Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

[PLL18, SS19, SD16b, SGG17]. N

[ADJG19, WZK19]. Z_P [AÖ11].

/multi [Taf13]. /multi-threaded [Taf13].

'12 [Hol12]. 12th [Fox17a].

5 [KHR11].

6 [Jen12].

7 [Ano15, EV13, J12]. 75 [HWM11].

8 [BKP16, CWGA17, LYBB14, SAdB16, UFM15].
Abbreviated [SRTR17]. ABS [SAdB+16].

absence [AGH+17]. Abstract
[AGR12, BDT10, DLR16, KPP12, XMA+14, DLM10, DLR14, FSC+13, KMMV14, NSD17, SSK13]. Abstraction
[BW12, Bro12, GY16, SKKR11, PL12, ZMG+14, ZFK+16]. Abstractions
[NYCSI12, RFBJ14, UR15, SPP+10]. accelerated [PQTGS17]. Accelerating
[KMZN16, ZLBF14, Cha18]. Accelerator
[MAK19, OIA+13], accelerators [PWA13]. Access
[CSGT17, HBT12, TT11, TTN12, BB17, KT14, MHH10, RH13, XHH12]. Accessibility
[STST12, VBMDP16]. Accuclock [XXZ13]. accuracy [MDHS10]. Accurate
[Ja13, RRB17, ZBB15, XXZ13]. ACDC [AHK+15]. ACDC-JS [AHK+15]. across [DD13, DFR13, HLSK13]. action
[KB17, UFM15]. Actions [RK19]. Active
[BSAL18, YMBH19]. Actor [RCB17]. actors [PGA18, Sub11]. Ada
[Car11, Sch10a, WCB16]. adaptable
[ADI13]. adaptation [VBAM10a]. Adapter
[SK12]. Adaptive
[AFG+11, IHWN12, NFV15, RK+17, YPMM12, CL17, PKO+15, PDP+16, VBAM10b]. add
[DL10]. adding [MZC10a]. Addition
[RK19]. addressing [GD10, VBMDP16]. Adequacy [PSJ18]. Adequate
[GGZ15]. ADiJaC [SD16a]. Adoption
[PBHS13, PGA18]. Adriaan [Ngo12]. Advanced
[Hor11, VBAM10a, dJMI18, Jen12]. Advances [FHP+12]. Adversarial [FF10]. Aegis
[Nil12a]. Æminium [NS+14]. affects [LO15]. affordable [BM14]. Agent
[AFG11, PE11, RVP11, Den18]. Agent-Based [PE11]. agent-oriented
[RVP11]. aggregates [BCR11]. Agility
[Bro12]. Ahead [BLH12, JMB12, PKPM19]. Ahead-of-Time
[JMB12, PKPM19]. Aided
[KP15]. air [PPS16]. Ajax
[MvDL12]. Ajax-Based
[MvDL12]. algebraic [Lei17]. algebra
[Iv16, ZCSoV15]. Algorithm
[JJCO19, YCYC12, ZW13, MT13, LML17, Por18, Gun14]. Algorithmic
[FHP+12]. Algorithms
[BF18, GT10b, Gra15]. Aliasing
[NS12]. Alignment
[NBB18]. alike [ADA13]. All-in-one
[SV18]. Allocation
[CPST14, WZK+19, YPMM12, CPST15, OOK+10]. allocation-site-based
[CPST15]. Almost
[NWB+15, SC16]. alternatives
[SHU16]. Alting
[WBM+10]. always
[AJL16]. Analyses
[Kri12, TN19, HB13, KMZN16, PMP+16, ZMG+14]. Analysis
[ADJG19, AGM+17, Bu18, CPV15, Hol12, JJCO19, KCD12, LHR19, MvDL12, NS12, RDCP12, RRB19, RPP19, SGD15, SW12, SPC12, SLES15, SLE17, SR17, VP16, ZKB+16, AM14, Bha14, CFF+13, CDMR19, DSH15, GYB+11, HC1N14, HWLM11, KSW+14, KT14, KvGS+14, KPP+18, KRR19, LSBF16, LSBF17, LT14, MTL15, MKZ+14, MCC17, MB12, NSD17, NS13, PIR17, PLR18, Pf13, RBV10, RRB17, SPPH10, SMB11, SBB13, SP10b, TL17, TWX+10, TLM13, TL17, TPG15, WA19, ZMNY14, ZWS15, CH17]. Analytics
[BBB+17, KB17, STCG13]. analyzer
[Fer13, GN16, SMP10]. Analyzing
[PLL+18, ZDK+19, BTR+13, PSN14]. Android
[CNS13, MMP+12, STY+14, THC+14, ZHL+12, ZKB+16, vdMvdMV12]. AngularJS
[RVT18]. Ann
[CSD16]. annotated
[TJLL18]. annotation
[CV14, KATS12]. annotation-based
[KATS12]. annotations
[CSD16, GBS14, MGS19]. announcement
[SP10a]. anomalies
[FRM+15]. answering
[KM10]. any
[FIF+15]. anytime
[STCG13]. anywhere
[STCG13]. AOP
[WAB+11]. AOT
[WKJ17]. Apache
APIs
[CJ17, FRM+15]. apart [LB12]. API
[FH16, MPM+15, PTRV18, TWH12, WA19, YKS17]. APIs

circular [Gun14, SZ10]. Circus [ZLCW14, MCW19]. City [Hol12]. Class [BS13, CSF16, NCS10, CSDKB12, HC10, MHN10, SC16, SM12, TSD12]. Classes [And14, SVB17, WT11, CZ14, CS12, SZ10, TSD12, VB16]. Classifiers [SD16a].

Cocoa [Sta10]. Code [ADJG19, BH17, BNE16, CJ19, HC11, MSS19, MM16, PKPM19, RVK15, RLMM15, SRTR17, SVB17, SV15a, ED14, WWG18, AGR17, AK13, CCFB15, DRN14, FLZ18, FH16, FMS11, IS18, LVG10, MKK12, MKK13, NG13, DJJ12, PTR18, PBB19, PMP16, PSS14, RBRS14, RBV16, RVK19, RO12, SKS13, Tai13, UTO13, VSG17, WKJ17, WGF11, WBA11, WAB11, WWS13, ZHL12, ZX16, ZWS15].

communications
[ETTD12, RTET15, TTD12]. Communities
[ZMM*16]. COMP [CKS18]. Compact
[HWM10, HWM11, JKL17]. Comparative
[KB11, CDMR19, FFBK*15, SSL18].
comparing [MD15]. Comparison
[BKP16, ADI13, BJBK12, HH13, KvRHA14,
SMS*12]. Comparisons [GGZ*15].
Compartmental [WG*11].
compatibility [DJB16, OIA*13].
compatible [ABCR10, Hor12].
Competition [CKS18]. Compilation
[DLR16, PKPM19, CGJ*16, CMS*12,
DLR14, FSC*13, IHWN12, JLP*14, JK13,
JMO14, KS13, KHL*13, Lei17, MD15,
MGH17, ZBB15]. compiled
[NED*13, RO12, TMVB13]. Compiler
[JMB12, Loc18, NKH16, NBW*15, BBF*10,
BRW14, CIAD13, Cle16, HWM14,
IHWN12, KMLS15, KS14, KC12, LSWM16,
MDM17, Ott18, Rub14, TTS*10, TWSC10,
VR14b, ZYZ*12]. compiler-complier
[KS14]. compiler-runtime [TWSC10].
compilers [Hos12, LMK16, RSB*14].
Compiling [Fee16, Hos12].
complementation [BS13]. Complete
[BO13, BR15, JC10, Sch14, Gri17, PSR15,
RGM13, RRB17]. completeness [KBPS17].
completing [BS13]. completion [FH16].
Complexity [SSH17]. Compliance [GD12].
complaint [MZC10a]. component
[AST*16, CSKB12, GT01a].
component-based [AST*16, GT01a].
components [BMSZ17, FOPZ14, KS14].
Composable [SS10]. Composing
[EABVG14]. Composition
[SK12, AGH*17, AH01, SZ10, VM15].
Comprehension [BGK17].
Comprehensive
[STST12, VBMA11, ZKB*16, MKZ*14].
Compressing [Gun14]. Computation
[BW12, LYM*18, ZHL*12].
Computation-Intensive [LYM*18].
computational [Bra14, SSG*14, VF10].
computations [KFBK*15, TLMM13].
Computer
[HWM11, OAC18, DNB*12, KP15].
Computing
[Hol12, MPR12, NBB18, PWG17, PWSG19,
SHU16, TWHN12, WN10, AdSCdR*19,
LZYP16, Rub14, TTD*11, VF10, TRE*13].
con [SMB11]. conceptual [Tai13].
Concurrency [BG17, Bro12, SWF12,
BVGVEA11a, CMH13, DMS11, HAW13,
KHL*17, PPS16, Sub11, TD15, UR15].
Current [MSM*16, PS12, Sie10,
BMSZ17, EP14, Gra15, HJH10, KBL14,
MSM*10, OW16, PTF*15, RVP11, STR16,
SNS*14, WLL19, YS10, YKA*19].
current-by-default [SNS*14].
Conditional [XMD*17. SS16]. Conference
[DDDF17, Hol12, KP15, LMK16, PDPM*16].
Configurations [PSJ18]. conflict [ABC18].
Conformance [AGR12, SKR17]. Confused
[BH12]. Connecting [NFN*18]. conquer
[SBB*10]. Consequences [OBPM17].
conservative [SBM14]. Consistency
[CSF*16, CS12, DNB*12, FRM*15, ZBB17].
consistent [BCR13]. constrained [KSR14].
constraint [FMBH15, SHU16].
Constraints [SGD15, LSSD14].
construction [CIAD13, RGEV11].
constructors [MME14]. constructs
[PCL14, PTF*15]. consumers [DAA13].
Consumption [MV16]. container [XR13].
containers [XR10]. Context
[HWM13, MM16, TL17, HB13, IvdS16,
SSB*14a, ZYY*19]. Context-sensitive
[HWM13]. Contextual [MSK16].
Continuous [Teo12]. Continuously
[DTLM14]. Contracts
[YQTR15, HBT12, KT15, KKW11].
Control [FGR12, FHSR12, TT11, TNTN12,
AdCGGH16, BNP*18, BL15, FWDL15,
LSWM16, RHN*13, STS*13, TABS12,
WLL19, XHH12]. controlling
[BKC*13, YDF15]. Convention [Hol12].
conversions [CMM17]. Converter
[YWW+18]. Cooperative
[YDFF15, Hdm17]. Coordinating
[MAHK16]. coordination [BMSZ17]. copy
[FBH17], copyrightable [Sam12]. Core
[Hor11, HC13, RDCP12, RTE+13, MS10,
PLL+18, TRTD11, Gve13]. cores
[GTSS11, SKBL11]. Cornell [Gve13].
corpus
[HCN14, LSBV16, LSBV17, TMVB13].
correct
[AdCGGH16, AJL16, DJLP10, PS10a].
Correctness [LL15, BENS12, Cho14].
Correlation [SDC+12, XHH12].
Corrigendum [LSBV17]. Cost [MS19].
counter [LSSD14]. counters [IN12].
Counting [Bul18]. Course [Wan11, Zak12].
Coverage
[CSS+16, GGZ+15, MSS19, RGB18].
Coverage-Based [GGZ+15].
Coverage-directed [CSS+16]. CPS
[PDDD17], CPU [PKO+15]. Crawling
[BMSV18, MvDL12]. Creating
[YMHB19, HC10, VBAM10b]. Creation
[SK12]. crisis [AT16]. Critical
[HL13, MCW19, WK12, WCB16, ZLCW14,
AGR17, DTLM14, GCM+13, NM10, Nil12b,
RS12, SDH+17, CWW13, LWC17]. Cross
[GGZ+18, MDM17, OTR+18, WBHN18,
AMWW15, BKC+13, GSS+16, KMZN16].
cross-cutting [AMWW15].
Cross-Language
[GGZ+18, MDM17, GSS+16]. Cross-Layer
[OTR+18]. Cross-Platform [WBHN18].
cross-program [KMZN16]. cross-thread
[BKC+13]. crosswordsummarizer [BH17].
Crowdsummarizer [BH17], crypto
[PTRV18]. Cryptography [GPT12]. CSS
[Ano15, HLO15, Sta10]. Curve [GPT12].
customizations [LGG10]. customized
[HB13]. cutting [AMWW15]. Cyclic
[BMOG12, RS12].

