Abstract
This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

[PLL+18, SS19, SD16b, SGG+17]. $N [ADJG19, WZK+19]. $Z_p [AO11].
/multi [Taf13]. /multi-threaded [Taf13].
'12 [Hol12]. 12th [Fox17a].
5 [KHR11].
6 [Jen12].
7 [Ano15, EV13, J+12]. 75 [HWM11].
8 [BKP16, CWGA17, LYBB14, SAdB+16, UFM15].
barriers [HJH10, WBM†10]. Based
[AFGG11, DLR16, GM12, GGZ†15, GCC18, LTD†12, MvDL12, MM12, PTML11, PiLCH11, PE11, RBL12, RT14, SGD15, SLS†12, ST15, SWF12, YPMM12, AYZ10, AZLY18, AST†16, AD13, BBF†10, BBP13, BB17, BL15, CDTM10, CSKB12, CJ17, CJ19, CPST14, CPST15, EKUR10, GT10a, GMC†13, HWM14, HWI†12, HOK14, HWLMI11, IHWN12, IRJ†12, JEC†12, JMO14, KATS12, KS13, KRCH14, KS14, Lon10a, Lon10b, MCC17, MB12, MCV†10, Ott18, PDPM†16, PSW11, SZ11, SBBK13, SMP10, SPY†16, SV17, SNS†14, UIY10, UPR†18, VSG17, XHH12, YP10, YKA†19, ZYZ†12, ZYY†19].

[BSA14, RKHN18]. BeagleBone [Ric14]. before [TD15]. begone [MRMV12].

Benchmarking
[ADJC919, PV17, ZLHD15, BK16, CMM17, CSKB12, CSF†16, LSBB16, LSBB17, RDP16, SH12]. beyond [Mor18].

Big [BF18, GTS†15, NBB†15, NFN†18, RVK15, BOF17, BBX13C, RYK19, SSG†14, WR10, XGD†19]. billions [DRN14].

Binary [WWG†18]. bindings [VGRS16].

Bitcoin [TD17]. BIXSAN [VS11]. Blame
[KT15]. Bleaf [VB18]. Bloat
[MSS10, NBB†18, XMA†14, BRGG12, BBX13C, XR10]. bloat-aware [BBX13C].
block [CZ14, KBL14]. block-level [KBL14]. blocking [DW10]. Blockly [AMWW15].

Blueshell [PWA13]. boilerplate
[ZCdSOvdS15]. Book
[Ano15, Ano18, BDP12, Del13, Gve13, Kie13, NCO12, Teo12, Teo13]. Bookshelf [Ano18].

Boosting [ASV†16, AC16]. Bootstrapping
[CBLFD12]. Bottle [DSEE13]. bottlenecks
[DSEE13]. bottom [ZMNY14]. bottom-up
[ZMNY14]. boundary [RDF16]. Bounded
[NWB†15, GML14]. Bounds
[SW12, GV1N†11]. boxes [BDGS13]. Brain
[VBZ†18]. breaking [VB14a]. Breakpoint
[ZW13]. breakpoints [PS12]. Brewing
[WZL†18]. Bridging [PVB17]. Bringing
[CW14, HRS†17, STS†13]. Broken
[dGRdB†15]. Browser [MSSK16, PVB17, FIF†15, VS11, VB14a, WGW†11, YK14].

Browsers [HLSK13]. Browsing [LYM†18].

Browsix [PVB17]. BUbiNG [MSV18].

Budget [GM12]. buffered [DLZ†13].
buffers [Gun14]. Bug [RPP19, LWH†10].

Bugs [OBPM17, XMD†17, ECS15, MDS†17, OD15, RYU16]. Build
[BMKD15, BNE16, ELW15, MAH12].

Building [SCT10, SS19, HWW†15, NCO12].

Business [CCA†12]. Bytecode
[BDT10, BSOG12, FHSR12, NS12, RDCP12, Rey13, SEK†19, AC16].

C [BB12, CDG†17, GBC12, KB11, LSBB16, LSBB17, NED†13, SRTR17, Sta10, ZAK18, ZWSS15]. C# [SSK13]. C/C
[BB12, NED†13]. CA [KF†15]. cache
[IN12, ZP14]. caches [NGB16].

calculations [VSG17]. Calculi [FFF17].
calculus [AH10, PS10a]. Call [FG12, PUL016, ZWZ†14, XUE12, SSB†14a].

Call-site [SSB†14a]. calling
[HB13, SSB†14a, ZWZ†14]. Calls
[SW12, SS16]. came [Car11]. can [TPG15].
can’t [WA19]. capabilities [Ane13].
capability [RDF15]. capo [SMS11].
capturing [BKC†13]. Card
[GMP12, BL15, ABFM12, MDMM17].
MLM19, dCMMN12. Cards
[BH12, GMP12]. care [EKUR10]. Caring
[DA13]. carry [Ame13]. Cartesian
[SD16b]. Case
[ZMM16, dGRdB15, AMW15, HNTL12, JK11, MT13, SPPH10, Vit14]. Cassandra [FRM15]. casts [SH12].
categorising [CMM17]. Catena [TD17].
Causal [MRF18]. Causes
[OBPM17, FRM15]. CAV [KP15]. Cay
[Gve13]. CC [LSBV16, LSVB17]. CCA
[FLZ18, ZXL16]. Center [Hol12]. centric
[DHM12, FOPZ14]. CERT [LMS12].
chain [KSR14]. Challenges
[GM12, SWMV17, Sie17, SR17, AACR18].
Change [YQTR15, MPR12]. Changes
[MvDL12, CJ19, PTRV18]. Changing
[SSG14]. Channel [Bul18]. channels
[AGH17, LS11]. characteristics [ABC18].
Characterizing [CJ17]. check
[CS12, GvRN11]. Checking
[BNE16, CSF16, Cho14, FSK12, JC10, JYKS12, ABFM12, BHSB14, BNS12, CVG17, DLM10, FLL13, HMDE12, KATS12, KvRHA14, LT11, RR14, RAS16, RDF15, TVD10, VYY10]. checkpointing
[SGV12]. checkpointing-enabled [SGV12].
Checks [FMBH15]. CHERRI [CDG17].
chip [PS10b, Puf13, RS12, SPS17].
chip-multiprocessor [PS10b].
chip-multiprocessors [RS12]. Choice
[JCMM19, WBM10]. CICS [R13]. CIL
[BFB10]. circular [Gun14, SZ10]. Circus
[ZLCW14, MCV19]. City [Hol12]. Class
[BS13, CSF16, NCS10, CKSB12, HC10, MHM10, SC16, SM12, TSD12]. Classes
[And14, SVB17, WT11, CZ14, CS12, SZ10, TSD12, VBDPM16]. Classifies [SD16a].
Classification [PBMB19, SS14]. Classifiers
[BSA14]. Classifying [MHH10, PBB19].
Classless [WZdSOS17]. clicker [HA13].
Client [MS14, OBPM17, CH17, KRH16].
Client-Side [OBPM17, KRH16].
Client-State [MS14]. clients [SRB18].
Clojure [EGC12, FH11, VS10]. Cloned
[SSL18]. Closing [ZLHD15]. Closures
[BO11, BO12, BO13]. Cloud
[VDV17, WZK19, BFS18, GGC18, LZYP16, TLMM13]. cloud-based [GGC18].
clustered [PDPM16]. clustering
[MMK12, MKK13]. clusters [TRTD11].
Cocoa [Sta10]. Code
[ADJG19, BH17, BNE16, CJ19, HC11, MSS19, MM16, PKPM19, RVK15, RLMM15, SRR17, SVB17, SV15a, SED14, WWG18, AGR17, AK13, CCFB15, DRN14, FLZ18, FI16, FMS11, IS18, LGG10, MKK12, MKK13, NG13, OJ12, PTRV18, PBB17, PMP16, PSW11, RFRS14, RBV16, RVK19, RO12, SSK13, Tai13, UTO13, VGG17, WJK17, WGF11, WBA11, WAB11, WWS13, ZHL12, ZXL16, ZWSS15].
Code-Issue-Introducing [CJ19]. coding
[LMS12]. Coefficient [ADJG19]. Coffin
[Teo12]. coherent [ZP14]. Cohesion
[RC17]. Cold [BZD17, WGF11]. Collect
[JCM19]. collected [AGGZ10]. collecting
[AHK11]. Collection
[ASV16, BF18, GM12, MAK19, QSaS16, ST15, URR18, ASME18, BPI10, BOF17, KPHV11, KBL14, NGB16, ODL15, PZM10, PDPM16, SP10a, SMB14, Sie10, SBL10, SKBL11, UIY10, UJR14].
Collections
[GS12, Lon10a, Lon10b, PL12, SV15b, SV17].
collectives [RTET15, TRTD11]. Collector
[BH12, GTS15, BCR13, BVGV14b, Puf13].
Collectorens [Sch13]. collectors
[GTSS11, Sch13, XGD19]. coloring [SS10].
Colt [BKP16, WN10]. CoMA [AGR12].
Combating [WNB18]. Combination
[BSA14]. Combinatorial [YHY13].
combinators [MHB13]. Combining
[BDGS13, MSS19, MGI17]. commensal
[BRWA14]. comments [PBB19, ZYY19].
Commercial [ZMM16]. commodity
[BK14]. Common [FlPCH11].
Communication [JQ16, RTE13, SK12, BJBK12, ETR15, TTD11].

Comparative [KB11, CDMR19, KFBK'15, SSL18]. Comparing [MD15]. Comparison [MD15].

Compact [HWM10, HWM11, JHL17]. Comparative [KB11, CDMR19, KFBK'15, SSL18]. Comparing [MD15]. Comparison [MD15].

Comparative [KB11, CDMR19, KFBK'15, SSL18]. Comparing [MD15]. Comparison [MD15].

Comparative [KB11, CDMR19, KFBK'15, SSL18]. Comparing [MD15]. Comparison [MD15].

Comparative [KB11, CDMR19, KFBK'15, SSL18]. Comparing [MD15]. Comparison [MD15].

customizations [LVG10]. customized [HB13]. cutting [AMWW15]. Cyclic [MOG12, RS12].

D [DiP18b, FLZ+18, GBC12, JEC+12, ZXL16].

DAA [DK10]. Data [Bra14, MBOG12, BA17, BF18, GM12, GTS+15, GT10b, JJO19, NH16, HWB+15, NFN+18, HWB+18, TAF+18, YWW+18, ZLN18, dMRH12, BK14, BB17, BOF17, BBXC13, BJ012, CDTM10, CRP+10, DFR13, DHM+12, EKUR10, FOPZ14, KB17, LDL14, MRA+17, NL14, SADB+16, SSG+14, SGG+17, UMP10, WK17, WCG14, XZJ13, XMA+10, XGD+19, ZIvd17]. data-centric [MHS+12, FOPZ14]. Data-Driven [JJCO19]. Data-Intensive [NWB+18]. Data-Parallel [MLN16, CRP+10]. database [De10, EKUR10, TABS12]. databases [EKB10, MLA11]. Dataflow [BR12]. Database [ZMG+14]. dataset [MDS+17]. David [Kie13]. Days [Sov12].

Decomposition [AGH+17, PLL+18]. deconstructing [ACS+14]. decoupled [LPA13]. deduplication [HOKO14].

demand-driven [FWDL5]. DemoMatch [YKSL17]. demonstrations [YKSL17].

deprecation [SRB18]. depth [Rau14].

Design [AC16, ETTD12, MLGA11, Puf13].

Detection [BH10, BSOG12, KCD12, MS14, RD15, XMA+14, AMT17, CSK17, LMK16, LS11, ODL15, PG12, RDF15, RGB18, RW17, SR14a, SR14b, SS14, WCG14, XXZ13, XR13].
detector [WFF18]. detectors [LWH+10].

