A Bibliography of Publications about the *Java Programming Language*, 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

17 May 2023
Version 1.230

Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

3
[DiP18b, FLZ18, GBC12, JEC12, ZXL16].
39.95 [Ano18].
$4 + 1$ [SRB18].
$7P$ [LTK17].
C_P [AO11].
K
[PLL18, SS19, SD16b, SGG17].
N
[ADJG19, WZK19].
Z_P [AO11].

-core [PLL18].
-Means [SS19].
-overlap [ADJG19].
-safety [SD16b].
-Tier [WZK19].

/multi [Taf13].
/multi-threaded [Taf13].
'12 [Hol12].
12th [Fox17a].

2 [HD17].
2002 [FLL13].
2003 [BCR13].
2008 [HGCA11].
2012 [HTW14, Hol12].
2015 [LBV17].
27th [KP15].

5 [Dan18, KHR11].

6 [Jen12].

7 [Ano15, EV13, J12].
75 [HWM11].

8 [BKP16, CWGA17, LYBB14, SAdB16, UFM15].
awareness [VGS14]. axiomatic [TVD10].

Bad [dGdB+15]. baggage [KFB+12].

balances [FMH15]. balancing [PDPM+16]. Ball [DD13]. Bar [WCG+18].

Barrier [CHMY19, CHMY15, VB14a]. barriers [HJH10, WBM+10]. Based [AFGG11, DLR16, GM12, GGZ+15].

Baseline [CV14, HRS+17, STS+13]. Basic [NBB18, CZ14].

basic-block [CZ14]. basics [Zak12].

basierte [Ric14]. Battery [ST15].

battlefield [WT10]. Bayesian [BSA14, RKHN18]. Bazel [McN19].

BeagleBone [Ric14]. before [TVD15].

Beginning [McN19]. begone [MRMV12].

Behavior [Sun18, LWB+15, RLBV10, TABS12, WXR16]. Behavioral [LN15, AMWW15]. behaviors [PCL14].

behaviour [SMS+12]. Beliefs [BA17]. Ben [Teo12]. Benchmark [GBC12, SMSB11].

Benchmarking [CKS18, AHK+15, HCLH18, MDM17].

Between [ADJG19, PVB17, ZLHD15, BKP16, CMM17, CSKB12, CSF+16, LSBV16, LSBV17, RDP16, SH12]. beyond [Mor18]. Big [BF18, GTS+15, NBW+15, NFN+18, RKV15, BOF17, BBXC13, RKV19, SSG+14, WR10, XGD+19].

billions [DRN14]. Binary [WWG+18, XXCL19].

bindings [VGRS16]. bird [Guy14].

Birthmark [PlCH11]. Bitcoin [TD17].

BIXSAN [VS11]. Blame [KT15]. BLeak [VB18].

Bloat [MS10, NBB+18, XMA+14, BRGG12, BBXC13, XR10]. bloat-aware [BBXC13]. block [CZ14, KBL14].

block-level [KBL14]. blocking [DW10].

Blockly [AMWW15]. Blueshell [PWA13].

Board [GLGA19]. boilerplate [ZCdSovdS15]. Book [Alo15, Ano18, Bro12, Del13, Gve13, Kie13, BKP16, CMM17, CSF+16, ADJG19, PVB17, ZLHD15].

Bookshelf [Ano18]. Boosting [ASV+16, AC16].

Bounds [SW12, GvRN+11]. boxes [BDGS13].

Brain [VBZ+18]. breaking [VB14a]. Breakpoint [ZW13].

breakpoints [PS12].

Brewing [WZL+18].

Bridging [PVB17].

Bringing [CV14, HRS+17, STS+13].

Broken [dGRdB+15, AZMT18].

Browser [MSSK16, PVB17, FIF+15, VS11, VB14a, WGW+11, YK14].

Browsers [HLSK13].

Browsing [LYM+18].

Browsix [PVB17].

BUBiNG [BMSV18].

Budget [GM12].

buffered [DLZ+13]. buffers [Gun14].

Bug [RPP19, LWH+10].

Bugs [OBPM17, XMD+17, ECS15, MDS+17, ODL15, Ryu16].

Build [BMDK15, BNE16, ELW15, MAH12, WSH+19].

Building [McN19, Sta10, SS19, HHW+15, Ngo12].

built [DTM+18].

built-in [DTM+18].

Business [CCA+12].

Bytecode [BDT10, BSGO12, FHSR12, NS12, RDCP12, Rey13, SEK+19, AdCGGH16, CZ14, CNRG19, DLM10, SP10b, SMP10, VB14b].

C [BB12, CDG+17, GBC12, KB11, LSBV16, LSBV17, NED+13, SRTR17, Sta10].
ST15, URJ18, ASME18, AFGM15, BP10, BOF17, KPHV11, KBL14, NGB16, ODL15, PZM+10, PDPM+16, SP10a, SMB14, Sie10, SJBL10, SKBL11, UIY10, UJR14.

Competition [CKS18]. Compilation [DLR16, PKPM19, CGJ+16, CMS+12, DLR14, FSC+13, IHWN12, JLP+14, JK13, JMO14, KS13, KHL+13, Lei17, MD15, MGI17, Ser18, ZBB15]. compiled [NED+13, RO12, TMVB13]. Compiler [JMB12, Loc18, NKh16, NWB+15, BBF+10, BRWA14, CIA13, Cle16, HWM14, IHWN12, KMLS15, KS14, KC12, LSWM16, MDMA17, Ott18, Rub14, TTS+10, TWSC10, VB14b, ZYZ+12]. compiler-compiler [KS14]. compiler-runtime [TWSC10]. compilers [Hos12, LMK16, RSB+14].

Computer [HWM11, OAC18, DNB+12, KP15]. Computing [Hol12, MPR12, NBB18, PWSG17, PWSG19, SHU16, TWH12, WN10, AdScDr+19, Dan18, HCLH18, LZYP16, Rub14, TTD+11, VF10, TRE+13]. con [SMSB11]. conceptual [Tai13].

consistent [BCR13], constrained [KSR14],

constraint [FMBH15, SHU16],

Constraints [SGD15, LSSD14],

construction [CIAD13, RGEV11],

constructors [MME14], constructs [FCL14, PTF+15], consumers [DAA13],

Consumption [MV16], container [XR10], containers [XR10],

Context [HWM13, MM16, TL17, IvdS16, LTMS18, LX19, SSB+14a, ZYY+19],

Context-sensitive [HWM13], Contextual [MSSK16], Continuous [Teo12],

Continuously [DTLM14], Contracts [YQTR15, HBT12, KT15, KKW11],

Control [FGR12, FHSR12, TT11, TNTN12, AdCGGH16, BNP+18, BL15, FWDL15, LSWM16, RHN+13, STS+13, TABS12, WLL19, XH12],

controlling [BK+13, YDF15], Convention [Hol12],

conversions [CM17], Converter [YWW+18], Cooperative [YDF15, Hdm17],

Coordinating [MAHK16], coordination [BMSZ17], copy [FBH17], copyrightable [San12], Core [Hor11, HC13, RDCP12, RTE+13, MS10, PLL+18, TRTD11, Gve13],

cores [GTSS11, SKBL11], Cornell [Gve13],

corpus [HCN14, LSVB16, LSVB17, TMVB13],

correct [AdCGGH16, AJL16, DJLP10, PS10a],

Correctness [LL15, BENS12, Cho14],

Correlation [SDC+12, XH12],

Corrigendum [LSBV17], Cost [MS19],

costs [OD18], counter [LSSD14], counters [IN12],

Counting [Bul18], Course [VAN11, Zak12],

Coverage [CSS+16, GGZ+15, Mss19, RGB18],

Coverage-Based [GGZ+15],

Coverage-directed [CSS+16], CPS [PDDD17], CPU [PKO+15],

Crawling [BMSV18, VmdL12], Creating [YMHB19, HC10, VBAM10b],

Creation [SK12], crisis [AT16], Critical [HL13, MCW19, WK12, WCB16, ZLCW14, AG17, DTL14, GMC+13, NM10a, Nil12b, RS12, SDH+17, CWW13, LWC17],

Cross [GSS+18, MD17, OTR+18, WBHN18, XCL19, AMW15, BK+13, GSS+16, KMN16],

Cross-Architecture [XCL19], cross-cutting [AMW15],

Cross-Language [GSS+18, MD17, GSS+16], Cross-Layer [OTR+18], Cross-OS [XCL19],

Cross-Platform [WBHN18], cross-program [KMN16], cross-thread [BK+13],

CrowdSourcing [BH17],

CrowdSummarizer [BH17], crypto [PTRV18], Cryptography [GPT12],

CSM [dARPH+19], CSS [Ano15, HLO15, Sta10],

Curve [GPT12], customizations [LVG10],

customized [HB13], cutting [AMW15],

Cyclic [BMOG12, RS12],

D [DiP18b, FL18, GBC12, JEC+12, ZXL16],

DAA [DR10], Dalvik [AFGM15],

dark [MHN19],

Data [Bra14, BMOG12, BA17, BF18, GM12, GTS+15, GT10b, JCO19, NKH16, NWB+15, NFN+18, NWB+18, TAF+18, YWW+18, ZLN18, dMR12, AFGM15, BK14, BB17, BOF17, BBXC13, BJBK12, CDM10, CRP+10, DFR13, DHR+12, EKUR10, FOPZ14, KB17, LDF14, MRA+17, MTSH16, NL14, SAdB+16, SSG+14, SGG+17, UML10, WK17, WCG14, XXZ13, XMA+10, XGD+19, ZlvdS17], data-centric [DH+12, FOPZ14],

Data-Driven [JCO19], Data-Intensive [NWB+18],

Data-Parallel [NKH16, CRP+10],

database [De10, EKUR10, TABS12],

databases [EKUR10, MLA11],

Dataflow [BR12], Datalog [ZMG+14],

dataset [MDS+17],

David [Kie13],

Days [Sel12b],

DBT [KKS13], dead [SK13],

Deadlock [CHMY19, CHMY15, SR14a, SR14b].
DSSAT-CSM [dARPH^{19}]. Dynamic
DSU [PVH^{14}]. Dual [AD^{16}]. Dual-Pivot [AD^{16}].

Dynamic

dynamic-memory [GYB^{+11}].
Dynamically
WWG^{+18}, CZ^{14}, CMS^{+12}, hEYJD^{12}.
Dynamically-Generated
WWG^{+18}.

Dynamo [BDB^{11}].
e-Science [SGV^{12}]. ease [DRN^{14}]. Easy [Jaf^{13}, CRP^{+10}]. economic [CSV^{15}]. economics [SJBL^{10}]. Ecosystem [YMHB^{19}]. Edition [Ano^{15}, Gve^{13}, LYBB^{14}]. editor [EK^{+12}].

Editorial [Fox^{17a}].

Editorials [Fox^{17b}, HTW^{14}, RHT^{13}]. EdSketch
[ZZK^{19}]. EDSLs [RDP^{16}]. Educator [BA^{17}]. EE [Jen^{12}, MCC^{17}]. Effect
[BSO^{18}, JK^{11}, CCF^{15}]. Effective
[BM^{14}, PTML^{11}, RD^{15}, CSSdL^{16}, KPP^{+18}, Kie^{13}]. Effectively [UR^{15}]. effects [FH^{16}, HAW^{13}, Lei^{17}]. Efficiency
[OT^{+18}, SEPV^{19}]. Efficient

Efficiently [FBH^{17}, BKC^{+13}, FOPZ^{14}].

Einsatzszenarien [Sch^{13}]. Einsteiger
[Ric^{14}]. Elektronik [Ric^{14}].
Elektronik-Projekte [Ric^{14}]. Elephant [RGM^{13}]. Elimination
[RKN^{+18}, GvR^{+11}]. elision [NM^{10a}].
Elliptic [GPT^{12}]. Eloquent [Hav^{11}].
emass [Por^{18}]. Embedded
[Fox^{17b}, HTW^{14}, JMB^{12}, KARO^{12}, Pau^{14}, SLES^{15}, SEL^{+17}, TKL^{+15}, VK^{12}, Dei^{10}, Fox^{17a}, GMC^{+13}, HTLC^{10}, KHR^{11}, LMK^{16}, LTK^{17}, OIA^{+13}, RHT^{13}, SC^{16}, SDH^{+17}, SFR^{+14}, UIY^{10}, Xue^{12}, ZYZ^{+12}].

embedding [KMLS^{15}, SC^{16}]. emerging [CDMR^{19}]. Empirical

Employing [CC^{15}]. Emscripten [Zak^{18}].
emulated [THC^{+14}]. Emulation
[XXCL^{19}]. emulator [KS^{13}]. Enabled
[GPT^{12}, DR^{10}, ETR^{+15}, RBL^{12}, SGV^{12}].

encapsulation [DDM^{11}]. End
[GM^{12}, DAA^{13}]. End-to-End [GM^{12}].

end-user [DAA^{13}]. Energy
[OT^{+18}, CL^{17}, PCL^{14}]. energy-aware [CL^{17}]. enforcement [IF^{16}]. enforcing [JWMC^{15}]. Engine
[SMP^{19}, MG^{17}, Ngo^{12}, OUY^{+13}, Tar^{11}, Ngo^{12}]. Engineering
[CCA^{+12}, GT^{10a}, MLM^{17}, MLM^{19}, VF^{10}].

engineers [Bra^{14}]. engines
[KRH^{16}, SSG^{+14}]. enhanced
[LMK^{16}, WBA^{+11}]. enhancement
[WCST^{19}]. Enhancing
[BDT^{10}, VGVEA^{13}, DeG^{12}, HC^{10}].

