A Bibliography of Publications about the *Java Programming Language*, 2020–2029

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/
17 August 2024
Version 1.41

Abstract

This bibliography records books about the Java Programming Language and related software.

Title word cross-reference

K [Nig22].
-Means [Nig22].
10-year [BPLFRL20].
2019 [APA+20], 2022 [SNA+23].
3.0 [BM23].
8 [FRD20, KTB20].
abnormality [AAYK20], Abstraction [DB23, MV20], according [ORPPG20], adaptable [HLZ+21], adaptivity [CBPC23], Addiction [FLR23], Adoption [TAV20, FBV22], Affect [WWW+22, GGF+24], affected [MNT20], ahead [MV20], ahead-of-time [MV20], aide [CA20], algorithm [FRD20], Algorithms [MKNS20, Nig22, GCC20, NGB23], alternatives [BKP+22], Analysis [HLX23, KTSS20, SV22, TSBB20, AAYK20, ACSK23, DD20, FHSQ20, FCS20, HLZ+21, HSF+22, LKK24, LH22, MSDP23], Analytics [BBB+20, JQZ20], analyzing [MSB23], Android [MM22], Annotations [BPLFRL20].
Dynamic Different DSL-based Dynamic Ecosystem Effective Efficiency Evaluation Event-Driven Every

false Fast Fault Fault-prone Feature FeynGame Finding Floating-Point Functional Functioning Game

handling [CGC+24]. HBSniff [HSF+22]. heap [PNM+20]. Heterogeneous [ORPPG20, BDZ23]. Hibernate [HSF+22]. High [SS23b]. High-Level

handling [CGC+24]. HBSniff [HSF+22]. heap [PNM+20]. Heterogeneous [ORPPG20, BDZ23]. Hibernate [HSF+22]. High [SS23b]. High-Level
Hosted [Hic20, Kin20]. Hub [ZMD21]. hundreds [MPW+21]. Hybrid [TSBB20].

machine
[CGC+24, SAC21, DD20, PNM+20].
nmaintainability [MSB23]. Malicious [AKAS22, FHZ+22, HLZ+21, FHSQ20].
Mobile [CH+22]. model [LFHX23, FJJM21, XWJ+24]. Modern [LMM21, THG20]. Multi
[WWW+22].
[FDD20]. Object [HLX23, HSF+22]. object-relational [HSF+22].
Object-Sensitive [HLX23]. Objective [BY20]. omniscient [SIK+21]. one [MPW+21]. OPA [MSB23]. Open
[GMH20, THG20]. open-source [THG20]. opportunities [MSB23]. optimization
[PNM+20]. OSS [MSB23]. Overflow
[BPLFRL20]. overhead [MV20].
[MT23, Nig22, NGB23]. parallelization
[JSBG+21, KTSS20, CPV+20]. Platform-Independent
[KTSS20, JSG+21]. Point
[TAV20, YBMS21]. Practices [WHP+23]. precise [ZZ20]. predicting
[ZBA23]. priorities [CLFH+22]. Priority
[Dar21]. Programmers [Fei22, ORPPG20]. Programming
[BWTS+23, Cob22, C+23, Fei22, LMM21,
Programs [YB20, ASD+23, AAYK23, FRD20, MNT20, PVR+20]. **Projects** [GMb20, JCA+22, NXL+22, SGHM23, WHb+23, GCS+20, HCL22, MCM24, MLBD21, SAC21, THG20]. **prone** [AAYK20]. **Properties** [WKJ+23]. **Python** [AAYK23, Ano20, BLS+23, ZXX23, ZMD21]. **quality** [MCM24]. **Quantifying** [FLR23].

