow-Inspired [OGP+16].

Datasets [MV17].

Debugging [BBGM95].

Decomposed [WEJS94].

Decomposition [BUMS02, ZQP15].

Decomposition-Based [ZQP15].

Decoupled [ZLJA12].

Defective [GVB+06].

Defined [KWA+10, DM87].

Degree [AK17].

Delay [BMA02, NST89].

demand [JK86].

demand-driven [JK86].

Demonstrating [ACC+02].

Denotational [Hud86].

Dense [KFC08, MVB+06].

Dependence [ABTZ00, KV95, MHL95, Mon97, SW95, YA195, WB87].

Dependences [CDRV98].

Dependent [DFA+09, VMS15].

Depth [PTdSF+12, KR87, KS87].

Derivation [MLdIP02, SO89].

Derived [NFC+09].

Deriving [Wai87].

Description [ARB+05, MPR+05].

Descriptions [GmWH98, KP05].

Design [ACD+14, AML+10, AR16, BC10, BS91, CHB06, CDC09, CTC03, FVvL+16, HLL+09, KHH08, KWA+10, KS97, MB99, OGP+16, PG07, PK10, RK13, SSS+00, SY08, TLG05, TKN+08, WLL+08].

Designing [SCB+14].

Desktop [GS13].

Detect [DS16].

Detecting [SW95].

Detection [CLJH16, CRM17, DV97, HPY01, Jan15, KSJ14, MTT15, WLWZ15, Tho87].

Determinism [SUCV17].

Deterministic [PTD+06, ZC17].

Developing [CEH13, EYHT07].

Development [Dam07, TCUV14, dMP+03].

Devices [AGPGF14, Dam07, QJ+16].

DFA [KJH14].

Diagnostics [RC16].

Diagonalization [HOZ06].

Difference [GC10].

different [JCH+08].

differentiated [AKT+14].

Diffusion [HF14a, HF14b, SDJS98].

Digital [SS92, ZC09].

Digital-Microfluidic [ZC09].

Dimensional [SCRI85, EHC14].

Desktop [GS13].

Detect [DS16].

Detecting [SW95].

Designing [SCB+14].

Desktop [GS13].

Detected [DS16].

Detecting [SW95].

Distributed [BS03, BR14b, CY14, CCL12, CHCL14, CSTGL03, DS97, DZW10, EI14, FSS06, FPCD14, GH1M14, GL95, HOZ06, Lin91a, MP91, MMG04, MBE03, MVD+14, NIK00, OATGEL15b, OG11, PLN+04, SNB04, SW16, SB91, TTF+08, wWJzK17, AH86, GS90, GT86, PW87, RB86, RS90, TKM89, Tho87, Sek09].

Distributed-Memory [BS03, wWJzK17].

Distribution [WW10].

Distribution [ALG+95, HSCI+16, NAP02, SSP+96].

Distributions [AKH13].

Divisible [RSJ+14].

DMR [ZC17].

Do [Kuc94].

Domain [GF14, TFEK16, WL16, RK13].

Domain-Based [GF14].

Dominance [SPr92].

Dominating [DWS16].

Double [KJP10, LLM+12].

Double-Precision [KJP10].

Downsampling [LTSD15].

DRAM [ZLJ+17].

Driven [CPMC96, DTLW16, GRC+14, RNJ+12, TOM+11, TESK06, XH98, JLS6, Kas86].

Drives [YJY16].

dRuby [Sek09].

DSM [BAP01, MMG04, WLL+08].

DSMs [BAP01, MMG04, WLL+08].

Dynamic
[ABvK+13, CPG01, CS97, CML04, EWHS11, Hue97, JK12, JCD+14, KRW+05, LSA+07, LTF+12, LSYG15, LGY16, LMPS05, Lys08, MRLR16, MTT15, NBA13, NLRH07, OVA04, PD89, PO07, RD08, RRRH03, SSSN16, SR04, SJT13, TCUV14].

Dynamically [CHPC96, GMB+11].

Eager [SAL16]. Early [PYC16, TA99].

EARTH [HTZ+97, HMT+96].

EARTH-MANNA [HMT+96].

Economics [YBDJ17].

Editor [EA09, MA10, SS10, BCL90, Ano00a, Ano14, Ano16a, Ano16b, Ano16c, Ayg03, Ban94, Ban04a, Ban04b, Car09, Fur95, Gau96, Giv07, Giv08, Int98, JS06a, JS06b, Joe99, Joe03, McK07, Mis09, Ora03, Pan08, Seh98, Veo01, Veo02].

Editors [SMM11, HF06, CHS99, CmHS99, EmH97, FmH96, GSA08, GS05, HN94].

Effect [NPD89, BCK98]. Effective [CPMC96, HGT+12].

Effectiveness [MHL95, PYC16, SBN03]. Effects [HRH08, TF96].

Efficiency [STF+12, SWZ+15]. Efficient
[ABvK+13, BR97, BEP13, BCL14, BFG+10, CPT14, CL96, EAT14, FPY08a, Fea92b, FvL+16, GGI4, GS06, GRR98, GmWHR98, IP90, IBA11, GM15, KM05, LNP91, LS05, LNLG11, NRR99, NdMMW16, QSW00, Roy10, SRS06, SSSN16, SL14, SSP+96, SO89, SKAT91, SHC15, SHZ+14, SJT13, TTF+08, WZTH13, XZ+15, YJJY16, Fea92a, Hua89].

Efficiently [EGJS15, HR11, JMSG02].

Elastic [GG13, YBDJ17]. Element [RG15].

Embedded [AF15, CHB06, CFF+10, DLRS13, Giv07, Giv08, LMPS05, MCE13, MGJS15, MAH+11, Pan08, PP10, PO07, PPEP08, TLG05, TFEK16, US05].

Embedding [Li03, CS09]. Emerging [HP13]. Empirical [CCG+14, LDHL05, SSMO96]. Employing [CS97].

Emulator [WCC16]. Enable [HP13, ID08, TAY+12]. Enabled [FKM+11, GSY+13, RA09]. Encore [GTK+88]. Encryption [KBD03, NdMMW16].

End [LSHK09]. End-to-End [LSHK09]. Energy [AVLV03, CPT14, EAT14, FvL+16, SJT13, VCP+16].

Energy-Constrained [VCP+16].

Energy-Efficient
[EAT14, FvL+16, SJT13]. Engine [BC15, Gsc07]. Engineering
[CPT14, KaM10], Engines [MCFM12].

Enhanced [ABASS12, GRAG00].

Enhancement [AMP01, CYS16, KP01, LCL17].

Enhancing [ACC+01, MP95]. Ensembles [ASW+15].

Enterprise [LVM16].

Enumeration [AG98]. Environment
[AFM+06, AA15, BFG+10, MFG+08, SQRH02, vdSGBW08]. Environments
[BCL90, CO88].

Evaluation [AMAH01, BML+13, BS15, BEG+10, CCL12, DCD09, FC11, GBPK07, IP+05, JCH+08, KHH08, LCL17, ME15, NR94, OATGEL15a, PVAE98, SSMO96]

Full [AK90a, MVD +14]. Fully [LF15].
Functional [ACC +01, AJF16, BARSW95, BFS05, GMP89, GS06, Hud86, Mat17, PC13, Gol88, Wai87]. Functions [ACC +01, CFT +06]. Fusion [EM14, Ken01, LZ17]. Fuzzy [GE90].