D
[DiP18b, FLZ+18, GBC12, JEC+12, ZXL16].

DAA [DR10]. Data [Bra14, BMOG12,
BA17, BF18, GM12, GTS+15, GT10b,
JIC19, NKK16, NWW+15, NFS+18,
NWW+18, TAF+18, YWW+18, ZLNP18,
dMRH12, BK14, BB17, BOF17, BBXC13,
BGBK12, CDTM10, CRP+10, DFR13,
DHM+12, EKUR10, FOPZ14, KB17, LDL14,
MRA+17, NL14, SADB+16, SSZ+14,
SGG+17, UMP10, WK17, WC14, XXZ13,
XMA+10, XGD+19, ZUvd17]. data-centric
[DHM+12, FOPZ14]. Data-Driven
[JJCO19]. Data-Intensive [NWW+18].
Data-Parallel [NKK16, CRP+10].
database [De10, EKUR10, TABS12].
databases [EKUR10, MLGA11]. Dataflow
[BR12]. Datalog [ZMG+14]. dataset
[MDS+17]. David [Kie13]. Days [Sev12b].
DBT [KS13]. dead [SK13]. Deadlock
[CHMY19, CHMY15, SR14a, SR14b]. Dean
[Bri12]. debugging [ASdMGM14, BM14,
KS14, TB14, VB18, ZFK+16]. December
[LSBV17]. Deciding [SGD15]. decision
[RBV16]. Declarative [DRN14, RI12,
FOPZ14, WCST19, MME+10].
Decomposition [AGH17, PLL+18].
deconstructing [ACS+14]. decoupled
[ALP13]. deduplication [HO14].
Default [BG17, NS+14]. defects4j
[MDS+17]. defined [FMS+11]. Definite
[NS12]. Definition [SSB14b, AK13, SSB01].
Definitive [Oak14]. delegation [GBS13].
delimited [PDDD17]. DelphiJ [GBS13].
demand [FWDL15, ZHL+12].
demand-driven [FWDL15]. DemoMatch
[YKSL17]. demonstrations [YKSL17].
Deoptimization [KRC14]. depend
[LCW18]. dependability [GD10].
Dependence [PDDD17, JWMC15].
Dependence-driven [PDDD17].
dependences [BKC+13, WLL19].
dependencies [ELW15]. Dependent
[CHJ12, LE16]. deploying [R+13].
deprecation [SRB18]. depth [Rau14].
Design [AC16, ETTD12, MLGA11, Puf13].

Driven [CCA+12, JJC09, YPM12, BM18, FGB+19, CH13, FWDL15, HZZK19, LP19, MTL15, PDD17, SR14b]. drug [EKUR10]. DSL [KAR012]. DSLs [KHR11, RO12, SC16]. DSU [PVH14]. Dual [AD16]. Dual-Pivot [AD16]. Dynamic [AGM+17, ABV12, ASF17, BFS+18, CHMY15, CHMY19, MR18, MvDL12, PTH14, RDF15, WVG+18, XMA+14, ZKB+16, AF12, BDB11, BK14, BCD13, BOF17, CSV15, CPST15, ELW15, YGB+11, HB13, KRCH14, KRR+14, KT14, LWH+10, LV10, MKZ+14, Nil2b, NG12, NED+13, RLV10, RCR+14, RB17, SR14b, SJS10, SH12, TPG15, VBAM10b, WXR16, WFF18, WBA+11, WAB+11, WWS13, WWH+17, ZBB15]. Dynamically [WWG+18, CZ14, CMS+12, hEYJD12].

Dynamically-Generated [WWG+18]. Dynamismo [BDB11].
[DVL13, GPT12, HWM11, HB13, KT14, KW10, OOK+10, RSP+15, RFBJ14, SMN+12, TLX17, TN19, TD17, AK13, BHSB14, CRP+10, ETR12, HWM10, KKW11, MRA+17, MSM+10, Pos19, Sie17, SGV12, SWB+15, SV15a, TRTD11, UMP10, VWJB10, XXZ13, ZDK+19, SV18].

Effizient [FBH17, BKC+13, FOPZ14].

Einsatzszenarien [Sch13]. Einsteiger [Ric14].

Elektronik [Ric14]. Elektronik-Projekte [Ric14].

Elephant [RGM13]. Elimination [RKN+18, GvRN+11].

elision [NM10].

Elliptic [GPT12]. Eloquent [Hav11].

emass [Por18]. Embedded.

[Fox17b, HTW14, JMB12, KARO12, Pau14, SLES15, SLE+17, TKL+15, VK12, Dei10, Fox17a, GMC+13, HTLC10, KHR11, LMK16, LTK17, OIA+13, RHT13, SC16, SDH+17, SFR+14, UIY10, Xue12, ZY+12].

embedding [KMLS15, SC16]. emerging [CDMR19].

Empirical [LSBV16, LSBV17, SS13, WXR16, BJK12, FH16, HH13, KPP+18, MHR+12, NCS10, SH12, Tai13, VBDPM16, VBDM16].

Employing [CC15]. Enscripten [Zak18]. emulated [THC+14]. emulator [KS13].

Enabled [GPT12, DR10, ETR+15, RBL12, SGV12]. encapsulation [DDM11].

End [GM12, DAA13]. End-to-End [GM12].

end-user [DAA13]. Energy [OTR+18, CL17, PCL14]. energy-aware [CL17]. enforcement [IF16]. enforcing [JWMC15].

engine [MG17, Ngo12, OUY+13, Tar11, Ngo12].

Engineering [CCA+12, GT10a, MLM17, MLM19, VF10].

engineers [Bra14].

[KRH16, SSG+14].

enhanced [LMK16, WBA+11]. enhancement [WCST19].

Enhancing [BDT10, BGVVEA13, DeSG12, HC10].

Ensuring [HDK+11]. Enterprise [Aro14, AAB+10].

entities [ETR12]. Entry [BK12].

enumeration [SSH17].

Environment [Kö10, PTML11, RK19, EKR+12].

Environments [BF18, EABVG14, GTL+10, HOKO14, KF11, RDP16, RCB17, SGV12]. equality [GRF11]. Equilibrium [YMHB19].

Equivalence [BO12]. equivalent [TLX17].

equivocation [TD17]. ERAM [Sch10a].

Erratum [HWM11].

ES5 [DFHF15, Mor18].

ES6 [Mor18]. Escape [SLES15, SL+17]. Espresso [WZL+18].

Essential [Ngo12]. estimation [LMK16].

etched [VSG17]. Ethereum [Dan17]. eval [Mii13, MRMV12].

Evaluating [BGK17, BLH12, MDHS10]. Evaluation [CSZ17, GBC12, JMB12, OCFLI14, TTS+10, Wan11, CSK17, MRA+17, MD15, WWH+17, XGD+19].

Evaluator [JB12]. Event [WK11, MV16, BPP13, KW10, MTL15, WK12, YP10], event-based [BPP13, YP10].

everyone [Hor12].

Evolution [CC15, GMPS12, Mei14, JK11, MAH12, NCS10, WBA+11, WAB+11, WWS13].

evolving [ZZK13].

Exact [ZW13].

Examples [BNP11, Del13]. Exception [LT14, ECS15, HWM14, LT11].

Exceptionization [YKM17]. Exceptions [ASF17, AdCGGH16, HdM17, SMN+12, ZBB17].

Execution [Bu18, MSS19, NNTK17, OwKPM15, SWMV17, BNP+18, Cha18, HZZK19, JLL17, JhED11, LLL13, MMP+12, RCB17, SPPH10].

execution-driven [HZK19]. Executions [WCG+18, ASdMG14, PPS16, STR16].

executives [RS12]. Exemplar [ZW13].

exhaustive [DHS15]. exhibitionism [VBMD16].

existential [AT16].

