A Complete Bibliography of Publications in the
International Journal of Parallel Programming

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

05 April 2024
Version 2.41

Title word cross-reference

* [CS16]. + [HVF18, SBC17]. 0 [LS92]. 1 [LS92]. 2 [CTB14, ES11, IBA11]. 3 [BC15, HPVRPF15, HF14a, HF14b, JGM15, LLGC17, LHP+17, SJKA99, SSxWC18, SBC17]. < [JS06a]. > [JS06a]. (R) [BKT08, SM09]. T^M [BKT08]. i [TRD21]. K [LKS+20, VVCA23]. kd [WR18]. t_1 [GLLH17]. m [DPL86].

1000 [SSMO96]. 14 [HG18]. 16 [Swa88]. 18th [DB08].
Altruism-Based [LCL19]. AMAIX [ZJL22]. Andahl [Ano87a, PM07]. AMR [NLRH07]. Analyses [Ci96, GV95, SJW22].

Analyzing [BDD +18]. Analysis [AK96, ABTZ00, AFO +08, AW98, BEA +19, BG96, BFRPVR +15, CSC +00, CSD21, CAZ02, CAT18, CPE +10, Fso11, Gha19, GH96, HML +20, Jak19, KP04, LT17, LCL19, LV95, LHF +15, LWDL17, LHP +17, LC11, MP01, MHL95, MP04, NSU22, NP19, PCJ20, PPEP08, RLEJ19, RRH03, Scs11, SSP +96, Sos9, US05, WGW04, dMP +03, AD86, GTB +88, NPD89, AD86, GTK +88, NPD89, RS90, KR87].

Animation [BGMR11]. Announcement [Int98, Ano86d, Ano92]. Anomalies [Jan15]. ANSI [BG03]. Anti [ASG20, dMMHdLN21]. Anti [CDRV98]. Apache [ZLA21]. APCFS [KK11]. API [LCT +20, TTF22]. APL [GS90]. app [DJR16]. Application [ACC +02, API03, BGdS09, BS07, CZTM03, Dan07, EGK23, FJO +16, HL21, HTDL18, JCH +08, JAW17, KS07, Mat17, MP04, Moh19, PG07, PB04, RSK09, Sek09, SKG09, TOM +11, VMS15, BH87, CRM92, WB87]. Application-Aware [JAW17]. Application-Dependent [VMS15]. Application-Level [HTDL18]. Application-Specific [API03, TOM +11]. Applications [Ano16a, Ano18b, BEA +19, BEJD21, BBR11b, BDD +18, CY14, CR19, CBR17, CHCL14, CPT14, DPT17, DFH17, DS16, DGMP09, EWHS11, FM09, GHM14, GS11, GS13, GRC +14, GVV17, Gre16, HK14, HKM09, HbK +10, HLK +09, IPR +05, KMjC02, KPRS96, KTBP18, LRG14, LW +17, LQWP10, LWLG11, MV17, Mar09, MAJD16, MG15, MCWK01, MANR09, Mis09, OK99, OQA21, PPOQ16, RLNP +02, RSJ +14, RGB +08, SR15, SUCV17, SSB +17, SASH12, SBN03, TG21, TB23, TMHT96, WL16, WLL17, ZK07, ZSS +19, ZD19, ZSH +12, GKMBS7, SDJS98, SS89].

applicative [Hun87]. Applied [BUMS02, KaM10, Lin91a]. Approach [AK90b, AV +16, BB +17, CHB06, DM17, FCZ16, FJA +18, FBV21, FJO +16, GAG22, GYL92, JQWG15, KK +20, KS +24, KSA +18, LTF +12, LTL +15, LCT +20, M091, NN95, OATGEL15a, PMV17, QZP15, STM15, VSDK09, qWJJxKhC17, WS08, WEJS94]. Approaches [BUMS02, JCH +08, PCJ18, VRGC19]. Appropriate [Gen16]. Approximate [HZL16, Iqb91, TGT18, VCP +16].

Arbitration [BS91]. ArchC [AR +05]. Architectural [LSHK09, NP01, SEP08, TCUV14, WGF +16]. Architecture [AP86, AR +05, BGGT02, CHCL14, CDC +19, CDC09, DB08, DLRS13, FCJV99, GWPV21, GL92, HTZ +97, HL21, JLD +16, LHP +17, MB12a, MB99, MSPR18, NdMMW16, NAP02, RD08, ST +12, SJT13, TRD21, YS22, ZTY +19, CB86, GKMBS7].

Architecture-Agnostic [NAP02]. Architectures [Ano18b, Ano18a, BG96, BFG +10, CPG01, CND95, CJA00, GBPK07, Ged13, GAG22, GVV17, HCEP98, HP13, LAD15, MCE13, MGJS15, Mis09, NFC +09, NdMcMMW16, PJS +05, PMM +18, PG16, PVG17, RJQ22, RMH21, RSJ +19, SJBV06, SHM21, TG21, TB23, TJY99, TF94, VHK +18, ZLAV04, ZZS +19, LRG +91]. Area [RSP20, Roy10, SWZ +15, WMN +17]. Argument [ABASS12, NG92]. Argument-Fetching [NG92]. Arithmetic [ABAS12]. ARM [MGL +17]. ARMv8 [CFC +19, KHT21]. ARMv8-based [CFC +19]. Arnoldi
Array-oriented [CZ12]. Arrays [EHKT07].

Art [KPS14, LHL+16]. Artificial [CSCL20, GKC22]. ASIPs [ALTT17].

Aspect [KKSP18, KK20]. ASPmT [MWHS24]. ASPmT-Based [MWHS24].

Assembly [ABTZ00]. Assessing [EGK23, KKSP18]. Assessment [BKK20, BKK23, FJA+18, Hal86, UWF+20].

Assignment [CB01, Fos89]. Assimilation [XZT20]. Assisted [GRV+17, GAG22, MMG04, RMG+13, CMW+94, LCF21].

Attempting [GYL92]. attitude [WSC20]. Attribute [M091]. Attributes [BDD+18].

Auction [WWG+19]. Auction-Based [WWG+19]. Auto [CCG+14, Ged13].

Auto-Tuning [CCG+14, Ged13].

Automata [BR07, WSS18]. Automated [AZK+18, BEJD21, JGP+18, VNU19].

Automatic [AAB+16, API03, ALG+95, BG17, BGGT02, CZ12, CzTM03, Col95, CAZ02, EM14, FCRC16, Gk94, GBV+06, GRC+14, GYP22, GMS00, HHC+15, Jak19, JW16, LQWP10, PBS19, SRS06, SHK13, SSB+17, SNs21, TFEK16, TG05, ZLC+19, vdsGBW08, KMv87]. Automatically [DDJ+18].

Autonomic [GGV17].

Autonomous [KK11]. Autotuning [BC15].

Avoidance [NBA13]. Avoider [YZ20].

Avoiding [MMN15, SJBV06]. AVX [RSJ+19]. AVX-512 [RSJ+19]. Aware [AOAM21, AAB+16, AVLV03, CTK+11, Cak17, DCX+17, FPCD14, GB20, HZSZ20, HSM+24, JQWG15, JAW17, JLD19, JDF20, KHT21, LQWP10, LGY16, LHLT19, Mar17, MMKD21, PS23, QA11, WZT+19, WTQ21, XLWX19, YHGW16, MEP07, YFC21].

Awareness [KA20, RGB+08].

Axiomatization [GM20]. axioms [FK87].

<table>
<thead>
<tr>
<th>Categorization [LYL14]</th>
<th>Cattle [KSA+18]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caused [MKAP05]</td>
<td>CCAP [JQWG15]</td>
</tr>
<tr>
<td>ccNUMA [NP01]</td>
<td>CERP [BHL21]</td>
</tr>
<tr>
<td>CDMA [GN20]</td>
<td>Celerity [TTF22]</td>
</tr>
<tr>
<td>Cell [Wso+07, BGMR11, Gsc07, Oos+08, Sca11, SKG09]</td>
<td>Cell/B.E. [Sca11]</td>
</tr>
<tr>
<td>Central [FvL+16]</td>
<td>Centric [CM06, FPCD14, KP01]</td>
</tr>
<tr>
<td>Change [LFHAM19]</td>
<td>Channel [Gha19, GL92, HZZS20, WQJY17]</td>
</tr>
<tr>
<td>Channel-Aware [HZZS20]</td>
<td>Channels [FDY+19, KLK16, YDV19]</td>
</tr>
<tr>
<td>Characteristics [SH96, Tic90]</td>
<td>Characterization [AVM+16, GM20, YDV19]</td>
</tr>
<tr>
<td>Chemistry [CGN+09]</td>
<td>Chinese [FCZ16]</td>
</tr>
<tr>
<td>Chip [AO19, AOAM21, GRV+17, GG13, Gsc07, JLF19, JDF20, KKZ12, KSEG14, KT01, LS07, MVB+06, OP12, OBB+24, PM07, TGT18, TESK06, ZK07, ZGH+15, ZC09, AH08]</td>
<td>Chip-Multi [AOAM21]</td>
</tr>
<tr>
<td>Chip-Multiprocessors [GRV+17, TGT18]</td>
<td>Chips [NCR+19, choice [BS89], Cholesky [GN89], church [Ano86a], Circuit [PMV17, WPC07], circuits [BH87], CISL [MPR+05], Cities [KIT+20], Clairvoyant [SY08], Class [BEF13, MPR+05, IPR+05], Class-Based [MPR+05], Classification [CHY96, CS20, KTBP18, Mon97, NAS23, QZP15], Cleaning [MCT+18], Clearance [GAK20], Climate [HNC+16, LHF+15], Cloaking [MS99], CLOMP [BGdS09], Closure [CAP88, KP95, KPR96, VK88], Cloud [AAI+20a, AAI+20b, CAK17, DS20, HZL16, HC17, JM20, JQWG15, KJHB14, LHL14, WQJY17, XZZ+15, XLWX19, uRHH14], Cloud-Based [AAI+20a, AAI+20b]</td>
</tr>
<tr>
<td>Clouds [JAW17, LTF+12, LCT+20]</td>
<td>Cluster [CYS16, EAT14, ES11, FPCD14, LJ09, LTL15, LSYG15, MLdP02, NIK00, SCB+14, YS22], Cluster-Based [FPCD14, L09], Clustered [CPG01, GBP07], Clustering [ANS20, BABW14, CS20, CAP88, DMC91, FCZ16, LKS+20], Clusters [BEA+19, BS03, BC15, DWQ17, EAK21, FPY08a, GCD+03, GSY+13, HC17, HOZ06, QA11, RPF18, TTF22, WK20], CMP [DLX+17, TTL15], CMPs [BHJ06, FC11, KKK12, LGY16], CNN [SHS21], CNNs [SWG+18], Co [GRAG00, MPR+05, NB15], Co-Generation [MPR+05], Co-operation [NB15], Co-Scheduling [GRAG00], Coarse [CSF+20, NIO+03, PSM97, SSM21, WW17, AD89], Coarse-Grain [PSM97], Coarse-Grained [CSF+20, SSM21, WW17], Code [AKBPV19, ABTZ00, BTB+13, CPG01, GBLG10, GKY94, HBC23, HRC17, JS10, KA01, KAMAMA17, LF15, LC11, MGW99, MCA98, MF04, NRB04, NLBB23, OO07, PB04, TFK16, TF94, WNMW16, WK20], Codes [CAZ02, ELGE17, HTK98, KFF99, RMG+13, SFV0], Coding [DLS13, MB12b, SSEA14, YMW+17], Coflow [CLL21], Coherence [CMW90, FC11, KSEG14, MPAG18, PPM+18, SN04, SMH21, YDV19, BCK98], Coherence-Free [MM+18], Coherent [SS01, TGT18], Cohesion [KKSP18], Collaborative [Gen16, JCM+18, VSDK09, WLW15], Collection [Cra88, AH86], Collective [BG17, FPy08b, IBA11], Collector [Fos89, LWLG11], Colluding [AKA+20], Colony [ASG20, CSCL20, dMMHdLN21], Combinatorial [MAT23], Combining [ABASS12, GV95, GH95, HSCI+16, LSM+18, LSS03, RK92, SMC04, WMC98], Coming [LS07], Commands [GYL92].</td>
</tr>
</tbody>
</table>
commentary [Lin88a]. Comments [Swa88].
Commercial [NYHA14, RLPN°02].
Descriptions [GmWHR98, KP05]. Design
PVF21, RSP20, RMH21, RD08, RRH03, SSNS16, SR04, SMH21, SJT13, TCUV14].

Dynamically [CHPC96, GMB+11].

Dynamics [ACC+02]. DySHARQ [RMH21]. DyTO [JM20].

Eager [SAL16]. Early [PYC16, TA99].

EARTH [HTZ+97, HMT+96].

EARTH-MANNA [HMT+96]. Eat [CHSC18]. Economics [LCL19, YBDJ17].

Ecosystem [RSA+18]. Edge [KKKS24, MMD21, SHS21, YFC21, ZQT20].

Editor [EA09, MA10, SS10, BCL90, Ano00a, Ano14, Ano16a, Ano16b, Ano16d, Ano16c, Ano18b, Ano18a, Ano19, Ano20, Ano21a, Ano21b, Ayg03, Ban94, Ban04a, Ban04b, Car09, Fur95, Gau96, Giv07, Giv08, Int98, JS06a, JS06b, Joe99, Joe03, Kes20, McK07, Mis09, NL23, Ora03, Pan08, Seh98, Vei01, Vei02].

Editorial [Ano86b, AG15, Bro19, CTP13, CAT18, DPT17, FKT12, FH05, GGE19, Gha19, GKI8, Gre16, HK14, HSXH19, JACK20, LFL+17, LT17, MCE13, MGJS15, MGD+14, OG11, PP10, PVG17, RJO22, SGK12, SS10, TG21, TFPF18, ZZS+19].

Editors [SMM11, HF06, AM07b, CHS99, CMHS99, Emh97, FmH96, GSA08, GS05, HN94].

Effect [NPD89, BCK98]. Effective [CPMC96, HGT+12]. Effectiveness [GYP22, MHL95, PYC16, SBN03]. Effects [HRH08, TF96]. Efficiency [BBB+17, EGK23, KTB18, STF+12, SWZ+15].

