A Bibliography of Publications about the Java Programming Language, 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

07 June 2018
Version 1.180

Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

3 [DiP18b, FLZ18, GBC12, JEC12, ZXL16].
TP [LTK17]. C [AÖ11]. K
[PLL18, SD16b, SGG17]. Zp [AÖ11].
-core [PLL18]. -safety [SD16b].
/multi [Taf13]. /multi-threaded [Taf13].

'12 [Hol12]. 12th [Fox17a].
2015 [LSBV17]. 27th [KP15].
5 [KHR11].
6 [Jen12].
7 [Ano15, EV13, J12]. 75 [HWM11].
8 [LYBB14, SAdB16, UFM15].
9 [LSBV17]. 938 [Gun14]. 978 [Ano15].
978-1-4493-1103-2 [Bro12].
978-1-4919-4946-7 [Ano15].
Abbreviated [SRTR17]. ABS [SAdB+16]. absence [AGH+17]. Abstract
AGR12, BDT10, DLR16, XMA+14, DLM10, DLR14, FSC+13, KMMV14, NSDD17.
Abstraction [BW12, Bro12, GY16, SKKR11, PL12, ZMG+14, ZFK+16].
Abstractions
NYCS12, RFBJ14, UR15, SPP+10. accelerated [PQTGS17].Accelerating
KMZN16, ZLB14. accelerator [OIA+13]. accelerators [PWA13]. Access
CSGT17, HBT12, TT11, TNTN12, BB17, KT14, MHH0, RHN+13, XHH12.
Accessibility [STST12, VBMD16]. Acculock [XXZ13]. accuracy [MDHS10].
Accurate [Jaf13, RBB17, ZBB15, XXZ13]. ACDC [AHK+15]. ACDC-JS [AHK+15].
across [DS13, DFR13, HLSK13]. action [KB17, UFM15]. Actor [RCB17]. actors
[Sub11]. Ada [Car11, Sch10a, WCB16]. adaptable [ADI13]. adaptation
VBAM10a. Adapter [SK12]. Adaptive
AFG+11, IHWN12, NFV15, RXK+17, CL17, PKO+15, PDP+16, VBAM10b.
add [DLM10]. adding [MZA10a]. addressing [VBMD16]. Adequate
GGZ+15. ADiJaC [SD16a]. Adoption
PBMM13. Advanced
Hor11, VBAM10a, dJMJ18, Jen12.
Advances [FHP+12]. Adversarial [FZ10]. Aegis
Nil12a. Àëminium [SNS+14]. affects
LO15. affordable [BM14]. Agent
AFGG11, PE11, RVP11. Agent-Based
PE11. agent-oriented [RVP11]. aggregates
BCR11. Agility [Bro12]. Ahead
BLH12, JMB12. Ahead-of-Time
JMB12. Aided [KP15]. air [PPS16]. Ajax
MVL12. Ajax-Based [MVL12].
algebraic [LGT+17]. algebra
IvdS16, ZCOS1dS15. Algorithm
YCY12, ZW13, Gun14. Algorithmic
NS12. alike [DAA13]. Allocation
CPST14, CPST15, OOK+10.
allocation-site-based [CPST15]. Almost
NWB+15, SC16. alternatives [SHU16]. Alting
WBM+10. always [AJL16].
Analyses
Kri12, HB13, KMZN16, PMP+16, ZMG+14].
Analysis
AGM+17, CPV15, Hol12, KCD12, MtDL12,
NS12, RDCP12, SG15, SW12, SDC+12,
SLES15, SLE+17, SR17, ZKB+16, AM14,
Bra14, CFH+13, DHS15, GYB+11, HCN14,
HWLM11, KSW+14, KT14, KvG+14,
LSBV16, LSBV17, LT14, MTL15, MKZ+14,
MCC17, MB12, NSDD17, NS13, PIR17,
Pu13, RLVB10, RR17, SPPH10, SMSB11,
SBK13, SP16b, TLX17, TWX+10, TLMM13,
TL17, TFG15, ZMNY14, ZWSS15].
Analytics
BBB+17, KB17, STCG13.
analyzer [Fer13, GN16, SMP10].
Analyzing
PLL+18, BTR+13, SDSS14.
Android
CNS13, STY+14, TCY+14,
ZHL+12, ZKB+16]. Ann [CSdL16].
amnotation
CV14, KATS12. annotation-based
KATS12. annotations
CSdL16, GBS14. announcement
SPA10. anomalies [FRM+15].
answering [KM10]. any [FF15]. anytime
[STCG13]. anywhere [STCG13]. AOP
WAB+11. AOT [WK17]. Apache
CJ17, FRM+15. apart [LB12]. API
FH16, MPM+15, TWNH12, YSL17.
APIs
HBS16, RDP16, Sam12, VM10. App
[Sta10]. Apple [AN13]. Application
BH12, CCA+12, F11, L12, RDCP12,
RLMM15, SWF12, AZ110, AAB+10, AÖ11,
FRGPF+12, HWLM11, LBF12, OUY+13,
SE12, WAB+11, XHH12, HD17].
Application-Aware [LZ12].
Application-Replay [BH12].
Applications
GMP12, GD12, MAHK16, MtDL12,
MMP15, NH16, NWA+15, OwKPM15,
SLES15, WBA+11, AM17, AST+16, AC16,
AMW15, ADI13, ABM12, DSE13.
BOF17, BBXC13, EABVGV14, GMC+13.
CSF, Building [Sta10, HWW 11, BMDK15, BNE16, ELW15, MAH12].
Big [GTS15, NWB15, RVK15, BOF17, BBXC13, SS14, WR10]. Billions
[DRN14]. bindings [VGRS16], bird [Guy14]. Birthmark [PLCH11]. Bitcoin
[TD17]. Blame [KT15]. Blot [MSS10, NWB18, XMA14, BRGG12,
blocking [DW10]. Blockly [AMWW15]. Blueshell [PWA13]. boilerplate
[ZCdS0vdS15]. Book [Ano15, Bro12]. Boosting [ASV16, AC16]. Bootstrapping
[CBLFD12]. Bottle [DSEE13]. bottlenecks [DSEE13]. bottom [ZMNY14]. bottom-up
[ZMNY14]. boundary [RDP10]. Bounded [NWB15, GM14].
Bounds [SW12, GvRN11]. boxes [BDGS13]. Brain [VBZ18]. breaking
[VB14a]. Breakpoint [ZW13]. breakpoints [PS12]. Bridging
[PVB17]. Bringing [CV14, HRS17, STS13]. Broken
dGRdB15]. Browser [MSSK16, PVB17, FIF15, VB14a, WGW11, YK14].
Browsers [HLSK13]. Browsix [PVB17]. Budget [GM12]. buffered
[DLZ13]. buffers [Gun14]. bug [LWH10]. Bugs
[OBPM17, XMD17, ECS15, MDS17, ODL15, Ryu16]. Build
BMDK15, BNE16, ELW15, MAH12]. Build
[Sta10, HWW15]. Business
[CCA12]. Bytecode
[BTD10, BSOG12, FHSR12, NS12, RDCP12, Rey13, AdCGGH16, CZ14, DLM10, SP10b,
SMP10, VB14b].
[ZLHD15]. Closures [BO11, BO12, BO13].
Cloud
[VDV17, GGC18, LZYP16, TLMM13].
cloud-based [GGC18].
clustered [BO11, BO12, BO13].
[Cocoa [PDPM+16].]
clusters [TRTD11].
Cocoa
[Sta10].
Code
[BH17, BNE16, HC11, MM16, RVK15, RLM15, SRTR17, SVB+17, SV15a, SED14, AGR17, AK13, CCFFB15, DRN14, FLZ+18, FH16, FMS+11, IS18, LYG10, NG13, OJ12, PMP+16, PSW11, RFRRS14, RBV16, RO12, UTO13, VSG17, WKJ17, WGF11, WBA+11, WAB+11, WWS13, ZHL+12, ZX1L6, ZWS15].
coding [LMS+12]. coherent [ZP14].
Cold
[BZD17, WGF11]. collected [AGGZ10].
collecting [AHK+11].
Collection
[ASV+16, GM12, QSaS+16, BP10, BOF17, KPHV11, KBL14, NGB16, ODL15, PZM+10, PDPM+16, SP10a, SBM14, SIE10, SJBL10, SKBL11, UIY10, UJR14].
Collections
[ASV+16, GM12, QSaS+16, BP10, BOF17, KPHV11, KBL14, NGB16, ODL15, PZM+10, PDPM+16, SP10a, SBM14, SIE10, SJBL10, SKBL11, UIY10, UJR14].
Collectoren [Sch13]. collectors [GTSS11, Sch13].
Colt
[WN10].
CoMA
[AGR12]. Combatting
[NWB+18].
Combination
[BSA14].
Combinatorial
[YHY13].
combinators [MHBO13].
Combining
[BDGS13, MGI17].
commsensal
[BRWA14].
Commercial
[ZMM+16].
commodity
[BK14].
Common
[PI1CH11].
Communication
[JQ1+16, RTE+13, SK12, BJBK12, ETR+15, TTD+11].
communications
[ETTD12, RTET15, TTD12].
Communities
[ZMM+16].
Compact
[HWM10, HWM11, JHL17].
comparing
[KFBK+15].
comparison
[AD11, BJBK12, HH13, KVRH14, SMS+12].
Comparisons
[GGZ+15].
Compartmental
[MGW+11].
compatibility
[JDB16, OIA+13].
compatible
[ABCR10, Hor12].
Compilation
[DLR16, CGJ+16, CMS+12, DLR14, FSC+13, IHWN12, JLP+14, JK13, JMO14, KS13, KHL+13, LEI17, MD15, MGI17, ZBB15].
compiled
[NEB+13, RO12].
Compiler
[JMB12, NKB16, NUB+15, BBF+10, BRWA14, CIAD13, HWM14, IHWN12, KMLS15, KS14, KC12, LSW16, MDM17, Rub14, TTS+10, TWSC10, VB14b, YZ+12].
compiler-compiler
[KS14].
compiler-runtime
[TWSC10]. compilers
[HS12, LMK16, RS+14].
Compiling
[Fee16, Hos12].
complementation
[BS13].
Complete
[BO13, BR15, JC10, Sch14, GRI17, PWR15, RGM13, RRB17].
completeness
[KBPS17].
completing
[BS13].
Complexity
[FH16].
comparing
[MD15].
Comparison
[ADI13, BJBK12, HH13, KV1RHA14, SMS+12].
Comparisons
[GGZ+15].
Compartmental
[WGW+11].
compatibility
[DJB16, OIA+13].
compatible
[ABCR10, Hor12].
demand [FWDL15, ZHL+12].
demand-driven [FWDL15]. DemoMatch [YKSL17]. demonstrations [YKSL17].
Depoartization [KRCH14]. depend [LCW18]. Dependence [PDDD17, JWMC15]. Dependence-driven [PDDD17].
demonstrations [YKSL17]. Deoptimization [KRCH14].
depend [LCW18]. Dependence [PDDD17, JWMC15]. Dependence-driven [PDDD17].
dependences [BKC+13]. dependencies [ELW15].
Dependent [CHJ12, LE16]. deploying [R+13]. depth [Rau14]. Design [AC16, ETTD12, MLGA11, Paf13, RTE+13, SW12, TRTD11, TKL+15, VGRS16, YCYC12, BBXC13, CSdL16, GSD+15, IRJ+12, OA17, SADB+16, SMB11, VM10, Xue12].
Designing [Sev12b, KHR11]. Desktop [GS11].
destructive [FF10]. Detecting [BK12, HLO15, PIIL11, XR10, FF10].
Detection [BH10, BSOG12, KCD12, MS14, RD15, XMA+14, AMT17, CSK17, LMK16, LS11, ODL15, PG12, RDF15, RW17, SR14a, SR14b, SS14, WCG14, XXZ13, XR13].
detectors [LWH+10]. Determinacy [AM14]. deterministic [DNB+12, MVH15].
developer [EV13, Top11, ZZK13]. Developers [Bro12, BMRI14, DJB16, HH13, Wam11].
developing [R+13]. Development [ABK+16, AYZ10, AGR17, BM18, FRGPLF+12, PSW11, SKR17, SH12, WBA+11, ZDS14]. Device [TTD+11, XH12]. Devices [GPT12, JQJ+16, MV16, ETR+15, Xue12].
Distributed [BVEAGVA10, LTD+12, LM15, MAHK16, PE11, BVGVEA10, BVGVEA11b, BVGV14b, CRAJ10, EABVGV14, STCG13].
distributing [TGZ17]. divide [SBF+10].
Do [HH13, Han15]. Does [BRGG12, Rub14]. DOJ [hEYJD12]. DOM [GGC18].
DOM-Based [GGC18]. Domain [KSPK12, CSdL16, EEE+13, HHW+15, PIR17].
domain-specific [CSdL16, EEE+13, HHW+15]. dominance [CPST14]. Doppio [VB14a].
DSL [KARO12]. DSLs [KRR11, RO12, SC16]. DSU [PVH14]. Dual [AD16]. Dual-Pivot [AD16]. Dynamic [AGM+17, ABMV12, ASF17, CHMY15, MVDL12, PTHH14, RDF15, XMA+14, ZKB+16, AF12, BDB11, B14, B1C, B1D, BOF17, CSV15, CPST15, ELW15, GYB+11, HB13, KRCH14, KRRT+14, KT14, LWH+10, LVG10, MKZ+14, Nil12b, NG12, NED+13, RLBV10, RCR+14, RR17, SR14b, JPS10, SH12, TPG15, VBAM10b, WXR16, WBA+11, WAB+11, WWS13, WWHH+17, ZBB15].
e-Science [SGV12]. ease [DRN14]. Easy [Jaf13, CRP+10]. economic [CSV15].
economics [SJBL10]. Edition [ANO15, LYBB14]. editor [EKR+12].
Editorial [Fox17a]. Editorials [Fox17a, HTW14, RHT13]. EDSLs [RP16].
Educator [BA17]. EE [Jen12, MCC17].
effect [CCFB15]. Effective [KRR11, RO12, SC16]. Effective [KRR11, RO12, SC16].
effectively [UR15]. effects [B1M14, PTML11, R1D15, CSdL16].
effectively [UR15]. effects [B1M14, PTML11, R1D15, CSdL16].
effectively [UR15]. effects [B1M14, PTML11, R1D15, CSdL16].

