A Bibliography of Publications about the *Java Programming Language*, 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

11 February 2020
Version 1.219

Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

3
[DiP18b, FLZ+18, GBC12, JEC+12, ZXL16].
$\mathbf{39.95}$ [Ano18]. 4 + 1 [SRB18]. τ_P [LTK17].
C_p [AO11]. K
[PLL+18, SS19, SD16b, SGG+17]. N
[ADJG19, WZK+19]. Z_p [AO11].

/multi [Taf13]. /multi-threaded [Taf13].
'12 [Hol12]. 12th [Fox17a].
2015 [LSBV17]. 27th [KP15].
5 [KHR11].
6 [Jen12].
7 [Ano15, EV13, J+12]. 75 [HWM11].
8 [BKP16, CWGA17, LYBB14, SAdB+16, UFM15].
Abbreviated [SRTR17]. ABS [SAdB+16].

absence [AGH+17]. Abstract [AGR12, BDT10, DLR16, KPP12, XMA+14, DLM10, DLR14, FSC+13, KMMV14, NSD17, SSK13]. Abstraction [BW12, Bro12, GY16, SKKR11, PL12, ZMG+14, ZFK+16]. Abstractions [NYCS12, RFBJ14, UR15, SPP+10].

accelerated [PQTGS17]. Accelerating [KMZN16, ZLB14, Cha18]. Accelerator [MAK19, OIA+13]. accelerators [PWA13]. Access [CSGT17, HBT12, TT1, TNTN12, BB17, KT14, MMH10, RHN+13, XHH12]. Accessibility [STST12, VBM16].

add [DLM10]. adding [MZC10a]. Addition [RK19]. addressing [GD10, VBM16].

Adequacy [PSJ18]. Adequate [GGZ+15]. ADiJaC [SD16a]. Admitted [YXS+19].

Adoption [PBMH13, PGA18]. Adrian [Ngo12]. Advanced [Hor11, VBM10a, dJM18, Jen12].

Ajax-Based [MvDL12]. algebraic [Lei17].

algebras [LdS16, ZcS0v15].

Algorithm [JCO19, YCYC12, TWX13, MT13, ML17, Por18, Gun14].

Algorithmic [FHP+12]. Algorithms [BF18, GT10b, Gra15]. Aliasing [NS12].

Alignment [NBB18]. alike [DA13].

Alting [WBM+10]. always [AJL16].

Analyses [Kr12, TN19, HB13, KMZN16, PMP+16, ZMG+14].

Analysis [ADJG19, AGM+17, Bul18, CPV15, Hol12, JCO19, KCD12, LHR19, MvDL12, NS12, RDCP12, RRB19, RPP19, SGD15, SW12, SDC+12, SLES15, SLE+17, SR17, VP16, ZKB+16, AM14, Bra14, CFH+13, CDR19, DHS15, GYB+11, HCN14, HW11, KSW+14, KT14, KvGS14, KPP+18, KRR19, LSV16, LSV17, LT14, MTL15, MKZ+14, MCC17, MB12, NSD17, NS13, PIR17, PLR18, Puf13, RLVB10, RRB17, SPPH10, SMSB11, SBK13, SP10b, TLX17, TXW+10, TMLM13, TL17, TPG15, WA19, ZMN14, ZWS15, CH17].

Analytics [BBB+17, KB17, STCG13]. analyzer [Fe13, GN16, SMP10].

Analyzing [PLL+18, ZDK+19, BTR+13, PSN14].

Android [CS13, MPP+12, STY+14, THC+14, ZHL+12, ZKB+16, vmdVM12].

AngularJS [RVT18]. Ann [CSdL16].

answering [KM10]. any [FIF+15]. anytime [STCG13]. anywhere [STCG13].

AOP

authorship [FM+11]. auto [SKBL11]. auto-tuning [SKBL11]. AutoFix [YSCX17]. automata [LKP19, TLX17, ZW+14]. Automated [BH17, BSOG12, BMOG12, MS14, RGEV11, SDM12, TJLL18, UPR+18, AsdMGM14, MRMV12, YSCX17, ZF+16]. Automatic [GGRSY14, GGRSY15, GGRSY17, IS18, KKW11, LXP18, MDS+17, MM16, PQD12, PB+19, RK19, SZ11, SD16a, SJP10, SS16, WM10, ZLN18, ZB16, ABK+16, FM13, PG12]. automatically [TB14, VB18]. Automating [YXS+19].

comments [PBB19, ZYY+19].
Communication [JQJ+16, RTE+13, SK12, BJBK12, ETR+15, TTD+11].
AdCGGH16, BNP+18, BL15, FWDL15, LSWM16, RHN+13, STS+13, TABS12, WLL19, XHII12. controlling
[BKC+13, YDF15]. Convention [Hol12]. conversions [CM17]. Converter
[YWW+18]. Cooperative
[YWFF15, HDM17]. Coordinating
[MAHK16]. coordination [BMSZ17]. copy
[FBH17]. copyrightable [Sam12]. Core
[Hor11, HC13, RDCP12, RTE+13, MS10, PLL+18, TRTD11, Gve13]. cores
[GTSS11, SKBL11]. Cornell [Gve13]. corpus
[HNC14, LSVB16, LSVB17, TMVB13]. correct
[AdCGGH16, AJL16, DJLP10, PS10a]. Correctness [LL15, BENS12, Cho14]
.Correlation [SDC+12, XHII12]. Corrigendum [LSVB17]. Cost [MSS19]. counter
Coverage
[CSS+16, GGZ+15, MSS19, RGB18]. Coverage-Based [GGZ+15].
Coverage-directed [CSS+16]. CPS
[PDDD17]. CPU [PKO+15]. Crawling
[BMSV18, MvDL12]. Creating
[YMHB19, HC10, VBAM10b]. Creation
[SK12]. crisis [AT16]. Critical
[HLL13, MCW19, WK12, WCB16, ZLCW14, AGR17, DTLML14, GMC+13, NM10, Nil12b, RS12, SDH+17, CWW13, LWC17]. Cross
[GSS+18, MDM17, OTR+18, WBHN18, XXCL19, AMWW15, BKS+13, GSS+16, KMZN16]. Cross-Architecture [XXCL19]. cross-cutting
[AMWW15].
Cross-Language
[GSS+18, MDM17, GSS+16]. Cross-Layer
[OTR+18]. Cross-OS [XXCL19].
Cross-Platform [WBHN18].
cross-program [KMZN16]. cross-thread
[BKC+13]. Crowdsourcing [BH17].
CrowdSummarizer [BH17]. crypto
[PTRV18]. Cryptography [GPT12]. CSS
[Ano15, HLO15, Sta10]. Curve [GPT12].
customizations [LGV10]. customized
[HB13]. cutting [AMWW15]. Cyclic
[BMOG12, RS12].

D
[DiP18b, FLZ+18, GBC12, JEC+12, XZL16].

