A Bibliography of Publications about the *Java Programming Language*, 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

23 September 2019
Version 1.207

Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

3
[DiP18b, FLZ+18, GBC12, JEC+12, ZXL16].
39.95 [Ano18]. $4 + 1$ [SRB18]. τ_P [LTK17].
C_P [AÖ11]. K [PLL+18, SD16b, SGG+17].
N [ADJG19, WZK+19]. Z_P [AÖ11].

-core [PLL+18]. -overlap [ADJG19].
-safety [SD16b]. -Tier [WZK+19].

/multi [Taf13]. /multi-threaded [Taf13].

'12 [Hol12]. 12th [Fox17a].

2015 [LSBV17]. 27th [KP15].

5 [KHR11].

6 [Jen12].

7 [Ano15, EV13, J+12]. 75 [HWM11].

8 [BKP16, CWGA17, LYBB14, SAdB+16, UFM15].

9 [Bla18, LSBV17]. 938 [Gun14]. 978

Big [BF18, GTS+15, NWB+15, RVK15, BOF17, BBXC13, RKV19, SS+14, WR10, XGD+19]. billions [DRN14]. bindings [VGRS16].

block-level [KBL14]. blocking [DW10].

Blockly [AMWW15]. Blueshell [PWA13].

boilerplate [ZCDSoVdS15]. Book [Ano15, Ano18, Bro12, Del13, Gve13, Kie13, Ngo12, Teo12, Teo13]. Bookshelf [Ano18].

Browsers [HLSK13]. Browsing [LYM+18].

Browsix [PV17]. BUBiNG [BMS18].

Budget [GM12]. buffered [DLZ+13].

buffers [Gun14]. Bug [RP19, LWH+10].

Bugs [OBPM17, XMD+17, ECS15, MDS+17, ODL15, Ryu16]. Build [BMDK15, BNE16, ELW15, MAH12].

Building [Sta10, HW+15, Ngo12]. Business [CCA+12]. Bytecode [BDT10, BSOG12, FHSR12, NS12, RDCP12, Rey13, SEK+19, AdCGGH16, CZ14, DLM10, SP10b, SMP10, VB14b].

C [BB12, CDG+17, GBC12, KB11, LSVB16, LSVB17, NED+13, SRT17, Sta10, Zak18, ZWSS15]. C# [SSK13]. C/C [BB12, NED+13]. CA [KP15]. cache [IN12, ZP14]. caches [NGB16].

calculations [VSG17]. Calculi [FFF17].

calculus [AH10]. Call [FG12, PULO16, ZWZ+14, Xue12, SSB+14a]. Call-site [SSB+14a]. calling [HB13, SSB+14a, ZWZ+14].

Calls [SW12, SS16].

came [Car11]. can [TPG15].

capabilities [Ame13]. capability [RDF15]. capo [SMS11]. capturing [BKC+13].

Card [GMP12, ABF12, MLM19, dCMMN12].

Cards [BH12, GMP12]. care [EK10].

Caring [DAA13].

carry [Ame13].

Cartesian [SD16b].

Case [ZMM+16, dGRdB+15, AMWW15, HNTL12, JK11, MT13, SPPH10, Vit14].

Cassandra [FRM+15].

casts [SH12].

categorising [CMM17]. Catena [TD17].

Causal [MRF18].

Causes [OBPM17, FRM+15]. CAV [KP15].

Cay [Gve13]. CC [LSBV16, LSVB17]. CCA [FLZ+18, ZXL16]. Center [Hof12].

centric
Changing [YQTR15, MPR12]. Changes [VdML12].

Characterizing [JCMM19, WBM12].

Check [CS14, SV17, SJBL10, TRTD11].

Client-State [OBPM17, KRH16].

Clojure [ECG12, FH11, VS10].

Cocoa [Sta10]. Code [ADJG19, BH17, BNE16, HC11, MSS19, MM16, PKPM19, RVK15, RLM15, SRTR17, SVB17, SV15a, SED14, AGR17, AK13, CCBF15, DRN14, FLZ18, FH16, FMS11, IS18, LVG10, MKK12, MKK13, NG13, OJ12, PMP16, PSW11, RFRS14, RBV16, RVK19, RO12, SSK13, Tai13, UTO13, VSG17, WKJ17, WGF11, WBA11, WAB11, WWS13, ZHL12, ZXL16, ZWSS15].

coding [LMS12]. Coefficient [ADJG19].

Coffin [Teo12]. coherent [ZP14]. Cohesion [RC17].

Collection [ASV16, BF18, GM12, MAK19, QSaS16, ST15, URJ18, BP10, BOF17, KPH11, KBL14, NGB16, ODL15, PZM10, PDPM16, SP10a, SMB14, SIE10, SJBL10, SKBL11, UIY10, UJR14].

Collectors [Sch13]. collectors [GTSS11, Sch13, XGD19]. coloring [SS10].

Colt [BK16, WN10]. CoMa [AGR12].

Combating [NWZ18]. Combination [BC14]. Combinatorial [YHY13].

commodity [BK14]. Common [PiLCH11].

Communication [JQ11+16, RFT13, SK12, BJK12, ETR15, TTD11].

communications [ETTD12, RTET15, TTD12]. Communities [ZMM16].

Compact [HW10, HW11, JSL17]. Comparative [KB11, KFBK15, SSL18] comparing [MD15].

Comparison [BK16, ADI13, BJK12, HH13, KVRHA14, SMS12].

Comparisons [GGZ15].

Compactness [WG11+11]. compatibility [DBJ16, OIA13].

compatible [ABCR10, Hor12]. Compilation [DLR16, PKPM19, CGJ16, CMS12, DLR14, FSC13, IHWN12, JLP14, JK13, JMO14, KS13, KHL13, Lei17, MD15, MG17, ZBB15]. compiled [NED13, RO12, TMVB13].

Compiler
compiler-compiler [KS14].

compiler-runtime [TWSC10]. compilers [Hos12, LMK16, RSB+14]. Compiling [Fee16, Hos12]. complementation [BS13].

Complete [BO13, BR15, JC10, Sch14, Gri17, PSR15, RGM13, RRB17].

Comprehension [BK17]. Comprehensive [STST12, VBMA11, ZKB+16, MKZ+14].

Computer [HWM11, OAC18, DNB+12, KP15]. Computing [Hol12, MPR12, NBB18, PWSG17, PWSG19, SHU16, TWHN12, WN10, AdSCdR+19, LZYP16, Rub14, TTD+11, VF10, TRE+13].

con [SMSB11]. conceptual [Tai13].

Concurrency [BG17, Bro12, SWF12, BVGVEA11a, CHM13, DMS11, HAW13, KHL+17, PPS16, Sub11, TD15, UR15].

Conditional [XMD+17, SS16]. Conference [DDDF17, Hol12, KP15, LMK16, PDPM+16].

Conflict [ABC18]. Conformance [AGR12, SKR17]. Confused [BH12].

conquer [SFB+10]. Consequences [OBPM17], conservative [SBM14].

Consistency [CSF+16, CS12, DNB+12, FRM+15, ZBB17]. consistent [BCR13], constrained [KSR14].

constraint [FMBH15, SHU16].

Constraints [SGD15, LSSD14].

construction [CIAD13, RGEV11]. constructors [MME14]. constructs [PCL14, PTF+15], consumers [DAA13].

Consumption [MV16]. container [XR10].

containers [XR10]. Context [HWM13, MM16, TL17, HB13, IvdS16, SSB+14a].

Context-sensitive [HWM13]. Contextual [MSK16]. Continuous [Teo12].

Continuously [DTLM14]. Contracts [YQTR15, HBT12, KT15, KKW11].

Control [FGR12, FHSR12, TT11, TNTN12, AdCGGH16, FWDL15, LSWM16, RHN+13, STS+13, TABS12, WLL19, XHH12].

controlling [BKC+13, YDF15].

Convention [Hol12]. conversions [CMM17]. Converter [YWW+18].

Cooperative [YDF15, HdM17].

Coordinating [MAHK16]. coordination [BMSZ17]. copy [FBH17]. copyrightable [Sam12].

Core [Hor11, HC13, RDCP12, RGEV11, RTE+13, MS10, PLL+18, TRTD11, Gve13].

cores [GTSS11, SKBL11]. Cornell [Gve13].

corpus [HCN14, LSBV16, LSBV17, TMVB13]. correct [AdCGGH16, AJL16, DJLP10].

Correctness [LL15, BENS12, Cho14].

Correlation [SDC+12, XHH12].

Corrigendum [LSBV17]. Cost [MS19].

counter [LSSD14]. counterers [IN12].

Course [Wan11, Zak12]. Coverage [CSS+16, GGG+15, MS19].

Coverage-Based [GGG+15].

Coverage-directed [CSS+16]. CPS [PDDD17]. CPU [PKO+15].

