A Bibliography of Publications about the *Java Programming Language*, 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

13 April 2019
Version 1.197

Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

3 [DiP18b, FLZ+18, GBC12, JEC+12, ZXL16]. 4 + 1 [SRB18]. \(\tau _P \) [LTK17]. \(C _P \) [AO11]. \(K \) [PLL+18, SD16b, SGG+17]. \(Z _P \) [AO11].
- core [PLL+18]. - safety [SD16b].
/multi [Taf13]. /multi-threaded [Taf13].

5 [KHR11].
6 [Jen12].
7 [Ano15, EV13, J+12]. 75 [HWM11].
8 [BKP16, LYBB14, SAdB+16, UFM15].
9 [LSBV17]. 938 [Gun14]. 978 [Ano15].
978-1-4493-1103-2 [Bro12].
978-1-4919-4946-7 [Ano15]. 9th [Gve13].
Applications
[GMPS12, GD12, MAHK16, MvDL12, MMP15, NHK16, NWB+15, OwKPM15, SLES15, WBA+11, AMT17, AST+16, AC16, AMWW15, ADI13, ABFM12, DSEE13, BOF17, BBXC13, EABVGV14, GMC+13, HLO15, JH11, MTL15, MZC10a, MZC10b, PLR14, PKC+13, RHD15, R+13, RVP16, RW17, Ryu16, Schl0b, SAdB+16, SVG12, SPP+10, TWX+10, WHIN11, XGD+19, vdMvdMV12]. applying [CMM17].

Approach

Asynchronous
[KW11, SK12, WK12, FZ17, KW10, LML17]. atomic [WAB+11]. Atomicity [GGRSY17, JLP+14, BHSB14, BNS12, GGRSY15, UMP10]. atoms [PS16].

automata [TLX17, ZWZ+14]. Automated [BH17, BSOG12, BOG12, MS14, IGEV11, SDM12, TJLL18, UPR+18, AsdMG14, MRMV12, ZFK+16]. Automatic [GGRSY14, GGRSY15, GGRSY17, IS18, KKKW11, LXP18, MM16, PQD12, SZ11, SD16a, SJP10, SS16, WM10, XMD+17, ABK+16, FM13, PG12]. automatically [TB14]. Autonomic [DLPT14]. Autonomous [GMPS12].

average [LDL14]. avoid [XR10]. Avoiding [FRC+17, ZBB17]. avoids [PPS16]. Aware [JYKS12, LZ12, BBXC13, CL17, EQT10, SB+14a, SVG12]. awareness [VGS14]. axiomatic [TVD10].

Based [AFCG11, DLR16, GM12, GGZ+15, GCC18, LTD+12, MVDL12, MM12, PTML11, PiLCH11, PE11, RBL12, RT14, SGD15, SLS+12, ST15, SWF12, AYZI10, AST+16, ADI13, BBF+10, BBP13, BB17, CDT10, CSKB12, CJP17, CPST14, CPST15, EKUR10, GT10a, GMIC+13, HWMI14, HWI+12, HOKO14, HWLM11, HWN12, IRJ+12, JEC+12, JMO14, KATS12, KS13, KRCH14, KvRHA14, KS14, Lon10a, Lon10b, MCC17, MB12, MCY+10, PDPM+16, PSW11, SZ11, SBK13, SMP10, SPY+16, SV17, SNS+14, UIY10, UPR+18, VSG17, XHH12, YP10, ZY+12]. basic [CZ14]. basic-block [CZ14].
component
component-based
components
Composable
EABVGV14
Composition
Composing
Composition
Comprehension
Comprehensive
Compressing
Computation
computational
computations
Computer
Computing
course
CPS
Crawling
creating
cross-cutting
cross-Layer
cross-thread
Crowdsourcing
Cryptography
CSS
Curve
customizations
customized
Context-sensitive
Contextual
Continuous
Continuously
Contracts
Control
controlling
Convention
Conversions
Cooperative
Coordinating
Coordination
copy
copyrightable
core
Cornell
corpus
course
Course
coverage
Covered
Coverage
Coverage-Based
Coverage-directed
CPU
Creating
crisis
Critical
Cross
Cross-Layer
cross-program
cross-thread
Cross-Lang
Cross-Layer
Cross-Program
CrowdSummarizer
Cryptography
CSS
Curves
customizations
customized
cutting [AMWW15]. Cyclic [BMOG12, RS12].

D
[DiP18b, FLZ+18, GBC12, JEC+12, XZL16].

DAA [DR10]. Data [Bra14, BMOG12, BA17, GM12, GTS+15, GT10b, NKH16, NBb+15, NBb+18, TAF+18, YYW+18, dMRH12, BK14, BK17, BOF17, BBXC13, BJBK12, CDM10, CRP+10, DFR13, DHM+12, EKUR10, FOPZ14, KB17, LDL14, MRA+17, NL14, SAdB+16, SSG+14, SGG+17, UMP10, WKK17, WCG14, XZL13, XMA+10, XGD+19, ZIvS17]. data-centric [DHH+12, FOPZ14]. Data-Intensive [NBb+18]. Data-Parallel [NKH16, CRP+10]. database
[Dei10, EKUR10, TABS12]. databases [EKUR10, MLGA11]. Dataflow [BR12].

Datalog [ZMG+14]. dataset [MDS+17].

David [Kie13]. Days [Sev12b], DBT [KS13]. dead [SK13]. Deadlock
[CHMY19, CHMY15, SR14a, SR14b]. Dean [Bro12]. debugging
[ASdMG14, BM14, KS14, TB14, ZFK+16]. December [LSBV17]. Decision [SGD15].

decision [RBV16]. Declarative [DRN14, RS12, FOPZ14, MME+10].

Decomposition [AGH+17, PLL+18]. deconstructing [ACS+14]. decoupled [LPA13].

deduplication [HOKO14].

Default [BG17, SNS+14]. defects4j [MDS+17]. defined [FMS+11].

Definite [NS12]. Definition
[SSB14b, AK13, SSB01].

Definitive [Oak14]. delegation [GBS13].

delimited [PDDD17]. DelphiJ [GBS13].

demand [FWDL15, ZHL+12].

demand-driven [FWDL15]. DemoMatch [YKSL17]. demonstrations [YKSL17].

Deoptimization [KRCH14]. depend [LCW18].

dependency [GD10].

Dependence [PDDD17, JWM15].

Dependence-driven [PDDD17].

dependencies [BKC+13, WLL19]. dependencies [ELW15].

Dependent [CHJ12, LE16]. deploying [R+13].

deprecation [SRB18]. depth [Rau14].

Design [AC16, ETTD12, MLGA11, Puf13, RTe+13, SW12, TRTD11, TKL+15, VGRS16, YCYC12, BBXC13, CsdL16, GSD+15, LON10a, Lon10b, OA17, SAdB+16, SMSG11, VM10, Xue12].

Designing [Sev12b, KHR11]. Desktop
[GS11]. destructive [FF10]. Detecting
[BRK12, HLO15, PiLCh11, XR10, FF10].

Detection [BH10, BSOG12, KCD12, MS14, RD15, XMA+14, AMT17, CSK17, LMK16, LS11, ODL15, PG12, RDF15, RW17, SR14a, SR14b, SS14, WCG14, XZL13, XR13].

detectors [LWH+10]. Determinacy
[AM14]. deterministic [DNB+12, MvH15].
developer [EV13, Top11, ZKK13].

Developers
[Bro12, BM14, DJSB16, HH13, Wam11].

Developing [FGB+19, R+13].

Development [ABK+16, AVZ10, MT13, AGIR17, BM18, FRGPLF+12, GT10a, PWS11, SKR17, SH12, WBA+11, ZDS14].

Device [TTD+11, XHH12]. Devices
[GPT12, JQJ+16, MV16, ETR+15, Xue12].

DFC [BR12]. diagnosis [RW17].

DiAl [STCG13]. dialects [BvvdS17]. difference
[PS11].

differential [CSS+16].

Differentiation
[FFP+12, PQD12, SD16a].

digital [JMO14]. dimensional [TGZ17].

Directed
[STR16, CSS+16, EP14, Lei17, NG13, NED+13, WM10].

directives [VGS14].

Discovering [Sev12a]. discovery
[YKSL17]. discrete [DDD17]. Disease
[PE11].

Dissimilar [Has12]. Distance
[ZW13].

distributable [CRAJ10].

Distributed
[BVEAGVA10, LT+12, LM15, MAH16, PE11, AdScD19, BVGVEA10, BVGVEA11b, BVGV14b, CRAJ10, EABVGV14, STCG13].

distributing [TGZ17]. divide [SBF+10].

Do [HH13, Han15]. Does
[BRGG12, Rub14].