Determinacy [AM14]. deterministic [DNB+12, MvH15]. develop [WA19].

Development [ABK+16, AYZ10, MT13, PBm+19, AGR17, BM18, FRGPLF+12, GT10a, PSW11, SKR17, SH12, WBA+11, ZDS14].
Device [TTD+11, XHH12]. Devices [GPT12, JQJ+16, MV16, ETR+15, Xue12].

Differentiation [FHP+12, PQD12, SD16a]. digital [JMO14]. dimensional [TGZ17].

Distance [ZW13]. distributable [CRAJ10].

domain-specific [CsdL16, EKE+13, HWW+15]. dominance [CPST14]. Doppio [VB14a].

DoubleChecker [BHSB14]. down [Ker15, ZMN14]. DRAM [OTR+18]. drf [MSM+16]. DRFX [MSM+10, SMN+12].

Driven [CC+12, JJC19, YPM12, BM18, FGB+19, CHM13, FWDL15, HZZK19, LKP19, MTL15, PDD17, SR14b].
drug [EKUR10]. DSL [KARO12]. DSLs [KHR11, RO12, SC16]. DSU [PVH14]. Dual [AD16]. Dual-Pivot [AD16]. Dynamic [AGM+17, ABMV12, ASF17, BFS+18, CHMY15, CHMY19, MRF18, MvDL12, PTHH14, RDF15, WGW+18, XMA+14, ZKB+16, AF12, BDB11, BK14, BCD13, BOF17, CV15, CPST15, ELW15, GYB+11, HB13, KRCH14, KRR+14, KT14, LWH+10, LVG10, MKZ+14, Nil12b, NG12, NED+13, RLBV10, RCC+14, RBB17, SR14b, SJS10, SH12, TPG15, VBAM10b, WXR16, WFF18, WBA+11, WAB+11, WWS13, WWH+17, ZBB15].

Dynamically [WGW+18, CZ14, CMS+12, hEYJD12].

Dynamically-Generated [WGW+18].

Dynamo [BDB11].
e-Science [SGV12]. ease [DRN14]. Easy [Jaf13, CRP+10].

Editorial [Fox17a]. Editorials [F17b, HTW14, RHT13]. EdSketch [HZK19]. EDLS [RDP16]. Educator [BA17].
EE [Jen12, MCC17]. Effect [JK11, CCF15]. Effective [BM14, PTML11, RD15, CsdL16, KPP+18, Kie13].
Effectively [UR15]. effects [FH16, HAW13, Lei17]. Efficiency [OTR+18]. Efficient
Effizient [FBH17, BKC +13, FOPZ14].
Einsatzszenarien [Sch13]. Einsteiger [Ric14].
Elektronik [Ric14]. Elektronik-Projekte [Ric14].
Elephant [RGM13]. Elimination [RKN +18, GvRN +11].
elision [NM10]. Elliptic [GPT12]. Eloquent [Hav11].
emass [Por18]. Embedded [Fox17b, HTW14, JMB12, KARO12, Pau14, SLES15, SLE +17, TKL +15, VK12, Dei10, Fox17a, GMC +13, HTLC10, KHR11, LMK16, LTK17, OIA +13, RHT13, SC16, SDH +17, SFR +14, UIY10, Xue12, ZY +12].
embedding [KMLS15, SC16]. emerging [CDMR19]. Empirical [LSBV16, LSBV17, SS13, WXR16, BJBK12, FH16, HH13, KPP +18, MHR +12, NCS10, SH12, Tai13, VBDPM16, VBDM16].
Employing [CC15]. Emsscripten [Zak18].
emulated [THC +14]. emulator [KS13].
Enabled [GPT12, DR10, ETR +15, RBL12, SGV12].
encapsulation [DMD11]. End [GM12, DAA13]. End-to-End [GM12].
end-user [DAA13]. Energy [OTR +18, CL17, PCL14]. energy-aware [CL17]. enforcement [IF16]. enforcing [JWMC15]. engine [MGI17, Ngo12, OUY +13, Tar11, Ngo12].
Engineering [CCA +12, GT10a, MLM17, MLM19, VF10]. engineers [Bra14]. engines [KRH16, SSG +14]. enhanced [LMK16, WBA +11]. enhancement [WGST19]. Enhancing [BDT10, BVGV1A13, DeSG12, HC10].
Environment [Kö10, PTML11, RK19, EKR +12].
Environments [BF18, EABVG14, GTL +10, HOKO14, KF11, RDP16, RCB17, SGV12]. equality [GRF11]. Equilibrium [YMHB19].
Equivalence [BO12]. equivalent [TLX17]. eviqvocation [TD17]. ERAM [Sch10a].
Erratum [HWM11]. error [eBH11]. ES5 [DFHF15, Mor18]. ES6 [Mor18]. Escape [SLES15, SLE +17]. Espresso [WZL +18].
Essential [Ngo12]. estimation [LMK16].
etched [VSG17]. Ethereum [Dan17]. eval [Mil13, MRMV12]. Evaluating [BGK17, BLH12, MDHS10]. Evaluation [CSZ17, GBC12, JMB12, OCFL14, TTS +10, Wan11, CSK17, MRA +17, MD15, WWH +17, XGD +19].
Evolution [CC15, GMPS12, Mei14, JK11, MAH12, NCS10, WBA +11, WSS13]. evolving [ZZK13].
Examples [BNP11, Del13]. Exception [LT14, ECS15, HWM14, LT11].
Exceptionization [YKM17]. Exceptions [ASF17, AdCGGH16, Hdm17, SMN +12, ZBB17].
Execution [Bul18, MSS19, NNTK17, OwKPM15, SWMV17, BNP +18, Cha18, HZZK19, JLL17, JhED11, LLL13, MMP +12, RCB17, SPPH10].
execution-driven [HZZK19]. Executions [WCG +18, AsdMGM14, PPS16, STR16].
executives [RS12]. Exemplar [ZW13].
exhaustive [DHS15]. exhibitionism [VBMDP16]. existential [AT16].
Exogenous [BMSZ17]. Experience [ABMV12, OW16, Sch10a, FGB +19, CBLFD12, TRE +13, WT10].
Experiment [ML12, MAM12].
espress][WZL +18].
Essential [Ngo12]. estimation [LMK16].
etched [VSG17]. Ethereum [Dan17]. eval [Mil13, MRMV12]. Evaluating [BGK17, BLH12, MDHS10]. Evaluation [CSZ17, GBC12, JMB12, OCFL14, TTS +10, Wan11, CSK17, MRA +17, MD15, WWH +17, XGD +19].
Evolution [CC15, GMPS12, Mei14, JK11, MAH12, NCS10, WBA +11, WSS13]. evolving [ZZK13].
Examples [BNP11, Del13]. Exception [LT14, ECS15, HWM14, LT11].
Exceptionization [YKM17]. Exceptions [ASF17, AdCGGH16, Hdm17, SMN +12, ZBB17].
Execution [Bul18, MSS19, NNTK17, OwKPM15, SWMV17, BNP +18, Cha18, HZZK19, JLL17, JhED11, LLL13, MMP +12, RCB17, SPPH10].
execution-driven [HZZK19]. Executions [WCG +18, AsdMGM14, PPS16, STR16].
executives [RS12]. Exemplar [ZW13].
exhaustive [DHS15]. exhibitionism [VBMDP16]. existential [AT16].
Exogenous [BMSZ17]. Experience [ABMV12, OW16, Sch10a, FGB +19, CBLFD12, TRE +13, WT10].
Experiment [ML12, MAM12].

[BKP16, MDS⁺17, HWLM11].

Fragments [PBM⁺19, OA17]. frames [SJPS10]. Framework [CCA⁺12, Den18]. FFF17, LM15, PWSG17, PWSG19, RBL12, SEK⁺19, TN19, Ame13, AC16, DDDF17, ER14, FRGPLF⁺12, JEC⁺12, KMLS15, Lon10a, Lon10b, MT13, PGA18, PKO⁺15, RR14, STY⁺14, ZW10, ZDS14]. frameworks [PPMH15]. Francisco [KP15]. free [DTLM14, FC11, GK15, HBB⁺14, NFV15].
Heterogeneous [ASV+16, HHB+14, Rub14, AYZI10, ABCR10, DFR13, MS10, SV18].
Heterogeneous-race-free [HHB+14].

i-Jacob [LYM+18]. IaaS [ZLHD15].

Identification [PB+19, SEB+19, BZD17, FMS+11].

Identifier [SRTR17]. identifiers [FMS+11].

Identifying [IN12, SVB+17]. if [Han15, STA18]. If-transpiler [STA18].

illuminating [BK14]. Image [WN10].

immutability [HMDE12, ZPL+10].

immutable [SV15b]. impact [CMS+12, Gra15, HWLM11, MPRI12, WKJ17].

Inflow [ZMM+16]. influence [MHR+12].

Informa [HA13]. Information [ASF17, HSBS16, KHL+13, RKN+18, SS12, AF12, ABFM12, BVGVEA11b, CMS+12, PMTP12, RRB17, ZYY+19].

Information-flow [HSBS16].

Infrastructure [Den18, NG12, WCST19].

Inheritance [LN15, WT11, AST+16, GBS13, NCS10].

Initial [LTD+12]. initialization [AMT17, MME14]. Initiation [FGR12].

Injecting [ZZK13]. Injection [SBE+19].

inline [DJLP10]. Inlining [BA12, STA18, HWLM13]. input [Pha18].

insecure [YW13]. Insight [VF10].

instanceof [SMS+12]. Instant [MHBO13].

instantiation [AST+16]. instead [AGH+17, BTR+13].

instrumenting [CZ14]. Integrated [Tar11, YP10].

integrating [SPP+10]. integration [AME13, HKVG14, Sch10a].

integrity [HDK+11]. Intel [CDMR19]. intelligence [BRGG12].
Intelligent [Pau14]. Intensive [LYM+18, NBW+18, SAdB+16].

Interacting [SK13]. Interaction [WT11].

intercession [CMM17]. inter-language [CMM17].

Interacting [LYM+18, NWB+18, SAdB+16].

Intercessional [LYM+18, NWB+18, SAdB+16].

Interacting [SK13]. Interaction [WT11].

intensive [AMW+15, JH+11, MCY+10].

interference [YDFF15].

International [Hol12, KP15, Fox17a].

Internetware [LYM+18]. Internetware-Oriented [LYM+18].

Interoperability [GSS+18, GSS+16]. Interpretation [BD10, DLR16, DLR14, NSDD17].

Interpretation-Based [DRL16]. interpreter [D’H12, KMMV14].

interpreters [HWW+15, IvdS16, MD15, ZLBF14].

Introducing [CJ19, Dan17, DMS11].

Introduction [CIAD13, CSZ17, HTLC10, HTW14, Lew13, RHT13, VK12, Hav11, VF10].

Introductory [BNP11]. intrusively [MZZ10a]. Invasive [ADJ19].

Investigation [SS13, FH16, Tai13]. invited [Piz17, Sie17]. invocation [SPA10, SS19, BVEA11a].

invocations [BVG+14a]. invokedynamic [OCFL14]. Involvement [ZMM+16]. IP [TKL+15]. iPhone [Sta10]. IR [LSWM16].

Isolation [ZLB+13]. Issue [CJ19, DVL13, HLI3, HTW14, Puf13, VK12, Fox17a, HTLC10, HGCA11, RHT13].

iterations [DD13]. iterators [ZLBF14].

IVE [CRJ+10]. IVPs [KS15].