Crawling
DFC [BR12], diagnosis [RW17], DiAl [STCG13], dialects [BLvd17], difference [PS11], differential [CSS16],

Differentiation [FHP+12, PQQ12, SD16a],
digital [JMO14], dimensional [TGZ17],

Directed [STR16, CSS+16, EP14, Lei17, NG13, NED+13, WM10],
directives [VGS14],

Discovering [Sev12a],
discovery [YKL17], discrete [DDDF17],

effective [Jf13, CRP+10],
exto [CSV15],

Derived [BRGG12, Rub14],

Does [BRG12, Rub14],

DOJ [CC15],

domains [SGV12],
distributable [CRAJ10],

Distributed [BVEAG10, CWGA17, LTD+12, LM15, MAHK16, MRF18, PE11, AdScDr+19, BVGVEA10, BVGVEA11b, BVGV14b, CRAJ10, EABVGV14, STCG13],
distributing [TGZ17], divide [SBF+10],

do [HH13, Han15],

does [BRG12, Rub14],

DOJ [hEYJD12],

DOM [GGC18],

DOM-Based [GGC18], Domain [KSPK12, CSdL16, EEE+13, HWW+15, PIR17],
domain-specific [CSdL16, EEE+13, HWW+15], dominance [CPST14],

Doppio [VB14a],

DoubleChecker [BHSB14],
down [Ker15, ZMNY14],

DRAM [OTR+18],
drf [SM+16],

DFRX [SM+10],

Driven [CCA+12, BM18, FGB+19, CHM13, FWDL15, MTL15, PDDD17, SR14b],
drug [EKUR10],

DSL [KAR12],

DSLs [Khr11, RO12, SC16],

DSU [PVH14],

Dual [AD16],

Dual-Pivot [AD16],

Dynamic [AGM+17, ABMV12, ASF17, CHMY15, CHMY19, MRF18, MvDL12, PTHH14, RDF15, XMA+14, ZKB+16, AF12, DB11, BK14, BCD13, BOF17, CSV15, CPST15, ELW15, GYB+11, HB13, KRCH14, KRR+14, KT14, LWH+10, LVG10, MKZ+14, NJ12h, NG12, NED+13, RLBV10, RCR+14, RR17, SR14b, SIPS10, SH12, TPG15, VBAM10b, WXR16, WBA+11, WWS13, WWH+17, ZBB15],
dynamic-memory [GYB+11],
dynamically [CZ14, CMS+12, hEYJD12],

Dynamo [BDB11],
e-Science [SGV12],
ease [DRN14],
easy [Jaf13, CRP+10],
economic [CSV15],
economics [SJBL10],

Edition [Aon15, Gve13, LYBB14],

Editor [Fox17a],

Editors [Fox17b, HTW14, RHT13],

EDSLs [RDP16],

Educator [BA17],

EE [Jen12, MCC17],

Effect [JK11, CF15],

Effective [BM14, PTL11, RD15, CSdL16, KPP+18, Kie13],

Effectively [UR15],
effects [FH16, HAW13, Lei17],

Efficiency [OTR+18],

Efficient [DVL13, GPT12],

HWM11, HB13, KT14, KW10, OK+10, RSR+15, RFBJ14, SM+12, TLX17, TD17, AK13, BHSB14, CRP+10, ETR12, HWM10, KKW11, MRA+17, MSM+10, Pos19, Sib17, SGV12, SWB+15, SV15a, TRTD11, UMP10, VWJB10, ZZZK+19],

Efficiently [FBH17, BKK13, FOP14],

Einsatzszenarien [Sch13],

Einteiger [Ric14],

Elektronik [Ric14],

Elektronik-Projekte [Ric14],

Elephant [RGM13],

Elimination [KKN+18, GvRN+11],
elision [NM10],

Elliptic [GPT12],

Eloquent [Hav11],

eMass [Por18],

Embedded [Fox17b, HTW14, JMB12, KAR12, Pau14, SLES15, SLE+17, TKL+15, VK12, Del10, Fox17a, GMC+13, HTLC10, KHR11, LMK16, LTK17, OIA+13, RHT13, SC16, SDH+17, SFR+14, UIY10, Xue12, ZYY+12],

embedding [KML15, SC16],

Empirical [LSB16, LSB17, SS13, WXR16, BJKB12, FH16, HH13, KPP+18, MHR+12, NCS10, SH12, Tai13, VBB16, VBM16],

Employing [CC15],

Enscripten [Zak18],

emulated [THC+14],

emulator [KS13],

Enabled [GPT12, DR10, ETR+15, RLB12, SGV12],

encapsulation [DDM11],

end [GM12, DAA13],

End-to-End [GM12],

end-user [DAA13],

Energy [OTR+18, CL17, PCL14],

energy-aware [CL17],
enforcement [IF16], enforcing
[JWMC15]. engine
[MG17, Ngo12, OUY+13, Tar11, Ngo12].

Engineering
[CCA+12, GT10a, MLM19, VF10].

engineers [Bra14]. engines
[KRH16, SSG+14]. enhanced
[LMK16, WBA+11]. enhancement
[WCST19]. Enhancing
[BD10, BVGVEA13, DeSG12, HC10].

Ensuring
[AN+14, AAB+10]. entities
[ETR12]. Entry
[BK12]. enumeration
[SSH17]. Environment
[Kol10, PTML11, EKR+12].

Environments
[BF18, EABVGV14, GT+10, HOKO14, KF11, RDP16, RCB17, SGV12].

equality
[GRF11]. Equivalence
[BO12]. equivalent
[TLX17]. equivocation
[TD17]. ERAM
[Sch10a]. Erratum
[HW11]. error
[eBH11]. ES5
[DFHF15, Mor18]. ES6
[Mor18]. Escape
[SLES15, SLE+17]. Essential
[Ngo12]. estimation
[LMK16]. etched
[VSG17]. Ethereum
[Dan17]. eval
[Mi13, MRMV12]. Evaluating
[BGK17, BLH12, MDHS10]. Evaluation
[CSZ17, GBC12, JMB12, OCF14, TTS+10, Wan11, CSK17, MRA+17, MD15, WWH+17, XGD+19].

Evaluator
[JB12]. Event
[KW11, MV16, BBP13, KW10, MTL15, WK12, YP10]. event-based
[BBP13, YP10]. event-driven
[MTL15]. EventBreak
[PSNS14]. ever
[Gra15]. everyone
[Hor12].

Evolution
[CC15, GMPS12, Mei14, JK11, MAH12, NCS10, WBA+11, WAB+11, WWS13].
evolving
[ZZK13]. Exact
[ZW13]. Examples
[BNP11, Del13]. Exception
[LT14, ECS15, HWM14, LT11].

Exceptionization
[VKM17]. Exceptions
[ASF17, AdCGGH16, HD17, SMN+12, ZBB17]. Execution
[MSS19, NNTK17, OwKPM15, SWMV17, JLL17, JhED11, LLL13, MMP+12, RCB17, SPPH10].
executions
[ASdGM14, PPS16, STR16].

executives
[RS12]. Exemplar
[ZW13]. exhaustive
[DHS15]. exhibitionism
[VBMDP16]. existential
[AT16]. Exogenous
[BMSZ17]. Experience
[ABMV12, OW16, Sch10a, FGB+19, CBLFD12, TRE+13, WT10]. Experiment
[BKP16, MDS+17, HWLM11].

Experimental
[XGD+19]. explicit
[NGB16]. exploit
[ANO13]. Exploitation
[SSMG10, MLM19]. Exploiting
[NKH16, QSaS+16]. exploration
[FWDL15]. explorative
[AKH+15]. Exploratory
[BKP16, ECS15]. EXPLORER
[FWDL15]. Exploring
[JK13, JWCM15, SE12]. exposed
[VBDPM16]. Express
[QJ+16]. Expression
[NS12, PIR17]. expressions
[GK15, MKTD17]. expressive
[VYY10]. Extended
[DDDF17, FGR12, FLL+13, JC10, LMK16, PDP+16]. Extending
[AC10, BVGVEA11a, LPA13, PTH14]. Extensible
[ZIvdS17, ER14, KMLS15, MHBO13].

Extension
[RS12, LE16, MLGA11, PdMG12].

extensions
[MPR12, Zha12]. Extensive
[Wan11]. Extracting
[CCA+12, KM10].

Extremal
[LTD+12]. Eye
[OAC18, RLMM15, Guy14].
N-Tracking
[OAC18, RLMM15].

F
[GMT14, TTD12]. F-bounded
[GMT14]. F-MPJ
[TTD12]. FAA
[Sch10a]. FACE-ADE
[NWB+15]. face
[XHH12].

