Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

3 [DiP18b, FLZ18, GBC12, JEC12, ZXL16].
-core [PLL18]. -safety [SD16b].

/multi [Taf13]. /multi-threaded [Taf13].
Abbreviated [SRTR17]. ABS [SAdB+16].
absence [AGH+17]. Abstract [AGR12, BDT10, DLR16, KPP12, XMA+14, DLM10, DLR14, FSC+13, KMMV14, NSDD17, SSK13].
addressing [GD10, VBMDP16]. Adequate [GGZ+15]. ADiJaC [SD16a]. Adoption [PBMM13]. Adriaan [Ngo12]. Advanced [Hor11, VBAM10a, dJ14, Jen12].
Alting [WBM+10]. always [AJL16].
Analyses [Kri12, HJ13, KMMN16, PMP+16, ZMG+14]. Analysis [AGM+17, CPV15, Hol12, KCD12, MvDL12, NS12, RDCP12, SGD15, SW12, SDC+12, SLES15, SLE+17, SR17, ZKB+16, AM14, Bra14, CFH+13, DHS15, GYB+11, HCN14, HWLM11, KSW+14, KT14, KVG+14, KPP+18, LSVB16, LSVB17, LTM14, MKZ+14, MCC17, MB12, NSDD17, NS13, PIR17, PLR18, Fu13, RLBV10, RRB17, SPPH10, SMS11, SBK13, SP10b, TLX17, TXW+10, TLMM13, TL17, TPG15, ZMY14, ZWS15, CH17].
Analytics [BBB+17, KB17, STCG13]. analyzer [Fer13, GN16, SMP10].
Analyzing [PLL+18, ZK+19, BTR+13, PSNS14].
Android [CNS13, MMP+12, STY+14, THC+14, ZHL+12, ZKB+16, vdMvdMV12].
Ann [CSL16]. annotated [TJLL18].
APIs [HBS16, RDP16, SMI12, SRT18, VM10].
app [Ngo12, Sta10]. Apple [Ano13].
Application [BH12, CCA+12, KF11, KB11, LZ12, RDCP12, LMM15, SWF12, AYZ10, AAB+10, AÖ11, Del13, FRG+12, HWLM11, LBF12, OUY+13, SE12, WAB+11, XHH12, HD17].
Application-Aware [LZ12].
Application-Replay [BH12].
Applications
[GMPS12, GD12, MAHK16, MvDL12, MMP15, NKH16, NWB15, OwKPM15, SLES15, WBA+11, AMT17, AST+16, AC16, AMWW15, ADI13, ABFM12, DSEE13, BOF17, BBXC13, EABVGV14, GMC+13, HLO15, JH11, MTL15, MZC10a, MZC10b, PRL14, PKC+13, RHSD15, R+13, RVP11, RW17, Ryu16, Shi10b, SdBG+16, SGV12, SP+10, TXW+10, WHIN11, XGD+19, vdMvdMV12].

Approach [BDT10, CSF+16, DLPT14, KKW14, STST12, ADI13, CHM13, CSKB12, DHM+12, HLO15, HM17, J+12, MZC10a, MvH15, PWS11, RVP11, RO12, SNS+14].

Applicable [WHV+13]. approaches [GD10, MD15, SS14]. approximate [CNS13]. Approximation [RvB14].

Approaches [SS12]. apps [BM18, CNS13, MMP+12, Ngo12, Sta10].

Aspect [ABMV12, BH10, VBAM10b, VBMA11, VBA+11]. Aspect-Oriented [ABMV12, BH10, VBAM10b, WBA+11].

Aspectizing [TNT12]. Aspects [AC10]. aspects [LVG10]. Assertion [MM12].

AST [DRN14, HW+15, ZLBF14]. asymmetric [CBGM12]. asymptotic [ODL15].

Asynchronous [KW11, SK12, WK12, FZ17, KW10, LML17]. atomic [WAB+11]. Atomicity [GGRSY17, JLP+14, BHSB14, BNS12, GGRSY15, UMP10]. atoms [PPS16].

auto-tuning [SKB11].

Automata [TLX17, ZWZ+14]. Automated [BH17, BSOG12, BMOG12, MS14, RGEV11, SDM12, TJJL18, UPR+18, AsdMGM14, MRMV12, ZFK+16]. Automatic [GGRSY14, GGRSY15, GGRSY17, IS18, KKW11, MDS+17, MM16, PQLD12, SZ11, SD16a, SIPS10, SS16, WM10, XM+17, ABK+16, FM13, PG12]. automatically [TB14].

Autonomic [GMPS12]. average [LDL14]. avoid [XR10]. Avoiding [FRC+17, ZBB17].

avoids [PPS16]. Aware [JKS12, LZ12, BBXC13, CL17, EQT10, SSB+14a, SGV12].

awareness [VGS14]. axiomatic [TVD10].

Based [AFGG11, DLR16, GM12, GGZ+15, GCC18, LTD+12, MVDL12, MM12, PTML11, PILCH11, PE11, RBL12, RT14, SGD15, SLS+12, ST15, SWF12, AZY10, AST+16, ADH13, BBF+10, BBP13, BB17, CDTM10, CSKB12, CJ17, CPST14, CPST15, EKUR10, GT10a, GMC+13, HW1M14, HW1+12, HOK14, HWLM11, HWIN12, IRJ+12, JEC+12, JMO14, KATS12, KS13, KRCH14, KrvRHA14, KS14, Lon10a, Lon10b, MCC17, MB12, MCY+10, PDP+16, PWS11, SZ11, SBK13, SMP10, SPY+16, SV17, SNS+14, UTY10, UPR+18, VSG17, XHH12, YP10, ZYZ+12].

Basic [CZ14]. basic-block [CZ14].

basics [Zak12]. basierte [Ric14]. Battery [ST15]. battlefield [WT10].
Checks [FMBH15]. CHERI [CDG+17].
chip [PS10, Puf13, RS12, SPS17].
chip-multiprocessor [PS10].
chip-multiprocessors [RS12]. choice [WBM+10]. CICS [R+13]. CIL [BBF+10].
circular [Gun14, SZ10]. Circus [ZLCW14].
City [Hol12]. Class [BS13, CSF+16, NCS10, CSKB12, HC10, MHH10, SC16, SM12, TSD+12]. Classes [And14, SVB+17, WT11, CZ14, CS12, SZ10, TSD+12, VBDPM16]. Classifies [SD16a].
classification [SS14]. Classifiers [BSA14].
Classifying [MHH10]. Classless [WZSOS17]. clicker [HA13]. Client [MS14, OBPM17, CH17, KRH16].
Client-Side [OBPM17, KRH16].
Client-State [MS14]. clients [SRB18].
Clojure [ECG12, FH11, VS10]. Cloned [SSL18]. Closing [ZLHD15]. Closures [BO11, BO12, BO13]. Cloud [VDV17, GGC18, LZY16, TLM13].
Cocoa [Sta10].
Code [BH17, BNE16, HC11, MM16, PKPM19, RVK15, RLMM15, SRTR17, SVB+17, SV15a, SED14, AGR17, AK13, CCFB15, DRN14, FLZ+18, FH16, FMS+11, IS18, LVG10, MKK+12, MKK+13, NG13, OJ12, PMP+16, PWS11, RFRS14, RBV16, RO12, SSK13, Tal13, UTO13, VSG17, WK17, WGF11, WBA+11, WAB+11, WWS13, ZHL+12, ZXL6, ZWS15].
coding [LMS+12]. Coffin [Teo12]. coherent [ZP14].
Cohesion [RC17]. Cold [BZD17, WGF11].
collected [AGGZ10]. collecting [AHK+11].
Collection [ASV+16, GM12, QSAS+16, ST15, BP10, BOF17, KPHV11, KBL14, NGB16, ODL15, PZM+10, PDPM+16, SP10a, SMB14, Sic10, SJBL10, SKBL11, UIY10, UJR14].
Collections [GS12, Lon10a, Lon10b, PL12, SV15b, SV17].
collectives [RTET15, TRTD11]. Collector [BH12, GTS+15, BCR13, BVGV14b, Puf13].
Collectorens [Sch13]. collectors [GTSS11, Sch13, XGD+19]. coloring [SS10].
Colt [BK16, WN10]. CoMA [AGR12].
Combating [NWB+18]. Combination [BSA14]. Combinatorial [YHY13].
combinators [MHBO13]. Combining [BDGS13, MG17]. commensal [BRWA14].
Communication [JQJ+16, RTE+13, SK12, BJBJ12, ETR+15, TTD+11].
communications [ETTD12, RTET15, TTD12]. Communities [ZMM+16]. Compact [HWM10, HWM11, JLL17]. Comparative [KB11, KFBB+15, SSL18]. comparing [MD15]. Comparison [BK16, AD13, BJBJ12, HH13, KVRG14, SMS+12].
Comparisons [GGZ+15]. Compartmental [WGW+11].
compatibility [DJB16, OIA+13]. compatible [ABCR10, Hor12].
Compilation [DLR16, PKPM19, CGJ+16, CMS+12, DLR14, FSC+13, IHWN12, JLP+14, JK13, JMO14, KS13, KHL+13, Lei17, MD15, MGI17, ZBB15]. compiled [NED+13, RO12, TMV13].
Compiler [JMB12, Loc18, NKK16, NWB+15, BBF+10, BRWA14, CIAD13, HWM14, IHWN12, KMLS15, KS14, KC12, LSW16, MDM17, Rub14, TTS+10, TWSC10, VBG14b, ZYZ+12].
compiler-compiler [KS14].
compiler-runtime [TWSC10]. compilers [Hos12, LMK16, RSB+14]. Compiling [Fee16, Hos12]. complementation [BS13].
Complete [BO13, BR15, JC10, Sch14, Gri17, PSR15, RGM13, RRR17].
Eect [PTML11, RD15, CSdL16, KPP + Educator [BA17].
LVG10, MKZ ZBB15].
dynamic-memory HB13, KRCH14, KRR [CCA CZ14, CMS dynamically [Fox17a, HTW14, RHT13].
Editorial [Fox17a].

drive [EABVGV14, GTL environments [BDT10, BVGVEA13, DcSG12, HC10].
Ensuring [HDK+11].
Engineering [CCA+12, GT10a, MLM19, VF10].
engineers [Bra14]. engines [KRKH16, SSG+14]. enhanced [LMK16, WBA+11]. Enhancing
[BDT10, BVGVEA13, DeSG12, HC10].

Ensuring [HDK+11].
Enterprise [Ano14, AAB+10]. entities [ETR12]. Entry
[BK12]. enumeration [SSH17].
ERAM [Sch10a]. Erratum [HWM11].
Ethereum [Dan17]. eval [Mil13, MRMV12].

