A Bibliography of Publications about the Java Programming Language, 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

04 March 2022
Version 1.229

Abstract
This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

3 [DiP18b, FLZ+18, GBC12, JEC+12, ZXL16]. 39.95 [Ano18]. 4 + 1 [SRB18]. \(\tau_P\) [LTK17]. \(C_p\) [AÖ11]. \(K\) [PLL+18, SS19, SD16b, SGG+17]. \(N\) [ADJG19, WZK+19]. \(Z_p\) [AÖ11].

/multi [Taf13]. /multi-threaded [Taf13].

'12 [Hol12]. 12th [Fox17a].

5 [Dan18, KHR11].

6 [Jen12].

7 [Ano15, EV13, J+12]. 75 [HWM11].

8 [BKP16, CWGA17, LYBB14, SAdB+16, UFM15].
awareness [VGS14], axiomatic [TVD10].

B [DLZ14], back [Car11], Background [PWSG17, PWSG19]. Backstage [PS11], Bad [dGRdB15], baggage [KFB12]. balances [FMHB15], balancing [PDPM16], Ball [DD13], Bar [WCG18], Barrier [CHMY19, CHMY15, VGRS16], bars [SDL16], barrier [PS11], Barriers [HJH10, WBM10], Based [AFGG11, DLR16, GM12, GGZ15, GGC18, LTD12, MVDL12, MM12, PTML11, PiLCH11, PE11, RBL12, RT14, SGD15, SLS12, ST15, SWF12, YPMMI10, AZL18, AST16, ADH13, BFP10, BBP13, BB17, BL15, CDTM10, CNRG19, CSDK12, CJ17, CJ19, CPS14, CPST15, EKUR10, GT10a, GMC13, GGC19, HWM14, HW112, HOKO14, HWLM11, HW112, IRJ12, JEC12, JMO14, KATS12, KS13, KRCH14, KvRHA14, KS14, Lon10a, Lon10b, MCC17, MB12, MCV10, Ot18, PDPM16, PWS11, SZ11, SBK13, SMP10, SPY16, SV17, SNS14, UIY10, UPR18, VSG17, XHH12, YP10, YKA19, ZYT12, ZYY19].

Basic [NBB18, CZ14], basic-block [dGRdB15, AZM18]. basics [KZ12], basierte [Ric14], Battery [ST15], battlefield [WT10], Bayesian [BSA14, RKH18], Baz [McN19].

BeagleBone [Ric14] before [TD15].

Beginning [McN19], begone [MMR12].

Behavior [Sun18, LB15, LB15, TABS12, WXR16]. Behavioral [LN15, AMWW15], behaviors [PCL14], behaviour [SMS12], Beliefs [BA17], Ben [Teo12]. Benchmark [GBC12, SMSB11].

Benchmarking [CKS18, AHK15, HCLH18, MDM17]. benchmarks [KHM11, RGEV11], benefit [HH13], best [Sch13], Better [Bro12, TD15]. Between [ADJK19, PVBL17, ZLHD15, BKP16, CMM17, CSK12, CSF16, LSV16, LSV17, RP16, SH12], beyond [Mor18], Big [BF18, GTS15, NBW15, NFN18, RVK15, BOF17, BBX13, RVK19, SSG14, WR10, XGD19].

billions [DRN14], Binary [WWG18, XXCL19], bindings [VGRS16], bird [Guy14].

Birthmark [PILCH11], Bitcoin [TD17], BIXSAN [VS11], Blame [KT15], B Leak [VB18], Bloat [MSSO, NWB18, XMA14, BRG12, BBX13, XR10], boat-aware [BBX13], block [CZ14, KBL14], block-level [KBL14], blocking [DW10].

Blockly [AMWW15], Blueshell [PWA13]. Board [GLGA19], boilerplate [ZCdSOvdS15]. Book [Ano15, Ano18, Bro12, Del13, Gve13, Kie13, KIC13, Nog12, Teo12, Teo13]. Bookshelf [Ano18].

Boosting [ASV16, AC16], Bootstrapping [CBLF12], Bottle [DSEE13], bottlenecks [DSEE13], bottom [ZMNY14], bottom-up [ZMNY14], boundary [RDP16], Bounded [NWBO15, GMB14]. Bounds [SW12, GrR11], boxes [BDGS13], Brain [VBJ18], breaking [VB14a], Breakpoint [ZW13], breakpoints [PS12], Brewing [WZL18], Bridging [PVBL17], Bringing [CV14, HRS17, STS13], Broken [dGRdB15, AZM18], Browser [MSSK16, PVBL17, FIF15, VS11, VB14a, WGW11, YK14]. Browsers [HLK13].

Browsing [LYM18], Browsix [PVBL17], BUbING [BMSV18], Budget [GM12].

buffered [DLZ13], buffers [Gun14], Bug [RPP19, LW110], Bugs [OBPM17, XMD17, ECS15, MDS17, ODL15, Ryu16].

Build [BMDK15, BNE16, ELW15, MAH12, WSH19],

Building [McN19, Sta10, SS19, HWW15, Nog12]. built [DTM18], built-in [DTM18].

Business [CCA12], Bytecode [BDT10, BSOG12, FHSR12, NS12, RDC12, Rey13, SEK19, AdCGGH16, CZ14, CNRG19, DLM10, SP10b, SMP10, VB14b].

C [BB12, CDG17, GBC12, KB11, LSV16, LSV17, NED13, SRR17, Sta10, YSCX17, Zak18, ZWSS15]. C# [SSK13].
consistent [BCR13]. constrained [KSR14].
constraint [FMBH15, SHU16].
Constraints [SGD15, LSSD14].
construction [CIAD13, RGEV11].
constructors [MME14]. constructs
[PCL14, PTF+15]. consumers [DAA13].
Consumption [MV16]. container [XR13].
containers [XR10]. Context
[HWM13, MM16, TL17, HB13, IvdS16, LTM18, LX19, SSB+14a, ZYY+19].
Context-sensitive [HWM13]. Continuous
[MSSK16]. Contextual
[Teo12]. Continuously
[DTLM14]. Contracts
[YQTR15, HBT12, KT15, KKW11].
Controlling
[BKC+13, YDFF15]. Convention
[Holl12]. conversions
[CMM17]. Converter
[YWW+18]. Cooperative
[YDFF15, MdM17]. Coordinating
[MAHK16]. coordination [BMSZ17]. copy
[FBH17]. copyrightable [Sam12]. Core
[Hor11, HC13, RDGP12, RTE+13, MS10, PLL+18, TRTD11, Gve13]. cores
[GTSS11, SKBL11]. Cornell
[Gve13]. corpus
[HCN14, LSBV16, LSBB17, TMVB13]. correct
[AdCGGH16, ALJ16, DLJP10, PS10a].
Correctness [LL15, BENS12, Cho14].
Correlation [SBD+12, XHH12].
Corrigendum [LSBB17]. Cost [MSS19].
costs [OD18]. counter [LSSD14]. counters
[IN12]. Counting
[Bul18]. Course
[WLL11, Zak12]. Coverage
[CSS+16, GGGZ+15, MSS19, RGB18].
Coverage-Based
[GGGZ+15]. Coverage-directed
[CSS+16]. CPS
[PDD17]. CPU [PKO+15]. Crawling
[BMSV18, MVDL12]. Creating
[YMH19, HC10, VBAM10b]. Creation
[SK12]. Crisis
[AT16]. Critical
[HL13, MCW19, WK12, WCB16, ZLCW14, AGR17, DTL14, GMC+13, NM10a, \Ni12b, RS12, SDH+17, CWW13, LWC17]. Cross
[GSS+18, MDM17, OTR+18, WBH18, XXCL19, AMWW15, BKC+13, GSS+16, KMSZ16]. Cross-Architecture
[XXCL19]. cross-cutting
[AMWW15]. Cross-Language
[GSS+18, MDM17, GSS+16]. Cross-Layer
[OTR+18]. Cross-OS
[XXCL19]. Cross-Platform
[WBB18]. cross-program
[KMSZ16]. cross-thread
[BKC+13]. Crowdsourcing
[BH17]. CrowdSummarizer
[BH17]. crypto
[PTRV18]. Cryptography
[GPT12]. CSM
[dARPH+19]. CSS
[An15, HLO15, Sta10]. Curve
[GPT12]. customizations
[LVG10]. customized
[HB13]. cutting
[AMWW15]. Cyclic
[BMOG12, RS12].

D
[DiP18b, FLZ+18, GBC12, JEC+12, ZXL16]. DAA
[DR10]. dark
[MHN19]. Data
[Bra14, BMOG12, BA17, BF18, GM12, GTS+15, GT10b, JCO19, NKH16, NWB+15, NFN+18, NWB+18, TAF+18, YWW+18, ZLN18, dMRH12, BK14, BB17, BOF17, BBXC13, BJBK12, CDM10, CRP+10, DFR13, DHM+12, EKUR10, FOPZ14, KB17, LDL14, MRA+17, NL14, SAD+16, SSG+14, SGG+17, UPM10, WK17, WCG14, XXZ13, XMA+10, XG+19, ZIvdS17]. data-centric
 [DHM+12, FOPZ14]. Data-Driven
[JCO19]. Data-Intensive
[NWB+18]. Data-Parallel
[NKH16, CRP+10]. database
[Dei10, EKUR10, TAB12]. databases
[EKUR10, MLGA11]. Dataflow
[BR12]. Datalog
[ZMG+14]. dataset
[MDS+17]. David
[Kie13]. Days
[Sev12b]. DBT
[KS13]. debt
[SK13]. Deadlock
[CHMY19, CHMY15, SR14a, SR14b]. Dean
[Bro12]. Debt
[YXS+19]. debugging
[AsdMG14, BM14, KS14, TB14, VB18, ZFK+16]. December
[LSBB17]. Deciding
[SGD15]. decision [RBV16]. Declarative [DRN14, RSI12, FOPZ14, WCST19, MME†+10]. Decomposition [AGH†+17, PLL†+18]. deconstructing [ACS†+14]. decoupled [LPA13].
deduplication [HOKO14]. Default [BG17, SNS†+14]. defects4j [MDS†+17]. defined [FMS†+11]. Define [NS12]. Definition [SB14b, AK13, SSB01].
Definitive [Oak14]. deconstructing [ACS†+14]. decoupled [LPA13]. deduplication [HOKO14].

Develop [FGB†+19, R†+13].
Development [ABK†+16, AYZI10, MT13, PBM†+19, AGR17, BM18, FRGPL†+12, GT10a, PSW11, SKR17, SH12, WBA†+11, ZDS14].
Device [TTD†+11, XHH12]. Devices [GPT12, JQJ†+16, MV16, ETR†+15, Xue12].
Differentiation [FHP†+12, PQD12, SD16a]. digital [JMO14]. dimensional [TGZ17].
Disjunctive [JCO19]. Dissimilar [Has12]. Distance [ZW13]. distributable [CRAJ10]. Distributed [BVAGVA10, CGWA17, LTD†+12, LM15, MAHK16, MRF18, NFN†+18, PE11, YMBH19, AdScdR†+19, BvGVEA10, BvGVEA11b, BvGVE14b, CDBD18, CRAJ10, EABVGV14, STCG13, SS19].

distributing [TGZ17]. divide [SBF†+10].