Safe [KTB20, LMM21]. **Safe-by-default** [LMM21]. **Safety** [vO23]. **sampling** [CK21]. **Scalable** [BBB+20]. **Scale** [MAL24, HR20]. **RBRB23**. **Security** [TSBB20, SS23a]. **security-rich** [SS23a]. **Self** [PBC24]. **Self-debugging** [PBC24]. **semantic** [FHSQ20, FHb+22]. **Semantics** [MT21, WWW+22]. **Sensitive** [HLX23, LH22]. **Sequential** [MT23]. **server** [NBA+21, TAM+22]. **server-side** [NBA+21, TAM+22]. **Sets** [C+23]. **SGX** [WLC+24]. **SGX-Friendly** [WLC+24]. **SHARP** [LH22]. **Should** [Dar21, Her21]. **side** [NBA+21, TAM+22]. **similar** [AAYK23]. **Simplifying** [CCH+22]. **simulator** [DAAZ+20]. **Site** [HZN+22]. **size** [SIK+21]. **size-limited** [SIK+21]. **Skills** [Ano20]. **Slicing** [TSBB20]. **Small** [FSZD20]. **smart** [Gör24]. **SmarTS** [Gör24]. **smell** [HSF+22]. **Smells** [JCA+22]. **SMT** [ASD+23]. **SMT-based** [ASD+23].

social [BPLFRL20]. **Software** [BBB+23]. **TPBF23**. **CAC20**. **CA20**. **MSDP23**. **SAC21**. **TCDT23**. **solid** [WFD23]. **Solver** [MSDP23]. **Solving** [CFLH+22, TSBB20]. **Source** [GMb20]. **THG20**. **SourcererJBF** [MAL24]. **Specialization** [SVTT23]. **specifications** [NPZ+20]. **Spork** [LFM23]. **spotting** [HFS22], **spread** [CCRS23]. **Sql** [Ano20]. **Stack** [BPLFRL20]. **State** [BM23, PJJ21]. **TCDT23**. **stateful** [JGSG+21]. **Static** [AXR+23]. **ACSK23**. **FCS20**. **HSF+22**. **steady** [TCDT23]. **still** [THG20]. **Strategies** [SV22]. **stream** [MV20]. **streams** [KTB20, RBRB23]. **String** [YAP23, CFLH+22]. **structural** [CAC20, JQZ20]. **structure** [ORPG20]. **Structured** [LFM23, Ram22]. **Structures** [MKNS20]. **Stubbifier** [TAM+22]. **Study** [CAS22, GMb20, NFH22, NXL+22, SBBL23, SGHM23, TAY20, AAYK20, BPLFRL20, CCRS23, CA20, CA20, HR20, THG20]. **Suboptimal** [WHB+23].

Subtyping [ZzDS23]. **suite** [Gör24]. **Suites** [ACSK23]. **Support** [YAP23]. **supporting** [BBG+22]. **Survey** [NFH22]. **Sweep** [RK20]. **syntax** [XWJ+24]. **syntax-aware** [XWJ+24]. **synthesis** [MCF+22].
Taint [KTSS20]. Technical [ZBA23].
Temporal [WKJ+23]. Test
[ACSK23, Gör24, MCM24, THG20]. Testing
[RW20, CGC+24]. TFA [ZZ20]. Theia
[BZ23]. their
[GCST20, MCM24, ORPPG20]. Theory
[WFD23]. There [ZKX+23, TCDT23].
Things [Her21, DAAZ+20, JGSG+21].
ThingsMigrate [JGSG+21]. Third
[SVTTB23, HCL22]. Third-Party
[SVTTB23, HCL22]. Time
[HZN+22, NXL+22, BBB+20, MV20]. too
[HFS22]. Tool [CCH+22, HSF+22, SIKA+21].
Tools [AXR+23, BM23, API+22, ACSK23].
top [Ano20]. Trace [BA23, SIKA+21].
Traces [BA23, DD20]. tracking [HHK20].
transducers [CFLH+22]. Transformer
[MT23]. translation [FCS20, Ram22].
transpilation [MCF+22]. Transpilers
[NHF24]. tree [ORPPG20]. Trivial
[CASA22]. Two [Her21]. type
[FRD20, FDD20, HFS22]. type-directed
[FRD20]. typed [FRD20]. types [HFS22].
typestate [LBG+22].
un- [FBV22]. Understanding [BPLFR20].
Unifying [NPZ+20]. unit [THG20].
unsound [HFS22]. unstructured [Ram22].
Untriviality [CASA22]. updates [HCL22].
Usage [NHF24, YBSM21, ZMD21]. usages
[HCL22]. Use [BWT+23]. userspace
[DD20]. Using [BA23, C+23, DB23, SAC21,
ACSK23, HZB+21, MSDP23, MCF+22,
MV20, SIKA+21].
valid [THG20]. value [BBB+20]. variable
[AYK20]. variables [AYK20, CFLH+22].
verifying [ASD+23]. version [NGB23]. via
[FYL+23, YB20]. Viewer [BA23]. Virtual
[DD20, PNM+20, CGC+24, ZZ20]. Visual
[RW20]. visualization [PJM21]. Visualize
[BA23]. Vulnerabilities [SBBL23].
Vulnerability
[AXR+23, TSBB20, LFHX23, NBA+21].
Vulnerable [BLS+23, SAC21].

