Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

3 [DiP18b, FLZ+18, GBC12, JEC+12, ZXL16].
-core [PLL+18]. -safety [SD16b].
/multi [Taf13]. /multi-threaded [Taf13].

'12 [Hol12]. 12th [Fox17a].
2015 [LSBV17]. 27th [KP15].
5 [KHR11].
6 [Jen12].
7 [Ano15, EV13, J+12]. 75 [HWM11].
8 [BKP16, LYBB14, SAoB+16, UFM15].
9 [LSBV17]. 938 [Gun14]. 978 [Ano15].
978-1-4493-1103-2 [Bro12].
978-1-4919-4946-7 [Ano15]. 9th [Gve13].
Abbreviated [SRTR17]. ABS [SAdB+16].
absence [AGH+17].
Abstract
[AGR12, BDT10, DLR16, KPP12, XMA+14, DLM10, DLR14, FSC+13, KMMV14, NSD17, SK13].
Abstraction
[BW12, Bro12, GI16, SKKR11, PL12, ZMG+14, ZFK+16].
Abstracts
[NYS12, RFBJ14, UIR15, SPP+10].
accelerated [PQTGS17].
Accelerating [KMZN16, ZLBF14].
accelerator [OIA+13].
accelerators [PWA13].
Access
[CSGT17, HBT12, TT11, TNTN12, BB17, KT14, MM10, RHN+13, XHH12].
Accessibility
[STST12, VBMDP16].
Acculock [XXZ13].
accuracy [MDHS10].
Accurate [Jaf13, RRB17, ZBB15, XXZ13].
ACDC [AHK+15].
ACDC-JS [AHK+15].
across [DD13, DFR13, HLSK13].
action [KB17, UFM15].
Actor [RCB17].
actors [Sub11].
Ada
[Car11, Sch10a, WCB16].
Adaptable
[ADI13].
Adaptation
[VBAM10a].
Adapter
[SK12].
Adaptive
[AFG+11, IHW12, NFV15, RXK+17, CL17, PKO+15, PDP+16, VBAM10b].
add [DLM10].
adding [MZC10a].
addressing [GD10, VBMDP16].
Adequate
[GGZ+15].
ADiJaC
[SD16a].
Adoption
[WB13].
Adrian
[Ngo12].
Advanced
[Hor11, VBAM10a, dM18, Jen12].
Advances
[FHP+12].
Adversarial
[FF10].
Aegis
[Nil12a].
Éminium
[SNS14].
affects
[LO15].
affordable
[BM14].
Agent
[AFGG11, PE11, RVP11, Den18].
Agent-Based
[PE11].
agent-oriented
[RVP11].
aggregates
[BCR1].
Agility
[Bro12].
Ahead
[BLH12, JMB12].
Ahead-of-Time
[JMB12].
Aided
[KP15].
air
[PS16].
Ajax
[MvDL12].
Ajax-Based
[MvDL12].
algebraic
[Lei17].
algebras
[IvdS16, ZCdSvdS15].
Algorithm
[YCYC12, ZW13, MT13, Por18, Gun14].
Algorithmic
[FHP+12].
Algorithms
[GT10b, Gra15].
Aliasing
[NS12].
alike
[DAA13].
Allocation
[CPST14, CPST15, OOK+10].
allocation-site-based
[CPST15].
Almost
[NWB+15, SC16].
alternatives
[SHU16].
Alting
[WBM+10].
always
[AL16].
Analyses
[Kri12, HB13, KMMZ16, PMP+16, ZMG+14].
Analysis
[AGM+17, CPV15, Hol12, KCD12, MvDL12, NS12, RDCP12, SGD15, SW12, SDC+12, SLES15, SLE+17, SR17, ZKB+16, AM14, Bra14, CFH+13, DHS15, GYB+11, HC14, HWM11, KSV+14, KT14, KvgS+14, KPP+18, LSBB16, LSBB17, LT14, MTL15, MKZ+14, MCC17, MB12, NSD17, NS13, PIR17, Puf13, RLBB10, RBB17, SPPH11, SMBB11, SBK13, SP10b, TLX17, TX+10, TLM13, TL17, TPG15, ZM14, ZSS15, CH17].
Analytics
[BBB+17, KB17, STGC13].
analyzer
[Fer13, GN16, SMP10].
Analyzing
[PLL+18, BTR+13, PSNS14].
Android
[CNS13, MMA+12, STY+14, THC+14, ZHL+12, ZKB+16, vdMvdMV12].
Ann
[CSDL16].
annotation
[CV14, KATS12].
annotation-based
[KATS12].
note
[CSDL16, GBS14].
announcement
[SPAK10].
anomalies
[FRM+15].
answering
[KM10].
any
[FIF+15].
anytime
[STGC13].
anywhere
[STGC13].
AOP
[WAB+11].
AOT
[WKJ17].
Apache
[CJ17, FRM+15].
apart
[LF12].
API
[FH16, MPM+15, TWHN12, YKSL17].
APIs
[HBS16, RDP16, Sam12, SRB18, VM10].
app
[Ngo12, Sta10].
Apple
[Ano13].
Application
[BH12, CCA+12, KF11, KB11, LZ12, RDCP12, RLM15, SWF12, AYZI10, AAB+10, AO11, Del13, FGRPLF+12, HWLM11, LFB12, ONY+13, SE12, WAB+11, XHH12, HD17].
Application-Aware
[LZ12].
Application-Replay
[BH12].
Applications
[GMP12, GD12, MAHK16, MvDL12, MAHK16, MvDL12, MAHK16, MvDL12, MAHK16, MvDL12].
MMP15, NKH16, NWB+15, OwKPM15, SLES15, WBA+11, AMT17, AST+16, AC16, AMWW15, ADI13, ABFM12, DSEE13, BOF17, BBXC13, EABVG14, GMC+13, HLO15, JH11, MTL15, MZC10a, MZC10b, PLR14, PKC+13, RHSD15, R+13, RVP11, RW17, Ryu16, Sch10b, SAdB+16, SGV12, SP+10, TXW+10, WHIN11, vdMvdMV12.

approachable [WHV+13]. approaches [GD10, MD15, SS14]. approximate [CNS13]. Approximation [RvB14]. Approximations [SS12]. apps [BM18, CNS13, MMP+12, Ngo12, Sta10]. Architectual [CSGT17, KKK+17].

automata [TLX17, ZWZ+14]. Automated [BH17, BSOG12, BMOG12, MS14, RGEV11, SMD12, AsdMG14, MRMV12, ZFK+16].

axiomatic [TVD10].

BeagleBone [Ric14]. before [TD15]. begone [MRMV12]. behavior [LWB+15, RLBV10, TABS12, WXR16].

atomics [PPS16]. atomic [WAB+11]. atomicity [GGRSY17, JLP+14, BHSB14, BNS12, GGRSY15, UMP10]. assertions [VYY10]. assertion [MM12].
Combating \cite{NWB+18}. Combination \cite{BSA14}. Combinatorial \cite{YHY13}. combinators \cite{MHBO13}. Combining \cite{BDGS13, MG17}. commensal \cite{BRWA14}. Commercial \cite{ZMM+16}. commodity \cite{BK14}. Common \cite{PiLCH11}. Communication \cite{JQJ+16, RTE+13, SK12, BJBK12, ETR+15, TTD+11}. communications \cite{ETTD12, RETT15, TTD12}. Communities \cite{ZMM+16}. Compact \cite{HWM10, HWM11, JJJL17}. Comparative \cite{KB11, KFBK+15, SSL18}. comparing \cite{MD15}. Comparison \cite{BK16, ADI13, BJBK12, HH13, KVRRH14, SMS+12}. Comparisons \cite{GGZ+15}. Compartmental \cite{WG+11}. compatibility \cite{DJB16, OIA+13}. compatible \cite{ABCR10, Hor12}. Compilation \cite{DR16, CGJ+16, CM+12, DLR14, FSC+13, IHWN12, JLP+14, JK13, JMO14, KS13, KHL+13, Lei17, MD15, MG17, ZBB15}. compiled \cite{NED+13, RO12, TMVB13}. Compiler \cite{JMB12, Loc18, NHH16, NWW+15, BBF+10, BRWA14, CIAD13, HWM14, IHWN12, KML15, KS14, KC12, LSWM16, MDM17, Rub14, TTS+10, TWSC10, VB14b, ZYZ+12}. compiler-compiler \cite{KS14}. compiler-runtime \cite{TWSC10}. compilers \cite{Hos12, LMK16, RSB+14}. Compiling \cite{Fee16, Hos12}. complementation \cite{BS13}. Complete \cite{BO13, BR15, JC10, Sch14, Gri17, PS15, RGM13, RRB17}. completeness \cite{KBP17}. completing \cite{BS13}. completion \cite{FH16}. Complexity \cite{SSH17}. Compliance \cite{GD12}. compliant \cite{MZC10a}. component \cite{AST+16, CSKB12, GT10a}. component-based \cite{AST+16, GT10a}. components \cite{BMSZ17, FOPZ14, KS14}. Composable \cite{SS10}. Composing \cite{EABVGV14}. Composition \cite{SK12, AGH+17, AH10, SZ10, VM15}.

\cite{WBM+10}. \textbf{CICS} \cite{R+13}. \textbf{CIL} \cite{BBF+10}. circular \cite{Gun14, SZ10}. \textbf{Circus} \cite{ZLCW14}. City \cite{Hol12}. Class \cite{BS13, CSF+16, NCS10, CSKB12, HC10, MM10, SC16, SM12, TSD+12}. Classes \cite{And14, SVB+17, WT11, CZ14, CS12, SZ10, TSD+12, VBDP16}. Classifies \cite{SD+16a}. classification \cite{SS14}. Classifiers \cite{BSA14}. Classifying \cite{MH10}. Classless \cite{WZdSOS17}. clicker \cite{HA13}. Client \cite{MS14, OBPM17, CH17, KR16}. Client-Side \cite{OBPM17, KR16}. Client-State \cite{MS14}. clients \cite{SRB18}. Clojure \cite{ECG12, FH11, VS10}. Cloned \cite{SSL18}. Closing \cite{ZLHD15}. Closures \cite{BO11, BO12, BO13}. Cloud \cite{VDV17, GCC18, LZY16, TLMM13}. cloud-based \cite{GCC18}. clustered \cite{PDPM+16}. clustering \cite{MK12, MKK+13}. clusters \cite{TRTD11}. Cocoa \cite{Sta10}. Code \cite{BH17, BNE16, HC11, MM16, RVK15, RLMM15, SRT17, SVB+17, SV15a, SED14, AGR17, AK13, CCF15, DRN14, FH16, FMS+11, IS18, LVG10, MKK+12, MKK+13, NG13, OJ12, PMP+16, PSG11, RFJ14, RBV16, RO12, SSK13, Tai13, UTO13, VSG17, WJK17, WGF11, WAB+11, WWS13, ZHL+12, ZX16, ZWS15}. coding \cite{LMS+12}. \textbf{Coffin} \cite{Teo12}. coherent \cite{ZP14}. Cohesion \cite{RC17}. Cold \cite{BZD17, WGF11}. collected \cite{AGGZ10}. collecting \cite{AHK+11}. Collection \cite{ASV+16, GMD12, QS+16, ST15, BP10, BOF17, KPH11, KBL14, NGB16, ODL15, PZM+10, PDPM+16, SP10a, SBM14, SIE10, SJBL10, SKBL11, UIY10, UJR14}. Collections \cite{GS12, Lou10a, Lou10b, PL12, SV15b, SV17}. collectives \cite{RTT15, TRTD11}. Collector \cite{BH12, GT5+15, BCR13, BGV14b, Puf13}. Collectoreen \cite{Sch13}. collectors \cite{GTSS11, Sch13}. coloring \cite{SS10}. Colt \cite{BKP16, WN10}. CoMA \cite{AGR12}.

