A Complete Bibliography of Publications in the *Journal of Computer and System Sciences*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

25 April 2024
Version 1.18

Title word cross-reference

#09111 [1814], #AM01053M [1862, 1877, 1904]. #better_5X8_els [1856], #BIS [3184].
#BIS-hardness [3184], #CSP [2696, 2908, 3508], #condirectM [1893].
#HA03022M [1860, 1875], #HA05062N [1876], #HA05062O [1849, 1861].
#P [1195, 3598, 1261, 1264].
#praise_5X8_els.pdf [1832].
#sciencejobs_N [1802].

#P [1373], (1 + 1/dim ε) [1590], (1 ± ε) [3581], (2 − 7/(3p + 1)) [2414], (2^m) [1306].
(s, t) [1475], 0(n) [1160], 1 [270], 1 − L [1371, 924], 12n^2 [450], 2 [3525, 3184, 3798, 2191, 1048, 3402, 1500, 3364, 2034, 2993, 834, 2473, 3101].
{2, 3} [2843], 2 − ε [2353], 2^-0.802n [3693], 2^-2^m [445], 2^O(n^1/2) [1977].
3 [1920, 3773, 2242, 2827, 2374, 1961, 2825, 3240, 1071, 1133], 4 + ε [3670], 43 [3620].
4 · Log N [655].
5/4 [1612], 8 [2998].
9 [1433], * [858].
0 [1625, 3418, 1085], 1 [1523].
* [3194].
NP [2235], N^P(O(log n)) [995].
2 ≤ [2235].

PH [1501], 2 [3418].
H [1565].
[6] [3693].
A [426, 289].
F [2194].
A[P(x), 2x, x + 1] [500].
Ax = ABx [377].
b [3253].
β [3444].
γ [3418].
d [2527, 1362, 3256, 3563].
δ [3553].
f_p [2154].
c [1551, 2617, 1864, 1693].
g [3312].
H [3727, 3701, 1019].
K [1320, 2756, 191, 3494, 1300, 1546, 3286, 2357, 2993, 834, 2473, 3101].
3085, 3590, 1788, 2535, 1940, 199, 2491, 3803, 3256, 1188, 3603, 3754, 961, 3252, 3394, 1681, 1398, 2805, 3506, 3670, 2690, 1339, 585. \[L [541, 433, 314]. \] \[L = \{ a^i \mid i \geq 0 \} \] [772]. \[L_{\infty} \] [3538, 1736, 2474]. \[L_n \] [3344]. \[\lambda \] [2997]. \[\log n + O(1) \] [1735]. \[\log n \] [473]. \[M \] [708, 1294]. \[N^n \] [174]. \[Z_m \] [2157, 704]. \[Z_m \] [1196]. \[Z_m \] [1486]. \[F \] [3629]. \[\mu \] [3127]. \[N \] [1293, 655, 1433, 2780, 3717, 2135, 1792, 229, 895]. \[n^2 \] [2135]. \[N_m \] [1597], \[n \log n \] [751]. \[O(EV \log^2 V) \] [566]. \[O(\log^2 n) \] [847]. \[O(\log^{3/2} n) \] [1422], \[O(\log \log V) \] [960]. \[O(\log n) \] [2370], \[O(M(n^2)) \] [1488]. \[O(n) \] [1359, 3350]. \[O(n^{1.5} \sqrt{\log n}) \] [938]. \[O(n \log \log n) \] [1268]. \[O(n \log \log \log n) \] [1311]. \[O(n \log n) \] [1864, 1359, 1430]. \[O(|V| \log |V|) \] [1475]. \[O_n \] [3717]. \[\omega \] [2678, 3196, 242, 416, 417, 443, 909, 722]. \[\omega^2 \] [298]. \[\omega^n \] [460]. \[p \] [3367, 3758, 1141, 1294, 1359]. \[PF \cdot \#P \] [1373]. \[Q \] [3470, 2918]. \[q = 7 \] [38]. \[r \] [3243]. \[s \] [1427, 585]. \[S^{1/2} \] [1565]. \[\Sigma^n \] [1552], \[\Sigma_2 \] [895]. \[st \] [3350] \(\subseteq \) [1565]. \[t \] [1427, 3205]. \[T^w \] [469]. \[\Theta(n \log^2 n) \] [1420]. \[V \log V \] [213]. \[W^2 \] [1940]. \[X + Y \] [641]. \[Z^2 \] [3101].

* [159].

- acyclic [3444]. - anonymous [3085].
- Biased [1551]. - bit [2998]. - bound [2135].
- cheatable [1141]. - chromatic [3253].
- closeness [1141]. - cluster [3563].
- Computations [443]. - connected [834, 3670]. - connectivity [1133].
- construction [708]. - context-free [416].
- cores [3754]. - D [3525]. - Depth [1320].
- Dimensional [1339, 2780, 1362]. - distinct [3394]. - Edge [3758].
- Edge/vertex-connected [3758].
- extendible [2997]. - extra [3312].
- languages [416, 417, 722]. - Leaf [2491].
- Median [1788]. - min-wise [3256].
- Minor-Free [3629]. - MST [1546].
- Nilpotent [1048]. - norm [2474, 3344].
- spin [3184]. - subcolorable [3364].
- systems [298]. - tapes [242, 460]. - Term [1300, 3506, 2690]. - Testability [1500].
- transducers [426, 289]. - trees [858].
- tuple [2993]. - type [417]. - Uniform [3205].

/ = [1461].

0 [535].

1 [535]. - 1-center [3190]. - 1-convexes [174].
- 1-median [3248, 3190].
- 1.375-approximation [3564].
- 1.5-approximation [2080].
- 1.75-approximation [2305]. - 1/2 [2236].

2 [3171, 2671, 2522]. - 2-CSP [3171, 2671].
- 2021 [3622, 3658, 3578, 3613, 3594, 3599].
Aggregation [3580, 3663, 3504, 3055, 2674, 3678].

Alignment [2779].

All-Pairs-Shortest-Path [1303]. allocation [956, 3801, 2767, 3156, 3015, 618, 2628, 2406]. allowing [863]. Almost [1920, 3796, 2637, 2610, 1713, 1093, 2473, 3493, 990, 3702].

Almost-natural [2610].

Analog [1378].

Analysis [3119, 868, 1598, 1558, 442, 275, 1704, 1835, 1650, 1669, 2936, 1306, 485, 2916, 2657, 2343, 1040, 3104, 2894, 3843, 3032, 2299, 3401, 3033, 2467, 1960, 76, 2023, 2174, 2209, 3060, 3061, 2062, 3067, 2207, 3236, 902, 2586, 874, 2319, 444, 2330, 9, 3821, 1811, 569, 801, 3545, 2265, 106, 2316, 2871, 373, 2900, 2397, 2250, 1140, 835, 826, 2314, 3328, 2427, 2819, 2893, 2605, 2345, 3582, 3653].

Analytic [2401, 3648].

analytical [2828, 2207, 2622, 3025].

Analytic [3175, 3321, 3179].

analyse [2462].

anaphora [2920].

