A Complete Bibliography of Publications in the

Journal of Cell Biology: 2010–2014

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)

WWW URL: http://www.math.utah.edu/~beebe/

26 December 2021
Version 1.01

Title word cross-reference

1 [APV+12, BMFC+11, BMFC+13, FRL+13, GFSR11, PSVRB+11]. 13
[FSAT+10b, WBMCCS13]. 2 [OSD+14, WGR+12]. 3 [AKA+13, BCB+14b,
BCB10, BSO+14, DCP+10, ECC+13, HSI+14, HGV+14, KSW+11,
LMS+10c, MHA12, PGY+12, Sho13b, TB12, WZH+11, YFM+11]. 4
[HMB14, dSD+11]. 5 [NPL+10], 5' → 3' [YTM+11], + [HA12].
+- [LWWB12]. -/- [BMS+11], 2+ [ADF+12, BNM+14, CED+13, DAB+11,
DSP11, DS10, FCA10, IIN+11, KBC+14, KSL+11, MSR10, MDW+13,
SCC+13, SLH+14, WEK+14, YSM+10, vB+12]. Cdc20 [COW13],
Cdc55 [KST+11, VCF+13]. Cdh1 [COW13, CRJB+11, EMO12, HZT+12].
[RMF+10]. R [ZFP+13], Rs [ZDM+14]. Sc [RKK+14]. Slimb [BDN+13]. TPR
[WJPD11]. 1 [EMO12, GRH+12]. 2

[KPJ+13, Sho12-40, Sho14-45, vGLWB12]. 3 [DCL+12, DWM+12, VLI+14],
[bCAH+11, FBR+10, GWR+10], 5 [BGC+10], v [CZD+13, TPZ+14], α
[AiK+13, BLC+12, BSR+11a, BMRI+13, BKY+10, BFG+13, CVR10,
COG11, CED+13, CDAK10a, CDAK10b, DPW+11, DPW+12, FBAO+13,

1
GdBP+14, GRHA+10, HKN+10, JGB+13, JCL+11, KKS+14, KHG+13, KTN+12, KLS+13, KMG+11, KWK+11, LGAC13, MH11, Mit12a, NRM+12, NBC+12, PMB+11, RCM+12, RBH+12, RFK+10, SSV+12, SAG+11, SSB+10, Sho10a, Sho13x, SSR+13, TB12, WCC+10, WHDR+10, YYM+11. α4β7 [YZM+12b]. αX [SYS13]. αβ [BR14]. β

[AEC+14, BLC+12, BAY+11, BKAB13, BFG+13, BMFC+11, BMFC+13, CSP+10, DSP11, DCP+10, FRL+13, GBSC+12, GRHA+12, HHJ+11, HAB14, HKN+10, JGB+13, JB12, KYHG12, KTN+12, KIL+12, KCK+14, Les11-34, Les13a, LSW+14, MSR10, MCS+13, NRM+12, NLAS+10, ONH+12, PTST12, PXZ+13, PSF+11, RNS+14, RFL13, RIG+12, RB11, RDB+12, RBH+12, Sho10b, Sho11-27, Sho14-64, VY+11, WHDR+10, YMU+10, YMU+13, ZGC+14, ZSV+13, ZCB+10a, ZCB+10b]. β1 [MSR10]. β1α [TPZ+14]. β2 [eHXK+12]. SYS13]. δ [LMS+10c]. η

[BBW+13, DBP+10, GOWM12, GF11, JYRL+13, NEMH+10, Sho10c, Sho12a, Sho12b, UKZ+13]. κ [BLC+12, BVL+13, Les12-29, Les14w, LDN+13, WHA+13]. λ [NSZ+13]. ν

-Tubulin

[EMO12, NEMH+10, Sho10c, Sho12a, Sho12b, BR14, CLS+10, ENG+12].

1 [BLO+12, BLC+12, BS+11a, BMRM13, BWBC+14, BBJ+10, COG11, CHL+14, CTL+10, CS13, CWB+14, DGH+14, DGS+10, DSP11, DSD+13, DSW+11, EM11, ECK+12, FTJG13, FS10, GWR+10, GTR+13, HSR+10, HZT+12, JBS+12, JBS+13, JCL+11, KHW+10, KCK+14, Les11f, Les14a, LMC+12, MLG+10, PMI11, NGL+12, NLAS+10, OZ14, OFS+10, PBB+11, PLR+13, PXZ+13, PSF+11, QWL+11, RMG+12, RB11, SSB+10, SRK10,

6 [KOO+14, MKH+10, WLN+14]. 6.2 [ZIG+12]. 60S [BHA+12, KLZ+12, Oef10, ONNB+14, SBP+10a].

7 [LYH+13].

8 [BMS+11, WOG13]. 84 [CTM+14a].

Actin

Activation

Acinus

Acid

Acid-based

Actin-binding

Actin-capping

Acidification

Acid-dependent

Acetylation

Acetylated

Accuracy

Activation

Acquisition

Acidic

Actin-binding

Actin-capping

Actin-capping

Acidic

Actin-capping

Acidification

Acid-dependent

Acetylation

Acetylated

Acidic

Acidification

Acid-dependent

Acetylation

Acetylated

Acidic

Acidification

Acid-dependent
AP2 [KPJ+13]. APC [ADB+14, COW13, CRJB+11, EMO12, HZT+12, IP12, JK10, Les10a, LS13b, LHD+14, NMB+14, PM13, SBEM13, Sed10g, Sho12c, YZL+13, vZOtR+10, BDR+12]. APC/C
[ADB+14, COW13, CRJB+11, EMO12, HZT+12, IP12, LS13b, LHD+14, NMB+14, PM13, Sho12c, vZOtR+10]. apical
[CTW+10, HLN+11, HDH+10, HVW+10, HRWW+13, JRC+13a, JRC+13b, LSOT10, MBO+14, NSSF10, QTL+12, QTL+13, Sho12c, YSN+11, dMSS13]. Apoptotic [CTV+12, Sho12d, ER10, FA12, KDI+11, LZY+12, Sho11-55].
arborization [CO13]. archipelago [Sed10h-45]. Architects [CF13]. architecture
[CTM+14a, FS14, HH+14b, JH+10, KBS+10, LCLW11, Len14, MHS10]. Arf [HDH+10, Sho10h]. Arf1 [CM12e, Sho11c]. Arf6 [MRPR12, SPF11].
arbinine [CC12]. Arginylation [ZSK12]. Arginylation-dependent [ZSK12]. ARH [KF11, SBTF13]. ARHG-7 [BPB+12]. arise
[ABP+14, EIE+14]. Arkadia [PHW+13]. ARL
[LD+10, LZW+12, LZW+13, Sho12e]. ARL-13
[LS+12, LZW+12, LZW+13, Sho12e]. ARL-3 [LD+10]. Arf1 [CM12e]. Arl13b [CHK+10a, CHK+10b]. Armitage [HLS+14]. arms
[KMS12, Sho10-47]. Arnaud [Sed13b]. Arp2
[IHM13, Les12z, Sho13b, Sho13e, SRU+12, TB12, WHA+13, YZPF12]. Arp2 [IHM13, Sho13b, TB12, YZPF12]. Arp2/3
[Les12z, Sho13e, SRU+12, WHA+13]. Arp5 [MH14]. Arp6 [MLBY+10].
[OBC14, GSJS10, Sho12-41, WAG+10]. arrested [PTBT10]. Arrestin
[MSR10, BVL+12]. arrestin-like [BVL+12]. arrests [LZGL13, TL12].
arsenic [dTLLB12]. art [Sed14d]. artemin [BST+11]. arterial
[YMU+10, YMU+13]. articular [NSB+11]. ASF [VBB+10]. ASH1
[CT10, HFB+10]. aspect [VOSB12]. aspects [RDB+12, WHH+11]. assay
[BKS+13, JDB+12]. Assemblages [TW14]. assemble [KHS+11].
assembled [HHY+12]. Assembly [HHS+14, LCLW11, AMGC14, BKS+11, BPH+14, BSR+11b, BSR+11c, BCB+14b, BM11, CMS10, CHL+14, CP11, CDB+14, CSKW13, CSEH12, DP10, DE10, E1W+12, EUB+14, FSA+10b, FRS+13, GLB10, GBL+11, GC13, GKR+11a, GKR+11b, GRH+12, GDS+12, HYS11, HAB14, HZE+13, HHT13, HWB+13, HSTF13, HTM+14, ILM13, IMG+12, KKUG11, Kar10, KOO+14, KR1OM11, KTN+12, KKL+14, KBS+10, LCD+11, LYH+13, LYB+10, LLK11, LvB+10, LZGL13, MAS11,
MG5+10, MXXM10, MXXS10, MXXMFS11, MXXS12, MAD10, NAS+11, NAS+12, NAS+13, NSD+14, OZI+14, OBD+10, OLI+12, ODI+10, OGD+12, PCC11, PoLC+13, PPD+10, RTC+13a, RTC+13b, RMG+12, RBB+14, RGF+10, SFF+14, SLK+13, SMS+14, SSZ+14, Sho10g, Sho10-51, Sho14-45, Sho14-52, SBP+10b, SI010, TH11, TB12, TSL12, TNH+11, TKB+14, UG10, UTK+13, VWC+13, WEK+14, WS10, YDL+11, YCP10, ZNA+14.

associate [HYS11]. associated

[LZW+10]. biochemistry [Sab10]. Biocompatible [NRK+13]. biofilm
[Sho11h, VŠH+11]. Biogenesis [BNH12, BMC+11, PGP14, AHL+11, ARF10,
BWL+13, BKW+11, BKT13, Dun11, GSM+14, JBS+12, JBS+13, KHFV+13,
KA12, KBW+10, MAS11, MGR+10, Sho14-40, ZCB+10a, ZCB+10b].
biological [SMK14]. biology
[BMI10, BMW12, CC10a, CR10a, CR10b, DN10, Dev14, DK10b, ES14,
Gol12b, GCC12, GM11, HSF12, KN12, LRB13, LMN10, MS12, MRA14,
Orr12, Sab10, SA10b, SKM10b, Sed10a, Sed10e, Sed10k, Sed11d, Sed11i,
Sed11o, Sed12s, Sed13c, Sed13o, Sed14b, Sed14j, SC10a, WM10, WPSA13].
biomedicine [BWM12]. biorientation [STD+10]. bioriented [SKH+10].
biosensor [EAK13]. biotin [RKRB12]. Biphasic
[FLN+10, YWC+13, FLN+16]. bipolar [SW10a]. bipolarity
[BKK+10, JVS+14]. birth [BG11b]. bis [VSG+12]. bisphosphate
[Sed11k]. blastocyst [MC10]. Bleb [ZTBK14]. Bleb-driven [ZTBK14].
blebbing [GPCK12]. BLM [HMBC10]. BLOC [PLR+13]. BLOC-1
[PLR+13]. block [IMG+12, ZDS+12]. blocker [Les10a]. blocks
[AMH11, GKWG11, KKS+14, Oka14, SOW+11]. blood
[CBB12, HSI+11, Sed10e]. Bmf [CMD+13]. BMI1 [IAMH10].
BMI1-mediated [IAMH10]. BMP
[CRL+14, GDO13, KST+10, NLP+10, NLAS+10, dJPAA+11, ZLH+14].
BMP-induced [KST+10]. BMP-regulated [CRL+14]. Bnip3
[QTL+12, QTL+13]. board [Mis10]. Bob [Sed13c]. bodies [CLS+12,
CAB+13, DGS+11, wFLW+13, NNSH11, NWD+11, RBM+11, SFJ+14,
SRBL13, Sho13-49, TYN+13, VSMC11, WBeY+11, dTLLB12, COG11].
body [BLC+14, CMW11, Dun11, ETC+12, KD11, Sed12e, SIO10, TGG+11,
TL12, WLK+11, YOA+11, RMS+14]. body/transition [WLK+11]. Boi
[Sho10k, HZS+10]. bond [HTT11b, KLvdB+13]. bonds
[CSHS+13a, CSHS+13b, Sho11i]. Bone [Les13e, RT10, ASB+11, BBJ+10,
DK10b, HSK+10, ISZ+11, KPC+11, KPH+12, Les10-29, NLAS+10, SNR+11,
Sho10-71, Sho11-40, Sho12-33, SJZ+10, WCQ+13, ZYH+11]. bones
[Sho11-56]. Bootstrapping [Sad11a]. border
[CMT14, LKG+13, PCCR11, Sed11f]. borders [Les13n]. Both [BMÁG+14,
SML+13, CWPW11, FBR+10, MLBY+10, NSB+11, Sho12p, Sho12-27].
Boutulinum [SMT+10]. bound [DDH+12, GL10, oHXX+12, KHB+11b,
PPV+14, SYS13, WWB+10, ZBBG10, MLSM+11]. boundaries
[BGY+13, Dan14]. boundary [EMO12, GHGH11, Les11-29]. box
[BCB+14b, CMW11, KLC+10, LC10, vZOtR+10, LNL11]. Boyer [Sed12o].
brain [DMD+12, HSI+11, MVC+11, Sho13-33, TAC+13]. brake
[Les14-35, LCP13, MAD+11, WMV+14]. BRCA1
[BAS+14, CGW+11, GGSN+13, KA12, Les12e, Les13u, RSS+13, Sho11f].

Caenorhabditis [CHK+10a, CHK+10b, FTJG13, RZA+13, RKW+13, SQC+12]. Cajal [SIO10]. CAL1 [CDB+14, Sho14g]. calcium [BNM+14, Bez12, BJE+12, CFB+12, DWM+12, JC10, KPH+12, Les14e,
Les14r, PPG11a, PPG11b, SB14, Sho11d, VBG+13, YFLH12].
calcium-dependent [BJE+12, SB14]. call [Sho13h]. Calmodulin
[VPC+14, WEK+14, DS10, MSR10]. calmodulin-dependent [KSLF+11].
calpain [HVOF+14, SPC+13]. calpain-like [HVOF+14]. calyceal
[SDS+12a]. Camargo [Sed12g]. CaMKII [LLT+12, Les12f]. cAMP
[GVP+11, LLH13, TMS+12]. cAMP/PKA [LLH13]. cAMPs [Sho11r]. can
[HSI+14, KMC+14, Les10a, Les11-38, MHM11, Sho11-35, TGB10, WAG+10,
Gol12b]. canal [HC10, MHCvSW11]. Cancer [Les11e, ATU+12, BT12,
BKK+10, CG12b, CGW+11, DSM13, Gol12a, GGSN+13, HJ14, KKL+11,
Les12a, Les14d, Les14f, LWW12, MHA1K+12, ONH+12, RIG+12, Sed10c,
[WJP+11]. Canonical [AKB+13, BPMK+14, NSB+11]. cap
capacity [FHY+10, HKT+10]. capping [GLM+10, Les13b, TB13]. capsid
[RMG+12]. capture [FHY+10, SBS+12, YWC+13, YZM+12a, Sed12].
carcinomas [KDE11]. cardiac [CCM+11, DWM+12, SZW+11, TKS+13].
Cardiolipin [COB+12]. cardiomycyte [RBP+13]. cardiomypathy
[HKN+11, MLY+10, RSR+14, EJB12, KBC+14, LYH+13, MB1K13,
PHB+11, SAoS14, SDD+13, SP11, ZQA+14, vBAK+12]. Cargo-
[CLW+14, HKR+10, LMS+10c]. CARTS [VWvG+13]. carvedilol
[oHKK+12]. carvedilol-bound [oHXX+12]. cascade
[LKL12, MJFS10, WOG13, ZMW+13]. cascades [TKS+13]. case
[SDN+14a, SDN+14b]. Caspase
[FA12, Les12g, CO13, DGH+14, NTS14, Sho14-35, BMS+11]. Caspase-8
Catenin [Les13a, RFL13, Sho10b, BKY+10, CSP+10, Les10a, MH11,
NCLM+12, PMF12, SME+13, YMU+10, YMU+13, BAY+11]. cathepsin
[GGSN+13]. cation [SHB+10]. Causal [Bar13]. cause
[CWS+11, CFB+12, Les12r, LgL1M+10, Sho10h, NGM12]. caused
[DPZ+14, RCFH10]. causes [BFG+13, CZC+11, CZG12, ERS10, PoLC+13,
STF+11, SPD+13, XHS+13, YWJ+12, vRJMvD10]. causing [LNT+10].
caveola [JBS+12, JBS+13]. Caveolae [AFR1Z+14, KWH14]. caveolin
Caveolin-1-dependent [MLG+10]. Caveolin-1-eNOS [SKV+11].
caveosome [PH10]. cavernous [GLG12]. cavitation [QTL+12, QTL+13].
cavity [AMGC14]. Cbk1 [KKK+11]. Cbp3
[GKR+11a, GKR+11h, GHR+12]. Cbp6 [GKR+11a, GKR+11b, GHR+12].
CD2AP [TB13], CD4 [SDN+14a, SDN+14b], CD40 [KDE11], CD63 [FCA10], CD95 [FRB+10], CDC [KSH+13], CDC-48 [KSH+13], CDC48/p97 [KSH+13], Cdc12 [CSK13], Cdc14 [Les10t, MMV+10, RGF+10, Sho10m], Cdc14A [MBZ+10], Cdc14B [MBZ+10], Cdc20 [IP12, MGT+10, MJJ+10, Sho10-33], Cdc25 [OHC10], Cdc28 [VCF+13], Cdc28/Clbs [VCF+13], Cdc42 [AYS+13, BT13, EKT+12, JDL+14, KLP14a, KWH+10a, KWH+10b, Les13g, Mi13b, NLP+10, OKPN13, OPEC10, QWL+11, QMH10, RIG+12, RFVE+10, Sho11j, Sho12i, Sho14e, SRP+13, VLI+14, ZME+14], Cdc42-selective [NLP+10], Cdc48 [KBW+10], Cdc48/ [KBW+10], Cdc55 [BM11, Les11-32, DY11], Cdc6 [ZMW+13, Les11g, SZE+11, ZSH10], CDH1 [LS13b], Cdk [VYC+11, EM11, GZR+14a, GZR+14b, GC13, GSJS10, KST+11, TGB10], CDK-1 [EM11], CDK-dependent [GC13], Cdk-mediated [VYC+11], Cdk1 [vZotR+10, DSL13, NMB+14, Sho13j, ADB+14, CLO+11, GP10, Lin10, MKG+12, OMW+14, PLC+11], CDK2 [ZMW+13, CVJ+11], CDK5 [Sho14h, TQM+14, HSS+13, WD+13], CDK5RAP2 [BKG10, CLS+10], CDKN3 [NBSE+13a, NBSE+13b], Cdns [Les10c, Sho11k], Cdo [RSRK13], Cdr2 [BB+14], CDT2 [JEF+11], Cédric [Sed12d], Cell [ABVP11, AMO+11, BM10, BWMI12, CM12a, Gil10, HSF12, KMSR12, Orr12, PWP11, PTBT10, PCCR11, RG14, RFAN+12, Sho11l, Six12, WGN+13, ALV+12, ANT+12, AFM+13, APC+13, ABP+12, BLO+12, BMÁG+14, BPT+14, BHMBS+11, BDR+12, BKY+10, BrM+14, BV11, BEJ10, BFG+13, BC11a, BC11b, BTC+11, BGS13a, BGS13b, BW12, BWDK13, BLC+14, BKE10, CWL+11a, CPS+13, CDAK10a, CDAK10b, CC10a, CHL12, CR10a, CR10b, CTL+10, CYN+13, CG12b, CGW+11, Coo13, CSM+12, CBB12, DV10, DN10, DWPC+11, Dev14, DGF+14, DZT+11, EAB+14, EBBJ11, ES14, FPAM13, FSK+10, FA12, FW10, GdbP+14, GHC+14, GvEM+11, GSU+12, Gol12b, GCC12, GM11, GFSR11, GNB11, GCV+11, GS11, HKN+14, HHJ+11, HZS+10, HJS+13, HCC+10, HDH+10, HYTU+10, HKR+14, HKN+10, HK14, HCG+11, IMP+12, IIWS14, JOR+11, KEJ13, KHB+11a], cell [KPC+11, KKL+11, KPSL12, KN12, KCF+14, KFS+14, KBW+12, KTB+14, KFL+14, LAR+12, LWJ13, LLS+11, LCBG+11, LKV+13, LLU+12a, LLU+12b, LDCF+13, LSGVM14, LGM+12, Les10-27, Les11n, Les11y, Les12d, Les13-27, Les13-43, Les14g, Les14f, Les14s, Les14-29, Les14-32, LNTR14, LM13, LNS+13, LZW+10, LSCF11, LZY+12, LT11, LRL1b, LP11, LBW+14, LP13, LMIN10, LZLG13, LXTM12, MWH12, MLN+11, MGG+12, MJEM10, MMiCOM+11, MRA14, MBM+10, MHAK+12, MFF+13, MSK+13b, MLRLS12, MBO+14, MVN11, MCS+13, MAD+11, NGL+12, NSZ+13, OVV10, OOKH+12, OLB13, OPEC10, OLT11, Pa114, PGCY12, PPV+14, PRM+14, QJO10, RLS+14, RMT13, RCG+10, RCG+11, RKE14a, RKE14b, RD+11, RKK+14, Sab10, SBEM13, SA10b, SRS10, SPC+13, SSdA+14, SRBL13, SKM10b, SZW+11, Sed10e, Sed10k, Sed11f, Sed11i, Sed11o, Sed12i, Sed12o, Sed14d, Sed14j, Sha10], cell
centromere-specific [LBS11]. centromeres
[HZW+12, LBS11, MMFS11, Sho13-60, Sho14g, WBL11]. centromeric
[BKS14, RKE14a, RKE14b, WUD+12]. centrosomal
[FCE+12, KSH+13, MLBY+10]. Centrosome
[TQS+11, YWC+13, ADAB+12, BIY+13, BKG10, BKK+10, CAB+10,
DWL+11, DHVK10a, DHVK10b, FCE+12, GCP+14, GR11, HLN+10,
HCG+11, KRS11, KFL+14, LR11a, Les13-39, MJEM10, MS12, RTC+12,
RFAA+12, Sho12k, Sho13-43, SC10b, TMS+12, ZEG11]. Centromeres

