A Complete Bibliography of Publications in the
International Journal of Parallel Programming

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

18 November 2017
Version 2.29

Title word cross-reference

* [CS16]. + [SBC17]. 0 [LS92]. 1 [LS92]. 2 [CTB14, ES11, IBA11]. 3 [BC15, HPVRPF15, HF14a, HF14b, JGM15, LLGC17, LHPF17, SJKAA99, SBC17]. < [JS06a]. > [JS06a]. (R) [BKT08, SM09]. T_M

1000 [SSMO96]. 16 [Swa88]. 18th [DB08].

applicative [Hun87].

Applied [BUMS02, KaM10, Lin91a]. Approach [AK90b, AVM16, BBB17, CHB06, FCZ16, FJO+16, GYL92, JQWG15, LTF+12, LLL+15, DM17, MO91, NN95, OATGEL15a, PMV17, QZP15, STM15, VSDL09, qWlJzKhC17, WS08, WEJS94].

Approaches [BUMS02, JCH08]. Appropriate [Gen16]. Approximate [HZL16, Iqb91, VCP16].

Arbitration [BS91]. Architectural [LSHK09, NP01, SEP08, TCUV14, WGF16]. Architecture [AP86, ARB05, BGGT02, CHCL14, CDC09, DB08, DLRS13, FCJV99, GL92, HTZ97, JLDS16, MBB12a, MB99, NdMMW16, NA02, RD08, STF+12, SJT13, CB86, GKB87].

Architecture-Agnostic [NAP02]. Architectures [BG96, BFG10, CPG01, CND95, CJA00, GBP07, Ged13, GG17, HCEP98, HP13, LAD15, MCE13, MGJS15, Mi09, NFC09, NdMCDMM16, FJS+05, PG16, PVG17, SJBV06, TFY99, TL09, CLR90].

Area [Roy10, SWZ15, WMN17]. Argument [ABASS12, NG92]. Argument-Fetching [NG92].

Arithmetic [ABASS12, ARM]. Arnoldi [LEA15]. Array [AM04, BG96, CZ12, CI96, Fetal, GGV95, GS06, SM94, TG05].

Array-oriented [CZ12]. Arrays [EHKT07]. Arrival [FPY08b, QA11]. Art [KPS14, LHL+16]. ASIPs [ALT17].

Assembly [ABT200]. Assessment [Hal86]. Assignment [CB01, Fos89]. Assisted [GRV+17, MMG04, RMG+13, CMW+14].

Atmospheric [SMH13]. Atomic [SW16, Win89]. Attempting [GYL92].

Attribute [MO91]. Auto [CCG+14, Ged13]. Auto-Tuning [CCG+14, Ged13].

Automata [BR97]. Automatic [ABA+16, AL03, ALG+95, BG17, BG02, CZ12, CZTM03, Co95, CAZ02, EM14, FCRC16, G9K4, GSV+06, GRC+14, GMS00, HHC+15, JW16, LQWP10, SR06, SK13, SS17, TF16, TG05, vDSGBW08, KMV87].

Awareness [RGB08]. axioms [FK98].

Bandwidth [FPY08a, KSEG14]. Bank [GG13].

bards [Par86a]. Barrier [GH89, HTK98, JHLM01, Liv91, Lub90, Bro86, HFM88].

Barriers [GE90, SM94]. Based [AA15, BMA02, CLJ16, CND95, CDC09, CPCM96, DK16, DeB87, DGPM09, DW17, FLMR17a, FLMR17b, FCZ16, FR95, FJZ+15, FC11, FPCD14, FCRC16, GPK07, GMB06, GGV17, GF14, GL92, HZL16, HmWH97, HF14a, HF14b, HHC+15, JK12, KBD03, KKS99, KF99, KT01, KJP10, LLM+12, LLM16, LFP16, L09, LLL+15, LWP04, LWDL17, LCL17, MLD1P02, DM17, MCFM12, MGL+17, MPR+05, NYA14, NRR99, NRGB17, OBI3, PC13, QZ15, RLH14, RSJ+14, SAB11, SS17, SUC17, SHZ+14, SW95, SW+17, SDL17, TSS99, TF16, TESK06, TG05, UKT00, US05, WLL+08, WL16, WHC+17, YHG16,}
Clouds [CAP88, KP95, KPRS96, VK88]. Clouds [AKIK17, HZL16, HC17, QJWQ15, KJHB14, RHL14, WQJY17, XZZ+15, uRHH14]. Clouds [JAW17, LTF+12]. Cluster [CYS16, EAT14, ES11, FPCD14, LJ09, LTL15, LSYG15, MLdIP02, NIK00, SCB14]. Cluster-Based [FPCD14, LJ09].

HF14b, KAMAMA17, LRG14, MGL17. Curve [Bos12]. Custom [MCFM12].
Customization [GSY+13]. Cycle [FCJV99, SAB11, dMP+03]. cyclic [JB98].
Czip [HNC+16].

D [BC15, CTB14, ES11, HPVRPF15, HF14a, HF14b, IBA11, JGM15, LLGC17, LHP+17, SJKA99, SBC17]. D-Stacked [LHP+17]. DAFT [ZLJA12]. Daily [Ano87c]. Data [AKHD13, ABTZ00, Ano16d, AJF16, ANS+12, ALG+95, BARSW95, BS03, BBGM95, BG96, BCL17, CFB94, CAK17, DTLW16, DX14, DLX+17, DJS12, EW96, EK17, ELGE16, FPCD14, GSP+17, GG14, GV99, GYL92, HSCI+16, HH08, HP13, HGT+12, HTnG+12, HNC+16, KP01, KP04, LSA+07, LTL15, LMV16, LT17, LNLG11, LHP+15, MXP14, DM17, MHL95, MCWK01, MTT15, NRR99, NAP02, NLRH07, OK99, PMHC03, RG15, RS90, R09, RS+14, SNB04, SS99, SL14, SQ92, SR04, SH15, SASH12, TESK06, TFMP97, WB87, WW17, XH98, YAI95, vdBGBW08, CG94, Gao86, Kas86, Win89].

Eager [SAL16]. Early [PYC16, TA99]. EARTH [HTZ97, HMT96]. EARTH-MANNA [HMT96]. Economics [YBDJ17]. Editor [EA09, MA10, SS10, BCL90, Ano00a, Ano14, Ano16a, Ano16b, Ano16d, Ano16c, Ayg03, Ban94, Ban04a, Ban04b, Car09, Fur95, Gau96, Giv07, Giv08, Int98, JS06a, JS06b, Joe99, Joe03, McK07, Mis09, Ora03, Pan08, Sch98, Ve01, Ve02].

Editorial [Ano86b, AG15, CTP13, DPT17, FKT12, FH05, Gre16, HK14, LFL17, LT17, MCE13, MGJS15, MGD14, OG11, PP10, PVG17, SGK12, SS10]. Editors [SMM11, HF06, CHS99, CmHS99, EmH97, FmH96, GSA08, GS05, HN94]. Effect [NPD89, BCK98]. Effective [CPMC96, HGT12]. Effectiveness [MHL95, PYC16, SBN03]. Effects [HRH08, TF96]. Efficiency [BBB17, STF12, SWZ15]. Efficient [ABvK13, BR97, BEMP13, BCL14, BFG10, CPT14, CL96, EAT14, FPY08a, Fea92b, FVV16, GSP17, GG14, GS06, GR98, GCH17, GMWHR98, IP09, IBA11, JGM15, KP05, LNP91, LS05, LNG12, LWLG11, NRR99, NdMMW16, QRW00, Roy10, SRS06, SSNS16, SL14, SSR96, SO89, SKAT91, SHC15, SHZ14, SJT13, TTF08, WZTH13, XZX15, YJY16, FEA92a, Hua89]. Efficiently [EGJS15, HR11, JMSG02]. Elastic [GG13, YBDJ17]. Element [RG15]. Elements [qWlJzKhC17]. Eliminate [KTT99]. Eliminating [HTK98]. Elliptic [Bos88]. Encore [GTK88]. Encryption [KBD03, NdMMW16]. End [LSHK09]. End-to-End [LSHK09]. Energy [AVLV03, CPT14, EAT14, FVV16, Mar17, Mar17, Mar17, Mar17, Mar17, Mar17, Mar17].
Enhanced [ABASS12, FMSG17, GRAG00]	Enhancement [AMP01, CYs16, KP01, LCL17]			
Enhancing [ACC +01, MP95]	Ensembles [ASW +15]	Enterprise [LVM16]		
Enumeration [AG98]	Environment [AFM +06, AA15, BFG +10, MFG +08, SQH92, vdSGBW08]	Environments [BCS +09, BFRPVR +15, Car09, CCL12, CAK17, HHW10, KJHB14, LLM16, TTF +08, BCL90, Con88]		
Equivalences [Mai87]	Era [ABB +10, DX14]	Erlang [BDH +14]		
Erratum [Ano03, FLMR17a, HF14b, uHKAMFM16]	Error [DFC +07]	Estimating [HGT +12]		
Estimation [DKB +09, KMG01, LPF16, LLL +15, MVD +14, TSS99]	Evaluating [AM95, BCK98, SCB +14, TF96]			
Evaluation [AMAH01, BML +13, BS15, BEG +10, CCL12, CDC09, FC11, GBP07, IPR +05, JCH +08, KHH08, LCL17, ME15, NRB94, OATGEL15a, PVAE98, SSMO96, TSB03, CSG89, LAV98, VK88]	Even [DCX +17]	Event [Dem11, PPQV16, RNJ +12, WZG +17]		
Evolutionary [ACD +16, PB01]	Example [SO89, Wai87]	Exascale [MAJD16]		
Executing [FRCR16]	Execution [BS15, BAF94, CHPC96, Col95, CSTGL03, CFF +06, DJS12, EAT14, FM09, GS06, GL95, JSPH97, KLG08, LLL +15, LEG11, LCL17, Lys08, MFG +08, OGP +16, SNB04, SB91, SBC17, TTF +08, Tic90, TF96, Ali86, Gol88, Kas86, KM86, SRV88]	exemplified [Tho87]	Expansion [BCC00]	Experience [Hal86, HnWHR97, RMG +13, SCB +14]
Extensions [API03, CZTM03, SCB]	Extracted [KP04]	Extracting [PJS +05]	Extraction [AER +17, JK12]	
Fabrics [GBC +08]	FACILE [GMP89]			

