A Bibliography of Publications about the *Java Programming Language*, 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

29 January 2020
Version 1.218

Abstract
This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

3 [DiP18b, FLZ+18, GBC12, JEC+12, ZXL16].
39.95 [Ano18]. 4 + 1 [SRB18]. τP [LTK17].
C_P [AO11]. K
[PLL+18, SS19, SD16b, SGG+17]. N
[ADJG19, WZK+19]. Z_p [AO11].
-core [PLL+18]. -Means [SS19]. -overlap
[ADJG19]. -safety [SD16b]. -Tier

[WZK+19].
/multi [Taf13]. /multi-threaded [Taf13].
’12 [Hol12]. 12th [Fox17a].
2015 [LSBV17]. 27th [KP15].
5 [KHR11].
6 [Jen12].
7 [Ano15, EV13, J+12]. 75 [HWM11].
8 [BKP16, CWGA17, LYBB14, SAdB+16, UFM15].

Adequacy [PSJ18]. Adequate [GGZ+15]. ADiJaC [SD16a]. Admitted [YXS+19].

Adoption [PBMM13, PGA18]. Adrianna [Ngo12]. Advanced [Hor11, VBAM10a, dJM18, Jen12]. Advances [FHP+12]. Adversarial [FF10].

algebras [IvdS16, ZCdSdOvdS15]. Algorithm [JJC19, YCYC12, ZW13, MT13, MLM17, Por18, Gun14]. Algorithmic [FHP+12]. Algorithms [BF18, GT10b, Gra15]. Aliasing [NS12]. Alignment [NNB18]. alike [DAA13].

Alting [WBM+10]. always [AJL16]. Analyses [Kri12, TN19, HB13, KMZN16, PMP+16, ZMG+14]. Analysis [ADJG19, AGM+17, Bul18, CPV15, Hol12, JJC19, KCD12, LHR19, MvDL12, NS12, RDCC12, RRB19, SPP+19, SOD15, SW12, SDC+12, SLES15, SLE+17, SR17, VP16, ZKB+16, AM14, Bra14, CFH+13, CDMR19, DHS15, GBY+11, HCN14, HWL11, KSW+14, KT14, KvGS+14, KPP+18, KRR19, LSBV16, LSBB17, LT14, MTL15, MKZ+14, MCC17, MB12, NSDD17, NS13, PIR17, PLR18, Pufl3, RLVB10, RRB17, SPP10, SNSB11, SBK13, SP10b, TLX17, TWX+10, TLMM13, TL17, TPG15, WA19, ZMY14, ZWS15, CH17].

Analytics [BBB+17, KB17, STCG13]. analyzer [FeR13, GN16, SMP10]. Analyzing [PLL+18, ZDK19, BTR+13, PSNS14].

Android [CNS13, MPM+12, STY+14, THC+14, ZHL+12, ZKB+16, vmtMV12]. AngularJS [RVT18]. Ann [CSdL16].

balances [FMBH15], balancing [PDPM+16], Ball [DD13], Bar [WCG+18], Barrier [CHMY19, CHMY15, VB14a], barriers [HJH10, WBM+10], Based [AFGG11, DLR16, GM12, GGZ+15, GCC18, LTD+12, MvdL12, MM12, PTML11, PiLCH11, PE11, RBL12, RT14, GD15, SLS+12, ST15, SWF12, YPM12, AZY18, AST+16, AD13, BBF+10, BBP13, BB17, BL15, CDM10, CSKB12, CJ17, CJ19, CPST14, CPST15, EKUR10, GT10a, GMC+13, HWM14, HWI+12, HOK14, HLWM11, IHWN12, IRJ+12, JEC+12, JO14, KATS12, KS13, KRCH14, KVRA14, KS14, Lon10a, Lon10b, MCC17, MB12, MCI+10, Ott18, PDPM+16, PSW11, SZ11, SBF13, SMP10, SPY+16, SV17, SNS+14, UIY10, UPR+18, VS17, XHH12, YP10, YKA+19, ZY+12, ZY+19], Basic [NBB18, CZ14], basic-block [CZ14], basics [Zak12], basierte [Ric14], Battery [ST15], battlefield [WT10], Bayesian [BS14, RKHN18], BeagleBone [Ric14], before [TD15], begone [MRMV12], Behavior [Sm18, IWB+15, RLV10, TABS12, WX16], Behavioral [LN15, AMWW15], behaviors [PCL14], behaviour [SMS+12], Beliefs [BA17], Ben [Teo12], Benchmark [GBC12, SMSB11], Benchmarking [CKS18, AIH+15, DMD17], benchmarks [KHM+11, RGEV11], benefit [HH13], best [Sch13], Better [Bro12, TD15], Between [ADJG19, PVB17, ZLH15, BKP16, CCM17, CSKB12, CSM+16, LSB17, RDP16, SH12], beyond [Mor18], Big [BF18, GTS+15, N WB+15, NFN+18, RK15, BOF17, BBXC13, RK19, SGG+14, WR10, XGD+19], billions [DRN14], Binary [WW+18, XXC19], bindings [VGRS16], bird [Guy14], Birthmark [PiLCH11], Bitcoin [TD17], BIXSAN [VS11], Blame [KT15], BLEak [VB18], Bloat [MSS10, N WB+18, XMA+14, BRGG12, BBXC13, XR10], bloat-aware [BBXC13], block [CZ14, KBL14], block-level [KBL14], blocking [DW10], Blockly [AMWW15], Blueshell [PWA13], boilerplate [ZCdSOvdS15], Book [Ano15, Ano18, Bro12, De13, Gve13, Kie13, Ngo12, Teo12, Teo13], Bookshelf [Ano18], Boosting [ASV+16, AC16], Bootstrapping [CBLF12], Bottle [DSEE13], bottlenecks [DSEE13], bottom [ZMNY14], bottom-up [ZMNY14], boundary [RP16], Bounded [NW+15, GMI14], Bounds [CS12, GV+11], boxes [BGDS13], Brain [VBZ+18], breaking [VB14a], Breakpoint [ZWL13], breakpoints [PS12], Brewing [WZL+18], Bridging [PVB17], Bringing [CV14, HRS+17, STS+13], Broken [dGRdB15], Browser [MSSK16, PVB17, FIF+15, VS11, VB14a, WGW+11, YK14], Browsers [HLSK13], Browsing [LY+18], Browsix [PVB17], BUbING [BMV18], Budget [GM12], buffered [DLZ+13], buffers [Gun14], Bug [RPP19, LWH+10], Bugs [OBPM17, XMD+17, EBS15, MDS+17, ODL15, Ryu16], Build [BMDK15, BNE16, ELW15, MAH12], Building [Sta10, SS19, HW+15, Ngo12], Business [CCA+12], Bytecode [BDT10, BSOG12, FHS10, SS12, RDC12, Rey13, SEK+19, AdCGGH16, CZ14, DLM10, SP10b, SMP10, VB14b], C [BB12, CDG+17, GBC12, KB11, LSB16, LSB17, NED+13, SRK17, Sta10, YSCX17, Zak18, ZWS15, C# [SSK13], C/C [BB12, NED+13], CA [KP15], cache [IN12, ZP14], caches [NGB16], calculations [VSG17], Calculi [FF17], calculus [AH10, PS10a], Call [FG12, PUL16, WZ+14, Xue12, SSB+14a], Call-site [SSB+14a], calling [HB13, SS14a, ZW+14], Calls [SW12, SS16], came [Car11], can [TPG15], can’t [WA19], capabilities [Ame13].
capability [RDF15]. capo [SMSB11].
capturing [BKC+13]. Card
[GMPS12, BL15, ABFM12, MLM17, MLM19, dCMMN12]. Cards
[BH12, GMPS12]. care [EKUR10]. Caring
[DA13]. carry [Ame13]. Cartesian
[SD16b]. Case
[LMZP19, ZMM+16, dGRdB+15, AMW15, HNTL12, JK11, MT13, SPPH10, Vit14].
Cassandra [FRM+15]. casts [SH12].
categorising [CMM17]. Catena [TD17].
Causal [MRF18]. Causes
[OBPM17, FRM+15]. CAV [KP15]. Cay
[Gve13]. CC [LSBV16, LSBV17], CCA
[FLZ+18, ZXL16]. Center [Hol12]. centric
[DHM+12, FOPZ14]. CERT [LMS+12].
chain [KSR14]. Challenges
[GM12, SWMV17, Sie17, SR17, AACR18].
Change [YXS+19, YQT15, MPR12].
Change-Level [YXS+19]. Changes
[MvDL12, CJ19, PTRV18]. Changing
[SSG+14]. Channel [Bul18]. channels
[AGH+17, LS11]. characteristics [ABC18].
Characterizing [CJ17]. check
[CS12, GyRN+11]. Checking
[BNE16, CSF+16, Cho14, FS12, JC10, JYKS12, ABFM12, BHSB14, BNS12, CVG+17, DLM10, FLL+13, HMDE12, KATS12, KvRHA14, LIT11, RR14, RAS16, RDFS15, TVD10, VYY10]. checkpointing
[SGV12]. checkpointing-enabled [SGV12].
Checks [FMH15]. CHERI [CDG+17].
chip [PS10b, Puf13, RS12, SPS17].
chip-multiprocessor [PS10b].
chip-multiprocessors [RS12]. Choice
[JCMM19, WB10]. CICS [R+13]. CIL
[BBF+10]. circular [Gun14, S10]. Circus
[ZLCW14, MCW19]. City [Hol12]. Class
[BS13, CSF+16, NCS10, CSKB12, HC10, MHM10, SC16, SM12, TSD+12]. Classes
[And14, SVB+17, WT11, CZ14, CS12, SZ10, TSD+12, VBDPM16]. Classifies [SD16a].
Classification [PBM+19, SS14]. Classifiers
[BS14]. Classifying [MHM10, PBB19].
Classless [WZdSOS17]. clicker [HA13].
Client [MS14, OBPM17, CH17, KRH16].
Client-Side [OBPM17, KRH16].
Client-State [MS14]. clients [SRB18].
Clojure [ECG12, FH11, VS10]. Cloned
[SSL18]. Closing [ZLHD15]. Closures
[BO11, BO12, BO13]. Cloud
[VDV17, WZK+19, BFS+18, GGC18, LZY16, TLMM13]. cloud-based [GGC18].
classified [PDM+16]. clustering
[MKK+12, MKK+13]. clusters [TRTD11].
Cocoa [Sta10]. Code
[ADG19, BH17, BNE16, CJ19, HC11, MSS19, MM16, PKPM19, Rk15, RLMM15, SRTR17, SVB+17, SV15a, SED14, WWG+18, XXCL19, AGR17, AK13, CCFB15, DRN14, FLZ+18, FH16, FMS+11, IS18, LVG10, MKK+12, MKK+13, NG13, OJ12, PTRV18, PBB19, PMP+16, PSH11, RFRS14, RBV16, RVK19, RO12, SSK13, Tai13, UTO13, VSG17, WKJ17, WGF11, WBA+11, WAB+11, WXS13, ZHL+12, ZXL16, ZWSS15].
Code-Issue-Introducing [CJ19]. coding
[LMS+12]. Coefficient [ADG19]. Coffin
[Teo12]. coherent [ZP14]. Cohesion
[RC17]. Cold [BZD17, WGF11]. Collect
[JCM19]. collected [AGGZ10]. collecting
[AHK+11]. Collection
[ASV+16, BF18, GM12, MAK19, QSaS+16, ST15, URJ18, ASME18, BP10, BO17, KPVH11, KLB14, NGB16, ODL15, PZM+10, PDP+16, SP10a, SMB14, Sie10, SBBL10, SKBL11, UIY10, UJR14]. Collections
[GS12, LN10a, LN10b, SC12, SV17]. collectives [RTET15, TRTD11]. Collector
[BH12, GTS+15, BCR13, BVG14b, Puf13]. Collectorens [Sch13]. collectors
[GTSS11, Sch13, XGD+19]. coloring [SS10].
Colt [BK16, WN10]. CoMA [AGR12].
Combating [NWB+18]. Combination
[BS14]. Combinatorial [YHY13].
combinators [MHB13]. Combining
[BDGS13, MSS19, MGI17]. commensal
Communication [JQJ+16, RTE+13, SK12, BJBK12, ETR+15, TTD+11].
communications [ETTD12, RTET15, TTD12]. Communities [ZMM+16]. COMP [CKS18]. Compact
[HWM+10, HWM11, JLI17]. Comparative [KB11, CDMR19, KFBK+15, SSL18]. comparing [MD15]. Comparison
[BKP16, ADI13, BJBK12, HH13, KvRHA14, SMS+12]. Comparisons [GGZ+15]. Compartmental
[WGW+11]. compatibility [DJB16, OIA+13]. compatible [ABCR10, Hor12].
Competition [CKS18]. Compilation [DLR16, PKPM19, CGJ+16, CMS+12, DLR14, FSC+13, IHWN12, JLP+14, JK13, JMO14, KS13, KHL+13, Lei17, MD15, MGI17, ZBB15]. compiled [NED+13, RO12, TMVB13]. Compiler
[JMB12, Loc18, NKH16, NWB+15, BBF+10, BRWA14, CIAD13, Cle16, HWM14, IHWN12, KMLS15, KS14, KC12, LSWM16, MDM17, Ott18, Rub14, TTS+10, TWSC10, VB14b, ZYZ+12]. compiler-compiler [KS14]. compiler-runtime [TWSC10]. compilers [Hos12, LMK16, RSB+14]. Compiling [Fee16, Hos12]. complementation [BS13]. Complete
[BO13, BR15, JC10, Sch14, Gri17, PSR15, RGM13, RRB17]. completeness [KBPS17]. completing [BS13]. completion [FH16].
Complexity [SSH17]. Compliance [GD12]. compliant [MZC10a]. component
[AST+16, CSKB12, GT10a]. component-based [AST+16, GT10a]. components [BMSZ17, FOPZ14, KS14].
Composable [SS10]. Composing [EAVBGV14]. Composition
[SK12, AGH+17, AH10, SZ10, VM15]. Comprehension [BGK17]. Comprehensive
[STST12, VBMA11, ZKB+16, MKZ+14]. Compressing [Gun14]. Computation
[HWM11, OAC18, DNB+12, KP15]. Computing
[Hol12, MPR12, NBB18, PWG17, PWG19, SHU16, TWNH12, WN10, AdSCdR+19, LZYP16, Rub14, TTD+11, VF10, TRE+13]. con [SMSB11]. conceptual [Tai13].
Concurrence [BG17, Bro12, SWF12, BVGVEA11a, CHM13, DMS11, HAW13, KHL+17, PPS16, Sub11, TD15, UR15]. Concurrent
[XMD+17, SS16]. Conference
[DDDF17, Hol12, KP15, LMK16, PDPM+16]. Configurations [PSJ18]. conflict [ABC18]. Conformance [AGR12, SKR17]. Confused
[CSF+16, CS12, DNB+12, FRM+15, ZBB17]. consistent [BCR13], constrained [KSR14].
constraint [FMBH15, SHU16]. Constraints
[SGD15, LSSD14]. construction [CIAD13, RGEV11]. constructors [MME14]. constructs
[PCL14, PTF+15]. consumers [DAA13]. Consumption [MV16]. container [XR13].
containers [XR10]. Context
[HWM13, MM16, TL17, HB13, IvdS16, SSB+14a, ZYY+19]. Context-sensitive
[HWM13]. Contextual [MSSK16]. Continuous
[Teo12]. Continuously
[DTLM14]. Contracts
[YQTR15, HBT12, KT15, KKW11]. Control
[FGR12, FHSR12, TT11, TNTN12,

