A Bibliography of Publications about the *Java Programming Language*, 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

04 August 2018
Version 1.182

Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

3
[DiP18b, FLZ+18, GBC12, JEC+12, ZXL16].
\(\tau_{P} \) [LTK17]. \(C_{P} \) [AÖ11]. \(K \)
[PLL+18, SD16b, SGG+17]. \(Z_{P} \) [AÖ11].
-
-core [PLL+18]. -safety [SD16b].
/multi [Taf13]. /multi-threaded [Taf13].

'12 [Hol12]. 12th [Fox17a].

2015 [LSBV17]. 27th [KP15].

5 [KHR11].

6 [Jen12].

7 [Ano15, EV13, J+12]. 75 [HWM11].

8 [BKP16, LYBB14, SAdB+16, UFM15].

9 [LSBV17]. 938 [Gun14]. 978 [Ano15].
978-1-4493-1103-2 [Bro12].
978-1-4919-4946-7 [Ano15]. 9th [Gve13].
AMWW15, ADI13, ABFM12, DSEE13, BOF17, BBXC13, EABVGV14, GMC+13, HLO15, JHI11, MTL15, MZC10a, MZC10b, PRL14, PKC+13, RHSD15, R+13, RVP11, RW17, Ryu16, Sch10b, SADZ+16, SGV12, SPP+10, TWX+10, WHIN11, vdMvdMV12.

Applying [CMM17]. Approach [BDT10, CSF+16, DLPT14, KKW14, STST12, ADI13, CHM13, CSKB12, DHH+12, HLO15, HD17, J+12, MZC10a, MVH15, PSW11, RVP11, RO12, SNS+14]. Approachable [WHV+13]. approaches [GD10, MD15, SS14]. approximate [WHIN11, vdMvdMV12].

Approximations [SS12]. apps [BM18, CNS13, MMP+12, Nog12, Sta10]. Architectural [CSGT17, KKK+17].

Asynchronous [KW11, SK12, WK12, FZ17, KW10, LML17]. atomic [WAB+11]. Atomicity [GGRSY17, JLP+14, HBSB14, BNS12, GGRSY15, UMP10]. atomicity [PS16].

automata [TLX17, ZW+14]. Automated [BH17, BSOG12, BMOG12, MS14, RGEV11, SD12, ASdMG14, MRMV12, ZFK+16].

axiomatic [TVD10].

barriers [HIJH10, WBM+10]. Based [AFGG11, DLR16, GM12, GZ+15, GGC18, LTD+12, MVDL12, MM12, PTML11, PdLCH11, PE11, RBL12, RT14, SGD15, SLS+12, SWF12, AYZI10, AST+16, ADI13, BBF+10, BBP13, BB17, CDTM10, CSKB12, CJ17, CPST14, CPST15, EKUR10, GT10a, GMC+13, HWM14, HW1+12, HOKO14, HWLM11, IHWN12, IRJ+12, JEC+12, JMO14, KATS12, KS13, KRCH14, KvrHRA14, KS14, Lon10a, Lon10b, MCC17, MB12, MCY+10, PDPM+16, PPSW11, SZ11, SBK13, SPP10, SPY+16, SV17, SNS+14, UIY10, VSG17, XHH12, YP10, ZYE+12].

behavior [LWB+15, RLBV10, TABS12, WXR16].

Behavioral [LN15, AMWW15]. behaviors [PCL14]. behaviour [SMS+12]. Beliefs
Ben [Teo12] Benchmark [GBC12, SMSB11]. benchmarking
[AHK+15, MDM17]. benchmarks
[KHM+11, RGEV11]. benefit [HH13]. best
[Sch13]. Better [Bro12, TD15]. Between
[PVB17, ZLHD15, BKP16, CMM17, CSKB12, CSF+16, LSBV16, LSBV17, RDP16, SH12].
Big [GTS+15, NBW+15, RVK15, BOF17,
BBXC13, SS+14, WR10]. billions
[DRZ14]. bindings [VGRS16]. bird
[Guy14]. Birthmark [PiLCH11]. Bitcoin
[TD17]. BIXSAN [VS11]. Blame [KT15].
Bloat [MSS10, NBW+18, XMA+14,
BRGG12, BBXC13, XR10]. bloat-aware
[BBXC13]. block [CZ14, KBL14].
block-level [KBL14]. blocking [DW10].
Blockly [AMWW15]. Blueshell [PWA13].
boilerplate [ZcdSvdS15]. Book
[Ano15, Bro12, Del13, Gve13, Kie13, Ngo12,
Teo12, Teo13]. Boosting [ASV16, AC16].
Bootstrapping [CBLFD12]. Bottle
[DSE13]. bottlenecks [DSE13]. bottom
[ZMNY14]. bottom-up [ZMNY14].
boundary [RDP16]. Bounded
[NWB+15, GM14]. Bounds
[SW12, GvR+11]. boxes [BGDS13]. Brain
[VBZ+18]. breaking [VB14a]. Breakpoint
[ZW13]. breakpoints [PS12]. Bridging
[PVB17]. Bringing
[CV14, HRS+17, STS+13]. Broken
[dGRRb+15]. Browser [MSK16, PVB17,
FIF+15, VS11, VB14a, WGW+11, YK14].
Browsers [HLSK13]. Browser [PVB17].
BUBiNG [BMSV18]. Budget [GM12].
buffered [DZ+13]. buffers [Gun14]. bug
[LWH+10]. Bugs [OBPM17, XMD+17,
ECS15, MDS+17, ODL15, Ryu16]. Build
[BMDK15, BNE16, ELW15, MAH12].
Building [Sta10, HWW+15, Ngo12].
Business [CCA+12]. Bytecode
[BDT10, BSOG12, FHSR12, NS12, RDCP12,
Rey13, AdCGG16, CZ14, DLM10, SPF10b,
SMP10, VB14b].

D

[DiP18b, FLZ+18, GBC12, JEC+12, XZL16].

DAA [DR10]. Data [Bra14, BMOG12, BA17, GM12, GTS+15, GT10b, NHH16, NBW+15, NWB+18, TAF+18, dMRH12, BK14, BB17, BOF17, BBX13, BJJK12, CDM10, CRP+10, DFR13, DHM+12, EKUR10, FOPZ14, KB17, LDL14, MRA+17, NL14, SAdB+16, SSG+14, SGG+17, UMP10, WKJ17, WCG14, XZ13, XMA+10, ZIvdS17]. data-centric [DHM+12, FOPZ14].

Data-Intensive [NBW+18]. Data-Parallel [NKH16, CRP+10]. database
executions [ASdMGM14, PPS16, STR16].
executives [RS12]. Exemplar [ZW13].
exhaustive [DHS15]. exhibitionism [VBMDP16].
Exogenous [BMSZ17]. Experience [ABMV12, OW16, Schl0a, CBLFD12, TRE +13, WT10]. Experiment [BKP16, MDS +17, HWLM11]. explicit [NGB16]. exploit [Ano13]. Exploitation [SSMGD10].
Exploiting [NKH16, QSaS +16]. exploration [FWDL15]. explorative [AHK +15].
Extended [DDDF17, FGR12, FLL +13, JC10, LMK16, PDPM +16]. Extending [AC10, BVGVEA11a, LPA13, PTHH14].
Extensible [ZIvdS17, ER14, KMLS15, MHBO13]. Extension [RS12, LE16, MLGA11, PdMG12].
Extremal [TLD +12]. Eye [RLMM15, Guy14]. Eye-Tracking [RLMM15].
F [GMT14, TTD12]. F-bounded [GMT14].
F-MPJ [TTD12]. FAA [Sch10a].
FACEADE [NWb +15]. face [XHH12].
Facebook [Ano13]. Facets [ASF17, AF12].
facilities [BVGVEAFG11]. FAD.js [BB17].
Feedback-directed [NED +13, NG13, WM10]. fields [PQTGS17].
Floating-Point [Jaf13, AJL16]. Flow [ASF17, FHSR12, LMK16, SS12, AdCGGH16, AF12, ABFM12, BK14, FWDL15, HBS16, KHL +13, LSWM16, PMTP12].
fragmentation [PZM +10]. fragmentation-tolerant [PZM +10]. fragments [OA17]. frames [SJP10].
Framework [CCA +12, FFF17, LM15, PWSG17, RBL12, AMc13, AC16, DDDF17, ER14, FFRGPLF +12, JEC +12, KMLS15, Lon10a, Lon10b, ML13, PKO +15, RR14, STY +14, ZW10, ZDS14]. frameworks [PPMH15]. Francisco [KP15].
free [DTLM14, FC11, GK15, HHB +14, NFV15].
free-form [GK15]. free-lunch [DTLM14].
frequency [ZWSS15]. Frequent [RC17].
Friendly [RBL12]. fringe [MB12, MB12].
Full [SRTR17, DRN14]. Full-Word
[SRTR17]. Fully [FSC+13, PG12, ZFK+16].
Functional [Wam11, Ame13, BVGVEA11b, NFV15, UFM15, Bro12]. functional-style
[UFM15], functions [LSB16, LSB17].
Fundamentals [HC13, Teo13, Gve13].
Fusing [MS13, ETR12, WM10]. fusion
[KBPS17]. future [SS16]. fuzzer [Guo17].