WZB+92, GZ87]. **Graphical** [RG15].
Graphics [CPP+12, JGM15, SA11].
Graphs [DV97, Hue97, KPRS96, LPF16, MXP14, OP10, OB13, Zha89].
Greedy [AT91, Ken01, Sun11].
Grid [BFRPVR+15, SASH12, WL16, AFM+06, BBC07, BCC+05, SR04].
Grid-Based [WL16].
GridFOR [WL16].
Grids [HP13, LLL+15, JS06b].
Gröbner [Sch92].
Groups [BBC07].
Guaranteed [MEP07].
Guarded [GYL92].
Guards [GYL92].
Guest [AG15, CTP13, DPT17, EA09, FKT12, Gre16, HK14, HF06, LFL+17, LQE13, MGJS15, MGD+14, MA10, OG11, PP10, PVG17, SMM11, SGK12, SS10, Ano03a, Ayy03, AM07b, Ban04a, Ban04b, Car09, EmH97, FmH96, Fur95, GSA08, Gau96, GS05, Giv07, Giv08, HN94, JS06a, JS06b, Joe99, Joe03, McK07, Mis09, Ora03, Pan08, Sch08, Vie01, Vie02].
Guided [MTT15].
GVirtuS [MGL+17].

H [Roy10]. **H-NMRU** [Roy10]. **Hadoop** [Mat17, NRGB17]. **Handle** [ELGE16].
Handling [DFC+07, FMSG17, RBES00].
Hard [FJO+16].
Hardware [AVM+16, CPMC96, GP17, Gv99, KT01, Lys08, MSA+07, NdM09, NdMM16, OXL+17, OPLS17, SWZ+15, SD11, SH15, STM15, WS14, ZLAV04, vNR11].
Hardware-Agnostic [AVM+16].
Hardware-Based [CPMC96, KT01].
Hardware-Supported [SD11].
Hardware/Software [GV99, Lys08, OPLS17, SWZ+15, STM15].
Hash [AR16, LF17].
Heap [GH96, LLM16, AH86].
Heap-Based [LLM16].
Height [ABASS12].
Helper [ZGH+15].
Helping [Sun11].
Henderson [Swa88].
Heterogeneous [AER+17, ABB+10, Bro15, GMB+11, HtBK+10, HHC+15, KTRZ+17, LLGC17, LSYG15, LS05, MNMN15, Mar17, OATGEL15b, OP12, OPLS17, SEP08, WLL17].
Heuristics [KPS14, CSG89].
HEVC [WdSAM+17].
HICOR [GG94].
Hierarchical [Bro15, GP94, MV17, NN95, PG16, SS096].
Hierarchically [PPE+08].
Hierarchies [GVB+06].
High [Ano16a, BE14, BCS+09, BCL17, BS07, Bro15, Car09, DPT17, DFH17, DB08, GBLG10, GJK+05, Gre16, GE90, HK14, Jan15, KP05, KTRZ+17, KJP10, LB13, LQWP10, LWP04, MB12a, NFC+09, NdMM09, OXL+17, SH96, SAL16, SCB+14, TFEK16, WCC16, WMN+17, WGW04, YZ13, YBRM14].
High-Level [Ano16a, Bro15, DPT17, Gre16, Jan15, KP05, LQWP10, SH96, WMN+17, HK14].
High-Performance [GJK+05, LB13, MB12a, NdMM09, WCC16, WGW04, YBRM14, OXL+17].
High-Productivity [BCS+09].
High-Scalability [BS07].
Highly [AN16a, BCS+09, BCL17, BS07, Bro15, Car09, DPT17, DFH17, DB08, GBLG10, GJK+05, Gre16, GE90, HK14].
High-Scalability [BS07].
History [CEP97, LJ08, LLSS03, uRHH14].
Hitachi [TSB03].
HLPGPU [Bro15].
HLPP [Ano16a].
Home [WLL+08].
Homogeneous [MN15].
Homomorphisms [LBT17].
horizontally [CB86].
Hotspotting [Ano86c].
HP [IPR+05].
HPC [CAK17, HLK+09, JQJ+16, JQWG15, LLM+12, LFL+17].
HW [KRG+08].
Hybrid [ADC+17, BC15, CTB14, Cza17, EK14, HSCI+16, JQJ+16, LFL+17, LRG14, RRH03, SR15, VSH+11, ZLJ+17].
Hydrodynamics [Zey05].
Hypercube [CSG89, DPSS90, GE89, NK88, Wai87].
Hypercubes [BB90].
HyperFatTree [SWF+17].
Hypergraph [CN95].
Hypergraph-Based [CN95].
Hypersequential [UKT00].
Hyperthreading [HRH08].

I/O [AKT+14, MG15].
ICCG [IS03].
IDE [HLK+09].
Identification
If [AmWHM99]. If-Conversion [AmWHM99]. II [Fea92b, KR87]. ILP [SKA96]. Image [AM95, KBD03, RSK09]. Images [DPS90].

Immune [MB12b]. Immune-based [MB12b]. Impact [BE14, KLG08].

Imperfectly [AMP01]. Imperfectly-Nested [AMP01].

Implementation [AM95, AML+10, CGJK95, ES11, GP17, GH99, HAA+11, JSS+15, JLMW15, KS97, LS91, LWP04, MXP14, NdIMMW16, NSS12, OGP+16, OXL+17, PB01, PC13, RSV+05, SM16, Sek09, SKG09, SY08, WLL+08, WPC07, WS15, YZ13, ACD+14, GTK+88, TSS86, RK87].

Implementations [AJF16, BS07, BEG+10, DE00, HPVRPF15, NdMCdMMW16, TSS99].

Implemented [MLdlP02].

Implementing [BAP01, Mil88, SPS14, SFAG14].

Implications [NP01]. Implicitly [AHKR01, LEA15]. Important [Ano86d, Ano92]. Improve [CHPC96].

Improved [LYL14]. Improving [CHYP96, CEP97, GSY+13, JHLM01, MCWK01, PJS+05, PMV17, RSJ+14, SBN03, SA10, XH98].

In-Loop [WdSAM+17]. Inaccuracy [JILL15].

Index [GFL00]. Indexes [YJY16]. Induced [LG10].

Industrial [BR14a, FJO+16].

Inferential [RKG04]. InfiniBand [LWP04, QA11].

Infinite [FMR02, KPRS96]. Information [AFM+06, BE14, NRR99].

Infrastructure [BML+13, CEH13, EM13, SLZB13].

Inspired [KPS14, Mis09, OGP+16]. Instability [DKB+09]. Instability-Estimation [DKB+09].

Installation [CCG+14]. Instruction [AHKR01, API03, BMA02, BR97, CSC+00, CZTM03, HCEP98, JLDS16, LZ17, MP95, MSJ01, NN95, OVA04, RD08, SBN03, Tou05, TF94, CMW+94, NP98].

Instruction-level [NN95]. Instruction-Set [API03].

Instrumentation [AVM+16, LSA+07]. Integrated [CPL+10, GV99, KKZN12].

Integrating [DTLW16]. Integration [GMP89, LLM+12, PSM97, dMP+03].

Intel [BKT08, BP17, Cza17].

Intel(R) [BGGT02].

Intensive [LWL11, RSJ+14]. Inter [GAR+16, KTT+99].

Inter-Node [GAR+16]. Inter-Processor [KTT+99].

Interaction [AHKR01].

Interactions [MHC98]. Interactive [SJKA99].

Interchangeably [DJR16].

Interconnect [GBPK07].

Interconnection [MANR09].

Interconnects [RA09].

Interfaces [KKZN12].

Interference [CEP97]. Intermediate [CFB94, GP94, GBC+08].

Internal [FWH+94].

Internat [Swa88].

International [DB08, MCE13, PVG17, SS10].

Internet [PYC16].

Interprocedural [CAZ02, CI96, GH96, HPY01, LkCH94].

Interprocess [CMW90, MO91, MO90].

Interprocessor [CH95].

Interval [US05].

Intra [BGGT02].

Intra-Register [BGGT02].

IntraModule [MO91].

Introducing [SFAG14].

Introduction [Ano00a, Ano00b, Ano00c, Ano01, Ayg03, AM07a, AM07b, Ban94, Ban04a, Ban04b, Car09, CHS99, CniHS99, DB08, EmH97, EA09, Evr00, FmsH96, Fur95, Gsa08, Gau96, Giv07, Giv08, HmWHR97, HF06, JS06a, JS06b, Joe99, Joe03, LY98a, LY98b, McK07, MPZ06, Mis09, MA10, Ora03, Pan08, Pin95, Pin99, SMM11, Sich98, Ve01, Ve02].

Introspection [WHC+17].

