A Complete Bibliography of Publications in the
International Journal of Parallel Programming

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

11 February 2018
Version 2.30

Title word cross-reference

1000 [SSMO96]. 14 [HG18]. 16 [Swa88]. 18th [DB08].

3.0 [KaM10, OP10].

95 [KaM10].

A. [Swa88]. Abingdon [AM95].
Access [JG97, Joh94, OOR13, ZK07].
Accesses [GV95, LPB13]. Accumulations [MM16]. Accumulative [IH04]. Accuracy [CEP97, KP04]. Accurate [RGB+08, TA99].
Accurately [BGdS09, Low00]. Achieving [AMF+05, GAR+16, GS90, Won02].
Acknowledgment [Nic14]. ACOTES
applicative [Hun87]. **Applied** [BUMS02, KaM10, Lin91a]. **Approach** [AK90b, AVM16, BBB17, CHB06, FCZ16, FJO16, GYL92, JQWG15, LTF12, LLL15, M091, NN95, OATGEL15a, PMV17, QZP15, STM15, VSDK09, qWilzKhC17, WS08, WEJS94]. **Approaches** [BUMS02, JCH08]. **Appropriate** [Gen16]. **Approximate** [HZL16, Iq891, VCP16]. **Arbitration** [BS91]. **Architectural** [ARB05]. **Architecture** [AP86, ARB05, BGGT02, CHCL14, CDC09, DB08, DLRS13, FCJV99, GL92, HTZ97, JLDS16, MB99, NdMMW16, SJT13, CB86, GKMB87]. **Architecture-Agnostic** [NAP02]. **Architectures** [BG96, BFG10, CPG01, CND95, CJA00, GBPK07, Ged13, GGV17, HCEF98, HP13, LAD15, MCE13, MGJS15, Mis09, NFC09, NdMCM16, PJS05, PG16, PVL17, SJBV06, TJJ99, TF94, ZLAV04, LRG91]. **Area** [Roy10, SWZ15, WMN17]. **Argument** [ABASS12, NG92]. **Argument-Fetching** [NC92]. **Arithmetic** [ABASS12]. **ARM** [MGL17]. **Arnoldi** [LEA15]. **Array** [AM04, BG96, CZ12, CI96, Fecal, GS06, SM94, TG05]. **Array-oriented** [CI12]. **Arrays** [EHKT07]. **Arrival** [FPY08b, QA11]. **Art** [KPS14, LHL16]. **ASIPs** [ALT17]. **Assembly** [ABTZ00]. **Assessment** [Hal86]. **Assignment** [CB01, Fos89]. **Assisted** [GRV17, MMG04, RMG13, CMW94]. **Asteroid** [RC16]. **Astronomy** [vNR11]. **Asynchronous** [BBC07, DF98, GSS10, CG94]. **Atmospheric** [SMH13]. **Atomic** [SW16, Win89]. **Attempting** [GYL92]. **Attribute** [MO91]. **Attributes** [BDD18]. **Auto** [CCG14, Ged13]. **Auto-Tuning** [CCG14, Ged13]. **Automata** [BR97]. **Automatic** [ABB16, API03, ALG95, BG17, BBGT02, CZ12, CZTM03, CoJ95, CAZ02, EM14, FCRC16, GKB4, GVB06, GRC14, GMS00, HHC15, JW16, LQWP10, SR06, SHK13, SSB17, TFQ16, TG05, vDSGBW08, KMV87]. **Autonomic** [GGV17]. **Autonomous** [KK11]. **Autotuning** [BC15]. **Avoidance** [NBA13]. **Avoiding** [MMN15, SJBV06]. **Aware** [ABB16, AVL03, CTK11]. **CAX17, DCX17, FDPC14, JQWG15, JAW17, LQWP10, LGY16, Mar17, QA11, YHGW16, MEP07]. **Awareness** [RGB08]. **axioms** [FK87]. **B** [AP86, WZTH13]. **B-Queue** [WZH13]. **B-Spline** [AP86]. **Back** [LXL17]. **Backtracking** [BMA02, SRV88]. **Backtracking-Based** [BMA02]. **Backup** [XZX15]. **BADCO** [VMS15]. **Balance** [YHGW16]. **balanced** [DPL86]. **Balancing** [ASW15, AniW09, EWHS11, H11, JK03, RLH14, SRJ14, SR15]. **Bandwidth** [FPY08a, KSEG14]. **Bank** [GG13]. **bards** [Par86a]. **Barrier** [GH89, HTK98, JLM01, Liv91, Lb90, Bro86, H188]. **Barriers** [GE90, SCM94]. **Based** [AA15, BMA02, BDD18, CLJH16, CND95, CDC09, CPMC96, DK16, DGM09, DWQ17, FLMR17a, FLMR17b, FCZ16, FR95, FJ15, FC11, FPCD14, FCRC16, GBPK07, GM06, GGV17, GF14, GL92, HZL16, HnWHR97, HF14a, HF14b, HHC15, JK12, KBD03, KKM09, KF99, KTO1, KJPN10, LLM12, LLM16, LFP16, LJ09, LLM15, LWP04, LWD17, LCL17, MLd1P02, DM17, MCFM12, MGL17, MPR05, NYHA14, NRR99, NRGB17, OB13, PC13, QZP15, RLH14, RS14, SAB11, SS17, SUC17, SHZ14, SW95, SWF17, SDL17,
Climate [HNC+16, LHF+15]. Cloaking [MS99].

Clouds [CAK17, HZL16, HC17, JQWG15, KJHB14, RLH14, WQJY17, XZX+15, uRHH14].

Cloaking [MS99].

CLOMP [BGdS09]. Closure [CAP88, KP95, KPR96, VK88].

Closure [CAP88, KP95, KPRS96, VK88].

Clouds [CAK17, HZL16, HC17, JQWG15, KJHB14, RLH14, WQJY17, XZX+15, uRHH14].

Cloaking [MS99].

CLOMP [BGdS09]. Closure [CAP88, KP95, KPR96, VK88].

Closure [CAP88, KP95, KPRS96, VK88].

Clouds [CAK17, HZL16, HC17, JQWG15, KJHB14, RLH14, WQJY17, XZX+15, uRHH14].

Cloaking [MS99].

CLOMP [BGdS09]. Closure [CAP88, KP95, KPR96, VK88].

Closure [CAP88, KP95, KPRS96, VK88].

Clouds [CAK17, HZL16, HC17, JQWG15, KJHB14, RLH14, WQJY17, XZX+15, uRHH14].

Cloaking [MS99].
[BAJW14, HNC+16, KKMS99, TSS99].

Computation [BG17, BEP13, CJA00, Cza17, DMMS91, FLMR02, HSCI+16, JAW17, LEA15, MCWK01, NdMM09, Ric90, Sk91, KMY87, MA87].

Computational [HLK+09, LLL+15].

Computations [IH04, NST89, PMHC03, SBC17, VCP+16, LRG+16, NR+15, SS89, TKM89, KMV87, MA87].

Computer [ACC+02, DB08, DMC91, Kuc94, MCE13, MGJS15, MB12a, PVG17].

Computers [Bel94, GHC+17, HOZ06, MLdlP02, Ano87d, Gao86].

Computing [ACD+16, Ano16b, BE14, Car09, CTP13, CSTGL03, DFH17, Den94, FTG15, LRG14, MB12a, OAOTG15b, OG11, PLN+04, RLH14, SM09, SZ17, TRL09, TAY+12, VCP+16, WSO+07, WGW04, Zha10, NK88, DB08].

Concatenation [Zey05].

Concept [KaM10].

Concurrency [MCE13, PVG17].

Concurrency/synchronization [AD86].

Concurrent [Ano16c, AR16, GMP89, LWDL17, PB01, SBC17, TSS86].

Condition [NBN+15].

Conditional [LNG12].

Conditions [MJ02].

Conference [MCE13, PVG17].

Conflict [KMG01].

Conflicts [GG13, SD11, WS14].

Conformance [TLSG05].

Conjugate [SDJS98].

Connected [DMC91, DWS16].

Connection [HH96, PW92].

Connectionism [Ano87b].

Connections [ALTT17].

Conscious [ZK07].

Considering [OPLS17, WMC98].

Consistency [BAP01, BBGM05, LNG12, SHZ+91].

Consistent [KS90, SH87, Swa88].

Consolidation [LMV16].

Constant [LMP98].

Constrained [BAJW14, VCP+16].

Constraint [MRLR16, JB98].

Constraints [AKD98, AF15, API03, BBR11b, RBES00, SWZ+15].

Construct [Spr92, FcF87].

Constructing [DWQ17, KP05, DPL86].

Construction [BNWL90, CP04].

constructs [BCK98].

Containers [DK16, WP00].

Contention [Dem11, JQWG15, SMC94, SAL16].

Contention-Aware [JQWG15].

Contention-Free [SMC94].

Context [CJA00, IP90, Lan90].

Context-free [IP90, Lan90].

Contexts [JMSG02].

Cooperation [NP98].

Cooperative [PTsdSF+12].