Dynamically [CZ14, CMS+12, hEYJD12]. Dynamo [BDB11].
e-Science [SGV12]. ease [DRN14]. Easy [Jaf13, CRP+10]. economic [CSV15].
economics [SJBL10]. Edition [ANO15, LYBB14]. editor [EKR+12].
Editorial [Fox17a]. Editorials [Fox17a, HTW14, RHT13]. EDSLs [RP16].
Educator [BA17]. EE [Jen12, MCC17].
effect [CCFB15]. Effective [KRR11, RO12, SC16]. Effective [KRR11, RO12, SC16].
effectively [UR15]. effects [B1M14, PTML11, R1D15, CSdL16].
effectively [UR15]. effects [B1M14, PTML11, R1D15, CSdL16].
effectively [UR15]. effects [B1M14, PTML11, R1D15, CSdL16].
extensions [Zha12]. Extensive [Wan11].
Extracting [CCA12, KM10]. Extremal
[LTD12]. Eye [RLMM15, Guy14].
Eye-Tracking [RLMM15].

F [GMT14, TTD12]. F-bounded [GMT14].
F-MP [TTD12]. FAA [Sch10].

FAFAC [WNB11]. face [XWH12].
Facebook [Ano13]. Facets [AS17, AF12].
facilities [BVGVEAFG11]. FAD.js [BB17].

failing [STR16]. failures [CRAJ10]. false
[HWI12]. familiarized [Ame13]. family
[KHM11, KvRHA14]. family-based
[KvRHA14]. Fast
[CVC11, CSGT17, HyG12, SBM14, SLF14,
Zak18, BB17, KMMV14, KCP+17, MDM17,
MHBO13, SV15b]. Faster
[BMK15, JC10, AJL16]. fault [RBL12].

Faults [STR17, ZZK13]. Featherweight
[RvB14]. feature [AH10, KkRHA14, OJ12].
feature-based [KvRHA14]. Feedback
[NED13, NG13, WM10].

Feedback-directed
[NED13, NG13, WM10]. fields [PQTGS17].
FIFO [QSaS16]. filtering [HWI12]. find
[Ryu16]. Finding [XMA10]. Fine
[BVGVEAFG11, DRN14]. fine-grained
[DRN14]. Fingerprints [MSK16]. Finite
[BLH12, MB12]. Finite-State [BLH12].

first [SC16, TSD12]. first-class
[SC16, TSD12]. fix [TPG15]. Fixing
[SRTR17, LTZ14]. flexibility [SBF10].

Flexible [ES04, SM+16, PKC+13, RHN+13,
BCD13, KHR11, ZW10]. Flint
[LTZ14]. Floating [Jaf13, AJL16].

Floating-Point [Jaf13, AJL16]. Flow
[ASF17, FHSR12, LMK16, SS12,
AdCGGH16, AF12, ABFM12, BK14,
FWDL15, HBS16, KHL+13, LSWM16].
Flow-sensitive [LMK16]. FlumeJava
[CRP+10]. fly [UJR14]. folding [CPST14].

Footprint [GS12, WHIN11]. Forecasting
[CC15]. foreign [LWH+10]. forge [Ler10].
fork [MWC10a]. fork/join [MWC10a]. form
[GK15]. Formal [DLPT14, KR12, SW12,
HdM17, PSS+15, SZ11]. formalised
[CWW13]. Forsaking [GBS13]. FORSETI
[CSV15]. Forward [FOPZ14]. Foundation
[CI17]. Four [MS10]. FPGA [OUY13].

fragmentation [PZ+10].
fragmentation-tolerant [PZ+10].

fragments [OA17]. frames [JS10].
Framework [CCA12, AFF17, LM15,
PWS17, RBL12, Abe13, AC16, DDF17,
ER14, FPGFL+12, JEC+12, KMLS15,
PKO+15, RR14, STY+14, ZW10, ZDS14].

frameworks [PPM15]. Francisco [KP15].

free [DTLM14, FC11, G15, HHB+14, NVF15].
free-form [G15]. free-lunch [DTLM14].

frequency [ZWS15]. Friendly [RBL12].
fringe [MB12, MB12]. Full
[STR17, DRN14]. Full-Word [STR17].

Fully [FSC+13, PG12, ZFK+16].

Functional [Wam11, Abe13, BVGVEA15,
NVF15, UF15, Bro12]. functional-style
[UF15]. functions [LSB16, LSB17].

Fundamentals [HC13]. Fusing
[MS13, ETR12, WM10]. fusion [KBPS17].
future [SS16]. fuzzer [Guo17].

