A Complete Bibliography of Publications in the
Journal of Computational Biology

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

30 November 2019
Version 1.02

Title word cross-reference

\((l,d) \) [AOH16]. 1 [BHHR19]. 2
[ABF+04, CLR+05, EHK+02, GMS05, KMRG09b, OSC11, YE02]. 3
[AT05, CFB+07, DSN14, GRM09, GWX18, HPR09, KMRG09a, PSCP09,
SVD14, Shi10a, ZLT13]. 4 [CCJ09]. \+ [ACKK19]. 1 [LPW05, Rob96, XU97].
15 [JGL11]. 2 [HBD94, Lat99]. \+ [PS11]. \' [DS19], \th [Ber11]. \(\phi \) [LLD+16]. \fifty
[CN17]. \(H_1 \) [SKG+00]. \(A \) [TP11]. \(A^+ \) [HMU06, LR00]. \(\alpha \) [BSB+05, TS96], \(\beta \)
[IPH18, Tra19]. \(\bullet \) [URB+19]. \(C \) [SKG+00]. \(C_{\omega} \) [MN08]. \(C_{L} \) [SKG+00]. \(E \)
[Met06, SBC+05], \(\epsilon \) [RSM06]. \(\gamma \) [HLR14]. \(\geq 4 \) [HR08]. \(K \)
[BS98, CZNF19, JTL+10, ARS17, Che12, CHS17, MSBR08, NM14, OB16,
OYB18, PFK17, PGV16, TAA16]. \(\kappa \) [LZBK15]. \(L \) [LLD+16, WY11]. \(m \)
[CGSW14, GSW16]. \(n \) [TZHR14]. \(n^{2} \) [Fom16a, Fom16b, Fom19]. \(n^{5} \) [CCJ09].
\(O \) [CCJ09]. \(O (n \log n) \) [CDH+06, FHKR11, SRLM10]. \(P \)
[SS01, BFT04, KEO15, VY18, WG08b], \(\phi \) [MVP06], \(\psi \) [MVP06]. \(q \) [RSM06], \(R \)
[WCL18a]. \(S \) [YDN12]. \(t \) [DMP+06, VY18]. \(\tau \) [SAL09]. \(\times \) [TTTL17]. \(V_{H} \)
[GKKS98]. \(V_{L} \) [GKKS98]. \(Z \) [BMWG04].
-Gap [DMP+06]. -Gram [RSM06]. -Helical [TS96]. -Interval [CLR+05].
-Leaping [SAL09]. -Matches [RSM06]. -Mer [NM14, ARS17, PFK16]. -Mers [OYB18, OB16, TZHR14].
-Mismatch [TAA16]. -Modes [CZNF19]. -Noncrossing [HPR09].
-Optimality [TP11]. -Pairs [BHHR19]. -Partite [CHS17, JTL+10].
-Planted [AOH16]. -Regular [CGSW14, GSW16]. -Score [BMWG04].
-Value [SY98]. -Values [SBC+05, WG08b, Met06, SS01]. -Values-Based [VY18].

2' [YLD+18, ALB+19, PS11, WCY+18]. 2'-O-Methylation [YLD+18]. 2.1
3 [Sel13]. 3'-to-5 [Sel13]. 3F [DCV+07].
5 [HR12a]. 5'-3 [HR12a].
7th [HSHC15].
9th [HASL18].

A*0201 [ZYB+04]. aBayesQR [AV18]. Aberration [BG11, LRL+07].
Abnormal [LYF+19]. Absence [KYSE10]. Abstraction [ZM16].
Abstracts [Ano09]. Abundance [Elh01, EHC+13, PLL16, WY11].
Abundance-Based [WY11]. Abundant [JÖNK17]. Accelerate
[KM08, SSTM19]. Accelerated [CFE+13, DBM09]. Accelerating [SM04].
Acceptable [ZHQ05]. Access [KP96]. Accessibility [WAPM05].
Accessible [DBM09, MRM+02, WZZU07]. According
[BWGM17, DC16a, FCS12]. Account [BG15]. Accumulated [WT07].
Accuracy [DBT11, HA12, HD08, KD13, TYSX19, WHJE19, XLZ13].
Accurate [AI12, ADPH15, DG02, DBL+12, FB12, HJD17, HLH04, HHP+09, KB09, KBKF17, Kei05, LRD19, LRM11, NWM+10, NWH13, OYY+12, OMS13, PZH11, PFK16, RC15, SAL09, SEV09, WMK17]. Accurately
[Mye95, NVCW15]. Acetylation [LSY+05]. Acetylcholinesterase [SCB14].
Acid [BET00, DSN14, Geo09, HZNF06a, HZNF06b, HHP+09, KC96, LMT01, MKKK+17, MNG+15, MV00, RC07, STV96, TBB00, TLK+06, VST03, VS98]. Acid-Based [MKKK+17]. Acids [CCJ09, CWYB16, CFH13, GC15, JMEB18, TS96, BIPD17]. Acquisition [DKC15]. Across [HKL07, KMCKS17, LWLJ10, NSA08, YCP16, LPW05, LM11]. Action [ITdB09]. Activated [VND17]. Activation [BGH+08, URB+19]. Activator [CASP10]. Activated [VND17]. Activation [BGH+08, URB+19]. Activator [CASP10]. Admixed [ACBM18, BG09, BG11]. Admixture [RBZH15, BFK+11, BMWG04, CCG06, CZNF19, Fom16b, GLM+09, GP13, GBR17, GGM12, GYN16, GYZ19, Guo15, MTH11, MAT10, MK06, MTH11, HBD94, HMU06, Hor01, HCC05, IW95, JDK+18, JR17, JRS19, Jen09, JJGD16, KEL15, KLM11, KS11, KPS00, KZJ+05, KRE17, KLM96, KKV08, LSS01, LLCT05, LSHL04, LD12, LDWZ19, LSAD05, LS97, LLCT05, LC03a, LC03b, Lu15, LM00, WS98, XWLJ08]. Admixed [ACBM18, BG09, BG11]. Admixture [RBZH15, BFK+11, BMWG04, CCG06, CZNF19, Fom16b, GLM+09, GP13, GBR17, GGM12, GYN16, GYZ19, Guo15, MTH11, MAT10, MK06, MTH11, HBD94, HMU06, Hor01, HCC05, IW95, JDK+18, JR17, JRS19, Jen09, JJGD16, KEL15, KLM11, KS11, KPS00, KZJ+05, KRE17, KLM96, KKV08, LSS01, LLCT05, LC03a, LC03b, Lu15, LM00, WS98, XWLJ08]. Admixed [ACBM18, BG09, BG11]. Admixture [RBZH15, BFK+11, BMWG04, CCG06, CZNF19, Fom16b, GLM+09, GP13, GBR17, GGM12, GYN16, GYZ19, Guo15, MTH11, MAT10, MK06, MTH11, HBD94, HMU06, Hor01, HCC05, IW95, JDK+18, JR17, JRS19, Jen09, JJGD16, KEL15, KLM11, KS11, KPS00, KZJ+05, KRE17, KLM96, KKV08, LSS01, LLCT05, LC03a, LC03b, Lu15, LM00, WS98, XWLJ08]. Admixed [ACBM18, BG09, BG11]. Admixture [RBZH15, BFK+11, BMWG04, CCG06, CZNF19, Fom16b, GLM+09, GP13, GBR17, GGM12, GYN16, GYZ19, Guo15, MTH11, MAT10, MK06, MTH11, HBD94, HMU06, Hor01, HCC05, IW95, JDK+18, JR17, JRS19, Jen09, JJGD16, KEL15, KLM11, KS11, KPS00, KZJ+05, KRE17, KLM96, KKV08, LSS01, LLCT05, LC03a, LC03b, Lu15, LM00, WS98, XWLJ08].
SP97, TPH+09, VUR11, Wu99, Wu08, WZW10, YFBK07, YWN11, ZHZ+16, ZFBK09]. **Aligned** [AS96, CL17, MBR+94]. **Aligning** [AKK11, KKW10, NBC+11, PL06, RC14, RC15, ZPM97, ZSWM00]. **Alignment** [AG98, AT05, BG02, BWS13, BH11, Ben97, Bun02, CL17, CHM94, CHS17, CB06, Dew01, DLPH06, DHL00, Eli06, FND+09, GTT06, GHM+10, GKG12, GKS95, HDBZ08, HHX16, HB11, HWSH18, HSAEM13, HD98, Hor01, Hua08, JHS06, JD05, Just01, KBS09, KTSS19, KD13, KC96, KX06a, KX06b, KS06, KKT+06, KPZU11, LR00, LKW04, LMSH03, MTH11, MWRS16, McC09, MSZW11, MBVA07, MNG+15, MWB10, MSZM96, NMG+05, NL09, NK11, NBB18, PAC02, PB18, PM14, PRT08, PLSM+06, RCSW09, RLVCVR17, RLVCVR18, SF12, SDDI+08, SV97, SNW04, SYMY02, SI97, SRZ+13, SM04, SLL+17, SP97, SLY06, Tag94, TCL+16, VLL+06, VV97, WOW+14, WRSW10, WJ94, War95, WFIH18, WLS+11, WY12, WG08b, XJB07, YJ04, YK05, YS99, YH01, YJEP08, YA11, ZRHM94, ZW03, ZFAS08]. **Alignment-Free** [ZWT18, ZF07, Zhu07, ZUGVVS10]. **Alignments** [AM97, BMWG04, CCI+04, GKB00, GB06, HS14, HW01, LAP03, MWP00, Met06, MT99, NB94, New08, RK96, RDH04, SGSN12, SRS02, SS01, ZBM98]. **Aliphatic** [TS96]. **Aliquoting** [WS11]. **All-Atom** [KXL08]. **Allele** [JGB12, Lai12, RM18, WCM+08]. **Allele-Specific** [Lai12, WCM+08, RM18]. **Alleles** [HKL07, YWN11]. **Alleles/Supertypes** [HKL07]. **Allowing** [SNW98]. **AllSome** [SHCM18]. **Almost** [CD11]. **Along** [ZCH+13, ZKT14]. Alpha [AEB+04]. **Alpha-Satellite** [AEB+04]. **Alphabets** [Ris16]. **ALPHLARD** [HMY+19]. **ALPHLARD-NT** [HMY+19]. **Alternate** [SHT15]. **Alternating** [LLWZ19]. **Alternative** [BBV+14, BMP+09, FDB18, MG06, Sam09, WXS14, ZZ14b]. **Alu** [ZPC+18]. **Alzheimer** [SCB14]. **AMASS** [KS99]. **Amino** [BET00, BDIP17, CWYB16, DSN14, Geo09, GC15, HZNF06a, HZNF06b, HHF+09, KC96, LMT01, MNG+15, MV00, STV96, TBB00, TS96, TLK+06, VST03, VS98]. **Amino-Acid** [MNG+15]. **Amnesic** [AB00]. **Among** [CZS15, RKT014, TRS17, yWCF06]. **Amplicon** [BDN19, KABH15]. **Amplicon-Based** [BDN19]. **Analogs** [GAWI19]. **Analogy** [AK07]. **Analyses** [LSRR18]. **Analysis** [AMR07, ABP+04, ADP+08, ACKK19, AEB+04, AN18, AO08, AFCN13, AHK+02, BHL+18, Bar04, BB15, BGTSB98, BB04, BG11, BCG+18, BFK+10, BG06, BZMM16, BF13, CK11, CY10, CWRF15, CCH+19, CC09, CRT04, CQG10, CHJ05, CLSW02, CDC+11, CM04, DMHM97, DLL+12, DMDR17, DKC15, DC16b, EHK+02, ES07, FBJ04, FSZ02, FP11, FCR+13, FJAOB18, FDDB07, GVTOS4, GMF+08, Gel95, GSH17, GH16, GSCG19, GSV+11a, GDL+15, HBRW06, HMY+19, HLK+13, HSD05, Hua10, HJ14, ITSH00, JKG+04, KV17, KBZ+05, KMC00, Ker03, KX14, KAD+19, Kle99, KBC19, KBCBS11, KL98, Lai12, LSBS18, LPW05, LYMD03, LDS12, LRS07].
FJK+99, FRD+17, Fom16a, Fom16b, Fom19, FA12, GMC+14, GQ09, GSH17, GPOP+17, GKS95, GBB15, HSH11, HSAEM13, HL16a, JEMF06, JHA16, JS03, KKS+15, KS12, KIYMI13, KS99, LLKX16, LRV98, LXYC09, LAL+09, LFJ11, LSL+16, LMP08, LDB+07, MMKH15, MPC+11, MNJK+09, MM06, MSB+10, MRS+18, NVW14, NVCW15, ODPB18, PK11, PBS+99, PdB13, PJB+15, PAS+13, PL06, RNH18, RKTS14, RAKL10, RMRT00, RRFS98, SVA+19, SLL08, SDFR16, ST02a, SYHY02, SH17, SJ18, SB07, SCC+98, SRS02, SSB07, TBL18, UBTC06, UBGFD+19, VRS12, VND17.

Approach [WYT12, WHL17, Xu09, YLCC17, ZRZD11, ZKL+10, ZW03, ZPX+10, ZLM+17, ZZL00, ZZUPY06].

Approaches [BJEG98, CDS+16, FADH17, FCGD19, GPRR12, KVM14, LST+17, QGP10, SDC03, SI97, SLB+07].

Approximate [DP07, Jah11, JEMF06, JS03, LSS01, MTH11, MT09, Mye96, Nic01, SC15, SSIP+19, SS01, WYKG05, YJ04].

Approximating [BSMA06, GMS05, KMRG09b].

Approximation [AHK08, AMRW96, CKdAHdF15, FHKR11, GYD+15, IW95, KLZU06, KS99, LJK11, LFJ11, LH03, MB09, MP94, Mye95, NP09, PMP+15, PAS+13, RHY+04, SMM+04, SAM06, TM17, WHW+06].

Arrangement [MYBK+11, ZZNM15].

Arrangements [XSS08].

Array [BVP+19, DMR+03, EZFP+19, FBJ04, KVDC06, KRD14, LL05a, Pte08, SLZH15, NOV10].

Array-CGH [NOV10].

Arrayed [BLEM08].

Arrays [Ast03, BDHK+04, CHK+02, FNC08, HG11, KMP+04, RD01, ST02a, WLF13, WJ05].

Articulated [HMY+14].

Artificial [DNZ17, DND+19, FdsdSR+15, LMT01].

Asexual [LSL11a].

Assembled [DC16a].

Assembler [LVP13, LYG15, SBP15].

Assemblers [MPC+11, WHW17].

Assemblies [DWS05, MSS10].

Assembling [CDH95, GUI98, NBA+13, PVFB06].

Assembly [AI12, BNA+12, BLC10b, BVP+16, BDK+16, BVP+17, CN17, CDS+16, CRB18, Cos18, GYD+15, IW95, KLZU06, KS99, LJK11, LFJ11, LH03, MB09, MP94, Mye95, NP09, PMP+15, PAS+13, RHY+04, SMM+04, SAM06, TM17, WHW+06].

Assembly-to-Assembly [SMM+04].

Assess [RS12].

Assessing [BMG04, FH18, KGS07, PDK+08, WHW17, WGW+01].

Assessment [APVM11, CB06, DCSE11, MSMF09, NSA08, PVG16, SSH+10, SZTW12, WEN05].

Assessments [CZW+19].

Assignment [BKWK+00, BKCP05, CLR+05, CDH+06, FCV+07, JGL11, Ros05, WCC+06].

Assignments [CDH+16, LLY+04].

Assimilation [HMY+14].

Assisting [DCL18].

Associated [CCH+19, GLM16, JDSB04, KLS15, RS12, SVP19, SGCD19, WLFW03, YYJ19].

Associating [LWLL19, ZZUPY06].

Association
Based

BayesMD [TKW08]. BB [Hor01]. BBK* [OJFD18]. BCL [KWM10]. BE [PS11, BF98, NLC17]. Beacon [EAM+17]. Beam [CCG06, CCG06].

Biclustering [ACKK19, CK11, GJH+12, SH17, vUMW08]. Biclusters [XWLJ08].

Bidirectional [YL17]. Big [GBR17, SW11]. Billboard [DBT11]. Bin [PMA13]. Binary [BR06, Bry96, CYY09, FB04, KSSK09, SLA12, SMD+07, VA17, VSMD08, YWN11, vUMW08].

Binding [BZMM16, CRT+17, CWFRI5, CY17, COSD09, GJZ06, HD16, LCY+05, OJFD18, OMS13, PZMM15, PQBB08, SKP+12, SMK96, SSWN06, SS04, WLFI13, YJC18, ZRGHJ08]. Binning [PKSB18, WL1C12].

Biclique [BCCHU18]. Biclustering [ACKK19, CK11, GJH+12, SH17, vUMW08]. Biclusters [XWLJ08].

Bidirectional [YL17]. Big [GBR17, SW11]. Billboard [DBT11]. Bin [PMA13]. Binary [BR06, Bry96, CYY09, FB04, KSSK09, SLA12, SMD+07, VA17, VSMD08, YWN11, vUMW08].

Binding [BZMM16, CRT+17, CWFRI5, CY17, COSD09, GJZ06, HD16, LCY+05, OJFD18, OMS13, PZMM15, PQBB08, SKP+12, SMK96, SSWN06, SS04, WLFI13, YJC18, ZRGHJ08]. Binning [PKSB18, WL1C12].

Biologically [AMK00, AAC+06, AC17, BB15, CW09, CY17, CT07, CLDG03, DOB95, DGFMS16, Elh11, ENS02, Fas94, FP11, Fre11, GVTS04, GVTRS06, GBR17, HBD94, JPR06, KW06, KNS14, KWBN19, KKS+06, LL05a, Ma11, MZS+17, MGW+07, MTH11, MC16, MBS+01, NB94, NSK09, PS12, RC14, RC15, RMK+18, RD09, SM05, SM98, GS15, STRT96, WHDN13, XL18, YS07, YDN12, YZ17, YY19, Zha02].

Biologically [CIM+06, MMS95, NWN+10].

Biology [Ano94, Ano11b, AG98, Baf11, Ber11, CKS12, CKS13, CKS14, CKS15, CGT12, DMV17, Dei19b, DND+19, DCL10, DFS95, EAM+17, GSSI14, MR95, Mar95, PS11, Rob96, SG12, Sea01, Sun13, VRGC18, Woo99, Ano14].

Biomarker [BR06, KWA11].

Biomarkers [FRD+17, KWB+13, LGD+19, LL05b, SVP19, VCY14].

Biomedical [EFM12, SKM05, SF03, VCY14, dGFMS16].

Biomolecular [CEKP+13, KC18, SNW98].

Biosequence [Buh03, HM14, SH04a, SM04].

Biosequences [BJEG98, ELPO4].

Bipartite [ABR16].

Bipartitions [HLMS08].

Birth [JRH+09].

BirWDDA [YWW+19].

Bistability [CSP+12, VCS11].

Bistable [PCC+11].

Bit [CC11].

Bivariate [NHOV10].

BLAST [AMOW10, CWC06, SBC+05].

Blood [CUP19, FYJ18, YK19].

Bloom [PFK17, SK18, SHCM18].

BLUP [McP12].

BNOmics [GBR17].

Bodies [BDBB10].

Body [KC18, STV96].

Boltzmann [BHHR19].

Bonded [MK06].

Boolean [AMK00, AMTY11, AFRV07, GQ09, GSV+11b, GSV+11a, LL05a, LTSA15, MA13, SK13, VCS11, ZH14].

Boost [KWM10, GLM+09].

Boosted [yWCF06].

Boosting [DGW+13].

Bootstrap [PABE+10].

Bootstrapping [FKZ09, GK18].

Border [KRD14].

Both [PRS08].

Bottlenecks [MTYH09].

Bottom [PRC+13].

Bottom-Up [PRC+13].

Bound [AP10, CWRF15, CFH13, GP13, Hor01, MWD02, OJFD18, PU00, TSTS12, YLC+17, ZWZ16].

Boundary [BLF14, RC06].

Bounding [MP11, NR03, SD95, Sol09].

Bounds [BB06, KLM11, KS06, LTI10, MSS10, Sni19, WGO8a].

BPscore [ZW19].

BPso [CYLY12].

BPso-CGA [CYLY12].

Brain [FYJ18].

Branch [CJ+97, Hor01, OJFD18, YLC+17, ZWZ16].

Branch-and-Bound [ZWW16].

Branch-and-Cut [CJ+97].

Branching [HKB11].

Branching [GGM12, SUN95].

Breath [JHA16].

Breath-First [JHA16].

Break [Ale08].

Breakage [KB12, ZB15].

Breakpoint [AS10, Ale08, APA17, EZF+19, Kow14, SB98, ST05, SM16, SM17, WZW15, ZS07].

Breaks [TT12].

Breast
Bridge [KB12, ZB15], Brownian [FA12], Browser [BP17, RGL94], Brujin [WYT12, BH14, CLJ15, MPC11, OYB18], Bubbles [San09, WWZY19], Buffering [LLJS19], Building [CJS12, MR08b, NHZ15, SKSL97], Bundles [CJD06], Buneman [MBRS11a], Burrows [BVP19, LMW05, Lip05], BWM* [JJGD16].

Calculated [BGTSB98], Calculating [DM17, HTZ13, HMU06], Calculation [BS98, LABD06, NL09, SEV09, SD95, XLZ13], Calibration [COL18], Calling [HMY19, KS11, SFC11, TYSX19, WLA18, XZ12], Can [AWM17, BF98, FHKR11, NLC17, VCS11], Canalyzing [AMTY11, MA13], Cancer [BSB17, BLC10a, BR06, CW09, CNCK11, CY19, CKB17, DCL18, FCGD19, FRD17, HHZ18, HLK13, HFUH19, Kha14, KCH04, KLC11, LZHC15, LTZ18, LL05b, LHC19, LLZ19, MXJ19, OFS09, PNIM17, PSIM18, QQL19, RM18, RV15, SGCD19, TXL17, VUR11, VRU16, WXY13, WLC18, YYJ19, ZWQ19, ZYD19], Cancer-Associated [YYJ19], Cancer-Related [CZY19], Cancers [GAWI19], Candidate [AJYJ18, EBK11, LL19a], Cannot [BF98], Canonical [AHK02, BB15, MR08a, NRW11], Cantor [SF95], Capacity [Elh11], Capsid [CRB18], Capture [FL94], Capturing [EAM17], Carbohydrate [WKC95], Carcinogenic [DBBM09], Carcinoma [CCH19, GDL15, LGD19, WSCL18], Careful [DBT11], Carlo [FDDK07, Hea97, KST96, LDW98, LSL04, NTMM06, XK05], Carrillo [KS06], Carroll [Sea01], Cartilage [YBF19], Cascades [BS09], Case [BMR09, BZ08, CMLTZU14, Fon19, LBN94, LGBK15, MDP12, MBS01, OH03, PK19, Tra98], Case-Based [LBN94], Case-Control [BZ08, MDP12, OH03], Cassandra [LCG18], CASTOR [LC03a], Cat [SW11], Catalytic [SSB07], Catching [WLF13], Categorical [BFT04], Categorizing [SLYC09], Causal [BCPS04, KYSE10, Rot19, SMS13, WHJE19], Causality [Ist19], Causative [FSD14], Causing [KSS09], Cautionary [BJ17], Cavity [CRT17], cDNA [BCH01, BLQZ04, CHK02, GE04, WGW01, YHC05], cDREM [WBJ15], CE [JDSB04], Cell [BNA12, BGH08, CWRF15, DCL18, FL94, GSCG19, HD10, HAP12, HFUH19, KBZ05, Kha14, LBS18, LWN18, LZHC15, LGD19, MMKH15, MFJ19, MMB19, NBA13, PLSL18, PDL6, RBH19, RLA06, SVA19, SDFR16, SOK16, SH17, SZMS02, TINK98, WC16, WSCL18, WWZY19, ZKB04, ZTW05], Cell-Free [LWN18], Cell-Surface [FL94], Cells [COL18, KLC11, LLS11b, LYF19, TLP14], Cellular [AAG14, BSK05, LBJM11, LBDVF10, MR08b, RRKT07, SVD14, SF12, TRB09], Cellulases [TRS17], Center [SLL17], Center-Star [SLL17], Central [FYJ18, IPH18, KPW11, TA97, ZKWH17], Centromeres [OFS08], Certain [BLR16, Kle99], Cervical
Clustered [CBW07, HSD05, MAN16]. Clustering [AO8, BF02, BD19, BR06, BDSY99, BL02, BV09, CZNF19, CC11, CD1+16, DMDR17, DBB+02, DS03, ET1K19, FB04, GLM+09, GTA+04, HSL07, HCC06, KBG18, KMZ+10, KABH15, LMP08, L03a, MGW+07, MAN16, NVCW15, OYY+12, PKSB18, SLL08, SPD18, TVNP15, WSW15, XZ15b, YZ17, YL17, YJC18, ZZHL11, ZWD+04, ZCK17].