\cite{BH12, GT5+15, BCR13, BGV14b, Puf13}. Collectoreen \cite{Sch13}. collectors \cite{GTSS11, Sch13}. coloring \cite{SS10}. Colt \cite{BKP16, WN10}. CoMA \cite{AGR12}.

D

DiP18b, FLZ‡+18, GBC12, JEC‡+12, ZXL16]. DAA [DR10]. Data [Bra14, BMOG12, BA17, GM12, GTS‡+15, GT10b, NKH16, NWB‡+15, NWB‡+18, TAF‡+18, dMRH12, BK14, BB17, BOF17, BBXC13, BJBK12, CDTM10, CRP‡+10,
Dynamo [BDB11].

e-Science [SGV12]. ease [DRN14]. Easy [Jaf13, CRP+10]. economic [CSV15].
Editorial [Fox17a]. Editorials [Fox17b, HTW14, RHT13]. EDSLs.
Educator [BA17]. EE [Jen12, MCC17]. Effect [JK11, CCFB15].
Effective [BMR14, PTML11, RD15, CSdL16, KPP+18, Kie13].
effectively [UR15]. effects [FH16, HAW13, Lei17].
Efficient [DVL13, GPT12, HWM11, HB13, KT14, KW10, OOK+10, RSP+15, RFBJ14, SMN+12, TLX17, TD17, AK13, BHS14, CRP+10, ETR12, HWM10, KK11, MRA+17, MSM+10, Sie17, SGV12, SWB+15, SV5a, TRTD11, UMP10, VWJB10, XXZ13].
efficiently [FBH17, BKC+13, FOPZ14].
Einsatzszenarien [Sch13]. Einsteller [Ric14].
Elektronik [Ric14].
Elektronik-Projekte [Ric14].
Elephant [RGM13]. Elimination [RKN+18, GvRN+11]. elision [NM10].
Elliptic [GPT12], Eloquent [Hav11].
enmass [Por18].
Embedded [Fox17b, HTW14, JMB12, KARO12, PAU14, SLES15, SLE+17, TKL+15, VK12, Dei10, Fox17a, GMC+13, HTLC10, KHR11, LMK16, LTK17, OIA+13, RHT13, SC16, SDH+17, SFR+14, UIY10, Xue12, ZY+12].
embedding [KMLS15, SC16]. Empirical [LSBV16, LSBV17, SS13, WXR16, BJBK12, FH16, HH13, KPP+18, MHR+12, NCS10, SH12, Tai13, VBPM16, VBMDP16].
Employing [CC15]. Emscripten [Zak18].
emulated [THC+14]. emulator [KS13].
Enabled [GPT12, DR10, ETR+15, RBL12, SGV12].
encapsulation [DDM11]. End [GM12, DAA13]. End-to-End [GM12].
end-user [DAA13]. energy [CL17, PCL14].
energy-aware [CL17]. enforcement [IF16].
enforcing [JWM15].
engineering [MGI17, Ngo12, OUY+13, Tar11, Ngo12].
Engineer [CCA+12, GT10a, VFI10].
environments [Bra14].
engine [KRH16, SSG+14]. enhanced [LMK16, WBA+11].
Enhancing [BDT10, BVGVEA13, DsCG12, HC10].
Ensuring [HDK+11].
Enterprise [Ano14, AAB+10].
entities [ETR12]. Entry [BK12].
enumeration [SSH17].
Environment [Kol10, PTML11, EKR+12].
environments [EABV14, GTL+10, HOKO14, KFI11, RDP16, RCB17, SGV12].
equality [GRF11]. Equivalence [BO12].
equivalent [TLX17].
equivocation [TD17].
ERAM [Sch10a]. Erratum [HWM11].
error [eBH11]. ES5 [DFHFI5].
Escape [SLES15, SLE+17]. Essential [Ngo12].
estimation [LMK16].
etched [VSG17].
Ethereum [Dan17].
eval [Mil13, MR1MV12].
Evaluating [BGK17, BLH12, MDHS10].
Evaluable [CSZ17, BKC+13, FOPZ14].
evaluation [BGK17, BLH12, MDHS10].
Event [KW11, MV16, BBP13, KW10, MTL15, WK12, YP10].
event-based [BBP13, YP10]. event-driven [MTL15].
EventBreak [PSNS14].
ever [Gra15]. everyone [Hor12].
Evolution [CC15, GMP12, Mei14, JK11, MAH12, NCS10, WBA+11, WBA+11, WWS13].
Evolving [ZZK13]. Exact [ZW13].

Examples [BNP11, Del13]. Exception [LT14, ECS15, HWM14, LT11].

Exceptionization [YMK17]. Exceptions [ASF17, AdCGGH16, HdB17, SMN12, ZBB17]. Execution [NNTK17, OwKPM15, SWMV17, JHL17, JiEd11, LLI13, MRF12, RCB17, SPP10].

executions [ASdGM14, PPS16, STR16]. Executives [RS12].

Exemplar [ZW13]. Exhaustive [DHS15]. Exhibitionism [VBMDP16]. Existential [BT16].

Exogenous [BMSZ17]. Experience [ABMV12, OW16, Sch10a, CBLFD12, TRE13, WT10].

Experiment [BKP16, MDS17, HWLM11]. Explicit [NGB16].

Exploit [Ano13]. Exploitation [SSMGD10].

Exploring [JK13, JWMC15, SE12]. Exploratory [BKP16, ECS15].

Explorer [FWDL15]. Exploring [JK13, JWM15, SE12]. exposed [VBDM16].

Express [JQJ16]. Expression [NS12, PIR17]. expressions [GG15, MKTD17]. expressive [VYY10].

Extended [DDDF17, FGR12, FLL13, JC10, LMK16, PDP16]. Extending [AC10, BVGVEA11a, LPA13, PTHH14].

Extensible [ZvdS17, ER14, KMS15, MHBO13].

Extension [RS12, LE16, MLGA11, PDMG12].

Extensions [MPR12, Zha12]. Extensive [Wan11].

Extracting [CCA12, KM10].

Extremal [LT12].

Eye [RLMM15, Guy14]. Eye-Tracking [RLMM15].

F [GMT14, TTD12]. F-bounded [GMT14].

F-MPJ [TTD12]. FAA [Sch10a].

FAÇADE [NBW15]. face [XHH12].

Facebook [Ano13]. Facets [ASF17, AF12].

facilities [BVGVEA11]. FAD.js [BB17].

familiarized [Ame13]. family [KHM11, KvetR14]. family-based [KvetR14].

Fast [CVG17, CSGT17, HyG12, SBM14, SLF14, Zak18, BB17, KMMV14, KCP17, MDM17, MHBO13, SV15a]. Faster [BMDK15, JC10, AJL16]. fault [RBL12].

Faults [SRTR17, KPP18, ZZK13].

Feathering [RvB14].

Feature [AH10, KvRHA14, OJ12]. feature-based [KvRHA14].

Features [MKK12, MKK13].

Feedback [NED13, NG13, WM10]. Feedback-directed [NED13, NG13, WM10]. fields [PQTGS17].

Fine [BVGVEA11, DRN14]. fine-grained [DRN14].

Fingerprints [MSSK16]. Finite [BH12]. Finite-State [BLH12].

first [SC16, TSD12]. first-class [SC16, TSD12]. fix [TPG15].

Fixing [SRTR17, LTZ14]. flexibility [SBF10].

Flink [LTZ14]. Floating [Jaf13, AJL16].

Floating-Point [Jaf13, AJL16]. Flow [ASF17, FHSR12, LMK16, S11, AdCGGH16, AF12, ABFM12, BK14, FWDL15, HBS16, KHL13, LSWM16, PMTP12].

Flow-sensitive [LMK16]. FlumeJava [CR10].

fly [UJR14]. folding [CP14].

Footprint [GS12, WHIN11]. Forecasting [CC15]. foreign [LWH11]. forge [Ler10].

fork [MCC10a]. fork/join [MCC10a]. form [GK15].

Formal [DLPT14, KR12, SW12, HD17, PSR15]. S11. formalised [CWW13].

Forsaking [GBS13]. FORSETI [CSV15]. Forward [FOPZ14]. Foundation [CJ17].

Four [MSS10]. FPGA [OY13].

fragmentation [PZ10]. fragmentation-tolerant [PZ10].

fragments [OA17]. frames [SJPS10].

Framework [CCA12, Den18, FFF17].

Framework [CCA12, Den18, FFF17].
Local-Mathematical functions [HC13, Teo13, Gve13]. Fundamentals [HC13, Teo13, Gve13].

Functional-genetics [Wam11, Ame13, BVGVEA11b, NFV15, UFM15, Bro12].

Functional-style functions [LSBV16, LSBV17].

Functional-genetics [Wam11, Ame13, BVGVEA11b, NFV15, UFM15, Bro12]. functional-style functions [LSBV16, LSBV17].

Full [SRTR17, DRN14]. Full-Word [SRTR17]. Fully [FSC+13, PG12, ZFK+16].

Full [SRTR17, DRN14]. Fully [FSC+13, PG12, ZFK+16].

Functional [Wam11, Ame13, BVGVEA11b, NFV15, UFM15, Bro12]. functional-style functions [LSBV16, LSBV17].