DOJ [hEYJD12]. DOM [GGC18].
DOM-Based [GGC18]. Domain [KSPK12, CSdL16, EEK+13, HWW+15, PIR17].
domain-specific [CSdL16, EEK+13, HWW+15]. dominance [CPST14]. Doppio [VB14a].
DoubleChecker [BHSB14]. down [Ker15, ZMNY14]. DRAM [OTR+18]. draf [MSM+16]. DRFX [MSM+10, SMN+12].
Driven [CCA+12, BM18, FGB+19, CHM13, FWDL15, MTL15, PDD17, SR14b]. drug [EKUR10]. DSL [KARO12]. DSLs [KHR11, RO12, SC16].
DSU [PVH14]. Dual [AD16]. Dual-Pivot [AD16]. Dynamic [AGM+17, ABMV12, ASF17, CHMY15, CHMY19, MvDL12, PTHH14, RDF15, XMA+14, ZKB+16, AF12, BBD11, BK14, BCD13, BOF17, CSV15, CPST15, ELW15, GYB+11, HB13, KRC14, KRR+14, KT14, LWH+10, LVG10, MKZ+14, Nil32, NG12, NED+13, RLBV10, RCR+14, RR17, SR14b, SJP10, SH12, TP15, VBAM10b, WXR16, WBA+11, WAB+11, WWS13, WWH+17, ZBB15].
dynamic-memory [GYB+11]. dynamically [CZ14, CMS+12, hEYJD12]. Dynamo [BBD11].
e-Science [SGV12]. ease [DRN14]. Easy [Jaf13, CRP+10]. economic [CSV15].
Editorial [Fox17a]. Editorials [Fox17b, HTW14, RHT13]. EDSLs [RDP16].
Educator [BA17]. EE [Jen12, MCC17]. Effect [JK11, CCFB15]. Effective [BM14, PTML11, RD15, CSdL16, KPP+18, Kie13].
Effectively [UR15]. effects [FH16, HAW13, Lei17]. Efficiency [OTR+18]. Efficient [DVL13, GPT12, HWM11, HB13, KT14, KW10, OOK+10, RSF+15, RFBJ14, SMN+12, TLX17, TD17, AK13, BHSB14, CRP+10, ETR12, HWM10, KKW11, MRA+17, MSM+10, Pos19, Sie17, SGV12, SWB+15, SV15a, TRTD11, UMP10, VWJB10, XZX13, ZDK+19]. Efficiently [FBH17, BKC+13, FOPZ14].
Einsatzszenerien [Sch13]. Einsteiger [Ric14]. Elektronik [Ric14].
Elektronik-Projekte [Ric14]. Elephant [RGM13]. Elimination [RK+18, GrRN+11]. elision [NM10].
Elliptic [GPT12]. Eloquent [Hav11]. emass [Por18]. Embedded [Fox17b, HTW14, JMB12, KARO12, Pau14, SLES15, SLE+17, TKL+15, VK12, Dei10, Fox17a, GMC+13, HTLC10, KHR11, LMK16, LTK17, OIA+13, RHT13, SC16, SDH+17, SFR+14, UIY10, Xue12, ZYZ+12]. embedding [KMLS15, SC16]. Empirical [LSBV16, LSVB17, SS13, WXR16, BBJK12, FH16, HH13, KPP+18, MHR+12, NCS10, SH12, Tai13, VBDPM16, VBMDP16].
Employing [CC15]. Enscripten [Zak18]. emulated [TH+14]. emulator [KS13].
Enabled [GPT12, DR10, ETR+15, RBL12, SGV12]. encapsulation [DDM11]. End [GM12, DAA13]. End-to-End [GM12].
end-user [DAA13]. Energy [OTR+18, CL17, PCL14]. energy-aware [CL17]. enforcement [IF16]. enforcing [JWM15]. engine [MGI17, Ngo12, OUY+13, Tar11, Ngo12].
Engineering [CCA+12, GT10a, MLM19, VF10]. engineers [Bra14]. engines [KRH16, SSG+14]. enhanced [LMK16, WBA+11]. Enhancing [BDT10, BVGVEA13, DcSG12, HC10].
equivalent [TLX17]. equivocation [TD17]. ERAM [Sch10a]. Erratum [HWM11].

Game [MT14, Wan11]. Gap [PVBI7, ZLHD15]. Garbage [AV+16, BH12, GTS+15, JCMM19, QSAS+16, Sch13, SKBL11, URJ18, AGGZ10, BCR13, BP10, BVGV14b, BOF17, GTSS11, KPHV11, KBL14, NGB16, PZM+10, PDPM+16, Puf13, SP10a, SBM14, Sic10, SJB10, UIY10, UJR14, XGD+19].

garbage-collection [Sie10]. Gary [Gve13], GC [NGB16, RGM13], GEMs [BSMB16]. General [CHMY19, AdCGGH19, CHMY15, EKUR10], general-purpose [AdCGGH19].
generalized [WT10]. generate [CS12], generated [BM18]. Generating [HJS+10, RDP16, GRF11, KS14, MHBO13, SSK13].

Generation [AGM+17, BH17, YWW+18, CRJ+10, PPM15, PSNS14, Rim12, RO12, UMP10].
generations [BOF17], generators [SLF14].

generic [DDM11, Fer13, HH13, ZPL+10, eBH11].
generics [AS14, Gri17, PBM13], Genetic [YCYC12, MT13], Genotyping [YCYC12].

GeoGebra [ABK+16], geosciences [MKT+10]. Geospatial [CH17], German [Sch13], get [Ame13], Getaway [SLES15, SLE+17], Gets [BH12], getters [MII13].

Getting [GMT14], Giga [DHS15],

Giga-scale [DHS15]. glimpse [SP16].

Global [PE11], Global-Scale [PE11].

Glotaran [SLS+12]. go [LWB+15].

Goldilocks [EQT10]. Good [dGRdB+15].

Google [Ngo12, MGI17, Sam12], GPGPU [PQTSG17], GPGPU-accelerated [PQTSG17], GPU [PKO+15], GPUs

[Host12], grade [CRJ+10]. Gradual [RSF+15, SFR+14, TSD+12, Sic17].

grained [DRN14], grammars [GN16, SHU16].

granularity [CZ14]. Graph [dMRH12, BS13]. Graphical [SLS+12].

Graphics [Cec11, LLL13], graphs [AdCGGH16, DSEE13, JWMC15, PUL016].
green [BRGG12], Greenfoot [Kö10], grid [SGV12, VVJB10, MZC10].

Gridifying [MZC10], grounded [EV13]. Growing [EK+12], growth [LDL14], guarantees [JWMC15, ZHCB15].

GUI [CN13, VGS14, WBA+11].

GUI-awareness [VGS14], Guide [Ame13, Oak14, Rau14, Teo13, Top11].

Guided [CN13, DiP18b, MMP15, GY16].
PSNS14, SSH17. Guidelines
[GGZ15, HLSK13].

Handling
[KW11, ECS15, HWM14, KW10, WK12].
Hands [CSZ17, Teo13]. Hands-on [CSZ17, Teo13]. happened [Han15].
happens [TD15]. happens-before [TD15].
hard [LTK17, Puf13]. Hardware [SKKR11, SPS17, CBGM12, IN12, SE12, ZDK19].
hardwired [OUY13]. harness [Kie13].
hash [SV15a, SV15b]. hash-array [SV15b].
hashing [GRF11]. HDFS [IRJ12]. HDL
[OUY13]. health [EKUR10]. heap
[CSV15, LD14, TLX17, Tar11, VYV10, YS10, BVGVEA10]. heap-manipulating
[YS10]. Helping [RT14]. Hera [MS10].
Hera-JVM [MS10]. Herman [Kie13].
Heterogeneous [ASV16, HBB14, Rub14, AYZI10, ABCR10, DFR13, MS10].
Heterogeneous-race-free [HHB14].
heuristics [LMK16]. Hiding [RBL12].
hierarchy [BS13]. High
[GGZ16, Hol12, IRJ12, MSM16, SWU15, URJ18, WN10, Zak10, BRWA14, Hos12, Ngu12, RFBJ14, TTD11, TGZ17, VWWJ10, WWH17, TRE13].
high-dimensional [TGZ17]. high-level
[Hos12, RFBJ14, VWWJ10].
High-Performance
[URJ18, WN10, GSS16, BRWA14, Ngu12, TTD11, WWH17]. higher [KT15].
higher-order [KT15]. highly
[BP10, SPP10]. history [DRN14]. hit
[Ano13]. Hoare [SD16b]. hole [Ano13].
Holistic [MAHK16]. HOP [H12]. Hopjs
[SP16]. Horstmann [Ge13]. hosted
[CBLFD12]. hot [LMK16]. HotSpot
[Sch13, BOF17]. HotWave
[ABMV12, VBAM10b]. HPC [JQJ16].
HTM [CHM16]. HTML [Sta10]. HTML5
[HLO15, NKKH16, Ano15]. Hunting
[GGC18]. HVM [LTK17]. Hybrid
[CHM16, JQJ16, JMO14, KCD12, VDV17, ZMNY14, ZMM16, ADI13, HyG12, PdMG12, SWB15]. Hybris [VDV17].
hygienic [DFHF15]. hypervisor
[GMC13].