cross-program [KMZN16]. cross-thread [BKC+13]. Crowdsourcing [BH17].
customizations [LVG10]. customized [HB13]. cutting [AMWW15]. Cyclic [BMOG12, RS12].
[LCW18]. dependability [GD10].
Dependence [PDDD17, JWMC15].
Dependence-driven [PDDD17].
dependences [BKC+13, WLL19].
dependencies [ELW15].
Dependent [CHJ12, LE16]. deploying [R+13].
deprecation [SRB18]. depth [Rau14].
Design [AC16, ETTD12, MLGA11, Puf13,
RT+13, SW12, TRTD11, TKL+15,
VGR16, YCYC12, BBXC13, CS1L16,
GSD+15, IRJ+12, Lon10a, Lon10b, OA17,
SADB+16, SMS11, VM10, Xue12].
Designing [Sev12b, KHR11].
Desktop [GS11].
destructive [FF10].
Detecting [BK12, HLO15, PiLCH11, XR10, FF10].
Detection [BH10, BSOG12, KCD12, MS14,
RD15, XMA+14, ZKB+16, AF12,
BBD11, BK14, BCD13, BOF17, CSV15,
CPST15, ELW15, GYB+11, HB13, KRC14,
KK+14, KT14, LW+10, LV10, MKZ+14,
Nil+12b, NG12, Ned+13, RLBV10, RCR+14,
RRB17, SR14b, SPS10, SH12, TPG15,
VBAM10b, WXR16, WFF18, WBA+11,
WAB+11, WWS13, WW+17, ZBB15].
dynamic-memory [GYB+11].
Dynamically [WWG+18, CZ14, CMS+12, hEYJD12].
Dynamically-Generated [WWG+18].
Dynamo [BDB11].
e-Science [SGV12]. ease [DRN14].
Easy [Jaf13, CRP+10].
economic [CSV15]. economics [SJBL10].
Ecosystem [YMHB19]. Edition
fragmentation-tolerant [PZM+10].
Fragments [PBM’19, OA17], frames [SJPS10]. Framework [CCA’12, Den18, FFB’17, LM15, PWSG’17, PWSG’19, RBL12, SEk’19, TN19, Ame13, AC16, DDDF17, ER14, FRGPLF’12, JEC’12, KMLS15, Lon10a, Lon10b, MT13, PGA18, PKO’15, RR14, STY’14, ZW10, ZDS14]. frameworks [PPMH15].

Free [DTLM14, FC11, GK15, HHB’14, NFV15]. free-form [GK15]. free-lunch [DTLM14].
frequency [ZWSS15]. Frequent [RC17].

Functional-style [UFM15]. functions [LSBV16, LSV17]. Fundamentals [HC13, Teo13, Gve13].

Fusing [MS13, ETR12, WM10]. fusion [KBPS17].

Game [MT14, Wan11]. Gap [PVB17, ZLHD15]. Garbage [ASV’16, BH12, BF18, GTS’15, JCMM19, MAK19, QSaS’16, Sch13, SKBL11, URJ18, ASME18, AGGζ10, BCR13, BP10, BVGVEA11b, BOF17, GTSS11, KPHV11, KBL14, NGB16, PZM’10, PDPM’16, Puf13, SP10a, SBM14, Sie10, SBJL10, UY10, UJR14, XGD’19].

General [CHMY19, AdScdR’19, AZLY18, CHMY15, EKUR10]. general-purpose [AdScdR’19].

Generation [AGM’17, BH17, YWWW’18, CRJ’10, CMM’10, PPMH15, Pha18, PSNS14, Rim12, RO12, UMP10, ZYY’19].

genations [BOF17]. generators [SLF14].

generic [DDM11, Fer13, HH13, ZPL’10, eBH11]. generics [AS14, Gri17, PBMH13].

Genetic [YCVC12, MT13]. Genotyping [YCYC12].

GeoGebra [ABK’16]. geosciences [MCY’10]. GeoSparQL [BB12].

get [Ame13]. Getaway [SLES15, SLE’17]. Gets [BH12]. getters [Mi13].

Getting [GTM14]. Giga [DHS15].

Giga-scale [DHS15]. GitHub [LMZP19].
glimpse [SP16]. Global [PE11].

Global-SCALE [PE11]. Globally [YMHB19].

Glotaran [SL’12]. go [LWB’15].

Goldilocks [EQ’10]. Good [dGRdB’15].

Google [Ngo12, MGI17, Sam12].

GPGPU [PQTGS17]. GPGPU-accelerated [PQTGS17].

GPU [PKO’15]. GPUs [Hos12].

Gradual [RSF’15, SFR’14, TSD’12, Sie17].
grounded [DRN14]. grammars [GN16, SHU16].

Granularity [RRB19, CZ14, YKA’19].

Graph [dMRH12, BS13]. Graphical [SL’12].

Graphics [Cec11, LLI13].

graphs [AdCGGH16, DSEE13, JWMC15, PUL016].
green [BRGG12].

Greenfoot [Kol10]. grid [SGV12, VWJB10, MZC10b]. Gridifying [MZC10b].

Grounded [EV13]. Growing [EKR’12].
growth [LDL14].

 Guarantees [JJWMC15, ZHCB15].

GUI [CNS13, VGS14, WBA’11].

GUI-awareness [VGS14]. Guide [Ame13, Oak14, Rau14, Teo13, Top11].

Guided [CNS13, DiP18b, MMP15, KY16, Ott18, PSNS14, RKHN18, SSH17].

Guidelines [GGZ’15, HLSK13].

Hacks [Ott18]. Handling [KW11, ECS15, HW14, KW10, WK12].

Hands [CSZ17, Teo13]. Hands-on [CSZ17, Teo13].