Generating [AK17]. Generation [BTB +13, CL96, Dar05, JME +05, QRW00, SR90, SS +17, TFEK16, qWlJzKhC17]. Generator [CPL +10].

Generic [GJK +05, SM16]. Genetic [AMAH01, BM09, MB12b, SO89]. Genome [OOR13]. geometric [SS89]. Ghost [MS11].

GPU [BC15, BC10, CBT14, DK16, FJZ +15, GLLH17, GG13, KLK16, LRG14, LTF +12, LIW +17, LEG11, LAD15, OOR13, OATGEL15a, PTD +12, SH11, SLZB13, SBC17, SFAG14, SK14, ZYOY13].
GPU-accelerated [SBC17]. GPU-Based [DK16, BC10, OATGEL15a].

GPU-Friendly [OOR13]. GPUs [HLP11, JLD16, KPS14, MAWD +16, MS11]. Grabbing [Sun11], gradient [SDJS98].

GrADS [BCC +05]. Grain [BG96, DV97, NR894, NIO +03, PSM97]. Grained [CTK +11, GL92, AD89]. Grammar [MO91]. Grammars [PW92].

Granularity [PSM97]. Graph [BCL90, CB17, CZTM03, GAR +16, GP94, JK12, SSP +96, Spr92, TH17, WZB +92, GZ87].

Guaranteed [GYL92]. Guards [GVL92]. Guest [AG15, CTP13, DPT17, EA09, FKT12, Gre16, HK14, HF06, MCE13, MGJS15, MG +14, MA10, OG11, PP10, SMM11, SGK12, SS10, Ana00a, Ay03, AM07b, Ban04a, Ban04b, Car09, EmH97, FmH96, Fur95, GSA08, Guan96, GS05, Giv07, Giv08, HN94, JS06a, JS06b, Joe99, Joe03, McK07, Mis09, Ora03, Pan08, Sch98, Vie01, Vie02].

Guided [MTT15].

H [Roy10]. H-NMRU [Roy10]. Hadoop [Mat17]. Handle [ELGE16]. Handling [DFC +07, RBES00]. Hard [FJO +16].

Hardware [AVM +16, CPM96, GV99, KT01, Lys08, MSA +07, NdMM09, NdMMW16, SWZ +15, SD11, SH15, STM15, WS14, ZLAV04, vNR11].

Hardware-Agnostic [AVM +16]. Hardware-Based [CPMC96, KT01]. Hardware-Supported [SD11]. Hardware/Software [GV99, Lys08, SWZ +15, STM15].

Heuristics [KPS14, CSG89]. HICOR.
Hierarchical
[Bro15, GP94, MV17, NN95, PG16, SSMO96].
Hierarchically
[PPEP08].
Hierarchies
[GVB+06].
Hierarchy
[MCWK01].
High
[Ano16a, BE14, BCS+09, BCL17, BS07, Bro15, Car09, DPT17, DFH17, DB08, GBGL10, GJK+05, Gre16, GE90, HK14, Jan15, KP05, KJPN10, LPB13, LQWP10, LWP04, MB12a, NFC+09, NdMM09, SH96, SAL16, SCB+14, TFEK16, WCC16, WGW04, YZ13, YBRM14].
High-Level
[Ano16a, Bro15, DPT17, Gre16, Jan15, KP05, LQWP10, SH96, HK14].
High-Performance
[GJK+05, LPB13, MB12a, NdMM09, WCC16, WGW04, YBRM14].
High-Productivity
[BCS+09].
High-Scalability
[BS07].
higher
[NPD89].
higher-order
[NPD89].
Highly
[TAY+12, XZX+15].
Highly-Scalable
[TAY+12].
History
[CEP97, LJ08, LLSS03, uRHH14].
Hitachi
[TSB03].
HLPGPU
[Bro15].
HLPP
[Ano16a].
Home
[WLL+08].
Homogeneous
[MMN15].
Homomorphisms
[BT17].
horizontally
[CB86].
Hotspotting
[Ano86c].
HP
[IPR+05].
HPC
[HLK+09, JQJ+16, JQWG15, LLM+12].
HW
[KBG+08].
Hybrid
[BC15, CTTB14, EK14, HSCl+16, JQJ+16, LRG14, RRH03, SR15, VSH+11, ZLJ+17].
Hydrodynamics
[Zey05].
Hypercube
[CSG89, DPS90, GE89, NK88, Wai87].
Hypercubes
[BB90].
HyperFatTree
[SWF+17].
Hypergraph
[CND95].
Hypergraph-Based
[CND95].
Hypersequential
[UKT00].
Hyperthreading
[HRH08].

I/O
[AKT+14, MG15].
ICCG
[IS03].
IDE
[HLK+09].
Identification
[BR14a, FR95, OP12, PYC16, WQJY17].
If
[AMWHM99].
If-Conversion
[AMWHM99].
The
[Fea92b, KR87].
ILP
[SKA96].

Images
[DPS90].
Immune
[MB12b].
Immune-based
[MB12b].
Impact
[BE14, KLG08].
Imperfectly
[AMP01].
Imperfectly-Nested
[AMP01].
Implementation
[AM95, AML+10, CGJK95, ES11, GH89, HAA+11, JSS+15, JLMW15, KS97, LS91, LWP04, MXP14, NdMMW16, NSS12, OGP+16, PB01, PC13, RSV+05, SM16, Sek09, SKG09, SY08, WLL+08, WP07, WS15, YZ13, ACD+14, GTK+88, TSS86, RK87].
Implementations
[AJF16, BS07, BEG+10, DE00, HPVRP15, NdMCdMMW16, TSS99].
Implemented
[MLdlP02].
Implementing
[BAP01, Mi88, SPS14, SFAG14].
Implications
[NP01].
Implicitly
[AHKR01, LEA15].
Important
[Ano86d, Ano92].
Improve
[CHPC96].
Improved
[LYL14].
Improving
[CHYP96, CEP97, GSY+13, JHLM01, MCWK01, PJS+05, RSJ+14, SN03, SA10, XH98].
Inaccuracy
[JJL15].
Incorporating
[AK96].
Increased
[KP04].
Increasing
[HCEP98].
Incremental
[CP04, ZLJ+15].
Independent
[EW96, FSS06, Ken94, SH96].
Index
[GFL00].
Indexes
[YJY16].
Induced
[LG10].
Industrial
[BR14a, FJO+16].
Inferential
[RKG04].
InfiniBand
[LWP04, QA11].
Infinite
[FLMR02, KPR86].
Information
[AFM+06, BE14, NRR99].
Infrastructure
[BML+13, CEH13, EM13, SLZB13].
Inheritance
[Tho87].
Initial
[AW98, HMWHR97, TKM89].
Initializing
[Hen89].
Inlining
[LkCH94].
Input
[SLZB13].
Input-Sensitivity
[SLZB13].
Inspired
[KPS14, Mis09, OGP+16].
Instability
[DKB+09].
Instability-Estimation
[DKB+09].
Installation
[CCG+14].
Instruction
[AHKR01, API03, BMA02, BR97, CSC+00, CSTM03, HCEP98, JLD16, LZ17, MP95, MSJ01, NN95, OVA04, RD08, SN03, Tont05,

