A Bibliography of Publications about the *Java Programming Language*, 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
27 November 2018
Version 1.188

Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

3
-core [PLL+18]. -safety [SD16b].
/multi [Taf13]. /multi-threaded [Taf13].

...

[WBM+10]. CICS [R+13]. CIL [BBF+10].
circular [Gun14, SZ10]. Circus [ZLCW14].
City [Hol12]. Class
[BS13, CSF+16, NCS10, CSKB12, HC10,
MMH10, SC16, SM12, TSD+12]. Classes
[And14, SVB+17, WT11, CZ14, CS12, SZ10,
TSD+12, VBDPM16]. Classifiers [SD16a].
classification [SS14]. Classifiers [BSA14].
Classifying [MHM10]. Classless
[WZdSOS17]. clicker [HA13]. Client
[MS14, OBPM17, CH17, KRH16].
Client-Side [OBPM17, KRH16].
Client-State [MS14]. clients [SRB18].
Clojure [ECG12, FH11, VS10]. Cloned
[SSL18]. Closing [ZLHD15]. Closures
[BO11, BO12, BO13].
Cloud [VDV17, GCC18, LZYP16, TLMM13].
cloud-based [GCC18]. clustered
[PDPM+16]. clustering [MKK+12, MKK+13]. clusters [TRTD11].
Cocoa [Sta10]. Code [BH17, BNE16, HC11,
MM16, RVK15, RLMM15, SRT17, SVB+17, SV15a, SED14, AGR17, AK13,
CCFB15, DRN14, FH16, FMS+11, IS18, LVG10, MKK+12, MKK+13, NG13,
OJ12, PMP+16, PSW11, RFRS14, RBV16,
RO12, SSK13, Tai3, UTO13, VSG17,
WK17, WGF11, WBA+11, WAB+11,
WWS13, ZHL+12, ZXL16, ZWS15].
coding [LMS+12]. Coffin [Teo12].
coherent [ZP14]. Cohesion [RC17]. Cold
[BZD17, WGF11]. collected [AGGZ10].
collecting [AHK+11]. Collection
[ASV+16, GM12, QSaS+16, ST15, BP10,
BOF17, KPHV11, KBL14, NGB16, ODL15,
PMZ+10, PPDPM+16, SP10a, SBB14, Sz10,
SJB11, SKBL11, UIY10, UJR14].
Collections
[GS12, Lou10a, Lou10b, PL12, SV15b, SV17].
collectives [RTET15, TRTD11]. Collector
[BH12, GT5+15, BCR13, BVGV14b, Puf13].
Collectoren [Sche13]. collectors
[GTSS11, Sch13]. coloring [SS10]. Colt
[BKP16, WN10]. CoMA [AGR12].
Combating [NWB+18]. Combination
[BSA14]. Combinatorial [YHY13].
combinators [MHBO13]. Combing
[BDGS13, MGI17]. commensal [BRWA14].
Commercial [ZMM+16]. commodity
[BK14]. Common [PiLCH11].
Communication [JQJ+16, RTE+13, SK12,
BJBK12, ETR+15, TTD+11].
communications
[ETTD12, RTET15, TTD12]. Communities
[ZMM+16]. Compact
[HWM10, HWM11, JLI17]. Comparative
[KB11, KFBK+15, SSL18]. comparing
[MD15]. Comparison [BKPA16, ADI13,
BJBK12, HH13, KrRHA14, SMS+12].
Comparisons [GGZ+15]. Compartmental
[WGW+11]. compatibility
[DJB16, OIA+13]. compatible
[ABCR10, Hor12]. Compilation
[DLR16, CGJ+16, CMS+12, DLR14, FSC+13,
IHWN12, JLP+14, JK13, JMO14, KS13,
KHL+13, Lei17, MD15, MGI17, ZBB15].
compiled [NED+13, RO12, TMVB13].
Compiler
[JMB12, Loc18, N KH16, NBW+15, BBF+10,
BRWA14, CIAD13, HWM14, IHWN12,
KMLS15, KS14, KC12, LSWM16, MDM17,
Rub14, TTS+10, TWSC10, VB14b, ZYZ+12].
compiler-compiler [KS14].
compiler-runtime [TWSC10]. compilers
[Hos12, LMK16, RSB+14]. Compiling
[Fee16, Hos12]. complementation [BS13].
Complete [BO13, BR15, JC10, Sch14,
Gr17, PS15, RGM13, RBB17].
completeness [KBPS17]. completing
[BS13]. completion [FH16]. Complexity
[SSH17]. Compliance [GD12]. compliant
[MZC10a]. component
[AST+16, CSKB12, GT10a].
component-based [AST+16, GT10a].
components [BMSZ17, FOPZ14, KS14].
Composable [SS10]. Composing
[EABVGV14]. Composition
[SK12, AGH+17, AH10, SZ10, VM15].
Comprehension [BGK17].
Comprehensive
[STST12, VBMA11, ZKB+16, MKZ+14].
Compressing [Gun14]. Computation
[BW12, ZHL+12]. computational
[Bra14, SSG+14, VF10]. computations
[KFBK+15, TLMM13]. Computer
[HWM11, DNB+12, KP15]. Computing
[Hol12, MPR12, PWSG17, SHU16,
TWNH12, WN10, LZYP16, Rub14,
TTD+11, VF10, TRE+13]. conceptual
[Tai13]. Concurrency
[BG17, Bro12, SWF12, BVGVEA11a,
CHM13, DMS11, HAW13, KHL+17, PPS16,
Sub11, TD15, UR15]. Concurrent
[MSM+16, PS12, Sie10, BMSZ17, EP14,
Gra15, HJH10, KBL14, MSN+10, OW16,
PTF+15, RVP11, STR16, SNS+14, YS10].
concurrent-by-default
[SNS+14]. Conditional
[XMD+17, SS16]. Conference
[DDDF17, Hol12, KP15, LMK16, PDPM+16].

Conflict [ABC18]. Conformance
[AGR12, SKR17]. Confluent
[SBF+10]. Consequences
[OBPM17]. conservative
[SBM14]. Consistency
[CSF+16, CS12, DNB+12, FRM+15, ZBB17].
consistent [BCR13]. constrained
[KSR14]. constraint
[FMBH15, SHU16]. Constraints
[SGD15, LSSD14]. construction
[CIAD13, RGEV11]. constructors
[MME14]. constructs
[PCL14, PTF+15]. consumers
[DAAD13]. Consumption
[MV16]. container
[XR13]. containers
[XR10]. Context
[HWM13, MM16, TL17, HIB13, IvdS16, SSB+14a].
Context-sensitive
[HWM13]. Contextual
[MSSK16]. Continuous
[Tco12]. Continuously
[DTLM14]. Contracts
[YQTR15, HBT12, KT15, KW11].
Control
[FGR12, FHSR12, TT11, TNTN12,
AdCGGH16, FWDL15, LSWM16, RHN+13,
STS+13, TABS12, XHH12]. controlling
[BKC+13, YDFF15]. Convention
[Hol12]. conversions
[CMM17]. Converter
[YWW+18]. Cooperative
[YDF15, HDM17]. Coordinating
[MAHK16]. coordination
[BMSZ17]. copy
[FBH17]. copyrightable
[Sam12]. Core
[Hor11, HC13, RDCP12, RTE+13, MS10,
PLL+18, TRTD11, Gve13]. cores
[GTSS11, SKBL11]. Cornell
[Gve13]. corpus
[HCN14, LSBV16, LSBV17, TMVB13].
correct [AdCGGH16, AJL16, DJLP10].
Correctness
[LL15, BENS12, Cho14]. Correlation
[SDC+12, XHH12]. Corrigendum
[LSBV17]. counter
[LSSD14]. counters
[IN12]. Course
[Wan11, Zak12]. Coverage
[CSS+16, GGZ+15]. Coverage-Based
[GGZ+15]. Coverage-directed
[CSS+16]. CPS
[PDDD17]. CPU
[PKO+15]. Crawling
[BMSV18, MVDL12]. creating
[HIC10, VBAM10b]. Creation
[SK12]. crisis
[AT16]. Critical
[HL13, WK12, WCB16, ZLCW14, AGR17,
DTLM14, GMC+13, NM10, NLC12, RS12,
SDH+17, CWW13, LWC17]. Cross
[GSF+18, MDM17, AMWW15, BKC+13,
GSS+16, KMZN16]. cross-cutting
[AMWW15]. Cross-Language
[GSF+18, MDM17, GSS+16]. cross-program
[KMZN16]. cross-thread
[BKC+13]. Crowdsourcing
[BH17]. CrowdSummarizer
[BH17]. Cryptography
[GPT12]. CSS
[ANO15, HLO15, STA10]. Curve
[GPT12]. customizations
[LGV10]. customized
[HB13]. cutting
[AMWW15]. Cyclic
[BMOI12, RS12].

D
[DiP18b, FLZ+18, GBC12, JEC+12, ZXL16].

DAA
[DR10]. Data
[Bra14, BMOI12, BA17, GM12, GTS+15, GT10b, NKH16,
NW+15, NPB+18, TAF+18, YWW+18,
dMRH12, BK14, BB17, BOI17, BBXC13,

Decomposition [AGH’17, PLL+18]. deconstructing [ACS+14]. decoupled [LPA13]. deduplication [HOKO14].

Default [BG17, SNS+14]. defects4j [MDS+17]. defined [FMS+11]. Definite [NS12]. Definition [SSB14b, AK13, SSB01].

demand-driven [FWDL15]. DemoMatch [YKSL17]. demonstrations [YKSL17].

Deoptimization [KRCH14]. depend [LCW18]. dependability [GD10].

Dependence [PDDD17, JWM15]. Dependence-driven [PDDD17].

dependencies [BKC+13]. dependencies [ELW15]. Dependent [CHJ12, LE16].

deploying [R+13]. depreciation [SRB18].

depth [Rau14]. Design [AC16, ETTD12, MLGA11, Puf13, RTE+13, SW12, TRTD11, TKL+15, VGRS16, YCYC12, BBXC13, CSdL16, GSD+15, IRJ+12, Lon10a, Lon10b, OA17, SAdB+16, SMSB11, VM10, Xue12].