Do [HH13, LMZP19, Han15]. Does [BRGG12, Rub14]. DOJ [hEYJD12]. DOM [GGC18]. DOM-Based [GGC18]. Domain [KSPK12, CSdL16, EEK†+13, HWW†+15, PIR17]. domain-specific [CSdL16, EEP†+13, HWW†+15]. dominance [CPST14]. Doppio [VB14a].

DoubleChecker [BHSB14]. down [Ker15, ZMN14]. DRAM [OTR†+18]. drf [MSM†+16]. DRFX [MSM†+10, SMN†+12].

Driven [CCA†+12, JJC019, YPM12, BM18, FGB†+19, CHM13, FWDL15, HZK19, LKP19, MTL15, PDD†+17, SR14b, SNMc19].
drug [EKUR10]. DSL [KARO12]. DSLs [KHH11, RO12, SC16]. DSSAT [dARPH†+19]. DSSAT-CSM [dARPH†+19].
DSU [PVH14]. Dual [AD16]. Dual-Pivot [AD16]. Dynamic
[AGM+17, ABMV12, ASF17, BFS+18, CHMY15, CHMY19, LMZP19, MRF18, MvdDL12, PTHH14, RDF15, SMP19, WWG+18, XMA+14, ZKB+16, AF12, BDB11, BK14, BCD13, BOF17, CSV15, CDBD18, CPST15, DTM+18, ELW15, GYB+11, HB13, KRC14, KRR+14, KT14, LWH+10, LVG10, MKZ+14, Nil12b, NG12, NED+13, RLBV10, RCR+14, RRB17, SR14b, SPKT18, SV15a, TRTD11, UMP10, VWJB10, XXZ13, ZDK+19].
dynamic-memory [GYB+11].
Dynamically [WWG+18, CZ14, CMS+12, hEYJD12].
Dynamically-Generated [WWG+18].
Dynamo [BDB11].
e-Science [SGV12]. ease [DRN14]. Easy [Jaf13, CRP+10]. economic [CSV15].
Einsatzszenarien [Sch13]. Einsteiger [Ric14]. Elektronik [Ric14]. Elektronik-Projekte [Ric14]. Elephant [RGM13]. Elimination [RKN+18, GvRN+11]. elision [NM10a]. Elliptic [GPT12]. Eloquent [Hav11]. emass [Por18]. Embedded [Fox17b, HTW14, JMB12, KARO12, Pau14, SLES15, SLE+17, TKL+15, VK12, Dei10, Fox17a, GMC+13, HTLC10, KHR11, LMK16, LTK17, OIA+13, RHT13, SC16, SDH+17, SFR+14, UIY10, Xue12, ZYZ+12].
embedding [KMLS15, SC16]. emerging [CDMR19]. Empirical [LSBV16, LSVB17, SS13, WXR16, BJBK12, FH16, HH13, KPP+18, MHN19, MHR+12, NCS10, SH12, Tai13, VBDPM16, VBMDP16]. Employing [CC15]. Emscripten [Zak18].
Environment [Kol10, PTML11, RK91, EKR+12].
Environments [BF18, EABV14, GAI+10, HOKO14, KF11, RDP16, RCB17, SGV12]. equality [GRF11]. Equilibrium [YMHB19].
Equivalence [BO12]. equivalent [TLX17]. equivocation [TD17]. ERAM [Sch10a].
Erratum [HWM11]. error [eBH11]. ES5 [DFHF15, Mor18]. ES6 [Mor18]. Escape [SLES15, SLE+17]. Espresso [WZL+18].
Essential [Ngo12]. estimation [LMK16].
etched [VSG17]. Ethereum [Dan17]. eval
[Mil13, MRMV12]. Evaluating
[BGK17, BLH12, MDHS10]. Evaluation
[CSZ17, GBC12, JMB12, OCF114, TTS+10,
Wan11, CSK17, MRA+17, MD15, WWH+17,
XGD+19]. Evaluator [JB12]. Event
[KW11, MV16, BBP13, KW10, MTL15,
WK12, YP10]. event-based [BBP13, YP10].
event-driven [MTL15]. EventBreak
[PSNS14]. ever [Gra15]. everyone [Hor12].

Evolution
[CC15, GMPS12, Mei14, JK11, MAH12,
NCS10, WBA+11, WAB+11, WWS13].
evolving [ZZK13]. Exact [ZW13].
Examples [BNP11, Del13]. Exception
[LT14, ECS15, HWM14, LT11].

Exceptionization [YKM17]. Exceptions
[ASF17, AdCGGH16, HdM17, SMN+12,
ZBB17]. Execution [Bul18, MSS19,
NNTK17, NNT+19, OwKPM15, SWMV17,
BN+18, Cha18, HZZK19, JLL17, JhED11,
LLL13, MMP+12, RCB17, SPPH10].
execution-driven [HZZK19]. Executions
[WCG+18, AsdGMG14, PPS16, STR16].
executives [RS12]. Exemplar [ZW13].
exhaustive [DHS15]. exhibitionism
[VBMDP16]. existential [AT16].
Exogenous [BMS21]. Experience
[ABMV12, OW16, Sch10a, FGB+19,
CBLFD12, TRE+13, WT10]. Experiment
[BKP16, MDS+17, HWLM11].

experimental [XGD+19]. explicit
[NGB16]. exploit [Ano13]. Exploitation
[SSMGD10, MLM19]. Exploiting
[NKH16, QSa+16]. exploration
[FWDL15]. explorative [AHK+15].
Exploratory [BKP16, ECS15]. explore
[Dan18]. EXPLORER [FWDL15].
Exploring [JK13, JWM15, SE12].
exposed [VBDFM16]. Express [JQJ+16].
Expression [NS12, PIR17]. Expressions
[NM10b, GK15, MKTD17]. expressive
[VYY10]. Extended [DDDF17, FGR12,
FLL+13, JC10, LMK16, PDPM+16].

Extending
[AC10, BVGVEA11a, LPA13, PTHH14].
Extensible
[ZivM14, ER14, KMLS15, MHB13].

Extension
[RSH12, WA19, LE16, MLGA11, PdMG12].
extensions [MPR12, Zha12]. Extensive
[LMZP19, Wan11]. Extracting
[CJ19, CCA+12, KM10]. extraction
[LKP19]. Extremal [LTD+12]. Eye
[OAC18, RLM15, Guy14]. Eye-Tracking
[OAC18, RLM15].

F [GMT14, TTD12]. F-bounded [GMT14].
F-MPJ [TTD12]. FAA [Sch10a].

FACEADE [NWB+15]. face [XHH12].
Facebook [Ano13, HOSC16]. Facets
[ASF17, AF12]. facilities [BVGVEAFG11].
Factors [PGA18]. FAD.js [BB17].
failboxes [ZBvdB+19]. failing [STR16].
failures [CRAJ10]. false [HW1+12].
familiarized [Ame13]. family
[KHM+11, KvRHA14]. family-based
[KvRHA14]. Fast
[CVG+17, CSGT17, HyG12, SBM14, SLF14,
YMHB19, Zak18, BB17, KMMV14, KCP+17,
LX19, MDM17, MHB13, SV15b, WSH+19].
Faster [BMDK15, JC10, AJL16]. Fault
[RK19, RBL12]. Fault-Tolerance [RK19].

Faults [SRTR17, KPP+18, ZZK13]. FC
[YWW+18]. Featherweight [RvB14].
feature [AH10, KvRHA14, OJ12, SS19].
feature-based [KvRHA14]. features
[MKK+12, MKK+13]. Feedback
[NED+13, NG13, WM10].
Feedback-directed
[NED+13, NG13, WM10]. fields
[PQG17]. FIFO [QSa+16]. filtering
[HW1+12]. find [Ryu16]. Finding
[AZMT18, RPP19, XMA+10]. Fine
[BVGVEAFG11, DRN14]. fine-grained
[DRN14]. Fingerprints [SSM16]. Finite
BLH12, MB12]. Finite-State [BLH12].

IVE [CRJ^+10]. IVPs [KS15].

J [KMLS15]. J2M [LZYP16]. J2ME [GPT12]. J2ME-Enabled [GPT12]. Jacie [KS14]. Jacob [LYM^+18]. Jalapeno [AFG^+11]. JAMES [DDDF17]. JaSTA [HD17]. JaSTA-2 [HD17]. Java [Bro12, Den18, Fox17a, Gve13, HWM11, HTW14, MvH15, Ngo12, Sch13, VK12, AÖ11, KvGS^+14, PQTGS17, SAdb^+16, ABC18, A&SGMG14, AST12, AFGG11, AYZI10, AdCGGH16, AT16, And14, Ano12, Ano13, ABMV12, AGR12, AGR17, ABCR10, ADI13, ABFM12, AK13, BK12, BH17, BMR14, BH12, BDT10, BVGVEA10, BVGVEA11a, BVGVEAFG11, BVGVEA11b, BVGVEA13, BVGVI14b, BS12, BMDK15, BO11, BO12, BO13, BP19, BCR11, BDGS13, BCD13, BD17, BRGG12, BlvIS17, Bla18, BR12, BH10, BR15, BB12, BNP11, BL15, BW12, BA12, BZD17, BSOG12, BMOG12, BK16, BA17, BJK12, CIAD13, FGB^+19, CSZ17, CZ14, CMM17, CWW13, CV14, CS12, CDTM10, CCFB15, CNRG19, CC15, CRJ^+10, CWGA17, CSF^+16, CSK17, CCH11, CJ17, CJ19]. Java [CYWD19, CDG^+17, Cle16, CDMR19, CKS18, CS1L16, CCA^+12, CMM^+10, CRAJ10, DJLP10, Dan18, DDDF17, DLM10, DLZ^+13, DVL13, DR10, DHS15, DJB16, DMS11, ECS15, EEK^+13, ES14, EQT10, Esq11, E&BGVE14, Eng13, EV13, ETTD12, ETR^+15, FLZ^+18, FRGP12^+16, FGR12, Fer13, FFF17, FLL^+13, FHSR12, Fox17b, FMS^+11, GLGA19, GMPS12, GvRN^+11, GYB^+11, GM12, GBS14, GD12, GBC12, GS11, GS12, Gou11, GMC^+13, GT10b, GJS^+13, GJS^+14, Gri17, GPT12, GK15, HL13, HD17, HdM17, Has12, HW10, HWM13, HWM14, HA13, HM12, HTLC10, HKVG14, HI13, HOKO14, HGCA11, Hor11, Hor12, HCl13, HC10, HZK19, HWLM11, HJ12, IHWN12, IN12, IS18, IF16, JCI10, JEC^+12, JQJ^+16, JI17, Jen12, JB12, JYKS12, JTO12, JHI11, J^+12, JMB12, JMO14, KHR11, KHM^+11, KMLS15]. Java [KS13, KW10, KW11, KPP^+18, KM10, KR14, KSPK12, KDPG18, KS14, KF11, KB11, LSB16, LSBV17, LTD^+12, LMK16, LSM16, LLL13, LT11, LT14, LZYP16, LXP18, LYBB13a, LYBB13b, LYBB14, LZ12, LKP19, Loc13, Loc18, Lon10a, Lon10b, LMS^+12, LMS^+13, LO15, LPA13, LWC17, LTK17, LS11, Lyo12, MKZ^+14, MS13, MME^+10, MLGA11, MDS^+17, MCC17, MP^+15, MH19, MZC10b, MKTD17, MM16, MH10, MAH12, MB12, MCY^+10, McN19, MGS19, MP12, ML17, ML19, MKK^+12, MKK^+13, MS10, MCW19, MvH15, MT14, MDHS10, NM10a, NCS10, Nil12a, Nil12b, NG13, NNTK17, NNT^+19, NM10b, NBB18, Oak14, OOK^+10, OKM^+10, OIA^+13, OUY^+13, OW16, OJ12, OCFLI14, PS11, PLL^+18, PdMG12, PT111, PML14, PTHH14, PL12, PilCH11, PBM13, PBB19, PPM15, PMP^+16, PQL12, PVH14]. Java [PTF^+15, PS10a, PS10b, PDPM^+16, Pos19, PSW11, Puf13, PKC^+13, QLBS17, RD15, RDCP12, RTE^+13, RTET15, RR14, RS12, RHT13, R^+13, RBL12, RAS16, RS12, Rey13, Rez12, RVP11, RLM15, RRB19, RB15, RvB14, SSL12, SSB^+14a, SE12, SRB18, SRTR17, STST12, SS12, Sch14, Sch13, Sch10a, SPPH10, SKKR11, SDH^+17, Sch10b, SSMD10, SZ10, Set13, SMSB11, SMS^+12, SM12, SDM12, SWMV17, SW12, SGV12, SEPV17, SKBL11, SD16a, SJPS10, SLS^+12, SKR17, SS14, SABB19, SP10b, SMP10, Sp16, SE^+19, SPP^+10, SWB^+15, SSB01, SSB14b, ST15, SMP19, SPS17, SSG^+14, SS19, STS^+13, Sve14, SWF12, TRTD11, TTD^+11, TTD12, TRE^+13, TLL11, TXW^+10, TFPB14, TN19, TWH12, TN12, TGZ17, TJLL18, TK1^+15, UR15, UFM15, UPR^+18, VSG17, VGRS16, VBDM16, VBMDP16, VGS14,
VBAM10a, VBAM10b]. **Java**