Game [MT14, Wan11]. Gap
[PVB17, ZLHD15]. Garbage
[ASV+16, BH12, GTS+15, QSaS+16, Sch13, SKBL11, AGGZ10, BCR13, BP10, BVGVEA14b, BOF17, GTSS11, KPVH11, KBL14, NGB16, PZM+10, PDPM+16, Puf13, SP10a, SBM14, Sie10, SBJ10, UY10, UJR14].
garbage-collection [Sie10]. Gary [Gve13].
GC [NGB16, RGM13]. GEMs [BSMB16].
general [CHMY15, EKUR10], generalized
[WT10]. generate [CS12], generated
[BM18]. Generating [HJS+10, RDP16, GRF11, KS14, MHBO13, SSK13].
Generation [AGM+17, BH17, CRJ+10, PPMH15, PSNS14, Rim12, RO12, UMP10].
generations [BOF17]. generators [SLF14].
generic [DDM11, Fer13, HH13, ZPL+10, eBH11].
generics [AS14, Gri17, PBMH13]. Genetic
[YCYC12, MT13]. Genotyping [YCYC12].
GeoGebra [ABK+16]. geosciences
[MCY+10]. German [Sch13]. get [Ame13].
Getaway [SLES15, SLE+17]. Gets [BH12].
getters [Mil13]. Getting [GMT14]. Giga
[DHS15]. Giga-scale [DHS15], glimpse
[SP16]. Global [PE11]. Global-Scale
[PE11]. Glotaran [SLS+12]. go [LWB+15].
Goldilocks [EQT10]. Good [dGRdB+15].
Google [Ngo12, MGH17, Sam12]. GPGPU
[PQTGS17]. GPGPU-accelerated
[PQTGS17]. GPU [PKO+15]. GPUs
[Hos12], grade [CRJ+10]. Gradual
[RSF+15, SFR+14, TSD+12, Sie17]. grained
[DRN14]. grammars [GN16, SHU16].
granularity [CZ14]. Graph
[DMRH12, BS13]. Graphical [SLS+12].
Graphics [Cec11, LLL13], graphs
[AdCGGH16, DSEE13, WM1C15, PULO16].
green [BRGG12]. Greenfoot [K610], grid
[SGV12, VWJB10, MZC10b]. Gridifying
[MZC10b]. grounded [EV13]. Growing
[EKR+12]. growth [LDL14]. guarantees
[JMWC15, ZHCB15]. GUI
[CNS13, VGS14, WBA+11].
GUI-awareness [VGS14]. Guide
[Ame13, Oak14, Rau13, Teo13, Top11].
Guided [CNS13, DiP18b, MMP15, GY16, PSNS14, SSH17]. Guidelines
[GGZ+15, HLSK13].

Handling
[KW11, ECS15, HWM14, KW10, WK12].
Hands [CSZ17, Teo13]. Hands-on
[CSZ17, Teo13]. happened [Hau15].
happens [TD15]. happens-before [TD15].
hard [LTK17, Puf13]. Hardware
[SKKR11, SPS17, CBGM12, IN12, SE12].
hardwired [OYU+13]. harness [Kie13].
hash [SV15a, SV15b]. hash-array [SV15b].
hashing [GRF11]. HDFS [IRJ+12]. HDL
[OUY+13]. health [EKUR10]. heap
[CSV15, LDL14, TLX17, Tar11, VYY10, YS10, BVGVEA10], heap-manipulating
[YS10]. Helping [RT14]. Hera [MS10].
Hera-JVM [MS10]. Herman [Kie13].
Heterogeneous [ASV+16, HBB+14, Rub14, AyZ10, ABCR10, DFR13, MS10].
Heterogeneous-race-free [HBB+14].
heuristics [LMK16]. Hidding [RBL12].
hierarchy [BS13]. High [GSS+16, Hol12, IRJ+12, MSM+16, SWU+15, WN10, Zak10, BRWA14, Hos12, Ngo12, RFB14, TTD+11, TGZ17, VWJB10, WW+17, TRE+13].
high-dimensional [TGZ17]. high-level
[Hos12, RFB14, VWJB10].
High-Performance [WN10, GSS+16, BRWA14, Ngo12, TTD+11, WW+17].
higher [KT15], higher-order [KT15].

highly [BP10, SPP+10], history [DRN14].

hit [Ano13], Hoare [SD16b].

Holistic [MAHK16], HOT [D'H12], Hopjs [SP16], Horstmann [Gve13].

hosted [CBLFD12], hit [LMK16].

HotSpot [Sch13, BOF17].

HotWave [ABMV12, VBAM10b].

HPC [JQJ+16].

HTM [CHM16], HTML [Sta10], HTML5 [HLO15, NKH16, Ano15].

Hunting [GMC+13].

IaaS [ZLHD15].

identification [BZD17, FMS+11].

Identifier [SRTR17].

identifiers [FMS+11].

Identifying [IN12, SVB+17].

if [Han15].

illuminating [BK14].

Image [WN10].

immutable [HMDE12, ZPL+10].

immutable [SV15b].

impact [CMS+12, Gra15, HWLM11, MPR12, WKJ17], imperative [RFRS14].

Implement [HdM17].

Implementation [CSF+16, GPT12, HM12, OA17, VGRS16, YP10].

implementations [CSS+16, OJ12].

Implementing [FFF17, GM12, WCB16, EEE+13, FBH17, PMP+16].

implies [BRGG12], implicit [IvdS16, SPAK10].

imply [BRGG12].

Improve [QSAS+16].

Improved [KRR+14, UIY10, OJ12, XHH12].

Improvement [RC17].

Improving [ACS+14, HWT+12, TWSC10, eBH11, UTO13].

in-depth [Rau14].

in-place [DVL13].

incremental [DS16, ELW15, UIY10].

independent [IF16, VS11].

industrial [CRJ+10].

inefficiently [XR10].

inefficiently-used [XR10].

Inference [BO13, YHY13, AGGZ10, CGJ+16, HyG12, HMDE12, Zha12].

inferring [AS14, BENS12].

InfiniBand [ETTD12, IRJ+12].

infinite [ASdMG14].

Infow [ZMM+16].

influence [MHR+12].

Informa [HA13].

Information [ASF17, HBS16, KHL+13, RKN+18, SS12, AF12, ABFM12, BVGVEA11b, CMS+12, PMTP12, RRB17].

Information-flow [HBS16].

infrastructure [NG12].

Inheritance [LN15, WT11, AST+16, GBS13, NCS10].

Initial [LTD+12].

initialization [AMT17, MME14].

Initiation [FGR12].

Injecting [ZZK13].

inline [DJLP10].

Inlining [BA12, HWL13].

insecure [YW13].

Insight [VF10], instanceof [SMS+12].

Instant [MHBO13].

instantiation [AST+16].

instead [AGH+17, BTR+13].

instrumenting [CZ14].

Integrated [Tar11, YP10].

integrating [SPP+10].

integration [Ame13, HKVG14, Sch10a].

integrity [HDK+11].

intelligence [JAC10].

Intelligent [Pan14].

Intensive [NWB+18, SAB+16].

inter [CMM17].

inter-language [CMM17].

Interacting [SK13].

Interaction [WT11].

interactive [AMMW15, JH11, MCY+10].

intercession [VM10].

interdependencies [BFK12].

Interface [Lin14, MvDL12, SLS+12, AYZI10, MT14, LT11, LT14].

Interfaces [WT11, Cho14, DLM10, LWH+10, PSNS14, WT10].

interference [YDF15].

International [Hol12, KP15, Fox17a].

interoperability [GSS+16].

Interpretation [BDT10, DLR16, DLM10, DLR14, NSDD17].

Interpretation-Based [DLR16].

interpreter [D'H12, KMMV14].

interpreters [HWW+15, IvdS16, MD15, ZLBF14].

Interprocedural [CPV15, FWDL15, ZMNY14].

Interrupting [AST12].

intersection [KT15].

intra [BJBK12].

intra-node [BJBK12].