Chaperoning [Les12h, KIH10, MMU10a, BKK10, BKK10b, FCE+12]
[Sho14-67]. Chitinase [KIH10, MMU10a, MBZ+10, MCHCC10, MKH+14,
PoL+13, RJM+12, RGF+10, STD+10, SFK+13, SLM+13, Sho13g, Sho14-57,
VSMC11, VYM+10, WVC+13, VCF+13, WGC11, XHB+10, YFO12,
dSMSS13].

checkpoints [MGS14]. chemical [LC10]. chemistry [PMB+11].
Chemokine [Sho13k]. chemoreceptor [PBPW+14a, PBPW+14b].
Chemotaxis [WH+13]. chemotactic
[ADF+12, BMRM13, CDK+10, VLKI14, ZTBB14]. Chen [Sed14f].
Chew [Sho13-35]. Chibby [BLC+14, ETC+12, Sho14i].
Chitinase [Sho14-67], chitinolytic [HMO+14]. CHK [KIH10].
CHK-1 [KIH10]. Chk1 [GB10]. Chk2 [PZ14]. Chlamydia [MBM+10, Sed14u].
Chlamydia-induced [MBM+10]. Chlamydomonas [BY+12, MBLD11].
Chloroplast [TO12]. cholera [GCV+11]. cholesterol
CHOP [BAAW11]. CHOP-regulated [BAAW11]. choreography
chromaffin [LSE10+]. chromatic [KMS12, OYH13, STI11+13, Sho11-60].
Chromatin [SRBL13, BKS10+11, BG10, BZ12, Car12, CCJ12+13, FP10+
FMG11, GL10, IPM10+13, KAM11, KLP14b, KSS11, LGAC13, LPG10+
yLFAM13, Les13q, Les13r, LLM10+13, LLA12, MMFS11, PASG12, RSM10+
RGF10+12, SKM10a, SNNSyN13, Sho13y, SBP10b, SVW10+13, SSK14+
SLC13, SHV10+13, SHV13, TCB14, XSJ10, ZNA14].
chromatin-bound [GL10]. chromatin-remodeling
[LP610, RGF10+12, SKM10a]. chromatoid [YOA11]. chromatinsins
[WBS12]. Chromosomal [HRK13, EIE14, LCD11+13, SPD13+14, ZF11].
Chromosome [RHK11, TIM14, AMS10+13, BM11, BAS10+14, CLO11+
DKY12, DLBG11, GCR12, GKA12, HSN11, IP12, KNY14, LGAC13,
STD10, SMS10+14, SBP10b, VTO13, WBS12, WUD12, WIL12, WRC12,
XOV10, YSO11, YRU13, vRJMvD10]. chromosome-specific
[DKY12]. chromosomes
[EHU14, HKW13, KPC10+13, KIOY10, LH11, Les10-38, Les11r, Les13s,
[ZFP13]. CIAZ [HHC11]. cilia [BKS13, CSAPLBD11a, CSAPLBD11b,
GCR13, HBM11, IMG12, KKL14, LBS13, Les11i, LAH12, PBM11,
ciliary [BLC14, CHK10a, CHK10b, DS10, FLVP10, FSLM11, GBK14, GGR12,
HBC11+13, JYRL13, Kin13, LZW12, LZW13, Omr10, SWI10b, WLK11,
YSA13]. ciliary/flagellar [Kin13]. ciliogenesis [ETC12, GGR12,
HGC11+, KSR13b, LWZ10+13, PTBT10, SKN12, WLK11]. ciliopathy
circular [GNHB11]. Circulating [YST11]. circumferential
[NT11, OOKH12]. Circumventing [Sho14j]. Cis [GZZ14, BKAB13].
cisternal [RPM13, XW10]. Citron [BVC11]. CK1 [GOWM12]. CK1-
[GOWM12]. CK2 [BRP14, ILD10]. Cks [vZOtR+10]. clamp
[GL10, WMP14]. CLAMP/Spef1 [WMP14]. CLAMPing [Les14c].
Clasp-mediated [SMM10]. CLASP2 [MGK12, SBS12, SME13].
Class [BCBG10, YDB11, vGLWB12, DCP10, KWDD10, UAH12,
VJK10a, VJK10b, YHF13, KLP14b]. classes [SNR11]. Classic
[Sed12w]. classical [NCML12]. Clathrin
[BVM11, FCE12, HKR10, KJP13, Les10e, LHS10, Sho12k, ECJB10,
GK13, GHK10b, GCH14, LADS10, MBCK13, MLY10, NPL10,
PDMBW11, Sed13i, SNT12, Sho12-44, VGL14, KKS14, Sho14k, HWB13].
clathrin-coated [LADS10, NPL10+13, SNT12]. Clathrin-independent
[HKR10, MBCK13, PDMBW11]. clathrin-mediated
[GK13, GHK10b, GCH14, MLY10, Sho12-44]. Clbs [VCF13]. clean
Cleavage [BBW+14, BVC+11, CG12b, FLN+10, FLN+16, KMSR12, KRS11, RZF+11, Sho13o, Sho14a, SML+13, SGT+13].
CLIP [Les10f, Les10g]. C1k1 [NKH11]. C1k1/4 [NKH11]. clonogenic
[LRH+13]. close [Les13-31, Mit12a, Sho10k, VWC+13]. closed
[BMLB+12a, BMLB+12b]. closeness [Les10-37]. closer [Sed13m, Sed14f].
[Les14o]. CLUH [GSM+14, Sho14-40]. cluster [HTT13, MAE+10].
Clustering [RDLT11, AMH11, ALSN+11, BKK+10, HZW+12, LADS10,
SCR12, WLN+14, YKT+13]. clusters
[CWPW11, KKB10, Les14w, RZS+14, SSD+14]. CNTD1
[HSY+14, Sho14l]. Co [KdKDP12, RMG+12]. Co-operation [KdKDP12].
co-opts [RMG+12]. CoA [KHFV+13, NOT+14]. Coa3 [MVP+10]. coat
[FSR11, JKS14, Sho14-48, WS10]. coated
[BAH+12, LADS10, NPL+10, Sed13m, SNT+12, CLW+14]. Coatomer
Cofilin [KBC+14, CP11, HKN+14, HTS11]. COG [LHL11, Sho11m]. Cohen
Cohesinopathies [BG10]. cohesion [JVS+14, Sho10-59, YTT+10]. coil
collaborate [YFO12]. collaborates [WGC11]. collaborative [GJP+13].
collagen [BBJ+10, ISZ+11, Les11-27, MLM+13, MHAK+12, SYS+14,
WPL+11a, WPL+11b]. collapse [JDHS10, Les11e]. Collaring [Sed10o].
colleagues [dWMR10]. collective
[KTB+14, LAR+12, LKG+13, NBDB12, PCCR11, Sho14t]. collectively
[GHK+10b]. colon [MLH12, Sed13g]. colonies [VSH+11]. combined
[HBC+10, MFB12]. come [Sho14-46]. comes [Sed14p]. commitment
[LZR+11, SAoS14, Sed12o]. committed [CC10b]. common
[LNL11, ZKR+11]. communication [ISZ+11, LXTM12]. communities
Comparative [RSL+11]. comparisons [RZA+13]. compartment
[BMC+11, MGR+10, Omr10, SBTF13]. compartments
[CGCP+14, LLH13, OHC10, OLT11]. compass [Les12-34, Sho10-58].
compete [IP12, Sho12-38]. competition [LM13, SYV14, Sho10-54].
Competitive [MVP+11, Sho11-49]. complement [SRK10].
complementary [XW10]. Complete [GBS+13, ZZS13]. completion
[ADS+13]. complex
[AIJ11, AKA+13, BDR+10, BTI+12, BAY+11, BGY+13, CHS+10, CLS+10,
CPX11, CWS+11, CFB+13, DCN+10, DLBG11, EZT+12, EBBJ11, Ewe11,
FRL+13, FMPS+12, GBY+14, GLG12, GTR+13, GRH+12, GDS+12,
HBSD12, HTS+10, HZE+13, HCCS+11, HSKAT11, HS10b, IHM13, JGB+13,
KXN10, KA12, KWDD10, KPI+10, KBKW10, KHB+11b, LHW10, LHL11,
LVK⁺13, LCD⁺11, LAH⁺12, LvBG⁺10, MHS10, MMS⁺10, MCC⁺10, MI13b, MPM11, MKH⁺14, NEMH⁺10, NSD⁺14, OSD⁺14, ONH⁺12, PR12, PLR⁺13, PPD⁺10, RNS⁺14, RMG⁺12, RPM⁺13, RGF⁺10, SKM10a, SS4A⁺14, SKH⁺10, SLM⁺11, Sho12n, Sho13i, SDS⁺12b, SWV⁺10, SKFH11, SM12b, SRU⁺12, SIO10, TKB⁺14, TESA10, TCN14, TBV⁺14, UHS11, WM12, WWM⁺12, WMP⁺14, WGR⁺12, WDB10, WGM⁺12, XOY⁺10, XZC⁺12, YsAY⁺13, YzPF12, YSN⁺10, ZYF⁺11, ZFP⁺13, ZLJ⁺13, ZNA⁺14, CJNS12]. complex-dependent [YzPF12]. complex/cyclosome [NEMH⁺10]. complexes
[CWFL13, DK10a, FP10, GSM⁺12, KBS⁺10, LMA⁺13, Les13w, LYH⁺13, LP11, LHGT⁺12, LWB⁺14, MGT⁺10, MLW13, MRCC⁺13, OPM⁺12, RZF⁺11, RCC⁺10, RCG⁺11, RHK11, SRS10, Sho14f, TUG⁺10, TLS10].

Complexin [DYS⁺14]. complexity [MVC⁺11]. component
[SYS⁺14, ADF⁺12, CWL⁺11a, KNO11]. concept [BT12]. concert [KBW⁺10]. condensation [KNW⁺14, YSO⁺11]. Condensin
[FP10, Les13b, OYH13, BSR⁺11b, BSR⁺11c, BDN⁺13, KNW⁺14, Les14u, SSV⁺12, Sho10-69, Sho11n, SSK⁺14, SHV⁺11, YSO⁺11]. condition [Sho10z]. conduction
[SNT⁺12]. conic [JDHS10, TKMK10, VPC⁺14]. confer
[DBUT13, PBPU⁺14a, PBPW⁺14b]. confers [CSM⁺12, LHW10]. confined
[HCP⁺13]. confinement [EZT⁺12, RFAA⁺12]. conformation

connections [Sed13g, SMS⁺14]. connectivity [CF13, DNB13]. Conquering
[Sho11b]. consecutive [KFS⁺14]. consequence [NGM12]. consequences [RC13]. Conserved [MOZ⁺13, DBH⁺11, MSZ⁺12, NCM⁺12, RSL⁺11, RFRV12a, RFRV12b, SDB⁺10, TDV⁺14, YsAY⁺13, YSN⁺10]. consistent
[TIM14, YZF12]. constrained [KPC⁺10]. constrains
[BMLB⁺12a, BMLB⁺12b]. constraints [BLT⁺11]. constriction
[AVP⁺14, APC⁺13, CWL⁺11a, CP11, LYB⁺10]. construction [Sho12w]. consumption [Les14p]. contact
[GSW⁺11, IMP⁺12, PvdLA⁺14, Pri14, SMN⁺10]. contacts [FWM⁺10b]. contain
[LS11]. containing [CLSO⁺12, JKS14, KLC⁺10, NvCL⁺13, RMG⁺12, RGB⁺13, HBC⁺11, MGR⁺10]. contains [FLVP10, WDG⁺13]. content
[CG10b, CTD⁺10, VdDV⁺10]. context [Sho12-45]. Continued
[VYM⁺10]. Contractile [LNTR14, BMAG⁺14, BSO⁺14, CP11, CSKW13, EKJH13, LCD⁺11, MGFG⁺10, MMV⁺12, VTM14]. contractility
[FRL+13, NBDB12, NWD+11, PTBT10, dMSMZ14]. contraction [ELH14, MCS+13]. contracts [Sho10-41]. contraptions [Sed14v].

SCL11, TPM*+13, VJK*+10a, VJK*+10b, WLW11]. Cossart [Sed11n].
cotranscriptional [SBR*+11]. cotranslational [ADS*+13, LAB14, SAoS14].
counted [Sho12b]. counteract [CSS*+12, MJJ*+10]. counteracting
[WHL*+12]. counteracts [PSF*+11]. counterbalancing [BSO*+14].
counterflux [SHB*+10]. couple [MCS*+13]. coupled
[BGC*+14, CZGG12, KYP*+14, LJW13, TLL*+13, WKN*+13, JEF*+11].
couples [CTW*+10, SNSy13, SEV*+14, TTB*+13]. Coupling
[HK14, CS13, ELH14, GSM*+12, HKW*+13, TUG*+10, WSU11]. cover
[Les11v, Sho11-50]. COX [LMS*+10b]. COX-2 [LMS*+10b]. COX1
[MVP*+10]. Cox14 [MVP*+10]. CP110 [FRS*+13, KKL*+14].
CP110-interacting [KKL*+14]. CPAP [CAB*+10, LWL*+13]. CPC
[NCT*+11]. cPKC [EL14]. Craig [Sed10c]. cranial [RBS13, SZ12a].
craniofacial [JB12]. Crawling [Les13i, RSD*+12, BSO*+14]. Crb3 [HKI*+13].
[FHA10]. CrebA/Creb3-like [FHA10]. credentials [Mit12b]. crest
[BMRM13, LTJN*+12, Les13-37, MMdCOM*+11, RSB13, Sho13x, SMB12,
VLI14]. cristae [PvdLA*+14]. Critical
[GD12, BMBS*+11, CDK*+10, FBAO*+13, HMBC10, HSY*+14, HAKK11,
KBB12, MBK*+10, WOG13, ZQA*+14]. CRL4 [JEF*+11]. crop
[Sho14v]. Cross [SLS*+10, KKY*+14, Les11-29, RKC*+10, TPSS12]. crossing
[Les13n]. crossover [HSY*+14, Sho14]. crowd
[Les13c, Les13-42]. crucial
[BNL*+10, JDS*+10]. crucibles [LKSG13]. Crumbs [CHL12, PSK11, Les12k].
Cryo [FBAO*+13, LRB13]. Cryo-electron [LRB13]. Cryoelectron
[PBMR*+11, FBMZ*+10, OBM*+10, YON*+12]. cryptic [WDG*+13]. Crystal
[NRM*+12, TKB*+14, Les12w]. Cse4 [LBS11]. Cs1 [HZW*+12]. cTAGE5
[SYS*+14]. CTID [JAM*+13]. Ctp [BNDB*+14, KF12*+12, PLC*+11, RSS*+13].
Ctp-dependent [KF12*+12, PLC*+11]. cues [CAK*+14, PCCR1]. CUL4B
[Sho131, ZMW*+13]. Cullen [Sed14t]. Cullin [HC10]. Cullin-3 [HC10].
[KLQ*+11]. CUPS [CGCP*+14, Sho11p]. curbs [FK*+14]. curvature
[BR14, CLM*+10, PMB*+11, WZH11, XBC*+13]. curve
[Sho11q]. cuts
Cxx3 [DPKO14]. cyclase [PBPW*+14a, PBPW*+14b]. cycle
[ALSN*+11, BKE10, GD12, LJW13, LLS*+11, LPI3, PWP11, PTBT10, RGC*+10,
RGC*+11, SZW*+11, Sho10-45, TGG*+11, TLL12, WBS11, WGN*+13, WRF*+13].
cycles [BJ12, FDB*+13, KFS*+14, Les14r]. cyclic [PBD*+13]. cyclical
[LJP11]. Cyclin
[KYOY13, Lin10, OMW*+14, SWC13, BNL*+10, DP10, GP10, KMS10,
KSSD11, MJJ*+10, MFGB10, YF012, vZOTR*+10, ABP*+12, Les13-29, LP13].
Cyclin-dependent [SWC13, BNL*+10, KMS10, KSSD11]. Cycling
[BNL*+13, Sho10c]. cyclosome [NEMH*+10]. Cyk3 [OKNP13]. CYK4

[ABP+14, CTY+12, CP11, RW10, Sho13s]. cytomatrix [FBZM+10, MSK+13a]. cytoplasmic [GP10, Sho10q]. Cytoplasmic

[BF11, Les10h, VLG14, COG11, CWFL13, DSB+14, FLVP10, KLZ+12, TLW10, YHK10]. Cytoskeletal

[TMFI+10, AMH11, ABVP11, CB12, HVOF+14, IHG+12, SHS+12, SWF12]. Cytoskeleton

[Les12l, WBM11, BFG+13, GPCK12, HW11, HKW+13, HC10, JKS14, LKC+13, LOR+10, MBLD11, RSD+12, SCR12, WG11]. cytosol

[LJLJ11]. cytosol/ER

[PHB+13, ZLJ+13].

D [BCB+14b, BSO+14, HSI+14, KSW+11, LBS+13, MHAK+12, MRPR12, PGCY12, WZHV11, YDB+11, vZoTR+10]. Dam1

[LH10, LMA+13, TUG+10]. damage

[BSR+11a, BKG10, BTL+12, BAS+14, CRJB+11, DPV+12, GP12, GBJ10, GSSL11, HL12, JPT+11, KZR+12, KHW+10, KFH+12, LPG+10, LLA+12, MFB12, MZ+10, MKL+13, PHW+13, RZS+14, SKM10a, SWV+10, SDC10, XHB+10, ZGC+14, ZLF+14]. damage-specific

[ASLS14, BDVdK13, MSS+10, Sho10-46]. Dan [Pow14a]. dangerous

[Mit12c]. Daniel [Sed13g, Sho10r]. Danuser [Sed12]. data

[LRA+10, dWMR10]. DataViewer [WCM12a]. daughter

[BV11, CWFL13, FPAM13, MXS10, Sho13n]. daughters [Les12-37]. David

[Sed10d, Sed11e]. Db1 [LCS+10]. Dbl3 [ZME+14]. dBruce [NSS+10]. DCC

[WL+14, HZM+13]. Dcp [DGH+14]. Dcp-1 [DGH+14]. DCP1a

[RB+11]. Dcp2 [YCP10]. DDB2 [LLA+12, PVM+12]. DDR1 [Les14f].

[RMG+12]. deacetylates [RNS+14]. Deacetylation [CMD+13].

[CMW11, LNS+13, VBB+10, YCP10]. Deciding [Sho10s]. decipher

[BCJ+3]. decision [Gil10]. decondensation [LLA+12]. Deconstructing

[Sho10t]. decoupled [TGB10]. decoy [ZNH+11]. decreases

[EAB+14, LCHB13]. deep [Les12x, Sed12d, Sed14r, Sho12y]. defeats

[Les11-40]. Defective [DWL+11, SDD+13, MKH+10]. Defects

[MMU10a, CZ10, CFB+12, DPZ+14, KHB+11a, PoLC+13, Sho11-47, WPL+11a, WPL+11b]. defense [ATKK11, PW12, Swa13]. deficiencies

[FDB+13, GvEM+11, SRZ+11]. defines
Dishevelled [CHS]

Distribution [BB14, KRS11].

Distally [MWH12]. Distance [Les11c, WPM14]. Distinct

Dsk+11, Edf+10, GvEM+11, Hcp+13, Lao+10, Mad+11, Okn13, To12, Abvp11, Abp+14, Bpdb+11, Cow13, Fsa+11, Wflw+13, Gcr+13, Gds+12, Hgv+14, Jdb+12, Jpt+11, Kkm10, Kkl+14, Ldfc+13, Lhh13, Lse+10, Mmb+11, Nas+11, Nas+12, Nas+13, Ohc10, Ob13, Ol11, Pgc12, Ttc+14, Tyn+13, Tms+12, Vfn11, Wdb10, Zkr+11].

Diving [Sed12a]. Division

Dunn1 [Bkbs12, Sho2m]. Do [Dbut13, Sed11q, Sho14e]. Dock

[Sho14i, Tcn14]. Docking

domains [HBC+11, HWB+13, TYN+13, TP13, WZHv11, vGCMA+14].