[VBMA11, WGF11, Wam11, WZdSOS17, WCST19, WLL19, WBM+10, WK12, WCB16, WN10, WRI+10, WA19, WHV+13, WHIN1, WZL+18, WBA+11, WAB+11, WWS13, XHH12, XR13, XMD+17, Xue12, YP10, YKM17, YKA+19, YDF15, Zbsd17, Zak12, ZP14, ZLCW14, ZHL+12, ZXL16, ZBvdB+19, ZKB+16, ZYY+19, ZWSS15, ZPL+10, ZDS14, dCMN12, dMHR12, eBH11, hED12, vdMvdMV12, De13].

Java-Based [AFGG11, SLS'12, ST15, SWF12, CJ17, CJ19, HOKO14, JMO14, KS13, KS14, MB12, MCY+10].

Java-compatible [ABCR10]. **Java-like** [BDGS13, BCD13, DPL10, SZ10].

Java-to-HDL [Ouy+13].

Java-to-JavaScript [LSWM].

Java.util.Collection.sort dGrdB15.

Java/JSP [Sch10b].

JavaBean [MZC10a].

JavaBIP [MBSZ17].

JavaCC [GN16].

JavaCOP [MME+10].

JavaAdaptor [PKC+13].

JavaAdaptor [PKC13].

JavaFX [FBG17, Top11].

JavaGI [WT10, WT11].

JavaImport [Kim15, Kie13, Ric14, Teo13, CH17, AMT17, ACS+14, AHK+15, AZMT18, AGM+17, AMW15, BNP+18, BCF+14, BBP13, Ccc11, Cha18, CGJ+16, CVG+17, CBFLD12, Cho14, CDBD18, CH12, Dan18, Dei10, Dei11, DcSG12, Dpi18a, Dpi18b, DFHF15, FM1+11, FM13, FH16, FBH17, FSC+13, FZ17, FOPZ14, GMS12, Guo17, GCC19, HyG12, Hav11, HBS16, HLSK13, HHSS13, HC11, HOS16, KR12, KSW+14, KRH16, KTL14, Ker15, KFbK+15, Kie10, KBL14, KRR19, KARO12, Kri12, LSWM16, Ler10, LVG10, LPK14, Liu14, LML17, MTL15, MLT17, MPS12, MGL17, MHL15, MRMV12, Mil13, MM12, MMP15, Mor18, NKh16, NSD17, OBP17, PWSG17, PWSG19, PGA18, PLR14, PSR15, PLR18, PKPM19, PDD17, PKO+15, Por18, Rau14, dARPH+19, RLBV10, RGEV11, RHN+13, RW17, Ryu16, RPP19, SMN+18, STA18, Ser18].

JavaScript

[Sev12a, Sev12b, SVB+17, SDC+12, Sta10, Ste10, SR17, SFR+14, TAF+18, TT11, VM15, VP16, VB14b, Wai12, WCST19, WXR16, YW13, Zak18, Zak10, dJM18, BM18, KCD12, Me14, Ano18, Kie13, Teo12, Teo13].

JavaScriptCore [Piz17].

JaVerT [SMN+18].

JAWS [PKO+15].

JBody [CZ14].

JCloudScale [ZLHD15].

JCSi [AFBM12].

JCS [WB+10].

JDiffraction [PQTC17].

JDK [SRB18].

JDM [ZP14].

jDSSAT [JMM+10].

jEqualityGen [GRF11].

JET [LT11].

JGRIM [MCC10b].

Jinn [LWH+10].

JIT [BBF+10, BB17, CMS+12, HW14, IHWN12, JK13, NED+13, Ott18, RSB+14, WK17, ZYY+12].

JIT-based [BB17].

JITs [KRCH14].

jMarkov [CRAT+12].

JML [CR+10, TJL18].

JML-annotated [TJL18].

JN [CDG+17].

Joe [Ano18].

Johnny [WA19].

join [MCC10b].

Jou [Ngo12].

Journey [Ryu16].

joy [FH11].

JP2 [SSB+14a].

JPC [CMM17].

JPF [BA19, WK17, WCG+18].

JPR [WK17].

jQuery [AM14, PIR17].

JR [OW16].

JR-like [OW16].

JRE [CZ14].

JS [AHK+15, Por18].

js-emass [Por18].

Js_of_ocaml [VB14b].

JSART [MM12].

JSCore [Cha18].

JSetL [RB15].

JSon [BB17].

JSremdb [Dei10].

JSP [Sch10b].

JTTabWb [FFF17].

JTRES [HTW14].

JTRES2011 [RHT13].

JTRES2013 [Fox17b].

JTRES2014 [Fox17a].

JUDgment [CSV15].

Julia [Dan19, Spot16].

Juliet [BB12].

Jump [Bro12, KP15].

Jump [Dan18].

JupyterLab [Dan18].

Just [DLR16, TN19, KHL+13, LMK16, MGL17, TTS+10].

Just-In-Time [TN19, DLR16, KHL+13, LMK16, MGL17, TTS+10].

JVM [AC16, AFG+11, CSS+16, Guy14, MS10, PVH14, R+13, RRB17, SYZZ+14, SV15b, Sub11, WK17].

JVMs [BK14, ZYY+12].

Kraken [Ano14].

Lake [Hol12]. lambda [MKTD17].
lambdas [UFM15]. landscape [Sve14].

Language [DLPT14, GJS+13, GJS+14, GSS+18, JC10, KSPK12, MAHK16, NM10b, Sev12b, SS13, WBN18, ABCR10, CMM17, Csdl16, DaA13, EKR+12, Fee16, GSS+16, Hos12, HWW+15, KRCH14, LW+10, LE16, MDM17, SC16, SZ10, SKR17, SNS+14, VB14a, WCG14, WWH+17, ZWSS15, dCMMN12]. language-level [WCG14].

Language-Neutral [WBN18].

Languages [CSGT17, MSM+16, PTHH14, YKM17, AGGZ10, BCD13, CMS+12, DTM+18, EEK+13, ER14, FMBH15, Han15, HBT12, HJS+10, KRR+14, MSM+10, NED+13, PUL016, SPKT18, SPY+16, Zha12]. LARD [WCG14].

Large [BA17, AST+16, CCFB15, CJ19, LSBV16, LSBV17, MDS+17, MCY+10, PTF+15, WHIN11]. Large-Scale [BA17, CJ19, MDS+17, MCY+10, PTF+15, WHIN11]. Larus [DD13].

lean [BRGG12, SV15b]. Learn [RT14].

Learning [Dan18, JJC019, PSJ18, Pau14, RT14, BSAL18, CNS13, KC12, Ano15, Teo13]. learnt [GY16]. Legacy [KH18, SVB+17, CDTM10]. Legally [Sam12]. length [SMP10]. Less [BNE16].

Lessons [URJ18]. Level [AC16, MGI14, SWU+15, YXS+19, EKUR10, Hos12, IHWN12, KBL14, LWC17, MGI17, RFBJ14, TTD+11, VWJB10, WCG14].

leveraging [WCST19]. Lexical [GN16].

Lexicon [TAF+18]. Libraries [BK12, RDCP12, BlvdS17, Chol14, EKR+12, PMLT14, PLR18, TTD+11]. Library [CH17, CWGA17, NBB18, OCFL14, TAF+18, WN10, dJm18, CMM17, PMP+16, PQTGS17, Pos19, TFPB14, TCZ17].

Linux [Ric14]. Linux-basierte [Ric14].

Listener [JH11]. little [Han15]. liveness [LDL14]. load [PDP+16]. loaders [SM12].

location [NCS10]. Locators [SDM12].

Lock [FC11, NM10a, NFV15, UMP10].

Lock-free [FC11, NFV15]. Locking [GGRS17, JTO12, GGRS14, GGRS15, YKA+19]. locks [PS17]. Logging [CJ19, CJ17].

Logic [BLNP18, GMS12, Phl18, SD16b]. loop [DD13, HW+12, PLR18]. Loops [RD15, LLL13]. loss [WHIN11].

Low [ETR+15, GM12, SWU+15, WCG14, ZHCB15, ZFK+16, BCR13, XMA+10].

Low-Budget [GM12]. Low-latency [ETR+15]. Low-level [WCG14].

Low-overhead [ZHCB15, ZFK+16].

low-utility [XMA+10]. lunch [DTLM14].

m [MZC10b]. m-JGRIM [MJC10b]. M2M [Pau14]. Machine [JJC019, LYBB14].
Ame13, CBLFD12, KS13, KC12, McM11, Piz17, SSMGD10, WGF11, WHV+13, BZD17, Cle16, LYBB13a, LYBB13b, LTK17, PTHH14, RRB19, SSB+14a, Sch13, Set13, SNS11, SGV12, SSB01, SSB14b, UR15.

Mathematics [Sub11].

MATLAB

MetaFJig [SZ10]. metaheuristics [DDD17]. metaprogramming [PS11].

Microsoft [Ano13]. Middleware [RTE+13, AdSCdR+19, HOKO14, HWLM11, MZC10b]. middleweight [IF16, MT14].