Ensuring [HDK^{+11}]. Enterprise
[Ano^{14}, AAB^{+10}]. entities [ETR^{12}]. Entry
[DK^{12}]. enumeration [SSH^{17}].

Environment
[K{"o}^{10}, PTML^{11}, RK^{19}, EKR^{+12}].

Environments
[BF^{18}, EABV^{14}, GTL^{+10}, HOKO^{14}, KF^{11}, RDF^{16}, RCB^{17}, SGV^{12}]. equality
[GRF^{11}]. Equilibrium [YMHB^{19}].

Equivalence [BO^{12}]. equivalent [TLX^{17}].
equivocation [TD^{17}]. ERAM
[Sch^{10a}].

Global-Scale [PE11]. Globally [YMHB19].

Glotaran [SLS+12]. go [LWB+15, McN19].

Goldilocks [EQT10]. Good [dGRdB+15].

Google [Ngo12, MGI17, Sam12]. GPGPU

[PTG17]. GPGPU-accelerated

[PTG17]. GPU [CRN19, PKO+15].

GPU-based [CRN19]. GPUs [Hos12].

grade [CRJ+10]. Gradual

[RSF+15, SFR+14, TSD+12, SIE17].

case [DRN14].

Granularity [RRB19, CZ14, YKA+19].

Graph [dMRH12, BS13].

Graphs [dMRH12, BS13].

GUI-awareness [VGS14].

GUI [Cec11, LLL13].

Hack [Ott18].

Handling [KW11, ECS15, HWM14, KV10, WK12].

Hands [CSZ17, Teo13]. Hands-on

[CSZ17, Teo13]. happened [Han15].

happens [TD15]. happens-before [TD15].

hard [LT17, Puf13].

Hardware [MAK19, SKK11, SPS17, CBG12, IN12, SE12, ZDK+19].

hardwired [OYU+13].

harness [Kie13].

hash [SV15a, SV15b, SV18].

hash-array [SV15b].

hash-tries [SV18].

hashing [GRF11].

HDFS [IRJ+12].

HDL [OYU+13].

health [EKUR10].

heap [CSV15, LDL14, TLX17, Tar11, VYY10, YS10, BVGVE10].

heap-manipulating [YS10].

Heaps [NFN+18].

Helping [RT14].

Hera [MS10].

Hera-JVM [MS10].

Herman [Kie13].

Heterogeneous [ASV+16, HBB+14, Rub14, AYZ10, ABCR10, DFR13, MS10, SV18].

Heterogeneous-race-free [HHB+14].

Heuristics [MS10, LMK16].

HHVM [Ott18].

Hiding [RBL12].

High [GSS+16, Hol12, IRJ+12, MSG+16, RGB18, SWU+15, URJ18, WN10, Zak10, BRWA14, Nog12, RBF14, TTD+11, TGZ17, WVB10, WFB18, WWH+17, TRE+13].

High-coverage [RGB18].

High-dimensional [TGZ17].

High-level [Hos12, RBF14, WVB10].

High-Performance

[URJ18, WN10, SGS+16, BRWA14, Nog12, TTD+11, WFB18, WWH+17].

higher [KT15, SPKT18].

higher-order [KT15, SPKT18].

history [DRN14].

Hole [Ano13].

Hoare [SD16b].

Hole [SD16b].

Hot [WBHN18, D’H12].

Hop [WBHN18, D’H12].

Hop [WBHN18, D’H12].

Horstmann [Gye13].

hosted [CBLFD12, SYZZ+14].

hot [LMK16].

HotSpot [Sch13, BOF17].

HotWave [AVM12, VBM10b].

HPC [JQJ+16].

HTM [CHM16].

HTML [STA10].

HTML5

[HLO15, NKKH, ANO15].

Hunting [GGC18].

HVM [LTK17].

Hybrid

[CHM16, JQJ+16, JMO14].

KCD12, VDV17, ZMN14, ZMM+16, ASME18, ADI13,

HyG12, PdMG12, STA18, SWB+15].

Hybris [DV17].

Hygienic [DFHF15].

hypervisor [GMC+13].

i-Jacob [LYM+18].

IaaS [ZLHD15].

Identification [MTSH16, PBM+19].

SBE+19, BZD17, FMS+11].

Identifier [SRTR17].

identifiers [FMS+11].

Identifying [IN12, SVB+17].

if [Han15, STA18].

If-transpiler [STA18].

illuminating [BK14].

Image [WN10].

immutable [HMD12, ZPL+10].

immutable [SV15b].
Isolation [ZLB+13]. Issue
[CJ19, DVL13, HL13, HTW14, Puf13, VK12, Fox17a, HTLC10, HGCA11, RHT13].

iterations [DD13], iterators [ZLBF14], IVE [CRJ+10]. IPvps [KS15].

J [KMLS15], J2M [LZYP16], J2ME [GPT12]. J2ME-Enabled [GPT12]. Jaccie
[HD17]. JaSTA-2 [HD17]. Java
[Bro12, Den18, Fox17a, Gve13, HWMI11, HTWI14, MvH15, Ngo12, Sch13, VK12,
AO11, KvGS+14, PQTGS17, SaDb+16, ABC18, AsdMGM14, AST12, AFGG11,
AYZI10, AdSCDr+19, AS14, AAB+10, Alt12, Ame13, AdCGGH16, AT16, And14,
AFGMI15, Ano12, Ano13, AMBV12, AGR12, AGR17, ABCR10, ADI13, ABFM12, AK13,
BK12, BH17, BMR14, BH12, BDT10, BVGV1A10, BVEAGV1A10, BVGV1A11a,
BVGV1A11b, BVGV1A13, BVGV1A4a, BVGV1A4b, BS12, BMDK15,
BO11, BO12, BO13, BP19, BCR11, BDGS13, BCD13, BD17, BRGG12, Blvfd17,
Bla18, BR12, BH10, BR15, BB12, BNP11, BL15, BW12, BA12, BZD17, BSOG12,
BMOG12, BKP16, BA17, BJKB12, CIAD13, FGB+19, CS17, CZ14, CMM17, CWW13,
CV14, CS12, CDTM10, CCFFB15, CNRGI19, CC15, CRJ+10, CWGA17, CSF+16, CSK17,
CCH1, CJ17].

Java
[CJ19, CWH19, CDG+17, Cle16, CDMR19, CKS18, CSdL16, CCA+12, CMM+10,
CRAJ10, DJLP10, Dan18, DDDF17, DLMI10, DLZ13, DVL13, DR10, DHS15,
DB16, DMS15, ECS15, EK+13, ES14, EQT10, Esq11, EAbVG14, Eng13, EV13,
ETTD12, ETR+15, FLZ+18, FRGPL+12, FGR12, Fer13, FFF17, FLL+13, FHSR12,
Fox17b, FMS+11, GLGA19, GMPS12, GMNC13, GvRN+11, GYB+11, GM12,
GBS14, GD12, GBC12, GS11, GS12, Gnn11, GKC+13, GT10b, GJS+13, GJS+14, Grid17,
GPT12, GKH15, HL13, HD17, Hdm17, Has12, HWM10, HWM13, HWM14, HA13, HM12,
HTLC10, HKVG14, HH13, HOK014, HGCA11, Hor11, Hor12, HC13, HC10,
HZZK19, HWLM11, HJ12, IHNW12, In12, IS18, IF16, JCI10, JEC+12, JQJ+16, JIL17,
Jen12, JB12, JYKS12, JTO12, JHI11, J+12, JMB12, JMO14, KYR11].

Java
[KHM+11, KMLS15, KS13, KW10, KW11, KPP+18, KM10, KSR14, KSPK12, KDPG18,
KS14, KFI1, K11, LSVB16, LSVB17, LTD+12, LMK16, LSWM16, LL13, LT11,
LT14, LZYP16, LXP18, LYBBA13a, LYBB13b, LYBBI4, LZ12, LKP19, Loc13,
Loc18, Lon10a, Lon10b, LMS+12, LMS+13, LO15, LPA13, LWC17, LTK17, LS11, Lyo12,
MKZ+14, MS13, MME+10, MLGA11, MDS+17, MCC17, MPM+15, MHN19,
MZC10b, MKTD17, MM16, MHM10, MAH12, MB12, M+10, MeC19, MSG19,
MPR12, MLM17, MLM19, MKK+12, MKK+13, SSS10, MCV19, MvH15, MT14,
MDH10, NM10a, ECS10, NS12, Nil12a, Nil12b, NG13, NNTK17, NNT+19, Nm10b,
NBB18, Oak14, OKO+10, OKM+10, OIA+13, OUY+13, OW16, OJ12, OCF114,
PS11, PLL+13, PdMG12, PTL11, PML14, PTH14, PL12, PILCH11,
PBM13, PBB19, PPM15, PMP+16].

Java
[PQD12, PVHI4, PTF+15, PS10a, PS10b, PDPM+16, Pos19, PW11, Puf13, PKC+13,
QLBS17, RD15, RDCP12, RTE+13, RET15, RR14, RS12, RHT13, R+13, RLB12, RAS16,
RS12, Rey13, Rez12, RVP11, RLM15, RR19, RB15, RV14, SLE18, SSB+14a,
SE12, SRB18, SRTR17, SST12, SS12, Sch14, Sch13, Sch10a, SPMH10, SKR11,
SDH+17, Sch10b, SSMGD10, SZ10. Set13, SMS11, SMS+12, SM12, SDM12,
SMVM17, SW12, SGG12, SEPV19, SKB11, SD16a, SJP10, SLS+12, SKR17, SS14,
SABBI9, SP10b, SMP10, SpO16, SBE+19, spp+10, SWB+15, SSB01, SSB14b, ST15,
Java [VBA10a, VBA10b, VBA11, WGF11, Wan11, WZdSOS17, WCST19, WLL19, WBM10, WK12, WCB16, WN10, WRI10, WA19, WHV13, WHIN11, WZ18, WBA11, WAB11, WWS13, XHH12, XR13, XMD17, Xue12, YP10, YKM17, YKA19, YDF15, ZlvdS17, Zak12, ZP14, ZLCW14, ZHL12, ZXL16, ZBvdB19, ZKB16, ZYY19, ZWS15, ZPL10, ZDS14, dCMMN12, dMRH12, eBH11, hE12, vdMvdMIV12, De13].

Java-Based [AFGG11, SLS11, ST15, SWF12, CJ17, CJ19, HOKO14, JMO14, KS13, KS14, MB12, MCY10].

Java-compatible [ABC10], Java-like [BDGS13, BCD13, DJLP10, SZ10].

Java-to-HDL [Ouy13].

Java-to-JavaScript [LSW16].

Java.util.Collection.sort [dGRdB15].

Java/JSP [Sch10b].

Java/Scala [Pos19].

JavaBean [MZC10a].

JavaBIP [BMSZ17].

JavaCC [GN16].

JavaCOP [MME10].

JavAdaptor [PKC13].

JavaFX [FBG17, Top11].

JavaG [WT0, WT11].

JavaScript
[Ano15, Kie13, Ric14, Teo13, CH17, AMT17, ACS14, AHK15, AZMT18, AGM17, AMWW15, BCP18, BCF14, BBP13, Cee11, Cha18, CGJ16, CVG17, CBLFD12, Cho14, CDBB18, CHJ12, Dan18, Dei10, Dei11, DSG12, DiP18a, DiP18b, DFHF15, FMM11, FMI3, FH16, FBF17, FSC13, FZ17, FOPZ14, GMS12, Guo17, GGC19, HyG12, Hav11, HBS16, HLSK13, HISSI13, HC11, HOSCI6, KR12, KSW14, KRH16, KT14, Ker15, KFBK15, Kie10, KBL14, KRR19, KARO12, Kri12, LSWM16, Ler10, LVG10, LPGK14, Liu14, LML17, MTL15, MLT17, MPS12, MGH17, MHI15, MRMV12, MTS16, Mil13, MM12, MMP15, Mor18, NKH16, NSDD17, OBPM17, PWSG17, PWS19, PGA18, PLR14, PRS15, PLR18, PKPM19, PDD17, PKO15, Por18, Rau14, dARPH19, RLBV10, RGEV11, RHN13, RW17, Ryu16, RPP19, SMN18, STA18].

JavaScript
[Ser18, Sev12a, Sev12b, SVB17, SDC12, Sta10, Ste10, SR17, SFR14, TAF18, TT11, VM15, VP16, VB14b, Wal12, WCST19, WXR16, YW13, Zak18, Zak10, dJM18, BM18, KCD12, Mei14, Ano18, Kie13, Teo12, Teo13].

JavaScriptCore [Piz17].

JavaT [SMN18].

JAVA [PKO15].

JBIInsTrace [CZ14].

JCloudScale [ZLH15].

JCM [dCMMN12].

JCSI [ABFM12].

JCS [WBM10].

JDiffraction [PQTS17].

JDK [SRB18].

JDM [ZP14].

JDSSAT [ARPH19].

JEqualityGen [GRF11].

JET [LT11].

JGRIM [MZC10b].

Jinn [LWH10].

JIT [BBF10, BB17, CMS12, HWM14, IHWN12, JK13, NED13, Ott18, RSB14, WK17, ZYY12].