Introducing [Dan17, DMS11].
Introduction
[CIAD13, CSZ17, HTLC10, HTW14, Lew13, RHT13, VK12, Hav11, VF10].
Introductory [BNP11], intrusively [MZC10a]. Investigation
[SS13, FH16, Tai13]. invited [Piz17, Sie17].
invocation [SPA10, BVGVEAFG11].
invocations [BVGV14a]. invokedynamic [OCFL14]. Involvement [ZMM+16]. IP [TKL+S].
Isolation [ZLB+13]. Issue [DVL13, HL13, HTW14, Puf13, VK12, Fox17a, HTLC10, HGCA11, RH13].
iterations [DD13]. iterators [ZLBF14]. IVE [CRJ+S]. IVPs [KSI15].
[Bro12, Fox17a, Gve13, HWM11, HTW14, MvH15, Ngo12, Sch13, VK12, AO11, KvGS+S, PQTGS17, SA+S+16,
AS+a+MGM14, AST12, AFGG11, AYZI10, AS14, AAB+S, Alt12, Am13, AdCGGH16, AT16, And14, Ano12, Ano13, ABMV12,
AGR12, AG17, ABC10, AD13, ABFM12, AK13, BK12, BH17, BM14, BH12, BDT10, BVGVE10, BVGVEA10, BVGVEA11a,
BVGVEAFG11, BVGVE11b, BVGVE13, BVGV14a, BVGV14b, BS12, BMDK15, BO11, BO12, BO13, BCRI1, BCGS13,
BCD13, BD17, BRGG12, Blvd17, BR12, BH10, BR15, BBI12, BN11, BW12, BA12, BZ17, BSOG12, BMOG12, BKP16, BA17,
BJB12, CIAD13, CSZ17, CS14, CMM17, CW13, CV14, CS12, CDM10, CCFB15, CC15, CR1+10, CSF+S, CSK17, CCH11,
CJ17, CDG+S, CSdL16, CCA+S, CRAJ10, DJLP10, DDDF17, DLM10, DLZ+S, DVL13]. Java [DR10, DHI15, DJB16,
DMS11, ECS15, EK+S, ES14, EQT10, Esq11, EABGV14, Egu13, EV13, ET2D12, ETR+S, FLZ+S, FRGPL+S, FGR12,
Fer13, FFF17, FLL+S, FHSR12, Fox17b, FMS+S, GMP12, GvR+N, GYB+S, GM12, GBS14, GD12, GBC12, GS11, GS12,
Gon11, GMC+S, GT10b, GJS+S, GJS+S, GJS+S, Giri17, GPT12, GK15, HL13, HD17, HD17, Has12, HWM10, HWM13, HWM14, HA13,
HM12, HTLC10, HVG14, HH13, HOKO14, HGCA11, Hor11, Hor12, HC13, HC10, HWL11, HJ12, IHWN12, IN12, IS18, IF16,
JEC+S, JQ+S, JYL17, Jen12, JB12, JYKS12, JTO12, JH11, J+S, JMB12, JMO14, KHR11, KHM+S, KMLS15, KS13,
KW10, KW11, KM10, KSR14, KSP12, KDPG18, KS14, KF11, KB11, LSV16, LSV17, LYT+S, LMK+S, LSW16,
LLL13, LT11, LT14]. Java
[LZYP16, LYBB13a, LYBB13b, LYBB14, LZ12, Loc13, Loc18, Lon10a, Lon10b, LMS+S, LO15, LPA13, LWC17, LTK17,
LS11, Lyo12, MK+S, MS13, MME+S, MLGA11, MDS+S, MCD+S, MPM+S, MZC10b, MKTD17, MM16, MM10,
MAH12, MB12, MCH+S, MP12, MKK+S, MK+S, MSS10, MvH15, MT14, MHDS10, NM10, NCS10, NS12, Nil12a, Nil12b, NG13,
NNTK17, Oak14, OOK+S, OM+W, OIA+S, OUY+S, OW16, OJ12, OCFL14, PS11, PLL+S, PdMG12, PTML11,
PMTL14, PTHH14, PL12, PiLCH11, PBHM13, PPMH15, PMP+S, PQD12, PV14, PTF+S, PS10, PDP+S, PSW11,
Puf13, PKC+S, QLBS17, RD15, RDCP12, RTE+S, RTET15, RR14, RS12, RHT13, R+S, RBL12, RAS16, RSI12, Rev13, Rez12,
RVP11, RLMM15, RB15, RV+B14, SS+S, SE12, SRTR17, STST12, SS12, Sch14, Sch13]. Java [Sch10a, SPP10, SKKR11, SDH+S, Sch10b, SMSG10, SZ10, Set13, SMB11, SMS+S, SM12, SDM12, SWMV17, SW12,
SGV12, SKBL11, SD16a, SJP10, SLS+S, SKR17, SS14, SP10b, SMP10, SPP+S,
SWB$^{+15}$, SSB01, SSB14b, SPS17, SSG$^{+14}$, STS$^{+13}$, Sve14, SWF12, TRT11, TTD$^{+11}$, TTD12, TRE$^{+13}$, TTL11, TXW$^{+10}$, TFPB14, TWHN12, TNTN12, TGZ17, TKL$^{+15}$, UR15, UFM15, VSG17, VGRS16, VBDPM16, VBMDP16, VGS14, VBAM10a, VBAM10b, VBMA11, WGF11, Wani11, WZaSOS17, WBM$^{+10}$, WK12, WCB16, WN10, WRI$^{+10}$, WHV$^{+13}$, WHIN11, WBA$^{+11}$, WAB$^{+11}$, WWS13, XHH12, XR13, XD$^{+17}$, Xue12, YP10, YKM17, YDF15, Zlv17, Zak12, ZIP14, ZLCW14, ZHL$^{+12}$, ZLX16, ZKB$^{+16}$, ZWS15, ZPL$^{+10}$, ZDS14, dCMMN12, dMRH12, eBHI11, hED12, vdMvdMV12, Del13.

Java-Based

[AFGG11, SLS$^{+12}$, SWF12, CJ17, HOKO14, JMO14, KS13, KS14, MB12, MCY$^{+10}$].

Java-compatible [ABCR10]. Java-like [BDGS13, BCD13, DJLP10, SZ10].

Java-to-HDL [OUY$^{+13}$].

Java-to-JavaScript [LW16].

Java.utils.Collection.sort [dGRdB15].

Java/JSP [Sch10b]. JavaBean [MZC10a]. JavaBIP [BMSZ17]. JavaCC [GN16].

JavaCOP [MME$^{+10}$]. JavaAdaptor [PKC$^{+13}$]. JavaFX [Top11]. JavaGI [WT10, WT11].

JavaScript [Ano15, Kie13, Ric14, Teo13, AMT17, ACS$^{+14}$, AHK$^{+15}$, AGM$^{+17}$, AMWW15, BCF$^{+14}$, BPP13, Ccc11, CGJ$^{+16}$, CVG$^{+17}$, CBLFD12, Cho14, CHJ12, Dei10, Dei11, Dsc12, DiP18a, DiP18b, DFHF15, FMM$^{+11}$, FM13, FH16, FBH17, FSC$^{+13}$, FZ17, FOPZ14, GMS12, Guo17, HyG12, Hav11, HBS16, HLSK13, HHS13, HC11, KR12, KSW$^{+14}$, KRH16, KT14, Ker15, KFBK$^{+15}$, Kie10, KBL14, KARO12, Kri12, LSW16, Ler10, LVG10, LPGK14, Liu14, LML17, MTL15, MLT17, MPS12, MG17, MHL15, MRMV12, Mi13, MM12, MMP15, NK16, NSDD17, OBPM17, PWS17, PLR14, PSR15, PLR18, PDD17, PKO$^{+15}$, Rau14, RLBV10, RGEV11, RHN$^{+13}$, RW17, Ryu16, SMN$^{+18}$, Sev12a, Sev12b, SVB$^{+17}$, SDC$^{+12}$, Sta10, Ste10, SR17, SFR$^{+14}$, TAF$^{+18}$, TT11, VM15, VB14b, Wal12, WXR16, YW13, Zak18, Zak10]. **JavaScriptCore [Piz17]. JavaVerT [SMN$^{+18}$]. JAWS [PKO$^{+15}$]. JBInsTrace [CZ14]. JCloudScale [ZLHD15]. JCML [dCMMN12]. JCSI [ABFM12]. JCS [WBM$^{+10}$]. JDiffraction [PQTG17].

JDMM [ZP14]. JEqualityGen [GRF11].

JET [LT11]. JGRIM [MZC10b]. Jinn [LWH$^{+10}$]. JIT [BBF$^{+10}$, BB17, CMS$^{+12}$, HW14, IH12, JK13, NED$^{+13}$, RSB$^{+14}$, WK17, ZY$^{+12}$]. JIT-based [BB17]. JIts [KRCH14]. JMarkov [CRAT$^{+12}$]. JML [CRJ$^{+10}$]. JNI [CDG$^{+17}$]. Join [MZC10a]. Jong [Ngo12]. Journey [Ryu16]. Joy [FH11]. JP2 [SSB$^{+14a}$]. JPC [CMM17]. JPF [WK17].