Clustering-Hashing-Signal [HHC06]. Clusterings [NWN+10]. Clusters [BJMS09, Boe18, CCT09, GPCP11, HG05, Jah11, LCXC05, LHXH08, MBC+18, NMG+05, Par07c, TWY02, VBSS10, WMPS11, YYY+10, ZSV+09].

Clusterwide [ZWD+04]. CNS [DHY+10].

Clusters [BJMS09, Boe18, CCT09, GPCP11, HG05, Jah11, LCXC05, LHXH08, MBC+18, NMG+05, Par07c, TWY02, VBSS10, WMPS11, YYY+10, ZSV+09].

Clusterwide [ZWD+04]. CNS [DHY+10].

Clusters [BJMS09, Boe18, CCT09, GPCP11, HG05, Jah11, LCXC05, LHXH08, MBC+18, NMG+05, Par07c, TWY02, VBSS10, WMPS11, YYY+10, ZSV+09].

Clusterwide [ZWD+04]. CNS [DHY+10].

Clusters [BJMS09, Boe18, CCT09, GPCP11, HG05, Jah11, LCXC05, LHXH08, MBC+18, NMG+05, Par07c, TWY02, VBSS10, WMPS11, YYY+10, ZSV+09].

Clusterwide [ZWD+04]. CNS [DHY+10].
KRF$^{+}$12, LMC$^{+}$04, LMP08, MMS95, NK07, Neu14b, NV12, ZKWH17, Zha97].

Comparison [AS10, AFCN13, BCH$^{+}$07, BHRV00, BWS13, BR03, BS06, BPZ02, Bet10, CH15, CWYB16, CT07, CGZ04, DLPH06, DHY02, EJT00, FP11, FS99, HBD94, HG18, KP11, LST$^{+}$17, LHXH08, LZF$^{+}$05, ML00, MHS06, MP94, PD16, RCSW09, RS01, SRF16, SSD07, SRZ$^{+}$13, SJ12, SY09, TPH$^{+}$09, VT06, WRSW10, YAA11]. Comparisons [Lip05, Par07a, PDE$^{+}$11, PWT18, SSTM19, VCY14, ZW19].

Compatibility [BKPW95, BSWY98, KAC17]. Compatible [BLR16, PMCB08].

Complete [BL98, FJK$^{+}$99, HP96, HPVS96, Sam09, TM17, GKM$^{+}$10, OFCLH11].

Completion [KMCKS17, ZZ15]. Complex [BHL$^{+}$18, CWYB16, FADH17, JPR06, KLS15, KHK10, LCD11, LQPE$^{+}$10, NLC17, OJOD$^{+}$04, RBEB13, TMC$^{+}$18, VBSS10, wWCFO06, WLS$^{+}$11, Wu08, XSS08, ZSV$^{+}$09, ZZNM15]. Complexes [FCS12, FKZ09, FR14, LZS09, LXYC09, LSSD18, MZS$^{+}$17, SIK$^{+}$05, WILK$^{+}$12]. Complexity [AWM$^{+}$17, BK10, BDPSS01, BFK$^{+}$11, CMLTZU14, CDKL09, CGP$^{+}$98, GSS14, Gus01, HLMS08, Jus01, KLZU06, Kov14, LHC09, MP11, MGSA06, NP09, OBDD19a, PG03, QGP10, RLVCR17, SBC$^{+}$05, VRU16, WJ94, WZZU07, YA11]. Component [CWRF15, GSCG19, PGAE04, SLYC09, TE96, ZZNM15].

Composed [AWM$^{+}$17]. Composition [AC10, HZNF06a, HZNF06b, MLC10, RKTS14]. Compositional [FIH2D17, YYA10]. Compositions [FLS94]. Compound [AJV$^{+}$16, GPCP11, PRSV08, RS98, ZRS$^{+}$12]. Compounds [Wil99].

Comprehensive [KV17, KCH04, KLC$^{+}$11, LHC19, PAS$^{+}$13, WZH$^{+}$18, ZF05]. Compressed [AZ11, RPR$^{+}$15]. Compressing [SKS$^{+}$11]. Compression [AOAAH17, GY19, HWHS18, KK11, MM06, VFOK18].

Compression-Based [MM06]. Computation [ARRW99, AT08, BGHY04, BFT04, BCC$^{+}$09, BJMS09, CIM$^{+}$06, DSV12, ES06, Jah11, Kei05, KSSK09, OK08, PA03, RJS02, Ric06, RBB$^{+}$98, RW99, SCC$^{+}$98, SSIP$^{+}$19, TCL$^{+}$16, WWZ19, WX08, WHCO9, WZ07].

Computational-Based [WX08]. Computational [AEB$^{+}$04, Ano94, Ano00, Ano11b, Ano14, AP09, Ba11, Ber11, BZMM16, BCP$^{+}$09, CBH$^{+}$12, CGOT10, CSLW02, DMV17, Dei19a, DND$^{+}$19, DKC15, DFS95, FA12, GSA14, GP0P$^{+}$17, HSHC15, HHHC15, HASL18, HTH$^{+}$17, JGJ16, Jus01, KV08, LZHC15, LCH09, Ma11, OBJO$^{+}$03, PDZ$^{+}$16, PLSL18, PGV16, PS11, PG03, QGP10, RBKJ19, SCB14, STHG$^{+}$08, Sea01, SW11, Sun13, TS96, TBKR10, VRGC18, WJD14, WYC$^{+}$18, Woo99, XXU98, XXCE00, ZLM$^{+}$17, ZWZ16]. Computational-Based [WYC$^{+}$18]. Computational [SEV09].

Computations [CSA98, FG04]. Compute [BVP$^{+}$16, Clo05, SLM15].

Computer [IST19, KMM17, LVC$^{+}$04, SMKS96]. Computers [Elh11, FHS00]. Computing [AFR07, AFR$^{+}$08, BMY01, Bca95, BCA96, BCA15, DLM10.
Concentrations [Lie05]. Concept [BS09, GMF+08]. Conceptual [KWB+94]. Condition [Kea97]. Conditional [FHZD17, LCWG06, LCGW09, RM00]. Conditioned [BYGI12]. Conditions [BLF14, ZZUPY06]. Conference [Ano00, Ano10b, Ber11, DMV17, DNZ17, DND+19]. Confidence [KWM10, SFR+18]. Configuration [LJ05b]. Configurations [DR17, YE02]. Con
Curated [AEH17, DCL18, FCGD19]. Curcumin [GAWI19].
Curcumin-Synthetic [GAWI19]. Current [SLB+97]. Curve [VY18].
CUSA [DBM09]. Cut [BMS10, BVSL11, CJ+97, DHM97, LTCH11, Mar94, SLM15, XLZ+18a].
cutPrimers [KBKF17]. Cuts [ZS17]. Cutting [KBKF17].
Cycle [AI12, APA17, AT08, OBJO+03, ZTW05]. Cycles [GQ09, XZS07]. Cyclic
[LSL+16]. Cyclin [CASP10]. Cyclin-Dependent [CASP10]. Cysteine
[KMRG09b]. Cytokine [Con04]. Cytopede [HD10].

Data [AMR07, ADP+08, AI12, ACKK19, Aku04, AGH+18, AB16, AR17, ACL15,
AJ+16, AFCN13, BB06, BKWK+00, BBN11, BJGG+03, BF02, BHGC11,
BB15, BDN19, BRD+05, BFT04, BDCKY03, BMR09, BBV+14, BCG+18,
BFK+10, BGJ+04, BRZH15, BML+16, Boe18, BVP+16, Bro98, CR09, CCHT09,
CC11, CH15, CD18, CRT04, CQG10, CCPT17, CYY09, CYLY12, CS15,
CBG+14, CF97, CHK+02, CBM+02, DOB95, DMTV09, DZM+03, DJK+99,
DLML10, DKC15, DMW+17, EZFP+19, EFM12, EAA+09, EHC+13,
FVT03, FHZD17, FSdSR+15, Fas94, FNC08, FB04, FSZ02, FRD+17,
FMI06, FLNP00, GHJ+12, GKE+04, GLM+09, GCB15, GSCG19,
GBR17, GZW+16, GME01, GLM16, Gus10, HTZ+13, HMY+14, Hav06,
HMY+19, HHE13, HWH+13, HLC+13, HVAW04, HLS10, HM14,
HMF07, Hua10, HHH+13, HTH+17, ITSH00, IPT14, JKG+04, JZ10, JÖNK17].

Data [Jus06, KVM14, KS12, KP96, KVDC06, KMC00, Ker03, KMM17, KAC17,
KK18, KAD+19, KGN09, KKBH15, KBCBS11, KCH04, KT01, LAI12, LSBS18,
LLH19, LTCH11, LXYC09, LYP13, LVCH+04, LSG04, L05b, LL05a,
LLS+19, LLWZ19, LYP+19, LF0D3, LRM11, LMW05, LABD+06, LL05b,
LLD+16, LLZL19, LSIL10, LH03, LDB+07, LZX12, MLOT17, MGW+07,
MS99, MCp12, Mos03, MM19, MBS+01, MTR+03, NKR+01, NHOV10, N08,
NME+15, OMS13, OH03, PWCH02, PKF17, PLL16, Pic08, PC05, PSLP06,
PX13, QP09, RH19, RUGR18, RLH13, RV15, RMC+05, RB94, RBH+19,
RG95, RL94, SIC+09, SK17, SG10, SG15, SKGG17, SS07, SHR11,
STHG+08, SDK16, SD02, SRF16, SD95, SIK+05, SSLMW10, SUL17,
SPBB15, SR10, SLZ15, TBL18, TXL+17, TH17a, TH17b, UGS19, WMD06,
WHDN13, WHD15, WZH+18, WV11, WGW+01, WZW10, WilK+12]. Data
[XvdL05, XZ12, XZ15b, YHB+03, YL17, YS19, YAI1, YMZ+12, ZRZD11,
ZWSF05, ZLTS13, ZL01, ZPB+10, ZZL+17, ZZ15, ZCK17, vUMW08,
ARRW99]. Data-Driven [CS15]. Data-Knowledge [WHD15]. Database
[AMOW10, BSB+17, BZW+00, FCGD19, GWL+19, GE17, HHH+02, KV17,
Kar95, KWB+94, KDL+94, KLC+11, LCG18, MX19, MR95, NCC+96,
17

OAHA94, RGL94, SM04, SZSW09, TINK98, VAS+18, VRN+19, WHL17, WZC96, YLW+15. Databases
[CZW’19, Fas94, JDK+18, Mar95, MAN16, Rob94, SK18]. Dataset
[MTR’03]. Datasets [BR12, CAB11]. Dating [CDFC00], Davidson
[Dei19b, Ist19], db [VRN+19]. DBCAT [KLC+11], dbHT [DC16a].
dbHT-Trans [DC16a]. DCJ [BCC’09, BS10, KWBS11, YF09].
De-differentiation [KLV+13]. Deactivation [FDDK07]. Deaminase
[MMH98]. Decision [HZNF06a, HZNF06b, LL05b, Sal95, SDFH98].
Decoding [DLPH06, Yin19, ZHZ+16]. Decomposable [Far97].
Decomposition [Bar04, GBBS07, LRG07, SAM06, Xu09].
Decompositions [NWN+10]. Deconvolution
[Har06, HSH11, RLA+09, SDK16]. Deconvolving [WSS03]. Decoy
[YLW+15]. Deep [BW12, EZFP+19, HYJ+19, LCW16, Nai18, PLSL18,
PYC+19, TR11, WYC+18, ZGRB10]. Deep-Convolutional [PLSL18].
[CNCK11]. Defined [JHA16]. Defining [NDMK17, ZZNM15]. Define
[ZLTS13]. Definition [KFC+11, UMR11]. Definitions [DAE+19, TBKR10].
Defy [HLK+13]. Degeneracy [BKKSD01]. Degenerate [LS05, PO04].
Degradation [BFK+11, YBF19]. Degree [MP11, RDR12]. Degrees
[ML10, PFDR05]. Deimmunization [PCGBK13]. Delaunay [STV96].
Delayed [RSR+09]. Delays [GK06]. Deletion [MP+06]. Deletions
[BWS11, HSH+09, YF09]. Delineating [KASM08]. Denatured [PGAE04].
Dendritic [URB+19]. Denoising [KABH15]. Dense [GPP+11, MZS+17].
Density [CKZ+19, CHK+02, FCS12, HSH11, KVDC06, NS18]. Dependence
[DPR97, FHZD17, HL16a, SG15]. Dependencies [CKT16, DAL+08].
Dependent [ABH03, CASP10, CHJ05, GTT06, HL16a, KK18, LFD03,
NHOV10, RMK+18, SVP19, SLYC09, URB+19, VS98]. Depth [XLZ13].
Deregulated [LLZ19]. Derivation [SDG+07]. Derived
[CASP10, LZ10, SVP19, WCL+18b]. Deriving [HLM08]. Descendants
[ZZS08]. Descent
[Bro98, KLKH11, GSL+16, LLWZ19, SGP11, YCP16, ZL01, ZKT14].
Descent-based [LSL+16]. Describing [CSS14]. Description
[CT07, GRM09]. Descriptive [BGTSB98, HY16a]. Descriptors
[CRT+17, Geo09]. Design
[AHK+02, BDKSY00, BBD+04, BJ08, CLM+16, CFR12, CDKL09, CS03,
CM04, DHW206, GMCO8, HD16, HJD17, HLH06, JGD16, KMP+04, Kle99,
LS05, MBSB08, MPP+16, MT06, MCC01, MKKK+17, NSM18, NW05,
OJFD18, OB16, PDZ+16, PZZ+10, PAS03, PQQB08, PCC+11, SVA+19,
ST02a, UBGFD+19, WMC04, ZWZ16, dGFMS16]. Designability [LJK16].
Designed [BRS09, LZX12]. Designer [JR16]. Designing
[HMU06, SB05, Tak96, ZF07]. Designs
[CCF10, CD08, DHM+05, HL03, L08, LGD+10, PTWB09, TP11, YHC05].
Desolvation [DBM09]. Despite [RS13]. Destabilization [BB04]. Detailed
[BP06]. Detect
[LS08a, NVW14, ODIP08, RPW13, Sch97b, TML+02].
[LSG04, Mal98, MGW^+07, ZZL^+17]. Discriminate [BCVL17]. Discriminating [MP16]. Discrimination [EMD95, KLV^+13, Mam96, TBS^+07, WS04]. Discriminative [JDH00, MD00, SS05a, Sin03]. Disease [AC17, DCL18, EBK11, GSA14, KSS09, KS05, LFD03, LWZ18, MWZ19, PD16, RS12, SCB14, SEV09, VB09, yWCF06, XAB^+15, YHW18, ZPX^+10]. Disease-Causing [KSS09]. Diseases [CZS15, FSD^+14, KMCKS17, Wu08]. Disequilibrium [BG09, LWLJ10]. Disjunct [CD07]. Disk [HNW99]. Disk-Covering [HNW99]. Disorder [WXY^+13]. Disordered [GZW^+16, HZNFO6a, HZNFO6b]. Disorders [JR16]. Dispersion [WMC14]. Disruption [DLM10]. Disruptions [JRHN09, NLC17]. Dissimilarity [Wil99]. Dissimilarity-Based [Wil99]. Distance [AS96, AZ14, AKG^+13, BMY01, BHHR18, BG17, CCYH18, Che12, DJK^+00, GMY10, HR12a, HJR12, HMU06, JR17, JRS19, JLMZ02, Jia11, KLM11, Kov14, KVK08, LS08a, LN01, Lu15, MC16, MTF^+12, Ris16, SH06, SGBEM11, SLM15, SM16, TLC^+16, WW18, WW19, WZW15, YJ04, ZZ14a, ZAG^+18, Zhu07]. Distance-Based [DJK^+00, LS08a]. Distances [AS10, AO15, AFRV07, BBH^+07, BSMA06, Fom16a, Fom16b, Fom19, GM07, HPDLW09, NM14, SM17, WDA01]. Distinct [WPL^+19]. Distinctive [KWBN19]. Distinguishing [RPS02, STRT96]. Distributed [PDZ^+16, SIC^+09]. Distribution [AZ14, AJV^+16, BS98, BLF14, LR05, LRG07, LSG04, MD01, RS01, SH06, SBT00, Sch00, TZHR14, TS96]. Distributions [BG07, ENS02, GW94, Kon09a, Kon09b, LBDF10, NL09, SV07]. DIsulfide [KLO18]. Divergence [Gu01, RKTS14]. Diverse [KWBN19, Wil99]. Diversified [MZW^+17]. DNA [AOAAH17, AEB^+04, AM97, ABH03, BLC^+10a, Bea95, BNN12, BDKSY00, BB04, BG11, BDM^+07, BNM^+07, BFK^+99, Böd04, CS00, CZC10, CTT09, CD18, CD07, Che04, CKZ^+19, CQG10, CL99, DMP^+06, DLL^+12, DPHH05, DS12, Elh01, FVTH03, FLL00, FB04, Gel95, GPAR96, GGKS95, GM96, HBRW06, HSP97, HJ05, Hor01, HW01, IW95, IP09, JG11, JLY08, JRH^+09, KMP^+04, KS12, KSSK09, KFDT02, KV19, LWN^+18, LMS96, LVC^+04, LABD^+06, LFT^+98, LY99, MT06, MCC01, MK11, MWP00, MV19, MBVA07, MP94, Mil95, MGSA06, MTR^+03, NCC^+96, OBDV16, PWFZ17, PA03, Pev95, PBB08, PO04, RMR00, RPR^+15, RBW^+98, RW99, SK17, Sal95, SDF09, SPD95, Sch07b, Se13, SNQ^+14, SRY98, SRM^+98, SCC^+98, SHO4b, Ste14, SZSW09, Sun99, SB05, TE96, TH17a, TH17b, TEM12, Ves12]. DNA [VS08, WGL98, WSW15, Wan94, WRS^+99, WMC14, Wen05, Wen06, WSS03, XMY06, YYH14, Yin19, ZPM97, ZSWMO0, ZW03, ZCH^+13, ZHS05, ZSL1]. DNA-Based [BLC^+10a]. DNA-Mediated [JRH^+09]. DNA-Microarray [FVTH03]. DNA-Sequencing [CD18]. dNTP [DCV^+07]. Do [ZFZL03]. Docked [ADPH15]. Docking

Dynamic [BB15, Bet10, BRZH15, CKT+01, Che06, DCD19, EdCK+12, FNC08, Gui98, HWSH18, HD08, JKG+04, JJGD16, KW14, KAS09, KMZ+10, KLV+13, KK18, KT13, LLS+19, LSSD18, MTF+12, RMWC16, SB07, WZW15, WBJ15, Wu96]. Dynamical [DCL10, GSV+11b, Jus06]. Dynamics [CB07, CKB17, DT13, FA12, GG09, HCX09, KFC+11, PGE04, PSL18, RAKL10, RZK06, SVA+19, SAM06, SVL+10, WH01, YK19]. DynDom3D [GH16]. Dysregulated [CNCK11].

