A Bibliography of Publications about the Java Programming Language, 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

13 March 2020
Version 1.220

Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

3 [DiP18b, FLZ+18, GBC12, JEC+12, ZXL16].
39.95 [Ano18]. 4 + 1 [SRB18]. tP [LTK17].
Cp [AO11]. K

[PLL+18, SS19, SD16b, SGG+17]. N

[ADJG19, WZK+19]. Zp [AO11].

-core [PLL+18]. -Means [SS19]. -overlap
[ADJG19]. -safety [SD16b]. -Tier

[WZK+19].

/multi [Taf13]. /multi-threaded [Taf13].

'12 [Hol12]. 12th [Fox17a].

2015 [LSBV17]. 27th [KP15].

5 [KHR11].

6 [Jen12].

7 [Ano15, EV13, J+12]. 75 [HWM11].

8 [BKP16, CWGA17, LYBB14, SAdB+16,
UFM15].
Applications [ABMV12, BH10, VBAM10b, WBA+11].
Aspect-Oriented [ABMV12, BH10, VBAM10b, WBA+11].
Aspectizing [TNTN12].
AspectJ [AC10].
aspects [LGV10].
Assertion [MM12].
Assertion-Based [MM12].
Assertional [LL15].
assertions [VYY10].
Assessing [GTSS11, PSJ18, VBZ+18, JACS10].
assessment [IS18].
assignment [KT15].
AST [DRN14, HWW+15, ZLBF14].
asymmetric [CBGM12].
asymptotic [ODL15].
Asynchronous [KW11, SK12, FZ17, KW10, LML17].
atomic [WAB+11].
Atomicity [GGRSY17, JLP+14, BHSB14, BNS12, GGRSY15, UMP10].
atomics [PPS16].
Attack [BH12].
Attacks [MSSK16, SBE+19, VS11].
attribute [SHU16].
attributes [GD10].
augmentation [DA13].
Augmenting [ZZY+19].
authentication [XHH12].
authorship [FMS+11].
auto [SKBL11].
auto-tuning [SKBL11].
AutoFix [YSCX17].
automata [LKP19, TLX17, ZWZ+14].
Automated [BH17, BSOG12, BMOG12, MS14, RGEV11, SDM12, TJLL18, UPR+18, AsdMG14, MRMV12, YSCX17].
Automatic [GGRSY14, GGRSY15, GGRSY17, IS18, KK11, LXP18, MDS+17, MM16, PQD12, FB+19, PK19, SZ11, SJPS10, SS16, WM10, XMD+17, ZLNP18, ABK+16, FM13, PG12].
automatically [TB14, VB18].
Automating [YXS+19].
Autonomic [DLPT14, SEK+19].
Autonomous [GMP12].
average [LDL14].
avoid [XR10].
Avoiding [FRC+17, ZBB17].
avoids [PPS16].
Aware [JYKS12, LZ12, BBXC13, CL17, EQT10, SSB+14a, SGV12].
awareness [VGS14].
axiomatic [TVD10].
B [DLZ+13].
back [Car11].
Background [PWSG17, PWSG19].
Backstage [PS11].
Bad [dGRdB+15].
baggage [KFB+12].
capability [RDF15], capo [SMSB11].
capturing [BKC+13]. Card
[GMPS12, BL15, ABFM12, MLM17,
MLM19, dCMMN12]. Cards
[BH12, GMPS12]. care [EKUR10]. Caring
[DAAL13]. carry [AME13]. Cartesian
[SD16b]. Case
[LMZ19, ZMM16, dGrdB+15, AMWW15,
HNTL12, JK11, MT13, SPPH10, Vit14].
Cassandra [FRM+15]. casts [SH12].
categorising [CMM17]. Catena [TD17].
Causal [MRF18]. Causes
[OBPM17, FRM+15]. CAV [KP15]. Cay
[Gve13]. CC [LSBV16, LSVB17], CCA
[FLZ+18, XZL16]. Center [Hol12]. centric
[DHM+12, FOPZ14]. CERT [LMS+12].
chain [KSR14]. Challenges
[GM12, SWMV17, Sie17, SR17, AACR18].
Change [YXS+19, YQTR15, MPR12].
Change-Level [YXS+19]. Changes
[MvDL12, CJ19, PTRV18]. Changing
[SSG+14]. Channel [Bul18], channels
[AGH+17, LS11]. characteristics [ABC18].
Characterizing [CJ19]. check
[CS12, GvRN+11]. Checking
[BNE16, CSF+16, Cho14, FSK12, JC10,
JYKS12, ABFM12, BSBS14, BNS12,
CVG+17, DLM10, FLL+13, HMDE12,
KATS12, KvRHA14, LT11, RR14, RAS16,
RDF15, TVD10, VYY10]. checkpointing
[SGV12], checkpointing-enabled
[SGV12]. Checks [FMHB15]. CHERI [CDG+17].
chip [PS10b, Puf13, RS12, SPS17].
chip-multiprocessor [PS10b].
chip-multiprocessors [RS12]. Choice
[JCMM19, WBK+10]. CICS [R+13]. CIL
[BBF+10]. circular [Gun14, S10]. Circus
[ZLCW14, MCW19]. City [Hol12]. Class
[BS13, CSF+16, NCS10, CKB12, HC10,
MHM10, SC16, SM12, TSD+12]. Classes
[And14, SVB+17, WT11, C14, CS12, SZ10,
TSD+12, VBDM16]. Classifieds [SD16a].
Classification [PBM+19, SS14]. Classifiers
[BSA14]. Classifying [MHM10, PBB19].
Classless [WZdSOS17], clicker [HA13].
Client [MS14, OBPM17, CH17, KRH16].
Client-Side [OBPM17, KRH16].
Client-State [MS14], clients [SRB18].
Clojure [ECG12, FH11, VS10]. Cloned
[SSL18]. Closing [ZLHD15]. Closures
[BO11, BO12, BO13]. Cloud
[VDD17, WZK+19, BFS+18, GGC18,
LZYP16, TLMM13]. cloud-based [GGG18].
clustered [PDP+16]. clustering
[MKK+12, MKK+13]. clusters [TRD11].
Cocoa [Sta10]. Code
[ADG19, BH17, BNE16, CJ19, HC11,
MSS19, MM16, PKPM19, RVK15, RLMM15,
SRTR17, SVB+17, SV15a,SED14,
WWG+18, XXCL19, AG17, AK13,
CCFB15, DRN14, FLZ+18, FH16, FMS+11,
IS18, LGV10, MKK+12, MKK+13, NG13,
OJ12, PTRV18, PBB19, PMP+16, PWS11,
RFRS14, RBV16, RVK19, RO12, SSK13,
Tai13, UTO13, VSG17, WKJ17, WGF11,
WBA+11, WAB+11, WWS13, ZHL+12,
ZXL16, ZWS15].
Code-Issue-Introducing [CJ19]. coding
[LMS+12]. Coefficient [ADG19]. Coffin
[Teo12]. coherent [ZP14]. Cohesion
[RC17]. Cold [BZD17, WGF11]. Collect
[JCMM19]. collected [AGGZ10]. collecting
[AHK+11]. Collection
[ASV+16, BF18, GM12, MAK19, QSaS+16,
ST15, URJ18, ASME18, BP10, BO17,
KPHV11, KBL14, NGB16, ODL15, PZM+10,
PDP+16, SP10a, SMB14, Sie10, SJBL10,
SKBL11, UIY10, UJR14]. Collections
[GS12, Lon10a, Lon10b, PL12, SV15b, SV17].
collectives [RTET15, TRD11]. Collector
[BH12, GTS+15, BCR13, BVG14b, Puf13].
Collectorens [Sch13]. collectors
[GTSS11, Sch13, XGD+19]. coloring [SS10].
Colt [BKPI16, WN10]. CoMA [AGR12].
Combating [NWB+18]. Combination
[BSA14]. Combinatorial [YHY13].
combinators [MHBO13]. Combining
[BDGS13, MSS19, MGI17]. commensal
comments [PBB19, ZYY+19].

Communication [JQJ+16, RTE+13, SK12, BJBK12, ETR+15, TTD+11].

communications [ETTD12, RTET15, TTD12]. Communities [ZMM+16]. COMP [CKS18]. Compact [HWM10, HWM11, JKL17]. Comparative [KB11, CDMR19, KFBK+15, SSL18].

comparing [MD15]. Comparison [BKP16, ADI13, BJBK12, HH13, KVRHA14, SMS+12]. Comparisons [GGZ+15].

Compartmental [WGW+11]. compatibility [DJB16, OIA+13]. compatible [ABCR10, Hor12].

Competition [CKS18]. Compilation [DLR16, PKPM19, CGJ+16, CMS+12, DLR14, FSC+13, IHWN12, JLP+14, JK13, JO14, KS13, KHL+13, Lei17, MD15, MGI17, ZBB15]. compiled [NED+13, RO12, TMVB13]. Compiler [JMB12, Loc18, NKH16, NWB+15, BBF+10, BRWA14, CIAD13, Cle16, HWM14, IHWN12, KMLS15, KS14, KC12, LSWM16, MD17, Ott18, Rub14, TTS+10, TWSC10, VB14b, ZYZ+12]. compiler-compiler [KS14]. compiler-runtime [TWSC10]. compilers [Hos12, LMK16, RSB+14].

Complexity [SSH17]. Compliance [GD12]. compliant [MZC10a]. component [AST+16, CSKB12, GT10a].

component-based [AST+16, GT10a]. components [BMSZ17, FOPZ14, KS14].

Composable [SS10]. Composing [EABVGV14]. Composition [SK12, AGH+17, AH10, SZ10, VM15].

Comprehension [BGK17]. Comprehensive [STST12, VBMA11, ZKB+16, MKZ+14].

Compressing [Gun14]. Computation [BW12, LYM+18, ZHL+12].

Computation-Intensive [LYM+18]. computational [Bra14, SSG+14, VF10]. computations [KFBK+15, TTD12].

Computer [HWM11, OAC18, DNB+12, KP15].

Computing [Hol12, MPR12, NBB18, PWG17, PWG19, SHU16, TWHN12, WN10, AdSCdr+19, LZYP16, Rubin, TTD+11, VF10, TRE+13].

con [SMSB11]. conceptual [Tai13].

Concurrency [BG17, Bro12, SWF12, BVGV11a, CHM13, DMS11, HAW13, KHL+17, PPS16, Sub11, TD15, UR15].

Conditional [XMD+17, SS16]. Conference [DDDF17, Hol12, KP15, LMK16, PDPM+16].

Configurations [PSJ18]. conflict [ABC18].

Conformance [AGR12, SKR17]. Confused [BH12].

Connecting [NFS+18]. conquer [SBF+10]. Consequences [OBPM17].

conservative [SBM14]. Consistency [CSF+16, CS12, DNB+12, FRM+15, ZBB17]. consistent [BCR13], constrained [KSR14].

constraint [MBH15, SHU16].

Constraints [SGD15, LSSD14].

construction [CIAD13, RG17].

constructors [MME14]. constructs [PCL14, PTF+15]. consumers [DA13].

Consumption [MV16]. container [XR13].

containers [XR10].

Context [HWM13, MM16, TL17, HB13, IvSN16, SSB+14a, ZYY+19]. Context-sensitive [HWM13].

Contextual [MSSK16].

Continuous [Teo12]. Continuously [DTLM14].

Contracts [YQTR15, HBT12, KT15, KKW11].