Facebook
[ANO13]. Facets
[ASF17, AF12]. facilities
[BVGVEAGI11]. FAD.js
[BB17]. failing
[STR16]. failures
[CRA10]. false
[HWI+12]. familiarized
[Ame13]. family
[KHM+11, KVrHA14]. family-based
[KvRHA14]. Fast
[CVG+17, CSGT17, HyG12, SBM14, SLF14, Zak18, BB17, KMMV14, KCP+17, MDM17, MHBO13, SV15b]. Faster
[BMDK15, JC10, AJL16]. fault
Faults [SRTR17, KPP+18, ZK13]. FC [YWW+18]. Featherweight [RvB14]. feature [AH10, KyRA14, OJ12]. feature-based [KvRA14], features [MKK+12, MKK+13]. Feedback [NED+13, NG13, WM10].

fragmentation [PZM+10]. fragmentation-tolerant [PZM+10]. Fragments [PBM+19, OA17]. frames [SIPS10]. Framework [CCA+12, Denv18, FFF17, LM15, PWG17, PWSG19, RBL12, SEK+19, Ame13, AC16, DDDF17, ER14, FRGPLF+12, JEC+12, KMLS15, Lon10a, Lon10b, MT13, PKO+15, RR14, STY+14, ZW10, ZDS14]. frameworks [PPMH15]. Francisco [KP15].

Glotaran [SLS+12]. go [LWB+15].
Goldilocks [EQT10]. Good [dGRdB+15].
Google [Ngo12, MG17, Sam12]. GPGPU
[PQTGS17]. GPGPU-accelerated
[PQTGS17]. GPU [PKO+15]. GPUs
[Host12]. grade [CRJ+10]. Gradual
[RSF+15, SFR+14, TSD+12, Sie17]. grained
[DRN14]. grammars [GN16, SHU16].
green [BRGG12]. Greenfoot [Köl10]. grid
[SGV12, VWHB10, MZC10b]. Gridifying
[MZC10b]. grounded [EV13]. Growing
[EKR+12]. growth [LDL14]. guarantees
[JWMC15, ZHCB15]. GUI
[CNS13, VGS14, WBA+11].
GUI-awareness [VGS14]. Guide
[Ame13, Oak14, Rau14, Teo13, Top11].
Guided [CNS13, DiP18b, MMP15, GY16,
PSNS14, SSH17]. Guidelines
[GGZ+15, HLSK13].

Handling
[KW11, ECS15, HW14, KW10, WK12].
Hands [CSZ17, Teo13]. Hands-on
[CSZ17, Teo13]. happened [Han15].
happens [TD15]. happens-before [TD15].
hard [LTK17, Puf13]. Hardware
[MAK19, SKKR11, SPS17, CBGM12, IN12,
SE12, ZDK+19]. hardwired [OUY+13].
harness [Kiel3]. hash [SV15a, SV15b].
hash-array [SV15b]. hashing [GFR11].
HDFS [IRJ+12]. HDL [OUY+13]. health
[EKUR10]. heap [CSV15, LDL14, TLX17,
Tar11, VYY10, YS10, BVGVEA10].
heap-manipulating [YS10]. Helping
[RT14]. Hera [MS10]. Hera-JVM [MS10].
Herman [Kiel3]. Heterogeneous
[ASV+16, HBB+14, Rub14, AYZI10,
ABCR10, DFR13, MS10].
Heterogeneous-race-free [HBB+14].
Heuristics [MGI14, LMK16]. Hidding
[RBL12]. hierarchy [BS13]. High
[GS+16, Hol12, IRJ+12, MSM+16,
SWU+15, URJ18, WN10, Zak10, BRWA14,
Host12, Ngo12, RBFB14, TTD+11, TGZ17,
VWJB10, WWH+17, TRE+13].
high-dimensional [TGZ17]. high-level
[Host12, RBFB14, VWJB10].
High-Performance
[URJ18, WN10, GSS+16, BRWA14, Ngo12,
TTD+11, WWH+17]. higher [KT15].
higher-order [KT15]. highly
[BP10, SPP+10]. history [DRN14]. hit
[Ano13]. Hoare [SD16b]. hole [Ano13].
Holistic [MAHK16]. HOP [D'H12]. Hopjs
[SP16]. Horstmann [Gve13]. hosted
[CBLFD12]. hot [LMK16]. HotSpot
[Sch13, BOF17]. HotWave
[ABMV12, VBAM10b]. HP [JQJ+16].
HTM [CHM16]. HTML [Sta10]. HTML5
[HL05, NKK16, Ano15]. Hunting
[GGC18]. HVM [LTK17]. Hybrid
[CHM16, JQJ+16, JMO14, KCD12, VDV17,
ZMNY14, ZMM+16, ADI13, HyG12,
PdMG12, SWB+15]. Hybris [DV17].
ygenic [DFH15]. hypervisor
[GMC+13].
i-Jacob [LYM+18]. IaaS [ZLHD15].
Identification [PBM+19, BZD17, FMS+11].
Identifier [SRTR17]. identifiers [FMS+11].
Identifying [IN12, SVB+17]. if [Han15].
illuminating [BK14]. Image [WN10].
immutability [HMDE12, ZPL+10].
immutable [SV15b]. impact [CMS+12,
Gra15, HWLM11, MP12, WK17].
imperative [RFRS14]. implement
[IdM17]. Implementation
[CSF+16, GPT12, HM12, NBB18, OA17,
Por18, VGRS16, YP10]. implementations
[CSS+16, OJ12]. Implementing [FFF17,
GM12, WCB16, EK+13, FFB17, PMP+16].
implications [BRGG12]. implicit
[IvdS16, SPAK10]. imply [BRGG12].
Improve [OTR+18, QSAS+16]. Improved
Large-Scale [BA17, MDS+17, MCY+10, PTF+15, WHIN11]. Larus [DD13].
[OTR+18, SKKR11, Den18]. layered [RCR+14]. lazy [TD15]. Leading [MSS10].
leak [SS14, XR13]. Leaks [And14, RW17]. LeakSpot [RW17]. lean [BRGG12, SV15b].
Learn [RT14]. Learning [Pau14, RT14, CNS13, KC12, Ano15, Teo13].
learnt [GY16]. Legacy [KH18, SVB+17, CDTM10]. Legally [Sam12]. length [SMP10]. Less [BNE16].
Lessons [URJ18]. Level [AC16, MGI14, SWU+15, EKUR10, Has12, IHWN12, KBL14, LWC17, MG17, RFBJ14, TTD+11, WJB10, WC14].
library [AC16, MGI14, SWU+15, EKUR10, Has12, IHWN12, KBL14, LWC17, MG17, RFBJ14, TTD+11, WJB10, WC14].
Library [CH17, CWGA17, NBB18, OCFL14, TAF+18, WN10, dJM18, CMM17, PMP+16, PQTGS17, Pos19, TFPB14, TGZ17].
Linux [Ric14]. Linux-basierte [Ric14].
Listener [JH11]. little [Han15]. liveness [LDL14]. load [PDPM+16]. loaders [SM12].
[NCS10]. Locators [SDM12]. Local [FC11, NM10, NVF15, UMP10].
Lock [FC11, NVF15]. Locking [GGRSY17, JTO12, GGRSY14, GGRSY15]. locks [SPS17]. logging [CJ17]. logic
[GMS12, SD16b]. loop [DD13, HWI+12, PLR18]. Loops [RD15, LLL13]. loss [WHIN11]. Low
[ETR+15, GM12, SWU+15, WCG14, ZHCB15, ZFK+16, BCR13, XMA+10].
Low-Budget [GM12]. Low-latency [ETR+15]. Low-level [WCG14].
Low-overhead [ZHCB15, ZFK+16]. low-utility [XMA+10]. lunch [DTLM14].

m [MZC10b]. m-JGRIM [MZC10b]. M2M [Pau14]. Machine
[LYBB14, Ame13, CBLFD12, KS13, KC12, Piz17, SSMGD10, WGF11, WHV+13, BZD17, CLE16, LYBB13a, LYBB13b, LT17, PTHH14, SSB+14a, Sch13, Set13, SMSB11, SVG12, SB01, SB14b, UR15]. Machines
malware [CSK17]. Managed
[MAHK16, NBW+18, BM14, CBGM12, GTH+10, ZIvD17]. Managed-Language
[MAHK16]. Management
[OTR+18, Pau14, AKH+15, BVGV14a, BGS+13, EKUR10, HB13, KCP+17, KB17, Nil12b, PCL14, SWB+15, Tar11, WGF+11].
manipulating [YS10]. Manipulation [MS14]. manual [KCP+17, KPP+18]. many
MapReduce [LZYP16, RFRS14, SKB11]. maps [SVF15]. mashup [ETR12]. Masses
Math.Js [dJM18]. Mathematical [BW12].
Mathematics [dJM18]. MATLAB
[Alt12, FBH17, PMTL14, VF10, Has12]. MATLAB-like [PMTL14]. matrix
[HD17, TGZ17]. matters [JB16]. Maxine
[WHV+13]. MCAPL [Den18]. me
[LCW18, GM12, XHH12]. ME-Based

Memory [BG17, JYKS12, MSM16, NWB18, OTR18, SS14, ST15, AHK11, AHK15, AGGZ10, BSBM16, CWW13, DLZ13, DVL13, FC11, FF10, GYB11, HHB14, HB13, KHL17, KCP17, KB17, Loc13, MSM10, NII12b, OMK10, RW17, SMS12, SMN12, SWB15, SV15a, Tar11, TVD10, WGW11, XR13, ZP14, ZHCB15, ZBB17]. MemSAT [TVD10]. merge [ABC18]. Mergesort [LL15]. merging [TLX17]. Message [KF11, ETTD12, TRTD11, TTD12, UR15].

message-passing [ETTD12, TRTD11, TTD12, UR15]. messages [eBH11]. meta [MD15, SZ10]. meta-circular [SZ10]. meta-compilation [MD15]. metadata [DVL13, WCST19].