JaSTA-2 [HD17]. Java [Bro12, Den18, Fox17a, Gve13, HWM11, HTW14, MvH15, Ngo12, Sch13, VK12, Ao11, KvAS+14, PQTGS17, SAdB+16, ABC18, ASdMGM14, AST12, AFG11, AYZI10, AdCGGH16, AT16, And14, Ano12, Ano13, ABMV12, AG12, AG17, ABCR10, AD13, ABFM12, AK13, BK12, BH17, BMIR14, BH12, BDT10, BVEA10, BVEAGA10, BVEA11a, BVEA11b, BVEA13, BVEA14a, BVEA14b, BS12, BMDK15, BO11, BO12, BO13, BCR11, BGS13, BCD13, BDL17, BRG12, Blvd17, Bla18, BR12, BH10, BR15, BB12, BNP11, BL15, BW12, BA12, BD17, BSOG12, BMOG12, BK16, BA17, BJBK12, CIAD13, FGB+19, CSZ17, CZ14, CMM17, CVW13, CV14, CS12, CDTM10, CCFB15, CC15, CRJ+10, CWGA17, CSF+16, CSK17, CCH11, C17, CJ19, CDG+17, Cle16].

Java [CDMR19, CS18, CS16, CCA+12, CMM+10, CRJ10, DDL10, DDDF17, DLM10, DLZ+13, DVL13, DR10, DHS15, DJB16, DMS11, ECS15, EK+13, ES14, EQT10, Esq11, EABV14, Eu13, EV13, ET12, ETR+15, FLZ+18, FRPL+12, FGR12, Fer13, FFF17, FLL+13, FHSR12, Fox17b, FMS+11, GMPS12, GrV+12, GYB+11, GMI2, GBS14, GD12, GBC12, GSI1, GSI2, Gon11, GMC+13, GT10b, GJS+13, GJS+14, Gri17, GPT12, GK15, H13, HD17, HdM17, Has12, HWM10, HWM13, HWM14, HA13, HM12, HTLC10, HKVG14, HH13, HOKO14, HGCA11, Hor11, Hor12, HC13, HC10, HZKK19, HWL11, HJ12, IHWN12, IN12, IS18, IF16, JCI10, JEC+12, JQJ+16, JJL17, Jen12, JB12, JYKS12, JTO12, JH+12, JMB12, JMO14, KHR11, KHM+11, KMLS15, KS13,
KW10, KW11, KPP +18, KM10]. **Java**
[KSR14, KSPK12, KDEPG18, KS14, KF11, KB11, LSBV16, LSBV17, LTD +12, LMK16, LSWM16, LLL13, LT11, LT14, LZYP16, LXP18, LYBB13a, LYBB13b, LYBB14, LZ12, LKP19, Loc13, Loc18, Lon10a, Lon10b, LMS +12, LO15, LPA13, LWC17, LTK17, LS11, Lyo12, MKZ +14, MS13, MME +10, MLGA11, MDS +17, MCC17, MPM +15, MZC10b, MKTD17, MM16, MHM10, MAH12, MB12, MCD +10, MG19, MPR12, MLM17, MLM19, MKK +12, MKK +13, MSS10, MGH19, MvH15, MT14, MDHS10, NM10, NCS10, NS12, Nil12a, Nil12b, NG13, NNTK17, NBB18, Oak14, OOK +10, OMK +10, OIA +13, OUY +13, OW16, OJI2, OCFL14, PS11, PLL +18, PdMG12, PTML11, PTML14, PTHH14, PL12, PiCH11, PHBM13, PBB19, PPMH15, PMP +16, PQD12, PVH14, PTF +15, PS10a, PS10b, PDPM +16, Pos19, PSW11, PuF13, PKC +13, QLB17, RD15]. **Java**
[RDCP12, RTE +13, RTET15, RR14, RS12, RHT13, R +13, RBL12, RAS16, RSI12, Rey13, Rez12, RVP11, RLM15, RRB19, RBB15, RvB14, SSL18, SSB +14a, SE12, SRB18, SRTR17, STST12, SS12, Sch14, Sch13, Sch10a, SPPH10, SKR11, SDH +17, Scho10, SMG12, SSG12, SZ10, Set13, SMSB11, SMS +12, SM12, SDM12, SWM17, SW12, SVG12, SKBL11, SD16a, SIJS10, SLS +12, SKR17, SS14, SABB19, SP10b, SMP10, SBE +19, SPP +10, SWB +15, SSO1, SBB14b, ST15, SPS17, SS +14, SS9, STS +13, Sve14, SW12, TRTD11, TTD +11, TTD12, TRE +13, TLL1, TWX +10, TFPB14, TN19, TWHN12, TNR12, TZG17, TJJL18, TRL +15, UIR15, UF15, UPR +18, VSG17, VGRS16, VBDM16, VBMP16, VGS14, VBAM10a, VBAM10b, VBMA11, WGF11, Wam11, WZDSOS17, WGST19, WLL19, WB +10, WK12, WCB16, WN10, WRI +10, WA19, WHV +13]. **Java**
[WHIN11, WZ +18, WBA +11, WABB +11, WWS13, XHH12, XR13, XMD +17, Xue12, YP10, YKM17, YKA +19, YDF15, ZIVS17, Zak12, ZP14, ZLCW14, ZHL +12, ZXL16, ZKB +16, ZYY +19, WSS15, ZPL +10, ZDS14, dCMNN12, dMHR12, eBH11, hED12, vdMvdMV12, De13]. **Java-Based**
[AFGG11, SLS +12, ST15, SWT12, CJ17, CJ19, HOKO14, JMO14, KS13, KS14, MB12, MCD +10]. **Java-compatible**
[ABCR10]. **Java-like**
[BDGS13, BCD13, DJLP10]. **Java-to-HDL**
[OUY +13]. **Java-to-JavaScript**
[LSWM16]. **JavaScript**
[SFR +14, TAF +18, TT11, VM15, VP16, VB14b, Wal12, WST19, WXR16, WY13, Zak18, Zak10, dJ18, BM18, KCD12, Me14, Ano18, Kie13, Teo12, Teo13]. **JaVerT**
[SMN +18]. **JAWS**
[PKO +15]. **JBInsTrace**

Message
[KF11, ETTD12, TRTD11, TTD12, UR15].
message-passing
[ETTD12, TRTD11, TTD12, UR15].
messages [eBH11]. meta [MD15, SZ10].
meta-circular [SZ10]. meta-compilation [MD15].
meta-data [DVL13, WCST19].
MetaFJig [SZ10].
metaheuristics [DDDF17].
metaprogramming [PS11].
Method [AC16, BVGVEAFG11, GD12,
AST12, AJL16, HMDE12, SS19, SS16,
VMDP16, ZYY + 19]. Method-Level
[AC16]. Methods [MM16, Pau14, VBZ + 18,
Bra14, GRF11, LSBV16, LSBV17, SSL18].
Metrics [KB11, JK11, SSK13, Sch13].
Metriken [Sch13]. Microscopic [RXK + 17].
Microservices [KH18, LSCPE18].
Microsoft [Ano13]. Middleware
[RTE + 13, AdScDr + 19, HOKO14, HWLM11,
MZC10b]. middleweight [IF16, MT14].
midstream [SSG + 14]. Migrating
[AST + 16, CDTM10, FGB + 19]. Migration
[OwKPM15, Fee16]. migrations [TFPB14].
Miniboxing [UTO13]. minimal [CNS13].
mind [DRN14]. Mint [WRI + 10]. minute
[DHS15]. minutes [BTR + 13].
misconfigurations [MCC17]. Mismatch
[YCYC12]. misses [IN12]. Missions
[WCB16]. Mistakes [BA17]. Mitigating
[BGS + 13, KC12]. mixed [CL17]. Mobile
[GM12, GPT12, LYM + 18, MV16, HXH12,
GCC18, KF11, MZC10b]. Mock [SABB19].
Model
[Bul18, CSF + 16, CDG + 17, CCA + 12, DLR16,
FSK12, JJC09, JYSK12, Loc18, SM + 16,
MCC17, MV16, BVGVEA11a, FGB + 19,
CHM13, CWW13, CV14, CS12, CSK12,
DLZ + 13, FLZ + 18, GY16, HAW13, Loc13,
LSD14, MLT17, MSM + 10, PSW11, RR14,
RBV16, RAS16, RDF15, SM + 12, SSG + 14,
SS19, Tai13, VWJB10, ZP14, ZXL16].
Model-Aware [JYSK12]. Model-based
[MCC17, PSW11]. model-driven
[FGB + 19, CHM13]. Modeling
MySQL [Ano15].

Names [SRTR17]. Naming [STST12].
Native [JQJ+16, LT11, LT14, KFBK+15, STS+13]. Natural [LL15]. naturalness [HKB+16].
NDetermine [BENS12]. nested [CHM16, ZLB+13]. Netflix [Li14].
Network [CC15, GGC18, RR14]. Networking [Hol12]. Networks [AFGG11, ETR+15, ZYY+19].
neural [ZYY+19]. neuromorphic [HNTL12].
Neutral [WBHN18]. Next [YWW+18, CRJ+10, CMN+10].
Node [HC11, BBJ12]. Node.js [BSMB16, MTL15, Ano14]. nodes [DRN14].
Nominal [BO13]. Non [BVGVEA11b]. BSG12, GGZ+15. TD17, WZL+18. YKM17, MZC10a, OMK+10. SSL18, ZP14.
Non-Adequate [GGZ+15]. non-cache-coherent [ZP14]. non-cloned [SSL18]. Non-equivocation [TD17].
Non-Volatility [WZL+18]. Nonblocking [RTET15, SP10a]. Nondeterministic [RB15, BENS12]. noninterference [IF16].
Nopol [XMD+17]. Normalization [ADJ19]. NoSQL [DFR13]. Notation [Sev12a]. Novel [NK10, MZC10b].
November [Hol12]. Novice [BA17].

Obfuscated [KCD12]. obfuscation [CCFB15]. obfuscations [CSK17]. Object [CGTG17, GS11, KB11, LZ12, NWB+15].
PTTH14, PiLCH11, RC17, Sev12a, SW12, AST+16, BZD17, DDDF17, FMBH15,
Ivd16, KRR19, MME14, MBO13, RDF15, UJR14, VM10, VM10, ZedSOvd15, Zha12,
ZDS14, hEYJD12]. Object-Bounded [NW+15]. object-constraint [FMBH15].
object-manipulating [KRR19].
Object-Oriented [GS11, KB11, RC17, PTHH14, AST+16, DDDF17, MBO13, VM10. ZDS14, hEYJD12]. Objective [Sta10].
Objective-C [Sta10]. Objects [BS12, RKN+18, ML15, SK13, SABB19, WXR16, BVEGVA10].
On-the-fly [URJ18, UJR14]. one [SV18].
ones [AST+16]. Online [NG13, GGC18, HCV17, NK10]. only [NM10]. Ontology [KSPK12]. OoOJava [JHE11].
Open [BS14, GD12, ABC18, CJ17, CJ19, EKUR10, JK11, Tai13, VGRS16].
Open-Source [BSA14, ABC18, Tai13].
OpenJDK [BFS+18, CHM16, dGRdB+15].