Exogenous [BMSZ17]. Experience [ABMV12, OW16, Sch10a, FGB+19, CBLFD12, TRE+13, WT10].

Experiment
experimental [XGD+19]. explicit
[NGB16]. exploit [Ano13]. Exploitation
[SSMGD10, MLM19]. Exploiting
[NKH16, QSaS+16]. exploration
[FWDL15]. explorative [AHK+15].
Exploratory [BKP16, ECS15].
EXPLORER [FWDL15]. Exploring
[JK13, JWMCI5, SE12]. exposed
[VBDPM16]. Express [JQJ+16].
Expression [NS12, PIR17]. expressions
[GI5, MKTD17]. expressive [VY+10].
Extended [DDDF17, FGR12, FLL+13,
JC10, LMK16, PDM+16]. Extending
[AC10, BVGVEA11a, LPA13, PTHH14].
Extensible
[ZvdS17, ER14, KMLS15, MHBO13].
Extension
[RSL12, WA19, LE16, MLGA11, PdMG12].
extensions [MPR12, Zha12]. Extensive
[Van11]. Extracting
[CJ19, CCA+12, KM10]. extraction
[LKP19]. Extremal [LTD+12]. Eye
[OA18, RLMM15, Guy14]. Eye-Tracking
[OA18, RLMM15].

F [GMT14, TTD12]. F-bounded [GMT14].
F-MPJ [TTD12]. FAA [Sch10a].
FACADE [NWB+15]. face [XHH12].
Facebook [Ano13]. Facets [ASF17, AF12].
facilities [BVGVEAFG11]. Factors
[PGA18]. FAD.js [BB17]. failing [STR16].
failures [CRAJ10]. false [HW+12].
familiarized [Ame13]. family
[KHM+11, KvRHA14]. family-based
[KvRHA14].

Fast
[CVG+17, CSGT17, HyG12, SBM14, SLF14,
YMHB19, Zak18, BB17, KMMV14,
KCP+17, MDM17, MHBO13, SV15b].

Faster
[BMDK15, JC10, AJL16]. Fault
[RRK19, RBL12]. Fault-Tolerance [RK19].
Faults [SRTR17, KPP+18, ZZK13]. FC
[YWW+18]. Featherweight [RvB14].

feature
[AH10, KvRHA14, OJ12, SS19].

feature-based [KvRHA14]. features
[MKK+12, MKK+13]. Feedback
[NED+13, NG13, WM10].
Feedback-directed
[NED+13, NG13, WM10]. fields [PQ17].
FIFO [QSaS+16]. filtering [HW+12]. find
[Ryu16]. Finding [RPP19, XMA+10]. Fine
[BVGVEAFG11, DRN14]. fine-grained
[DRN14]. Fingerprints [MSK16]. Finite
BLH12, MB12. Finite-State [BLH12].
first [SC16, TSD+12]. first-class
[SC16, TSD+12]. fix [TPG15]. Fixing
[SRTR17, LTZ14]. flexibility [SBF+10].
Flexible [ES14, MSM+16, PKC+13,
RHN+13, BCD13, KHR11, For18, ZW10].
Flink [LTZ14]. Floating [Jaf13, AJL16].
Floating-Point [Jaf13, AJL16]. Flow
[AS17, FHSR12, LMK16, SS12,
ADCGGH16, AF12, ABFM12, BK14, BL15,
FWDL15, HBS16, KHL+13, LSWM16,
PMTP12, STA18]. Flow-sensitive
[LMK16, STA18]. FlumeJava [CRP+10].
fly [UJR14, URJ18]. folding [CPST14].
Footprint [GS12, WHIN11]. Forecasting
[CC15]. foreign [LWH+10]. forge [Ler10].
fork [MZC10a]. fork/join [MZC10a]. form
[GI5]. Formal [DLPT14, KR12, SW12,
HdM17, PSR15, SZ11]. formalised
[CWW13]. Format [YWW+18]. Forsaking
[GBS13]. FORSETI [CSV15]. Forward
[FOPZ14]. Foundation [CJ17]. Four
[MSS10]. FPGA [OUY+13].
fragmentation [PZM+10].
fragmentation-tolerant [PZM+10].

Fragments [PBM+19, OA17]. frames
[SJPS10]. Framework [CCA+12, Den18,
FF17, LM15, PWSG17, PWSG19, RBL12,
SEK+19, TN19, Ame13, AC16, DDDF17,
ER14, FGGPLF+12, JEC+12, KMLS15,
Lon10a, Lon10b, MT13, PGA18, PKO+15,
RR14, STY+14, ZW10, ZDS14].
frameworks [PPMH15]. Francisco [KP15].
free
[DTLM14, FC11, GI5, HBB+14, NFV15].
free-form [GK15]. free-lunch [DTLM14].
frequency [ZWSS15]. Frequent [RC17].
Friendly [RBL12]. fringe [MB12, MB12].
Full [SRTR17, DRN14]. Full-Word [SRTR17]. Fully [FSC+13, PG12, ZFK+16].
Functional [Wam11, Ame13, BVGVEA11b, NFV15, SV18, UFM15, Bro12].
functional-style [UFTM15]. functions [LSBV16, LSBV17]. Fundamentals [HC13, Teo13, Gve13].
Fusing [MS13, ETR12, WM10]. fusion [KBPS17]. future [SS16], fuzzier [Guo17]. Fuzzy [YPMM12].
Fuzzy-Rule-based [YPMM12].

Game [MT14, Wan11]. Gap [PVB17, ZLHD15]. Garbage [ASV+16, BH12, BF18, GTS+15, JCMMI9, MAK19, QSaS+16, Sch13, SKBL11, URJ18, ASME18, AGGZ10, BCR13, BP10, BVGV14b, BOF17, GTSS11, KPHV11, KBL14, NGB16, PZM+10, PDPM+16, Puf13, SP10a, SBM14, Sie10, SJBL10, UIY10, UIJR14, XGD+19].
generate [CS12]. Generated [WWG+18, BM18]. Generating [HJS+10, RDP16, GRF11, KS14, MHBO13, SSK13].
Generation [AGM+17, BH17, YWW+18, CRJ+10, CMM+10, PPMH15, Pha18, PSNS14, Rim12, RO12, UMP10, ZYY+19].
generations [BOF17]. generators [SLF14].
generic [DDM11, Fer13, HH13, ZPL+10, eBH11].
generics [AS14, Gri17, PMBH13]. Genetic [YCYC12, MT13]. Genotyping [YCYC12].
GeoGebra [ABK+16]. geosciences [MCY+10]. Geospatial [CH17]. German [Sch13].
Getting [GMT14]. Giga [DHS15]. Giga-scale [DHS15]. glimpse [SP16].
Globally [YMHB19]. Glotaran [SLS+12].
go [LWB+15]. Goldilocks [EQT10]. Good [dGRdB+15].
Green [Ngo12, MGI17, Sam12]. GPGPU [PQTGS17].
PGPUs-accelerated [PQTGS17]. GPU [PKO+15]. GPUs
[HSol2, grade [CRJ+10]. Gradual
[RSF+15, SFR+14, TSD+12, Sie17].
grained [DRN14].
grains [GN16, SHU16].
Granularity [RRB19, CZ14, YKA+19].
Graph [dMRH12, BS13].
Graphical
[SLS+12].

graphs [AdCGGH16, DSEE13, JWMCI5, PUL06].
green [BRGG12]. Greenfoot [Köll10].
grid [SGV12, VWJB10, MZC10b]. Gridifying
[MZC10b].
grained [EV13]. Growing
[EKR+12]. growth [LDL14].
guarantees [JWMCI5, ZHB15].
GUI
[CNS13, VGS14, WBA+11].
GUI-awareness [VGS14].

Guides [CS13, VGS14, WBA+11].

Guidelines [GGZ+15, HLSK13].

Hack [Ott18].

Handling
[WK11, ECS15, HWM14, KW10, WK12].
Hands [CSZ17, Teo13]. Hands-on [CSZ17, Teo13].
happened [Han15].
happens [TD15]. happens-before [TD15].

hard [LTK17, Puf13].

Hardware
[MAK19, SSKR11, SPS17, CBGM12, IN12, SE12, ZDK+19].

hardwired [OUY+13].

harness [Kie13].
hash
[SV15a, SV15b, SV18].

hash-array [SV15b].

hash-tries [SV18].

hashing [GRF11].

HDFS [IRJ+12].

HDL [OUY+13].

health [EKUR10].
heap
[CSV15, LDL14, TLX17, Tar11, VYY10, YS10, BVGVEA10].

heap-manipulating [YS10].

Heaps

[NNF+18].

Helping [RT14].
Hera [MS10].
Hera-JVM [MS10].

Herman [Kie13].
Heterogeneous [ASV+16, HHB+14, Rub14, AYZI10, ABCR10, DFR13, MS10, SV18].
Heterogeneous-race-free [HHB+14].
Heuristics [MG14, LMK16, HHVM [Ott18]. Hidding [RBL12]. hierarchy [BS13].
High [GSS+16, Hol12, IRJ+12, MSM+16, RGB18, SWU+15, URJ18, WN10, Zak10, BRWA14, Hos12, Ngu12, RFBJ14, TTD+11, TGZ17, VVJB10, WFF18, WWH+17, TRE+13].
High-coverage [RBG18].
High-Precision [Hos12, RFBJ14, VWJB10].
High-coverage [RGB18].
High-dimensional [TGZ17].
Heterogeneous-race-free [AYZI10, ABCR10, DFR13, MS10, SV18].
Heuristics [MGI14, LMK16].
High [BS13].
License [GD12], Life [Esq11]. LIFT [BTR+13], Light [MvH15]. Light-weight [MvH15]. Lightweight [BW12, KBL14, KKK+17, RO12]. like [BG17, JYKS12, MSM12], lines [BTR+13, KATS12], linguistic [UR15]. Lime [ABCR10], line [SV17], linearizability [LTZ14]. lines [BTR+13, KATS12], linguistic [UR15]. Linux [Ric14]. Linux-basierte [Ric14]. Listener [JH11]. little [Han15]. liveness [LDL14], load [PDP+16], loaders [SM12], loading [WGF11]. Local [NBB18, DDDF17], localised [SP10b], locality [HJH10, OJ12], localize [ZZK13]. location [NCS10], Locators [SDM12], Lock [FC11, NM10, NFV15, UMP10]. Lock-free [FC11, NFV15]. Locking [GGRSY17, JTO12, GGRSY14, GGRSY15, YKA+19], locks [SPS17], Logging [CJ19, CJ17], Logic [ZLN18, GMS12, Phal18, SD16b], loop [DD13, HWI+12, PLR18], Loops [RD15, LLL13], loss [WHIN11], Low [ETF+15, GM12, SWU+15, WCG14, ZHCB15, ZFK+16, BCR13, XMA+10], Low-Budget [GM12]. Low-latency [ETF+15]. Low-level [ETF+15]. Low-overhead [ZHCB15, ZFK+16], low-utility [XMA+10], lunch [DTLM14].