Elektronik-Projekte [Ric14]. Elephant [RGM13]. Elimination
[RRN+18, GvRN+11]. elision [NM10].
Elliptic [GPT12]. Eloquent [Hav11].
emass [Por18]. Embedded
[Fox17b, HTW14, JMB12, KARO12, Pau14, SLES15, SLE+17, TKL+15, VK12, Del10, Fox17a, GMC+13, HTLC10, KHR11, LMK16, LTK17, OIA+13, RHT13, SC16, SDH+17, SFR+14, UIY10, Xue12, ZYZ+12].
embedding [KMLS15, SC16]. Empirical
[LSBV16, LSBV17, SS13, WXR16, BJJK12, FH16, HH13, KPP+18, MHR+12, NCS10, SH12, Tai13, VBDPM16, VBMDP16].
Employing [CC15]. Emscripten [Zak18].
emulated [THC+14]. emulator [KS13].

Enabled
[GPT12, DR10, ETR+15, RBL12, SVG12].
encapsulation [DDM11]. End
[GM12, DAA13]. End-to-End [GM12].
end-user [DAA13]. Energy
[OTR+18, CL17, PCL14]. energy-aware
[CL17]. enforcement [IF16]. enforcing
[JWMC15]. engine
[MGI17, Ngo12, OUY+13, Tar11, Ngo12].

Engineering

[CCA+12, GT10a, MLM19, VF10].
engineers [Bra14]. engines [KRKH16, SSG+14]. enhanced [LMK16, WBA+11]. Enhancing
[BDT10, BVGVEA13, DeSG12, HC10].

Ensuring [HDK+11].
Enterprise [Ano14, AAB+10]. entities [ETR12]. Entry
[BK12]. enumeration [SSH17].
ERAM [Sch10a]. Erratum [HWM11].
Ethereum [Dan17]. eval [Mil13, MRMV12].
Evaluating [BGK17, BLH12, MDHS10].
Evaluation [CSZ17, GBC12, JMB12, OCFLL14, TTS+10, Wan11, CSK17, MRA+17, MD15, WWH+17, XGD+19].

Generation [AGM+17, BH17, YWW+18, CRJ+10, PPM15, PSNS14, Rim12, RO12, UMP10]. generations [BOF17]. generators [SLF14].

Glotaran [SL+12]. go [LWB+15]. Goldilocks [EQT10]. Good [dGRdB+15].

Google [Ngo12, MGI17, Sam12]. GPGPU-accelerated [PQTGS17].

GPGPU [PQTGS17].

GPGPU-accelerated [PQTGS17]. GPU [PKO+15]. GPUs [Hos12]. grade [CRJ+10]. Gradual [RSF+15, SFR+14, TSD+12, Sie17].

grained [DRN14]. grammars [GN16, SHU16].

granularity [CS12]. Graph [dMRH12, BS13]. Graphical [SLS+12].

Graphics [Cec11, LLL13]. graphs [AdCGGH16, DSEE13, JWMC15, PULL16].

growth [DL14]. guarantees [JWC15, ZHCB15].

GUI [CNS13, VGS14, WBA+11].

GUI-awareness [VGS14].

Guide [Ame13, Oak14, Rau14, Teo13, Top11].

Guided [CNS13, DiP18b, MMP15, GY16, PSNS14, SSH17].

Guidelines [GGZ+15, HSLK13].

Handling [KW11, ECS15, HWM14, KW10, WK12].

Hands [CSZ17, Teo13]. Hands-on
happens [Teo13]. happened [Han15].
happens [TD15]. happens-before [TD15]. hard [Puf13]. Hardware [SKKR11, SPS17, CBGM12, IN12, SE12, ZDK+19].
hardwired [OUY+13]. harness [Kie13].
Hera-JVM [MS10]. Herman [Kie13].
Heterogeneous [ASV+16, HBB+14, Rub14, AYZI10, ABCR10, DFR13, MS10].
Heterogeneous-race-free [HBB+14].
heuristics [LMK16]. Hidding [RBL12]. hierarchy [BS13]. High [GSS+16, Hol12, IRJ+12, MSM+16, SWU+15, WN10, Zak10, BRWA14, Ngo12, RFBJ14, TTD+11, TGZ17, VWJB10, WWH+17, TRE+13]. high-dimensional [TGZ17]. high-level [Hos12, RFBJ14, VWJB10].
High-Performance [WN10, GSS+16, BRWA14, Ngo12, TTD+11, WWH+17].
higher [KT15]. higher-order [KT15].
hygienic [DFHF15]. hypervisor [GMC+13].

implementation [HdM17]. Implementation [CSF+16, GPT12, HM12, OA17, Por18, VGRS16, YP10]. implementations [CSS+16, OJ12]. Implementing [FFF17, GM12, WCB16, EKK+13, FBH17, PMP+16].
implications [BRGG12]. implicit [IvdS16, SPAK10]. imply [BRGG12].
Improve [OTR+18, QSaS+16]. Improved [KRR+14, UIY10, OJ12, XHH12].
inefficiently [XR10]. inefficiently-used [XR10].
Inference [BO13, YHY13, AGGZ10, CGJ+16, HyG12, HMDE12, Zha12]. inferring [AS14, BENS12]. InfiniBand [ETTD12, IRJ+12]. infinite [ASdMG14].
Inflow [ZMM+16]. influence [MHR+12].
Informa [HA13]. Information [ASF17, HBS16, KHL+13, RKN+18, SS12, AF12, ABFM12, BVGVEA11b, CMS+12, PMTP12, RRB17]. Information-flow [HBS16]. Infrastructure [Den18, NG12].
Inheritance [LN15, WT11, AST+16, GBS13, NCS10].
Initial [LTD+12]. initialization [AMT17, MME14]. Initiation [FGR12].
Injecting [ZZK13]. inline [DJLP10].
instantiation [AST+16]. instead [AGH+17, BTR+13]. instrumenting [CZ14]. Integrated [Tar11, YP10].
integrating [SPP+10]. integration

[CSZ17, Teo13].
integrity [HDK+11], [Ame13, HKVG14, Sch10a].

intelligence [JACS10], [HDK+11].

Intelligent [Pau14].

Intensive [NWB+18, SAdB+16].

inter [CMM17].

inter-language [CMM17].

Interacting [SK13].

Interaction [WT11].

interactive [AMWW15, JH11, MCY+10].

interruption [VM10].

interdependencies [LBF12].

Interface [Liu14, MvDL12, SLS+12, AYZI10, MT14, LT11, LT14].

Interfaces [WT11, Cho14, DLM10, LWH+10, PSNS14, WT10].

interference [YDF15].

International [Hol12, KP15, Fox17a].

Interoperability [GSS+18, GSS+16].

Interpretation [BDT10, DLR16, DLM10, DLR14, NSDD17].

Interpretation-Based [DLR16].

interpreter [D'H12, KMMV14].

interpreters [HWW+15, IvdS16, MD15, ZLBF14].

Interprocedural [CPV15, FWDL15, ZNY14].

Interrupting [AST12].

intersection [KT15].

intra [BJBK12].

intra-node [BJBK12].

Introducing [Dan17, DMS11].

Introduction [CIAD13, CSZ17, HTLC10, HTW14, Lew13, RHT13, VK12, Hav11, VF10].

Introductory [BNP11].

intrusively [MZZ10a].

Investigation [SS13, FH16, Tui13].

invited [Piz17, Sie17].

invocation [SPAK10, BVGVEAFG1].

invocations [BVGV14a].

invokedynamic [OCFL14].

Involvement [ZMM+16].

IP [TKL+15].

iPhone [Sta10].

IR [LSWM16].

irregular [AC16].

ISAs [HNTL12].

ISBN [Ano15, Bro12].

Isolation [ZLB+13].

Issue [DLZ+13, DVL13, DR10, DHS15, DBJ16, DMS11, ECS15, EKE+13, ES14, EKT10, Esq11, EABVGV14, Eul13, EV13, ETTD12, ETZ+15, FLZ+18, FRGZPLF12, FGR12, Fer13, FFF17, FFL+13, FHR12, Fox17b, FMS+11, GMP12, GrvR+11, GYB+11, GM12, GB14, GD12, GBC12, GS11, GS12, Gon11, GMC+13, GT10b, GJS+13, GJS+14, Grl17, GPT2, GKI15, HL13, HD17, HD17, Has12, HWM10, HWM13, HWM14, HA13, HM12, HTLC10, HKVG14, HH13, HOKO14, HGCA11, Hor11, Hor12, HC13, HC10, HWM11, HJ12, HWN12, IN12, IS18, IF16, JC10, JEC+12, JQJ+16, JLL17, Jen12, JB12, JYS12, JTO12, JH11, J+12, JMB12, JMO14, KHR11, KHM+11, KML15, KS13, KW10, KW11, KPP+18, KM10, KSR14, KSPK12, KDP18, KS14, KF11, KB11, LSB16, LSB17, LTD+12, LMK16, LSWM16].

Java [LH13, LT11, LT14].

J2ME [GPT12].

J2ME-Enabled [GPT12].

Jaccie [KS14].

Jalapeno [AFG+11].

JAMES [DDD17].

JaSTA [HD17].

JaSTA-2 [HD17].

Java [Bro12, Den18, Fox17a, Gve13, HWM11, HTW14, MvH15, Ngo12, Sch13, VK12, AO11, KvGS+14, PQTGS17, SAdB+16, ABC18, ASDMGM14, AST12, AFGG11, AYZI10, AS14, AAB+10, Alt12, Ame13, AdCGGH16, AT16, And14, Ano12, Ano13, ABMV12, AGR12, AGR17, ABCR10, AD13, AFBM12, AK13, BK12, BH17, BRM14, BH12, BD10, BVGVEA10, BVEAGV10, BVGVEA11a, BVGVEAFG11, BVGVEA11b, BVGVEA13, BVGVE14a, BVGVE14b, BS12, BMDK15, BO11, BO12, BO13, BCR11, BDG13, BCD13, BD17, BRG12, Blv17, BR12, BH10, BR15, BB12, BN11, BW12, BA12, BZD17, BSG12, BMG12, BK16, BA17, BBK12, CIAD13, CSZ17, CZ14, CMM17, CWW13, CV14, CS12, CDM10, CCFB15, CC15, CRJ+10, CSF+16, CSK17, CCH11, CJ17, CDG+17, CS16, CCA+12, CRAJ10, DJLP10, DDD17, DLM10].

