A Complete Bibliography of Publications in the
International Journal of Parallel Programming

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 May 2021
Version 2.33

Title word cross-reference

* [CS16]. + [HVF18, SBC17]. 0 [LS92]. 1 [LS92]. 2 [CTB14, ES11, IBA11]. 3 [BC15, HPVRPF15, HF14a, HF14b, JGM15, LLGC17, LHP+17, SJKA99, fSxWC18, SBC17]. < [JS06a], > [JS06a]. (R) [BKT08, SM09]. T^M [BKT08]. i [TRD21]. K [LKS+20]. kd [WR18]. l_1 [GLLH17]. m [DPL86].

1000 [SSMO96]. 14 [HG18]. 16 [Swa88]. 18th [DB08].

3.0 [KaM10, OP10].

512 [RSJ+19].

95 [KaM10].

A. [Swa88]. Abingdon [AM95]. Above [LCT+20]. abstraction [VR88]. Abstractions [BCL14, LQWP10, YAI95]. Abstractive [KSF+18]. Accelerated [DMC+18, HML+20, KLK16, PES+18, SF20, SBC17]. Accelerating [FFS18, FRT+18, FJZ+15, HF14a, HF14b, LLGC17, MAWD+16, PTdSF+12, XWH21],
Acceleration [BC10, MCFM12, STM15]. Accelerator
[ALPS19, EK17, FVvL+16, LWGZ18, SWG+18, YZZ+19]. Accelerators
[GP17, SdlLC21]. Access
[JG97, Joh94, LMHW18, OOR13, ZK07]. Accesses [GV95, LPB13]. Accumulations
[MM16]. Accumulative [HI04]. Accuracy
[CEP97, KP04]. Accurate
[PZL+19, RGB+08, TA99]. Accurately
[BGdS09, Low00]. Achieving
[AMP+05, GAR+16, GS90, Won02]. Acknowledgment
[Nic14]. ACOTES
[MAB+11]. Action [WZG+17], Active
[RLK20]. Activity [FR95]. Actor
[ZLC+19]. Actors [RTD20]. ACTS
[DGMP09]. Acyclic
[Hue97, ZLJA12]. Adaptability
[SAl0]. Adaptation
[CCL12, SJT13]. Adapting
[EFED05, JMSG02, PIP18]. Adaptive
[AO19, BBB+17, BFRPRV+15, CS20, DJSi12, GLLH17, GRV+17, GW19, GH89, HHW10, HP13, HR11, HTDL18, JLDF19, KSEG14, LM+12, LJE05, PSM97, RA09, SHC15, WR18, ZLD15]. AdaptiveLock
[YLB19]. Address [SS01, TAY+12, HR11]. Addressing
[GG13]. Adjoining
[PS92, PW92]. Adjustment [ZLC+19]. ADL
[PC13]. ADL-Based
[PC13]. Admission
[NHYA14]. Adoption
[SdlLC21]. Advance [SL14]. Advanced
[AAN+20, DLRS13, MAB+11, LF15, NdMMW16]. Advantage [TKN+08]. AES
[XWH21]. Affine
[Fea92b, KP95, LM00, Mon97, Fea92a]. Affinity [GRC+14]. After
[AKBPV19]. Again
[MP04]. Against
[DDJ+18, FDY+19, GWHY19, MWES19]. Age
[DKB+09]. Agent
[FLMR17a, FLMR17b, WLL+08, STB+18]. Agent-Based
[FLMR17a, FLMR17b]. Agents
[ES06]. Aggregation
[HHW20, LSA+07, SBN03]. Aggressive
[Skl14]. Agnostic
[AVM+16, NAP02]. Air
[LCT+20]. Aircraft
[MSJ20]. ALE
[HAA+11]. Algebra
[CGG+14, CBR17, HKJ+18, KTRZ+17, MP04]. algebraic
[SS89]. Algorithm
[AFO+08, AKT+14, ASG20, BM09, CSCL20, CL96, Cra88, CDDM18, DMM91, DWS16, DZW10, FBV21, GF14, HNC+16, IF90, IKN00, JLDF19, JWC+18, KBD03, LLM+12, LMP98, LF15, LKS+20, MMN15, MS20, MCT+18, Mer86, MB12b, Moh19, MVD+14, NFC+09, NB15, NRR99, NRGB17, NdMMW16, PS92, RK92, SI11, SF05, Sp92, XZT20, ZQT20, ZTY+19, EG86, FeF87, GZ87, GT86, Hua89, JGA+88, LS92, Sch92, SRV88]. Algorithm-Based
[NRR99]. Algorithmic
[DMK21, DM17, EK17, GK18, SHK13, WE18, WMK19, WK20]. Algorithms
[AT91, APR+18, AMAH01, AK17, ABSSS19, AGT17, BR14b, CAT18, CAP88, Damp07, DPM90, DM+20, EO88, FG16, GM20, Ged13, GP17, GF14, HSXH19, IBA11, Iq9h91, uHKAMFM16a, uHKAMFM16b, KPS14, LTDS15, Liv91, Ö007, Pip18, RG15, SH87, SS92, SAs18, SKAT91, SJC18, SR90, XWH21, Zey05, ZLD15, ZHF+19, DPL86, ECSS88, HFM88, SDJS98, Swa88, Zha89]. Alias
[LC11, WGW04]. Alignment
[AFJZ+15]. All-Parses
[IP90]. All-Port
[IBA11]. All-to-All
[FPY08a]. Allgather
[QA11]. Allocation
[BE14, CND95, DLX+17, DS20, LkCH94, NG92, PZL+19, RY20, ZLD15, EO88, NP98]. Alloyed
[LLSS03]. Allpairs
[SFAG14]. Altopoll
[QA11]. Alone
[DJR16]. Alternate
[PK20]. Alternative
[KF99, FeF87]. Alternatives
[Bel94, MB99, NPT86]. Altruism
[LC19]. Altruism-Based
[LC19]. Amdahl
[Aono87a, PM07]. AMR
[NLRH07]. Analyses
[CI96, GV95]. Analysing
[BDD+18]. Analysis
[AK96, ABT20, AFO+08, AW98, BEA+19, BG96, BFRPRV+15, CSC+00, CSD21,
CAZ02, CAT18, CPL+10, Fea91, Gha19, GH96, HML+20, Jak19, KP04, LT17, LCL19, LY95, LHF+15, LWDL17, LHP+17, LC11, MP91, MHL95, MP04, NP19, PCJ20, PPEP08, RLEJ19, RRH03, Scal11, SSP+96, SO89, US05, WGW04, dMP+03, AD86, GTK+88, NPD89, RS90, KR87]. Analytical [KWA+10, NP19, VCP+16, ZJG17].

Analytics [FJA+18, FRT+18, LWF+19]. Analyze [ASW+15, Dem11]. Analyzing [APR+18, ALG+95, DF98, FM09, HRH08, SD11]. AND-parallel [SRV88]. AND-Parallelism [SH96, BS89]. AND/OR [RK92]. Android [AER+17]. Animation [BGMR11]. Announcement [Int98, Ano86d, Ano92]. Anomalies [Jan15]. ANSI [BG03]. Ant [ASG20]. Anti [CDRV98]. APCFS [KK11]. API [LCT+20]. APL [GS90]. app [DJR16]. Application [ACC+02, API03, BGdS09, BS07, CZTM03, Dam07, FJO+16, HTDL18, JCH+08, JAW17, KS97, Mat17, MP04, Moh19, PG07, PB04, SkK09, Sek09, SkG09, TOM+11, VMS15, BH87, CRM92, WB87]. Application-Aware [JAW17]. Application-Dependent [VMS15]. Application-Level [HTDL18]. Application-Specific [API03, TOM+11]. Applications [Aono16a, Aono18b, BEA+19, BEJD21, BRB11b, BDD+18, CY14, CR19, CBR17, CHCL14, CPT14, DPT17, DFH17, DS16, DGPMP9, EWHS11, FM09, GHM14, GS11, GS13, GRC+14, GGV17, Gre16, HK14, HMK09, HtBK+10, HLK+09, IPR+05, KMP+02, KPR96, KTBP18, LRG14, LLW+17, LQWP10, LWLG11, MV17, Mar09, MAJD16, MG15, MCWKO1, MANR09, Mis09, OK99, QA21, PPQV16, RLPN+02, RSJ+14, RGB+08, SR15, SUCV17, SSB+17, SASH12, SBNO3, TMHT96, WL16, WLL17, ZK07, ZZS+19, ZD19, ZSH+12, GKMB87, SDJS98, SS89]. Applicative [Hum87]. Applied [BUMS02, KaM10, Lin91a]. Approach [AK90b, AVM+16, BBF+17, CHB06, DM17, FCZ16, FJA+18, FBV21, FJO+16, GYL92, JQWG15, KK20, KSF+18, KSA+18, LTQ+12, LLL+15, LCT+20, MO91, NN95, OATGEL15a, PMV17, QZP15, STM15, VSDK09, qWlJzKeb17, WS08, WEJS94]. Approaches [BUMS02, JCH+08, PCJ18, VRGC19]. Appropriate [Gen16]. Approximate [HZL16, Iqb91, TGT18, VCP+16]. Arbitration [BS91]. ArchC [ARB+05]. Architectural [LSHK09, NP01, SEPO8, TCUV14, WGF+16]. Architecture [AP86, ARB+05, BGGT02, CHCL14, CFC+19, CDC09, DB08, DLRS13, FCJ99, GL92, HTZ+97, JLD16, LHP+17, MB12a, MB99, MPR18, NMM16, NAP02, RD08, STF+12, SJT13, TRD21, ZTY+19, CB86, GKMB87]. Architecture-Agnostic [NAP02]. Architectures [Aono18b, Aono18a, BG96, BFG+10, CP01, CND95, CJA00, GBP07, Ged13, GGV17, HCEP98, HP13, LAD15, MCE13, MGJS15, Mis09, NFC+09, NdMCDMMW16, PJS+05, PMM+18, PG16, PVG17, RSJ+19, SJBV06, TJY99, TF94, VHK+18, ZLAV04, ZZS+19, LRG+91]. Area [RSP20, Roy10, SWZ+15, WMN+17]. Argument [ABASS12, NG92]. Argument-Fetching [NG92]. Arithmetic [ABB12]. ARM [MGL+17]. ARMv8 [CFC+19, KHT21]. ARMv8-based [CFC+19]. Armv8-M [KHT21]. Arnoldi [LEA15]. Array [AM04, BG96, CI12, CJ96, Fead91, GV95, GS06, GW19, GB20, SMM94, TG05]. Array-oriented [CI12]. Arrays [EHKT07]. Arrival [FPY08b, QA11]. Art [KPS14, LHL+16]. Artificial [CSCL20]. ASIPs [ALTT17]. Aspect [KKSP18, KK20]. Assembly [ABTZ00]. Assessing [KKSP18]. Assessment [BKK20, FJA+18, Hla86, UWF+20].
Chip-Multi [AOAM21].
Chip-Multiprocessors [GRV+17, TGT18].
Chips [NCR+19]. choice [BS89]. Cholesky [GN89].
Church [Ano86a]. Circuit [PMV17, WPC07]. circuits [BH87].
Cities [KIT+20]. Clairvoyant [SY08]. Class [BEP13, MPR+05, IPR+05].
Class-Based [MPR+05]. Classification [CHYP96, CS20, KTBP18, Mon97, QZP15].
Cleaning [MCT+18]. Clearance [GAK20].
Climate [HNC+16, LHF+15]. Cloaking [MS99].
CLOMP [BGdS09]. Closure [CAP88, KP95, KPRS96, VK88]. Cloud [AAI+20a, AAI+20b, CAK17, DS20, HZL16, HC17, JM20, JQWG15, KJHB14, RLH14, WQYJ17, ZXZ+15, XLWX19, nRHH14].
Cloud-Based [AAI+20a, AAI+20b]. Clouds [JAW17, LTF+12, LCT+20].
Cluster [CYS16, EAT14, ES11, FPcd14, Lj09, LTL15, LSYG15, MLdIP02, NIK00, SCB+14]. Cluster-Based [FPcd14, Lj09].
Clustered [CPG01, GBPK07]. Clustering [ANS20, BABW14, CS20, CAP88, DMC91, FcZ16, LKS+20]. Clusters [BEA+19, BS03, BC15, DWQ17, FPY08a, GCD+03, GSY+13, HC17, HOZ06, QA11, RPF18, WK20].
CMP [DLX+17, LTL15]. CMPs [BHJ06, FC11, KKZN12, LGY16]. CNNs [SWG+18]. Co [GRAG00, MPR+05, NB15].
Co-Generation [MPR+05]. Co-operation [NB15]. Co-Scheduling [GRAG00]. Coarse [CSF+20, NIO+03, PSM97, SSM21, WW17, AD9]. Coarse-Grained [PSM97].
Codes [CAZ02, ELGGE17, HTK98, KF99, RMG+13, SF20]. Coding [DLRS13, MB12b, SSEA14, YMW+17].
Coherence [CMW90, FC11, KSEG14, MPAG18, PAM+18, SNB04, YDV19, BCK98].
Coherence-Free [PMM+18]. Coherent [SS01, TGT18]. Cohesion [KKSP18].
Collaborative [Gen16, JGW+18, VSDK09, WLDZ15].
Colony [ASG20, CSCL20]. Combining [ABASS12, GV95, GH89, HSCI+16, LSM+18, LSS03, RK92, SMC94, WMC98].
Coming [LS07]. Commands [YLJ92].
comments [Lin88a]. Comments [Swa88].
Communication [AAN+20, AH08, BG17, CTB14, GAR+16, GL95, IBA11, IKN00, JQI+16, KHH08, KKZN12, KT01, KTT+99, LM00, MNN15, MNP07, MO91, OPLS17, PSM97, RGB+08, THM+11, TA99, WZTH13, MO90].
Communication-Avoiding [MNN15]. Communication-Driven [TOM+11].
Communications [HZS20, Mon97].
Compaction [DH00, KGK20, PYX17].
Compactors [ZC09]. Comparative [BFRPVR+15, HPVRPF15, LMP05].
Compare [FLD15, Sun11].
Compare-and-Swap [FLD15, Sun11].
Comparison [BS07, DMC+20, HMF+13, OP10, SS01, ECSS88, FT87, GE89, Hua89, Kas86].
Compile/Run-time [vdSGBW08].
Compiler [AZK+18, ALPS19, BML+13, BKT08, CGN+09, CTK+11, CP04, CFB94, CEH13, EM13, FKM+11, GBC+08, HTK98, JCD+14, Ken94, KTT+99, LEL+99, MMG04, MO91, MCA98, MAB+11, PB04, RMG+13, RBES00, SS00, SG00, TMHT96, TJY99, YZ13].
Compiler-Assisted [RMG+13].
Compiler-Generated [JCD+14, MCA98].
Compiler-Parallelized [HTK98, TMHT96].
Compiler-Towards [SSP+00].
Compilers [HML+20, MPR+05, ME15, SGK12].
Compiling [HTZ+97].
Complementary [LkCH94].
Complete [BdS07].
Complex [AMP+05, CHCL14, IS18].
Complexity [DFH17].
Component [EFED05, MLdlP02, ISxWC18].
Component-Based [MLdlP02].
Components [DKB+09, DJR16].
Composability [CB19].
Composable [AMP+05].
Composed [LWF+19].
Composition [GVB+06, GGV18, HHC+15, RK13].
Compositional [EHKT07, TLSG05].
Comprehensive [OATGEL15a].
Compressed [KK11].
Compression [BABW14, HNC+16, KKMS99, TSS99, VHK+18].
Computation [BG17, BEP13, CIA00, Cza17, DMMS91, FLMR02, HSCI+16, JAW17, LEA15, MCWK01, NdMM09, PGLC+18, Rie90, SSM21, Ski91, SBB21, KMV87, MA87].
Computation-Oriented [SSM21].
Computational [HLK+09, LLL+15].
Computations [HKJ+18, HIO4, NTS89, PMHC03, SBC17, VCP+16, YH18, LRG+91, SS89, TKM89, Wai87].
Compute [LSM+18, SR15].
Computer [LSM+18].
Computing [LSM+18].
Containers [HML+20, MLdlP02, ANo87d, Gao86].
Concurrent [Ano16c, AR16, CHSC18, GMP89, LWDL17, PB01, SBC17, TSS86].
Condition [NBN+15].
Conditions [MJ02].
Conference [MCE13, PVG17].
Conference [KMG01].
Conference [TRD21].
Conflict [CRM17, MBA13].
Conflicts [GG13, SD11, WS14].
Conformance [TLSG05].
Consistency [BAP01, BBGM95, LNG12, SHZ+91].
Consistent [KS90, SH87, Swa88].
Consolidation [LVM16, XLWX19].
Constant [LMP98, MWES19].
Constant-Time [MWES19].
Constrained [BABW14, VCP+16].
Constraint [MRLR16, JB98].
Constraints [AKD98, AF15, API03, BEJD21, BBR11b, RBES00, SWZ+15].
Construct [Spr92, FcF87].
Constructive [DWQ17, KP05, DPL86].
Construction [BNWL90, CP04, WR18].
Constructs [BCK98].
Consumption [RSP20].
Contention [APR+18, ACD+16, ANo16b, ANo18b, ANo19, BE14, Car09, CTP13, CSF+20, CGPS18, CSTG03, DDD+19, DFH17, Den94, DS20, FW21, FKT12, GYWQ18, Gha19, HM+13, HLS15, HS16, JM20, KJHB14, LLGC17, LRG14, MB12a, OATGEL15b, OG11, PLN+04, RLH14, SM09, SZ17, SWG+18, TRL09, TAY+12, TFPF18, VCP+16, WTZ+19, WQT21, WSO+07, WGV04, Zha10, ZS+19, NK88, DB08].
Concatenation [Zey05].
Concept [KaM10].
Concurrency [BFA94, Gen16, PCJ20, SB90, VSH+11, WIZ15, YZZ20, AD86, CP88, DM87, Pra86].
concurrency/synchronization [AD86].
Connected [APR+18, ACD+16, ANo16b, ANo18b, ANo19, BE14, Car09, CTP13, CSF+20, CGPS18, CSTG03, DDD+19, DFH17, Den94, DS20, FW21, FKT12, GYWQ18, Gha19, HM+13, HLS15, HS16, JM20, KJHB14, LLGC17, LRG14, MB12a, OATGEL15b, OG11, PLN+04, RLH14, SM09, SZ17, SWG+18, TRL09, TAY+12, TFPF18, VCP+16, WTZ+19, WQT21, WSO+07, WGV04, Zha10, ZS+19, NK88, DB08].
Concatenation [Zey05].
Concept [KaM10].
Concurrency [BFA94, Gen16, PCJ20, SB90, VSH+11, WIZ15, YZZ20, AD86, CP88, DM87, Pra86].
concurrency/synchronization [AD86].
[Dem11, JQWG15, SMC94, SAL16].

