A Bibliography of Publications about the *Java Programming Language*, 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

11 January 2018
Version 1.164

Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

3 [GBC12, JEC+12, ZXL16]. \textit{TP} [LTK17].
\(C_p\) [AÖ11]. \(k\) [SD16b, SGG+17]. \(Z_p\) [AÖ11].

-safety [SD16b].

\texttt{/multi} [Taf13]. \texttt{/multi-threaded} [Taf13].

'12 [Hol12]. 12th [Fox17a].

27th [KP15].

5 [KHR11].

6 [Jen12].

7 [Ano15, EV13, J+12]. 75 [HWM11].

8 [LYBB14, SAdB+16, UFM15].

938 [Gun14]. 978 [Ano15].
978-1-4493-1103-2 [Bro12].
978-1-4919-4946-7 [Ano15].

Abbreviated [SRTR17]. \texttt{ABS} [SAdB+16].
absence [AGH+17]. Abstract
approachable [WHV+13]. approaches [MD15, SS14]. approximate [CNS13].
Approximation [RvB14].
Approximations [SS12]. apps [CNS13, Sta10]. Architectural
[CSGT17, KKK+17]. Architecture [GMPS12, Wan11, AMWW15, Gon11].
Architectures [KKK+17, RKN+18, ABR10, Hos12, MS10, ZP14]. arena
[TRE+13]. arithmetic [TGZ17].
Arquillian [Ame13]. array [SV15b]. arrays [FBH17, SBF+10]. arrows [FZ17]. art
[Lew13]. ASM [AGR17]. Aspect
[ABMV12, VBAM10b, VBMA11, WBA+11].
Aspect-Oriented
[ABMV12, VBAM10b, WBA+11]. AspectJ
[AC10]. aspects [LVG10]. Assertion
[MM12]. Assertion-Based [MM12].
Assertional [LL15]. assertions [VY10].
Assessing [GTS11, JACS10]. assignment
[KT15]. AST [DRN14, HWW+15, ZLBF14].
asymmetric [CBGM12]. asymptotic
[ODL15]. Asynchronous
[KW11, SK12, WK12, FZ17, KW10, LML17]. atomic
[WAB+11]. Atomicity
[GGRSY17, JLP+14, BHSB14, BNS12, GGRSY15, UMP10]. atomics [PPS16].
Attack [BH12]. Attacks [MSK16]. attribute
[SHU16]. augmentation
[DA13]. authentication [XHH12].
authorship [FMS+11]. auto [SKBL11].
auto-tuning [SKBL11]. automata
[TLX17, ZWZ+14]. Automated
[BH17, BSOG12, BMOG12, MS14, RGEV11, SDM12, AstdGMG14, MRVM12, ZFK+16].
Automatic
[GGRSY14, GGRSY15, GGRSY17, KKW11, MDS+17, PQD12, SZ11, SD16a, SJPS10, SS16, WM10, ABK+16, FM13, PG12].
automatically [TB14]. Autonomic
[DLPT14]. Autonomous [GMPS12].
average [LDL14]. avoid [XR10]. Avoiding
[FRC+17, ZBB17]. avoids [PPS16]. Aware
[JYKS12, BBXC13, CL17, EQT10, SSB+14a, SGV12]. awareness [VGS14]. axiomatic
[TVD10].
B [DLZ+13]. back [Car11]. Backstage
[PS11]. Bad [dGRdB+15]. baggage
[KFB+12]. balances [FMBH15]. balancing
[PDPM+16]. Ball [DD13]. barrier
[CHMY15, VB14a]. barriers
[HJH10, WBM+10]. Based
[AGFG11, DLR16, GM12, GGZ+15, GCC18, LTD+12, MvDL12, MM12, PTML11, PiLCH11, PE11, RBL12, RT14, SGD15, SLS+12, SWF12, AYZ10, AST+16, ADI13, BBF+10, BBP13, BB17, CJ17, CPST14, CPST15, GMC+13, HWM14, HWI+12, HOKO14, HWLM11, HWN12, IRJ+12, JEC+12, JMO14, KATS12, KS13, KRCH14, KvRHA14, KS14, MCC17, MB12, MCY+10, PDPM+16, PWW11, SZ11, SKB13, SMP10, SP+16, SV17, SNS+14, UI10, VSG17, XHH12, YP10, ZYZ+12]. basic [CZ14].
basic-block [CZ14]. basics [Zak12].
basierte [Ric14]. battlefield [WT10].
Bayesian [BSA14]. BeagleBone [Ric14].
before [TD15]. begone [MRMV12].
behavior
[LWB+15, RLBV10, TABS12, WXR16].
Behavioral [LN15, AMWW15]. behaviors
[PCL14]. behaviour [SMS+12]. Beliefs
[BA17]. Benchmark [GBC12, SMSB11].
benchmarking [AHK+15, MDM17].
benchmarks [KHMY+11, RGEV11]. benefit
[HH13]. best [Sch13]. Better
[Bro12, TD15]. Between
[PVB17, ZLHD15, CMM17, RDP16, SH12].
Big [GTS+15, NBB+15, RVK15, BOF17, BBXC13, SSG+14, WR10]. billions
[DRN14]. bindings [VGRS16]. bird
[Guy14]. Birthmark [PiLCH11]. Bitcoin
[TD17]. Blame [KT15]. Bloat
[MSS10, XMA+14, BRGG12, BBXC13, XR10].
bloat-aware [BBXC13]. block
[CZ14, KBL14]. block-level [KBL14].
blooding [DW10]. Blockly [AMWW15].
conversions [CMM17]. Cooperative
[YDFF15, HdM17]. Coordinating
[MAHK16]. coordination [BMSZ17]. copy
[FBH17]. copyrightable [Sam12]. Core
[Hor11, HC13, RDCP12, RTE+13, MS10,
TRTD11]. cores [GTSS11, SKBL11].
corpus [HCN14]. correct
[AdCGGH16, AJL16, DJLP10]. Correctness
[LL15, BENS12, Cho14].
Correlation [SDC+12, XHH12]. counter
[LSSD14]. counters [IN12]. Course
[Wan11, Zak12]. Coverage
[CSS+16, GGZ+15]. Coverage-Based
[GGZ+15]. Coverage-directed [CSS+16].
CPS [PDDD17]. CPU [PKO+15].
Crawling [MvDL12]. creating
[HC10, VBAM10b]. Creation [SK12]. crisis
[AT16]. Critical
[HL13, WK12, WCB16, ZLCW14, AGR17,
DTLM14, GMC+13, NM10, Nil12b, RS12,
SDH+17, CWW13, LWC17]. Cross
[MDM17, AMWW15, BKC+13, GSS+16,
KMZN16]. cross-cutting [AMWW15].
Cross-language [MDM17, GSS+16].
cross-program [KMZN16]. cross-thread
[BKC+13]. Crowdsourcing [BH17].
CrowdSummarizer [BH17].
Cryptography [GPT12]. CSS
[Ano15, HLO15, Sta10]. Curve [GPT12].
customizations [LVG10]. customized
[HB13]. cutting [AMWW15]. Cyclic
[BMOG12, RS12].
D [GBC12, JEC+12, ZXL16]. DAA [DR10].
Data
[Bra14, BMOG12, BA17, GM12, GTS+15,
GT10, NKH16, NWB+15, dMRH12, BK14,
BB17, BOF17, BBXC13, BJJK12, CRP+10,
DFR13, DHM+12, FOPZ14, KB17, LDL14,
MRA+17, NL14, SAdB+16, SSG+14,
SGG+17, UMP10, WKJ17, WCG14, XXZ13,
XMA+10, ZIvdS17]. data-centric
[DHM+12, FOPZ14]. Data-Parallel
[NKH16, CRP+10]. database
[Dei10, TABS12]. databases [MLGA11].
Dataflow [BR12]. Datalog [ZMG+14].
dataset [MDS+17]. Days [Sev12b]. DBT
[KS13]. dead [SK13]. deadlock
[CHMY15, SR14a, SR14b]. Dean [Bro12].
debugging
[ASdMGM14, BM14, KS14, TB14, ZFK+16].
Deciding [SGD15]. decision [RBV16].
declarative
[DRN14, RSI12, FOPZ14, MME+10].
Decomposition [AGH+17].
deconstructing [ACS+14]. decoupled
[LPA13]. deduplication [REHO14].
Default [BG17, SNS+14]. defects4j
[MDS+17]. defined [FMS+11]. Definite
[NS12]. Definition [SSB14b, AK13, SSB01].
definitive [Oak14]. delegation [GBS13].
delimited [PDDD17]. DelphJ [GBS13].
demand [FWDL15, ZHL+12].
demand-driven [FWDL15]. DemoMatch
[YKSL17]. demonstrations [YKSL17].
Deoptimization [KRCH14]. Dependence
[PDDD17, JWMC15]. Dependence-driven
[PDDD17]. dependences [BKCC+13].
dependencies [ELW15]. Dependent
[CHJ12, LE16]. deploying [R+13]. depth
[Rau14]. Design [AC16, ET7TD12, MLGA11,
Puf13, RTE+13, SW12, TRTD11, TKB+15,
VGRS16, YCYC12, BBXC13, CSIL16,
GSD+15, IRJ+12, OA17, SADB+16,
SMSB11, VM10, Xue12]. Designing
[Sev12b, KHR11]. Desktop [GS11].
destructive [FF10]. Detecting
[BK12, HLO15, PILCH11, XR10, FF10].
Detection [BSOG12, KCD12, MS14, RD15,
XMA+14, AMT17, CSK17, LMK16, LS11,
ODL15, PG12, RDF15, RW17, SR14a,
SR14b, SS14, WCG14, XXZ13, XR13].
detectors [LWH+10]. Determinacy
[AM14]. deterministic [DNB+12].
developer [EV13, Top11, ZZK13].
developers
[Bro12, BMR14, DJB16, HH13, Wan11].
developing [R+13]. Development
7