Game [MT14, Wan11]. Gap
[PVB17, ZLHD15]. Garbage
[ASV+16, BH12, GTS+15, QSaS+16, Sch13,
SKBL11, AGZ10, BC13, BP10, BVGVE14,
BOF17, GTS11, KPHV11, KBL14, NGB16,
PZM+10, PDP+16, Puf13, SP10a, SBM14,
Sie10, SJBL10, UI10, UJR14].

garbage-collection [Sie10]. GC
[NG16, RGM13]. GEMs [BSM16].
general [CHMY15, EKU10]. generalized
[WT10]. generated [BM18]. Generating
[HJS+10, RDP16, GFP11, KS14, MHBO13].

Generation [AGM17, BH17, CRJ+10,
PPM15, PSNS14, RO12, UMP10].
generations [BOF17]. generators [SLF14].
generic
[DDM11, Fer13, HH13, ZPL+10, eBH11].
generics [AS14, Gri17, PBMH13]. Genetic [YCYC12]. Genotyping [YCYC12].
GeoGebra [ABK16]. geosciences [MCY10]. German [Sch13]. get [Ame13].
Goldilocks [EQT10]. Good [dGRdB15].
Google [MGJ17, Sami12]. GPGPU
[PQTGS17]. GPGPU-accelerated
[PQTGS17]. GPU [PKO+15]. GPUs
[Hos12]. grade [CRJ10]. Gradual
[RSP+15, SFR+14, TSD+12, Sie17]. grained
[DRN14]. grammars [GN16, SHU16].
granularity [CZ14]. Graph
[dMRH12, BS13]. Graphical [SLS+12].
Graphics [Cec11, LLL13], graphs
[AdCGGH16, DSE13, JWMC15, PUL016].
green [BRGG12]. Greenfoot [Kol10], grid
[SV12, VJB10, MZC10b]. Gridifying
[MZC10b]. grounded [EV13]. Growing
[EKR+12]. growth [LDL14], guarantees
[JWMC15, ZHC15]. GUI
[CNS13, VGS14, WBA+11].
GUI-awareness [VGS14]. Guide
[Ame13, Oak14, Rau14, Top11]. Guided
[CNS13, DiP18b, MMP15, GY16, PSN14, SSH17]. Guidelines [GGZ+15, HLSK13].

Handling
[KW11, ECS15, HWM14, KW10, WK12].
Hands [CSZ17]. Hands-on [CSZ17].
happened [Han15]. happens [TD15].
happens-before [TD15]. hard
[LTK17, Puf13]. Hardware
[SKKR11, SPS17, CBGM12, IN12, SE12].
hardwired [OUY+13]. hash
[SV15a, SV15b]. hash-array [SV15b].
hashing [GRF11]. HDFS [IRJ+12]. HLD
[OUY+13]. health [EKUR10]. heap
[CSV15, LDL14, TLX17, Tar11, VYY10, YS10, BVGVEA10]. heap-manipulating
[YS10]. Helping [RT14]. Hera [MS10].
Hera-JVM [MS10]. Heterogeneous
[ASV+14, HHH+14, Rub14, AYZI10, ABCR10, DFR13, MS10].
Heterogeneous-race-free [HBB+14].
heuristics [LMK16]. Hidding [RB12].
hierarchy [BS13]. High [GSS+16, Hoi12, IRJ+12, MSM+16, SWI+15, WN10, Zak10, BRWA14, Hos12, RFB14, TDB+11, TGZ17, VJB10, WHH+17, TRE+13].
high-dimensional [TGZ17]. high-level
[Hos12, RFB14, VJB10].
High-Performance [WN10, GSS+16, BRWA14, TDB+11, WHH+17]. higher
[KT15]. higher-order [KT15]. highly
[BP10, SP+10]. history [DRN14]. hit
[SP16]. hosted [CBLFD12]. hot [LMK16].
HotSpot [Sch13, BOF17]. HotWave
[ABMV12, VBM10b]. HPC [JQJ+16].
HTM [CHM16]. HTML [Sta10]. HTML5
[HLO15, NKH16, Ano15]. Hunting
[GGC18]. HVM [LTK17]. Hybrid [CHM16, JQJ+16, JMO14, KCD12, VDB17, ZMNY+14, ZMM+16, ADI13, HyG12, SWB+15].
Hybris [VDV17]. hygienic [DFHFI15].
hypervisor [GMC+13].

IaaS [ZLH15]. identification
[BZD17, FMS+11]. Identifier [STR17].
identifiers [FMS+11]. Identifying
[IN12, SVB+17]. if [Han15]. illuminating
[BK14]. Image [WN10]. immutability
[HMDE12, ZPL+10]. immutable [SV15b]. impact
[CMS+12, Gra15, HWM11, WJK17]. imperative [RFRS14]. implement
[HD17]. Implementation [CSF+16, GPT12, HM12, OA17, VGR16, YP10].
implementations [CSS+16, OJ12].
Implementing [FFF17, GM12, WCB16, EKE+13, FBH17, PPM+16]. implications
[BRGG12]. implicit [IvDS16, SPAK10].
imply [BRGG12]. Improve [QSaS+16].
Improved [KRR+14, UIY10, OJ12, XHH12].
Improving [ACS+14, HWI+12, TWSC10, eBH11, UTO13]. in-depth [Rau14].
in-place [DVL13], incremental [DS16, ELW15, UIY10]. independent [IF16].
industrial [CRJ+10]. inefficiently [XR10].
Inference [BO13, YHY13, AGGZ10, CGJ+16, HyG12, HMDE12, Zha12].
infecting [AS14, BENS12]. Information [ASF17, HBS16, KHL+13, RKN+18, SS12, AF12, ABFM12, BVGVEA11b, CMS+12, RRB17].
Informa [HA13]. Information [ASF17, HBS16, infrastructure [NG12]. Inheritance [LN15, WT11, AST+16, GBS13, NCS10].
Initial [LTD+12]. initialization [AMT17, MME14]. Initiation [FGR12].
Injecting [ZZK13]. inline [DILP10].
instantiation [AST+16]. instead [AGH+17, BTR+13]. instrumenting [CZ14]. Integrated [Tar11, YP10].
invertising [SPP+10]. integration [Ame13, HKVG14, Sch10a]. integrity [HDK+11]. intelligence [JACS10].
Intelligent [Pau14]. Intensive [NWB+18, SAdB+16]. inter [CMM17].
International [Hol12, KP15, Fox17a]. interoperability [GSS+16].
Interpretation [BDT10, DLR16, DLM10, DLR14, NSDD17].
Interpretation-Based [DLR16]. interpreter [D'H12, KMMV14].
interpreters [HWW+15, IvdS16, MD15, ZLB14].
Interprocedural [CPV15, FWDL15, ZMNY14]. Interrupting [AST12].
intersection [K15]. intra [BJB12]. intra-node [BJB12].
Introducing [Dan17, DMS11].
Introduction [CIAD13, CSZ17, HTLC10, HTW14, Lew13, RHT13, VK12, Hav11, VF10].
Introductory [BNP11]. intrusively [MZC10a]. Investigation [SS13, FH16].
invited [Piz17, Sie17]. invocation [SPAK10, BVGVEAF11]. invocations [BVGV14a]. invokodynamic [OCFL14].
iterations [DD13]. iterators [ZLB14].
IVE [CRJ+10]. IVPs [KS15].
Javascript [Mei14]. JavaScriptCore [Piz17]. JaVerT [SMN+18].

JVM [AC16, AFG+11, CSS+16, Guy14, MS10, PVH14, R+13, RRB17, SV15b, Sub11].

JVMs [BK14, ZY+12].

K-Java [BR15]. kernel [HDK+11]. Key

[BBB+17, DFR+13, JB12]. key-value

[DFR13]. keyname [McK16]. KiWi

[BBB+17]. KJS [PSR15]. knot [LBF12].

know [DBJ16, Gra15, Han15]. Knowledge [KSPK12, UMP10]. known [Han15].

Kraken [Ano14].

Lake [Hol12]. lambda [MKTD17].

lambdas [UFM15]. landscape [Sve14].

Language [DLPT14, GJS+13, GJS+14, JC10, KSPK12, MAHK16, Sev12b, SS13, ABCR10, CMM17, CSIL16, DAA13, EKR+12, Fee16, GSS+16, Hos12, HHW+15, KRCH14, LWH+10, LE16, MDM17, SC16, SZ10, SKR17, SN+14, VB14a, WCG14, WWH+17, ZWSS15, dCMM12].

language-level [WCG14]. Languages [CSGT17, MMS+16, PTHH14, YKM17, AGGZ10, BCD13, CMS+12, EER+13, ER14, FMBH15, Han15, HBT12, HJS+10, KRR+14, MMS+10, NED+13, PUL16, SPY+16, Zha12].

LARD [WCG14]. Large [BA17, AST+16, CCFB15, LSBO16, LSBV17, MDS+17, MCY+10, PTF+15, WHIN11].

Large-Scale [BA17, MDS+17, MCY+10, PTF+15, WHIN11]. Larus [DD13].

leak [SS14, XR13]. Leaks [And14, RW17].

LeapSpot [RW17]. lean [BRGG12, SV15b].

Learn [RT14]. Learning [Pau14, RT14, CNS13, KC12, Ano15]. learnt [GY16]. Legacy [SVB+17, CDTM10].