Contention-Aware [JQWG15].

Contention-Free [SMC94]. Context [CJA00, IP90, Lan90]. Context-free [IP90, Lan90]. Contexts [JMSG02].

Contraction [SSP+96]. Control [AAU+20, AmW99, FM99, Gen16, Kas86, KHT21, MCA89, MJ02, NYHA14, RSKA96, SB90, VHS+11, YKM03, ZGH+15, FK87].

Control-Flow [KHT21]. Controlled [DJS12]. Controllers [ANS+12, MFGEL19]. controlling [VR88].

Convex [SS92, SSM96]. **Convoider** [YZZ20]. **Convolutional** [WZG+17, YYYX20].

Conversion [AmWH99, SJBV06].

Credit [GGV17, SSB+17]. Credit-Based [YHG16]. Critical [SK97]. Cross [AM95, DSR17, WCC16, ZJG17].

Cross-ISA [WCC16]. Cross-Platform [ZJG17]. Cross-Thread [DSR17]. Crypto [MVES19]. Cryptography [Dam07].

CSMqGraph [CSF+20]. CSP [FeF87].

Customized [ASG20]. Cycle [FCJV99, HZZS20, SAB11, TGT18, dMP+03].

Cycle-Approximate [TGT18]. cyclic [JB98].

Czip [HNC+16].

D [BC15, CTB14, ES11, HPVRPF15, HF14a, HF14b, IBA11, JGM15, LLGC17, LHP+17, SK97]. Credit-Based [YHG16]. Critical [SK97]. Cross [AM95, DSR17, WCC16, ZJG17].

D-Stacked [LHP+17]. **DAFT** [ZLJA12].

Daily [Ano87c]. **DancerFly** [JDF20]. Data [APR+18, AKHD13, ABT90, Ano16d, AMKE18, ALPS95, AJP16, ANS+12, ALG95, BARS95, BS03, BBGM95, BG96, BCL17, CFB94, CAK17, CAT18, DDM17, DC20, DTLW16, DMC+20, DX14, DLX+17, DJS12, EW96, EK17, ELGE16, FJA+18, FRT+18, FPSC14, GSP+17, GG14, GL18, GV99, GYL92, GB20, HSCI+16, HZZ+19, HRH08, HHW20, HP13, HGT+12, HTM+12, HNC+16, IR19, KIT+20, KP01, KP04, LSA+07, LTL15, LVM16, LT17, LSM+18, LWLG11, LHF+15, MXP14, MHL95, MCMW91, MTT15, NRR99, NP19, NAP02, NLRH07, OK99, PCJ18, PMHC03, RSA+18, RG15, RS90, RIO90, RSJ+14, SL2C21, SNB04, SS99, SL14, SQH92, SR04, SH15, SASH12, TESK06, TFMP97, WIT+19, WSC20, WTQ21, WB87, WE18, WW17, XZT20, XH98, YAI95, YWW+19, YLB19, vDSGBW08, CG94, Gao86, Kas86, Win89].
MBE03, MVD+14, NIK00, OATGEL15b, OG11, PLN+04, SNB04, SW16, SB91, TTF+08, qWlJzKhC17, AH86, GS90, GT86, PW87, RB86, RS90, TKM89, Tho87, Sek09].

Distributed- [FBGEL19].
Distributed-Memory [BS03, qWlJzKhC17]. Distributing [HHW10]. Distribution [ALG+95, HSCI+16, NAP02, SSP+96].
Distributions [AKHD13, BAP01, MMG04, WLL+08]. DMR [ZC17]. Do [Kuc94].
Domain-Based [GF14]. Domain-Specific [WK20]. Dominance [Spr92]. Dominating [HHW10].
Dynamically [CHPC96, GMB+11]. Dynamics [ACC+02]. DyTO [JM20].

Eager [SAL16]. Early [PYC16, TA99].
Earth [HTZ+97, HMT+96]. Earth-Manna [HMT+96]. Eat [CHSC18]. Economics [LCL19, YBDJ17]. Ecosystem [RSA+18]. Edge

Efficient [AbvK+13, BR97, BEP13, BCL14, BFG+10, CR19, CPT14, CL96, EAT14, FPY+16, FV+16, GSP+17, GG14, GN20, GL18, GAK20, GS06, GR98, GHC+17, GmWHR98, HZZ+19, IP90, IBA11, JGM15, KP05, LNP91, LS05, LNG12, LWLG11, LWGW12, RRH+10, RD08, RLEJ19, Roy10, SR06, SSSN16, SL+14, SSP+96, SO89, SKAT91, SHC15, SHZ+14, SJT13, TTF+08, WZTH13, XZX+15, YJY16, YLB19, Fea92a, Hua89].
Efficiently [EGJS15, HR11, JMSG02].
Elastic [GG13, YBDJ17]. ElasticActor [ZLC+19]. Element [MCT+18, RG15].
Elements [qWlJzKhC17]. Eliminate [KTT+99]. Eliminating [HTK98]. Elliptic [Ros12].
Embedded [Ano18a, Ano21b, AF15, CHB06, CFF+06, DLRS13, DLX+17, Giv07, Giv08, KTM18, LMP505, MSJ20, MCE13, MGJS15, MAB+11, Pan08, PP10, PVG17, PO07, PYPE08, RSM21, TLSG05, TFEK16, TGT18, US05].
[Li03, CSG89]. **Emergency** [GAK20].

Emerging [HP13, JACK20, ZSZ+19].

Empirical [CCG+14, LDHL05, PMV17, SSMO96, YYYY20]. **Employing** [CSG97].

Emulator [WCC16]. **Enable** [HP13, ID08, TAY+12]. **Enabled** [FKM+11, GZJ18, GSY+13, JACK20, MMD21, SAI+20, RA09]. **Enabling** [GZJ18, SdLC21, SMDJ19]. **Encore** [GTK88]. **Encryption** [AAI+20b, KBD03, NdMMW16, AAI+20a].

End [LSHK09]. **End-to-End** [LSHK09].

Endpoint [JLDF19]. **Energy** [AVLV03, CPT14, EAT14, FVvL+16, HYBA18, KA20, LLMH18, Mar17, SSM21, SJT13, VCP+16, XLWX19]. **Energy-Aware** [Mar17, XLWX19]. **Energy-Constrained** [VCP+16]. **Energy-Efﬁcient** [EAT14, FVvL+16, LLMH18, SJT13].

Engine [BSC15, RLK20, Gsc07].

Engineering [CPT14, KaM10]. **Engines** [MCFM12]. **Enhanced** [ABASS12, FMSG17, GRAG00, RY20, RSJ+19].

Enhancement [AMP01, CYS16, HML+20, KP01, LCL17, SAI+20]. **Ensembles** [ASW+15]. **Enterprise** [LVM16].

Enumeration [AG98, GL18].

Environment [AFM+06, AA15, BFG+10, DMM18, MFG+08, QFRA19, SQH92, UW+18, vdsGBW08]. **Environments** [BCS+09, BFRPVR+15, Car09, CCL12, CAK17, HHW10, KJHB14, LLM16, PCJ20, TTF+08, XLWX19, BCL90, Con88].

Epidemic [LEA15]. **Equation** [CTB14, ES11]. **Equations** [LM00, XoDFV+09]. **Equivalence** [AKBPV19]. **equivalences** [Mai87]. **Era** [AATD20, ABB+10, DX14]. **Erlang** [BDH+14, STB+18].

Erratum [Ano03, FLMR17a, HF14b, uHKAMFM16a]. **Error** [DFC+07, Moh19, OA21, RLK20].

ESL [GHR20]. **Estimating** [DMC+20, HGT+12, KK20]. **Estimation** [DKB+09, GHR20, KMG01, LPF16, LLL+15, MVD+14, TSS99, YYYY20].

Evaluating [AM95, BCK98, SCB+14, TF96].

Evaluation [AMAH01, BML+13, BS15, BEG+10, CCL12, CDC09, DMC+18, FC11, GBPK07, IPR+05, JGP+18, JCH+08, KHH08, LCL17, ME15, NRB94, NP19, OATGEL15a, PVAE98, SSMO96, TSB03, CSY98, LAV98, VK88].

Even [DCX+17]. **Event** [Dem11, PPQV16, RNJ+12, WZG+17]. **Event-Driven** [RNJ+12]. **Eviction** [GSP+17]. **Evolution** [ACD+16].

Evolutionary [ACD+16, PB01, STB+18]. **Example** [SO89, Wai87]. **Exascale** [BDH+14, STB+18].

Exception [FMSG17]. **Exceptions** [AHKR01].

Executable [LC11]. **Execute** [GYL92, BS89]. **Executing** [FCRC16].

Execution [AMKE18, BS15, BEJD21, BAF94, CHPC96, Co95, CSTGL03, CFF+06, DJS12, EAT14, FM09, GS06, GL95, JSHP97, KLG08, KGB20, LLL+15, LEG11, LCL17, Lys08, MFG+08, OGP+16, SNB04, SAS18, SB91, SBC17, TTF+08, TIC90, TF96, WE18, Ali86, Gol88, Kas86, KM86, SRV88].

Exempliﬁed [Tho87]. **Expansion** [BCC00]. **Experience** [Hal86, HnWHR97, RMG+13, SCB+14].

Experiences [CEH13, NP98].

Experimental [AFM+06, IPR+05].

Experiments [Hun87, NPT86]. **expert** [KM86]. **Explicit** [BP17, DMC+18, Ger10].

Explicitly [LMP98]. **Exploit** [ADC+17].

Exploiting [BS03, Gsc07, GL92, JG97, JLDS16, LS98, SASH12, VCP+16, YDV19].

Exploration [CZTM03, KWA+10, MM+18, SEP08, WMN+17]. **Exploring** [AHKR01, FVvL+16, PG07].

Exponentiations [NdMM09]. **Expose** [GV95]. **Express** [GZJ18, JQJ+16].

Expression [AFO+08, Sca11]. **Extend** [DFA+09]. **Extended**
Hardware

Hardware-Agnostic [AVM*16].
Hardware-Based [CPMC96, KT01].
Hardware-Efficiency [KTB18].
Hardware-Friendly [HZZ+19].
Hardware-Supported [SD11].
Hardware/Software [GV99, Lys08, OPLS17, SWZ+15, STM15].

HARE [JLDF19]. Hash
[AR16, CHSC18, LFD17].
Health
[AAN*20]. Healthcare [DC20].
Heat [GH96, LLM16, AH86].
Heap-Based [LML16].
Heat [LYG+18].
Height [ABASS12]. Helper [ZGH+15]. Helping
[Sun11].

Heterogeneous [AER+17, ANS20, Ano21a, AMKE18, ABB+10, BEA+19, Bro15, Bro19, BJM20b, ELK18, GGV18, GMB+11, GHR20, HtBK+10, HHC+15, KTRZ+17, LLGC17, LSYG15, LS05, MMN15, Mar17, MFGEL19, NCR+19, OATGEL15b, OP12, OPLS17, PGLC+18, PHS19, PVF21, SSM21, SEP08, WLL17, XWH21].