Dominique [Pow14b]. don’t [Les10u, Les12-37, Les13s, Sho14x, Les14-36].
dopamine [CPX11]. Dorma [MZP+10]. dormant [GB10]. dorsal
[Les14i, AMO+11, BNDB+14, BCJ13, CCJ+12, CWG+11, GBJ10, IAMH10,
JRC+13a, JRC+13b, KK13b, Les10b, PLC+11, PLL+12, Sho10o, Sho11-41,
double-membrane [YSN+10]. double-strand
[BNDB+14, BCJ13, CCJ+12, CWG+11, GBJ10, IAMH10, JRC+13a,
JRC+13b, KK13b, PLC+11, PLL+12, Sho11-41, YTM+11]. doubles
down
[HVV+10, LCBG+11, Les10-30, Les10-34, Les11n, Les14c, LT11, Sho11-43,
Sho12c, Sho13a, Sho13e, Sho14a, Sho14-29]. down-regulates
[LCBG+11, LT11]. down-regulation [HVV+10]. downhill
Drg1 [KLZ+12]. dRich [Les10]. drive
[ADS+13, BLO+12, BMAG+14, HAB14, LAO+10, LDN+13, RDC+11,
WHH+11, YRU+13]. driven [CZC+11, DGF+14, ETRP12, HZM+13,
JGB+13, SLM+11, SST+12, WDB10, YWC+13, ZTBK14].
driver
[DWJ+14, HSF12]. drives [AVP+14, HRK13, HTM+14, LNJ+13, MVL+11,
MLSM+11, OWW10, RJ1+12, SAoS14, Sho10-53, Sho10-61, Sho12-42,
TKMK10, TGG+11, ZME+14]. driving [YZPF12]. drop [Sho12-29].
droplet [GSW+11, KHFV+13, PGP14, SWS+13, XZC+12]. droplets
[AHL+11, Les14p, Sho11-29, Sho12n]. DROSHA [KA12].
Drosophila
[ETC+12, GOWM12, HZS+10, HCl0, JPT+11, SRS10, SNZV12, SNZV13,
SDB+10, VJK+10a, VJK+10b, WbcY+11, ABVP11, ATKK11, AIJJ11,
BMG14, CG12a, CDB+14, CRM+14, CTM+14b, DVL10, DGH+14, DZP+14,
DSW+11, FRS+13, GCP+14, GDO13, HFS10, HJS+13, HST+11, JG10,
KUN+13, KT10, LN11, Les14z, LCBH13, LMW+11, LMT+12, LgLM+10,
LKG+13, MRLLS12, MZP+10, MHCvSW11, NSS+10, NSBW10, OBC14,
OF5+10, PHP+11, RNS+14, RLS+14, SYK+11, SMM+10, TNV+13,
TGES12, VLI+14, WWHH10, YTT+10]. DRP1
[MRLLS12, OWC+10, Sho13-48]. DRP1-dependent [MRLLS12].
Drs2 [Les13]. drug [LK12, VSH+11]. drugs [Gol12a, RBS10]. Dual
[CMS10, NMB+14, TLTW10, XRO+11, HBS+10, KPT+10, Sho10v, WWHH10].
Dual-mode [NMB+14, XRO+11]. Duchenne [DWJ+14]. ductal [LDN+13].
due [KHB+11a]. due [Les14z]. duplication [HKH+10, SDB+10, WSUT11].
duration [RHK11]. during
[AVP+14, ATU+12, ABP+14, ATKK11, AYS+13, BLO+12, BNDB+14,
BVC+11, BPH+14, BBP+12, BDC+14, BEJ10, BM11, BRF+10, BC11a,
BC11b, BTB+11, BGS13a, BGS13b, BJ12, BLC+14, BHA+12, CDM+14,
CSK13, CFB+13, CSEH12, CGCP+14, DGF+14, DCMK+11, DLJ+12,
EL14, FMB+11, FRS+13, FMI+13, GSJS10, GYZ+12, GPCK12, GBJ10,

Dynamin [BG11a, AMS+13, BGB+13, BMÁG+14, BKY+10, BHB+11, BR14, CMW11, CPS+13, CB12, DGH+14, DWPC+11, DYS+14, FBR+10, FW+10b, GCH+14, HSN+11, HH10, KCF+14, LGAC13, LHH13, LMW+11, LDL12, LWB+14, LhYL+13, MAD+11, NCT+11, NPL+10, Pri14, RMS+14, RMT13, RPM+13, SsdA+14, SME+13, Sho11v, Sho14t, SQC+12, SW12, SWF12, TOI+13, VLI+14, WBU+12, WBL11, WBML11, WHWS12, WHDR+10, ZKR+11]. Dynamin2 [BG11a, AMS+13, BGB+13, BMÁG+14, BKY+10, BHB+11, BR14, CMW11, CPS+13, CB12, DGH+14, DWPC+11, DYS+14, FBR+10, FW+10b, GCH+14, HSN+11, HH10, KCF+14, LGAC13, LHH13, LMW+11, LDL12, LWB+14, LhYL+13, MAD+11, NCT+11, NPL+10, Pri14, RMS+14, RMT13, RPM+13, SsdA+14, SME+13, Sho11v, Sho14t, SQC+12, SW12, SWF12, TOI+13, VLI+14, WBU+12, WBL11, WBML11, WHWS12, WHDR+10, ZKR+11].

Dynein-dependent [WRCD12, EM11, GS11]. Dynein-driven [ETRP12]. Dynein-a2 [BG11a, AMS+13, BGB+13, BMÁG+14, BKY+10, BHB+11, BR14, CMW11, CPS+13, CB12, DGH+14, DWPC+11, DYS+14, FBR+10, FW+10b, GCH+14, HSN+11, HH10, KCF+14, LGAC13, LHH13, LMW+11, LDL12, LWB+14, LhYL+13, MAD+11, NCT+11, NPL+10, Pri14, RMS+14, RMT13, RPM+13, SsdA+14, SME+13, Sho11v, Sho14t, SQC+12, SW12, SWF12, TOI+13, VLI+14, WBU+12, WBL11, WBML11, WHWS12, WHDR+10, ZKR+11].

E-cadherin [BG11a, AMS+13, BGB+13, BMÁG+14, BKY+10, BHB+11, BR14, CMW11, CPS+13, CB12, DGH+14, DWPC+11, DYS+14, FBR+10, FW+10b, GCH+14, HSN+11, HH10, KCF+14, LGAC13, LHH13, LMW+11, LDL12, LWB+14, LhYL+13, MAD+11, NCT+11, NPL+10, Pri14, RMS+14, RMT13, RPM+13, SsdA+14, SME+13, Sho11v, Sho14t, SQC+12, SW12, SWF12, TOI+13, VLI+14, WBU+12, WBL11, WBML11, WHWS12, WHDR+10, ZKR+11].
Endocytosis

Endosome

Endosome [WHWS12]. Endogenous

Enhancing

Enhancing [EKF+13]. CTH+11, DPZ+14, LSO10, MMS+10, MDW+13, RPK+11, WtL11. Endorepellin [BFG+13].

Endosomal

Endosomal [MRCC+13, CLW+14, CTM+14b, DFK+11, ECJB10, KWDD10, LCL2, MBCKD13, PLR+13, RBA+11, SSdA+14].

Endosome-Golgi

Endosome-Golgi [KKUG11].

Endosomes

Endothelial

Endothelial [AFM+13, BFG+13, BDB+14, CVR10, CLL+10, FEHF12, FRP+13, HLN+11, HOS+12, JCN+14, KFL+14, Les13-31, LXTM12, MAD+11, Sho12y, SKV+11, TAGJ11, WHR+11, ZPS+10, ZLH+14].

Endo

Endo [DBLG11, EHUD14, HKN+10, JK10, MOZ+13]. enduring [RN12].

Energetic

Energetic [MSK+13b]. energetics [bCAH+11].

Energy

Energy [SWS+11, CTW+10]. engagement [RKG+12, SF12, Sho14m].

Engraffment

Engraffment [BvMD+14].

Enzyme

Enzyme [Les14j]. Les10m, Sho14o, Sho12n, vRJMvD10].

Enzymes

Enzymes [GCBS10, Les10f, Les10g, Les10h, XG12].

EP CAM

EP CAM [MVR+10]. ependymal [GCR+13].

EPG

EPG [LYH+13].

EPG-7

EPG-7 [LYH+13].

Epg5

Epg5 [ZZW+13].

Eph

Eph [JGA+11, NJS+10].

EphA2

EphA2 [HYTU+10, Sho13o, SGT+13].

EphB2

EphB2 [SSD+14].

Ephexin4

Ephexin4 [HYTU+10].

Epiblast

Epiblast [NSS13, Sho13p].

Epidermal

Epidermal [ALV+12, GHK+10b, LN11, NSZ+13, SFL12, TL10, YMM+10].

Epidermis

Epidermis [FMG+11, PL10, RFL13, SCL11].
Epithelial [EZT+12, GFSR11, Sho10w, AEC+14, BMRM13, BG11a, CPS+13, CHL12, CFLDM11, DHB+14, FSLM11, GHC+14, GBSC+12, GWRI2, HKI+13, HKN+10, JK10, KF11, KKL+11, KCF+14, LDCF+13, Les13b, LCHB13, LZR+11, MBR+11, MLH12, MSC+10, MSK+13b, NT11, PTST12, QTL+12, QTL+13, QMHI10, RG14, RFVE+10, RFAA+12, SPJ+14, Sho14-53, SPF11, SMB12, SMT+10, TIT11, VB12, VTM14, VOSB12, WHF+11, WJW+11, ZZW+10]. epithelial-restricted [MBR+11]. epithelial-to-mesenchymal [AEC+14, SMB12]. epithelium [CPS+13, KSP+11].

ESCRTs [FSR11]. epithelial [SRK13]. essential [BKT13, BKBS12, CLSO+12, CHL+14, CCGN11, CSM+12, CGRS+12, FHKW11, HHJ+11, HMO+14, HKR+14, KBKW0, KSSD11, LHTG+12, MXS10, MGG+12, MKHM11, MVP+10, MHK+10, MMC+10, MAD10, NNSH11, OWC+10, RSS+13, RKE14a, RKE14b, SLM+11, SCL11, VSMC11, VLG14, WSTUT11, WGR+12, XW10, YSAY+13, ZSK12, vGLWB12]. establishment [KLP14a, KRS11, WLK+11]. establishes [BAS+14, KSSK12]. establishment [BG11a, BLC+10, JTN+13, KST+10, MLH12].

F [BLO+12, CWL+11b, HTT13, HHY+12, KBC+14, LNL11, WDG+13, YZM+12a, ZBJL+10]. F-actin [BLO+12, CWL+11b, HTT13, HHY+12, KBC+14, WDG+13].

Family

[iYGL+10]. fan [Les12c]. FANCJ [Les13q, Les13r, SNSyN13].

SSdA+14, Sed11c, Sho12-57, Sho14-30, SW12, TTB+13, WM12]. **foci**
[BLM+11, BCJ13, TALR11]. **focus** [TALR11]. **focused** [HCCS+11]. **focuses**
[HZM+13]. **fold** [Les14]. **folding** [LJPJ11, Sev10]. **follicle**
[AAE+14, HZS+10, HSJ+13, MRLLS12, OLT11]. **foliculin** [PRFF13].
Follistatin [PBD+13, WWT+12, SGD+10]. **Follistatin-mediated**
[WWT+12]. **follow** [Sho11-33]. **following** [HLL+12, MBO+14, VES+11].
follows [ILD+10, PKD+11, Sed13h]. **For3** [CSKW13]. **Force** [EHUD14,
FSA+10a, BMAG+14, Boc12, BW13, CTM+14a, CLEZ12, CSTBM+10,
CSH+13a, CSH+13b, HOS+12, RC13, Sed11c, SHV+13, WtLK+13].
force-bearing [CTM+14a]. **force-dependent** [HOS+12]. **force-generating**
[BW13]. **force-regulated** [CLEZ12]. **forces**
[CYLM13, KWTR10, LNR14, MGFG+10, Sed12c, YRU+13]. **fork**
[MFA+14, MFR+14, SNsY13, ZNP+13]. **forks**
[Les14, MFR+14, RZF+11, Sho13r, VYM+10]. **form** [BKS+11, BCB14a,
HKR+10, KMC+14, KHB+11b, OZT+13, RFVE+10, SRS10, SYV14,
SRBL13, Sed13h, Sho10o, VSH+11, WBCY+11, vGCM+14, Sho11-59].
Formation [KBKW10, LLK11, PHB+13, AVP+14, ASB+11, ADAB+12,
BLM+11, BBJ+10, BLC+14, CLSO+12, CLS13, DK10a, DGS+10, DYT+13,
EZT+12, ETC+12, GBL+11, HTT+11a, HRRK13, IMP+12, IM11, ISZ+11,
JDL+14, KOO+14, KPJ+13, KKY+14, KIOY10, KSR+13a, KLvdB+13,
KOYO13, LMA+13, LGAC13, LCP13, LHTG+12, LLR+12, LOR+10,
LXTM12, MI13a, MALS10, MRPR12, NOT+14, NLAS+10, OOKH+12,
OKNP13, ONH+12, PMHZ10, PASG+12, PoLC+13, PLC+11, PTST12,
QMHM10, QECC10, RJvdD11, RKE14a, RKE14b, RBM+11, SSL+14, SB14,
SZJ+10, SWS+11, SJZ+10, SFL12, SLH+14, WJW+11, YYM+11, YKW+12,
YSN+10, YKT+13, ZJP+10, ZBBG10, vRJMVd10]. **formed**
[TYN+13, TW14, VBG+13]. **Formin** [ILD+10, Sho12t, Sho13s, AA13,
OB+10, PDMBW11, VLI+14, vGLWB12, GJP+13]. **forming** [NSB10].
forms [CSKW13, MMVK+12]. **forms**
[BAY+11, HSTF13, SDS+12b, VSG+12]. **fortunes** [Sho13-38]. **forward**
[Les10-36]. **fosters** [STT+12]. **found** [Sho10-49]. **foundation** [LS13a]. **Four**
[RC11]. **Foxj1a** [JYRL+13]. **FoxO** [CLZ+14, NB12]. **FOXO1** [PXZ+13]. **Fra**
[BBJ+10]. **Fra-2** [BBJ+10]. **fragile**
[BBW+13, GZZ+14, Sho14-50]. **fragility** [MTM+10]. **fragmentation**
[NSS+10, WTBM12]. **Frances** [Sed13]. **Fraser** [KTN+12]. **free**
[PSA+10]. **freely** [GHGH11]. **Freeman** [Sed14a]. **frequent** [ELH14]. **FRETting**
[Sho13t]. **Friends** [dWMR10, RS13]. **Frazzled** [ASB+11, Sho11-40].
Frazzled-9 [ASB+11, Sho11-40]. **Frog** [Sho13a]. **front**
FSGS1 [TB12]. **FSGS3** [TB13]. **FSGS3/2** [TB13]. **FSHD** [CG10a]. **Fsp27**
[GSW+11, Sho11-29]. **FtsZ1** [TO12]. **FtsZ2** [TO12]. **fuel** [Sho14-37]. **Full**
[KSP+11, ATKK11, GZZ+14, Sho10r]. **full-of-bacteria** [ATK11]. **Fumiyo**
[Sed12a]. **function** [ABP+12, Be212, BZ12, CLM+10, CYN+13, CSS+14,
CFB+13, DD10a, DJL+12, EBB13, EW+12, FMPS+12, GRH412, HTS11,

HFB +10, HH10, ILD +10, JGA +11, JC1 +14, JAM +13, KPSL12, KKY +14, KSB +13, KPI +10, LTJN +12, Les11-37, LZY +12, NJS +10, OH1C10, QWL +11, RBY +11, RMF +10, SSL +14, Sed10k, Sho13h, SFB +12, Sha10, Sho10f, Sho10t, Sho10-43, Sho13h, Sho13g, Sho14i, SJRV14, SLC +13, SHV +13, TNV +13, TPM +12, TMG12, VSMC11, VOSB12, WLK +11, WWH10, WAG +10, YHK10, YZPF12, ZPS +10].

GTP [MLSM+11, NNO+11, iYGL+10]. GTP-bound [MLSM+11]. GTP-tubulin [NNO+11]. GTPase [AA13, AKC+12, BPL+11, HMIY+10, LZW+12, LZW+13, PLR+13, Sho10-41, dMSMZ14, SCR12, ZFA+13].

GTPase-activating [HMIY+10, PLR+13]. GTPases [ADS+13, BT13, Bar13, BHB+11, LCS+10, LWZ+10, MP13, PRFF13, TCN14].

Harvesting [Sed14v]. Harvey [Sed11v]. Haspin [WUD+12]. DMK+12].

hearing [SKM10b]. heart [QWL+11, Sed12e, Sho11-34, Sho12-64, VLI+14].

heat [Sho13w, KUH+14]. heavy [ECJ10, LHS10, RSD+12, VGL+14].

Hsp110 [MWP+12]. Hsp42 [SMMB11]. Hsp70 [BNH12, HPB10, WTBM12]. Hsp90 [DK10a, SZ12a]. HsSAS [KOO+14].

ICAP [FRL+13]. ICAP- [FRL+13]. BMFC+13. BMFC+11. Id2 [GBSC+12].

[BWL+13, MLH12, PDKG14, WSZ+12]. inhibiting
[ALS+13, BKP11, CJNS12, GL10, HSS+13, YYA+11]. Inhibition
[AYS+13, JCN+14, ZDS+12, ACO12, CZ10, FAB+10, HDK+13, HPB+12, PSF+11, RB11, dSMS13]. inhibitions [Sho13-33]. inhibitor
[DMK+12, STD+10, Sho10y]. inhibitors [GWR+10, Go12a, WUD+12].
Inhibitory [AMH11, MGT+10, MSC+10, PYT+13, WKN+13]. inhibits
[AKB+13, BPB+12, CNP+12, DPW+11, DPW+12, DT14, EM11, GB10, GVP+11, HDH+10, HZT+12, KWH+10a, KWH+10b, KWT10, KMG+11, LCS+10, LMS10a, LR13, LWK+13, LSW+14, OMW+14, PGB+10, RC12, VES+11, XHS+13]. initial [BLI+10, JKS14]. initiate
[KL+12, MWH12, MKH+14]. initiates
[AMGC14, DSM+11, LR11a, LJPJ11, MRLLS12, NOS+14, OYH13]. initiating [MH12]. initiation [ETRP12, GZR+14a, GZR+14b, GCS10, KFI+12, LADS10, MHKM11, PAG+12, RFAA+12, GK13]. Injured
[Les13v]. Injury [GDO13, SMK14, XWE+10]. Injury-induced [GDO13].
Inke [Sed10g]. innate [CLC+11, SA10a]. Inner [KIOY10, bCAH+11, COB+12, GSS+11, HCCS+11, LLH13, Les10-33, Les11u, MAD10, SHN+11]. innovation [HSF12]. Ino80 [Les10s, SKM10a]. iNOS [KLC+10]. insitol
[NPL+10]. Inoué [Sed11r]. Ins [Les10t, Sed11m]. insert [TPM+13].
insight [She14, TKB+14]. insights
[DNB13, GCC12, Ish14, Sev10, SHS+12, XG12]. instability
[GSP+14, SPD+13, TMG+10, WJY+12]. instructs [SCR12]. insufficiency
[RCF10]. insufficient [BWS+10]. insulator [SRBL13]. insulin
[CWZ+12, JOR+11, XRO+11, ZNH+11, ZCB+10a, ZCB+10b]. insulin-like
[ZNH+11]. insulin-stimulated [CWZ+12]. integrate [YFLH12].
Integrated [LZW+10]. integrates [NTSK14, OMZK14]. Integrating
[VvDV+10, HMBC10, TKS+13]. Integration
[MGFC+10, KdKDP12, LJLJ11]. integrin [ATW+10, BFG+13, BMFC+13, CLEZ12, DPW+11, DPW+12, FRL+13, GRHA+12, KTN+12, LCI11, Les12-36, LCHB13, MBVT+13, NRM+12, ONH+12, OLB13, PPV+14, RCM+12, RIG+12, RBH+12, SNR+11, SYS13, SF12, Sho10-30, Sho13i, Sho13-55, TKS+13, WHDR+10, YHT+10, YZM+12b, ZZZ13, BMFC+11]. integrin-dependent [FRL+13, TKS+13]. integrin-signaling [PPV+14].
inTEGRIN [BMFC+13, BMFC+11]. intern/extrusion [BMFC+13, BMFC+11]. Integrins
[GNHB11, Bo12, KYHG12, Les12-32, MVP+11, Mit12a, SHBC12, WBS11].
Integrity [BHA+12, AKA+13, BNL+10, CHL12, FCE+12, GL10, MGS14, NSSL13, OMV+11, RGL+13, Sed12k, Sho12k, SJZ+10, VTM14, ZC11].
interact [BEJ10, JDB+12, LOR+10]. interacting
[MVC+11, PSK11, RKRB12, KKL+14, WWS+12, ZGW+14]. Interaction
[PYT+13, WJW+11, ALF+13, CJNS12, CHL+14, DPW+11, DPW+12, DCN+10, GKWG+11, GZLG11, HCCS+11, HIB+10, KAAM11, KWL+12, LN14, MKH+14, NCT+11, PPD+10, RSS+13, RBF+12, SMdP+14, SYS+14,
TTB^{+13}, VvDV^{+10}, WW^{+12}, ZY^{+11}. **Interactions**

[MIT^{+14}, CNP^{+12}, GB12, HW11, HBC^{+10}, MBM^{+10}, MRR^{+12}, MPRT11, PDKG14, PKS^{+10}, RBV^{+11}, VWD^{+13}, XOV^{+10}, ZSD^{+14}, ZZW^{+14}]. **interactome** [COB^{+12}]. interacts [CO13, CLC^{+11}, GKR^{+11a}, GKR^{+11b}, HKH^{+10}, KWDD10, LHL11, LWL^{+13}, MI13b, SME^{+13}]. **intercalation** [WMP^{+14}]. **intercellular** [AGL^{+14}, KLS^{+13}, Sho12-58, SMT^{+10}].

interchromosomal [UG^{+10}]. **Interdomain** [KPE^{+14}]. interest [Sho14-38]. **interface** [LMA^{+13}, Oef10, Sed13o, XZC^{+12}]. **intermediate** [JVS^{+14}, SBE13, SGLV10, WBML11]. **intermediates** [NZHL13]. **internalization** [BVM^{+11}, CNP^{+12}, YSM10].

internodes [IHG^{+12}]. **interphase** [ABP^{+14}, DE10, EL14, FP10, JG10, LC10, LR13, MGT^{+10}, NEMH^{+10}, RKG^{+10}, TH11, vdVMG^{+11}]. **interplay** [GCH^{+14}, VCF^{+13}, VG13]. **Interruption** [ZNH^{+11}]. **Intersectin** [RFVE^{+10}]. **interspersed** [CSH^{+12}]. **interwines** [TIM14]. **intestinal** [ALJ11, CMT14, GvEM^{+11}]. **intestine** [Sho11s]. **intoxication** [GCV^{+11}].

intracellular [Bez12, BGC^{+14}, DSK^{+11}, MVR^{+10}, SGC10, SZ12a]. **intrachromosomal** [ZNH^{+11}, ZZW^{+14}]. **Intraflagellar** [SW10b, BW12, EIW^{+12}, LWZ^{+10}, Sho12u, TKB^{+14}]. **intraluminal** [HBS^{+10}, MLSTM^{+11}, SHV^{+11}]. **intrinsic** [BHMB1^{+11}]. **intrinsically** [TL12]. **invaders** [Sho13-57]. **invading** [Sho14-43]. **invadopodia** [BWBC^{+14}, DYT^{+13}, HZM^{+13}, MRCC^{+13}, OOKH^{+12}, PTST12, SGLV10, Sho13z, Y YM^{+11}]. **invadopodia-driven** [HZM^{+13}]. **invadopodial** [HNK^{+14}]. **invadopodium** [SLH^{+14}].

invadosome [JDL^{+14}]. **invagination** [MGFG^{+10}]. **invasion** [ABP^{+12}, CBB12, DJL^{+12}, HKN^{+14}, MLM^{+11}, MVN11, ONH^{+12}, PTST12, SGT^{+13}, SLH^{+14}, VFRN11, WHF^{+11}, YHG^{+14}]. **Invasive** [WM12, FPM^{+14}, RCM^{+12}, SHC^{+10}, SZJ^{+10}, Sho14-61, YZM^{+12a}].

inversely [ZNP^{+13}]. **Investigating** [Sed11a]. **involved** [BPH^{+14}, Bon14, DAB^{+11}, RT^{+13a}, RT^{+13b}, YSN^{+10}, ZGEM12].

involving [KLS^{+13}]. **ion** [BLI^{+10}, SNT^{+12}]. **IP** [DWM^{+12}]. **Ipl1** [NCT^{+11}]. **Ipl1** [NCT^{+11}]. **IQGAP1** [JGB^{+13}]. **IRE1** [CCGN11, RPK^{+11}]. **irradiation** [JEF^{+11}]. **IRSp53** [CFLDM11, Sho11-28].