Microservices [KH18, LSCPE18]. Microsoft [Ano13]. Middleware [RTE13, AdSCdR19, HOKO14, HWLM11, MZC10b]. middlegate [IF16, MT14].

Modelling [BG12, JC10, KSPK12, LDL14, Rey13, SM12, CRAT12, SKR17, TLX17, ZIvdS17]. Modelling [CSZ17]. Models [CC15, PE11, ZLCW14, AGR17, HHB14, TVD10, ZBB17]. modern [FIF15, Hav11, JK13, KB17, Mor18, Teo13, WGW11, ZDK19]. Modernization [KH18, NII12a]. Modified [GT10a].

RTET13, BGS13, DSEE13, Fee16, FC11, GSS16, IHWN12, MS10, Puf13, SE12, SKBL11, TRTD11, Tar11, WRT10]. Multi-Core [RTE13, MS10, TRTD11]. multi-cores [SKBL11]. multi-engine
Multi-Language
Multi-stage
Multi-processor
Multiplatform
Multi-processing
Multi-threading
Multithreading
Multivariate
Mungo
Muscalit.JS
Mutagenic
Mutation
Names
Native
Natural
NDetermin
Nested
Netflix
Network
Networking
neuromorphic
Next-Generation
Next-Generation
Next-Generation
Non
Non-Adequate
Obfuscated
OpenJDK [CHM16, dGRdB+15].
Operator [PQD12]. opportunities [TPG15].
Optimization [LTD+12, YKM17, AFG+11, BDB11, DDDF17, JMA14, KS13, KC12, NG12].
Optimizations [DR10, BB17, CPST15, DS16, NG13, SAdB+16]. Optimized [PKPM19].
over-exposed [VBDPM16]. overhead [BCR13, ZHC15, ZFK+16]. overlap [ADJG19]. overlay [CDTM10].
Over-exposed [VBDPM16]. overhead [BCR13, ZHC15, ZFK+16]. overlap [ADJG19]. overlay [CDTM10].
OpenJDK [CHM16, dGRdB+15].
Operator [PQD12]. opportunities [TPG15].
\[KC12 \]. phase-ordering \[KC12 \].

\[phoneME \] [RDCP12]. Phosphor \[BK14 \].

\[PHP \] [Ano15, TTS+10]. Phynx \[EKUR10 \].

\[Physics \] [Zak18, JEC+12]. pickler \[MHBO13 \].

\[pickles \] [MHBO13]. pipeline \[LPA13 \].

\[pipelines \] [CRP+10]. Pivot \[AD16, MRF18 \]. \[PL \] [FGB+19]. \[PL/SQL \] [FGB+19].

\[place \] [DVL13]. \[Plan \] [DLZ+13].

\[Platform \] [AFGG11, PE11, BD17, CRJ+10, GD10, GMC+13, MKZ+14, PWA13, YP10].

\[Platforms \] [DR10, Has12, BP10, JMO14, KSR14].

\[PLDI \] [FLL+13].

\[pluggable \] [MME+10].

\[Point \] [Jaf13, AJL16].

\[Pointer \] [LHR19, TL17].

\[Pointers \] [RKN+18, AT16].

\[Points \] [BK12, SDC+12, DHS15, SBK13, TLX17].

\[Points-To \] [SDC+12, DHS15, SBK13, TLX17].

\[Policies \] [FHSR12, MPS12, BVGV14a].

\[policing \] [DW10].

\[policy \] [JK13].

\[polymorphic \] [Zha12].

\[polymorphism \] [GMT14, PUL016, UTO13].

\[polynomial \] [Pos19].

\[POPL \] [BCR13].

\[Popular \] [Has12, SRB18].

\[Popular-but-Seemingly-Dissimilar \] [Has12].

\[portable \] [BM18, LTK17, RGM13].

\[portal \] [MCY+10].

\[Power \] [MV16, Pau14, BRGG12, CBGM12, Kie13, THC+14].

\[pp. \] [Bro12].

\[PQL \] [RSI12].

\[Practical \] [AMT17, JACS10, SLES15, VS10, WWH+17, FGB+19, FIF+15, WT10].

\[Practice \] [HGCA11, AS14, EKUR10, LWC17, TRE+13].

\[practices \] [CJ17, YW13].

\[Pragmatic \] [Ano18, RO12].

\[pre \] [SBK13].

\[pre-processing \] [SBK13].

\[Precise \] [PIR17, XR13, BHSB14, CVC+17, HyG12, PLR18, PG12, RGM13, TLX17].

\[precision \] [RBS+14].

\[Predicate \] [PL12].

\[predictable \] [LTK17].

\[Predicting \] [BSA14, RVK15, RVK19].

\[prediction \] [ZWZ+14].

\[pressure \] [DNL14].

\[preserving \] [AK13].

\[pressure \] [DNL14].

\[Preventing \] [MSK16].

\[prevention \] [VS11].

\[Price \] [Ano18].

\[Primer \] [YCY12].

\[primitives \] [BJBK12].

\[Principles \] [HGCA11, JEC+12, VM10].

\[Printing \] [AJL16].

\[prioritization \] [MT13].

\[Prioritized \] [NGB16].

\[Priority \] [ASV+16, HM12].

\[Privacy \] [And14].

\[Proactive \] [CL17, BGS+13].

\[PROB \] [YP10].

\[Probabilistic \] [RBV16, GY16, ZWZ+14].

\[Problem \] [YHY13, ZW13, J+12, KC12].

\[problem-solution \] [J+12].

\[problems \] [TPG15].

\[Proceedings \] [Hol12, KP15].

\[Process \] [SK12, AG17, GT10a].

\[Processes \] [BMDK15].

\[Processing \] [LLL13, WN10, SBK13, SSG+14, UJR14, ZDK+19].

\[Processor \] [TKL+15, Puf13, SPPH10, SMN+12].

\[Processors \] [ASV+16, MKG+17].

\[producers \] [DAA13].

\[product \] [BTR+13, KATS12, KVRAH14, SV17].

\[product-based \] [KVRAH14].

\[production \] [RGM13].

\[professionals \] [JACS10].

\[profile \] [VSG17, WK17].

\[profiler \] [DTLM14].

\[profilers \] [MDHS10].

\[profiling \] [DD13, JH11, KRH16, NK10, RCB17, SSB+14a, STY+14, TH+14, WLL19, XR13, ZBB15].

\[Program \] [BGK17, KK14, RVK15, RT14, ZKB+16, AO11, DS16, GMS12, HCN14, J1L17, JWM15, KM10, KMZN16, MKZ+14, NS13, RVK19, Sch10a, SPY+16, TAI13, TABS12, UPR+18, WGF11, ZMG+14].

\[Programmable \] [OA17, AYZI10].

\[Programmers \] [Esq11, RLMM15, Rau14].

\[Programming \] [AFOG11, ABMV12, BCR11, Bro12, BA17, DLNP14, HW11, HGCA11, KÖ10, KSPK12, LM15, MCK16, OAC18, PTML11, RS12, RB15, SSI13, Sub11, Alt12, AMMW15, BCvC+13, BM14, BSBM16, BRWA14, CL17, ECG12, EV13, FMBH15, Han15, Ha13, Hav11, Lew13, MCM+10, MGS19, MVH15, OW16, PTF+15, RVP11, RFBJ14, SNS+14, SGG+17, TB14, UFM15, VWJB10, VBAM10b, Wam11, WRI+10, WZH+17, ZBB15].
WBA+11, ZWSS15. Programs
[AGR12, BH17, BR12, BMOG12, GS11, JB12, LTD+12, STST12, SS12, SDM12, SR17, XMD+17, ZLCW14, AsdMGGM14, AdCGGH16, BA12, BNSL2, DJLP10, ECS15, ES14, EP14, Fer13, HL13, IN12, LO15, LPA13, MRMV12, MCW19, NG12, OJ12, PL12, RR14, RAS16, RLBV10, SMS+12, SZ11, SJPS10, Sh16, Taf13, WCST19, YS10, dCMMN12, hEYJD12]. progress
[Sie17, ZHCB15]. Project
[Wan11]. Projects
[ZMM+16, ABC18, CJ17]. Projekte
[Ric14]. Prolog
[CMM17, Tar11]. Proofs
[MLT17]. promising
[KHL+17]. Proof
[LL15]. Programs
[BMOG12]. Property
[BO11, RVK15, SS12, FWDL15, RVK19, SD16b, YS10]. Properties
[MPS12]. Protein
[YHY13]. Protocol
[GM12, FGR12]. protocols
[KDPG18]. Prototyping
[PWA13]. Providing
[OW16]. prov `{\textcolor{red}{\textsuperscript{AGH+17, Taf13}}}`. proving
[VM10, Eug13, KT14]. PSE
[KS15]. pseudorandom
[PPMH15, SLF14]. PT
[MGS19]. Published
[Ano18, LSBV17]. Purely
[SS16]. Purely
[RSI12, NFV15]. Purely-Declarative
[RSI12]. purely-functional
[NFV15]. Purity
[NBSD17, HMDE12]. purpose
[AdSCdR+19]. Python
[Ric14].