Efficiencies [PTWB09]. Efficiency [GKS95, HJD17]. Efficient [GKS95, HJD17]. Eficient [Aku04, AHK07, ABG+08, ABLX00, BGHY04, BHR18, BCVL17, BFT04, BMGW04, Bry96, CD07, CFH13, CGI+07, Clo05, DT12, DC16a, GNME01, HD16, HMY+14, HBK11, JCZ08, JAH11, JRS19, JGB12, KZE10, KS11, Kie99, KT13, LLKK16, LNW01, LGD+10, LLCT05, LMW05, Lip05, LABD+06, LRLJ10, LHC02, LSHL04, Lu15, LMSH03, MMG14, OK08, OJFD18, OB16, RC14, RJS02, RUGR18, RSM06, Ric06, RMK+18, RCSS12, SK17, Sch97b, SIKS06, Ser15, SYYH02, SOD+11, Shi07, TAA16, VAS+18, WWZ19, Wu08, XWLJ08, XXU98, ZPX+10, ZPB+10]. Efficiently [BG09, BFS10, HH06, KE13, LHXH08, PGM07, SDMN19, SFR+18]. EGFR [OJOD+04]. Eggs [ZTW05]. Ehrlich [Tra19]. Eighths [HI96]. Elastic [Guo15]. Electrical [CEK+17]. Electroencephalogram [EOD+18]. Electron [CLM+18, HLG18, KAC17, NS18, ZKH17]. Electronic [VA17]. Electrophoresis [EHK+02]. Elements [BH14, CCG06, ES06, HHJ+02, WHC09, ZPC+18, ZKC12]. Elimination [BMN+07]. Ellipsoid [YHC19]. Ellipsoid-Fitting [YHC19]. Elucidating [CXW16, MGVS14]. Elucidation [BDGC+98, PGA+11, SGK+12]. Embedding [DAE+19]. Embeddings [MV19]. Embryonic [JBM15, YHC19]. Embryos [Bri19, LYF+19]. Emergent [SV14]. EMINIM [KZE10]. Empirical [GE04, MBLZ09, TZHR14, WS04]. Empirical-Map [MBLZ09]. Enabled [SSLMW10]. Enables [BKT09]. Enacting [MDTD06]. Encoding [AOAAH17, DC16a, KG018, LFT+98, WKC+95, Yin19]. Encryption [ARRW99]. End [CJK+97, EZFP+19, GSN11, OBDV16]. End-Probes [CJK+97]. End-to-End [EZFP+19, OBDV16]. Energies [CWRF15, HD16]. Energy [BDM+07, CA15, CS15, Clo05, DPR97, GLJW09, HJD17, HR12b, HI97b, KXL08, LSHL04, LP00, MZC+18, MFJ+19, OC00, PK11, RC06, WC07, YE02, YFW08, Zho10]. Energy-Based [LP00]. Energy-Consuming [MFJ+19]. Energy-Filtered [HR12b]. Engine [RGL94]. Engineering [CR09, GSH17, Jus06, MSMF09, SHG02]. Enhanced [KEL15, TH17b]. Enhancers [Ami12, LCW16]. Enhancing [AMK18, GJZ06, Ste14]. Enriched [NVW14, ZKL+10]. Enrichment [LJCL12, MK16]. Ensemble [JGGD16, LSAD05, LLW18, OJFD18, SDK16, SOD+11]. Ensemble-Based [LSAD05, OJFD18, JGGD16]. Ensembles [FvdBB16, GZW+16]. Entrez [RGL94]. Entropy [BCVL17, KS12, Kie05, LLT06, LY99, NVCW15, YB04]. Entropy-Based [KS12, LLT06, NVCW15]. Entry [RBK94]. Enumerate [Sie03]. Enumeration [AHK+07, Bry96, DR17, GSW16, JHA16, Rsd06]. Enumerative [PV17]. Environment [GPOP+17, HL16b, YLC+17]. Environmental [CK09]. Enzymatic [Aku04, PLL00, KM08]. Enzyme [BS09, Kru17, LSAD05]. Epidemiology [RMC+05]. EpiGeNet [BSB+17]. Epigenetic [BSB+17, LSY+05]. Epigenetics [HSH14]. Epigenomic
Exactly [KW14]. Example [Zha94]. Examples [TBKR10]. Exceptional [SPD95]. Exceptionality [PDK+08]. Exclusive [CKB17]. Execution [KAD+19]. Exemplar [Jia11, SM16, WZW15]. Exhaustive [DMDR17, TTTL17]. Exome [VRN+19]. Exon [KLZU06, LS98, WH06]. Exons [Gu98]. Exopeptidase [KGN09]. Expansion [HJD17, SHMS08]. Expectation [GGM12, NBC+11, SRV98, YJC18, ZCH+13]. Expectation-Maximization [GGM12]. Expected [HA12, KK11, PFRD05, PV17]. Experiment [Bri19, Mor19, PKZ11, SHG00]. Experimental [ADD+07, AGH+18, BMY01, CWRF15, CAB+07, CF97, LZHC15, NSMV18, PMG+16, SLRM09, YHC05]. Experimentally [GE17]. Experiments [ARHLK19, BCH+01, BRRO2, COL+18, CM04, Det19a, FSD+14, GVTRS06, JAG17, KST96, MKKK+17, PZH11, PQBB08, SHMS08, SZSW09, WC04]. Explain [VCS11]. Explaining [LQPE+10]. Exploiting [AWZ+17, KK14, yWCF06]. Exploration [RBKJ19, WP11]. Exploratory [VV11]. Explore [BYGI12, BCVL17, HHC06, LL05a, NVW14]. Exploring [PK11, WXS14]. Exponential [AGH+18, Zha94]. Exponentiation [IM14]. Expressed [ARHLK19, ACKK19, BCH+01, ITSH00, JZ10, KBC19, LSRR18, MG06, TVNP15, WC04, ZHQS05]. Expression [ARHLK19, ACKK19, AGH+18, AFCN13, BJGG+03, BF02, BDSY99, BDBF+00, BDCKY03, BSBB+05, BRRO2, CK11, CK09, CW09, CC09, CQG10, DS04, DBB+02, FLNP00, GHJ+12, GKH18, GLM+09, GMOV08, Hav06, HVW04, HLC01, HLS07, HQ06, HMF07, ITdBO9, KBJ07, KYSE10, KS12, KC09, KMC00, KMG+10, KCH04, LYMD03, LSD12, LFD03, LLJS19, LCD11, LQPB10, NKR+01, NVCD15, NV12, PNM17, PZH11, PKZ11, PCC+11, PO05, RMS02, RD01, SD95, SKS+09, SVCA17, SDC+10, SBT10, TBL18, TJBF01, TXL+17, WXS14, WPL+19, WV11, WGW+01, WAC08, XvdL05, YL17, YYYY+09, ZWSF05, ZQW19, NME+15]. Expression-Dependent [LFD03]. Expression-Detection [Hav06]. Expression-Interaction [SKS+09]. Expressions [Myc96]. Extended [GSW16, HCS09]. Extending [YS19]. Extensible [KAD+19]. Extension [HYM+14, PSCP09]. Extensive [RS13]. Extensively [FCGD19]. External [BVP+16]. External-Memory [BVP+16]. Extracellular [JRH+10]. Extracting [AC17, KK11, LLS+19, MS00]. Extraction [Aku04, BLQZ04, Bry96, GPP+11, LRD19]. Extractor [AB16]. Extremal [TW05]. Extreme [JTSB10, LSG04]. Facilitating [RAC+06]. Factor [BZMK16, GGU13, GJ06, LQTBK15, WW11, YYYY+09, YJC18, KS12]. Factorial [RNKH18, RH19]. Factorization [LWZ18, MWZ19, WHDN13, ZEKKR18]. Factors [BSB+05, BZ08, MSMP19, SNQ+14, SKS+09, TRIN07, TLP+14, YJ06]. Failure [SVK10]. Fair [AS10]. False [SRV98, ZHQS05]. Familial [MRS+18]. Families [CCT15, DGH+01, GHM+10, GPCP11, HG05, HP96, MC08, MD00,.
Family
[BC94, BLEM08, CDEM08, CDFC00, ENS03, FJAOB18, FDDK07, Gru98, HHP+09, HBW+05, KWBN19, LBEMG07, WKC+95, YTS12].

Family-Specific [HBW+05]. Fan [JLRS18]. Farthest [Zor15]. Fast [APVM11, AMW07, AFBS95, AI12, BBD+04, BVP+17, CBW07, CZNF19, CWL13, CHKK99, CGD09, Csu02, GGU13, GTA+04, GB08, H96, HNW99, ISB12, JDJ+18, KBS09, LRM11, LS04, MGSA06, MR03, NMH13, Nlc01, OMS13, PWKAF16, PKSB18, RJS02, RBOS15, Ris16, SC15, SEV09, Ser15, SM16, WH17, Xu09, Xu10, YK05, MBC+18]. Fast-Converging [HNW99]. FaST-LMM [MBC+18]. fasta [MA19]. FastaHerder2 [MAN16]. FastBill [WT17]. Faster [CWC06, CKdAHdF15, Kei05, KL98, Shi10b, ZUGVWS10]. Fate [JRHN09]. Fatigue [ES07]. Favors [NMG+05]. FDR [ZHQS05]. Feature [CC09, CYY09, EOD+18, KDB+02, KCH04, LKBT16, LRD19, LTTS12, LCW16, LLIW18, NTWF11, PNIM17, Ric06, SMC+15, SZTW12, XAB+15, YHB+03]. Features [HHP+09, LJK16, LLS+19, MBK+03, OAH94, PSL18, RPS02, WA10]. Federation [Fas94]. Feedback [BHL+18, GQ09, QMMW11, YY19, ZFAS08]. Feet [BKPM95]. Fetal [LWN+18]. Few [KYSE10]. Fickett [SSTM19]. Fidelity [BDM+07, FLL00]. Field [BV09, GKO6, LGD+10, RRF598]. Fields [LCWG06, OA94]. Files [MA19]. Filling [SSMT16]. Filter [HLG18, PFK17]. Filtered [HR12b, SS07]. Filtering [CZY19, DC16a]. Filters [COV+15, PFK17, PC05, RSM06]. Filtration [BHHR18, BHHR19]. Finder [LS98, LS08a]. Finding [AP10, BRZH15, BFS10, BT02, CCI+04, CP05, CZS15, FK06, HSF97, HZGD05, HLI6a, HS14, JHS06, JMEB18, KLW96, LS98, LCY+05, LBXL11, LZF+05, LL05b, NWN+10, OMS13, PAC02, RSM06, RRNB13, RC06, SDFH98, SB07, Sfl14, TNP11, WXS14, WMC14, WYKG05, WXLJ08, ZHS05, ZS11]. Finger [TWY02]. Fingerprint [AMK00, FB04, Wuo05]. Fingerprinting [HY+10, RC14]. Fingerprints [MS99]. Finite [CWC06, DSV12, KKS+15, LGD+10]. First [JHA16, SLA12]. FISH [SHMS08, SBAW97]. Fitness [Kle99]. fitter [AJYJ18]. Fitting [BFK+10, YHC19]. Five [RPS02]. fjoin [Ric06]. Flanking [JRHN09]. Flat [HD10]. Flexibility [NH08, SNW08, TPK03]. Flexible [AKLM02, CL17, FL17, HJD17, SDFI+08, SNW04, SI97, TKW08, TS96, VLBK07, VTO6]. FlexProt [SNW04]. Flip [DHM97]. Flip-Cut [DHM97]. Flow [CF14, EAM+17, HSOE+18, SY07, SKY12]. Flux [BS09, HJ14, LSL11b, RBOS15, VB09]. Fold [COC06, Con04, CBM+02, GLJW09, KWM10, LCW06, TBJF01, XLZ13]. Fold-Changes [TBJF01]. Folding [ABD+97, AS02, ADS03, BTZ06, BL98, CAB+07, CGP+98, DBW17, GPOP+17, GT16, Guo15, GWX18, GMS05, H96, H97a, H97b, HCX09, HPR09, ISK99, JCZ08, KMRG99a, KMRG99b, NSZ99, PGAE04, SVD14, SC15, SOD+11, SHG00, TKT+05, TGT08, TAY16,
GD-RDA [ZZL+17]. GDT [LBXL11]. Gels [EHK+02, PL06]. Gene
[ARHLK19, ACKK19, AGR+18, AEH17, AHK08, AK08, AFCN13, AJA+16, AS19, BBGS11, BJGG+03, BF02, BKT09, BB15, BW12, BR06, BSY99, BDBF+00, BCCHZU18, BS+05, BLEM08, BV09, BBH+07, BJMS09, BMP+09, BR02, BBWE09, CL+16, CP05, CDEM08, CK09, CDFC00, CW09, CC11, CDH+16, CC09, CQG10, CCPT17, CYLY12, CZA19, CP19, CLSW02, DMDR17, DR17, DK+17, DCL18, DBB+02, DCH09, DAE+19, DS03, DV06, DVLU19, EMV98, FP+13, GHJ+12, GKM+08, GLM+09, GCB15, GSA14, GTA+04, GMC08, GPR+12, GE14, GSV+11b, GSV+11a, GB06, GPCP11, Gu01, HMY+14, HG05, HJRM07, HLR07, HJ05, HJJ+02, HZH+10, IrdB09, Jaha11, JR12, JBM15, JRNA09, KB07, KS12, KP+04, KMC00, KV08, KMZ+10, KWA11, KKB+09, KUK19, KNS14, KGK14, KCH04, LPW05, LHS12, LSRR18, LST+17]. Gene
[LRSG07, LSG04, LYH+19, LGC+09, LDW+14, LLJS19, MPG+16, MSMF09, MA11, MP16, NKR+01, NWC15, NV12, PBS+99, PAC02, Par+07a, Par+07c, PSP18, PWCN02, PAG+11, PZMM15, PCC+11, PC05, QGP10, RMS02, RAC+06, RPS02, RKTS14, RRTK07, RZK06, RD01, RMC+05, Rot19, SBD+00, SZW+09, SCH09, SM09, SVA+17, ST+10, SDG+07, SZVM10, SDC+10, SSZ+95, SP97, TWY02, TBJF01, VBS10, WSS+15, WPL+19, WLC18, WV11, WBJ15, WMP11, WT07, WGV+01, WAC08, WKC+00, WZ+09, WY+09, WNY11, ZPC+18, ZWSF05, ZSV+09, ZL09, ZWQ19, ZS+08, ZWD+04, ZAG+18, ZHS05, ZH14]. Gene-Cluster
[SZVM10]. Gene-Conversion [SDG+07]. Gene-Expression [DBB+02]. Gene/Species [DCH09]. Genealogy [LLS+1a]. GeNeDA
[MPG+16]. General [DEH10, DM+03, Errw19, HJD17, HI97b, JLMZ02, LNW01, RZK06, SWK+07, Wen06, ZPR+10]. Generalization [ZS14]. Generalizations [ADR+13]. Generalized
[ABD+97, APA17, AS19, BKPW95, CD11, GGU13, HVD17, HL10, KX10, Kei06, Kon+07, MBR+11a, PAC02, SV97, ZSX12, YS10, dMR+14]. GeneRank
[AB16, AR17, Boe18, BG15, BV+16, CUP19, FSD+14, GCB15, JAG17, KBKF17, KMM17, KAD+19, LYPC13, LZX12, NP09, PMP+15, RUGR18, RGM+12, Rot19, RNI+06, SRZ+13, WCL+18b, ZPB+10, ZZ14b]. Generative
[CK11, DS04, FHM06, MD00, yWCF06]. Generic [SGYB05]. Genes
[ARHLK19, AC17, AFR+08, AJV+16, BCH+01, BLEM08, BL02, CCG06, CCH+19, CZY19, DMT09, DLM10, EBK11, Fic95, GMF+08, GPAR96, GGM12, GDL+15, Gu08, HSF97, HSD05, HHC06, ITSH00, JZ10, JÖNK17, JRH+09, KYE10, KSS09, KBC19, LBEMG07, LL19a, LL19b, LHC19, MG06, MDB11, PNM17, PZH11, QQL+19, SDF98, SEV09, SRF16, SL15, SM17, SZTW12, TML+02, TXL+17, TVNP15, WOG03, WC04, WSL18, ZYD+19]. Genetic
[AK07, ALR18, BS+17, BH15, BPL02, BBEM09, CY10, CZA15, CZA19, CC17, CCH+08, CCH+16, CCH+19, CSH+06, DMT09, DLM10, EBK11, Fic95, GMF+08, GPAR96, GGM12, GDL+15, Gu08, HSF97, HSD05, HHC06, ITSH00, JZ10, JÖNK17, JRH+09, KYE10, KSS09, KBC19, LBEMG07, LL19a, LL19b, LHC19, MG06, MDB11, PNM17, PZH11, QQL+19, SDF98, SEV09, SRF16, SL15, SM17, SZTW12, TML+02, TXL+17, TVNP15, WOG03, WC04, WSL18, ZYD+19].
Graph [BKCP05, BSB+17, BG06, BSS13, BP16, BVP+17, CHS17, CY17, CP19, DSN14, Fre11, Gus10, HBW+05, KK11, LTI10, LJK16, LWZ18, NK07, NSK09, PMCB08, Par10, PDS06, Ste14, WYT12, XZS07, Xu09, Xu10, YS07, ZZHL11].

Graphics [EAM+17, KV17, KGLBK15, LCGW09, WG08a, YZ17].

Greedy [ZSWM00].

Gregor [Dei19b].

Grohar [MZM18].

Group [BMN+07, CEKP+13, CFS13, CD11, HTZ+12, MKKK+17, PNMI15, PWR15, YK19, ZHZ+16].

Groups [CCG06, DQS+11, DMTV09, HL10, RROF95, WZC96].

Groupwise [SHE11].

Halving [RC15].

Hap [HHE13].

Hap-seq [HHE13].

HapCompass [AI12].

Haplotype [AI12, BB06, BDK+16, CFS+08, CDS+16, DEH10, GLMSO10, GG04, GKM+10, GMSZ12, HH06, HHE13, HCC05, KMP08, KHK10, LKW04, Lj05b, LL11, LS07, ME12, PMP+15, PMAP13, SHB+03, SR10, XJS07, YHEP15, ZGRB10].

Haplotype [ASL06, BGHY04, Gus01, SGP11, Ves12].

Haplotyping [BGLY03, DFG06, VM06].

Happy [DHM+95].

Hardness [DHM97, NSZ99, War95, HI97b].

Hardware [SSLMW10].

Harmonic [AT12].

HarmonyDOCK [PPV+14].

Hashing [HHC06, KGB18, PKSB18].

HattCI [PWKAF16].

Having [BLR16, ZYB+04].

HColonDB [MXJ19].

Health [CL+17, GSH17, HTH+17, VA17].

Healthy [LLS11b].

Heart [YHW18].

Heat [LLS11b].

Hedgehog [DMH97].

Helical [Con04, TS96].

Helicity [SLO07].

Helicobacter [UBGFD+99].

Helix [CJD06, CBM+02, SLO07, WY12, ZKWH17].

Helix-Coil [SLO07].

Help [BF98].

Hepatitis [CCH+19].

Hepatocellular [CCH+19, GDL+15].

Hepatocyte [GSH17].

Heritability [SFR+18].

Herpesvirus [LMS06, LCXC05].

Hes1 [ZML07].

Heterogeneity [KC96, RNH18, RH19].

Heterogeneous [EOD+18, GFE+16, GVT04, GBR17, LR05, MR95, Mar95, ZGRB10].

Heterozygosity [HAT11].

HetFHMM [RNH18].

Heuristics [KMP+04].

Hexagonal [GWX18, KMRG09a].

HGT [TRIN07].

HeteroSW [GFE+16].

Hi [RBH+19, ZLTS13].

Hi-C [RBH+19, ZLTS13].

Hidden [BC94, BAL95, BP14, CL99, EMD95, FDB18, GCB15, HSF97, HJ05, HW01].
KMP08, Ker03, KS05, Mam96, PAC02, PWKAF16, QSY09, RNH18, RH19, RLA+06, SH04a, WS04, WTE07, WX08, YH01. **Hidden-State** [RLA+06].

Hierarchical [BRK02, CK11, CSA98, CB07, JCZ08, KSSK09, LWN+18, NWN+10, PLSL18, ZLO9, ZH07]. **Hierarchical-Pooled** [PLSL18].

Hierarchies [Neu14a, Neu14b]. **Hierarchy** [BET00].

High [ACL15, BBN11, BLC10b, CLM+16, CBG+14, CHK+02, FCR+13, FCC+07, GSN11, GLM+09, GDHC95, GNI12, HG11, HBD94, Hua10, KS11, KVD06, KMZ+10, LKB16, LLSH19, LBBV+18, LRM11, LDB+07, MBC+18, O+H15, OBDV16, RDR12, SSLMW10, TPH+09, WAC08, ZZL+17, ZHQ05, ZZUPY06].

High-Density [CKZ+19, CHK+02].

High-Dimensional [ACL15, KMZ+10, LKBT16, LLSH19, O+H15, ZZL+17].

High-Order [WAC08].

High-Performance [HBD94, MBC+18].

High-Quality [GLM+09].

High-Resolution [GDHC95, LBBV+18, LRM11].

High-Throughput [BBN11, BLC10b, CLM+16, CBG+14, FCR+13, FCC+07, GSN11, GNI12, KS11, LDB+07, OBDV16, SSLMW10, TPH+09, ZZUPY06].

Higher [DM17, DBT11, TRB+09].

Higher-Order [DM17, TRB+09].

Highly [GFE+16, MNSV10, SBP15, TVNP15, TTTL17].

Highways [BBGS11].

Hiking [Cha01].

Hinge [SNW04].

Histo [YK19].

Histo-Blood [YK19].

Histone [Yua09].

Histones [BRR06].

Histopathological [MDL+18].

Histories [DR15, Ros07, VBSS10].

History [LBEMG07, MA11, SP11, Tra19, VA17, YDN02, ZSV+09].

Hit [CWC06].

Hitch [Cha01].

Hitch-Hiking [Cha01].

Hits [KWM10].

HIV [DCV+07, GT16, HPVS96, SS04].

HIV-1 [HPVS96, SS04].

HLA [HKL07, SGP11, ZYB+04].

HLA-A*0201 [ZYB+04].

HMM [ZKL+10].

HMMatch [WTE07].

Hoeffding [AS19].

Homo [CYP+11, MYBK+11, YLD+18].

Homo-Oligomers [CYP+11, MYBK+11].

Homogeneity [LR05].

Homologies [JDH00].

Homologous [DC16a, Eri09, HJ05, PZH11, SYH02].

Homologs [BF98].

Homology [AMOW10, BS98, BBD+04, CBW07, CV11, Gru98, HG05, Kon07, PZC05, SPD18, SSD07, SRS02, XBLM06].

Homoplasy [AA18, LT10].

Homoplasy-Free [AA18].

Homopolymer [ETLK19].

Homopolymer-Space [ETLK19].

Homotopy [DOKT05].

Homoygous [TTTL17].

HOPE [DOKT05].

Horizontal [BBGS11, ST10].

Host [Kha14, SLYC09].

Host-Dependent [SLYC09].

Hot [DGW+13].

Hotspots [BB06].

HP [BL98, ABD+97, GMS05, HCS09, SVD14, TAY16, YE02].

HP-Model [YE02].

HPC [KMRC09b, KMRC09a].

HTLV [CDC+11].

HTLV-1 [CDC+11].

HTML5 [AB16].

HTML5-Based [AB16].

HTP [CLM+16].

HTP-OligoDesigner [CLM+16].

Hub [ZYY+19].

Hubs [MTYH09].

Huffman [AOAAH17].

Huge [WLYC12].

Hull [WY19].

Hultman [APA17].