Efficient [ABvK+13, BR97, BEP13, BCL14, BFG+10, CR19, CPT14, CL66, CKE22, EAT14, FPY08a, Fep92b, FFV+16, GSP+17, GG14, GN20, GL18, GAK20, GS06, GRR98, GHC+17, GmWHR98, HZZ+19, IP90, IBA11, JGM15, KDV22, KP05, LNP91, LS05, LNL12, LLG11, LMHW18, LWGZ18, NRR99, NdMMW16, QRW00, RPF18, RSP20, RLEJ19, Roy10, SRS06, SSNS16, SL14, SSS+96, SS23, SO89, SKAT91, SHC15, SHZ+14, SJT13, TTF+08, WZTH13, XZX+15, YJY16, YLB19, FEA92a, Hua89].

Embedded [AN18a, Ano21b, AF15, CHB06, CFF+06, DLRS13, DLX+17, Giv07, Giv08, KTB18, LMP50, MSJ20, MCE13, MGJS15, MAB+11, Pan08, PP10, PVG17, PO07, PPEP08, RJO22, SSM21, TTOP05, TFK16, TGT18, US05]. Embedding [L03, CSG89]. Emergency [GAK20].

Emerging [HP13, JACK20, TG21, ZZS+19]. Empirical [CCG+14, LDHL05, PMV17, SS096, YYYX20]. Employing [CS07, KKKK24]. Emulation [OBB+24].

Emulator [WCC16]. Enable [HP13, ID08, TAY+12]. Enabled [Boh23, FKM+11, GJ18, GSY+13, JACK20, MMD21, SAI+20, RA09].

Enabling [GJ18, SdLC21, SMD19].

Encore [GTK+88]. Encryption [AAI+20b, KBD03, NdMMW16, AAI+20a].

End [LSHK09]. End-to-End [LSHK09].

Endpoint [JLF19]. Energy [AVLV03, CPT14, CCK22, EAT14, FFV+16, HYBA18, KAI20, LMHW18, Mar17, SSM21, SJT13, VCP+16, XLWX19].

Energy-Aware [Mar17, XLWX19].

Energy-Constrained [VCP+16].

Energy-Efficient [CCK22, EAT14, FFV+16, LMHW18, SJT13]. Engine [BC15, RLK20, Gsc07]. Engineering [CPT14, KaM10]. Engines [MCFM12].

Enhanced [ABASS12, FMSG17, GRAG00, RY20, RY22, RSJ+19]. Enhancement [AMP01, CY816, HML+20, KPO1, LCL17, SAI+20].

Enhancing [ACC+01, GYP22, MP95, SZH18].

Ensembles [ASW+15]. Enterprise
Evaluation [AM95, BCK98, SCB+14, TF96].
Evaluation [AMA01, BML+13, BS15, BEG+10, CCL12, CDC09, DMC+18, FC11, GBPK07, GWPV21, IPR+05, JGP+18, JCH+08, KHH08, LCL17, ME15, NRB94, NP19, OATGEL15a, PVAE98, SSM096, TSB03, CSG89, LAV98, VK88]. Even [DCX+17]. Event [Dem11, PPQV16, RNJ+12, WZG+17].
Event-Driven [RNJ+12]. Eviction [GSP+17]. Evolution [ACD+16].
Evolutionary [ACD+16, HSM+24, MWHS24, PB01, STB+18]. Evolving [GKC22]. Exact [MAT23]. Example [SO99, Wai87]. Exascale [MAJD16].
Exceed [LS98]. Exception [FMSG17].
Exceptions [AHKR01]. Executable [LC11]. Execute [GYL02, BS89].
Executing [FCRC16]. Execution [AMKE18, BS15, BEJD21, BAF94, CHPC96, Col95, CSTGL03, CFF+06, DJS12, EAT14, FM09, GS06, GL95, JSHP97, KLG08, KGK20, LLL+15, LEG11, LCL17, Lys08, MFG+08, OGP+16, SNB04, SAS18, SB91, SBC17, TTF+08, Tic90, TF96, VVCA23, WE18, Ali86, Gol88, Kas86, KM86, SRV88]. exemplified [Tho87]. Expansion [BCC00].
Experience [Hal86, HMWHR97, RMG+13, SCB+14].
Experiences [CEH13, NP98].
Experimental [AFM+06, IPR+05].
Experiments [Hun87, NPT86]. expert [KM86]. Explainable [HSM+24]. Explicit [BP17, DMC+18, Ger10]. Explicitly [LMP98]. Exploit [ADC+17]. Exploiting [BS03, Gsc07, GL92, JG97, JLD16, LS98, SASH12, VCP+16, YDV19]. Exploration [CZTM03, KWA+10, MSJ01, MWHS24, PMM+18, SEP08, WMN+17]. Exploring [AHKR01, FVvL+16, PG07].
Exponentiations [NdMM09]. Expose [GV95]. Express [GZJ18, JQJ+16].
Expression [AFO+08, Sca11]. Extend [DFA+09]. Extended [BG03, DDD+19, Sch92, YAI95]. Extending [ABB+10, ML15]. Extensibility [CB19].
Extensible [CP04, SHK13]. Extension [BG03, CFB94]. Extensions [AP03, CZTM03, RSJ+19, SG00]. external [CSF+20]. Extracted [KP04]. Extracting [PJS+05]. Extraction [AER+17, JK12, LKS+20].
Fabrics [GBC+08]. Face [LYG+18].
Fast-Fits [Joh94]. FastFlow [TTMD23].
Fault [AKHD13, CJS21, DFZ21, EAT14, GFWYQ18, GJR09, Gha19, HTDL18, Lj09, MEP07, NAS23, NRR99, WGF+16, ZLJ12].
Fault-aware [MEP07].
Fault-Management [GJR09].
Fault-Model-Relevant [NAS23].
Fault-Tolerant [DFZ21, EAT14]. Faults [LG10]. Faulty [BB90]. FEADS [PG07].
FFNNs [SDH22]. Field [QZP15]. File [ALT17, AVI103, CND95, KK11, Mar09, ZLAV04]. Fill [BMA02]. Filter [HSM+24].
Fine-Grained [BG96]. Fine-Grained [CTK+11, GL192, SDH22, SZH18, WQ+21]. Finite [BR97, Ger10, MCT+18, RG15].
First [GAR+16, KS90, MKAP05, KR87, RK87]. First-Level [MKAP05]. Fish [WMK19].
Fits [Joh94]. Fix [HZZ+19]. fixed [Ano86a]. Fixpoints [Ano87c]. Flat [FT87, TSS86].
Foreword [BnH98, NS07a]. Fork95 [KS97]. Form [BC01, TG05]. Formal [BdS07, KP09, LMS05, MP91].
Formalised [GGV18]. Formats [Mar09]. Fortran [KaM10, NLBB23]. Fortress [ASS21]. Forwarding [ClJH16].
Forwarding-Based [ClJH16]. Four [TSS99]. Fourth [BP17]. Fourth-Order [BP17]. FP [BARSW95]. FPGA [KJPN10, MCFM12, OBB+24, SCS23]. FPGA-Based [MCFM12, OBB+24].
FPDAs [STM15, VNU19]. Fractal [MP04, SC88]. Fractional [Boh23, JLMW15]. Framework [ASW+15, ASS21, AmWHM99, BKK20, BKK23, BFS05, CP04, CHB06, CB19, DKB+09, EWH11, HKT07, FJA+18, GWYQ18, GHR20, JK12, KHH08, KKSP18, LFHAM19, MGL+17, PG07, SHL17, SW16, SBC17, SJW22, TLSG05, TRL09, VF12, YWW+19, ZGH+15, ACD+14, LP94].

Frameworks [Ano19, DX14, OP10, WZT+19, WQ21]. Free [AR16, FLD15, LFD17, PMM+18, SMC94, Sun11, WTL+23, IP90, Lan90].
Fully [LF15, SBS21]. Functional [ADC+17, ACC+11, AIF16, BARS95, BFS05, GMP89, GS06, Hud86, KH18, Mat17, PC13, Gol88, Wai87].
Functions [ACC+01, CFF+06, DMC+18, SNS21]. Fusion [EM14, Ken01, LZ17]. Fuzzy [GE90, KK20].

Galerkin [CF19]. Games [CYS16]. Garbage [Cra88, Fos89, LWLG11, AH86].
Gateway [AML+10]. Gaussian [MVB+06].
GCC [FKM+11]. GCD [ABSSS19]. GCM [GHM14, MSPR18]. Gemini [OXL+17].
Gene [AFO+08, MSA+07]. Gene/L [MSA+07]. General [DDJ+18, IP90, IH04, WP00, SS89].
General-Purpose [WP00].
Generalization [PMV17, WW17].
Generalized [GTY92, FcF87]. Generate [MGW99, BS89]. generate-and-test [BS89]. Generated [JCD+14, MCA98].
Generating [AK17, ALTT17]. Generation [BTB+13, BEJD21, CL96, Dar05, JW16].
MPR, QRW00, SR90, SSB+17, TFEK16, qWJzKhC17, WK20. Generator
[CPL+10, EVK22]. Generic
[BJM20a, GJK+05, GW19, MAT23, MCT+17, SM16, ZJL22]. Genetic
[AMAH01, BM09, GKC22, MB12b, SO89]. Genome
[BMA+19, OOR13]. geometric
[SS89]. Ghost
[MS11, KTRZ+17]. Girth
[WS15]. Given
[AK17]. Glacial
[AW98]. GLE
[DCX+17]. GLE-Dedup
[DCX+17]. Global
[AH86, LLSS03, PPQV16, RBES00, TAY+12]. Globally
[DCX+17, TV15]. Globally-Locally
[DCX+17]. GMM
[S18]. Good
[YBDJ17]. GOP
[SSEA14]. GPCPU
[AAB+16, BCL14, CBL17, CBR17, STF+12, YZ13, YHG16]. GPGPUs
[LMWH18]. GPE
[HKJ+18]. GPS
[HV18]. GPU
[BC15, Boh23, BC10, CDDM18, CTB14, DK16, DMMP18, DMC+18, FRT+18, FJZ+15, GLLI17, GGV17, GG13, Hen21, KKL16, LIJ22, LRG14, LT+12, LLW+17, LEG11, LAD15, LFHAM19, Moh19, MGL+17, NCR+19, OOR13, OATGEL15a, PDJ+12, PHS19, PE+18, RSA+18, SI11, SF20, SLZB13, SJC18, SSB+17, SBC17, SFAG14, SK14, VVCA23, WdSAM+17, WR18, WE18, WK20, ZYOY13, ZHF+19, ZD19, ZTY+19]. GPU-Accelerated
[DLC+18, SBC17]. GPU-Based
[DK16, VVCA23, BC10, OATGEL15a]. GPU-Friendly
[OOR13]. GPUs
[GL18, HLP11, JLD16, KSB22, KGK20, KPS14, LS20, MAW+16, MS11, MNN22, QGT+19]. Grabbing
[Sun11]. gradient
[SDJS98]. GrADS
[BC05]. Grain
[BG96, DV97, NR94, NIO+03, PSM97]. Grained
[CTK+11, CSF+20, GL29, SDH22, SSM21, SZH18, WTQ21, WW17, AD89]. Grammar
[M091]. Grammars
[PW92]. Granularity
[PSM97, ZLC+19]. Graph
[BCL90, CBR17, CSF+20, CZTM03, GAR+16, GW19, GP94, HKJ+18, HSX19, JK12, KSF+18, KTF23, PS23, SHL17, SMDJ19, SSM+96, SPR+92, TH17, WZH+92, ZHF+19, GZ87, HKJ+18]. Graph-Based
[KT17]. Graphical
[RG15]. Graphics
[CPP+12, JGM15, SAB11]. Graphs
[DV97, HUE97, KPRS96, LPF16, MX14, OP10, OB13, PVF21, Zha89]. Graphs
[EKU22]. Greedy
[AT91, Ken01, Sun11]. Grid
[BFRPVR+15, MMD21, SASH12, W16, AFM+06, BBC07, BCC+05, SR04]. Grid-Based
[WL16]. GridFOR
[WL16]. Grids
[HP13, LLL15, JS06b]. Gröbner
[Sch92]. Group
[KSA+18]. Groups
[BBC07]. GrPPI
[BJM20a]. Guaranteed
[MEP07]. Guarded
[GYL92]. Guards
[GYL92]. Guest
[AG15, Bro19, CTP13, CAT18, DPT17, EA09, FKT12, GGE19, GKE18, G16, HK14, HF06, HSX19, JACK20, LFL+17, LTF17, MCE13, MGJS15, MG+14, MA10, OG11, PP10, PVL17, RJQ22, SMM11, SGK12, SS10, TG21, TFPF18, ZZZ+19, Ano00a, Ayg03, AM07b, Ban04a, Ban04b, Car09, EmH97, FmH96, Fur95, GSA08, Gau96, GS05, Giv07, Giv08, HD94, JS06a, JS06b, Joe99, Joe03, Kes20, MK07, Mis09, NL23, Ora03, Pan08, Seh98, Ve01, Ve02]. Guided
[MTT15]. GVirtus
[MGL+17].