Multi-GPU [CTB14, SFAG14].
Multi-layer [OATGEL15b].
Multi-Level [MHCF98, SSP +00, XoAFV +09].
Multi-ML [AGT17].
Multi-Prefetcher [GMB06].
Multi-Processor [HtBK +10, BM09, KBG +08, ZGH +15].
Multi-processors [AH08, DS97].
multi-sequential [AI86].
Multi-socket [RC16].
Multi-tenanted [WQJY17].
Multi-Threaded [MG15, VSDK09, DS16, GS06, RD08].
Multi-threading [DTLW16].
Multi-variable [MV17].
Multi-Word [FLD15, Sun11].
Multi-Zone [JCH +08].
Multicluster [FCJV99].
Multicomputer [FKD +97, Fos89].
Multicomputers [LNP91, SKAT91].
Multicore [Ano16d, CHCL14, HHW10, HMF +13, KJHB14, LLM +12, LLM16, SS17, TKN +08, ZC17].
MulticoreBSP [YBRM14].
Multicores [TFLN96].
Multidimensional [Fea92b, LLM +12].
Multigrid [FLD15, Sun11].
Multilisp [Hal86].
Multimedia [BG03, KL00, SG00, ZK07].
Multiplayer [CY86].
Multiple [ANS +12, CND95, Gsc07, LEA15, SQH92, TF94].
Multiple-Register-File [CND95].
Multiplication [Bos12, uHKAMFM16a, uHKAMFM16b, KJPN10].
Multiply [BRR11a].
multiprocessing [Bro86].
Multiprocessor [AK96, DeB87, G0188, Gsc07, MB12b, Pan08, PPEP08, SEP08, SR04, BH87, GHLN86, GZ87, GTK +88, Hua89, PD89].
Multiprocessor-based [Pan08].
Multiprocessors [BBGM95, GRV +17, GV99, IPR +05, KSEG14, KT01, LS07, LSL94, MVB +06, NP01, OP12, SNB04, SMC94, SS01, TESK06, ZLD15, Con88].
Multiscalar [LZL17].
Multisplitting [CCL12].
Multisplitting-Newton [CCL12].
Multithreaded [FSS06, HTZ +97, HMT +96, KMJC02, LS07, MB99, OB13, WS08].
Multithreading [CLE +99, TESK06].
MUSE [AK92, AK90a, AK90b].
Nanos [Mis09].
Nanos/Bio-Inspired [Mis09].
Nanotube [CDC09].
Nanotube-Based [CDC09].
NaraView [SJKA99].
Nature-Inspired [KPS14].
Navigational [PLN +04].
Near-Optimal [BB90].
Near-Optimal [BB90].
Nearest [LTF +12].
Nebebun [MFG +08].
Need [KT01, Kuc94].
Negative [DBK +09, WS15].
Neighbor [LTF +12].
Nested [AMP01, EW96, MMS07, QRW00, Sar01, aMST07].
Nests [AMP01, GL95].
Net [GG14, GSS10].
Nets [KMJC02, RA94].
Netuno [PS92].
Netuna [SCB +14].
Network-Aware [FCZ16].
Network-Failure-Tolerant [GCD +03].
Networks [AK17, BS15, CLJH16, IBA11, L03, LS05, MVB +06, YMW +17, AD99].
NetWorkSpace [BCS +09].
Neural [AMA01, FCZ16, LY14, L08].
Neuromimetic [RNJ +12].
Neuronal [CPP +12].
New-Age [DKB +09].
News [FCZ16].
Newton [CCL12].
Next [Dar05].
NMU [Roy10].
No [Swa88].
NoCs [MEP07, TOM +11].
Node [GAR +16, L09].
Nodes [NBN +15].
Non [CSTGL03, Spr92, Con88, LP94].
Non-overlapping [Spr92].
non-shared [Con88].
non-singular [LP94].
Non-Strict [CSTGL03].
Noncoherent [BBGM95].
nontcyclic [JB98].
Nonnegative [DZ010].
Nonsingular [OK99].
Normal [TG05].
Note [Ano14, Ano16a, Ano16b, Ano16d, Ano16c].
Novel [DMMS91].
NUMA [BFG +10].
Number [HR11].
[EFED05, YKLD17, Zey05].

Open [AML+10, Cie91]. OpenCL [JSS+15, SSB+17]. OpenHMPP [AAB+16]. OpenMP [AM07b, ABB+10, BdS07, BGdS09, BFS+10, BS07, BEG+10, DFC+07, DFA+09, FM09, GSA08, HMK09, HAA+11, JCH+08, KaM10, KSJ14, MG15, MFG+08, MBE03, MMS07, NIO+03, OOS+08, OP10, WPC07, YKLD17, aMST07]. OpenMP/

Optimised [Zha10]. Optimization [CFB94, CPCM96, CS97, CRM17, GLLH17, GmWHR98, HThnG+12, LDHL05, LM00, MO91, NIO+03, NsMCdMMW16, OO07, PCD+13, RLH14, SRS06, SSEA14, Sca11, SHZ+14, YHG16]. Optimization-Based [SHZ+14]. Optimizations [BKT08, BG96, ID08, KSEG14, LEL+99, MV17, MS11, SB90, SLZB13]. Optimize [ZLAV04]. Optimized [LF15, MGW99, Sar01]. Optimizer [LSY15]. Optimizing [BBR11b, CGN+09, uHKAMFM16b, MBE03, ZSH+12, MO90, uHKAMFM16a]. Optimum [EDA96]. Option [Ger10]. OR-

[BS15, MSJ01]. Output [CDRV98]. Output-Dependences [CDRV98]. Overhead [CTB14, KRW+05, SJBV06]. Overheads [BGdS09, LJ08]. Overlapping [IKN00, Spe92]. Overview [BML+13].
Parallel [Mer86, Mil88, MVD+14, NB15, NdMM09, NdMCdMMW16, NdMMW16, NSS12, NST89, OOR13, OP10, OGP+16, OO07, OG11, PW92, PLN04, PTD06, PVAE98, PR99, RK92, RK87, Ric90, RSV+95, RMG+13, RGB+08, SGK12, SH87, SI11, SS92, SMN09, SMSH13, SQH92, Sek09, SM09, SO89, SKAT91, Sk91, SR90, Spr02, SS99, SZ17, SC88, SHZ+91, Swa88, TRL09, VK88, WCC16, WL16, qWlJzKhC17, WS15, WZB+92, YBRM14, Zey05, Zha89, Zha10, ZWJK05, uRHH14, ACD+14, BCL90, BCK98, Con88, DPL86, EG86, EO88, GN89, GZ87, KMV87, NK88, PD89, Sch92, VR88, AK90b, Lin91a, Ali86, Cie91, SRV88, Tin88].

Parallel-Access [Joh94]. Parallelising [GS13]. Parallelising [GS13]. Parallelism [ACC+01, BS03, DV97, EW96, GVB+06, Gsc07, GL92, HPY01, KP04, MT96, MSS07, RSK09, SSEA14, SSNS16, SH96, SASH12, Toul05, WS08, XD04Fv+09, BS89, CG94, Sch92, VR88, AK90a]. Parallelization [ACC+01, BS03, C6+97, IS98, JCD+14, LQWP10, MVD+14, NN95, PPQV16, RAP95, SPP+00, SHK13, SJKA99, SKA96, SR15, TFNG09, TH17, WNMW16, WP00, aMST07]. Parallelize [MRLR16]. Parallelized [MRLR16].

Partitioned [AT91]. Partitioning [CGP01, EW96, FCJV99, GAR+16, Iql91, KEKK16, LGY16, Lys08, MRLR16, NS97b, SMN09, SWZ+15, SJC15, TG05, GZ87, KMV87, NK88, PD89].