Control [FGR12, FHR12, TT11, TTN12,
AdCGGH16, BNP+18, BL15, FWDL15, LSWM16, RHN+13, STS+13, TABS12, WLL19, XHH12. controlling
[BKC+13, YDFF15]. Convention [Hol12]. conversions [CM17]. Converter
[YWW+18]. Cooperative
[YDF15, HmM17]. Coordinating
[MAHK16]. coordination [BMSV17]. copy
[FBH17]. copyrightable [Sam12]. Core
[Hor11, HC13, RDCP12, RTE+13, MS10, PLL+18, TRTD11, Gve13]. cores
[GTSS11, SKBL11]. Cornell [Gve13]. corpus
[HCN14, LSBV16, LSBV17, TMVB13]. correct
[AdCGGH16, AJL16, DJLP10, PS10a]. Correctness
[LL15, BENS12, Cho14]. Correlation
[SDC+12, XHH12]. Corrigendum
[LSBV17]. Cost [MS19]. counter
[LSSS14]. counters [IN12]. Counting
[Bu18]. Course [Wan11, Zak12]. Coverage
[CSS+16, GGZ+15, MSS19, RGB18]. Coverage-Based
[GGZ+15]. Coverage-directed
[CSS+16]. CPS
[PDD17]. CPU
[KPO+15]. Crawling
[BMSV18, MvD12]. Creating
[YMHB19, HC10, VBAM10b]. Creation
[SK12]. crisis [AT16]. Critical
[HIL13, MCV19, WK12, WC16, ZLCW14, AGR17, DTL14, GCM+13, NM10, Nil12b, RS12, SDH+17, CWW13, IWC17]. Cross
[GG+18, MDM17, OTR+18, WBHN18, XCL19, AMWW15, BKC+13, GSS+16, KMZN16]. Cross-Architecture
[XCL19]. cross-cutting
[AMWW15]. Cross-Language
[GG+18, MDM17, GSS+16]. Cross-Layer
[OTR+18]. Cross-OS
[XCL19]. Cross-Platform
[WBHN18]. cross-program [KMZN16]. cross-thread
[BKC+13]. Crowdsourcing
[BH17]. CrowdSummarizer
[BH17]. crypto
[PTRV18]. Cryptography
[GPT12]. CSS
[Ano15, HLo15, Sta10]. Curve
[GPT12]. customizations
[LVG10]. customized
[HB13]. cutting
[AMWW15]. Cyclic
[BM12, RS12].

D
[DiP18b, FLZ+18, GBC12, JEC+12, ZXL16]. DAA
[DR10]. Data
[Bra14, BM12, BA17, BF18, GM12, GTS+15, GT10b, JCO19, NKh16, NWB+15, NFN+18, NWB+18, TAF+18, YWW+18, ZLNP18, dMRH12, BK14, BB17, BOB17, BB13, BJ12, CDTM10, CRP+10, DBF13, DHM+12, EKIR10, FOPZ14, KB17, LDL14, MRA+17, NL14, SADB+16, SGG+14, SGG+17, UMP10, WKL17, WCG14, XZL13, XMA+10, XGD+19, ZvdS17]. data-centric
[DHM+12, FOPZ14]. Data-Driven
[JJC19]. Data-Intensive
[NWB+18]. Data-Parallel
[NKh16, CRP+10]. database
[De10, EKIR10, TABS12]. databases
[EKIR10, MLA11]. Dataflow
[BR12]. Datalog
[ZMG+14]. dataset
[MDS+17]. David
[K13]. Days
[Sev12b]. DBT
[KS13]. dead
[SK13]. Deadlock
[CHMY19, CHMY15, SR14a, SR14b]. Dean
[Bro12]. Debt
[YXS+19]. debugging
[AS14, BM14, KS14, TB14, VB18, ZFK+16]. December
[LSBV17]. Deciding
[S15]. decision
[RB16]. Declarative
[DT14, RS12, FOPZ14, WCT19, MME+10]. Decomposition
[AGH+17, PLL+18]. deconstructing
[ACS+14]. decoupled
[LP13]. deduplication
[HOK14]. Default
[BG17, SNS+14]. defects4j
[MDS+17]. defined
[FMS+11]. Definite
[S12]. Definition
[SSB14b, AK13, SSB01]. Definitive
[Oak14]. delegation
[GBS13]. delimited
[PDD17]. Delphi
[GBS13]. demand
[FWDL15, ZHL+12]. demand-driven
[FWDL15]. DemoMatch
[YKL17]. demonstrations
[YKL17]. Deoptimization
[K14]. depend

SWMV17, BNP+18, Cha18, HZZK19, JLL17, JhEd11, LLI13, MMP+12, RCB17, SPPH10. execution-driven [HZZK19]. Executions [WCG+18, ASDSMGM14, PPS16, STR16], executives [RS12, Exemplar [ZW13].

exhaustive [DHS15]. exhibitionism [VBMDP16].

Exogenous [BMSZ17]. Experience [ABMV12, OW16, Sch10a, FGB+19, CBLFD12, TRE+13, WT10]. Experiment [BKPI6, MS+17, HWLM11].

exploit [Ano13]. Exploitation [SSMGD10, MLM19].

Express [JQJ+16]. Expression [NS12, PIR17]. expressions [GK15, MKTD17]. expressive [VYY10].

Extended [DDDF17, FGR12, FL+13, JC10, LMK16, PDPM+16]. Extending [AC10, BVGVEA11a, LPA13, PTHH14].

Extensible [ZIvdS17, ER14, KMLS15, MHBO13].

Extension [RS12, WA19, LE16, MLA11, PDMG12].

extensions [MPR12, Zha12]. Extensive [LMZP19, WA11]. Extracting [CJ19, CCA+12, KM10]. extraction [LK19].

LKP19. Extremal [LT+12]. Eye [OAC18, RLMM15, GY14]. Eye-Tracking [OC18, RLMM15].

F [GMT14, TTD12]. F-bounded [GMT14].

F-MPJ [TTD12]. FAA [Sch10a].

FACADE [NB+15]. face [XHH12]. Facebook [Ano13, HOSC16]. Facets [ASF17, AF12]. facilities [BVGVEA11].

Fast [CVG+17, CSGT17, HyG12, SBM14, SLF14, YMHB19, Zkas18, BB17, KMMV14, KCP+17, MDM17, MHBO13, SV15].

Faults [SRTR17, KPP+18, ZKK13]. FC [YWW+18]. Featherweight [RvB14].

feature [AH10, KvRHA14, OJ12, SS19].

feedback-based [KvRHA14].

Feedback [NED+13, NG13, WM10]. Feedback-directed [NED+13, NG13, WM10]. fields [PQTGS17].

BVGVEAF11a, DRN14]. fine-grained [DRN14]. Fingersprints [MSSK16]. Finite [BLH12, MB12]. Finite-State [BLH12].

first [SC16, TSD+12]. first-class [SC16, TSD+12]. fix [TP15]. Fixing [SRTR17, LTZ14, YSCX17]. flexibility [SBF+10].

Flexible [ES14, SM+16, PK+13, RN+13, BCD13, KHR11, Por18, ZW10].

Flip [LTZ14]. Floating [Ja13, AJL16].

Floating-Point [Ja13, AJL16]. Flow [AS17, FHSR12, LM16, SS12].

fly [URJ14, URJ18]. folding [CP14].

Footprint [GS12, WHIN11]. Forecasting [CC15].

Foreign [LWH+10]. forge [Ler10].

FORSETI [CSV15]. Forward [FOPZ14]. Foundation [CJ17].

Four [MSS10]. FPGA [OUY+13].

fragmentation [PZM+10].
fragmentation-tolerant [PZM+10].
Fragments [PBM+19, OA17]. frames [SJPS10]. Framework [CCA+12, Den18, FFB17, LM15, PWS17, PWS19, RBL12, SEK+19, TN19, Ame13, AC16, DDDD17, ER14, FRGPLF+12, JEC+12, KMLS15, Lon10a, Lon10b, MT13, PGA18, PKO+15, RR14, STY+14, ZW10, ZDS14]. frameworks [PPMH15]. Francisco [KP15].

Hack [Ott18]. Handling [KW11, ECS15, HWMC15, KW10, WK12]. Hands [CSZ17, Teo13]. Hands-on [CSZ17, Teo13]. happened [Han15]. happens [TD15]. happens-before [TD15].
hard [LTK17, Pufl13]. Hardware [MAK19, SKKR11, SPS17, CBGM12, IN12, SE12, ZDK+19]. hardwired [OUY+13].
harness [Kie13]. hash
[SV15a, SV15b, SV18]. hash-array [SV15b].
hash-tries [SV18]. hashing [GRF11].
HDFS [IRJ+12]. HDL [OUY+13]. health
[EKUR10]. heap [CSV15, LDL14, TLX17, Tar11, VYY10, YS10, BVGVE10].
heap-manipulating [YS10]. Heaps
[NFN+18]. Helping [RT14]. Hera [MS10].
Hera-JVM [MS10]. Herman [Kie13].
Heterogeneous [ASV+16, HBB+14, Rub14, AYZI10, ABCR10, DFR13, MS10, SV18].
Heterogeneous-race-free [HBB+14].
Heuristics [MGI14, LMK16]. HHVM
[OTT18]. Hidding [RBL12]. hierarchy
[BS13]. High
[GSS+16, Hol12, IRJ+12, MSM+16, RGB18, SWU+15, URJ18, WN10, Zak10, BRWA14, Hos12, Ngo12, RFBJ14, TTD+11, TGZ17, VVJB10, WFF18, WWH+17, TRE+13].
High-coverage [RGB18].
high-dimensional [TGZ17]. high-level
[Hos12, RFBJ14, VVJB10].
High-Performance
[URJ18, WN10, GSS+16, BRWA14, Ngo12, TTD+11, WFF18, WWH+17]. higher
[KT15]. higher-order [KT15]. highly
[BP10, SPP+10]. history [DRN14]. hit
[ANO13]. Hoare [SD16b]. hole [ANO13].
Holistic [MAHK16]. Hop
[WBHN18, D'HI2]. Hopjs [SP16].
Horstmann [Gve13]. hosted
[CBLFD12, SYZZ+14]. hot [LMK16].
HotSpot [Sch13, BOF17]. HotWave
[ABMV12, VBAM10b]. HPC [JQJ+16].
HTM [CHM16]. HTML [Sta10]. HTML5
[HLO15, NKh16, Ano15]. Hunting
[GGC18]. HVM [LTK17]. Hybrid
[CHM16, JQJ+16, JMO14, KCD12, VDV17, ZMY14, ZMM+16, ASME18, ADI13, HyG12, PdMG12, STA18, SWB+15].
Hybris [VDV17]. hygienic [DFHF15].
hypervisor [GMC+13].
i-Jacob [LYM+18]. IaaS [ZLHD15].
Identification
Identifying [IN12, SVB+17]. if
[Han15, STA18]. If-transpiler [STA18].
iluminating [BK14]. Image [WN10].
immutability [HMDE12, ZPL+10]. immutable
[SV15b]. impact [CMS+12, Gra15, HWLM11, MPRI2, WKJ17].
imperative [RFRS14]. implement
[HdM17]. Implementation
[CSF+16, GPT12, HM12, NBB18, OA17, Por18, VGRS16, YP10]. implementations
[CSS+16, OJ12, PS10a]. Implementing
[FFF17, GM12, WCB16, EEK+13, FBH17, PMP+16]. implications [BRGG12].
imlicit [IvdS16, SPAK10]. imply
[BRGG12]. Improve [OTR+18, QSaS+16].
Improved [KRR+14, UIY10, OJ12, XHH12].
Improvement [RC17]. Improving
[ACS+14, HwI+12, TWSC10, WWG+18, eBh11, UTO13]. in-depth [Rau14].
in-place [DVL13]. including [Den18].
Incremental
[LHR19, DS16, EIW15, UIY10]. independent
[IF16, VS11]. industrial
[CRJ+10]. inefficently [XR10].
efficiently-used [XR10]. Inference
[BO13, HYY13, AGGZ10, CGJ+16, HyG12, HMDE12, RKH18, Zha12]. Inferring
[PTR18, AS14, BENS12]. InfiniBand
[ETTD12, IRJ+12]. infinite [ASdMG14].
Inflow [ZMM+16]. influence [MRH+12].
Informa [HA13]. Information
[ASF17, HBS16, KHL+13, RKN+18, SS12, AF12, ABFM12, BVGVEA11b, CMS+12, PMTP12, RRB17, ZYY+19].
Information-flow [HBS16].
Infrastructure [Den18, NG12, WCST19].
Inheritance
[LN15, WT11, AST+16, GBS13, NCS10].
Initial [LTD+12]. initialization
[AMT17, MME14]. Initiation [FGR12].
Injecting [ZZK13]. Injection [SBE+19].
inlining [DJLP10]. Inlining
[BAI12, STA18, HWM13]. input [Pha18].
insecure [YW13]. Insight [VF10].
instanceof [SMS+12]. Instant [MHBO13].
instantiation [AST+16]. instead
[AGH+17, BTR+13]. instrumenting
[CZ14]. Integrated [Tar11, YP10].
integrating [SPP+10], integration
[Ame13, HKV14, Sch10a]. integrity
[HDK+11]. Intel [CDMR19]. intelligence
[JACS10]. Intelligent [Pau14]. Intensive
[LYM+18, NWB+18, SAdB+16]. inner
[CMM17]. inter-language [CMM17].
Interacting [SK13]. Interaction [WT11].
interactive [AMWW15, JH11, MCY+10].
intercession [VM10]. interdependencies
[LBF12]. Interface [Liu14, MvDL12,
SLS+12, AYZ10, MT14, LT11, LT14].
Interfaces [WT11, Cho14, DLM10,
LWH+10, PSNS14, WT10]. interference
[YDFF15]. International
[Hol12, KP15, Fox17a]. Internetware
[LYM+18]. Internetware-Oriented
[LYM+18]. Interoperability
[GSS+18, GSS+16]. Interpretation
[BDT10, DLR16, DLM10, DLR14, NSD17].
Interpretation-Based [DLR16].
interpreter [D’H12, KMMV14].
interpreters [HWW+15, IvdS16, MD15,
SYZZ+14, ZLF14]. Interprocedural
[CPV15, FWDL15, ZMNY14]. Interrupting
[AST12]. intersection [KT15]. intra
[BJBK12], intra-node [BJBK12].
Introducing [CJ19, Dan17, DMS11].
Introduction
[CIAD13, CSZ17, HTLC10, HTW14, Lew13,
RHT13, VK12, Hav11, VF10].
Introductory [BNP11], intrinsically
[MZC10a]. Invasive [ADJG19].
Investigation [SS13, FH16, Tai13]. invited
[Piz17, Sie17]. invocation
[SPA10, SS19, BVGVEAFG11].
invocations [BVGV14a]. invokodynamic
[OCFL14]. Involvement [ZMM+16]. IP
[TKL+15], iPhone [Sta10]. IR [LSWM16],
irregular [AC16], ISAs [HNTL12], ISBN
Isolation [ZLB+13]. Issue
[CJ19, DVL13, HL13, HTW14, Puf13, VK12,
Fox17a, HTLC10, HGC11, RHT13].
iterations [DD13]. iterators [ZLB14].
IVE [CRJ+10]. IVPs [KS15].

