A Complete Bibliography of Publications in
Journal of Computational Chemistry:
2000–2009

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

08 February 2014
Version 1.04

Title word cross-reference

(Φ, Ψ) [WD04]. (φ, ψ) [TTB01b]. –2 [ZZZ'06]. –4 [ZZZ'06]. 1 [FROD08].
$1/r^p$ [SG01]. 12 [KGL07]. $\$$139.00 [Sta00]. 14 [LMGR06, ZGXX06]. 16
[HXD08]. 2 [DMC05, GdAcV'07, LW04b, LXZ06, LW06, PF06, SFC04,
WDZS07, YNW05, hYDN'+08, ZTS09]. 2 $\leq N \leq 372$ [Pul05]. $\$$3 [Lip00]. 3
[BAB'+02, FROD08, GDPCPU07, GdSuM'+07, HP05, mJLzyL'+08, KSN01,
LYZ'+08, MP03b, PF06, SHBD05, SFC04, TJM'+03, WLL07a, WDZS07,
XLL'+02, ZLY07]. 3,10 [JS07b]. 3d [Hol05, LD05a, Wu06, SZT08]. 4
[FHF'+01, LLXS02, QB05, WDX'+02]. 4,7 [ZWS'+02]. 4d [ABYMO08]. 5
[ZXL'+04]. 5d [HZ09]. 6 [Han01, LLXS02]. 7 [LMO09]. 8 [KS05a]. 9 [UM03],
[n] [VKP'+08]. ## [BRV'+07]. +
[FKS'+09, GLRL02, GSPS06, GWL07, HDO'+02, ITS06, KT08, LMO09,
Mck07b, PV07, Sha02, WWT08, ZYW'+09, ZL05, dRLMS00]. +2 [PNG08]. –
[Bac09, Dib05, HTN03, LYZ'+08, Mas01a]. 1
5

3 [AAP00, KAK+09, LEV+09, NYTH09, Rud05c]. 3-butyadiene [Hir08, WR07]. 3-dihydroxy pyridine [YXZ+04]. 3-dimethylallene [ZPL07]. 3-fluorobutanal [NSB08]. 3-hydroxy-2-mercaptopyridine [YXZ+04]. 3-dimethylamino-benzonitrile [ZH08]. 3-dithiacyclohexane [FD03]. 3-dithiane [FD03]. 3-spinor [PV03]. 43C9 [CBS+03]. 45-ns [SO07]. 4d [CWWS07]. 4R [BISB02]. 4R-hydroxyproline [BISB02].

4 [Lu09]. 4-carbonate [vDSSvA04]. 4-dihydropyridine-based [HSMT04]. 4-dimethylamino-benzonitrile [ZH08]. 4-dithiacyclohexane [FD03]. 4-dithiane [FD03]. 4-Spinor [PV03]. 45-ns [SO07]. 4d [CWWS07]. 4R [BISB02]. 4R-hydroxyproline [BISB02].

5 [LDY+08, PFR04b, PMM05, TAS07]. 5-di-tert-butyl-o-dimino benzosemiquinonate [Bac09]. 5'-diphosphates [PFR04b]. 5-hexadiene [PA05]. 5-hexadiyne-3-enes [PWFS01]. 5-hexatrienaldehyde [ZGZX07]. 5-nitro-3-carboxybenzisoxazole [UTH+03]. 5'-phosphate [PMM05]. 5'-phosphate-dependent [LDY+08]. 5-phospho- [RGP+07]. 500-MHz [CMD+04]. 53A5 [OVMV04]. 53A6 [CLWL09, OVMV04].

7-species [WG02]. 790 [Ano06c]. 7a [HKHN08].

8-nitroguanine [JM07a]. 8-oxoguanine [FPN+05, JM07a, Pin03].

9-heterofluorenes [CZF07].

= [Bac09, CPJ00, CRC+08, GHLK+02, GPSP06, Han01, HT05, HYA02, HKHN08, HZ09, Hua09a, JJK+00, KBL08, LS08a, LZZC09, LYA+08, Mar03, Mck07a, Mck07b, OS08, RB01, STC+08, WLLS04, WZZ+09, WD08, WWS07, XFF06, ZJM+07, ZY01, ZXY03, ZLO9b].

A*0201 [WCF04]. AA [KB02, KDSV02, POJ01, PB05, XLT07]. AA/L [KOML08]. Ab-initio [Ha08, HELM09]. abasic [FPN+05]. ABEEM [YZ06]. ABEEM/MM [YZ06]. abilities [OYH09]. Ability [GM01, RRZA08]. ablation [KZW+05]. ablation-mass [KZW+05]. ABO
[WD08]. ABSINTH [VP09]. Absolute
[BWE05, ZM09, BMRF01, DHF+05]. absorption
[MWL+08, MSH+06a, YXZ+04]. abstraction [AST06, CUS00, CUSS03, GAIMVB01, mJZsLyL07, LW04a, LLL07, TGLL07, WLLS04, XLL+02]. Ac
[GHLK+02]. accelerate [Gou07]. Accelerated
[LSG06, LDG02, FSM09, Har04]. Accelerating
[FEV+09, LEV+09, SPF+07]. Acceleration [KG02]. accelerator [ATMK03]. acceptance [KBB09]. acceptor [BL06, RM07]. accessibility [AG03, ENM+04, GP06, Tot04]. accessible [BHW00, BMLV04, GB04, HHS+05, LFBSK07, RP07d, TSMNG01, TRS02, ZCL09]. accessible-surface-area [ZCL09]. Accompanying [Ish02]. account [May07, SN06, Vya01]. Accuracy
[FII+07, GG09, PSMB05, SKK+07, UBDPJ04, Bie04b, FKFG08, JS07b, KC01b, MKGA06, MHW04, RK05, SM03, SW06]. Accurate
[ABWT09, BpPRMAI00, EK06, GK09, Grl04, Hdl06, HD06, HMSM06, Ish04, LLZL09, MSH+06a, Tot04, WFHP01, WHP02, WHF08, WX09, ALKH04, Bie04a, BLB09, CGBF05, CF06, GKK07, HdlD05, JKK+00, Rud05a, Rud05b, Rud05c, Vas02, WCC08, ZFW08, vEMK01]. accurately
[IGL07, SBI08]. acetaldehyde [Lu09, YLZ08, Lu09]. Acetalization
[RUPH06]. acetals [MG06]. acetamide [CCK01]. acetate
[GWM08, PGG06]. acetic [MH08a, YT03]. acetonitrile
[ELK+09, GJK00, NL07]. acetylene [DLD+02]. AcF [GHLK+02]. acid [CJK+02, CML05, CSDK09, CK01, DP03, DP04, DLHC06, DHW+07, FZL07, HFHL06, HLC09, IT03, IKYM09, JPF+00, JKM08, JCL05, KLB03, LL07, MT03, MMLC05, MSF+08, MOH08a, Nak07, NH05, NLL+09, Pac06, RR05, RKK03, SKGS00, SYC03, SL04, SBG09b, SRW06, SHK+05, UNHT06, VM02, XSHC06, XLC08, XLT03, YTL03, YXL+09, ZZY07, ZZY08, ZOJ+06, vDSSvA04]. acid-3
[vDSSvA04]. acid-catalyzed [RR05]. acid-nucleotide [MSF+08]. acidity
[ELK+09]. acids [BE06, CADW03, CLA+00, FM00, HWTL03, HP04, IKYM09, KS01a, LD+08, MB00, MM05, NHH05, ONM08, PPYS08, VAn02a, XKKL03, YLL+09, ZLD09]. AcO [GHLK+02]. across
[HZX04, SSM08, SRB06]. act [GM01]. actinide
[AB00, GHLK+02, NSO+07, VAM03]. Activation
[EL06, BGC+09, BZL05, CC09, CFER04, KT08, Lu09, PV07, RRS06, Vya01]. active [AG00, BSDM04, CFR06, CFS+09, FCP+04a, FCP+05, HBM06, HFS+07, HYR06, JHPRSM+05, KSK00, KZO03, LLL03, MDA08, PFM06, RZWS07, SS05, SFR07, TDH06, XLL08]. active-site [SFR07]. activities
[HMMS09, MS04, ZWB09]. activity
[AGMPRG+08, Bou01, CW02, DD08, DA01, DHW+08, DHW+09, FTLV01, GDP08, LC09, MRS09, Sha02, WZY04, Zer08]. acylation [MCK05, MK02]. adaptable [KF08]. Adaptation [HLM05]. adapted
[FCP+04b, HDS06, HD06, LXW07, PTC01]. Adaptive
[BHW00, HBW01, HW03, HLSH05, DK01, GY08, OM04, RNG03,
addition
[BLO+02, DGD+05, LL00, Mui05, RAGL09b, RR05, WCW08, WSC09].

addition-elimination [Mui05]. additions [AVB00]. Additive
[GGK+08, CCK01, LKA01]. adenine [KKMMS04, SG07a].

adenine-thymine [KKMMS04]. adenosine [MRS+07, YKK09]. ADF
[tVBB+01]. adiabatic [SLRC01, TVL+03]. ADMA [EM03b]. admissible
[WG02]. adrenergic [YKK09]. adsorbed [DR09, PBZ00, XPW09].

Adsorption [ATH+03, BRS00, BRS01, HSF08, ZTP+08, NK06, SURG06,
ST04, WLX+05, ZCS04, ZSC05]. Adun [JGVF05]. advanced
[LAEL01]. advances [MMRVH07]. Advancing [PP08b]. affect
[AST06]. affinities [AVS09, DJ04, KS05a, KKMMS04, LLXS02, MRS+07,
SRB06, WSM+08, ZJM+07, ZXL+04, dSGCG00]. affinity
[AB˚A04, FO08, GCD+08, KFB05, KS08, Lee09, LXW+09, MML+06, RTG00,
SOOF05, SWV+05, ZWB09]. affording [OY01]. after [TJM+03]. Ag
[GPSP06, LYZ+08, NA06, SG07a, WCS09]. against [SSS+09]. AGBNP
[GL04a]. AgBr [Sha02]. agent [LHJ+06]. agent-based
[LS05b]. AgN [ZX08]. agonists [GCD+08, SBG+09a]. Agreement
[LCDA03, LCGA03, LCA03]. aldehydes [LLA01d]. Alder [Hir08].

Alchemical [Blo04]. alcohol [FBGD06]. Alcohols
[ALED03, LCDA03, LCGA03, LCA03]. algebra [AT02]. algebraic
[Tor02]. Algorithm
[GGB07a, GGB07b, JHMB+09, JHMB+11, WWT08, ZWY+09]. alkalimetal
[BSG07]. alkaline
[JHMB+09, JHMB+11]. alkaloid [BMRF01]. alkanes
alkyl [BE06, CC07, EB04, LLZL09]. alkyl-cyanobiphenyl [CC07]. alkylation [EL06, VBGL+00]. alkynes [WCO8]. All-atom [FM00, MB00, VGO+07, GB04, IT03, MT03, PHH+08, RG08, WS07, JS07a]. All-electron [EL09, ITN+05, IS07]. all-purpose [JGVF05]. all-siliceous [LST08, LTV08]. allene [WMRW+01, ZKZ+07]. allenes [WCHW09]. allocation [SKSH07]. allomeric [LGB+09]. Allostery [Sen06]. alloys [GD09, KGD06]. allyl [ZGZX07]. AlNC [MLCD01]. alpha [GKK07]. Alpha7 [GCD+08]. AlPO [PHH+08]. altered [DLRZ09]. alternating [YFR05]. alternation [JPCA08]. aluminophosphate [LMV07]. aluminum [TBG00]. always [Kol04]. Alzheimer [MS03]. AM1 [DC02, JBJB00, JJB02, LMMW04, RFSS06, TCT03, VGGMM05]. AM1-BCC [JBJB00, JJB02]. AMBER [Ano06c, WWC+05, JS07b, JM07b, MRC03, OYH05, TdMSD+08, WCC08, WWC+04, WZW+06, WS07]. AMBER*C [CLA+00]. AMBER95 [ONHN00]. ambiguous [BS01]. Amica [GBL+05]. amidase [CBS+03]. amide [CCK01, GSB09, LKA01, SJW09, YSA+03, IINK09]. Amide-[IINK09]. amides [CMLS05, KS06]. amine [OY03, PS03]. amines [CLFA07]. amino [CADW03, CJK09, CLA+00, DLHC06, DHW+07, FDSA00, HFHL06, HLC09, IT03, IYKM09, JPF+00, KS01a, KLB03, LDY+08, LL07, MT03, MM05, MSF+08, NLL+09, RKH03, SURG06, SKGS00, VM02, XHSC06, XLC08, XLT07, XKG+05, YLL+09, YXL+09, ZLD09, ZOJ+06]. amino-cyclopentene [SURG06]. aminoarabinonucleosides [BL08]. Aminopurine [SC01]. aminoborinonucleosides [BL08]. aminosubstituted [TKS+01]. ammonium [HIT5]. ammonolysis [UNM+01]. among [IGNH03, LL07, WS07]. amorphous [CA04, CA07a, CA07b, SHH07]. AMP [FKM+06, FKM+07]. amplitude [KS05b]. Amyloid [BTP09, MS03]. amyloidogenic [CP09]. amyllose [NK01]. anabolic [AGMPRG+08]. analogs [CGSdST06, EKO+01, HG08, KS01a, LWK08, UTM+02, UT+04, hYDN+08, AJNG01, ALB09, AVS09, BM07, BLF02, BL00, BAH+02, BPCD07, CG03, CS01, CCP04, CSRT04, CA07b, DDKV07, DRAS04, JSR+07, ECM+03, FK07a, FC06, FSS00, Gly06, GS07, Gra07, GHBB04, HHWG08, HS00, HLHS05, HP05, IN08, JPF+00, JMD+02, JFG04, KB02, KK08a, KM02, KS03, KN04, KSS00, KMA+07, Kni00, LR+02, LS05a, MGCA07, MS03, MWE02, MHW04, MFP+07, MA05, NK06, NSU+02, OML+00, ON07, PFC03, PGH+04, PP08b, PYEA03, PAS07, PYCD03, PY05, PC07, PLC08, RMK03, RS07b, SH09, SMGE08, SSHT03, SFC04, SCF+09, SvDS01, TYN05, TCR+02, TT01, TD06, TT01a, TT01b, UTH+03, VGB08, VKCK09, WKBV03, YNW05, YK08, ZSE08, Zer08, ZWB09, ZHH09, ZB07, NYK+09, Ruv07, VB09, RS07a, VB07]. analytic [ASWG07, DOSG06, GL04a, IK00, KBT03, LFSB03a, LFSB03b, SJW09].
Analytical [HNWF07, HNWF12, PDC+08, QCK01, QCK02, RLR+04, WL02, JSR+07, HC08, HHS+05]. analyze [AGMPRG+08, Ham07, MCF07]. analyzing [DW08, LD05b]. andradite [ZWTP+08]. anesthetics [TZX01b, TZX01a]. Anglada [Bof01, Qua01]. angle [CIB05, FWH+07, LIO7, OFIK09, YL06]. angles [FPG+06, Ham07, MCF07]. anharmonic [BP07, DB07, GBDP05, LMO09]. anilido [GTC06]. anilido-imine [GTC06]. anion [JT06, CW02, DMN05, EFQD09, GS04, wQZsLyZ02, QZZZ03, VDM06, WLZ+07]. anion- [EFQD09]. anionic [ALC08, HHWG08, PGG06]. anions [CTFC08, KKMMS04, Lee09, LLXS02, Owe05, ZXL04]. anisotropic [BCIB05]. anisotropy [GKTS04]. ANN [HSMT04]. annealing [ADM+06, CS02, CCP04, HPP00, KH01, LCKL05, LJKL08, MCF05, WG02]. annexin [MHJS06]. Announcement [Nor04]. Announcements [Ano05a]. annulation [GLH+08]. anomeric [CPJ00, CPJ01, CKF01, LCDA03, VM07]. ant [CLZ+09, CLZX09, DDKV07]. antara [LFS+07]. antara-antara [LFS+07]. anthracene [CG08, CDPL09, HIA03]. anthracene-9 [CG08]. antibacterial [YCW+09]. antibody [CBS+03, SOOF05, TH02, UTH+03]. antibody-catalyzed [TH02]. anticancer [BZL05, PFR04a, SMM+08]. antifungals [GDPP08]. antiinflammatory [CMBC08]. antilipid [MRS09]. antimicrobials [GDPP08]. antitumor [KC01a, WM01]. apatite [RD06]. Applicability [DC02, PRS04, QTdG+08]. applicable [PB05]. Application [ASDP+06, CIB05, GWS+02, HKMS01, HSMT04, HM08, HMMS09, KSS08, KAK+09, KBK+01, Mat03, MW09, TBSM09, TKN+08, BLN01, COS01, CSJ01, DLWV07, DV02, FOK+04, FKU+05, GLD08, GWM+00, HHBH06, JW06, JGVF05, KTM02, K01a, LL00, LFSB03a, LFSB03b, LI07, LSHR04, LCSZ09, LXL07, LLL03, LMO09, MG00, MS04, PB04, RI07, Rud05a, SG07b, Tot04, VM00, Wli01b, WR07, ZLY07, ZNL07, dGWH01, CMJ08, CVW+05, CMB08, JSR+07, GRO+03, GBDP05, GS04, IN08, IS03, LJZ+07, LSY02, MB00, MCF05, MBC08, MTB09, ON07, PHJ+08, Qua04, QCK01, QCK02, Rud05b, Rud05c, SL09, SDCG02, SFC04, TH02, VVS07, VKCK09, WRP+06, WFR08, vGGB00]. Applications [HLLN06, BWZ08, BBG+04, CGMPT+08, CR09b, Est07, LW06, PMC+08, PTC01, SPF+07, Tor02, ECP+03, GGB07b, HT03, RSN+02, WH03]. applied [ADM+06, BL09, BT00, BS06, DMN03, FII+07, GHK+02, MKGA06, OM04, TLKT00, YAÇ+02, ZZ08, dVB01, BBC+05]. Applying [AGMPRG+08, Woo01, You11, GS02]. appreciation [vRS01]. approach [AB00, AGK03, AVS09, BG03, BEM05, BS03, BG01a, BLF02, BMSTC01, BPCD07, CCWH02, CYM02, CGFB05, CAGR08, CMBC08, CG05, EM03b, GAIVMB01, GAIO6, GJL+08, GRO+03, GSV, GS02, GDPP08, GdSU+07, GdAcV+07, GCD+08, HMMS09, Hn00, HRR05, HT03, HLSH05, IT03, KKG+09, KN04, KHY00, KHF+09, KBT03, LFKL00, LCC09, LMJ02, LYS08, LD05b, LWZ09, MAF+07, MR04, MFR07, Mor02, NYTH09, Oos09, PS09a, SAM06, SPGS08, SGPS09, SL04, SWZS04, VV03, Van02b, WWL+09].
XWC09, XKKL03, YS00, YK08, ZCS04, ZS04]. **Approached**
[LL07, XSHC06], **approaches** [BP07, Con02, CSD05, COL+06, MLJ03, PSF+08, PMM05, RLD09, RS09, SM08a, YCW+09]. **appropriate** [Bac07]. **approximate** [Cu08, GB04, Hol05, KS02a, SZ07, SYC03]. **approximated** [PSF+08]. Approximately [EA06], **approximating** [MR04]. **approximation** [AB09, BRS00, BRS01, CLP+05, CCK01, Der09, EA08, GMA04, GWS+02, ION07, Kri09a, Lai07, LFSB03a, LFSB03b, LN01, MTE04, Nee03, OCB02, RP07d, SHSF05, ZFL+05]. **approximations** [Dya02]. **APS** [CBC+08]. **APX** [ZJM+07]. **aqua** [RMP01]. **aqueous** [BISB02, CPJ00, CPJ01, CW02, CCK01, DA01, EK06, FHRR07, HMWC03, HRR05, HDO+02, IV04, IvSV06, JM07b, KEH+02, KPR04, Kri08, Kri09b, LRI+02, LR03b, Loe03, LMIF06, MM02, NL07, PK04, PHRR08, SH09, SMKM00, SBB02, VP09]. arabinonate [RGP+07]. APS [CBC+08]. APX [ZJM+07]. **aqua** [RMP01]. **aqueous** [BISB02, CPJ00, CPJ01, CW02, CCK01, DA01, EK06, FHRR07, HMWC03, HRR05, HDO+02, IV04, IvSV06, JM07b, KEH+02, KPR04, Kri08, Kri09b, LRI+02, LR03b, Loe03, LMIF06, MM02, NL07, PK04, PHRR08, SH09, SMKM00, SBB02, VP09]. arabinonohydroxamate [RGP+07]. arbitrary [KH06, LMV07]. architecture [TDK07], architectures [TYO+02]. area [GCC+08, GB04, HHS+05, Lab08, LFBSK07, RP07d, VP02, ZCL09]. areas [BHH+09, TRS02]. arene [FK+09, PCMG09, RRZ08]. arene-containing [RRZ08]. arginine [CJPZ08, SMGE08]. arginine-bound [CJPZ08]. argon [BWW+08]. argument [Ish04]. ARIs [PS09a]. arising [CCSJ00]. armed [KLM+09]. ArOCS [ZGXX06]. Aromatic [CPML08b, FV08, HLC09, MM05, MGMM07a, ST01, SMV+09, TDK07, VS08, WFP01, XL07, PCO+07a]. Aromatic-Backbone [CPML08b, Van08, PCO+07b, PCO+07a]. aromatic-type [HLC09]. Aromaticity [BPCD07, FMP08, HJMB+09, HJMB+11, LWW+06, LTF+07, MGMM07b]. Array [FJP07, ABF+03]. arsenic [ALC08, KS05a, ZXL+04]. ARTE [VB07]. ARTE-QSAR [VB07]. artifacts [CCSJ00]. Artificial [PS09a, RBW08, VB01, CLC03, Gol09, NINAT+07, TCSM03]. arylamide [VIP+06]. ascorbate [HBM06]. ASIC [NYTH09]. aspartic [ZZY08]. Aspects [HBH00, MO01, BMRDB01, BRS07, Sie01, TT02]. assemblies [DFG09b]. assembly [DPRR05]. Assessing [IB04, FGR07]. Assessment [BP03, CCWH02, DGI+08, KS08, LWH06, SSS+09, WSM+08, CKMC04, FPMS08, GT03, LLS03, SP05, GGT08, GBB04, TFZRG01]. assignment [BB05, BMRF01, PRJ02]. assignments [PF06]. assisted [BA04b, KT08, WJ+08]. assists [BM07]. associated [SRW06, TT08]. Associative [ABYM08, NL08]. asymmetric [WR07, WFR08]. Asynchronous [GLP08]. atmospheric [GCCVB00, PGNG03]. Atom [BP07a, RM00, BPC01, BR04, BWW+08, CCK01, FM00, GWS+02, GB04, HLLS05, IT03, JS07a, mJLZ+08, LMK01, MT03, MB00, PHH+08, RG08, RS08, SSB+03, SBLK01, SLL+04a, TG07, VK06, VGO+07, WLL07a, WBSR03, WS07, WLL+03, YLWL09]. atom-bond [VK06]. atom-centered [SBB+03]. Atomic [DVP+02, FM00, AS00, BAC07, BSC+01, BCN07, BSP06b, BK00, BLT03, BAA07, CN03, FS04, GC02, Ish03, JBB00, JJB02, KRM+02, Kau07, KS01a, KCO1b, Lab08, LMV07, LST08, LTV08, Nl09,
atomic-centered [TBSM09].
atomistic [CA04, IDMC09, KK01bb, RPMP03, SPGS08, ZALMG03].