JIT-based [BB17].

JITs [KRCH14].

JMarkov [CRAT12].

JML [CRJ10, TJK18].

JML-annnotated [TJK18].

JNI [CDG17].

Joe [Ano18].

Johnny [WA19].

join [MZC10a].

Journey [Ryu16].

joy [FH11].

JP2 [SSB14a].

JPC [CMM17].

JPF [BA19, WK17, WC18].

JPR [WK17].

jQuery [AM14, PIR17].

JR [OW16].

JR-like [OW16].

JRE [CZ14].

JS [AHK15, Por18].

js-emass [Por18].

Js_of_ocaml [VB14b].

JSART [MM12].

JSCore [Cha18].

JSExt [RB15].

JSON [BB17].

JSormd [Dei10].

JSP [Sch10b].

JTabWb [FFF17].

J-TRES [HTW14].

J-TRES2011 [RTH13].

J-TRES2013 [Fox17b].

J-TRES2014 [Fox17a].

judge [CSV15].

Julia [Dan18, spo16].

Juliet [BB12].

July [Bro12, KP15].

Jump [WBN18].

jungle [Sew12].

Jupyter [Dan18].

JupyterLab [Dan18].

Just
[DLR16, TN19, KHL+13, LMK16, MGI17, TTS+10]. **Just-In-Time** [TN19, DLR16, KHL+13, LMK16, MGI17, TTS+10]. **JVM** [AC16, AFG+11, CSS+16, Guy14, MS10, PVH14, R+13, RRB17, SYZZ+14, SV15b, Sub11, WKG17]. **JVMs** [BK14, ZY+12].

K-Java [BR15]. **kernel** [HDK+11]. **Key** [BBB+17, DFR13, JB12]. **key-value** [DFR13]. **keynote** [McK16]. **Kirk** [Del13].

KiWi [BBB+17]. **KJS** [PSR15].

Knoernschild [Del13]. **knot** [LF12]. **know** [DBJ16, Gra15, Han15]. **Knowledge** [KSPK12, UMP10]. **known** [Han15].

Kraken [Ano14].

Lake [Hol12]. **lambda** [MKTD17]. **lambdas** [UFM15]. **landscape** [Sve14].

Language [DLPT14, GJS+13, GJS+14, GSS+18, JC10, KSPK12, MAHK16, NM10b, Sev12b, SS13, WBHN18, ABCR10, CMM17, CSdL16, DAA13, EKR+12, Fee16, GSS+16, Hos12, HWW+15, KRCH14, LWH+10, LE16, MDM17, SC16, SZ10, SKR17, SNS+14, VB14a, WCG14, WWH+17, ZWSS15, dCMMN12]. **language-level** [WCG14]. **Language-Neutral** [WBHN18].

Languages

[CSGT17, MSM+16, PTH14, YKM17, AGGZ10, BCD13, CMS+12, DTL+18, EKK+13, ER14, FMHB15, Han15, HBT12, HJS+10, KRR+14, MSM+10, NED+13, PUL016, SPK18, SY1+16, Zha12]. **LARD** [WCG14].

Large [BA17, ASTM+16, CCFB15, CJI9, LSVB16, LSVB17, MDS+17, MCY+10, PTF+15, WHIN11]. **Large-Scale** [BA17, CJI9, MDS+17, MCY+10, PTF+15, WHIN11]. **Larus** [DD13]. **Latency** [MV16, ETR+15, JH11]. **lawn** [CH17]. **laws** [DMS11].

Layer

[OGR+18, SKKR11, Den18]. **layered** [RCR+14]. **lazy** [TD15]. **Leading** [MSS10, PGA18]. **leak** [SS14, XR13, YSCX17]. **Leaks** [And14, RW17, VB18]. **LeakSpot** [RW17]. lean [BRGG12, SV15b]. **Learn** [RT14].

Learning

[Dan18, JJO19, PSJ18, Pau14, RT14, BSAL18, CNS13, KCI2, Ano15, Teo13].

learnt [GY16]. **Legacy** [KH18, SV1+17, CDTM10]. **Legally** [Sam12]. length [SMP10]. **Less** [SMP10].

Lessons [URJ18]. **Level**

[AC16, MGI14, SWU+15, YXS+19, EKUR10, Hos12, IHWN12, KBL14, LWC17, MGI17, RFBJ14, TTD+11, WWBJ10, WCG14].

leveraging [WCST19]. **Lexical** [GN16].

Lexicon [TA+18]. **Libraries**

[BJK12, RDCP12, BhvdS17, Cho14, EKR+12, PMLT14, PLR18, TTD+11].

Library [CH17, CWGA17, NBB18, OCFL114, TAF+18, WN10, dJ18, CMM17, PMP+16, PQTG17, Pos19, TFBP14, TGZ17].

License [GD12]. **Life** [Esq11]. **LIFT**

[BT+13]. **Light** [MV15]. **Light-weight** [MV15].

Lightweight

[BW12, KBL14, KKK+17, RO12]. like [BDGS13, BCD13, DJLP10, PMLT14, SZ10, VOS14, OW16]. **Lime** [ACCR10].

line [SV17]. **linearizability** [LTZ14]. **lines** [BTR+13, KATS12]. **linguistic** [UR15].

Linux [Ric14]. **Linux-basierte** [Ric14].

Listener [JH11]. little [Han15]. **liveness** [SDL14].

Load [GMN13, PDP+16].

loaders [SM12]. **loading** [WGF11]. **Local**

[NBB18, DDDF17]. **localised** [SP10b].

locality [HJ10, OJ12]. **localize** [ZK13].

location [NCS10]. **Locators** [SDM12].

Lock [FC11, NM10a, NVF15, UMP10].

Lock-free [FC11, NV15]. **Locking**

[GGRS17, JTO12, GGRS14, GGRS15, YKA+19]. **locks** [SP17]. **Logging**

[CJ19, C17].

Logic

[ZLN18, GMS12, Pha18, SD16b]. **loop** [DD13, HWI+12, PLR18].

Loops [RD15, LLL13]. **loss** [WHIN11].

Low

[ETR+15, GM12, SWU+15, WCG14, ZHCB15, ZFK+16, BCR13, XMA+10].
Low-Budget [GM12]. Low-latency [ETR+15]. Low-level [WCG14].
Low-overhead [ZHC15, ZFK+16]. low-utility [XMA+10]. lunch [DTLM14].

m [MZC10b]. m-JGRIM [MZC10b]. M2M [Pau14]. Machine [JJCO19, LYBB14, Amel13, CBLFD12, KS13, KC12, McM11, Piz17, SMG10, WGF11, WHV+13, BZD17, Cle16, LYBB13a, LYBB13b, LTK17, PTH14, RRB19, SSB+14a, Sch13, Set13, SMS11, SGB12, SSB01, SSB14b, UR15].

Machine-Learning [JJCO19]. Machines [AGR12, GTS+15, JK13, KRCH14, NK10].
microprocessors [DFHF15]. Magic [SP10b].

magic-sets [SP10b]. magnitude [HN15].

Malicious [KCD12, AFG15]. malleable [MZC10a]. malicious [CS10a]. Managed [MAHK16, NFN+18, NWB+18, BM14, CBGM12, GTC+10, ZLsv17].

Managed-Language [MAHK16]. Management [OTR+18, Pau14, YPMM12, AHK+15, BVGV14a, BGS+13, EKUR10, HB13, KCP+17, KB17, MLM17, Nil12b, PCL14, SWB+15, Tar11, WGW+11].

Manipulating [KR19, YS10]. Manipulation [MS14, manual [KCP+17, KPP+18]. many [GTS11, SV18]. Map [BBB+17], mapped [SV15b].

Method [AC16, BVGVEAF11, BA19, GD12, AST12, AJL16, HMDE12, SS19, SS16, VBM16, ZYY+19]. Method-Level [AC16]. Methods [MM16, Pau14, VBZ+18, Bra14, GRF11, LSBV16, LSBV17, SSL18].

Metrics [KB11, JK11, SSK13, Sch13]. Metriken [Sch13]. Microscopic [RXK+17]. Microservices [KH18, LSCPE18].

[BGS+13, KC12]. mixed [CL17]. Mobile [GM12, GPT12, LYM+18, MV16, XHH12, GMNC13, GGC18, KF11, MZC10b, MTSH16]. Mock [SABB19]. Model
[Bul18, CSF+16, CDG+17, CCA+12, DLR16, FSK12, JCIO19, JYKS12, Loc18, MSM+16, MCC17, MV16, BVGV EA11a, FGB+19, CHM13, CWW13, CV14, CS12, CSKB12, DLZ+13, FLZ+18, GY16, HAW13, Loc13, LSSD14, MLT17, MSM+10, PWS11, RR14, RBV16, RAS16, RDF15, SMN+12, SSG+14, SS19, Tai13, VWJB10, ZP14, ZXL16]. Model-Aware [JYKS12]. Model-based
[MCC17, PSW11]. model-driven
[FGB+19, CHM13]. Modeling
[BGC12, JC10, KSPK12, DL14, Rev13, SM12, CRAT+12, SKR17, TLX17, ZIvdS17]. Modelling
[CSZ17]. Models
[CC15, PE11, ZLCW14, AGR17, HHH+14, TVD10, ZBB17]. Modern
[LMZP19, FIF+15, Hav11, JK13, KB17, Mor18, Teo13, GWG+11, ZDK+19]. Modernization
[KH18, Nil12a]. modes
[BP19]. Modified [GT10a]. Modular
[IvdS16, LN15, RDCF12, AACR18, MRA+17, RO12]. Modularisation
[SDM12]. modularity [Del13, SPAK10]. module [KR12, dARP+19]. Modules
[AGR12, MRF18, CMM+10, DJLP10, ES14, KF11]. Monitors
[BLH12, HM12]. Morgan [Ano18]. mori
[CPST15]. movement [NCS10]. MPI
[RAS16, SZ11, VGRS16]. MPI-based
[SZ11]. MPJ [JQJ+16, TTD12]. MrCrypt
[TLMM13]. MS [FH16]. Multi
[GSS+18, JTO12, RTE+13, BGS+13, DSEE13, Fee16, FC11, GSS+16, IHWN12, MS10, Puf13, SE12, SKBL11, SV18, TRTD11, Tar11, WRI+10, YKA+19]. Multi-Core
[RTE+13, MS10, TRTD11]. multi-cores
[SKBL11]. multi-engine
[Tar11]. multi-granularity
[YKA+19]. Multi-Language
[GSS+18, Fee16, GSS+16]. multi-level
[IHWN12]. multi-maps
[SV18]. multi-processor
[Puf13]. multi-stage
[WRI+10]. Multi-threaded
[JTO12, DSEE13, SE12, Ta13]. multi-threats
[BGS+13]. multi-version
[FC11]. Multicore
[ASV+16, CCH11, MKG+17, SE12, SSMGD10, TWX+10]. multi-threads
[BGS+13]. Multiplatform
[ZKB+16]. Multiple
[AIF12, ASF17, HLSK13, CSV15, DD13]. multiplexing
[BVGVEAFG11]. Multiprocessing
[VGS14]. multiprocessor
[PS10b, PWA13, SPS17]. Multiprocessors
[KW11, RS12]. Multithreaded
[KKW14, Loc18, SR14a, BNS12, DJLP10, Fer13]. Multithreading
[CCH11]. multivariate
[AÖ11]. multiway
[YKA+19]. Mungo
[KDGP18]. MuscalietJS
[RCR+14]. Mutagenic
[YCYC12]. mutants
[FRS+17]. Mutation
[MMP15, KPP+18]. mutators
[AHK+11]. MySQL
[Ano15].

Names
[SRTR17]. Naming
[STST12]. Native
[JQJ+16, LT11, LT14, KFBK+15, STS+13]. Natural
[LL15]. naturalness
[HGB+16]. NDetermin
[BEN12]. nested
[CHM16, ZLB+13]. Netfix
[Lu14]. Network
[CC15, GGC18, GGC19, RR14]. Networking
[Hol12]. Networks
[AFFGG11, ETR+15, ZYY+19]. neural
[ZYY+19]. neuromorphic
[HNTL12]. Neutral
[WBHN18]. Next
[YWW+18, CRJ+10, CMM+10]. Next-Generation
[YWW+18]. NG2C
[BOF17]. NGS
[YWW+18]. NGS-FC
null

NullPointerExceptions [BSOG12].

NUMA [GTS +15]. NumaGiC [GTS +15].

number [PPMH15, SLF14].

Numerical [HCLH18, KS15, KFBK +15, PQTGS17].

NXT [SWF12].

Obfuscated [KCD12]. obfuscation [CCFB15].

obfuscations [CSK17]. Object [CSGT17, GLGA19, GS11, KB11, LZ12, NBW +15, PTHH14, PiLCH11, RC17, Sev12a, SW12, AST +16, BZD17, DDFF17, FMBH15, IvdS16, KRR19, LX19, MME14, MBHO13, RDF15, UJR14, VM10, WM10, ZCdSovdS15, Zha12, ZDS14, hEYJD12].

Object-Bounded [NBW +15]. object-constraint [FMBH15].

object-manipulating [KRR19].

Object-Oriented [GS11, KB11, RC17, PTHH14, AST +16, DDFF17, MBHO13, VM10, ZDS14, hEYJD12]. object-sensitive [LX19].

Objective [Sta10]. Objective-C [Sta10].