Reference
[Sch14, Sun18, UJR14, HMDE12].
refinement [GY16, JLP+14, KSW+14, MCW19, ZMG+14, ZFK+16]. Reflexes [SPP+10]. region [Ott18]. region-based [Ott18]. regions [AC10]. register
[ZYZ+12]. register-based [ZYZ+12].
Regression [MM12]. regular [PIR17]. reification [RRB17]. Reified [GBS14]
Reim [HMDE12]. ReImInfer [HMDE12]. relation [TD15]. relational [MLGA11]. relationship [LSBV16, LSBV17, SH12].
relaxed [DNB+12, KHL+17, PPS16]. relaxed-memory [KHL+17]. Release
[BVGV14a, BVGV14a, BVGV14a, BVGV14a, SS19, BVGV1A7]. removal
[MRMV12, WGF11]. removing [PLR14].
rename [FM13]. Repair [SEK+19]. XMD+17, ZLPN18, MDS+17, SHU16].
repeatability [Vit14]. Replacement
[WBHN18, BCD13]. Replay
[BH12].
Replaying [WK17]. replication [CJ17, UIY10]. replication-based [UIY10]. report
[CBLFD12, Sch10a]. Reports [OW16]. repository
[HC10]. representation [AZY18]. reproducibility [Vit14]. reproduction [SR14b].
Requirements
[MSS19, AGGZ10]. ResAna
[KvGS+14]. Research
[SR17, TRE+13, CRJ+10, CBLFD12, EKUR10, Rub14, VBMDP16, Vit14].
RESOLVE
[Sun18]. Resource
[BVGV14a, WZK+19, YPMM12, ADI13, ES14, KvGS+14, KSR14, SGV12].
resource-aware [SGV12]. resource-based [ADI13]. responsive [SPP+10].
responsiveness [PSSN14]. restart [CNS13].
Restructuring [RC17]. Retention
[ZMM+16]. Rethinking
[LHR19, Xue12, RCR+14]. retrofitted
[TTT+10]. retrofitting [LPKG14].
Reusability [Tai13]. reusable
[HC10, MME14]. reuse [WR10]. Reusing
[PKPM19]. Reverse
[CC+12, MLM17, MLM19]. Review
[Ano15, Ano18, Bro12, Del13, Gve13, Kic13, Ngo12, Teo12, Teo13, EKUR10].
Revisited
[Mei14, Gon11]. rewriting [HLO15]. RFID
[AYZ10]. RFLP [YC12]. richer [CV14].
rigor [Vit14]. Rigorous [AGR17]. rings
[Pos19, Pos19]. Rise
[DiP18a]. risk
[MPM+15]. River [HHSS13]. RJ
[OW16].
RMI
[SS19]. Road
[RS17]. SWU+15].
Robin
[Ano15]. Robotic
[DiP18b, LM15].
Robots
[SWF12]. Robust
[VM15, VDH17, MKZ+14, SVG12, VM10].
Rod
[Teo12]. ROM
[MLM19]. row
[Lei17]. row-typed
[Lei17]. RTSJ
[ZW10]. Rubah
[PVH14]. Ruby
[Teo12]. Rule
[YPMM12, QLB17]. Rules
[CC+12, HLO15, PTV18]. run
[WAB+11]. run-time
[WAB+11]. Running
[HC11, TWX+10, YK14]. runs
[FIF+15].
Runtime
[BLH12, CMM+10, GSS+18, MAHK16, MSS10, NB1+15, OCF14, XMA+14, BRGG12, EQT10, GTL+10, GSS+16, LMK16, MS10, OOK+10, PKC+13, RO12, STY+14, TWSC10, VBAM10a, WLL19, YRHL13, dCMMN12]. runtimes
[BM14, CSV15, RCR+14, WWH+17].
S
[Gve13]. Safe
[Eug13, GvBN+11, JTO12, Loc18, MPS12, RST+15, SWB+15, WAB+11, HJS+10, HAW13, KHR11, KMLS15, KCP+17, Loc13, RDP16, WSS13]. Safety
[MCW19, RS12, SDH+17, WCB16, ZLCW14, AGR17, EKUR10, GMC+13, Nil12b, PG12, SD16b, Taf13, YS10, CWW13, HL13, LW17, WK12]. Safety-Critical
[MCW19, WCB16, ZLCW14, RS12, SDH+17, AGR17, CWW13, LW17].
Salespoint
[ZDS14]. Salt
[Hol12]. SAM
[BO13]. San
[KP15]. Sane
[MP12]. sanitizer
[VS11]. Sapphire
[URJ18]. SAT
[UPR+18]. Satin
[WJ10]. SAW
[CFH+13]. Scaffolding
[RT14]. Scala
[SMS+12, AT16, Hin13, Lew13, PTML11, Pos19, SMB11, SMS+12]. Scala-Based
[PTML+11]. Scala.js [DS16]. Scalability
[CCH11, VP16, WZK+19, AAB+10, DSEE13, BFS+18, GTSS11]. Scalable
[BBB+17, BS12, DFR13, GGRSY17, HC11, JQJ+16, RXK+17, RTE+13, XMA+14, ETTD12, FC11, GGRSY15, NFV15, PIR17, PLR18, RTET15, TTD12]. ScalaLab
[PTML11, PMTL14]. scalar [PQTGS17]. Scale
[BA17, PE11, CJ19, DHS15, LO15, MDS+17, MCY+10, PTF+15, WHIN11]. SCEL [DLPT14]. scenarios
[AMWW15, Sch13]. Scheduler
[QSaS+16, IF16, TWL12]. scheduler-independent [IF16]. Scheduling
[ASV+16, BVEAGVA10, KPVH11, EP14, EABVGV14, ZW10]. scheme [XHH12, YKA+19]. SCHISM
[PZ+10]. Science
[HWM11, VF10, SVG12]. sciences [NL14]. Scientific
[Esq11, PTML11, TAF+18, WN10, FRGdP+12, PML14]. scientists
[Bra14]. SCJ [MCW19]. SCJ-Circus
[MCW19]. SCORM [HC10]. Scrap
[ZCdSvdS15]. Script [MSSK16]. Scripting
[BGG11, TTTT15, SFC11, TTT12]. SE [LYBB14]. Seamless
[OWKPM15]. Search
[NBB18, SED14, WCG+18, DDF17]. searching
[ETR12]. Second [HD17]. secrets
[Alt12]. section [DTLM14]. sections
[NM10]. Secure [GMPS12, GM12, ABFM12, LMS+12, TLM13, WA19]. securely
[SFR+14]. securing [CDMR19]. Security
[CDG+17, Gon11, HBS16, JWM15, MCC17, PSI0a, STA18]. Similarly
[Has12]. selection [WHIN11]. Self
[MPS12, hED12, AHK+11, AGH+17, CBLFD12, HWW+15, MD15]. self-collecting
[CBLFD12]. self-optimizing
[HW+15, MD15]. Self-stabilizing
[hED12]. Semantic
[GGRSY17, RvB14, BNS12, GGRSY14, GGRSY15, MKK+12, MKK+13, OA17]. Semantics
[BO12, BR15, Kri12, LKP19, LML17, SPY+16, AK13, FBH17, FZ17, KHL+17, Mil13, MT14, PIR15, PPS16, ZHCB15]. Semantics-based [SPY+16]. Semantics-driven [LKP19]. semantics-preserving [AK13]. Semi
[SEK+19]. semi-structured [ABC18]. Sensitive
[SGD15, HWM13, KRR19, LMK16, STA18]. sensitivity
[HB13, PLR18]. Sensor
[AFFG11]. separability [WR1+10]. Separating
[DDM11, AC10]. Separation
[ZLP18, Pha18, TWSC10]. Sequence
[NBB18, ZW+14]. Sequencing
[YWW+18]. Sequential
[FFF17]. sequential
[BENS12, DMS11]. serialization
[MHB13]. Seriously [Kie10]. Server
[HC11, KRH16, D’H12, Del11, HWLM11, R+13]. Server-Side
[HC11, KRH16, D’H12]. Service
[BVEAGVA10, SDM12, CSKB12, EABVGV14, GD10, HWLM11, KF11]. service-oriented
[EABVGV14]. services
[MZC10]. session [KDPG18, FGR12]. Set
[SBK13, Lon10a, Lon10b]. Set-based
[SBK13, Lon10a, Lon10b]. sets
[SP10]. setters
[Mi13]. setting
[BDS13]. Settings
[MG12]. Seven [ST15]. SGX
[CDMR19]. Shadow [NNTK17]. ShadowVM [MKZ+14]. shalt
[LCW18]. shape
[GMT14]. Shared
[BG17, BSMB16]. Shared-Memory
[BG17, BSMB16]. sharing
[PKO+15]. Sherlock [ADJG19]. Short
[AHK+11, Cha18, SV15a, ZH12]. Short-term
[AHK+11]. shortcut
[MLM19, CSGT17]. Side
[Bul18, HC11, OBPM17, D’H12, KRH16]. Side-Channel
[Bul18]. SIGCSE [Wal12].
Signatures [DR10]. significance [FMS+11].
Simple [BO11, BO12, KCP+17, BVGV14b, MSM+10]. Simplicity [Del11]. Simplifying
[Mor18, Ano18]. Simulating [LM15].
Simulation [HWLM11, FLZ+18, KKW11, Rim12, ZXL16]. Simulation-based
[HWLM11]. simulations [MCY+10].
Simulator [MKG+17, RXK+17]. single [JK13]. Sinking [CDG+17]. site
[CPST15, SSB+14a]. sites [OOK+10]. size
[AST12, UTO13]. sizing [CSV15]. SJL
[MvH15]. sketching [HZZK19]. skills
[JACS10]. Skip [WBHN18]. Skyway
[NFN+18]. Slicing [XMA+14]. Slimming
[WGF11]. SLOC [LSBV16, LSBV17].
Smaller [GS12]. smalltalk
[FIF+15, HKV14]. smart
[BL15, GMP12]. Smartcard [RBL12].
SMARTS [RXK+17]. snapshots [AST12].
Snippets [SWU+15]. SNP [YCYC12]. SoC
[TKL+15]. social [GGC18]. Socket [WA19].
Soft [WZK+19, JACS10]. Software
[BSA14, CC15, KH18, PBM+19, ICH17, Wani11, YQTR15, YMHB19, BMSZ17, BTR+13, CBGM12, CFH+13, CJ17, CJ19, CDMR19, DVL13, EKUR10, FRGPLF+12, FC11, GT10a, HBG+16, JhED11, JK11, LPA13, MHR+12, NGB16, OIA+13, PLL+18, PBB19, RAS16, SV17, XRI13, YRHLB13, ZZK13, ZHCB15, ZDS14, CKS18]. Solidity
[Dan17]. Solution [KS15, EKUR10, J+12].
Solving [SED14, FMBH15, UP+18].
Sorting [BPK16]. Sound [BO13, BGK17, LE16, BHSB14, ELW15, PPMH15, RGB18]. soundly
[BS13]. Source
[ADJG19, BSA14, GD12, MM16, RLMM15, SRT17, SED14, ABC18, AK13, CJ17, CJ19, DRN14, EKUR10, FMS+11, JK11, MKK+12, MKK+13, OJ12, PMP+16, SSK13, Tui13, ZWS15]. source-code
[MKK+12, MKK+13]. source-to-source
[AK13]. sources [IN12]. Spark [LXP18].
sparse [TGZ17]. sparse-matrix [TGZ17].
spatial [MLGA11]. Speaking
[Rau14, Sam12]. Special
[DVLL3, Fox17a, HL13, HGCA11, Puf13, HTL10, RHT13, HTW14, VK12].
specialization [KRR+14, SV15a]. specific
[CSdL16, EEE+13, HWW+15, Kie13].
Specification [GJS+13, GJS+14, IF16, KW11, LN15, LYBB13a, LYBB13b, LYBB14, MCW19, TWHN12, BVGV1A11a, BCF+14, KR12, KW10, MRA+17, YP10, dCMNN12].
specifications
[BSAL18, BENS12, PS10a, TVD10, UP+18].
specified [BCR11]. Specifying
[BNS12, HL13]. Speculation
[AC16, MGI14, MGI17]. speculative
[BB17, YRHBL13]. speed
[HRS+17, SBF+10, UTO13]. SPF's
[PS18]. Spi [PS10a]. SPIN [ASdGM14]. SPL
[BTR+13]. splittable [SLF14]. SPOON
[PMP+16]. spot [LMK16]. SPUR
[BBF+10]. SQL [FGB+19, KMLS15].
SqueakJS [FIF+15]. SSNTDs [VSG17].
Stability [BSA14, LL15]. stabilizing
[LED12]. Stack
[WBHN18, KRC14, Xue12]. stack-based
[KRC14]. stage [WR+10]. staged
[SC16]. staging [RO12]. Stakeholders
[YMHB19]. Standard
[WKG17, LMS+12].
Standardization [TWNH12]. StarL
[LM15]. State [AGR12, BLH12, MvDL12, MS14, GN16, YP10]. state-
[YP10]. statecharts [MS13]. Statement
[XMD+17, PLR14, ZWS15]. statements
[PLR14]. Static
[BGG17, BNE16, JC10, MTL15, ODL15, PIACL11, PLR18, RD15, SW12, SBE+19, SH12, AM14, CGJ+16, Fer13, FLL+13, IF16, KSW+14, LS11, MHR+12, PIR17, TLMM13]. statically
[BTR+13, NED+13]. statistical
[Bra14, ZFK+16]. statistically
[PPMH15]. statistics [HCN14]. stealing
[KFB+12, TWL12]. STM [CHM16, Sub11].
STM/HTM [CHM16]. StMungo
stochastic [CRAT+12], stock [PVH14]. Stop [LWB+15], stops [BNP+18].
Storage [Hol12, VDV17]. Store [BS12, Sta10]. stores [DFR13]. Story [Ano14]. strategic [BRM+16]. Stream [CWGA17, KBPS17, MV16, BRWA14, SSG+14, ZDK+19]. streaming [MRA+17, STCG13].
StreamJIT [BRWA14]. StreamQRE [MRA+17]. streams [SGG+17, UFM15].
Strength [KCD12]. String [HOKO14, CSK17]. Strings [HWM11, HWM10, LSSD14]. strong [UMP10, ZHCB15, ZBB17]. Structure [ZLN18, LO15, PLL+18, UMP10].
structured [ABC18, LSW16]. Structures [GT10b, CDM10, XMA+10]. studies [EKUR10]. Studio [RT14, FH16].
Studio-Based [RT14]. Study [BF18, KB11, OBPM17, RVT18, RLMM15, WZK+19, ZMM+16, BRGG12, CCFB15, CJ17, ECS15, JK11, KFBK+15, MHR+12, NCS10, OMK+10, PTF+15, SSL18, SH12, TFBB14, VBDPM16, WXR16, YW13]. studying [CJ19]. style [UMF15].
Suites [GGZ+17]. Summaries [BH17].
Summarization [MM16, RLMM15].
SurveyMan [TB14]. surveys [TB14]. suspension [TWL12]. SV [CKS18].
SV-COMP [CKS18]. sweeping [KBL14]. Sweeten [DFFH15]. Swift [XYZ+12].
SWIM [Sch10a]. symbol [Tar11]. Symbolic [Bul18, NNTK17, PMP12, SVM17, MMP+12, Rim12].
synchrobench [Gra15]. Synchronisation [CHMY19, CHMY15, WBM+10].
synchronization [DHM+12, Gra15, Sub11]. Synchronized [BG17].
Synchronized-by-Default [BG17].
Synchronous [BVEAGVA10, SK12, MvH15]. syntactic [LE16, Mkk+12, Mkk+13, QLBS17]. Syntax [SS13, KMMV14, SSK13].
Systems [BG17, BSA14, BNE16, CCH11, DLPT14, Fox17b, HTW14, JMB12, LM15, MRF18, NFN+18, NBW+18, RTE+13, SLESS15, SLE+17, AT16, CJ19, DW10, FH16, Fox17a, HdM17, HWT+12, HTLC10, LPGK14, LTK17, MHR+12, MAH12, MvH15, OIA+13, PLL+18, PdMG12, PBB19, PDPM+16, RHT13, SDH+17, SSMGD10, SABB19, SH12, TTD12, TWX+10, THC+14, UIY10, Vit14, YRHBL13, VK12].
Tableau [FFF17]. Tagged [RKN+18].
Tardis [BM14]. target [Cle16]. Task [RRB19, Fee16, TWL12, ZLB+13].
TaskLocalRandom [PPM15]. Tasks [PWSG17, PWSG19, ST15, HAW13, PPM15, SPP+10]. Taurus [MAHK16].
Taxonomy [SS13]. Teaching [HA13, SWF12, CHM13, ZDS14]. teasing
[LBF12]. technique [SSK13]. Techniques
[RD15, EV13, KS13]. Technologies
[Fox17b, HTW14, VK12, Fox17a, HTLC10,
kFBK+15, NL14, RHT13]. technology
[NEP+13]. TeJaS [LPKG14]. Template
[MNE14, HJS+10]. templates
[FOPZ14, AK13]. term [AHK+11].
Terminating [FFF17]. Termination
[BMOG12, RDPC12, BSOG12, SMP10].
Test [AGM+17, BB12, BM18, GGZ+15,
MSS19, Pha18, Rim12, ST15, MT13,
PSNS14, SR14a, SKR17]. Test-driven
[BM18]. tested [MiI13]. Testing
[Ame13, BR12, Hin13, MM12, MMP15,
MMP+12, CSS+16, CNS13, KPP+18, Ler10,
SABB19, Teo12, TD15]. tests
[AÖI11, NYCS12, SRJ15]. Textbooks
[BNP11]. their [RDP16]. theorem [SSH17].
There [Esq11]. thin [PS16]. thin-air
[PPS16]. things [McK16]. Think [WR10].
Third [Ano15, FOPZ14, LGV10].
third-party [FOPZ14, LGV10]. THOR
[TWX+10]. Thoth [KB17]. Thou [LCW18].
Thread [MGI14, BKC+13, CRAJ10, MGI17,
PCL14, PG12, SS10, WLL19, YDF15].
Thread-Level [MGI14, MGI17]. threaded
[DSE13, JTO12, SE12, Taf13]. threads
[UR15, WLL19]. threat [BGS+13]. threats
[BGS+13]. Three [ZMM+16, Vit14]. Tier
[WZK*19]. TigerQuoll [BBP13]. Tim
[Teo13]. Time [BVEAVG10, BBP+17,
BLH12, DLR16, Fox17b, HTW14, JMB12,
Kie10, KW11, PKPM19, Pau14, SLES15,
SLE+17, TN19, VK12, BCR13, BM14,
BVGVEA10, BVGVEA11a, BVGVEA11b,
BVGVEA13, BVGVEA14b, CRAJ10, DW10,
EABVG14, Fox17a, GMC+13, HTLC10, KHM+11,
KPHV11, KHL+13, KvGS+14, KW10, KSR14, LMK16,
LTK17, MGI17, Nil12a, PS10b, PZM+10,
PSW11, Puf13, RHT13, SP10a, SPPH10,
Sic10, SP17, SH12, TTS+10, WAB+11].
time-travel [BM14]. time-triggered
[EABVG14]. timed [LKP19]. Times
[BKP16, DW10]. timing [AGH+17, LS11].
TIMP [SL5+12]. tiny [Xue12]. To-many
[SV18]. to-one [SV18]. Tolerance [RK19].
tolerant [PZM+10]. Tool [FMM+11,
NBB18, PQD12, SW12, SK13, ABFM12,
CRAT+12, ETR12, KSR14, LS11, TXW+10].
Tool-supported [FMM+11]. toolchain
[KDPG18, SMN+18]. Tools
[Bro12, CSZ17, CS12, CKS18, ABK+16,
PFP+18, VBAM10b]. toolset [KvGS+14].
top [RVP11, SGG+17, ZMNY14]. top-
[SGG+17]. top-down [ZMNY14]. Topics
[Hor11, Jen12]. topology [DDM11]. Toy
[DiP18b]. Trace
[HWM14, PIlCH11, SR14b, BBF+10,
HWM13, HW1+12, IHWN12, WHN11].
trace-based
[BBF+10, HWM14, HW1+12, IHWN12].
Traceability [CSKB12]. tracer [CZ14].
Traces [WKGI7, BA12, RGM13]. Tracing
[BPI0, DLR14, DLR16, MAK19, MRF18,
MI15]. track [VSG17]. TrackEtching
[VSG17]. Tracking [OAC18, RLM15,
SDC+12, WLL19, KHL+13, OK+10].
Tracks [RGM13]. tradeoff [UTO13].
Traffic [RXK+17]. Trail [HHSS13]. Train
[MSK16]. training [KZMN16]. trait
[BCD13, VM15]. traits [BDGS13, BD17].
Transactional
[URJ18, DVL13, FC11, ZHC1B15].
Transactions [DCSG12, CHM16, DFR13].
transfer [BL15]. transformation
[AST+16, PDD+17]. transformations
[AK13, MHH10, PMP+16, TL17].
Transforming [dMRH12]. transitioning
[HWM14]. Translating [RF14].
Translation
[BO12, LSWM16, LXP18, TJJL18].
translations [UTO13]. translator
[LZYP16]. Translators [WWG+18].
Transmission
[PE11, BVGVEA11b, BJBK12].
transparent [BDB11]. transpiler [STA18].
travel [BM14]. traversals [ODL15]. Treble
Tree [YMHB19]. Trends [RBV16].

