Abstract
This bibliography records books about the Java Programming Language and related software.

Title word cross-reference
3 [GBC12, JEC+12, ZXL16]. C_p [AÖ11]. k [SD16b]. Z_p [AÖ11].
-safety [SD16b].
/multi [Taf13]. /multi-threaded [Taf13].
'12 [Hol12].
5 [KHR11].
6 [Jen12].
7 [EV13, J+12]. 75 [HWM11].
8 [LYBB14, SAdB+16, UFM15].
938 [Gun14]. 978-1-4493-1103-2 [Bro12].
ABS [SAdB+16]. absence [AGH+17].
Abstract
[AGR12, BDT10, DLR16, XMA+14, DLM10, DLR14, FSC+13, KMMV14]. Abstraction
Architectures
[KKK+17, ABCR10, Hos12, MS10, ZP14].
arena [TRE+13]. Arquillian [Ame13].
array [SV15b]. arrays [FBH17, SBF+10].
Arrows [FZ17]. art [Lew13]. ASM
[AGR17]. Aspect
[ABMV12, VBAM10b, VBMA11, WBA+
+11]. Aspect-Oriented
[ABMV12, VBAM10b, WBA+11]. AspectJ
[AC10]. aspects [LVG10]. Assertion
[MM12]. Assertion-Based [MM12].
Assertional [LL15]. assertions [VYY10].
Assessing [GTSS11, JACS10]. assignment
[KT15]. AST [DRN14, HWW+15, ZLB14].
asymmetric [CBGM12]. asymptotic
[ODL15]. Asynchronous
[KW11, SKL2, WK2, FZ17, KW10]. atomic
[WAB+11]. Atomicity [GGRSY17, JLP+14,
BHS14, BNS12, GGRSY15, UMP10].
atomics [PPS16]. Attack [BH12]. Attacks
[MSSK16]. attribute [SHU16].
augmentation [DAA13]. authentication
[XHH12]. authorship [FMS+11]. auto
[SKBL11]. auto-tuning [SKBL11].
automata [TLX17, ZWZ+14]. Automated
[BH17, BSG12, BMOG12, MS14, RGEV11,
SD12, ASDGM14, MRVM12, ZFK+16].
Automatic
[GGRSY14, GGRSY15, GGRSY17, KKW11,
PQD12, SZ11, SD16a, SJPS10, SS16, WM10,
ABK+16, FM13, PG12]. automatically
[TB14]. Autonomic [DLPT14].
Autonomous [GMP12]. average [LDL14].
avoid [XR10]. avoids [PPS16]. Aware
[JYKS12, BBXC13, CL17, EQT10, SSB+14a,
SV12]. awareness [VGS14]. axiomatic
[TVD10].

B [DLZ+13]. Backstage
[PS11]. Bad [dGdB+15]. baggage
[KFB+12]. balances [FMB15]. balancing
[PDP+16]. Ball [DD13]. barrier
[CHMY15, VB14a]. barriers
[HJH10, WBM+10]. Based
[AFFG11, DLR16, GM12, GGZ+15, LTD+12,
MvDL12, MM12, PTML11, PlCH11, PE11,
RBL12, RT14, SGD15, SLS+12, SWF12,
AYZ10, AST+16, ADI13, BBF+10, BBP13,
CJ17, CPST14, CPST15, GCM+13, HW14,
HW1+12, HOKO14, HWLM11, IHWN12,
IRJ+12, JEC+12, JMO14, KATS12, KS13,
KRC14, KVRHA14, KS14, MCC17, MB12,
MCY+10, PDP+16, PSW11, SZ11, SBK13,
SMP10, Spy+16, SV17, SNS+14, UIY10,
VSG17, XHH12, YP10, ZYZ+12]. basic
[CZ14]. basic-block [CZ14]. basics [Zak12].
basierte [Ric14]. battlefield [WT10].
Bayesian [BSA14]. BeagleBone
[Ric14]. before [TD15]. begone [MRMV12].
behavior
[LWB+15, RLVB10, TABS12, WX16].
Behavioral [LN15, AMWW15]. behaviors
[PCL14]. behaviour [SMS+12]. Beliefs
[BA17]. Benchmark [GBC12, SMSB11].
benchmarking [AHK+15, MDM17].
benchmarks [KHM+11, RGEV11]. benefit
[HH13]. best [Sch13]. Better
[Bro12, TD15]. Between
[PVB17, ZLHD15, CMM17, RDF16, SH12].
Big [GTS+15, NB+15, RSK15, BBXC13,
SSG+14, WR10]. billions [DRN14].
bindings [VGRS16]. bird [Guy14].
Birthmark [PICH11]. Blame [KT15].
Bloat [MS10, XMA+14, BRGG12,
BBXC13, XR10]. bloat-aware [BBXC13].
block [CZ14, KBL14]. block-level [KBL14].
blocking [DW10]. Blockly [AMWW15].
Blueshell [PWA13]. boilerplate
[ZCdSovdS15]. Book [Bro12]. Boosting
[ASV+16, AC16]. Bootstrapping
[CBLFD12]. Bottle [DSEE13]. bottlenecks
[DSEE13]. bottom [ZMNY14]. bottom-up
[ZMNY14]. boundary [RDF16]. Bounded
[NWB+15, GTS14]. Bounds
[SW12, GvRN+11]. boxes [BDGS13].
breakpoints [PS12]. Bridging [PVB17]. Bringing [CV14, HRS+17, STS+13].
Broken [dGRdB+15]. Browser [MSKS16, PVB17, FIP+15, VB14a, GWH+11, YK14].
Browsers [HLSK13]. Browsix [PVB17].
Budget [GM12], buffered [DLZ+13]. buffers [Gun14], bug [LWH+10], bugs [ECS15, ODL15, Ryu16]. Build
[BMKD15, BNE16, ELW15, MAH12]. Building [Sta10, HWW+15]. Business
[CCA+12]. Bytecode
[BDT10, BSOG12, FHSR12, NS12, RDCP12, Rey13, AdCGGH16, CZ14, DLM10, SP10b, SMP10, VB14b].

