A Bibliography of Publications about the *Java Programming Language*, 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
14 December 2019
Version 1.216

Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

- [DiP18b, FLZ+18, GBC12, JEC+12, ZXL16].
 3
 39.95 [Ano18]. 4 + 1 [SRB18].
 τ_P [LTK17].
 C_P [AO11].
 K [PLL+18, SS19, SD16b, SGG+17].
 N [ADJG19, WZK+19].
 Z_P [AO11].

 '12 [Hol12]. 12th [Fox17a].

 2015 [LSBV17]. 27th [KP15].

- 5 [KHR11].

- 6 [Jen12].

- 7 [Ano15, EV13, J+12]. 75 [HWM11].

- 8 [BKP16, CWGA17, LYBB14, SADB+16, UFM15].
Abbreviated [SRTR17]. ABS [SAdB16].

absence [AGH17]. Abstract [AGR12, BDT10, DLR16, KPP12, XMA+14, DLM10, DLR14, FSC+13, KMV14, NSDD17, SSK13]. Abstraction [BW12, Bro12, GY16, SKKR11, PL12, ZMG+14, ZFK+16]. Abstractions [NYCS12, RFB14, UR15, SPP+10].

accelerated [PQTGS17]. Accelerating [KMZN16, ZLB14, Cha18]. Accelerator [MAK19, OIA+13]. accelerators [PWA13]. Access [CSGT17, HBT12, TT11, TTN12, BB17, KT14, MHH10, RHN+13, XHH12]. Accessibility [STST12, VBMDP16].

Acculock [XXZ13]. accuracy [MDHS10].

Accurate [Jaf13, RRB17, XXCL19, ZBB15, XXZ13]. ACDC [AHK+15]. ACDC-JS [AHK+15].

Adequacy [PSJ18]. Adequate [GGZ+15]. ADiJaC [SD16a]. Admitted [YXS+19].

Adoption [PBMH13, PGA18]. Adriaan [Ngo12]. Advanced [Hor11, VBAM10a, dJMH18, Jen12]. Advances [FHP+12]. Adversarial [FF10].

algebras [IvdS16, ZCSoV15]. Algorithms [JJO19, YCYC12, ZW13, MT13, MLM17, Por18, Gun14]. Algorithmic [FHP+12]. Algorithms [BF18, GT10b, Gra15]. Aliasing [NS12].

Alting [WBM+10]. always [AJL16].

Analyses [Kri12, TN19, HB13, KMZN16, PMP+16, ZMG+14]. Analysis [ADG19, AGM+17, Bul18, CPV15, Hol12, JJO19, KCD12, LHR19, MvDL12, NS12, RDCP12, RRB19, SGD15, SW12, SDC+12, SLES15, SLE+17, SR17, VP16, ZKB+16, AM14, Bra14, CFH+13, CDM19, DHS15, GYB+11, HCN14, HWL11, KSW+14, KT14, KvGS+14, KPP+18, KRR19, LSBV16, LSBV17, LT14, MTL15, MKZ+14, MCC17, MB12, NSDD17, NS13, PIR17, PLR18, Puf13, RLVB10, RRB17, SPPH10, SNSB11, SBK13, SP10b, TLX17, TWX+10, TLM13, TL17, TPG15, WA19, ZMNY14, ZWS15, CH17].

Analytics [BBB+17, KB17, STCG13]. analyzer [Fer13, GN16, SMP10].

Analyzing [PLL+18, ZDK+19, BTR+13, PSNS14].

Android [CNS13, MPM+12, STY+14, THC+14, ZHL+12, ZKB+16, vdMV12]. AngularJS [RVT18]. Ann [CSlL16].

answering [KM10]. any [FIF+15]. anytime [STCG13]. anywhere [STCG13]. AOP
Aspect-Oriented
[ABMV12, BH10, VBAM10b, WBA+11].
Aspectizing [TTN12]. AspectJ [AC10].
aspects [LVG10]. Assertion [MM12].
Assertion-Based [MM12]. Assertional
[LL15]. assertions [VYY10]. Assessing
[GTSS11, FSJ18, VBZ+18, JACS10].
assessment [IS18]. assignment [KT15].
AST [DRN14, HW+15, ZLFB14].
asymmetric [CBGM12]. asymptotic
[ODL15]. Asynchronous
[KW11, SK12, WK12, FZ17, KW10, LML17].
atomic [WAB+11]. Atomicity
[GGRSY17, JLP+14, BHSB14, BNS12,
GGRSY15, UMP10]. atomicities [PPS16].
Attack [BH12]. Attacks
[MSKK16, SBE+19, VS11]. attribute
[SHU16]. attributes [GD10].
augmentation [DAA13]. Augmenting
[ZYY19]. authentication [XH12].
authorship [FMS11]. auto [SKBL11].
auto-tuning [SKBL11]. automata
[LKP19, TLX17, ZWZ+14]. Automated
[BH17, BSOG12, BMOG12, MS14, RGEV11,
SDM12, TJLL18, UPR+18, AsdMGM14,
MRMV12, ZFK+16]. Automatic
[GGRSY14, GGRSY15, GGRSY17, IS18,
KKW11, LXP18, MDS+17, MM16, PDQ12,
PB+19, RK19, SIZ1, S1D16a, SJPS10,
SS16, WM10, XMD+17, ZLPN18, ABK+16,
FM13, PG12]. automatically
[TB14, VB18]. Automating [XYS19].
Autonomic [DLPT14, SEK+19].
Autonomous [GMPS12]. average [DL14].
avoid [XR10]. Avoiding [FRC+17, ZBB17].
avoids [PPS16]. Aware [JYKS11, L212,
BBXC13, CL17, EQT10, SSB+14a, SGV12].
awareness [VGS14]. axiomatic [TV14].
B [DLZ+13]. back [CA11]. Background
[PW17, PWG19]. Backstage [PS11].
Bad [dGRd15]. baggage [KB+12].
balances [FMBH15]. balancing
[PDPM+16]. Ball [DD13]. Bar [WCG+18].

[GMPS12, BL15, ABFM12, MLM17, MLM19, dCMMN12]. Cards
[BH12, GMPS12]. care [EKUR10]. Caring
[DAIA13], carry [Ame13], Cartesian
[SD16b]. Case
[LMZP19, ZMM+16, dGRdB+15, AMWW15, HNFT12, JK11, MT13, SPPH10, Vit14]. Cassandra
[FRM+15]. casts [SH12]. categorising [CMM17], Catena [TD17]. Causal
[OBPM17, FRM+15]. CAV [KP15]. Cay
[Gve13]. CC [LSBV16, LSVB17]. CCA
[FLZ+18, ZXL16]. Center [Hol12]. centric
[DHM+12, FOPZ14]. CERT [LMS+12].
chain [KSR14]. Challenges
[GM12, SWMV17, Sie17, SR17, AACR18]. Change
[YXS+19, YQTR15, MPR12].
Change-Level [YXS+19]. Changes
[MvDL12, CJ19, PTRV18]. Changing
[SSG+14]. Channel [Bul18]. channels
[AGH+17, LS11]. characteristics [ABC18].
Characterizing [CJ17]. check
[CS12, GvRN+11]. Checking
[BNE16, CSF+16, Cho14, FSK12, JC10, JYKS12, ABFM12, BSHB14, BNS12, CVG+17, DLM10, FLL+13, HMDE12, KATS12, KvRHA14, LT11, RR14, RAS16, RDF15, TVD10, VYY10]. checkpointing
[SGV12]. checkpointing-enabled [SGV12].
Checks [FMBH15]. CHERI [CDG+17].
chip [PS10b, Puf13, RS12, SPS17].
chip-multiprocessor [PS10b].
chip-multiprocessors [RS12]. Choice
[JCM19, WBM+10]. CICS [R+13]. CIL
[BBF+10]. circular [Gun14, SZ10]. Circus
[ZLCW14, MCW19]. City [Hol12].
Class [BS13, CSF+16, NCS10, CSKB12, HC10, MHH10, SC16, SM12, TSD+12]. Classes
[And14, SVB+17, WT11, CZ14, CS12, SZ10, TSD+12, VBDPM16]. Classfiles [SD16a].
Classification [PBM+19, SS14]. Classifiers
[BSA14]. Classifying [MMH10, PBB19].
Classless [WZdSOS17]. clicker [HA13].
Client [MS14, OBPM17, CH17, KRH16].
Client-Side [OBPM17, KRH16].
Client-State [MS14]. clients [SRB18].
Clojure [ECG12, FH11, VS10]. Cloned
[SSL18]. Closing [ZLHD15]. Closures
[BO11, BO12, BO13]. Cloud
[VDV17, WZK+19, BFS+18, GGC18, LZY16, TLM13]. cloud-based [GGC18].
clustered [PDM+16]. clustering
[MKK+12, MKK+13]. clusters [TRTD11].
Cocoa [Sta10]. Code
[ADG19, BH17, BNE16, CJ19, HC11, MBS19, MM16, PKPM19, RYK15, RLM15, SRR17, SVB+17, SV15a, SED14, WWG+18, XXCL19, AGRI17, AK13, CCFB15, DRN+14, FLZ+18, FH16, FMS+11, IS18, LYG10, MKK+12, MKK+13, NG13, OJ12, PTRV18, PBB19, PMP+16, PPS11, RFRS14, RV16, RYK19, RO12, SSK13, Tai13, UTO13, VSG17, WK17, WGF11, WBA+11, WAB+11, WWS13, ZHL+12, ZXL16, ZWS15].
Code-Issue-Introducing [CJ19]. coding
[LMS+12]. Coefficient [ADG19]. Coffin
[Tao12]. coherent [ZP14]. Cohesion
[RC17]. Cold [BDZ17, WGF11]. Collect
[JCM19]. collected [AGGZ10]. collecting
[AHK+11]. Collection
[ASV+16, BF18, GM12, MAK19, QSaS+16, ST15, URJ18, ASME18, BP10, BO17, KPHV11, KBL14, NGB16, ODL15, PZM+10, PDM+16, SP10a, SM14, Sie10, SJBL10, SKBL11, UTY10, UJR14]. Collections
[GS12, LON10a, LON10b, PL12, SV15b, SV17]. collectives
[RTET15, TRTD11]. Collector
[BH12, GTS+15, BCR13, BVG14b, Puf13].
Collectoren [Sch13]. collectors
[GTSS11, Sch13, XGG+19]. coloring
[SS10]. Colt [BK16, WN10]. CoMA [AGR12].
Combating [WBW+18]. Combination
[BDA14]. Combinatorial [YHY13].
combinators [MHBO13]. Combining
[BDGS13, MS19, MG17]. commensal
[BRWA14]. comments [PBB19, ZYY+19].
Commercial [ZMM+16]. commodity
Common [PiLCh11].
Communication [JQJ+16, RTE+13, SK12, BJBK12, ETR+15, TTD+11].

Compatibility [DJB16, OIA+13]. compatible [ABCR10, Hor12].

Computer [HWM11, OAC18, DNB+12, KP15]. Computing [Hol12, MPR12, NBB18, PWSG17, PWSG19, SHU16, TWNH12, WN10, AdSCdR+19, LZYP16, Rub14, TTD+11, VF10, TRE+13].

Compiler [JMB12, Loc18, NKH16, NWB+15, BBF+10, BRWA14, CIAD13, Cle16, HWM14, IHW12, KMLS15, KS14, KC12, LSWM16, MDM17, Ot18, Rub14, TTS+10, TWSC10, VB14b, ZYZ+12]. compiler-compiler [KS14]. compiler-runtime [TWSC10]. compilers [Hos12, LMK16, RSB+14].
Compiling [Fee16, Hos12]. complementation [BS13]. Complete [BO13, BR15, JC10, Sch14, Gri17, PSR15, RGM13, RRB17]. completeness [KBPS17].