IRSp53-mediated [CFLDM11]. **Isabelle** [Sho10h]. **ischemia** [HLL^{+12}]. isn’t [Sho11e, Sho11-57, Sho12-61]. **Isoform**

[DG^{+11}, CVR10, E CJB10, ILD^{+10}, STG13, TPM^{+13}]. **Isoform-specific** [DG^{+11}]. **isoforms** [GLM^{+10}, GF11, KKW^{+11}]. **isolates** [Sho13-57].

isolation [YST^{+11}]. **Isotropism** [KCF^{+14}]. **ISWI** [KLP^{+14b}]. **ISWI-KLP^{+14b}**. **ITS1** [SML^{+13}]. **itself** [NB12, Sho14w]. **IV** [HLT12].

Jacobs [Sho10p]. **Jagess** [Sed11]. **JAK** [MBVT^{+13}, Sho13-55]. **JAM** [IMP^{+12}]. **JCB** [WM11, WCM12a]. **Jialuai** [Sed10]. **jigsaw** [CD14]. **JIP1** [mFH13]. **Jiri** [Sed12k]. **JNK** [GWP^{+11}, HRWW^{+13}, NSSF10, SEV^{+14}].

JNK-mediated [HRWW^{+13}]. **Joan** [Sed10j, Sed11j]. **job** [Les14-30]. **Jody** [Sed13l]. **John** [Sed12l, Sed13m]. **Joining** [Oef10, CFB^{+13}, CWG^{+11}].
jointly [HSN+11]. Jonathon [Sed14l]. Joubert [CHK+10a, CHK+10b].
journey [MI13a, ME13]. Jun [FHD+12, RBM+11]. JunB
[GBS+12, KHb+11a, RMM+10]. junction
[EZT+12, HTT11b, IMP+12, IIN+11, KUN+13, MLG+10, OT11, RBY+11,
SAG+11, SBS+12, SNZVK12, SNZVK13, TB12, ZME+14]. junctional
[GLG12]. junctions [AFM+13, BG11a, BLT+11, CVR10, HOS+12, Les11x,
Les11-41, Les13a, NGL+12, SME+13, Sho10-61, Sho12h, Sho12y, Sho13-39,
SEV+14, SRZ+11, TIT11, TB13, YMT+13, IDSB+10a, IDSB+10b]. Jürgen
[Sed13a]. just [Les13s, Sho14-42].

K-Ras [MLH12]. Kar3Vik1 [RCC+12]. Karen [Sed12m]. KASH
[ETYS+12, HKW+13, MSZ+12, Sho14v, ZGEM12]. KASH5 [Sho13-27].
katanin [GTR+13]. Kcnc1 [ZZW+14]. KDM1A [MKL+13]. keep
[Sho14y, Sed11k]. keeps
[Les11b, Les11r, Les13-34, Mit12a, Sho10k, Sho10c, Sho11-28, Sho11-48,
[Sed12a]. Kelch [HC10]. Kenneth [Sho10-31]. keratin
[RC12, SLK+13, WBML11]. keratinocyte
[DPW+11, DPW+12, DKA+13, RC12]. keratinocytes
[YMM+10]. Keratins
[KLS+13]. key
[EMO12, HSF12, Les10-35, Les12l, Les14f, MH14, TSH+14, TMG+10]. KH
[IWS14]. Khodjakov [Sed12a]. Kicking [Les14o]. kidney
[CC10a, PPG11a, PPG11b]. KIF13B [KWH14, Sho14z]. KIF14 [ATU+12].
KIF4 [SSV+12, Sho12-28]. KIF4A [BGB+13, BCBl4a, Sho14-27]. kill
[Sho10x]. killer [AMH11, Les11w]. killing [Les12d]. kills
[SDN+14a, SDN+14b]. Kin4 [BKP11, CKO+10]. Kinase
[YWJ+12, ALS+13, AGM+10, AKA+13, BNB+14, BVC+11, BKPI1,
BPL+11, CDD13, CKO+10, CCN11, CLD11, CFLDM11, CTW+10, Dan14,
DPL+12, DCP+10, FWM+10a, FAB+10, GR11, GL10, HDK+13, HGV+14,
HLN+10, KPE+14, KDIE11, KMS10, KWO11, KWL+12, KSR+13b, KSSD11,
KKK+11, LC10, LS15a, Les11o, LZR+11, LMC+12, LVB+10, LP11, LRL12,
LMS+10c, MSR10, MHKM11, MCHCC10, MBO+14, OMW+14, PPG11a,
PpG11b, RCM+12, RjVD11, RJM+12, RCG+10, RCG+11, RPK+11,
RBM+11, SKH+10, TSB+14, WGN+13, WDB10, XWE+10, XOY+10,
YYM+11, YFLH12, ZPS+10, ZEG11, MMS+10, SDS+12b, YDB+11].
kinease-1 [LDL12]. Kinase-dead [YWJ+12]. kinase-independent
[RCG+10, RCG+11, ZPS+10]. kinase-mediated [CTW+10].
kinease/phosphatase [FWM+10a]. kinases [BNL+10, BCBG10, MBVT+13,
RCG+10, RCG+11, SOW+11, SHC+10, Sho13-58, SWC13, YBN+11].
kinastrin [DLBG11]. kinastrin/SKAP [DLBG11]. Kindlin
[SNR+11]. Kindlin-3-mediated [SNR+11]. kinesin
[BSR+14, EAK13, mFH13, GdAJ+12, HBS+10, HS10a, JDB+12, LMS10a,

kine [SBR+11]. kinetics [DE10, HIB+10]. Kinetochore [JKA+10, Les13w, BKS+11, CDD13, CM12b, CYLMM13, CJNS12, CLO+11, CSHS+13a, CSHS+13b, CD14, DK10a, DSI13, DMK+12, DWDDW12, ECK+12, FSOL14, GC13, GCR+12, HSTF13, HTM+14, JHJ+10, KIOY10, LH10, LMA+13, Les13-32, LVB+10, LDL12, MGK+12, MHS10, MS14, MAD10, NvCl+13, PPP+10, PKS+10, RKE14a, RKE14b, Sho10-66, Sho14m, Sho14-52, SMS+14, SJ13, SHN+11, TUG+10, VTO+13, ZSD+14, KW1+12].

L [BGC+10, CZD+13, DCL+12, GGSN+13]. L-mediated [GGSN+13].

Lysosome

Live [DE10, LWB+14, RMT13, RKK+14, YSN+11, Les13u, RZS+14, SQC+12, TP13, WPSA13]. Live-cell [RMT13]. lived [LWBH12].

liver [Sho11u]. living [DMH+12, HIB+10, KSS+11]. Liz [Sed10]. LKB1 [BDC+14, CAK+14, Dan14, Msk+13b, LSS+12, Sho12-30]. LL5 [HKN+10].

load [CPT+12, CPT+14, YOMM+11]. loading [KSS+11]. Local [CO13, FDB+13, LADS10, SFb+12, VOSB12, EAK13, LLT+12, LhYL+13, SB14, WMV+14]. Localization [SDS+12a, BVC+11, GYC+14, HFB+10, HLS+14, KKK+11, Ljw13, MTG+11, MdFF+14, MBLD11, NvCL+13, Pm+12, OPCEM10, Rgl+13, Sj12a, Sho14-47, SJRV14, Vsmc11, WGN+13, Xov+10, Ytt+10].

mechanotransducer

Mechanosensing

Mechanosignaling

mechanotransducers

mechanotransduction

mediates

Membrane [KSR+13a, ZSZ+13, ABVP11, AVP+14, AMR11, AOE+10, AOE+12, ANT+12, AXL10, AFRZ+14, Bab14, Bar13, BPDB+11, BKW+11, BRD+13, BJc+12, Bra13, BKBS12, CLM+10, CDAK10a, CDAK10b, bCAH+11, CWL+11b, CSS+14, COB+12, CTD+10, FSLM11, GSS+11, GKWG+11, GSU+12, GPCK12, HZM+13, HKQ+14, HFS10, HAB14, HBC+11, HCCS+11, JLY+10, JCI10, KEJ13, KHS+11, KKS+14, KdKDP12, KLHS14, KWDD10, KPH+12, KTN+12, KIL+12, KBKW10, LMT+10, Les10-33, Les11m, Les11u, Les12i, Les12-33, LAO+10, LAH+12, LJJP11, LJLJ11, LWB+14, LYB+10, LMS+10c, MAS11, ME13, MU+10b, MMC+10, NBC+12, NSSF10, NBS+11, OPCEM10, PKD+11, PDKG14, PGAE+13, PMB+11, RLS+14, SBS+12, SSL+14, Sed14q, SRKR10, SNS+12, Sho10-35, Sho11v, Sho13p, TID+10, TESA10, WMCF10, WAW+11, WZHV11, WLK+11, WWS+12, XBC+13, YKW+12, YSN+10, Pri14].

memories [Les11s, Sho10-70]. Mena [GRHA+12]. merge [ABP+14].

Merging [Sed10k]. mesenchymal

[AEC+14, BMRM13, GBSC+12, KKL+11, LZR+11, PTST12, SMB12].

[LS+11, MFGB10, OS13, XG12]. metabolism [BLC+12, Pri14, Sed14r].

metalloproteinase [WM14]. metaphase

[BRL14, CMS+14, JKA+10, Les13-44]. metaplasia [LDN+13]. metastable

[SYS13, WAJ+12]. metastasis

[BT12, BWBC+14, JCN+14, Les10-35, Sed11g]. metavinulin [JLVH12].

metazoa [HBI+10]. metazoan [Hyn12, RSL+11]. method

[BCC13, NDS+14, Sed10c]. methylation [VLC14]. methyltransferase

[EC+13, TNH+11]. methyltransferase- [EC+13]. Mff [OWC+10]. Mgr2

[GSB+12]. MHC [RGB+13, UA+12]. Mia3 [WPL+11a, WPL+11b].

Mia3/TANGO1 [WPL+11a, WPL+11b]. Mice

[KHB+11a, ZZW+13, ABD14, BBY+12, BMS+11, DPL+12, LBWH12, LHGT+12, MJB+10, MBK+10, NNSH11, PGB+10, RKS+10, SDS+12a, SJZ+10, YOA+11, YWJ+12, ZYH+11]. Michael [Sed11l, Sed13r, Sed14q].

microclusters [LCBG+11]. microdomain [WMC14]. microdomains

[KHFV+13, LOR+10]. micrometer [TP13]. micrometer-scale [TP13].

micropatterning [LWB+14]. microprocessor [KA12]. MicroRNA

[AAE+14, BAB12, QEC+10, BAAW11, CTL+10, GSC11, HVW+10, KA12, Les12t, LNS+13, LK12, Sho12-64, SLH+10]. microRNA-1 [CTL+10].

[AAE+14]. MicroRNA-30c-2* [BAB12]. microRNA-mediated
[HVW+10, LNS+13]. microRNA-targeted [LK12]. microRNAs
[Les11s, Les12e, MPD+12, Sed13x]. microscopes [Les11-44]. microscopy
[CG10b, FAvdB+12, KSW+11, SHL10, Sed11r, SNT+12, YON+12]. Microtubule [COG11, ECK+12, GTR+13, HS10a, MBCKD13, RBF+12, YKT+13, BGB+13, BHB+11, BDD+14, BR14, CYLMM13, CJNS12, CLS+10, CPX11, CWPW11, DK10a, DSL13, DT14, DWDW12, DLBG11, EHUD14, ENG+12, GCP+14, GCR+12, GS11, HSN+11, HKN+10, JG10, JKA+10, KOK+13, KSR+13b, LvDG+10, LW10, LMA+13, Lsd11c, Lsd11r, LMW+11, LDD12, MGK+12, MOZ+13, MAD+11, NCT+11, RCI12, PAB+10, PKS+10, RMS+14, RCP+12, RDPG14, SMF+13, SMM+10, SCL11, TMC+10, TUG+10, UCH+13, VWC+13, WBS+12, WMP+14, YWC+13, ZSD+14, vdVMG+11, FSA+10b]. Microtubule-dependent [MBCKD13]. Microtubule-organizing [YKT+13]. microtubule-stabilizing [WMP+14]. Microtubules
[FiS14, GB12]. Mid1 [Les14o, RPO+14]. midbody
[BWK+11, PKD+11]. Mim1-dependent [PKD+11]. mind
[Sho11-56]. minimal [SRKR10]. Minimizing [WCMI2b]. minus
[CLSO+12]. miRNA [DWM+12, Sho12o, SGD+10]. miRNA-1 [SGD+10].

Molecular
[KBS⁺10, LMA⁺13, MHS10, RDC⁺11, BVL⁺12, CLS13, CBB12, GDS⁺12,
HHC⁺11, Les14t, LCP13, MS14, RK13, Sed11a, ZSD⁺14, Jan14, WMB12].
motors [DMK⁺12, KSP⁺11, NRK⁺13, STD⁺10, WWS⁺12]. molecules
[HHS⁺14]. MoniTORing [KK13a]. monocyte [RBH⁺12]. monomer
[KSP⁺11, OD10]. monomeric [HM10]. monoubiquitination [HLH⁺14].
[RKG⁺10]. Mrg1 [HKI⁺13]. morphogenesis
[CWL⁺11b, EBB13, GOWMI2, GWR12, JK10, MH11, MAD⁺11, PBG⁺13,
QTL⁺12, QTL⁺13, RLS⁺14, RFVE⁺10, RFAA⁺12, RSRK13, SMSP11,
Sho12-30, VTM14, VdV⁺10, VLI⁺14, ZBJL⁺10, ZZW⁺10].
morphogenetic [Les13c, MVR⁺10, WCG⁺13]. morphology
[BMLB⁺12a, BMLB⁺12b, CLC⁺11, HVOF⁺14, LSM⁺11, PBG⁺13, Sed12r,
Sed13y, Sho12-34, TAC⁺13, WRF⁺13]. Morrison [Sho10-56]. mothball
[BKBS12, CLM⁺10, DCL⁺12, PPV⁺14, TMG12]. motifs
[BBK⁺13, DSK⁺11, MTT⁺14, PMB⁺11]. motility
[AA13, BMAG⁺14, BvMD⁺14, CBBH11, CGW⁺11, DS10, DHB⁺14,
GYC⁺14, GPC12, GCR⁺13, HARS14, Kin13, LLU⁺12a, LLU⁺12b, LCHB13,
MHAK⁺12, O V W10, dJ P A A⁺11, S ST⁺12, S M M⁺10, W H W S12, Y S A Y⁺13].
motion [SSH⁺13, WBM11]. motions [WRCD12]. motoneuron
[FHD⁺12, SFB⁺12]. Motor
[DGF⁺14, Sho14-36, SST⁺12, CSTBM⁺10, DCN⁺10, FH K W 11, HBS⁺10,
HZE⁺13, JDB⁺12, Les10v, NNO⁺11, SCL⁺14, Sho14f, Sed14l].
motor-dependent [CSTBM⁺10]. Motor-driven [DGF⁺14, SST⁺12].
Motoring [Sed10h]. motors [CT10, mFH13, HS10a, KHB⁺11b, YOMM⁺11].
mounts [BW13]. mouse
[DSB⁺14, MC10, OHC10, WSZ⁺12, WPL⁺11a, WPL⁺11b, YSN⁺11]. Move
[Fls14, Sed13d, Sed13r, Sho11f, Sho13-44]. movement
[FHWK11, HTT13, LBWS10, MAE⁺10, ZQA⁺14]. movements
[BEJ10, MVR⁺10, PJS⁺11, Sho13-60]. moves [EHUD14]. Moving
[Sho13-36, Sho12-51, Sho12-62]. MP1 [SSdA⁺14]. MPS1
[NvCL⁺13, STD⁺10, AGM⁺10, EUB⁺14, HTS⁺10, JDS⁺10, KNW⁺14, LC10,
[BLM⁺11, COG11, CMW11, CT10, HFB⁺10, HZE⁺13, HIB⁺10, KYOY13,
KKK⁺11, LFC11, Les11e, RCBY⁺12, Sho10v, Sho12-46, SHC⁺13, VBB⁺10,
YCP10, ZDS⁺12]. mRNA-binding [KKK⁺11]. mRNA-silencing
[BLM⁺11]. mRNA-transport [HZE⁺13]. mRNAs
[DSD⁺13, GSM⁺14, NKHI11, Sho10-63, Sho12x, Sho13-29, WP14, YZL⁺13].
Msb3 [PLR⁺13]. MT [JK10]. MT1 [MRCC⁺13, SGT⁺13, YZM⁺12a].
MT1-MMP [MRCC⁺13, SGT⁺13, YZM⁺12a]. Mtm [VJK⁺10a, VJK⁺10b].
MTOC [BKK⁺10]. mTOR [BH13, CZM⁺14, OSD⁺14, WWT⁺12].
mTORC1 [PRM⁺14, Sho11-44, SHC⁺13, YDB⁺11]. mTORC2
GLM
MyoD
HVW

neuromuscular [BLT⁺11, KUN⁺13, Les11x, SAG⁺11, SBS⁺12]. neuron
nucleus [GP10, LCS

