Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

/multi [Taf13]. /multi-threaded [Taf13].

'12 [Hol12]. 12th [Fox17a].

5 [KHR11].

6 [Jen12].

7 [Ano15, EV13, J+12]. 75 [HWM11].

8 [BKP16, CWGA17, LYBB14, SAdB+16, UFM15].
Abbreviated [SRTR17]. ABS [SAdB16].

Absence [AGH17]. Abstract [AGR12, BDT10, DLR16, KPP12, XMA14, DLM10, DLR14, FSC13, KMMV14, NSDD17, SSK13]. Abstraction [BW12, Bro12, GY16, SKKR11, PL12, ZMG14, ZFK16]. Abstractions [NYCS12, RFBJ14, UR15, SPP10].

Accelerated [PQTGS17]. Accelerating [KMZN16, ZLB14, Cha18]. Accelerator [MAK19, OA13]. accelerators [PWA13].

Access [CSGT17, HBT12, TT11, TNT12, BB17, KT14, MHH10, RH13, XHH12]. Accessibility [STST12, VBMP16]. Acculock [XXZ13]. accuracy [MDHS10].

actors [PGA18, Sub11]. Ada [Car11, Sch10a, WCB16]. adaptable [ADI13]. adaptation [VBAM10a]. Adapter [SK12]. Adaptive [AFG11, IHW12, NFV15, RKK17, CL17, PKO15, PDM16, VBAM10].

add [DLM10]. adding [MZC10a].

addressing [GD10, VBMP16]. Adequate [GGZ15]. ADiJaC [SD16a]. Adoption [PBHM13, PGA18]. Adriana [Ngo12].

Advanced [Hor11, VBAM10a, dJM18, Jen12]. Advances [FHP12]. Adversarial [FF10]. Aegis [Nil12a]. Æminium [SNS14].

affects [LO15]. affordable [BM14]. Agent [AFG11, PE11, RV11, Den18].

Ajax-Based [MV12]. algebraic [Lei17]. algebras [LvdS16, ZCSD15].

Algorithm [YC12, ZW13, MB12, ML17, P18, Gun14]. Algorithmic [FHP12]. Algorithms [BF18, GT10b, Gra15]. Aliasing [NS12].

Alignment [NNB18]. alike [DAA13].

Alting [WBM10]. always [AJL16].

Analyses [Kri12, H13, KZ16, PMP16, ZMG14].

Analysis [ADJ19, AG17, CPV15, Hol12, KCD12, LHR19, MvDL12, NS12, RDCP12, RPP19, SGD15, SW12, SDC12, SLES15, SLE17, SR17, VP16, ZKB16, AM14, Bra14, CF13, CMD19, D15, GYB11, HC14, HWL11, KSW14, KT14, KvG14, KPP18, KRR19, LSV16, LSV17, LT14, MTL15, MKZ14, MCC17, MB12, NSDD17, NS13, PIR17, PLR18, Puf13, RLV10, RRR17, SPP10, SBS11, SBK13, SP10b, TLX17, TWX10, TLM13, TL17, TPG15, WA19, ZMY14, ZWS15, CH17].

Analytics [BBB17, KB17, STCG13]. analyzer [Fer13, GN16, SMP10].

Analyzing [PLL18, ZDK19, BTR13, PS14].

Android [CNS13, MMP12, STY14].

THC14, ZHL12, ZKB16, vdmMV12].

AngularJS [RVT18]. Ann [CSDL16].

MvDL12, MM12, PTML11, PiLCH11, PE11, RBL12, RT14, SGD15, SLS+12, ST15, SWF12, AYZI10, AZLY18, AST+16, ADI13, BBF+10, BBP13, BB17, BL15, CDTM10, CSKB12, CJ17, CJ19, CPST14, CPST15, EKUR10, GT10a, GMC+13, HWM14, HWI+12, HOKO14, HWLM11, IHWN12, IRJ+12, JEC+12, JMO14, KATS12, KS13, KRCH14, KvRHA14, KS14, Lon10a, Lon10b, MCC17, MB12, MCY+10, Ott18, PDPM+16, PSW11, SZ11, SBK13, SMP10, SPY+16, SV17, SNS+14, UIY10, UPR+18, VSG17, XHH12, YP10, YKA+19, ZY+12, ZYY+19.

Big [BF18, GTS+15, NWB+15, NFN+18, RVK15, BOF17, BBX13, RVK19, SSG+14, WR10, XGD+19]. billions [DRN14].

Binary [WWG+18]. bindings [VGRS16].

Blueshell [PWA13]. boilerplate [ZCdSrvdS15]. Book [Ano15, Ano18, Bro12, Del13, Gve13, Kie13, Ngo12, Teo12, Teo13]. Bookshelf [Ano18].

Brewing [WZL+18]. Bridging [PV17]. Bringing [CV14, HRS+17, STS+13].

Broken [dGRdB+15]. Browser [MSSK16, PV17].

Bloat-aware [KHM+11, RGEV11].

Bugs [OBPM17, XMD16].

Business [CCA+12]. Bytecode [BDT10, BSO12, HSB12, NS12, RDCP12, Rey13, SEK+19, AdCGGH16, CZ14, DLM10, SP10b, SMP10, VB14b].

C [BB12, CDG+17, GBC12, KB11, LSBV16, LSBV17, NED+13, SRTR17, Sta10, Zak18, ZWS+15]. C# [SSK13]. C/C

[BB12, NED+13]. CA [KP15]. cache [IN12, ZP14]. caches [GB16].

calculations [VSG17].

Calculus [FFF17].

calculus [AH10, PS10a]. Call [FGR12, PUL16, ZWE+14, Xue12, SSB+14a].

Call-site [SSB+14a]. calling [HB13, SSB+14a, ZWE+14]. Calls [SW12, SS16].

came [Car11]. can [TPG15].

can’t [WA19]. capabilities [Ame13].

capability [RDF15]. capo [SMSB11].

capturing [BKC+13].

Card [GMS12, BL15, ABFM12, MLM17, MLM19, dCMMN12].

Cards [BH12, GMS12].

care [EKUR10].

caring [DAA13]. carry [Ame13].

Cartesian
[SD16b]. Case
[ZMM*16, dGRdB+15, AMWW15, HNTL12, JK11, MT13, SPPH10, Vit14]. Cassandra [FRM*15, casts [SH12]. categorising [CMM17], Catena [TD17]. Causal [MRF18]. Causes
[OBPM17, FRM*15]. CAV [KP15]. Cay
[Gve13]. CC [LSBV16, LSVB17]. CCA
[FLZ+18, ZXL16]. Center [Hol12]. centric
[DHM+12, FOPZ14]. CERT [LMS+12].
chain [KSR14]. Challenges
[GM12, SWMV17, Sie17, SR17, AACR18]. Change
[BBF10b]. Changing
[MMV12, CSP15]. Changes
[BCF17, CSF17]. Changes
[GM12, SWMV17, Sie17, SR17, AACR18]. Chip
[SD16a]. Chip-Multiprocessor
[PS10b]. chip-multiprocessor [PS10b].
chip-multiprocessors [RS12]. Choice
[JCM19, WBM+10]. CICS [R+13]. CIL
[BBF+10]. circular [Gun14, SZ10]. Circus
[ZLCW14, MCW19]. City [Hol12]. Class
[BS13, CSF+16, NCS10, CSKB12, HC10,
MHM10, SC16, SM12, TSD+12]. Classes
[And14, SVB+17, WT11, CZ14, CS12, SZ10,
TSD+12, VBDM16]. Classes [SD16a].
Classification [PBM+19, SS14]. Classifiers
[BSA14]. Classifying [MHM10, PBB19].
Classless [WZdOS17]. clicker [HA13].
Client [MS14, OBPM17, CH17, KRH16].
Client-Side [OBPM17, KRH16].
Client-State [MS14]. clients [SRB18].
Clojure [ECG12, FH11, VS10]. Clojured
[SSL18]. Closing [ZLHD15]. Closures
[BO11, BO12, BO13]. Cloud
[VDV17, WZK+19, BFS+18, GGC18, LZYP16, TLMM13]. cloud-based [GGC18].
classified [PDP+16]. clustering
[MK+12, MKK+13]. clusters [TRTD11].
Cocoa [Sta10]. Code
[ADJG19, BH17, BNE16, CJ19, HC11,
MSS19, MM16, PKPM19, RVK15, RLMM15,
SRR17, SVB+17, SV15a, SED14, WGM+18,
AG17, AK13, CKB15, DBN14, FLZ+18,
FH16, FSM+11, IS18, LVG10, MKK+12,
MKK+13, NJ13, OJ12, PTRV18, PBB19,
PMP+16, PSS11, RFRS14, RBV16, RVK19,
RO12, SS13, TX13, UTO13, VSG17,
WK17, WGF11, WBA+11, WAB+11,
WWS13, ZHL+12, ZXL16, ZWSS15].
Code-Issue-Introducing [CJ19]. coding
[LMS+12]. Coefficient [ADJG19]. Coffin
[Teo12]. coherent [ZP14]. Cohesion
[RC17]. Cold [BDZ17, WGF11]. Collect
[JCM19]. collected [AGGZ10]. collecting
[AHK+11]. Collection
[ASV+16, BF18, GM12, MAK19, QSaS+16,
ST15, UJ18, ASME18, BP10, BOF17,
KPVH11, KBL14, NGB16, ODL15, PZM+10,
PDP+16, SP10a, SMB14, Sie10, SJBL10,
SKBL11, UIY10, UJR14]. Collections
[GS12, LGB10a, PL12, SV15a, SV17].
collectives [RTET15, TRTD11]. Collector
[BH12, GTS+15, BCR13, BVG14b, Puf13].
Collectoren [Sch13]. collectors
[GTSS11, Sch13, XD+19]. coloring [SS10].
Colt [BP16, WN10]. CoMA [AGR12].
Combating [NWB+18]. Combination
[BASA14]. Combinatorial [YHY13].
combinators [MHB13]. Combining
[BDG13, MSS19, MG17]. commensal
[BRWA14]. comments [PBB19, ZYY+19].
Commercial [ZMM+16]. commodity
[BK14]. Common [PiLCH11].
Communication [IQJ+16, RBT+13, SK12,
BJBK12, ETR+15, TTD+11].
communications
[ETTD12, RTET15, TTD12]. Communities
[ZMM+16]. Compact
[HWM10, HWM11, JLL17]. Comparative
PLL+18, TRTD11, Gve13. cores
[GTSS11, SKBL11]. Cornell [Gve13].
corpus
[HCN14, LSBV16, LSBV17, TMVB13].
correct
[AdCGGH16, AJL16, DJLP10, PS10a].
Correctness [LL15, BEN12, Cho14].
Correlation [MSS19].
Corrigendum [LSBV17].
Cost [IN12].
Coverage [CSS+16, GGZ+15, MSS19, RGB18].
Coverage-Based [GGZ+15].
Coverage-directed [CSS+16, GGZ+16].
Cross-Layer [OTR+18].
Cross-Platform [WBHN18].
cross-program [KMZN16].
cross-thread [BKC+13].
crowdsourcing [BH17].
crypto [PTRV18].
Cryptography [GPT12].
CSS [Ano15, HLO15, Sta10].
Curve [GPT12].
customizations [LVG10].
cuttings [AMWW15].
cyclic [BMOG12, RS12].