J [KMLS15]. J2M [LZYP16]. J2ME
[GPT12]. J2ME-Enabled [GPT12]. Jaccie
[KS14]. Jacob [LYM+18]. Jalapeno
[AFG+11]. JAMES [DDD17]. JaSTA
[HD17]. JaSTA-2 [HD17]. Java
[Bro12, Den18, Fox17a, Gve13, HWM11,
HTW14, MvH15, Nco12, Sch13, VK12, AO11,
KvGS+14, PQTG17, SAdB+16, ABC18,
ASdMG14, AST12, AFGG11, AZY10,
AdScdr+19, AS14, AAB+10, Alt12, Ame13,
ADCCGH16, AT16, And14, Ano12, Ano13,
ABMV12, AGR12, AG17, ABCR10, ADI13,
ABFM12, AK13, BK12, BH17, BM14,
BH12, BDT10, BVGVEA10, BVGVEA10,
BVGVEA11a, BVGVEAFG11, BVGVEA11b,
BVGVEA13, BVGVEA14a, BVGVE14b, BS12,
BDMK15, BO11, BO12, BO13, BCR11,
BDGS13, BCD13, BD17, BRGG12, Blvd17,
Bl18, BR12, BH10, BR15, BBI12, BN11,
BL15, BW12, BA12, BZD17, BSOG12,
BMOG12, BKP16, BA17, BJBK12, CIAD13,
FGB+19, CSZ17, CZ14, CMM17, CW13,
CV14, CS12, CDM10, CCFB15, CC15,
CRJ+10, CGWA17, CSF+16, CS17,
CCH11, CJ17, CJ19, CDG+17, Cle16]. Java
[CDMR19, CKS18, CS16], CCA+12.
CMM+10, CRAJ10, DJLP10, DDF17,
DLM10, DLZ+13, DVL13, DR10, DHT15,
DJB16, DMS11, ECS15, EKE+13, ES14,
EQT10, Esq11, EABVG14, Egu13, EV13,
ETTD12, ETR+15, FLZ+18, FRGPLF+12,
FGR12, Fer13, FFF17, FLL+13, FHSR12,
Fox17b, FMS+11, GMPS12, GvRN+11, GYG+11, GM12, GBS14, GD12, GBC12, GS11, GS12, Gon11, GMC+13, GT10b, GJS+13, GJS+14, Grl17, GPT12, GK15, HL13, HD17, HD17, Has12, HWM+10, HWM13, HWM14, HA13, HM12, HTLC10, HKVG14, HH13, HOKO14, HGCA11, Hor11, Hor12, HC10, HZZK19, HWLM11, HJ12, HJWN12, IN12, IS18, IF16, JC10, JEC+12, JQJ+16, JLL17, Jen12, JB12, YJKS12, JITO12, JH11, J+12, JMB12, JMO14, KHR11, KHM+11, KMLS15, KS13, KW10, KW11, KPP+18, KM10. Java [KSR14, KSPK12, KDGP18, KS14, KF11, KB11, LSBV16, LSBV17, LTD+12, LMK16, LSWM16, LLL13, LT11, LT14, LZYP16, LXP18, LYBB13a, LYBB13b, LYBB14, LZ12, LKP19, Loc13, Loc18, Lon10a, Lon10b, LMS+12, LO15, LPA13, LWC17, LTK17, LS11, Lyy12, MKZ+14, MS13, MME+10, MLGA11, MDS+17, MCC17, MP+15, MZC10b, MKTD17, MM16, MHL10, MAH12, MB12, MCY+10, MSG19, MPR12, MLM17, MLM19, MKK+12, MKK+13, MSS10, MCF19, M+15, MT14, MDHS10, NM10, NCS10, NS12, Nil12a, Nil12b, NG13, NNTK17, NBB18, Oak14, OOK+10, OMK+10, OIA+13, OUY+13, OW16, OJ12, OCFL114, PS11, PLL+18, PdMG12, PTL11, PMTL14, PTH14, PL12, PLCH11, PBMH13, PBB19, PPMH15, PMP+16, PQD12, PVH14, PTF+15, PS10a, PS10b, PDP+16, Pos19, PSW11, Puf13, PKC+13, QLBS17, RD15].

Java [RDCP12, RTE+13, RTET15, RR14, RS12, RHT13, R+13, RBL12, RAS16, RSI12, Rey13, Rez12, RVP11, RLMM15, RRB19, RB15, RVB14, SSL18, SSB+14a, SE12, SRB18, SRT17, STST12, SS12, Sch14, Sch13, Sch10a, SPPH10, SSKR11, SDH+17, Sch10b, SSMGD10, SZ10, Set13, SMEB11, SMS+12, SM12, SDM12, SWMV17, SW12, SVG12, SEPV19, SKBL11, SD16a, SJPS10, SLS+12, SKR17, SS14, SABB19, SP10b, SMP10, SBE+19, SPP+10, SWB+15, SSB01, SSB14b, ST15, SPS17, SSG+14, SS19, STS+13, Sve14, SWF12, TRTD11, TTD+11, TTD12, TRE+13, TLL11, TXW+10, TFPB14, TN19, TWNI12, TNTN12, TGD17, TJLL18, TKL+15, UR15, UFM15, UPR+18, VSG17, VGRS16, VBDP16, VBMDP16, VGS14, VBAM10a, VBAM10b, VBMA11, WGF11, Wam11, WzdSOS17, WCST19, WLL19, WBM+10, WK12, WCB16, WN10, WRI+10, WA19]. Java [HHV+13, WHIN11, WZ+18, WBA+11, WAB+11, WWS13, XHH12, XR13, XMD+17, Xue12, YP10, YKM17, YKA+19, YDF15, ZIvdS17, Zak12, ZP14, ZLCW14, ZHL+12, ZXL16, ZKB+16, ZYY+19, ZWS15, ZPL+10, ZDS14, dCMMN12, dMRH12, eBH11, hED12, vDmdMV12, De113].

JavaScript
[SR17, SFR+14, TAF+18, TT11, VM15, VP16, VB14b, Wal12, WCST19, WX16, YW13, Zak18, Zak10, dJIM18, BM18, KCD12, Mei14, Ano18, Kie13, Teo12, Teo13].
JavaScriptCore [Piz17].
JaVerT [SMN+18].
JAWS [PKO+15].
JInsTrace [CZ14].
JCloudScale [ZLHD15].
JCML [dCMMN12].
JCSI [ABFM12].
JCSP [WBM+10].
JDiffraction [PQTGS17].
JDK [SRB18].
JEqualityGen [GRF11].
JET [JL11].
JGRIM [MZC10a].
Jinn [LWH+10].
JIT [BBB+10, BB17, CMS+12, HW14, HW12, JK13, NED+13, OT18, RSB+14, WK17, ZY+12].
JIT-based [BB17].
JITs [KRCH14].
jMarkov [CRAT+12].
JML [CRJ+10, TJJL18].
JML-annotated [TJJL18].
JNI [CDG+17].
Joo [Ano18].
Johnny [WA19].
join [MZX10a].
Jonge [Ngo12].
Journey [Ryu16].
joy [FH11].
JIT2 [SSB+14a].
JPC [CMM17].
JPF [WK17, WGC+18].
JPR [WK17].
jQuery [AM14, PIR17].
JR [OW16].
JR-like [OW16].
JRE [CZ14].
JS [AHK+15, POR18].
js-emass [Por18].
Js_ofoam [VB14b].
JSART [MM12].
JSCore [Ch18a].
JSetL [RB15].
JSON [BB17].
JSormdb [De10].
JTabWb [FFF17].
JTRES [HTW14].
JTRES2011 [RHT13].
JTRES2013 [Fox17b].
JTRES2014 [Fox17a].
judgment [CSV15].
Juliet [BB12].
July [Bro12, KP15].
Jump [WBH18].
jungle [Sew12].
Just [DLR16, TN19, KHL+13, LMK16, MGI17, TTS+10].
Just-In-Time [TN19, DLR16, KHL+13, LMK16, MGI17, TTS+10].
JVM [AC16, AFG+11, CSS+16, Guy14, MS10, PVH14, R+13, RRB17, SYZZ+14, SV15b, Sub11, WKG17].
JVMs [BK14, ZY+12].
K-Java [BR15].
kernel [HDK+11].
Key [BBB+17, DFR13, JB12].
key-value [DFR13].
keynote [McK16].
Kirk [Del13].
KiWi [BBB+17].
KJS [PSR15].
Knorreschild [Del13].
note [LBF12].
know [DBJ16, Gra15, Han15].
Knowledge [KSPK12, UMP10].
known [Han15].
Kraken [Ano14].

Lake [Hol12].
lambda [MKTD17].
lambdas [UFM15].
landscape [Sve14].
Language [DLPT14, GJS+13, GJS+14, GSS+18, JC10, KSFK12, MAHK16, Sev12b, SS13, WH18, ABCR10, CMM17, SDL16, DAA13, EKR+12, Fee16, GSS+16, HS+12, HWW+15, KRCH14, LWH+10, LE16, MDM17, SC16, SZ10, SKR17, SNS+14, VB14a, WCG14, WWH+17, ZWSS15, dCMM12].
language-level [WGC14].
Language-Neutral [WBH18].
Languages [CSGT17, MSM+16, PTHH14, YKM17, AGGZ10, BCD13, CMS+12, EEE+13, ER14, FMBH15, Han15, HBT12, HJS+10, KRR+14, MSH+10, NED+13, PUL016, SPY+16, ZHA12].
LARD [WGC14].
Large [BA17, AST+16, CCFB15, CJ91, LSVB16, LSV17, MDS+17, MCI+10, PTF+15, WH111].
Large-Scale [BA17, CJ91, MDS+17, MCI+10, PTF+15, WH111].
Larus [DD13].
Latency [MV16, ETR+15, JHH11].
lawn [CH17].
laws [DMS11].
Layer [OTR+18, SKKR11, Den18].
layered [RCR+14].
lazy [TD15].
Leading [MSS10, PGA18].
leak [SS14, XR13, YSCX17].
Leaks [And14, RV17, VB18].
LeakSpot [RV17].
lean [BRGG12, SV15b].
Learn [RT14].
Learning [JFC019, PJJ18, Pau14, RT14].
learnt [GY16]. Legacy [KH18, SVB+17, CDTM10]. Legally [Sam12]. length [SMP10]. Less [BNE16]. Lessons [URJ18]. Level [AC16, MGI14, SWU+15, YXS+19, EKUR10, Hos12, IHWN12, KBL14, LWC17, MG17, RFBJ14, TTD+11, VWJB10, WCG14], leveraging [WCST19]. Lexical [GN16]. Lexicon [TAF+18]. Libraries [BK12, RDCP12, BiIvdS17, Chol4, EKR+12, PMTL14, PLR18, TTD+11]. Library [CH17, CWGA17, NBB18, OCFL14, TAF+18, WN10, dJM18, CMM17, PMP+16, PQTGS17, Pos19, TFPB14, TGZ17].