Introspection-Based [WHC+17].
Intrusion [NRGB17]. Intrusive [ZXY+15].
Invalidate [BAP01]. Invasive [SR15].
invented [Par86b]. Inversion
[KMG01, MMN15, SMM94]. IP [AML+10].
IP-PBX [AML+10]. IP-PBX/VoIP
[AML+10]. IP-PBX [AML+10]. IP-PBX/VoIP
[AML+10]. IRrual [ACC+01, GF14, LLW+17, MCWK01, NST89]. ISA
[MP95, WCC16]. Isomorphic [Ano87d].
Issue [Ano16b, AM07b, Car09, DB08, GSA08, Giv07, Giv08, MCE13, MGJS15, MB12a, Mis09, Pan08, PP10, PVG17, SS10, SZ17, WNMW16, JS06b, BmH98]. Issues
[Bel94, NS97a]. Iteration [HF14a, HF14b].
Iterative [MS11, Rau96]. Iterator
[GS11]. J [Swa88]. Jacobi [HOZ06]. Jacobians
[BAMS02]. Java [AHKR01, FSS06, JQJ+16, JMSG02, KF99, WGW04, WP00]. Job
[LLL+15, NSS12, WW17]. Join [RK92].
Joint [HOZ06]. journal [Ano86b]. JPEG
[SEP08].
kD [STF+12]. kD-tree [STF+12]. Kernel
[ZYOY13]. Kernelized [WCC16]. Kernels
[SB+17, WSO+07]. knapsack [LS92].
Kutta [BP17].
L [MSA+07]. Lab [ZC09]. Lab-on-Chip
[ZC09]. Labeling [SH87, Swa88]. LACross
[ZZJ17]. Lagrangian [RSV+05]. LALP
[MCFM12]. LALR [BNWL90]. Language
[ARB+05, BARSW95, BCL17, CBF94, FCZ16, Fos89, GS06, Had86, KS97, MCFM12, MPR+05, SM09, TFEK16, WL16].
Languages
[CK02, FMS17, Lan90, PS92, NPD89].
Laplace [CTB14]. Large [Cza17, HC17, HR11, KKKZ12, LTSD15, LSA+07, SGJ+03, SWF+17, WW17, ZWJK05]. Large-Scale
[HC17, KKKZ12, SWF+17, WW17].
Latency [AK96, Bos12, HZL16, JG97, LSHK09, MEP07]. Lattice
[HLP11, SMN09, SKG09]. law
[Ano87a, PM07]. layer [OATGEL15b].
Layered [Tic90]. Layout [SASH12]. Lazy
[CRM17]. LCS [GSP+17]. Learning
[DS16, FKM+11, MAWD+16, ZJG17]. Learning-Based [ZJG17]. Leases [CM06].
least [Ano86a]. Left [MP04]. Legal [KP95].
Length [EM14]. Lessons [Hal86]. Level
[AG06, Ano16a, BCL17, Bro15, DPT17, GBLG10, Gre16, Jan15, KP05, LLW+17, LQWP10, MHCF98, MKAP05, SSP+00, SEA14, SH96, SUCV17, SM94, SASH12, Tou05, WMN+17, XODFV+09, ZLJ+17, BC10, HK14, NN95, WS08]. Levels [Gsc07].
Leveraging [LTL15]. LH [CS16]. Libraries
[BBR11a, LAD15, SUCV17, YKLD17, YBRM14]. Life
[Ano87c]. Light [CM06]. Light-Weight
[CM06]. Limited [JMSG02, uHKAMFM16a, uHKAMFM16b, GT86]. Limits [SS99]. Line
[SR90, TFMP97, ZC09]. Linear
[CCG+14, CBR17, DWS16, FLMR02, JLMW15, KS90, KFC08, KTRZ+17, LDHL05, MP04, SMM94, Gao86]. Linked
[HT+12, HTmG+12, vdSGBW08]. Links
[NIK00]. List [AF15, DSO97, EM14, LBT17, SL14, vdSGBW08]. List-based [SL14]. Live
[WHC+17, ZXY+15]. LLVM [RMG+13].
Load [ASW+15, BG96, EWS11, JK03, RLH14, RSJ+14, YHG16].
Load-Balance-Aware [YHG16].
Load-Store [BG96]. Local [LLS03].
Locality
[AMP01, AAB+15, BE14, CACK17, JG97, KP01, LS98, LM00, PMHC03, Won02, XH98].
Locality-Aware [AAB+16]. Localization
[OB13]. Locally [DCX+17, SNB04, TV15].
Lock [AR16, ZLD15]. Lock-Free [AR16].
Log [Mar09]. Logic
[AR16, AVPG00, KBD03, Lin91a, SAB11, BH87, Con88, Kas86, SRV88, Tin88].
Logic-Based [KBD03]. Look [MP04].
Loop
[AMP01, CL96, DH00, GVB+06, GMB95, GL95, HC17, IKN00, LSL94, LCL17, NG92,
RAP95, WdSAM+17, WMC98, YA95, LP94].

Machine [CHPC96, CZ12, DS16, FKD+97, FK97, FK
Microbenchmarks [IPR+05]. Microcode [BAJW14]. Microfluidic [ZC09].
Microgrids [SS10]. Microprocessor [LJE05]. microprogramming [CB86].
Microthread [BHJ06]. Migration [CML04, DLX+17, JG97, NLRH07, PTDsf+12, WHC+17]. MILC [SKG09].
Minimal [BTB+13, DWS16, YAI95, Zha89]. minimax [NPT86]. Minimization [GLLH17, Mon97, PB04].
MIS [SKG09]. Milestone [FKM+92]. Monitoring [NBN+15, ZXY+15].
Models [BFS05, Den94, FLMR17b, HHC+15, ID08, KP05, Mat17, NAP02, RNJ+12, SMSH13, SSO1, Sk91, SDL17, VMS15, VCP+13, AD86, DM87, FLMR17a].
Modern [KPS14, LG10, LQWP10, ME15].
Modifications [Hue97]. Modular [NdMM09]. Modules [DJR16, SQR02].
Modulo [AG98, EDA96, GRAG00, LJO8, Rau96].
Modulo-Scheduled [GRAG00]. Molecular [ACC+02, BS07]. Molecule [KLK16].
Motion [MVD+14, TSS99]. Motivation [HmWHR97]. Movement [CFB94].
Moving [HAA+11]. MPI [AJF16, BS07, ES11, FPY08b, GJR09, GSY+13, HMK09, LWP04, MOL05, MANR09, NSS12, RA09, SS01]. MPI/PVM [ES11]. MPJ [JQJ+16]. MPSoC [ID08, OPLS17, RGB+08, SWZ+15]. Much [MT96]. Multi [AH08, AKHD13, ABvK+13, AML+10, ABB+10, BM09, CZ12, CTB14, DS97, DS16, DTLW16, DJR16, FLD15, Ged13, GMB06, GGV17, GS06, HtBK+10, JCH+08, KGB+08, MXP14, MV17, MG15, MHC98, NdMCdMMW16, OATGEL15b, QZP15, RC16, RD08, RK13, SSP+00, SEA14, SSB+17, SFAG14, Sun11, VSDK09, WQJY17, WLL17, XOdFV+09, Zha10, ZGH+15, Ali86, AGT17]. Multi-app [DJR16]. Multi-BSP [AGT17].
Multi-Core [ABvK+13, AML+10, ABB+10, BM09, KBG+08, ZGH+15, Ali86, AGT17].
Multi-dimensional [WLL17].
Multi-domain [RK13]. Multi-Fault [AKHD13]. Multi-GPU [CTB14, SFAG14].
Multi-layer [OATGEL15b]. Multi-Level [MHC98, SSP+00, XodFV+09].
Multi-ML [AGT17]. Multi-Prefetcher [GMB06]. Multi-Processor [HtBK+10, BM09, KGB+08, ZGH+15].
Multi-Threaded [MG15, VSDK09, DS16, GS06, RD08].
Multi-threading [DTLW16].
Multi-Zone [JCH+08]. Multicluster [FCJV99]. Multicomputer [FKD+97, Fos89]. Multicomputers [LNP91, SKAT91]. Multicore [AER+17, Ano16d, CHCL14, HHW10,
MulticoreBSP [YBRM14]. Multicores [TFNG09].
Multidimensional [Fea92b, LLM+12].
Multigrid [MT96]. Multilevel [ADC+17].
Multilisp [Hal86].
Multimedia [BG03, KL00, SG00, ZK07]. Multiplayer [CY16].
Multiple [ANS+12, CND95, Gsc07, LEA15, SQH92, TF94].
Multiple-Register-File [CND95].
Multiplication [Bos12, uHKAMFM16a, uHKAMFM16b, KJPN10].
Multiply [BBR11a]. multiprocessing [Bro86].
Multiprocessor [AK96, DeB87, Gol88, Gsc07, MB12b, Pan08, PPEP08, SEP08, SR04, BH87, GHLN86, GZ87, GTK+88, Hua89, PD89].
Multiprocessor-based [Pan08].
Multiprocessors [BBGM95, GRV+17, GV99, SPR+05, KJP10]. Multiply [BBR11a].
Multithreaded [FSS06, HTZ+97, HMT+96, KJMC02, L07, MB99, OB13, WS08].
Multithreading [LEL+99, TESK06]. MUSE [AK92, AK90a, AK90b].
Multiwire [LC12]. Multisplitting [CCL12].
Multisplitting-Newton [CCL12].
Multithreaded [FSS06, HTZ+97, HMT+96, KJMC02, L07, MB99, OB13, WS08].
Multithreading [LEL+99, TESK06]. MUSE [AK92, AK90a, AK90b].

