A Bibliography of Publications about the *Java Programming Language*, 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

31 October 2017
Version 1.157

Abstract
This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

3 [GBC12, JEC+12, ZXL16]. C_p [AÖ11]. k [SD16b, SGG+17]. Z_p [AÖ11].

-safety [SD16b].

/multi [Taf13]. /multi-threaded [Taf13].

'12 [Hol12].

27th [KP15].

5 [KHR11].

6 [Jen12].

7 [EV13, J+12]. 75 [HWM11].

8 [LYBB14, SAdB+16, UFM15].

938 [Gun14]. 978-1-4493-1103-2 [Bro12].

Abbreviated [SRTR17]. ABS [SAdB+16]. absence [AGH+17]. Abstract
[AGR12, BDT10, DLR16, XMA+14, DLM10, DLR14, FSC+13, KMMV14]. Abstraction
Architectures

[KKK+17, ABCR10, Hos12, MS10, ZP14].

arena [TRE+13]. arithmetic [Tgz17].

Aspect-Oriented

[ABMV12, VBAM10b, WBA+11]. AspectJ [AC10]. aspects [Lvg10]. Assertion [MM12]. Assertion-Based [MM12].

Assertional [LL15]. assertions [VYY10].

atonics [PPS16]. Attack [BH12]. Attacks [MSS16]. attribute [SHU16].

automata [TLX17, ZWZ+14]. Automated [BH17, BSOG12, BMOG12, MS14, RGEV11, SDM12, ASDMG14, MRMV12, ZFK+16].

Automatic

[GGRSY14, GGRSY15, GGRSY17, KKW11, MDS+17, PqD12, ZS11, SD16a, SjPS10, SS16, WM10, ABK+16, FM13, PG12]. automatically [TB14]. Autonomic [DLPT14]. Autonomous [GMPS12].

average [LDL14]. avoid [XR10]. avoids [PPS16]. Aware [JYKSI12, BBXC13, CL17, EQT10, SSB+14a, SGV12]. awareness [VGS14]. axiomatic [TVD10].

Big [GTS+15, NBA+15, RVK15, BBXC13, SSG+14, WR10]. billions [DRN14].

bindings [VGRS16]. bird [Guy14].

Birthmark [PiLCH11]. Blame [KT15].

Bloat [MS10, XMA+14, BRG12, BBXC13, XR10]. bloat-aware [BBXC13].

block [CZ14, KBL14]. block-level [KBL14].

blocking [DW10]. Blockly [AMWW15].

Bringing [CV14, HRS17, STS+13].

Broken [dGRdB+15]. Browser [MSSK16, PVB17, FIF+15, VB14a, WGW+11, YK14].

Browsers [HLSK13, Browsix [PVB17].

Budget (GM12), buffered [DLZ+13].

buffers [Gun14], bug [LWH+10], bugs [ECS15, MDS+17, ODL15, Ryu16]. Build [BMDK15, BNE16, ELW15, MAH12].

Building [Sta10, HWW+15]. Business [CCA+12]. Bytecode

[BDT10, BSOG12, FHSR12, NS12, RDCP12, Rey13, AdCGGH16, CZ14, DLM10, SP10b, SMP10, VB14b].

C [BB12, CDG+17, GBC12, NED+13, SRTR17, Sta10, ZWSS15]. C/C [BB12]. C/ C [NED+13]. CA [KP15]. cache

IN12, ZP14], caches [NGB16].

calculations [VSG17], Calculi [FFF17].
calculus [AH10]. Call [FRG12, PULO16, ZWZ+14, Xue12, SS+14a]. Call-site

[SSB+14a]. calling

[BH13, SS+14a, ZWZ+14]. Calls

[SW12, SS16], came [Car11], can [TPG15], capabilities [Ame13], capability [RDF15],

capo [SMSB11], capturing [BKC+13],

Card [GMP12, ABFM12, dCMN12].

Cards [BH12, GMP12]. Caring [DAA13],

carry [Ame13]. Cartesian [SD16b], Case

[ZMM+16, dGRdB+15, AMWW15, HNTL12, SPPH10, Vit14]. Cassandra

[FRM+15]. casts [SH12], categorising

[CMM17], causes [FRM+15]. CAV [KP15].

CCA [ZXL16]. Center [Hol12], centric

[DHM+12, FOPZ14], CERT [LMS+12],

chain [KSR14]. Challenges [GM12].

Change [YQTR15]. Changes [MvDL12].

Changing [SSG+14], channels

[AGH+17, LS11]. Characterizing [CJ17],

check [GvRN+11]. Checking

[BNE16, Cho14, JCT10, JYKS12, ABFM12, BHSB14, BNS12, DLM10, FLL+13, HMDE12, KATS12, KvRHA14, LT11, RR14, RAS16, RDF15, TVD10, VYY10].

checkpointing [SGV12],

checkpointing-enabled [SGV12]. Checks

[FMH15].

chip [PS10, Puf13, RS12, SPS17].

chip-multiprocessor [PS10].

chip-multiprocessors [RS12]. choice

[WB+10], CICS [R+13]. CIL [BBF+10],

circular [Gun14, SZ10]. Circus [ZLCW14].

City [Hol12]. Class [BH12, GTS11, HC10, HM10, SC16, TSD+12]. Classes

[And14, WT11, CZ14, ZS10, TSD+12, VBDPM16].

Classifies [SD16a], classification [SS14],

Classifiers [BSA14]. Classifying [HM10],

Classless [WZdSOS17], clicker [HA13].

Client [MS14, KRH16]. client-side

[KRH16]. Client-State [BSA14]. Clojure

[ECG12, FH11, VS10], Closing [ZLHD15],

Closures [BO11, BO12, BO13]. Cloud

[VDV17, LZYP16, TLMM13], clustered

[PDP+16], clusters [TRTD11].

Cloud

[HH17, BNE16, HC11, RVK15, SRTR17, SV15a, SED14, AGR17, AK13, CCFB15, DRN14, FH16, FMS+11, LG10, NG13, OJ12, PMP+16, PSH11, RFRS14, RB16, RO12, UO13, VSL17, WJK17, WGF11, WAB+11, WWS13, ZHL+12, ZX16, ZWSS15].

coding [LMS+12], coherent [ZP14], Cold

[BZD17, WGF11], collected [AGGZ10].

collecting [AHK+11]. Collection

[ASV+16, GM12, QSaS+16, BP10, KPV11, KBL14, NGB16, ODL15, PZM+10, PDP+16, SP10a, SBM14, Sien10, SJBL10, SKBL11, UIY10, UJR14].

Collections

[GS12, PL12, SV15b, SV17], collectives

[RTTD15, TRTD11].

Collector

[BH12, GTS+15, BCR13, BVG14b, Puf13].

Collectoren [Sch13], collectors

[GTSS11, Sch13]. coloring [SS10]. Colt

[WN10]. CoMA [AGR12]. Combination

[BSA14]. Combinatorial [YHY13],

combinators [MBHO13]. Combining
[BDGS13, MGI17]. commensal [BRWA14].
Communication [QJQ+16, RFE+13, SK12, BJBK12, ETR+15, TTD+11].
communications [ETTD12, RFE+15, TTD12]. Communities [ZMM+16].
Compact [HWM10, HWM11, JLJ17]. comparative [KFBK+15]. comparing [MD15].
comparison [ADI13, BJBK12, HH13, KvRHA14, SMS+12]. Comparisons [GGZ+15].
Compartmental [WGW+11]. compatibility [DJB16, OIA+13]. compatible [ABCR10, Hor12].
Compilation [DLR16, CGJ+16, DLR14, FSC+13, IHWN12, JLP+14, JK13, JMO14, KS13, KHL+13, Lei17, MD15, MGI17, ZBB15]. compiled [NED+13, RO12]. Compiler [JMB12, NKH16, NWB+15, BBF+10, BRWA14, CIAD13, HWM14, IHWN12, KMLS15, KS14, KC12, LSMW16, MDM17, Rub14, TTS+10, TWSC10, VB14b, ZYZ+12].
compiler-compiler [KS14].
Composable [SS10]. Composing [EABVGV14]. Composition [SK12, ACH+17, AH10, SZ10, VM15].
Comprehensive [VBMA11, ZKB+16, MKZ+14].
Concurrent [MSM+16, PS12, Si10, EP14, Gra15, HJJH10, KBL14, MSM+10, OW16, PTF+15, RVP11, STR16, SNS+14, YS10]. concurrent-by-default [SNS+14].
conditional [SS16]. Conference [DDDF17, Hol12, KP15, LMK16, PDPM+16].
Conformance [AGR12]. Confused [BH12]. conquer [SBF+10]. conservative [SBM14].
consistency [DNB+12, FRM+15].
consistent [BCR13]. constrained [KSB14].
constraint [FMBH15, SHU16].
Constraints [SGD15, LSSD14].
construction [CIAD13, RGEV11].
constructors [MME14]. constructs [PCL14, PTF+15], consumers [DA13].
Consumption [MV16]. container [XR10].
Contracts [YQTR15, HBT12, KT15, KK11].
Control [FGR12, FHSR12, TT11, ADCGG16, FWDL15, LSMW16, RHN+13, STS+13, TAB12, XHH12].
controlling [BKC+13, YDF15]. Convention [Hol12].
conversions [CMM17]. Cooperative [YDF15, HD17]. Coordinating [MAK16].
copy [FBH17]. copyrightable [San12]. Core [Hor11, HC13, RDC12, RFE+13, MS10, TRTD11]. cores [GTSS11, SKBL11]. corpus [HCN14].
correct [ADCGG16, AL16, DJLP10]. Correctness [LL15, BENS12, Cho14].
[GGZ*15]. Coverage-directed [CSS+16].
CPS [PDDD17], CPU [PKO+15].
Crawling [MvDL12], creating
[HC10, VBAM10b]. Creation [SK12], crisis
[AT16]. Critical [HL13, WK12, WCB16,
ZLCW14, AGR17, DTL14, GMC+13,
NM10, Nil12b, RS12, CW13, LWC17].
Cross [MDM17, AMWW15, BKC+13,
GSS+16, KMZN16]. cross-cutting
[AMWW15]. Cross-language
[MDM17, GSS+16]. cross-program
[KMZN16]. cross-thread [BKC+13].
Crowdsourcing [BH17].
CrowdSummarizer [BH17],
Cryptography [GPT12], CSS
[HLO15, Sta10]. Curve [GPT12].
customizations [LVG10], customized
[HB13], cutting [AMWW15]. Cyclic
[BMOG12, RS12].