JPR [WK17].

jQuery [AM14, PIR17]. JRE [OW16].

JR-like [OW16]. JRE [CZ14]. JS [AHK$^{+15}$]. Js_of_ocaml [VB14b]. JSART [MM12]. JSetL [RB15]. JSON [BB17].

JSormdb [De10]. JSP [Sch10b]. JTabWb [FFF17]. JTRES [HTW14]. JTRER2011 [RHT10]. JTRER2013 [Fox17b].

JTRER2014 [Fox17a]. judgment [CSV15]. Juliet [BB12]. July [Bro12, KP15]. jungle [Sew12].

Just [DLR16, KHL$^{+13}$, LM16, MG17, TTS$^{+10}$].

Just-in-Time [DLR16, KHL$^{+13}$, LM16, MG17, TTS$^{+10}$].

JVM [AC16, AFG$^{+11}$, CSS$^{+16}$, Guy14, MS10, P17, RRB17, SV15b, Sub11, WKG17].

JVMs [B14, ZY$^{+12}$].

K-Java [BR15]. kernel [HDK$^{+11}$]. Key [BBB$^{+17}$, DFR13, JB12].

key-value [DFR13]. keynote [McK16]. Kirk [Del13].

KiWi [BBB$^{+17}$].

KJS [PSR15].

Knoernschild [Del13]. knot [LBF12]. know [DBJ16, Gra15, Han15]. Knowledge [KSPK12, UMP10]. known [Han15].
Kraken [Ano14].

Lake [Hol12]. lambda [MKTD17].
lambdas [UFM15]. landscape [Sve14].
Language [DLPT14, GJS', GJS+14, JC10, KSPK12, MAHK16, Sve12b, SS13, ABCR10, CMM17, CSdl16, DAAD13, EKR+12, Fee16, GSS+16, Hos12, HWW+15, KRCH14, LWH+10, LE16, MDM17, SC16, SZ10, SKR17, SNS+14, VB14a, WCG14, WWH+17, ZWSS15, dCMMN12].
language-level [WCG14]. Languages [CSGT17, MSM+16, PTHH14, YKM17, AGGZ10, BCD13, CMS+12, EEE+13, ER14, FMBH15, Han15, HBT12, HJS+10, KRR+14, MSM+10, NED+13, PUL16, SPY+16, Zha12].

LARD [WCG14]. Large [BA17, AST+16, CCFB15, LSBV16, LSBV17, MDS+17, MCY+10, PFT+15, WHIN11].
Large-Scale [BA17, MDS+17, MCY+10, PFT+15, WHIN11]. Larus [DD13].
leak [SS14, XR13]. Leaks [And14, RW17].
LeakSpot [RW17]. lean [BRGG12, SV15b].
Learn [RT14]. Learning [Pau14, RT14, CNS13, KC12, Ano15, Teo13].
learnt [GY16]. Legacy [SVB+17, CDMT10]. Legally [Sam12].
length [SMP10]. Less [BNE16]. Level [AC16, SWU+15, EKUR10, Hos12, IHWN12, KBL14, LWC17, MG17, RFB14, TTD+11, VVJB10, WCG14]. Lexical [GN16].
Lexicon [TAF+18]. Libraries [BK12, RDFC12, BiIdSi17, Cho14, EKR+12, PMTL14, PLR18, TTD+11].
Library [OCFL14, TAF+18, WN10, DJM18, CMM17, PMP+16, PQTGS17, TPFPB14, TGZ17].
Linux [Ric14]. Linux-basierte [Ric14]. Listener [JH11]. little [Han15]. liveness [LDL14].
load [PDPM+16]. loaders [SM12]. loading [WGF11]. local [DDDF17].
localised [SP10b]. locality [JH11, OJ12]. localize [ZK13]. location [NCS10].
Locators [SDM12]. Lock [FC11, NM10, NFV15, UMP10]. Lock-free [FC11, NFV15]. Locking [GGRSY17, JTO12, GGRSY14, GGRSY15].
Low-Budget [GM12]. Low-latency [ETR+15]. Low-level [WCG14].
Low-overhead [ZHCB15, ZFK+16]. low-utility [XMA+10]. lunch [DTLM14].
Multi-Core [RTE+13, MS10, TRTD11]. Multi-core [RTE+13, MS10, TRTD11].
multi-threaded [JTO12, DSEE13, SE12, SKBL11, TRTD11, Tar11, WRI+10].
Multi-Core [RTE+13, MS10, TRTD11].

Multi-core [RTE+13, MS10, TRTD11].
multi-threaded [JTO12, DSEE13, SE12, SKBL11, TRTD11, Tar11, WRI+10].
Multi-Core [RTE+13, MS10, TRTD11]. Multi-core [RTE+13, MS10, TRTD11].
multi-threaded [JTO12, DSEE13, SE12, SKBL11, TRTD11, Tar11, WRI+10].
Multi-Core [RTE+13, MS10, TRTD11].

Multi-core [RTE+13, MS10, TRTD11].
multi-threaded [JTO12, DSEE13, SE12, SKBL11, TRTD11, Tar11, WRI+10].
Multi-Core [RTE+13, MS10, TRTD11].