D
[DiP18b, FLZ+18, GBC12, JEC+12, ZXL16].
DAA [DR10]. Data
[Bra14, BMOG12, BA17, BF18, GM12, GTS+15, GT06b, NKH16, NBW+15, NFN+18, NBW+18, TAF+18, YWW+18, dMRH12, BK14, BB17, BOF17, BBXC13, BJBK12, CDTM10, CRP+10, DFR13, DHM+12, EKUR10, FOPZ14, KB17, LDL14, MRA+17, NL14, SAoB+16, SSG+14, SGG+17, UMP10, WKL17, WCG14, XXZ13, XMA+10, XGD+19, ZIvdS17].
data-centric [DHM+12, FOPZ14].
Data-Intensive [NWBP18].
Data-Parallel [NKH16, CRP+10].
database [Dei10, EKUR10, TABS12].
databases [EKUR10, MLGA11].
Dataflow [BR12].
Datalog [ZMG+14].
dataset [MDS+17].
David [Kie13].
Days [Sev12b].
DBT [KS13].
dead [SK13].
Deadlock [CHMY19, CHMY15, SR14a, SR14b].
Dean [Bro12].
debugging [ASdMGM14, BM14, KS14, TB14, VB18, ZFK+16].
December [LSBV17].
Deciding [SGD15].
decision [RBV16].
Declarative [DRN14, RS12, FOPZ14, WCK19, MME+10].
Decomposition [AGH+17, PLL+18].
deconstructing [ACS+14].
decoupled [LPA13].
deduplication [HOKO14].
Default [BG17, SNS+14].
defects4j [MDS+17].
defined [FMS+11].
Definite [NS12].
Definition [SSB14b, AK13, SSB01].
Definitive [Oak14].
delimitation [GSS+16].
delimited [PDDD17].
DelphJ [GBS13].
demand-driven [FWDL15].
Demonstrations [YKSL17].
Deoptimization [KRCH14].
depend [LCW18].
dependability [GD10].
Dependence [PDDD17].
Dependence-driven [PDDD17].
dependences [BKC+13, WLI19].
dependencies [ELW15].
Dependent [CHJ12, LE16].
deploying [R+13].
deprecation [SRB18].
depth [RAU14].
Design [AC16, ETDD12, MLGA11, Puf13, RTE+13, SW12, TRTD11, TKL+15, VGR16, YCCL12, BBXC13, CSDL16, GSD+15, IRJ+12, Lon10a, Lon10b, OA17, SADB+16, SMSB11, VM10, Xue12].
Designing [Sev12b, KHR11].
Desktop [GS11].
destructive [FF10].
Detecting...
Detection \[\text{BK12, HLO15, PIlCH11, XR10, FF10}\].

Determinacy \[\text{AM14}\].

Developers \[\text{Bro12, BMR14, DJB16, HH13, Wam11}\].

Development \[\text{ABK+16, AYZI10, MT13, PBIM+19, AGR17, BM18, FRGPLF+12, GT10a, PSW11, SKR17, SH12, WBA+11, ZDS14}\].

Device \[\text{TTD+11, XHH12}\].

Diagnosis \[\text{DPP}^+\text{16}\].

Driven \[\text{CCA}^+\text{12, BM18, FGB}^+\text{19, CHM13, FWDL15, HZZK19, LKP19, MTI}^+\text{15, PDDD17, SR14b, drug [EKUR10], DSL [KARO12], DSLs [KHH11, RO12, SC16]}\].

DSU \[\text{PVH14}\]. Dual \[\text{AD16}\]. Dual-Pivot \[\text{AD16}\]. Dynamic \[\text{AGM}^+\text{17, ABBMV12, ASF17, BFS}^+\text{18, CHMY15, CHMY19, MRF18, MvDL12, PTHH14, RDF15, WWG}^+\text{18, XMA}^+\text{14, ZKB}^+\text{16, AF12, BDB11, BK14, BCD13, BOF17, CSV15, CPST15, ELW15, GYB}^+\text{11, HB13, KRC14, KRR}^+\text{14, KT14, LWH}^+\text{10, LVG10, MKZ}^+\text{14, Ni12, NG12, NED}^+\text{13, RLBV10, RCR}^+\text{14, RRB17, SR14b, SJS10, SH12, TPG15, VBA10b, WXR16, WFF18, WBA}^+\text{11, WWS13, WZH}^+\text{17, ZBB15}. dynamic-memory [GYB}^+\text{11]}\].

Dynamically \[\text{WWG}^+\text{18}, \text{CZ14, CMS}^+\text{12, hEYJD12}\]. Dynamically-Generated \[\text{WWG}^+\text{18}\].

Dynamo \[\text{BDB11}\].

e-Science \[\text{SGV12}\]. ease \[\text{DRN14}\]. Easy \[\text{Jaf13, CRP}^+\text{10}\].

economics \[\text{SJBL10}\]. Ecosystem \[\text{YMHH19}\]. Edition \[\text{Ano15, Gve13, LYBB14}\].

Editorial \[\text{Fox17a}\]. Editorials \[\text{Fox17b, HTW14, RHT13}\].

EdSketch \[\text{HZZK19}\]. EDSLs \[\text{RDP16}\]. Educator \[\text{BA17}\]. EE \[\text{Jen12, MCC17}\].

Effective \[\text{BMR14, PTML11, RD15, CSDL16, KPP}^+\text{18, Kie13}\].

Effectively \[\text{UR15}\].

Efficacy \[\text{FH16, HAW13, Lei17}\].

Efficient \[\text{DV13, GPT12, HWM11, HB13, KT14, KW10, OOK}^+\text{10, RSP}^+\text{15, RBF14, SMN}^+\text{12, TLX17, TD17, AK13, BBSB14, CRP}^+\text{10, ETR}^+\text{12, HWM10, KKW11, MRA}^+\text{17, MSM}^+\text{10, Pos19, Sie17}, \text{SGV12, SWB}^+\text{15, SV15a, TRTD11, UMP10, VWJB10, XXZ13, ZDK}^+\text{19, SV18}\].

Efficiently \[\text{FBH17, BKC}^+\text{13, FOPZ14}\].
Expression [NS12, PIR17]. expressions [GK15, MKTD17]. expressive [VYY10].
Extended [DDD17, FGR12, FLL+13, JC10, LMK16, PDPM+16]. Extending [AC10, BVGVEA11a, LPA13, PTHH14].
Extensible [ZIvdS17, ER14, KMLS15, MHBO13].

Extension [RS12, WA19, LE16, MLGA11, PdMG12].

expressions [MPR12, Zha12]. Extensive [Wan11].

Extending [CJ19, CCA+12, KM10]. extraction [LKPK19]. Extremal [LTDT+12], Eye [OAC18, RLMM15, Guy14]. Eye-Tracking [OAC18, RLMM15].

F [GMT14, TTD12]. F-bounded [GMT14].

F-compact [TDD12]. FAA [Sch10a].

FACADE [NWB+15]. face [XHH12].

Facebook [Ano13]. Facets [ASF17, AF12].

familiarized [Ame13]. family [KHM+11, KvrHA14]. family-based [KvrHA14].

Fast [CVC+17, CSGT17, HyG12, SMB14, SLF14, YMBHB19, Zak18, BB17, KMMV14, KCP+17, MDM17, MHBO13, SV15b]. Faster

[BMDK15, JC10, AJL16]. fault [RBL12].

Faults [STRTR17, KPP+18, ZKZK13]. FC [YWW+18].

Featherweight [RvB14].

feature [AH10, KvrHA14, OJ12, SS19]. feature-based [KvrHA14]. features

[MKK+12, MKK+13]. Feedback [NED+13, NG13, WM10].

Feedback-directed [NED+13, NG13, WM10]. fields [PQTGS17].

Fingerprints [MSSK16]. Finite [BLH12, MB12]. Finite-State [BLH12].

first [SC16, TSD+12]. first-class [SC16, TSD+12]. fix [TPG15].

Fixing [STRTR17, LTZ14]. flexibility [SBF+10].

Flexible [ES14, MSM+16, PKC+13, RHN+13, BCD13, KHR11, Por18, ZW10].

Flint [LTZ14]. Floating [Jaf13, AJL16].

Floating-Point [Jaf13, AJL16]. Flow [ASF17, FHSR12, LMK16, SS12, AdCGGH16, AF12, ABFM12, BK14, BL15, FWDL15, HBS16, KHL+13, LSWM16, PMTP12, STA18]. Flow-sensitive [LMK16, STA18]. FlumeJava [CRP+10].

fly [UJR14, URJ18]. folding [CPST14].

Footprint [GS12, WHIN11]. Forecasting [CC15]. foreign [LWH+10]. forge [Ler10].

fork [MZC10a]. fork/join [MZC10a]. form [MKK10]. formalised [GMT14, TTD12].

Fraction [MM11, Ame13, BVGVEA11b, SC16, TSD+12]. fractions [MSS10]. FPGA [OYU+13].

fragmentation [PZM+10].

fragmentation-tolerant [PZM+10].

Fragments [PBM+19, OA17]. frames [SJKPS10]. Framework

[CCA+12, Den18, FFF17, LM15, PWSG17, PWSG19, RBL12, SEK+19, Ame13, AC16, DDDF17, ER14, FRGPLF+12, JEC+12, KMLS15, Lon10a, Lon10b, MT13, PGA18, PKO+15, RR14, STY+14, ZW10, ZDS14].

Frameworks [PPMH15]. Francisco [KP15].

free [DTLM14, FC11, GK15, HHB+14, NFV15].

free-form [GK15]. free-lunch [DTLM14].

frequency [ZWSS15]. Frequent [RC17].

Friendly [RBL12]. fringe [MB12, MB12].

Full [STRTR17, DRN14]. Full-Word

[STRTR17]. Fully [FSC+13, PG12, ZFK+16].

Functional [Wam11, Ame13, BVGVEA11b, NFV15, SV18, UFM15, Bro12].

functional-style [UFM15]. functions [LSBV16, LSVB17]. Fundamentals [HC13, Teo13, Gve13].

Fusing [MS13, ETR12, WM10]. fusion [KBPS17].
future [SS16]. fuzzer [Guo17].

Game [MT14, Wan11]. Gap
[PVB17, ZLHD15]. Garbage [ASV+16, BH12, BF18, GTS+15, JCMMM19, MAK19, QSaS+16, Sch13, SKBL11, URJ18, ASME18, AGGZ10, BCR13, BP10, BVGV14b, BOF17, GTSS11, KP1V11, KBL14, NGB16, PZM+10, PDPM+16, Puf13, SP10a, SBM14, Sie10, SJBL10, UIY10, UJR14, XGD+19].
garbage-collection [Sie10]. Gary [Gve13].
GC [NGB16, RGM13].

Generation [AGM+17, BH17, YWW+18, CRJ+10, CMM+10, PPMH15, PSNS14, Rim12, RO12, UMP10, ZYY+19].
generations [BOF17]. generators [SLF14].
generic
[DDM11, Fer13, HH13, ZPL+10, eBH11].
generics [AS14, Grl17, PBMRH13].
Genetic
[YCYC12, MT13].
Genotyping
[YCYC12].
GeoGebra
[ABK+16].
geosciences
[MCY+10].
Geospatial
[CH17].
German
[Sch13].

get [Ame13].
Getaway
[SLES15, SLE+17].
Gets [BH12], getters
[Mii13].
Getting
[GMT14].
Giga
[DHS15].
Giga-scale
[DHS15].
glimpse
[SP16].
Global
[PE11].
Global-Scale
[PE11].
Globally
[YMHB19].
Glotaran
[LS+12].
go
[LW+15].
Goldilocks
[EQT10].
Good
[dGRdB+15].
Google
[Ngo12, MGI17, Sam12].
PGP

GPGPU

GPGPU-accelerated
[PTGS17].
PQ

GPU

PQ

PKO+15].
GPU

PKO+15].
GPUs

[Host12].
grade

[CRJ+10].
Gradual

[RSF+15, SFR+14, TSD+12, Sie17].
grained

[DRN14].
grannas

[GN16, SHU16].

granularity

[CZ14, YKA+19].
Graph

[DMRH12, BS13].

Graphical

[LS+12].

Graphics

[CGG16, DSEE13, JWMC15, PULO16].
green

[BRG12].
Greenfoot

[Ko110].
grid

[SV12, WJB10, MZC10b].
Gridifying

[MZC10b].
grounded

[Ev13].
Growing

[EKR+12].
growth

[LDL14].
guarantees

[JWMC15, ZHCB15].
GUI

[CNS13, VGS14, WBA+11].

GUI-awareness

[VGS14].

Guide

[Ame13, Oak14, Rau13, Teo13, Top11].
Guided

[CNS13, DiP18b, MMP15, GY16, Ott18, PSNS14, RKH18, SSH17].

Guidelines

[GGZ+15, HLSK13].

Hack

[Ott18].

Handling

[KW11, ECS15, HWM14, KW10, WK12].

Hands

[CSZ17, Teo13].

Hands-on

[CSZ17, Teo13].
happened

[Han15].
happens

[TD15].
happens-before

[TD15].

hard

[LT17, Puf13].
Hardware

[MAK19, SKKR11, SPS17, CBG12, IN12, SE12, ZDK+19].

hardwired

[OUY+13].
harness

[Kie13].

hash

[SV15a, SV15b, SV18].

hash-array

[SV15b].

hash-tries

[SV18].

hashing

[GRF11].
HDFS

[IRJ+12].