Functional-genetics [Wam11, Ame13, BVGVEA11b, NFV15, UFM15, Bro12]. functional-style functions [LSBV16, LSBV17].

Fusing [MS13, ETR12, WM10]. fusion [KBPS17]. future [SS16]. fuzzer [Guo17].

Game [MT14, Wan11]. Gap [PVB17, ZLHD15]. Garbage [ASV+16, BH12, GTS+15, QSaS+16, Sch13, SKBL11, AGCZ10, BCR13, BP10, BVGV14b, BOF17, GTSS11, KPHV11, KBL14, NGB16, PZM+10, PPFM+16, Puf13, SP10a, SBM14, Sic10, SJBL10, UIY10, UJR14].

garbage-collection [Sie10].

GC [NGB16, RGM13]. GEEMs [BSMB16].

general [CHMY15, EKUR10]. generalized [WT10].

generate [CS12].

generators [SLF14].

generic [DDM11, Fer13, HH13, ZPL+10, eBH11].

generics [AS14, Gri17, PBHM13]. Genetic [VCYJ12, MT13].

Genotype [VCYJ12].

GeoGebra [ABK+16].

geosciences [MCY+10].

Geospatial [CH17]. German [Sch13].

get [Ame13].

Getaway [SLES15, SLF+17].

Gets [BH12]. getters [Mii13].

Giga-scale [DHS15]. glimpse [SP16].

Glotaran [SLS+12]. go [LWB+15].

Goldilocks [EQT10].

Google [Ngo12, MG17, Sam12].

GPGPU [PQTGS17].

GPU accelerated [PQTGS17].

GPU [PKO+15].

GPUs [Hos12]. grade [CRJ+10].

Gradual [RSF+15, SFR+14, TSD+12, Sie17].

grained [DRN14].

grained [DRN14].

granularity [CZ14].

Graph [dMRH12, BS13].

Graphical [SLS+12].

Graphics [Cec11, LLL13].

graphs [AdCGGH16, DSEE13, JWM15, PULJ16].

green [BRGG12].

Greenfoot [Ko10].

grid [GZV12, VWJB10, MZC10b].

Gridifying [MVC10b].

Grounded [EV13].

Growing [EKR+12].

growth [LDL14]. guarantees [JWMC15, ZHCB15].

GUI [CNS13, VGS14, WBA+11].

GUI-awareness [VGS14].

Guide [Ame13, OAK14, RUI14, Teo13, Top11].

Guided [CNS13, DiP18b, MMP15, GY16, PSNS14, SSS17].

Guidelines [GGZ+15, HILS13].

Handling [KW11, ECS15, HWM14, KW10, WK12].

Hands [CS17, Teo13].

Hands-on [CS17, Teo13].

happened [Han15].

happens [TD15].

happens-before [TD15].

hard [LTK17, Puf13].

Hardware [SKKR11, SP171, CBGM12, MZH12, SE12].

hard-wired [OYU+13]. harness [Kie13].

hash [SV15a, SV15b]. hash-array [SV15b].

hashing [GRF11].

HDFS [IRJ+12].

HDL [OYU+13].

health [EKUR10].

heap [CSV15, LDL14, TX17, Tar11, VYY10, YS10, BVGV10]. heap-manipulating [YS10].

Helping [RT14].

Hera [MS10].

Hera-JVM [MS10].

Herman [Kie13].

Heterogeneous [ASV+16, HHB+14, Rub14, AYX110, ABCR10, DFR13, MS10].

Heterogeneous-race-free [HHB+14].

Interpretation-Based [DLR16].

Interpreters [D’H12, KMMV14].

Introducing [Dan17, DMS11].

Introduction [CIAD13, CSZ17, HTLC10, HTW14, Lew13, RHT13, VK12, Hav11, VF10].

Introductory [BNP11]. intrusively [MZC10a].

Investigation [SS13, FH16, Tai13]. invited [Piz17, Sie17].

Invocation [SPAK10, BVGVEAFG11].

invocations [BVGV14a]. invokedynamic [OCFLI14]. Involvement [ZMM+16]. IP [TKL+15]. iPhone [Sta10]. IR [LSWM16].

Isolation [ZLB+13]. Issue [DVL13, HL13, HTW14, Puf13, VK12, Fox17a, HTLC10, HGCA11, RHT13].

iterations [DD13]. iterators [ZLBF14].

IVE [CRJ+10]. IVPs [KS15].
Just-in-Time
[DLR16, KHL+13, LMK16, MGI17, TTS+10].

JVM [AC16, AFG+11, CSS+16, Guy14, MS10, PVH14, R+13, RRB17, SV15b, Sub11, WKG17]. JVMs [BK14, ZY+12].

Knoernschild [Del13]. knot [LBF12]. know [DB16, Gra15, Han15]. Knowledge [KSPK12, UMP10]. known [Han15].

Kraken [Ano14].

Lake [Hol12]. lambda [MKTD17]. lambdas [UFM15]. landscape [Sve14].

Language [DLP14, GJS+13, GJS+14, GSS+18, JC10, KSPK12, MAHK16, Sev12b, SS13, ABCR10, CMM17, CSS16, DAA13, EKR+12, Fer16, GSS+16, Hos12, HWW+15, KRC14, LWH+10, LE16, MDM17, SC16, SZ10, SKR17, SNS+14, VB14a, WCG14, WWH+17, ZWSS15, dCMM12].

language-level [WCG14]. Languages [CSGT17, MSM+16, PTHH14, YKM17, AGGZ10, BCD13, CMS+12, EKK+13, ER14, FMBH15, Han15, HBT12, HJS+10, KRR+14, MSM+10, NED+13, PUL016, SPY+16, Zha12]. LARD [WCG14]. Large [BA17, AST+16, CCFB15, LSV16, LSV17, MDS+17, MCY+10, PTF+15, WHIN11].

Legally [Sam12]. length [SMP10]. Less [BNE16]. Level [AC16, SWU+15, EKUR10, Hos12, IHWN12, KBL14, LWCI17, MGI17, RFBJ14, TTD+11, VWJB10, WCG14].

Lexical [GN16]. Lexicon [TAF+18].

Libraries [BK12, RDCP12, BlvdS17, Cho14, EKR+12, FMTL14, PLR18, TTD+11].

Linux [Ric14]. Linux-basierte [Ric14].

Listener [JH11]. little [Han15]. liveness [LDDL14]. load [PDPM+16]. loaders [SM12].

Locators [SDM12]. Lock [FC11, NM10, NFV15, UMP10]. Lock-free [FC11, NFV15]. Locking [GGRSY17, JTO12, GGRSY14, GGRSY15].

Low-Budget [GM12]. Low-latency [ETR+15]. Low-level [WCG14].

Low-overhead [ZHCB15, ZFK+16]. low-utility [XMA+10]. lunch [DTLM14].

m [MZC10b]. m-JGRIM [MZC10b]. M2M [Pau14]. Machine [LYBB14, Ame13, CBLFD12, KS13, KC12, Piz17, SSGD10, WGF11, WHV+13, BZD17, LYBB13a, LYBB13b, LTK17, PTHH14, SSB+14a, Sch13, Set13, SMSB11,
SGV12, SSB01, SSB14b, UR15. Machines [AGR12, GTS+15, JK13, KRCH14, NK10].
macros [DFH15]. Magic [SP10b].
Magic-sets [SP10b]. Magnitude [BNE16].
Malicious [KCD12]. malleable [MZC10a].
malware [CSK17]. Managed [MAHK16, NWH+18, BM14, CBGM12, G1T+10, ZvdS17].
Managed-Language [MAHK16].
[Pay14, AHK+15, BVS+14a, BGS+13, EKUR10, HB13, KCP+17, KB17, Nil12b, PCL14, SWB+15, Tar11, WGW+11].
Mathematical [BW12]. Mathematics [dJM18]. MATLAB [Alt12, FBH17, PMTL14, VF10, Has12].
MCAPL [Den18]. me [LCW18, GM12, XHH12]. ME-Based [GM12]. mean [Rub14]. measurement [YW13].
Memory [BG17, JYK12, SM+16, NWB+18, SS14, ST15, AHK+11, AHK+15, AGGZ10, BSMB16, CWW13, DLZ+13, DVL13, FC11, FF10, GBY+11, HBB+14, HB13, KHL+17, KCP+17, KB17, Loc13, SM+10, Nil12b, OMK+10, RW17, SM+12, SMN+12, SWB+15, SV15a, Tar11, TVD10, WGW+11, XR13, ZP14, ZHCB15, ZBB17]. MemSAT [TV10]. merge [ABC18]. Mergesort [LL15]. merging [TLX17]. Message
[KK11, ETTD12, TRTD11, TTD12, UR15]. message-passing
[ETTD12, TRTD11, TTD12, UR15]. messages [eBH11]. meta [MD15, SZ10].
meta-circular [SZ10]. meta-compilation [MD15]. metadata [DV13]. MetaFJig [SZ10]. metaheuristics [DDDF17].
metaprogramming [PS11]. Method [AC16, BVS+14a, BDG14, GY16, HAW13, Loc13, LSD14, MLL17, SM+10, PSS11, RR14, RB16, RAS16, RDF15, SM+12, SS+14, Tai13, WJB10, ZP14, ZXL16].
Method-Level [AC16]. Methods
[MM16, Pau14, VBZ+18, Bra14, GRF11, LSVB16, LSVB17, SSL18]. Metrics
[KB11, JK11, SSK13, Sch13]. Metriken
[Sch13]. Microscopic [RX+17].
Microsoft [Ano13]. Middleware
[RTE+13, HOKO14, HWL11, MZC10b]. middleweight [IF16, MT14]. midstream
[SSG+14]. Migrating [AST+16, CDM10]. Migration [OwKPM15, Fee16]. migrations
minute [DHS15]. minutes [BTR+13].
misconfigurations [MCC17]. Mismatch
[YCYC12]. misses [IN12]. Missions
[WC16]. Mistakes [BA17]. Mitigating
[BGS+13, KC12]. mixed [CL17]. Mobile
[GM12, GPT12, MV16, XHH12, GGC18, KF11, MZC10b]. Model
[CSF+16, CDG+17, CCA+12, DLR16, FSK12, JYK12, Loc18, MM+16, MLC17, MV16, BVS+11a, CHM13, CWW13, CV14, CS12, CBK12, DLZ+13, FLZ+18, HY16, HAW13, Loc13, LSD14, MLL17, SM+10, PS11, RR14, RB16, RAS16, RDF15, SM+12, SS+14, Tai13, WVB10, ZP14, ZXL16].
Model-Aware [JYK12]. Model-based
[MCC17, PS11]. model-driven [CHM13].
Modeling
[GBC12, JC10, KSPK12, LDL14, Rey13, SM12, CR+12, SKR17, TLX17, ZvdS17].
Object-Oriented [GS11, KB11, RC17, PTHH14, AST+16, DDF17, MBHO13, VM10, ZDS14, hEYJD12]. Objective [Sta10]. Object-Oriented-Constraints [FMBH15].