Java [DLZ+13, DVL13, DR10, DHS15, DBJ16, DMS11, ECS15, EEE+13, ES14, EGT10, Esq11, EABVGV14, Eul13, EV13, ETTD12, ETZ+15, FLZ+18, FRGZPLF12, FGR12, Fer13, FFF17, FFL+13, FHR12, Fox17b, FMS+11, GMP12, GrvR+11, GYB+11, GM12, GB14, GD12, GBC12, GS11, GS12, Gon11, GMC+13, GT10b, GJS+13, GJS+14, Grl17, GPT2, GKI15, HL13, HD17, HD17, Has12, HWM10, HWM13, HWM14, HA13, HM12, HTLC10, HKVG14, HH13, HOKO14, HGCA11, Hor11, Hor12, HC13, HC10, HWM11, HJ12, HWN12, IN12, IS18, IF16, JC10, JEC+12, JQJ+16, JLL17, Jen12, JB12, JYS12, JTO12, JH11, J+12, JMB12, JMO14, KHR11, KHM+11, KML15, KS13, KW10, KW11, KPP+18, KM10, KSR14, KSPK12, KDP18, KS14, KF11, KB11, LSB16, LSB17, LTD+12, LMK16, LSWM16].

Java [LLL13, LT11, LT14].
LZYP16, LYBB13a, LYBB13b, LYBB14, LZ12, Loc13, Loc18, Lon10a, Lon10b, LMS+12, LO15, LPA13, LWC17, LTK17, LS1, Lvo12, MKZ+14, MS13, MME+10, MLGA11, MDS+17, MCC17, MPM+15, MZC10b, MTKD17, MM16, MMH10, MAH12, MB12, MCI+10, MPR12, MLM19, MKK+12, M KK+13, MSS10, MvH15, MT14, MDHS10, NM10, NCS10, NS12, Nil12a, Nil12b, NG13, NNTK17, Oak14, OOK+10, OMK+10, OIA+13, OUY+13, OW16, OJ12, OCFL14, PS11, PLL+18, PdMG12, PTLN11, PMLR14, PTHH14, PL12, PiLC11, PBMH13, PPMH15, PMP+16, PQD12, PVH14, PTF+15, PS10, PDPM+16, Pos19, PSW11, Pu13, PKC+13, QLBS17, RD15, RDCP12, RTE+13, RTET15, RR14, RS12, RHTT13, R+13, RBL12, RSA16, RS12, Rey13, Rez12, RVP11, RLM15, RB15, RV14, SSL18, SSB14a, SE12].

Java
[SRB18, SRT17, SST12, SS12, Sch14, Sch1, Sch10a, SPPH10, SKR11, SDH+17, Sch10b, SSMD10, SZ10, Set13, SMB11, SMS+12, SM12, SDM12, SWMV17, SW12, SSV12, SKBL11, SD16a, SJPS10, SLS+12, SKR17, SS14, SP10b, SMP10, SPP+10, SWB+15, SSB01, SSB14b, ST15, SPS17, SSG+14, STS+13, Sve14, SWF12, TRTD11, TTD+11, TTD12, TRE+13, TLL11, TXW+10, TFSP14, TWHN12, TTN12, TGZ17, TL11L18, TKL+15, UR15, UFMM15, UPR+18, VSG17, VGRS16, VBDM16, VBMP16, VGS14, VBAMA10a, VBAMA10b, VBMA11, WGF11, Wam11, WZdSOS17, WLL19, WBM+10, WK12, WCB16, WN10, WRI+10, WHV+13, WHN11, WBA+11, WAB+11, WWS13, XHH12, XR13, XMD+17, Xue12, YP10, YKM17, YDF15, Zldv17, Zak12, ZP14, ZLCW14, ZHL+12, ZXL16, ZKB+16, ZWS15, ZPL+10, ZDS14, dCMNM12, dMRH12, eBH11, hED12, vdMvdMV12, Del13].

Java-Based
[AFGG11, SLS+12, ST15, SWF12, CJ17, HOKO14, JMO14, KS13, KS14, MB12, MCY+10].

Java-compatible
[ABCR10].

Java-like
[BDGS13, BCD13, DJLP10, SZ10].

Java-to-HDL
[OUY+13].

Java-to-JavaScript
[LSWM16].

Java.utils.Collection.sort
[dGRdB+15].

Java/JSP
[Sch10b].

Java/Scala
[Pos19].

JavaBean
[MZC10a].

JavaBIP
[BMSZ17].

JavaCC
[GN16].

JavaCOP
[MME+10].

JavAdaptor
[PKC+13].

JavaFX
[Top11].

JavaGI
[WT10, WT11].

JavaScript
[Ano15, Kie13, Teo13, CH17, AMT17, ACS+14, AKH+15, AGM+17, AMWW15, BCF+14, BBP13, Ccc11, CG1+16, CVG+17, CBLFD12, Cho14, CHJ2, Dei10, Dei11, DeSG12, DiP18a, DiP18b, DFHF15, FMM+11, FM13, FH16, FBH17, FSC+13, FZ17, FOPZ14, GMS12, Guo17, HyG12, Hav11, HBS16, HLSK13, HHS13, HC11, KR12, KSW+14, KRH16, KT14, Ker15, KFKB+15, Kie10, KBL14, KARO12, Kri12, LSM16, Lear10, LVG10, LPGK14, Liu14, LML17, MTL15, MLS12, MG17, MHL15, MRV12, Mil13, MM12, MMP+15, NKH16, NVD17, OBPM17, PWSG17, PWSG19, PLR14, PS15, PLR18, PKPM19, PDD17, PKO+15, Por18, Rau14, RLVB10, RGEV11, RHN+13, RW17, Ryn16, SMN+18, Sev12a, Sev12b, SVB+17, SDC+12, Sta10, Ste10, SR17, SFR+14, TAF+18, TT11, VM15, VB14b, Wal12].

JavaScriptCore
[XR11, XW13, Zak18, Zak10, dJMM18, BM18, KCD12, Mei14, Kie13, Toe12, Teo13].

JavaScriptCore
[Piz17].

JaVerT
[SMM+18].

JAWS
[PKO+15].

JBIInsTrace
[CZ14].

JCloudScale
[ZLHD15].

JCMML
[dCMNM12].

JCSI
[ABFM12].

JCSFP
[WBB+10].

JDiffraction
[PQTS17].

JDK
[SRB18].

JDMM
[ZP14].

JEqualityGen
[GRF11].

JET
[LT11].

JGRIM
[MZC10b].

JIN
[LWH+10].

JIT
[BBF+10, BB17, CMS+12, HWM14, IHWN12, JK13, NED+13, RSB+14, WK17, ZYZ+12].

JIT-based
[BB17].

JITs
[KRC14].

.jMarkov
[CRAT+12].

JML
KiWi [BBB+17]. KJS [SR15].
Knoernschild [Del13]. knot [LBF12].
know [DJB16]. Gra15, Han15. Knowledge [KSPK12, UMP10]. known [Han15].
Kraken [Ano14].

Lake [Hol12]. lambda [MKTD17].
lambdas [UFM15]. landscape [Sve14].

Language [DLPT14, GJS+13, GJS+14, GSS+18, JC10, KSPK12, MAHK16, Sev12b, SS13, ABCR10, CMM17, CsdL16, DAA13, EKR+12, Fee16, GSS+16, Hos12, HWW+15, KRCH14, LWH+10, LE16, MDM17, SC16, SZ10, SKR17, SNS+14, VB14a, WCG14, WWH+17, ZWSS15, dCMMN12].
language-level [WCG14].
Languages [CSGT17, MSM+16, PTHH14, YKM17, AGGZ10, BCD13, CMS+12, EKE+13, ER14, FMBH15, Han15, HBT12, HJS+10, KRR+14, MSM+10, NED+13, PULO16, SPY+16, Zha12].
Large [BA17, AST+16, CCFB15, LSBV16, LSBV17, MDS+17, MCY+10, PTF+15, WHIN11].
Large-scale [BA17, MDS+17, MCY+10, PTF+15, WHIN11]. Larus [DD13].
Layer [OTR+18, SKKR11, Den18]. layered [RCR+14]. lazy [TD15]. Leading [MS10].
leak [SS14, XR13]. Leaks [And14, RW17].
LeakSpot [RW17]. lean [BRGG12, SV15b].
Learn [RT14]. Learning [Pan14, RT14, CNS13, KC12, Ano15, Teo13].
learnt [GY16]. Legacy [SVB+17, CDM10]. Legally [Sam12].
length [SMP10]. Less [BNE16]. Level [AC16, SWU+15, EKUR10, Hos12, HWH12, KBL14, LWC17, MG17, RFBJ14, TTD+11, VVJB10, WCG14].
Lexical [GN16].
Linux [Ric14]. Linux-basierte [Ric14].
Listener [HH11]. little [Han15]. liveness [DL14]. load [PDP+16]. loaders [SM12].
loading [WGF11]. local [DDD17].
localised [SP10b]. locality [HJH10, OJ12].
localize [ZSK13]. location [NCS10].
Locators [SDM12]. Lock [FC11, NM10, NVF15, UMP10]. Lock-free [FC11, NVF15].
Locking [GGRSY17, JTO12, GGRSY14, GGRSY15].
locks [SIP17]. logging [CJ17]. logic
[GMS12, SD16b]. LOOP
[DD13, HWI+12, PLR18]. Loops
[RD15, LLI13]. loss [WHIN11]. Low
[ETR+15, GM12, SWU+15, WCG14, ZHCB15, ZFK+16, BCR13, XMA+10]. Low-Budget [GM12]. Low-latency

m [MZC10b]. m-JGRIM [MZC10b]. M2M [Pau14]. Machine
[LYBB14, Ame13, CBLFD12, KS13, KC12, Piz17, SSMGD10, WGF11, WHV+13, BZD17, LYBB13a, LYBB13b, LTK17, PTHH14, SSB+14a, Schl3, Set13, SMSB11, SGG12, SSB01, SSB14b, UR15]. Machines

[LCW18, GM12, XHH12]. ME-Based
[GM12]. mean [Rub14]. measurement [YW13]. Measuring
[Bro12], meets [KHL+13]. Memento [CPST15]. memoization [TPG15]. Memory
[BG17, JYKS12, MSM+16, NWB+18, OTR+18, SS14, ST15, AHK+11, AHK+15, AGGZ10, BSMB16, CWW13, DLZ+13, DVL13, FC11, FF10, GYB+11, HHH+14, HB13, KHL+17, KCP+17, KB17, Loc13, MSM+10, Nil12b, OMK+10, RW17, SMS+12, SMN+12, SWB+15, SV15a, Tar11, TVD10, WGW+11, XR13, ZP14, ZHCB15, ZBB17]. MemSAT [TVD10]. merge [ABC18]. Mergesort [LL15]. merging [TLX17]. Message
[KF11, ETTD12, TRTD11, TTD12, UR15]. message-passing
[AC16, BVGVAFG11, GD12, AST12, AJL16, HMDE12, SS16, VBMD16]. Method-Level [AC16]. Methods
[MM16, Pau14, VBZ+18, Bra14, GRF11, LSBV16, LSBV17, SSL18]. Metrics
[KB11, JK11, SSK13, Sch13]. Metriken [Sch13]. Microscopic [RXK+17].