BNS12, DJLP10, Fer13], Multithreading [CCH11], multivariate [AO11], multiway
[YKA+19], Mungo [KDPG18]. MuscalietJS [RCR+14], Mutagenic
[YCYC12], mutants [RCR+17], Mutation
[MMP15, KPP+18], mutators [AHK+11].
MySQL [Ano15].

Names [SRTR17], Naming [STST12].
Native
[JJQ+16, LT11, LT14, KFBK+15, STS+13].
Natural [LL15], naturalness [HBG+16].
NDetermin [BENS12], nested
[CHM16, ZLB+13], Netflix [Liu14].
Network [CC15, GGC18, RR14].
Networking [Hol12].
Networks [AFGG11, ETR+15, ZYY+19].
neural [ZYY+19], neuromorphic [HNTL12].
Neutral [WBHN18]. Next
[YWW+18, CRJ+10, CMM+10].
Next-Generation [YWW+18], NG2C
[BOF17], NGS [YWW+18], NGS-FC
[YWW+18]. Nicolai [Bla18], Nixon
[Ano15]. No [BVGVEA10]. No-Heap
[BVGVEA10], NoCs [PWA13]. Node
[HC11, BJBK12]. Node.js
[BSMB16, MTL15, Ano14]. nodes [DRN14].
Nominal [BO13]. Non
[BVGVEA11b, BSOG12, GGZ+15, TD17, WZL+18,
YKM17, MZC10a, OMK+10, SSL18, ZP14].
Non-Adequate [GGZ+15].
non-cache-coherent [ZP14]. non-cloned
[SSL18]. Non-equivocation [TD17].
Non-functional [BVGVEA11b].
non-intrusively [MZC10a]. Non-Java
[YKM17, OMK+10]. Non-termination
[BSOG12]. Non-volatile [WZL+18].
Non-Volatility [WZL+18]. Nonblocking
[RTET15, SP10a]. Nondeterministic
[RB15, BENS12]. noninterference [IF16].
Nopol [XMD+17]. Normalization
[ADJG19]. NoSQL [DFR13]. Notation
[Sev12a]. Novel [NK10, MZC10b].
November [Hol12]. Novice [BA17].

Novices [RT14]. null [AT16].
NullPointerExceptions [BSOG12].
NUMA [GTS+15]. NumaGIC [GTS+15].
number [PPMH15, SLF14]. Numbers
[Jaf13, AYL16, Wai12]. Numerical
[KS15, KFBK+15, PQTGS17]. NXT
[SWF12].

Obfuscated [KCD12]. obfuscation
[CCFB15]. obfuscations [SK17]. Object
[CSGT17, GS11, KB11, L212, NWB+15,
PTNH14, PIlCH11, RC17, Sev12a, SW12,
AST+16, BD17, DDDF17, FMBH15,
IvdS16, KRR19, MME14, MHBO13, RFD15,
UJR14, VM10, WM10, ZCdSOvdS15, Zha12,
ZDS14, hEYJD12]. Object-Bounded
[NWB+15]. object-constraint [FMBH15].
object-manipulating [KRR19].
Object-Oriented [GS11, KB11, RC17,
PTNH14, AST+16, DDDF17, MHBO13,
VM10, ZDS14, hEYJD12]. Objective
[Sta10]. Objective-C [Sta10]. Objects
[BS12, RKN+18, MHL15, SK13, SABB19,
WXR16, BVGVEA10]. Observations
[AAB+10]. OCaml [Cle16]. OCaml-Java
[Cle16]. OCTET [BK+13]. odeToJava
[KS15]. offloading [ZHL+12]. on-demand
[ZHL+12]. On-Stack [WBHN18].
On-the-fly [URJ18, UJR14]. one [SV18].
one [AST+16]. Online
[NG13, GGC18, HCV17, NK10]. only
[NM10]. Ontology [KSPK12]. OoOJava
[JhED11]. Open
[BSA14, GD12, ABC18, CJ17, CJ19,
EKUR10, JK11, Tai13, VGRS16].
Open-Source [BSA14, ABC18, Tai13].
OpenJDK [BFS+18, CHM16, dGRdB+15].
OpenMP [VGS14]. OpenMP-like
[VGS14], operating [HDK+11]. operation
[KK11]. operations [TABS12, TGG17].
Operator [PQD12]. opportunities
[TPG15]. Optimal
[AD16, JCMIM19, SK12, ELW15]. optimale
[Sch13]. optimally [BG+13].
AGR12, BH12, BR12, BMOG12, GS11, JB12, LTD+12, PSJ18, STST12, SS12, SDM12, SR17, TN19, XMD+17, ZLCW14, AAO18, ASdMGM14, AdCGGH16, BA12, BNS12, DJLP10, ECS15, ES14, EP14, Fer13, HL13, IN12, KRR19, LKP19, LO15, LPA13, MRMV12, MCW19, NG12, OJ12, PL12, RR14, RAS16, RLBV10, SMS+12, SZ11, SJS10, Sth13, WCST19, YS10, dCMMN12, hEYJD12. Progress [WCG18, Sie17, ZHCB15].

R [CH17, KMMV14, NL14, SLS+12, Vit14]. Race [BH10, EP14, RD15, AMT17, EQT10, HBB+14, RGB18, WFF18]. race-aware [EQT10]. races [FF10, WCG14, XXZ13].

Reachability [NS13]. reaction [SRB18]. reactive [BCvC+13, MvH15]. read [NM10]. read-only [NM10]. Reading [Jaf13]. ready [RHD15]. Real [BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Nil12a, Pau14, SLES15, SLE+17, VK12, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGVEA14, BVGV14b, CRAJ10, DW10, EABGV14, Fox17a, GNM+13, HTLC10, KH11, KPHV11, KVG14, KW10, KPP+18, KSR14, LTK17, MDS+17, PS10b, PZM+10, PS11, Puf13, RHT13, SP10a, SIE10, SP17].

Real-Time [BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Pau14, SLES15, SLE+17, VK12, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGV14a, BVGV14b, CRAJ10, DW10, EABGV14, Fox17a, GNM+13, HTLC10, KH+11, KPHV11, KVG14, KW10, KSR14, LTK17, PS10b, PZM+10, PS11, Puf13, RHT13, SP10a, SIE10, SP17].

Reference
[Sch14, Sun18, UJR14, HMDE12].
Regression [MM12]. regular [PIR17]. reification [RRB17]. Reified [GS14].
Requirements [MSS19, AGGZ10]. ResAna [KvGS+14]. Research [SR17, TRE+13, CRJ+10, CBLFD12, EKUR10, Rub14, VBMPT16, Vit14].
RESOLVE [Sun18]. Resource [BVGV14a, WZK+19, YPMM12, ADI13, ES14, KvGS+14, KSR14, SGV12].
RMI [SS19]. Road [RXK+17, SWJ+15].
Robots [SWF12]. Robust [VM15, VDN17, MKZ+14, SGV12, VM10].
Runtime [BLH12, CMM+10, GSS+18, MAHK16, MSS10, NWB+15, OCFL14, XMA+14, BRGG12, EQT10, GSS+16, LMK16, MS10, OOK+10, PKC+13, RO12, STY+14, TWS10, VBAM10a, WLL19, YRHB13, dCMN12]. runtimes [BMI14, CSV15, RCR+14, WHH+17].
S [Gve13]. Safe [Eug13, GvRN+11, JTO12, Loc18, MPS12, RST+15, SWB+15, WAB+11, HJS+10, HAW13, KHR11, KMLS15, KCP+17, Loc13, RDP16, WWS13]. Safety [MCW19, RS12, SDH+17, WCB16, ZLCW14, AGR17, EKUR10, GMC+13, Nil12b, PG12, SD16b, Ta13, YS10, CWW13, HL13, LWC17, WK12]. Safety-Critical [MCW19, WCB16, ZLCW14, RS12, SDH+17, AGR17, CWW13, LWC17].
Salespoint [ZDS14]. Salt [Hol12]. SAM [BO13]. San [KP15]. Sane [MPS12].
[SMS+12, AT16, Hin13, Lew13, PTML11, Pos19, SMSB11, SMS+12]. **Scala-Based** [PTML+11]. Scala.js [DS16]. **Scalability** [CCH11, VP16, WZK+19, AAB+10, DSE13, BFS+18, GTSS+11]. **Scalable** [BBB+17, BS12, DFR13, GGRSY17, HC11, JQJ+16, RXK+17, RTE+13, XMA+14, ETTD12, FC11, GGRSY15, NFV15, PIR17, PLR18, RTET15, TTD12]. ScalaLab [PTML11, PMTL14]. *scalar* [PQTGS17].

Scale [BA17, PE11, CJ19, DSH15, LO15, MDS+17, MCY+10, PTF+15, WHN11].

SCEL [DLPT14]. scenarios [AMWW15, Sch13]. **Scheduler** [QSaS+16, IF16, TWL12]. scheduler-independent [IF16].

Scheduling [ASV+16, BVEAGVA10, KPHV11, EP14, EABVG14, ZW10]. scheme [XHH12, YKA+19]. **SCMIS** [PZ+10]. Science [HW11, VF10, SVG12]. sciences [NL14].