[AiiK+13]. oxygen [Fin11, KlvdB+13, Sho13h]. oxysterol [DKF+11]. oxysterol-binding [DKF+11].
Sho14-68, ZBBG10, BKBR11]. phosphate
[GF3R11, HMB14, VSG+12, dSJDD+11]. Phosphatidic [KYP+14].
phosphatidylinositol [AKA+13, DCP+10, HMB14, MRPR12, dSJDD+11].
Phosphatidylserine [HAKK11, XBC+13, FSA+11]. phospho [MGK+12].
phospho-switch [MGK+12]. Phosphocaveolin [JBS+12, JBS+13].
Phosphocaveolin-1 [JBS+12, JBS+13]. phosphocycling [VOSB12].
phosphoglycerate [MMO+14]. Phosphoinositol [LMS+10c, YYM+11, BCBG10, CDH+14, HTT+11a, HAB14, RLS+14, TOI+13, VSG+12].
phosphoinositide-binding [HHT+11a, TOI+13]. phospholipase
[BDR+10, KYP+14, LBS+13, MRPR12, YBB+11]. phospholipid [Les13l].
phospholipids [OVL+11]. phosphoregulates [RSD+12].
phosphoregulation [TOI+13, ZSD+14]. Phosphorylated
[DPB+10, MFR+14, LCBG+11]. phosphorylates
[CSS+12, IMP+12, KLF+14, RBM+11]. phosphorylating [TTM+14].
Phosphorylation [CLM+10, GSJS10, HDK+13, PAB+11, Sho13-41, ALS+13, BPT+14, BRF+10, BVM+11, CDD13, CLO+11, CKU+10, EUB+14, FPAM13, GZR+14a, GZR+14b, GLB10, GC13, GSGL11, HSS+13, HRWW+13, ILD+10, JOR+11, KNW+14, KST+11, KLS+13, LR11a, LNZL13, MLM+11, NCT+11, NKKH11, PSR+10, RBY+11, RTC+12, RTC+13a, RTC+13b, RNF+10, SAG+11, VYC+11, VTM14, WBL11, WD+13, XHS+13, YMT+13, YCP10, ZBBG10, ZJP+10].
phosphorylation-dependent [GLB10], photoinactivation [KKS+14].
photoreceptor [CHL12, MBLD11, SDS+12a]. photoreceptors
[VPC+14, WWHH10, YBN+11]. pHuji [SRCP14]. Physical [WtLK+13].
physiology [Sed13o, Sed14q]. physiological [YHT+10]. physiology
[GLM+10, RH10, SMSP11]. PI
[HGV+14, Sho12-40, VJK+10a, VJK+10b, YDB+11, vGLWB12].
[CVR10, CLZ+14, VJK+10a, VJK+10b, WAJ+12]. P13K-dependent
[WAJ+12]. P13P [PAB+10]. P14KIII [NBC+12]. PIASy [RFK+10].
PIASy-dependent [RFK+10]. Pichia [MAL510]. pick [Sho14-63]. picture
Phid [DSB+14]. PIK3C3 [LBD+14]. PIM [SOW+11]. Pin1 [RSM+13].
Pinner [JDHS10]. Pinner-generated [JDHS10]. Pin'd [Sho13y]. PINK1
[ASLS14, JLM+10, KLF+14, LNJ+13, MSS+10]. Pins [WJPD11].
Pioneering [Sed12c]. PIP [Sho14-45, VLB14]. PIPK
[CDAK10a, CDAK10b]. PIPS [Sho10-48]. piRNA [HLS+14]. piRNAs [KT10]. pit
[Les10-31, LADS10, NPL+10, SNT+12]. PKA
[BWL+11, DGS+11, SYV14, Sho11-43, Sho12j, TMS+12, LLH13].
PKA-dependent [BWL+11, SYV14]. PKB [CDK+10, XHB+10]. PKC
[CWB+14, EAK13, HLN+11, KLS+13]. PKC- [KLS+13]. PKC-dependent
[CWB+14]. PKcs [VEDBC13, ZYH+11]. PKR [LSOT10]. place
plasmodesmata [TLL+13]. plastic [Sho13-42]. Plasticity [FW10, BGS13a, BGS13b, LLT+12, MDP+10, SBP+10b, VG13].
YHG^{+14}. **Prex1** [WHWS12]. price [Les14b]. pricked [Sho10y]. primary [GdAJ^{+12}, IMG^{+12}, MWH12, Sho10-36, Sho12-60]. **primate** [WMB^{+10}]. **primate-specific** [WMB^{+10}]. prime [Sho10-28, WPSA13]. **primed** [DYS^{+14}, Sho14-64, WWB^{+10}]. **primer** [VYM^{+10}]. **priming** [LS1^{+10}, VEDBC13, WLGC11]. **Principles** [ZF11, ZKR^{+11}]. **Prion** [Sho12-41, Sho14-46, DBUT13, RCFH10, Sed10a, TL12, WTBM12]. **prions** [KNSP^{+10}, RKK^{+14}]. **prior** [LS13b]. **Prize** [ME13]. **PRKD2** [ONH^{+12}]. **pro** [DMD^{+12}, FBR^{+10}]. **pro-** [FBR^{+10}]. **pro-peptide** [DMD^{+12}]. **proadaptive** [BAB12]. **proapoptotic** [GWP^{+11}]. **probe** [HMB14, RKT^{+14}, Sed10a]. **probed** [BAH^{+12}]. **Probing** [BS13, Sho14-47, SKFH11, FHY^{+10}, GMD^{+10}]. **problem** [Les10-39, Les12w, Ros13]. **problems** [Sho13b]. **processes** [SDS^{+12a}]. **Processing** [CTH^{+11}, CMW11, IPM^{+13}, NZHL13, RGB^{+13}, SML^{+13}, XHB^{+10}, YTM^{+11}]. **processive** [HM10, KHB^{+11b}, WRCD12]. **produce** [BGY^{+13}]. **produces** [Sho11-58]. **product** [ZSK12]. **production** [BBJ^{+10}]. **proficiency** [MBZ^{+10}]. **profiling** [BAH^{+12}]. **progenitor** [BTC^{+11}, LRH^{+13}, TPZ^{+14}]. **progenitors** [CCM^{+11}, YMU^{+10}, YMU^{+13}, ZFA^{+13}]. **Progeria** [GCC12, SDD^{+13}]. **Progerin** [Les13-28]. **prognosis** [Sho12-43]. **program** [FPM^{+14}, Sho13-51, TGB10]. **programmed** [ZFA^{+13}]. **programs** [DKY^{+12}]. **progress** [Sho13r]. **progression** [ATU^{+12}, CSS^{+12}, CGRS^{+12}, FP10, FSK^{+10}, LWW12, LP13, NMB^{+14}, WBS11, WGN^{+13}, XTH^{+11}, ZNP^{+13}, ZSK^{+13}]. **project** [Sho12-50]. **projections** [KHC^{+13}]. **proliferating** [IMG^{+12}]. **Proliferation** [TC10, BKE10, CTL^{+10}, DPW^{+11}, DPW^{+12}, DCO^{+13}, HZS^{+10}, HSJ^{+13}, HK14, LSCF11, MPD^{+12}, WPM14, WMC10, WSM^{+12}, ZLW^{+13}]. **prolonged** [RGB^{+13}]. **Prometaphase** [CSTBM^{+10}, vZOtR^{+10}]. **promiscuous** [RKRB12]. **promote** [ALSN^{+11}, AA13, BLC^{+12}, BLW^{+13}, BPBD^{+11}, CTY^{+12}, DHB^{+14}, DWDW12, DCO^{+12}, DCO^{+16}, DJL^{+12}, DKA^{+13}, DHL^{+12}, EKJH13, HHL^{+11}, HLL^{+12}, HRWW^{+13}, IMP^{+12}, INN^{+11}, KWDD10, KCF^{+14}, LVK^{+13}, LCHB13, LZY^{+12}, MMVK^{+12}, MI13b, MBVT^{+13}, MMFS11, MTT^{+14}, RCM^{+12}, RCC^{+10}, RCC^{+11}, SRS10, SSL^{+14}, VTO^{+13}, WBS^{+12}, WJPD11, WKN^{+13}, WRCD12, ZZW^{+14}]. **promoted** [CLW^{+14}, OSD^{+14}, YMT^{+13}]. **Promoter** [RKW^{+13}, HPB10]. **Promoters** [RKW^{+13}]. **promotes** [AEC^{+14}, ALF^{+13}, ADAB^{+12}, BSR^{+11a}, BIY^{+13}, BWC^{+14}, BWC^{+11}, BBW^{+13}, BKP11, BMLB^{+12a}, BMLB^{+12b}, BRP14, BLC^{+14}, CWL^{+11b}, CRP^{+14}, DPV^{+12}, DGF^{+14}, DSD^{+13}, EUB^{+14}, FHD^{+12}, FCE^{+12}, FPM^{+14}, GCP^{+14}, GBL^{+11}, GSM^{+12}, GZZ^{+14}, GSW^{+11}, GKR^{+11a}, GKR^{+11b}, GDS^{+12}, HWE^{+12}, HKN^{+14}, oHXK^{+12}, HRK13, HK14, IHM13, ILD^{+10}, IAMH10, JGB^{+13}, JRC^{+13a}, JRC^{+13b}, KHVF^{+13}, KBC^{+14}, KNsMK13, KSR^{+13a}, KSR^{+13b}, LAR^{+12}, LLU^{+12a}, LLU^{+12b}, LMW^{+11}, LZW^{+12}, LZW^{+13}, LADS10, LBD^{+14}, LP13, LLA^{+12}, MMO^{+14}, MRPR12, MKL^{+13}, NKH11, ONH^{+12}, PoLC^{+13}, dJPA^{+11},

RAD51 [RZS+14, CCJ+12, PLC+11]. Rad51-mediated [CCJ+12]. Rad52
Radial [WMP+14, OYYK14, PBIM+11, Sho11-37, SDS+12]. Radil
Ramanujan [Sed10n]. Ramos [Sed13g]. Ran
[HHJ+11]. RanBP2 [GVP+11, HHJ+11, Les11-34]. RanBP2/Nup358
[HHJ+11]. RanGAP [ZGEM12]. RANGAP1 [RDB+12]. range
[KKX10, KK13b]. RanGTP [HRK13, WJPD11]. RANKL [XTX+13]. Rap
Rap1-interacting [WWS+12]. Rap1a [ATU+12]. rapamycin [SGD+10].
Raphael [Sed14a]. rapid [GB12, GEN14, KEJ13, RCG+10, RCG+11].
rapidly [GNHB11]. Raposo [Sed12]. RAR [PSF+11]. Ras
[AFRZ+14, CDK+10, Les10-31, MLH12, MMU+10b, RFRV12a, RFRV12b].
Ras-mediated [CDK+10]. rate [ADF+12, ZNP+13]. rather
[DKY+12, LLS+11]. RB
[VES+11, CZ10, MPD+12, SZW+11, Sho10-54, WAG+10]. Rb-deficient
[CZ10]. Rbfox3 [KNSMK13]. Rbfox3-regulated [KNSMK13]. RBM4
RCP-dependent [RCM+12]. RCP-driven [JGB+13]. Re [WCM12b].
reactivate [BRL14]. reactivation [ADB+14]. reactive [Fin11]. readies
[Sho13f]. readily [MSK+13a]. Reading [Sed11p]. readout [Jan14]. ready
[SBR+11]. realistic [Ros10b]. rearrangements [LAO+10]. receptor
[AMH11, ALS+13, ASB+11, BST+11, BGC+14, BG11b, FAB+10, GHK+10b,
GM11, GFSR11, HZM+13, HSS+13, JGA+11, JOR+11, JDL+14, KDC11,
LAR+10, Les11n, LYN+13, MLM+13, MVP+11, MSR10, MHCvSW11,
NRM+12, NJL+13, NJS+10, RPO+14, SLM+11, Sho12-61, SJM+13,
TTM+14, VWD+13, WLH+14, ZGC+14, ZIG+12]. receptor-mediated
[BG11b, GM11, MLM+13]. Receptors
[Les11-35, BKT13, CSH+12, oHXK+12, JGA+11, KYP+14, LZW+12,
LZW+13, LADS10, Sho12e, YMM+10]. recipe [Les10-37, Pow14a].
reciprocally [SLK+13]. Reck [Sed13s]. Recognition [BTL+12, ABD14,
CMS10, LAR+10, LvBG+10, MPRT11, SAO14, vZOTr+10]. recombination
[BSR+11a, HMBC10, MTM+10, PHD+10]. Reconstituted [WLGC11].
reconstitutes [BJE+12]. Reconstitution [LMT+12, HZE+13].
reconstruction [Sho10-30]. recovery [GSGL11, MFR+14]. Recreation
[YHT+10]. recruit [CSH+12, HTS+10, LTJN+12]. recruited
[IDS+10a, IDS+10b]. recruiting [KWH14, LMK+11, PLR+13].
Reorganization
[BRL14, FMI+13, PRFF13, BSR+11a, BKS14, BB10, BWBC+14, BVM+11,
NGL⁺₁², PCO⁺₁₀, ZMW⁺₁₃. Regulation
[CKU⁺₁₀, GCSB₁₀, HMY⁺₁₀, RH₁₀, SA₁₀ₐ, SAo₁₄, TLSA₁₄, CS₁₃, GOWM₁₂, GW₁⁺₁₁, HVW⁺₁₀, JBS⁺₁₂, J₂⁻₁₁, KPE⁺₁₄, KMS₁₀, KSSD₁₁, LS₁³₆a, MLH₁₂, MLG⁺₁₀, MC₁₀, MVP⁺₁₀, NMB⁺₁₄, NS₁⁺₃, OS₁₃, PWP₁₁, PXZ⁺₁₃, RT₁₂, RY₁₁, SBR⁺₁₁, SFB⁺₁₃, SSB⁺₁₀, Sho₁₁₇z, Sho₁₁⁻₃₂, SLK⁺₁₃, SLC⁺₁₃, SLS⁺₁₀, TMS⁺₁₂, WGN⁺₁₃, XG₁₂, ZSK₁₂].
regulator [CLC⁺₁¹, DCP⁺₁₀, HS₁₀ᵇ, KPSL₁₂, LNL₁₁, MBK⁺₁₀, MH₁₄, OBC₁₄, PLL⁺₁₂, TMG⁺₁₀, TQM⁺₁₄, WCQ⁺₁₃, YSA⁺₁₃, ZDM⁺₁₄].
Regulators [BNL⁺₁₀, CTY⁺₁₂, FSH₁₀, RTM₁₃, Sho₁₂d, VKM₁₂].
regulatory [BKBR₁₁, FRS⁺₁₃]. Reik [LeB₁₀]. reichardii [MBLD₁₁].
remodeler [CC+₁₂]. Remodeling
[CGC⁺₁₄, ABVP₁₁, BPF⁺₁₄, BG₁₁₆, CWC⁺₁₃, DWJ⁺₁₄, FRL⁺₁₃, FMG⁺₁₁, HOS⁺₁₂, KLP⁺₁₄b, KSR⁺₁₃₆, LPG⁺₁₀, MRR⁺₁₂, RG⁺₁₀, RDC⁺₁₁, SKM₁₀a, SHS⁺₁₂, SWV⁺₁₀, TIT₁₁, TKS⁺₁₃, TO₁₂, TCN₁₄].
reorient [WAJ⁺₁₂]. reorientation [ADAP⁺₁₂, RS₁₃]. Repair [Sho₁₁⁻₄⁷, ABVP₁₁, BSR⁺₁₁a, BNDB⁺₁₄, BCJ₁₃, CC⁺₁₂, DWL⁺₁₁, ETI⁺₁₀, EIE⁺₁₄, GS⁺₁₃, GKH₁₀a, IAMH₁₀, JPT⁺₁₁, KK₁₃b, KLP⁺₁₄b, LPG⁺₁₀, LGM⁺₁₂, Les₁₀₆, Les₁₀₇, Les₁₀⁻₃₉, Les₁₂⁻₂₈, Les₁₄₄, LvBG⁺₁₀, MΗ₁₂, MBZ⁺₁₀, PSVR+B₁₁, PCL⁺₁₃, PV₉⁺₁₂, RSS⁺₁₃, RC₁₂, SKM₁₀a, Sho₁₀₆m, SWV⁺₁₀, TID⁺₁₀, VB₁₂, XSJ⁺₁₀, YTM⁺₁₁, ZYH⁺₁₁, ZNA⁺₁₄].
[Les₁₀⁻₃₂, RKE₁₄a, RKE₁₄b, DAB⁺₁₁]. replenishment [VPC⁺₁₄].
replicate [DKY⁺₁₂]. replicated [BBW⁺₁₃]. Replication
[HBC⁺₁₁, OM⁺₁₁, TGB₁₀, TLL⁺₁₃, YTM⁺₁₁, BDC⁺₁₄, DPB⁺₁₀, DKMK⁺₁₁, DΚY⁺₁₂, EIE⁺₁₄, GZ⁺₁₄a, GZR⁺₁₄b, GB₁₀, GZZ⁺₁₄, Gii₁₀, JRC⁺₁₃a, JRC⁺₁₃b, KSS⁺₁₁, KSSD₁₁, yLFM₁₃, Les₁₀c, Les₁₀₄, LLM⁺₁₀, MGS₁₄, MHKM₁₁, MFA⁺₁₄, MFR⁺₁₄, NZH₁₃, PASG⁺₁₂, RZF⁺₁₁, SKN⁺₁₃, SNSy₁₃, Sho₁₃l, Sho₁₃m, Sho₁₃⁻₃₈, Sho₁₄⁻₅₀, Sho₁₄⁻₅₀, SZE⁺₁₁, SQC⁺₁₂, VYM⁺₁₀, WGC₁₁, ZNP⁺₁₃, ZMW⁺₁₃]. replicons [SKN⁺₁₃].
Repo [Sho₁₂⁻₅₁, WHL⁺₁₂]. repositioning [YWC⁺₁₃]. represses [dJPAA⁺₁₁, SZE⁺₁₁, XTH⁺₁₁, ZFP⁺₁₃]. repression [CTL⁺₁₀]. repression
restrictions [Sho10-46].

responses [BGS13a, BGS13b, CLL13, OHC10].

respective [MLM+13, WOG13].

responsible [LM1+13, SHC+13].

respective [LM1+13, SHC+13].

restorative [MKS+13].

reinforce [SMB12].

reproductive [CRL+14].

reprogram [CRL+14].

reprogramming [QB12].

replores [KST+13, RBF+12].

required [ADB+14, ATKK11, AJA+13, AYS+13, BSR+11b, BSR+11c, BV11, BCY10, BBW+11, BVW+11, CTM+14a, CMS+10, CHS+10, CMH+10, DSB+14, ETC+12, FSK+10, FHY+10, GZR+14a, GZR+14b, GBK+14, GBIY+14, GZL11, GCV+11, HKH+10, HCC+10, HTS+10, HCCS+11, KFE+14, KPI+13, KTH+10, KFH+12, KKW+11, MBR+11, MWP+12, MWZ+11, MLG+10, MHC+12, MZP+10, MCB+13, NvCL+13, NDS+11, NBS+11, OBS+12, PCC+11, PAB+11, QMM+10, RGL+13, RPO+14, RSK+13, SYS+14, SBEM+13, SNR+11, SCH+10, SCN+14, SM+14, SMM+11, SRU+12, TB12, TSV+14, VGL+14, WLW+11, XBC+13, YOA+11, YTT+10, ZYF+11, ZSK+13, ZPB+12, vGCMA+14, vBAK+12].

requirements [BG+10, KPC+11].

requirements [GvEM+11, KLV+13, LMA+13, TTC+14].

requires [ASLS14, BPL+11, BMFC+11, BMFC+13, CWFL+13, EZ+12, ETYS+12, GFS+11, HLM+10, IM1+11, KEO+10, KTN+12, KFS+14, KSS+11, KTB+14, LB+13, MLW+13, MMS+10, NSS+13, PR12, SKVd+11, SWS+13, SFX+13, SP+14, UG10, ZSP+14, ZSZ+13].

rescue [JYR+13].

Rescue [JYR+13].

rescues [SFB+12].

resection [GOL+12, Sed+10a].

resection [KFH+12, PLC+11, RSS+13].

resorption [SNR+11].

response [LWBH12].

respond [BLM+11].

response [BKG10, BAB12, CPT+12, CPT+14, CRJB+11, GBSC+12, GBJ+10, JRC+13a, JRC+13b, KHW+10, KMSR+12, Les+14s, LCK+13, MFB+12, MLK+13, PLL+12, PHP+13, RK+10, RH10, SSD+14, SRBL+13, SS11, WK12, XWE+10].

responses [BGS13a, BGS13b, CLL+10, SA+10a, SJM+13, YFLH12].

responsible [MLM+13, WOG13].

responsible [NK1+11].

REST [KST+10, PMP+11a, PMP+11b]. REST/ [PP+11a, PMP+11b].

restorative [MKS+13].

restore [Sho12-46].

restores [G0+12, 46].

restrains [Sho13].

restrains [Sho13].

restrict [G0+12, 46].

restricts [Sho10-46].

resulting [MMB+11].

retain [MBZ+10].

retains [Sho11-41].

retention [CWG+11].

reticulum [AIB+13, CTH+11, DPZ+14, GF11, Les+11-36, LSO+10, MMS+10, MDW+13, RPK+11, WLW11].

retina [SW10b].

retinoblastoma [RCG+10, RCG+11].

retraction [AMH11, GdB+14, GPCK12].

retrieval [CZ+11, KKS+14].

Retrograde
[JTN+13, PL10, BKK+10, BKE10, CSTBM+10, DWDW12, RBB+14].

S

[HIM+10, AKC+12, BNL+10, COW13, CGRS+12, EMO12, GSJS10, HBSD12, JEF+11, KLKA12, MGS14, MGB10, OYH13, Sho12a, WKN+13, YFO12]. **S-glutathionylation** [HIM+10]. **S-nitrosylation** [LKLA12]. **S-phase** [YFO12]. **S2** [DV10]. **S408** [RBY+11]. **S6** [CLD11]. **SAC** [Les14j]. **Sac1** [CDH+14]. **Saccharomyces** [CT10, MWZ+11, NSBW10, SMMB11, WMCF10, YCP10]. **SADS** [Sho13-47]. **safe** [CSM+12]. **safeguards** [OMV+11]. **Sahai** [Sed11g]. **Sally** [Sed14v]. **Salmon** [Sed10p]. **salt** [MLSM+11]. **Sam68** [VBB+10]. **Samara** [Sed13s]. **same** [IP12, Ros10a, Sho11j]. **sampling** [KAS+12]. **Sánchez** [Sed11a]. **Sandhya** [Sed13t]. **Sandra** [Sed10o]. **Sanpodo** [Sho13-46, UKZ+13, CTM+14b]. **Sar1** [LYB+10, Sho10-55]. **SARAF** [JAM+13]. **sarcolemma** [RGL+13]. **sarcomere** [VGL+14]. **sarcomeres** [dSLPRG11, Sho12t]. **sarcoplasmic** [GF11, Les11-36]. **Sarcospan** [MHC+12]. **Sarcospan-dependent** [MHC12]. **Sarm1** [CLC+11]. **Satb1** [FMG+11]. **SATB2** [WSZ+12]. **Satellite** [Sho14-52, BIY+13, CTL+10, Les10o, RKE14a, RKE14b, SMZL13, ZSH10]. **save** [Les12-36]. **saves** [Les12-31]. **Saving** [Sed14h]. **says** [Les15f]. **scaffold** [CAR+10, HCCS+11, KHS+11, LYH+13, MRR+12, Sho11-30, Sho12-32, Sho14z, SDS+12b, VTO+13, ZKC+11]. **scaffold-like** [HCCS+11]. **scaffolding** [GLB10, GB12, VGL+14, VWT+13]. **scaffolds** [GMW+13]. **scalability** [CWL+11a]. **scale** [SBP+10b, TGES12, TP13]. **scales** [RDPG14, WCM12a]. **scaling** [Bra13]. **SCAM** [WKN+13]. **SCAR** [Sho12-63, VKMPI12, LVK+13]. **Scar/WAVE** [LVK+13]. **scattering**
[LMW$^{+11}$, LMT$^{+12}$]. separate [Les10x, Les14-28]. separation [GCP$^{+14}$, STI$^{+11}$, TGES12, TW14]. SEPT9 [EDF$^{+10}$, KFET11].

section [MCS$^{+13}$]. Septin [BBH$^{+11}$, DBH$^{+11}$, Ewe11, BBK$^{+13}$, GBL$^{+11}$, GPCK12, KFET11, Sho11-33, Sho11-53]. Septins [DHB$^{+14}$, Sho14-53, EKJJ13, EDF$^{+10}$]. septum [CSM$^{+12}$, OKNP13]. sequence [FLVP10, GZZ$^{+14}$, RCFH10, TMG12]. Sequential

signal-stimulated [TLTW10]. signaling [AMH11, ATU$^{+12}$, AKB$^{+13}$, AFRZ$^{+14}$, ABP$^{+12}$, BLO$^{+12}$, BWL$^{+13}$, BMG14, BVL$^{+12}$, BAY$^{+11}$, Bez12, BPMK$^{+14}$, BPL$^{+11}$, BAS$^{+14}$, CDH$^{+14}$, CO13, CMS11, CSP$^{+10}$, CHL12, CLL$^{+10}$, CG12a, CFLDM11, CLZ$^{+14}$, DKA$^{+13}$, ETC$^{+12}$, FWM$^{+10a}$, FHD$^{+12}$, FBR$^{+10}$, GBJ10, GDO13,}
[LSGVM14, RHKB12, SYK+11]. **Spindle**

[SFK+13, Sho14-58, SHN+11, VWC+13, BKS14, BKG10, BGB+13, BCB14a, BKP11, BM11, BKK+10, CMS11, CKO+10, CMS+14, CHL+14, CSTBM+10, COW13, CSEH12, DP10, DWDM12, DHL+12, EM11, EHUD14, EUB+14, ECK+12, GMD+10, GS11, HH14b, HWB+13, JVS+14, KOK+13, KBG12, KWL+12, KWTR10, Les10e, Les14a, LHS10, LDL12, LHN10, MTG+11, MdFF+14, MGT+10, MGS14, MWP+12, MOZ+13, McN13, MCHCC10, MKH+14, NM12, PoLC+13, PJ5+11, PL10, QM10, R+13a, R+13b, RZA+13, RDPG14, RFVE+10, RGF+10, RH11, SmP+14, SA10b, STD+10, Sed10h, Sed12c, SLM+13, Sho10i, Sho10-34, Sho10-51, Sho10-58, Sho13c, Sho13j, Sho14-57, SMS+10, SSB+13, SSG+14, SSK+14, SSH+13, TGG+11, TSL12, TL12, UG10, UTK+13, VSMC11, VCF+13, VvDV+10, WBS+12, WBMCS13, WJPD11, WDB10, ZBBG10, ZZW+10, ZSK+13, dSMSS13, NCT+11].

structures [BYY+12, CPS+13, CWL+11b, DWL+11, HSI+11, KNP+10, PASG+12, SRBL13, TTC+14, TKB+14].

structure-specific [VEDBC13].

subcomplexes [AMGC14, NBDB12, LHD+14, MLBY+10, PTS+10, RKS+10, RKG+12, ZSK+13].