Atoms
[VM07, YK08, ALTB06, AD00, ASS+02, BHTCG07, BKS02, BS03, CMJ08, CDS09, EdlVR+03, FS04, HSF08, mJiZsLyL07, KGN07, KS02b, LDC+07, Mat03, NSO+07, RP07b, RRP+01, RLR+04, RLER04b, SO09, SNM+06, SFC04, Wi01b, WDX+02, XLL+02, PF05].

Atoms-in-molecules
[YK08, RLR+04].

ATP
[FCP+04a, GS04].

ATP-binding
[GS04].

ATP-dependent
[FCP+04a].

ATPase
[HLB09].

attachment
[LBG08, XWXC08].

attack
[CBS+03].

Attaining
[Rud05a, Rud05b, Rud05c].

attending
[HT05].

aug
[Wib04].

aug-cc-pVDZ
[Wib04].

Auger
[OKE+02].

augmented
[JˇCHS07, KDG+09, LFK05, MOP+07].

autoantigen
[KVS+06].

AutoDock4
[MHL+09].

AutoDockTools4
[MHL+09].

Automated
[CKMC04, LMO09, HR08, LR03a, MM03, VSW+03, MHL+09].

Automatic
[CHMI05, WK01, AGI+00, AGI+07].

automaton
[XWC09].

auxiliary
[GKH05, JSHG07].

available
[SCF+09].

averages
[Rap06].

averaging
[BSC+01].

avian
[DLRZ09].

avoidance
[WCFH02].

axial
[BMRF01, CN05].

axis
[OMNH08].

azaglycine
[LKJ+04].

azole
[SMM+08].

azole-bridged
[SMM+08].

azurin
[PMGL03].

B
[OS08, Sta00, WZZ+09, WD08, ZZZ+06, ALKH04, BAL+01, FH01, GL04b, JS07a, KVS+06, LMG06, MZ06, ZWB09].

B-DNA
[M01, Pin03].

B-domain
[JS07a].

B-spline
[ALKH04].

B-splines
[GL04b].

B3LYP
[CLP+05, FSFK05, HWG01, NL08, TCT03, WC04, WX09].

B3LYP/6
[FSFK05, NL08].

B3LYP/6-31G*
[NL08].

B3LYP/6-31G**
[AMBER].

Ba
[WD08, XB08].

Bacitracin
[Dra00].

back
[BB05].

Backbone
[CPLM08b, GKK07, Van08, Adc04, An06c, AHG09, CLW09, HSW01, KL01, LHA01, MBL08a, PC0+07b, SP05, WZ+06, YL06, PC0+07a].

backward
[KM07].

bacterial
[An06b, CPM03, GSS04].

bacteriochlorophylls
[LKT04].

bacteriochlorophyllin
[IN01].

bacteriorhodopsin
[RG02].

Bacteroides
[SDM02].

Bader
[GHBB04, SKSH07].

Baker
[WB05].

balanced
[An06c, WZW+06].

balanced
[PB05].

Balancing
[CF06].

band
[AJ03, JCA+02, ZZ09].

Baoshan
[JW12].

bare
[KT08].

barrier
[CRGN07, KSTC01, LSG06, MG06].

barriers
[DBM03, EL06, HFL06, PBF09].

base
[CCK01, DP04, FZL07, HWL03, KMK04, MML05, MFS+08, MHS05, NL08, OY01, PG04, PSS+04, PSB05, SKG00, SG07a, ŠBL05, SC01, SJC03].

base-catalyzed
[OY01].

base-pairing
[DP04].

based
[Adc04, ALTB06, ALB09, AB09, BDPRA100, BMR01, BDW00, BMTSC01, CGM+08, CRK08, CLZ+09, CLZ09, CTK08, CHA+07, CPUGD09, CMB08, CRGN07, CA04, CSB+03, DLW06, DML05, DHW+00, DB102].
DDVD09, DHW+07, DHW+09, DWC+03, FCK+08, FCP+04a, FCP+05, FM00, FZL+06, FRLN09, GZL02, GRCD01, Gon07, GDPCPU07, GDPP08, Gra07, GAS04, HSMT04, HS07b, HLM05, HZ06a, HZ06b, HMOG07, IIK09, IR03, JD09, JKI08, JGF05, KLS02, KBA+04, KK08c, KKB+01, Kob03, KIM+09, KZW+05, KVS+06, LFKL00, LHJ+06, Leh06, LXZ06, LJZ+07, LH05, LM09, ML06, MSF+08, MSH+06a, MBH+02, NLL+09, NMAT01, OVMV04, PS09a, PFR04b, PA05, PAS07, PRJ02, PF06, PRDS08, Pul05, QHL09, Rao00b, RSE09, RLD09, RSN+02, RKA+09, RUPH06, RRS09, RSS09, Ruv07, SAM06, SKSH07, SGL09, SPL+02, SBB02, SE08].

based [SZW+05, TTBM09, Tot04, VSK+04, VB09, VGDSU08, WL09a, WL00, WS07, Ws07, XYN06, XL02, YWZH03, YNW05, YDN08, YJF06, YXL+09, YKK09, ZCL09, ZLY07, ZLD09, ZWB09, dSR08].

basepair [BCP03].

bases [CCK01, Nak07, RTG00, RKH03, SL04, WRP+06].

basic [Rud05a].

basicity [EK06, Lee09].

basins [CFS03, MP03a].

Basis [AHK02, BRLS08, BRLS12, JJK+00, Wib04, ABF+03, ALK04, Bac07, BY06, BR04, BT00, BS0B05, BRV+07, CMJ08, CRS05, Cul04, CGSdST06, DMZT08, EA08, EdiVR+03, EL09, FZL07, GKH05, HdmD05, HdsO6, HD06, IO08, JSHG07, KK08a, LF05, Lai07, LMV07, LST08, LT08, MV06, Mas04, MLL+08b, MC06, MY08b, MY08a, NSO+07, OBBS05, PSC+01, Pen06, PFJ+03, PS05, RRE01, RLRE07, SSB03, SNM06, TSSSG08, VKP+08, VB03, Var09, VKCK09, WMGK07, WTKM06, Wt08, ZWPR+04].

Basis-set [AHK02, MV06, Pen06, VKCK09].

BCC [JB06, JBJB00, JBJB02].

be [HdM05, HdsO6, HD06, IGL07, STSF02, WCF04, BP01, LWW+06].

beam [BAL+01].

bearing [NL08].

Becke [AAP00].

Becke-3 [AAP00].

Becke3 [PDS01].

Becke3-LYP [PDS01].

beH [PRSMV08].

behave [PB02].

behavior [Ama02b, Bac05, BISB02, LB05, OO04, RP07c, SH08].

behaviors [LML+00].

being [OCB02].

benchmark [Ano01b, BS05, DGD+05].

Benchmarking [Hol05, SZT08, WS07].

Bennett [KBB09].

Benzdiynes [ASY01].

benzene [BE09, BRLS08, BRLS12, HT05, HRG07, IINK09, LWX07, Sch00, SG07b, ZTP+08].

benzenes [PB05, WR+06].

benzo [GLRL02].

benzocryptand [WWT08].

benzodiazipine [SPGS08].

benzodioxoles [MRS09].

benzoic [BE06].

benzonitrile [ZH08].

benzylideneaniline [BY06].

benzylicpenicillin [DS03].

Beowulf [BMRDB01].

Bergman [PWFS01].

Besal`u [Bo01, Qu01].

Bessel [DS08].

Beta [LHI09, BTP09].

Beta-hairpin [LHI09].

between [AD00, AZM03, BS03, CFR06, DRA05, EFQD09, FG03, FL07, FO08, FKM+06, FKM+07, GWM08, HPP00, HRBK03, HFHL06, HN20, Hir08, IINK09, JPC08, KWK+01, KWK+02, LDC+07, Li01, LL01, LFZS04, LLL03, LS05b, MST+08, MBH+02, OY01, PSF+08, PMPGP05, PS03, RLRE01, SM08a, SBLK01, Sim07, SWM04, SKK+07, SP05, TYN05, TK08, TDH06, UTM+02, UTT+04, WLX+05, Y03, YQ09, Ysq02, ZZTS09].

beyond [CLP+05, CCK01, Ha08, PP08b].

BH [QZL+04, SAS05].

Bi [LS08a, WL09b, HZ09].

bi-transition [WL09b].

bias [OM04, SY09].

Biased [MLG04, KV00].

bicyclic [EBDPM00].

bicyclo [BE07, BCP01].

bifurcation.
bilayer [CEP07, HNL08, MCR08]. bilayers [JM07b, RG08].

bimetallic [WCS09]. bimolecular [ML00]. binary [Kle02, Kle03, LCSZ09].

Binding

[ABÅ04, AGO+02, BCP03, RGP+07, ABYM08, AM06b, APG05, AVS09, BWE05, BSP06a, DLRZ09, Dra00, ECM+03, FKU+05, GCD+08, GS04, HT05, HNW07, HNW12, IO08, JMD+02, JZD+09, KFB05, KS08, LXW+09, MK02, MHJS06, MLL+08b, MRS+07, NyHN06, NHN06, OYH09, OFIK09, PMGL03, RSG03, RGG05, Ru07, SOOF05, STSF02, SVW+05, TGGP00, VGGMM05, WM04, WHF08, Won00, XL02, ZGFL01, ZWB09, KEB04].

binodal [MM07]. binuclear [GS04, PLC08]. bio [KH01]. bio-molecules [KH01]. bioactive [BLB09, SD09]. bioactivity [LJZ+07, SJJ+04].

bioinorganic [MSH+06b, SGD06]. bioisosterism [DPM09].

biological [CCK01, CMGDAC+07, GdAcV+07, HMMS09, LDTS07, Mac04, TH02, WCK00, YPNE09, vdVGDJ00].

biologically [CSU05, LLL03, RZWS07]. biomarkers [VGDSU08]. biomembrane [WEE01]. biomimetic [FO08].

biomolecular [BHW00, BBM+09, CCD+05, CHB+05, CvG08, FWH+07, JTR05, KAK+09, KYT+08, LS04, OVMV04, WB04a, WB05, WL09a, ZFW08].

biomolecule [ABWT09]. biomolecules [ECM+03, Est07, FEVM01, HMD06, KHY00, MMLC05, QSS01, YNZ+08, YJF06].

bionanosystem [MO09].

biophysical [Mat03]. BiOX [HZ09, Hua09a]. biphenyl [PCMG09].

biradicals [KC01a]. bis [BLN01, CDL06, PYS05]. bis-heteropentalenes [CDL06].

biphilicaromaticity [HWGB01]. bisphosphatase [MRS+07].

bisdipine [ACM+06]. bits [PM02]. black [MBP09]. Blind [GZM09]. block [ATM+07, ASS+02]. blocked [RRS09]. blockers [HSMT04]. blocks [SSB+03]. blood [CRGN07, HMSM06].

Blue [CPDZH08, HRG07, CR02, McD08, SRK+00]. blue-shifted [McD08].

Blue-shifting [HRG07]. BLYP [TCT03]. board [ATMK03, KAK+09]. boat [RP09]. bodies [FS98, FSO0a]. body [CCK01, FII+07, FBGD06, Ike04, Loe03, SM03, TKH07, LR03b]. Bofill [Qua01].

Boltzmann [WB04a, WB05, ABWT09, BHH00, BBP09, BH03, BF04, BF07, GPN01, GCD+08, GGT08, H605, HB00, HBW01, KWHH07, LDG02, NYTH09, PZ08, SAT04, VZM+08, WB04b].

Bond

[CGMPT+08, CRC+08, JG03, MGCA07, May07, SH08, WM12, Bac09, BL06, CML05, CPFL02, CPDZH08, CJW+09, Cul08, DR09, DGD+05, DMZT08, FC01, F008, GYM07, Gr07, GS07, HRG07, HS07a, Hr08, JPCA08, JP09, Kle03, KBL00, LC07, LZC09, LS08c, LS05b, MG00, OO04, Pac06, PSC+01, PYS05, PV07, Ra000a, RM07, RCJ02a, RD00, SEKS09, Sha07, Sim07, SPT+03, SWZ04, SMZW05, SSM09, ST01, SSW+07, TJM+03, Tru07, VK06, VBGL+00, WHRG08, WJ00, XWX08, vLBBR12].

Bond-based [CGMPT+08]. bond-order [LS08]. bonded

[CPDZH08, Gou07, HT03, IO08, LB05, LDL+09, LZF+09, McD08, MH08a, NBTN04a, NBTN04b, NL08, PHFC04, ZH08, vEMK01, vE01]. bonding

[AM07, AG00, Bac04, Bac05, Bac07, BHTCG07, BM07, BSG07, CWW07,
CQ04, CCK01, EFQD09, FLK⁺07, FK07b, Jac09, Kau07, KJP⁺07, KBL08, Kle02, Kle03, KGD06, LW07, LWK08, LDL⁺09, PG01, PYCD03, PLC08, RPNJ07, RP04, RS07a, RS07b, SM08a, SG07a, SCP08, Wil01a, WD08, WWS07, XZ04, X09, Yos02, ZX04, ZW09, ZB07. bonds [Bac05, BUMCMRL00, BRS07, CRC⁺08, DR07, HA04, Mit01, NHH05, O008, PG06, PC05, PC07, SO09, SGD06, SJW09, YT04]. Book [Bic09, Lip00, Sta00, Woo01]. bonds [Bac05, BUMCMRL00, BRS07, CRC⁺08, DR07, HA04, Mit01, NHH05, O008, PG06, PC05, PC07, SO09, SGD06, SJW09, YT04]. borane [Bac05, BUMCMRL00, BRS07, CRC⁺08, DR07, HA04, Mit01, NHH05, O008, PG06, PC05, PC07, SO09, SGD06, SJW09, YT04]. borate [HT05]. Born [LFSB03a, BC06, CF06, DLG00, FOL⁺04, FC06, GZL02, ILB03, Lab08, LFSB03b, MTE04, MCM04, OCB02, Tot04, XL02, YJF06, ZGFL01, ZWZ09]. Born/volume [Lab08]. borohydride [QZL⁺04]. Born [LFSB03a, BC06, CF06, DLG00, FOL⁺04, FC06, GZL02, ILB03, Lab08, LFSB03b, MTE04, MCM04, OCB02, Tot04, XL02, YJF06, ZGFL01, ZWZ09]. both [HdMdS05, HdS06, HD06]. bound [ˇCJPZS08, WC09]. Boundary [BH03, ABWT09, Ara04, BVW04, BF04, BF07, HH04, KWHH07, QSS01, TK08, WM06]. boundary/character [ATBLS04, Ber03, CPDZH08, CCB04, CS01, CRSB03, CTFC08, DGD⁺05, DRAS04, El07, FHF⁺01, GYCW04, GZ07, GB02, HBM06, HYA02, HK07, HA04, IN08, LDMR01, LMK01, Mit01, O004, PRSM03, PV07, RD00, RFSS06, SLL⁺04b, STC⁺08, TYN05, WL05, WL09b, XDS06a, XWC08, ZZL04, ZW09, ZLD09, ZZvRSC08, dRLMS00]. C-PCM [CRSB03]. C12A [BRDC02]. C12A-p8 [BRDC02]. C96 [ONHN00]. Ca [WZZ⁺09, WD08, XWC09, HL09, PNG08]. cation [RUPH06]. CaCO3 [SCP08]. cage [CS01, KFD06, WL05, WL09b]. cages [CJS⁺03, Wan09]. calcium [HSMT04, HL09, LGB⁺09, MIJH06]. calcium-induced
calculates [BE07, GG09, Gra07, LMV07, RSSKB03, RM00, Wib04, WM04, ZXY08, Kle03].

Calculating [Chu07, CG05, DRMD03, DF04, LN01, MC06, PDC+08, PMM05, RSE07, SYC03, WCK00].

Calibration [OKH+02, LLZL09].

calanog [RRZ08]. camphor [AST06].

candes [KBN01]. carbohydrates [ACLD03, HR08, KDSV02, LR03a, LCDA03, LCGA03, LH05, MW00, Sto05, Kyt+08].

carbon [KK08c, LMGR05, BSB05, BG07, CZ05, CDPL09, DWS+09, GKK07, HT05, Kt08, KLS02, KMK01, MMRH07, PAS07, wQzLyZ02, SRS07, Wan09, WSC09, XLZ08, YTH01, YLC08, ZSE08, ZXY09, ZM03, vGGB00, vdVGDJ00].

carbonate [ZWY+09]. carbon-centered [WSC09]. carbon-rich [CZ05]. carbonate [LGB+09].

carbonate [BACJCT01, CSD04, IS07, Kar01, Kne05, KBLP09, OV03, RSIN+02, SFRS01, WW03, YS00].

calculated [BE06, BE07, GG09, Gra07, LMV07, RSSKB03, RM00, Wib04, WM04, ZXY08, Kle03].

calculates [ATMK03].

Calculating [Chu07, CG05, DRMD03, DF04, LN01, MC06, PDC+08, PMM05, RSE07, SYC03, WCK00].

Calculating [Chu07, CG05, DRMD03, DF04, LN01, MC06, PDC+08, PMM05, RSE07, SYC03, WCK00].