wanted [Ano20]. WasmView [RW20]. web
[AGM23, MSDP23, BM23, CCH+22, FLR23,
TSBB20]. web-based [MSDP23].
WebAssembly [RW20]. WebCollectives
[AGM23]. well [FRD20]. well-typed
[FRD20]. While [RR20]. Wider [YAP23].
wild [DBP22]. Wildcards [Bie22]. Will
[WWW+22]. wish [Ano20]. witness [Bie22].
Workshop [APA+20, SNA+23]. world
[MLBD21]. wrappers [AS23]. written
[SS23].

XSS [LFHX23].
year [BPLFR20]. years [WBE20].
ZWT [CPV+20].

References

Aman:2020:ESA
Hirohisa Aman, Sousuke Amasaki,
Tomoyuki Yokogawa, and Minoru Kawahara. Empirical
study of abnormality in local variables and its application to
fault-prone Java method analysis. Journal of Software:
Evolution and Process, 32(4):e2220:1–
e2220:??, April 2020. CODEN ????? ISSN 2047-7473 (print),
2047-7481 (electronic).

Aman:2023:ADC
Hirohisa Aman, Sousuke Amasaki,
Tomoyuki Yokogawa, and Minoru Kawahara. An automa-
ted detection of confusing variable pairs with highly
similar compound names in Java and Python programs.
Amankwah:2023:BDJ

Agun:2023:WLR

Alazab:2022:DOM

Anonymous:2020:SWS

Artho:2020:JPW

Amalfitano:2022:HDJ

Domenico Amalfitano, Ana C. R. Paiva, Alexis Inquel, Luís Pinto, Anna Rita Fasolino, and

[BBB+20] Dmitry Basin, Edward Bortnikov, Anastasia Braginsky,

REFERENCES

REFERENCES

REFERENCES

Ciomek:2021:PJL

Cobbs:2022:PPW

Cirani:2020:ZNC

Darabkh:2020:JIC

Darcy:2021:FPA

Federico:2023:CEA

DaSilva:2022:BCW

Daoud:2020:MAJ
Houssem Daoud and Michel Da-
REFERENCES

1. genais. Multilevel analysis of
the Java Virtual Machine based
on kernel and userspace traces.
The Journal of systems and
software, 167(??):??, September
2020. CODEN JSSODM. ISSN
0164-1212 (print), 1873-1228
sciencedirect.com/science/
article/pii/S0164121220300698.

Ferreira:2022:AJF

2. Fabio Ferreira, Hudson Silva
Borges, and Marco Tulio Va-
lente. On the (un-)adoption
of JavaScript front-end frame-
works. Software—Practice
and Experience, 52(4):947-966,
April 2022. CODEN SPEXBL.
ISSN 0038-0644 (print), 1097-
024X (electronic).

Ferrara:2020:CJB

3. Pietro Ferrara, Agostino Cortesi,
and Fausto Spoto. From CIL
to Java bytecode: Semantics-
based translation for static anal-
ysis leveraging. Science of
Computer Programming, 191
(??):??, June 1, 2020. CO-
DEN SCPGD4. ISSN 0167-
6423 (print), 1872-7964 (elec-
sciencedirect.com/science/
article/pii/S0167642320300034.

Ferrara:2020:CJB

4. Christophe Foket, Koen De
Bosschere, and Bjorn De Sut-
ter. Effective and efficient Java-
type obfuscation. Software—
Practice and Experience, 50(2):
136–160, February 2020. CO-
DEN SPEXBL. ISSN 0038-0644
(print), 1097-024X (electronic).

Foket:2020:EEJ

5. Barry Feigenbaum. Go for
Java Programmers Learn the
Google Go Programming Lan-
guage. Apress, Berkeley, CA,
USA, 2022. ISBN 1-4842-7199-
8. xxxv + 582 + 61 + 1 pp.
LCCN QA76.73.G63 F45 2022.