Control [FGR12, FHSR12, TT11, TNTN12, AdCGG16, BNP+18, BL15, FWDL15, LSWM16, RHN+13, STS+13, TABS12,
controlling
[YDFF+15, Hdl17]. Coordinating [MAHK16]. coordination [BMSZ17]. copy
[FBB17]. copyrightable [Sam12]. Core [Hos11, HC13, RDPC12, RTL+13, MS10, PLL+18, TRTD11, Gve13]. cores
[GTSS+11, SKBL11]. Cornell [Gve13]. corpus
[HCN14, LSVB16, LSVB17, TMVB13]. correct
[AdCGGH16, AIL16, DJLP10, PS10a]. Correctness [LL15, BENS12, Cho14]. Correlation [SDC+12, XHH12]. Corrigendum
[CSS+16, GGG+15, MSS19, RGB18]. Coverage-Based [GGG+15]. Coverage-directed [CSS+16]. CPS
[PDDD17]. CPU [PKO+15]. Crawling [BMSV18, MvDL12]. Creating [YMHB19, HC10, VBAM10b]. Creation
[SK12]. crisis [AT16]. Critical [HL13, MECW19, WK12, WC16, ZLCW14, AGR17, DTLM14, GMC+13, NM10, Nld12b, RS1, SDH+17, CW13, LWC17]. Cross
[GGG+18, MDM+17, OTR+18, WBNH18, XXCL19, AMW15, BKC+13, GSS+16, KMZN16]. Cross-Architecture [XXCL19]. cross-cutting [AMW15].
Cross-Language
[GGG+18, MDM+17, GSS+16]. Cross-Layer
[OTR+18]. Cross-OS [XXCL19]. Cross-Platform
[WBNH18]. cross-program [KMZN16]. cross-thread
[BKC+13]. Crowdsourcing [BH17]. CrowdSummarizer [BH17]. crypto
[PTRV18]. Cryptography [GPT12]. CSS
[Ano15, HLO15, Sta10]. Curve [GPT12]. customizations [LVG10]. customized
[HB13]. cutting [AMWW15]. Cyclic
[BMG12, RS12].

D
[DiP18b, FLZ+18, GBC12, JEC+12, XZL16]. DAA [DR10]. Data
[Bra14, BMOG12, BA17, BF18, GM12, GTS+15, GTB10b, JJCO19, NKh16, NWB+15, NFF+18, NWB+18, TAF+18, YWW+18, ZLN18, dMRH12, BK14, BB17, BOF17, BBX13, BBK12, CDTM10, CRP+10, CFR13, DHM+12, EF10, FOPZ14, KB17, LDL14, MRA+17, Nl14, SADB+16, SGG+14, SGG+17, UMP10, WKJ17, WCG14, XXZ13, XMA+10, XGD+19, Zlvd17]. data-centric
[DHM+12, FOPZ14]. Data-Driven
[JJCO19]. Data-Intensive [NBW+18]. Data-Parallel
[NKH16, CRP+10]. database
[Dei10, EF10, TABS12]. datasets
[EF10, MLGA11]. Dataflow
[BR12]. Datalog [ZMG+14]. dataset
[CHMY19, CHMV15, SR14a, SR14b]. Dean
[Bro12]. Debt [YXS+19]. debugging
[ASdGM14, BM14, KS14, TB14, VB18, ZFK+16]. December [LSBV17]. Deciding
[SGD15]. decision [RBV16]. Declarative
[DRN14, RS12, FOPZ14, WC19]. MME+10. Decomposition
[AGH+17, PLL+18]. deconstructing
[ACS+14]. decoupled [LPA13]. deduplication [HOKO14]. Default
[BG17, SNS+14]. defects4j [MDS+17]. defined [FMS+11]. Definite
[NS12]. Definition
[SS14b, AK13, SSB01]. Definitive
[Oak14]. delegation [GBS13]. delimited
[PDDD17]. Delphi [GBS13]. demand
[FWDL15, ZHL+12]. demand-driven
[FWDL15]. DemoMatch
[YKSL17]. demonstrations
[YKSL17]. Deoptimization
[KRC14]. depend
[LCW18]. dependability [GD10]. Dependence
[PDDD17, JWMC15].
Dependence-driven [PDDD17].
dependences [BKCU13, WLL19].
dependencies [ELW15]. Dependent [CHJ12, LE16]. deploying [R+13].
deprecation [SRB18]. depth [Rau14].
Dual [AD16]. Dual-Pivot [AD16]. Dynamic [AGM+17, ABMV12, ASF17, BFS+18, CHMY15, CHMY19, LMK16, MRF18, MvdL12, PTHH14, RDF15, WWG+18, XMA+14, ZKB+16, AF12, BDB11, B14, BCD13, BOF17, CSV15, CPST15, ELW15, GYB+11, HB13, KRCH14, KRR+14, KT14, LWH+10, LVG10, MKZ+14, Nll12b, NG12, NED+13, RLVB10, RCR+14, RRB17, SR14b, SJP510, SH12, TPG15, VBAM10b, WX16, WFF18, WBA+11, WAB+11, WWS13, WWH+17, ZBB15]. dynamic-memory [GYB+11].
Dynamically [WWG+18, CZ14, CMS+12, hEYJD12]. Dynamically-Generated [WWG+18]. Dynamo [BDB11].
Editorial [Fox17a]. Editorials
execution-driven [HZZK19]. Executions [WCG+18, AsdGM14, PPS16, STR16].
executives [RS12]. Exemplar [ZW13].
exhaustive [RS12]. Exhibitionism [VBMDP16].
Exogenous [BMSZ17]. Experience
[ABMV12, OW16, Sch10a, FGB+19, CBLF12, TRE+13, WT10]. Experiment [BK16, MDS+17, HWLM11].
experimental [XGD+19]. explicit
[NGB16]. exploit [Anol13]. Exploitation [SSMD10, MLM19]. Exploiting
[NKH16, QSaS+16]. exploration
[FWDL15]. explorative [AHK+15].
Exploratory [BK16, ECS15].
EXPLORER [FWDL15]. Exploring
[JK13, JWMC15, SE12]. exposed
[VBDPM16]. Express [JQJ+16].
Expression [NS12, PIR17]. expressions
[GK15, MKT17]. expressive [VYY10].
Extended [DDD17, FGR12, FLL+13, JC10, LMK16, PDPM+16]. Extending
[AC10, BVGVEA11a, LPA13, PTHH14].
Extensible
[ZlvdS17, ER14, KML15, MHBO13].
Extension
[RS12, WA19, LE16, MLGA11, PD1G12].
extensions [MPR12, Zha12]. Extensive
[LMZP19, Wan11]. Extracting
[CJ19, CCA+12, KM10]. extraction
[LKP19]. Extremal [LTD+12]. Eye
[OAC18, RLMM15, Gyu14]. Eye-Tracking
[OAC18, RLMM15].

F [GMT14, TTD12]. F-bounded [GMT14].
F-MPJ [TT12]. FFA [Sch10a].
FACADE [NWB+15]. face [XHH12].
Facebook [Anol13, HOSC16]. Facets
[ASF17, AF12]. facilities [BVGEAF11].
Factors [PGA18]. FAD.js [BB17]. failing
[STR16]. failures [CRAJ10], false
[HWT+12]. familiarized [Ane13]. family
[KHM+11, KvrHA14]. family-based
[KvrHA14]. Fast

[CVG+17, CSGT17, HyG12, SBM14, SLF14,
YMHB19, Zak18, BB17, KMMV14,
KCP+17, MDM17, MHBQ13, SV15b].
Faster [BMDK15, JC10, AJL16]. Fault
[RK19, RBL12]. Fault-Tolerance [RK19].
Faults [SRTR17, KPP+18, ZZK13].
FC [YWW+18]. Featherweight [RvB14].
feature [AH10, KvrHA14, OJ12, SS19].
feature-based [KvrHA14]. features
[MKK+12, MKK+13]. Feedback
[NED+13, NG13, WM10]. Feedback-directed
[NED+13, NG13, WM10]. fields [PQTGS17].
FIFO [QSaS+16]. filtering [HWI+12]. find
[Ryu16]. Finding [RPP19, XMA+10]. Fine
[BVGEAF11, DRN14]. fine-grained
[DRN14]. Fingerprints [MSK16]. Finite
[BLH12, MB12]. Finite-State
[BLH12]. first [SC16, TSD+12]. first-class
[SC16, TSD+12]. fix [TPG15]. Fixing
[SRTR17, LTT14]. flexibility [SBF+10].
Flexible [ES14, MSM+16, PKK+13,
RHN+13, BCD13, KHR11, Por18, ZW10].
Flint [LTZ14]. Floating [Jaf13, AJL16].
Floating-Point [Jaf13, AJL16]. Flow
[ASF17, FHSR12, LMK16, SS12,
AdCGGH16, AF12, ABF12, BK14, BL15,
FDWL15, HBS16, KHL+13, LSWM16,
PMTP12, STA18]. Flow-sensitive
[LMK16, STA18]. FlumeJava
[CRP+10]. fly
[UJR14, URJ18]. folding [CPST14].
Footprint [GS12, WHIN11]. Forecasting
[CC15]. foreign [LWH+10]. forge [Ler10].
fork [MZC10a]. fork/join [MZC10a]. form
[GK15]. Formal [DLPT14, KR12, SW12,
HdM17, PSR15, SZ11]. formalised
[CWW13]. Format [YWW+18]. Forsaking
[GBS13]. FORSETI [CSV15]. Forward
[FOPZ14]. Foundation [CJ17]. Four
[MSS10]. FPGA [OUY+13].
fragmentation [PZM+10].
fragmentation-tolerant [PZM+10].
Fragments [PBM+19, OA17]. frames
[SJPS10]. Framework [CCA+12, Den18,
FF17, LM15, PWSG17, PWSG19, RBL12, SEK+19, TN19, Ame13, AC16, DDDF17, ER14, FRGPLF12, JEC+12, KMLS15, Lon10a, Lon10b, MT13, PGA18, PKO+15, RR14, STY+14, ZW10, ZDS14.

Frameworks [PPMH15, Francisco [KP15]. free
[DTLM14, FC11, GK15, HHH+14, NFV15].
free-form [GK15]. free-lunch [DTLM14].
frequency [ZWSS15]. Frequent [RC17].
Friendly [RBL12, fringe [MB12, MB12].
Full [SRTR17, DRN14]. Full-Word
[SRTR17]. Fully [FSC+13, PG12, ZFK+16]. Functional
[HOSC16, Wam11, Ame13, BVGVEA11b, NVF15, SV18, UFM15, Bro12].
functional-style [UFM15]. functions
[LSBV16, LSBV17]. Fundamentals
[HC13, Teo13, Gve13]. Fusing
[MS13, ETR12, WM10]. fusion [KBPS17].
future [SS16]. fuzzer [Guo17]. Fuzzy
[YPMM12]. Fuzzy-Rule-based
[YPMM12].

