Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

3 [GBC12, JEC+12, ZXL16]. C_p [AÖ11]. k [SD16b]. Z_p [AÖ11].

-safety [SD16b].

/multi [Taf13]. /multi-threaded [Taf13].

'12 [Hol12].
Architectures
[KKK+17, ABCR10, Hos12, MS10, ZP14], arena [TRE+13], Arquillier [Ame13].
array [SV15b], arrays [SBF+10], arrows [FZ17], art [Lew13]. ASM [AGR17].
Aspect
[ABMV12, VBAM10b, VBMA11, WBA].
Aspect-Oriented
[ABMV12, VBAM10b, WBA]. AspectJ [AC10]. aspects [LVG10]. Assertion
[MM12]. Assertion-Based [MM12].
Assertional [LL15]. assertions [VYY10].
Assessing
[GTSS11, JACS10]. assignment [KT15]. AST [DRN14, HWW+15, ZLB14].
asymmetric [CBGM12]. asymptotic [ODL15]. Asynchronous
[KW11, SK12, WK12, FZ17, KW10].
atomic [WAB+11]. Atomicity
[GGRSY17, JLP+14, BHSB14, BNS12, GGRSY15, UMP10]. atomics [PPS16].
Attack [BH12]. Attacks [MSK16].
annotation [DDA13]. authentication
[XHH12]. authorship [FMS+11]. auto
[SKBL11]. auto-tuning [SKBL11].
automata [ZWZ+14]. Automated
[BH17, BSOG12, BMOG12, MS14, RGEV11, SD12, AsdMGM14, MRMV12].
Automatic [GGRSY14, GGRSY15, GGRSY17, KW11, PQD12, SZ11, SD16a, SJPS10, WM10, ABK+16, FM13, PG12].
automatically [TB14]. Autonomic
[DLPT14]. Autonomous [GMPS12].
average [LDL14]. avoid [XR10]. avoids
[PPS16]. Aware [JYKS12, BBX13, EQT10, SSB+14a, SGV12]. awareness
[VGS14]. axiomatic [TVD10].

B [DLZ+13]. back [Car11]. Backstage
[PS11]. Bad [dGRdB+15]. baggage
[KFB+12]. balances [FMHB15]. balancing
[PDPM+16]. Ball [DD13]. barrier
[CHMY15, VB14a]. barriers
[HHJH10, WBM+10]. Based
[AFGG11, DLR16, GM12, GGZ+15, LTD+12, MvDL12, MM12, PTML11, PiLCH11, PE11, RBL12, RT14, SGD15, SLS+12, SWF12, AYZI10, AST+16, ADI13, BBF+10, BBP13, CJ17, CPST14, CPST15, GMC+13, HWM14, HW1+12, HOKO14, HWLM11, HWIN12, IRJ+12, JEC+12, JMO14, KATS12, KS13, KRC14, KvrHA14, KS14, MR12, MCY+10, PDP+16, PSW11, SZ11, SBK13, SMP10, SNS+14, UIY10, VSG17, XHH12, YP10, ZYZ+12]. basic [CZ14]. basic-block
[CZ14]. basics [Zak12]. basierte [Ric14]. battlefield [WT10]. Bayesian [BSA14].
BeagleBone [Ric14]. before [TD15].
begone [MRM12]. behavior
[LWB+15, RLBV10, TABS12, WXR16].
Behavioral [LN15, AMWW15]. behaviors
[PCL14]. behaviour [SMS+12]. Beliefs
[BA17]. Benchmark [GBC12, SMSB11].
benchmarking [AHK+15]. benchmarks
[KHM+11, RGEV11]. benefit [HH13]. best
[Sch13]. Better [Bro12, TD15]. Between
[PVB17, ZLHD15, CM17, RDP16, SH12].
Big [GTS+15, NWB+15, RVK15, BBX13, SSG+14, WR10]. billions [DRN14].
bindings [VGRS16]. bird [Guy14].
Birthmark [PiLCH11]. Blame
[KT15]. Bloat [MSS10, XMA+14, BRGG12, BBX13, XR10]. bloat-aware [BBX13].
block [CZ14, KBL14]. block-level [KBL14].
blocking [DW10]. Blockly [AMWW15].
Blueshell [PAW13]. boilerplate
[ZCdSOvdS15]. Book [Bro12]. Boosting
[ASV+16, AC16]. Bootstrapping
[CBLFD12]. Bottle [DSEE13]. bottlenecks
[DSEE13]. bottom [ZMNY14]. bottom-up
[ZMNY14]. boundary [RDP16]. Bounded
[NWB+15, GMD14]. Bounds
[SW12, GvRN+11]. boxes [BDGS13].
breaking [VB14a]. Breakpoint [ZW13].
breakpoints [PS12]. Bridging [PVB17].
Bringing [CV14, STS+13]. Broken
[dGRdB+15]. Browser [MSSK16, PVB17, FIF+15, VB14a, WGW+11, YK14].
Browsers [HSK13]. Browsix [PVB17].
comparisons [ADI13, BJBK12, HH13, KvRHA14, SMS+12]. Comparisons [GGZ+15].
Comparison [ADI13, BJBK12, HH13, KvRHA14, SMS+12]. Comparisons [GGZ+15].
Compartmental [WGW+11]. compatibility [DJB16, OIA+13], compatible [ABCR10, Hor12].
Compilation [DLR16, CMS+12, DLR14, FSC+13, IHWN12, JLP+14, JK13, JMO14, KS13, KHL+13, MD15, MGI17, ZBB15].
compiled [NED+13, RO12]. Compiler [JMB12, NKH16, NWB+15, BBF+10, BRWA14, CIAD13, HWM14, IHWN12, KMLS15, KS14, KC12, LSWM16, Rub14, TTS+10, TWSCL10, VB14b, ZYY+12].
compiler-compiler [KS14].
compiler-runtime [TWSC10]. compilers [Hos12, LMK16, RSB+14]. Compiling [Fee16, Hos12].
complementation [BS13]. Complete [BO13, BR15, JC10, Sch14, PSR15, RGM13].
completing [BS13]. completion [FH16]. Compliance [GD12]. compliant [MZC10a].
component [AST+16]. component-based [AST+16]. components [FOPZ14, KS14].
Composable [SS10]. Composing [EABVGV14]. Composition [SK12, AH10, SZ10, VM15].
Computer [HWM11, DNB+12, KP15]. Computing [Hol12, TWHN12, WN10, LZYP16, Rub14, TTD+11, VF10, TRE+13], con [SMSB11].
Conformance [AGR12]. Confused [BH12]. conquer [SBF+10]. conservative [SBM14].
consistency [DNB+12, FRM+15]. consistent [BCR13]. constrained [KSR14].
corpus [HCN14]. correct [AdCGGH16, AJL16, DJLP10]. Correctness [LL15, BENS12, Cho14].
cross [AMWW15, BKCC+13, GSS+16]. cross-cutting [AMWW15]. cross-language [GSS+16]. cross-thread [BKCC+13].
Crowdsourcing [BH17]. Cryptography [GPT12]. CSS
Curve [GPT12], customizations [LVG10], customized [HB13], cutting [AMWW15], Cyclic [BMOG12], RS12).