Substrate-gated [AMGC14].

Substrates [BGC+10, MKH+10, Sho14-62, WTB10].

Subunit [GBL+11, AMGC14, BKBR11, BHA+12, CLM+10, DCP+10, KWL+12, LH11, SBP+10a, TPZ+14, VYC+11, WEK+14, ZYF+11, ZLJ+13].

Subunit-dependent [GBL+11].

Subunits [ALS+11, OCF+10, Oef10].

Subversion [AMR11].

successfully [Sho11-38], Sue [Sed12c].

sufficient [LWB10].

Subprocesses [WDB10]. subsets [YHK10]. substance [Ros10a].

Substrate [AMGC14, NBDB12, LHD+14, MLBY+10, PTS+10, RKS+10, RKG+12, ZSK+13]. Substrate-gated [AMGC14]. substrates [BGC+10, MKH+10, Sho14-62, WTB10].

Subunit [GBL+11, AMGC14, BKBR11, BHA+12, CLM+10, DCP+10, KWL+12, LH11, SBP+10a, TPZ+14, VYC+11, WEK+14, ZYF+11, ZLJ+13].

Subunit-dependent [GBL+11].

Subunits [ALS+11, OCF+10, Oef10].

Subversion [AMR11].

successfully [Sho11-38], Sue [Sed12c].

sufficient [LWB10].

Subprocesses [WDB10]. subsets [YHK10]. substance [Ros10a].

Substrate [AMGC14, NBDB12, LHD+14, MLBY+10, PTS+10, RKS+10, RKG+12, ZSK+13]. Substrate-gated [AMGC14]. substrates [BGC+10, MKH+10, Sho14-62, WTB10].
RZA+13, RSB13, Sho10x, Sho12a, Sho14-57, WBMCSS13]. switches
[BT13, CLM+10, Les11-47, MBO+14]. Switching
SYD [KHG+13, OFS+10]. Syd-1 [OFS+10]. SYD-2 [KHG+13]. symmetry
[SRP+13, Yam13, YRU+13]. sympathetic [OMZK14]. symphony [Sed12].
symptoms [XHS+13]. synapse [BLM+11, BRP14, CLD11, GTS10, KK13a,
KSLF+11, PTT+13, SHS+13, TQS+11, WKN+13]. synapses
[Ar10, LLT+12, NLJ+13]. synapsin [XHS+13]. synapsin-1 [XHS+13].
Synaptic [HSS+13, Sho10-64, XHS+13, BMG14, CG12a, FUK+14,
FBAO+13, HWE+12, MSK+13a, MRR+12, RBA+11, SBS+12, Sho13f,
Sho13-53, SSK+13, SCR12, VPC+14, VG13]. Synaptobrevin
[WWB+10, SYH+13, HWE+12, ZPB+12]. synaptogenic [CB12].
synaptotagmin [FCA10, WLGC11]. synchronizes [DYS+14, GP10].
syncytial [AGL+14, TGES12]. syndapin [SSL+14]. syndecan
[BST+11, CLC+11, MBR+11, Les11-42, PCO+10, Sho10-65]. syndecan-1
[BST+11, Les11-42, PCO+10, Sho10-65]. syndrome
[CHK+10a, CHK+10b, CWS+11, KTN+12, Sho14-50]. synergizes [OBD+10].
Synergy [HSKAT11]. syntaphilin [Sho13-54, CS13]. syntaxin
[SRKR10, LHL11, WWB+10]. Syntaxin17 [TNV+13].
Syntaxin17-dependent [TNV+13]. synthase
[BGC+14, RNS+14, WHF+11]. synthesis [BBW+13, GKR+11a, GKR+11b,
GRH+12, HS10b, Les14i, MJJ+10, NBC+12, OCF+10, VYM+10, ZDS+12].
Synthesizing [Sed12]. synthetase [KHFV+13]. Synuclein
[PMB+11, Sho10a, WCC+10, KMG+11]. System
[ZKR+11, BSO+14, CVJ+11, CC12, CGK13, Coo13, HGV+14, HKR+10,
Kin13, MFGB10, MBK+10, NT11, PvdLA+14]. Systematic
Syx’d [Sho12y].

T [Sho13-55, TPM+12, ADAB+12, BLO+12, BMS+11, HCC+10, LCBG+11,
Les11n, OLB13, SDN+14a, SDN+14b, Sed13j, SHS+13, YWC+13, ZBBG10,
ZEa11]. T-cell [SHS+13]. T-loop [ZBBG10]. TACC3 [HWB+13, LHS10].
tafazzin [CWS+11]. tag [Les14h]. tagging [CTM+14b, Ish14]. Tail
[YHF13, BBW+14, CNP+12, FLN+10, FLN+16, FLVP10, HFB+10, JLVH12,
takes [HBG+11, Les10l, Les10-41, Les11-36, Sho10v, Sho12-30, Sho12-63,
Sho13z, Sho13-40]. taking [SF12, Sho10-35]. Talin
[BWBC+14, KYHG12, Les12-32, Les14-32, PPV+14, Sho12-58, LLU+12a,
LLU+12b, SF12, WBS11, WWM+12, ZSK12, Sho14-61]. Talin-bound
[PPV+14]. talin-mediated [WWM+12]. talk
[KKY+14, RKG+10, SLS+10, TPSS12]. tall [Sho14-31]. Talpid3 [KKL+14].
tandem [dJPAA+11]. Tangled [Les10-38]. TANGO1

Tudor [Sho11-58], tuft [GvEM+11], tumor
[ACO12, BWBC+14, BDR+12, FPM+14, HDH+10, JCN+14, Les11g, MVR+10, MVN11, NBSE+13a, NBSE+13b, PoLC+13, RSS+13, RJvD11, RJM+12, SHC+10, Sho13o, TQM+14, YST+11, dSM313, vRJMvD10].
tumor-associated [MVR+10, SHC+10], tumorigenesis [Sho10-57], tumors
[Les12t, RBS10]. tuning [FW10, KPH+12, WtLK+13]. tunnel
[GRK+11a, GRK+11b, LJPJ11]. turning [Sho10-68, TKMK10]. turnover
[CHE+11, CB12, Sho12-59, Sho13k, SSK+13, TAGJ11, XWE+10]. turns
[Les12a]. TWEAK [MBK+10], TWEAKs [Sho10u]. twice [Les12h]. twin
[CC12]. Twins [Sho11-59, BKBR11]. twist
[Sed14q, LNL11, Les11y, Sho13x, Sho14-60]. Twist1 [SPJ+14].

Twist1-induced [SPJ+14]. Two
[KKMB10, KlvdB+13, KHB+11b, Les11-44, LSE+10, MWZ+11, TYN+13, ABP+14, DK10b, Dn11, ETYS+12, FAB+10, FKS+14, Les13-43, MMC+10, PGCY12, Sho11t, Sho12f, Sho13-58, Sho14e, SDS+12b, WMB+10]. two-step
[Dn11, Sho14e]. two-tiered [FAB+10]. Type
[CDAK10a, CDAK10b, ISZ+11, BDvdK13, CSD+13, GvEM+11, IIWS14, JGA+11, LgLM+10, SFL12, ZWL+14]. types
[ABP+14, DZT+11, YFO12].

tyrosination [PMK+13]. tyrosine [MBVT+13, PMK+13].

U [SIO10]. Ubch10 [Sho10-57, vRJMvD10]. ubiquinone [LWBH12].
ubiquitin
[BAY+11, BDN+13, DSW+11, DCL+12, FMI+13, HLH+14, HZT+12, KLF+14, KBW+10, MFG10, MMO+14, MHCV11, PLL+12, PHW+13, RKG+12, SP11, TTC+14, vRJMvD10, RKS+10, Sed12h, Sho12-61, Sho13-57]. ubiquitin-dependent [PLL+12]. ubiquitin-independent
[DCL+12]. ubiquitin-like [KRW+10]. ubiquitinated [HSR+10]. ubiquitination
[GHK10a, HRWW+13, LNT+10, LLeK+11, SP11, XSJ+10]. ubiquitous
[Sho12-61]. Ubiquitylation
[CZG12, HBSD12, ONNB+14, Sho12-62, DSK+11, IAMH10, JEF+11, LP13].

UBXN [KSH+13]. UBXN-2 [KSH+13], UBXN-2/p37/p47 [KSH+13].

UDP [PTS+10]. Ugo1 [PKD+11]. ULK1 [LLR+12]. ULK1-positive
[LLR+12]. Ulrike [Sed11s]. ultra [FAvdB+12]. ultra-large [FAvdB+12].
ultrasensitive [PPBW+14a, PBPW+14b]. unattached [MKH+14, PJ41].

UNC [CTM+14a, WLN+14]. UNC-40 [WLN+14]. UNC-6 [WLN+14].

UNC-84 [CTM+14a]. uncertain [GK13]. uncommitted [CC10b].

unconfined [HCP+13]. unconstrained [ZSD+14]. Unconventional
[DA5+10, MAL510, Pfe10, BCC+11]. uncouple [RW10]. uncouples
[PLC+11]. uncovers [Les12z]. undamaged [ZNA+14]. under-replicated
[BBW+13]. underlies [CWL+11a, KXN10, NNO+11]. underlying
[CLS13, LCP13, MMV+10, RK13, SLH13]. undermine [Les10-29].

Understanding [Sho14-66, Kik13, Sho12r]. unexpected

unfolded [AXL10, BAB12, CPT+12, CPT+14, RH10, SS11, WK12].
Unwrapping [SMZL13], up-regulating [ZMW13], up-regulation [MLH12, PXZ13], Upstream [Les10b], upon [AOE+10, AOE+12], UPR [CCGN11], uproot [Sho14-30], upstream [LNJ+13, QWL+11, VKMI12], uptake [OSD14], uprooting [ZGW14], UV-mediated [PvdLA+14], unique [BK5+13, CNP+12, DE10, PKD+11, ZGW+14], unified [Les12k], units [TW14], universal [DKY+12], University [Ros13], unkind [Les14m], unload [KSS+11], unloading [MFA+14, SAoS14], Unlocking [Les12-34, Sho14-67], Unpacking [Sho10-69], untransformed [KRS11], unusual [NZHL13], Unwrapping [Les10-40], up-regulates [YYA+11], up-regulating [ZMW13], up-regulation [MLH12, PXZ13], Updating [Ros10b], upon [AOE+10, AOE+12], UPR [CCGN11], uproot [Sho14-30], upstream [LNJ+13, QWL+11, VKMI12], uptake [OSD14], uropathogenic [WHF11], uropod [HCC+10, LOR+10], use [GC10+11], Usher [SDS+12a], Using [Boe12, CAB+13, DV10, DKB+12, TYN+13, Sed10a], USP1 [CRJB+11], utilize [NAS+11, NAS+12, NAS+13], utrophin [MHC+12], UV [CRJB+11, GSGL11, JEF+11, LLA+12, SKM10a], UV- induced [LLA+12], UV-mediated [CRJB+11].

References

Alvarez:2013:FFS

Ahmed:2014:MCS

Avella:2014:SDZ

Arsic:2012:NFC

Akamatsu:2014:CNF

Abreu-Blanco:2011:CWR

Alvarez:2012:RCC

Akopian:2013:SAG

Alcaraz:2014:TXP

Lindsay B. Alcaraz, Jean-Yves Exposito, Nicolas Chuvin, Roxane M. Pommier, Caroline Cluzel, Sylvie Martel, Stéphanie Sentis, Laurent Bartholin, Claire Lethias, and Ulrich Valcourt. Tenascin-x promotes epithelial-to-mesenchymal transition by activating latent TGF-$

Ando:2013:RPE

Ariotti:2014:CRN

REFERENCES

Amini:2014:CEA

Araki:2010:TRM

Adeyo:2011:YLO

Araki:2013:EPC

Amcheslavsky:2011:TSC
Alla Amcheslavsky, Naoto Ito, Jin Jiang, and Y. Tony Ip. Tuberous sclerosis complex and Myc coordinate the growth and division of *Drosophila* intestinal stem cells. *Journal of Cell...

Albert:2011:RPS

Amelio:2012:MTE

Aldridge:2014:SGD

Abeyweera:2011:ISB

Ashida:2011:CDI

Alix:2011:SMT

Albert:2013:SCC

Anastasia:2012:LBM

Anantharam:2010:LTC

REFERENCES

REFERENCES

[BBD+11] Stéphanie Bolhy, Imène Bouhlel, Elisa Dultz, Tania Nayak, Michela Zuccolo, Xavier Gatti, Richard Vallee, Jan Ellenberg,

References

Bizarro:2014:PSA

Bohdanowicz:2010:CCI

Britton:2013:NMH

Braun:2014:RAR
REFERENCES

Biswas:2010:PCI

Bezprozvanny:2012:PNL

Bix:2013:ECE

Bose:2010:CGE

Baum:2011:DAJ
Brown:2011:RGW

Bastos:2013:ABS

Bernasconi:2010:SRH

Binda:2014:GPC

Breker:2013:NSCa
Breker:2013:NSCb

Bulgakova:2013:DMP

Betz:2013:WMW

Bussiere:2012:IPS

Bowen:2011:SGS

REFERENCES

[Bian:2013:GCE] Qian Bian, Nimish Khanna, Jurgis Alvikas, and Andrew S. Belmont. \(\beta\)-globin cis-elements determine differential nuclear

[BKK+10] Manuel Breuer, Agnieszka Kolano, Mijung Kwon, Chao-Chin Li, Ting-Fen Tsai, David Pellman, Stéphane Brunet, and

[BLI+10] Anna Brachet, Christophe Leterrier, Marie-Irondelle, Marie-Pierre Fache, Victor Racine, Jean-Baptiste Sibarita, Daniel
REFERENCES

Baez:2011:SMS

Babich:2012:FAP

Brill:2011:SCD

Budde:2010:CBB

Bizzari:2011:CCS

Bastounis:2014:BCA

Bruns:2011:BNC

Brunner:2011:OMR

Brunner:2013:OMR
Ballard:2014:RNS

Boettcher:2012:NEMa

Boettcher:2012:NEMb

Barriga:2013:HFH

Bohgaki:2011:CIC

Blamowska:2012:BMH

Beck:2010:RCD

Beguin:2014:BSV

Boettiger:2012:UFV

David Boettiger. Using force to visualize conformational activation of integrins. *Journal of Cell Biology*, 199(3):423–??, Oc-
Bonifacino:2014:API

Bastos:2012:CIR

Beck:2011:CDA

Bassler:2014:NAF
REFERENCES

REFERENCES

Burnette:2014:CCA

Brown:2011:GPI

Baldeyron:2011:HRD

Bernad:2011:XHCa

Bernad:2011:XHCb

Rafael Bernad, Patricia Sánchez, Teresa Rivera, Miriam Rodríguez-Corsino, Ekaterina Boyarchuk, Isabelle Vassias, Dominique Ray-Gallet, Alexei Arnaoutov, Mary Dasso, Geneviève Almouzni, and Ana Losada. Xenopus HJURP and

References

[BTC+11] Antoine Bondue, Simon Tämler, Giuseppe Chiapparo, Samira Chabab, Mirana Ramialison, Catherine Paulissen, Benjamin

REFERENCES

REFERENCES

REFERENCES

Chao:2010:TPRb

Chen:2014:CDC

Caldas:2013:KFP

Cai:2014:SVS

Cai:2010:RMA
Corty:2013:ANC

Coen:2012:LCH

Cottarel:2013:NFL

Cohen:2011:STK

Cabianca:2010:FCN

Conrad:2010:AMH

Chen:2012:NSP

Chioni:2012:FCN

Cruz-Garcia:2014:RSC

Chen:2013:LTP

Crider:2012:REM

David G. Crider, Luis J. García-Rodríguez, Pallavi Srivastava, Leonardo Peraza-Reyes, Krishna Upadhyaya, Istvan R.

REFERENCES

tronic). URL http://jcb.rupress.org/content/198/6/991.

Chen:2011:SNR

Cheng:2011:SKL

Chen:2012:OFR

Chen:2010:AVE

Cabrera:2010:PMC

[CLM⁺10] Margarita Cabrera, Lars Langemeyer, Muriel Mari, Ralf Rethmeier, Ioan Orban, Angela Perz, Cornelia Bröcker, Janice

Chen:2011:CPK

Choi:2010:CSM

Chia:2013:CMM

Castilla-Llorente:2012:MGT

REFERENCES

REFERENCES

[COG11] Marisa Carbonaro, Aurora O’Brate, and Paraskevi Giannakakou. Microtubule disruption targets HIF-1α mRNA to cytoplasmic P-bodies for translational repression. Journal of
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cain:2014:SPU

Couturier:2014:FTA

Concannon:2010:AKM

Chai:2012:ARP

REFERENCES

Catalucci:2013:ART

Cohen:2012:UTC

Chen:2014:GAA

Darbellay:2011:SNA

REFERENCES

REFERENCES

[Dornier:2016:CTT] Emmanuel Dornier, Franck Coumailleau, Jean-François Ottavi, Julien Moretti, Claude Boucheix, Philippe Mauduit, François Schweisguth, and Eric Rubinstein. Correction:

Elisa Dultz and Jan Ellenberg. Live imaging of single nuclear pores reveals unique assembly kinetics and mechanism in in-
REFERENCES

Devenport:2014:CBP

Diagouraga:2014:MDM

DeVorkin:2014:DEC

Deeg:2010:BRF

Day:2011:IST

REFERENCES

0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/193/2/347.

[Duan:2012:GPF] Rui Duan, Peng Jin, Fengbao Luo, Guofeng Zhang, Nathan Anderson, and Elizabeth H. Chen. Group I PAKs function downstream of Rac to promote podosome invasion dur-
REFERENCES

Perez:2011:BPM

deJong:2012:DPM

Davies:2010:HSS

Ducy:2010:TFS

Dubash:2013:GBA
Adi D. Dubash, Jennifer L. Koetsier, Evangeline V. Amargo, Nicole A. Najor, Robert M. Harmon, and Kathleen J. Green.
REFERENCES

Du:2011:ROB

Davalos:2013:PDR

Dominguez-Kelly:2011:WCG

Drosopoulos:2012:HTR

REFERENCES

REFERENCES

ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/204/4/575.

REFERENCES

Danielsen:2012:DDI

Danussi:2011:EII

Danussi:2012:EII

Debattisti:2014:RER

DiPetrillo:2010:PCA

REFERENCES

REFERENCES

deCathelineau:2010:FCA

Delorme-Walker:2011:PRF

Diaz:2013:NIS

Droujinine:2014:SES

Dhara:2014:CSP

Doyle:2011:ALM

Elsing:2014:EHD

Espenel:2013:BLK

Ellis:2013:NVL

Emond:2011:CPC

Elabd:2013:DMD

Esk:2010:CHC

Espeut:2012:MBK

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fortsch:2011:MRM

Flannagan:2010:DMP

Finkel:2011:STR

Fischer:2014:MYM

Fang:2010:BTC

Fang:2016:CBT

Xiaodong Fang, Jianying Luo, Ryuichi Nishihama, Carsten Wloka, Christopher Dravis, Mirko Travaglia, Masayuki Iwase,
REFERENCES

REFERENCES

[Fazzio:2010:CCR]

[Ferreira:2013:ABS]

[Frittoli:2014:RRR]

[Faurobert:2013:CIC]
FRANZ:2013:CEN

FRIDOLFSÖN:2010:KDN

FERNANDES:2014:NRP

FOURNIER:2010:FTM

FOURNIOL:2010:TFP

REFERENCES

REFERENCES

JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/189/6/997.

REFERENCES

Grassart:2014:ADD

Gallaud:2014:EMP

Gay:2012:SMK

Grau:2013:TGG

Gill:2010:RGT
Guimaraes:2011:IHC

Gaudin:2012:CRK

Gagliardi:2014:PMA

Guo:2013:IIB

[Grotsky:2013:BLA] David A. Grotsky, Ignacio Gonzalez-Suarez, Anna Novell, Martin A. Neumann, Sree C. Yaddanapudi, Monica Croke,
REFERENCES

[Gamblin:2014:BAB]

[Goehring:2011:PPD]

[Geng:2010:RMU]

[Goh:2010:MMC]

REFERENCES

REFERENCES

Goldberg:2012:DPI

Goldstein:2012:NFH

Gault:2012:DCG

Gavet:2010:ACB

Ganem:2012:LAM

Gelden:2012:SCF

Greer:2011:CKD

Gruschke:2012:CCC

Gupton:2012:MBI

Gusnowski:2011:VDD

Galvez:2013:CRD

Beatriz G. Galvez, Maurilio Sampaolesi, Silvia Brunelli, Diego Covarello, Manuela Gavina, Barbara Rossi, Gabriela Constantin, Yvan Torrente, and Giulio Cossu. Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced

Ge:2011:IIR

Gohler:2011:AMP

Geymonat:2010:PLC

Gebert:2012:MPC

Gao:2014:CRM

Jie Gao, Désirée Schatton, Paola Martinelli, Henriette Hansen, David Pla-Martin, Esther Barth, Christian Becker, Janine Alt-

REFERENCES

Ghosh:2011:DID

Gillissen:2010:EBI

Gomez:2012:TCE

Gaspar:2014:KET

Giagtzoglou:2012:DCE

REFERENCES

REFERENCES

[HBC+11] Jeanine A. Harrigan, Rimma Belotserkovskaya, Julia Coates, Daniela S. Dimitrova, Sophie E. Polo, Charles R. Bradshaw,

[Hoffmeister:2011:PTD]

[Haas:2010:HPL]

[Habbig:2011:NCA]

[Hammond:2010:AKM]

REFERENCES

Hung:2013:DSM

Herkert:2010:ATS

Halova:2013:PTA

Heuck:2010:SMG

Hamel:2010:NLA

Heller:2014:FDP

Hotulainen:2010:ADS

Hatch:2014:BNE

Helmke:2014:TLM

Hwang:2011:CFM

REFERENCES

May 2014. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/205/3/325.