C [BB12, CDG+17, GBC12, NED+13, Sta10, ZWSS15]. C/C [BB12]. C/C [NED+13].
CA [KP15]. cache [IN12, ZP14]. caches [NGB16].
calculations [VSG17]. Calculi [FFF17]. calculus [AH10]. Call [FRG12, PUL016, ZWZ+14, Xue12, SSB+14a].
Call-site [SSB+14a]. calling
[HB13, SSB+14a, ZWZ+14]. Calls
[SW12, SS16]. came [Car11]. can [TPG15].
capabilities [Ame13]. capability [RDF15].
capo [SMSB11]. capturing [BKC+13].
Card [GMPS12, ABFM12, dCMMN12].
Cards [BH12, GMPS12]. Caring [DAA13].
carry [Ame13]. Cartesian [SD16b]. Case
[ZMM+16, dGRdB+15, AMWW15, HNLT12, SPPH10, Vit14]. Cassandra
[FRM+15]. casts [SH12]. categorising
[CMM17]. causes [FRM+15]. CAV [KP15].
CCA [ZXL16]. Center [Hol12]. centric
[DHM+12, FOPZ14]. CERT [LMS+12].
chain [KSR14]. Challenges [GM12].
Change [YQTR15]. Changes [MvDL12].
Changing [SSG+14]. channels
[AGH+17, LS11]. Characterizing [CJ17].
check [GvRN+11]. Checking
[BNE16, Chol14, JCI0, JYKS12, ABFM12, BHSB14, BNS12, DLM10, FLL+13, HMDE12, KATS12, KvRHA14, LT11, RR14, RAS16, RDF15, TVD10, VYY10].
checkpointing [SGV12].
checkpointing-enabled [SGV12]. Checks
[FMHB15]. CHERI [CDG+17]. chip
[PS10, Puf13, RS12, SPS17].
chip-multiprocessor [PS10].
chip-multiprocessors [RS12]. choice
[WB10]. CICS [R+13]. CIL [BBF+10].
circular [Gun14, SZ10]. Circus [ZLCW14].
City [Hol12]. Class
[BS13, NCS10, HC10, MHM10, SC16, TSD+12]. Classes
[And14, WT11, CZ14, SZ10, TSD+12, VBDPM16].
Classfiles [SD16a]. classification [SS14].
Classifiers [BSA14]. Classifying [MHM10].
Classless [WzSoS17]. clicker [HA13].
Client [MS14, KRH16]. client-side
[KRH16]. Client-State [MS14]. Clojure
[ECG12, FH11, VS10]. Closing [ZLHD15].
Closures [BO11, BO12, BO13]. cloud
[LZYP16, TLMM13]. clustered
[PDM+16]. clusters [TRTD11]. Cocoa
[Sta10]. Code [BH17, BNE16, HC11,
RVK15, SV15a, SED14, AGR17, AK13, CCFB15, DRN14, FH16, FMS+11, LVG10, NG13, OJ12, PMP+16, PSW11, RFRS14, RBV16, RO12, UTO13, VSG17, WKJ17, WGF11, WBA+11, WAB+11, WWS13, ZHL+12, XZL16, ZWSS15]. coding
[LMS+12]. coherent [ZP14]. Cold
[BZD17, WGF11], collected [AGZ10].
collecting [AHK+11]. Collection
[ASV+16, GM12, QsAS+16, BP10, KPHV11, KBL14, NGB16, ODL15, PZM+10, PDM+16, SP10a, SBM14, SIE10, SJB10, SKBL11, UIY10, UJR14]. Collections
[GS12, PL12, SV15b, SV17]. collectives
[RTET15, TRTD11]. Collector
[BH12, GTS+15, BCR13, BVG14b, Puf13].
Collectoren [Sch13]. collectors
[GTSS11, Sch13]. coloring [SS10]. Colt
[WN10]. CoMA [AGR12]. Combination
[BSA14]. Combinatorial [YHY13].
combinators [MHBO13]. Combining
[BDGS13, MGI17]. commensal [BRWA14].
Communication [JQJ⁺16, RTE⁺13, SK12, BJJK12, ETR⁺15, TTD⁺11].
communications [ETTD12, RTET15, TTD12]. Communities [ZMM⁺16]. Compact
[HWM10, HWM11, JLL17]. comparative [KFBK⁺15]. comparing [MD15].
comparison [ADI13, BJBK12, HH13, KvRHA14, SMS⁺12]. Comparisons
[GGZ⁺15]. Compartmental [WGW⁺11]. compatibility [DJB16, OIA⁺13].
compatible [ABCR10, Hor12].
Compilation [DLR16, CGJ⁺16, CMS⁺12, DLR14, FSC⁺13, IHNW12, JLP⁺14, JK13, JMO14, KS13, KHL⁺13, Lei17, MD15, MGI17, ZBB15].
compiled [NED⁺13, RO12]. Compiler
[JMB12, NKH16, NWB⁺15, BBF⁺10, BRWA14, CIAD13, HWM14, IHNW12, KMLS15, KS14, KC12, LSWM16, MDM17, Rub14, TTS⁺10, TWSC10, VB14b, ZYZ⁺12].
compiler-compiler [KS14].
compiler-runtime [TWSC10]. compilers [Hos12, Hos12]. Compiling
[Fee16, Hos12]. complementation [BS13]. Complete
[BO13, BR15, JCl0, Sch14, Gri17, PSR15, RGM13]. completeness [KBS17]. completing [BS13]. completion [FH16]. Complexity [SSH17]. Compliance
[GD12]. compliant [MZC10a]. component [AST⁺16]. component-based [AST⁺16].
components [FOPZ14, KS14].
Composable [SS10]. Composing [EABVGV14]. Composition
[SK12, AGH⁺17, AH10, SZ10, VM15]. Comprehensive
[VBMA11, ZKB⁺16, MKZ⁺14]. Compressing [Gun14]. Computation
[BW12, ZHL⁺12]. computational
[Bra14, SSG⁺14, VF10]. computations [KFBK⁺15, TLMM13]. Computer
[HWM11, DNB⁺12, KP15]. Computing
[Hol12, SHU16, TWNH12, WN10, LZYP16, Rub14, TTD⁺11, VF10, TRE⁺13]. con
[SMSB11]. Concurrency [Bro12, SWF12, BVGVEA11a, CHM13, DMS11, HAW13, KHL⁺17, PPS16, Sub11, TD15, UR15]. Concurrent
[MSM⁺16, PS12, Se10, EP14, Gra15, HJH10, KBL14, MSM⁺10, OW16, PTF⁺15, RVP11, STR16, SNS⁺14, YS10]. concurrent-by-default [SNS⁺14].
conditional [SS16]. Conference
consistency [DNB⁺12, FRM⁺15]. consistent [BCR13]. constrained [KSR14].
constraint [FMHB15, SHU16]. Constraints [SGD15, LSSD14].
construction [CIAD13, RGEV11]. constructors [MME14]. constructs
[PCL14, PTF⁺15]. consumers [DAA13]. Consumption [MV16]. container [XR13].
containers [XR10]. Context
[HWM13, TL17, HB13, IvdS16, SSB⁺14a]. Context-sensitive [HWM13]. Contextual
[MSSK16]. Continuously [DTLM14].
Contracts
[YQTR15, HBT12, KT15, KK11]. Control [FGR12, FHSR12, TT11, AdCGGH16, FWDL15, LSWM16, RHN⁺13, STS⁺13, TAB12, XHH12]. controlling
[BKC⁺13, YDF15]. Convention [Hol12]. conversions [CMM17]. Cooperative
[YDF15, HDM17]. Coordinating
[MAHK16]. copy [FBH17]. copyrightable
[Sam12]. Core [Hor11, HC13, RDCP12, RTE⁺13, MS10, TRTD11]. cores
[GTSS11, SKBL11]. corpus [HCN14].
correct [AdCGGH16, AJL16, DJLP10].
Correctness [LL15, BENS12, Cho14].
Correlation [SD⁺12, XHH12]. counter
[LSSD14]. counters [IN12]. Course
[Wan11, Zak12]. Coverage
[CSS⁺16, GGZ⁺15]. Coverage-Based
[GGZ⁺15]. Coverage-directed [CSS⁺16].
CPS [PDDD17]. CPU [PKO+15].
Crawling [MvDL12]. creating
[HC10, VBAM10b]. Creation [SK12]. crisis
[AT16]. Critical [HL13, WK12, WCB16,
ZLCW14, AGR17, DTL14, GMC+13,
NM10, Nil12b, RS12, CWW13, LWC17].
Cross [MDM17, AMWW15, BKC+13,
GSS+16, KMZN16]. cross-cutting
[AMWW15]. Cross-language
[MDM17, GSS+16]. cross-program
[KMZN16]. cross-thread [BKC+13].
Crowdsourcing [BH17].
Cryptosummarizer [BH17].
Cryptography [GPT12]. CSS
[HLO15, Sta10]. Curve [GPT12].
customizations [LVG10]. customized
[HB13]. cutting [AMWW15]. Cyclic
[MDM17, AMWW15]. DAA [DR10].
Data [Bra14, BMOG12, BA17, GM12, GTS+15,
GT10, NKH16, NBW+15, dMRH12, BK14,
BBXC13, BJJK12, CRP+10, DFR13,
DHM+12, FOPZ14, LDL14, MRA+17, NL14,
SAdB+16, SSG+14, UMP10, WKJ17,
WCG14, XXZ13, XMA+10, ZIvdS17].
data-centric [DHM+12, FOPZ14].
Data-Parallel [NKH16, CRP+10].
database [Dei10, TABS12]. databases
[MLGA11]. Dataflow [BR12]. Datalog
[ZMG+14]. Days [Sev12b]. DBT [KS13].
dead [SK13]. deadlock
[CHMY15, SR14a, SR14b]. Dean [Bro12].
debugging
[ASdMGM14, BM14, KS14, TB14, ZFK+16].
Deciding [SGD15]. decision [RBV16].
declarative
[DRN14, RS12, FOPZ14, MME+10].
Decomposition [AGH+17].
deconstructing [ACS+14]. decoupled
[LPA13]. deduplication [HOKO14].
default [SNS+14]. Defined [FMS+11].
Definite [NS12]. Definition
[SSB14b, AK13, SSB01]. Definitive
[Oak14]. delegation [GBS13]. delimited
[PDDD17]. Delphi [GBS13]. demand
[FWDL15, ZHL+12]. demand-driven
[FWDL15]. DemoMatch [YKSL17].
demonstrations [YKSL17].
Deoptimization [KRCH14]. Dependence
[PDDD17, JWMC15]. Dependence-driven
[PDDD17]. dependences [BKC+13].
dependencies [ELW15]. Dependent
[CHJ12, LE16]. deploying [R+13]. depth
[Ran14]. Design [AC16, ETTD12, MLGA11,
Pufl3, RTE+13, SW12, TRTD11, TKL+15,
VGRS16, YCYC12, BBXC13, CsL16,
GSD+15, IRJ+12, OA17, SAdB+16,
SMSB11, VM10, Xue12]. Designing
[Sev12b, KHR11]. Desktop [GS11].
destructive [FF10]. Detecting
[BK12, HLO15, PiLCH11, XR10, FF10].
Detection [BSOG12, KCD12, MS14, RD15,
XMA+14, CSK17, LMK16, LS11, ODL15,
PG12, RDF15, RW17, SR14a, SR14b, SS14,
WCG14, XXZ13, XR13].
detectors [LWH+10]. Determinacy [AM14].
deterministic [DNB+12]. developer
[EV13, Top11, ZZZ13]. Developers
[Bro12, BMR14, DJB16, HH13, Wam11].
developing [R+13]. Development
[ABK+16, AYZI10, AGR17, FRGPLF+12,
PSW11, SH12, WBA+11, ZDS14]. Device
[TDD+11, XHH12]. Devices
[GPT12, QJ+16, MV16, ETR+15, Xue12].
DFC [BR12]. diagnosis [RW17]. DilAl
[STCG13]. dialects [BlvdS17]. difference
[PS11]. differential [CSS+16].
Differentiation [FHP+12, PQQD12, SD16a].
digital [JMO14]. Directed
[STR16, CSS+16, EP14, Lei17, NG13,
NED+13, WM10]. directives [VGS14].
Discovering [Sev12a]. discovery [YKSL17].
discrete [DDDF17]. Disease [PE11].
Dissimilar [Has12]. Distance [ZW13].
distributable [CRAJ10]. Distributed
[BVEAGVA10, LTD+12, LM15, MAHK16,
divide BVGV14b, CRAJ10, EABGV14, STCG13].