Cooperating [VR88].

Convex [SS92, SS04].

Convolutional [WZG+17].

Cooperating [NP98].

Coordinator [Gen16, LLM16].

Coordination [BCS+09, CM06, GGV17, Sek09].

Coprocessor [BP17].

Core [GHM14, LBT17].

Cost [BDH+14, WA15].

Cost-Directed [BDH+14].

Covered [SS01, Zey05].

Coverage [MAWD+16].

Covering [JLMW15].

Credit [WQJY17].

CPU [BC15, GGV17, HGC+17, LLGC17, LRG14, PTdSF+12, SSB+17, SBC17, WE18].

C
cpu/ GPU [GG17, SS98].

Critical [SK97].

Cross [AM95, DSR17, WCC16, ZJG17].
Cross-ISA [WCC16]. Cross-Platform [ZJG17]. Cross-Thread [DSR17].
Cryptography [Dam07]. CSP [FeF87].
CTA [YHG16]. CUDA [HLP11, HF14a, HF14b, KAMAMA17, LRG14, MGL+17].
Curve [Bos12]. Custom [MCFM12].
Customization [GSY+13]. Cycle [FCJV99, SAB11, dMP+03]. cyclic [JB98].
Czip [HNC+16].
D [BC15, CTB14, ES11, HPVRPF15, HF14a, HF14b, IBA11, JGM15, LLGC17, LHP+17, SJK99, SBC17].
DAFT [ZLJA12]. Daily [Ano87c].
Data [AKHD13, ABTZ00, Ano16d, AJF16, ANS+12, ALG+95, BARSW95, BS03, BBGM95, BG96, BCL17, CF94, CAK17, DTLW16, DX14, DLX+17, DJS12, EW96, EK17, ELGE16, FPAC+14, GPS+17, GG14, GV99, GYL92, HSCI+16, HRH08, HP13, HGT+12, HTmG+12, HNC+16, KP01, KP04, LSA+07, LTL15, LVM16, LT17, LWLG11, LHF+15, MXP14, DM17, MHL95, MCWK01, MTT15, NRR99, NAP02, NLRH07, OK99, PMHC03, RG15, RS90, Ric90, RSJ+14, SNB04, SS99, SL14, SQH92, SR04, SH15, SASH12, TESK06, TFMP97, WB87, WE18, WW17, XH98, YA95, vdsGBW08, CG94, Gao86, Kas86, Win89].
Data-Centric [FPAC+14, KP01].
Data-Driven [DTLW16, TESK06].
Data-Parallel [AJF16, SQH92].
Data-Sharing [SNB04]. Database [SB90, STM15, VK88]. Databases [WZB+92].
Dataflow [BS15, CBTZM03, Fea91, LS98, NRB94, NG92, OGP+16, WGF+16].
Decomposed [WEJS94]. Decomposition [ADC+17, BUMS02, QZP15].
Decomposition-Based [QZP15]. Decoupled [ZLA12]. Deductive [FG16].
definite [GHLN86]. Definition [OK99].
Degree [AK17]. Delay [BMA02, NST89].
Delayed [PYX17]. demand [JK86]. Demonstrating [ACC+02]. Denotational [Hud86]. Dense
[KFC08, MVB+06]. Dependence [ABTZ00, DV97, GV95, KP04, MHL95, Mon97, SW95, YA95, WB87].
Dependences [CDRV98, DSR17]. Dependencies [CH95, KP05].
Dependent [DFA+09, VMS15]. Depth [PTD+12, KR87, RK87]. Derivation [MLDP02, SO89]. Derived [NFC+09].
Deriving [Wai87]. Description [ARB+05, MPR+05]. Descriptions [GmWHR98, KP05].
Design [ACD+14, AML+10, AR16, BC10, BDD+18, BS91, CHB06, CDC09, CBTZM03, FVvL+16, HLK+09, KHH08, KWA+10, KS97, MB99, OGP+16, PG07, PP10, RK13, SSL+00, SY08, TSLG05, TKN+08, WDL+08].
Designing [SCB+14]. Desktop [GS13].
Detailed [LLGC17]. Detect [DS16].
Detecting [SW95]. Detection [CLHJ16, CRM17, DV97, HPY01, Jan15, KSJ14, MTT15, NRGB17, WLWZ15, Tho87].
Determinism [SUCV17]. Deterministic
[PTD+06, ZC17]. Developing [CEH13, EHKTO7, GCH+17]. Development [DAM07, TCVU14, DMP+03]. Devices [AER+17, AGPGF14, DAM07, JQJ+16].
DFA [KJHB14]. Diagnostics [RC16].
Diagonalization [HOZ06]. Difference [Ger10]. Different [JCH+08].
Differentiated [AKT+14]. Diffusion [HF14a, HF14b, SDJS98]. Digital
[GP17, SS92, ZC09]. Digital-Microfluidic
[ZC09]. Dimensional [BARSW95, EHKTO7, LPB13, Fea92a, RG18, WLL17]. dining
Directed [BDH+14, Hue97, Zha89].

Directives [AAB+16, HSCI+16].

Discovery [GHC+17]. Discrete
[Dem11, PPQVI6]. Disjoint [SH15].

Dispatcher [SY08]. Dispersion [RSV+05].

Distance [BEP+13, HGT+12]. Distributed
[BS03, BR14b, CY14, CCL12, CHCL14, CSTGL03, DS97, DZW10, EK14, FSS06, FPCD14, GHM14, GL95, HOZ06, JAW17, Lin91a, MP91, MMB03, MBE03, MVD+14, NIK00, OATGEL15b, OG11, PLN+04, SNB04, SW16, SB91, TTF+08, qWLzKhC17, AH86, G990, GT86, PW87, RB86, RS90, TKM89, Tho87, Sek09].

Distributed-Memory
[BS03, qWLzKhC17]. Distributing
[HHW10]. Distribution
[ALG+95, HSCI+16, NAP02, SSP+96].

Distributions [AKHD13]. Divisible
[RSJ+14].

DMR [ZC17]. Do
[Kuc94]. Domain
[GF14, TFEK16, WL16, RK13]. Domain-Based
[GF14]. Dominance
[Spr92]. Dominating
[DWS16]. Double
[KJPN10, LLM+12]. Double-Precision
[KJPN10]. Downsampling
[LTS15].

DRAM [WMN+17, ZLJ+17]. DRAMSpec
[WMN+17]. Driven
[CPMC96, DTLW16, GRC+14, RNJ+12, TOM+11, TESK06, XH98, JK86, Kas86].

Drives [YYJ16]. dRuby [Sek09]. DSM
[BAP01, MMB04, WLL+08]. DSSMs
[HTK98]. DSP [SHK13]. Dual
[WS08].

Dual-thread
[WS08]. Duo
[BKT08].

Dynamic
[ABvK+13, CPG01, CS97, CML04, EWH11, Hue97, JK12, JCD+14, KRW+05, LSA+07, LT+12, LSYG16, LLY16, LMP05, Lys08, MRLR16, MTT15, NBA13, NLRH08, OVA04, PD98, PO07, RD08, RRH03, SSNS16, SR04, SJT13, TCUV14].

Dynamically
[CHPC96, GMB+11].

Dynamics
[ACC+02].

Eager
[SAL16]. Early
[PYC16, TA99].

EARTH [HTZ+97, HMT+96].

EARTH-MANNA [HMT+96].

Economics
[YBDJ17]. Editor
[EA09, MA10, SS10, BCL09, Ano00a, Ano14, Ano16a, Ano16b, Ano16d, Ano16c, Ayg03, Ban94, Ban04a, Ban04b, Car99, Fur95, Gau96, Giv07, Giv08, Int98, JS06a, JS06b, Joe99, Joe03, McK07, Mis09, Ora03, Pan08, Seh98, Ve01, Ve02].

Editors
[SMM11, HF06, AM07b, CHS99, CmHS99, EmH97, FmH96, GSA08, GS05, HN94].

Effect
[NPD89, BCK98]. Effective
[CPMC96, HGT+12]. Effectiveness
[MHL95, PYC16, SBN03]. Effects
[HRH08, TF96]. Efficiency
[BBB+17, STF+12, SWZ+15]. Efficient
[ABvK+13, BR97, BEP13, BCL14, BFG+10, CPT14, CL96, EAT14, FPY08a, Fea92b, FVvL+16, GSP+17, GRR98, GHC+17, GmWRH98, IP90, IBA11, JGM15, KP05, LNP91, LS05, LMG12, LWLG11, NRR99, NmMMW16, QW00, Roy10, SRS06, SSNS16, SL14, SSP+96, SO98, SKAT91, SHC15, SHZ+14, SJT13, TTF+08, WZTH13, ZXZ+15, YYJ16, Fea92a, Hua89].

Efficiently
[EGJS15, HR11, JMSG02].

Elastic
[GG13, YBDJ17]. ELement
[RG15]. Elements
[qWLzKhC17]. Eliminate
[KT+99]. Eliminating
[HTK98]. Elliptic
[Bos12].