Microsoft [Ano13]. Middleware
[YCYC12]. Misses [IN12]. Missions
[WCB16]. Mistakes [BA17]. Mitigating
[BGS+13, KC12]. mixed [CL17]. Mobile
[GM12, GPT12, MV16, XHH12, GGC18,
KF11, MZC10b]. Model [CSF+16, CDG+17,
CC+12, DLRL16, FSK12, JYKS12, Loc18,
MSM+16, MCC17, MV16, BVGVEA11a,
CHM13, CWW13, CV14, CS12, CSKB12,
DLZ+13, FLZ+18, GY16, HAW13, Loc13,
LSSD14, MLI17, MSM+10, PZW11, RR14,
RBV16, RAS16, RDF15, SMN+12, SSG+14,
Tazi3, WWBJ10, ZP14, ZXL16].
Model-Aware [JYKS12]. Model-based
[MCC17, PSW11]. model-driven [CHM13].
Modeling
[GBC12, JCI10, KSPK12, LIDL14, Rey13,
SM12, CRAT+12, SKR17, TLX17, ZLvdS17].
Modelling [CSZ17]. Models
[CC15, PE11, ZLWC14, AG17, HBB+14,
TV10, ZBB17]. modern [FIF+15, Hav11,
JK13, KB17, Teo13, WGW13]. modernization [Nil12a]. Modified
[GT10a]. Modular
[IvdS16, LN15, RDCP12, MRA+17, RO12].
Modularisation [SDM12]. modularity
[Del13, SPPA10]. module [KR12].
Modules [PLCH11]. monad [GSD+15].
MongoDB [Guo17]. Monitoring
[AG12, DJLP10, ES14, KF11]. Monitors
[BLH12, HM12]. mori [CPST15].
movement [NCS10]. MPI
[RAS16, SZ11, VGRS16]. MPI-based
[SZ11]. MPJ [JQI+16, TTD12]. MrCrypt
[TLMM13]. MS [FH16]. Multi [GSS+18,
JTO12, RTE+13, BGS+13, DSEE13, FEE16,
FC11, GSS+16, IHW12, MS10, Pu13,
SE12, SKBL11, TRTD11, Tar11, WRI+10].
Multi-Core [RTE+13, MS10, TRTD11].
multi-cores [SKBL11]. multi-engine
[Tar11]. Multi-Language
[GSS+18, FEE16, GSS+16]. multi-level
[IHW12]. multi-processor [Pu13].
multi-stage [WRI+10]. Multi-threaded
[JTO12, DSEE13, SE12, Tafi3].
multi-threats [BGS+13]. multi-version
[FC11]. Multicore [ASV+16, CCH11,
MKG+17, SE12, SSMGD10, TXW+10].
Multiplatform [ZK+16]. Multiple
[AF12, ASF17, HLSK13, CSV15, DD13].
multiplexing [BVGVEA11b]. Multiprocessing [VGS14].
multiprocessor [PS10, PWA13, SPS17].
Multiprocessors [KWi11, RS12].
Multithreaded [KKW14, Loc18, SR14a,
BNS12, DJLP10, Fer13]. Multithreading
[CCH11], multivariate [AO11], Mungo
[KDPG18]. MuscalietJS [RC14].
Mutagenic [YCYC12]. mutants [FRC+17].
Mutation [MMP15, KPP+18], mutators
[AHK+11]. MySQL [Ano15].
Names [SRTR17]. Naming [STST12].
Native
[JQI+16, LT11, LT14, KFBK+15, STS+13].
Natural [LL15]. naturalness [HGB+16].
NDetermin [BENS12]. nested
[CHM16, ZLB+13]. Netflix [Liu14].
Network [CC15, GGC18, RR14].
Networking [HOL12]. Networks
[AFGG11, ETR+15]. neuromorphic
[HNTL12]. Next [YWW+18, CR1+10].
Next-Generation [YWW+18]. NG2C
[BOF17], NGS [YWW+18]. NGS-FC
[YWW+18]. Nixon [Ano15]. No
[BVGVEA10], No-Heap [BVGVEA10].
NoCs [PWA13]. Node [HC11, BJKB12].
Node.js [BSMB16, MTL15, Ano14]. nodes
[DRN14]. Nominal [BO13]. Non
[BVGVEA11b, BSOG12, GGZ+15, TD17,
YKM17, MZC10a, OMK+10, SSL18, ZP14].
Non-Adequate [GGZ+15].
non-cache-coherent [ZP14]. non-cloned
[SSL18]. Non-equivocation [TD17].
Non-functional [BVGVEA11b].
non-intrusively [MZC10a]. Non-Java
[YKM17, OMK+10]. Non-termination
[BSOG12]. Nonblocking [RTET15, SP10a].
Nondeterministic [RB15, BENS12].
noninterference [IF16]. Nopol [XMD+17].

NoSQL [DFR13]. Notation [Sev12a].

Novel [NK10, MZC10b]. November [Hol12]. Novice [BA17]. Novices [RT14].

null [AT16]. NullPointerExceptions [BSOG12]. NUMA [GTS+15]. NumaGiC [GTS+15]. number [PPMH15, SLF14].

Numbers [Jaf13, AJL16, Wal12].

Numerical [KS15, KFBK+15, PQTGS17].

NXT [SWF12].

Obfuscated [KCD12]. obfuscation [CCFB15]. obfuscations [CSK17]. Object [CSGT17, GS11, KB11, LZ12, NBW+15, PTHH14, PilCh11, RC17, Sev12a, SW12, AST+16, BZD17, DDDF17, FMBH15, Ivds16, MME14, MBHO13, RDF15, UJR14, VM10, WM10, ZCDSovd15, Zha12, ZDS14, hEYJD12]. Object-Bounded [NBW+15].

object-constraint [FMBH15].

Object-Oriented [GS11, KB11, RC17, PTHH14, AST+16, DDDF17, MBHO13, VM10, ZDS14, hEYJD12]. Objective [Stai0]. Objective-C [Stai0]. Objects [BS12, RKN+18, MHL15, SK13, WXR16, BVGVEA10]. Observations [AAB+10].

OCTET [BKC+13]. odeToJava [KS15].

Open [BSA14, GD12, ABC18, CJ17, EKUR10, JK11, TaI3, VGRS16].

Open-Source [BSA14, ABC18, TaI3].

OpenJDK [BS14, ABC18, TaI3].

operations [TABS12, TZG17].

Operator [PQD12]. opportunities [TPG15]. Optimal [AD16, SK12, ELW15].

Optimizations [DR10, BB17, CPST15, DS16, NG13, SAdB+16]. Optimized [PKPM19]. Optimizing [SV15b, YRHB13, HWW+15, KRH16, MD15, ZLB14].

Over-exposed [VBDM16]. overhead [BCR13, ZHCB15, ZFK+16]. overlay [CDT10].

Overloading [PQD12].

overview [Nil12b]. own [MPM+15].

Ownership [ZPL+10, BDGS13, DDM11].

PaaS [ZLHD15]. Package [SLS+12, CRAT+12, MB12, OW16, AK13].

Packages [PilCh11]. panic [Ano12].

Paper [DDDF17, PDM+16, SV15a].

Papers [DVL13, HL13, LMK16, Puf13].

Parallel [DS16, Esq11, LLL13, MKG+17, NKh16, QaSa+16, RD15, RSI12, BP+10, BBP13, BSMB16, CRP+10, NG12, NG13, PPMH15, Sie10, SZ11, TTD12, TaI3, VYY10, BK16, WN10].

Parallelisation [GS11].

Parallelism [NKh16, BENS12, HHSS13, MZC10a, RHSD15, TWL12, ZLB+13].

parallelization [SS16, YRHB13].

parallelize [LPA13]. Parallelizing [NKh16, hEYJD12]. parameters [GBS14].

Parametric [AGGZ10, PULO16, UTO13].

Part [KP15]. ParTejas [MKG+17]. Partial
BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Pau14, SLES15, SLE+17, VK12, Nil12a, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVG14a, BVG14b, CRAJ10, DW10, EABG14, Fox17a, GMC+13, HTLC10, KHM+11, KPHV11, KvGS, KSR14, LTK17, PS10, PZM+10, PSW11, Puf13, RHT13, SP10a, Sie10, SPS17, real-time [OUY+13].

Reasoning [LN15, ABK+16, MLT17].

Reduction [BO12, TD15], redundant [HLO15]. Refactoring [AS14, STST12, VB+18, ZH+12, FM+11, FM13].

Reference [Sch14, UJR14, HMDE12]. refinement [GY16, JLP+14, KSW+14, ZMG+14, ZFK+16]. Reflexes [SPP+10].

regions [AC10]. register [ZY+12].

register-based [ZY+12]. Regression [MM12]. regular [PIR17]. reification [RBB17]. Reified [GBS14]. Reim [HMDE12]. ReImInfer [HMDE12].

relation [TD15]. relational [MLGA11].

relationship [LSBV16, LSVB17, SH12].

relaxed [DNB+12, KHL+17, PPS16].

rename [FM13]. Repair [XMD+17, MDS+17, SHU16]. repeatability [Vit14]. replacement [BCD13]. Replay [BH12].

reproducibility [Vit14]. reproduction [SR14b]. requirements [AGGZ10].

ResAna [KvGS+14]. Research [SR17, TRE+13, CRJ+10, CBLFD12, EKUR10, Rub14, VBMD16, Vit14].

Resource [BVG14a, ADI13, ES14, KvGS+14, KSR14, SGV12].

resource-aware [SGV12]. resource-based [ADI13]. responsive [SPP+10].

responsiveness [PSNS14]. restart [CNS13].

Restructuring [RCP17]. Retention [ZMM+16]. Rethinking [Xue12, RCR+14].

Reverse [CCA+12, MLM19].

Review [Ano15, Bro12, Del13, Gve13, Kie13, Ngo12, Teo12, Teo13, EKUR10]. Revisited [Mei14, Gon11].

rewriting [HLO15]. RFID [AYZ10]. RFLP [YCYC12]. richer [CV14].

River [HHSS13]. RJ [OW16].

Road [RXK+17, SWU+15]. Robin [Ano15].

Robotic [DiP18b, LM15]. Robots [SWF12].

Robust [VM15, VDV17, MKZ+14, SGV12, VM10].

Rod [Teo12]. ROM [MLM19]. row [Lei17].

row-typed [Lei17]. RTSJ [ZW10]. Rubah [PVH14].

Ruby [Teo12]. rule [QLBS17].

Rules [CCA+12, HLO15]. run [WAB+11].

run-time [WAB+11]. Running [HC11, TWX+10, YK14]. runs [FIF+15].

Runtime [BLH12, GSS+18, MAHK16, MSS10, NB+15, OCF114, XMA+14, BRGG12, EQT10, GTL+10, GSS+16, LMK16, MS10, OOK+10, PKC+13, RO12, STY+14, TWSC10, VBAM10a, WLL19, YRHL13, dCMMN12].

routines [BM14, CSV15, RCR+14, WWH+17].