H
[Roy10]. H-NMRU
[Roy10]. Hadoop
[LSM+18, Mat17, NRG17, RSA+18]. Halo
[PWS19]. Handle
[ELGE16]. Handling
[DFC+07, FMSG17, HH20, IR19, RBES00]. Hard
[FJO+16]. Hardware
[AVM+16, CHSC18, CPMC96, GP17, GV99, HZZ+19, HSM+24, HLS21, KTP1, KTB18, Lys08, MSA+07, NdMM09, NDMM16, OBB+24, OXL+17, OPLS17, PMM+18, RMH21, SWZ+15, SD11, SH15, STM15, TRD21, WS14, YDV19, ZAVA04, vNR11]. Hardware-Agnostic
[AVM+16]. Hardware-Aware
[HSM+24]. Hardware-Based
[CPMC96, KT01]. Hardware-Efficiency
[KTBP18].
Hardware-Friendly [HZZ+19].
Hardware-In-The-Loop [OBB+24].
Hardware-Managed [RMH21].
Hardware-Supported [SD11].
Hardware/Software [GV99, Lys08, OPLS17, SWZ+15, STM15].
HARE [JLDF19].
Harsh [GWPV21].
Harsh-Based [LLM16].
Heap [GH96, LLM16, AH86].
Heap-Based [LLM16].
Heat [LYG+18].
Height [ABASS12].
Helper [ZGH+15].
Helping [Sun11].
Henderson [Swa88].
Heterogeneous [AER+17, ANS20, Ano21a, AMKE18, ABB+10, BEA+19, Bro15, Bro19, BJM20b, ELK18, EAK21, EVK22, EGK23, GAG22, GGV18, GMB+11, GHR20, HMK22, HK23, HUB+10, HHC+15, KTRZ+17, LLGC17, LSYG15, LS05, MMN15, Mar17, MFGEL19, NCR+19, OATGEL15b, OP12, OPLS17, PGLC+18, PHS19, PVF21, SSM21, SEP08, WLL17, XWH21].
Hierarchical [KPS14, CSG89].
HEVC [WdSAM+17].
HICOR [BK94].
Hierarchical [Bro15, GP94, MV17, NN95, PG16, SSM096, WSS18].
Hierarchically [PPEP08].
Hierarchies [GVB+06].
Hierarchy [MCW01].
High [APR+18, Ano16a, Ano19, ASG20, BE14, BCS+09, BCL17, BS07, Bro15, Bro19, Car09, DPT17, DFH17, DB08, DST21, EAK21, GWYQ18, GGE19, GBLG10, Gla19, GKH18, GJK+05, Gre16, GHDF19, GE90, HG18, HK14, Jan15, KP05, KTRZ+17, KJPN10, LBH13, LWP04, MB12a, dMHHdLN21, MSPR18, NFC+09, NSU22, NdMM09, NL23, OXL+17, PGLC+18, SH96, SAL16, SCB+14, SS23, TFEK16, TTF22, TGT18, WCC16, WMN+17, WGV04, WK20, YZ13, YBRM14, ZLA21, Ano21a, Kes20].
High-Level [Ano16a, Ano19, Bro15, Bro19, DPT17, EAK21, GGE19, GKH18, Gre16, GHDF19, HG18, Jan15, KP05, LWP10, dMHHdLN21, SH96, SS23, WMN+17, HK14, TTF22, Kes20, Ano21a].
High-Performance [APR+18, Ano19, GWYQ18, Gla19, GJK+05, LPB13, MB12a, NdMM09, PGLC+18, WCC16, WGV04, WK20, YBRM14, ZLA21, DST21, OXL+17].
High-Productivity [BCS+09].
High-Scalability [SB07].
Higher [NPD89].
Higher-order [NPD89].
Highly [TAY+12, ZZX+15].
Highly-Scalable [TAY+12].
Historical [TRD21].
History [BEA+19, CEP97, JLDF19, LJ08, LS05, MMN15, Mar17, SH96, SS23, WMN+17, HK14, TTF22, Kes20, Ano21a].
If-Conversion [AmWHM99].
iGridEdgeDrone [MMD21]. II
[Fea92b, KR87]. ILP [SKA96]. Image
[AM95, KBD03, RSK09, TRD21, YWY+18]. Imagery [CS20]. Images
[DPS90, KSA+18, LFHAM19, SSB21]. Immune [MB12b]. Immune-based
[MB12b]. Impact [BE14, KLG08]. Imperative [GM20, Jak19]. Imperfectly
[AMP01]. Imperfectly-Nested [AMP01]. Implementation [AM95, AML+10,
CGJK95, CDDM18, DMMP18, ES11, GP17, GH99, HAA+11, JSS+15, JLMW15,
KS97, LS91, LWP04, MXP14, NaMMMW16, NSS12, OGP+16, OXL+17, PB01,
PC13, RG18, RSV+05, SM16, Sek09, SKG09, SY08, WLL+08, WPC07, WS15,
ZT20, ACD+14, GTK+88, TSS86, RK87]. Implementations [AJF16, BS07,
BE00, HPVRPF15, MWES19, Moh19, NaMCdMMW16, TSS99]. Implemented
[MLdP02]. Implementing [BAP01, Mls88, SPS14, SFAG14]. Implications [NP01]. Implicitly
[AHKR01, LEA15]. Important [Ano86d, Ano92]. Improve [CHPC96].
Improved [EKU22, KSF+18, LYL14]. Improved/Optimized [EKU22].
Improving [CHR96, CEP97, GSY+13, JLI+18, JHLM10, LWL+19, MCKW01,
PJS+05, PMV17, RTD20, RSJ+14, SB03, SA10, XH98]. In-Depth [ZJL22, SJW22].
In-Loop [WdSAM+17]. In-Memory [WTZ+19, WTQ21]. Inaccuracy [JJL15].
Incoherent [TGT18]. Incorporating [AK96]. Increased [KP04]. Increasing
[HCEP98]. Incremental [CP04, XZ+15]. Independent [EW96, FSS06, Ken94,
SH96]. Index [GFL00]. Indexes [YJV16]. Induced [LG10]. Industrial [BR14a,
FJO+16]. Inference [PVF21, SHS21]. Inferential [RKG04]. InfiniBand
[LWP04, QA11]. Infinite [FLMR02, KPRS96]. Information [AFM+06, BE14,
NRR99]. Infrared [YWY+18]. Infrastructure [BML+13, CEH13, EM13,
SLZB13, UWF+20]. Infrequent [ASG20]. Inheritance [Tho87]. Initial
[AW98, HmWHR97, TKM89]. Initializing [Hem89]. Inlining
[GYP22, LkCH94]. Input [SLZB13]. Input-Sensitivity [SLZB13]. Inspired
[KPS14, Mis09, OGP+16, CSCL20]. Instability [DKB+09]. Instability-Estimation
[DKB+09]. Installation [CCG+14]. Instruction
[AHKR01, API03, BMA02, BR97, CSC+00, CZTM03, HCEP98, JLD16, LZ17,
MP95, MSJ01, NN95, OVA04, RD08, SB03, Tou05, TF94, VHK+18, CMW+94,
NP98]. Instruction-level [NN95]. Instruction-Set
[API03]. Instrumentation
[AVM+16, LSA+07]. Integrated
[CPL+10, FRT+18, GV99, KKZN12, MFU21]. Integrating
[DTLW16]. Integration
[GMP89, LLM+12, PSM97, dMP+03]. Integrity [KHT21]. Intel
[BKT08, BP17, Cza17, RSJ+19]. Intelligence [GKC22, dMKdLN22].
Intelligent [MMD21]. Intel(R) [BGGT02]. Intensive
[DDD+19, LWLG11, RSJ+14, LSM+18]. Inter
[GAR+16, KTT+99]. Inter-Node
[GAR+16]. Inter-Processor
[KTT+99]. Interaction
[AHKR01, FJA+18, GGV18]. Interactions
[MHCF98]. Interactive
[SJKA99]. Interchangeably [DJR16]. Interconnect
[GBP07]. Interconnection
[MANN90]. Interconnects [RA09]. Interesting
[VRGC19]. Interface
[DGMP09, GZJ18, HJK+18, HTDL18, KBG+08]. Interfaces [KKZN12].
Interference
[CEP97]. Intermediate
[CFB94, GP94, GBC+08]. Internal
[FHW+94]. Internat [Swa88]. International
[Ano21b, DB08, MCE13, PVG17, RJO22, SS10]. Internet
[HZS20, JAC20, KIT+20, KAI20, MMD21, PYC16, PCJ18, SAI+20].
Interpolation [DMC+18, DMC+20].
Interpret [KGK20].
Interprocedural [CAZ02, C196, GH06, HPY01, LkCH94].
Interprocess [CMW90, MO91, MO90].
Interprocessor [CH95].
Interruptible [TB23].
Interval [RWMF24, US05].
Intra [BGGT02].
Intra-Register [BGGT02].
IntraModule [MO91].
Introducing [SFAG14].
Introduction [Ano00a, Ano00b, Ano01, Ayg03, AM07a, AM07b, Ban94, Ban04a, Ban04b, Car09, CHS99, CmHS99, DB08, EmH97, EA09, Evr00, FmH96, Fur95, Giv07, Giv08, HnWHR97, HF06, JS06a, JS06b, Joe99, Joe03, LY98a, LY98b, McK07, MPZ06, Mis09, MA10, Ora03, Pan08, Pin95, Pin99, SMM11, Sch98, Ve01, Ve02].
Introspection [WHC+17].
Introspection-Based [WHC+17].
Intrusion [NSU22, NRGB17, YWW+19].
intrusive [ZXY+15].
Invalidate [BAP01].
Invasive [SR15].
Inversion [WHC+17].
Involved [YWW+19].
ISA [MP95, WCC16].
Isomorphic [Ano87d].
Issue [Ano16b, Ano15b, Ano18a, Ano19, Ano21a, AM07b, Bro19, Car99, DB08, GSA08, Gha19, Giv07, Giv08, HSXH19, JACK20, MCE13, MGJS15, MB12a, Mis09, ORJ24, Pan08, PP10, PVG17, RJO22, SS10, SZ17, TFFP18, WNMW16, ZZZ+19, JS06b, TG21, Ano21b, BmH98].
Issues [Bel94, NS97a].
Itemset [ASG20].
Iteration [HF14a, HF14b].
Iterative [MS11, PDN21, Rau96, ZHF+19].
Iterator [GS11].
J [Swa88].
Jacobi [HOZ06].
Jacobians [BUMS02].
Java [AHKR01, FSS06, JQJ+16, JMSG02, KF99, SS23, WG04, WP00].
Job [LLL+15, NSS12, WW17].
Join [R92, RBR22].
Joint [HOZ06].
journal [Ano86b].
JPEG [SEP08].
Just [SA19].
kD [STF+12].
kD-tree [STF+12].
Kernel [LYG+18, NLBB23, VCA23, ZYOY13].
Kernelized [WCC16].
Kernels [KDV22, SSB+17, WSO+19].
Key [LKS+20, PZL+19].
Keyword [SNS21].
knapsack [LS92].
KNMF [LKS+20].
Kutta [BP17].
L [MSA+07].
Lab [ZC09].
Lab-on-Chip [ZC09].
Labeling [SH87, Swa88].
LACross [ZJG17].
Lagrangian [RSV+05].
LALP [MCFM12].
LALR [BNWL90].
Landing [MSJ20].
Landslide [WSC20].
Language [ARB+05, BARSW95, BCL17, CFB94, FCZ16, Fos89, GS06, Hud86, KS97, MCFM12, MP+05, SM09, TFK16, WL16, WK20].
Languages [Ano19, CK02, FMSG17, Lan90, PS92, NP99].
Laplace [CT14].
Large [Cza17, GL18, HC17, HR11, HKJ+18, KKZN12, LTSD15, LSA+07, LWGZ18, SGJ+03, SWF+17, WW17, XZT20, ZWJ05].
Large-Scale [HC17, KKZN12, LWGZ18, SWF+17, WW17].
Latency [AK96, Bos12, HZ16, JG97, LSHK09, MEP07].
Lattice [XG11, SN90, SKG09].
Launcher [NLBB23].
launched [Ano87a, PM07].
layer [OATGEL15b].
Layered [TIC90].
Layout [SASH12].
Lazy [CRM17].
LCS [GP+17].
LDPC [SF20].
LEACH [KAI20].
Leaks [JGP+18].
Learning [CR19, C21, CDDM18, D516, FFS18, FKM+11, HBC23, MAWD+16, O21, PVF21, ZJG17, ZD19, ZJL22].
Learning-Based [ZJG17].
Leases [CM06].
least [Ano86a].
Left [MP04].
Legacy [JBB21].
Legal [KP95].
Length [EM14, VHK+18].
Lessons [Hal86].
Level
[AG06, Ano16a, Ano19, BCL17, Bro15, Bro19, DPT17, EAK21, GGE19, GBLG10, GKI8, Gre16, GHI8, HTDL18, Jan15, JF21, KP05, LLW+17, LQWP10, dMMHdLN12, MHC98, MKAP05, NL23, SSP+00, SSEA14, SH96, SS23, SÜCV17, SM94, SASH12, Tou05, WMN+17, XOdFV+09, YWW+19, ZLJ+17, BC10, HK14, NN95, TTF22, WS08, Kes20, Ano21a, AG06, Ano16a, Ano19, BCL17, Bro15, DCX, GGI19, GHDF19, HG18, HTDL18, Jan15, JF21, KP05, LLW+17, LQWP10, dMMHdLN12, MHC98, MKAP05, NL23, SSP+00, SSEA14, SH96, SS23, SÜCV17, SM94, SASH12, Tou05, WMN+17, XOdFV+09, YWW+19, ZLJ+17, BC10, HK14, NN95, TTF22, WS08, Kes20, Ano21a].

Levels [Gsc07]. **Leveraging** [LT15]. **Library** [CS16]. **Libraries** [GJK+05]. **Library** [BDR11a, LCF21, LAD15, LHP+22, MFGEL19, SÜCV17, YKDL17, YBRM14].

Life [YYYX20, Ano87c]. **Lifetime** [SZH18]. **Light** [CM06]. **Light-Weight** [CM06]. **Lightweight** [GKC22, PZL+19].

Like [NLBB23]. **Limit** [KEKK16, LS98]. **Limited** [JMSG02, uHKAMFM16a, uHKAMFM16b, GT86]. **Limits** [SS99].

Line [SR90, TFMP97, ZC90]. **Linear** [CCG+14, CBR17, CJSS1, DWS16, FLMR02, HKJ+18, JLMW15, KS90, KFC08, KTRZ+17, LDHL05, MP04, SMM94, Gao86].

Link [STB+18]. **Linked** [HGT+12, HTnG+12, vdSGBW08]. **Links** [NIK00]. **List** [AF15, DS97, EM14, LBT17, SL14, vdSGBW08]. **List-based** [SL14].

Literature [IR19, dMMKdLN22]. **Live** [DST21, WHC+17, ZXY+15]. **LLVM**

Load [RB9+13]. **Load** [ASW+15, BQ96, EWH811, JK03, MMD21, RLH14, RSJ+14, YHG16].

Load-Balance-Aware [YHWG16].

Load-Store [BG96]. **Loads** [AZK+18].

Loads/Stores [AZK+18]. **Local** [LLSS03, LYG+18].

Locality [AMP01, AAB+16, BE14, CAK17, JG97, KP01, LVJ22, LS98, LM00, PMHC03, Won02, XH98].

Locality-Aware [AAB+16].

Localization [GWYQ18, OB13]. **Locally** [DCX+17, SNB04, TV15].