DAA [DR10]. Data [Bra14, BMOG12, BA17, BF18, GM12, GTS+15, GT10b, JJCO19, NKh16, NWB+15, NFN+18, NWB+18, TAF+18, YWW+18, ZLN18, dMRH12, BK14, BB17, BOF17, BBlC13,
BBJK12, CDTM10, CRP+10, DRF13, DHM+12, EKUR10, FOPZ14, KB17, LDL14, MRA+17, NL14, SAdB+16, SS+14, SGG+17, UMP10, WKJ17, WCG14, XXZ13, XMA+10, XGD+19, Zld18].
data-centric
[DHM+12, FOPZ14]. Data-Driven
[JJC019]. Data-Intensive [NW+18].
Data-Parallel [NKh16, CRP+10]. database [De10, EKUR10, TABS12].
databases [EKUR10, MLGA11]. Dataflow
[BR12]. Datalog [ZMG+14]. dataset
[MDS+17]. David [Kie13]. Days [Sev12b].
DBT [KS13]. dead [SK13]. Deadlock
[CHMY19, CHMY15, SR14a, SR14b]. Dean
[Bro12]. Debt [YXS+19]. debugging
[ASdMGM14, BM14, KS14, TB14, VB18, ZFK+16]. December [LSVB17]. Deciding
[SGD15]. decision [RBV16]. Declarative
[DRN14, RS12, FOPZ14, WCST19, MME+10]. Decomposition
[AGH+17, PLL+18]. deconstructing
[ACS+14]. decoupled [LPA13].
deduplication [HOK14]. Default
[BG17, SNS+14]. defects4j [MDS+17].
defined [FMS+11]. Define [NS12].
Definition [SSB14b, AK13, SSB10].
Definitive [Oak14]. delegation [GBS13].
delimited [PDDD17]. DelphiJ [GBS13].
demand [FWDL15, ZHL+12].
demand-driven [FWDL15]. DemoMatch
[YKSL17]. demonstrations [YKSL17].
Deoptimization [KRCH14]. depend
[LCW18]. dependability [GD10].
Dependence [PDDD17, JWMC15].
Dependence-driven [PDDD17].
dependences [BKC13, WLL19].
dependencies [ELW15]. Dependent [CHJ12, LE16].
deprecation [SRB18]. depth [R+13].
Design [AC16, ETTD12, MLGA11, Pufl3,
RTE+13, SW12, TRTD11, TKL+15,
VGRS16, YCYC12, BBXC13, CsDL16,
GSD+15, IRJ+12, Lon10a, Lon10b, OA17,
SAfB+16, SMSB11, VM10, Xue12].
Designing [Sev12b, KHR11]. Desktop [GS11].
destructive [FF10]. Detecting [BK12, HLO15, PiLCH11, XR10, FF10].
Detection [BH10, BSOG12, KCD12, MS14,
RD15, XMA+14, AMT17, CSK17, LMK16,
LS11, ODL15, PG12, RDF15, RGB18, RW17,
SR14a, SR14b, SS14, WCG14, XXZ13, XR13].
detector [WFF18]. detectors [LWH+10].
Determinacy [AM14]. Determination
[YXS+19]. deterministic
[DNB+12, MvH15]. develop [WA19].
developer [EV13, Top11, ZK13].
Developers [Bro12, BMR14, DJB16, HH13, Wam11].
Developing [FGB+19, R+13].
Development
[ABK+16, AYZI10, MT13, PBM+19,
AGRT1, BM18, FRGGLF+12, GT10a,
PSW11, SRK17, SH12, WBA+11, ZDS14].
Device [TTD+11, XHH12]. Devices
[CPT12, JQJ+16, MV16, ETR+15, Xue12].
DFC [BR12]. diagnosis [RW17]. DiaL
[STCG13]. dialects [BlvdS17]. difference
[PS11]. differential [CSS+16].
Differentiation [FHP+12, PQD12, SD16a].
digital [JMO14]. dimensional [TGZ17].
Directed [STR16, CSS+16, EP14, Lei17,
NG13, NED+13, WM10]. directives
[VGS14]. Discovering [Sev12a]. discovery
[YKSL17]. discrete [DDDF17]. Disease
[PE11]. Disjunctive [JJO19]. Dissimilar
[Has12]. Distance [ZW13]. distributable
[CRAJ10]. Distributed
[BVEAGVA10, CWGA17, LTD+12, LM15,
MAHK16, MRF18, NFN+18, PE11,
YMH19, AdsCDR+19, BVGVE10,
BVGVEA11b, BVGVE14b, CRAJ10,
EABVG14, STCG13, SS19]. distributing
[TGZ17]. divide [SBF+10]. Do
[HH13, LMZP19, Han15]. Does
[BRGG12, Rub14]. DOJ [hEYJD12]. DOM
[GGC18]. DOM-Based [GCC18]. Domain
[KSPK12, CsDL16, EKE+13, HH15+15,
PIR17]. domain-specific
[CsDL16, EKE+13, HH15+15]. dominance
[CPST14]. Doppio [VI14a].
DoubleChecker [BHSB14]. down
[Ker15, ZMY14]. DRAM [OTR+18]. drf
[MSM+16]. DRFX [MSM+10, SMN+12].
Driven [CCA+12, JJCO19, YPM112,
BM18, FGB+19, CHM13, FDDL15,
HZZK19, LKP19, MTL15, PDDD17, SR14b].
drug [EKUR10]. DSL [KAR012]. DSLs
[KHR11, RO12, SC16]. DSU [PVH14].
Dual [AD16]. Dual-Pivot [AD16].
Dynamic [AGM+17, ABMV12, ASF17,
BFS+18, CHMY15, CHMY19, LMZP19,
MRF18, MvDL12, PTHH14, RDF15,
WWG+18, XMA+14, ZKB+16, AF12,
BDB11, BK14, BCD13, BOF17, CSV15,
CPST15, ELW15, GYB+11, HB13, KRC14,
KRR+14, KT14, LWH+10, LVC10, MKZ+14,
Nil12b, NG12, NED+13, RLBV10, RCR+14,
RRB17, SR14b, SJS10, SH12, TPG15,
VBAM10b, WXR16, WFF18, WBA+11,
WAB+11, WWS13, WWH+17, ZBB15].
dynamic-memory [GYB+11].
Dynamically
[WWG+18, CZ14, CMS+12, hEYJD12].
Dynamically-Generated [WWG+18].
Dynamo [BDB11].
e-Science [SGV12]. ease [DRN14]. Easy
[Jaf13, CRP+10]. economic [CSV15].
economics [SJBL10]. Ecosystem
[YMH19]. Edition
[Ano15, Gve13, LYBB14]. editor [EKR+12].
Editorial [Fox17a]. Editorials
[Fox17b, HTW14, RHT13]. EdSketch
[HHZK19]. EDSLs [RDP16]. Educator
[BA17]. EE [Jen12, MCC17]. Effect
JK11, CCFB15]. Effective [BM14,
PTML11, RD15, CSdL16, KPP+18, Kie13].
Effectively [UR15].
effects [FH16, HAW13, Lei17].
Efficiency [OTR+18, SEPV19].
Efficient [DVL13, GPT12, HWM11, HB13, KT14,
KW10, OOK+10, RSF+15, RFBJ14,
SMN+12, TLX17, TN19, TD17, AK13,
BHSB14, CRP+10, ETR12, HWM10,
KKW11, MRA+17, MSM+10, Pos19, Sie17,
SVG12, SFB15, SV15a, TRTD11, UMP10,
VWJB11, XXZ13, ZDK+19, SV18].
Efficiently [FBH17, BKC+13, FOPZ14].
Einsatzszenarien [Sch13]. Einsteiger
[Ric14]. Elektronik [Ric14].
Elektronik-Projekte [Ric14]. Elephant
[RGW13]. Elimination
[RKN+18, GVRN+11]. elision [NM10].
Elliptic [GPT12]. Eloquent [Hav11].
enass [Por18]. Embedded
[Fox17b, HTW14, JMB12, KARO12, Pau14,
SLES15, SLE+17, TKL+15, VK12, Dei10,
Fox17a, GMC+13, HTLC10, KHR11,
LMK16, LTK17, OIA+13, RHT13, SC16,
SDH+17, SFR+14, UIY10, Xue12, ZYZ+12].
embedding [KMLS15, SC16]. emerging
[CDMR19]. Empirical
[LSBV16, LSBV17, SS13, WX16, BJBJK12,
FH16, HH13, KPP+18, MHR+12, NCS10,
SH12, Tai13, VBDM16, VBMDP16].
Employing [CC15]. Emsscripten [Zak18].
emulated [THC+14]. Emulation
[XXCL19]. emulator [KS13]. Enabled
[GPT12, DR10, ETR+15, RBL12, SVG12].
encapsulation [DMM11]. End
[GM12, DAA13]. End-to-End [GM12].
end-user [DAA13]. Energy
[OTR+18, CL17, PCL14]. energy-aware
[CL17]. enforcement [IF16]. enforcing
[JWMC15]. engine
[MGI17, Ngo12, OYU+13, Tar11, Ngo12].
Engineering
[CCA+12, GT10a, MLM17, MLM19, VF10].
engineers [Bra14]. engines
[KRH16, SSG+14]. enhanced
[LMK16, WBA+11]. enhancement
[WCST19]. Enhancing
[BDT10, BVGVEA13, DeSG12, HC10].
Ensuring [HDK+11]. Enterprise
[Ano14, AAB+10]. entities [ETR12]. Entry
[BBK12]. enumeration [SS17].
Environment
[Kö10, PTML11, RK19, EKR+12].
Environments
[BF18, EABVGV14, GTL+10, HOKO14,
KF11, RDF16, RCB17, SGV12]. equality
[GRF11]. Equilibrium [YMHB19].
Equivalence [BO12]. equivalent [TLX17].
equivocation [TD17]. ERAM [Sch10a].
Erratum [HWM11]. error [eBH11]. ES5
[DFHF15, Mor18]. ES6 [Mor18]. Escape
[SLES15, SLE+17]. Espresso [WZL+18].
Essential [Ngo12]. estimation [LMK16].
etched [VSG17]. Ethereum [Dan17]. eval
[Mil13, MRK12]. Evaluating
[BGK17, BLH12, MDHS10]. Evaluation
[CSZ17, GBC12, JMB12, OCFL14, TTS+10,
Wan11, CSK17, MRA+17, MD15, WW17,
XGD+19]. Evaluator [JB12]. Event
[KW11, MV16, BBPD13, KW10, MTL15,
WK12, YP10]. event-based [BBP13, YP10].
event-driven [MLT15]. EventBreak
[PSNS14]. ever [Gra15]. everyone [Hor12].
Evolution
[CC15, GMPS12, Mei14, JK11, MAH12,
NCS10, WB11, WAB11, WWS13]. evolving
[ZZK13]. Exact [ZB13]. Examples
[BNP11, Dei13]. Exception
[LT14, ECS15, HWM14, LT11].
Exceptionization [YKM17]. Exceptions
[ASF17, AdCGG16, HdB17, SMN+12,
ZBB17]. Execution
[Bul18, MSS19, NNTK17, OWP15].
fragmentation-tolerant [PZM+10].

Fragments [PBM+19, OA17]. frames [SJPS10]. Framework [CCA+12, Den18, FFF17, LM15, PWSG17, PWSG19, RBL12, SEK+19, TN19, Ame13, AC16, DDDD17, ER14, FRGPLF+12, JEC+12, KMLS15, Lon10a, Lon10b, MT13, PGA18, PKO+15, RR14, STY+14, ZW10, ZDS14].

Game [MT14, Wan11]. Gap [PVB17, ZLHD15]. Garbage [ASV+16, BH12, BF18, GTS+15, JCM19, MAK19, QSa+16, Sch13, SKBL11, URJ18, ASME18, AGGZ10, BCR13, BP10, BGV14b, BOF17, GTSS11, KPHV11, KBL14, NGB16, PZM+10, PDPM+16, Puf13, SP10a, SBM14, Sie10, SJBL10, UIY10, UJR14, XGD+19].

generalized [WT10]. generate [CS12].

Generated [WWG+18, BM18]. Generating [HJS+10, RDP16, GRF11, KSI4, MHBO13, SKS13]. Generation [AGM+17, BH17, YWW+18, CRJ+10, CMM+10, PPMH15, Pha18, PSNS14, Rim12, RO12, UMP10, ZYY+19].
generations [BOF17]. generators [SLF14]. generic [DDM11, Fer13, HH13, ZPL+10, cBH11].
generics [AS14, Gri17]. Genetic [YPMM12]. Genotyping [YPMM12].

GeoGebra [ABK+16]. geosciences [MCY+10]. Geospatial [CHMY15, EKUR10].
generations [BOF17]. generators [SLF14]. generic [DDM11, Fer13, HH13, ZPL+10, cBH11].
generics [AS14, Gri17]. Genetic [YPMM12]. Genotyping [YPMM12].

Game [MT14, Wan11]. Gap [PVB17, ZLHD15]. Garbage [ASV+16, BH12, BF18, GTS+15, JCM19, MAK19, QSa+16, Sch13, SKBL11, URJ18, ASME18, AGGZ10, BCR13, BP10, BGV14b, BOF17, GTSS11, KPHV11, KBL14, NGB16, PZM+10, PDPM+16, Puf13, SP10a, SBM14, Sie10, SJBL10, UIY10, UJR14, XGD+19].

generalized [WT10]. generate [CS12].

Generated [WWG+18, BM18]. Generating [HJS+10, RDP16, GRF11, KSI4, MHBO13, SKS13]. Generation [AGM+17, BH17, YWW+18, CRJ+10, CMM+10, PPMH15, Pha18, PSNS14, Rim12, RO12, UMP10, ZYY+19].
generations [BOF17]. generators [SLF14]. generic [DDM11, Fer13, HH13, ZPL+10, cBH11].
generics [AS14, Gri17]. Genetic [YPMM12]. Genotyping [YPMM12].

GeoGebra [ABK+16]. geosciences [MCY+10]. Geospatial [CHMY15, EKUR10].
generations [BOF17]. generators [SLF14]. generic [DDM11, Fer13, HH13, ZPL+10, cBH11].
generics [AS14, Gri17]. Genetic [YPMM12]. Genotyping [YPMM12].

Game [MT14, Wan11]. Gap [PVB17, ZLHD15]. Garbage [ASV+16, BH12, BF18, GTS+15, JCM19, MAK19, QSa+16, Sch13, SKBL11, URJ18, ASME18, AGGZ10, BCR13, BP10, BGV14b, BOF17, GTSS11, KPHV11, KBL14, NGB16, PZM+10, PDPM+16, Puf13, SP10a, SBM14, Sie10, SJBL10, UIY10, UJR14, XGD+19].

generalized [WT10]. generate [CS12].