happens [Han15]. happens-before [TD15].
hard [LTK17, Pufl13]. Hard
ware [MAK19, SKKR11, SPS17, CBGM12, IN12, SE12, ZDK+19]. hardwired [OYU13].
harness [Kie13]. hash
array [SV15a, SV15b, SV18]. hash-array [SV15b].
hash-tries [SV18]. hashing [GRF11].
HDFS [IRJ+12]. HDL [OYU13]. health
[EKUR10]. heap [CSV15, LDL14, TLX17, Tar11, VYY10, YS10, BVGV10].
heap-manipulating [YS10]. Heaps
[SFN+18]. Helping [RS14]. Hera [MS10].
Hera-JVM [MS10]. Herman [Kie13].
Heterogeneous [ASV+16, HBB+14, Rub14, AY10, ABCR10, DFR13, MS10, SV18].
Heterogeneous-race-free [HBB+14].
Heuristics [MG14, LMK16]. HHVM
[OTT18]. Hiding [RBL12]. hierarchy
[BS13]. High
[GS+16, Hol12, IRJ+12, MSM+16, RGB18, SWU+15, URJ18, WN10, Zak10, BRWA14, Hos12, Ngo12, RFBJ14, TTD+11, TGD17, VJJ10, WFF18, WWH+17, TRE+13].
High-coverage [RGB18].
high-dimensional [TGZ17]. high-level
[Hos12, RFBJ14, VJJ10].
High-Performance
[URJ18, WN10, GS+16, BRWA14, Ngo12, TTD+11, WFF18, WWH+17]. higher
[KT15]. higher-order [KT15]. highly
[BP10, SPP+10]. history [DRN14]. hit
[ANO13]. Hoare [SD16b]. hole [ANO13].
Holistic [MAH16]. Hop
[WBHN18, D’HI12]. Hops [SP16].
Horstmann [Gve13]. hosted [CBLFD12].
hot [LMK16]. HotSpot [Sch13, BOF17].
HotWave [ABMV12, VBAM10b]. HPC
[JQ1+16]. HTM [CHM16]. HTML [STA10].
HTML5 [HLO15, NH16, Aono15].
Hunting [GCC18]. HVM [LTK17].
Hybrid [CHM16, JQ1+16, JMO14, KCD12, VDV17, ZMN14, ZMM+16, ASME18, ADI13, HyG12, PbMG12, STA18, SWB+15].
Hybris [VDV17]. hygienic [DFHF15].
hypervisor [GMC+13].
i-Jacob [LYM+18]. IaaS [ZLHD15].
Identification
[PB19, SBE+19, BZ17, FMS+11].
Identifier [SRTR17]. identifiers [FMS+11].
Identifying [IN12, SVB+17]. if
[Han15, STA18]. If-transpiler [STA18].
implementing [BK14]. Image [WN10].
immutable [HMDE12, ZPL+10].
immutable [SV15b]. impact [CMS+12, Gra15, HWLM11, MPRI2, WKJ17].
imperative [RRF14]. implement
[HH17]. Implementation
[CSF+16, GPT12, HM12, NBB18, OA17, Por18, VGRS16, WP10]. implementations
[CSS+16, OJ12, PS10a]. Implementing
[FFF17, GM12, WCB16, EEEK+13, FBH17, PMP+16]. implications [BRGG12].
imply [SdS16, SPAK10]. imply
[BRGG12]. Improve [OTR+18, QSS16].
Improved [KRR+14, UIY10, OJ12, XHH12].
Improvement [RC17]. Improving
[ACS+14, HWI+12, TWSC10, WGG+18, eBH11, UTO13]. in-depth [Rau14].
in-place [DVL13]. including [Den18].
Incremental
[LHR19, DS16, LWW+15, UIY10].
independent [IF16, VS11]. industrial
[CRJ+10]. ineffectively [XR10].
instructly-used [XR10]. Inference
[BO13, YHY13, AGZ10, CGJ+16, HyG12, HMDE12, RKHN18, Zha12]. Inferring
[PRV18, AS14, BENS12]. InfiniBand
[ETTD12, IRJ+12]. infinite [ASdMG14].
Inflow [ZMM+16]. influence [MHR+12].
Informa [HA13]. Information
[AS17, HBS16, KWH+13, RKN+18, SS12, AF12, ABFM12, BVGV11b, CMS+12, PMP12, RB17, ZYY+19].
Information-flow [HS16].
Infrastructure [Den18, NG12, WCST19].
Inheritance
[LN15, WT11, AST+16, GBST13, NC10].
Initial [LT+12]. initialization
[AMT17, ME14]. Initiation [FGR12].
Injecting [ZZK13]. Injection [SBE⁺19].
inline [DJLP10]. Inlining
[BA12, STA18, HWM13]. input [Pha18].
insecure [YW13]. Insight [VF10].
instanceof [SMS⁺12]. Instant [MHBO13].
instantiation [AST⁺16]. instead
[AGH⁺17, BTR⁺13]. instrumenting [CZ14].
Integrated [Tar11, YP10]. integrating
[SPP⁺10]. integration
[Ame13, HKVG14, Sch10a]. integrity
[HDK⁺11]. Intel [CDMR19]. intelligence
[JACS10]. Intelligent
[LYM⁺18, NWB⁺18, SAdB⁺16]. inter
[AGH⁺17, BTR⁺13]. instrumenting [CZ14].
Integrated [Tar11, YP10]. integrating
[SPP⁺10]. integration
[Ame13, HKVG14, Sch10a]. integrity
[HDK⁺11]. Intel [CDMR19]. intelligence
[JACS10]. Intelligent
[LYM⁺18, NWB⁺18, SAdB⁺16]. inter
[AGH⁺17, BTR⁺13]. instrumenting [CZ14].
Integrated [Tar11, YP10]. integrating
[SPP⁺10]. integration
[Ame13, HKVG14, Sch10a]. integrity
[HDK⁺11]. Intel [CDMR19]. intelligence
[JACS10]. Intelligent
[LYM⁺18, NWB⁺18, SAdB⁺16]. inter
GYB+11, GM12, GBS14, GD12, GBC12, GS11, GS12, Gou11, GMC+13, GT10b, GJS+13, GJS'14, Gri17, GPT12, GK15, HL13, HD17, HdM17, Has12, HWM10, HWM13, HWM14, HA13, HM12, HTLC10, HKVG14, HH13, HOKO14, HGCA11, Hor11, Hor12, HC13, HC10, HZZK19, HWLM11, HJ12, IHWN12, IN12, IS18, IF16, JC10, JEC+12, QJF+16, JLL17, Jen12, JB12, JYKS12, JTO12, JH11, J+12, JMB12, JMO14, KHR11, KHM+11, KMLS15, KS13, KW10, KW11, KPP+18, KM10], Java [KSR14, KSPK12, KDPG18, KS14, KF11, KB11, LSBV16, LSBV17, LTD+12, LMK16, LSWM16, LLL13, LT11, LT14, LZYP16, LXP18, LYBB13a, LYBB13b, LYBB14, Lz12, LKP19, Loc13, Loc18, Lon10a, Lon10b, LMS+12, LO15, LPA13, LWC17, LTK17, LS11, Lyo12, MKZ+14, MS13, MME+10, MLGA11, MDS+17, MCC17, MPM+15, MZC10b, MKTD17, MM16, M HH10, MAH12, MB12, MCY+10, MGS19, MPR12, MLM17, MLM19, MKK+12, MKK+13, MSS10, MCW19, MhH15, MT14, MDHS10, NM10, NCS10, NS12, NII12a, NII12b, NG13, NNTK17, NBB18, Oak14, OOK+10, OMK+10, OIA+13, OUY+13, OW16, OJ12, OCFL14, PS11, PLL+18, PdMG12, PTML11, PMTL14, PHTH14, P12, PiLCH11, PBMH13, PBB19, PPMH15, PMP+16, PQD12, PVH14, PTF+15, PS10a, PS10b, PDPM+16, Pos19, PSS11, PfU13, PKC+13, QLBS17, RD15], Java [RDCP12, RTE+13, RTET15, RR14, RS12, RHT13, R+13, RBL12, RAS16, RS12, Rey13, Rez12, RVP11, RLM15, RRB19, RB15, RvB14, SSL18, SSB+14a, SE12, SRB18, SRTR17, STST12, SS12, Sch14, Sch13, Sch10a, SPPH10, SKR11, SDH+17, Sch10b, SSMGD10, SZ10, Set13, SMSBB11, SMS+12, SM12, SDM12, SWMV17, SW12, SVG12, SKBL11, SD16a, SJPS10, SLS+12, SKR17, SS14, SABB19, SP10b, SMP10, SBE+19, SPP+10, SWB+15, SSB01, SSB14b, ST15, SPS17, SSG+14, SS19, STS+13, Sle14, SW12, TRTD11, TTD+11, TTD12, TREG+13, TLL11, TWX+10, TFPB14, TN19, TWHN12, TTN12, TGZ17, TJL18, TKL+15, UR15, UPR+18, VSG17, VGRS16, VBDPM16, VBDMP16, VGS14, VBAM10a, VBAM10b, VBMA11, WGF11, Wan11, WzDSOS17, WCT19, WLI19, WBM+10, WK12, WCB16, WN10, WRI+10, WA19, WHV+13], Java [WHIN11, WZ+18, WBA+11, WAB+11, WWS13, XHH12, XR13, XMD+17, Xue12, YP10, YKM17, YKA+19, YDF15, ZlvdS17, Zak12, ZP14, ZLCW14, ZHL+12, ZXL16, ZKB+16, ZYY+19, ZWSS15, ZPL+10, ZDS14, dCMMN12, dMRH12, eBH11, eED12, vdMvdMV12, Del13], Java-Based [AFGG11, SLS+12, ST15, SWF12, CJ17, CJ19, HOKO14, JMO14, KS13, KS14, MB12, MCY+10], Java-compatible [ABCR10], Java-like [BDGS13, BCD13, DJLP10, SZ10], Java-to-HDL [Ouy+13], Java-to-JavaScript [LSWM16], Java.util.Collection.sort [dGRdB+15], Java/JSP [Sch10b, Java/Scala [Pos19], JavaBean [MZZ10a], JavaBIP [BMSZ17], JavaCC [GN16], JavaCOP [MME+10], JavAdaptor [PKC+13], JavaFX [Top11], JavaGI [WT10, WT11], JavaScript [Ano15, Kie13, Ric14, Teo13, CH17, AMT17, ACS+14, AKH+15, AGM+17, AMWW15, BNP+18, BCF+14, BBP13, Cec11, Chai8, CGJ+16, CVG+17, CBLFD12, Ch14, CHJ12, Dei10, Dei11, DcSG12, DiP18a, DiP18b, DFHP15, FMM+11, FM13, FH16, FBH17, FSC+13, FZ17, FOPZ14, GMS12, Guo17, HyG12, Hav11, HBS16, HSK13, HHS13, HC11, HOSC16, KR12, KSW+14, KRH16, KT14, Ker15, KFBK+15, Kie10, KBL14, KRR19, KARO12, Kri12, LSWM16, Ler10, LVG10, LPGK14, Liu14, LML17, MTL15, MTL17, MPS12, MGI17, MHL15, MRMV12, Mil13, MM12, MMP15, Mor18, NKKH16, NSDD17, OBPM17, PWSG17,
May 2019, PLDI17, PKO16, PKPM19, PDDD17, PKO15, PLR15, PLR18, PKPM19, PDDD17, PKO15, PLR15, PLR18, PKPM19, PDDD17, PKO16, PLR15, PLR18, PLR13, ERGEV11, RHN13, RW17, Ryu16, RPP19, SMN12, STA18, Sev12a, Sev12b, SVB17, SDC12, Sta10, Ste10.

JavaScript
[SRI17, SFR14, TAF15, TT11, VM15, VP16, VB14b, Wall2, WCST19, WXR16, YW13, Zak18, Zak10, dM18, BM18, KCD12, Mei14, Ano18, Kie13, Teo12, Teo13].

JavaScriptCore [Piz17], JaVerT [SMN18], JAWS [PKO15], JBInsTrace [CZ14], JCloudScale [ZLHD15], JCML [dCMNN12], JCSI [ABFM12], JCSPr [WBM10], JDiffraction [PQTGS17], JDK [SRB18], JDMM [ZP14], JEqualityGen [GRF11], JET [LT11], JGRIM [MZC10b], Jinn [LWH10], JIT [BBB10, BB17], CMS12, HWM14, IHWN12, JK13, NED13, Ott18, RSB14, WKJ17, ZYZ12], JIT-based [BB17], JITs [KRC14], jMarkov [CRAT12], JML [CRJ10, TJLL18], JML-annotated [TJLL18], JNI [CDG17], Joe [Ano18], Johnny [WA19], join [MZC10a], Jonge [Ngo12], Journey [Ryu16], joy [FH11], JP2 [SSB14a], JPC [CMM17], JPFS [WK17, WC18], JPR [WK17].

jQuery [AM14, PIR17], JR [OW16].

JR-like [OW16], JRE [CZ14].

JS [AHK15, Port11], js-emass [Port11].

Js_of_ocaml [VB14b], JSART [MM12].

JS2 [CHA19], JS2 [RB15], JS2 [BB17], JSOrndm [Del16], JSP [Sch16b].

JTabWB [FFF17], JTRES [HTW14].

JTRES2011 [RHT13], JTRRES2013 [Fox17b].

JTRRES2014 [Fox17a], judgment [CSV15], Juliet [BB12], July [Bro12, KP15], Jump [WBHN18], jungle [Sew12].

Just [DLR16, TN19, KHL13, LMK16, MGI17, TTS10].

Just-In-Time [TN19, DLR16, KHL13, LMK16, MGI17, TTS10].

JVM [AC16, AFG11, CSS16, Guy14, MS10, PVH14, R13, RRB17, SV15b, Sub11, WKG17].

JVMs
[BR14, ZYZ12].

K-Java [BR15], kernel [HDK11].

Key [BBB17, DFR13, JB12], key-value [DFR13], keynote [McK16], Kirk [Del13].

KiWi [BBB17], KJS [PSR15].

Knoernschild [Del13], knot [LBF12].

know [DJ16, Gra15, Han15].

Knowledge [KSPK12, UMP10].

known [Han15].

Kraken [Ano14].

Lake [Hol12], lambda [MKT17], lamdas [D15], landscape [Sve14], Languages [DLPT14, GJS14, JJS14, GSS18, JC10, KSPK12, MAHK16, Sev12b, SS13, WBHN18, ABCR10, CRM17, CSDl16, DAA13, EKR12, Fee16, GSS16, Hos12, HWW15, KCR14, LWH10, LE16, MDMA17, SC16, SZ10, SKR17, SNS14, VB14a, WCG14, WWH17, ZWSS15, dCMNN12].

language-level [WCG14].

Language-Neutral [WBHN18].

Languages [CSGT17, MSM16, PTH14, YKM17, AGGZ10, BCD13, CMS12, EEE13, ER14, FMBH15, Han15, HBT12, HJS10, KRR14, MSM10, NED13, PULO16, SPY16, Zah12], LARD [WCG14].

Large [BA17, AST16, CCFB15, CJ19, LSBV16, LSBV16, MDS17, MCY10, PTF15, WHIN11].

Large-Scale [BA17, CJ19, MDS17, MCY10, PTF15, WHIN11].

Latency [MV16, ETR15, JH11], lawn [CH17], laws [DMS11].

Layer
[OTR18, SKKR11, Den18], layered [RCR14], lazy [TD15].

Leading
[MSS10, PGA18].

leak [SS14, JR31, YSXC17].