YKM17, MZC10a, OMK+10, SSL18, ZP14. Non-Adequate [GGZ+15].
on-cache-coherent [ZP14]. non-cloned [SSL18]. Non-equivocation [TD17].
Non-functional [BVGV11]. non-intrusively [MZC10a]. Non-Java [YKM17, OMK+10].
Non-termination [BSOG12]. Non-volatile [WZL+18].
Non-Volatility [WZL+18]. Nonblocking [RTET15, SP10a]. Nondeterministic
[RB15, BENS12]. noninterference [IF16].
Nopol [XMD+17]. Normalization [ADJG19]. NoSQL [DFR13].
Notation [Sev12a]. Novel [NK10, MZC10b].
Number [PPMH15, SLF14]. Numbers [Jaf13, AJL12, Wal12].
Numerical [HCLH18, KS15, KFBK+15, PQTGY17].
Object [CSGT17, GLGA19, GS11, KB11, LZ12, NWB+15, PTHH14, PiLCH11, RC17, Sev12a, SW12, AST+16, BZD17, DDDF17, FMBH15, IvdS16, KRR19, LX19, MMEY14, MHBO13, RDF15, UJR14, VM10, WM10, ZCdSoS15, Zha12, ZDS14, hEYJD12].
Object-Bounded [NWB+15]. object-constraint [FMBH15].
object-manipulating [KRR19]. Object-Oriented [GS11, KB11, RC17, PTHH14, AST+16, DDDF17, MHBO13, VM10, ZDS14, hEYJD12]. object-sensitive [LX19]. Objective [Sta10]. Objective-C [Sta10]. Objects [BS12, RKN+18, MHL15, SK13, SABB19, WX1R, BVGV1A10].
Observations [AAB+10]. OCaml [Cle16]. OCaml-Java [Cle16]. OCTET [BKC+13].
odeToJava [KS15]. offloading [ZHL+12]. on-demand [ZHL+12]. On-Stack
[WBHN18]. On-the-fly [URJ18, UJR14]. once [WSH+19]. one [SV18]. ones
[AST+16]. Online [NG13, GGC18, GGC19, HCV17, NK10].
only [NM10a]. Ontology [KSPK12].
OoOJava [JhEd11]. Open [BS14, GD12, ABC18, CJ17, CJ19, EKUR10, JK11, Tai13, VGR16].
Open-Source [BS14, ABC18, Tai13]. OpenDK [BFS+18, CHM16, dGReD+15].
OpenMP [VGS14]. OpenMP-like [VGS14]. operating [HDK+11]. operation
[KKW11]. operations [MHN19, TABS12, TGZ17]. Operator
[PQD12]. opportunities [TPG15]. Optimal [AD16, JCM19, SK12, ELW15].
optimale [Sch13]. optimally [BGS+13]. optimisation [PSP16]. optimistic
[WGF11]. Optimization [LTD+12, RRB19, YKM17, AFG+11, BDB11, DDDF17, JMO14, KS13, KC12, NG12].
Optimizations [DR10, BB17, CPST15, DS16, NG13, SAoD+16]. Optimized
[PKPM19]. Optimizing [LYM+18, SV15b, WZK+19, YRHBL13, HWW+15, KRH16, MD15, ZLB14].
optional [CMS+12]. Oracle
[LMS+12, Sam12]. ORE [Ouy+13].
Orchestrating [CDBD18]. Order [SGD15, SMP19, hEd11, KT15, SPK18, TD15].
ordering [KC12]. Orders [BNE16].
ordinary [MZC10a]. O'reilly
[Ao15, Bro12]. Oriented [ABMV12, BH10, GLGA19, GS11, KB11, LYM+18, RC17, AST+16, DDDF17, EABVGV14, MHBO13, PTHH14, RVP11, VM10, VBAM10b, WBA+11, ZDS14, hEYJD12]. OSeq
[HDK+11]. OSG
[BVGV1A13, GD10, Do13]. OSS
[ZMM+16]. other [EKUR10, KS13].
out-of-order [JhEd11]. out-of-thin-air
[OD18]. output [KM10]. Over-exposed
[VBDPM16]. overhead
[BCR13, ZHCB15, ZFK+16]. overlap
overloading [PQD12]. overview [Nil12b].

owners [MPM+15]. Ownership [ZPL+10, BDGS13, DDM11].

pathfinder [KPP12, CS12, MPR12, NNTK17, NNT+19, PdMG12, SM12, vdmVdMV12, Den18, RR14, SMP19]. patient [EKUR10]. patient-level [EKUR10]. pattern [GSD+15, SAdB+16].

perceptible [JH11]. Perfect [SLE+17]. Perform [LMZP19]. Performance [ACCR18, CSZ17, CCH11, DR10, GBC12, Hol12, HJ12, MSM+16, Oak14, OCFLI14, QSaS+16, RVT18, TRE+13, TPG15, THC+14, URJ18, VP16, WWG+18, WN10, ACS+14, AAB+10, BRGG12, BRWA14, CBGM12, Del11, GSS+16, HWI+12, IRJ+12, JH11, NGo12, ODL15, PSNS14, SE12, SEPV19, TTD+11, TXW+10, WFF18, WHIN11, WWH+17, Zak10].

pgs [Ano18]. PHALANX [VYY10]. phase [KC12]. phase-ordering [KC12].

polyorphism [GMT14, PULO16, UTO13]. polynomial [Pos19]. POPL [BCR13].
Popular [Has12, SRB18].
Popular-but-Seemingly-Dissimilar [Has12]. portable [BM18, LTK17, RGM13].

relaxed

relationship

removal

SS19, BVGVEAFG11].

rename [FM13].

report [CBLFD12, Sch10a].

repository [HC10].

reproduction

Requirements [MSS19, AGGZ10].

Resource-aware [SGV12].

resource-aware [AD1I].

responsive [SP10].

restructuring [RC1].

rethinking [LHR19, Xue12].

retrofitted [TTS1].

reusability [Tai13].

reuse [HC10].

Review

[CC12, MLM17, MLM19].

rewriting-based

rewriting

[GGC19, HLO15].

rewriting

[GGC19].

RFID [AYZ10].

RFLP

[CYC12].

richer [CV14].

rigor [Vit14].

rigorous [AGR17].

rings [Pos19, Pos19].

Rise [DiP18a],

risk [PM15].

River

[HHS13].

R. [OW16].

RMI [S19].

Road

[RX17, SWU15].

Robin [Ani15].

Robotic

[DiP18b, LM15].

Robots [SW12].

Robust

[V15, VD17, MKZ14, SGV12, VM10].

Rod

[Teo12].

ROM [ML19].

row [Lei17].

row-typed

row-reusable

runtime [FIF14].

RTSJ

[ZW10].

Rubah

[PVH14].

Ruby [Teo12].

Rule

[YPMM12, QLS17].

Rules

[CAC12, HLS15, PTV18].

run

[WAB11].

run-time [WAB11].

Running

[H11, TXX10, YK14].

runs [FIF14].

runtime

[BLH12, CMM10, GSS18, MAHK16, MSS11, NWW15, OFL114, XMA14, BRGG12, EQt10, GTR10, OOK10, PKC13, RO12, STY1, TWS10, VBAM10, WLL1, YRHB13, dCM112].

runtimes

[BM14, CSV15, RCR14, WWH17].

ruyu

[ALB19].

S

[Ge13].

Safe

[Eug13, GVRN11, JTO12, Loc18, MPS12, RFF15, SWB15, WAB11, HJS10, HAW12, KHR1, KLS15, KCP17, Loc13, RDP16, WWS13].

Safety

[MC19, RS12, SDH17, WCB16, ZLCW1, AG17, EKU10, GMC13, N11, PG12, SD16b, Ta13, YS10, ZBvdB19, CWW13, HL13, LCW1, WK12].

Safety-Critical

[MC19, WBC16, ZLCW14, RS12, SDH17, AG17, CWW13, LCW17].

Salespoint

[ZDS14].

Salt

[Hol12].

SAM

[BO13].

San

[KP15].

Sane

[MP12].

sanitizer

[VS11].

Sapphire

[UR18].

SAT

[UPR18].

Satin

[WWB10].

SAW

[CFH13].

Scaffolding

[RT14].

Scala

[SM12, AT16, HIN13, LWE13, PT111, Pos19, SMS11, SMS12].

Scala-Based

[PT111].

Scala.js

[DS16].

Scalability

[CCH11, VP16, WZ19, AAB10].

S}

[Gr13].

Secure

[GRN11, JTO12, Loc18, MPS12, RFF15, SWB15, WAB11, HJS10, HAW12, KHR1, KLS15, KCP17, Loc13, RDP16, WWS13].

Secured

[MC19, RS12, SDH17, WCB16, ZLCW1, AG17, EKU10, GMC13, N11, PG12, SD16b, Ta13, YS10, ZBvdB19, CWW13, HL13, LCW1, WK12].

Secured-Critical

[MC19, WBC16, ZLCW14, RS12, SDH17, AG17, CWW13, LCW17].

Securepoint

[ZDS14].

Salt

[Hol12].

SAM

[BO13].

San

[KP15].

Sane

[MP12].

sanitizer

[VS11].

Sapphire

[UR18].

SAT

[UPR18].

Satin

[WWB10].

SAW

[CFH13].

Scaffolding

[RT14].

Scala

[SM12, AT16, HIN13, LWE13, PT111, Pos19, SMS11, SMS12].

Scala-Based

[PT111].

Scala.js

[DS16].

Scalability

[CCH11, VP16, WZ19, AAB10].

S}

[Gr13].

Secure

[GRN11, JTO12, Loc18, MPS12, RFF15, SWB15, WAB11, HJS10, HAW12, KHR1, KLS15, KCP17, Loc13, RDP16, WWS13].

Secured

[MC19, RS12, SDH17, WCB16, ZLCW1, AG17, EKU10, GMC13, N11, PG12, SD16b, Ta13, YS10, ZBvdB19, CWW13, HL13, LCW1, WK12].

Secured-Critical

[MC19, WBC16, ZLCW14, RS12, SDH17, AG17, CWW13, LCW17].

Securepoint

[ZDS14].

Salt

[Hol12].

SAM

[BO13].

San

[KP15].

Sane

[MP12].

sanitizer

[VS11].

Sapphire

[UR18].

SAT

[UPR18].

Satin

[WWB10].

SAW

[CFH13].

Scaffolding

[RT14].

Scala

[SM12, AT16, HIN13, LWE13, PT111, Pos19, SMS11, SMS12].

Scala-Based

[PT111].

Scala.js

[DS16].