Legally [Sam12]. length [SMP10]. Less [BNE16]. Level [AC16, SWU+15, EKUR10, Hos12, IWHN12, KBL14, LWC17, MGI17, RFBJ14, TTD+11, WVB10, WCG14].

Lexical [GN16]. Lexicon [TAF+18].

Libraries [BK12, RDCP12, BlvdS17, Cho14, EKR+12, PMTL14, TTD+11]. Library

[OCFL14, TAF+18, WN10, dM18, CMM17, PMP+16, QTG17, TFPB14, TGZ17].

License [GD12]. Life [Esq11]. LIFT
[BW12, KBL14, KKK+17, RO12]. like
[BDGS13, BCD13, DJLP10, PMTL14, SZ10, VGS14, OW16]. Lime [ABCR10]. line
[SV17]. linearizability [LTZ14]. lines
[BTR]+13, KATS12]. linguistic [UR15].
Linux [Ric14]. Linux-basierte [Ric14].
Listener [JH11], little [Han15]. liveness
[LDL14]. load [PDPM+16]. loading
[WGF11]. local [DDDF17]. localised
[SP10b]. locality [HJH10, OJ12]. localize
[ZZK13]. location [NCS10]. Locators
[SDM12]. Lock
[FC11, NM10, NFV15, UMP10]. Lock-free
[FC11, NFV15]. Locking
[GGRSY17, JTO12, GGRSY14, GGRSY15].
locks [SPS17]. logging [CJ17]. logic
[GMS12, SD16b]. loop [DD13, HWI+12].
Loops [RD15, LLL13]. loss [WHN11]. Low
[ETR+15, GM12, SWU+15, WCG14, ZHCB15, ZFK+16, BCR13, XMA+10].
Low-Budget [GM12]. Low-latency
[ETR+15]. Low-level [WCG14].
Low-overhead [ZHCB15, ZFK+16].
low-utility [XMA+10]. lunch [DTLM14].
m [MZC10b]. m-JGRIM [MZC10b]. M2M
[Pau14]. Machine
[LYBB14, Ame13, CBLF12, KS13, KC12, PiZ17, SSMGD10, WGF11, WHV+13, BZD17, LYBB13a, LYBB13b, LTK17, PTHH14, SSB+14a, Sch13, Set13, SMSB11, SVG12, SSB01, SSB14b, UR15]. Machines
[AGR12, GTS+15, JK13, KRCH14, NK10].
macros [DFHF15]. Magic [SP10b].
Magic-sets [SP10b]. Magnitude [BNE16].
major [Ano12]. Making
[Loc13, Sta10, PS11]. malformed [SHU16].
Malicious [KCD12]. malleable [MZC10a].
malware [CSK17]. Managed
[MAHK16, NWB+18, BM14, CBGM12, GTL+10, ZIvdS17]. Managed-Language
[MAHK16]. Management
[Pau14, AHK+15, BVGV14a, EKUR10, HB13, KCP+17, KB17, Nil12b, PCL14, SWB+15, Tar11, WGB+11]. manipulating
[YSI10]. Manipulation [MS14]. manual
[KCP+17]. many [GTSS11]. Map
[BBB+17]. mapped [SV15b]. Mapping
[LTD+12, UR15]. MapReduce
[LVZ14, RFRS14, SKBL11]. maps
[NVF15]. mashup [ETR12]. masses
[dJM18]. Mathematical [BW12].
Mathematics [dJM18]. MATLAB
[Alt12, FBH17, PMTL14, VF10, Has12].
MATLAB-like [PMTL14]. matrix
[HD17, TGZ17]. matters [DJB16]. Maxine
[WHV+13]. me [LCW18, GM12, XIH12].
ME-Based [GM12]. mean [Rub14].
measurement [YW13]. Measuring
[DW10, DTL14, Gra15, HJ11].
mechanical [ZZK13]. mechanised
[BCF+14]. Media [Bro12]. meets
[KHL+13]. Memento [CPST15].
memoization [TPG15]. Memory
[BG17, JYKS12, MSM+16, NWB+18, SS14, AHK+11, AHK+15, AGGZ10, BSMB16, CWW13, DLZ+13, DVL13, FC11, FF10, GYB+11, HBH+14, HB13, KHL+17, KCP+17, KB17, Loc13, MSM+10, Nil12b, OMK+10, RW17, SMS+12, SMN+12, SWB+15, SV15a, Tar11, TVD10, WGB+11, XR13, ZP14, ZHCB15, ZBB17]. MemSAT
[TVD10]. Mergesort [LL15]. merging
[TLX17]. Message
[KF11, ETTD12, TRTD11, TTD12, UR15].
message-passing
[ETTD12, TRTD11, TTD12, UR15]. messages [eBH11]. meta [MD15, SZ10].
meta-circular [SZ10]. meta-compilation
[MD15]. metadata [DVL13]. MetaFJig
[SZ10]. metaheuristics [DDDF17].
metaprogramming [PS11]. Method
[AC16, BVGVEAFG11, GD12, AST12, AJL16, HMD12, SS16, VBMD16].
Method-Level [AC16]. Methods
Non-Adequate [GGZ1+5].
non-cache-coherent [ZP14].
Non-equivocation [TD17].
Non-functional [BVGV1A1b].
non-intrusively [MZC10a]. Non-Java
[YSO17, OMK1+0]. Non-termination
[BSOG12]. No blocking [RTET15, SP10a].
Nondeterministic [RB15, BENS12].
noninterference [IF16]. Nopol [XMD1+7].
NoSQL [DFR13]. Notation [Sev12a].
Novel [NK10, MZC10b]. November
[Hol12]. Novice [BA17]. Novices [RT14].
null [AT16]. NullPointerExceptions
[BSOG12]. NUMA [GTS1+5]. NumaGiC
[GTS1+5]. number [PPMH15, SLF14].
Numbers [Jaf13, AJL16, Wal12].
Numerical [KS15, KFBK1+5, PQTGS17].
NXT [SWF12].

Obfuscated [KCD12]. obfuscation
[CCEF15]. obfuscations [CSK17]. Object
[CSGT17, GS11, LZ12, NBW1+5, PTHH14,
PILCH11, Sev12a, SW12, AST1+6, BZD17,
DDDF17, FMBH15, IvdS16, MME14,
MHBO13, RDF15, UJR14, VM10, WM10,
ZCdSOvdS15, Zha12, ZDS14, hEYJD12].
Object-Bounded [NBW1+5].
object-constraint [FMBH15].
Object-Oriented
[GS11, PTHH14, AST1+6, DDDDF17,
MHBO13, VM10, ZDS14, hEYJD12].
Objective [Sta10]. Objective-C [Sta10].
Objects [BS12, RK1+8, MHL15, SK13,
WX16, BVGV1A10]. Observations
[AAB1+0]. OCTET [BKC1+3]. offloading [ZHL1+2]. on-demand
[ZHL1+2]. on-the-fly [UJR14]. ones
[AST1+6]. Online
[NG13, GGC18, HCV17, NK10]. only
[NM10]. Ontology [KSKP12]. OoOJava
[JhEd11]. Open
[BSA14, GD12, CJ17, EKUR10, VGR16].
Open-Source [BSA14]. OpenJDK
[CHM16, dGRd1+5]. OpenMP [VGS14].
OpenMP-like [VGS14]. operating
[HDK11]. operation [KKW11].
operations [TABS12, TGZ17]. Operator
[PQD12]. opportunities [TPG15].
Optimal [AD16, SK12, ELW15]. optimale
[Sch13]. optimisation [PPS16]. optimistic
[WGF11]. Optimization
[LT1+2, YKM17, AFG1+1, BDB11,
DDDF17, MHO14, KS13, KIC12, NG12].
Optimizations [DR10, BB17, CST15,
DS16, NG13, SADB1+6]. Optimizing
[SV15b, YRHBL13, HW1+5, KRH16,
MD15, ZLB14]. optional [CMS1+2].
Oracle [LMS1+2, Sam12]. ORB [OY1+13].
Order [SGD15, JhEd11, KT15, TD15].
ordering [KCI2]. Orders [BNE16].
ordinary [MZC10a]. O'Reilly
[Ano15, Bro12]. Oriented [ABMV12, BH10,
GS11, AST1+6, DDDDF17, EAVGV14,
MHBO13, PTHH14, RVP11, VM10,
VBAM10b, WBA1+1, ZDS14, hEYJD12].
OSck [HDK1+1]. OSGi [BVGV1A13]. OSS
[ZMM1+6]. other [EKUR10, KS13].
out-of-order [JhEd11]. output [KM10].
Over-exposed [VBDP16]. overhead
[BCR13, ZHC15, ZFK1+6]. overlay
[CDT10]. Overloading [PQD12].
overview [Nill2b]. own [MPM1+5].
Ownership [ZPL1+0, BDGSL13, DDM11].
PaaS [ZLHD15]. Package
[SLS1+2, CRAT1+2, MB12, OW16, AK13].
Packages [PILCH11]. panic [Ano12].
Paper [DDDF17, PDPM1+6, SV15a].
Papers [DV13, HL13, LMK16, Puf13].
Parallel
[DS16, Esq11, LLL13, MKG1+7, NKH16,
QSaS1+6, RD15, RS12, BP10, BPP13,
BSMB16, CRP1+0, NG12, NG13, PPMH15,
Sie10, SZ11, TTD12, Taf13, VYY10, WN10].
Parallelisation [GS11]. Parallelism
[NKH16, BENS12, HHSS13, MZC10a,
RHS15, TW112, ZL1+3].
parallelization [SS16, YRHBL13].

profilers [MDHS10]. profiling [DD13, JH11, KRH16, NK10, RCB17, SSB+14a, STY+14, THC+14, XR13, ZBB15].