Location [YFC21]. **Location-based** [YFC21]. **Lock** [AR16, ZLD15]. **Lock-Free** [AR16].

Locking [YLB19]. **Log** [Mar09]. **Logic** [AR16, AVPG00, KBD03, Lin91a, SAB11, BH87, Con88, Kas86, SRV88, Tin88].

Logic-Based [KBD03]. **Logical** [GZJ18, LWF+19]. **Look** [MP04, NLBB23].

Loop [AMP01, CL96, DH00, GVB+06, GMB95, GL95, HC17, IKN00, KDV22, LSL94, LCL17, NG92, OBB+24, RAP95, WdSM+17, WMC98, YAI95, LP94]. **Loops** [Col95, GL95, MS11, MJ02, OGP+16, QRW00, Sar01, TFNG09, WLI17, Wol86, YKM03, LAV98]. **Loosely** [LLM16]. **Loss** [AAN+20, HZL16].

Lossless [HNC+16]. **Lossy** [SAI+20]. **Low** [Bos12, FV+L+16, HZL16, NBN+15, PO07, RSP20, Roy10, SAI+20, SWF+17, YZZ+19].

Low-Latency [Bos12]. **Low-Power** [NBN+15, PO07]. **Low-Radix** [SWF+17].

LSA [UFW+20]. **LSH** [RB22]. **LSM** [PY17]. **LSM-Tree** [PY17]. **LTE** [LF15].

M [FKD+97, KHT21]. **M-Machine** [FKD+97]. **Machine** [CHPC96, CZ12, CDDM18, DS16, F KD+97, FKM+11, GmWHR98, HHIW10, HBC23, JQWG15, LVM16, MPR+05, O2A1, SHZ+14, XLMX19, ZD19, Ai186, G990, Ken94, PW92].

machine-independent [Ken94]. **Machines** [ABASS12, BJM20b, Den94, EGJS15, HRH08, Joh94, PHS19, SL14, SMH21, WdSAM].

Macro [GG14]. **MAI** [GN20].

Main [SZH18]. **Mainstream** [DMK21].

Maintained [SNB04, maintaining [DPL86]. **Malicious** [CLJH16]. **Managed** [RMH21].

Management [ANS20, AGPGF14, CF+20, GJR09, HRH08, JH94, PHS19, SL14, SMH21, VFIN12, YYYX20, ZLJ+17, JK86].

Manager [BEA+19]. **Managers** [Demili].

Managing [ANS+12, RNJ+12, TFMP97].

Manipulator [BMSO2]. **MANNA** [HMT+96]. **Manual** [NAP02].

Many [CTK+11, CFC+19, HG18, uHKAMFM16, uHKAMFM16b, LHP+17, LZ17, MFU21, NdMcMMW16, OBB+24, PMM+18].
PHS19, QZP15, SASH12, SA10, XWH21, vNR11. Many-Core
[CFC+19, uHKAMFM16b, LHP+17, LZ17, MFU21, OBB+24, PMM+18, SASH12, SA10, vNR11, NدىMcdMMW16, XWH21].
Many-Cores [CTK+11, HG18].
Many-Field [QZP15].
Many-Task [PHS19].
Manycore [HMF+13, RSJ+19, SMH21].
Map [FBV21, LFD17].
Map-Reduce [FBV21].
Mapping [CKC22, HtBK+10, MEP07, RGB+08, SDJS98, LRG+91, NK88, PW87].
MapReduce [IR19, LSYG15, LHL+16, LXL17, MM16, Mat17, RBR22, SHC15, SWL05, SM096, SH15, SY08, SASH12, TTMD23, TMHT96, TA99, VSH+11, WS14, WQJY17, WHC+17, qWJzKhCh17, WTZ+19, WTQ21, YZZ20, YBRM14, ZK07, ZLD15, ZLJ+17, ZSH+12, Con88, EO88, FcF87, GHLN86, GS90, GT86, Hem89].
Memory-Divergent [LVJ22].
Memory-Level [SASH12].
Memory-Optimized [LS20].
Merge [JK03, JLV21].
Mesh [DMC91, HAA+11, LS0913, SKAT91].
Mesh-Connected [DMC91].
MeshCleaner [MCT+18].
Meshes [MCT+18, qWJzKhCh17].
Message [BB90, CB01, EWS11, GS05, GCF+03, GZ87, Hua89].
Message-Passing [CB01, GCD+03, GZ87].
Method [BP17, DMMP18, Ger10, GRAG00, GHC+17, IS03, LNP91, LEA15, NdMM09, PCJ20, RAP95, SM09, ZYOY13, Wol86].
Meta [KPS14].
Meta-Heuristics [KPS14].
Metacomputing [ES06].
Metadata [AGPGF14].
Metagenomics [LSM+18].
Method [BP17, DMMP18, Ger10, GRAG00, GCH+17, IS03, LNP91, LEA15, NdMM09, PCJ20, RAP95, SM09, ZYOY13, Wol86].
Methodology [KDV22, MOL05, Rs1+14, UWF+20].
Methods [BCC+05, CCL12, CAK17, CS21, MT96, MWH24, RLE19].
Metropolis [CHB06].
Metrowerks [PB04].
MIC [FFS18].
Micro [JS06b].
Micro-grids [JS06b].
Microarchitecture [SJ03, DKB+09].
Microarchitecture [P.JS+05].
Microbenchmarks [IP+05].
Microcode [BABW14].
Microfluidic [ZC09].
Microgrids [SS10].
Microphone [RLK20].
Microprocessor [BE05].
microprogramming [CB86].
Microthread [BHJ06].
Migration
[CML04, DST21, DLX+17, JG97, NLRH07, PTdSF+12, WHC+17, XLWX19]. MILC
[SKG09]. Milepost [FKM+11], MIMD
[GL92, SDJS98]. Mini [ZXY+15]. Mini-intrusive [ZXY+15]. Miniature
[NBN+15]. Minimal
[BTB+13, DWS16, YAI95, Zha89]. minimax
[NPT86]. Minimization
[GLLH17, Mon97, PB04]. Minimizing
[CH95, EDA96]. Mining
[ASG20, CPP+12, FJA+18, HP13, OB13, PCJ18, WSS18, YWW+19]. Mining-Based
[OB13]. Mirroring [SDL17]. Mispredicted
[JSPH97]. Mispredicted-Path [JSPH97]. Misprediction [NBD98]. Missing
[DMC+20, STB+18]. Mitigating [JDF20]. Mixed
[BEG+10, SDJS98]. Mixed-Mode
[BEG+10, SDJS98]. Mixing [MRLR16]. ML
[AGT17]. MLFQ [CLL21]. Mobile
[ES06, JM20, YFC21]. Mobility [MMD21]. Mode
[BEG+10, OP12, YYYX20, SDJS98]. Model
[AG06, AATT10, AK96, BEJD21, BAF94, BdS07, CND95, DMM91, DTLW16, DFA+09, FCZ16, FPCD14, FBGEL19, HBC23, HLP11, HKJ+18, JM20, JF21, LLM16, LHL+16, LCL19, Liv91, NAS23, OGP+16, OATGEL15b, RSV+05, RK13, fSxWC18, TAY+12, TESK06, WSC20, YS22, ZJL22, JK86]. Model-Based
[BEJD21, RK13]. Modeling
[AA15, Ano81a, AMP+05, BS07, HYBA18, KMcj02, LEA15, Mar17, MCE13, MGJS15, MOL05, PCP+13, PVG17, Pra86, PS23, RJO22, SDH22, SSM21, TLSG05, WTL+23]. Modelling
[BKK20, BKK23, VNU19]. Models
[BF505, CAT18, Den94, FLMR17b, HHC+15, ID08, KP05, Mat17, NAP02, RNJ+12, SMSH13, SS01, Sk89, SDL17, VMS15, VCP+13, AD86, DM87, FLMR17a]. Modern
[HYBA18, KPS14, LG10, LWQP10, ME15]. Modifications [Hue97]. Modular
[NdMM09]. Module [AAN+20]. Modules
[DJR16, SQH92]. Modulo
[AG98, EDA96, GRAG00, LJ08, Rau96]. Modulo-Scheduled [GRAG00]. Molecular
[ACC+02, BS07]. Molecule [KLK16]. Moment
[SSB21]. Monitor [LTL15]. Monitored
[LJE05]. Monitoring
[GAK20, NBN+15, ZXY+15]. Monoparametric [IAR21]. Monte
[BJM20b, PES+18]. Monte-Carlo
[BJM20b, PES+18]. more
[MORPHEUS [GMB+11]. Mosaic
[MPAG18]. Motion [MVD+14, TSS99]. Motivation
[HnWHR97]. Movement
[CFB94]. Moving [HAA+11, ZQT20]. MPI
[AJF16, BS07, BEG+10, ES11, FPY08b, GJ09, GSY+13, HMK09, LSM+18, LW04, MOL05, MAN09, NAS23, NSS12, RA09, SS01]. MPI/PVM [ES11]. MPJ [JQJ+16]. MPSoC
[ID80, OPLS17, RGB+08, SWZ+15]. MPSoCs [GHR20]. Much
[MT96]. Multi
[AOAM21, AH08, AKHD13, ABvK+13, AML+10, ABB+10, BEJD21, BM09, CSF+20, CZ12, CB19, CTB14, DS07, DS16, DTLW16, DJR16, FLD15, GM20, GD13, GMM06, GG17, GS06, HML+20, HsBK+10, JCH+08, JDF20, KBG+08, LYG+18, MXP14, MV17, MG15, MHC08, MFGEL19, NdMCdMMW16, OATGEL15b, PCJ20, QZP15, RPF18, RC16, RG18, RTD20, RD08, RK13, SSP+00, SESA14, SAI+20, fSxWC18, SSB+17, SFA14, STB+18, Sun11, VSDK09, WQJY17, WLL17, WSC20, WK02, XoDFV+09, YWW+19, Zht10, ZGH+15, Ali86, AGT17, QGT+19]. Multi-agent
[STB+18]. Multi-app [DJR16]. Multi-attitude [WSC20]. Multi-BSP
[GM20, AGT17]. Multi-Component
[fSxWC18]. Multi-Core
[ABvK+13, AML+10, ABB+10, GGV17, RPF18, SESA14, Zht10, BEJD21, CZ12, GD13, HML+20, MXP14, NdMCdMMW16, QZP15, RC16]. Multi-cores
[RTD20]. Multi-device [MFGEL19]. Multi-dimensional
[RG18, WLL17].
Multi-domain [RK13].
Multi-external-storage [CSF+20].
Multi-Fault [AKHD13]. Multi-GPU [CTB14, SFAG14, WK20]. Multi-GPUs [QGT+19]. Multi-layer [OATGEL15b].
Multi-Level [MHCF98, SSP+00, XoDFV+09, YWW+19].
Multi-ML [AGT17]. Multi-Orientation [LYG+18].
Multi-Prefetcher [PCJ20].
Multi-process [PCJ20]. Multi-process/Multi-thread [PCJ20].
Multi-Processor [HtBK+10, BM09, KGB+08, ZGH+15].
Multi-processors [AH08, DS97].
Multi-queue [CSF+20]. multi-sequential [Ali86].
Multi-sink [SAI+20].
Multi-socket [RC16].
Multi-Stack [CB19].
Multi-tenanted [WQJY17].
Multi-thread [PCJ20]. Multi-Threaded [MG15, VSDK09, DS16, GS06, RD08].
Multi-threading [DTLW16].
Multi-Zone [JCH+08].
Multicore [AER+17, Ano16d, CHCL14, HHW10, HMF+13, KJHBI4, LLM+12, LLM16, RSJ+19, SDH22, SS17, TKN+08, WLL17, ZC17].
MulticoreBSP [YBRM14].
Multicores [TFNG09]. Multidimensional [Fea92b, LLM+12].
Multigrid [MT96].
Multilevel [APR+18, ADC+17].
Multilisp [Hal86].
Multimedia [BG03, KL00, SG00, ZK07].
Multiplexer [CYSD16].
Multiplication [Bos12, uHKAMFM16a, uHKAMFM16b, KJPN10, LHLT19].
Multiplications [CFC+19, CFX+20].
Multiply [BBR11a]. Multiprocessing [HML+20, Bro86].
Multiprocessor [AK96, DeB87, Goli88, Gsc07, MB12b, Pan08, PPEP08, SEP08, SR04, BH87, GLHN86, GZ87, GTK+88, Hu89, PD90].
Multiprocessor-based [Pan08].
Multiprocessors [AO19, BBGM95, GRV+17, GV99, IPR+05, KSEG14, KT01, LS07, LSL94, MVB+06, NP01, OP12, SNB04, SMC94, SS01, TGT18, TESK06, ZLD15, Con88].
Multiscalar [LZ17]. Multisplitting [CCL12].
Multisplitting-Newton [CCL12].
Multitemporal [LFHAM19].
Multithreaded [FSS06, HTZ+97, HMT+96, KMJC02, LS07, MB99, OB13, WS08].
Multithreading [HTDL18, LEL+99, TESK06].
MUSE [AK92, AK90a, AK90b].
Muzzle [KSA+18].
MXNet [LWL+19].
My [MFU21].
Nano [Mis09].
Nano/Bio [Mis09].
Nano/Bio-Inspired [Mis09].
Nanotube [CDC09].
Nanotube-Based [CDC09].
NaraView [SJKA99].
Native [JQJ+16].
Nature [KPS14, MHCF98].
Nature-Inspired [KPS14].
Navigational [PLN+04].
Near [BB90, SdLC21].
Near-Data [SdLC21].
Near-Optimal [BB90].
Nearest [LTF+12, VWC23].
Nebelung [MFG+08].
Need [KT01, Kuc94].
Negative [DKB+09, WS15, LKS+20].
Neighbor [LTF+12, PK20, VWC23].
Nested [AMP01, EW96, MMS07, QRW00, Sar01, aMST07].
Nests [AMP01, GL95].
Net [LWDL17, GG14, GSS10].
Nets [KMjC02, LWF+19, QGT+19, RA94].
Netuno [SCB+14].
Network [AOAM21, Ano18b, CPT14, DM20, DFS21, FCZ16, FPCD14, GCD+03, HZZ+19, HLS15, HS16, HL21, JCKJ20, JDF20, KKZN12, LSHK09, LYL14, LSYG15, LXL17, Liv91, ML15, MANR09, MSTR18, NSU22, ...]
NRGB17, PG07, SA1+20, SZ17, SWF+17, SBN03, TG21, YMW+17, ZS+19, AD86.