Embedded
[AF15, CHB06, CFF+06, DLR15, DLX+17, Giv07, Giv08, LMP05, MCE13, MGJS15, MAB+11, Pan08, PP10, PVG17, PO07, PPEP08, TLS05, TFEK16, US05].

Embedding
[Li03, CSG89]. Emerging
[HP13]. Empirical
[CCG+14, LDI15, PMV17, SSM06].

Employing
[CS97]. Emulator
[WCC16]. Enable
[HP13, ID08, TAY+12]. Enabled
[FKM+11, GSY+13, RA09]. Encore
Encryption [KBD03, NdMMW16]. Faults [LG10].
End [LSHK09].
Fault-Tolerant [EAT14, FVvL16, Mar17, SJT13, VCP+16].
Energy-Aware [Mar17].
Energy-Constrained [VCP+16].
Energy-Efficient [EAT14, FVvL16, SJT13]. Engine [BC15, Gsc07].
Engineering [CPT14, KaM10]. Engines [MCFM12].
Enhanced [ABASS12, FMSG17, GRAG00].
Enhancement [ACC01, MP95]. Ensembles [ASW+15].
Enterprise [LVM16].
Enumeration [AG98]. Environment [AFM+06, AA15, BFG+10, MFG+08, SQH92, vdSGBW08].
Environments [BCS+09, BFRPVR+15, Car09, CCL12, Cak17, HHW10, KJHB14, LLM16, TTF+08, BCL90, Con88].
Epidemic [LEA15]. Equation [CTB14, ES11]. Equations [LM00, XODFV+09].
Equivalences [Mai87]. Era [ABB+10, DX14]. Erlang [BDH+14, STB+18]. Erratum [Ano03, FLMR17a, HF14b, uHKAMFM16a].
Error [DFC+07]. Estimating [HGT+12].
Estimation [DKB+09, KMG01, LPF16, LLL+15, MVD+14, TSS99]. Evaluating [AM95, BCK98, SCB+14, TF96].
Evaluation [AMAH01, BML+13, BS15, BEG+10, CCL12, CDC09, FC11, GBPK07, IPR+05, JCH+08, KHH08, LCL17, ME15, NRB94, OATGEL15a, PVAE98, SSMO96, TSB03, CSG89, LA9V88, VK88]. Even [DCX+17]. Event [Dem11, PPQV16, RNJ+12, WZG+17].
Event-Driven [RNJ+12]. Eviction [GSP+17]. Evolution [ACD+16].
Evolutionary [ACD+16, PB01, STB+18]. Example [SO89, Wai87]. Exascale [MAJD16]. Exceed [LS98]. Exception [FMSG17]. Exceptions [AHKR01].

Executable [LC11]. Execute [GLY92, BS89]. Executing [FCRC16].
Execution [BS15, BAF94, CHPC96, Co195, CSTM03, CFF+06, DJIS12, EAT14, FM09, GS06, GL95, JHP97, KLG08, LLL+15, LEG11, LCL17, Lys08, MFG+08, OGP+16, SBN04, SB91, SBC17, TTF+08, Tie90, TF96, WE18, Ali86, Go188, Kas86, KM86, SRV88].
exemplified [Tho87]. Expansion [BCC00].
Experience [Hal86, HmWHR97, RMG+13, SCB+14].
Experiences [CEH13, NPP98].
Experimental [AFM+06, IPR+05].
Experiments [Hun87, NPT86]. expert [KM86]. Explicit [BP17, Ger10]. Explicitly [LMP98].
Exploit [ADC+17]. Exploiting [BS03, Gsc07, GL92, JG97, JDS16, LS98, SASH12, VCP+16]. Exploration [CTB14, ES11].
Exploring [AHKR01, FVvL16, PG07].
Exponentiations [NdMM09]. Expose [GV95]. Express [JQ+16]. Expression [AFO+08, Sca11]. Extend [DFA+09].
Extended [BG03, Sch92, YAL95].
Extending [ABB+10, ML15]. Extensible [CP04, SHK13]. Extension [BG03, CFB94].
Extensions [API03, CTZT03, SG00].
Extracted [KP04]. Extracting [PJS+05].
Extraction [AER+17, JK12].

Fabrics [GBC+08]. FACILE [GMP89].
Factor [BTB+13, MXP14]. Factorization [DZW10, GN89]. Failure [GCD+03, Mai87]. failures [TKM89]. Fair [Lin91a].
FAIRIO [AKT+14]. Fairness [FK87]. False [GMB95]. Family [PVAE98]. Farm [EK14].
Fast [BC15, CS16, HNC+16, JLMW15, Joh94, Ken01, KT01, NIK00, RGB+08, SMC94, SHLJ17, TA99, WZTH13].
Fault-Management [GJR09].
Fault-Tolerant [EAT14]. Faults [LG10].

Grained [CTK+11, GL92, WW17, AD89].
Grammar [MO91]. Grammars [PW92].
Granularity [PSM97].
Graph [BCL90, CBR17, CTZTM03, GAR+16, GP94, JM12, SHLJ17, SSP+96, Spr92, TH17, WZB+92, GZ87]. Graphical [RG15].
Graphics [CPP+12, JGM15, SAB11].
Graphs [DV97, Hue97, KPRS96, LPF16, MXP14, OP10, OB13, Zha89].
Greedy [AT91, Ken01, Sun11].
Grid [BFRPVR+15, SASH12, WL16, AFM+06, BBC07, BCC05, SR04]. Grid-Based [WL16]. GridFOR [WL16].
Groups [BBC07]. Guaranteed [MEP07].
Guarded [GYL92]. Guards [GYL92].
Guest [AG15, CTP13, DPT17, EA09, FKT12, GKi8, Gre16, HK14, HF06, LFL+17, LT17, MCE13, MGJS15, MGd+14, MA10, OG11, PP10, PVG17, SMM11, SGK12, SS10, Ano00a, Ay03, AM07b, Ban04a, Ban04b, Car09, EmH97, FMH96, Fur95, GSA08, Gau96, GS05, Giv07, Giv08, HH94, JS06a, JS06b, Joe99, Jo03, McK07, Mis09, Ora03, Pan08, Seli98, Vei01, Vei02].
Guided [MTT15]. GVirtuS [MGL+17].
H [Roy10]. H-NMRU [Roy10].
Hadoop [Mat17, NRGB17]. Handle [ELGE16].
Handling [DFC07, FMSG17, RBES00].
Hard [FJO+16]. Hardware [AVM+16, CPMC96, GP17, GV99, KT01, Lys08, MA0+07, NdMM09, NdMMW16, OXL+17, OPS17, SWZ+15, SD11, SH15, STM15, WS14, ZLAV04, vNRI1].
Hardware-Agnostic [AVM+16].
Hardware-Based [CPMC96, KT01].
Hardware-Supported [SD11]. Hardware/Software [GV99, Lys08, OPLS17, SWZ+15, STM15].
Hash [AR16, LF17]. Heap [GH96, LLM16, AH86]. Heap-Based [LLM16]. Height [ABASS12]. Helper [ZGH+15]. Helping [Sun11]. Henderson [Swa88]. Heterogeneous [AER+17, ABB+10, Bro15, ELK18, GGV18, GMB+11, HtBK+10, HHC+15, KTRZ+17, LLGC17, LSYG15, LS05, NMN15, Mar17, OATGEL15b, OP12, OPLS17, SEP08, WLL17]. Heuristics [KPS14, CS18].
HEVC [WdSAM+17]. HICOR [GK94].
Hierarchical [Bro15, GP94, MV17, NN95, PG16, SSM09].
Hierarchicaly [PEP08]. Hierarchies [GVB+06].
High [ANO16a, BE14, BCS+09, BCL17, BS07, Bro15, Car09, DPT17, DFH17, DB08, GBLG10, GJK+05, Gre16, GE90, HG18, HK14, Jan15, KP05, KTRZ+17, KJPN10, LQP+10, LW04, MB12a, NFC+09, NdMM09, OXL+17, SH96, SAL16, SCB+14, TFEK16, WCC16, WMN+17, WGW04, YZ13, YBRM14]. High-Level [ANO16a, Bro15, DPT17, GJK+05, Gre16, HG18, Jan15, KP05, LQP+10, SH96, WMN+17, HK14].
High-Performance [ANO16a, Bro15, DPT17, GJK+05, Gre16, HG18, Jan15, KP05, LQP+10, SH96, WMN+17, HK14].
High-Productivity [BCS+09].
High-Scalability [BS07]. higher [NPD89].
higher-order [NPD89]. Highly [TAY+12, XZX+15]. Highly-Scalable [TAY+12].
History [CEP97, LJO8, LLSS03, UrHH14]. Hitachi [TSB03].
HLPGPU [Bro15]. HLPP [ANO16a]. Home [WLL+08]. Homogeneous [MMN15]. Homomorphisms [LBT17, RS18]. horizontally [CB86].
Hotspotting [ANO86c]. HP [IR+05].
HPC [CAK17, HLK+09, JQI+16, JQWG15, LLM+12, LFL+17]. HW [KBG+08].
Hybrid [ADC+17, BC15, CBT14, Cza17, EK14, HSCI+16, JQI+16, LFL+17, LRG14, RRH03, SR15, VSH+11, ZLJ+17].
Hydrodynamics [Zey05]. Hypercube [CS18, DRS90, GES98, NKS88, Wai87].
Hypercubes [BB90]. HyperFatTree
Hypergraph [CND95]. Hypergraph-Based [CND95]. Hypersequential [UKT00]. Hyperthreading [HRH08].