Scalability

[CCH11, VP16, WZ19, AAB10].
DSEE13, BFS+18, GTSS11. **Scalable** [BBB+17, BS12, DFR13, GGRSY17, HC11, JQJ+16, RXK+17, RTE+13, XMA+14, XXCL19, ETTD12, FC11, GGRSY15, N1F15, PIR17, PLR18, RTET15, TTD12]. **ScalaLab** [PTML11, PMTL14]. **scalar** [PQTGS17]. **Scale** [BA17, PE11, CJ19, DHS15, LO15, MDS+17, MCH+10, PFT+15, WHIN11]. **SCel** [DLPT14]. **scenarios** [AMWW15, Sch13]. **Scheduler** [QSaS+16, IF16, TWL12]. **scheduler-independent** [IF16]. **Scheduling** [ASV+16, BVEAGVA10, KPHV11, EP14, EABVGV14, ZW10]. **scheme** [XHH12, YKA+19]. **SCHISM** [PZM+10]. **Science** [HWM11, VF10, SGV12]. **sciences** [NL14]. **Scientific** [Esq11, PTML11, TAF+18, WN10, FRGPLF+12, PMTL14]. **scientists** [Bra14]. **SCJ** [MCW19]. **SCJ-Circus** [MCW19]. **SCORM** [HC10]. **Scrap** [ZCdSOvdS15]. **Script** [MSSK16]. **Scripting** [CSGT17, KKK+17, HBT12, KRR+14, PMTL14, Zha12]. **Seamless** [OwKPM15]. **Search** [NBB18, SED14, WCG+18, XXCL19, DDDF17]. **searching** [ETR12]. **Second** [HD17]. **secrets** [Alt12]. **section** [DTLM14]. **sections** [NM10a]. **Secure** [GMPS12, GM12, ABFM12, LMS+12, LMS+13, TLMM13, WA19]. **securely** [SFR+14]. **securing** [CDMR19]. **Security** [CDG+17, Gon11, HBS16, JWMC15, MCC17, PS10a, STA18]. **Seemingly** [Has12]. **selection** [WHIN11]. **Self** [MPS12, SEPV19, YXS+19, hED12, AHK+11, AGH+17, CBLFD12, HWW+15, MD15]. **Self-adaptive** [SEPV19]. **Self-Admitted** [YXS+19]. **self-collecting** [AHK+11]. **self-composition** [AGH+17]. **self-hosted** [CBLFD12]. **self-optimizing** [HWW+15, MD15]. **Self-stabilizing** [hED12]. **Semantic** [GGRSY17, RvB14, BNS12, GGRSY14, GGRSY15, MKK+12, MKK+13, OA17]. **Semantics** [BO12, BR15, Kri12, LKP19, LM17, SPY+16, AK13, FBH17, FZ17, KHL+17, Mil13, MT14, PS15, PPS16, ZHCB15]. **Semantics-based** [SPY+16]. **Semantics-driven** [LKP19]. **semantics-preserving** [AK13]. **Semi** [FM13, SEK+19, ABC18, MRMV12]. **semi-automated** [MRMV12]. **Semi-automatic** [FM13]. **Semi-Autonomic** [SEK+19]. **semi-structured** [ABC18]. **Sensitive** [SGD15, HW13, KRR19, LM16, LX19, STA18]. **sensitivity** [HB13, LTMS18, LX19, PLR18]. **Sensor** [AFGG11]. **separability** [WRI*10]. **Separating** [DDM11, AC10]. **Separation** [ZLNP18, PH18, TWSC10]. **Sequence** [NBB18, ZW+14]. **Sequencing** [YWW+18]. **Sequent** [FFF17]. **sequential** [BENS12, DMS11]. **serialization** [MHBO13]. **Seriously** [Kie10]. **Server** [HC11, KRR16, D’H12, DEI11, GGC19, HWLM11, R*13]. **Server-Side** [HC11, KRR16, D’H12]. **Service** [BVEAGVA10, SD12, CKB12, EABVG14, GD10, HWLM11, KF11]. **service-oriented** [EABVG14]. **services** [MZC10b]. **session** [KDPG18, FGR12]. **Set** [SBK13, Lon10a, Lon10b]. **Set-based** [SBK13, Lon10a, Lon10b]. **sets** [SP10b]. **settlers** [MI13]. **setting** [BDGS13]. **Settings** [GM12]. **Seven** [ST15]. **SGX** [CDMR19]. **Shadow** [NNTK17, NNT*19]. **ShadowVM** [MKZ+14]. **shalt** [LCW18]. **shape** [GTM14]. **Shared** [BG17, FBG17, BSMB16]. **Shared-Memory** [BG17, BSMB16]. **sharing** [PKO+15]. **Sherlock** [ADJG19]. **Short** [AHK+11, Cha18, SV15a, Zak12]. **Short-term** [AHK+11]. **shortcut** [MLM19, CSGT17]. **Side** [Bul18, HC11, OBPM17, D’H12, KRH16].
-statically [BTR^13, NED^13], statistical [Bra14, ZFK^16]. statistically [PPMH15].
STM/HTM [CHM16]. StMungo [KDPG18]. stochastic [CRAT^12]. stock
[SVH14]. Stop [LWB^15]. stops [BNP^18]. Storage
[Hol12, VDV17]. Store.
 [BS12, Sta10]. stores [DFR^13]. Story [Ano14]. strategic [BMR^14]. strategy
[PDP^1^16]. Stream [CWGA^17, KBPS^17, MV^16, BRWA^14, SSG^14, ZDK^19].
streaming [MRA^17, STCG13].
StreamJIT [BRWA^14]. StreamQRE
[MRA^17]. streams [SGG^17, UFM^15].
Strength [KCD^12]. String
[HOKO^14, CSK^17]. Strings
[HWM^11, HWM^10, LSSD^14]. strong
[UMP^10, ZHCB^15, ZBB^17]. Structure
[ZLNP^18, LO^15, PLL^18, UMP^10].
structured [ABC^18, LSW^16]. Structures
[GT^10b, CDTM^10, XMA^10]. studies
[EKUR^10]. Studio [RT^14, FH^16].
Studio-Based [RT^14]. Study
[BF^18, KB^11, LMBP^17, RVT^18, RLM^15, WZK^19, ZMM^16, BRGG^12, CCFB^15, CJ^17, ECS^15, JK^11, KFBK^15, MN^19, MH^12, NCS^10, OMK^10, PTF^15, SSL^18, SH^12, TFPB^14, VBDP^16, WX^16, YW^13]. studying [CJ^19]. style
[UFM^15]. substitute [PPMH^15]. substrate
[GTL^10]. subtypes [HL^13]. Subtyping
[LN^15]. Suite [MS^19, SMSB^11, BB^12].
Suites [GGZ^15]. Summaries
[BB^17, BA^19]. Summarization
[MM^16, RLMM^15]. Superblock [KS^13].
Supercharged [Cec^11, GBS^13].
Superposition [HD^17], supertype
[RRB^17], supervenience [Rez^12]. Support
[ALB^19, CSGT^17, KKK^17, RKN^18, BVGVE^13, Cha^18, DVL^13, GMC^13, Hos^12, NGB^16, SMN^12]. supported
[FMM^11]. Supporting [LVG^10, EKUR^10].
Surfaces [FBG^17]. Surgical [RBP^14].
surprises [FMB^15]. Survey [AGM^17, OAC^18, RVT^18, BCvC^13, GD^10].
SurveyMan [TB^14]. surveys [TB^14].
suspension [TWL^12]. SV [CKS^18].
SV-COMP [CKS^18]. sweeping [KBL^14].
Sweeten [DFHF^15]. Swift [ZY^12].
SWIM [Sch^10a]. symbol [Tar^11].
Symbolic
[Bul^18, CYWD^19, NNTK^17, NNT^19, PMTP^12, SWMV^17, MMP^12, Rim^12].
synchrobench [Gra^15]. Synchronisation
[CHMY^19, CHMY^15, WBM^10].
synchronization [DHN^12, Gra^15, Sub^11].
Synchronized [BG^17]. Synchronized-by-Default [BG^17].
synchronizing [DTM^18]. Synchronous
[BVEAG^10, SK^12, MvH^15]. syntactic
[LE^16, MKK^12, MKK^13, QLB^17].
Syntax [SS^13, KMM^14, SSK^13].
synthesis [SR^14a, STR^16, SS^16].
synthesizable [ABCR^10]. synthesizer
[OUY^13]. Synthesizing
[GK^15, SR^15, LWH^10]. Synthetic
[PSJ^18]. System [BO^13, KCD^12, MAHK^16, ACS^14, AYZI^10, AGR^17, BDB^11, ELW^15, HA^13, HDK^11, HWLM^11, KR^12, MS^10, STY^14, TLL^11, Nil^12a]. systematic
[TD^15]. Systems
[BG^17, BSA^14, BNE^16, CCH^11, DLPT^14, Fox^17b, HTW^14, JMB^12, LM^15, LMZP^19, MR^18, NFN^18, NWB^18, RTE^13, SLES^15, SLE^17, AT^16, CJ^19, DW^10, FH^16, Fox^17a, Ha^17, HW^12, HTLC^10, LPGK^14, LTK^17, MH^12, MAH^12, MvH^15, OIA^13, PLL^18, PdMG^12, PBB^19, PDP^16, RHT^13, SDH^17, SSMD^10, SABB^19, SH^12, TTD^12, TXW^10, THC^14, UIY^10, Vit^14, YRHBL^13, VK^12].
Tableau [FFF^17]. Tagged [RKN^18].
Tailoring [LZ^12]. Take [Kic^10]. Taking
[SWU^15]. Tales [Sew^12]. talk
[Piz^17, Sie^17]. Taming [TLL^11, SC^16].
[AK13, MHM10, PMP+16, TL17].
Transforming [dMRH12]. transitioning [HWM14]. Translating [RFRS14].
Translation
[BO12, LSWM16, LXP18, TJJL18]. translations [UTO13]. translator [LZYP16]. Translators [WWG+18].
Transmission
[LYo12, HLO15, KMMV14, SSK13, YKA+19]. trees [RBV16]. Trends
[CC15, MSS10, SR17]. trie [SV17].
trie-based [SV17]. tries
[SV15a, SV15b, SV18]. triggered [EABVG14]. triggers [FGB+19]. TRINI
[PDM+16]. Trusted [TWNH12, BCF+14]. TUIOFX [FBG17]. tuning
[AAB+10, BVGVEAFG11, SKBL11]. Turf
[CH17]. Turing [Gri17]. Turn [HOSC16].
Tutorial
[Jen12, Nil12b, PBM+19, Taf13, Zak12]. TV
[JMO14]. twitter [Guy14]. Two
[Has12]. Type
[BO13, CGJ+16, KSW+14, KATS12, Lei17, Loc18, RKN+18, SGD15, WT11, ACS+14, AT16, BS13, CMS+12, CVG+17, DLM10, FH16, GBS14, HyG12, KML15, KRR+14, KRH16, KhRHA14, KDPG18, LPK14, LE16, MHR+12, SV18, SH12, TLL11, Zha12, eBH11]. Type-Based
[SGD15]. type-dependent [LE16]. type-heterogeneous [SV18]. Type-Safe
[Loc18, KMLS15]. Typechecking
[KDPG18, CL17]. Typed
[BO13, KKK+17, MHL15, CMS+12, KRCH14, Lei17, RDP16]. Types
[BO13, RvB14, SPAK10, BDGS13, CHJ12, DDM11, HH13, MME+10, YDFF15]. TypeScript
[Cho14, FH16, RSF+15].
Typing
[FZ17, RSF+15, Sie17, SFR+14, TSD+12]. typy [OA17]. Ubiquitous [MCY+10]. UDP
[CSF+16]. unbounded [LSSD14, RGB18]. uncertain [McK16]. Unchangeable
[RK19]. Understandable [MSM+16].
Understanding
[ABC18, FRM+15, MKTD17, NBW+18, PCL14, QLBS17, Set13, TABB12, VBMDP16, LWB+15, Nil12b, OD18].
Undocumented
[Alt12, MHR+12]. Unified
[LM15]. uniform [AH10, EUG13]. Updates
[YMHB19, PKC+13]. Upper
[SW12]. Upsortable
[SFG+17]. uptrees
[HB13]. USA
[Hol12, KP15]. usability
[FH16, MHR+12, WA19]. Usage
[OAC18, RC17, PTF+15, QLBS17]. Use
[BGK17, Guy14, PMP+15, AMWW15, MKTD17, PBBM13, Sch13]. use-case
[AMWW15]. used
[XR10]. useless
[FRC+17]. User
[Liu14, MvDL12, RKHN18, SLS+12, DAA13, FMS+11, PSNS14].
user-defined
[FMS+11]. User-guided
[RKHN18]. Using
[AsdMG14, BS12, BSA14, BNE16, DLM10, GLGA19, HCN14, KBFK+15, KH18, MV16, MSSK16, NBB18, Pau14, PQR12, RC17, SDM12, SLE+17, UMP10, Wan11, WKG17, WCG+18, XMA+14, YCYC12, Zha18, BB17, Dan18, DDF17, Del13, FH16, FOPZ14, GBS14, Ivds16, KMLS15, KT14, KC12, LVG10, Lew13, LDL14, MT13, PI17, PL18, Pha18, RKHN18, RAS16, SAdB+16, SSK13, SSH17, SHU16, SS19, VGS14, WLL19, WBM+10, WRI+10, XR13, ZLNP18, vdmMvdMV12].
UT
[Hol12]. utility
[CSV15, XMA+10]. utilization
[BCR13].