Detection [BH10, BSOG12, KCD12, MS14, RD15, XMA+14, AMT17, CSK17, LMK16, LS11, ODL15, PG12, RDF15, RW17, SR14a, SR14b, SS14, WCG14, XXZ13, XR13].

detectors [LWH+10]. Determinacy [AM14]. deterministic [DNB+12, MvH15].

developer [EV13, Top11, ZZK13].

Developers [Bro12, BMR14, DJB16, HH13, Wam11]. developing [R+13]. Development [ABK+16, AYZI10, MT13, AGR17, BM18, FRGPLF+12, GT10a, PSW11, SKR17, SH12, WBA+11, ZDS14].

Device [TTD+11, XHH12]. Devices [GPT12, JQJ+16, MV16, ETR+15, Xue12].

Differentiation [FHP+12, PQD12, SD16a]. digital [JMO14]. dimensional [TGZ17].

Distributed [BVEAGVA10, LTD+12, LM15, MAHK16, PE11, BVGVEA10, BVGVEA11b, BVGVE14b, CRAJ10, EABVGV14, STCG13].

distributing [TGZ17]. divide [SBF+10].

Do [HH13, Han15]. Does [BRGG12, Rub14].

DO [hEYJD12]. DOM [GCC18].

DOM-Based [GCC18]. Domain [KSPK12, CSdL16, EEK+13, HHW+15, PIR17].

domain-specific [CSdL16, EEK+13, HHW+15]. dominance [CPST14]. Doppio [VB14a].

DoubleChecker [BHSB14]. down [Ker15, ZMN14].

drf [MSM+16]. DRFX [MSM+10, SMN+12].

Driven [CCA+12, BM18, CHM13, FWDL15, MTL15, PDDD17, SR14b]. drug [EKUR10].
DSL [KARO12]. DSLs [KHR11, RO12, SC16]. DSU [PVH14]. Dual [AD16]. Dual-Pivot [AD16]. Dynamic [AGM+17, ABMV12, ASF17, CHMY15, MvDL14, PTHH14, RDF15, XMA+14, ZKB+16, AF12, BDB11, BK14, BCD13, BOF17, CSV15, CPST15, ELW15, GYB+11, HB13, KRC14, KRR+14, KT14, LW+10, LVG10, MKZ+14, Nil12b, NG12, NED+13, RLBV10, RCR+14, RRB17, SR14b, SJPS10, SH12, TPG15, VBAM10b, WXR16, WBA+11, WAB+11, WWS+13, WW+17, ZBB15]. dynamic-memory [GYB+11]. dynamically [CZ14, CMS+12, hEYJD12].

Educator [BA17]. EE [Jaf13, CRP+10]. economic [CSV15].
effect [JK11, CCFB15]. Effective [BMR14, PTML11, RD15, CsdL16, KPP+18, Kie13].

Effectively [UR15]. effects [FH16, HAW13, Lei17]. Efficient [DVL13, GPT12, HWM11, HB13, KT14, KW10, OOK+10, RSP+15, RFB14, SMN+12, TLX17, TD17, AK13, BHSB14, CRP+10, ETR12, HWM10, KKW11, MRA+17, MSM+10, Pos19, Sie17, SGV12, SWB+15, SV15a, TRTD11, UMP10, WWJB10, XZX13].

Efficiently [FBH17, BKC+13, FOPZ14].

Einsatzszenarien [Sch13]. Einsteiger [Ric14]. Elektronik [Ric14].

Elektronik-Projekte [Ric14]. Elephant [RGM13]. Elimination [RKN+18, GvRN+11], elision [NM10].

Elliptic [GPT12]. Eloquent [Hav11].

emass [Por18]. Embedded [Fox17b, HTW14, JMB12, KARO12, Pau14, SLES15, SLE+17, TKL+15, VK12, Dei10, Fox17a, GMC+13, HTLC10, KHR11, LMK16, LTK17, OIA+13, RHT13, SC16, SDH+17, SFR+14, UIY10, Xue12, ZYZ+12].

embedding [KMLS15, SC16].

Empirical [LSBV16, LSVB17, SS13, WXR16, BJBK12, FH16, HH13, KPP+18, MHR+12, NCS10, SH12, Tai13, VBDPM16, VBM16].

Employing [CC15]. Emscripten [Zak18]. emulated [THC+14]. emulator [KS13].

Enabled [GPT12, DR10, ETR+15, RBL12, SGV12]. encapsulation [DDM11]. End [GM12, DAA13]. End-to-End [GM12].

eX
dead user [DAA13]. energy [CL17, PCL14].

energy-aware [CL17]. enforcement [IF16].

enforcing [JWMC15]. engine [MG17, Ngo12, OUY+13, Tar11, Ngo12].

Engineering [CCA+12, GT10a, VF10].

Engineers [Bra14]. engines [KRH16, SSG+14].

enhanced [LMK16, WBA+11]. Enhancing [BDT10, BVGVEA13, DcS12, HC10].

enumeration [SSH17].

Environment [Kö10, PTML11, EKR+12].

environments [EABVG14, GT10a, HOK14, KF11, RDP16, RCB17, SGV12].

equality [GRF11]. Equivalence [BO12].

equivalent [TLX17]. equivocation [TD17].

ERAM [Sch10a]. Erratum [HW11].

error [eBH11]. ES5 [DFHF15].

Escape [SLES15, SLE+17].

Essential [Ngo12].
evaluation [LMK16].

Ethereum [Dan17].

eval [Mi13, MRMV12].

Evaluating [BGK17, BLH12, MDHS10].

Evaluation [CSZ17, GBC12, JMB12, OCFL14, TTS+10, Wan11, CSK17, MRA+17, MD15, WW+17].

Evaluator [JB12]. Event [KW11, MV16, BBP13, KW10, MTL15, WK12, YP10].

event-based [BBP13, YP10]. event-driven [MTL15].

Evolution [CC15, GMPS12, Mei14, JK11, MAH12].

everyone [Hor12].
NC10, WBA+11, WAB+11, WWS13. evolving [ZZK13]. Exact [ZW13].
Examples [BNP11, Del13]. Exception [LT14, ECS15, HWM14, LT11].
Exceptionization [YKM17]. Exceptions [ASF17, AdCGGH16, HdM17, SMN+12, ZBB17]. Execution
[NTK17, OwKPM15, SWMV17, JJJ17, JhEd11, LLI13, MMP+12, RCB17, SPPH10]. executions [ASdGMG14, PPS16, STR16].
executives [RS12]. Exemplar [ZW13].
Exhaustive [DHS15]. exhibitionism [VBMDP16]. existential [AT16].
Exogenuous [BMSZ17]. Experience [ABMV12, OW16, Sch10a, CBLFD12, TRE+13, WT10]. Experiment
[NKH16, QSa+16]. exploration [FWDL15]. explorative [AHK+15].
Exploratory [BKp16, ECS15].
EXPLORER [FWDL15]. Exploring
[JK13, JWMC15, SE12]. exposed [VBDFM16]. exposed [JQ+16].
Expression [NS12, PIR17]. expressions [GK15, MCTD17]. expressive [VYR10].
Extended [DDDF17, FGR12, FLL+13, JCT10, LMK16, PDP+16]. Extending
[AC10, BVGVEA11a, LPA13, PTHH14].
Extensible
[Ziids17, ER14, KMLS15, MHBO13].
Extension
[RSI12, LE16, MLGA11, PdMG12].
extensions [MPR12, Zha12]. Extensive
[Was11]. Extracting [CCA+12, KM10].
Extremal [LTD+12]. Eye
[RLLM15, Guy14]. Eye-Tracking
[RLLM15].
F [GMT14, TTD12]. F-bounded [GMT14].
F-MPJ [TD12]. FAA [Sch10a].
FACADE [NW+15]. face [XHH12].
Facebook [Ano13]. Facets [ASF17, AF12].
facilities [BVGVEA11]. FAD.js [BB17].
failing [STR16]. failures [CRAJ10]. false
[HWT+12]. familiarized [Ano13]. family
[KHM+11, KvRHA14]. family-based
[KvRHA14]. Fast
[CVG+17, CSGT17, HyG12, SBM14, SLF14, Zak18, BB17, KMMV14, KCP+17, MDM17, HBPO13, SV15]. Faster
[BMDK15, JC10, AJL16]. fault [RBL12].
Faults [SRTR17, KPP+18, ZK13]. FC
[YWW+18]. Featherweight [RvB14].
feature [AH10, KvRHA14, OJ12].
feature-based [KvRHA14]. features
[MKK+12, MKK+13]. Feedback
[NED+13, NG13, WM10]. Feedback-directed
[NED+13, NG13, WM10]. fields [PQGS17].
FIFO [QSas+16]. filtering [HWT+12]. find
[Ryu16]. Finding [XMA+10]. Fine
[BVGVEA11, DRN14]. fine-grained
[DRN14]. Fingerprints [MSKR16]. Finite
[BLH12, MB12]. Finite-State
[BLH12]. first
[SC16, TSD+12]. first-class
[SC16, TSD+12]. fix [TPG15]. Fixing
[SRTR17, LTZ14]. flexibility [SBF+10].
Flexible
[ES14, MSW+16, PkC+13, RHN+13, BCD13, KHR11, Por18, ZW10].
Flint [LTZ14]. Floating
[Jaf13, AJL16].
Floating-Point
[Jaf13, AJL16]. Flow
[ASF17, FHSR12, LMK16, SS12, AdCGGH16, AF12, ABFM12, BK14, FWDL15, HBS16, KHL+13, LSW16, PMTP12].
Flow-sensitive [LMK16]. FlumeJava
[CRP+10]. fly [UJR14]. folding [CPST14].
Footprint
[GS12, WHN11]. Forecasting
[CC15]. foreign
[LWH+10]. forge [Ler10].
fork [MZCM+10]. fork/join [MZCM+10]. form
[GK15]. Formal
[DLPT14, KR12, SW12, HDM17, PIR15, SZ11]. formalised
[CWW13]. Format
[YWW+18]. Forsaking
[GBS13]. FORSETI
[CSV15]. Forward
[FOPZ14]. Foundation
[CJ17]. Four
[MSS10]. FPGA
[OUY+13].
fragmentation [PZM+10].
fragmentation-tolerant [PZM+10].

fragments [OA17]. frames [SJPSh10].