HDL

[OUP+13].
health

[Ev13].
heap

[CSV15, LLD14, TLX17, YS10, BVCVA10].

heap-manipulating

[YS10].

Heaps

[NFN+18].

Helping

[RT14].
Hera

[MS10].

Hera-JVM

[MS10].

Herman

[Kie13].

Heterogeneous

[ASV+16, HBB+14, Rub14, AYZ10, ABR10, DFR13, MS10, SV18].

Heterogeneous-race-free

[HBB+14].

Heuristics

[MGI14, LMK16].

HHVM

[Ott18].

Hidding

[RBL12].
hierarchy

[BS13].

High

[GSS+16, Hoi12, IRJ+12, MSN+16, RGB18, SWU+15, URJ18, WN10, Zal10, BRWA14, Hos12, Ngo12, RFB14, TTD+11, TQZ17, WJB10, WFF18, WWH+17, TRE+13].

High-coverage

[RGB18].

high-dimensional

[TQZ17].

high-level

[Hos12, RFB14, WJB10].
High-Performance
[URJ18, WN10, GSS+16, BRWA14, Ngo12, TTD+11, WFF14, WWH+17], higher
[KT15], higher-order [KT15], highly
[BP10, SPP+10], history [DRN14], hit
[Ano13]. Hoare [SD16b], hole [Ano13].
Holistic [MAHK16], Hop
[WBHN18, D’H12], Hopjs [SP16].
Horstmann [Gve13], hosted [CBLFD12].
hot [LMK16], HotSpot [Sch13, BOF17].
HotWave [ABMV12, VBAM10b], HPC
[JQJ+16]. HTM [CHM16], HTML [Sta10].
HTML5 [HLO15, NKH16, Ano15].
Hunting [GCC18], HVM [LTK17].
Hybrid [CHM16, JQJ+16, JMO14, KCD12,
VDV17, ZMNY14, ZMM+16, ASME18,
ADHI, HyG12, PdMG12, STA18, SWB+15].
Hybris [VDV17], hygienic [DFHF15].
hypervisor [GMC+13].
i-Jacob [LHM+18], IaaS [ZLHD15].
Identification [PBM+19, BZD17, FMS+11].
Identifier [SRTR17]. identifiers [FMS+11].
Identifying [NIU2, SVB+17], if
[Han15, STA18]. If-transpiler [STA18].
illuminating [BK14]. Image [WN10].
immutable [HMDE12, ZPL+10].
immutable [SV15b], impact [CMS+12,
Gra15, HWM11, MPR12, WJ17].
imperative [RFRS14], implement
[HdM17]. Implementation
[CSF+16, GPT12, HM12, NBB18, OA17,
Por18, VGRS16, YP10]. implementations
[CSS+16, OJ12, PS10a]. Implementing
[FFF17, GM12, WCB16, EEE+13, FBH17,
PMP+16]. implications [BRGG12].
imply Ivs16, SPAK10. imply
[BRGG12]. Improve [OTR+18, QSaS+16].
Improved [KRR+14, UIY10, OJ12, XHH12].
Improvement [RC17]. Improving
[ACS+14, HWI+12, TWSC10, WWG+18,
eBH11, UTO13]. in-depth [Rau14].
in-place [DVL13], including [Den18].
Incremental
[LHR19, DS16, ELW15, UIY10].
independent [IF16, VS11], industrial
[CRJ+10], inefficiently [XR10].
inefficiently-used [XR10]. Inference
[BO13, YHY13, AGZG10, CGJ+16, HyG12,
HMDE12, RKHN18, Zha12]. Inferring
[PTRV18, AS14, BENS12]. InfiniBand
[ETTD12, IRJ+12]. infinite [ASdMG14].
Inflow [ZMM+16], influence [MHR+12].
Informa [HA13]. Information
[ASF17, HBS16, KHL+13, RKN+18, SS12,
AF12, ABFM12, BVGVEA11b, CMS+12,
PMTP12, RRB17, ZYY+19].
Information-flow [HBS16].
Infrastructure [Den18, NG12, WCST19].
Inheritance
[LN15, WT11, AST+16, GBS13, NCS10].
Initial [LTD+12], initialization
[AMT17, MME14]. Initiation [FGR12].
Injecting [ZZK13], inline [DLP10].
Inlining [BA12, STA18, HWM13], insecure
[YW13]. Insight [VF10], instanceof
[SMS+12]. Instant [MHBO13].
instantiation [AST+16]. instead
[AGH+17, BTR+13], instrumenting
[CZ14]. Integrated [Tar11, YP10].
instrumenting [SPP+10], integration
[Ame13, HKV14, Sch10a], integrity
[HDK+11]. Intel [CDMR19], intelligence
[JAC10]. Intelligent [Pau14]. Intensive
[LYM+18, NBB+18, SAD+16], inter
[CMM17], inter-language [CMM17].
Interacting [SK13], Interaction [WT11].
interactive [AMWW15, JH11, MCY+10].
intercession [VM10], interdependencies
[LBH12]. Interface [LN14, MVD12,
SLS+12, AYZ10, MT14, LT11, LT14].
Interfaces [WT11, Cho14, DLM10,
LWH+10, PSNS14, WT10], interference
[YDFF15]. International
[Hol12, KP15, Fox17a], Internetware
[LYM+18], Internetware-Oriented
[LYM+18]. Interoperability
[GSS+18, GSS+16]. Interpretation
Interpretation-Based [DLR16].
interpreters [HWW+15, IvdS16, MD15, ZLB14].

Interprocedural
[CPV15, FWDL15, ZMY14]. Interrupting
[AST12]. intersection [KT15]. intra
[BJBK12]. intra-node [BJBK12].

Introducing [CJ19, Dan17, DMS11].

Introduction
[CIAD13, CSZ17, HTLC10, HTW14, Lew13,
RTH13, VK12, Hav11, VF10].

Introductory [BNP11]. intrusively
[MZC10a]. Invasive [ADJG19].

Investigation
[SS13, FH16, Tai13]. invited
[Piz17, Sie17]. invocation
[SPAK10, SS19, BVGVEA10]. invocations
[BVGV14a]. invokdynamic
[OCFL14]. Involvement [ZMM+16]. IP
[TKL+15]. iPhone [Sta10]. IR [LSWM16].
irregular [AC16]. ISAs [HNTL12]. ISBN

Isolation
[CJ19, DVL13, HL13, HTW14, Puf13, VK12,
Fox17a, HTLC10, HGCA11, RHT13].

iterations [DD13]. iterators [ZLB14].

IVE [CRJ+10]. IVPs [KS15].

J [KMLS15]. J2M [LZYP16]. J2ME
[GPT12]. J2ME-Enabled [GPT12]. Jackie
[KS14]. Jacob [LYM+18]. Jalapeno
[AGF+11]. JAMES [DDDF17]. JaSTA
[HD17]. JaSTA-2 [HD17]. Java
[Bro12, Den18, Fox17a, Gve13, HWM11,
HTW14, MvH15, Ngo12, Sch13, VK12, AO11,
KvGS+14, QTG17, SAdB+16, ABC18,
AsdMGM14, AST12, AFGG11, AYZI10,
AdSCdr+19, ASI14, AAB+10, Alt12, Ame13,
AdCGGH16, AT16, And14, Ano12, Ano13,
ABMV12, AGR12, AGR17, ABCR10, AD13,
ABFM12, AK13, BK12, BH17, BMR14,
BH12, BDT10, BVGVEA10, BVEAGVA10,
BVGVEA11a, BVGVEA11b, BVGVEA13, BVGV14a, BGV14b, BS12,
BMDK15, BO11, BO12, BO13, BCR11,
BGDS13, BCD13, BD17, BRGG12, Blvd17,
Bla18, BR12, BH10, BR15, BB12, BNP11,
BL15, BW12, BA12, BZD17, BSOG12,
BMOG12, BKP16, BA17, BBJK12, CIAD13,
FGB+19, CS17, C14, CMM17, CWW13,
CV14, CS12, CDTM10, CCFB15, CC15,
CRJ+10, CWGA17, CSF+16, CSK17,
CCH11, CJ17, CJ19, CG+17, Cle16]. Java
[CDMR19, CSdL16, CCA+12, CMM+10,
CRAJ10, DJLP10, DDDS17, DLM10,
DLZ+13, DVL13, DR10, DSH15, DJB16,
DMS11, ECS15, EK+13, ES14, EQT10,
Esq11, EABVG14, Eus13, EV13, ETTD12,
ETR+15, FLZ+18, FRGPF+12, FGR12,
Fer13, FFF17, FL+13, FHSR12, Fox17b,
FMS+11, GMPS12, GvRN+11, GYB+11,
GM12, GB14, GD12, BGC12, GS11, GS12,
Gon13, GMC+13, GT10b, GJS+13, GJS+14,
Gri17, GPT12, GK15, HL13, HD17, HD17,
Has12, HWM10, HWM13, HWM14, HA13,
HM12, HTLC10, HKVG14, HH13, HOKO14,
HGCA11, Hor11, Hor12, HC13, HC10,
HHZK19, HLWM11, HJ12, IHWN12, IN12,
IS18, IF16, JC10, JEC+12, JQI+16, JL17,
Jen12, JB12, JYKS12, JTO12, JH11, J+12,
JMB12, JMO14, KHR11, KHM+11,
KMLS15, KS13, KW10, KW11, KPP+18,
KM10, KSR14].

Java
[KSP12, KDPG18, KS14, KF11, KB11,
LSBV16, LSVB17, LTD+12, LMK16,
LSWM16, LLL13, LT11, LT14, LZYP16,
LXP18, LYBB13a, LYBB13b, LYBB14, LZ12,
LKP19, Loc13, Loc18, Lon10a, Lon10b,
LMS+12, LO15, LPA13, LWC17, LTK17,
LS11, Lyo12, MKZ+14, MS13, MME+10,
MLGA11, MDS+17, MCC17, MPM+15,
MZC10b, MKTD17, MM16, HMH10,
MAH12, MB12, MCM+10, MG19, MP12,
MLM17, MLM19, MKK+12, MKK+13,
MS10, MCM19, MvH15, MT14, MDHS10,
NM10, NCS10, NS12, Nil12a, Nil12b,
NG13, NNTK17, NBB18, Oak14, OOK+10,
[AST+16, CDTM10, FGB+19]. Migration
[OwKPM15, Fee16]. migrations [TFPB14].
Miniboxing [UTO13]. minimal [CNS13].
mining [DRN14]. Mint [WRI+10], minute
[DHS15]. minutes [BTR+13].

misconfigurations [MCC17]. Mismatch
[YCYC12]. misses [IN12]. Missions
[WCBI6]. Mistakes [BA17]. Mitigating
[BGS+13, KC12]. mixed [CL17]. Mobile
[GM12, GPT12, LYM+18, MV16, XHH12,
GGC18, KF11, MZC10b]. Mock [SABB19].
Model [CSF+16, CDG+17, CCA+12,
DLR16, FSK12, JYKS12, Loc18, MSM+16,
MCC17, MV16, BVGVEA11a, FGB+19,
CHM13, CWW13, CV14, CS12, CSKB12,
DLZ+13, FLZ+18, GY16, HAW13, Loc13,
LSSD14, MLT17, MSM+10, PSH11, RR14,
RBV16, RAS16, RDF15, SMN+12, SSG+14,
SS19, Tal13, VJWJB10, ZP14, ZXL16].

Model-Aware [JYKS12]. Model-based
[MCC17, PSW11]. model-driven
[FGB+19, CHM13]. Modeling
[GBC12, JC10, KSKP12, LDL14, Rey13,
SM12, CRAT+12, SKR17, TLX17, ZlvdS17].

Modelling [CSZ17]. Models
[CC15, PE11, ZLCW14, AG17, HBB+14,
TV10, ZBB17]. modern
[FIK+15, Hav11, JK13, KB17, Mor18, Teo13,
WG+19, ZDK+19]. Modernization
[KH18, Nil12a]. Modified [GT10a].

Modular [IvdS16, LN15, RDCP12,
AACR18, MRA+17, RO12].

Modularisation [SDM12]. modularity
[Del13, SPAK10]. module [KR12].