Game [MT14, Wam11]. Gap
[PVBL17, ZLHD15]. Garbage [AVG+16, BH12, BF18, GTS+15, JCM19, MAK19, QSA+16, Sch13, SKBL11, URJ18, ASME18, AGGZ10, BCR13, BP10, BVGVEA14b, BOF17, GTS11, KPHV11, KBL14, NGB16, PDM+10, PPM+16, Pus13, SP10a, SMD14, Sie10, SJBL10, UIY10, UJR14, XG+19].
garbage-collection [Sie10], Gary [Guo13].
GC [NGB16, RG13]. GEMS [BSMB16].
General [CHMY19, AdSCdR19, AZLY18, CHMY15, EKUR10]. general-purpose
[AdSCdR19]. generalized [WT10].
generate [CS12]. Generated
[WWG+18, BM18]. Generating [HJS+10, RDP16, GRF11, KS14, MHBO13, SSK13].
Generation [AGM+17, BH17, YWW+18, CRJ+10, CMM+10, PPHM15, Pha18, PNS14, Rm12, RO12, UMP10, ZYY+19].
generations [BOF17]. generators [SLF14].
generics [DDM11, Fer13, HH13, ZPL+10, eBH11].
genetics [AS14, Gr17, PBM13]. Genetic
[YCC12, MT13]. Genotyping [YCC12].
GeoGebra [ABK+16]. geosciences
[MCY+10]. Geospatial [CH17]. German
[Sch13]. get [Ame13]. Getaway
[SLES15, SLE+17]. Gets [BH12]. getters
[Mil13]. Getting [GMT14]. Giga [DHS15].
Giga-scale [DHS15]. GitHub [LMZ19].
glimpse [SP16]. Global [PE11].
Global-Scale [PE11]. Globally [YMBH19].
Glotaran [SLS+12]. go [LWB+15].
Goldilocks [EQT10]. Good [dGRD+15].
Google [Ngo12, MGH17, Sam12]. GPGPU
[PQT17]. GPGPU-accelerated
[PQT17]. GPU [PKO+15]. GPUs
[Hen12]. grade [CRJ+10]. Gradual
[RSFR+15, SFR+14, TND+12, Sie17].
grounded [DRN14]. grammars [GN16, SHU16].
Granularity [RBB+19, CZ14, YKA+19].
Graph [dMRH12, BS13]. Graphical
[SLS+12]. Graphics [Cec11, LLL13].

graphs
[AdCGGH16, DSEE13, JWMC15, PULO16].
green [BRGG12]. Greenfoot [Kolo10], grid
[SGV12, VWJB10, MZC10b]. Gridifying
[MZC10b]. grounded [EVT13]. Growing
[EBR+12]. growth [LDL14]. guarantees
[JWMC15, ZHC15].
GUI
[CNS13, VGS14, WBA+11].
GUI-awareness [VGS14]. Guide
[Ame13, Oak14, Rau14, Teo13, Top11].
Guided [CNS13, DiP18b, MPP15, GYY16, Ott18, PNS14, RKN18, SSS17].
Guidelines [GGZ+15, HLSK13].

Hack [Ott18]. Handling
[KW11, ECS15, HWM14, KW10, WK12].
Hands [CSZ17, Teo13]. Hands-on
[CSZ17, Teo13]. happened [Ha15].
happens [TD15]. happens-before [TD15].
hard [LTK17, Puf13]. Hardware
[MAK19, SKKR11, SP17, CBM12, IN12, SE12, ZDK+19].
hardwired [OY+13].
harness [Kie13], hash [SV15a, SV15b, SV18], hash-array [SV15b], hash-tries [SV18], hashing [GRF11].

HDFS [IRJ+12], HDL [OYU+13], health [EKUR10], heap [CSV15, LDL14, TLX17, Tar11, VYY10, YS10, BVGVEA10].

heap-manipulating [YS10], Heaps [NFN+18], Helping [RT14], Hera [MS10], Hera-JVM [MS10], Herman [Kie13], Heterogeneous [ASV+16, HHH+14, Rub14, AYZI10, ABR10, DFR13, MS10, SV18].

Heterogeneous-race-free [HHB+14].

Heuristics [MGI14, LMK16]. HHVM [Ott18]. Hidding [RBI12]. hierarchy [BS13].

High [GSS+16, Hol12, IRJ+12, MSM+16, RGB18, SWU+15, URJ18, WN10, Zak10, BRWA14, Hos12, Ngo12, RFB14, TDD+11, TGZ17, VWWB10, WFF18, WWH+17, TRE+13].

High-coverage [RGB18].

high-dimensional [TGZ17], high-level [Host12, RFB14, VWWJ10].

High-Performance [URJ18, WN10, GSS+16, BRWA14, Ngo12, TDD+11, WFF18, WWH+17].

higher [KT15]. higher-order [KT15]. highly [BP10, SPP+10]. history [DRN14]. hit [Ano13]. Hoare [SD16b]. hole [Ano13].

Holistic [MAHK16]. Hop [WBHN18, D’H12]. Hopjs [SP16].

Horstmann [Gve13]. hosted [CBLFD12].

hot [LMK16]. HotSpot [Sch13, BOF17].

HotWave [ABMV12, VBAM10b]. HPC [JQJ+16]. HTM [CHM16]. HTML [Sta10].

HTML5 [HLO15, NKH16, Ano15].

Hunting [GGC18]. HVM [LTK17].

Hybrid [CHM16, JQJ+16, JMO14, KCD12, VDV17, ZMY14, ZMM+16, ASME18, AD13, HyG12, PdMG12, STA18, SWB+15].

Hybris [VDV17]. hygienic [DFHF15]. hypervisor [GMC+13].

i-Jacob [LYM+18]. IaaS [ZLHD15].

Identification [PBM+19, SBE+19, BZD17, FMS+11].

Identifier [SRTR17]. identifiers [FMS+11].

Identifying [IN12, SVB+17]. if [Han15, STA18]. If-transpiler [STA18].

illuminating [BK14]. Image [WN10].

immutable [HMDE12, ZPL+10].

Heterogeneous-race-free [HHB+14].

Heterogeneous [ASV+16, HHH+14, Rub14, AYZI10, ABR10, DFR13, MS10, SV18].

Heterogeneous-race-free [HHB+14].

Heuristics [MGI14, LMK16]. HHVM [Ott18]. Hidding [RBL12]. hierarchy [BS13].

High [GSS+16, Hol12, IRJ+12, MSM+16, RGB18, SWU+15, URJ18, WN10, Zak10, BRWA14, Hos12, Ngo12, RFB14, TDD+11, TGZ17, VWWB10, WFF18, WWH+17, TRE+13].

High-coverage [RGB18].

high-dimensional [TGZ17], high-level [Host12, RFB14, VWWJ10].

High-Performance [URJ18, WN10, GSS+16, BRWA14, Ngo12, TDD+11, WFF18, WWH+17].

higher [KT15]. higher-order [KT15]. highly [BP10, SPP+10]. history [DRN14]. hit [Ano13]. Hoare [SD16b]. hole [Ano13].

Holistic [MAHK16]. Hop [WBHN18, D’H12]. Hopjs [SP16].

Horstmann [Gve13]. hosted [CBLFD12].

hot [LMK16]. HotSpot [Sch13, BOF17].

HotWave [ABMV12, VBAM10b]. HPC [JQJ+16]. HTM [CHM16]. HTML [Sta10].

HTML5 [HLO15, NKH16, Ano15].

Hunting [GGC18]. HVM [LTK17].

Hybrid [CHM16, JQJ+16, JMO14, KCD12, VDV17, ZMY14, ZMM+16, ASME18, AD13, HyG12, PdMG12, STA18, SWB+15].

Hybris [VDV17]. hygienic [DFHF15]. hypervisor [GMC+13].

i-Jacob [LYM+18]. IaaS [ZLHD15].
Hos12, IHWN12, KBL14, LWC17, MGI17, RFBJ14, TTD+11, VWJB10, WCG14.
leveraging [WCST19]. Lexical [GN16].
Lexicon [TAF+18]. Libraries [BK12, RDCP12, HlvdS17, Cho14, EKR+12, PMLT14, PLR18, TTD+11]. Library
[CH17, CWGA17, NBB18, OCFML14, TAF+18, WN10, dJM18, CMM17, PMP+16, PQTGS17, Pos19, TFPB14, TGZ17].
[MvH15]. Lightweight
[BW12, KBL14, KKK+17, RO12]. like [BDGS13, BCD13, DJLP10, PMLT14, SJ10, VGS14, OW16]. Lime [ABCR10]. line
[SV17]. linearizability [LTZ14]. lines [BTR+13, KATS12]. linguistic [UR15].
Linux [Ric14]. Linux-basierte [Ric14]. Listener
loading [WG11]. Local
[NBB18, DDDF17]. localised [SP10b]. locality [HJJH10, OJ12]. localize [ZZK13].
location [NCS10]. Locators [SDM12].
Lock [FC11, NM10, NFV15, UMP10].
Lock-free [FC11, NFV15]. Locking
[GGRSY17, JTO12, GGRSY14, GGRSY15, YKA+19]. locks [SPS17]. Logging
[CJ19, CJ17]. Logic
[ZLNP18, GMS12, Pha18, SD16b]. loop
[DD13, HW1+12, PLR18]. Loops
[RD15, LLL13]. loss [WHIN11]. Low
[ETR+15, GM12, SWU+15, WCG14, ZHCB15, ZFK+16, BCR13, XMA+10].
Low-Budget [GM12]. Low-latency
[ETR+15]. Low-level [WCG14].
Low-overhead [ZHCB15, ZFK+16].
low-utility [XMA+10]. lunch [DTML14].

m [MZC10b]. m-JGRIM [MZC10b]. M2M
[Pau14]. Machine
[JJC019, LYBB14, Ame13, CBLFD12, KS13, KC12, Piz17, SSMGD10, WGF11, WHV+13, BZD17, Cle16, LYBB13a, LYBB13b, LTK17, PTHH14, RRB19, SSB+14a, Sch13, Set13, SMB11, SGV12, SSB01, SSB14b, UR15].
Machine-Learning [JJC019]. Machines
[AGR12, GTS+15, JK13, KCH14, NK10].
macros [DFH15]. Magic [SP10b].
Magic-sets [SP10b]. Magnitude [BNE16].
major [Ano12]. Making
[Loc13, Sta10, PS11]. malformed [SHU16].
Malicious [KCD12]. malleable [MZC10a].
malware [CSK17]. Managed
[MAHK16, NFN+18, NWB+18, BM14, CBGM12, GTL+10, ZIvdS17].
Managed-Language [MAHK16]. Management
[OTR+18, Pau14, YPMM12, AKH+15, BVGV14a, BGS+13, EKUR10, HB13, KCP+17, KB17, MLM17, Nil2b, PCL14, SWB+15, Tar11, WGW+11].
manipulating [KRR19, YS10]. Manipulation
[MS14]. manual
[KCP+17, KPP+18]. many [GTSS11, SV18]. Map
[BBB+17]. mapped [SV15b]. Mapping
[LTD+12, UR15]. MapReduce
[LZYP16, RFRS14, SKBL11]. maps
[NFV15, SV18]. mashup [ETR12]. Masses
[BMSV18, IvdS16]. Massive [BMSV18].
Massively [NBB18]. mastering [Sub11].
Math.Js [dJM18]. Mathematical
[BW12].
Mathematics [dJM18]. MATLAB
[Alt12, FBM17, PMT14, VF10, Has12].
MATLAB-like [PMLT14]. matrix
[HD17, TGZ17]. matters [DBJ16]. Maxine
[WHV+13]. MCAPL [Den18]. me
[LW18, CMM+10, GM12, XHH12]. ME-Based [GM12]. mean [Rub14]. Means
[SS19]. Measurement [YPMM12, YW13]. Measurement-Based [YPMM12].
Measuring [DW10, DTLM14, Gra15, JH11].
mechanical [ZZK13]. mechanised
[BCF+14]. Mechanising [Loc18]. Media
[Bro12]. meets [KHL+13]. Memento
[CPST15]. memoization [TPG15].
memories [ASME18]. Memory
[BDG17, JYKS12, MSM+16, NWB+18, OTR+18, SS14, ST15, WZL+18, AKH+11,
MKG+17, SE12, SSMGD10, TWX+10.
Multipatform [ZKB+16]. Multiple
[AF12, ASF17, HLSK13, CSV15, DD13],
multiplexing [BVGVEAFG11].
Multiprocessing [VGS14].
multiprocessor [FS10b, PWA13, SPS17].
Multiprocessors [KW11, RS12].
Multithreaded [KKW14, Loc18, SR14a,
BNS12, DJLP10, Fer13], Multithreading
[CCH11], multivariate [AO11]. multiway
[YKA+19]. Mungo [KDPG18].
MuscalietJS [RCR+14]. Mutagenic
[YCYC12], mutants [FRC+17], Mutation
[MMP15, KPP+18], mutators [AHK+11].
MySQL [Ano15].