Objective-C [Sta10].

Object Oriented [BS12, RKN+18, MHL15, SK13, WXR16, BVGVEA10]. Observations [AAB+10].

OCTET [BKC+13]. odeToJava [KS15].

offloading [ZHL+12]. on-demand [ZHL+12]. on-the-fly [UJR14]. ones [AST+16].

Online [NG13, GGC18, HCV17, NK10]. only [NM10].

Ontology [KSPK12]. OoOJava [JhED11].

Open [BSA14, GD12, ABC18, CJ17, EKUR10, JK11, Tai13, VGRS16]. Open-Source [BSA14, ABC18, Tai13].

optimisation [PPS16]. optimistic [WGF11]. Optimization [LTD+12, YKM17, AGF+11, DDB11, DDF17, JMO14, KS13, KC12, NG12].

Optimizations [DR10, BB17, CPST15, DS16, NG13, SADB+16]. Optimizing [SV15b, YRHB13, HWW+15, KRH16, MD15, ZLB14].

optional [CMS+12].

Oracle [LMS+12, Sam12]. ORB [OUY+13].

Order [SGD15, JhED11, KT15, TD15]. ordering [KC12]. Orders [BNE16].

Over-exposed [VBDM16]. overhead [BCR13, ZHCB15, ZFK+16]. overlay [CDTM10]. Overloading [PQD12].

overview [Nil12b]. own [MPM+15].

Ownership [ZPL+10, BDGS13, DDM11].

PaaS [ZLHD15]. Package [SLS+12, CRAT+12, MB12, OW16, AK13].

Packages [PLCH11]. panic [Ano12].

Paper [DDDF17, PDP+16, SV15a].

Papers [DVL13, HL13, LMK16, Fu13].

Parallel [DS16, Esq11, LLL13, MKG+17, NKH16, QSaS+16, RD15, RSI12, BP10, BBP13, BMB16, CRP+10, NG12, NG13, PMHM15, Sie10, SZ11, TTD12, Ta13, VYY10, BKP16, WN10]. Parallelisation [GS11]. Parallelism [NKH16, BENS12, HHSS13, MZC10a, RSHD15, TWL12, ZLB+13].

parallelization [SS16, YRHB13]. parallelize [LPA13]. Parallelizing [NKH16, hEYJD12]. parameters [GBS14].

Parametric [AGGZ10, PUL016, UTO13].

Partitioning [AD16, BS12]. party [FOPZ14, IVG10]. passing [ETTD12, TRTD11, TTD12, UR15]. Path [SGD15, DD13, HHSS13, SMP10].

path-length [SMP10]. Path-Sensitive [SGD15]. pathfinder [KPP12, CS12, MPRI12, NNTK17, PdMG12, SM12, vdMD16, Den18, RR14]. patient [EKUR10]. patient-level [EKUR10].

perceptible [JH11]. Perfect [SLE+17].

Performance [CSZ17, CCH11, DR10, GBC12, Hol12, HJ12, MSM+16, Oak14, OCFL14, QSaS+16,
TRE¹+13, TPG15, THC¹+14, WN10, ACS¹+14, AAB¹+10, BRGG12, BRWA14, CBGM12, Dei11, GSS¹+16, HWI¹+12, IRJ¹+12, JH11, Ngo12, ODL15, PSNS14, SE12, TTD¹+11, TWX¹+10, WHIN11, WHH¹+17, Zak10.

performance-guided [PSNS14].

Platforms [AFG11, PE11, BD17, CRJ¹+13].

pointers [RKN]. Point [Jaf13, AJL16].

Pointers [BK12, SDC¹+12, DHS15, SBK13, TLX17]. Points-To [SDC¹+12, DHS15, SBK13, TLX17]. Policies [FHSR12, MPS12, BVGV¹4a]. policing [DW10]. policy [JK13]. polyglot [EV13].

Polymorphic [Zha¹2]. polymorphism [GMT14, PULO16, UTO¹3]. POPL [BCR13]. Popular [Has12, SRB18].

Popular-but-Seemingly-Dissimilar [Has12]. portable [BM18, LTK¹7, RGM13].

Principles [HGCA11, JEC¹+12, VM¹0].

Proactive [CL¹7, BGS¹+13]. PROB [YP¹0].

Probabilistic [RB¹6, GY¹6, ZWZ¹+14].

Problem [YHY¹3, ZW¹3, J¹+12, KC¹2]. problem-solution [J¹+12]. problems [TPG¹5]. Proceedings [Hol¹2, KP¹5].

Process [SK¹2, AGR¹7, GT¹0a]. Processes [BMDK¹5]. Processing [LIL¹3, WN¹0, SBK¹3, SSG¹+14, UJR¹4].

Processor [TLK¹+15, Pu¹3, SPPH¹0, SMN¹+12].

Processors [ASV¹+16, MKG¹+17].

producers [DAA¹3]. product [BTR¹+13, KATS¹2, KvRHA¹4, SV¹7].

profilers [MDH¹0]. profiling [DD¹3, JH¹1, KR¹6, NK¹0, RCB¹7, SSB¹+14a, STY¹+14, THC¹+14, XR¹3, ZBB¹5].

Program [BGK¹7, KKW¹4, RVK¹5, RT¹4, ZKB¹+16, AO¹1, DS¹6, GMS¹2, HC¹4, JJL¹7, JWMC¹5, KM¹0, KMSN¹6, MKZ¹+14, NS¹3, Sch¹0a, SPY¹+16, Tai¹3, TABS¹2, WGF¹11, ZMG¹+14].

Programmable [OA¹7, AZZ¹0].

Programmers [Eso¹1, RLMM¹5, Rau¹4].

Programming [AFG¹1, ABMV¹2, BCR¹1, Bro¹2, BA¹7, DLPT¹4, HWM¹1, HGCA¹1, Köl¹0, KS¹K¹2, LM¹5, McK¹6, PTML¹1, RSI¹2, RB¹5, SS¹3, Sub¹1, Alt¹2, AMWW¹5, BCvC¹+13, BMRI¹4, BSMB¹6, BRWA¹4, CL¹7, ECG¹2, EV¹3, FMBH¹5, Han¹5, HA¹3, Hav¹11, Lew¹3, MSM¹+10].
MvH15, OW16, PTF+15, RVP11, RFBJ14, SNS+14, SGG+17, TB14, UFM15, VWJB10, VBAM10b, Wan11, WRI+10, WBA+11, ZWSS15]. Programs
[AGR12, BH17, BR12, BMG12, GS11, JB12, LTD+12, STST12, SS12, SDM12, SR17, XMD+17, ZLCW14, ASiMG14, AdCGGH16, BA12, BNS12, DJLP10, ECS15, ES14, EP14, Fer13, HL13, IN12, LO15, LPA13, MRV12, NG12, OJ12, PL12, RR14, RAS16, RLBV10, SMS+12, SZ11, SJJ10, SHU16, Ta13, YS10, dCMMN12, hEYJD12].

Programs
[AGR12, BH17, BR12, BMG12, GS11, JB12, LTD+12, STST12, SS12, SDM12, SR17, XMD+17, ZLCW14, ASiMG14, AdCGGH16, BA12, BNS12, DJLP10, ECS15, ES14, EP14, Fer13, HL13, IN12, LO15, LPA13, MRV12, NG12, OJ12, PL12, RR14, RAS16, RLBV10, SMS+12, SZ11, SJJ10, SHU16, Ta13, YS10, dCMMN12, hEYJD12].

Project
[Wan11]. Projects
[ZMM+16, ABC18, CJ17]. Projekte
[Ric14]. Prolog
[CMM17, Tar11]. promises
[MLT17]. promising
[KHL+17]. Proof
[LL15]. Proofs
[BO11, RVK15, SS12, FWDL15, SD16b, YS10].

Protecting
[MPS12]. Protein
[YHY13]. Protocol
[GM12, FGR12]. protocols
[KDPG18]. prototyping
[PWA13]. Provably
[AdCGGH16, DJLP10]. providing
[OW16]. proving
[AGH+17, Ta13]. Proxies
[VM10, Eun13, KT14]. PSE
[KS15]. pseudorandom
[PPMH15, SLF14]. published
[LSBV17]. Pure
[SS16]. Purely
[RS12, NFV15]. Purely-Declarative
[RS12]. purely-functional
[NFV15].

Purity
[NSDD17, HMDE12]. Python
[Ric14].

qualitas
[TMV13]. Qualitas.class
[TMV13]. Quality
[BNP11, CCFB15, WKJ17]. Quantitative
[CP15, GYB+11, MRA+17, PTPM12]. queries
[GC15, MRA+17, SGG+17]. query
[FWDL15]. query-
[FWDL15]. questions
[KM10]. Quicksort
[AD16].

R
[CH17, KMMV14, NL14, SLS+12, Vit14]. Race
[BH10, EP14, RD15, AMT17, EQT10, HHH+14]. race-aware
[EQT10]. races
[FF10, WCG14, XXZ13]. Racket
[YK14]. racy
[SRJ15], Rady
[Teo12]. Rails
[Teo12]. Range
[BS12]. Ranged
[FSK12]. rapid
[PWA13]. raw
[HH13]. rays
[SBF10]. RCDC
[DNB+12]. RDMA
[ETR+15, IRJ+12]. RDMA-based
[IRJ+12]. RDMA-enabled
[ETR+15]. re
[NCS10]. re-location
[NCS10]. Reachability
[NCS10]. reaction
[SRB18]. reactive
[BCvC+13, MvH15]. read
[NM10]. read-only
[NM10]. Reading
[Jaf13]. ready
[RHSD15]. Real
[BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Nil12a, Pau14, SLES15, SLE+17, VK12, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGV14a, BVGV14b, CRAJ10, DW10, EABGV14, Fox17a, GMC+13, HTLC10, KHM+11, KPH11, KvGS+14, KW10, KPP+18, KSR14, LTK17, MDS+17, PS10, PZM+10, PSW11, Puf13, RHT13, SP10a, Sie10, SPS17].