Feigenbaum:2022:GJP

6. Yong Fang, Cheng Huang,
Yu Su, and Yaoyao Qiu. Detect-
ing malicious JavaScript code
based on semantic analysis.
Computers & Security, 93(??):
Article 101764, June 2020. CO-
DEN CPSEDU. ISSN 0167-
4048 (print), 1872-6208 (elec-
sciencedirect.com/science/
article/pii/S0167404820300481.

Fang:2020:DMJ

7. Yong Fang, Chaoyi Huang,
Minchuan Zeng, Zhiying Zhao,
and Cheng Huang. JStrong:
Malicious JavaScript detection
based on code semantic represen-
tation and graph neural network.
Computers & Security, 118(??):
Article 102715, July 2022. CO-
DEN CPSEDU. ISSN 0167-4048
(print), 1872-6208 (electronic).
URL http://www.
sciencedirect.com/science/
article/pii/S0167404822001110.

Fang:2022:JMJ

8. Romain Fouquet, Pierre Laper-
drix, and Romain Rouvoy.

Eduardo Guerra, Everaldo Gomes, Jefferson Ferreira, Igor Wiese, Phyllipe Lima, Marco Gerosa, and Paulo Meirelles. How do annotations affect
REFERENCES

REFERENCES

sciedirect.com/science/
article/pii/S0167642322000119.

[Harrand:2020:JDD] Nicolas Harrand, César Soto-
Valero, Martin Monperrus, and
Benoit Baudry. Java decomp-
iler diversity and its application
to meta-decompilation. The
Journal of systems and software,
168(??):??, October 2020. CO-
DEN JSSODM. ISSN 0164-1212 (print),
sciedirect.com/science/
article/pii/S0164121220301151.

Andy Nisbet, Christos Kotse-
lidis, and Mikel Luján. Just-
in-time compilation on ARM —
a closer look at call-site
code consistency. ACM Trans-
actions on Architecture and
Code Optimization, 19(4):54:1–
54:??, December 2022. CODEN
???? ISSN 1544-3566 (print),
1145/3546568.

Costa, Rabe Abdalkareem,
Emad Shihab, and Nikolaos
Tsantalis. Dependency smells
in JavaScript projects. IEEE
Transactions on Software Engi-
neering, 48(10):3790–3807, Oc-
tober 2022. CODEN IESEDJ.

[JQZ20] Lin Jiang, Junqiao Qiu, and
Zhijia Zhao. Scalable structural
index construction for JSON
analytics. Proceedings of the
VLDB Endowment, 14(4):694–
707, December 2020. CODEN
14778/3436905.3436926.

[Karmakar:2023:JEJ] Anjan Karmakar, Miltiadis Al-
lamanis, and Romain Robbes.
JEMMA: an extensible Java
dataset for ML4Code applica-
tions. Empirical Software
Engineering, 28(2):??, March
2023. CODEN ESEFW. ISSN
1382-3256 (print), 1573-7616
link.springer.com/article/
10.1007/s10664-022-10275-
7.
REFERENCES

[Liu:2022:SFI] Bozhen Liu and Jeff Huang. SHARP: fast incremental context-

Labijak-Kowalska:2024:RJL

Liu:2021:SDC

Misu:2024:SJB

Mariano:2022:ATI

Martins:2024:DTS

Michail:2020:JBL

Midolo:2023:ATS[MT23]

Moller:2020:EAO[MT20]

Ntantogian:2021:NNJ[NBA+21]

Nowicki:2023:PEJ[NFG+22]

Nicolini:2024:UNJb

Nigro:2022:PPK

Nie:2020:UEI

Ni:2022:JTD

Ortin:2020:HTS

Pizzolotto:2024:MDB

P:2021:FSM

 normalized.

Sultana:2021:USM

Sayar:2023:DSJ

Shen:2023:CSM

Shimari:2021:NNO

Sherman:2023:JPW

Schneider:2023:AES
Simon Schneider and Riccardo Scandariato. Automatic extrac-

REFERENCES

Zhang:2023:RRB

Zhuo:2020:TEP

Zhou:2023:RSA