[ABK+16, AYZI10, AGR17, FRGPLF+12, PSW11, SKR17, SH12, WBA+11, ZDS14].
Device [TTD+11, XHI12]. Devices
[GPT12, JQJ+16, MV16, ETR+15, Xue12].
DFC [BR12], diagnosis [BW17]. DiAl
[STCG13]. dialects [BvdS17]. difference
[PS11], differential [CSS+16].
Differentiation [FHP+12, PQD12, SD16a]. digital
[IMO14]. dimensional [TGZ17].
Directed [STR16, CSS+16, EP14, Lei17,
NG13, NED+13, WM10]. directives
[VGS14]. Discovering [Sev12a]. discovery
[YKSL17], discrete [DFFD17]. Disease
[PE11]. Dissimilar [Has12]. Distance
[ZW13]. distributable [CRAJ10].
Distributed
[BVEAGVA10, LT+12, LM15, MAHK16,
PE11, BVGVEA10, BVGVEA11b,
BVGV14b, CRAJ10, EABVG14, STCG13].
distributing [TGZ17]. divide [SBF+10].
Do [HH13, Han15]. Does [BRGG12, Rub14].
DOJ [hEYJD12]. DOM [GGC18].
DOM-Based [GGC18]. Domain [KSPK12,
CSdL16, E埃+13, HWW+15, PIR17].
domain-specific
[CSdL16, E埃+13, HWW+15]. dominance
[CPST14]. Doppio [VB14a].
DoubleChecker [BHSB14]. down
[Ker15, ZMY14]. drf [SM+16]. DRFX
[SM+10, SMN+12]. Driven
[CCA+12, CHM13, FWDL15, MTL15,
PDD17, SR14b]. DSL [KARO12]. DSLs
[KHR11, RO12, SC16]. DSU [PVH14]. Dual
[AD16]. Dual-Pivot [AD16]. Dynamic
[ABMV12, ASF17, CHMY15, MVLD12,
PHTH14, RDF15, XMA+14, ZKB+16, AF12,
BD11, BK4, BCD13, BOF17, CSV15,
CP15, ELW15, GYB+11, HB13, KRCH14,
KRR+14, KT14, LWH+10, LVG10,
MKZ+14, Nil12b, NG12, NED+13, RLVB10,
RCR+14, RRB17, SR14b, SJPS10, SH12,
TPG15, VBAM10b, WXR16, WBA+11,
WAB+11, WWS13, WWH+17, ZBB15].
dynamic-memory [GYB+11].
dynamically [CZ14, CMS+12, hEYJD12].
Dynamo [DBB11].
e-Science [SGV12]. ease [DRN14]. Easy
[Jaf13, CRP+10]. economic [CSV15].
economics [SJBL10]. Edition
[An15, LYYB14]. editor [EKRT+12].
Editorial [Fox17a]. Editorials
[Fox17b, HTW14, RH13]. EDSLs [RDP16].
Educator [BA17]. EE [Jen12, MCC17].
effect [CCFB15]. Effective
[BMR14, PTML11, RD15, CSdL16].
Effectively [UR15]. effects
[FH16, HAW13, Lei17]. Efficient
[DVL13, GPT12, HW11, HB13, KT14,
KW10, OOK+10, RFBJ14].
MM+12, TLX17, TD17, AK13, BHSB14,
CRP+10, ETR12, HWM10, KKW11,
MRA+17, MSM+10, Sie17, SGV12, SWB+15,
SV15a, TRTD11, UMP10, WJVB10, XXZ13].
Efficiently [FBH17, BK+13, FOPZ14].
Einsatzszenarien [Sch13]. Einsteiger
[Ric14]. Elektronik [Ric14].
Elektronik-Projekte [Ric14]. Elephant
[RM13]. Elimination
[RKN+18, GvRN+11]. elision [NM10].
Elliptic [GPT12]. Eloquent [Hav11].
Embedded
[Fox17b, HTW14, JMB12, KARO12, Pau14,
SLES15, SLE+17, TKL+15, VK12, Dei10,
Fox17a, GMC+13, HTLC10, KHR11,
LM16, LTK17, OIA+13, RHT13, SC16,
SDH+17, SFR+14, UIY10, Xue12, ZY+12].
embedding [KMLS15, SC16]. Empirical
[SS13, WXR16, BJ12, KH16, HH13,
MR+12, NCS10, SH12, VBDM16,
VBMD16]. emulated [THC+14].
emulator [KS13]. Enabled
[GPT12, DR10, ETR+15, RBL12, SGV12].
encapsulation [DDM11]. End
[GM12, DAA13]. End-to-End [GM12].
end-user [DAA13]. energy [CL17, PCL14].
energy-aware [CL17]. enforcement [IF16].
enforcing [JWMC15]. engine
Engineering [CCA+12, VF10], engineers [Bra14], engines [KRH16, SSG+14], enhanced [LMK16, WBA+11], Enhancing [BDT10, BVGVEA13, DeSG12, HC10].

Ensuring [HDK+11], Enterprise [Ano14, AAB+10], entities [ETR12], Entry [BK12], enumeration [SSH17], Environment [KöI10, PTML11, EKR+12], environments [EABVGV14, GTL+10, HOKO14, KFl1, RDP16, RCB17, SGV12], equality [GRF11], Equivalence [BO12], equivalent [TLX17], equivocation [TD17], ERAM [Sch10a], Erratum [HWM11], error [eBH11], ES5 [DFHF15], Escape [SLES15, SLE+17], estimation [LMK16], etched [VSG17], Ethereum [Dan17], eval [Mil13, MRMV12], Evaluating [BLH12, MDHS10], Evaluation [GBC12, JMB12, OCFLI14, TTS+10, Wan11, CSK17, MRA+17, MD15, WWH+17], Evaluator [IB12], Event [KW11, MV16, BBP13, KW10, MTL15, WK12, YP10], event-based [BBP13, YP10], event-driven [MTL15], EventBreak [SNS14], ever [Gra15], everyone [Hor12], Evolution [GMPS12, Mei14, MAH12, NCS10, WBA+11, WAB+11, WWS13], evolving [ZZKL3], Exact [ZW13], Examples [BNP14], Exception [LT14, ECS15, HWM14, LT14], Exceptionalization [YKM17], Exceptions [AS17, AdCGGH16, HmM17, SMN+12, ZBB17], Execution [OwKPM15, JLL17, JiED11, LLL13, RCB17, SPPH10], executions [ASdMGM14, PPS16, STR16], executives [RS12], Exemplar [ZW13], exhaustive [DHS15], exhibitionism [VBMPD16], existing [AT16], Exogenous [BMSZ17], Experience [ABMV12, OW16, Sch10a, CBLFD12, TRE+13, WT10], experiment [MDS+17, HWLM11], explicit [NGB16], exploit [Ano13], Exploitation [SSMGD10], Exploiting [NKH16, QSaS+16], exploration [FWDL15], explorative [AHK+15], exploratory [ECS15], EXPLORER [FWDL15], Exploring [JK13, JWMC15, SE12], exposed [VBDM16], Express [JQJ+16], Expression [NS12, PIR17], expressions [GK15, MKTD17], expressive [VY10], Extended [DDDF17, FGR12, FLL+13, JC10, LMK16, PDPM+16], Extending [AC10, BVGVEA11a, LPA13, PTHH14], Extensible [ZIvdS17, ER14, KMLS15, MHBO13], Extension [RSI12, LE16, MLGA11], extensions [Zha12], Extensive [Wan11], Extracting [CCA+12, KM10], Extremal [LT+12], eye [Guy14].

F [GMT14, TTD12], F-bounded [GMT14], F-MPJ [TDD12], FAA [Sch10a], FACADE [NW+15], face [XHH12], Facebook [Ano13], Facets [ASF17, AF12], facilities [BVGVEAFG11], FAD.js [BB17], failing [STR16], failures [CRAJ10], false [HWI+12], familiarized [Ame13], family [KHM+11, KvRA14], family-based [KvRA14], Fast [CVG+17, CSTG17, HyG12, SMB14, SLF14, BB17, KMMV14, KCP+17, MDM17, MHBO13, SV15b], Faster [BMDK15, JC10, AJL16], fault [RBL12], Faults [SRTR17, ZZKL3], Featherweight [RvB14], feature [AH10, KvRA14, OJ12], feature-based [KvRA14], Feedback [NED+13, NG13, WM10], Feedback-directed [NED+13, NG13, WM10], fields [PQTGS17], FIFO [QSaS+16], filtering [HWI+12], find [Ryu16], Finding [XMA+10], Fine [BVGVEAFG11, DRN14], fine-grained [DRN14], Fingerprints [MSSK16], Finite [BLH12, MB12], Finite-State [BLH12], first [SC16, TSD+12], first-class [SC16, TSD+12], fix [TPG15], Fixing