Nano [Mis09]. Nano/Bio [Mis09]. Nano/Bio-Inspired [Mis09]. Nanotube [CDC09].
Need [KT01, KUC94]. Negative [DKB+09, WS15]. Neighbor [LTFO+12].
Nested [AMP01, EW96, MMS07, QRM00, Sar01, aMST07].
Nests [AMP01, GL95]. Net [LWDL17, GG14, GSS10]. Nets [KMPG02, RA94].
Netuno [SCB+14].
Network [CPT14, FCZ16, FPCD14, GCD+03, HLS15, HS16, KKNZ12, LSHK09, LYL14, LSYG15, LXL17, Liv91, ML15, MANR09, NRGB17, P07, SZ17, SWF+17, SBN03, YMW+17, AD86]. Network-Aware [FPCD14].
Network-Failure-Tolerant [GCD+03]. Networks [AK17, BS15, CLJH16, IBA11, LI03, LSO5, MVBO+06, PMV17, WZG+17, YMW+17, AD89].
NetWorkSpace [BCS+09]. Neural [AMAH01, FCZ16, LYL14, LXL17, L08, PMV17, WZG+17].
Neuromimetic [RNJ+12].
Neuronal [CPP+12]. Neuron [Zy05, SDJS98]. New-Age [DKB+09].
News [FCZ16]. Newton [CCL12]. Next [Dar05]. NMRU [Roy10]. no [Swa88].
NoCs [MEP07, TOM+11]. Node [GAR+16, LI09]. Nodes [NBNO+15]. Non [BG17, CSTG03, Spr92, Con88, LP94].
Non-blocking [BG17]. Non-overlapping [Spr92]. non-shared [Con88]. non-singular [LP94]. Non-Strict [CSTG03].
Noncoherent [BBGM95]. Non-cyclic [BBGM95].
Nonnegative [OK99]. Normal [TG05].
Note [An14, An16a, An16b, An16c].
Novel [DMMS91, OXL+17]. NUMA [BF10]. Number [ALT17, HR11].
Numerical [EFED05, YKLD17, Zey05].

O [AKT+14, MG15]. O2000 [CML04].
Object [BB07, DJR16, FMSG17, GS11, GS13].
Object-Oriented [GS11, GS13]. Objects [GK94]. Observe [NRR99]. ocCam [Cam89].
ODE [MLP02]. Off [ZK07]. Off-Chip [ZK07]. OFScheduling [LSYG15].
OMP [SGJ+03]. OMP2001 [TSB03]. On-Chip [GG13, KKNZ12, MVBO+06, AH08].
On-Line [ZC09]. On-the-fly [KSJ14]. One [Fea92a, SKG09, WW17]. One-dimensional [Fea92a].
Online [CLJH16, CYS16, HZL16, RC16, SMM13].
onTo [SDJS98]. Ontology [AFM+06].
Open [AML +10, Cie91]. OpenCL [JSS +15, SSB +17]. OpenHMPP [AAB +16].

OpenMP [AM07b, ABB +10, BdS07, BGdS09, BFG +10, BS07, BEG +10, DFC +07, DFA +09, FSMG17, FM09, GSA08, HMK09, HAA +11, JCH +08, KaM10, KSJ14, MG15, MFG +08, MBE03, MMS07, NIO +03, OOS +08, OP10, WPC07, YKLD17, aMST07]. OpenMP/MPI [BEG +10, HMK09]. OpenUH [CEH13]. Operating [CYS16, NP01].

Operation [FLD15, NB15]. Operational [Cam89]. operationally [DM87].

Operations [ABASS12, BG17, FPY08b, IBA11, ML15].

Optimised [Zha10]. Optimization [CFB94, CPMC96, CS97, CRM17, DLX +17, GLLH17, GmWHR98, HTmG +12, LDHL05, LM00, MO91, NIO +03, NdMCDW16, ÖO07, PCC +13, RHL14, SRS06, SSEA14, Sc11, SHZ +14, YHG16].

Optimization-Based [SHZ +14].

Optimizations [BKT08, BG96, ID08, KSEG14, LEL +99, MV17, MS11, SB90, SLZB13]. Optimize [ZAV04]. Optimized [LF15, MGW99, Sar01]. Optimizer [LSYG15]. Optimizing [BRR11b, CNG +09, uHKAMFM16b, MBE03, ZSH +12, MO90, uHKAMFM16a].

Optimum [EDA96]. Option [Ger10]. OR-[SH96]. OR-Parallel [AK90b, Lin91a, Ali86, Cie91, Tin88].

OR-Parallelism [AK90a]. Order [BS15, BP17, MSJ01, NPD89]. Ordering [IS03, DM87]. orders [Pra86]. OREGAMI [LRG +91]. Organization [AM04].

Oriented [ADC +17, FMSG17, GS11, GS13, LVM16, RGB +08, SRS06, AKT +14, CZ12].

Origin [IPR +05]. OS-Based [FC11]. OSD [AGPGF14]. Other [OP10, SS89].

Out-of-Core [SHL17]. Out-of-Order [BS15, MSJ01]. Output [CDRV98].

Output-Dependences [CDRV98].

Overhead [CTB14, KRW +05, OPLS17, SJBV06].

Overheads [BGdS09, LJ08]. Overlap [BG17]. Overlapping [IKN00, Spr92].

Overview [BML +13].

Page-Level [ZLJ +17]. PageRank [LEA15].

ParaGraph [BCL90]. Parallel [AMAH01, AM04, AK17, ACD +16, ABV +13, AA15, An06a, AVPG00, AJF16, BR14a, Bel94, BAF94, BARSW95, BGMR11, BS03, BNWL90, BR14b, BUMS02, BDH +14, Bro15, CNG +09, CP +12, CY14, CB86, Cra88, CSTGL03, CAP88, Cza17, CPL +10, Dam07, DPT17, DMMS19, D009, DS16, Den94, DX14, DZW10, DGMP09, DSR17, ECSS88, EHKT07, EK14, EK17, ES11, FCRC16, GBLG10, Ger10, GS11, GS13, GP17, GF14, GYL92, Gme01, GTK +88, HSCI +16, HK14, HMF +13, HP13, HPVRPF15, HLS15, HS16, Hm91, HAA +11, IH04, Jan15, JW16, JLMW15, JK03, Joh94, KS90, KK11, KS97, KJHB14, KFC08, KBG +08, Kuc94, KR87, LMP98, LTF +12, LYL14, LHL +16, LT17, LLL +15, LY95, LSL94, LWLG11, LBT17, Low00, LCL17, Lub90, Lys08, MXP14, MNN15, MLdIP02, Mar09, MAJD16, MM16]. Parallel [DM17, MG15, MCA98, Mer86, Mil88, MVD +14].
Parallel-Access [Joh94].
Parallelising [GS13].
Parallelism [AER +17, ADC +17, ACC +01, BS03, DV97, EW96, GVB +06, Gsc07, GL92, HPY01, KP04, LFL +17, MT96, MMS07, RSK09, SSEA14, SSNS16, SH96, SASH12, Tov05, WS08, WW17, XodFV +09, BS09, CG94, Sch92, VR88, AK90a]. Parallelization [AAB +16, BG17, BS07, CZ12, Co95, CAY02, ELG16, FLMR17b, FCRC16, FJO +16, G94, GMS00, Hue97, IS03, JCD +14, LQWP10, LXL17, MVD +14, NN95, PPQV16, RAP95, SSP +00, SHK13, SJA99, SKA96, SR15, TFNG09, TH17, WNNM16, WdSAM +17, WP00, aMST07, FLMR17a].
Parallelize [MRL16]. Parallelized [ELG17, HTK98, TMHT96]. Parallelizing [CHCL14, GS11, KTT +99, ME15, WZG +17].
Partition [WLL17]. Partitioned [AT91].
Partitioning [CPG01, EW96, FCJV99, GAR +16, Iqb91, KEKK16, LGY16, Lys08, MRLR16, NS97b, OPLS17, SMN09, SWZ +15, SHC15, TG05, GZ87, KVM87, NK88, PD89].
Partitioning-Independent [EW96]. ParTriCluster [AFO +08]. Pass [NS97b].
Passing [CB01, EWHS11, GCD +03, GZ87, Hua89]. Path [AT91, CSC +00, JAW17, JSPH97, LPS16, LJ08, OATGE15a, SK97, SHZ +91].
Path-based [LJ08]. Pathfinder [JAW17].
Pattern [ACD +16, BBR11a, CEP97, CPL +10, GHC +17, QA11]. Pattern-based [BBR11a]. Patterns [ALG +95, DS16, FPY08b, LLL +15, DM17, SHK13, ACD +14].
Xeon [Cza17]. Per-Core [SA10].
percolating [ACD +14]. perfect [GE89]. Performance [AM95, ASW +15, AK92, AD86, AKT +14, BE14, BS07, BEG +10, Car09, CHY96, CHPC96, Cza17, DFM17, DB08, DCX +17, GJK +05, GSY13, GZ87, HRH08, HF14a, HF14b, Htmg +12, JSS +15, JCH +08, KaM10, KTRZ +17, KJPN10, LPB13, LP16, L03, LY95, LWP04, LLSS03, LCL17, MB12a, MCWK01, MS11, MOL05, MMS07, ME15, NFC +09, NdMM09, NQ01, PJS +05, PVAE98, RSJ +14, SGJ +03, SSEA14, Sca11, SAL16, SCB +14, SA10, TSB03, TFEK16, TKN +08, Tin88, VCP +13, WCC16, WGW04, YZ13, YBRM14, ZWJK05, ZJG17, dMP +03, BCK98, OXL +17]. Performance-Portable [JSS +15].
Personal [HOZ06]. Perspective
AH08, DS97, Hem89, MA87, PW87].