D [GBC12, JEC+12, ZXL16], DAA [DR10]. Data [Bra14, BMOG12, BA17, GM12, GTS+15, GT10, NKH16, NWB+15, dMRH12, BK14, BXXC13, BJBK12, CRP+10, DFR13, DHH+12, FOPZ14, LDL14, NL14, SAdB+16, SSQ+14, UMP10, WCG14, XXZ13, XMA+10], data-centric [DHH+12, FOPZ14], Data-Parallel [BKH16, CRP+10], database [Dei10, TABS12], databases [MLGA11]. Dataflow [BR12], Datalog [ZMG+14]. Days [Sev12b], DBT [KS13], deadlock [CHMY15, SR14a, SR14b], Dean [Bro12], debugging [ASdMG14, BM14, KS14, TB14]. Deciding [SGD15], Declarative [DRN14, RSI12, FOPZ14, MME+10], deconstructing [ACS+14], decoupled [LPA13], deduplication [HOK04], default [SNS+14], defined [FMS+11]. Definite [NS12], Definition [SSB14b, AK13, SSB01], Definitive [Oak14], delegation [GBS13], DelphJ [GBS13], demand [FWDL15, ZHL+12], demand-driven [FWDL15]. Deoptimization [KRCH14], dependence [JWMC15], dependences [BKC+13], dependencies [ELW15], Dependent [CHJ12, LE16], deploying [R+13], depth [Rau14]. Design [AC16, ETTF12, MLGA11, PuI3, RTE+13, SW12, TRTD11, TKL+15, VGRS16, YCYC12, BXXC13, CslD16, GSD+15, IRJ+12, SAdB+16, SMSB11, VM10, Xue12], Designing [Sev12b, KHR11], Desktop [GBS1], destructive [FF10], Detecting [BK12, HLO15, PLCH11, XR10, FF10]. Detection [BSOG12, KCD12, MS14, RD15, XMA+14, CSK17, LMK16, LS11, OD15, PG12, RDF15, RW17, SR14a, SR14b, SS14, WCG14, XXZ13, XR13], detectors [LWH+10], Determinant [AM14], deterministic [DNB+12], developer [EV13, Top11, ZKK13]. Developers [Bro12, BM14, DJB16, HH13, Wam11], developing [R+13], Development [ABK+16, AYZI10, AGR17, FOPZ1F+12, PSW11, SH12, WBA+11, ZDS14], Device [TTD+11, XHH12] Devices [GPT12, QJ+16, MV16, ETR+15, Xue12], DFC [BR12], diagnosis [RW17], DiAl [STCG13], difference [PS11], differential [CSS+16], Differentiation [FHP+12, PQD12, SD16a], digital [JMO14], directed [CSS+16, EP14, NG13, NED+13, WM10], directives [VGS14], Discovering [Sev12a], discrete [DDD17], Disease [PE11], Dissimilar [Has12], Distance [ZW13], distributable [CRAJ10], Distributed [BVEAG10, LTD+12, LM15, MAHK16, PE11, BVGVEA10, BVGVEA11b, BVGV14b, CRAJ10, EABVGV14, STCG13], divide [SBF+10], Do [HH13, Han15], Does [BRGG12, Rub14], DOJ [hEYJD12], Domain [KSPK12, CslD16, EEE+13, HWW+15], domain-specific [CslD16, EEE+13, HWW+15], dominance [CPST14], Doppio [VB14a], DoubleChecker [BHSB14], down [Ker15, ZMY14], drf [MSM+16], DRFX [MSM+10, SMN+12], Driven [CCA+12, CHM13, FWDL15, MTL15, SR14b], DSL [KARO12], DSLs [KHR11, RO12, SC16], DSU [PVH14], Dual [AD16], Dual-Pivot [AD16], Dynamic [ABMV12, ASF17, CHMY15, MvDL12, PTHH14, RDF15, XMA+14, ZKB+16, AF12, BDB11, BK14, BCD13, CSV15, CPST15, ELW15, GYB+11, HB13, KRCH14, KRR+14, KT14, LWH+10, LVG10, MKZ+14, Nil2b, NG12, NED+13, RLBV10, RCR+14, SR14b, SSS+11, TCI12, WCG14, XXZ13, XR13], detect...
SJPS10, SH12, TPG15, VBAM10b, WXR16, WBA⁺11, WAB⁺11, WWS13, ZBB15.

dynamic-memory [GYB⁺11].
dynamically [CZ14, CMS⁺12, hEYJD12].
Dynamic [BDB11].
e-Science [SGV12].
ease [DRN14].
economic [CSV15].
economics [SJBL10].
edition [LYBB14].
editor [EKR⁺12].
editorials [Fox17, HTW14, RHT13].
EDSLs [RDP16].
educator [BA17].
EE [Jen12].
eect [CCFB15].
eective [BMR14, PTML11, RD15, CSdL16].
eectively [UR15].
effects [FH16, HAW13].
eficient [DVL13, GPT12, HWM11, HB13, KT14, KW10, OOK⁺10, RSB⁺15, RFBJ14, SMN⁺12, AK13, BHSB14, CRP⁺10, ETR12, HWM10, KKW11, MSM⁺10, SVG12, SWB⁺15, SV15a, TRTD11, UMP10, VVJB10, XXZ13].
eficiently [BKC⁺13, FOPZ14].
einsatzszenarien [Sch13].
einsteiger [Ric14].
elektronik [Ric14].
elektronik-projekte [Ric14].
elephant [RGM13].
elmination [GvRN⁺11].
elision [NM10].
Elliptic [GPT12].
elloquent [Hav11].
eloaded [Fox17, HTW14, JMB12, KAR012, Pau14, SLES15, SLE⁺17, TKL⁺15, VK12, Dei10, GMC⁺13, HTLC10, KHR11, LMK16, OIA⁺13, RHT13, SC16, SFR⁺14, UIY10, Xue12, ZYZ⁺12].
embedding [KMLS15, SC16].
Empirical [SS13, WXR16, BJGBK12, FHI6, HH13, MHR⁺12, NCS10, SH12, VBDPM16, VBMDP16].
emulated [THC⁺14].
emulator [KS13].
enabled [GPT12, DR10, ETR⁺15, RBL12, SVG12].
encapsulation [DM11].
End [GM12, DAA13].
End-to-End [GM12].
ed-user [DA13].
energy [PCL14].
enforcement [IF16].
enforcing [JWM15].
engine [MG17, OUY⁺13, Tar11].
Engineering [CCA⁺12, VF10].
engineers [BRA14].
engine [KH16, SSG⁺14].
enhanced [LMK16, WBA⁺11].
Enhancing [BDT10, BGVGEA13, DcSG12, HC10].
Ensuring [HDK⁺11].
Enterprise [Ano14, AAB⁺10].
entities [ETR12].
Entry [BK12].
environments [Köl10, PTML11, EKR⁺12].
Evaluating [BL12, MDHS10].
Evaluation [GBC12, JMB12, OCFLI14, TTS⁺10, Wan11, CSK17, MD15].
Evaluator [JB12].
Event [KW11, MV16, BBP13, KW10, TTL15, WK12, YP10].
event-based [BBP13, YP10].
event-driven [MLI15].
EventBreak [PSN14].
ever [Gra15].
everyone [Hor12].
Evolution [GMP12, Mei14, MAH12, NCS10, WBA⁺11, WAB⁺11, WWS13].
evolving [ZZK13].
Exact [ZW13].
Examples [BN11].
Exception [LTH14, ECS15, HWM14, LT11].
Exceptionization [YKM17].
Exceptions [ASM17, AdCGGH16, HtM17, SMN⁺12].
Execution [OwKPM15, JLL17, JhEd11, LLI3, SPPH10].
executions [ASdMGM14, PSP16].
executives [RS12].
Exemplar [ZW13].
Exhaustive [DHS15].
exhibitionism [VBM16].
Experience [ABM12, OW16, Sch10a, CBLFD12, TRE⁺13, WT10].
Experiment [HWLM11].
Exploitation [SSMD10].
Exploiting [NKH16].
exploration [FWDL15].
explorative [AHK⁺15].
exploratory [ECS15].
EXPLORER [FWDL15].
Exploring [JK13, JWM15, SE12].
exposed [VBM16].
Express [JQJ⁺16].
Expression [NS12].
expressions [GK15].
expressive [VYY10].
Extended [DDDF17, FGR12, FLL⁺13, JC10, LMK16, PDPM⁺16].
extensible [ER14, KMLS15, MHBO13].
Extension [RSi12, LE16, MLGA11].
extensions [Zha12]. Extensive [Wan11].
Extracting [CCA+12, KM10]. Extremal [LTD+12]. eye [Guy14].

F [GMT14, TTD12]. F-bounded [GMT14].
F-TPJ [TTD12]. FAA [Sch10a].
FACADE [NWB+15]. face [XHH12]. Facets [ASF17, AF12].
Floating [Jaf13, AJL16]. Floating-Point [Jaf13, AJL16]. Flow [ASF17, FHSR12, LMK16, SS12, AdCGGH16, AF12, ABFM12, BK14, FWDL15, HBS16, KHL+13, LSWM16].
Flow-sensitive [LMK16]. FlumeJava [CRP+10]. fly [UJR14]. folding [CPST14].
Fundamentals [HC13]. Fusing [MS13, ETR12, WM10]. fuzzer [Guo17].