Handling [KW11, ECS15, HWM14, KW10, WK12].
happened [Han15]. happens [TD15].
happens-before [TD15]. hard
[LTK17, Puf13]. Hardware
[SKKR11, SPS17, CBGM12, IN12, SE12].
hardwired [OYU+13]. hash
[SV15a, SV15b]. hash-array [SV15b].
hashing [GRF11]. HDFS [IRJ+12]. HDL
[OYU+13]. heap [CSV15, LDL14, TLX17,
Tar11, VYY10, SYS10, BVGVEA10].
heap-manipulating [YS10]. Helping
[RT14]. Hera [MS10]. Hera-JVM [MS10].
Heterogeneous [ASV+16, HMB+14, Rub14,
AYZI10, ABCR10, DFR13, MS10].
Heterogeneous-race-free [HIB+14].
heuristics [LMK16]. Hiding [RBL12].
hierarchy [BS13]. High [GSS+16, Hol12,
IRJ+12, MSM+16, SWU+15, WN10, Zak10,
BRWA14, Hos12, RFBJ14, TTD+11, TGZ17,
VJBW10, WWH+17, TRE+13].
high-dimensional [TGZ17]. high-level
[Hos12, RFBJ14, VJBW10].
High-Performance [WN10, GSS+16,
BRWA14, TTD+11, WWH+17]. higher
[KT15]. higher-order [KT15]. highly
[BP10, SP+10]. history [DRN14]. hit
[Ano13]. Hoare [SD16b]. hole [Ano13].
Holistic [MAHK16]. HOP [D’H12]. Hopjs
[SP16]. hosted [CBLFD12]. hot [LMK16].
HotSpot [Sch13, BOF17]. HotWave
[ABMV12, VBAM10b]. HPC [QJJ+16].
HTML [Sta10]. HTML5
[HILO15, NKH16, Ano15]. Hunting
[GGC18]. HVM [LTK17]. Hybrid [CHM16,
JQJ+16, MJO14, KCD12, DV17, ZMN14,
ZMM+16, ADI13, HyG12, SWS+15].
Hybris [DV17]. hygienic [DFHF15].
hypervisor [GMC+13].
IaaS [ZLHD15]. identification
[BZD17, FMS+11]. Identifier [SRTR17].
identifiers [FMS+11]. Identifying [IN12].
if [Han15]. illuminating [BK14]. Image
[WN10]. immutability [HMDE12, ZPL+10].
immutable [SV15b]. impact
[CMS+12, Gra15, HWLM11, WKJ17].
imperative [RFRS14]. implement
[Had17]. Implementation
[GPT12, HM12, OA17, VGRS16, YP10].
implementations+ [CSS+16, OJ12].
Implementing [FFF17, GM12, WCB16,
EEK+13, FBH17, PMP+16]. implications
[BRGG12]. implicit [IvdS16, SPAK10].
imply [BRGG12]. Improve [QSAS+16].
Improved [KRR+14, UIY10, OJ12, XHH12].
Improving [ACS+14, HWT+12, TWSC10,
eBH11, UTO13]. in-depth [Rau14].
in-place [DVL13]. incremental
[DS16, ELW15, UIY10]. independent
[IF16]. industrial [CRJ+10]. inefficiently
[XR10]. inefficiently-used [XR10].
Inference [BO13, YHY13, AGGZ10,
CGJ+16, HyG12, HMDE12, Zha12].
inferring [AS14, BENS12]. InfiniBand
[ETTD12, IRJ+12]. infinite [ASdMG14].
Inflow [ZMM+16]. influence [MHR+12].
Infora [HA13]. Information [ASF17,
HBS16, KHL+13, RKN+18, SS12, AF12,
ABFM12, BVGVEA11b, CMS+12, RRB17].
Information-flow [HBS16]. infrastructure
[NG12]. Inheritance
[LN15, WT11, AST+16, GBS13, NCS10].
Initial [LTD+12]. initialization
[AMT17, MME14]. Initialization [FGB12].
Injecting [ZZK13]. inline [DJL10].
Inlining [BA12, HWM13]. insecure
[YW13]. Insight [VF10]. instanceof
[SMS+12]. Instant [MHBO13].
instantiation [AST+16]. instead
[AGH+17, BTR+13]. instrumentation
[CZ14]. Integrated [Tar11, YP10].
instrumenting [SP+10]. integration
[Ame13, HKVG14, Sch10a]. integrity
[HDK+11]. intelligence [JACS10].
Intelligent [Pau14]. intensive [SAoB+16].
inter [CMM17]. inter-language [CMM17].
Interacting [SK13]. Interaction [WT11].
interactive [AMWW15, JH11, MCY+10].
tercession [VM10]. interdependencies

J [KMLS15]. J2M [LZYP16]. J2ME [GPT12]. J2ME-Enabled [GPT12]. Jaccie [KS14]. Jalapeno [AFG+11]. JAMES [DDDFF17]. JaSTA [HD17]. JaSTA-2 [HD17]. Java [Bro12, Fox17a, HWM11, HTW14, Sch13, VK12, AO11, KvGS+14, PQTGS17, SAaB+16, AStMG14, AST12, AFGGI11, AYZ110, AS14, AAB+10, Alt12, Amc13, AdCGGH16, AT16, And14, Ano12, Ano13, ABMV12, AGR12, AGR17, ABCR10, ADI13, ABFM12, AK13, BK12, BH17, BMR14, BH12, BDT10, BVGVEA10, BVEMAV10, BVGVEAI11, BVGVEAFG11, BVGVEAI1b, BVGVEAI13, BVGVEA14, BVGVEA14b, BS12, BMDK15, BO11, BO12, BO13, BCR11, BDGS13, BCD13, BD17, BRGG12, Bvvd17, BR12, BR15, BB12, BNP11, BW12, BA12, BZD17, BSOG12, BA17, BJJK12, CIAD13, CIZ14, CMM17, CWW13, CV14, CCFB15, CRJ+10, CSK17, CCH11, CJ17, CDG+17, CSD16, CCA+12, CRAJ10, DJLP10, DDDFF17, DLM10, DLZ+13, DVL13, DR10, DHS15, DJBJ16, DMS11, ECS15, EK+13, ES14, ECT10, ECT11]. Java [EABVVG14, Eug13, EV13, ETTD12, ETR+15, FRGPF+12, FGR12, Fer13, FFF17, FLL+13, FHSR12, Fox17b, FMS+11, GMP12, GvRN+11, GYB+11, GM12, GBS14, GD12, GBC12, GS11, GS12, Gou11, GMC+13, GT10, GJS+13, GJS+14, Gri17, GPT12, GK15, HL13, HD17, Hb17, Has12, HW10, HW13, HWM14, HA13, HM12, HTLC10, HKVG14, HI13, HOKO14, HGCA11, Hor11, Hor12, HC13, HC10, HWM11, HJ12, HWH12, IN12, IF16, JC10, JEC+12, JQI+16, JLI17, Jen12, JB12, JYIK12, JTO12, JH11, J’+12, JMB12, JMO14, KHR11, KHM+11, KMLS15, KS13, KW10, KW11, KM10, KSR14, KSPK12, KS14, KF11, LMD+12, LMK16, LSWM16, LLL13, LT11, LT14, LZYP16, LYBB13a, LYBB13b, LYBB14, Lyc13, LMS+12, LO15, LPA13, LWC17, LTK17, LS11, Lyo12, MKZ+14, MS13, MME+10]. Java [MLAGA11, MDS+17, MCC17, MPM+15, MZC10b, MKTD17, MHM10, MAH12, MB12, MCY+10, MSA10, MT14, MDHS10, NM10, NCS10, NS12, Nil12a, Nil12b, NG13, Oak14, OOK+10, OMK+10, OIA+13, OUY+13, OW16, OJ12, OCFLI14, P11, PTML11, PTL14, PTH14, PL12, PiLCH11, PBMI13, PPMH15, PMP+16, PQD12, PVH14, PTF+15, PS10, PDPM+16,

know [DJB16, Gra15, Han15]. Knowledge [KSPK12, UMP10]. known [Han15].
Kraken [Ano14].

Lake [Hol12], lambda [MKTD17]. lambdas [UFM15]. landscape [Sve14]. Language [DLPT14, GJS+13, GJS+14, JC10, KSPK12, MAHK16, Sev12b, SS13, ABCR10, CMM17, CSdL16, DAA13, EKR+12, Fee16, GSS+16, Hos12, HW+15, KRCH14, LW+10, LE16, MDM17, SC16, SZ10, SKR17, SNS+14, VB14a, WCG14, WW+17, ZWSS15, dCMMN12]. language-level [WCG14].

Languages [CSGT17, MSM+16, PTHH14, YKM17, AGGZ10, BCD13, CMS+12, EKE+13, ER14, FMBH15, Han15, HBT12, HJS+10, KRR+14, MSL+10, NED+13, PUL016, SPY+16, Zha12]. LARD [WCG14]. Large [BA17, AST+16, CCF15, MDS+17, MCY+10, PT+15, WHIN11].

Less [BNE16]. Level [AC16, SWU+15, Hos12, IHWN12, KBL14, LWC17, MGI17, RFBJ14, TTD+11, VWJB10, WCG14].

Mathematical [BW12]. MATLAB

[ASV+16, CCH11, MKG+17, SE12, SMGD10, TWX+10]. multilevel [JK13]. multiphase [GVR+11]. Multiplatform
Multiple [AF12, ASF17, HLSK13, CSV15, DD13].

Multiplexing [BVGVEAFG11].

Multiprocessing [VGS14].

Multiprocessor [PS10, PWA13, SPS17].

Multiprocessors [KW11, RS12].

Multithreading [VGS14].

Multithreaded [KKW14, SR14a, BNS12, DJLP10, Fer13].

Multivariate [A011].

Musical [JSRCR +14].

Mutagenic [YCYC12].

Mutants [FRC +17].

Mutators [AHK +11].

MySQL [Ano15].

Names [SRTR17].

Native [JQJ +16, LT11, LT14, KFBK +15, STS +13].

Natural [LL15], naturalness [HBG +16].

NDetermin [BENS12].

Network [GC18, RR14].

Networks [Hol12].

neuromorphic [HNTL12].

next [CRJ +10].