Human [BR12, CBH+12, DBBM09, GPAR96, GSH17, GE17, HMY+19, HHC06, LZHC15, LTZ18, LFD03, MXJ19, Nai18, Sal95, SCH09, SKLS97, SCSA+16, SZTW12, TE96, YCCL18, YK19, ZWT18].
Human-Specific [SCH09]. **Humans** [Elh11, LDB⁺07, SGK⁺12, Yua09].
Hunting [Bry96, PWfZ17]. **Hurdles** [SLRM09]. **Hybrid** [BDC97, CXW16, CYLY12, CLK⁺17, DHV06, Hea97, LYC15, YK05].
Hybridization [AMRW96, BDPSS01, BMN⁺07, CLS11, DMP⁺06, DJK⁺99, DFS94, FHO2, GI95, HHHS03, HY03, Hub01, Kru98, Mil95, PU00, PO04, RRGC95, SLA12, ST02b, WHW⁺06, WI05, Wu13, DFS96]. **Hybrids** [SKSL97].
Hydropathic [CFR12]. **Hydrophilic** [AP10, BL98, HI96].
Hydrophobic [AP10, BL98, GP13, GWX18, HI96, KMRG09b, TGT08, TS96, YTMY17].
Hydrophobic-Hydrophilic [AP10]. **Hydrophobic-Polar** [GP13, GWX18, YTMY17]. **Hydrophobic-Polar-Cysteine** [KMRG09b].
Hydrophobicity [ABD⁺97]. **Hydroxyproline** [Yan09].
Hypercholesterolemia [MRS⁺18]. **Hyperdigraph** [OJOD⁺04].
Hyperdigraph-Theoretic [OJOD⁺04]. **Hypergraph** [YFBK07].
Hypermutability [FB12]. **Hyperplane** [BGJ⁺04].
Hypothesis [FDDK07, LSY⁺05, MSZW11, RNI⁺06, SFA17].
i.i.d [MD01]. **IBD** [LL11]. **ICON** [WCZ⁺18]. **ICON-MIC** [WCZ⁺18].
IDBA [LYPC13, LYC15]. **IDBA-MT** [LYPC13]. **IDBA-MTP** [LYC15].
idDock [HS15]. **Ideals** [SS05b, SS05c]. **Identical** [AMOW10, SGP11].
Identifiability [AR06, AP09]. **Identifiable** [SV07]. **Identification** [ARHLK19, ALB⁺19, AJV⁺16, BSB⁺05, CCG06, CCF10, CCH⁺19, CLSW02, CBG⁺14, DBBM09, EPSV98, FKO09, GDL⁺15, GBB15, HRSC00, HV07, HY07, HBB11, HKZ⁺04, JÖN17, KPB⁺04, KT13, LZH15, LL19a, LGD⁺19, LGC⁺09, LCD11, MS00, MM06, MSB⁺10, MP16, NTWF11, OBJO⁺03, OR14, PKWAF16, PDT00, PDdJFT08, SFN97, SIK⁺05, SR10, Sni19, SMC⁺15, SSD07, SC94, TXL⁺17, TLK⁺06, VRU16, WSC18, WLC18, WKC⁺05, WTE07, XU97, YHT⁺17, YJC18, ZWSF05, dMRR14].
Identifications [BG08]. **Identifies** [OSK⁺15, TGT08]. **Identify** [LDLZ12, LCW16, YHW18]. **Identifying** [AMK00, BH14, BCH⁺01, BR02, BBWE09, CJC01, CDL⁺19, CZY19, CHK⁺02, DS04, FCS12, FRD⁺17, GMF⁺08, HG05, HSBS10, ITdB09, KE13, KLC⁺11, LIHX08, MGW⁺07, PS1M18, SM98, SS05a, SH17, SJ18, TEM12, WC04, YZ08, YYZ⁺10, YLD⁺18].
Identity [BR09, KLKH11, YCP16, ZL01, ZKT14]. **Identity-by-Descent** [YCP16].
iGLASS [JR12]. **II** [WRSW10, AMS97, CGOT10, SkY12, ZRGHJ08]. **II.** [Fom16b]. **III.** [Fom19]. **Illumina** [CWL13]. **ILP** [CDS⁺16]. **ILP-Based** [CDS⁺16]. **Image** [BLQZ04, DAL⁺08, FCR⁺13, PLSM⁺06, YHC19, ZKW17]. **ImagePlane** [FCR⁺13]. **Images** [LTTS12, LCL⁺17]. **Imaging** [Hua10, HLG18, KKS⁺15].
Imbalance [DCV⁺07]. **Imbalanced** [HSH14]. **Immunecomponent** [JK96, LRNBJ10, LDB⁺07]. **Immunity** [ZZN10].
Immunoglobulin [BP16, GKKS98, SKG⁺00, YK19]. **Immunoinformatics** [UBGFD⁺19]. **Immunoprecipitation** [BHGS11]. Impact
[DGFMSS16, JR16, SJ18, WWH17, ZPC+18]. Imperfect [LTI10].
Implementation [And09, MGSA06, NBB18]. Implementing
[NXL+15, PB18, WCZ+18]. Implications [BBWE09, FL94]. Implicit
[BMR09]. Importance [CZC10, RDR12]. Important [MTYH09].
Impossibility [Mos03]. Improve [GB06, HLG18, KVM14, TYSX19].
Improved [AMR07, AT12, BS97, BK08, CL17, CLR+05, CDH+16,
Fre11, GF16, KFDT02, LS08a, MSBR08, MA13, MVP06, REKH97, SFA17,
SSKH+13, SZW+09, SSH+10, SK18, WC16, WT17, YLC+17]. Improvement
[JR12, YLW+15]. Improves [HKL07, JBM15, NTWF11, ZGEZu11].
Improvements [HJR12]. Improving [AT08, BCG+18, GKS95,
HSH11, LWN+18, NKR+01, PFK17, RK96, WHJE19, XLZ13]. Imputation
[HHE13, KZE10, McP12, MM19, WHJE19, YHEP15, ZZ15].
Include [YF09]. Including [AR06]. Inclusive [WWZ19]. Incompatible
[GBBS07]. Incomplete [BW12, BMR09, LJ05b, ZAG+18]. Inconsistent
[KABH15, KWBN19]. Incorporating
[GJZ06, KX06a, KX06b, MPC+11, PS12, RH19]. Incorporation [Kon09b].
Increase [FA12]. Increasing [SHE11]. Incremental [AP04, KS06].
Indel [DMB07, SSH+10, SP11]. Indels [HB11, McC09, TRS17]. Independent
[LYMD03, SJ12]. Index [YGP05, YHC19, VRN+19]. INDEX-db [VRN+19].
Indexing [Buh03, CGZ04, CM04, GGM+10]. Indian [VRN+19]. Indices
[LL03, TW05]. Indirect [ADD+07, TBS+07]. Individual [BF98, PCS18].
Individual-Based [PCS18]. Individuals [LL11, McP12]. Induced
[BB04, LDS12, JKG+04]. Induction [BKT09]. Inequalities [RCSS12].
Inequality [AS19]. Infection [SCSA+16, STP18]. Infer
[BB15, JSN09, RH18]. Inference
[ACBM18, ADD+07, ADR13, AEH17, BB06, BBN11, BCPS04, BM09,
CYP+11, CGT12, CMvH15, CKB17, DMDR17, DMW+17, DBB+02,
FHZD17, FLJ11, FNP02, GCM08, GW06, GLMS010, GM96,
GMSZ12, Gou01, HCC05, HMFO7, JP+15, JG11, JB15, JBW10, KH10,
LAL+09, LL11, LYH+19, ME12, NKR+01, O’H15, RV15, RBE13, SSKH+13,
SL10, SHB+03, Ser15, SGP11, TS04, TR11, TNSS13, TZP+13, XLZ+18a,
XJS07, YAY11, YWN11, ZHHL11, ZL01, ZKT14, ZCK17]. Inferential
[ARHLK19]. Infected [MTYH09]. Inferring [AFBS95, BG09, BLEM08,
DJK+99, GRB17, GM07, GKM+10, HJR12, LTCH11, LZBK15, MBRS11a,
NSMV18, SKS+09, WBJ15, WHJE19, YYY+09]. Inflated [PLL16].
Influence [BIPD17, GC15, Hua15, JÖNK17, Kru17]. Influences [RH19].
Influential [NLC17]. Influenza [AWM+17, LBSB17, MGYS14, ZNZ10].
INFO [LS98]. Informant [DBT11]. Informatics [Rob94]. Information
[AFCK09, AT08, BG15, Bro98, DCW+17, FS99, GSSI14, GTA+04, GE17,
HK107, KX06a, KX06b, Let95, LYC15, LFT+98, LZX12, MPC+11,
NWN+10, PU00, QGP10, RPW13, SFA17, SG15, SKGG17, SSB07, SY07,
SKY12, SKT08, TXL+17, TEMM12, UGS19, YGP05, Zha02, ZWD+04].
Information-Based [YGP05]. Information-Theory [PU00].
Informational [OFE14]. Informative [AHK+07, Ros05]. Infrared [MGW+07]. Infrastructure [Rob96]. Inheritance [CK10, HWH+13].
Inhibition [GAW19, MGVS14]. Inhibitor [CASP10, CCF10, CFS13, PZZ+10, ZHZ+16]. Inhibitors [ALB+19, CD11, HTZ+12, HL03, RBKJ19]. Initial [AN18, OJD+04, Ste14].
Initiation [CZNF19, HL16b, LJ05a, WOG03]. Injury [LL19a, LL19b].
Innate [LRNBJ10]. Innovation [WT07]. Input [Jus06]. Inputs [Fom19].
Insertion [DMP+06]. Insertion-Deletion-Like [DMP+06]. Insertions [BWS11, HSH+09, YF09]. Insight [LLJS19]. Insights [Elh11, MLC10, PV17, PDS06]. Inspired [AMK18, MPG+16, WI05].
Instance [ASZ+16]. Insufficient [LCY+05]. Integer [CCI+04, Gus10, HNTW09, LJ05b, Yin19, Zör15]. Integer-Programming [Gus10]. Integers [NL09]. Integral [TS96]. Integrate [WHC09].
Integrated [CAB11, DCS04, JEMF06, KP06, ZWQ19]. Integrating [AEH17, CW09, DOB95, GVTRS06, HS15, JM97, KS12, MLOT17, TXL+17].
Integration [BCG+18, BR12, FBV15, JBBW10, LZHC15, LYH+19, VV97, VV11, YY19, YJC18]. Integrative [FRD+17, GWL+19, MNK+09, PNMI15, ZLM+17]. Inteins [DMHM97].
Intelligence [DNZ17, DND+19, DNZ17]. Intensive [SEV09]. Inter [OYY+12, ZWY+17]. Inter-Barrel [ZWY+17]. Inter-Diploype [OYY+12].
Interacting [FR14, LLKX16]. Interaction [ACKK19, AKN+06, AHP12, BML+16, BSS13, BHK+10, CASP10, CDL+19, DZM+03, DGW+13, DSG+08, EBK11, FCS12, HXH16, HSH+09, HSBS10, HS14, JEMF06, KGLBK15, KKS+06, KKT+06, KSG07, LACB10, LAF+14, LWC+14, LSSD18, NK07, PK11, PNIM17, PMG+16, PX13, QSY09, QR13, RDR12, SIKS06, SDK16, SB17, SIK+05, SKS+09, SY07, SkY12, TXL+17, WHD13, Zhou17]. Interaction-Based [PNIM17]. Interactions [Ami12, BT08, BF09, CDL+19, FH18, GLMW13, KS12, KK11, KMCKS17, LBJM11, LLJS19, SMD+07, TBS+07, TTTL17, VB09, yWCF06, WHDN13, WSS+15, WYC+18, YLC+17, YFBK07]. Interactive [BP17, HAP12, RUGR18]. Interactome [FKZ09]. Interactomes [MTC11].
Interactomic [FRD+17]. Interchanges [LLCT05]. Interdependencies [BSB+17]. Interesting [MC10]. Interface [KV17, RUGR18].
Interface-Based [KV17]. Interfaces [CY17]. Interference [RPR+15].
Intermediate [LS08b]. International [Ber11, CSZ18, CSZ19, DMV17, DNZ17, DND+19]. Interoperation [Kar95].
Interpolation [LCL+17]. Interpretable [Geo09]. Interpretation [BWS13, KST96, RAC+06]. Interpreting [LRL+07, Neu14b]. Interruption [LS98]. Interspecies [LM03]. Interval [CLR+05, LABD+06, ZZ10].
Intuitive [KFC+11]. Invariant [SKG+00, ZRGHJ08]. Invariants
TE96, TMC+18, TH17a, Wag04, WFH18, Xu97, YZWZ13, ZH07, ZCK17. Large-Deviation [WFH18]. Large-Scale [ABL03, BBWE09, HSH+09, LAF+14, Ma11, PDZ+16, RLK+09, SSH+10, SGK+12, TE96, TMC+18, Xu97, ZH07]. Largest [ZPC+18]. Lasso [PNMI15, LFJ11]. Latent [SDK16, TLK+06]. Lateral [RS13]. Lattices [ABD+97, GP13, GWX18, HI97a, IS09, KMRG09a, RROF95, YTM17]. Laws [DHL00]. Layered [ALB+19, CD07, GE04, GAWI19, NBB18, PA03]. Level [FDDK07, LZS09, LBN94, LFT+98, PNIM17, RSR+09, VF01K8]. Levels [DMR+03, EHC+13, GSH17, PZH11, RMC+05, WAC08]. Levenshtein [DP07]. Leveraging [BT08, HKL07]. Libraries [DFS95, LMP08, MKKK+17, OB16, SZMS02, ZFBK09]. Library [ALB+19, CD07, GE04, GWI19, NBB18, PA03]. Life [KPW11]. Lifting [MW10]. Ligand [BHRV00, CRT+17, FL94, GZN16, LLJS19, LW12, PK11, PPV+14]. Ligand-Receptor [BHRV00]. Ligation [PLL00]. Like [DMP+06, HJD17, NSA08, SDDI+08, YZ08]. Likelihood [CKS06, CHJ05, DMB07, ET07, ITSH00, JS03, JGB12, MB09, SV07, SHE11]. Limit [GQ09, TA97]. Limitations [SLB+97]. Limitless [YYL19]. Line [Erd05, MA19]. Linear [Ale08, AB00, BMY01, BCC+09, CHM94, CFS+08, CGSW14, DM17, DFG06, DEH10, GHJ+12, Gui98, GSW16, HI97a, HP96, Jen09, Ker03, L05b, PDDJFT08, RCSS12, Shi10a, Shi10b, SF95, SLL+17, WAPM05, WW18, WW19, Xu10, XZ12, ZS17, Z+15]. Linearization [CHM94]. Linear-Time [BMY01, DFG06, ZS17]. Linearized [BSS11]. Linearization [VRS12]. Lines [HFUH19, IPH18]. Linkage [BG09, FG04, KL98, LWLJ10, RBE13, WMCO4]. Linked [GGM12]. Links [CJC01]. Lipid [RM+05]. Lipman [KS06]. List [MK16]. Listing [BSS11]. Lists [AFCN13, CJS15, LSR18, LL05b, NV12, PFRD05]. Literature [MK11, SF03, dJ02]. Live [TAMW13]. Liver [PdB13]. LMM
BBH+07, CY10, GDHC95, HSH11, JM97, JBBW10, LJK16, LVS+07, MS99, NS18, SJ18, SKSL97, SBAW07, VLL+06, Wan94, ŽZ15. \textbf{Margin}\[KBCBS11]. \textbf{Marginal}\[Ham12, LLKK16]. \textbf{Marker}\[Ros05]. \textbf{Markers}\[SLZ08, ZLM+17]. \textbf{Markov}\[BC94, Bal95, BP14, BV09, BP06, CB07, CL99, EMD95, ENS03, FDB18, GJM04, GCB15, Hea97, HSF97, HJ05, HKZ+04, HJ14, HW01, JEMF06, KMP08, KS05, KST96, LDW98, Mam96, NTMM06, Nue04, PAC02, PWKAF16, PRK16, QSY09, RNH18, RH19, RS98, RBE13, RLA+06, SG10, SPD95, Sch00, SH04a, WS04, WTE07, WX08, XK05, YH01, ZHS05, ZS11, ZM16]. \textbf{Markov-Modulated}\[GJM04]. \textbf{Markovian}\[BLF14]. \textbf{MAS}\[ZHQS05]. \textbf{MASH}\[CFB+07]. \textbf{Mask}\[MGSA06]. \textbf{Mass}\[BKKSD01, BBN11, BG06, Boc04, CJC01, CLM+18, DAC99, DB09, DGL+12, FNC08, HYY+10, KVM14, LFD03, LL05b, LC03b, MDTD06, PDT00, SHRB11, WTE07, XK05, YH01, ZHS05, ZS11, ZM16]. \textbf{Mass-Spectrometry}\[KVM14]. \textbf{Massive}\[FHS00, NBB18]. \textbf{Massively}\[FHS00, NBB18]. \textbf{MASTtreedist}\[HL13]. \textbf{Match}\[BG98, KV19, NK07, RJS02]. \textbf{Match-and-Split}\[NK07]. \textbf{Matches}\[AMOW10, BS98, BLF14, DS12, LM03, OK08, RSM06, SRV98]. \textbf{Matching}\[AMW07, AO15, BG97, BG17, DR17, GGU13, KCT+01, CLM+18, DAC+99, DB09, DGL+12, FNC08, HYY+10, KVM14, LFD03, LL05b, LC03b, MDTD06, PDT00, SHRB11, WTE07, WX08, XK05, YH01, ZHS05, ZS11, ZM16]. \textbf{Mate}\[DWS05, MPC+11]. \textbf{Mated}\[CBH+12]. \textbf{Material}\[KKS+15]. \textbf{Maternal}\[LWN+18]. \textbf{Mathematical}\[BGH+08, CKL+17, Dei19b, Gu01, Kru17, PZZ+10, RRKT07, SMKS96, Tak96, ZTW05]. \textbf{Mating}\[CK10]. \textbf{Matrices}\[Bal95, CCR18, CD07, DGH+01, ENS02, FLS94, KFT07, KC96, LMT01, LZ10, MP11, WNMB99]. \textbf{Matrix}\[ÂMR07, AMK00, AZ14, GGU13, Ham12, HJ12, Huo08, IM14, JPR06, JWH10, KMK17, LWZ18, LK18, MWZ19, PRS08, WHDN13, Zho10, ZH07, ZZ15]. \textbf{Matroid}\[RBO15]. \textbf{Max}\[LTH11, LTH+08, Ser15, War95]. \textbf{Max-Convolution}\[Ser15]. \textbf{Max-Gap}\[Ser15]. \textbf{Maximal}\[AFCK09, GPP+11, KLW06, OK08, PFWZ17, Voo14, WZ10, ZZ10]. \textbf{Maximization}\[FVTH03, GGM12, LG+09, NBC+11, WHD15, YJC18, ZCH+13]. \textbf{Maximizing}\[HA12, IKL+03]. \textbf{Maximum}\[AMDY11, BCL17, CCI+04, CMLTU14, CFR12, CKS06, DMB07, EMD95, HSD05, HCC05, HV09, HL13, ITSH00, JS03, MP11, MB09, RNB13, SPD18, SV07, WTM11, WS04, YB04]. \textbf{Maximum-Likelihood}\[ITSH00]. \textbf{May}\[LSRR18, YBF19]. \textbf{Maze}\[Let95]. \textbf{MCAT}\[YRG+19]. \textbf{MD}\[Ano00]. \textbf{MDA}\[NBA13]. \textbf{MDC}\[YWN11]. \textbf{MDC-Based}\[YWN11]. \textbf{MDM2}/\textbf{MDMX}\[CY09]. \textbf{MDMX}\[CY09]. \textbf{MEA}\[HA12]. \textbf{Mean}\[AT12, GK06, KFC+11, TSTS12]. \textbf{Mean-Field}\[GK06]. \textbf{Meaningful}\[ZW19]. \textbf{Means}\[RAC+06, TEMM12]. \textbf{Measure}\[CC03, DAE+19, NV12, OYY+12, SKT08]. \textbf{Measurement}\[DMR+03, LDW+14, PK19, RD01, SDFR16]. \textbf{Measurements}\[FL94, SMD+07]. \textbf{Measures}\[ACL15, DKA+17, EMV98, GKB00, GMY10, LS04, MSBR08, MHS06, PGA+11, SG15, SRF16]. \textbf{Measuring}\[CN17, CKZ+19, HHP+09]. \textbf{Mechanical}\[SLO07]. \textbf{Mechanism}\[JRHN09, KB12, WXY+13, YK19]. \textbf{Mechanisms}
DS04, EdCK+12, FPD13, FA12, FL17, GVTS04, GE14, Gu01, HD10, HLL13, JB10, KAS09, KV08, KG09, LSL+16, MMKH15, MV00, NW05, PdB13, PCS18, PRC+13, RZK06, RMK+18, Rot19, SGT15, SMKS96, SB17, SAM06, STP18, SHMS08, Sun99, TS04, TKW08, Tra19, VRS12, WH01, yWCF06, WWZY19, WY95, WLF13, YY19, YJ06, YB04, ZML07, ZLTS13, ZPD+10, dJ02. Modelling [Ben98, MMHC98]. Models [AJYJ18, AGH+18, Ar06, BC94, Ba15, BH15, BP14, BMS10, BP06, BFP13, CKT16, CCF10, CHJ05, CLDG03, CP19, Del19b, DJK99, DJK00, DCH09, EMD95, FDB18, GGU13, GW06, HVD17, Han09, HNTW09, HP96, HLC10, H1L06, HJ05, HW01, JPB+15, JGB12, KGLBK15, KS12, KK11, KMP08, Ker03, LAL06, LCGW09, LLW18, LP00, Mam96, MZC18, MZM18, OC00, PAC02, PTWB09, PS12, PD16, PWKAF16, PdJFT08, QSY09, RNH18, RROF95, RGM12, RM00, REBE13, SPD95, SLO07, SK13, SH04a, SV07, VCS11, WAPM05, WJ14, WIJ11, Wm05, WG08a, WS04, WGw+01, WI05, WTE07, Wu08, XK05, YY18, YJ04, YH01, YJEP08, ZHS05, Zho10, ZH14, ZS14, Zür15].}

Modelling [Ben98, MMHC98]. **Models** [AJYJ18, AGH+18, Ar06, BC94, Ba15, BH15, BP14, BMS10, BP06, BFP13, CKT16, CCF10, CHJ05, CLDG03, CP19, Del19b, DJK99, DJK00, DCH09, EMD95, FDB18, GGU13, GW06, HVD17, Han09, HNTW09, HP96, HLC10, H1L06, HJ05, HW01, JPB+15, JGB12, KGLBK15, KS12, KK11, KMP08, Ker03, LAL06, LCGW09, LLW18, LP00, Mam96, MZC18, MZM18, OC00, PAC02, PTWB09, PS12, PD16, PWKAF16, PdJFT08, QSY09, RNH18, RROF95, RGM12, RM00, REBE13, SPD95, SLO07, SK13, SH04a, SV07, VCS11, WAPM05, WJ14, WIJ11, Wm05, WG08a, WS04, WGw+01, WI05, WTE07, Wu08, XK05, YY18, YJ04, YH01, YJEP08, ZHS05, Zho10, ZH14, ZS14, Zür15].