Network-Aware [FPCD14].

Network-Failure-Tolerant [GCD+03].

Network-on-Chip [JDF20]. Networking [CSCL20]. Networks [AAN+20, AKA+20, AATD20, AK17, BS15, CLJH16, GWHY19, GKC22, HSM+24, IBA11, JLDF19, KAl10, LCL19, LS05, LWGZ18, MVB+06, MMD21, PMV17, RY20, RY22, SA1+20, WZG+17, YYYX20, YMW+17, YZZ+19, AD89].

Networks-on-Chip [JLDF19].

NetWorkSpace [BCS+09]. Neural [AMAH01, AOAM21, FCZ16, GKC22, HZZ+19, HSM+24, LYL14, LXL17, LJ08, LWGZ18, PMV17, WZG+17, YZZ+19].

Neuromimetic [RNJ+12]. Neuronal [CPP+12]. Neutron [Zey05, SDJS98].

New-Age [DKB+09]. News [FCZ16]. Newton [CCL12]. Next [Dar05].

Nighttime [FS18]. NMRU [Roy10]. no [Swa88]. NoC [LMHW18]. NoC-Side [LMHW18]. NoCs [MEP07, TOM+11].

Non [BG17, CSTGL03, EKU22, LKS+20, Spr92, Con88, LP94]. Non-Blocking [EKU22, BG17]. Non-negative [LKS+20].

Non-overlapping [Spr92]. non-shared [Con88]. non-singular [LP94]. Non-Strict [CSTGL03]. Noncoherent [BBGM95].
	noncyclic [JB98]. Nonnegative [DZW10].

Nonsingular [OK99]. Normal [TG05]. Normalization [QGT+19]. Note [Ano14, Ano16a, Ano16b, Ano16d, Ano16c, Ano18b, Ano18a, Ano19, Ano20, Ano21a, Ano21b, BKK23, Kes20, NL23, RY22].

Novel [AATD20, CSCL20, DMM91]. LKS+20, OXL+17, QFRA19, WWG+19].

NUMA [BFG+10]. Number [ALTT17, EVK22, HR11].

Numerical [EFED05, PES+18, YKLD17, Zey05]. NVM [GZJ18].

Objects [GK94]. Obtain [NRR99].

Obtaining [XZT20]. OCaml [SCS23].

occam [Cam89]. ODE [MLdp02]. Off [ZK07]. Off-Chip [ZK07]. Offloading [JM20].

OffScheduler [LSYG15]. OLPCA [DMMP18]. oM [CLL21]. oM-DRL [CLL21].

OMP [SGJ+03]. OMP2001 [TSB03].

On-Chip [GG13, KKZN12, MVB+06, OBB+24, AH08].

On-Line [ZC09]. On-Line [GWPV21].

On-the-Fly [JDF20, KJS14].

One [Fea92a, SKG09, WW17]. One-dimensional [Fea92a].

Online [CJH16, CYS16, HZL16, RC16, SMSH13].

onto [SDJS98]. Ontology [AFM+06].

Open [AML+10, SJW22, Cie91].

Open-Source [SJW22]. OpenCL [JSS+15, RG18, SSB+17]. OpenHMPP [AAB+16].

OpenMP [AM07b, ABB+10, Bds07, BGS09, BFG+10, BS07, BEG+10, CF19, DFC+07, DFD+09, FMSG17, FM09, GSA08, HMK09, HAA+11, JCH+08, KaM10, KJS14, MG15, MFG+08, MBE03, MMS07, NIO+03, OOS+08, OP10, OBB+24, SB21, WC07, YKLD17, aMST07].

OpenMP/MPI [BEG+10, HMK09].

OpenUH [CEH13]. Operating [CYS16, JGZ+20, NP01]. Operation [FLLD15, NB15]. Operational [Cam89].

operationally [DM87].

Operations [ABASS12, BG17, FPY08b, IBA11, ML15, SZH18]. Operator [LCS21].

Operators [DM17]. Opportunistic [YMW+17]. OPS5 [GTK+88]. Optical [DMC91].

Optimal [AG98, BB90, CS20, DV97, DSP90, DPL86, GAR+16, MA87, Mer86, NG92, SMM94,
Optimality [Gai89]. Optimization [GL18, PPEP08]. Optimised [Zha10]. Optimising [VNU19].
Parallel [AKBPV19, APR+18, AMAH01, AM04, AK17, ACD+16, ABvK+13, AA15, Ano16a, Ano18b, Ano21a, AVPG00, AJF16, BR14a, Bel94, BAF94, BSMR11, BS03, BNWL90, BR14b, BUMS02, BDD+18, BDH+14, Bro15, Braun, BJM20b, CGN+19, CPP+12, CY14, CSD21, CB86, Cra88, CSTG03, CDDM18, CAP88, Cza17, CPL+10, Dam07, DPT17, DDD+19, DMK21, DMMS91, DE00, DM17, DS16, Den94, DX14, DZW10, DGP09, DS17, ECSS88, EHK070, EK14, ELK18, EVK22, EGK23, ES11, FFS18, FCRC16, GGE19, GBLG10, Ger10, GS10, GS13, GP17, GF14, GK18, GYL92, Gre16, GB20, GTK+88, GKD22, HSCI+16, HK14, HMF+13, HP13, HPVRPF15, HLS15, HS16, Hua19, HA+11, IH04, Jan15, JW16, JLMW15, JK03, JLW17, Juh94, KS09, KK11, KS97, Kes20, KJH14, KFC08]. Parallel [KGK20, KBG*08, Kuc94, KR78, LMP98, LTF+12, LYL14, LHL+16, LT17, LLL+15, LY95, LSL94, LWL911, LHTL19, LBT17, Lw00, LCL17, LG+18, Lvu09, Lys08, MXP14, MMN15, MLdl02, Mar09, MAJ16, MFC12, MM16, MG15, MCAH8, dMMHDL21, Mer86, Miß88, Moh19, MVD+14, MFGL19, NB15, NRGB17, NdMM09, NdMMdMMW16, NdMMW16, NSS12, NSTR9, NL23, OOR13, OP10, OGP+16, OBB+24, ÖA21, ÖO07, OG11, PW92, PGLC+18, PLN+04, PTD+06, PVAE98, PMV17, PR99, PCJ18, QFRA19, RK92, RK87, Ric90, RTD20, RSV+05, RMG+13, RGB+08, SGK12, SH87, SI11,
MOL05, MSPR18, MMS07, ME15, NFC+09, NdMM09, NPo1, PJ3+05, PGLC+18, PVAD08, PT02, RSD+14, SGJ+03, SSEA14, Sca11, SAI+20, SAL6, SCB+14, SA10, TSB03, TFEK16, TKN+08, Tm88, VCP+13, WCC16, WGW04, WK20, YZ13, YBRM14, ZLA21, ZWJK05, ZJG17, dMP+03, BCK98, DST21, OXL+17.
Performance-Efficient [LWGZ18].
Performance-Portable [JSS+15].
PGAS [JF21]. Phase [JHLM01, LGY16].
Phi [BP17, Cza17, ELGE17, LLGC17, PES+18]. philosophers [RB86]. Phrase [LKS+20].
Physical [WLW+17]. Phytium [CFX+20].
Piranha [CGJK95]. Pitfalls [HML+20].
Placement [ANS+12, DCX+17, JQWG15, SHZ+14].
Point [JSS+15]. Point [KSA+18, LTF+12, NST89, Ano86a, EG86].
Points [Mer86, SS92]. Polaris [FWH+94].
Policies [BEP13, CML04]. Policy [Roy10].
Polka [Dav87]. Pollination [MSJ20].
Polling [Lin91a]. Pollutant [RSV+05].
Pollution [MKAP05]. Polygons [SS92].
Polyhedra [LW97, QRW00]. Polyhedral [DV97, IAR21, JCD+14, PCP+13, SA19]. PolyJIT [SA19]. Polymorphic [CGPS18].
Polynomial [SWL05, ZYOY13].
Port [CND95, IBA11]. Portability [EGK23, KaM10]. Portable [EAK21, EVK22, JSS+15, JF21, LS91, NLBB23].
Porting [YKLD17]. Positive [GHLN86].
Post [NS97b]. Post-Pass [NS97b].
Potential [HML+20]. Potentials [PDN21].
Potentials-Based [PDN21]. Power [AOAM21, AVLV03, ANR+08, GHR20, JS10, NBN+15, OBB+24, PO07, RSP20, SDH22, SWZ+15, SAI+20, WMN+17, ZLJ+17, ZJG17].
Power-Aware [AOAM21, AVLV03].
Prediction [OA21].
Predictive [AOAM21, CEP97, JSSH97, LEG11, MOL05, RWMF24, SK14, TF96, ZWJK05, ZJG17].
Predictive [PCP+13].
Predictor [CHYP96]. Predictors [KMG01, LJ08].
Preface [CY14, WNMW16].
Prefetch [FDY+19, HGT+12, WLL+08].
Prefetch-Based [WLL+08].
Prefetch-Obfuscator [FDY+19].
Prefetcher [GMB06]. Prefetching [CTK+11, DJS12, GRV+17, GV99, HGT+12, HTmG+12, ZJG+15].
Prefix [MA87, SS89].
Preemption [TH17]. Presence [JSSH97].
Preserving [DC20]. PreSET [SZH18].
pressure [LAV98]. Prevent [GMB95].
Price [Ger10]. Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].
Primitive [JLV21, JHLM01]. Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy [Ger10].
Pricing [WWG19].

Scheduling [DF98, NST89].

Schema [WTZ19, WWG19].

School [WMK19].

Scientific [CAK17, DGMP09, HML20, IPR05, MV17, SSB17, TTF08, WSO07].

SDRAM [LPB13].

Search [BJM20b, DS20, GAR16, Ged13, Hum91, KS90, LY95, MAT23, MB12h, MVD14, WMK19, Ad9, DFL86, KR87, RK87].

Searchable [AAI20a, AAI20b].

ScnC [SSS16].

Scratchpad [CHCL14].

SDN [AAN20, FBV21, SAI20, UWF20].

Scientific [CAK17, DGM09, HML20, IPR15, MV17, SSB17, TTF08, WSO07].

Scratchpad [CHCL14].

SDN [AAN20, FBV21, SAI20, UWF20].

Selecting [Low00].

Selection [CS20, DE00, GAR16, KDV22, SAS18, WTZ19, WTQ21, uRHH14].

Self [DWS16, EFED05, FKM11, HHW10, HC17, KFC08, LSL94, LJE05, NSS12].

Self-Adapting [EFED05].

Self-Monitored [LJE05].

Self-Scheduling [LSL94, HC17].

Self-stabilizing [DWS16].

Self-Submitting [NSS12].

Self-tuning [FKM11].

Semantic [HHC15, KSF18, LQWP10].

Semantic-Aware [LQWP10].

Semantics [ACC01, Cam89, Hud86, Ric90].

Semi [GVB06, KMV87].

Semi-Automatic [GVB06, KMV87].

Sensor [CPT14, DM20, NBN15, RY20, RY22].

Separation [SS92].

Sequence [LHP17, SO89, ECSS88, Hua89].

Sequences [AK17, FJZ15].

Shapes [CAZ02].

Shape [CAZ02].

Share [TV15].

Shared [BS03, BS91, CCG14, Cra88, FBGEL19, GV99, GG13, HML20, HR11, LSL94, Lab90, MMG04, MBE03, NIK00, NAP02, SNB04, SR15, SMC94, SS01, SS17, SSM06, SY08, WQJY17, YBRM14, ZLD15, Con88, FcF87, GLHN86, Hem89].

Shared-address [HR11].

Shared-Memory [BS03, CCG14, FBGEL19, GV99, HML20, LSL94, NIK00, NAP02, SMC94, YBRM14, GLHN86].

Sharing [CML04, GMB95, SNB04, YBDJ17].

Shifting [DH00].

ShM [SS01].

Shortest [AT91, OATGEL15a].

Shortest-Path [AT91].

shuffle [GE89].

SIC [GN20].

Side [Gha19, LMHW18].

Side-Channel [Gha19].

Sign [FVvL16, NS97b].

Signals [vNR11].

Signed [GWHY19].

Significance [VCP16].

SIMD [GS90, KJHB14, Moh19, PE18, SJBV06, SDFS98, TB23].
[PDN21]. SPEC [SGJ+03, TSB03]. Special
[Ano16b, Ano16d, Ano16c, Ano18b, Ano18a, Ano19, Ano21a, Ano21b, AM07b, Bro19, Car09, GSA08, Gha19, Giv07, Giv08, HSXH19, JACK20, JT06b, MCE13, MGJS15, MB12a, Mis09, NS97a, ORJ24, Pan08, PP10, PVG17, RJO22, SS10, SZ17, TG21, TFFP18, WNMW16, ZZS+19, BnH98, DB08]. Specialization [FRT+18, GW19]. Species
[FWZ+15]. Species-Based [FWZ+15]. Specific
[API03, CHT03, CB19, TFEK16, TOM+11, WL16, WK20]. Specification
[BdS07, BS91, PC13, RA94]. specifications
[Wai87]. Spectral
[CS20]. Speculation
[BS15, KVG18, WS08]. Speculative
[AK92, CHPC96, Col95, ELGE16, JCD14, KLG08, KJHB14, KT01, LEG11, MS99, MKAP05, PPQV16, RKG04, RA09, TFNG09].
Speculatively
[ELGE17]. Speculatively-Parallelized
[ELGE17].
Speech
[PR99]. Speed
[GE00, MSR18, NS22, PMV17, TGT18, EG86]. Speed-up
[EG86]. Speeded
[Zha10]. Speeded-Up
[Zha10]. Speeding
[SAB11]. Speedup
[Gai89]. Speedups
[KS90, GS90]. SPICE3
[WPC07]. Spike
[CPP+12]. Spill
[PB04].
Spin
[HLP11]. SpiNNaker
[RNJ+12].
Spline
[AP86]. Split
[WR18]. Splitting
[GLF00]. SPMD
[Dab21]. SPP
[SSM09].
SPP-1000
[SSM09]. Spread
[LEA15].
SQL
[HHW20]. SR8000
[TSB03]. SSD
[OXL+17]. stabilizing
[DWS16]. Stack
[BE13]. Stacked
[LHP+17]. Stage
[EDA90, PYC16]. Stand
[DJ16].
Stand-Alone
[DJ16]. Standard
[FSS06, SUCV17, YKLD17, NdMMW16].
Standard-Library
[SUCV17]. StarCore
[PB04]. State
[BR97, KS90, KPS14, LHL+16, OOR13, YJY16].
State-of-the-Art
[LHL+16]. State-Space
[KS90]. Stateful
[ACC+01, DM17]. States
[DDJ+18]. Static
[BCC00, CB01, CSD21, HYBA18, Li03, MRLR16, NIO+03, RRH03, Gao86].