Scientific [Esl11, PTML11, TAF+18, WN10, FRGFL+12, PMTL14]. scientists [Bra14]. SCJ [MCW19]. SCJ-Circus [MCW19]. **SCORM** [HC10]. Scrap [ZCdSOvdS15]. **Script** [MSSK16].

Scripting [CSTG17, KKK+17, HBT12, KRR+14, PMTL14, Zha12]. SE [LYB14]. **Seamless** [OwKPM15]. **Search** [NBB18, SED14, WGC+18, DDDF17]. searching [ETR12]. **Second** [HD17].

secrets [Alt12]. section [DTLM14]. sections [NM10]. Secure [GMPFS12, GM12, ABFM12, LMS+12, TLM13, WA19].

securely [SFR+14]. securing [CDMR19].

Security [CDG+17, Gon11, HBS16, JWMC15, MCC17, PS10a, STA18].

Seemingly [Has12]. selection [WHN11].

Self [MPS12, hED12, AHK+11, AGH+17, CBLFD12, HWW+15, MD15]. self-collaborating [AHK+11].

self-composition [AGH+17]. self-hosted [CBLFD12]. self-optimizing [HWW+15, MD15]. **Self-stabilizing** [hED12]. **Semantic** [GGRSY17, RvB14, BNS12, GGRSY14, GGRSY15, MKK+12, MKK+13, OA17].

Semantics [BO12, BR15, Kri12, LKP19, LML17, SPY+16, AK13, FBH17, FZ17, KHL+17, Mil13, MT14, PSR15, PPS16, ZHC15].

Semantics-based [SPY+16].

Semantics-driven [LKP19]. semantics-preserving [AK13]. Semi [FM13, SEK+19, ABC18, MRMV12]. semi-automated [MRMV12].

Semi-automatic [FM13].

Semi-Autonomic [SEK+19].

semi-structured [ABC18].Sensitive [SGD15, HW13, KRR19, LMK16, STA18]. sensitivity [HB13, PLR18]. Sensor [AFGG11]. separability [WR1+10].

Separating [DDM11, AC10]. Separation [ZLP18, Pha18, TWSC10]. Sequence [NBB18, ZW+14].

Sequencing [YWW+18]. **Sequential** [FFF17]. sequential [BENS12, DMS11]. serialization.

Service [BVEAGVA10, SDM12, CSDK12, EABVG14, GD10, HWLM11, KF11]. service-oriented [EABVG14]. services [MZC10b]. session [KDPG18, FGR12]. Set [SBK13, Lon10a, Lon10b].** Set-based** [SBK13, Lon10a, Lon10b]. sets [SP10b].

setters [Mil13]. setting [BDGS15].

Settings [GM12]. Seven [ST15]. SGX [CDMR19]. Shadow [NNTK17].

ShadowVM [MKZ+14]. shalt [LCW18]. shape [GMT14]. **Shared** [BG17, BSMB16].

Shared-Memory [BG17, BSMB16].

sharing [PKO+15]. Sherlock [ADG19].

Short [AHK+11, Cha18, SV15a, Zak12]. Short-term [AHK+11]. shortcut [MLM19, CSG17]. Side [Bul18, HC11, OBPM17, D’H12, KRH16].

Side-Channel [Bul18]. SIGCSE [Wal12].
stochastic [CRAT+12]. stock
Stop [LWB+15]. stops [BNP+18].
Storage [Hol12, VD17]. Store
[BS12, Sta10]. stores [DFR13]. Story
[Ano14]. strategic [BMR+16]. strategy
[PDPM+16]. Stream [CWGA17, KBPS17,
MV16, BRWA14, SS+14, ZDK+19].
streaming [MRA+17, STCG13].
StreamJIT [BRW14]. StreamQRE
[MRA+17]. streams [SGG+17, UFM15].
Strength [KCD12]. String
[HOKO14, CSK17]. Strings
[HWM11, HWM10, LSSD14]. strong
[UMP10, ZHCB15, ZB17]. Structure
[ZLNP18, LO15, PLL+18, UMP10].
structured [ABC18, LSW16]. Structures
[GT10b, CDTM10, XMA+10]. studies
[EKUR10]. Studio [RT14, FH16].
Studio-Based [RT14]. Study
[BF18, KB11, OBPM17, RVT18, RLMM15,
WZK+19, ZMM+16, BRGG12, CCFB15,
CJ17, ECS15, JK11, KFBK+15, MHR+12,
NCS10, OMK+10, PTF+15, SSL18, SH12,
TFPB14, VBDPM16, WXR16, YW13].
studying [CJ19]. style [UFM15].
substitute [PPMH15]. substrate
[GTL+10]. subtypes [HL13]. Subtyping
[LN15]. Suite [MSS19, SMSB11, BB12].
Suites [GGZ+15]. Summaries [BH17].
Summarization [MM16, RLMM15].
Superblock [KS13]. Supercharged
[Cec11, GBS13]. Superposition [HD17].
supertype [RRB17]. supervenience
[Rez12]. Support [CGT17, KKK+17,
RKN+18, BVGVEA13, Cha18, DVL13,
GMC+13, Host12, NGB16, SMN+12].
supported [FMM+11]. Supporting
[LVG10, EKUR10]. Surgical [RSB+14].
surprises [FMBH15]. Survey [AGM+17,
OAC18, RVT18, BCvC+13, GD10].
SurveyMan [TB14]. surveys [TB14].
suspension [TWL12]. SV [CKS18].
SV-COMP [CKS18]. sweeping [KBL14].
Sweeten [DFHF15]. Swift [XYZ+12].
SWIM [Sch10a]. symbol [Tar11].
Symbolic [Bul18, NNTK17, PMTP12,
SWMV17, MMP+12, Rim12].
synchromesh [Gra15]. Synchronisation
[CHMY19, CHMY15, WBB+10].
synchronization [DHM+12, Gra15, Sub11].
Synchronized [BG17].
Synchronized-by-Default [BG17].
Synchronous
[BVEAGVA10, SK12, MvH15]. syntactic
[LE16, MKK+12, MKK+13, QLBS17].
Syntax [SS13, KMMV14, SSK13].
synthesis [SR14a, STR16, SS16].
synthesizable [ABCR10]. synthesizer
[OUY+13]. Synthesizing
[GK15, SRJ15, LW+10]. Synthetic
[PSJ18]. System [BO13, KCD12, MAHK16,
ACS+14, AYZ10, AG17, DB11, ELW15,
HA13, HDK+11, HWL11, KR12, MS10,
STY+14, TLL11, Nil12a]. systematic
[TD15]. Systems
[BG17, BSA14, BNE16, CCH11, DLPT14,
Fox17b, HTW14, JMB12, LM15, MRF18,
NFN+18, NWB+18, RTE+13, SLES15,
SLE+17, AT16, CJ19, DW10, FH16, Fox17a,
HdM17, HW+12, HTLC10, LPK14,
LT17, MHR+12, MAH12, MvH15, OIA+13,
PLL+18, PdMG12, PBB19, PDP+16,
RHT13, SDH+17, SMSGD10, SABB19,
SH12, TTD12, TWX+10, THC+14, UIY10,
VIt14, YRHL13, VK12].
Tableau [FFF17]. Tagged [RKN+18].
Tailoring [LZ12]. Take [Kie10]. Taking
[SWU+15]. Tales [Sew12]. talk
[Piz17, Sie17]. Taming [TLL11, SC16].
Tardis [BM14]. target [Cle16]. Task
[RRB19, Fee16, TWL12, ZLB+13].
TaskLocalRandom [PPMH15]. Tasks
[PWSG17, PWSG19, ST15, HAW13,
PPMH15, SPP+10]. Taurus [MAHK16].
Taxonomy [SS14]. Teaching
[HA13, SWF12, CHM13, ZDS14]. teasing
Type [YMHB19]. Trees [Ly12, HLO15, KMMV14, SSK13, YKA+19].

Trees [RBV16]. Trends [CC15, MSS10, SR17]. triex [SV17].

Tries [RBV16]. Trends [CC15, MSS10, SR17]. Trie [SV17].

Triggered [EABVGV14]. triggers [FG+19]. TRINI [PDPM+16].

Trusted [TZNH12, BCF+14]. Tuning [AAB+10, BVDGAEFG01, SKBL11].

Turf [CH17]. Turing [Gri17]. Tutorial [Jen12, Nil12b, PBM+19, Taf13, Zak12].

TV [JMO14]. Twitter [Guy14]. Two [Has12].

Type [BO13, CGJ+16, KSW+14, KATS12, Lei17, Loc18, RKN+18, SGD15, WT11, ACS+14, AT16, BS13, CMS+12, CVG+17, DLM10, FH16, GBS14, HyG12, KMLS15, KRR+14, KRH16, KrRHA14, KDEPG18, LPK+14, LE16, MHR+12, SV18, SH12, TLL+11, Zha12, eBH11]. Type-Based [SGD15]. Type-dependent [LE16].

Type-heterogeneous [SV18]. Type-Safe [Loc18, KMLS15].

Typechecking [KDPG18, CL17]. Typed [BO13, KKK+17, MHL15, CMS+12, KRC+14, Lei17, RDP+16].

Types [BO13, Rvb14, SPAK10, BDGS13, CHJ+12, DDM11, HH13, MMs+10, YDF15].

TypeScript [Cho14, FH16, RSF+15].

Typing [FZ17, RSF+15, SBC+17, SFR+15].

Typy [OA17].

Uncertain [McK16]. Unchangeable [RK19]. Understandable [SM+16].

Understanding [ABC18, FRM+15, MKTD17, NW+18, PCL14, QLSB17, Set13, TABS12, VBMDP16, LWB+15, Nil12b].

Undocumented [Alt12, MHR+12]. Unified [LM15]. uniform [AHI10, EUG13]. Unifying [Has12, MMK+12, MMK+13]. union [KT15].

Uppersortable [SGG+17]. uptrees [HB13].

User-defined [FMS+11]. User-guided [RKHN18].