IaaS [ZLHD15]. identification
[BZD17, FMS11]. Identifier [SRTR17].
identifiers [FMS11]. Identifying
[IN12, SVB17]. if [Han15]. illuminating
[BK14]. Image [WN10]. immutability
[HMDE12, ZPL10]. immutable [SV15b].
impact [CMS12, Gra15, HWLM11, MPR12, WK17]. imperative [RFRS14].
implement [HdM17]. Implementation
[CSF16, GPT12, HM12, OA17, Por18, VGRS16, YP10].
implications [BRGG12]. implicit
[Ivd16, SPAK10]. imply [BRGG12].
Improve [OTR18, QSaS16]. Improved
[KRR14, UIY10, OJ12, XHH12].
Improvement [RC17]. Improving
[ACS14, HWI12, TWSC10, eBH11, UTO13]. in-depth [Rau14]. in-place
[DVL13]. including [Den18]. Incremental
[LHR19, DS16, ELW15, UIY10].
independent [IF16, VS11]. industrial
[CRJ10]. insufficiently [XR10].
inefficiently-used [XR10]. Inference
[BO13, YHY13, AGGZ10, CGJ16, HyG12, HMDE12, Zha12]. inferring
[AS14, BENS12]. InfiniBand
[ETTD12, IRJ12]. infinite [ASdMG14].
Inflow [ZMM16]. influence [MHR12].
Informa [HA13]. Information
[ASF17, BHS16, KHL13, RKN18, SS12, AF12, ABFM12, BVGVEA11b, CMS12, PMTP12, RRB17]. Information-flow
[HBS16]. Infrastructure [Den18, NG12].
Inheritance
[LN15, WT11, AST16, GBS13, NCS10].
Initial [LTD12]. initialization
[AMT17, MME14]. Initialization [FGR12].
Injecting \[ZZK13\]. inline \[DJLP10\].
Inlining \[BA12, HWM13\]. insecure \[YW13\]. Insight \[VF10\]. instanceof \[SMS+12\]. Instant \[MHBO13\]. instantiation \[AST+16\]. instead \[AGH+17, BTR+13\]. instrumenting \[CZ14\]. Integrated \[Tar11, YP10\].
integrating \[Ame13, HKVG14, Sch10a\]. integrity \[HDK+11\]. intelligence \[JACS10\]. Intelligent \[Pau14\]. Intensive \[NWB+18, SAdB+16\]. inter \[CMM17\]. inter-language \[CMM17\]. Interacting \[SK13\]. Interaction \[WT11\]. interactive \[AMWW15, JH11, MCY+10\]. intercession \[VM10\]. interdependencies \[LBF12\].
Interface \[Liu14, MvDL12, SL5+12, AYZ10, MT14, LT11, LT14\]. Interfaces \[WT11, Cho14, DLM10, LW1+10, PSNS14, WT10\]. interference \[YDFF15\].
international \[Hol12, KP15, Fox17a\]. Interoperability \[GSS+18, GSS+16\]. Interpretation \[BDT10, DLR16, DLM10, DLR14, NSDD17\].
Interpretation-Based \[DLR16\]. interpreter \[D'H12, KMMV14\]. interpreters \[HWW+15, IvdS16, MD15, ZLB14\].
Interprocedural \[CPV15, FWDL15, ZMY14\]. Interrupting \[AST2\]. intersection \[KT15\]. intra \[BJBK12\]. intra-node \[BJBK12\].
Introducing \[Dan17, DMS11\]. Introduction \[CIAD13, CSZ17, HTLC10, HTW14, Lew13, RHT13, VK12, Hav11, VF10\].
Introductory \[BNP11\]. intrusively \[MZC10a\]. Investigation \[SS13, FH16, Tai13\]. invited \[Piz17, Sie17\]. invocation \[SPAK10, BVGV14a\]. invokational \[OCFL14\]. involvement \[ZMM+16\]. IP \[TKL+15\]. iPhone \[Sta10\]. IR \[LSWM16\].
Isolation \[ZLB+13\]. Issue \[DV13, HL13, HTW14, Puf13, VK12, Fox17a, HTLC10, HGCA11, HOK13\]. iterations \[DD13\]. iterators \[ZLB14\].
IVE \[CRJ+10\]. IVPs \[KS15\].

J \[KMLS15\]. J2M \[LZY15\]. J2ME \[GPT12\]. J2ME-Enabled \[GPT12\]. Jackie \[KSI4\]. Jalapeno \[AFG+11\]. JAMES \[DDDF17\]. JaSTA \[HD17\]. JaSTA-2 \[HD17\]. Java \[Bro12, Den18, Fox17a, Gve13, HWM11, HTW14, HVL15, Ngo12, Sch13, VK12, AO11, KvGS+14, PQTGS17, SAdB+16, ABC18, ASdMGM14, AST12, AFGGG11, AYZ10, AdScDr+19, AS14, AAB+10, Alt12, Ame13, AdCGGH16, AT16, And14, Ano12, Ano13, ABMV12, AGR12, AGR17, ABCR10, AD13, AFB12, AK13, BK12, BH17, BM14, BH12, BDL10, BVGV14a, BVGV14b, BVGV14c, BVGV14d, BS12, BMDK15, BO11, BO12, BO13, BCR11, BDGS13, BCD13, BD17, BRGG12, BlvdS17, BR12, BH10, BR15, BB12, BN11, BW12, BA12, BZD17, BSOG12, BM1G12, BKP16, BA17, BJK12, CIAD13, FGB+19, CS171, CZ14, CMM17, CW13, CV14, CS12, CDT10, CCF15, CC15, CRJ+10, CSF+16, CSK17, CCH11, CJ17, CDG+17, CSdL16, CCA+12, CRAJ10, DL10\]. Java \[DDDF17, DLM10, DLZ+13, DV13, DR10, DHS15, DJB16, DMS15, ECS15, EKF+13, ES14, EQT10, Esq11, EABVGV14, Euq13, EV13, ETTD12, ETR+15, FLZ+18, FRGPLF+12, GR12, Fer13, FFF17, FLL+13, FHSR12, Fox17b, FMS+11, GMPS12, GvRN+11, GYB+11, GM12, GBS14, GD12, GBC12, GS11, GS12, Gon11, GMC+13, GT10b, GJS+13, GJS+14, Gri17, GPT12, GK15, HL13, HD17, HdM17, Has12, HWM10, HWM13, HW14, HA13, HM12, HTLC10, HOK14, HU13, HOK14, HU13, HOK14, HU13, HOK14, HU13, HOK14, HU13, HOK14, HU13, HOK14.
Listener [JH11], little [Han15], liveness [LDL14], load [PDPM+16], loaders [SM12], loading [WGF11], local [DDDF17], localised [SP10b], locality [HJH10, OJ12], localize [ZZK13], location [NCS10].

Locators [SDM12], Lock [FC11, NM10, NVF15, UMP10], Lock-free [FC11, NVF15], locks [SPS17], logging [CJ17], logic [GMS12, SD16b], loop [DD13, HWI+12, PLR18], Loops [RD15, LLL13], loss [WHIN11].

Low [ETR+15, GM12, SWU+15, WGW+13, ZHCB15, ZFK+16, BCR13, XMA+10], Low-Budget [GM12], Low-latency [ETR+15], Low-level [WGW14], Low-overhead [ZHCB15, ZFK+16], low-utility [XMA+10], lunch [DTLM14].

m [MZC10b], m-JGRIM [MZC10b], M2M [Pau14]. Machine [LYBB14, Ame13, CBLFD12, KS13, KC12, Piz17, SSMGD10, WGF11, WHV+13, BDZ17, LYBB13a, LYBB13b, LTK17, PTHH14, SSB+14a, Sch13, Set13, SMSB11, SGV12, SSB01, SSB14b, UR15]. Machines [AGR12, GTS+15, JK13, KRCH14, NK10], macros [DFHF15], Magic [SP10b].

Magic-sets [SP10b], Magnitude [BNE16], major [Ano12]. Making [Loc13, Sta10, PS11], malformed [SHU16], Malicious [KCD12], malleable [MZC10a], malware [CSK17]. Managed [MAHK16, NBW+18, BM14, CBGM12, GTL+10, ZvdS17]. Managed-Language [MAHK16]. Management [OTR+18, Pau14, AHK+15, BVGV14a, BGS+13, EKUR10, HB13, KCP+17, KB17, Nil12b, PCL14, SWB+15, Tar11, WGW+11].

manipulating [YS10], Manipulation [MS14], manual [KCP+17, KPP+18], many [GTSS11], Map [BBB+17], mapped [SV15b], Mapping [LTD+12, UR15].

MapReduce [LZYP16, RFRS14, SKBL11], maps [NVF15], mashup [ETR12]. Masses [BMSV18, IvdS16], Massive [BMSV18], mastering [Sub11]. Math.Js [dJM18]. Mathematical [BW12], Mathematics [dJM18], MATLAB [Alt12, FBH17, PMTL14, VF10, Has12].

MATLAB-like [PMTL14], matrix [HD17, TGZ17], matters [DJB16]. Maxine [WHV+13], MCAPL [Den18], me [LCW18, GM12, XHH12]. ME-Based [GM12], mean [Rub14], measurement [YW13]. Measuring [DW10, DTL14, Gra15, JH11].

mechanical [ZZK13], mechanised [BCF+14]. Mechanising [Loc18], Media [Bro12], meets [KHL+13]. Memento [CPST15], memoization [TPG15].

Memory [BG17, JYKS12, MS+16, NBW+18, OTR+18, SS14, ST15, AHK+11, AHK+15, AGGZ10, BSM16, CWW13, DLZ+13, DVL13, FC11, FF10, GYB+11, HBB+14, HB13, KHL+17, KCP+17, KB17, Loc13, MSM+10, Nil12b, OMK+10, RW17, SMS+12, SMN+12, SWB+15, SV15a, Tar11, TVD10, WGW+11, XR13, Z14, ZHC15, ZBB17].