Statically
[BCL17]. Statistical
[AA1+20a, AAI+20b, NSU22, PYC16]. Status
[Ano16c]. Steal
[TV15]. Stealing
[HHW20, YH18]. Steiner
[BR4b, MNN22].
Stencil
[CB19, HmM22, MS11, SBC17].
Stiff
[MLdP02]. STL
[HG18]. Stochastic
[ASW+15, RSV+15]. Storage
[AMAH01, CM06, JHP97, LT17, NG92, WTZ+19, WTP21, AH86, CF+20].
Storage-Centric
[CM06]. Store
[BG96]. Stores
[AZK+18]. Storm
[ZL21]. Story
[MSA+07]. Straightforward
[MCT+18].
Strassen
[uHKAMFM16a, uHKAMFM16b]. Strategies
[CGJ95, CF19, FLMR17b, LRO9, PK20, SAS18]. Strategy
[GSP+17, IS03, JM20, RBES00, WLL+08, WRI8, ZLJ+17]. Stream
[GSS10, GHDF19, GHR20, LHP+22, RSA+18, RGB+08, TF94, ZK07, ZLA21, SRV88]. Stream-Conscious
[ZK07]. Stream-Oriented
[RGB+08]. Streaming
[BBR11b, CHCL14, HtBK+10, LJ09, MAB+11, SN16, TB23, VNU19]. Streams
[CPP+12, DM17, Tic90]. Strict
[CSTGL03]. Structural
[AMP+05]. Structure
[EFJ00, LWD17, MGW99].
Structured
[BABW14, FCA06, GGV18, HCEP98, MV17, MP95, NLRH07, SASH12].
Structures
[BCL17, CL96, ELGE16, GL18, HGT+12, HTmG12, JSHP97, RG15, SL14, SH15, vdSGBW08]. Student
[FJ+18].

studies
[CG94]. Study
[BKTO8, DBO0, FPY08b, HPVRPF15, HMT+96, LV32, LDHLO5, MS11, PMV17, Sca11, SPS14, KM86]. Styles
[PC13]. Sub
[LS05]. Sub-Networks
[LS05].
Subdivision
[BGMR11]. Subgroup
[FG16]. Submission
[LLL+15]. Submitting
[NSS12]. Subroutines
[CG+14].
subscribers
[Ano92]. Suitable
[MVB+06]. Suites
[SGJ+03]. Summarization
[KSF+18]. Summation
[ML15]. sums
[MA87]. Super
[AK96, JLD16, YWY+18]. Super-Resolution
[YWY+18].
Super-scalar
[AK96]. Supercomputer
Supercomputers
Superthreaded
Supernode
Superscalar
Supertask
Surrogate
Support
Supported
Supporting
SURF
Surfaces
Surrogate
Surveillance
Survive
SVM
SW
Swap
Swarm
SWIMM
Switches
Symmetric
Symposium
Synchronisation
System
System-level
Systematic
Systems
Tackling
Tag
Tampering
Target
Targets
Task
Task-Aware
Task-Based
Tasking
TAU
TCP
TCP/IP
Technique
Technique-Application
Technologies
Techniques
Temporal
Tenanted
TensorFlow
Teradevice
Terascale
termination
Test
TrustZone [KHT21]. TuCCompi [OATGEL15b]. Tuned [LAD15]. Tuning [BG17, CCG+14, LEL+99, OATGEL15b, FKM+11, Ged13]. Tunnels [KLK16]. Two [BARSW95, EHKT07, FJO+16, HFM88, JHLM01, LPB13, LLW+17, LS05, SS92].

Two-Dimensional [BARSW95, EHKT07, LPB13]. Two-Level [LLW+17]. Two-Phase [JHLM01]. Type [CP88, ELK18, HZZ+19, VNU19]. Type-Driven [VNU19]. Type-Safe [ELK18]. Typed [BBC07, BCL17].

types [Win89]. TZmCFI [KHT21].

Use [GmWHR98]. Useful [YYYX20]. User [LLL+15, MTT15]. User-Guided [MTT15]. Users [AKA+20, BBB+17, Kuc94]. Using [AKBPV19, APR+18, AAN+20, ASG20, BR97, BKK20, BKK23, BEJD21, BAF94, BABW14, BJM20b, CHPC96, CPT14, CS20, C0l95, CFF+06, DeBS7, Dem11, DS16, DTLW16, DMC+18, DMC+20, DJR16, DS20, ELGE17, FFS18, GAR+16, GG14, G8K94, GN20, GG13, GRAG00, GAK20, GH89, GE90, HG18, HLP11, HHW20, HP13, ID08, JM20, JG97, JCD+14, Jol94, KH18, KKSP18, KMJC02, KHT21, KP95, uHKAMFM16a, uHKAMFM16b, KAI20, KP05, KGK20, LPB13, LLGC17, LQWP10, LS05, LNG12, LEA15, LM00, LBT17, LKS+20, MSJ20, MCWK01, MANR09, MKAP05, NIK00, NIO+03, NRR99, NBA13, OA21, PLN+04, PPQV16, PMV17, RA94, RY20, RY22, RLH14, RSA+18, RSJ+14, RLK20, SDH22, SSEA14, SAB11, fS18, SSB21, Sun11, TS03, TCUV14, TFMP97, VVCA23, ZC09, AD66, HAA+11, IP+05, KIT+20]. Utility [ASG20, YBDJ17].

Utilization [JHLM01, MGW99, ZLAV04]. Utilizations [GHC+17]. Utilizing [CPL+10].

Vehicular [ANS20]. Verification [AG06, BFS05, CBH06, CFF+06, FG16, LMP05, SRS06, US05].

Virtualized [VFIN12]. Visibility [DPS90].
Vulnerability [OA21].

Wait [FLD15, LFD17, Sun11]. Wait-Free [FLD15, LFD17, Sun11]. Warm [LJE05].
Warm-Up [LJE05]. Warp [Lys08].
Waterman [FJZ‘15, HMF‘13, RSJ‘19, ZTY‘19].
Watermarking [GP17]. Wave [LS07].
Web [HHC+15, NYHA14]. Weight [CM06].
Window [DM17, NdMM09, SP20].
Window-Based [DM17]. Winograd [uHKAMFM16a, uHKAMFM16b]. Wireless [DM20, RY20, RY22]. within [LLL+15].
Without [LPB13]. WolfPath [ZHF‘19].
Workflow [CAK17, DST21, LWF‘19, SDL17].
Workshop [SS10]. Workstation [NIK00].
Workstations [LS05]. World [GHM14, HLP11, WLW‘17, YLB19].
Wormhole [LN9]. Write [MV17].
Written [KaM10]. WSN [PK20].

X10 [ASS21]. x86 [MGL’17]. XDP [CFB94]. Xeon [BP17, Cza17, LLGC17, ELGE17, PES+18].
Xeon/Xeon [Cza17]. XI [MCE13]. XV [PVG17].
Y-Invalidate [BAP01]. YAKL [NLBB23].
Yield [SS17]. YuruBackup [XZX+15].
Zone [JCH+08, MS11].

References

Anane:2015:TBE

Andion:2016:LAA
Ahsan:2020:CCS

Ahsan:2020:CSA

Ahmad:2020:LBC

Alabady:2020:NSM

Abboud:2012:CHR

REFERENCES

Ayguade:2010:EOS

Amme:2000:DDA

Almer:2013:PDB

Attali:2001:EFI

Isabelle Attali, Denis Caronnel, Yung-Syau Chen,

Almasi:2002:DSM

Aldinucci:2014:DPP

Aldinucci:2016:PEP

Marco Aldinucci, Sonia Campa, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati. Pool evolution: a parallel pattern for evolutionary and symbolic computing. *International Journal of Parallel Programming*, 44(3):531–551, June 2016. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-
Almeida:1986:PAS

Akl:1989:PSC

Aguilar:2017:TPE

Arcucci:2017:DTR

REFERENCES

REFERENCES

Aubrey-Jones:2016:SMI

Ali:1990:FPS

Ali:1990:MAP

Albonesi:1996:MVA

[AK96] David H. Albonesi and Israel Koren. A mean value analysis multiprocessor model incorporating super-scalar proces-

[AM95] David Abramson and A. McKay. Evaluat-

Al-Mouhamed:2004:AOP

Ayguade:2007:I

Ayguade:2007:SIO

Al-Mouhamed:2001:ENG

Arandi:2018:DDT

[SAMK18] Samer Arandi, George Matheou, Costas Kyriacou, and Paraskevas

Apostolakos:2010:DIV

Ahmed:2001:STL

August:2005:ASC

anMey:2007:NPO

REFERENCES

Anonymous:2000:Ia

Anonymous:2000:Ib

Anonymous:2000:II

Anonymous:2003:E

Anonymous:2014:EN

REFERENCES

Anonymous:2016:ENH

Anonymous:2016:ENS

Anonymous:2016:ENSb

Anonymous:2018:ENSa

Anonymous:2018:ENSb

Anonymous:2019:ENS

Anonymous:2020:EN

Anonymous:2021:ENSa

Anonymous:2021:ENSb

Awasthi:2012:MDP

Ahmad:2020:CHV

Akturk:2019:ATS

Al-Obaidy:2021:PAH

Ajanagadde:1986:SAB

Atasu:2003:AAS

Ahmad:2018:MDP

Areias:2016:LFH

Azevedo:2005:AAD

Anand:2021:FAX

Anand:2021:MDP

Ahn:2015:FAP

Adamson:1991:GP

Anghel:2016:IAH

Arias:2000:PLP

[AVPG00] Ramiro Varela Arias, Camino Rodríguez Vela, Jorge Puente Peinador, and Cesar Alonso González. Parallel logic programming for problem solving. *International Journal of Parallel Pro-

REFERENCES

CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Banerjee:1994:EI

Banerjee:2004:GEIa

Banerjee:2004:GEIb

Ben-Asher:2001:INP

Ben-Asher:1995:FPF

Blough:1990:NOM

Douglas M. Blough and Nader Bagherzadeh. Near-optimal message routing
REFERENCES

Barone:2017:AFQ

Baduel:2007:ATO

Bernstein:1995:SDD

Belgin:2011:LPB

Benoit:2011:ORS

Anne Benoit, Hinde Lilia Bouziane, and Yves Robert. Optimizing the reliability of streaming applications under throughput constraints. *International
Bordoloi:2010:GBA

Bernabe:2015:AEF

Barthou:2000:MSE

Berman:2005:NGS

Bianchini:1998:EEC

Bailey:1990:PGE

Bourgoin:2014:EAG

Bourgoin:2017:HLD

Bjornson:2009:NCS

Brogi:2018:AMQ

Brown:2014:CDR

Bado:2019:HBR

REFERENCES

Bull:2010:PEM

Beg:10

Bell:1994:SPC

Bilardi:2013:ESD

Broquedis:2010:FEO

Yousef Barigou and Edgar Gabriel. Maximizing communication–computation overlap through automatic parallelization and run-time tuning of non-
REFERENCES

Bik:2008:CSC

Bonyadi:2009:BGA

Baev:2002:BBI

Beaty:1998:FSI

REFERENCES

Bala:1997:EIS

Baumann:2014:PPI

Bezensek:2014:SPD

Brooks:1986:BBM

Brown:2015:HLH

Brown:2019:GES

REFERENCES

Bansal:1989:TGT

Broy:1991:SDS

Benkner:2003:EDM

Brown:2007:HSP

Baudisch:2015:ESO

Daniel Baudisch and Klaus Schneider. Evaluation of speculation in out-of-order...

Bachir:2013:MUF

Braun:2002:PAS

Choi:2017:DLA

Camilleri:1989:OSO

REFERENCES

Chakrabarti:2001:SSA

Coullon:2019:ECM

Che:2017:PGG

Camara:2014:EIL

Charr:2012:AEM

Jean-Claude Charr, Raphaël Couturier, and David Laiymani. Adaptation and evaluation of the multisplitting-Newton and

[Chang:1997:IBP] Po-Yung Chang, Marius Evers, and Yale N. Patt. Improving branch prediction accuracy by reducing

Crivellini:2019:OPS

Carter:1994:XCI

Chen:2019:CSS

Currie:2006:ESV

Chen:2020:CSS

DEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Carriero:1994:CSA

Carriero:1995:PSS

Cao:2009:OCP

Ciobanu:2018:CPR

Chao:1995:MRD

Chen:2006:VAM

REFERENCES

3–27, March 2006. CO-
DEN IJPPE5. ISSN 0885-
7458 (print), 1573-7640
(electronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
34&issue=1&spage=3.

Hung, Ching-Chih Chen,
and Chih-Wei Liu. Parallel-
izing complex streaming
applications on distributed
scratchpad memory multi-
core architecture. Inter-
national Journal of Par-
allel Programming, 42(6):
875–899, December 2014.
CODEN IJPPE5. ISSN
0885-7458 (print), 1573-
7640 (electronic). URL
http://link.springer.
com/article/10.1007/

[CHSC18] Zhiwen Chen, Xin He,
Jianhua Sun, and Hao
Chen. Have your cake and
eat it (too): a concurrent
hash table with hardware
transactions. International
Journal of Parallel Pro-
gramming, 46(4):699–709,
August 2018. CODEN
IJPPE5. ISSN 0885-7458
(print), 1573-7640 (elec-
tronic).

[CHPC96] Po-Yung Chang, Eric Hao,
Yale N. Patt, and Pohua P.
Chang. Using predicated
execution to improve the
performance of a dynam-
ically scheduled machine
with speculative execution. International
Journal of Parallel Programming,
CODEN IJPPE5. ISSN
0885-7458 (print), 1573-
7640 (electronic).