Game [MT14, Wan11]. Gap [PVB17, ZLHD15]. Garbage [ASV+16, BHI2, GTS+15, Sch13, SKBL11, AGGZ10, BCR13, BP10, BGVVL4b, GTSSL11, KPHV11, KBL14, PZM+10, PDP+16, Puf13, SP10a, SBM14, Sie10, SB10, UIY10, UJR14].
Generating [HJS+10, RDP16, GRF11, KS14, MHBO13].
Generation [BH17, CRJ+10, PPMH15, PSNS14, RO12, UMP10]. generators [SLF14].
generic [DDM11, Fer13, HH13, ZPL+10, eBH11].
Information-flow [HBS16]. infrastructure [NG12]. Inheritance [LN15, WT11, AST+16, GBS13, NCS10].
Initial [LTD+12]. initialization [MME14].
Initiation [FGR12]. Injecting [ZZK13].
inline [DJLP10]. Inlining [BA12, HWM13]. insecure [YW13]. Insight [VF10].
Integrated [Tar11, YP10]. integrating [SPP+10]. integration [Ame13, HKVG14, Sch10a]. integrity [HDK+11]. intelligence [JACS10].
Interception-Based [DLR16]. Interpreters [D’H12, KMMV14].
interpretation [YDF15]. International [Hol12, KP15]. interoperability [GSS+16].
Interpretation-Based [DLR16]. interpreter [D’H12, KMMV14].
Interpreters [HWW+15, IvdS16, MD15, ZLBF14].
Investigation [SS13, FH16]. invocation [SPAK10, BVGV14AFG11]. invocations [BVGV14a]. invokedynamic [OCFL14].
Involvement [ZMM+16]. IP [TKL+15].
JVM [AC16, AFG+11, CSS+16, Guy14, MS10, PVH14, R+13, SV15b, Sub11]. JVMs
[BK14, ZYZ+12].

K-Java [BR15], kernel [HDK+11], key [DFR13, JB12], key-value [DFR13].

keynote [McK16], KJS [PSR15], knot [LBF12], know [DJB16, Gra15, Han15].

Knowledge [KSPK12, UMP10], known [Han15]. Krak[No14].

Lake [Hol12], lambdas [UFM15].

Language [DLPT14, GJS+13, GJS+14, JC10, KSPK12, MAHK16, Sev12b, SS13, ABCR10, CMM17, CSdl16, DAA13, EKR+12, Fee16, GSS+16, Hos12, HWW+15, KRCH14, LWH+10, LE16, SC16, SZ10, SNS+14, VB14a, WCG14, ZWS15, dCMMN12], language-level [WCG14].

Languages [MSM+16, PTHH14, YKM17, AGGZ10, BCD13, CMS+12, EKR+13, ER14, FMBH15, Han15, HBT12, HJS+10, KRR+14, MSM+10, NED+13, Zha12].

LARD [WCG14]. Large [BA17, AST+16, CCFB15, MCY+10, PTF+15, WHIN11]. Large-Scale [BA17, MCY+10, PTF+15, WHIN11].

leak [SS14, XR13]. Leaks [And14, RW17].

LeakSpot [RW17]. lean [BRGG12, SV15b].

Less [BNE16]. Level [AC16, SWU+15, Hos12, IHWN12, KBL14, LWC17, MG17, RFBJ14, TTD+11, VJVW10, WCG14].

Lexical [GN16]. Libraries [BK12, RDCP12, Cho14, EKR+12, PMLT14, TTD+11].

localize [ZZK13]. location [NCS10]. Locators [SDM12]. Lock [FC11, NM10, NFV15, UMP10]. Lock-free [FC11, NFV15]. Locking [GGRSY17, JTO12, GGRSY14, GGRSY15].

locks [SPS17]. logging [CJ17]. logic [GMS12, SD16b]. loop [DD13, HWI+12].

ZHCB15, BCR13, XMA+10]. Low-Budget [GM12]. Low-latency [ETR+15].

Low-level [WCG14]. Low-overhead [ZHCB15]. low-utility [XMA+10]. lunch [DTLM14].

m [MZC10b]. m-JGRIM [MZC10b]. M2M [Pau14]. Machine [LYBB14, AmE13, CBLFD12, KS13, KC12, SMGD10, WGF11, WHV+13, BZD17, LBYB13a, LBYB13b, PTHH14, SSB+14a, Sch13, Set13, SMSB11, SV12, SSB01, SSB14b, UR15]. Machines [AGR12, GTS+15, JK13, KRCH14, NK10].

Managed-Language [MAHK16]. Management [Pau14, AHK+15, BVGV14a, HB13, Nil12b, PCL14, SWB+15, Tar11, WGW+11].

manipulating [YS10]. Manipulation [MS14]. many [GTS11]. mapped [SV15b].

Mapping [LTD+12, UR15], MapReduce [LZYP16, RFRS14, SKBL11]. maps [NFV15]. mashup [ETR12]. masses
[KKW14, SR14a, BNS12, DJLP10, Fer13].
Multithreading [CCH11]. multivariate
[AÖ11]. MuscalietJS [RCR14].
Mutagenic [YCYC12], mutators
[AHK+11].

Native
[JQJ+16, LT11, LT14, KFBK+15, STS+13].
Natural [LL15]. naturalness [HBB+16].
NDetermin [BENS12]. nested [ZLB+13].
Netflix [Lin14]. network [RR14].
Networking [Hol12]. Networks
[AFGG11, ETR+15]. neuromorphic
[HNTL12]. next [CRJ+10]. No
[BVGVEA10]. No-Heap [BVGVEA10].
NoCs [PWA13]. Node [HC11, BJJK12].
Node.js [MTL15, Ano14]. nodes [DRN14].
Nominal [BO13]. Non
[BVGVEA11b, BSOG12, GGZ+15, YKM17,
MZC10a, OMK+10, ZP14]. Non-Adequate
[GGZ+15]. non-cache-coherent [ZP14].
Non-functional [BVGVEA11b].
non-intrusively [MZC10a]. Non-Java
[YKM17, OMK+10]. Non-termination
[BSOG12]. Nonblocking [RTET15, SP10a].
Nondeterministic [RB15, BENS12].
noninterference [IF16]. NoSQL [DFR13].
Notation [Sev12a]. Novel [NK10, MZC10b].
November [Hol12]. Novice [BA17].
Novices [RT14]. NullPointerExceptions
[BSOG12]. NUMA [GTS+15]. NumaGiC
[GTS+15]. number [PPMH15, SLF14].
Numbers [Jaf13, AJL16, Wal12].
Numerical [KS15, KFBK+15, PQTGS17].
NXT [SWF12].

Obfuscated [KCD12]. obfuscation
[CCFB15]. obfuscations [CSK17]. Object
[GS11, NWB+15], PTHH14, PiLCH11,
Sev12a, SW12, AST+16, BZD17, DDDF17,
FMBH15, IvdS16, MME14, MHBO13,
RDF15, UJR14, VM10, WM10,
ZCdSOvdS15, Zha12, ZDS14, hEYJD12].
Object-Bounded [NWB+15].