D [GBC12, JEC+12, ZXL16]. DAA [DR10].
Data [Bra14, BMOG12, BA17, GM12,
GTS+15, GT10, NKH16, NBW+15,
dMRH12, BK14, BB17, BBXC13, BJBK12,
CRP+10, DFR13, DHM+12, FOPZ14, KB17,
LDL14, MRA+17, NLI4, SaDb+16, SSG+14,
SGG+17, UMP10, WKJ17, WCG14, XXZ13,
XMA+10, ZJvdS17]. data-centric
[DHM+12, FOPZ14]. Data-Parallel
[KNH16, CRP+10]. database
[Dei10, TABS12], databases [MLGA11].
Dataflow [BR12]. Datalog [ZMG+14].
dataset [MDS+17]. Days [Sev12b]. DBT
[KS13], dead [SK13], deadlock
[CHMY15, SR14a, SR14b]. Dean [Bro12].
debugging
[ASDMGM14, BM14, KS14, TB14, ZFK+16].
Deciding [SGD15]. decision [RBV16].
Declarative
[DRN14, RS12, FOPZ14, MME+10].
Decomposition [AGH+17],
deconstructing [ACS+14], decoupled
[LPA13], deduplication [HOKO14],
default [SNS+14], defects4j [MDS+17].
defined [FMS+11]. Definite [NS12].
Definition [SSB14b, AK13, SSB01].
Definitive [Oak14]. delegation [GBS13].
delimited [PDDD17]. DelphJ [GBS13],
demand [FWDL15, ZHL+12].
demand-driven [FWDL15]. DemoMatch
[YKSL17], demonstrations [YKSL17].
Deoptimization [KRCH14]. Dependence
[PDDD17, JWMC15]. Dependence-driven
[PDDD17]. dependences [BKC+13].
dependencies [ELW15]. Dependent
[CHJ12, LE16], deploying [R+13], depth
[Rau14]. Design [AC16, ETTD12, MLGA11,
Puf13, RTE+13, SW12, TRTD11, TKL+15,
VGRS16, YCYC12, BBXC13, CSdL16,
GSD+15, IRJ+12, OA17, SaDb+16,
SMSB11, VM10, Xue12]. Designing
[Sev12b, KHR11]. Desktop [GS11].
destructive [FF10]. Detecting
[BK12, HLO15, PiLCH11, XR10, FF10].
Detection [BSOG12, KCD12, MS14, RD15,
XMA+14, CSK17, LMK16, LS11, ODL15,
PG12, RDF15, RW17, SR14a, SR14b, SS14,
WCG14, XXZ13, XR13]. detectors
[LWH+10]. Determinacy [AM14].
deterministic [DNB+12], developer
[EV13, Top11, ZZK13]. Developers
[Bro12, BMR14, DJB16, HH13, Wam11].
developing [R+13]. Development
[ABK+16, AYZI10, AGR17, FRGPL+12,
PSW11, SH12, WBA+11, ZDS14]. Device
[TTD+11, XHH12]. Devices
[GPT12, JQF+16, MV16, ETR+15, Xue12].
DFC [BR12]. diagnosis [RW17]. DiaI
[STCG13]. dialects [BldvS17], difference
[PS11], differential [CSS+16].
Differentiation [FHP+12, PQD12, SD16a].
digital [JMO14]. dimensional [TGTZ17].
Directed [STR16, CSS+16, EP14, Lei17,
NG13, NED+13, WM10]. directives
[VGS14]. Discovering [Sev12a]. discovery
[YKSL17], discrete [DDF17]. Disease
[PE11]. Dissimilar [Has12]. Distance
ZW13]. distributable [CRAJ10].
Distributed
[BVEAGVA10, LTD+12, LM15, MAHK16, PE11, BVGVEA10, BVGVEA11b, BVGV14b, CRAJ10, EABVGV14, STCG13].

distributing [TGZ17], divide [SBF+10].

Do [HH13, Han15]. Does [BRGG12, Rub14].

DOJ [hEYJD12]. Domain [KSPK12, CSdL16, EEK+13, HWW+15, PIR17].

domain-specific
[CSdL16, EKK+13, HWW+15]. dominance [CPST14]. Doppio [VB14a].

DoubleChecker [BHSB14]. down [Ker15, ZMNY14]. dfr [MSM+16]. DRFX [MSM+10, SMN+12]. Driven
[CCA+12, CHM13, FWDL15, MTL15, PDDD17, SR14b].

Dynamic [ABBV12, ASF17, CHMY15, MvDL12, PTHH14, RDF15, XMA+14, ZKB+16, AF12, BDB11, BK14, BCD13, CSV15, CPST15, ELW15, GYB+11, HB13, KRCH14, KRR+14, KT14, LWH+10, LVG10, MKZ+14, Nil12b, NG12, NED+13, RLBV10, RCR+14, SR14b, SIPS10, SH12, TPG15, VBAM10b, WXR16, WBA+11, WAB+11, WWS13, WW+17, ZBB15].

dynamic-memory [GYB+11]. dynamically [CZ14, CMS+12, hEYJD12].

Dynamo [BDB11].

-eScience [SVG12]. ease [DRN14]. Easy
effect [CCFB15]. Effective
[BMR14, PTML11, RD15, CSdL16]. Effectively [UR15]. effects [FH16, HAW13, Lei17]. Efficient
[DVL13, GPT12, HW11, HB13, KT14, KW10, OOK+10, RSF+15, RFB14, SMN+12, TLX17, AK13, BHSB14, CRP+10, ETR12, HW10, KKW11, MRA+17, MSM+10, SGV12, SWB+15, SV15a, TRTD11, UMP10, VJW10, XXZ13].

Efficiently [FBH17, BK13, FOPZ14]. Einsatzszenerien [Sch13]. Einsteiger
[Ric14]. Elektronik [Ric14].

Elektronik-Projekte [Ric14]. Elephant
[RG13]. elimination [GvRN+11]. elision
[NM10]. Elliptic [GPT12]. Eloquent
[FH16, BKC+13, FOPZ14]. Einsatzzensarien [Sch13]. Einsteiger
[Ric14]. Elektronik [Ric14].

elephant [Ric14]. Embedded
[Fox17, HTW14, JMB12, KAR12, Pau14, SLES15, SLE+17, TDL15, V12, De10, G13, HTLC10, KHR11, LMK16, OIA+13, RHT13, SC16, SFR+14, UIY10, Xue12, ZY+12].

embedding [KMLS15, SC16]. Empirical
[SS13, WXR16, JMB12, PTHH14, RDF15, XMA+14, ZKB+16, AF12, BDB11, BK14, BCD13, CSV15, CPST15, ELW15, GYB+11, HB13, KRCH14, KRR+14, KT14, LWH+10, LVG10, MKZ+14, Nil12b, NG12, NED+13, RLBV10, RCR+14, SR14b, SIPS10, SH12, TPG15, VBAM10b, WXR16, WBA+11, WAB+11, WWS13, WW+17, ZBB15].

dynamic-memory [GYB+11]. dynamically [CZ14, CMS+12, hEYJD12].

Dynamos [BDB11].

Einsatzzensarien [Sch13]. Einsteiger
[Ric14]. Elektronik [Ric14].
frameworks [PPMH15]. Francisco [KP15].
free
[DTLM14, FC11, GK15, HHB+14, NVF15].
free-form [GK15]. free-lunch [DTLM14].
frequency [ZWSS15]. Friendly [RBL12].
fringe [MB12, MB12]. Full
[SRTR17, DRN14]. Full-Word [SRTR17].
Functional [Wam11, Ame13, BVGVEA11b, NVF15, UFM15, Bro12]. functional-style [UFM15].
Fundamentals [HC13].
Fusing [MS13, ETR12, WM10]. fusion [KBPS17].
future [SS16]. fuzzer [Guo17].

Game [MT14, Wan11]. Gap
[VPB17, ZLHD15]. Garbage
[ASV+16, BH12, GTS+15, QSaS+16, Sch13, SKBL11, AGGZ10, BCR13, BP10, BVGV14b, GTSS11, KPHV11, KBL14, NGB16, PZM+10, PDPM+16, Pu13, SP10a, SBM14, Sjbl10, UIY10, UJR14].
garbage-collection [Siel0]. GC
[NGB16, RGM13]. GEMs [BSMB16].
general [CHMY15]. generalized [WT10].
Generating
[HIJS+10, RDP16, GRF11, KS14, MHBO13]. Generation
[BH17, CRJ+10, PPMH15, PSNS14, RO12, UMP10]. generators
[SLF14]. generic
[DDM11, Fer13, HH13, ZPL+10, eBH11]. generics [AS14, Gri17, PBMH13]. Genetic
[YCYC12]. Genotyping [YCYC12].
GeoGebra [ABK+16]. geosciences
[MCY+10]. German [Sch13]. get [Ame13].
Getaway [SLES15, SLE+17]. Gets [BH12].
getters [Mit13]. Getting [GTM14]. Giga
[DSH15]. Giga-scale [DSH15]. glimpse
[SP16]. Global [PE11]. Global-Scale
[PE11]. Glotaran [SLS+12]. go [LWB+15].
Goldilocks [EQT10]. Good [dGRdBB+15].
Google [MG17, Sam12]. GPGPU
[PQTGS17]. GPGPU-accelerated
[PQTGS17]. GPU [PKO+15]. GPUs
[Hos12]. grade [CRJ+10]. Gradual
[RSF+15, SFR+14, TSD+12]. grained
[DRN14]. granars [GN16, SHU16].
granularity [CZ14]. Graph
dMRH12, BS13]. Graphical [SLS+12].
Graphics [Cec11, LLL13]. graphs
[AdCGGH16, DSEE13, JWMC15, PUL016].
green [BRGG12]. Greenfoot [K610]. grid
[SGV12, VVB10, MZC10b]. Gridifying
[MZC10b]. grounded [EV13]. Growing
[EKR+12]. growth [LDL14]. guarantees
[JWMC15, ZHCB15]. GUI
[CNS13, VGS14, WBA+11].
GUI-awareness [VGS14]. Guide
[Ame13, Oak14, Rau14, Top11]. Guided
[CNS13, GY16, PSNS14, SSH7].
Guidelines [GGZ+15, HLSK13].