Modes [BS09, CZNF19, SVK10]. **Modification** [BG08]. **Modifications** [Yua09]. **Modifying** [LSAD05]. **Modular** [FS08, PVFB06]. **Modulated** [Yua09]. **Modifying** [SKP12]. **Module** [RBOS15]. **Modules** [LDLZ12, NSK09, SS05a, WT17, WX08]. **Molecular** [ARRW99, AMW07, ALB+19, Ano11b, ABG+03, AG08, Baf11, Ber11, Bet10, BGJ+04, CR09, CSA08, CFS06, DSV12, GJM04, GRM09, HP96, KLV+13, KFC+11, LGD+19, Lie05, LHL16, MR95, Mar95, MK06, MMS95, OSK+15, PA03, PS11, RAKL10, RMWC16, SVA+19, Sun13, SGCD19, TYSX19, WPL+19, WDA01, YK19, Zha97, ZYB+04]. **Molecule** [AWM+17, SSPNW06]. **Molecules** [CFR12, DHY02, GKK98, QMMW11, SDD+08, SKG+00, Sun18, WGL08]. **Moments** [DM17, GRM09]. **Monotony** [ABL03]. **Monte** [FDDK07, Hea97, KST96, LDW98, L1T06, LSH04, NTTM06, XK05]. **Morphogenesis** [MMPS18]. **Morphologies** [MFJ+19]. **Mosaic** [BBP10]. **Most** [MBRS11a, SP11]. **Motif** [AOH16, AP04, BG98, Ber95, BS97, BFL05, GPP+11, KEL13, KPB+04, KV19, LR05, Li09, LCGW09, MC10, MTH11, MKBC05, MVP06, Nic01, OMS13, PWFZ17, RBH05, Ste14, TKW08, Tay94, TH17a, TH17b, YRG+19, ZCH+13, ZS11, Zho10, AOH16, AL07]. **Motif-Based** [BFL05]. **Motif-Biased** [Tay94]. **Motif-Sets** [MC10]. **Motifs** [AL07, BG97, BG15, BT02, CFB+07, CA12, DSN14, FK06, GGU13, HVPBK13, HLH04, HZGD05, HBW+05, ISB12, HJS06, LN01, LCY+05, LBJM11, Ma08, MS00, MPVZ05, NBG+02, NTM06, ODPR18, Par07b, PDK+08, PSCP09, RDR+02, RL94, SPD95, Sin03, TML+02, VLZUBK07, WMC14, WZZU07, XK05, YB04, ZHS05]. **MOTIFSIM** [TH17a, TH17b]. **Motility** [Ben98, HD10]. **Motion** [AS02, ADS03, ABG+03, GRM09, TKT+05]. **Motions** [Sun18, TTTA07]. **Motivation** [BFK+11]. **Movement** [LLS11b]. **Movements** [GH16]. **mRNA**
[BWGM17, GT16, RH19, WP11]. Mutations
[DT12, FSD+14, JAG17, NLC17, OSK+15]. Mutual [ZZ14b, ZWD+04].
Mutually [CKB17]. Mycobacterium [YM06]. Myeloid [OSK+15].

n [KAD+19, JGL11, Lat99]. N-Labeled [JGL11]. N5 [RBKJ19]. N5-CAIR
[RBKJ19]. naiveBayesCall [KS11]. Narratives [HAP12]. Native
[ADS03, FvdBB16, PGAE04]. Natural
[ALB+19, CS03, GGM12, LY99, ML10, WTY19, YS10]. Near
Necessary [PABE+10]. Need [ZFZL03]. Negative
[BFK+99, CC11, GQ09, LWZ18, WA10, YY19]. Negative-Coregulated
[CC11]. Neighbor [ABH03, CHJ05, GM07, KBG18, STV96].
Neighbor-Dependent [ABH03, CHJ05]. Neighborhood
[DGW+13, FCS12]. Neighbors [BIPD17]. Neogenin [BSB+05]. Nervous
[FYJ18]. Nested
[AMTY11, BFS10, DMTV09, MTH11, MA13, RRGC95, SMKS96, dMRR14].
Net [Guo15]. Network
[ACKK19, AMTY11, ADD+07, AEH17, AC17, BB15, BDBB10, CDL+19,
CCPT17, CSP+12, DMDR17, DCD19, DHY02, DT13, EZFP+19, FHZD17,
FPD13, FP11, FRD+17, FND+09, FJAOB18, FBV15, Fre11, GQ09, GW06,
GSV+11b, GSV+11a, GDL+15, GLM16, HHZ+18, HVAW04, HHL06, HSB10,
HAP12, HYJ+19, IFT14, ITdB09, JEMF06, JPB+15, JK96, JOS96, JBM15,
KSS09, KLV+13, KDL+94, LDS12, LLH19, LDLZ12, LZBK15, LLS+19,
LL19a, LYH+19, LMT01, LLB+16, ML04, MGVS14, MC16, MNK+09, MA13,
MDL+18, MR08b, Mye96, OJOD+04, OSK+15, PS12, PDK+08, PRC+13,
PCC+11, Rot19, SIC+09, SM09, SCSA+16, SSZC95, Sun18, Tak96, TNSS13,
TBS+07, VND17, WJD14, WYC+18, XAB+15, XL18, YJL04, ZH14, ZZ15].
Network-Based [FJAOB18, KSS09, VND17]. Network-Guided [ZZ15].
Network-Induced [LDS12]. NetworkProfiler [PSIM18]. Networks
[AMK00, AA18, AKH08, AK08, AFCK09, BBN11, BHL+18, BB15, BCPS04,
BML+16, BFL05, BSS13, BK08, BG15, BF09, BHK+10, CR09, CGT12,
CCYH18, CW13, CT07, CLDG03, CUP19, DCD19, DSG+08, EBK11, FCS12,
FDSdSR+15, FT07, FLNP00, GMC+14, GK18, GVTS04, GVTR06,
GMF+08, GBR17, GYZ19, GKM+10, GMSZ12, GBBS07, GBG15, HMY+14,
HHX16, HKS08, HNTW09, HSH+09, HAP12, HS14, JTSB10, KBS09, KW14,
KSI2, KIYM13, KW06, KKI18, KKS+06, KKT+06, KSG07, KFR04, LACB10,
LST+17, LL05a, LSSD18, LCD11, LBDVF10, LRT15, MZS+17, MPG+16,
MSMF09, MWR16, MTHY10, Nai18, NK07, NSMV18, PMCB08, PSIM18,
PS12, PZMM15, PSB17, PDIJFT08, PFRD05, PX13, QSY09, QGP10, RC14,
RC15, RZK06, RK06, RDR12, RMC+05, RNI+06, SMS13, SG10, SVK10,
SLA12, SIKS06, Ser15, SES11, Sol09, SVL+10]. Neural
[SY07, SkY12, SPCh98, TINK98, TMC+18, VRS12, Wag04, WZZ01, WHD13,
Wu13, XvdL05, YS07, YDN12, YE02, Zha16, ZH14]. Neural
Neuronal [URB+19]. Neutral [DT13, JGB12]. Next [AB16, AR17, Boe18, BVP+16, FSD+14, GCB15, JAG17, KBFK17, KMM17, KAD+19, LYP13, LZ12, NP09, RUG18, SRZ+13, WCL+18b, ZPB+10, ZZ14b]. Next-Generation [AB16, AR17, Boe18, BVP+16, FSD+14, GCB15, JAG17, KBFK17, KMM17, KAD+19, LYP13, LZ12, NP09, RUG18, SRZ+13, WCL+18b, ZZ14b]. NF [LZBK15]. Neutral [DT13, JGB12]. Next [AB16, AR17, Boe18, BVP+16, FSD+14, GCB15, JAG17, KBFK17, KMM17, KAD+19, LYP13, LZ12, NP09, RUG18, SRZ+13, WCL+18b, ZZ14b]. Next-Generation [AB16, AR17, Boe18, BVP+16, FSD+14, GCB15, JAG17, KBFK17, KMM17, KAD+19, LYP13, LZ12, NP09, RUG18, SRZ+13, WCL+18b, ZZ14b]. NF [LZBK15]. Neutral [DT13, JGB12]. Next [AB16, AR17, Boe18, BVP+16, FSD+14, GCB15, JAG17, KBFK17, KMM17, KAD+19, LYP13, LZ12, NP09, RUG18, SRZ+13, WCL+18b, ZZ14b]. Next-Generation [AB16, AR17, Boe18, BVP+16, FSD+14, GCB15, JAG17, KBFK17, KMM17, KAD+19, LYP13, LZ12, NP09, RUG18, SRZ+13, WCL+18b, ZZ14b].
NP-MuScL [PX13]. nt [Böcö4, HMY+19]. Nuclear [BZMM16, BDBB10, LYI+04, LLWZ19, WMD06]. Nucleic [CCJ09, CFH13, JMEB18, MKKK+17, RC07]. Nucleolar [BT08]. Nucleosome [YI17]. Nucleotide [ACBM18, BLR16, Boe18, CZNF19, EZFP+19, FSD+14, GJZ06, HXL+17, Kno99b, LWN+18, MNG+15, RS12, RKTS14, RSR+09, SCB14, SFC11, SSL+17, WCL+18b, WLF13]. Nucleus [Kha14]. Null [MG06, SFA17]. Nullomers [TZHR14]. Number [AP10, ACBM18, AFR+08, CHP94, CD18, CKZ+19, CQG10, DLM10, GP13, HG11, IKL+03, Lai12, LCY+05, LABD+06, PRSV08, PNIM17, TT12, WCM+08, WLYC12, WHY+13, WV11, YDN02, ZEKR18, ZZS17]. Number-Driven [PNIM17]. Numbers [APA17, ZB15]. Numerical [AO08, CWYB16, CF97, Geo09, RS01, Ser15, SS01, YY18]. Nussinov [Clo05].

[CCF10, CD08, CDKL09, DHM+05, HL03, KST96, LGD+10, SBAW97].

POPSTR [ACBM18]. Population
[ACBM18, BG11, DSV12, GZN16, MRS+18, NHZ+15, OYY+12, PMAP13,
Ros05, RLA+06, SSL08, SSIP+19, YMZ+12, ZW07, ZKT14]. Populations
[AV18, BGTSB98, BG09, GNME01, Gus01, LWLJ10, SDG+07, TMC+18,
WSS03]. Portable [RGL94]. Poses [PPV+14]. Position
[GGU13, LLW18, PRSV08, RJS02, ZCH+13]. Position-Specific
[RJS02]. Positional [BDPSS01, YS99]. Positioning [YI17]. Positions
[CGOT10]. Possible [KFC+11, WHC09]. Post [KV08].

Post-Transcriptional [KV08]. Potency [HH14]. Potential
[AV18, BGTSB98, BG09, GNME01, Gus01, LWLJ10, SDG+07, TMC+18,
WSS03]. Portable [RGL94]. Poses [PPV+14]. Position
[GGU13, LLW18, PRSV08, RJS02, ZCH+13]. Position-Specific
[RJS02]. Positional [BDPSS01, YS99]. Positioning [YI17]. Positions
[CGOT10]. Possible [KFC+11, WHC09]. Post [KV08].

Precedence [RG95, Ves12]. Precise [PWT18]. Precision
[HTH+17, PYG+19]. Predict [BF98, CZNF19, CAB+07, LJ05a, NXL+15, TVNP15, Yan09]. Predicted
[BF98, Gui08, KKW10, SS04, YYY+09, Yua09]. Predicting
[AWZ+17, AS11, CBM+02, DMYH02, FADH17, HZNF06a, HZNF06b, IKL+03,
KSS09, LJK16, LXYC09, Lie05, LSSD18, PPK97, SSB07, WHDN13,
WYC+18, Wu96, YLCC17]. Prediction
[AP10, ADPH15, AKN+06, ASZ+16, BL02, CFB+07, CCJ09, CW09, CAB11,
DMHM97, DQS+11, DVS19, DZM+03, DCQ04, DGW+13, DBT11, DCL18,
DOKT05, FYJ18, FHS00, FSD+14, FK06, FBV15, Ge95, GB06, GJZ06,
HI97a, HKL07, HHP+09, HCS09, HH14, HFFUH19, JCZ08, JLY08, JRH+10,
KWM10, KAS09, Kha14, KNS14, KKK18, LKB16, LNB94, LGC+09,
LZW18, LQPE+10, LP00, MMG14, MWZ19, MK11, MRM+02, MS03,
MBW10, MPV06, Nai18, PMG+16, PX13, RMS02, RK96, SLO07, SZMS02,
SKT08, VILR10, VA17, WAPM05, WHD13, WHD15, WT17, YTM17,
YCC18, YSFW08, YM06, ZGEZu11, ZWY+17, ZYB+04, Zho17, dGFMS16]. Predictions [CEJM16]. Predictive
[FPD13, KVM14, KW+13, SKP+12, SV19, WYY+18]. Predictor
[JR16, YLD+18]. Predicts [NCW17]. Preface
[Ano10a, Ano11b, Ano17, Apo07a, Apo07b, Baf11, Ber11, CSZ18, CSZ19,
CKS12, CKS13, CMS12, Cho13, DMV17, DNZ17, Gus05, HHC17,
HASL18, JWP15, KCBJ11, Len02, MVJR19, Miy06, Pev98, PS11, Prz16,
Sah18, Sha00, Sha15, Spe08, Sun13, TD08, VRCG18, WIP97]. Preferences
[LBBV+18, SLYC09, ZCH+13]. Prefix [BVP+19]. Premises [KAD+19].
Preprocessing [AR17, DGFMSS16]. Preprocessor [RHY+04]. Presence
[AJA+16, HG05, KYTE10, TZHR14]. Present [SCH09]. Preserve [BP06].
Preserving [BDCKY03]. Pressure [BGWM17, WP11]. Prevalence
KDL+94, KKK18, LJK16, LNW01, LSHL04, MBK+03, OC00, PGAE04, PCGBK13, PDSD06, SKP+12, SF12, STV96, TGT08, TS96, WAPM05, WF12, YE02, YFBK07, YM06, ZFBK09.
Proteome [CAB11, GE17].
Proteomic [KVM14, LFD03, MDTD06].
Proteomics [CAB11, LAL+09, WZH+18].
Protocols [FDB18].
PROuST [CGZ04].
Provable [HD16, JJDG16, OJFD18].
Provably [Buh03, TAA16].
Provides [PV17].
Proximal [SKP+12].
Proximity [LPW05].
Prune [KLM11].
Pruning [MBRS11a].
PseRat [AWZ+17].
Pseudo [AFRV07, CHJ05, LGD+10, WMC04].
Pseudo-Boolean [AFRV07].
Pseudo-Likelihood [CHJ05].
Pseudo-Symplectic [LGD+10].
Pseudo-Test [WMC04].
Pseudogenes [MSB+10, SCH09].
Pseudoknot [HR08, HPR09, LP00, MR08a, NRW11, NW12, RW10, WLS+11].
Pseudoknots [IKL+03, MWB10, Rd06].
Pseudoknotted [HDBZ08, RC07, SRSD11].
Pseudorabies [STP18].
PSI [AMOW10].
PSI-BLAST [AMOW10].
pSuc [AWZ+17].
pSuc-PseRat [AWZ+17].
PTEN [JR16].
PTEN-related [JR16].
PTENpred [JR16].
Pulsed [DCD19].
Pure [GLMSO10].
Quantification [DBL+12, HHJ+13, IPH18, STHG+08, WYT12].
Quantified [CRB18].
Quantify [LWLL19].
Quantifying [CLS11, CHK+02].
Quantile [LVS+07, WA10].
Quantitative [CFE+13, CC03, CH15, GAWI19, LHCO2, LQPE+10, Mal98, MP94, NMH13, RLH13, SMD+07, TEMM12, WXS14, ZF05, ZYS+04].
Quantities [CAB+07].
Quartet [AS19, SWR08].
Quartet-Based [AS19, SWR08].
Quartets [BDCG+98, GMY10, LC09].
Quasispecies [TZP+13].
Query [Shi07].
Querying [BK10, BHK+10, DSG+08, FP11, OAH94, QSY09, ZCK17].
Quest [ABL03].
Questions [Ma11].
Quick [PZC05].
Quorum [MMKH15].

QGB [OAHA94, SG94].
QNet [DSG+08].
qp [CR09].
qp-Graphs [CR09].
QSAR [ALB+19, ZYB+04].
Quadratic [WW18].
Quadruplex [GWL+19].
Quality [APVM11, GLM+09, MFJ+19, RUGR18, ST02a, SH04b, SRT08, Tos05, VF0K18].

R [BP17].
R2KS [NV12].
Raceway [JB10].
Radiation [ASZ+16, BDC97, Hen97, SKSL97].
Radius [TVNP15].
Ramanujan [YYW14, ZWJ18].
Ramanujan-Fourier [YYW14].
Random [AZ14, AFCK09, BKCP05, BV09, BG15, BT02, CK10, DAL+08, JD05, Jus06, LCWG06, MD01, MBLZ09, Par10, FFRD05, RS01, RDR+02, RLK+09, SH06, Sch97a, SD05, WG08b, WXLJ08, ZXS07].
Random-Graphs [Par10].
Random-Walk [MBLZ09].
Randomized [DC16b].
Range [DPHH05, HATH11, MBVA07, MDB11, RH19, YY18].
Rank
[KSSK09, ZCh+13]. Ranked [AFCN13, CZS15, NV12, SRF16]. Ranking
[BKT09, BG08, FdSdSR+15, TPH+09]. Ranking-Based [TPH+09]. RAP
[OMS13]. Rapamycin [ZZNM15]. Rapid [Bun02]. Rapidly
[KASM08, YCP16]. Rare
[AWM+17, FSD+14, JAG17, KLS15, KKK18, LS17, OK08]. RareVar
[HXL+17]. Ras [OJOD+04]. RASCAL [DC16b]. Rate
[DT12, DGH+01, GF16, KC96, LM03, WZCS00, ZHQS05]. Rates
[ALR18, CAB+07, CHJ05, CLM+18, LTTS12, SSH94]. Ratio
[HLK+13, SHE11]. Ratios [AWZ+17, BLR16, NKR+01]. Raw [RBK94].
Ray [NS18, KAC17, BLC10b]. RB [LS08a]. RB-Finder [LS08a]. RDA
[ZZL+17]. RDCs [MYBK+11]. rDNA [RPS02]. Re [Ale08, GST10].
Re-Evaluating [GST10]. Re-Uses [Ale08]. Reaction
[Aku04, CH15, FA12, Kru17, LSAS03, RLH13, Sol09, Sun95, WZCS00, WV95, YY19, ZF05]. Reaction-Diffusion [FA12]. Reactions
[CLM+18, HLMR11, KM08, Pia02, YY18]. Read [ETLK19, HWSH18, KSSK09, SFA17, SSLMW10, WHY+13, WHL17, ZGRB10]. Reading
[WGL98]. Reads [AWM+17, BBC16, BLC10b, CEJM16, CBH+12, CWL13, FLJ11, GHM+10, JDK+18, KBKF17, MV19, NBC+11, PMP+15, PAS+13, SMZ+12, SRZ+13, TYSX19, WLYC12, ZRS+12, ZWT18]. Real
[CH15, GMC08, HG18, RLH13, YS19, ZF05]. Real-Time
[CH15, GMC08, HG18, RLH13, ZF05]. ReAligner [AM97]. Realignment
[DK18]. Realistic [CLS11, MSMF09]. Really [SPBB15]. ReArrangement
[AS10, AFRV07, BCC+09, BMS10, BBH+07, FCV+07, KWBS11, Kov14, Lu15, MHS06, Par06, SB98, ST05]. ReArrangements
[Ale08, CMvH15, CP19, LM11, MZC+18, OB10, SB99]. Reasonable [YY18].
Reasoning [Hua15, LBN94, MD00]. Receiver [YY18]. Receptor
[BHRV00, BC94]. Receptors [FL94]. Reciprocal [OFS07]. Recognition
[Ber95, BS97, BRR06, CC06, Che04, Con04, GPAR96, GLJW09, KWM10, LCWG06, LCGW09, LLW18, MKBC05, Mil95, SNW98, SP97, WOG03, WSL18, WLC18, XLZ13]. Recognizing [Far97, MKBC05, SZZ12].
RECOMB [Ano11b, Baf11, Ber11, PS11, Sun13, Ano09b, Ano10b, Ano17, CKS12, CKS13, CKS14, CKS15, Cho13, Gus05, Len02, MV04, Miy06, Mye03, NV09, Sah18, Sha00, Wao09]. RECOMB-CG [Ano11b]. RECOMB/ISCB
[CS14, CKS15]. RECOMB’97 [WIP97]. RECOMB’99 [Ist99].
Recombinant [LJ05b]. Recombination
[BB06, GF16, GM96, HW01, LTI10, LS08a, MWP00, PRKG16, SH05, SDG+07, TEP+13, WZZ01, Xu08, YCP16, YFBK07, ZGBK10].
Recombinations [PMCB08, Par10]. Recommendation [FYJ18].
Reconciled [BBWE09]. Reconciliation [BAK13, VSGD08].
Reconciliations [DCH09]. Reconciling [BAK13]. Reconstruct [Mat10].
Reconstructability [Par10]. Reconstructing
[ASL06, CCYH18, GSN11, MRR+08, Ma11, Mos03, NWLS05, QGP10, SK13, SS05, SSH04, TBKR10, VBSS10, Wun04, XSS08, ZB16]. Reconstruction
[AV18, ARS17, AZ11, AK08, AJA+16, BV09, CHS10, CFS+08, DJK+00,
DG02, DHV06, ET07, Fom16a, Fom16b, Fom19, Fre11, FPU99, HWH+13, HP97, HV09, HNW99, JBM15, KLKH11, LC09, LTI10, LKW04, LL11, LHC09, LRM11, MGVS14, OSK+15, OR14, OFCLH11, PS12, PRT08, RG95, SMS13, SZW+09, SWR08, SZUP06, TBP+13, UBTC06, ZGRB10, ZSV+09.

Rigid [CA12, HJD17, KC18]. Rigidity [SJ18, TTTA07]. Rings [DS19].
Risk [BZ08, GSH17, KLS15, WCL+18b, WNMB99]. Risks [SVP19]. RMS
[YK05]. RMSD [Shi07]. RNA
[ABF+04, AKN+06, AHP12, AJV+16, BCT+07, BTZ06, Bar04, BHGCS11,
BLR16, BBV+14, BFK+11, BCA15, CA15, CCPT17, Clo05, Clo06, DDA+11,
DS19, DC16a, DLD+14, FHS00, FvdBB16, FR14, FH18, GSCG19, Ham12,
HR08, HDBZ08, HR12b, Han09, HTZ+13, HPR09, HHJ+13, HVS96,
IKL+03, JCC08, JHS06, JLMZ02, JTL+10, JRH+09, LSBS18, LRV98, LFJ11,
LPC08, LP00, MR08a, ML0T17, MBW10, MZS+00, MM19, Neb02,
NRW11, NW12, OB16, PZH11, PV17, Qi13, RPR+15, RW10, Rod06,
SGdMT12, SGT15, SRSD11, S013, SC15, SH17, SPBB15, SLC09, SPC19,
TBL18, TKT+05, VLZUK07, WC07, WP11, WHL17, WZZU07, WLS+11,
WY12, WLA+18, YYJ19, YB04, ZGEZu11, ZU14b, ZUGVWS10]. RNA-
[JRH+09]. RNA-RNA [AHP12, FH18]. RNA-Seq
[BBV+14, DC16a, HTH+13, LJG11, MM19, SH17, SPBB15, AGR+16,
CCPT17, LSBS18, PZH11, TBL18]. RNAs [FH18, RPW13, SB07]. RNN
[PVFB06]. Roadmap [ABG+03, CAB+07]. Robinson [PGM07, ZZ14a].
Robotics [AMK18]. Robotics-Inspired [AMK18]. Robots [dGFMS16].
Robust
[BDN19, BGJ+04, GSCG19, H97b, HHJ+13, Met06, PYIM19, SO10, SDC+10].
Robustness [DLL+12, DCSE11, GT16, GSV+11a, KWB+13, LR111,
SDFR16, SHB+03, SY10]. Role
[AEB+04, BET00, GPOP+17, Kha14, LLZ19, SCB14, SDG+07, YY19].
Roles [CXW16]. Room [Tan11]. Root [KFC+11, TSTS12]. Rooted
[HMU06, JR17, JRS19, KLM11, Prz98, SLA12, YWN11].
Rooted-Unordered [HMU06]. Rotamer [HJD17, ZRZ11].
Rotamer-Like [HJD17]. Rough [Hua15]. Rough-Set [Hua15]. Rounds
[FH02]. Route [Elh11, YLY19]. Routes [BK08]. rRNA
[CDH+16, MP16, RKT514]. rRNAFilter [WH17]. Rule [MS03].
Rule-Based [MS03]. Rules
[ABD+97, Aku04, BK08, GST10, KVM14, WCL18a]. Run [FHK11, YZ08].
Runs [Che04].
S. [WHW+06]. Saddle [RC06]. Safe [TM17]. SAGE [CLSW02]. SAL
[SAL09]. Salmonella [MYH09, VSA+19]. Sample
[BFT04, HAT11, HTZ+13, MGW+07, MZC+18, PYIM19, RH19, SDC+10,
VRU16, WC04, ZGRB10]. Sample-Based [MZZ+18]. Sample-Specific
[PYIM19]. Sampled [AMK18]. Sampler [BHHR19, Kei06, Neu14a].
Samples [DMW+17, FPR18, GM96, Gus01, JG11, KYSE10, KDB+02,
ZEKKR18, ZKT4]. Sampling
[AL70, BHHR18, CZC10, CP05, GNI12, GC15, Lar06, MBRS11b, NK11,
NDMK17, PWFZ17, Ste14, TML+02, WC07, WP11]. sapiens [YLD+18].
SAR [BKKS01]. SARS [YGP05]. Satellite [AEB+04, PS11, A01].
Satellites [SM98]. Satisfiability [MA13]. Satisfying [Mat10]. SATrans [KBC19]. Saturated [Clo06, WC07]. Saudi [MRS+18]. SAXS [DKC15]. Scaffold [BDKSS03, CDH+06]. Scaffolding [BHPS99, RCSS12]. Scaffolds [GSN11]. Scalable [GLM+09, KMP+04, LCG18, OSK+15, RC15]. Scale [ABL03, BBWEO9, GMC+14, HSH+09, HQ06, KW06, LAF+14, LLS+19, Ma11, MZM18, PdB13, PDZ+16, RGM+12, RLK+09, SSH+10, ST02b, SGK+12, TE96, TMC+15, XU97, ZH07]. Scale-Free [KW06, LLS+19]. Scaled [LLWZ19]. Scales [FA12]. Scaling [DHL00, GLMW13, HLL13]. Scan [TTTL17]. Scanning [NFJ13]. Scattering [KAC17]. Scenarios [BCC+09, OB10]. Scheduling [CLR+05]. Schema [HMY+14]. Scheme [BDKS00, MBRS11b, TPH+09, VFOK18]. Schemes [SGYBD05, WLFW03]. Schmidtea [FCR+13]. Science [HTH+17, Ist19]. Score [BG97, BMWG04, GW94, IJCL12, Kei05, MD01, MBVA07, RDH04, VFOK18, Jus01]. Scores [BG98, BG02, KW14, KC96, LBXL11, LABD+06, MLS+12, RJS02]. Scoring [AA18, BRSS99, GT06, JM95, JDSB04, LSAD05, LW12, RAC+06, TG08, WLF03, WNMB09, ZBM98]. Screening [ALB+19, CD07, CC09, GAWI19, ZYD+19, ZHS05]. Screens [FCR+13, GNI12, SSH+10]. SCRFs [LCWG06]. Seamless [KAD+19]. Search [AKN+06, AMOW10, Bar04, BZW+00, BBD+04, BWGM17, Buh03, CB07, CCG06, Cha01, CZW+19, CYY09, DMDR17, DC16a, DCD19, FDB18, Gru98, HD16, HS15, HSL07, IP09, JHA16, Kon07, KP01, LTHC11, LSAD05, MPVZ05, MD03, NBB18, PZC05, RGL94, SCSA+16, SK18, SM04, SB05, STTS12, VLZUBK07, XBLM06, YLCC17, ZWZ16]. Searching [BZ08, FNC08, NR03, PSCP09, RL94, Shl10a, Shl10b]. Second [Rot19, DMV17]. Second-Generation [Rot19]. Secondary [BKWK+00, Bar04, BLR16, BRZH15, BIPD17, Clo05, Clo06, ES06, FK06, HR12a, HR12b, IKL+03, JC08, JTL+10, KK01, KX06a, KX06b, LBN94, MVP06, MZS+00, MN15, Nebo2, RC07, RK96, Rod06, SGdMT12, SLB00, SPC19, SK08, TT06, WC07, XK05]. Secretion [FL94]. Sectional [BRD+05, RV15]. Secure [ZWT18]. Seed [YZ08]. Seed-Like [YZ08]. Seeds [BCA15, Kon07, NM14, PZC05, SB05, XBLM06, YZ08, ZF07]. Segment [SFN97, Wu96]. Segment-Based [Wu96]. Segmentation [BLQ04, LCWG06, Pic08, RMRT00, SLB00, YHC19]. Segmentations [DCSE11, ZW19]. Segmenting [Kei06]. Segments [IP09, SBC+05, WWZ+16]. Segregating [CGI+07]. Select [KSSK09, Li08]. Selected [Ane17, DMV17, DNZ17, DND+19, HHC17, HTH+17, Sah18]. Selecting [DMTV09, G1A+04, MG06, HS06, RS12, Ros05, Wu99]. Selection [BMR+19, CY09, CYLY12, CS03, COL+18, EOD+18, FdSdSR+15, GGM12, GT16, GLM16, HSF+00, KLS15, Kon07, LKB16, LS17, LSG04, LCW16, LWLJ10, MRM+02, PNM17, PY19, PZC05, RS12, RLK+09, SMC+15, SZTW12, VND17, Zor15]. Selective [DT13, ZGBK10]. Self [Jos96, MSS10, RRF98, SAM06, YE02]. Self-Assemblies [MSS10]. Self-Assembly [SAM06]. Self-Consistent [RRFS98]. Self-Organizing