object-constraint [FMBH15].
Object-Oriented
[GS11, PTHH14, AST+16, DDDF17,
MHBO13, VM10, ZDS14, hEYJD12].
Objective [Sta10]. Objective-C [Sta10].
Objects
[BS12, MLH15, SK13, WX16, BVGVEA10].
Observations [AAD+10]. OCTET
[BKC+13]. odoToJava [KS15]. offloading
[ZHL+12]. on-demand [ZHL+12].
on-the-fly [UJR14], ones [AST+16].
Online [NG13, NK10]. only [NM10].
Ontology [KSPK12]. OoOJava [JhED11].
Open [BSA14, GD12, CJI7, VGRS16].
Open-Source [BSA14]. OpenJDK
dGRdB+15]. OpenMP [VGS14].
OpenMP-like [VGS14]. operating
[HDK+11]. operation [KKW11].
operations [TABS12]. Operator [PQD12].
opportunities [TPG15]. Optimal
[AD16, SK12, ELW15]. optimale [Sch13].
optimisation [PPS16], optimistic
[WGF11]. Optimization
[LTD+12, YKM17, AFG+11, BDB11,
DDDF17, JMO14, KS13, KC12, NG12].
Optimizations
[DR10, CPST15, NG13, SAoB+16].
Optimizing [SV15b, YRHBL13, HW+15,
KRH16, MD15, ZLBF14]. optional
[CMS+12]. Oracle [LMS+12, Sam12]. ORB
[OUY+13]. Order
[SGD15, JhED11, KT15, TD15]. ordering
[KC12]. Orders [BNE16]. ordinary
[MZC10a]. O’Reilly [Bro12]. Oriented
[ABMV12, GS11, AST+16, DDDF17,
EABVGV14, MHBO13, PTHH14, RV11,
VM10, VBAM10b, WBA+11, ZDS14,
hEYJD12]. OScK [HDK+11]. OSGi
[BVGVEA13]. OSS [ZMM+16]. other
[KS13]. out-of-order [JhED11]. output
[KM10]. Over-exposed [VDPM16].
overhead [BCR13, ZHC815]. Overloading
[PQD12], overview [Nil12b]. own
[MPM+15]. Ownership
PaaS [ZLHD15]. Package
[SLS+12, CRAT+12, MB12, OW16, AK13]. Packages [PiLCH11]. Paper
[DDDF17, PDPM+16, SV15a]. Papers [DVL13, HL13, LMK16, Puf13]. Parallel
[BMDK15]. Processing
[LLL13, WN10, SBK13, SSG+14, UJR14].
Processor
[TKL+15, Puf13, SPPH10, SMN+12].
Processors [ASV+16, MKG+17].
producers [DAA13]. product
[BTR+13, KATS12, KvRHA14].
product-based [KvRHA14]. production
[RGM13]. professionals [JACS10]. profile
[VSG17]. profiler [DTLM14]. profilers
[MDHS10]. profiling
[DD13, JH11, KRH16, NK10, SSB+14a,
STY+14, THC+14, XRI13, ZBB15].
Program [KKW14, RVK15, RT14, ZKB+16,
AÖ11, GMS12, HCN14, JLL17, JMC15,
KM10, MKZ+14, NS13, Sch10a, TABS12,
WGFL11, ZMG+14]. programmable
[AYZH10]. Programmers
[Esq11, Rau14].
Programming [AFGG11, ABMV12,
BCRY11, Bro12, BA17, DLPT14, HWM11,
HGCA11, Köl10, KSPK12, LM15, MKC16,
PTML11, RSI12, RB15, SS13, Sub11, Alt12,
AMWW15, BCvC+13, BMR14, BRWA14,
ECC12, EV13, FMBH15, Han15, HA13,
Hav11, Lew13, MSN+10, OW16, PTF+15,
RVP11, RFBJ14, SNS+14, TB14, UMF15,
VWJB10, VBAM10b, Wam11, WIR+10,
WBA+11, ZWS15].
Programs
[AGRI12, BH17, BR12, BMOG12, GS11,
JB12, LRD+12, SS12, SMD12, ZLCW14,
ASdMGM14, AdCGGH16, BA12, BNS12,
DJP10, ECS15, ES14, EP14, Fer13, HL13,
IN12, LO15, LPA13, MRMV12, NG12, OJ12,
PL12, RR14, RLBV10, SMS+12, SZ11,
SJS10, Taf13, YS10, dCMMN12, hEYJD12].
progress [ZHC15]. Project [Wan11].
Projects [ZMM+16, CJ17]. Projekte
[Ric14]. Prolog [CML17, Tur11]. Proof
[LL15]. Proofs [BMOG12]. propagation
[IvdS16, PQTGS17]. Properties [BO11,
RVK15, SS12, FWDL15, SD16b, YS10].
Protecting [MPS12]. Protein [YHY13].
Protocol [GM12, FGR12]. prototyping
[PWA13]. Provably [AdCGGH16, DJLP10].
providing [OW16]. proving [Taf13].
Proxys [VM10, Eug13, KT14]. PSE [KS15].
pseudorandom [PPMH15, SLF14]. Purely
[RSI12, NVF15]. Purely-Declarative
[RSI12]. purely-functional [NFV15].
purity [HMDE12]. Python [Ric14].
Quality [BNP11, CCFB15]. Quantitative
[CPV15, GYB+11]. queries [GK15]. query
[FWDL15]. queries- [FWDL15]. questions
[KM10]. Quicksort [AD16].
R [KMMV14, NL14, SLS+12, Vit14]. Race
[EP14, RD15, EQT10, HBB+14].

race-aware [EQT10]. races
[FF10, WCG14, XXZ13]. Racket [YK14].
racy [SRJ15]. Range [BS12]. rapid
[PWA13]. raw [HH13]. rays [SBF+10].
RCDC [DNB+12]. RDMA
[ETR+15, IRJ+12]. RDMA-based
[IRJ+12]. RDMA-enabled [ETR+15]. re
[NCS10]. re-location [NCS10].
Reachability [NS13]. reactive [BCvC+13].
read [NM10]. read-only [NM10]. Reading
[Jaf13]. ready [RHS15]. Real
[BVEAGVA10, Fox17, HTW14, KW11,
Nill2a, Pau14, SLES15, SLE+17, VK12,
BCR13, BVGVEA10, BVGVEA11a,
BVGVEA11b, BVGVEA13, BVG14a,
BVG14b, CRAJ10, DW10, EABVGV14,
GMC+13, HTLC10, KHM+11, KPHV11,
KvGS+14, KW10, KSR14, PS10, PMZ+10,
PSW11, Puf13, RHT13, SP10a, Sie10, SPS17].
Real-Time [BVEAGVA10, Fox17, HTW14,
KW11, Pau14, SLES15, SLE+17, VK12,
Nill2a, BCR13, BVGVEA10, BVGVEA11a,
BVGVEA11b, BVGVEA13, BVG14a,
BVG14b, CRAJ10, DW10, EABVGV14,
GMC+13, HTLC10, KHM+11, KPHV11,
KvGS+14, KW10, KSR14, PS10, PMZ+10,
PSW11, Puf13, RHT13, SP10a, Sie10, SPS17].
realtime [OYU+13]. Reasoning
[LN15, ABK+16]. recipes [J+12].
recompilation [NED+13]. Reconfigurable
removal [CBLFD12, Sch10a]. Reports [CJ17, UIY10]. replication [BCD13]. Retrofitted [LPGK14]. reusable

HC10, MME14]. reuse [WR10]. Reverse

[AYZI10]. RFLP [YCYC12], richer [CV14].

rigor [Vit14]. Rigorous [AGR17]. risk
scheme [XHH12]. SCHISM [PZM+10].
SCORM [HC10]. Scrap [ZCdSOvdS15].
sequence [ZWZ+14]. Sequent [FFF17]. sequential [BENS12, DSM11].
serialization [MHB13]. Seriously [Kie10].
Smartcard [RBL12]. Smartphones [RT14]. SMARTS [RXK+17]. snapshots [AST12].
Snippets [SWU+15]. SNP [YC12]. SoC [TKL+15]. soft [JAC10]. Software [BSA14, Wan11, YQ15, BTR+13, CBGM12, CFH+13, CJ17, DVL13, FRGPLF+12, FC11, HBG+16, JhED11, LPA13, MHR+12, OIA+13, XR13, YRBL13, ZK13, ZHC15, ZDS14].

Static [BNE16, JC10, MTL15, ODL15, PiLCH11, RD15, SW12, SH12, AM14, Fer13, FLL13, IF16, KSW14, LS11, MHR12, TLMM13].

STM [Sub11]. stochastic [CRAT12].

Structures [GT10, XMA10]. Studio [RT14, FH16]. Studio-Based [RT14].

Study [ZMM16, BRGG12, CCFB15, CJ17, ECS15, KFBK15, MHR12, NCS10, OMK10, PTF15, SH12, VBDP16, WX16, YW13].

style [UFM15]. substitute [PPMH15]. substrate [GT10]. subtypes [HL13].

Subtyping [LN15]. suite [SMSB11, BB12].

Suites [GGZ15]. Summaries [BH17].

Superblock [KS13]. Supercharged [Cec11, GBS13]. supervenience [Rez12].

synchronisation [CHMY15, WBM10].

synchronization [DHI12, Gra15, Sub11].