Handling
[KW11, ECS15, HM14, KW10, WK12].
happened [Han15]. happens [TD15].
happens-before [TD15]. hard [Pu13].
Hardware
[SKKR11, SPS17, CBGM12, IN12, SE12].
hardwired [OYU+13]. hash
[SV15a, SV15b]. hash-array [SV15b].
hashing [GRF11]. HDFS [IRJ+12]. HDL
[OYU+13]. heap [CSV15, LDL14, TLX17, Tar11, VYY10, YS10, BVGV10].
heap-manipulating [YS10]. Helping
[RT14]. Hera [MS10]. Hera-JVM [MS10].
Heterogeneous [ASV+16, HHB+14, Rub14, AYZI10, ACR10, DFR13, MS10].
Heterogeneous-race-free [HHB+14].
heuristics [LMK16]. Hidding [RBL12].
hierarchy [BS13]. High [GSS+16, Hol12, IRJ+12, MSM+16, SWU+15, WN10, Zak10, BRWA14, Hos12, RFBJ14, TTD+11, TGZ17, VVB10, WH+17, TRED+13].
high-dimensional [TGZ17]. high-level
[Hos12, RFBJ14, VVB10].
High-Performance
[WN10, GSS+16, BRWA14, TTD+11, WH+17]. higher
highly
history
Hoare
Holistic
HOP
Hotps [SP16], hosted [CBLFD12].
hot [LMK16]. HotSpot [Sch13]. HotWave
[ABMV12, VBAM10b]. HPC [JQJ+16].
HTML [Sta10]. HTML5 [AS11].
Hybrid [CHM16, JQJ+16, JMO14, KCD12,
VDV17, ZMNY14, ZMM+16, ADI13, HyG12,
SWB+15]. Hybris [VDV17]. hygienic
[DFHF15].

IaaS [ZLHD15], identification
[BZD17, FMS+11]. Identifier [SRTR17].
identifiers [FMS+11]. Identifying [IN12].
if [Han15]. illuminating [BK14]. Image
[WN10]. immutability [HMDE12, ZPL+10].
immutable [SV15b]. impact
[CMS+12, Gra15, HWLM11, WKJ17].
imperative [RFRS14]. implement
[HdM17]. Implementation
[GPT12, HM12, OA17, VGRS16, YP10].
implementations [CSS+16, OJ12].
Implementing [FFF17, GM12, WCB16,
EEK+13, FHBI7, PMP+16]. implications
[BRGG12]. implicit [IvdS16, SPAK10].
implies [BRGG12]. Improve [QSaS+16].
Improved [KRR+14, UIY10, OJ12, XHH12].
Improving [ACS+14, HW1+12, TWSC10,
eBH11, UTO13]. in-depth [Rau14].
in-place [DVL13]. incremental
[DS16, ELW15, UIY10]. independent
[IF16]. industrial [CRJ+10]. inefficiently
[XR10]. inefficiency-used [XR10].
Inference [BO13, YHY13, AGGZ10,
CGJ+16, HyG12, HMDE12, Zha12].
inerring [AS14, BENS12]. InfiniBand
[ETTD12, IRJ+12]. infinite [ASdMGM14].
Inflow [ZMM+16]. influence [MHR+12].
Informa [HA13]. Information
[ASF17, HBS16, KHL+13, SS12, AF12,
ABFM12, BVGVEA11b, CMS+12].
Information-flow [HBS16]. infrastructure
[NG12]. Inheritance

Initial [LTD+12]. initialization [MME14].
Initiation [FRG12]. Injecting [ZKK13].
inline [DJLP10]. Inlining [BA12, HWMI3].
insecure [YW13]. Insight [VF10].
instanceof [SMS+12]. Instant [MHBO13].
instantiation [AST+16]. instead
[AGH+17, BTR+13]. instrumenting
[CZ14]. Integrated [TR11, YP10].
integrating [FPP+10]. integration
[Ame13, HKVG14, Sch10a]. integrity
[HDK+11]. intelligence [JACS10].
Intelligent [Pau14]. intensive [SAcB+16].
ter [CMM17]. inter-language [CMM17].
Interacting [SK13]. Interaction [WT11].
interactive [AMWW15, JH11, MCY+10].
intercession [VM10]. interdependencies
[LBFI12]. Interface [Liu14, MvDL12,
SLS+12, AYZ10, MT14, LT11, LT14].
Interfaces [WT11, Cho14, DLM10,
LWH+10, PSNS14, WT10]. interference
[YDF15]. International [Hol12, KP15].
teroperability [GSS+16].

Interpretation
[BDT10, DLR16, DLM10, DLR14].
Implementation-Based [DLR16].
interpreter [D'H12, KMMV14].
interpreters
[HWW+15, IvdS16, MD15, ZLBFI4].
Interprocedural
[CPV15, FWDL15, ZMNY14]. Interrupting
[AST12]. intersection [KT15]. intra
[BJBK12]. intra-node [BJBK12].
Introducing [DMS11]. Introduction
[CIA2013, HTLC10, HTW14, Lew13, RHT13,
VK12, Hav11, VF10]. Introductory
[BNP11]. intrusively [MZC10a].
Investigation [SS13, FH16]. invocation
[SPAK10, BVGVEA11b]. invocations
[BVG14a]. invodynamic [OCFL14].
Involvement [ZMM+16]. IP [TKL+15].
iPhone [Sta10]. IR [LSWM16]. irregular
[AC16]. ISAs [HNTL12]. ISBN
[ZLB+13].

J [KMLS15]. J2M [LYZP16]. J2ME [GPT12]. J2ME-Enabled [GPT12]. Jaccie [KS14]. Jalapeno [AFG +11]. JAMES [DDDF17]. JaSTA [HD17]. JaSTA-2 [HD17]. Java [Bro12, HWM11, HTW14, Sch13, VK12, Nil2a, Nil2b, NG13, Oak14, OOK +10, OIA +13, OUY +13, OW16, OJ12, OCFL14, PS11, PTML11, PMTL14, PTHH14, PL12, PiLCH11, PBHM13, PPMH15, PMP +16, PQD12, PVH14, PTF +15, PS10, PDPM +16, PSS11, Puf13, PKC +13, QLSB17, RD15, RDCP12, RTE +13, RTET15, RR14, RS12, RHT13, RT +13, RBL12, RAS16, RS12, Rey13, Rez12, RVP11, RB15, RVB14, SSB +14a, SE12, SRTR17, SS12, Sch14, Sch13, Sch10a, SPPH10, SKKR11, Sch10b, SSMD10, SZ10, Set13, SMSB11, SMS +12, SDM12, SW12, SGV12, SKBL11, SD16a, SPP10, SLS +12, SS14, SP10b, SPP10, SPP +10, SWB +15, SSB01, SSB14b, SPS17, SSB +14, STS +13, SW12, TRTD11, TTD +11, TTD12, TLE +13, TLL11, TWX +10, TWHN12, TGZ17].

Java [HTLC10, HD13, HL13, HTW14, Sch13, VK12, Nil2a, Nil2b, NG13, Oak14, OOK +10, OIA +13, OUY +13, OW16, OJ12, OCFL14, PS11, PTML11, PMTL14, PTHH14, PL12, PiLCH11, PBHM13, PPMH15, PMP +16, PQD12, PVH14, PTF +15, PS10, PDPM +16, PSS11, Puf13, PKC +13, QLSB17, RD15, RDCP12, RTE +13, RTET15, RR14, RS12, RHT13, RT +13, RBL12, RAS16, RS12, Rey13, Rez12, RVP11, RB15, RVB14, SSB +14a, SE12, SRTR17, SS12, Sch14, Sch13, Sch10a, SPPH10, SKKR11, Sch10b, SSMD10, SZ10, Set13, SMSB11, SMS +12, SDM12, SW12, SGV12, SKBL11, SD16a, SPP10, SLS +12, SS14, SP10b, SPP10, SPP +10, SWB +15, SSB01, SSB14b, SPS17, SSB +14, STS +13, SW12, TRTD11, TTD +11, TTD12, TLE +13, TLL11, TWX +10, TWHN12, TGZ17].

Java-Based [AFGG11, SLS +12, SWF12, CJ17, HOKO14, JMO14, KS13, KL12, MB12, MCY +10].

Java-compatible [ABCR10]. Java-like [BDGS13, BCD13, DJLP10, SZ10].

Java-to-HDL [OYU +13].