[CHYP96] Po-Yung Chang, Eric Hao,
Tse-Yu Yeh, and Yale
Patt. Branch classification: a new mechanism for
improving branch predic-
tor performance. International
Journal of Parallel Programming,
24(2):133–158, April 1996. CODEN
IJPPE5. ISSN 0885-7458
(print), 1573-7640 (elec-
tronic).

[CHS99] Thomas Conte, Wen-Mei
Hwu, and Mark Smother-
erman. Editors’ intro-
duction. International
Journal of Parallel Pro-
gramming, 27(5):325–326,
October 1999. CODEN
IJPPE5. ISSN 0885-7458
(print), 1573-7640 (elec-
tronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
27&issue=5&spage=325.
REFERENCES

Corbalan:2004:PMD

Clapp:1990:CCR

Chen:1994:PAI

Capitanio:1995:HBM

Collard:1995:APW

REFERENCES

Conery:1988:BEP

Cleaveland:1988:TTC

Carroll:2004:FIE

Canal:2001:DCP

Czutro:2010:TP1
REFERENCES

Chuang:1992:APU

Cvetanovic:2017:ROT

Conte:1997:OVC

Chabkinian:2016:FL

Chidambaram:2020:OFS

Carter:2000:PAR
Lori Carter, Beth Simon, Brad Calder, Larry Carter, and Jeanne Ferrante. Path analysis and renaming for predicated instruction scheduling. *International
REFERENCES

Chiang:2020:NAB

Cheng:2021:SSA

Chen:2020:CCG

Chen:1989:HEH

Cristobal-Salas:2003:NSE

REFERENCES

http://ipsapp007.kluweronline.com/content/getfile/4773/32/1/fulltext.pdf;
http://ipsapp007.kluweronline.com/content/getfile/4773/32/1/abstract.htm;
http://ipsapp007.kluweronline.com/content/getfile/4773/32/1/fulltext.pdf;

Czapinski:2014:RCO

CTB14

Caragea:2011:RA

CTK+11

Cascaval:2013:GEC

Carretero:2014:PDP

Chiang:2016:OSE

Ching:2012:APA

Czarnul:2017:BPH

Clark:2003:ADA

Dabrowski:2021:SVT

[Dem11] Brian Demsky. Using discrete event simulation to analyze contention managers. *International Journ-
REFERENCES

Dennis:1994:MMP

Donaldson:1998:AAP

Duran:2007:PEH

Darlington:2017:TCH
Dong:2021:FTU

Drummond:2009:PPB

Darte:2000:LSL

Drummond:2009:PPB

Duncan:2016:UPP

Dudas:2012:SCA

Dastgeer:2016:SCS

DeBole:2009:NAN

Dias:2013:SUT

Du:2017:ODA

Degano:1987:POM
DeMatteis:2017:PPW

Devi:2020:IPW

[DMC91]

[DMC20]

Danelutto:2021:ASP

Marco Danelutto, Gabriele Mencagli, and Peter Kilpatrick. Algorithmic skeletons and parallel design patterns in mainstream parallel programming. *International Journal of Parallel Programming*, 49
REFERENCES

Menezes:2021:HLP

Menezes:2022:PSI

DeMichele:2018:GIO

Das:1991:PSA

deStGermain:2003:PAI

References

Durgadevi:2020:RAC

Dutta:2017:SVC

Di:2021:HPM

Diavastos:2016:ITD

Darte:1997:OFM

Du:2017:CSC

Yuyue Du, Lu Wang, and

Ding:2016:LTS

Dobre:2014:PPP

Dong:2010:PNM

Eigenmann:2009:GEI

Ernstsson:2021:SPH

August Ernstsson, Johan Ahlgvist, and Christoph Kessler. SkePU 3: Portable high-level programming of heterogeneous systems and HPC clusters. *International Journal of Parallel Pro-

Enokido:2014:EER

Edmiston:1988:PPB

Eichenberger:1996:MRR

Eijkhout:2005:CSS

El-Gindy:1986:OSP
REFERENCES

Eedi:2022:IOP

Estebanez:2016:NDS

Estebanez:2017:UXP

Ernstsson:2018:SFT

Eigenmann:2013:CI

Emoto:2014:AFM

Kento Emoto and Kimi-

[Engelhardt:1996:PartitioningIndependentParadigm]

[Fresno:2019:HitFlow]

[FBV21]
REFERENCES

REFERENCES

[Fan:2018:ADL] Sijiang Fan, Jiawei Fei,

Fortin:2016:BWT

Fummi:2005:E

Farhan:2018:RTD

Frieb:2016:PAH

Feng:2015:ASW

Xiaowen Feng, Hai Jin, Ran Zheng, Lei Zhu, and Weiqi Dai. Accelerating Smith–Waterman alignment of species-based pro-

Francez:1987:FAC

Fillo:1997:MMM

Fursin:2011:MGM

Franke:2012:GEC

Feldman:2015:WFM

REFERENCES

REFERENCES

REFERENCES

Feitelson:1995:CBR

Farooqui:2018:ADA

Song:2018:VDU

Foster:1987:FPB

Ian Foster and Stephen Taylor. Flat Parlog: a basis for comparison. *International Journal of Parallel Programming*, 16(2):87–125, April 1987. CODEN IJPPE5. ISSN 0885-
REFERENCES

REFERENCES

Gao:1986:MPL

Gadde:2016:AOI

Gaudiot:1996:GEI

Grelck:2020:RAD

Guo:2008:CIR

REFERENCES

Gupta:1990:HSS

Gedik:2013:ATS

Gentleman:2016:CPC

Gerbessiotis:2010:POP

Gonzalez:2014:ATD

Griebl:2000:ISS
REFERENCES

REFERENCES

February 2018. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Gupta:1989:SIB

Ghiya:1996:CAP

Ghalaty:2019:ESI

Gu:2017:DEP

Griebler:2019:HLP

George:1986:SSP

Gaspar:2014:BCW

Gruttner:2020:TVS

Givargis:2007:SIE

Givargis:2008:GEI

REFERENCES

[114]

Gregor:2005:GPH

Genaud:2009:FMP

Gilder:1994:ASC

Gorlatch:2018:GEH

Gupta:2022:LAI

Guzman:1987:PSA
Adolfo Guzman, Ed-

Granston:1995:LTP

Gendler:2006:PBM

Grasset:2011:MHD

Giacalone:1989:FSI

Gupta:2000:APR

Manish Gupta, Sayak Mukhopadhyay, and Navin Sinha. Automatic parallelization of recursive pro-
REFERENCES

Gyllenhaal:1998:OMD

Geist:1989:TSP

Gnanasekar:2020:EMC

Goldberg:1988:MEF

Girkar:1994:HTG

Greenlaw:1990:ASA

Gaudiot:2005:MGE

Grelck:2006:SFA

Giacaman:2011:PIP

Giacaman:2013:PTP
Nasser Giacaman and Oliver Sinnen. Parallel task for parallelizing object-oriented desktop applications. *Inter-
REFERENCES

REFERENCES

Groselj:1986:PAD

Gupta:1988:PIO

Granston:1995:CFD

Gornish:1999:IHS

Girbal:2006:SAC
REFERENCES

Grelck:2019:PAA

Gao:2019:ASG

Gwp:2021:EDP

Gao:2018:SRF

Govindarajan:1992:AGP

REFERENCES

[Guo:2022:EEI]

[Gouk:2018:ERL]

[Hussain:2011:PIA]

[Halstead:1986:AML]

REFERENCES

REFERENCES

Herrmann:2023:DCA

Horn:2018:GPI

Hu:2021:CHA

Hudak:2009:CSI

Hawick:2011:RLS

K. A. Hawick, A. Leist, and D. P. Playne. Regular lattice and small-world spin model simulations using CUDA and GPUs. International Journal of Parallel Pro-
REFERENCES

Hamidouche:2013:PSW

Harel:2020:SSP

Hum:1996:SEM

Herbert H. J. Hum, Olivier Maquelin, Kevin B. Theobald, Xinmin Tian, Guang R. Gao, and Laurie J. Hendren. A study

Hank:1997:RBC

Hwu:1994:GE

Huang:2016:CFL

Holtobar:2006:DJJ

Heinecke:2013:EAE

Hidalgo-Paniagua:2015:CSP

Hoeflinger:2001:UIP

Hoffmann:2011:ATP

Hallou:2017:RVT

Hassanein:2008:AEH

REFERENCES

Hsu:2016:NPC

Habel:2016:CDC

Heidorn:2024:HAE

Hua:2019:GES

Holzenspies:2010:RTS

REFERENCES

[Hukerikar:2018:RIA]

[Han:1998:EBS]

[Huang:2012:POT]

[Hendren:1997:CCE]

[Huang:1989:SEP]
Xiaqiu Huang. A space–efficient parallel sequence

REFERENCES

Rui Han, Jianfeng Zhan, and Jose Vazquez-Poletti Luis. SARP: Synopsis-based approximate request processing for low latency and small correctness loss in cloud online services. *International Journal of Parallel Programming*, 46(2):284–312, April 2018. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Kayhan M. Imre, Cesur Baransel, and Harun Ar-
REFERENCES

Oscar H. Ibarra and Michael A. Palis. An...
REFERENCES

REFERENCES

[Janjic:2021:RLP] Vladimir Janjic, Christopher Brown, and Adam D. Barwell. Restoration of

Pascal Jungblut and Karl Fürlinger. Portable node-

Jenks:1997:ELT

Janakiram:1988:RPB

Jodra:2015:ETG

Jaeger:2018:FAP

Jiang:2020:MPO

Jung:2001:TPB

Inbum Jung, Jongwoong Hyun, Joonwon Lee, and

REFERENCES

141

Jin:2019:HHA

Jindal:2016:EGS

Jelic:2015:FPI

Ji:2021:SMN
REFERENCES

Jeevan:2020:DDT

Joisha:2002:EAJ

Joe:1999:GEI

Johnson:1994:PAM

[JSHP97] Stephan Jourdan, Jared

Jaaskelainen:2015:PPP

Jannesari:2016:AGU

Khan:2020:EOP

Kapinos:2010:PPP

Khan:2017:RCS

Ayaz H. Khan, Mayez Al-Mouhamed, Muhammed

REFERENCES

openurl.asp?genre=article&
issn=0885-7458&volume=
33&issue=2&spage=103.

[KD15] Georgios Keramidas and
Chrysovalantis Datsios. Revisiting cache resizing.
International Journal of Parallel Programming, 43
(1):59–85, February 2015. CODEN IJPPE5. ISSN
0885-7458 (print), 1573-7640 (electronic). URL

Djemame, and Nikolaos Voros. A methodology
for efficient tile size selection for affine loop
405–432, August 2022. CODEN IJPPE5. ISSN
0885-7458 (print), 1573-7640 (electronic). URL

[Kultursay:2016:MPL] Emre Kültürsay, Kemal
Ebcioğlu, Gürhan Küçük, and Mahmut T. Kandemir. Memory partitioning in the limit.
International Journal of Parallel Programming, 44(2):
337–380, April 2016. CODEN IJPPE5. ISSN
0885-7458 (print), 1573-7640 (electronic). URL

0885-7458 (print), 1573-7640 (electronic). URL
http://ipsapp009.lwwonline.com/content/getfile/4773/23/2/abstract.htm;
http://ipsapp009.lwwonline.com/content/getfile/4773/23/2/fulltext.pdf;
article&issn=0885-7458&volume=29&issue=5&spage=463.

Editor’s note: High-
Kistler:1999:TBA

Kolberg:2008:DLS

Koster:2020:MPR

Kannan:2018:FPT

Kalla:2008:FFC

REFERENCES

Kawada:2021:TRA

Khan:2020:BDP

Ko:2014:SPD

Kella:2011:AAP

Kumar:2010:FBH

KJHB14

KJPN10

KJBN10

KK11

KK11

KK11
REFERENCES

Kaur:2020:FAE

Kokhazadeh:2024:PAE

Kirovski:1999:PBP

Kaur:2018:FAR

Kavadias:2012:CIN

REFERENCES

REFERENCES

Kessler:1997:FPP

Kumar:2018:GSR

Khatri:2022:SMF

Kayi:2014:BAC

Khan:2018:ATS

REFERENCES

0885-7458 (print), 1573-7640 (electronic). [KTBP18]

Kim:2014:VVF

Krishnan:2001:NFC

Kyrkou:2018:BHE

Knorr:2023:DDF

Kreutzer:2017:GBB

Moritz Kreutzer, Jonas Thies, Melven Röhrig-Zöllner, Andreas Pieper, Faisal Shahzad, Martin Galgon, Achim Basermann, Holger Felske, Georg Hager, and Gerhard Wellein. GHOST: Building blocks for high performance sparse lin-

Kubota:1999:TER

Kuck:1994:WDU

Koduru:2018:SSC

Kempf:2010:ASB

Lobeiras:2015:BTB

REFERENCES

Langlois:1990:SPC

Llosa:1998:QER

Loulergue:2017:CPP

Lu:2011:PAA

Li:2021:CAO

Liu:2020:PAA

[LEA15]

REFERENCES

REFERENCES

[102x681]159

[LHLT19] Junhong Liu, Xin He, Weifeng Liu, and Guangming Tan. Register-aware...