Using [AS6MGM14, BS12, BSA14, BNE16, DLM10, HCN14, KFBK+15, KH18, MV16, MMS+16, NBB18, Pan+14, PQLD12, RC17, SDM12, SLE+17, UMP10, Wani11, WKG17, WCG+18, XMA+14, YCY+12, Zak18, BB17, DDDF17, Del13, FH16, FOPZ14, GBS14, IvdS16, KMLS15, KT14, KC12, LVC10, Lew13, LDP14, MT13, PIR17, PLR18, Pha18, RKHN18, RAS16, SAdB+16, SK13, SSH17, SHU16, SV19, VG14, WLL19, WBM+10, WRI+10, XRI13, ZLP18, vMvdM12].

UT [Hol12]. utility [CSV15, XMA+10]. utilization [BCR13].

Verifiable [FHSR12]. Verification [CHMY19, CKS18, KKW14, P15, RAS16, S12, SSB14b, CHMY15, DLM10, HCV17, PSL11, SM+18, S211, SJS10, SSH17, SSB01, dCMNN12].

verification-validation [HC17]. Verified [HM12, Loc18, JLP+14, WFF18].

VerifiedFT [WFF18]. Verifier [BDT10, Rey13]. verifiers [SPY+16]. Verifying
References

Acar:2018:PCM

Accioly:2018:USS

Auerbach:2010:LJC

Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric Rabbah. Lime: a Java-compatible and synthesizable language for heterogeneous architectures.

Avvenuti:2012:JTC

Abanades:2016:DAR

Ansaloni:2012:DAO

Danilo Ansaloni, Walter Binder, Philippe Moret, and Alex Villazón. Dynamic aspect-oriented programming in Java: The Hot-

[ACS+14] Wonsun Ahn, Jiho Choi, Thomas Shull, María J. Garzarán, and Josep Torrellas. Improving JavaScript performance by deconstructing the type system.

Allyson:2019:SOI

Almeida:2019:GPD

Austin:2012:MFD

Arnold:2011:AOJ

Aiello:2011:JBA

Sven Apel and Delesley Hutchins. A calculus for

Aigner:2011:STM

Aigner:2015:AJE

Andrysco:2016:PFP

Axelsen:2013:PTD

Altman:2012:USM

Andreasen:2014:DSA

REFERENCES

ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Ament:2013:ATG

Adamsen:2017:PIR

Ashrov:2015:UCB

Andersen:2014:PLJ

Anonymous:2012:AMJ

Anonymous:2013:FAM

Anonymous:2014:RKS

Anonymous:2015:BRL

Anonymous:2018:BRS

Arslan:2011:JPM

Austin:2017:MFD

Thomas H. Austin, Tommy Schmitz, and Cormac Flanagan. Multiple facets for dynamic information flow with exceptions. ACM Transactions on Programming Lan-
REFERENCES

Akram:2018:WRG

Afek:2012:ISJ

Alshara:2016:MLO
Zakarea Alshara, Abdelhak-Djamed Seriai, Chouki Tibermacine, Hinde Lilia Bouziane, Christophe Dony, and Anas Shatnawi. Migrating large object-oriented applications into component-based ones: instantiation and inheritance transforma-

Amin:2016:JST

Ali:2010:DJB

Alon:2018:GPB

Bradel:2012:ITJ

Brown:2017:NJP

Boland:2012:JCC

Bonetta:2017:FJF

Basin:2017:KKV

Bebenate:2010:STB

Bonetta:2013:TPE

Bu:2013:BAD

Bettini:2013:FDT

Bodin:2014:TMJ

Bergenti:2011:PPS

Bacon:2013:PRT

Bainomugisha:2013:SRP

Bettini:2013:CTB

Barbuti:2010:AIA

Bettini:2017:XTJ

Bala:2011:DTD

Burnim:2012:NIN

[BENS12] Jacob Burnim, Tayfun Elmas, George Necula, and
REFERENCES

Bruno:2018:SGC

Bruno:2018:DVM

Battig:2017:SDC

Berman:2017:EUS

Bedi:2013:MMT

Bodden:2010:AOR

REFERENCES

REFERENCES

10.1007/978-3-642-29709-0_6/

Bell:2014:PID

Bond:2013:OCC

Brooks:2016:CST

Bouffard:2015:UCF

Black:2018:NPJ

Bodden:2012:PEF

Barr:2014:TAT

Earl T. Barr and Mark Marron. Tardis: affordable time-travel debugging

Brown:2016:HBS

Borstler:2011:QEI

Baxter:2018:PAS

Burnim:2012:SCS

Bellia:2011:PJS

Bellia:2012:ERT

Bellia:2013:JST

REFERENCES

Bruno:2017:NPG

Barabash:2010:TGC

Bluemke:2012:DTJ

Bogdanas:2015:KJC

Bogdanas:2015:KJC

Brandt:2014:DAS

Bhattachary:2012:DLI

Brown:2012:BRF

REFERENCES

Daniele Bonetta, Luca Salucci, Stefan Marr, and Walter Binder. GEMs: shared-memory parallel programming for Node.js. ACM SIGPLAN Notices, 51(10):531-547, October 2016. CODEN SINODQ. ISSN
REFERENCES

[BVGVEA10]

[BVGVEA11a]

[BVGVEA11b]

[BW12]
Briggs:2017:COI

Carlisle:2011:WCB

Cao:2012:YYP

Chevalier-Boisvert:2012:BSH

Chaikalis:2015:FJS

Cosentino:2012:MDR

Ceccato:2015:LSE

Mariano Ceccato, Andrea Capiluppi, Paolo Falcarin,

Chen:2011:MJP

Chisnall:2017:CJS

Coppolino:2019:CAE

Ceccato:2010:MLD

Cecco:2011:SGJ

REFERENCES

Carter:2013:SSA

Chandra:2016:TIS

Carro:2013:MDA

Chadha:2018:JAS

Chugh:2012:DTJ

Chapman:2016:HSH

REFERENCES

Choi:2013:GGT

Curley:2010:RDT

Crone:2013:ITI

Chatterjee:2015:QIA

Curley:2012:RDT

Marco Cote, German Riano, Raha Akhavan-Tabatabaei, Juan Fernando Perez, Andres Sarmiento, and Julio Goez. jMarkov package: a stochastic modeling tool. *ACM SIGMETRICS Per-

REFERENCES

Choi:2017:SAS

Chawdhary:2017:PES

Chanda:2012:TBS

Chen:2016:CDD

Cameron:2015:JFE

Casale:2017:PEJ

Cazzola:2014:JBR

Chaudhuri:2017:FPT

Chan:2017:DSL

Cavalcanti:2013:SCJ

Caserta:2014:JTJ

Diaz:2013:LEU

Dannen:2017:IES

Dan17

[CWGA17]

[DAA13]

[CWGA17]

Deitcher:2011:SPJ

Dei11

DeRa:2013:BRJ

Del13

Dennis:2018:MFI

Den18

Disney:2015:SYJ

D'H12

Dey:2013:STA

DFR13

deGouw:2015:OJU

dGRdB+15

DHondt:2012:ISS

D'H12

DFHF15
REFERENCES

Dolby:2012:DCA

Dietrich:2015:GSE

DiPierro:2018:RJ

DiPierro:2018:TVG

Dietrich:2016:WJD

Dam:2010:PCI

deJong:2018:MJA

DeFrancesco:2010:UAI

DeNicola:2014:FAA

Dissegna:2014:TCA

Dissegna:2016:AIB

Demange:2013:PBB

deMol:2012:GTJ
Dyer:2014:DVE

Devietti:2012:RRC

Doeaene:2016:PIW

Bois:2013:BGV

Duarte:2011:ICS

Dietrich:2010:POD

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Elmas:2010:GRA

Erdweg:2014:FEL

Eichelberger:2014:FRM

Esquembre:2011:TPL

Endrullis:2012:WEM

Exposito:2015:LLJ

Exposito:2012:DSJ

Patrick Eugster. Safe uniform proxies for Java.

REFERENCES

[FHP+12] Shaun Forth, Paul Hovland, Eric Phipps, Jean Utke, and

Fontaine:2012:VCF

Flanagan:2013:PES

Fan:2018:VCJ

Feldthaus:2013:SAR

Asger Feldthaus and Anders Møller. Semi-automatic

Felgentreff:2015:CBC

Feldthaus:2011:TSR

Frantzeskou:2011:SUD

Fu:2014:FDC

Fox:2017:ESI

Fox:2017:EJT

[REFERENCES]

Fernandes:2017:AUM

Fdez-Riverola:2012:JAF

Fan:2015:UCC

Fournet:2013:FAC

Funes:2012:RMC

Feng:2015:ECD

REFERENCES

Golan-Gueta:2014:ASL

Golan-Gueta:2015:ASA

Golan-Gueta:2017:ASA

Gligoric:2015:GCB

Gosling:2013:JLS

Gosling:2014:JLS

REFERENCES

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Gidra:2015:NGC

Gidra:2011:ASG

Gunther:2014:ACC

Guo:2017:MIJ

Guyer:2014:UJT

Gvero:2013:BRC

Gampe:2011:SMB
Grigore:2016:ARG

Garbervetsky:2011:QDM

Hauswirth:2013:TJP

Hanenberg:2015:WDW

Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Hasbun:2012:UTP

Haverbeke:2011:EJM

Heumann:2013:TEM

Horstmann:2013:CJF

Hsiao:2014:UWC

Hammer:2017:VOV

Halder:2017:JSV

Hofmann:2011:EOS

Hanazumi:2017:FAI

hunEom:2012:SSJ

Yong hun Eoum and Brian Demsky. Self-stabilizing Java. ACM SIGPLAN Notices, 47(6):287–298, June 2012. CODEN SINODQ. ISSN 0362-1340 (print),

REFERENCES

Hunt:2012:JP

Hellyer:2010:LCW

Heidenreich:2010:GST

Hlopk:2014:ISJ

Haddad:2013:SIP

Hague:2015:DRC

Herczeg:2013:TFF

Zoltán Herczeg, Gábor Lóki, Tamás Szirbucz, and
REFERENCES

Horstmann:2012:JEC

Hosking:2012:CHL

Haas:2017:BWS

Higuera-Toledano:2010:ISI

Higuera-Toledano:2014:EIS

Hayashizaki:2012:IPT

REFERENCES

Huang:2011:SBA

Haubl:2010:CES

Haubl:2011:ECE

Haubl:2013:CST

Haubl:2014:TTE

Humer:2015:DSL

REFERENCES

[Hackett:2012:FPH]

[Hua:2019:EED]

[Iranmanesh:2016:SSE]

[Hiro:2012:AML]

[Hiro:2012:ISC]

[Islam:2012:HPR]
Insa:2018:AAJ

Inostroza:2016:MIM

Juneau:2012:JRP

Joseph:2010:PII

Jaffer:2013:EAR

Ji:2012:PKP

James:2010:FMC

REFERENCES

Jacek:2019:OCW

Jara:2012:NVJ

Jendrock:2012:JET

Jovic:2011:LLP

Jenista:2011:OSO

Jeon:2019:MLA

Jayaraman:2017:CVJ

Johari:2011:ESE

Jantz:2013:ESM

Jagannathan:2014:ARV

Jung:2012:EJA

Jung:2014:HCO

REFERENCES

1049-331X (print), 1557-7392 (electronic).