Program [BGK17, KK14, RVK15, RT14, ZKB+16, AO11, DS16, GMS12, HCN14, JL17, JWMC15, KN10, KMZN16, MKZ+14, NS13, Sch10a, SPY+16, TABS12, WGF11, ZMG+14]. Program [BGK17, KKK14, RVK15, RT14, ZKB+16, AO11, DS16, GMS12, HCN14, JH11, JWMC15, KN10, KMZN16, MKZ+14, NS13, Sch10a, SPY+16, TABS12, WGF11, ZMG+14].

Programs [AGR12, BH17, BR12, BMOG12, GS11, JB12, LTD+12, STST12, SS12, SDM12, Sr17, XMD+17, ZLCC14, ASDMGM14, AdCGG16, BA12, BN12, DLJP10, ECS15, ES14, EP14, Fer13, HL13, IN12, LO15, LPA13, MRMV12, NG12, OJ12, PL12, RR14, RAS16, RB15, SM12, SS11, Taf13, YS10, dCMN12, hEYJD12].

progress [Sie17, ZHCB15]. Project [Wan11]. Projects [ZMM12, CJ17].

Proof [LL15]. Proofs [BMOG12].

propagation [IvdS16, PQTCS17].

Properties [BO11, RVK15, SS12, FWDL15, SD16b, YS10]. Protecting [MPS12].

Protein [YHY13]. Protocol [GM12, FGR12]. protocols [KDPG18].

prototyping [PWA13]. Provably [AdCGGH16, DJLP10].

Purity [NSDD11, HMDE11]. Python [Ric14].

Quality [BNP11, CCFB15, WKJ17]. Quantitative [CPV15, GYB+11, MRA+17].

queries [C15, MRa+17, SGG+17]. query [FWD15]. query- [FWD15]. questions [KM10]. Quicksort [AD16].

racy [SRJ15]. Range [BS12]. rapid [PWA13]. raw [HH13]. rays [SBF10].

read-only [NM10]. Reading [Jaf13]. ready [HRS15].

Real [BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, N12a, Pau14, SLES15, SLE+17, VK12, BCR13, BVGVE10, BVGVE11a, BVGVE11b, BVGVE14, BVGVE14b, CRAJ10, DW10, EABV14, Fox17a, GMC+13, HTLC10, KHM+11, KPHV11, KvgS+14, KW10, KSR14, LTK17, MDS+17, PS10, PZM+10, PSW11, Puf13, RHT13, SP10a, Sie10, SPS17].

Real-Time [BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Pau14, SLES15, SLE+17, VK12, N12a, BCR13, BVGVE10, BVGVE11a, BVGVE11b, BVGVE13, BVGVE14a, BVGVE14b, CRAJ10, DW10, EABV14, Fox17a, GMC+13, HTLC10, KHM+11, KPHV11, KvgS+14, KW10, KSR14, LTK17, MDS+17, PS10, PZM+10, PSW11, Puf13, RHT13, SP10a, Sie10, SPS17].

Real-Time [BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Pau14, SLES15, SLE+17, VK12, N12a, BCR13, BVGVE10, BVGVE11a, BVGVE11b, BVGVE13, BVGVE14a, BVGVE14b, CRAJ10, DW10, EABV14, Fox17a, GMC+13, HTLC10, KHM+11,
KPHV11, KvGS+14, KW10, KSR14, LTK17, PS10, PZM+10, PSW11, Puf13, RHT13, SP10a, Sie10, SPS17. real-time [OUY+13].
Reasoning [LN15, ABK+16, MLT17].
Recap [Bilvd17]. recipes [J+12].
recompilation [NED+13]. Reconfigurable [OUY+13, STY+14, OIA+13].
Reduction [BO12, TD15]. redundant [HLO15]. Refactoring [AS14, STST12, VBZ+18, ZHL+12, FM+11, FM13].
Reference [Sch14, UJR14, HMDE12].
reification [GY16, JLP+14, KSW+14, ZMG+14, ZFK+16]. Reflexes [SPP+10].
regions [AC10]. register [ZY+12].
refinement [GY16, JLP+14, KSW+14, ZMG+14, ZFK+16].
relaxed [DNB+12, KHL+17, PPS16].
replication-based [UIY10]. report [CBLFD12, Sch10a]. Reports [OW16].
repository [HC10]. reproducibility [Vit14]. reproduction [SR14b].
requirements [AGGZ10]. ResAna [KvGS+14].
Research [SR17, TRE+13, CRJ+10, CBLFD12, EKUR10, Rub14, VBMDP16, Vit14].
Resource [BVGV14a, ADI13, ES14, KvGS+14, KSR14, SGV12].
resource-aware [SGV12]. resource-based
[ADI13]. responsive [SPP+10].
responsiveness [PSNS14]. restart [CNS13].
Retention [ZMM+16]. Rethinking [Xuc12, RCR+14]. retrofitted [TT+10].
retrofitting [LPGBK+14]. reusable [HC10, MME14]. reuse [WR10]. Reverse [CCA+12].
[AYZ10]. RFLP [YCYC12]. richer [CV14].
RJ [OW16]. Road [RXK+17, SWU+15].
Robots [SWF12]. Robust [VM15, VD17, MKZ+14, SGV12, VM10].
row [Lei17]. row-typed [Lei17]. RTSJ
[ZW10]. Rubah [PVH14]. rule [QLBS17].
Rules [CCA+12, HLO15]. run [WAB+11].
run-time [WAB+11]. Running [HC11, TWX+10, YK14]. runs [FIF+15].
Runtime [BLH12, MAHK16, MS10, NB+15, OCF114, XMA+14, BRGG12, EQT10,
GTL+10, GSS+16, LMK16, MS10, OOK+10, PKC+13, RO12, STY+14, TWS10,
VBAM10a, YRHB13, dCMMN12].
runtimes [BM14, CSV15, RCR+14, WW+17].
Safe [Eug13, GyRN+11, JTO12, MPS12, RS+15, SWB+15, WAB+11, HJS+10,
HAW13, KHR11, KMLS15, KCP+17, Lo13, RDP16, WWS13]. Safety [RS12, SDH+17,
WC16, ZLC14, AG17, EKUR10, GMC+13, NII12b, PG12, SD16b, Taf13,
YS10, CWW13, HLI13, LWC17, WK12].
Safety-Critical [WC16, ZLC14, RS12, SDH+17, AG17, CWW13, LWC17].
Salespoint [ZDS14]. Salt [Hol12]. SAM
[BO13]. San [KP15]. Sane [MPS12]. Satin
[VWJB10]. SAW [CFH+13]. Scaffolding
[RT14]. Scala [SMS+12, AT16, Hin13, Lew13, PTML11, SMS11, SMS+12].
Scala-Based [PTML11]. Scala.js [DS16].

Scalability
[CCH11, AAB+10, DSEE13, GTSS11].

Scalable
[BBB+17, BS12, DFR13, GGRS17, HC11, JQJ+16, RKK+17, RTE+13, XMA+14, ETT12, FC11, GGRS15, NFV15, PIR17, RTET15, TTD12]. ScalaLab
[PTML11, PMTL14]. scalable [PQYG17].

Scale [BA17, PE11, DHS15, LO15, MDS+17, MCY+10, PTF+15, WHIN11].

Scheduler [QSa+16, IF16, TWL12]. scheduler-independent [IF16].

Scheduling [ASV+16, BVEAGVA10, KPHV11, EP14, EABVGV14, ZW10]. scheme [XHH12]. SCHISM [PZ10].

Science [HWM11, VF10, SGV12]. sciences [NL4]. Scientific [Eqq11, PTML11, TAF+18, WN10, FRGPF+12, PMTL14].

scientists [Bra14]. SCORM [HC10]. Scrap [ZCD15]. Script [MMK16].

Scripting [CSGT17, KKK+17, HBT12, KRR+14, PMTL14, Zha12]. SE [LYB14].

Seamless [OwK15]. Search
[S6D14, DDDF17]. searching [ETR12].

Second [HD17]. secrets [Alt12]. section
[DTLM14]. sections [NM10]. Secure
[GMP12, GM12, ABFM12, LMS+12, TLM13]. securely [SRF14]. Security
[CDG+17, Gou11, HBS16, JWMC15, MCL17]. Semingly [Has12]. selection
[WHIN11]. Self
[MPS12, hED12, AHK+11, AGH+17, CBLFD12, HHW+15, MD15].

[CBLFD12]. self-optimizing
[HHW+15, MD15]. Self-stabilizing
[hED12]. Semantic [GGRS17, RVB14, BNS12, GGRS14, GGRS15, OA17].

Semantics [BO12, BR15, Kri12, MLM17, SPY+16, AK13, FBH17, FZ17, KHL+17, Mil13, MT14, PIR15, PPS16, ZHCB15].

Semantics-based [SPY+16].

semantics-preserving [AK13]. Semi
[FM13, MRMV12]. semi-automated
[MRMV12]. Semi-automatic [FM13].

Sensitive [SGD15, HW13, LMK16].

sensitivity [HB13]. Sensor [AFGG11]. separability [WR1+10]. Separating
[DDM11, AC10]. separation [TWSC10]. sequence [ZWZ14]. Sequent [FFT17].

sequential [BENS12, DMS11].

serialization [MHBO13]. Seriously [Kie10].