Calculating [Chu07, CG05, DRMD03, DF04, LN01, MC06, PDC+08, PMM05, RSE07, SYC03, WCK00].
[vDSSvA04]. **Carbonyl**
[RD00, DLR+08, LL00, LL01a, LL01b, LL01c, LL01d, LL03].
carbonyls [BRV+07, LMGR05, PLC08]. **carbobutatin** [WM01]. **carboranes**
[JRJ01, OSA06]. **carboxybenzisoxazole** [UTH+03]. **carboxylates**
[CJPZS98]. **CarC** [BBS06]. **carcogenic** [EL06]. **carcogenicity** [VS08].
Carlo [AGSFAL05, AGSAF+05, BR03, BHG03, Der00, FCK+08, FKFG08,
GH07, HMD06, IM06, IYK09, KLS02, KM07, KK05, LML+00, LZA02,
LWG03, MH09, NA06, NCO+05, OM04, SKGS00, SCS07, SB08,
SM08b, SWR06, TS05, XKG+05, ZCS04]. **Carlo-with-Minimization**
[NCO+05]. **carma** [Gly06]. **carrying** [Tor02]. **Cartesian** [LPK07, PHR+05].
CAS [PRSM03, BM07, JHRPSM+05, PRSM02]. **CAS-SCF**
[JHP2SM+05]. **CAS-SDCI** [BMB07, PRSM02]. **case** [AB00, AS00,
BUMCMR00, BW+08, BS06, CFS+08, CJPZS05, MV06, MDD04, PDD06,
PGG06, PC00, PO03, JUP06, SB08, SN06, V02a, WRRV03]. **cases**
[BDF+09]. **CASPT** [PO03]. **CASPT2** [KRLD09]. **CASSCF**
[BC04, BC07, DOSG06, WLZ+07, dSVA+09]. **CASSCF/CASPT2**
[WLZ+07]. **Catalysis**
[UTH+03, DSW+09, QZZZ03, TH02, VBGL+00, ZDS+05]. **catalyst**
[VBGL+00]. **catalysts** [YXC+07]. **catalytic**
[CGB+09, KSK00, LS08b, MS04, NTH00, RWBH09, SPT+03, WC08, ZAT07].
catalyzed [AST06, BTP09, GVATG03, GLH+08, HSWW00, MCK05, OY01,
PHKG07, RR05, SIE01, TH02, TQLL07, WCC08, WCH09, ZWS+09].
catastrophe [PA05]. **cathepsin** [ZWB09]. **cation** [DSB+02, Don08, LB08,
OO04, PV07, QZL+04, SLRC01, VLP00, WLZ+07, WSM+08, WU00, ZL05].
cation-water [DSB+02]. **Cationic** [JRJ01, TBG00]. **cations**
[ALC08, GSB09, GS04, GWW07, HIA03, HO05, NSB08, RRS06, SZT08,
WWT08, ZWY+09]. **caused** [LPK07, TT08]. **cavities**
[BCIB05, BHH+09, IME02]. **cavity** [RRZA08, ZFL+05]. **C —** [CJW+09].
CBR [FHF+01]. **cc** [Wit04, GYMN07]. **CCH** [KZK+07, KZK+07].
CCI [FHF+01, WDZS07]. **cclib** [OLT08]. **CCN** [JDWS06]. **CCSD**
[BBT+09, Lu09, FFP+03, PV03]. **Cf** [GPS06, XBO8, BMR01, BBT+09].
CD38 [UNHY06]. **CDOCKER** [WRBV03]. **Ce** [SNM+06]. **Ceccarelli**
[An060]. **cell** [Gin07, KVS+06, KS05c, LEV+09]. **cell-based** [Gin07]. **cells**
[CCJ09]. **cellular** [XWC09]. **CeN** [VP08]. **centauric** [PA05]. **center**
[BR07, GGA00, IN01, LAD07, MGGM07a, MGGM07b, NR04, OON01,
SGPS09, TBG00]. **centered** [CCK01, SSB+03, TBSM09, WSC09]. **centers**
[GYMN07, JKL08]. **central** [CMMPT+08, CM09]. **CeO** [CCJ09]. **ceramic**
[HZ040]. **cesium** [HD06]. **CF** [mJZL07, LDC+07, gThDiL+01, UT+02,
UTT+04, WLL+07b, YLW+08, YLW09]. **CFCI** [mJZL07]. **CFF91**
[TTB01a]. **CFMC** [NCO+05]. **CH**
[CPJ00, GBPD05, HTN03, IN08, mJZL08, LW04a, LDT+02b, MGLL03,
MUI05, RD00, SL+04a, TMJ+03, WLL07a, WLL+07b, WDX+02, YLW+08,
ZZ04, ZZW+07, ZZL+08, ZZL+09, HKHN08, FHF+01, GD06, HLLS05,
mJZL07, mJZL08, KZY09, KJH08, LW04a, LWY+09, MM05, Mas01b,
OO04, OO08, SEKS09, SLL⁺04a, SSS⁺09, TJM⁺03, UTM⁺02, UTT⁺04, WLL07a, WDZS07, XLL⁺02, YLW⁺08, ZLLS06b, ZKZ⁺07, dOMSL01. CH/ [MM05, OO08, SSS⁺09]. chain [BHG03, DLW06, Der09, Din00, ENM⁺04, GT03, HFHL06, JPF⁺00, KG02, Kró03, LLA01a, LL01, MT03, PFC03, SMG09, TGB00, SWR06]. chains [Cri04, CA07b, DLHC06, MMLC05, MSR04, VM02, XLT07, ZM06]. chair [BHG03, DLW06, Der09, Din00, ENM⁺04, GT03, HFHL06, JPF⁺00, KG02, Kró03, LLA01a, LL01, MT03, PFC03, SMG09, TGB00, SWR06]. chairs [Cri04, CA07b, DLHC06, MMLC05, MSR04, VM02, XLT07, ZM06]. Chalcogena [HKHN08]. chalcogenides [JT06]. challenge [BHG03, DLW06, Der09, Din00, ENM⁺04, GT03, HFHL06, JPF⁺00, KG02, Kró03, LLA01a, LL01, MT03, PFC03, SMG09, TGB00, SWR06]. Challenges [BHG03, DLW06, Der09, Din00, ENM⁺04, GT03, HFHL06, JPF⁺00, KG02, Kró03, LLA01a, LL01, MT03, PFC03, SMG09, TGB00, SWR06]. chair [BFK07, OFIK09]. changes [HH04, JO02, Kar06]. chair [BFK07, OFIK09]. changes [HH04, JO02, Kar06]. chameleonic [PA05]. Change [BFK07, OFIK09]. changes [HH04, JO02, Kar06]. channel [CZK⁺09, FCP⁺04a, FCP⁺05, HSMT04, MCR08, RAGLL09b]. channels [CZK⁺09, FCP⁺04a, FCP⁺05, HSMT04, MCR08, RAGLL09b]. challenge [BFK07, OFIK09]. changes [HH04, JO02, Kar06]. channel [CZK⁺09, FCP⁺04a, FCP⁺05, HSMT04, MCR08, RAGLL09b]. channels [CZK⁺09, FCP⁺04a, FCP⁺05, HSMT04, MCR08, RAGLL09b]. characteristic [YGZZ05]. characteristics [LS08a]. characteristic [Wou00]. characterizing [PHJ⁺08]. Charge [CM09, HT05, JKL08, MZ05, SWM04, ZY01, BB05, BSP06b, Chì03, DWC⁺03, ECM⁺03, FHRR07, GY08, GDV03, GGLR00, GY06, GBHB04, HMOG07, IC08, Jac09, JVK09, KS01a, LFZS04, LLS03, OR05, PB04, PMB04, PP08b, PMPGP05, RLR05, RSN⁺02, SL09, San01, SKSH07, SHSF05, SRB02, SvDS01, TCT03, WSM⁺09, WM04, XL02, XLT07, YK08, ZBS03, ZH08, SDCG02]. charge-based [HMOG07]. charge-density [ECM⁺03, XL02]. charge-scaling [GY06]. charge-transfer [GGLR00, LLS03, ZH08]. charged [PPYS08]. charges [BSC⁺01, BCns07, CR09a, CGBF05, DVP⁺02, GBHB04, HS01, JBB00, JBB02, KGl07, KCo01b, LMV07, PG06, RO09, TBS09, TGGP⁺00, UBD04, WMS06, XLT07, YOB⁺08, dSGCG00]. CHARM [BBM⁺09, HNL08, HMD06, JKI08, LLL03, MM05, MMY07, PB04, PMB04, WHG⁺07, WRB03]. CHARMm-based [WRB03]. CHARMm-GUI [JKI08]. CHBr [ZWL⁺05]. CHCl [LDT⁺02a, ZLLS04b, ZLLS06a]. CHELOC [YLW⁺09]. Chebyshev [II02]. chelation [TFZRG01]. Chem [Bof01, HNWF12, Kne05, KWK⁺00, Qua01, Van08, WHG⁺07]. Chemical [BHTCG07, BBC⁺05, GCn03, HLS07, Jac09, MGMM07a, PB07, PYC03, PYS05, WPS02, AM07, AGMPURG⁺08, ATH⁺03, CZFH07, CDD⁺02, CWWS07, DF06, DBS07, DA01, DPM09, DSN03, DMN05, Dra00, DHH⁺07, Fau01, FVB08, FR06, FLK⁺07, FK07b, FHF⁺01, FOO4, GR07, GGB07a, GGB07b, GGB07, GS04, HWFN01, HHP04, JHZ09, KFNH08, Kau07, KBL08, KLo3, KIN⁺09, KC01b, KGD06, LWK08, LZZC09, LHP01, LDT07, LKA01, Mat03, MA05, MC06, NRKH02, OYH05, OKH⁺02, PXP01, PAS08, PFC03, PG04, PHKG07, PC05, PC07, PRS04, PV07, RNB03, RM07, Rud05b, Rud05c, RSS09, RON02, SAM06, SM08a, Sch03, Sch00, Sha07, SC01, SS05, SSW07, SFRS01, SCP08, TLOG00, Tru07, TT02, UNM⁺01, VBS09, VBGL⁺00, VKCK09, WS05a, WFP01, WHP02, WWS07, WZXY07, XYN⁺06, ZB07, ZMH⁺09, HP05]. chemically [AVS09, Bud07, SB01, PP08b].
chemicals [CMGDAC +07]. chemisorption [KKJH08]. Chemist [SH08, Bic09, Gan09]. Chemistries [Duk01, EA08]. Chemistry [Ano05b, Ano06a, Ano06b, Ano06c, GBL +05, vRS98, WB04a, WWC +05, Woo01, You11, tVBB +01, APG05, BW +09, BT00, BMRDB01, BS06, BSJ01, CMGL +04, CFS +08, CPUGD09, CMGDAC +07, CMCB08, CMA +08, DBM03, FJP07, FKRE08, GDPCPU07, GDPP08, GdSuM +07, GdAcV +07, KSB +02, KBA +04, KJVV08, KYL03, KC01a, LX07, MGCA07, MR09, MBP09, MMRVH07, MPF00, Nye07, OTL08, SH07, Sha07, SBB02, SGD06, TKH07, Vis02, Ano01c, Ano04b, LB99, Lip00, Sta00]. chemistry-based [SBB02]. chemists [Pra01]. Chemometric [HPL03, MRS09]. chemometrics [BLF02]. chemotaxis [FC06]. CheY [FC06]. CHF [UTT +04]. CHFOCHF [YLWL09]. Chichester [Lip00]. chief [Lip00]. CHIMERA [NSU +02, PGH +04]. chip [H¨of05]. Chiral [ZPL07, CGMPT +08, Sza08, ZOJ +06]. chirality [CGMPT +08, PDC +08]. chiral [ST04]. chlorinated [DA01, WDZS07]. chlorine [mJlZsLyL07, mJlZyL +08, WLL07a, XLL +02]. chloro [JKM08]. chloroform [CCK01]. chloroform/water [CCK01]. chromophore [DHM +03, HFS +07, KHF +09, XZ05]. Chun [Ano06c]. CI [Ano01b, DHM +03, HFS +07, HKHN08, IK00, dSVA +09]. Cieplak [Ano06c]. Circular [AB08, MM00, HKHN08]. cis [DMN05, GRO +03]. cis-diammineplatinum [DMN05]. cisplatin [BZL05, RP04, WM01]. CL [FKS +09, CRC +08, DMN05, GZ07, Han01, HYA02, HTN03, HZ09, Hua09a, mJlZyL +08, KBL08, LF02, Mar03, RB01, STC +08, WLLS04, WDZS07, XFF06, ZY01, ZL09b, BS03, HLLS05, mJlZsLyL07, RFS06, SLL +04a, WLLS05, YLWL09, ZWL +05]. class [CKR08, EBD +01, LL07, VIP +06, YNW05, aYDN +08, Car02, PCS04]. classes [CLF +09, KH06, QLHL09, XSHC06, XLC08, XWC09]. Classic [SRE08]. Classical [ATBS04, COL +06, DK01, LLM09, MA05, Nil09, RP07a, ST02, Zho06]. classification [GDPCPU07, dGWH01]. classifier [CLF +09]. clathrate [EM03a]. clay [ATH +03, DJT08]. cleavage [CLXC02, NLL +09]. cleavages [XWXC08]. cleft [SPT +03]. closed [DSB +02]. closed-shell [DSB +02]. closo [JRJ01]. closure [CSJ04, DLSVY00, Mak08]. Cluster [AHGK09, CRJ04, BR04, BP01, BG01a, BWI +02, IN08, JHMB +09, KKHJ08, KSTC01, LMJ02, LWX07, LYS08, Mck07a, MS01, Mor02, NK06, PSF +08, SSB07, VDM06, WK0501, Whe08, WJX +08]. cluster-continuum [WJX +08]. cluster/adsorbate [BWI +02]. clustered [FPN +05]. clustering [CCWH02, FZK09, L05a, LOL +08, RLA01, ZS04]. clusters [BP00, BACJCT01, CGG06, CAG07, DBS +02, GBBH09, HXD08, HYR06, JHMB +09, JHMB +11, JG03, KGL07, KDG +09, KZW +05, LML +00, LWLS07, LSJ05, Mck07a, Mck07b, NB04, OS08, PBZ00, Pul05, QB05, SCC04, SYC08, SW06, WLL01, WZZ +09, WCS09, XZ04, YCS07, ZLJS03, ZXL +04, ZWC +09, ZXY03, ZGXX06, Z09, ZB07, Est07]. CM1
Complex [DFGB09, AS06, Bac09, BRS00, BRS01, GC04, HDF+07, HDO+02, HMK02, IV04, IvSV06, Ish04, JLHF03, Kle02, KVS+06, LB05, LDL+09, MM03, MCF05, MY08b, MY08a, NHN06, Pac06, ZWB09].

complexation [AGI+07, HT05, LMMW04, SRK00, SLRC01].

complexed [Pin03, SDM02, WCF04].

Complexes [APG05, AB00, Ano06a, ACM+06, BTP09, BR04, BL06, BM00, BZL05, CZ05, CG03, CBC+08, CSB08, CBH+03, DPT03, DF04, FRS05, FO08, FRLN09, FKŠ+09, GTC06, GL04b, GM01, GPSP06, GPK05, Gri04, GZM09, GRL07, HLLN06, HRC07, IN08, IO8, IGL07, JMD+02, JD09, JCHS07, KT08, KRM+02, KJP+07, LL00, LHJ+06, LPP06, LH02, LMG06, LLS03, LMMW04, LWZ09, LZF+09, LS05b, Mas04, McD08, MJHS06, MSBS01, MLL+08b, NyHN06, NR04, NMAT01, PGG06, QTDG+08, RPN07, RMP01, RRF+03, SG07a, SCF+09, SBH02, ST06, SVV+08, TGGP+00, UM03, VS02, VMA03, VL00, WB07, WWT08, Won09, Zy01, ZBS03, ZWY+09, ZTS09, dVB01].

complexes* [GK09].

complexity [BT00, PK05, XSHC06].

Component [KBA+04, CCT+03, GPSP06, JMD+02, PVdJB00, PV03, SH02, SM08b, Van02b, WG02].

Component-based [KBA+04].

Components [KJVW08, Car02, LL07, TGGP+00].

composition [HM06, KWHH07, LL07, PAS08, XSHC06, XLC08].

Compound [CN05, BR07, HBM06, RD00, XZ05].

compounds [ACLD03, BB08, BLO+02, CYM02, DA01, EDAJ04, EBD+01, FJ08, FROD08, FO04, Go09, Gor01, JLHF03, KFD06, LLA01a, LLA01b, LLA01c, LLA03, LD05a, IWK08, LTF+07, LW06, LCPA03, LCA03, LJJ+07, LL09, MD04, NBTN04a, NBTN04b, PZWG+04, PYCD03, POJ01, RUPH06, SJJ+04, ST01, TTBM09, YCW+09, YSA+03].

Comprehensive [LF02, ZL09b, ZB07, DLR+08, JF+00, SBL05].

compression [BG07, MBWP03].

comprising [Rud05b, Rud05c].

Comput [Bo01, Qua01, Van08].

Computation [BL+06, Car02, CD+02, FZL07, GS09, LFEdL06, TNS00, ATMK03, Gon07, NIK02, PAS08, RK05, WZXY07, ZCZ03, vW06].

Computationally [Ano01c, Ano04b, Ano05b, Ano06a, Ano06b, Ano06c, BLMS08, CZ05, CPUD09, CMG09, CMDB08, CG05, CA07b, GBL+05, GP007, GdSuM+07, HMK02, LKJ+04, LB99, Lip00, MW00, MR07, OY03, Pac06, SPSG08, vRS98, Sta00, TMBM02, WB04a, WXC+05, XWK08, YOL+06, ZOJ+06, ZWB09, Bac04, BG00, BAL+01, BTP09, BMTR01, BZL05, CMSL05, CFS+08, CBC+08, CJS+03, CRH+07, F03, FJ07, FD03, FKE08, Go09, GD09, GPP08, GdAcV+07, GGB07a, KLY03, MCF07, McD03, MHD09, OTL08, OY01, OSA06, Pan07, PMM05, PFMS01, PR04, RG08, SF07, SM03, STCJ08, TD08, Vis02, VZM+08, WSM+09, WOC+03, YT03, YT04, YDWS06, ZZ08, GZG070, ZTP+08, ZM06, WO01].

Computationally [KMO00].

Computations [Bo01, Di05, CLP+05, GP005, Lu09, ME06, POG06, SMZ05, TT08].

compute [BDW00, RKA+09].

computed [PFJ+03, PK05, TDH06].

computer [HFS03, H505, NK01, PX01, PHJ+08, TRS02, UIH09].
Continuous

Contemporary

Contexts

Contributions

Control

Convergence

Convergent

Conversion

Cool

Correspondence

Cor quasi

Cosmo

Cosmo

Core

Core-Excitation

Core-Excited-State

Coulomb

Copper

Coral

Correction

Correctly

Corrector
Coupled [BSP06b, MO01, CXZ+09, DOSG06, IN08, KSTC01, LMJ02, LYS08, PSF+08, SSB07, WKYU01, Whe08, XWC09, SMAdV00]. coupled-cluster [IN08, KSTC01, Whe08].

Couplings [CR08, DXW08, GdAcV+07, KTM02, KBLP09, LB08, MDI04, PJPdPRMI07, QTdG+08, RI08, RLDI09, RRFC+03, SM08a].

CoV [LZ05b]. Covalent [BSG07, BMTFR08, PML03, RS07a, RS07b].

Covalently [PHFC04].

Coverage [SURG06].

Covering [RKH03].

COX [WC09].

COX-1 [WC09].

COX-2 [WC09].

CP [ZKZ+07].

CPHF [ASWG07].

Cr [KPR04, Kri08].

Crehuet [Bof01, Qua01].

Criteria [Kle03].

Criterion [ALTB06, GLD08, PSDM00].

Critical [GT03, BMLV04, BLN01, BA˚A07, CRC+08, CKMC04, FMPS08, LFR+04, MP03b].

Cross [Gan09, MY08b, MY08a].

Crosscorrelation [HWDB03].

Crossed [BAL+01].

Crossing [LI07].

Crossings [LSG06].

Crossover [KRLD09].

Cryogenic [HN02].

Cryotand [WWT08].

Crystal [KOFF09, Van02a, DPT03, EL09, HN02, KP05, TD08, VVVB02, vDSSvA04, vEM01, vE01, DRMD03, FROL08, PZWG+04].

Crystalline [AS00, CADW03, JB04, PZWG+04, Wil01a, ZLD09].

Crystallographic [RON02].

Crystals [BCF+09, CC07, F ´A01a, GAdGM08, GBJ03, PMC+08, RD06, WMS06, Wi01b].

Cs [GWL07].

CSA [NCO+05].

CSOV [GPSP06, PMPGP05].

Cu [BTP09, GPS06, Sha02, HSF08, NK06, TDK07, WMS06, ZTP+08].

CuN [ZK08].

Cuprates [MD04].

Current [NYTH09, CDPL09, Vis02].

Curvature [TRS02].

Curved [ABWT09].