Heuristics
[KPS14, CSG89]. HEVC [WaSAM+17].

HICOR [GK94]. Hierarchical
[Bro15, GP94, MV17, NN95, PG16, SSM06, WSS18].
Hierarchically [PPEP08]. Hierarchies [GVB+06].

Hierarchy [MCW01].
High
[APR+18, Ano16a, Ano19, ASEG20, BE14, BCS+09, BCL17, BS07, Bro15, Bro19, Car09, DPT17, DFH17, DB08, GWYQ18, GGE19, GBGL10, Gha19, GK18, GJK+05, Gre16, GHD19, GE90, HG18, HK14, Jan15, KP05, KTRZ+17, KJPN10, LPB13, LWQP10, LWP04, MB12a, MSBR18, NF1+09, NdMM09, OXL+17, PGLC+18, SH96, SAL16, SCB+14, TFK16, TGT18, WCC16, WMN+17, WGW04, WK20, YZ13, YBRM14, Ano21a, Kes20].

High-Level
[Ano16a, Ano19, Bro15, Bro19, DPT17, GGE19, GK18, Gre16, GHD19, HG18, Jan15, KP05, LWQP10, SH96, WMN+17, HK14, Kes20, Ano21a].

High-Performance
[APR+18, Ano19, GWXQ18, Gha19, GJK+05, LPB13, MB12a, NdMM09, PGLC+18, WCC16, WGW04, WK20, YBRM14, OXL+17].
High-Productivity
[BCS+09].
High-Scalability [BS07].
Higher-order [NPD89].
Highly
[TAY+12, XZX+15].
Highly-Scalable
[TAY+12].
Historical
[TRD21].
History
[BEA+19, CEP97, JLD19, LJO8, LLSS03, uRHH14].

History-Aware
[JLD19].
History-Based
[BEA+19]. Hitachi
[TSB03]. HitFlow [FBGEL19]. HLFET
[PIP18]. HLPGPU [Bro15].

Home
[WLL+08].

Homogeneous
[MMN15]. Homomorphisms
[LBT17, RG18]. horizontally [CB86].
Hotspotting
[Ano86c]. HP
[IPR+05].

HPC
[CAK17, CAT18, HLC+09, JQJ+16, JQWG15, LLM+12, LFL+17].

HW
[KBG+08]. Hybrid
[AOAM21, ADC+17, BC15, CTV14, Cza17, DMMP18, EK14, FBGEL19, HSTC+16, JQJ+16, LFL+17, LG14, MM21, RY20, RRR03, S15, VSH+11, YWW+19, YLB19, ZLJ+17].

Hybridization
[DS20]. Hydrodynamics
[Zey05].

Hypercube
[CSG89, DPS90, GE89, NK88, Wai87].

Hypercubes
[B90]. HyperFatTree
[SWF+17]. Hypergraph
[CND95].

Hypergraph-Based
[CND95].

Hypersequential
[UK09].

Hyperspectral
[CS20, LFHAM19].

Hyperthreading
[HRH08].

I/O
[AKT+14, CF+20, MG15]. ICCG
[IS03]. IDE
[HLK+09]. Identification
[BR14a, FR95, OP12, PYC16, WQJ+17].
Identifying
[DM20]. Identity
[JGP+18]. If
Interprocess [CMW90, MO91, MO90].
Interprocessor [CH95]. Interval [US05].
Intra [BGGT02]. Intra-Register [BGGT02]. IntraModule [MO91].
Introducing [SFAG14]. Introduction [Ano00a, Ano00b, Ano01, Ano02, AM07, AM07b, Ban94, Ban04a, Ban04b, Car09, CHS99, CMHS99, DB08, EmH97, EA09, Evt00, FmH96, Fur95, GSA08, Giv07, Giv08, HnWHR97, HF06, JS06a, JS06b, Joe99, Joe03, LY98a, LY98b, McK07, MPZ06, Mis09, MA10, Ora03, Pan08, Pin95, Pin99, SMB11, Sh98, Ve01, Ve02].
Introspection [WHC+17].
Introspection-Based [WHC+17].
Intrusion [NRGB17, YWW+19]. intrusive [ZXY+15]. Invalidated [BAP01]. Invasive [SR15]. invented [Par86b].
Inverse [BGGT02]. Inversive [FSWC18].
Irregular [ACC+01, GF14, LLW+17, MCWK01, NST89]. ISA [MP95, WCC16].
Isomorphic [Ano87d]. Issue [Ano16b, Ano18b, Ano19, Ano21a, AM07b, Bro19, Car09, DB08, GSA08, Gha19, Giv07, Giv08, HXSH19, JACK20, MCE13, MGJS15, MB12a, Mis09, Pan08, PP10, PVS17, SS10, SZ17, TFFP18, WNMW16, ZZS+19, JS06b, Ano21b, BmH98]. Issues [Bel94, NS97a]. Itemset [ASG20]. Iteration [HF14a, HF14b].
Iterative [MS11, PDN21, Rau96, ZFH+19]. Iterator [GS11].
J [Swa88]. Jacobi [HOZ06]. Jacobians [BUMS02]. Java [AHKR01, FSS06, JQJ+16, JMSG02, KF99, WGW04, WP00]. Job [LLL+15, NSS12, WW17]. Join [RK92].
Joint [HOZ06]. journal [Ano86b]. JPEG [SEP08]. Just [SA19].
kD [STF+12]. kD-tree [STF+12]. Kernel [LYG+18, ZYOY13]. Kernelized [WCC16].
Kernels [SSB+17, WSO+07]. Key [LKS+20, PZL+19]. Keyword [SNS21].
knapsack [LS92]. KNMF [LKS+20].
Kutta [BP17].
L [MSA+07]. Lab [ZC09]. Lab-on-Chip [ZC09]. Labeling [SH87, Swa88]. LACross [ZJG17].
Lagrangian [RSV+05]. LALP [MCFM12]. LALR [BNWL90]. Landing [MSJ20]. Landslide [WCC20]. Language [ARB+05, BARSW95, BCL17, CFB94, FCZ16, FOS89, GSO6, HUd86, KS97, MCFM12, MPR+05, SM09, TEFK16, WL16, WK20].
Languages [Ano19, CK02, FMSG17, Lai90, PS92, NPD99].
Laplace [CTB14]. Large [Cza17, GL18, HC17, HR11, HKJ+18, KKKZ12, LTSD15, LSA+07, LWGZ18, SGJ+03, SWF+17, WW17, ZXZ12].
Large-Scale [HC17, KKKZ12, LWGZ18, SWF+17, WW17]. Latency [AK96, Bos12, HZL16, JG97, LSHK09, MEP07].
Lattice [HLP11, SMN09, SKG09]. law [Ano87a, PM07]. layer [OATGE15b].
LEACH [KA120]. Leaks [JGP+18]. Learning [CR19, CDDM18, DS16, FFS18, FKM+11, MAWD+16, OA21, PF21, ZJG17, ZD19].
Learning-Based [ZJG17]. Leases [CM06]. least [Ano86a]. Left [MP04]. Legal [KP95].
Length [EM14, VHK+18]. Lessons [Hal86].
Level [AG06, Ano16a, Ano19, BCL17, Bro15, Bro19, DPT17, GGE19, GBLG10, GKL18, Gre16, GHD19, GH18, HTDL18, Jan15, KP05, LLW+17, LQWP10, MHC98, MKAP05, SSP+00, SSEA14, SH96, SUCV17, SM94, SASH12, Tou05, WMN+17, XODFV+09, YWW+19, ZLJ+17, BC10, HK14, NN95, WS08, Kes20, Ano21a]. Levels
Model-Based [BEJD21, RK13]. Modeling [AA15, Ano18a, AMP+05, BS07, HYBA18, KMjC02, LEA15, Mar17, MCE13, MGJS15, MOL05, PCT+13, PVG17, Pra86, SS21, TLS05].

Modelling [BKK20, VNU19]. Models [BFS05, CAT18, Den94, FLMR17b, HHC+15, ID08, KP05, Mat17, NAP02, RNJ+12, SMSH13, SS01, Ski91, SDL17, VMS15, VCP+13, AD86, DM87, FLMR17a].

Modern [HYBA18, KPS14, LG10, LQWP10, ME15].

Modifications [Hue97]. Modular [NdMM09]. Module [AAN+20]. Modules [DJR16, SQH92].

Modulo [AG98, EDA96, GRAG00, LJ08, Rau96].

Modulo-Scheduled [GRAG00]. Molecular [ACC+02, BS07]. Molecule [KLK16].

Moment [SSB21]. Monitor [LTL15].

Monitored [LJE05]. Monitoring [GAK20, NBN+15, ZXY+15].

Monoparametric [LAR21]. Monte Carlo [BJM20b, PES+18]. Monte Carlo [BJM20b, PES+18]. more TM [Ano87d].

MORPHEUS [GBM+11]. Mosaic [MPAG18]. Motion [MVD+14, TSS99].

Motivation [HmWR97]. Movement [CFB94]. Moving [HAA+11, ZQT20].

MPI [AJF16, BS07, BES+10, ES11, FPY08b, GJR09, GSY+13, HKM09, LSM+18, LWP04, MOL05, MANR09, NSS12, RA09, SS01].

MPI/PVM [ES11]. MPJ [JQJ+16].

MPSoC [ID08, OPLS17, RGB+08, SWZ+15].

MPSoCs [GHR20]. Much [MT96]. Multi [AOAM21, AH08, AKHD13, ABvK+13, AML+10, ABB+10, BEJD21, BM09, CSF+20, CZ12, CB19, CTB14, DS97, DS16, DTLW16, DJR16, FLD15, GM20, Ged13, GMB06, GGV17, GS06, HML+20, HtBK+10, JCH+08, JDF20, KBG+08, LYG+18, MXP14, MV17, MG15, MHCF98, MFGEL19, NdMCdMMW16, OATGE15b, PCJ20, QZP15, RFP18, RC16, RG18, RTD20, RD08, RK13, SSP+00, SENA14, SAI+20, fSxWC18, SSB+17, SFAG14, STB+18, Sun11, VSDK09, WQJY17, WLL17, WSC20, WK20, XOdFV+09, YWW+19, Zha10, ZGH+15, Ali86, AGT17, QGT+19]. Multi-agent [STB+18]. Multi-app [DJR16].

Multi-attitude [WSC20]. Multi-BSP [GM20, AGT17]. Multi-Component [fSxWC18].

Multi-Core [ABvK+13, AML+10, ABB+10, GGV17, RPF18, SENA14, Zha10, BEJD21, CZ12, Ged13, HML+20, MXP14, NdMCdMMW16, QZP15, RC16].

Multi-cores [RTD20]. Multi-device [MFGEL19].

Multi-dimensional [RG18, WLL17]. Multi-domain [RK13].

Multi-external-storage [CSF+20].

Multi-Fault [AKHD13]. Multi-GPU [CTB14, SFA14, WK20].

Multi-GPUs [QGT+19]. Multi-layer [OATGEL15b].

Multi-Level [MHCF98, SPP+00, XOdFV+09, YWW+19].

Multi-ML [AGT17]. Multi-Orientation [LYG+18]. Multi-path [JDF20].

Multi-Prefetcher [GMB06]. Multi-process [PCJ20].

Multi-process/Multi-thread [PCJ20].

Multi-Processor [HtBK+10, BM09, KBG+08, ZGH+15].

Multi-processors [AH08, DS97].

Multi-queue [CSF+20]. multi-sequential [Ali86].

Multi-sink [SAI+20].

Multi-thread [PCJ20]. Multi-Threaded [MG15, VSDK09, DS16, GS06, RD08].

Multi-threading [DTLW16].