NG2C [BOF17], Nixon [Ano15].

No [BVGVEA10].

No-Heap [BVGVEA10].

NoCs [PWA13].

Node [HC11, BJK12].

Node.js [BSMB16, MTL15, Ano14].

nodes [DRN14].

Nominal [BO13].

Non [BVGVEA11b, BSOG12, GGZ +15, TD17, YKM17, MZC10a, OMK +10, ZP14].

Non-Adequate [GGZ +15].

non-cache-coherent [ZP14].

non-equivalency [TD17].

Non-functional [BVGVEA11b].

non-intrusively [MZC10a].

Non-Java [YKM17, OMK +10].

Non-termination [BSOG12].

Nonblocking [RTET15, SP10a].

Nondeterministic [RBI15, BENS12].

noninterference [IF16].

NoSQL [DFR13].

Notation [Sev12a].

Novel [NK10, MZC10b].

November [Hol12].

Novice [BA17], Novices [RT14].

null [AT16].

NullPointerExceptions [BSOG12].

NUMA [GTS +15].

NumaGiC [GTS +15].

number [PPMH15, SLF14].

Numbers [Jaf13, AJL16, Wal12].

Numerical [KS15, KFBK +15, PQTGS17].

NXT [SWF12].

Obfuscated [KCD12].

obfuscation [CCFB15].

obfuscations [CSK17].

Object [CSGT17, GS11, NBW +15, PTHH14].

PILCH11, Sev12a, SW12, AST +16, BZD17, DDF17, FMBH15, IvdS16, MME14, MHO13, RDF15, UJR14, VM10, WM10, ZCdSovdS15, Zha12, ZDS14, hEYJD12].

Object-Bounded [NBW +15].

object-constraint [FMBH15].

Object-Oriented [GS11, PTHH14, AST +16, DDF17, MHO13, VM10, ZDS14, hEYJD12].

Objective [Sta10], Objective-C [Sta10].

Objects [BS12, RKN +18, MHL15, SK13, WX16, BVGVEA10].

Observations [AAB +10].

OCTET [BKC +13].

odeToJava [KS15].

offloading [ZHL +12].

on-demand [ZHL +12].

on-the-fly [UJR14].

ones [AST +16].

Online [NG13, GGC18, HCV17, NK10].

only [NM10].

Ontology [KSP12].

OoOJava [JhED11].

Open [BSA14, GD12, CJ17, VGRS16].

Open-Source [BSA14], OpenJDK [CHM16, dGRdB +15].

OpenMP [VGS14].

OpenMP-like [VGS14].

operating [HDK +11].

operation [KKW11].

operations [TABS12, TGZ17].

Operator [PQD12], opportunities [TPG15].

Optimal [AD16, SK12, ELW15].

optimale [Sch13].

optimisation [PPS16].

optimistic [WGF11].

Optimization [LTD +12, YKM17, AFG +11, BDB11, DDF17, JMO14, KS13, KC12, NG12].

Optimizations [DR10, BB17, CPST15, DS16, NG13, SAdB +16].

Optimizing [SV15b, YRHLB13, HW +15, KHR16, MD15, ZLB14].

optional [CMS +12].

Oracle [LMS +12, San12].

ORB [OUY +13].

Order [SGD15, JhED11, KT15, TD15].

ordering [KC12].

Orders [BNE16].
ordinary [Mzc10a]. O'Reilly
[ano15, bro12]. Oriented [abmv12, gs11, ast+16, ddff17, eavbgv14, mhbo13, PTHH14, rvp11, VM10, VBAM10b, WBA+11, ZDS14, hEYJD12]. OSck

Papers

Parametric [Aggz11, Pulo16, Uto13].

join [Mzc10a]. JSP [Sch10b].

multi-threaded [Taf13]. perceptible [Jh11]. Perfect [Sle+17]. Performance [Cch11, DR10, Gbc12, Hol12, Hj12, Msm+16, Oak14, Oclf14, Qsa+S+16, Tre+S+13, Tpg15, THC+S+14, WN10, ACS+S+14, Aab+S+10, Brgg12, Brwa14, Cbdg12, Dei11, Gss+S+16, Hwi+S+12, Irj+S+12, Jh11, Od11, Pnsn+S+14, Se12, TTD+S+11, TWX+S+10, Whn11, WWH+S+17, Zak10].

pipeline [Lpa13]. pipelines [Crs+S+10]. Pivot [Ad16]. place [Dvl13]. plan [Dlz+S+13]. platform [Afgg11, Pe11, Bd17, Crj+S+10, Gmc+S+13, Mkz+S+14, Pwa13, Yp10]. platforms [Dr10, Has12, Bp10, Jmo14, Ksr14].

PLDI [Fll+S+13]. pluggable [Mme+S+10]. point [Jaf13, Alj16]. pointer [Tl17]. Pointers [Rkn+S+18, At16]. Points [Bk12, Sdc+S+12, Dhs15, Sbk13, Tlx17].

Points-To

Popular-but-Seemingly-Dissimilar

Practice

R [KMMV14, NL14, SLS+12, Vit14]. Race [EP14, RD15, AMT17, EQT10, HHH+14]. race-aware [EQT10]. races
[FF10, WCG14, XXZ13]. Racket [YK14].

racy [SRJ15]. Range [BS12]. rapid
[PWA13]. raw [HH13]. rays [SBF+10].

RCDC [DNB+12]. RDMA
[ETR+15, IRJ+12]. RDMA-based
[IRJ+12]. RDMA-enabled [ETR+15]. re
[NCS10]. re-location [NCS10].

Reachability [NS13]. reactive [BCvC+13].
read [NM10]. read-only [NM10]. Reading
[Jaf13]. ready [RHS15]. Real
[BVEAGVA10, BBB+17, Fox17b, HTW14,
KW11, Nil12a, Pau14, SLES15, SLE+17,
VK12, BCR13, BGVVEA10, BGVVEA11a,
BVGVEA11b, BGVVEA13, BGV14a,
BVGV14b, CRAJ10, DW10, EABVG14,
Fox17a, GMC+13, HTLC10, KHM+11,
KPHV11, KvGs+14, KW10, KSR14, LTK17,
MDS+17, PS10, PZM+10, PSW11, Puf13,
RHT13, SP10a, Sie10, SPS17]. Real-Time
[BVEAGVA10, BBB+17, Fox17b, HTW14,
KW11, Pau14, SLES15, SLE+17, VK12,
Nil12a, BCR13, BGVVEA10, BGVVEA11a,
BVGVEA11b, BGVVEA13, BGV14a,
BVGV14b, CRAJ10, DW10, EABVG14,
Fox17a, GMC+13, HTLC10, KHM+11,
KPHV11, KvGs+14, KW10, KSR14, LTK17,
PS10, PZM+10, PSW11, Puf13, RHT13,
SP10a, Sie10, SPS17]. realtime [OYU+13].

Reasoning [LN15, ABK+16, MLT17].

Recap [BlvdS17]. recipes [J+12].
recomposition [NED+13]. Reconfigurable
[OYU+13, STY+14, OIA+13].
reconstruction [LSWM16]. Recovering
[CRAJ10]. Reducing [MV16, WHIN11].

Reduction [BO12, TD15]. redundant
[HLO15]. Refactoring
[AS14, ZHL+12, FMM+11, FM13].
Reference [Sc14, UJR14, HMDE12].

refinement [GY16, JLP+14, KSW+14,
ZMG+14, ZFK+16]. Reflexes [SPP+10].
regions [AC10]. register [ZY+12].
register-based [ZY+12]. Regression
[MM12]. regular [PZR17]. reification
[RRB17]. Reified [GBS14]. Reim

[HMDE12]. RelInfer [HMDE12].
relation [TD15]. relational [MLGA11].
relationship [SH12]. relaxed
[DNB+11, KHL+13, PPS15].
relaxed-memory [KHL+17]. Release
[An10]. reliability [HWLM11]. relying
[IN12]. Remodularizing [OJ12]. Remote
[BVGVEA10, BGV14a, BJJK12, GSD+15,
BVGVEA11]. removal
[MV12, WGF11]. removing [PLR14].
rename [FM13]. repair [MDR+17, SHU16].
repeatability [Vit14]. replacement
[BCD13]. Replay [BH12]. replication
[CJ17, UIY10]. replication-based [UIY10].
report [CBLFD12, Sch10a]. Reports
[OW16]. repository [HC10].
reproducibility [Vit14]. reproduction
[SR14]. requirements [AGG10].
ResAna [KvGs+14]. Research
[TRE+13, CRJ+10, CBLFD12, Rub14,
VBMDP16, Vit14]. Resource [BGV14a,
ADI13, ES14, KVGs+14, KSR14, SG12].
resource-aware [SG12]. resource-based
[ADI13]. responsive [PPG+10].
responsiveness [PSNS14]. restart [CNS13].
Retention [ZMM+16]. Rethinking
[Xue12, CR+14]. retrofitted [TTS+10].
retrofitting [LPG14]. reusable
[HC10, MME14]. reuse [WR10]. Reverse
[CAC+12]. Review [An10, Bro12].
Revisited [Mei14, Gon11]. rewriting
[HLO15]. RFID [AYZ10]. RFLP
[YYC12]. richer [CV14]. rigor [Vit14].
Rigorous [AGR17]. risk [MPM+15]. River
[HHSS13]. RJ [OW16]. Road
[FXK+17, SWU+15]. Robin [An10].
Robotic [LM15]. Robots [SWF12].
Robust
[VM15, VDV17, MKZ+14, SGV12, VM10].
row [Lei17]. row-typed [Lei17]. RTSJ
[ZW10]. Rubah [PVH14]. rule [QLBS17].
Rules [CCA+12, HLO15]. run [WAB+11].
run-time [WAB+11]. Running
[HCI11, TWX+10, YK14]. runs [FIF+15].
Runtime
[BLH12, MAHK16, MSS10, NWB+15, OCFL14, XMA+14, BRGG12, EQT10, GTL+10, GSS+16, LMK16, MS10, OOK+10, PKC+13, RO12, STY+14, TWSC10, VBAM10a, YRHBL13, dCMNN12].

runtimes
[BM14, CSV15, RCR+14, WWH+17].