MemSAT [TVD10]. merge [ABC18]. Mergesort [LL15], merging [TLX17].

Message [KF11, ETTD12, TRTD11, TTD12, UR15]. message-passing [ETTD12, TRTD11, TTD12, UR15].

messages [eBH11], meta [MD15, SZ10]. meta-circular [SZ10]. meta-compilation [MD15]. metadata [DVL13]. MetaFJig [SZ10]. metaheuristics [DDDF17].

metaprogramming [PS11]. Method [AC16, BVGVEAFG11, GD12, AST12, AJL16, HMDE12, SS16, VBMDP16]. Method-Level [AC16]. Methods [MM16, Pau14, VBZ+18, Bra14, GRF11, LSBV16, LSBV17, SSL18].

Metrics [KB11, JK11, SSK13, Sch13], Metriken
Microscopic [RXK17]. Microsoft [Ano13]. Middleware
[RTE13, AdScDr+19, HOKO14, HWLM11, MZC10b]. middle
[SSG16, middleweight [IF16, MT14],
midstream [SSG14]. Migrating
[AST14, CDTM10, FGB19]. Migration
[OWKP15, Fe16]. migrations [TFPB14].
Miniboxing [UTO13]. minimal [CNS13]. mining [DRN14]. Mint
[WR10]. minute [DHS15]. minutes [BTR13].
misconfigurations [MCC17]. Mismatch
[YCYC12]. misses [IN12]. Missions
[WCB16]. Mistakes [BA17]. Mitigating
[BGS13, KC12]. mixed [CL17]. Mobile
[GM12, GPT12, MV16, XHH12, GGC18,
KF11, MZC10b]. Model [CSF16, CDG17,
CCA12, DLR16, FSK12, JYKS12, Loc18,
MSM16, MCC17, MV16, BGVVEA11a,
FGB19, CHM13, CW13, CV14, CS12,
CSKB12, DLZ13, FLZ18, GY16, HAW13,
Loc13, LSSD14, MLT17, MSM10, PSW11,
RR14, RBV16, RAS16, RDF15, SMN12,
SSG14, Tai13, VWJB10, ZP14, ZXL16].
Model-Aware [JYKS12]. Model-based
[CC17, PSW11]. model-driven
[FGB19, CHM13]. Modeling
[GBC12, JC10, KSPK12, LDL14, Rey13,
SM12, CRAT12, SKR17, TLX17, ZIvdS17].
Modelling [CSZ17]. Models
[CC15, PE11, ZLCW14, AGR17, HHB14,
TV10, ZBB17]. modern [FIF15, Hav11,
JK13, KB17, Teo13, WG11, ZDK19].
modernization [Nila2a]. Modified
[GT10a]. Modular
[IvdS16, LN15, RDCP12, MRA17, RO12].
Modularisation [SDM12]. modularity
[Del13, SPAK10]. module [KR12].
Modules [PiLCH11]. monad [GSD15].
MongoDB [Guo17]. Monitoring
[AGR12, DLJLP10, ES14, KF11]. Monitors
[BLH12, HM12]. m ori [CFST15].
movement [NCS10]. MPI
[RAS16, SZ11, VGRS16]. MPI-based
[SZ11]. MPJ [JQJ16, TTD12]. MrCrypt
[TLMM13]. MS [FH16]. Multi
[GSS18, JTO12, RTE13, BGS13, DSEE13, Fe16,
FC11, GSS16, IHWN12, MS10, Pu13,
SE12, SKBL11, TRTD11, Tar11, WR10].
Multi-Core [RTE13, MS10, TRTD11].
multi-cores [SKBL11]. multi-engine
[Tar11]. Multi-Language
[GSS18, Fe16, GSS16]. multi-level
[IHWN12]. multi-processor [Pu13].
multi-stage [WR10]. Multi-threaded
[JTO12, DSEE13, SE12, Ta13].
multi-threats [BGS13]. multi-version
[FC11]. Multicore [ASV16, CCH11,
MKG17, SE12, SSSG10, TWX10].
Multiphase [ZKB16]. Multiple
[AF12, ASF17, HLS13, CSV15, DD13].
multiplexing [BVGVEAFG11].
Multiprocessing [VGS14].
multiprocessor [PS10, PWA13, SPS17].
Multiprocessors [KW11, RS12].
Multithreaded [KKW14, Loc18, SR14a,
BNS12, DJLP10, Fer13].
multithreading
[CCH11]. multivariate [AÖ11]. Mungo
[KDPG18]. MuscalietJS [RCR14].
Mutagenic [YCYC12]. mutants [FRC17].
Mutation [MMP15, KPP18]. mutators
[AHK11]. MySQL [Ano15].
Names [SRTR17]. Naming [STST12].
Native
[JQJ16, LT11, LT14, KFBK15, STS13].
Natural [LL15]. naturalness [HBG16].
NDetermin [BENS12]. nested
[CHM16, ZLB13]. Netflix [Lin14].
Network [CC15, GGC18, RR14].
Networking [Hol12]. Networks
[AFFG11, ETR15]. neuromorphic
[HNTL12]. Next [YWW18, CR110].
Next-Generation [YWW18]. NG2C
[BOF17]. NGS [YWW18]. NGS-FC
[YWW18]. Nixon [Ano15]. No
[BVGVEA10]. No-Heap [BVGVEA10].
NoCs [PWA13]. Node [HC11, BJ12].
Printing [AJL16]. prioritization [MT13].
Prioritized [NGB16]. Priority [ASV+16, HM12]. Privacy [And14].
Proactive [CL17, BGS+13]. PROB [YP10].
Probabilistic [RBV16, GY16, ZWZ+14]. Problem [YHY13, ZW13, J+12, KC12].
problem-solution [J+12]. problems [TPG15].
Proceedings [Hol12, KP15]. Process [SK12, AGR17, GT10a]. Processes [BMDK15].
Processing [LLL13, WN10, SBK13, SSG+14, UJR14, ZDK+19]. Processor [TKL+15, Puf13, SPPH10, SMN+12].
Processors [ASV+16, MKG+17]. producers [DAA13]. product
product-based [KvRHA14]. production [RGM13]. professionals [JAC510]. profile
[VSG17, WKJ17]. profiler [DTLM14]. profilers [MDHS10]. profiling [DD13, JH11, KRH16, NK10, RC17, SSB+14a, STY+14, THC+14, WLL19, XR13, ZBB15].
Program [BGK17, KK14, RV15, RT14, ZKB+16, AØ11, DS16, GMS12, HCN14, JLI17, JWMC15, KM10, KMN16, MKZ+14, NS13, RVK19, Sch10a, SPY+16, Tai13, TABS12, UPR+18, WGF11, ZMG+14].
Programmable [OA17, AYZI10]. Programmers [Esq11, RLMM15, Rau14].
Programming [AFGG11, ABMV12, BCR11, Bro12, BA17, DLPT14, HLM11, HGCA11, Köl10, KS1P12, LM15, McK16, PTLML1, RSI12, RB15, SS13, Sub11, Alt12, AMWW15, BCvC+13, BM14, BSM16, BRWA14, CL17, ECG12, EV13, FMBH15, Han15, HA13, Hav11, Lew13, MSM+10, MGS19, MvH15, OW16, PTF+15, RV11, RFB14, SNS+14, SGG+17, TB14, UFM15, VVJB10, VBAM10b, Wan11, WRI+10, WBA+11, ZWS+15]. Programs [AGR12, BH17, BR12, BMOG12, GS11, JB12, LTD+12, STST12, SS12, SDM12, SR17, XMD+17, ZLCW14, ASdMG14, AdCGGH16, BA12, BNS12, DLJP10, ECS15, ES14, EP14, Fer13, HL13, IN12, LO15, LPA13, MRMV12, NG12, OJ12, PL12, RR14, RAS16, RLVB10, SMS+12, SZ11, SJP10, SHU16, Taf13, YS10, dCMMN12, hEYJD12]. progress [Sie17, ZHCB15]. Project [Wan11]. Projects [ZMM+16, ABC18, CJ17]. Projekte [Ric14].
RCDC [DNB+12]. RDMA
[ETR+15, IRJ+12]. RDMA-based
[IRJ+12]. RDMA-enabled [ETR+15]. re-
[NCs10]. re-location [NCs10],
Reachability [NS13]. reaction [SRB18].
reactive [Bcvc+13, MvH15]. read [NM10].
read-only [NM10]. Reading [Ja13]. ready
[RHSd15]. Real
[Bveagva10, Bbb+17, Fox17b, HTW14,
Kw11, Nhl12a, Pau14, Sles15, SLE+17,
Vki2, Bcr13, Bvgvea10, Bvgvea11a,
Bvgvea11b, Bvgvea13, Bvgv14a,
Bvgv14b, Craj10, Dw10, Eabvgv14,
Fox17a, Gmc+13, Htlc10, Khm+11,
Kphv11, Kvgs+14, Kw10, Kpp+18,
Ksr14, Ltk7, Mds+17, Ps10, Pzm+10,
Psw11, Puf13, Rht13, Sp10a, Sie10, Sps17].
Real-Time
[Bveagva10, Bbb+17, Fox17b, HTW14,
Kw11, Pau14, Sles15, SLE+17, Vki2,
Nhl12a, Bcr13, Bvgvea10, Bvgvea11a,
Bvgvea11b, Bvgvea13, Bvgv14a,
Bvgv14b, Craj10, Dw10, Eabvgv14,
Fox17a, Gmc+13, Htlc10, Khm+11,
Kphv11, Kvgs+14, Kw10, Ksr14, Ltk7,
Ps10, Pzm+10, Psw11, Puf13, Rht13,
Sp10a, Sie10, Sps17]. realtime [Ouy+13].
Reasoning [Ln15, Abk+16, Mlt17].
Recaf [Bvdls17]. recipes [J+12].
recompilation [Ned+13]. Reconfigurable
[Ouy+13, Sty+14, Oia+13].
reconstruction [Lswm16]. Recovering
Reduction [Bo12, Td15]. redundant
[Hlo15]. reengineering [Fgb+19].
Refactoring [As14, Stst12, Vbz+18,
Zhl+12, Fmm+11, Fm+13]. Reference
[Sch14, Ujr14, Hmde12]. refinement
[gy16, Jlp+14, Ksw+14, Zmg+14,
Zfk+16]. Reflexes [Spp+10]. regions
[Ac10]. register [zyz+12]. register-based
[zyz+12]. Regression [Mm12]. regular
[pir17]. refication [RRB17]. Reified
[GBS14]. Reim [Hmde12]. reimInfer
[Hmde12]. relation [Td15]. relational
[Mlga11]. relationship
[Lsbv16, Lsbv17, Sh12]. relaxed
[DNb+12, Kh+17, Pps16],
relaxed-memory [Khl+17]. Release
[Ano14]. reliability [Hwl11]. relying
[In12]. Remodularizing [Oj12]. Remote
[Bvgvea10, Bvgv14a, Bbjk12, Gsd+15,
BvgveaFG11]. removal
[Mrmv12, Wgf11]. removing [Plr14].
rename [Fm13]. Repair
[Xmd+17, Mds+17, Shu16]. repeatability
[Vit14]. replacement [Bcd13]. replay
[BH12]. Replaying [Wkg17]. replication
[Cj17, Uyi10]. replication-based [Uyi10].
report [Cblfd12, Sch10a]. Reports
[Ow16]. repository [HC10].
reproduction [Vit14]. reproduction
[Sr14b]. requirements [Aggz10].
Resana [Kvg+14]. Research
[Sr17, Tre+13, Crj+10, Cblfd12,
Ekur10, Rub14, Vbmdp16, Vit14].
Resource [Bvgv14a, Adi13, Es14,
Kvg+14, Ksr14, Sgv12]. resource-aware
[Bvgv14a, Adi13, Es14, Kvg+14, Ksr14,
Sgv12]. resource-aware [Sgv12]. resource-based
[Ad13]. responsive [Spp+10].
responsiveness [Psns14]. restart [Cns13].
Restructuring [Rc17]. Retention
[Zmm+16]. Rethinking
[Lhr19, Xue12, Rcr+14]. retrofitted
[Tts+10]. retrofitting [Lpgk14].
Reusability [Tai13]. reusable
[Hc10, Mme14]. reuse [Wr10]. Reusing
[Pkp19]. reverse [Cca+12, Mlm19].
Review [Ano15, Bro12, Del13, Gve13, Kie13,
Ngo12, Teo12, Teo13, Ekur10]. Revisited
[Mei14, Gon11]. rewriting [Hlo15]. RFID
[Ayz10]. RfLP [Ycy12]. richer [Cv14].
rigor [Vit14]. Rigorous [Ag17]. rings
[Pos19, Pos19]. Rise [Dip18a]. risk
[Mpm+15]. River [Hhss13]. RJ [Ow16].
Road [Rkk+17, Swu+15]. Robin [Ano15].
Robotic [Dip18b, Lm15]. Robots [Swf12].
Robust
Scheduling [AVS+16, BVEAGVA10, KPHV11, EP14, EABBGV14, ZW10].