Generated [WWG+18, BM18]. Generating [HJS+10, RDP16, GRF11, KSI4, MHBO13, SKS13]. Generation [AGM+17, BH17, YWW+18, CRJ+10, CMM+10, PPMH15, Pha18, PSNS14, Rim12, RO12, UMP10, ZYY+19].
generations [BOF17]. generators [SLF14]. generic [DDM11, Fer13, HH13, ZPL+10, cBH11].
generics [AS14, Gri17]. Genetic [YPMM12]. Genotyping [YPMM12].
hard [LTK17, Puf13]. Hardware
[MAK19, SKKR11, SPS17, CBGM12, IN12, SE12, ZDK+19]. hardwired [OYU+13].
harness [Kie13]. hash
HDFS [IRJ+12]. HDL [OYU+13]. health
[EKUR10]. heap [CSV15, LDL14, TLX17, Tar11, VHY10, YS10, BVGVEA10].
heap-manipulating [YS10]. Heaps
[NFN+18]. Helping [RT14]. Hera [MS10].
Hera-JVM [MS10]. Herren [Kie13].
Heterogeneous [ASV+16, HBB+14, Rub14, AYZ10, ABCR10, DFR13, MS10, SV18].
Heterogeneous-race-free [HBB+14].
Heuristics [MG14, LMK16]. HHVM
[Ott18]. Hidding [RBL12]. hierarchy
[BS13]. High
[GSS+16, Hol12, IRJ+12, MSM+16, RGB18, SWU+15, UBJ18, WN10, Zak10, BRWA14, Hos12, Nqo12, RFB14, TTD+11, TGZ17, VWJB10, WFF18, WWH+17, TRE+13].
High-coverage [RGB18].
High-dimensional [TGZ17]. high-level
[Hos12, RFB14, VWJB10].
High-Performance
[URJ18, WN10, GSS+16, BRWA14, Nqo12, TTD+11, WFF18, WWH+17]. higher
[KT15]. higher-order [KT15]. highly
[BP10, SP+10]. history [DRN14]. hit
[ANO13]. Hoare [SD16b]. hole [ANO13].
Holistic [MAHK16]. Hop
[WBH18, D'H12]. Hopjs [SP16].
Horstmann [Gve13]. hosted [CBLFD12].
hot [LMK16]. HotSpot [Sch13, BOF17].
HotWave [ABMV12, VBAM10b]. HPC
[QJ+16]. HTM [CHM16]. HTML
[STa10]. HTML5 [HLO15, NKR16, ANO15].
Hunting [GCC18]. HVM [LTK17].
Hybrid [CHM16, QJ+16, JMO14, KCD12, VDV17, ZMNY14, ZZM+16, ASME18, ADI13, HyG12, PdMG12, STA18, SWB+15].
Hybris [VDV17]. hygienic [DFHF15].
hypervisor [GMC+13]. i-Jacob [LYM+18]. IaaS [ZLHD15].
Identification
Identifying [IN12, SVB+17]. if
[Han15, STA18]. If-transpiler [STA18].
Informating [BK4]. Image
[WN10]. immutability
[HMDE12, ZPL+10]. immutable
[SV15b]. impact [CMS+12, Gra15, HWLM11, MPR12, WKK17].
imperative [RFRS14]. implement
[HD17]. Implementation
[CSS+16, GPT12, HM12, NBB18, OA17, Por18, VGRS16, YP10]. implementations
[CSS+16, OJ12, PS10a]. Implementing
[FFF17, GM12, WCB16, EKE+13, FBH17, PMP+16]. implications
[BRGG12]. implicit
[ITD16, SPK10]. imply
[BRGG12]. Improve
[OTR+18, QSA+16]. Improved
[KRR+14, UIY10, OJ12, XHH12]. Improvement
[RC17]. Improving
[ACS+14, HWH+12, TWSC10, WWH+18, eBH11, UTF13]. in-depth
[Rau14].
in-place
[DVL13]. including
[Den18].
Incremental
[LHR19, DS16, ELW15, UIY10].
dependent
(IF16, VS11). industrial
[CRJ+10]. inefficiently
[XR10]. inefficiently-used
[XR10]. inference
[BO13, YHY13, AGGZ10, CGJ+16, HyG12, HMDE12, RKNH18, Zha12]. Inferring
[PTRV18, AS14, BENS12]. InfiniBand
[ELTM12, IRJ+12]. infinite
[ASdMG14].
Inflow
[ZM+16]. influence
[MHR+12].
Informa
[HA13]. Information
[AF17, HBS16, KHL+13, RKN+18, SS12, AF12, ABFM12, BVGVEA11b, CMS+12, PMTP12, RRB17, ZYY+19].
Information-flow
[HBS16]. Infrastructure
[Den18, NG12, WCST19].
Inheritance
[LN15, WT11, AST+16, GBS13, NCS10].
Initial
[LTD+12]. initialization
[AMT17, MME14]. Initiation
[FRG12].
Injecting [ZZK13]. Injection [SBE+19].
in-line [DJP10]. Inlining
[BAl2, STA18, HWMI3]. input [Pha18].
insure [YW13]. Insight [VFI10].
instanceof [SMS+12]. Instant [MBHO13].
instantiation [AST+16]. instead
[AGH+17, BTR+13]. instrumenting
[CZ14]. Integrated [Tar11, YP10].
integrating [SPP+10]. integration
[Ame13, HKVG14, Sch10a]. integrity
[HDK+11]. Intel [CDMR19]. intelligence
[JACS10]. Intelligent [Pau14]. Intensive
[LYM+18, NWB+18, SAdB+16]. inter
[CMIM17]. inter-language [CMIM].
Interacting [SK13]. Interaction [WT11].
interactive [AMW15, JH11, MCI+10].
intersection [VM10]. interdependencies
[LBF12]. Interface [Liu14, MvDL12,
SLS+12, AYZI10, MT14, LT14, LT14].
Interfaces [WT11, Cho14, DLM10,
LW1+10, PSNS14, WT10]. interference
[YDF1]. International
[Hol12, KP15, Fox17a]. Internetware
[LYM+18]. Internetware-Oriented
[LYM+18]. Interoperability
[GSS+18, GSS+16]. Interpretation
[BDT10, DLR16, DLM10, DLR14, NSD17].
Interpretation-Based [DLR16].
interpreter [D’H12, KMMV14].
interpreters
[HWW+15, IvdS16, MD15, ZLB14].
Interprocedural
[CPV15, FWDL15, ZMN+14]. Interrupting
[AST12]. intersection [KT15]. intra
[BJBK12]. intra-node [BJBK12].
Introducing [CJ19, Dan17, DMS11].
Introduction
[CIAD13, CSZ17, HTLC10, HTW14, Lew13,
RHT13, VK12, Hav11, VF10].
Introductory [BNP11]. intrusively
[MZC+10a]. Invasive [ADJG19].
Investigation [SS13, FH16, Tai13]. invited
[Piz17, Sie17]. invocation
[SPAK10, SS19, BVGVEAFG11].
invocations [BVGV14a]. invokedynamic
[OCFL14]. Involvement [ZMM+16]. IP
[TKL+15]. iPhone [Sta10]. IR [LSWM16].
irregular [AC16]. ISAs [HNTL12]. ISBN
Isolation [ZLB+13]. Issue
[CJ19, DVL13, HL13, HTW14, Puf13, VK12,
Fox17a, HTLC10, HGCA11, HRT13].
iterations [DD13]. iterators [ZLB14].
IVE [CRJ+10]. IVPs [KS15].

J [KMLS15]. J2M [LYP15]. J2ME
[GPT12]. J2ME-Enabled [GPT12]. Jaczie
[KS14]. Jacob [LYM+18]. Jalapeno
[AGF+11]. JAMES [DDD17]. JaSTA
[HD17]. JaSTA-2 [HD17]. Java
[Bro12, Den18, Fox17a, Gve13, HWM11,
HTW14, MvH15, Ngo12, Sch13, VK12, AO11,
KvGS+14, PQTGS17, SAdB+16, ABC18,
AsdMGM14, AST12, AFG11, AYZI10,
AadScdR+19, AS14, AAB+10, Alt12, Ame13,
AdCGGH16, AT16, And14, Ano12, Ano13,
ABMV12, AGR12, AGR17, ABCR10, ADI13,
ABFM12, AK13, BK12, BH17, BMK14,
BH12, BDT10, BVGVEA10, BVEGAV10,
BVGVEA11a, BVGVEAFG11, BVGVEA1b,
BVGVEA13, BVGVE14a, BVGVE14b, BS12,
BMDK15, BO11, BO12, BO13, BCR11,
BDGS13, BCD13, BD17, BRGG12, Blvd17,
Bla18, BR12, BH10, BR15, BB12, BNP11,
BL15, BW12, BA12, BZD17, BSOG12,
BMO12, BK16, BA17, BJBK12, CIAD13,
FGB+19, CSZ17, CZ14, CMM17, CWW13,
CV14, CS12, CDTM10, CCFB15, CC15,
CRJ+10, CWGA17, CSF16, CSK17,
CCH11, CJ17, CJ19, CDG17, Cle16]. Java
[CDMR19, CKS18, CSdL16, CCA+12,
CMO+10, CRAJ10, DJP10, DDD17,
DLM10, DLZ+13, DLV13, DR10, DHS15,
DJBI6, DMS11, ECS15, EER1+13, ES14,
EQT10, Esq11, EABGVE14, Eug13, EV13,
ETTD12, ETR1+15, FLZ+18, FRG18+12,
FGR12, Fer13, FFF17, FLL1+13, FHSR12,
Fox17b, FSM11, GMP12, GvRN11,
Knoernschild [Del13]. knot [LBF12]. know [DBJB+16, Gra15, Han15]. Knowledge [KSPK12, UMP10]. known [Han15].
kraken [Ano14].

language-level [WCG14].
Language-Neutral [WBN18].

Johnny JavaScriptCore [Piz17]. KCD12, Mei14, Ano18, Kie13, Teo12, Teo13].

VP16, VB14b, Wal12, WCST19, WXR16, YW13, Zak18, Zak10, dMJ18, BM18, KCD12, Me14, Ano18, Kie13, Teo12, Teo13].

jQuery [AM14, PIR17]. JR [OW16]. JR-like [OW16]. JRE [CZ14]. JS [AHK+15, Por18]. js-emass [Por18].

learnt [GY16]. Legacy
[KH18, SVB+17, CDTM10]. Legally
[Sam12]. length [SMP10]. Less [BNE16].
Lessons [URJ18]. Level
[AC16, MG14, SWU+15, YXS+19, EKUR10,
Hos12, IHWN12, KBL14, LWC17, MG17,
RFBJ14, TTD+11, VWJ10, WCG14].
leveraging [WCST19]. Lexical
[BTR+17, GD12].
Lexicon [TAF+18]. Libraries
[BK12, RDCP12, BvdS17, Cho14, EKR+12,
PMTL14, PLR18, TTD+11]. Library
[CH17, CWGA17, NBB18, OCF11,14,
TAF+18, WN10, dJM18, CMM17, PMP+16,
PQTGS17, Pos19, TFPB14, TGZ17].
License [GD12]. Life [Esq11]. LIFT
[BTR+13]. Light [MvH15]. Light-weight
[MvH15]. Lightweight
[BW12, KBL14, KKK+17, RO12]. like
[BDGS13, BCD13, DJLP10, PMTL14, S10,
VG14, OW16]. Lime [ABCR10]. line
[SV17]. linearizability [LTZ14]. lines
[BTR+13, KATS12]. linguistic [UR15].
Linux [Ric14]. Linux-basierte [Ric14].
Listener [JH11]. little [Han15]. liiveness
[LDL14]. load [PDPM+16]. loaders [SM12].
loading [WGF11]. Local
[NBB18, DDDF17]. localised [SP10].
locality [JH10, OJ12]. localize [ZZK13].
location [NCS10]. Locators [SM12].
Lock [CF11, NM10, NFV15, UMP10].
Lock-free [CF11, NFV15]. Locking
[GGRSY17, JTO12, GGRSY14, GGRSY15,
YKA+19]. locks [SP17]. Logging
[CJ19, CJ17]. Logic
[ZLN18, GSM12, Pha18, SD16]. loop
[DD13, HW+12, PLR18]. Loops
[RD15, LLL13]. loss [WHIN11]. Low
[ETR+15, GM12, SWU+15, WCG14,
ZHC15, ZFK+16, BCR13, XMA+10].
Low-Budget [GM12]. Low-latency
[ETR+15]. Low-level [WCG14].
Low-overhead [ZHC15, ZFK+16].
low-utility [XMA+10]. lunch [DTLM14].
m [MZC10b]. m-JGRIM [MZC10b]. M2M
[Pau14]. Machine [JOCO19, LYBB14,
Ame13, CBLFD12, KS13, KC12, McM11,
Pz17, SSMD10, WGF11, WHV+13,
BZD17, Cle16, LYBB13a, LYBB13b, LTK17,
PTHH14, RRB19, SSB+14a, Sch13, Set13,
SMSS11, SVG12, SSB01, SSB14b, UR15].
Machine-Learning [JOCO19]. Machines
[AGR12, GTS+15, JK13, KCH14, NK10].
macros [DFH15]. Magic [SP10].
Magic-sets [SP10]. Magnitude [BNE16].
major [Ano12]. Making
[Loc13, Sta10, PS11]. malformed [SHU16].
Malicious [KCD12]. malleable [MZC10a].
malware [CSK17]. Managed
[MAHK16, NFN+18, NBW+18, BM14,
CBGM12, G10+10, ZlvdS17].
Managed-Language [MAHK16].
Management [OTR+18, Pau14, YPMM12,
AHK+15, BVGV14a, BGS+13, EKUR10,
HB13, KCP+17, KB17, MLM17, N12b,
PCL14, SBW+15, Tar11, WGW+11].
manipulating [YRR19, YS10].
Manipulation [MS14]. manual
[KCP+17, KPP+18]. many [GTSS11, SV18].
Map [BBB+17]. mapped [SV15].
Mapping [LTD+12, UR15]. MapReduce
[LZYP16, RFRS14, SKBL11]. maps
[NFV15, SV18]. mashup [ETR12]. Masses
[BMSV18, IvdS16]. Massive [BMSV18].
Massively [NBB18]. mastering [Sub11].
Math.Js [dJM18]. Mathematical [BW12].
Mathematics [dJM18]. MATLAB
[A12, FBH17, PMTL14, VF10, Has12].
MATLAB-like [PMTL14]. matrix
[DD13, TGZ17]. matters [DJB16]. Maxine
[WHV+13]. MCAPL [Den18]. me
[LW18, CMM+10, GM12, XHH12].
ME-Based [GM12]. mean [Rub14]. Means
[SS19]. Measurement [YPMM12, YW13].
Measurement-Based [YPMM12].
Measuring [DW10, DTLM14, Gra15, JH11].
mechanical [ZZK13]. mechanised
[BCF+14]. Mechanising [Loc18]. Media
...
multi-level [IHWN12]. multi-maps [SV18].
multi-processor [Puf13]. multi-stage
[WRI+10]. Multi-threaded
[JTO12, DSEE13, SE12, Taf13].
multi-threats [BGS+13], multi-version
[FC11]. Multicore [ASV+16, CCH11,
MKG+17, SE12, SSMDG10, TXW+10].
multilevel [JK13], multiphase [GvR+11].
Multiplatform [ZKB+16]. Multiple
[AF12, ASF17, HLSK13, CSV15, DD13].
multiplexing [BVGVEA11].
Multiprocessing [VGS14].
multiprocessor [PS10b, PWA13, SPS17].
Multiprocessors [KW11, RS12].
Multithreaded [KKW14, Loc18, SR14a,
BNS12, DJLP10, Fer13]. Multithreading
[CCH11]. mutivariate [AÖ11]. multiway
[YKA+19]. Mungo [KDGP18].
MuscalietJS [RCR+14]. Mutagenic
[YCYC12], mutants [FRC+17]. Mutation
[MMP15, KPP+18]. mutators [AHK+11].
MySQL [Ano15].