[BG17, JYKS12, MSM+16, NBW+18, OTR+18, SS14, ST15, WZL+18, AHK+11, AHK+15, AGGZ10, BSMB16, BFS+18, CWW13, DLZ+13, DVL13, FC11, FF10, GYB+11, HBB+14, HB13, KHL+17, KCP+17, KB17, Loc13, MSM+10, MLM17, Nil12b, OMK+10, RW17, SMS+12, SEPV19, SMN+12, SWB+15, SV15a, Tar11, TVD10, VB18, WGW+11, XR13, YSRCX17, ZP14, ZHCB15, ZBB17]. memory-performance [SEP19]. MemSAT [TVD10]. merge
[ABC18]. Mergesort [LL15]. merging [TLX17]. Message
[KF11, ETTD12, TRTD11, TTD12, UR15]. message-passing
[ETTD12, TRTD11, TTD12, UR15]. messages [eBH11]. meta [MD15, SZ10]. meta-circular [SZ10]. meta-compilation [MD15]. metadata [DVL13, WCST19]. MetaFLig [SZ10]. metaheuristics
[RTE+13, AdSCdR+19, HOKO14, HWLM11, MZC10b]. midstream [SSG+14]. Migrating
[WCW16]. Mistakes [BA17]. Mitigating
[BGS+13, KC12]. mixed [CL17]. Mobile
[GM12, GPT12, LYM+18, MV16, XHH12, GCC18, KF11, MZC10b]. Mock [SABB19]. Model
[Bul18, CSF+16, CDG+17, CCA+12, DLR16, FSK12, JJO19, JYKS12, Loc18, MSM+16, MCC17, MV16, BVGVEA11a, FGB+19, CHM13, CWW13, CV14, CS12, CSKB12, DLZ+13, FLZ+18, GY16, HAW13, Loc13, LSSD14, MLT17, MSM+10, PSW11, RR14, RBV16, RAS16, RDF15, SMN+12, SSG+14, SS19, Tai13, VWJB10, ZP14, ZXL16]. Model-Aware [JYKS12]. Model-based
[MCC17, PSW11]. model-driven
[FGB+19, CHM13]. Modeling
[GBC12, JC10, KSPK12, LDL14, Rey13, SM12, CRAT+12, SKR17, TLX17, ZIVD17]. Modelling [CSZ17]. Models
[CC15, PE11, ZLCW14, AGR17, HBB+14, TVD10, ZBB17]. Modern
[LMZP19, FIF+15, Hav11, JK13, KB17, Mor18, Teo13, WGW+11, ZDK+19]. Modernization [KH18, Nil12a]. Modified
[CT10a]. Modular [IdVS16, LN15, RDCP12, AACR18, MRA+17, RO12]. Modularisation [SDM12]. modularity
[Del13, SPAK10]. module [KR12]. Modules [Bla18, PiLC11]. monad
[GSD+15]. MongoDB [Gao17]. monitor
[STA18]. Monitoring [AGR12, MRF18, CMM+10, DLJP10, ES14, KF11]. Monitors
[BLH12, HM12]. Morgan [ANO18]. mori
[CPST15]. movement [NSC10]. MPI
[RAS16, SZ11, VGRS16]. MPI-based
[SZ11]. MPJ [JQJ+16, TTD12]. MrCrypt
[TLMM13]. MS [FH16]. Multi
[GSS+18, JTO12, RTE+13, BGS+13, DSEE13, Fee16, FC11, GSS+16, IHWN12, MS10, Puf13, SE12, SKBL11, SV18, TRTD11, Tar11, WRI+10, YKA+19]. Multi-Core
[RTE+13, MS10, TRTD11]. multi-cores [SKBL11]. multi-engine
[Tar11]. multi-granularity [YKA+19]. Multi-Language
[GSS+18, Fee16, GSS+16].

optional [CMS+12]. Oracle [LMS+12, Sam12]. ORB [OUY+13]. Order [SGD15, JhED11, KT15, TD15]. ordering [KC12]. Orders [BNE16]. ordinary [MZC10a]. O'Reilly [Ano15, Bro12]. Oriented [ABMV12, BH10, GCS11, KB11, LYM+18, RC17, AST+16, DDF17, EABVGV14, MBHO13, PTHH14, RVP11, VM10, VBAM10b, WBA+11, ZDS14, hEYJD12].

document [Ano18]. Papers [DVL13, HL13, LMRK16, Paf13]. Parallel [DS16, Esq11, LLL13, LHR19, MKG+17, NKKH16, NBB18, QSA+S+16, RD15, RS12, AARCR18, BP10, BPP13, BSMB16, CEP+10, MGS19, NG12, NG13, PPMH15, Si10, SZ11, TTD12, Ta13, VY10, BKP16, WN10].

Partial-Order [SGD15, TD15]. Partially [BLH12, BCR11]. Partitioning [AD16, BS12]. party [FOPZ14, LGV10].

passing [ETTD12, TRTD11, TTD12, UR15]. Path [SGD15, AZLY18, DD13, HSS13, SMP10]. path-based [AZLY18]. path-length [SMP10]. Path-Sensitive [SGD15]. pathfinder [KPP12, CS12, MPR12, NNTK17, PdMG12, SM12, vdMvdMV12, Den18, RR14].

pointers

Physics

Pickler

pickles

pipeline

pickling

Polynomials

Policies

Policies

Policy-Driven

Polyglot

Polymorphism

Polynomial

Popular

Popular-but-Seemingly-Dissimilar

Portal

powers

Practical

Practice

Practical

Policies

Precise-Yet-Efficient

Precise

pre-processing

pre

prediction

precise

preproduction

pre-processing

predicted

Predictive

Prioritization

Prioritized

Prioritized

Prioritized

prioritized

Priority

priority

Probabilistic

pro

Proactive

Proactive

Proactive

Proceedings

Processing

processors

producers

production

product

products

producers

producers

producers

producers

producers

productive

productive
RVK19, Sch10a, SPY+16, Tai13, TABS12, UPR+18, WGF11, ZMG+14.

Programmable [OA17, AYZI10],

Programmers [Esq11, RLMM15, Rau14],

Programming [AFGG11, ABMV12, BCR11, Bro12, BA17, DLPT14, HWMI11, HCCA11, Kôî10, KSPK12, LM15, McKi16, OAC18, PTML11, RS12, RB15, SS13, Sub11, Ait12, AMWW15, BcvcC+13, BMR14, BSMB16, BRWA14, CL17, EG12, EV13, FMBH15, Han15, HA13, Hav11, Lew13, MSM+10, MGS19, MvH15, OW16, PTF+15, RVP11, RFRJ14, SNS+14, SGG+17, TB14, UFM15, VWJB10, VBAM10b, Wan11, WRI+10, WBA+11, ZWSS15].

Programs [AGR12, BH17, BR12, BMOG12, GS11, JB12, LTD+12, PSJ18, STST12, SS12, SDM12, SR17, TN19, XMD+17, ZLCW14, AARC18, ASMG14, AdCGGH16, BA12, BNS12, DLP10, ECS15, ES14, EP14, Fer13, HL13, IN12, KRR19, LKP19, LO15, LPA13, MRMV12, MCV19, NG12, OJ12, PL12, RR14, RAS16, RLBV10, SMS+12, SZ11, SPS10, SHU16, Taf13, WCST19, YS10, YSCX17, dCMN12, hEYJD12].

Progress [WCG+18, SIE17, ZCHB15].

Project [Wan11].

Projects [LMZP19, ZMM+16, ABC18, CJ17].

Projekte [Ric14].

Prolog [CMM17, Tar11].

promises [MLT17], promising [KHL+17].

Proof [LL15].

Proofs [BMOG12].

propagation [Idv16, PTGS17].

Properties [BO11, RVK15, SS12, AZLY18, FWDL15, RVK19, SD16, YS10].

Protecting [MPS12].

Protocol [GM12, FGR12].

protocols [KDP18, PS10a].

prototyping [PWA13].

Provably [AdCGGH16, DLPT10, PS10a].

providing [OW16].

proving [AGH+17, Tafl3].

Proxies [VM10, EUG13, KIT14].

PSE [KS15].

pseudorandom [PPMH15, SLF14].

PT [MGS19].

Published [Ano18, LSBV17].

pure [SS16].

Purely [RS12, NFV15, SV18].

Purely-Declarative [RS12].

purely-functional [NFV15].

Purity [NSDD17, HMDE12].

purpose [AdCdR+19].

Putting [BNP+18].

PYE [TN19].

Python [Ric14].

QoS [YPMM12].

Qualitas [TMVB13].

Qualitas.class [TMVB13].

Quality [BNP11, CCF15, WKJ17].

Quantitative [CPV15, GYB+11, MRA+17, PMTP12].

queries [GK15, MRA+17, SGG+17].

query [FWDL15].

queries question [KM10].

Quicksort [AD16].

R [CH17, KMMV14, NL14, SLS+12, Vit14].

Race [BH10, EP14, RD15, AMT17, EQT10, HHH+14, RGB18, WFF18].

race-aware [EQT10].

races [FF10, WCG14, XXZ13].

Racket [YK14].

Racy [SRJ15].

Rady [Teo12].

Rails [Teo12].

Range [BS12].

Ranged [FSL12].

rapid [PWA13].

rationing [ASME18].

raw [HH13].

rays [SBF+10].

RCDC [DNB+12].

RDMA [ETR+15, IRJ+12].

RDMA-based [IRJ+12].

RDMA-enabled [ETR+15].

re [NC10].

re-location [NC10].

Reachability [NS13].

React [HOSC16].

reaction [SRB18].

reactive [BCvC+13, MvH15].

read [NM10].

read-only [NM10].

Reading [Jaf13].

ready [RHS15].

Real [BVEAG10, BBB+17, Fox17b, HTW14, KW11, Nil12a, Pau14, SLE15, SLE+17, VK12, BCR13, BVGVE10, BVGVE11a, BVGVE11b, BVGVE14a, BVGVE14b, CRJ10, DW10, EABV14, Fox17a, GMP+13, HTLC10, KHM+11, KPH11, KyG+14, KW10, KPP+18, KSR14, LTK17, MDS+17, PS10b, PZM+10, PSL11, Puf13, RHT13, SP10a, SIE10, SPS17].

Real-Time [BVEAG10, BBB+17, Fox17b, HTW14, KW11, Pau14, SLE15, SLE+17, VK12, Nil12a, BCR13, BVGVE10,
BVGVEA11a, BVGVEA11b, BVGVEA13, BVGV14a, BVGV14b, CRAJ10, DW10, EABGV14, Fox17a, GMC BVGV14a, BVGV14b, CRAJ10, DW10, KHM+11, KPHV11, KvGS+14, KW10, KSR14, LTK17, PS10h, PZM+10, PSW11, Puf13, RHT13, SP10a, Sie10, SPS17.

representation [AZLY18]. reproducibility [Vit14]. reproduction [SR14b].

Requirements [MS19, AGGZ10]. ResAna [KvGS+14]. Research [SR17, TRE+13, CRJ+10, CBLFD12, EKUR10, Rub14, VBMDP16, Vit14].

RMI [SS19]. Road [RXX+17, SWU+15].

Robots [SWF12]. Robust [VM15, VD17, MKZ+14, SGV12, VM10].

Rod [Teo12]. ROM [MLM19]. row [Lei17].