scheme [XHH12]. SCHISM+ [PZM+10].

Science [HWM11, VF10, SGV12]. sciences [NL14]. Scientific [EqS11, PTML11, TAF+18, WN10, FRGFLP+12, PMTL14].

scientists [Bra14]. SCORM [HC10]. Scrap [ZCISOvdS15]. Script [MSSK16].

Scripting [CSGT17, SFR14, PMTL14, Zha12]. SE [LYBB14].

Seamless [OwKPM15]. Search [SED14, DDDF17]. searching [ETR12].

Seemingly [Has12]. selection [WHIN11]. Self [MPK12, hED12, AHW+11, AGH+17, CBLFD12, HWW+15, MD15].

self-collecting [AHK+11].

dependencies-preserving [AGH+17]. self-hosted [CBLFD12]. self-optimizing

[HLG16, MD15]. Self-stabilizing [hED12]. Semantic [GGRSY17, RvB14, BNS12, GGRSY14, GGRSY15, MKK+12, MKK+13, OA17].

Semantics [BO12, BR15, Kri12, LML17, SPY+16, AK13, FBH17, FZ17, KHL+17, Mil13, MT14, PSR15, PPS16, ZCB15].

Semantics-based [SPY+16].

semantics-preserving [AK13]. Semi [FM13, ABC18, MR MV12].

semi-automated [MRMV12].

Semi-automatic [FM13]. semi-structured [ABC18].

separability [WRI+10]. Separating [DDM11, AC10]. separation [TWSC10].

sequence [ZWW+14]. Sequencing [YW18+18].

Sequential [FF17]. sequential [EF12, DMS11].

serialization [MHBO13]. Seriously [Kie10]. Server

Scheduler [QSA+16, IFL16, TWW12].

scheduler-independent [IF16].

Semi-automatic [FM13]. semi-structured [ABC18].

Studio-Based [RT14]. Study | [KB11, OBPM17, RLMM15, ZMM+16, BRRG12, CCFB15, CJ17, ECS15, JK11, KFBK+15, MHR+12, NCS10, OMK+10, PTF+15, SSL18, SH12, TFDB14, VBDPM16, WX16, YW13]. style [UFM15].

Summarization [MM16, RLMM15]. **Superblock** [KS13]. Supercharged [Cec11, GBS13]. Superposition [HD17]. supertype [RRB17]. superveniencing | [Rez12]. Support [CST17, KKK+17, RKN+18, BGV1A13, DVL13, GMC+13, Hos12, NGB16, SMN+12].

Tardis [BM14]. task [Fee16, TWL12, ZLB+13].
TaskLocalRandom [PPMH15]. Tasks [PWSG17, PWSG19, ST15, HAW13, PPMH15, SPP+10]. Taurus [MAHK16].

Test [AGM+17, BB12, BM18, GGZ+15, Rim12, ST15, MT13, PNS14, SR14a, SKR17].

Third [Aoa15, FOPZ14, LG10]. third-party [FOPZ14, LG10]. THOR [TWX+10]. Thoth [KB17]. Thou [LCW18].

thread [BKc+13, CRAJ10, MGI17, PCL14, PG12, SS10, WLL19, YDF15].

TigerQuoll [BBP13]. Tim [Teo13]. Time [BVEAGVA10, BBB+17, BLH12, DLR16, Fox17a, HTW14, JMB12, Kie10, KW11, PKPM19, Pau14, SLES15, SLE+17, VK12, BCR13, BM14, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGVEA14a, BVGVEA14b, CRAJ10, DW10, EABVGV14, Fox17a, Gmc+13, HTLC10, KHm+11, KPHV11, KHL+13, KvGS+14, KW10, KSR14, LMK16, LTK17, MGI17, NIl12a, PS10, PZm+10, PSW11, Puf13, RHT13, SP10a, SPPH10, Sue10, SPS17, SH12, TTS+10, WAB+11]. time-travel [BM14].

TIMP [SL+12]. tiny [Xue12]. tolerant [PZm+10]. Tool [FMM+11, PQD12, SW12, SSK13, ABFM12, CRAT+12, ETR12, KSR14, LS11, TWX+10].

Tool-supported [FMM+11]. toolchain [KDGP18, SMN+18]. Tools [Bro12, CSZ17, CS12, ABK+16, KPP+18, VBA110b].

Traceability [BSK12]. tracer [CZ14].

Traces [WKG17, BA12, RM13]. Tracing [BP10, DLR14, DLR16, MD15]. track [VSG17]. TrackEtching [VSG17].

Tracking [RLMM15, SDC+12, WLL19, KHL+13, OOK+10]. Tracks [RM13].

trait [BCD13, VM15]. traits [BDGS13, BD17]. Transactional [URJ18, DVL13, FC11, ZHCB15].

Transactions [DCG12, CHM16, DFR13]. transformation [AST+16, PDDD17].

transformations [AK13, MHM10, PMP+16, TL17].

Transforming [dMRH12]. transitioning [HWM14]. Translating [FRS14].