Node-to-Node \textsc{Hzzs20}. Nodes \cite{Bea19, Nbn15}. Non \cite{Bgi7, CstG03, Lks20, Spr92, Con88, Lp94}. Non-blocking \cite{Bgi7}, Non-negative \cite{Lks20}. Non-overlapping \cite{Spr92}. Non-shared \cite{Con88}, non-singular \cite{Lp94}. Non-Strict \cite{CstG03}. Noncoherent \cite{Bbgm95}. Noncyclic \cite{Jb98}. Nonnegative \cite{Dzw10}. Nonsingular \cite{Ok99}. Normal \cite{Tg05}. Normalization \cite{Qgt19}. Note \cite{Ano14, Ano16a, Ano16b, Ano18b, Ano19}. Novel \cite{Aatt20, Cscl20, Dmms91, Lks20, Oxl17, Qfra19, Wwg19}. NUMA \cite{Bfg10}. Number \cite{Altt17, Hr11}. Numerical \cite{Efed05, Pes18, Ykld17, Zey05}. NVM \cite{Gzj18}. O \cite{Ak14, Csf20, Mg15}. O2000 \cite{Cml04}. Obfuscator \cite{Fdy19}. Object \cite{Bbc07, Djr16, Fmsg17, Gs11, Gs13, Jm20}. Object-Oriented \cite{Gs11, Gs13}. Objects \cite{Gk94}. Obtain \cite{Nrr99}. Obtaining \cite{Xzt20}. oc came \cite{Cam89}. ODE \cite{Mldp02}. Off \cite{Zk07}. Off-Chip \cite{Zk07}. Offloading \cite{Jm20}. OFSCHED ULER \cite{Lsyg15}. OLPCA \cite{Dmpm18}. OMP \cite{Gsj19}. OMP2001 \cite{Tsbo3}. On-Chip \cite{Gi13, Kkzn12, Mvb10, Ah08}. On-Line \cite{Zc09}. On-the-Fly \cite{Jdf20, Ksj14}. One \cite{Fea92a, Skg09, Ww17}. One-dimensional \cite{Fea92a}. Online \cite{Cljh16, Cys16, Hzl16, Rc16, Smsg13}. onto \cite{Sdjs98}. Ontology \cite{Af06}. Open \cite{Aml10, Cie91}. OpenCL \cite{Jss15, Rg18, Ssb17}. OpenHMPP \cite{Aab16}. OpenMP \cite{Am07b, Abb10, Bds07, Bgs09, Bfg10, Bs07, Bg19, Dfc10, Dfa09, Fmsg17, Fm09, Gsa08, Hmk09, Ha11, Jch08, KaM10, Ksj14, Mg15, Mfg08, Mbe03, Mms07, Nio03, Oos08, Op10, Ssb21, Wpc07, Ykl17, Astt07}. OpenMP/mpi \cite{Beg10, Hmk09}. OpenUH \cite{Ceh13}. Operating \cite{Cys16, Jgz20, Np01}. Operation \cite{Fld15, Nb15}. Operational \cite{Cam89}. operationally \cite{Dm87}. Operation \cite{Cys16, Jg20, Np01}. Operational \cite{Cys16, Jg20, Np01}. Operations \cite{Abass12, Bgi7, Fpy08b, Iba11, Ml15, Szh18}. Operational \cite{CstG03}. operationally \cite{Dm87}. Operation \cite{Cys16, Jg20, Np01}. Operation \cite{Cys16, Jg20, Np01}. Operators \cite{Dm87}. Optimization \cite{Gai89}. Optimisation \cite{Gl18, Pp08}. Optimised \cite{Zha10}. Optimising \cite{Vnu19}. Optimization \cite{Ak18, Alp19, Cfb94, Cslc20, Cpmc96, Cs97, Crm17, Dlx17, Glh17, Gmwhr98, Hzzs20, Htmg12, Jgz20, Kai20, Ldh15, Lm00, M90, Nio03, Nmcdd16, Oo07, Pcp13, Ry20, Rlh14, Sr06, Ssea14, Sca11, Sa19, Shz14, Yhgw16}. Optimization-Based \cite{Shz14}. Optimizations \cite{Bkt08, Bgi9, Kseg14, Lhlt19, Le19, Ml00, Mo91, Nio03, Nmdcmww16, Oo07, Pcp13, Rhy20, Rhl14, Sr06, Ssea14, Sca11, Sa19, Shz14, Yhgw16}. Optimization-Based \cite{Shz14}. Optimization \cite{Aza18, Alp19, Cfb94, Dm17, Gt18, Dps90, Dpl86, Gar16, Ma87, M90, Smm94, Ykm03, Zlj17, Eg86, Rb86}. optimality \cite{Gai89}. Option \cite{Ger10}. OR- \cite{Sh96}. OR-Parallel \cite{Ak90b, Azi86, Cie91, Tin88}. OR-Parallelism \cite{Ak90a}. Order \cite{Bs15, Bp17, Csd21, Jdf20, Msj01, Npd89}. Order-Aware \cite{Jdf20}. Ordering \cite{Is03, Dm87}. orders \cite{Pra86}. OREGAMI \cite{Lrg19}. Organization \cite{Am04}. Orientation \cite{Lyg18}. Oriented \cite{Adc17, Fmsg17, Gs11, Gs13, Kksp18, Kk20, Lvm16, Rgb08, Sr06, Ssm21, Aab14, Cz12}. Origin \cite{Ipr05}. Orthogonal \cite{Ssb21}. OS-Based \cite{Fci11}.
OSD [AGPGF14]. Osmotic [FBV21].
Other [OP10, SS89]. Out-of-Core [SHLJ17, SMDJ19]. Out-of-Order [BS15, CSD21, MSJ01]. Output [CDRV98].
Output-Dependences [CDRV98].
Overhead [CTB14, KCW+05, OPLS17, SJBV06]. Overheads [BGdS09, LJ08].
Overlap [BG17]. Overlapping [IKN00, Spr92].
Overview [BML+13].
P [Zha10]. P-SURF [Zha10]. P2P [GJR09].
P2P-MPI [GJR09]. PAB [GMB06].
PAB-Based [GMB06]. Package [KKSP18].
[CML04, ZLJ+17]. Page-Level [ZLJ+17].
PageRank [LEA15]. Panda [SBC17]. Para
[Hud86]. Para-Functional [Hud86].
Paradigm [EW96]. Paradigms
[DX14, Gen16]. Paragaph [BCL90].
Parallel [AKBPV19, APR+18, AMAH01, AM04, AK17, ACD+16, ABvK+13, AA15, Ano16a, Ano18b, Año21a, AVPG00, AJF16, BR14a, Bel94, BAF94, BARSW95, BGM11, BS03, BNWL90, BR14b, BUMS02, BDD+18, BDH+14, Bro15, Bro19, BJM20b, CGN+09, CPP+12, CY14, CSD21, CB86, Cra88, CSTMGL03, CDDM18, CAP88, Cza17, CPL+10, Dam07, DPT17, DDD+19, DMK21, DMMS91, DE00, DM17, DS97, DS16, Den94, DX14, DZW10, DGM09, DSR17, ECSS88, EHKT07, EK14, EK17, ELK18, ES11, FF518, FCRC16, GGE19, GBL10, Ger10, GS11, GS13, GP17, GF14, GK18, GYL92, Gre16, GB20, GTK+88, HSCI+16, HK14, HMF+13, HP13, HPVR1P15, HLS15, HS16, Hu91, HAA+11, IH04, Jan15, JWE16, JLMW15, JKO3, Joh94, KS90, KK11, KS97, Kés20, KJHB14, KFC08, KGK20, KBG+08, Kuc94, KR87].
Parallel [LMP98, LTF+12, LYL14, LHL+16, LT17, LLL+15, LY95, LSL94, LWLG11, LHLT19, LBT17, Lo90, LCL17, LYG+18, Lüb90, Lys08, MXP14, MMN15, MLdp02, Mar09, MAJD16, MM16, MG15, MCA98, Mer86, Mil88, Moh19, MVD+14, MFGEL19, NB15, NRGB17, NdM10, NdMC1M16, NdM1W16, NSS12, NST99, OOR13, OP10, OGP+16, ÖA21, Ö007, OG11, PW92, PGLC+18, PND+04, PTD+06, PVAE98, PM17, PR99, PCJ18, QFRA19, RK92, RK87, Rie00, RTO20, RSV+05, RMMG+13, RGB+08, SGK12, SH87, SI11, SS92, SMN09, SMSH13, SQRH92, SSM21, Sek09, SF20, SM09, SAS18, SO89, SKAT91, SKi91, SR09, SSB21, Spr92, SS92, SK71, SC88, SHZ+91, Swaa88, TSS09, TRLO9, VK88, VRGC19, WCC16, WL16, qWIJZKc17, WR18, WS15, WZB+92, WE18, WY+18, YH18, YBRM14, Zha89, Zha10, ZZS+19].
Parallel [ZQT20, ZWJK05, uRHH14, ACD+14, BCL90, BCK98, Con88, DPL86, EG66, EO88, GN89, GZ87, GKMB87, Hu89, JGA89, JF98, Ken94, KVM+87, KM86, LRG+91, LS92, Par66a, Par86b, Par88c, TSS86, Wai87, WB87, AK90b, Lin91a, Ali86, Cie91, SRT+88, Tin85].
[AER+17, ADC+17, ACC+01, BS03, BJM20a, DV97, EW96, GVB+06, GGV18, GHDF19, Gsc07, GL92, HP01, KP04, LFL+17, LS20, MT96, MMS07, RSK09, SSEA14, SSNS16, SH96, SASH12, Tou05, WS08, WW17, XOdDV+09, BS99, CG94, Sch92, VR88, AK90a]. Parallelization [AAB+16, BG17, BS07, CZ12, Co95, CAZ02, CF19, ELGE16, FLMR17b, FCRC16, FJO+16, GK94, GMS00, HML+20, Hue97, IS03, JCD+14, LQWP10, LXL17, MVD+14, NN95, PPQV16, RAP95, RLEJ19, SSP+00, SHK13, SJK+09, SKA96, SR15, SNS21, TFNG09, TH17, WNMW16, WdSAM+17, WP00, aMST07, FLMR17a].
Parallelize [MRIR16]. Parallelized
[CR19, ELGE17, HTK98, TMHT96].
Parallelizing
[CHCL14, GS11, KTT+99, ME15, WZG+17].
Parameter [BR14a]. Parameterized
[LW97], pareil
[Lin91b, Lin86, Lin87, Lin89, Lin90, Lin88b].
Parlog [FT87, Hun91]. Parsers [BNWL90].
Pars [IP90]. Parsing
[IP90, Lan90, PW92]. Part
[JS06a, Fea92b, KR87, RK87]. Partial
[AMW99, DM87, GM20, RSP20, Pra86, SZH18]. Partial-PreSET [SZH18].
Partitioning-Independent [EW96].
Partition [NdMCdMMW16, RLH14]. Partition
[WLL17]. Partitioned [AT91].
Partitioning
[CpG01, EW96, FCJV99, GAR+16, Iqb91, KEKK16, LGY16, Lys08, MRR16, NS97b, OPLS17, PD21, SMN09, SWZ+15, SC15, TG05, GZ87, KTV87, NK88, PD89].
Path-based [LJ08]. Pathfinder [JAW17].
Pattern
[ACD+16, BBR11a, CEP97, CPL+10, DDD+19, GHC+17, LY95+18, QA11, WSS18].
Pattern-based [BBR11a]. Patterns
[ALG+95, BDD+18, DMK121, DM17, DS16, FPY08b, LLL+15, RTD20, SHK13, YLB19, ACD+14]. Patterns-Based [BDD+18].
PBX/VoIP [AML+10]. PCIe [OXL+17].
PCM [SZH18, ZLJ+17]. PCM-Based
[SZH18]. PEMPIs [MOL05]. Per-Core
[SA10]. percolating [ACD+14]. perfect
[GE89]. Performance [AM95, APR+18, ASW+15, AK92, AD86, Ano19, AKT+14, BE14, BS07, BCG+10, Car09, CHY96, CHPC96, Cza17, DFH17, DB08, DCX+17, DMC+18, GWYQ18, GGE19, Gha19, GJK+05, GSY+13, GKB87, HRH08, HFR14a, HFR14b, HTmG+12, JSS+15, JLJ+18, JCH+08, KaM10, KTRZ+17, KJPN10, LLPB13, LPP16, L03, LWL+19, LY95, LWP04, LLSS03, LCL17, LWGZ18, MB12a, MCWW01, MS11, MOL05, MSPR18, MMS07, ME15, NFC+09, NdMM09, NP01, PJS+05, PGLC+18, FVAE98, RTD20, RSJ+14, SGR+03, SSEA14, Sca11, SA+20, SAL16, SCB+14, SA10, TSB03, TFK16, TKN+08, Tin88, VCP+13, WCC16, WGW04, WK20, YZ13, YBRM14, ZWJK05, ZJG17, dMP+03, BCK98, OXL+17].
Performance-Efficient [LWGZ18].
Performance-Portable [JSS+15].
Persistent [GW19]. Personal [HOZ06].
Personalized [LCT+20]. Perspective
[KBG+08, WEJS94]. Perspectives
[Ano16c]. Pessimistic [VSH+11]. Petaflops
[ACC+02]. Petascale [TAY+12]. PETRA
[ME15]. Petri [KMc02, LWDL17, RA94].
Phase [JHLM01, LGY16]. Phi
[BP17, Cza17, ELGE17, LLGC17, PES+18]. philosophers [RB86]. Phrase [LKS+20].
Physical [KLW+17]. Phytium [CFX+20].
Pin [JK12]. Pin-Based [JK12]. Pinning
[CR19]. Pipeline
[DF98, GG13, GRAG00, L08, SR04, Gai89].
Pipelined [AD89, Low00, MJ02, NdMMW16, SW+18, LAV98]. Pipelining
[BTB+13, GRAG00, OGP+16, RA94, YKM03, Gao86, WEJS94]. Piranha
[CGJK95]. Pitfalls [HML+20]. Placement
[ANS+12, DCX+17, JQWG15, SHZ+14]. Plane [Mer86]. Planes [LY95+18].
Planning [KCW+05, LCT+20, SI11].
PLASMA [YKD17]. Platform
[DTL16, DZW10, ELGE17, FSS06, GMB+11, LLW+17, SSK14, ZJG17].
Platform-Independent [FSS06].
Platforms [BC15, FRT+18, Gha19, HMF+13, MXP14, MNN15, MVD+14, PGLC+18, PVF21, RGB+08, VFIN12]. pocl
[JSS+15]. Point
[KSA+18, LTF+12, NST89, Ano86a, EG86].
Points [Mer86, SS92], Polaris [FWH+94].
Policies [BEP13, CML04], Policy [Roy10].
Polka [Dav87], Pollination [MSJ20].
Polling [Lin91a], Pollutant [RSV+05].
Pollution [MKAP05].
Polyhedra [LW97, QRW00], Polyhedral [DV97, IAR21, JCD+14, PCP+13, SA19].
PolyJIT [SA19], Polymorphic [CGPS18].
Polynomial [SWL05, ZYOY13].
Polynomial-Time [SWL05].
Pool [ACD+16], Pools [HR11], Port [CND95, IBA11].
Portability [KaM10].
Portable [JSS+15, LS91].
Porting [YKLD17].
positive [GHLN86].
Post [NS97b].
Post-Pass [NS97b].
Potential [HML+20].
Potentials-Based [PDN21].
Power [AOAM21, AVLV03, GHR20, JS10, NBN+15, PO07, RSP20, SWZ+15, SAI+20, WMN+17, ZLJ+17, ZGJ17].
Power-Aware [AOAM21, AVLV03].
Predictability [SS99].
Predicting [OA21].
Prediction [AOAM21, CEP07, JSHP97, LEG11, MOL05, SK14, TF96, ZWJK05, ZJG17].
Predictive [PCP+13].
Predictor [CHYP96].
Predictors [KMG01, LJ08].
Preface [CY14, WNMW16].
Prefetch [FDY+19, HGT+12, WLL+08].
Prefetch-Based [WLL+08].
Prefetch-Obfuscator [FDY+19].
Prefetcher [GMB06].
Prefetching [CTK+11, DJS12, GRV+17, GV99, HGT+12, HTmG+12, ZGH+15].
prefix [MA87, SS89].
Pregel [TH17].
Presence [JSHP97].
Preserving [DC20].
PreSET [SZH18].
pressure [LAV98].
Prevent [GMB95].
Price [Ger10].
Pricing [WWG+19].
Primitive [JHLM01].
Primitives [DeB87, JK86].
Priority [BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14].
Privacy [DC20].
Private [JJI15].
Probabilistic [LY95, LC11].
Problem [AT91, AVPG00, BR14b, DE00, Fea92b, MB12b, OATGEL15a, WS15, Fea92a, LS92, RB86].
Problems [HAA+11, Iqb91, LSM+18, LHP+17, Cie91].
procedural [JB98].
Procedure [KKMS99, SMM94].
Processes [CK02, GMS00].
Process [FPY08b, LCL17, QA11, SSEA14, KVM87].
Process-Based [LCL17].
process/Multi [PCJ20].
Processes [EAT14, Mai87, PW87, RS90, Tho87].
Processor [BGMR11, BKT08, FCJV99, FVvL+16, HtBK+10, JHLM01, KBD03, KTT+99, SMM94, TKN+08, WS08, WSO+07, XWH21, BM09, KPB+08, ZGH+15, Sca11].
Processors [AOAM21, AK96, AMKE18, BG03, Cra88, Giv07, Giv08, GE90, HYBA18, KLG08, KL00, LG10, LZ17, MSJ01, PG07, QZP15, RPF18, SKA96, SA10, WLL17, Zha10, AH08, DS97, Hem89, MA87, PW87].
PrODACT [FDY+19].
Productive [GHDF19].
Productivity [BCS+09, BS07, Car09, KaM10].
Profile [CMW+94, CPMC96].
Profile-assisted [CMW+94].
Profile-Driven [CPMC96].
Profiling [CPMC96, LPF16, ZD19, ZSH+12].
Program [Dar05, KH18, KKMS99, MCFM12, SNB04].
S [GG14, GSS10], S-Net [GG14, GSS10], SAC [GS06], Safe [ELK18, LSL94], Sage [Lin88a], Samal [Swa88], SAMOS [MCE13, PVS17], SARP [Lin91b, Lin86, Lin87, Lin89, Lin90, Lin88b], SARF [HZL16], SAT [VSDDK09], Satisfaction [BBB], SARP [Lin91b, Lin86, Lin87, Lin89, Lin90, Lin88b], SAMOS [MCE13, PVS17],Sampling [SHC15], Sans [Lin91b, Lin86, Lin87, Lin89, Lin90, Lin88b]. Satisfiability [CPL, Saturation [Tou05], SB [GRR98], SB-PRAM [GRR98], SBA [AG15], Scalability [ACC, BS07, CFX, CFF, GL18, GVV99, GL95, GN89, HC17, NP98], Scaled [CSD21, Mar17], Scaling [MAJ16], Scan [Mat17, KBD03], Scenario [UKT00], Scenario-Based [UKT00], Schedule [EDA96], Scheduled [CHPG96, GRAC90, PPEP98], Schedulers [SY98], Scheduling [DF98, NST89], Scheduling [ABASS12, AK99b, AO19, AK90a, AK92, AG98, AHKR91, AF15, BMA02, BR97, BKK+17, BHH06, BCC+, BM09, CGK05, CSC+, CAAK17, Cie91, CML04, EDA06, Fea92b, Fea06, FPCD14, GRAG00, LLW+, LSL94, LMHW18, MSJ20, MP95, MB12b, NIO+, NAB13, PDN21, PIN18, Rau96, RD08, SMM94, TF94, WLL17, WMC98, YH18, YHG16, CMW+, Fea92a, GN89, HC17, NP98], Schema [WTZ+, WWG+], Scheme [AKA+, FC11, GN20, GL18, GV99, GL95, KAI20, LGY16, Lin9a, LSL94, LJE05, NYHA14, SHZ+, WLL+08, YHG16, AD86, MI98], Scheme-Based [Mi98], Schemes [ASW, AMAH01, HC17], School [WMK19], Science [HLK+, Scientific [CAK17, DGMP09, HML+, IM+, MV17, SB+, TTF+, WSO+, SCnC [SSNS16], Scratchpad [CHCL14], SDN [AAM+, FBV21, SAI+, UWF+, SDRAM [LPB13], Search [BJM20b, DS20, GAR+, Ged13, Hun91, KS90, LY95, MB12b, MVD+, WTK19, AD89, DPL96, KR97, RK97], Searchable [AAI+, AA1+, AAI+06], Searches [LTF+12], Second [SS10], Section [Ano16d, Ano16c], Secure [AKA+, DDJ+18], Security [AATD20, MSIR18], Segmentation [LF15], Seismic [PTdSF18, Wai10], Self [KMG01, TFMP97], Self [DS20, EFED05, FKM+, HHH10, HC17, KFC08, LSL94, LJE05, NSS12], Self-Adapting [EFED05], Self-Monitored [LJE05], Self-Scheduling [LSL94, HC17], Self-stabilizing [DWS16], Self-Submitting [NSS12], Self-tuning [FKM+11], Self-verified [KFC08], Semantic [HHC+, KSF+, LQWP10], Semantic-Aware [LQWP10], Semantics [ACC+, Cam89, Hud86, Ric90], Semi [GBV+, KMV87], Semi-Automatic [GBV+, KMV87], Sensitivity [SLZB13], Sensor [CPT14, DM20, NBN+, RY20], Separation [SS92], Sequence [LHP+, SO89, ESS88, Hua89], Sequences [AK17, FJ+, Sequential [FCRC16, LNG12, TFNG09, WNWM16, Ali86], Serial [NIK00], Series [DMC+20], Server [AFM+, CYS16, Lj09], Servers [EAT14, NYHA14, RC16, WLL+17], Service [DWQ17, GAK20, Lj09, uRHH14], Services [HZL16, HHC+15], Set [API03, CZTM03, DDD+19, GFL00, HCEP08, Mer86, SRS06, WGW04, XZT20, SZH18], Sets [DWS16, FR95, LHF+, NRR99, SS92, EG98, several [Hem89], SFLA [DS20], SGI [CML04, IM+], Shape
[CAZ02]. Share [TV15]. Shared
[BS03, BS91, CCG+14, Cra88, FBGEL19, GV99, HML+20, HR11, LSL94,
Lub90, MMG04, MBE03, Nik00, NAP02, SNB04, SR15, SMG94, SS01, SS17, SSM,
SMO96, SY08, WQJY17, YBRM14, ZLD15, Con88, Cy87, GHLN86, Hem89]