Multi-core [RTE+13, MS10, TRTD11].
multi-threaded [JTO12, DSEE13, SE12, SKBL11, TRTD11, Tar11, WRI+10].
Multi-Core [RTE+13, MS10, TRTD11].
operations [TABS12, TGZ17]. Operator [PQD12]. opportunities [TPG15].
Optimal [AD16, SK12, ELW15]. optimale [Sch13].
optimisation [PPS16]. optimistic [WGF11].
Optimization [LTD+12, YKM17, AFG+11, BDB11, DDDF17, JMO14, KS13, KC12, NG12].
Optimizations [DR10, BB17, CPST15, DS16, NG13, SAdB+16]. Optimizing [SV15b, YRHB13, HWW+15, KRH16, MD15, ZLBF14].
Oracle [LMS+12, Sam12]. ORB [OUY+13].
Order [SGD15, JhED11, KT15, TD15]. ordering [KC12]. Orders [BNE16].
orinary [MZC10a]. O’Reilly [Ano15, Bro12]. Oriented [ABMV12, BHI0, GS11, KB11, RC17, AST+16, DDDF17, EABVGV14, MHBO13, PTHH14, RVP11, VM10, VBAM10b, WBA+11, ZDS14, hEYJD12]. OScK [HDK+11].
OSGi [BVGV1A13, GD10, Del13]. OSS [ZMM+16]. other [EKUR10, KS13].
out-of-order [JhED11], output [KM10].
Over-exposed [VBDP1M]. overhead [BCR13, ZHCB15, ZFK+16].
overload [CDTM10]. Overloading [PQD12].
overview [Nil12b]. own [MPM+15].
Ownership [ZPL+10, BDGS13, DDM11].
PaaS [ZLHD15]. Package [SLS+12, CRAT+12, MB12, OW16, AK13].
Packages [PiLCH11]. panic [Ano12].
Paper [DDDF17, PDP+16, SV15a].
Papers [DVL13, HL13, LMK16, Puf13]. Parallel [DS16, Esq11, LLL13, MKG+17, NKh16, QSaS+16, RD15, RSI12, BP10, BBP13, BSMB16, CRP+10, NG12, NG13, PPMH15, Sie10, SZ11, TTD12, Taf13, VYY10, BKP16, WN10]. Parallelisation [GS11]. Parallelism [NKh16, BENS12, HSS13, MZC10a, RHSD15, TWL12, ZLB+13].
parallelization [SS16, YRHB13]. parallelize [NKh16, hEYJD12]. parameters [GBS14].
Parametric [AGGZ10, PULO16, UTO13].
Partitioning [AD16, BS12]. party [FOPZ14, LVG10]. passing [ETTD12, TRTD11, TTD12, UR15]. Path [SGD15, DD13, HSS13, SMP10].
path-length [SMP10]. Path-Sensitive [SGD15]. pathfinder [KPP12, CS12, MPRI2, NNTK17, PdMG12, SM12, vdMvdMV12, RR14]. patient [EKUR10]. patient-level [EKUR10].
Performance [CSZ17, CCH11, DR10, GBC12, Ho12, HJ12, MSM+16, Oaki4, OCF14, QSaS+16, TEP+13, TPG15, THC+14, WN10, ACS+14, AAB+10, BRGG12, BRWA14, CBGM12, Del11, GSS+16, HWI+12, IRJ+12, JH11, Ngo12, ODL15, PSM14, SE12, TTD+11, TWX+10, WHIN11, WWH+17, Zak10].
Physics [Zak18, JEC+12]. pickler [MHBO13]. pickles [MHBO13]. pipeline
pipelines [CRP+10], Pivot [AD16], place [DVL13], Plan [DLZ+13], Platform [AFGG11, PE11, BD17, CJR+10, GD10, GMC+13, MKZ+14, PWA13, YP10], Platforms [DR10, Has12, BP10, JMO14, KSR14], PLDI [FLL+13], pluggable [MME+10], Point [Jaf13, AJL16], pointer [TL17], Pointers [RKN+18, AT16], Points [BK12, SDC+12, DHS15, SBK13, TLX17], Points-To [SDC+12, DHS15, SBK13, TLX17], Policies [FHSR12, MPS12, BVG14a], policing [DW10], policy [JK13], polyglot [EV13], Polymorphic [Zha12], polymorphism [GMT14, PULO16, UTO13], POPL [BCR13], Popular [Has12], Popular-but-Seemingly-Dissimilar [Has12], portable [BM18, LTK17, RGM13], portal [MCY+10], Power [MV16, Pau14, BRGG12, CBGM12, Kie13, THC+14], pp. [Bro12], PQL [RSI12], Practical [AMT17, JACS10, SLES15, VS10, WHH+17, FIF+15, WT10], Practice [HGCA11, AS14, EKUR10, LWC17, TRE+13], practices [CJ17, YW13], pragmatic [RO12], pre [SBK13], pre-processing [SBK13], Precise [PIR17, XR13, BHSB14, CVG+17, HyG12, PLR18, PG12, RGM13, TLX17], precision [RSB+14], Predicate [PL12], predictable [LTK17], Predicting [BSA14, RVK15], prediction [ZWZ+14], presence [ZBB15], preserving [AK13], pressure [DTLM14], pretenuring [BOF17], Preventing [MSK16], prevention [VS11], Primer [YCY12], primitives [BJBK12], Principles [HGCA11, JEC+12, VM10], Printing [AJL16], prioritization [MT13], Prioritized [NGB16], Priority [ASV+16, HM12], Privacy [And14], Proactive [CL17, BGS+13], PROB [YP10], Probabilistic [RBV16, GY16, ZWZ+14], Problem [YHY13, ZW13, J+12, KC12], problem-solution [J+12], problems [TPG15], Proceedings [Hol12, KP15], Process [SK12, AGR17, GTY10a], Processes [BMDK15], Processing [LLL13, WN10, SBK13, SSG+14, UJR14], Processor [TKL+15, Puf13, SPPH10, SMN+12], Processors [ASV+16, MKG+17], producers [DA13], product [BTR+13, KTS12, KvRHA14, SV17], product-based [KvRHA14], production [RGM13], professionals [JACS10], profile [VSG17, WKJ17], profiler [DTLM14], profilers [MDHS10], profiling [DD13, JH11, KR16, NK10, RC17, SSB+14a, STY+14, THC+14, XR13, ZBB15], Program [BGK17, KKW14, RVK15, RT14, ZKB+16, AO11, DS16, GMS12, HC14, JLB17, JWMC15, KM10, KMZN16, MKZ+14, NS13, Sch10a, SPY+16, Tai13, TABS12, WGF11, ZMG+14], Programmable [OA17, AYZ10], Programmers [Esq11, RLMM15, Rau14], Programming [AFGG11, ABMV12, BCR11, Bro12, BA17, DLPT14, HWM11, HGCA11, Köl10, KSPK12, LM15, McK16, PTML11, RSI12, RB15, SS13, Sub11, Alt12, AMWW15, BCvC+13, BMR14, BSMB16, BRWA14, CL17, ECG12, EV13, FMBH15, Han15, HA13, Hav11, Lew13, MSM+10, MvH15, OW16, PTF+15, RVP11, RFBJ14, SNS+14, SGG+17, TB14, UFM15, VWJB10, VBAM10b, Wan11, WRI+10, WBA+11, ZWSS15], Programs [AGR12, BH17, BR12, BMOG12, GS11, JB12, LTD+12, STST12, SS12, SDM12, SR17, XMD+17, ZLCW14, AsdMG14, AdCGGH16, BA12, BNS12, DJLP10, ECS15, ES14, EP14, Fer13, HL13, IN12, LO15, LPA13, MRMV12, NG12, OJ12, PL12, RR14, RAS16, RLBV10, SMS+12, SZ11, SJS10, SHU16, Taf13, YS10, dCMMN12, hEYJD12], progress [Sie17, ZHCB15], Project [Wan11], Projects [ZMM+16, CJ17], Projekte [Ric14], Prolog [CMM17, Tar11].
promises [MLT17]. promising [KHL+17].
Proof [LM10]. Proofs [BMG12].
propagation [IVsd16, PQTGS17].
Properties [BO11, RVK15, SS12, FWDL15, SD16b, YS10]. Protecting [MPS12].
Protein [YHY13]. Protocol [GM12, FGR12]. protocols [KDPG18].
prototyping [PWA13]. Provably [AdCGGH16, DJLP10]. providing [OW16].
proving [AGH+17, TaF13]. Proxies [VM10, Eog13, KT14]. PSE [KS15].
pseudorandom [PPMH15, SLF14].
Purity [NSDD17, HMDE12]. Python [Ric14].
qualities [TMVB13]. Qualitas.class [TMVB13]. Quality [BNP11, CCFB15, WJ17]. Quantitative [CPV15, GYB+11, MRA+17, PMPT12].
queries [GK15, MRA+17, SGG+17]. query [FWDL15]. query- [FWDL15]. questions [KM10]. Quicksort [AD16].
racy [SRJ15]. Rady [Teo12]. Rails [Teo12].
Reachability [NS13]. reactive [BCvC+13, MvH15]. read [NM10].
read-only [NM10]. Reading [Jaf13]. ready [RHSD15]. Real [BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Nil12a, Pau14, SLES15, SLE+17, VK12, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGVEA14a, BVGVEA14b, CRAJ10, DW10, EABGVE14, Fox17a, GMC+13, HTLC10, KHM+11, KPH11, KvGS+14, KW10, KSR14, LTK17, MDS+17, PS10, PZM+10, PSW11, PuF13, RHT13, SP10a, Sie10, SPS17]. Real-Time [BVEAGVA10, BBB+17, Fox17b, ITW14, KW11, Pau14, SLES15, SLE+17, VK12, Nil12a, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGVEA14a, BVGVEA14b, CRAJ10, DW10, EABGVE14, Fox17a, GMC+13, HTLC10, KHM+11, KPH11, KvGS+14, KW10, KSR14, LTK17, MDS+17, PS10, PZM+10, PSW11, PuF13, RHT13, SP10a, Sie10, SPS17]. realtime [OUY+13].
Reasoning [LN15, ABK+16, MLT17].
Recal [Blvd17]. recipes [J+12].
recompilation [NED+13]. Reconfigurable [OUY+13, STY+14, OIA+13].
Reduction [BO12, TD15]. redundant [HLO15]. Refactoring [AS14, STST12, VBZ+18, ZHL+12, FMM+11, FM13].
Reference [Sch14, UJR14, HMDE12]. refinement [GY16, JLP+14, KSW+14, ZMG+14, ZFK+16]. Reflexes [SPF+10].
regions [AC10]. register [ZYZ+12].
relationship [LSBV16, LSBV17, SH12]. relaxed [DNB+12, KHL+17, PP16].
rename [FM13]. Repair [XMD+17, MDS+17, SHU16]. repeatability [Vit14]. replacement [BCD13]. Replay
Specifications [GJS+13, GJS+14, IF16, KW11, LN15, LYBB13a, LYBB13b, LYBB14, TWNH12, BVGVEA11a, BCF+14, KR12, KW10, MRA+17, YP10, dCMMN12].

Standardization [TWNH12]. StarL [LM15]. State [AGR12, BLH12, MvDL12, MS14, GN16, YP10]. state- [YP10].

Statecharts [MS13]. Statement [XMD+17, PLR14, ZWSS15]. statements [PLR14]. Static [BGK17, BNE16, JC10, MTL15, ODL15, PiLCH11, PLR18, RD15, SW12, SH12, AM14, CGJ+16, Fer13, FLL+13, IF16, KSW+14, LS11, MHR+12, Pir17, TTLM13]. statically [BTR+13, NED+13]. statistical [Bra14, ZFK+16]. statistically [PPMH15].

STM/HTM [CHM16]. StMungo [KDPG18]. stochastic [CRAT+12]. stock [PVH14]. Stop [LWB+15]. Storage [Hol12, VDV17]. Store [BS12, Sta10].

stores [DFR13]. Story [Ano14]. strategic [BMDR14]. strategy [PDP+16]. Stream [KBPS17, MV16, BRWA14, SSG+14].

streaming [MRA+17, STCG13]. StreamJIT [BRWA14]. StreamQRE [MRA+17]. streams [SGG+17, UFM15].