Leaks
[And14, RW17, VB18].

LeakSpot [RW17].

lean [BRGG12, SV15b].

Learn [RT14].

Learning [JJCO19, PSJ18, Pan14, RT14, BSAL18, CNS13, KC12, Ano15, Teo13].

learnt [GY16].

Legacy
Legally [Sam12]. length [SMP10]. Less [BNE16].
Lessons [URJ18]. Level
[AC16, MGI14, SWU+15, XYS+19, EKUR10, Hos12, IHWN12, KBL14, LWC17, MGI17, RFBJ14, TTD+11, VWJB10, WCG14]. leveraging [WCST19]. Lexical [GN16]. Lexicon [TAF+18]. Libraries [BK12, RDCP12, BIvdS17, Cho14, EKR+12, PMTL14, PLR18, TTD+11]. Library
[CH17, CWGA17, NBB18, OCFLI14, TAF+18, WN10, dJM18, CMM17, PMP+16, PQTGS17, Pos19, TFPB14, TGZ17]. License [GD12]. Life [Esq11]. LIFT
[BTR+13]. Light [MvH15]. Light-weight
[BW12, KBL14, KKK+17, RO12]. like [BDGS13, BCD13, DLP10, PMTL14, SZ10, VGS14, OW16]. Lime [ABCRI0]. line [SV17]. linearizability [LTZ14]. lines
[LDL14]. load [PDPM+16]. loaders [SM12]. loading [WGF11]. Local
[FC11, N10, NFV15, UMP10]. Lock-free [FC11, NFV15]. Locking
[GGRSY17, JTO12, GGRSY14, GGRSY15, YKA+19]. locks [SPS17]. Logging
[CJ19, CJ17]. Logic
[ZLNPM18, GMS12, Pha18, SD16b]. loop [DD13, HW+12, PLR18]. Loops
[RD15, LLL13]. loss [WHIN11]. Low
[ETR+15, GM12, SWU+15, WCG14, ZHCB15, ZFK+16, BCR13, XMA+10]. Low-Budget [GM12]. Low-latency

m [MZC10b]. m-JGRIM [MZC10b]. M2M [Pau14]. Machine [JJCO19, LYBB14, Amel3, CBLFD12, KS13, KCI2, McMI1, Piz17, SSMGD10, WGF11, WH+13, BZD17, Cle16, LYBB13a, LYBB13b, LTK17, PTHH14, RRB19, SSB+14a, Sch13, Set13, SMSB11, SGV12, SSB01, SSB14b, UR15]. Machine-Learning [JJCO19]. Machines
[MAHK16, NFN+18, NBW+18, BM14, CBGM12, GTR+10, ZIvdS17]. Managed-Language [MAHK16]. Management
[OTR+18, Pau14, YPMM12, AHK+15, BVGV14a, BGS+13, EKUR10, HB13, KCP+17, KB17, MLM17, N1012b, PCL14, SWB+15, Tar11, WGW+11]. manipulating [KRR19, YS10]. Manipulation [MS14]. manual
[KCP+17, KPP+18]. many [GTSS11, SV18]. Map
[BBB+17]. mapped [SV15]. Mapping
[LTDD+12, UR15]. MapReduce
[LZYP16, RFRS14, SKBL11]. maps
[NVF15, SV18]. mashup [ETR12]. Masses
[BW12]. Mathematics [dJM18]. MATLAB
[Alt12, FBH17, PMTL14, V10, Has12]. MATLAB-like [PMTL14]. matrix
[HD17, TGZ17]. matters [DJB16]. Maxine
[WH+13]. MCAPL [Den18]. me
[LCL18, CMM+10, GM12, XHH12]. ME-Based [GM12]. mean [Rub14]. Means
[SS19]. Measurement
[YPMM12, YW13]. Measurement-Based [YPMM12]. Measuring
[DW10, DTL14, Gra15, JH11]. mechanical [ZZK13]. mechanised
[BCC+14]. Mechanising [Loc18]. Media
[Bro12]. meets [KHL+13]. Memento
[CPST15]. memoization [TPG15].
memories [ASME18]. Memory [BG17, JYKS12, MSM+16, NWB+18, OTR+18, SS14, ST15, WZL+18, AHK+11, AHK+15, AGGZ10, BSMB16, BFS+18, CWW13, DLZ+13, DVL13, FC11, FF10, GYB+11, HHH+14, HB13, KHL+17, KCP+17, KB17, Loc13, MSM+10, MLM17, Nil12b, OMK+10, RW17, SMS+12, SMN+12, SWB+15, SV15a, Tar11, TVD10, VB18, WGB+11, XR13, YSCX17, ZP14, ZHCB15, ZBB17].
MemSAT [TVD10]. merge [ABC18].
Mergesort [LL15]. merging [TLX17].
Model [Bul18, CSF+16, CDG+17, CCA+12, DLR16, FSK12, JJC019, JYKS12, Loc18, MSM+16, MCC17, MV16, BVGVE11a, FGB+19, CHM13, CWW13, CV14, CS12, CSKB12, DLZ+13, FLZ+18, GY16, HAW13, Loc13, LSSD14, MLT17, MSM+10, PWW11, RR14, RV16, RAS16, RDF15, SMN+12, SSG+14, SS19, Ta13, WJB10, ZP14, ZXL16].
Multi-threaded [WRI+10], Multi-threats [BGS+13], Multi-version [FC11], Multicore [ASV+16, CCH11, MKG+17, SE12, SSMD10, TWX+10], Multi-platform [ZKB+16]. Multiple [AF12, AS17, HLSK13, CSV15, DD13], Multiplexing [BVGVEAFG11], Multiprocessing [VGS14], Multiprocessor [PS10b, PWA13, SPS17], Multiprocessors [KW11, RS12], Multithreaded [KKW14, Loc18, SR14a, BNS12, DJLP10, Fer13], Multithreading [CCH11], Multithreading [CH11], Multivariate [AO11], Multiway [YKA+19], Mungo [KDPG18].

MySQL [Ano15].

Names [SRTR17]. Naming [STST12].

Native [JQI+16, LT11, LT14, KFBK+15, STS+13].

Natural [LL15], naturalness [HBG+16].

NDetermin [BENS12]. Nested [CHM16, ZLB+13], Netflix [Liu14], Network [CC15, GGC18, RR14], Networking [Hol12], Networks [AFGG11, ETR+15, ZYY+19], neural [ZYY+19], neuromorphic [HTNL12].

Neutral [WBHN18]. Next [YWW+18, CRJ+10, CMM+10].

Next-Generation [YWW+18], NG2C [BOF17], NGS [YWW+18], NGS-FC [YWW+18], Nicolai [Bal18], Nixon [Ano15], No [BVGVEA10], No-Heap [BVGVEA10], NoCs [PWA13], Node [HC11, BJJK12], Node.js [BSMB16, MTL15, Ano14], nodes [DRN14].

Nominal [BO13]. Non [BVGVEA11b, BSOG12, GGZ+15, TD17, WZL+18, YKM17, MZC10a, OMK+10, SSL18, ZP14], Non-Adequate [GGZ+15].

Obfuscated [KCD12], Obfuscation [CCFB15], Obfuscations [CSK17].

Object-Oriented [GS11, KB11, LZ12, NBW+15, PTHH14, PiLCH11, RCI7, Sev12a, SW12, AST+16, BZD17, DDDF17, FMBH15, IvdS16, KRR19, MME14, MHO13, RDF15, UJR14, VM10, WM10, ZChsd15, Zha12, ZDS14, hEYJD12], Object-Bounded [NBW+15], Object-constraint [FMBH15], object-manipulating [KRR19].

On-the-fly [URJ18, UJR14], one [SV18].
[NM10]. Ontology [KSPK12]. OoJava
[JhED11]. Open
[BSA14, GD12, ABC18, CJ17, CJ19,
EKUR10, JK11, Tai13, VGRS16].
Open-Source [BSA14, ABC18, Tai13].
OpenJDK [BFS18, CHM16, dGRdB+15].
OpenMP [VGS14]. OpenMP-like
[VGS14]. operating [HDK11]. operation
[KKW11]. operations [TABS12, TGZ17].
Operator [PQD12]. Optimisation
[PPS16]. Optimistic
[WGF11]. Optimization
[LTD12, RRB19, YKM17, AFG+11, BDB11,
DSSF17, JMO14, KS13, KC12, NG12].
Optimizations [DR10, BB17, CPST15,
DS16, NG13, SAdB+16]. Optimized
[PKPM19]. Optimizing
[LYM18, SV15b, WZZ+19, YRHB13,
HWW15, KRH16, MD15, ZLB14].
optional [CMS12]. Oracle
[LMS12, Sam12]. ORB [OUY+13]. Order
[SGD15, JhED11, KT15, TD15]. ordering
[KC12]. Orders [BNE16]. ordinary
[MZC10a]. O’Reilly [Ano15, Bro12].
Oriented
[ABMV12, BH10, GS11, KB11, LYM18,
RC17, AST16, DSSF17, EABVG14,
MBH03, PTHH14, RVP11, VM10,
VBAM10b, WBA11, ZDS14, hEYJD12].
OSck [HDK11]. OSGi
[BVGV13, GD10, Del13]. OSS
[ZMM16]. other [EKUR10, KS13].
out-of-order [JhED11]. output [MK10].
Over-exposed [VBDP16]. overhead
[BCR13, ZHCB15, ZFK16]. overlap
[ADJG19]. overlay [CDTM10].
Overloading [PQD12]. overview [Nil12b].
own [MPM15]. Ownership
[ZPL10, BDGS13, DDM11].
PaaS [ZLHD15]. Package
[SLS12, CRAT12, MB12, OW16, AK13].
Packages [PilCH11]. PackedObjects
[YKA19]. panic [Ano12]. Paper
[DUMMY17, PDOPM16, Cha18, SV15a].
paperback [Ano18]. Papers
[DV13, HL13, LMK16, Puf13]. Parallel
[DS16, Esq11, LLL13, LHR19, MKG+17,
NKH16, NBB18, QSaS+16, RD15, RSI12,
AARR18, BP10, BPP13, BSMB16, CRP+10,
MGS19, NG12, NG13, PPMH15, Sie10, SZ11,
TDD12, Ta13, VY10, BKP16, WN10].
Parallelisation [GS11]. Parallelism
[NKH16, BENS12, HSS13, MZC10a,
RHD15, TWL12, ZLB13].
parallelization [SS16, YRHB13].
parallelize [LPA13]. Parallelizing
[NKH16, hEYJD12]. parameters [GBS14].
Parametric [AGGZ10, PULO16, UT013].
Parlog [Bla18]. Part [OP15]. ParTejas
[MKG17]. Partial [CSK17, JB12, SGD15,
BS13, MD15, TD15, WGF11, YWH17].
Partial-Order [SGD15, TD15]. Partially
[BLH12, BCR11]. Partitioning
[AD16, BS12]. party [FOPZ14, LVG10].
passing
[ETTD12, TRTD11, TDD12, UR15]. Path
[SGD15, AZLY18, DD13, HSS13, SAD10].
path-based [AZLY18]. path-length
[SAD10]. Path-Sensitive [SGD15].
pathfinder
[KPP12, CS12, MP12, NNTK17, PDMD12,
SM12, vvdMvdMV12, Den18, RR14]. patient
[EKUR10]. patient-level [EKR10].
pattern [GSD+15, SADB+16]. Patterns
[RC17, BVGV13, Del13, Ste10]. PayPal
[Ano14]. PCR [YC12]. PCR-RFLP
[YCY12]. PE [JB12]. PE-Key [JB12].
perceptible [JH11]. Perfect [SLE17].
Perform [LMZP19]. Performance
[ACCR18, CSZ17, CCH11, DR10, GBC12,
Hol12, HJ12, MSM16, Oak14, OCF114,
QSaS+16, RVT18, TRE13, TPG15,
THC14, URJ18, VP16, YWH18, WN10,
ACS14, AAB10, BRGG12, BRWA14,
CBGM12, Dei11, GSS+16, HWI+12, IRJ+12, JH11, Ngo12, ODL15, PSNS14, SE12, TTD+11, TWX+10, WFF18, WHIN11, WWH+17, Zak10. performance-guided [PSNS14]. permission [HBT12, SNS+14].