Partitioning-Independent [EW96]. ParTriCluster [AFO+08]. Pass [NS97b].

Passing [CB01, EWHS11, GCD+03, GZ87, Hua89]. Path [AT91, CSC+00, JSHP97, LPF16, Jl08, OATGEL15a, SK97, SHZ+91].

Path-based [LJ08]. Pattern [ACD+16, BBR11a, CEP97, CPL+10, QA11].

Pattern-based [BEG10, HMK09]. Patterns [AKT+14, BE14, BS07, BEG+10, Car09, CHYP96, CHPC96, DFH17, DB08, GK+05, GSY+13, GKB87, HRH08, HF14a, HTmG+12, JSS+15, JCH+08, KaM10, KJPN10, LPB13, Li03, LY95, LWP04, LLSS03, LCL17, MB12a, MCWK01, MS11, MOL05, MMS07, ME15, NFC+09, NdMM09, NP01, PJS+05, PVAE98, RSJ+14, SGJ+03, SSEA14, Sca11, SAL16, SCB+14, SA10, TSB03, TFEK16, TKN+08, Tin88, VCP+13, WCC16, WGW04, YZ13, YBRM14, ZWJK05, dMP+03, BCK98].
Profile [CMW+94, CPMC96]. Profile-assisted [CMW+94]. Profile-Driven [CPMC96]. Profiling [CPMC96, LPF16, ZSH+12].

Program [Dar05, KKMS99, MCFM12, SNB04, SLZB13, CRM92]. Program [Dar05, KKMS99, MCFM12, SNB04, SLZB13, CRM92]. Program [Dar05, KKMS99, MCFM12, SNB04, SLZB13, CRM92]. Program [Dar05, KKMS99, MCFM12, SNB04, SLZB13, CRM92].
[HLK+09]. Scientific [DGMP09, IPR+05, MV17, SSB+17, TTF+08, WSO+07]. SCnC [SSNS16]. Scratchpad [CHCL14].

SDRAM [LPB13]. Search [GAR+16, Ged13, Hum91, KS90, LV95, MB12b, MVD+14, AD89, DPL86, KR87, RK87].

Searches [LTF+12]. Second [SS10].

Section [Ano16d, Ano16c]. Segmentation [LF15]. Seismic [PTdSF+12, Wai87].

Selected [KPS14]. Selecting [Low00].

Selection [DE00, GAR+16, uRHH14]. Selective [KMG01, TFMP97]. Self [DWS16, EFED05, FKM+11, HHW10, HC17, KFC08, LSL94, LJE05, NSS12].

Self-Adapting [EFED05]. Self-Monitored [LJE05]. Self-Scheduling [LSL94, HC17].

Self-stabilizing [DWS16]. Self-Submitting [NSS12]. Self-tuning [FKM+11].

Self-verified [KFC08]. Self-Aware [HHC+15, LQWP10].

Sensor [CPT14, NBN+15]. Separation [SS92]. Sequence [SO89, ECSS88, Hua89].

Sequences [AK17, FJZ+15]. Sequential [FCRC16, LNG12, TFNG09, WNMW16, Ali86]. Serial [NIK00]. Server [AFM+06, CYS16, LJE09].

Servers [EAT14, NYHA14, RC16, WLL+17]. Service [LJ09, uRHH14]. Services [HZL16, HHC+15].

Set [API03, CZTM03, GFL00, HCEP98, Met86, SS06, WGW04].

Sets [DWS16, FR95, LHF+15, NRR99, SS92, EG86]. several [Hem89].

SGI [CML04, IPR+05]. Shape [CAZ02]. Share [TV15].

Shared [BS03, BS91, CCG+14, Crn88, GV99, GG13, HR11, LSL94, Ltb90, MMG04, MBE03, NIK00, NAP02, SNB04, SR15, SMC94, SS01, SS17, SMOM96, SY08, WQY17, YBRM14, ZLD15, Con88, FcF87, GHLN86, Hem89].

Shared-address [HR11]. Shared-Memory

[BS03, CCG+14, GV99, LSL94, NIK00, NAP02, SMC94, YBRM14, GHLN86].

Sharing [CML04, GMB95, SNB04, YBDJ17].

Shifting [DH00]. SHMEM [SS01].

Shortest [AT91, OATGEL15a].

Shortest-Path [AT91]. shuffle [GE89].

Signal [FVvL+16, NS97b]. Signals [vNR11].

Significance [VC+16]. SIMD [GS90, KJHB14, SJBV06, SDJS98].

Similarity [Ged13].

Simple [CL96, WS08, LS91]. simplicial [EG86].

Simplifying [MCA98]. Simulating [BH87]. Simulation

[ABvK+13, AA15, Dem11, KWA+10, KP05, LJE05, MCE13, MGJS15, MANR09, PPQV16, SAB11, Zey05, ZWJK05, GT86].

Simulation-Based [ZWJK05, KWA+10].

Simulations [ASW+15, CGN+09, HLP11, HF14a, HF14b]. Simulator [WPC07]. Simulators [MPR+05, PC13, TCUV14].

Simultaneous [CEL+99, WS08]. Single [CB01, Fos89, HF14a, HF14b, PM07].

Singular [BUMS02, LP94]. SISAL [AM95].

Size [Low00]. SKA1 [FVvL+16].

SKA1-Low [FVvL+16]. Skeleton [DK16, EK14, SRC14, GGV17, IH04, DM17, SFAG14].

Skeleton-Based [GGV17].

Skeleton-Driven [SRC14].

Skeletons [CPT14, EM14, EK17, JCD+14, SM16].

SkeTo [EM14]. Skewing [Won02, Wol86].

Sliding [NdMM09]. Sliding-Window [NdMM09]. Slots [BMA02].

SLR [BNWL90]. SMA [LJE05]. Small [HZL16, HLP11, Sca11].

Smart [DK16, SJT13]. Smith [FJZ+15, HMF+13, TG05].

SMPs [BS03]. SMT [KLG08].

Snow [TRL09]. SOC [LVM16, AML+10, KHH08, KBG+08].

Social [CLJH16]. socket [RC16]. Software [AVM+16, BTB+13, CFF+06, Dar05, DJS12, EFED05, GRAG00, HTK98, KWA+10, LQWP10].
Subscribers [Ano92]. Suitable [MVB+06]. Suites [SGJ+03]. Summation [ML15].

Sums [MA87]. Super [AK96, JLD16]. Super-scalar [AK96]. Supercomputer [MSA+07]. Supercomputers [SBC17, qWJzKhC17]. Supernode [SPS14].

Superscalar [MSJ01, VM15]. Superthreaded [TJY99]. Support [EK17, GRR98, PB01, WGF+16, BCL90].

Supported [SD11, AH08]. Supporting [BHQ06, CYS16, MMS07, OSS+08, SQH92].

SURF [Zha10]. Surfaces [AP86, BGMR11, SC88]. Survey [BR14b, KPS14, LHL97, BAP01, CHB06, CS97, DW16, DLRS13, FLD15, Sun11].

Survive [ABB+10]. SW [KBG+08]. Swap [FLD15, Sun11]. Swarm [NdMcDMMW16, RH14]. Switched [FPY08a]. Switches [SWF+17]. Symbolic [ACD+16, CFF+06, KP05, MP04, GKM87].

Symmetric [GMP89]. Symposium [DB08]. Synchronisation [BHJ06, FG16].