Shared-address [HR11]. Shared-Memory
[BS03, CCG+14, FBGEL19, GV99, HML+20, LSL94, NIK00, NAP02, SMC94, YBRM14, GHLN86].

Sharing [CML04, GMB95, SNB04, YBDJ17].
Shifting [DH00]. SHMEM [SS01].
Shortest [AT91, OATGEL15]. Shortest-Path [AT91]. shuffle [GE89].
SIC [GN20]. Side [Gha19, LMHW18].
Side-Channel [Gha19]. Signal
[FVvL+16, NS97b]. Signals [vNR11].
Signed [GWHY19]. Significance
[VC+16]. SIMD [GS90, KJH+14, Moh19, PES+18, SBV06, SDJ98]. Similarity
[Cza17, Ged13]. Simple
[CL96, WS08, LS91]. simplicial [EG86].
Simplify [MFGE19]. Simplifying
[CA98]. Simulating [BH87]. Simulation
[ABvK+13, AA15, Anol8a, CSD21, Dem11,
GHR20, KWA+10, KP05, LJE05, MCE13,
MGJ15, MANR09, PPGV17, PPQV16,
SAB11, TGT18, Zey05, ZWJK05, GT86].
Simulation-Based [ZHK+05, KWA+10].
Simulations
[AS+15, CG+09, GZ18, HLP11, HF14a, HF14b, LLGC17, PES+18].
Simulator [WPC07]. Simulators
[MP+17, PC13, TCUV14]. Simultaneous
[LE+99, PIP18, WS08, WE18]. Single
[CB01, Fos89, HF14a, HF14b, PM07].
Singular [BMS02, LP94]. Sink
[PK20, SA+20]. SIMAL [AM95]. Size
[Low00]. SKA1 [FVvL+16]. SKA1-Low
[FVvL+16]. Skeleton
[DK16, DM17, EK14, ELK18, GRC+14,
GGV17, H04, RPF18, SFAG14, STB+18].
Skeleton-Based [GGV17].
Skeleton-Driven [GRC+14]. Skeletons

[CP14, DMK21, EM14, EK17, GKB,
JCD+14, KH18, SM16, WE18, WMSK19,
WK20]. SkePU [ELK18]. SkeTo [EM14].
Skew [HHW20]. Skewing [Wan02, Woi86].
Skewness [IR19]. Sliding
[NdMM09, SF20]. Sliding-Window
[NdMM09, SF20]. Slope
[WSC20]. Slots [BMA02]. SLR [BNWL90].
SMA [JEA05]. Small
[HZL16, HLP11, SCA11, SNS21].
Small-Ruleset [Sca11]. Small-World
[HLP11]. Smart
[DK16, KIT+20, MMD1, UWF+20, SJT13].
Smith
[FI+15, HFP+13, RSJ+19, TGO5, ZTY+19].
SMPs [BS03]. SMT [KLG08]. Snow
[TRL09]. SOC
[LVM+16, AML+10, KHH08, KBG+08].
Social [CLJH16, GWHY19, LCL19]. socket
[RC16]. Soft [VMA21]. Software
[AV+16, BTB+13, BKK20, CCL20,
CFF+06, DDJ+18, Dar05, DJS+12, FE+05,
GV99, GRAG00, HYBA18, HTK08,
JACK20, KWA+10, KAMAMA17, KIT+20,
KVG18, KCW+05, Lys08, MMG04, MJ02,
MGL+03, MSA+07, OXL+17, OPLS17, RA94,
RLPN+02, SWZ+15, SAL16, STM15,
YZZ20, YKM03, ZAV04, dMP+03, LAV98,
WEJS94]. Software-Defined [CSCL20].
Solid
[YJ+16]. Solution
[GM20, GHLN86, KS90, RB86]. Solutions
[BGB+95, BFRP+15, Foa91, RK92,
SdLC21, Fea9a12]. Solve [LSM+18]. Solver
[CF19, CBT14, KFC08, LDHL15, MLD10,
MFLP02, MLR16]. Solvers
[CJS21, GLLH17, NLRH07]. Solving
[AVPG00, VSDK09]. Some
[Fea9a12, Fea92b, VRCG19]. Sort
[PK03, WR18]. Sorting
[DMM+91, SKAT91, SJC18]. Sound
[RLK20]. Soundness [LWF+19]. Source
[AML+10, BML+13, GKB+14, HML+20, PK20].
Source-Code [GK94]. Source-to-Source
[BML+13, HML+20]. Space
[BS03, BS91, CCG+14, CRA88, GHLN86, Hem89].
KS90, KWA+10, LCU92, LWLG11, MB12b, PG07, PCP+13, SS01, SWL05, TAY+12, XZX+15, EG86, Hua89. **Space-and-Time** [LWL11]. **Space- Efficient** [XZX+15]. **Space-Sharing** [CMLO4]. **Spaces** [HR11]. spanning [Zha89]. **Spark** [GSP+17, HHW20, LXL17, RSA+18]. **Sparse** [BRR11a, CFC+19, CFX+20, HP13, KTRZ+17, KSA+18, LTSD15, LDHL05, LHTL19, LWGZ18, GN89, GHLN86]. **SparseNN** [LWGZ18]. **Species** [FJZ]. Speed-up [EG86]. **Speeded-Up** [Zha10]. **Speedups** [Gai89]. **Specialization** [FRT+18, GW19]. **Species** [FJZ+15]. **Specific** [Ap03, CZTM03, CB19, TIFE16, TOM+11, WL16, WK20]. **Specification** [Bds07, BS91, PC13, RA94]. **specifications** [Wai87]. **Spectral** [CS20]. **Speculation** [BS15, KVG18, WS08]. **Speculative** [AK92, CHPC96, Col95, ELGE16, JCD+14, KLG08, KJHJ14, KT01, LEG11, MS99, MKAP05, PPQV16, RKG04, RA99, TFNG09]. **Speculatively** [ELGE17]. **Speculatively-Paralyzed** [ELGE17]. **Speech** [PR99]. **Speed** [GE90, MSPR18, PV17, TGT18, EG86]. **speed-up** [EG86]. **Speeded** [Zha10]. **Speeded-Up** [Zha10]. **Speeding** [SAB11]. **Speedup** [Gai89]. **Speedups** [KS90, GS90]. **SPICE3** [WPC07]. **Spike** [CPP+12]. **Spill** [PB04]. **Spin** [HLP11]. **Spinnaker** [RJ+12]. **Spline** [AP86]. **Split** [WR18]. **Splitting** [GFL00]. **SPP** [SSMO96]. **SPP-1000** [SSMO96]. **Spread** [LEA15]. **SQL** [HHW20]. **SR8000** [TSB03]. **SSD** [OXL+17]. **stabilizing** [DWS16]. **Stack** [BEP13]. **Stacked** [LHP+17]. **Stage** [EHA96, PYC16]. **Stand** [DJR16]. **Stand-Alone** [DJR16]. **Standard** [FSS06, SUCV17, YKL17, NMMW16]. **Standard-Library** [SUCV17]. **StarCore** [PB04]. **State** [BR97, KS90, KPS14, LHL+16, OOR13, YJY16]. **State-of-the-Art** [LHL+16]. **State-Space** [KS90]. **Stateful** [ACC+01, DM17]. **States** [DDJ+18]. **Static** [BCC00, CB01, CSD17, HYBA18, Li03, MRL16, NI0+03, RRH03, Gao86]. **Statically** [BCL17]. **Statistical** [AAI+20a, AAI+20b, PYC16]. **Status** [An016c]. **Steal** [TV15]. **Stealing** [HHW20, YH18]. **Steiner** [BR14b]. **Stencil** [CB19, MS11, SBC17]. **Stiff** [MldIP02]. **STL** [HG18]. **Stochastic** [ASW+15, RSV+05]. **Storage** [AMAH01, CM06, JSPH97, LT17, NG92, WTZ+19, WTQ21, AH86, CSF+20]. **Storage-Centric** [CM06]. **Store** [BG96]. **Stores** [AZK+18]. **Story** [MSA+07]. **Straightforward** [MCT+18]. **Strassen** [uHKAMFM16a, uHKAMFM16b]. **Strategies** [CGJK95, CF19, FLMR17a, FLMR17b, LJO9, PK20, SA18]. **Strategy** [GSP+17, IS03, JM20, RG15, SL14, SH15, WR18, ZLJ+17]. **Stream** [GSS10, GHDF19, GHR20, RSA+18]. **RGB+08**, TF94, ZK07, SRV88]. **Stream-Conscious** [ZK07]. **Stream-Oriented** [RGB+08]. **Streaming** [BRR11b, CHCL14, HTBK+10, LJO9, MAB+11, SSNS16, VNU19]. **Streams** [CPP+12, DM17, Tic90]. **Strict** [CST10]. **Structural** [AMP+05]. **Structure** [EFED05, LWDL17, MGW99]. **Structured** [BABW14, Fea06, GGV18, HCEP98, MV17, MP95, NLRH07, SASH12]. **Structures** [BCL17, CL96, ELGE16, GL18, HGT+12, HTNG+12, JSPH97, RG15, SL14, SH15, vdSBW08]. **Student** [FJA+18]. **studies**

System-level [BC10]. Systematic [IR19, TH17]. SystemC [BFS05, CSD21]. Systems [Ano16c, Ano18a, Ano21a, Ano21b, AF15, AMP+05, ANS+12, BAP01, Bro15, Bro19, CHBO6, CS97, CAT18, DK16, DLR513, EWH511, ELK18, FLMRF02, FV21, FPCD14, FBGEL19, FJO+16, GWYQ18, HC17, HRH08, HbB+10, HSXH19, HLLK+09, KKS18, KK20, KTRZ+17, Kuc94, LLM+12, LFL+17, LSA+07, LMP05, MP91, Mar17, MCE13, MGJS15, MBE03, Pan08, PP10, PB01, PM07, SVG17, PO07, PPEP08, RK92, SGK12, SS21, SEP08, SS17, SFAG14, ST1+18, TSS99, TKN+08, US05, WS14, WLL+08, ZC17, AH86, Cie91, Dav87, GHLN86, Par86b, PD09, PW87].