qualitas
[TMV13]. Qualitas.class
[TMV13]. Quality
[BNP11, CCFB15, WKJ17]. Quantitative
[CPV15, GYB+11, MRA+17, PMTP12]. queries
[GK15, MRA+17, SG+17]. query
[FWDL15]. query-
[FWDL15]. questions
[KM10]. Quicksort
[AD16].

racy
[SRJ15]. Rady
[Teo12]. Rails
[Teo12]. Range
[BS12]. Ranged
[FSK12]. rapid
[PWA13]. raw
[HI13]. rays
[SBF+10]. RCDC
[DNB+12]. RDMA
[ETR+15, IRJ+12]. RDMA-based
[IRJ+12]. RDMA-enabled
[ETR+15]. re
[NCS10]. re-location
[NCS10]. Reachability
[NS13]. reaction
[SRB18]. reactive
[BCvC+13, MvH15]. read
[NM10]. read-only
[NM10]. Reading
[JaF13]. ready
[RHSD15]. Real
[BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Nil12a, Pau14, SLES15, SLE+17, VK12, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGVEA14a, BVGVEA14b, CRAJ10, DW10, EABVGV14, Fox17a, GMC+13, HTLC10, KHM+11, KPVH11, KvrGS+14, KW10, KPP+18, KSR14, LTK17, MDS+17, PS10, PZM+10, PSW11, Puf13, RHT13, SP10a, Sie10, SPS17]. Real-Time
[BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Pau14, SLES15, SLE+17, VK12, Nil12a, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGVEA14a, BVGVEA14b, CRAJ10, DW10, EABVGV14, Fox17a, GMC+13, HTLC10, KHM+11, KPVH11, KvrGS+14, KW10, KSR14, LTK17, PS10, PZM+10, PSW11, Puf13, RHT13, SP10a, Sie10, SPS17]. realtime
[OUY+13]. Reasoning
[LM15, ABK+16, MLT17]. Recaf
[BIvdS17]. recipes
[J+12]. recompilation
[NED+13]. Reconfigurable
[OUY+13, STY+14, OIA+13]. reconstruction
[LSWM16]. Recovering
[CRAJ10]. Reducing
[MV16, WHIN11]. Reduction
[BO12, MS19, TD15]. redundant
[HLO15]. reengineering
[FFB+19]. Refactoring
[AS14, STST12, VBZ+18, ZHL+12, FMM+11, FM13]. refinement
[GY16, JLP+14, KSW+14, MCW19, ZMG+14, ZFK+16]. Reflexes
[SPP+10]. regions
[AC10]. register

SMArtOp [TGZ17]. Smartphones [RT14].
SMARTS [RXK+17]. snapshots [AST12].
Snippets [SWU+15]. SNP [YCYC12]. SoC
[TKL+15]. social [GGC18]. Soft
[WZK+19, JACS10]. Software
[BSA14, CC15, KH18, PBM+19, RC17,
Wan11, YQTR15, BMSZ17, BTR+13,
CBGM12, CFH+13, CJ17, DVL13, EKUR10,
FRGPLF+12, FC11, GT10a, HBG+16,
JhED11, JK11, LPA13, MRR+12, NGB16,
OIA+13, PLL+18, RAS16, SV17, XR13,
YRHL13, ZSK13, ZHCB15, ZDS14].
Solidity [Dan17]. Solution
[KS15, EKUR10, J+12]. Solving
[SED14, FMBH15, UPR+18]. Sorting
[BKP16]. Sound [BO13, BGK17, LE16,
BHS14, ELW15, PPMH15]. soundly
[BS13]. Source [ADJG19, BSA14, GD12,
MM16, RLMM15, SRTR17, SED14, ABC18,
AK13, CJ17, DRN14, EKUR10, FMS+11,
JK11, MKK+12, MKK+13, OJ12, PMP+16,
SSK13, Ti13, ZWS15]. source-code
[MKK+12, MKK+13]. source-to-source
[AK13]. sources [IN12]. Spark [LXP18],
sparse [TGZ17], sparse-matrix [TGZ17].
spatial [MLGA11]. Speaking
[Rau14, Sam12]. Special
[DVL13, Fox17a, HL13, HGCA11, Puf13,
HTLC10, RHT13, HTW14, VK12].
specialization [KRR+14, SV15a]. specific
[CSdL16, EKE+13, HWW+15, Kie13].
Specification
[GJS+13, GJS+14, IF16, KW11, LN15,
LYBB13a, LYBB13b, LYBB14, MCW19,
TWNH12, BVGVEA11a, BCF+14,
KR12, KW10, MRA+17, YP10, dCMMN12].
specifications [BENS12, TVD10, UPR+18],
specified [BFR11]. Specifying
[BNS12, HL13]. Speculation
[AC16, MGI14, MGI17]. speculative
[BB17, YRBFL13]. speed
[HRS+17, SBF+10, UTO13]. SPIN
[AsdMG14]. SPL [BTR+13]. splittable
[SLF14]. SPOON [PMP+16]. spot
[LMK16]. SPUR [BBF+10]. SQL
[FGB+19, KMLS15]. SqueakJS [FiF+15].
SSNTDs [VSG17]. Stability
[BSA14, LL15]. stabilizing [hED12]. stack
[KRCH14, Xue12]. stack-based [KRCH14].
stage [WR1+10]. staged [SC16], staging
[RO12]. Standard [WKG17, LMS+12].
Standardization [TWNH12]. StarL
[LM15]. State [AGR12, BLH12, MvDL12,
MS14, GN16, YP10]. state-
statecharts [MS13]. Statement
[XMD+17, PLR14, ZWS15]. statements
[PLR14]. Static
[BGK17, BNE16, JC10, MTL15, ODL15,
PilCH11, PLR18, RD15, SW12, SH12,
AM14, CGJ+16, Fer13, FLL+13, IF16,
KSW+14, LS11, MHR+12, PR17, TLMM13].
statically [BTR+13, NED+13]. statistical
[Bra14, ZFK+16]. statistically [PPMH15].
statistics [HCN14]. stealing
[KFB+12, TWL12]. STM [CHM16, Sub11].
STM/HTM [CHM16]. StMungo
[KDGP18]. stochastic [CRAT+12]. stock
[PVH14]. Stop [LWB+15]. Storage
[Hol12, VDV17]. Store [BS12, Sta10].
stores [DFR13]. Story [Ano14]. strategic
[BMR14]. strategy [PDPM+16]. Stream
[CGWA17, KBPS17, MV16, BRWA14,
SSG+14, ZDK+19]. streaming
[MRA+17, STCG13]. StreamJIT
[BRWA14]. StreamQRE [MRA+17].
streams [SGG+17, UF15]. Strength
[KCD12]. String [HOKO14, CSG17].
Strings [HWM11, HWM10, LSSD14].
strong [UMP10, ZHCB15, ZBB17].
structure [LO15, PLL+18, UMP10].
structured [ABC18, LSWM16]. Structures
[GT10b, CDTM10, XMA+10]. studies
[EKUR10]. Studio [RT14, FH16].
Studio-Based [RT14]. Study
[BF18, KB11, OBP17, RVT18, RLMM15,
WKZ+19, ZMM+16, BRGG12, CCFB15,
CJ17, ECS15, JK11, KFBK+15, MHR+12,
NC10, OMK+10, PTF+15, SSL18, SH12,
TFPB14, VBDPM16, WXR16, YW13]. style

[UFM15], substitute [PPMH15], substrate [GTL+10], subtypes [HL13]. Subtyping [LN15]. Suite [MSS19, SMSB11, BB12]. Suites [GGZ+15], Summaries [BH17]. Summarization [MM16, RLMM15].

SWIM [Sch+10a]. symbol [Tar11]. Symbolic [NNTK17, PMTP12, SWMV17, MMP+12, Rim12]. synchronbench [Gra15].

Tardis [BM14]. target [Cle16]. task [Fee16, TWL12, ZLB+13].

TaskLocalRandom [PPMH15]. Tasks [PWSG17, PWSG19, ST15, HAW13, PPMH15, SPP+10]. Taurus [MAHK16].