Strength [KCD12]. String [HOKO14, CSK17]. Strings [HWM11, HWM10, LSSD14]. strong [UMP10, ZHCB15, ZBB17].

structure [LO15, PLL+18, UMP10]. structured [LSW16]. Structures [GT10b, CDTM10, XMA+10]. studies [EKUR10]. Studio [RT14, FH16].

supertype [RRB17]. supervenience [Rez12].

Support [CSGT17, KKK+17, RKN+18, BVGVEA13, DVL13, GMC+13, HOS12, NGB16, SMN+12]. supported [FMM+11].

Supporting [LWG10, EKUR10]. Surgical [RSP+14].

synchronisation [CHM15, WBM+10].

synchronization [DHY+12, Gra15, Sub11].

Synchronized [BG17].

Synchronized-by-Default [BG17].

Synchronous [BVEAGVA10, SK12, MVH15].

syntactic [LE16, MKK+12, MMK+13, QLB17].

Syntax [SS13, KMMV14, SSK13].

synthesis [SR14a, STR16, SS16].

synthesizable [ABCR10]. synthesizer [OUY+13].

Synthesizing [GK15, SRJ15, LWH+10].

System
Tracking [RLMM15, SDC+12, KHL+13, OOK+10].

transactions [DcSG12, CHM16, DFR13].

transformations [AST+16, PDDD17].

Transform [dMRH12]. transitioning [HWM14].

Translation [BO12, LSWM16].

translations [UTO13]. translator [LZYP16].

transmission [PE11, BVGVEA11b, BJJK12].

transparency [BDGS13, BD17].

trends [RBV16].

Trends [CC15, MSS10, SR17].

trie [SV17]. trie-based [SV17]. tries [SV15a, SV15b].

triggered [EABVGV14]. TRINI [PDPM+16]. Trusted [TWNH12, BCF+14].

tuning [AAB+10, BVGVEAFG11, SKBL11].

Turing [Gri17]. Tutorial [Jen12, Nil12b, Taf13, Zak12]. TV [JMO14].

twitter [Guy14]. Two [Has12].

type [BO13, CGJ+16, KSW+14, KAT12, Lei17, Loc18, RKN+18, SGD15, WT11, ACS+14, AT16, BS13, CMS+12, CVG+17, DLM10, FH16, GBS14, HyG12, KMLS15, KRR+14, KRH16, KvRHA14, KDPG18, LPG14, LE16, MHR+12, SH12, TLL11, Zha12, eBH11]. Type-Based [SGD15].

type-dependent [LE16]. Type-Safe [Loc18, KMLS15]. Typechecking [KDPG18, CL17].

Typed [BO13, KKK+17, MHL15, CMS+12, KRCH14, Lei17, RDP16].

Types [BO13, Rvb14, SPAK10, BDGS13, CHJ12, DDM11, HH13, MME+10, YDF15].

type [Cho14, FH16, RSF+15].

Typing [FZ17, RSF+15, Sie17, SFR+14, TSD+12]. typy [OA17].

Understandable [MSM+16].

Understanding [FRM+15, MKTD17, NBW+18, PCL14, QLBS17, Set13, TABS12, VBMDP16, LWB+15, Nil12b].

uniprocessors [KPHV11]. Units [LLL13].

universe [DDM11]. Unix [PVB17].

Upsortable [SGG+17]. uptrees [HB13].

USA [Hol12, KP15]. usability

[HF16, MHR+12]. Usage

[RC17, PTF+15, QLBS17]. Use

[BGK17, Guy14, MPM+15, AMWW15, MKTD17, PBMH13, Sch19]. use-case

[AMWW15]. used [XR10]. useless [FRC+17].

User [Liu14, MvD12, SLS+12, DAA13, FMS+11, PSNS14]. user-defined [FMS+11].

Using [ASaMGM14, BS12, BSA14, BNE16, DLM10, HCN14, KFBK+15, MV16, MSSH16, Pau14, PQD12, RC17, SDM12, SLE+17, UMP10, Wan11, WKG17, XMA+14, YCYC12, Zak18, BB17, DDF17, Del13, FH16, FOPZ14, GBS14, IvdSi6, KMLS15, KT14, KC12, LYG10, Lew13, LVL14, MT13, PIR17, PLR18, RAS16, SAdB+16, SSK13, SHH16, SHU16, VGS14, WBM+10, WRI+10, XR13, vdMVdMV12].

UT [Hol12]. utility [CSV15, XMA+10].

utilization [BCR13].

v [Sam12]. V8 [MGI17]. Validating [HLSK13]. Validation

[SSB14b, CslD16, HCV17, SSB01]. Value

[BBB+17, DFR13]. variable [CDTM10].
variables [NS13]. Verifiable [FSHR12].

yang [CBGM12]. years [BTR+13]. yieldpoint [LWB+15]. yin [CBGM12].
Z [SBF+10]. Z-rays [SBF+10]. Zero [ZW13].

References

Auerbach:2010:LJC

Avvenuti:2012:JTC

Abanades:2016:DAR

Ansaloni:2012:DAO

Akai:2010:EAS

Anjo:2016:DML

Ivo Anjo and João Cachopo. Design of a method-level speculation framework for boosting irregular JVM applications. *Journal of Parallel and Distributed Com-
REFERENCES

Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney. Adaptive optimization in

Aiello:2011:JBA

Albert:2010:PIM

Antonopoulos:2017:DIS

Andreasen:2017:SDA

Arcaini:2012:CCM

Arcaini:2017:RDP

Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. Rigorous development process of a safety-

Apel:2010:CUF

Aigner:2011:STM

Aigner:2015:AJE

Andrysco:2016:PFP

Axelsen:2013:PTD

REFERENCES

Altman:2012:USM

Andreasen:2014:DSA

Ament:2013:ATG

Andersen:2014:PLJ

Anonymous:2012:AMJ

[Alt12] [AM14] [Ame13] [And14] [Ano12] [AMWW15] [AM17] [AMT17]
Anonymous:2013:FAM

Anonymous:2014:RKS

Anonymous:2015:BRL

Arslan:2011:JPM

Altidor:2014:RJG

Adalid:2014:USA

REFERENCES

Austin:2017:MFD

Afek:2012:ISJ

Alshara:2016:MLO

Akram:2016:BPG

Amin:2016:JST

Ali:2010:DJB

REFERENCES

Bu:2013:BAD

Bettini:2013:FDT

Bodin:2014:TMJ

Bergenti:2011:PPS

Bacon:2013:PRT

Bainomugisha:2013:SRP

Bettini:2017:XTJ

Lorenzo Bettini and Ferruccio Damiani. Xtraitj: Traits
REFERENCES

REFERENCES

2867 (print), 1558-1160 (electronic).

Barbu:2012:ARA

Badihi:2017:CAG

Biswas:2014:DES

Berman:2017:EUS

Bedi:2013:MMT

Bodden:2010:AOR

[BGK17]

Lewis Berman, Keith Gallagher, and Suzanne Kozaitis.

[BGS+13]

[BH10]

E. Bodden and K. Havelund.

[BH12]

Guillaume Barbu and Philippe Hoogvorst.

[BH17]

Sahar Badihi and Abbas Heydarnoori.

Bruno:2017:NPG

Barabash:2010:TGC

Bluemke:2012:DTJ

Bogdanas:2015:KJC

Brandt:2014:DAS

Bhattacharya:2012:DLI

Brown:2012:BRF

Bosboom:2014:SCC

[BRA1]

Bouktif:2014:PSO

[BSA14]

Bonetta:2016:GSM

[BSMB16]

Brockschmidt:2012:ADN

[BSOG12]
Marc Brockschmidt, Thomas Ströder, Carsten Otto,

REFERENCES

REFERENCES

REFERENCES

Chisnall:2017:CJS

Ceccato:2010:MLD

Chugh:2012:DTJ

Ravi Chugh, David Herman, and Ranjit Jhala. Dependent types for JavaScript.
REFERENCES

REFERENCES

[CL17] Anthony Canino and Yu David Liu. Proactive and adaptive energy-aware program-

[CMM17] Sergio Castro, Kim Mens, and Paulo Moura. JPC: a library for categoris-
ing and applying inter-

language conversions be-

[CPV15] Krishnendu Chatterjee, Andreas Pavlogiannis, and
REFERENCES

Curley:2010:RDT

Cote:2012:JPS

Chalin:2010:TIG

Chambers:2010:FEE

Ceccarello:2012:TGC

REFERENCES

[CSS+16] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. Coverage-directed differential testing of JVM implementations. ACM SIG-
REFERENCES

[CVG+17] Cameron:2015:JFE

[CSZ17] Casale:2017:PEJ

Chaudhuri:2017:FPT

[CWW13] Cavalcanti:2013:SCJ

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[DAA13]</td>
<td>Diaz:2013:LEU</td>
</tr>
<tr>
<td>[Dan17]</td>
<td>Dannen:2017:IES</td>
</tr>
</tbody>
</table>