Safe [Eug13, GvRN+11, JTO12, MPS12, RSF+15, SWB+15, WAB+11, HJS+10, HAW13, KHR11, KMLS15, KCP+17, Loc13, RDP16, WW913]. Safety
[RS12, SDH+17, WCB16, ZLCW14, AGR17, GMC+13, Nil12b, PG12, SD16b, Taf13, YS10, CWW13, HL13, LWC17, WK12]. Safety-Critical [WCB16, ZLCW14, RS12, SDH+17, AGR17, CWW13, LWC17].

Scala-Based [PTML11]. Scala.js [DS16].

Scalability
[CCH11, AAB+10, DSEE13, GTSS11].

Scalable
[BBB+17, BS12, DFR13, GGRSY17, HC11, JQJ+16, RKX+17, RTE+13, XMA+14, ETTD12, FC11, GGRSY15, NFV15, PIR17, RTE17, TT12]. ScalaLab
[PTML11, PTML14]. scalar [PQTGS17].

Scale [BA17, PE11, DHS15, LO15, MDS+17, MCY+10, PTF+15, WHIN11]. SCeL
[DLPT14]. scenarios [AMWW15, Sch13].

Scheduler [QSaS+16, IF16, TWL12].

scheduler-independent [IF16].

Scheduling [AVG+16, BVEAGVA10, KPHV11, EP14, EABVG14, ZW10]. scheme [XHH12]. SCHISM [PZM+10].

Scripting

[MPS12, hED12, AHK+11, AGH+17, CBLFD12, HWW+15, MD15]. self-collating [AHK+11].

[WW+15, MD15]. Self-stabilizing [hED12]. Semantic [GGRSY17, RvB14, BNS12, GGRSY14, GGRSY15, OA17].

Semantics [BO12, BR15, Kri12, LML17, SPY+16, AK13, FBH17, FZ17, KHL+17, Mil13, MT14, PSR15, PPS16, ZHC15].

Semantics-based [SPY+16].

[DDM11, AC10]. separation [TWSC10].

sequence [ZWZ+14]. Sequent [FFF17].

sequential [BENS12, DMS11].

serialization [MHBO13]. Seriously [Kie10].

Server [HC11, KKH16, D12, Dev11, HWLM11, R+13]. Server-Side
[HC11, KKH16, D12]. Service
[BVEAGVA10, SDM12, EABVG14, HWLM11, KF11]. service-oriented
[EABVG14]. services [MZC10b]. Session
[FGR12]. Set [SBK13]. Set-based [SBK13].

sets [SP10b]. setters [Mil13]. setting
[BDGS13]. Settings [GM12]. ShadowVM
[MKZ+14]. shape [GMT14]. Shared
BG17, BSMB16]. Shared-Memory
sharing [PKO+15].

Short [AHK+11, SV15a, Zak12].

Short-term [AHK+11]. ShortCut [CSGT17]. Side [HC11, D’HI12, KRH16].

Simple [BO11, BO12, KCP+17, BGVV14b, MSM+10]. Simplicity [Dei11]. Simulating [LM15].

Software [BSA14, Wan11, YQTR15, BMSZ17, BTR+13, CBGM12, CFH+13, CJ17, DVL13, FRGPLF+12, FC11, HBG+16, JiED11, LPA13, MHR+12, NGB16, OIA+13, RAS16, SV17, XR13, YRHL13, ZZZ13, ZHCB15, ZDS14].

Solidity [Dan17]. Solution [KS15, J+12].

Solving [SED14, FMBH15]. Sound [BO13, LE16, BHSB14, ELW15, PPMH15]. soundly [BS13].

spatial [MLGA11]. Speaking [Rau14, Sam12]. Special [DVL13, Fox17a, HL13, HGCA11, Puf13, HTLC10, RHT13, HTW14, VK12].

specialization [KRR+14, SV15a]. specific [CSdL16, EK+13, HW+15].

Specification [GJS+13, GJS+14, IF16, KW11, LN15, LYBB13a, LYBB13b, LYBB14, TWH12, BGVV1A+1a, BCF+14, KR12, KW10, MRA+17, YP10, dCMM12]. specifications [BENS12, TVD10]. specified [BCR11]. Specifying [BS12, HL13].

stabilizing [hED12]. stack [KRCH14, Xue12]. stack-based [KRCH14].

stage [WRI+10]. staged [SC16]. staging [RO12]. standard [LMS+12].

Standardization [TWH12]. StarL [LM15]. State [AGR12, BLH12, MvdDL12, MS14, GN16, YP10]. state- [YP10].

statecharts [MS13]. statement [PLR14, ZWS15]. statements [PLR14].

Static [BNE16, JC10, MTL15, ODL15, PILCH11, RD15, SW12, SH12, AM14, CGJ+16, Fer13, FLL+13, IF16, KSW+14, LS11, MHR+12, PIR17, TLMM13].

statically [BTR+13, NED+13]. statistical [Bra14, ZFK+16]. statistically [PPMH15].

streaming [MRA+17, STGC13].

StreamJIT [BRWA14]. StreamQRE [MRA+17]. streams [SGG+17, UFM15].

Strength [KCD12]. String [HOKO14, CSK17]. Strings [HWM11, HWM10, LSSD14].

strong
[UMP10, ZHCB15, ZBB17]. structure [LO15, UMP10]. structured [LSWM16].

Structures [GT10, XMA+10]. Studio [RT14, FH16]. Studio-Based [RT14].

Study

[ZMM+16, BRGG12, CCFB15, CJ17, ECS15, KFBK+15, MHR+12, NCS10, OMK+10, PTF+15, SH12, VBDPM16, WXR16, YW13].

style [UFM15]. substitute [PPMH15].

substrate [GT+10]. substrates [HL13].

Subtyping [LN15]. suite [SMB11, BB12].

Suites [GGZ+15]. Summaries [BH17].

Superblock [KS13]. Supercharged [Cec11, GBS13]. Superposition [RT14, FH16].

Supertype [RBB17]. supervenience [Rez12]. Support

[CSGT17, KKK*17, RKN+18, BVGVEA13, DVL13, GMC+13, Hos12, NGB16, SMN+12].

supported [FMM*11]. Supporting

[LVG10]. Surgical [RSB+14]. surprises

[FMBH15]. survey [BCvC+13].

SurveyMan [TB14]. surveys [TB14].

suspension [TWL12]. sweeping [KBL14].

Sweeten [DFHP15]. Swift [YZ+12].

SWIM [Sch10a]. symbol [Tari].

synchronbench [Gra15]. synchronisation

[CHMY15, WBM+10]. synchronizations

[DH+*12, Gra15, Sub11]. Synchronized

[BG17]. Synchronized-by-Default [BG17].

Synchronous [BVEAGVA10, SK12].

syntactic [LE16, QLS17]. Syntax

[SS13, KMMV14]. synthesis

[SR14a, STR16, SS16]. synthesizable

[ABCR10]. synthesizer [OUY+13].

Synthesizing

[GG15, SRJ15, LWH+10].

System

[BO13, KCD12, MAHK16, ACS+14, AYZI10, AGR17, BDB11, ELW15, HA13, HDK+11, HWLM11, KR12, MS10, STY+14, TLL11, Nil12a]. systematic [TD15].

Systems

[BG17, BSA14, BNE16, CCH11, DLPT14, Fox17b, HTW14, JMB12, LM15, RTE+13, SLES15, SLE+17, AT16, DW10, FH16, Fox17a, HdM17, HWI+12, HTLC10, LPGK14, LTK17, MHR+12, MAHI2, OIA+13, PDP+16, RHT13, SDH+17, SSMGD10, SH12, TTD12, TXW+10, THC+14, UIY10, Vit14, YRHBL13, VK12].

Tableau [FFF17]. Tableau [FFF17]. Tagged

[RKN+18]. Take

[Kie10]. Taking

[SWU+15]. Tales

[Sew12]. talk

[Piz17, Scl17]. Taming

[TLL11, SC16]. Tardis

[BM14]. task

[Fee16, TWL12, ZLB+13].

TaskLocalRandom

[PPMH15]. tasks

[HAW13, PPMH15, SPP+10]. Taurus

[MAHK16]. Taxonomy

[SS14]. Teaching

[HA13, SWF12, CHM13, ZDS14]. teasing

[LBF12]. Techniques

[RD15, EV13, KS13]. Technologies

[Fox17b, HTW14, VK12, Fox17a, HTLC10, KFBK+15, NL14, RHT13]. technology

[NED+13]. TeJaS

[LPGK14].

Template

[MM14, HJS+10]. templates

[FOPZ14, AK13]. term

[AHK+11].

Terminating

[FFF17]. Termination

[BMOG12, RDCP12, BSOG12, SMP10].