Runtime [BLH12, CMM+10, GSS+18, MAHK16, MSS10, NWB+15, OCFLI14, XMA+14, BRGG12, EQT10, GTL+10, GSS+16, LMK16, MS10, OOK+10, PCk+13, RO12, STY+14, TWS10, VBAM10a, WLL19, YRHBL13, dCMMN12].

runtimes
[BM14, CSV15, RCR+14, WWH+17].

S [Gve13]. Safe [Eug13, GvRN+11, JTO12, Loc18, MPS12, RSF+15, SWB+15, WAB+11, HJS+10, HA13, KHR11, KMLS15, KCP+17, Loc13, RDP16, WWS13]. Safety [MCW19, RS12, SDH+17, WCB16, ZLCW14, AG17, EK10, GMC+13, Nil12b, PG12, SD16b, Taf13, YS10, WW13, HL13, LWC17, WK12]. Safety-Critical [MCW19, WCB16, ZLCW14, RS12, SDH+17, AG17, WW13, LWC17].

Salespoint [ZDS14]. Salt [Hol12]. SAM [BO13]. San [KP15]. Sane [MPS12].

Scheduler [QSa+16, IF16, TWL12]. scheduler-independent [IF16].

Scripting [CSGT17, KKK+17, HBT12, KRR+14, PMTL14, Zha12]. SE [LYBB14]. Seamless [OwKPM15]. Search [NBB18, SED14, WCG+18, XXCL19, DDDF17].

searching [ETR12]. Second [HD17], secrets [Alt12]. section [DTLM14].

sections [NM10]. Secure [GMPS12, GM12, ABFM12, LMS+12, TLM13, WA19].

securely [SFR+14]. securing [CDMR19]. Security [CDG+17, Gon11, HBS16, JWMC15, MCC17, PS10a, STA18].

Seemingly [Has12]. selection [WHIN11].

Self [MPS12, SEPV19, YXS+19, hED12, AHK+11, AGH+17, CBLFD12, HWW+15, MD15]. Self-adaptive [SEPV19].

self-hosted [CBLFD12]. self-optimizing [HWW+15, MD15]. Self-stabilizing [hED12].

Semantic [GGRSY17, RVB14, BNS12, GGRSY14, GGRSY15, MKK+12, MKK+13, OA12].

Semantics [BO12, BR15, Kri12, LKP19, LML17, SPY+16, AK13, FBH17, FZ17, KHL+17, Mil13, MT14, PS15, PPS16, ZHC15].

Semantics-based [SPY+16].

semantics-driven [LKP19].

semantics-preserving [AK12]. Semi [FM13, SEK+19, ABC18, MRMV12].

semi-automated [MRMV12].

Semi-automatic [FM13].

Semi-Autonomic [SEK+19].

semi-structured [ABC18]. Sensitive [SGD15, HWM13, KRR19, LMK16, STA18].

sensitivity [HB13, PLR18]. Sensor [AFGG11]. separability [WR1+10].

Separating [DDM11, AC10]. Separation [ZLNP18, Pha18, TWSC10]. Sequence [NBB18, ZW+14]. Sequent [YWW+18].

Sequential. [FFF17]. sequential [BENS12, DMS11]. serialization [MHBO13].

Seriously [Kic10]. Server [HC11, KRH16, D'HI2, Dei11, HWLM11, R+13].

Server-Side [HC11, KRH16, D'HI2].
Service [BVEAGVA10, SDM12, CSKB12, EABVGV14, GD10, HWLM11, KF11].

service-oriented [EABVGV14]. services [MZC10b], session [KDPG18, FGR12]. Set [SBK13, Lon10a, Lon10b]. Set-based [SBK13, Lon10a, Lon10b]. setters [SBK13, Lon10a, Lon10b].

set [SBK13, Lon10a, Lon10b], setting [BDGS13].

Settings [GM12]. Seven [ST15]. SGX [CDMR19]. Shadow [NNTK17].

ShadowVM [MKZ+14]. shalt [LCW18]. shape [GMT14]. Shared [BG17, BSMB16].

Shared-Memory [BG17, BSMB16]. sharing [PKO+15]. Sherlock [ADJG19].

Short [AHK+11, Cha18, SV15a, Zak12]. Short-term [AHK+11]. shortcut [MLM19, CSGT17]. Side [Bu18, HC11, OBPM17, D’H12, KRH16].

Simple [BO11, BO12, KCP+17, BVGV14b, M+10]. Simplicity [Dei11]. Simplifying [Mor18, Ano18]. Simulating [LM15].

Simulation [HWLM11, FLZ+18, KKW11, Rim12, ZXL16]. Simulation-based [HWLM11]. simulations [MCY+10].

Slimming [WGF11]. SLOC [LSBV16, LSVB17]. Smaller [GS12].

smalltalk [FIF+15, HKVGV14]. smart [BL15, GMPS12]. Smartcard [RBL12].

SMArtOp [TGZ17]. Smartphones [RT14].

SMARTS [RXK+17]. snapshots [AST12].

Snippets [SWU+15]. SNP [YCYC12]. SoC [TKL+15]. social [GCC18].

Socket [WA19]. Soft [WZK+19, JACS10]. Software [BSA14, CC15, KH18, LMPZ19, PBM+19, RC17, Wan11, YQTR15, YMHMB19, BMSZ17, BTR+13, CBGM12, CFH+13, CJ17, CJ19, CDMR19, DVL13, EKUR10, FRGPLF+12, FC11, GT10a, HBG+16, JhED11, JK11, LPA13, MHR+12, NGB16, OIA+13, PLL+18, PBB19, RAS16, SV17, XR13, YRHB13, ZZK13, ZHCB15, ZDS14, CKS18]. Solidity [Dan17]. Solution [KS15, EKUR10, J+12].

Solving [SED14, FMBH15, UPR+18].

sparse [TGZ17]. sparse-matrix [TGZ17].

spatial [MLGA11]. Speaking [Rau14, Sam12]. Special [DVL13, Fox17a, HL13, HGC11, Pu13, HTLC10, RHT13, HTW14, VK12].

specialization [KRH+14, SV15a]. specific [CSdL16, EKK+15, HWW+15, Kie13].

Specification [GJS+13, GJS+14, IF16, KW11, LN15, LYBB13a, LYBB13b, LYBB14, MCW19, TWHN12, BVGV11a, BCF+14, KR12, KW10, MRA+17, YP10, dCMMN12].

specifications [BSAL18, BENS12, PS10a, TVD10, UPR+18].

SqueakJS [FIF+15]. SSNTDs [VSG17].

Stability [BSA14, LL15]. stabilizing [hED12]. Stack [WBHN18, KRCH14, Xue12]. stack-based
[KRCH14]. stage [WRI+10]. staged [SC16]. staging [RO12]. Stakeholders [YMHB19]. Standard [WKG17, LMS+12].

Standardization [TWNH12]. StarL [LM15]. State [AGR12, BLH12, MvDL12, MS14, GN16, YP10]. state- [YP10]. statecharts [MS13]. Statement [XMD+17, PLR14, ZWS15]. statements [PLR14].

Static [BGK17, BNE16, JC10, LMZP19, MTL15, ODL15, PiLCH11, PLR18, RD15, SW12, SBE+19, SH12, AM14, CGJ+16, Fer13, FLL+13, IF16, KSW+14, LS11, MHR+12, PIR17, TLMM13].

STM [CHM16, Sub11]. STM/HTM [CHM16]. StMungo [KDPG18].

stochastic [CRAT+12]. stock [PVH14]. Stop [LWB+15]. stops [BNP+18].

Storage [Hol12, VDV17]. Store [BS12, Sta10]. stores [DFR13]. Story [Ano14]. strategic [BMR14]. strategy [FPDM+16].

Stream [CWGA17, KBPS17, MV16, BRWA14, SSG+14, ZDK+19].

streaming [MRA+17, STCG13]. StreamJIT [BRWA14]. StreamQRE

[MRA+17]. streams [GG+17, UFM15].

Strength [KCD12]. String [HOKO14, CSK17]. Strings

[HWM11, HWM10, LSSD14]. strong [UMP10, ZHCB15, ZBB17]. Structure

[ZLNP18, LO15, PLL+18, UMP10].

structured [ABC18, LSWM16]. Structures

[GT10b, CDTM10, XMA+10]. studies [EKUR10]. Studio [RT14, FH16].

Studio-Based [RT14]. Study

[BF18, KB11, LMZP19, OBP17, RVT18, RLMMM15, WZK+19, ZMM+16, BRGG12, CCFB15, CJ17, ECS15, JK11, KFBK+15, MHG+12, NSC10, OMK+10, PTF+15, SSL18, SH12, TFPB14, VBDPM16, WX16, YW13].

Summarization [MM16, RLMM15].

Superblock [KS13]. Supercharged

[Cec12, GBS13]. Superposition [HD17]. supertype [RRB17]. supervenience [Rez12]. Support [CSGT17, KKK+17, RKN+18, BVGV13, Cha18, DVL13, GMC+13, Hos12, NGB16, SMN+12].

supported [FMM+11]. Supporting [LVG10, EKUR10]. Surgical [RSB+14].

surprises [FMBH15]. Survey [AGM+17, OAC18, RVT18, BCvC+13, GD10].

SurveyMan [TB14]. surveys [TB14]. suspension [TWL12]. SV [CKS18].

SV-COMP [CKS18]. sweeping [KBL14]. Sweeten [DFHF15].

Symbolic [Bul18, NNTK17, PNP12, SWMV17, MMP+12, Rim12].

synchrobench [Gra15]. Synchronisation [CHMY19, CHMY15, WBM+10].

synchronization [DHH+12, Gra15, Sub11].

Synchronized [BG17].

Synchronized-by-Default [BG17].

Synchronous

[BVEAGVA10, SK12, MvH15]. syntactic

[LE16, MKK+12, MKK+13, QLSB17].

Syntax [SS13, KMMV14, SSK13].

synthesis [SR14a, STR16, SS16].

synthesizable [ABCR10]. synthesizer

[OUY+13]. Synthesizing

[GK15, SRJ15, LWH+10]. Synthetic

[PSJ18]. System [BO13, KCD12, MAHK16, ACS+14, AYZ10, AGR17, BDB11, ELW15, HA13, HDK+11, HWLM11, KR12, MS10, STY+14, TLL11, Nil12a]. systematic

[TD15]. Systems

[BG17, BSA14, BNE16, CCH11, DLPT14, Fox17b, HTW14, JMB12, LM15, LMZP19, MRF18, NFN+18, NWB+18, RTE+13, SLES15, SLE+17, AT16, CJ19, DW10, FH16, Fox17a, HDM17, HW1+12, HTLC10,
LPGK14, LTK17, MHR+12, MAH12,
MvH15, OLA+13, PLI+18, PdMG12, PBB19,
PDPM+16, RHT13, SDH+17, SSMGD10,
SABB19, SH12, TTD12, TXW+10, THC+14,
UIY10, Vit14, YRHBL13, VK12.

Tableau [FFF17]. Tagged [RKN+18].
Tailoring [LZ12]. Take [Kie10]. Taking
[SWU+15]. Tales [Sew12]. talk
Piz17, Sie17. Taming [TLL11, SC16].
Tardis [BM14]. target [Cle16]. Task
[RRB19, Fee16, TWL12, ZLB+13].
TaskLocalRandom [PPMH15]. Tasks
PWSG17, PWSG19, ST15, HAW13,
PPMH15, SPP+10. Taurus [MAHK16].
Taxonomy [SS14]. Teaching
[HA13, SWF12, CHM13, ZDS14]. teasing
[LB12]. Technical [YXS+19]. technique
[SSK13]. Techniques
LMZP19, RD15, EV13, KS13.
Technologies [Fox17b, HTW14, VK12,
Fox17a, HTLC10, KFBR+15, NL14, RHT13]. technology
[NED+13]. TeJaS [LPKG14].
Template [MME14, HJS+10]. templates
[FOPZ14, AK13]. term [AHK+11].
Terminating [FFF17]. Termination
[BMOG12, RDCP12, BSOG12, SPM10].
Test [AGM+17, BB12, BM18, GGZ+15,
LMZP19, MSS19, Pha18, Rim12, ST15,
MT13, PSNS14, SR14a, SKR17].
Test-driven [BM18]. tested [Mil13].
Testing [Ame13, BR12, Hin13, MM12,
MMP15, MPP+12, CSS+16, CNS13,
KPP+18, Ler10, SABB19, Teo12, TD15].
tests [A011, NYCS12, SR15]. Textbooks
[BNP11]. their [RPDP16]. theorem [SSH17].
There [Esq11]. thin [PS16]. thin-air
[PPS16]. things [McK16]. Think [WR10].
Third [Ano15, FOPZ14, LVG10].
third-party [FOPZ14, LVG10]. THOR
[TWX+10]. Thoth [KB17]. Thou [LCW18].
Thread [MG14, BK+13, CRAW10, MG17,
PCL14, PG12, SS10, WLL19, YDFF15].