Framework [CCA+12, Den18, FFF17, LM15, PWSG17, RBL12, Ame13, AC16, DDDF17, ER14, FRGFLF+12, JEC+12, KMLS15, Lon10a, Lon10b, MT13, PKO+15, RR14, STY+14, ZW10, ZDS14]. frameworks [PPMH15]. Francisco [KP15].

free [DTLM14, FC11, GK15, HHB+14, NFV15]. free-form [GK15]. free-lunch [DTLM14].

frequency [ZWSS15]. Frequent [RC17]. Friendly [RBL12]. fringe [MB12, MB12].

Full [SRTR17, DRN14]. Full-Word [SRTR17]. Fully [FSC+13, PG12, ZFK+16].

Functional [Wam11, Ame13, BVGVEA11b, NFV15, UFM15, Bro12]. functional-style [UFM15]. functions [LSBV16, LSBV17].

Fundamentals [HC13, Teo13, Gve13]. Fundamental [WGRF11, KS14, MHBO13, SSK13]. Fundamentals [AGM+17, BH17, YWW+18, CRJ+10, PPMH15, PSNS14, Rim12, RO12, UMP10].

generation [BOF17]. generators [SLF14].

generic [DDM11, Fer13, HH13, ZPL+10, eBH11].

Goldilocks [EQT10]. Good [dGRdB+15].

Google [Ngo12, MGI17, Sam12]. GPGPU [PQTGS17]. GPGPU-accelerated [PQTGS17]. GPU [PKO+15]. GPUs [Hos12]. grade [CRJ+10]. Gradual [RSP+15, SFR+14, TSD+12, Sie17].

grained [DRN14]. grammars [GN16, RSH16].

granularity [CZ14]. Graph [dMRH12, BS13]. Graphical [SL+12].

Graphics [Cec11, LLL13].

graphs [AdCGGK16, DSEE13, JWMC15, PULO16].

green [BRGG12]. Greenfoot [Köl10]. grid [SGV12, WVB10, MZC10b].

GUI [CNS13, VGS14, WBA+11].

GUI-awareness [VGS14].

Guide [Ame13, Oak14, Rau14, Teo13, Top11].

Guided [CNS13, DiP18b, MMP15, GY16, PSNS14, SSH17].

Guidelines [GGZ+15, HLSK13].

Handling [KW11, ECS15, HWM14, KW10, KW12].

Hands [CSZ17, Teo13]. Hands-on [CSZ17, Teo13].

happened [Hans15].

happens [TD15]. happens-before [TD15].

hard [LTK17, Puf13].

hardwired [OUY+13]. harness [Kie13].

hash [SV15a, SV15b]. has-array [SV15b].

hashing [GRF11].

HDFS [IRJ+12].

HDL [OUY+13].

health [EKUR10].

heap [CV15, LDL14, TLX17, Tar11, VY10, YS10, BVGVE110].

heap-manipulating [YS10].

Helping [RT14].

Hera [MS10].
Heterogeneous \cite{ASV+16,HHB+14,Rub14,AYZI10,ABCR10,DFR13,MS10}.
\textbf{Hera-JVM} \cite{HFR+12}.
\textbf{Heterogeneous-race-free} \cite{HBM+14}.
\textbf{heuristics} \cite{LRK+16}.\textbf{Hidding} \cite{RRJ12}.
\textbf{hierarchy} \cite{BS13}.
\textbf{High} \cite{GS+16,Hel12,IRJ+12,MSM+16,SWU+15,WN10,Zak10,BRWA14,Hos12,Ngo12,RFBJ14,TTD+11,TGZ17,VWJB10,WHH+17,TRE+13}.
\textbf{high-dimensional} \cite{TGZ17}\textbf{high-level}\cite{Hos12,RFBJ14,VWJB10}.
\textbf{High-Performance} \cite{WN10,GS+16,BRWA14,Ngo12,TTD+11,VWJB10}.
\textbf{higher} \cite{KT15}.
\textbf{higher-order} \cite{KT15}.
\textbf{highly} \cite{BP10,SPP+10}.
\textbf{history} \cite{DRN14}.
\textbf{hit} \cite{Ano13}.
\textbf{Hoare} \cite{SD16b}.
\textbf{hole} \cite{Ano13}.
\textbf{Holistic} \cite{MAHK+16}.
\textbf{HOP} \cite{D'H+12}.
\textbf{Hopjs} \cite{CBLFD12}.
\textbf{hot} \cite{LMK16}.
\textbf{HotSpot} \cite{Sch13,BOF17}.
\textbf{HotWave} \cite{HBM+12}.\textbf{VBAM10b}.
\textbf{HPC} \cite{ABFM12,BVGVEA11b,CMSS5}.
\textbf{HTM} \cite{CMSS5}.
\textbf{HTML} \cite{DHMB+13}.
\textbf{HTML5} \cite{LHIO15,NKH+16,Ano15}.
\textbf{Hunting} \cite{GCG18}.
\textbf{HVM} \cite{LTK+17}.
\textbf{Hybrid} \cite{CMSS5,Lab16,hosted,CBLFD12}.
\textbf{hot} \cite{LMK16}.
\textbf{HySpot} \cite{Sch13,BOF17}.
\textbf{Hybris} \cite{VBM17}.
\textbf{hygienic} \cite{DFHF15}.
\textbf{hypervisor} \cite{MCA+13}.
\textbf{IaaS} \cite{ZLHD15}.
\textbf{identification} \cite{BZD17,FMS+11}.
\textbf{Identifier} \cite{SRTR17}.
\textbf{identifiers} \cite{FMS+11}.
\textbf{Identifying} \cite{IN12,SVB+17}.
\textbf{if} \cite{Han15}.
\textbf{illuminating} \cite{BK14}.
\textbf{Image} \cite{WN10}.
\textbf{immutability} \cite{HMDE12,ZPL+10}.
\textbf{immutable} \cite{SV15b}.
\textbf{impact} \cite{CMS+12,Gra15,HWL+11,MPR12,WKJ+17}.
\textbf{imperative} \cite{RFRS+14}.
\textbf{implementation} \cite{HdM+17}.
\textbf{Implementation} \cite{CSF+16,GPT+12,HM12,OA17,Por18,VGRS16,YP10}.
\textbf{implementations} \cite{CSS+16,OJ12}.
\textbf{Implementing} \cite{FFF+17,GM12,WCB16,EKE+13,FBH17,PMP+16}.
\textbf{implications} \cite{BRGG+12}.
\textbf{implicit} \cite{IvdS16,SPAK10}.
\textbf{imply} \cite{BRGG+12}.
\textbf{Improve} \cite{QSaS+16}.
\textbf{Improved} \cite{KRR+14,UIY10,OKJ+12,XXH12}.
\textbf{Improvement} \cite{RC+17}.
\textbf{Improving} \cite{ACS+14,HWH+12,TWSC+10,EBH+11,UTO+13}.
\textbf{in-depth} \cite{Rau14}.
\textbf{in-place} \cite{DVL+13}.
\textbf{including} \cite{Den18}.
\textbf{incremental} \cite{DS16,ELW15,UIY10}.
\textbf{independent} \cite{IF+16,VS11}.
\textbf{industrial} \cite{CRJ+10}.
\textbf{inefficient} \cite{XR+10}.
\textbf{inefficiently-used} \cite{XR+10}.
\textbf{Inference} \cite{BO13,YHY13,AGG+10,HYG+12,HME+12,Zha12}, \textbf{inerring} \cite{AS14,BENS12}.
\textbf{InfiniBand} \cite{ETTD+12,IRJ+12}.
\textbf{infinitive} \cite{ASdMG+14}.
\textbf{Infow} \cite{ZMM+16}.
\textbf{influence} \cite{MHR+12}.
\textbf{Informa} \cite{HA+13}.
\textbf{Information} \cite{AFS+17,HBM+16,KHL+18,SS+12,A12,ABF+12,BVGVEA11b,CMS+12,PMP+12,RRB17}.
\textbf{Information-flow} \cite{HBS+16}.
\textbf{Infrastructure} \cite{Den18,NG12}.
\textbf{Inheritance} \cite{LN15,WT11,AST+16,GBS13,NCS10}.
\textbf{Initial} \cite{LTD+12}.
\textbf{initialization} \cite{AMT+17,MME14}.
\textbf{Injecting} \cite{ZZK+13}.
\textbf{inline} \cite{DJLP+10}.
\textbf{Inlining} \cite{BA+12,HWM+13}.
\textbf{insecure} \cite{YW13}.
\textbf{Insight} \cite{VF10}.
\textbf{instanceof} \cite{SS+12}.
\textbf{Instant} \cite{MHBO13}.
\textbf{instantiation} \cite{AST+16}.
\textbf{instead} \cite{AGH+17,BTR+13}.
\textbf{instrumenting} \cite{CZ+14}.
\textbf{Integrated} \cite{Tar+11,YP10}.
\textbf{integrating} \cite{SPP+10}.
\textbf{integration} \cite{Ame13,HKG+14,Sha10a}.
\textbf{integrity} \cite{AC+11}.
\textbf{intelligence} \cite{JAC+10}.
\textbf{Intelligent} \cite{Pau+14}.
\textbf{Intensive} \cite{NW+18,SAD+16}.
\textbf{inter} \cite{CMM+17}.
\textbf{inter-language} \cite{CMM+17}.
\textbf{Interacting} \cite{SK+13}.
\textbf{Interaction} \cite{WT11}.
\textbf{interactive} \cite{AMW+15,JH+11,NMC+10}.
\textbf{intercessions} \cite{VM+10}.
\textbf{interdependencies} \cite{LBF+12}.
\textbf{Interface} \cite{Liu14,MvdL12,SL+12,AYZI10,MT14,LT+11}.
\textbf{Interfaces} \cite{WT11,Cho14,DLM+10,WH+10,PSNS+14}.
[DLR16, KHL+13, LMK16, MGI17, TTS+10].
Just-in-Time [DLR16, KHL+13, LMK16, MGI17, TTS+10].
JVM [AC16, AFG+11, CSS+16, Guy14, MS10, PVH14, R+13, RR17, SV15b, Sub11, WKG17]. JVMs [BK14, ZY+12].

KiWi [BBB+17]. KJS [PSR15].
Knoernschild [Del13]. knot [LBF12]. know [JB16, Gra15, Han15]. Knowledge [KSPK12, UM10]. known [Han15].
Kraken [Ano14].