Sensing [AZ11, MMKH15, RPR+15]. Sensitive [Buh03, HB11, ISB12, KBG18, MM19, YK05, ZF07]. Sensitivity [CDC+11, FDDK07, HFUH19, MD03, SJ18]. Sentence [DAE+19]. Separating [DS12]. Separation [CRT04, GMY10, IFT14].

seq [HHE13, BBV+14, DC16a, HHJ+13, LFJ11, MM19, SH17, SPBB15, XZ12, ZCK17, AJV+16, BR12, CCPT17, LSBS18, PZH11, TBL18]. Sequence [AI12, AWZ+17, AL07, AM97, AG98, ABH03, AMRW96, AMOW10, AHK+02, BLP16, BDN19, BWS13, Ben97, BS98, BET00, BL02, BFL05, BT08, BMWG04, BCA15, Bum02, CBW07, CHP94, CZW+19, CBM+02, Dew01, DPR97, DMW+17, DHL00, EMD95, FLJ11, FT07, FPU99, Ge95, GNME01, GKB00, GYD+15, GK95, HD16, HRSC00, HSOE+18, HMY+19, HLH04, HP96, HB11, HBD94, HHP+09, HHJ+02, HY16b, HMF07, Hua08, IW95, JLY08, JRH+10, Jus01, KGLBK15, KTSS19, KD13, KS99, Klee9, KS06, KGO18, KABH15, KSK+11, KPZU11, LRV98, LR00, LN03, LBJM11, LZF+05, LC03a, LH03, LS08b, MC10, MSBR08, MNSV10, Mal96, MSZW11, MRM+02, MD01, MBVA07, MBR+94, MP94, Mi95, MBLZ09, MNG+15, MBS+01, NP09, New08, NL09, NBB18, OJFD18, OAH94, PF17, PRT08, RCSW09, RK96, RLVCVR18, ST05]. Sequence [SMZ+12, SF12, Si97, SST19, ST10, SK18, SRZ+13, SG94, SSH94, SY09, SS01, SLL+17, SHCM18, SLY06, Tay94, TBB00, WGL98, WSW15, WRSW10, WJ94, WRS+99, WTY9, War95, WJJ11, WLF13, WFH18, WhW+06, WSS03, WMP11, WNMB99, XvdL05, Y17, YLD+18, YYA11, YB04, YS99, YH01, ZPM97, ZCH+13, Zho10]. Sequence-Based [KG18, WMP11, YLD+18]. Sequence/Structure [BAC15]. Sequences [AS96, AOA+17, BSS11, BF98, BTZ06, BV10, BGTSB98, BP04, BZW+00, BWGM17, BLF14, CNZF19, CZC10, CC03, CD+16, Che04, Cim+06, CGI+07, CC12, CV11, DK18, DPH05, DGH+01, DS12, DAL+08, DLPH06, DCP+08, Eh01, ET07, ENS02, FDB18, GSN11, GPAR96, GM96, HV07, HJ05, Hor01, HKZ+04, JG11, KK89, KSSK09, KDL+94, LR19, LR05, LY99, LS08b, MC08, MTH11, MH96, MM06, MNG+15, MGSA06, NB94, NGB+02, OK08, ODPB18, PB18, RS01, RDF+02, RM00, RLVCVR17, SGT15, SM98, STRT96, SPD95, Sch97b, SYH02, SDG+07, SZTW12, Ste14, SSZ95, SK19, TE96, TBB00, TBKR10, VS98, WOW+14, WLF03, WMC14, WFW18, WYKG05, WH06, WY11, Xu97, Y17, YZ17, YY05, YYW14, Yin19, Yua09, ZSM00, Zha02, ZW03, ZS11]. Sequencing [AB16, AR17, AMRW96, BNA+12, BDPSS01, BFK+99, Boc04, Boc18, BLC10b, BVP+16, CS00, CKT+01, CWL13, CL99, CBG+14, DAC+99, DB09, DFS94, DFS96, EHC+13, FSD+14, Fom16a, Fom16b, Fom19, FH02, GCB15, GSCG19, HHHS03, HTZ+13, HHE13, HPY03, Hub01, JAG17, KS11, KBBF17, KMM17, KAD+19, Kon09b, KWWB19, Kru98, LYP13, LC03b, LZX12, MLOT17, MV19, MLY+11, NP09, OBDV16, PMP+15, Pev95, PV17,
Sequencing-based [ZZ14b]. Sequencing-by-Hybridization [PU00].
Sequential [BKCP05, GW06, YJC18]. Sequentially [YFBK07].
Sequentially-Constrained [YFBK07]. Series
[BJGG03, DLML10, FSZ02, KT01, LDLZ12, SDC10]. Serum [LFD03].
Server [DCW17, KG01, PBMC17, ZFAS08, BIPD17]. Service [SSIP19].
Service-Oriented [SSIP19]. Set [Fom16a, Fom16b, Fom19, GSSI14, Hua15, KLW96, LLW18, MT06, OH03, SSPNW06]. Set-Valued [LLW18].
Sets [AS19, BHL18, BKT09, BS06, Bry96, CHSY10, DAL08, Jus06, KDB02, KWA11, KKA15, MC10, Mat10, RLVVCV17, SM09, TH17a, TH17b, UGS19, Wil09, ZHZ16, ZAG18, ZCK17].
Settling [Eli06]. Several [RS01, TA97]. Sex [GGM12].
sFFT [Kei05]. SGA [LTCH11]. Shadows [SG15]. Shape [AMW07, CRT17, NTWF11, YH19]. Shape-Based [NTWF11]. Sets [AS19, BHL18, BKT09, BS06, Bry96, CHSY10, DAL08, Jus06, KDB02, KWA11, KKA15, MC10, Mat10, RLVVCV17, SM09, TH17a, TH17b, UGS19, Wil09, ZHZ16, ZAG18, ZCK17].
Settling [Eli06]. Several [RS01, TA97]. Sex [GGM12].
sFFT [Kei05]. SGA [LTCH11]. Shadows [SG15]. Shape [AMW07, CRT17, NTWF11, YH19]. Shape-Based [NTWF11]. Sets [AS19, BHL18, BKT09, BS06, Bry96, CHSY10, DAL08, Jus06, KDB02, KWA11, KKA15, MC10, Mat10, RLVVCV17, SM09, TH17a, TH17b, UGS19, Wil09, ZHZ16, ZAG18, ZCK17].
Simulating [MN08, SHG00, TTTA07, YY18]. Simulating
[ABG+03, Ben98, Boe18, Bri19, CY09, CEKP+13, CXW16, CAB+07, JGB12,
KM08, LSHL04, PCS18, PJB+15, PYG+19, PZMM15, RS12, RMK+18,
SVA+19, SMKS96, SAL09, SHG00, SHG02, TLP+14, YMZ+12, dJ02].
Simulations [HCX09, ISK99, KFC+11, MK06, RAKL10, TMC+18, YS19].
Simultaneous [BG97, BLC10b, CDH+16, COL+18, HMY+19, QP09, RV15,
SB05, TBP+13, WOW+14, ZZ14b, ZUGVWS10]. Simultaneously
[ZCH+13]. Single [ACBM18, AWM+17, BNA+12, BMS10, Boc18, BMR+19,
CWRF15, DMW+17, EZFP+19, FSD+14, GSCG19, HXL+17, LSBS18,
LWN+18, LFT+08, MMKH15, MM19, NFJ13, NAB+13, RS12, RSR+09,
RBH+19, SBC14, SH17, SDG+07, WCL+18b, WLF13, YWN11]. Single-Cell
[BNA+12, LSBS18, NAB+13, RBH+19, SH17]. Single-Crossover [SDG+07].
[ACBM18, EZFP+19, FSD+14, HXL+17, LWN+18, SCB14, WCL+18b,
Singleton [AMTY11, MA13]. Singular [CFS+08]. siRNA [HH14]. Sister
[LYF+19]. Site [BG08, CLM+16, HV07, MS00, Nai18, REKH97, YFBK07,
YJC18, ZGBK10, PWKAF16]. Site-Directed
[CLM+16, YFBK07, ZGBK10]. Sites [CZN19, CGI+07, CGD09, GJZ06,
LDW98, LCY+05, LJ05a, Mar94, MFJ+19, MRM+02, PZMM15, PKK07,
SMK06, SHS04, VS98, WOG03, Yan09, YLD+18]. Six [Kea97]. Six-Point
[Kea97]. Size [COV+15, HAT+13, MTR+03, WOC04, Zör15]. Sizes
[ZW07]. Sizing [LVS+07]. Skeletal [LL19a, LL19b]. Skewed [FSL94].
Slow [MZC+18, WMK17]. Slowly [KAS08]. SMAD4 [NLC17]. Small
[ARC13, BFT04, DCL18, KDB+02, KAC17, LJ16, SPC19, WG98].
Small-World [SPC19]. Smallest [LTS15]. Smith [GFE+16, PB18, Zha97].
Smith-Waterman [GFE+16]. Smooth [CEK+17]. Smoothing
[DSN14, NHOV10]. SNP [CSF+08, HG11, LKW04, OH03, PMCB08,
SGBD05, SDG+07, SFC11, TTT17, War95, YLC+17]. SNP-Environment
[YLC+17]. SNP-Hardness [War95]. SNPs
[Li08, LLT06, WWZ+16]. Social [CK10]. Software
[FPD13, GBR17, GI95, HHZ+18, KLO18, KBC19, MKK+17, TH17b].
Solely [KFC+11]. Solution [BCG+18, BS10, Tak96]. Solutions
[CGZ+19, CKS06, DFS04, DFS06, Gus10, TRN07, Xu10]. Solvable
[SLY06]. Solve [MTH11]. Solvent [DBM09, WAP05]. Solver [XLZ+18a].
Solving [AOH16, BSFW98]. Somatic [SSH+13]. Some
[DHM+05, HP96, LLV03, SG12, YSC15]. Sorting
[BO07, BMS06, BS10, CKD14, F15, FHKR11, HV03, HL10, LLCT05,
LBJM11, OBDD19a, OBDD19b, OFS07, OFS08, OFS09, SIE03, SLRM09,
SRLM10, Tra98, XLZ+18a, ZS17]. Source [CRT04, IFT14, MPG+16].
Sources [CHK+02, DOB95, LYH+19, PX13, WHDN13]. SP [Jus01].
SP-Score [Jus01]. SPA [SYH02]. Space
[AB00, BS10, CHM94, DCH09, ETLK19, FT07, Geo09, GKS95, HSL07,
HL13, Lat99, LMW05, Lip05, MVP06, NBGA13, O’H15, OK08, RMK+18, ST10, SFC11, WXSI4, WW18, ZPD+10, ZCK17. **Space-Dependent** [RMK+18]. **Space-Efficient** [LMW05, Lip05]. **Spaced** [KON07, LI09, NM14, XBLM06, ZF07]. **Spacers** [MVE09]. **Spaces** [BWGM17, LGD+10, OJF18]. **SPAdes** [BNA+12]. **Spanners** [TS96]. **Spark** [SLL+17, HFUH19, LCG18]. **Sparse** [AHK08, Ak08, BKW+00, BFT04, BGJ+04, ENS03, HLH04, HH14, JGJD16, KGLBK15, KLU06, LLD+16, PNM11, WXSI4, vUMW08]. **Sparsely** [SIC+09]. **Sparsity** [CC09, TNSS13]. **Spatial** [BET00, CXW16, DAL+08, MMKH15, NSZ99, SS05a, YHEP15]. **Spatial-Temporal** [DAL+08]. **Spatially** [HSD05, MFJ+19]. **Spatio** [BH15]. **Spatio-Genetic** [BH15]. **Spatiotemporal** [SB17]. **SPatt** [Nue04]. **Special** [AN09b, CSZ18, CHN+12, CHN18, CKS12, CKS13, CKS14, CKS15, Ch395, CMSZ12, Dei19a, Gus05, HASL18, HTI+17, Ixt99, Kha14, Len02, MV04, Mue03, NV09, Sha00, VRGC18, WIP97]. **Speciation** [CDEM08, OSC11]. **Species** [ADR13, BW12, BF09, DR15, DR17, DBT11, DCH09, EMV98, HJR12, JR12, JBM15, LLCT05, LRNB10, NWLS05, RDH04, TR11, VSGD08, WLYC12, YSC15, ZF07]. **Specific** [BF02, CN17, DBBM09, DCL18, HBW+05, Lai12, PSIM18, PYIM19, PKZ11, RJS02, SCH09, TRS17, WCM+08, ZF07, LW12, RM18]. **Spectra** [ABF+04, BG06, DB09, HPY03, LRL+07, WTE07]. **Spectral** [BG06, GG15, MK11, QP09, WTE07, ZZHL11]. **Spectrometry** [BBN11, BOC+04, CJC01, CKT+01, CLM+18, DAC+99, DBL+12, FNC08, KV14, LF03, L05b, LC03b, MDT06, PDT00, SHRB11]. **Spectrum** [DB09, DCP+08]. **Spectrum-Based** [DCP+08]. **Speeding-up** [GFE+16]. **SPEM** [YDN12]. **Spherical** [CGD09]. **Spines** [URB+19]. **Splice** [LS98, NAi18, REKH97]. **Splice-Site** [NAi18]. **Spliced** [BMP+09, SP97]. **Splicing** [BH14, BBV+14, DMMH97, LDLL12, SNC09, YB04, ZKC12]. **Spline** [BPL+02]. **Split** [NK07, SK18]. **Splitting** [GDHC95, WCL18a]. **Spots** [DGW+13]. **Spotted** [KFDT02]. **Spurious** [DS12]. **Squamous** [WSCL18]. **Square** [KFC+11, KR04, TSTS12]. **Squared** [WCL18a]. **Squares** [JKG+04, KKA+15]. **Src** [FDDK07]. **Stability** [MH04, OJF18, PYM19, Prz07, RC06, RMWC16, ZFBK09]. **Stable** [BKKS01, DBW17, KMRG09b]. **Stacked** [WYC+18]. **Stacking** [IKL+03]. **Stacks** [CGSW14, GSW16]. **Stage** [CD08, LST+17, LI08, WSS+15]. **Standard** [ARRW09]. **Star** [SLL+17, ADR13]. **Starting** [PV17]. **Starting-Point** [PV17]. **State** [ALR18, BR06, CNCK11, G010, MBRS11a, OC00, PGE04, PSB15. **Sta** [RLA+06, ZCK17]. **State-Space** [ZCK17]. **States** [DBW17]. **Stationary** [NHW010, NCVW15, YY19]. **Statistic** [LZX12, Sch97b, SEV09]. **Statistical** [AO08, AS19, BDM+07, CWL13, KL+17, DMMH97, FH18, GMC08, Han09, HSD05, HKZ+04, Hua10, JDSB04, JD05, KLS15, KО09a, K09b, LBDVF10, LMSH03, MMHC98,
Syndrome [ES07]. Synonymous [DT12, TVNP15]. Syntenic [LN01].

Synteny [MDB11]. Synthesis [DCL10, Kon09b, LCD11]. Synthetase
[LSAD05]. Synthetic [Ari12, GAWI19, PCC+11]. System [FYJ18,
FCV+07, LS+S+05, OAHA94, SDFH98, SDFR16, YDN12].

Systematic [HRSC00, NME+15, QMMW11]. Systems
[BDKSY00, Ben98, CSK12, CSK13, CSK14, CSK15, DCL10, EAM+17,
FDDK07, GSSI14, GSH17, Gk06, JPR06, Jus06, KLV+13, KK18, LzS09,
MR05, PCC+11, RRR07, RMM+18, dJ02]. Systems-Level
[FDDK07, LZS09].

T [BGH+08, HVD17, LzHC15, LCG18, SVA+19, SZM02, ZYB+04]. T-Cell
[BGH+08, LzHC15, Szm02, ZYB+04]. T-Coffee [LcG18]. T-GOWler
[HVD17]. T4 [BHPS99]. Table [MD03]. Table-Driven [MD03]. Tables
[PK19]. Tabu [CYY09]. Tag [BDKSY00, MTo6]. Tagging [LlTo6].

TagSNP [LWLJ10]. Taking [BG15]. Tales [BJ17]. Talk [YHW18].

TAMPA [DWS05]. Tandem
[Ben97, BG06, CJC01, KCT+11, DAC+99, DP07, FNC01, LSS01, LCo3b,
MTH11, NTWF1, TWYO2, WYKG05, WTE07, WILK+12]. Tandemly
[BLE608, LBE+07]. TAP [WILK+12]. Target
[AKN06, CN17, DCL18, HFUH19, MLCT0, MRM02, MDR11, PGA+11,
WYC+18, YBF19, ZZM15]. Target-Specific [CN17]. Targeted
[KBKF17, Yu09]. Targeting [Kha14]. Targets
[GRP12, HHHS03, HSB10, HM07, OSK+05, WYD+09]. Tau [So09].

Tau-Leaping [Sol09]. Taxa [CHP94, GLM16, TRS17]. Taxa-Specific
[TRS17]. Taxonomic [CDH+16, FPR18]. Taxonomical
[LCo03a, PIWR15]. Taxonomy [CF97, URB+19]. Teaching [YCC18]. Team [ZL09]. Teams
[ZL09]. Technical [CKB+06]. Technique [ST10]. Techniques
[CBI+12, CCT09, CGZ04, DGFMS16, FSZ02, FPI11, SFR+18, WR+99].

Technological [VRGC18], Technologies [BC10b, DFK09]. Technology
[LPC13]. Teeth [BKW95]. Tells [SPB15]. Telomere [YTL19].

Temperature [MSS10, RKT14]. Template [DQS+11, GMH+10, ZPD+10].

Template-Based [DQS+11]. Template-Free [ZPD+10]. Temporal
[BCF16, CO03, DAL+08, KB07, SKS+09, WYY+18]. Temporally
[CGT12]. Terms [DAE+19, LACB10]. Tessellation [STV96]. Test
[GE04, GNM1, HQ06, JZ10, KBBC11, LH03, MK16, SDC+10, SHE11,
VY18, WMC04, ZPX+10]. Testing
[Aug12, BMN+07, CFS13, CD11, FCG19, FDDK07, GPCP11, HTZ+12,
ITSH00, KVD06, MPr12, MSZW11, ZH+16]. Tests
[DS03, LS+S+05, MBC+18]. TetR [Am12]. Tetraploids [WMC04]. Texts
[HVD17]. thaliana [AJ+16]. Their
[BSK05, BKPW95, BET00, CB17, DAE+19, Kha14, Kon07, Lie05, MDR11,
MzM18, PTW09, SKGG17, SH17, SCSS+16, SLFC09, WCh09, ZZUPY06].

Theorem [TA97]. Theoretic [GTA+04, OJO+04, QGP10, SSB07].