Domain [KSPK12, CsDL16, EEK+13, HWW+15, PIR17]. domain-specific [CsDL16, EEK+13, HWW+15]. dominance [CPST14].

dual [AD16]. Dual-Pivot [AD16].

Dynamic [ABMV12, ASF17, CHMY15, MtDL12, PTHH14, RDF15, XMA+14, ZKB+16, AF12, BDB11, BK14, BCD13, CS15, CPST15, ELW15, GYB+11, HB13, KRCH14, KRR+14, KT14, LWI+10, LGV10, MKZ+14, Nil12b, NG12, NED+13, RLBV10, RCR+14, SR14b, SJPS10, SH12, TPG15, VBAM10b, WXR16, WAB+11, WAB+11, WWS13, WWH+17, ZBB15].
dynamic-memory [GYB11].
dynamically [CZ14, CMS+12, hEYJ12].

Dynamo [BDB11].

e-Science [SVG12]. ease [DRN14]. Easy [Jaf13, CRP+10]. economic [CSV15].
economics [SBBL10]. edition [LYBB14].

editor [EKR+12]. Editorials [Fox17, HTW14, RHT13].

EDSLs [RDP16].

Educator [BA17]. EE [Jen12, MCC17].
effect [CCF15]. Effective [BMR14, PTML11, RD15, CsDL16].

effectively [UR15]. effects [FH16, HAW13, Lei17].

Efficient [DVL13, GPT12, HWM11, HB13, KT14, KW10, OOK+10, RSE+15, RFB14J, SMJ+12, TLX17, AK13, BHSB14, CRP+10, ETR12, HWM10, KKW11, MRA+17, MSM+10, SV12, SWB+15, SV15a, TRTD11, UMP10, VWJB10, XXZ13].

Efficiently [FBH17, BKC+13, FOPZ14].

Einsatzszenarien [Sch13]. Einsteiger [Ric14].

Elektronik-Projekte [Ric14].

Embedded [Fox17, HTW14, JMB12, KARO12, Pau14, SLES15, SLE+17, TKL+15, VK12, Del10, GMC+13, HTLC10, KHR11, LMK16, OIA+13, RHT13, SC16, SFR+14, UIY10, Xue12, ZYZ+12].

embedding [KMLS15, SC16]. Empirical [SS13, WXR16, BJBK12, FH16, HH13, MHR+12, NCS10, SH12, VBDM16, VBMDP16]. emulated [THC+14].

emulator [KS13].

Enabled [GPT12, DRT10, ETR+15, RBL12, SVG12].

encapsulation [DDM11].

End [GM12, DAA13].

End-to-End [GM12].

end-user [DAA13]. energy [CL17, PCL14].

energy-aware [CL17]. enforcement [IF16].

enforcing [JWM15].

engine [MG17, OUY+13, Tar11]. Engineering [CCA+12, VF10].

engineers [Bra14]. engines [KRI16, SSG+14].

enhanced [LKM16, WBA+11]. Enhancing [BDT10, BVGV13, DcSG12, HC10].

Ensuring [HDK+11].

Enterprise [Ako14, AAB+10]. entities [ETR12].

Entry [BK12]. enumeration [SSH17].

Environment [Kl10, PTML11, EKR+12].

environments [EABGV14, GTL+10, HOKO14, KF11, RDF16, RCB17, SVG12].

equality [GRF11].

Equivalence [BO12]. equivalent [TLX17].

ERAM [Sch10a].

Erratum [HWM11].

error [eBH11].

ES5 [DFHF15].

Escape [SLES15, SLE+17].

estimation [LKM16].

etched [VSG17].

eval [Mll13, MRV12]. Evaluating [BHL13, MDS10].

Evaluation [GC12, JMB12, OCFLI14, TTS+10, Wan11, CSK17, MRA+17, MD15, WWH+17].

Evaluator [JB12].

Event [KW11, MV16, BBP13, KW10, MTL15, WK12, YP10].

free-form [GK15]. free-lunch [DTLM14].
fringe [MB12, MB12]. full [DRN14]. Fully
[FSC+13, PG12, ZFK+16]. Functional
[Wan11, Ame13, BVGV14b, NFV15, UFM15, Bro12]. functional-style [UMF15].
Fundamentals [HC13]. Fusing
[MS13, ET12, WM10]. fusion [KBPS17].
future [SS16], fuzzier [Guo17].

Game [MT14, Wan11]. Gap
[PVB17, ZLHD15]. Garbage
[ASV+16, BH12, GTS+15, QSa+16, Sch13, SKBL11, AGGZ10, BCR13, BP10, BVGV14b, GTSS11, KPHV11, KBL14, NGB16, PZM+10, PDPM+16, Pu13, SP10a, SBM14, Sie10, SJBL10, UIY10, UJR14].
garbage-collection [Sei10]. GC
[NGB16, RGM13]. GEMs [BSM16].
generic [CHMY15], generalized [WT10].
Generating
[HJS+10, RDP16, GRF11, KS14, MBHBO13].
Generation [BH17, CRJ+10, PPMH15, PSNS14, RO12, UMP10]. generators
[SLF14]. generic
[DDM11, Fer13, HH13, ZPL+10, eBH11]. generics
[AS14, Gnt17, PBH13]. Genetic
[YCYC12]. Genotyping [YCYC12].
GeoGebra [ABK+16], geometries
[MCY+10]. German [Sch13], get [Ame13].
Getaway [SLES15, SLE+17]. Gets [BH12].
getters [Hall13]. Getting [GMT14]. Giga
[DHS15]. Giga-scale [DHS15]. glimpse
[SP16]. Global [PE11]. Global-Scale
[PE11]. Glataran [SLS+12]. go [LWB+15].
Goldilocks [EQ110]. Good [dGRdB+15].
Google [MG17, Sam12]. GPGPU
[PQ17]. GPGPU-accelerated
[PQ17]. GPU [PK0+15]. GPUs
[Hos12]. grade [CRJ+10]. Gradual
[RSF+15, SFR+14, TSD+12]. grained
[DRN14]. grammars [GN16, SHU16].
granularity [CZ14]. Graph
[dMRH12, BS13]. Graphical [SLS+12].
Graphics [Cec11, LLL13]. graphs
[AdCGGH16, DSEE13, JWMC15, PUL16].
green [BRGG12]. Greenfoot [K610]. grid
[SGV12, VWJB10, MZ10]. Gridifying
[MZ10]. grounded [EV13]. Growing
[EKR+12]. growth [LDL14], guarantees
[JWMC15, ZHC15]. GUI
[CNS13, VGS14, WBA+11].
GUI-awareness [VGS14]. Guide
[Ame13, Oak14, Rau14, Top11]. Guided
[CNS13, GY16, PSNS14, SH17].
Guidelines [GG15, HLSK13].