Terminating [FFF17]. Termination [BMOG12, RDCP12, BSOG12, SPP10]. Test [AGM+17, BB12, BM18, GGZ+15, MSS19, Rim12, ST15, MT13, PSNS14, SR14a, SKR17]. Test-driven [BM18].

tested [Mil13]. Testing [Ame13, BR12, HIN13, MM12, MMP15, MMP+12, CSS+16, CNS13, KPP+18, Ler10, Teo12, TD15].

Third [Ano15, FOPZ14, LVG10].

third-party [FOPZ14, LVG10]. THOR [TXW+10]. Thoth [KB17]. Thou [LCW18].

Thread [MGI14, BKC+13, CRAJ10, MGI17, PCL14, PG12, SS10, WLL19, YDFF15].

Tier
[WZK+19]. TigerQuoll [BBP13]. Tim [Teo13]. Time [BVEAGVA10, BBB+17, BLH12, DLR16, Fox17b, HTW14, JMB12, Kie10, KW11, PKPM19, Pau14, SLES15, SLE+17, VK12, BCR13, BM14, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGV14a, BVGV14b, CRAJ10, DW10, EABVGV14, Fox17a, GMC+13, HTLC10, KHM+11, KPHY11, KHL+13, KvGS+14, KW10, KSR14, LMK16, LTK17, MGI17, Nil12a, PS10, PZM+10, PSW11, Puf13, RHT13, SP10a, SPPH10, Sie10, SPS17, SH12, TTS+10, WAB+11]. time-travel [BM14]. time-triggered [EABVGV14].

trace-based [BBF+10, HWM14, HWI+12, IHWN12]. Traceability [CSKB12]. tracer [CZ14]. Traces [WKG17, BA12, RGM13]. Tracing [BP10, DLR14, DLR16, MAK19, MRF18, MD15]. track [VSG17]. TrackEtching [VSG17]. Tracking [OAC18, RLM15, SDC+12, WLL19, KHL+13, OOK+10]. Tracks [RGM13]. tradeoff [UTO13].

Type [BO13, CGJ+16, KSW+14, KATS12, Lei17, Loc18, RKN+18, SGD15, WT11, ACS+14, AT16, BS13, CMS+12, CVG+17, DLM10, FH16, GBS14, HyG12, KMLS15, KRR+14, KRH16, KvRHA14, KDPG18, LPG14, LE16, MHR+12, SH12, TLL11, Zha12, eBH11]. Type-Based [SGD15].

type-dependent [LE16]. Type-Safe [Loc18, KMLS15]. Typechecking [KDPG18, CL17]. Typed [BO13, KKK+17, MHL15, CMS+12, KRCH14, Lei17, RDP16].

Types [BO13, BV14, SPAK10, BGD13, CHJ12, DDM11, HH13, MME+10, YDFF15]. TypeScript [Cho14, FH16, RSF+15].

Typing [FZ17, RSF+15, Sie17, SFR+14, TSD+12]. typy [OA17].

Understandable [MSM+16].
Understanding [ABC18, FRM+15, MKTD17, NWB+18, PCL14, QLBS17, Set13, TABS12, VBMMP16, LWB+15, Nil12b].

References

Altman:2010:OTJ

Accioly:2018:USS

Auerbach:2010:LJC

Avvenuti:2012:JTC

Marco Avvenuti, Cinzia Bernardeschi, Nicoletta De Francesco, and Paolo Masci. JCSI: a tool for checking secure information flow

Abanades:2016:DAR

Ansaloni:2012:DAO

Aumuller:2016:OPD

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Arnold:2011:A0J

Aiello:2011:JBA

Albert:2010:PIM

Antonopoulos:2017:DIS

Andreasen:2017:SDA

Arcaini:2012:CCM

Altman:2012:USM

Andreasen:2014:DSA

Ament:2013:ATG

Adamsen:2017:PIR

Ashrov:2015:UCB

Andersen:2014:PLJ

Anonymous:2012:AMJ

Anonymous:2013:FAM

Anonymous:2014:RKS

Anonymous:2015:BRL

Anonymous:2018:BRS

Arslan:2011:JPM

Altidor:2014:RJG

John Altidor and Yannis Smaragdakis. Refactoring Java generics by inferring wildcards, in practice. *ACM SIGPLAN No-
References

Adalid:2014:USA

Austin:2017:MFD

Afek:2012:ISJ

Alshara:2016:MLO

Akram:2016:BPG

Amin:2016:JST

Nada Amin and Ross Tate. Java and Scala’s type systems are unsound: the existential crisis of null point-

Michael Bebenita, Florian Brandner, Manuel Fahnrich, Francesco Logozzo, Wolfram Schulte, Nikolai Tillmann, and Herman

REFERENCES

REFERENCES

Bell:2015:VFB

Boldi:2018:BMC

Brockschmidt:2012:ATP

Brown:2016:HBS

[B Ballard:2014:ESP

Bliudze:2017:ECC

[BOR11] Jürgen Börstler, Marie Nordström, and James H.

Borstler:2011:QEI

REFERENCES

[BR12] Ilona Bluemke and Artur Rembiszewski. Dataflow testing of Java programs with DFC. *Lecture Notes*
REFERENCES

References

43

Bogdanas:2015:KJC

Brandt:2014:DAS

Bhattacharya:2012:DLI

Brown:2012:BRF

Bosboom:2014:SCC

Bedla:2012:SSJ

Mariusz Bedla and Krzysztof Sapiecha. Scalable store of Java objects using range partitioning. Lecture Notes in Computer Science, 7054:
REFERENCES

Balatsouras:2013:CHC

Bouktif:2014:PSO

Bonetta:2016:GSM

Brockschmidt:2012:ADN

Bodden:2013:SLS

Basanta-Val:2010:SSS

Pablo Basanta-Val, Iria Estevez-Ayres, Marisol Garcia-Valls, and Luis Almeida. A synchronous scheduling service for distributed realtime Java. IEEE Transactions on Parallel and Dis-
REFERENCES

Basanta-Val:2011:FTM

Carlisle:2011:WCB

Cao:2012:YYP

Chevalier-Boisvert:2012:BSH

Bourdykine:2012:LAM

Briggs:2017:COI
REFERENCES

Chaikalis:2015:FJS

Cosentino:2012:MDR

Ceccato:2015:LSE

Chen:2011:MJP

Chisnall:2017:CJS

Ceccato:2010:MLD

Cecco:2011:SGJ

Carter:2013:SSA

Chambellain:2017:PLR

Chugh:2012:DTJ

Carro:2013:MDA

Chandra:2016:TIS

Chapman:2016:HSH

Cogumbreiro:2015:DDV

Cogumbreiro:2019:DDV

Chong:2014:CCT

Campbell:2013:ICC

Chen:2017:CLP
REFERENCES

REFERENCES

REFERENCES

[Chanda:2012:TBS] Jayeeta Chanda, Sabnam Sengupta, Ananya Kanjilal,

REFERENCES

Cavalcan:2013:SCJ

Caserta:2014:JTJ

Díaz:2013:LEU

Dannen:2017:IES

daCosta:2012:JSL

Dhawan:2012:EJT

DElia:2013:BLP

DeBeukelaer:2017:ECP

Dietl:2011:SOT

Deitcker:2010:JEJ

Deitcker:2011:SPJ

DelRa:2013:BRJ

Dennis:2018:MFI

REFERENCES

Disney:2015:SYJ

Dey:2013:STA

deGouw:2015:OJU

DHondt:2012:ISS

Dolby:2012:DCA

Dietrich:2015:GSE

DiPierro:2018:RJ
REFERENCES

CODEN CSENFA. ISSN 1521-9615 (print), 1558-366X (electronic).

DiPierro:2018:TVG

Dietrich:2016:WJD

Dam:2010:PCI

DeJong:2018:MJA

DeFrancesco:2010:UAI

DeNicola:2014:FAA

Dissegna:2014:TCA

Dissegna:2016:AIB

Demange:2013:PBB

Duarte:2011:ICS

Devietti:2012:RRC

Dietrich:2010:POD

K. Dietrich and F. Röck. Performance optimizations

[DosSantos:2010:MPB] Osmar Marchi Dos Santos and Andy Wellings. Measuring and policing blocking times in real-time sys-

Estevéz-Ayres:2014:CSS

elBoustani:2011:ITE

Emeric:2012:CP

Ebert:2015:ESE

Efftinge:2013:XID

Esquembre:2011:TPL

Endrullis:2012:WEM

Exposito:2012:DSJ

Eugster:2013:SUP

Exposito:2015:LLJ

Evans:2013:WJG

Foreword by Heinz Kabutz.