Theoretical [BH11, DS19, PDS06, WRSW10]. Theory
Transcriptional [FS08, GK06, KV08, LZS09, LL19b, OFE14, SKP+12, XvdL05].
Transcriptome [KBC19, LFJ11, MNIK+09].
Transcriptomic [FRD+17, MLOT17, SK18].
Transcripts [DDA+11, DC16a, FMI06].
Transducers [ENS03].
Transfer [AFCK09, BBGS11, BAK13, BG17, C LM+18, RS13, ST10].
Transform [BVP+19, CGD09, HG18, LMW05, LCL17, NHOV10, RJS02, YYW14, ZWJ18].
Transformation [PL06, ZZS17].
Transformed [JZ10].
Transforming [GB08, Prz98].
Translates [KL98, Lip05].
Transition [CL17, FLS94, HR12b, VST03, WS04, YZ08].
Translation [CZNF19, DT12, LJ05a, RM00, WOG03, WML17].
Translocation [SK17].
Transport [TS96].
Transform [ADD+07, BS09, BMR09, CXW16, EAM+17].
Transforms [ADD+07, BS09, BMR09, CXW16, EAM+17].
Transducer [EN03].
Transduction [ADD+07, BS09, BMR09, CXW16, EAM+17].
Transfected [JZ10].
Transforming [GB08, Prz98].
Transforms [KL98, Lip05].
Transformed [JZ10].
Transformations [BP06, KC18, PLSM+06, YF09].
Transformations* [CKdAHdF15].
Transformations [BP06, KC18, PLSM+06, YF09].
Transforms [KL98, Lip05].
Transforming [GB08, Prz98].
Transforms [KL98, Lip05].
Transformations [BP06, KC18, PLSM+06, YF09].
Transformations* [CKdAHdF15].
Transformed [JZ10].
Transforming [GB08, Prz98].
Transforms [KL98, Lip05].
Transforming [GB08, Prz98].
Transforms [KL98, Lip05].
Transformations [BP06, KC18, PLSM+06, YF09].
Transformations* [CKdAHdF15].
Transformed [JZ10].
Transforming [GB08, Prz98].
Transforms [KL98, Lip05].
Transforming [GB08, Prz98].
Transforms [KL98, Lip05].
Transformations [BP06, KC18, PLSM+06, YF09].
Transformations* [CKdAHdF15].
Transformed [JZ10].
Transforming [GB08, Prz98].
Transforms [KL98, Lip05].
Transforming [GB08, Prz98].
Transforms [KL98, Lip05].
Transformations [BP06, KC18, PLSM+06, YF09].
Transformations* [CKdAHdF15].
Transformed [JZ10].
Transforming [GB08, Prz98].
Transforms [KL98, Lip05].
Transforming [GB08, Prz98].
Transforms [KL98, Lip05].
Vaccination [LBSB17, ZZN10]. Vaccine [LZHC15, SVA+19, UBGF+19].
Validate [AJYJ18]. Validation [BZ08, KAC17, PMG+16, RRKT07, SWK+07, WHW+06]. Validatory [MDTD06].
Values [CAB+07, FBJ04, Met06, SBC+05, SS01, UGS19, VY18, WG08b, YS10, YY18].
Variability [JÖNK17, NKR+01]. Variable [CL17, MLC10, RS12, RLK+09, RBEB13, SH94]. Variable-Length [CL17, RBEB13]. Variables [BYGI12, HL16a, MGW+07]. Variance [BS98, KMC00, SRV98]. Variant [CBG+14, LS17, TYSX19, WLA+18].
Variants [AWM+17, BBV+14, HXL+17, KLS15, LPFT14, MRS+18, WHJE19].
Variation [CCT15, CD18, CKZ+19, CKB+06, CHK+02, GG04, KWBN19, Lai12, NWN+10, RMC+05, SFA17, WHY+13, WSS03]. Variational [WG08a]. Variations [ACBM18, LLKX16, WHC09]. Varies [LM03].
Versus [CRT+17, GMY10, TS96]. Vertex [BHL+18]. Vertices [BHL+18].
Vital [HLH04, KYSE10]. Via [BHRV00, SJ18, ADP+08, ABR16, AMS97, BGHY04, CJC01, CKT+01, CLR+05, CC06, CT07, DAC+99, DBC+12, GM07, Gru98, GLMW13, GKM+10, GMSZ12, Gus10, HX16, HSL07, HL16a, LPW05, IWLJ10, LC03b, MGVS14, NK07, NSK09, NTWF11, OFS07, PJSB18, PLSM+06, RBEB13, SDD+08, SAL09, SGP11, TBP+13, WHD13, WHD15, Wen05, WGW+01, XJS07]. Viability [SDFR16]. Vibrio [LLCT05]. Victor [Tos05]. Victor/FRST [Tos05]. Videos [PLSL18]. View [VRGC18, VY18]. Viewpoint [HA12].
Viral [AV18, CRB18, LRD19, MMAP13, SF12, TWP+13, SCSA+16]. Virtual [ALB+19, MN08]. Virulence [MTYH09]. Virus [AWM+17, CCH+19, LBSB17, SAM06, STP18, WW17]. Virus-Associated [CCH+19]. Viruses [DBB09, HY16a, SLYC09]. Visualization [HL13, MZM18, TPH+09, XL18]. Visualizing [DCW+17, GBR17, WZ+18].
Vivitar [COL+18]. Vivo [DCV+07, KKS+15]. Volumes [FW12]. Voting

X [KAC17]. X-ray [KAC17].

Y-DNA [Ves12]. Y-Linked [GGM12]. Yeast [BL02, CGOT10, FS08, FKZ09, KYSE10, LZS09, SIK+05, TRB+09, WMK17]. Yggdrasil [AL07]. Yielding [ALR18].

References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
<th>DOI Links</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Akutsu:2011:DSA

Agarwal:2007:FMS

Altschul:2018:ICA

Andrecut:2009:PGI

Anonymous:1994:EWC

Anonymous:2000:ATF

Anonymous:2002:Ca

Anonymous:2002:Cb

Anonymous:2005:C

Anonymous:2008:C

Anonymous:2009:C

Anonymous:2009:SRI

Anandakrishnan:2008:ABC

Al-Okaily:2015:ETT

Al-Okaily:2017:TBC

Al-Okaily:2016:MSE

Apostolico:2004:IPM

REFERENCES

Adleman:1999:AMC

Allman:2017:SCM

Armen:1995:SSS

Agarwal:1996:BED

REFERENCES

Amato:2002:UMP

Adam:2010:SFC

Atias:2011:AFP

Avni:2019:NQB

Ayers:2006:RAH

[Serena Arima and Luca Tardella. Improved harmonic mean estimator for phylogenetic model evidence. *Journal of Comput-
REFERENCES

Adam:2007:CIS

August:2012:UNM

Ahn:2018:ABM

Artyomenko:2017:LSM
REFERENCES

Ai:2017:PPP

Amir:2011:BCR

Alexeev:2014:RMA

Bafna:2011:PRC

Bansal:2013:RRH

REFERENCES

[BB15] Brittany Baur and Serdar Bozdag. A canonical correlation analysis-based dynamic Bayesian network prior to infer gene regulatory networks from multiple types of biological...
REFERENCES

Ben-Bassat:2016:CDS

Berman:2004:FOG

Bertrand:2009:GMR

Bansal:2011:DHH

REFERENCES

[BBWE09] J. G. Burleigh, M. S. Bansal, A. Wehe, and O. Eulenstein. Locating large-scale gene duplication events through reconciled

Benshahar:2018:BAR

Beretta:2018:IEA

Baggerly:2001:IDE

Backofen:2007:LGR

REFERENCES

REFERENCES

REFERENCES

Beaver:1995:CD

Benson:1997:SA

Bentil:1998:MSM

Berger:1995:APS

Berger:2011:PIC
Berezovsky:2000:HRA

Betancourt:2010:CBM

Badretdinov:1998:HHC

Barash:2002:CSB

Borenstein:2009:TSS

REFERENCES

Blazewicz:1999:DSP

Berge:2010:MFM

Blazewicz:2011:RPD

Blekas:2005:MBP

Bryan:2013:AME

REFERENCES

REFERENCES

REFERENCES

Bruckner:2010:TFQ

Bao:2018:ACR

Berger:1999:SSC

Bafna:2000:LRP

Borguesan:2017:NSN

Bruno Borguesan, Mario Inostroza-Ponta, and Márcio Dorn. NIAS-Server: Neighbors influence of amino acids and sec-

Budden:2017:CTI

Brazma:1998:AAD

Bar-Joseph:2003:CR

Bocker:2009:CMG

Blum:2008:UAM

[BK08] Torsten Blum and Oliver Kohlbacher. Using atom mapping rules for an improved detection of relevant routes in
REFERENCES

Bandyopadhyay:2010:GMO

Bailey-Kellogg:2005:RGA

Bailey-Kellogg:2001:RMD

Benham:1995:HTW

REFERENCES

Boisvert:2010:RSA

Bertrand:2008:IA

Burden:2014:DWM

Bergemann:2004:SDA

REFERENCES

REFERENCES

BenHassen:2009:IST

Budhlakoti:2019:CSS

Bergeron:2006:ST

Bergeron:2010:RMS

Booth:2004:EES

REFERENCES

Bocker:2004:SCU

Boenn:2018:SSS

Bruno:2006:TPD

Bartolucci:2014:NCM

Bonissone:2016:ICU

REFERENCES

117

Barrios:2017:DIG

Berlo:2002:SMC

Berard:2003:CM

Beattie:2006:BSP

Bolouri:2012:ICS

Briscoe:2019:UPF

Browning:1998:RIC

Broet:2002:BHM

Benson:1998:DTM

Bergeron:2006:SSP

Behre:2009:MST

Braga:2010:SSS

Berrar:2005:STA
Daniel Berrar, Brian Sturgeon, Ian Bradbury, C. Stephen Downes, and Werner Dubitzky. Survival trees for analyzing

REFERENCES

REFERENCES

Bafna:2006:CFU

Buhler:2003:PSI

Bundschuh:2002:RSE

Blanchet:2009:MBA

Behrens:2010:SEP

Bonizzoni:2016:LEM

Bonizzoni:2017:FFS

Bonizzoni:2019:MMB

Bayzid:2012:EOS
REFERENCES

[BZ08] Dumitru Brinza and Alexander Zelikovsky. Design and validation of methods searching for risk factors in genotype case-control studies. *Journal of Computational Biol-
REFERENCES

Chakra Chennubhotla and Ivet Bahar. Markov methods for hierarchical coarse-graining of large protein dynamics.
REFERENCES

REFERENCES

Chattopadhyay:2003:TCP

Chen:2006:FRT

Cheng:2009:SOM

Chen:2011:BPA

REFERENCES

[CCI+04] Alberto Caprara, Robert Carr, Sorin Istrail, Giuseppe Lancia, and Brian Walenz. 1001 optimal PDB structure alignments: Integer programming methods for finding the maxi-
Chen:2009:AMP

Choi:2017:PLN

Chang:2009:MSC

Chang:2015:VCF

REFERENCES

Shi-Yi Chen, Feilong Deng, Ying Huang, Xianbo Jia, Yi-Ping Liu, and Song-Jia Lai. bioOTU: An improved method for simultaneous taxonomic assignments and operational taxonomic

[CFB+07] Brian Y. Chen, Viacheslav Y. Fofanov, Drew H. Bryant, Bradley D. Dodson, David M. Kristensen, Andreas M. Lisewski,

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chen:2001:AIP

Chiang:2006:GTC

Christof:1997:BCA

Chiang:2006:GRM

[CJS12] Yun Cui, Jesper Jansson, and Wing-Kin Sung. Polynomial-time algorithms for building a consensus MUL-Tree. *Jour-
REFERENCES

Chechik:2009:TGE

Chung:2010:NRM

Caldas:2011:HGB

Chudin:2006:MTV
REFERENCES

[CKS12] Andrea Califano, Manolis Kellis, and Gustavo Stolovitzky. Preface: RECOMB Systems Biology, Regulatory Genomics, and
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[CP05] Sourav Chatterji and Lior Pachter. Large multiple organism
gene finding by collapsed Gibbs sampling. *Journal of Compu-
ISSN 1066-5277 (print), 1557-8666 (electronic). URL https://

[Cunha:2019:GRM] Luís Felipe I. Cunha and Fábio Protti. Genome rearrange-
ments on multigenomic models: Applications of graph con-
1214–1222, November 2019. CODEN JCOBEM. ISSN

[CQG10] Hyungwon Choi, Zhaohui S. Qin, and Debashis Ghosh. A
double-layered mixture model for the joint analysis of DNA copy
number and gene expression data. *Journal of Computational
Biology*, 17(2):121–137, February 2010. CODEN JCOBEM.
ISSN 1066-5277 (print), 1557-8666 (electronic). URL https://

[CR09] Robert Castelo and Alberto Roverato. Reverse engineer-
ing molecular regulatory networks from microarray data
with qp-graphs. *Journal of Computational Biology*, 16
(2):213–227, February 2009. CODEN JCOBEM. ISSN
/www.liebertpub.com/doi/abs/10.1089/cmb.2008.08TT;

[CRB18] Nathan Clement, Muhibur Rasheed, and Chandrajit Lal Ba-
 baj. Viral capsid assembly: a quantified uncertainty ap-
REFERENCES

Chiappetta:2004:BSS

Cerisier:2017:CVL

Cawley:2000:DST

Cohen:2003:NSA

Clausen:2015:DDE

REFERENCES

Chen:1998:HOM

Cosentino:2012:SBG

Csuros:2002:FRE

Cai:2018:SIP

REFERENCES

REFERENCES

[CWYB16] Duo Chen, Jiasong Wang, Ming Yan, and Forrest Sheng Bao. A complex prime numerical representation of amino

[Chen:2016:EFR]

[Cai:2009:SMS]

[Chen:2010:CCG]

[Cheng:2017:GAM]

REFERENCES

Chuang:2012:HBC

Chandola:2011:NSI

Chuang:2009:TSB

Chan:2010:ISW

Castro:2019:FPM

[CZNF19] Guilherme Torres Castro, Luis Enrique Zárate, Cristiano Neri Nobre, and Henrique Cota Freitas. A fast parallel K-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Deandres-Galiana:2016:IMP

Devauchelle:2001:RMA

Deng:2013:BPP

Drasdo:2000:SLS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Delgado:2010:CSA]

[Dimitrova:2010:DTS]

[Didier:2006:LDS]

[Dhar:2017:CHO]
REFERENCES

REFERENCES

REFERENCES

[Diallo:2019:SPW]

[Diallo:2017:PSP]

[Davidson:1995:CIB]

[Dunlavy:2005:HPO]
REFERENCES

[Dehnert:2005:GPB]

[DR15]
REFERENCES

REFERENCES

REFERENCES

Dutkowski:2013:PMN

Deac:2019:ACM

Dew:2005:TAM

Deng:2003:PPF

Eng:2009:NDM
Catherine Eng, Charu Asthana, Bertrand Aigle, Sébastien Hergalant, Jean-François Mari, and Pierre Leblond. A new

Elmarakeby:2017:BEC

Erten:2011:VAP

Eduati:2012:DMM

Ehler:2012:LLB

REFERENCES

Eskin:2013:EEA

Efrat:2002:GAA

Eidhammer:2000:SCS

Elhai:2001:DBR

Elhai:2011:HCR

Elias:2006:SIM

Eres:2004:PPD

Eddy:1995:MDH

Eulenstein:1998:DBM

REFERENCES

REFERENCES

REFERENCES

Ershov:2019:IHS

Engel:2019:CGB

Evans:1998:CCP

Eghbal-Zadeh:2019:DEE

REFERENCES

184

Frazier:2012:CAI

Farhoodi:2017:MLA

Farach:1997:RCD

Fasman:1994:RGD

Falconnet:2012:AEE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Feng:2008:CDA

Flannick:2009:APL

Friedman:2002:SEA

Fomin:2016:SARa

Fomin:2016:SARb

[Fom16b] Eduard Fomin. A simple approach to the reconstruction of a set of points from the multiset of n^2 pairwise distances in n^2 steps for the sequencing problem: II. algorithm.
Fomin:2019:SAR

Fionda:2011:BNQ

Faure:2013:NSP

Fosso:2018:UTA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Giaquinta:2013:FMT

Girdlestone:2016:DWA

Gao:2012:BLP

Giladi:2010:ETI
REFERENCES

Sandeep K. Gupta, John D. Kececioglu, and Alejandro A. Schäffer. Improving the practical space and time efficiency

Gu:2009:OEP

Geraci:2009:KBS

Guo:2016:NRR

Graca:2010:HIP

REFERENCES

Goryachev:2001:UMD

Gebert:2008:IGG

Gupta:2005:SAI

Gupta:2012:AHI

REFERENCES

Gronau:2010:ADM

Grover:2012:BTO

Gilbert:2001:ETC

Giaquinta:2013:EEA

Gelfand:1996:RGH
REFERENCES

Gogolewski:2019:TRP

Gigric:2017:NAA

Gustfield:1994:MEL

Gao:2011:ORO

Galas:2014:DCS

REFERENCES

REFERENCES

[GVTRS06] Irit Gat-Viks, Amos Tanay, Daniela Rajjman, and Ron Shamir. A probabilistic methodology for integrating knowledge and

Gat-Viks:2004:MAH

Goldstein:1994:APS

Golightly:2006:BSI

Ge:2019:PGI

REFERENCES

[GZW+16] Huichao Gong, Sai Zhang, Jiangdian Wang, Haipeng Gong, and Jianyang Zeng. Constructing structure ensembles of intrinsically

Hamada:2012:CBA

Hamada:2012:DUR

Hansen:2009:SML

Hossain:2012:NNI

He:2018:SIP

Halldorsson:2011:CPS

Havilio:2006:SDB

Hickey:2011:PMS

Hide:1994:BED

REFERENCES

Heath:2011:AEI

Haimovich:2006:WAD

Huan:2005:CGR

Huang:2005:AAH

Hoque:2009:EHM

Tamjidul Hoque, Madhu Chetty, and Abdul Sattar. Extended HP model for protein structure prediction. *Journal of Computa-
REFERENCES

He:2009:URU

Holmes:1998:DPA

Herant:2010:CTD

Hallen:2016:CCO
REFERENCES

Han:2008:SAP

Heath:1997:MCM

Hussain:2019:PDT

He:2005:ICG

Halldorsson:2011:ADH

Huang:2018:NRT

Halperin:2006:HEH

Hu:2014:PSP

Hung:2006:CUC

He:2017:PSA

Jing He, Nurit Haspel, and Brian Chen. Preface: Selected articles from 2015 Computational Structural Bioinformatics
He:2013:HSO

Halperin:2003:HLT

Horng:2002:RSD

Huang:2013:RMT

REFERENCES

REFERENCES

REFERENCES

Huang:2004:DLS

Hwang:2003:ETP

Huang:2010:SRG

Huang:2013:MVT

Hsiao:2016:SAF

[Holm:2006:MEM] Tim Hohm, Philipp Limbourg, and Daniel Hoffmann. A multiobjective evolutionary method for the design of peptidic mimotopes. *Journal of Computational Biology*, 13...

Hedjazi:2013:SDA

Holtby:2013:LLM

Heinonen:2011:CAM

Huber:2008:CDM

REFERENCES

Hasegawa:2014:EDA Takanori Hasegawa, Tomoya Mori, Rui Yamaguchi, Seiya Imoto, Satoru Miyano, and Tatsuya Akutsu. An efficient data assimilation schema for restoration and extension of

Hendy:1996:CFL

Hochbaum:1997:PCE

Haubold:2009:EMD

Huang:2009:FNR

Huynen:1996:BPP

REFERENCES

Heath:2003:SHC

Huang:2006:LPW

Han:2008:PRS

Han:2012:DRS

Han:2012:PTE

Hart:2000:SF

Hsieh:2014:FA

Hashmi:2015:IIM

Holloway:2013:AGO

Hormozdiari:2010:PPI

Fereydoun Hormozdiari, Raheleh Salari, Vineet Bafna, and S. Cenk Sahinalp. Protein-protein interaction network evaluation for identifying potential drug targets. *Journal of Compu-
REFERENCES

Hoberman:2005:SAS

Henderson:1997:FGD

Heber:2000:CSP

Hormozdiari:2009:EID

REFERENCES

Huang:2010:SIS

Huang:2015:MRR

Hubbell:2001:MSH

Heath:2003:SSS

Havukkala:2007:RIP

Huang:2010:SIS

Huang:2015:MRR

Hubbell:2001:MSH

Heath:2003:SSS

Havukkala:2007:RIP

REFERENCES

Huang:2009:MSN

Helman:2004:BNC

Halioui:2017:GDG

He:2013:BBB

Husmeier:2001:DRD

REFERENCES

REFERENCES

REFERENCES

Han:2006:PDRa

Han:2006:PDRb

Illner:2014:BBS

Ibrahim:2012:TBS

Ieong:2003:PRS

Irvahn:2014:PSM

Ilatovskiy:2009:GWS

Istrail:2019:HDR

Islam:2018:QTC

REFERENCES

Ihuegbu:2012:FSD

Istrail:1999:LSA

Istrail:1999:SRI

Istrail:2019:EDR

Iorio:2009:IND
References

Ideker:2000:TDE

Idury:1995:NAD

Jakaitiene:2017:BBM

Jahn:2011:ECA

James:2010:MAG

Scott C. James and Varun Boriah. Modeling algae growth in an open-channel raceway. *Journal of Computational Bi-
REFERENCES

REFERENCES

Jenkins:2011:ISD

Joyce:2012:ESL

Jang:2011:TFA

Jindalertudomdee:2016:EMS

Jansson:2006:LGS

Jesper Jansson, Ngo Trung Hieu, and Wing-Kin Sung. Local gapped subforest alignment and its application in find-

Jiang:2011:ZED

Jou:2016:BNP

Joshi:1996:PLI

Janes:2004:CSR

Jiang:2002:GED

Jansson:2018:DCR

Jiang:2008:CRP

Jain:1995:NSC

Jain:1997:ACI

REFERENCES

Jun:2009:BNG

Jung:2010:PEM

Jun:2009:DMD

Jansson:2019:EAR

Jonsson:2003:AML

[JS03] Henrik Jönsson and Bo Söderberg. An approximate maximum likelihood approach, applied to phylogenetic trees. *Jour-
REFERENCES

REFERENCES

Just:2006:RED

Jiao:2010:EPE

Koskinen:2015:IDC

Kim:2017:CVD

Kim:2019:MPP

[Baekdoo Kim, Thahmina Ali, Changsu Dong, Carlos Lijeron, Raja Mazumder, Claudia Wultsch, and Konstantinos Krampis.]