Names [SRTR17]. Naming [STST12].
Native [JQJ+16, LT11, LT14, KFBK+15, STS+13].
Natural [LL15], naturalness [HBG+16].
NDetermin [BENS12], nested
[CHM16, ZLB+13]. Netflix [Lin14].
Network [CC15, GGC18, RR14].
Networking [Hol12]. Networks
[AFGG11, ETR+15, ZYY+19], neural
[ZYY+19]. neuromorphic [HNTL12].
Neutral [WBHN18]. Next
[YWW+18, CRJ+10, CMM+10].
Next-Generation [YWW+18]. NG2C
[BOF17], NGS [YWW+18]. NGS-FC
[YWW+18], Nicolai [BlA18], Nixon
[Ano15]. No [BVGVEA10]. No-Heap
[BVGVEA10]. NoCs [PWA13]. Node
[HC11, BJBK12]. Node.js
[BSMB16, MTL15, Ano14]. nodes [DRN14].
Nominal [BO13]. Non [BVGVEA11b,
BSOG12, GGZ+15, TD17, WZL+18,
YKM17, MZC10a, OMK+10, SSL18, ZP14].
Non-Adequate [GGZ+15].
non-cache-coherent [ZP14]. non-cloned
[SSL18]. Non-equivocation [TD17].
Non-functional [BVGVEA11b].
non-intrusively [MZC10a]. Non-Java
[YKM17, OMK+10]. Non-termination
[BSOG12]. Non-volatile [WL+18].
Non-Volatility [WL+18]. Nonblocking
[RTET15, SP10a]. Nondeterministic
[RB15, BENS12]. noninterference [IF16].
Nopol [XMD+17]. Normalization
[ADGJ19]. NoSQL [DFR13]. Notation
[Sev12a]. Novel [NK10, MZC10b].
November [Hol12]. Novice [BA17].
Novices [RT14]. null [AT16].
NullPointerException [BSOG12].
NUMA [GTS+15]. NumaGiC [GTS+15].
number [PPMH15, SLF14]. Numbers
[Jaf13, AJL16, Wal12]. Numerical
[KS15, KFBK+15, PQTGS17]. NXT
[SWF12].

Obfuscated [KCD12]. obfuscation
[CCFB15]. obfuscations [CSK17]. Object
[CSGT17, GS11, KB11, L212, NBW+15,
PTHH14, PiLCH11, RC17, Sev12a, SW12,
AST+16, BZD17, DDDF17, FMBH15,
IvdS16, KRR19, MME14, MHHBO13, RDF15,
UJR14, VM10, WM10, ZCdSodS15, Zha12,
ZDS14, hEYJD12]. Object-Bounded
[NBW+15]. object-constraint [FMBH15].
object-manipulating [KRR19].
Object-Oriented [GS11, KB11, RC17,
PTHH14, AST+16, DDDF17, MHHBO13,
VM10, ZDS14, hEYJD12]. Objective
[Sta10]. Objective-C [Sta10]. Objects
[BS12, RKN+18, MHL15, SK13, SABB19,
WXR16, BVGVEA10]. Observations
[AAB+10]. OCaml [Cle16]. OCaml-Java
[Cle16]. OCTET [BKC+13], odeToJava
[KS15]. offloading [ZHL+12]. on-demand
[ZHL+12]. On-Stack [WBHN18].
On-the-fly [URJ18, UJR14]. one [SV18].
one [AST+16]. Online
[NG13, GGC18, HCV17, NK10]. only
[NM10]. Ontology [KSPK12]. OoOJava
[JhED11]. Open
[BSA14, GD12, ABC18, CJ17, CJ19,
EKUR10, JK11, Tai13, VGRS16].
Open-Source [BSA14, ABC18, Tai13].
OpenJDK [BFS+18, CHM16, dGrdB+15].
Operator [PQD12]. opportunities [TPG15].
Optimal [AD16, JCM19, SK12, ELW15]. optimale [Sch13]. optimisation [PPS16].
optimistic [WGF11]. Optimization [LTD+12, RRB19, YKM17, NG13, BDB11, DDDDF17, JMO14, KS13, KC12, NG12].
Optimizations [DR10, BB17, CPST15, DS16, NG13, SAdB+16]. Optimized [PKFM19].
Oriented [ABMV12, BH10, GS11, KB11, LYM+18, RC17, AST+16, DDDF17, EABVG14, MHBO13, PTHH14, RVP11, VM10, VBAM10b, WBA+11, ZDS14, hEYJD12].
out-of-order [JhED11]. output [KM10].
Over-exposed [VBDP16]. overhead [BCR13, ZHCB15, ZFK+16]. overlap [ADJG19]. overlay [CTDM10].
paperback [Ano18]. Papers [DVL13, HL13, LMK16, Puf13]. Parallel [DS16, Esq11, LLL13, LHR19, MKG+17, NKH16, NBB18, QSaS+16, RD15, RSI12, AACR18, BP10, BPP13, BSMB16, CRP+10, MGS19, NG12, NG13, PPMM15, Sie10, SZ11, TTD12, Taf13, VYY10, BK16, WN10].
Parallelisation [GS11]. Parallelism [NKH16, BENS12, HHSS13, MZC10a, RHSD15, TWL12, ZLB+13]. parallelization [SS16, YRHBL13]. parallelize [LPA13].
Partitioning [AD16, BS12]. party [FOP14, LVG10].
pathfinder [KPP12, CS12, MPR12, NNTK17, PdMG12, SM12, vdmMvMV12, Den18, RR14]. patient [EKUR10]. patient-level [EKUR10].
Perform [LMZ19]. Performance [AAC18, CS17, CCH11, DR10, GBC12, Hol12, HJ12, MSM+16, Oak14, OCF114, QSaS+16, RVT18, TRE+13, TPG15, THC+14, URT18, VP16, WWG+18, WN10, ACS+14, AAB+10, BRGG12, BRWA14, CBGM12, Del11, GSS+16, HWI+12, IRJ+12, JH11, Ngo12, ODL15, PSNS14, SE12, TTD+11, TXW+10, WFF18, WHIN11, WWH+17, Zak10]. performance-guided
permission [HBT12, SNS+14]. permits [PPS16]. Persistence [LZ12].
Perspective [YHY13]. Pert [LZ12]. pervasive [MHH10], pg [Ano18].
PHALANX [VYY10], phase [KC12], phase-ordering [KC12], phoneME
Platform [BK14]. Phosphor [BK14].
physical [MM10], pg [Ano18].
PHASE [VYY10], Phase [KC12], phoneME
Platform [BK14]. Phosphor [BK14].
physical [MM10], pg [Ano18].
DLPT14, HWM11, HGCA11, Köl10, KSPK12, LM15, McKi16, OAC18, PTML11, RSII12, RB15, SS13, Sub11, Alt12, AMWW15, BCvC1+13, BMR14, BSMB16, BRWA14, CL17, ECG12, EV13, FMBH15, Han15, HA13, Hav11, Lew13, MSM+10, MG519, MvH15, OW16, PTF+15, RVP11, RFBJ14, SNS+14, SG+17, TB14, UFM15, VWJB10, VBAM10b, Wan11, WBA+11, ZWSS15].

Programs

[AGR12, BH17, BR12, BMOG12, GS11, JB12, LTD+12, PSJ18, STST12, SS12, SDM12, SR17, TN19, XMD+17, ZLCW14, AACR18, AS4MG14, AdCGGH16, BA12, BNS12, DJLP10, ECS15, ES14, EP14, Fer13, HL13, IN12, KRR19, LKP19, LO15, LPA13, MRMV12, MCW19, NG12, OJ12, PL12, RR14, RAS16, RLBV10, SMS+12, SZ11, SPS10, SHU16, Ta13, WST19, YS10, dCMMN12, hEYJD12].

Progress

[WCG+18, Sie17, ZHCB15].

Projects

[LMZP19, ZMM+16, ABC18, CJ17].

Projekte

[Ric14].

Prolog

[CMM17, Tar11].

promises

[MLT17].

Proof

[LL15].

Proofs

[BMOG12].

propagation

[IvdS16, PQTGS17].

Properties

[BO11, RKV15, SS12, AZLY18, FWDL15, RKV19, SD16b, YS10].

Protecting

[MPS12].

Protein

[YHY13].

Protocol

[GM12, FGR12].

protocolling

[KDPG18, PS10a].

Probably

[AdCGGH16, DJLP10, PS10a].

providing

[OW16].

AGH+17, Ta13].

Proxies

[VM10, Eung13, KT14].

PSE

[KS15].

pseudorandom

[PMMH15, SLF14].

PT

[MG19].

Published

[Ano18, LSBV17].

pure

[SS16].

Purely

[RSI12, NVF15, SV18].

Purely-Declarative

[RSI12].

purely-functional

[NVF15].

Purity

[NSDD17, HMDE12].

purpose

[AdSCdR+19].

Putting

[BNP+18].

PYE

[TN19].

Python

[Ric14].

QoS

[YPMM12].

Qualitas

[TMV13].

Quality

[BNP11, CCFB15, WKP17].

Quantitative

[CPV15, GYB+11, MRA+17, PTMP12].

queries

[GK15, MRA+17, SG+17].

query

[FWDL15].

query-

[FWDL15].

questions

[KM10].

Quicksort

[AD16].

R

[CH17, KMMV14, NL14, SL+12, Vit14].

Race

[BH10, EP14, RD15, AMT17, EHT10, HBB+14, RGB18, WFF18].

race-aware

[EHT10].

races

[FF10, WCG14, XXZ13].

Racket

[YK14].

racy

[SJR15].

Rady

[Teo12].

Rails

[Teo12].

Range

[BS12].

Ranged

[FSF12].

rapid

[PWA13].

rationing

[ASME18].

raw

[HH13].

rays

[SBB+10].

RCDC

[DNB+12].

RDMA

[ETR+15, IRJ+12].

RDMA-based

[IRJ+12].

RDMA-enabled

[ETR+15].

re

[NCS10].

re-location

[NCS10].

Reachability

[NS13].

React

[HOSC16].

reaction

[SJR18].

reactive

[BCvC+13, MvH15].

read

[NM10].

read-only

[NM10].

Reading

[Jaf13].

ready

[RHSD15].

Real

[BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Nil12a, Pau14, SLES15, SLE+17, VK12, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGVEA14, BVGVE14b, CRAJ10, DW10, EABVG14, Fox17a, GMC+13, HTLC10, KHM+11, KPHV11, KvGS+14, KW10, KPP+18, KSR14, LTK17, MDS+17, P510b, PZM+10, P5W11, Puf13, RHT13, SP10a, Sie10, SPS17].

Real-Time

[BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Pau14, SLES15, SLE+17, VK12, Nil12a, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGVEA14, BVGVE14b, CRAJ10, DW10, EABVG14, Fox17a, GMC+13, HTLC10, KHM+11, KPHV11, KvGS+14, KW10, KSR14, LTK17, P510b, PZM+10, P5W11, Puf13, RHT13, SP10a, Sie10, SPS17].

realtime

[OUY+13].