Productivity
[BCS+09, BS07, Car09, KaM10]. Profile
[CMW+94, CPMC96]. Profile-assisted
[CMW+94]. Profile-Driven [CPMC96].

Profiling
[CMW+96, LPF16, ZSH+12].

Program
[Dar05, KEMS99, MCFM12, SNB04, SLZB13, CRM92]. Programmable
[DC09, Dam07]. Programming
[AGT17, Ano16a, AVPG00, BBC07, BARSW05, BCL14, CBR17, DPT17, DK16, DeB87, DX14, EK14, GMP98, GJK+05, Gre16, GRR98, HSCI+16, HK14, Hud86, KS97, KBG+08, LHL+16, Lin91a, Lub90, MRLR16, NAP02, PLN+04, PVAE98, SQH92, SS01, SPAG14, Swa88, UKT00, YBRM14, ACD+14, BCL90, BCK98, Ken94, Par86a, Par86c, Tin88].

Project
[BCC+05, MAB+11].

PROLOG
[Ali86, AK90a, AK90b, Cie91, SB90, SH96, TSS96]. PROMIS [SSP+00]. Promoting
[WLW+17]. proof [FcF87]. Propagation
[LMP98, LX17, MXP14]. Properties
[MAJD16]. Property [LWDL17]. Proposal
[DFC+07, DA+09]. Protein
[FJZ+15, KLK16]. Protocol
[BAP01, DeB87, GY+13, RA09].

Protocol-Based [DeB87]. Protocols
[SB01, BCK98]. Provide [SS17]. Proximity
[LTL15]. Pruning [WHC+17].

Pseudosimulation [GT86]. PTAS
[JLMW15]. pull [Par86c]. Purge [SAL16].

Purpose
[WP00]. Push [RKG04, Par86c].

PyACTS
[DGMP09].

QCD [SKG09]. QoS [AH08, SS17, uRHH14]. QoS-supported [AH08]. Quantifying
[MHCF98]. Quantitative [LAV98, Sca11].

Quantum [PG16]. Query [STM15].

Queue [BBB+17, NSS12, WZTH13, ZLD15, CRM92].

Queue-Based [ZLD15]. Queueing
[RKG04, AD86]. Queues [GL92, LLM16].

Queue [WZTH13].

R [TRL09]. Race [KSJ14, MTT15].

Radiation [LG10, Zey05].

Radiation-Induced [LG10]. Radio
[vNR11]. Radios [KWA+10]. Radix
[SWF+17]. Railway [FLMR02]. Random
[AK17, GAR+16]. Randomized
[DS97, Li03, JGA+88]. Ranking
[DS97, uRHH14]. RANSAC [HPVRPF15].

Rapid [TUC14]. Rate [HCEP98]. Ray
[STF+12]. Ray-Traversal [STF+12].

RDMA [GSY+13, LWP04, RA09].

RDMA-Based [LWP04].

RDMA-Enabled [GSY+13, RA09].

Reachability [WZB+92]. Reaction
[HF14a, HF14b]. Read [DCX+17, MV17].

Real [EWHS11, FJO+16]. Real-Time
[FJO+16, EWHS11]. Really [Kuc94].

Rearrangement [SJBV06]. Recognition
[PR99, SS92, SHK13, WZG+17].

Recognizing [PS92]. Reconfigurable
[GMB+11, GBC+08, KBD03, NDMMW16, NBN+15, PJS+05, TKN+08, ZC09, CB86].

Reconfiguration [SA10]. Recovery
[JSHP97, LJ09, NBD98]. Rectangles
[Spr92]. RECU [YBDJ17]. Recurrence
[LM00, Gao86]. Recurrences [SKA96].

Recursions
[uHKAMFM16a, uHKAMFM16b]. Recursive [GMS00]. Red [IS03].

Red-Black [IS03]. Reduce [MKAP05]. Reduced
[ALTT17, DV97, MB12b, OOR13].

Reducing
[CETP97, CK02, CTB14, FCVJ99, ZK07].

Reduction [ABASS12, AVL03, JS10, KRW+05, LHF+15, LJ08, ML15, PO07, SK97, SWL05, JK86]. Redundant
[CH95, EAT14, GV95, KTT+99].
Streams
CSTGL03.

Structural
[CPP++12, DM17, Tic90]. Strict

Structures
[BAJW14,scenes, HCEP98, MV17, MP95,
NLRH07, SASH12].

Studies
[CC94]. Study

Styles
[PC13]. Sub

Subdivision
[LS05]. Sub-Networks

Subgroup
[FG16]. Subdivision

Subgroup
[LS05]. Sub-Networks

Submitted
[SD11, Ano92]. Suitable

Supported
[AW16, AF15, AMP05, ANS12, BAP01,
Bro15, CHB06, CS97, DK16, DLRS13,
EWHS11, FLMR02, FPCD14, FJO++16,
HC17, HRH08, HtBK++10, HLK++09,
KTRZ++17, Kuc94, LLM++12, LFL++17,
LSA++07, LMPS05, MP91, Mar17, MCE13,
MGJS15, MBE03, Pan08, PP10, PM07,
PPG17, PO07, PPEP08, RK92, SGMK12,
SEP08, SS17, SFAG14, TSS99, TKN++08,
US05, WS14, WLL++08, ZC17, AH86, Cie91,
Dav87, GHLN86, Par86b, PD89, PW87].

Systolic
[AP86, Ano87e, IP90, Lan90].

T

Table
[CEP97, OOR13]. Tabled

Tackling
[DFH17, SLZB13]. Tag

Task
[BC10, DFA++09, HR11]. TAU

TCP
[LSHK09], TCP/IP

Technique
[AK98, CPMC96, Hue97, HAA++11, KTT++99, PB04, RGB++, SR04,
TOM++11, WLWZ15].

Technique-Application
[PB04]. Techniques

Technologies
[MAB++11]. technology

Telescopings
[ES11]. Telescoping

Temperature
[DKB++09].

Template [GF14]. Temporal [PMHC03].
tenant [WQJY17]. Teradevice
[WGF^+16]. Terascale [GCD^+03].
termination [Tho^87].
[Test] [CPL^+10, KJHB^14, SR^06, BS^89].
Testing [TCVU^14, ZC^09, Maid^87]. Tests [JW^16].
Of [FCZ^16, LYL^14]. TFx [DTLW^16].
Their [CGJK^95, LW^07, ACC^+01]. Theory
[GRAS00, RSJ^+14, CP^88]. Thread
[CPL^+10, DSR^17, JG^97, ZG^15, WS^08].
Thread-level [WS^08]. Thread-Parallel
[CPL^+10]. Threaded [HT^+12, HTmG^+12, MG^15, VSDK^09, DS^16, GS^06, RD^08].
threading [DTLW^16]. Three [ABASS^12].
Three-Argument [ABASS^12].
Throughput [AKT^+14, BBR^11b].
Throughput-oriented [AKT^+14]. Thrown
[AHKR^01]. TIDeFlow [OGP^+16]. Tightly
[SS^01]. Tightly-Coupled [SS^01].
Tikhonov [ADC^+17]. Tiled
[FC^11, OOR^13]. Tiling
[MC^19, RH^19, ZK^07]. Time
[BBB^+17, DWS^16, FC^99, Fea^92b, FJO^+16, KR^05, LCU^92, LLL^+15, LVLG^11,
PT^+12, RAP^95, RK^13, SWZ^15, SWL^05, Won^02, YKM^03, BG^17, EWHS^11,
Fea^92a, HtBK^+10, TTF^+08, vdSGBW^08].
Times [SB^01]. Timing
[MP^91, WQJY^17, WMN^+17]. TINPAR
[KT^+99]. Tissue [LLGC^17]. Tissue-Scale
[LLGC^17]. TLB [JS^10, VF^12]. TM
[SUV^17]. TM-Based [SUV^17]. TMT
[VFIN^12]. Tokenization [Sc^11].
Tolerance
[AKHD^13, NR^99, WG^+16, ZLJ^12].
Tolerant [EAT^14, GCD^+03]. Tolerating
[AK^96, JG^97, LG^10]. Too [MT^96]. Tool
[FG^16, KAMAMA^17, KSJ^14, ME^15,
PVAE^98, WMN^+17]. Tools [ALG^+95,
ARB^+05, DGMP^09, LG^+91, Luh^90, CB^86].
Top [Sc^11]. Top-Performance [Sc^11].
Topological [GE^89]. Topologies
[MVB^+06]. Torus [IBA^11]. Trace
[Mai^87, RL^+02, RD^08]. Trace-based
[RD^08]. Traces [MANR^09]. Traffic
[PY^16]. Training [LYL^14]. Transaction
[AA^15, NBA^13]. Transaction-Based
[AA^15]. Transactional
[CRM^17, GRC^+14, MFG^+08, S^16,
SH^15, VSH^+11, WS^14, ZSH^+12].
Transactions [DTLW^16, SD^11]. Transfer
[SR^04]. Transform [BC^15, DLR^13].
Transformation [HSCI^+16, IKN^00,
SASH^12, vdSGBW^08, LP^94].
Transformations [AG^06, AMP^01, GVB^+06,
GMB^95, HRC^17, JS^10, KP^95, KP^01, MO^90,
OK^09, SPS^14, TH^17, WMC^98, YA^95].
transformed [Ano^86b]. Transforming
[BS^89]. Transient [LG^10]. Transition
[OOR^13]. Transitive
[CAP^88, KPRS^96, VK^88]. Translator
[AbV^+13]. Translators [KR^+05].
Transparent [FS^97, PPQV^16].
Transport [CJA^00, Zey^05]. Transpose
[LP^13]. Transpositions [JGM^15].
Traversal [STF^+12]. Tree
[BR^14b, GH^89, KF^99, MM^16, PS^02, PW^92,
SM^16, SMC^94, SWF^+17, YJ^16, DPL^86,
MA^87, STF^+12, PYX^17]. Tree-Based
[KF^99, SWF^+17]. Trees [Li^03, Zha^89].
Triangular [MM^15]. Triangulating
[Mer^86, EG^86]. Trie [AR^16]. Triggered
[CJA^00]. Trin [JG^12]. True [B^94].
TuCCompi [OAT^15b]. Tuned
[LAD^15]. Tuning [BG^17, CCG^+14, L^+99,
OAT^15b, FKM^+11, Ged^13]. Tunnels
[KL^16]. Two
[BAR^95, EHT^07, FJO^+16, HFM^88,
JHLM^01, LBP^13, LL^+17, LS^05, SS^92].
Two-Dimensional
[BAR^95, EHT^07, LBP^13]. Two-Level
[LL^+17]. Two-Phase [JHLM^01]. Type
[CP^88]. Typed [BBC^07, BCL^17]. types
[Win^89].
UAV [SI^11]. Uintah [dMP^+03].
Unbalanced [OP^10]. Uncover [WS^08].
Understanding [STF^+12]. Unequal
[YBDJ17]. **Unification** [SSNS16, CRM92]. **Unified** [DLRS13, HPY01, RK13]. **Uninterpreted** [CFF+06]. **Union** [CAP88]. **Union-Find** [CAP88]. **Unit** [JW16]. **UniTi** [RK13]. **Units** [CPP+12, JGM15, RG15, SAB11]. **Universal** [GP94]. **Unroll** [BTB+13]. **Unstructured** [qWlJzKhC17]. **Updating** [Hun87]. **Unroll** [WlW97]. **Vector** [GL92]. **Virtual** [EGJS15, HHW10, JQWG15, LCU92, LVM16, PO07, SHZ+14]. **Virtualization** [MG+17, LWL+17, XXY+15]. **Virtualized** [VFIN12]. **Visibility** [DS90]. **Vision** [NFC+09]. **Visual** [CPT14]. **Visualization** [JHG+01, MGW99, ZLAV04]. **VLSI** [LLGC17]. **VMM** [LJ09]. **Volatile** [CCL12]. **VORD** [KJSJ14]. **vs** [NAP02]. **Vshadow** [LWM+17].