BO12, KCP+17, BVGV14b, MSM+10.
Simplicity [Dei11]. Simulating [LM15].
Simulation [HWLM11, FLZ+18, KKW11, Rim12, ZXL16], Simulation-based [HWLM11], simulations [MCY+10].
smalltalk [FF+15, HKVG14]. Smart [GMP12]. Smartcard [RBL12].
SMARTOp [TGZ17]. Smartphones [RT14].
SMARTS [RXK+17]. snapshots [AST12].
Software [BSA14, CC15, RC17, Wan11, YQTR15, BMS17, BTR+13, CBGM12, CFI+13, CJ17, DVL13, EKUR10, FRGPLF+12, FC11, GTO1a, HBG+16, JhED11, JK11, LPA13, MHR+12, NGB16, OIA+13, PLL+18, RAS16, SV17, XR13, YHRBL13, ZK13, ZHCB15, ZDS14].
Third

There

Think

Third-party

Twx

Thoth

Third

Thread-level

Threaded

Three

TigerQuoll

Time

BVEAGVA10, BBB17, BLH12, DLR16, Fox17b, HTW14, JMB12, Kie10, KW11, PKPM19, Fau14, SLES15, SLE+17, VK12, BCR13, BM14, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGVA14a, BVGVA14b, CRAJ10, DW10, EABVGV14, Fox17a, GMC+13, HTLC10, KHM+11, KPHV11, KHL+13, KvGS+14, KW10, KSR14, LMK16, LTM17, Nil12a, PS10, PZM+10, PSW11, Puf13, RHT13, SP10a, SPPH10, SIE10, SPS17, SH12, TTS+10, WAB+11. Time-travel [BM14].

TIMP [SLS+12]. tiny [Xue12]. tolerant [PZM+10].

Tool

FMM+11, PQD12, SW12, SSK13, ABFM12, CRAT+12, ET1R2, KSR14, LS11, TWX+10. Tool-supported [FMM+11]. toolchain [KDPG18, SMN+15]. Tools [Bro12, CSZ17, CS12, ABK+16, KPP+18, VBAM10b].

toolset [KvGS+14]. top

RVP11, SG+17, ZMY14]. top-

SGG+17. top-down [ZMY14]. Topics [Hor11, Jen12]. topology [DDM11]. Toy

DiP18b. Trace

HWM14, PiLCH11, SR14b, BBF+10, HWM13, HWI+12, HWN12, WHIN11. trace-based

BBF+10, HWM14, HWI+12, IHWN12. Traceability [CSKB12]. tracer [CZ14].

Traces [WKG17, BA12, RGM13]. Tracking

BP10, DLR14, DLR16, MD15]. track

[SG17]. TrackEtching [SG17].

Tracking [RLMM15, SDC+12, WLL19, KHL+13, OOK+10]. Tracks [RGM13].

tradeoff [UTO13]. Traffic [RK1+17]. Train

[HHSS13]. Train

[MSK16]. training

[WMN16]. trait [BCD13, VM15]. traits

[BDGS13, BD17]. transactional

[DV13, FC11, ZHCBE15]. Transactions

DCS12, CHM16, DFR13]. transformation

[AST+16, PDD17]. transformations

[AK13, MHH10, PMP+16, TL17].

Transforming [dMRH12]. transitioning

[HWM14]. Translating [RFRS14].

Translation [BO12, LSWM16, TJJL18].

translations [UTO13]. translator

[LYZ16]. Transmission

[PE11, BVGVEA11b, BJBJ12].

transparent [BDB11]. travel [BM14].

traversals [ODL15]. Tree

[LYO12, HLO15, KMM14, SSK13]. trees

[RBV16]. Trends [CC15, MSS10, SR17].

trie [SV17]. trie-based [SV17]. tries

[SV15a, SV15b]. triggered [EABVGV14].

TRINI [PDPM+16]. Trusted

[TWNH12, BCF+14]. tuning

[AAB+10, BVGVEAFG11, SKBL11]. Turf

[CH17]. Turing [Gri17]. Tutorial

[Jen12, Nil12b, Taf13, ZAI12]. TV [JMO14].

twitter [Guy14]. Two [Has12]. Type

[BO13, CGJ+16, KSW+14, KATS12, Lei17, Loc18, RKN+18, SGD15, WT11, ACS+14, AT16, BS13, CMS+12, CVG+17, DLM10, HF16, GBS14, HyG12, KMLS15, KRR+14, KR16, KrRH14, KDPG18, LPGK14, LE16, MHR+12, SH12, TLL11, ZHA12, eBH11]. Type-Based [SGD15].

type-dependent [LE16]. Type-Safe

[Loc18, KMLS15]. Typechecking

[KDPG18, CL17]. Typed

[BO13, KKK+17, MHL15, CMS+12, KRCH14, Lei17, RDP16].

Types

[BO13, RVB14, SPAK10, BDGS13, CHJ12, DDM11, HH13, MME+10, YDF15].
TypeScript [Cho14, FH16, RSF+15].

Typing [FZ17, RSF+15, Sic17, SFR+14, TSD+12]. typy [OA17].

Ubiquitous [MCY+10], UDP [RR14], ULS [FOPZ14]. UML [CSF+16]. unbounded [LSSD14]. uncertain [McK16].

Understandable [MSM+16].

Understanding [ABC18, FRM+15, MKTD17, NBW+18, PCL14, QLBS17, Set13, TABS12, VBMDP16, LWB+15, Nil12b].

Undocumented [Alt12, MHR+12].

Unified [LM15]. uniform [AH10, Eug13].

Unifying [Has12, MKK+12, MKK+13].

union [KT15].

uniprocessors [KPHV11].

Unrestricted [WWS13]. unsafe [MPP+15].

unsound [AT16]. updates [PKC+13].

Upper [SW12].

Up-sortable [SGG+17].

trees [HB13].

USA [Hol12, KP15]. usability [FH16, MHR+12].

Usage [RC17, PTF+15, QLBS17].

Use [BGK17, Guy14, MPM+15, AMWW15, MKTD17, PMH13, Sch13]. use-case [AMWW15]. used [XR10].

useless [FRC+17]. User [Liu14, MvDL12, SLS+12, DAA13, FMS+11, PSNS14].

user-defined [FMS+11].

Using [AS4MGM14, BS12, BSA14, BNE16, DLM10, HCN14, KFBK+15, MV16, MSSK16, Pau14, PQD12, RC17, SDM12, SLE+17, UMP10, Wan11, WKG17, XMA+14, YCYC12, Zak18, BB17, DDF17, Del13, FH16, FOPZ14, GBS14, IvdS16, KML15, KT14, KC12, LVG10, Lew13, LLD14, MT13, PIR17, PLR18, RAS16, SdB+16, SSK13, SSH17, SHU16, VGS14, WLL19, WBM+10, WRT+10, XSR13, vMvDMV12].

UT [Hol12].

utility [CSV15, XMA+10]. utilization [BCR13].

v [Sam12].

V 8 [MGI17]. Validating [HLSK13]. Validation [SSB14b, CsDL16, HCV17, SSB01]. Value [BBB+17, DFR13].

variable [CDTM10].

variables [NS13]. VDM [TJLL18].

Verifiable [FHSR12]. Verification [KKW14, KP15, RAS16, SS12, SS14b, CHMY15, DLM10, HCV17, PSM+11, SMN+18, SZ11, SJPS10, SSH17, SSB01, dCMMN12]. verification-validation [HCV17].

Verified [HMI12, Loci8, JLP+14].

Verifier [BDT10, Rey13]. verifiers [SPY+16].

Verifying [LM15, YS10].

Veritesting [SWMV17]. Version [FLZ+18, FC11, HD17, SM12, TMVB13, XZL16].

vertical [STY+14]. via [DMS11, GGRS15, GGRS17, Hos12, HB13, JWM15, LSM16, Rim12, SS16, TD17]. view [Guy14].

violations [LTJ14, PG12, RDF15].

Virtual [BZD17, LYBB13a, LYBB13b, LYBB14, LTK17, PTH14, PQD12, SS+14a, Sch13, Set13, SMSB11, SGV12, SSB01, SS14b, UR15, Ame13, CBLFD12, KRC14, NK10, Pi17, RCB17, SSMGD10, WGF11, WHV+13].

virtualized [HOKO14, MHM10]. virus [RBL12].

Vision [DiP18b, HCV17].

Vision-Guided [DiP18].

visitors [DRN14].

Visual [FH16].

Visualization [TAF+18, JEC+12, JJL17, MCY+10].

visualizing [DSEE13, KS14, MPR12].

vital [EV13].

VM [LB12, YKM17].

VM/application [LB12].

VMKit [GTL+10]. volume [Gve13].

Vroom [BMDK15].

vs [BA17, GBC12, MD15, SRT+17, SK12, SH12, WKM17].

Vulnerabilities [MS14, GGC18].

vulnerability [MLM19, Sve14].

Wampler [Bro12]. wanted [Gra15].

watering [Ano13].

wave [PQTG17].

way [Ker15, PLR18, WGF11]. ways [Kie13].

weak [WRT+10].

Weapon [Nil12a].

weaving [VBMA11].

web
References

[AMT17, EKUR10, ETR12, HRS+17, HCN14, KFBK+15, MCC17, MCY+10, RHSD15, RCR+14, Ryu16, WGW+11, DAA13, HLSK13, Kri12, MvDL12, MMP15, NL14, OwKPM15, RFB14, Sch10, YW13, Zak18].

yang [CBGM12]. years [BTR+13]. yieldpoint [LWB+15]. yin [CBGM12].

Z [SBF+10]. Z-rays [SBF+10]. Zero [ZW13].

References

Avvenuti:2012:JTC

Abanades:2016:DAR

Ansaloni:2012:DAO

Akai:2010:EAS

Anjo:2016:DML

Ahn:2014:IJP

REFERENCES

Aumuller:2016:OPD

Amighi:2016:PCC

Autili:2013:HAR

Austin:2012:MFD

Arnold:2011:AOJ

Aiello:2011:JBA

REFERENCES

[AH10] Sven Apel and Delesley Hutchins. A calculus for uniform feature composition. *ACM Transactions on Programming Languages*

 Axelsen:2013:PTD

REFERENCES

liarized with the Arquillian framework and its capabil-
ities to carry out integration and functional testing
on a Java virtual machine. Packt Publishing, Birming-
LCCN QA76.73.J3. URL http://proquest.
tech.safaribooksonline.
de/9781782160700.

[AMT17] Christofer Quist Adamsen, Anders Møller, and Frank
Tip. Practical initialization race detection for
JavaScript web applications. Proceedings of
the ACM on Programming
Languages (PACMPL), 1
(OOPLSA):66:1–66:??, Oc-
tober 2017. CODEN ????
ISSN 2475-1421.