Translation [BO12, LSW16, LPX18, TJLL18].

translations [UTO13]. translator [LZYP16]. Transmission [PE11, BVGVEA11b, BBK12].

transparent [BDB11]. travel [BM14].
traversals [ODL15]. Tree
[LYO12, HLO15, KMMV14, SSK13]. trees
[RBV16]. Trends [CC15, MSS10, SR17].
trie [SV17], trie-based [SV17], tries
[SV15a, SV15b]. triggered [EABGV14].
triggers [FGB+19]. TRINI [PDPM+16].
Trusted [TWNH12, BCF+14]. tuning
[ABB+10, BVGVEAFG11, SKBL11]. Turf
[CH17]. Turing [Gri17]. Tutorial
[Jen12, Nil12b, Taf13, Zak12]. TV [JMO14].
twitter [Guy14]. Two [Has12]. Type
[BO13, CGJ+16, KSW+14, KATS12, Lei17,
Loc18, RKN+18, SGD15, WT11, ACS+14,
AT16, BS13, CMS+12, CVG+17, DLM10,
FH16, GBS14, HyG12, KMLS15, KRR+14,
KRH16, KvRHA14, KDPG14, LPGK14,
LE16, MHR+12, SH12, TLL11, Zha12,
eBH11]. Type-Based [SGD15].
type-dependent [LE16]. Type-Safe
[Loc18, KMLS15]. Typechecking
[KDPG18, CL17]. Typed [BO13, KKK+17,
MH15, CMS+12, KRCH14, Lei17, RDP16].
Types [BO13, RvB14, SPAK10, BDGS13,
CHJ12, DDM11, HH13, MME+10, YDFF15].
TypeScript [Cho14, FH16, RSF+15].
Typing
[FZ17, RSF+15, Sie17, SFR+14, TSD+12].
typy [OA17].
Ubiquitous [MCY+10]. UDP [RR14]. UML
[CSF+16]. unbounded
[LSSD14]. uncertain [Mck16].
Understandable [MSS+16].
Understanding [ABC18, FRM+15,
MKTD17, NWB+18, PCL14, QLBS17, Set13,
TABS12, VBMPD16, LWB+15, Nil12b].
Undocumented [Alt12, MHR+12]. Unified
[LM15]. uniform [AH10, Eng13]. Unifying
[Has12, MKK+12, MKK+13]. union [KT15].
uniprocessors [KPHV11]. Units [LLL13].
universe [DDM11]. Unix [PVB17].
Unobtrusive [MGS19]. Unpicking
[LBF12]. Unrestricted [WW13]. unsafe
[MPM+15]. unsound [AT16]. updates
[PKC+13]. Upper [SW12]. Upsortable
[SGG+17]. uptrees [HB13]. USA
[Hol12, KP15]. usability [FH16, MHR+12].
Usage [RC17, PTF+15, QLBS17]. Use
[BGK17, Guy14, MPM+15, AMWW15,
MKTD17, PBMH13, Sch13]. use-case
[AMWW15]. used [XR10]. useless
[FRC+17]. User [Liu14, MvDL12, SLS+12,
DAA13, FMS+11, PSNS14]. user-defined
[FMS+11]. Using
[ASdMG14, BS12, BSA14, BNE16, DLM10,
HCN14, KFBK+15, MV16, Mss16, Pan14,
PQD12, RC17, SDM12, SLE+17, UMP10,
Wan11, WKG17, XMA+14, YCYC12, Zak18,
BB17, DDDF17, Del13, FH16, FOPZ14,
GBS14, IvdS16, KMLS15, KT14, KC12,
LGV10, Lew13, LDL14, MT13, PIR17,
PLR18, RAS16, SAdB+16, SSK13, SSH17,
SHU16, VGS14, WLL19, WBM+10,
WR1+10, XR13, vdmMV12]. UT [Hol12].
utility [CSV15, XMA+10]. utilization
[BCR13].
v [Sam12]. V8 [MGI17]. Validating
[HLSK13]. Validation
[SB14b, CSDL16, HCV17, SSB01]. Value
[BBB+17, DFR13]. variable [CDTM10].
variables [NS13]. VDM [TJLL18].
Verifiable [FHSR12]. Verification
[CHMY19, KKW14, KP15, RAS16, SS12,
SSB14b, CHMY15, DLM10, HCV17, PSS11,
SMN+18, SZ11, SJP10, SSH17, SSB01,
dCM14]. verification-validation
[HCV17]. Verified [HM12, Loc18, JLP+14].
Verifier [BDT10, Rey13]. verifiers
[SPY+16]. Verifying
[LM15, YS10, vdmMV12, SD16b]. Veritesting
[SWMV17]. Version [FLZ+18,
FC11, HD17, SM12, TMVR13, ZXL16].
vertical [STY+14]. via [DMS11, GGRSY15,
GGRSY17, Hos12, HB13, JWM15,
LSWM16, Rm12, SS16, TD17]. view
[Guy14]. violations [LTZ14, PG12, RDF15].
Virtual [BZD17, LYYB13a, LYYB13b].
REFERENCES

yang [CBGM12]. years [BTR+13]. yieldpoint [LWB+15]. yin [CBGM12].

Z [SBF+10]. Z-rays [SBF+10]. Zero [ZW13].

References

Altman:2010:OTJ

Accioly:2018:USS

Paola Accioly, Paulo Borba, and Guilherme Cavalcanti. Understanding semi-structured merge conflict characteristics in open-source Java

Auerbach:2010:LJC

Avvenuti:2012:JTC

Abanades:2016:DAR

Ansaloni:2012:DAO

Akai:2010:EAS

Anjo:2016:DML

[AC16] Ivo Anjo and João Cachopo. Design of a method-level speculation framework for boosting irregular JVM ap-

Ahn:2014:IJP

Aumuller:2016:OPD

Almeida:2019:GPD

Austin:2012:MFD

Arnold:2011:AOJ

Aiello:2011:JBA

Albert:2010:PIM

Antonopoulos:2017:DIS

Andreasen:2017:SDA

REFERENCES

2017. CODEN CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic).

Adalid:2014:USA
Damián Adalid, Alberto Salmerón, María del Mar Gallardo, and Pedro Merino.
Using SPIN for automated debugging of infinite executions of Java programs.
The Journal of systems and software, 90(??):61–75, April 2014. CODEN JS-
SODM. ISSN 0164-1212 (print), 1873-1228 (electronic).
URL http://www.sciencedirect.com/
science/article/pii/S0164121213002641.

Austin:2017:MFD
Thomas H. Austin, Tommy Schmitz, and Cormac Flanagan.
Multiple facets for dynamic information flow with exceptions.
ACM Transactions on Programming Languages and Systems, 39
(3):10:1–10:??, July 2017. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-
4593 (electronic).

Afek:2012:ISJ
Yehuda Afek, Nir Shavit, and Moran Tzafrir.
Interupting snapshots and the Java size method.
Journal of Parallel and Distributed Computing, 72(7):
880–888, July 2012. CODEN JPDCER. ISSN 0743-
7315 (print), 1096-0848 (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S074373151200072X.

Alshara:2016:MLO
Zakarea Alshara, Abdelhak-Djamel Seriai, Chouki Tibermacine, Hinde Lilia
Bouziane, Christophe Dony, and Anas Shatnawi. Migrating large object-oriented applications into component-based ones: instantiation and inheritance transformation.
ACM SIGPLAN Notices, 51(3):55–64, March 2016. CODEN SINODQ.
ISSN 0362-1340 (print), 1523-2867 (print), 1558-
1160 (electronic).

Akram:2016:BPG
Shoaib Akram, Jennifer B. Sartor, Kenzo Van Craeynest,
Wim Heirman, and Lieven Eeckhout. Boosting the priority of garbage: Scheduling collection on heterogeneous multicore processors. ACM
Transactions on Architecture and Code Optimization,
13(1):4:1–4:??, April 2016. CODEN ???? ISSN 1544-3566 (print), 1544-
3973 (electronic).

Amin:2016:JST
Nada Amin and Ross Tate. Java and Scala’s type systems are unsound: the existential crisis of null pointers.
ACM SIGPLAN No-

Michael Bebenita, Florian Brandner, Manuel Fahnrich, Francesco Logozzo, Wolfram Schulte, Nikolai Tillmann, and Herman
REFERENCES

Bonetta:2013:TPE

Bu:2013:BAD

Bettini:2013:FDT

Bodin:2014:TMJ

Bergenti:2011:PPS

Bacon:2013:PRT

David F. Bacon, Perry Cheng, and V. T. Rajan. POPL 2003: a realtime garbage collector with low overhead and consis-

Bainomugisha:2013:SRP

Bettini:2017:XTJ

Barbuti:2010:AIA

Bala:2011:DTD

Burnim:2012:NIN

Battig:2017:SDC

Berman:2017:EUS

Bedi:2013:MMT

Bodden:2010:AOR

Barbu:2012:ARA

Badihi:2017:CAG
Sahar Badihi and Abbas Heydarnoori. CrowdSummarizer: Automated gen-

Bouraqadi:2018:TDD

Bell:2015:VFB

Brockschmidt:2012:ATP
Balland:2014:ESP

Boldi:2018:BMC

Bliudze:2017:ECC

Brown:2016:HBS

Borstler:2011:QEI

Burnim:2012:SCS

Bellia:2011:PJS

Siegmund Brandt. *Data analysis: statistical and computational methods for scientists and engineers*. Springer-Verlag, Berlin,
REFERENCES

[Bouktif14] Salah Bouktif, Houari Sahraoui, and Faheem Ahmed. Predicting sta-

REFERENCES

REFERENCES

springer.com/chapter/ 10.1007/978-3-642-32689-9_3/.