Handling
[KW11, ECS15, HWM14, KW10, WK12].
happened [Han15]. happens [TD15].
happens-before [TD15]. hard [Pu13].
Hardware
[SKKR11, SP17, CBGM12, IN12, SE12].
hardwired [OUY13]. hash
[SV15a, SV15b]. hash-array [SV15b].
hashing [GRF11]. HDFS [IRJ+12]. HDL
[OUY13]. heap [CSV15, LDL14, TLX17, Tar11, VYY10, YS10, BVGV10].
heap-manipulating [YS10]. Helping
[RT14]. Hera [MS10]. Hera-JVM [MS10].
Heterogeneous [ASV+16, HBB+14, Rub14, AYZ10, ABCR10, DFR13, MS10].
Heterogeneous-race-free [HBB+14].
heuristics [LMK16]. Hidding [RB12].
hierarchy [BS13]. High
[GS+16, Hol12, IRJ+12, MSM+16, SWU+15, WN10, Zak10, BRWA14, Hos12, RFBJ14, TTD+11, VWJB10, WHH+17, TTE+13].
high-level [Hos12, RFBJ14, VWJB10].
High-Performance [WN10, GSS+16, BRWA14, TTD+11, WHH+17]. higher
[KT15]. higher-order [KT15]. highly
[BP10, SPP+10]. history [DRN14]. Hoare
[SD16]. Holistic [MAH16]. HOP
[D12]. Hopjs [SP16]. hosted [CBLFD12].
hot [LMK16]. HotSpot [Sch13]. HotWave
[ABMV12, VBAM10b]. HPC [JQ17].
HTML [Sta10]. HTML5 [HLO15, NKH16]. Hybrid
[CHM16, JQJ16, JMO14, KCD12, ZMNY14, ZMM16, ADI13, HyG12, SWB15].
hygienic [DFHF15]. hypervisor [GMC13].

IaaS [ZLHD15]. identification
[BZD17, FMS11]. identifiers [FMS11].
Identifying [NI12]. if [Han15].
illuminating [BK14]. Image [WN10].
immutable [HMDE12, ZPL10].
immutable [SV15b]. impact
[CMS12, Gra15, HWLM11, WKJ17].
implication [BrG15]. Implementing
[FFF17, GM12, WCB16, EEK13, FBH17, PMP16]. implications
[BRGG12]. implicit [IvdS16, SPAK10].
implies [BRGG12]. Improve [QSaS16].
Improved [KRR14, UIY10, OJ12].
Improving
[AcS14, HWI12, TWSC10, cBH11, UTO13]. in-depth
[Rau14]. in-place [DVL13]. incremental
[DS16, ELW15, UIY10]. independent
[IF16]. industrial [CRJ10]. inefficiently-used
[XR10]. Inference
[BO13, YHY13, AGZG10, CGJ16, HyG12, HMDE12, Zha12].
inference [AS14, BENS12]. InfiniBand
[ETTD12, IRJ12]. infinite [ASdMG14].
Inflow [ZMM16]. influence [MRH12].
Informal
[HA13]. Information
[ASF17, HBS16, KHL13, SS12, AF12, ABFM12, BVGVEA11b, CMS12].
Information-flow
[HBS16]. infrastructure
[NG12]. inheritance
[LN15, WT11, AST16, GBS13, NCS10].
initiation [LTD12]. initialization
[MME14]. Initialization
[FGK12]. Injecting
[ZK14]. inline [DJLP10]. inlining
[BA12, HWM13]. insecure
[YW13]. Insight
[VF10].

instanceof
[SMS12]. Instance
[MHBO13]. instantiation
[AST16]. instead
[AGH17, BTR13]. instrumenting
[CZ14]. Integrated
[Tar11, YP10]. integrating
[SPP10]. integration
[Ame13, HKVG14, Sch10a]. integrity
[HDK11]. intelligence
[JACS10].
Intelligent
[Pau14]. intensive
[SAdB16]. inter
[CMM17]. inter-language
[CMM17]. Interacting
[SK13]. Interaction
[WT11]. interactive
[AMWW15, JH11, MCY10].
intercession
[VM10]. interdependencies
[LBF12]. Interface
[Liu14, MvdDL12, SLS12, AVZI10, MT14, LT11, LT14].
Interfaces
[WT11, Cho14, DLM10, LWH10, PSNS14, WT10]. interference
[YDFF15]. International
[Hol12, KP15]. interoperability
[GS16]. Interpretation
[BDT10, DLR16, DLM10, DLR14].
Interpretation-Based
[DLR16]. interpreter
[D’H12, KMMV14].
interpreters
[HWW15, IvdS16, MD15, ZLBF14].

Interprocedural
[CPV15, FWDL15, ZMNY14]. Interrupting
[AST12]. interruption
[KT15]. intra
[BBJ12]. intra-node
[BBK12]. Introducing
[DMS11]. Introduction
[CIAD13, HTLC10, HTW14, Lew13, RHT13, VK12, Hav11, VF10].
Introductory
[BNP11]. intrusively
[MZC10a]. Investigation
[SS13, FH16]. invocation
[SPAK10, BVGVEA11]. invocations
[BVGF14a]. invokodynamic
[OCFL14]. Involvement
[ZMM16]. IP
[TKL15]. iPhone
[Sta10]. IR
[LSWM16]. irregular
[AC15]. ISAs
[HNTL12]. ISBN
[Bro12]. Isolation
[ZLB13]. Issue
[DVL13, HL13, HTW14, Puf13, VK12, HTLC10, HGCA11, RHT13]. iterations
[DD13]. Iterators
[ZLB14]. IVE
[CRJ10]. IVPs
[KS15].
14

GPT12, MV16, XHH12, KF11, MZC10b].

Model
[CDG+17, CCA+12, DLR16, JYKS12, MSM+16, MCC17, MV16, BVGVEA11a, CHM13, CVW13, CV14, DLZ+13, CY16, HAW13, Loc13, LSSD14, MSM+10, PSSW11, RR14, RBV16, RAS16, RDP15, SMN+12, SS+14, VVJB10, ZP14, ZXL16].

Modeling [GBC12, JC10, KSPK12, LDL14, Rey13, CRAT+12, TLX17, ZIvdS17].

Models [PE11, ZLCW14, AGR17, HHH+14, TVD10]. modern [FIF+15, Hav11, JK13, WGW+11].

modernization [Nil12a]. Modular [IvdS16, LN15, RDCP12, MRA+17, RO12].

Monitoring [AGR12, DJLP10, ES14, KF11]. Monitors [BLH12, HM12]. mori [CPST15].

Multi [JTO12, RTE+13, DSEE13, Fee16, FC11, GSS+16, IHW12, MS10, Puf13, SE12, SKBL11, TRTD11, Tar11, WRI+10].

mutliplexing [BVGVEA1F11]. Multiprocessing [VGS14].

multiprocessor [PS10, PWA13, SPS17]. Multiprocessors [KW11, RS12].

Multithreaded [KKW14, SR14a, BNS12, DJLP10, Fer13].

Mutagenic [YCYC12]. mutators [AHK+11].

Native [JQJ+16, LT11, LT14, KFBK+15, STS+13].

Natural [LL15]. naturalness [HBG+16].

NDetermin [BENS12]. nested [CHM16, ZLB+13]. Netflix [Liu14].

network [RR14]. Networking [Hol12]. Networks [AFGG11, ETR+15].

neuromorphic [HNTL12]. next [CRJ+10].

No [BVGVEA10]. No-Heap [BVGVEA10].

NoCs [PWA13]. Node [HC11, BJKB12].

Node.js [BSMB16, MTL15, Anol14]. nodes [DRN14]. Nominal [B013].

Non [BVGVEA11b, BSOG12, GGG+15, YKM17, MZC10a, OMK+10, ZP14]. Non-Adequate [GGG+15]. non-cache-coherent [ZP14].

Non-functional [BVGVEA11b]. non-intrusively [MZC10a]. Non-Java [YKM17, OMK+10].

Non-termination [BSOG12]. Nonblocking [RTET15, SP10a].

Nondeterministic [RB15, BNS12]. noninterference [IF16]. NoSQL [DFR13].

Notation [Sev12a]. Novel [NK10, MZC10b]. November [Hol12].

Novice [BA17]. Novices [RT14]. null [AT16]. NullPointerExceptions [BSOG12].

NUMA [GTS+15]. NumaGiC [GTS+15].

number [PPMH15, SLF14]. Numerical [Jaf13, AJL16, Wal12].