Verifiable [FHSR12]. Verification [CYWD19, CHMY19, CKS18, KKW14, KP15, RAS16, SS12, SSB14b, CHMY15, DLM10, HCV17, PWS11, SMN+18, SZ11, SJP10, SNS17, SSB01, dCMNN12].

Veritesting [SWMV17]. Version [FLZ+18, FC11, HD17, SM12, TMVB13, ZXL16]. vertical [BFS+18, STY+14]. via [Bu18, DMS11, GGRSY15, GGRSY17, Hos12, HR13, JWM15, LSWM16, Rim12, SS16, TD17].

Video [PBM+19]. view [Guy14]. violations [LTZ14, PG12, RDF15].

Virtual [BZD17, Cle16, LYBB13a, LYBB13b, LYBB14, LTK17, PTHH14, PQD12, RRB19, SSB+14a, Sch13, Set13, SMSB11, SGV12, SSB01, SSB14b, UR15, Anc13, CBLFD12, KRCH14, MCM11, NK10, PIZ17, RCB17, SSMGD10, WGF11, WHV+13]. virtualized [HOKO14, MHM10]. virus [RBL12]. Vision [DIF18b, HCV17]. Vision-Guided [DIF18b]. visitors [DRN14]. Visual [FH16].

Vulnerabilities [MS14, GGC18]. vulnerability [MLM19, Sve14].

weaving [VBMA11]. web [AMT17, EKUR10, ETR12, HRS+17, HCLH18, HC14, KFBK+15, MCC17, MCY+10, RHD15, RCR+14, RYU16, VB18, WGW+11, DAA13, HLSK13, KRI12, LYM+18, MGI14, MvDL12, MMP15, NL14, OwKPM15, RFB14, RPP19, Sch10b, VP16, YW13, ZAK18]. web-based [EKUR10].

WETSUIT [ETR12]. Whalesong [YK14]. whole [DS16]. whole-program [DS16].

Widening [KKW14]. Wild [RPP19, MPM+15, RYU16, STS+13].

Withers [Lyo12]. without [FM15, IN12, KFB+12, SS12, STA10, WHIN11]. Word [SRTR17]. Work [KFB+12, PKO+15, TWL12].

Worst [SP1H10, dGrD+15]. Worst-case [SPH10]. would [Han15].

wrap [FOPZ14]. Wrappers [MPS12].

Wright [Teo13]. Write [ASME18, HJH10].

Write-rationing [ASME18]. Writing [HOSC16, JAF13, MIR18].

x [MSM+16]. X10 [TWL12]. Xbase

yang [CBGM12]. years [BTR+13]. yieldpoint [LWB+15]. yin [CBGM12].

Z [SBF+10]. Z-rays [SBF+10]. Zero [ZW13].

References

Altman:2010:OTJ

Auerbach:2010:LJC

Avvenuti:2012:JTC

Abanades:2016:DAR

Ansaloni:2012:DAO

Akai:2010:EAS

Anjo:2016:DML

Ahn:2014:IJP

Aumuller:2016:OPD

Amighi:2016:PCC

[AdCGGH16] Afshin Amighi, Pedro de Carvalho Gomes, Dil-

Almeida:2019:GPD

Austin:2012:MFD

Allyson:2019:SOI

Paolo Arcaïni, Angelo Gargantini, and Elvina Riccobene. Rigorous develop-

Adams:2019:URP

Altman:2012:USM

Andreasen:2014:DSA

Ament:2013:ATG

Adamsen:2017:PIR

Ashrov:2015:UCB

REFERENCES

Andersen:2014:PLJ

Anonymous:2012:AMJ

Anonymous:2013:FAM

Anonymous:2014:RKS

Anonymous:2015:BRL

Anonymous:2018:BRS

Arslan:2011:JPM

Altidor:2014:RJG

Adalid:2014:USA

Austin:2017:MFD

Akram:2018:WRG

Afek:2012:ISJ

Alshara:2016:MLO

Amin:2016:JST

Ali:2010:DJB

Alon:2018:GPB

Alimadadi:2018:FBP

Bradel:2012:ITJ

Brown:2017:NJP

Neil C. C. Brown and Amjad Altadmri. Novice Java programming mistakes: Large-scale data vs. educator beliefs. *ACM Transactions on Computing*
REFERENCES

REFERENCES

REFERENCES

Bala:2011:DTD

Bettini:2013:CTB

Barbuti:2010:AIA

Burnim:2012:NIN

Bruno:2018:SGC

Bruno:2018:DVM

Rodrigo Bruno, Paulo Fer-

REFERENCES

REFERENCES

Bell:2015:VFB

Brockschmidt:2012:ATP

Balland:2014:ESP

Boldi:2018:BMC

Bliudze:2017:ECC

Brown:2016:HBS
REFERENCES

CODEN OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

Borstler:2011:QEI

Baxter:2018:PAS

Burnim:2012:SCS

Bellia:2011:PJS

Bellia:2012:ERT

Bellia:2013:JST

Bruno:2017:NPG

Barabash:2010:TGC

Bender:2019:FJC

Bluemke:2012:DTJ

Bogdanas:2015:KJC

Brandt:2014:DAS

Bhattacharya:2012:DLI

Brown:2012:BRF
REFERENCES

0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Brachthauser:2018:EHM

Brockschmidt:2012:ADN

Budden:2013:SLS

Bultan:2018:SCA

Basanta-Val:2010:SSS

Basanta-Val:2014:RMP
Basanta-Val:2014:SDG

Basanta-Val:2010:NHR

Basanta-Val:2011:ECM

Basanta-Val:2011:NFI

Basanta-Val:2013:JRA

Basanta-Val:2011:FTM

Bourdykine:2012:LAM
Pavel Bourdykine and Stephen M. Watt. Lightweight

Valerio Cosentino, Jordi Cabot, Patrick Albert, Philippe Bauquel, and Jacques Perronnet. A model driven reverse engineering framework for extracting business rules out of a

Luigi Coppolino, Salvatore D’Antonio, Giovanni Mazzeo, and Luigi Ro-

Ceccato:2010:MLD

Cecco:2011:SGJ

Carter:2013:SSA

Chandra:2016:TIS

Chamberlain:2017:PLR

Chadha:2018:JAS

Chugh:2012:DTJ

Carro:2013:MDA

Chapman:2016:HSH

Cogumbreiro:2015:DDV

Cogumbreiro:2019:DDV

Chong:2014:CCT

Campbell:2013:ICC

REFERENCES

[B] Chen:2017:CLP

[CJ17] Chen:2019:ESL

[Cle16] Clerc:2016:OJJ

[CPST15] Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L. Titzer. Memento mori: dynamic allocation-site-based opti-

Chatterjee:2015:QIA

Curley:2010:RDT

Cote:2012:JPS

Chalin:2010:TIG

Chambers:2010:FEE

Ceccarello:2012:TGC

Matteo Ceccarello and Nastaran Shafiei. Tools to

REFERENCES

Chen:2016:CDD

Cameron:2015:JFE

Casale:2017:PEJ

Cazzola:2014:JBR

Chaudhuri:2017:FPT

Chan:2017:DSL

Cavalcanti:2013:SCJ
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Date</th>
<th>ISBN</th>
<th>URL</th>
</tr>
</thead>
</table>
Dolby:2012:DCA

Dietrich:2015:GSE

DiPierro:2018:RJ

DiPierro:2018:TVG

Dietrich:2016:WJD

Dam:2010:PCI

deJong:2018:MJA

DeFrancesco:2010:UAI

DeNicola:2014:FAA

Dissegna:2016:AIB

Demange:2013:PBB

demMol:2012:GTJ

Duarte:2011:ICS

Devietti:2012:RRC

Dietrich:2010:POD

Dyer:2014:DVE

Doeraene:2016:PIW

Bois:2013:BGV

Emerick:2012:CP

Ebert:2015:ESE

Efttinge:2013:XID

Erdweg:2012:GLE

Egbring:2010:POS

Erdweg:2015:SOI

Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. A sound and optimal incremental build system

Eslamimehr:2014:RDS

Elmas:2010:GRA

Erdweg:2014:FEL

Eichelberger:2014:FRM

Esquembre:2011:TPL

Endrullis:2012:WEM

Exposito:2015:LLJ

REFERENCES

[FCH11] Sérgio Miguel Fernandes and João Cachopo. Lock-free and scalable multiversion software transac-

REFERENCES

986X (print), 1941-0166 (electronic).

