A Bibliography of Publications about the *Java Programming Language*, 2020–2029

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

03 June 2024
Version 1.38

Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

Antipatterns [TPBF23], API [AXR^23, FSZD20, KMSH22, NFH22, ZKK^23, ZWY^20], APIs [AST23, BLS^23], application [AAYK20, HSVMB20]. Applications [MM22, PBC24, RW20, TSBB20, TPBF23, ZBA23, CCRS23, CPV^20, JGS^21, KAR23, SS23a, TAM^22]. Approach [TSBB20, SAC21, MSDP23], architectures [PNM^20], Areas [BM23], Arithmetic [Dar21]. ARJA [YB20], ARM [HZN^22]. Art [BM23], Assessment [MNS^23, TCDT23], Attacks [PBC24], attributes [CAC20], Automated [MCF^22, TPBF23, YB20, AAYK23, KTB20]. Automatic [KMSH22, MT23, SS23a, SVTTB23, ZKK^23, ZWY^20].

Automatically [AST23], AWS [Ano20].

Conflicts [GBMV20, SGHM23, WWW^22]. DBP22]. confusing [AAYK23, TOO^23].

D [BAP20], Data [MKNS20, SV22], dataflow [SS23a], dataset [KAR23], Dead [MNS^23, CCRS23], Debloating [HLX23, SVDHB23, TAM^22], Debt [ZBA23], Debugger [PBC24].

Debugger-based [PBC24], debugging [PBC24, SIK^21], decision [MSDP23]. Declarative [C^23, NPZ^20], decompilation [HSVMB20], decompiler [HSVMB20], default [LMM21], Defect
Defects [ZYW+20, GCS+20], definitions [THG20], Density [WFD23], Dependencies [SVTTB23], Dependency [JCA+22, WWW+22], dependent [CFLH+22], Deprecation [NFH22], depth [SBBL23], Deserialization [SBBL23], design [BKP+22, PNM+20], desktop [CCRS23], despite [HFS22], Detecting [FHSQ20, MNT20], Detection [AXR+23, AKAS22, TPBF23, ZKX+23, ZYW+20, AAYK23, ACSK23, FHZ+22, FYL+23, HLZ+21, HSF+22, LFHX23, NBA+21], Developer [CCH+22, Her21, BPLFR+20], Developers [MM+22, CAC20], diagrams [SS23], Did [MM22], differ [API+22], Different [SV22], diffusion [MCM+24], directed [FRD20], Directive [ZYW+20], diversity [HSVMB20, MLBD21], do [API+22], Docker [ZM21], Documentation [ZYW+20], doing [Cob22], Driven [AST23], DSL [CBPC23], DSL-based [CBPC23], duplex [DAAZ+20], Dynamic [KTSS20, PKB23, TAM+22], ecosystem [MPW+21], effect [CAC20], Effective [FRD20], Efficient [SS23b, FDD20, ZZ20], Elements [FRD20], Eliminating [MV20], Elimination [CCH+22, MNS+23], Empirical [AAYK20, CASA22, MNS+23, HR20, PVR+20, THG20], employer [Ano20], end [FBV22], engine [PKB23], Entering [BM23], Environment [SV22, DAAZ+20], Errors [vO23], ESLint [TAV20], Evaluating [KMSH22], Evaluation [AXR+23, BKP+22, ACSK23, NG23, PVR+20], Event [AST23, DB23], Event-Driven [AST23], Every [Dar21, Her21], Evolution [YBSM21, BPLFR+20, CCRS23], exception [CGC+24], Execution [SBBL23, NPZ+20, PJJM21, SIK+21], expertise [ORPPG20], eXPloitation [NBA+21], Exploits [SBBL23], exploratory [CCRS23], expression [Agu23], extended [NGB23], extensible [KAR23], extensive [ASKC23], extraction [HLZ+21, PJJM21, SS23a], extractions [HR20], extractor [Agu23], fast [LH22], fault [AAYK20], fault-prone [AAYK20], Featherweight [GHK+20], feature [HLZ+21, LFHX23], Features [NHF+24], FeynGame [HKL+20], Finding [AST23], Finite [PJ+21], Finite-state [PJ+21], first [WBE20], Floating [Dar21, ASD+23], Floating-Point [Dar21, ASD+23], flow [Ram22], Forecasting [ZBA23], Formatting [LFBD+23], formulas [MLBD21], Framework [ML+24, WKJ+23, CBPC23, CPV+20, GCC20], frameworks [FBV22], frequency [MLBD21], Friendly [WLC+24], front [FBV22], front-end [FBV22], full [DAAZ+20], full-duplex [DAAZ+20], Functional [WFD23, MCF+22, Ram22], Functions [YAP23, CFLH+22], Game [MT21], generate [FRD20], generators [NPZ+20], Genetic [YB20], Git [HHK20], GitHub [GMB+20], GMP [AS23], Go [Fei22, GHK+20], Google [Fei22], Graph [MKNS20, FHZ+22, FYL+23, KPK23], graphical [CPV+20], Groovy [Kin20], guided [MCF+22], handling [CGC+24], HBSniff [HSF+22], heap [PNM+20], Heterogeneous [ORPPG20, BDGZ23], Hibernate [HSF+22], High [SS23b], High-Level [SS23b], Highly [HFS22, AAYK23], history [Hi+20, Kin20], Hosted [GMB+20], Hub [ZMD21], hundreds [MPW+21], Hybrid [TSBB20], IBFD [DAAZ+20], Identification
implementations [CGC+24]. In-band [DAAZ+20]. In-depth [SSBB20]. Interpreter [ZXX23]. Investigation [TOO+23]. Isula [GCC20].