ancestry [1178].
characterisation [3470].
Characterisations [2721, 1077].
Characterising [3353]. Characteristic
[402, 403]. Characteristics [1767, 794].
Characterization
[1433, 1376, 3813, 110, 52, 2352, 2208, 3416,
3662, 1203, 2751, 138, 394, 204, 530, 2980,
668, 98, 366, 349, 229, 972, 709, 2243, 418].
Characterizations [1296, 416, 125, 1719,
220, 3790, 3154, 1885, 983, 3795, 1195].
characterize [1072]. characterized [211].
characterizes [2291]. Characterizing
[1533, 1201, 3707, 1548, 1456, 21]. charges
[868]. charts [131]. chase [3241]. Chasing
[1679]. chatting [2835]. cheatable [1141].
Chebyshev [3]. Check [2149, 2505].
checkable [1900]. Checkers [1639].
Checking [677, 1313, 64, 1668, 3308, 2903,
550, 2174, 2876, 3339, 3001, 2905, 2177, 484,
2744, 3359, 2682, 2074, 2679, 149, 3596].
checkpointing [2516]. chess [701]. child
[3572]. Chinese [3252]. Chip
[2824, 2828, 2966, 2320, 2827]. choice
[1867, 839, 2528]. Chordality [855].
Chromatic [1478, 1522, 1228, 2373, 3253].
chunking [2495]. churn [3679]. Cipher
[1656]. Circuit [1518, 1717, 2435, 2433, 2113,
2058, 1097, 462, 597, 2314, 808]. Circuits
[1625, 1684, 1260, 1262, 1294, 1563, 1471,
1548, 1244, 1418, 495, 831, 790, 2956, 3191,
2355, 3285, 1134, 1825, 2926, 2636, 3737, 43,
127, 2047, 373, 3491, 539, 3283, 3254].
circulant [56]. Circular [3590, 1506, 2723].
circumscription [1180]. circumventing
[2386]. clarifications [287]. Class
[1460, 662, 2398, 1048, 3139, 2063, 2051, 803,
864, 474, 2627, 368, 747, 903, 314, 492, 756,
585, 57]. Classes
[1793, 1255, 494, 1555, 1628, 240, 1357, 1256,
1553, 1791, 3645, 3363, 110, 2327, 919, 1042,
3440, 273, 799, 3715, 479, 3524, 2024, 2507,
2020, 1173, 3259, 3267, 2907, 504, 1036, 285,
838, 874, 125, 1078, 3789, 3805, 2782, 2950,
3266, 2757, 1098, 132, 572, 2445, 192, 293,
347, 1075, 263, 984, 392, 391, 1185, 286, 3294].
Classical [3779, 2037, 1682, 2977].
Classification [120, 1340, 3626, 2897, 2123,
2794, 2808, 1108, 2130, 2836]. classified
[3554]. classifier [3086]. Classifiers
[1800, 2281, 3219, 3344]. Classifying
[3482, 667, 2607]. clause [2049].
clause-variable [2049]. claw [3560].
claw-free [3560]. Clearing [3456]. Clifford
[1912]. Climbing [1535]. Clique
[1384, 3524, 1290, 3477, 3736, 3558, 1931].
Clique-width [3524, 3477]. cliques [3656].
clock [832, 3198]. Clocked [3657]. clocking
[2956]. Clone [2940]. clones
[2411, 2308, 3249]. close [38]. close-packed
[38]. Closed
[677, 1242, 1180, 609, 284, 3039, 2596, 895].
closeness [1141]. closest [2660, 396, 2722].
Closure
[3645, 1638, 1474, 3246, 1257, 1789, 1373, 480,
1120, 3160, 3641, 1164, 3437, 1139, 3400].
Closures [37]. Cloud
[2890, 3185, 2739, 3112, 3144, 2741, 2743,
3348, 3710, 3349, 2745, 2883, 3323, 3156,
3118, 3604, 3150, 2742, 2880, 2933, 3009,
2881, 3347, 2746, 2834, 2967, 3007, 3020,
2747, 2740, 3010, 2966]. cloud-assisted
[3323]. Cloud-based [3185].
Cloud-integrated [3144]. clouds
[2744, 3321, 3152, 3151, 2882]. Cluster
Clustered [1792]. Clustering [2379, 1982,
2124, 2209, 3063, 2896, 2576, 3835, 2097,
3742, 3762, 3665, 3784, 2634, 3505, 2968].
clusters [2322, 3000, 3265]. clutter [2818].
clutter-aware [2818]. CNFs [2357]. Co
[1361, 2338, 2411, 2320]. co-browsing
[2338]. co-clones [2411]. co-design [2320].
Co-Finite [1361]. coal [2719]. coalgebra
[3076]. coalgebras [3078]. coarse [1941].
coarse-grained [1941]. Code [1656, 356].
Codes
[1428, 38, 2001, 3331, 1078, 2034, 2189].
Codeterministic [521]. codifications [413].
coimplications [2921]. coin [1981].
coincidence [999]. coins [1881].
Collaboration [3145, 2521]. Collaborative [2634, 2425, 3085, 2517, 3118, 2329, 3455,
collapses [996]. Collapsing [1142, 945]. colleague [3641]. Collection [1351, 3815].
collective [2407]. Collision [3281, 3457]. Collision-free [3281].
Collaboration [3145, 2521]. Collaborative [2634, 2425, 3085, 2517, 3118, 2329, 3455,
collective [2407]. Collision [3281, 3457]. Collision-free [3281].
Colloquium [3610]. colony [2883, 2768, 3066]. color [3393].
color-coding [3393]. colorable [1920].
colored [2616]. Coloring [3674, 3657, 2587, 3435, 3536, 2887, 3642, 3484]. colorings [2394].
colors [3641]. colour [2735].
colourable [2279]. Colouring [3342, 3503].
Column [2955]. columns [641].
combinations [2281]. Combinatorial [1742, 56, 2749, 172, 1685, 3269, 1183, 3169,
2352, 2652, 3433, 2791, 276, 311, 421, 1157, 3337, 1076, 3678]. Combinatorics [1706].
combinators [3499]. combinatory [3690].
Combined [3165, 1800].
Combined-semantics [3165]. Combining [1544, 1705, 1806, 2871]. Comment [248, 3187].
Commerce [1651, 1837].
commit [2215]. common [556, 200, 3258, 1805, 3591, 1945].
Communicating [3593, 564].
Communication [1733, 1293, 1710, 2726, 1489, 2497, 1294, 3040, 1724, 1157, 1512, 739,
891, 1679, 2314, 1536, 2850, 2000, 2157, 2296, 2024, 2169, 1820, 527, 1036, 1210, 2870, 1098,
1119, 3206, 850, 1161].
Communication-efficient [2726]. Communication-optimal [3040].
communications [3720, 2311, 2407, 2831, 3209]. communities [2811]. community [2790, 2899, 3118].
commutatif [174]. commutatifs [506].
Communion [1794]. Commutative [1578, 1492, 753, 904, 174, 405, 1046, 1161, 2684]. Commutatively [677].
Commutativity [1025].
Comparative [1593].
Comparing [273, 2532, 2406, 1810].
Comparison [1406, 1642, 1306, 2401, 2900, 2459].
comparisons [3172]. compatibility [893].
compatible [2545, 2787]. competency [2122]. competing [3604]. Competitive [1684, 2425, 1298, 1246, 1188, 1753].
compiler [304]. compilers [68, 231].
complement [895]. complementary [2994, 2703]. complementation [2924].
completed [971]. Completely [2797, 25].
Completeness [1655, 1341, 1400, 348, 1353, 951, 1868, 2185, 260, 604, 1443, 872, 669, 664, 3586, 2593, 1056, 660, 3222, 339, 90, 326].
confluent [2168]. congested [3558].
congestion [3609, 2824, 3143].
congestion-aware [2824]. Congress [85].
Congruence [1608, 265, 903]. congruences [710].
congruent [815, 797]. congruity [751].
Conjecture [1382, 1561, 1436, 2558, 2068, 1114, 3561, 3618, 2636, 659, 3675].
conjugacy [3128]. conjugate [325, 2921].
Conjunctive [1571, 2591, 2654, 1653, 3226, 3309, 3626, 3165, 2911, 2856, 2597, 3485, 3302].
Conjunctive-Query [1653]. Connected [2541, 1422, 3519, 2415, 3495, 3758, 2616, 2904, 3562, 3399, 459, 3064, 910, 834, 3670, 1902, 3582].
Connections [210].
Connectors [2027, 2220, 2240, 2267, 2277, 2287, 2300, 2310, 2323, 2334, 2347, 2360, 2375, 2395, 2420, 2428, 2437, 2443, 2449, 2455, 2460, 2465, 2470, 2476, 2486, 2492, 2502, 2512, 2523, 2538, 2555, 2570, 2588, 2598, 2619, 2629, 2647, 2648, 2675, 2697, 2698, 2717, 2736, 2737, 2763, 2764, 2783, 2784, 2799, 2812, 2820, 2829, 2847, 2861, 2877, 2878, 2891, 2913, 2927, 2942, 2957, 2969, 2982, 3002, 3036, 3057, 3089, 3110, 3133, 3140, 3148, 3163, 3173, 3180, 3200, 3212, 3217, 3228, 3243, 3263, 3274, 3291, 3299, 3317].
Content [2342, 3236].
Content-less [313].
Contents [2027, 2220, 2240, 2267, 2277, 2287, 2300, 2310, 2323, 2334, 2347, 2360, 2375, 2395, 2420, 2428, 2437, 2443, 2449, 2455, 2460, 2465, 2470, 2476, 2486, 2492, 2502, 2512, 2523, 2538, 2555, 2570, 2588, 2598, 2619, 2629, 2647, 2648, 2675, 2697, 2698, 2717, 2736, 2737, 2763, 2764, 2783, 2784, 2799, 2812, 2820, 2829, 2847, 2861, 2877, 2878, 2891, 2913, 2927, 2942, 2957, 2969, 2982, 3002, 3036, 3057, 3089, 3110, 3133, 3140, 3148, 3163, 3173, 3180, 3200, 3212, 3217, 3228, 3243, 3263, 3274, 3291, 3299, 3317].
Context [3310].
Consistency [1694, 1581, 3001, 1758, 1692, 757, 3360, 1002].
consistent [3310]. Consistently [1349].
consolidation [3152]. conspiracy [622].
Constant [1431, 1546, 1788, 1897, 2558, 3494, 3493, 3352, 1913, 3416, 1094, 3712, 2385, 1825, 2926, 3606, 2439, 2031].
constant-depth [1825, 2926].
Constant-Factor [1546, 1788, 3416, 3712].
constant-round [2439]. constants [501, 53].
Constrained [1277, 1949, 325, 2181, 2414, 2084, 2700, 113, 1811, 3815, 2770].
Constraint [1584, 1769, 2550, 3588, 1580, 3197, 1276, 1653, 2488, 1841, 3360, 2792, 3159, 2381, 3094, 3380, 2175, 2659, 3365, 2279, 3602].
Constraint-Generating [1584].
Constraints [1568, 1649, 1648, 1313, 1286, 1357, 1607, 2657, 2343, 3552, 3474, 3194, 2463, 2520, 2260, 2359, 3410, 1844, 3001, 3784, 1231, 2666, 2846, 2401, 3753, 2474, 746, 2661, 548, 3333, 3100].
constructibility [224]. Constructing [1311, 3285, 2223]. Construction [1325, 3475, 1506, 1449, 1472, 1564, 2227, 1390, 352, 708, 988, 3573, 2901, 941, 419].
Constructions [1550, 635, 2114, 599, 3237, 2158, 1163].
constructors [1007, 663]. Constructs [1667, 885]. Consumer [2342, 3236].
Consumer-centric [2342]. consumption [3082, 3308, 3728]. Contain [1471].
Containment [1580, 1653, 3366, 2591, 3625, 350, 733, 1836, 309]. Content [2495, 2735, 2579, 1840, 2043, 2734, 2730].
Content-based [2735].
Content-dependent [2495]. Contention [1393, 1558, 3757]. contentless [313].
Context-aware [2601, 2733, 3048]. Context-Free
definitions [1321, 2388, 754, 2714]. degenerative [3511]. Degree [1433, 1520, 397, 1920, 2155, 3804, 3184, 1171, 3209, 3588, 3751, 865, 2846, 2661, 1202, 3619, 2909].
Deletion [3629, 3789, 3805, 3363, 3423, 3495, 3707, 3396, 543, 3279, 3563, 847].
Descriptive [3598, 3628, 1696, 983, 1264, 2840]. Design [890, 1367, 1304, 1471, 852, 1125, 2632, 2424, 882, 1850, 3157, 2604, 2320, 3846, 2998, 2387, 2180, 3337, 1991]. designated [3235].
diamond [3342]. diamond-free [3342]. dichotomous [192]. Dichotomy [1312, 2238, 2548, 3204, 3629, 3751, 3602, 3701, 2859]. dictionaries [3247].
Euler [770]. Eulerian [3153]. EV [3147].
EV-Linker [3147]. evaluated [3527].
Evaluating [3199, 3146]. Evaluation
[1529, 437, 1466, 2869, 1717, 970, 2280, 3234,
2206, 2262, 2604, 2621, 2762, 1083, 193,
205, 2397, 2211, 2475, 2643, 2399, 2719, 2931].
evaluations [2467]. evasion [112]. even
[2904, 3415]. even/odd [3415]. Event
[2602, 2833, 3561, 2978, 1101].
Event-Condition-Action [2602]. events
[120, 96, 97, 117, 3231, 356, 667]. eventually
[3040]. Every [2659, 146, 66, 203].
Everything [1500, 2671]. everywhere
[1093]. evolution [320, 2854, 3419].
evolutionary [2902, 2895, 3428].
evolvability [2751]. evolving [3448]. Exact
[2252, 1742, 1618, 1346, 1179, 1340, 2092,
2093, 3420, 3409, 3311, 3611, 3768, 3227].
exactly [962]. example [852]. Examples
[1333, 883]. Exception [3563]. exchange
[2852, 2198, 3296, 3011, 2694, 692, 2596,
2265, 2581, 3059, 3428]. excluding [2020].
exclusion [655]. Excursion [1434].
execution [2517]. Executions [1657, 1487].
Existential [836, 3043, 3699]. Expand [2149].
Expanders [926]. expansion [3497].
expressions [3197]. Expected
[1292, 1745, 1282, 2030, 3732, 2439].
experimental [2467, 3061, 2345].
experiments [2900]. Expert [1495].
explaining [3068]. Explicit [1542, 599].
Exploiting [2276, 3170, 3156]. Exploration
[3663, 3281, 3635, 3776, 2385]. explorer
[3650]. Exploring [2093, 2622]. explosion
[2174]. Exponent [1424, 3167].
Exponential
[1609, 749, 1563, 1730, 2034, 1456, 1438,
1111, 1756, 3423, 996, 745, 1824, 3027].
Exponentially [601, 3038, 2021].
Exponentiation [1491, 2688].
exponentiations [3346, 3653]. expressed
[825]. expressibility [2068, 656].
Expressing [1076]. expression
[3697, 523, 3544]. Expressions
[1764, 1599, 1693, 1624, 1466, 460, 3305, 346,
3499, 3487, 1864, 2292, 3340, 2775, 72, 623,
3102, 154, 1083, 3483]. Expressive
[872, 3439, 3220, 1528, 1667, 1280, 1443,
1439, 1278, 3440, 1138, 2651, 1065, 2048].
Expressively [1760]. Expressiveness
[664, 2856, 660, 1531, 776, 3154, 3437].
Extended [773, 870, 2624, 2856, 3272, 2060].
extendible [2997]. Extending [589].
Extension
[1352, 1351, 2083, 199, 3341, 206, 3686, 393].
Extensions [43, 127, 710, 1061, 3790, 2842,
3774, 3076, 510]. extent [269]. exterior
[3735]. exterior-algebraic [3735]. External
[1543]. externals [2651]. extra
[3519, 3389, 3312]. Extracommunications
[2843]. Extracting [2057, 1550, 1787, 2060].
 extraction [1198, 2734]. Extractors
[1787, 2189, 2569, 2568]. extracts [2294].
Extrema [1289, 1043]. extrema-finding
[1043]. Extremal [2350]. extremals [59].
eyes [2761].
F [554]. Facebook [2898]. faces [2148].
facets [738, 933]. Facilitating [3066].
facility [2541]. Factor [1546, 1590, 1788,
3416, 3712, 3606, 910, 2331, 2416].
Factoring [791, 812, 3162]. Factorization
[88, 2299, 3130, 3128, 2106]. factors
[3167, 2479, 144]. fading [2809]. failure
[872, 1965, 2137, 3040, 2447]. failures [3511].
Fair [2581, 3059, 3835, 2604]. Fairness
[1705, 1702, 1156, 1103]. faithful [922].
fallback [3060, 3061]. false
[3234, 1197, 3233]. families [75, 230, 97, 423,
151, 647, 682, 303, 306, 37, 92, 3168]. family
[908, 3256, 264, 502]. Fan [1418, 790].
Fan-In [1418, 790]. far [675]. farms [2806].
Fast [495, 1249, 2299, 1300, 254, 3825, 2132,
279, 2385, 251, 3258, 936, 1245, 2483, 1504,
3210, 977, 3575, 3592, 1806, 568, 744, 2483].
Faster [3311, 2701, 1446, 3532, 2445, 3748,
[2826, 2825]. **GALS-based** [2826, 2825].

Game [3293, 1495, 3470, 929, 1885, 3356, 3604, 999, 3428].

Games [1747, 1345, 3675, 813, 1596, 2677, 2646, 3517, 3632, 919, 44, 3634, 3609, 2678, 2841, 3314, 840, 2419, 3351, 2978, 2680, 3565, 2989, 2025, 3515, 767, 441, 3260, 2679, 3391, 928, 1980].

Gamma [3455]. **Gap** [1518, 1173, 1111, 2386, 2179].

Gap-definable [1173, 2179]. **Gaps** [1677, 159]. **Garden** [287].

Garden-of-Eden [287]. **gate** [3413, 2622, 3254]. **gate-limited** [2622].

Gates [1471, 1624, 3491]. **gathering** [3387].

Gaussian [1391, 3455]. **Gaussian-Gamma** [3455].

Gelder [1532]. **gene** [2002, 1808].

gene-order [1808].

General [2366, 2114, 96, 1415, 1333, 300, 1454, 1066, 2403, 3349, 2293, 662, 482, 870, 1085, 2147, 3250, 2398, 3195, 838, 2051, 2308, 181, 493, 59, 1854, 2130, 3343, 762].

generalisations [2840].

generalised [2581].

Generalization [2840, 2290].

generating [3261, 3288].

Generating [1584, 2415, 848, 1070].

Generation [3276, 87, 1187, 3185, 417, 83, 2175, 966, 90, 2746].

generative [3090].

generators [77].

Generators [1676, 985, 1116, 196, 3031, 1919].

Generic [1329, 2673, 3222, 1856, 3385, 3573, 3763, 3359, 883].

Genetic [2869, 2828, 2901].

genome [1804, 1807, 1812].

genomic [2082].

Genomorphisms [1010].

genotyping [2085].

Gentzen [1851].

Genus [2291, 2705].

Geodesic [3099, 3401, 991].

Geographic [3328].

Geographical [3240].

geographically [2744].

geographically-dispersed [2744].

geolocated [3012].

Geometric [1441, 1670, 1570, 1243, 1172, 3029, 2583, 243, 2537, 992, 1002].

geometrical [3425, 1928].

Geometry [3130, 1675, 833, 1221, 44, 3398, 1005].

geospatial [3176].

GF [2944, 394, 1306].

gift [1217].

girth [3840].

given [3273, 903, 3619, 3840].

Gladkij [206].

Global [24, 1609, 1479, 2051, 2899, 2316, 607, 842].

Gmeans [2896].

Goldschmidt [2062].

Good [1520, 1187, 990, 43].

gossip [2811].

gossiping [2222].

gotos [877].

GPU [3018, 3017, 3369, 3814].