REFERENCES

REFERENCES

Funes:2012:RMC

Feng:2015:ECD

Fritz:2017:TSA

Gherardi:2012:JVC

Gerakios:2013:FIS

Gerakios:2014:RTP

Golan-Gueta:2014:ASL

Golan-Gueta:2015:ASA

Golan-Gueta:2017:ASA

Guy Golan-Gueta, G. Ramalingam, Mooly Sagiv,

Gonzalez:2013:HBP

Gadyatskaya:2012:JCA

Gardner:2012:TPL

Greenman:2014:GFB

Gupta:2016:LSA

Gong:2011:JSA

Grossschadl:2012:EJI
Johann Großschädl, Dan Page, and Stefan Tillich. Efficient Java implementation

Grimmer:2016:HPC

Grimmer:2018:CLI

Goodrich:2010:DSA

Gidra:2015:NGC

Gidra:2011:ASG

Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc

Gunther:2014:ACC

Guo:2017:MJF

Guyer:2014:UJT

Gvero:2013:BRC

Gampe:2011:SMB

Grigore:2016:ARG

Garbervetsky:2011:QDM

Diego Garbervetsky, Sergio Yovine, Victor Braberman, Martin Rouaux, and Alejandro Taboada. Quantita-
REFERENCES

Hauswirth:2013:TJP

Hanenberg:2015:WDW

Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Hasbun:2012:UTP

Haverbeke:2011:EJM

Heumann:2013:TEM

Huang:2013:ECS

Jipeng Huang and Michael D. Bond. Efficient context sensitivity for dynamic analyses via calling context up-trees and customized memory management. *ACM
REFERENCES

Hindle:2016:NS

Hedin:2016:IFS

Heidegger:2012:APC

Hsiao:2010:EST

Chun-Feng Hsiao and Chih-Ping Chu. Enhancing SCORM through creating a reusable Java class repository. Software—Practice and Experience, 40(10):865–881, September 2010. CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

Hughes-Croucher:2011:NRS

Horstmann:2013:CJF

Herrera:2018:NCW

David Herrera, Hanfeng Chen, Erick Lavoie, and Laurie Hendren. Numerical computing on the web: benchmarking for
REFERENCES

[Hun12] Yong hun Eom and Brian Demsky. Self-stabilizing Java. ACM SIGPLAN Notices, 47(6):287–298, June 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-
REFERENCES

Horspool:2011:PPP

Hoppe:2013:DDB

Hower:2014:HRF

Herhut:2013:RTP

Hinojosa:2013:TS

REFERENCES

Hunt:2012:JP

Hellyer:2010:LCW

Heidenreich:2010:GST

Hlopkho:2014:ISJ

Haddad:2013:SIP

Hague:2015:DRC

Herczeg:2013:TFF

Zoltán Herczeg, Gábor Lóki, Tamás Szörbucz, and

Herranz:2012:VIP

Huang:2012:RRC

Hashmi:2012:CNI

Horie:2014:SDJ

Hollingsworth:2012:SPI

Horstmann:2011:CJA

Huang:2011:SBA

Haubl:2010:CES

Haubl:2011:ECE

Haubl:2013:CST

Haubl:2014:TTE

Humer:2015:DSL

Christian Humer, Christian Wimmer, Andreas Wöß, and Thomas
REFERENCES

Hackett:2012:FPH

Hua:2019:EED

Iranmanesh:2016:SSE

Inoue:2012:AML

Inoue:2012:ISC

Islam:2012:HPR

N. S. Islam, M. W. Rahman, J. Jose, R. Rajanandrasankar, H. Wang, H. Sub-

Insa:2018:AAJ

Inostroza:2016:MIM

Juneau:2012:JRP

Joseph:2010:PII

Jaffer:2013:EAR

Ji:2012:PKP

James:2010:FMC

Perry R. James and Patrice Chalin. Faster and more

Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. A machine-learning algorithm with disjunctive model for data-driven program analysis. *ACM Transactions on Programming
Jayaraman:2017:CVJ

Johari:2011:ESE

Jagtuz:2013:ESM

Jagannathan:2014:AR

Jung:2012:EJA

Jung:2014:HCO

Kumari:2011:AOO

Kunjir:2017:TAM

Kim:2014:LBL

Kiselyov:2017:SFC

Kulkarni:2012:MCO

Krishnaveni:2012:HOJ

REFERENCES

Knoche:2018:UML

Kerschbaumer:2013:IFT

Kang:2017:PSR

Kalibera:2011:FRT

Kabanov:2011:DSF

Kienle:2010:ATT

Kienle:2013:BRE

Kim:2017:TAA

Krieger:2011:AES

Kaiser:2014:WAM

Ko:2010:EAW

Karakoidas:2015:TSE

Kalibera:2014:FAS

Kulkarni:2016:APA

Kolling:2010:GPE

Kroening:2015:CAV

Kalibera:2011:SRT

Khyzha:2012:AP

Kintis:2018:HEM

Kang:2012:FSJ

[KR12] Seonghoon Kang and Suky-
 REFERENCES

REFERENCES

2013. CODEN SINODQ.
ISSN 0362-1340 (print),
1523-2867 (print), 1558-
1160 (electronic). VEE ’13
Conference proceedings.

[Krebs:2014:JJB]
Nico Krebs and Lothar
Schmitz. Jaccie: a Java-
based compiler-compiler for
generating, visualizing and
debugging compiler compo-
nents. *Science of Computer
Programming*, 79(??):101–
115, January 1, 2014. CO-
DEN SCPGD4. ISSN 0167-
6423 (print), 1872-7964
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0167642312000469.

[Kroshko:2015:OPN]
Andrew Kroshko and Ray-
mond J. Spiteri. odeTo-
Java: a PSE for the numer-
cal solution of IVPs. *ACM
Transactions on Mathematical
Software*, 41(3):17:1–
17:33, June 2015. CODEN
ACMSCU. ISSN 0098-3500
(print), 1557-7295 (elec-
tronic).

[Kouneli:2012:MKD]
Aggeliki Kouneli, Georgia
Solomou, Christos
Pierakas, and Achilles
Kameas. Modeling the
knowledge domain of the
Java programming lan-
guage as an ontology.
*Lecture Notes in Com-
puter Science*, 7558:152–
159, 2012. CODEN
LNCSD9. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/chapter/
10.1007/978-3-642-33642-
3_16/.

[Korsholm:2014:RTJ]
Stephan E. Korsholm, Hans
Søndergaard, and Anders P.
Ravn. A real-time Java
tool chain for resource con-
strained platforms. *Concurrency and Compu-
tation: Practice and Experience*,
26(14):2407–2431, September
25, 2014. CODEN
CCPEBO. ISSN 1532-0626
(print), 1532-0634 (elec-
tronic).

[Kashyap:2014:TRS]
Vineeth Kashyap, John
Sarracino, John Wagner,
Ben Wiedermann, and Ben
Hardekopf. Type refine-
ment for static analysis of
JavaScript. *ACM SIG-
PLAN Notices*, 49(2):17–26,
February 2014. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic). DLS
’13 conference proceedings.

[Keil:2014:EDA]
Matthias Keil and Peter
Thiemann. Efficient dy-
namic access analysis using
JavaScript proxies. *ACM
SIGPLAN Notices*, 49(2):
49–60, February 2014. CO-
REFERENCES

Keil:2015:BAH

Kersten:2014:RRA

Kolesnikov:2014:CPB

Kim:2010:EAE

Kim:2011:MAE

Lin:2012:UKT
Yi Lin, Stephen M. Blackburn, and Daniel Frampton. Unpicking the knot: teasing apart VM/application interdependencies. ACM SIGPLAN Notices, 47(7):181–190, July 2012. CODEN SINODQ. ISSN 0362-
Lauinger:2018:TSD

Li:2014:MHD

Lorenzen:2016:STD

Leijen:2017:TDC

Lerner:2010:FTJ

Lewis:2013:IAP

Liu:2019:RIP

Bozhen Liu, Jeff Huang, and Lawrence Rauchwerger. Rethinking incremental and parallel pointer analysis. *ACM Transactions on Programming Languages and Systems*, 41(1):6:1–6:??, March 2019. CODEN ATPSDT. ISSN
Liu:2014:JNU

Liva:2019:SDE

Leung:2013:PEJ

Lin:2015:STU

Lee:2016:ECP

Loring:2017:SAJ

Long:2012:COS

Long:2013:JCG

Luo:2019:HDS

Leavens:2015:BSS

Lopes:2015:HSA

Cristina V. Lopes and Joel Ossher. How scale affects structure in Java programs. *ACM SIGPLAN Notice*
REFERENCES

Lochbihler:2013:MJM

Lochbihler:2018:MTS

Long:2010:TDSa

Long:2010:TDSb

Loureiro:2013:EDS

Lerner:2014:TR

Lux:2011:TSD
Alexander Lux and Artem Starostin. A tool for static detection of timing channels in Java. Journal of Cryptographic Engi-
Landman:2016:EAR

Landman:2017:CEA

Larrucea:2018:M

Luu:2014:MCC

Leopoldseder:2016:JJT

Li:2011:JEC

Siliang Li and Gang Tan. JET: exception checking in the Java Native Interface. *ACM SIGPLAN Notices*, 46(10):345–358, October 2011. CODEN SINODQ. ISSN 0362-1340 (print), 1523-
REFERENCES

2867 (print), 1558-1160 (electronic). OOPSLA '11 conference proceedings.

REFERENCES

[LYBB13a]

[LYBB13b]
Lindholm:2014:JVM

Liu:2012:PAA

Liu:2018:JIO

Lyon:2012:JTW

McIntosh:2012:EJB

Miyazawa:2019:SCS

McLane:2010:UIV

Marr:2015:TVP

Mytkowicz:2010:EAJ

Marr:2017:CLC

Martinez:2017:ARR

Meijer:2014:EJR

Martinsen:2014:HTL

Martinsen:2017:CTL

Mehrabi:2019:PUP

Miller:2013:IPG

Matsakis:2015:TOJ

REFERENCES

[MKK+13] Janardan Misra, Anmer-
REFERENCES

REFERENCES

Meawad:2012:EBS

McIlroy:2010:HJR

Marinescu:2013:FSJ

Moller:2014:ADC

Marino:2010:DSE

Marino:2016:DXU

(print), 1558-4593 (electronic).

Mitchell:2010:FTL

Marchetto:2019:CCR

Mitropoulos:2016:HTY

Malhotra:2013:DFT

Murawski:2014:GSI

Madsen:2015:SAE

Marz:2016:RPC

Stephen Marz and Brad Vander Zanden. Reducing power consumption and latency in mobile devices using an event stream model.

Mesbah:2012:CAB

Motika:2015:LWS

Mateos:2010:ANI

Mateos:2010:MJN

Nowicki:2018:MPI

Nasseri:2010:CMR
E. Nasseri, S. Counsell, and M. Shepperd. Class move-

References

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

enhancements/fy1503/2013954669-\text{t.html}.

REFERENCES

Nguyen:2015:FCR

Nguyen:2018:UCM

Naik:2012:AT

Omar:2017:PSF

Obaidellah:2018:SUE

Oaks:2014:JPD
Ocariza:2017:SCC

Ortin:2014:RPI

Ou:2018:TUC

Olivo:2015:SDA

Ogawa:2013:RJA

Olszak:2012:RJP

REFERENCES

Paul:2014:RTP

Pascarella:2019:CCC

Ponzanelli:2019:AIC

Parnin:2013:AUJ

Pinto:2014:UEB

Philips:2017:DDD

Laure Philips, Joeri De Koster, Wolfgang De Meuter, and Coen De Roover. Dependence-driven delimited CPS transformation

Panizo:2012:EJP

Portillo-Dominguez:2016:ECP

Parker:2011:DPG

Pradel:2012:FAP

Pano:2018:FAL

Phan:2018:TIG

[Par12] Pavel Parízek and Ondřej Yej

Pan:2018:ASJ

Park:2014:AAS

Park:2018:SAJ

Pawlak:2016:SLI

Papadimitriou:2014:MLS

Phan:2012:SQI

Quoc-Sang Phan, Pasquale Malacaria, Oksana Tkachuk, and Corina S. Păsăreanu.