Synchronous [BVEAGVA10, SK12].

syntactic [LE10, QLBS17]. Syntax [SS13, KMMV14]. synthesis [SR14a].

synthesizable [ABCR10]. synthesizer [OUY13].

Synthesizing [GK15, SRJ15, LWH10].

System [BO13, KCD12, MAHK16, ACS14, AYZ10, AGR17, BDB11, ELW15, HA13, HDK11, HWLM11, KR12, MS10, STY14, TLL11, Nil12a]. systematic [TD15].

Systems [BSA14, BNE16, CCH11, DLPT14, Fox17, HTW14, JMB12, LM15, RTE13, SLES15, SLE17, DW10, FH16, HM17, HW12, HTLC10, LPGK14, MHR12, MAH12, OIA13, PDM16, RHT13, SSMGD10, SH12, TTD12, TWX10, THC14, UIY10, Vit14, YRHBL13, VK12].

Taming [TLL11, SC16]. Tardis [BM14].

task [Fee16, TWL12, ZLB13].

TaskLocalRandom [PPMH15]. tasks [HAW13, PPMH15, SPP10].

Taurus [MAHK16].

Taxonomy [SS14]. Teaching [HA13, SWF12, CHM13, ZDS14]. teasing [LBF12].

Techniques [RD15, EV13, KS13].

Technologies [Fox17, HTW14, VK12, HTLC10, KFBK15, NL14, RHT13].
technology [NED+13]. TeJaS [LPGBK14].
Template [MME14, HJS+10]. templates [FOPZ14, AK13]. term [AHK+11].
Terminating [FFF17]. Termination [BMOG12, RDCP12, BSOG12, SMP10].
Test [BB12, GGZ+15, PSNS14, SR14a]. tested [Mi11]. Testing
[Ame13, BR12, Him13, MM12, CSS+16, CNS13, Ler10, TD15]. tests
[AÖ11, NYCS12, SR15]. Textbooks [BNP11]. their [RDP16]. There [Eqq11]. thin
[PPS16]. thin-air [PS16]. things [McK16]. Think [WR10]. third
[FOPZ14, LVG10]. third-party
[FOPZ14, LVG10]. THOR [TWX+10]. thread [BKC+13, CRAJ10, MGI17, PCL14, PG12, SS10, YDF15]. thread-level
[MGI17]. threaded
[DSEE13, JTO12, SE12, Taf13]. threads [UR15]. Three [ZMM+16, Vit14].
TigerQuoll [BBP13]. Time
[BVEAGVA10, BLH12, DLR16, Fox17, HTW14, JMB12, Kie10, KW11, Pau14, SLES15, SLE+17, VK12, BCR13, BM14, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGVI4a, BVGVI4b, CRAJ10, DW10, EABVGV14, GMC+13, HTLC10, KHM+11, KPHV11, KHL+13, KvGS+14, KW10, KSR14, LMK16, MGI17, Nil12a, PS10, PZM+10, PSW11, Puf13, RHT13, SP10a, SPPH10, Sie10, SPS17, SH12, TTS+10, WAB+11]. time-travel
[BM14]. time-triggered [EABVGV14]. times [DW10]. timing [LS11]. TIMP
[SLS+12]. tiny [Xue12]. tolerant [PZM+10]. Tool [FMM+11, PQD12, SW12, ABFM12, CRAT+12, ETR12, KSR14, LS11, TWX+10]. Tool-supported [FMM+11]. Tools
[Bro12, ABK+16, VBAM10b]. toolset
[KvGS+14]. top [RVP11, ZMNY14].
top-down [ZMNY14]. Topics
[Hor11, Jen12]. topology [DDM11]. Trace
[HWM14, PiLCH11, SR14b, BBF+10, HWM13, HWT+12, IHWN12, WHIN11]. trace-based
[BBF+10, HWM14, HWT+12, IHWN12]. tracer [CZ14]. traces [BA12, RGM13].
Tracing [BP10, DLR14, DLR16, MD15]. track [VSG17]. TrackEtching [VSG17].
Tracking [SDC+12, KHL+13, OOK+10]. Tracks [RGM13]. tradeoff [UTO13].
Traffic [RXX+17]. Trail [HHSS13]. Train [MSS16]. trait [BCD13, VM15]. traits
BDGS13, BD17]. transactional
[DVL13, FC11, ZHCB15]. Transactions
[DCG12, DFR13]. transformation
[AST+16]. transformations
[AK13, MHN10, PMP+16]. Transforming
dMRH12]. transitioning [HWM14].
Translating [RFRS14]. Translation
[BO12, LSWM16]. translations [UTO13].
translator [LZYP16]. Transmission
[PE11, BVGVEA11b, BJKB12]. transparent
[DBB11]. travel [BM14]. traversals
[ODL15]. Tree
[LYO12, HLO15, KMMV14]. Trends
[MSS10]. tries [SV15a, SV15b]. triggered
[EABVG14]. TRINI [PDPM+16].
Trusted [TWH12, BCF+14]. tuning
[AAB+10, BVGVEAFC11, SKBL11].
Tutorial [Jen12, Nil12b, Taf13, Zak12]. TV
[JMO14]. twitter [Guy14]. Two [Has12].
Type [BO13, KSW+14, KATS12, SGD15, WT11, ACS+14, BS13, CMS+12, DLM10, FH16, GBS14, HyG12, KMLS15, KRR+14, KRH16, KvRHA14, LPG14, LE16, MHR+12, SH12, TLL11, Zha12, eBH11].
Type-Based [SGD15]. type-dependent
[LE16]. type-safe [KMLS15]. Typing
[BO13, KKK+17, MHL15, CMS+12, KRCH14, RDP16].
Types
[BO13, RvB14, SPAK10, BDGS13, CHJ12, DDM11, HH13, MME+10, YDF15].
TypeScript [Cho14, FH16, RSF+15].
Typing [FZ17, RSF+15, SFR+14, TSD+12].
Ubiquitous [MCY+10]. UDP [RR14]. ULS
[FOPZ14]. unbounded [LSSD14].
uncertain [McK16]. Understandable
[MSM*16]. Understanding
[FRM*15, PCL14, QLBS17, Set13, TABS12, VBM16, LWB15, Nil12b].
Undocumented [Alt12, MHR*12]. Unified
[LM15]. uniform [AH10, Eug13]. Unifying
[FRM*15, PCL14, QLBS17, Set13, TABS12, VBM16, LWB15, Nil12b].
Unified [LM15]. uniform [AH10, Eug13]. Unifying
[Has12]. union [KT15]. uniprocessors
[KPHV11]. Units [LLL13]. universe
[DDM11]. Unix [PV17]. Unpacking
[LBF12]. Unrestricted [WWS13]. unsafe
[MPM*15]. updates [PKC*13]. Upper
[SW12]. uproots [HB13]. USA
[Hol12, KP15]. usability [FH16, MHR*12].
usage [PTF*15, QLBS17]. Use [Guy14, MPM*15, AMMW15, PBM13, Sch13].
use-case [AMMW15]. used [XR10]. User
[Liu14, MvDL12, SLS*12, DAA13, FMS*11, PSNS14]. user-defined [FMS*11]. Using
[ASDMGM14, BS12, BSA16, BNE16, DLM10, HC14, KFBK*15, MV16, M15, Pau14, PQR12, SD12, SLE*17, UMP10, Wan11, XMA*14, YCYC12, DDDF17, FH16, FOPZ14, GBS14, Ivd16, KMLS15, KT14, KC12, LVG10, Lew13, LDL14, SAD*16, VGS14, WBM*10, WRI*10, XR13]. UT
[Hol12]. utility [CSV15, XMA*10].
utilization [BCR13].

v [Sam12]. V8 [MG17]. Validating
[LS13]. Validation
[SSB14b, CSSJ16, SSB01]. value [DFR13].
variables [NS13]. Verifiable [FHSR12].
Verification [KKW14, KP15, SS12, SSB14b, CHMY15, DLM10, PSS11, SZ11, SJS10, SSB01, dCM112]. Verified
[HM12, JLP*14]. Verifier [BDT10, Rey13].
Verifying [LM15, YS10, SD16]. version
[FC11, ZX11]. vertical [STY*14]. via
[DS11, GGRS15, GGRS17, Host12, HB13, JWM11, LSW116]. view [Guy14].
violations [LTZ14, PG12, RF15]. Virtual
[BZD17, LYB13a, LYB13b, LYB14, PTH14, PQR12, SSB*14a, Sch13, Set13, SMSB11, SGV12, SSB01, SSB14b, UR15, Ame13, CBLFD12, KCRH14, NK10, SSMGD10, WGF11, WHV*13]. virtualized
[HOKO14, MH10]. virus [RBL12].
visitors [DR14]. Visual [FH16].
visualization [JEC*12, JLL17, MCY*10].
visualizing [DSEC13, KS14]. vital [EV13].
VM [LBF12, YKM17]. VM/application
[LBF12]. VMKit [GT1*10]. Vroom
[BMDK15]. vs
[BA17, GBC12, MD15, SK12, SH12].
Vulnerabilities [MS14].