Thread-Level [MG14, MG17]. threaded
[DSEE13, JTO12, SE12, Te13]. threads
[UR15, WLL19]. threat [BGS+13]. threats
[BGS+13]. Three [ZM+16, Vit14]. Tier
[WZK+19]. TigerQuoll [BBP13]. Tim
[Teo13]. Time [BVEAGA10, BBB+17,
BL12, DLR16, Fox17b, HTW14, JMB12,
Kle10, KW11, PKPM19, Pau14, SLES15,
SLE+17, TN19, VK12, BCR13, BM14,
BVGVEA10, BVGVEA11a, BVGVEA11b,
BVGVEA13, BVG14a, BVG14b,
CRAW10, DW10, EABVG14, Fox17a,
GMC+13, HTLC10, KHM+11, KPHV11,
KHL+13, KfGS+14, KW10, KSR14, LMK16,
LTK17, MGI17, Nil12a, PS10b, PZM+10,
PSW11, Puf13, RHT13, SP10a, SPFH10,
Sie10, SPS17, SH12, TTS+10, WAB+11].
time-travel [BM14]. time-triggered
[EABVG14]. timed [LK19]. Times
[BKP16, DW10]. timing [AGH+17, LS11].
TIMP [SL5+12]. tiny [Xue12]. To-many
[SV18]. to-one [SV18]. Tolerance [RK19].
tolerant [PZM+10]. Tool [FMM+11,
NBB18, PFD12, SW12, SSK13, ABM12,
CRAT+12, ETR12, KSR14, LS11, TXW+10].
Tool-supported [FMM+11]. toolchain
[KDPG18, SNM+18]. Tools
[BP10, DLR14, DLR16, MAK19, MRF18,
MD15]. track [VBAM10b].
Tracks [WKG17, BA12, RGM13]. Tracking
[BP10, DLR16, MAK19, MRF18, MD15]. track [VSG17]. TrackEtching
[VSG17]. Tracking [OAC18, RLM15,
SNC+12, WLL19, KHL+13, OOK+10].
Tracks [RGM13]. tradeoff [UTO13].

SHU16, SS19, VGS14, WLL19, WBM+10, WRI+10, XR13, ZLN18, vdMvdMV12.

UT [Hol12]. utility [CSV15, XMA+10]. utilization [BCR13].

REFERENCES

[ASME18]. Writing
[HOSC16, Jaf13, Mor18].

x [MSM+16]. X10 [TWL12]. Xbase
[EEK+13]. XIR [TWSC10]. XML [NL14].
XSS [GGC18, MSSK16, VS11]. Xtraitj
[BD17].

y [CBGM12]. years [BTR+13].
yieldpoint [LWB+15]. yin [CBGM12].

Z [SBF+10]. Z-rays [SBF+10]. Zero
[ZW13].

References

Altman:2010:OTJ

E. Altman, M. Arnold, R. Bordawekar, R. M. Delp
monico, N. Mitchell, and P. F. Sweeney. Observa
ations on tuning a Java enterprise application for perfor
mance and scalability. IBM Journal of Research and De
velopment, 54(5):2:1–2:12, ????. 2010. CODEN IB
MJAE. ISSN 0018-8646 (print), 2151-8556 (electronic).

Acar:2018:PCM

Auerbach:2010:LJC

Avvenuti:2012:JTC

Abanades:2016:DAR

Ansaloni:2012:DAO

Akai:2010:EAS

Anjo:2016:DML

Ahn:2014:IJP

Aumuller:2016:OPD

Amighi:2016:PCC

Afshin Amighi, Pedro de Carvalho Gomes, Dil-

[ADSCdR+19]

[Autili:2013:HAR]

[Allyson:2019:SOI]

Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney.

[AGR17] Paolo Arcaíni, Angelo Gargantini, and Elvínia Riccobene. Rigorous develop-

Apel:2010:CUF

Aigner:2011:STM

Aigner:2015:AJE

Andrysco:2016:PFP

Axelsen:2013:PTD

Altman:2012:USM

Andreasen:2014:DSA

Ament:2013:ATG

Andersen:2014:PLJ

Anonymous:2012:AMJ

Anonymous:2013:FAM

Anonymous:2014:RKS

Anonymous:2015:BRL

Anonymous:2018:BRS

Altidor:2014:RJG

Adalid:2014:USA

Austin:2017:MFD

Afek:2012:ISJ

Alshara:2016:MLO

Akram:2018:WRG

Akram:2016:BPG

Amin:2016:JST

Nada Amin and Ross Tate. Java and Scala’s type systems are unsound: the existential crisis of null pointers. ACM SIGPLAN Notices, 51(10):838–848, October 2016. CODEN SIN- ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Ali:2010:DJB

Alon:2018:GPB

Bradel:2012:ITJ

Brown:2017:NJP

Boland:2012:JCC

Bonetta:2017:FJF

REFERENCES

Basin:2017:KKV

Bebenita:2010:STB

Bonetta:2013:TPE

Bu:2013:BAD

Bettini:2013:FDT

Bodin:2014:TMJ
REFERENCES

Bedi:2013:MMT

Bodden:2010:AOR

Barbu:2012:ARA

Badihi:2017:CAG

Biswas:2014:DES

Biboudis:2017:RJD

Burdette:2012:ECJ

Philip F. Burdette, William F. Jones, Brian C. Blose, and
REFERENCES

Gregory M. Kapfhammer.
An empirical comparison
of Java remote commun-
ication primitives for intra-
node data transmission.
ACM SIGMETRICS Per-
ISSN 0163-5999
(print), 1557-9484 (elec-
tronic).

Baar:2012:DEP
Thomas Baar and Philipp
Kumar. Detecting en-
try points in Java li-
braries. Lecture Notes in
Computer Science, 7162:
42–54, 2012. CODEN
LNCSD9. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/chapter/
10.1007/978-3-642-29709-
1_0_6/.

Bell:2014:PID
Jonathan Bell and Gail
Kaiser. Phosphor: illumi-
nating dynamic data flow
in commodity JVMs. ACM
SIGPLAN Notices, 49(10):
83–101, October 2014. CO-
DEN SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic).

Bond:2013:OCC
Michael D. Bond, Milind
Kulkarni, Man Cao, Minjia
Zhang, Meisam Fathi Salmi,
Swarnendu Biswas, Ari-
tra Sengupta, and Jipeng
Huang. OCTET: captur-
ing and controlling cross-
thread dependences effi-
ciently. ACM SIGPLAN
Notices, 48(10):693–712,
October 2013. CODEN
SINODQ. ISSN 0362-
1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic). OOPSLA ’13 con-
ference proceedings.

Brooks:2016:CST
Andrew Brooks, Laura
Krebs, and Brandon Paulsen.
A comparison of sort-
ing times between Java 8
and Parallel Colt: an ex-
ploratory experiment. ACM
SIGSOFT Software En-
gineering Notes, 41(4):1–
5, July 2016. CODEN
SFENDP. ISSN 0163-5948
(print), 1943-5843 (elec-
tronic).

Bouffard:2015:UCF
Guillaume Bouffard and
Jean-Louis Lanet. The ul-
timate control flow transfer
in a Java based smart card.
Computers & Security, 50
(??):33–46, May 2015. CO-
DEN CPSEDU. ISSN 0167-
4048 (print), 1872-6208
(electronic). URL https:/
/www.sciencedirect.com/
science/article/pii/S016740481500005X.

Black:2018:NPJ
N. Black. Nicolai Par-
log on Java 9 modules.

REFERENCES

Bellia:2012:ERT

Bellia:2013:JST

Bruno:2017:NPG

Barabash:2010:TGC

Bluemke:2012:DTJ

Bogdanas:2015:KJC

Brandt:2014:DAS

REFERENCES

REFERENCES

Basanta-Val:2014:RMP

Basanta-Val:2014:SDG

Basanta-Val:2010:NHR

Basanta-Val:2011:ECM

Basanta-Val:2011:NFI

Basanta-Val:2013:JRA

Basanta-Val:2011:FTM

Pablo Basanta-Val, Marisol García-Valls, Iria Estévez-Ayres, and Jorge Fernández-González. Fine tuning of

REFERENCES

REFERENCES

Ceccato:2010:MLD

Cecco:2011:SGJ

Carter:2013:SSA

Chandra:2016:TIS

Chamberlain:2017:PLR

Chadha:2018:JAS

Chugh:2012:DTJ

Ravi Chugh, David Herman, and Ranjit Jhala. Dependent types for JavaScript.
REFERENCES

Carro:2013:MDA

Chapman:2016:HSH

Cogumbeiro:2015:DDV

Chong:2014:CCT

Campbell:2013:ICC

Chen:2017:CLP
Boyuan Chen and Zhen Ming (Jack) Jiang. Char-

Chen:2019:ESL

[CL17]

[CKS18]

Cordeiro:2018:BJV

[Cordeiro:2018:BJV]

Clerc:2016:OJJ

[Costa:2010:RMN]

Costa:2010:RMN

Castro:2017:JLC

Chang:2012:IOT

Choi:2013:GGT

Clifford:2014:AFB

Clifford:2015:MMD

Chatterjee:2015:QIA

(print), 1523-2867 (print), 1558-1160 (electronic).

Curley:2010:RDT

Cote:2012:JPS

Chalin:2010:TIG

Chambers:2010:FEE

Ceccarello:2012:TGC

Cordoba-Sanchez:2016:ADS

Irene Córdoba-Sánchez and Juan de Lara. Ann: a domain-specific language for the effective design and validation of Java annota-
REFERENCES

Callum Cameron, Jeremy

Casale:2017:PEJ

Casella:2017:PEJ

Caserta:2014:JTJ

Cazzolla:2014:JBR

Chaudhuri:2017:FPT

Chan:2017:DSL

Cavalcanti:2013:SCJ

Caserta:2014:JTJ

Pierre Caserta and Olivier Zendra. JBInsTrace: a tracer of Java and JRE classes at basic-block granularity by dynamically instrumenting bytecode. *Science of Computer Programming*, 79(??):116–125, January 1, 2014. CODEN SCPGD4. ISSN 0167-6423 (print), 1872-7964 (elec-
Diaz:2013:LEU

Dannen:2017:IES

daCosta:2012:JSL

Dhawan:2012:EJT

DElia:2013:BLP

DeBeukelaer:2017:ECP

[dGRdB+15] Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel, and Reiner
REFERENCES

DHondt:2012:ISS

D’H12

Dolby:2012:DCA

DHM+12

Dietrich:2015:GSE

Jens Dietrich, Nicholas Hollingum, and Bernhard Scholz. Giga-scale exhaustive points-to analysis for

DiP18a

DiP18b

DiPierro:2018:RJ

DiPierro:2018:TV

Dietrich:2016:WJD

10.1007/s10664-015-9389-1

Demange:2013:PBB

DeMol:2012:GTJ

Duarte:2011:ICS

Devietti:2012:RRC

Dietrich:2010:POD

Dyer:2014:DVE

Doeraene:2016:PIW

[DS16] Sébastien Doeraene and Tobias Schlatter. Parallel incremental whole-program optimizations for Scala.js.
REFERENCES

ACM SIGPLAN Notices, 51 (10):59–73, October 2016. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Bois:2013:BGV

DosSantos:2010:MPB

EABVGV14

elBoustani:2011:ITE

REFERENCES

REFERENCES

ISSN 1053-8569 (print),
1099-1557 (electronic).