Curves [BBI+09, MM07, SSS+09, ZLY07].

Customized [BDW00].

Cut [BME05].

Cutoff [GGT08, KLM+09].

CuX [KBL08].

Cyanines [BG00].

Cyano [PA05].

Cyanoacetylene [YDWS06].

Cyanobiphenyl [CC07].

Cyanoboranes [WCS09].

Cyanomethylidyne [WDS06].

Cycle [ZAT07].

Cyclic [KJP+07, BGJ01a, CLA+00, FKM+06, FKM+07, JBGK08, LXL07, OYK+09, VVS07, WOC+03].

Cyclo-AMP [FKM+06, FKM+07].

Cyclization [PWFS01].

Cyclizations [SGS03].

Cyclo [TDK07].

Cycl-Cu [TDK07].

Cycloalkanes [SSBE06].

Cyclobutane [QZZZ03].

Cyclobutene [SRE08].

Cyclohexane [MT03, RP09].

Cycloketones [LLA01b].

Cyclononane [SSBE06].

Cyclononatriene [ZSE08].

Cyclooctatetraene [CPFL02].

Cyclopentadienyl [ML00].

Cyclopentene [SURG06].

Cyclopeptide [FL07].

Cycloreversion [QZZZ03].

CYP2A6 [VB09].

Cysteine [CN05, MOP+07, PMM06].

Cysteine-6 [PMM06].

Cysteines [CFR06].

Cytochrome [AST06, ATBL04, HBM06, JKL08, LCC09, OYH05, OON01, ZAT07, BS06].

Cytosine [KKMMS04, MDA08, MHS05, MH08a, SIB08, SG07a, SC01].

Cytosine-5-acetic [MH08a].

CZ [CRC+08].

D [IS03, PF06, SHBD05, AGO+02, BA+02, CPC+00, DDBP09, DMC05].
FROD08, GDPCPU07, GdSuM+07, GdAcV+07, HP05, LW04b, LXZ06, LW06, MP03b, OYK+09, RSSKB03, RGP+07, SFC04, YNW05, hYDN+08, ZTS09, vDSSvA04, TGLL07. D- [AGO+02]. D-arabinonate [RGP+07]. D-arabinonohydroxamate [RGP+07]. D-Epitope-Explorer [SHBD05]. D-erythronic [vDSSvA04]. D-galactose [RSSKB03]. D-QSAR [DMC05]. D-RNA-coupling [GdAcV+07]. D/ [PF06]. D180 [NYK+09]. d2_cluster [CCWH02]. damage [FPN+05]. dangers [MBP09]. data [ASWG07, BRDC02, BK00, CDD+02, CRGN07, FOK+04, FM00, HHJ03, HSWN01, KMH02, KMA+07, LEK07, MBWP03, MPP+07, PFJ+03, PF06, RLA01, RRS07, RRS09, RON02, SY09, SFC04, WG02]. database [DPM09, LFKL00]. databases [BR07, PPXP01]. dative [FH01]. David [Woo01, Ano05b]. day [GR07]. DD [ZLY07]. DD-curves [ZLY07]. Dead [YFS07, Adc04, GLD08, KUB07, PSM00]. Dead-end [YFS07, Adc04, GLD08, KUB07, PSM00]. deaminase [MDA08].

dearomatization [HT05]. debates [Nye07]. decarboxylase [HLC09, LLL+08]. decarboxylation [UTH+03]. decker [RPNJ07]. decomposable [VZM+08]. decomposition [BM07, CBH+03, FKO7a, FPG+06, Hir08, KZY09, KN04, LBG08, SKDO08, TBSM09, TCR+02, ZZL04]. decompositions [GSP06, PBF07]. decoys [LZ05a, SRC03]. defect [ZMH+09]. defects [JT08]. Definition [dOMSL01]. deformation [GHB04]. deformations [Din00]. deformed [RLER04b]. degenerate [NUH02]. degradation [PCMG09]. degree [CC09, RLER07]. degrees [DHF+05, MZL08]. dehalogenase [NYK+09]. dehydration [TT02]. dehydrogenase [SS05]. dehydrogenases [JH01]. dehydrohalogenation [TT02]. deletion [SHH07]. delineate [MP03a].
delocalization [BY06, BI06, FVB08, FS02, Kar06, GMG07a, GMG07b, WMW03, WW03, WMW04, Van09]. deltorphin [OM04, YAÇ+02]. deMon2k [GJK+06]. denatured [GB04]. dendrimeric [SCG04]. densities [GY08, GBJ03, HSWW00, KCK+08, LMV07, RLR+04, VZVG06, Van02b]. Density [BP01, FG02, Han01, JCHS07, KWK+01, KWK+02, MSBS01, QZ003, QZL+04, VL00, WCW08, AB00, ABYM08, AEE+03, ASY01, Bac09, BP03, BMLV04, BB08, BAA07, CLP+05, CR+08, CFB08, CR08, CSB08, CAG07, CPML08a, Cu04, CGSdT06, DVP+02, DVP+03, DF04, ECM+03, FCW06, FZL07, FDM00, FS04, GLH02, GLR02, GTH04, GTR04, GRY06, GHB04, HGMB04, HLS07, HNW07, HNW12, HNO2, Hir08, Holl05, II02, ION07, IN08, IB04, ITN+05, IS07, JNOV08, Jac09, JCA+02, JFG04, KGL07, KRM+02, KN04, KSS08, KL04, Khi00, KZW+05, Kri09a, Ks01b, LRF+02, Lef06, LV08, LMB08, LMGR05, LLS03, LWH06, LKT04, LF02, LLZL09, LDL+09, LZF+09, MP03a, MV09, MS00, NC06, NTH09, NAT07, OKE+02, PSF+08, RB01, RK04, RLR04b, RDM+08, RR05, RWZ07, SHT07, SZT08, SPT+03, SCF+09]. density [SLRC01, SSB07, SW06, TBB00, TST+08, TKN+08, TKH03, Van02b, VMA03, VBS09, VC04, VKCK09, WR+06, WB07, WZ04, WMRW+01.
WL02, WCH09, WM04, WCL05, WZXY07, WM01, XB08, XL02, XPW09, YTH01, YL09, YK08, YYW07, YLL+09, ZZL04, ZH08, Zho06, ZM03, vGGB00, Haf08, LWK08, MW00, XYN+06, GM01, density-functional [HNWF07, HNWF12, LLS03, LWH06, TST+08, XB08, Haf08]. density/polarization [YL09]. deoxyguanosine [MM02]. deoxyribonucleoside [PFR04b]. deoxyribose [LBG08, SA07].

Dependence [ASS+02, MGLL03, BL00, KH06, NK06, SR09, TJM+03, VKCK09, ZP03, ZXY08, DvG00, DPM09, GM06]. dependencies [FHF01]. dependency [OKH02]. dependent [Bac09, CFK08, FCW06, FCP+04a, Gog08, GS04, HNWF07, HNWF12, HS01, ION07, LDY+08, LDL+09, LSW+01, MML02, MW09, MY08a, NTH09, ONHN00, PSF+08, TST+08, TKN+08, Whe08, WC08, YH07, ZH08, ZM03, vGGB00, PMM05]. depiction [ZTS09]. deposit [JG03]. deposition [UNM+01]. deprotonated [Mas04].

Derivation [EBD+01, JFG04, TT05, TTB01a, EBD+01, HZ06a, Tor02, Tot04]. derivative [CNN07]. derivatives [BT00, Bor03, BC06, CJK+02, COMR+04, DMC05, DOSG06, FL08, GLRL02, IS03, PSF+08, PA05, QCK01, QCK02, RP09, SPGS08, SGPS09, Sch00, STC+08, TNS00]. derived [GBJ03, HSWN01, Ish02, KSB09, KS06, KFNH08, MLJ03, SvDS01, TBSM09, WMS06]. Deriving [RPMP03]. desaturation [BBSS06]. descreening [MTE04]. describe [DDBP09, IDMC09, MSH+06b, RLDI09, SBI08]. describing [CM`aGL04, HK08a, HK08b]. Description [ION07, MHT01, BUMCMRL00, BME05, CLWL09, CHRL09, Gri04, HGMB04, SM08a, VMA03]. descriptions [SB08]. descriptor [CDS09, RSS09, TCSM03, XYN+06, ZNL07]. descriptors [AGMPRG+08, BAA07, DA01, EDAJ04, HM08, HMMS09, Jac09, LXW+09, GMGM07b, RUPH06, Tie09, TTB01a, Wou00]. Design [AG03, KV00, BSP06a, BMTSC01, BLMS08, CRH+07, CMBC08, DB06, DHW+07, DHW+09, GHM03, Ham07, HM06, HLTLP09, HLM05, JGVF05, LBFSK07, LZ05b, LFS+07, MWE02, NHH05, PS09a, SPGS08, SRS07, SHM04, STC08, VGGMM05, VZM+08, YFS07, ZZ08, ZL09a]. designed [GT03]. designing [GDV03]. Desirability [CMBC08]. Desirability-based [CMBC08]. desolvation [HMOG07, SVW+05]. Detailed [PB05, WRBV03]. details [GG07a]. detecting [BHH+09]. Detection [WHH+06, BAL+01, CMBC08, OYH09]. determinant [GS09]. determinants [BCP03, Bou00]. Determination [BLT03, CFR06, CR08, DLD+02, FSS00, Vas02, BL08, BR03, BCNs07, BdPRMAI00, CC09, Chi03, CAGR08, FAR02, GCCVB00, HP05, Mar03, MGLDS00, MM07, PC00, PFC03, PABK03, RI07, RTG00, SCF+09, TBSM09, vDSSV04]. determinations [YXL+09]. determine [DDVD09, KUB07, O008, R108, YH06]. determined [OYH05, TDH06]. determining [BY06, DV02, LR06, PHJ+08]. Deterministic [LS05a]. detonation [JWB05]. detoxification [ZWS+09]. developed [CRS05, KMH02, RG08]. Development
Developments [FCP+04b, HS07a, SMD02]. DFT [ASDP+06, ACM+06, BWP07, BPC01, BP07, BSB05, BM08, BB08, BE07, BBSS06, BZL05, CMJ08, CCCJ09, CHA+07, CG06, CS03, CMA+08, DGD+05, Der09, DDBP09, ESP04, EKO+01, EBL+08, FO04, FKŠ+09, GCCVB00, GKH05, GPSP06, GKT504, HT05, HSWW00, HK07, HZ09, Hua09a, JPF+00, Kle02, Kle03, KTM02, Kri09a, KPZK06, LMV07, LYK+04, LSL07, LS08b, LWZ09, LS05b, MML06, MOP+07, MGG06, MBWP03, PFJ+03, PMGP05, PMM06, RM00, SBI08, SWBM08, ˇSBL05, SN06, SCG04, SSBE06, SRB06, Tie09, VS02, VB09, WMGK07, WLX+05, WWT08, WL09b, XLL+02, XKG+05, YK08, ZSE08, ZKZ+07, ZWS+02, ZWY+09]. DFT-D [DDBP09]. DFT/MRCI [KTM02]. DFTB [ECM+03].

di- [CU01, GBB07]. di-arsenic [KS05a]. diabetes [PS09a]. Diagonalization [LSAS01, BdPRMAI00, PU09]. diagram [Hir08]. diamide [HHP04]. diaminoguanidine [BI06]. diaminosilylenes [TKS+01]. diamineplatinum [DMN05]. diamond [EKO+01, JBGK08, ZMH+09]. diatomic [ALKH04, FCW06, TLOG00, WWS07]. diatomic [Cal08]. Diatropicity [CdML06]. diazonium [EL06, EL07]. diboran [wQZsLyZ02]. dibromomethane [LXSF08]. dicarboxylic [NHH05]. dication [Bac09]. dichlorides [LHP01]. dichloromethane [RRZa08]. dichroic [MM00]. dichroism [AB08, HKHN08]. didehydropyridine [KC01a]. didehydropyridinium [KC01a]. Dielectric [HS01, DRMD03, GS03, HMWC03, HLMN06, LZZC09, MML02, Vas02, ZFW08]. Diels [Hir08]. DIESEL [ME06]. differ [SRK+00]. difference [ALC08, Bie04a, Bie04b, BF04, PMGP05, PS04, Rud05a, Rud05b, Rud05c, VZM+08]. differences [CV09, GG09, OV03, YZ04]. different [ABA04, BL05, CEP07, CMGDAC+07, DSB+02, MCF07, MN02, VC04, WM01]. differential [DD08]. differently [HSF08]. diffraction [HHJ03, dGWH01]. Diffuse [GS07]. Diffusion [BW04, BZP09, Bie04a, CCCJ09, Rud05a, VW00, PK04]. difluoroethane [CU050]. dihaloethanes [WFR08]. dihedral [FKZ09, HK08c, OFIK09, YL06]. dihydro [WJX+08]. dihydrodiol [PCMG09]. dihydrofolate [GGLR00]. dihydrogen [Mck07b]. Dihydrophospholophosphole [CDL06]. dihydropyridine [HSMT04]. dihydroxypryidine [YXZ+04]. diiminobenzoquinonate [Bac09]. diron [BB08]. diketiminate [GTC06]. diketonate [RMP01]. dilute [HR05, Kri09b, XZ04]. dilution [DA01]. dimension [TSMNG01]. dimensional [BP01, Bie04a, CVR08, DWH+08, LAR+03, LR06, MP03a, MVLG06, RSS09, SHBD05, Wan09]. dimensionality [CDGS09]. dimensions [AHK02]. dimer [CWW09, GYCZ04, Kr030, LJZ03, MHPK01, Mcd03, NK01, RRCA08, SB08, SG07b, YTH01, ZGXX06]. dimerization [HK07, JJK+00, WWX08]. dimers [BB1+09, FKRE08, GYMN07, LMG+09, WLT+04].
dimethoxyethane [LCGA03].

dimethyl [GGGLL05, GWM*00, WLL+03, WJX+08].

dimethyl-2-iodobenzoylphosphonate [GWM*00].
dimethylacetylene [MTB09].
dimethylallenate [ZPL07].
dimethylamin [ZH08].
dimethylcarbamate [KKH+07].
dimethylacetylene [GWM*00].
dimethyl-2-iodobenzoylphosphonate [GWM*00].
dimethylhydrazone [Lu09].
dinitrogen [Ano06a, ST06].
dinicarbonitrile [SMM+08, SDM02].
diodes [LFR07].
diol [Kle02, Kle03].
diol-water [Kle02].
diols [Kle02, Kle03].
dianaphylline [BMRF01].
dioxide [KT08, KZW+05, KK01b, gThDjL01, ZLLS04a].
dioxide-based [KZW+05].
dioxygen [BLO+02, SSW+07].
dipalmitoyl [CEP07].
dipeptide [BISB02, ECA06, HLMR06, JW06, KK09, LRI02, LL07, PFJ+03, Qua07, WD04, YXL+09].
dipeptides [LSW+01, TTB01b, YXL+09].
diphosphates [PFR04b].
dipolar [RI08, San01].
dipole [DVP+02, EDW07, HN02, HK08a, HK08d, HK08b, KFZ03, MLA00].
dipole-quadrupole [HK08a, HK08b].
dipoles [DVRP+03].
discriminant [ZHH09].
discriminants [FTLV01].
discriminating [yCkHmY08].
discrimination [LDTS07, ZPL07].
discriminative [WHH+06].
discussion [CDGS09].
disaccharide [FKJ+01].
disaccharides [SRB02].
DISCO [ZBS03].
DISCOtech [JFG04].
discover [LHJ+06].
discovery [HS07b, KV00].
discrete [DXW08, MGLO03, QLHL09, YL06, ZBS03].
discretization [Bie04a, Bie04b, RP07b].
discriminant [ZHH09].
discriminants [FTLV01].
discriminating [yCkHmY08].
discrimination [LDTS07, ZPL07].
discriminative [WHH+06].
discussion [CDGS09].
disaccharide [FKJ+01].
disaccharides [SRB02].
DISCO [ZBS03].
DISCOtech [JFG04].

27
DNA [AB08, AZM03, BCP03, DLW06, DLVV07, EL06, EL07, FPN+05, FKM+06, FKM+07, JMD+02, JCL05, LW04b, LD05b, LX06, MB00, Maz01, PG04, Pin01, Pin03, PSHP08, PSS+04, PSMB05, RTG00, SG07a, SHD+08, WRP+06, WWL+09, hYDN+08, YS00, ZLY07].

DNA-base [PG04].

do [SRK+00, YJF06].

Dock [BS08, CWV+05].

Docking [NMAT01, ZWB09].

docked [BTLP03, RGZM09, WS02b, AGI+00, AGI+07, AB09, BS05, BS08, CKMC04, CBC+08, CLH+07, CGBF05, CWV+05, CR09b, GZM09, HR08, HLMO5, HW09, KG02, KCL06, LR03a, LDKL05, MKT04, MM03, MCR08, MHL+09, ROK05, RuV07, SBG+09a, TH02, TFN04, TJE03, TP01a, T0t04, VVS07, WRBV03, YK00, Yan04, YKK09].

dodecamer [JCL05].

Does [RY09, RS07a, RS07b, WCK00].

DOIT [SFRS01].

domain [IGNH03, JS07a, OO08, PAT+09, PYCD03, PY05, PC07, PLC08].

domain-averaged [PYCD03, PY05].

domains [GCDL+05, PC05, PC07, SCS07, WCF04].

dominant [LMB08].

DommiMOE [DFWH05].

Donald [Sta00].

donation [HT05].

donor [RM07, SEKS09].

dopamine [FPG+06].

dopants [CM09].

doped [JZGK08, LWLS07, SCP08, WZZ+09, WWL+09].

Doping [SM06, JZGK08].

dot [CLZ+09].

Double [LB05, AZM03, CMJ08, DLRZ09, LMGO+09, Won09, YS00].

double-stranded [AZM03].

doubles [IN08, WKY01, dSVA+09].

doubly [CHRL09, LDL+09].

doubly-linked [CHRL09].

Douglas [YH09].

Douglas-Kroll-Hess [YH09].

downward [LMO09].

DP [CDGS09].

DQ2/DQ7 [KVS+06].

DQ8 [KVS+06].

drag [YSJ09].

Dramatic [AM06a, KT08].

dressed [MW09].

driven [MH09, PV03, SVT09, WPS02].

drives [LFS+07].

driving [AM07].

Drude [LLM09].

drug [CMCB08, DHH+09, HS07b, LWL+09, MCR08, PPXP01, PFR04a, SPGS08].

drug-induced [CMCB08].

DRB09, KEH+02, KC01a, SM0+08, VGGMM05, WM01].

DsBA [CFR06].

Dual [WyLG+09, WLL+03, ZWL+05, mJZlSlyL07, TST+08, ZZL04].

Dual-level [WyLG+09, WLL+03, ZWL+05, TST+08, ZZL04].

Duan [An006c].

due [Car02, JMO7a].

duplexes [BL08, NL08].

duration [CCS00].

during [iza06].

dyad [CHRL09].

dye [BG00, KS05c].

dye-sensitized [KS05c].

Dynamic [SDGC02, XLZ08, CC07, CVR08, CEP07, FEV+09, JW06, mJZlYl+08, LW04a, LDG02, LEV+09, QCK01, QCK02, SDL+09, SCC04, SYC08, WM06, XLC08, YCS07, YCX03].

dynamical [CKW09, EM03a, Kri09b, LDT07, MS03, LPK07].

dynamically [CvG08].