Objects [BS12, RKN +18, AFGM15, MHL15, SK13, SABB19, WXR16, BVGVEA10].

Observations [AAB +10]. OCaml [Cle16].

OCaml-Java [Cle16]. OCTET [BKCC +13].

odeToJava [KS15]. offloading [ZHL +12].

on-demand [ZHL +12]. On-Stack [WBHN18]. On-the-fly [URJ18, UJR14].

once [WSH +19]. one [SV18]. ones [AST +16].

Online [NG13, GGC18, GGC19, HCV17, NK10].

only [NM10a].

Ontology [KSPK12].

OoOJava [JhED11]. Open [BSA14, GD12, ABC18, CJ17, CJ19, EKUR10, JK11, Tai13, VGRS16].

Open-Source [BSA14, ABC18, Tai13].

OpenJDK [BFS +18, CHM16, dGRdB +15].

OpenMP [VGS14]. OpenMP-like [VGS14]. operating [HDK +11].

operation [KKW11].

operations [MHN19, TABS12, TGZ17].

Operator [PQD12]. opportunities [TPG15].

Optimal [AD16, JCM19, SK12, ELW15].

optimale [Sch13]. optimally [BGS +13].

optimisation [PPS16]. optimistic [WGF11].

Optimization [LTD +12, RRB19, YKM17, AFG +11, BDB11, DDFF17, JMO14, KS13, KC12, NG12].

Optimizations [DR10, BB17, CPST15, DS16, NG13, SAdB +16].

Optimized [PKPM19]. Optimizing [LYM +18, SV15b, WZK +19, YRHBL13, HWW +15, KRH16, MD15, ZLB14].

optional [CMS +12]. Oracle [LMS +12, Sam12]. ORB [OUY +13].

Orchestrating [CDBD18]. Order [SGD15, SMP19, JhED11, KT15, SPKT18, TD15].

ordering [KC12]. Orders [BNE16].

ordinary [MZC10a]. O'Reilly [Ano15, Bro12]. Oriented [ABMV12, BH10, GLGA19, GS11, KB11, LYM +18, RC17, AST +16, DDFF17, EABVGV14, MBHO13, PTHH14, RVP11, VM10, VBAM10b].

null

BSAL18, DHS15, SBK13, TLX17].

Points-To
[SDC+12, BSAL18, DHS15, SBK13, TLX17].

Policies [FHSR12, MPS12, BVGV14a].
policing [DW10]. Policy [YPMM12, JK13].

Policy-Driven [YPMM12]. polyglot [EV13].

Polymorphic [Zha12].

Polymorphism [GMT14, PULO16, UTO13].

Polynomial [Pos19].

POPL [BCR13].

Popular [Has12, SRB18].

Popular-but-Seemingly-Dissimilar [Has12].

portable [BM18, LTK17, RGM13]. portal [MCY+10].

Power [MV16, Pau14, BRGG12, CBGM12, Kie13, THC+14]. pp. [Bro12].

PQL [RSI12]. Practical [AMT17, JACS10, SLES15, VS10, WBHN18, WWH+17, FGB+19, FIF+15, WT10].

Practice [HGCA11, AS14, EKUR10, LWC17, TRE+13]. practices [CJ17, YW13].

Pragmatic [Ano18, RO12]. pre [SBK13].

pre-processing [SBK13]. Precise [PIR17, TN19, XRL3, BHSB14, CVG+17, HyG12, PLR18, PG12, RGM13, TLX17, WFF18].

Precise-Yet-Efficient [TN19]. Precision [LTMP18, LX19, RSB+14].

Precision-guided [LTMP18].

Precision-preserving [LX19]. Predicate [PL12]. predictable [LTMP17]. Predicting [BSA14, RVK15, RVK19, AZLY18].

prediction [ZWZ+14]. predictive [RGB18].

Presence [RK19, ZBB15]. preserving [AK13, LX19]. pressure [DTLM14].

Price [Ano18]. Primer [YCYC12].

primitives [BJBK12]. Principles [HGCA11, JEC+12, VM10].

Printf [ALB+19]. Printing [AJL16].

Prioritization [LMZP19, MT13].

Prioritized [NGB16]. Priority [ASV+16, HM12]. Privacy [And14].

Proactive [CL17, BGS+13]. PROB [YP10].

Probabilistic [RVB16, GY16, ZWZ+14].

Problem [YHY13, ZW13, J+12, KC12].

Process [SK12, AGR17, GT10a]. Processes [BMDK15, CDBD18]. Processing [LLL13, WN10, SBK13, SSG+14, UJR14, ZDK+19].

Processor [TKL+15, Pu113, SPPH10, SMN+12].

Processors [ASV+16, MKG+17].

producers [DAI13].

product [BTR+13, KATS12, KvRHA14, SV17].

product-based [KvRHA14]. production [RGM13].

professionals [JACS10]. profile [Ott18, VSG17, WJK17]. profile-guided [Ott18]. profile [DTLM14]. profilers [MDHS10].

profiling [DD13, JH11, KRH16, NK10, RCB17, SSB+14a, STY+14, THC+14, WLL19, XR13, ZBB15].

Program [BGK17, JCCO19, KKW14, RVK15, RT14, WCG+18, ZKB+16, AZLY18, AO+11, DS16, GMS12, HCN14, JRL17, JYMC15, KM10, KMZN16, MKZ+14, NS13, RKHN18, RVK19, Sch10a, SPY+16, Tai13, TABS12, UPR+18, WGF11, ZMG+14].

Programmable [OA17, AYZI10].

Programmers [Esq11, RLMM15, Rau14].

Programming [AFGG11, ABMV12, BR11, Bro12, BA17, DLPT14, GLGA19, HWM11, HGCA11, KöL10, KSPK12, LM15, MCK16, NM10b, OAC18, PTML11, RSI12, RB15, SS13, Sub11, Alt12, AMWW15, BCC+13, BMR14, BSMB16, BRWA14, CL17, ECG12, EV13, FMBH15, Hann15, HA13, Hav11, Lew13, MCM+10, MG19, MV15, OW16, PTF+15, RVP11, RFBJ14, SNS+14, SGG+17, TB14, UFM15, WVB10, VAM10b, Wani11, WRI+10, WBS+11, ZWS15].

Programs [AGM12, BH17, BR12, BMOG12, CYWD19, GS11, JB12, LTD+12, PSJ18, STST12, SS12, SDM12, SR17, TN19, XMD+17, ZLCW14, AACR18, ASGDM14, AZMT18, AdCGGH16, BA12, BNS12, CDBD18, DJLP10, ECS15, ES14, EP14, Fer13, HL13, IN12, KRR19, LKP19, LMS+13, LO15, LPS15].

Programs [AGM12, BH17, BR12, BMOG12, CYWD19, GS11, JB12, LTD+12, PSJ18, STST12, SS12, SDM12, SR17, TN19, XMD+17, ZLCW14, AACR18, ASGDM14, AZMT18, AdCGGH16, BA12, BNS12, CDBD18, DJLP10, ECS15, ES14, EP14, Fer13, HL13, IN12, KRR19, LKP19, LMS+13, LO15, LPS15].
LPA13, MHN19, MRMV12, MCW19, NG12, OJ12, PL12, RR14, RAS16, RLBV10, SMS+12, SZ11, SJPS10, SHU16, Ta13, WCST19, YS10, YSCX17, dCMMN12, hEY.JD12. Progress

refactoring-aware [SZZ+19]. Reference [Sch14, Sun18, UJR14, HMDE12].
refinement [GY16, JLP+14, KSW+14, MCW19, SNCM19, ZMG+14, ZFK+16].
Reflexes [SPP+10]. region [Ott18].
region-based [Ott18]. regions [AC10].
register [ZYZ+12]. register-based [ZYZ+12].
Regression [MM12]. Regular [CYWD19, NM10b, PIR17]. reification [RRB17].
Reified [GBS14]. Reim [HMDE12]. RelImInfer [HMDE12].
relation [TD15]. relational [MLGA11].
relationship [LSBV16, LSBV17, SH12].
relaxed [DNB+12, KHL+17, PPS16].
Remodularizing [OJ12]. Remote [BVGVEA10, BVGV14a, BJBK12, GSD+15, SS19, BVGVEAFG11]. removal
[MRMV12, WGF11]. removing [PLR14].
rename [FM13]. Repair [SEK+19]. XMD+17, ZLNPI8, MDS+17, SHU16].
repeatability [Vit14]. Replacement [WBHN18, BCD13]. Replay [BH12].
Replaying [WKG17]. replication [CJ17, UIY10]. replication-based [UIY10].
report [CBLFD12, Sch10a]. Reports [OW16].
representation [AZLY18]. reproducibility [Vit14]. reproduction [SR14b].
Requirements [MSS19, AGGZ10]. ResAna [KvGS+14]. Research
[SR17, TRE+13, CRJ+10, CBLFD12, EKUR10, Rub14, VBMOP16, Vit14].
RESOLVE [Sun18]. Resource [BVGVE14a, WZK+19, YPM12, ADI13, ES14, KvGS+14, KSR14, SGV12].
resource-aware [SGV12]. resource-based [ADI13]. responsive [SPP+10].
responsiveness [PSNS14]. restart [CNS13]. Restructuring [RC17]. results [OD18].
Retention [ZMM+16]. Rethinking
[LHR19, Xue12, RCR+14]. retrofitted
[TTS+10]. retrofitting [LPGK14].
Reusability [Tai13]. reusable
[HCI10, MME14]. reuse [WR10]. Reusing
[PKP19]. Reverse
[CCA+12, MLM17, MLM19]. Review
[Ano15, Ano18, Bro12, Del13, Gve13, Kie13, Ngo12, Teo12, Teo13, EKUR10]. Revisited
[Mei14, GOS11]. rewriting
[GGC19, HLO15]. rewriting-based
[GGC19]. RFID [AYZ10]. RFLP
[YCYC12]. richer [CV14]. rigor [Vit14].
Rigorous [AGR17]. rings [Pos19, Pos19].
Rise [DiP18a]. risk [MPM+15]. River
[HHSS13]. RJ [OW16]. RMI [SS19]. Road
[RXX+17, SWU+15]. Robin [Ano15].
Robotic [DiP18b, LM15]. Robots [SWF12].
Robust
[VMI15, VDV17, MKZ+14, SGV12, VM10].
Rod [Teo12]. ROM [MLM19]. row [Lei17].
row-typed [Lei17]. RTSJ [ZW10]. Rubah
[PVH14]. Ruby [Teo12]. Rule
[YPMM12, QLBS17]. Rules
[CCA+12, HLO15, PTRV18]. run
[WAB+11]. run-time [WAB+11]. Running
[HC11, TWX+10, YK14]. runs [FIF+15].
Runtime [BLH12, CMM+10, GSS+18, MAHK16, MSS10, N WB+15, OCF LI14, XMA+14, BRGG12, EQT10, GTL+10, GSS+16, LMK16, MS10, OOK+10, PKC+13, RO12, STY+14, TWSC10, VBAM10a, WLL19, YRHB13, dCMMN12]. runtimes
[BM14, CSV15, RCR+14, WWH+17]. ryu
[ALB+19].
[MCW19, RS12, SDH+17, WC616, ZLCW14, AGR17, EKUR10, GOM+13, NII12b, PG12, SD16b, TAF13, YS10, ZBVDB+19, CWW13, HL13, LWC17, WK12]. Safety-Critical
[MCW19, WC616, ZLCW14, RS12, SDH+17, AGR17, CWW13, LWC17].
ShadowVM [MKZ+14], shalt [LCW18].
shape [GMT14]. Shared
[BG17, FBG17, BSM16].
Shared-Memory [BG17, BSM16].
sharing [PKO+15]. Sherlock [ADJG19].
Short [AHK+11, Cha18, SV15a, Zak12].
Short-term [AHK+11], shortcut
[MLM19, CSGT17]. Side
[Bul18, HC11, OBPM17, D’H12, KRH16].
Side-Channel [Bul18]. SICGSE [Wal12].
Signatures [DR10], significance [FMS+11].
Similarity [ADJG19]. Simplicity [Dei11]. Simplifying
[Mor18, Ano18]. Simulating [LM15].
Simulation [HWLM11, FLZ+18, KKW11, Rim12, XZL16]. Simulation-based
[HWLM11]. simulations [MCY+10].
Simulator [MKG+17, RXK+17]. single
[JK13]. Sinking [CDG+17], site
[CPST15, SSB+14a]. sites [OOK+10]. size
[AST12, UTO13]. sizing [CSV15]. SJL
[MvH15]. sketching [HZZK19], skills
[JACS10]. Skip [WBHN18]. Skyway
[NFN+18]. slices [YSCH17]. Slicing
[XMA+14]. Slimming [WGF11]. SLOC
[LSBV16, LSBV17]. Smaller [GS12].
smalltalk [FI+F15, HKVG14]. smart
[BL15, GMP12]. Smartcard [RBL12].
SMArtOp [TGZ17]. Smartphones [RT14].
SMARTS [RXK+17]. snapshots [AST12].
Snippets [SWU+15]. SNP [YCYC12]. SoC
[TKL+15]. social [GCC18, GCC19]. Socket
[WZK+19, JACS10].
Software
[BSA14, CC15, KH18, LMZP19, PBH+19, RC17, Wan11, YQT15, YMBH19, BMSZ17, BTR+13, CBGM12, CFH+13, CJ17, CJ19, CDMR19, DLV13, EKUR10, FRGPLF+12, FC11, GT10a, HBG+16, JhED11, JK11, LPA13, MHR+12, NGB16, OIA+13, PLL+18, PBB19, RAS16, SZZ+19, SV17, XR13,
YRHL13, ZZK13, ZHCB15, ZDS14, CKS18].
Solidity [Dan17]. Solution
[KS15, EKUR10, J+12]. Solving
[SED14, FMBH15, UPR+18]. Sorting
[BKP16]. soul [McM11]. Sound
[BO13, BGK17, LE16, SMP19, BHSB14,
ELW15, PPMH15, RGB18]. soundly [BS13].
Source [ADJG19, BSA14, GD12, MM16,
RLMM15, SRTR17, SED14, ABC18, AK13,
CJ17, CJ19, DRN14, EKUR10, FMS+11,
JK11, MKK+12, MKK+13, OJ12, PMP+16,
SSK13, Tal13, TWSS15]. source-code
[MK+12, MKK+13]. source-to-source
[AK13]. sources [IN12]. Spark [LXP18].
sparse [TGZ17]. sparse-matrix [TGZ17].
spatial [MLGA11]. Speaking
[Rau14, Sam12]. Special
[DVL13, Fox17a, HL13, HGCA11, Puf13,
HTL10, RHT13, HTW14, VK12].
specialization [KR+14, SV15a]. specific
[CsdL16, EK+13, HWW+15, Kie13].
Specification [GJS+13, GJS+14], IF16,
KW11, LN15, LYBB13a, LYBB13b, LYBB14,
MCW19, TWHN12, BVGVEA11a, BCF+14,
KR12, KW10, MRA+17, YP10, dCMNN12].
specifications
[BSAL18, BENS12, PS10a, TVD10, UPR+18].
specified [BCR11]. Specifying
[BNS12, HL13]. Speculation
[AC16, MG14, MG17]. speculative
[BB17, YRHL13]. speed
[HRS+17,SBF+10,UTO13]. SPF’s [PSJ18].
Spike [PS10a]. SPIN [ASdGM14]. SPL
[BTR+13]. splittable [SLF14]. SPOON
[PMP+16]. spot [LMK16]. SPUR
[BBF+10]. SQL [FGB+19, KMLS15].
SqueakJS [FIF+15]. SSNTDs [VSG17].
Stability [BSA14, LL15]. stabilizing
[LM15]. Stack
[WBHN18, CDBD18, KRCH14, Xue12].
stack-based [KRCH14]. stage [WRI+10].
staged [SC15]. staging [RO12].
Stakeholders [YMBH19]. Standard
[WKG17, LMS+12]. Standardization
[TWNH12]. StarL [LM15]. start [WSH+19].
State [AGR12, BLH12, MvDL12, MS14,
T [HD17], T-matrix [HD17], table [Tar11].