Names [SRTR17]. Naming [STST12].
Native [JQJ+16, LT11, LT14, KFBK+15, STS+13].
Natural [LL15], naturalness [HGB+16].
NDetermin [BENS12], nested
[CHM16, ZLB+13]. Netflix [Liu14].
Network [CC15, GGC18, RR14].
Networking [Hol12]. Networks
[AFGG11, ETR+15, ZYY+19]. neural
[ZYY+19]. neuromorphic [HNTL12].
Neutral [WBHN18]. Next
[YWW+18, CRJ+10, CMM+10].
Next-Generation [YWW+18]. NG2C
[BOF17]. NGS [YWY+18]. NGS-FC
[YWW+18]. Nicolai [Bla18]. Nixon
[Ano15]. No [BVGVEA10]. No-Heap
[BVGVEA10]. NoCs [PWA13]. Node
[HC11, BJBK12]. Node.js
[BSMB16, MTL15, Ano14]. nodes [DRN14].
Nominal [BO13]. Non [BVGVEA11b,
BSOG12, GZ+15, TD17, WZL+18,
YKM17, MZC10a, OMK+10, SSL18, ZP14].
Non-Adequate [GGZ+15].
non-cache-coherent [ZP14]. non-cloned
[SSL18]. Non-equivocation [TD17].
Non-functional [BVGVEA11b].
non-intrusively [Mzc10a]. Non-Java
[YKM17, OMK+10]. Non-termination
[BSOG12]. Non-volatile [WZL+18].
Non-Volatility [WZL+18]. Nonblocking
[RTET15, SP10a]. Nondeterministic
[RB15, BENS12]. noninterference [IF16].
Nopol [XMD+17]. Normalization
[ADG+19]. NoSQL [DFR13]. Notation
[Ses12a]. Novel [NK10, MZC10b].
November [Hol12]. Novice [BA17].
Novices [RT14]. null [AT16].
NullPointerExceptions [BSOG12].
NUMA [GTS+15]. NumaGiC [GTS+15].
number [PPMH15, SLF14]. Numbers
[Jaf13, AJL16, Wall12]. Numerical
[KS15, KFBK+15, PQTG17]. NXT
[SWF12].

Obfuscated [KCD12]. obfuscation
[CCFB15]. obfuscations [CK17]. Object
[CSGT17, GS11, KB11, L212, N WB+15,
PThH14, PILCH11, RC17, Ses12a, SW12,
AST+16, BZD17, DDF17, FMBH15,
IvdS16, KRR19, MME14, MHBO13, RDF15,
UJR14, VM10, WM10, ZcdS0vdS15, Zha12,
ZDS14, hEYJD12]. Object-Bounded
[NWB+15]. object-constraint [FMBH15].
object-manipulating [KRR19].
Object-Oriented [GS11, KB11, RC17,
PThH14, AST+16, DDF17, MHBO13,
VM10, ZDS14, hEYJD12]. Objective
[Sta10]. Objective-C [Sta10]. Objects
[BS12, RKN+18, MHL15, SK13, SABB19,
WXR16, B VGVEA10]. Observations
[AAB+10]. OCaml [Cle16]. OCaml-Java
[Cle16]. OCTET [BKc+13]. odeToJava
[KS15]. offloading [ZHL+12]. on-demand
[ZHL+12]. On-Stack [WBHN18].
On-the-fly [URJ18, UJR14]. one [SV18].
ACS+\textdagger, AAB+\textdagger, BRGG12, BRWA14, CBGM12, Del11, GSS+\textdagger, HWI+\textdagger, IRJ+\textdagger, JH11, Ngo12, ODL15, PSNS14, SE12, SEPV19, TTD+\textdagger, TWX+\textdagger, WFF18, WHIN11, WWH+\textdagger, Zak10.

permission [HBT12, SNS+\textdagger]. permits [PPS16]. Persistence [LZ12]. Perspective [YHY13]. Pert [LZ12]. pervasive [MHM10]. pgs [Ano18]. PHALANX [VYY10]. phase [KC12]. phase-ordering [KC12]. phoneME [RDCP12]. Phosphor [BK14]. PHP [Ano15, Ott18, TTS+\textdagger]. Phynx [EKUR10]. Physics [Zak18, JEC+\textdagger]. pickler [MHBO13]. pickles [MHBO13]. pipeline [LPA13]. pipelines [CRP+\textdagger]. Pivot [AD16, MRF18]. PL/SQL [FGB+\textdagger]. place [DVL13]. Plan [DLZ+\textdagger]. Platform [AFGG11, PE11, WBHN18, BD17, CRJ+\textdagger, CMM+\textdagger, GD10, GMC+\textdagger, MKZ+\textdagger, PWA13, YP10].

Platforms [DR10, Has12, BP10, JMO14, KSR14].

PLDI [FLL+\textdagger]. pluggable [MME+\textdagger]. Point [Jaf13, AJL16]. Pointer [LHR19, TL17]. Pointers [RKN+\textdagger, AT16]. Points [BK12, SDC+\textdagger, BSAL18, DHS15, SBK13, TLX17]. Points-To [SDC+\textdagger, BSAL18, DHS15, SBK13, TLX17]. Policies [FHSR12, MPS12, BVGV14a]. policing [DW10]. Policy [YPMM12, JK13].

Popular [Has12, SRB18]. Popular-but-Seemingly-Dissimilar [Has12]. portable [BM18, LTK17, RGM13]. portal [MCY+\textdagger]. Power [MV16, Pau14, BRGG12, CBGM12, Kie13, THC+\textdagger]. pp. [Bro12]. PQL [RSI12].

Practical [AMT17, JACS10, SLES15, VS10, WBHN18, WWH+\textdagger, FGB+\textdagger, FIF+\textdagger, WT10].

Practice [HGCA11, AS14, EKUR10, LWC17, TRE+\textdagger]. practices [CJ17, YW13]. Pragmatic [Ano18, RO12]. pre [SBK13]. pre-processing [SBK13]. Precise [PIR17, TN19, XR13, BHSB14, CVG+\textdagger, HyG12, PLR18, PG12, RGM13, TLX17, WFF18].

Precise-Yet-Efficient [TN19]. precision [RSB+\textdagger]. Predicate [PL12]. predictable [LTK17].

Predicting [BSA14, RVK15, RVK19, AZLY18]. prediction [ZWZ+\textdagger]. predictive [RGB18]. Presence [AK13]. pressure [DTLM14]. pretenuring [BOF17]. Preventing [MSSK16].

Principles [HGCA11, JEC+\textdagger, VM10].

Printing [AJL16]. Prioritization [LMZP19, MT13]. Prioritized [NGB16]. Priority [ASV+\textdagger, HM12]. Privacy [And14]. Proactive [CL17, BGS+\textdagger].

PROB [YP10]. Probabilistic [RVB16, GY16, ZWZ+\textdagger]. Problem [YHY13, ZW13, J+\textdagger, KC12].

problem-solution [J+\textdagger]. problems [TPG15]. Proceedings [Hol12, KP15]. Process [SK12, AGR17, GT10a]. Processes [BMDK15]. Processing [LLL13, WN10, SBK13, SSG+\textdagger, UJR14, ZDK+\textdagger].

Processor [TKL+\textdagger, Pu13, SPPH10, SMN+\textdagger].

Processors [ASV+\textdagger, MKG+\textdagger]. producers [DAA13]. product [BTR+\textdagger, KATS12, KvRAH14, SV17].

product-based [KvRAH14]. production [RGM13]. professionals [JACS10]. profile [Ott18, VSG17, WKJ17]. profile-guided [Ott18]. profiler [DTLM14]. profilers [MDHS10]. profiling [DD13, JH11, KHR16, NK10, RCB17, SSB+\textdagger, STY+\textdagger, THC+\textdagger, WLL19, XR13, ZBB15]. Program [BGK17, JJC19, KKW14, RVK15, RT14, WGC+\textdagger, ZKB+\textdagger, AZLY18, AO11, DS16, GMS12, HCN14, JKL17, JWM15, KIM10, KMZN16, MKZ+\textdagger, NS13, RKHN18,
RVK19, Sch10a, SPY+16, Tai13, TABS12, UPR+18, WGF11, ZMG+14.

Programmable [OA17, AYZI10].

Programmers [Esq11, RLMM15, Rau14].

Programming [AFGG11, ABMV12, BCR11, Bro12, BA17, DLFT14, HWMI1, HGCA11, Köl10, KSPK12, LM15, McK16, OAC18, PTML11, RSI12, RB15, SS13, Sub11, Alt12, AMWW15, BCvC+13, BMR14, BSMB16, BRWA14, CL17, ECG12, EV13, FMHBH15, Han15, HA13, Hav11, Lew13, MSM+10, MGS19, MvH15, OW16, PTF+15, RVP11, RFBJ14, SNS+14, SGG+17, TB14, UFM15, VWJB10, VBAM10b, Wan11, WRI+10, WBA+11, ZWSS15].

Programs [AGR12, BH17, BR12, BMOG12, GS11, JB12, LTD+12, PSJ18, STST12, SS12, SMD12, SR17, TN19, XMD+17, ZLCW14, AACR18, ASAMGM14, ADCCGH16, BA12, BNS12, DJLP10, ECS15, ES14, EP14, Fei13, HL13, IN12, KRR19, LKP19, LO15, LPA13, MRMV12, MCW19, NG12, OJ12, PL12, RR14, RAS16, RLBV10, SMS+12, SZ11, SJP10, SHU16, Taf13, WSG19, YS10, YSCX17, dCMMN12, hEYJD12].

Progress [WCG+18, Sic17, ZHCB15].

Projects [Ano18, LSBV17].

Promises [MLT17], promising [KHL+17].

Proof [LL15].

Proofs [BMGQ12].

Propagating [Ivd16, PQTG17].

Properties [BO11, RVK15, SS12, AZLY18, FWDL15, RVK19, SD16b, YS10].

Protecting [MPS12].

Protocols [GM12, FGR12].

Prototyping [PWA13].

Pseudo-random [PPMH15, SLF14].

Pseudo-random [PPMH15, SLF14].

Pure [SS16].

Purely [RISI2, NFV15, SV18].

Purely-Declarative [RISI2].

Purely-functional [NFV15].

Purity [NSDD17, HMDE12].

Purpose [AdScdR+19].

Putting [BNP+18].

Python [Ric14].

QoS [YPM12].

Qualitas [TMVB13].

Qualitas.class [TMVB13].

Quality [BNP11, CCFB15, WKJ17].

Quantitative [CPV15, GYB+11, MRA+17, PMTP12].

queries [GK15, MRA+17, SGG+17].

query [FWDL15].

query [- FWDL15].

questions [KM10].

Quicksort [AD16].

R [CH17, KMMV14, NL14, SLS+12, Vit14].

Race [BH10, EP14, RD15, AMT17, EET10, HBB+14, RGB18, WFF18].

race-aware [EET10].

races [FF10, WCG14, XXZ13].