Lake [Holl12]. lambda [MKTD17].
lambdas [UFM15]. landscape [Sve14].
Language [DLPT14, GJS+13, GJS+14, GSS+18, JC10, KSPK12, MAHK16, Sev12b, SS13, ABCR10, CMM17, CSzL16, DAA13, EKR+12, Fee16, GSS+16, Hos12, HW+15, KR14, LWH+10, LE16, MDM17, SC16, SZ10, SKR17, SNS+14, VB14a, WCG14, WWH+17, ZWS15, dCMM12].
language-level [WCG14]. Languages [CSGT17, MSM+16, PTTH14, YKM17, AGGZ10, BCD13, CMS+12, EEK+13, ER14, FMBH15, Han15, HBT12, HJS+10, KCR+14, MSM+10, NED+13, FULO16, SPY+16, Zha12].
LARD [WCG14]. Large [BA17, AST+16, CCFB15, LSB16, LSB17, MDS+17, MCY+10, PTF+15, WHIN11].
Large-Scale [BA17, MDS+17, MCY+10, PTF+15, WHIN11]. Larus [DD13].
Leaning [MS10]. leak [SS14, XR13]. Leaks [And14, RW17].
LeakSpot [RW17]. lean [BRGG12, SV15b].

Learn [RT14]. Learning [Pan14, RT14, CNS13, KC12, Ano15, Teo13]. learnt [GY16]. Legacy [SVB+17, CDTM10]. Legally [Sai12].
length [SMP10]. Less [BNE16]. Level [AC16, SUW+15, EKUR10, Hos12, IHWN12, KBL14, LWC17, MGI17, RFB14, TTD+11, VWJB10, WCG14]. Lexical [GN16].
Lexicon [TAF+18]. Libraries [BK12, RDCP12, BlvdS17, Cho14, EKR+12, PML14, PLR18, TTD+11]. Library [CH17, OCFL14, TAF+18, WN10, DJM18, CMM17, PMP+16, PQG17, Pos19, TFPB14, TGZ17].
Linux [Ric14]. Linux-basierte [Ric14].
Listener [JH11]. little [Han15]. liveness [LDL14]. load [PDPM+16]. loaders [SM12].
loading [WGF11]. local [DDDF17]. localised [SP10b]. locality [HHJ10, OJ12].
localize [ZZK13]. location [NCS10].
Locators [SDM12]. Lock [FC11, NM10, NFV15, UMP10]. Lock-free [FC11, NFV15].
Low [ETR+15, GM12, SUW+15, WCG14, ZHCB15, ZFK+16, BCR13, XMA+10].
Low-Budget [GM12]. Low-latency [ETR+15]. Low-level [WCG14].
Low-overhead [ZHCB15, ZFK+16].
low-utility [XMA+10]. lunch [DTLM14].

m [M2M10]. m-JGRIM [MZC10b]. M2M [Pau14]. Machine
[MCC17, PSW11]. model-driven [CHM13].
Modeling
[GBC12, JC10, KSPK12, LDL14, Rev13, SM12, CRAT+12, SKR17, TLX17, ZIvdS17].
Modelling [CSZ17]. Models
[CC15, PE11, ZLCW14, AGR17, HHB+14, TVD10, ZBB17].
Model-driven [CHM13].
Modernization [Nil12a]. Modified
[GT10a]. Modular
[IvdS16, LN15, RDCP12, MRA+17, RO12].
Modularisation [SDM12].
Modernization [Nil12a].
Modular [IvdS16, LN15, RDCP12, MRA+17, RO12].
Modularisation [SDM12].
Modernization [Nil12a].
Modular [IvdS16, LN15, RDCP12, MRA+17, RO12].
Modularisation [SDM12].
Module [KR12].
Modules [PiLCH11].

MongoDB [Guo17].
Monitoring [AGR12, DJLP10, ES14, KF11].
Monitors [BLH12, HM12].
obfuscations

Object

Object-Bounded

Object-Oriented

Object-Oriented

Objective

Objective-C

Objects

Observations

OCTET

odeToJava

offloading

on-demand

on-the-fly

Online

only

Ontology

Open

Open-Source

OpenJDK

OpenMP

OpenMP-like

operating

operations

Operator

Optimal

optimale

optimisation

optimistic

Optimization

Optimization

Optimizations

Oracle

Order

ordering

ordinary

O'Reilly

Oriented

pattern

PaaS

Package

Packages

Paper

Papers

Parallel

Parallelisation

Parallelism

parallelization

parallelize

Parameter

Parameters

Parametric

Part

Partitioning

passing

path-length

Path-Sensitive

pathfinder

patient

Pattern

Patterns
PCR [YCYC12]. PE [JB12]. PE-KeY [JB12].

perfect [JH11]. Perfect [SLE+17].

Performance
[CSZ17, CCH11, DR10, GBC12, Hol12, HJ12, MSM+16, Oak14, OCFL14, QSaS+16, TRE+13, TPG15, THC+14, WN10, ACS+14, AAB+10, BRGG12, BRWA14, CBGM12, Dei11, GSS+16, HWI+12, IRJ+12, JH11, Ngo12, ODL15, PSNS14, SE12, TTD+11, TXW+10, WHIN11, WWH+17, Zak10].

Platform [AFGG11, PE11, BD17, CRJ+10, GD10, GMC+13, MKZ+14, PWA13, YP10].

Platforms
[DR10, Has12, BP10, JMO14, KSR14].

PLDI [FLL+13]. pluggable [MME+10].

Point [Jaf13, AJL16]. pointer [TL17].

Pointers [RKN+18, AT16]. Points [BK12, SDC+12, DHS15, SBK13, TLX17].

Points-To

Polymorphic [Zha12]. polymorphism [GM14, PULO16, UTO13]. polynomial [Pos19].

POPL [BCR13]. Popular [Has12, SRB18].

Popular-but-Seemingly-Dissimilar
[Has12]. portable [BM18, LTK17, RGM13].

[AMT17, JACS10, SLES15, VS10, WWH+17, FIF+15, WT10]. Practice [HGCA11, AS14, EKUR10, LWC17, TRE+13]. practices [CI17, YW13]. pragmatic [RO12]. pre
[SBK13]. pre-processing [SBK13]. Precise
[PIR17, XR13, BHSB14, CVG+17, HyG12, PLR18, PG12, RGM13, TLX17]. precision [RSB+14]. Predicate [PL12]. predictable [LTK17]. Predicting [BSA14, RVK15].

prediction [ZWZ+14]. presence [ZB15]. preserving [AK13]. pressure [DTLM14].

pretenuring [BOF17]. Preventing
[MSSK16]. prevention [VS11]. Primer
[YCYC12]. primitives [BJBJK12].

Principles [HGCA11, JEC+12, VM10]. Printing [ÁJL16]. prioritization [MT13].

Prioritized [NGB16]. Priority
[ASV+16, HM12]. Privacy [And14].

Proactive [CL17, BGS+13]. PROB [YP10].

Probabilistic [RBV16, GY16, ZWZ+14].

Problem [YHY13, ZW13, J]. J+12. KC12].

problem-solution [J+12]. problems
[TPG15]. Proceedings [Hol12, KP15].

Process [SK12, AGR17, GT10a]. Processes
[BMDK15]. Processing
[LLL13, WN10, SBK13, SSG+14, UJR14].

Processor
[TKL+15, Pu13, SPPH10, SMN+12].

Processors [ASV+16, MKG+17]. producers [DAA13]. product
[BTB+13, KATS12, KvRHA14, SV17].

product-based [KvRHA14]. production
[RGM13]. professionals [JACS10]. profile
[VSG17, WKJ17]. profiler [DTLM14].

profilers [MDHS10]. profiling
[DD13, JH11, KRH16, NK10, RCB17, SSB+14a, STY+14, THC+14, XR13, ZBB15].

Program [BGK17, KKW14, RVK15, RT14, ZKB+16, AÖ11, DS16, GMS12, HCN14, JGL17, JWMC15, KM10, KMZN16, MKZ+14, NS13, Sch10a, SPY+16, TAI13, TABS12, WGF11, ZMG+14].