REFERENCES

D'Hondt:2012:ISS

Dolby:2012:DCA

Dietrich:2015:GSE

DiPierro:2018:RJ

DiPierro:2018:TVG

Dietrich:2016:WJD

Dam:2010:PCI

REFERENCES

deMol:2012:GTJ

Duarte:2011:ICS

Devietti:2012:RRC

Dietrich:2010:POD

Dyer:2014:DVE

Doeraene:2016:PIW

Bois:2013:BGV

Kristof Du Bois, Jennifer B. Sartor, Stijn Eyerman, and Lieven Eeckhout. Bottle graphs: visualizing scalability bot-
REFERENCES

REFERENCES

REFERENCES

Exposito:2012:DSJ

Eugster:2013:SUP

Evans:2013:WGJ

Foley-Bourgon:2017:EIC

Fernandes:2011:LFS

Feeley:2016:CML
REFERENCES

[Ferrara:2013:GSA]

[Flanagan:2010:AMD]

[Ferrari:2017:JJF]

[Femminella:2012:EJC]

[Fogus:2011:JC]

[Fischer:2016:EIE]

[Forth:2012:RAA]
REFERENCES

642-30022-7 (print), 3-642-30023-5 (e-book). ISSN 1439-7358. LCCN ???? [FLL+13]
Proceedings of the Sixth International Conference on Automatic Differentiation (AD2012) held July 23–27, 2012, in Fort Collins, Colorado, USA.

Fontaine:2012:VCF

Flanagan:2013:PES

Fan:2018:VCJ

Freudent:2015:SAR

Feldthaus:2013:SAR

Felgentreff:2015:CBC

Feldthaus:2011:TSR

Frantzeskou:2011:SUD

Fu:2014:FDC

Fox:2017:ESI

Fox:2017:EJT

Fernandes:2017:AUM

Leonardo Fernandes, Márcio Ribeiro, Luiz Carvalho, Ro-

[FSK12] Fdez-Riverola:2012:JAF

[FWDL15] Fan:2015:UCC

[FWDL15] Feng:2015:EQD

[FZ17] Fritz:2017:TSA

REFERENCES

Golan-Gueta:2014:ASL

Golan-Gueta:2015:ASA

Golan-Gueta:2017:ASA

Gligoric:2015:GCB

Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin Alipour, and

Gosling:2013:JLS

Gosling:2014:JLS

Gvero:2015:SJE

Diego Garbervetsky, Sergio Yovine, Victor Braberman, Martin Rouaux, and Alejandro Taboada. Quantita-
References

Hauswirth:2013:TJP

Hanenberg:2015:WDW

Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Hasbun:2012:UTP

Haverbeke:2011:EJM

Heumann:2013:TEM

Huang:2013:ECS

Jipeng Huang and Michael D. Bond. Efficient context sensitivity for dynamic analyses via calling context up-trees and customized memory management. *ACM
REFERENCES

Hindle:2016:NS

Hedin:2016:IFS

Heidegger:2012:APC

Hsiao:2010:EST

[Chun-Feng Hsiao and Chih-Ping Chu. Enhancing SCORM through creating a reusable Java class repository. Software—Practice and Experience, 40(10):865–881, September 2010. CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

Hsiao:2014:UWC

[Chun-Hung Hsiao, Michael Cafarella, and Satish Narayanasamy. Using web corpus statistics for program analysis. ACM SIGPLAN Not-
REFERENCES

Hamm er:2017:VOV

Halder:2017:JSV

HunEom:2012:SSJ

HunEom:2012:DDP

REFERENCES

REFERENCES

Tony Hosking. Compiling a high-level language for GPUs: (via language support for architectures and compilers). *ACM
REFERENCES

Haas:2017:BWS

Higuera-Toledano:2010:ISI

Higuera-Toledano:2014:EIS

Hayashizaki:2012:IPT

Huang:2011:SBA

Haubl:2010:CES
REFERENCES

Haubl:2011:ECE

Haubl:2013:CST

Haubl:2014:TTE

Humer:2015:DSL

Hackett:2012:FPH

Iranmanesh:2016:SSE

Inoue:2012:AML

Inoue:2012:ISC

Islam:2012:HPR

Insa:2018:AAJ

Inostroza:2016:MIM

Juneau:2012:JRP
REFERENCES

Joseph:2010:PII

Jaffer:2013:EAR

Ji:2012:PKP

James:2010:FMC

Jara:2012:NVJ

Jendrock:2012:JET

Jovic:2011:LLP

REFERENCES

Jantz:2013:ESM

Jagannathan:2014:ARV

Jung:2012:EJS

REFERENCES

Kastner:2012:TCA

Kumari:2011:AOO

Kunjir:2017:TAM

Kim:2014:LBL

Kiselyov:2017:SFC

Kulkarni:2012:MCO

Krishnaveni:2012:HOJ
Kedia:2017:SFS

Kouzapas:2018:TPM

Kereki:2015:JAW

Kuehnhausen:2011:AJM

Kumar:2012:WSB

Khan:2015:UJW
REFERENCES

Kerschbaumer:2013:IFT

Kang:2017:PSR

Kalibera:2011:FRT

Kabanov:2011:DSF

Kienle:2010:ATT

Kienle:2013:BRE

Kim:2017:TAA

Krieger:2011:AES

Kaiser:2014:WAM

Ko:2010:EAW

Karakoidas:2015:TSE

Kalibera:2014:FAS

REFERENCES

Kulkarni:2016:APA

Kolling:2010:GPE

Kroening:2015:CAV

Kalibera:2011:SRT

Khyzha:2012:AP

Kang:2012:FSJ

Kedlaya:2014:DDL

REFERENCES

REFERENCES

REFERENCES

Kolesnikov:2014:CPB

Sergiy Kolesnikov, Alexander von Rhein, Claus Hun

Kim:2010:EAE

Kim:2011:MAE

Lorenzen:2016:STD

Florian Lorenzen and Sebastian Erdweg. Sound type-dependent syntactic

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Lee:2016:ECP

Loring:2017:SAJ

Long:2012:COS

Leavens:2015:BSS

Lopes:2015:HSA

Lochbihler:2013:MJM
REFERENCES

Landman:2017:CEA

Luu:2014:MCC

Leopoldseder:2016:JIT

Li:2011:JEC

Li:2014:EAJ

Laskowski:2012:DJP

Eryk Laskowski, Marek Tundruj, Ivanoe De Falco, Umberto Scafuri, and Ernesto Tarantino. Distributed Java programs initial mapping based on extremal optimization. Lecture Notes in Computer Science, 7133:

Maas:2016:THL

McIntyre:2012:FJB

Martinez:2017:MBA

McKinley:2016:PWU

McLane:2010:UIV

Marr:2015:TVP

Stefan Marr and Stéphane Ducasse. Tracing vs. partial evaluation: comparing meta-compilation approaches for self-optimizing interpreters. ACM SIG-
REFERENCES

Marr:2017:CLC

Martinez:2017:ARR

Meijer:2014:EJR

Martinsen:2017:CTL

Miller:2013:IPG

... conference proceedings.

[Matsakis:2015:TOJ]

[McGachey:2010:CJC]

[Mayer:2012:ESI]

[Miller:2013:TSG]

[Malhotra:2017:PPS]

[Misra:2012:JSC]

[Misra:2013:JSC]
Janardan Misra, Anmer...

Markstrum:2010:JDP

Martin:2014:TCR

Mirzaei:2012:TAA

Mirshokraie:2015:GMT

Mastrangelo:2015:UYO

Mercer:2012:CVI

Eric Mercer, Suzette Persson, and Neha Rungta. Computing and visualizing the impact of change with Java PathFinder exten-
Magazinius:2012:SWS

Mamouras:2017:SMS

Meawad:2012:EBS

McIlroy:2010:HJR

Marinescu:2013:FSJ

Moller:2014:ADC
REFERENCES

Madsen:2015:SAE

Marz:2016:RPC

Mesbah:2012:CAB

Motika:2015:LWS

Mateos:2010:ANI

Mateos:2010:MJN

Nasseri:2010:CMR

E. Nasseri, S. Counsell, and M. Shepperd. Class movement and re-location: an

Nuzman:2013:JTC

Newton:2015:ALF

Noll:2012:IDO

Noll:2013:OFD

Nunez:2016:PGC

Ngo:2012:BRE

REFERENCES

Noller:2017:SSE

Nikolic:2012:DEA

Nikolic:2013:RAP

Nicolay:2017:PAJ

Nguyen:2015:FCR

Nguyen:2018:UCM

Naik:2012:AT

[NYCS12] Mayur Naik, Hongseok Yang, Ghila Castelmuovo, and Mooly Sagiv. Abstrac-

REFERENCES

Omar:2017:PSF

Oaks:2014:JPD

Ocariza:2017:SCC

Ortin:2014:RPI

Olivo:2015:SDA

Ogawa:2013:RJA

Paul:2014:RTP

Parnin:2013:AUJ

Pinto:2014:UEB

Philips:2017:DDD

Parker:2011:DPG

Pradel:2012:FAP

Park:2011:DCM

Pizlo:2017:JVM

Pukall:2013:JFR

Piao:2015:JJF

Parizek:2012:PAJ

Pan:2018:ASJ

Park:2018:SAJ

Pawlak:2016:SLI

Papadimitriou:2014:MLS

REFERENCES

Phan:2012:SQI

Passerat-Palmbach:2015:TSS

Pichon-Pharabod:2016:CSR

Pham-Quang:2012:JAD

Piedrahita-Quintero:2017:JGA

Pitter:2010:RTJ

113

REFERENCES

Pape:2014:EJV

Papadimitriou:2011:SES

Puffitsch:2013:SIP

Petrashko:2016:CGL

Powers:2017:BBG

Pina:2014:RDJ

(print), 1523-2867 (print), 1558-1160 (electronic).