Sebastian Erdweg, Moritz Lichter, and Manuel Weiel.
A sound and optimal incremental build system
CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Mahdi Eslamimehr and Jens Palsberg. Race directed scheduling of concurrent programs.
ACM SIGPLAN Notices, 49(8):301–314, August 2014. CODEN SINODQ. ISSN 0362-1340
(print), 1523-2867 (print), 1558-1160 (electronic).

Communications of the ACM, 53(11):85–92, November 2010. CODEN CACMA2. ISSN 0001-0782
(print), 1557-7317 (electronic).

Sebastian Erdweg and Felix Rieger. A framework for extensible languages. ACM
SIGPLAN Notices, 49(3):3–12, March 2014. CODEN SINODQ. ISSN 0362-1340
(print), 1523-2867 (print), 1558-1160 (electronic).

Holger Eichelberger and Klaus Schmid. Flexible resource monitoring of Java programs.
The Journal of systems and software, 93(??):163–186, July 2014. CODEN JS-SODM.
ISSN 0164-1212 (print), 1873-1228 (electronic). URL http://www.sciencedirect.com/
science/article/pii/S0164121214000533.

Francisco Esquembre. There is parallel life for Java scientific programmers!
ISSN 1521-9615 (print), 1558-366X (electronic).

Stefan Endrullis, Andreas Thor, and Erhard Rahm. WETSUIT: an efficient mashup tool for searching and fusing web entities.
REFERENCES

Michael Fogus and Chris Houser. *The joy of Clo-
REFERENCES

Fischer:2016:EIE

Forth:2012:RAA

Flanagan:2013:PES
Cormac Flanagan, K. Rustan M. Leino, Mark Lillicbridge, Greg Nelson, James B. Saxe, and Raymie Stata. PLDI 2002: Ex-
REFERENCES

Fan:2018:VCJ

Feldthaus:2011:TSR

Frantzeskou:2011:SUD

Fu:2014:FDC

Yupeng Fu, Kian Win Ong, Yannis Papakonstantinou, and Erick Zamora. Forward: data-centric ULS using declarative templates that efficiently wrap third-

[Fox:2017:ESI]

[Fox:2017:EJT]

[Fernandes:2017:AUM]

[Fdez-Riverola:2012:JAF]

[Fan:2015:UCC]

[Fournet:2013:FAC]

Gama:2010:SAA

German:2012:MOS

Gupta:2018:HDB

Golan-Gueta:2014:ASL

Golan-Gueta:2015:ASA

Golan-Gueta:2017:ASA

Gligoric:2015:GCB

[GGZ+15] Milos Gligoric, Alex Groce, Chaqiang Zhang, Rohan Sharma, Mohammad Amin Alipour, and Darko Marinov. Guidelines for coverage-based comparisons of non-adequate test suites. ACM Transac-

REFERENCES

Gardner:2012:TPL

Greenman:2014:GFB

Gupta:2016:LSA

Gong:2011:JSA

Grossschädle:2012:EJI

Gramoli:2015:MTY

Grecch:2011:JGE
REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Grigore:2017:JGT

Giacaman:2011:OOP

Gil:2012:SFJ

Grimmer:2016:HPC

Grimmer:2018:CLI

Gill:2015:RMD

Gill:2010:MDP
Nasib Singh Gill and

[Han15] Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).
Hasbun:2012:UTP

Haverbeke:2011:EJM

Heumann:2013:TEM

Huang:2013:ECS

Hindle:2016:NS

Hedin:2016:IFS

Heidegger:2012:APC

Hsiao:2010:EST

Hughes-Croucher:2011:NRS

Horstmann:2013:CJF

Hsiao:2014:UWC

Hammer:2017:VOV

Halder:2017:JSV

REFERENCES

REFERENCES

Herhut:2013:RTP

Hinojosa:2013:TS

Hunt:2012:JP

Hellyer:2010:LCW

Heidenreich:2010:GST

Hlopko:2014:ISJ

Marcel Hlopko, Jan Kurs, Jan Vraný, and Claus Gittinger. On the integration of Smalltalk and Java. *Science*
Haddad:2013:SIP

Hague:2015:DRC

Herczeg:2013:TFF

Herranz:2012:VIP

Huang:2012:RR

Hashmi:2012:CNI

REFERENCES

[Higuera-Toledano:2010:ISI]

[Higuera-Toledano:2014:EIS]

[Hayashizaki:2012:IPT]

[Huang:2011:SBA]

[Haubl:2010:CES]

[Haubl:2011:ECE]
REFERENCES

Haubl:2013:CST

Haubl:2014:TTE

Humer:2015:DSL

Hackett:2012:FPH

Hua:2019:EED

Iranmanesh:2016:SSE
Zeinab Iranmanesh and Mehran S. Fallah. Specification and static enforcement of scheduler-independent noninterference in a middleweight Java. *Computer Languages, Systems
REFERENCES

Inoue:2012:AML

Inoue:2012:ISC

Inostroza:2016:MIM

Juneau:2012:JRP

Jovic:2011:LLP

Jenista:2011:OSO

Jeon:2019:MLA

Jayaraman:2017:CVJ

Johari:2011:ESE

Jantz:2013:ESM

Jagannathan:2014:ARV

Jung:2012:EJA

Jung:2014:HCO

Javed:2016:TSJ

Johnsen:2012:SLM

Johnson:2015:EES

[Andrew Johnson, Lucas Waye, Scott Moore, and Stephen Chong. Exploring and enforcing security guarantees via program dependence graphs. *ACM SIG-
REFERENCES

Jin:2012:JMM

Kossakowski:2012:JED

Kastner:2012:TCA

Kumari:2011:AOO

Kunjir:2017:TAM

Kim:2014:LBL

Kiselyov:2017:SFC

Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos,

Kulkarni:2012:MCO

Krishnaveni:2012:HOJ

Kedia:2017:SFS

Kouzapas:2018:TPM

Kereki:2015:JA

Kuehnhausen:2011:AJM

Kumar:2012:WSB

Vivek Kumar, Daniel Framp

Khan:2015:UJW

Knoche:2018:UML

Kerschbaumer:2013:IFT

Kang:2017:PSR

Kalibera:2011:FR

Tomas Kalibera, Jeff Hagle
Kabanov:2011:DSF

Kienle:2010:ATT

Kienle:2013:BRE

Kim:2017:TAA

Krieger:2011:AES

Kaiser:2014:WAM

Ko:2010:EAW

Karakoidas:2015:TSE

Kalibera:2014:FAS

Kulkarni:2016:APA

Kolling:2010:GPE

Kroening:2015:CAV

Kalibera:2011:SRT

REFERENCES

Khyzha:2012:AP

[102x681]95
[214x645]Kh
[229x645]yzha:2012:AP
[102x620]

[180x596]KPP12

Artem Khyzha, Pavel Parízek and Corina S. Pásãreamu.

Kintis:2018:HEM

[211x500]K
[229x500]ntis:2018:HEM
[102x476]

[180x464]KPP+

Kedlaya:2014:DDL

[211x645]K
[229x645]edlaya:2014:DDL
[102x618]

[KRCH14]

Kedlaya:2016:SST

[211x500]K
[229x500]edlaya:2016:SST
[102x423]

[KRH16]

Krishnamurthi:2012:SAJ

[211x520]K
[229x520]rishnamurthi:2012:SAJ
[102x263]

[Kri12]

Kang:2012:FSJ

[211x412]K
[229x412]ang:2012:FSJ
[102x284]

[KR12]

Kedlaya:2014:ITS

Ko:2019:WSA

Krebs:2014:JJB

Kroshko:2015:OPN

Kouneli:2012:MKD

Korsholm:2014:RTJ

Kashyap:2014:TRS

Keil:2014:EDA

Keil:2015:BAH

Kersten:2014:RRA

Kolesnikov:2014:CPB

Kim:2010:EAE

Kim:2011:MAE

Lin:2012:UKT

Lauinger:2018:TSD

Li:2014:MHD

Lorenzen:2016:STD

Leijen:2017:TDC

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

100

Lin:2015:STU [LM15]

Lee:2016:ECP [LMK16]

Loring:2017:SAJ [LML17]

Long:2012:COS [LMS+12]

Luo:2019:HDS [LMZP19]

Leavens:2015:BSS [LN15]

Gary T. Leavens and
REFERENCES

Lopes:2015:HSA

Lochbihler:2013:MJM

Lochbihler:2018:MTS

Long:2010:TDSa

Long:2010:TDSb

Loureiro:2013:EDS

Lerner:2014:TR

Benjamin S. Lerner, Joe Gibbs Politz, Arjun Guha, and

LPGK14

[PGK14]

David Leopoldseder, Lukas Stadler, Christian Wimmer, and Hanspeter Mösenböck. Java-to-JavaScript translation via structured control flow reconstruction of

Li:2011:JEC

Li:2014:EAJ

Laskowski:2012:DJP

Luckow:2017:HTP

Liu:2014:FFL

Lerner:2010:SDT

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Lin:2015:SGU

Luckcuck:2017:SCJ

Lee:2010:JSD

Li:2018:ATJ

Lindholm:2013:JVMa

Lindholm:2014:JVM

Lindholm:2013:JVMb

[LZYP16]
Xuanzhe Liu, Meihua Yu, Yun Ma, Gang Huang, Hong Mei, and Yunxin Liu. i-Jacob: an internetwork-oriented approach to optimizing computation-intensive mobile Web browsing. ACM Transactions on Internet Technology (TOIT), 18(2):14:1–14:??, March 2018. CODEN ????. ISSN 1533-5399 (print), 1557-6051 (electronic).

[LYM+18]

[LZ12]

[MAH12]
REFERENCES

OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

Maas:2019:HAT

McIntyre:2012:FJB

Martinez:2017:MBA

McKinley:2016:PWU

McMillan:2011:SVM

Miyazawa:2019:SCS

McLane:2010:UIV
Jonathan C. McLane, Walter Czech, David A. Yuen, Mike R. Knox, Shuo Wang, Jim B. S. Greensky, and Erik O. D. Sevre. Ubiquitous interactive visualiza-

Marr:2015:TVP

Mytkowicz:2010:EAJ

Meijer:2014:EJR

Martinsen:2014:HTL

REFERENCES

Miller:2013:TSG

Malhotra:2017:PPS

Misra:2013:JSC

Mazinanian:2017:UUL

Marek:2014:SRC

REFERENCES

Markstrum:2010:JDP

Martin:2014:TCR

Mirzaei:2012:TAA

Mirshokraie:2015:GMT

Morgan:2018: SJW

Mastrangelo:2015:UYO

Mercer:2012:CVI

Eric Mercer, Suzette Person, and Neha Rungta. Computing and visualizing the impact of change with Java PathFinder extensions. *ACM SIGSOFT Soft-

Magazinius:2012:SWS

Mamouras:2017:SMS

Meawad:2012:EBS

McIlroy:2010:HJR

Marinescu:2013:FSJ

Mace:2018:PTD

Moller:2014:ADC

Marino:2010:DSE

Marinello:2019:CCR

Mitropoulos:2016:HTY

Malhotra:2013:DFT

Mura:

Madsen:

Marz:

[MV16] Stephen Marz and Brad Vander Zanden. Reducing power consumption and latency in mobile devices using an event stream model.

Marz:2016:RPC

Mesbah:

Motika:

Mateos:

[MZC10a] Cristian Mateos, Alejandro Zunino, and Marcelo Campo. An approach for non-intrusively adding malleable fork/join parallelism into ordinary JavaBean compliant applications. *Computer Languages,*

[Mateos:2010:MJN]

[Nuzman:2013:JTC]

[Nowicki:2018:MPI]

[Nguyen:2018:SCM]

Ryan R. Newton, Peter P. Fogg, and Ali Varamesh.

[NFV15]

REFERENCES

Nicolay:2017:PAJ

Nguyen:2015:FCR

Nguyen:2018:UCM

Naik:2012:AT

Omar:2017:PSF

Obaidellah:2018:SUE

Oaks:2014:JPD

Ocariza:2017:SCC

Ortin:2014:RPI

Olivo:2015:SDA

Ogawa:2013:RJA

Olszak:2012:RJP

References

Ogata:2010: SJN

Odaira:2010:ERT

Olson:2018:CLM

Ottoni:2018:HJP

Ohkawa:2013:RHO

Olsson:2016:ERR

REFERENCES

Phan:2018:TIG

Park:2011:DCM

Park:2017:PSS

Pizlo:2017:JVM

Pukall:2013:JFR

Piao:2015:JJF

Park:2019:ROC

Hyukwoo Park, Sungkook Kim, Jung-Geun Park, and Soo-Mook Moon. Reusing the optimized code for JavaScript ahead-of-time...