Porter:2018:PJE

Poslavsky:2019:REJ

Passerat-Palmbach:2015:TSS

Pichon-Pharabod:2016:CSR

Pham-Quang:2012:JAD

Piedrahita-Quintero:2017:JGA

Pablo Piedrahita-Quintero, Carlos Trujillo, and Jorge

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Rumen Paletov, Petar}
REFERENCES

Putsch:2013:SIP

Putsc:2013:SIP

Petrashko:2016:CGL

[PULO16]

Powers:2017:BBG

[PVB17]

Pina:2014:RDJ

[PULO16]

Plumbridge:2013:BPR

[PWA13]

Pan:2017:GCF

[PWSG17]

REFERENCES

Rauschmayer:2014:SJD

Rossi:2015:NPJ

Gianfranco Rossi and Federico Bergenti. Nondeterministic programming in Java with JSetL. Fundamenta Informaticae, 140 (3-4):393-412, ????. 2015. CODEN FUMAAJ. ISSN 0169-2968 (print), 1875-8681 (electronic).

Razaﬁndralambo:2012:FFH

Raychev:2016:PMC

Rathee:2017:ROO

Rosa:2017:APV

Robatmili:2014:MRL

Behnam Robatmili, Calin Cascaval, Mehrdad Rezvani, Madhukar N. Ked-

[RD15]

[RDCP12]

[RDP16]

[Reynders:2016:GSB]

[RDF15]

REFERENCES

Richard-Foy:2014:EHL

[RFBJ14]

Radoi:2014:TIC

[RFRS14]

Roemer:2018:HCU

[RGB18]

Richards:2011:ACJ

[RGEV11]

Ricci:2013:ETP

[RGM13]

Richards:2013:FA

[RHN+13]

Radoi:2015:WAR

Cosmin Radoi, Stephan Herhut, Jaswanth Sreeram,
REFERENCES

Ravn:2013:EIS

Richardson:2014:BEL

Rimlinger:2012:TGS

Roohitavaf:2019:AAF

Raghothaman:2018:UGP

Rodchenko:2018:TIE

Ravn:2012:SCJ

Rompf:2014:SPJ

Rastogi:2015:SEG

Reichenbach:2012:PPD

Reardon:2014:SSB

Ramos:2013:DSJ

REFERENCES

Ramos:2018:APS

Rudafshani:2017:LDD

Ramamohanarao:2017:SSM

Ryu:2016:JFB

Spadini:2019:MOT

Serbanescu:2016:DPO

Samuelson:2012:LSO

[Sam12] Pamela Samuelson. Legally speaking: Oracle v. Google:

Spoto:2019:SII

Sartor:2010:ZRD

Smaragdakis:2013:SBP

Shahriyar:2014:FCG

Scherr:2016:AFC

Schmidt:2010:ERA

ISSN 1094-3641 (print), 1557-9476 (electronic).

Schultz:2010:WAJ

Schmeisser:2013:MOE

Schildt:2014:JCRb

Sluanschi:2016:AAD

Sousa:2016:CHL

Sridharan:2012:CTP

Schoeberl:2017:SCJ
Martin Schoeberl, Andreas Engelbrecht Dalsgaard, René Rydholf Hansen, Stephan E. Korsholm, Anders P. Ravn, Juan Ricardo Rios Rivas, Tórur Biskopst...

Shah:2012:AMJ

Sartor:2012:EMT

Sartor:2012:EMT

Simão:2019:GWS

Serrano:2018:JAC

Seth:2013:UJV

Severance:2012:DJO

Severance:2012:JDL

Sewell:2012:TJ

Swamy:2014:GTE

Sherman:2015:DTB

Subercaze:2017:UPT

Simao:2012:CER

Stuchlik:2012:SVD

Steimann:2016:CRA

Siebert:2010:CPR

Siek:2017:CPT

Singer:2010:EGC

Smans:2010:AVJ

REFERENCES

[SP10a] Martin Schoeberl and Wolfgang Puffitsch. Nonblocking real-time garbage collection. *ACM Trans-
REFERENCES

Spoto:2010:MSL

Serrano:2016:GH

Steimann:2010:TMI

Selakovic:2018:TGH

Spoto:2016:JSA

Spring:2010:RAI

Schoeberl:2010:WCE

Strom:2017:HLR

Stefanescu:2016:SBP

Samak:2014:MTS

Samak:2014:TDD

Sun:2017:AJP

Sawan:2018:RDC

Surendran:2016:APP

Sudarsan:2019:BDK

Stark:2001:JJV

Stark:2014:JJV

Su:2014:CEM
REFERENCES

1343–1354, August 2014. CODEN ????. ISSN 2150-8097.

[Srikant:2017:CVU]

[Singh:2013:TGC]

[Saini:2018:CNC]

[Sciampacone:2010:EMS]

[Stone:2015:WMT]

[Stark:2010:BIA]

[Sayed:2018:ITI]
Bassam Sayed, Issa Traoré, and Amany Abdelhalim.

SUBRAMANIAM:2011:PCJ

SUN:2018:RAR

STEINDORFER:2015:CSM

STEINDORFER:2015:OHA

STEINDORFER:2017:TSP

STEINDORFER:2018:MOA

SILVA:2017:ICL

REFERENCES

2017. CODEN ????? ISSN 2047-7473 (print), 2047-7481 (electronic).

[TAF+18] Ibrahim Tanyalcin, Carla Al Assaf, Julien Ferte,

[François]

[Taibi:2013:ROS]

[Tarau:2011:IST]

[Tosch:2014:SPA]

[Tomescu:2017:CEN]

[Teodorovici:2012:BRC]

[Thomson:2015:LHB]
REFERENCES

2012. CODEN SFENDP. ISSN 0163-5948 (print), 1943-5843 (electronic).

35:1–35:??, March 2015. CODEN ???? ISSN 1539-9087 (print), 1558-3465 (electronic).

REFERENCES

Toledo:2012:AJA

Topley:2011:JDG

Toffola:2015:PPY

Taboada:2013:JHP

Taboada:2011:DEJ

Takikawa:2012:GTF

REFERENCES

Toledo:2011:ACJ

Taboada:2011:DLC

Taboada:2012:FMS

Tatsubori:2010:EJT

Torlak:2010:MCA

Tardieu:2012:WSS

Toegl:2012:SSJ

[TWNH12] Ronald Toegl, Thomas Winkler, Mohammad Nau-
REFERENCES

man, and Theodore W. Hong. Specification and standardization of a Java
Trusted Computing API. Software—Practice and Experience, 42(8):945–965,
August 2012. CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (elec-

Titzer:2010:ICR

[TWSC10] Ben L. Titzer, Thomas Würthinger, Doug Simon, and Marcelo Cintra. Im-
proving compiler-runtime separation with XIR. ACM SIGPLAN Notices, 45(7):
39–50, July 2010. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print),
1558-1160 (electronic).

Tenger:2010:TPA

performance analysis tool for Java applications running on multicore systems.
DEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic).

Urma:2015:JAL

[UFM15] Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft. Java 8 in action: lambdas,
streams, and functional-style programming. Manning Publications, Green-
QA76.73.J38 U76 2015. URL http://proquest.safaribooksonline.com/
?fpi=9781617291999; http://proquest.tech.safaribooksonline.de/
9781617291999.

Ugawa:2010:IRB

incremental garbage collection for embedded systems. ACM SIGPLAN Notices, 45(8):
73–82, August 2010. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print),
1558-1160 (electronic).

Ugawa:2014:ROP

processing in on-the-fly garbage collection. ACM SIGPLAN Notices, 49(11):
59–69, November 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867
(print), 1558-1160 (electronic).

Upadhyaya:2010:UDS

[Gautam Upadhyaya, Samuel P. Midkiff, and Vijay S. Pai. Using data structure knowl-
dge for efficient lock gen-

Vilk:2018:BAD

Villazon:2010:ARA

Villazon:2010:HCA

Vidal:2016:ECJ

Villazon:2011:CAW

Vidal:2016:UAE

References

Vidal:2018:ARB

VanderMerwe:2012:VAA

Viotti:2017:HRH

VanLoan:2010:ITC

Vega-Gisbert:2016:DIJ

Vikas:2014:MGA

REFERENCES

[102x681] REFERENCES

(Continued)

†[170] (print), 1943-5843 (electronic).

Varier:2017:TNJ

K. Muraleedhara Varier, V. Sankar, and M. P. Ganga-

VanNieuwpoort:2010:SHL

Vechev:2010:PPC

Wijayarathna:2019:WJC

Wurthinger:2011:SAR

Walker:2012:SNJ

Henry M. Walker. SIGCSE by the numbers: JavaScript. *SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education)*, 44(1):8, January
2012. CODEN SIGSD3. ISSN 0097-8418 (print), 2331-3927 (electronic).

Wang:2018:PBJ

Wang:2019:DEJ

Wilcox:2018:VVH

Wagner:2011:SJV

Wagner:2011:CMM

Wu:2011:RTS

Peng Wu, Hiroshige Hayashizaki, Hiroshi Inoue, and Toshio Nakatani. Reducing trace selection footprint for large-

Wimmer:2013:MAV

Wellings:2012:AEH

Wang:2017:JRJ

Wade:2017:AVJ

Wang:2019:TRC

Wimmer:2010:AFD

1544-3566 (print), 1544-3973 (electronic).

Wendykier:2010:PCH

Witman:2010:TBR

Westbrook:2010:MJM

Watt:2019:WW

Wimmer:2019:IOS

Wehr:2010:JBP

Wehr:2011:JIT

Wu:2018:EBJ

Xu:2019:EEG

Xi:2012:MDA

Xu:2010:FLU

Xu:2014:SRB

Xuan:2017:NAR

Xu:2010:DIU

Xu:2013:PML

Xue:2012:RJC

Xue:2019:ASC

Xie:2013:AAE

Yang:2012:MPD

Yi:2015:CTC
Jacheon Yi, Tim Disney, Stephen N. Freund, and

Yang:2013:CPP

YHY13

Yoo:2014:WRR

Yang:2019:MGL

YKM17

Yessenov:2017:DAD

Keun Soo Yim, Iliyan Malchev, Andrew Hsieh, and Dave Burke. Treble: Fast software updates by creating an equilibrium in an active soft-

REFERENCES

[ZBB15] Yudi Zheng, Lubomír Bulej, and Walter Binder. Accurate profiling in the presence of dynamic compilation. ACM SIGPLAN No-
REFERENCES

Zhang:2017:ACE

Zhang:2019:DSJ

Zhang:2015:SYB

Zeuch:2019:AES

Zschaler:2014:SJF

Zuo:2016:LOF
Zhao:2012:PTI

Zhang:2015:LOS

Zhang:2012:RAJ

Zacharopoulos:2017:EMM

Zheng:2016:CMD

Zhao:2013:INT

Zhang:2014:HTB

Zakkak:2014:JJM

Zibin:2010:OIG

Zerzelidis:2010:FFS

Zhu:2013:EAZ

Zhu:2015:APL

Zhao:2014:CSP

Zhijia Zhao, Bo Wu, Mingzhou Zhou, Yufei Ding, Jianhua Sun, Xipeng Shen, and Youfeng Wu. Call sequence prediction through probabilistic calling automata. *ACM SIGPLAN
REFERENCES

Zhang:2016:NVC

Zhou:2019:AJM

Zhang:2012:SRB

Zhang:2013:IMF