Modules [Bla18, PlCH11]. monad
[GSD+15]. MongoDB [Guo17]. monitor
[STA18]. Monitoring [AG12, MRF18,
CMM+10, DJL10, ES14, KF11]. Monitors
[BLH12, HM12]. Morgan [Ano18]. mari
[CPST15]. movement [NCS10]. MPI
[RAS16, SZ11, VGRS16]. MPI-based
[SZ11]. MPJ [JQJ+16, TTD12]. MrCrypt
[TLMM13]. MS [FH16]. Multi
[GSS+18, JTO12, RTE+13, BGS+13,
DSEE13, Fee16, FC11, GSS+16, IHWN12,
MS10, Puf13, SE12, SKBL11, SV18,
TRTD11, Tar11, WRI+10, YKA+19].

Multi-Core [RTE+13, MS10, TRTD11].
multi-cores [SKBL11]. multi-engine
[Tar11]. multi-granularity [YKA+19].

Multi-Language [GSS+18, Fee16, GSS+16].
multi-level [IHWN12]. multi-maps [SV18].
multi-processor [Puf13]. multi-stage
[WRI+10]. Multi-threaded
[JTO12, DSEE13, SE12, TaF13].
multi-threats [BGS+13]. multi-version
[FC11]. Multicore [ASV+16, CCH11,
MKG+17, SE12, SSMD10, TWX+10].

Multiplatform [ZKB+16]. Multiple
[AF12, ASF17, HLSK13, CSV15, DD13].
multiplexing [BVGVEA11].

Multiprocessing [VGS14].
multiprocessor [PS10b, PWA13, SPS17].
multiprocessors [KW11, RS12].
multithreaded [KKW14, Loc18, SR14a,
BNS12, DJL10, Fer13]. Multithreading
[CCH11]. multivariate [ÅO11]. multiway
[YKA+19]. Mungo [KDPG18].

MuscalietJS [RCR+14]. Mutagenic
[YCYC12]. mutants [FRC+17]. Mutation
[MMP15, KPP+18]. mutators [AHK+11].

MySQL [Ano15].

Names [SRTR17]. Naming [STST12].

Native
[JQJ+16, LT11, LT14, KFBK+15, STS+13].
Natural [LL15]. naturalness [HBG+16].
NDetermin [BENS12]. nested
[CHM16, ZLB+13]. Netflix [Liu14].
Network [CC15, GGC18, RR14].
Networking [Hol12]. Networks
[AFFG11, ETR+15, ZYY+19]. neural
[ZYY+19]. neuromorphic [HNTL12].

Neutral [WBHN18]. Next
[YWW+18, CRJ+10, CMM+10].
Next-Generation [YWW+18]. NG2C
[BOF17]. NGS [YWW+18]. NGS-FC
[YWW+18], Nicolai [Bla18], Nixon [Ano15], No [BVGVEA10], No-Heap [BVGVEA10], NoCs [PWA13], Node [HC11, BJJK12], Node.js [BSMB16, MTL15, Ano14], nodes [DRN14].
Nominal [BO13], Non [BVGVEA11b, BSOG12, GGZ+15, TD17, WZL+18, YKM17, MZC10a, OMK+10, SSL18, ZP14].
Non-Adequate [GGZ+15].
non-cache-coherent [ZP14]. non-cloned [SSL18].
Non-equivocation [TD17].
Non-functional [BVGVEA11b].
non-intrusively [MZC10a].
Non-Java [YKM17, OMK+10].
Non-termination [BSOG12].
Non-volatile [WZL+18].
Non-Volatility [WZL+18]. Nonblocking [RTET15, SP10a]. Nondeterministic [RB15, BENS12]. noninterference [IF16].
Nopol [XMD+17]. Normalization [ADJG19].
NoSQL [DFR13]. Notation [Sev12a]. Novel [NK10, MZC10b]. November [Hol12]. Novice [BA17].
Novices [RT14]. null [AT16].
NullPointerExceptions [BSOG12].
NUMA [GTS+15]. NumaGiC [GTS+15].
number [PPMH15, SLF14]. Numbers [Jaf13, AJL16, Wal12].
Numerical [KS15, KFBK+15, PQTGS17]. NVT [SWF12].

Object-Oriented [GS11, KB11, RC17, PTHH14, AST+16, DDFDF17, MBHO13, VM10, ZDS14, hEYJD12]. Objective [Sta10]. Objective-C [Sta10]. Objects [BS12, RKN+18, MHL15, SK13, SABB19, WXR16, BVGVEA10].
On-the-fly [URJ18, UJR14]. one [SV18].
ones [AST+16]. Online [NG13, GGC18, HCV17, NK10]. only [NM10]. Ontology [KSPK12]. OoOJava [JhED11].
Open [BSA14, GD12, ABC18, CJ17, CJ19, EKUR10, JK11, Tai13, VGRS16]. Open-Source [BSA14, ABC18, Tai13].
OpenJDK [BFS+18, CHM16, dGrdB+15].
Operator [PQD12]. opportunities [TPG15].
Optimal [AD16, JCM19, SK12, ELW15]. optimale [Sch13]. optimally [BGS+13].
optimisation [PPS16]. optimistic [WGF11]. Optimization [LTD+12, YKM17, AFG+11, BDB11, DDFDF17, JMO14, KS13, KC12, NG12].
Optimizations [DR10, BB17, CPST15, DS16, NG13, SAdB+16]. Optimized [PKPM19]. Optimizing [LYM+18, SV15b, WZK+19, YRHBL13, HWW+15, KRH16, MD15, ZLBF14].
Oriented [ABMV12, BH10, GS11, KB11, LYM+18, RC17, AST+16, DDFDF17, EABVG14, MBHO13, PTHH14, RVP11, VM10, VBAM10b, WBA+11, ZDS14, hEYJD12].
OSck [HDK+11]. OSGi [BVGVEA13, GD10, Del13]. OSS [ZMM+16]. other [EKUR10, KS13].
out-of-order [JhED11], output [KM10].
Over-exposed [VBDM16], overhead [BCR13, ZHCB15, ZFK+16], overlap [ADJG19], overlay [CDTM10],
Overloading [PQD12], overview [Nil12b], own [MPM+15], Ownership [ZPL+10, BDGS13, DDM11].

PaaS [ZLHD15], Package [SLS+12, CRAT+12, MB12, OW16, AK13],
Packages [PiLCH11], PackedObjects [YKA+19], panic [Ano12], Paper [DDDF17, PDPM+16, Cha18, SV15a],
paperback [Ano18], Papers [DVL13, HL13, LMK16, Puf13], Parallel [DS16, Esq11, LLL13, LHR19, MKG+17, NKH16, NBB18, QSaS+16, RD15, RS12, AACR18, BP10, BBP13, BSMB16, CRP+10, MGS19, NG12, NG13, PPMH15, Sie10, SZ11, TTD12, Ta13, VYY10, BKP16, WN10],
Parallelisation [GS11], Parallelism [NKH16, BENS12, HHSS13, MZC10a, RHSD15, TWL12, ZLB+13],
parallelization [SS16, YRHBL13],
parallelize [LPA13], Parallelizing [NKH16, hEYJD12], parameters [GBS14],
Parametric [AGGZ10, PULO16, UTO13],
Paralog [Bla18], Part [KP15], ParTejas [MKG+17], Partial [CSK17, JB12, SGD15, BS13, MD15, TD15, WGF11, WHH+17],
Partial-Order [SGD15, TD15], Partially [BLH12, BCR11], Partitioning [AD16, BS12], party [FOPZ14, LVG10],
passing [ETTD12, TRTD11, TTD12, UR15], Path [SGD15, AZLY18, DD13, HHSS13, SMP10],
path-based [AZLY18], path-length [SMP10], Path-Sensitive [SGD15],
pathfinder [KPP12, CS12, MPR12, NNTK17, PdMG12, SM12, vdMvdMV12, Del18, RR14], patient [EKUR10], patient-level [EKUR10],
pattern [GSD+15, SAdB+16], Patterns [RC17, BGVGEA11b, Del13, Ste10], PayPal [Ano14], PCR [YCYC12], PCR-RFLP [YCYC12], PE [JB12], PE-KeY [JB12], perceptible [JH11], Perfect [SLE+17],
Performance [AACR18, CSZI7, CCH11, DR10, GBC12, Ho12, HJ12, MSM+16, Oak14, OCFL14, QSaS+16, RVT18, TRE+13, TP15, THC+14, URJ18, VP16, WGF+18, WN10, ACS+14, AAB+10, BRGG12, BRWA14, CBGM12, Del11, GSS+16, HWI+12, IRJ+12, HJ11, Ngo12, ODL15, PSNS14, SE12, TTD+11, TWX+10, WFF18, WHIN11, WHH+17, Zak10],
performance-guided [PSNS14],
permission [HBT12, SN+14], permits [PPS16], Persistence [LZ12], Perspective [YHY13], Pert [LZ12], pervasive [MHM10],
pgs [Ano18], PHALANX [VYY10], phase [KC12], phase-ordering [KC12],
phoneME [RDCP12], Phosphor [BK14],
PHP [Ano15, Ott18, TTS+10], Phylox [EKUR10], Physics [Zak18, JEC+12],
pickler [MBH13], pickles [MBH13],
pipeline [LPA13], pipelines [CRP+10],
Pivot [AD16, MRF18], PL [FGB+19],
PL/SQL [FGB+19], place [DVL13], Plan [DLZ+13], Platform [AFGG11, PE11, WBHN18, BD17, CRJ+10, CMM+10, GD10, GMC+13, MKZ+14, PWA13, YP10],
Platforms [DR10, Has12, BP10, JMO14, KSR14],
PLDI [FLL+13], pluggable [MME+10],
Point [Jaf13, AJL16], Pointer [LHR19, TL17], Pointers [RKN+18, AT16],
Points [BK12, SDC+12, BSAL18, DHS15, SBK13, TLX17], Points-To [SDC+12, BSAL18, DHS15, SBK13, TLX17],
Policies [FHSR12, MPS12, BVGV14a],
policing [DW10], policy [JK13], polyglot [EV13],
Polymorphic [Zha12],
polymorphism [GMT14, PULO16, UTO13],
polynomial [Pos19], POPL [BCR13],
Popular [Has12, SRB18],
Popular-but-Seemingly-Dissimilar [Has12], portable [BM18, LTK17, RGM13].
pseudorandom [PPMH15, SLF14]. PT [MGS19]. Published [Ano18, LSBV17].
pure [SS16]. Purely [RSI12, NFV15, SV18].
Purely-Declarative [RSI12].

qualitas [TMVB13]. Qualitas.class [TMVB13]. Quality [BNP11, CCFB15, WKJ17]. Quantitative [CPV15, GYB+11, MRA+17, PMTP12].
queries [BK15, MRA+17, SGG+17]. query [FWDL15]. query- [FWDL15]. questions [KM10]. Quicksort [AD16].
R [CH17, KMMV14, NL14, SLS+12, Vit14].
Race [BH10, EP14, RD15, AMT17, EQT10, HHB+14, RGB18, WFF18]. race-aware [EQT10]. races [FF10, WCG14, XXZ13].
Racket [YK14]. racy [SRJ15]. Rady [Teo12]. Rails [Teo12]. Range [BS12].
Ranged [FSK12]. rapid [PWA13].
Reachability [NS13]. reaction [SRB18]. reactive [BCvC+13, MvH15]. read [NM10].
read-only [NM10]. Reading [Jaf13]. ready [RHSD15]. Real
[BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Nil12a, Pau14, SLES15, SLE+17, VK12, Nil12a, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGV14a, BVGV14b, CRAJ10, DW10, EABVG14, Fox17a, GMC+13, HTLC10, KHM+11, KPHV11, KvGS+14, KW10, KPP+18, KSR14, LTK17, MDS+17, PS10b, PZM+10, PSW11, Puf13, RHT13, SP10a, SIE10, SPS17].
Real-Time [BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Pau14, SLES15, SLE+17, VK12, Nil12a, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGV14a, BVGV14b, CRAJ10, DW10, EABVG14, Fox17a, GMC+13, HTLC10, KHM+11, KPHV11, KvGS+14, KW10, KPP+18, KSR14, LTK17, MDS+17, PS10b, PZM+10, PSW11, Puf13, RHT13, SP10a, SIE10, SPS17].
Reduction [BO12, MSS19, TD15].
redundant [HLO15]. reengineering [FGB+19]. Refactoring [AS14, STST12, VBZ+18, ZHL+12, FMM+11, FM13].
Regression [MM12]. regular [PIR17].
reification [RRB17]. Reified [GSB14].
Reim [HMDE12]. ReImInfer [HMDE12].
relation [TD15]. relational [MLGA11].
relationship [LSBV16, LSBV17, SH12].
relaxed [DNB+12, KHL+17, PPS16].
relaxed-memory [KHL+17]. Release
[BMGVEA10, BVGV14a, BJBK12, GSD+15, SS19, BVGVEAFG11]. removal [MRMV12, WGF11]. removing [PLR14].
rename [FM13]. Repair
[SEK+19, XMD+17, MDS+17, SHU16].
repeatability [Vit14]. Replacement
[WBHN18, BCD13]. Replay [BH12].
Replaying [WKG17]. replication
[CJ17, UIY10]. replication-based [UIY10].
report [CBLFD12, Sch10a]. Reports
[OW16]. repository [HC10].
representation [AZLY18]. reproducbility [Vit14]. reproduction [SR14b].