Real-Time
[BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Nil12a, Pau14, SLES15, SLE+17, VK12, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGV14a, BVGV14b, CRAJ10, DW10, EABGV14, Fox17a, GMC+13, HTLC10, KHM+11, KPH11, KvGS+14, KW10, KPP+18, KSR14, LTK17, MDS+17, PS10, PZM+10, PSW11, Puf13, RHT13, SP10a, Sie10, SPS17]. realtime
[OUY+13].

Reasoning
[LN15, ABK+16, MLT17].

Recaf
[BIvdS17]. recipes
[J+12]. recompilation
[NED+13]. Reconfigurable
[OUY+13, STY+14, OIA+13]. reconstruction
[LSWM16]. Recovering
[CRAJ10]. Reducing
[MV16, WHIN11]. Reduction
[BO12, TD15]. redundant
[HLO15]. Refactoring
[AS14, STST12, VBZ+18, ZHL+12, FMM+11, FM13]. Reference
[Sch14, UJR14, HMDE12]. refinement
[GY16, JLP+14, KSW+14, ZMG+14, ZFK+16]. Reflexes
[SPP+10].
regions [AC10], register [ZY+12], register-based [ZY+12], Regression [MM12], regular [PIR17], reification [RRB17], Reified [GSB14], Reim [HMDE12], RelInf [HMDE12], relation [TD15], relational [MLGA11], relationship [LSBV16, LSBV17, SH12], relaxed [DNB+12, KHL+17, PPS16], relaxed-memory [KHL+17], Release [Ano14], reliability [HWLM11], relying [IN12], Remodularizing [OJ12], Remote [BVGV10, BVGV14, BJK12, GSD+15, BVGVAFG11], removal [MRMV12, WGF11], removing [PLR14], rename [FM13], Repair [XMD+17, MDS+17, SHU16], repeatability [Vit14], replacement [BCD13], Replay [BH12], Replaying [WKG17], replication [CJ17, UIY10], replication-based [UIY10], report [CBLFD12, Sch10a], Reports [OW16], repository [HC10], reproducibility [Vit14], reproduction [SR14b], requirements [AGGZ10], ResAna [KvGS+14], Research [SR17, TRE+13, CRJ+10, CBLFD12, EKUR10, Rub14, VBMDP16, Vit14], Resource [BVGV14, ADI13, ESI14, KvGS+14, KSR14, SGV12], resource-aware [SGV12], resource-based [ADI13], responsive [SP+14], responsiveness [PSNS14], restart [CNS13], Restructuring [RC17], Retention [ZMM+16], Rethinking [Xuc12, RCR+14], retrofitted [TPS+10], retrofitting [LPGK14], Reusability [Tai13], reusable [HC10, MME14], reuse [WR10], Reverse [CCA+12], Review [Ano15, Bro12, Del13, Gve13, Kie13, Ngo12, Teo12, Teo13, EKUR10], Revisited [Mei14, Gon11], rewriting [HLO15], RFID [AYZ10], RFLP [YCYC12], richer [CV14], rigor [Vit14], Rigorous [AGR17], Rise [DiP18a], risk [MPM+15], River [HHSS13], RJ [OW16], Road [RXK+17, SWU+15], Robin [Ano15], Robotic [DiP18b, LM15], Robots [SWF12], Robust [VM15, DFR13, GGRS17, HC11, JQJ+16, RXK+17, RTE+13, XMA+14, ETTD12, FC11, GGRS15, NFV15, PIR17, PLR18, RTET15, TTD12], ScalaLab [PTML11, PTML14], scalar [PQTGS17], Scale [BA17, PE11, DSH15, LO15, MDS+17, MCY+10, PTF+15, WHIN11], SCEL [DLPT14], scenarios [AMWW15, Sch13], Scheduler [QSAS+16, IF16, TWL12].
scheduler-independent [IF16].

Scheduling [ASV+16, BVEAGVA10, KPHV11, EP14, EABVG14, ZW10].

scheme [XHH12]. SCHISM [PZM+10].

Science [HWW11, VF10, SGV12]. sciences [NL14]. Scientific [Esq11, PTML11, TAF+18, WN10, FRGPLF+12, PMTL14].

scientists [Bra14]. SCORM [HC10]. Scrap [ZCdSOvdS15]. Script [MSSK16].

Scripting [CSGT17, KKK+17, HBT12, KRR+14, PML14, Zha12]. SE [LYBB14].

Seamless [OwKPM15]. Search [SED14, DDDF17]. searching [ETR12].

Seemingly [Has12]. selection [WHIN11]. Self [MPS12, hED12, AHK+11, AGH+17, CBLFD12, HWW+15, MD15].

Semantic [GGRSY17, RvB14, BNS12, GGRSY14, GGRSY15, MKK+12, MMK+13, OA17].

Semantics [BO12, BR15, Kri12, LML17, SPY+16, AK13, FBH17, FZ17, KHL+17, Mil13, MT14, PSR15, PPS16, ZHCB15].

Semantics-based [SPY+16]. semantics-preserving [AK13]. Semi [FM13, ABC18, MRMV12].

semi-automated [MRMV12].

separability [WRI+10]. Separating [DDM11, AC10]. separation [TWSC10]. sequence [ZWZ+14]. Sequent [FFF17].

sequential [BENS12, DMS11]. serialization [MHBO13]. Seriously [Kie10].

service-oriented [EABVG14]. services [MZC10b]. session [KDGPG18, FGR12]. Set [SBK13, Lon10a, Lon10b]. Set-based [SBK13, Lon10a, Lon10b]. sets [SP10b].

setters [Mil13]. setting [BDGS13].

Short [AHK+11, SV15a, Zak12].

Short-term [AHK+11]. ShortCut [CSGT17].

smalltalk [FIF+15, HKVG14]. Smart [GMPS12]. Smartphone [RBL12].

SMARTOp [TGZ17]. Smartphones [RT14]. SMARTS [RXK+17]. snapshots [AST12].

Snippets [SWU+15]. SNP [YCYC12]. SoC [TKL+15]. social [GGC18]. soft [JACS10].

Software [BSA14, CC15, RC17, Wan11, YQTR15, BMSZ17, BTR+13, CBGM12, CFH+13, CJ17, DVL13, EKURI0, FRGPLF+12, FC11, GT10a, HBG+16, JhED11, JK11, LPA13, MHR+12, NGB16,
OIA+13, PLL+18, RAS16, SV17, XR13, YRHL13, ZK13, ZHCB15, ZDS14.

Solidity [Dan17]. Solution [KS15, EKUR10, J+12]. Solving [SED14, FMBH15]. Sorting [BK16].

Sound [BO13, BGK17, LE16, BHSB14, EL15, PPMH15]. soundly [BS13]. Source
[BASA14, GD12, MM16, RLMM15, SRTR17, SED14, ABC18, AK13, CJ17, DR14,
EKUR10, FMS+11, JK11, MKK+12,
MKK+13, OJ12, PMP+16, SSK13, Tai13,
ZWSS15]. source-code
[MKK+12, MKK+13]. source-to-source
[AK13]. sources [IN12], sparse [TGG17].

sparse-matrix [TGG17]. spatial
[MLGA11]. Speaking [Rau14, Sam12].

Special [DVL13, Fox17a, HL13, HGCA11,
Puf13, HTLC10, RHT13, HTW14, V12].
specialization [KRR+14, SV15a]. specific
[CS1L6, EEE+13, HWW+15, Kie13].

Specification [GJS+13, GJS+14, IF16,
KW11, LN15, LYBB13a, LYBB13b,
LYBB14, TWHN12, BVGVEA11a, BCF+14,
KR12, KW10, MRA+17, YP10, dCMMN12].
specifications [BENS12, TVD10]. specified
[BCR11]. Specifying [BS12, HL13].

Speculation [AC16, MGI17]. speculative
[BB17, YRHL13]. speed
[HRS+17, SFB+10, UTC13]. SPIN
[AS4MG14]. SPL [BTR+13], splittable
[SLF14]. SPOON [PMP+16]. spot
[LMK16]. SPUR [BBF+10]. SQL
[KMLS15]. SqueakJS [FIF+15]. SSNTDs
[VSG17]. Stability [BSA14, LL15].

stabilizing [hED12]. stack
[KRC14, Xue12]. stack-based [KRC14].

stage [WRI+10]. staged [SC16]. staging
[RO12]. Standard [WKG17, LMS+12].

Standardization [TWN12]. StarL
[LM15]. State [AGR12, BLH12, MvDL12,
MS14, GN16, YP10]. state-
[YP10].

statecharts [MS13]. Statement
[XMD+17, PLR14, ZWSS15]. statements
[PLR14]. Static

[BGK17, BNE16, JC10, MTL15, ODL15,
PfLCH11, PLR18, RD15, SW12, SH12,
AM14, CGJ+16, Fer13, FLL+13, IF16,
KSW+14, LS11, MHR+12, PIR17, TLM13],

statically [BTR+13, NED+13]. statistical
[Bra14, ZFK+16]. statistically [PPMH15].

statistics [HCN14]. stealing
[KFB+12, TWL12]. STM [CHM16, Sub11].

STM/HTM [CHM16]. StMungo
[KDPG18]. stochastic [CRAT+12]. stock
[PVH14]. Stop [LWB+15]. Storage
[HOL12, VD17]. Store [BS12, Sta10].

stores [DFR13]. Story [Ano14]. strategic
[BM14]. strategy [PDPM+16]. Stream
[KBPS17, MV16, BRWA14, SSG+14].

streaming [MRA+17, TGC13].

StreamJIT [BRWA14]. StreamQRE
[MRA+17], streams [SGG+17, UFM15].

Strength [KCD12]. Strings
[HOKO14, CSK17]. Stream
[HWM11, HWM10, LSSD14]. strong
[UMP0, ZHCB15, ZBB17].

structure [LO15, PLL+18, UMP10]. structured
[ABC18, LSWM16]. Structures
[GT10b, CDTM10, XMA+10]. studies
[EKUR10]. Studio [RT14, FH16].

Studio-Based [RT14]. Study
[KB11, OBPM17, RLMM15, ZMM+16,
BRGG12, CCFB15, CJ17, ECS15, JK11,
KBBK15, MHR+12, NCS10, OMK+10,
PFT+15, SSL18, SH12, TFPB14, VBDPM16,
WX16, YW13]. style [UMM15].

substitute [PPMH15]. substrate
[GTT+10]. subtypes [HL13]. Subtyping
[LN15]. suite [MhSS11, BB12]. Suites
[GGZ+15]. Summaries [BH17].

Summarization [MM16, RLMM15].