Parizek:2012:PAJ

Pan:2018:ASJ

Park:2014:AAS

Park:2018:SAJ

Pawlak:2016:SLI

Papadimitriou:2014:MLS

REFERENCES

Phan:2012:SQI

Porter:2018:PJE

Poslavsky:2019:REJ

Pham-Quang:2012:JAD

Passerat-Palmbach:2015:TSS

Pichon-Pharabod:2016:CSR
ceedings of the Sixth International Conference on Automatic Differentiation (AD2012) held July 23–27, 2012, in Fort Collins, Colorado, USA.

Piedrahita-Quintero:2017:JGA

Pironti:2010:PCJ

Pitter:2010:RTJ

Palmer:2011:BJM

Park:2012:CB

Paquin:2018:AAS

Stergios Papadimitriou, Konstantinos Terzidis, Sefterina Mavroudi, and Spiridon Likothanassis. ScalaLab:
REFERENCES

tech.safaribooksonline.de/0738438332.

[Rehman:2016:VMJ]

[Rauschmayer:2014:SJD]

[Rossi:2015:NPJ]

[Razafindralambo:2012:FFH]
[RB12]

[Raychev:2016:PMC]

[Rathee:2017:ROO]

[Rosa:2017:APV]
Andrea Rosà, Lydia Y. Chen, and Walter Binder. Actor profiling in virtual ex-

Robatmili:2014:MRL

Radoi:2015:ETS

Reynders:2016:GSB

Reynolds:2013:MJB

References

Reza:2012:JS

Richard-Foy:2014:EHL

Radoi:2014:TIC

Roemer:2018:HCU

Richards:2011:ACJ

Ricci:2013:ETP

Richards:2013:FAC
Gregor Richards, Christian Hammer, Francesco Zappa Nardelli, Suresh Jagannathan, and Jan Vitek. Flexible access control for
REFERENCES

Andrey Rodchenko, Christos Kotselidis, Andy Nisbet, Antoniu Pop, and

Andrea Rosà, Eduardo Rosales, and Walter Binder. Accurate reification of complete supertype information for dynamic analysis on the JVM. *ACM SIGPLAN Notices, 52*(12):104–116, De-
cember 2017. CODEN SIN-
ODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Rosa:2019:AOT
[RRB19] Andrea Rosà, Eduardo Ros-
ales, and Walter Binder. Analysis and optimiza-
tion of task granularity on the Java Virtual Ma-
chine. ACM Transactions on Programming Languages
ATPSDT. ISSN 0164-0925

Ravn:2012:SCJ
[RS12] Anders P. Ravn and Martin
Schoeberl. Safety-critical Java with cyclic executives on chip-multiprocessors. Concurrency and Compu-
tation: Practice and Experience, 24(8):772–788, ???. 2012. CODEN CCPEBO.
ISSN 1532-0626 (print),
1532-0634 (electronic).

Rompf:2014:SPJ
[RSB+14] Tiark Rompf, Arvind K.
Sujeeth, Kevin J. Brown,
HyoukJoong Lee, Hassan
Chafi, and Kunle Ohko-
tun. Surgical precision JIT compilers. ACM SIG-
PLAN Notices, 49(6):41–
52, June 2014. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Rastogi:2015:SEG
[RSF+15] Aseem Rastogi, Nikhil
Swamy, Cédric Fournet,
Gavin Bierman, and Pan-
giotis Vekris. Safe & ef-
cient gradual typing for TypeScript. ACM SIG-
PLAN Notices, 50(1):167–
180, January 2015. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Reichenbach:2012:PPD
[RSI12] Christoph Reichenbach,
Yannis Smaragdakis, and
Neil Immerman. PQL: a purely-declarative Java ex-
tension for parallel program-
ing. Lecture Notes in Computer Science, 7313:
53–78, 2012. CODEN LNCS
d9. ISSN 0302-9743
springer.com/chapter/10.1007/978-3-642-31057-
1_7.4/.

Reardon:2014:SSB
[RT14] Susan Reardon and Bren-
dan Tangney. Smartphones, studio-based learning, and scaffolding: Helping novices learn to program. ACM Transactions on Compu-
23:??, December 2014. CO-
DEN ???. ISSN 1946-6226.
Ramos:2013:DSJ

Ramos:2015:NCS

Rubin:2014:HCW

Rowe:2014:STA

Raychev:2015:PPP

Raychev:2019:PPP

Ricci:2011:SAO
Alessandro Ricci, Mirko Vircoli, and Giulio Piancastelli.

REFERENCES

REFERENCES

Suansch:2016:AAD

Sousa:2016:CHL

Sridharan:2012:CTP

Schmidt:2010:ERA

Schulz:2010:WAJ

Schmeisser:2013:MOE

Schildt:2014:JCRb

Schoebler:2017:SCJ

Stolee:2014:SSS

Staples:2019:SAB

Simao:2019:GWS
REFERENCES

Seth:2013:UJV

Severance:2012:DJ0

Severance:2012:JDL

Sewell:2012:TJ

Swamy:2014:GTE

Sherman:2015:DTB

Subercaze:2017:UPT

Simao:2012:CER

Stuchlik:2012:SVD

Steimann:2016:CRA

Siebert:2010:CPR

[SLES15] Isabella Stilkerich, Clemens Lang, Christoph Erhardt, and Michael Stilkerich. A practical getaway: Applications of escape analysis in embedded real-time syst-
REFERENCES

[Sewe:2011:CCS]

[Stork:2014:APB]

[Spoto:2010:MSL]

[Serrano:2016:GH]

[Steimann:2010:TMI]
Friedrich Steimann, Thomas Pawlitzki, Sven Apel, and...
REFERENCES

Malavika Samak and Murali Krishna Ramanathan. Trace driven dynamic deadlock detection and reproduction. ACM SIGPLAN Notices, 49(8):29–42, August 2014. CODEN SIN-ODQ. ISSN 0362-1340
REFERENCES

REFERENCES

10.1007/978-3-642-31762-0_15.

Stefik:2013:EIP

Sor:2014:MLD

Surendran:2016:APP

Sudarsan:2019:BDK
V. Sudarsan and R. Sugumaran. Building a distributed

Stark:2001:JJV

Sarimbekov:2014:JCS
Stark:2014:JJV

Su:2014:CEM

Srikanth:2017:CVU

Singh:2013:TGC

Saini:2018:CNC

Sciampacone:2010:EMS

REFERENCES

DEN ATISBQ. ISSN 1094-9224 (print), 1557-7406 (electronic).

REFERENCES

Sharma:2017:VCS

Simon:2015:STH

Savrun-Yeniceri:2014:EHI

Servetto:2010:MMC

Siegel:2011:AFV

Tamayo:2012:UBD

REFERENCES

IEEE Computer Society
Press, 1109 Spring Street,
Suite 300, Silver Spring,
MD 20910, USA, May 2017.

Tian Tan, Yue Li, and Jingling Xue. Efficient and precise points-to analysis: modeling the heap by merging equivalent automata. *ACM SIGPLAN Notices*, 52(6):278–291, June 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Manas Thakur and V. Krishna Nandivada. PYE: a framework for precise-yet-

[TPG15] Asumu Takikawa, T. Stephen Strickland, Christos D.
REFERENCES

[Toledo:2011:ACJ]

[TT11]

[Taboada:2011:DLC]

[TTS+10]

[TVD10]

REFERENCES

276, August 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPOPP '12 conference proceedings.

[Teng:2010:TPA]

[TW+10]

REFERENCES

DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Upadhyaya:2010:UDS

Uva:2018:AWJ

Upadhyaya:2015:EML

Ganesha Upadhyaya and Hridesh Rajan. Effectively mapping linguistic abstractions for message-passing concurrency to threads on the Java Virtual Machine.

Ugawa:2018:TSL

Urec:2013:MIS

Vilk:2014:DBB

REFERENCES

2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Vb16Uae] Santiago A. Vidal, Alexandre Bergel, Claudia Marcos, and J. Andrés Díaz-Pace. Understanding and addressing exhibitionism in Java empirical re-
REFERENCES

[Vidal:2018:ARB]

[vanderMerwe:2012:VAA]

[Viotti:2017:HRH]

[VanLoan:2010:ITC]

[Vikas:2014:MGA]
Vikas, Nasser Giacaman, and Oliver Sinnen. Mul-

[V:2011:BBI] Sharath Chandra V. and S. Selvakumar. BIXSAN:

Varier:2017:TNJ

VanNieuwpoort:2010:SHL

Vechev:2010:PPC

Vijayarathna:2019:WJC

Wurthinger:2011:SAR

REFERENCES

[Walker:2012:SNJ]
Henry M. Walker. SIGCSE by the numbers: JavaScript. SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education), 44(1):8, January 2012. CODEN SIGSD3. ISSN 0097-8418 (print), 2331-3927 (electronic).

[Wampler:2011:FPJ]

[Wang:2011:EEU]

[Wurthinger:2011:AED]

[Wang:2018:HSA]

[Welch:2010:ABS]

[Wellings:2016:ISC]
A. J. Wellings, V. Cholpanov, and A. Burns. Implementing safety-critical Java missions in Ada. ACM
Woo:2014:LLD
Woo:2014:LLD

[102x681]REFERENCES

Wood:2014:LLD

Wang:2018:PBJ

Wang:2019:DEJ

Wilcox:2018:VH

Wagner:2011:SV

Wagner:2011:CMM

0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). ISMM '11 conference proceedings.

Wu:2011:RTS

Wimmer:2013:MAV

Wellings:2012:AEH

Wang:2017:JRJ

Wade:2017:AVJ

Wang:2019:TRC

Wimmer:2010:AFD

Wendykier:2010:PCH

Witman:2010:TBR

Westbrook:2010:MJM

Wehr:2010:JBP

Wehr:2011:JIT

Wang:2018:IDG

Xu:2013:PML

Xue:2012:RJC

Xue:2019:ASC

Xie:2013:AAE

Yang:2012:MPD

Yi:2015:CTC

REFERENCES

[172]

Yang:2013:CPP

Yoo:2014:WRR

Yang:2019:MGL

[172]

Yang:2017:EJV

Yessenov:2017:DAD

Yim:2019:TFS

Yang:2010:JIP

Yerima:2012:AMB

Yi:2015:SCC

Yiapanis:2013:OSR

Yue:2013:MSI
[YW13] Chuan Yue and Haining Wang. A measurement study of insecure...
REFERENCES

Yu:2018:NFN

Yan:2019:ACL

Zakas:2010:HPJ

Zakhour:2012:JTS

Zakai:2018:FPW

Zheng:2015:APP

Zhang:2017:ACE

Minjia Zhang, Swarnendu Biswas, and Michael D. Bond. Avoiding consistency exceptions under strong
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zha12</td>
<td>Polymorphic type inference for scripting languages with object extensions</td>
<td>Tian Zhao</td>
<td>ACM SIGPLAN Notices</td>
<td>47(2)</td>
<td>37-50</td>
<td>February 2012</td>
<td>CODEN SINODQ</td>
<td>ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).</td>
</tr>
<tr>
<td>ZHC15</td>
<td>Low-overhead software transactional memory with progress guarantees and strong semantics</td>
<td>Minjia Zhang, Jipeng Huang, Man Cao, and Michael D. Bond</td>
<td>ACM SIGPLAN Notices</td>
<td>50(8)</td>
<td>97-108</td>
<td>August 2015</td>
<td>CODEN SINODQ</td>
<td>ISSN 0362-1340</td>
</tr>
</tbody>
</table>
Zhang:2012:RAJ

Zacharopoulos:2017:EMM

Zheng:2016:CMD

Zhao:2013:INT

Zhang:2014:AIO

Zeyda:2014:CMS

REFERENCES

Zerzelidis:2010:FFS

Zhu:2013:EAZ

Zhu:2015:APL

Zhao:2014:CSP

Zhao:2019:AJM

Zhang:2012:SRB

Zhang:2013:IMF