JSAalyzer [CCH+22]. JSContana [HLZ+21]. JSetL [C+23]. JSON [JQZ20].

JVM-Based [BM23].

kernel [DD20]. Key [BBB+20, HLZ+21, ASD+23]. Kirk [HFS22]. KiWi [BBB+20].

Know [Dar21, Her21].

Kotlin [MM22].

label [ORPPG20]. Landscape [NFH22].

Language [BWTS+23, Fei22, BAP20, Kin20].

Linguages [LMM21].

Large [MAL24, RBRB23, HFS22, HR20, MSB23].

Large-Scale [MAL24, RBRB23].

leak [GS+20].

Learn [Fei22]. Learned [RK20].

Learning [AST23, SAC21].

Lessons [RK20].

Level [SS23b, ORPPG20].

leveraging [FCS20].

Lexical [CA20].

Libraries [BM23, HCL22].

Library [MKNS20, AS23, CK21, MNT20].

licensing [MPW+21].

light [Agu23]. like [BDGZ23].

limited [SIC+21].

Linters [TAV20, HFS22].

Listen [AST23].

lists [Ano20].

local [AAYK20].

locations [MNT20].

Logic [WKJ+23, WKJ+23].

Look [HZN+22, vO23].

machine [CGC+24, SAC21, DD20, PNMT+20].

maintainability [MB23].

Malicious [AKAS22, FHZ+22, HLZ+21, HFSQ20].

malware [FYL+23]. many [HFS22].

Map

quality [MCM24]. Quantifying [FLR23].

real-world [MLBD21]. reasoning [ASD+23]. Recommendation [ZYZ+20].
Recursive [ZZdSO23, Ram22]. refactoring [KTB20, MSB23]. RegCPython [ZXX23].
Regex [CFLH+22]. Regex-dependent [CFLH+22]. Register [ZXX23].
relationship [MCM24]. Relooper [Ram22].
Runtime [WLC+24, CBPC23]. Rust [vO23].

Scalable [BBB+20, JQZ20]. Scale [MAL24, HR20, RRRB23]. Security [TSBB20, SS23a]. security-rich [SS23a].
Self [PBC24]. Self-debugging [PBC24].
semantic [FHSQ20, FHZ+22]. Semantics [MT21, WWW+22, FCS20].
SHARP [LH22]. Should [Dar21, Her21]. side [NBA+21, TAM+22]. similar [AAYK23]. Simplifying [CHH+22].
streams [KTB20, RRRB23]. String [YAP23, CFLH+22]. structural [CAC20, JQZ20]. structure [ORPPG20].
Subtyping [ZZdSO23]. Suites [AS23].
Support [YAP23]. supporting [BBG+22].
Survey [NFH22]. Swing [RK20]. synthesis [MCF+22].

Taint [KTB20]. Technical [ZBA23].
their [GCS+20, MCM24, ORPPG20]. Theory [WFD23]. There [ZXX+23, TCDT23].
Things [Her21, DAAZ+20, JGSG+21].
Third [SVTTB23, HCL22]. Third-Party [SVTTB23, HCL22]. Time

XSS [LFHX23].

year [BPLFRL20]. years [WBE20].

ZWT [CPV+20].

References

Amankwah:2023:BDJ

Agun:2023:WLR

Alazab:2022:DOM

Anonymous:2020:SWS

Artho:2020:JPW

Amalfitano:2022:HDJ

REFERENCES

Amato:2023:JJB

Abbasi:2023:CRS

Arteca:2023:LHL

Afrose:2023:ESV

Besseling:2023:UTT

Bright:2020:ODP

Basin:2020:KKV

REFERENCES

[Balliu:2023:CPS]

[Bacchiani:2022:JTC]

[Bianchini:2023:JLC]

[Bierhoff:2022:WNW]

[Bijlsma:2022:EDP]

[Brun:2023:BPJ]

[Bucur:2023:EMJ]
Vlad Bucur, and Liviu-Cristian Miclea. Entering the metaverse from the JVM: The