Dynamics [BBG+04, DJB02, KB09, KIM+09, SSBE06, Yos02, ALB09, ATM03, AM06b, BL09, BB05, BBE05, BRDC02, BS01, BG07, CLP09, CLC09, CADW03, CW02, CIB05, CCS00, CF06, CPC+00, CCP04, CMD+04, DLG00, DSS03, DBGV07, ES00, EMP07, ESM06, FSM09, FRRR07, FG02, FBGD06, FEVM01, FKZ09, FNP+06, FPN+05, GL04a, GL04b, Gly06, GS02, GS03, Goo07, GSDT09, GJK00, HB09, HGM04, HSWN01, HNO2, HTSR04,
dynamics
[Maz01, MVL05, MO09, MH08b, MST08, MS01, NK01, NBJ04, NYK09, OO04, OO06, OR05, ON07, PNG06, PRKP05, PMB04, PBW05, Pin01, Pin03, PPYS08, PHH08, PHRR08, PB02, PNG08, QNF09, RRZA08, RMR03, RG08, SO07, SH09, SB08, SBG09a, SLL04a, SM03, STH02, Ste94, SDM09, LWY09, LR03b, Loe03, LMIF06, LM03, LPB03, MB00, MFB04, MN02, MM03, MABM09, MBC08, MCR08, MOP07].

dynamics-quantum [ZSK07].
dynamo [FAB00].
Dyson [SVT09].
E-state [SPGS08].
E1 [YT04].
E2 [RY09].
EADock [GZM09].
early [CMC08].
earth [JHMB09, JHMB11, SO07].
earths [LZZC09].
ECEPP [Sen06].
economic [FZL07].
edge [XWL09].
edge-doped [XWL09].
Edited [Sta00].
Editor [JW12, WM12, vLBBR12, Lip00].
editor-in-chief [Lip00].
Editorial [Bro05].
Editors [BFS07, FA01b, BFS09].
educing [BS01].
Effect [CXZ09, CN05, CEP07, KGL07, Mue01, WMW04, BB08, CP00, CPJ01, CGB09, CSB08, CKT08, DMJ05, GT03, HK08a, HK08b, KT08, KKM07, KCL00, Kri08, Lee09, LL01, LCDA03, Mas04, MZL08, PCS04, RY09, RR05, SOOF05, SPDS01, SCG04, SDL07, VM07, WM06, WDX02, XWL09, ZY01, ZZS07, ZWPR04, CPDZ08, HFS07, JD09, WMW03, WSC09, vE01].
Effective [OCB02, SBLK01, VBGL00, BCF09, CR09a, DPT03, HMWC03, HSWW00, LFK05, MML02, NCTB03, NG04, RPPM03, SG07b, Vas02].
effectively [SMGE08].
Effects [DXW08, KKH07, RLP08, XWX08, AD00, ASS02, BA03, BA04a, BA04b, BPC01, BE07, BDW00, BBI09, CC07, CKF01, CDPL09, Don04, Dra00, ECA06, FGR07, FHF01, GWM08, GVATG03, GM04, GGLR00, GKT04, HRR05, IC08, JJK00, KMM07, KS00, LSF08, LR03b, Loe03, LFR04, MDA08, PBF09, PSF08, PWFS01, RRCA08, SF07, SL09, SMap00, SUG06, SM06, S06b, SRBM06, WSM07, WD04, Wir04, XYN06, YYH04, YH09, ZX04, ZWS02, CM09].
efficiency [KSM05].
Efficiency [IO08, MKGA06, RLR04a, YAC02, CN03, FSM09, GF08, KK08a, L04, LI05, LKW04, PSM05, SM08b, SM03, SE08, vLBBR12].
Efficient [AT02, BP00, BB05, CSJ01, DMZT08, EA08, FL08, FZ09, GH07, GB04, HMWC03, HTKG08, KMA07, KCL00, Nil09, OD09, Oos09, SAT04, SSM08, TP01b, WM12, YZ04, Am00, BL09, BP02, BdPRMA100, CG06, CIB05, CY09, CY13, DBS08, FG02, GJL08, JB00, JB02, K00, LSO04,
LCKL05, PRSMM02, RKA⁺09, SAM06, SSMW09, TS05, Tot04, WW03, YXL⁺09, vLBDR12, FS09, FS00a. efficiently [IGL07, LR06]. eigenvalue [SSL02]. eight [CWV⁺05]. elastic [AJ03, BED02]. Electric [LTV08, SF07, WMS06, ĀCD⁺03, BSOB05, CM09, Kar06, LST08, Mar03, OBBS05].

electrical [KCL00]. electric [LWW⁺06]. electrochemical [Bie04a, Bie04b, Rud05c]. electrocyclization [ZGZX07]. electrolyte [CCCJ09, YSJ09].

electron/four [GYMN07]. electronegativities [dSGCG00].

electronegativity [ALC08, BCNs07, JVK09, VK06].

electrostatic [CCT⁺03, GYMN07, PK05, PML03, RLER04b, SG07b, ABWT09, BCNs07, CPUGD09, CHMI05, DWNB01, FOL⁺04, FY06, GPK05, GB03, KFZ03, KLH⁺04, KCK⁺08, MMPK01, PBM04, PP08b, RL08, SMD00, SFS05, VGDS08, VC04, WCK00, YH06].

electrotopological [SPGS08]. element [Ara04, BHW00, BK08, BH03, BF04, HBW00, HBW01, Li01, SRB06]. elements [ABWT09, ATM⁺07, ASS⁺02, Ell07, JGH00, RP07b, RRS09, VB03, WL04, vW06]. elevated [TK08]. ELF [SFC04, FS00, PC05, PC07]. ELI [BBW⁺08]. ELIA [BBW⁺08]. elimination
Elongation [KLM+09, MKGA06]. Elucidating [DBS07]. elucidation [GZ07, GLH+08]. embedded [CEP07, GGLR00]. embedding [Agr03, JNV08, KS02b]. emission [MLCD01, RGG08]. emitting [LFR07].

Empirical [CBC+08, LS08c, Mac04, SP05, FM00, Gri04, GGK+08, HRKB03, JCHS07, KK08b, LR03a, LLM09, MB00, RKH03, ZNLL07, VBGL+00]. employing [MHT01, THHN01]. empty [CZA03]. enantiomerization [Qua07].

Encapsulated [WL09b]. enclose [ZBS03]. Encyclopedia [vRS98, Lip00].

End [Adc04, GLD08, KUB07, PSDM00, YFS07]. endohedral [KSN01]. endoperoxide [BLO+02, CG08]. enediyne [KC01a]. Energetic [DRAS04, DRAS05, JW12, RP09, BCP03, ECM+03, JD09, KCK+08, PB07, SLHW09].

Energetics [KRLD09, AHGK09, DBGV07, Hua09b, ILKR09, LD05a, MF04, Mas01b, MOP+07, SDCG02, WSC09, ZXY03, ZW09, DLG00].

Energies [CRSB03, BP02, BWE05, BLL+06, BE07, BDW00, CHA+07, CCK01, CPML08a, CG05, DB07, DMZT08, FOL+04, FJP07, FKU+05, GS04, GZL02, GMA04, GLMV09, GAdGM08, GG09, GC04, GS02, GS03, GPSP06, GB02, GWS+02, HKMS01, HP01, HR08, HMOG07, IG02, ILKR09, IGL07, IPN06, IPN07, Jac09, JMD+02, KGN07, KN04, KKC05, KUB07, KB09, Kob03, KCR01b, Kri09a, Lab08, LR03a, LMK01, LF04, LFZ04, LJ04, LB08, LKW04, Lu09, MG06, MCF05, MAF+07, Maz08, MH09, MGAJARC00, MGL003, MRS+07, Nak02, NKIS02, NA06]. energy [OD09, OFB08, OHN00, OKH+02, OV03, Oos09, PSC+01, PMG03, PK04, PAT+09, PMPGP05, Qua01, RP07a, Rao00b, Rap06, RSE07, RRCA08, RWBH09, RLL09, SOOF05, SPDS01, SKGS00, SPL+02, Sch03, SMGE08, Sen06, SRCD03, SMM08, SY09, SG07b, SMMW09, SMD02, SJW09, SSB06, TJE03, TGPP+00, TCR+02, UTH+03, VE09, VM02, Vya01, WL02, WO04, Who08, WHF08, XZZ04, YXC+07, YZ04, YHD+06, ZCZ03, ZZ08, ZGXX06, vEMK01, vLBBR12, Hir08]. Energy-based [KLS02, MSF+08].

energy-consistent [SMD02]. energy-transfer [MAF+07]. energy/one [Oos09]. energy/one-step [Oos09]. enes [PWFS01]. engine [MVL+05].

Enhanced [KG02, DAK08, NYTH09]. enhancement [AB08].
enhancements [AM06a]. enkephalin [ZCL09]. enones [SLRC01]. enough [VGGMM05]. Ensemble [Blo04, BSCH+01, EMP07, O006, SM08b, SM03]. ensembles [GLD08, Ik04]. ensure [FKFG08]. enterovirus [KCL06]. Enthalpies [EB04, WC04, BE06, LS05b, RM00, TTBM09, VGGMM05]. enthalpy [OVMV04]. entire [ZAT07]. entropic [CBC+08, FGR07]. entropy [DHF+05, HDF+07, HTKG08, KKH+07, LM03, RK05, Ru07, STSF02, WG02]. enumeration [AL01]. Envelope [BHH+09, BSC+01, EMP07, OO06, SM05, GBL+05]. Enveloping [BHH+09, BSC+01, EMP07, OO06, SM05]. environment [DFWH05, DPM09, GT03, HFS+07, PMM05, GBL+05]. environmental [CMGDAC+07, FGR07, MDA08, TP01a, VW03]. environments [MPF00, ZFW08]. enzymatic [PCMG09]. enzyme [CFER04, Fie02, GGLR00, GS04, MDA08, Pin03, TDH06, VB09, ZL09a]. enzymes [BS06, CPUGD09]. enzymic [CG05, TCR+02]. Epimerization [BBSS06]. Epitope [SHBD05]. epitopes [KVS+06, SHBD05]. epoxide [Owe05]. epoxides [OY01]. epoxy [OY03]. epoxy-amine [OY03]. EPR [SN06]. equalization [BCN07, JY09, VK06]. equation [AMR04, ABWT09, BH00, BH03, BF04, BS07, BS00, BS01, FS00b, Ho05, HBW00, HBW01, SAT04, TW03, Vas02, Vis02, Zho06]. equations [Bi04a, CF04, DOSG06, Ha04, Kv01, LPK07, LMJ02, QNF09, Ru07, Rud05a, Rud05b, Rud05c]. equilibrate [CA07]. Equilibration-Morse [SDCG02]. equilibria [FGR07]. equilibrated [CA07]. Equilibration [SDCG02]. equilibrium [KSTC01, BBP09, ECA06, KBLP09, LS08b, MMLC05, PAS08, ST04, WQK07]. EQUIPATH [Kli]. Equivalent [ZZY07, WBR03, ZZY08]. equivalents [RCJ02a, RM00]. ERE [MCF07]. Erratum [ABBC01a, An05b, An06a, An06b, An06c, BA04b, BRLS12, CY13, FS00a, HNW00, HB01, MK08a, JHM+11, KHS+02, LFS03a, LR03b, NBTO4a, PCO+07a, PW04, RS07a, TZX01b, WB04a, WB05, WMW04, WW+05]. error [IO08, KMA+07, Ko03, Ma04, MD04, RS05, Ru05a, Ru05b, Ru05c]. TB06, VKP+08]. error-ranked [TB06]. errors [CS03]. erythronic [vDSSvA04]. ESFF [SYY+03]. Essay [KHTCG07, FK07b, GR07, Kut07, MGCA07, Nye07, Shin07, Sim07, Tru07]. established [SB01]. ester [TH02]. esters [POJ01]. estimate [KC01b, YZ04]. estimated [ZMZ09]. estimates [GC04, HT05, MD04, SY09]. estimating [DHF+07]. Estimation [DHF+05, ZW09, CV09, DDV09, HLT09, K01b, PYA03, Lab08]. estimators [GZL02]. estrogen [KU05, KBK+01]. ethos [WLG+09]. ethene [Ang]. ether [GLR02, WD04, Y+08]. ethers [ACLD03, LCA03, LCGA03, LCA03, ZYW+09]. ethyl [KKH+07]. Ethylene [TGG00, BSJ01, Hio08, NTH00, SBB02]. Euclidean [RBS09]. EUDOC [PPXP01]. Euler [SG01]. evaluate [GB07a, GB07b, LF04, OS03, TSS07]. evaluated [ABBC01a, ABBC01b, Bo01, Qu01]. evaluating [FO08, Con02]. Evaluation [BML04, DR07, KSM05, NMM01, OYH09, VKP+08, YJS09].
Ano05b, AGSFAL05, CGG06, CAG07, JSR+07, DBS08, ESP04, FMAMVK06, FKZ09, GGA00, HMWC03, JSHG07, KJVV08, KH06, LMV07, LYS08, MSH+06a, Mor02, PRS04, Sha05, VP02, WL02, Yan04, Yas08, CBC+08, GKT04, OGH05, ZSK07. evaluations [SF05]. Evans [SRK+00].

EVEBAT [CZA03]. Even [CVVB04, CC07, VVBV02]. Even-tempered [CVVB04]. evidence [BLO+02, IO08, SFR07]. Evolution [SPL+02, Der09, Mck07a]. Evolutionary [CZA03, LJKL08, QNF09, WL04, AB˚A04]. examples [CMA+08, HBW00, HBW01, SDL+09]. exchange [AAP00, AKN07, BWI+02, EL09, FDM00, GLP08, LMIF06, RRFC+03, SM08a, SM08b, WL04, Wei08, NCO+05]. exchange-correlation [AAP00, EL09, FDM00, WL04]. Excitation [HKHN08, BMB07, Che01, CG08, Hol05, LWZ09, LFEdL06, ON07, PSF+08, SZT08, SA07, SLRC01, XZ04, ZM03, vGGB00]. excitations [DHM+03, ION07, MA09, TJM+03, XZ05, ZX04]. Excited [CHA+07, HFS+07, Ang09, FCW06, FDSA00, HNWF07, HNWF12, IR03, LWX07, LDL+09, MW09, NBTN04a, NBTN04b, NTH09, PO03, PSS+04, SBI08, SMK00, TY03, TKN+08, WLZ07, ZH08]. excited-state [LDL+09, NTH09, PSS+04]. exclusively [RI08]. exercise [FLK+07]. exist [RY09]. existence [WPH+07]. expanding [Bac07, Bie04a, IZA06]. expansion [AHGK09, GS09, GKH05, HTKG08, II02, Ish02, LZZC09, SVDS01, WBSR03, ZFL+05]. expansions [Bou01, DWN01, GC02, JSHG07, RL04b, SG01]. experiment [BE09, GB303, LS05b, Mat03]. experimental [BE06, JARM02, LEK07]. experimentally [KBN02, TDH06]. experiments [CVR08, HP05, OD09, PC00, PFC03, SL04]. Explicit [EC06, PPS08, RI07, AL01, DMJV05, FC06, HM02, JZD+09, KIFK07, KIM+09, LSO04, PK05, RKA+09, WB04a, WB04b, WB05, ZGFL01]. explicit/implicit [LS04]. exploiting [JSHG07]. exploration [CSJ01, HLB09, LXW+09, LM09]. exploratory [PGH+04]. explore [ILKR09]. Explorer [SHBD05]. Exploring [BL05, HPP00, HXL09, KFO8, Sch03, Tie09, SPL+02]. exponent [WTKM06]. exponential [Rud05a, Rud05b, Rud05c]. exponentially [Bie04a]. exponents [MY08b]. exposure [MML02]. expression [dGWH01]. expressions [TN00]. Extended [LMH+09, TVL+03, Bie04b, Cu04, DXW08, KUB07, QNF09, SS00, ST01]. Extending [GCD04, MFB04]. extensible [SYY+03, GBL+05]. Extension [CR09b, FBLO8, GY08, TBGRJ04]. Extensive [JW12, LB08, SLHW09, YXL+09, ZL05, SMG09]. external [CM09, EC06]. extra [LW07]. extra-valence [LW07]. Extracting [HM02]. extraction
extrapolated [KSTC01, Var09]. extrapolation
extrimal [ZZ08]. extremely [GFS05].
Eyring [Nye07].

F
extrapolation [MO09, MC06, PSC+01, PFJ+03]. extremal [ZZ08]. extremely [GFS05].

facility [SWZS04]. factor [LMCD09, WL00, XSHC06]. factorization [EC06]. factors [AST06, SBH02, TP01b]. FACTS [HC08]. family

faster [SF05, AM06a]. faujasite [TLOG00]. faujasite-type [TLOG00]. FB [DHW+09]. FB-QSAR [DHW+09]. FBP28WW [PAT+09]. FDS [TJE03].

field-based [DMLI05]. field-derived [WMS06]. field-induced [CGB03]. fields [ABA04, Car02, EBD+01, HRBKB03, LLM08, Mac04, MFB04, OSHS03, PK04, PB02, RP07a, RLERO4b, RG08, SL09]. files [FJP07]. fill [RRZA08]. find [HQ02, WS07]. Finding [BS01, Qua07, GF08, Rao00b]. fine [VSK+04]. fine-grained [VSK+04]. fingerprints [LHJ+06].