EA09, Evr00, FmH96, Fur95, GSA08, Gau96, Giv07, Giv08, HmWHR97, HF06, JS06a, JS06b, Joe99, Joe03, LY98a, LY98b, McK07, MPZ06, Mis09, MA10, Ora03, Pan08, Pin95, Pin99, SMM11, Seh98, Ve101, Ve01, Ve02.

Introspection [WHC+17].

Intrusion-Based [WHC+17].

Invalidate [BAP01]. Invasive [SR15].

invented [KMG01, MMN15, SMM94].

Irregular [ACC+01, GF14, LLW+17, MCW16, BMH99]. Issues [Bel94, NS97a].

Iteration [HF14a, HF14b]. Iterative [MS11, Rau96]. Iterator [GS11].

J [Swa88].

Jacobi [HOZ06]. Jacobians [BMS02].

Java [AHKR01, FSS06, JQJ+16, JMSG02, KF99, WG04, WP00].

Job [LLL+15, NSS12, WW17]. Join [RK92].

Joint [HOZ06]. journal [Ano86b]. JPEG [SEP08].

Kutta [BP17].

L [MSA+07]. Lab [ZC09]. Lab-on-Chip [ZC09].

Labeling [SH87, Swa88]. LACross [ZJG17].

Lagrangian [RST+05]. LALP [MCFM12]. LALR [BNWL90].

Language [ARB+05, BARS95, BCL17, CFB94, FCZ16, Fos89, GS06, Hub86, KS97, MCFM12, MR+05, SM09, TFEK16, WL16]. Languages [CK02, FMSG17, Lan90, PS92, NPD89].

Laplace [CTB14].

Large [Cza17, HC17, HR11, KKZN12, LTSD15, LSA+07, SGJ+03, SWF+17, WW17, ZWJK05]. Large-Scale [HC17, KKZN12, SWF+17, WW17].

Latency [AK96, Bos12, HZL16, JG97, LSHK09, MEP07].

Lattice [ZXY+15]. Learning-Based [ZJG17]. Learning-Based [ZJG17]. Leases [CM06].

Leases [Ano86a]. Left [MP04]. Legal [KP95].

Length [EM14]. Lessons [Hal86]. Level [AG06, Ano16a, BCL17, Bro15, DPT17, GBLG10, GK18, Gre16, HG18, Jan15, KP05, LLW+17, LQWP10, MHC98, MKAP05, SSP+00, SSEA14, SH96, SÜCV17, SMM94, SASH12, Tou05, WMN+17, XODFV+09, ZLJ+17, BC10, HK14, NN95, WS08]. Levels [Gsc07].

Leveraging [LT15]. LH [CS16].

Libraries [GJK+05]. Library [BRB11a, LAD15, SÜCV17, YKLD17, YBRM14]. Life [Ano87c].

Light [CM06]. Light-Weight [CM06]. Limit [KEKK16, LS98]. Limited [JMSG02, uHKAMFM16a, uHKAMFM16b, GT86]. Limits [SS99].

Line [SR90, TFM09, ZC09]. Linear [CCG+14, CBR17, DWS16, FLMR02, JLMW15, KS90, KFC08, KTR+17, LDHL05, MP04, SMM94, Gao86]. Link [STB+18].

Linked [HGT+12, HTMG+12, vdSBGW08]. Links [NlK00].

List [AF15, DS97, EM14, LBT17, SL14, vdSBGW08]. List-based [SL14].

Live [WHC+17, ZXY+15]. LLVM [RMG+13].

Load [ASW+15, BG96, EWH011, JK03, RLH14, RSJ+14, YHG16].

Load-Balance-Aware [YHG16]. Load-Store [BG96]. Local [LLSS03].

Locality [AMP01, AAB+16, BE14, CAK17, JG97, KP01, LS98, LM00, PMHC03, WS02, XH98].

Locality-Aware [AAB+16]. Localization [OB13]. Locally [DCX+17, SNB04, TV15].
Lock [AR16, ZLD15]. Lock-Free [AR16].
Lock [Mar09]. Logic [AR16, AVPG00, KBD03, Lin91a, SAB11, BH87, Con88, Kas86, SRV88, Tin88]. Logic-Based [KBD03]. Look [MP04].
Loop [AMP01, CL96, DH00, GVB+06, GMB95, GL95, HC17, INK00, LSL94, LCL17, NG92, RAF95, WdSAM+17, WMC98, YA95, LP94]. Loops [Col95, GL95, MS11, MJ02, OGP+16, QRW00, Sar01, TFNG09, WLL17, Wol86, YKM03, LAV98]. Loops [Col95, GL95, MS11, MJ02, OGP+16, QRW00, Sar01, TFNG09, WLL17, Wol86, YKM03, LAV98]. Loosely [LLM16]. Loss [HZL16]. Lossless [HNC+16]. Low [Bos12, FVvL+16, HZL16, NBN+15, PO07, Roy10, SWF+17]. Low-Latency [Bos12]. Low-Power [NBN+15, PO07]. Low-Radix [SWF+17]. LSM [PYX17]. LSM-Tree [PYX17]. LTE [LF15].
Method [BP17, Ger10, GRAG00, GHC14]. Methodologies [NdMM09, RAP95, SMN09, ZYOY13, Wol86].

Microarchitecture [API03, DKB05, Den94, FLMR17a]. Microarchitectural Models [HLW16, JG97, NLRH07].

Microbenchmarks [IPR05, Microcode [CH95, EDA96]. Microcode Mining [CPP+12, DJR16, FLD15, DTLW16, DJR16, FLD15, Ged13, GMB06, GGSY17, SSEA14, Zha10, CZ12, Ged13, GMB06, GGV17, GS06, HtBK15, GD97, DS97, DS16, DTLW16, DJR16, FLD15, Ged13, GMB06, GGV17, GS06, HtBK15, GD97, DS97, DS16, DTLW16, DJR16, FLD15, Ged13, GMB06, GGSY17, SSEA14, Zha10, ZGH15, ZC09, JCHG08, ZGH15, ZC09, JCHG08]

Micro-threads [ASL05, MOL05, PCP05, CAK17, MT96]. Micro-threads [ASL05, MOL05, PCP05, CAK17, MT96].

Methods [NdMM09, RAP95, SMN09, ZYOY13, Wol86]. Micro-threads [ASL05, MOL05, PCP05, CAK17, MT96].

Modifications [Huc97]. Modular [NdMM09]. Modules [DJR16, SQH92].

Modulo [AG98, EDA96, GRAG00, LNJ08, Ran96]. Modulo-Scheduled [GRAG00]. Molecular [ACC02, BS07]. Molecular [ACC02, BS07].

Motion [MVD+14, TS99]. Motivation [HmWHR97]. Movement [CBF94].

Moving [HAA+11]. MPI [AJF16, BS07, ES11, FPY08b, GJR90, GSY+13, HMK09, LWP04, MOL05, MANR09, NSS12, RA09, SS01]. MPI/PVM [ES11]. MPJ [JQJ+16]. MPSoC [ID08, OPLS17, RGB+08, SWZ+15]. Much [MT96]. Multi [AH08, AKHD13, ABvK13, AML+10, ABB+10, BM09, CZ12, CTB14, DS97, DS16, DTLW16, DJR16, FL15, Ged13, GMB06, GGSY17, GS06, HtBK10, JCH+08, KBG+08, MXP14, MV17, MG15, MHCF98, NdmCdMMW16, OATGEL15b, QZP15, RC16, RG18, RD08, RK13, SSS+00, SEA14, SSB+17, SFAG14, STB+18, Sun11, VSDK09, WQJ17, WLL17, XOdFV+09, Zha10, ZGH+15, Ali86, AGT17].

Multi-agent [STB+18]. Multi-app [DJR16]. Multi-BSP [AGT17].

Multi-Cores [ABvK13, AML+10, ABB+10, GGSY17, SEA14, Zha10, CZ12, Ged13, MXP14, NdmCdMMW16, QZP15, RC16, RG18, RD08, RK13, SSS+00, SEA14, SSB+17, SFAG14, STB+18, Sun11, VSDK09, WQJ17, WLL17, XOdFV+09, Zha10, ZGH+15, Ali86, AGT17].

Multi-dimensional [RG18, WLL17]. Multi-domain [AKHD13]. Multi-Fault [AKHD13]. Multi-GPU [CTB14, SFAG14].

Multi-layer [OATGEL15b]. Multi-Level [MHCF98, SSS+00, XOdFV+09]. Multi-ML [AGT17]. Multi-Prefetcher [GMB06].