Numbers [Jaf13, AJL16, Wal12].

Obfuscated [KCD12]. obfuscation [CCFB15]. obfuscations [CSK17]. Object [CSGT17, GS11, NWB+15, PTHH14, PiLCH11, Sev12a, SW12, AST+16, BZD17,

AAB+10, BRGG12, BRWA14, CBGM12, Dei11, GSS+16, HWI+12, IRJ+12, JH11, ODL15, PSNS14, SE12, TTD+11, TXW+10, WHIN11, WW+17, Zak10.

performance-guided [PSNS14], permission [HBT12, SNS+14], permits [PPS16]. Perspective [YHY13], pervasive [MHM10]. PHALANX [VY10], phase [KC12], phase-ordering [KC12].

phoneME [RDCP12]. Phosphor [BK14]. PHP [TTS+10]. physics [JEC+12], pickler [MHBO13], pickles [MHBO13], pipeline [LPA13], pipelines [CRP+10], Pivot [AD16], place [DV1L13], Plan [DLZ+13].

Platform [AFGG11, PE11, BD17, CRJ+10, GMC+13, MKZ+14, PWA13, YP10].

Platforms [DR10, Has12, BP10, JMO14, KSR14]. PDLI [FLL+13], pluggable [MME+10].

Point [Jaf13, AJL16], pointer [TL17]. pointers [AT16]. Points [BK12, SDC+12, DHS15, SBK13, TLX17].

Points-To [SDC+12, DHS15, SBK13, TLX17]. Policies [FH1R12, MPS12, BYGV14a], policing [DW10], policy [JK13], polyglot [EV13].

Polymorphism [Zha12], polymorphism [GMT14, PULO16, UTO13]. POPL [BRC13]. Popular [Has12].

practices [CJ17, YW13], pragmatic [RO12]. pre [SBK13], pre-processing [SBK13]. Precise [PIR17, XR13, BHSB14, HyG12, PG12, RGM13, TLX17], precision [RSB+14], Predicate [PL12]. Predicting [BSA14, RKV15], prediction [ZW+14], presence [ZBB15], preserving [AK13].

Proactive [CL17], PROB [YP10].

Processor [TKL+15, Puu13, SPPH10, SMN+12].

Processors [ASV+16, MKG+17].

producers [DA13], product [BTR+13, KATS12, KvRHA14, SV17].

product-based [KvRHA14], production [RGM13], professionals [JAC10], profile [VSG17, WK17], profiler [DTLM14].

profilers [MDHS10], profiling [DD13, JH11, KR16, NK10, RCB17, SSB+14a, STY+14, THC+14, XR13, ZBB15].

Program [KKW14, RVK15, RT14, ZKB+16, AÖ11, DS16, GMS12, HCN14, JLI17, JWM15, KM10, KMZN16, MKZ+14, NS13, Sch10a, SPY+16, TABS12, WGF11, ZMG+14].

Programmable [OA17, AYZI10].

Programmers [ES11, Rau14].

Programming [AFGG11, ABMV12, BCR11, Bro12, BA17, DLPT14, HWM11, HGCA11, Köl10, KSPK12, LM15, MK16, PTLMI11, RS12, RB15, SS13, Sub11, Alt12, AMWW15, BCvC+13, BM14, BSM16, BRWA14, CL17, ECG12, EV13, FMBH15, Han15, HA13, Hav11, Lew13, MSM+10, OW16, PTF+15, RVP11, RFBJ14, SNS+14, TB14, UFM15, VWJB10, VBA10b, Wam11, WRI+10, WBA+11, ZWW15].

Programs [AGR12, BH17, BR12, BMOG12, GS11, JB12, LTD+12, SS12, SDM12, ZLCW14, AsdMGM14, AdCGGH16, BA12,

RCDC [DNB12]. RDMA [ETR15, IRJ12]. RDMA-based [IRJ12]. RDMA-enabled [ETR15]. re-location [NCS10].

Reachability [NS13]. reactive [BCvC+13]. read [NM10]. read-only [NM10]. Reading [Jaf13]. readly [RHS15]. Real [BVEAGVA10, Fox17, HTW14, KW11, Nil12a, Pau14, SLES15, SLE+17, VK12, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVG14a, BVG14b, CRAJ10, DW10, EABVGV14, GMC+13, HTLC10, KHM+11, KPH11, KvGS+14, KW10, KSR14, PS10, PZM+10, PSW11, Puf13, RHT13, SP10a, Sie10, SPS17]. Real-Time [BVEAGVA10, Fox17, HTW14, KW11, Pau14, SLES15, SLE+17, VK12, Nil12a, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVG14a, BVG14b, CRAJ10, DW10, EABVGV14, GMC+13, HTLC10, KHM+11, KPH11, KvGS+14, KW10, KSR14, PS10, PZM+10, PSW11, Puf13, RHT13, SP10a, Sie10, SPS17].

Semantic

BNS12, GGRSY14, GGRSY15, OA17.

Semantics

BO12, BR15, Kri12, SPY+16, AK13, FBH17, FZ17, KHL+17, Mil13, MT14, PSR15, PPS16, ZHCB15.

Semantics-based

SPY+16.

Semantics-preserving

AK13, FBH17, FZ17, KHL+17, Mil13, MT14, PSR15, PPS16, ZHCB15.

Slicing

JACS10. AST12, UTO13.

Sizing

JACS10. AST12, UTO13.

Separability

SPY+16, Simulation

Simulation-based

SPY+16, Simulation

Simulation-based

SPY+16.

Simulation-based

SPY+16.
statecharts [MS13], state
[PLR14, ZWSS15], statements [PLR14].
Static [BNE16, JC10, MTL15, ODL15,
PfCH11, RD15, SW12, SH12, AM14,
CGJ+16, Fer13, FLL+13, IF16, KSW+14,
LS11, MHK+12, PIR17, TLMM13].
statistically [BTR+13, NED+13], statistical
[Bra14, ZFK+16], statistically [PPMH15],
statistics [HCN14], stealing
[KFB+12, TWL12], STM [CMH16, Sub11].
STM/HTM [CMH16], stochastic
[CRAT+12], stock [PVH14], Stop
[LWB+15], Storage [Hol12], Store
[BS12, Sta10], stores [DFR13], Story
[Ano14], strategic [BMR14], strategy
[PPM+16], Stream
[KBPS17, MV16, BRWA14, SSG+14].
streaming [MRA+17, STCG13].
StreamJIT [BRWA14], StreamQRE
[MRA+17], streams [UFM15], Strength
[KCD12], String [HOKO14, CSK17].
Strings [HWM11, HW10, LSDD14],
strong [UMP10, ZHCB15], structure
[LO15, UMP10], structured [LSWM16].
Structures [GT10, XMA+10], Studio
[RT14, FH16], Studio-Based
[RT14].
Study
[ZMM+16, BRGG12, CCFB15, CJ17, ECS15,
KFBK+15, MHK+12, NCS10, OMK+10,
PTF+15, SH12, VBDM16, WXR16, YW13],
style [UPF15], substitute [PPMH15],
substrate [GTL+10], subtypes [HL13].
Subtyping [LN15], suite [SMSB11, BB12].
Suites [GGZ+15], Summaries [BH17].
Superblock [KS13], Supercharged
[Cec11, GB13], supervenience [Rez12],
Support [CSGT17, KKK+17, BVGVEA13,
DVL13, GMC+13, Hs12, NGB16, SMN+12],
supported [FMM+11], Supporting
[LVG10], Surgical [RSB+14], surprises
[FMBC15], survey [BCvC+13],
SurveyMan [TB14], surveys [TB14],
suspension [TWL12], sweeping [KBL14].
Sweeten [DFHF15], Swift [ZY+12].
SWIM [Sch10a], symbol [Tar11],
synchobench [Gra15], synchronisation
[CHMY15, WBM++10], synchronization
[DMH+12, Gra15, Sub11]. Synchronous
[BVEAGA10, SK12], syntactic
[LE16, QLS17]. Syntax [SS13, KMMV14].
synthesis [SR14a, STR16, SS16],
synthesizable [ABCR10], synthesizer
[OUY+13]. Synthesizing
[GK15, SRJ15, LWH++10]. System
[BO13, KCD12, MAHK16, ACS++14, AYZI10,
AGRI7, BDB11, ELW15, HA13, HDK++11,
HWLM11, KR12, MS10, STY++14, TLL11,
Nil12a]. systematic [TD15]. Systems
[BSA14, BNE16, CCH11, DLPT14, Fox17,
HTW14, JMB12, LM15, RTE++13, SLES15,
SLE++17, AT16, MW10, FH16, HMK17,
HWI++12, HTLC10, LPK14, MHK++12,
MAH12, OIA++13, PDDM++16, RHT13,
SSMGD10, SH12, TTD12, TXW++10,
THC++14, UIY10, Vit14, YRBHL13, VK12].
table [Tar11]. Tableau [FFF17]. Take
[Kie10]. Taking [SWU++15]. Tales [Sew12].
Tuning [TLL11, SC16]. Tardis [BM14].
task [Fee16, TWL12, ZLB++13],
TaskLocalRandom [PPMH15]. tasks
[HAW13, PPMH15, SPP++10]. Taurus
[MAHK16]. Taxonomy [SS14]. Teaching
[HA13, SWF12, CHM13, ZDS14], teasing
[LF12], Techniques [RD15, EV13, KS13].
Technologies [Fox17, HTW14, VK12,
HTLC10, KFBK++15, NL14, RHT13],
technology [NED+13]. TeJaS [LPK14].
Template [MME14, HJS++10], templates
[FOPZ14, AK13]. term [AHK++11].
Terminating [FFF17]. Termination
[BMOG12, RDCP12, BSOG12, SMP10].
Test [BB12, GGZ++15, PSNS14, SR14a],
tested [Mii13]. Testing
[Ame13, BR12, Hin13, MM12, CSS++16,
CNS13, Ler10, TD15]. tests
[AO11, NYCS12, SRJ15]. Textbooks
[BNP11]. their [RDP16]. theorem [SS17].