Liu:2017:SMC

Lo:2022:DCT

Li:2003:PRE

Lindstrom:1986:SPR

Lindstrom:1987:SPR

Gary Lindstrom. Sans pareil: Referees. *Internation-
REFERENCES

1. Lindstrom:1988:SC

2. Lindstrom:1988:SPR

5. Lindstrom:1990:SPR

REFERENCES

Lindstrom:1992:RV

Livesey:1991:NMB

Loh:2008:MPH

Lee:2009:RSS

Luo:2005:SSM
REFERENCES

Lai:1994:CRI

Lydia:2020:CDC

Langguth:2017:ADT

Laccetti:2012:DAA
REFERENCES

Laccetti:2016:LCM

Lu:2003:ABH

Loechner:2000:CO

Liu:2018:DNS
Wenjie Liu, Sheng Ma,
REFERENCES

Lee:1998:CPA

[LMP98]

LMP98

[LNG12]

Li:1991:ECM

[LNP91]

Loghi:2005:DFV

[LMPS05]

Lowenthal:2000:ASB

[Low00]

David K. Lowenthal. Accurately selecting block

[LRG+91] Virginia M. Lo, Sanjay Rajopadhye, Samik Gupta, David Keldsen, Moataz A. Mohamed, Bill Nitzberg, Jan Arne Tell, and Xiaoxiong Zhong. OREGAMI: Tools for mapping parallel computations to parallel architectures. *Inter-
REFERENCES

References

[Laudon:2007:CWM]

[Li:2020:MOW]

[Lee:2007:DBI]

[Larsen:2009:ABE]

REFERENCES

Lin:2018:CHM
Han Lin, Zhichao Su, Xiangdong Meng, Xu Jin, Zhong Wang, Wenting Han, Hong An, Mengxian Chi, and Zheng Wu. Combining Hadoop with MPI to solve metagenomics problems that are both data- and compute-intensive. *International Journal of Parallel Programming*, 46(4):762–775, August 2018. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Li:2015:ODN

Leite:2012:NNS

Li:2015:CCM
REFERENCES

Langr:2015:DAL

Lubachevsky:1990:SBR

Lal:2022:QSL

Li:2016:SSO

Loechner:1997:PPT
REFERENCES

Liu:2017:DPA

Lui:2019:SA

Li:2019:IPD

Li:2011:STP

Lu:2018:SPE

[LYL14] Cheng Hua Li, Lau-

Lysecky:2008:SPE

Lu:2017:IFM

Meijer:1987:OCP

Muller:2010:GEI

Munk:2011:AP

Harm Munk, Eduard Ayguadé, Cédric Bastoul, Paul Carpenter, Zbigniew Chamski, et al. ACOTES Project: Advanced compiler technologies for embedded streaming. *International Journal of Par-

Main:1987:TFT

Mariani:2016:SPP

Margaris:2009:LFF

Marowka:2017:EAM

REFERENCES

with reduced search space
coding for multiprocessor
task scheduling problem.
*International Journal of
Parallel Programming*, 40
CODEN IJPPE5. ISSN
0885-7458 (print), 1573-
7640 (electronic). URL
http://www.springerlink.j
com/openurl.asp?genre=
article&issn=0885-7458&
volume=40&issue=2&spage=
225.

[MBE03]
Seung-Jai Min, Ayon
Basumallik, and Rudolf
Eigenmann. Optimiz-
ing OpenMP programs
on software distributed
shared memory systems.
*International Journal of
Parallel Programming*, 31
CODEN IJPPE5. ISSN
0885-7458 (print), 1573-
7640 (electronic). URL
http://ips/frames/Refs/referenceskapmain.j
asp?J=4773&I=33&A=5&
LK=NM; http://ipsapp07.j
kluweronline.com/content/
getfile/4773/33/5/abstract.j
htm; http://ipsapp07.j
kluweronline.com/content/
getfile/4773/33/5/fulltext.j
pdf; http://www.springerlink.j
com/openurl.asp?genre=
article&issn=0885-7458&
volume=31&issue=3&spage=
225.

[MCE13]
John McAllister, Luigi
Carro, and Skevos Evrip-
diou. Guest editorial:
Special issue on 2011
International Conference
on Embedded Computer
Systems: Architectures,
Modeling and Simulation
(SAMOS XI). *International
Journal of Parallel
Programming*, 41(2):161–
162, April 2013. CO-
DEN IJPPE5. ISSN
0885-7458 (print), 1573-
7640 (electronic). URL
http://link.springer.com/article/10.1007/
s10766-012-0233-6;
http://link.springer.com/content/pdf/10.1007/
s10766-012-0233-6.pdf.

[MCFM12]
Ricardo Menotti, João
M. P. Cardoso, Marcio M.
Fernandes, and Eduardo
Marques. LALP: a lan-

Mellor-Crummey:2001:IMH

Mustafa:2015:PPE

Manolache:2007:FAC

Merks:1986:OPA

Martinez:2021:PSD

Milovanovic:2008:NEE

Moreton-Fernandez:2019:MDC

Gallivan, and Harry A. G. Wijshoff. The utilization of matrix structure to generate optimized code from MATLAB programs.

Mitchell:1998:QML

Maydan:1995:EDD

Mishra:2009:GEI

Milicev:2002:CFR
Dragan Milicev and Zoran Jovanovic. Control flow regeneration for software pipelined loops with conditions. International Journal of Par-
REFERENCES

REFERENCES

Mukherjee:2021:IHM

Manoj:2004:CDC

Mahfoudhi:2015:PCA

Morris:2007:SNO

Muniasamy:2022:ACS
Rajesh Pandian Muniasamy, Rupesh Nasre, and N. S. Narayanaswamy. Accelerating computation of Steiner trees on GPUs. *International
REFERENCES

Mall:1991:FTA

Melvin:1995:EIS

Menon:2004:LLL

Menezo:2018:MSC

Moss:2005:CCB

REFERENCES

[Mendelson:2006:I]

[Menouer:2016:MSD]

[Meng:2011:PSI]

[MSA+07] José E. Moreira, Valentina Salapura, George Almasi, Charles Archer, Ralph Bellofatto, Peter Bergner, Randy Bickford, Mathias Blumrich, José R. Bruneroto, Arthur A. Bright, Michael Brutman, José G. Castaños, Dong Chen, Paul Coteus, Paul Crumley, Sam Ellis, Thomas Engelsiepen, Alan Gara, Mark Giampapa, Tom Gooding, Shawn Hall, Ruud A. Haring, Roger

[Moreira:2007:BGS]
REFERENCES

[MJ20]

[MJ01]

[MSPR18]

187 REFERENCES

Matheson:1996:PMM

Metzger:2015:UGD

Malakar:2017:HRW

Martinez:2006:DGN

Monteiro:2014:PFS

Moghimi:2019:MFD
Ahmad Moghimi, Jan Wichelmann, Thomas Eisen...

Muller:2024:IMA

Ma:2014:DPI

Nikolopoulos:2002:RVM

Nansamba:2023:FMR

REFERENCES

[NdMCdMMW16] Nadia Nedjah, Rogério de M. Calazan, Luiza de Macedo Mourelle, and

Nicolau:2014:AR

Nakajo:2000:DSM

Nakano:2003:SCG

Ni:1988:PMH

Niculescu:2023:GEN

REFERENCES

Norman:2023:PCC

[NLBB23]

Norden:2007:DDM

[NLRH07]

Novack:1995:HAI

[NP98]

Norris:1998:ECR

[NP01]

Nikolopoulos:2001:AOS
(electronic). URL http://ipsapp009.lwwonline.com/content/getfile/4773/21/2/abstract.htm; [NP19]
http://ipsapp009.lwwonline.com/content/getfile/4773/21/2/fulltext.pdf; [NPT86]
249.

Niedzielski:2019:AED

Nau:1986:EAM

Nieder:1994:EMG

Natesan:2017:HBP

REFERENCES

ISSN 0885-7458 (print), 1573-7640 (electronic).

Narasimhan:1999:UDF

Najjar:1997:FSI

Newburn:1997:PPP

Neuberger:2012:MIS

Nicol:1989:DPS

Naqash:2022:SAB

[NSU22] Talha Naqash, Sajjad Hussain Shah, and Muhammad Najam Ul Islam. Statistical analysis based

Ottaviano:2024:CRV

[OBB+24]

Orozco:2016:DIT

[OGP+16]

Ozturan:2011:GEP

[OG11]

OBoyle:1999:NDT

Ouyang:2017:HSP

Orailoglu:2003:GEI

Ortega:2004:DMI

Ou:2017:GNH

Orailoglu:2024:SIS

Panda:2008:GEI

[Pan08] Preeti Ranjan Panda. Guest Editor introduction: Special issue on multiprocessor-based em-

Parallax:1986:BPP

Parallax:1986:HPS

Parallax:1986:WPB

Pandey:2001:SIE

Palanciuc:2004:SCM

Virgil Palanciuc and Dragoş Badea. A spill code minimization technique-application in the Metrowerks StarCore C compiler. *International Journal of Parallel Program-
REFERENCES

Penry:2013:ABS

Piccialli:2018:PAD

Park:2020:DAM

Park:2013:PMP

Park:1989:DPM

Peterson:2019:AHM

Perner:1995:I

Perner:1999:I

Popa:2018:AMH

Padmanabhan:2005:EIM

Paulswamy:2020:QBN

Sathees Lingam Paulswamy

Pan:2004:DPC

Pingali:2003:RCT

Papagiannopoulos:2018:HTM

REFERENCES

ISSN 0885-7458 (print), 1573-7640 (electronic).

Phillips:1999:PSR

Pratt:1986:MCP

Palis:1992:NAR

Presser:2023:PAP

Park:1997:AGT

Panesar:2006:DPP

Gajinder Panesar, Daniel Towner, Andrew Duller, Alan Gray, and Will Rob-

Panetta:2012:ATD

Pothos:2021:DLI

Paya-Vaya:2017:GES

Pinter:1987:MPP

Palis:1992:PPT

Peng:2016:ESF

Pan:2017:DDC

Pan:2019:LAM

Qian:2011:PAP

Ying Qian and Ahmad Afshah. Process arrival pat-

Quiroz-Fabian:2019:VNV

Wang:2017:PA

Quillere:2000:GEN

Qin:2019:TDN

Qu:2015:DBA

Rivault:2022:SSJ

Rahman:2016:ASO

Rounce:2008:DIS

Reguly:2015:FEA

Rasch:2018:MDH
REFERENCES

References

issn=0885-7458&volume=32&issue=3&spage=225.

Ramirez:2002:STC

Rodriguez:2013:CA

Rheindt:2021:DDS

Rast:2012:MBS

Roy:2010:HNE

Sourav Roy. H-NMRU: an efficient cache replacement policy with low area. *International Jour-
REFERENCES

Claudia Rosas, Anna Sikora, Josep Jorba, Andreu Moreno, and Eduardo César. Improving performance on data-

Rucci:2019:SES

Rasmussen:2009:PSI

Ram:2020:AEL

Roberti:2005:PIL

Rinaldi:2020:IPA

Luca Rinaldi, Massimo

REFERENCES

REFERENCES

REFERENCES

Stepoway:1988:PRF

Scarpazza:2011:TPT

Silva:2014:EDE

Schwab:1992:EPG

REFERENCES

Shen:1996:HLC

Su:2015:SDD

Slagter:2015:AME

Sarvestani:2013:ERA

Shao:2017:FFC

Stahl:2021:DFD
Rafael Stahl, Alexander Hoffman, and Ulf Schlicht-

[SHZ+14] Dhirendra Pratap Singh, Ishan Joshi, and Jaytrilok
REFERENCES

[SJW22]

[SLZB13] Xipeng Shen, Yixun Liu,

REFERENCES

Frederick Springsteel and Ivan Stojmenović. Par-

Sivakumaran:2017:PBY

SS17

Silva:2023:EHL

SS23

Sotomayor:2017:ACG

SSB17

Spiliotis:2021:PCD

SSB21

Sankaraiah:2014:POV

Seewald:2021:CGC

Sterling:1996:EEC

SbIrlea:2016:SEU

Sheffler:1996:EDA

Saito:2000:DPC

REFERENCES

REFERENCES

[TY09] Gary S. Tyson and Todd M. Austin. Memory renam-
REFERENCES

Tipparaju:2012:RTE

Timcheck:2023:INR

Tomic:2014:UDR

Trancoso:2006:CCM

Tyson:1994:CSM

Tyson:1996:EEP

Tan:2016:ATB

Tyson:1997:MDC

Tian:2009:SPS

Tumeo:2018:GES

REFERENCES

REFERENCES

REFERENCES

[Teodoro:2008:RTS] George Teodoro, Tulio Tavares, Renato Ferreira,

[Uchihira:2000:SBH]

[Uchihira:2000:SBH]

[UFW+20]

[US05]

Alex Veidenbaum. Guest
REFERENCES

Venkatasubramanian:2012:TTT

Viitanen:2018:VLI

Valduriez:1988:PET

Velasquez:2015:BBA

vanNieuwpoort:2011:CRA

Vanderbauwhede:2019:TDA

Vandevoorde:1988:WAC

Vega-Rodriguez:2019:PPB

Vander-Swallen:2009:CAM

Vallejo:2011:HTM

Velentzas:2023:GBA

Wainwright:1987:DPC

Wolfe:1987:DDA

Wang:2016:CIK

REFERENCES

Wang:2017:GPH

W rede:2018:SCG

Wang:1994:DSP

Wang:2017:GPH

Wrede:2018:SCG

Wang:2017:IBM

Wing:1989:VAD

Wrede:2020:THP

Wang:2016:GDS

Wang:2008:DIA

Wang:2017:PSH
Yan Wang, Kenli Li, and Keqin Li. Partition scheduling on heterogeneous multicore proces-

Wu:2017:VPP

Wu:2015:CTC

WMC98

Wrede:2019:FSS

Weis:2017:DHL

Wang:2016:PSI

Wolfe:1986:LSW

Wonnacott:2002:ASL

Weng:2007:OIS

[WSC20] Wei Wang, Huansheng Song, and Hua Cui. Landslide multi-attitude data measurement of bedding

REFERENCES

Wang:2017:PCN

Jingling Xue and Chua-Huang Huang. Reuse-

Xu:2019:MCE

Xavier:2009:MLP

Xa:2009:MLP

Xin:2021:AAA

Xiao:2020:FDO

Xu:2015:YSE

Quanqing Xu, Liang Zhao, Mingzhong Xiao, Anna Liu, and Yafei Dai. YuruBackup: a space-efficient and highly scalable incremental backup

REFERENCES

Yang:2018:SPC

Yu:2016:CBL

Yang:2016:EBM

YarKhan:2017:PPN

Yun:2003:TOS

Yao:2017:ONC

Yin:2022:CSB

Yao:2019:IDF

Yang:2018:IIS

Yang:2020:EMD

Zeyao:2005:CAP

Zhang:2010:COP

Zhu:2019:WAI

Huanzhou Zhu, Ligang He, Songling Fu, Rui Li, Xie Han, Zhangjie Fu, Yongjian Hu, and Chang-Tsun Li. Wolf-PATH: Accelerating iterative traversing-based graph processing algorithms on GPU. *Internation
REFERENCES

Zheng:2017:LLB

Zurstrassen:2022:ADG

Zalamea:2004:SHT

Zhang:2007:RCM

Zhang:2021:RBA

Zheng:2017:LLB
Zhao:2019:EAS

Zhang:2015:QBA

Zhang:2017:OPL

Zhang:2012:DDA

Zhang:2020:VBM

Zhang:2019:GES