Tableau [FFF17]. Tagged [RKN+18].

Tardis [BM14]. target [Cle16]. Task [RBB19, Fee16, TWL12, ZLB13].

TaskLocalRandom [PPMH15]. Tasks [PW19, PWSG19, ST15, HAW13, PPMH15, SP+10]. Taurus [MAHK16].

Taxonomy [SS14]. Teaching [GLGA19, HA13, SWF12, CHM13, ZDS14]. teasing [LBF12]. Technical [YX19].

technique [SZ19, SSK13]. Techniques [LMZP19, RD15, EV13, KS13].

Technologies [Fox17b, HTW14, VK12, Fox17a, HTLC10, KFBK15, NL14, RHT13]. technology [NED13]. TeJaS [LP14].

Template [MME14, HJS+10]. templates [FOPZ14, AK13]. term [AHK11].

Terminating [FFF17]. Termination [BMOG12, RDCP12, BSOG12, SMP10]. Test [AGM+17, BB12, BM18, GGZ15, LMZP19, MSS19, Pha18, Rim12, SPK18, ST15, MT13, PNS14, SR14a, SKR17].

Test-driven [BM18]. tested [Mii13].

Testing [Ame13, BR12, Hin13, Mc19, MM12, MMP15, MMP+12, CSS+16, CNS13, KPP+18, Ler10, SABB19, Teo12, TD15, ZBvdB+19]. tests [AÖ11, NYCS12, SRJ15].

Textbooks [BNP11]. their [RDP16].

Third [A15, FOPZ14, LVG10]. third-party [FOPZ14, LVG10]. THOR [TWX10].

Thoth [KB17]. Thou [LCW18]. Thread [MG14, BK+13, CRJ10, MG17, PCL14, PG12, SS10, WLL19, YDFF15].

Thread-Level [MG14, MG17]. threaded [DSEE13, JTO12, SE12, Ta13].

Time [BVEAGVA10, BB+17, BLH12, DLR16, Fox17b, HTW14, JMB12, Kie10, KW11, PKPM19, Pau14, SLES15, SLE+17, TN19, VK12, BCR13, BM14, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVG14a, BGV14b, CJ10, DJW, EABVGV14, Fox17a, GMNC13, GMR+13, HTLC10, KHM+11, KPH11, KL+13, KvGS14, KW10, KSR14, LMK16, LTK17, MG17, Nil12a, PS10b, PZM+10, PSL11, Puf13, RHT13, SP10a, SPP10, Sie10, SPS17, SH12, TTS+10, WSH+19, WAB+11].

time-travel [BM14]. time-triggered [EABVGV14].

time [LK19]. Times [BK16, DW10]. timing [AGH17, LS11].

TIMP [SL5+12]. tiny [Xue12]. To-many [SV18]. to-one [SV18]. Tolerance [RK19].

tolerant [PZM+10]. Tool [FMM+11]. NBB18, PQD12, SW12, SSS13, ABFM12, CRAT+12, ETR12, KSR14, LS11, TWX10].

Tool-supported [FMM+11]. toolchain [KDPG18, SMN+18]. Toolkit [FBG17].

Tools [Bro12, CSZ17, CS12, CKS18, ABK+16, KPP+18, VBAM10].

toolset [KvGS14]. top [RVP11, SGG+17, ZMY14]. top- [SGG+17]. top-down [ZNY14]. Topics [Hor11, Jen12].

topology [DDM11]. touch [MT16].

TouchSignatures [MT16].

Toy [DiP18]. Trace [HWM14, PiLCH11, SR14b, BBF+10, HWM13, HWT+12, IHWN12, WHIN11].

trace-based [BBF+10, HWM14, HWT+12, IHWN12].

Traceability [CSKB12]. tracer [CZ14].

Traces [WKG17, BA12, RGM13]. Tracing [BP10, DLR14, DLR16, MAK19, MRF18, MD15]. track [VSG17]. TrackEtching [VSG17]. Tracking [OAC18, RLMM15].
SDC+12, WLL19, KHL+13, OOK+10.
Tracks [RGM13]. tradeoff [UTO13].
Traffic [RKG+17]. Trail [HIISS13]. Train
[MSK16]. training [KMZN16]. trait
[BCD13, VM15]. traits [BDGS13, BD17].

Transactional
[URJ18, DVL13, FC11, ZHCB15].
Transactions [DcSG12, CHM16, DFR13].
transfer [BL15]. transformation
[AST+16, PDD17]. transformations
[AK13, MHH10, PMP+16, TL17].
Transforming [dMRH12]. transitioning
[HWM14]. Translating [RFRS14].

Translation
[BO12, LSWM16, LXP18, TJJL18].
translations [UTO13]. translator
[LSYP16]. Translators [WWG+18].

Transmission
[PE11, BVGVEA11b, BJBK12].
transparent [BD11]. transpiler [STA18].
travel [BM14]. traversals [ODL15]. Treble
[YMHB19]. Tree
[LYo12, HLO15, KMMV14, SSK13, YKA+19]. trees
[CC15, MSS10, SR17]. trie [SV17].
trie-based [SV17]. tries
[SV15a, SV15b, SV18]. triggered
[EASV14]. triggers [FGB+19]. TRINI
[PDPM+16]. Trusted [TWNH12, BCF+14].
TUOFX [FG17]. tuning
[AAB+10, BVGVEA11b, SKBL11]. Turf
[CH17]. Turing [Gri17]. Turn [HOS16].

Tutorial
[BJ12, Nil12b, PBM+19, Taf13, Zak12]. TV
[JMO14]. Twitter [Guy14]. Two [Has12].

Type
[BO13, CGJ+16, KSW+14, KATS12, Le17, Loc18, RKN+18, SGD15, WT11, ACS+14, AT16, BS13, CMS+12, CVG+17, DLM10, FH16, GBS14, HyG12, KMLS15, KRR+14, KRH16, KvRHA14, KDPG18, LGPK14, LE16, MHR+12, SV18, SH12, TLL11, Zha12, eBH11]. Type-Based
[SGD15]. type-dependent [LE16].
type-heterogeneous [SV18]. Type-Safe
[Loc18, KMLS15]. Typechecking
[KDPG18, CL17]. Typed [BO13, KKK+17, MHL15, CMS+12, KRCH14, Le17, RDP16].

TypeSafing
[BO13, RvB14, SPAK10, BDGS13, CHJ12, DDM11, HH13, MME+10, YDFF15].

TypeScript
[Cho14, FH16, RSF+15].

Typing
[FZ17, RSF+15, SIE17, SFR+14, TSD+12].

Ubiquitous
[MCY+10]. UDP [RR14].

ulfjack [ALB+19]. ulfjack/ryu [ALB+19].

uls [FOPZ14]. ultimate [BL15].

UML
[CSF+16]. unbounded [LSSD14, RGB18].

Uncertain
[McK16]. Unchangeable
[RK19]. Understandable
[MSM+16].

Understanding
[ABC18, FRM+15, MKTD17, NBW+18, PCL14, QLBS17, Set13, TABS12, VBMDP16, LWB+15, Nil12b, OD18].

Undocumented
[Alt12, MHR+12]. Unified
[LM15]. uniform [AH10, EUG13]. Unifying
[Has12, M KK+12, M KK+13]. union [KT15].

uniprocessors [KPHV11]. Units [LL13].

Understandability
[MRR+12]. Unix [PVB17].

Utility
[MOS19]. Unpacking
[LBF12]. Unrestricted [WWS13]. unsafe
[MPM+15]. unsound [AT16]. Updates
[YMHB19, PKC+13]. Upper [SW12].

Updatable
[SGG+17]. uptrees [HB13].

USA
[Hol12, KP15]. usability
[FH16, MHR+12, WA19]. Usage
[OAC18, RC17, PTF+15, QLBS17]. Use
[BGK17, Guy14, PMP+15, AMWW15, MKTD17, PBHM13, Sch13]. use-case
[AMWW15]. used [XR10]. useless
[FRC+17]. User
[Liu14, McDL12, RKHN18, SLS+12, DAA13, FMS+11, MTSH16, PSNS14]. user-defined
[FMS+11]. User-guided [RKHN18]. Using
[ASIMGM14, BS12, BSA14, BNE16, DLM10, GLGA19, HCN14, KFBK+15, KO18, MV16, MSHK16, NBB18, Pain14, PQR12, RC17, SDM12, SLE+17, UMP10,
Wan11, WKG17, WCG+18, XMA+14, YCYC12, Zak18, BB17, Dan18, DDF17, Del13, FH16, FOPZ14, GBS14, IvdS16, KMLS15, KT14, KC12, LVG10, Lew13, LDL14, MT13, PIR17, PLR18, Pha18, RKHN18, RAS16, SAkB+16, SSK13, SSH17, SHU16, SS19, VGS14, WLL19, WBM+10, WRI+10, XR13, ZLN18, vdMvdMV12. UT [Hol12]. utility [CSV15, XMA+10]. utilization [BCR13].

REFERENCES

Work-stealing [KFB+12, TWL12].
workarounds [UPR+18], workbench
[CFH+13]. Workers [VP16]. Working
[ST15], workshop [Fox17a], world
[CIAD13, McK16, STS+13]. worms
[GGC19]. Worst [SPPH10, dGRdB+15].
Worst-case [SPPH10]. would [Han15].
wrap [FOPZ14], Wrappers [MPS12].
Wright [Teo13]. Write [ASME18, HJH10].
Write-rationing [ASME18]. Writing
[HOSC16, Jaf13, Mor18].

x [MSM+16]. X10 [TWL12], Xbase
[EEK+13], XIR [TWSC10], XML [NL14].
XSS [GGC18, GGC19, MSSK16, VS11].
Xtraitj [BD17].
yang [CBGM12]. years [BTR+13].
yieldpoint [LWB+15]. yin [CBGM12].

Z [SBF+10], Z-rays [SBF+10]. Zero
[ZW13].

References

Altman:2010:OTJ

[AAB10] E. Altman, M. Arnold, R.
Bordawekar, R. M. Delmonico, N. Mitchell, and
P. F. Sweeney. Observations on tuning a Java enter-
prise application for performance and scalability. IBM
Journal of Research and Devel-
opment, 54(5):2:1–2:12, ???. 2010. CODEN IB-
MJAE. ISSN 0018-8646 (print), 2151-8556 (elec-
tronic).

Acar:2018:PCM

[AACR18] Umut A. Acar, Vitaly Ak-
senov, Arthur Charguéraud,
and Mike Rainey. Performance chal-
lenge.