Superblock [KS13]. Supercharged
[Cec11, GBS13]. Superposition [HD17].

supertype [RBB17]. supervenience
[Rez12]. Support
[CSTG17, KKK+17, RKN+18, BVGVEA13,
DVL13, GMC+13, Hos12, NGB16, SN1+12].

supported [FMM+11]. Supporting
TTS+10, WAB+11]. time-travel [BM14].
time-triggered [EABVG14]. Times
[BKP16, DW10]. timing [AGH+17, LS11].
TIMP [SLS+12]. tiny [Xue12]. tolerant
[PZM+10]. Tool
[FMM+11, PQD12, SW12, SSK13, ACFM12, CRAT+12, ETR12, KSR14, LS11, TWX+10].
Tool-supported [FMM+11]. toolchain
[KDPG18, SMN+18]. Tools [Bro12, CSZ17, CS12, ABK+16, KPP+18, VBAM10b].
toolset [KvGS+14]. top
[RVP11, SGG+17, ZMY14]. top-
[SGG+17]. top-down [ZMY14]. Topics
[Hor11, Jen12]. topology [DDM11]. Toy
[DiP18b]. Trace
[HWM14, PiLCH11, SR14b, BBF+10, HWM13, HW12+12, IHWN12, WHIN11].
trace-based
[BBF+10, HWM14, HW12+12, IHWN12]. Traceability [CSKB12]. tracer [CZ14].
Traces [WKG17, BA12, RGM13]. Tracing
[BP10, DLR14, DLR16, MD15]. track
[VSG17]. TrackEtching [VSG17].

Tracking
[RLMM15, SDC+12, KHL+13, OOK+10].
Tracks [RGM13]. tradeoff [UTO13].
Traffic [RXK+17]. Trail [HHSS13]. Train
[MSSK16]. training [KMN16]. trait
[BCD13, VM15]. traits [BDGS13, BD17].
transactional [DVL13, FC11, ZHCB15].
Transactions [DeG12, CHM16, DFR13].
transformation [AST+16, PDD17].
transformations
[AK13, MHM10, PMP+16, TL17].
Transforming [dMRH12]. transitioning
[HWM14]. Translating [RFR14].
Translation [BO12, LSWM16].
translations [UTO13]. translator
[LZYP16]. Transmission
[PE11, BVGVEA11b, BJBK12].
transparent [BDB11]. travel [BM14].
traversals [ODL15]. Tree
[Lyo12, HLO15, KMMV14, SSK13]. trees
[RBV16]. Trends [CC15, MSS10, SR17].

trie [SV17]. trie-based [SV17]. tries
[SV15a, SV15b]. triggered [EABVG14].
TRINI [PDPM+16]. Trusted
[TWNIH12, BCF+14]. tuning
[AAB+10, BVGVEA FG11, SKBL11]. Turf
[CH17]. Turing [Gri17]. Tutorial
[Jan12, Nil12b, TaF13, Zak12]. TV [JMO14].
twitter [Guy14]. Two [Has12]. Type
[BO13, CGJ+16, KSW+14, KATS12, Lei17, Loc18, RKN+18, SGD15, WT11, ACS+14, AT16, BS13, CMS+12, CVG+17, DLM10, FH16, GBS14, HyG12, KMLS15, KRR+14, KRH16, KvRHA14, KDPG18, LPGK14, LE16, MHR+12, SH12, TLL11, Zha12, eBH11]. Type-Based [SGD15].
type-dependent [LE16]. Type-Safe
[Loc18, KMLS15]. Typechecking
[KDPG18, CL17]. Typed [BO13, KKK+17, MHL15, CMS+12, CRK+14, Lei17, RDP16]. Types [BO13, RvB14, SPAK10, BGDS13, CHJ12, DMM11, HH13, MME+10, YDF15].
TypeScript [Cho14, FH16, RSF+15].

Typing
[FZ17, RSF+15, Sief17, SFR+14, TSD+12].
typy [OA17].

Ubiquitous [MCY+10]. UDP [RR14]. ULS
[FOPZ14]. UML [CSF+16]. unbounded
[LSSD14]. uncertain [McK16].
Understandable [MSM+16].
Understanding [ABC18, FRM+15, MKTD17, NWB+18, PCL14, QLBS17, Set13, TABS12, VBMDP16, LWB+15, Nil12b].
Undocumented [Alt12, MHR+12]. Unified
[LM15]. uniform [AH10, Eul13]. Unifying
[Has12, MKK+12, MKK+13]. union [KT15].
uniprocessors [KPHV11]. Units [LLL13].
universe [DDM11]. Unix [PVB17].

Unpicking [LB12]. Unrestricted
[WWS13]. unsafe [MPS+15]. unsound
[AT16]. updates [PKC+13]. Upper [SW12].
Upsortable [SGG+17]. uptrees [HB13].
USA [Hol12, KP15]. usability
[FH16, MHR+12]. Usage

v [Sam12]. V8 [MGI17]. Validating [HLSK13]. Validation [SSB14h, CSdL16, HCV17, SSB01]. Value [BBB+17, DFR13]. variable [CDTM10].

Veritesting [SWMV17]. Version [FLZ+18, FC11, HD17, SM12, TMVB13, ZXL16].

vertical [STY+14]. via [DMS11, GGRSY15, GGRSY17, Hos12, HB13, JWMC15, LSWM16, Rin12, SS16, TD17]. view [Guy14]. violations [LTZ14, PG12, RDF15].

Virtual [BZD17, LYBB13a, LYBB13b, LYBB14, LTK17, PTHH14, PQD12, SSB+14a, Sch13, Set13, SMSB11, SVG12, SSB01, SSB14b, UR15, Ame13, CBLFD12, IVC14, NK10, Pir17, RCB17, SSMGD10, WGF11, WHF+13]. virtualized [HOKO14, MHM10]. virus [RBL12].

WETSUIT [ETR12]. Whalesong [YK14]. whole [DS16]. whole-program [DS16].

Withers [Lyo12]. without [FMBH15, IN12, KFB+12, SS12, STA10, WHIN11]. Word [SRTR17]. Work [KFB+12, PKO+15, TLW12].

Work-stealing [KFB+12, TLW12]. workbench [CFH+13]. Working [ST15].

workshop [Fox17a]. world [CIAD13, McK16, STS+13]. Worst [SPPH10, dGRdB+15]. Worst-case [SPPH10]. would [Han15]. wrap [FOPZ14].
References

Altman:2010:OTJ
[AAB+10] E. Altman, M. Arnold, R. Bordawekar, R. M. De-
amonico, N. Mitchell, and P. F. Sweeney. Observa-
tions on tuning a Java enter-
prise application for perfor-
mance and scalability. IBM
Journal of Research and De-
velopment, 54(5):2:1–2:12,
???? 2010. CODEN IB-
MJAE. ISSN 0018-8646
(print), 2151-8556 (elec-
tronic).

Accioly:2018:USS
[ABC18] Paola Accioly, Paulo Borba,
and Guilherme Cavalcanti. Un-
derstanding semi-structured
merge conflict charac-
teristics in open-source Java
projects. Empirical Soft-
ware Engineering, 23(4):
2051–2085, August 2018.
CODEN ESENFW. ISSN
1382-3256 (print), 1573-
7616 (electronic). URL
http://link.springer.
com/article/10.1007/s10664-
017-9586-1.

Auerbach:2010:LJC
Joshua Auerbach, David F.
Bacon, Perry Cheng, and
Rodric Rabbah. Lime: a
Java-compatible and syn-
thesizable language for het-
erogeneous architectures.
ACM SIGPLAN Notices, 45
CODEN SINODQ. ISSN
0362-1340 (print), 1523-
2867 (print), 1558-1160
etronic).

Avvenuti:2012:JTC
Marco Avvenuti, Cinzia
Bernardeschi, Nicoletta De
Francesco, and Paolo Masci.
JCSI: a tool for check-
ing secure information flow
in Java Card applications.
The Journal of systems and
software, 85(11):2479–2493,
November 2012. CODEN
JSSODM. ISSN 0164-1212
(print), 1873-1228 (elec-
tronic). URL http://
www.sciencedirect.com/
sience/article/pii/S0164121212001513.

Abanades:2016:DAR
Miguel Abánades, Francisco
Botana, Zoltán Kovács,
Tomás Recio, and Csilla
Sólyom-Gecse. Development
of automatic reason-
ing tools in GeoGe-
bra. ACM Communica-
tions in Computer Alge-
bra, 50(3):85–88, September
2016. CODEN ????. ISSN 1932-2232 (print), 1932-2240 (electronic).

Ansaloni:2012:DAO

Ahn:2014:IJP

Aumuller:2016:OPD

Amighi:2016:PCC

REFERENCES

Autili:2013:HAR

Austin:2012:MFD

Arnold:2011:AOJ

Aiello:2011:JBA

Albert:2010:PIM

Antonopoulos:2017:DIS
Andreasen:2017:SDA

Arcaini:2012:CCM

Arcaini:2017:RDP

Apel:2010:CUF

Aigner:2011:STM

Aigner:2015:AJE

[AHK+15] Martin Aigner, Thomas Hütter, Christoph M. Kirsch, Alexander Miller, Hannes Payer, and Mario Preishuber. ACDC-JS: explorative benchmarking of
REFERENCES

Andrysco:2016:PFP

Altman:2012:USM

Andreasen:2014:DSA

Axelsen:2013:PTD

Ament:2013:ATG

Adamsen:2017:PIR
REFERENCES

Altidor:2014:RJG

Adalid:2014:USA

Austin:2017:MFD

Afek:2012:ISJ

Alshara:2016:MLO

Akram:2016:BPG

[BBF+10] Michael Bebenita, Florian Brandner, Manuel Fahn-

drich, Francesco Logozzo, Wolfram Schulte, Nikolai Tillmann, and Herman Venter. SPUR: a trace-

based JIT compiler for CIL. ACM SIGPLAN Notices, 45(10):708–725, October 2010. CODEN SIN-

ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[BBCD13] Lorenzo Bettini, Sara Capecchi, and Ferruccio Damiani. On flexible dynamic trait replacement for Java-like languages. Science of Com-

ACM SIGPLAN Notices, 48(8):251–260, August 2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-

ACM SIGPLAN Notices, 48(11):119–130, November 2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-

1160 (electronic). ISMM ’13 conference proceedings.

nised JavaScript specification. ACM SIGPLAN Notices, 49(1):87–100, January 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (elec-

tronic). POPL ’14 conference proceedings.