Kumari:2011:AOO

Kunjir:2017:TAM

Kim:2014:LBL

Kiselyov:2017:SFC

Kulkarni:2012:MCO

Krishnaveni:2012:HOJ

Kedia:2017:SFS

[Piyus Kedia, Manuel Costa, Matthew Parkinson, Kapil Vaswani, Dimitrios Vytiniotis, and Aaron Blankstein. Simple, fast, and safe man-
REFERENCES

Kouzapas:2018:TPM

Kereki:2015:JA

Kuehnhausen:2011:AJM

Kum:2012:WSB

Vivek Kumar, Daniel Framp- [KFBK+15]

ton, Stephen M. Black- [KFB+12]

burn, David Grove, and Olivier Tardieu. Workstealing without the bag- [KF11]

gage. *ACM SIGPLAN No-

Knoche:2018:UML

H. Knoche and W. Hassel- [KH18]

bring. Using microservices for legacy software modern- [KFBK+15]

ization. *IEEE Software*, 35

Channoh Kim, Jaehyeok Kim, Sungmin Kim, Dooyoung Kim, Namho Kim, Gita Na, Young H. Oh,
REFERENCES

Krieger:2011:AES

Kaiser:2014:WAM

Ko:2010:EAW

Karakoidas:2015:TSE

Kalibera:2014:FAS

Kulkarni:2016:APA

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Kolling:2010:GPE

Kroening:2015:CAV

Kalibera:2011:SRT

Khyzha:2012:AP

Kintis:2018:HEM

Kang:2012:FSJ

Krebs:2014:JJB

Kroshko:2015:OPN

Kouneli:2012:MKD

Korsholm:2014:RTJ

Kashyap:2014:TRS

Keil:2014:EDA

Alex Liu. JavaScript and the Netflix user interface. *ACM Queue: Tomorrow’s
Liv9a:2019:SDE

Leino:2015:APS

Leung:2013:PEJ

LM15

Lee:2016:ECP

LML17

Matthew C. Loring, Mark Marron, and Daan Leijen. Semantics of asynchronous JavaScript. *ACM SIG-
REFERENCES

REFERENCES

[Larrucea:2018:M] X. Larrucea, I. Santamaria,

Liu:2014:FFL

Lerner:2010:SDT

Lin:2015:SGU

Lee:2010:JSD

Li:2018:ATJ

Xuanzhe Liu, Meihua Yu, Yun Ma, Gang Huang, Hong Mei, and Yunxin Liu. i-Jacob: an internetware-oriented approach to optimizing computation-intensive mobile Web browsing. ACM Transactions on Internet Technology (TOIT), 18(2):14:1–14:??, March 2018. CODEN ????. ISSN 1533-5399 (print), 1557-6051 (electronic).

McIntosh:2012:EJB

Maas:2016:THL

Maas:2019:HAT

McIntryre:2012:FJB

Martinez:2017:MBA

McKinley:2016:PWU

Miyazawa:2019:SCS

McLane:2010:UIV

Marr:2015:TVP

Mytkowicz:2010:EAJ

Marr:2017:CLC

Martinez:2017:ARR

Phil McGachey, Antony L. Hosking, and J. Eliot B. Moss. Classifying Java

Mayer:2012:ESI

MHR+12

Miller:2013:TSG

Mil13

Malhotra:2017:PPS

Misra:2012:JSC

Misi:2013:JSC

Mazinanian:2017:UUL

Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. Understanding the use of lambda expressions in Java. *Proceedings of the ACM on Programming Languages*
REFERENCES

REFERENCES

REFERENCES

McIlroy:2010:HJR

Marinescu:2013:FSJ

Moller:2014:ADC

Marino:2016:DXU

Mitchell:2010:FTL

Marchetto:2019:CCR
A. Marchetto, G. Scanniello, and A. Susi. Com-
Mitropoulos:2016:HTY

Dimitris Mitropoulos, Konstantinos Stroggylos, Diodi
dis Spinellis, and Angelos D. Keromytis. How to
train your browser: Preventing XSS attacks us-
ing contextual script fingerprints. *ACM Transac-
tions on Privacy and Security (TOPS)*, 19(1):2:1–
2:??, August 2016. CODEN ????? ISSN 2471-2566
(print), 2471-2574 (electronic).

Malhotra:2013:DFT

Ruchika Malhotra and Divya Tiwari. Development of a
framework for test case prioritization using ge-
etic algorithm. *ACM SIGSOFT Software Engineer-
ing Notes*, 38(3):1–6, May 2013. CODEN SFENDP. ISSN
0163-5948 (print), 1943-5843 (electronic).

Murawski:2014:GSI

Andrzej S. Murawski and Nikos Tzevelekos. Game
semantics for interface middleweight Java. *ACM SIG-
PLAN Notices*, 49(1):517–528, January 2014. CODEN
SINODQ. ISSN 0362-1340 (print), 1523-2867
(print), 1558-1160 (electronic). POPL ’14 confer-
ce proceedings.

Madsen:2015:SAE

Magnus Madsen, Frank Tip, and Ondrej Lhotá
. Static analysis of event-driven Node.js JavaScript
applications. *ACM SIG-PLAN Notices*, 50(10):505–
519, October 2015. CODEN SINODQ. ISSN 0362-1340
(print), 1523-2867 (print), 1558-1160 (electronic).

Marz:2016:RPC

Stephen Marz and Brad Vander Zanden. Reducing
power consumption and latency in mobile devices us-
ing an event stream model. *ACM Transactions on Em-
bbeded Computing Systems*, 16(1):11:1–11:??, November
2016. CODEN ????? ISSN 1539-9087 (print), 1558-
3465 (electronic).

Mesbah:2012:CAB

Ali Mesbah, Arie van Deursen, and Stefan Lenselink
. Crawling Ajax-based Web applications through dy-
namic analysis of user interface state changes. *ACM Transac-
tions on the Web (TWEB)*, 6(1):3:1–3:??, March 2012. CO-
REFERENCES

DEN ???. ISSN 1559-1131 (print), 1559-114X (electronic).

Motika:2015:LWS

Mateos:2010:ANI

Mateos:2010:MJN

Nowicki:2018:MPI

Nasseri:2010:CMR

Nuzman:2013:JTC

Dorit Nuzman, Revital Eres, Sergei Dyshel, Marcel Zalmanovici, and Jose Castanos. JIT technology with C/C++: Feedback-
REFERENCES

Nguyen:2018:SCM

Nguyen:2018:SCM

Newton:2015:ALF

Newton:2015:ALF

Noll:2013:OFD

Noll:2013:OFD

Nunez:2016:PGC

Nunez:2016:PGC

Ngo:2012:BRE

REFERENCES

Nilsen:2012:RTJ

Nilsen:2012:TOU

Namjoshi:2010:NOP

Na:2016:JPC

Nolan:2014:XWT

Nakaike:2010:LER

REFERENCES

Noller:2017:SSE

Nikolic:2012:DEA

Nikolic:2013:RAP

Nicolay:2017:PAJ

Nguyen:2015:FCR

Nguyen:2018:UCM

Naik:2012:AT

Mayur Naik, Hongseok Yang, Ghila Castelnuovo, and Mooly Sagiv. Abstrac-

[OUY+13] Takeshi Ohkawa, Daichi Ue-

[Parnin:2013:AUJ] Chris Parnin, Christian Bird, and Emerson Murphy-

REFERENCES

References

Pawlak:2016:SLI

Papadimitriou:2014:MLS

Phan:2012:SQI

Porter:2018:PJE

Poslavsky:2019:REJ

Passerat-Palmbach:2015:TSS

Pichon-Pharabod:2016:CSR

Jean Pichon-Pharabod and Peter Sewell. A concurrency semantics for relaxed atomics that permits opti-

REFERENCES

[PTHH14] Tobias Pape, Arian Treffer, Robert Hirschfeld, and

[PVH14] Luís Pina, Luís Veiga, and Michael Hicks. Rubah:

Plumbridge:2013:BPR

Pan:2017:GCF

Pan:2019:GCF

Pizlo:2010:SFT

Qiu:2017:USR

Qian:2016:EFS

Junjie Qian, Witawas Sirisan, Sharad Seth, Hong Jiang, Du Li, and Pan Yi. Exploiting FIFO scheduler to improve paral-

[R+13]

[RB15]

[RBL12]

[RBV16]
Rathee:2017:ROO

Rosa:2017:APV

Robatmili:2014:MRL

Radoi:2015:ETS

Ramirez-Deantes:2012:MTA

Rhodes:2015:DDO

Reynders:2016:GSB
[RDP16] Bob Reynders, Dominique
REFERENCES

Reynolds:2013:MJB

Reza:2012:JS

Richard-Foy:2014:EHL

Radoi:2014:TIC

Roemer:2018:HCU

Richards:2011:ACJ

REFERENCES

[RK19] Mohammad Roohitavaf and Sandeep Kulkarni. Automatic addition of fault-tolerance in presence of unchangeable environment ac-
REFERENCES