Racket [YK14].

Racy [SRJ15].

Rady [Teo12].

Rails [Teo12].

Range [BS12].

Ranged [FSK12].

Rapid [PWA13].

Rangeing [ASME18].

raw [HH13].

rays [SBF+10].

RC DC [DNB+12].

RDMA [ETR+15, IRJ+12].

RDMA-based [IRJ+12].

RDMA-enabled [ETR+15].

re [NCS10].

re-location [NCS10].

Reachability [NS13].

React [HOSC16].

reaction [SRB18].

reactive [BCvC+13, MvH15].

read [NN10].

read-only [NN10].

Reading [Jaf13].

ready [RHSD15].

Real [BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Nil12a, Pau14, SLES15, SLE+17, VK12, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGVE14a, BVGVE14b, CRAJ10, DW10, EABVGV14, Fox17a, GMC+13, HTHLC10, KHM+11, KPHV11, KvGS+14, KW10, KPP+18, KSR14, LTK17, MDS+17, PS10b, PZM+10, PSW11, Puf13, RHT13, SP10a, Sic10, SPS17].

Real-Time [BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Pau14, SLES15, SLE+17, VK12, Nil12a, BCR13, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGVE14a, BVGVE14b, CRAJ10, DW10, EABVGV14, Fox17a, GMC+13, HTL10, KHM+11, KPHV11, KvGS+14, KW10, KPP+18, KSR14, LTK17, MDS+17, PS10b, PZM+10, PSW11, Puf13, RHT13, SP10a, Sic10, SPS17].

Real-Time [BVEAGVA10, BBB+17, Fox17b, HTW14, KW11, Pau14, SLES15, SLE+17, VK12, Nil12a, BCR13, BVGVEA10,
EABVGV14, Fox17a, GMC BVGV14a, BVGV14b, CRAJ10, DW10, EABVGV14, Fox17a, GMC+13, HTLC10, KHM+11, KPHV+14, KW10, KSRP14, LTK17, PS10h, PZM+10, PSW11, Puf13, RHT13, SP10a, Sie10, SPS17.

Reduction [BO12, MSS19, TD15]. redundant [HLO15]. reengineering [FGB+19]. Refactoring [AS14, STST12, VBZ+18, ZHL+12, FMM+11, FM13].

Regression [MM12]. regular [PIR17]. reification [RRB17]. Reified [GBS14].

Reim [HMDE12]. ReImInfer [HMDE12]. relation [TD15]. relational [MLGA11]. relationship [LSBV16, LSBV17, SH12]. relaxed [DNB+12, KHL+17, PPS16].

rename [FM13]. Repair [SEK+19, XMD+17, ZLNP18, MDS+17, SHU16]. repeatability [Vit14]. Replacement [WBHN18, BCD13]. Replay [BH12].

Requirements [MSS19, AGGZ10]. ResAna [KvGS+14]. Research [SR17, TRE+13, CRJ+10, CBLFD12, EKUR10, Rub14, VBMDP16, Vit14].

RMI [SS19]. Road [RXK+17, SWU+15].

Robots [SWF12]. Robust [VM15, VDVL17, MKZ+14, SGV12, VM10].

Runtime [BLH12, CMM+10, GSS+18, MAHK16, MRS10, NWB+15, OCF114, XMA+14, BRGG12, EQT10, GVL+10, GSS+16, LMK16, MS10, OOK+10, PKC+13, RO12, STY+14, TWSC10, VBAM10a, WLL19, YRHL13, dCMMN12]. runtimes
Service [BVEAGVA10, SDM12, CSKB12, EABVGv14, GD10, HWLM11, KF11], service-oriented [EABVGv14]. services [MZR10b]. session [KDPG18, FGR12]. Set [SBK13, Lon10a, Lon10b]. Set-based [SBK13, Lon10a, Lon10b]. sets [SP10b].

settings [Mil13]. setting [BDGS13].

Short [AHK1+11, Cha18, SV15a, Zak12]. Short-term [AHK1+11]. shortcut [MLM19, CSGT17]. Side [Bul18, HC11, OBPM17, D'11, KRH16].

Simple [BO11, BO12, KCP1+17, BVGV14b, MSM1+10]. Simplicity [Dei11]. Simplifying [Mor18, Ano18]. Simulating [LM15].

Simulation [HWLM11, FLZ1+18, KKW11, Rim12, ZXL16]. Simulation-based [HWLM11]. simulations [MCM1+10].

smalltalk [FIF1+15, HKVG14]. smart [BL15, GMP12]. Smartcard [RBL12].

SMARTS [TGZ17]. Smartphones [RT14].

SMARTS [RXK1+17]. snapshots [AST12].

Snippets [SWU1+15]. SNP [YCYC12]. SoC [TKL1+15]. social [GGC18]. Socket [WA19].

Soft [WZK1+19, JACS10]. Software [BSA14, CC15, KH18, LMZP19, PBM1+19, RC17, Wan11, YQTR15, YMHB19, BMSZ17, BTR1+13, CBGM12, CFH1+13, CJ17, CJ19, CDMR19, DVL13, EKUR10, FRGPLF1+12, FC11, GT10a, HBG1+16, JhED11, JK11, LPA13, MHR1+12, NGB16, OIA1+13, PLL1+18, PBB19, RAS16, SV17, XRG13, YRHL13, ZKK13, ZCH15, ZDS14, CKS18]. Solidity [Dan17]. Solution [KS15, EKUR10, J1+12]. Solving [SED14, FMBH15, UPR1+18].

specialization [KRR1+14, SV15a]. specific [CSdL16, EKK1+13, HWW1+15, Kie13].

Specification [GJS1+13, GJS1+14, IF16, KW11, LN15, LYBB13a, LYBB13b, LYBB14, MCW19, TWH12, BVGV1A11a, BCF1+14, KR12, KW10, MRA1+17, YP10, dCCMN12].

specifications [BSAL18, BENS12, PS10a, TVD10, UPR1+18].

specified [BCR11]. Specifying [BNS12, HL13].

Speculation [AC16, MGI14, MGI17]. speculative [BB17, YRHL13]. speed [HRS1+17, SBF1+10, UTO13]. SPF's [PSJ18].

SqueakJS [FIF1+15]. SSNTDs [VSG17].

Stability [BSA14, LL15]. stabilizing [hED12]. Stack [WBHN18, KRCH14, Xue12]. stack-based
Tableau [HD17]. Tagged [RKN+18].

Tales [Sew12]. talk [Piz17, Sie17].

Taming [LLL11, SC16].

Target [CLE16].

Taxonomy [SSK13]. Techniques [LMZP19, RD15, EV13, KS13].

Testing [Fox17b, HTW14, VK12, Fox17a, HTLC10, KFFBK+15, NL14, RHT13].

Technology [NED+13]. TeJaS [LPGK14].

Template [MME14, HJS+10]. templates [FOPZ14, AK13]. term [AHK+11].

Terminating [FFF17]. Termination [BMOG12, RDCP12, BSOG12, SMP10].

Test [AGM+17, BB12, BM18, GGZ+15, LMZP19, MSS19, Pha18, Rim12, ST15, MT13, PNSN14, SR14a, SKR17].

Test-driven [BM18]. tested [MII13].

Testing [Ame13, BR12, Hin13, MM12, MPP15, MMP+12, CSS+16, CNS13, KPP+18, Ler10, SABB19, Teo12, TD15].

tests [AO11, NYCS12, SR15].

Textbooks [BNP11]. their [RPD16]. theorem [SSH17].

There [ESq11]. thin [PS16]. thin-air [PS16].

things [McK16]. Think [WR10].

Third [Ano15, FOPZ14, LVG13].

third-party [FOPZ14, LVG10]. THOR [TWX+10]. Thoth [KB17].

Thread [MG14, BKC+13, CRAJ10, MG17, PCL14, PG12, SS10, WLL19, YDFF15].

Thread-Level [MG14, MG17]. threaded [DSEE13, JTO12, SE12, TaF13].

threads [UR15, WLL19]. threat [BGS+13]. threats [BGS+13].

Three [ZMM+16, ViT14].

Tier [WZK+19].

TigerQuoll [BBP13]. Tim [Teo13].

Time [BVEAGVA10, BBB+17, BLH12, DLR16, Fox17b, HTW14, JMB12, Kie10, KW11, PKPM19, Pan14, SLES15, SLE+17, TN19, VK12, BCR13, BM14, BVGV10, BVGV11a, BVGV11b, BVGV13, BVGV14a, BVGV14b, CRAJ10, DW10, EABV14, Fox17a, GMC+13, HTLC10, KH+11, KPH11, KVL+13, KVGS+14, KW10, KRS14, LMK16, LTK17, MG11, Nil12a, PS10b, PZM+10, PSW11, Puf13, RHT13, SP10a, SPPH10, Sie10, SPS17, SH12, TTS+10, WAB+11].

time-travel [BM14]. time-triggered [EABV14]. timed [LPK19].

Times [BKP16, DW10]. timing [AGH+17, LS11].

TIMP [LS+12]. tiny [Xue12]. To-many [SV18]. to-one [SV18].

Tolerance [RK19]. tolerant [PZM+10]. Tool [FMM+11, NBB18, PFD12, SW12, SSK13, ABFM12, CRAT+12, ETR12, KRS14, LS11, TWX+10].

Tool-supported [FMM+11]. toolchain [KDPG18, SMN+18].

Tools [Bro12, CSZ17, CS12, CKS18, ABK+16, KPP+18, VBAM10b].

toolset [KVGS+14].

top [RVP11, SGG+17, ZMY+14].

top-down [ZMNY14].

Topics [Hor11, Jen12].

topology [DDM11].

Toy [DDP18b]. Trace [HW14M, PLCH11, SR14b, BBF+10, HWM13, HW1+12, IHWN12, WHIN11].

trace-based [BBF+10, HW14M, HW1+12, IHWN12].

Traceability [CSKB12]. tracer [CZ4].

Traces [WKG17, BA12, RGM13].

Tracking [BP10, DLR14, DLR16, MAK19, MRF18, MD15].

track [VSG17].

TrackEtching [VSG17].

Tracks [RGM13].

tradeoff [UTO13].

Transactional [URJ18, DVL13, FC11, ZHCB15].

Transactions [DeSG12, CHM16, DFR13].

transaction [BL15]. transformations [AK13, MHM10, PMP^+16, TL17].

Transforming [dMRH12]. transitioning [HWM14]. Translating [RFRS14].

Translation [BO12, LSWM16, LXP18, TJLL18].

translations [UTO13]. translator [LZYP16]. Translators [WWG^+18].

Transmission [PE11, BVGVEA11b, BJBK12].

transparent [BBB^+11]. transpiler [STA18].

travel [BM14]. traversals [ODL15]. Treble [YMHB19].

Trees [LYO12, HLO15, KMMV14, YKA^+19].

trees [RBV16]. Trends [CC15, MSS10, SR17]. trie [SV17].

trie-based [SV17]. tries [SV15a, SV15b, SV18].

triggered [EAVBVG14]. triggers [FG19].

TRINI [PDP^+16].

Trusted [TWNH12, BCF^+14].

tuning [AAB^+10, BVGVEAFG11, SKBL11].

Turf [CH17]. Turing [Gri17]. Turn [HOSC16].

Tutorial [JEN12, NIL12b, PBM^+19, TAFL13, ZAK12].

TV [JMO14].

Twitter [Guy14]. Two [HAS12].

Type [BO13, CGJ^+16, KSW^+14, KATS12, LEI17, LOC18, RKN^+18].

SGD15, WT11, ACS^+14, AT16, BS13, CMS^+12, CVG^+17, DLM10, FH16, GBS14, HYG12, KMLS15, KRR^+14, KRH16, KVRAH14, KDPG18, LPGK14, LE16, MHR^+12, SV18, SH12, TLL11, ZHA12, eBH11].

Type-Based [SGD15].

-type-dependent [LE16].

Type-heterogeneous [SV18].

Type-Safe [LOC18, KMLS15].

Typechecking [KDPG18, CL17].

Typed [BO13, KKK^+17, MHL15, CMS^+12, KRCH14, LEI17, RDP16].