Programmable [OA17, AZY10].
Reduction [BO12, TD15]. redundant [HLG15]. Refactoring [AS14, STST12,
VBZ+18, ZHL+12, FMM+11, FM13].
Reference [Sch14, UJR14, HMDE12]. refinement [GY16, JLP+14, KSW+14,
ZMG+14, ZFK+16]. Reflexes [SPP+10]. regions [AC10]. register [ZY+12].
register-based [ZY+12]. Regression [MM12]. regular [PIR17]. reification
[RBB17]. Reified [GBS14]. Reim [HMDE12]. ReImFer [HMDE12].
relation [TD15]. relational [MLGA11]. relationship [LSBV16, LSBV17, SH12].
relaxed [DNB+12, KHL+17, PPS16]. relaxed-memory [KHL+17]. Release
[BVGVEA10, BVGVEA14, BJPK12, GSD+15, BVGVEAFG11]. removal
[MRMV12, WGF11]. removing [PLR14]. rename [FM13]. Repair
[XMD+17, MDS+17, SHU16]. repeatability [Vit14]. replacement [BCD13]. Replay
report [CBLFD12, Sch10a]. Reports [OW16]. repository [HC10].
reproducibility [Vit14]. reproduction [SR14b]. requirements [AGZ10].
ResAna [KvGS+14]. Research [SR17, TRE+13, CRJ+10, CBLFD12,
EKUR10, Rub14, VBMPD16, Vit14]. Resource [BVGVEA14, ADI13, ES14,
KvGS+14, KSR14, SGV12].
resource-aware [SGV12]. resource-based [ADI13]. responsive [SPP+10].
responsiveness [PSN14]. restart [CNS13]. Restructuring [RC17]. Retention
[ZMM+16]. Rethinking [Xue12, RCR+14]. retrofitted [TSS+10]. retrofitting
[LPK14]. Reusability [Tai13]. reusable [HC10, MME14]. reuse [WR10]. Reverse
[CCA+12]. Review [Ano15, Bro12, Del13, Gve13, Kiel13, Ngo12,
Teo12, Teo13, EKUR10]. Revisited [Mei14, Gon11]. rewriting [HLG15]. RFID
[AYZI10]. RFLP [YCUC12]. richer [CV14].
rigor [Vit14]. Rigorous [AGR17]. rings [Pos19, Pos19]. Rise [DiP18a]. risk
[MPM+15]. River [HHSS13]. RJ [OW16].
Robust [VM15, DVV17, MKZ+14, SGV12, VM10].
Rod [Teo12]. row [Lei17]. row-typed [Lei17]. RTSJ [ZW10]. Rubah [PVH14].
run-time [WAB+11]. Running [HC11, TXW+10, YK14]. runs [FIF+15].
Runtime [BLH12, GSS+18, MAHK16, MSS10, NWB+15, OCFL14, XMA+14,
BRGG12, EQT10, GTL+10, GSS+16, LMK16, MS10, OKK+10, PKC+13, RO12,
STY+14, TWSC10, VBAM10a, YRHL13, dCMMN12]. runtimes
[BM14, CSV15, RCR+14, WHH+17].
S [Gve13]. Safe [Eug13, GvRN+11, JTO12, Loc18, MPS12, RSF+15, SWB+15, WAB+11,
HJS+10, HAW13, KHR11, KMLS15, KCp+17, Loc13, RDP16, WWS13]. Safety
[RS12, SDH+17, WBC16, ZLCW14, AGR17, EKUR10, GMC+13, Nii12b, PG12, SD16b,
Ta13, YS10, CWW13, HLI3, LWC17, WK12]. Safety-Critical [WCB16, ZLCW14,
RS12, SDH+17, AGR17, CWW13, LWC17]. Salespoint [ZDS14]. Salt [Hol12]. SAM
[CFH+13]. Scaffolding [RT14]. Scala [SMS+12, AT16, Hin13, Lew13, PTML11,
Pos19, SSB11, SMS+12]. Scala-Based [PTML11]. Scala.js [DS16]. Scalability
[CCH11, AAB+10, DSEE13, GTSS11].
Scalable
[BBB]^{17}, BS12, DFR13, GGRSY17, HC11,
JQJ^{16}, RXK^{+17}, RTE^{+13}, XMA^{+14},
ETTD12, FC11, GGRSY15, NFV15, PIR17,
PRL18, RTET15, TTD12. ScalaLab
[PTML11, PTML14]. scalar [PQTGS17].
Scale [BA17, PE11, DHS15, LO15, MDS^{+17},
MCY^{+10}, PTF^{+15}, WHIN11]. SCEL
[DLPT14]. scenarios [AMWW15, Sch13].
Scheduler [QSaS^{+16}, IF^{16}, TWL12].
scheduler-independent [IF^{16}].
Scheduling [ASV^{+16}, BVEAGVA10,
KPHV11, EP14, EABGV14, ZW10].
scale [PTML11, PMTL14]. secure
[PTML11]. Secure
[ML14]. Scientific [Esq11, PTML11,
TAF^{+18}, WN10, FRGPLF^{+12}, PMTL14].
scientists [Bra14]. SCORM [HC10]. Scrap
[ZCdSOvdS15]. Script [MSSK16].
Scripting [CSGT17, KKK^{+17}, HBT12,
KRR^{+14}, PMTL14, Zha12]. SE [LYBB14].
Seamless [OwKPM15]. Search
[SED14, DDDF17]. searching [ETR12].
Second [HD17]. secrets [Alt12]. section
[DTLM14]. sections [NM10]. Secure
[GMPS12, GM12, ABFM12, LMS^{+12},
TLMM13]. securely [SFR^{+14}]. Security
[CDC^{+17}, Gon11, HBS16, JWMC15,
MCC17]. Seemingly [Has12]. selection
[WHIN11]. Self [MS12, hED12, AHK^{+11},
AGH^{+17}, CBLFD12, HWW^{+15}, MD15].
self-collating [AHK^{+11}].
self-composition [AGH^{+17}]. self-hosted
[CBLFD12]. self-optimizing
[HWW^{+15}, MD15]. Self-stabilizing
hED12. Semantic
[GGRSY17, RVB14, BNS12, GGRSY14,
GGRSY15, MKK^{+12}, MKK^{+13}, OA17].
Semantics [BO12, BR15, Kri12, LML17,
SPY^{+16}, AK13, FBH17, FZ17, KHL^{+17},
Mil13, MT14, PSR15, PPS16, ZHCB15].
Semantics-based [SPY^{+16}].
semantics-preserving [AK13]. Semi
[FM13, ABC18, MRMV12].
semi-automated [MRMV12].

Semi-automatic [FM13]. semi-structured
[ABC18]. Sensitive
[SGD15, HWM13, LMK16]. sensitivity
[HB13, PLR18]. Sensor [AFGG11].
separability [WR^{+10}]. Separating
[DDM11, AC10]. separation [TWSC10].
sequence [ZWZ^{+14}]. Sequencing
[YWW^{+18}]. Sequential [FFF17]. sequential
[BENS12, DMS11]. serialization
[MHBO13]. Seriously [Kie10]. Server
[HC11, KRH16, D^{+12}, Dei11, HWLM11,
R^{+13}]. Server-Side [HC11, KRH16, D^{+12}].
Service [BVEAGVA10, SDM12, CSKB12,
EABGV14, GD10, HWLM11, KF11].
service-oriented [EABGV14]. services
[MZC10b]. session [KDPG18, FGR12]. Set
[SBK13, Lon10a, Lon10b]. Set-based
[SBK13, Lon10a, Lon10b]. sets [SP10b].
setters [Ml13]. setting [BDGS13].
Settings [GM12]. Seven [ST15]. Shadow
[NTTK17]. ShadowVM [MKZ^{+14}]. shalt
[LCW18]. shape [GMT14]. Shared
[BG17, BSMB16]. Shared-Memory
[BG17, BSMB16]. sharing [PKO^{+15}].
Short [AHK^{+11}, SV15a, Zak12].
Short-term [AHK^{+11}].
ShortCut [CSGT17]. Side
[HC11, OBPM17, D^{+12}, KRH16]. SIGCSE
[Wall12]. Signatures [DR10]. significance
[FMS^{+11}]. simpA [RVP11]. Simple
[BO11, BO12, KCP^{+17}, BVG14b, MSM^{+10}].
Simplicity [Dei11]. Simulating [LM15].
Simulation [HWLM11, FZ^{+18}, KKW11,
Rim12, ZXL16]. Simulation-based
[HWLM11]. simulations [MCY^{+10}].
Simulator [MKG^{+17}, RXK^{+17}]. single
[JK13]. Sinking [CDG^{+17}]. site
[CPST15, SSB^{+14a}]. sites [OK^{+10}]. size
[AST12, UTO13]. sizing [CSV15]. SJJ
[MvH15]. skills [JACS10]. Slicing
[XMA^{+14}]. Slimming [WGF11]. SLOC
[LSBV16, LSVB17]. Smaller [GS12].
smalltalk [FIF^{+15}, HKVG14]. Smart
[GMPS12]. Smartcard [RBL12].
SMArtOp [TGZ17]. Smartphones [RT14].
SMARTS [RXK+17]. snapshots [AST12].
Snippets [SWU+15]. SNP [YCYC12]. SoC [TKL+15]. social [GGC18]. soft [JACS10].
Software [BSA14, CC15, RC17, Wan11, YQTR15, BMSZ17, BTR+13, CBGM12, CFH+13, CJ17, DVL13, EKUR10, FRGPF+12, FC11, GT10a, HBG+16, JiED11, JK11, LPA13, MHR+12, NG86, OIA+13, PLL+18, RAS16, SV17, XR13, YHRBL13, ZZK13, ZHCB15, ZDS14].
Solidity [Dan17]. Solution [KSL15, EKUR10, J+12]. Solving [SED14, FMBH15].
sparse-matrix [TGZ17]. spatial [MLGA11]. Speaking [Rau14, San12].
Special [DVL13, Fox17a, HL13, HGCA11, Pus13, HTLC10, RHT13, HTW14, VK12].
specialization [KRR+14, SV15a]. specific [CSD16, EKK+13, HWW+15, Kie13].
Specification [GJS+13, GJS+14, IF16, KW11, LN15, LYBB13a, LYBB13b, LYBB14, TWNH12, BVGVEA11a, BCF+14, KR12, KW10, MRA+17, YP10, dCMNN12].
specifications [BENS12, TVD10]. specified [BRS11]. Specifying [BNS12, HL13].
Speculation [AC16, MGI17]. speculative [BB17, YHRBL13]. speed
[HRS+17, SBF+10, UTO13]. SPIN
[ASdMG14]. SPL [BTR+13]. splittable [SLF14]. SPOON [PMP+16]. spot
[LMK16]. SPUR [BBF+10]. SQL
[KML15]. SqueakJS [FIF+15]. SSNTDs
[VSG17]. Stability [BSA14, LL15]. stabilizing [hED12]. stack
[KRCH14, Xue12]. stack-based [KRCH14]. stage [WRI+10]. staged [SC16]. staging
[RO12]. Standard [WK17, LMS+12].
Standardization [TWNH12]. StarL
[LM15]. State [AGR12, BLH12, MvDL12, MS14, GN16, YP10]. state-
[YP10]. statecharts [MS13]. Statement
[XMD+17, PLR14, ZWSS15]. statements
[PLR14]. Static
[BGK17, BNE16, JC10, MTL15, ODL15, PiLCH11, PLR18, RD15, SW12, SH12, AM14, CGJ+16, Fer13, FLL+13, IF16, KSW+14, LS11, MHR+12, PIR17, TLMM13].
statically [BTR+13, NED+13]. statistical
[Bra14, ZFK+16]. statistically [PPMH15]. statistics [HCN14]. stealing
[KFB+12, TWL12]. STM [CH16, Sub11].
STM/HTM [CH16]. StMungo
[KDPG18]. stochastic [CRAT+12]. stock
[PVH14]. Stop [LW15]. Storage
[Hol12, VD17]. Store [BS12, Sta10].
stores [DFR13]. Story [Ano14]. strategic
[BM14]. strategy [PDPM+16]. Stream
[KBPS17, MV16, BRWA14, SSG+14].
streaming [MRA+17, STCG13].
StreamJIT [BRWA14]. StreamQRE
[MRA+17]. streams [SGG+17, UFM15].
Strength [KCD12]. String
[HOKO14, CSK17]. Strings
[HWM11, HWM10, LSSD14]. strong
[UMP10, ZHCB15, ZBB17]. structure
[LO15, PLL+18, UMP10]. structured
[ABC18, LSWM16]. Structures
[GT10b, CDTM10, XMA+10]. studies
[EKUR10]. Studio [RT14, FH16].
Studio-Based [RT14]. Study
[KB11, OBPM17, RLMM15, ZMM+16, BRGG12, CCFB15, CJ17, ECS15, JK11, KFBK+15, MHR+12, NCS10, OKM+10, PTF+15, SSL18, SH12, TFPB14, VBDP16, WXR16, YW13]. style [UFP15].
substitute [PPMH15]. substrate
[TL10]. subtypes [HL13]. Subtyping
[LN15]. suite [SMSB11, BB12]. Suites
[GGZ+15]. Summaries [BH17].
Summarization [MM16, RLMM15].
Superblock [KS13]. Supercharged
[Cec11, GBS13]. Superposition [HD17].
supertype [RRB17]. supervenience
[Rez12]. Support
[CSGT17, KKK+17, RKN+18, BVGVEA13,
DVL13, GMC+13, Hos12, NGB16, SMN+12].
supported [FMM+11]. Supporting
[LVG10, EKUR10]. Surgical [RSB+14].
surprises [AGM+17, BCvC+13, GD10]. SurveyMan
[TB14]. surveys [TB14]. suspension [TWL12].
sweeping [KBL14]. Sweeten
[DFHF15]. Swift [ZZY+12]. SWIM
[Sch10a]. symbol [Tar11]. Symbolic
[NNTK17, PMTP12, SVMV17, MMP+12,
Rim12]. synchronbench [Gra15].
synchronisation [CHMY15, WBM+10].
synchronization [DHM+12, Gra15, Sub11].
Synchronized [BG17].
Synchronized-by-Default [BG17].
Synchronous
[BVEAGVA10, SK12, MvH15]. syntactic
[LE16, MKK+12, MKK+13, QLB17].
Syntax [SS13, KMMV14, SSK13].
synthesis [SR14a, STR16, SS16].
synthesizable [ABCR10]. synthesizer
[OUY+13]. Synthesizing
[GK15, SR15, LWH+10]. System
[BO13, KC12, MAHK16, ACS+14, AYZ10,
AGR17, BDB11, ELW15, HA13, HDK+11,
HWLM11, KR12, MS10, STY+14, TLL11,
Nil12a]. systematic [TD15]. Systems
[BG17, BSA14, BNE16, CCH11, DLPT14,
Fox17b, HTW14, JMB12, LM15, NBW+18,
RTE+13, SLES15, SLE+17, AT16, DW10,
FH16, Fox17a, Hdm17, HW1+12, HTLC10,
LPK14, LTK17, MHR+12, MAH12,
MvH15, OLA+13, PLL+18, PdMG12,
PDP+16, RHT13, SDH+17, SSMGD10,
SH12, TTD12, TWX+10, THC+14, UYI10,
Vit14, YRHB13, VK12].
Tableau [FFF17]. Tagged [RKN+18].
Tailoring [LZ12]. Take [Kie10]. Taking
[SWU+15]. Tales [Sew12]. talk
[Piz17, Sie17]. Taming [TLL11, SC16].
Tardis [BM14]. task
[Fee16, TWL12, ZLB+13].
TaskLocalRandom [PPMH15]. Tasks
[PWSG17, ST15, HAW13, PPMH15,
SP+10]. Taurus [MAHK16]. Taxonomy
[SS14]. Teaching
[HA13, SWF12, CHM13, ZDS14]. teasing
[LBF12]. technique [SSK13]. Techniques
RD15, EV13, KS13].
Test [AGM+17, BB12, BM18, GGZ+15, Rim12,
ST15, MT13, PNS14, SR14a, SKR17].
Test-driven [BM18]. tested [Mil13].
Testing [Ame13, BR12, Hin13, MM12,
MMP15, MMP+12, CSS+16, CNS13,
KPP+18, Ler10, Teo12, TD15].
tests [AO11, NYCS12, SR15].
Textbooks [BNP11]. their [RD16]. theorem [SH17].
There [Esq11]. thin [PPS16]. thin-air
[PPS16]. things [Mck16]. Think [WR10].
Third [Ano15, FOPZ14, LGV10].
third-party [FOPZ14, LGV10]. THOR
[TWX+10]. Thoth [KB17]. Thou [LCW18].
thread [BKc+13, CRAJ10, MGI17, PCL14,
PG12, SS10, YDF15]. thread-level
[MGI17].
threaded
[DSEE13, JTO12, SE12, Taf13]. threads
[UR15]. threat [BGS+13]. threats
[BGS+13]. Three [ZMM+16, Vit14].
TigerQuoll [BBP13]. Tim [Teo13]. Time
[BVEAGVA10, BBB+17, BLH12, DLR16,
Fox17b, HTW14, JMB12, Kie10, KW11,
Paul, SLES15, SLE+17, VK12, BCR13, BM14, BVGVEA10, BVGVEA11a, BVGVEA11b, BVGVEA13, BVGV14a, BVGV14b, CRAJ10, DW10, EABGV14, Fox17a, GRC+13, HTLC10, KHM+11, KPHV11, KHL+13, KvGS+14, KW10, KSR14, LMK16, LTK17, MGI17, Nil12a, P10, PZM+10, PWS11, Puf13, RHT13, SP10a, SPPH10, Sie10, SPS17, SH12, TTS+10, WAB+11. time-travel [BM14].