[AMWW15] Adiel Ashrov, Assaf Mar-
ron, Gera Weiss, and Guy
Wiener. A use-case for be-
havioral programming: an
architecture in JavaScript
and Blockly for interactive
applications with cross-
cutting scenarios. Science of
Computer Programming,
98 (part 2)(??):268–292,
February 1, 2015. CODEN
SCPGD4. ISSN 0167-6423
(print), 1872-7964 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S016764231400032X.

leaks in Java classes. Ada
User Journal, 35(3):191–??,
September 2014. CODEN
AUJOET. ISSN 1381-6551.

Java panic. Network Se-
curity, 2012(9):19–20, Sep-
tember 2012. CODEN
NTSCF5. ISSN 1353-4858
(print), 1872-9371 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S1353485812700843.

ple and Microsoft hit by
Java exploit at watering
hole. Network Security,
CODEN NTSCF5. ISSN
1353-4858 (print), 1872-
9371 (electronic). URL http://

kraken: a story of Node.js
in the enterprise (PayPal).
ACM Queue: Tomorrow’s
Computing Today, 12(2):80,
February 2014. CODEN
AQCUAE. ISSN 1542-7730.
REFERENCES

Anonymous:2015:BRL

Arslan:2011:JPM

Auditor:2014:RJG

Adalid:2014:USA

Austin:2017:MFD

Afek:2012:ISJ

Nada Amin and Ross Tate. Java and Scala’s type systems are unsound: the existential crisis of null pointers. ACM SIGPLAN Notices, 51(10):838–848, October 2016. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Tim Boland and Paul E. Black. Juliet 1.1 C/C++
Bonetta:2017:FJF

Basin:2017:KKV

Bebenita:2010:STB

Bonetta:2013:TPE

Bu:2013:BAD

Bettini:2013:FDT

Bodin:2014:TMJ

Bainomugisha:2013:SRP

Bettini:2017:XTJ

Bala:2011:DTD

Bettini:2013:CTB

Barbuti:2010:AIA

Burnim:2012:NIN

Battig:2017:SDC

Berman:2017:EUS

Bedi:2013:MMT

Punam Bedi, Vandana Gondotra, Archana Singhal, Himanshi Narang, and Sumit Sharma. Mitigating multi-threats optimally in proac-
References

Bodden:2010:AOR

Barbu:2012:ARA

Badihi:2017:CAG

Biswas:2014:DES

Biboudis:2017:RJD

Burdette:2012:ECJ

[BJBK12] Philip F. Burdette, William F. Jones, Brian C. Blose, and Gregory M. Kapfhammer. An empirical comparison of Java remote communication primitives for intranode data transmission. ACM SIGMETRICS Per-

[102x681]REFERENCES

[102x681]38

URL http://link.springer.com/chapter/10.1007/978-3-642-29709-0_6/.

REFERENCES

Bouraqadi:2018:TDD

Bell:2015:VFB

Brockschmidt:2012:ATP

Balland:2014:ESP

Boldi:2018:BMC

Bludzhe:2017:ECC
Brown:2016:HBS

Borstler:2011:QEI

Burnim:2012:SCS

Bellia:2012:ERT

Bellia:2013:JST

Bruno:2017:NPG

REFERENCES

[BWRA14] Jeffrey Bosboom, Sunnaruban Rajadurai, Weng-

[Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and Mira Mezini. SPL

Basanta-Val:2010:SSS

Basanta-Val:2010:NHR

Basanta-Val:2010:RMP

Basanta-Val:2011:ECM

Basanta-Val:2011:NFI

REFERENCES

Chevalier-Boisvert:2012:BSH

Chaikalis:2015:FJS

Cosentino:2012:MDR

Chisnall:2017:CJS

Ceccato:2015:LSE

Carro:2013:MDA

Chapman:2016:HSH

Cogumbeiro:2015:DDV

Chong:2014:CCT

Campbell:2013:ICC

Chen:2017:CLP

Canino:2017:PAE

2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Castro:2017:JLC

Chang:2012:IOT

Choi:2013:GGT

Clifford:2014:AFB

Chatterjee:2015:QIA
Curley:2010:RDT

Cote:2012:JPS

Chalin:2010:TIG

Chambers:2010:FEE

Ceccarello:2012:TGC

Cordoba-Sanchez:2016:ADS

Irene Córdoba-Sánchez and Juan de Lara. Ann: a domain-specific language for the effective design and validation of Java annota-

Chavez:2016:ACC

Choi:2017:SAS

Chawdhary:2017:PES

Chanda:2012:TBS

Chen:2016:CDD

Cameron:2015:JFE

Callum Cameron, Jeremy

Casale:2017:PEJ

Cazzola:2014:JBR

Chaudhuri:2017:FPT

Cavalcanti:2013:SCJ

Cazetta:2014:JTJ

Diaz:2013:LEU

Cavalcanti:2013:SCJ

Caserta:2014:JTJ

Dannen:2017:IES

daCosta:2012:JSL

Dhawan:2012:EJT

DElia:2013:BLP

DeBeukelaer:2017:ECP

Dietl:2011:SOT

REFERENCES

Deitcher:2010:JEJ

Deitcher:2011:SPJ

DelRa:2013:BRJ

Dennis:2018:MFI

Disney:2015:SYJ

Dey:2013:STA

deGouw:2015:OJU

REFERENCES

[DHondt:2012:ISS]

[Dolby:2012:DCA]

[Dietrich:2015:GSE]

[DiPierro:2018:RJ]

[DiPierro:2018:TVG]

[Dietrich:2016:WJD]

[Dam:2010:PCI]
Mads Dam, Bart Jacobs, Andreas Lundblad, and Frank Piessens. Provably correct inline monitoring...
REFERENCES

deJong:2018:MJA

DeFrancesco:2010:UA1

DeNicola:2014:FAA

Dissegna:2014:TCA

Dissegna:2016:AIB

Demange:2013:PBB

deMol:2012:GTJ

Dietrich:2010:POD

Duarte:2011:ICS

Dyer:2014:DVE

Doeraene:2016:PIW

Bois:2013:BGV

Kristof Du Bois, Jennifer B. Sartor, Stijn Ey-

David:2014:CMC

Dias:2013:SIP

DosSantos:2010:MPB

Estevéz-Ayres:2014:CSS

elBoustani:2011:ITE

Emerick:2012:CP

[ECG12] Chas Emerick, Brian Carpenter.

Ebert:2015:ESE

Ecking:2013:XID

Erdweg:2012:GLE

Erdweg:2015:POI

BER 2015. CODEN SIN-
ODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Mahdi Eslamimehr and
Jens Palsberg. Race di-
rected scheduling of concur-
rent programs. ACM SIG-
PLAN Notices, 49(8):301–
314, August 2014. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Eslamimehr:2014:RDS

Tayfun Elmas, Shaz Qadeer,
and Serdar Tasiran. Goldilocks:
a race-aware Java run-
time. Communications
of the ACM, 53(11):85–92,
November 2010. CODEN
CACMA2. ISSN 0001-0782
(print), 1557-7317 (elec-
tronic).

Elmas:2010:GRA

Sebastian Erdweg and Fe-
lix Rieger. A framework for
extensible languages. ACM
SIGPLAN Notices, 49(3):3–
12, March 2014. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Erdweg:2014:FEL

Holger Eichelberger and
Klaus Schmid. Flexible
resource monitoring of Java
programs. The Journal of
systems and
software, 93(??):163–186,
July 2014. CODEN JS-
SODM. ISSN 0164-1212
(print), 1873-1228 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0164121214000533

Francisco Esquembre. There
is parallel life for Java sci-
cientific programmers! Com-
puting in Science and En-
gineering, 13(4):6–10, July/
August 2011. CODEN
CSENFA. ISSN 1521-9615
(print), 1558-366X (elec-
tronic).

Esquembre:2011:TPL

Stefan Endrullis, Andreas
Thor, and Erhard Rahm.
WETSUIT: an efficient
mashup tool for searching
and fusing web enti-
ties. Proceedings of the
VLDB Endowment, 5(12):
CODEN ???? ISSN 2150-
8097.

Endrullis:2012:WEM

Roberto R. Expósito, Guillermo L.
Taboada, Sabela Ramos,
Juan Touriño, and Ramón
Doallo. Low-latency Java
communication devices on
RDMA-enabled networks.
Concurrency and Computa-
tion: Practice and Experi-
ence, 27(17):4852–4879, De-
cember 10, 2015. CODEN
CCPEBO. ISSN 1532-0626

Exposito:2015:LLJ

Ferrara:2013:GSA

Flanagan:2010:AMD

Ferrari:2017:JJF

Femminella:2012:EJC

Fogus:2011:JC

Fischer:2016:EIE

Forth:2012:RAA

[FHP+12] Shaun Forth, Paul Hovland, Eric Phipps, Jean Utke, and Andrea Walther, editors. *Recent Advances in Algorithmic Differentiation*, volume 87 of Lecture Notes in Computational Science and Engineering. Springer-Verlag, Berlin, Germany / Hei-
 REFERENCES

[102x681] 62

[203x562] REFERENCES

[102x681] delberg, Germany / Lon-
don, UK / etc., 2012. CO-
DEN LNCSA6. ISBN 3-
642-30022-7 (print), 3-642-
30023-5 (e-book). ISSN
1439-7358. LCCN ???.
URL http://link.springer.
com/book/10.1007/978-
3-642-30023-3; http://
www.springerlink.com/
content/978-3-642-30023-
3.

[201x275] Proceedings of the Sixth
International Conference on
Automatic Differentiation
(AD2012) held July 23-27,
2012, in Fort Collins, Col-
orado, USA.

[FHSR12] Arnaud Fontaine, Samuel
Hym, and Isabelle Simplot-
Ryl. Verifiable control
flow policies for Java byte-
code. Lecture Notes in
Computer Science, 7140:
115-130, 2012. CODEN
LNCS9D. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/chapter/
10.1007/978-3-642-29420-
4_8/.

[FLZ+18] Linyu Fan, Jianwei Liao,
Junsen Zuo, Kebo Zhang,
Chao Li, and Hailing Xiong.
Version 4.0 of code Java for
3D simulation of the CCA
model. Computer Physics
Communications, 228(??):
290-292, July 2018. CO-
DEN CPHCBZ. ISSN 0010-
4655 (print), 1879-2944
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0010465518300869.

[FMH13] Asger Feldthaus and Anders
Møller. Semi-automatic
rename refactoring for
JavaScript. ACM SIG-
PLAN Notices, 48(10):323-
338, October 2013. CO-
DEN SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic).