Wait [FLD15, LFD17, Sun11]. **Wait-Free** [FLD15, LFD17, Sun11]. **Warm** [LJE05]. **Warm-Up** [LJE05]. **Warp** [Lys08]. **Waterman** [FJZ08]. **Wave** [FLD15, Sun11]. **Wavefront** [Wol86]. **Wavelet** [BC15]. **way** [DPL86]. **Weak** [BAP01]. **Weakly** [DWS16]. **Web** [HHC+15, NYHA14]. **Weight** [CM06]. **Weighted** [Ken01]. **Which** [Gen16]. **while** [Col95, GL95]. **while-Loops** [Col95]. **Who** [JL91]. **Window** [DM17, NDMM09]. **Window-Based** [DM17]. **Winograd** [uHKAMFM16a, uHKAMFM16b], within [LLL+15]. **Without** [LPB13]. **Word** [FLD15, Sun11]. **Work** [AK92]. **WorkCrews** [VR88]. **Workflow** [CAK17, SDL17]. **Workflows** [TTF+18]. **Working** [FR95]. **Worklist** [GRC+14]. **Workload** [OP12]. **Workloads** [VCP+13]. **Workshop** [SS10]. **Workstation** [NIS00]. **Workstations** [LS05]. **World** [GHM14, HLP11, LWL+17]. **Wormhole** [LNP17]. **Written** [KAM10].

x86 [MG+17]. **XDP** [CFB94]. **Xeon** [BP17, Cza17, LLGC17, ELGE17]. **Xeon**
REFERENCES

References

Anane:2015:TBE

Andion:2016:LAA

Abboud:2012:CHR

Ayguade:2010:EOS
REFERENCES

[Amme:2000:DDA]

[Almer:2013:PDB]

[Attali:2001:EFI]

[ACC+02] George S. Almasi, Călin Cașcaval, José G. Castaños, Monty Denneau, Wilm Donath, Maria Eleftheriou, Mark Giampapa, Howard Ho, Derek Lieber, José E. Moreira, Dennis News, Marc Snir, and Henry S. Warren, Jr. Demonstrating the scalability of a molecular dynamics application on a petaflops computer. *International Journal of Parallel Programming*, 30(4):317–351, August 2002. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (elec-
http://ipsapp009.lwwonline.com/content/getfile/4773/28/5/fulltext.pdf. [AD86]

Aldinucci:2014:DPP

Aldinucci:2016:PEP

Almeida:1986:PAS

Akl:1989:PSC

Arcucci:2017:DTR

[ADC+17] Rossella Arcucci, Luisa D’Amore, Luisa Carracciuolo, Giuseppe Scotti,

Aguilar:2017:TPE

Arras:2015:LSE

Aiello:2006:EOS

Araujo:2008:PAG
Altman:1998:OMS

Abdi:2006:VSL

Aviles-Gonzalez:2014:SMM

Araujo:2015:GES

Ali:1986:GGC

Khayri A. M. Ali and Seif Haridi. Global garbage collection for distributed heap storage sys-

REFERENCES

Ali:1990:MAP

Ali:1992:SSW

Albonesi:1996:MVA

Alam:2017:PAG

Abraham:1998:MST
REFERENCES

Ali:2013:MFT

Arunagiri:2014:FTO

Ayguade:1995:ARP

Ali:1986:PEP

Asher:2017:GAR

Abramson:1995:EPS

David Abramson and A. McKay. Evaluat-

Al-Mouhamed:2004:AOP

Ayguade:2007:I

Ayguade:2007:SIO

Al-Mouhamed:2001:ENG

Apostolakos:2010:DIV

[SML⁺10] Spyros Apostolakos, Apostolos Meliones, George Lykakis, Emmanuel Touloupis.

Ahmed:2001:STL

anMey:2007:NPO

August:1999:PRI

Anonymous:1986:CLF [Ano86a]

Anonymous:1986:EJT [Ano86b]

Anonymous:1986:H [Ano86c]

Anonymous:1987:AL [Ano87a]

Anonymous:1987:C [Ano87b]
Anonymous:1987:FDL

Anonymous:1987:ICI

Anonymous:1987:SP

Anonymous:1992:IAS

Anonymous:2000:GEI

Anonymous:2000:Ia

Anonymous:2016:ENS

Anonymous:2016:ENSb

Anonymous:2016:ENSa

Atasu:2003:AAS

Awasthi:2012:MDP

Ajjanagadde:1986:SAB

Areias:2016:LFH

Ahn:2015:FAP

Adamson:1999:GPA

Ayala:2003:PAC

Arias:2000:PLP

Autrey:1998:IRG

Ayguade:2003:GEI

REFERENCES

Ben-Asher:1994:UTC

Borin:2014:MCU

Banerjee:1994:EI

Banerjee:2004:GEIa

Banerjee:2004:GEIb

Ben-Asher:2001:INP
Yosi Ben-Asher and Dimitry Podvolny. Y-invalidate:...
REFERENCES

REFERENCES

Bernstein:1995:SDD

Belgin:2011:LPB

Benoit:2011:ORS

Bordoloi:2010:GBA

Bernabe:2015:AEF

Berman:2005:NGS

Bianchini:1998:EEC

Bailey:1990:PGE

Bourgoin:2014:EAG

Mathias Bourgoin, Emmanuel Chailloux, and Jean-Luc Lamotte. Efficient abstractions for GPGPU programming. *International Journal of...*
Bourgoin:2017:HLD

Bjornson:2009:NCS

Bronevetsky:2007:CFS

Brown:2014:CDR

Bahi:2014:IRC
Mouad Bahi and Christine Eisenbeis. Impact of reverse computing on information locality in register allocation for high

Bruschi:2005:FFV

Bodik:1996:ADF

Bulic:2003:EAC

Barigou:2017:MCC

Bronevetsky:2009:CAC

Greg Bronevetsky, John Gyllenhaal, and Bronis R. de Supinski. CLOMP:

Bik:2002:AIR

Bell:2006:SMS

REFERENCES

Bermudez:1990:PCS

Bos:2012:LLE

Bylina:2017:EFO

Bala:1997:EIS

Baumann:2014:PP1

Siegfried Benkner and Viera Sipkova. Exploiting distributed-memory and shared-memory parallelism on clusters of

REFERENCES

[CAZ02] Francisco Corbera, Rafael Asenjo, and Emilio Zapata. New shape analysis and interprocedural techniques for automatic parallelization of C codes. *Intern.
REFERENCES

Chiarulli:1986:PMT

Chakrabarti:2001:SMA

Che:2017:PGG

Camara:2014:EIL
REFERENCES

Charr:2012:AEM

Chilstedt:2009:DEC

Calland:1998:RAO

Chapman:2013:EDO

Chang:1997:IBP

Chen:2006:VAM

Chen:2014:PCS

Chang:1996:BCN

Jian Cao, Qiang Li, Yuede Ji, and Yukun He. Detection of forwarding-based

Capitanio:1995:HBM

Collard:1995:APW

Conery:1988:BEP

Caplan:1988:TTC

Carroll:2004:FIE

Czutro:2010:TPI

Conte:1996:HBP

Cao:2012:PMN

Chessa:2014:EEE

Crammond:1988:GCA

Chuang:1992:APU

Cvetanovic:2017:ROT

Conte:1997:OVC

Chabkinian:2016:FL

Carter:2000:PAR

REFERENCES

Chen:1989:HEH

Cristobal-Salas:2003:NSE

Czapiski:2014:RCO

Caragea:2011:RAC

REFERENCES

issn=0885-7458&volume=39&issue=5&spage=615.