finite [Ell07, MO01, AB09, ALKH04, BHW00, BP01, Bie04a, Bie04b, BF04,
DRMD03, Der09, GM04, HBW00, HBW01, KGD06, PZS04, RP07b, Rud05a, Rud05b, Rud05c, VZM+08. finite-chain [Der09]. finite-difference [Bie04a, Bie04b, Rud05a, Rud05b, Rud05c, VZM+08]. finite-temperature [KGD06]. fire [LDC+07]. First [CS01, HZX04, Hua09b, JD09, JPCA08, KL03, Mck07b, MLJ03, Rud05b, VP08, WLX+05, XYL+09, KSB+02]. finite-order [Rud05b]. First-principle [ZDS+05, GJL+08]. First-principles [CS01, HZX04, Hua09b, JD09, JPCA08, KL03, Mck07b, MLJ03, Rud05b, VP08, WLX+05]. first-row [AD00, BP03, LK03]. fit [BCNs07, SY09]. fitted [YOB+08]. Fitting [KC01b, MCF05, Wei08]. five [SBH02, Van02a]. five-coordinated [SBH02]. fixed [HM06]. fixed-composition [HM06]. Flex [GCD04]. Flexibility [BL08, BCP04, KG02, KTA03, MHL+09, OV03]. Flexible [COS01, NGTB03, YK00, AGI+00, AGI+07, AJ03, AHGK09, BZP09, BTLP03, BS08, CCL06, CKMC04, CLH+07, DDKV07, GCD04, HW09, JNV08, KOFF09, MH08b, SSBE06, TFN04, TP01a, Tot04, VLH+05, vEMK01, vE01, TJE03]. flexible-backbone [AHGK09]. flexible-ligand [HW09]. flexible-protein [HW09]. Flooding [LSG06]. Fluctuating [OR05, KMH02, PB04, PMB04, Yos02]. Fluctuation [MH04, PC05, SBLK01]. fluctuations [AZS+04, WMGK07]. fluid [BCIB05, CLC09]. fluorene [CHA+07, YFR05]. fluorene/pyridine [CHA+07]. fluorene/carbazole [YFR05]. fluorescence [CHA+07, MAF+07]. fluorescent [DHM+03, NAT07, VSW+03, ZI05]. fluoride [BSG07, IV04]. fluorides [KS05a]. fluorinated [CUSS03]. fluorobenzene [ZTP+08]. fluorobutanal [NSB08]. fluorocarbons [JARM02]. fluoroglycine [HS00]. fluoromethylene [ZLL04a]. flux [DAK08, RKA+09, Rud05a, Rud05b, Rud05c]. fly [KMA+07]. FMO [FOK+04, FKL+06, KIM+09]. FO [Gog08]. focal [KK08a]. Fock [RRS07, TW03, WMW04, AKN07, Bon00, Cul04, DD00, AAGM08, HDBD04, MS00, MBWP03, FJ+03, PVdJB00, TYO+02, UHN+09, WMW03, Wei08, YH07, vDSSvA04]. Fock/Kohn [RRS07]. Focus [Mat03]. focusing [KBK+01]. fold [DB06, ZM06]. folded [CP08, GB04]. Folding [HEP+02, ADM+06, CCC03, DG00, HG08, IM06, JS07a, JIK09, KH05, MLG04, MH09, Mei02, MWE02, RSR09, RLP08, VW00, Vw04, VGO+07, ZP03, dSR08]. folds [BS01, ZS04]. following [DDL+02, LMO09]. For-Gly-NH [PC00]. For-L-Ala-NH [PC00]. Force [CLP09, JCL05, OMNH08, OBT09, SO09, SL09, ZWC+09, AM07, AS06, A ACLD03, ABAD4, A006b, A006c, ATBLS04, CLWL09, Car02, CPM03, CLA+00, CR02, CU05, DvG00, DG+04, DW+03, EBD+01, FBDG06, FAR02, FM00, GRO+03, GJG+08, HP01, HGB04, HXL09, HRKKB03, HFS03, HL08, HML07, IDMC09, IT03, IKYM09, JS07b, JM07b, KB02, KSB+02, KS06, KFN08, KTA03, KOFF09, KL03, KTY+08, KL03, KOML08, KDSV02, KVL+04, KBN02, LL08, LL00, LMGO+09, LHI09, LAT05, LH05, LLM09, MT03, MB00, MM05,
Mac04, MFB04, MMLC05, MBC08, MMMY07, MSR04, MRC03, MHJS06, NCO+05, NMTA01, OYH05, OSHS03, ONHN00, OKH+02, OVMV04, PB04, PMB04, PK04, PS09b, PHH+08, POJ01, PB02, PB05, RP07a, RNG03, RI07, RG08, RKH03, SDL+09, SD+G01, SAS05, SDCG02, SF05, SSS+09]. force [SYY+03, SHK+05, SMM08, SK05, TAS07, TTBM09, WZW06, Wil01a, Wil01b, XLT07]. Force-field [CLP09, OBT09, HGMB04, IDMC09, KLB03, MBC08, NCO+05, OKH+02, OVMV04, SP05, VCM01]. forced [CAG07, LPB03]. forcefield [Adc04]. forces [BCF+09, BH03, HNWF07, HNWF12, JS07a, LPB03, PK05, RLP08, WB04a, WB04b, WB05]. Foreword [DF08, Fre00, FJ02, FH06, FS07, Gad03]. form [AT02, Bac07, BRS01, CR02, LC07]. formaldehyde [WCL05]. formalism [AS00, FLGW00, YCXY03]. formalisms [CF06]. formamide [IINK09, Pac06]. formamidine [WJX+08]. format [TDK07]. Formate [ˇCJPZS08, NK06]. Formate-Lyase [ˇCJPZS08]. formates [CUSS03]. Formation [JM07a, RAGLL09a, RAGLL09b, BE06, BMTFR08, CS03, EB04, HIA03, JWB05, Kle02, LLA01c, LYZ+08, Nee03, RCJ02a, RM00, TT08, TTBM09, WC04, WX09, ZZW09, dOMSL01, JKM08]. formed [LLW02, LSW+01]. formic [Pac06]. forming [PP08a]. forms [SPT07]. formulas [Ish02, Tor02]. formulation [BF07, Cul08, PK05]. formyl [GSB09, HJCP01, FFC03]. formylglycinamide [HRBKB03]. forward [KM07, SJJ+04]. Four [SH02, FJ08, GPSP06, Lai07, PVdJB00, PV03, SBH02]. four- [Lai07, SBH02]. Four-component [SH02, GPSP06, PVdJB00, PV03]. four-index [PVdJB00]. four-membered [FJ08]. Fourier [BWP07, CGG06, HLM05, TYN05]. fourth [Bie04a, Rud05a, Rud05b, Rud05c]. fourth-order [Bie04a, Rud05a, Rud05b, Rud05c]. FPT [BPC01]. fractal [TT08, XOW+00]. fractional [MGLO03, SM08b]. fragilis [SDM02]. Fragment [DHW+09, CFK08, DPM09, FOK+04, FKL+06, FII+07, FKU+05, FKM+06, FKM+07, IK09, KIFK07, MLG04, MLL08a, NYK+09, NGTB03, NG04, OO08, SG07b, ZMZ09, KIM+09]. Fragment-based [DHW+09]. fragmental [CSB+03]. fragmentation [Go01]. fragments [AM09, DWN01, DPR05, KS01a, LV08, NG04, PBF07]. Framework [JGVF05, CR08, EA08, FS04, TAS07, Tie09]. Framework-based [JGVF05]. Franck [Ama02a, LMCD09, TP01b]. Free [DLRZ09, GS03, JMD+02, MH09, PMGL03, YXC+07, AM06b, BWE05, BLL+06, BCI05, Bli04, CN03, CM09, CY09, CY13, Chi03, CV09, CCK01, CMGDA+07, CG05, COL+06, DMJV05, FSM09, GZL02, GMA04, GLMV09, GG09, GC04, GS02, Gra07, GWS+02, HKMS01, HR08, HMOG07, ILKR09, IGL07, JZD+09, KDG+09, KAS+09, KKC05, KUB07, KB09, Kob03, KK01a, Lab08, LR03a, LF04, LSW+01, LKW04, MG06, MT03, MGL003, MRS+07, OD09, ONHN00, OKH+02, OV03, OVMV04, Oos09, PK04, PAT+09, RSE07, RWBH09, SOOF05, SAM06, SKGS00, STSF02, SBL05,
glycol [Pin01, RR05].
glycol-lesioned [Pin01].
glycosidase [BMTFR08].
glycosidase-inhibitor [BMTFR08].
glycosidase-substrate [BMTFR08].
glycosidic [SO09, SDL+09].
glycosidase [BMTFR08].
glycosidase-substrate [BMTFR08].
glycosidic [SO09, SDL+09].
glycyl [KOML08].
glycine [CCK01].
gold [BR04, CZ05].
gold-capped [CZ05].
GolP [IDMC09].
good [VGGMM05].
GPCR [XWC09].
GPCR-CA [XWC09].
GPU [NYTH09].
Gradient [SE07, DLD+02, JSR+07, FRLN09, GMA04, ION07, Ish02, IPN07, LST08, TNS00, WL02].
gradient-based [FRLN09].
Gradients [WM12, BWP07, HHS+05, IK00, KBT03, LJ04, SSMW09, vLBBR12].
grain [PSHP08].
grained [CP09, DR07, DJB02, HXL09, MBC08, SBJ08, VSJ+04, VTT+08, WWL+09].
graining [CA07a, EBAN07].
grand [EMP07].
GRAPe [Höf05].
graph [CLZX09, MGMM07a, Pog03].
graphene [KK08c].
Graphical [BMTFR08].
graphically [GS09].
graphics [FEV+09, SPF+07, Yas08].
graphite [BCF+09, EKO+01].
Gravitational [WS02a].
greedy [TGD05].
green [DHM+03, XZ05, KK08c, KFD06, ZM03].
grey [XLC08].
grid [ALB09, CG06, Pom04, RSN+02, RKA+09, SKSH07, STH02, WL00, WRBV03, YK08].
grid-based [ALB09, RSN+02, RKA+09, SKSH07, WL00, WRBV03].
GridMAT [ALB09].
GridMAT-MD [ALB09].
grids [Bie04a, SFC04, THHN01].
PRSMM03, PV07, RFSS06, RWBH09, SOOF05, SEKS09, SLL+04a, WDS06, WTKM06, Wei08, Wil01b, WDX+02, YTY07, ZY01. H-bonded
[LB05, McD08, NL08]. H-NMR [AGI+07]. H5N1 [DLRZ09]. Hairpin
[ZHH09, CJW+09, IGN03, LHI09]. Hairpins [IGN03, Der00]. Half
[FMAMVK06, PS03, PMM06]. Half-numerical [FMAMVK06].
half-reaction [PS03, PMM06]. halide [RC04, CW02]. halides
[AB00, LYK+04, LSY02, ZJM+07]. Hall [SPGS08]. halo [TT02].
halo-hydroxyformaldoxime [TT02]. haloacid [NYK+09]. haloalkane
[CS03]. halogen [BS03, FHF+01, GGP09, LZF+09]. halogen-bonded
[LZF+09]. halogenated [STC+08, TZX01b, TZX01a]. halogens [TBGRJ04].
halothane [TZX01b, TZX01a]. Hamiltonian
[FRG07, FBL08, MR02, SAM06, ZWPR+04]. Hamiltonians [CV09]. hand
[DFGB09]. handle [GCD04, GM04]. Hansen [BBG+04]. Haptic [MR09].
hand [TGP+00, ZHMW09]. hardness [PRS04, TSSGS07, TSSSG08].
hardware [ATMK03]. harmonic [CLP+05, Ish02, TFN04]. Harris [Cul04].
Hartree [WMW04, AKN07, Bou00, Cul04, DD00, GAdGM08, MS00, MBWP03, PJF+03, RSS07, WMW03, Wei08, YH07]. HAsXH [L508a].
having [WJ00]. haystack [BS01]. HBCC [BAL+01]. HBOP [OYH09].
HBr [SLL+04b]. HBSITE [OYH09]. HCCX [Mar03]. HCl [BL06, WDS06].
HCO [JPF+00, dRLMS00]. HCO-L-SER-NH [JPF+00]. HDMR
[LRWG03, LAR+03, LSHR04]. head [HSWN01]. heart [TKH07]. heartland
[Sha07]. heart [DMSL01]. heats [CS03, JWB05, RCJ02a, WX09, LLA01c].
houer [ZJM+07]. heavy [BPC01, WL04, ZX08]. heavy-metal [ZX08].
HeC [Var09]. Helical
[CPML08b, Van08, Der00, KF02a, LC09, PCO+07b, PCO+07a, ZALMG03].
helicenes [VKP+08]. helices [IGN03]. Helix
[BRDC02, JS07b, LI07, PP08a, YS00]. Hellmann [RLER07].
hemagglutinin [DLRZ09]. heme
[ATBLS04, MBM+00, OYH05, RGZM09, RZWS07]. hemicarcerand
[LMMW04]. hemoglobin [MML+06, SO07, Sen06]. Henry
[Sch00, TLOG00]. hept [STC+08]. hept-C [STC+08]. heptafluoropropane
[LDC+07]. heptagon [STC+08]. heptagon-containing [STC+08].
heptapeptide [OM04, YAÇ+02]. herbicidal [XYN+06]. hERG [MCR08].
Hess [YH09]. Hessian [KK01a, NKls02]. Hessian-free [KK01a]. Hesians
[ASLG07, Cha07]. heteroaromatic [LLM09]. heterobimetallic [RD00].
heterochiral [ZOJ+06]. heterocycles [FSS00, MGMM07b].
heterofluorines [CZFH07]. heterogeneity [HS01, ZSC05]. heterogeneous
[FCF+08, ZCS04]. heterohelicenes [LC09]. heterolevel [EA08].
heteropentalenes [CDL06]. heteropolymers [SBJ08]. Heuristic
[DMC05, DLHC06, CAGR08, IZA06]. Heusler [GD09, KGD06]. hexadiene
[PA05]. hexadiyne [PWFS01]. hexagonal [BK08, LTF+07]. Hexahelicene
[LC09]. hexamer [NK01]. hexatrienaldehyde [ZGZX07]. hexopyranose
[GGK+08, LH05]. hexopyranose-based [LH05]. HF
[BRLS12, BRLS08, FKJ+01, GKTS04, PMPGP05, WW03]. HF/6 [FKJ+01].
HF/6-31G* [FKJ+01], HF/DFT [BRLS12, BRLS08], HF/MP2 [GKT04], HF/CO [JHPRSM+05], Hg [GPS06, BBI+09, WTKM06], HH [CMaGL+04], HI [KKJH08], Hiberty [Bi09], hidden [FWH+07, HLT+05, RP07a], hierarchic [RRS07], Hierarchical [LMH+09, CWV+05, DJB02, FOK+04, LCC09, UIHN09], High [BB08, GAdGM08, LAR+03, AZM03, BACJC01, CCWH02, CN05, DPT03, GL04a, GY08, HGMB04, JBB00, JBB02, KWK+00, KVF+00, LR06, Mck07a, Mck07b, MTB09, RP07c, RLER07, RSS09, SSS+09, WMRW+01, WS05b, XK08, UTM+02], High-dimensional [LAR+03, LR06, RSS09], high-latency [KVF+07], high-level [WS05b], high-performance [CCWH02, KWK+00], High-precision [GAdGM08], high-quality [JBJB00, JJB02, SSS+09], high-rank [RP07c], high-resolution [GL04a, WMRW+01], High-spin [BB08, DPT03, Mck07a, Mck07b], high-valent [AZM03, CN05], higher [BF04, HTN03, WRP+06, ZSK07, AAP00, BBSS06, DMN03, DDBP09, FAR02, FAB+00, FMSA06, GRO+03, GLD08, HBB00, Han01, ION07, JPCA08, JJK09, KRM+02, KN04, LS05b, LW09, LS05b, MBM+00, MS+06a, PDS01, RDM+08, Sza08, THHN01, TFN04, WWL+09, XLZ08, ZZL04], Hybridized [SJJ+04], hybrid [GXK09, Kan07], hydrate [ME02], hydrated [ITS05, XT04, YS09], hydrates [EM03a], Hydration [BZL05, CFC+08, HNO2, BLB+06, CMD+04, GZL02, HB09, HKMS01, HM02, Lab08, LSW+01, MS03, NTH00, OVMV04, PK04, Pin01, RSP03, UBDPJ04, XLT07], hydration-parametrized [RSP03], hydrazines [BLN01], hydrazine [Lu09], Hydride [GVATG03, JHJ01, LLXS02], hydrides [KS01b, SRB06, dSGCG00], hydridotris [HT05], hydridans [HKHN08], hydrocarbon [CS01, KFD06, LC06, Wan09, WEE01], hydrocarbons
Hydrodynamic [BZP09]. Hydrogen [Bor03, BS03, EB04, FVB08, LS08c, MGMM07a, SDvG01, VS08, WFHP01, WJ00, ZKZ+07]. Hydrogen-abstraction [WLLS04]. Hydrogen-bond [RM07, SPT+03]. Hydrogen-bonded [CPDZH08, LDL+09, MH08a, ZH08, vEMK01, vE01]. Hydrogen-bonding [AG00, ZW09, Yos02]. Hydrogenase [TDH06]. Hydrolases [OBT09]. Hydrolyses [DWS+09, LYK+04]. Hydrolysis [WOC+03, DLR+08, MBL+00, RP04, TH02, WJX+08]. Hydroperoxy [BL06]. Hydrophilicity [DLHC06]. Hydrophobic [MBH+02, CJDK09, HJC01, SDL07]. Hydroxide [CBS+03]. Hydroxyl [CUS00]. Hydroxylase [HLC09]. Hydroxymatairesinol [SH09]. Hydroxyproline [WXX03]. Hydroxyaromatic [BLO+02]. Hydroxyformaldoxime [TT02]. Hydroxyformaldehyde [DKZ09]. Hydroxyl [CUS00]. Hypochlorous [JKM08]. Hypersurface [PSC+01]. Hypersurfaces [PSC+01]. Hypochlorous [JKM08]. Hypothetical [LD05a]. Hypoxanthine-cytosine [KKMMS04]. Hypoxanthine [KKMMS04].
NBJ04, PZWG+04, SAM06, SM08b, TT01, VK06, WCC08, YCYXY03, LLL03, VV03, YOB+08. implementations [FL08]. implemented [HP01, MP03b]. implementing [OR05]. Implications [Ano06a, JS07b, KS05c, NHH05, ST06]. implicit [BBHD04, BLL+06, GL04a, JS07a, JZD+09, KTA03, Kr063, Lab08, MCM04, PZ04, PPS08, SBLK01, SL06, WL09a, ZGFL01]. Importance [CGBF05, ENM+04, ZM06, HLC09, JW06, OCB02, PMPGP05, PMM05, TS05]. important [CSU05, EDAJ04, Tor02]. improper [TNS00]. improve [FSM09, XLT07]. Improved [CN03, CLA+00, Gri03, HQ02, KK08a, KK08b, LK04, RCJ02a, SKSH07, TGD05, Wil01a, Wil01b, CMBC08, JRS+07, KDSV02, MP03b, Maz08, MFR07, PABK03, PRS04, SD+G01, STSF02, SH+05, VZM+08, LK03, RCJ02b]. Improvement [SM08b, UKN04, Nee03]. improves [CLWL09, RK05]. Improving [BUCMRL00, Bie04b, GF08, LJ04, LKW04, GRO+03, GP06, SMG09]. in-core [FR06]. inactivation [PFR04a]. incidence [YWHZ03]. InCl [ZL05]. Including [IC08, AKN07, DP03, DP04, Gri04, Ish03, LB08, SL09, Wil01a]. Inclusion [HK08a, HK08b, PWHF+03, PWHF+04]. incomplete [FHW+07, Ish04]. incompressible [ZHMW09]. incorporate [KTA03]. Incorporating [CLS+09, DJM05, HLT+05, SL+09, HS01, LL07, RD06]. incorporation [SM06]. Increasing [ZWZ09, BT00, LJS05, YA+02]. independent [FV08, OTL08, Van02a]. index [COS01, JH03, MBH+02, PVdB00, Pog03, YWHZ03, YWH04, YYW07]. indexing [HWDB03]. indicators [BW+08, HIM07]. indices [BLT03, CGMPT+08, FZL07, FMP08, FVB08, FS04, GDPCPU07, MGM07a, MGM07b, May07, Rao00a, SPGS08, TSMG01, TSSG08, WMW03, WW03, WMM04]. indium [ZL05]. individual [ZM06]. INDO [PBZ00, TY03]. INDO/SCI [TY03]. indole [LL01]. induced [CGB03, CMBC08, EDW07, HIM07, HHP04, KIFK07, LGB+09, LBG08, MLA00, PSF+08, RSN+02, ST01, ZALMG03]. Induction [HK08c, HK08d, ZOJ+06]. Inductive [BE07]. inelastic [BACJCT01]. inexact [Har04]. inexpensive [KFZ03]. infinite [DA01]. Influence [GBS09, JS07a, JT08, LZA02, BGC+09, SBH02, SLRC01, DB06, EL09]. Information [Ham07, GCB03, HTKG08, HP05, NL08]. information-bearing [NL08]. infrared [CVR08, Kle03, LDL+09, MGLD00, TDH06, Zer08]. Inherent [BYQS03]. inhibition [PFR04b, WC08]. Inhibitor [VV07, BMTFR08, CWV+05, FPG+06, MBC08, SVV+08]. inhibitors [AJNG01, AGO+02, APG05, AVS09, LLL+08, LZ05b, PB06, RGP+07, VBG09, VVS07, WZY04, WH08, ZWB09]. inhibitory [DD08]. inhomogeneous [MZL08]. initial [MM03, MABM09, Qua07, UNM+01]. initialization [FKFG08]. initiated [RAGL09b]. initiation [GGGLL05]. initio [AJ03, Ama02a, Ama02b, An006b, ASY01, BG03, BG00, BL08, BSB05, BS01, BL06, BLO+02, BSJ01, BZL05, CPJ00, CPM03, CUS00, CU01, CUSS03,
GGP09, Gon07, HLC09, HA04, HZ06a, HZ06b, IINK09, IB04, JWB05, KF02b, KH06, LHI+06, LCC09, LZ03, LS08c, MM05, MMLC05, MCF07, NK06, Nil09, PG01, PC0+07b, PC0+07a, PK05, PNG08, RZWS07, SOOF05, San01, Sha05, SSS+09, SWV+05, SG01, SL06, SDL07, SMV+09, UTT+04, VW03, WR+06, WPH07, Won09, YT03, YTH+07, ZTS09]. interactive
[DFGB09]. interactively [SB01]. Interatomic
[RD06, AMR04, SS00, SPT07]. interconnected [SB08]. Interconversion
[OO04]. interconversions [FD03]. Interesting [Kri09a]. interface
[CF04, DPDG05, FOK+04, GRR08, HHBH00, HZX04, JKI08, KKG+09, LLL03, LPB03, PHJ+08, TdMSD+08, ZCS04, DBGV07]. interfaced [FKL+06]. interfaces [BSH07, ZZTS09]. interfacial
[CW02, MWL+08, PHJ+08]. Interfacing [WHG+07], interior [SYC08]. interlayer [ALC08]. interlayers [DJT08]. intermediates
[BLO+02, BMTR08, IGNH03, MMMY07, OBTO9, WSM+09]. Intermolecular [PSC+01, AS00, CMAGL+04, CLC09, FA01a, FMK+06, FMK+07, GGP09, GS04, IGL07, KS05c, LZJ03, Mas04, MPMGP05, RRCA08, SPDS01, SJW09, UTM+02, UTT+04, Wil01a, Wil01b, ZDS+05]. Internal
[EA06, BHH+09, CFD03, CFD04, COMR+04, DHF+05, Din00, HFSD03, KS03, KTA03, LKP07, MGLL03, NKIS02, SWO06, TNS00, WR07, WFR08]. internal-rotation [DHF+05]. interparticle [PK05]. Interplay
[EFQD09, SP05]. interpolated [YK08]. interpolation [BB05, IS03]. interpretation [CPJ00, HLS07, VM07]. intersection [SSHT03]. intersections [IK00]. interval [LS05a]. interwall [ZZRSC08]. Intra
[FA01a, FMK+06, FMK+07, MAF+07]. Intra- [FA01a, FMK+06, FMK+07]. intraphycocyanin [MAF+07]. Intramolecular [GKT05, HA04, PG01, TFZRG01, AGK03, BA03, BA04a, FDS00, HRKB03, HK08d, LI01, NHH05, RP02, SWV+05, VIP+06, ZDS+05, ZW09, ZH08, KLE02]. Intraprotein [MLJ03]. intraresidue [IB04]. intrinsic
[JS07, JT08, YGZZ05]. intrinsically [NAT07]. Intruder
[CWY09, WCFH02]. intuitive [PP08b]. invariant [Est07, ZLY07]. Inverse
[BR03, MLL08a, Ni09]. inversion [KSTC01, RC04, ZSE08]. investigate
[DWN01]. investigated [HN02, KLE03, YH09]. Investigation
[LZZC09, YTH01, AST06, BL00, CW02, CHA+07, CG08, FG03, GS04, Hir08, JH01, KYFW07, LH02, LXS08, NSB08, PV07, QZZZ03, QZL+04, RM07, RC04, RY09, SL04, TGGP+00, TFZRG01, UCT+03, WL09b, WLZ+07, ZXY08, ZKZ+07, ZHWM09, ZGZX07, GBJ03, JBGK08]. Investigations
[JP09, WG02]. involvement [BLO+02]. involving [LL01, MM05, ZGZX07]. iodides [CM09]. iodine [GWM+00]. iodobenzoylphosphonate
[GWM+00]. Ion [DAK08, BM08, DRa00, EL07, FHR07, FL07, GWM08, Gor01, ISV06, KPR04, Kri08, Kri09b, MSB01, PPS08, PHRR08, RC04, VHR07a, VHRR07b, ZZW09, dOMSL01]. ion-pair [RC04]. ionic [Ang09, BM08, BS07, BGJ01a, CFC+08, DJV05, GGT08, HTN03, LR03b, LOE03]. ionizable [OS06]. ionization [GSB09, KFD06, RTG00, SVT09]. ionospheric [LSHR04]. ions
[CXZ +09, DMJV05, EL06, FG03, HTSR04, HLB09, JRJ01, KT08, KZRO03, LSWB00, LMIF06, MHS05, RMP01, SL09, ZSC05, ZZZ +06]. IPR [GZ07]. IR [NRKH02, ZWTP +08]. iron [DPT03, GK09, HLLN06, IWH06, MSH +06b, OYH05, RJLR06, SW06, TGLL07, TDH06, CN05, LPP06]. iron-containing [MSH +06b]. irregular [ZBS03]. irrelevance [VVBV02].