Test

[BB12, GGZ+15, PSNS14, SR14a, SKR17].

tested

[Mii13]. Testing

[Ame13, BR12, Hin13, MM12, CSS+16, CNS13, Ler10, TD15]. tests

[AO11, NYCS12, SR15]. Textbooks

[BPN11]. their

[RDP16]. theorem

[SSH17]. There

[Esq11]. thin

[PPS16]. thin-air

[PPS16]. things

[Mck16]. Think

[WR10]. Third

[Ano15, FOPZ14, LVG10].

third-party

[FOPZ14, LVG10]. THOR

[TXW+10]. Thoth

[KB17]. thread

[BKC+13, CRAJ10, MG17, PCL14, PG12, SS10, YDF15]. thread-level

[MG17]. threaded

[DSEE13, JTO12, SE12, Ta13]. threads

[UR15]. Three

[ZMM+16, Vit14].

TigerQuoll

[BBPV13]. Time

[BVEAGVA10, BBB+17, BLH12, DLR16, Fox17b, HTW14, JMB12, Kie10, KW11, Pan14, SLES15, SLE+17, VK12, BCR13, BM14, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGV14a, BVGV14b, CRAJ10, DW10,
EABVGV14, Fox17a, GMC+13, HTLC10, KHM+11, KPH11, KHL+13, KvGS+14, KW10, KSR14, LMK16, LTK17, MGI17, Nil12a, PS10, PZM+10, PSW11, PuF13, RHT13, SP10a, SPPH10, Sie10, SPS17, SH12, TTS+10, WAB+11. time-travel [BM14]. time-triggered [EABVGV14].
times [DW10]. timing [AGH+17, LS11]. TIMP [SLS+12]. tiny [Xue12]. tolerant [PZM+10]. Tool
[FMM+11, PQD12, SW12, ABFM12, CRAT+12, ETR12, KSR14, LS11, TWX+10].
Tool-supported [FMM+11]. toolchain
[SMN+18]. Tools
[Bro12, ABK+16, VBAM10b]. toolset
[KvGS+14]. top
[RVP11, SGG+17, ZMY14]. top-down [ZMY14]. Topics
[Hor11, Jen12]. topology [DDM11]. Trace
[HWM14, PiLCH11, SR14b, BBF+10, HWM13, HWI+12, IHWN12, WHIN11].
trace-based
[BBF+10, HWM14, HWI+12, IHWN12].
tracer [CZ14]. traces [BA12, RGM13].
Tracing [BP10, DLR14, DLR16, MD15].
track [VSG17]. TrackEtching [VSG17].
Tracking [SDC+12, KHL+13, OOK+10]. Tracks
[RGM13]. tradeoff [UTO13].
Traffic [RXK+17]. Trail
[HHS13].
Train
[MSS16]. training [KZM16].
trait
[BCD13, VM15]. traits
[BDGS13, BD17].
transactional
[DDV13, FC11, ZHCB15].
Transactions
[DeSG12, CHM16, DFR13].
transformation
[AST+16, PDD17].
transformations
[AK13, HMH10, PMP+16, TL17].
Transforming
[dMRH12]. transitioning
[HWM14]. Translating
[RFRS14].
Translation
[BO12, LSW16].
translations
[UTO13]. translator
[LZYP16]. Transmission
[PE11, BVGVEA11b, BJBK12].
transparent
[DBD11]. travel
[BM14].
traversals
[ODL15].
Tree
[Lyo12, HLO15, KMMV14]. trees
[RBV16]. Trends
[MSS10]. trie
[SV17]. trie-based
[SV17]. tries
[SV15a, SV15b]. triggered
[EABVGV14].
TRINI
[PDPM+16].
Trusted
[TWNH12, BCF+14]. tuning
[AAB+10, BVGVEA11G, SKBL11].
Turing
[Gri17]. Tutorial
[Jun12, Nil12b, Taf13, Zak12]. TV
[JMO14].
twitter
[Guy14]. Two
[Has12]. Type
[BO13, CGJ+16, KSW+14, KAT12, Lei17, RKN+18, SG15, WT11, ACS+14, AT16, BS13, CMS+12, CVG+17, DLM10, FH16, GBS14, HyG12, KMLS15, KRR+14, KRH16, KvRHA14, LPGK14, LE16, MHR+12, SH12, TLL11, Zha12, eBH11]. Type-Based
[SGD15]. type-dependent
[LE16].
type-safe
[KMLS15]. typechecking
[CL17]. Typed
[BO13, KKK+17, MLH15, CMS+12, KRCH14, Lei17, RDP16].
Types
[BO13, RvB14, SPAK10, BDGS13, CHJ12, DDM11, HH13, MME+10, YDF15].
TypeScript
[Cho14, FH16, RSF+15].
Typing
[FZ17, RSF+15, Sie17, SFR+14, TSD+12].
ty whole
[OA17].
Ubiquitous
[MCY+10]. UDP
[RR14]. ULS
[FOPZ14]. unbounded
[LS14].
certain
[McK16]. Understandable
[MSM+16]. Understanding
[FRM+15, MKTD17, PCL14, QLBS17, Set13, TABS12, VBMDP16, LWB+15, Nil12b].
Undocumented
[Aht12, MHR+12]. Unified
[LM15]. uniform
[AH10, Eug13]. Unifying
[Has12]. union
[KT15]. uniprocessors
[KPH11].
Units
[LLL13]. universe
[DDM11]. Unix
[PVB17]. Unpicking
[LBF12]. Unrestricted
[WWS13]. unsafe
[MMP+15]. unsound
[AT16]. updates
[PKC+13]. Upper
[SW12]. Upsortable
[SGG+17]. uptrees
[HB13]. USA
[Hol12, KP15]. usability
[FH16, MHR+12].
usage
[PTF+15, QLBS17]. Use
[Guy14, MMP+15, AMWW15, MKTD17,

yang [CBGM12]. years [BTR+13]. yieldpoint [LWB+15]. Yin [CBGM12].

Z [SBF+10]. Z-rays [SBF+10]. Zero [ZW13].
References

Altman:2010:OTJ

Auerbach:2010:LJC

Avvenuti:2012:JTC

Abanades:2016:DAR

Ansaloni:2012:DAO

Akai:2010:EAS

Anjo:2016:DML

Ahn:2014:IJP

Aumuller:2016:OPD

Amighi:2016:PCC

Autili:2013:HAR

Austin:2012:MFD

REFERENCES

178, January 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Arnold:2011:A0J

Aiello:2011:JBA

Albert:2010:PIM

Antonopoulos:2017:DIS

Arcaini:2012:CCM

Arcaini:2017:RDP

Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. Rigorous development process of a safety-critical system: from ASM models to Java code. *International Journal on Software Tools for Technol-
CODEN ???? ISSN 1433-2779 (print), 1433-2787 (electronic).

[Anonymous:2013:FAM] Anonymous. Facebook, Apple and Microsoft hit by...
REFERENCES

Thomas H. Austin, Tommy Schmitz, and Cormac Flanagan. Multiple facets for dynamic information flow with exceptions. *ACM Transactions on Programming Lan-
REFERENCES

REFERENCES

2012. CODEN CSSEEI. ISSN 0267-6192.

Brown:2017:NJP

Boland:2012:JCC

Bonetta:2017:FJF

Basin:2017:KKV

Bebenita:2010:STB

Bonetta:2013:TPE

Bu:2013:BAD

REFERENCES

1523-2867 (print), 1558-1160 (electronic). ISMM ’13 conference proceedings.

Bettini:2013:FDT

Bodin:2014:TMJ

Bainomugisha:2013:SRP

Bergenti:2011:PPS

REFERENCES

[BH12] Guillaume Barbu and Philippe Hoogvorst. Application-replay attack on Java cards:

[BJK12]

Badihi:2017:CAG

[BK12]

Biswas:2014:DES

[BK14]

Biboudis:2017:RJD

[BK17]

Buur:2012:DEP

[BK14]

Bell:2014:PID

[BK14]

Biboudis:2017:RJD

REFERENCES

REFERENCES

CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

Bruno:2017:NPG

Barabash:2010:TGC

Bluemke:2012:DTJ

Bogdanas:2015:KJC

Brandt:2014:DAS

Bhattacharya:2012:DLI

Brown:2012:BRF

Bosboom:2014:SCC

Bedla:2012:SSJ

Balatsousas:2013:CHC

Bouktif:2014:PSO

Bonetta:2016:GSM

Brockschmidt:2012:ADN

P. Basanta-Val, M. García-Valls, and I. Estévez-Ayres. Extending the concurrency model of the real-time specification for Java. *Concurrency and Computation:

Ting Cao, Stephen M. Blackburn, Tiejun Gao,

Chevalier-Boisvert:2012:BSH

Cosentino:2012:MDR

Ceccato:2015:LSE

Chen:2011:MJP

Chisnall:2017:CJS

[David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre Joannou, Jonathan Woodruff, A. Theodore Markettos, J. Edward Maste, Robert

Roff Cecco:2011:SGJ

Carter:2013:SSA

Chandra:2016:TIS

Chugh:2012:DTJ

Carro:2013:MD

Chapman:2016:HSH

Cogumbreiro:2015:DDV

Tiago Cogumbreiro, Raymond Hu, Francisco Martins, and Nobuko Yoshida.

Chong:2014:CCT

Campbell:2013:ICC

Chen:2017:CLP

Canino:2017:PAE

Castro:2017:JLC

Chang:2012:IOT

Choi:2013:GGT

Clifford:2014:AFB

Clifford:2015:MMD

Chatterjee:2015:QIA

Curley:2010:RDT

Cote:2012:JPS

Choi:2017:SAS

Chawdhary:2017:PES

Chen:2016:CDD

Cameron:2015:JFE

Cazzola:2014:JBR

Chaudhuri:2017:FPT

Cavalcanti:2013:SCJ

Caserta:2014:JTJ

Diaz:2013:LEU

Oscar Díaz, Cristóbal Arelano, and Maider Azanza. A

Dannen:2017:IES

daCosta:2012:JSL

Dhawan:2012:EJT

DElia:2013:BLP

DeBeukelaer:2017:ECP

Dietl:2011:SOT

Werner Dietl, Sophia Drossopoulou, and Peter Müller. Separating ownership topology and encapsulation with generic

References

1523-2867 (print), 1558-1160 (electronic). POPL ’14 conference proceedings.