Platform [AFGG11, PE11, WBHN18, BD17, CRJ+10, CMM+10, GD10, GCM+13, MKZ+14, PWA13, YP10]. Platforms [DR10, Has12, BP10, JMO14, KSR14].

PLDI [FLL+13]. pluggable [MME+10].

Point [Jaf13, AJL16]. Pointer [LHR19, TL17]. Pointers [RKN+18, AT16]. Points [BK12, SDC+12, BSAL18, DHS15, SBK13, TLX17]. Points-To [SDC+12, BSAL18, DHS15, SBK13, TLX17].

polyorphism [GTM14, PUL016, UTO13]. polynomial [Pos19]. POLP [BCR13].

Popular [Has12, SRB18].

Practice [HGC11, AS14, EKUR10, LWC17, TRET+13]. practices [CJ17, YW13]. Pragmatic [Ano18, RO12]. pre [SBK13].

pre-processing [SBK13]. Precise [PIR17, TN19, XR13, BHSB14, CVG+17, HyG12, PRR18, PG12, RGM13, TLX17, WFF18].

Priority [ASV+16, HM12]. Privacy [And14]. Proactive [CL17, BGS+13].

PROB [YP10]. Probabilistic [RBV16, GY16, ZWH+14]. Problem [HY13, ZW13, J+12, KC12].

Processor [TKL+15, Puf13, SPPH10, SMN+12]. Processors [ASV+16, MKG+17].

profile-guided [Ott18]. profiler [DTLM14]. profilers [MDHS10]. profiling [DD13, JH11, KRH16, NK10, RCt17, SS+14a, STY+14, TH+14, WLL19, XRL3, ZBB15].

Program [BGK17, JCO19, KKW14, RKV15, RT14, WCG+18, ZKB+16, AZLY18, AO11, DS16, GMS12, HCN14, JH11, JWMC15, KM10, KMN16, MKZ+14, NS13, RKHN18, RKV19, Sch10a, SPY+16, Tai13, TABS12, UPR+18, WGF11, ZMG+14].
EABVGV14, Fox17a, GMC+13, HTLC10, KHM+11, KPHV11, KvGS+14, KW10, KSR14, LTK17, PS10b, PZM+10, PSW11, Puft13, RHT13, SP10a, SIE10, SPS17.

realtime [OYU+13], Reasoning [LN15, Sun18, ABK+16, MLiT17, RKHN18]. Recaf [IVlSi17]. recipes [J+12].

Reduction [BO12, MSS19, TD15]. redundant [HL015]. reengineering [FGB+19]. Refactoring [AS14, STST12, VBZ+18, ZHL+12, FM1T11, FM13].

rename [FM13]. Repair [SEK+19, XMD+17, ZLNPI8, MDS+17, SH16].

repeatability [Vit14]. Replacement [WBHN18, BCD13]. Replay [BH12].

representation [AZLY18]. reproducibility [Vit14]. reproduction [SR14b].

Requirements [MSS19, AGGZ10]. ResAna [KVGS+14]. Research [SR17, TRE+13, CRJ+10, CBLFD12, EKUR10, Rub14, VBMDP16, Vit14].

Robots [SWF12]. Robust [VM15, VDV17, MKZ+14, SGV12, VM10].

Runtime [BLH12, CMM+10, GSS+18, MAHK16, MSS10, NWB+15, OCF114, XMA+14, BRGG12, EQT10, GTL+10, GSS+16, LMK16, MS10, OOK+10, PKC+13, RO12, STY+14, TWSC10, VBAM10a, W119, YRBHL13, JCMNN12]. runtimes [BM14, CSV15, RCR+14, WW1H+17].
Safe [Eug13, GvRN+11, JTO12, Loc18, MPS12, RSP+15, SWB+15, WAB+11, HJS+10, HAW13, KHR11, KMLS15, KCP+17, Loc13, RDP16, WWS13]. Safety [MCW19, RS12, SDH+17, ZLCW14, AGR17, EKUR10, GMC+13, Nil12b, PG12, SD16b, Taf13, YS10, CWW13, HL13, LWC17, WK12]. Safety-Critical [MCW19, WCB16, ZLCW14, RS12, SDH+17, AGR17, CWW13, LWC17].

Salespoint [ZDS14]. Salt [Hol12]. SAM [BO13]. San [KP15]. Sane [MPS12].

Scheduler [QSaS+16, IF16, TWL12]. scheduler-independent [IF16].

securely [SFR+14]. securing [CDMR19]. Security [CDG+17, GOA11, HBS16, JWMC15, MCC17, PS10a, STA18].

Seemingly [Has12]. selection [WHIN11]. Self [MPS12, YXS+19, hED12, AKH+11, AGH+17, CBLFD12, HWW+15, MD15].

self-hosted [CBLFD12], self-optimizing [HWW+15, MD15]. Self-stabilizing [hED12].

Semantic [GGRSY17, RvB14, BNS12, GGRSY14, GGRSY15, MKK+12, MKK+13, OA17].

Semantics [BO12, BR15, Kri12, LKP19, LML17, SPY+16, AK13, FBH17, FZ17, KHL+17, Mil13, MT14, PS15, PP16, ZHCB15].

Semantics-based [SPY+16].

Semantics-driven [LKP19]. semantics-preserving [AK13]. Semi [FM13, SEK+19, ABC18, MRMV12].

semi-automated [MRMV12].

Semi-automatic [FM13]. Semi-Autonomic [SEK+19].

semi-structured [ABC18]. Sensitive [SGD15, HW13, KRR19, LMK16, STA18].

Service [BVEAGVA10, SDM12, CSKB12, EABGV14, GD10, HWL11, KF11].

service-oriented [EABGV14]. services
Set-based

settings [Mii13], setting [BDGS13],

Settings [GM12], Seven [ST15], SGX

[CDMR19], Shadow [NTNK17],

ShadowVM [MKZ13], MKZ13

shape [GMT14], Shared [BG17, BSMB16],

Shared-Memory [BG17, BSMB16],

sharing [PKO+15], Sherlock [ADJG19],

Short [AHK+11, Ch18, SV15a, Zak12],

Short-term [AHK+11], shortcut

[MLM19, CSCT17], Side

[Bul18, HC11, OBPM17, DHI12, KRH16],

Side-Channel [Bul18], SIGCSE [Wall2],

Signatures [DR10], significance [FMS+11],

Similarity [ADJG19], simpA [RVPI11],

Simple [BO11, BO12, KCP+17, BVGV14b, MSM+10],

Simplicity [Dei11], Simplifying

[Mor18, Ano18], Simulating [LM15],

Simulation [HWLM11, FLZ+18, KKW11, Rim12, ZXL16], Simulation-based

[HWLM11], simulations [MCY+10],

Simulator [MKG+17, RXK+17], single

[JK13], Sinking [CDG+17], site

[CPST15, SSB+14a], sites [OOK+10], size

[AST12, UTO13], sizing [CSV15], SJL

[MvH15], sketching [HZK19], skills

[JACS10], Skip [WBHN18], Skyway

[NFN+18], slices [YSCTX17], Slicing

[XMA+14], Slimming [WGF11], SLOC

[LSBV16, LSBV17], Smaller [GS12],

smalltalk [FIF+15, HKVG14], smart

[BL15, GMR12], Smartcard [RB12],

SMArtOp [TGZ17], Smartphones [RT14],

SMARTS [RXK+17], snapshots [AST12],

Snippets [SWU+15], SNP [YCYC12], SoC

[TKL+15], social [GGC18], Socket

[WAI9], Soft

[WZK+19, JACS10], Software

[BSA14, CC15, KH18, LMZP19, PBM+19, RC17, Wan11, YQTR15, YMHB19, BMSZ17, BTR+13, CBGM12, CFH+13, CJ17, CJ19, CDMR19, DVL13, EKUR10, FRGPLF+12, FC11, GT10a, HBG+16, JhED11, JK11, LPA13, MHR+12, NGB16, OIA+13, PLL+18, PBB19, RAS16, SV17, XR13, YRHB13, ZKK13, ZHCB15, ZDS14, CKS18], Solidity

[Dan17], Solution [KSS15, EKUR10, J+12],

Solving [SED14, FMBH15, UPR+18],

Sorting [BKP16], soul [McM11], Sound

[BO13, BGK17, LE16, BSHB14, ELW15, PPMH15, RGB18], soundly [BS13], Source

[ADJG19, BSA14, GD12, MNI16, LRM115, SRTR17, SED14, ABC18, AK13, CJ17, CJ19, DRN14, EKUR10, FMS+11, JK11, MKK+12, M KK+13, OJ12, PMP+16, SK13, Tai13, ZWS15], source-code

[MK+12, MKK+13], source-to-source

[AK13], sources [IN12], Spark [LXP18],

sparse [TGZ17], sparse-matrix [TGZ17],

spatial [MLGA11], Speaking

[Rau14, Sam12], Special

[DV13, Fox17a, HL13, HGC11, Puf13, HTLC10, RHT13, HTW14, VK12],

specialization [KRR+14, SV15a], specific

[CSD16, EEE+13, HWW+15, Kie13],

Specification [GJS+13, GJS+14, IF16, KW11, LN15, LYBB13a, LYBB13b, LYBB14, MC19, TWW12, BVGV14a, BCF+14, KR12, KW10, MRA+17, YP10, dCMM12],

specifications

[BSAL18, BENS12, PS10a, TVD10, UPR+18],

specified [BCR11], Specifying

[BNS12, HL13], Speculation

[AC16, MG14, MG17], speculative

[BBI7, YRHB13], speed

[HRS+17, SBF+10, UTO13], SPF’s [PSJ18],

Spi [PS10a], SPIN [AsdGMM14], SPL

[BT+13], splittable [SLF14], SPOON

[PMP+16], spot [LMK16], SPUR

[BBF+10], SQL [FGB+19, KML15],

SqueakJS [FIF+15], SSNTDs [VSG17],

Stability [BSA14, LL15], stabilizing

[hED12], Stack

[WBHN18, KCH14, Xue12], stack-based

[KCH14], stage [WRI+10], staged [SC16],

staging [RO12], Stakeholders [YMHB19],

Standard [WKG17, LMS+12].
Standardization [TWNH12]. StarL [LM15]. State [AGR12, BLH12, MvDL12, MS14, GN16, YP10]. state- [YP10].

statecharts [MS13]. Static [BGK17, BNE16, JC10, LMZP19, MTL15, ODL15, PilCH11, PLR18, RD15, SW12, SGE+19, SH12, AM14, CGJ+16, Fer13, FLL+13, IF16, KSW+14, LS11, MHR+12, PIR17, TLMM13].

classically [BTR+13, NED+13], statistical [Bra14, ZFK+16]. statistically [PPMH15].

STM/HTM [CHM16]. StMungo [KDPG18]. stochastic [CRAT+12]. stock [PVH14]. Stop [LWB+15], stops [BNP+18].

Storage [Hol12, VD17]. Store [BS12, Sta10]. stores [DFR13]. Story [Ano14]. strategic [BMR14]. strategy [PDPM+16]. Stream [CWGA17, KBPS17, MV16, BRWA14, SSG+14, ZDK+19].

streaming [MRA+17, STCG13].

StreamJIT [BRWA14]. StreamQRE [MRA+17]. streams [SGG+17, UFM15].

Strength [KCD12]. String [HOKO14, CSK17]. Strings [HWM11, HWM10, LSSD14]. strong [UMP10, ZHCB15, ZBB17]. Structure [ZLN18, LO15, PLL+18, UMP10].

structured [ABC18, LSWM16]. Structures [GT10b, CDTM10, XMA+10]. studies [EKUR10]. Studio [RT14, FH16].

Studio-Based [RT14]. Study [BF18, KB11, LMZP19, OBPM17, RVT18, RLM15, WZK+19, ZMM+16, BRG12, CCFB15, CJ17, ECS15, JK11, KFBK+15, MHR+12, NCS10, OMK+10, PTF+15, SSL18, SH12, TFPB14, VBDPM16, WX16, YW13].

studying [CJ19]. style [UFM15].

Suites [GGZ+15]. Summaries [BH17].

Summarization [MM16, RLMM15].