yang [CBGM12]. years [BTR+13].
yieldpoint [LWB+15]. yin [CBGM12].

Z [SBF+10]. Z-rays [SBF+10]. Zero
[ZW13].

References

Altman:2010:OTJ

[AAB+10] E. Altman, M. Arnold, R. Bordawekar, R. M. De-
monico, N. Mitchell, and P. F. Sweeney. Observa-
tions on tuning a Java enter-
prise application for perfor-
mance and scalability. IBM
Journal of Research and De-
velopment, 54(5):2:1–2:12,
???? 2010. CODEN IB-
MJAEC. ISSN 0018-8646
(print), 2151-8556 (elec-
tronic).

Auerbach:2010:LJC

[ABCR10] Joshua Auerbach, David F.
Bacon, Perry Cheng, and
Rodric Rabbah. Lime: a
Java-compatible and syn-
thesizable language for het-
erogeneous architectures.
ACM SIGPLAN Notices, 45
CODEN SINODQ. ISSN
0362-1340 (print), 1523-
2867 (print), 1558-1160
(electronic).

Avvenuti:2012:JTC

[ABFM12] Marco Avvenuti, Cinzia
Bernardeschi, Nicoletta De
Francesco, and Paolo Masci.
JCSI: a tool for check-
ing secure information flow
in Java Card applications. The
Journal of systems and
software, 85(11):2479–2493,
November 2012. CODEN
JSSOM. ISSN 0164-1212
(print), 1873-1228 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0164121212001513.

Abanades:2016:DAR

[Miguel Abánades, Francisco
Botana, Zoltán Kovács,
Tomás Recio, and Csilla
Sólyom-Gecse. Develop-
ment of automatic rea-
soning tools in GeoGe-
bra. ACM Communica-
tions in Computer Alge-
bra, 50(3):85–88, September
2016. CODEN ????. ISSN
1932-2232 (print), 1932-
2240 (electronic).

Ansaloni:2012:DAO

[Danilo Ansaloni, Walter
Binder, Philippe Moret, and
Alex Villazón. Dynamic
aspect-oriented program-
ing in Java: The Hot-
Wave experience. Lecture
Notes in Computer Science,
7271:92–122, 2012. CODEN
LNCS120. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/chapter/
10.1007/978-3-642-35551-
1_6_3/.

Akai:2010:EAS

Shumpei Akai and Shigeru
Chiba. Extending As-

[AF12] Thomas H. Austin and Cor-

Arnold:2011:AOJ

Aiello:2011:JBA

Albert:2010:PIM

Antonopoulos:2017:DIS

Arcaini:2012:CCM

Arcaini:2017:RDP

Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. Rigorous development process of a safety-

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Year</th>
<th>Volume</th>
<th>Pages</th>
<th>URL</th>
</tr>
</thead>
</table>
Amin:2016:JST

Ali:2010:DJB

Bradel:2012:ITJ

Brown:2017:NJP

Boland:2012:JCC

Bebenita:2010:STB

Bonetta:2013:TPE
REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPoPP ‘13 Conference proceedings.

Bu:2013:BAD

Bettini:2013:FDT

Bodin:2014:TMJ

Bergenti:2011:PPS

Bacon:2013:PRT

Bainomugisha:2013:SRP

Bettini:2017:XTJ

Bala:2011:DTD

Barbuti:2010:AIA

Burnim:2012:NIN

Barbu:2012:ARA

Badihi:2017:CAG

Biswas:2014:DES

Biboudis:2017:RJD

Burdette:2012:ECJ

Baar:2012:DEP

Bell:2014:PID

Jonathan Bell and Gail Kaiser. Phosphor: illumin-

Bond:2013:OCC

BMDK15

Brockschmidt:2012:ATP

Balland:2014:ESP

Emilie Balland, Pierre-Etienne Moreau, and Antoine Reilles. Effective strategic programming for

Brown:2016:HBS

Borstler:2011:QEI

Burnim:2012:SCS

Bellia:2011:PJS

Bellia:2012:ERT

Bellia:2013:JST

Barabash:2010:TGC

Bluemke:2012:DTJ

Bogdanas:2015:KJC

Brandt:2014:DAS

Bhattacharya:2012:DLI

Brown:2012:BRF

Bosboom:2014:SCC

REFERENCES

Cosentino:2012:MDR

Ceccato:2015:LSE

Chen:2011:MJP

Chisnall:2017:CJS

Cecco:2011:SJG

REFERENCES

[Carter:2013:SSA]

[Chandra:2016:TIS]

[Chugh:2012:DTJ]

[Carro:2013:MDA]

[Chapman:2016:HSH]

[Cogumbreiro:2015:DDV]

[Chong:2014:CCT]
REFERENCES

[CJ17] Chen:2017:CLP

[CNS12] Chang:2012:IOT

<table>
<thead>
<tr>
<th>References</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clifford:2014:AFB</td>
<td>[CPST14]</td>
</tr>
<tr>
<td>Daniel Clifford, Hannes Payer, Michael Starzinger, and Ben L. Titzer.</td>
<td></td>
</tr>
<tr>
<td>Allocation folding based on dominance. ACM SIGPLAN Notices, 49(11):15–24,</td>
<td></td>
</tr>
<tr>
<td>November 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print),</td>
<td></td>
</tr>
<tr>
<td>Clifford:2015:MMD</td>
<td>[CRST15]</td>
</tr>
<tr>
<td>Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L. Titzer.</td>
<td></td>
</tr>
<tr>
<td>Memento mori: dynamic allocation-site-based optimizations. ACM SIGPLAN</td>
<td></td>
</tr>
<tr>
<td>Notices, 50(11):105–117, November 2015. CODEN SINODQ. ISSN 0362-1340</td>
<td></td>
</tr>
<tr>
<td>(print), 1523-2867 (print), 1558-1160 (electronic).</td>
<td></td>
</tr>
<tr>
<td>Chatterjee:2015:QIA</td>
<td>[CPV15]</td>
</tr>
<tr>
<td>Krishnendu Chatterjee, Andreas Pavlogiannis, and Yaron Velner.</td>
<td></td>
</tr>
<tr>
<td>Quantitative interprocedural analysis. ACM SIGPLAN Notices, 50(1):539–551,</td>
<td></td>
</tr>
<tr>
<td>January 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print),</td>
<td></td>
</tr>
<tr>
<td>1558-1160 (electronic).</td>
<td></td>
</tr>
<tr>
<td>Curley:2010:RDT</td>
<td></td>
</tr>
<tr>
<td>Recovering from distributable thread failures in distributed real-time</td>
<td></td>
</tr>
<tr>
<td>Java. ACM Transactions on Embedded Computing Systems, 10(1):8:1–8:??,</td>
<td></td>
</tr>
<tr>
<td>August 2010. CODEN ???. ISSN 1539-9087 (print), 1558-3465 (electronic).</td>
<td></td>
</tr>
<tr>
<td>Cote:2012:JPS</td>
<td>[CRAT+12]</td>
</tr>
<tr>
<td>Marco Cote, German Riano, Raha Akhavan-Tabatabaei, Juan Fernando Perez,</td>
<td></td>
</tr>
<tr>
<td>Andres Sarmiento, and Julio Goez. jMarkov package: a stochastic modeling</td>
<td></td>
</tr>
<tr>
<td>????. ISSN 0163-5999 (print), 1557-9484 (electronic).</td>
<td></td>
</tr>
<tr>
<td>Chalin:2010:TIG</td>
<td></td>
</tr>
<tr>
<td>Patrice Chalin, Robby, Perry R. James, Jooyong Lee, and George Karabatos.</td>
<td></td>
</tr>
<tr>
<td>Towards an industrial grade IVE for Java and next generation research</td>
<td></td>
</tr>
<tr>
<td>platform for JML. International Journal on Software Tools for Technology</td>
<td></td>
</tr>
<tr>
<td>Transfer (STTT), 12(6):429–446, November 2010. CODEN ???. ISSN 1433-2779</td>
<td></td>
</tr>
<tr>
<td>(print), 1433-2787</td>
<td></td>
</tr>
</tbody>
</table>