Clark:2003:ADA

Damaj:2007:PAD

Darema:2005:NGS

Davison:1987:BSP

DeSouza:2008:ISI

DeBenedictis:1987:MUP

Demsky:2011:UDE

Dennis:1994:MMP

REFERENCES

REFERENCES

Dias:2013:SUT

Du:2017:ODA

Degano:1987:POM

Degano:1987:POM

Matteis:2017:PPW

Dehne:1991:OCM
REFERENCES

Das:1991:PSA

DeStGermain:2003:PAI

Dekel:1986:OPA

Dehne:1990:OVA

Danelutto:2017:GEH
Marco Danelutto, Susanna Pelagatti, and Massimo Torquati. Guest editorial: High-level parallel programming and applications. International
Dehne:1997:RPL

[DS97]

Deniz:2016:UML

[DS16]

Dutta:2017:SVC

[DSR17]

Diavastos:2016:ITD

[DTLW16]

Darte:1997:OFM

[DV97]
Du:2017:CSC

Ding:2016:LTS

Dobre:2014:PPP

Dong:2010:PNM

Eigenmann:2009:GEI

Enokido:2014:EER

REFERENCES

El-Gindy:1986:OSP

Egger:2015:ERV

Emoto:2007:CFD

Ernsting:2014:SFS

Ernsting:2017:DPA

Estebanez:2016:NDS

Estebanez:2017:UXP

REFERENCES

REFERENCES

Evripidou:2000:I

Engelhardt:1996:PIP

ElKabbany:2011:DLB

Fensch:2011:EBC

Fujimoto:1987:SMA
Farkas:1999:MAR

Fonseca:2016:APE

Fan:2016:TCA

Feautrier:1991:DAA

Feautrier:1992:SESa

Feautrier:1992:SESb

Feautrier:2006:SSS

Frieb:2016:PAH

Feng:2015:ASW

Xiaowen Feng, Hai Jin,
REFERENCES

Francez:1987:FAC

Fillo:1997:MMM

Fursin:2011:MGM

Franke:2012:GEC

Feldman:2015:WFM

Steven Feldman, Pierre LaBorde, and Damian Dechev. A wait-free

[Favati:2002:RCI]

[Fachada:2017:EPS]

[Furlinger:2009:CAE]
Farrens:1996:GEI

Fan:2017:SEE

Foster:1989:MGC

Fiore:2014:CBD

Faraj:2008:BEA

Faraj:2008:SPA

[FPY08a]
REFERENCES

Foster:1987:FPB

Furnari:1995:GEI

Fiorin:2016:EDS

Goli:2017:ACS

Gupta:1989:SIB

Ghiya:1996:CAP

Gou:2013:AGC

Gijsbers:2014:ESR

REFERENCES

Gregor:2005:GPH

Gendaud:2009:FMP

Gilder:1994:ASC

Gupta:1992:EPF
REFERENCES

openurl.asp?genre=article&
issn=0885-7458&volume=
21&issue=3&spage=169. [GMB06]

Griebl:1995:CSD

Gao:2017:AOM

Granston:1995:LTP

Gendler:2006:PBM

issn=0885-7458&volume=
34&issue=2&spage=171.

Grasset:2011:MHD

issn=0885-7458&volume=
39&issue=3&spage=328.

Giacalone:1989:FSI

Alessandro Giacalone, Prateek Mishra, and Sanjiva Prasad. FACILE: a symmetric integration of concurrent and functional

Gupta:2000:APR

[Gol88]

Goldberg:1988:MEF

[GP94]

Gyllenhaal:1998:OMD

[GP94]

Geist:1989:TSP

[GP94]

Gyllenhaal:1998:OMD

[GMS00]

Gupta:2000:APR

Glowacz:2017:IDW

Govindarajan:2000:ECS

Grelck:2016:GEH

Grun:1998:SEP

Girbal:2006:SAC

Govindarajan:1992:AGP

Gilbert:1987:PGP

Hussain:2011:PIA

Halstead:1986:AML

REFERENCES

Han:2017:SLS

Hao:1998:IIF

Hemmendinger:1989:IMS

Harris:2006:GEI

Holmen:2014:ASI
REFERENCES

Hains:2014:GEH

Hudak:2009:CSI

Hsu:2015:NPC

Hamidouche:2013:PSW

Khaled Hamidouche, Fernando Machado Mendonça, Joel Falcon, Alba Cristina Magalhães Alves de Melo, and Daniel Etienble. Parallel Smith–Waterman comparison on multicore and manycore computing platforms with...
REFERENCES

Hilbrich:2009:MCC

Hank:1997:RBC

Hwu:1994:GE

Huang:2016:CFL

REFERENCES

厅卢:2017:RVT

哈桑因:2008:AEH

侯赛因:2016:NPC

[Haas:2016:NPC] Ching-Hsien Hsu and Valentina Salapura. Network and parallel comput-
REFERENCES

Han:1998:EBS

Huang:2012:POT

Hendren:1997:CCE

Huang:1989:SEP

Hudak:1986:DSP

Also Research Report YALEU/DCS/TR-484, Department of Computer Science, Yale University, New Haven, CT (1986).

Huelsbergen:1997:DRR

Han:2016:SSB

Hunt:1987:EAU

Huntbach:1991:PBB

REFERENCES

 Issenin:2008:UFM

Iwasaki:2004:NPS

Ibarra:1990:EAP

Ishizaki:2000:LTA

Introduction:1998:EA

[106]

Iyer:2005:EEH

Iqbal:1991:AAP

Iwashita:2003:BRB

Jannesari:2015:DHL

REFERENCES

Janakiram:1988:RPB

Jodra:2015:ETG

Jung:2001:TPB

Jin:2015:IPB

Jayaraman:1986:PRM

References

Joe:1999:GEI

Joe:2003:GEI

Johnson:1994:PAM

Javed:2016:TSJ

Jin:2015:CCC
REFERENCES

112

Jesshope:2006:GEI

Jesshope:2006:SIM

Jeyapaul:2010:CTT

Jourdan:1997:RRB

Jaaskelainen:2015:PPP

Jannesari:2016:AGU

Kapinos:2010:PPP

Khan:2017:RCS

Kasif:1986:CDD

Kachris:2003:RLB

REFERENCES

Kriaa:2008:PPM

Keramidas:2015:RCR

Kultursay:2016:MPL

Kennedy:1994:CTM

Kennedy:2001:FGW

REFERENCES

Kim:2016:GAF

[KLK16]

Krall:1986:CSP

[KM86]

Kavi:2002:MMA

[KMG01]

Klauser:2001:SBI

REFERENCES

References

REFERENCES

Kessler:1997:FPP

Kayi:2014:BAC

Kim:2014:VVF

Krishnan:2001:NFC

Kreutzer:2017:GBB

Kubota:1999:TER

Kuck:1994:WDU

Kempf:2010:ASB

Lobeiras:2015:BTB

Langlois:1990:SPC

REFERENCES

[LDHL05] Yoon-Ju Lee, Pedro C. Diniz, Mary W. Hall, and Robert Lucas. Empirical optimization for a

[LFD17] Pierre Laborde, Steven Feldman, and Damian Dechev. A wait-free hash

[LFL+17]

[LGY16]

[LHF+15]

[LHL+16]

REFERENCES

REFERENCES

REFERENCES

Langguth:2017:ADT

Liang:2015:PJE

Laccetti:2012:DAA

Laccetti:2016:LCM

Lu:2003:ABH

REFERENCES

Li:2017:TLT

Loechner:2000:COA

Loghi:2005:DFV

Lin:2012:ESC
Changhui Lin, Vijay Nagarajan, and Rajiv Gupta. Efficient sequential consistency using conditional fences. *International
REFERENCES

Li:1991:ECM

Lowenthal:2000:ASB

Li:1994:SLT

Langemeyer:2013:USM

Lattuada:2016:PET
REFERENCES

[a.b] a.b

Lipasti:1998:EVL

Lin:2005:EBH

Laudon:2007:CWM

Lee:2007:DBI

Larsen:2009:ABE

Liu:2011:STE

Liu:2004:HPR

Liu:2017:PBP

Lin:1995:PPA

Li:1998:Ia

Li:1998: Ib

Zhiyuan Li and Pen-Chung Yew. Introduction. *International Journal of Parallel Program-
REFERENCES

REFERENCES

Munk:2011:APA

Main:1987:TFT

Mariani:2016:SPP

Migli- Alonso:2009:INS

Margaris:2009:LFF
Marowka:2017:EAM

Matsuzaki:2017:FMH

Martinez-Angeles:2016:RLG

Mendez:1999:DAM

Meira:2012:SIC

Moghaddam:2012:IBG
Mohsen Ebrahimi Moghadam and Mohammad Reza Bonyadi. An immune-based genetic algorithm with reduced search space.