192, October 2011. CODEN ???? ISSN 1477-8424
Bacon:2013:PRT

Bainomugisha:2013:SRP

Bettini:2013:CTB

Bala:2011:DTD

Bettini:2017:XTJ

Barbuti:2010:AIA
This article is the winner of The Computer Journal Wilkes Award for 2010.

Brooks:2016:CST

Bodden:2012:PEF

Barr:2014:TAT

Bouraqadi:2018:TDD

Bell:2015:VFB

Brockschmidt:2012:ATP

Marc Brockschmidt, Richard Musiol, Carsten Otto,

Bellia:2011:PJS

Bellia:2012:ERT

Bellia:2013:JST

Bruno:2017:NPG

Barabash:2010:TGC

Bluemke:2012:DTJ

Bogdanas:2015:KJC

Basanta-Val:2014:SDG

Basanta-Val:2010:NHR

Basanta-Val:2011:ECM

Basanta-Val:2011:NFI

Basanta-Val:2013:JRA

Basanta-Val:2011:FTM

Bourdykine:2012:LAM

Pavel Bourdykine and Stephen M. Watt. Lightweight...

Briggs:2017:COI

Carlisle:2011:WCB

Cao:2012:YYP

Chevalier-Boisvert:2012:BSH

Chaikalis:2015:FJS

Cosentino:2012:MDR

Valerio Cosentino, Jordi Cabot, Patrick Albert, Philippe Bauquel, and Jacques Perronnet. A model driven reverse engineering framework for extracting business rules out of a

Chen:2011:MJP

Chisnall:2017:CJS

Ceccato:2010:MLD

Cecco:2011:SGJ

Carter:2013:SSA

Chandra:2016:TIS

Chamberlain:2017:PLR

Chugh:2012:DTJ

[CHJ12] Ravi Chugh, David Herman, and Ranjit Jhala. Dependent types for JavaScript.

Chugh:2012:DTJ

[CHJ12] Ravi Chugh, David Herman, and Ranjit Jhala. Dependent types for JavaScript.

Carro:2013:MDA

Chapman:2016:HSH

Cogumbreiro:2015:DDV

REFERENCES

Chong:2014:CCT

Campbell:2013:ICC

Chen:2017:CLP

Canino:2017:PAE

Castro:2017:JLC

Chang:2012:IOT

Choi:2013:GGT

Clifford:2014:AFB

Clifford:2015:MMD

Chatterjee:2015:QIA

Curley:2010:RDT

Cote:2012:JPS

Chalin:2010:TIG

Patrice Chalin, Robby Perry R. James, Jooyong Lee, and George Karabotsos. Towards an indus-

Chambers:2010:FEE

Ceccarello:2012:TGC

Cordoba-Sanchez:2016:ADS

Chavez:2016:ACC

Choi:2017:SAS

REFERENCES

CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Chawdhary:2017:PES

Chanda:2012:TBS

Chen:2016:CDD

Cameron:2015:JFE

Casale:2017:PEJ

Cazzola:2014:JBR

Chaudhuri:2017:FPT

Cavalcanti:2013:SCJ

Caserta:2014:JTJ

Diaz:2013:LEU

Dannen:2017:IES

daCosta:2012:JSL

REFERENCES

Dennis:2018:MFI

Disney:2015:SYJ

Dey:2013:STA

deGouw:2015:OJU

DHondt:2012:ISS

Dolby:2012:DCA

Dietrich:2015:GSE

[DHS15] Jens Dietrich, Nicholas Hollingum, and Bernhard Scholz. Giga-scale exhaustive points-to analysis for
REFERENCES

Dietrich:2010:POD

Dyer:2014:DVE

Doeraene:2016:PIW

Bois:2013:BGV

David:2014:CMC

Dias:2013:SIP

Ricardo J. Dias, Tiago M. Vale, and João M. Lourenço. Special issue papers: Efficient support for in-place metadata in Java software transactional memory. *Con-
REFERENCES

Dos Santos:2010:MPB

Estevéz-Ayres:2014:CSS

Emeric:2012:CP

Eb ert:2015:ESE

REFERENCES

REFERENCES

Eichelberger:2014:FRM

Esquembre:2011:TPL

Endrullis:2012:WEM

Expósito:2015:LLJ

Expósito:2012:DSJ

Eugster:2013:SUP

Evans:2013:WGJ

Foreword by Heinz Kabutz.

Foley-Bourgon:2017:EIC

Ferrara:2013:GSA

Flanagan:2010:AMD

Ferrari:2017:JJF

Mauro Ferrari, Camillo Fiorentini, and Guido Fiorino. JTabWb: a Java framework for implementing terminating sequent and

Forth:2012:RAA

Fontaine:2012:VCF

REFERENCES

REFERENCES

Fan:2015:UCC

Fournet:2013:FAC

Funes:2012:RMC

Feng:2015:ECD

Fritz:2017:TSA

Gherardi:2012:JVC

Gerakios:2013:FIS

Prodromos Gerakios, Aggelos Biboudis, and Yannis Smaragdakis. Forsaking inheritance: supercharged delegation in DelphiJ. *ACM
REFERENCES

Gerakios:2014:RTP

Gama:2010:SAA

German:2012:MOS

Gupta:2018:HDB

Golan-Gueta:2014:ASL

Golan-Gueta:2015:ASA

Golan-Gueta:2017:ASA

Guy Golan-Gueta, G. Ramalingam, Mooly Sagiv,

Apolinario Gonzalez, Walter Mata, Alfons Crespo, Miguel Masmano, José Félix, and Alvaro Aburto. A hypervisor based platform to support real-time safety critical embedded Java ap-

Gadyatskaya:2012:JCA

Gardner:2012:TPL

Gupta:2016:LSA

Gong:2011:LSA

Grosschadl:2012:EJI

Gramoli:2015:MTY

Vincent Gramoli. More than you ever wanted to
know about synchronization: synchrobench, measuring the impact of the synchronization on concurrent algorithms. ACM SIGPLAN Notices, 50(8):1–10, August 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

REFERENCES

Hanenberg:2015:WDW

Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? ACM SIGPLAN Notices, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Hasbun:2012:UTP

Haverbeke:2011:EJM

Heumann:2013:TEM

Huang:2013:ECS

Hindle:2016:NS

REFERENCES

cacm.acm.org/magazines/2016/5/201595/fulltext.

Hover:2014:HRF

Herhut:2013:RTP

Hinojosa:2013:TS

Hunt:2012:JP

Hellyer:2010:LCW

Heidenreich:2010:GST

REFERENCES

Hashmi:2012:CNI

Horie:2014:SDJ

Hollingsworth:2012:SPI

Horstmann:2011:CJA

Horstmann:2012:JEC

Hosking:2012:CHL

Haas:2017:BWS

REFERENCES

REFERENCES

Inoue:2012:ISC

Islam:2012:HPR

Insa:2018:AAJ

Inostroza:2016:MIM

Juneau:2012:JRP

Joseph:2010:PII

Jaffer:2013:EAR
Aubrey Jaffer. Easy accurate reading and writing of floating-point num-
REFERENCES

Ji:2012:PKP

James:2010:FMC

Jara:2012:NVJ

Jendrock:2012:JET

Jovic:2011:LLP

Jenista:2011:OSO
James Christopher Jenista, Yong hun Eom, and Brian Charles Demsky. OoJava: software out-of-order execution. ACM SIGPLAN Notices, 46(8):57–68, August 2011. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-

Javed:2016:TSJ

Johnsen:2012:SLM

Johnson:2015:EES

Jin:2012:JMM

Kossakowski:2012:JED

Kastner:2012:TCA

Piyus Kedia, Manuel Costa, Matthew Parkinson, Kapil Vaswani, Dimitrios Vytiniotis, and Aaron Blankstein. Simple, fast, and safe man-

Kouzapas:2018:TPM

Kereki:2015:JA

Kuehnhausen:2011:AJM

Kumar:2012:WSB

Khan:2015:UJW

Kerschbaumer:2013:IFT

Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, and Michael Franz. Information

REFERENCES

Krieger:2011:AES

Kaiser:2014:WAM

Ko:2010:EAW

Karakoidas:2015:TSE

Kalibera:2014:FAS

Kulkarni:2016:APA

Kolling:2010:GPE

REFERENCES

Kroening:2015:CAV

Kalibera:2011:SRT

Khyzha:2012:AP

Kintis:2018:HEM

Kang:2012:FSJ

Kedlaya:2014:DDL

REFERENCES

Kedlaya:2016:SST

Krishnamurthi:2012:SAJ

Kedlaya:2014:ITS

Kaufmann:2013:SCO

Krebs:2014:JJB

Kroshko:2015:OPN

Kouneli:2012:MKD

[102x625]

Korsholm:2014:RJT

[201x373]

Kashyap:2014:TRS

[102x228]

Keil:2014:EDA

Keil:2015:BAH

Kersten:2014:RRA

[LE16] Florian Lorenzen and Sebastian Erdweg. Sound type-dependent syntactic

Lee:2016:ECP

Loring:2017:SAJ

Long:2012:COS

Lochbihler:2013:MJM

REFERENCES

Landman:2017:CEA

Li:2011:JEC

Li:2014:EAJ

Leopoldseder:2016:JIT

Laskowski:2012:DJP

Eryk Laskowski, Marek Tudruj, Ivano De Falco, Umberto Scafarri, and Ernesto Tarantino. Distributed Java programs initial mapping based on extremal optimization. Lecture Notes in Computer Science, 7133:
REFERENCES

Luckow:2017:HTP

Liu:2014:FFL

Lerner:2010:SDT

Lin:2015:SGU

Luckcuck:2017:SCJ

Lee:2010:JSD

Maas:2016:THL

McIntyre:2012:FJB

Martinez:2017:MBA

McKinley:2016:PWU

McLane:2010:UIV

Marr:2015:TVP

[MD15] Stefan Marr and Stéphane Ducasse. Tracing vs. partial evaluation: comparing meta-compilation approaches for self-optimizing interpreters. ACM SIG-

Matsakis:2015:TOJ

McGachey:2010:CJC

Mayer:2012:ESI

Miller:2013:TSG

Malhotra:2017:PPS

Misra:2012:JSC

Misra:2013:JSC

Janardan Misra, Amner-

REFERENCES

Markstrum:2010:JDP

Martin:2014:TCR

Mirzaei:2012:TAA

Mirshokraie:2015:GMT

Mastrangelo:2015:UYO

Mercer:2012:CVI

Eric Mercer, Suzette Person, and Neha Rungta. Computing and visualizing the impact of change with Java PathFinder exten-