GPUs [2805].

Gradient [1748, 1598, 247].

Gradient-Based [1748, 1598].

gradients [377].

grading [2866].

grained [3687, 1941, 3236].

grammaires [237].

Grammar [3617, 1791, 312, 411, 341, 384, 2762, 560, 604].

Grammar-compressed [3617, 2762].

Grammars [1642, 1799, 198, 3226, 413, 3615, 222, 140, 2781, 1207, 1137, 3105, 237, 199, 867, 2670, 1992, 320, 173, 646, 773, 1015, 1070, 200, 3407, 3285, 428, 792, 67, 208, 3531, 3583, 584, 865, 1132, 291, 3690, 3544, 898, 1011, 2584, 2073, 412, 637, 51, 498, 150, 179, 3559, 137, 327, 367, 170, 21, 322, 190, 3485].

Grammatical [3390, 423, 647, 682].

grand [622].

graph [3840, 1052, 2540].

Graph-based [2103].

graph-controlled [367].
Hierarchical
[2897, 1754, 3643, 2097, 3214, 2794, 1084, 2682, 3455, 1988, 2166, 2407, 2516].
Hierarchies [781, 310, 988, 269, 2995, 206, 576, 520, 376, 3150].
Hierarchy [1535, 1501, 1296, 1675, 1678, 1546, 3685, 919, 216, 3574, 2976, 948, 633].
High
[1443, 3082, 1975, 3293, 1899, 1163].
Higher
[1443, 3293, 1899].
Higher-Order [1443, 3293, 1899].
High-Diameter [1514].
High-dimensional [1979].
High-level [2177].
High-performance [2622].
Higher-[2622].
HNN-extensions [3774].
HNN [3774].
Hitting
[2527, 3533, 3814, 3796, 3689, 3495].
HMMs [2306].
HNN [2306].
Hitting
[2527, 3533, 3814, 3796, 3689, 3495].
HMMs [2306].
Hoare [664, 1007].
hoc
[2209, 3021, 2875, 2870, 2537, 3143].
HOL4
[2917].
Holds [1436].
holes [989].
Holistic
[2250].
Holographic
[2918].
homomorphic [540].
homogenous [3068].
Homomorphic
[11, 3348, 3798, 2933].
Homorphism
[2507, 465, 550, 3289, 3536, 170].
Homomorphisms
[665, 2693, 881, 253, 3751, 356].
Homotopic
[3402].
Honest [994, 293].
honeycombs [3198].
hop [1111, 3571, 2209, 2941, 3025].
Hopfield
[1614, 1690].
horizon [3732].
horizontally [3323].
horn [883, 1660].
hosting [2882].
hosts [2930].
HPCC [2399].
Huang [3328].
lub [3367].
lubs [3747].
Huge [3242].
lull [1217].
human [1807].
HV [3434].
HV-planarity [3434].
Hybrid
[2733, 1516, 1060, 2734, 2711, 2804, 3655, 2976, 2728, 2104, 3095, 2885, 2967].
hybridization
[2544, 3207].
Hyper
[1534, 781].
Hyper-AFLs [781].
Hyper-Rectangles [1534].
hyperbolic
[3553].
hypercube
[2843, 1165, 3333, 3492, 1894, 3312].
hypercube-like
[2843, 3333, 3492, 3312].
hypercubes
[1121, 2401].
hyperedge
[3615].
Hypergrammars [303].
Hypergraph
[1171, 1137, 1070].
hypergraphs
[3469, 3444, 3689, 3801].
Hyperplane
[3314].
Hyper-simple
[1361].
hyperspheres
[3406].
hypertournaments
[2526].
Hypertree
[1768, 1885, 2264].
Hypotheses
[1655, 2092].
hypothesis
[1197, 383, 3781].
I.
[468].
I/O
[3382, 3224, 2803].
I/O-efficient
[3224].
IBE
[3187, 3023].
ICALP
[3610].
id-idealized
[600].
Identification
[1600, 1344, 34, 3395, 2411, 2308, 1201, 2615].
identifier
[2834].
identify
[2674].
Identifying
[3176, 1960, 3618].
identity
[2658, 1124, 2933, 2906].
identity-based
[2658].
IDS
[2934].
IEEE
[2971, 250].
if
[2057, 2508].
IF-like
[2508].
if-then
[2057].
IFIP
[85].
Ignorant
[1349].
II
[1144, 417, 134, 189, 434, 403, 3789, 127, 88, 1220, 594].
III
[3533].
illegal
[3115].
image
[868, 3399, 2735, 2808, 3227].
images
imaging
[3398].
IMB
[2399].
imbedding
[107, 545].
immersion
[2907].
Immunity
[1438, 2282, 1141].
im-impact
[3231, 3313, 1151].
imersonation
[2936].
implement
[2320].
Implementation
[716, 3573, 2401, 885].
implementations
[617, 280].
implemented
[3814].
Implementing
[3183, 2447].
Implicants
[1734].
Implication
[1231, 3195, 2721, 726, 2722, 3028].
Implications
[1605, 1572, 3535].
Implicit
[2645, 2003, 568, 1074, 2924, 847].
implies
[2582].
impossibility
[832, 2386].
Improved
[2382, 1634, 1644, 2418, 2468, 2669, 810, 1053, 1689, 3759, 3679, 1387, 2540, 3678, 3169, 3669, 2142, 2658, 3789, 2703, 582, 871].
number-theoretic [517]. numbering [3350]. Numberings [2498, 2613].
Numbers [1448, 1911, 2612, 923, 1976, 2979, 629, 2796, 621]. numeration [2612].
Numeric [1539]. numerical [1166, 88, 106, 607, 2779].

Obituary [2362, 2494, 725]. Object [1341, 1283, 1692, 3404, 1407, 2709, 2506, 1016, 2320, 1059, 2885, 2870, 2823, 3405].
Object-Oriented [1692, 2709, 2506, 2320, 2285, 2870].
objective [2883, 2902, 2895, 3066]. Objectives [1705, 3196]. objects [3183, 969, 3401, 1064, 3177, 1150, 1231, 1149, 992].
Oblivious [676, 1069, 1470, 2033, 2726, 596, 3166].
observable [3196]. observation [278, 3022]. observational [879]. Observations [523, 621]. observing [888]. obstacle [3729].
Once [1267, 1491, 2716, 896, 2023].
One-Way [1578, 1398, 1436, 1929, 534, 33, 1169, 64, 1993, 2707, 3109, 1865]. ones [385, 2496].
Online [2332, 3552, 3764, 2237, 3618, 1705, 1792, 3802, 3451, 2193, 3550, 3144, 2945, 3719, 2121, 3265]. only [896, 1016, 3203, 2694]. ontological [2341].
ontology [2656, 3139, 2854]. ontology-based [3139]. OODBs [1288]. Open [1225, 573, 3783, 2596, 2597].
optical [2146, 3316]. Optima [1428].
Optimal-depth [3257]. Optimality [672, 3409, 2025]. optimally [2085].
Optimisation [3080, 3082]. Optimization [191, 1519, 1440, 1528, 3112, 1286, 1504, 3276, 1075, 774, 3051, 561, 2332, 3385, 2181, 1883, 2644, 3433, 3380, 16, 15, 240, 2279, 930, 2858, 2815, 2832, 1153, 3251, 1076].
Optimized [1539, 3025, 2882]. optimizers [357]. Optimizing [3062, 2816, 2817]. optimum [82, 1213]. Or-Sets [1324].

Quadratic QoS-aware Pursuit Pulling
Pushing [3618].

quantificational [572]. quantifier [3790]. Quantifiers [1435, 3306, 598, 2980, 928].
Quantifying [3303]. Quantitative [1980, 3032, 3816, 2902]. quantized [1894].
Quantum [2351, 1775, 1712, 2242, 1591, 1720, 1863, 3044, 3746, 1594, 1682, 1981, 2155, 2780, 2046, 2023, 3660, 2876, 3392, 2037, 2034, 2998, 2509, 3095, 2707, 3109, 2454, 3038, 3596].
Quasi [848, 862, 3524, 2507, 3712, 249, 2834].
quasi-identifier [2834]. quasi-polynomial [3712]. Quasi-Random [848].
quasi-realtime [249]. Quasi-varieties [862]. quasi-wide [2507]. quasilinear [212].
quasiminimal [3335]. Queries [1568, 1461, 1571, 1251, 1742, 1310, 1300, 1498, 1346, 1588, 1764, 1765, 2592, 1529, 1483, 1768, 1286, 1580, 1543, 1567, 1541, 1263, 1439, 1331, 1282, 1407, 1795, 1027, 1061, 2850, 2280, 2641, 3384, 2370, 3522, 3030, 1841, 905, 2326, 1968, 2952, 563, 657, 3165, 2141, 2911, 2432, 3214, 2056, 2355, 624, 2856, 2367, 987, 3490, 1065, 2665, 733, 3258, 3366, 1100, 966, 3210, 2860, 2720, 2865, 3120, 2048, 3136, 774, 3302].
queuing [2627], quorum [2176]. quota [3551]. quotient [30].

R [532, 2706]. R-automata [2706].
RA [3115]. radicals [788]. Radio [2169, 1067, 1111, 3571, 2451, 2875].
RAID [2868]. rail [3199, 3146]. rainbow [3687].
RAM [631]. RAMs [1784, 600]. Ramsey [2193, 1678]. Ramsey-type [2193].
Random [1910, 2030, 1551, 1381, 1434, 1400, 1366, 1389, 1355, 1379, 1499, 1564, 848, 1682, 1881, 3362, 2119, 958, 2617, 2122, 1197, 3029, 217, 3497, 2541, 2169, 2795, 2887, 2537, 218, 1919, 3746, 762].
random-access [762].
random-walks [3029]. Randomised [1392].
randomization [1111, 1994, 3387].
Randomized [3026, 1590, 1253, 1513, 1731, 1524, 919, 1040, 2652, 1472, 2948, 2779, 1052].
randomly [2623, 3821]. Randomness [1963, 1738, 1318, 1550, 1787, 1263, 3091, 3124, 1155, 1204, 949, 926].
Range [3384, 2987, 1286, 1326, 2624, 3214, 624, 2603].
Range-max [3384]. rank [524, 3765, 3707, 2636, 628].
rankable [3645]. ranked [2275]. Ranking [1388, 2729, 641, 1029, 3445, 2482].
recently [1176]. Rate [1614, 1690, 2216, 2203].
rate-based [2203]. rates [2184, 2393, 2872].
rating [3277]. ratio [3451, 2286, 3410].

Schemes

Sciences

Schützenberger

Science

Sciences

Scientific

scope

ScDmathLMS.zip

sdmathM

SDN

searchable

Self

selection

self-emerging

self-reproduction

self-testing

self-testing/correcting

Sec

semi-FIFO

semi-matching

semi-modular

semi-partitioned

semi-polyhedral

Semi

semiring

Semistructured

sense

sensing

Sense

Self

Self-adaptive

self-assembly

Self-Confident

self-correcting

self-destructing

Self-EM

Self-organizing

Self-Reducibility

Self-Reducible

Self-reference

Self-regularized

self-stabilization

Self-Stabilizing

Self-testing

Self-testing/correcting

Self-witnessing

Semantic

Semantics

SEMID

Semi

semi-FIFO

semi-matching

semi-modular

semi-partitioned

semi-polyhedral

Semi-Random

semi-Thue

semiAFLs

Semialgebraic

semidefinite

Semideterministic

semigroup

Semilinearity

semiring

semiring-representations

Semistructured

sense

sensing

Sensitive
Sensitivity [1960, 3679]. Sensor [2937, 2576, 2817, 3008, 2814, 2769, 2768, 2537, 2628, 3049, 2939, 2819].

Sequential [1600, 2145, 1066, 916, 60, 364, 49, 238, 484, 11, 2945, 3719, 146, 227, 564, 294, 100, 762]. Serial [3814, 3822, 1206]. Serializability [817, 1467]. Serializable [1481].

Set [2527, 2129, 1476, 1321, 1940, 288, 592, 52, 556, 3183, 2045, 1221, 2110, 2640, 3796, 2618, 870, 2418, 3311, 789, 2228, 66, 642, 3505, 2270, 2655, 999, 1105, 1131, 3406, 3814].

settings [357, 2651]. Several [2842, 198, 357, 176, 792]. severity [2194].

Sigmoidal [1415]. signal [3147, 2864]. signaling [1156]. Signature [1643, 3644, 864, 3235, 3099, 2933].

Simulation [1497, 3119, 1114, 2404, 3530, 515, 3055, 3018, 582, 3077]. Simulations [1682, 1821, 961, 1086]. simulator [3018, 2400]. simulators [231].

struggle [2869]. Study [1280, 2773, 417, 121, 3504, 3055, 2626].
studying [542]. Sturmian [2946]. style [792]. Sub [1756, 2795, 2967].
Subcomplete [666]. subcubic [3679]. subdigraphs [2279]. subdivision [988].
Subexponential [3563, 3536, 1947]. Subgraph [3566, 2283, 2904, 2925, 997, 540, 2895].
subgraphs [2032, 2415, 3456, 3495, 2701, 3562, 3415, 3064, 3670]. sublanguages [870].
Sublearning [1658]. Sublogarithmic [2178]. submatrix [2496]. submodels [845].
submodular [3702]. Subproblem [1971]. Subquadratic [3546].
Subrecursive [134, 189, 105, 293, 347]. Subtyping [1288].
Subword [1959, 2551]. successions [3471]. Successor [1435].
Succinct [877, 3745, 3825, 3097, 2562, 2691].
succinctly [2550]. Succinctness [2594, 2646]. Sufficient [1346, 343, 1965].
Suffix [1449, 2309, 3334, 2988]. suffix-free [3334]. suggestions [13]. Sum [1805, 1945].
super-preconditioning [437]. super-SAT [3675]. supercomputers [2399, 2885].
Superconcentrators [1176, 632, 599, 1319].
Superdeterministic [514]. Superlinear [1254]. Superpositions [1457].
Surfaces [1562]. Surjectivity [335, 186, 1230, 1174, 486]. Surpassing [1162]. Survey [1550, 2884, 2678, 2937, 2965, 2459, 2259].
symbolic [835, 667, 1002]. symbols [38]. Symmetric [2157, 3490, 1044, 462, 999, 3491, 1822, 1161].
Symmetries [2446]. Symmetry [1200, 3788, 2724]. Symposium [274, 3831, 345, 3647, 2029, 3576, 214, 250, 162].
Thirteenth [242, 2975, 1660, 352, 712, 708, 1143, 1144, 715, 911, 609, 663, 2655, 897].