Plumbridge:2013:BPR

Pan:2017:GCF

Pizlo:2010:SFT

Qiu:2017:USR

Qian:2016:EFS

Rayns:2013:CJS
REFERENCES

URL http://proquest.tech.safaribooksonline.de/0738438332.

Andrea Rosà, Lydia Y. Chen, and Walter Binder.
REFERENCES

Robatmili:2014:MRL

Radoi:2015:ETS

Ramirez-Deantes:2012:MTA

Rhodes:2015:DDO

Reynders:2016:GSB

Reynolds:2013:MJB

REFERENCES

REFERENCES

[Rim12] Frank Rimlinger. Test generation via symbolic simulation. *ACM SIGSOFT Soft-
Ravn:2012:SCJ

Rompf:2014:SPJ

Rastogi:2015:SEG

[Ran:2012:SCJ]

[Ros:2017:ARC]

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raychev:2015:PPP</td>
<td>Veselin Raychev, Martin Vechev, and Andreas</td>
</tr>
</tbody>
</table>

Ricci:2011:SAO

Ryu:2016:JFB

Serbanescu:2016:DPO

Samuelson:2012:LSO

REFERENCES

REFERENCES

Schildt:2014:JCRb

Sluanschi:2016:AAD

Sousa:2016:CHL

Sridharan:2012:CTP

Schoeberl:2017:SCJ

Shah:2012:AMJ

References

REFERENCES

REFERENCES

Singer:2010:EGC

Smans:2010:AVJ

Shan:2012:OAC

Salkeld:2013:IDO

Singer:2011:GCA

Schoeberl:2011:HAL

Sondergaard:2017:CTD
Hans Sondergaard, Stephan E. Korsholm, and Anders P. Ravn. Conformance test development with the Java modeling language. *Concurrency and Computation:
REFERENCES

Practice and Experience, 29 (22):??, November 25, 2017. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

Stilkerich:2017:PGU

Stilkerich:2015:PGA

Steele:2014:FSP

Snellenburg:2012:GJB

Shafiei:2012:MCL

Singh:2012:EPS
REFERENCES

REFERENCES

[SPY+16] Andrei Stefanescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Rosu. Semantics-based pro-

Samak:2014:MTS

Samak:2014:TDD

Sun:2017:AJP

Samak:2015:SRT

Scanniello:2017:FFC

Sutherland:2010:CTC

Scheben:2012:VIF

Christoph Scheben and Peter H. Schmitt. Verification of information flow

REFERENCES

Su:2014:CEM

Srikanth:2017:CVU

Singh:2013:TGC

Sciampacone:2010:EMS

Stark:2010:BIA

Santos:2013:DDS

Ivo Santos, Marcel Tilly, Badrish Chandramouli, and Jonathan Goldstein. DIAl: distributed streaming analytics anywhere, anytime. Proceedings of the VLDB
REFERENCES

Endowment, 6(12):1386–1389, August 2013. CODEN ???. ISSN 2150-8097.

Stefanov:2010:JP

Samak:2016:DSF

Sun:2013:BJW

Subramaniam:2011:PCJ

Steindorfer:2015:CSM

Michael J. Steindorfer and Jurgen J. Vinju. Code spe-

Steindorfer:2015:OHA

Steindorfer:2017:TSP

Silva:2017:ICL

Sverdlove:2014:JVL

Siek:2012:FDT

Stancu:2015:SEH

Szweda:2012:ANB

Servetto:2010:MMC

Sharma:2017:VCS

Siegel:2011:AFV

Simon:2015:STH

Tamayo:2012:UBD

Taft:2013:TPS

REFERENCES

Tanyalcin:2018:LVL

Taibi:2013:ROS

Tarau:2011:IST

Tosch:2014:SPA

Thomson:2015:LHB

Tomescu:2017:CEN

REFERENCES

[TL17] Rei Thiessen and Ondrej Lhoták. Context transformations for pointer analysis. ACM SIGPLAN No-
REFERENCES

Tate:2011:TWJ

Tetali:2013:MSA

Tan:2017:EPP
Tian Tan, Yue Li, and Jingling Xue. Efficient and precise points-to analysis: modeling the heap by merging equivalent automata. ACM SIGPLAN Notices, 52(6):278–291, June 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Terra:2013:QCC

Toledo:2012:AJA

Topley:2011:JDG

Toffola:2015:PPY
Luca Della Toffola, Michael Pradel, and Thomas R. Gross. Performance problems you can fix: a dynamic

Tatsubori:2010:EJT

Torlak:2010:MCA

Tardieu:2012:WSS

Toegl:2012:SSJ

Titzer:2010:ICR

Teng:2010:TPA

Urma:2015:JAL

Urma:2010:IRB

Upadhyay:2015:EML

Ur:2014:ROP

Urec:2013:MIS

REFERENCES

Santiago A. Vidal, Alexandre Bergel, Claudia Mar-

Vidal:2018:ARB

vanderMerwe:2012:VAA

Viotti:2017:HRH

VanLoan:2010:ITC

Vega-Gisbert:2016:DIJ

REFERENCES

Vikas:2014:MGA

Vitek:2014:CTR

Vitek:2012:ISI

VanCutsem:2010:PDP

VanCutsem:2015:RTC

VanderHart:2010:PC

V:2011:BBI
Sharath Chandra V. and S. Selvakumar. BIXSAN: browser independent XSS sanitizer for prevention of XSS attacks. ACM SIGSOFT Software Engineer-
REFERENCES

[Varier:2017:TNJ]

[VanNieuwpoort:2010:SHL]

[Vechev:2010:PPC]

[Wurthinger:2011:SAR]

[Walker:2012:SNJ]
Henry M. Walker. SIGCSE by the numbers: JavaScript. SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education), 44(1):8, January 2012. CODEN SIGSD3. ISSN 0097-8418 (print), 2331-3927 (electronic).

[Wampler:2011:FPJ]
147

REFERENCES

Wellings:2016:ISC

Wagner:2011:SJV

Wagner:2011:CMM

Wang:2011:EEU

Wellings:2016:ISC

Wagner:2011:SJV

Wagner:2011:CMM

Wang:2011:EEU

Xu:2010:FLU

Xu:2014:SRB

Xuan:2017:NAR

Xia:2012:MDA
REFERENCES

Xu:2010:DIU

Xu:2013:PML

Xue:2012:RJC

Xie:2013:AAE

Yang:2012:MPD

Yi:2015:CTC

Yang:2013:CPP
Chao Yang, Zengyou He, and Weichuan Yu. A combinatorial perspective of the

Yoo:2014:WRR

Yang:2010:JIP

Yi:2015:SCC

Yiapanis:2013:OSR
REFERENCES

Zheng:2016:CMD

Zhao:2013:INT

Zeyda:2014:CMS

Zeyda:2014:CMS

Zabolotnyi:2015:JCG

Zhang:2014:ARP

Zhou:2016:IRO

Zhang:2014:HTB

Zakak:2014:JJM

Zibin:2010:OIG

Zerzelidis:2010:FFS

Zhu:2013:EAZ

Zhu:2015:APL
Xiaoyan Zhu, E. James Whitehead, Jr., Caitlin Sadowski, and Qinbao Song. An analysis of programming language statement...
REFERENCES

Zhao:2014:CSP

Zhao:2016:NVC

Zhang:2012:SRB

Zhang:2012:SRB

[XYZ+12] Yuan Zhang, Min Yang, Bo Zhou, Zhemin Yang, Weihua Zhang, and Binyu Zang. Swift: a register-based JIT compiler for em-