Types [BO13, RvB14, SPAK10, BDGS13, CHJ12, DDM11, HH13, MME^+10, YDFF15].

TypeScript [Cho14, FH16, RSF^+15].

Typing [FZ17, RSF^+15, SEC17, SFR^+14, TSD^+12].

typy [OA17].

Ubiquitous [MCY^+10].

UDP [RR14]. ULS [FOPZ14]. ultimate [BL15].

UML [CSF^+16]. unbounded [LSQD14, RGB18].

uncertain [CH19]. Unchangeable [KMC16].

Understanding [ABC18, FRM^+15, MKTD17, NWW^+18, QLSB17, SET13, TABS12, VBMDP16, LWB^+15, NIL12b].

Undocumented [ALT12, MHH^+12].

Unified [LM15]. uniform [AH10, EUG13].

Unifying [HAS12, MKK^+12, MKK^+13]. union [KT15].

unprocessors [KPV11]. Units [LLL13].

universe [DDM11]. Unix [PVB17].

Unobtrusive [MGS19].

Unpicking [LBF12]. Unrestricted [WWS13]. unsafe [MPM^+15].

unsound [AT16]. Updates [YMHB19, PKK^+13]. Upper [SW12].

Upsortable [SSG^+17]. uptrees [HB13].

USA [HOL12, KP15].

usability [FH16, MHR^+12, WA19].

Usage [OAC18, RC17, PTF^+15, QLSB17].

Use [BGK17, Guy14, MPM^+15, AMWW15, MKTD17, PBH13, SCH13].

-usecase [AMWW15].

used [XR10]. useless [FRC^+17].

user [Liu14, MvDL12, RKHN18, SSL^+12, DA13, FMS^+11, PSNS14].

user-defined [FMS^+11].

User-guided [RKHN18].

Using [ASMGM14, BS12, BSA14, BNE16, DLM10, HCN14, KFBK^+15, KH18, MV16, MSSK16, NBB18, Pau14, PQD12, RC17].

SDM12, SME^+17, UMP10, Wan11, WKG17, WGG^+18, XMA^+14, YCYC12, ZAK18, BB17, DDRF17, Del13, FH16, FOPZ14, GBS14, IVD16, KMLS15, KT14, KC12, LVG10, LWW13, LDL14, MT13, PIR17, PLR18, PHA18, RKHN18, RAS16, SAD^+16, SSK13, SSH17,
SHU16, SS19, VGS14, WLL19, WBM+10, WRI+10, XR13, ZLN18, vdMvdMV12.

UT [Hol12]. **utility** [CSV15, XMA+10]. **utilization** [BRC13]. **v** [Sam12]. **V8** [MG17]. Validating [HLSK13]. Validation [SSB14b, CS16, HV17, SS19]. Value [BBB+17, DFR13, YSCX17]. value-flow [YSCX17]. variable [CDT10]. variables [NS13]. **VDM** [TJLL18]. Verifiable [FHSR12]. Verification [CHMY19, CKS18, KKW14, KP15, RAS16, SS1, SS2b14, CHMY15, DLM10, HCV17, PSW11, SMN+18, SZ11, SJPS10, SSH17, SSB01, dCMN12].

verification-validation [HCV17]. Verified [HM12, Loc18, LJP+14, WFF18]. **VerifiedFT** [WFF18]. Verifier [BDT10, Rey13]. verifiers [SPY+16].

Virtual [BZD17, C16, LBB13a, LBB13b, LBB14, LTK17, PTHH14, PQD12, RRB19, SSb+14a, Sch13, Set13, SMSB11, SVG12, SSb01, SSIb4b, UR15, Ame13, CBFC12, KRC14, McM11, NK10, Piz17, RCB17, SSMGD10, WGF11, WHV+13]. virtualized [HOKO14, MHM10]. virus [RBL12]. Vision [DI18b, HCV17]. Vision-Guided [DI18b]. visitors [DRN14]. Visual [FH16].

web [AMT17, EK10, ETR12, HRS+17, HCN14, KFBS+15, MCC17, MCY+10, RHD15, RCR+14, Ryu16, VB18, WGF+11, DAA13, HLSK13, Kri12, LYM+18, MG14, MvDL12, MMP15, NL14, OwKPM15, RFB14, RPP19, Sch10b, VP16, YW13, Zak18]. web-based [EK10]. web-portal [MCY+10]. WebAssembly [HRS+17].

wildcards [AS14, TL11]. WIP [Cha18].

Wireless [AFGG11]. Wise [SEPV19].

Withers [Lyo12]. without [FMBH15, IN12, KFB+12, SS12, Sta10, WHN11]. Word [SRTR17]. Work [KFB+12, PKO+15, TWL12].

Write [ASME18, HJH10]. Write-rationing
References

[ASME18]. Writing
[HOSC16, Jaf13, Mor18].

x [MSM+16]. X10 [TWL12]. Xbase
[EEK+13]. XIR [TWSC10]. XML [NL14].

XSS [GGC18, MSSK16, VS11]. Xtraitj
[BD17].

yang [CBGM12]. years [BTR+13].
yieldpoint [LWB+15]. yin [CBGM12].

Z [SBF+10]. Z-rays [SBF+10]. Zero
[ZW13].

Abanades:2016:DAR

Ansaloni:2012:DAO

Akei:2010:EAS

Anjo:2016:DML

Ahn:2014:IJP

Aumuller:2016:OPD

Amighi:2016:PCC
Afshin Amighi, Pedro de Carvalho Gomes, Dill-

Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Ter-auchi, and Shiyi Wei. Decomposition instead of self-

Paolo Arcain, Angelo Gargantini, and Elvinia Riccobene. Rigorous develop-

Apel:2010:CUF

Aigner:2011:STM

Aigner:2015:AJE

Andrysco:2016:PFP

Axelsen:2013:PTD

REFERENCES

Anonymous:2013:FAM

Anonymous:2014:RKS

Anonymous:2015:BRL

Anonymous:2018:BRS

Arslan:2011:JPM

Altidor:2014:RJG
Adalid:2014:USA

Austin:2017:MFD

Afek:2012:ISJ

Alshara:2016:MLO

Akram:2018:WRG

Akram:2016:BPG

Amin:2016:JST

Ali:2010:DJB

Alon:2018:GPB

Bradel:2012:ITJ

Brown:2017:NJP

Boland:2012:JCC

Bonetta:2017:FJF

Basin:2017:KKV

Bebenita:2010:STB

Bonetta:2013:TPE

Bu:2013:BAD

Bettini:2013:FDT

Bodin:2014:TMJ

REFERENCES

Bergenti:2011:PPS

Bacon:2013:PRT

Bainomugisha:2013:SRP

Bettini:2017:XTJ

Bala:2011:DTD

Bettini:2013:CTB

Barbuti:2010:AIA

[BDT10] Roberto Barbuti, Nicoletta De Francesco, and Luca Tesei. An abstract interpretation approach for enhancing

Bedi:2013:MMT

Bodden:2010:AOR

Barbu:2012:ARA

Badihi:2017:CAG

Biswas:2014:DES

Biboudis:2017:RJD

Burdette:2012:ECJ

[BJBK12] Philip F. Burdette, William F. Jones, Brian C. Blose, and

Baar:2012:DEP

Bell:2014:PID

Bond:2013:OCC

Brooks:2016:CST

Bouffard:2015:UCF

Black:2018:NPJ

N. Black. Nicolai Parlog on Java 9 modules.
REFERENCES

[BMR14] Bell:2015:VFB

REFERENCES

Bellia:2012:ERT

Bellia:2013:JST

Bruno:2017:NPG

Barabash:2010:TGC

Bluemke:2012:DTJ

Bogdanas:2015:KJC

Brandt:2014:DAS

Salah Bouktif, Houari Sahraoui, and Faheem Ahmed. Predicting stability of open-source software systems using combination of Bayesian classifiers. *ACM Transactions...*
Bastani:2018:ALP

Bonetta:2016:GSM

Brockschmidt:2012:ADN

Bodden:2013:SLS

Bultan:2018:SCA

Banta-Val:2010:SSS
REFERENCES

[BV11] Pablo Basanta-Val, Marisol García-Valls, Iria Estévez-Ayres, and Jorge Fernández-González. Fine tuning of

Luigi Coppolino, Salvatore D’Antonio, Giovanni Mazzeo, and Luigi Romano. A comparative analysis of emerging approaches for securing Java software with Intel SGX. Future Generation Computer Systems, 97(?):620–633, Au-
REFERENCES

[CHJ12] Ravi Chugh, David Herman, and Ranjit Jhala. Dependent types for JavaScript.
References

Carro:2013:MDA

Chapman:2016:HSN

Chong:2014:CCT

Campbell:2013:ICC

Chen:2017:CLP
Boyuan Chen and Zhen Ming (Jack) Jiang. Char-

Chen:2019:ESL

Cordeiro:2018:BJV

Canino:2017:PAE

Clerc:2016:OJJ

Costa:2010:RMN

REFERENCES

Curley:2010:RDT

Cote:2012:JPS

Chalin:2010:TIG

Chambers:2010:FEE

Ceccarello:2012:TGC

Cordoba-Sanchez:2016:ADS

Irene Córdoba-Sánchez and Juan de Lara. Ann: a domain-specific language for the effective design and validation of Java annota-
REFERENCES

[CSV15] Callum Cameron, Jeremy

Casale:2017:PEJ

Cazzola:2014:JBR

Chaudhuri:2017:FPT

Chan:2017:DSL

Cavalcanti:2013:SCJ

Caserta:2014:JTJ

Diaz:2013:LEU

Dannen:2017:IES

daCosta:2012:JSL

Dhawan:2012:EJT

DElia:2013:BLP

DeBeukelaer:2017:ECP

Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel, and Reiner

DHondt:2012:ISS

Dolby:2012:DCA

Dietrich:2016:WJD

REFERENCES

[DS16] Sébastien Doeraene and Tobias Schlatter. Parallel incremental whole-program optimizations for Scala.js.
REFERENCES

Bois:2013:BGV

David:2014:CMC

Dias:2013:SIP

DosSantos:2010:MPB

Estevez-Ayres:2014:CSS

cBH11

Emerick:2012:CP

Ebert:2015:ESE

Efftinge:2013:XID

Erdweg:2012:GLE

Egbring:2010:POS
Erdweg:2015:SOI

Eslamimehr:2014:RDS

Elmas:2010:GRA

Erdweg:2014:FEL

Eichelberger:2014:FRM

Esquembre:2011:TPL

Endrullis:2012:WEM

REFERENCES

REFERENCES

Feeley:2016:CML

Ferrara:2013:GSA

Flanagan:2010:AMD

Ferrari:2017:JJF

Candel:2019:DMD

Femminella:2012:EJC

Fogus:2011:JC
Michael Fogus and Chris Houser. *The joy of Clo-
REFERENCES

[Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata. PLDI 2002: Ex-
REFERENCES

[Fan:2018:VCJ]

[Feldthaus:2013:SAR]

[Feldthaus:2011:TSR]

[Frantzeskou:2011:SUD]

[Fu:2014:FDC]

Yupeng Fu, Kian Win Ong, Yannis Papakonstantinou, and Erick Zamora. Forward: data-centric ULS using declarative templates that efficiently wrap third-

REFERENCES

Funes:2012:RMC

Feng:2015:EQD

Fritz:2017:TSA

Gherardi:2012:JVC

Gerakios:2013:FIS

Gerakios:2014:RTP

Gardner:2012:TPL

Greenman:2014:GFB

Gupta:2016:LSA

Gong:2011:JSA

Grossschadl:2012:EJI

Gramoli:2015:MTY

Grech:2011:JGE

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Gill10] Nasib Singh Gill and

REFERENCES

Guyer:2014:UJT

Gvero:2013:BRC

Gampe:2011:SMB

Grigore:2016:ARG

Garbervetsky:2011:QDM

Hauswirth:2013:TJP

Hanenberg:2015:WDW
Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).
REFERENCES

Hasbun:2012:UTP

Haverbeke:2011:EJM

Heumann:2013:TEM

Huang:2013:ECS

Hindle:2016:NS

Hedin:2016:IFS
Heidegger:2012:APC

Hsiao:2010:EST

Hughes-Croucher:2011:NRS

Hsiao:2014:UWC

Hammer:2017:VOV

Halder:2017:JSV

REFERENCES

[Hower14] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Benedict R.