[HKN+14] Elliott J. Hagedorn, Laura C. Kelley, Kaleb M. Naegeli, Zheng Wang, Qiuyi Chi, and David R. Sherwood. ADF/ cofilin

REFERENCES

201

[HLS+14] Haidong Huang, Yujing Li, Keith E. Szulwach, Guoqiang Zhang, Peng Jin, and Dahua Chen. AGO3 Slicer activity regulates mitochondria–nuage localization of Armitage and piRNA

[Hsu:2010:RES] Chieh Hsu, Yuichi Morohashi, Shin ichiro Yoshimura, Natalia Manrique-Hoyos, SangYong Jung, Marcel A. Lauterbach, Mostafa Bakhti, Mads Granborg, Wiebke Möbius, JeongSeop Rhee, Francis A. Barr, and Mikael Simons. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins
Hamilton:2014:HEE

Huveneers:2012:VAE

Hu:2010:HGA

Hipp:2012:IIP

Hasegawa:2013:CGP

Huntwork-Rodriguez:2013:JMP

Hentrich:2010:MOA

Huang:2010:TSR

Hantschel:2012:CBK

Hatan:2011:DBB
Meital Hatan, Vera Shinder, David Israeli, Frank Schnorrer, and Talila Volk. The Drosophila blood brain barrier is main-
REFERENCES

205

Harada:2014:NLS

Hartman:2013:DCD

Hesse:2010:ZCB

Hori:2011:SBE

REFERENCES

Hornung:2014:CMD

Hewitt:2010:SMA

Hayakawa:2011:AFF

Hasegawa:2011:SRD

Hong:2011:CEJ

[HTT11b] Soonjin Hong, Regina B. Troyanovsky, and Sergey M. Troyanovsky. Cadherin exits the junction by switching its adhe-
REFERENCES

Hood:2013:CAD

Haberman:2012:SVS

Holohan:2014:TES

Hynes:2012:EME

Hanazawa:2011:PPS
Hiramoto-Yamaki:2010:EEM

Heym:2013:VRM

Hagedorn:2013:NRD

Hartman:2010:DBL

Huang:2012:TUL

Hou:2012:CLC

Ismail:2010:BMH

Ivanovic:2012:CAP

Ingerman:2013:ACA

Ishikawa:2011:PFC

Iijima:2014:NCT

Itoh:2011:ONA

Iskratsch:2010:FFF

Itakura:2011:PTA

Inoko:2012:TAB

Iden:2012:APJ

Izawa:2012:MAC

Ivanov:2013:LMP

Ishikawa:2014:PTR

Takashi Ishikawa. Protein tagging reveals new insights into signaling in flagella. *Journal of Cell Biology*, 204(5):631–??,
REFERENCES

[Izu:2011:TXC]

[Inami:2011:PAN]

[Yoshimura:2010:FWC]

[Jha:2013:SCD]
Janke:2014:TCM

Jayasena:2012:RFC

Joshi:2012:PMI

Joshi:2013:PMI

Johnson:2010:OCS

REFERENCES

Ju:2011:NTA

Jean:2014:IEF

Jenkins:2012:NSK

Joset:2010:PGN

Juin:2014:DDR

Amélie Juin, Julie Di Martino, Birgit Leitinger, Elodie Henriuet, Anne-Sophie Gary, Lisa Paysan, Jeremy Bomo, Georges Baffet, Cécile Gauthier-Rouvière, Jean Rosenbaum, Violaine Moreau, and Frédéric Saltel. Discoidin domain receptor

Jelluma:2010:RMK

Jorgensen:2011:SDP

Januschke:2010:IMA

Janes:2011:ERF

Steven L. Jones, Farida Korobova, and Tatyana Svitkina. Axon initial segment cytoskeleton comprises a multiprotein
REFERENCES

[Janssen:2012:CTT]

[Jin:2010:MMP]

[Jewell:2011:MPI]

[Joyce:2011:DAA]

Jeong:2013:FPDa

[Jeong:2013:FPDb]

Jeong:2013:FPDb

Jose:2013:RPE

Jones:2014:DLI

Jurisch-Yaksi:2013:RMC

REFERENCES

REFERENCES

Kraft:2012:WFR

Klingner:2014:IAD

Klingberg:2014:PEM

Kobayashi:2011:RTC

Knox:2011:DDK

[KDIE11] Pauline G. Knox, Clare C. Davies, Marina Ioannou, and Aristides G. Eliopoulos. The death domain kinase RIP1 links...

[KFHF12] Arne Nedergaard Kousholt, Kasper Fugger, Saskia Hoffmann, Brian D. Larsen, Tobias Menzel, Alessandro A. Sartori, and Claus Storgaard Sørensen. CtIP-dependent DNA resection is required for DNA damage checkpoint maintenance but
REFERENCES

Kushner:2014:ECD

Kong:2014:CMR

Kenner:2011:MLJ

Krementsova:2011:TSH

Kasprowicz:2014:DPB

Kama:2011:YBD

Kim:2014:KLF

Kuang:2010:SDC

Kane:2014:PPU

Kelley:2014:TBM

Kang:2014:BAC

Klement:2014:OIC

Kroger:2013:KCI

Kotadia:2012:CEA

King:2012:CBR

Kohzaki:2010:DPR

Kiuchi:2011:MSC

Kawai-Noma:2010:VEF

Kim:2013:RRA

Kagami:2014:MPC

Kamasaki:2013:ADM

Keller:2014:MHA

REFERENCES

Kawamura:2010:MCC

Khavandgar:2011:CAR

Kachaner:2014:IAR

Kim:2012:PMC

Koplin:2010:DFC
Ansgar Koplin, Steffen Preissler, Yulia Ilina, Miriam Koch, Annika Scior, Marc Erhardt, and Elke Deuerling. A dual

Kress:2013:UPP

Ko:2011:NLP

Kasai:2011:FCG

Knaevelsrud:2013:MRP

REFERENCES

Kuhns:2013:MAR

Kuipers:2011:HSL

Kumagai:2011:DRT

Kim:2012:BEA

Kohyama:2010:BIR

[KST+10] Jun Kohyama, Tsukasa Sanosaka, Akinori Tokumaga, Eriko Takatsuka, Keita Tsujimura, Hideyuki Okano, and Kinichi Nakashima. BMP-induced REST regulates the establishment

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>CODEN</th>
<th>ISSN</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>KTN+12</td>
<td>Daiji Kiyozumi, Makiko Takeichi, Itsuko Nakano, Yuya Sato, Tomohiko Fukuda, and Kiyotoshi Sekiguchi</td>
<td>Basement membrane assembly of the integrin α8β1 ligand nephronectin re-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kotter:2014:HMP

Kamimura:2013:PRB

Kim:2010:NEM

Koivusalo:2010:AIMa

Koivusalo:2010:AIMb

Kanai:2014:KEE

Kurihara:2011:APH

Krenn:2012:SAR

Krachler:2011:MKS

Krueger:2010:LIL

Kanehara:2010:MHE

Kim:2012:TAI

Kotani:2013:CBM

Kunduri:2014:PAP
Kageyama:2012:MDE

Lykke-Andersen:2014:PPE

Liu:2010:LCT

Liem:2012:ICR

Libersou:2010:DSR

Lam:2010:LAS

Laflamme:2012:EPC

Lorenzo:2014:PAB

Lawrimore:2011:PCC

Lechtreck:2013:CSP

Karl F. Lechtreck, Jason M. Brown, Julio L. Sampaio, Julie M. Craft, Andrej Shevchenko, James E. Evans, and George B. Witman. Cycling of the signaling protein phospholipase D through cilia requires the BBSome only for the export phase. *Journal of Cell Biology*, 201(2):249–??, April 2013. CODEN
LIN:2010:WRP

LAN:2010:CTB

LASERRE:2011:RST

LEWELLYN:2011:CPC

LAURSEN:2011:TMB

Lewellyn:2013:MDI

Liu:2013:NPS

Lee:2012:CMT

Laporte:2011:AAP

Lewis:2013:CMM

REFERENCES

leDuc:2010:VPCa

leDuc:2010:VPCb

LeBrasseur:2010:WRI

Leslie:2010:AMT

Leslie:2010:ADH

Leslie:2010:CSR

Leslie:2010:CRW

Leslie:2010:CTS

Leslie:2010:CCEa

Leslie:2010:CCEb

Leslie:2010:CEC

Leslie:2010:DCS

Leslie:2010:DDT
Leslie:2010:ESS
Mitch Leslie. Elm1 sparks the SPOC. *Journal of Cell Biology*, 190(6):??, September 2010. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/190/6/944.1.

Leslie:2010:ETO

Leslie:2010:ESC

Leslie:2010:FGA

Leslie:2010:GSC
Mitch Leslie. Go on, satellite cells, be all that you can be. *Journal of Cell Biology*, 190(5):??, September 2010. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/190/5/708.2.

Leslie:2010:HSC

Leslie:2010:HVE

REFERENCES

Leslie:2010:MHD

Leslie:2010:MFD

Leslie:2010:NLC

Leslie:2010:ANP

Leslie:2010:PPB

Leslie:2010:RDE

Leslie:2010:RMP

Leslie:2010:UPN

Leslie:2010:UNH

Leslie:2010:VTA

Leslie:2010:HHC

Leslie:2011:ARB

Leslie:2011:AKT

Leslie:2011:ABG
REFERENCES

Leslie:2011:BAG

Leslie:2011:CCM

Leslie:2011:CSN

Leslie:2011:CLT

Leslie:2011:EIE

Leslie:2011:FKC

Leslie:2011:HMP

Leslie:2011:MKC

Leslie:2011:MMHa

Leslie:2011:MMHb

Leslie:2011:MRI

Leslie:2011:WAA

Leslie:2011:NKC

Leslie:2011:NST

Leslie:2011:NTC

Leslie:2011:NRB

Leslie:2011:OCS

Leslie:2011:PDD

Leslie:2011:PPC

Leslie:2011:PMP

Leslie:2011:PVG

Leslie:2011:SEP

Leslie:2011:SDP

Leslie:2011:SAJ

Leslie:2011:SGM

Leslie:2011:TDE

Mitch Leslie. TPX2 is a drag on Eg5. *Journal of Cell Biology*, 195(1):??, October 2011. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/195/1/2.2.

Leslie:2011:TMB

Leslie:2011:VLE

References

Leslie:2012:BTM

Leslie:2012:CPW

Leslie:2012:CCS

Leslie:2012:CTT

Leslie:2012:CMM

Leslie:2012:CSI

Leslie:2012:CSU
REFERENCES

REFERENCES

REFERENCES

Leslie:2013:ADC
Mitch Leslie. Actin draws a cadherin crowd. *Journal of Cell Biology*, 201(1):??, April 2013. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/201/1/2.3.

Leslie:2013:BAF

Leslie:2013:BMP

Leslie:2013:CAA

Leslie:2013:CHC

Leslie:2013:CIH

Leslie:2013:CCF

REFERENCES

REFERENCES

Leslie:2013:RHE

Leslie:2013:RFK

Leslie:2013:SGG

Leslie:2013:SPK

Leslie:2013:SRE

Leslie:2013:SNS

Leslie:2013:SLN

Mitche Leslie. SSX2IP helps the centrosome grow up. *Journal of Cell Biology*, 202(1):??, July 2013. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/202/1/2.3.

Mitch Leslie. STT3B gets the tip. *Journal of Cell Biology*, 201(1):??, April 2013. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/201/1/2.2.

Leslie:2014:DRH

Leslie:2014:DCD

Leslie:2014:EIG

Leslie:2014:EIG

Leslie:2014:HSH

Leslie:2014:HUC

Leslie:2014:HSG

Leslie:2014:KME

Leslie:2014:LDE

Leslie:2014:LPR

Leslie:2014:MCT

Leslie:2014:MCS

Leslie:2014:MCG

Leslie:2014:MSC

Mitch Leslie. Thyroid hormones speed cellular aging. *Journal of Cell Biology*, 204(1):??, January 2014. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/204/1/2.3.

Loughlin:2010:CMP

Lin:2010:CHC

Lampert:2010:DCC

Luo:2013:ALO

Lindqvist:2010:CBC

Lin:2011:TSN

Pen-Jen Lin, Candice G. Jongsma, Shuren Liao, and Arthur E. Johnson. Transmembrane segments of nascent polytopic mem-

Li:2013:SGC

Luijsterburg:2012:DPC

Lin:2011:PRU

Lefkimmiatis:2013:IOC

Lu:2011:FPN

Lu:2010:GPC

Longatti:2012:TRA

Laporte:2011:MSR

Lemieux:2012:TCD

Lawson:2012:FPRa

[LLU+12a] Christine Lawson, Ssang-Taek Lim, Sean Uryu, Xiao Lei Chen, David A. Calderwood, and David D. Schlaepfer. FAK promotes recruitment of talin to nascent adhesions to control

L:2012:RDM

L:2011:EPM

[Li:2011:EPM

L:2011:ADE

[Laplante:2011:ADE

L:2014:BCS

[Liu:2014:BCS

L:2013:PDP

[Lazarou:2013:PDP

Michael Lazarou, Derek P. Narendra, Seok Min Jin, Ephrem Tekle, Soojay Banerjee, and Richard J. Youle. PINK1 drives Parkin self-association and HECT-like E3 activity upstream

[LNJ+13]

REFERENCES

Liu:2011:TKC

Lu:2013:GAR

Larsen:2010:CRF

Lee:2011:PPP

Liu:2011:MMS

Lerit:2013:PIA

Dorothy A. Lerit and Nasser M. Rusan. PLP inhibits the activity of interphase centrosomes to ensure their proper segregation in stem cells. *Journal of Cell Biology*, 202(7):1013–??, September 2013. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/202/7/1013.

Linkert:2010:MMA

Lucic:2013:CET

Lafkas:2013:NMC

Lawson:2013:PAK

Listovsky:2013:SCM

Li:2011:GSR

Liu:2010:TDS

LeDreau:2014:SSA

Lippi:2011:TAA

REFERENCES

REFERENCES

Liu:2010:RTP

Luijsterburg:2010:SRA

Lacroix:2010:TPS

Law:2013:LSW

REFERENCES

ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/203/4/673.

Lochte:2014:LCM

Lapointe:2012:SDU

Lianga:2013:WCI

Lin:2013:CIC

Lu:2012:EMD

REFERENCES

Li:2010:SGA

Lutter:2012:SME

Long:2010:SAR

Lin:2013:SPE

Luo:2013:MPE

[Li:2011:SCE]

[Li:2010:IBM]

[Li:2012:SSG]

[Li:2013:SSG]

[LZY+12] Wei Li, Wei Zou, Yihong Yang, Yongping Chai, Baohui Chen, Shiyu Cheng, Dong Tian, Xiaochen Wang, Ronald D. Vale, and Guangshuo Ou. Autophagy genes function sequentially to promote apoptotic cell corpse degradation in the engulfing cell.
REFERENCES

REFERENCES

JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/193/1/7.

Moore:2010:SPC

McNally:2013:MSP

Munoz:2013:ECW

Javier Muñoz, Juan Carlos G. Cortés, Matthias Sipiczki, Mariona Ramos, José Angel Clemente-Ramos, M. Belén Moreno, Ivone M. Martins, Pilar Pérez, and Juan Carlos Ribas. Extracellular cell wall β (1,3)glucan is required to couple septation to actomyosin ring contraction. Journal of Cell Biology, 203(2):265–??, October 2013. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/203/2/265.

Machicoane:2014:SDA

Mendez:2010:CMP

Mandal:2010:MCG

Fu:2013:JRD

Murphy:2014:PRR

Martin:2010:ICF

Mahuzier:2012:DSC
Alexia Mahuzier, Helori-Mael Gaudé, Valentina Grampa, Isabelle Anselme, Flora Silbermann, Margot Leroux-Berger, Delphine Delacour, Jerome Ezan, Mireille Montcouquiol, Sophie Saunier, Sylvie Schneider-Maunoury, and Christine

Maia:2012:CPM

Mari:2010:ACC

Magiera:2014:DRS

Maciejowski:2010:MDA

Minami:2010:BES

Matsumoto:2011:MPC

Maskell:2010:MAA

Menoni:2012:NER

Machlus:2013:IJM

Mohammadi:2013:CIE

Sina Mohammadi and Ralph R. Isberg. Cdc42 interacts with the exocyst complex to promote phagocytosis. Journal of Cell
REFERENCES

Manjithaya:2010:YMC

Malureanu:2010:CHM

Moyle:2014:BMI

Mosammaparast:2013:HDL

Martinelli:2013:RCT

Martinelli, Roberta; Kamei, Masataka; Sage, Peter T.; Massol, Ramiro; Varghese, Tracey; Sciuto, Mourad; and Toporsian, Laya. (2013).

Molli:2010:ACP

Marchiando:2010:CDO

Magudia:2012:KRB

Magalhaes:2011:CPR

Madsen:2013:MLM

Morin-Leisk:2011:ISB

Makio:2013:IYN

Mettlen:2010:CAS

Mikawa:2014:SIS

Matsunaga:2010:ARE

Mackay:2010:DNP

Misaki:2010:PRP

Manzoni:2010:OCR
Mi-Mi:2012:ZLF

McIntosh:2013:CDF

Martina:2013:RGM

Marzi:2012:DAM

Monette:2011:HRN

Moutin:2012:DRS

Mardin:2012:BTB

Matson:2014:CAB

Masszi:2010:FDM

Matkovic:2013:BCD

Tanja Matkovic, Matthias Siebert, Elena Knoche, Harald Depner, Sara Mertel, David Owald, Manuela Schmidt, Ulrich Thomas, Albert Sickmann, Dirk Kamin, Stefan W. Hell, Jörg Bürger, Christina Hollmann, Thorsten Mielke, Carolin Wichmann, and Stephan J. Sigrist. The Bruchpilot cytomatrix

REFERENCES

Morimoto:2012:CKD

Ma:2011:TRL

McNees:2010:AST

Muslimov:2014:INM

Massone:2011:RPI

REFERENCES

Maday:2012:AID

Makhnevych:2012:HRS

Mao:2011:TMS

Mahjoub:2010:CAL

Montembault:2010:NDN

Nechipurenko:2012:FLM

Nakatsu:2012:PSP

Ng:2012:SSR

Novak:2011:WRM

Nalepa:2013:TSCa

[NBSE+13a] Grzegorz Nalepa, Jill Barnholtz-Sloan, Rikki Enzor, Dilip Dey, Ying He, Jeff R. Gehlhausen, Amalia S. Lehmann, Su-Jung Park, Yanzhu Yang, Xianlin Yang, Shi Chen, Xiaowei Guan,

Nayak:2010:TRA

Ngok:2012:VAE

Noatynska:2012:MSD

Nievergall:2010:PRE

Michaela T. Niessen, Jeanie Scott, Julia G. Zielinski, Susanne Vorhagen, Panagiota A. Sotiropoulou, Cédric Blanpain, Michael Leitges, and Carien M. Niessen. aPKCα controls epidermal homeostasis and stem cell fate through regulation
REFERENCES

Oakes:2012:TRS

ODonohue:2010:FDR

Okreglak:2010:LAR

Oeffinger:2010:JIS

Owald:2010:SHR

Ophir:2013:TSE

Osorio:2011:RMA

Omran:2010:NPG

Overmeer:2011:RPS

Okumura:2014:CBC

Obri:2014:HIP

Onodera:2012:RPA

Ossareh-Nazari:2014:ULE

Oikawa:2012:TDF

Osmani:2010:CLC

REFERENCES

331

(print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/191/7/1261.

Orlandi:2012:GRG

Orr:2012:CBS

Ochocki:2013:NSP

Olsen:2014:GUB

Oda:2011:SFD

Pallanck:2010:CSM

Palacios:2014:HHP

Papior:2012:OCS

Pisconti:2013:FIN

Prashar:2013:FMB
Pigino:2011:CTR

Pichlo:2014:HDLa

Pichlo:2014:HDLb

Platt:2012:LSD

REFERENCES

REFERENCES

JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/191/5/915.