ISBN [Bic09, Lip00, Sta00]. ISBN-10 [Bic09]. Iso [GWL07, Rap06]. Iso-energy [DPT03, GK09, HLLN06, MSH +06b, OYH05, RJLR06, SW06, TGLL07, TDH06, CN05, LPP06]. Iso-guanine [GWL07]. isobaric [SM03, Ste04]. isocyanates [OY01]. isocyanide [HT05]. isocyanurates [OY01]. isoelectronic [Che01]. irrelevance [VVBV02].

iso-energy [GWL07, Rap06]. Iso-guanine [GWL07]. Iso-energy [Bic09, Lip00, Sta00]. ISBN-10 [Bic09]. Iso [GWL07, Rap06]. Iso-energy [DPT03, GK09, HLLN06, LWH06, MSH +06b, OYH05, RJLR06, SW06, TGLL07, TDH06, CN05, LPP06]. Iron [DPT03, GK09, HLLN06, MG06, OYH05, RJLR06, SW06, TGLL07, TDH06, CN05, LPP06]. Iron-containing [MSH +06b]. Iron [DPT03, GK09, HLLN06, MG06, OYH05, RJLR06, SW06, TGLL07, TDH06, CN05, LPP06]. Iron-containing [MSH +06b]. Iron [DPT03, GK09, HLLN06, MG06, OYH05, RJLR06, SW06, TGLL07, TDH06, CN05, LPP06]. Iron-containing [MSH +06b]. Iron [DPT03, GK09, HLLN06, MG06, OYH05, RJLR06, SW06, TGLL07, TDH06, CN05, LPP06]. Iron-containing [MSH +06b].
L

[47]

L-2-haloacid [NYK+09]. L-captopril [AGO+02]. L-peptides [OYK+09]. L-phenylalaninamide [HJCP01]. L-valinamide [HJCP01]. L/SSB [KVS+06]. label [VCM01]. lactamase [AGO+02, APO05, SDM02]. lactamases [ESM06, MK02]. LADH [DMC05]. La [VP08]. Landau [GHH07]. landscape [IGNH03, PAT+09, SPL+02]. landscapes [OKH+02, SSB07]. Langmuir [BRS00]. lanthanide [AB00, FRS05, RMP01, SNM+06, VMA03]. lanthanides [RD06]. Lanthanum [AB00]. Large [WCF04, ARL01, AB08, AS00, BG03, BP01, BdpMaj00, BME05, CJK+02, CDD+02, CG06, DMN03, DJB02, Ell07, FZL07, HB09, HSM06, IME02, IS07, JO02, JW00, KS05b, KKG+09, KK01a, KH06, LMJ02, MKGA06, MH09, MHW04, MH08b, MPF00, ME06, NRK02, PFJ+03, RRS07, SYC08, SSL02, TYO+02, VSK+04, WWL+09, YCS07, vGGB00, WS07]. large-amplitude [KS05b]. Large-scale [WCF04, DMN03, JO02, KK01a, MH09, MHW04, MPF00, ME06, RRS07, SSL02, TYO+02], larger [VKP+08]. lariat [ZWY+09]. LCAO [EBL+08, EL09]. LDA [RLD09]. lead [RS07a, RS07b]. leads [PPX01]. learning [YCW+09]. least [CSD05, Gol09, LLZL09]. least-square [LLZL09]. LEDO [GKH05]. legacy [Sha07]. Lei [Ane06c]. length [CRC+08, DR09, JPCA08]. length-frequency [DR09]. lengths [PSC+01]. Lennard [CYM02, FSF05, Pul05, SCC04, SYC08, YCS07]. Lennard-Jones [CYM02, FSF05, Pul05, SCC04, SYC08, YCS07]. lesion [Pin01, Sh08]. 8esionized [Pin01, Pin03]. Letter [BFS07]. Letters [JW12, WM12, vLBMR12]. level [Bumcmrl00, BLT03, BL00, DPM09, JMD+02, mJzlsLy07, KK08c, PFJ+03, RC04, TBG00, TST+08, UTM+02, WyLG+09, WS05b, WLL+03, ZZL04, ZWL+05]. levels [BACJCT01, Cul04, DJB02, PFJ+03, WW03]. Lewis [BhtcG07, Gr07, Sha07, Sim07]. LF [PWHF+03, PWHF+04]. Li [CRC+08, GBDP05, JW12, HDO+02, Lwk08, Lww+06, LAT05, WWT08]. libraries [AL01, KV00, LZ05b, ZM09]. library [CRI+07, FAB+00, Kms05, OTL08, Sh07]. LiF [EL09, UM03]. lifetime [CHA+07]. Ligand [MKT04, AM06b, Bsp06b, BGC+09, BS08, BMTsc01, CGB+09, CLH+07, CN05, DFWH05, F008, GZM09, HZ06a, HZ06b, HW09, Jzd+09, Ks08, Lxw+09, Mue01, N04, Nmat01, OFIK09, PWHF+03, PWHF+04, RK05, Ruv07, SOO05, STSF02, TFN04, Tje03, Vgmm05, XZ04, YK00, Yan04, ZfgL01, ZWS+02, BDW00, HLC09]. ligand-charge [Bsp06b]. ligand-protein [Vgmm05]. ligands [Jvk09]. Kr [CMJ08, CGB03]. Kroll [YH09]. Krylov [Har04]. krypton [CVVB04].
M [Bof01, GPSP06, JJK+00, LYZ+08, OS08, Qua01, WWC+05, JJK+00, LMGR06, OS08]. machine [CLS+09, HL08, LIZ+07, YCW+09]. machines [CLXC02, QLHL09, YMT04]. macro [Wou00]. macromolecule [RRZA08]. macromolecular [FLOD07]. Macro cyclic [SCG04, KB02]. macromolecular [Ara04, Con02, EA06, FM00, JO02, KS01a, KHY00, RP07d, ZBS03]. macrocycles [BM08, HL08, LJZ+07, YCW+09]. micro [CLXC02, QLHL09, YMT04]. macrocycles [FLOD07]. Macrocyclic [Wou00]. macrocycles [CLXC02, QLHL09, YMT04]. Macrocycles [RRZA08]. macrocycle [SCG04, KB02]. macrocyclic [Wou00]. magnetism [Hua09b]. magnetizability [YH07, YH09]. magnetizabilities [YH07, YH09]. magnesium [ZZW09]. magnetic [BACJCT01, CDL06, CDPL09, DXW08, HWFN01, HIM07, KCL00, KGD06, MV06, MD04, PJPJPRMI07, QTdG+08, RLDI09, TDK07, WZXY07, ZPL07, ZXY08]. magnetization [Hua09b]. magnetization [Hua09b]. magnetization [Hua09b]. magneto- [BACJCT01]. main [Din00, JGH00, LW07]. main-chain [Din00]. maingroup [SRB06]. main-group [SRB06]. Maintaining [LFBSK07]. maleimide [RP09]. malonyl [LLL+08]. malonyl-CoA [LLL+08]. maltose [MW00]. maltotriose [SWBM08]. Manager [FCK+08]. manganese [AZM03, CWY09, GK09, LMIF06, LS05b, RJLR06]. Many [Loe03, BM08, TKH07, YCXY03, LR03b]. Many-body [Loe03, TKH07, LR03b]. many-electron [YCXY03]. map [MLL08a, SKGS00, HLTLP09]. mapping [FKZ09, RL01]. maps [PRT+07, PRT+08, TTB01b, WD04]. Marchi [Ano06b]. Marcus [BNL01]. Markov [BHG03, CPUG09, CMGDAC+07, DLW06, FWH+07, HLT+05, SK09]. Markovian [YCXY03]. mass [GM04, Gor01, KZW+05, LHZ+06, ZWZ09]. masses [CN03]. Massimo [Ano06b]. Massive [TP01a, RL01]. massively [DGHR02]. master [FR06, FS00b]. master-slave [FR06]. matching [SMM+08, VSW+03]. Material [JW12, SLH09]. materials [BCF+09, Haf08, LLXS02, LMRVF09, Tie09, XXY08, YPNE09]. mathematical [DDVD09]. matrices [AT02, BDPRAI00, CZA03, LSAS01]. matrix [CGSdST06, Ell07, GHH07, IS07, JCA+02, Li01, NKIS02, Nee03, RS05, RRS07, RRS09, SK09, SSS+03, TYO+02, UHNN09, YWZH03, vDSSvA04, vW06]. Matteo [Ano06b]. matter [ASDP+06]. maxima [MSH+06a]. Maximal [GCDL+05]. maximization [BW1+02]. maximizing [AM07]. Maximum [MWE02, SCS07, HXD08]. MBO [CPC+00]. MC [HMD06, MLG04]. MCCd [SMG09]. MCDP [LAEL01]. McLafferty [NSB08]. MCM [NCO+05]. MCPRO [JTR05]. MCSF [IR03]. MD [KIM+09, MDA08, ALB09, BMRF01, CADW03, HRR05, H05, PHR08, WRBV03]. MD-based [BMRF01]. MD-GRAPE-2 [H05]. MDGRAPE [KAK+09, NYTH09]. MDGRAPE-3 [KAK+09, NYTH09]. MDSimAid [CHM10]. mean [GMA04, HFSD03, LHI09, MMLC05, NMA04, RNG03, YCXY03]. meaningful [AE06, Bu07]. means
measure [XSHC06, ZHH09, PDC+08]. measurement [YZ04]. measurements [KBLP09]. measures [BDW00, DW08, Ham07, Leh06, PYEA03, PCA+08, PDC+08]. mechanical [AVB00, BISB02, CLP09, CGBF05, CCK01, COL+06, DWC+03, ECA06, ESM06, EBD+01, FHR07, FÁ01a, FAB+00, FKU+05, GAIMVB01, GGLR00, JJH01, KKS04, MP03a, MBL+00, Sau04, TCR+02, VHRR07a, VHRR07b, XZZ04, XLZ08, YPNE09, ZCZ03, ZAT07]. mechanical/molecular [CGBF05, FÁ01a, TCR+02, VHRR07a, VHRR07b, XLZ08, ZAT07]. mechanics [AS06, AS09, AD00, AM06b, AGO+02, APG05, BDW00, CLFA07, CR02, CSU05, DPT03, DFWH05, DWC+03, EC06, FEVM01, GCD+08, GS04, GKT04, GPK05, HWTL03, JČHS07, KL03, KZRO03, LL00, LLA01a, LL01, LLA01c, LL01d, LLA03, LSWB00, MLA00, MFB04, MPF00, OSIS03, PRKP05, PS09b, PWHF+03, PWHF+04, RMP01, RSE07, RP02, RO00, RM00, RGP+07, SS00, SH+08, TG+00, TFZR01, TT05, VSW+03, XOW+00, YSA+03, ZSK07]. mechanics-based [BDW00, RSE07]. mechanics/molecular [MPF00]. Mechanism [CJK+02, LWY+09, PFR04a, Rao00a, AM07, AGK03, BTP09, BLO+02, BS03, CGB+09, CBS+03, DBS07, HP04, HLB09, mJZsLyL07, JDWS06, JHH01, LMGO+09, LPP06, LL01, LDT+02a, LDT+02b, LYZ+08, LFS+07, MCK05, Mui05, PGN03, PFR04b, PS03, PMM06, wQZsLyZ02, QZZZ03, RJJ06, SMKM00, gThDjL+01, WDWS06, WCHW09, WXX03, WJX+08, YQQH09, ZLS04b, ZLS04a, ZLS05, ZLS06b, ZKZ+07, ZGZX07, GVATG03]. mechanism-based [PFR04b]. mechanisms [AGI+00, AGI+07, BS06, CCCJ09, CG05, ILKR09, KZY09, KJHK08, LLL06, M02, NSB08, RC04, SIE01, TMBM02]. Mechanistic [BMTFR08, SG03, TT02, An06a, ST06, WD06, XDS06a, ZLS06a]. media [HLLN06, MM02, SMKM00]. mediated [HIA03]. medium [FZL+06, HXLS09, LF04, LFZS04, SHH07, ZFL+05]. medium-resolution [HXL509]. medium-sized [SHH07]. melatonin [CKT+08]. mellitus [PS09a]. Melting [LML+00, KT02]. membered [FJ08, ZW09]. membrane [ALB09, CJDK09, DAK08, FCP+04a, GAS04, ILKR09, JMO7b, LPB03, MJJS06]. membranes [Ie04, SSM08, WC09]. memoriam [Ano00]. memories [WHRG08]. memory [TYO+02]. mercaptocarboxamides [TFZRG01]. mercaptocarboxylate [APG05]. mercaptopyridine [YXZ+04]. mercury [FNP+06]. Merging [PPJ07]. Merz [JVVK09]. Merz-Kollman-Singh [JVVK09]. mesh [BYQS03, KM00, KSY+00]. mesoscale [RPMP03, ZBS03]. Mesoscopic [YPNE09]. Met-enkephalin [ZCL09]. meta [DDBP09, ION07, ZTP+08, Gan09]. meta-di- fluorobenzene [ZTP+08]. meta-generalized [ION07]. metabolites [PCMG09]. metabolizing [VB09]. metabotropic [FTLV01]. metadynamics [BBP09]. Metal [SGD06, ABYM08, An06a, Bac05, BTP09, BS06, BRV+07, BM00, BWI+02,
metal-catalyzed [HSWW00]. metal-free [CM09]. metal-organic [TAS07].

metal-porphyrins [LS02]. metal-rich [LWK08]. metallic [ALC08, KWK01, KWK02, SK08, WLX05a, dVB01]. metallo [AGO02, APG05]. metalloenzyme [BSDM04]. metalloenzymes [Sie01]. metallofullerene [CTFC08, KJP07]. metallofullerenes [KSN01]. metalloproteins [CR09b, SN06].

metals [BP03, BGJ01b, CM09, LD05a, LK03, LK04, WLX05b]. methanediamines [CPJ01]. methanol [CCK01, YGLvG06, ZH08, ZWP08]. methionine [BTP09].