Trees [CC15, MSS10, SR17]. Try [SV17].

Trie-based [SV17]. Tries [SV15a, SV15b, SV18]. Triggered [EABVGV14]. Triggers [FG019]. TRINI [PDPM16]. Trusted [TWNH12, BCF+14].

Tuning [AAB+10, BVGVEAF11, SKBL11].

Turf [CH17]. Turing [Gri17].

Tutorial [Jen12, Nil12b, PBM+19, Taf13, Zak12].

TV [JMO14].

Twitter [Guy14].

Two [Has12].

Type [BO13, CGJ+16, KSW+14, KATS12, Lei17, Loc18, RKN+18, SGD15, WT11, ACS+14, AT16, BS13, CMS+12, CVG+17, DLM10, FH16, GBS14, HyG12, KMLS15, KRR+14, KRH16, KvRHA14, KDPG18, LPGK14, LE16, MHR+12, SV18, SH12, TLL11, Zha12, eBH11].

Type-Based [SGD15]. type-dependent [LE16].

Type-dependent [LE16].

Type-safe [Loc18, KMLS15]. Type-checking [KDPG18, CL17].

Typed [BO13, KKK+17, MHL15, CMS+12, KRCH14, Lei17, RDP16].

Types [BO13, RvB14, SPAK10, BDGS13, CHJ12, DDM11, HH13, MME+10, YDFF15].

TypeScript [Chol14, FH16, RSF+15].

Typing [FZ17, RSF+15, Sie17, SFR+14, TSD+12].

Typy [OA17].

Uncertain [McK16]. Unchangeable [RK19]. Understandable [MSM+16].

Understanding [ABC18, FRM+15, MKTD17, NWB+18, PCL14, QLS17, Set13, TABS12, VBM16, LWB+15, Nil12b].

used [XR10]. useless [FR+17]. User [Liu14, MvDL12, RKHN18, SLS+12, DAA13, FMS+11, PSNS14].

user-defined [FMS+11]. User-guided [RKHN18].