Iria Estévez-Ayres, Pablo Basanta-Val, and Marisol

elBoustani:2011:ITE

Emerick:2012:CP

Ebert:2015:ESE

Efftinge:2013:XID

Erdweg:2012:GLE

Sebastian Erdweg, Lemnart C. L. Kats, Tillmann Rendel, Christian Kästner, Klaus Ostermann, and Eelco Visser. Growing a language environment with editor libraries. *ACM SIG-
Erdweg:2015:SOI

[ELW15]

Eslamimehr:2014:RDS

[EP14]

Elmas:2010:GRA

[EQT10]

Eichelberger:2014:FRM

[ES14]

Esquembre:2011:TPL

[Esq11]

Endrullis:2012:WEM
Stefan Endrullis, Andreas Thor, and Erhard Rahm. WETSUIT: an efficient mashup tool for searching and fusing web entities. *Proceedings of the
REFERENCES

Exposito:2015:LLJ

Exposito:2012:DSJ

Eugster:2013:SUP

Foley-Bourgon:2017:EIC

Fernandes:2011:LFS

[FC11] Sérgio Miguel Fernandes and João Cachopo. Lock-free and scalable multiversion software transac-

Feeley:2016:CML

Ferrara:2013:GSA

Flanagan:2010:AMD

Ferrari:2017:JJF

Femminella:2012:EJC

Fogus:2011:JC

Fischer:2016:EIE

Lars Fischer and Stefan Hanenberg. An empirical investigation of the effects of type systems and code completion on API usability using TypeScript and JavaScript in MS Vi-

REFERENCES

Felgentreff:2015:CBC

Feldthaus:2011:TSR

Frantzeskou:2011:SUD

Fu:2014:FDC

Fox:2017:ESI

Fox:2017:EJT

Fernandes:2017:AUM

Fdez-Riverola:2012:JAF

Fan:2015:UCC

Fournet:2013:FAC

Feng:2015:EQU

Fritz:2017:TSA

REFERENCES

Guy Golan-Gueta, G. Ramalingam, Mooly Sagiv,

[GGRSY17]
[GGZ+15]

[GK15]

[GGZ+15]

[Gosling:2013:JLS]
[GM12]

Johann Großschädl, Dan Page, and Stefan Tillich. Efficient Java implementation of elliptic curve cryptography for J2ME-enabled mobile devices. *Lecture Notes in Computer Science*, 7322:
Gramoli:2015:MTY

Grech:2011:JGE

Grigore:2017:JGT

Giacaman:2011:OOP

Gil:2012:SFJ

Gill:2015:RMD

Grimmer:2016:HPC

Matthias Grimmer, Chris Seaton, Roland Schatz,

REFERENCES

Guyer:2014:UJT

Gampe:2011:SMB

Grigore:2016:ARG

Garbervetsky:2011:QDM

Hauswirth:2013:TJP

Hanenberg:2015:WDW

[Han15] Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Hasbun:2012:UTP

Haverbeke:2011:EJM

Heumann:2013:TEM

Hindle:2016:NS

Hedin:2016:IFS

Heidegger:2012:APC

Hsiao:2010:EST

Hughes-Croucher:2011:NRS

Horstmann:2013:CJF

Hsiao:2014:UWC

Hammer:2017:VOV

Halder:2017:JSV

Hofmann:2011:EOS

Stephan Herhut, Richard L. Hudson, Tatiana

[Hinojosa:2013:TS]

[Hunt:2012:JP]

[Hellyer:2010:LCW]

[Heidenreich:2010:GST]

[Hlopk:2014:ISJ]

[Haddad:2013:SIP]

Huang:2012:RRC

Hashmi:2012:CNI

Horie:2014:SDJ

Hollingsworth:2012:SPI
Jeffrey Hollingsworth, editor. SC ’12: Proceed-

Horstmann:2011:CJA

Horstmann:2012:JEC

Hosking:2012:CHL

Haas:2017:BWS

Higuera-Toledano:2010:ISI

Higuera-Toledano:2014:EIS

References

Carlos A. Jara, Francisco Esquembre, Wolfgang Christian, Francisco A. Candelas, Fernando Torres, and Sebastián Dormido. A new 3D visualization Java framework based on

REFERENCES

Kedia:2017:SFS

KCP+17

Kereki:2015:JAW

KHL+13

Kuehnhausen:2011:AJM

KFB+12

Kumar:2012:WSB

KFBK+15

Khan:2015:UJW

Kerschbaumer:2013:IFT

Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, and

Kang:2017:PSR

Kalibera:2011:FRT

Kabanov:2011:DSF

Kienle:2010:ATT

Kim:2017:TA

Krieger:2011:AES

Kalibera:2011:SRT

Kang:2012:FSJ

Kedlaya:2014:ITS

Krishnamurthi:2012:SAJ

Kedlaya:2014:DDL

REFERENCES

Kaufmann:2013:SCO

Krebs:2014:JJB

Kroshko:2015:OPN

Kouneli:2012:MKD

Korsholm:2014:RTJ

Kashyap:2014:TRS

Vineeth Kashyap, John Sarracino, John Wagner, Ben Wiedermann, and Ben Hardekopf. Type refinement for static analysis of JavaScript. ACM SIGPLAN Notices, 49(2):17–26, February 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print),
Keil:2014:EDA

Keil:2015:BAH

Kolesnikov:2014:CPB

Kim:2010:EAE

Kim:2011:MAE

Kersten:2014:RRA

REFERENCES

Lin:2012:UKT

[buzzy]

Li:2014:MHD

Lorenzen:2016:STD

Leijen:2017:TDC

Lerner:2010:FTJ

Lewis:2013:IAP

Liu:2014:JNU

Leino:2015:APS

K. Rustan M. Leino and Paqui Lucio. An assertional proof of the stability and correctness of Natu-

Leung:2013:PEJ

Loring:2017:SAJ

Long:2012:COS

Leavens:2015:BSS

[LN15] Gary T. Leavens and David A. Naumann. Behavioral subtyping, specification inheritance, and modul...

Lopes:2015:HSA

Lochbihler:2013:MJM

Loureiro:2013:EDS

[PGK14]

[LS11]

[LSSD14]

[LSWM16]
David Leopoldseder, Lukas Stadler, Christian Wimmer,

Li:2011:JEC

Li:2014:EAJ

Laskowski:2012:DJP

Luckow:2017:HTP

Liu:2014:FFL

Lerner:2010:SDT

Benjamin S. Lerner, Herman Venter, and Dan Grossman. Supporting dynamic, third-party code cus-

REFERENCES

xiv + 584 pp. LCCN QA76.73.J38 L56 2014.

Lyon:2012:JTW

Li:2016:JJM

McIntosh:2012:EJB

Maas:2016:THL

McIntyre:2012:FJB

Martinez:2017:MBA

** McKinley:2016:PWU**

Kathryn S. McKinley. Programming the world of un-

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
Malhotra:2017:PPS

Martinez-Llario:2011:DJS

Mazinanian:2017:UUL

Madsen:2017:MRA

Marek:2014:SRC

Mirshokraie:2012:JJA

Markstrum:2010:JDP

Shane Markstrum, Daniel

[MS10] Ross McIlroy and Joe Sventek. Hera-JVM: a run-

[Mitropoulos:2016:HTY] Dimitris Mitropoulos, Konstantinos Stroggylos, Dionidis Spinellis, and Angelos D. Keromytis. How to train your browser: Preventing XSS attacks using contextual script fingerprints. *ACM Transactions on Privacy and Se-

Nasseri:2010:CMR

Nuzman:2013:JTC

Newton:2015:ALF

Noll:2012:IDO

Noll:2013:OFD

Nunez:2016:PGC

Nilsen:2012:RTJ

Kelvin Nilsen. Real-time Java in modernization of
REFERENCES

REFERENCES

Nikolic:2013:RAP

Nguyen:2015:FCR

Naik:2012:AT

Omar:2017:PSF

Oaks:2014:JPD

Ortin:2014:RPI

Olivo:2015:SDA

Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static de-
REFERENCES

Ogawa:2013:RJA

Olszak:2012:RJP

Ohkawa:2013:RHO

Olsson:2016:ERR

Ronald A. Olsson and Todd Williamson. Experience reports: RJ: a Java package providing JR-like concur-
Oh:2015:MWA

Pinto:2014:UEB

Paul:2014:RTP

Parnin:2013:AUJ

Portillo-Dominguez:2016:ECP

REFERENCES

[Parker:2011:DPG]

[Pradel:2012:FAP]

[Park:2011:DCM]

[Park:2017:PSS]

[Pizlo:2017:JVM]

[Pukall:2013:JFR]

[Piao:2015:JJF]
Xianglan Piao, Channoh Kim, Youghwan Oh, Huiying Li, Jincheon Kim, Hanjun Kim, and Jae W. Lee.
REFERENCES

Parizek:2012:PAJ

Park:2014:AAS

Pawlak:2016:SLI

Papadimitriou:2014:MLS

Passerat-Palmbach:2015:TSS

Pichon-Pharabod:2016:CSR

Jean Pichon-Pharabod and Peter Sewell. A concurrency semantics for relaxed atomics that permits optimisation and avoids thin-air executions. ACM SIG-
Pham-Quang:2012:JAD

Piedrahita-Quintero:2017:JGA

Pitter:2010:RTJ

Palmer:2011:BJM

Park:2012:CB

Pradel:2014:EAR

Michael Pradel, Parker Schuh, George Necula, and Koushik Sen. Event-Break: analyzing the responsiveness of user inter-

Park:2015:KCF

Pour:2011:MBD

Pinto:2015:LSS

Pape:2014:EJV

Papadimitriou:2011:SES

Puttsch:2013:SIP

Petrashko:2016:CGL

Powers:2017:BBG

Pina:2014:RDJ

Plumbridge:2013:BPR

Pizlo:2010:SFT

Qiu:2017:USR

[QLBS17] Dong Qiu, Bixin Li, Earl T. Barr, and Zhendong Su. Understanding the syntactic rule usage in Java. *The Journal of systems and software*, 123(?):160–172, Jan-

REFERENCES

Raychev:2016:PMC

Rosa:2017:APV

Robatmili:2014:MRL

Rhodes:2015:DDO

Reynders:2016:GMB

Bob Reynders, Dominique
REFERENCES

Richards:2013:FAC

Radoi:2015:WAR

Ravn:2013:EIS

Richards:2010:ADB

Rompf:2012:LMS
Tiark Rompf and Martin

REFERENCES

springer.com/chapter/10.1007/978-3-642-31057-7_4.