Server
[HC11, KR16, D’H12, De11, HWLM11, R+13]. Server-Side
[HC11, KR16, D’H12]. Service
[BVEAGVA10, SDM12, EABVGV14, HWLM11, KF11]. service-oriented
[EABVGV14]. services [M10]. session
[KDPG18, FGR12]. Set
[SBK13].

Set-based [SBK13]. sets [SP10b]. getters
[Mii13]. setting [BDGS13]. Settings
[GM12]. ShadowVM [MKZ14]. shalt
[LCW18]. shape [GMT14]. Shared
[BG17, BSM16]. Shared-Memory
[BG17, BSM16]. sharing [PKO+15].

Short [AHK+11, SV15a, Zak12].

Short-term [AHK+11]. ShortCut
[CSGT17].

Side
[HC11, OBPM17, D’H12, KR16]. SIGCSE
[Wal12]. Signatures [DR10]. significance
[BO11, BO12, KCP+17, BVG14b, MSM10].

Simplicity [Dei11]. Simulating [LM15].

Simulation
[HWLM11, FLZ18, KKW11, ZXL16]. Simulation-based [HWLM11].

simulations [MCY+10]. Simulator
[MKG+17, RKK+17]. single [JK13].

Sinking
[CDG+17]. site
[CPST15, SSB14]. sites [OK10]. size
[AST12, UTO13]. sizing [CSV15]. SJL
[MvH15]. skills [JAC10]. Slicing
[XMA14]. Slimming [WGF11]. SLOC
[LMSV16, LSV17]. Smaller [GS12].

smalltalk [FF1+15, HKVG14]. Smart
[GMPS12]. Smartcard [RBL12].
SMArtOp [TGZ17]. Smartphones [RT14].
SMARTS [RXK+17]. snapshots [AST12].
Snippets [SWU+15]. SNP [YCYC12]. SoC
[TKL+15]. social [GGC18]. soft [JACS10].
Software [BSA14, CC15, Wan11, YQTR15,
BMSZ17, BTR+13, CBGM12, CFH+13,
CJ17, DVL13, EKUR10, FRGFLF+12,
FC11, HBG+16, JhED11, LPA13, MHR+12,
NGB16, OA+13, PLL+18, RAS16, SV17,
XR13, YRHBL13, ZZK13, ZHCBI5, ZDS14].
Solidity [Dan17]. Solution
[KS15, EKUR10, J+12]. Solving
[SED14, FMBH15]. Sound [BO13, BGK17,
LE16, BHSB14, ELW15, PPMH15]. soundly
[BS13]. Source
[BSA14, GD12, MM16, RLM15, SRTR17,
SED14, AK13, CJ17, DRN14, EKUR10,
FMS+11, OJ12, PMP+16, ZWSS15].
source-to-source [AK13]. sources [IN12].
sparse [TGZ17]. sparse-matrix [TGZ17].
spatial [MLGA11]. Speaking
[Rau14, Sam12]. Special
[DVL13, Fox17a, HL13, HGCA11, Paf13,
HTLC10, RHT13, HTW14, VK12].
specialization [KRR+14, SV15a]. specific
[CSDL6, EK+13, HWW+15].
Specification [GJS+13, GJS+14, IF16,
KW11, LN15, LYBBI3a, LYBBI3b,
LYBBI4, TWINH12, BVGVEA11a, BCF+14,
KR12, KW10, MRA+17, YP10, dCMNN12].
specifications [BENS12, TVD10]. specified
[BCR11]. Specifying [BNS12, HL13].
Speculation [AC16, MGI17]. speculative
[BB17, YRHBL13]. speed
[HRS+17, SBF+10, UTO13]. SPIN
[ASdMG14]. SPL [BTR+13]. splittable
[SLF14]. SPOON [PMP+16]. spot
[LMK16]. SPUR [BBF+10]. SQL
[KMLS15]. SqueakJS [FIF+15]. SSNTDs
[VSG17]. Stability [BSA14, LL15].
stabilizing [hED12]. stack
[KRCH14, Xue12]. stack-based [KRCH14].
age [WRI+10]. staged [SC16]. staging
[RO12]. standard [LMS+12].
Standardization [TWNH12]. StarL
[LM15]. State [AGR12, BLH12, MvDL12,
MS14, GN16, YP10]. state- [YP10].
statecharts [MS13]. Statement
[XMD+17, PLR14, ZWSS15]. statements
[PLR14]. Static
[BGK17, BNE16, JC10, MTL15, ODL15,
PLC11, RD15, SW12, SH12, AM14,
CGJ+16, Fer13, FLL+13, IF16, KSW+14,
LS11, MHR+12, PIR17, TLMM13].
statically [BTR+13, NED+13]. statistically
[Bra14, ZFK+16]. statistically [PPMH15].
statistics [HCN14]. stealing
[KFB+12, TWL12]. STM [CHM16, Sub11].
STM/HTM [CHM16]. StMungo
[KDPG18]. stochastic [CRAT+12]. stock
[PVH14]. Stop [LWB+15]. Storage
[Hol12, VDV17]. Store [BS12, Sta10].
stores [DFR13]. Story [Aon14]. strategic
[BMR14]. strategy [PDPM+16]. Stream
[KBPS17, MV16, BRWA14, SSG+14].
streaming [MRA+17, STCG13].
StreamJIT [BRWA14]. StreamQRE
[MRA+17]. streams [SSG+17, UFM15].
Strength [KCD12]. String
[HOKO14, CSK17]. Strings
[HWM11, HWM10, LSSD14]. strong
[UMP10, ZHCBI5, ZBB17]. structure
[LO15, PPL+18, UMP10]. structured
[LSWM16]. Structures
[GTL10, CDTM10, XMA+10]. studies
[EKUR10]. Studio [RT14, FH16].
Studio-Based [RT14]. Study
[OBPM17, RLM15, ZMM+16, BRGG12,
CCFB15, CJ17, ECS15, KFBK+15,
MHR+12, NCS10, OKI+10, PTF+15, SH12,
TFPB14, VBDPM16, WXR16, YW13]. style
[UFM15]. substitute [PPMH15]. substrate
[GTL+10]. subtypes [PL13]. Subtyping
[LN15]. suite [SMSB11, BB12]. Suites
[GGZ+15]. Summaries [BH17].
Summarization [MM16, RLM15].
Superblock [KS13]. Supercharged
[Cec11, GBS13]. Superposition [HD17].

Using [ASdMG14, BS12, BSA14, BNE16, DLM10, HCN14, KFBK+15, MV16, MSSK16, Pau14, PQD12, SD12, SLE+17, UMP10, Wan11, XMA+14, YCYC12, Zak18, BB17, DDDF17, FH16, FOPZ14, GBS14, IvdS16, KMLS15, KT14, KC12, LGV10, Lew13, LDL14, PIR17, RAS16, SAdB16, SSH17, SHU16, VGS14, WBM+10, WRI+10, XR13]. UT [Hol12].

utility [CSV15, XMA+10]. utilization [BCR13].
References

Anjo:2016:DML

Ahn:2014:IJP

Aumuller:2016:OPD

Amighi:2016:PCC

Autili:2013:HAR

Austin:2012:MFD

Arnold:2011:AOJ

Aiello:2011:JBA

Albert:2010:PIM

Antonopoulos:2017:DIS

Andreasen:2017:SDA

Arcaini:2012:CCM

REFERENCES

Arcaini:2017:RDP

Apel:2010:CUF

Aigner:2011:STM

Aigner:2015:AJE

Andrysco:2016:PFP

Axelsen:2013:PTD

Eywivd W. Axelsen and Stein Krogdahl. Package Templates: a definition by semantics-preserving

Anonymous:2012:AMJ

Anonymous:2013:FAM

Anonymous:2014:RKS

Anonymous:2015:BRL

Arslan:2011:JPM

Altidor:2014:RJG

Adalid:2014:USA

Austin:2017:MFD

Afek:2012:ISJ

Alshara:2016:MLO

Akram:2016:BPG

Amin:2016:JST

Ali:2010:DJB

Mohammed F. M. Ali, Mohammed I. Younis, Kamal Z. Zamli, and Widad Ismail. Development of Java based RFID application programmable interface for heterogeneous RFID sys-
REFERENCES

Bradel:2012:ITJ

Brown:2017:NJP

Boland:2012:ICC

Bonetta:2017:FJP

Basin:2017:KKV

Bebenita:2010:STB

Bonetta:2013:TPE

REFERENCES

0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPoPP ’13 Conference proceedings.

Bu:2013:BAD

Bettini:2013:FDT

Bodin:2014:TMJ

Bergenti:2011:PPS

Bacon:2013:PRT

Bainomugisha:2013:SRP

Bettini:2017:XTJ

Bala:2011:DTD

Bettini:2013:CTB

Barbuti:2010:AIA

Burnim:2012:NIN

Battig:2017:SDC

Martin Bättig and Thomas R. Gross. Synchronized-by-

Berman:2017:EUS

Bodden:2010:AOR

Biboudis:2017:RJD

Badihi:2017:CAG

Biswas:2014:DES

Barbu:2012:ARA

REFERENCES

REFERENCES

[BNP11] Jürgen Börstler, Marie Nordström, and James H. Paterson. On the quality...