Using [ASiMG14, BS12, BSA14, BNE16, DLM10, HCN14, KFBK+15, KH18, MV16, MSSK16, NBB18, Pan14, PQRD12, RC17, SDM12, SLE+17, UMP10, Wan11, WKG17, WCG+18, XMA+14, YCCY12, Zak18, BB17, DDDF17, Del13, FH16, FOPZ14, GBS14, Ivd16, KMLS15, KT14, KC12, LVC10, Lew13, LDL14, MT13, PIR17, PLR18, Pha18, RKHN18, RAS16, SADB+16, SSK13, SSH17, SHU16, SS19, VGS14, WLL19, WBM+10, WRI+10, XR13, ZLN18, vdMV12].

UT [Hol12]. utility [CSV15, XMA+10]. utilization [BCR13].

V [Sam12]. V8 [MGI17]. Validating [HLSK13].

Validation [SSB14b, CSD16, HCV17, SSB01]. Value [BBB+17, DFR13]. variable [CDT10].

variables [NS13]. VDM [TJLL18].

Verifiable [FHSR12]. Verification [CHMY19, CNY17, KMW14, KPHV11, RAS16, SSS12, SSB14b, CHMY15, DLM10, HCV17, PSL11, SMN+18, SZ11, SJS10, SSH17, SSB01, dCMNN12].

verification-validation [HCV17]. Verified [HM12, Loc18, JLP+14, WFF18].

VerifiedFT [WFF18]. Verifier [BDT10, Rey13]. verifiers [SPY+16].

Verifying [BDT10, Rey13].
REFERENCES

[LKWMv17, YS10, vMvdMV12, SD16b].

Veritesting [SWMV17]. Version [FLZ+18, FC11, HD17, SM12, TMVB13, ZXL16].

vertical [BFS+18, STY+14]. via [BL18, DMS11, GGRSY15, GGRSY17, Hos12, HB13, JWMC15, LSWM16, Rim12, SS16, TD17]. Video [PBM+19]. view [Guy14]. violations [LTH14, PG12, RDF15].

Virtual [BZD17, Cle16, LYBB13a, LYBB13b, LYBB14, LTK17, PTHH14, PQA12, RRB19, SB+14a, Sch13, Set13, SMBS11, SVG12, SB01, SB14b, UR15, Am13, CB1F12, KRC14, NKL0, PIZ17, RC17, SSMS120, WGF11, WHV+13].

Weapon [Nil12a]. weaving [VM1A11].

web [AM1T7, EKUR10, ETR12, HRS+17, HCN14, KFBK+15, MCC17, MCY+10, HDS15, RCR+14, Ryu16, VB18, WGW+11, DAA13, HLSK13, Kri12, LYM+18, MG14, MvDL12, MM15, NL14, OwKMP15, RFB14, RPP19, Sch10b, VLP16, YW13, Zak18].

wildcards [AS14, TLL11]. WIP [Cha18].

Wrappers [MP12]. Wright [Teo13].

Write [ASME18, HJJ10]. Write-rationing [ASME18]. Writing [Jaf13, Mor18].

yang [CBG12]. years [BTR+13]. yieldpoint [LWB+15]. yin [CBG12].

Z [SBF+10]. Z-rays [SBF+10]. Zero [ZW13].

References

REFERENCES

Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric Rabbah. Lime: a Java-compatible and synthesizable language for heterogeneous architectures.

Danilo Ansaloni, Walter Binder, Philippe Moret, and Alex Villazón. Dynamic aspect-oriented programming in Java: The Hot-

[Akai:2010:EAS]

[Anjo:2016:DML]

[ACS+14] Wonsun Ahn, Jiho Choi, Thomas Shull, María J. Garzarán, and Josep Torrellas. Improving JavaScript performance by deconstructing the type system. *ACM SIGPLAN Notices, 49(6):496–507, June 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).*

[Ahm:2014:IJP]

[Amighi:2016:PCC]

Allyson:2019:SOI

Almeida:2019:GPD

Austin:2012:MFD

Arnold:2011:AOJ

Aiello:2011:JBA

Antonopoulos:2017:DIS

Andreasen:2017:SDA

Arcaini:2012:CCM

Arcaini:2017:RDP

Apel:2010:CUF
Sven Apel and Delesley Hutchins. A calculus for

REFERENCES

Anonymous:2015:BRL

Anonymous:2018:BRS

Arslan:2011:JPM

Altidor:2014:RJG

Adalid:2014:USA

Austin:2017:MFD
Thomas H. Austin, Tommy Schmitz, and Cormac Flanagan. Multiple facets for dynamic information flow with exceptions. *ACM Transactions on Programming Lan-
REFERENCES

Akram:2018:WRG

Afek:2012:ISJ

Alshara:2016:MLO
Zakarea Alshara, Abdelhak-Djamed Seria, Chouki Tibermacine, Hinde Lilia Bouziane, Christophe Dony, and Anas Shatnawi. Migrating large object-oriented applications into component-based ones: instantiation and inheritance transforma-

Amin:2016:JST
Nada Amin and Ross Tate. Java and Scala’s type systems are unsound: the existential crisis of null pointers. ACM SIGPLAN Notices, 51(10):838–848, October 2016. CODEN SINDQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Ali:2010:DJB
Mohammed F. M. Ali, Mohammed I. Younis, Kamal Z. Zamli, and Widad Ismail. Development of Java based RFID application programmable interface for heterogeneous RFID system. The Journal of sys-

Alon:2018:GPB

Bradel:2012:ITJ

Brown:2017:NJP

Boland:2012:JCC

Bonetta:2017:FJF

Basin:2017:KKV

Bebenita:2010:STB

Michael Bebenita, Florian Brandner, Manuel Fahndrich, Francesco Logozzo, Wolfram Schulte, Nikolai Tillmann, and Herman Venter. SPUR: a trace-based JIT compiler for CIL. ACM SIGPLAN Notices, 45(10):708–725, Oc-
REFERENCES

October 2010. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Bonetta:2013:TPE

Bu:2013:BAD

Bettini:2013:FDT

Bodin:2014:TMJ

Bergenti:2011:PPS

Bacon:2013:PRT

Bainomugisha:2013:SRP

Bettini:2013:CTB

Bettini:2017:XTJ

Bala:2011:DTD

Barbuti:2010:AIA

Burnim:2012:NIN

Jacob Burnim, Tayfun Elmas, George Necula, and
REFERENCES

Barbu:2012:ARA

Badihi:2017:CAG

Biswas:2014:DES

Biboudis:2017:RJD

Burdette:2012:ECJ

Baar:2012:DEP

REFERENCES

Bell:2014:PID

Bond:2013:OCC

Brooks:2016:CST

Bouffard:2015:UCF

Black:2018:NPJ

Bodden:2012:PEF

Barr:2014:TAT
Earl T. Barr and Mark Marron. Tardis: affordable time-travel debugging

Bouraqadi:2018:TDD

Bell:2015:VFB

Brockschmidt:2012:ATP

Balland:2014:ESP

Boldi:2018:BMC

Bliudze:2017:ECC

REFERENCES

1801–1836, November 2017. CODEN SPTEXB. ISSN 0038-0644 (print), 1097-024X (electronic).

REFERENCES

REFERENCES

REFERENCES

Briggs:2017:COI

Carlisle:2011:WCB

Cao:2012:YYP

Chevalier-Boisvert:2012:BSH

Chaikalis:2015:FJS

Cosentino:2012:MDR

Ceccato:2015:LSE

Mariano Ceccato, Andrea Capiluppi, Paolo Falcarin,

Chen:2011:MJP

Chisnall:2017:CJS

Coppolino:2019:CAE

Cecco:2011:SJG

REFERENCES

REFERENCES

 REFERENCES

REFERENCES

Choi:2013:GGT

Clifford:2014:AFB

Clifford:2015:MMD

Chatterjee:2015:QIA

Curley:2010:RDT

Cote:2012:JPS

Chalin:2010:TIG

Chambers:2010:FEE

Ceccarello:2012:TGC

Cordoba-Sanchez:2016:ADS

Chavez:2016:ACC

Choi:2017:SAS

Jiho Choi, Thomas Shull,

Chawdhary:2017:PES

Chanda:2012:TBS

Chen:2016:CDD

Cameron:2015:JFE

Casale:2017:PEJ

Cazzola:2014:JBR

Walter Cazzola and Edoardo Vacchi. @Java: Bringing a

Chaudhuri:2017:FPT

Chan:2017:DSL

Cavalcanti:2013:SCJ

Caserta:2014:JTJ

Diaz:2013:LEU

Dannen:2017:IES

Deitcher:2011:SPJ

DelRa:2013:BRJ

Dennis:2018:MFI

Disney:2015:SYJ

Dey:2013:STA

deGouw:2015:OJU

DHondt:2012:ISS

REFERENCES

DeFrancesco:2010:UAI

DeNicola:2014:FAA

Demange:2013:PBB

dMol:2012:GTJ
10.1007/978-3-642-28872-
2_15/.

[Duarte:2011:ICS]
Rafael Duarte, Alexandre Mota, and Augusto Sampio. Introducing concurrency in sequential Java via
(print), 1872-6119 (electronic).

[Devietti:2012:RRC]
Joseph Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan Grossman. RCDC: a relaxed consistency
deterministic computer. *ACM SIGPLAN Notices*, 47(4):67–78, April 2012. CODEN SINODQ. ISSN 0362-
1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Dietrich:2010:POD]
K. Dietrich and F. Röck. Performance optimizations for DAA signatures on Java enabled platforms.
REFERENCES

REFERENCES

fy1211/2012405367-d.html; http://www.loc.gov/catdir/enhancements/fy1211/2012405367-t.html.

Ebert:2015:ESE

Eftinge:2013:XID

Erdweg:2015:GLE

Ebing:2015:ESE

Erdweg:2012:GLE

Eslamimehr:2014:RDS
Elmas:2010:GRA

Erdweg:2014:FEL

Eichelberger:2014:FRM

Esquembre:2011:TPL

Endrullis:2012:WEM

Exposito:2015:LLJ

Exposito:2012:DSJ

REFERENCES

Flanagan:2010:AMD

Ferrari:2017:JJF

Femminella:2012:EJC

Fogus:2011:JC

Fischer:2016:EIE

Forth:2012:RAA
Shaun Forth, Paul Hovland, Eric Phipps, Jean Utke, and

Fontaine:2012:VCF

Freudenberg:2015:SMP

Flanagan:2013:PES

Fan:2018:VCJ

Feldthaus:2013:SAR

Asger Feldthaus and Anders Møller. Semi-automatic
rename refactoring for
JavaScript. *ACM SIG-
PLAN Notices*, 48(10):323–
338, October 2013. CODEN
SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic). OOPSLA ’13 con-
ference proceedings.

[FMBH15] Tim Felgentreff, Todd Mill-
stein, Alan Borning, and
Robert Hirschfeld. Checks
and balances: constraint
solving without surprises in
object-constraint program-
ing languages. *ACM SIG-
PLAN Notices*, 50(10):767–
782, October 2015. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

[FMM+11] Asger Feldthaus, Todd Mill-
stein, Anders Møller, Max
Schafer, and Frank Tip.
Tool-supported refactoring
for JavaScript. *ACM SIG-
PLAN Notices*, 46(10):119–
138, October 2011. CODEN
SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic). OOPSLA ’11 con-
ference proceedings.

[FMS+11] Georgia Frantzeskou, Stephen G.
MacDonell, Efstatios Sta-
matatos, Stelios Georgiou,
and Stefanos Gritzalis. The
significance of user-defined
identifiers in Java source
code authorship identification.
*International Journal of
Computer Science and En-
gineering*, 26 (2):??, March 2011. CODEN CSSEEI. ISSN 0267-
6192.

[FOPZ14] Yupeng Fu, Kian Win Ong,
Yannis Papakonstantinou,
and Erick Zamora. Forward:
data-centric ULS using declarative templates that efficiently wrap third-
party JavaScript compo-
nents. *Proceedings of the
VLDB Endowment*, 7(13):
1649–1652, August 2014. CODEN ???? ISSN 2150-
8097.