Requirements [MSS19, AGGZ10]. ResAna

[SR17, TRE+13, CRJ+10, CBLFD12, EKUR10, Rub14, VBMDP16, Vit14].

Resource [BVGV14a, WZK+19, ADI13, ES14, KvGS+14, KSR14, SVG12].

resource-aware [SVG12]. resource-based [AD13]. responsive [SP+10].

responsiveness [PSNS14]. restart [CNS13].

Restructuring [RC17]. Retention

[ZMM+16]. Rethinking

[LHR19, Xue12, RCR+14]. retrofitted

[TTS+10]. retrofitting [LPGK14].

Reusability [Tai13]. reusable

[HC10, MME14]. reuse [WR10]. Reusing

[PKPM19]. Reverse

[CCA+12, MLM17, MLM19]. Review

[Ano15, Ano18, Bro12, Del13, Gve13, Kie13, Ngo12, Teo12, Teo13, EKUR10]. Revisited

[Mei14, Gou11]. rewriting [HLO15]. RFID

[AYZI10]. RFLP [YCYC12]. richer [CV14].

rigor [Vit14]. Rigorous [AGR17]. rings

[Pos19, Pos19]. Rise [DiP18a]. risk

[MMP+15]. River [HHSS13]. RJ [OW16].

RMI [SS19]. Road [RXK+17, SWU+15].

Robots [SWF12]. Robust

[VM15, VD1V7, MKZ+14, SVG12, VM10].

Rod [Teo12]. ROM [MLM19]. row [Lei17].

row-typed [Lei17]. RTSJ [ZW10]. Rubah

[PVH14]. Ruby [Teo12]. rule [QLBS17].

Rules [CCA+12, HLO15, PTRV18]. run

[WAB+11]. run-time [WAB+11]. Running

[HC11, TWX+10, YK14]. runs [FIF+15].

Runtime [BLH12, CMM+10, GSS+18, MAHK16, MSS10, NWB+15, OCFLI14, XMA+14, BRGG12, EQt10, GLL+10, GSS+16, LMK16, MS10, OKK+10, PKC+13, RO12, STY+14, TWSC10, VBAM10a, WLL19, YRHB13, dCMN12]. runtimes

[MCW19, RS12, SDH+17, WCB16, ZLCW14, AGR17, EKUR10, GMC+13, Nill2b, FG12, SD16b, Taf13, YS10, CWW13, HL13, LWCL17, WK12]. Safety-Critical

[MCW19, WCB16, ZLCW14, RS12, SDH+17, AGR17, CWW13, LWCL17]. Salespoint [ZDS14]. Salt [Hol12]. SAM

[BO13]. San [KP15]. Sane [MPS12].

sanitizer [VS11]. Sapphire [URJ18]. SAT

[UPR+18]. Satin [TVJ10]. SAW

[CFH+13]. Scaffolding [RT14]. Scala

[SMS+12, AT16, Hin13, Lew13, PTML11, Pos19, SMSB11, SMS+12]. Scala-Based

[PTML11]. Scala.js [DS16]. Scalability

[CCHH11, VP16, WZK+19, AAB+10, DSEE13, BXS+18, GTSS11]. Scalable

[BBB+17, BS12, DFR13, GGRS17, HC11, QJ+16, RXK+17, RTE+13, XMA+14, ETTD12, FC11, GGRS15, NFV15, PIR17, PLR18, RTET15, TTD12]. ScalaLab

[PTML11, PTML14]. scalar [FQTG17].

Scale [BA17, PE11, CJ19, DHS15, LO15, MDS+17, MCY+10, PTF+15, WHIN11]. SCEL [DLPT14]. scenarios

[AMWW15, Sch13]. Scheduler

[QSaS+16, IF16, TWL12]. scheduler-independent [IF16].

Scheduling [ASV+16, BVEAGVA10, KPWH11, EP14, EABVG14, ZW10].

scheme [XHH12, YKA+19]. SCHISM

[PZM*10]. Science

[HWM11, VF10, SVG12]. sciences [NL14].

Scientific [Esl11, PTML11, TAF+18, WN10, FRGPLF+12, PTML14]. scientists

[Bra14]. SCJ [MCW19]. SCJ-Circus

[MCW19]. SCORM [HC10]. Scrap

[ZCdSOvdS15]. Script [MSSK16].

Scripting [SGT17, KKK+17, HBT12, KRR+14, PTML14, Zha12]. SE [LYBB14]. Seamless [OwKPM15]. Search
LPAR13, MHR+12, NGB16, OIA+13, PLL+18, PBB19, RAS16, SV17, XR13, YRHB13, ZK13, ZHC15, ZDS14. **Solidity** [Dan17].

Solution [KS15, EKU10, J+12]. **Solving** [SED14, FMBH15, UPR+18]. **Sorting** [BKP16]. **Sound** [BO13, BGK17, LE16, BHIB14, EL15, PPHM15, RGB18].

soundly [BS13]. **Source** [ADJG19, BSA14, GD12, MM16, RLMM15, SRR17, SED14, ABC18, AK13, CJ17, CJ19, DRN14, EKU10, FMS+11, JK11, MKK+12, MKK+13, OJ12, PMP+16, SSK13, Tai13, ZWSS15]. **source-code** [MKK+12, MKK+13]. **source-to-source** [AK13]. **sources** [IN12]. **Spark** [LXP18].

sparse [TGZ17]. **sparse-matrix** [TGZ17].

spatial [MLGA11]. **Speaking** [Rau14, Sam12]. **Special** [DV13, Fox17a, HL13, HGCA11, Puf13, HTLC10, RHT13, HTW14, VK12].

specialization [KRR+14, SV15a]. speciﬁc [CSDL16, EEK+13, HWW+15, Kie13].

Specification [GJS+13, GJS+14, IF16, KW11, LN15, LYBB13a, LYBB13b, LYBB14, MCW19, TWH12, BVGVEA11a, BCF+14, KR12, KW10, MRA+17, YP10, dCMMN12].

specifications [BSAL18, BENS12, PS10a, TVD10, UPR+18]. specified [BCR11]. **Specifying** [BNS12, HL13].

Speculation [AC16, MGI14, MGI17]. speculative [BB17, YRHB13]. speed [HRS+17, SBF+10, UTO13]. **Spi** [PS10a].

SPIN [ASDMGM14]. **SPL** [BTR+13].

splittable [SLF14]. **SPOON** [PMP+16].

spot [LM16]. **SPUR** [BBF+10]. **SQL** [FGB+19, KMS15]. **SqueakJS** [FIF+15].

SSNToDs [VSG17]. **Stability** [BSA14, LL15]. stabilizing [hEd12]. **Stack** [WBHN18, KRCH14, Xue12]. **stack-based** [KRCH14]. stage [WRI+10]. staged [SC16].

staging [RO12]. **Stakeholders** [YMHIB19]. **Standard** [WK17, LMS+12].

Standardization [TWNH12]. **StarL** [LM15]. **State** [AGR12, BLH12, MVDL12, MS14, GN16, YP10]. state- [YP10].

statecharts [MS13]. **Statement** [XMD+17, PLR14, ZWSS15]. statements [PLR14].

Static [BGK17, BNE16, JC10, MTL15, ODL15, PiLCH11, PLR18, RD15, SW12, SH12, AM14, CGJ+16, Fer13, FLL+13, IF16, KSW+14, LS11, MHR+12, PIR17, TLMM13].

statistically [BTR+13, NED+13]. statistical [Bra14, ZFK+16]. statistically [PPMH15].

statistics [HCN14]. stealing [KFB+12, TLW12]. **STM** [CHM16, Sub11].

STM/HTM [CHM16]. **StMungo** [KDPG18]. stochastic [CRAT+12]. stock [PVH14]. **Stop** [LWB+15]. stops [BNP+18].

Storage [Hol12, VDV17]. **Store** [BS12, Sta10]. stores [DFR13]. **Story** [Ano14]. strategic [BMR14]. strategy [PDP+16].

Stream [CWGA17, KPS17, MV16, BRWA14, SSG+14, ZBK+19]. streaming [MRA+17, STCG13].

StreamJIT [BRWA14]. **StreamQRE** [MRA+17]. streams [SGG+17, UMF15].

Strength [KCD12]. **String** [HOKO14, CSK17]. **Strings** [HWM11, HWM10, LSD14]. strong [UMP10, ZHCB15, ZBB17]. structure [LO15, PLL+18, UMP10]. structured [ABC18, LSMW16].

Structures [GT10b, CDTM10, XMA+10]. studies [EKU10]. **Studio** [RT14, FH16].

Studio-Based [RT14]. **Study** [BF18, KB11, OBPM17, RVT18, RLMM15, WZK+19, ZMM+16, BRGG12, CCFB15, CJ17, ECS15, JK11, KFBK+15, MHR+12, NCS10, OMK+10, PTF+15, SSL18, SH12, TFPB14, VBDPM16, WX16, YW13].

Suites [GGZ+15]. **Summaries** [BH17].

Summarization [MM16, RLMM15].

[LS17, EKUR10]. Surgical [RSB+14]. surprises [FMBH15]. Survey [AGM+17, OAC18, RVT18, BCvC+13, GD10].

SurveyMan [TB14]. surveys [TB14]. suspension [TWL12]. sweeping [KBL14].

Sweeten [DFHF15]. Swift [YZ+12].

Symbolic [NTK17, PMTP12, SWMV17, MMP+12, Rim12]. synchronic [Gra15].

Synchronized-by-Default [BG17].

Synchronous [BVEAGVA10, SK12, MvH15]. syntactic [LE16, MKK+12, MKK+13, QLBS17]. Syntax [SS13, KMMV14, SSK13].

System [BO13, KCD12, MAHK16, ACS+14, AYZI10, AGRI17, BDB11, ELW15, HA13, HDK+11, HWLM11, KR12, MS10, STY+14, TLL11, Nil12a]. systematic [TD15]. Systems [BG17, BSA14, BNE16, CCH11, DLPT14, Fox17b, HTW14, JMB12, LM15, MRF18, NFN+18, NWB+18, RFE+13, SLES15, SLE+17, AT16, CJ19, DW10, FH16, Fox17a, HdI17, HWI+12, HTCL10, LPGK14, LTK17, MHR+12, MAHI2, MvH15, OIA+13, PLL+18, PdMG12, PBB19, PDP+16, RHT13, SDH+17, SSMGD10, SABB19, SH12, TTD12, TXW+10, THC+14, UIY10, Vit14, YRHB13, VK12].

Tableau [FFF17]. Tagged [RKN+18].

Tailoring [LZ12]. Take [Kie10]. Taking [SWU+15]. Tales [Sew12]. talk [Piz17, Sic17].

Taming [TLL11, SC16].

Tardis [BM14]. target [Cle16]. task [Fee16, TWL12, ZLB+13].

TaskLocalRandom [PPMH15]. Tasks [PWSG17, PWSG19, ST15, HAW13, PPMH15, SPP+10]. Taurus [MAHK16].

Taxonomy [SS14]. Teaching

HA13, SWF12, CHM13, ZDS14]. teasing [LBF12]. technique [SSK13]. Techniques [RD15, EV13, KS13].

Technology [Fox17b, HTW14, VK12, Fox17a, HTCL10, KFBK+15, NL14, RHT13]. technology [NED+13]. TeJaS [LPGK14]. Template [MM14, HJS+10]. templates [FOPZ14, AK13]. term [AHK+11].

Terminating [FFF17]. Termination [BM18].