Wampler [Bro12], wanted [Gra15]. wave
[PQTGS17]. way [Ker15, WGF11]. weak
[WRI*10]. Weapon [Nil12]. weaving
[VBA11]. web
[ETR12, HCN14, KFBK*15, MCY*10, RHD*15, RCR*10, WGF*11, DAA13, HLSK13, Kri12, MvDL12, N14, OwKPM15, RFBJ14, Sch10b, YW13]. web-portal
[MCY*10]. WebCL [KFBK*15]. Websites
[KCD12]. well [EV13]. well-grounded
[EV13]. WETSUIT [ETR12]. Whalesong
[YY14]. Widening [KKW14]. wild
[MPM*15, STS*13]. wildcards
Withers [Lyo12]. without [MB15, IN12, KFB*12, SS12, Sta10, WH11]. Work
[KFB*12, PKO*15, TL12].
Work-stealing [KFB*12, TL12]. workbench
[CF1*13]. world
[CIAD13, Mc16, STS*13]. Worst
[SPPH10, dGRD*15]. Worst-case
[SPPH10]. would [H11]. wrap [FOPZ14].
Wrappers [MPS12]. write [HJH10].
Writing [Jaf13].

x [MSM*16]. X10 [TL12]. Xbase
[EEK*13]. XIR [TWSC10]. XML [NL14].
XSS [MSK16]. Xtraitj [BD17].
yang [CBGM12]. years [BTR*13].
yieldpoint [LWB*15]. yin [CBGM12].
REFERENCES

Z [SBF+10]. Z-rays [SBF+10]. Zero [ZW13].

References

Altman:2010:OTJ

Auerbach:2010:LJC

Avvenuti:2012:JTC

Abanades:2016:DAR

Ansaloni:2012:DAO

Akai:2010:EAS

Shumpei Akai and Shigeru Chiba. Extending AspectJ for separating regions. *ACM SIGPLAN No-
REFERENCES

Anjo:2016:DML

Ahn:2014:IJP

Aumuller:2016:OPD

Amighi:2016:PCC

Autili:2013:HAR

Austin:2012:MFD

Thomas H. Austin and Cormac Flanagan. Multiple

Arnold:2011:AOJ

Aiello:2011:JBA

Albert:2010:PIM

Arca:2012:CCM

Arca:2017:RDP

[AM14] Esben Andreasen and Anders Moller. Determinacy in static analysis for
REFERENCES

Ament:2013:ATG

Ashrov:2015:UCB

Andersen:2014:PLJ

Anonymous:2014:RKS

Arslan:2011:JPM

Altidor:2014:RJG

REFERENCES

CODEN JSSODM. ISSN 0164-1212 (print), 1873-1228 (electronic).

Bradel:2012:ITJ

Brown:2017:NJP

Boland:2012:JCC

Bebenita:2010:STB

Bonetta:2013:TPE

Bu:2013:BAD

Bettini:2013:FDT

Martin Bodin, Arthur Char-

gueraud, Daniele Filaretti,
Philippa Gardner, Sergio
Maffei, Daiva Naudziuni-
nie, Alan Schmitt, and
Gareth Smith. A trusted
mechanised JavaScript spec-
ification. *ACM SIG-
PLAN Notices*, 49(1):87–
100, January 2014. CO-
DEN SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160
(electronic). POPL ’14 confer-
ence proceedings.

F. Bergenti, L. Chiarabini,
and G. Rossi. Programming
with partially specified ag-
eggregates in Java. *Computer Languages, Systems
and Structures*, 37(4):178–
192, October 2011. CO-
DEN ???? ISSN 1477-8424
(print), 1873-6866
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S1477842411000169.

David F. Bacon, Perry
Cheng, and V. T. Ra-
jan. POPL 2003: a real-
time garbage collector with
low overhead and consist-
tent utilization. *ACM SIG-
PLAN Notices*, 48(4S):58–
71, April 2013. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867
(print), 1558-1160
(electronic).

Engineer Bainomugisha,
Andoni Lombide Carreton,
Tom van Cutsem, Stijn
Mostinckx, and Wolfgang
de Meuter. A survey on re-
active programming. *ACM
Computing Surveys*, 45(4):
52:1–52:??, August 2013.
CODEN CMSVAN. ISSN
0360-0300 (print), 1557-
7341 (electronic).

Lorenzo Bettini and Ferruc-
cio Damiani. Xtraitj: Traits
for the Java platform. *The
Journal of systems and soft-
ware*, 131(??):419–441, Sep-
tember 2017. CODEN JS-
SODM. ISSN 0164-1212
(print), 1873-1228
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0164121216301297.

Vasanth Bala, Evelyn Duester-
wald, and Sanjeev Baner-
jia. Dynamo: a trans-
parent dynamic optimization
system. *ACM SIG-
PLAN Notices*, 46(4):41–
52, April 2011. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867
(print), 1558-1160
(electronic).
Bettini:2013:CTB

Barbuti:2010:AIA

Burnim:2012:NIN

Barbu:2012:ARA

Badihi:2017:CAG

Biswas:2014:DES

Burdette:2012:ECJ

Baar:2012:DEP

Bell:2014:PID

Bond:2013:OCC

Bodden:2012:PEF

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Bellia:2011:PJS

Bellia:2012:ERT

Bellia:2013:JST

Barabash:2010:TGC

Bluemke:2012:DTJ

Bogdanas:2015:KJC

Brandt:2014:DAS

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>

Carlisle:2011:WCB

Cao:2012:YYP

Chevalier-Boisvert:2012:BSH

Cosen
tino:2012:MDR

Ceccato:2015:LSE

Chen:2011:MJP

Campbell:2013:ICC

Chen:2017:CLP

Castro:2017:JLC

Chang:2012:IOT

Choi:2013:GGT

Clifford:2014:AFB

Daniel Clifford, Hannes Payer, Michael Starzinger,

[CRP10] Craig Chambers, Ashish Raniwala, Frances Perry,

(CSS+16)

(CSdL16)

(CSK17)

(CSS+16)

(CSV15)

DeBeukelaer:2017:ECP

Dietl:2011:SOT

Deitcher:2011:SPJ

Disney:2015:SYJ

Dey:2013:STA

deGouw:2015:OJU

Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel, and Reiner Hähnle. OpenJDK’s `Java.utils.Collection.sort` is broken: The good, the bad and the worst case. In Kroening and Păsăreanu [KP15], pages
REFERENCES

D'Hondt:2012:ISS

Dolby:2012:DCA

Dietrich:2015:GSE

Dietrich:2016:WJD

Dam:2010:PCI

DeFrancesco:2010:UAI
REFERENCES

0304-3975 (print), 1879-2294 (electronic).