Pfanner:2014:UNM

Pines:2012:PPN

Pincus:2012:FLD

Pietras:2011:CCR

Ponugoti:2013:FPW

Pettem:2013:IBA

Petsalaki:2014:CPM

Qu:2012:NMS

Quintavalle:2010:MCP

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[QWL+11]</td>
<td>Li Qian, Joshua D. Wythe, Jiandong Liu, Jerome Cartry, Georg Vogler, Bhagyalaxmi Mohapatra, Robyn T. Otway, Yu Huang, Isabelle N. King, Marjorie Maillet, Yi Zheng, Timothy Crawley, Ouarda Taghli-Lamallem, Christopher Sensarian, Sally Dunwoodie, David Winlaw, Richard P. Harvey, Diane Fatkin, Jeffrey A. Towbin, Jeffery D. Molkentin, Deepak</td>
</tr>
</tbody>
</table>

Rivera:2011:SPP

Rodal:2011:PET

Rincon:2014:PRA

Ryan:2012:MSG

REFERENCES

Emanuele Roscioli, Laura Di Francesco, Alessio Bolognesi, Maria Giubettini, Serena Orlando, Amnon Harel, Maria Eugenia Schinini, and Patrizia Lavia. Importin-β negatively regulates multiple aspects of mitosis including RANGAP1 recruitment to kinetochores. *Journal of Cell Biology*, 196(4):

Annamaria Ruggiano, Ombretta Foresti, and Pedro Carvalho. ER-associated degradation: Protein quality control and beyond. *Journal of Cell Biology*, 204(6):869–??, March

Rajapakse:2011:ENO

Ragkousi:2014:CDM

Romao:2013:APS

Rossio:2010:RCR

Randazzo:2013:ORA

[RGL+13] Davide Randazzo, Emiliana Giacomello, Stefania Lorenzini, Daniela Rossi, Enrico Pierantozzi, Bert Blaauw, Carlo Reggiani, Stephan Lange, Angela K. Peter, Ju Chen, and Vincenzo Sorrentino. Obscurin is required for ankyrinB-dependent

[RJM+12] Robin M. Ricke, Karthik B. Jeganathan, Liviu Malureanu, Andrew M. Harrison, and Jan M. van Deursen. Bub1 kinase activity drives error correction and mitotic checkpoint control

Ricke:2011:BOI

Rahimov:2013:CMM

Rosic:2014:RCSa

Rosic:2014:RCSb

Ray:2010:MIT

Samriddha Ray, Kazunori Kume, Sneha Gupta, Wanzhong Ge, Mohan Balasubramanian, Dai Hirata, and Dannel McCollum. The mitosis-to-interphase transition is coordinated by cross talk between the SIN and MOR pathways in *Schizosaccharomyces pombe*. *Journal of Cell Biology*, 190(5):793–??, September 2010. CODEN JCLBA3. ISSN 0021-9525
Rubenstein:2012:ASE

Rouvinski:2014:LIP

Roux:2012:PBL

Riley:2010:UAA

REFERENCES

Jonathan C. Reed, Britta Molter, Clair D. Geary, John McNevin, Julie McElrath, Samina Giri, Kevin C. Klein, and Jaisri R. Lingappa. HIV-1 Gag co-opts a cellular complex containing DDX6, a helicase that facilitates capsid assembly.
REFERENCES

REFERENCES

ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/206/2/289.

[RPO*14] Viviane Richter, Catherine S. Palmer, Laura D. Osellame, Abeer P. Singh, Kirstin Elgass, David A. Stroud, Hiromi...

Raghuram:2013:PPH

[Nikhil Raghuram, Hilmar Strickfaden, Darin McDonald, Kylie Williams, He Fang, Craig Mizzen, Jeffrey J. Hayes, John Th’ng, and Michael J. Hendzel. Pin1 promotes histone H1 dephosphorylation and stabilizes its binding to chromatin. *Journal of Cell Biology*, 203(1):57–??, October 2013. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/203/1/57.]

Romer:2013:SMF

Reczek:2013:IBC

Rifkin:2010:BMG

Reggiori:2012:ART

Reboutier:2012:NBA

[David Reboutier, Marie-Bérengère Troade, Jean-Yves Cremet, Kenji Fukasawa, and Claude Prigent. Nucleophosmin/ b23 ac-

REFERENCES

[SbEM13] Yasuhisa Sakamoto, Batiste Boëda, and Sandrine Etienne-Manneville. APC binds intermediate filaments and is required

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

(electronic). URL http://jcb.rupress.org/content/197/6/694.

Sedwick:2012:FIU

Sedwick:2012:GDS

Sedwick:2012:GRM

Sedwick:2012:JLV

Sedwick:2012:JHC

Sedwick:2012:KVG

Sedwick:2012:KBC
REFERENCES

CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/196/1/4.

REFERENCES

REFERENCES

JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/201/5/648.

Sedwick:2013:DSH

Sedwick:2013:FBY

Sedwick:2013:GGH

Sedwick:2013:HMH

Sedwick:2013:JRE

Sedwick:2013:JBC

Sedwick:2013:JRI

REFERENCES

ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/200/6/686.

REFERENCES

REFERENCES

REFERENCES

ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/205/4/432.

Serrels:2012:FTW

Selvaraj:2012:LAF

Sahin:2014:OSI

Schweizer:2013:SAC

Sumigray:2012:NMT

REFERENCES

REFERENCES

Steinberg:2010:CCS

Steinberg:2012:SPI

Scott:2010:LKR

Sosanya:2013:DHA

Sheng:2014:MTA

REFERENCES

0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/204/7/1087.

Schermelleh:2010:GSR

Suzuki:2011:SMG

Short:2010:SLA

Short:2010:CGH

Short:2010:TKC

Short:2010:AML

Short:2010:ASD

Short:2010:ATV

Short:2010:AOH

Short:2010:AMC

Ben Short. Arf and Miz1 cause cells to lose their grip. *Journal of Cell Biology*, 188(6):??, March 2010. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/188/6/752.3.

Short:2010:ATC

Short:2010:AMH

Short:2010:BKH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ben Short. SPSB2 sets NO limits. *Journal of Cell Biology*, 190(1):??, July 2010. CODEN JCLBA3. ISSN 0021-9525
REFERENCES

Ben Short. Synaptic vesicles are well connected. *Journal of Cell Biology*, 188(1):??, January 2010. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/188/1/2.3.

REFERENCES

REFERENCES

JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/193/7/1133.

[Sho11q] Ben Short. DLK makes neuronal cutbacks. *Journal of Cell Biology*, 194(5):??, September 2011. CODEN JCLBA3. ISSN

REFERENCES

REFERENCES

REFERENCES

[Sho12b] Ben Short. γ-tubulin stands up to be counted. \textit{Journal of Cell Biology}, 197(1):??, April 2012. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/197/1/2.2.

REFERENCES

REFERENCES

REFERENCES

| Short:2012:FAD |
| Ben Short. Focal adhesions degrade the ECM. *Journal of Cell Biology*, 196(3):??, February 2012. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/196/3/300.3. |

| Short:2012:FMS |

| Short:2012:FLI |

| Short:2012:FR |

| Short:2012:GSR |

| Short:2012:GSF |

| Short:2012:HEJ |
REFERENCES

REFERENCES

REFERENCES

Ben Short. Sec and Tat share the workload. *Journal of Cell Biology*, 199(2):??, October 2012. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/199/2/188.2.

Ben Short. Secretory proteins hail a cab at the TGN. *Journal of Cell Biology*, 199(7):??, December 2012. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/199/7/1018.2.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ben Short. Hif-1α provides a Twist to neural crest migration. *Journal of Cell Biology*, 201(5):??, May 2013. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/201/5/646.3.
REFERENCES

REFERENCES

REFERENCES

426

REFERENCES

0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/202/7/986.3.

REFERENCES

0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/201/5/647.

REFERENCES

REFERENCES

ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/207/3/318.3.

REFERENCES

JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/206/1/3.

REFERENCES

JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/206/1/2.2.

Short:2014:GPL

Short:2014:HNK

Short:2014:HMK

Short:2014:IIA

Short:2014:KDR

Short:2014:KEE

Short:2014:KKO

REFERENCES

REFERENCES

Short:2014:MCK

Short:2014:MPH

Short:2014:MHB

Short:2014:MIP

Short:2014:NPE

Short:2014:NCM

Short:2014:OSM

[Sho14-41] Ben Short. OPA1’s shortcut to mitochondrial fission. *Journal of Cell Biology*, 204(6):??, March 2014. CODEN JCLBA3.
REFERENCES

ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/204/6/858.2.

[Sho14-44] Ben Short. p73 helps developing sperm stick to the right path. *Journal of Cell Biology*, 204(7):??, March 2014. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/204/7/1078.3.

[Sho14-48] Ben Short. Protein coat keeps axons buttoned up. *Journal of Cell Biology*, 205(1):??, April 2014. CODEN JCLBA3. ISSN

Ben Short. Septins provide a link to epithelial migration. *Journal of Cell Biology*, 207(2):??, October 2014. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/207/2/162.2.

Ben Short. Sperm’s sensitive steering machinery. *Journal of Cell Biology*, 206(4):??, August 2014. CODEN JCLBA3. ISSN
REFERENCES

REFERENCES

0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/205/1/2.1.

[SHS+12] Qing-Tao Shen, Peter P. Hsiue, Charles V. Sindelar, Matthew D. Welch, Kenneth G. Campellone, and Hong-Wei
REFERENCES

Sixt:2012:CMF

Stankovic:2013:RVK

Sirois:2013:RNA

Smith:2014:ASD

Sohaskey:2010:ORO

REFERENCES

REFERENCES

Shigeoka:2013:RBM

Sun:2014:SOM

Snider:2013:GSR

Schulz:2011:TPR

Shao:2013:XOM
Hua Shao, Ruizhen Li, Chunqi Ma, Eric Chen, and X. Johné Liu. Xenopus oocyte meiosis lacks spindle assembly check-
REFERENCES

Sloan:2013:BEE

Stramer:2010:CMM

Specht:2011:HRS

Solinet:2013:ABE

REFERENCES

Stringer:2011:SUS

Saraiva:2013:HPC

Sir:2013:LCC

Shteyn:2011:ARA

Shamir:2014:TID

Sonneville:2012:DRL

Schoborg:2013:CIB

Shen:2014:PPS

Shen:2010:SBS

Scime:2010:OSM

Schaupp:2014:CEC

Schiefermeier:2014:LEP

Stephens:2013:IPD

Spangler:2013:LPP

[SSK+13] Samantha A. Spangler, Sabine K. Schmitz, Josta T. Kevenaar, Esther de Graaff, Heidi de Wit, Jeroen Demmers, Ruud F.
REFERENCES

Shiteshu Shrimal, Steven F. Trueman, and Reid Gilmore. Extreme C-terminal sites are posttranslationally glycosylated
by the STT3B isoform of the OST. *Journal of Cell Biology*, 201(1):81–??, April 2013. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/201/1/81.

Shimura:2011:EDH

Schwertz:2010:PPD

Sedmak:2010:ITM

Stehbens:2012:TTH

Swanson:2013:ND

Strack:2013:CDK

Suozzi:2012:SMO

Snider:2011:EDG

Schulze:2013:LDB

Smeenk:2010:NCR

[Sdek:2011:RPC]

[TAC+13]

[TAGJ11]

[TALR11]

Tang:2013:FCB

Tsygankov:2014:CCP

Thompson:2010:PAH

Turgay:2014:SPF

Toret:2014:EDC

Ivo A. Telley, Imre Gáspár, Anne Ephrussi, and Thomas Surrey. Aster migration determines the length scale of nuclear separation in the *Drosophila* syncytial embryo. *Journal of Cell Biology, 197*(7):887–??, June 2012. CODEN JCLBA3. ISSN

Sebastian Treusch and Susan Lindquist. An intrinsically disordered yeast prion arrests the cell cycle by sequestering a spindle pole body component. *Journal of Cell Biology*, 197(3):369–??, April 2012. CODEN JCLBA3. ISSN 0021-9525
REFERENCES

REFERENCES

JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/190/6/991.

Takats:2013:ASD

TerBush:2012:DFC

Tamura:2013:APC

Toulmay:2013:DIR

Thon:2012:GHP

[TQS+11] Andy Tsun, Ihjaaz Qureshi, Jane C. Stinchcombe, Misty R. Jenkins, Maike de la Roche, Joanna Kleczkowska, Rose Zamoyska, and Gillian M. Griffiths. Centrosome docking at the

REFERENCES

[TYN⁺13] Kazuhiro Tateishi, Yuji Yamazaki, Tomoki Nishida, Shin Watanabe, Koshi Kunimoto, Hiroaki Ishikawa, and Sachiko Tsukita. Two appendages homologous between basal bodies

Ulbricht:2012:PPM

Uehara:2010:FCS

Updike:2011:PGE

Upadhyay:2013:SCS

Uehara:2013:ABK

Ryota Uehara, Yuki Tsukada, Tomoko Kamasaki, Ina Poser, Kinya Yoda, Daniel W. Gerlich, and Gohta Goshima. Au-

Claudio Vernieri, Elena Chiroli, Valentina Francia, Fridolin Gross, and Andrea Ciliberto. Adaptation to the spindle checkpoint is regulated by the interplay between Cdc28/Clbs and PP2A

Patrick Viator, Ursula Ehmer, Louis A. Sadadic, Craig Dorrell, Jesper B. Andersen, Chenwei Lin, Anne-Flore Zmoos, Pawel K. Mazur, Bethany E. Schaffer, Austin Ostermeier, Hannes Vogel, Karl G. Sylvester, Snorri S. Thorgeirsson,

Vega:2011:RRD

Vitureira:2013:IBH

vanGalen:2014:SHR

Vassilopoulos:2014:ASC

vanGisbergen:2012:CIF

Velichkova:2010:DMCa

Velichkova:2010:DMCb

Veltman:2012:SKD

Vermillion:2014:CPM

REFERENCES

[VandeWalle:2013:SNR] Inge Van de Walle, Els Waegemans, Jelle De Medts, Greet De Smet, Magda De Smedt, Sylvia Snauwaert, Bart Vandekerckhove, Tessa Kerre, Georges Leclercq, Jean Plum, Thomas

[Vacher:2011:CMP]

[Van:2010:CPS]

[vZOtR+10]

[WAG+10]

Welf:2012:MFR

Wemmer:2011:BBS

Weissbein:2014:GMP

White:2011:DHL

Wang:2011:ABD

Wang:2013:PMS

Windoffer:2011:CMD

Wang:2011:CTT

Wandke:2012:HCP

Winslow:2010:SIM
REFERENCES

Wu:2012:ATC

Wang:2013:CCR

Whitehouse:2012:MSH

Wang:2013:VAM

Wu:2013:LAI

REFERENCES

REFERENCES

References

Woo:2013:API

Wang:2011:RSM

Williams:2011:MNM

Wang:2014:UNS

[Wiedemann:2010:ICT] Sonja M. Wiedemann, Silke N. Mildner, Clemens Bönisch, Lars Israel, Andreas Maiser, Sarah Matheisl, Tobias Straub,

[Winkle:2014:NNS] Cortney C. Winkle, Leslie M. McClain, Juli G. Valtschanoff, Charles S. Park, Christopher Maglione, and Stephanie L. Gup-

REFERENCES

REFERENCES

Wang:2012:HIR

Wloka:2013:IMI

Wakana:2013:KEI

Walter:2010:STB

Williamson:2010:DFV

W. Ryan Williamson, Dong Wang, Adam S. Haberman, and P. Robin Hiesinger. A dual function of V0-ATPase a1 provides an endolysosomal degradation mechanism in *Drosophila*

Zhenjie Xu, Hiromi Ogawa, Paola Vagnarelli, Jan H. Bergmann, Damien F. Hudson, Sandrine Ruchaud, Tatsuo Fukagawa, William C. Earnshaw, and Kumiko Samejima. INCENP-aurora B interactions modulate kinase activity and

Xiang:2010:GGP

Xiong:2010:PTW

Xu:2010:NMV

Xu:2012:FDC

Yamashita:2013:NTS

REFERENCES

Yagita:2013:TAP

Yamauchi:2014:PMA

Yamamoto:2010:DPP

Ye:2010:RTE

Yoshida:2013:MOC
Masashi Yoshida, Satoshi Katsuyama, Kazuki Tateho, Hiroto Nakamura, Junpei Miyoshi, Tatsunori Ohba, Hirotada Matsuhara, Futaba Miki, Koei Okazaki, Tokuko Haraguchi, Osami
REFERENCES

Yamamoto:2012:AVI

Lee:2013:ARL

Yang:2010:FGF

Yano:2013:AMT

Wei-Lien Yen, Takahiro Shintani, Usha Nair, Yang Cao, Brian C. Richardson, Zhijian Li, Frederick M. Hughson, Misuzu Baba, and Daniel J. Klionsky. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. *Journal of Cell Biology*, 188(1):
Yamaguchi:2011:LIA

Yamashita:2011:MRC

Yu:2011:CTC

Yan:2011:RPP

Yan:2010:SMP

[YTT+]10 Rihui Yan, Sharon E. Thomas, Jui-He Tsai, Yukihiro Yamada, and Bruce D. McKee. SOLO: a meiotic protein required for
centromere cohesion, coorientation, and SMC1 localization in
335–??, February 2010. CODEN JCLBA3. ISSN 0021-9525
org/content/188/3/335.

[Yi:2013:CRC]

Jason Yi, Xufeng Wu, Andrew H. Chung, James K. Chen,
Tarun M. Kapoor, and John A. Hammer. Centrosome repositioning in T cells is biphasic and driven by microtubule
end-on capture-shrinkage. *Journal of Cell Biology*, 202(5):
779–??, September 2013. CODEN JCLBA3. ISSN 0021-9525
org/content/202/5/779.

[Yamamoto:2012:KDA]

Kenta Yamamoto, Yunyue Wang, Wenxia Jiang, Xiangyu
Liu, Richard L. Dubois, Chyuan-Sheng Lin, Thomas Ludwig,
Christopher J. Bakkenist, and Shan Zha. Kinase-dead ATM
protein causes genomic instability and early embryonic lethality in mice. *Journal of Cell Biology*, 198(3):305–??, August
2012. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140
(electronic). URL http://jcb.rupress.org/content/198/
3/305.

[Yano:2011:TRC]

Tomoki Yano, Yuji Yamazaki, Makoto Adachi, Katsuya
Okawa, Philippe Fort, Masami Uji, Shoichiro Tsukita, and
Sachiko Tsukita. Tara up-regulates E-cadherin transcription
by binding to the Trio RhoGEF and inhibiting Rac signaling.
Journal of Cell Biology, 193(2):319–??, April 2011. CODEN
JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL
http://jcb.rupress.org/content/193/2/319.

[Yamaguchi:2011:PKS]

Hideki Yamaguchi, Shuhei Yoshida, Emi Muroi, Nachi
Yoshida, Masahiro Kawamura, Zen Kouchi, Yoshikazu Nakamura, Ryuichi Sakai, and Kiyoko Fukami. Phosphoinositide
3-kinase signaling pathway mediated by p110α regulates in-
vadopodia formation. *Journal of Cell Biology*, 193(7):1275–??,
June 2011. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-
8140 (electronic). URL http://jcb.rupress.org/content/
193/7/1275.
REFERENCES

[YZM+12a] Yu, Xinzi; Zech, Tobias; McDonald, Laura; Gonzalez, Esther; Li, Ang; Macpherson, Iain; Schwarz, Heather; Spence, Kinga; Timpson, Paul; Nixon, Colin; Ma, Yafeng; Anton, Ines M.; Visegrády, Balázs; Insall, Robert H.; Oien, Karin; Blyth, Karen; Norman, Jim C.; Machesky, Laura M. N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods. *Journal of Cell Biology*, 199(3):527–??, October 2012. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/199/3/527.

[YZM+12b] Yu, Yamei; Zhu, Jianghai; Mi, Li-Zhi; Walz, Thomas; Sun, Hao; Chen, JianFeng; Springer, Timothy A. Structural specializations of α4β7, an integrin that mediates rolling adhesion. *Journal of Cell Biology*, 196(1):131–??, January 2012. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/196/1/131.

[ZBBG10] Zeng, Kang; Nunes Bastos, Ricardo; Barr, Francis A.; Gruneberg, Ulrike. Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2. *Journal of Cell

Zaidel-Bar:2010:FBD

Zaidel-Bar:2010:FBD

Zhou:2011:NIM

Zito:2010:EPSa

Zito:2010:EPSb

Zapata:2014:PMR

REFERENCES

ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/204/3/359.

Zhang:2012:IPS

Zyss:2011:CKD

Zimmer:2011:PCO

Zhou:2013:RGC

Zhang:2013:ARC

Zhao Zhang, Jing Feng, Chenyu Pan, Xiangdong Lv, Wenqing Wu, Zhaocai Zhou, Feng Liu, Lei Zhang, and Yun Zhao.

Zambrano:2014:THR

Alberto Zambrano, Verónica García-Carpizo, María Esther Gallardo, Raquel Villamuera, María Ana Gómez-Ferrería, Ángel Pascual, Nicolas Buisine, Laurent M. Sachs, Rafael Garresse, and Ana Aranda. The thyroid hormone receptor β induces DNA damage and premature senescence. *Journal of Cell Biology, 204*(1):129–??, January 2014. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/204/1/129.

Zhou:2012:NPS

Zhou:2014:IUS

Zhang:2012:RRR

Zheng:2010:HHP

Zanet:2012:FPF

Zylkiewicz:2011:TCC

Zuleger:2011:SAS

Zhu:2013:SFA

An Zeng, Yong-Qin Li, Chen Wang, Xiao-Shuai Han, Ge Li, Jian-Yong Wang, Dang-Sheng Li, Yong-Wen Qin, Yufang Shi, Gary Brewer, and Qing Jing. Heterochromatin protein 1 promotes self-renewal and triggers regenerative proliferation in adult stem cells. *Journal of Cell Biology*, 201(3):409–??, April 2013. CODEN JCLBA3. ISSN 0021-9525 (print), 1540-8140 (electronic). URL http://jcb.rupress.org/content/201/3/409.

Ceniz Zihni, Peter M. G. Munro, Ahmed Elbediwy, Nicholas H. Keep, Stephen J. Terry, John Harris, Maria S. Balda, and Karl

Keman Zhang, Jingfeng Sha, and Marian L. Harter. Activation of Cdc6 by MyoD is associated with the expansion of quiescent myogenic satellite cells. *Journal of Cell Biology*, 188
Zhang:2012:ADR

Zhu:2013:MNP

Zhang:2013:MDO

Zatulovskiy:2014:BDC

Zhang:2014:THR
Duo Zhang, Xiaoyun Wang, Yuying Li, Lei Zhao, Minghua Lu, Xuan Yao, Hongfeng Xia, Yu cheng Wang, Mo-Fang Liu, Jingjing Jiang, Xihua Li, and Hao Ying. Thyroid hormone regulates muscle fiber type conversion via miR-133a1. Journal of Cell Biology, 207(6):753–??, December 2014. CODEN

Hongyu Zhao, Yan G. Zhao, Xingwei Wang, Lanjun Xu, Lin Miao, Du Feng, Quan Chen, Attila L. Kovács, Dongsheng Fan, and Hong Zhang. Mice deficient in Epg5 exhibit selective