Multi-Processor [HtBK10, BM09, KBG+08, ZGH+15]. Multi-processors [AH08, DS97].

O [AKT+14, MG15]. O2000 [CML04]. Object [BBC07, DJR16, FMSG17, GS11, GS13]. Object-Oriented [GS11, GS13]. Objects
Optimized [LSYG15]. Optimizing
[BBR11b, CGN+09, uHKAMFM16b, MBE03, ZSH+12, MO90, uHKAMFM16a].

Optimum [EDA96], Option [Ger10], OR- [SH96]. OR-Parallel
[AK90b, Lin91a, Ali86, Cie91, Tin88].

OR-Parallelism [AK90a]. Order
[BS15, BP17, MSJ01, NPD89]. Ordering
[IS03, DM87]. orders [Pra86]. OREGAMI
[LRG+91]. Organization [AM04].

Oriented [ADC+17, FMSG17, GS11, GS13, LVM16, RGB+08, SRS06, AKT+14, CZ12].

Origin [IPR+05]. OS-Based [FC11]. OSD
[AGPGF14]. Other [OP10, SS89].

Out-of-Core [SHLJ17]. Out-of-Order
[BS15, MSJ01]. Output [CDRV98].

Output-Dependences [CDRV98].

Overhead
[CTB14, KRW+05, OPLS17, SJBV06].

Overheads [BGdS09, LJ08]. Overlap
[BG17]. Overlapping [IKN00, Spr92].

Overview [BML+13].

CHPC96, Cza17, DFH17, DB08, DCX+17, GJK+05, GSY+13, GKM87, HRH08, HF14a, HF14b, HTmG+12, JSS+15, JCH+08, KaM10, KTRZ+17, KJPN10, LPB13, LPF16, Li03, LY95, LWP04, LLSS03, LCL17, MB12a, MCWK01, MS11, MOL05, MMS07, ME15, NFC’09, NdMM09, NP01, PJS+05, PVAE98, RSJ+14, SGJ+03, SSEA14, Sca11, SAL16, SCB+14, SA10, TSB03, TFEK16, TK+08, Tin88, VCP+13, WCC16, WGW04, YZ13, YBRM14, ZWJK05, ZJG17, dMP+03, BCK98, OXL03, BCK98, OXL03.

Performance-Portable [JSS+15].

Problem [AT91, AVPG00, BR14b, DE00, FEA92b, MB12b, OATGEL15a, WS15, FEA92a, LS92, RB86]. Problems [HAA+11, Iqb91, LHP+17, Cie91].

Processing
[AM95, CPP+12, CY14, DJR16, GG14, GSS10, HZL16, JGM15, LT17, LAD15, Lys08, Mi88, NS97b, PTD+06, RSK09, RG15, SAB11, SHL17, SN03, TSS99, TA99, WZB+92, WW17, Ano87c, ECSS88, WB87]. Processor [BGMR11, BKT08, FCJV99, FVvL+16, HtBK+10, JHLM01, KBD03, KTT+99, SMM94, TKN+08, WSO+07, BM09, KBG08, ZGH15, Sca11]. Processors [AK96, BG03, Cra88, Giv07, Giv08, GE90, KLG08, KL00, LZ17, MSJ01, PG07, QZP15, SKA96, SA10, WLL17, Zha10, AH08, DS97, Hem89, MA87, PW87].

Productivity
[BCS+09, BS07, Car09, KaM10]. Profile [CMW94, CPMC96]. Profile-assisted [CMW+94]. Profile-Driven [CPMC96]. Profiling [CPMC96, LPF16, ZSH+12]. Program [Dar05, KH18, KKMS99, MCFM12, SN04, SLZB13, CRM92]. Programmable [CDC09, Dam07].

Programming
[AGT17, Ano16a, AVPG00, BBC07, BARS95, BCL14, BCL17, CBR17, DPT17, DK16, DeB87, DX14, EK14, ELK18, GMP89, GK18, GJK+05, Gre16, GRR98, HSCI+16, HG18, HK14, Hud86, KS97, KBG+08, LHL+16, Lin91a, Lub90, MRLR16, NAP02, PLN+04, PVAE98, SQH92, SS01, SFAG14, Swa88, UKT00, YBRM14, ACD+14, BCL90, BCK98, Ken94, Par86a, Par86c, Tin88]. Programs [AR16, AJF16, BAF94, BS03, BDH+14, CB01, CZ12, DJR16, DSR17, EHKT07, FCRC16, FJO+16, Jan15, JW16, JLMW15, KS14, LMP98, LWL17, LBT17, Low00, MGW99, MOL05, MBE03, NS97b, OB13, SHK13, SJKA99, SK97, SO89, WP00, BS89, Con88, Ga89, Gol88, JB98, Kas86, SRV88]. Project [BCC+05, MAB+11]. PROLOG [Ali86, AK90a, AK90b, Cie91, SB90, SH96, TSS86]. PROMIS [SSP+00].

Programs [AR16, AJF16, BAF94, BS03, BDH+14, CB01, CZ12, DJR16, DSR17, EHKT07, FCRC16, FJO+16, Jan15, JW16, JLMW15, KS14, LMP98, LWL17, LBT17, Low00, MGW99, MOL05, MBE03, NS97b, OB13, SHK13, SJKA99, SK97, SO89, WP00, BS89, Con88, Ga89, Gol88, JB98, Kas86, SRV88].

Productivity
[BCS+09, BS07, Car09, KaM10]. Profile [CMW94, CPMC96]. Profile-assisted [CMW+94]. Profile-Driven [CPMC96]. Profiling [CPMC96, LPF16, ZSH+12]. Program [Dar05, KH18, KKMS99, MCFM12, SN04, SLZB13, CRM92]. Programmable [CDC09, Dam07].

Programming
[AGT17, Ano16a, AVPG00, BBC07, BARS95, BCL14, BCL17, CBR17, DPT17, DK16, DeB87, DX14, EK14, ELK18, GMP89, GK18, GJK+05, Gre16, GRR98, HSCI+16, HG18, HK14, Hud86, KS97, KBG+08, LHL+16, Lin91a, Lub90, MRLR16, NAP02, PLN+04, PVAE98, SQH92, SS01, SFAG14, Swa88, UKT00, YBRM14, ACD+14, BCL90, BCK98, Ken94, Par86a, Par86c, Tin88]. Programs [AR16, AJF16, BAF94, BS03, BDH+14, CB01, CZ12, DJR16, DSR17, EHKT07, FCRC16, FJO+16, Jan15, JW16, JLMW15, KS14, LMP98, LWL17, LBT17, Low00, MGW99, MOL05, MBE03, NS97b, OB13, SHK13, SJKA99, SK97, SO89, WP00, BS89, Con88, Ga89, Gol88, JB98, Kas86, SRV88].

Processing
[AM95, CPP+12, CY14, DJR16, GG14, GSS10, HZL16, JGM15, LT17, LAD15, Lys08, Mi88, NS97b, PTD+06, RSK09, RG15, SAB11, SHL17, SN03, TSS99, TA99, WZB+92, WW17, Ano87c, ECSS88, WB87].
Tackling [DFH17, SLZB13]. Tag [PO07, VFIN12]. Task [BM09, FPCD14, FCRC16, GN89, GS13, GP94, HR11, LPF16, LLW+17, MB12b, NO+03, OP10, OGP+16, RLH14, SSNS16, TFEK16]. Task-Based [FCRC16, RLH14, TFEK16]. Tasking [DFA+09, KaM10].

TCP [LSHK09]. TCP/IP [LSHK09]. Technique [AKD98, CPMC96, Huc97, HAA+11, KTT+99, PB04, RGB+08, SR04, TOM+11, WLWZ15].

Technique-Application [PB04]. Techniques [AK96, CAZ02, DS16, GBLG10, KL00, KP04, LY95, SRS06, STF+12, SK97, TAY+12, TJJ99, ZLAV04].

Template [GF14]. Temporal [PMHC03]. tenanted [WQY17]. Teradevice [WGF+16]. Terascale [GCD+03].

termination [Tho87]. Test [CPL+10, KJHB14, SRS06, BS89]. Testing [TCU14, ZC09, Mai87]. Tests [JW16].

Text [FCZ16, LLY14]. TFlux [DTLW16]. Their [CGJK95, LW97, RG18, ACC+01].

Theory [GRAG00, RSJ+14, CP88]. Thread [CPL+10, DSR17, JG97, ZGH+15, WS08].

Thread-level [WS08]. Thread-Parallel [CPL+10]. Threaded [HGT+12, HTmG+12, MG15, VSDK09, DS16, GS06, RD08].

threading [DTLW16]. Three [ABASS12]. Three-Argument [ABASS12].

Throughput [AKT+14, BBR11b]. Throughput-oriented [AKT+14]. Thrown [AHKR01]. TIDeFlow [OGP+16]. Tightly [SS01]. Tightly-Coupled [SS01].