tree [SV17]. tri-based [SV17]. tries [SV15a, SV15b]. triggered [EABGV14].

twitter [Guy14]. Two [Has12]. Type [BO13, CGJ+16, KATS12, Lei17, Loc18, RKN+18, SGD15, WT11, ACS+14, AT16, BS13, CMS+12, CVG+17, DLM10, FH16, GBS14, HyG12, KML515, KRR+14, KRH16, KvRHA14, KDPG18, LPGK14, LE16, MHR+12, SH12, TLL11, Zha12, eBH11]. Type-Based [SGD15].
type-dependent [LE16]. Type-Safe [Loc18, KMLS15]. Typechecking [KDPG18, CL17].
typed [BO13, KKK+17, MHL15, CMS+12, KRCH14, Lei17, RDP16]. Types [BO13, RvB14, SPAK10, BDGS13, CHJ12, DDM11, HH13, MME+10, YDF15]. TypeScript [Cho14, FH16, RSF+15].

Typing [FZ17, RSF+15, Zie17, SFR+14, TSD+12]. typy [OA17].

Understandable [SM+16]. Understanding [ABC18, FRM+15, MKTD17, NWB+18, PCL14, QLBS17, Set13, TABS12, VBMDP16, LWB+15, Nil12b].

yang [CBGM12]. years [BTR+13].
yieldpoint [LWB+15]. yin [CBGM12].

Z [SBF+10]. Z-rays [SBF+10]. Zero [ZW13].

References

Altman:2010:OTJ

Accioly:2018:USS

Auerbach:2010:LJC

Abanades:2016:DAR

Ansaloni:2012:DAO

Ahn:2014:IJP

Aumuller:2016:OPD

Amighi:2016:PCC

[AdCGGH16] Afshin Amighi, Pedro de Carvalho Gomes, Dil-

Arnold:2011:AOJ

Aiello:2011:JBA

Albert:2010:PIM

REFERENCES

REFERENCES

REFERENCES

Adamsen:2017:PIR

Ashrov:2015:UCB

Andersen:2014:PLJ

Anonymous:2013:FAM

Anonymous:2014:RKS

Anonymous:2015:BRL

REFERENCES

REFERENCES

2016. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Akram:2016:BPG[BA12]

Amin:2016:JST[BB12]

CODEN JSSODM. ISSN 0164-1212 (print), 1873-1228 (electronic).

Bradel:2012:ITJ[BA12]

Brown:2017:NJP[BA17]

Boland:2012:JCC[BB12]

Bonetta:2017:FJF[BB17]
Basin:2017:KKV

Bebenita:2010:STB

Bonetta:2013:TPE

Bu:2013:BAD

Bettini:2013:FDT

Bodin:2014:TMJ
REFERENCES

Bergenti:2011:PPS

Bacon:2013:PRT

Bainomugisha:2013:SRP

Bettini:2017:XTJ

Bala:2011:DTD

Bettini:2013:CTB

REFERENCES

Barbu:2012:ARA

Badihi:2017:CAG

Biswas:2014:DES

Biboudis:2017:RJD

Burdette:2012:ECJ

Baar:2012:DEP
REFERENCES

[10.1007/978-3-642-29709-0_6/]

Bell:2014:PID

[BK14]

Bond:2013:OCC

[BKC+13]

Brooks:2016:CST

[BKP16]

Bodden:2012:PEF

[BLH12]

Barr:2014:TAT

[BM14]

Bouraqadi:2018:TDD

REFERENCES

[BNP11] Jürgen Börstler, Marie Nordström, and James H.

Burnim:2012:SCS

Bellia:2011:PJS

Bellia:2012:ERT

Bellia:2013:JST

Bruno:2017:NPG

Barabash:2010:TGC

Bluemke:2012:DTJ

Iona Bluemke and Artur Rembiszewski. Dataflow testing of Java programs with DFC. *Lecture Notes*
REFERENCES

Bogdanas:2015:KJC

Brandt:2014:DAS

Bhattacharya:2012:DLI

Brown:2012:BRF

Bosboom:2014:SCC

Bedla:2012:SSJ

Mariusz Bedla and Krzysztof Sapiexicha. Scalable store of Java objects using range partitioning. Lecture Notes in Computer Science, 7054:
REFERENCES

[Balogh12]

Balatsouras:2013:CHC

[Bouktif14]

Bouktif:2014:PSO

[Bodden13]

Bodden:2013:SLS

[Basanta-Val10]

BRENGVA10

Pablo Basanta-Val, Iria Estevez-Ayres, Marisol Garcia-Valls, and Luis Almeida. A synchronous scheduling service for distributed real-time Java. *IEEE Transactions on Parallel and Dis-
REFERENCES

Basanta-Val:2011:FTM

Bourdykine:2012:LAM

Cao:2012:YYP

Briggs:2017:COI

Carlisle:2011:WCB

Chevalier-Boisvert:2012:BSH

REFERENCES

Ceccato:2010:MLD

Cecco:2011: SJG

Carter:2013:SSA

Chandra:2016:TIS

Chamberlain:2017:PLR

Chugh:2012:DTJ

Carro:2013:MDA

Chapman:2016:HSH

Cogumbreiro:2015:DDV

Chong:2014:CCT

Campbell:2013:ICC

Chen:2017:CLP

Canino:2017:PAE

Castro:2017:JLC

Chang:2012:IOT

Choi:2013:GGT

Clifford:2014:AFB

Chatterjee:2015:QIA

Curley:2010:RDT

Edward Curley, Binoy Ravindran, Jonathan Anderson, and E. Douglas Jensen. Recovering from distributable thread failures in distributed real-time Java. ACM Transactions on Embedded Com-

Choi:2017:SAS

Chawdhary:2017:PES

Chanda:2012:TBS

Chen:2016:CDD

Cameron:2015:JFE

REFERENCES

daCosta:2012:JSL

Dhawan:2012:EJT

DeBeukelaer:2017:ECP

Dietl:2011:SOT

Deitche:2010:JEJ
REFERENCES

ISSN 1075-3583 (print), 1938-3827 (electronic).