Systolic [AP86, Ano87e, IP90, Lan90].
Telescop- ing [CK02]. Temperature [DKB+09]. Template [GF14, NCR+19].
Temporal [PMHC03, YYYY20], tenanted [WQJY17]. TensorFlow [JLJ+18].
Tera device [WGF+16]. Terascale [GCD+03], termination [Tho87]. Test
[CPL+10, KJH14, SRS06, BS89]. Testing [TCUV14, ZC09, MA87]. Tests [JW16].
Text [FCZ16, KSF+18, LYL14]. TFlux [DTLW16]. Their
[CGJK95, LW97, RG18, ACC+01]. Theory
[GRAG00, RSJ+14, CP88]. Things
[HZZS20, JACK20, KIT+20, KAI20, MMD21, PCJ18, SA1I20]. Thread
[AO19, AMKE18, CPL+10, DSR17, JG97, KGK20, ZGH+15, PCJ20, WS08].
Thread-level [WS08]. Thread- Parallel [CPL+10]. Threaded
[HGT+12, HTmG+12, MG15, VSDK09, DS16, GS06, RD08].
threading [DTLW16]. Three
[ABASS12]. Three-Argument
[ABASS12]. Throughput
[AKT+14, BB11b]. Throughput-oriented
[AKT+14]. Thr ough
[AHKR01]. TIDeFlow [OGP+16]. Tightly
[SS01]. Tightly-Coupled
[SS01]. Tikhonov
[ADC+17]. Tiled
[FC11, OOR13]. Tiling
[IAR21, MHCFC98, XH98, ZK07]. Time
[BBB+17, BEJD21, DWS16, DMC+20, FJA+18, FCJV99, Fae92b, FJ0+16, GAK20, KCW+05, LCQ92, LLL+15, ILWG11, LCT+20, MWES19, PTdSF+12, RSP20, RSA+18, RAP95, RK13, SWZ+15, SA19, SWL05, Wom02, YKM03, BG17, EWHSS11, Fae92a, HtB+10, TTF+08, vdSGBW08].
Timed
[GHR20]. Timed-Value
[GHR20]. Times
[SB01]. Timing
[FDY+19, GHR20, MP91, WQJY17, WMN+17, YDV19].
TINPAR
[KTT+99]. Tissue
[LLGC17]. Tissue-Scale
[LLGC17]. TLB
[JS10, VFIN12]. TM
[SUCV17]. TM-Based
[SUCV17]. TMT
[VFIN12]. Tokenization
[Sca11]. Tolerance
[AKHD13, NRR99, WGF+16, ZLJA12]. Tolerant
[EAT14, GCD+03]. Tolerating
[AK96, JG97, LG10]. Too
[CHSC18, MT96]. Tool
[FG16, KAMAMA17, KSJ14, ME15, PDN21, PVAE98, WMN+17]. Tools
[ALG+95, ARB+15, DGMT90, LRG+91, Lub90, CB86]. Top
[Sca11]. Top-Performance
[Sca11]. Topological
[GE89]. Topologies
[MVB+06]. Torus
[IBA11]. Trace
[MAI87, RLPN+02, RLEJ19, RD08]. Trace-based
[RD08]. Traces
[MANNER09]. Tracing
[BEJD21, ZD19]. Traffic
[ANS20, GAK20, PYC16]. Training
[JCW+18, LYL14, QGT+19]. Transaction
[AA15, NBA13]. Transaction-Based
[AA15]. Transactional
[CRM17, GRC+14, MFG+08, PMM+18, SAL16, SW16, SH15, VSH+11, WS14, YZZ20, ZSH+12]. Transactions
[CHSC18, DTLW16, SD11]. Transfer
[SR04]. Transfers
[ALPS19]. Transform
[BC15, DLR13]. Transformation
[HSCI+16, IKN00, KH18, fsxWC18, SAS12, vSGBW08, LP94].
Transformations
[AG06, AMP01, GVB+95, HRC17, JS10, KP95, KP01, MO90, OK99, SPS14, TH17, VNU19, WMC98, YAI95]. transformed
[AN09b]. Transforming
[BS89]. Transient
[LG10]. Transition
[OOR13]. Transitive
[CAP88, KPRS96, VK88]. Translator
[ABV+13]. Translators
[KCW+05]. Transparent
[PSM97, PPQV16, YZZ20]. Transport
[CJW00, VHK18, Zey05]. Transpose
[LBP13]. Transpositions
[JGM15]. Travel
[LCT+20]. Traversal
[STF+12]. Traversing
[ZHF+19]. Traversing-Based
[ZHF+19]. Tree
[BR14b, BJM20b, GH89, KF99, MM16, PS92, PW92, SM16, SMC94, SWF+17, WR18, YJY16, DPL86, MA87, STF+12, PYX17]. Tree-Based
[KF99, SWF+17]. Trees
Triangular [MMN15].

Triangulating [Mer86, EG86]. Trie [AR16].

Triggered [CJA00, VHK+18]. Trin [JK12].

Triple [DC20]. True [BAF94]. TrustZone [KHT21].

TuCCompI [OATGEL15b].

Tuned [LAD15]. Tuning [BG17, CCG+14, LEL+99, OATGEL15b, FKM+11, Ged13].

Tunnels [KLI16]. Two [BARSW95, EHKT07, FJO+16, HFM88, JHLM01, LPB13, LLW+17, LS05, SS92].

Two-Dimensional [BARSW95, EHKT07, LPB13]. Two-Level [LLW+17]. Two-Phase [JHLM01]. Type [CP88, ELK18, HZZ+19, VNU19].

Type-Driven [VNU19]. Type-Safe [ELK18]. Typed [BBC07, BCL17]. types [Win89]. TzmCFI [KHT21].

UAV [SI11]. Uintah [PHS19, dMP+03]. Unbalanced [OP10]. Uncover [WS08].

Understanding [STF+12]. Unequal [YBDJ17]. UniCNN [SWG+18].

Unification [SSNS16, CRM92]. Unified [DLRS13, HPY+01, RK13]. Uniformed [SWG+18]. Uninterpreted [CFF+06].

Union [CAP88]. Union-Find [CAP88].

Unit [JW16]. UniTi [RK13]. Units [CPP+12, JGM15, RG15, SAB11].

Universal [GP94]. Unroll [BB+13].

Unrolling [Sar01]. Unstructured [qWLIzKhC17]. Update [SMDJ19].

Users [AKA+20, BBB+17, Kuc94]. Using [AKBPV19, APR+18, AAN+20, ASC20, BR97, BKK20, BEJD21, BAF94, BABW14, BJM20b, CHPC96, CPT14, CS20, Col95, CFF+06, DeB87, Dem11, DS16, DTLW16, DMC+18, DMC+20, DJR16, DS20, ELGE17, FFS18, GAR+16, GG14, Gk94, GN20, GG13, GRAG00, GAK20, GH98, GE990, HG18, HLP11, HHW20, HP13, ID08, JM20, JG97, JCD+14, Joh94, KH18, KKSP18, KMjC02, KHT21, KP95, uHKAMFM16a, uHKAMFM16b, KAI20, KPO5, KGK20, LPB13, LLGC17, LQWP10, LS05, LNG12, LEA15, LM00, LBT17, LKS+20, MSJ20, MCWK01, MANR90, MKAP05, NIK00, NIO+03, NRR99, NAB13, OA21, PLN+04, PPQV16, FMV17, RA94, SY20, RLH14, RSA+18, RSJ+14, RLK20, SSEA14, SAB11, fS18, SSB+21, Snu11, TSB03, TCUV14, TFMP97, ZC09, AD86, HAA+11, IPR+05, KIT+20]. Utility [ASG20, YBDJ17].

Utilization [JHLM01, MGW99, ZLAV04]. Utilizations [GHC+17]. Utilizing [CPL+10].

V [IPR+05]. V-Class [IPR+05].

Valedictory [Lin92]. Validation [AML+10, DSR17]. Validity [OK99].

Verification [AG06, BFS05, CHB06, CFF+06, FG16, LMPS05, SRS06, US05]. Verification-Oriented [SR06]. verified [KFC08]. Verifying [AKBPV19, Win89]. Versatile [KSJ14]. Version [YAI95].

versioned [SSB+17]. Vertices [LW97]. via [EDA96, FRT+18, HCEP98, SSS+96, ZK07].

ViBe [QZT20]. Video [DLRS13, KBD03, SY20, SSEA14, TSS99].

Videos [WZG+17]. Virtual [AATD20, EGJS15, HHW10, JQWG15, LCU92, LVM16, PO07, RLK20, SHZ+14, XLWX19].
Virtualized [VF+12]. Visibility [DPS09].
Vision [NC+09]. Visual
[CPT14, QFRA19]. Visualization
[SJKA99]. VLIW [ABASS12, CND95, CS97, GBPK07, ZLAV04]. VLSI [PP10]. VM
[WHC17]. VOD [LJ09]. VoIP [AML10].
Volatile [CCL12]. Volume [LYG18].
VORD [KSJ14]. VPPE [QFRA19]. vs
[NAP02]. Vshadow [WLW17].
Vulnerability [OA21].

Wait [FLD15, LFD17, Sun11]. Wait-Free
[FLD15, LFD17, Sun11]. Warm [LJE05].
Warm-Up [LJE05]. Warp [Lys08].
Waterman
[FWZ15, HMF+13, RSJ19, ZTY19].
Watermarking [GP17]. Wave [LS07].
Waveform [CCL12]. Wavefront
[LS20, Wol86]. Wavelet [BC15]. way
[DPL86]. Weak [BAP01]. Weakly [DWS16].
Web [HHC+15, NYHA14]. Weight [CM06].
Weighted [Ken01]. Which [Gen16]. while
[Col95, GL95]. while-Loops [Col95]. Who
[JK12]. Window [DM17, NdMM09, SF20].
Window-Based [DM17]. Winograd
[uHKAMFM16a, uHKAMFM16b]. Wireless
[DM20, RY20]. within [LL15]. Without
[LBP13]. WolfPath [ZH19]. Word
[FLD15, Sun11]. Work [AK92, YH18].
WorkCrews [VR88]. Workflow
[CAK17, LWF19, SDL17]. Workflows
[BEA+19, TTF+08]. Working [FR95].
Worklist [GRC14]. Workload [OP12].
Workloads [VCP13]. Workshop [SS10].
Workstation [NIK00]. Workstations
[LS05]. World
[GHM14, HLP11, WLW17, YLB19].
Wormhole [LNP91]. Write [MV17].
Written [KaM10]. WSN [PK20].

x86 [GL15]. XDP [CFB94]. Xeon
[BP17, Cza17, LLGC17, ELGE17, PES+18].
Xeon/Xeon [Cza17]. XI [MCE13]. XV
[PVG17].

Y-Invalidate [BAP01]. Yield [SS17].
YuruBackup [XZX15].
Zone [JCH08, MS11].

References

REFERENCES

[Attali:2001:EFI] Isabelle Attali, Denis Caromel, Yung-Syau Chen,

Almasi:2002:DSM

Almasi:2002:DSM

Aldinucci:2016:PEP

Marco Aldinucci, Sonia Campa, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati. Pool evolution: a parallel pattern for evolutionary and symbolic computing. *International Journal of Parallel Programming*, 44(3):531–551, June 2016. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-
Almeida:1986:PAS

Akl:1989:PSC

Arcucci:2017:DTR

Aguilar:2017:TPE

Arras:2015:LSE

Aiello:2006:EOS

Araujo:2008:PAG

Altman:1998:OMS

Abdi:2006:VSL

Araujo:2015:GES
Aviles-Gonzalez:2014:SMM

Allombert:2017:MMP

Ali:1986:GGC

AlFaruque:2008:QSC

Arnold:2001:EIB

REFERENCES

[AK96] David H. Albonesi and Israel Koren. A mean value analysis multiprocessor model incorporating super-scalar proces-

Alam:2017:PAG

Alam:2017:PAG

Ahmed:2020:SPS

Abadi:2020:VPC

Abraham:1998:MST

Ali:2013:MFT

REFERENCES

Part of the BC-machine project, SICS, Sweden.

[AM95] David Abramson and A. McKay. Evaluat-

Al-Mouhamed:2004:AOP

Ayguade:2007:I

Ayguade:2007:SIO

Al-Mouhamed:2001:ENG

Arandi:2018:DDT

[SAMK18] Samer Arandi, George Matheou, Costas Kyriacou, and Paraskevas...

Apostolakos:2010:DIV

Ahmed:2001:STL

August:2005:ASC

anMey:2007:NPO

REFERENCES

Anonymous: 1987:C

Anonymous: 1987:FDL

Anonymous: 1987:ICI

Anonymous: 1992:IAS

Anonymous: 2000:GEI

REFERENCES

Anonymous:2000:Ia

Anonymous:2000:lb

Anonymous:2001:1

Anonymous:2003:E

Anonymous:2014:EN

Anonymous:2016:ENH

Anonymous:2016:ENS

Anonymous:2016:ENSb

Anonymous:2018:ENSa

Anonymous:2018:ENSb
Anonymous:2019:ENS

Anonymous:2020:EN

Anonymous:2021:ENSa

Anonymous:2021:ENSb

Awasthi:2012:MDP

REFERENCES

Ahmad:2020:CHV

Akturk:2019:ATS

Al-Obaidy:2021:PAH

Ajjanagadde:1986:SAB

Atasu:2003:AAS

Ahmad:2018:MDP

Areias:2016:LFH

Azevedo:2005:AAD

Ahn:2015:FAP

Tito Autrey and Michael Wolfe. Initial results for glacial variable analysis. *International Journal of Parallel Program-

[AVPG00] Arias:2000:PLP

REFERENCES

REFERENCES

Banerjee:2004:GEIa

Banerjee:2004:GEIb

Ben-Asher:2001:INP

Ben-Asher:1995:FPF

Blough:1990:NOM

Barone:2017:AFQ

[BBB+17] G. B. Barone, V. Boc-
REFERENCES

[BC10] Unmesh D. Bordoloi and Samarjit Chakraborty. GPU-based acceleration

[BBG95]
REFERENCES

Bernabé:2015:AEF

Barthou:2000:MSE

Berman:2005:NGS

Bianchini:1998:EEC
REFERENCES

REFERENCES

Beamonte:2021:AGM

Bell:1994:SPC

Bilardi:2013:ESD

Broquedis:2010:FEO

Boton-Fernandez:2015:CAA
María Botón-Fernández, Manuel Rodríguez-Pascual, Miguel A. Vega-Rodríguez, Francisco Prieto-Casarrillo, and Rafael Mayo-García. A comparative analysis of adaptive solutions for grid environments. International Journal of Paral-

[BGdS09] Greg Bronevetsky, John Gyllenhaal, and Bronis R. de Supinski. CLOMP: Accurately characterizing OpenMP application overheads. International Journal of Parallel Pro-