Bogdanas:2015:KJC

Brandt:2014:DAS

Bhattacharya:2012:DLI

Brown:2012:BRF

Bosboom:2014:SCC

Bedla:2012:SSJ

Balatsouras:2013:CHC

Bouktif:2014:PSO

Bonetta:2016:GSM

Brockschmidt:2012:ADN

Bodden:2013:SLS

Basanta-Val:2010:SSS

Basanta-Val:2014:RMP

Basanta-Val:2014:SDG

Basanta-Val:2010:NHR

Basanta-Val:2011:ECM

Basanta-Val:2011:NFI

Basanta-Val:2013:JRA

Basanta-Val:2011:FTM

Bourdykine:2012:LAM

Briggs:2017:COI

Carlisle:2011:WCB

Cao:2012:YYP

Chevalier-Boisvert:2012:BSH

Chaikalis:2015:FJS

[CC15] T. Chaikalis and A. Chatzigeorgiou. Forecasting Java
REFERENCES

Mariano Ceccato, Thomas Roy Dean, Paolo Tonella, and
REFERENCES

REFERENCES

PLAN Notices, 50(8):150–160, August 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

Choi:2013:GGT

Chatterjee:2015:QIA

Curley:2010:RDT

Cote:2012:JPS
REFERENCES

Chen:2016:CDD

Cameron:2015:JFE

Casale:2017:PEJ

Cazzola:2014:JBR

Chaudhuri:2017:FPT

Cavalcanti:2013:SCJ

Caserta:2014:JTJ

Diaz:2013:LEU

Dannen:2017:IES

daCosta:2012:JSL

Dhawan:2012:EJT

DElia:2013:BLP

REFERENCES

0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). OOPSLA '13 conference proceedings.

DeBeukelaer:2017:ECP

Dietl:2011:SOT

Deitche:2011:SPJ

Disney:2015:SYJ

Dey:2013:STA

DeGouw:2015:OJU

Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel, and Reiner Hähnle. OpenJDK’s Java.utils.Collection.sort is broken: The good, the bad and the worst case. In Kroening and Păsăreanu [KP15], pages
REFERENCES

[DJS15] Mads Dam, Bart Jacobs, Andreas Lundblad, and

Delphine Demange, Vincent Laporte, Lei Zhao, Suresh Jagannathan, David Pichardie, and Jan Vitek. Plan B: a buffered memory model for Java. *ACM SIG-
REFERENCES

REFERENCES

Bois:2013:BGV

David:2014:CMC

Dos Santos:2010:MPB

EABVG14

elBoustani:2011:ITE

REFERENCES

REFERENCES

--

Exposito:2012:DSJ

Eugster:2013:SUP

Evans:2013:WGG

Fernandes:2011:LFS

Feeley:2016:CML

Marc Feeley. Compiling for multi-language task migration. ACM SIGPLAN Notices, 51(2):63–77, Febru-
Ferrara:2013:GSA

Flanagan:2010:AMD

Ferrari:2017:JFF

Femminella:2012:EJC

Florina:2012:EJC

Fogus:2011:JC

Fischer:2016:EIE

Forth:2012:RAA

Shaun Forth, Paul Hovland, Eric Phipps, Jean Utke, and Andrea Walther, editors. *Recent Advances in Algorithmic Differentiation*, volume 87 of *Lecture Notes in Computational Science and Engineering*. Springer-Ver-

Fernandes:2017:AUM

Fdez-Riverola:2012:JAF

Fan:2015:UCC

Fournet:2013:FAC

Feng:2015:EQD

Fritz:2017:TSA

REFERENCES

[GGRSY15] Guy Golan-Gueta, G. Ramalingam, Mooly Sagiv,

REFERENCES

Gonzalez:2013:HBP

Gadyatskaya:2012:JCA

Gardner:2012:TPL

Greenman:2014:GFB

Gupta:2016:LSA

Gong:2011:JSA

Grossschadl:2012:EJI
Johann Großschadl, Dan Page, and Stefan Tillich. Efficient Java implementation of elliptic curve cryptography for J2ME-enabled mobile devices. *Lecture Notes in Computer Science*, 7322:

[GSS+16] Matthias Grimmer, Chris Seaton, Roland Schatz,

REFERENCES

[Han15] Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Hsiao:2010:EST

Hughes-Croucher:2011:NRS

Horstmann:2013:CJF

Hsiao:2014:UWC

Hammer:2017:VOV

Halder:2017:JSV

Hofmann:2011:EOS

REFERENCES

Hanazumi:2017:FAI

hunEom:2012:SSJ

hunEom:2012:DDP

Horspool:2011:PPP

Hoppe:2013:DDB

Hower:2014:HRF

Herhut:2013:RTP
[HHSS13] Stephan Herhut, Richard L. Hudson, Tatiana

REFERENCES

Horstmann:2011:CJA

Horstmann:2012:JEC

Hosking:2012:CHL

Haas:2017:BWS

Higuera-Toledano:2010:ISI

Higuera-Toledano:2014:EIS

Hayashizaki:2012:IPT

Huang:2011:SBA

Haubl:2013:CST

Haubl:2014:TTE

Humer:2015:DSL

Hackett:2012:FPH

Iranmanesh:2016:SSE

Inoue:2012:AML

Inoue:2012:ISC

Islam:2012:HPR

REFERENCES

Insa:2018:AAJ

Inostroza:2016:MIM

Juneau:2012:JRP

Joseph:2010:PII

Jaffer:2013:EAR

Ji:2012:PKP

James:2010:FMC
Perry R. James and Patrice Chalin. Faster and more complete extended static checking for the Java modeling language. *Journal of Automated Reasoning*, 44(1-2):??, February 2010. CODEN JA-REEW. ISSN 0168-7433 (print), 1573-0670 (elec-
REFERENCES

Jung:2012:EJA

Jung:2014:HCO

Javed:2016:TSJ

Johnson:2012:SLM

Johnson:2015:EES

REFERENCES

162, October 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Krishnaveni:2012:HOJ

Kedia:2017:SFS

Kouzapas:2018:TPM

Dimitrios Kouzapas, Ornella Dardha, Roly Perera, and Simon J. Gay. Typechecking protocols with Mungo and StMungo: A session type toolchain for Java.

Kereki:2015:JAW

Kuehnhausen:2011:AJM

Kumar:2012:WSB

Vivek Kumar, Daniel Frampton, Stephen M. Blackburn, David Grove, and Olivier Tardieu. Workstealing without the bag-
REFERENCES

Khan:2015:UJW

Kerschbaumer:2013:IFT

Kabano:2011:DSF

Kienle:2010:ATT

REFERENCES

Kim:2017:TAA

Krieger:2011:AES

Kaiser:2014:WAM

Ko:2010:EAW

Karakoidas:2015:TSE

Kalibera:2014:FAS

REFERENCES

[KPHV11] Tomas Kalibera, Filip Pi-
REFERENCES

Aggeliki Kouneli, Georgia Solomou, Christos Pierrakeas, and Achilles Kameas. Modeling the knowledge domain of the Java programming language as an ontology. *Lecture Notes in Computer Science*, 7558:152–

Korsholm:2014:RTJ

[KT14]

Kashyap:2014:TRS

[KGSW+14]

Keil:2014:BAH

[KT15]

Kersten:2014:RRA

[KvGS+14]

Kolesnikov:2014:CPB

[KvRHA14]
REFERENCES

DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Kim:2010:EAE

Kim:2011:MAE

Lauinger:2018:TSD

Li:2014:MHD

Lorenzen:2016:STD
REFERENCES

REFERENCES

REFERENCES

Li:2011:JEC

Li:2014:EAJ

Laskowski:2012:DJP

Luckow:2017:HTP

Liu:2014:FFL

Lerner:2010:SDT

Salvador Martínez, Valerio Cosentino, and Jordi Cabot. Model-based analysis of Java EE web security misconfgurations. *Computer Languages, Systems and Structures*, 49(??):36–
REFERENCES

REFERENCES

Miller:2013:TSG

Malhotra:2017:PPS

Mazinanian:2017:UUL

Marek:2014:SRC

Martinez-Llario:2011:DJS

Madsen:2017:MRA

Mirshokraie:2012:JJA

[MM12] Shabnam Mirshokraie and Ali Mesbah. JSART: JavaScript assertion-based

[Magazinius:2012:SWS] Jonas Magazinius, Phu H. Phung, and David Sands. Safe wrappers and sane policies for self protecting...
REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Marino:2016:DXU

Murawski:2014:GSI

Madsen:2015:SAE

Madsen:2015:SAE

Marz:2016:RPC

Mesbah:2012:CAB

Motika:2015:LWS

Mateos:2010:ANI

Mateos:2010:MJN

Nasser:2010:CMR

Nuzman:2013:JTC

REFERENCES

Na:2016:JPC

Nolan:2014:XWT

Nakaike:2010:LER

Nikolic:2012:DEA

Nikolic:2013:RAP

Nicolay:2017:PAJ

Nguyen:2015:FCR

Nguyen:2018:UCM

Naik:2012:AT

Omar:2017:PSF

Oaks:2014:JPD

Ocariza:2017:SCC

Ortin:2014:RPI

Olivo:2015:SDA

Ogawa:2013:RJA

Olszak:2012:RJP

Ogata:2010:SJN

Odaira:2010:ERT

Ohkawa:2013:RHO

[Olsson:2016:ERR]

[Oh:2015:MWA]

[Paul:2014:RTP]

[Parnin:2013:AUJ]

[Pinto:2014:UEB]

[Philips:2017:DDD]
Portillo-Dominguez:2016:ECP

Parker:2011:DPG

Pradel:2012:FAP

Park:2011:DCM

Park:2017:PSS

Pizlo:2017:JVM

Pukall:2013:JFR

[PKC+13] Mario Pukall, Christian Kästner, Walter Cazzola,

Stergios Papadimitriou, Sefirina Mavroudi, Kostas Theofilatos, and Spiridon...
REFERENCES

Passerat-Palmbach:2015:TSS

Pichon-Pharabod:2016:CSR

Piedrahita-Quintero:2017:JGA

Pitter:2010:RTJ

Pham-Quang:2012:JAD

Palmer:2011:BJM

Park:2012:CB

Pradel:2014:EAR

Park:2015:KCF

Pour:2011:MBD

Pinto:2015:LSS

Pape:2014:EJV

[TTHH14] Tobias Pape, Arian Treffer, Robert Hirschfeld, and...