Tikhonov [ADC+17]. Tiled [FC11, OOR13]. Tiling [MHC98, XH98, ZK07]. Time [BBB+17, DWS16, FCJY99, Fea92b, FJO+16, KRW+05, LCUC92, LLL+15, LWLG11, PTdSF+12, RAP95, RK13, SWZ+15, SWL05, Won02, YKM03, BG17, EWHS11, Fea92a, HtBK+10, TTF+08, vdSGBW08].

Tokenization [Sca11].

Tolerance [AKHD13, NRR99, WGF+16, ZLJA12].

Tolerant [EAT14, GCD+03]. Tolerating [AK96, JG97, LG10]. Too [MT96]. Tool [FG16, KAMAMA17, ME15, PVAE98, WMN+17]. Tools [ALG+95, ARB+05, DGMP09, LRG+91, Lub90, CB86].

Top [Sca11]. Top-Performance [Sca11].

Transactional [CRM17, GRC+14, MFG+08, SAL16, SW16, SH15, VSH+11, WL14, ZSH+12].

Transformation [HSC1+16, IKN00, KH18, SASH12, vdSGBW08, LP94].

Transformations [AG06, AMP01, GVB+06, GMB95, HRC17, JS10, KP95, KP01, MO90, OK99, SPS14, TH17, WMC98, YA95].

Transparent [PSM97, PPQV16].

Transport [CJA00, Zey05]. Traverse [AO+93]. Traverse [AO+93].

Traversal [STF+12]. Tree [BR14b, GH89, KF99, MM16, PS92, PW92, SM16, SMC94, SWF+17, YJ16, DPL86, MA87, STF+12, PYX17]. Tree-Based
[HHC+15, NYHA14]. Weight [CM06].
Weighted [Ken01]. Which [Gen16]. while [Col95, GL95]. while-Loops [Col95]. Who [JK12]. Window [DM17, NdMM09].
Window-Based [DM17], Winograd [uHKAMFM16a, uHKAMFM16b]. within [LLL+15]. Without [LPB13]. Word [FLD15, Sun11]. Work [AK92].
WorkCrews [VR88]. Workflow [CAK17, SDL17]. Workflows [TTF+08]. Working [FR95]. Worklist [GRC+14].

x86 [MGL+17]. XDP [CFB94]. Xeon [BP17, Cza17, LLGC17, ELGE17]. Xeon/Xeon [Cza17]. XI [MCE13]. XV [PVG17].

Y-Invalidate [BAP01]. Yield [SS17].
YuruBackup [XZX+15].

Zone [JCH+08, MS11].

References

[AAB+16]

[ABASS12]

[AA15]

REFERENCES

[Araujo:2008:PAG] Renata Braga Araújo,
REFERENCES

Altman:1998:OMS

Aviles-Gonzalez:2014:SMM

Abdi:2006:VSL

REFERENCES

Tristan Aubrey-Jones and Bernd Fischer. Synthesizing MPI implementations from functional data-parallel programs. *International Journal of Parallel Programming*, 44(3):552–573, June 2016. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-
REFERENCES

Ali:1990:FPS

Ali:1990:MAP

Ali:1992:SSW

Albonesi:1996:MVA

Alam:2017:PA
REFERENCES

Abraham:1998:MST

Ali:2013:MFT

Ayguade:1995:ARP

Ali:1986:PEP

Part of the BC-machine project, SICS, Sweden.

August:1999:PRI

Anonymous:1986:H

Anonymous:1986:IA

Anonymous:1987:AL

REFERENCES

Anon [Ano00a] Anonymous. Guest Editor’s introduction. Inter
REFERENCES

Anonymous:2000:IA

Anonymous:2000:IB

Anonymous:2003:E

Anonymous:2014:EN
Anonymous:2016:ENH

Anonymous:2016:ENS

Anonymous:2016:ENSa

Anonymous:2016:ENSb

Awasthi:2012:MDP

REFERENCES

Tito Autrey and Michael Wolfe. Initial results for glacial variable analysis. *International Journal of Parallel Program-
REFERENCES

[Ayg03]

[BAF94]

[Borin:2014:MCU]

[BAJW14]

[Ben-Asher:1994:UTC]

[BAJW14]

[Ban04a]

[Ben-Asher:2004:GEIa]

[BAJW14]

[Ban04a]

Ben-Asher:2001:INP

Ben-Asher:1995:FPF

Blough:1990:NOM

Barone:2017:AFQ

Baduel:2007:ATO

Bernstein:1995:SDD

Belgin:2011:LPB

Benoit:2011:ORS

Bordolo:2010:GBA

Bernabe:2015:AEF

[BC15] Gregorio Bernabé and

Barthou:2000:MSE

[BCC00]

[BCC+05]

[BCC+05]

Bianchini:1998:EEC

[BCC+05]

Bailey:1990:PGE

Duane A. Bailey, Janice E. Cuny, and Craig P. Loomis. ParaGraph: Graph editor support for parallel programming environments. *International Journal of Parallel Pro-
REFERENCES

Bronevetsky:2007:CFS

Bahi:2014:IRC

Bull:2010:PEM

Bell:1994:SPC

Bilardi:2013:ESD

REFERENCES

Broquedis:2010:FEO

Boto-Fernandez:2015:CAA

Bruschi:2005:FFV

Bodik:1996:ADF

Bulic:2003:EAC

REFERENCES

REFERENCES

References

Bala:1997:EIS

Baumann:2014:PPI

Bezensek:2014:SPD

Brooks:1986:BBM

Brown:2015:HLH

Bansal:1989:TGT

Arvind K. Bansal and Leon S. Sterling. Transforming generate-and-test programs to execute under committed-choice AND-parallelism. *International
REFERENCES

Broy:1991:SDS

Benkner:2003:EDM

Brown:2007:HSP

Baudisch:2015:ESO

REFERENCES

Bac:2013:MUF

Bra:2002:PAS

Choi:2017:DLA

Cam:1989:OSO

Cyb:1988:PPU
REFERENCES

REFERENCES

Che:2017:PGG

Camara:2014:EIL

Charr:2012:AEM

Chilstedt:2009:DEC

Calland:1998:RAO
REFERENCES

Chapman:2013:EDO

Chang:1997:IBP

Currie:2006:ESV

Carter:1994:CSA

Carriero:1995:PSS

Nicholas Carriero, David

Cao:2009:OCP

Chao:1995:MRD

Chen:2006:VAM

Chen:2014:PCS

Chang:1996:UPE

Po-Yung Chang, Eric Hao, Yale N. Patt, and Pohua P. Chang. Using predicated execution to improve the performance of a dynamically scheduled machine with speculative execu-
REFERENCES

Conte:1999:EIA

[CHS99]

Chang:1996:BCN

[CHYP96]

Creusillet:1996:IAR

Ciepielewski:1991:SPP

Corporaal:2000:CCT

Chauhan:2002:RVP
Arun Chauhan and Ken Kennedy. Reducing and vectorizing proce-
REFERENCES

Chockler:2006:LWL

Conte:1999:EIb

Cora balan:2004:PMD

Julita Corbalan, Xavier Martorell, and Jesus Labarta. Page migration with dynamic space-sharing scheduling policies: The case of the
REFERENCES

Cleaveland:1988:TTC

Carroll:2004:FIE

Canal:2001:DCP

Czutro:2010:TP1

Conte:1996:HBP
REFERENCES

DEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

[Dar05] Frederica Darema. The next generation software program. *International

REFERENCES

Demsky:2011:UDE

Dennis:1994:MMP

Donaldson:1998:AAP

Duran:2009:PEO

Duran:2007:PEH
Darlington:2017:TCH

Drummond:2009:PPB

Darte:2000:LSL

Duncan:2016:UPP

Dudas:2012:SCA
REFERENCES

issn=0885-7458&volume=40&issue=4&spage=381.