Reasoning
[LN15, Sun18, ABK+16, MLT17, RKHN18].
Recaf [BlvdS17]. recipes [J+12].
recompilation [NED+13]. Reconfigurable [OY+13, STY+14, OIA+13].
Reduction [BO12, MSS19, TD15].
redundant [HLO15]. reengineering [FGB+19]. Refactoring [AS14, STS12, VBZ+18, ZHL+12, FMM+11, FM13].
Reference
Sch14, Sun18, UJR14, HMDE12].
reification [RRB17]. Reified [GBS14].
Reim [HMDE12]. ReImInfer [HMDE12].
relationship [TD15]. relational [MLGA11].
relationship [LSBV16, LSBV17, SH12]. relaxed [DNB+12, KHL+17, PPS16].
removal [MRV12, WGF11]. removing [PLR14].
rename [FM13]. Repair [SEK+19].
XMD+17, ZLN+18, MDS+17, SHU16].
repeatability [Vit14]. Replacement [WBH18, BCD13]. Replay [BH12].
representation [AZLY18]. reproducibility [Vit14]. reproduction [SR14b].
Requirements [MSS19, AGGZ10]. ResAna [KvGS+14]. Research [SR17, TRE+13, CRJ+10, CBLFD12, EKUR10, Rub14, VBMDP16, Vit14].
responsiveness [PSNS14]. return [CNS13].
RMI [SS19]. Road [RX+17, SWU+15].
Robots [SWF12]. Robust [VM15, VDV17, MKZ+14, SGV12, VM10].
Roo [Teo12]. ROM [MLM19]. row [Lei17].
Runtime [BLH12, CMM+10, GSS+18, MAHK16, MSS10, WB+15, OCFL14, XMA+14, BRGG12, EQT10, GIL+10, GSS+16, LMK16, MS10, OOK+10, PRC+13, RO12, STY+14, TWS10, VBAM10a, WKL19, YRHL13, dCMNN12]. runtimes [BM14, CSV15, RCR+14, WWW+17].
safe-Critical [MCW19, WCB16, ZLCW14, RS12, SDH+17, AGR17, CWW13, LWC17].

Safety-Critical [MCW19, WCB16, ZLCW14, RS12, SDH+17, AGR17, CWW13, LWC17].

Salespoint [ZDS14]. Salt [Hol12]. SAM [BO13]. San [KP15]. Sane [MPS12].

Scalable [BBB+17, BS12, DFR13, GGRSY17, HC11, JQF+16, RXK+17, RTF+13, XMA+14, XXCL19, ETTD12, FC11, GGRSY15, NFV15, PIR17, PLR18, RTET15, TTD12].

scheduler-independent [IF16]. Scheduling [ASV+16, BVEAGVA10, KPHV11, EP14, EABVGV14, ZW10].

scheme [XHH12, YKA+19]. SCHISM [PZM+10]. Science [HWM11, VF10, SVG12]. sciences [NL14].

Scripting [CSGT17, KKK+17, HBT12, KRR+14, PMLT14, Zha12]. SE [LYBB14].

Seamless [OwKPM15]. Search [NNB18, SED14, WCG+18, XXCL19, DDDF17]. searching [ETR12]. Second [HD17].

secrets [Alt12]. section [DLTM14]. sections [NM10]. Secure [GMPS12, GM12, ABFM12, LMS+12, TLMM13, WA19].

securely [SFR+14]. securing [CDMR19]. Security [CDG+17, Gon11, HBS16, JWMC15, MCC17, PS10a, STA18].

Seemingly [Has12]. self [MPS12, YXS+19, hED12, AHK+11, AGH+17, CBLFD12, HWW+15, MD15].

Semantic [GGGRSY17, RVb14, BNS12, GGRSY14, GGRSY15, MKK+12, MKK+13, OA17].

Semantics [BO12, BR15, Kri12, LKP19, LML17, SPY+16, AK13, FBH17, FZ17, KHL+17, Mil13, MT14, PSR15, PPS16, ZHCB15].

semi-automated [MRMV12]. Semi-automatic [FM13].

Semi-Autonomic [SEK+19].

Service [BVEAGVA10, SDM12, CSDKB12, EABVGV14, GD10, HWLM11, KFI11].

service-oriented [EABVGV14]. services [MZC10]. service [KDPG18, FGR12]. Set [SBK13, Lon10a, Lon10b]. Set-based [SBK13, Lon10a, Lon10b]. sets [SP10].

settlers [Mil13]. setting [BGD13].

Settings [GM12]. Seven [ST15]. SGX
[PLR14]. Static [BGK17, BNE16, JC10, LMZP19, MTL15, ODL15, PilCH11, PLR18, RD15, SW12, SBE19, SH12, AM14, CGJ16, Fer13, FLL13, IF16, KSW14, LS11, MHR12, PIR17, TLMIM13].

statically [BTR13, NED13]. statistical [Bra14, ZFK16]. statistically [PPMH15].

STM/HTM [CHM16]. StMungo [KDPG18]. stochastic [CRAT12]. stock [PVH14]. Stop [LWB15]. stops [VPN18].

Storage [Hol12, VDV17]. Store [BS12, Sta10]. stores [DFR13].

Story [Ano14]. strategic [BMR14]. strategy [PDPM16]. Stream [CWGA17, Kbps17, MV14, BRWA14, SSG19, ZDK19].

streaming [MRA17, STCG13].

StreamJIT [BRWA14]. StreamQRE [MRA17]. streams [SGG17, UFM15].

Strength [KCD12]. String [HOKO14, CSK17]. Strings [HWM11, HWM10, LSSD14]. strong [UMP10, ZHCB15, ZBB17]. Structure [ZLN18, LO15, PLL18, UMP10].

structured [ABC18, LSWM16]. Structures [GT10, CDTM10, XMA10]. studies [EKUR10]. Studio [RT14, FH16].

Studio-Based [RT14]. Study [BF18, KB11, LMZP19, OBPM17, RVT18, RLMM15, WZK19, ZMM16, BRG12, CCFB15, CJ17, ECS15, JK11, KFBK15, MHR12, NCS10, OMK10, PTF15, SSL18, SH12, TFPB14, VBMP16, WXR16, YY13].

studying [CJ19]. style [UFM15].

substitute [PPMH15]. substrate [GTL10].

subtypes [HL13]. Subtyping [LN15].

Suite [MS19, MSBI11, BB12].

Suites [GGZ15]. Summaries [BH17].

Summarization [MM16, RLMM15].

Superblock [KS13].

Supercharged [Cec11, GBS13]. Superposition [HD17].

supertype [RRB17]. supervenience [Rez12].

Support [CSTG17, KKK17, RKN18, BSVG18, Cha18, DVL13, GMC13, Hos12, NGB16, SMN12].

supported [FMM11]. Supporting [LVG10, EKUR10]. Surgical [RSB14].

surprises [FMBH15]. Survey [AGM17, OAC18, RVT18, BCvC13, GD10].

SurveyMan [TB14]. surveys [TB14].

suspension [TWL12]. SV [CKS18].

SV-COMP [CKS18]. sweeping [KBL14].

Sweeten [DFHF15]. Swift [ZYZ12].

SWIM [Sch10a]. symbol [Tar11].

Symbolic [Bul18, NNTK17, PMTP12, SWMV17, MMP12, Rim12].

synchrobench [Gra15]. Synchronisation [CHMY19, CHMY15, WB10].

synchronization [DHM12, Gra15, Sub11].

Synchronized [BG17].

Synchronized-by-Default [BG17].

Synchronous

[BVEAGVA10, SK12, MVH15]. syntactic [LE16, MKK12, QLS17].

Syntax [SS13, KMMV14, SSK13].

Synthesizing [GK15, SRJ15, LWH10].

Synthetic [PSJ18].

System [BO13, KCD12, MAHK16, ACS14, AZY10, AGR17, BDB11, ELW15, HA13, HOD11, HWLM11, KR12, MS10, STY14, TLL11, NII12a]. systematic [TD15].

Systems [BG17, BSA14, BNE16, CCH11, DLPT14, Fox17b, HTW14, JMB12, LM15, LMZP19, MRF18, NFN18, NFW18, RTE13, SLES15, SLE17, AT16, CJ19, DW10, FH16, Fox17a, HD17, HW11, HTLC10, LPG14, LTK17, MHR12, MAH12, MVH15, OIA13, PLL18, PDMG12, PBB19, PDSP16, RHT13, SDH17, SSMG10, SABB19, SH12, TTD12, TXW10, THC14, UIY10, Vit14, YRHBL13, VK12].

Tableau [FFF17]. Tagged [RKN18].

TaskLocalRandom [PPMH15]. Tasks [FWSG17, PWG19, ST15, HAW13, PPMH15, SPP+10]. Taurus [MAHK16].

Testing [Ame13, BR12, Hin13, MM12, BGS18, BM18]. MT13, PSNS14, SR14a, SKR17.

LMZP19, MSS19, Pha18, Rim13, SH12, TTS+10, WAB+11.

tolerant [PZM+10]. Tool [FMM+11, NBB18, PQD12, SW12, SSK13, ABFM12, CRAT+12, ETR12, KSR14, LS11, TXW+10].

Tool-supported [FMM+11]. toolchain [KDPG18, SMN+18]. Tools [Bro12, CSZ17, CS12, AK13]. CRAT+12, KSR14, LS11.

trace-based [BBF+10, HWM14, HW1+12, IHWN12]. Traceability [CSKB12]. tracer [CZ14].

Traces [WKG17, BA12, RGM13]. Tracing [BP10, DLR14, DLR16, MAK19, MRF18, MD15]. track [VSG17]. TrackEtching [VSG17]. Tracking [OAC18, RLMM15, SDC+12, WLL19, KHL+13, OOK+10].

Tracks [RGM13]. tradeoff [UTO13].

Traffic [RXK+17]. Trail [HISS13]. Train [MMCK16]. training [KMB16]. trait [BCD13, VM15]. traits [BDGS13, BD17].