Herhut:2013:RTP

Hinojosa:2013:TS

Hunt:2012:JP

Hellyer:2010:LCW

Heidenreich:2010:GST

Hlopko:2014:ISJ

Marcel Hlopko, Jan Kurs, Jan Vraný, and Claus Gittinger. On the integration of Smalltalk and Java. *Science*
REFERENCES

Haddad:2013:SIP

Hague:2015:DRC

Herczeg:2013:TFF

Herranz:2012:VIP

Huang:2012:RRC

Hashmi:2012:CNI

[Hor12] Cay S. Horstmann. Java for everyone: compatible with Java 5, 6, and 7.

Higuera-Toledano:2010:ISI

Higuera-Toledano:2014:EIS

Hayashizaki:2012:IPT

Huang:2011:SBA

Haubl:2010:CES

Haubl:2011:ECE

REFERENCES

Zeinab Iranmanesh and Mehran S. Fallah. Specification and static enforcement of scheduler-independent noninterference in a middleware Java. *Computer Languages, Systems
Inoue:2012:AML

Inoue:2012:ISC

Insa:2018:AAJ

Inostroza:2016:MIM

Juneau:2012:JRP
REFERENCES

Joseph:2010:PII

Jaffer:2013:EAR

Ji:2012:PKP

James:2010:FMC

Jacek:2019:OCW

Jara:2012:NVJ

Jendrock:2012:JET

Eric Jendrock. The Java EE
REFERENCES

REFERENCES (print), 1544-3973 (electronic).

Jagannathan:2014:ARV

Jung:2012:EJA

Jung:2014:HCO

Javed:2016:TSJ

Johnsen:2012:SLM

Johnson:2015:EES

[Andrew Johnson, Lucas Waye, Scott Moore, and Stephen Chong. Exploring and enforcing security guarantees via program dependence graphs. ACM SIG-]
REFERENCES

Jin:2012:JMM

Kossakowski:2012:JED

Kastner:2012:TCA

Kumari:2011:AOO

Kunjir:2017:TAM

Kim:2014:LBL

Kiselyov:2017:SFC

[KBPS17] Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos,

Kulkarni:2012:MCO

Krishnaveni:2012:HOJ

Kedia:2017:SFS

Kouzapas:2018:TPM

Kereki:2015:JAW

Kuehnhausen:2011:AJM
Kumar:2012:WSB

Vivek Kumar, Daniel Framp
ton, Stephen M. Blackburn, David Grove, and Olivier Tardieu. Workstealing without the bag-
gage. *ACM SIGPLAN Notices*, 47(10):297–314, Oc-
tober 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Khan:2015:UJW

Faiz Khan, Vincent Foley-
bourgon, Sujay Kathrotia, Erick Lavoie, and Laurie Hendren. Using JavaScript
and WebCL for numerical computa-
tions: a comparative study of native and web tech-
nologies. *ACM SIGPLAN Notices*, 50(2):91–102, February 2015. CODEN SINODQ. ISSN 0362-
1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Knoche:2018:UML

H. Knoche and W. Hassel-
bring. Using microservices for legacy software moderni-
4194 (electronic).

Kerschbaumer:2013:IFT

Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, and Michael Franz. Information
flow tracking meets just-in-time compilation. *ACM Transactions on Architecture and Code Optimiza-

Kang:2017:PSR

Jeehoon Kang, Chung-
Kil Hur, Ori Lahav, Vik-
tor Vafeiadis, and Derek
Dreyer. A promising se-
mantics for relaxed-memory concurrency. *ACM SIG-

Kalibera:2011:FRT

Tomas Kalibera, Jeff Hagel-
berg, Petr Maj, Filip Pi-
zlo, Ben Titzer, and Jan
Vitek. A family of real-time
25, 2011. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).
REFERENCES

2010. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Karakoidas:2015:TSE

Vassilios Karakoidas, Dim-
itris Mitropoulos, Panagio-
tis Louridas, and Diomidis
Spinellis. A type-safe em-
bbedding of SQL into Java
using the extensible com-
piler framework J%. Com-
puter Languages, Systems
and Structures, 41(???):1–
20, April 2015. CODEN
???? ISSN 1477-8424
(print), 1873-6866 (elec-
tronic). URL http://
www.sciencedirect.com/

Kalibera:2014:FAS

Tomas Kalibera, Petr Maj,
Floreal Morandat, and Jan
Vitek. A fast abstract syn-
tax tree interpreter for R.
ACM SIGPLAN Notices, 49
(7):89–102, July 2014. CO-
DEN SINODQ. ISSN 0362-

Kulkarni:2016:APA

Sulekha Kulkarni, Ravi
Mangal, Xin Zhang, and
Mayur Naik. Accelerating
program analyses by cross-
program training. ACM
SIGPLAN Notices, 51(10):
CODEN SINODQ. ISSN
0362-1340 (print), 1523-

Kolling:2010:GPE

Michael Kölling. The
Greenfoot programming en-
vironment. ACM Transac-
tions on Computing Educa-
tion, 10(4):14:1–14:??,
November 2010. CODEN
???? ISSN 1946-6226.

Kroening:2015:CAV

Daniel Kroening and Co-
rina S. Păsăreanu, editors.
Computer Aided Verifica-
tion: 27th International
Conference, CAV 2015,
San Francisco, CA, USA,
July 18–24, 2015, Proce-
dings, Part I, volume 9206
of Lecture Notes in Com-
puter Science. Springer-Ver-
lag, Berlin, Germany / Hei-
delberg, Germany / Lon-
don, UK / etc., 2015. ISBN
3-319-21689-9. URL
http://link.springer.com/

Kalibera:2011:SRT

Tomas Kalibera, Filip Pi-
zlo, Antony L. Hosking, and
Jan Vitek. Scheduling real-
time garbage collection on
uniprocessors. ACM Transac-
tions on Computer Sys-
tems, 29(3):81–8:??, Au-
 gust 2011. CODEN AC-

KPHV11

Tomas Kalibera, Filip Pi-
zlo, Antony L. Hosking, and
Jan Vitek. Scheduling real-
time garbage collection on
uniprocessors. ACM Transac-
tions on Computer Sys-
tems, 29(3):81–8:??, Au-
 gust 2011. CODEN AC-

KPHV11

Tomas Kalibera, Filip Pi-
zlo, Antony L. Hosking, and
Jan Vitek. Scheduling real-
time garbage collection on
uniprocessors. ACM Transac-
tions on Computer Sys-
tems, 29(3):81–8:??, Au-
 gust 2011. CODEN AC-
Khyzha:2012:AP

[102x681]References

95

Kintis:2018:HEM

Kedlaya:2014:DDL

Kedlaya:2016:SST

Krisnamurthi:2012:SAJ

Kedlaya:2014:ITS

Ko:2019:WSA

Kaufmann:2013:SCO

Krebs:2014:JJB

Kroshko:2015:OPN

Kouneli:2012:MKD

Korsholm:2014:RTJ

Kashyap:2014:TRS

Keil:2015:BAH

Keil:2014:EDA

Kersten:2014:RRA

Kolesnikov:2014:CPB

Kim:2010:EAE

Kim:2011:MAE

Lin:2012:UKT

Lauinger:2018:TSD

Li:2014:MHD

Lorenzen:2016:STD

Leijen:2017:TDC

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Lerner:2010:FTJ

Lewis:2013:IAP

Liu:2019:RIP

Liu:2014:JNU

Liva:2019:SDE

Leino:2015:APS

Leung:2013:PEJ
Alan Leung, Ondrej Lhoták, and Ghulam Lashari. Parallel execution of Java loops on Graphics Processing

REFERENCES

[LPGK14] Benjamin S. Lerner, Joe Gibbs Politz, Arjun Guha, and

Lux:2011:TSD

Landman:2016:EAR

Larrucea:2018:M

Luu:2014:MCC

Leopoldseder:2016:JJT

[LSWM16] David Leopoldseder, Lukas Stadler, Christian Wimmer, and Hanspeter Mössenböck. Java-to-JavaScript translation via structured control flow reconstruction of

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Lin:2015:SGU

Luckcuck:2017:SCJ

Lee:2010:JSD

Li:2018:ATJ

Lindholm:2013:JVMa

Lindholm:2013:JVMb

Lindholm:2014:JVM

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. *The Java
Virtual Machine Specification: Java SE 8 edition.

[Liu:2018:JIO]

[Lyo12]

[LZ12]

[LZYP16]

[MAH12]

[MAHK16]

Maas:2019:HAT

McIntyre:2012:FJB

Martinez:2017:MBA

McKinley:2016:PWU

McMillan:2011:SVM

Miyazawa:2019:SCS

Marr:2015:TVP

Mytkowicz:2010:EAJ

Marr:2017:CLC

Martinez:2017:ARR

Meijer:2014:EJR

Martinsen:2014:HTL

REFERENCES

[102x681]REFERENCES

[102x681](print), 1523-2867 (print),
1558-1160 (electronic).

Martinez-Llario:2011:DJS

Mesbah:2017:REJ

Mesbah:2019:REJ

Madsen:2017:MRA

Mirshokraie:2012:JJA

McBurney:2016:ASC

REFERENCES

[Markstrum:2010:JDP]

[Martin:2014:TCR]

[Mirzaei:2012:TA]

[Mirshokraie:2015:GMT]

[Morgan:2018:SJW]

[Mastrangelo:2015:UYO]

[Mercer:2012:CVI]
Eric Mercer, Suzette Person, and Neha Rungta. Computing and visualizing the impact of change with Java PathFinder extensions. *ACM SIGSOFT Soft-

Magazinius:2012:SWS

Mamouras:2017:SMS

Mace:2018:PTD

Meawad:2012:EBS

McIlroy:2010:HJR

Marinescu:2013:FSJ

Stephen Marz and Brad Vander Zanden. Reducing power consumption and latency in mobile devices using an event stream model.

Cristian Mateos, Alejandro Zunino, and Marcelo Campo. An approach for non-intrusively adding malleable fork/join parallelism into ordinary JavaBean compliant applications. *Computer Languages*,
CODEN ????. ISSN 1477-8424 (print), 1873-6866 (electronic). URL http://
/www.sciencedirect.com/
/sicence/article/pii/S147784241000035.

Mateos:2010:MJN

[MZC10b] Cristian Mateos, Alejandro Zunino, and Marcelo Campo. m-JGRIM: a novel
middleware for Gridifying Java applications into mobile Grid services. Software
ISSN 0038-0644 (print), 1097-024X (electronic).

Nowicki:2018:MPI

[NBB18] Marek Nowicki, Davit Bzhalava, and Piotr Bala. Massively parallel imple-
mentation of sequence alignment with basic local alignment search tool using parallel computing in Java
liebertpub.com/doi/abs/10.1089/cmb.2018.0079;

Nasseri:2010:CMR

[NCS10] E. Nasseri, S. Counsell, and M. Shepperd. Class move-
ment and re-location: an empirical study of Java in-
heritance evolution. The Journal of systems and soft-
ware, 83(2):303–315, February 2010. CODEN JS-
SODM. ISSN 0164-1212 (print), 1873-1228 (electronic).

Nuzman:2013:JTC

[NED+13] Dorit Nuzman, Revital Eres, Sergei Dyshel, Mar-
cel Zalmanovic, and Jose Castanos. JIT technology with C/C++: Feedback-
directed dynamic recompilation for statically compiled languages. ACM
Transactions on Architecture and Code Optimization, 10(4):59:1–59:??, De-
cember 2013. CODEN ????. ISSN 1544-3566 (print),
1544-3973 (electronic).

Nguyen:2018:SCM

[NFN+18] Khanh Nguyen, Lu Fang, Christian Navasca, Guoqing Xu, Brian Demsky, and
Shan Lu. Skyway: Connecting managed heaps in distributed big data sys-
tems. ACM SIGPLAN Notices, 53(2):56–69, February 2018. CODEN SIN-
ODQ. ISSN 0362-1340 (print), 1523-2867 (print),
1558-1160 (electronic).