[BMA02] Ivan D. Baev, Waleed M.
REFERENCES

[Meleis:2002]

Beaty:1998:FSI

[BmH98]

Bermudez:1990:PCS

[Ber90]

Bos:2012:LLE

[Bos12]

Bae:2013:CSS

[Bae+13]
Bylina:2017:EFO

Bala:1997:EIS

Baumann:2014:PP1

Bezensek:2014:SPD

Brooks:1986:BBM

Brown:2015:HLH

Brown:2019:GES

Bansal:1989:TGT

Benkner:2003:EDM

Brown:2007:HSP

Russell Brown and Ilya Sharapov. High-scalability parallelization of a molecular modeling application: Performance and produc-

Baudisch:2015:ESO

Bachir:2013:MUF

Choi:2017:DLA

REFERENCES

Camilleri:1989:OSO

Cybenko:1988:PPU

Carriero:2009:GEI

Cuomo:2018:GEP

Corbera:2002:NSA

REFERENCES

http://ipsapp009.lwwonline.com/content/getfile/4773/25/2/fulltext.pdf;

Chiarulli:1986:PMT

Chakrabarti:2001:SSA

http://ipsapp009.lwwonline.com/content/getfile/4773/20/2/fulltext.pdf;

Coullon:2019:ECM

Che:2017:PGG

Camara:2014:EIL
REFERENCES

REFERENCES

Chang:1997:IBP

Chen:2019:OSM

Currie:2006:ESV

Carter:1994:XCI

Crivellini:2019:OPS

CFB94

CFF06

Chen:2020:CSS

Carriero:1994:CSA

Carriero:1995:PSS

Ciobanu:2018:CPR

Chao:1995:MRD

Heng-Yi Chao and Mary P. Harper. Minimizing redundant dependencies and in-
REFERENCES

[CHPC96]

[CHB06]

Chen:2006:VAM

[CHCL14]

Chen:2014:PCS

Zhiwen Chen, Xin He, Jianhua Sun, and Hao Chen. Have your cake and eat it (too): a concurrent hash table with hardware transactions. *International Journal of Parallel Programming*, 46(4):699–709, August 2018. CODEN LIPPE5. ISSN 0885-7458

Chen:2018:YCE

[CHS99]

Conte:1999:EIa

[CHCL14]

Chen:2014:PCS
Chang:1996:BCN

Creusillet:1996:IAR

Ciepielewski:1991:SPP

Corporaal:2000:CCT

Coleman:2021:FRM

Chauhan:2002:RVP

Cosnard:1996:SAG

Cao:2016:DFB

Chockler:2006:LWL

Conte:1999:Eib

Corbalan:2004:PMD

REFERENCES

[CP88] Rance Cleaveland and Prakash Panangaden. Type theory and concurrency.

[Conery:1988:BEP]

[Clapp:1990:CCR]

[Conery:1988:BEP]

[Clapp:1990:CCR]

[Conery:1988:BEP]

REFERENCES

[CPG01]

http://ipsapp009.lwwonline.com/content/getfile/4773/13/4/fulltext.pdf;

[CPL+10]

http://ipsapp009.lwwonline.com/content/getfile/4773/13/4/abstract.htm;

[CPMC96]

Milos Cvetanović, Zaharije Radivojević, and Veljko

Conte:1997:OVC

Chabkinian:2016:FL

Chidambaram:2020:OFS

Carter:2000:PAR

Chiang:2020:NAB

Caragea:2011:RAC

Cascaval:2013:GEC

Chiang:2016:OSE

Ching:2012:APA

Carretero:2014:PDP

REFERENCES

REFERENCES

August 2018. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Daumas:2000:PIS

DeBenedictis:1987:MUP

Demsky:2011:UDE

Dennis:1994:MMP

Donaldson:1998:AAP

Duran:2009:PEO
Alejandro Duran, Roger Ferrer, Eduard Ayguadé, Rosa M. Badia, and Jesus Labarta. A proposal

[DJR16] Ralph Duncan, Peder Darlington:2016:UPP

Duncan:2016:UPP
REFERENCES

[DKB+09]

Dudas:2012:SCA

[DJS12]

Dastgeer:2016:SCS

[DLRS13]

DeBole:2009:NAN

[DK16]

Dias:2013:SUT

REFERENCES

Du:2017:ODA

Degano:1987:POM

DeMatteis:2017:PPW

Devi:2020:IPW

Dehne:1991:OCM

Ding:2018:PEG

[Zengyu Ding, Gang Mei, Salvatore Cuomo, Nengxiong Xu, and Hong Tian. Performance evaluation of GPU-accelerated spatial interpolation using radial basis functions for building...

Ding:2020:CEM

DMC+20

Das:1991:PSA

DMMS91

Danelutto:2021:ASP

DMK21

deStGermain:2003:PAI

dMP+03

DeMichele:2018:GIO

DMMP18
REFERENCES

Etem Deniz and Alper Sen. Using machine learning techniques to detect parallel patterns of multi-threaded applications. *International Journal of Parallel Programming*, 44 (4):867–900, August 2016. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-

Yihua Ding, James Z. Wang, and Pradip K. Srimani. A linear time self-stabilizing algorithm for minimal weakly connected dominating sets. *Inter-
REFERENCES

Dobre:2014:PPP

Dong:2010:PNM

Eigenmann:2009:GEI

Enokido:2014:EER

Edmiston:1988:PPB
DEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Eichenberger:1996:MRR

Eijkhout:2005:CSS

El-Gindy:1986:OSP

Egger:2015:ERV

Emoto:2007:CFD

Ernsting:2014:SFS

Ernsting:2017:DPA

Estebanez:2016:NDS

Estebanez:2017:UXP

Ernstsson:2018:SFT

Eigenmann:2013:CI

Rudi Eigenmann and Sam Midkiff. Compiler in-

Evripidou:2000:I

Engelhardt:1996:PIP

ElKabbany:2011:DLB

Fenscho:2019:HDP

Fazio:2021:MRA

Fensch:2011:EBC
Christian Fensch and Marcelo Cintra. An eval-

[Fujimoto:1987:SMA]

[Farkas:1999:MAR]

[Fan:2016:TCA]

Sijiang Fan, Jiawei Fei, and Li Shen. Accelerating deep learning with a parallel mechanism using CPU + MIC. *International Journal of Parallel Pro-
REFERENCES

Fortin:2016:BWT

Fummi:2005:E

Farhan:2018:RTD

Frieb:2016:PAH

Feng:2015:ASW
REFERENCES

Francez:1987:FAC

[FK87]

Fillo:1997:MMM

[FKD+97]

Frankel:2012:GEC

[FKT12]

Fursin:2011:MGM

[FKM+11]

Feldman:2015:WFM

[FLD15]
REFERENCES

Favati:2002:RCI

Fachada:2017:EPS

Furlinger:2009:CAE

Farrens:1996:GEI
Fan:2017:SEE

Foster:1989:MGC

Fiore:2014:CBD

Faraj:2008:BEA

Faraj:2008:SPA
REFERENCES

REFERENCES
REFERENCES

REFERENCES

Bugra Gedik. Auto-tuning similarity search algorithms on multi-core...

REFERENCES

Garcia:2019:GEH

Goli:2017:ACS

Goli:2018:FCS

Gupta:1989:SIB

Gupta:1990:SIB

Ghiya:1996:CAP

Ghalaty:2019:ESI

Gu:2017:DEP

Griebler:2019:HLP

George:1986:SSP

Gaspar:2014:BCW

[GHM14] Nuno Gaspar, Ludovic
REFERENCES

Stéphane Genaud, Emmanuel Jeannot, and

Martin Griebl and Christian Lengauer. A communication scheme for the distributed execution of loop nests with while

Gorawski:2018:EPL

Gao:2017:AOM

Gava:2020:AIC

Granston:1995:LTP

Gendler:2006:PBM

Grasset:2011:MHD

[GMB+11] Arnaud Grasset, Philippe Millet, Philippe Bon-
REFERENCES

Giacalone:1989:FSI

Gupta:2000:APR

Gyllenhaal:1998:OMD

Geist:1989:TSP

REFERENCES

Grelck:2006:SFA

Giacaman:2011:PIP

Giacaman:2013:PTP

Gao:2008:GEI

Gschwind:2007:CBE

REFERENCES

Geng:2017:LED

Grelck:2010:ASP

Gupta:1988:PIO

Gu:2013:PCI

Groselj:1986:PAD

Gupta:1988:PIO

Granston:1995:CFD

Gornish:1999:IHS

Girbal:2006:SAC

Grelck:2019:PAA

Gao:2019:ASG

REFERENCES

117

Gao:2018:SRF

Govindarajan:1992:AGP

Gilbert:1987:PGP

Gouk:2018:ERL

Hussain:2011:PIA

REFERENCES

Halstead:1986:AML

Han:2017:SLS

Hao:1998:IIF

Hemmendinger:1989:IMS

Harris:2006:GEI

Holmen:2014:ASI

Haidl:2018:HLP

Huang:2012:EEP

Huang:2015:ACH

[HHC+15] Hui Huang, Ligang He,

Haase:2010:SDV

He:2020:HDS

Hains:2014:GEH

Horn:2018:GPI

Hudak:2009:CSI

David E. Hudak, Neil Ludban, Ashok Krishnamurthy, Vijay Gadeapally,

REFERENCES

[HML+20] [HMT+96] [HN94] [HNC+16] [Hank:1997:RBC] [Holobar:2006:DJJ]

[Hank:1997:RBC] [HN94] [HOZ06] [Holobar:2006:DJJ]

[Holzenspies:2010:RTS] Philip K. F. Hölzenspies,

[Huang:2012:POT]

[Hendren:1997:CCE]
Huang:1989:SEP

Hudak:1986:DSP

Huelsbergen:1997:DRR

Hunt:1987:EAU

Huntbach:1991:PBB

He:2018:GRA

Mengda He, Viktor Vafeiadis, and Shengchao Qin João F. J.

Haj-Yihia:2018:SSE

Han:2016:SSB

Han:2019:FFE

Han:2020:CAD

Iooss:2021:MTP

Imre:2011:ESR

Kayhan M. Imre, Cesur
REFERENCES

Issenin:2008:UFM

Iwasaki:2004:NPS

[Int98]

Introduction:1998:EA

Ibarra:1990:EAP

Oscar H. Ibarra and Michael A. Palis. An

Iyer:2005:EEH

Irandoost:2019:MDS

Iwashita:2003:BRB

Iqbal:1991:AAP

REFERENCES

REFERENCES

REFERENCES

Jayaraman:1986:PRM

Jeon:2003:PMS

Jalan:2012:TTW

Jin:2019:HHA

Jindal:2016:EGS

Nakul Jindal, Victor Lotrich, Erik Deumens, and Beverly A. Sanders. Exploiting GPUs with the super instruction architecture. *International Journal of Parallel Programming*
Jia:2018:IPD

Jelic:2015:FPI

Jeevan:2020:DDT

Joisha:2002:EAJ

Jo:1999:GEI

Kazuki Jo. Guest Editor’s introduction. *International Journal of Parallel Programming*, 27(2):71–72, April 1999. CODEN IJPPE5. ISSN 0885-

JESSHOPE:2006:SIM

JEYAPAOUL:2010:CTT

JOURDAN:1997:RRB

JAASKELEINEN:2015:PPP

JANNESARI:2016:AGU

Kriaa:2008:PPM

Kumar:2005:CTP

Keramidas:2015:RCR

Kultursay:2016:MPL

Kennedy:1994:CTM

Kennedy:2001:FGW

Kessler:2020:GEN

Kistler:1999:TBA

Kolberg:2008:DLS

Koster:2020:MPR

REFERENCES

[KJPN10] Vinay B. Y. Kumar, Siddharth Joshi, Sachin B. Patkar, and H. Narayanan. FPGA based high performance double-precision

Kella:2011:AAP

Kaur:2018:FAR

Kavadias:2012:CIN

Stamatis Kavadias, Manolis Katevenis, Michail Zampetakis, and Dimitrios S. Nikolopoulos. Cache-integrated network interfaces: Flexible on-chip communication and
REFERENCES

Krall:2000:CTM

Kang:2008:ISE

Kim:2016:GAF

Krall:1986:CSP

Klauser:2001:SBI

Artur Klauser, Srilatha Manne, and Dirk Grunwald. Selective branch inversion: Confidence estimation for branch predictors. *International
REFERENCES

REFERENCES

[102x681] REFERENCES

REFERENCES

Kale:1990:PSS

Kessler:1997:FPP

Kumar:2018:GSR

Khan:2018:ATS

Kim:2014:VVF
Young-Joo Kim, Sejun Song, and Yong-Kee Jun.
REFERENCES

http://ipsapp009.lwwonline.com/content/getfile/4773/13/2/fulltext.pdf;

REFERENCES

Josep Llosa, Eduard Ayguadé, and Mateo Valero. Quantitative evaluation of register pressure on software

Loulergue:2017:CPP

Lu:2011:PAA

Li:2019:ABE

Liu:2020:PAA

Li:1992:VTV

Lee:2005:EOS

Liu:2011:VPS

Lo:1999:TCO

References

Lenzi:2015:FOC

[LF15]

Lacroix:2017:WFH

[LFD17]

Lopez-Fandino:2019:GFC

[LFHAM19]

Lacetti:2017:GEH

[LFL+17]

Li:2010:TRI

[LG10]

Liao:2016:PBA

Xiaofei Liao, Rentong Guo, and Danping Yu. A phase behavior aware dynamic cache partition-

[Li:2016:MPP]

[Li:2003:PRE]

REFERENCES

Lin:1991:DFP

Liv:1991:NMB

Loh:2008:MPH

Lee:2009:RSS

Luo:2005:SSM

Lai:1994:CRI

Lydia:2020:CDC

Langguth:2017:ADT

Liang:2015:PJE

Laccetti:2012:DAA

Laccetti:2016:LCM

Lu:2003:ABH

Li:2017:TLT

Jing Li, Lei Liu, Yuan Wu, Xiaobing Feng, and Chengyong Wu. Two-level task scheduling for

Loechner:2000:COA

Liu:2018:DNS

Lee:1998:CPA

Loghi:2005:DFV

Lin:2012:ESC

Changhui Lin, Vijay Nagarajan, and Rajiv Gupta. Efficient sequential consistency using conditional fences. *International
REFERENCES

Li:1991:ECM

Lowenthal:2000:ASB

Li:1994:SLT

Langemeyer:2013:USM

Lattuada:2016:PET

REFERENCES

Liao:2010:SAA

Lo:1991:OTM

Lee:2014:BCA

Lin:1991:PIS

Loots:1992:PAK

REFERENCES

[Li:2015:ODN] Li:2015:ODN

[LSM+18] Lin:2018:CHM

REFERENCES

161

[Li:2016:SSO]

REFERENCES

[LWDL17] Li:2019:IPD

[LWF+19] Li:2011:STE

[LWGZ18] Lu:2018:SPE

[LWGZ+18] Li:2019:IPD

[LWGZ+18] Li:2019:IPD

[LYG+18] Wei Lu, Xiaomin Yang, Xu Gou, Lihua Jian,

REFERENCES

1573-7640 (electronic).