Transactional [URJ18, DVL13, FC11, ZHCB15]. Transactions [dBG12, CHM16, DFR13].

transfer [BL15]. transformation [AST+16, PDDD17]. transformations
Transforming [dMRH12], transitioning [HWM14]. Translating [RFRS14].
Translation [BO12, LSMW16, LXP18, TILL18].
translations [UTO13]. translator [LZYP16]. Translators [WWG+18].
Transmission [PE11, BVGVEA11b, BJBK12].
Treble [YMHB19]. Tree [Lyo12, HLO15, KMMV14, SSK13, YKA+19].
trees [RBV16]. Trends [CC15, MSS10, SR17]. trie [SV17].
trie-based [SV17]. tries [SV15a, SV15b, SV18]. triggered
[EABVGV14]. triggers [FGB+19]. TRINI [PDPM16]. Trusted [TWNH12, BCF+14].
tuning [AAB+10, BVGVEA11F]. Tuning [Gri17]. Turn [HOSC16].
Tutorial [Jen12, Nil12b, PBM+19, Taf13, Zak12]. TV [JMO14].
twitter [Guy14]. Two [Has12].
Type [BO13, CGJ+16, KSW+14, KATS12, Lei17, Loc18, RKN+18, SGG15, WT11, ACS+14, AT16, BS13, CMS+12, CVG+17, DLM10, FH16, GBS14, HyG12, KMLS15, KRR+14, KRH16, KvRHA14, KDPG18, LPGK14, LE16, MHR+12, SV18, SH12, TLL11, Zha12, eBH11].
Type-Based [SGD15]. type-dependent [LE16].
type-heterogeneous [SV18]. Type-Safe [Loc18, KMLS15].
Typechecking [KDPG18, CL17]. Typed [BO13, KKK+17, MHL15, CMS+12, KRCH14, Lei17, RDP16].
Types [BO13, RvB14, SPAK10, BDGS13, CHJ12, DDM11, HH13, MME+10, YDFF15].
TypeScript [Cho14, FH16, RSF+15].
Typing [FZ17, RSF+15, Sie17, SFR+14, TSD+12].
typy [OA17].

uncertain [McK16]. Unchangeable [RK19]. Understandable [SM+16].
Understanding [ABC18, FRM+15]. MKTD17, NWB+18, PCL14, QLBS17, Set13, TABS12, VBPDP16, LB+15, Nil12b].
Undocumented [Alt12, MHR+12]. Unified [LM15]. uniform [AH10, Eue13]. Unifying
[Has12, MMK+12, MKK+13]. union [KT15].
uniprocessors [KPHV11]. Units [LLL13].
universe [DDM11]. Unix [PVB17].
Unobtrusive [MG19]. Unpicking [LB12]. Unrestricted [WVS13]. unsafe
[MPM+15]. unsound [AT16]. Updates
[YMHB19, PKC+13]. Upper [SW12].
Upsortable [SGG+17]. uptrees [HB13].
USA [Hol12, KP15]. usability
[FH16, MHR+12, WA19]. Usage
[OAC18, RC17, PTF+15, QLBS17]. Use
[BGG17, Guy14, MPM+15, AMWW15, MKTD17, PBMH13, Sch13].
use-case [AMWW15]. used [XR10]. useless
[FRC+17]. User [Liu14, MvDL12, RKHN18, SLS+12, DAA13, FMS+11, PSNS14].
user-defined [FMS+11]. User-guided
[RKHN18]. Using
[ASdMG14, BS12, BSA14, BNE16, DLM10, HCN14, KFBK+15, KH18, MV16, MSSK16, NBB18, Pau14, PQD12, RC17, SDM12, SLE+17, UMP10, Wan11, WKG17, WCG+18, XMA+14, YCYC12, Zak18, BB17, DDDF17, Del13, FH16, FOPZ14, GBS14, Ivd16, KMLS15, KT14, KC12, LVG10, Lew13, LDL14, MT13, PIR17, PIR18, Pha18, RKHN18, RAS16, SAD+16, SSK13, SSH17, SHU16, SS19, VGS14, WLL19, WBM+10, WRI+10, XR13, ZLN18, vdmvdMV12].
UT [Hol12]. utility [CSV15, XMA+10].
utilization [BCR13].

v [Sam12]. V8 [MGI17]. Validating
[HLGK13]. Validation
[SSB14b, CS^2L16, HCV17, SSB01]. Value
variable [CDTM10], variables [NS13], VDM [TJLL18], Verification [FHSR12], Verification [CHMY19, CKS18, KKW14, KP15, RAS16, SS12, SS51b, CHMY15, DLM10, HCV17, PSW11, SMN+17, SZ11, SJPS10, SSH17, SSB01, dCMMN12].

yang [CBGM12]. years [BTR+13]. yieldpoint [LWB+15]. yin [CBGM12].

Z [SBF+10]. Z-rays [SBF+10]. Zero
References

Altman:2010:OTJ

Acar:2018:PCM

Accioly:2018:USS

Auerbach:2010:LJC

Avvenuti:2012:JTC

Abanades:2016:DAR
Miguel Abánades, Francisco Botana, Zoltán Kovács, Tomás Recio, and Csilla Sólyom-Geese. Development of automatic reasoning tools in GeoGe-
Ansaloni:2012:DAO

[ABMV12]

Akai:2010:EAS

[AC10]

Anjo:2016:DML

[AC16]

Ahn:2014:IJP

[ACS+14]

Aumuller:2016:OPD

[AD16]

Amighi:2016:PCC

[AdCGGH16]
REFERENCES

REFERENCES

Apel:2010:CUF

[AH10]

Aigner:2011:STM

[AHK+11]

Andrysco:2016:PFP

[AJL16]

Axelsen:2013:PTD

[AK13]

Altman:2012:USM

Andreasen:2014:DSA

Ament:2013:ATG

Adamsen:2017:PIR

Ashrov:2015:UCB

Andersen:2014:PLJ

Anonymous:2012:AMJ

Anonymous:2013:FAM

Anonymous:2014:RKS

Anonymous:2015:BRL

Anonymous:2018:BRS

Arslan:2011:JPM

Altidor:2014:RJG

Adalid:2014:USA

Austin:2017:MFD

Akram:2018:WRG

Afek:2012:ISJ

Alshara:2016:MLO

Akram:2016:BPG

Amin:2016:JST

Bebenita:2010:STB

Michael Bebenita, Florian Brandner, Manuel Fahn-
drich, Francesco Logozzo, Wolfram Schulte, Niko-
lai Tillmann, and Herman Venter. SPUR: a trace-
based JIT compiler for CIL. *ACM SIGPLAN No-
tices*, 45(10):708–725, October 2010. CODEN SIN-
ODQ. ISSN 0362-1340 (print), 1523-2867 (print),
1558-1160 (electronic).

Bonetta:2013:TPE

Daniele Bonetta, Walter Binder, and Cesare Pau-
tasso. TigerQuoll: parallel event-based JavaScript.
CODEN SINODQ. ISSN 0362-1340 (print), 1523-
2867 (print), 1558-1160 (electronic). PPoPP ’13
Conference proceedings.

Bu:2013:BAD

Yingyi Bu, Vinayak Borkar, Guoqing Xu, and Michael J.
Carey. A bloat-aware design for big data applications.
ACM SIGPLAN Notices, 48(11):119–130, November
2013. CODEN SINODQ. ISSN 0362-1340 (print),
1523-2867 (print), 1558-1160 (electronic). ISMM ’13
conference proceedings.

Bettini:2013:FDT

Lorenzo Bettini, Sara Capecci, and Ferruccio Damiani.
On flexible dynamic trait replacement for Java-like lan-
907–932, July 1, 2013. CODEN SCPGD4. ISSN 0167-
6423 (print), 1872-7964 (electronic). URL http://

Bodin:2014:TMJ

Martin Bodin, Arthur Char-
gueraud, Daniele Filaretti,
Philippa Gardner, Sergio
Maffei, Daiva Naudziu-
niene, Alan Schmitt, and
Gareth Smith. A trusted
mechanised JavaScript sp
cification. *ACM SIG-
PLAN Notices*, 49(1):87–
100, January 2014. CO-
DEN SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic). POPL ’14 confer-
ence proceedings.

Bergenti:2011:PPS

F. Bergenti, L. Chiarabini,
and G. Rossi. Programming
with partially specified ag-
gregates in Java. *Com-
puter Languages, Systems
and Structures*, 37(4):178–
192, October 2011. CO-
DEN ????. ISSN 1477-8424
(print), 1873-6806 (elec-
tronic). URL http://
REFERENCES

www.sciencedirect.com/science/article/pii/S1477842411000169

Bacon:2013:PRT [BDB11]

Bainomugisha:2013:SRP [BCvC+13]

Bettini:2013:XTJ [BDT10]

Bettini:2013:CTB [BDGS13]

Bala:2011:DTD [BDB11]

Bettini:2017:XTJ [BD17]

This article is the winner of The Computer Journal Wilkes Award for 2010.

REFERENCES

Bodden:2010:AOR

Barbu:2012:ARA

Badihi:2017:CAG

Biswas:2014:DES

Biboudis:2017:RJD

Burdette:2012:ECJ
REFERENCES

Barr:2014:TAT

Bouraqadi:2018:TDD

Bell:2015:VFB

Brockschmidt:2012:ATP

Balland:2014:ESP

Boldi:2018:BMC

REFERENCES

Bellia:2013:JST

Bruno:2017:NPG

Barabash:2010:TGC

Bluemke:2012:DTJ

Bogdanas:2015:KJC

Brandt:2014:DAS

Bhattacharya:2012:DLI

REFERENCES

DEN ???. ISSN 0163-5999 (print), 1557-9484 (electronic).

REFERENCES

Bonetta:2016:GSM

Bultan:2018:SCA

Basanta-Val:2014:RMP

Basanta-Val:2010:SSS

Brockschmidt:2012:ADN

Budden:2013:SLS

Pavel Bourdykine and Stephen M. Watt. Lightweight

Briggs:2017:COI

Carlisle:2011:WCB

Cao:2012:YYP

Chevalier-Boisvert:2012:BSH

Chaikalis:2015:FJS

Cosentino:2012:MDR

Ceccato:2015:LSE

Chen:2011:MJP

Chisnall:2017:CJS

Coppolino:2019:CAE

Ceccato:2010:MLD

Mariano Ceccato, Thomas Roy Dean, Paolo Tonella, and Davide Marchignoli. Migrating legacy data struc-
REFERENCES

Cecco:2011: SJG

Carter:2013: SSA

Chandra:2016: TIS

Chamberlain:2017: PLR

Chadha:2018: JAS

Chugh:2012: DTJ

Carro:2013: MDA
Manuel Carro, Ángel Herranz, and Julio Mariño. A model-driven approach to teaching concurrency. *ACM Transactions on Comput-
Chapman:2016:HSH

Cogumbreiro:2015:DDV

Chen:2017:CLP

REFERENCEs

Chang:2012:IOT

Choi:2013:GGT

Clifford:2014:AFB

Chatterjee:2015:QIA

Curley:2010:RDT
Cote:2012:JPS

Chalin:2010:TIG

Ceccarello:2012:TGC

Chambers:2010:FEE

Chavez:2016:ACC

H. M. Chavez, W. Shen, R. B. France, B. A. Mechling, and G. Li. An approach to checking consistency between UML class

REFERENCES

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

Deitcher:2010:JEJ

Deitcher:2011:SPJ

DelRa:2013:BRJ

Dennis:2018:MFI

Disney:2015:SYJ

Dey:2013:STA

deGouw:2015:OJU

REFERENCES

10.1007/978-3-319-21690-4_16.

[DHondt:2012:ISS]

[Dolby:2012:DCA]

[Dietrich:2015:GSE]

[DiPierro:2018:RJ]

[DiP18b]

[Dietrich:2016:WJD]

[DiP18a]

[DiP18b]

[Dietrich:2016:WJD]

[Dam:2010:PCI]
REFERENCES

???? 2010. CODEN JCSIET. ISSN 0926-227X (print), 1875-8924 (electronic).

deMol:2012:GTJ

Duarte:2011:ICS

Devietti:2012:RRC

Dietrich:2010:POD

Dyer:2014:DVE

Doeraene:2016:PIW

Bois:2013:BGV

REFERENCES

REFERENCES

Ebert:2015:ESE

Ettinge:2013:XID

Erdweg:2012:GLE

Erdweg:2015:SOI
REFERENCES

[Eslamimehr:2014:RDS]

[Elmas:2010:GRA]

[Erdweg:2014:FEL]

[Eichelberger:2014:FRM]

[Esquembre:2011:TPL]

[Endrullis:2012:WEM]

[Expósito:2015:LLJ]

REFERENCES

[**Ferrara:2013:GSA**]

[**Flanagan:2010:AMD**]

[**Ferrari:2017:JJF**]

[**Fogus:2011:JC**]

[**Fisc**

[**Femininelle:2012:EJC**]

[**Fogus:2011:JC**]

[**Fischer:2016:EIE**]
Lars Fischer and Stefan Hanenberg. An empirical investigation of the effects of type systems and code completion on API usability using TypeScript and JavaScript in MS Vi-
REFERENCES

Forth:2012:RAA

URL http://link.springer.com/book/10.1007/978-3-642-30023-3; http://www.springerlink.com/content/978-3-642-30023-1

Freudenberg:2015:SMP

Flanagan:2013:PES

Fan:2018:VCJ

Linyu Fan, Jianwei Liao, Junsen Zuo, Kebo Zhang, Chao Li, and Hailing Xiong. Version 4.0 of code Java for 3D simulation of the CCA.
REFERENCES

REFERENCES

Practice and Experience, 29 (22):??, November 25, 2017. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

Fan:2015:UCC

Fournet:2013:FAC

Funes:2012:RMC

Feng:2015:EQD

Yu Feng, Xinyu Wang,

Fritz:2017:TSA

Gherardi:2012:JVC

Gerakios:2013:FIS

Gerakios:2014:RTP

Gama:2010:SAA

German:2012:MOS

Gupta:2018:HDB

Golan-Gueta:2014:ASL

Golan-Gueta:2015:ASA

Golan-Gueta:2017:ASA

Gligoric:2015:GCB

Gosling:2013:JLS

[Gonzalez:2013:HBP] Apolinar Gonzalez, Walter Mata, Alfons Cre-

REFERENCES

February 2011. CODEN IESOEG. ISSN 0740-7459 (print), 0740-7459 (electronic).