Ceccato:2015:LSE

Chen:2011:MJP

Chisnall:2017:CJS

Ceccato:2010:MLD

Cecco:2011:SGJ

Carter:2013:SSA

Kyle Carter, Adam Foltzer, Joe Hendrix, Brian Huffman, and Aaron Tomb. SAW: the software analysis

Chandra:2016:TIS

Chamberlain:2017:PLR

Chugh:2012:DTJ

Carro:2013:MDA

Chapman:2016:HSH

Cogumbreiro:2015:DDV

Cogumbreiro:2019:DDV

Tiago Cogumbreiro, Raymond Hu, Francisco Martins, and Nobuko Yoshida.

[CMS+12] Mason Chang, Bernd Mathiske,

Marco Cote, German Riano, Raha Akhavan-Tabatabaei, Juan Fernando Perez, Andres Sarmiento, and Julio

Chalin:2010:TIG

Chambers:2010:FEE

Ceccarello:2012:TGC

Cordoba-Sanchez:2016:ADS

Chavez:2016:ACC

stam stamp.jsp?arnumber=7294689.

Choi:2017:SAS

Chawdhary:2017:PES

Chanda:2012:TBS

Chen:2016:CDD

Cameron:2015:JFE

Casale:2017:PEJ

REFERENCES

Dhawan:2012:EJT

DElia:2013:BLP

DeBeukelaer:2017:ECP

Dietl:2011:SOT

Deitcher:2010:JEJ

Deitcher:2011:SPJ

REFERENCES

[Dolby:2012:DCA] Julian Dolby, Christian Hammer, Daniel Marino, Frank Tip, Mandana Vaziri,

DeFrancesco:2010:UAI

DeNicola:2014:FAA

Dissegna:2014:TCA

Dissegna:2016:AIB

Demange:2013:PBB

deMol:2012:GTJ

Duarte:2011:ICS

Devietti:2012:RR

Dietrich:2010:POD

Dyer:2014:DVE

Doeraene:2016:PIW

Bois:2013:BGV

David:2014:CMC

[DTLM14] Florian David, Gael Thomas, Julia Lawall, and Gilles Muller. Continuously mea-

REFERENCES

Elmas:2010:GRA

Erdweg:2014:FEL

Eichelberger:2014:FRM

Esquembre:2011:TPL

Endrullis:2012:WEM

Exposito:2012:DSJ

Exposito:2012:LLJ

Eugster:2013:SUP

Evans:2013:WGJ

Foley-Bourgon:2017:EIC

Ferrara:2013:GSA

Flanagan:2010:AMD
Cormac Flanagan and Stephen N. Freund. Ad-
versarial memory for detecting destructive races. ACM SIGPLAN Notices, 45(6): 244–254, June 2010. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Ferrari:2017:JJF

Candel:2019:DMD

Femminella:2012:EJC

Fogus:2011:JC

Fischer:2016:EIE

Forth:2012:RAA

Shaun Forth, Paul Hovland, Eric Phipps, Jean Utke, and Andrea Walther, editors. Recent Advances in Algo-
REFERENCES

Asger Feldthaus and Anders Møller. Semi-automatic rename refactoring for JavaScript. ACM SIG-
REFERENCES

Felgentreff:2015:CBC

Feldthaus:2011:TSR

Frantzeskou:2011:SUD

Fu:2014:FDC

Fox:2017:ESI

Fox:2017:EJT

Eric Fritz and Tian Zhao.

Gherardi:2012:JVC

Gerakios:2013:FIS

Gama:2010:SAA

German:2012:MOS

Gupta:2018:HDB
Golan-Gueta:2014:ASL

Golan-Gueta:2015:ASA

Golan-Gueta:2017:ASA

Gligoric:2015:GCB

Gosling:2013:JLS

Gosling:2014:JLS

REFERENCES

Nicolas Geoffray, Gaël Thomas, Julia Lawall, Gilles Muller, and Bertil Folliot. VMKit: a substrate for managed runtime environments. ACM SIGPLAN Notices, 45(7):51–62, July 2010. CODEN
SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Gidra:2015:NGC

Gidra:2011:ASG

Gunther:2014:ACC

Guo:2017: MJF

Guyer:2014:UJT

Gvero:2013:BRC

Gampe:2011:SMB

Grigore:2016:ARG

Garbervetsky:2011:QDM

Hauswirth:2013:TJP

Hanenberg:2015:WDW

Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Hasbun:2012:UTP

Haverbeke:2011:EJM

Heumann:2013:TEM

[Huang:2013:ECS]

[HB13]

[HBG+16]

[HC10]

[Heidegger:2012:APC]

Horstmann:2013:CJF

Hsiao:2014:UWC

Hammer:2017:VOV

Halder:2017:JSV

Hofmann:2011:EOS

Hanazumi:2017:FAI

Yong hun Eom and Brian Demsky. Self-stabilizing Java. ACM SIGPLAN Notices, 47(6):287–298, June 2012. CODEN SINODQ. ISSN 0362-1340 (print),

REFERENCES

[Herranz:2012:VIP]

[Herranz:2012:VIP]

[Huang:2012:RR]

[Horie:2014:SDJ]

[Hollingsworth:2012:SPI]

Horstmann:2012:JEC

Hosking:2012:CHL

Haas:2017:BWS

Higuera-Toledano:2010:ISI

Higuera-Toledano:2014:EIS

Hayashizaki:2012:IPT

REFERENCES

Huang:2011:SBA

Haubl:2010:CES

Haubl:2011:ECE

Haubl:2013:CST

Haubl:2014:TTE

Humer:2015:DSL
REFERENCES

Inostroza:2016:MIM

Juneau:2012:JRP

Joseph:2010:PII

Ji:2012:PKP

James:2010:FMC

Jacek:2019:OCW

Michael R. Jantz and Prasad A. Kulkarni. Exploring single and multi-

Jagannathan:2014:ARV

Jung:2012:EJA

Jung:2014:HCO

Javed:2016:TSJ

Johnsen:2012:SLM

Johnson:2015:EES

Kastner:2012:TCA

Jin:2012:JMM

Kumari:2011:AOO

Kosakowskii2012:JED

Kunjir:2017:TAM

Kim:2014:LBL

REFERENCES

Kiselyov:2017:SFC

Kulkarni:2012:MCO

Krishnaveni:2012:HOJ

Kedia:2017:SFS

Kouzapas:2018:TPM

Kereki:2015:JAW
Kuehnhausen:2011:AJM

Kumar:2012:WSB

Khan:2015:UJW

Kerschbaumer:2013:IFT

Kang:2017:PSR

Kalibera:2011:FRT

Kabanov:2011:DSF

Kienle:2010:ATT

Kienle:2013:BRE

Kim:2017:TAA

Krieger:2011:AES

Kaiser:2014:WAM

Ko:2010:EAW

Karakoidas:2015:TSE

Kalibera:2014:FAS

Kulkarni:2016:APA

Kolling:2010:GPE

Kroening:2015:CAV

Kalibera:2011:SRT

REFERENCES

Khyzha:2012:AP

[102x681]

Kintis:2018:HEM

Kedlaya:2014:DDL

Kedlaya:2016:SST

Krishnamurthi:2012:SAJ

Kedlaya:2014:ITS

Kaufmann:2013:SCO

Krebs:2014:JJB

Kroshko:2015:OPN

Kouneli:2012:MKD

Korsholm:2014:RTJ

Kashyap:2014:TRS

Keil:2014:EDA

Keil:2015:BAH

Kolesnikov:2014:CPB

Kim:2010:EAE

Kim:2011:MAE

[KW11] Minseong Kim and Andy Wellings. Multiproces-

[Lewis:2013:IAP] Mark C. Lewis. *Introduction to the art of program-
REFERENCES

[Lon10a] Brad Long. Towards the design of a set-based Java collections framework. *ACM
REFERENCES

Long:2010:TDSb

Loureiro:2013:EDS

Lerner:2014:TRT

Lux:2011:TSD

Landman:2016:EAR

Landman:2017:CEA

Liu:2014:FFL

Lerner:2010:SDT

Lin:2015:SGU

LWC17

Lee:2010:JSD

LXP18

Lindholm:2013:JVMa

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. *The Java

[LZ12]

[LZYP16]

[MAH12]

REFERENCES

REFERENCES

Madsen:2017:MRA

Mirshokraie:2012:JJA

McBurney:2016:ASC

Markstrum:2010:JDP

Martin:2014:TCR

Mirzaei:2012:TAA
REFERENCES

ISSN 0163-5948 (print), 1943-5843 (electronic).

REFERENCES

McIlroy:2010:HJR

Marinescu:2013:FSJ

Moller:2014:ADC

Marino:2010:DSE

Marino:2016:DXU

Mitchell:2010:FTL

Mitropoulos:2016:HTY
Dimitris Mitropoulos, Konstantinos Strougilos, Diodiris Spinellis, and Angelos D. Keromytis. How to train your browser: Preventing XSS attacks us-

[Malhotra:2013:DFT]

[Mura
[2014:GSI]

[Madsen:2015:SAE]

[Marz:2016:RPC]

[Mesbah:2012:CAB]

[Motika:2015:LWS]
Mateos:2010:ANI

Mateos:2010:MJN

Nasseri:2010:CMR

Nuzman:2013:JTC

Newton:2015:ALF

Noll:2012:IDO

Yeoul Na, Seon Wook Kim, and Youngsun Han. JavaScript parallelizing compiler for exploiting parallelism from data-parallel HTML5 applications. *ACM Transactions on Architecture and Code Optimization*, 12(4):64:1–64:??, Jan-
January 2016. CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).