Java-to-JavaScript [LSWM16].
Java.utils.Collection.sort [dGRdB+15].
Java/JS [Sch10b]. JavaBean [MZX10a].
JavaCC [GN16]. JavaCOP [MME+10].
JavAdaptor [PKC+13]. JavaFX [Top11].
JavaGI [WT10, WT11]. JavaScript
[Ric14, ACS+14, AHK+15, AMWW15, BCF+14, BBP13, CCL+16, CLE+16, CBLF+12, Chol14, CIIJ+12, Dei10, Dei11, DCS+12, DPH+15, FMM+11, FM13, FH16, FHB17, FSC+13, FZ17, FOPZ14, GMS12, Guo17, HyG+12, Hav11, HBS+16, HSLK+13, HHSS+13, HCL+11, KRI+12, KSW+14, KRH+16, K+14, KF15, KI+15, KBD+14, KARO12, Kri12, LSWM16, L+10, LPG+14, M+10, MZC+10a, Sev12a, Sev12b, SD+12, Sta10, Ste10, SFR+14, T+11, VM15, VB14b, Wall12, WXR+16, Y+W13, Zak10, KCD+12, Mel+14].
JAWS [PKO+15]. JBmnsTrace [CZ14].
JCloudScale [LHDI15]. JCML
[dCMN12]. JCSI [ABFM12]. JCSF
[WB+10]. JDiffraction [PQT+17].
JDMM [MP14]. JEqualityGen [GRF11].
JET [LT11]. JGRIM [MZX10b]. Jinn
[LW+10]. JIT [BBF+10, BB17, CMS+12, HWM14, IHW+12, J+13, RSB+14, WKJ+17, ZY+12]. JIT-based
[BB17]. JITS
[KRC+14]. jMarkov [CRAT+12]. JML
[CR+10]. JNII [CDG+17]. Journey
[CMM17]. jQuery [AM+14, PIR+17]. JR
[OW+16]. JR-like [OW+16]. JRE [CZ14]. JS
[AHK+15]. Js_of_ocaml [VB14b]. JSART
[MM+12]. JSetL [RB15]. JSON [BB17].
JSorndb [Dei10]. JTTabWb [FFF17].
JTRES [HTW14]. JTRES2011 [RHT13].
JTRES2013 [Fox17]. judgment [CSV15].
Juliet [BB12]. July [Bro12, KP+15]. jungle
[Sew12]. Just
[DLR+16, KHL+13, LMK+16, MGI+17, TTS+10]. Just-in-Time
[DLR+16, KHL+13, LMK+16, MGI+17, TTS+10].
JVM [AC+16, AFG+11, CSS+16, Guy14, MS+10, PVH+14, R+13, SV+15b, Sub+11]. JVMs
[BK+14, ZY+12].
K-Java [BR+15]. kernel [HDK+11]. key
[DFR+13, JB+12]. key-value [DFR+13].
keynote [McK16]. KJS [PSR15]. knot
[LB+12]. know [DB+15, Gra15, Han+15].
Knowledge [KSP+12, UMP10]. known
[Han+15]. Krakend [A+14].
Lake [Hol12]. lambdas [UFM15].
Language
[DLPT+14, GJS+13, GJS+14, JC+10, KSP+12, MAH+16, Sev+12b, SS+13, ABCR+10, CMM+17, CS+16, DAA+1, EKR+12, FE+16, GSS+16, Hos+12, HWW+15, KRCH+14, LWH+10, LE+16, DMD+17, SC+16, SZ+10, SN+14, VB14a, WCG+14, WWH+17, ZWS+15, dCMN12].
language-level [WCG14]. Languages
[CST+17, MS+16, PTHH+14, Y+17].
AGG+10, BCD+13, CMS+12, EKK+13, ER+14, FMB+15, Han+15, H+12, HJS+10, KRR+14, MS+10, NED+13, PUL+16, SPY+16, Zha12].
LARD [WCG14]. Large
[BA+17, AST+16, CCFB+15, MDS+17, MCY+10, PTF+15, WHIN+11]. Large-Scale
[BA+17, MDS+17, MCY+10, PTF+15, WHIN+11].
Larus [DD+13]. Latency
Layer [SKKR11]. layered [RC+14]. lazy
[TD15]. Leading [SS+10]. leak
[SS+14, XR+13]. Leaks [And+14, RW+17].
LeakSpot [RW+17]. lean [BB+12, SV+15b].
Learn [RT14]. Learning
[Pau14, RT+14, CNS+13, K+12]. learnt
[GY+16]. Legally
[Sa+12]. length [SMP+10].
Less [BNE16]. Level [AC+16, SWU+15, Hos+12, IHW+12, KBL+14, LWC+17, MGI+17, RFB+14, TTD+11, VWJB+10, WCG+14].
Lexical [GN16]. Libraries
[BK+12, RDCP+12, Bvds+17, Chol+14, EKR+12, PMTL+14, TTD+11]. Library

[SSG+14]. Migrating [AST+16].
Migration [OwKPM15, Fee16].
Miniboxing [UTO13]. minimal [CNS13].
mining [DRN14]. Mint [WRI+10], minute [DHS15]. minutes [BTR+13].
Model
[CDG+17, CCA+12, DLR16, JYKS12, MSM+16, MCC17, MV16, BVGVEA11a, CHM13, CWW13, CV14, DLZ+13, GY16, HAW13, Loc13, LSSD14, MSM+10, PSW11, RR14, RBV16, RAS16, RDF15, SMN+12, SSG+14, VBB10, ZP14, XL16].
Modeling [GB12, JZ10, KSPK12, LDL14, Rey13, CRAT+12, TLX17, ZIvdS17].
Models
[PE11, ZLCW14, AGR17, HHB+14, TVD10].
modern
[FIF+15, Hav11, JK13, KB17, WGW+11].
motion [Nil12a]. Modular
[Iwd16, LN15, RDCP12, MRA+17, RO12].
Modularisation [SM12]. modularity [SPAK10], module [KR12]. Modules
[Pi1CH11], monad [GSD+15]. MongoDB [Guo17].
Monitoring
[AG12, DJLP10, ES14, KF11]. Monitors
[BLH12, HM12]. mori [CPST15].
movement [NCS10]. MPI
[RAS16, SZ11, VGRS16]. MPI-based
[SZ11]. MPJ [JQJ+16, TTD12]. MrCrypt
[TLM13]. MS [FH16]. Multi
[JTO12, RTE+13, DSEE13, Fee16, FC11, GSS+16, IHWN12, MS10, Puf13, SE12, SKBL11, TRTD11, Tar11, WRI+10].
Multi-Core [RTE+13, MS10, TRTD11]. multi-cores [SKBL11]. multi-engine
[Puf13]. multi-stage [WRI+10].
Multi-threaded [JTO12, DSEE13, SE12].
multi-version [FC11]. Multicore
[ASV+16, CCH11, MKG+17, SE12, SSMGD10, TWX+10]. multilevel [JK13].
multiphase [GvRN+11]. Multiplatform [ZKB+16]. Multiple
[AF12, ASF17, HLSK13, CSV15, DD13]. multiplexing [BVGVEAFG11].
Multiprocessing [VGS14].
multiprocessor [PS10, PWA13, SPS17].
Multiprocessors [KW11, RS12].
Multithreaded
[KKW14, SR14a, BNS12, DJLP10, Fer13].
Multithreading [CCH11]. multivariate
[A011]. MuscalietJS [RCR+14].
Mutagenic [YCYC12]. mutators
[AHK+11].

Names [SRTR17]. Native
[JQJ+16, LT11, LT14, KFBB+15, STS+13].
Natural [LL15]. naturalness [HBG+16].
NDetermin [BENS12]. nested
[CHM16, ZLB+13]. Netflix [Liu14].
network [RR14]. Networking [Hol12].
Networks [AFGG11, ETR+15].
nervous [HTNL12]. next [CRJ+10].
No [BVGVEA10]. No-Heap [BVGVEA10].
NoCs [PWA13]. Node [HC11, BJKB12]. Nodes.js [BSMB16, MTL15, Aon14].
nodes [DRN14]. Nominal [BO13]. Non
[BVGVEA11b, BSOG12, GGZ+15, YKM17, MZC10a, OMK+10, ZP14]. Non-Adequate
[GGZ+15]. non-cache-coherent [ZP14].
Non-functional [BVGVEA11b].
non-intrusively [MZC10a]. Non-Java
[YKM17, OMK+10]. Non-termination
[BSOG12]. Nonblocking [RT15, SP10a].
Nondeterministic [RB15, BENS12].
noninterference [IF16]. NoSQL [DRF13].
Notation [Sev12a]. Novel
[NK10, MZC10b]. November [Hol12].
Novice [BA17]. Novices [RT14]. null
[AT16]. NullPointerExceptions [BSOG12].
NUMA [GTS+15]. NumaGiC [GTS+15].

Obfuscated [KCD12]. obfuscation [CCFB15]. obfuscations [CSK17]. Object [CGST17, GS11, NBW+15, PTHH14, PiLCH11, Sev12a, SW12, AST+16, BZD17, DDDF17, FMBH15, IvdS16, MME14, MHBO13, RDF15, UJR14, VM10, WM10, ZCdSovdS15, Zha12, ZDS14, hEYJD12]. Object-Bounded [NBW+15]. object-constraint [FMBH15]. Object-Oriented [GS11, PTHH14, AST+16, DDDF17, MHBO13, VM10, ZDS14, hEYJD12].

Online [NG13, HCV17, NK10]. only [NM10]. Ontology [KSPK12]. OoOJava [JhED11]. Open [BSA14, GD12, CJ17, VGRS16].

Open-Source [BSA14]. OpenJDK [CHM16, dGrdB+15]. OpenMP [VGS14].

Optimizations [DR10, BB17, CFST15, DS16, NG13, SAdB+16]. Optimizing [SV15b, YRHBL13, HWW+15, KRH16, MD15, ZLBF14]. optional [CMS+12].

Oracle [LMS+12, Sam12]. ORB [OUY+13].

Order [SGD15, JhED11, KT15, TD15]. ordering [KC12]. Orders [BNE16].

ordinary [MZC10a]. O'Reilly [Bro12].

Parallelisation [GS11]. Parallelism [NKH16, BENS12, HHSS13, MZC10a, RHSD15, TWL12, ZLB+13].

parallelization [SS16, YRHBL13]. parallelize [LPA13]. Parallelizing [NKH16, hEYJD12]. parameters [GBS14].

Parametric [AGGZ10, PULO16, UTO13].

Partitioning [AD16, BS12]. party [FOPZ14, LVG10]. passing [ETTD12, TRTD11, TTD12, UR15]. Path [SGD15, DD13, HHSS13, SAMP10].

Programs [AGR12, BH17, BR12, BMOG12, GS11, JB12, LTD+12, SS12, SDM12, ZLCW14, A$DMGM14, AdCGG16, BA12, BNS12, DJLP10, ECS15, ES14, EP14, Fer13, HL13, IN12, LO15, LPA13, MRMV12, NG12, OJ12, PL12, RR14, RAS16, RLBV10, SMS+12, SZ11, SJPS10, SHU16, TaF13, YS10, dCMMN12, hEYJD12].