Min:2003:OOP

Mellor-Crummey:1998:SCF

McAllister:2013:GES

Menotti:2012:LLP

Ricardo Menotti, João M. P. Cardoso, Marcio M. Fernandes, and Eduardo Marques. LALP: a language to program cus-

McKee:2007:GEI

Mellor-Crummey:2001:IMH

http://ipsapp009.lwwonline.com/content/getfile/4773/21/1/fulltext.pdf;

Mustafa:2015:PPE

Manolache:2007:FAC

REFERENCES

Merks:1986:OPA

Milovanovic:2008:NEE

Mehta:2015:MTP

Melo:2014:GE

McAllister:2015:GES

Montella:2017:VCB

Montella, Raffaele; Montella, Giulio; Giunta, Giuliano; Laccetti, Marco; Lapegna, Carlo; Palmieri, Carmine; Ferraro, Valentina; Pelliccia, Cheol-Ho; Hong, Ivor; Spence, Dimitrios S. Nikolopoulos. On the virtualization of CUDA based GPU remoting on ARM and x86 machines in the GVirtuS framework. *International Journal of Parallel Programming*, 45(5): 1142–1163, October 2017. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Marsolf:1999:UMS

Maydan:1995:EDD

Mitchell:1998:QML

Miller:1988:ISB

Mishra:2009:GEI

Milicev:2002:CFR

Mutlu:2005:UFL

Michelogiannakis:2015:ESP

MantasRuiz:2002:CBD
Jose M. Mantas Ruiz, Julio Ortega Lopera, and Jose A. Carrillo de la Plata. Component-based derivation of a parallel stiff ODE solver implemented in a cluster of computers. *International Journal of Parallel Pro-

Matsuzaki:2016:PTA

Manoj:2004:CDC

Mahfoudhi:2015:PCA

Morris:2007:SNO

McNamee:1990:TOI
Carole M. McNamee and

REFERENCES

[MRS99] Andreas Moshovos and...

REFERENCES

Matheson:1996:PMM

Metzger:2015:UGD

Malakar:2017:HRW

Martinez:2006:DGN

Monteiro:2014:PFS
Eduarda Monteiro, Bruno Vizzotto, Cláudio Diniz, Marilena Maule,

REFERENCES

Ni:1988:PMH

Norden:2007:DDM

Nikolopoulos:2001:AOS

Dimitrios S. Nikolopoulos and Theodore S. Papathodorou. The architectural and operating system implications on the performance of syn-

[NPD89]

[NPT86]

[Najjar:1994:EMG]

[Natesan:2017:HBP]

[Narasimhan:1999:UDF]

Ragini Narasimhan, Daniel J. Rosenkrantz, and S. S. Ravi. Using data flow information to obtain efficient check sets for algorithm-based fault tolerance. International ...
REFERENCES

REFERENCES

Ortega-Arranz:2015:CEN

Ortega-Arranz:2015:TML

Ossner:2013:GMB

Ozturan:2011:GEP

Orozco:2016:DIT

REFERENCES

[OBoyle:1999:NDT]

[Ozcan:2007:MAP]

[OBrien:2008:SOC]

Otoom:2012:WMI

Ouyang:2017:HSP

Ortaoglu:2003:GEI

Panda:2008:GEI

Parallax:1986:BPP

Parallax:1986:HPS

Parallax:1986:WPB

Pandey:2001:SIE

Palanciuc:2004:SCM

Virgil Palanciuc and Dra-

Penry:2013:ABS

Pai:2007:FFE

Pavlidis:2016:HSQ

Archimedes Pavlidis and Dimitris Gizopoulos. Hierarchical synthesis of

Pinter:1995:I

Pin95

Pinter:1999:I

Pin99

Padmanabhan:2005:EIM

PLN+04

Pan:2004:DPC

JoAnn M. Paul and Brett H. Meyer. Am- dahl’s Law revisited for single chip systems. *International Journal of Par-

[PP10] Traian Pop, Paul Pop,

Pellegrini:2016:TSP

PPQV16

[Pra86]

[Pra86]

PS92

Palis:1992:NAR

[PR99]

PR99

Phillips:1999:PSR

Daeyeon Park, Rafael H. Saavedra, and Sungdo Moon. Adaptive granularity: Transparent in-

REFERENCES

Pinter:1987:MPP

PW87

Palis:1992:PPT

PW92

Peng:2016:ESF

PYC16

Pan:2017:DDC

PYX17

Qian:2011:PAP
REFERENCES

Quillere:2000:GEN

Wang:2017:PAG

Qu:2015:DBA

Rajagopalan:1994:SSP

Rashti:2009:SAM

Rauchwerger:1995:SMR

[RAP95] Lawrence Rauchwerger, Nancy M. Amato, and David A. Padua. A scalable method for run-time

Rau:1996:IMS

Rana:1986:ODS

Rohou:2000:HGC

Rahman:2016:ASO

Rounce:2008:DIS

REFERENCES

REFERENCES

REFERENCES

[Rosas:2014:IPD] Claudia Rosas, Anna Sikora, Josep Jorba, An-
REFERENCES

Rasmussen:2009:PSI

[RSK09]

Roberti:2005:PIL

[SA10]

Suri:2010:IAP

[SA11]

Sen:2011:SCB

Siddique:2016:PRE

Sarkar:2001:OUN

Sung:2012:DLT

Sengupta:1990:CCO

Singh:1991:RET

Gurdip Singh and Arthur J. Bernstein. On the relative execution times of distributed protocols. *International Journal of Par-
Sourouri:2017:PCF

Surendra:2003:EFA

Stepoway:1988:PRF

Scarpazza:2011:TPT

REFERENCES

[Saito:2003:LSP] Hideki Saito, Greg Gaert-
REFERENCES

REFERENCES

REFERENCES

Sanci:2011:PAU

Shahbahrami:2006:ACR

Sasakura:1999:NIV

Sundararajan:2013:SCE

Schlansker:1997:TCP

Sun:2014:AVP

Enqiang Sun and David Kaeli. Aggressive value

Schlansker:1996:PCR

Singh:1991:EAP

Shi:2009:BIO

Skillicorn:1991:MPP

Schneider:2014:LBD

Shen:2013:ITI

Sharma:2009:MLP

Sato:2016:GIT

Scott:1994:FCF

Stojcev:1994:OSP

Salapura:2011:GEI

Valentina Salapura, José E. Moreira, and Sally A. McKee. Guest editors
Schepke:2009:PLB

Schepke:2013:OMR

Sarojadevi:2004:CPE

Singh:1989:DEP

Sprague:1992:PAC

Steinbrecher:2014:CSI

Seevers:1992:PPE

Sosic:1990:PAL

Souravlas:2004:PTD

Schreiber:2015:ICB

[SR15] Martin Schreiber and

Sanchez:2006:ETA

Somogyi:1988:BAS

Springsteel:1989:PGP

Sarkar:1992:PAS

Sazeides:1999:LDV

Yianakis Sazeides and James E. Smith. Lim-

Shan:2001:CMS

Sivakumaran:2017:PBY

Sotomayor:2017:ACG

REFERENCES

REFERENCES

Swain:1988:CSH

Su:2017:HLS

Song:2005:PTA

Sha:2015:PEH

Subramani:2008:DIS

K. Subramani and Kiran Yellajiosula. On the

[Tyson:1994:CSM]

[Tyson:1996:EEP]

[Tan:2016:ATB]

[Tyan:2009:SPP]

REFERENCES

REFERENCES

[TOM+11]

[Touati:2005:RSI]

[TRL09]

[Takahashi:2003:PEH]

[Taylors:1986:PIF]
Tan:1999:PIB

Teodoro:2008:RTS

Tousimojarad:2015:SLS

Khan:2016:EOM

Khan:2016:OMM

Ayaz ul Hassan Khan, Mayez Al-Mouhamed, Al-

[UKT00] Uchihira:2000:SBH

[US05] Ugarte:2005:VES

Vassiliadis:2016:ESC

vanderSpek:2008:CRT

Veidenbaum:2001:GEI

Veidenbaum:2002:GEI

REFERENCES

Venkatasubramanian:2012:TTT

Valduriez:1988:PET

Velasquez:2015:BBA

vanNieuwpoort:2011:CRA

Vandecvoorde:1988:WAC

REFERENCES

REFERENCES

REFERENCES

[Wu:2000:CPG]

Weng:2007:OIS

[WPC07]

Warg:2008:DTS

[WS08]

Waliullah:2014:RCH

[WQJY17]

REFERENCES

REFERENCES

Wang:2013:BQE

Xue:1998:RDT

Xavier:2009:MLP

Xu:2015:YSE

Yang:1995:MDD

Ye:2017:REC

Yzelman:2014:MCH

Yu:2016:CBL

Yang:2016:EBM

YarKhan:2017:PPN

Yun:2003:TOS

Han-Saem Yun, Jihong Kim, and Soo-Mook Moon. Time optimal software pipelining of loops with

[YMW+17]

[ZC17]

[Zey05]

Mo Zeyao. Concatenation algorithms for parallel numerical simulation

[Zha10]

[ZJG17]

[Zha89]

[Zha10]

[ZK07]

REFERENCES

Zalamea:2004:SHT

Zhang:2015:QBA

Zhang:2017:OPL

Zhang:2012:DDA

Zyulkyarov:2012:POT

Ferad Zyulkyarov, Srdjan Stipic, Tim Harris, Osman S. Unsal, Adrián Cristal, Ibrahim Hur, and

Zheng:2005:SBP

Zhong:2015:VBM

Zhang:2013:KPM