Blanco:2020:USE

Brown:2023:NUJ

Cristia:2023:DPI

Capiluppi:2020:LCC

Capiluppi:2020:EMD

Chowdhury:2022:UTP

DEN ???? ISSN 2352-7110. URL http://www.sciencedirect.com/science/article/pii/S2352711021000042

REFERENCES

REFERENCES

[GMBv20] G. Ghiotto, L. Murta, M. Bar-

REFERENCES

Huang:2022:CUU

Hermans:2021:TTE

Hoefflich:2022:HIK

Higo:2020:TJM

Hickey:2020:HC

Harlander:2020:F

He:2023:IBC

[HLX23] Dongjie He, Jingbo Lu, and Jingling Xue. IFDS-based context debloating for object-sensitive

Huang:2021:JMJ

Harrand:2020:JDD

Hora:2020:CME

Huang:2022:HSA

Hartley:2022:JTC

Jafari:2022:DSJ

Abbas Javan Jafari, Diego Elias Costa, Rabe Abdalkareem, Emad Shihab, and Nikolaos

Jung:2021:TPI

Jiang:2020:SSI

Karmakar:2023:JEJ

King:2020:HGP

Kechagia:2022:EAP

Krasanakis:2023:JGN

Khatredourian:2020:SAR

REFERENCES

and Isil Dillig. Automated trans-
silation of imperative to func-
tional code using neural-guided
program synthesis. *Proceed-
ings of the ACM on Program-
ming Languages (PACMPL)*, 6
(OOPSLA1):71:1–71:27, April
2022. CODEN ???. ISSN
2475-1421 (electronic). URL
1145/3527315.

Martins:2024:DTS

[MM22] Luana Martins, Heitor Costa,
and Ivan Machado. On the dif-
fusion of test smells and their
relationship with test code qual-
ity of Java projects. *Journal of
Software: Evolution and Pro-
cess*, 36(4):e2532:1–e2532:??,
April 2024. CODEN ???. ISSN
2047-7473 (print), 2047-7481
(electronic).

Michail:2020:JJS

[MKNS20] Dimitrios Michail, Joris Kin-
able, Barak Naveh, and John V.
Sichi. JGraphT — a Java library
for graph data structures and al-
gorithms. *ACM Transactions on
Mathematical Software*, 46(2):
16:1–16:29, June 2020. CODEN
ACMSCU. ISSN 0098-3500
(print), 1557-7295 (electronic).
URL https://dl.acm.org/
doi/abs/10.1145/3381449.

Moseler:2021:DFC

[MLBD21] Oliver Moseler, Felix Lemmer,
Sebastian Baltes, and Stephan
Diehl. On the diversity and
frequency of code related to
mathematical formulas in real-

world Java projects. *The Jour-
nal of systems and software*, 172
(??):??, February 2021. CO-
DEN JSSODM. ISSN 0164-
1212 (print), 1873-1228 (elec-
sciencedirect.com/science/
article/pii/S0164121220302533

Martinez:2022:WDD

[MM22] Matias Martinez and Bruno Gois
Mateus. Why did developers mi-
grate Android applications from
Java to Kotlin? *IEEE Trans-
actions on Software Engineer-
ing*, 48(11):4521–4534, Novem-
ber 2022. CODEN IESEDJ.
ISSN 0098-5589 (print), 1939-
3520 (electronic).

Malavolta:2023:JDC

[MNS+23] Ivano Malavolta, Kishan Nirghin,
Gian Luca Scocia, Simone
Romano, Salvatore Lombardi,
Giuseppe Scanniello, and Pa-
tricia Lago. JavaScript dead
code identification, elimination,
and empirical assessment. *IEEE
Transactions on Software Engi-
neering*, 49(7):3692–3714, July
2023. CODEN IESEDJ. ISSN
0098-5589 (print), 1939-3520
(electronic).

Moller:2020:DLJ

[MNT20] Anders Møller, Benjamin Barslev
Nielsen, and Martin Toldam
Torp. Detecting locations in
JavaScript programs af-
fected by breaking library
changes. *Proceedings of the
ACM on Programming Lan-
guages (PACMPL)*, 4(OOPSLA):
REFERENCES

Nascimento:2022:JAD

Nowicki:2023:PEJ

Nicolini:2024:UNJb

Nigro:2022:PPK

Nie:2020:UEI

Ni:2022:JTD

Ortin:2020:HTS

Francisco Ortin, Oscar Rodriguez-Prieto, Nicolas Pascual, and

Norman Ramsey. Beyond relooper: recursive translation of unstructured control flow to structured control flow (functional pearl). *Proceedings of the ACM on Programming Lan-
REFERENCES

References

Shimari:2021:NNO

Sherman:2023:JPW

Sasikumar:2022:CAD

Soto-Valero:2023:CBD

REFERENCES

References

[T] Trubiani:2023:ADS

[v] vanOorschot:2023:MEMb

REFERENCES