DeNicola:2014:FAA

Dissegna:2014:TCA

Dissegna:2016:AIB

Demange:2013:PBB

deMol:2012:GTJ

Duarte:2011:ICS

REFERENCES

REFERENCES

[EEK+13] Sven Efftinge, Moritz Eysholdt, Jan Köhnlein, Sebastian Zarneckow, Robert von Massow, Wilhelm Haselbring, and Michael Hanus. Xbase: implementing domain-specific lan-

Erdweg:2012:GLE

Erdweg:2015:SOI

Eslamimehr:2014:RDS

Eslamimehr:2010:GRA

Erdweg:2014:FEL

Eichelberger:2014:FRM

Esquembre:2011:TPL
Francisco Esquembre. There is parallel life for Java scientifc programmers! *Computing in Science and En-
REFERENCES

Endrullis:2012:WEM

Expósito:2015:LLJ

Expósito:2012:DSJ

Eugster:2013:SUP

Evans:2013:WGJ

Fernandes:2011:LFS

Sérgio Miguel Fernandes and João Cachopo. Lock-free and scalable multiversion software transactional memory. ACM SIG-
REFERENCES

Feeley:2016:CML

Ferrara:2013:GSA

Flanagan:2010:AMD

Ferrari:2017:JF

Femminella:2012:EJC

Fogus:2011:JC

Fischer:2016:EIE
Lars Fischer and Stefan Hanenberg. An empirical investigation of the effects of type systems and code completion on API usability using TypeScript and JavaScript in MS Visual Studio. ACM SIGPLAN Notices, 51(2):154–167, February 2016. CODEN SINODQ. ISSN 0362-
REFERENCES

Forth:2012:RAA

Fontaine:2012:VCF

Freudenberg:2015:SMP

Flanagan:2013:PES

Feldthaus:2013:SAR
tronic). OOPSLA ’13 conference proceedings.

Felgentreff:2015:CBC

Feldthaus:2011:TSR

Frantzeskou:2011:SUD

Fu:2014:FDC

Fox:2017:EJT

Fdez-Riverola:2012:JAF

REFERENCES

[Gerakios:2014:RTP] Prodromos Gerakios, Aggelos Biboudis, and Yan-

German:2012:MOS

Golan-Gueta:2014:ASL

Golan-Gueta:2015:ASA

Gligoric:2015:GCB

Gosling:2013:JLS

Apolinar Gonzalez, Walter Mata, Alfons Cre-
REFERENCES

Gupta:2016:LSA

Gong:2011:JSA

Grossschadl:2012:EJI

Gramoli:2015:MTY

Grech:2011:JGE

Giacaman:2011:OOP

Gil:2012:SFJ

Joseph Gil and Yuval Shimron. Smaller footprint for Java collections. *Lecture Notes in Com-
REFERENCES

REFERENCES

REFERENCES

Hanenberg:2015:WDW

Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Hasbun:2012:UTP

Haverbeke:2011:EJM

Heumann:2013:TEM

Huang:2013:ECS

Hindle:2016:NS

Hedin:2016:IFS

Hedin:2016:IFS

Heidegger:2012:APC

Heiddegger:2012:APC

Hsiao:2010:EST

Hsiao:2010:EST

Hsiao:2014:UWC

Hsiao:2014:UWC

Hofmann:2011:EOS

Hofmann:2011:EOS

Horstmann:2013:CJF

Horstmann:2013:CJF

Hughes-Croucher:2011:NRS

Stephan Herhut, Richard L. Hudson, Tatiana

[HJS+10]

[HJH10] Laurence Hellyer, Richard Jones, and Antony L. Hosh-

[Heidenreich:2010:GST]

[HJS+10]

[Haddad:2013:SIP]

REFERENCES

Hague:2015:DRC

Herczeg:2013:TFF

Herranz:2012:VIP

Huang:2012:RRC

Hashmi:2012:CNI

Horie:2014:SDJ

Hollingsworth:2012:SPI
Jeffrey Hollingsworth, editor. *SC ’12: Proceed-

Horstmann:2011:CJA

Horstmann:2012:JEC

Hosking:2012:CHL

Higuera-Toledano:2010:ISI

Higuera-Toledano:2014:EIS

Hayashizaki:2012:IPT

Huang:2011:SBA

Haubl:2010:CES

Haubl:2011:ECE

Haubl:2013:CST

Haubl:2014:TTE

Humer:2015:DSL

Hackett:2012:FPH

Iranmanesh:2016:SSE

Inoue:2012:AML

Inostroza:2016:MIM
Juneau:2012:JRP

Joseph:2010:PII

Jaffer:2013:EAR

Ji:2012:PKP

James:2010:FMC

Jara:2012:NVJ

Jendrock:2012:JET

REFERENCES

REFERENCES

Kastner:2012:TCA

Kim:2014:LBL

Kulkarni:2012:MCO

Kereki:2015:JAW

Kuehnhausen:2011:AJM
www.sciencedirect.com/science/article/pii/S1084804511001159

Kumar:2012:WSB

Khan:2015:UJW

Kerschbaumer:2013:IFT

Kalibera:2011:FRT

Kabanov:2011:DSF

Kienle:2010:ATT

Kim:2017:TAA

Channoh Kim, Jaehyeok Kim, Sungmin Kim, Dooyoung Kim, Namho Kim,

REFERENCES

November 2010. CODEN ???? ISSN 1946-6226.

Kedlaya:2014:ITS

Kaufmann:2013:SCO

Krebs:2014:JJB

Kroshko:2015:OPN

Kouneli:2012:MKD

Korsholm:2014:RTJ

Kashyap:2014:TRS

Keil:2014:EDA

Keil:2015:BAH

Kolesnikov:2014:CPB

Kim:2010:EAE

Kim:2011:MAE

[KW11] Minseong Kim and Andy Wellings. Multiproces-

[**Lin:2012:UKT**]

[Lorenzen:2016:STD]

[**Lerner:2010:FTJ**]

[**Lewis:2013:IAP**]

[**Liu:2014:JNU**]

[**Leino:2015:APS**]

K. Rustan M. Leino and Paqui Lucio. An asser-

Lochbihler:2013:MJM

Loureiro:2013:EDS

Lerner:2014:TRT

Lux:2011:TSD

Luu:2014:MCC

Leopoldseder:2016:JJT

REFERENCES

<table>
<thead>
<tr>
<th>McIntosh:2012:EJB</th>
<th>McKinley:2016:PWU</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Maas:2016:THL</th>
<th>McLane:2010:UIV</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>McIntyre:2012:FJB</th>
<th>Marr:2015:TVP</th>
</tr>
</thead>
</table>

Clemens Mayer, Stefan Hahnenberg, Romain Robbes, Eric Tanter, and Andreas Stefik. An empirical study of the influence of static type systems on the usabil-

REFERENCES

Moller:2014:ADC

Marino:2010:DSE

Marino:2016:DXU

Mitchell:2010:FTL

Mitropoulos:2016:HTY

Murawski:2014:GSI
REFERENCES

Madsen:2015:SAE

Marz:2016:RPC

Mesbah:2012:CAB

Mateos:2010:ANI

Mateos:2010:MJN

Nasseri:2010:CMR

Nuzman:2013:JTC
[NED2013] Dorit Nuzman, Revital Eres, Sergei Dyshel, Mar-

Na:2016:JPC

Nolan:2014:XWT

Nakaike:2010:LER

Nikolic:2012:DEA

Nikolic:2013:RAP

Nguyen:2015:FCR

Naik:2012:AT

Oaks:2014:JPD

Ortin:2014:RPI

Olivo:2015:SDA

Ogawa:2013:RJA

Olszak:2012:RJP

Ogata:2010:SJN
Kazunori Ogata, Dai Mikurube, Kiyokuni Kawachiya, Scott Trent, and Tamiya Onodera. A study of
REFERENCES

Odaira:2010:ERT

Ohkawa:2013:RHO

Olsson:2016:ERR

Oh:2015:MWA

Paul:2014:RTP

Parnin:2013:AUJ
REFERENCES

Pin:2014:UEB

Portillo-Dominguez:2016:ECP

Parker:2011:DPG

Pradel:2012:FAP

Park:2011:DCM

Pukall:2013:JFR

[PPS16] Jean Pichon-Pharabod and
REFERENCES

Pham-Quang:2012:JAD

Piedrahita-Quintero:2017:JGA

Pitter:2010:RTJ

Palmer:2011:BJM

Park:2012:CB

REFERENCES

[PTML11] Stergios Papadimitriou, Konstantinos Terzidis, Sefernia Mavroudi, and Spiridon Likothanassis. ScalaLab:

Pufaitsch:2013:SIP

Powers:2017:BBG

Pina:2014:RDJ

Luís Pina, Luís Veiga, and Michael Hicks. Rubah: DSU for Java on a stock JVM. *ACM SIGPLAN Notices*, 49(10):103–119, October 2014. CODEN SIN-

Plumbridge:2013:BPR

Pizlo:2010:SFT

Qiu:2017:USR

References

www.sciencedirect.com/science/article/pii/S0164121216302126

Rayns:2013:CJS

URL http://proquest.tech.safaribooksonline.de/0738438332.