[CFL13] Cormac Flanagan, K. Rus-
tan M. Leino, Mark Lil-
libridge, Greg Nelson,
James B. Saxe, and Raymie
Stata. PLDI 2002: Ex-
tended static checking for
Java. ACM SIGPLAN No-
tices, 48(4S):22-33, April
2013. CODEN SINODQ.
ISSN 0362-1340 (print),
1523-2867 (print), 1558-
1160 (electronic).

[FM13] Berg Freudenberg, Dan
H. H. Ingalls, Tim Fel-
gentreff, Tobias Pape,
and Robert Hirschfeld.
SqueakJS: a modern and
practical smalltalk that
runs in any browser. ACM
SIGPLAN Notices, 50(2):
57-66, February 2015. CO-
DEN SINODQ. ISSN 0362-

REFERENCES

Fdez-Riverola:2012:JAF

Funes:2012:RMC

Fan:2015:UCC

Feng:2015:EQD

Fritz:2017:TSA

Eric Fritz and Tian Zhao. Typing and semantics of asynchronous arrows in

Tihomir Gvero and Viktor Kuncak. Synthesizing

Gejibo:2012:CIE

Gonzalez:2013:HBP

Gadyatskaya:2012:JCA

Gardner:2012:TPL

Greenman:2014:GFB

Gupta:2016:LSA

REFERENCES

751–765, June 2016. CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

Gong:2011:JSA

Grossschadl:2012:EJI

Gramoli:2015:MTY

Grec:2011:JGE

Gri:2017:JGT

Giacaman:2011:OOP

Gil:2012:SFJ
REFERENCES

Gill:2015:RMD

Gill:2010:MDP

Grimmer:2016:HPC

Grimmer:2018:CLI

Goodrich:2010:DSA

Geoffray:2010:VSM
Gidra:2015:NGC

Guyer:2014:UJT

Gvero:2013:BRC

Grigore:2016:ARG

Radu Grigore and Hongseok Yang. Abstraction refinement guided by a learnt

References

[Hanenberg:2015:WDW] Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Huang:2013:ECS

Hindle:2016:NS

Hedin:2016:IFS

Hsiao:2010:EST

Hughes-Croucher:2011:NRS

Hunt:2012:JP

Hellyer:2010:LCW

Heidenreich:2010:GST

Hlopk:2014:ISJ

Haddad:2013:SIP

Hague:2015:DRC

Herczeg:2013:TFF

Zoltán Herczeg, Gábor Lőki, Tamás Szirbucz, and Ákos Kiss. Validating JavaScript guidelines across

REFERENCES

Horstmann:2012:JEC

Hosking:2012:CHL

Higuera-Toledano:2010:ISI

Higuera-Toledano:2014:EIS

Haas:2017:BWS

Hayashizaki:2012:IPT
REFERENCES

Huang:2011:SBA

Haubl:2013:CST

Haubl:2014:TTE

Humer:2015:DSL

REFERENCES

Inostroza:2016:MIM

Juneau:2012:JRP

Joseph:2010:PII

Jara:2012:NVJ
REFERENCES

Jendrock:2012:JET

Jovic:2011:LLP

Jenista:2011:OSO

Jayaraman:2017:CVJ

Johari:2011:ESE

Jantz:2013:ESM

Jagannathan:2014:ARV

Suresh Jagannathan, Vincent Laporte, Gustavo

Jung:2012:EJA

Johnsen:2012:SLM

Johnson:2015:EES

Kulkarni:2012:MCO

Krishnaveni:2012:HOJ

Kedia:2017:SFS

Kouzapas:2018:TPM

Kereki:2015:JA

Kuehnhausen:2011:AJM

REFERENCES

Kumar:2012:WSB

Khan:2015:UJW

Kerschbaumer:2013:IFT
[102x681] Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, and Michael Franz. Information flow tracking meets just- in-time compilation. ACM Transactions on Architec-

Kang:2017:PSR

Kabanov:2011:DSF
Kienle:2010:ATT

Kienle:2013:BRE

Kim:2017:TAA

Krieger:2011:AES

Kaiser:2014:WAM

Ko:2010:EAW

Karakoidas:2015:TSE

Vassilios Karakoidas, Dimitris Mitropoulos, Panagiotis Louridas, and Diomidis

Kalibera:2014:FAS

Kulkarni:2016:APA

Kolling:2010:GPE

Kroening:2015:CAV

Kalibera:2011:SRT

Khyzha:2012:AP

Kintis:2018:HEM

Kedlaya:2016:SST

Krishnamurthi:2012:SAJ

Kedlaya:2014:ITS

Madhukar N. Kedlaya, Jared Roesch, Behnam Robatmili, Mehrdad Reshadi, and Ben Hardekopf. Improved type specialization for dynamic scripting languages. ACM SIGPLAN Notices, 49(2):37–48, February 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print),
Kaufmann:2013:SCO

Krebs:2014:JJB

Kroshko:2015:OPN

Kouneli:2012:MKD

Korsholm:2014:RTJ

Kashyap:2014:TRS

Vineeth Kashyap, John Sarracino, John Wagner, Ben Wiedermann, and Ben Hardekopf. Type refinement for static analysis of JavaScript. ACM SIGPLAN Notices, 49(2):17–26, February 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print),
REFERENCES

[KT14] Matthias Keil and Peter Thiemann. Efficient dy-
namic access analysis using
JavaScript proxies. *ACM
SIGPLAN Notices*, 49(2):
49–60, February 2014. CO-
DEN SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic). DLS ’13 conference
proceedings.

[KT15] Matthias Keil and Peter
Thiemann. Blame assign-
ment for higher-order con-
tracts with intersection and
union. *ACM SIGPLAN No-
tices*, 50(9):375–386, Sep-
tember 2015. CODEN SIN-
ODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

[KvGS+14] Rody W. J. Kersten,
Bernard E. van Gastel, Olha
Shkaravska, Manuel Mon-
tenegro, and Marko C. J. D.
van Eekelen. ResAna: a re-
source analysis toolset for
(real-time) JAVA. *Concurrency
and Computation: Practice and Experience*,
26(14):2432–2455, Septem-
ber 25, 2014. CODEN CCPEBO. ISSN 1532-0626
(print), 1532-0634 (elec-
tronic).

[SvR14] Sergiy Kolesnikov, Alexan-
der von Rhein, Claus Hun-
sen, and Sven Apel. A com-
parison of product-based,
feature-based, and family-
based type checking. *ACM
SIGPLAN Notices*, 49(3):
115–124, March 2014. CO-
DEN SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic).

Wellings. Efficient asyn-
cronous event handling in
the real-time specification
for Java. *ACM Transac-
tions on Embedded Com-
puting Systems*, 10(1):5:1–
5:??, August 2010. CO-
DEN ????? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

Wellings. Multiproces-
sors and asynchronous
event handling in the
real-time specification for
Java. *The Computer Jour-
nal*, 54(8):1308–1324, Au-
gust 2011. CODEN CM-
PJA6. ISSN 0010-4620
(print), 1460-2067 (elec-
tronic). URL http://
comjnl.oxfordjournals.
org/content/54/8/1308.
full.pdf+html.
REFERENCES

Lin:2012:UKT

Lauinger:2018:TSD

Li:2014:MHD

Lorenzen:2016:STD

Leijen:2017:TDC

Lerner:2010:FTJ

Lewis:2013:IAP

Liu:2014:JNU

Alex Liu. JavaScript and the Netflix user interface.
REFERENCES

Leino:2015:APS

Leung:2013:PEJ

Lin:2015:STU

Lee:2016:ECP

Loring:2017:SAJ

Long:2012:COS

REFERENCES

[LSWM16] David Leopoldseder, Lukas Stadler, Christian Wimmer, and Hanspeter Mössenböck. Java-to-JavaScript translation via structured control flow reconstruction of

Li:2011:JEC

Li:2014:EAJ

Laskowski:2012:DJP

Luckow:2017:HTP

Liu:2014:FFL

Lerner:2010:SDT

Lin:2015:SGU

Lindholm:2013:JVMa

Lindholm:2013:JVMb

Lindholm:2014:JVM

Lyon:2012:JTW

Doug Lyon. The Java tree withers. *Computer,*

Salvador Martínez, Valerio Cosentino, and Jordi Cabot. Model-based analysis of Java EE web security misconﬁgurations. *Computer Languages, Systems and Structures*, 49(??):36–
REFERENCES

REFERENCES

Meijer:2014:EJR

Martinsen:2017:CTL

Miller:2013:IPG

Matsakis:2015:TOJ

McGachey:2010:CJC

Mayer:2012:ESI

Miller:2013:TSG

Malhotra:2017:PPS

Misra:2012:JSC

Misra:2013:JSC

Mazinanian:2017:UUL

Marek:2014:SRC

Martinez-Llario:2011:DJS

ification and efficient evaluation of quantitative queries over streaming data. ACM SIGPLAN Notices, 52(6):693–708, June 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy. drfx: a understandable, high performance, and flexible memory model for concurrent languages. ACM Transactions on Programming Languages and Systems, 38(4):16:1–16:??, Oc-
REFERENCES

October 2016. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Motika:2015:LWS

Mateos:2010:ANI

Nasseri:2010:CMR

Nuzman:2013:JTC

Newton:2015:ALF

[NFV15] Ryan R. Newton, Peter P. Fogg, and Ali Varamesh. Adaptive lock-free maps:

Namjoshi:2010:NOP

Na:2016:JPC

Nolan:2014:XWT

Nakaike:2010:LER

Noller:2017:SSE

Nikolic:2012:DEA

Nikolic:2013:RAP
Durica Nikolić and Fausto Spoto. Reachability analysis of program variables.
Nicolay:2017:PAJ

Nguyen:2015:FCR

Nguyen:2018:UCM

Naik:2012:AT

Omar:2017:PSF

Oaks:2014:JPD

REFERENCES

Ocariza:2017:S CC

Ortin:2014:RPI

Olivo:2015:SDA

Ogawa:2013:RJA

Olszak:2012:RJP

Ogata:2010: SJN
Odaira:2010:ERT

Olsson:2016:ERR

Olson:2018:CLM

Ohkawa:2013:RHO

Paul:2014:RTP

[PBMH13] Chris Parnin, Christian Bird, and Emerson Murphy-

Park:2011:DCM

Park:2017:PSS

Pizlo:2017:JVM

Park:2019:ROC

Pukall:2013:JFR

Piao:2015:JJF

Parizek:2012:PAJ

Pan:2018:ASJ

Park:2014:AAS

Papadimitriou:2014:MLS

Phan:2012:SQI

Quoc-Sang Phan, Pasquale...

Porter:2018:PJE

Poslavsky:2019:REJ

Passerat-Palmbach:2015:TSS

Jonathan Passerat-Palmbach, Claude Mazel, and David R. C. Hill. TaskLocalRandom: a statistically sound substitute to pseudorandom number generation in parallel Java tasks frameworks.