Progress [ZHCB15].

Project [Wan11].

Projects [ZMM+16, CJ17].

Proof [LL15].

Proofs [BMOG12].

Properties [BO11, RVK15, SS12, FWD15, SD16b, YS10].

Protecting [MPS12].

Protocols [YHY13].

Prototyping [PWA13].

Provably [AdCGG16, DJLP10].

Providing [OW16].

Proving [AGH+17, TaF13].

Proxies [VM10, Engl13, KT14].

PSE [KS15].

Pseudorandom [PPMH15, SFL14].

Pure [RSI12, NVF15].

Purely-Declarative [RSI12].

Purely-functional [NVF15].

Purity [HMDE12].

Python [Ric14].

Quality [BNP11, CCFB15, WKJ17].

Quantitative [CPV15, GYB+11, MRA+17].

Queries [GK15, MRA+17, SGG+17].

Query [FWD15].

Query- [FWD15].

Questions [KM10].

Quicksort [AD16].

R [KMMV14, NL14, SLS+12, Vit14].

Race [EP14, RD15, EQT10, HHB+14].

Race-aware [EQT10].

Races [FF10, WCG14, XXZ13].

Racket [YK14].

racy [SRJ15].

Range [BS12].

rapid [PWA13].

raw [HH13].

rays [SBF+10].

RCDC [DNB+12].

RDMA [ETR+15, IRJ+12].

RDMA-enabled [ETR+15].

re [NCS10].

re-location [NCS10].

Reachability [NS13].

reactive [BCvC+13].

read [NM10].

read-only [NM10].

Reading [Jaf13].

Real-Time [BVEAGV10, Fox17, HTW14, KW11, Nil2a, Pau14, SLES15, SLE+17, VK12, BCR13, BVGVE10, BVGVE11a, BVGVE11b, BVGVE13, BVGV14a, BVGV14b, CRAJ10, DW10, EABGV14, GMC+13, HTLC10, KHM+11, KPHV11, KvGS+14, KW10, KSR14, MDS+17, PS10, PZM+10, PSW11, Puf13, RHT13, SP10a, Sie10, SPS17].

realtime [OUY+13].

Reasoning [LN15, ABK+16].

Recal [BvdS17].

recipes [J+12].

recompilation [NED+13].

Reconfigurable [OUY+13, STY+14, OIA+13].

reconstruction [LSW16].

Recovering [CRAJ10].

Reducing [MV16, WHIN11].

Reduction [BO12, TD15].

redundant [HLO15].

Refactoring [AS14, ZHL+12, FMM+11, FM13].

Reference [Sch14, UJR14, HMDE12].

Refinement [GY16, JLP+14, KSW+14, ZMG+14, ZFK+16].

Reflexes [SP+10].

Regions [AC10].

Register [ZY+12].

Register-based [ZY+12].

Regression [MM12].

Regular [PIR17].

Reified [GBS14].

Reim [HMDE12].

RefInfer [HMDE12].

relation [TD15].

relational [MLGA11].
relationship [SH12], relaxed
[DNB+12, KHL+17, PPS16],
relaxed-memory [KHL+17]. Release
[Ano14], reliability [HWLM11], relying
[IN12], Remodularizing [OJ12]. Remote
[BVGVEA10, BVGV14a, BJBK12, GSD+15,
BVGVEAFG11]. removal
[MRMV12, WGF11]. removing [PLR14],
rename [FM13], repair [MDS+17, SHU16],
repeatability [Vit14]. replacement
[BCD13]. Replay [BH12]. replication
[CJ17, UIY10]. replication-based [UIY10],
report [CBLFD12, Sch10a]. Reports
[OW16]. repository [HC10],
reproducibility [Vit14]. reproduction
[SR14b]. requirements [AGGZ10],
ResAna [KvGS+14]. Research
[TRE+13, CRJ+10, CBLFD12, Rub14,
VBMDP16, Vit14]. Resource [BVGV14a,
AD13, ES14, KVG+14, KSR14, SGV12],
resource-aware [SGV12], resource-based
[AD13], responsive [SPP+10],
responsiveness [PSNS14]. restart [CMS13],
Retention [ZMM+16]. Retraining
[Xue12, RCR+14]. retrofitted [TTS+10],
retrofitting [LPGK14]. reusable
[HC10, MME14]. reuse [WR10]. Reverse
[CZA+12]. Review [Bro12]. Revisited
[Mei14, Gon11]. rewriting [HLO15]. RFID
[AYZ10]. RFLP [CYC12], richer [CV14],
rigor [Vit14]. Rigorous [AGR17]. risk
[MPM+15]. River [HHSS13], RJ [OW16],
Road [RXK+17, SWU+15]. Robotic
[LM15]. Robots [SWF12]. Robust
[VM15, VD17, MKZ+14, SGV12, VM10],
orow [Lei17]. row-typed [Lei17]. RTSJ
[ZW10]. Rubah [PVH14]. rule [QLBS17],
Rules [CCA+12, HLO15]. run [WAB+11],
run-time [WAB+11]. Running
[HC11, TWX+10, YK14]. runs [FIF+15],
Runtime
[BLH12, MAHK16, MSS10, NWB+15,
OCFLI14, XMA+14, BRGG12, EQt10,
GTL+10, GSS+16, LMK16, MS10, OOK+10,
PKC+13, RO12, STY+14, TWSC10,
VBAM10a, YRHBL13, dCMMN12],
runtimes
[BM14, CSV15, RCR+14, WWH+17],
Safe [Eug13, GvRN+11, JTO12, MPS12,
RSF+15, SWB+15, WAB+11, HJS+10,
HAW13, KHR11, KMLS15, KCP+17, Loc13,
RDP16, WWS13]. Safety
[RS12, WCB16, ZLCW14, AG17, GMC+13,
NII+12b, PG12, SD16b, Taf13, YS10, CW13,
HL13, LW17, WK12]. Safety-Critical
[WCB16, ZLCW14, RS12, AG17, CW13,
LWC17]. Salespoint [ZDS14], Salt [Hol12],
SAM [BO13]. San [KP15]. Sane [MS12],
Satin [VVJB10]. SAW [CFH+13],
Scaffolding [RT14]. Scala [SMS+12, AT16,
Hin13, Lew13, PTML11, SMSB11, SMS+12],
Scala-Based [PTML11]. Scala.js [DS16],
Scalability
[CCH11, AAB+10, DSEE13, GTSS11],
Scalable [BS12, DFR13, GGRSY17, HC11,
JQF+16, RXK+17, RTE+13, XMA+14,
ETTD12, FC11, GGRSY15, NFV15, PIR17,
RTET15, TTD12]. ScalaLab
[PTML11, PMTL14]. scalar [PQTGS17],
Scale [BA17, PE11, DHS15, LO15, MDS+17,
MCY+10, PTF+15, WHIN11]. SCEL
[DLPT14]. scenarios [AMW15, Sch13],
Scheduler [QSaS+16, IF16, TWL12],
scheduler-independent [IF16],
Scheduling [ASV+16, BVEAGVA10,
KPHV11, EP14, EABVGV14, ZW10],
scheme [XXH12]. SCHISM [PZM+10],
Science [HWLM11, VF10, SGV12]. sciences
[NL14]. Scientific [Eq11, PTML11, WN10,
FRGPLF+12, PMTL14]. scientists [Bra14],
SCORM [HC10]. Scrap [ZCdSovdS15],
Script [MSSK16]. Scripting
[CSGT17, KKK+17, HBT12, KRR+14,
PMTL14, Zha12]. SE [LYBB14]. Seamless
[OwKPM15]. Search [SED14, DDDF17],
searching [ETR12]. Second [HD17],
secrets [Alt12]. section [DTLM14].
sections [NM10]. Secure [GMPS12, GM12, ABFM12, LMS+12, TLMM13]. securely [SFR+14]. Security [CDG+17, Gon11, HBS16, JWMC15, MCC17]. Seemingly [Hast12]. selection [WHIN11]. Self [MPS12, hED12, AHK+11, AGH+17, CBLFD12, HWW+15, MD15].

sharing [PK0+15]. Short [AHK+11, SV15a, Zak12]. Short-term [AHK+11]. ShortCut [CSGT17]. Side [HC11, D’H12, KRH16]. SIGCSE [Wal12].

Specification [GJS+13, GJS+14, IF16, KW11, LN15, LYB13a, LYB13b, LYBB14, TWH12, BVGEA11a, BCF+14, KR12, KW10, MRA+17, YP10, dCMNN12]. specifications [BENS12, TVD10]. specified [BCR11]. Specifying [BNS12, HL13].