Theory
[274, 2128, 2256, 3677, 162, 416, 417, 345, 2631, 3465, 2583, 3647, 2118, 2430, 1578, 2029, 3576, 214, 1678, 3636, 1378, 1326, 3004, 2559, 549, 2590, 2422, 7, 2917, 1092, 817, 68, 24, 870, 2381, 82, 2325, 3699, 351, 200, 145, 163, 499, 10, 111, 3386, 101, 121, 463, 866, 802, 864, 522, 5, 1100, 1157, 130, 211, 1899, 106, 477, 73, 769, 185, 690, 570, 59, 148, 1139, 49, 927, 449, 13, 1033, 2091, 2243, 2269, 21, 31, 1041, 250].

Thiagarajan [3561].

Thermal [3152].

Three [990].

Three-dimensional [915, 1217].

Three-objective [2895].

Three-Party [1536].

Three-phase [2574].

Three-prover [1380].

Three-string [2660].

Three-valued [1214].

Threshold [1310, 831, 1253, 1395, 1134, 2113, 1421, 1470, 1974, 3740, 3546, 2198, 3682, 1825, 2926, 2543, 1044, 2350, 921, 1136].

Thresholding [2537].

Thresholds [1042, 3734, 2004].

Throughput [1705, 1867].

Thue [225].

Tie [1408].

Tie-Breaking [1408].

Tight [1897, 2574, 2236, 2995, 284, 2069, 2795, 3331, 1990, 1976, 2216].

Tighten [2704, 2912].

Tilable [3215].

Tile [2704, 2912].

Tiling [840].

Time- [114].

Time-approximation [3370].

Time-bounded [140, 838, 164].

Time-complexity [1111].

Time-extraction [1198].

Time-free [3208].

Time-luck [593].

Time-partitioned [2816].

Time-restricted [83].

Time-shared [19].

Time-Space [1732, 1427, 1622, 1716, 1066, 539, 824, 762, 1116, 596, 871, 3828].

Time-space-optimal [689].

Time-stamped [2180, 1991].

Time-storage [278].

Time-symmetry [2724].

Time-varying [60, 2216].

Timed [3608].

Times [353, 272, 3587, 2398, 226].

Timestamps [1542].

Timetable [3199, 3146].

Tissue [3353, 3046].

Tits [1560].

Token [3786].

Tokens [3775].

Tolerance [1497, 1659, 2393, 2872, 3582].

Tolerant [2200, 3830, 3189, 2772, 2936, 317, 316, 3492, 2314, 3320, 2961].

Tolerate [2985].

Tolerating [1866, 1390].

Tomography [1723].

Tool [1402, 3241, 2229, 1110].

Tools [1280, 2822].

Top [1507, 1547, 3268, 882, 1211, 2457, 3326].

Top- [3326].

Top-Down [1507, 1547, 3268, 882, 1211, 2457].

TopCluster [2804].

Topics [2801, 2880].

Topological [3401, 3399, 1541, 1652, 2345, 2828, 1226, 537, 1109, 389, 2886].

Topologically [963].

Topologies [1666, 2827, 3337].

Topology [2383, 3398, 2156, 927, 1916].

Topology-independent [2383].

Tortoise

Valued [1347, 1485, 3108, 426, 2467, 3416, 2141, 3297, 1930, 1126, 2900, 184, 655, 2921, 2679, 2099, 1214]. Values [1618, 1882, 2435, 1023, 272, 634, 2442, 732].

Variants [1374, 1725, 3087, 2372, 3536]. Variations [780, 3456]. Varieties [378, 862, 1120].

References

REFERENCES

Anonymous:1967:EB

Krohn:1967:APA

Giveon:1967:SPF

Hartmanis:1967:HIL

Hopcroft:1967:NSA

Scott:1967:SDS

Dantzig:1967:GUB

REFERENCES

REFERENCES

Demjanov:1968:ASM

Gallaire:1968:ILS

Dempster:1968:MAT

Paull:1968:SEC

Allen:1968:CNS

Anonymous:1968:AI

Anonymous:1969:EB

Pasquali:1969:CNS

[64] Sheila Greibach. Checking automata and one-way stack languages. *Jour-
REFERENCES

Dennis:1969:CTC

Ito:1969:ESS

Greibach:1969:SCG

Blum:1969:TTS

Mager:1969:WPA

Aho:1969:PSD

Grigoriadis:1969:DMS

Kaplan:1969:REE
REFERENCES

Morris:1969:EII

Mizumoto:1969:SCF

Baer:1969:RAM

Cleave:1969:PRA

Wegbreit:1969:GCS

Anonymous:1969:AI

Strong:1970:DBC

Keller:1970:NMU

Aho:1970:CPP

Yamada:1970:CPP

Savitch:1970:RBN

Rose:1970:AFP

Milner:1970:EPM

Luckham:1970:FCP

Temam:1970:RAS

Cohen:1970:GPS

Rina S. Cohen and J. A. Brzozowski. General properties of star height of regular events. *Journal of Computer and System Sciences*, 4
REFERENCES

REFERENCES

REFERENCES

Kapur:1970:CPA

Cohen:1971:DDS

Aberth:1971:CEM

Carlyle:1971:RSF

Brzozowski:1971:CNE

Hartmanis:1971:ULS

Engeler:1971:AA

Anonymous:1971:EB

Goldstein:1971:IRN

Ibarra:1971:CST

Ausiello:1971:ACC

Kimura:1971:EAC

Balakrishnan:1971:CAM

[128] A. V. Balakrishnan. A computational approach to the maxi-
REFERENCES

[129] Rosenberg:1971:DGA

[131] Strong:1971:TRE

[132] Lewis:1971:EIC

[133] Ullian:1971:TTC

REFERENCES

REFERENCES

McWhirter:1971:SE

Anonymous:1971:AI

Heindel:1972:CPM

Goldstine:1972:SBL

Greibach:1972:SOF

Kang:1972:EON

Itkin:1972:PSE

Anonymous:1972:EB

REFERENCES

Carlyle:1972:EAS

Gale:1972:PTS

Paterson:1972:TBT

Aho:1972:EPS

Kameda:1972:PAC

Zalcstein:1972:LTL

Giuliano:1972:WSA

Spira:1972:CLP

Stanat:1972:HTW

[170] Donald F. Stanat. A homomorphism theorem for weighted context-
free

Smith:1972:RTL

Cleave:1972:CSC

Eickel:1972:RBD

Butzbach:1972:CDM

Anonymous:1972:N

Golberg:1972:ESI

Schultz:1972:DTA

REFERENCES

Kohavi:1973:ECB

Masunaga:1973:STA

Cheung:1973:ASE

Hopcroft:1973:AIT

Rosenberg:1973:SSI

Kung:1973:BME

Cook:1973:HNT

REFERENCES

REFERENCES

Walljasper:1974:LDB

Hart:1974:ADP

Bird:1974:TP

Crestin:1974:SGA

Guha:1974:PSM

Lewis:1974:PSF

Ibaraki:1974:CDO

Anonymous:1974:EBa

REFERENCES

REFERENCES

Gill:1974:MEF

Meyer:1974:AMP

Maruoka:1974:CPO

Norris:1974:DIS

Hwang:1974:CDF

Robertson:1974:CCP

Ginsburg:1974:IAF

Heindel:1974:CAA

Anonymous:1974:EBb

Rouchaleau:1974:LDS

Lynch:1974:AHP

Daley:1974:EDS

Kosaraju:1974:WSA

Kasai:1974:TFW

Elias:1974:MTM

Book:1974:CCC

REFERENCES

Aho:1974:SSI

Kosaraju:1974:ASP

Johnson:1974:AAC

Lewis:1974:AT

Cook:1974:OTS

Fischer:1974:FLI

Vuillemin:1974:COI

Tarjan:1974:TFG

Anonymous:1974:AIb

Anonymous:1975:EBa

Goguen:1975:DTM

Harnik:1975:EPP

Sudborough:1975:TBC

Amoroso:1975:SCC

Owings:1975:SCS

Kiel:1975:TWT

Ashcroft:1975:PAA

[290] E. A. Ashcroft. Proving assertions about parallel programs. *Journal of

Joshi:1975:TAG

Ginsburg:1975:UEA

Machtet:1975:DHS

Salomon:1975:DMP

Mizumoto:1975:VKA

Greibach:1975:OCL

Hamilton:1975:RTS

Nakamura:1975:CS

Akira Nakamura. On causal ω^2-systems. Journal of Computer

REFERENCES

Anonymous:1975:AI

Anonymous:1975:EBb

Rovan:1975:PCB

Ibarra:1975:HTM

Jones:1975:SBR

Cremers:1975:CFG

Freedman:1975:SBP

Nasu:1976:CPO

Ezawa:1976:IL

Hart:1976:DLP

Weihrauch:1976:CCP

Meyer:1976:SCC

Lewis:1976:CR

Constable:1976:SSI

Ehrenfeucht:1976:CMR

Mehlhorn:1976:PAS

Courcelle:1976:CRE

Pratt:1976:CPV

Ehrig:1976:SAR

Bloom:1976:ECF

Bruno:1976:BSJ

Breitbart:1976:SBC

[354] Y. Breitbart. Some bounds on the complexity of predicate recognition by
References

[370] Serafino Amoroso and Irving J. Epstein. Indecomposable parallel maps in tesselation structures. *Journal of
REFERENCES

102

Shibata:1976:SAA

Ibarra:1976:UDS

Nozaki:1976:HAA

Laing:1976:AI

Schönhage:1976:FM

Bloom:1976:VOA

McCormick:1976:SCR

Arnold:1976:TDP

REFERENCES

Rounds:1976:EF

Perrault:1976:ILT

Valiant:1976:GTP

Aho:1976:NLR

Miller:1976:RHT

Hunt:1976:CMC

Booth:1976:TCO

Anonymous: 1976: AIVb

Anonymous: 1977: EBa

Fleischner: 1977: EMT

Sikdar: 1977: TM

Lipton: 1977: SCC

Seiferas: 1977: TSS

Seiferas: 1977: RRS

Rayward-Smith: 1977: HEM

REFERENCES

Tsuji:1977:RDG

Greibach:1977:CSC

Nijholt:1977:CPG

Atanasiu:1977:CGT

Sato:1977:CRB

Reusch:1977:LRF

Cohen:1977:TLC

Cohen:1977:TLI

REFERENCES

REFERENCES

110

Berger:1978:IRB

Paterson:1978:LU

Manders:1978:NCD

Schaefer:1978:CST

[442] Leo J. Guibas and Endre Szemerédi. The analysis of double hashing. *Journal of Computer and System Sciences*, 16(2):226–274, April 1978. CODEN JCSSBM. ISSN 0022-0000 (print),

Guibas:1978:ADH
Cohen:1978:CDP

Maurer:1978:EF

Elgot:1978:ASR

Schuler:1978:IDF

Dobkin:1978:LBL

REFERENCES

Ito:1978:RSC

Choueka:1978:FAD

Maxson:1978:ELA

McColl:1978:CDI

Hegner:1978:DTD

Pippenger:1978:RNB

Culik:1978:DHE

Golze:1978:SND

[466] Ulrich Golze. (a-)synchronous (non-)deterministic cell spaces simulating each other. *Journal of Computer and System Sciences*, 17(2):
REFERENCES

[467] Bernd Reusch.
Realization of finite automata with linear parts.

[468] Sudhir Aggarwal.
A note on “indecomposable parallel maps” by S. Amoroso and I. J. Epstein.

T^ω as a Universal Domain.

[470] Lutz Priese.
A note on asynchronous cellular automata.

[471] Dan Moore and John Case.
The complexity of total order structures.

Candidate keys for relations.

Stack languages and log n space.