Superblock [KS13]. Supercharged [Cec11, GBS13]. Superposition [HD17].

supertype [RRB17]. supervenience [Rez12]. Support [CSGT17, KKK+17, RKN+18, BGVGA13, Cha18, DVL13, GMC+13, Hos12, NGB16, SMN+12].

supported [FMM+11]. Supporting [Lvg10, EKUR10]. Surgical [RSB+14].

surprises [FMBH15]. Survey [AGM+17, OAC18, RVT18, BCvC+13, GD10].

SurveyMan [TB14]. surveys [TB14].

suspension [TWL12]. SV [CKS18].

SV-COMP [CKS18]. sweeping [KBL14].

Sweeten [DFHF15]. Swift [ZYZ+12].

SWIM [Sch10a]. symbol [Tar11].

Symbolic [Bu18, NNTK17, PMTP12, SWMV17, MMP+12, Rim12].

synchrobench [Gra15]. Synchronisation [CHMY19, CHMY15, WBM+10].

synchronization [DHM+12, Gra15, Sub11].

Synchronized [BG17].

Synchronized-by-Default [BG17].

Synchronous

[BVEAGVA10, SK12, MvH15]. syntactic [LE16, MKK+12, MKK+13, QLS17].

Syntax [SS13, KMMV14, SSK13].

syntactic [SR14a, STR16, SS16]. synthesizable [ABCR10]. synthesizer [OYU+13].

Synthesizing [GK15, SRJ15, LWH+10]. Synthetic [PSJ18].

System [BO13, KCD12, MAHK16, ACS+14, AZY10, AGR17, BDB11, ELW15, HA13, HDK+11, HWL11, KR12, MS10, STY+14, TL11, Nii12a]. systematic [TD15].

Systems [BG17, BSA14, BNE16, CCH11, DLPT14, Fox17b, HTW14, JMB12, LM15, LMZP19, MRF18, NFN+18, NWW+18, RTE+13, SLES15, SLE+17, AT16, CJ19, DW10, FH16, Fox17a, HDM17, HWI+12, HTLC10, LPGK14, LTK17, MHR+12, MAH12, MvH15, OIA+13, PLL+18, PdMG12, PBB19, PDPM+16, RHT13, SDH+17, SSMD10,
SABB19, SH12, TTD12, TWX+10, THC+14, UIY10, Vit14, YRHBL13, VK12.

T [HD17]. T-matrix [HD17]. Tableau [FFF17]. Tagged [RKN+18].
Tardis [BM14]. target [Cie16]. Task [RRB19, Fee16, TWL12, ZLB19].
TaskLocalRandom [PPMH15]. Tasks [PWSG17, PWSG19, ST15, HAW13, PPMH15, SPP+10]. Taurus [MAHK16].
Technologies [Fox17b, HTW14, VK12, Fox17a, HTLC10, KFFK+15, NL14, RHT13].
Terminating [FFF17]. Termination [BMOG12, RDCP12, BSOG12, SMP10].
Test [AGM+17, BB12, BM18, GGZ+15, LMZP19, MSS19, Pha18, Rim12, ST15, MT13, PSNS14, SR14a, SKR17].
Test-driven [BM18]. tested [Mil13].
Testing [Amc13, BR12, Hin13, MM12, MMP15, MMP+12, CSS+16, CNS13, KPP+18, Ler10, SABB19, Teo12, TD15].
tests [AO11, NYCS12, SR15]. Textbooks [BNP11]. their [RPD16]. theorem [SSH17].
Third [Ano15, FOPZ14, LVC10]. third-party [FOPZ14, LVC10]. THOR [TWX+10]. Thoth [KB17]. Thou [LCW18].
Thread [MGH14, BKC+13, CRAJ10, MGI17, PCL14, PG12, SS10, WLL19, YDFF15].
Tool-supported [FMM+11]. toolchain [KDPG18, SMN+18]. Tools [Bro12, CSZ17, CS12, CKS18, ABK+16, KPP+18, VBAM10b]. toolset [Kvg+14].
trace-based [BBF+10, HWM14, HW1+12, IHW12]. Traceability [CSK12]. tracer [CZ14].
Transactional
URJ18, DVL13, FC11, ZHCB15).
Transactions DC5G12, CHM16, DFR13).
transfer BL15), transformation [AST+16, PDDD17], transformations [AK13, MHM10, PMP+16, TL17],
Transforming dMRH12, transitioning [HWM14], Translating [RFRS14].
Translation BO12, LSWM16, LXP18, TJLL18), translations [UTO13], translator LZYP16), Translators [WWG+18].
Transmission PE11, BVGVEA11b, BJJK12),
transparent [BDDB11], transpiler [STA18], travel [BM14], traversals [ODL15], Treble [YMHB19]. Tree
Lyo12, HLO15, KMUV14, SSK13, YKA+19), trees [RBV16], Trends [CC15, MSS10, SR17], trie [SV17],
trie-based [SV17], tries [SV15a, SV15b, SV18], triggered [EABG14], triggers [FGB+19], TRINI
PDPM+16), Trusted [TNWH12, BCF+14], tuning [AAB+10, BVGVEAFG11, SKBL11], Turf [CH17], Turing [Gri17],
Turf [Jen12, Nil12b, PBMM+19, Ta13, Zak12], TV [JMO14], twitter [Guy14], Two [Has12],
Type [BO13, CGJ+16, KSW+18, KATS12, Lei17, Loc18, RKN+18, SGD15, WT11],
ACS+14, AT16, BS13, CMS+12, CVG+17, DLM10, FH16, GBS14, HyG12, KML15,
KRR+14, KRH16, KvrHA14, KDPG18, LPGK14, LE16, MHR+12, SV18, SH12,
TLL11, Zha12, eBH11]. Type-Based [SGD15]. type-dependent [LE16],
type-heterogeneous [SV18]. Type-Safe [Loc18, KML15]. Typechecking [KDPG18, CL17]. Typed [BO13, KKK+17,
MHL15, CMS+12, KRCH14, Lei17, RDP16], Types [BO13, RvB14, SPAK10, BDGS13,
CHJ12, DDM11, HH13, MME+10, YDF15]. TypeScript [Cho14, FH16, RSF+15].
Typing [FZ17, RSF+15, Sie17, SFR+14, TSD+12], tvpy [OA17].

Ubiquitous [MCY+10], UDP [RR14], ULS [FOPZ14], ultimate [BL15], UML [CSF+16], unbounded [LSSD14, RGB18],
uncertain [McK16], Unchangeable [RK19]. Understandable [MSM+16],
Understanding [ABC18, FRM+15], MKTD17, NBW+18, PCL14, QLBS17, Set13,
TAB12, VBMD16, LWB+15, Nili12b), Undocumented [Alt12, MHR+12], Unified [LM15], uniform [AH10, Euk13],
Unifying [Has12, MKK+12, MKK+13], union [KT15], uniprocessors [KPHV11], Units [LKW13],
universe [DDM11], Unix [PVB17], Unobtrusive [MG19]. Unpicking [LB12], Unrestricted [WWS13], unsafe
[MPM+15], unsafe [AT16], Updates [YMHB19, PKC+13], Upper [SW12],
Upsortable [SGG+17], uptrees [HB13], USA [Hol12, KP15], usability
[HF16, MHR+12, WA19], Usage [OAC18, RC17, PTF+15, QLBS17], Use
[BGK17, Guy14, MPM+15, AMW15, MKTD17, PBMM13, Sch13], use-case
[AMW15], used [XR10], useless
[FRC+17], User [Liu14, MVDL12, RKHN18, SLS+12, DAA13, FMS+11, PNS14],
user-defined [FMS+11]. User-guided
[RKHN18], Using [AS1MG14, BS12, BSA14, BNE16, DLM10, HCN14, KFBK+15, KH18, MV16,
MSSK16, NBB18, Pau14, Pанд12, RC17, SDM12, SLE+17, UMP10, Wan11, WK17,
WCG+18, XMA+14, YCYC12, Zak18, BB17, DDFD17, Del13, FH16, FOPZ14, GBS14,
Ivd16, KML15, KT14, KC12, LVC10, Lew13, LDL14, MT13, NIR17, PLR18, Pha18,
RKHN18, RAS16, SAdB+16, SSK13, SSH17, SH16, SS19, VGS14, WLL19, WBM*10,
WRI+10, XR13, ZLN18, vDvMD12].
UT [Hol12], utility [CSV15, XMA+10].
utilization [BCR13].

vertical [BFS18, STY14]. via [Bul18, DMS11, GGRSY15, GGRSY17, Hos12, HB13, JWMC15, LSWM16, RIM12, SS16, TD17]. Video [PBM19]. view [Guy14]. violations [LTZ14, PG12, RDF15].

Vulnerabilities [MS14, GGC18]. vulnerability [MLM19, SSS14].

Write [ASME18, HH10]. Write-rationing [ASME18]. Writing [HOS16, JAF13, MOR18].

x [SM16]. X10 [TWL12]. Xbase [EEK13]. XIR [TWSC10]. XML [NL14].
REFERENCES

XSS [GGC18, MSSK16, VS11]. Xtraitj [BD17].
yang [CBGM12]. years [BTR+13].
yieldpoint [LWB+15]. yin [CBGM12].
Z [SBF+10]. Z-rays [SBF+10]. Zero [ZW13].

References

Altman:2010:OTJ

Acar:2018:PCM

Accioly:2018:USS

Auerbach:2010:LJC

Avvenuti:2012:JTC

Abanades:2016:DAR

Ansaloni:2012:DAO

Ahn:2014:IJP

Aumuller:2016:OPD

Akai:2010:EAS

Amighi:2016:PCC

[AdCGGH16] Afshin Amighi, Pedro de Carvalho Gomes, Di-

Aiello:2011:JBA

Albert:2010:PIM

Antonopoulos:2017:DIS

Andreasen:2017:SDA

Arcaini:2012:CCM

Arcaini:2017:RDP

[AGR17] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. Rigorous develop-

Apel:2010:CUF

Aigner:2011:STM

Aigner:2015:AJE

Andrysco:2016:PFP

Axelsen:2013:PTD

Altman:2012:USM

Andreasen:2014:DSA

Ament:2013:ATG

Adamsen:2017:PIR

Ashrov:2015:UCB

Andersen:2014:PLJ

Anonymous:2012:AMJ

Anonymous:2013:FAM

Anonymous:2014:RKS

Anonymous:2015:BRL

Anonymous:2018:BRS

Altidor:2014:RJG

Adalid:2014:USA

Austin:2017:MFD

Afek:2012:ISJ

Alshara:2016:MLO

Akram:2018:WRG

Akram:2016:BPG

REFERENCES

Amin:2016:JST

Ali:2010:DJB

Alon:2018:GPB

Brown:2017:NJP

Boland:2012:JCC

Bonetta:2017:FJF

REFERENCES

[Bergenti:2011:PPS]

[Bacon:2013:PRT]

[Bainomugisha:2013:SRP]

[Bettini:2017:XTJ]

[Bala:2011:DTD]

[Bettini:2013:CTB]

[Barbuti:2010:AIA]
Roberto Barbuti, Nicoletta De Francesco, and Luca Tesei. An abstract interpretation approach for enhancing
REFERENCES

Philip F. Burdette, William F. Jones, Brian C. Blose, and

Bodden:2012:PEF

Barr:2014:TAT

Bouraqadi:2018:TDD

Bell:2015:VFB

Brockschmidt:2012:ATP

Balland:2014:ESP

REFERENCES

Bellia:2012:ERT

Bellia:2013:JST

Bruno:2017:NPG

Barabash:2010:TGC

Bluemke:2012:DTJ

Bogdanas:2015:KJC

Brandt:2014:DAS

Bhattacharya:2012:DLI

Brown:2012:BRF

Bosboom:2014:SCC

Bedla:2012:SSJ

Balatsouras:2013:CHC

Bouktif:2014:PSO

Salah Bouktif, Houari Sahraoui, and Faheem Ahmed. Predicting stability of open-source software systems using combination of Bayesian classifiers. *ACM Transactions...*

Basanta-Val:2014:RMP

Basanta-Val:2014:SDG

Basanta-Val:2010:NHR

Basanta-Val:2011:ECM

Basanta-Val:2011:NFI

Basanta-Val:2013:JRA

Basanta-Val:2011:FTM
Pablo Basanta-Val, Marisol García-Valls, Iria Estévez-Ayres, and Jorge Fernández-González. Fine tuning of

Bourdykine:2012:LAM

Briggs:2017:COI

Carlisle:2011:WCB

Cao:2012:YYP

Chevalier-Boisvert:2012:BSH

Chaikalis:2015:FJS

REFERENCES

REFERENCES

Boyuan Chen and Zhen Ming (Jack) Jiang. Char-

Chen:2019:ESL

Cordeiro:2018:BJV

Canino:2017:PAE

Clerc:2016:OJJ

Costa:2010:RMN

Curley:2010:RDT

Cote:2012:JPS

Chalin:2010:TIG

Chambers:2010:FEE

Ceccarello:2012:TGC

Cordoba-Sanchez:2016:ADS

Irene Córdoba-Sánchez and Juan de Lara. Ann: a domain-specific language for the effective design and validation of Java annota-
REFERENCES

Chavez:2016:ACC

Chanda:2012:TBS

Chen:2016:CDD

Cameron:2015:JFE

Callum Cameron, Jeremy

Casale:2017:PEJ

Cazzola:2014:JBR

Chaudhuri:2017:FPT

Chan:2017:DSL

Cavalcanti:2013:SCJ

Caserta:2014:JTJ

Diaz:2013:LEU

Dannen:2017:IES

DaCosta:2012:JSL

Dhawan:2012:EJT

DElia:2013:BLP

DeBeukelaer:2017:ECP

Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel, and Reiner

DiPierro:2018:RJ

DiPierro:2018:TVG

Dietrich:2016:WJD

REFERENCES

10.1007/s10664-015-9389-
1.