Speculation [AC16, MGI17]. speculative [BB17, YRHL13]. speed
[HRS17, SBF10, UTO13], SPIN
[ASdMG14], SPL [BTR13], splittable
[SLF14], SPONI [PMP16], spot
[LMK16], SPUR [BBF10], SQL
[KMLS15], SquakJS [FIF15], SSNTDs
[VSG17]. Stability [BSA14, LL15],
stabilizing [hED12], stack
[KRCH14, Xue12], stack-based [KRCH14],
stage [WRI10], staged [SC16], staging
[RO12], standard [LMS12],
Standardization [TWNH12], StarL
[LM15]. State [AGR12, BLH12, MvDL12,
MS14, GN16, YP10], state-
statecharts [MS13], statement
[PLR14, ZWSS15]. statements [PLR14],
Static [BNE16, JC10, MTL15, ODL15,
PiLCH11, RD15, SW12, SH12, AM14,
CGJ16, Fer13, FLL13, IF16, KSW14,
LSI1, MHR12, PIR17, TLMM13],
statistically [BTR13], NED13, statistical
[Bra14, ZFK16], statistically [PPMH15],
statistics [HNC14], stealing
[KFB12, TWL12], STM [CHM16, Sub11]

STM/HTM [CHM16], stochastic
[CRAT12], stock [PVH14], Stop
[LWB15]. Storage [Hol12, VDV17]. Store
[BS12, Sta10], stores [DFR13], Story
[Ano14], strategic [BMR14], strategy
[PPM16]. Stream
[KBPS17, MV16, BRWA14, SSG14],
streaming [MRA17, STCG15]

StreamJIT [BRWA14], StreamQRE
[MRA17], streams [SFG17, UFM15]

Strength [KCD12], String
[HOK14, CSK17], Strings
[HWM11, HWM10, LSSD14], strong
[UMP10, ZHCB15], structure
[LO15, UMP10], structured [LSWM16]

Structures [GT10, XMA10], Studio
[RT14, FH16]. Studio-Based [RT14]

Study
[ZMM16, BRGG12, CCFB15, CJ17, ECS15,
KFEB15, MHR12, NCS10, OMK10,
PTF15, SH12, VBDPM16, WX16, YW13],
style [UFM15], substitute [PPMH15]

substrate [GTL10], subtypes [HL13],
Subtyping [LN15], suite [MSB11, BB12]

Suites [GGZ15], Summaries [BH17],
Superblock [KS13], Supercharged
[Cec11, GBS13]. Superposition [HD17],
supervenience [Rez12]. Support
[CSGT17, KKK17, BVGVE13, DVL13,
GMC13, Hos12, NGB16, SMN12],
supported [FMM11]. Supporting
[LVG10]. Surgical [RSB14], surprises
[FMH15]. survey [BCvC13]

SurveyMan [TB14], surveys [TB14],
suspension [TWL12], sweeping [KBL14]

Sweeten [DFHF15]. Swift [ZZY12],
SWIM [Sch10], symbol [Tar11]
synchrobench [Gra15]. synchronisation
[CHMY15, WBM10]. synchronization
[DHM12, Gra15, Sub11]. Synchronous
[BVEAGVA10, SK12], syntactic
[LE16, QLS17]. Syntax [SS13, KMMV14],
synthesis [SR14], STR16, SS16,
synthesizable [ABCR10], synthesizer
[OUY13]. Synthesizing
[GBK15, SRJ15, LWH10]. System
[BO13, KCD12, MAHK16, ACS14, AYZ10,
AGHR17, BDB11, ELW15, HAI3, HDK11,
HWLM11, KR12, MS10, STY14, TLL11,
Nil12a], systematic [TD15]. Systems
[BSA14, BNE16, CCH11, DLPT14, Fox17,
HTW14, JMB2, LM15, RTE13, SLES15,
SLE17, AT16, DW10, FH16, HDM17,
HW12, HTLC10, LPGK14, MHR12,
MAH12, OIA13, PDP16, RHT13,
SSMGD10, SH12, TTD12, TXW10,
THC14, UIY10, Vit14, YRBL13, VK12]

Tableau [FFF17]. Take [Kie10], Taking
[SWU15]. Tales [Sew12]. Taming
[TLL11, SC16]. Tardis [BM14], task
[Fee16, TWL12, ZLB13]

TaskLocalRandom [PPMH15]. tasks
[HAW13, PPMH15, SPP10]. Taurus

Tuning [Gri17]. Tutorial [Jen12, Nil12b, Taf13, Zak12]. TV [JMO14].

twitter [Guy14]. Two [Has12]. Type [BO13, CGJ+16, KSW+14, KATS12, Lei17, SGD15, WT11, ACS+14, AT16, BS13, CMS+12, DLM10, FH16, GBS14, HyG12, KMLS15, KRR+14, KRH16, KvRHA14, LPGK14, LE16, MHR+12, SH12, TLL11,
Zha12, eBH11]. Type-Based [SGD15].

type-dependent [LE16]. type-safe [KMLS15]. typechecking [CL17]. Typed
[BO13, KKK+17, MHL15, CMS+12, KRCH14, Lei17, RDF16]. Types
[BO13, RvB14, SPAK10, BDGS13, CH12, DDM11, HH13, MM+10, YDF15].
TypeScript [Cho14, FH16, RSF+15].
Typing [FZ17, RSF+15, SFR+14, TSD+12]. typy [OA17].

Ubiquitous [MCY+10]. UDP [RR14]. ULS
[FOPZ14]. unbounded [LSSD14].
uncertain [McK13]. Understandable
[SM+16]. Understanding
[FRM+15, PCL14, QLBS17, Set13, TAB12, VBMDP16, LWB+15, Nil12b].
Undocumented [Alt12, MHR+12]. Unified
[LM15]. uniform [AH10, EHG13]. Unifying
[Has12]. union [KT15]. uniprocessors
[KPHV11]. Units [LLL13]. universe
[DMD11]. Unix [PVB17]. Unpicking
[LBF12]. Unrestricted [WW13]. unsafe
[MPM+15]. unsound [AT16]. updates
[PKC+13]. Upper [SW12]. Upsortable
[SGG+17]. uptrees [HB13]. USA
[Hol12, KP15]. usability [FH16, MHR+12].
usage [PTF+15, QLBS17]. Use [Guy14
, MPM+15, AMWW15, PBMH13, Sch13].
use-case [AMMW15]. used [XR10]. User
[Liu14, MdDL12, SLS+12, DA13, FMS+11,
PSNS14]. user-defined [FMS+11]. Using
[ASDGGM14, BS12, BSA14, BNE16,
DLM10, HCNI, KFBB+15, MV16, MSDK16, Pau14, PQD12, SDM12, SLE+17,
UMP10, Wan11, XMA+14, YCYC12, BB17,
DDDF17, FH16, FOPZ14, GB14, IvdS16,
KML15, KT14, KC12, LSG10, Lew13,
LD14, PIR17, RAS16, SAD+16, SSH17,
SHU16, VGS14, WBM+10, WRI+10, XR13].
UT [Hol12]. utility [CSV15, XMA+10].
utilization [BCR13].

v [Sam12]. V8 [MGI17]. Validating
[HSK13]. Validation
[SSB14b, CSdL16, HCV17, SSB01]. value
[DFR13]. variables [NS13]. Verifiable
[FHSR12]. Verification
[KKW14, KP15, RAS16, SS12, SSB14b,
CHMY15, DLM10, HCV17, PWS11, S11,
SPS10, SSH17, SSB01, dCMMN12].
verification-validation [HCV17]. Verified
[HM12, JLP+14]. Verifier [BDT10, Rey13].
verifiers [SPY+16]. Verifying
[LM15, YS10, SD16b]. version
[FC11, HD17, ZXL16]. vertical [STY+14].
via [DMS11, GGRS15, GGRSY17, Hos12,
HB13, JWMC15, LSWM16, S16]. view
[Guy14]. violations [LTZ14, PG12, RDF15].
Virtual [BZ17, LBB13a, LBB13b,
LYB14, PTHH14, PQD12, SSB+14a, Sch13,
Set13, SMBS11, CGV12, SSB01, SSB14b,
UR15, Amel13, CBLFD12, KRCH14, NK10,
RCB17, SMGD10, WGF11, WHY+13].
virtualized [HOKO14, MH10]. virus
[RBL12]. vision [HCV17]. visitors
[DRN14]. Visual [FH16]. visualization
[JEC+12, JYL17, MCY+10]. visualizing
[DSC13, KS14]. vital [EV13]. VM
[LF12, YKM17]. VM/application
[LF12]. VMKit [GTX10]. Vroom
[BMDK15]. vs [BA17, GBC12, MD15,
STR17, SK12, SH12, WKJ17].
Vulnerabilities [MS14].

Wampler [Bro12]. wanted [Gra15]. wave
[PQTGS17]. way [Ker15, WGF11]. weak
[WRI+10]. Weapon [Ni12a]. weaving
[VBMA11]. web [ETR12, HRS+17, HCN14,
KFBB+15, MCC17, MCY+10, RSHD15,
RCR+14, Ryu16, WGW+11, DAA13,
HLSK13, Kris12, MdDL12, NL14, OwKPM15,
RFBJ14, Sch10b, WY13]. web-portal
[MCY+10]. WebAssembly [HRS+17].
WebCL [KFBB+15]. Websites [KCD12].
well [EV13]. well-grounded [EV13].
WETSUIT [ETR12]. Whalesong [YK14].
whole [DS16]. whole-program [DS16].
REFERENCES

yang [CBGM12]. years [BTR+13]. yieldpoint [LWB+15]. yin [CBGM12].

Z [SBF+10]. Z-rays [SBF+10]. Zero [ZW13].

References

Altman:2010:OTJ

Auerbach:2010:LJC

Avvenuti:2012:JTC

Abanades:2016:DAR

Ansaloni:2012:DAO

Ahn:2014:IJP

Akai:2010:EAS

Anjo:2016:DML

Amighi:2016:PCC
REFERENCES

0; http://link.springer.com/article/10.1007/s10009-015-0375-0.

Arcaini:2012:CCM

Arcaini:2017:RDP

Apel:2010:CUF

Aigner:2011:STM

Aigner:2015:AJE

Andrysco:2016:PFP
Marc Andrysco, Ranjit Jhala, and Sorin Lerner. Printing floating-point numbers: a faster, always correct method. *ACM SIG-
REFERENCES

Axelsen:2013:PTD

Altman:2012:USM

Andreasen:2014:DSA

Ament:2013:ATG

Ashrov:2015:UCB

Andersen:2014:PLJ

Anonymous:2014:RKS

Anonymous. Release the
kraken: a story of Node.js in the enterprise (PayPal).

[S] Zakarea Alshara, Abdelhak-Djamel Seriai, Chouki Tibermacine, Hinde Lilia Bouziane, Christophe Dony, and Anas Shatnawi. Migrating large object-oriented ap-

Akram:2016:BPG

Amin:2016:JST

Ali:2010:DJB

Bradel:2012:ITJ

Brown:2017:NJP

Boland:2012:JCC

Bonetta:2017:FJF

[BB17] Daniele Bonetta and Matthias Brantner. FAD.js: fast

REFERENCES

Bacon:2013:PRT

Bainomugisha:2013:SRP

Bettini:2013:XTJ

Bala:2011:DTD

Bettini:2013:CTB

Barbuti:2010:AIA

REFERENCES

/Badhihi:2017:CAG

/Biswas:2014:DES

/Biboudis:2017:RJD

/Burdette:2012:ECJ
Philip F. Burdette, William F. Jones, Brian C. Blose, and

/Burnim:2012:NIN

/Barbu:2012:ARA

/BHSB14

/BIvdS17

/BJBK12
Philip F. Burdette, William F. Jones, Brian C. Blose, and

/BH17

/BH12

[102x681]REFERENCES
[102x681]32
[180x646]/comjnl.oxfordjournals.
[180x634]org/cgi/content/abstract/
org/our_journals/computer_jOURNAL/wilkes_award.
html. This article is the winner of The Computer
Journal Wilkes Award for 2010.