The firing squad synchronization problem for a class of polyautomata networks.
Journal of Computer and System Sciences, 17 (3):300–318, December 1978. CODEN JCSSBM. ISSN 0022-0000 (print),
REFERENCES

Maibaum:1978:PLT

Ehrenfeucht:1978:SDD

Milner:1978:TTP

Takaoka:1978:DML

Courcelle:1978:SCI

Rabinovitz:1978:CPL

Anonymous:1978:AIVb

Butler:1979:DMG

[490] Matti Linna. Two decidability results for deterministic pushdown

Miller:1979:EF

Tarjan:1979:CAW

Miller:1979:GIG

Carter:1979:UCH

Angluin:1979:FPA

Fischer:1979:PDL

Werschulz:1979:OOA

Poplawski:1979:LRG

[498] David A. Poplawski. On LL-regular grammars. *Journal of Com-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lawrence Snyder, E. K. Blum, and Nicholas Pippenger. Editor’s foreword. *Journal of Computer and System Sciences*, 21(2):155, October 1980. CODEN JCSSBM. ISSN 0022-0000 (print),
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[625] Michio Oyamaguchi, Yasuyoshi Inagaki, and Namio Honda. The equivalence problem for two dpda’s, one of which is a finite-turn or one-counter machine. *Journal of Computer and System Sciences*, 23(3):366–382, December 1981. CODEN
Aiello:1981:EIL

Anonymous:1981:AIVb

Laskowski:1982:CLB

Ko:1982:MVP

Pittl:1982:LP

Ibarra:1982:SDP

Pippenger:1982:SD

Yehudai:1982:HRT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hoffmann:1982:SGG

Thomas:1982:CRE

Kuich:1982:ACS

Ben-Ari:1982:DPD

Engelfriet:1982:CPO

Anonymous:1982:AIVb

Comer:1983:EUO

Latteux:1983:LCF

Ehrenfeucht:1983:CFN

Ibarra:1983:ZIP

Carlson:1983:SST

Albert:1983:CST

Riffelmacher:1983:MCA

Watanabe:1983:TSF

Grefenstette:1983:NSF

Ukkonen:1983:LBS

REFERENCES

Blum:1983:R

Bloom:1983:RIC

Schmeck:1983:ACR

Parisi-Presicce:1983:EIC

Troeger:1983:ADS

Bloom:1983:ASS

Rabin:1983:TPB

REFERENCES

Kanellakis:1984:DLH

Graham:1984:IDS

Zaniolo:1984:DRN

Johnson:1984:TCC

Lewis:1984:EF

Feldman:1984:PDL

Ruzzo:1984:SBH

REFERENCES

Lloyd:1984:OLR

Milner:1984:CIS

Anonymous:1984:AIVa

Devroye:1984:EBR

Plaisted:1984:CPF

Sugihara:1984:ADC

Pachl:1984:FPN

Latteux:1984:COC

Chen:1984:FNR

Kroger:1984:GNO

Troeger:1984:WEC

Savitch:1984:CNS

Hsu:1984:NAL

Restivo:1984:CPL

Meyer:1984:EAL

Miyajima:1984:IMT

Hiromi Miyajima, Masateru Harao, and Shoichi Noguchi. Indecomposable maps in tessellation structures of arbitrary dimension. *Journal of...
REFERENCES

REFERENCES

REFERENCES

[785] Walter L. Ruzzo and Edward K. Blum. Editors’ foreword. *Jou-
REFERENCES

Dymond:1985:SDM

Kozen:1985:PP

Landau:1985:SRP

Gabow:1985:LTA

Chandra:1985:UFC

Lenstra:1985:FMP

Gonczarowski:1985:PSG

Bahamondf:1985:CFO

Aso:1985:DCL

Main:1985:FSR

Lin:1985:APT

Narendran:1985:CCD

Kantor:1985:STP

Book:1985:QRC

Anonymous:1985:AIVa

[809] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms

Bernstein:1985:STR

Bloom:1985:AST

Apostolico:1985:SPS

Anonymous:1985:AIVb

Li:1986:BTU

Gacs:1986:RCC

deChampeaux:1986:APW

Wegener:1986:TST

REFERENCES

Amir:1987:ECF

Mirzaian:1987:RRV

Howell:1987:ANP

Ko:1987:NTV

Vogler:1987:BTT

Abrahamson:1987:SRR

Ehrig:1987:EF

Sannella:1987:OEA

[887] R. M. Burstall. Inductively defined functions in functional program-
REFERENCES

REFERENCES

Otto:1987:DCF

Anonymous:1987:AIVb

Beauquier:1987:CCF

Baldi:1988:GAL

Bidoit:1987:VAH

Lindsay:1988:AA

Katsura:1988:AGF

Babai:1988:AMG

Dietzfelbinger:1988:LBA

Mahaney:1988:EF

Allender:1988:IR

Parberry:1988:PCT

Buss:1988:RAS

Wilson:1988:MRS

Sipser:1988:ERT

REFERENCES

REFERENCES

Landau:1988:FSM

Johnson:1988:HEL

Li:1988:STP

Kannan:1988:EF

Alon:1988:MTA

Raghavan:1988:PCD

Chrobak:1988:KBT

Brassard:1988:MDP
REFERENCES

Salomaa:1988:DTP

Pippenger:1988:CCC

Anonymous:1988:AIVb

Hartmanis:1989:EF

Coffman:1989:PEA

Yannakakis:1989:EPG

Cai:1989:POR

Driscoll:1989:MDS

Ajtai:1989:OPS

Galil:1989:NSP

Barrington:1989:BWP

Edelsbrunner:1989:TSA

Halpern:1989:CRA

Silberschatz:1989:EF

Mannila:1989:AGT

Naughton:1989:DIR

Bidoit:1989:MJN

Bancilhon:1989:CCO

Afrati:1989:CQE

Hadjilacos:1989:DCT

Sagiv:1989:CFF

Olken:1989:RDM

Hromkovic:1989:LBL
REFERENCES

Leivant:1989:DCC

Schoning:1989:PCC

Allender:1989:SCE

Yap:1989:GEF

Guibas:1989:OSP

Dadoun:1989:PCS

Culberson:1989:OCC

Chew:1989:TPG

REFERENCES

Robinson:1989:SCG

Anonymous:1989:AIVb

VanWyk:1990:EF

Yap:1990:GCT

Motwani:1990:COP

Bern:1990:HSR

Dobkin:1990:ACG

Mitchell:1990:MFP

Flannery:1990:HSP

Grandjean:1990:FOS

Dassow:1990:SA

Gruska:1990:GSM

Main:1990:ELC

Poigne:1990:POS

Lausen:1990:PSL

Kim:1990:PIP

[1023] Paolo Atzeni and Maria Cristina De Bernardis. A new interpreta-

REFERENCES

REFERENCES

Naughton:1991:OSR

Garzon:1991:ITC

Anonymous:1991:C

Kosaraju:1991:EF

Duris:1991:TLB

Yao:1991:LBR

Kanevsky:1991:IAG

Ranade:1991:HES

REFERENCES

Haddad:1991:CAC

Buneman:1991:SCO

Hull:1991:EPD

Abrahamson:1991:TST

Alon:1991:LBR

Habarra:1991:LRL

Krizanc:1991:ORL

Engelfriet:1991:SGP

REFERENCES

REFERENCES

REFERENCES

Kobler:1992:TMF

Homer:1992:OSP

Mayr:1992:CCV

Lam:1992:RCC

Li:1992:IRK

Lindell:1992:IPB

Klapper:1992:DEA

Kaminski:1992:FAD

Silva:1992:BFS

Barrington:1992:RLN

Watanabe:1992:PTO

Anonymous:1992:AIVa

Wang:1992:DTV

Sontag:1992:FNI

Honsell:1992:ATT

Gyssens:1992:PAN

Bar-Yehuda:1992:TCB

Stewart:1992:UHP

Papadimitriou:1992:EF

Birget:1992:PST

Borodin:1992:LBL

Babai:1992:MPP

Yuan:1992:DDR

Obradovic:1992:CDM

Schmid:1992:SIF

Anonymous:1992:AIVb

Howell:1993:NSP

Jansen:1993:IP

Ziarko:1993:VPR

Janssens:1993:CGA

REFERENCES

REFERENCES

Goldsmith:1993:NBI

Hemachandra:1993:CDS

Anonymous:1993:AIVa

Chandra:1993:EF

Cohen:1993:WSP

Johnson:1993:BTI

REFERENCES

[1156] David McAllester, Prakash Panangaden, and Vasant Shanbhogue.

REFERENCES

[1179] Martin Dietzfelbinger, Miroslaw Kutylowski, and Rüdiger Reischuk. Exact lower time bounds for comput-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1234] K. Kalpakis and Y. Yesha. On the power of the linear array architecture for performing tree-structured

REFERENCES

[1257] S. Gupta. Closure properties and witness reduction. *Journal of Com-

REFERENCES

Kabanza:1995:HIT

Lipton:1995:QSE

Kanellakis:1995:CQL

Agrawal:1995:CSL

Schlipf:1995:EPL

Saraiya:1995:ETD

Kolaitis:1995:EPD

Mendelzon:1995:EF

REFERENCES

REFERENCES

Seo:1995:CAA

Adamek:1995:CAR

Skodinis:1995:EPE

Vela:1995:BNR

Benasher:1995:DTB

Asano:1995:TAC

Creignou:1995:DTM

REFERENCES

Chomicki:1995:FCT

Anonymous:1995:AIVb

Goodrich:1996:EF

Eppstein:1996:SBS

Baker:1996:PPM

Nisan:1996:RLS

Pippenger:1996:SRS

Cherubini:1996:PTP

REFERENCES

REFERENCES

Amir:1996:LSF

Schuler:1996:SAC

Fang:1996:LBP

Andries:1996:ICD

Vaishnavi:1996:DBB

Gasarch:1996:EF

Jain:1996:ICL

Shallit:1996:APM

Baliga:1996:LAC

Drewes:1996:LTA

Moran:1996:CC

Sieling:1996:NLB

Lange:1996:ILP

Fich:1996:LPP

REFERENCES

REFERENCES

Agrawal:1996:ICW

Compton:1996:LDC

Chang:1996:QCC

Anonymous:1996:EF

Mitzenmacher:1996:BGR

Schwabe:1996:IPD

Reid-Miller:1996:LRL

Ghosh:1996:DLB

REFERENCES

REFERENCES

Jiang:1996:OWH

Blair:1996:RRG

Chari:1996:CUR

Engelfriet:1996:RDC

Grzymala-Busse:1996:PTT

Jain:1996:PSP

Anonymous:1996:AIVb

Fagin:1997:EF

REFERENCES

REFERENCES

[1436] John Rogers. The isomorphism conjecture holds and one-way functions exist relative to an oracle. *Journal of Computer and System Sciences,*
REFERENCES

[1444] Anonymous. Author index for volume 54. Journal of Com-

Anonymous:1997:AIVa
REFERENCES

Beigel:1997:GEF

Henzinger:1997:FSP

Razborov:1997:NP

Yao:1997:DTC

Hariharan:1997:OPS

Li:1997:EF

Solomonoff:1997:DAP

Rissanen:1997:SCL

REFERENCES

Afrati:1997:BAF

Faloutsos:1997:RUI

Libkin:1997:QLB

Grumbach:1997:FRD

Suciu:1997:QLN

Suciu:1997:CEC

Krishnaswamy:1997:RSA

242
REFERENCES

[1483] Seymour Ginsburg and X. Sean Wang. Regular sequence operations and their

REFERENCES

Bshouty:1998:IAR

Kortelainen:1998:RAC

Shapire:1998:GEF

Ron:1998:LUA

Vovk:1998:GPE

Bartlett:1998:PLU

Aslam:1998:SSS

Blum:1998:LUB
[1498] Avrim Blum, Prasad Chalasani, Sally A. Goldman, and Donna K. Slonim. Learning with unreliable

Chen:1998:OCA

Engelfriet:1998:EBT

Anonymous:1998:AIVa

Gabow:1998:GEF

Beame:1998:RCN

Diaconis:1998:WDW

Miltersen:1998:DSA

Kavraki:1998:RQP

247

REFERENCES

Amir Ben-Dor, Anna Karlin, Nathan Linial, and Yuri Rabinovich. A note on the influence of an ϵ-biased

Schaefer:1999:DVC

Ratsaby:1999:LRF

Arora:1999:PTA

Case:1999:MML

Antonoiu:1999:SSD

Lund:1999:PAD

Goldberg:1999:APB

REFERENCES

Papadimitriou:1999:CDQ

Abiteboul:1999:RPQ

Mecca:1999:CP

Gyssens:1999:CGQ

Albert:1999:EKR

Dumortier:1999:DSS

Buss:1999:CCS

Manzini:1999:ALC

REFERENCES

[1597] Stéphane Gaubert and Alessandro Gia. Petri net languages and infinite subsets of \(N^m\). *Journal of Computer and System Sciences*, 59(3):373–391, December 1999. CODEN JCSSBM. ISSN 0022-0000 (print),

REFERENCES

[1620] Rüdiger Reischuk and Thomas Zeugmann. An average-case optimal one-variable pattern language
REFERENCES

REFERENCES

REFERENCES

Cheng:2000:FTM

Eiter:2000:DHT

Larsen:2000:ATR

Takeuchi:2000:LPP

Bollig:2000:AOB

Anonymous:2000:PAFe

Anonymous:2000:AIVb

Ghilezan:2001:FIT

Anonymous:2001:PAFb

REFERENCES

Hanlon:2001:CCM

Adler:2001:CUE

Anonymous:2001:PAFe

Barrington:2001:CSP

Berthiaume:2001:QKC

Pudlak:2001:GEF

Ambainis:2001:CCE

Leung:2001:TLB

Bedon:2001:LWD

Chung:2001:DRP

Lokam:2001:SMM

Peleg:2001:LCV

Sethuraman:2001:PTA

Haastad:2001:SSL

Anonymous:2001:PAFg

Motwani:2001:GEF

Impagliazzo:2001:WPS

delaVega:2001:RAS

Beame:2001:TST

Adler:2001:PAC

Umans:2001:MED

Russell:2001:PIL

Indyk:2001:ANN
REFERENCES

Forster:2002:REI

Mansour:2002:BUB

Freund:2002:DGB

Bartlett:2002:EAB

Anonymous:2002:PAFa

Fulk:2002:IIA

Bazgan:2002:EAA

Grosse-Rhode:2002:FSS

[1752] Martin Große-Rhode, Francesco Parisi Presicce, and Marta Simeoni. Formal software specification with refine-