-tested [Mil13]. Testing

Ame13, BR12, Hin13, MM12, MMP15, MMP+12, CSS+16, CNS13, KPP+18, Ler10, SABB19, Teo12, TD15].

tests [AO11, NYCS12, SRJ15]. Textbooks [BNP11]. their [RD16]. theorem [SH17].

There [Esq11]. thin [PPS16]. thin-air

[PPS16]. things [Mck16]. Think [WR10].

Third [Ano15, FOPZ14, LBG10].

third-party [FOPZ14, LBG10]. THOR [TWX+10].

Thoth [KB17]. Thou [LCW18].

Thread [MGI14, BKC+13, CRAJ10, MGI17, PCL14, PG12, SS10, WLL19, YDF15].

Thread-Level [MGI14, MGI17]. threaded [DSEE13, JTO12, SE12, Taf13]. threads

[UR15, WLL19]. threat [BGS+13]. threats

[BGS+13]. Three [ZMM+16, Vit14]. Tier [WZK+19].

TigerQuoll [BBP13]. Tim [Teo13]. Time [BVEAGVA10, BBB+17, BLH12, DLR16, Fox17b, HTW14, JMB12,
Kie10, KW11, PKPM19, Pau14, SLES15, SLE+17, VK12, BCR13, BM14, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGV14a, BVGV14b, CRAJ10, DW10, EABVGV14, Fox17a, GMC+13, HTLC10, KHM+11, KPHV11, KHL+13, KvjGS+14, KW10, KSR14, LMK16, LT17, MG17, Nil12a, PS10b, PZM+10, PZW11, Puf13, RHT13, S10a, SPPH10, Sie10, SPS17, SH12, TTS+10, WAB+11. time-travel [BM14].

time-triggered [EABVGV14].
timed [LKP19].

times [BKP16, DW10].
tiny [Xue12].

To-many [SV18].
to-one [SV18].
tolerant [PZM+10].
Tool [FMM+11, NBB18, PQD12, SW12, SSK13, ABFM12, CRAT+12, ETR12, KSR14, LS11, TWX+10].
Tool-supported [FMM+11].
toolchain [KDPG18, SMN+18].

Toolset [KvGS+14].

Took [KDPG18, SMN+18].
Top [RVP11, SGG+17].
top-down [SGG+17].
top-down [SMN+18].

Topic [Hor11, Jen12].
topology [DDM11].

Toy [DiP18b].

Trace [HWM14, PiLCH11, SR14b, BBF+10, HWM13, HWI+12, IHWN12, WHIN11].

Trace-based [BBF+10, HWM14, HWI+12, IHWN12].

Traceability [CSKB12].

Trace [WKG17, BA12, RMG13].
Tracing [BP10, DLR14, DLR16, MAK19, MRF18, MD15].

track [VSG17].

Tracks [RMG13].

Traffic [RXK+17].

Train [HSIS13].

training [KMZ16].

trait [BCD13, VM15].

traits [BDGS13, BD17].

Transactional [URJ18, DVL13, FC11, ZHC15].

Transactions [DeCG12, CHM16, DFR13].

transfer [BL15].

transformation

transformations [AST+16, PDDD17].

transformations [AK13, MPM10, PMP+16, TL17].
Translating [RFRS14].

Translation [BO12, LSMW16, LXP18, TLL18].

translations [UTO13].

translator [LZY16].

Translation [PE11, BVGVEA11b, BBK12].

Transparent [BD11].

transpiler [STA18].

travel [BM14].

traversals [ODL15].

Treble [YMHB19].

trees [RBV16].

Trends [CC15, MSSID, SR17].

trie [SV18].

trie-based [SV18].

tries [SV15a, SV15b, SV18].

triggered [EABVGV14].

triggers [FGB+19].

TRINI [PDPM+16].

Trusted [TWNH12, BCF+14].

tuning [AAB+10, BVGVEA11b, SKBL11].

Turf [CH17].

Turing [Gri17].

Tutorial [Jen12, Nil12b, PBM+19, Taf13, Zak12].

TV [JMO14].

twitter [Guy14].

Two [Has12].

Type [BO13, CGJ+16, KSW+14, KATS12, Lei17, Loc18, RKN+18, SG15, WT11, ACS+14, AT16, BS13, CMS+12, CVG+17, DLM10, FHR16, GBS14, HYG12, KMLS15, KRR+14, KR16, KVRA14, KDPG18, LPGK14, LE16, MHR+12, SV18, SH12, TLL11, Zha12, eBH11].

Type-Based

[SG15].

type-dependent [LE16].

Type-Heterogeneous [SV18].

Type-Safe

[Loc18, KMLS15].

Typechecking [KDPG18, CL17].

Typed [BO13, KKK+17, MHL15, CMS+12, KRCH14, Lei17, RDP16].

Types [BO13, RV14, SPAK10, BDGS13, CH12, DDM11, HH13, MME+10, YDFF15].

TypeScript [Cho14, FH16, RSF+15].

Typing [FZ17, RSF+15, Sie17, SFR+14, TSD+12].

Typy [OA17].

Ubiquitous [MCY+10].

UDP [RR14].

ULS [FOPZ14].

ultimate [BL15].

UML
[CSF+16]. unbounded [LSSD14, RGB18].
certain [McK16]. Understandable [MSM+16]. Understanding [ABC18, FRM+15, MKTD17, NWB+18, PCL14, QLBS17, Set13, TABS12, VBMDP16, LWB+15, Nil12b].
User [Liu14, MdDL12, RKHN18, SLS+12, DAA13, FMS+11, PSN14]. used [FRC+17]. user-defined [FMS+11]. User-guided [RKHN18]. Using [ASdMG14, BS12, BSA14, BNE16, DLM10, HCN14, KFBK+15, KH18, MV16, MSSK16, NBB18, Pau14, PQD12, RC17, SDM12, SLE+17, UMP10, Wan11, WKG17, XMA+14, YCYC12, Zak18, BB17, DDDF17, Del13, FH16, FOPZ14, GBS14, IvdS16, KMLS15, KT14, KC12, LVG10, Lew13, LDL14, MT13, PIR17, PLR18, RKHN18, RAS16, SAdB+16, SSK13, SSH17, SHU16, SS19, VBMDP16, WRM+10, WR+10, XR13, vdMvdMV12].
UT [Hol12]. utility [CSV15, XMA+10].
utilization [BCR13].
v [Sam12]. V8 [MG17]. Validating [HLSK13]. Validation [BBB+17, DFR13]. variable [CDTM10].
variables [NS13]. VDM [TJLL18].
Verifiable [FHSR12]. Verification [CHMY19, KK14, KPI5, RAS16, SS12, SSB14b, CHMY15, DLM10, HCV17, PSW11, SMN+18, SZ11, JPS510, SSS17, SSB01, dcMMIN12]. verification-validation [HCV17].
Verified [HM12, Loc18, JLP+14, WFF18]. VerifiedFT [WFF18]. Verifier [BDT10, Rey13]. verifiers [SPY+16].
Verifying [LM15, YS10, vdMvdMV12, SD16b]. Veritesting [SWMV17]. Version [FLZ+18, FC11, HD17, SM12, TMVB13, ZXL16].
vertical [BFS+18, STY+14]. via [DMS11, GGRSY15, GGRSY17, Hos12, HB13, JWM15, LSWM16, R1i12, SS16, TD17].
Video [PBM+19]. view [Guy14].
violations [LTZ14, PG12, RDF15]. Virtual [BZD17, Cle16, LYBB13a, LYBB13b, LYBB14, LTK17, PTHH14, PQD12, SSB+14a, Sch13, SET13, SSS11, SGV12, SSB01, SSB14b, UR15, Ame13, CBLFD12, KRC14, NK10, Piz17, RCB17, SSMGD10, WGF11, WHV+13]. virtualized [HKO14, MHM10]. virus [RBL12].
Visualization [TAF+18, JEC+12, JZL17, MCY+10]. visualizing [DSEE13, KS14, MPR12]. vital [EV13]. VM [LBF12, WBHN18, YKM17].
Vroom [BMDK15]. vs [BA17, GBC12, MD15, SRTR17, SK12, SH12, WKJ17].
Vulnerabilities [MS14, GGC18]. vulnerability [MLM19, Sve14].
Wampler [Bro12]. wanted [Gra15].
Weapon [Nil12a]. weaving [VBMA11].
References

Altman:2010:OTJ

Acar:2018:PCM

accioly:2018:USS
REFERENCES

Auerbach:2010:LJC

Avvenuti:2012:JTC

Abanades:2016:DAR

Ansaloni:2012:DAO

Akai:2010:EAS

Anjo:2016:DML

André Luís Barroso Almeida, Leonardo de Souza Cimino, José Estevão Eugénio de Resende, Lucas Henrique Moreira Silva, Samuel Queiroz Souza Rocha, Guilherme Aparecido Gregorio, Gustavo Silva

Austin:2012:MFD

Arnold:2011:A0J

Aiello:2011:JBA

Albert:2010:PIM

Antonopoulos:2017:DIS

Andreasen:2017:SDA

Esben Andreasen, Liang Gong, Anders Møller, Michael

Arcaini:2012:CCM

Arcaini:2017:RDP

Apel:2010:CUF

Aigner:2011:STM

Aigner:2015:AJE

Andrysco:2016:PFP

Axelsen:2013:PTD

Altman:2012:USM

Andreasen:2014:DSA

Ament:2013:ATG

Adamsen:2017:PIR

Ashrov:2015:UCB
Adiel Ashrov, Assaf Marron, Gera Weiss, and Guy

Arslan:2011:JPM

Altidor:2014:RJG

Adalid:2014:USA

Austin:2017:MFD

Akram:2018:WRG

Afek:2012:ISJ

Alshara:2016:MLO

Zakarea Alshara, Abdelhak-Djamel Seriai, Chouki

Akram:2016:BPG

Ali:2010:DJB

Alon:2018:GPB

Bradel:2012:ITJ

Brown:2017:NJP

REFERENCES

Boland:2012:JCC

Bonetta:2017:FJF

Basin:2017:KKV

Bebenita:2010:STB

Bonetta:2013:TPE

Bu:2013:BAD

Bettini:2013:FDT

Lorenzo Bettini, Sara Capecchi, and Ferruccio Damiani. On flexible dynamic trait replacement for Java-like languages. *Science of Com-

Martin Bodin, Arthur Char-
gueraud, Daniele Filaretti,
Philippa Gardner, Sergio
Maffei, Daiva Naudziu-
niene, Alan Schmitt, and
Gareth Smith. A trusted
mechanised JavaScript spec-
ification. ACM SIG-
PLAN Notices, 49(1):87–
100, January 2014. CO-
DEN SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic). POPL ’14 confer-
ence proceedings.

F. Bergenti, L. Chiarabini,
and G. Rossi. Programming
with partially specified ag-
gregates in Java. Com-
puter Languages, Systems
and Structures, 37(4):178–
192, October 2011. CO-
DEN ????? ISSN 1477-8424
(print), 1873-6866 (elec-
tronic). URL http://
www.sciencedirect.com/

David F. Bacon, Perry
Cheng, and V. T. Ra-
jan. POPL 2003: a real-
time garbage collector with
low overhead and consist-
ent utilization. ACM SIG-
PLAN Notices, 48(4S):58–
71, April 2013. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Engineer Bainomugisha,
Andoni Lombide Carreton,
Tom van Cutsem, Stijn
Mostinckx, and Wolfgang
de Meuter. A survey on re-
active programming. ACM
Computing Surveys, 45(4):
52:1–52:??, August 2013.
CODEN CMSVAN. ISSN
0360-0300 (print), 1557-
7341 (electronic).