REFERENCES

pp. LCCN QA76.73.J38 G66 2010.

Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

REFERENCES

Hinojosa:2013:TS

Hunt:2012:JP

Hellyer:2010:LCW

Heidenreich:2010:GST

Hlopko:2014:ISJ

Haddad:2013:SIP

Hague:2015:DRC

Herczeg:2013:TFF

Herranz:2012:VIP

Huang:2012:RRC

Hashmi:2012:CNI

Horie:2014:SDJ

Hollingsworth:2012:SPI

[Hayashizaki:2012:IPT]

Hayashizaki:2012:IPT

[Huang:2011:SBA]

Huang:2011:SBA

[Haubl:2010:CES]

Haubl:2010:CES

[Haubl:2011:ECE]

Haubl:2011:ECE

[Haubl:2013:CST]

Haubl:2013:CST

[Haubl:2014:TTE]

Haubl:2014:TTE

Christian Häubl, Christian Wimmer, and Hanspeter Mössenböck. Trace transitioning and exception han-

Humer:2015:DSL

Hackett:2012:FPH

Inoue:2012:AML

Inoue:2012:ISC

Iranmanesh:2016:SSE

Inoue:2012:ISC

[IN12] Hiroshi Inoue and Toshio Nakatani. Identifying the sources of cache misses in

Islam:2012:HPR

Insa:2018:AAJ

Inostroza:2016:MIM

Juneau:2012:JRP

Joseph:2010:PII

Jaffer:2013:EAR

Ji:2012:PKP

Ran Ji and Richard Bubel. PE-KeY: a partial eval-

James:2010:FMC

Jen12

Jendrock:2012:JET

Jovic:2011:LLP

JhED11

Jenista:2011:OSO

James Christopher Jenista, Yong hun Eom, and Brian Charles Demsky. OoOJava: software out-of-order execution. *ACM SIGPLAN No-

[Jeon:2019:MLA]

[JL+14]

[JL17]

[JMB12]

[JK11]

[JK13]

[JMB12]

[JLP14]

[JVL+14]

[Johari:2011:ESE]

[JK11]

[JMB12]

[Jung:2012:EJA]
REFERENCES

Kastner:2012:TCA

Kumari:2011:AOO

Kunjir:2017:TAM

Kim:2014:LBL

Kiselyov:2017:SFC

Kulkarni:2012:MCO

Krishnaveni:2012:HOJ

R. Krishnaveni, C. Chellappan, and R. Dhanalakshmi. [KATS12]
REFERENCES

Kedia:2017:SFS

Kouzapas:2018:TPM

Kereki:2015:JAW

Kuehnhausen:2011:AJM

Kumar:2012:WSB

Khan:2015:UJW

Faiz Khan, Vincent Foley-Bourgon, Sujay Kathrotia, Erick Lavoie, and Laurie

Knoche:2018:UML

Kerschbaumer:2013:IFT

Kienle:2010:ATT

Kalibera:2011:FRT

Kabanov:2011:DSF

Kang:2017:PSR

REFERENCES

Kienle:2013:BRE

Kim:2017:TAA

Krieger:2011:AES

Kaiser:2014:WAM

 Ko:2010:EAW

Karakoidas:2015:TSE

Kang:2012:FSJ

Kedlaya:2014:DDL

Kedlaya:2016:SST

Ko:2019:WSA

Kaufmann:2013:SCO

Krebs:2014:JJB

Korsholm:2014:RTJ

Kashyap:2014:TRS

Vineeth Kashyap, John Sarracino, John Wagner, Ben Wiedermann, and Ben Hardekopf. Type refinement for static analysis of JavaScript. *ACM SIGPLAN Notices*, 49(2):17–26,
February 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). DLS ’13 conference proceedings.

Keil:2014:EDA

Keil:2015:BAH

Kersten:2014:RRA

Kolesnikov:2014:CPB

Kim:2010:EAE

Kim:2011:MAE

Lin:2012:UKT

Lauinger:2018:TSD

Li:2014:MHD

Lorenzen:2016:STD

Leijen:2017:TDC

Lerner:2010:FTJ

Lewis:2013:IAP

Liu:2019:RIP

Liu:2014:JNU

Liva:2019:SDE

Leino:2015:APS

Leung:2013:PEJ

Lin:2015:STU

Lee:2016:ECP

[Loc13] Andreas Lochbihler. Making the Java memory model

Lochbihler:2018:MTS

[Lochbihler:2018:MTS]

Long:2010:TDSa

[Long:2010:TDSa]

Long:2010:TDSb

[LPGK14]

Loureiro:2013:EDS

[Loureiro:2013:EDS]

Lerner:2014:TR

[Lerner:2014:TR]

Lux:2011:TSD

[LS11]

Landman:2016:EAR

Davy Landman, Alexander Serebrenik, Eric Bouwers,
REFERENCES

and Jurgen J. Vinju. Empirical analysis of the relationship between CC and
SLOC in a large corpus of Java methods and C functions. *Journal of Software:
(print), 2047-7481 (electronic). See corrigendum [LSBV17].

[LSBV17]

Davy Landman, Alexander Serebrenik, Eric Bouwers,
and Jurgen Vinju. Corrigendum: Empirical analysis of the
relationship between CC and SLOC in a large corpus of Java methods
and C functions published on 9 December 2015.
??, October 2017. CODEN ????. ISSN 2047-7473
(print), 2047-7481 (electronic). See [LSBV16].

[LSBV17]

X. Larrucea, I. Santamaria, R.
Colomo-Palacios, and C. Ebert. Microservices.
IEEE Software, 35(3):96–100, May/June 2018. CODEN IESOEG. ISSN 0740-
7459 (print), 1937-4194 (electronic).

[LSCPE18]

Loi Luu, Shweta Shinde, Prateek Saxena, and Brian
Demsky. A model counter for constraints over unbounded strings. *ACM SIG-
PLAN Notices*, 49(6):565–576, June 2014. CODEN SINODQ. ISSN 0362-1340
(print), 1523-2867 (print), 1558-1160 (electronic).

[LSBM16]

David Leopoldseder, Lukas Stadler, Christian Wimmer,
and Hanspeter Mössenböck. Java-to-JavaScript translation via structured
control flow reconstruction of compiler IR. *ACM SIG-
PLAN Notices*, 51(2):91–103, February 2016. CODEN SINODQ. ISSN 0362-
1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[LSWM16]

Siliang Li and Gang Tan. JET: exception checking in the Java Native
CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160

[LT11]

Siliang Li and Gang Tan. Exception analysis in the Java Native Interface.

[LT14]

[LSSD14]
REFERENCES

Laskowski:2012:DJP

Luckow:2017:HTP

Liu:2014:FFL

Lerner:2010:SDT

Lin:2015:SGU

Luckuck:2017:SCJ
REFERENCES

1532-0626 (print), 1532-0634 (electronic).

REFERENCES

References

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

Miller:2013:IPG

Mayer:2012:ESI

Matsakis:2015:TOJ

McGachey:2010:CJC

MKG+17

Malhotra:2017:PPS

 REFERENCES

Mirzaei:2012:TAA

Mirshokraie:2015:GMT

Morgan:2018: SJW

Mastrangelo:2015:UYO

Mercer:2012:CVI

Magazinius:2012:SWS

REFERENCES

Mamouras:2017:SMS

Mace:2018:PTD

Meawad:2012:EBS

McIlroy:2010:HJR

Marinescu:2013:FSJ

Moller:2014:ADC

Marino:2010:DSE
Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy. DRFX: a simple and efficient memory model for

Marino:2016:DXU

Mitchell:2010:FTL

Marchetto:2019:CCR

Mitropoulos:2016:HTY

Malhotra:2013:DFT

Murawski:2014:GSI

Nowicki:2018:MPI

Nasseri:2010:CMR

Nuzman:2013:JTC

Nguyen:2018:SCM

Newton:2015:ALF

Noll:2012:IDO

REFERENCES

Yeoul Na, Seon Wook Kim, and Youngsun Han. JavaScript parallelizing compiler for exploiting parallelism from data-parallel

Nolan:2014:XWT

Nakaike:2010:LER

Noller:2017:SSE

Nikolic:2012:DEA

Nikolic:2013:RAP

Nicolay:2017:PAJ

REFERENCES

Nguyen:2015:FCR

Nguyen:2018:UCM

Naik:2012:AT

Omar:2017:PSF

Obaidellah:2018:SUE

Oaks:2014:JPD

REFERENCES

Ocariza:2017:SCC

Ortin:2014:RPI

Olivo:2015:SDA

Ogawa:2013:RJA

Olszak:2012:RJP

Ogata:2010:SJN

Odaira:2010:ERT

Olson:2018:CLM

Ottoni:2018:HJP

Ohkawa:2013:RHO

Olsson:2016:ERR

Oh:2015:MWA

Paul:2014:RTP

[PAU14] Anand Paul. Real-time power management for embedded M2M using intel-

Pascarella:2019:CCC

Ponzanelli:2019:AIC

Philips:2017:DDD

Panizo:2012:EJP

Laura Panizo and María del Mar Gallardo. An extension of Java PathFinder for hybrid systems. *ACM SIGSOFT Software Engineering Notes*, 37(6):1–5,
Portillo-Dominguez:2016:ECP

Parker:2011:DPG

Pradel:2012:FAP

Pano:2018:FAL

Phan:2018:TIG

Park:2011:DCM

6. Weifeng Pan, Bing Li, Jing Liu, Yutao Ma, and Bo Hu.

Park:2014:AAS

Park:2018:SAJ

Pawlak:2016:SLI

Papadimitriou:2014:MLS

Phan:2012:SQI

Porter:2018:PJE

Michael T. Porter. js-emass: A flexible JavaScript im-
REFERENCES

REFERENCES

/Piron:2010:PCJ

/Pitter:2010:RTJ

/Palmer:2011:BJM

/Park:2012:CB

/Paquin:2018:AAS

/Pradel:2014:EAR

/Park:2015:KCF
Daejun Park, Andrei Stefanescu, and Grigore Rosu.