[CSGT17] Callum Cameron, Jeremy Singer, and David Vengerov. The judgment of FORSETI: economic utility for dy-

[Cazzola:2014:JBR]

[Cavalcanti:2013:SCJ]

[Caserta:2014:JTJ]

[Cezar:2014:JTJ]

[Diaz:2013:LEU]

[daCosta:2012:JSL]

[Dhawan:2012:EJT]
Mohan Dhawan, Chungchieh Shan, and Vinod

DElia:2013:BLP

DeBeukelaer:2017:ECP

Dei10

Dei11

Deitcher:2011:SPJ

REFERENCES

[DJLP10] Mads Dam, Bart Jacobs, Andreas Lundblad, and Frank Piessens. Provably

DeFrancesco:2010:UAI

DeNicola:2014:FAA

Dissegna:2014:TCA

Dissegna:2016:AIB

Demange:2013:PBB

deMol:2012:GTJ

Maarten de Mol, Arend Rensink, and James J. Hunt. Graph transforming Java data. *Lecture Notes in Computer Science, 7212: 209–223, 2012. CODEN LNCSD9. ISSN 0302-9743*

REFERENCES

tronic). OOPSLA ’13 conference proceedings.

David:2014:CMC

Dias:2013:SIP

DosSantos:2010:MPB

Estevez-Ayres:2014:CSS

elBoustani:2011:ITE

Emerick:2012:CP

Ebert:2015:ESE
Felipe Ebert, Fernando Cas-\ntor, and Alexander Sere-\nbrenik. An exploratory
study on exception handling
bugs in Java programs. *The
Journal of systems and soft-
ware*, 106(??):82–101, Au-
gust 2015. CODEN JS-\nSODM. ISSN 0164-1212
(print), 1873-1228 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0164121215000862

Erdweg:2012:GLE
Sebastian Erdweg, Moritz
Lichter, and Manuel Weiel.
A sound and optimal in-
cremental build system
with dynamic dependencies.
*ACM SIGPLAN No-
tices*, 50(10):89–106, Oc-
tober 2015. CODEN SIN-
ODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Erdweg:2015:SOI
Sebastian Erdweg, Moritz
Lichter, and Manuel Weiel.
A sound and optimal in-
cremental build system
with dynamic dependencies.
*ACM SIGPLAN No-
tices*, 50(10):89–106, Oc-
tober 2015. CODEN SIN-
ODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Eslamimehr:2014:RDS
Mahdi Eslamimehr and
Jens Palsberg. Race di-
rected scheduling of concur-
rent programs. *ACM SIG-
PLAN Notices*, 49(8):301–
314, August 2014. CODEN SIN-
ODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Elmas:2010:GRA
Tayfun Elmas, Shaz Qadeer,
and Serdar Tasiran. Goldilocks:
\[\text{a race-aware Java run-
November 2010. CODEN CACMA2. ISSN 0001-0782
(print), 1557-7317 (elec-
tronic).}
Erdweg:2014:FEL

Eichelberger:2014:FRM

Esquembre:2011:TP

Endrullis:2012:WEM

Exposito:2015:LLJ

Exposito:2012:DSJ

Eugster:2013:SP

REFERENCES

REFERENCES

REFERENCES

Freudenberg:2015:SMP

Flanagan:2013:PES

Feldthaus:2013:SAR

Feldentreff:2015:CBC

Feldthaus:2011:TSR

Frantzeskou:2011:SUD

[FMS+11] Georgia Frantzeskou, Stephen G. MacDonell, Efstathios Stamatatos, Stelios Georgiou, and Stefanos Gritzalis. The significance of user-defined identifiers in Java source code authorship identifica-
REFERENCES

[FRM]+15

[FOPZ14]

[Fox17]

[Fox:2017:EJT]

[Fournet:2013:FAC]

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Golan-Gueta:2017:ASA

Gligoric:2015:GCB

Gvero:2015:SJE

Gejibo:2012:CIE

Gosling:2013:JLS

Gosling:2014:JLS

Gadyatskaya:2012:JCA

Gardner:2012:TPL

Gong:2011:JSA

Grossschadl:2012:EJI

REFERENCES

[59]

Gramoli:2015:MTY

Grech:2011:JGE

Grigore:2017:JGT

Giacaman:2011:OOP

Gil:2012:SFJ

Gill:2015:RMD

Grimmer:2016:HPC

Matthias Grimmer, Chris Seaton, Roland Schatz,

Goodrich:2010:DSA

Geoffray:2010:VSM

Gidra:2015:NGC

[GTS+15] Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan Nguyen. Nu-

Gidra:2011:ASG

Gunther:2014:ACC

Guo:2017:MJF

REFERENCES

REFERENCES

REFERENCES

Hsiao:2010:EST

Hughes-Croucher:2011:NRS

Horstmann:2013:CJF

Hsiao:2014:UWC

Hammer:2017:VOV

Hofmann:2011:EOS

Hanazumi:2017:FAI

Daniel Hinojosa. *Testing in

REFERENCES

Herczeg:2013:TFF

Herranz:2012:VIP

Huang:2012:RRC

Hashmi:2012:CNI

Horie:2014:SDJ

Hollingsworth:2012:SPI
REFERENCES

REFERENCES

Hackett:2012:FPH

Iranmanesh:2016:SSE

Inoue:2012:AML

Inoue:2012:ISC

Islam:2012:HPR

Inostroza:2016:MIM

Eric Jendrock. *The Java EE 6 Tutorial: advanced topics,*

Jovic:2011:LLP

Jenista:2011:OSO

Jayaraman:2017:CVJ

Jantz:2013:ESM

Jagannathan:2014:ARV

Jung:2012:EJA
REFERENCES

Jung:2014:HCO

Javed:2016:TSJ

Johnson:2015:EES

Jin:2012:JMM

Johnsen:2012:SLM

Kossakowski:2012:JED
Kastner:2012:TCA

Kim:2014:LBL

Kiselyov:2017:SFC

Kedia:2017:SFS

Kereki:2015:JAW

Kuehnhausen:2011:AJM

Kumar:2012:WSB

Khan:2015:UJW

Kerschbaumer:2013:IFT

Kang:2017:PSR

Kalibera:2011:FRT

Tomas Kalibera, Jeff Hagel-

[Berg2011:CRF]

Kabanov:2011:DSF

[Kabanov2011:DSF]

Kienle:2010:ATT

[Kienle2010:ATT]

Kim:2017:TAA

Channoh Kim, Jaehyeok Kim, Sungmin Kim, Dooyoung Kim, Namho Kim, Gitae Na, Young H. Oh, Hyeon Gyu Cho, and Jae W. Lee. Typed architectures: Architectural support for lightweight script-
Karakoidas:2015:TSE

Kalibera:2014:FAS

Kulkarni:2016:APA

Kolling:2010:GPE

Kroening:2015:CAV

Kalibera:2011:SRT

REFERENCES

[Keil:2015:BAH] Matthias Keil and Peter Thiemann. Blame assignment for higher-order con-

Kersten:2014:RRA

Kolesnikov:2014:CPB

Kim:2010:EAE

Kim:2011:MAE

Lin:2012:UKT

Li:2014:MHD

Pengcheng Li, Chen Ding, and Hao Luo. Modeling heap data growth using average liveness. *ACM SIG-
Lorenzen:2016:STD