[Fox17a] Geoffrey Fox. Editorial:
Special issue on 12th in-
ternational workshop on
Java technologies for real-
time and embedded sys-
tems (JTRES2014). *Concur-
rency and Computation: Prac-
tice and Experience*, 29
(22):??, November 25, 2017.
CODEN CCPEBO. ISSN
1532-0626 (print), 1532-
0634 (electronic).

[Fox17b] Geoffrey Fox. Editorials:
Java Technologies for Real-
Time and Embedded Sys-
tems (JTRES2013). *Concur-
rency and Computation:

Golan-Gueta:2014:ASL

Golan-Gueta:2015:ASA

Golan-Gueta:2017:ASA

Gligoric:2015:GCB

Gosling:2013:JLS

Gosling:2014:JLS
Gvero:2015:SJE

Gejibo:2012:CIE

Gonzalez:2013:HBP

Gadyatskaya:2012:JCA

Gardner:2012:TPL

Greenman:2014:GFB

Gupta:2016:LSA

Kartik Gupta and V. Krishna Nandivada. Lexical

Gong:2011:JSA

Grossschadl:2012:EJI

Gramoli:2015:MTY

Grech:2011:JGE

Grigore:2017:JGT

Giacaman:2011:OOP

Gil:2012:SFJ

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Gidra:2015:NGC

Gidra:2011:ASG

Gunther:2014:ACC

Guo:2017:MIJF

Gyer:2014:UJT

Gvero:2013:BRC

Gampe:2011:SMB

REFERENCES

[Han15] Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50 (2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Huang:2013:ECS]

[HB13]

[Heidegger:2012:APC]

[Hsiao:2010:EST]

[Hindle:2016:NS]

REFERENCES

1523-2867 (print), 1558-1160 (electronic). PLDI '12 proceedings.

REFERENCES

Hunt:2012:JP

Hellyer:2010:LCW

Heidenreich:2010:GST

Hlopkô:2014:ISJ

Haddad:2013:SIP

Hague:2015:DRC

Herczeg:2013:TFF

[HLSK13] Zoltán Herczeg, Gábor Lóki, Tamás Szirbicz, and

Herranz:2012:VIP

Huang:2012:RRC

Hashmi:2012:CNI

Hollingsworth:2012:SPI

Horiesh:2014:SDJ

Horstmann:2011:CJA

Huang:2011:SBA

Haubl:2010:CES

Humer:2015:DSL

Haubl:2013:CST

Haubl:2014:TTE

Haubl:2011:ECE

Hackett:2012:FPH

Hua:2019:EED

Iranmanesh:2016:SSE

Inoue:2012:AML

Inoue:2012:ISC

Islam:2012:HPR

Insa:2018:AAJ

Inostroza:2016:MIM

Juneau:2012:JRP

Joseph:2010:PII

Jaffer:2013:EAR

Ji:2012:PKP

James:2010:FMC
Perry R. James and Patrice Chalin. Faster and more complete extended static checking for the Java modeling language. *Journal of Automated Reasoning*, 44(1-2):??, February 2010. CODEN JA-REEW. ISSN 0168-7433 (print), 1573-0670 (elec-
REFERENCES

REFERENCES

Javed:2016:TSJ

Johnsen:2012:SLM

Johnson:2015:EES

Jin:2012:JMM

Kossakowski:2012:JED

Kastner:2012:TCA
REFERENCES

Kumari:2011:AOO

Kunjir:2017:TAM

Kim:2014:LBL

Kiselyov:2017:SFC

Kulkarni:2012:MCO

Krishnaveni:2012:HOJ

Kedia:2017:SFS
Piyus Kedia, Manuel Costa, Matthew Parkinson, Kapil Vaswani, Dimitrios Vytiniotis, and Aaron Blankstein. Simple, fast, and safe man-
Kouzapas:2018:TPM

Khan:2015:UJW

Knoche:2018:UML

Kerschbaumer:2013:IFT

Kang:2017:PSR

Kalibera:2011:FRT

Kabanov:2011:DSF

Kienle:2010:ATT

Kienle:2013:BRE

Kim:2017:TAA

[KKK+17] Channoh Kim, Jaehyeok Kim, Sungmin Kim, Dooyoung Kim, Namho Kim, Gitaee Na, Young H. Oh, Hyeon Gyu Cho, and Jae W. Lee. Typed archi-
REFERENCES

Sulekha Kulkarni, Ravi Mangal, Xin Zhang, and Mayur Naik. Accelerating program analyses by cross-program training. *ACM SIGPLAN Notices*, 51(10):359–377, October 2016. CODEN SINODQ. ISSN 0362-1340 (print), 1523-
Kolling:2010:GPE

Kroening:2015:CAV

Kalibera:2011:SRT

Khyzha:2012:AP

Kintis:2018:HEM

Kang:2012:FSJ

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

Krebs:2014:JJB

Korsholm:2014:RTJ

Kroshko:2015:OPN

Kouneli:2012:MKD

Korsholm:2014:RTJ

Keil:2014:EDA

REFERENCES

REFERENCES

Long:2012:COS

Leavens:2015:BSS

Lopes:2015:HSA

Lochbihler:2013:MJM

Lochbihler:2018:MTS

Long:2010:TDSa
REFERENCES

X. Larrucea, I. Santamaria,
REFERENCES

Luu:2014:MCC

Leopoldseder:2016:JYT

Li:2011:JEC

Li:2014:EAJ

Laskowski:2012:DJP

Luckow:2017:HTP
Kasper Soe Luckow, Bent Thomsen, and Stephan Erbs Korsholm. HVMTP: a time predictable and portable Java Virtual Machine for hard real-time embedded systems. Concurrency
REFERENCES

and Computation: Practice and Experience, 29(22):??, November 25, 2017. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

Liu:2014:FFL

Lerner:2010:SDT

Lin:2015:SGU

LX:2018:ATJ

Luckcuck:2017:SCJ

Lee:2010:JSD

Lindholm:2013:JVMa

Lindholm:2013:JVMb

Lindholm:2014:JVM

Liu:2018:JIO

Lyon:2012:JTW

Liu:2012:PAA

Li:2016:JJM

REFERENCES

Meijer:2014:EJR

Martinsen:2014:HTL

Martinsen:2017:CTL

Mehrabi:2019:PUP

Miller:2013:IPG

Matsakis:2015:TOJ

McGachey:2010:CJC

Phil McGachey, Antony L. Hosking, and J. Eliot B. Moss. Classifying Java

[MHR12]

[MKK12]

[MKK13]

[MKTD17]
Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. Understanding the use of lambda expressions in Java. *Proceedings of the ACM on Programming Languages*

McBurney:2016:ASC

Markstrum:2010:JDP

Martin:2014:TCR

Mirzaei:2012:TAA

Mirshokraie:2015:GMT

Morgan:2018: SJW

McIlroy:2010:HJR

Marinescu:2013:FSJ

Moller:2014:ADC

Marino:2010:DSE

Marino:2016:DXU

Mitchell:2010:FTL

Marchetto:2019:CCR
A. Marchetto, G. Scanniello, and A. Susi. Combining code and requirements coverage with execution cost for test suite reduction. *IEEE Transactions*
REFERENCES

Mitropoulos:2016:HTY

Malhotra:2013:DFT

Murawski:2014:GSI

Madsen:2015:SAE

Marz:2016:RPC

Mesbah:2012:CAB
Motika:2015:LWS

Mateos:2010:ANI

Mateos:2010:MJN

Nowicki:2018:MPI

Nasseri:2010:CMR

Nuzman:2013:JTC

Dorit Nuzman, Revital Eres, Sergei Dyshel, Marcel Zalmanovic, and Jose Castanos. JIT technology with C/C++: Feedback-directed dynamic recompilation for statically compiled languages. *ACM Transactions on Architect-
REFERENCES

Nilsen:2012:RTJ

Nilsen:2012:TOU

Namjoshi:2010:NOP

Na:2016:JPC

Nolan:2014:XWT

Nakaike:2010:LER

Noller:2017:SSE

Yannic Noller, Hoang Lam Nguyen, Minxing Tang, and

Nikolic:2012:DEA

Nikolic:2013:RAP

Nicolay:2017:PAJ

Nguyen:2015:FCR

Nguyen:2018:UCM

Naik:2012:AT

REFERENCES

(1523-2867 (print), 1558-1160 (electronic).

Omar:2017:PSF

Obaidellah:2018:SUE

Oaks:2014:JPD

Ocariza:2017:SCC

Ortin:2014:RPI

Olivo:2015:SDA

REFERENCES

Ogawa:2013:RJA

Odaira:2010:ERT

Olszak:2012:RJP

Ogata:2010:STN

Ottoni:2018:HJP

Ohkawa:2013:RHO

[OUY+13] Takeshi Ohkawa, Daichi Ue-
take, Takashi Yokota, Kane-
mitsu Ootsu, and Takanobu
Baba. Reconfigurable
and hardwired ORB en-
gine on FPGA by Java-
to-HDL synthesizer for re-
alttime application. ACM
SIGARCH Computer Ar-
chitecture News, 41(5):77–
82, December 2013. CO-
DEN CANED2. ISSN
0163-5964 (print), 1943-
5851 (electronic).

[OW16] Ronald A. Olsson and Todd
Williamson. Experience re-
ports: RJ: a Java package
providing JR-like concur-
rent programming. Software
—Practice and Experience,
CODEN SPEXBL. ISSN
0038-0644 (print), 1097-
024X (electronic).

[OwKPM15] JinSeok Oh, Jin woo Kwon,
Hyukwoo Park, and Soo-
Mook Moon. Migration
of Web applications with
seamless execution. ACM
SIGPLAN Notices, 50(7):
173–185, July 2015. CO-
DEN SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic).

power management for em-
bedded M2M using intel-
ligent learning methods.
ACM Transactions on Em-
bedded Computing Systems,
13(5s):148:1–148:??, Sep-
tember 2014. CODEN ????
ISSN 1539-9087 (print),
1558-3465 (electronic).

[Pascarella:2019:CCC] Luca Pascarella, Magiel
Brunink, and Alberto Bac-
chelli. Classifying code com-
ments in Java software sys-
tems. Empirical Software
Engineering, 24(3):1499–
1537, June 2019. CODEN
ESENFW. ISSN 1382-3256
(print), 1573-7616 (elec-
springer.com/article/
10.1007/s10664-019-09694-
w; http://link.springer.
com/content/pdf/10.1007/
s10664-019-09694-w.pdf.

[Ponzanelli:2019:AIC] L. Ponzanelli, G. Bavota,
A. Mocci, R. Oliveto, M. D.
Penta, S. Haiduc, B. Russo,
and M. Lanza. Automatic
identification and classi-
fication of software develop-
ment video tutorial frag-
ments. IEEE Transactions
on Software Engineering,
CODEN IESEDJ. ISSN
0098-5589 (print), 1939-
3520 (electronic).