Synchronization [GH98, GE90, HTK98, Jan15, JHLM01, KKZN12, Liv91, Lub90, NP01, HFM88, MO90]. Synchonizations [CH95]. Synchronous [BS15]. Synopsis [HZ16]. Synthesis [PG16]. Synthesizing [AMP01, AMAH01, AJF16]. System [AG06, AAS15, BCS+09, BC10, CYS16, EFED05, GG14, GCD+03, HSCI+16, HMT+96, KFC08, MI88, MMS07, NIK00, NP01, RH14, RNJ+12, SGJ+03, SJKAA99, SSM05, SH15, TLG16, TTF+08, TRL09, WGF+16, XZX+15, ZXY+15, KM86, TN88, KK11]. System-level [BC10]. Systematic [TH17]. SystemC [BS15]. Systems [Ano16c, AF15, AMP+05, ANS+12, BAP01, Bro15, CHB06, CS07, DK16, DLR13, EWHS11, FLMR02, FPCD14, FJO+16, HC17, HRR08, HLBK+10, HLK+09, Kuc94, LL+12, LSA+07, LMP05, MP91, MCE13, MGJS15, MBE03, Pan08, PP10, PB01, PM07, PO07, PEP08, RK92, SKG12, SEP08, SS17, SFAG14, TSS99, TKN+08, US05, WS14, WLL+08, ZC17, AH86, Cie91, Dav87, GLNN86, Par86b, PD89, PW87].

Systolic [AP86, Ano87e, IP90, Lan90].

Technique [AKD98, CP0C96, Huc97, HAA+99, KTT+99, PB04, RGB+08, SR04, TOM+11, WLW15].

Technique-Application [PB04].

Techniques [AK96, CAZ02, D816, GBLG10, KLO0, KP04, LY95, SRS06, STF+12, SK97, TAY+12, TJY99, ZLV04].

Template [GF14]. Temporal [PMHC03].

Tenanted [WQJY17]. Teradevice [WGF+16]. Terascale [GCD+03].

Termination [TH08]. Test [CPL+10, KJHB14, SRS06, BS89]. Testing [TCUV14, ZC09, Mai87]. Tests [JW16].

Text [FCZ16, LYL14]. TFlux [DTL16].

Their [CGJK95, LW97, ACC+01]. Theory [GRAG00, RSJ+14, CP88].

Thread [CPL+10, JG97, ZGH+15, WS08].

Thread-level [WS08]. Thread-Parallel [CPL+10]. Threaded [HGT+12, HTM+12, MG15, VSDK09, DS16, GS06, RD08].

threading [DTL16]. Three [ABASS12].

Three-Argument [ABASS12].

Throughput [AKT+14, BBR11b].

Throughput-oriented [AKT+14]. Thrown [AHKR01].

TDiDeFlow [OGP+16]. Tightly [SS01]. Tightly-Coupled [SS01].

Tiled [FC11, OOR13].

Tiling [MHC98, XH98, ZK07]. Time
Utility [YBDJ17]. Utilization [JHLM01, MGW99, ZLAV04]. Utilizing [CPL+10].

References

Anane:2015:TBE

Andion:2016:LAA

José M. Andión, Manuel Arenaz, François Bodin, Gabriel Rodríguez, and Juan Touriño. Locality-aware automatic paral-
REFERENCES

REFERENCES

Attali:2001:EFI

[AACC01]

Almasi:2002:DSM

[ACD+14]

Aldinucci:2014:DPP

REFERENCES

Aldinucci:2016:PEP

Almeida:1986:PAS

Akl:1989:PSC

Arras:2015:LSE

Aiello:2006:EOS

REFERENCES

Araujo:2008:PAG

Altman:1998:OMS

Aviles-Gonzalez:2014:SMM

Araujo:2015:GES

Abdi:2006:VSL

Ali:1990:FPS

Ali:1990:MAP

Ali:1992:SSW

Albonesi:1996:MVA

Alam:2017:PAG
REFERENCES

Abraham:1998:MST

Ali:2013:MFT

Arunagiri:2014:FTO

Ayguade:1995:ARP

Ali:1986:PEP

Part of the BC-machine project, SICS, Sweden.

Abramson:1995:EPS

Al-Mouhamed:2004:AOP

Ayguade:2007:I

Ayguade:2007:SIO

Al-Mouhamed:2001:ENG

Anonymous:1987:C

Anonymous:1987:FDL

Anonymous:1987:ICI

Anonymous:1987:SP

Anonymous:1992:IAS

Anonymous:2000:GEI
Anonymous:2000:IA

Anonymous:2000:IB

Anonymous:2001:IA

Anonymous:2003:E

Anonymous:2014:EN

Anonymous:2016:ENH

Anonymous. Editor’s note: High-level parallel programming and applications (HLPP). *International Journal of Paral-
REFERENCES

Anonymous:2016:ENS

Anonymous:2016:ENSb

Anonymous:2016:ENSa

Atasu:2003:AAS

Areias:2016:LFH

Azevedo:2005:AAD

Ahn:2015:FAP

Adamson:1991:GPA

Ayala:2003:PAC

Arias:2000:PLP

Anghel:2016:IAH

Autrey:1998:IRG
REFERENCES

Banerjee:1994:EI

Banerjee:2004:GEIa

Banerjee:2004:GEIb

REFERENCES

Ben-Asher:2001:INP

Ben-Asher:1995:FPF

Blough:1990:NOM

Baduel:2007:ATO

Bernstein:1995:SDD

issn=0885-7458&volume=28&issue=3&spage=213.

[BCL17] Mathias Bourgoin, Emmanuel Chailloux, and

Bjornson:2009:NCS

Brown:2014:CDR

Bronevetsky:2007:CFS

Bahi:2014:IRC

Bull:2010:PEM

J. Mark Bull, James En-

[BFS05] Francesco Bruschi, Fab-

REFERENCES

Benini:2011:PRA

Bradley:1987:SLC

Bell:2006:SMS

Bik:2008:CSC

Bonyadi:2009:BGA
REFERENCES

[Bos12] Joppe W. Bos. Low-

[Bermudez:1990:PCS]

[BR97]

[BR14a]

[Bezensek:2014:SPD]

[Bro86]

[Bro15]

[BS89] Arvind K. Bansal and

REFERENCES

Corbera:2002:NSA [CAZ02]

Chiarulli:1986:PMT [CB86]

Chakrabarti:2001:SSA [CB01]

Che:2017:PGG [CBR17]

Shuai Che, Bradford M. Beckmann, and Steven K. Reinhardt. Programming GPGPU graph applications with linear algebra

[Ccamara:2014:EIL]

[CCG+14]

[CCharr:2012:AEM]

[CDV98]

[CEHR13]

Barbara Chapman, Deepak Eachempati, and Oscar Hernandez. Experiences developing the OpenUH

Chang:1997:IBP

Carter:1994:XCI

Currie:2006:ESV

Carriero:1994:CSA

Carriero:1995:PSS

REFERENCES

REFERENCES

Clapp:1990:CCR

Chen:1994:PAI

Capitanio:1995:HBM

Collard:1995:APW

Conery:1988:BEP

Cleaveland:1988:TTC
Carroll:2004:FIE

Canal:2001:DCP

Czutro:2010:TPI

Conte:1996:HBP

Cao:2012:PMN

Chessa:2014:EEE

Crammond:1988:GCA

Chuang:1992:APU

Cvetanovic:2017:ROT

Conte:1997:OVC
Chabkinian:2016:FL

Carter:2000:PAR

Chen:1989:HEH

Cristobal-Salas:2003:NSE

Czapinski:2014:RCO

Alberto F. De Souza and Rajkumar Buyya. Introduction to the Special Issue on the 18th International Symposium on Computer Architec-
Daumas:2000:PIS

DeBenedictis:1987:MUP

Demsky:2011:UDE

Dennis:1994:MMP

Donaldson:1998:AAP

REFERENCES

Duncan:2016:UPP

Dudas:2012:SCA

Dastgeer:2016:SCS

DeBole:2009:NAN

Dias:2013:SUT

REFERENCES

Degano:1987:POM

Matteis:2017:PPW

Das:1991:PSA

delStGermain:2003:PAI

Dekel:1986:OPA

Dehne:1997:RPL

Deniz:2016:UML
Etem Deniz and Alper Sen. Using machine learning techniques to detect parallel patterns of multithreaded applications. *International Journal of...