References

Auerbach:2010:LJC

[ABCR10] Joshua Auerbach, David F.
Bacon, Perry Cheng, and Rodric Rabbah. Lime: a
Java-compatible and syn-
thesizable language for het-
erogeneous architectures.
ACM SIGPLAN Notices, 45
CODEN SINODQ. ISSN
0362-1340 (print), 1523-
2867 (print), 1558-1160 (elec-
tronic).

Avvenuti:2012:JTC

[ABFM12] Marco Avvenuti, Cinzia
Bernadeschi, Nicoletta De

Abanades:2016:DAR

Ansaloni:2012:DAO

Aumuller:2016:OPD

[AD16] Martin Aumüller and Martin Dietzfelbinger. Optimal

Amighi:2016:PCC

Allyson:2019:SOI

Almeida:2019:GPD

Austin:2012:MFD

Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic information flow. *ACM SIG-
Arnold:2011:AOG

Aiello:2011:JBA

Anikeev:2015:SGC

Albert:2010:PIM

Antonopoulos:2017:DIS

Andreasen:2017:SDA

REFERENCES

Apel:2010:CUF

Aigner:2011:STM

Aigner:2015:AJE
Andrysco:2016:PFP

Axelsen:2013:PTD

Adams:2019:URP

Altman:2012:USM

Andreasen:2014:DSA

Ament:2013:ATG

Adamsen:2017:PIR

Christoffer Quist Adamsen, Anders Møller, and Frank Tip. Practical initialization race detection for JavaScript web applica-

Anonymous. Book review: *Simplifying JavaScript*, by Joe Morgan. Published by
REFERENCES

[AZMT18] Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. Finding broken promises in asynchronous JavaScript programs. Pro-

REFERENCES

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Bainomugisha:2013:SRP

Bettini:2013:CTB

Bettini:2017:XTJ

Bala:2011:DTD

Bettini:2013:CTB

Barbuti:2010:AIA

Burnim:2012:NIN
Jacob Burnim, Tayfun Elmas, George Necula, and

Bruno:2018:SGC

Bruno:2018:DVM

Battig:2017:SDC

Berman:2017:EUS

Blackshear:2018:RCS

Bedi:2013:MMT

Boddin:2010:AOR

Barbu:2012:ARA

Badihi:2017:CAG

Biswas:2014:DES

Biboudis:2017:RJD

Burdette:2012:ECJ

REFERENCES

REFERENCES

Bellia:2013:JST

Bruno:2017:NPG

Barabash:2010:TGC

Bender:2019:FJC

Bluemke:2012:DTJ

Bogdanas:2015:KJC

Brandt:2014:DAS

Bhattacharya:2012:DLI

Brown:2012:BRF

Bedla:2012:SSJ

Balatsouras:2013:CHC

Bosboom:2014:SCC

Bouktif:2014:PSO

REFERENCES

Bastani:2018:ALP

Bonetta:2016:GSM

Brachthauer:2018:EHM

Brockschmidt:2012:ADN

Boddon:2013:SLS

Bultan:2018:SCA

Basanta-Val:2010:SSS

P. Basanta-Val, M. García-Valls, and I. Estévez-Ayres. Enhancing OSGi with real-time Java support. *Software—Practice and Experience*, ...
REFERENCES

Chaikalis:2015:FJS

Cosentino:2012:MDR

Ceccato:2015:LSE

Chen:2011:MJP

Christophe:2018:ODA

Chisnall:2017:CJS

David Chisnall, Brooks
REFERENCES

Chamberlain:2017:PLR

Chadha:2018:JAS

Chugh:2012:DTJ

Carro:2013:MDA

Chapman:2016:HSH

Cogumbreiro:2015:DDV

Cogumbreiro:2019:DDV

REFERENCES

Clerc:2016:OJJ

Costa:2010:RMN

Castro:2017:JLC

Chang:2012:IOT

Celik:2019:DIA

Choi:2013:GGT

REFERENCES

Chambers:2010:FEE

Ceccarello:2012:TGC

Cordoba-Sanchez:2016:ADS

Chavez:2016:ACC

Choi:2017:SAS

Chawdhary:2017:PES

Azizm Chawdhary, Ranjeet Singh, and Andy King. Partial evaluation of string obfuscations for Java malware detection. *Formal
Chanda:2012:TBS

Chen:2016:CDD

Cameron:2015:JFE

[CSV15] Callum Cameron, Jeremy Singer, and David Vengerov. The judgment of FORSETI:

Casale:2017:PEJ

Cazzola:2014:JBR

Chaudhuri:2017:FPT

Chris Dannen. *Introduc-
ing Ethereum and Solidi-

Toomey Dan. *Learning Jupyer 5: explore interactive computing using*

REFERENCES

[dGRdB+15] Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel, and Reiner

DHondt:2012:ISS

Dolby:2012:DCA

Dolby:2018:DCA

Dietrich:2015:GSE

Dietrich:2016:WJD

Demange:2013:PBB

deMol:2012:GTJ

Duarte:2011:ICS

Devietti:2012:RRC

Dietrich:2010:POD

Dyer:2014:DVE

Doeraene:2016:PIW
[DS16] Sébastien Doeraene and Tobias Schlatter. Parallel incremental whole-program optimizations for Scala.js.
REFERENCES

Iria Estévez-Ayres, Pablo Basanta-Val, and Marisol García-Valls. Composing and scheduling service-oriented applications in time-triggered distributed real-time Java environ-

CSENFA. ISSN 1521-9615 (print), 1558-366X (electronic).

REFERENCES

Foley-Bourgon:2017:EIC

Fernandes:2011:LFS

Feeley:2016:CML

Ferrara:2013:GSA

Flanagan:2010:AMD

Ferrari:2017:JJF

Candel:2019:DMD

Carlos Javier Fernández Candel, Jesús García Molina, Francisco Javier Bermúdez Ruiz, Jose Ramón Hoyos Barceló, Diego Sevilla Ruiz, and Benito José Cuesta

Arnaud Fontaine, Samuel Hym, and Isabelle Simplot-Ryl. Verifiable control flow policies for Java bytecode. *Lecture Notes in Computer Science*, 7140:

REFERENCES

REFERENCES

SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

[Gerakios:2013:FIS] Prodromos Gerakios, Agge-

DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

J. Gabaruk, D. Logofatu, D. Großkreutz, and C. Andersson. On teaching Java

Greenman:2014:GFB

Gupta:2016:LSA

Gong:2011:JSA

Grossschadl:2012:EJI

Gramoli:2015:MTY

Grech:2011:JGE

Grigore:2017:JGT

Michael T. Goodrich and Roberto Tamassia. *Data Structures and Algorithms in Java*. John Wiley and

Geoffray:2010:VSM

Gidra:2015:NGC

Gidra:2011:ASG

Guyer:2014:UJT

Gvero:2013:BRC

REFERENCES

Gampe:2011:SMB

Grigore:2016:ARG

Garbervetsky:2011:QDM

Hauswirth:2013:TJP

Hanenberg:2015:WDW

Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? ACM SIGPLAN Notices, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Hasbun:2012:UTP

Haverbeke:2011:EJM

Heumann:2013:TEM

Huang:2013:ECS

Hindle:2016:NS

Hedin:2016:IFS

Heidegger:2012:APC

Hsiao:2010:EST

Chun-Feng Hsiao and Chih-Ping Chu. Enhancing SCORM through creating a reusable Java class repository. Software—Practice

Hughes-Croucher:2011:NRS

Horstmann:2013:CJF

Herrera:2018:NCW

Hsiao:2014:UWC

Hammer:2017:VOV

Halder:2017:JSV

Hofmann:2011:EOS

Owen S. Hofmann, Alan M. Dunn, Sangman Kim, Indrajit Roy, and Emmett

Hanazumi:2017:FAI

HunEom:2012:SSJ

HunEom:2012:DDP

Horspool:2011:PPP

Hoppe:2013:DDB

Hower:2014:HRF

Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Benedict R. Gaster, Mark D. Hill, Steven K. Reinhardt, and David A. Wood. Heterogeneous-race-free memory models. ACM SIGARCH Computer

REFERENCES

www.sciencedirect.com/science/article/pii/S0167642313002839

Hollingsworth:2012:SPI

Horstmann:2011:CJA

Horstmann:2012:JEC

Hosking:2012:CHL

Hunt:2016:RFF

Haas:2017:BWS
REFERENCES

[Higuera-Toledano:2010:ISI]

[Higuera-Toledano:2014:EIS]

[Hayashizaki:2012:IPT]

[Huang:2011:SBA]

[Haubl:2010:CES]

[Haubl:2011:ECE]
References

REFERENCES

Inoue:2012:AML

Inoue:2012:ISC

Islam:2012:HPR

Insa:2018:AAJ

Inostroza:2016:MIM

Juneau:2012:JRP

Joseph:2010:PII
[JACS10] Damien Joseph, Soon Ang, Roger H. L. Chang, and Sandra A. Slaughter. Practical intelligence in IT: as-

Jaffer:2013:EAR

Ji:2012:PKP

James:2010:FMC

Jacek:2019:OCW

Jara:2012:NVJ

Jendrock:2012:JET

REFERENCES

Jagannathan:2014:ARV

Jung:2012:EJA

Jung:2014:HCO

Javed:2016:TSJ

Johnsen:2012:SLM

Johnson:2015:EES

REFERENCES

[102x681]

94

(print), 1523-2867 (print),
1558-1160 (electronic).

Jin:2012:JMM

Huafeng Jin, Tuba Yavuz-
Kahveci, and Beverly A.
Sanders. Java memory
model-aware model check-
ing. Lecture Notes in
Computer Science, 7214:
220–236, 2012. CODEN
LNCSD9. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/chapter/
10.1007/978-3-642-28756-
15.16/.

[KB11]

Kossakowski:2012:JED

Grzegorz Kossakowski, Nada
Amin, Tiark Rompf, and
Martin Odersky. JavaScript
as an embedded DSL.
Lecture Notes in Com-
puter Science, 7313:409–
434, 2012. CODEN
LNCSDE9. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/chapter/
10.1007/978-3-642-31057-
17.19/.

[KARO12]

Kastner:2012:TCA

Christian Kästner, Sven
Apel, Thomas Thüm, and
Gunter Saake. Type check-
ing annotation-based prod-
ct lines. ACM Transac-
tions on Software Engineer-
ing and Methodology, 21
CODEN ATSMER. ISSN
1049-331X (print), 1557-
7392 (electronic).

Kumari:2011:AOO

Usha Kumari and Sucheta
Bhasin. Application of
object-oriented metrics to
C++ and Java: a compar-
ative study. ACM SIG-
SOFT Software Engineering
Notes, 36(2):1–10, March
2011. CODEN SFENDP.
ISSN 0163-5948 (print),
1943-5843 (electronic).

Kunjir:2017:TAM

Mayuresh Kunjir and Shiv-
nath Babu. Thoth in
action: memory manage-
ment in modern data ana-
litics. Proceedings of the
VLDB Endowment, 10(12):
CODEN ????? ISSN 2150-
8097.

Kim:2014:LBL

Hongjune Kim, Seonmyeong
Bak, and Jaejin Lee. Light-
weight and block-level
current sweeping for
JavaScript garbage collec-
tion. ACM SIGPLAN No-
tices, 49(5):155–164, May
2014. CODEN SINODQ.
ISSN 0362-1340 (print),
1523-2867 (print), 1558-
1160 (electronic).

Kiselyov:2017:SFC

Oleg Kiselyov, Aggelos Bi-
boudis, Nick Palladinos,
and Yannis Smaragdakis.

Kulkarni:2012:MCO

Krishnaveni:2012:HOJ

Kedia:2017:SFS

Kouzapas:2018:TPM

Kereki:2015:JA

Kuehnhausen:2011:AJM

Kumar:2012:WSB

Vivek Kumar, Daniel Framp- | 96
| ton, Stephen M. Black- |
| burn, David Grove, and |
| Olivier Tardieu. Work- |
| stealing without the |
| bagage. ACM SIGPLAN |
| Notices, 47(10):297–314, |
| October 2012. CODEN |
| SINODQ. ISSN 0362-1340 |
| (print), 1523-2867 (print), |
| 1558-1160 (electronic). |

Khan:2015:UJW

Faiz Khan, Vincent Foley- | Bourgon, Sujay Kathrotia, |
| Erick Lavoie, and Laurie |
| Hendren. Using JavaScript |
| and WebCL for numerical |
| computations: a compar- |
| ative study of native and |
| web technologies. ACM |
| SIGPLAN Notices, 50(2):91– |
| 102, February 2015. CO- |
| DEN SINODQ. ISSN 0362-1340 |
| (print), 1523-2867 (print), |
| 1558-1160 (electronic). |

Knoche:2018:UML

H. Knoche and W. Hassel- |
| bring. Using microservices |
| for legacy software modern- |
| ization. IEEE Software, 35 |
| CODEN IESOEG. ISSN 0740-7459 |
| (print), 1937-4194 (electronic). |

Kerschbaumer:2013:IFT

Christoph Kerschbaumer, |
| Eric Hennigan, Per Larsen, |
| Stefan Brunthaler, and |
| Michael Franz. Informa- |
| tion flow tracking meets |
| just-in-time compilation. |
| ACM Transactions on Archi- |
| tecture and Code Optimiza- |
| tion, 10(4):38:1–38:??, |
| December 2013. CODEN |
| ????. ISSN 1544-3566 (print), |
| 1544-3973 (electronic). |

Kang:2017:PSR

Jeehoon Kang, Chung- |
| Kil Hur, Ori Lahav, Vik- |
| tor Vafeiadis, and Derek |
| Dreyer. A promising se- |
| mantics for relaxed-memory |
| concurrency. ACM SIG- |
| PLAN Notices, 52(1):175– |
| 189, January 2017. CODEN |
| SINODQ. ISSN 0362-1340 |
| (print), 1523-2867 (print), |
| 1558-1160 (electronic). |

Kalibera:2011:FR

Tomas Kalibera, Jeff Hagel- |
| berg, Petr Maj, Filip Pi- |
| zlo, Ben Titzer, and Jan |
| Vitek. A family of real-time |
| Java benchmarks. Concur- |
| rency and Computation: |
| Practice and Experience, |
| 23(14):1679–1700, Septem- |
| ber 25, 2011. CODEN |
| CCPEBO. ISSN 1532-0626 |
| (print), 1532-0634 (elec- |
| tronic). |
Kabanov:2011:DSF

Kienle:2010:ATT

Kienle:2013:BRE

Kim:2017:TAA

Krieger:2011:AES

Kaiser:2014:WAM

Ko:2010:EAW

Karakoidas:2015:TSE

Kalibera:2014:FAS

Kulkarni:2016:APA

Kolling:2010:GPE

Kroening:2015:CAV

Kalibera:2011:SRT

Kedlaya:2014:ITS

Ko:2019:WSA

Kaufmann:2013:SCO

Krebs:2014:JJB

Kroshko:2015:OPN

Kouneli:2012:MKD

10.1007/978-3-642-33642-3_16/.