Deitcher:2011:SPJ

DelRa:2013:BRJ

Dennis:2018:MFI

Disney:2015:SYJ

Dey:2013:STA

deGouw:2015:OJU

DHondt:2012:ISS

REFERENCES

0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Dolby:2012:DCA

Dietrich:2015:GSE

DiPierro:2018:RJ

DiPierro:2018:TVG

Dietrich:2016:WJD

Dam:2010:PCI

deJong:2018:MJA

DeNicola:2014:FAA

Delegence:2016:GTJ

Demange:2013:PBB

deMol:2012:GTJ
REFERENCES

Dyer:2014:DVE

Doeraene:2016:PIW
Sébastien Doeraene and Tobias Schlatter.

Bois:2013:BGV
Kristof Du Bois, Jennifer B. Sartor, Stijn Eyerman, and Lieven Eeckhout.

[Duarte:2011:ICS]
Rafael Duarte, Alexandre Mota, and Augusto Sampio.

[Devietti:2012:RRC]

[Dietrich:2010:POD]
K. Dietrich and F. Röck.

[Bois:2013:BGV]
Kristof Du Bois, Jennifer B. Sartor, Stijn Eyerman, and Lieven Eeckhout.
REFERENCES

Ebert:2015:ESE

Efftinge:2013:XID

Erdweg:2012:GLE

Eugster:2013:SUP

Evans:2013:WGJ

Ferrara:2013:GSA

Fernandes:2011:LFS

Feeley:2016:CML

Automatic Differentiation (AD2012) held July 23–27, 2012, in Fort Collins, Colorado, USA.

Fontaine:2012:VCF

Freudenberg:2015:SMP

Flanagan:2013:PES

Fan:2018:VCJ

Feldthaus:2013:SAR

Felgentreff:2015:CBC

Luca Gherardi, Davide Brugali, and Daniele Comotti. A Java vs. C++
Gerakios:2013:FIS

Gerakios:2014:RTP

Gama:2010:SAA

German:2012:MOS

Gupta:2018:HDB

Golan-Gueta:2014:ASL
Golan-Gueta:2015:ASA

Golan-Gueta:2017:ASA

Gligoric:2015:GCB

Gosling:2013:JLS

Gosling:2014:JLS

Gvero:2015:SJE

Gejibo:2012:CIE
Samson Gejibo and Federico Mancini. Challenges in implementing an end-to-end secure protocol for Java ME-based mobile data collection in low-budget settings. *Lecture Notes in
REFERENCES

Gonzalez:2013:HBP

Gadyatskaya:2012:JCA

Gardner:2012:TPL

Greenman:2014:GFB

Gupta:2016:LSA

Gong:2011:JSA

Grossschadl:2012:EJI

Johann Großschädil, Dan Page, and Stefan Tillich. Ef-

Gunther:2014:ACC

Guo:2017:MJF

Guyer:2014:UJT

Gvero:2013:BRC

Gampe:2011:SMB

Grigore:2016:ARG

Garbervetsky:2011:QDM

Diego Garbervetsky, Sergio Yovine, Victor Braberman, Martin Rouaux, and Alejandro Taboada. Quantita-
Hauswirth:2013:TJP

Hanenberg:2015:WDW

Stefan Hanenberg. Why do we know so little about programming languages, and what would have happened if we had known more? *ACM SIGPLAN Notices*, 50(2):1, February 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Hasbun:2012:UTP

Haverbeke:2011:EJM

Heumann:2013:TEM

Huang:2013:ECS

Jipeng Huang and Michael D. Bond. Efficient context sensitivity for dynamic analyses via calling context up-trees and customized memory management. *ACM
REFERENCES

REFERENCES

REFERENCES

Horspool:2011:PPP

Hoppe:2013:DDB

Hower:2014:HRF

Herhut:2013:RTP

Hinojosa:2013:TS

Hunt:2012:JP

REFERENCES

REFERENCES

Huang:2012:RR

Hashmi:2012:CNI

Horie:2014:SDJ

Hollingsworth:2012:SPI

Horstmann:2011:CJA

Horstmann:2012:JEC

Hosking:2012:CHL
Tony Hosking. Compiling a high-level language for GPUs: (via language support for architectures and compilers). *ACM
Haas:2017:BWS

Higuera-Toledano:2010:ISI

Higuera-Toledano:2014:EIS

Hayashizaki:2012:IPT

Huang:2011:SBA

Haubl:2010:CES

Hauer:2011:ECE

Hauer:2013:CST

Hauer:2014:TTE

Humer:2015:DSL

Hackett:2012:FPH

Iranmanesh:2016:SSE

Inoue:2012:AML

Inoue:2012:ISC

Islam:2012:HPR

Insto:2016:AAJ

Ino:2016:MIM

Juneau:2012:JRP

References

Jenista:2011:OSO

Jayaraman:2017:CVJ

Johari:2011:ESE

Jantz:2013:ESM

Jagannathan:2014:AR

Jung:2012:EJA

Kastner:2012:TCA

Kumari:2011:AOO

Kunjir:2017:TAM

Kim:2014:LBL

Kiselyov:2017:SFC

Kulkarni:2012:MCO

Krishnaveni:2012:HOJ
R. Krishnaveni, C. Chellappan, and R. Dhanalakshmi. Hybrid obfuscated Javascript strength analysis system for detection of malicious websites. Lecture Notes in Computer Science, 7513:

Kedia:2017:SFS

Kouzapas:2018:TPM

Kereki:2015:JAW

Kuehnhausen:2011:AJM

Kumar:2012:WSB

Khan:2015:UJW

Kerschbaumer:2013:IFT

Kang:2017:PSR

Kalibera:2011:FRT

Kabanov:2011:DSF

Kienle:2010:ATT

Kienle:2013:BRE

Kim:2017:TAA

Krieger:2011:AES

Kaiser:2014:WAM

Ko:2010:EAW

Karakoidas:2015:TSE

Kalibera:2014:FAS
Kulkarni:2016:APA

Kolling:2010:GPE

Kroening:2015:CAV

Kalibera:2011:SRT

Khyzha:2012:AP

Kintis:2018:HEM

Kang:2012:FSJ

[Seonghoon Kang and Suky-

[Kroshko:2015:OPN]

[Kouneli:2012:MKD]

[Korsholm:2014:RTJ]

[Kashyap:2014:TRS]

[Keil:2014:EDA]

[Keil:2015:BAH]
Matthias Keil and Peter Thiemann. Blame assignment for higher-order contracts with intersection and union. ACM SIGPLAN Notices, 50(9):375–386, Sep-
REFERENCES

tember 2015. CODEN SIN-ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Li:2014:MHD

Lorenzen:2016:STD

Leijen:2017:TDC

Lerner:2010:FTJ

Lewis:2013:IAP

Liu:2014:JNU

Leino:2015:APS

References

Leung:2013:PEJ

Lin:2015:STU

Lee:2016:ECP

Loring:2017:SAJ

Long:2012:COS

Leavens:2015:BSS

Lopes:2015:HSA

Locbihler:2013:MJM

Locbihler:2018:MTS

Long:2010:TDSa

Long:2010:TDSb

Loureiro:2013:EDS

Lerner:2014:TR

REFERENCES

 Lux:2011:TSD

 Landman:2016:EAR

 Luu:2014:MCC

Li:2014:EAJ

Laskowski:2012:DJP

Liu:2014:FFL

Luckow:2017:HTP

Lerner:2010:SDT

Lin:2015:SGU

Li:2016:JJM

McIntosh:2012:EJB

Maas:2016:THL

McIntyre:2012:FJB

Martinez:2017:MBA

McKinley:2016:PWU

[MGI17] Jan Kasper Martinsen, Håkan Grahn, and An-

Miller:2013:IPG

Matsakis:2015:TOJ

McGachey:2010:CJC

Mayer:2012:ESI

Miller:2013:TSG

Malhotra:2017:PPS

Geetika Malhotra, Rajshkar Kalayappan, Seep Goel, Pooja Aggarwal, Abhishek Sagar, and Smruti R. Sarangi. ParTejas: a parallel simulator for multicore

REFERENCES

Mirshokraie:2012:JJA

McBurney:2016:ASC

Markstrum:2010:JDP

Martin:2014:TCR

Mirzaei:2012:TAA

Mirshokraie:2015:GMT
Mastrangelo:2015:UYO

Mercer:2012:CVI

Magazinius:2012:SWS

Mamouras:2017:SMS

Meawad:2012:EBS

McIlroy:2010:HJR

Marinescu:2013:FSJ

[MS13] Maria-Cristina Marinescu and César Sánchez. Fus-
ing statecharts and Java. ACM Transactions on Em-
bedded Computing Systems, 12(1s):45:1–45:??, March
2013. CODEN ???? ISSN 1539-9087 (print), 1558-
3465 (electronic).

Moller:2014:ADC

[MS14] Anders Moller and Math-
lias Schwarz. Automated
detection of client-state
manipulation vulnerabili-
ties. ACM Transactions
on Software Engineering
and Methodology, 23(4):
CODEN ATSMER. ISSN
1049-331X (print), 1557-
7392 (electronic).

Marino:2010:DSE

[MSM+10] Daniel Marino, Abhayen-
dra Singh, Todd Mill-
stein, Madanlal Musuvathi,
and Satish Narayanasamy.
DRFX: a simple and ef-
cient memory model for
concurrent programming
languages. ACM SIG-
PLAN Notices, 45(6):351–
362, June 2010. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Marino:2016:DXU

[MSM+16] Daniel Marino, Abhayen-
dra Singh, Todd Mill-
stein, Madanlal Musuvathi,
and Satish Narayanasamy. drf
x: an understandable, high
performance, and flexible
memory model for concurrent
languages. ACM Transac-
tions on Programming
Languages and Systems,
38(4):16:1–16:??, October
2016. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (elec-
tronic).