REFERENCES

Enokido:2014:EER

Alvaro Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano. New data

Evripidou:2006:MMA

Evripidou:2000:I

Ewedafe:2011:PID

Engelhardt:1996:PIP

ElKabbany:2011:DLB

Fensch:2011:EBC
Christian Fensch and

Fujimoto:1987:SMA

Farkas:1999:MAR

Fan:2016:TCA

REFERENCES

REFERENCES

Franke:2012:GEC

Feldman:2015:WFM

Fachada:2017:PSS

REFERENCES

Farrens:1996:GEI

Foster:1989:MGC

Fiore:2014:CBD

Faraj:2008:BEA

Faraj:2008:SPA

REFERENCES

[Guo:2008:CIR]
REFERENCES

Gou:2013:AGC

Gijsbers:2014:ESR

Goli:2017:ACS

Gupta:1989:SIB

Ghiya:1996:CAP

George:1986:SSP

Alan George, Michael T. Heath, Joseph Liu, and

Gaspar:2014:BCW

Givargis:2007:SIE

Givargis:2008:GEI

Gregor:2005:GPH

Genaud:2009:FMP

Stéphane Genaud, Emmanuel Jeannot, and Choopan Rattanapoka.
REFERENCES

Gilder:1994:ASC

Guzman:1987:PAS

Gupta:1992:EPF

Griebl:1995:CSD

Gao:2017:AOM

REFERENCES

ISSN 0885-7458 (print), 1573-7640 (electronic).

REFERENCES

[GmWHR98]

[GP94]

REFERENCES

REFERENCES

Hsu:2015:NPC

Hamidouche:2013:PSW

Hilbrich:2009:MCC

Hum:1996:SEM

Hank:1997:RBC
REFERENCES

Hwu:1994:GE

Huang:2016:CFL

Holobar:2006:DJJ

Heinecke:2013:EAE

Hidalgo-Paniagua:2015:CSP

REFERENCES

Rachid Habel, Frédérique Silber-Chaussumier, François Irigoin, Elisabeth Brunet, and François Trahay. Combining data and computation distribution di-

Holzenspies:2010:RTS

Han:1998:EBS

Han:1998:EBS

Hendren:1997:CCE

REFERENCES

[HZL16] Rui Han, Jianfeng Zhan, and Jose Vazquez-Poletti

REFERENCES

[102x681]

Introduction:1998:EA

Ibarra:1990:EAP

Iyer:2005:EEH

Iqbal:1991:AAP

Iwashita:2003:BRB

REFERENCES

REFERENCES

[MSG02] Pramod G. Joisha, Samuel P. Midkiff, Mauricio J. Ser-

Joe:1999:GEI

Joe:2003:GEI

Johnson:1994:PAM

Javed:2016:TSJ

Jannesari:2016:AGU

Kapinos:2010:PPP

Khan:2017:RCS

Kasif:1986:CDD

Kachris:2003:RLB

C. Kachris, N. Bourbakis, and A. Dollas. A reconfigurable logic-based processor for the SCAN image and video encryption algorithm. *International Journal of Par-

Kriaa:2008:PPM

Kultursay:2016:MPL

Kennedy:1994:CTM

Kennedy:2001:FGW

Kistler:1999:TBA

Kolberg:2008:DLS

Kalla:2008:FFC

Ko:2014:SPD

Kella:2011:AAP

Kirovski:1999:PBP

Kavadias:2012:CIN

Krall:2000:CTM

Kang:2008:ISE

Dongsoo Kang, Chen Liu, and Jean-Luc Gaudiot.

REFERENCES

Koelbel:1987:SAP

Kelly:1995:UAC

Koelbl:2005:CEF
REFERENCES

REFERENCES

REFERENCES

[LBT17]
Frédéric Loulergue, Wadoud Bousdira, and Julien Tes-
son. Calculating parallel programs in Coq using list homomorphisms.
CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL

[LC11]
Yu-Min Lu and Peng-Sheng Chen. Probabilis-
CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL http://
www.springerlink.com/openurl.asp?genre=article&
issn=0885-7458&volume=39&issue=6&spage=663.

[LCL17]
CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL

[LCU92]
CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL http://
www.springerlink.com/openurl.asp?genre=article&
issn=0885-7458&volume=21&issue=2&spage=123.

[LDHL05]
Yoon-Ju Lee, Pedro C. Diniz, Mary W. Hall, and Robert Lucas. Empir-
CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL http://
www.springerlink.com/openurl.asp?genre=article&
issn=0885-7458&volume=33&issue=2&spage=165.

[LEA15]
Zifan Liu, Nahid Emad,

REFERENCES

http://ipsapp007.kluweronline.com/content/getfile/4773/36/2/fulltext.pdf;

REFERENCES

REFERENCES

issn=0885-7458&volume=37&issue=2&spage=175.

REFERENCES

Lu:2003:ABH

Li:2017:TLT

Loechner:2000:COA

Lee:1998:CPA

Loghi:2005:DFV
Mirko Loghi, Tiziana Margaria, Graziano Pravadelli, and Bernhard Steffen. Dynamic and formal verifi-

Lin:2012:ESC

Li:1991:ECM

Lowenthal:2000:ASB

Li:1994:SLT

Langemeyer:2013:USM

REFERENCES

Lattuada:2016:PET

Liao:2010:SAA

Lo:1991:OTM

Lee:2014:BCA

Lin:1991:PIS
Calvin Lin and Lawrence Snyder. A portable implementation of SIMPLE. *International Journal of Parallel Program-
Loots:1992:PAK

Lipasti:1998:EVL

Lin:2005:EBH

Laudon:2007:CWM

Lee:2007:DBI

Gregory L. Lee, Martin Schulz, Dong H. Ahn, Andrew Bernat, Bronis R. de Supinski, Steven Y. Ko, and Barry Rountree. Dynamic binary instrumentation and data aggregation on large scale systems. *International
REFERENCES

[Li:2015:CCM] Guohong Li, Olivier Temam, and Zhenyu Liu. Cluster cache monitor: Leveraging the proximity data in
REFERENCES

REFERENCES

Liu:2004:HPR

Li:1998:Ia

Li:1998:Ib

Li:2014:PTI
Roman Lysecky. Scalability and parallel execution
of Warp processing: Dynamic hardware/software
partitioning. *International Journal of Parallel
IJPPE5. ISSN 0885-7458 (print), 1573-7640 (elec-
tronic). URL http://www.springerlink.com/
openurl.asp?genre=article&issn=0885-7458&volume=
36&issue=5&spage=478.