Matteis:2017:PPW

Dehne:1991:OCM

Das:1991:PSA

deStGermain:2003:PAI

Dekel:1986:OPA

Eliezer Dekel, Shietung Peng, and S. Sitharma Lyengar. Optimal parallel algorithms for constructing and maintaining a balanced m-way search tree. *International Journal of Parallel Program-
REFERENCES

REFERENCES

[DZW10] Chao Dong, Huijie Zhao, and Wei Wang. Parallel nonnegative matrix factorization algorithm on the distributed memory

Eigenmann:2009:GEI

Enokido:2014:EER

Edmiston:1988:PPB

Eichenberger:1996:MRR

Eijkhout:2005:CSS

El-Gindy:1986:OSP

Egger:2015:ERV

Emoto:2007:CDF

Ernsting:2014:SFS

Ernsting:2017:DPA

REFERENCES

Estebanez:2016:NDS

Estebanez:2017:UXP

Ernstsson:2018:SFT

Eigenmann:2013:CI

Emoto:2014:AFM

Ebcioğlu:1997:GEI
Kemal Ebcioğlu and Wenmei Hwu. Guest Edi-

[Ellis:1988:APM]

[Evripidou:2000:I]

[ES06]

[ES11]

[EW96]
ElKabbany:2011:DLB

Fensch:2011:EBC

Fujimoto:1987:SMA

Farkas:1999:MAR

Fonseca:2016:APE

Feautrier:1991:DAA

Feautrier:1992:SESa

Feautrier:1992:SESb

Feautrier:2006:SSS

Feautrier:2016:TCA

REFERENCES

Fortin:2016:BWT

Fummi:2005:E

Frieb:2016:PAH

Feng:2015:ASW

Francez:1987:FAC

Fillo:1997:MMM
Marco Fillo, Stephen W. Keckler, William J. Dally,

REFERENCES

[Fachada:2017:EPS]

[Fachada:2017:PSS]

[Furlinger:2009:CAE]

[Farrens:1996:GEI]

[Fan:2017:SEE]

[Foster:1989:MGC]
REFERENCES

Fiore:2014:CBD

Faraj:2008:BEA

Feitelson:1995:CBR

Factor:2006:PID

REFERENCES

[Foster:1987:FPB]

[Furnari:1995:GEI]

[FVvL+16]

[Faigin:1994:PIR]

[Gao:1986:MPL]

Gadde:2016:AOI

Gaudiot:1996:GEI

Guo:2008:CIR

Gaster:2010:CTH

Gangwar:2007:EBB

W. Morven Gentleman. Concurrency paradigms: Competitive, coordinated, and collaborative: Which

Goli:2017:ACS

Goli:2018:FCI

Gupta:1989:SIB

Ghiya:1996:CAP

Gu:2017:DEP

George:1986:SSP

Gaspar:2014:BCW

Givargis:2007:SIE

Givargis:2008:GEI

Gregor:2005:GPH

Genaud:2009:FMP

Gilder:1994:ASC

Gorlatch:2018:GEH

Guzman:1987:PSA

Gupta:1992:EPF

Griebl:1995:CSD
[207x598]Martin Griebl and Christian Lengauer. A communication scheme for

Gao:2017:AOM

Granston:1995:LTP

Gendler:2006:PBM

Grasset:2011:MHD

Giacalone:1989:FSI

REFERENCES

REFERENCES

REFERENCES

Garcia:2017:ARA

Greenlaw:1990:ASA

Gaudiot:2005:MGE

Grelck:2006:SFA

Giacaman:2011:PIP

Giacaman:2013:PTP
Nasser Giacaman and Oliver Sinnen. Parallel task for parallelis-
Gao:2008:GEI

Gschwind:2007:CBE

Geng:2017:LED

Grelck:2010:ASP

Gu:2013:PCI

[GSP+17]

[GsY+13]
REFERENCES

Groselj:1986:PAD

Gupta:1988:PIO

Granston:1995:CFD

Gornish:1999:IHS

Girbal:2006:SAC
REFERENCES

Govindarajan:1992:AGP

Gilbert:1987:PGP

Hussain:2011:PIA

Halstead:1986:AML

(Due to publishing delays, this issue did not appear until late 1987.).
REFERENCES

Hensgen:1988:TAB

Haidl:2018:HLP

Huang:2012:EEP

Huang:2015:A

Haase:2010:SDV
Jan Haase, Andreas Hofmann, and Klaus Waldschmidt. A self distributing virtual machine for adaptive multicore env-

[Hamidouche:2013:PSW] Khaled Hamidouche, Fernando Machado Mendonca, Joel Falcou, Alba Cristina Magalhaes Alves de Melo, and Daniel

Hilbrich:2009:MCC

Hank:1997:RBC

Hwu:1994:GE

Huang:2016:CFL

REFERENCES

[HPR15] Ralf Homann and Thomas Rauber. Adaptive task pools: Efficiently balancing large number of tasks on shared-address spaces. *International Journal of Parallel Pro-

REFERENCES

Han:1998:EBS

Huang:2012:POT

Hendren:1997:CCE

Huang:1989:SEP

Hudak:1986:DSP

Paul R. Hudak. The denotational semantics of a para-functional programming language. Interna-
REFERENCES

Also Research Report YALEU/DCS/TR-484, Department of Computer Science, Yale University, New Haven, CT (1986).

Kayhan M. Imre, Cesur Baransel, and Harun Artuner. Efficient and scalable routing algorithms for collective communication

[IKN00] Issenin:2008:UFM

[ID08] Iwasaki:2004:NPS

[Int98] Ishizaki:2000:LT

[IIP90] Ibarra:1990:EAP

Oscar H. Ibarra and Michael A. Palis. An efficient all-parses systolic algorithm for general context-free parsing. *International Journ-
REFERENCES

Iyer:2005:EEH

Iqbal:1991:AAP

Iwashita:2003:BRB

Jannesari:2015:DHL

REFERENCES

Jin:2017:PAA

John:1998:CCP

Jimborean:2014:DSP

Jin:2008:PEM

Jenks:1997:ELT
REFERENCES

Janakiram:1988:RPB

Jodra:2015:ETG

Jung:2001:TPB

http://ipsapp009.lwwonline.com/content/getfile/4773/24/2/fulltext.pdf;

Jin:2015:IPB

Jayaraman:1986:PRM

REFERENCES

Joe:1999:GEI
http://ipsapp009.lwwonline.com/content/getfile/4773/28/3/fulltext.pdf;

Joe:2003:GEI
http://ipsapp007.kluweronline.com/content/getfile/4773/31/1/fulltext.pdf;

Johnson:1994:PAM

Javed:2016:TSJ

Jin:2015:CCC
REFERENCES

Jannesari:2016:AGU

Kapinos:2010:PPP

Khan:2017:RCS

Kasif:1986:CDD

Kachris:2003:RLB

REFERENCES

Kriaa:2008:PPM

Keramidas:2015:RCR

Kultursay:2016:MPL

Kennedy:1994:CTM

Kennedy:2001:FGW

REFERENCES

Vinay B. Y. Kumar, Sid-
REFERENCES

Kella:2011:AAP

KKZN12

Kirovski:1999:PBP

KK11

REFERENCES

REFERENCES

Alfred Koelbl and Carl Pixley. Constructing efficient formal models from high-level descrip-

[KTRZ+17] Moritz Kreutzer, Jonas Thies, Melven Röhrig-Zöllner, Andreas Pieper, Faisal Shahzad, Martin Galgon, Achim Baser-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Linstrom:1988:SPR [Lin88b]

Lindstrom:1990:SPR [Lin90]

Lindstrom:1991:SPR [Lin91b]

Gary Lindstrom. Referees and valedictory. International
REFERENCES

Liv:1991:NMB

Loh:2008:MPH

Luo:2005:SSM

Lee:2009:RSS

Lai:1994:CRI

REFERENCES

Langguth:2017:ADT

Liang:2015:PJE

Lu:2003:ABH

Li:2017:TLT

Loechner:2000:COA

Lee:1998:CPA

Loghi:2005:DFV

Lin:2012:ESC

Li:1994:SL

Lowenthal:2000:ASB

Lattuada:2016:PET

Marco Lattuada, Christian Pilato, and Fabrizio Ferrandi. Performance estimation of task graphs...

[LS92] W. Loots and T. H. C. Smith. A parallel algo-

Lipasti:1998:EVL

Lin:2005:EBH

Laudon:2007:CWM

Lee:2007:DBI

Larsen:2009:ABE

[LSL94]
[LTF+12]
Li:2015:ODN

[LSYG15]
Leite:2012:NNS

[LT17]
Li:2017:GEP

[LT15]
[LT+15]
Guohong Li, Olivier Temam,

Liu:2011:STE

Liu:2017:PBP

Liu:2017:PBP

Li:1998:Ia

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ricardo Menotti, João M. P. Cardoso, Marcio M. Menotti:2012:LLP

REFERENCES

McKee:2007:GEI

Mellor-Crummey:2001:IMH

Mustafa:2015:PPE

Manolache:2007:FAC

REFERENCES

Montella:2017:VCB

Marsolf:1999:UMS

Mitcell:1998:QML

Maydan:1995:EDD

Miller:1988:ISB

REFERENCES

Matsuzaki:2016:PTA

Manoj:2004:CDC

McNamee:1990:TOI

Carole M. McNamee and

REFERENCES

[Moshovos:1999:SMC] Andreas Moshovos and
REFERENCES

[Meng:2011:PSI]

[MSA+07]

[MSJ01]

REFERENCES

Matheson:1996:PMM

Metzger:2015:UGD

Martinez:2006:DGN

Monteiro:2014:PFS
Eduarda Monteiro, Bruno Vizzotto, Cláudio Diniz, Marilena Maule,

Ma:2014:DPI

Nalepa:2015:COP

Nicacio:2013:TSU

REFERENCES

com/article/10.1007/s10766-012-0205-x.