Garofalakis:2002:CLS

Drewes:2002:HGT

Westerdale:2002:MAC

Bridson:2002:CFL

Hemaspaandra:2002:RNS

Helary:2002:ICA

Engelfriet:2002:OSL

Ambainis:2002:QLB

Boneh:2002:FSI

Charikar:2002:QSP

Kempe:2002:CIP

Maciel:2002:NPW

Barkol:2002:TLB

Anonymous:2002:PAFd

Anonymous:2002:AIV

REFERENCES

Cowen:2002:GEF

Ajtai:2002:DVN

Beame:2002:OBP

Li:2002:FSR

Raz:2002:EAR

Charikar:2002:CFA

King:2002:FDA
Anonymous: 2002: PAFe

Stewart: 2002: RBC

Nakamura: 2002: OLB

Arvind: 2002: NLR

Harju: 2002: SDP

Willard: 2002: AHM

Berman: 2002: CPM

Skodinis: 2002: NRE

REFERENCES

Anonymous:2002:CAb

Anonymous:2002:CTb

Anonymous:2002:EBb

Anonymous:2003:APP

Anonymous:2003:PN

Gottlob:2003:GEF

Lynch:2003:AAA

Millstein:2003:QCD

Spielmann:2003:VRT

REFERENCES

Milo:2003:TXT

Chen:2003:GSS

Grumbach:2003:CMA

Benedikt:2003:RCQ

Agarwal:2003:IMP

Kleinberg:2003:ABA

Fan:2003:ICX

Anonymous:2003:PAa
Anonymous:2003:AH

Anonymous:2003:EBa

Anonymous:2003:Ta

Anonymous:2003:AHFa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

295

[1894] Hwakyung Rim, Ju wook Jang, and Sungchun Kim. A simple reduction of non-uniformity in dynamic

Anonymous:2003:PAe

Anonymous:2003:CAA

Anonymous:2003:CEBc

Anonymous:2003:CTd

Anonymous:2003:AFFc

Anonymous:2003:AAFd

Anonymous:2003:GEF

Anonymous:2003:RSA

[1910] Noga Alon, W. Fernandez de la Vega, Ravi Kannan, and Marek Karpin-
References

REFERENCES

Brodal:2003:OFS

Umans:2003:PRG

Achlioptas:2003:AAG

Anonymous:2003:PAf

Anonymous:2003:CAF

Anonymous:2003:CTe

Anonymous:2003:EBb

Anonymous:2003:SFF

Anonymous:2003:NOH

[1926] Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, Bruce Shepherd, and Mihalis Yannakakis. Near-

Ly:2003:AGD

Jain:2003:ICL

Homan:2003:OWP

Li:2003:CVW

Srinivasan:2003:ACR

Anonymous:2003:PAg

Anonymous:2003:EBc

Anonymous:2003:HFF

[1934] Anonymous. HA11093M (FTP file HA11093LMS.zip). Journal of Com-
puter and System Sciences, 67(3): ibc, November 2003. CODEN JC
SSBM. ISSN 0022-0000 (print), 1090-2724 (electronic). URL http:

(3):ibc, November 2003. CODEN JCSSBM. ISSN 0022-0000 (print), 1090-2724 (electronic). URL http:

(4):ii, December 2003. CODEN JCSSBM. ISSN 0022-0000 (print), 1090-2724 (electronic). URL http:

[1938] Jianer Chen and Michael R. Fellows. Foreword from the guest editors. Journal of
JCSSBM. ISSN 0022-0000 (print), 1090-2724 (electronic). URL http:

[1939] Marco Cesati. The Turing way to parameterized complexity. Journal of
JCSSBM. ISSN 0022-0000 (print), 1090-2724 (electronic). URL http:

[1940] Carlos Cotta and Pablo Moscato. The k-feature set problem is $W[2]$-
690, December 2003. CODEN JCSSBM. ISSN 0022-0000 (print), 1090-2724 (electronic). URL http:

[1941] James Cheetham, Frank Dehne, Andrew Rau-Chaplin, Ulrike Stege, and
Peter J. Taillon. Solving large FPT problems on coarse-grained par-
691–706, December 2003. CODEN JCSSBM. ISSN 0022-0000 (print), 1090-2724 (electronic). URL http:

[1942] R. Sai Anand, Thomas Erlebach, Alexander Hall, and Stamatis Stefanakos. Call control with k re-
722, December 2003. CODEN JCSSBM. ISSN 0022-0000 (print),
REFERENCES

Anonymous:2003:PAh

Anonymous:2003:VAIb

Anonymous:2003:CA

Anonymous:2003:CTf

Anonymous:2003:EBd

Anonymous:2004:Aa

Anonymous:2004:Ab

Anonymous:2004:Ac

Anonymous:2004:Ad

Mateescu:2004:SHP

Choi:2004:SAE

Le:2004:AVD

Becchetti:2004:ASM

Downey:2004:RR

Li:2004:SMD

Anceaume:2004:NSC

Merkle:2004:TL

REFERENCES

Anderson:2004:MPE

Bshouty:2004:MEP

Anonymous:2004:PAa

Anonymous:2004:CA

Anonymous:2004:CEBa

Anonymous:2004:CTa

Kannan:2004:GEF

Achlioptas:2004:STP

Chazelle:2004:LBI

[1975] Bernard Chazelle and Ding Liu. Lower bounds for intersection search-

G Grohe:2004:CCN

Klivans:2004:LDT

Schaefer:2004:DSG

Dunagan:2004:OOR

deAlfaro:2004:QSO

Ambainis:2004:NPL

Charikar:2004:CMS

Palacz:2004:AHG

Kuusela:2004:LSI

Grandjean:2004:GPC

Sun:2004:DTS

[1991] Hung-Min Sun, Bing-Chang Chen, and Her-Tyan Yeh. On the design

Anonymous:2004:PAc

Anonymous:2004:CEBc

Anonymous:2004:CTc

Anonymous:2004:VTa

Cohen:2004:GEF

Drewes:2004:BSG

Homan:2004:TLB

Duris:2004:PNV
REFERENCES

Bar-Yossef:2004:ISA

Feldman:2004:DTL

Fischer:2004:TJ

Franceschini:2004:IBT

Klivans:2004:LIT

Vempala:2004:SAL

Anonymous:2004:PAd

Anonymous:2004:VAIa

REFERENCES

310

[2004] Green: CBP

[2004] Odonnell: HAW

[2004] Odonnell: PAe

[2010] Condor: GEF

[2011] Razborov: RLB

[2012] Feige: ILC

[2008] Anonymous: CEBd

[2009] Anonymous: CTd

[2004] Feige: PAe

[2008] Condon: GEF
Anonymous: 2004: CEBr
REFERENCES

Anonymous:2004:CEBe

Anonymous:2004:CTe

Hitchcock:2004:SDN

Case:2004:RLR

Demaine:2004:AAC

Chawla:2004:AWS

Alexeev:2004:MDT

Barnum:2004:LBQ

REFERENCES

Damm:2004:RBC

Lomonosov:2004:NQG

Anonymous:2004:PAf

Anonymous:2004:C

Anonymous:2004:CEBf

Khanna:2004:SIA

Beier:2004:RKE

Thorup:2004:IPQ

REFERENCES

Anonymous: 2004: CEBg

Anonymous: 2004: CTf

Anonymous: 2004: VTb

Ogihara: 2004: RSI

REFERENCES

Anonymous:2004:PAh

Anonymous:2004:VAIb

Anonymous:2004:CEBh

Anonymous:2004:CTg

Flesca:2005:POR

Huang:2005:EFI

Legenstein:2005:WLC

Li:2005:MDM

Son:2005:EWC

Zhu:2005:PBB

Even:2005:PEA

Hsieh:2005:EPP

[2063] Sun-Yuan Hsieh. Efficiently parallelizable problems on a class of decomposable graphs. *Journal of Com-

[2086] Bin Ma, Kaizhong Zhang, and Chengzhi Liang. An effective algorithm for peptide de novo sequencing from MS/MS spectra. *Journal
REFERENCES

Anonymous:2005:PAc

Anonymous:2005:CEBc

Anonymous:2005:CTc

Anonymous:2005:VT

Hellerstein:2005:ELD

Bshouty:2005:ELB

Yang:2005:NLB

REFERENCES

Zilles:2005:IPU

Vyugin:2005:PCI

Dasgupta:2005:PGH

Fortnow:2005:PD

Anonymous:2005:PAd

Anonymous:2005:VAI

Anonymous:2005:CEBd

Anonymous:2005:CTd

Koch:2005:GBS

Kalai:2005:BPN

Kalai:2005:EAO

Case:2005:LCR

Hein:2005:MMC

Charikar:2005:CQI

Anonymous:2005:PAg

Anonymous:2005:CEBg

Anonymous:2005:CTg

Anonymous:2005:LT

Alber:2005:RST

Vikas:2005:CEC

Goldstine:2005:MNP

Dubhashi:2005:FDA

Karaata:2005:OSS

Kolliopoulos:2005:AAC

Honkala:2005:BUE
[2135] Juha Honkala. An \(n^2 \)-bound for the ultimate equivalence problem of

[2143] Jörg Flum, Martin Grohe, and Mark Weyer. Bounded fixed-parameter

Khardon:2006:SLQ

Hutter:2006:SPB

Andrews:2006:MMF

Epstein:2006:OPS

McKenzie:2006:MFT

Geeraerts:2006:EEC

Anonymous:2006:PAa

REFERENCES

Hassin:2006:APC

Genest:2006:ISH

Elkin:2006:SAT

Spakowski:2006:LWU

Shao:2006:SDT

Chunlin:2006:DMD

Liao:2006:PAS

Xia:2006:FLM
Hui-Cheng Xia, Deng-Feng Li, Ji-Yan Zhou, and Jian-Ming Wang. Fuzzy LINMAP method for multiattribute decision making under fuzzy

Hitchcock:2006:DER

Jenner:2006:CCR

Anonymous:2006:PAFa

Anonymous:2006:EBa

Charikar:2006:GEF

Ta-Shma:2006:ERM

Demetrescu:2006:FDA

Fleischer:2006:IRA

[2191] Lisa Fleischer, Kamal Jain, and David P. Williamson. Iterative

Fakcharoenphol:2006:PGN

Bartal:2006:RTT

Roughgarden:2006:SBP

Anonymous:2006:PAFb

Anonymous:2006:EBb

Sabharwal:2006:NNS

DiRaimondo:2006:PST

REFERENCES

REFERENCES

REFERENCES

Glasser:2007:LPT

Downey:2007:OPP

Hemaspaandra:2007:DVS

Lin:2007:MFD

Jain:2007:LLU

Harizanov:2007:LV

Cheng:2007:QCS

Sosik:2007:MCC

Anonymous:2007:PAFa

Anonymous:2007:EBa

Anonymous:2007:VNF

Gill:2007:GEF

Alur:2007:DSE

Balasubramanian:2007:PIC

Pellizzoni:2007:HAA

Wandeler:2007:WCM

REFERENCES

REFERENCES

REFERENCES

[2275] Sara Cohen and Yehoshua Sagiv. An incremental algorithm for computing

[Foster:2007:ESD]

[Foster:2007:ESD]

[Anonymous:2007:Cb]

[Jonsson:2007:MHC]

[Afrati:2007:UVG]

[Anthony:2007:GEF]

[Glasser:2007:AMI]

Ma:2007:NOM

Belohlavek:2007:FFS

Anonymous:2007:Cd

Anonymous:2007:EBf

Karp:2007:SIC

Ma:2007:CSS

Farach-Colton:2007:OSS

Cui:2007:AAU
REFERENCES

REFERENCES

Xiao:2007:SPC

Boukerche:2007:THA

Anonymous:2007:Cf

Anonymous:2007:EBh

Dasgupta:2008:SIL

Bisht:2008:LEA

Alekhnovich:2008:CPL

REFERENCES

Younas:2008:SIW

Rupert:2008:WCA

Chua:2008:EDI

Eidsvik:2008:IRT

Pardede:2008:XDU

Zang:2008:OEA

Lin:2008:CCQ

Awan:2008:PAM

Anane:2008:SDC

Zhang:2008:TAA

Shakshuki:2008:DMA

Anonymous:2008:Cb

Anonymous:2008:EBb

Buhrman:2008:F

ODonnell:2008:EPP

Aaronson:2008:QCC

Atserias:2008:CCR

Khot:2008:VCM

Merkle:2008:CSS

Fortnow:2008:PSD

Sen:2008:LBP

Calabro:2008:CUS

Sieling:2008:MDT
REFERENCES

REFERENCES

Anonymous:2008:CD

Anonymous:2008:EBd

Xiang:2008:CPA

Kortsarz:2008:TAA

Bonizzoni:2008:ACC

Milo:2008:CSD

Cohen:2008:UTS

Bender:2008:IBS

[2382] Michael A. Bender, Dongdong Ge, Simai He, Haodong Hu, Ron Y. Pinter, Steven Skiena, and Firas Swidan.