Papadimitriou:2011:SES

Puffitsch:2013:SIP

Petrashko:2016:CGL

Powers:2017:BBG

Pina:2014:RDJ

Plumbridge:2013:BPR

Gary Plumbridge, Jack Whitham, and Neil Audsley. Blueshell: a plat-

Pan:2017:GCF

Pizlo:2010:SFT

Qiu:2017:USR

Qian:2016:EFS

Rayns:2013:CJS

Rehman:2016:VMJ

Waqas Ur Rehman, Muhammad Sohaib Ayub, and Junaida Haroon Siddiqui. Ver-
REFERENCES

REFERENCES

Radoi:2015:ETS

Ramirez-Deantes:2012:MTA

Rhodes:2015:DDO

Reynders:2016:GSB

Reynolds:2013:MJB

Reza:2012:JS

Richard-Foy:2014:EHL

Julien Richard-Foy, Olivier Barais, and Jean-Marc Jézéquel. Efficient high-level abstractions for Web

Radoi:2014:TIC

Richards:2011:ACJ

Ricci:2013:ETP

Richards:2013:FAC

Radoi:2015:WAR

Ravn:2013:EIS

Ramos:2015:NCS

Rubin:2014:HCW

Rowe:2014:STA

Raychev:2015:PPP

Ricci:2011:SAO

Rudafshani:2017:LDD
REFERENCES

Ramamohanarao:2017:SSM

Samuelson:2012:LSO

Ryu:2016:JFB

Sartor:2010:ZRD

Smaragdakis:2013:SBP

Shahriyar:2014:FCG

REFERENCES

Scherr:2016:AFC

Schmidt:2010:ERA

Schultz:2010:WAJ

Schmeisser:2013:MOE

Schildt:2014:JCRb

Sluanschi:2016:AAD

Sousa:2016:CHL

REFERENCES

1523-2867 (print), 1558-1160 (electronic).

Severance:2012:DJO

Severance:2012:JDL

Sewell:2012:TJ

Swamy:2014:GTE

Sherman:2015:DTB

Subercaze:2017:UPT

Simao:2012:CER
Stuchlik:2012:SVD

Steimann:2016:CRA

Siebert:2010:CPR

Siek:2017:CPT

Singer:2010:EGC

Smans:2010:AVJ

Shan:2012:OAC

Zhe Shan and Akhil Kumar. Optimal adapter creation for process composition in synchronous vs. asynchronous communication. *ACM Transactions*
REFERENCES

on Management Information Systems (TMIS), 3(2): 8:1–8:??, July 2012. CODEN ???. ISSN 2158-656X.

[SKR17]

[SK13]

[SKBL11]

[SKKR11]

[Sondergaard:2017:CTD]

[Stilkerich:2015:PGA]

[Stilkerich:2017:PGU]
Steele:2014:FSP

Snellenburg:2012:GJB

Singh:2012:EPS

Santos:2018:JJV

Spoto:2010:TAJ

Sewe:2012:NSI

Sewe:2011:CCS

[SMSB11] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and
REFERENCES

[SP+10] Jesper Honig Spring, Filip Pizlo, Jean Privat, Rachid Guerraoui, and Jan Vitek. Reflexes: Abstractions for integrating highly responsive tasks into Java appli-
REFERENCES

[Schoeberl:2010:WCE]

REFERENCES

REFERENCES

Stark:2001:JLV

Sarimbekov:2014:JCS

Stark:2014:JLV

Su:2014:CEM

Srikanth:2017:CVU

Sciampacone:2010:EMS

8646 (print), 2151-8556 (electronic).

Stark:2010:BIA

Santos:2013:DDS

Stefanov:2010:JP

Samak:2016:DSF

Sun:2013:BJW

Schafer:2012:CAN

Su:2014:RVP

Tzu-Hsiang Su, Hsiang-Jen Tsai, Keng-Hao Yang, Po-Chun Chang, Tien-Fu Chen, and Yi-Ting Zhao. Reconfigurable vertical pro-
REFERENCES

Konrad Siek and Paweł T. Wojciechowski. A formal design of a tool for static analysis of upper bounds on object calls in

Stancu:2015:SEH

Szweda:2012:ANB

Simon:2015:STH

Servetto:2010:MMC

Siegel:2011:AFV

Tamayo:2012:UBD

REFERENCES

996, October 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

Teyton:2014:SLM

Tommasel:2017:SJL

Tu:2014:PPP

Tsai:2015:JPI

Thiessen:2017:CTP

Tate:2011:TWJ

Tetali:2013:MSA
REFERENCES

[Tan:2017:EPP]
Tian Tan, Yue Li, and Jingling Xue. Efficient and precise points-to analysis: modeling the heap by merging equivalent automata. *ACM SIGPLAN Notices*, 52(6):278–291, June 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Toledo:2012:AJA]

[Top11]

[Toffola:2015:PPY]

[Taboada:2013:JHP]

[TRTD11]
Takikawa:2012:GTF

Toledo:2011:ACJ

Taboada:2011:DLC

Taboada:2012:FMS

Tatsubori:2010:EJT

Torlak:2010:MCA

Tardieu:2012:WSS

Toegl:2012:SSJ

Titzer:2010:ICR

Teng:2010:TPA

Uurma:2015:JAL

Ugawa:2014:ROP

REFERENCES

Villazon:2010:HCA

Vidal:2016:ECJ

Villazon:2011:CAW

Vidal:2016:UAE

Vidal:2018:ARB

Viotti:2017:HRH

VanLoan:2010:ITC

[VF10] Charles F. Van Loan and K.-Y. Daisy Fan. *In-
REFERENCES

[VM15] Tom Van Cutsem and Mark S. Miller. Ro-
www.sciencedirect.com/
science/article/pii/S0167642312002079.

VanderHart:2010:PC

Varier:2017:TNJ

www.sciencedirect.com/
science/article/pii/S0010465517301273.

VanNieuwpoort:2010:SHL

Rob V. Van Nieuwpoort, Gosia Wrzesińska, Ceriel J. H. Jacobs, and Henri E. Bal. Satin: a high-level and efficient grid program-

Vechev:2010:PPC

Wurthinger:2011:SAR

Walker:2012:SNJ

Henry M. Walker. SIGCSE by the numbers: JavaScript. *SIGCSE Bulletin (ACM Special Interest Group on Computer Science Edu-

[VS10]

[VSG17]

[VWJB10]

[Wal12]
REFERENCES

140

cation), 44(1):8, January 2012. CODEN SIGSD3. ISSN 0097-8418 (print), 2331-3927 (electronic).

Wampler:2011:FPJ

Wang:2011:EEU

Wurthinger:2011:AED

Welch:2010:ABS

Wellings:2016:ISC

Wood:2014:LLD

Wagner:2011:SJV

Gregor Wagner, Andreas Gal, and Michael Franz.

Wagner:2011:CMM

Wu:2011:RTS

Wimmer:2013:MAV

Wellings:2012:AEH

Wade:2017:AVJ

Wimmer:2010:AFD

REFERENCES

Wendykier:2010:PCH

Witman:2010:TBR

Westbrook:2010:MJM

Wehr:2010:JBP

Wehr:2011:JIT

Wurthinger:2017:PPE

Wurtzinger:2013:USD

Wei:2016:ESD

Wang:2017:CJ

Xi:2012:MDA

Xu:2010:FLU

Xu:2014:SRB

Xuan:2017:NAR

J. Xuan, M. Martinez, F. DeMarco, M. Clément, S. L. Marcote, T. Durieux, D. Le Berre, and M. Monperrus. Nopol: Automatic repair of condi-

REFERENCES

Yang:2013:CPP

Yoo:2014:WRR

Yang:2017:EJV

Yoapanis:2013:OSR

Paraskevas Yiapanis, Demian Rosas-Ham, Gavin Brown, and Mikel Luján. Optimizing software runtime sys-

Yahav:2010:VSP

Yue:2013:MIS

Zakas:2010:HPJ

Zakhour:2012:JTS

Zakai:2018:FPW

Zheng:2015:APP

Zhang:2017:ACE

REFERENCES

Zhang:2015:SYB

Zschaler:2014: SJF

Zuo:2016:LOF

Zhao:2012:PTI

Zhang:2015:LOS

Zhang:2012:RAJ
REFERENCES

Zacharopoulos:2017:EMM

Zheng:2016:CMD

Zhao:2013:INT

Zheng:2016:CMD

Zheng:2016:CMD

Zhang:2014:AIO

Zeyda:2014:CMS

Zabolotnyi:2015:JCG

REFERENCES

REFERENCES

2013. CODEN ITCBCY. ISSN 1545-5963 (print), 1557-9964 (electronic).

Zhu:2015:APL

Zhao:2014:CSP

Zhang:2016:NVC

Zhang:2012:SRB

Zhang:2013:IMF