Korsholm:2014:RTJ

Kashyap:2014:TRS

Keil:2014:EDA

Kersten:2014:RRA

Kolesnikov:2014:CPB
Kim:2010:EAE

Kim:2011:MAE

Lauinger:2018:TSD

Lorenzen:2016:STD

Leijen:2017:TDC

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Lerner:2010:FTJ

Lewis:2013:IAP

Liu:2019:RIP

Liu:2014:JNU

Liva:2019:SDE

Leino:2015:APS

Leung:2013:PEJ

[102x681] Alan Leung, Ondrej Lhoták, and Ghulam Lashari. Parallel execution of Java loops on Graphics Processing
REFERENCES

Lin:2015:STU

Lee:2016:ECP

Loring:2017:SAJ

Long:2012:COS

Long:2013:JCG

REFERENCES

Luo:2019:HDS

Leavens:2015:BSS

Lopes:2015:HSA

Lochbihler:2013:MJM

Lochbihler:2018:MTS

Long:2010:TDSa

Long:2010:TDSb

Loureiro:2013:EDS

Lerner:2014:TRT

Lux:2011:TSD

Landman:2016:EAR

Landman:2017:CEA

Larrucea:2018:M

Luu:2014:MCC

Loi Luu, Shweta Shinde, Prateek Saxena, and Brian...
REFERENCES

Leopoldseder:2016:JJT

Li:2011:JEC

Li:2014:EAJ

Laskowski:2012:DJP

Luckow:2017:HTP

Li:2018:PGC

Yue Li, Tian Tan, Anders Möller, and Yannis Smaragdakis. Precision-guided context sensitivity for pointer
REFERENCES

Liu:2014:FFL

Lerner:2010:SDT

Lin:2015:SGU

Lu:2019:PPY

Liu:2018:PPACMPL

Luckcuck:2017:SCJ

Lee:2010:JSD

LX19
REFERENCES

References

Li:2016:JJS

McIntosh:2012:EJB

Maas:2016:THL

Maas:2019:HAT

McIntyre:2012:FJB

Martinez:2017:MBA
McKinley:2016:PWU

McMillan:2011:SVM

McNerney:2019:BBB

Miyazawa:2019:SCS

McLane:2010:UIV

Marr:2015:TVP

Mytkowicz:2010:EAJ

REFERENCES

Marr:2017:CLC

Martinez:2017:ARR

Meijer:2014:EJR

Martinsen:2014:HTL

Martinsen:2017:CTL

Mehrabi:2019:PUP

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
</table>

Note: CODEN and ISSN information is included for each reference.

REFERENCES

0164-0925 (print), 1558-4593 (electronic).

Martin:2014:TCR

Mirzaei:2012:TAA

Mirshokraie:2015:GMT

Morgan:2018: SJW

Mastrangelo:2015:UYO

Mercer:2012:CVI

Magazinius:2012:SWS

Jonas Magazinius, Phu H. Phung, and David Sands. Safe wrappers and sane policies for self protecting
 REFERENCES

Mamouras:2017:SMS

Mace:2018:PTD

Meawad:2012:EBS

McIlroy:2010:HJR

Marinescu:2013:FSJ

Moller:2014:ADC
REFERENCES

Marino:2010:DSE

Marino:2016:DXU

Mitropoulos:2016:HTY

Malhotra:2013:DFT
Murawski:2014:GSI

Madsen:2015:SAE

Mehrnezhad:2016:TIU

Marz:2016:RPC

Mesbah:2012:CAB

Motika:2015:LWS

Mateos:2010:ANI

Cristian Mateos, Alejando Zunino, and Marcelo

Mateos:2010:MJN

Nowicki:2018:MPI

Nasseri:2010:CMR

Nuzman:2013:JTC

Nguyen:2018:SCM

REFERENCES

ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Newton:2015:ALF

Noll:2012:IDO

Noll:2013:OFD

Nunez:2016:PGC

Ngo:2012:BRE

Nilsen:2012:RTJ

Nilsen:2012:TOU

Kelvin Nilsen. Tutorial overview: understanding dynamic memory management in safety critical
REFERENCES

Namjoshi:2010:NOP

Na:2016:JPC

Nolan:2014:XWT

Nakaike:2010:LER

Nourie:2010:REJ

Noller:2019:CSS

REFERENCES

[Noller:2017:SSE]

[Nikolic:2012:DEA]

[Nikolic:2013:RAP]

[Nguyen:2015:FCR]

[Nguyen:2018:UCM]
Naik:2012:AT

Omar:2017:PSF

Obaidellah:2018:SUE

Oaks:2014:JPD

Ocariza:2017:SCC

Ortin:2014:RPI

Ou:2018:TUC

[OD18] Peizhao Ou and Brian Demsky. Towards understanding the costs of avoiding out-of-thin-air results. *Proceedings of
REFERENCES

Olivio:2015:SDA

Ogawa:2013:RJA

Olsson:2018:CLM

Ottoni:2018:HJP

Ohkawa:2013:RHO

Olsson:2016:ERR

Oh:2015:MWA

Paul:2014:RTP

Pascarella:2019:CCC

REFERENCES

Ponzanelli:2019:AIC

Philips:2017:DDD

Parnin:2013:AUJ

Panizo:2012:EJP

Portillo-Dominguez:2016:ECP

Pinto:2014:UEB

Portillo-Dominguez:2016:ECP

Filip Pizlo. The JavaScript-Core virtual machine (in-

Pukall:2013:JFR

Piao:2015:JJF

Pan:2018:ASJ

Park:2014:AAS

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). DLS ‘13 conference proceedings.

Passerat-Palmbach:2015:TSS

Pichon-Pharabod:2016:CSR

Pham-Quang:2012:JAD

Piedrahita-Quintero:2017:JGA

Pironti:2010:PCJ

Pitter:2010:RTJ

REFERENCES

9:1–9:??, August 2010. CO-
DEN ???. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[PS11] Zachary Palmer and Scott F
Smith. Backstage Java: mak-
ing a difference in metaprog-
gramming. ACM SIGPLAN
Notices, 46(10):939–958, Oc-
tober 2011. CODEN SINODQ. ISSN
0362-1340 (print), 1523-
2867 (print), 1558-1160
(electronic). OOPSLA ’11
conference proceedings.

[PS12] Chang-Seo Park and Koushik
Sen. Concurrent break-
points. ACM SIGPLAN
Notices, 47(8):331–332, Au-
gust 2012. CODEN SINODQ. ISSN
0362-1340 (print), 1523-
2867 (print), 1558-1160
(electronic). PPOPP ’12
conference proceedings.

[PSJ18] Maria Paquin, Elena Sher-
man, and Amit Jain. Assess-
ing the adequacy of syn-
thetic programs for learn-
ing SPF’s configurations.
ACM SIGSOFT Software
Engineering Notes, 43(4):
55, October 2018. CODEN
SFENDP. ISSN 0163-5948
(print), 1943-5843 (elec-
tronic).

[PSNS14] Michael Pradel, Parker
Schuh, George Necula, and
Koushik Sen. Event-
Break: analyzing the re-
 sponsiveness of user inter-
faces through performance-
guided test generation.
ACM SIGPLAN Notices, 49
CODEN SINODQ. ISSN
0362-1340 (print), 1523-
2867 (print), 1558-1160
(electronic).

[PSS12] Daejun Park, Andrei Ste-
fanescu, and Grigore Rosu.
KJS: a complete formal se-
manics of JavaScript. ACM
SIGPLAN Notices, 50(6):
346–356, June 2015. CO-
DEN SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic).

[PSW11] Niusha Hakimi Pour, Paul
Strooper, and Andy Wellings.
A model-based development
approach for the verification
of real-time Java code. Con-
currency and Computation:
Practice and Experience,
23(13):1583–1606, Septem-
ber 10, 2011. CODEN
CCPEBO. ISSN 1532-0626
(print), 1532-0634 (elec-
tronic).
Pinto:2015:LSS

Pape:2014:EJV

Papadimitriou:2011:SES

Paletov:2018:ICA

Puffitsch:2013:SIP

Petrashko:2016:CGL

Powers:2017:BBG

Pina:2014:RDJ

Plumbridge:2013:BPR

Pan:2017:GCF

Pan:2019:GCF

Pizlo:2010:SFT

REFERENCES

2867 (print), 1558-1160 (electronic).

Rhodes:2015:DDO

Reynders:2016:GSB

Reynolds:2013:MJB

Richard-Foy:2014:EHL

Radoi:2014:TIC

Roemer:2018:HCU

Jake Roemer, Kaan Genç, and Michael D. Bond. High-

Richards:2011:ACJ

RGEV11

Ricci:2013:ETP

[RHM13]

[Richards:2013:FAC]

[RHN+13]

Radoi:2015:WAR

[Cosmin Radoi, Stephan Herhut, Jaswanth Sreeram, and Danny Dig. Are web applications ready for parallelism? *ACM SIGPLAN Notices*, 50(8):289–290, August 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).]

[RHD15]

[Cosmin Radoi, Stephan Herhut, Jaswanth Sreeram, and Danny Dig. Are web applications ready for parallelism? *ACM SIGPLAN Notices*, 50(8):289–290, August 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).]

[RHSD15]

[Cosmin Radoi, Stephan Herhut, Jaswanth Sreeram, and Danny Dig. Are web applications ready for parallelism? *ACM SIGPLAN Notices*, 50(8):289–290, August 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).]

[Ravn:2013:EIS]

[RHT13]

[Ric14]

Rimlinger:2012:TGS

Rooheitavaf:2019:AAF

Raghothaman:2018:UGP

Rodchenko:2018:TIE

Richards:2010:ADB

Rodeghero:2015:ETS

Rompf:2012:LMS
Tiark Rompf and Martin

Rastogi:2015:SEG

Reichenbach:2012:PPD

Reardon:2014:SSB

Ramos:2013:DSJ

Ramos:2015:NCS

Rubin:2014:HCW

[Kotagiri Ramamohanarao, Hairuo Xie, Lars Kulik, Shanika Karunasekera, Ege men Tanin, Rui Zhang, and Eman Bin Khunayn. SMARTS: Scalable microscopic adaptive road traffic simulator. *ACM Transactions on Intelligent Systems and Technology (TIST)*,
REFERENCES

Ryu:2016:JFB

Spadini:2019:MOT

Serbanescu:2016:DPO

Spoto:2019:SI

Sartor:2010:ZRD

2010. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Smaragdakis:2013:SBP

Shahriyar:2014:FCG

Scherr:2016:AFC

Schmidt:2010:ERA

Schultz:2010:WAJ

Schmeisser:2013:MOE

Schildt:2014:JCRb

Peter Sewell. Tales from the jungle. *ACM SIGPLAN Notices*, 47(9):271–
REFERENCES

272, September 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Swamy:2014:GTE [SFR+14]

Sherman:2015:DTB [SGD15]

Subercaze:2017:UPT [SGG+17]
Julien Subercaze, Christophe Gravier, Syed Gillani, Abderrahmen Kamoun, and Frédérique Laforest. Up-sortable: programming top-k queries over data streams.