Arias:2008:CRR

Crochemore:2008:MRS

Gasieniec:2008:FPG

Guerraoui:2008:GCI

Nicolas:2008:HOS

Moran:2008:CRS

Li:2008:FAT

Bazgan:2008:ASB

Kutz:2008:SMH

Jonsson:2008:CCA

McCann:2008:FTC

Diaz:2008:EAC

Anonymous:2008:Ce

Anonymous:2008:EBe

Ould-Khaoua:2008:PAE

360

Jin:2008:HFD

Thomas:2008:CJA

Steffenel:2008:FAC

Anonymous:2008:EBf

Anonymous:2008:EBg

Nakamura:2008:LRR

Creignou:2008:SIB

REFERENCES

REFERENCES

REFERENCES

Ashley:2009:AFC

Sakr:2009:XCT

Anonymous:2009:Ce

Anonymous:2009:EBe

Bshouty:2009:UDD

Cautis:2009:RAX

Amir:2009:PMA

Anonymous:2009:Cf

Razgon, Igor; O'Sullivan, Barry. Almost 2-SAT is fixed-parameter tractable. Journal of Computer

REFERENCES

370

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Calvès:2010:MAE

Danvy:2010:IDS

Dawar:2010:HPQ

Figueira:2010:FSI

Koiran:2010:ALB

Mezhirov:2010:ARS

Robaldo:2010:IIM

Anonymous:2010:Cd

Anonymous:2010:EBd

Chen:2010:SIS

Yang:2010:IFA

Tolosana-Calasanz:2010:UAC

Dou:2010:CSA

Callaghan:2010:SWB

Zinn:2010:PXD

Anonymous:2010:Ce

Anonymous:2010:EBe

Anonymous:2010:IWW

Arvind:2010:ICT

REFERENCES

Cohen:2010:AFV

Fisteus:2010:HCN

Muthukrishnan:2010:TRG

Anonymous:2010:Cf

Anonymous:2010:EBf

Yu:2010:IAF

Eisenbrand:2010:CFL

Friedrich Eisenbrand, Fabrizio Grandoni, Thomas Rothvoß, and Guido Schäfer. Connected facility location via random facility sampling and core detouring. *Journal of Computer

[2545] Ofer Dekel, Felix Fischer, and Ariel D. Procaccia. Incentive compatible re-

[2546] Tony Tan. On pebble automata for data languages with decidable empti-

Cai:2011:F

Dubey:2011:HRA

Agrawal:2011:ICC

Allender:2011:PRR

Cai:2011:HAA

Fortnow:2011:IIC

Gopalan:2011:HAW

Karp:2011:HAC

REFERENCES

385

Anonymous:2011:Cb

Anonymous:2011:EBb

Arenas:2011:GES

Bjorklund:2011:CQC

Dalvi:2011:QMV

Geerts:2011:RCQ

Gelade:2011:SPB

Gutierrez:2011:FSW

REFERENCES

[2603] Kefeng Xuan, Geng Zhao, David Taniar, Wenny Rahayu, Maytham Safar, and Bala Srinivasan. Vorono-

REFERENCES

Hong:2011:EFU

Subramanian:2011:SPS

Lim:2011:CMQ

Anonymous:2011:Ce

Anonymous:2011:EBe

Anonymous:2011:EB

Cuzzocrea:2011:DXP

REFERENCES

Cuzzocrea:2011:PPO

Greco:2011:CCX

Moreira:2011:DCC

Jukna:2011:MRC

Choi:2011:ATU

Wu:2011:NAM

Kanj:2011:IMP

REFERENCES

[2655] D. Pearce and A. Valverde. Synonymous theories and knowledge rep-

Dassow:2012:RCF

Gaspers:2012:UFA

Bomhoff:2012:BBD

Kohlas:2012:GLC

Talaei-Khoei:2012:MAU

Anonymous:2012:Ca

Anonymous:2012:EBa

Veith:2012:SIG

REFERENCES

Bedon:2012:SET

Kapoutsis:2012:SCR

Weller:2012:MDG

Lara:2012:PME

Deutch:2012:STQ

Shao:2012:STA

Jansson:2012:USR

Yuster:2012:ASP

Minghui Jiang. Approximability of constrained LCS. *Journal of Com-
REFERENCES

[2707] Tianrong Lin. Another approach to the equivalence of measure-many one-way quantum finite automata and

Bouajjani:2012:EF

Bouajjani:2012:EF

Apt:2012:VOO

Bouajjani:2012:EF

Balaban:2012:VML

Balaban:2012:VML

Benveniste:2012:NSS

Benveniste:2012:NSS

Bouajjani:2012:EF

Bloem:2012:SRD

Bouajjani:2012:EF

Borger:2012:AAS

Borger:2012:AAS

Benveniste:2012:NSS

Francez:2012:WDT

[2714] Nissim Francez. When are different type-logical semantic definitions defining equivalent meanings? Journal of Computer and System Sciences, 78(3):960–969, May 2012. CODEN JCSSBM. ISSN 0022-0000 (print),
REFERENCES

REFERENCES

[2730] Haifeng Shen and Mark Reilly. Personalized multi-user view and content synchronization and retrieval in
Grzywaczewski:2012:TSI

Grzywaczewski:2012:TSI

Rahman:2012:SAD

Rahman:2012:SAD

Fenza:2012:HAC

Fenza:2012:HAC

Qureshi:2012:HMC

Qureshi:2012:HMC

Iqbal:2012:CBI

Iqbal:2012:CBI

Anonymous:2012:Ce

Anonymous:2012:Ce

Anonymous:2012:Cf

Anonymous:2012:Cf
Anonymous:2012:EBd

Chen:2012:SIC

Wu:2012:SBA

Tolosana-Calasanz:2012:EQS

Qi:2012:QAC

Villegas:2012:CFL

He:2012:DDP
REFERENCES

Kalai:2012:RAL

Kpotufe:2012:TBR

Lazaric:2012:LSI

Yue:2012:ADB

Jordan:2012:TUC

Chebolu:2012:CAC

Dorn:2012:CSD

Carlucci:2012:LOB

Chen:2012:MTV

Lohrey:2012:PRA

Anonymous:2012:Cg

Anonymous:2012:Ch

Anonymous:2012:EBc

Anonymous:2012:PA

Kajioka:2012:AAR

Lin:2012:EEA

Kohno:2012:IAI

Waluyo:2012:TBE

Fan:2012:BBR

Dohi:2012:AMC

Chen:2012:SUP

Fernau:2012:GE

[2774] Henning Fernau and Carlos Martín-Vide. From the Guest Editors. *Jour-
REFERENCES

Hovland:2012:IPR

Policriti:2012:RNA

Kutrib:2012:RPA

Arrighi:2012:IUD

Crochemore:2012:MNC

Reghizzi:2012:OPV

Buszkowski:2012:PGL

DasGupta:2013:CNC

Goldberg:2013:ATP

Bodirsky:2013:DCS

Honkala:2013:SEP

Kesselman:2013:SST

Gong:2013:NOT

Liu:2013:SGD

REFERENCES

Marx:2013:CIM

Cao:2013:PAC

Anonymous:2013:Ca

Anonymous:2013:EBa

Jin:2013:SIF

Ye:2013:RCO

Li:2013:IDP

Chen:2013:THC

REFERENCES

Li:2013:SMA

Baraglia:2013:MCJ

Zheng:2013:AAE

Ma:2013:SFM

Xu:2013:AMP

Wang:2013:SSD

Baraglia:2013:PPR

Anonymous: 2013: Cb

Anonymous: 2013: EBB

Cuzzocrea: 2013: TPA

Nehme: 2013: MRQ

Works: 2013: OAM

Chatzimilioudis: 2013: NDF

Gaber: 2013: ISA

[2826] A. Mahabadi, S. M. Zahedi, and A. Khonsari. Reliable energy-aware application mapping and voltage-frequency island partitioning for
REFERENCES

REFERENCES

Barceló:2013:EF

Abiteboul:2013:EDS

Arenas:2013:LPT

Bojanczyk:2013:SXD

Calvanese:2013:SSM

Kharlamov:2013:CMB

Deng:2013:APS

Freydenberger:2013:ESA

Gelade:2013:SXS

Meier:2013:SQO

Maslowski:2013:DCC

Pichler:2013:TCA

Anonymous:2013:Cf

Anonymous:2013:EBf

Enokido:2013:SII
REFERENCES

Ng:2013:ESS

Taniar:2013:TNN

Fazal:2013:IAA

Casado:2013:MDC

Uehara:2013:AOR

Xhafa:2013:ESS

Koyama:2013:ROO
REFERENCES

Müller:2013:CDR

McCann:2013:FTC

Egidi:2013:BSS

Souza:2013:RCG

Kowalski:2013:LEA

Feng:2013:MCQ

Anonymous:2013:Cg

Anonymous:2013:Ch

Gao:2013:MOA

Ahmed:2013:SRD

Wu:2013:HAN

Wu:2013:PMH

Baena-García:2014:SAS

Shelokar:2014:TOS

Smiti:2014:WDA

Cerri:2014:HML

Ortigosa:2014:PUP

DeMeo:2014:MLG

Otero:2014:BAM

[2907] Archontia C. Giannopoulou, Iosif Salem, and Dimitris Zoros. Effective computation of immersion obstructions

REFERENCES

REFERENCES

REFERENCES

Hemaspaandra:2014:COM

Fici:2014:SBS

Bohm:2014:BER

Kralovic:2014:IVF

Buss:2014:USN

Jain:2014:RLA

Gomez-Rodriguez:2014:FSB

Zhang:2014:HAS

Wang:2014:ITC

Anonymous:2014:Ce

Anonymous:2014:EBc

Anonymous:2014:IIC

Beklemishev:2014:EF

Achilleos:2014:CQJ

Bucheli:2014:RPA

Clouston:2014:NLT

Ferreira:2014:PHG

Figueira:2014:IFL

Gutierrez:2014:DCG

Kanovich:2014:MRF

Kontinen:2014:CDS

Statman:2014:PTU

Anonymous:2014:Cf

Anonymous:2014:EBf

Aracena:2014:MNF

Ameloot:2014:PDP

Cohen:2014:AES

Amir:2014:RL

Lopez:2014:PSD

Laoutaris:2014:BBC

REFERENCES

Mnich:2014:BMC

Kianpour:2014:NDB

Atserias:2014:BWQ

Fomin:2014:TBP

Flesca:2014:CCQ

Anonymous:2014:EBg

Chi Yang, Xuyun Zhang, Changmin Zhong, Chang Liu, Jian Pei, Kotagiri Ramamohanarao, and Jinjun Chen. A spatiotemporal compression based approach for efficient big data processing on Cloud. *Journal of Computer and System Sciences*, 80(8): 1563–1583, December 2014. CODEN JCSSBM. ISSN 0022-0000 (print),

REFERENCES

[3032] Christel Baier, Marcus Daum, Benjamin Engel, Hermann Härtig, Joachim

Brazdil:2015:RAP

Chen:2015:CAC

Goldberg:2015:APF

Anonymous:2015:Ca

Anonymous:2015:EBa

Qiu:2015:EMC

Guan:2015:TCC

REFERENCES

REFERENCES

Sheng:2015:ACA

Sahli:2015:ABF

Abid:2015:SDR

Alkhdour:2015:CLO

Yu:2015:MDD

Gunn:2015:DHT

Knapen:2015:SIO

Zhong:2015:NLM

Anonymous:2015:EBd

Pattinson:2015:E

Abramsky:2015:LBK

Adamek:2015:FFT

Bacci:2015:SOS

Jacobs:2015:TSD

Marti:2015:LEC

Sobociński:2015:RPC

Winter:2015:CFC

Anonymous:2015:EBe

James:2015:OSP

Abraham:2015:PGM

Al-Daraiseh:2015:MAS

Tsai:2015:DGP

Bulajoul:2015:INI

Waleed Bul’ajoul, Anne James, and Mandep Pannu. Improving network intrusion detection system performance

Casino:2015:AAP

Wang:2015:MBD

Chang:2015:VAG

Kumar:2015:IAB

Anonymous:2015:EBf

Almarza:2015:NNI

REFERENCES

REFERENCES

Fernandes:2015:GSM

Refsdal:2015:SRS

Salvati:2015:MMW

Libkin:2015:RED

Manea:2015:CPP

Backstrom:2015:CPC

Crescenzi:2015:SCF
REFERENCES

Vychodil:2015:MFD

Ivanyos:2015:GWS

Barmpalias:2015:IVB

Lin:2015:CAA

Anonymous:2015:Cd

Anonymous:2015:EBg

Enokido:2015:JCS

Xhafa:2015:SMR

REFERENCES

REFERENCES

REFERENCES

Anonymous:2015:EBh

Holzschuher:2016:QGD

Grandi:2016:DCH

Anonymous:2016:Ca

Wei-Kleiner:2016:TDB

Mandreoli:2016:JCS

Vasilyeva:2016:AWE

Anonymous:2016:EBa

Anonymous:2016:EBb

Palesi:2016:SIE

Li:2016:PPM

Kumar:2016:HTA

Dabrowski:2016:EEG

Fletcher:2016:SCN

Liu:2016:CBT

Anonymous:2016:Cc

Anonymous:2016:EBc

Chirkova:2016:CSE

Xu:2016:SAP

Badkobeh:2016:CME

Shachnai:2016:RFU

Abu-Khzam:2016:DRC

Froese:2016:EHS
Edwards:2016:FPS

Codish:2016:SNI

Anonymous:2016:EbD

Anonymous:2016:EbD

Anonymous:2016:Cd

Anonymous:2016:EBd

Huang:2016:DSR

REFERENCES

Chu:2016:SRC

La:2016:CFT

Anonymous:2016:Ce

Anonymous:2016:EBE

Albers:2016:LUL

Baldoni:2016:ISO

Cai:2016:BHS

Chawla:2016:CBA

REFERENCES

[3192] Dariusz Dereniowski, Adrian Kosowski, Dominik Pająk, and Przemysław Uznański. Bounds on the cover time of parallel rotor walks. *Journal of
REFERENCES