Pham-Quang:2012:JAD

Piedrahita-Quintero:2017:JGA

Pitter:2010:RTJ

Palmer:2011:BJM

Park:2015:KCF

Pour:2011:MBD

[PSW11] Niusha Hakimi Pour, Paul Strooper, and Andy Wellings. A model-based development approach for the verification of real-time Java code. Concurrency and Computation:
REFERENCES

Pinto:2015:LSS

Pape:2014:EJV

Papadimitriou:2011:SES

Puffitsch:2013:SIP

Petrashko:2016:CGL

Dmitry Petrashko, Vlad Ureche, Ondrej Lhoták, and Martin Odersky. Call graphs for languages with parametric polymorphism. *ACM SIGPLAN Notices*, 51(10):394–409, October 2016. CODEN SINODQ. ISSN 0362-1340 (print), 1523-
Powers:2017:BBG

Pina:2014:RDJ

Plumbridge:2013:BPR

Pan:2017:GCF

Pan:2019:GCF

Pizlo:2010:SFT

Qiu:2017:USR
Dong Qiu, Bixin Li, Earl T.

Tiana Razafindralambo, Guillaume Bouffard, and Jean-Louis Lanet. A friendly framework for hiding fault enabled virus for Java based Smartcard. *Lecture Notes in Computer Science*, 7371:
REFERENCES

Robatmili:2014:MRL

Radoi:2015:ETS

Ramirez-Deantes:2012:MTA
REFERENCES

Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. Automated construction of JavaScript benchmarks. *ACM SIG-
REFERENCES

REFERENCES

REFERENCES

Rubin:2014:HCW

Rowe:2014:STA

Raychev:2015:PPP

Ricci:2011:SAO

Rudafshani:2017:LDD

Ramamohanarao:2017:SSM

Ryu:2016:JFB

Serbanescu:2016:DPO

Samuelson:2012:LSO

Sartor:2010:ZRD

Smaragdakis:2013:SBP

Shahriyar:2014:FCG

Scherr:2016:AFC

Schmidt:2010:ERA

Schultz:2010:WAJ

Christopher Schultz. Web applications with Java/JSP.

Schmeisser:2013:MOE

Schiltz:2014:JCRb

Herbert Schiltz, editor.

Sluanschi:2016:AAD

Emil I. Sluanschi and Vlad Dumitrel. ADiJaC — automatic differentiation of Java class files.

Sousa:2016:CHL

Marcelo Sousa and Isil Dillig. Cartesian Hoare logic for verifying k-safety properties.

Sridharan:2012:CTP

Lecture Notes in Computer Science, 7313:435–458, 2012. CODEN LNCS9D. ISSN 0302-9743 (print), 1611-3349 (elec-

Sewell:2012:TJ

Swamy:2014:GTE

Sherman:2015:DTB

Subercaze:2017:UPT

Simao:2012:CER

Stuchlik:2012:SVD

REFERENCES

tronic). OOPSLA ’13 conference proceedings.

REFERENCES

Snellenburg:2012:GJB

Shafei:2012:MCL

Singh:2012:EPS

Santos:2018:JJV

Spoto:2010:TAJ

Sewe:2012:NSI

Sewe:2011:CCS

[SMSB11] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and
REFERENCES

[SPP+10] Jesper Honig Spring, Filip Pizlo, Jean Privat, Rachid Guerraoui, and Jan Vitek. Reflexes: Abstractions for integrating highly responsive tasks into Java appli-

Schoeberl:2010:WCE

Strom:2017:HLR

Stefanescu:2016:SBP

Andrei Stefanescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Rosu. Semantics-based program verifiers for all languages. *ACM SIGPLAN Notices*, 51(10):74–91, October 2016. CODEN SIN-

Samak:2014:MTS

Samak:2014:TDD

Sun:2017:AJP

Sawan:2018:RDC

Anand Ashok Sawant, Romain Robbes, and Alberto

Vladimir Sor and Satish Narayana Srirama. Memory leak detection in Java: Taxonomy and classification of

Surendran:2016:APP

Stark:2001:JJV

Su:2014:CEM

REFERENCES

[Santos:2013:DDS] Ivo Santos, Marcel Tilly, Badrish Chandramouli, and
REFERENCES

Stefanov:2010:JP

Samak:2016:DSF

Subramaniam:2011:PCJ

Su:2014:RVP

Subramaniam:2011:PCJ
Steindorfer:2015:CSM

Steindorfer:2015:OHA

Steindorfer:2017:TSP

Silva:2017:ICL

Sverdlove:2014:JVL

Sverdlove:2014:JVL

Siek:2012:FDT

Stancu:2015:SEH

DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Szweda:2012:ANB

Sharma:2017:VCS

Simon:2015:STH

Servetto:2010:MMC

Siegel:2011:AFV

Tamayo:2012:UBD

REFERENCES

IEEE Computer Society
Press, 1109 Spring Street,
Suite 300, Silver Spring,
MD 20910, USA, May 2017.

CODEN ???. ISSN 1539-9087 (print), 1558-3465 (electronic).

[Tsai:2015:JPI]

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Thiessen:2017:CTP]

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Tate:2011:TWJ]

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Tetali:2013:MSA]

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Terra:2013:QCC]

CODEN SFENDP. ISSN 0163-5948 (print), 1943-5843 (electronic).

[Toledo:2012:AJA]

REFERENCES

IESOEG. ISSN 0740-7459 (print), 0740-7459 (electronic).

Taboada:2011:DLC

Taboada:2012:FMS

Torlak:2010:MCA

Tardieu:2012:WSS

Toegl:2012:SSJ

Titzer:2010:ICR

Teng:2010:TPA

Urma:2015:JAL

Ugawa:2010:IRB

Ugawa:2014:ROP

Upadhyaya:2010:UDS

REFERENCES

[Vidal:2016:ECJ]

S. Vidal, A. Bergel, J. A. Díaz-Pace, and C. Mar-
cos. Over-exposed classes in Java: an empirical study. *Computer Languages, Sys-
tems and Structures*, 46(?):1–19, November 2016. CO-
DEN ????. ISSN 1477-8424 (print), 1873-6866 (elec-
science/article/pii/S1477842415300531.

[Villa
don:2011:CAW]

[Vidal:2016:UAE]

Santiago A. Vidal, Alexandre Bergel, Claudia Mar-
cos, and J. Andrés Díaz-Pace. Understanding and addressing exhibition-
ism in Java empirical research about method ac-
cessibility. *Empirical Soft-
ware Engineering*, 21(2):
483–516, April 2016. CO-
com/accesspage/article/
10.1007/s10664-015-9365-
9.

[Vidal:2018:ARB]

[vanderMerwe:2012:VAA]

Heila van der Merwe, Brink van der Merwe, and Willem Visser. Verifying Android applications using Java PathFinder. *ACM SIGSOFT Software Engi-
neering Notes*, 37(6):1–5, November 2012. CODEN SFENDP. ISSN 0163-5948 (print), 1943-5843 (elec-
tronic).

[Viotti:2017:HRH]

REFERENCES

October 2017. CODEN
???? ISSN 1553-3077
(print), 1553-3093 (elec-
tronic).

Charles F. Van Loan and
K.-Y. Daisy Fan. In-
sight through computing:
a MATLAB introduction
to computational science
and engineering. SIAM
Press, Philadelphia, PA, [Vit14]
USA, 2010. ISBN 0-
89871-691-8. xviii +
434 pp. LCCN QA297
.V25 2010. URL http:
//www.loc.gov/catdir/
enhancements/fy1007/2009030277-
b.html; http://www.
loc.gov/catdir/enhancements/
fy1007/2009030277-d.html;
http://www.loc.gov/catdir/
enhancements/fy1007/2009030277-
t.html.

Oscar Vega-Gisbert, Jose E.
Roman, and Jeffrey M.
Squyres. Design and im-
plementation of Java bind-
ings in Open MPI. Paral-
lel Computing, 59(??):1-20,
November 2016. CODEN
PACOEJ. ISSN 0167-8191
(print), 1872-7336 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0167819116300758.

Vikas, Nasser Giacaman,
and Oliver Sinnen. Mul-
tiprocessing with GUI-
awareness using OpenMP-
like directives in Java. Par-
allel Computing, 40(2):69–
89, February 2014. CODEN
PACOEJ. ISSN 0167-8191
(print), 1872-7336 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0167819113001439.

Jan Vitek and Tomas Kalib-
era. Introduction to the
Special Issue on Java Tech-
nologies for Real-Time and
Embedded Systems. Con-
currency and Computation:
Practice and Experience, 24
CODEN CCPEBO. ISSN
1532-0626 (print), 1532-
0634 (electronic).

Tom Van Cutsem and
Mark S. Miller. Proxies:
design principles for robust
object-oriented intercession
APIs. ACM SIGPLAN No-
tices, 45(12):59–72, Decem-

[VF10]

[VGRS16]

[VK12]

[VM10]

[VGS14]

[Vit14]

A. J. Wellings, V. Chol-

Wood:2014:LLD

Wagner:2011:SiV

Wagner:2011:CMM

Wu:2011:RTS

Wimmer:2013:MAV

Wellings:2012:AEH

REFERENCES

Wehr:2010:JBP

Wehr:2011:JIT

Wurthinger:2017:PPE

Wurthinger:2013:USD

Wei:2016:ESD

Wang:2017:CJ

REFERENCES

REFERENCES

[YK14] Danny Yoo and Shriram Krishnamurthi. Whalesong: running Racket in the browser. *ACM SIG-
REFERENCES

Yang:2017:EJV

Ya:2015:SCC

Yessenov:2017:DAD

Yiapanis:2013:OSR

Yahav:2010:VSP

YP10

Yue:2013:MSI

Yu:2018:NFN

Zakas:2010:HPJ

Zakour:2012:JTS

Zakai:2018:FPW

Zheng:2015:APP

Zhang:2017:ACE

REFERENCES

Zhang:2015:SYB

Zeuch:2019:AES

Zschaler:2014:SJF

Zuo:2016:LOF

Zhao:2012:PTI

Zhang:2015:LOS

Zhang:2012:RAJ

Ying Zhang, Gang Huang, Xuanzhe Liu, Wei Zhang, Hong Mei, and Shunxiang Yang. Refactoring Android Java code for on-
REFERENCES

Zacharopoulos:2017:EMM

Zheng:2016:CMD

Zhao:2013:INT

Zhang:2014:AIO

Zeyda:2014:CMS

Zabolotny:2015:JCG

Rostyslav Zabolotnyi, Philipp Leitner, Waldemar Hummer, and Schahram Dustdar. JCloudScale: Closing the gap between IaaS and PaaS. *ACM Trans-

REFERENCES

Zhu:2013:EAZ

Zhu:2015:APL

Zhao:2014:CSP

Zhang:2012:SRB

Zhang:2013:IMF

Zhang:2012:SRB