Simão:2012:CER [SGV12]

Stuchlik:2012:SVD [SH12]

Steimann:2016:CRA [SHU16]
Friedrich Steimann, Jörg Hagemann, and Bastian Ulke. Computing repair alternatives for malformed programs using constraint attribute grammars. ACM SIGPLAN Notices, 51(10):
REFERENCES

Jeremy Singer, George Kavoor, Gavin Brown, and Mikel Luján. Garbage collection auto-tuning for Java MapReduce on multi-cores. ACM SIGPLAN Notices,
REFERENCES

Schoebert:2011:HAL

Sondergaard:2017:CTD

Stilkerich:2017:PGU

Stilkerich:2015:PGA

Steele:2014:FSP

Snellenburg:2012:GJB

[JSSOBK] Joris J. Snellenburg, Sergey Laptenok, Ralf Seger, Katharine M. Mullen, and Ivo H. M. van Stokkum. Glotaran: a Java-based graphical user interface for the R package TIMP. *Journal of Statistical Software*, 49(3):??, June 2012. CODEN JSSOBK. ISSN 1548-

REFERENCES

[SPAK10] Friedrich Steimann, Thomas Pawlitzki, Sven Apel, and Christian Kästner. Types and modularity for implicit

Selakovic:2018:TGH

Spoto:2016:JSA

Spring:2010:RAI

Schoeberl:2010:WCE

Strom:2017:HLR

Stefanescu:2016:SBP

REFERENCES

[SS10] Dean F. Sutherland and
REFERENCES

Sarimbekov:2014:JCS

Stark:2014:JJV

Su:2014:CEM

Srikanth:2017:CVU

Singh:2013:TGC

Saini:2018:CNC

Sciampacone:2010:EMS

Stone:2015:WMT

Stark:2010:BIA

Sayed:2018:ITI

Santos:2013:DDS

Stefanov:2010:JP

Samak:2016:DSF

Malavika Samak, Omer Tripp, and Murali Krishna

Sun:2013:BJW

STS+13

Schafer:2012:CAN

Subramaniam:2011:PCJ

Su:2018:RAR

Sun:2018:RAR

1523-2867 (print), 1558-1160 (electronic).

Steindorfer:2015:OHA

Steindorfer:2017:TSP

Steindorfer:2018:MOA

Silva:2017:ICL

Sverdlov:2014:JVL

Siek:2012:FDT

Stancu:2015:SEH

Codrut Stancu, Christian Wimmer, Stefan Brun-

[Siegel:2011:AFV] Stephen F. Siegel and Timothy K. Zirkel. Automatic formal verification of MPI-

Shen:2019:IRA

Tamayo:2012:UBD

Tarau:2011:IST

Tanyalcin:2018:LVL

Taibi:2013:ROS

Tarf13

Tosch:2014:SPA

Thomson:2015:LHB

Tomescu:2017:CEN

Teodorovici:2012:BRC

Teodorovici:2013:BRL

Teyton:2014:SLM

Tommasel:2017:SLM

Antonela Tommasel, Daniela Godoy, and Alejandro Zunino. SMArtOp: a Java library for distributing high-dimensional sparse-matrix
Tu:2014:PPP

Tran-Jørgensen:2018:ATV

Tsai:2015:JPI

Thiessen:2017:CTP

Tate:2011:TWJ

Tetali:2013:MSA

Sai Deep Tetali, Mohsen Lesani, Rupak Majumdar, and Todd Millstein. Mr-Crypt: static analysis for secure cloud computations. ACM SIGPLAN Notices, 48(10):271–286, October 2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-
REFERENCES

Tian Tan, Yue Li, and Jingsheng Xue. Efficient and precise points-to analysis: modeling the heap by merging equivalent automata. ACM SIGPLAN Notices, 52(6):278–291, June 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Guillermo L. Taboada, Sabela Ramos, Roberto R.

Taboada:2011:DEJ

Taboada:2011:DLC

Takikawa:2012:GTF

Toledo:2011:ACJ

Taboada:2012:FMS

REFERENCES

issn=0920-8542&volume=60&issue=1&spage=117.

Tatsubori:2010:EJT

Torlak:2010:MCA

Tardieu:2012:WSS

Toegl:2012:SSJ

Titzer:2010:ICR

Teng:2010:TPA

Urma:2015:JAL

Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft.
REFERENCES

[UR18] Tomoharu Ugawa, Carl G.

REFERENCES

[Vidal:2016:ECJ] S. Vidal, A. Bergel, J. A. Díaz-Pace, and C. Mar-
cos. Over-exposed classes in Java: an empirical study.
Computer Languages, Systems and Structures, 46(??):
1–19, November 2016. CO-
DEN ????. ISSN 1477-8424
(print), 1873-6866 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S1477842415300531.

[Villazon:2011:CAW] Alex Villazón, Walter Binder,
Philippe Moret, and Danilo
Ansaloni. Comprehen-
sive aspect weaving for
Java. Science of Compu-
ter Programming, 76(11):1015–
1036, November 1, 2011.
CODEN SCPGD4. ISSN
0167-6423 (print), 1872-
7964 (electronic).

[Vidal:2016:UAE] Santiago A. Vidal, Alexan-
dre Bergel, Claudia Mar-
cos, and J. Andrés Díaz-
Pace. Understanding
and addressing exhibition-
ism in Java empirical re-
search about method ac-
cessibility. Empirical Soft-
ware Engineering, 21(2):
483–516, April 2016. CO-
DEN ESENFW. ISSN
1382-3256 (print), 1573-
7616 (electronic). URL
http://link.springer.
com/accesspage/article/

[Vidal:2018:ARB] Santiago Vidal, Iñaki Berra,
Santiago Zulliani, Claudia Marcos, and J. Andrés Díaz Pace. Assessing the refactoring of brain meth-
ods. ACM Transactions on
Software Engineering and Methodology, 27(1):2:1–
2:??, June 2018. CODEN
ATSMER. ISSN 1049-331X
(print), 1557-7392 (elec-
tronic).

[vanderMerwe:2012:VAA] Heila van der Merwe, Brink
van der Merwe, and Willem
Visser. Verifying Android applications using
Java PathFinder. ACM
SIGSOFT Software Engi-
neering Notes, 37(6):1–5,
November 2012. CODEN
SFENDP. ISSN 0163-5948
(print), 1943-5843 (elec-
tronic).

[Viotti:2017:HRH] Paolo Viotti, Dan Dobre,
and Marko Vukolić. Hybris:
Robust hybrid cloud stor-
age. ACM Transactions on
Storage, 13(3):27:1–27:??,
October 2017. CODEN
???? ISSN 1553-3077
(print), 1553-3093 (elec-
tronic).

[VanLoan:2010:ITC] Charles F. Van Loan and

[VM15] Tom Van Cutsem and Mark S. Miller. Ro-
bust trait composition for
JavaScript. *Science of
Computer Programming*,
98 (part 3)(??):422–438,
February 1, 2015. CODEN
SCPGD4. ISSN 0167-6423
(print), 1872-7964 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0167642312002079.

[VP16] Javier Verdu and Alex Pa-
juelo. Performance scal-
ability analysis of JavaScript
applications with Web
Workers. *IEEE Computer
Architecture Letters*, 15(2):
105–108, July/December
2016. CODEN ????. ISSN
1556-6056 (print), 1556-
6064 (electronic).

[VSG17] K. Muraleedhara Varier,
V. Sankar, and M. P. Gau-
gadathan. TrackEtching
— a Java based code for
etched track profile calcu-
lations in SSNTDs. *Com-
puter Physics Communications*,
218(??):43–47, September
2017. CODEN CPHCBZ.
ISSN 0010-4655 (print),
1879-2944 (electronic).
URL http://
www.sciencedirect.com/
science/article/pii/S0010465517301273.

[VS10] Luke VanderHart and Stu-
art Sierra. *Practical Clo-
jure*. The expert’s voice in
open source. Apress, Berke-
ley, CA, USA, 2010. ISBN
1-4302-7231-7, 1-4302-7230-
LCCN ????.

[VS11] Sharath Chandra V. and
S. Selvakumar. BIXSAN:
browser independent XSS
sanitizer for prevention of
XSS attacks. *ACM SIG-
SOFTWARE Software Engineer-
ing Notes*, 36(5):1–7, Sep-
tember 2011. CODEN
SFENDP. ISSN 0163-5948
(print), 1943-5843 (elec-
tronic).

[VAR2017] Rob V. Van Nieuwpoort,
Gosia Wrzesińska, Ceriel
J. H. Jacobs, and Henri E.
Bal. Satin: a high-level
and efficient grid program-
ning model. *ACM Transac-
tions on Programming Lan-
guages and Systems*, 32
CODEN ATPSDT. ISSN
0164-0925 (print), 1558-
4593 (electronic).

[VECHEV2010] Martin Vechev, Eran Ya-
hav, and Greta Yorsh.
PHALANX: parallel check-
ing of expressive heap as-
sertions. *ACM SIGPLAN
Notices*, 45(8):41–50, Au-
gust 2010. CODEN SIN-
ODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Wijayarathna:2019:WJC
[WA19] Chamila Wijayarathna and
Nalin Asanka Gamagedara
Arachchilage. Why Johnny
can’t develop a secure ap-
application? A usability anal-
ysis of Java Secure Socket
Extension API. *Comput-
er & Security*, 80(??):54–
73, January 2019. CODEN
CPSEDU. ISSN 0167-4048
(print), 1872-6208 (elec-
tronic). URL https://
www.sciencedirect.com/
science/article/pii/S0167404818304887.

Wurthinger:2011:SAR
[WAB+11] Thomas Würthinger, Danilo
Ansaloni, Walter Binder,
Christian Wimmer, and
Hanspeter Mössenböck. Safe
and atomic run-time code
 evolution for Java and
its application to dynamic
AOP. *ACM SIGPLAN
Notices*, 46(10):825–844,
October 2011. CODEN
SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic). OOPSLA ’11 con-
ference proceedings.

Wampler:2011:FPJ
programming for Java
developers*. O’Reilly
& Associates, Inc., 981
Chestnut Street, Newton,
MA 01764, USA, 2011.
ISBN 1-4493-1265-9, 1-
4493-1103-2. xi + 72 pp.
LCCN QA76.62 .W36 2011.
URL http://proquest.
safaribooksonline.com/
9781449312657.

Wang:2011:EEU
evaluation of using a
game project in a software
architecture course. *ACM
Transactions on Computing
Education*, 11(1):5:1–
5:??, February 2011. CO-
DEN ????. ISSN 1946-6226.

Wurthinger:2011:AED
Binder, Danilo Ansaloni,
Philippe Moret, and
Hanspeter Mössenböck. Ap-
lications of enhanced
dynamic code evolution
for Java in GUI de-
velopment and dynamic
aspect-oriented pro-
gramming. *ACM SIGPLAN
Notices*, 46(2):123–126,
February 2011. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Walker:2012:SNJ
by the numbers: JavaScript.
SIGCSE *Bulletin (ACM
Special Interest Group on
Computer Science Edu-
cation)*, 44(1):8, January
2012. CODEN SIGSD3.
ISSN 0097-8418 (print),
2331-3927 (electronic).
Wang:2018:HSA

Welch:2010:ABS

Wellings:2016:ISC

Wood:2014:LLD

Wang:2018:PBJ

Wang:2019:DEJ

Wilcox:2018:VVH

[Wagner:2011:SJV]

[Wagner:2011:CMM]

[Wimmer:2013:MAV]

[Wellings:2012:AEH]

[Wang:2017:JRJ]
Kaiyuan Wang, Sarfraz Khurshid, and Milos Gligoric. JPR: Replaying JPF traces using standard JVM. *ACM SIGSOFT Software
Wade:2017:AVJ

Wang:2019:TRC

Wimmer:2010:AFD

Wendykier:2010:PCH

Witman:2010:TBR

Westbrook:2010:MJM

Watt:2019:WW

Conrad Watt, Andreas Rossberg, and Jean Pichon-

Thomas Würthinger, Christian Wimmer, and Lukas Stadler. Unrestricted and safe dynamic code evolution

REFERENCES

1532-0626 (print), 1532-0634 (electronic).

Xu:2010:FLU

Xu:2014:SRB

Xuan:2017:NAR

Xue:2010:DIU

Xu:2013:PML

Xue:2012:RJC

REFERENCES

Xue:2019:ASC

Xie:2013:AAE

Yang:2012:MPD

Yi:2015:CTC

Yoo:2014:WRR

Yang:2019:MGL
Bing Yang, Kenneth B. Kent, Eric Aubanel, Stephen MacKay, and Tobi Agila.

Yang:2017:EJV

Yessenov:2017:DAD

Yim:2019:TFS

Yang:2010:JIP

Yerima:2012:AMB

Yi:2015:SCC

Yiapanis:2013:OSR

Yaha:2010:VSP

Yue:2013:MSI

Yan:2017:AAA

Yue:2018:NFN

Yan:2019:ACL

REFERENCES

Zakas:2010:HPJ

Zakhour:2012:JTS

Zakai:2018:FPW

Zheng:2015:APP

Zhang:2017:ACE

Zhang:2019:DSJ

Zhang:2015:SYB

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ZIvdS17]</td>
<td>Zacharopoulos:2017:EMM</td>
</tr>
<tr>
<td>[ZLB+13]</td>
<td>Zhao:2013:INT</td>
</tr>
</tbody>
</table>
Zhang:2018:ADS

Zhang:2014:ARP

Zhang:2014:HTB

Zakkak:2014:JJM

Zibin:2010:OIG

Zerzelidis:2010:FFS

Alexandros Zerzelidis and Andy Wellings. A framework for flexible scheduling in the RTSJ. *ACM Trans-

bedded JVMs. ACM SIGPLAN Notices, 47(7):63–
74, July 2012. CODEN SINODQ. ISSN 0362-
1340 (print), 1523-2867 (print), 1558-1160 (elec-
tronic). VEE '12 conference proceedings.

[ZZK13] Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. In-
jecting mechanical faults to localize developer faults for
evolving software. ACM SIGPLAN Notices, 48(10):
765–784, October 2013. CODEN SINODQ. ISSN
0362-1340 (print), 1523-
2867 (print), 1558-1160 (electronic). OOPSLA '13
conference proceedings.