Karp:1995:SDI

Kato:2009:DPA

Keith:2008:DSR

Kinsella:2012:CBF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kerr:2003:LMM

Knapp:2011:ICD

Kooperberg:2002:IBC

Ku:2004:CLL

REFERENCES

Konopka:2014:ESP

Kamisetty:2015:LSD

Kluge:2009:MEA

Kosesoy:2018:PWS

Khan:2014:SPE

[Kha14] Abdul Arif Khan. *In Silico* prediction of *Escherichia coli* proteins targeting the host cell nucleus, with special reference

REFERENCES

Konagurthu:2015:SSL

Kumari:2018:PRP

Koyuturk:2006:DCI

Kang:2015:PAD

Koyuturk:2006:PAP

[KKT⁺06] Mehmet Koyutürk, Yohan Kim, Umut Topkara, Shankar Subramaniam, Wojciech Szpankowski, and Ananth Grama. Pairwise

Kececioglu:2010:APS

Kruglyak:1998:FML

Kuo:2011:DDC

Kleinberg:1999:EAP

REFERENCES

Koch:1996:AFM

Kent:2006:CSE

Kuwahara:2008:PPT

Kerr:2000:AVG

REFERENCES

Kshirsagar:2017:MMC

Khanna:2017:DCA

Kahng:2004:SHD

Kennedy:2008:GED

Khodabakhshi:2009:IPF

REFERENCES

REFERENCES

REFERENCES

Konagurthu:2006:OSP

Kao:2011:NEM

Karlebach:2012:CLM

Kosaraju:1998:AAG

Koyuturk:2007:ASC

REFERENCES

Kruglyak:2001:NES

Koepke:2013:EIE

Kavya:2019:SAD

Khanin:2008:CMP

Kadumuri:2017:LGU

REFERENCES

Khanin:2006:HSF

Kannan:2014:ECP

Kim:2011:BDU

Keele:1994:CDM

Kirk:2013:BRP

Nak-Kyeong Kim and Dr. Jun Xie. Protein multiple alignment incorporating primary and secondary structure information. *Journal of Computational Biology*, 13(9):1615–1629, November 2006. CODEN JCOBEM. ISSN 1066-5277 (print),

Kang:2010:EAM

Hyun Min Kang, Noah A. Zaitlen, and Eleazar Eskin. EMI-
NIM: An adaptive and memory-efficient algorithm for genotype
imputation. Journal of Computational Biology, 17(3):547–560,
March 2010. CODEN JCOBEM. ISSN 1066-5277 (print), 1557-

Lipson:2006:ECI

Doron Lipson, Yonatan Aumann, Amir Ben-Dor, Nathan Linial,
and Zohar Yakhini. Efficient calculation of interval scores
for DNA copy number data analysis. Journal of Computational
Biology, 13(2):215–228, March 2006. CODEN JCOBEM.
ISSN 1066-5277 (print), 1557-8666 (electronic). URL https:/
13.215.

Lavalle-Adam:2010:DLR

Mathieu Lavallée-Adam, Benoit Coulombe, and Mathieu
Blanchette. Detection of locally over-represented GO terms
in protein-protein interaction networks. Journal of Computational
Biology, 17(3):443–457, March 2010. CODEN JCOBEM.
ISSN 1066-5277 (print), 1557-8666 (electronic). URL https:/
0165.

Levtov:2014:DNU

Nissan Levtov, Sandeep Amberkar, Zakharia M. Frenkel, Lars
Kaderali, and Zeev Volkovich. Detecting non-uniform clusters
in large-scale interaction graphs. Journal of Computational
ISSN 1066-5277 (print), 1557-8666 (electronic). URL https:/
0095.

Lai:2012:CPA

Yinglei Lai. Change-point analysis of paired allele-specific
copy number variation data. Journal of Computational Bio-
logy, 19(6):679–693, June 2012. CODEN JCOBEM. ISSN
Li:2009:BAP

Yong Fuga Li, Randy J. Arnold, Yixue Li, Predrag Radi-
vocaj, Quanhui Sheng, and Haixu Tang. A Bayesian ap-
proach to protein inference problem in shotgun proteomics.
Journal of Computational Biology, 16(8):1183–1193, August
2009. CODEN JCOBEM. ISSN 1066-5277 (print), 1557-8666

Lam:2003:PAS

Fumei Lam, Marina Alexandersson, and Lior Pachter. Picking
alignments from (Steiner) trees. Journal of Computational Bi-
ology, 10(3–4):509–520, June 2003. CODEN JCOBEM. ISSN
1066-5277 (print), 1557-8666 (electronic).

Lartillot:2006:CGS

Dr. Nicolas Lartillot. Conjugate Gibbs sampling for Bayesian
phylogenetic models. Journal of Computational Biology, 13
(10):1701–1722, December 2006. CODEN JCOBEM. ISSN

Lathrop:1999:ALG

Richard H. Lathrop. An anytime local-to-global optimization
algorithm for protein threading in o(m^2 n^2) space. Journal of
Computational Biology, 6(3–4):405–418, October 1999. CODEN
JCOBEM. ISSN 1066-5277 (print), 1557-8666 (electronic).

Ligabue-Braun:2018:EPR

Rodrigo Ligabue-Braun, Bruno Borguesan, Hugo Verli, Math-
ias J. Krause, and Márcio Dorn. Everyone is a protagonist:
Residue conformational preferences in high-resolution protein
April 2018. CODEN JCOBEM. ISSN 1066-5277 (print), 1557-
LopezGarciaDeLomana:2010:SAG

Lajoie:2007:DIH

Lin:2011:LCS

Leng:1994:PSS

REFERENCES

REFERENCES

Li:2012:AIF

Lavi:2012:NIC

Lee:1998:ERS

Liu:2014:WMM

REFERENCES

[Ling:2008:EIM] Xu Ling, Xin He, Dong Xin, and Jiawei Han. Efficiently identifying max-gap clusters in pairwise genome comparison. *Journal of Computational Biology*, 15(6):593–609, July 2008. CODEN JCOBEM. ISSN 1066-5277 (print), 1557-8666
REFERENCES

Li:2008:PSS

Li:2009:GGA

Liebermeister:2005:PPC

Lippert:2005:SEW

Li:2005:CEK

[LJ05a] Haifeng Li and Tao Jiang. A class of edit kernels for SVMs to predict translation initiation sites in eukaryotic mRNAs. *Journal
REFERENCES

Li:2005:CMR

Laserson:2011:GNA

Leelananda:2016:PDS

Laimighofer:2016:UPF

REFERENCES

REFERENCES

[LLKX16] Seunghak Lee, Aurélie Lozano, Prabhanjan Kambadur, and Eric P. Xing. An efficient nonlinear regression approach for

Lam:2011:GAD

Li:2011:FMM

Li:2019:DSF

Lee:2019:RBN

REFERENCES

[Liu:2019:RSD] Huan Liu, Li Liu, and Hong Zhu. The role of significantly deregulated MicroRNAs in recurrent cervical cancer based on bioinformatic analysis of the cancer genome atlas
REFERENCES

REFERENCES

[LN03] Li Liao and William Stafford Noble. Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships. *Journal of Computational Biology*, 10(6):857–868, December 2003. CODEN JCOBEM. ISSN 1066-
Leibowitz:2001:MGE

Lyngso:2000:RPP

Lorenz:2008:ARS

Lee:2014:DSV

Landau:2005:GPA

REFERENCES

REFERENCES

Lin:1997:AHA

Laub:1998:FIE

Lotan:2004:APS

Linhart:2005:DPD

Lee:2008:RFI

REFERENCES

REFERENCES

REFERENCES

Lu:2015:EAC

Levy:2004:CDD

Li:2007:QMS

Lu:2012:PSS

REFERENCES

Li:2014:IRO

Liu:2010:EGW

Li:2019:RMQ

Larson:2018:ISN

REFERENCES

Liang:2019:IMD

Langmead:2004:PTN

Langmead:2003:PIR

Leung:2013:IMN

Liu:2010:SMR

Xin Liu and Ya-Pu Zhao. Substitution matrices of residue triplets derived from protein blocks. *Journal of Computational
REFERENCES

Li:2015:IGW

Lippert:2005:FAG

Li:2015:HPG

Lee:2009:SLE

REFERENCES

REFERENCES

Mamitsuka:1996:LMH

Mier:2016:FFW

Martin:1994:ECD

Markowitz:1995:HMB

Matsen:2010:CAR

[Mat10] Frederick A. Matsen. constNJ: An algorithm to reconstruct sets of phylogenetic trees satisfying pairwise topological con-

REFERENCES

Miller:1994:CAS

Misra:2011:GBP

Misra:2011:OBS

Muggleton:2001:GRU

Messer:2007:ELR

McPeek:2012:BGI

Mian:2000:RRA

Mercier:2001:EDL

Myers:2003:TDF

Mongin:2011:MAB
Emmanuel Mongin, Ken Dewar, and Mathieu Blanchette. Mapping association between long-range cis-regulatory regions and

REFERENCES

Mellem:2019:MMD

Moerkerke:2006:SSD

Morgulis:2006:FSD

Mazza:2014:EII

Martin:2007:IVR

[MGW+07] Francis L. Martin, Matthew J. German, Ernst Wit, Thomas Fearn, Narasimhan Ragavan, and Hubert M. Pollock. Identifying variables responsible for clustering in discriminant analysis
REFERENCES

[MK11] Sajid A. Marhon and Stefan C. Kremer. Gene prediction based on DNA spectral analysis: a literature review. *Jour-
REFERENCES

Manescu:2016:SLA

Menke:2005:WPN

Milewski:2017:ENS

Makarenkov:2000:CAT
Makarenkov:2004:PTR

Vladimir Makarenkov and Pierre Legendre. From a phylogenetic

Minary:2010:CON

Peter Minary and Michael Levitt. Conformational optimization
with natural degrees of freedom: a novel stochastic chain closure

Mann:2010:IBG

Ma:2017:JBM

Movaghar:2012:SST

Mohimani:2011:MNS

Menconi:2006:CBA

Moussa:2019:LSI

Maghawry:2014:NPS

REFERENCES

Muller:2015:CRS

Mirarab:2015:PUL

Mehan:2009:INA

Makinen:2010:SRH

Morange:2019:TMT

Michel Morange. A time to model and a time to experiment. *Journal of Computational Biology*, 26(7):629–636, July
Mossel:2003:IRA

Miller:1994:QCD

Manuch:2011:CGC

More:2016:IDP

REFERENCES

Mayraz:1999:CPM

Marsan:2000:AES

Michailidis:2003:ARB

Molineris:2010:NAI

Macula:2008:NIP

REFERENCES

Marbach:2009:GRS

Moretti:2019:ATF

Manuch:2010:TLB

Myers:1996:PMA

REFERENCES

REFERENCES

REFERENCES

 Nguyen:2013:DMD

Nadkarni:1996:DWD

Novinskaya:2017:DLD

Neb:2002:CPR

Neuwald:2014:BSO

[NHOV10] Nha Nguyen, Heng Huang, Soontorn Oraintara, and An Vo. Stationary wavelet packet transform and dependent Laplacian

Nguyen:2015:BPG

Nicodeme:2001:FAM

Narayanan:2007:CP1

Ng:2011:ACS

REFERENCES

Nedelec:2005:PAA

Nettelblad:2013:FAD

Nagarajan:2009:PCS

Navarro:2003:FSC

Nayak:1999:SCH

Nicolas:2006:RJM

Noy:2011:SBF

Nuel:2004:LSL

REFERENCES

Nebel:2012:ACP

Nakhleh:2005:RRE

Navlakha:2010:FBA

Niu:2015:DTI

Overton:1994:QSQ

Ouangraoua:2010:CSG

Orenstein:2016:EDC

Oliveira:2019:CSR

Oliveira:2019:SWR

OReilly:2016:EEO

Oliveira:2003:CMI

Ouangraoua:2011:TPU

Ohkubo:2000:PEF

Osmankovic:2018:NAD

REFERENCES

[Ott:2003:SAA]

[O'Hare:2015:IHD]

[Ojewole:2018:BBB]

[Oliveira:2004:HT]

REFERENCES

[OSK+15] Edison Ong, Anthony Szedlak, Yunyi Kang, Peyton Smith, Nicholas Smith, Madison McBride, Darren Finlay, Kristiina Vuori, James Mason, Edward D. Ball, Carlo Piermarocchi, and Giovanni Paternostro. A scalable method for molecular network reconstruction identifies properties of targets and

Orenstein:2018:JBC

Onuki:2012:PMB

Penchovsky:2003:DLD

Pattengale:2010:HMB

Pachter:2002:AGP

Parida:1998:UFO

Parida:2006:UPS

Parida:2007:GPP

Parida:2007:DTM

REFERENCES

REFERENCES

[PDE+11] Benedict Paten, Mark Diekhans, Dent Earl, John St.John, Jian Ma, Bernard Suh, and David Haussler. Cactus graphs

REFERENCES

Piccolboni:2003:CFC

Perlman:2011:CDG

Palazoglu:2004:FDP

Parker:2011:OCM

Pattengale:2007:ECR

REFERENCES

Persing:2015:SAC

Pacholczyk:2011:ELP

Piwowar:2019:DAM

Ponomarenko:1997:GPP

Popic:2018:FMB

REFERENCES

Potra:2006:PIA

Peris:2014:SSN

Prabhakara:2013:MUH

Parida:2008:EAR

Pisaniti:2003:PMP

Pirro:2016:BPE

Patterson:2015:WWH

Park:2017:IBF

Park:2015:SOG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Preparata:2005:QPS

Pasaniuc:2011:AEE

Petroni:2015:SSA

Pang:2010:MMP

REFERENCES

Qian:2009:QPP

Raghavan:2006:MGF

Ramanathan:2010:OAM

Rodriguez:2013:AIC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Roy:2006:HSM

Rubio-Largo:2018:PMM

Rao:2013:NMQ

Rodin:2009:UWA

Elise Rosati, Morgan Madec, Jean-Baptiste Kammerer, Luc Hébrard, Christophe Lallement, and Jacques Haiech. Efficient modeling and simulation of space-dependent biological

Ramensky:2000:DST

Radmac her:2002:PCP

Rohani:2016:RSW

Rahman:2018:HNA

REFERENCES

REFERENCES

[RPW13] Vladimir Reinharz, Yann Ponty, and Jérôme Waldispühl. Using structural and evolutionary information to detect and

REFERENCES

REFERENCES

[Sam09] Michael Sammeth. Complete alternative splicing events are bubbles in splicing graphs. Journal of Computational Bi-
REFERENCES

REFERENCES

Itai Sharon, Sivan Bercovici, Ron Y. Pinter, and Tomer Shlomi. Pathway-based functional analysis of metagenomes.
REFERENCES

Schneidman-Duhovny:2008:DPD

Salzberg:1998:DTS

Sarr:2016:VAR

Song:2007:ADR

Sefer:2016:DEC

Saidi:2019:EMR

Searls:2001:JGL

Seligmann:2013:TDR

Serang:2015:FN

REFERENCES

[Sch12] Christina Schindler and Wolfgang B. Fischer. Sequence alignment of viral channel proteins with cellular ion channels.

REFERENCES

Sun:2019:BAS

Saarian:2012:RLO

Silberberg:2012:LSE

Setty:2011:HTI

REFERENCES

[SHB+03] Russell Schwartz, Bjarni V. Halldórsson, Vineet Bafna, Andrew G. Clark, and Sorin Istrail. Robustness of inference of

[SI97] Tetsuo Shibuya and Hiroshi Imai. New flexible approaches for multiple sequence alignment. *Journal of Computational Biol-
Sac:2009:LSN

Siepel:2003:AES

Sharan:2005:IPC

Scott:2006:EAD

Sinha:2003:DM

Sperrin:2012:RIA

Siderius:2018:MSM

Sharan:2013:RBM

Sagiroglu:2017:SAE
REFERENCES

REFERENCES

Swanson:2008:IMQ

Stojmirovic:2012:IFI

Scornavacca:2012:FST

Smith:1997:CLP

Schmidler:2000:BSP

REFERENCES

Swenson:2009:HSI

Sze:2006:PTS

Su:2009:CHD

Sun:2015:MSM

Sagot:1998:ISP

REFERENCES

Spiro:2004:LAM

Shojaie:2009:AGS

Shao:2016:FEA

Shao:2017:CBD

Soliman:2015:DMM
REFERENCES

Shi:2007:QMB

Schierwater:1996:ENP

Shatkay:2004:TEA

Sadeh:2013:CUU

REFERENCES

SMZ+12

Snir:2019:BIG

Sharov:2014:CPR

Sandak:1998:MBS
REFERENCES

Simmons:2015:D

Reference 413

Surujon:2019:SWN

Reference 413

Schbath:1995:EMD

Reference 413

Santiago:2018:HDU

Reference 413

Speed:2008:P

Reference 413

REFERENCES

REFERENCES

Spang:2002:NAR

Saule:2011:CRP

Siegel:1998:EVT

Song:2013:AFS

Skiena:1995:RSS

REFERENCES

[SS05c] Bernd Sturmfels and Seth Sullivant. Toric ideals of phylogenetic invariants. Journal of Computational Biology,
REFERENCES

REFERENCES

REFERENCES

Živa Stepančič. Enhancing Gibbs sampling method for motif finding in DNA with initial graph representation of sequences.
REFERENCES

Schulz-Triegla:2008:CQP

Sorooshari:2018:PMP

Salamon:1996:DUC

Singh:1996:DTP

REFERENCES

REFERENCES

REFERENCES

[SWK+07] Nilanjan Saha, Layne T. Watson, Karen Kafadar, Dr. Naren Ramakrishnan, Alexey Onufriev, Shrinivasrao Mane, and Ce-
REFERENCES 425

REFERENCES

REFERENCES

Theilhaber:2001:BEF

Tuller:2010:RAG

Tambonis:2018:DEA

Tuncbag:2013:SRM

REFERENCES

Tcheremenskaia:2008:PAI

Tran:2017:CBM

Tran:2017:MES

Takai-Igarashi:1998:DCS

REFERENCES

Teixeira:2018:LSS

Thijs:2002:GSM

Tjarnberg:2013:OSC

Tosatto:2005:VFF

Simon Tsang and Milton H. Saier, Jr. A simple flexible program for the computational analysis of amino acyl residue distribution in proteins: Application to the distribution of aromatic versus

Tanay:2004:MMI

Terashi:2012:LPT

Toyoizumi:2012:END

Thomas:2007:SPM

Tsai:2017:ESM

Tran:2015:NMP

Tichy:2005:EPT

Tang:2002:ZF

Tian:2017:IGI

Xin Tian, Mingyuan Xin, Jian Luo, Mingyao Liu, and Zhenran Jiang. Identification of genes involved in breast cancer metastasis by integrating protein–protein interaction information with expression data. *Journal of Computational
REFERENCES

REFERENCES

REFERENCES

Veselsky:2012:OPA

Voges:2018:TLS

Vacic:2010:GKP

REFERENCES

Valouev:2006:AOM

Veksler-Lublinsky:2007:SBF

Vijayasatya:2006:OAP

Venkat:2017:BNB

Voorkamp:2014:MAA

Vega-Rodríguez:2018:PSI

Viswanath:2019:IDI

Vardi:2012:LCB

REFERENCES

vanUitert:2008:BSB

Vandin:2011:ADS

Vingron:1997:TIM

Vexler:2018:TTV

Wu:2010:SQN
REFERENCES

Wong:2008:DHO

Wagner:2004:RPL

Wang:1994:SPR

Wagner:2005:LRM

Wareham:1995:SPN

H. Todd Wareham. A simplified proof of the NP- and MAX SNP-hardness of multiple sequence tree alignment. Journal of
Wise:2015:CID

Wang:2004:SSI

Waldispühl:2007:CPF

Wang:2016:IMN

REFERENCES

REFERENCES

[WG08b] James O. Wrabl and Nick V. Grishin. Statistics of random protein superpositions: *p*-values for pairwise structure align-
REFERENCES

REFERENCES

[Wu:2019:IIA] Yue Wu, Farhad Hormozdiari, Jong Wha J. Joo, and Eleazar Eskin. Improving imputation accuracy by inferring causal

REFERENCES

REFERENCES

[WPL+19] Liang Wang, Yuquan Pei, Shaolei Li, Shanyuan Zhang, and Yue Yang. Distinct molecular mechanisms analysis of three

REFERENCES

Wessel N. Van Wieringen and Mark A. Van De Wiel. Exploratory factor analysis of pathway copy number data with an application towards the integration with gene expression
REFERENCES

Wang:2018:SLS

Wang:2019:CNI

White:2017:AIA

Wang:2016:CWB

REFERENCES

Wang:2012:BGA

Wang:2018:LGP

Wang:2010:TMS

Wu:1996:PCD

Wang:2000:EMR

February 2000. CODEN JCOBEM. ISSN 1066-5277 (print), 1557-8666 (electronic).

REFERENCES

Xu:1996:IA

Xie:2007:RBE

Xia:2008:RAA

Xu:1997:AGI

REFERENCES

2000. CODEN JCOBEM. ISSN 1066-5277 (print), 1557-8666 (electronic).

REFERENCES

Yang:2016:RRI

York:2002:BEN

Yang:2012:SPE

Yanikoglu:2002:MEC

REFERENCES

Yancopoulos:2009:DPF

Ye:2007:HMM

Yang:2005:GCU

Yu:2001:SSP

Yang:2003:SMA

Yaning Yang, Josephine Hoh, Clemens Broger, Martin Neeb, Joanne Edington, Klaus Lindpaintner, and Jurg Ott. Sta-

Yang:2005:EED

Yang:2019:TDE

Yang:2015:SHC

Yang:2017:PAM

Yeang:2006:MCF

Yousefian-Jazi:2018:SIF

Yu:2008:SVT

Yona:2005:URH

REFERENCES

Yanshen Yang, Jeffrey A. Robertson, Zhen Guo, Jake Martinez, Christy Coghlan, and Lenwood S. Heath. MCAT:

Yadav:2015:TPR

Yanover:2008:MLE

Yanev:2017:PFP

Yi:2012:SPF

Yuan:2009:TRH

Wang:2006:EIA

Yu:2011:AMB

Yan:2019:BND

Yin:2005:FCC
REFERENCES

REFERENCES

Yang:2008:RPS

Yang:2017:MGR

Yang:2013:LLA

Zhou:2018:EDB

Zakov:2015:RBF

REFERENCES

Zhang:1998:ALS

Zhang:2013:SLD

Zuo:2017:MBA

Zaccaria:2018:PCN
REFERENCES

REFERENCES

Zheng:2010:PFS

Zakov:2011:RPI

Zagordi:2010:DSG

Zhu:2007:BHM

Zhu:2014:ASB

REFERENCES

REFERENCES

491

Zhao:2016:GTM

Zhang:2012:VVE

Zhai:2010:PDE

Zheng:2014:JI

Zeil:2017:CAM

[ZKWH17] Stephanie Zeil, Julio Kovacs, Willy Wriggers, and Jing He. Comparing an atomic model or structure to a corresponding

Zhao:2001:RIU

Zhang:2009:GTT

Zheng:2017:ICA

Zhang:2013:CMS

REFERENCES

[Zeiser:2007:MHO]

[Zornig:2015:RSI]

[Zhao:2010:EEE]

[Zeng:2018:GWA]
Lu Zeng, Stephen M. Pederson, Danfeng Cao, Zhipeng Qu, Zhiqiang Hu, David L. Adelson, and Chaochun Wei. Genome-wide analysis of the association of transposable elements with gene regulation suggests that *Alu* elements have the largest

Zhao:2010:PCM

Zhao:2010:PCM

Zhang:1997:ADS

Zaitlen:2008:SIA

REFERENCES

Zhang:1994:CMA

Zhai:2012:NCP

Zeng:2011:BAD

Zhao:2011:MFD

Zhukova:2014:KBG

[ZS14] Anna Zhukova and David James Sherman. Knowledge-based generalization of metabolic models. *Journal of Computa-

Michal Ziv-Ukelson, Irit Gat-Viks, Ydo Wexler, and Ron Shamir. A faster algorithm for simultaneous alignment and
REFERENCES

Zhang:2003:EPA

[ZW03]

Zhang:2007:NCC

[ZW07]

Zaborowski:2019:BEM

[ZW19]

Zhou:2004:GCB
REFERENCES

REFERENCES

Zhou:2016:CPD

Zhihua:2004:TQP

Zheng:2019:SSA

Zhang:2010:MIS
Zheng:2014:DCR

Zhong:2014:SFA

Zitnik:2015:DIE

Zhang:2011:PIB

Zien:2000:SIA

Zhou:2017:GRN

Zhang:2010:PIV

Zhou:2015:DDA

Zheng:2008:DWG

Zeira:2017:LTA

REFERENCES

Zilberstein:2006:HTA