Newton:2015:ALF

Noll:2012:IDO

Noll:2013:OFD

Nunez:2016:PGC

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Ngo:2012:BRE

Nilsen:2012:RTJ

Nilsen:2012:TOU

REFERENCES

Namjoshi:2010:NOP

Na:2016:JPC

NKH16

Nolan:2014:XWT

Nikolic:2012:DEA

REFERENCES

Nicolay:2017:PAJ

Nguyen:2015:FCR

Nguyen:2018:UCM

Naik:2012:AT

Omar:2017:PSF

Obaidellah:2018:SUE

REFERENCES

REFERENCES

Philips:2017:DDD

Panizo:2012:EJP

Portillo-Dominguez:2016:ECP

Parker:2011:DPG

Pradel:2012:FAP

Pano:2018:FAL

REFERENCES

Phan:2018:TIG

Park:2011:DCM

Park:2017:PSS

Pizlo:2017:JVM

Pukall:2013:JFR

Piao:2015:JJF

Park:2019:ROC

[PKPM19] Hyukwoo Park, Sungkook Kim, Jung-Geun Park, and Soo-Mook Moon. Reusing the optimized code for JavaScript ahead-of-time...

Parizek:2012:PAJ

Pan:2018:ASJ

Park:2014:AAS

Pawlak:2016:SLI

Papadimitriou:2014:MLS

REFERENCES

Phan:2012:SQI
Quoc-Sang Phan, Pasquale Malacaria, Oksana Tkachuk, and Corina S. Păsăreanu.

Porter:2018:PJE

Poslavsky:2019:REJ

Passerat-Palmbach:2015:TSS

Pichon-Pharabod:2016:CSR

Pham-Quang:2012:JAD
ceedings of the Sixth International Conference on Automatic Differentiation (AD2012) held July 23–27, 2012, in Fort Collins, Colorado, USA.

Piedrahita-Quintero:2017:JGA

Pironti:2010:PCJ

Pitter:2010:RTJ

Palmer:2011:BJM

Park:2012:CB

Paquin:2018:AAS
Pradel:2014:EAR

Park:2015:KCF

Pour:2011:MBD

Pinto:2015:LSS

Pape:2014:EJV

Papadimitriou:2011:SES

[PTML11] Stergios Papadimitriou, Konstantinos Terzidis, Seferina Mavroudi, and Spiridon Likothanassis. ScalaLab:

[Paletov:2018:ICA]

[PVB17]

[Puffitsch:2013:SIP]

[PVH14]

[Petrashko:2016:CGL]

[Powers:2017:BBG]

[Pina:2014:RDJ]

[PWA13]

[Plumbridge:2013:BPR]

REFERENCES

Pan:2017:GCF

Pan:2019:GCF

Pizlo:2010:SFT

Qiu:2017:USR

Qian:2016:EFS

Rayns:2013:CJS

Gianfranco Rossi and Federico Bergenti. Nondeterministic programming in Java with JSetL. *Fundamenta Informaticae*, 140 (3-4):393–412, ????. 2015. CODEN FUMAAJ. ISSN 0169-2968 (print), 1875-8681 (electronic).

Andrea Rosà, Lydia Y. Chen, and Walter Binder. Actor profiling in virtual ex-
REFERENCES

Robatmili:2014:MRL

Radoi:2015:ETS

Ramirez-Deantes:2012:MTA

Rhodes:2015:DDO

Reynders:2016:GSB

Reynolds:2013:MJB

REFERENCES

Radoi:2015:WAR

Ravn:2013:EIS

Richardson:2014:BEL

Rimlinger:2012:TGS

Roohitavaf:2019:AAF

Raghothaman:2018:UGP

Rodchenko:2018:TIE

Andrey Rodchenko, Christos Kotselidis, Andy Nisbet, Antoniu Pop, and
REFERENCES

Richards:2010:ADB

Rodeghero:2015:ETS

Rompf:2012:LMS

Ryu:2019:TAB

Rathje:2014:FMC

Rosa:2017:ARC

Andrea Rosà, Eduardo Rosales, and Walter Binder. Accurate reification of complete supertype information for dynamic analysis on the JVM. *ACM SIGPLAN Notices*, 52(12):104–116, Dec-
REFERENCES

December 2017. CODEN SIN-ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

Samuelson:2012:LSO

Spoto:2019:SII

Sartor:2010:ZRD

Smaragdakis:2013:SBP

Shahriyar:2014:FCG

Scherr:2016:AFC

REFERENCES

[Sch10b] Christopher Schultz. Web applications with Java/JSP.

[Sch14] Herbert Schildt, editor.

xxxiv + 1274 pp. LCCN QA76.73.J38 S332 2014eb.

[SD16a] Emil I. Sluanschi and Vlad Dumitrel. ADiJaC — automatic differentiation of Java class files.

REFERENCES

[Schoeberl:2017:SCJ]
Martin Schoeberl, Andreas Engelbrecht Dalsgaard, René Rydholf Hansen,
Stephan E. Korsholm, Anders P. Ravn, Juan Ricardo Rios Rivas, Tórur Biskopstø,
Strøm, Hans Søndergaard, Andy Wellings, and Shuai Zhao. Safety-critical Java
for embedded systems. *Concurrency and Computation: Practice and Experience*, 29
(22):??, November 25, 2017. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-
0634 (electronic).

[Sartor:2012:EMT]
Jennifer B. Sartor and Lieven Eeckhout. Exploring multi-threaded Java application
296, October 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print),
1558-1160 (electronic).

[Shah:2012:AMJ]
Syed Muhammad Ali Shah, Jens Dietrich, and Catherine McCartin. On the
automated modularisation of Java programs using service locators. *Lecture Notes
(print), 1611-3349 (electronic). URL http://link.springer.com/chapter/
10.1007/978-3-642-30564-1_9/.

[SE12]
J. Staples, C. Endicott, L. Krause, P. Pal, P. Samouelian, R. Schantz, and A. Well-
102, March/April 2019. CODEN IESOEG. ISSN 0740-7459 (print), 1937-
4194 (electronic).

[Simao:2019:GWS]
approach for memory-performance efficiency in Java VMs. *Future Generation
Computer Systems*, 100(??):674–688, November 2019. CODEN FGSEVI. ISSN 0167-739X
science/article/pii/S0167739X18304898.
Seth:2013:UJV

Severance:2012:DJO

Severance:2012:JDL

Sewell:2012:TJ

Swamy:2014:GTE

Sherman:2015:DTB

Subercaze:2017:UPT

Simao:2012:CER

REFERENCES

REFERENCES

[SLES15] Isabella Stilkerich, Clemens Lang, Christoph Erhardt, and Michael Stilkerich. A practical getaway: Applications of escape analysis in embedded real-time sys-
Steele:2014:FSP

Snellenburg:2012:GJB

Shafiei:2012:MCL

Singh:2012:EPS

Santos:2018:JJV

Spoto:2010:TAJ

Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer for Java bytecode based on path-length. ACM Transactions on Programming Languages and Systems, 32 (3):8:1–8:70, March 2010. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Sewe:2012:NSI

Andreas Sewe, Mira Mezini, Aibek Sarimbekov, Danilo Ansaloni, Walter Binder,

[Steimann:2010:TMI] Friedrich Steimann, Thomas Pawlitzki, Sven Apel, and...
REFERENCES

REFERENCES

Sun:2017:AJP

Sawant:2018:RDC

Samak:2015:SRT

Scanniello:2017:FFC

Sutherland:2010:CTC

Scheben:2012:VIF

V. Sudarsan and R. Suguvarmar. Building a distributed

Stark:2014:JJV

Su:2014:CEM

Srikanth:2017:CVU

Singh:2013:TGC

Saini:2018:CNC

Sciampacone:2010:EMS

REFERENCES

DEN ATISBQ. ISSN 1094-9224 (print), 1557-7406 (electronic).

Schafer:2012:CAN

Su:2014:RVP

Subramaniam:2011:PCJ

Sun:2018:RAR

Steindorfer:2015:CSM

Steindorfer:2015:OHA

Steindorfer:2017:TSP

Michael J. Steindorfer and Jurgen J. Vinju. Towards a software product line of

REFERENCES

153

Sharma:2017:VCS

Simon:2015:STH

Servetto:2010:MMC

[TAF+18] Ibrahim Tanyalcin, Carla Al Assaf, Julien Ferte, François Ancien, Taushif Khan, Guillaume Smits, Marianne Rooman, and

Siegel:2011:AFV

Tamayo:2012:UBD

Taft:2013:TPS

Tanyalcin:2018:LVL

Ibrahim Tanyalcin, Carla Al Assaf, Julien Ferte, François Ancien, Taushif Khan, Guillaume Smits, Marianne Rooman, and

REFERENCES

1539-9087 (print), 1558-3465 (electronic).

Thiessen:2017:CTP

Tate:2011:TWJ

Tetali:2013:MSA

Tan:2017:EPP
Tian Tan, Yue Li, and Jingling Xue. Efficient and precise points-to analysis: modeling the heap by merging equivalent automata. ACM SIGPLAN Notices, 52(6):278–291, June 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Terra:2013:QCC

Thakur:2019:PFP

Toledo:2012:AJA
R. Toledo, A. Nunez, E. Tanter, and J. Noye. Aspectizing Java access
REFERENCES

IESOEG. ISSN 0740-7459 (print), 0740-7459 (electronic).

Taboada:2011:DLC

Taboada:2012:FMS

Tatsubori:2010:EJT

Torlak:2010:MCA

Tardieu:2012:WSS

Toegl:2012:SSJ

Santiago Vidal, Iñaki Berra, Santiago Zulliani, Claudia Marcos, and J. Andrés

Jan Vitek. The case for the three R’s of systems re-

Vitek:2012:ISI

VanCutsem:2010:PDP

VanCutsem:2015:RTC

Verdu:2016:PSA

VanderHart:2010:PC

Varier:2017:TNJ

K. Muraleedhara Varier, V. Sankar, and M. P. Gangadathan. TrackEtching

VanNieuwpoort:2010:SHL

Vechev:2010:PPC

Wijayarathna:2019:WJC

Wurthinger:2011:SAR

Walker:2012:SNJ

[Henry M. Walker. SIGCSE by the numbers: JavaScript. *SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education)*, 44(1):8, January 2012. CODEN SIGSBD. ISSN 0097-8418 (print), 2331-3927 (electronic).]

Wampler:2011:FPJ

[Dean Wampler. *Functional programming for Java developers*. O’Reilly]
REFERENCES

REFERENCES

REFERENCES

Witman:2010:TBR

Westbrook:2010:MJM

Wehr:2010:JBP

Wehr:2011:JIT

Wang:2018:IDG

Wurthinger:2017:PPE

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Authors</th>
</tr>
</thead>
</table>

Xu:2010:FLU

Xu:2014:SRB

Xuan:2017:NAR

Xu:2010:DIU

Xu:2013:PML

Xue:2012:RJC

REFERENCES

REFERENCES

Yi:2015:SCC

Yiapanis:2013:OSR

Yahav:2010:VSP

Yan:2017:AAA

Yue:2013:MSI

Yu:2018:NFN

REFERENCES

[174]

Yan:2019:ACL

Zakas:2010:HPJ

Zakhour:2012:JTS

Zakai:2018:FPW

Zheng:2015:APP

Zhang:2017:ACE

Zhang:2015:SYB

Zeuch:2019:AES

Steffen Zeuch, Bonaventura Del Monte, Jeyhun Kari-

REFERENCES

Zheng:2016:CMD

Zhao:2013:INT

Zhang:2014:AIO

Zeyda:2014:CMS

Zabolotnyi:2015:JCG

Zheng:2018:ADS

REFERENCES

Zhang:2014:ARP

Zhang:2014:HTB

Zhou:2016:IRO

Zibin:2010:OIG

Zerzelidis:2010:FFS

Zhu:2013:EAZ

Daming Zhu and Lusheng Wang. An exact algorithm for the zero exemplar breakpoint distance prob-
REFERENCES

Zhu:2015:APL

Zhao:2014:CSP

Zhang:2012:SRB

Zhang:2013:IMF

Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. In-