133

Raghothaman:2018:UGP

Rodchenko:2018:TIE

Richards:2010:ADB

Rodeghero:2015:ETS

Rompf:2012:LMS

Ryu:2019:TAB

Rathje:2014:FMC

Rosa:2017:ARC

Rosa:2019:AOT

Ravn:2012:SCJ

Rompf:2014:SPJ

Rastogi:2015:SEG

Reichenbach:2012:PPD

Christoph Reichenbach, Yannis Smaragdakis, and Neil Immerman. PQL: a

Reardon:2014:SSB

Ramos:2013:DSJ

Rubin:2014:HCW

Rowe:2014:ST

Raychev:2015:PPP

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Raychev:2019:PPP

Ricci:2011:SAO

Ramos:2018:APS

Rudafshani:2017:LDD

Ramamohanarao:2017:SSM

Ryu:2016:JFB

Spadini:2019:MOT

[SABB19] Davide Spadini, Mauricio Aniche, Magiel Bruntink,

Serbanescu:2016:DPO

Samuelson:2012:LSO

Sartor:2010:ZRD

Smaragdakis:2013:SBP

References

Shahriyar:2014:FCG

Scherr:2016:AFC

Schmidt:2010:ERA

Schultz:2010:WAJ

Schmeisser:2013:MOE

Schildt:2014:JCRb

Sluanschi:2016:AAD

Sousa:2016:CHL

[SD16b] Marcelo Sousa and Isil Dillig. Cartesian Hoare logic

Sridharan:2012:CTP

Schoebler:2017:SCJ

Shah:2012:AMJ

Sartor:2012:EMT

Stolee:2014:SSS

Staples:2019:SAB

[SFR+14]

Seth:2013:UJV

[Set13]

Severance:2012:DJO

[Sev12a]

Severance:2012:JDL

[Sev12b]

Sewell:2012:TJ

[SGG+17]

Swamy:2014:GTE

[SGD15]

Sherman:2015:DTB

[SGD15]

Subercaze:2017:UPT

Simão:2012:CER

Stuchlik:2012:SVD

Steimann:2016:CRA

Siek:2017:CPT

Singer:2010:EGC

Smans:2010:AVJ

Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram Schulte. Automatic verification of Java

Shan:2012:OAC

Salkeld:2013:IDO

Singer:2011:GCA

Schoeberl:2011:HAL

Sondergaard:2017:CTD

Stilkerich:2017:PGU

REFERENCES

[Spoto:2010:TAJ] Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer for Java bytecode based on...

[Sewe:2012:NSI]

[Sewe:2011:CCS]

[SP10a]

[SP10b]

[Schoeberl:2010:NRT]

[Stork:2014:APB]
REFERENCES

REFERENCES

October 2014. CODEN SIN-ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Samak:2014:TDD

Sun:2017:AJP

Sawan:2018:RDC

Samak:2015:SR

Scanniello:2017:FFC

Sutherland:2010:CTC

[SSB+14a] Aibek Sarimbekov, Andreas Sewe, Walter Binder,

[Stark:2001:JJV]
REFERENCES

[SSH17]

Stark:2014:JJV

[SSB14b]

Su:2014:CEM

[SSG+14]

Srikanth:2017:CVU

[Srikanth:2017:CVU]

Singh:2013:TGC

[Singh:2013:TGC]

Saini:2018:CNC

REFERENCES

[Sun:2013:BJW] Sun:2013:BJW

Sun:2018:RAR

Subramaniam:2011:PCJ

Su:2014:RVP

Steindorfer:2015:CSM

Steindorfer:2015:OHA

REFERENCES

Szweda:2012:ANB

Sharma:2017:VCS

Simon:2015:STH

Servetto:2010:MMC

Siegel:2011:AFV

Tamayo:2012:UBD

REFERENCES

IEEE Computer Society
Press, 1109 Spring Street,
Suite 300, Silver Spring,
MD 20910, USA, May 2017.

Teodorovici:2012:BRC

Vasile G. Teodorovici. Book
review: Continuous testing
with Ruby, Rails and
JavaScript by Ben Rady
and Rod Coffin. ACM SIG-
SOFT Software Engineering
Notes, 37(1):36, January
2012. CODEN SFENDP.
ISSN 0163-5948 (print),
1943-5843 (electronic).

Teodorovici:2013:BRL

Vasile G. Teodorovici. Book
review: Learning JavaScript:
a hands-on guide to the
fundamentals of modern
JavaScript by Tim Wright.
ACM SIGSOFT Software
Engineering Notes, 38(3):
35–36, May 2013. CODEN
SFENDP. ISSN 0163-5948
(print), 1943-5843 (electronic).

Teyton:2014:SLM

Cédric Teyton, Jean-Rémy
Falleri, Marc Palyart, and
Xavier Blanc. A study
of library migrations in
Java. Journal of Software:
Evolution and Process, 26
(11):1030–1052, November
2014. CODEN ???? ISSN
2047-7473 (print), 2047-
7481 (electronic).

Tommasel:2017:SJL

Antonela Tommasel, Daniel Godoy, and Alejandro
Zunino. SMArtOp: a Java
library for distributing high-
dimensional sparse-matrix
arithmetic operations. Science of Computer Program-
ning, 150(??):26–30, De-
cember 15, 2017. CODEN
SCPGD4. ISSN 0167-6423
(print), 1872-7964 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0167642317301260.

Tu:2014:PPP

Chia-Heng Tu, Hui-Hsin
Hsu, Jen-Hao Chen, Chun-
Hao Chen, and Shih-Hao
Hung. Performance and
power profiling for em-
ulated Android systems.
ACM Transactions on De-
sign Automation of Elec-
tronic Systems, 19(2):10:1–
10:??, March 2014. CODEN
ATASFO. ISSN 1084-4309
(print), 1557-7309 (elec-
tronic).

Tran-Jørgensen:2018:ATV

Peter W. V. Tran-Jørgensen,
Peter Gorm Larsen, and
Gary T. Leavens. Auto-
mated translation of VDM
to JML-annotated Java. In-
ternational Journal on Soft-
ware Tools for Technol-
y {"y}gy Transfer (STTT), 20
CODEN ???? ISSN

Tsai:2015:JPI

Thiessen:2017:CTP

Tate:2011:TWJ

Tetali:2013:MSA

Tan:2017:EPP
Tian Tan, Yue Li, and Jingling Xue. Efficient and precise points-to analysis: modeling the heap by merging equivalent automata. *ACM SIGPLAN Notices*, 52(6):278–291, June 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Terra:2013:QCC

Thakur:2019:PFP
Manas Thakur and V. Krishna Nandivada. PYE: a framework for precise-yet-

Asumu Takikawa, T. Stephen Strickland, Christos Di-

Toledo:2011:ACJ

Taboada:2011:DLC

Taboada:2012:FMS

Tatsubori:2010:EJT

Tardieu:2012:WSS

REFERENCES

276, August 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPOPP ’12 conference proceedings.

REFERENCES

2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Santiago A. Vidal, Alexandre Bergel, Claudia Marcos, and J. Andrés Díaz-Pace. Understanding and addressing exhibitionism in Java empirical re-

Vidal:2018:ARB

vanderMerwe:2012:VAA

Viotti:2017:HRH

VanLoan:2010:ITC

Vega-Gisbert:2016:DIJ

Vikas:2014:MGA

Vikas, Nasser Giacaman, and Oliver Sinnen. Mul-

Varier:2017:TNJ

VanNieuwpoort:2010:SHL

Vechev:2010:PPC

Wijayarathna:2019:WJC

Wurthinger:2011:SAR

Walkerv2012:SNJ

Henry M. Walker. SIGCSE by the numbers: JavaScript. SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education), 44(1):8, January 2012. CODEN SIGSD3. ISSN 0097-8418 (print), 2331-3927 (electronic).

Wampler2011:FPJ

Wang2011:EEU

Wurthinger2011:AED

Wang2018:HSA

Welch2010:ABS

Wellings2016:ISC

A. J. Wellings, V. Cholpanov, and A. Burns. Implementing safety-critical Java missions in Ada. ACM
REFERENCES

Wood:2014:LLD

Wang:2018:PBJ

Wang:2019:DEJ

Wilco:2018:VH

Wagner:2011:SJV

Wagner:2011:CMM

REFERENCES

Wu:2011:RTS

Wimmer:2013:MAV

Wellings:2012:AEH

Wang:2017:JRJ

Wade:2017:AVJ

Wang:2019:TRC

REFERENCES

Wimmer:2010:AFD

Wendykier:2010:PCH

Witman:2010:TBR

Westbrook:2010:MJM

Wehr:2010:JBP

Wehr:2011:JIT

Wang:2018:IDG

REFERENCES

Wurthinger:2017:PPE

Wurthinger:2013:USD

Wei:2016:ESD

Wang:2017:CJ

Wang:2019:OTA

Wu:2018:EBJ

Xu:2019:EEG

Xu:2012:MDA

Xu:2014:SRB

Xuan:2017:NAR

Xu:2010:FLU

Xu:2010:DIU

Xu:2013:PML

Xue:2012:RJC

Xie:2013:AAE

Yang:2012:MPD

Yi:2015:CTC

LCCN ????

Zakour:2012:JTS

Zakai:2018:FPW

Zheng:2015:APP

Zhang:2017:ACE

Zhang:2015:SYB

Zeuch:2019:AES

Zschaler:2014:SJF

REFERENCES

174

Zuo:2016:LOF

[210x355] Zha12

Zhang:2015:LOS

[311x623] ZHL+12

Zacharopoulos:2017:EMM

Zheng:2016:CMD

Referenced works:

Zhao:2013:INT

Zhang:2014:AIO

Zeyda:2014:CMS

Zabolotnyi:2015:JCG

Zheng:2018:ADS

Zhang:2014:ARP

Zhou:2016:IRO

Minghui Zhou, Audris Mockus, Xiujuan Ma, Lu Zhang.

Zhang:2014:HTB

Zakka:2014:JJM

Zibin:2010:OIG

Zerzelidis:2010:FFS

Zhu:2013:EAZ

Zhu:2015:APL

Zhao:2014:CSP

Zhang:2016:NVC

Zhou:2019:AJM

Zhang:2012:SRB

Zhang:2013:IMF