Nageswaran:2009:BDV

Ning:1992:OLS

Nakajo:2000:DSM

Nakano:2003:SCG

[102x681]REFERENCES

Ni:1988:PMH

NP98

Norris:1998:ECR

Nikolopoulos:2001:AOS

Dimitrios S. Nikolopoulos and Theodore S. Papathodorou. The architectural and operating system implications on the performance of syn-

Neirynck:1989:EAH

Nau:1986:EAM

Najjar:1994:EMG

Natesan:2017:HBP

Narasimhan:1999:UDF
REFERENCES

Ortega-Arranz:2015:CEN

Ortega-Arranz:2015:TML

Ossner:2013:GMB

Ozturan:2011:GEP

Orozco:2016:DIT

REFERENCES

Michael F. P. O’Boyle and Peter M. W. Kni-
jnenburg. Nonsingular data transformations: Def-
inition, validity, and applications. *International
Journal of Parallel Programming*, 27(3):131–159,
www.springerlink.com/openurl.asp?genre=article&
issn=0885-7458&volume=
27&issue=3&spage=131.

Ender Özcan and Esin On-
basioğlu. Memetic algo-
rithms for parallel code
optimization. *International Jour-
nal of Parallel Programming*, 35(1):
www.springerlink.com/openurl.asp?genre=article&
issn=0885-7458&volume=
35&issue=1&spage=33.

Yunho Oh, Doohwan Oh, and Won W. Ro. GPU-
friendly parallel genome matching with tiled ac-
cess and reduced state
transition table. *International Journal of Par-
allel Programming*, 41(4):
com/article/10.1007/
s10766-012-0234-5.

Kevin O’Brien, Kathryn O’Brien, Zehra Sura, Tong
Chen, and Tao Zhang. Supporting OpenMP on
Cell. *International Journal of Parallel Programming*,
com/openurl.asp?genre=article&
issn=0885-7458&volume=
36&issue=3&spage=289.

Stephen L. Olivier and Jan F. Prins. Comparison of OpenMP 3.0
and other task parallel frameworks on unbalanced
task graphs. *International Journal of Parallel Pro-
gramming*, 38(5–6):341–
360, October 2010. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
Otoom:2012:WMI

Ouyang:2017:HSP

Ora03

Ou:2017:GNH

Panda:2008:GEI

Parallax:1986:BPP

Parallax:1986:HPS

Parallax:1986:WPB

Pandey:2001:SIE

Palanciuc:2004:SCM

Virgil Palanciuc and Dra-

[Pavlidis:2016:HSQ] Archimedes Pavlidis and Dimitris Gizopoulos. Hierarchical synthesis of...

Pingali:2003:RCT

Phan:2017:ESI

Petrov:2007:DTR

Panda:2010:GES

Pop:2008:AOH

Traian Pop, Paul Pop,

REFERENCES

164

Panesar:2006:DPP

Panetta:2012:ATD

Park:1998:PPP

Paya-Vaya:2017:GES

REFERENCES

REFERENCES

Quillere:2000:GEN

Wang:2017:PAG

Qu:2015:DBA

Rajagopalan:1994:SSP

Rashti:2009:SAM

Rauchwerger:1995:SMR

Lawrence Rauchwerger, Nancy M. Amato, and David A. Padua. A scalable method for run-time

Rau:1996:IMS

Rana:1986:ODS

Rohou:2000:HGC

Rahman:2016:ASO

Rounce:2008:DIS

[RK92] Balkrishna Ramkumar and Laxmikant V. Kalé. A join algorithm for combining AND parallel solutions in AND/OR paral-
REFERENCES

Rovers:2013:UNU

Rajwar:2004:IQS

Ramezani:2014:TBS

Ramirez:2002:STC

[RLH14]

[RK13]

[RKG04]

Alper Sen, Baris Ak-

REFERENCES

REFERENCES

Sehr:1998:GEI

Seki:2009:DRI

Shee:2008:AEH

Steuwer:2014:IA

Sreraman:2000:VCM

N. Sreraman and R. Govindarajan. A vectorizing compiler for multimedia extensions. *International Journal of Parallel Pro-
REFERENCES

REFERENCES

[SHZ+17] Fei Song, Daochao Huang, Huachun Zhou, Hongke
REFERENCES

Michael Schlansker and
REFERENCES

REFERENCES

Salapura:2011:GEI

Schepke:2009:PLB

Schepke:2013:OMR

Sarojadevi:2004:CPE

Singh:1989:DEP

Ambuj K. Singh and Ross Overbeek. Derivation of efficient parallel programs: An example from

Sprague:1992:PAC

Steinbrecher:2014:CSI

Seevers:1992:PPE

Sosic:1990:P

Souravlas:2004:PTD

Stavros Souravlas and Manos Roumeliotis. A pipeline technique for dynamic data transfer on a multiprocessor Grid.

Schreiber:2015:ICB

Sanchez:2006:ETA

Somogyi:1988:BAS

Springsteel:1989:PGP

Sarkar:1992:P

Sazeides:1999:LDV

Shan:2001:CMS

Scholz:2010:GEE

Sivakumaran:2017:PBY

Sotomayor:2017:ACG

Rafael Sotomayor, Luis Miguel Sanchez, Javier Garcia

Sankaraiah:2014:POV

Sankaraiah:2014:POV

Sterling:1996:EEC

Saito:2000:DPC

Saito:2000:DPC

Sheffler:1996:EDA

[STB+18]

[SUVCV17]

Sukhwani:2015:HSA

REFERENCES

[SWL05] Yonghong Song, Cheng Wang, and Zhiyuan Li. A polynomial-time algorithm

[Sha:2015:PEH]

[Tipparaju:2012:RTE] Vinod Tipparaju, Edoardo Apra, Weikuan Yu, Xinyu Que, and Jeffrey S. Vetter. Runtime techniques...

[Tomic:2014:UDR]

[Trancoso:2006:CCM]

[Tyson:1994:CSM]

[Tyson:1996:EEP]

[Tan:2016:ATB]

REFERENCES

REFERENCES

[TLSG05] Jean-Pierre Talpin, Paul
REFERENCES

[Touati:2005:RSI]

[Tierney:2009:SPC]

[Takahashi:2003:PEH]

[TSS86]

[TV99]

Min Tan, Janet M. Siegel, and Howard Jay Siegel. Parallel implemen-

[TTF+08]

[TV15]

Ashkan Tousimojarad and Wim Vanderbauwhede. Steal locally, share globally. *International Journal of Parallel Program-

[TS99]

Min Tan, Janet M. Siegel, and Howard Jay Siegel. Parallel implemen-
REFERENCES

[194]

[102x681]REFERENCES

[102x681]194

Khan:2016:EOM

Khan:2016:OMM

Uchihira:2000:SBH

urRehman:2014:PCS

Ugarte:2005:VES

[Iñigo Ugarte and Pablo Sanchez. Verification

REFERENCES

http://ipsapp009.lwwonline.com/content/getfile/4773/23/1/fulltext.pdf;

Veidenbaum:2002:GEI

http://ipsapp009.lwwonline.com/content/getfile/4773/28/1/fulltext.pdf;

Venkatasubramanian:2012:TTT

Velasquez:2015:BBA

vanNieuwpoort:2011:CRA

Rob V. van Nieuwpoort and John W. Romein. Correlating radio astronomy

Vandevoorde:1988:WAC

Vander-Swalmen:2009:CAM

Vallejo:2011:HTM

Wainwright:1987:DPC

Wolfe:1987:DDA

Michael Wolfe and Upal Banerjee. Data de-

Wang:2016:CIK

Wang:2017:GPH

Wrede:2018:SCG

Wang:1994:DSP

Weis:2016:ASF

Wo:2004:AAJ

Wang:2017:IBM

Wang:2016:GDS

Wang:2008:DIA

Wing:1999:VAD

[WMN+17] Chao Wang, Nadia Nedjah, Luiza M. Mourelle, and Alii Wang. Preface to the special issue on sequential code

Wolfe:1986:LSW

Wonacott:2002:ASL

Wu:2000:CPG

Weng:2007:OIS

Wang:2017:CIS

Sheng Wang, Weizhong Qiang, Hai Jin, and Jin-feng Yuan. CovertInspector: Identification of

Warg:2008:DTS

Waliullah:2014:RCH

Williamson:2015:PIN

Williams:2007:SCK

Wu:2017:GLS

Hsiang-Huang Wu and Chien-Min Wang. Generalization of large-scale data processing in one

[WZTH13]

Wang:2013:BQE

[XH98]

Xue:1998:RDT

[XOdFV09]

Xavier:2009:MLP

Carolina Ribeiro Xavier, Rafael Sachetto Oliveira, Vinicius da Fonseca Vieira, Rodrigo Weber dos Santos, and Wagner Meira. Multi-level parallelism for the cardiac bidomain equations. *International Journal of Parallel Program-
REFERENCES

Yang;2016:EBM

YarKhan;2017:PPN

Yao;2017:ONC

Yang;2013:IHP

Zhao:2009:LTL

Zhang:2015:HTP

Zhang:1989:PAM
Zhang:2010:COP

Zheng:2017:LLB

Zhang:2007:RCM

Zalamea:2004:SHT

Zhang:2015:QBA

REFERENCES

Zhang:2017:OPL

Zhang:2012:DDA

Zhong:2015:VBM

Zhang:2013:KPM