Foley-Bourgon:2017:EIC

Fernandes:2011:LFS

Feeley:2016:CML

Ferrara:2013:GSA

Flanagan:2010:AMD

Ferrari:2017:JJF

Candel:2019:DMD

Carlos Javier Fernández Candel, Jesús García Molina, Francisco Javier Bermúdez Ruiz, Jose Ramón Hoyos Barceló, Diego Sevilla Ruiz, and Benito José Cuesta

Arnaud Fontaine, Samuel Hym, and Isabelle Simplot-Ryl. Verifiable control flow policies for Java bytecode. *Lecture Notes in Computer Science*, 7140:
REFERENCES

Freudenberg:2015:SMP

Flanagan:2013:PES

Fan:2018:VCJ

Feldthaus:2013:SAR

Felgentreff:2015:CBC

Feldthaus:2011:TSR

Frantzeskou:2011:SUD

Fu:2014:FDC

Fernandes:2017:AUM

Fdez-Riverola:2012:JAF

REFERENCES

SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

Fan:2015:UCC

Fournet:2013:FAC

Funes:2012:RMC

Feng:2015:EQD

Fritz:2017:TSA

Gherardi:2012:JV

Gerakios:2013:FIS
Prodromos Gerakios, Agge-

REFERENCES

[GJS+13] Apolinar Gonzalez, Walter Mata, Alfons Cre-

Gadyatskaya:2012:JCA

Gardner:2012:TPL

Greenman:2014:GFB

Gupta:2016:LSA

Gong:2011:LSA

Grossschädil:2012:EJI

REFERENCES

REFERENCES

Grimmer:2018:CLI

Gill:2010:MDP

Goodrich:2010:DSA

Geoffray:2010:VSM

Gidra:2015:NGC

Gidra:2011:ASG

Gunther:2014:ACC
John C. Gunther. Algo-

[HA13] Matthias Hauswirth and Andrea Adamoli. Teaching Java programming with

Hanenberg:2015:WDW

Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Hasbun:2012:UTP

Haverbeke:2011:EJM

Heumann:2013:TEM

Huang:2013:ECS

Hindle:2016:NS

Abram Hindle, Earl T. Barr, Mark Gabel, Zhen-dong Su, and Premkumar Devanbu. On the natural-

REFERENCES

Halder:2017:JSV

Hofmann:2011:EOS

Hanazumi:2017:FAI

hunEom:2012:SSJ

hunEom:2012:DDP

Horspool:2011:PPP

REFERENCES

[Hoppe:2013:DDB]

[Hinojosa:2013:TS]

[Hower:2014:HRF]

[HJ12]

[HHSS13]

[Hellyer:2010:LCW]
REFERENCES

Heidenreich:2010:GST

Hlopk:2014:ISJ

Haddad:2013:SIP

Hague:2015:DRC

Herczeg:2013:TFF

Herranz:2012:VIP

Huang:2012:RRC

Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. Reim & ReImInfer: checking and inference of reference immutability and method purity. *ACM SIGPLAN No-
REFERENCES

Hashmi:2012:CNI
[180x646] HNTL12]

Horie:2014:SDJ
[HOKO14]

Hollingsworth:2012:SPI
[Hol12]

Horstmann:2011:CJA
[Hor11]

Horstmann:2012:JEC
[Hor12]

Hosking:2012:CHL
[Hos12]

Haas:2017:BWS
[HRS+17]

Andreas Haas, Andreas Rossberg, Derek L. Schuff,
REFERENCES

Higuera-Toledano:2010:ISI

Higuera-Toledano:2014:EIS

Hayashizaki:2012:IPT

Higuera-Toledano:2014:EIS

Huang:2011:SBA

Haubl:2010:CES

Haubl:2011:ECE

Christian Häubl, Christian Wimmer, and Hanspeter Mössenböck. Erratum to “Compact and Efficient

Haubl:2013:CST

Haubl:2014:TTE

Humer:2015:DSL

Hackett:2012:FPH

Iranmanesh:2016:SSE

Inoue:2012:AML

REFERENCES

Jenista:2011:OSO

Jayaraman:2017:CVJ

Johari:2011:ESE

Jantz:2013:ESM

Jagannathan:2014:ARV

Jung:2012:EJA

REFERENCES

Jung:2014:HCO

Javed:2016:TSJ

Johnson:2015:EES

Jin:2012:JMM

Kossakowski:2012:JED

Kossakowski:2012:JED
Kastner:2012:TCA

Kumari:2011:A0O

Kunjir:2017:TAM

Kim:2014:LBL

Kiselyov:2017:SFC

Kulkarni:2012:MCO

Krishnaveni:2012:HOJ
R. Krishnaveni, C. Chellappan, and R. Dhanalakshmi. Hybrid obfuscated Javascript strength

Kedia:2017:SFS

Kouzapas:2018:TPM

Kuehnhausen:2011:AJM

Khan:2015:UJW

Faiz Khan, Vincent Foley-

REFERENCES

Kienle:2013:BRE

Kim:2017:TAA

Krieger:2011:AES

Kaiser:2014:WAM

Kim:2017:TAA

Kaiser:2014:WAM

Ko:2010:EAW

Karakoidas:2015:TSE

REFERENCES

Kalibera:2014:FAS

Kulkarni:2016:APA

Kolling:2010:GPE

Kroening:2015:CAV

Kalibera:2011:SRT

Khyzha:2012:AP

Kintis:2018:HEM

[KPP+18] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, Nicos Malevris, and Yves Le Traon. How effective are mutation testing tools? An empirical analysis of Java mutation testing tools with

REFERENCES

DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). DLS ’13 conference proceedings.

Keil:2015:BAH

Kersten:2014:RRA

Kolesnikov:2014:CPB

Kim:2010:EAE

Kim:2011:MAE

Lin:2012:UKT

Yi Lin, Stephen M. Blackburn, and Daniel Frampton. Upicking the knot: teasing apart VM/application interdependencies. ACM SIGPLAN Notices, 47(7):181–190, July 2012. CODEN SINODQ. ISSN 0362-
Lauinger:2018:TSD

Li:2014:MHD

Lorenzen:2016:STD

Leijen:2017:TDC

Lerner:2010:FTJ

Lewis:2013:IAP

Liu:2019:RIP

Bozhen Liu, Jeff Huang, and Lawrence Rauchwerger. Rethinking incremental and parallel pointer analysis. *ACM Transactions on Programming Languages and Systems*, 41 (1):6:1–6:??, March 2019. CODEN ATPSDT. ISSN
Liu:2014:JNU

Leino:2015:APS

Leung:2013:PEJ

Lin:2015:STU

Lee:2016:ECP

Loring:2017:SAJ

Long:2012:COS

[LMMS12] F. W. (Frederick W.) Long, Dhruv Mohindra, Robert Seacord, Dean Sutherland, and David Svoboda. *The

Leavens:2015:BSS

Lopes:2015:HSA

Lochbihler:2013:MJM

Lochbihler:2018:MTS

Long:2010:TDSa

Long:2010:TDSb

REFERENCES

[LSSD14] Loi Luu, Shweta Shinde, Prateek Saxena, and Brian
REFERENCES

Leopoldseder:2016:JJT

Li:2011:JEC

Li:2014:EAJ

Laskowski:2012:DJP

Luckow:2017:HTP

Liu:2014:FFL

Peng Liu, Omer Tripp, and Xiangyu Zhang. Flint: fixing linearizability viola-
Lerner:2010:SDT

Lin:2015:SGU

Lee:2010:JSD

Lindholm:2013:JVMa

LXP18

LWH+10

Lee:2010:JSD

LYBB13a

LXBB18

Lindholm:2013:JVMb

Lindholm:2014:JVM

Liu:2018:JIO

Ly:2012:JTW

Liu:2012:PAA

Liu:2018:JIO

REFERENCES

Maas:2016:THL

Maas:2019:HAT

McIntyre:2012:FJB

Martinez:2017:MBA

McKinley:2016:PWU

Miyazawa:2019:SCS

REFERENCES

1. McLane:2010:UIV

Mayer:2012:ESI

Misra:2012:JSC

Miller:2013:TSG

Misra:2013:JSC

Malhotra:2017:PPS

Mazinanian:2017:UUL

Marek:2014:SRC

Martinez-Llario:2011:DJS

Mesbah:2019:REJ

Madsen:2017:MRA

Mirshokraie:2012:JJA

McBurney:2016:ASC

REFERENCES

106

Markstrum:2010:JDP

Martin:2014:TCR

Morgan:2018:SJW

Mirshokraie:2015:GMT

Mastrangelo:2015:UYO

REFERENCES

REFERENCES

Marinescu:2013:FSJ

Moller:2014:ADC

Marino:2010:DSE

Marino:2016:DXU

Mitchell:2010:FTL

Marchetto:2019:CCR

Mitropoulos:2016:HTY

[MSSK16] Dimitris Mitropoulos, Konstantinos Strogylos, Dioni
dis Spinellis, and Angelos D. Keromytis. How to

Malhotra:2013:DFT

Murawski:2014:GSI

Madsen:2015:SAE

Marz:2016:RPC

Mesbah:2012:CAB

Motika:2015:LWS

[NFV15] Ryan R. Newton, Peter P. Fogg, and Ali Varamesh. Adaptive lock-free maps:

REFERENCES

REFERENCES

Nicolay:2017:PAJ

Nguyen:2015:FCR

Omar:2017:PSF

Obaidellah:2018:SUE

REFERENCES

Ogata:2010:SJN

Odaira:2010:ERT

Olson:2018:CLM

Ohkawa:2013:RHO

Olsson:2016:ERR

Oh:2015:MWA
Paul:2014:RTP

Ponzanelli:2019:AIC

Parnin:2013:AUJ

Pinto:2014:UEB

Philips:2017:DDD

Panizo:2012:EJP

Portillo-Dominguez:2016:ECP

A. Omar Portillo-Dominguez, Philip Perry, Damien Magoni, Miao Wang, and John Murphy. Extended conference paper: TRINI: an

Parker:2011:DPG

Pradel:2012:FAP

Park:2011:DCM

Park:2017:PSS

Pizlo:2017:JVM

Pukall:2013:JFR
REFERENCES

DEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

Piao:2015:JJF

Pan:2018:ASJ

Park:2014:AAS

Park:2018:SAJ

Parizek:2012:PAJ

[PLL18]

[PKO+15]

Piao:2015:JJF

[PKPM19]

Park:2019:ROC

[PLR14]

[PLL+18]
REFERENCES

REFERENCES

[Pichon-Pharabod:2016:CSR]

[Pham-Quang:2012:JAD]

[Piedrahita-Quintero:2017:JGA]
Pablo Piedrahita-Quintero, Carlos Trujillo, and Jorge Garcia-Sucerquia. JDiffraction: a GPGPU-accelerated JAVA library for numerical propagation of scalar wave fields. *Computer Physics Communications*, 214(??):

[Parker:2012:CB]
Pradel:2014:EAR

Park:2015:KCF

Pour:2011:MBD

Pinto:2015:LSS

Pape:2014:EJV

Papadimitriou:2011:SES

[PTML11] Stergios Papadimitriou, Konstantinos Terzidis, Sefierna Mavroudi, and Spiridon Likothanassis. ScalaLab:

REFERENCES

Behnam Robatmili, Calin Cascaval, Mehrdad Reshadi, Madhukar N. Ked-

Radoi:2015:ETS

Ramirez-Deantes:2012:MTA

Rhodes:2015:DDO

Reynders:2016:GSB

Reynolds:2013:MJB

Reza:2012:JS

REFERENCES

REFERENCES

REFERENCES

Reichenbach:2012:PPD

Ramos:2015:NCS

Rubin:2014:HCW

Rowe:2014:ST

Raychev:2015:PPP

[RVK15] Veselin Raychev, Martin Vechev, and Andreas

Raychev:2019:PPP

Ricci:2011:SAO

Ramos:2018:APS

Rudafshani:2017:LDD

Ramamohanarao:2017:SSM

Ryu:2016:JFB

REFERENCES

Schultz:2010:WAJ

Schmeisser:2013:MOE

Schildt:2014:JCRb

Sluanschi:2016:AAD

Sousa:2016:CHL

Sridharan:2012:CTP

Schoeberl:2017:SCJ
Martin Schoeberl, Andreas Engelsbreit Dalsgaard, René Rydholf Hansen, Stephan E. Korsholm, Anders P. Ravn, Juan Ricardo Rios Rivas, Törur Biskopstein.

Shah:2012:AMJ

Sartor:2012:EMT

Stolee:2014:SSS

Staples:2019:SAB

Seth:2013:UJV

Severance:2012:DJO

Severance:2012:JDL

Sewell:2012:TJ

Swamy:2014:GTE

Sherman:2015:DTB

Subercaze:2017:UPT

Simao:2012:CER

Stuchlik:2012:SVD

Steimann:2016:CRA

Siebert:2010:CPR

Siek:2017:CPT

Singer:2010:EGC

Smans:2010:AVJ

Shan:2012:OAC

Salkeld:2013:IDO

Robin Salkeld and Gregor Kiczales. Interacting with dead objects. *ACM SIGPLAN Notices*, 48(10):203–216, October 2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (elec-
REFERENCES

Singer:2011:GCA

Schoeberl:2011:HAL

Sondergaard:2017:CTD

Stilkerich:2017:PGU

Stilkerich:2015:PGA

Steele:2014:FSP

Snellenburg:2012:GJB

Shaﬁei:2012:MCL

Singh:2012:EPS

Santos:2018:JJV

Spoto:2010:TAJ

Sewe:2012:NSI

Sewe:2011:CCS
[SMeM11] Andreas Sewe, Mira Mezini, Aibek Sarimbekov,
REFERENCES

Stork:2014:APB

Schoeberl:2010:NRT

Spoto:2010:MSL

Serrano:2016:GH

Steimann:2010:TMI

Spring:2010:RAI

Jesper Honig Spring, Filip Pizlo, Jean Privat, Rachid Guerraoui, and Jan Vitek. Reflexes: Abstractions for integrating highly responsive tasks into Java appli-
REFERENCES

Schoeberl:2010:WCE

Strom:2017:HLR

Stefanescu:2016:SBP

Samak:2014:MTS

Sun:2017:AJP

Sawan:2018:RDC
Anand Ashok Sawant, Romain Robbes, and Alberto

Vladimir Sor and Satish Narayana Srirama. Memory leak detection in Java: Taxonomy and classification of

Srikanth:2017:CVU

Singh:2013:TGC

Saini:2018:CNC

Sciampacone:2010:EMS

Stone:2015:WMT

Stark:2010:BIA

Santos:2013:DDS

Ivo Santos, Marcel Tilly, Badrish Chandramouli, and
REFERENCES

Stefanov:2010:JP

Samak:2016:DSF

Sun:2013:BJW

Schafer:2012:CAN

Su:2014:RVP

Subramaniam:2011:PCJ

REFERENCES

DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Szweda:2012:ANB

Sharma:2017:VCS

Simon:2015:STH

Servetto:2010:MMC

Siegel:2011:AFV

Tamayo:2012:UBD

REFERENCES

IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, May 2017.

[Teodorovici:2012:BRC]

[Teodorovici:2013:BRL]

[TFPB14]

[Tu:2014:PPP]

R. Toledo, A. Nunez, E. Tanter, and J. Noye. Aspectizing Java access

Tian Tan, Yue Li, and Jingling Xue. Efficient and precise points-to analysis: modeling the heap by merging equivalent automata. *ACM SIGPLAN Notices*, 52(6):278–291, June 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

R. Toledo, A. Nunez, E. Tanter, and J. Noye. Aspectizing Java access
REFERENCES

REFERENCES

August 2012. CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

safaribooksonline.com/?fpi=9781617291999;
http://proquest.tech.
safaribooksonline.de/9781617291999.

[VK12] Jan Vitek and Tomas Kalibera. Introduction to the
REFERENCES

VanCutsem:2010:PDP

VanCutsem:2015:RTC

Verdu:2016:PSA

VanderHart:2010:PC

Verdu:2011:BBI

Varier:2017:TNJ
VanNieuwpoort:2010:SHL

Vechev:2010:PPC

Wurthinger:2011:SAR

Walker:2012:SNJ

Wampler:2011:FPJ

Wang:2011:EEU

Wurthinger:2011:AED

Thomas Würthinger, Walter Binder, Danilo Ansaloni, Philippe Moret, and Hanspeter Mössenböck. Applications of enhanced dynamic code evolution

REFERENCES

[Wu:2011:RTS]

[WK17]

[WLL19]

Wimmer:2010:AFD

Wendykier:2010:PCH

Witman:2010:TBR

Westbrook:2010:MJM

Wehr:2010:JBP

Wehr:2011:JIT

Wurthinger:2017:PPE
dynamic language runtimes.

Wurthinger:2013:USD

Wei:2016:ESD

Wang:2019:OT

Xu:2019:EEG

Xi:2012:MD

REFERENCES

[102x681] 1532-0626 (print), 1532-0634 (electronic).

Xu:2010:FLU

Xu:2010:DIU

Xue:2012:RJC

Xuan:2017:NAR

Xu:2010:DIU

Xue:2012:RJC

REFERENCES

Xie:2013:AAE

Yang:2013:CPP

Yang:2012:MPD

Yi:2015:CTC

Yang:2017:EJV

Yessenov:2017:DAD

REFERENCES

Zschaler:2014:SFZ

Zuo:2016:LOF

Zhao:2012:PTI

Zhang:2015:LOS

Zhang:2012:RAJ

Zacharopoulos:2017:EMM

Zheng:2016:CMD

[ZKB+16] Yudi Zheng, Stephen Kell, Lubomir Bulej, Haiyang Sun, and Walter Binder. Comprehensive multiplatform dynamic program...
REFERENCES

[Zhou:2016:IRO] Minghui Zhou, Audris Mockus, Xiujuan Ma, Lu Zhang, and Hong Mei. Inflow and retention in OSS communities with commercial in-

[Zhang:2014:HTB]

[ZMNY14]

Zakkak:2014:JJS

[ZP14]

Zibin:2010:OIG

[ZPL+10]

[ZW10]

[ZW13]

[ZWSS15]
Zhao:2014:CSP

Zhang:2016:NVC

Zhang:2013:IMF

Zhang:2012:SRB