Yaojie Lu and Sotirios G. Ziavras. Instruction fusion
for multiscalar and many-core processors. *International
Journal of Parallel Programming, 45*(1):67–78, February
2017. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-
article/10.1007/s10766-015-0386-1.

Henk Meijer and Selim G. Akl. Optimal computation
of prefix sums on a binary tree of processors. *International
1987. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640
(electronic). URL http://www.springerlink.com/
openurl.asp?genre=article&issn=0885-7458&volume=
16&issue=2&spage=127.

Matthias S. Müller and Eduard Ayguadé. Guest
editors’ introduction. *International Journal of Parallel
IJPPE5. ISSN 0885-7458 (print), 1573-7640 (elec-
article&issn=0885-7458&volume=38&issue=5&spage=339.

Harm Munk, Eduard Ayguadé, Cédric Bastoul,
Paul Carpenter, Zbigniew Chamski, et al. ACOTES
Project: Advanced compiler technologies for em-
bedded streaming. *International Journal of Parallel
IJPPE5. ISSN 0885-7458 (print), 1573-7640 (elec-
article&issn=0885-7458&volume=39&issue=3&spage=397.

Michael G. Main. Trace, failure and testing equiv-
REFERENCES

Mariani:2016:SPP

Margaris:2009:LFF

Matsuzaki:2017:FMH

Martinez-Angeles:2016:RLG

Carlos Alberto Martínez-Angeles, Haicheng Wu, Inês Dutra, Vítor Santos Costa, and Jorge Buenabad-Chávez. Relational learning with GPUs: Accelerating rule coverage.
REFERENCES

Mendelson:1999:DAM

Moghaddam:2012:IBG

Min:2003:OOP

REFERENCES

Kshitij Mehta and Edgar
REFERENCES

Melo:2014:GE

McAllister:2015:GES

Marsof:1999:UMS

Mitchell:1998:QML

Maydan:1995:EDD

Dror E. Maydan, John L. Hennessy, and Monica S. Lam. Effectiveness of
REFERENCES

Miller:1988:ISB

Mishra:2009:GEI

Milicev:2002:CFR

Mutlu:2005:UFL

Michelogiannakis:2015:ESP

George Michelogiannakis

Mantas Ruiz:2002:CBD

Manoj:2004:CDC

Matsuzaki:2016:PTA

Mahfoudhi:2015:PCA

REFERENCES

http://link.springer.com/article/10.1007/s10766-014-0310-0.

Morris:2007:SNO

McNamee:1990:TOI

McNamee:1991:AGA

Midorikawa:2005:PNM

Mongenet:1997:ADC

REFERENCES

IJPPE5. ISSN 0885-7458

Mall:1991:FTA

Melvin:1995:EIS

Menon:2004:LLL

Moss:2005:CCB

Mendelson:2006:I

[MSA+07] José E. Moreira, Valentina Salapura, George Almasi, Charles Archer, Ralph Bellofatto, Peter Bergner, Randy Bickford, Mathias Blumrich, José R. Brunheroto, Arthur A. Bright, Michael Brutman, José G. Castaños, Dong Chen, Paul Coteus, Paul Crumley, Sam Ellis, Thomas Engelsiepen, Alan Gara, Mark Giampapa, Tom Gooding, Shawn Hall, Ruud A. Haring, Roger Haskin, Philip Heidelberger, Dirk Hoenicke, Todd Inglett, Gerrard V. Kopcsay, Derek Lieber, David Limpert, Pat McCarthy, Mark Megerian, Mike Mundy, Martin Ohmacht, Jeff Parker, Rick A. Rand, Don Reed, Ramendra Sahoo, Alda Sanomiya, Richard Shok, Brian Smith, Gordon G. Stewart, Todd Takken, Pavlos Vranas, Brian Wallenfelt, Michael Blocksome, and Joe Ratterman.

Michaud:2001:EIF

Matheson:1996:PMM

Metzger:2015:UGD

Malakar:2017:HRW

Martinez:2006:DGN

Carmen Martínez, En-

Monteiro:2014:PFS

Ma:2014:DPI

Nedjah:2016:PYP

Nageswaran:2009:BDV

Ning:1992:OLS

Nicolau:2014:AR

Nakajo:2000:DSM
Nakano:2003:SCG

Ni:1988:PMH

Novack:1995:HAI

Nikolopoulos:2001:AOS

Neirynck:1989:EAH

Nau:1986:EAM

Najjar:1994:EMG

Narasimhan:1999:UDF

Ragini Narasimhan, Daniel J. Narasimhan. 1999: UDF

REFERENCES

Ortega-Arranz:2015:CEN

Ortega-Arranz:2015:TML

Ossner:2013:GMB

Ozturan:2011:GEP

Orozco:2016:DIT

REFERENCES

REFERENCES

Otoom:2012:WMI

Orailoglu:2003:GEI

Ortega:2004:DMI

Panda:2008:GEI

Parallax:1986:BPP

REFERENCES

2. Park:2013:PMP
Park, Eunjung Park, John Cava-
zos, Louis-Noel Pouchet, Cédric Bastoul, Albert Cohen, and P. Sadayap-
pan. Predictive model-
ing in a polyhedral op-
mization space. Inter-
national Journal of Par-

Kee-Hyun Park and Lawrence W. Dowdy. Dynamic par-
titioning of multiproces-
sor systems. Interna-
tional Journal of Paral-

Rajani Pai and R. Govind-
darajan. FEDS: a frame-
work for exploring the ap-
lication design space on
network processors. Interna-
tional Journal of Paral-
lel Programming, 35(1): 1–

5. Pavlidis:2016:HSQ
Archimedes Pavlidis and Dimitris Gizopoulos. Hier-
archical synthesis of quan-
tum and reversible ar-
chitectures. International Journal of Paral-

Shlomit S. Pinter. In-

7. Siloutou S. Pinter. Ini-

Rajani Pai and R. Govind-
darajan. FEDS: a frame-
work for exploring the ap-
lication design space on
network processors. Interna-
tional Journal of Paral-
lel Programming, 35(1): 1–
REFERENCES

Petrov:2007:DTR

Panda:2010:GES

Pop:2008:AOH

Pellegrini:2016:TSP

Phillips:1999:PSR
Steven Phillips and Anne

Pratt:1986:MCP

Palis:1992:NAR

Park:1997:AGT

Panesar:2006:DPP

Panetta:2012:ATD

Jairo Panetta, Thiago Teixeira, Paulo R. P. de Souza Filho, Carlos A. da Cunha Filho, David Sotelo, Fernando M. Roxo da Motta, Silvio Sinedino Pinheiro, Andre L. Ro-

Mohammad J. Rashti and Ahmad Afsahi. A speculative and adaptive MPI rendezvous protocol over RDMA-enabled

Rauchwerger:1995:SMR

Rau:1996:IMS

Rana:1986:ODS

Rohou:2000:HGC

Rahman:2016:ASO

Rounce:2008:DIS

Reguly:2015:FEA

Ruggiero:2008:FAT

Rice:1990:SDP

Rao:1987:PDF

REFERENCES

Ramkumar:1992:JAC

[RK92]

Rovers:2013:UNU

[RLH14]

Ramezani:2014:TBS

[RK13]

Rajwar:2004:IQS

[RKG04]

Ramirez:2002:STC

REFERENCES

[102x681]161

[RS90] John H. Reif and Scott A. Smolka. Data flow analy-

Rosas:2014:IPD

[RSJ+14]

Rasmussen:2009:PSI

[SAS10]

Roberti:2005:PIL

[RSV+05]

Suri:2010:IAP

REFERENCES

REFERENCES

[165]

[186x646] Silva:2014:EDE

[SCB14]

[SD11]

Shriraman:2011:ACH

[SDJS98]

So:1998:MCG

Sehr:1998:GEI

Seki:2009:DRI

Steuwer:2014:IIA

Sreraman:2000:VCM

REFERENCES

[SH15] Gong Su and Stephen Heisig. The scalability of disjoint data structures on a new hardware transactional memory system. Interna-
REFERENCES

Shahbahrami:2006:ACR

Sasakura:1999:NIV

Sundararajan:2013:SCE

Schlansker:1997:TCP

Sun:2014:AVP

REFERENCES

Schlansker:1996:PCR

Singh:1991:EAP

Shi:2009:BIO

Schneider:2014:LBD

Shen:2013:ITI
Xipeng Shen, Yixun Liu,

REFERENCES

... continued...