Rauschmayer:2014:SJD

Rossi:2015:NPJ

Razafindralambo:2012:FFH

Robatmili:2014:MRL

Radoi:2015:ETS

REFERENCES

Richards:2011:ACJ

Ricci:2013:ETP

Richards:2013:FAC

Radoi:2015:WAR

Ravn:2013:EIS

Richardson:2014:BEL

References

Ricci:2011:SAO

Rudafshani:2017:LDD

Ramamohanarao:2017:SSM

Serbanescu:2016:DPO

Samuelson:2012:LSO

Sartor:2010:ZRD

Smaragdakis:2013:SBP

[Yannis Smaragdakis, George Balatsouras, and George]

Emil I. Slușanschi and Vlad Dumitrel. ADiJaC — automatic differentiation of Java

Sousa:2016:CHL

Sridharan:2012:CTP

Shah:2012:AMJ

Sartor:2012:EMT

Stolee:2014:SSS

Seth:2013:UJV

REFERENCES

REFERENCES

Siebert:2010:CPR

Singer:2010:EGC

Smans:2010:AVJ

Shan:2012:OAC

Salkeld:2013:IDO

Singer:2011:GCA

Schoeberl:2011:HAL

Stilkerich:2017:PGU

Stilkerich:2015:PGA

Steele:2014:FSP

Snellenburg:2012:GJB

Singh:2012:EPS

Spoto:2010:TAJ
Sew:2012:NSI

Sew:2011:CCS

Stork:2014:APB

Steimann:2010:TMI

Schoberl:2010:NRT

Spoto:2010:MSL

REFERENCES

CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Spring:2010:RAI

Schoeberl:2010:WCE

Strom:2017:HLR

ISSN 1532-0626 (print), 1532-0634 (electronic).

Samak:2014:MTS

Samak:2014:TDD

Samak:2015:SRT

Sutherland:2010:CTC

Dean F. Sutherland and William L. Scherlis. Composable thread coloring.
REFERENCES

REFERENCES

REFERENCES

[SVF12] Łukasz Szweda, Daniel Wilusz, and Jakub Flotyński. Application of NXT based robots for teaching Java-
SNIPPETS: TAKING THE HIGH ROAD TO A LOW LEVEL.

[Simon:2015:STH]

METAFTJIG: A METACIRCULAR COMPOSITION LANGUAGE FOR JAVA-LIKE CLASSES.

Marco Servetto and Elena Zucca.

[Servetto:2010:MMC]

AUTOMATIC FORMAL VERIFICATION OF MPI-BASED PARALLEL PROGRAMS.

Stephen F. Siegel and Timothy K. Zirkel.

[Taft:2013:TPS]

UNDERSTANDING THE BEHAVIOR OF DATABASE OPERATIONS UNDER PROGRAM CONTROL.

Juan M. Tamayo, Alex Aiken, Nathan Bronson, and Mooly Sagiv.

[Tamayo:2012:UBD]

INTEGRATED SYMBOL TABLE, ENGINE AND HEAP MEMORY MANAGEMENT IN MULTI-ENGINE PROLOG.

Paul Tarau.

[Tarau:2011:IST]

[Top11] Kim Topley. *JavaFX developer’s guide*. Developer’s library. Addison-Wesley, Ad-
REFERENCES

Toffola:2015:PPY

Taboada:2013:JHP

Taboada:2011:DEJ

Taboada:2011:DLC

Guillermo L. Taboada, Juan Touriño, Ramón Doallo, Aamir Shafi, Mark Baker, and Bryan Carpenter. Device level communication libraries for high-performance computing in Java. Concurrency and Computation: Practice and
REFERENCES

REFERENCES

Ganesh Upadhyaya and Hridesh Rajan. Effectively mapping linguistic abstractions for message-passing concurrency to threads on the Java Virtual Machine. *ACM SIGPLAN Notices*, 50(10):840–859, October 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-

REFERENCES

[VBMDP16] Santiago A. Vidal, Alexandre Bergel, Claudia Mar-
cos, and J. Andrés Díaz-
Pace. Understanding
and addressing exhibition-
ism in Java empirical re-
search about method ac-
cessibility. Empirical Soft-
ware Engineering, 21(2):
483–516, April 2016. CO-
DEN ESENFW. ISSN
1382-3256 (print), 1573-
com/accesspage/article/10.1007/s10664-015-9365-
9.

[VF10] Charles F. Van Loan and
K.-Y. Daisy Fan. Insight through computing:
a MATLAB introduction to computational science
and engineering. SIAM [Vit14]
Press, Philadelphia, PA,
USA, 2010. ISBN 0-
89871-691-8. xviii +
434 pp. LCCN QA297
enhancements/fy1007/2009030277-b.html; http://www.
loc.gov/catdir/enhancements/fy1007/2009030277-d.html; http://www.loc.gov/catdir/enhancements/fy1007/2009030277-t.html.

[VGRS16] Oscar Vega-Gisbert, Jose E.
Roman, and Jeffrey M.
Squyres. Design and im-
plementation of Java bind-
ings in Open MPI. Parallel Computing, 59(??):1–20,
November 2016. CODEN PACOEJ. ISSN 0167-8191
(print), 1872-7336 (elec-

[VG14] Vikas, Nasser Giacaman,
and Oliver Sinnen. Mul-
tiprocessing with GUI-
awareness using OpenMP-
like directives in Java. Par-
allel Computing, 40(2):69–
89, February 2014. CODEN PACOEJ. ISSN 0167-8191
(print), 1872-7336 (elec-

[Vit14] Jan Vitek. The case for
the three R’s of systems re-
search: repeatability, repro-
ducibility and rigor. ACM
SIGPLAN Notices, 49(7):
115–116, July 2014. CO-
DEN SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic).

[Vit12] Jan Vitek and Tomas Kalib-
era. Introduction to the

VanCutsem:2010:PDP

VanCutsem:2015:RTC

VanNieuwpoort:2010:SHL

Vechev:2010:PPC

A. J. Wellings, V. Cholpanov, and A. Burns. Implementing safety-critical

Wood:2014:LLD

Wagner:2011:SJV

Wagner:2011:CMM

Wu:2011:RTS

Wimmer:2013:MAV

Wellings:2012:AEH

REFERENCES

CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

Wimmer:2010:AFD

Wendykier:2010:PCH

Witman:2010:TBR

Westbrook:2010:MJM

Wehr:2010:JBP

Wehr:2011:JIT

Wurthinger:2013:USD

REFERENCES

[102x681] REFERENCES

[180x622] REFERENCES

[227x577] REFERENCES

[229x425] REFERENCES

[231x250] REFERENCES

[233x128] REFERENCES

[235x75] REFERENCES

[237x204] REFERENCES

123

Xi:2012:MDA

[229x425] REFERENCES

[231x250] REFERENCES

REFERENCES

[YKM17] Byung-Sun Yang, Jae-Yun Kim, and Soo-Mook Moon. Exceptionization: a Java VM optimization for non-
Yang:2010:JIP

Yi:2015:SCC

Yiapanis:2013:OSR

Yakahv:2010:VSP

Yue:2013:MSI

Zakas:2010:HPJ
REFERENCES

Zheng:2015:APP

Zheng:2016:CMD

Zhao:2012:PTI

Zhang:2015:SYB

Zhang:2015:LOS

Zhang:2012:RAJ

Zheng:2016:CMD

Zschaler:2014:SFJ

Zhao:2013:INT

Zhang:2014:AIO

Zeyda:2014:CMS

Zabolotnyi:2015:JCG

Zhang:2014:ARP

Zhou:2016:IRO

Zhang:2014:HTB

Zakkak:2014:JJM

Zibin:2010:OIG

Zerzelidis:2010:FFS

Zhu:2013:EAZ

Zhu:2015:APL

Zhao:2014:CSP

Zhang:2016:NVC

Zhang:2012:SRB