Bird, and Emerson Murp-
hy-
REFERENCES

Pano:2018:FAL

Phan:2018:TIG

Park:2011:DCM

Park:2017:PSS

Pizlo:2017:JVM

Pukall:2013:JFR

Pawlak:2016:SLI

Papadimitriou:2014:MLS

Phan:2012:SQI

Porter:2018:PJE

Poslavsky:2019:REJ

Passerat-Palmbach:2015:TSS

REFERENCES

125

Pham-Quang:2012:JAD

Pinedrahita-Quintero:2017:JGA

Pironti:2010:PCJ

Pitter:2010:RTJ

Palmer:2011:BJM

REFERENCES

[PTHH14] Tobias Pape, Arian Treffer, Robert Hirschfeld, and

Papadimitriou:2011:SES

Paletov:2018:ICA

Pufitsch:2013:SIP

Petrashko:2016:CGL

Powers:2017:BBG

Pina:2014:RDJ

Luís Pina, Luís Veiga, and Michael Hicks. Rubah:

Plumbridge:2013:BPR

Pan:2017:GCF

Qiu:2017:USR

Qian:2016:EFS

Junjie Qian, Witawas Sirisaan, Sharad Seth, Hong Jiang, Du Li, and Pan Yi. Exploiting FIFO scheduler to improve paral-

Gianfranco Rossi and Federico Bergenti. Nondeterministic programming in Java with JSetL. Fundamenta Informaticae, 140 (3–4):393–412, ???. 2015. CODEN FUMAAJ. ISSN 0169-2968 (print), 1875-8681 (electronic).

Rathee:2017:ROO

Rosa:2017:APV

Robatmili:2014:MRL

Radoi:2015:ETS

Ramirez-Deantes:2012:MTA

Rhodes:2015:DDO

Reynders:2016:GSB

Bob Reynders, Dominique

Reynolds:2013:MJB

Reza:2012:JS

Richards:2011:ACJ

Radoi:2014:TIC

Roemer:2018:HCU

REFERENCES

[RK19] Mohammad Roohitavaf and Sandeep Kulkarni. Automatic addition of fault-tolerance in presence of unchangeable environment ac-
REFERENCES

Raghothaman:2018:UGP

Raghothaman:2018:UGP

[RLM15]

Rodchenko:2018:TIE

Rodchenko:2018:TIE

[RO12]

Richards:2010:ADB

Richards:2010:ADB

[RPP19]

Rodeghero:2015:ETS

Rodeghero:2015:ETS

[RKN18]

Rompf:2012:LMS

Rompf:2012:LMS

[RO12]

Ryu:2019:TAB

Ryu:2019:TAB

[RLBV10]
REFERENCES

[Reichenbach:2012:PPD] Christoph Reichenbach, Yannis Smaragdakis, and Neil Immerman. PQL: a

[Reichenbach:2012:PPD] Christoph Reichenbach, Yannis Smaragdakis, and Neil Immerman. PQL: a

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Raychev:2019:PPP

Ricci:2011:SAO

Ramos:2018:APS

Rudafshani:2017:LDD

Ramamohanarao:2017:SSM

Ryu:2016:JFB

Spadini:2019:MOT

Davide Spadini, Mauricio Aniche, Magiel Bruntink,

Serbanescu:2016:DPO

Samuelson:2012:LSO

Sarollar:2010:ZRD

Smaragdakis:2013:SBP

[SD16b] Marcelo Sousa and Isil Dillig. Cartesian Hoare logic

Sridharan:2012:CTP

Schoebel:2017:SCJ

Staples:2019:SAB

Seth:2013:UJV

Severance:2012:DJO

Severance:2012:JDL

Sewell:2012:TJ

Swamy:2014:GTE

Sherman:2015:DTB

Subercaze:2017:UPT

REFERENCES

1876, August 2017. CODEN ???. ISSN 2150-8097.

Simao:2012:CER

Stuchlik:2012:SVD

Steimann:2016:CRA

Siebert:2010:CPR

Siek:2017:CPT

Singer:2010:EGC

Smans:2010:AVJ
Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram Schulte. Automatic verification of Java

Shan:2012:OAC

Salkeld:2013:IDO

Singer:2011:GCA

Schoeberrl:2011:HAL

Sondergaard:2017:CTD

Stilkerich:2017:PGU

REFERENCES

Stilkerich:2015:PGA

Steele:2014:FSP

Snellenburg:2012:GJB

Shafiei:2012:MCL

Singh:2012:EPS

Santos:2018:JJV

Spoto:2010:TAJ
Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer for Java bytecode based on
REFERENCES

[SNS+14]

[SMS+12]

[SP10a]

[SMSB11]

[SP10b]
REFERENCES

REFERENCES

tober 2014. CODEN SIN-
ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Samak:2014:TDD

[SR14b] Malavika Samak and Murali Krishna Ramanathan. Trace driven dynamic dead-
lock detection and reproduction. ACM SIGPLAN Notices, 49(8):29–42, August 2014. CODEN SIN-
ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Sun:2017:AJP

[SR17] Kwangwon Sun and Suky-
oung Ryu. Analysis of JavaScript programs: Chal-

Sawan:2018:RDC

[SRB18] Anand Ashok Sawant, Ro-
main Robbes, and Alberto Bacchelli. On the re-
action to deprecation of clients of 4+1 popular Java APIs and the JDK. Empirical Software Engineer-
ing, 23(4):2158–2197, August 2018. CODEN ES-
ENFW. ISSN 1382-3256 (print), 1573-7616 (elec-

Samak:2015:SR

Scanniello:2017:FF

[SRTR17] Giuseppe Scanniello, Michele Risi, Porfirio Tramontana, and Simone Romano. Fix-
ing faults in C and Java source code: Abbrevi-
ated vs. full-word identifier names. ACM Transac-

Sutherland:2010:CTC

[SS10] Dean F. Sutherland and William L. Scherlis. Com-
posable thread coloring. ACM SIGPLAN Notices, 45 (5):233–244, May 2010. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (elec-
tronic).
Scheben:2012:VIF

Stefik:2013:EIP

Sor:2014:MLD

Surendran:2016:APP

Sudarsan:2019:BDK

Stark:2001:JJV

Sarimbekov:2014:JCS

Aibek Sarimbekov, Andreas Sewe, Walter Binder,

Sciampacone:2010:EMS

Stone:2015:WMT

Stark:2010:BIA

Sayed:2018:ITI

Bassam Sayed, Issa Traoré, and Amany Abdelhalim.

Santos:2013:DDS

Stefanov:2010:JP

Samak:2016:DSF

REFERENCES

Steindorfer:2017:TSP

Steindorfer:2018:MOA

Silva:2017:ICL

Sverdlove:2014:JVL

Siek:2012:FDT

Stancu:2015:SEH

REFERENCES

REFERENCES

IEEE Computer Society
Press, 1109 Spring Street,
Suite 300, Silver Spring,
MD 20910, USA, May 2017.

Teodorovici:2012:BRC

Teodorovici:2013:BRL

Teyton:2014:SLM

Tommasel:2017:SJL

Tu:2014:PPP

Tran-Jorgensen:2018:ATV

[Thakur:2019:PFP] Manas Thakur and V. Krishna Nandivada. PYE: a framework for precise-yet-
efficient just-in-time analyses for Java programs.

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Guillermo L. Taboada, Sabela Ramos, Juan Touriño, and Ramón Doallo. Design of efficient Java message-passing collectives on multicore clusters.

Toledo:2011:ACJ

Taboada:2011:DLC

Taboada:2012:FMS

Tatsubori:2010:EJT

Torlak:2010:MCA

Tardieu:2012:WSS

Toegl:2012:SSJ
Ronald Toegl, Thomas Winkler, Mohammad Nau-
man, and Theodore W. Hong. Specification and
standardization of a Java Trusted Computing API.
Software—Practice and Experience, 42(8):945–965,
August 2012. CODEN SPEXBL. ISSN 0038-0644
(print), 1097-024X (electronic).

Titzer:2010:ICR
Ben L. Titzer, Thomas Würthinger, Doug Simon,
and Marcelo Cintra. Improving compiler-runtime
separation with XIR. ACM SIGPLAN Notices, 45(7):
39–50, July 2010. CODEN SINODQ. ISSN 0362-1340
(print), 1523-2867 (print), 1558-1160 (electronic).

Teng:2010:TPA
Q. M. Teng, H. C. Wang, Z. Xiao, P. F. Sweeney, and
E. Duesterwald. THOR: a performance analysis tool
for Java applications running on multicore systems.
IBM Journal of Research and Development, 54(5):
4:1–4:17, ???? 2010. CODEN IBMJAE. ISSN 0018-
8646 (print), 2151-8556 (electronic).

Ugawa:2010:IRB
Tomoharu Ugawa, Hideya Iwasaki, and Taiichi Yuasa.
Improved replication-based incremental garbage col-
lection for embedded systems. ACM SIGPLAN
Notices, 45(8):73–82, August 2010. CODEN SIN-
ODQ. ISSN 0362-1340 (print), 1523-2867 (print),
1558-1160 (electronic).

Ugawa:2014:ROP
Tomoharu Ugawa, Richard E. Jones, and Carl G.
Ritson. Reference object processing in on-the-fly
garbage collection. ACM SIGPLAN Notices, 49(11):
59–69, November 2014. CO-
Upadhyaya:2010:UDS

Upadhyaya:2015:EML

Uga:2018:TSL

Ureche:2013:MIS

Vilk:2014:DBB

2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Vouillon:2014:BJJ

Vilk:2018:BAD

Villazon:2010:ARA

Villazon:2010:HCA

Vidal:2016:ECJ

Villazon:2011:CAW

Vidal:2016:UAE

Santiago A. Vidal, Alexandre Bergel, Claudia Mar- cocos, and J. Andrés Díaz-Pace. Understanding and addressing exhibitionism in Java empirical re-
REFERENCES

[102x681]REFERENCES

[180x634]Vidal:2018:ARB

[VGS14] Vikas, Nasser Giacaman, and Oliver Sinnen. Mul-

Varier:2017:TNJ

K. Muraleedhara Varier, V. Sankar, and M. P. Ganga

Wijayarathna:2019:WJC

VanNieuwpoort:2010:SHL

Wurthinger:2011:SAR

Vechev:2010:PPC

REFERENCES

REFERENCES

Wood:2014:LLD

Wang:2018:PBJ

Wang:2019:DEJ

Wilcox:2018:VHV

Wagner:2011:SJV

Wagner:2011:CMM

0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). ISMM ’11 conference proceedings.

Wu:2011:RTS

Wimmer:2013:MAV

Wellings:2012:AEH

Wang:2017:JRJ

Wade:2017:AVJ

Wang:2019:TRC

Wimmer:2010:AFD

Wendykier:2010:PCH

Witman:2010:TBR

Westbrook:2010:MJM

Wehr:2010:JBP

Wehr:2011:JIT

Wang:2018:IDG

Xu:2013:PML

Xue:2012:RJC

Xie:2013:AAE

Yang:2012:MPD

Yi:2015:CTC

Yo o:2014:WRR

Danny Yoo and Shriram Kr-

[YPMM12] Suleiman Y. Yerima, Gerard P. Parr, Sally I. Mc-

Eran Yahav and Mooly Sagiv. Verifying safety properties of concurrent heap-manipulating programs.

[YS10] Zakas:2010:HPJ

4493-8230-4. xviii + 209 pp. LCCN ????

Zakhour:2012:JTS

Zakai:2018:FPW

Zheng:2015:APP

ZDs14

Zhang:2015:SYB

Zeuch:2019:AES

Zschaler:2014:SJF

Zuo:2016:LOF

Zhao:2012:PTI

Zhang:2015:LOS

Zhang:2012:RAJ

Zacharopoulos:2017:EMM

Zheng:2016:CMD

REFERENCES

[175]

Zhao:2013:INT

Zhang:2014:AIO

Zeyda:2014:CMS

Zabolotnyi:2015:JCG

Zheng:2018:ADS

Zhang:2014:ARP

Zhou:2016:IRO

[Minghui Zhou, Audris Mockus, Xiujuan Ma, Lu Zhang.]

Zhao:2014:CSP

Zhang:2016:NVC

Zhou:2019:AJM

Zhang:2012:SRB

Zhang:2013:IMF