/[BJBK12] Philip F. Burdette, William F. Jones, Brian C. Blose, and

Baar:2012:DEP

Bell:2014:PID

Bond:2013:OCC

Bodden:2012:PEF

Barr:2014:TAT

Bell:2015:VFB

Jonathan Bell, Eric Melski, Mohan Dattatreya, and Gail E. Kaiser. Vroom: Faster build processes for
REFERENCES

Marco Bellia and M. Eugenia Occhiuto. The equivalence of reduction and translation semantics.
REFERENCES

Bellia:2013:JST

Barabash:2010:TGC

Bluemke:2012:DTJ

Bogdanas:2015:KJC

Brandt:2014:DAS

Bhattacharya:2012:DLI

Brown:2012:BRF

for Better Concurrency, Ab-
straction, and Agility, By
Dean Wampler, O’Reilly
978-1-4493-1103-2, 90 pp.
Journal of Functional Pro-
gramming, 22(6):853–854,
November 2012. CODEN
JFPRES. ISSN 0956-7968
(print), 1469-7653 (elec-
tronic). URL https://
www.cambridge.org/core/
product/02755329E5B068C2D403EE6722FCBD06

Balatsouras:2013:CHC
George Balatsouras and
Yannis Smaragdakis. Class
hierarchy complementation:
soundly completing a par-
tial type graph. ACM SIG-
PLAN Notices, 48(10):515–
532, October 2013. CO-
DEN SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic). OOPSLA ’13 con-
ference proceedings.

Bosboom:2014:SCC
Jeffrey Bosboom, Suma-
naruban Rajadurai, Weng-
Fai Wong, and Saman Ama-
rasinghe. StreamJIT: a
commensal compiler for
high-performance stream
programming. ACM SIG-
PLAN Notices, 49(10):177–
195, October 2014. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Bouktif:2014:PSO
Salah Bouktif, Houari
Sahraoui, and Faheem
Ahmed. Predicting sta-
bility of open-source soft-
ware systems using combi-
nation of Bayesian classi-
fiers. ACM Transactions
on Management Informa-
tion Systems (TMIS), 5(1):
3:1–3:??, April 2014. CO-
DEN ????? ISSN 2158-656X.

Bedla:2012:SSJ
Mariusz Bedla and Krzysztof
Sapienza. Scalable store
of Java objects using range
partitioning. Lecture Notes
in Computer Science, 7054:
84–93, 2012. CODEN
LNCSD9. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/chapter/
10.1007/978-3-642-28038-1
[BSMB16]

Bonetta:2016:GSM
Daniele Bonetta, Luca
Salucci, Stefan Marr, and
Walter Binder. GEMs:
shared-memory parallel pro-
gramming for Node.js.
ACM SIGPLAN Notices, 51
CODEN SINODQ. ISSN
0362-1340 (print), 1523-
2867 (print), 1558-1160
(electronic).

Brockschmidt:2012:ADN
Marc Brockschmidt, Thomas
Ströder, Carsten Otto,

Basanta-Val:2011:ECM

Basanta-Val:2011:NFI

Basanta-Val:2013:JRA

Basanta-Val:2011:FTM

Bourdykine:2012:LAM

Briggs:2017:COI

Carlisle:2011:WCB
REFERENCES

Cao:2012:YYP

Chevalier-Boisvert:2012:BSH

Cosentino:2012:MDR

Checnato:2015:LSE

Chen:2011:MJP

Chisnall:2017:CJS

David Chisnall, Brooks

Cogumbreiro:2015:DDV

Chong:2014:CCT

Campbell:2013:ICC

Chen:2017:CLP

Canino:2017:PAE

Castro:2017:JLC

Chang:2012:IOT

[CMS+12] Mason Chang, Bernd Mathiske, Edwin Smith, Avik Chaud-

Choi:2013:GGT

[CPV15]

Curley:2010:RDT

[CRAT+12]

Cote:2012:JPS

Marco Cote, German Riano, Raha Akhavan-Tabatabaei, Juan Fernando Perez, Andres Sarmiento, and Julio Goez. jMarkov package:

Chalin:2010:TIG

Chamb:2010:FEE

Cordoba-Sanchez:2016:ADS

Choi:2017:SAS

Chawdhary:2017:PES

Chen:2016:CDD

Cameron:2015:JFE

Cazzola:2014:JBR

Cavalcanti:2013:SCJ

Caserta:2014:JTJ

Diaz:2013:LEU

REFERENCES

REFERENCES

Deitcher:2011:SPJ

Disney:2015:SYJ

Dey:2013:STA

deGouw:2015:OJU

D'Hondt:2012:ISS

Dolby:2012:DCA

Dietrich:2015:GSE

Dietrich:2016:WJD

Dam:2010:PCI

DeFrancesco:2010:UAI

DeNicola:2014:FAA

Dissegna:2014:TCA

Dissegna:2016:AIB
REFERENCES

0164-0925 (print), 1558-4593 (electronic).

elBoustani:2011:ITE

Emerick:2012:CP

Ebert:2015:ESE

Efftinge:2013:XID

Erdweg:2012:GLE

Erdweg:2015:SOI

Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. A sound and optimal incremental build system with dynamic dependencies. *ACM SIGPLAN No-
REFERENCES

Esplamimehr:2014:RDS

Elmas:2010:GRA

Erdweg:2014:FEL

Eichelberger:2014:FRM

Esquembre:2011:TPL

Endrullis:2012:WEM

Expósito:2015:LLJ

REFERENCES

CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

REFERENCES

Shaun Forth, Paul Hovland, Eric Phipps, Jean Utke, and Andrea Walther, editors. *Recent Advances in Algorithmic Differentiation*, volume 87 of *Lecture Notes in Computational Science and Engineering*. Springer-Verlag, Berlin, Germany / Hei-
REFERENCES

Fontaine:2012:VCF

Freudenberg:2015:SMP

Flanagan:2013:PES

Feldthaus:2013:SAR

Felgentreff:2015:CBC

REFERENCES

[Fournet:2013:FAC] Cedric Fournet, Nikhil Swamy, Juan Chen, Pierre-

Feng:2015:EQR

Fritz:2017:TSA

Gherardi:2012:JVC

Gerakios:2013:FIS

Gerakios:2014:RTP

German:2012:MOS

REFERENCES

Golan-Gueta:2014:ASL

Golan-Gueta:2015:ASA

Golan-Gueta:2017:ASA

Gligoric:2015:GCB

Gosling:2013:JLS

Gosling:2014:JLS

Gvero:2015:SJE

Tihomir Gvero and Viktor Kuncak. Synthesizing

Gejibo:2012:CIE

Gonzalez:2013:HBP

Gadyatskaya:2012:JCA

Gardner:2012:TPL

Greenman:2014:GFB

Gupta:2016:LSA
Kartik Gupta and V. Krishna Nandivada. Lexical state analyzer for JavaCC grammars. Software—Practice and Experience, 46(6):
REFERENCES

751–765, June 2016. CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

Gong:2011:JSA

Grossschadl:2012:EJI

Gramoli:2015:MTY

Grech:2011:JGE

Grigore:2017:JGT

Giacaman:2011:OOP

Gil:2012:SFJ

[Han15] Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

[HC17] Halder, P., and Sekhar Das, H. JaSTA-2: Second version of

REFERENCES

DEN SINO. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). OOPSLA ’13 conference proceedings.

REFERENCES

Hlopko:2014:ISJ

Haddad:2013:SIP

Hague:2015:DRC

Herczeg:2013:TFF

Herranz:2012:VIP

Huang:2012:RRC

Hashmi:2012:CNI
\[HNTL12\] Atif Hashmi, Andrew Nere, James Jamal Thomas, and Mikko Lipasti. A case for

Higuera-Toledano:2010:ISI

Higuera-Toledano:2014:EIS

Hayashizaki:2012:IPT

Huang:2011:SBA

Haubl:2010:CES

Haubl:2011:ECE

REFERENCES

Inoue:2012:ISC

Islam:2012:HPR

Inostroza:2016:MIM

Juneau:2012:JRP

Joseph:2010:PII

Jaffer:2013:EAR

Ji:2012:PKP

REFERENCES

Oleg Kiselyov, Aggelos Boudis, Nick Palladinos,

Kulkarni:2012:MCO

Krishnaveni:2012:HOJ

Kedia:2017:SFS

Kereki:2015:JAW

Kuehnhausen:2011:AJM

Kumar:2012:WSB

[KFB+12] Vivek Kumar, Daniel Frampton, Stephen M. Blackburn, David Grove, and Olivier Tardieu. Work-stealing without the bag-
Khan:2015:UJW

Kerschbaumer:2013:IFT

Kienle:2010:ATT

Kulkarni:2016:APA

Kolling:2010:GPE

Kroening:2015:CAV

Kalibera:2011:SRT

[KPHV11] Tomas Kalibera, Filip Pi-}

Kedlaya:2012:DDL

Kedlaya:2014:DDL

Kedlaya:2016:SST

REFERENCES

Aggeliki Kouneli, Georgia Solomou, Christos Pierrakeas, and Achilles Kameas. Modeling the knowledge domain of the Java programming language as an ontology. Lecture Notes in Computer Science, 7558:152–

DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Kim:2010:EAE

Kim:2011:MAE

Li:2014:MHD

Lorenzen:2016:STD

Leijen:2017:TDC

Lerner:2010:FTJ
REFERENCES

REFERENCES

Long:2012:COS

Leavens:2015:BSS

Lopes:2015:HSA

Lochbihler:2013:MJM

Loureiro:2013:EDS

Lerner:2014:TR

Lux:2011:TSD

Luu:2014:MCC

Leopoldseder:2016:JJT

Li:2011:JEC

Liu:2014:FFL

REFERENCES

McKinley:2016:PWU

McLane:2010:UIV

Marr:2015:TVP

Mytkowicz:2010:EAJ

Marr:2017:CLC

Martinez:2017:ARR

References

Martin:2014:TCR

Mastrangelo:2015:UYO

Magazinius:2012:SWS

Mamouras:2017:SMS

Meawad:2012:EBS

McIlroy:2010:HJR

Marinescu:2013:FSJ

Moller:2014:ADC

Marino:2010:DSE

Marino:2016:DXU

Mitchell:2010:FTL

Mitropoulos:2016:HTY

Murawski:2014:GSI

[MT14] Andrzej S. Murawski and

Madsen:2015:SAE

Marz:2016:RPC

Mesbah:2012:CAB

Mateos:2010:ANI

Mateos:2010:MJN

Nasseri:2010:CMR

[E. Nasseri, S. Counsell, and M. Shepperd. Class movement and re-location: an empirical study of Java inheritance evolution. *The
REFERENCES

Nuzman:2013:JTC [NED+13]

Newton:2015:ALF [NFV15]

Noll:2012:IDO [NG12]

Noll:2013:OFD [NG13]

Nunez:2016:PGC [NGB16]

Nilsen:2012:RTJ [Nil12a]

REFERENCES

[Parker:2011:DPG] Jon Parker and Joshua M. Epstein. A distributed platform for global-scale agent-based models of dis-

Pradel:2012:FAP

Park:2011:DCM

Park:2017:PSS

Pukall:2013:JFR

Piao:2015:JFF

Parízek:2012:PAJ

94, October 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Piedrahita-Quintero:2017:JGA

Pitter:2010:RTJ

Pradel:2014:EAR

Park:2015:KCF

REFERENCES

1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Pour:2011:MBD

Pinto:2015:LSS

Pape:2014:EJV

Papadimitriou:2011:SES

Putsch:2013:SIP

[Qian:2016:EFS] Junjie Qian, Witawas Srisa-an, Sharad Seth, Hong Jiang, Du Li, and Pan Yi. Exploiting FIFO scheduler to improve parallel garbage collection per-

REFERENCES

Richard-Foy:2014:EHL

Radoi:2014:TIC

Ricci:2013:ETP

Richards:2013:FAC

REFERENCES

ISSN 1532-0626 (print), 1532-0634 (electronic).

Rubin:2014:HCW

Rowe:2014:STA

Raychev:2015:PPP

Ricci:2011:SAO

Rudafshani:2017:LDD

Ramamohanarao:2017:SSM

Ryu:2016:JFB

ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). [SBK13]

Serbanescu:2016:DPO

Samuelson:2012:LSO

Sartor:2010:ZRD

Smaragdakis:2013:SBP

Shahriyar:2014:FCG

Scherr:2016:AFC

Schmidt:2010:ERA

Richard B. Schmidt. Experience report: Ada & Java integration in the FAA's

[Sch10a]
ERAM SWIM program.

Schultz:2010:WAI

Schmeisser:2013:MOE

Schildt:2014:JCRb

Sluanschi:2016:AAD

Sousa:2016:CHL

Sridharan:2012:CTP

Shah:2012:AMJ

Syed Muhammad Ali Shah,

REFERENCES

REFERENCES

[Smans:2010:AVJ]

[Shan:2012:OAC]

[Salkeld:2013:IDO]

[Schoeberl:2011:HAL]

[Stilkerich:2017:PGU]

Isabella Stilkerich, Clemens Lang, Christoph Erhardt, Christian Bay, and Michael Stilkerich. The perfect getaway: Using escape analysis in embedded real-time

[Silkerich:2015:PGA]

[Steele:2014:FSP]

[Snellenburg:2012:GJB]

[Singh:2012:EPS]

[Spoto:2010:TAJ]

[Sewe:2012:NSI]
REFERENCES

Sewe:2011:CCS

Spoto:2010:MSL

Serrano:2016:GH

Steimann:2010:TMI

REFERENCES

Scanniello:2017:FFC

Sutherland:2010:CTC

Scheben:2012:VIF

Stefik:2013:EIP

Sor:2014:MLD

Surendran:2016:APP

REFERENCES

8646 (print), 2151-8556 (electronic).

Stark:2010:BIA

Santos:2013:DDS

Stefanov:2010:JP

Samak:2016:DSF

Sun:2013:BJW

Su:2014:RVP

Subramaniam:2011:PCJ

REFERENCES

REFERENCES

Servetto:2010:MMC

Servetto:2010:MMC

[Taf13]

[SZ11]

[SZ11]

[Tar11]

[Tar11]

[TB14]

References

[TLLM13] Sai Deep Tetali, Mohsen Lesani, Rupak Majumdar, and Todd Millstein. Mr-Crypt: static analysis for
 secure cloud computations.

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). OOPSLA ’13 conference proceedings.

Tan:2017:EPP

[TLX17] Tian Tan, Yue Li, and Jingling Xue. Efficient and precise points-to analysis: modeling the heap by merging equivalent automata.

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Topley:2011:JDG

Toffola:2015:PPY

Taboada:2013:JHP

Taboada:2011:DEJ

Guillermo L. Taboada, Sabela Ramos, Juan Touriño, and Ramón Doallo. Design of efficient Java message-passing collectives on multicore clusters.

Takikawa:2012:GTF

ACM SIGPLAN Notices, 47(10):793–
REFERENCES

810, October 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[TWL12] Olivier Tardieu, Haichuan Wang, and Haibo Lin. A work-stealing scheduler for X10’s task parallelism with suspension. ACM SIGPLAN Notices, 47(8):267–276, August 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (elec-
REFERENCES

tronic). PPOPP ’12 conference proceedings.

[TWNH12] Ronald Toegl, Thomas Winkler, Mohammad Nau-
man, and Theodore W. Hong. Specification and
standardization of a Java Trusted Computing API.
Software—Practice and Experience, 42(8):945–965,
August 2012. CODEN SPEXBL. ISSN 0038-0644
(print), 1097-024X (electronic).

[TWSC10] Ben L. Titzer, Thomas Würthinger, Doug Simon,
and Marcelo Cintra. Improving compiler-runtime
separation with XIR. ACM
SIGPLAN Notices, 45(7):
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

[TWX+10] Q. M. Teng, H. C. Wang, Z. Xiao, P. F. Sweeney,
and E. Duesterwald. THOR: a performance analysis
tool for Java applications running on multicore systems.
IBM Journal of Research and Development, 54(5):
4:1–4:17, ????. 2010. CO-
DEN IBMJAE. ISSN 0018-
8646 (print), 2151-8556
(electronic).

[UFM15] Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft.
Java 8 in action: lambdas, streams, and functional-
style programming. Manning Publications, Green-
wich, CT, USA, 2015. ISBN
1-61729-199-4 (paperback).
xxviii + 394 pp. LCCN
QA76.73.J38 U76 2015.
URL http://proquest.
safaribooksonline.com/
?fpi=9781617291999;
http://proquest.tech.
safaribooksonline.de/
9781617291999.

Improved replication-based incremental garbage col-
lection for embedded systems. ACM SIGPLAN
Notices, 45(8):73–82, Au-
gust 2010. CODEN SIN-
ODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Ritson. Reference object processing in on-the-fly
garbage collection. ACM
SIGPLAN Notices, 49(11):
59–69, November 2014. CO-
DEN SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic).
Upadhyaya:2010:UDS

Upadhyaya:2015:EML

Vilk:2014:DBB

Vouillon:2014:BJJ

Villazon:2010:ARA

Villazon:2010:HCA

REFERENCES

February 2010. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Vidal:2016:ECJ]

[Villazon:2011:CAW]

[Vidal:2016:UAE]

[Viotti:2017:HRH]

[VanLoan:2010:ITC]

Oscar Vega-Gisbert, Jose E. Roman, and Jeffrey M. Squyres. Design and implementation of Java bindings in Open MPI. Paral-
REFERENCES

Vikas:2014:MGA

Vitek:2014:CTR

VanCutsem:2010:PDP

VanCutsem:2015:RTC

VanderHart:2010:PC

Varier:2017:TNJ

[VSG17] K. Muraleedhara Varier, V. Sankar, and M. P. Gangadathan. TrackEtching

VanNieuwpoort:2010:SHL

Vechev:2010:PPC

Wurthinger:2011:SAR

Walker:2012:SNJ

Henry M. Walker. SIGCSE by the numbers: JavaScript. SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education), 44(1):8, January 2012. CODEN SIGSD3. ISSN 0097-8418.

Wampler:2011:FPJ

Wang:2011:EEU

REFERENCES

January 2010. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

Westbrook:2010:MJM

Wehr:2010:JBP

Wehr:2011:JIT

Wurthinger:2017:PPE

Wurthinger:2013:USD

Wei:2016:ESD

REFERENCES

REFERENCES

Xie:2013:AAE

Yang:2012:MPD

Yi:2015:CTC

Yoo:2014:WRR

Yang:2017:EJV

Zhang:2012:RAJ

Zhang:2014:AIO

Zhao:2013:INT

Zheng:2016:CMD

Zeyda:2014:CMS

REFERENCES

[ZW10] Alexandros Zerzelidis and Andy Wellings. A framework for flexible scheduling in the RTSJ. *ACM Trans-

Zhu:2013:EAZ

Zhao:2014:CSP

Zhijia Zhao, Bo Wu, Mingzhou Zhou, Yufei Ding, Jianhua Sun, Xipeng Shen, and Youfeng Wu. Call sequence prediction through probabilistic calling automata. ACM SIGPLAN Notices, 49(10):745–762, October 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Zhang:2016:NVC

Zhang:2012:SRB

Zhang:2013:IMF

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). OOPSLA ’13 conference proceedings.