Zhibin Jiang, Ching-Hsien Hsu, Daqiang Zhang, and Xiaolei Zou. Corrigendum to “Evaluating rail transit timetable using big passengers’
Anonymous:2016:Cf

Anonymous:2016:EBf

Grandjean:2016:LAL

Jez:2016:ESI

Bringmann:2016:PCD

Hasan:2016:AAW

Lee:2016:HVN

vanIersel:2016:KHN

Song:2016:ETF

Froese:2016:WWK

Pal:2016:FPG

Goldberg:2016:ACL

Anonymous:2016:Cg

Anonymous:2016:EBg

Ferrucci:2016:MRQ

[3214] L. Ferrucci, L. Ricci, M. Albano, R. Baraglia, and M. Mordacchini. Mul-

REFERENCES

REFERENCES

Anonymous:2017:Ca

Anonymous:2017:EBa

Etscheid:2017:PKW

Day:2017:CPP

Civril:2017:SAP

Chang:2017:LBM

Jonsson:2017:SPC

Epstein:2017:AVS

Gajarsky:2017:KUS

Schewe:2017:SPG

Kari:2017:DWR

Cassaigne:2017:SMA

Anonymous:2017:Cb

Anonymous:2017:EBb

Khorandi:2017:SOC

Jansen:2017:TKF

Gaspers:2017:BHC

Benedikt:2017:DRF

Saberifar:2017:CFR

Bottoni:2017:NPM

Koehler:2017:IDT

Manea:2017:EEL

REFERENCES

Dabrowski:2017:EPG

Anonymous:2017:Cc

Anonymous:2017:EBc

Ogiela:2017:OSI

Anonymous:2017:EBc

Waluyo:2017:TDD

Miao:2017:PVD

Lee:2017:TTA

REFERENCES

479

REFERENCES

REFERENCES

Holzer:2017:DMC

Fulla:2017:PVC

Bjorklund:2017:NSP

Libkin:2017:WLL

Zeume:2017:DCQ

Hamadou:2017:QLP

Caicedo:2017:DOB

Czerwinski:2017:DDD

Engstrom:2017:DLG

Ebbing:2017:BDL

Alechina:2017:MCR

Aracena:2017:FPC

REFERENCES

Anonymous:2017:EBf

Anonymous:2017:JCS

Sun:2017:BFT

Khoshkbarforoushha:2017:EMS

Wang:2017:AIA

Huang:2017:SFC

Liang:2017:DIH

Li:2017:CCD

Xiao:2017:EMB

Ahmed:2017:CST

Song:2017:GSB

Sun:2017:PKE

Shachnai:2017:MFW

Gong:2017:ZDC

[3339] Yuan Feng and Lijun Zhang. Precisely deciding CSL formulas through approximate model checking for

Groz:2017:ETM

Huang:2017:SSS

Dabrowski:2017:CDF

Yang:2017:CCA

Guermeur:2017:NSS

Anonymous:2017:EBg

Ding:2017:SOM

[3353] Alberto Leporati, Luca Manzoni, Giancarlo Mauri, Antonio E. Porreca, and Claudio Zandron. Characteris-

Anonymous:2017:EBh

Goles:2018:CTD

Komarath:2018:PMC

Choudhury:2018:RJM

Stout:2018:WIR

Kucera:2018:GFC

Berkholz:2018:SCP

REFERENCES

Anonymous:2018:EBa

Barmpalias:2018:ORC

Agrawal:2018:KDC

Kanj:2018:PAR

Ivanyos:2018:CTE

Kostylev:2018:CQG

Chen:2018:AIS

Gebler:2018:SSU

Anonymous:2018:EBb

Yang:2018:PCM

Anonymous:2018:EBc

Bonnet:2018:TAT

Wrochna:2018:RBB

Chierichetti:2018:DPC

Fellows:2018:PAF

REFERENCES

REFERENCES

[3390] Antonio-Javier Gallego, Damián López, and Jorge Calera-Rubio. Gram-

REFERENCES

Lokshtanov:2018:RSG

Brimkov:2018:DGT

Gonzalez-Diaz:2018:TTC

Slapal:2018:CAI

Bhunre:2018:TAV

Han:2018:HPM

Nasser:2018:DPD

Mazo:2018:ODT

[3404] Loïc Mazo and Étienne Baudrier. Object digitization up to a transla-
REFERENCES

496

[3418] Mahdi Cheraghchi, Elena Grigorescu, Brendan Juba, Karl Wimmer, and Ning Xie. $AC^0 \cdot \MOD_2$ lower bounds for the Boolean inner product. *Journal of Computer and System Sciences*, 97(?):45–59, November 2018. CODEN JCSSBM. ISSN 0022-0000 (print), 1090-2724 (electronic). URL http:
REFERENCES

Mertzios:2018:SBE

Cai:2018:OSE

Ye:2018:IAM

Balliu:2018:WCV

Eiben:2018:SEF

Filiot:2018:VPT

Becker:2018:AGC

Anonymous:2018:EBh

Liu:2018:TMS

Tosh:2018:EEG

Cohen:2018:AST

Anonymous:2019:EBa

Wang:2019:ERD

Anantharamu:2019:PLD

Gajarsky:2019:PSC

Didimo:2019:HPA

Epstein:2019:PGF

Anonymous:2019:EBb

Mazowiecki:2019:CCR

Potapov:2019:VSR

Burdick:2019:EPE

Ben:2019:DEC

Takahashi:2019:BRD

Anonymous:2019:EBd

Balogh:2019:OAR

Anonymous:2019:PJ

Michail:2019:TCF

Choo:2019:SIC

Luo:2019:GGC

Anonymous:2019:EBf

Dediu:2019:SIS

Allender:2019:CRF

Autili:2019:ASA

Babari:2019:NTW

Bailly:2019:RSG

Beyersdorff:2019:GCT

Bilotta:2019:RRS

REFERENCES

Björklund:2019:EEW

Boichut:2019:TMP

Boiret:2019:LUT

Cazaux:2019:LID

Codish:2019:SNE

Dabrowski:2019:BCW

Dai:2019:TPA

Eremondi:2019:IOD

Gamard:2019:CMS

Jacquemard:2019:OVC

Janicki:2019:CIS

Sulzmann:2019:DPD

Vorel:2019:CRC

Yoshinaka:2019:DLC

REFERENCES

Anonymous:2019:EBg

Freydenberger:2019:DRE

Anonymous:2019:PN

Ramaswamy:2019:SCR

Gyssens:2019:CSQ

Sakai:2019:BDC

Park:2019:FTE

Bartal:2019:NDA

Bachmeier:2019:MDH

Eiben:2019:APD

Atserias:2019:GSP

Demaine:2019:SSC

Anonymous:2019:EBh

Filiot:2019:DWE

Anonymous:2019:PD

REFERENCES

[3508] Heng Guo and Tyson Williams. The complexity of planar Boolean #CSP

[3509] 509

Anonymous:2020:PF

Frati:2020:LDO

Jimenez:2020:CUO

Zschoche:2020:CFS

Gajser:2020:VWO

Akrida:2020:TVC

Niskanen:2020:DCL

REFERENCES

REFERENCES

Dabrowski:2020:CWW

Aisenberg:2020:DTP

Bordihn:2020:DNR

Michaliszyn:2020:NDW

Anonymous:2020:PMb

Anonymous:2020:EBc

Bridoux:2020:CSA

Jancar:2020:DSF

REFERENCES

Kolay:2020:FGB

Okrasa:2020:SAV

Anonymous:2020:EBd

Eiben:2020:UDP

Anonymous:2020:PS

Anonymous:2020:EBf

Downey:2020:GUO

Baumeister:2020:CCJ

Balogh:2020:OPC

Dragan:2020:ETH

Hsieh:2020:MLB

Censor-Hillel:2020:DRM
[3555] Keren Censor-Hillel and Mikaël Rabie. Distributed reconfiguration of

Anonymous:2020:PN

Anonymous:2020:EBg

Montealegre:2020:GRC

Reghizzi:2020:BOP

Martin:2020:DCC

Chalopin:2020:CTC

Golovach:2020:FCS

Misra:2020:SAC

[3563] Neeldhara Misra, Fahad Panolan, and Saket Saurabh. Subexponential algorithm for d-cluster edge deletion: Ex-

Bogdan S. Chlebus, Vicent Cholvi, and Dariusz R. Kowalski. Universal stability in multi-hop radio
REFERENCES

REFERENCES

REFERENCES

Bollig:2021:CFS

Anonymous:2021:PMa

Anonymous:2021:EBb

Wang:2021:ECQ

Taleb:2021:SVD

Durand:2021:DCP

Anonymous:2021:PMb

Anonymous:2021:EBc

Belazzougui:2021:BT

Lagerkvist:2021:CIC

Fomin:2021:PCT

Li:2021:PCC

Livshits:2021:CSR

Jones:2021:MPD

Kawase:2021:AAA

Clemente:2021:RRT

REFERENCES

[3616] Huaiwen He and Hong Shen. Minimizing the operation cost of distributed green data centers with energy storage under carbon capping. *Journal of Computer and System Sciences*, 118(??):28–52, June 2021. CODEN JCSSBM. ISSN 0022-0000 (print),
Claude:2021:GCI

Gasiencie:2021:POB

Tsur:2021:ROT

Li:2021:AAM

Kozachinskiy:2021:AKC

Anonymous:2021:PA

Anonymous:2021:EBe

Enright:2021:DER

[3624] Jessica Enright, Kitty Meeks, George Mertzios, and Viktor Zamaraev. Delet-

[3625] Daviaud:2021:WEC

[3626] Barcelo:2021:RCF

[3627] Eiben:2021:BBT

[3628] Ferrarotti:2021:DCD

[3629] Donkers:2021:TKD

[3630] DeMarco:2021:OCU
REFERENCES

Schmitt:2021:BBS

Gasieniec:2021:FSP

Protasov:2021:AMR

Hampson:2021:TST

Zheng:2021:LBW

[3653] Yunhai Zheng, Chengliang Tian, Hanlin Zhang, Jia Yu, and Fengjun Li. Lattice-based weak-key analysis on single-server outsourcing protocols of modular exponentiations and basic countermeasures. *Journal of Computer and System Sciences*, 121(??):18–33, November 2021. CODEN JCSSBM. ISSN 0022-0000 (print),
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Authors</th>
</tr>
</thead>
</table>

[3669] Chi-Yeh Chen and Sun-Yuan Hsieh. An improved algorithm for the

Nutov:2022:ACS

Golovach:2022:RNP

Frei:2022:CS

Jez:2022:WEN

Marino:2022:CTG

Mukhopadhyay:2022:PGC

Kowalski:2022:PAD

REFERENCES

Bonomi:2022:SIA

Zhang:2022:IPI

Ren:2022:IDS

Anonymous:2022:PMa

Anonymous:2022:EBb

Drange:2022:TI

Dublois:2022:AMM

Tao:2022:IJU

Ambos-Spies:2022:NID

Melissourgos:2022:EMP

Agrawal:2022:FGC

Golovach:2022:IDP

Blasius:2022:EEH

Kühlmann:2022:TGC

Charalampopoulos:2022:SSS

Kowalik:2022:MVT

Eisenbrand:2022:ACT

Chan:2022:MCM

Anonymous:2022:EBc

Cseresnyes:2022:REL

Bringmann:2022:GRA

Deligkas:2022:AET

REFERENCES

REFERENCES

[3715] Jérémie Chalopin, Victor Chepoi, Shay Moran, and Manfred K. War-

Abboud:2022:SLB

Gebhardt:2022:M

Bell:2022:PAP

Hemaspaandra:2022:COB

Canini:2022:RSS

Nabli:2022:CMC

Anonymous:2022:PS

Anonymous:2022:EBf

Linz:2022:NEA

Cordasco:2022:DDP

Salo:2022:CC

Brettell:2022:CWS

Borba:2022:MAE

Destombes:2022:RBK

Anonymous:2022:PN

REFERENCES

2022. CODEN JCSSBM. ISSN 0022-0000 (print), 1090-2724 (electronic).

Anonymous:2022:EBg

Chatterjee:2022:GPE

Saurabh:2022:PCG

Ferro:2022:ACE

Anonymous:2022:PD

REFERENCES

REFERENCES

Anonymous:2023:PMb

Anonymous:2023:EBc

DeMarco:2023:DNA

Einarson:2023:EVC

Lin:2023:IIL

Anonymous:2023:PJ

Anonymous:2023:EBd

Eiben:2023:PCC

REFERENCES

REFERENCES

Catherine Greenhill, Bernard Mans, and Ali Pourmire. Balanced allo-

Angelopoulos:2023:WOS

Donkers:2023:FST

Bridoux:2023:IGI

Jacob:2023:DSGb

Hradovich:2023:RMA

Alaniz:2023:BSO

Baumeister:2023:PWU

[3808] Dorothea Baumeister, Marc Neveling, Magnus Roos, Jörg Rothe, Lena

[Sorbelli:2024:WIS][3815] Francesco Betti Sorbelli, Alfredo Navarra, Lorenzo Palazetti, Cristina M. Pinotti, and Giuseppe Prencipe. Wireless IoT sensors data collection reward maximization by lever-

REFERENCES

REFERENCES

Anonymous:2024:EBe

Yang:2024:MEG

Beal:2024:DPS

Babu:2024:PAD

Baeza-Yates:1989:TAW