REFERENCES

Demange:2013:PBB

DeMol:2012:GTJ

Duarte:2011:ICS

Devietti:2012:RRC

Dietrich:2010:POD

Dyer:2014:DVE

Doeraene:2016:PIW

[DS16] Sébastien Doeraene and Tobias Schlatter. Parallel incremental whole-program optimizations for Scala.js.
REFERENCES

Bois:2013:BGV

David:2014:CMC

Dias:2013:SIP

DosSantos:2010:MPB

Estevez-Ayres:2014:CSS

elBoustani:2011:ITE

Emeric:2012:CP

Ebert:2015:ESE

Effting:2013:XID

Erdweg:2012:GLE

Egbring:2010:POS

ISSN 1053-8569 (print), 1099-1557 (electronic).

Erdweg:2015:SOI

Eslamimehr:2014:RDS

Elmas:2010:GRA

Erdweg:2014:FEL

Eichelberger:2014:FRM

Esquembre:2011:TPL

Endrullis:2012:WEM

Michael Fogus and Chris Houser. *The joy of Clo-
REFERENCES

[Fischer:2016:EIE]

[Forth:2012:RAA]

[Flanagan:2013:PES]
Cormac Flanagan, K. Rustan M. Leino, Mark Lillicbridge, Greg Nelson, James B. Saxe, and Raymie Stata. *PLDI 2002: Ex-

REFERENCES

2867 (print), 1558-1160 (electronic).

Funes:2012:RMC

Feng:2015:EQD

Fritz:2017:TSA

Gherardi:2012:JVC

Gerakios:2013:FIS

Gerakios:2014:RTP

REFERENCES

REFERENCES

[Greenman:2014:GFB]

(Gupta:2016:LSA)

(Gong:2011:JSA)

(Großschädli:2012:EJI)

(Gramoli:2015:MTY)

(Grech:2011:JGE)
REFERENCES

Nasib Singh Gill and...

REFERENCES

[Han15] Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).
REFERENCES

Hasbun:2012:UTP

Haverbeke:2011:EJM

Heumann:2013:TEM

Huang:2013:ECS

Hindle:2016:NS

Hedin:2016:IFS
<table>
<thead>
<tr>
<th>Heidegger:2012:APC</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hsiao:2014:UWC</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hughes-Croucher:2011:NRS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Horstmann:2013:CJF</th>
</tr>
</thead>
</table>
Hofmann:2011:EOS

Hanazumi:2017:FAI

HunEom:2012:SSJ

HunEom:2012:DDP

Horspool:2011:PPP

Hoppe:2013:DDB

Hower:2014:HRF

REFERENCES

Herhut:2013:RTP

Hinojosa:2013:TS

Hunt:2012:JP

Hellyer:2010:LCW

Heidenreich:2010:GST

Hlopkho:2014:ISJ

[HKVG14] Marcel Hlopko, Jan Kurs, Jan Vráný, and Claus Gittinger. On the integration of Smalltalk and Java. *Science*

Horie:2014:SDJ

Hollingsworth:2012:SPI

Horstmann:2011:CJA

Horstmann:2012:JEC

Hosking:2012:CHL

Hunt:2016:RFF

Haas:2017:BWS

Higuera-Toledano:2010:ISI

Higuera-Toledano:2014:EIS

Hayashizaki:2012:IPT

Huang:2011:SBA

Haubl:2010:CES

Haubl:2011:ECE

Haubl:2013:CST

Haubl:2014:TTE

Humer:2015:DSL

Hackett:2012:FPH

Hua:2019:EED

Iranmanesh:2016:SSE

Zeinab Iranmanesh and Mehran S. Fallah. Specification and static enforcement of scheduler-independent noninterference in a middleweight Java. *Computer Languages, Systems

Inoue:2012:AML

Inoue:2012:ISC

Insa:2018:AAJ

Inostroza:2016:MIM

Islam:2012:HPR

Juneau:2012:JRP

REFERENCES

Joseph:2010:PII

Jaffer:2013:EAR

Ji:2012:PKP

Jacek:2019:OCW

Jara:2012:NVJ

Jenck:2012:JET

[Jen12] Eric Jenck. The Java EE
<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

[Andrew Johnson, Lucas Waye, Scott Moore, and Stephen Chong. Exploring and enforcing security guarantees via program dependence graphs. *ACM SIG-
REFERENCES

Jin:2012:JMM

Kossakowski:2012:JED

Kastner:2012:TCA

Kumari:2011:AOO

Kunjir:2017:TAM

Kim:2014:LBL

Kiselyov:2017:SFC

Oleg Kiselyov, Aggelos Bibooudis, Nick Palladinos,

Kumar:2012:WSB

[VFB+12] Vivek Kumar, Daniel Framp

Khan:2015:UJW

Knoche:2018:UML

Kerschbaumer:2013:IFT

Kang:2017:PSR

Kalibera:2011:FRT

Kabanov:2011:DSF

Kienle:2010:ATT

Kienle:2013:BRE

Kim:2017:TAA

Krieger:2011:AES

Kaiser:2014:WAM

Ko:2010:EAW

Karakoidas:2015:TSE

Kalibera:2014:FAS

Kulkarni:2016:APA

Kolling:2010:GPE

Kroening:2015:CAV

Kalibera:2011:SRT
REFERENCES

Khyzha:2012:AP

Kintis:2018:HEM

Kedlaya:2014:DDL

Kedlaya:2016:SST

Krishnamurthi:2012:SAJ

REFERENCES

|------------------|---------------|

|-------------|------------------|

<table>
<thead>
<tr>
<th>Kaufmann:2013:SCO</th>
<th>Kouneli:2012:MKD</th>
</tr>
</thead>
</table>
Korsholm:2014:RTJ

Kashyap:2014:TRS

Keil:2015:BAH

Keil:2014:EDA

Kolesnikov:2014:CPB
Kim:2010:EAE

Kim:2011:MAE

Lauerger:2018:TSD

Lin:2012:UKT

Li:2014:MHD

Lorenzen:2016:STD

Leijen:2017:TDC

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[LLL13] Alan Leung, Ondrej Lhoták, and Ghulam Lashari. Parallel execution of Java loops on Graphics Processing...
REFERENCES

Lin:2015:STU

Lee:2016:ECP

Loring:2017:SAJ

Leavens:2015:BSS

REFERENCES

Benjamin S. Lerner, Joe Gibbs Politz, Arjun Guha, and
Shriram Krishnamurthi. Te-
JaS: retrofitting type sys-
tems for JavaScript. *ACM
SIGPLAN Notices*, 49(2):1–
16, February 2014. CODEN
SIGPLAN Notices, 49(2):1–
16, February 2014. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic). DLS
’13 conference proceedings.

Lux:2011:TSD

Alexander Lux and Artem
Starostin. A tool for static
detection of timing chan-
gels in Java. *Journal of Cryp-
tographic Engineering*, 1(4):303–313,
December 2011. CODEN
???? ISSN 2190-8508
(print), 2190-8516 (elec-
springer.com/article/10.1007/s13389-
011-0021-z.

Landman:2016:EAR

Davy Landman, Alexander
Serebrenik, Eric Bouwers,
and Jurgen J. Vinju. Empirical
analysis of the relationship be-
tween CC and SLOC in a large
corpus of Java methods and C
functions. *Journal of Software:
Evolution and Process*, 28
(7):589–618, July 2016. CO-
DEN SISOEG. ISSN 0740-
7481 (print), 1937-4194 (elec-
tronic). See corrigendum
[LSBV17].

Luu:2014:MCC

Loi Luu, Shweta Shinde,
Prateek Saxena, and Brian
Demsky. A model counter for
constraints over un-
bounded strings. *ACM SIG-
PLAN Notices*, 49(6):565–
576, June 2014. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Larrucea:2018:M

X. Larrucea, I. Santamaria,
R. Colomo-Palacios, and
C. Ebert. Microservices.
IEEE Software, 35(3):96–100,
May/June 2018. CODEN
IESOEG. ISSN 0740-
7459 (print), 1937-4194 (elec-
tronic).

Leopoldseder:2016:JJT

David Leopoldseder, Lukas
Stadler, Christian Wimmer,
and Hanspeter Mössenböck.
Java-to-JavaScript transla-
tion via structured con-
trol flow reconstruction of

Li:2011:JEC

Li:2014:EAJ

Laskowski:2012:DJP

Luckow:2017:HTP

Liu:2014:FFL

Lerner:2010:SDT

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Lin:2015:SGU

LWB⁺¹⁵

LXJ

LYBB⁺¹³

LYBB⁺¹³

Liu:2018:JIO

Xuanzhe Liu, Meihua Yu, Yun Ma, Gang Huang, Hong Mei, and Yunxin Liu. i-Jacob: an internetware-oriented approach to optimizing computation-intensive mobile Web browsing. ACM Transactions on Internet Technology (TOIT), 18(2):14:1–14:??, March 2018. CODEN ????. ISSN 1533-5399 (print), 1557-6051 (electronic).

Lyon:2012:JTW

Liu:2012:PAA

Li:2016:JJM

McIntosh:2012:EJB

Maas:2016:THL

<table>
<thead>
<tr>
<th>References</th>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McLane:2010:UIV</td>
<td></td>
<td></td>
<td>Jonathan C. McLane, Walter Czech, David A. Yuen, Mike R. Knox, Shuo Wang, Jim B. S. Greensky, and Erik O. D. Severe. Ubiquitous interactive visualiza-</td>
<td></td>
</tr>
</tbody>
</table>

Marr:2015:TVP

Mytkowicz:2010:EAJ

Marr:2017:CLC

Martinez:2017:ARR

Meijer:2014:EJR

Martinsen:2014:HTL

REFERENCES

Martinsen:2017:CTL

Mehrabi:2019:PUP

Miller:2013:IPG

Matsakis:2015:TOJ

McGachey:2010:CJC

Mayer:2012:ESI
REFERENCES

[Miller:2013:TSG]

[Malhotra:2017:PPS]

[Misra:2013:JSC]

[Mazinian:2017:UUL]

[Marek:2014:SRC]

Markstrum:2010:JDP

Martin:2014:TCR

Mirzaei:2012:TAA

Morgan:2018: SJW

Mastrangelo:2015:UYO

Mercer:2012:CV1

Eric Mercer, Suzette Person, and Neha Rungta. Computing and visualizing the impact of change with Java PathFinder extensions. *ACM SIGSOFT Soft-

Magazinius:2012:SWS

Mamouras:2017:SMS

McIlroy:2010:HJR

Marinescu:2013:FSJ

REFERENCES

Moller:2014:ADC

Marino:2010:DSE

Marino:2016:DXU

Mitchell:2010:FTL

Marchetto:2019:CCR

Mitropoulos:2016:HTY
Malhotra:2013:DFT

Murawski:2014:GSI

Madsen:2015:SAE

Marz:2016:RPC

Stephen Marz and Brad Vander Zanden. Reducing power consumption and latency in mobile devices using an event stream model.