Magazinius:2012:SWS

Mamouras:2017:SMS

Meawad:2012:EBS

McIlroy:2010:HJR

Marinescu:2013:FSJ

Möller:2014:ADC

Madsen:2015:SAE

Marz:2016:RPC

Mesbah:2012:CAB

Motika:2015:LWS

Mateos:2010:ANI

Mateos:2010:MJN

Nuzman:2013:JTC

Newton:2015:ALF

Noll:2012:IDO

Noll:2013:OFD

Nunez:2016:PGC

Ngo:2012:BRE

REFERENCES

106

Noller:2017:SSE

Nikolic:2012:DEA

Nikolic:2013:RAP

Nicolay:2017:PAJ

Nicolay:2017:PAJ

Nguyen:2015:F

Nguyen:2018:UCM

Naik:2012:AT

[NYCS12] Mayur Naik, Hongseok Yang, Ghila Castelnuovo, and Mooly Sagiv. Abstrac-
Omar:2017:PSF

Oaks:2014:JPD

Ocariza:2017:SCC

Ortin:2014:RPI

Olivo:2015:SDA

Ogawa:2013:RJA

Olszak:2012:RJP

Ogata:2010:SJN

Odaira:2010:ERT

Ohkawa:2013:RHO

Olsson:2016:ERR

Oh:2015:MWA

Paul:2014:RTP

Parnin:2013:AUJ

Pinto:2014:UEB

Philips:2017:DDD

Panizo:2012:EJP

Portillo-Dominguez:2016:ECP

Parker:2011:DPG

Jon Parker and Joshua M. Epstein. A distributed platform for global-scale agent-based models of disease transmission. *ACM

Parizek:2012:PAJ

Pan:2018:ASJ

Park:2014:AAJ

Paradimitriou:2014:MLS

Pawlak:2016:SLI

See text

[PPTF+15] Gustavo Pinto, Wesley Torres, Benito Fernandes, Fernando Castor, and Roberto S. M. Barros. A large-

Pape:2014:EJV

Papadimitriou:2011:SES

Puffitsch:2013:SIP

Petrashko:2016:CGL

Powers:2017:BBG

REFERENCES

Pina:2014:RDJ

Plumbridge:2013:BPR

Pan:2017:GCF

Qiu:2017:USR

Qian:2016:EFS

Pizlo:2010:SFT

Qian:2016:EFS
REFERENCES

Rayns:2013:CJS

Rehman:2016:VMJ

Rauschmayer:2014:SJD

Rossi:2015:NPJ

Razafindralambo:2012:FFH

Raychev:2016:PMC

Rathee:2017:ROO

[RC17] Amit Rathee and JITender Kumar Chhabra. Restructuring of object-oriented software through cohesion improvement us-

Rosa:2017:APV

Robatmili:2014:MRL

Radoi:2015:ETS

Ramirez-Deantes:2012:MTA

Rhodes:2015:DDO

Reynders:2016:GSB

Bob Reynders, Dominique Devriese, and Frank Piessens. Generating safe boundary APIs between typed ED- SLs and their environments. ACM SIGPLAN Notices, 51(3):31–34, March 2016. CODEN SINODQ. ISSN 0362-
REFERENCES

1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Radoi:2015:WAR

Ravn:2013:EIS

Richardson:2014:BEL

Rimlinger:2012:TGS

Rodchenko:2018:TIE

Richards:2010:ADB

REFERENCES

[R Rastogi2015:SEG] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Pan-

Reichenbach:2012:PPD

Reardon:2014:SSB

Ramos:2013:DSJ

Ramos:2015:NCS

Rubin:2014:HCW

Rowe:2014:STA
REFERENCES

Samuelson:2012:LSO

Sartor:2010:ZRD

Smaragdakis:2013:SBP

Shahriyar:2014:FCG

Scherr:2016:AFC

Schmidt:2010:ERA

Schmeisser:2013:MOE

der Java HotSpot Virtual Machine. (German) [Met-
rics and best use scenarios for garbage collectors
of the Java HotSpot Virtual Machine]. Masterar-
beit, Hochschule für Technik, Wirtschaft und Kultur,
Leipzig, Germany, 2013. iii + 103 pp.

York, NY, USA, ninth edition, 2014. ISBN 0-07-
180855-8 (paperback), 0-
07-180925-2, 0-07-180856-6.
xxxiv + 1274 pp. LCCN
QA76.73.J38 S332 2014eb.

[SDC+12] Manu Sridharan, Julian
Dolby, Satish Chandra,
Max Schäfer, and Frank
Tip. Correlation tracking for points-to analysis of
JavaScript. Lecture Notes in Computer Science, 7313:
435–458, 2012. CODEN
LNCSD9. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/chapter/
10.1007/978-3-642-31057-
7_20/.

[Schoeb17] Martin Schoeberl, An-
dreas Engelbrecht Dal-
sgaard, René Rydhof Hansen,
Stephan E. Korsholm, An-
ders P. Ravn, Juan Rico-
dardo Rios Rivas, Tóurr Biskopstø
Strøm, Hans Søndergaard,
Andy Wellings, and Shuai
Zhao. Safety-critical Java
for embedded systems. Con-
currency and Computation:
Practice and Experience, 29
(22):??, November 25, 2017.
CODEN CCPEBO. ISSN
1532-0626 (print), 1532-
0634 (electronic).

[SDM12] Syed Muhammad Ali Shah,
Jens Dietrich, and Cather-
ine McCartin. On the au-
tomated modularisation of
Java programs using ser-

Sartor:2012:EMT

Stolee:2014:SSS

Seth:2013:UJV

Severance:2012:DJO

Severance:2012:JDL

Sewell:2012:TJ

Swamy:2014:GTE
Sherman:2015:DTB

Subercaze:2017:UPT

Simão:2012:CER

Stuchlik:2012:SVD

Steimann:2016:CRA

Siebert:2010:CPR

Siek:2017:CPT

Jeremy Siek. Challenges and progress toward effi-

Singer:2010:EGC

Smans:2010:AVJ

Schoeller:2011:HAL

Sondergaard:2017:CTD

Stilkerich:2017:PGU

Stillerich:2015:PGA

Steele:2014:FSP

Snellenburg:2012:GJB

Shaiei:2012:MCL

Singh:2012:EPS

Abhayendra Singh, Daniel Marino, Satish Narayanasamy, Todd Millstein, and Madan Musuvathi. Efficient processor support for DRFx,
REFERENCES

[SP10] Martin Schoeberl and Wolfgang Puffitsch. Nonblocking real-time garbage col-
REFERENCES

Spoto:2010:MSL

Serrano:2016:GH

Steimann:2010:TMI

Spring:2010:RAI

Schoeben:2010:WCE

Strom:2017:HLR

REFERENCES

ISSN 1532-0626 (print), 1532-0634 (electronic).

Giuseppe Scanniello, Michele Risi, Porfirio Tramontana, and Simone Romano. Fix-
Sutherland:2010:CTC

Scheben:2012:VIF

Stefik:2013:EIP

Surendran:2016:APP

Stark:2001:JJV

Sarimbekov:2014:JCS

Stark:2014:IJV

Su:2014:CEM

Srikanth:2017:CVU

Singh:2013:TGC

Saini:2018:CNC

Sciampacone:2010:EMS

Stone:2015:WMT

Stark:2010:BIA

Santos:2013:DDS

Stefanov:2010:JP

Samak:2016:DSF

Sun:2013:BJW

Mengtao Sun, Gang Tan, Joseph Siefers, Bin Zeng, and Greg Morrisett. Bringing Java’s wild native world

Schafer:2012:CAN

Su:2014:RVP

Subramaniam:2011:PCJ

Steindorfer:2015:CSM

Steindorfer:2015:OHA

Steindorfer:2017:TSP

REFERENCES

Servetto:2010:MMC

Siegel:2011:AFV

Tamayo:2012:UBD

Taft:2013:TPS

Tanyalcin:2018:LVL

Taibi:2013:ROS

Tarau:2011:IST

Tosch:2014:SPA

Thomson:2015:LHB

Tomescu:2017:CEN

Teodorovici:2012:BRC

Teodorovici:2013:BRL

Teyton:2014:SLM

Cédric Teyton, Jean-Rémy Falleri, Marc Palyart, and Xavier Blanc. A study of library migrations in
Tommasel:2017:SJL

Tu:2014:PPP

Tsai:2015:JPI

Thiessen:2017:CTP

Tate:2011:TWJ

Tetali:2013:MSA

REFERENCES

Takikawa:2012:GTF

Toledo:2011:ACJ

Taboada:2011:DLC

Taboada:2012:FMS

Tatsubori:2010:EJT

Torlak:2010:MCA

Emina Torlak, Mandana

[Uig10] Tomoharu Ugawa, Hideya Iwasaki, and Taiichi Yuasa. Improved replication-based

REFERENCES

[VD] Heila van der Merwe, Brink

[VK12] Jan Vitek and Tomas Kalibera. Introduction to the
REFERENCES

[Welch:2010:ABS] Peter Welch, Neil Brown,

Wellings:2012:AEH

Wang:2017:JRG

Wade:2017:AVJ

Wimmer:2010:AFD

Wendykier:2010:PCH

Witman:2010:TBR

Westbrook:2010:MJM

Edwin Westbrook, Mathias Ricken, Jun Inoue, Yilong Yao, Tamer Abdelatif, and Walid Taha. Mint: Java multi-stage programming using weak separabil-
References

Wehr:2010:JBP

Wehr:2011:JIT

Wurthinger:2013:USD

Wei:2016:ESD

Wang:2017:CJ
REFERENCES

Xue:2012:RJC

Xie:2013:AAE

Yang:2012:MPD

Yi:2015:CTC

Yang:2013:CPP

Yoo:2014:WRR

Yang:2017:EJV

REFERENCES

REFERENCES

Zhao:2012:PTI

Zhao:2013:INT

Zhang:2015:LOS

Zhang:2012:RAJ

Zhang:2012:RAJ

Zhao:2013:INT

Zheng:2016:CMD

Zheng:2016:CMD

Zhao:2013:INT

Zhao:2013:INT
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal/Conference</th>
<th>Year</th>
<th>Volume/Issue</th>
<th>Pages</th>
<th>Notes</th>
</tr>
</thead>
</table>
REFERENCES

158

Zakkak:2014:JJM

Zibin:2010:OIG

Zerzelidis:2010:FFS

Zhao:2014:CSP

Zhang:2016:NVC
Kebo Zhang, Hailing Xiong, and Chao Li. A new version of code Java for 3D simu-
lation of the CCA model.