Lorenzo Bettini and Ferruc-
cio Damiani. Xtraitj: Traits
for the Java platform. The
Journal of systems and soft-
ware, 131(????):419–441, Sep-
tember 2017. CODEN JS-
SODM. ISSN 0164-1212
(print), 1873-1228 (elec-
tronic). URL http://
www.sciencedirect.com/

Vasanth Bala, Evelyn Duester-
wald, and Sanjeev Baner-
jia. Dynamo: a trans-
parent dynamic optimiza-
tion system. ACM SIG-
PLAN Notices, 46(4):41–
52, April 2011. CODEN

Battig:2017:SDC

Berman:2017:EUS

Bedi:2013:MMT

Bodden:2010:AOR

Barbu:2012:ARA

Badihi:2017:CAG

Biswas:2014:DES

[BHSB14] Swarnendu Biswas, Jipeng Huang, Aritra Sengupta,

[BK14] Andrew Brooks, Laura Krebs, and Brandon Paulsen. A comparison of sorting times between Java 8 and Parallel Colt: an ex-

Marc Brockschmidt, Richard Musiol, Carsten Otto,

REFERENCES

REFERENCES

Balatsouras:2013:CHC

Bouktif:2014:PSO

Bastani:2018:ALP

Bonetta:2016:GSM

Brockschmidt:2012:ADN

Bodden:2013:SLS

Basant-Val:2010:SSS

[BVEAGVA10] Pablo Basanta-Val, Iria Estevez-Ayres, Marisol Garcia-
REFERENCES

Basanta-Val:2014:RMP

Basanta-Val:2014:SDG

Basanta-Val:2010:NHR

Basanta-Val:2011:ECM

Basanta-Val:2011:NFI

Basanta-Val:2013:JRA

Basanta-Val:2013:JRA
Basanta-Val:2011:FTM

Bourdykine:2012:LAM

Chevalier-Boisvert:2012:BSH

Coppolino:2019:CAE

Ceccato:2010:MLD

Cecco:2011:SJG

Carter:2013:SSA

Chandra:2016:TIS

Chamberlain:2017:PLR

Chadha:2018:JAS

CHugh:2012:DTJ

Carro:2013:MDA

Chapman:2016:HSH

Cogumbreiro:2019:DDV

Chong:2014:CCT

Campbell:2013:ICC

Bill Campbell, Swami Iyer, and Bahar Akbal-Delbas. *Introduction to

Canino:2017:PAE

Clerc:2016:OJJ

Costa:2010:RMN
Castro:2017:JLC

Chang:2012:IOT

Choi:2013:GGT

Clifford:2014:AFB

Clifford:2015:MMD

Chatterjee:2015:QIA

Cameron:2015:JFE Callum Cameron, Jeremy Singer, and David Vengerov. The judgment of FORSETI:

Casale:2017:PEJ

Cazzola:2014:JBR

Chaudhuri:2017:FPT

Chan:2017:DSL

Cavalcanti:2013:SCJ

Diaz:2013:LEU

Dannen:2017:IES

DaCosta:2012:JSL

Dhawan:2012:EJT

DElia:2013:BLP

DeBeukelaer:2017:ECP

DHondt:2012:ISS

Dolby:2012:DCA

Dietrich:2015:GSE

Jens Dietrich, Nicholas Hollingum, and Bernhard Scholz. Giga-scale exhaustive points-to analysis for

DiPierro:2018:TVG

Dietrich:2016:WJD

REFERENCES

Demange:2013:PBB

DeMol:2012:GTJ

Duarte:2011:ICS

Devietti:2012:RRC

Dietrich:2010:POD

Dyer:2014:DVE

Doeraene:2016:PIW
[DS16] Sébastien Doeraene and Tobias Schlatter. Parallel incremental whole-program optimizations for Scala.js.
REFERENCES

Bois:2013:BGV

David:2014:CMC

Dias:2013:SIP

DosSantos:2010:MPB

Estevéz-Ayres:2014:CSS

elBoustani:2011:ITE

Emeric:2012:CP

Ebert:2015:ESE

Efftinge:2013:XID

Erdweg:2012:GLE

Egbring:2010:POS

REFERENCES

Michael Fogus and Chris Houser. *The joy of Clo-

Fontaine:2012:VCF

Freudenberg:2015:SMP

Flanagan:2013:PES

Cormac Flanagan, K. Rustan M. Leino, Mark Lillicbridge, Greg Nelson, James B. Saxe, and Raymie Stata. PLDI 2002: Ex-

Fan:2018:VCJ

Feldthaus:2013:SAR

Frantzeskou:2011:SUD

Fu:2014:FDC

Yupeng Fu, Kian Win Ong, Yannis Papakonstantinou, and Erick Zamora. Forward: data-centric ULS using declarative templates that efficiently wrap third-

REFERENCES

Gama:2010:SAA

German:2012:MOS

Gupta:2018:HDB

Golan-Gueta:2015:ASA

Golan-Gueta:2017:ASA

Golan-Gueta:2014:ASL

Gligoric:2015:GCB

REFERENCES

REFERENCES

[Gunther:2014:ACC]

REFERENCES

[Han15] Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).
REFERENCES

Heidegger:2012:APC

Hsiao:2014:UWC

Hsiao:2010:EST

Hughes-Croucher:2011:NRS

Hammer:2017:VOV

Halder:2017:JSV
Hofmann:2011:EOS

Hanazumi:2017:FAI

HunEom:2012:SSJ

HunEom:2012:DDP

Horspool:2011:PPP

Hoppe:2013:DDB

Hower:2014:HRF

REFERENCES

Herhut:2013:RTP

Hinojosa:2013:TS

Hunt:2012:JP

Hellyer:2010:LCW

Heidenreich:2010:GST

Hlopko:2014:ISJ

Marcel Hlopko, Jan Kurs, Jan Vraný, and Claus Gittinger. On the integration of Smalltalk and Java. *Science*
REFERENCES

Haddad:2013:SIP

Hague:2015:DRC

Herczeg:2013:TFF

Herranz:2012:VIP

Huang:2012:RR

Hashmi:2012:CNI

Horie:2014:SDJ

Hollingsworth:2012:SPI

Horstmann:2011:CJA

Horstmann:2012:JEC

Hosking:2012:CHL

Haas:2017:BWS

Higuera-Toledano:2010:ISI

[HTLC10] M. Teresa Higuera-Toledano, Doug Locke, and Angelo Corsaro. Introduction to special issue on Java technologies for real-time and

Higuera-Toledano:2014:EIS

Hayashizaki:2012:IPT

Huang:2011:SBA

Haubl:2010:CES

Haubl:2011:ECE

Haubl:2013:CST

[Inoue:2012:ISC]

[Islam:2012:HPR]

[Insa:2018:AAJ]

[Inostroza:2016:MIM]

[Juneau:2012:JRP]

[Joseph:2010:PII]

REFERENCES

Jenista:2011:OSO

JhED11

JLJ17

Johari:2011:ESE

Jagtz:2013:ESM

JMB12

Jung:2014:HCO

Javed:2016:TSJ

Johnson:2015:EES

Jin:2012:JMM

Kossakowski:2012:JED

Kastner:2012:TCA

Kumari:2011:AOO

Kunjir:2017:TAM

Kim:2014:LBL

Kiselyov:2017:SFC

Kulkarni:2012:MCO

Krishnaveni:2012:HOJ

R. Krishnaveni, C. Chellappan, and R. Dhanalakshmi. Hybrid obfuscated Javascript strength

Kedia:2017:SFS

Kouzapas:2018:TPM

Kuehnhausen:2011:AJM

Kumar:2012:WSB

Khan:2015:UJW

Faiz Khan, Vincent Foley-

Knoche:2018:UML

Kerschbaumer:2013:IFT

Kang:2017:PSR

Kalibera:2011:FR

Kabanov:2011:DSF

Kienle:2010:ATT

REFERENCES

Kienle:2013:BRE
[102x618]

Kim:2017:TAA
[102x447]

Krieger:2011:AES
[102x503]

Kaiser:2014:WAM
[102x570]

Ko:2010:EAW
[102x482]

Karakoidas:2015:TSE
[102x315]
Kalibera:2014:FAS

Kulkarni:2016:APA

Kolling:2010:GPE

Kroening:2015:CAV

Kalibera:2011:SRT

Khyzha:2012:AP

Kintis:2018:HEM

[KPP+18] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, Nicos Malevris, and Yves Le Traon. How effective are mutation testing tools? An empirical analysis of Java mutation testing tools with

Kang:2012:FSJ

Kedlaya:2014:DDL

Kedlaya:2014:SST

Krishnamurthi:2012:SAJ

Ko:2019:WSA

REFERENCES

May 2019. CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

Kaufmann:2013:SCO [KSPK12]

Krebs:2014:JJB [KSR14]

Kroshko:2015:OPN [KSW+14]

Kouneli:2012:MKD

Korsholm:2014:RTJ

Kashyap:2014:TRS
Vineeth Kashyap, John Sarracino, John Wagner, Ben Wiedermann, and Ben Hardekopf. Type refinement for static analysis of JavaScript. *ACM SIGPLAN Notices*, 49(2):17–26,
February 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). DLS ’13 conference proceedings.

REFERENCES

Lin:2012:UKT

Lauinger:2018:TSD

Li:2014:MHD

Lorenzen:2016:STD

Leijen:2017:TDC

Lerner:2010:FTJ

Lewis:2013:IAP
Liu:2019:RIP

Liu:2014:JNU

Liva:2019:SDE

Leino:2015:APS

Leung:2013:PEJ

Lin:2015:STU

Lee:2016:ECP
REFERENCES

Loring:2017:SAJ

Long:2012:COS

Leavens:2015:BSS

Lopes:2015:HSA

Lochbihler:2013:MJM

Lochbihler:2018:MTS
Andreas Lochbihler. Mechanising a type-safe model of multithreaded Java with a verified compiler. Journal of Automated Reasoning, 61(1-4):243–332,
REFERENCES

June 2018. CODEN JA-
REEW. ISSN 0168-7433
(print), 1573-0670 (elec-
springer.com/article/
10.1007/s10817-018-9452-
x.

Long:2010:TDSa

[Lon10a] Brad Long. Towards the de-
sign of a set-based Java col-
lections framework. ACM
SIGSOFT Software Engi-
neering Notes, 35(5):1–7,
September 2010. CODEN
SFENDP. ISSN 0163-5948
(print), 1943-5843 (elec-
tronic).

Long:2010:TDSb

[Lon10b] Brad Long. Towards the de-
sign of a set-based Java col-
lections framework. ACM
SIGSOFT Software Engi-
neering Notes, 35(6):1–7,
November 2010. CODEN
SFENDP. ISSN 0163-5948
(print), 1943-5843 (elec-
tronic).

Loureiro:2013:EDS

[LPA13] André Loureiro, João Paulo
Porto, and Guido Araujo.
Extending decoupled soft-
ware pipeline to parallelize
Java programs. Software —
Practice and Experience,
CODEN SPEXBL. ISSN
0038-0644 (print), 1097-
024X (electronic).

Lerner:2014:TR

[TGLPK14] Benjamin S. Lerner, Joe Gibbs
Politz, Arjun Guha, and
Shriram Krishnamurthi. Te-
JaS: retrofitting type sys-
tems for JavaScript. ACM
SIGPLAN Notices, 49(2):1–
16, February 2014. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic). DLS
'13 conference proceedings.

Lux:2011:TSD

[LS11] Alexander Lux and Artem
Starostin. A tool for static
detection of timing chan-
nels in Java. Journal of Cri-
ptographic Engineering,
1(4):303–313, December
2011. CODEN ????. ISSN
2190-8508 (print), 2190-8516
springer.com/article/
10.1007/s13389-011-0021-
z.

Landman:2016:EAR

[LSBV16] Davy Landman, Alexander
Serebrenik, Eric Bouwers,
and Jurgen J. Vinju. Em-
pirical analysis of the rela-
tionship between CC and
SLOC in a large corpus of
Java methods and C func-
tions. Journal of Software:
Evolution and Process,
CODEN ????. ISSN 2047-7473
(print), 2047-7481 (elec-
tronic). See corrigendum
[LSBV17].
Landman:2017:CEA

Larrucea:2018:M

Luu:2014:MCC

Leopoldseder:2016:JJT

Li:2011:JEC

Li:2014:EAJ

Laskowski:2012:DJP

Eryk Laskowski, Marek Tudruj, Ivanoe De Falco, Umberto Scafora, and Ernesto Tarantino. Distributed Java

Luckow:2017:HTP

Liu:2014:FFL

Lerner:2010:SDT

Lin:2015:SGU

Luckuck:2017:SCJ

Lee:2010:JSD

REFERENCES

49, June 2010. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Lindholm:2014:JVM

Liu:2018:JIO

Lyon:2012:JTW

Liu:2012:PAA
REFERENCES

Li:2016:JJM

[Li:2016:JJM]

MAK19

[MAK19]

McIntyre:2012:FJB

[McIntyre:2012:FJB]

Maas:2016:THL

[Maas:2016:THL]

Martinez:2017:MBA

[Martinez:2017:MBA]

Martinez:2017:ARR
Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin Monperrus. Automatic repair of real bugs in Java: a large-scale experiment on

Meijer:2014:EJR

Martinsen:2014:HTL

Martinsen:2017:CTL

Mehrabi:2019:PUP

Miller:2013:IPG
REFERENCES

REFERENCES

Mesbah:2017:REJ

Mesbah:2019:REJ

Madsen:2017:MRA

Magmus Madsen, Ondrej Lhoták, and Frank Tip.