REFERENCES

IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
21&issue=4&spage=303.

Johann Steinbrecher, Cesar J. Philippidis, and Weijia Shang. A case
study of implementing supernode transformations. International Journal of
Parallel Programming, 42 (2):320–342, April 2014. CODEN IJPPE5. ISSN
com/article/10.1007/

Bradley K. Seevers, Michael J. Quinn, and Philip J. Hatcher. A parallel pro-
gramming environment supporting multiple data-parallel modules. Interna-
DEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
21&issue=5&spage=363.

Rok Sosic and Richard F. Riesenfeld. Parallel algorithms for line gen-
ber 1990. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
19&issue=5&spage=389.

Stavros Souravlas and Manos Roumeliotis. A pipeline technique for dy-
namic data transfer on a multiprocessor Grid. International Journal of
Parallel Programming, 32 (5):361–388, October 2004. CODEN IJPPE5. ISSN
com/openurl.asp?genre=
article&issn=0885-7458&
volume=32&issue=5&spage=361.

Martin Schreiber and Christoph Riesinger. Invasive compute balanc-
ing for applications with shared and hybrid parallelization. Interna-
tional Journal of Parallel Programming, 43(6):1004–
1027, December 2015. CODEN IJPPE5. ISSN
0885-7458 (print), 1573-

Sanchez:2006:ETA

Somogyi:1988:BAS

Sarkar:1992:PAS

Sazeides:1999:LDV

REFERENCES

openurl.asp?genre=article&
issn=0885-7458&volume=
27&issue=4&page=229.

Shan:2001:CMS
Hongzhang Shan and
Jaswinder Pal Singh.
A comparison of MPI,
SHMEM and cache-coherent
shared address space pro-
gramming models on a
tightly-coupled multipro-
cessors. International
Journal of Parallel Pro-
gramming, 29(3):283–318,
June 2001. CODEN IJPPE5. ISSN 0885-7458
(print), 1573-7640 (elec-
tronic). URL http:/
ipsapp009.lwwonline.
com/content/getfile/
4773/21/3/abstract.htm;
http://ipsapp009.lwwonline.
com/content/getfile/
4773/21/3/fulltext.pdf;
http://www.springerlink.
com/openurl.asp?genre=
article&issn=0885-7458&
volume=29&issue=3&page=
283.

Scholz:2010:GEE
Sven-Bodo Scholz and
Alex Shafarenko. Guest
editors’ editorial: Spe-
cial issue on the Sec-
ond International Work-
shop on Microgrids. Inter-
national Journal of Par-
allel Programming, 38(1):
1–3, February 2010. CO-
DEN IJPPE5. ISSN 0885-
7458 (print), 1573-7640
(electronic). URL http:/
www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
38&issue=1&page=1.

Sivakumaran:2017:PBY
Krupa Sivakumaran and
Arul Siromoney. Priority
based yield of shared cache
to provide cache QoS in
multicore systems. Inter-
national Journal of Par-
allel Programming, 45(3):
634–656, June 2017. CO-
DEN IJPPE5. ISSN 0885-
7458 (print), 1573-7640
(electronic).

Sotomayor:2017:ACG
Rafael Sotomayor, Luis Miguel
Sanchez, Javier Garcia
Blas, Javier Fernandez,
and J. Daniel Garcia. Au-
tomatic CPU/GPU gen-
eration of multi-versioned
OpenCL kernels for C++
scientific applications. Inter-
national Journal of Par-
allel Programming, 45
CODEN IJPPE5. ISSN
0885-7458 (print), 1573-
7640 (electronic). URL
http://link.springer.
com/article/10.1007/
s10766-016-0425-6.

Sankaraiah:2014:POV
S. Sankaraiah, Lam Hai
Shuan, C. Eswaran, and
Junaidi Abdullah. Per-
formance optimization of
video coding process on

[SSM096]

[SSNS16]

[STF+12]

Artur Santos, João Marcelo Teixeira, Thiago Farias, Veronica Teichrieb, and Judith Kelner. Understanding the efficiency of kD-tree ray-traversal techniques over a GPGPU architecture. *International Journal of Parallel Programming*,
Sukhwani:2015:HSA

Smiljkovic:2017:DSL

Siek:2016:ARD

Sundell:2011:WFM

References

[Swain:1988:CSH]

[Su:2017:HLS]

[Song:2005:PTA]

[Sha:2015:PEH]

[Subramani:2008:DIS]
Srinivasan:2017:SIN

Tyson:1999:MRF

Tipparaju:2012:RTE

Tomic:2014:UDR

Trancoso:2006:CCM
REFERENCES

[TG05] Eric Hung-Yu Tseng and Jean-Luc Gaudiot. Automatic array partitioning based on the Smith

183

REFERENCES

Touati:2005:RSI

Tierney:2009:SPC

Takahashi:2003:PEH

Taylor:1986:PIF

Tan:1999:PIB
Min Tan, Janet M. Siegel, and Howard Jay Siegel. Parallel imple-

Teodoro:2008:RTS

Khan:2016:EOM

Khan:2016:OMM

REFERENCES

Vassilis Vassiliadis, Charalampos Chalios, Konstantinos Parasyris, Christos D. Antonopoulos, Spyros Lalis, Nikolaos Bellas, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. Exploiting significance of computations for energy-
REFERENCES

Valduriez:1988:PET

Velasquez:2015:BBA

Vandevoorde:1988:WAC

Vander-Swalmen:2009:CAM

vanNieuwpoort:2011:CRA

REFERENCES

[Weis:2016:ASF]

[Woo:2004:AAJ]

[Wang:2016:GDS]

[Wang:2008:DIA]

[Wing:1989:VAD]
REFERENCES

Wu:2000:CPG

Weng:2007:OIS

Warg:2008:DTS

Xue:1998:RDT

Xavier:2009:MLP

Xu:2015:YSE

Yang:1995:MDD

Ye:2017:REC
REFERENCES

Yzelman:2014:MCH

Yu:2016:CBL

Yang:2016:EBM

YarKhan:2017:PPN

Yun:2003:TOS

Zhang:1989:PAM

Zhang:2010:COP

Zhang:2007:RCM

Zalamea:2004:SHT

Zhang:2015:QBA

Deli Zhang, Brendan openurl.asp?genre=article&

Zhang:2017:OPL

Zhang:2012:DDA

Zyulkyarov:2012:POT

Zheng:2005:SBP

Zhong:2015:VBM

Zhang:2013:KPM