Pour:2011:MBD

Pinto:2015:LSS

Papadimitriou:2011:SES

Paletov:2018:ICA

Pizlo:2010:SFT

Qiu:2017:USR

Qian:2016:EFS

Rehman:2016:VMJ

REFERENCES

Rossi:2015:NPJ

Raza"ndralambo:2012:FFH

Raychev:2016:PMC

Rathee:2017:ROO

Rosa:2017:APV

Robatmili:2014:MRL

REFERENCES

Radoi:2015:ETS

Ramirez-Deantes:2012:MTA

Rhodes:2015:DDO

Reynders:2016:GSB

Reynolds:2013:MJB

Reza:2012:JS

Richard-Foy:2014:EHL

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

[RK19] Mohammad Roohitavaf and Sandeep Kulkarni. Automatic addition of fault-tolerance in presence of unchangeable environment ac-

[RK19] Mohammad Roohitavaf and Sandeep Kulkarni. Automatic addition of fault-tolerance in presence of unchangeable environment ac-

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Rodeghero:2015:ETS [RR14]

Rompf:2012:LMS [RR12]

Ryu:2019:TAB [RRB19]

Rathje:2014:FMC [RR14]

Rosa:2017:ARC [RRB19]

Rosa:2019:AOT [RRB19]
REFERENCES

Ravn:2012:SCJ

Rompf:2014:SPJ

Rastogi:2015:SEG

Reichenbach:2012:PPD

Reardon:2014:SSB

Ramos:2013:DSJ

Ramos:2015:NCS

REFERENCES

[SBE+19] Fausto Spoto, Elisa Burato, Michael D. Ernst,
REFERENCES

REFERENCES

REFERENCES

[SDM12] Syed Muhammad Ali Shah, Jens Dietrich, and Cather-
Ulne McCartin. On the au-
Tomated modularisation of
Java programs using ser-
vice locators. Lecture Notes
in Computer Science, 7306:
132–147, 2012. CODEN
LNCSD9. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/chapter/
10.1007/978-3-642-30564-
1_9/.

[Sartor:2012:EMT] Jennifer B. Sartor and
Lieven Eeckhout. Exploring
multi-threaded Java appli-
cation performance on mul-
ticore hardware. ACM SIG-
PLAN Notices, 47(10):281–
296, October 2012. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-8287 (print),
1558-1160 (electronic).

[SED14] Kathryn T. Stolee, Sebas-
tian Elbaum, and Daniel
Dobos. Solving the search
for source code. ACM
Transactions on Software
Engineering and Methodol-
ogy, 23(3):26:1–26:??, May
2014. CODEN ATSMER.
ISSN 1049-331X (print),
1557-7392 (electronic).

[SEK19] J. Staples, C. Endicott,
L. Krause, P. Pal, P. Samouelian,
R. Schantz, and A. Well-
man. A semi-autonomic
bytecode repair framework.
IEEE Software, 36(2):97–
102, March/April 2019.
CODEN IESOEG. ISSN
0740-7459 (print), 1937-
4194 (electronic).

[Seth:2013:UJV] Sachin Seth. Understanding
Java Virtual Machine. Al-
pha Science International,
Oxford, UK, 2013. ISBN 1-
84265-815-8. 318 pp. LCCN
QA76.73.J38 S437 2013.

JavaScript object no-
tation. Computer, 45(4):
6–8, April 2012. CODEN
CPTRB4. ISSN 0018-9162
(print), 1558-0814 (elec-
tronic).

Designing a language in 10
days. Computer, 45(2):7–
8, February 2012. CODEN
CPTRB4. ISSN 0018-9162
(print), 1558-0814 (elec-
tronic).

[Sewell:2012:TJ] Peter Sewell. Tales from
the jungle. ACM SIG-
PLAN Notices, 47(9):271–
272, September 2012. CO-
DEN SINODQ. ISSN 0362-
1340 (print), 1523-2867
REFERENCES

Swamy:2014:GTE

Sherman:2015:DTB

Subercaze:2017:UPT

Simao:2012:CER

Stuchlik:2012:SVD

Steimann:2016:CRA

REFERENCES

0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Siebert:2010:CPR

Siek:2017:CPT

Singer:2010:EGC

Smans:2010:AVJ

Singer:2011:GCA

Shan:2012:OAC

Salkeld:2013:IDO

Singer:2011:GCA

Shafei:2012:MCL

Singh:2012:EPS

Santos:2018:JJV

Spoto:2010:TAJ

Sewe:2012:NSI

Sewe:2011:CCS

Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev"
REFERENCES

Pedersen, and Benedikt Huber. Worst-case execution
time analysis for a Java pro-
cessor. *Software—Practice
and Experience*, 40(6):507–
542, May 2010. CODEN
SPEXBL. ISSN 0038-0644
(print), 1097-024X (elec-
tronic).

Strom:2017:HLR

Tórrur Biskopstø Strøm,
Wolfgang Puffitsch, and
Martin Schoebel. Hard-
ware locks for a real-time
Java chip multiprocessor.
*Concurrency and Compu-
tation: Practice and Exper-
ience*, 29(6):??, March 25,
2017. CODEN CCPEBO.
ISSN 1532-0626 (print),
1532-0634 (electronic).

Stefanescu:2016:SBP

Andrei Stefanescu, Dae-
jun Park, Shijiao Yuwen,
Yilong Li, and Grigore
Rosu. Semantics-based pro-
gram verifiers for all lan-
guages. *ACM SIGPLAN
Notices*, 51(10):74–91, Oc-
tober 2016. CODEN SIN-
ODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Samak:2014:MTS

Malavika Samak and Mu-
rali Krishna Ramanathan.
Multithreaded test syn-
thesis for deadlock detec-
tion. *ACM SIGPLAN No-
tices*, 49(10):473–489, Oc-
tober 2014. CODEN SIN-
ODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Samak:2014:TDD

Malavika Samak and Mu-
rali Krishna Ramanathan.
Trace driven dynamic dead-
lock detection and repro-
duction. *ACM SIGPLAN
Notices*, 49(8):29–42, Au-
gust 2014. CODEN SIN-
ODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Sun:2017:AJP

Kwangwon Sun and Suky-
oung Ryu. Analysis of
JavaScript programs: Chal-
lenges and research trends.
ACM Computing Surveys,
50(4):59:1–59:??, November
2017. CODEN CMSVAN.
ISSN 0360-0300 (print),
1557-7341 (electronic).

Sawan:2018:RDC

Anand Ashok Sawant, Ro-
main Robbes, and Alberto
Bacchelli. On the re-
action to deprecation of
clients of 4 + 1 popular Java
APIs and the JDK. *Em-
pirical Software Engineer-
ing*, 23(4):2158–2197, Au-
gust 2018. CODEN ES-
ENFW. ISSN 1382-3256
(print), 1573-7616 (elec-
springer.com/article/
10.1007/s10664-017-9554-

Samak:2015:SRT

Scanniello:2017:FFC

Sutherland:2010:CTC

Scheben:2012:VIF

Stefik:2013:EIP

Sor:2014:MLD

Surendran:2016:APP

Rishi Surendran and Vivek

REFERENCES

Santos:2013:DDS

Stefanov:2010:JP

Samak:2016:DSF

Sun:2013:BJW

Schafer:2012:CAN

Su:2014:RVP

Sverdlove:2014:JVL
[102x681]

Siek:2012:FDT

Stancu:2015:SEH

Szweda:2012:ANB

Sharma:2017:VCS

Simon:2015:STH

1544-3566 (print), 1544-3973 (electronic).

[Teyton:2014:SLM]
Tommasel:2017:SLJ

Tu:2014:PPP

Tran-Jorgensen:2018:ATV

Tsai:2015:JP1

Thiessen:2017:CTP

Tate:2011:TWJ

Tetali:2013:MSA

Sai Deep Tetali, Mohsen...

TOOLEDO:2012:AJA

TOFFOLA:2015:PPY

Taboada:2013:JHP

Toledo:2011:ACJ

Taboada:2011:DLC

Takikawa:2012:GTF

Tatsubori:2010:EJT

Torlak:2010:MCA

Tardieu:2012:WSS

Toegl:2012:SSJ

Titzer:2010:ICR

Teng:2010:TPA

REFERENCES

DEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic).

Urma:2015:JAL

Ugawa:2010:IRB

Ugawa:2014:ROP

Upadhyaya:2010:UDS

Uva:2018:AWJ

Upadhyaya:2015:EML

Ganesha Upadhyaya and Hridesh Rajan. Effectively mapping linguistic abstractions for message-passing concurrency to threads on the Java Virtual Machine.
REFERENCES

Ugawa:2018:TSL

Urec:2013:MIS

Vilk:2014:DBB

Vouillon:2014:BJJ

Vilk:2018:BAD

Villazon:2010:ARA

Villazon:2010:HCA

[Vidal:2016:ECJ]

[Vila:2011:CAW]

[Vidal:2016:UAE]

[Vidal:2018:ARB]

[VanderMerwe:2012:VAA]

[Viotti:2017:HRH]

Paolo Viotti, Dan Dobre, and Marko Vukolić. Hybris: Robust hybrid cloud storage. *ACM Transactions on...
REFERENCES

[VM10] Tom Van Cutsem and Mark S. Miller. Proxies: design principles for robust object-oriented intercession APIs. ACM SIGPLAN Notices, 45(12):59–72, Decem-
VanCutsem:2015:RTC

Verdu:2016:PSA

VanderHart:2010:PC

VanNieuwpoort:2010:SHL

Vechev:2010:PPC
Martin Vechev, Eran Yahav, and Greta Yorsh.
REFERENCES

Wijayarathna:2019:WJC

Wurthinger:2011:SAR

Walker:2012:SNJ

Wampler:2011:FPJ

Wang:2011:EEU

Wurthinger:2011:AED

Thomas Würthinger, Walter Binder, Danilo Ansaloni, Philippe Moret, and Hanspeter Mössenböck. Applications of enhanced dynamic code evolution.

Wilcox:2018:VVH

Wagner:2011:SJV

Wagner:2011:CMM

Wagner:2011:CMM

Wimmer:2013:MAV

Wellings:2012:AEH

Wang:2017:JRJ

Wade:2017:AVJ

Wang:2019:TRC

Edwin Westbrook, Matthias Ricken, Jun Inoue, Yilong Yao, Tamer Abdelatif, and Walid Taha. Mint: Java multi-stage programming using weak separabil-
REFERENCES

Wehr:2010:JBP

Wehr:2011:JIT

Wang:2018:IDG

Wurthinger:2017:PPE

Wurthinger:2013:USD

Wei:2016:ESD
REFERENCES

169

[102x681] REFERENCES

169

1097-024X (electronic).

Xu:2014:SRB

Xuan:2017:NAR

Xue:2012:RJC

Xu:2010:DIU

Xu:2013:PML

Xue:2019:ASC

REFERENCES

Yang:2017:EJV

Yessenov:2017:DAD

Yim:2019:TFS

Yiapanis:2013:OSR

Yerima:2012:AMB

Yi:2015:SCC

Zheng:2015:APP

Zhang:2017:ACE

Zhang:2015:SYB

Zeuch:2019:AES

Zschaler:2014:SJF

Zuo:2016:LOF

Zhao:2012:PTI

Zhao:2013:INT

Zheng:2016:CMD

Zhang:2015:LOS

Zhang:2012:RAJ

Zhang:2014:AIO

Zeyda:2014:CMS

Zabolotnyi:2015:JCG

Zheng:2018:ADS

Zhang:2014:ARP

Zhou:2016:IRO

REFERENCES

Zhang:2014:HTB

Zakkak:2014:JJM

Zhuan:2010:OIG

Zerzelidis:2010:FFS

Zhu:2013:EAZ

Zhuan:2015:APL

Zhao:2014:CSP

[ZWZ+14] Zhijia Zhao, Bo Wu, Mingzhou Zhou, Yufei Ding, Jianhua Sun, Xipeng Shen, and Youfeng Wu. Call sequence prediction through probabilistic calling automata. *ACM SIGPLAN
REFERENCES