166

REFERENCES

Marowka:2017:EAM

Matsuzaki:2017:FMH

Martinez-Angeles:2016:RLG

Mendelson:1999:DAM

Meira:2012:SIC

Moghaddam:2012:IBG

Mohsen Ebrahimi Moghadam and Mohammad Reza Bonyadi. An immune-based genetic algorithm
REFERENCES

with reduced search space
coding for multiprocessor
task scheduling problem.
*International Journal of
Parallel Programming*, 40
CODEN IJPPE5. ISSN
0885-7458 (print), 1573-
7640 (electronic). URL
http://www.springerlink.
com/openurl.asp?genre=
article&issn=0885-7458&
volume=40&issue=2&spage=
225.

Seung-Jai Min, Ayon
Basumallik, and Rudolf
Eigenmann. Optimiz-
ing OpenMP programs
on software distributed
shared memory systems.
*International Journal of
Parallel Programming*, 31
CODEN IJPPE5. ISSN
0885-7458 (print), 1573-
7640 (electronic). URL
asp?j=4773&I=33&A=5&
LK=NM; http://ipsapp007.
kluweronline.com/content/
getfile/4773/33/5/abstract.
htm; http://ipsapp007.
kluweronline.com/content/
getfile/4773/33/5/fulltext.
pdf; http://www.springerlink.
com/openurl.asp?genre=
article&issn=0885-7458&
volume=31&issue=3&spage=
225.

John Mellor-Crummey, Luig-
Carro, and Skevos Evripi-
dou. Guest editorial: Special
issue on 2011 International
Conference on Embedded
Computer Systems: Architectures,
Modeling and Simulation
(SAMOS XI). *International
Journal of Parallel
Programming*, 41(2):161–
162, April 2013. CODEN
IJPPE5. ISSN 0885-7458
(print), 1573-7640 (elec-
com/article/10.1007/
s10766-012-0233-6;
http://link.springer.
.com/content/pdf/10.1007/
s10766-012-0233-6.pdf.

Ricardo Menotti, João
M. P. Cardoso, Marcio M.
Fernandes, and Eduardo
Marques. LALP: a lan-

[MBE03] Seung-Jai Min, Ayon
Basumallik, and Rudolf
Eigenmann. Optimiz-
ing OpenMP programs
on software distributed
shared memory systems.
*International Journal of
Parallel Programming*, 31
CODEN IJPPE5. ISSN
0885-7458 (print), 1573-
7640 (electronic). URL
asp?j=4773&I=33&A=5&
LK=NM; http://ipsapp007.
kluweronline.com/content/
getfile/4773/33/5/abstract.
htm; http://ipsapp007.
kluweronline.com/content/
getfile/4773/33/5/fulltext.
pdf; http://www.springerlink.
com/openurl.asp?genre=
article&issn=0885-7458&
volume=31&issue=3&spage=
225.

[MBE03] Seung-Jai Min, Ayon
Basumallik, and Rudolf
Eigenmann. Optimiz-
ing OpenMP programs
on software distributed
shared memory systems.
*International Journal of
Parallel Programming*, 31
CODEN IJPPE5. ISSN
0885-7458 (print), 1573-
7640 (electronic). URL
asp?j=4773&I=33&A=5&
LK=NM; http://ipsapp007.
kluweronline.com/content/
getfile/4773/33/5/abstract.
htm; http://ipsapp007.
kluweronline.com/content/
getfile/4773/33/5/fulltext.
pdf; http://www.springerlink.
com/openurl.asp?genre=
article&issn=0885-7458&
volume=31&issue=3&spage=
225.

[MBE03] Seung-Jai Min, Ayon
Basumallik, and Rudolf
Eigenmann. Optimiz-
ing OpenMP programs
on software distributed
shared memory systems.
*International Journal of
Parallel Programming*, 31
CODEN IJPPE5. ISSN
0885-7458 (print), 1573-
7640 (electronic). URL
asp?j=4773&I=33&A=5&
LK=NM; http://ipsapp007.
kluweronline.com/content/
getfile/4773/33/5/abstract.
htm; http://ipsapp007.
kluweronline.com/content/
getfile/4773/33/5/fulltext.
pdf; http://www.springerlink.
com/openurl.asp?genre=
article&issn=0885-7458&
volume=31&issue=3&spage=
225.

McKee:2007:GEI

Mei:2018:MGS

Mellor-Crummey:2001:IMH

Mustafa:2015:PPE

REFERENCES

Manolache:2007:FAC

Merks:1986:OPA

Milovanovic:2008:NEE

Moreton-Fernandez:2019:MDC

Mehta:2015:MTP

Melo:2014:GE

[Alba Melo, Jean-Luc Gaudiot, Luiz DeRose, Kunle]

REFERENCES

Michelogiannakis:2015:ESP

MantasRuiz:2002:CBD

Matsuzaki:2016:PTA

Mukherjee:2021:IHM

Manoj:2004:CDC

REFERENCES

Mahfoudhi:2015:PCA

McNamee:1990:TOI

Morris:2007:SNO

Mohebbi:2019:PSC
Hamidreza Mohebbi. Parallel SIMD CPU and

Midorikawa:2005:PNM

Mongenet:1997:ADC

Mall:1991:FTA

Melvin:1995:EIS

Menon:2004:LLL

REFERENCES

175

Menezo:2018:MSC

Moss:2005:CCB

Menouer:2016:MSD

Moshovos:1999:SMC

Meng:2011:PSI

Moreira:2007:BGS

Michaud:2001:EIF

Mahmud:2020:ALS

Mohanraj:2018:HPG

Matheson:1996:PMM

Metzger:2015:UGD

Malakar:2017:HR

Martinez:2006:DGN

Carmen Martínez, Enrique Vallejo, Ramón Beitvide, Cruz Izu, and Miquel Moretò. Dense Gaussian networks: Suitable

Monteiro:2014:PFS

Nikolopoulos:2002:RVM

REFERENCES

[NdMCdMMW16] Nadia Nedjah, Rogério de M. Calazan, Luiza de Macedo Mourelle, and

REFERENCES

[181]
issn=0885-7458&volume=21&issue=6&spage=421.

[NPD89] Anne Neirynck, Prakash Panangaden, and Alan J. Demers. Effect analysis in higher-order lan-
REFERENCES

Nau:1986:EAM

Najjar:1994:EMG

Natesan:2017:HBP

Narasimhan:1999:UDF

Najjar:1997:FSI

REFERENCES

REFERENCES

[OG11]

Ortega-Arranz:2015:TML

[OATGEL15b]

Ossner:2013:GMB

[OB13]

Orozco:2016:DIT

[OGP+16]

Ozturan:2011:GEP

[OG11]

OBoyle:1999:NDT

Michael F. P. O’Boyle and Peter M. W. Kniijenburg. Nonsingular data transformations: Definition, validity, and ap-

Ozcan:2007:MAP

Oh:2013:GFP

O'Brien:2008:SOC

Olivier:2010:COO

Otoom:2012:WMI

REFERENCES

Ouyang:2017:HSP

Orailoglu:2003:GEI

Ortega:2004:DMI

Ou:2017:GNH

Panda:2008:GEI

REFERENCES

Parallax:1986:BPP
Parallax. The bards on parallel programming. [Par86a]

Parallax:1986:HPS
Parallax. How are parallel systems invented? [Par86b]

Parallax:1986:WPB
Parallax. When is pull better than push? (parallel programming). [Par86c]

Pandey:2001:SIE

Palanciuc:2004:SCM
REFERENCES

Peterson:2019:AHM

Pinter:1995:I

Pinter:1999:I

Popa:2018:AMH

Padmanabhan:2005:EIM

Paulswamy:2020:QBN
Sathees Lingam Paulswamy and Hariharan Kaluvan. Quadrant based neighbor to sink and neighbor to source routing protocol

Pan:2004:DPC

Paul:2007:ALR

Pingali:2003:RCT

Papagiannopoulos:2018:HTM

REFERENCES

REFERENCES

- **Phillips:1999:PSR**

- **Pratt:1986:MCP**

- **Palis:1992:NAR**

- **Park:1997:AGT**

- **Panesar:2006:DPP**

- **Panetta:2012:ATD**
 Jairo Panetta, Thiago Teixeira, Paulo R. P. de Souza Filho, Carlos A. da Cunha Filho, David Sotelo, Fernando M. Roxo da Motta, Silvio Sinedino
References

Park:1998:PPP

Pothos:2021:DLI

Payá-Vaya:2017:GES

Pinter:1987:MPP

José L. Quiroz-Fabián and Graciela Román-Alonso. VPPE: a novel visual parallel programming envi-
REFERENCES

Qin:2019:TDN

QGT+19

Quillere:2000:GEN

QRW00

Wang:2017:PAG

QZP15

RA94
REFERENCES

REFERENCES

Rounce:2008:DIS

Reguly:2015:FEA

Rasc:2018:MDH

Ruggiero:2008:FAT

Rice:1990:SDP

REFERENCES

[RLH14] Fahimeh Ramezani, Jie
REFERENCES

REFERENCES

Roy:2010:HNE

[Sourav Roy

Rad:2018:EPS

[Mina Hosseini Rad, Ahmad Patooghy, and Mahdi Fazeli

Rus:2003:HAS

[Silvius Rus, Lawrence Rauchwerger, and Jay Hoefflinger

Reif:1990:DFA

[John H. Reif and Scott A. Smolka

Rathore:2018:RTB

[M. Mazhar Rathore, Hojae Son, Awais Ahmad, Anand Paul, and Gwanggil Jeon
Real-time big data stream processing using GPU with Spark over Hadoop ecosystem. International Journal of Par-]
REFERENCES

Rucci:2019:SES

REFERENCES

Shabbir:2020:NPE

Siddique:2016:PRE

Silva:2018:PAS

Sung:2012:DLT

Sengupta:1990:CCO

Singh:1991:RET

Sourouri:2017:PCF

Surendra:2003:EFA

Stepoway:1988:PRF
Stephen L. Stepoway and Michael Christiansen. Parallel rendering of fractal surfaces. *International Journal of
REFERENCES

John John E. So, Thomas J. Downar, Raghunandan J.

[Sep08] Seng Lin Shee, Andrea Erdos, and Sri Parameswaran. Architectural exploration of heterogeneous multiprocessor systems for...
Shan:2020:GAP

Steuwer:2014:IIA

Sreraman:2000:VCM

Saito:2003:LSP

REFERENCES

Salapura:2012:GEP

Samal:1987:PCL

Shen:1996:HLC

Su:2015:SDD

Slagter:2015:AME

Sarvestani:2013:ERA

Amin Shafee Sarvestani, Erik Hansson, and

Asadollah Shahbahrami, Ben Juurlink, Demid Borodin, and Stamatis Vassiliadis. Avoiding conversion and rearrangement overhead in SIMD

Sharma:2009:MLP

Sato:2016:GIT

Scott:1994:FCF

Shao:2019:BEB

Stojcev:1994:OSP

Schreiber:2015:ICB

Sanchez:2006:ETA

Sarkar:1992:PAS

Dilip Sarkar and Ivan Stoimenović. Parallel algorithms for separation of...

Sotomayor:2017:ACG

Spiliotis:2021:PCD

Sankaraiah:2014:POV

Seewald:2021:CGC

Sterling:1996:EEC

Sukhwani:2015:HSA

Smiljkovic:2017:DSL

Siek:2016:ARD

Swain:1988:CSH

Michael J. Swain. Com-

Su:2017:HLS

Sun:2018:UPA

Song:2005:PTA

Sha:2015:PEH

REFERENCES

REFERENCES

REFERENCES

Thomsen:1987:IPE

Tick:1990:ECL

Tinker:1988:PPL

Tsai:1999:CTS

Taubenfeld:1989:IFD
REFERENCES

REFERENCES

Tekleyohannes:2021:DCH

Tierney:2009:SPC

Takahashi:2003:PEH

Taylor:1986:PIF

Tan:1999:PIB

[TSS99] Min Tan, Janet M. Siegel, and Howard Jay Siegel. Parallel implementations of block-based motion vector estimation...

Teodoro:2008:RTS

Tousimojarad:2015:SLS

Khan:2016:EOM

REFERENCES

REFERENCES

Vassiliadis:2016:ESC

VandenSpek:2008:CR

Veidenbaum:2001:GEI

Veidenbaum:2002:GEI

Venkatasubramanian:2012:TTT

Viitanen:2018:VLI

Valduriez:1988:PET

Velasquez:2015:BBA

vanNieuwpoort:2011:CRA

Vanderbauwhede:2019:TDA

Vandevoorde:1988:WAC

Vega-Rodriguez:2019:PPB

Vander-Swalmen:2009:CAM

Vallejo:2011:HTM

REFERENCES

Wainwright:1987:DPC

Wolfe:1987:DDA

Wang:2016:CIK

Wang:2017:GPH

Wrede:2018:SCG

Wang:1994:DSP
Jian Wang, Christine

[234]

REFERENCES

REFERENCES

Fredrik Warg and Per Stenstrom. Dual-thread speculation: a simple approach to uncover thread-

REFERENCES

2018. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Wang:2021:TAF

Wang:2019:DAS

Wu:2017:GLS

Wang:2019:NAB

Wolfson:1992:PPG

Wang:2017:PCN

[WZG+17] Qicong Wang, Jinhao Zhao, Dingxi Gong, Yehu Shen, Maozhen Li, and

[XWH21] Biao Xing, DanDan Wang, and Cuihua He. Accelerating DES and AES algorithms for a heterogeneous many-core processor. *International Journal of Parallel Programming*,
REFERENCES

Xiao:2020:FDO

Xu:2015:YSE

Ye:2017:REC

Yzelman:2014:MCH

Yang:1995:MDD

Yu:2019:AEH

Yao:2017:ONC

Yao:2019:IDF

Yang:2018:IIS

Yang:2020:EMD

[ZD19] Pierre Zins and Michel Dagenais. Tracing and profiling machine learning dataflow applications on GPU. *International Journal of Parallel Pro-
REFERENCES

Zeyao:2005:CAP

Zhang:1989:PAM

Zhang:2010:COP

Zhu:2019:WAI

Zhang:2015:HTP
REFERENCES

REFERENCES

Zhang:2017:OPL

Zhang:2012:DDA

Zhang:2020:VBM

Zyulkyarov:2012:POT

Zou:2019:AAS

Huihui Zou, Shanjiang Tang, Ce Yu, Hao Fu, Yusen Li, and Wenjie Tang. ASW: Accelerating Smith–Waterman al-

Zheng:2005:SBP

Zhong:2015:VBM

Zhang:2013:KPM

Zhang:2019:GES