Nguyen:2015:FCR

Nguyen:2018:UCM

Naik:2012:AT

Omar:2017:PSF

Oaks:2014:JPD

Ocariza:2017:SCC

Ortin:2014:RPI

Olivo:2015:SDA

Ogawa:2013:RJA

Olszak:2012:RJP

Ogata:2010:SJN

Odaira:2010:ERT

Olson:2018:CLM
[OTR+18] Matthew Benjamin Olson, Joseph T. Teague, Divyani Rao, Michael R. Jantz, Kshitij A. Doshi,

Ohkawa:2013:RHO

Olsson:2016:ERR

Oh:2015:MWA

Paul:2014:RTP

Parnin:2013:AUJ

Pinto:2014:UEB

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Philips:2017:DDD

Panizo:2012:EJP

Portillo-Dominguez:2016:ECP

Parker:2011:DPG

Pradel:2012:FAP

Park:2011:DCM

Weifeng Pan, Bing Li, Jing Liu, Yutao Ma, and Bo Hu.

Michael T. Porter. js-emass: A flexible JavaScript im-

Poslavsky:2019:REJ

Passerat-Palmbach:2015:TSS

Pichon-Pharabod:2016:CSR

Pham-Quang:2012:JAD

Piedrahita-Quintero:2017:JGA

REFERENCES

Pitter:2010:RTJ

Palmer:2011:BJM

Park:2012:CB

Pradel:2014:EAR

Park:2015:KCF

Pour:2011:MBD

Pinto:2015:LSS

[GPTF+15] Gustavo Pinto, Wesley Torres, Benito Fernandes, Fernando Castor, and Roberto S. M. Barros. A large-

 REFERENCES

Pina:2014:RDJ

Plumbridge:2013:BPR

Pan:2019:GCF

Pizlo:2010:SFT

Qiu:2017:USR

Qian:2016:EFS

Raun14

Rayns:2013:CJS

RBL12
Gianfranco Rossi and Federico Bergenti. Nondeterministic programming in Java with JSetL. *Fundamenta Informaticae*, 140 (3-4):393–412, ????. 2015. CODEN FUMAAJ. ISSN 0169-2968 (print), 1875-8681 (electronic).

Razafindralambo:2012:FFH

Rehman:2016:VMJ

RBV16
Veselin Raychev, Pavol Bielik, and Martin Vechev.
REFERENCES

REFERENCES

Radosavljevic:2015:RO

Richard-Foy:2014:EHL

Richards:2013:FAC

Radoi:2015:WAR

Ravn:2013:EIS

Richardson:2014:BEL

Rimlinger:2012:TGS

Rodchenko:2018:TIE

REFERENCES

[Rompf:2012:LMS] Tiark Rompf, Arvind K. Suteeth, Kevin J. Brown,
REFERENCES

Norm Rubin. Heterogeneous computing: what does it mean for compiler research? *ACM SIG-
REFERENCES

Rowe:2014:STA

Raychev:2015:PPP

Rudafshani:2017:LDD

Ramamohanarao:2017:SSM

REFERENCES

REFERENCES

Schmidt:2010:ERA

Schultz:2010:WAJ

Schmeisser:2013:MOE

Schilddt:2014:JCRb

Sluanschi:2016:AAD

Sousa:2016:CHL

Sridharan:2012:CTP

REFERENCES

REFERENCES

Singer:2011:GCA

Schoebel:2011:HAL

Sondergaard:2017:CTD

Stilkerich:2017:PGU

Stilkerich:2015:PGA

Steele:2014:FSP
Snellenburg:2012:GJB

Shaﬁei:2012:MCL

Singh:2012:EPS

Santos:2018:JJV

Spoto:2010:TAJ

Sewe:2012:NSI

Sewe:2011:CCS

[SM+11] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and
REFERENCES

[SPP10] Jesper Honig Spring, Filip Pizlo, Jean Privat, Rachid Guerraoui, and Jan Vitek. Reflexes: Abstractions for integrating highly responsive tasks into Java appli-
REFERENCES

Schoebert:2010:WCE

Strom:2017:HLR

Stefanescu:2016:SBP

Sun:2017:AJP

Sawan:2018:RDC

Anand Ashok Sawant, Romain Robbes, and Alberto

Vladimir Sor and Satish Narayana Srirama. Memory leak detection in Java: Taxonomy and classiﬁcation of

REFERENCES

[Santos:2013:DDS] Ivo Santos, Marcel Tilly, Badrish Chandramouli, and

REFERENCES

Steindorfer:2015:CSM

Steindorfer:2015:OHA

Steindorfer:2017:TSP

Sverdlove:2014:JVL

Siek:2012:FDT

Stancu:2015:SEH

Silva:2017:ICL

DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

IEEE Computer Society
Press, 1109 Spring Street,
Suite 300, Silver Spring,
MD 20910, USA, May 2017.

Teodorovici:2012:BRC

Teodorovici:2013:BRL

Teyton:2014:SLM

Tommasel:2017:SJL

Tu:2014:PPP

Tran-Jørgensen:2018:ATV

REFERENCES

Topley:2011:JDG

Toffola:2015:PPY

Taboada:2013:JHP

Taboada:2011:DEJ

Takikawa:2012:GTF

Toledo:2011:ACJ

IESOEG. ISSN 0740-7459 (print), 0740-7459 (electronic).

Taboada:2011:DLC

Taboada:2012:FMS

Tatsubori:2010:EJT

Torlak:2010:MCA

Tardieu:2012:WSS

Toegl:2012:SSJ

[TWNH12] Ronald Toegl, Thomas Winkler, Mohammad Nauman, and Theodore W. Hong. Specification and standardization of a Java Trusted Computing API. *Software—Practice and Experience*, 42(8):945–965,
REFERENCES

August 2012. CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

Urma:2015:JAL

REFERENCES

Uva:2018:AWJ

Upadhyaya:2015:EML

Ugawa:2018:TSL

Urec:2013:MIS

Vilk:2014:DBB

Vouillon:2014:BJJ

Villazon:2010:ARA

Villazon:2010:HCA

Vidal:2016:UAE

Vidal:2018:ARB

Villazon:2011:CAW

vanderMerwe:2012:VAA

Heila van der Merwe, Brink

Viotti:2017:HRH

VanLoan:2010:ITC

Vega-Gisbert:2016:DIJ

Vikas:2014:MGA

Vitek:2014:CTR

Vitek:2012:ISI

Jan Vitek and Tomas Kalibera. Introduction to the
REFERENCES

VanCutsem:2010:PDP

VanCutsem:2015:RTC

Varier:2017:TNJ

VanNieuwpoort:2010:SHL

REFERENCES

0164-0925 (print), 1558-4593 (electronic).

Vechev:2010:PPC

Wurthinger:2011:SAR

Walk:2012:SNJ

Wampler:2011:FPJ

Wang:2011:EEU

Wurthinger:2011:AED

Welch:2010:ABS
[152] Peter Welch, Neil Brown,

Wellings:2016:ISC

Wood:2014:LLD

Wagner:2011:SV

Wagner:2011:CMM

Wu:2011:RTS

Welling:2012:AEH

Wang:2017:JRJ

Wade:2017:AVJ

Wang:2019:TRC

Wimmer:2010:AFD

Wendykier:2010:PCH

Witman:2010:TBR

Paul D. Witman and Terry Ryan. Think big for

Westbrook:2010:MJM

Wehr:2010:JBP

Wehr:2011:JIT

Wurthinger:2017:PPE

Wurthinger:2013:USD

Wei:2016:ESD

Wang:2017:CJ

Xu:2019:EEG

Xi:2012:MDA

Xuan:2017:NAR

REFERENCES

and Bioinformatics, 10(6): 1542–1547, November 2013. CODEN ITCBCY. ISSN 1545-5963 (print), 1557-9964 (electronic).

[YP10]

Yo:2014:WRR

[YK14]

Yang:2017:EJV

[YKM17]

Yessenov:2017:DAD

[YKSL17]

Yang:2010:JIP

[YK14]

Yi:2015:SCC

[YK14]

Yiapanis:2013:OSR

[YK14]

Yaha:2010:VSP

Eran Yahav and Mooly Sagiv. Verifying safety prop-

Minjia Zhang, Swarnendu Biswas, and Michael D. Bond. Avoiding consistency
 exceptions under strong memory models. *ACM SIGPLAN Notices*, 52(9):115–
127, September 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867
(print), 1558-1160 (electronic).

[Zhang:2015:SYB]

146, October 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Zeuch:2019:AES]

[Zschaler:2014:SFJ]

www.sciencedirect.com/science/article/pii/S016764231200069X.

[Zho:2012:PTI]

REFERENCES

[ZW10] Alexandros Zerzelidis and Andy Wellings. A framework for flexible scheduling in the RTSJ. *ACM Trans-
Zh:2013:EAZ

Zh:2015:APL

Zhao:2014:CSP

Zhang:2016:NVC

Zhang:2012:SRB

Zhang:2013:IMF
REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). OOPSLA '13 conference proceedings.