Leijen:2017:TDC

Lerner:2010:FTJ

Lewis:2013:IAP

Liu:2014:JNU

Leino:2015:APS

Leung:2013:PEJ

Lin:2015:STU

Lee:2016:ECF

Long:2012:COS

Lochbihler:2013:MJM

Loureiro:2013:EDS

Lerner:2014:TRT

Lux:2011:TSD

Luu:2014:MCC

Leopoldseder:2016:JJT

Li:2011:JEC

Li:2014:EAJ
Laskowski:2012:DJP

Liu:2014:FFL

Lerner:2010:SDT

Lin:2015:SGU

Luckcuck:2017:SCJ

Lee:2010:JSD

REFERENCES

McIntyre:2012:FJB

Martinez:2017:MBA

McKinley:2016:PWU

McLane:2010:UIV

Marr:2015:TVP

Mytkowicz:2010:EAJ
REFERENCES

[Marr:2017:CLC]

[Meijer:2014:EJR]

[Martinsen:2017:CTL]

[Miller:2013:IPG]

[Matsakis:2015:TOJ]

[McGachey:2010:CJC]

[Mayer:2012:ESI]
Clemens Mayer, Stefan Hagenberg, Romain Robbes, Éric Tanter, and Andreas Stefik. An empirical study

[Markstrum:2010:JDP] Shane Markstrum, Daniel Marino, Matthew Esquivel, Todd Millstein, Chris Andreae, and James

Murawski:2014:GSI

Madsen:2015:SAE

Marz:2016:RPC

Mesbah:2012:CAB

Mateos:2010:AN1

Mateos:2010:MJN
REFERENCES

Nasseri:2010:CMR

Nuzman:2013:JTC

Newton:2015:ALF

Noll:2012:IDO

Noll:2013:OFD

Nunez:2016:PGC

Nilsen:2012:RTJ

Kelvin Nilsen. Real-time Java in modernization of
REFERENCES

[NKH16] Nikolic:2012:DEA

REFERENCES

[Olivo:2015:SDA] Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static de-

Ogawa:2013:RJA

Olszak:2012:RJP

Ohkawa:2013:RHO

Olsson:2016:ERR

[OW16] Ronald A. Olsson and Todd Williamson. Experience reports: RJ: a Java package providing JR-like concur-

Oh:2015:MWA

Paul:2014:RTP

Parnin:2013:AUJ

Pinto:2014:UEB

Philips:2017:DDD

Portillo-Dominguez:2016:ECP

Parizek:2012:PAJ

Park:2014:AAS

Pawlak:2016:SLI

Papadimitriou:2014:MLS

Passerat-Palmbach:2015:TSS

Pichon-Pharabod:2016:CSR

Pham-Quang:2012:JAD

[PQD12] Phuong Pham-Quang and Benoit Delinchant. Java automatic differentiation tool
using virtual operator overloading. In Forth et al. [FHP+12], pages 241–250. [PS12]

Piedrahita-Quintero:2017:JGA

Pitter:2010:RTJ

Palmer:2011:BJM

Park:2012:CB

Pradel:2014:EAR

Park:2015:KCF

Daejun Park, Andrei Stefanescu, and Grigore Rosu.

Petrashko:2016:CGL

Powers:2017:BBG

Pina:2014:RDJ

Plumbridge:2013:BPR

Pizlo:2010:SFT

Qiu:2017:USR

Qian:2016:EFS

Junjie Qian, Witawas Srisanan, Sharad Seth, Hong Jiang, Du Li, and Pan Yi. Exploiting FIFO sched-

Rayns:2013:CJS

Rehman:2016:VMJ

Rauschmayer:2014:SJD

Rossi:2015:NPJ

Razafindralambo:2012:FFH

Raychev:2016:PMC

Rosa:2017:APV

Robatmili:2014:MRL

Radoi:2015:ETS

Ramirez-Deantes:2012:MTA

Rhodes:2015:DDO

Reynders:2016:GSB
REFERENCES

Reynolds:2013:MJB

Reza:2012:JS

Richard-Foy:2014:EHL

Radoi:2014:TIC

Richards:2011:ACJ

Ricci:2013:ETP

Richards:2013:FAC

DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). OOPSLA ’13 conference proceedings. [RLBV10]

Radoi:2015:WAR

Ravn:2013:EIS

Ravn:2012:SCJ

Anders P. Ravn and Martin Schoeberl. Safety-critical...
REFERENCES

REFERENCES

Rubin:2014:HCW

Rowe:2014:STA

Raychev:2015:PPP

Ricci:2011:SAO

Rudafshani:2017:LDD

Ramamohanarao:2017:SSM

REFERENCES

REFERENCES

Sherman:2015:DTB

Simao:2012:CER

Siebert:2010:CPR

Singer:2010:EGC

Stilkerich:2015:PGA

Steele:2014:FSP

Snellenburg:2012:GJB

Singh:2012:EPS

Spoto:2010:TAJ

Sewe:2012:NSI

[SPP+10] Jesper Honig Spring, Filip Pizlo, Jean Privat, Rachid

Schoeberl:2010:WCE

Strom:2017:HLR

Stefanescu:2016:SBP

Samak:2014:MTS

Samak:2014:TDD

Samak:2015:SRT

REFERENCES

[S10]

[S12]

[S13]

[S14]

[S16]

[S17]

[S18]
Aibek Sarimbekov, Andreas Sewe, Walter Binder, Philippe Moret, and Mira

[SSB14a]

[SSB01]
REFERENCES

Stark:2014:JJV

Su:2014:CEM

Srikanth:2017:CVU

Sciampacone:2010:EMS

Stark:2010:BIA

Santos:2013:DDS

Ivo Santos, Marcel Tilly, Badrish Chandramouli, and Jonathan Goldstein. DiAl:
REFERENCES

Stefanov:2010:JP

Samak:2016:DSF

Sun:2013:BJW

Su:2014:RVP

Subramaniam:2011:PCJ

Steindorfer:2015:CSM

Steindorfer:2015:OHA

Michael J. Steindorfer and Jurgen J. Vinju. Optimizing hash-array mapped tries

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[THC+14] Chia-Heng Tu, Hui-Hsin Hsu, Jen-Hao Chen, Chun-Han Chen, and Shih-Hao

Tsai:2015:JPI

Thiessen:2017:CTP

Tate:2011:TWJ

Topley:2011:JDG

Toffola:2015:PPY

Luca Della Toffola, Michael Pradel, and Thomas R. Gross. Performance problems you can fix: a dynamic

Guillermo L. Taboada, Juan Touriño, and Ramón Doallo.
REFERENCES

Tatsubori:2010:EJT

Torlak:2010:MCA

Tardieu:2012:WSS

Toegl:2012:SSJ

Titzer:2010:ICR

Teng:2010:TPA

Q. M. Teng, H. C. Wang, Z. Xiao, P. F. Sweeney, and E. Duesterwald. THOR: a performance analysis tool for Java applications run-

Urma:2015:JAL

Ugawa:2010:IRB

Upadhyaya:2010:UDS

Upadhyaya:2015:EML

Ureche:2013:MIS

REFERENCES

Vilk:2014:DBB

Vouillon:2014:BJJ

Villazon:2010:HCA

Villazon:2010:ARA

Vidal:2016:ECJ

Villazon:2011:CAW

Vidal:2016:UAE
Santiago A. Vidal, Alexandre Bergel, Claudia Mar-

1532-0626 (print), 1532-0634 (electronic).

VanCutsem:2010:PDP

VanCutsem:2015:RTC

VanderHart:2010:PC

Varier:2017:TNJ

VanNieuwpoort:2010:SHL

Vechev:2010:PPC

Wurthinger:2011:SAR

Wood:2014:LLD

Wagner:2011:SJV

Wagner:2011:CMM

Wu:2011:RTS

Wimmer:2013:MAV

Wellings:2012:AEH

REFERENCES

[XMA+14] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schonberg,

Yang:2013:CPP

Yoo:2014:WRR

Yang:2015:EJV

Yahav:2010:VSP

Zakas:2010:HPJ

Zakhour:2012:JTS

Zheng:2015:APP

Zhang:2015:SYB

Zschaler:2014:SJF

Zuo:2016:LOF

Zhao:2012:PTI

Zhang:2012:RAJ

Zacharopoulos:2017:EMM

Zheng:2016:CMD

REFERENCES

Zhang:2014:HTB

Zakkak:2014:JJM

Zibin:2010:OIG

Zerzelidis:2010:FFS

Zhu:2015:APL

Zhao:2014:CSP