REFERENCES

Meawad:2012:EBS

McIlroy:2010:HJR

Marinescu:2013:FSJ

Moller:2014:ADC

Marino:2010:DSE

Marino:2016:DXU

Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy. dfrx: an understandable, high performance, and flexible memory model for concurrent languages. ACM Transactions on Programming Languages and Systems, 38(4):16:1–16:??, October 2016. CODEN ATPSDT. ISSN 0164-0925
REFERENCES

[112]

Mitcell:2010:FTL

Marchetto:2019:CCR

Mitropoulos:2016:HTY

Malhotra:2013:DFT

Murawski:2014:GSI

Madsen:2015:SAE

Marz:2016:RPC

Stephen Marz and Brad Vander Zanden. Reducing power consumption and latency in mobile devices using an event stream model.

E. Nasseri, S. Counsell, and M. Shepperd. Class move-

Nuzman:2013:JTC

Nguyen:2018:SCM

Newton:2015:ALF

Ryan R. Newton, Peter P. Fogg, and Ali Varamesh.

Noll:2012:IDO

Noll:2013:OFD

Nunez:2016:PGC

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

enhancements/fy1503/2013954669-t.html.

[Nguyen:2018:UCM] Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, and Guoqing Xu. Understanding and combating memory bloat in managed data-intensive sys-
Naik:2012:AT

Omar:2017:PSF

Obaidellah:2018:SUE

Oaks:2014:JPD

Ocariza:2017:SCC

Ortin:2014:RPI

Ottoni:2018:HJP

Ohkawa:2013:RHO

Olsson:2016:ERR

Oh:2015:MWA

Paul:2014:RTP

Pascarella:2019:CCC

REFERENCES

[PKC+13] Mario Pukall, Christian Kästner, Walter Cazzola,
REFERENCES

Piao:2015:JJF

Piao, Xianglan; Kim, Channoh; Oh, Younghwan; Li, Huaying; Kim, Jincheon; Kim, Hanjun; Lee, Jae W. JAWS: a JavaScript framework for adaptive CPU–GPU work sharing. *ACM SIGPLAN Notices*, 50(8):251–252, August 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[PKO+15]

Parizek:2012:PAJ

Pan:2018:ASJ

Park:2014:AAS

[PLR14]

Park:2018:SAJ

Park, Changhee; Lee, Hongki; Ryu, Sukyoung. Static analysis of JavaScript libraries in a scalable and
Pawlak:2016:SLI

Papadimitriou:2014:MLS

Phan:2012:SQI

Porter:2018:PJE

Poslavsky:2019:REJ

Passerat-Palmbach:2015:TSS

Jonathan Passerat-Palmbach, Claude Mazel, and David R. C. Hill. TaskLocalRandom: a statistically sound substitute to pseudorandom number generation in parallel Java tasks frameworks. *Concurrency and Computation: Practice and Ex-
REFERENCES

Pichon-Pharabod:2016:CSR

Pham-Quang:2012:JAD

Pironti:2010:PCJ

Pitter:2010:RTJ

Palmer:2011:BJM

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Authors</th>
</tr>
</thead>
</table>
121, July 2016. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Rayns:2013:CJS

Rehman:2016:VMJ

Rauschmayer:2014:SJD

Rossi:2015:NPJ

Razafindralambo:2012:FFH

Raychev:2016:PMC

Rathee:2017:ROO

Rosa:2017:APV

Robatmili:2014:MRL

Radoi:2015:ETS

Ramirez-Deantes:2012:MTA

Rhodes:2015:DDO

Reynders:2016:GSB

[RDP16] Bob Reynders, Dominique

Reynolds:2013:MJB

Reza:2012:JS

Richard-Foy:2014:EHL

Radoi:2014:TIC

Roemer:2018:HCU

Richards:2011:ACJ

REFERENCES

REFERENCES

Rodchenko:2018:TIE
[132]

Richards:2010:ADB
[132]

Rodeghero:2015:ETS
[132]

Rompf:2012:LMS
[132]

Ryu:2019:TAB
[132]

Rathje:2014:FMC
[132]
REFERENCES

AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic).

[Rosa:2017:ARC]

[Ravn:2012:SCJ]

[Rompf:2014:SPJ]

[Rastogi:2015:SEG]

[Reichenbach:2012:PPD]

[Reardon:2014:SSB]

[Ramos:2013:DSJ]
Sabela Ramos, Guillermo L. Taboada, Roberto R. Exposito...

[Alessandro Ricci, Mirko Viroli, and Giulio Piancastelli. simpA: an agent-oriented approach for programming concurrent applications on top of Java. *Science of
REFERENCES

Ramos:2018:APS

Rudafshani:2017:LDD

Ramamohanarao:2017:SSM

Ryu:2016:JFB

Spadini:2019:MOT

Serbanescu:2016:DPO
Samuelson:2012:LSO

Sartor:2010:ZRD

Smaragdakis:2013:SBP

Shahriyar:2014:FCG

Scherr:2016:AFC

Schmidt:2010:ERA

Schmeisser:2013:MOE

[Sousa:2016:CHL]

[Sridharan:2012:CTP]

[Schoeberl:2017:SCJ]

[Shah:2012:AMJ]

Syed Muhammad Ali Shah, Jens Dietrich, and Catherine McCartin. On the automated modularisation of Java programs using ser-

Sartor:2012:EMT

Stolee:2014:SSS

Staples:2019:SAB

Sev:2012:TJ

Swamy:2014:GTE

[SFR+14] Nikhil Swamy, Cedric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan Chen,

Sherman:2015:DTB

Subercaze:2017:UPT

Simao:2012:CER

Stuchlik:2012:SVD

Steimann:2016:CRA

Siebert:2010:CPR
REFERENCES

SIGPLAN Notices, 45(8):11–20, August 2010. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Siek:2017:CPT

Singer:2010:EGC

Smans:2010:AVJ

Shan:2012:OAC

Salkeld:2013:IDO

Singer:2011:GCA

Schoebeler:2011:HAL

Martin Schoebeler, Stephan Korsholm, Tomas Kalibera,

Søndergaard:2017:CTD

Stilkerich:2017:PGU

Stilkerich:2015:PGA

Steele:2014:FSP

Snellenburg:2012:GJB

Shafiei:2012:MCL
REFERENCES

REFERENCES

SIGPLAN Notices, 49(6):26, June 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Schoebler:2010:NRT

Spoto:2010:MSL

Serrano:2016:GH

Steimann:2010:TMI

Spring:2010:RAI

Schoebler:2010:WCE

Strom:2017:HLR

Stefanescu:2016:SBP

Samak:2014:MTS

Samak:2014:TDD

Sun:2017:AJP

Sawan:2018:RDC

Samak:2015:SRT

REFERENCES

Scanniello:2017:FFC

Sutherland:2010:CTC

Scheben:2012:VIF

Stefik:2013:EIP

Sor:2014:MLD

Surendran:2016:APP
Sudarsan:2019:BDK

Stark:2001:JJV

Su:2014:CEM

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Singh:2013:TGC

Saini:2018:CNC

Sciampacone:2010:EMS

Stone:2015:WMT

Stark:2010:BIA

Sayed:2018:ITI
 REFERENCES

Santos:2013:DDS

Stefanov:2010:JP

Samak:2016:DSF

Sun:2013:BJW

Su:2014:RVP

Subramaniam:2011:PCJ
Venkat Subramaniam. Programming concurrency on the JVM: mastering synchronization, STM, and ac-

Konrad Siek and Paweł T. Wojciechowski. A formal design of a tool for
REFERENCES

150

Stancu:2015:SEH

Szweda:2012:ANB

Sharma:2017:VCS

Simon:2015:STH

Servetto:2010:MMC

Siegel:2011:AFV
REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPoPP ’11 Conference proceedings.

Thomson:2015:LHB

Tomescu:2017:CEN

Teodorovici:2012:BRC

Teodorovici:2013:BRL

Teyton:2014:SLM

Tommasel:2017:SJL

Tu:2014:PPP
REFERENCES

Tran-Jørgensen:2018:ATV

Tsai:2015:JPI

Thiessen:2017:CTP

Rei Thiessen and Ondrej Lhoták. Context transformations for pointer analy-

Tate:2011:TWJ

Tetali:2013:MSA

Tan:2017:EPP

Tian Tan, Yue Li, and Jingling Xue. Efficient and precise points-to analysis: modeling the heap by merging equivalent automata. *ACM SIGPLAN Notices*, 52(6):278–291, June 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-
REFERENCES

2867 (print), 1558-1160 (electronic).

Terra:2013:QCC

Toledo:2012:AJA

Topley:2011:JDG

Toffola:2015:PPY

Taboada:2013:JHP

Taboada:2011:DEJ

REFERENCES

issn=0920-8542&volume=55&issue=2&spage=126.

Takikawa:2012:GTF

Toledo:2011:ACJ

Taboada:2011:DLC

Taboada:2012:FMS

Tatsubori:2010:EJT

Torlak:2010:MCA

Tomoharu Ugawa, Richard

Upadhyaya:2010:UDS

UMP10

UTO13

URJ18

Ugawa:2018:TSL

REFERENCES

Vidal:2016:UAE

Vidal:2018:ARB

VanderMerwe:2012:VAA

Viotti:2017:HRH

VanLoan:2010:ITC

Vega-Gisbert:2016:DIJ

Vikas:2014:MGA

Vitek:2014:CTR

VanCutsem:2010:PDP

Verdu:2016:PSA

Vitek:2012:ISI

VanCutsem:2015:RTC

[VanderHart:2010:PC]

[VS10]

[VS11]

[Varier:2017:TNJ]

[VanNieuwpoort:2010:SHL]

[VYYY10]

[VWJB10]
Thomas Wühringer, Danilo Ansaloni, Walter Binder, Christian Winmer, and Hanspeter Mössenböck. Safe...

REFERENCES

Wellings:2016:ISC

Woo:2014:LLD

Wang:2019:DEJ

Wagner:2018:VVH

Wagner:2011:SJV

Wagner:2011:CMM

REFERENCES

REFERENCES

REFERENCES

1523-2867 (print), 1558-1160 (electronic).

[Wurthinger:2017:PPE]

[Wurthinger:2013:USD]

[Wei:2016:ESD]

[Wang:2019:OTA]

[Wu:2018:EBJ]
REFERENCES

ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Jooyong Yi, Dawei Qi, Shin Hwei Tan, and Abhik Roychoudhury. Software

Yiapanis:2013:OSR

Yahav:2010:VSP

Yue:2013:MSI

Yu:2018:NFN

Zakas:2010:HPJ

Zakhour:2012:JTS

Zakai:2018:FPW

REFERENCES

Zheng:2015:APP

Zheng:2015:APP

[ZBB15]

Zhang:2017:ACE

Zhang:2017:ACE

[ZBB17]

Zhang:2015:SYB

Zhang:2015:SYB

[ZCdSOvdS15]

Zuo:2016:LOF

Zuo:2016:LOF

[ZDK+19]

Zeuch:2019:AES

Zeuch:2019:AES

[ZDS14]

Zschaler:2014:SJF

Zschaler:2014:SJF
Zhao:2012:PTI

Zhang:2015:LOS

Zhang:2012:RAJ

Zhao:2013:INT

Zhang:2014:AIO

Zeyda:2014:CMS

Zabolotnyi:2015:JCG

Zhang:2014:ARP

Zhou:2016:IRO

Zhang:2014:HTB

Zakkak:2014:JJM

Foivos S. Zakkak and Polyvios Pratikakis. JDM.

Zibin:2010:OIG

Zerzelidis:2010:FFS

Zhu:2013:EAZ

Zhao:2014:CSP

Zhijia Zhao, Bo Wu, Mingzhou Zhou, Yufei Ding, Jianhua Sun, Xipeng Shen, and Youfeng Wu. Call sequence prediction through probabilistic calling automata. ACM SIGPLAN Notices, 49(10):745–762, October 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Zhang:2016:NVC