Reardon:2014:SSB [RT14]

Ramos:2013:DSJ [RTE+13]

Ramos:2015:NCS [RTET15]

Rubin:2014:HCW [Rub14]

Rowe:2014:ST [RvB14]

Raychev:2015:PPP [RVK15]

Alessandro Ricci, Mirko Viroli, and Giulio Piancastelli.

Rudafshani:2017:LDD

Ramamohanarao:2017:SSM

Ryu:2016:JFB

Serbanescu:2016:DPO

Samuelson:2012:LSO

Sartor:2010:ZRD

REFERENCES

[Schoeberl:2017:SCJ]

[Sluanschi:2016:AAD]

[Sousa:2016:CHL]

[Sartor:2012:EMT]

[Sridharan:2012:CTP]
REFERENCES

REFERENCES

derrahmen Kammoun, and Frédérique Laforest. Up-sortable: programming top-

k queries over data streams. Proceedings of the VLDB Endowment, 10(12):1873-

1876, August 2017. CODEN ???. ISSN 2150-8097.

Simao:2012:CER

José Simão, Tiago Garrochinho, and Luís Veiga. A checkpointing-enabled and

resource-aware Java Virtual Machine for efficient and robust e-Science applications

in grid environments. Concurrency and Computation: Practice and Experience,

24(13):1421–1442, September 10, 2012. CODEN CCPEBO. ISSN 1532-0626

(print), 1532-0634 (electronic).

Simao:2012:CER

Stuchlik:2012:SVD

Andreas Stuchlik and Stefan Hanenberg. Static vs. dynamic type systems:

an empirical study about the relationship between type casts and development

time. ACM SIGPLAN Notices, 47(2):97–106, February 2012. CODEN SIN-

ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Stuchlik:2012:SVD

Steimann:2016:CRA

Friedrich Steimann, Jörg Hagemann, and Bastian Ulke. Computing repair

alternatives for malformed programs using constraint attribute grammars. ACM

SIGPLAN Notices, 51(10):711–730, October 2016. CODEN SINODQ. ISSN

0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Steimann:2016:CRA

Siebert:2010:CPR

Fridtjof Siebert. Concurrent, parallel, real-time garbage-collection. ACM

SIGPLAN Notices, 45(8):11–20, August 2010. CODEN SINODQ. ISSN 0362-

1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Siebert:2010:CPR

Siek:2017:CPT

Jeremy Siek. Challenges and progress toward efficient gradual typing (in-

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Siek:2017:CPT

Singer:2010:EGC

Jeremy Singer, Richard E. Jones, Gavin Brown, and Mikel Luján. The econ-

omics of garbage collection. ACM SIGPLAN Notices, 45(8):103–112, August

2010. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Singer:2010:EGC
Smans:2010:AVJ

Shan:2012:OAC

Salkeld:2013:IDO

Singer:2011:GCA

Schoeberl:2011:HAL

Sondergaard:2017:CTD

Stilkerich:2017:PGU

Isabella Stilkerich, Clemens Lang, Christoph Erhardt, Christian Bay, and Michael Stilkerich. The perfect getaway: Using escape analy-

[Stilkerich:2015:PGA]

[Steele:2014:FSP]

[Snellenburg:2012:GJB]

Snellenburg, Joris J.; Laptenok, Sergey; Seger, Ralf; Mullen, Katherine M.; van Stokkum, Ivo H. M. Glotaran: a Java-based graphical user interface for the R package TIMP. *Journal of Statistical Software*, 49(3):??, June 2012. CODEN JSSOBK. ISSN 1548-7660. URL http://www.jstatsoft.org/v49/i03.

[Singh:2012:EPS]

[Santos:2018:JJV]

[Spoto:2010:TAJ]

Spoto, Fausto; Mesnard, Fred; Payet, Étienne. A termination analyzer for Java bytecode based on path-length. *ACM Transactions on Programming Languages and Systems*, 32(3):8:1–8:70, March 2010. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).
REFERENCES

Samak:2015:SRT

Scanniello:2017:FFC

Sutherland:2010:CTC

Scoben:2012:VIF

Stefik:2013:EIP

Sor:2014:MLD

Surendran:2016:APP

Stark:2014:JJV

Su:2014:CEM

Srikanth:2017:CVU
REFERENCES

REFERENCES

2014. CODEN ???? ISSN 1539-9087 (print), 1558-3465 (electronic).

Subramaniam:2011:PCJ

Steindorfer:2015:CSM

Steindorfer:2015:OHA

Steindorfer:2017:TSP

Sverdlove:2014:JVL

Siek:2012:FDT

Stancu:2015:SEH

REFERENCES

[SWF12]

Simon:2015:STH

[SZ10]

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Siegel:2011:AFV

Tamayo:2012:UBD

Taft:2013:TPS

[TKL+15] Chun-Jen Tsai, Han-Wen Kuo, Zigang Lin, Zi-Jing

Thiessen:2017:CTP

Tate:2011:TWJ

Tetali:2013:MSA

Tan:2017:EPP

Tian Tan, Yue Li, and Jingling Xue. Efficient and precise points-to analysis: modeling the heap by merging equivalent automata. *ACM SIGPLAN Notices*, 52(6):278–291, June 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Topley:2011:JDG

Toffola:2015:PPY

Taboada:2013:JHP

Guillermo L. Taboada, Sabela Ramos, Roberto R. Expósito, Juan Touriño, and Ramón Doallo. Java in
REFERENCES

the High Performance Computing arena: Research, practice and experience. [TT11]

Taboada:2011:DEJ [TTD+11]

Taboada:2011:DLC [TTD+11]

Taboada:2012:FMS [TTD12]

Toledo:2011:ACJ

Taboada:2011:DEJ

[TRTD11]

Taboada:2011:DLC

[TTD+11]

Taboada:2012:FMS

[TTD12]

REFERENCES

[TW15] Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft. *Java 8 in action: lambdas, streams, and functional-style programming*. Man-

Tatsubori:2010:EJT

Torlak:2010:MCA

Tardieu:2012:WSS

Toegl:2012:SSJ

Ronald Toegl, Thomas Winkler, Mohammad Nau-

Titzer:2010:ICR

Teng:2010:TPA

Urma:2015:JAL

Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft. *Java 8 in action: lambdas, streams, and functional-style programming*. Man-

REFERENCES

2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

REFERENCES

Walker:2012:SNJ

Wampler:2011:FPJ

Wang:2011:EEU

Welch:2010:ABS

Wellings:2016:ISC

REFERENCES

Wood:2014:LLD

Wagner:2011:SVJ

Wagner:2011:CMM

Wu:2011:RTS

Winne:2013:MAV

Welling:2012:AEH

Wurthinger:2017:PPE

Wurthinger:2013:USD

Wei:2016:ESD

Wang:2017:CJ

Xi:2012:MDA

Xu:2010:FLU

Xu:2014:SRB

Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schonberg,

REFERENCES

Yang:2013:CPP

Yoo:2014:WRR

Yang:2017:EJV

Yessenov:2017:DAD

Yang:2010:JIP

Yi:2015:SCC

Yiapanis:2013:OSR

Paraskevas Yiapanis, Demian Rosas-Ham, Gavin Brown, and Mikel Luján. Optimizing software runtime sys-

Yahav:2010:VSP

Yue:2013:MSI

Zakas:2010:HPJ

Zakhour:2012:JTS

Zheng:2015:APP

Zhang:2017:ACE

ZBB15

Zakas:2010:HPJ

ZBB17

Zhang:2015:SYB

REFERENCES

Zschaler:2014:SFJ

Zuo:2016:LOF

Zhao:2012:PTI

Zhang:2015:LOS

Zhang:2012:RAJ

Zacharopoulos:2017:EMM

Zheng:2016:CMD

Yudi Zheng, Stephen Kell, Lubomir Bulej, Haiyang
REFERENCES

Zhao:2013:INT

Zhang:2014:AIO

Zeyda:2014:CMS

Zabolotnyi:2015:JCG

Zhang:2014:ARP

Zhou:2016:IRO

Zhang:2014:HTB

Zakkak:2014:JJM

Zibin:2010:OIG

Zerzelidis:2010:FFS

Zhu:2013:EAZ

Zhu:2015:APL

Zhao:2014:CSP

Zhang:2016:NVC

Zhang:2012:SRB

Zhang:2013:IMF