Mitchell:2010:FTL

[NMSS10] Nick Mitchell, Edith Schon-
berg, and Gary Sevitsky.
Four trends leading to Java
runtime bloat. IEEE Soft-
ware, 27(1):56–63, January/
February 2010. CODEN
IESOEG. ISSN 0740-7459
(print), 0740-7459 (elec-
tronic).

Mitropoulos:2016:HTY

[MSSK16] Dimitris Mitropoulos, Kon-
stantinos Stroggylos, Dio-
nidis Spinellis, and Ange-
los D. Keromytis. How to
train your browser: Pre-
venting XSS attacks using
contextual script finger-
pints. ACM Transactions
on Privacy and Security
CODEN ????? ISSN 2471-2566
(print), 2471-2574 (elec-
tronic).

Malhotra:2013:DFT

[MT13] Ruchika Malhotra and Di-

Muraowski:2014:GSI

Madsen:2015:SAE

Marz:2016:RPC

Mesbah:2012:CAB

Motika:2015:LWS

Mateos:2010:ANI

REFERENCES

Nunez:2016:PGC

Ngo:2012:BRE

Nilsen:2012:RTJ

Nilsen:2012:TOU

Namjoshi:2010:NOP

Na:2016:JPC

Nolan:2014:XWT

pp. LCCN QA76.76.H94

REFERENCES

Nguyen:2018:UCM

Naik:2012:AT

Omar:2017:PSF

Oaks:2014:JPD

Ocariza:2017:SCC

Ortin:2014:RP1
REFERENCES

7459 (print), 1937-4194 (electronic).

REFERENCES

0163-5964 (print), 1943-5851 (electronic).

[PdMG12] Laura Panizo and María del Mar Gallardo. An extension of Java PathFinder for hybrid systems. ACM SIGSOFT Software Engineering Notes, 37(6):1–5,
Portillo-Dominguez:2016:ECP

Parker:2011:DPG

Pradel:2012:FAP

Park:2011:DCM

Park:2017:PSS

Pizlo:2017:JVM

REFERENCES

Pawlak:2016:SLI

Papadimitriou:2014:MLS

Phan:2012:SQI

Porter:2018:PJE

Poslavsky:2019:REJ

Passerat-Palmbach:2015:TSS

REFERENCES

REFERENCES

[PTML11] Stergios Papadimitriou, Konstantinos Terzidis, Seferina Mavroudi, and Spiridon Likothanassis. ScalaLab:

REFERENCES

Pizlo:2010:SFT

Qiu:2017:USR

Qian:2016:EFS

Rehman:2016:VMJ

Rauschmayer:2014:SJD
ROSSI:2015:NPJ

RAZAFINDRALAMBO:2012:FFH

RAYCHEV:2016:PMC

RATHEE:2017:ROO

ROSA:2017:APV

ROBATMILI:2014:MRL

RADOI:2015:ETS

[RD15] Cosmin Radoi and Danny Dig. Effective techniques for static race detection in Java.

Ramirez-Deantes:2012:MTA

Rhodes:2015:DDO

Reynders:2016:GSB

Bob Reynders, Dominique Devriese, and Frank Piessens. Generating safe boundary APIs between typed ED-SELS and their environments.

Reynolds:2013:MJB

Reza:2012:JS

Richard-Foy:2014:EHL

REFERENCES

[Ric14] Matt Richardson. *BeagleBone für Einsteiger: [Linux-basierte Elektronik-
REFERENCES

Sabela Ramos, Guillermo L. Taboada, Roberto R. Expósito, Juan Touriño, and Ramón Doallo. Design of scalable Java communication middleware for multi-core sys-
REFERENCES

Ramos:2015:NCS

Rubin:2014:HCW

Rowe:2014:STA

Raychev:2015:PPP

Ricci:2011:SAO

Rudafshani:2017:LDD
REFERENCES

REFERENCES

Scherr:2016:AFC

Schmidt:2010:ERA

Schultze:2010:WAJ

Schmeisser:2013:MOE

Schildt:2014:JCRb

Sluanschi:2016:AAD

Sousa:2016:CHL

REFERENCES

1523-2867 (print), 1558-1160 (electronic).

Severance:2012:DJO

Severance:2012:JDL

Sewell:2012:TJ

Swamy:2014:GTE

Sherman:2015:DTB

Subercaze:2017:UPT

Simao:2012:CER

REFERENCES

[SK12] Zhe Shan and Akhil Kumar. Optimal adapter creation for process composition in synchronous vs. asynchronous communication. *ACM Transactions*
REFERENCES

Andreas Sewe, Mira Mezini, Aibek Sarimbekov, Danilo Ansaloni, Walter Binder, Nathan Ricci, and Samuel Z. Guyer. *New Scala() instanceof Java*: a comparison of the memory behaviour of Java and Scala programs. *ACM SIG-
REFERENCES

Sewe:2011:CCS

Stork:2014:APB

Schoeberl:2010:NRT

Spoto:2010:MSL

Serrano:2016:GH

Steimann:2010:TMI

Spring:2010:RAI

Schoeberl:2010:WCE

Strom:2017:HLR

Stefanescu:2016:SBP

Samak:2014:MTS

Samak:2014:TDD

Sun:2017:AJP

Kwangwon Sun and Sukyoung Ryu. Analysis of
REFERENCES

Andreas Stefik and Susanna Siebert. An empirical investigation into programming language syntax. *ACM*
REFERENCES

[Su:2014:CEM] Xueyuan Su, Garret Swart, Brian Goetz, Brian Oliver,
REFERENCES

[Srikanth:2017:CVU]

[Srikanth:2017:CVU]

[Singh:2013:TGC]

[Sciampacone:2010:EMS]

[Sciampacone:2010:EMS]

[Stone:2015:WMT]

Jonathan Stark. *Building iPhone apps with HTML, CSS, and JavaScript: Making App Store apps without Objective-C or Cocoa*. O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
REFERENCES

95472, USA, 2010. ISBN 1-4493-8023-9, 0-596-80578-0. xv + 166 pp. LCCN ???.

[Sub11] Venkat Subramaniam. Programming concurrency on

Su:2014:RVP

Subramaniam:2011:PCJ

Venkat Subramaniam. Programming concurrency on
REFERENCES

Steindorfer:2015:CSM

Steindorfer:2015:OHA

Steindorfer:2017:TSP

Silva:2017:ICL

Sverdlove:2014:JVL

Siek:2012:FDT

Stancu:2015:SEH

Codrut Stancu, Christian Wimmer, Stefan Brum-

REFERENCES

996, October 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Tomescu:2017:CEN

Teodorovici:2012:BRC

Teodorovici:2013:BRL

Teyton:2014:SLM

Tommasel:2017:SJL

Tu:2014:PPP

Tsai:2015:JPI

[TKL+15] Chun-Jen Tsai, Han-Wen Kuo, Zigang Lin, Zi-Jing Guo, and Jun-Fu Wang. A Java processor IP design

Thiessen:2017:CTP

Tate:2011:TWJ

Tetali:2013:MSA

Tan:2017:EPP

Terra:2013:QCC

Toledo:2012:AJA

REFERENCES

Topley:2011:JDG

Toffola:2015:PPY

Taboada:2013:JHP

Taboada:2011:DEJ

Takikawa:2012:GTF

Toledo:2011:ACJ

Taboada:2011:DLC

[TTD+11] Guillermo L. Taboada, Juan Touriño, Ramón Doallo, Aamir Shafi, Mark Baker, and Bryan Carpenter. Device level commu-

Taboada:2012:FMS

Tatsubori:2010:EJT

Tardieu:2012:WSS

Toegl:2012:SSJ

Titzer:2010:ICR

Ben L. Titzer, Thomas Würthinger, Doug Simon, and Marcelo Cintra. Improving compiler-runtime
REFERENCES

\textbf{Teng:2010:TPA}

\textbf{Urma:2015:JAL}

\textbf{Upadhyaya:2010:UDS}

\textbf{Upadhyaya:2015:EML}

REFERENCES

REFERENCES

Vidal:2016:UAE

Vidal:2018:ARB

VanderMerwe:2012:VAA

Viotti:2017:HRH

VanLoan:2010:ITC

REFERENCES

[Wampler:2011:FPJ]

[Wang:2011:EEU]

[Wurthinger:2011:AED]

[Welch:2010:ABS]

[Wells:2016:ISC]

[Wood:2014:LLD]

[Wagner:2011:SVJ]
REFERENCES

Wagner:2011:CMM

Wu:2011:RTS

Wimmer:2013:MAV

Wellings:2012:AEH

Wang:2017:JRJ

Wade:2017:AVJ
REFERENCES

Wimmer:2010:AFD

Wendykier:2010:PCH

Witman:2010:TBR

Westbrook:2010:MJM

Wehr:2010:JBP

Wehr:2011:JIT

Wurthinger:2017:PPE

REFERENCES

52(6):662–676, June 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

Yang:2013:CPP

Yoo:2014:WRR

Yang:2017:EJV

Yessenov:2017:DAD

Yang:2010:JIP

Yi:2015:SCC

REFERENCES

ISSN 1049-331X (print), 1557-7392 (electronic).

REFERENCES

Zheng:2015:APP

Zhang:2017:ACE

Zhang:2015:SYB

Zhao:2012:PTI

Zhang:2015:LOS

Minjia Zhang, Jipeng Huang, Man Cao, and Michael D. Bond.

Zschaler:2014:SJF

Zuo:2016:LOF

Zhang:2012:RAJ

Zacharopoulos:2017:EMM

Zheng:2016:CMD

Zhao:2013:INT

Zhang:2014:AIO

Zeyda:2014:CMS

Zabolotnyi:2015:JCG

Zhang:2014:ARP

Zibin:2010:OIG

Zibin:2010:OIG

REFERENCES

Zerzelidis:2010:FFS

Zhao:2014:CSP

Zhu:2013:EAZ

Zhu:2015:APL

Zhao:2014:CSP

Zhu:2013:EAZ

Zhu:2015:APL

Zhao:2014:CSP

Zhu:2013:EAZ

Zhu:2015:APL