Mateos:2010:ANI

Cristian Mateos, Alejandra Zunino, and Marcelo Campo. An approach for non-intrusively adding malleable fork/join parallelism into ordinary JavaBean compliant applications. *Computer Languages,*
Mateos:2010:MJN

Nowicki:2018:MPI

Nasseri:2010:CMR

Nuzman:2013:JTC

Nguyen:2018:SCM

Newton:2015:ALF

[Ryan R. Newton, Peter P. Fogg, and Ali Varamesh.

Noll:2012:IDO

Noll:2013:OFD

Nunez:2016:PGC

Coden SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Ngo:2012:BRE

Nilsen:2012:RTJ

Nilsen:2012:TOU

Namjoshi:2010:NOP

Na:2016:JPC

Nolan:2014:XWT

Nakaike:2010:LER

Noller:2017:SSE

Nikolic:2012:DEA

Nikolic:2013:RAP

Durica Nikolić and Fausto Spoto. Reachability analysis of program variables.

Nicolay:2017:PAJ

Nguyen:2015:FCR

Obaidellah:2018:SUE

Naik:2012:AT

Omar:2017:PSF

REFERENCES

Oaks:2014:JPD

Ocariza:2017:SCC

Ortin:2014:RPI

Olivo:2015:SDA

Ogawa:2013:RJA

Olszak:2012:RJP

REFERENCES

Oh:2015:MWA

Paul:2014:RTP

Pascarella:2019:CCC

Ponzanelli:2019:AIC

Parnin:2013:AUJ

Pinto:2014:UEB

REFERENCEs

Parizek:2012:PAJ

Pan:2018:ASJ

Park:2014:AAS

Park:2018:SAJ

Pawlak:2016:SLI

Papadimitriou:2014:MLS

Phan:2012:SQI

Porter:2018:PJE

Poslavsky:2019:REJ

Passerat-Palmbach:2015:TSS

Pichon-Pharabod:2016:CSR

Pham-Quang:2012:JAD

ceedings of the Sixth International Conference on Automatic Differentiation (AD2012) held July 23–27, 2012, in Fort Collins, Colorado, USA.

Piedrahita-Quintero:2017:JGA

Pironiti:2010:PCJ

Parker:2012:CB

Paquin:2018:AAS

Pradel:2014:EAR

Park:2015:KCF

Pour:2011:MBD

Pinto:2015:LSS

Pape:2014:EJV

Papadimitriou:2011:SES

Stergios Papadimitriou, Konstantinos Terzidis, Seferina Mavroudi, and Spiridon Likothanassis. ScalaLab:

REFERENCES

Pan:2017:GCF

Pan:2019:GCF

Pizlo:2010:SFT

Qiu:2017:USR

Qian:2016:EFS

Rayns:2013:CJS

REFERENCES

tech.safaribooksonline.de/0738438332.

[Rehman:2016:VMJ]

[Rauschmayer:2014:SJD]

[Raychev:2016:PMC]

[Rathee:2017:ROO]

[Rosa:2017:APV]
Andrea Rosà, Lydia Y. Chen, and Walter Binder. Actor profiling in virtual ex-

Robatmili:2014:MRL

Radoi:2015:ETS

Ramirez-Deantes:2012:MTA

Rhodes:2015:DDO

Reynders:2016:GSB

Reynolds:2013:MJB

REFERENCES

REFERENCES

Ric:2010:ADB

Rodeghero:2015:ETS

Rompf:2012:LMS

Ryu:2019:TAB

Rathje:2014:FMC

Rosa:2017:ARC

Andrea Rosà, Eduardo Rosales, and Walter Binder. Accurate reification of complete supertype information for dynamic analysis on the JVM. *ACM SIGPLAN Notices*, 52(12):104–116, Dec-
Rosa:2019:AOT

Ravn:2012:SCJ

Rompf:2014:SPJ

Rastogi:2015:SEG

Reichenbach:2012:PPD

Reardon:2014:SSB

REFERENCES

Ramos:2013:DSJ

Ramos:2015:NCS

Rubin:2014:HCW

Rowe:2014:STA

Raychev:2015:PPP

Raychev:2019:PPP

Ricci:2011:SAO

Ramos:2018:APS

Rudafshani:2017:LDD

Ramamohanarao:2017:SSM

Ryu:2016:JFB

Spadini:2019:MOT

Serbanescu:2016:DPO

Samuelson:2012:LSO

Sartor:2010:ZRD

Smaragdakis:2013:SBP

Shahriyar:2014:FCG

Scherr:2016:AFC

Schmidt:2010:ERA

Schultz:2010:WAJ

Schmeisser:2013:MOE

Schöldt:2014:JCRb

Sluanschi:2016:AAD

Sousa:2016:CHL

Sridharan:2012:CTP

References

Schoeberl:2017:SCJ

Shah:2012:AMJ

Sartor:2012:EMT

Stolee:2014:SSS

Staples:2019:SAB

Seth:2013:UJV

Severance:2012:DJO
Severance:2012:JDL

Sewell:2012:TJ

Swamy:2014:GTE

Sherman:2015:DTB

Subercaze:2017:UPT

Simao:2012:CER

Stuchlik:2012:SVD

[SH12] Andreas Stuchlik and Stefan Hanenberg. Static vs. dynamic type systems: an empirical study about the relationship between type casts and development time. *ACM SIGPLAN No-
REFERENCES

142

Steimann:2016:CRA

Siebert:2010:CPR

Siek:2017:CPT

Singer:2010:EGC

Smans:2010:AVJ

Shan:2012:OAC

Salkeld:2013:IDO

Robin Salkeld and Gregor Kiczales. Interacting with

Santos:2018:JJV

Spoto:2010:TAJ

Sewe:2012:NSI

Snellenburg:2012:GJB

Shaﬁei:2012:MCL

Singh:2012:EPS
Sewe:2011:CCS

Stork:2014:APB

Schoeberl:2010:NRT

Spoto:2010:MSL

Serrano:2016:GH

Steimann:2010:TMI

Spring:2010:RAI

Jesper Honig Spring, Filip Pizlo, Jean Privat, Rachid

[SPPH10]

[SR14a]

[Schoeberl:2010:WCE]

[SPS17]

[SR14b]

[Stefanescu:2016:SBP]

[SR17]

[Samak:2014:MTS]

[SR14a]

[Samak:2014:TDD]

[SR14b]

[Sun:2017:AJP]
REFERENCES

[Sor:2014:MLD] Vladimir Sor and Satish Narayana Srirama. Memory leak de-
REFERENCES

<table>
<thead>
<tr>
<th>Surendran:2016:APP</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sudarsan:2019:BDK</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Stark:2001:JJV</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sarimbekov:2014:JCS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Stark:2014:JJV</th>
</tr>
</thead>
</table>
REFERENCES

Su:2014:CEM

Saini:2018:CNC

Srikanth:2017:CVU

Sciampacone:2010:EMS

Singh:2013:TGC

Stone:2015:WMT

REFERENCES

Stark:2010:BIA

Sayed:2018:ITI

Santos:2013:DDS

Stefanov:2010:JP

Samak:2016:DSF

Sun:2013:BJW

Schafer:2012:CAN

[Su:2014:RVP]

[Subramaniam:2011:PCJ]

[Sun:2018:RAR]

[Steindorfer:2015:CSM]

[Steindorfer:2015:OHA]

[Steindorfer:2017:TSP]

[Steindorfer:2018:MOA]
Michael J. Steindorfer and Jurgen J. Vinju. To many or to-one? All-in-one! Efficient purely functional multi-maps with
REFERENCES

REFERENCES

[Taibi:2013:ROS]

[Tarau:2011:IST]

[Tosch:2014:SPA]

[Teodorovici:2012:BRC]

[Teodorovici:2013:BRL]

[Thomson:2015:LHB]
REFERENCES

(1) Teyton:2014:SLM

(2) Tran-Jørgensen:2018:ATV

(3) Tommasel:2017:SJL

(4) Tu:2014:PPP

(5) Thiessen:2017:CTP

REFERENCES

REFERENCES

157

Toffola:2015:PPY

Taboada:2013:JHP

Taboada:2011:DEJ

Takikawa:2012:GTF

Toledo:2011:ACJ

Taboada:2011:DLC

Guillermo L. Taboada, Juan Touriño, Ramón Doallo, Aamir Shafi, Mark Baker, and Bryan Carpenter. Device level communication libraries for high-performance computing in Java. *Concurrency and Computation: Practice and
REFERENCES

Taboada:2012:FMS

Tatsubori:2010:EJT

Toegl:2012:SSJ

Titzer:2010:ICR

REFERENCES

Teng:2010:TPA

Uurma:2015:JAL

Ugawa:2010:IRB

Ugawa:2014:ROP

Upadhyaya:2010:UDS

Uva:2018:AWJ

REFERENCES

Villazon:2010:ARA

Villazon:2010:HCA

Villazon:2011:CAW

Vidal:2016:ECJ

Vidal:2016:UAE

Vidal:2018:ARB

van der Merwe:2012:VAA
Heila van der Merwe, Brink

REFERENCES

VGRS16

[Viotti:2017:HRH]

VGS14

[VanLoan:2010:ITC]

VGRS16

Vit14

[Vikas:2014:MGA]

Vit14

[Vitek:2012:ISI]

Vit14

[Vitek:2014:CTR]

Jan Vitek and Tomas Kalibera. Introduction to the

VanCutsem:2010:PDP

VanCutsem:2015:RTC

Verdu:2016:PSA

VanderHart:2010:PC

V:2011:BBI

Varier:2017:TNJ

VanNieuwpoort:2010:SHL

Vechev:2010:PPC

Wijayarathna:2019:WJC

Wurthinger:2011:SAR

Walker:2012:SNJ

Wampler:2011:FPJ

REFERENCES

REFERENCES

October 2018. CODEN SFENDP. ISSN 0163-5948 (print), 1943-5843 (electronic).

Wellings:2012:AEH

Wang:2017:JRJ

Wade:2017:AVJ

Wang:2019:TRC

Wimmer:2010:AFD

Wendykier:2010:PCH

Witman:2010:TBR

Paul D. Witman and Terry Ryan. Think big for

REFERENCES

Xu:2010:FLU

Xu:2014:SRB

Xuan:2017:NAR

Xu:2010:DIU

Xu:2013:PML

Xue:2012:RJC

Xue:2019:ASC

[XXCL19] Y. Xue, Z. Xu, M. Chandramohan, and Y. Liu. Ac-
curate and scalable cross-architecture cross-OS binary code search with emu-
lation. *IEEE Transactions on Software En-

Xie:2013:AAE

Yang:2012:MPD

Yang:2013:CPP

Yoo:2014:WRR

Yang:2019:MGL

REFERENCES

Yang:2010:JIP

Yang:2017:EJV

Yessenov:2017:DAD

Yim:2019:TFS

Yerima:2012:AMB

Yi:2015:SCC

Jooyong Yi, Dawei Qi, Shin Hwei Tan, and Abhik Roychoudhury. Software change contracts. *ACM Transactions on Software
REFERENCES

REFERENCES

ISSN 0098-5589 (print), 1939-3520 (electronic).

Zakas:2010:HPJ

Zakhour:2012:JTS

Zakai:2018:FPW

ZBB17

Zhang:2017:ACE

Zhang:2015:SYB

ZCdBsdS15

Zeuch:2019:AES

Zheng:2015:APP

ZB15

Zheng:2015:APP

ZBB15

ZBB15

ZBB15
REFERENCES

Zschaler:2014:SFJ

Zuo:2016:LOF

Zhao:2012:PTI

Zhang:2015:LOS

Zhang:2012:RAJ

Zacharopoulos:2017:EMM

Zheng:2016:CMD

[ZKB+16] Yudi Zheng, Stephen Kell, Lubomir Bulej, Haiyang Sun, and Walter Binder. Comprehensive multiplatform dynamic program

Zhao:2013:INT

Zhang:2014:AIO

Zeyda:2014:CMS

Zheng:2018:ADS

[ZMG+14] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. On abstraction refinement for program analyses in Data-

REFERENCES

Zhu:2015:APL

Zhao:2014:CSP

Zhang:2016:NVC

Zhou:2019:AJM

Zhang:2012:SRB

Zhang:2013:IMF