Method [KFB05, MO01, YGZ05, AK07, AB04, AE06, Am00, ATM03, AB09, A005b, A04, BL09, BW07, BP01, BW04, BCN07, Bie04b, BH03, BF04, BM00, BGC09, BHG03, BHH09, CC09, CCL06, CSJ01, CG03, yChHmY08, CRG01, CPC00, CAG07, CA04, DPT03, DMRD03, DPRR05, DMLI05, DVM09, ECM03, FOK04, FKL06, FII07, FÁ01a, FAR02, FS00b, FSL09, FKL05, GMA04, GS09, GY06, GB04, HD04, Har04, HFS07, HH05, HSWF07, HNWF12, HQ02, HFD07, HSWW00, I09, IR03, IK00, JO02, JVV09, K01, KD09, K04, KTA03, KN04, KM00, KLS02, KKC05, KSY00, KK08a, KOL04, KIM09, KB09, KLM09, KC01b, LS00, LRW03, LR06, LWX07, LZZC09, LWX09, LCS09, L05b, MLL06, MKGA06, MKT04, MB00, MCF05, MS06a, MH08b, MG00, MS01, MY08b]. method [MPF00, MRS07, N005b, N006, NGT03, NG04, Nye07, OM04, PHJ08, PAK03, PMC08, PZ04, Qua07, RGO03, Ra00b, RSE07, RL04, RK05, SK09, SMAD00, Sch04, SCC04, SYC08, Sha05, SF05, SG07a, SW04, SV09, THH01, TN04, TVL03, TY03, TK08, VP06, VZ08, VM00, Vya01, WS00, WW03, WLZ07, WL00, WBS03, WM04, WX09, XL02, Yan04, YZ06, YCS07, YAČ02, YH06, YM09, YX09, YXL09, ZWS02, ZL09a, vVGD00, JB00, KTM02, SRC03]. method-based [KIM09]. methodological [FDAS00, MFR07]. Methodology [KS02a, SPL02]. Methods [SB01, AJ03, AGMPR08, BB05, BL05, CAM08, CG05, DLD02, DB07, DMM03, DB03, DHRD09, FOL04, FO08, GHLK02, GH07, GY08, GD09, GPN01, GGLR00, GHBB04, HTKG08, IB04, JFG04, KK08a, KBL08, KLE02, KLE03, KB09, LM07, LMB08, LL03, LW06, LHP01, LK03, LKW04, LZ09, MN02, MZ05, MB03, MHT01, MC06, OFB08, PDC08, PSMB05, Qua04, RSKB03, RC02b, RK04, SAM06, Sch03, SBL05, SYC03, STH02, SE08, SDL07, SS07, TBG00, TCR02, TBGR04, VMA03, VC04, VMF03, WMK07, WM00, WM04, WM08, WCL05, WM01, YLL09, ZM03, vDSS04, LAS01].
methoxycarbonyl [KK09]. Methyl [CADW03, CCK01, DBM03, DMN05, HT05, RC04, WLX+05, WDZS07, WSM+08, WLL+03, WC08, ZLLS05].
methylacetamide [MMPK01]. methylacetylene [ZKZ+07]. methyamine
[LM08], methylation [EL07, HM08, SLC+09]. methylene [LFS+07].
methylenimine [dOMSL01]. methylenimmonium [dOMSL01]. methyl-
limazol [HT05]. methyloxaziridine [ZPL07]. methyloxirane
[ZPL07]. methyltransferase [WC08]. MF [DHW+08]. MF-3D-QSAR
[DHW+08]. Mg-porphin [ˇSBL05]. Mg [WZZ+09, AS06, LST08, ˇSBL05] +
WDS07, WSM+08, WLL+03, WC08, ZLLS05].
methylacetamide [MMPK01]. methylacetylene [ZKZ+07]. methy-
amine [LMB08], methylation [EL07, HM08, SLC+09]. methylene
[LFS+07]. methylenimine [dOMSL01]. methylenimmonium [dOMSL01].
methylimidazole [HT05]. methyloxaziridine [ZPL07]. methyloxirane
[ZPL07]. methyltransferase [WC08]. MF [DHW+08]. MF-3D-QSAR
[DHW+08]. Mg-porphin [ˇSBL05]. Mg [WZZ+09, AS06, LST08, ˇSBL05] +
WDS07, WSM+08, WLL+03, WC08, ZLLS05].
methylacetamide [MMPK01]. methylacetylene [ZKZ+07]. methy-
amine [LMB08], methylation [EL07, HM08, SLC+09]. methylene
[LFS+07]. methylenimine [dOMSL01]. methylenimmonium [dOMSL01].
methylimidazole [HT05]. methyloxaziridine [ZPL07]. methyloxirane
[ZPL07]. methyltransferase [WC08]. MF [DHW+08]. MF-3D-QSAR
[DHW+08]. Mg-porphin [ˇSBL05]. Mg [WZZ+09, AS06, LST08, ˇSBL05] +
Sie01, BA03, BA04a, BZP09, BM08, BSH07, CLP09, ČJPZS08, DJT08, DMM05, EDA04, ENM+04, GL04a, Gor01, HBM06, HSM06, HMMS09, HRZK03, HP04, Hin00, JM07b, JTR05, KCL06, KS01a, KJP+07, KVS+06, KPZK06, LEK07, LLL+08, LFR+04, MMLC05, MBM+00, MPF00, OFB08, SPGS08, SGS03, SYY+03, SPF+07, Sto05, TTB09, VBGL+00, XLC08, YKK09, ZBS03, ZMH+09, BBC+05. **modelling** [PSHP08]. **Models** [JB04, AS09, AHGK09, ACM+06, CCK01, CPUGD09, CRGN07, CA04, CA07a, CCT+03, DMM03, DLG00, DR07, DDVD09, EC06, FWH+07, FK07b, GS09, GV03, GS02, GDPCPU07, GDPP08, GS08, HMD05, HD06, HP01, HLT+05, HG08, HJCP01, JPF+00, KS02a, Kr03, LJKL08, Ls06, LS08b, MTC07, MTE04, MA05, MC06, OGH05, OYH05, PFJ+03, Pa05, QSS01, RD06, RSP03, RSER09, RS08, RR05, SBLK01, Sch00, SS+09, Srb02, SKK+07, SB01, SL06, VBS09, WB04a, WB04b, WB05, WZXY07, YCB00, YGLvG06, YJF06, YKK09, ZLJS03, ZCL09, ZGFL01, ZLDO9, ZWP08, TDH06]. **Modern** [PB02, FLK+07, Pra01]. **Modes** [Gra07, LSY02, MGLL03, OR05, Tor02]. **Modification** [HNL08, Vya01, YWH04, CM09, KFZ03]. **Modified** [LC06, NTH09, RC04, AVS09, CLA+00, KKY01, NA06, VVS07, WCs09]. **Modifying** [XLT07]. **Modular** [EA06]. **module** [HMD06]. **moduli** [LZZC09]. **MOF** [TAS07]. **MOF-5** [TAS07]. **Moffitt** [Kar01]. **moiety** [LBG08]. **Moldyn** [RMHK03]. **Molecular** [AS09, BBG+04, BG07, BDW00, CLC09, CLFA07, CCK01, DJT08, EMP07, FEVM01, FPN+05, GJK00, HLB09, Ish03, JTR05, KSB09, KAS+07, KLB03, KIM+09, LLA01a, LLAA01b, LLAA01c, LLA01d, LLA03, LSWB00, MLA00, Maz01, MO9, MS00, MST+08, NBJ04, Pin01, RMP01, RRZA08, SDD+08, SDM02, VSW+03, WEE01, YSA+03, YGLvG06, YK09, ZCS03, ZWS+09, AM09, AR10, AS06, AG00, ALB09, AD00, AGMPRG+08, ATMK03, AM06b, AB09, AGO+02, AP05, AS00, BG03, BP00, BR07, BA08, BB05, BWE05, BRDC02, BWZ08, BVW04, BT00, BS0B05, BME05, BS01, BPC07, CM08, CC07, CDS09, CCL06, COS01, CW02, CIB05, CDD+02, CKF08, CCSJ00, CGBF05, CF06, CF04, CPC+00, CR02, CCP07, CMD+04, CSU05, CBH+03, DvG00, DB07, DPT03, DFH05, DFG09, DPDG05]. **molecular** [DSS03, DMC05, DLHC06, DK01, DWC+03, ESM06, EK02a, EKB02b, F09, FHR07, FG02, FOK+04, FKL+06, FI+07, FBDG06, FL07, FAB+00, FKZ09, FEV+09, FKRE08, FNP+06, FRLN09, FKU+05, FK+06, GL04a, GLP08, GKR08, GCCV00, GLMV09, GFS05, GL08, GRD01, Gly06, GS02, GS03, Gon07, GSTD09, GCD+08, GS04, GKT04, GPK05, Ham07, HB09, HHHG08, HYT05, HGMB04, HH04, HEL09, HM08, HLS07, HSW01, HN02, HP04, Hin00, HIA03, HTK08, HK08, HW03, HTN03, IKN08, ITS05, IC08, Ish04, IJ09, IKYM09, JS07a, JMD+02, JP09, JG05, JGF04, JHP05, JPRSM+05, KMH02, KFZ03, KGG+09, KM00, KCL06, KEB04, KKC05, KSY+00, KAK+09, KCK+08, KBL08, Kn00, KZRO03, Kol04, KIF07, KvGH01, KH06, KC01b, Kr09a, KPR04, Kri08, Kri09b, Kr03, KKS04]. **molecular**
Monosilicon-substituted [YDWS06], monosubstituted [COMR’04, Lee09]. monoxide [GGP09, HT05, YQHQ09]. Monte [NCO’05, SCS07, AGSFAL05, AGSFA’05, BR03, BHG03, Der00, FCK’08, FKFG08, GHH07, HMD06, IM06, IKYM09, KLS02, KM07, KKKC05, LML+00, LZA02, LRWG03, MH09, Nak02, NA06, OM04, SKGS00, SB108, SM08b, SWR06, TS05, XKG+05, ZCS04]. Monte-Carlo [KLS02]. montmorillonite [DJT08]. MoO [LZZC09]. MOPED [SRCD03]. MORPHY [MP03b]. Morse [SDCG02]. Mössbauer [HLLN06]. most [KAS+07]. motif [HHW+03, LLL07]. Motifs [HWTL03, WHH+06]. motion [BRDC02, CCSJ00, LPK07]. motions [HSWN01, KS05b, LV08]. Mott [RDM+08]. MOVB [MG00]. move [SM08b]. moving [CvG08]. MP2 [BP02, EA08, FJP07, GCCVB00, IPN06, IPN07, JPF+00, ME06, PFJ+03, PMC+08, SAM06, WD04]. MP2/cc [WD04]. MP2/cc-pVTZ//MP2/6-31G** [WD04]. MpProp [SKK+07]. MPSim [CWV+05]. MRCI [SZW+05]. MSINDO [BGJo1b, JGH00, JW00, NB Jo04, SBG09b]. MST [COL01, CSB’03, FBLO08, MBH+02]. MST-based [MBH+02]. Mulliken [GHBB04]. multi [ABWT09, SL09]. multi-region [ABWT09]. multi/heavy [SL09]. multiatom [SSB+03]. Multibaric [OO06]. multibody [CPC+00]. Multicanonical [HHHS01, SKGS00, YC¸BM00, KH01, YAC¸02]. multicenter [DBS08, MS01]. multicentered [DWN01, HT03, WBSR03]. multicomponent [ST04]. multiconfiguration [NUH02]. multiconfigurational [GD06, PJPdPRMI07]. multicore [KHF+09]. Multicut [LSHR04]. Multicut-HDMR [LSHR04]. Multidimensional [AL01, ARLO1, Chn07, HP05, FC00, PFC03, RNG03]. Multidimensionality [FVB08]. multiensemble [HKMS01]. multieponential [GC03]. multifarious [Sim07]. multifield [BRDC02]. multigrid [BB05]. Multisotopic [Gar01]. multilayer [LJZ+07, SJJ+04]. multilayered [MR04]. multilevel [BHWW00, HBW01, JNV08]. multiobjective [CMBC08]. Multiple [CLF+09, CLZX09, DHW+08, JW06, SK09, STH02, BYQS03, CV09, GoL09, KM00, KH06, LJJ+06, MST+08, PAT+09, STCJ08, XOW+00, PYCD03]. multiplications [SSB+03]. multiply [HT03]. multipoint [WS05b]. multipolar [DWN01]. multipole [Ami00, ATMK03, BH03, CRG01, GY08, KM00, KLM+09, Mar03, RP07c, SF07, SG01, SvDS01, TFRZG01, VC04, WL09a, WBSR03, YOB+08, ZFL+05]. multipole-based [WL09a]. multipoles [KS01a, SKK+07]. multipopulation [HHJ03]. Multireference [WNH03, CWY09, DLD+02, HELM09, KBT03, MLL06, ME06, QTdG+08, UKNS01, UKN04, WCFH02, dSVA+09]. multireference-MP2 [ME06]. Multiscale [San01, OFB08]. multiscaling [VTT+08]. Multispecies [GDPP08]. Multistate [JHPRSM+05, FSM09, MST+08, YFS07]. multithermal [OO06]. mutagenesis [MFR07]. mutant [DLRZ09]. mutants [GDPCPU07, MRS+07]. mutase [HHBH00]. mutations [HFS+07]. mutual [HTKG08]. mutual-information [HTKG08]. MXO [HT05].
myoglobin [AZS+04]. myosin [HSWN01].

N [GR07, JD09, KYFW07, KSN01, LS08a, LWW+06, Lu09, Mck07a, Mck07b, OS08, Sin07, TK08, WDXX06, WD08, WJX+08, XWXC08, YHD+06, ZY01, ZXY03, RMHK03, ZJ04, ZO4, CPC+00, DRAS05, FJ08, FH01, HD0+02, KKH+07, KBL08, Lu09, LKA01, Mck08, Mck07b, PFC03, RFSS06, SN00, SRE08, WLL01, Wii01b, WC08, WJX+08, ZW09, ZX09]. N' [WJX+08]. N-dimethyl [WJX+08]. N-dimethylhydrazone [Lu09]. N-formyl-serinamide [PFC03]. NaCl [PK04]. NAMD [PBW+05]. Nano [Est07]. nanoalloy [LJS05]. nanocomposite [DJT08]. nanomaterials [GJL+08]. nanomedicine [PSCD+09]. nanoneedles [PSCD+09]. nanoparticles [CGG06, KEM08, ZWC+09]. nanotubes [BG07, ZZvRSC08]. nanowire [KK08c]. naphthalene [CDPL09, HRG07, WL09b]. naphthalene-like [WL09b]. naphthoic [CMLS05]. naphthylisoquinoline [BMRF01]. native [BS01, yCkHM08, DBI02, MMMY07, ZCL09, ZS04]. native-like [DBI02]. Nature [CQ04, SK08, Ang09, KSK00, PYS05]. Nb [WD08]. nbo [Kar01, BPC01]. NCH [KRLD09]. NCN [LD05a]. NDDO [CSB+03, FA01a]. NDDO-based [CSB+03]. near [BVW04, PABK03, YL09, ZS04]. near-minimal-volume [BVW04]. near-native [ZS04]. near-neighbor [PABK03]. near-solute [YL09]. Nearest [HDF+07, HTKG08]. Nearest-neighbor [HDF+07, HTKG08]. NEB [GF08]. needle [BS01]. Negative [BLO+02]. Neglect [Lai07]. neglected [WCF04]. neighbor [HDF+07, HTKG08, PABK03]. neighbors [RP07d]. nematogenic [CLP09]. neopentyl [YTY07]. Nernst [DAK08]. net [BED02]. Network [KYL03, AG03, CLC03, Go09, GDPP08, GAS04, HSMMO6, KEB04, LSY02, MLGL06, NINAT+07, SJJ+04, SPT+03, UHNN09, WX09, LMH+09]. network-based [GDPP08, GAS04]. networks [BMRDB01, BSH07, FCK+08, KV+07, LJZ+07, PS09a, RLA01, TCSM03, VGDS08, dVB01]. networks-based [PS09a]. Neural [GAS04, AG03, CLC03, Go09, HSMMO6, KEB04, LJZ+07, NINAT+07, PS09a, RLA01, SJJ+04, TCSM03, WX09, dVB01]. neuronal [SBG+09a]. Neutral [DWS+09, ASS+02, Bac09, CYM02, DLR+08, EBDDM00, FCP+05, MT03, OSA06, PGG06, ROG00, VM02, Wn09]. neutrals [LXSS02]. neutron [BACJCT01, RMHK03]. nevirapine [AJNG01]. new-generation [YFJ+06]. Newly [CRS05]. News [An04b, BACJCT01, DV01, GLY06, JVVK09]. Newton [Har04, Qua07]. NF [FJ08]. NH [DMNO5, LF02, DOMSL01, DRAS04, ITS05, JPF+00, KTO8, KSTC01, LDMR01, MR02, Mck07b, PC00, SEKS09, dOMSL01]. NHC [ZWL+08]. NHNN [LWY+09]. Ni [Bac09, KGL07, PNM06]. NiAt [ZL07]. niches [TP01a]. nickel [Bac09, Gk09, LMIF06, YQHH09]. nicotine [VB09]. nicotinic [GCD+08, SBG+09a]. NiH [ZL07]. NiO [SBG09b]. niobium
NiSOD [PMM06]. nitrate [CGB+09]. nitrenium [FG03]. nitric [JDWS06, LPP06]. nitride [UNM+01]. nitrides [LX07]. nitrido [Bac05]. nitrites [POJ01]. nitro [MA05, POJ01, UTH+03]. nitroethane [GWM08]. nitrogen [BDWS06, LPP06]. gThDjL+01. WC08, XWL+09, ZLLS04a, ZLLS05, ZWY+09, ZMH+09]. nitrogen-containing [LMM09]. nitrogen-pivot [ZWY+09]. nitrogen-vacancy [ZMH+09]. nitrogenase [Ano06a, Mck07b, ST06]. nitroguanine [JM07a]. nitromethane [LZJ03]. nitrones [MGG06]. nitroxyl [LPP06, VCM01]. NLOPredict [MMP+07]. NMR [AGI+07, BPC01, BRDC02, CADW03, CMD+04, CMA+08, FO04, HP05, KIt+03, KBLP09, MC06, PC00, PFC03, PF06, RI07, RSER09, ZPL07]. NO [LDT+02b, PGNG03, PGRRNG03, ZLLS04b, ZLLS06b, IS03, FJ08, GBH+09, LDT+02a, MR02, PGNG03, RAGL09a, XDS06a, ZLLS06a]. Nobelium [HdMdS05]. noble [SRB06]. nodal [HYT05]. nodes [Kau07]. NOE [AGI+07, PF06]. non [GZ07, Gon07, SVT09]. non-bonded [Gon07]. non-Dyson [SVT09]. non-IPR [GZ07]. Nonadditive [Don08, PMB04, ZWP08]. nonbonded [ASDP+06, ATMK03, DK01, GWM+00, KH06, PABK03, SF05]. nonbonding [IB04, ZTS09]. noncentrosymmetric [GBJ03]. Noncollinear [Van02b]. Noncovalent [Won09, JˇCHS07, SP05, SMV+09, TH02]. noncovalently [PHFC04]. nonelectrostatic [KF02b]. Nonempirical [KSK00]. nonequilibrium [FZL+06, GG09, KK08c, LF04, LFZS04, OD09, YZ04, ZFL+05]. nonhybrid [DF04]. nonisomorphic [CRGN07]. Nonlinear [RLA01, BF04, BF07, Hart04, HLSH05, MMP+07, WCL05]. nonlinearity [LPK07]. nonmetallic [ALC08]. nonnative [yCKhYM08]. nonnucleoside [AJNG01]. nonorthogonal [SMZ05]. nonparametric [HDF+07]. nonplanar [Din00]. nonplanarity [RKH03]. nonpolar [GZL02]. nonrelativistic [WL02]. Nonspecific [LPB03, RGG08]. Nonuniform [SHSF05, Bie04a]. norbornadiene [WXY08]. norm [RRS09]. normal [EBAN07, KSU03, OR05]. nose [BBG+04, QNF09]. Note [An04b, An04a, FBS09]. Notes [CDGS09, CDS09]. Novel [IKN08, QCK01, QCK02, WZXY07, ZPL07, ZXY08]. nucleation [CKW09]. nuclei [CDPL09]. nucleic [CCK01, DP03, DP04, FZL07, FM00, HWTL03, JCL05, MB00, Nak07, OMNH08, PPYS08, RKH03, SYC03, SL04, SWR06, SHK+05]. nucleobases [FKS+09, SBI08]. nucleophilic [BSB05, SS07]. nucleoside [Wil01b]. nucleosides [SA07]. nucleosome [VT+08]. nucleotide [Mak08, MSF+08]. nucleotides [WX08]. nucleus [FVB08, HdmS05, Hsd06, HD06, IKN08].
NUCS [SHSF05]. nudged [AJ03]. number [CD09, HX08, KZ06, KZw+05, KH06, TG0+00, WWL+09]. numbered [GYCZ04]. numbers [GDvC+07]. Numerical [DLW06, LX07, MO01, QN09, TO08, WL04, VW06, DB07, ESP04, FMA0, IO08, WL00, YK08, WG02]. Numerov [BiE04a, BiE04b]. Numerov-type [BiE04a].

O [BL00, GCCVB00, GPSP06, HYR06, ITS06, mJZ08, KGL07, LZZC09, LM09, Ma501a, Ma501b, NA06, Owe05, PGNG03, PGR03, UCT+03, WX08, YH+08, ZJ07, ZY01, ZL04, ZL+08, ZY03, Ba09, C0809, DR05, Dib05, HM08, HD0+02, IS03, LC07, LW04a, LS05b, MGL03, NY06, NH06, RA09, RF06, SS02, SRE08, W01b, YTY07, ZK09]. O-methylation [HM08]. O3LYP [BP03]. OB [NA06]. object [CR07, FL08, MVL+05]. object-oriented [CR07, MVL+05]. objective [WG02]. objectives [STCJ08]. objects [RSN+02]. observables [MG06]. observations [FWH+07]. observed [VB09]. obtain [BVW04]. obtained [HF03, VC04, WM03, WMW04, W08+06]. obtaining [Ba04, YGZ05, SK09]. occupied [HH08]. occurring [CJW+09]. OCF [UTM+02, UTU+04]. OCHF [YLW+08]. OCl [HLLS05]. OCLO [WLZ+07]. OCO [VM07]. OCS [VS02, ZGXX06]. octahedral [OSA06]. octan [BE07]. octan-1-yloxy [BE07]. octanol [COL01, CSB+03, Go09, T04]. octanol/water [CSB+03, T04]. octet [GR07]. Odd [CC07, GY04]. odd-numbered [GYCZ04]. off [HP01, LJK08, XLT07]. off-lattice [HP01, LJK08]. off-plane [XLT07]. OH [Dib05, G08, HT03, 1v06, LW04a, Ma501b, W07a, CU01, CUSS03, GAIM01, GCCVB00, GGL05, HT03, KZ09, KL09, LC07, LW0+09, Ma501a, MGL03, Mu05, RA09, RA09b, S09, UCT+03, W04, W07b, WY09, YL08, Y09, ZZL+08]. OH-initiated [RA09]. OH-rotamer [KL09]. OH-stretch [KL03]. OH/Ci [YLW+08]. OHO [Wi01a]. OHS [JP09]. olefin [PHG07, YXC+07]. olefins [AVB00]. oligomeric [EL07]. oligomers [BS07, CS01, Der09, LF07, S02, WCL05, ZOJ+06]. oligopeptides [MGJAC00]. Oligovalent [KS02a]. OLYP [BP03]. on-the-fly [KMA+07]. On-the-path [CY09, CY13]. One [CR09a, BG03, Ba07, Bi604a, GKR08, KFD06, Kri09a, Lai07, LB05, ZS0+02]. one- [Lai07]. one-dimensional [BiE04a]. One-electron [CR09a, BG03, Ba07, GKR08, KFD06, Kri09a, LB05]. ONIOM [BG0+09, MA08, MC06, VM+03, XKL03]. ONIOM-molecular [MA08]. ONO [FJ08]. onto [NK06]. OOPSE [MVL+05]. open [CSV+07, FS02, PRS+03, LA01]. Open-chain [LA01]. open-shell [FS02]. open-source [CSV+07]. opening [SRE08]. OPEP [AC+03]. operating [DFW05]. operation [PCA+08, SYC08]. operators [KM+02, Qua04]. OPFMM [CRG01]. OPLS
OPLS-AA [KB02, KOML08, KDSV02, MT03, POJ01, PB05, XLT07]. OPLS-AA/L [KOML08]. OPO [KZY09].

Oppenheimer [ZWZ09]. Opposite [JSHG07]. Opsin [RG02]. Optical [Bou01, CZFH07, CTF08, Hua09a, KSB09, LC09, LFR07, MA09, SN06, TDK07, WCL05, YFR05, Zer08, ZX08]. Optics [MMP07]. Optimal [GFS05, ACD03, BSP06b, Blo04, CRG01, DDVD09, SPT07, TTBM09].

Optimization [Ano06c, GL04b, GKH05, IK00, WCS09, WM12, AJ03, AM06a, BP00, BdPRMAI00, BM00, Bud07, BLM08, CS02, CZB07, COS01, CYM02, CLH07, CY09, CY13, CHM05, CMB08, DMN03, DV02, FM00, FRLN09, GHMP03, HHH00, HLTLP09, KKG09, KBA04, KHF09, KK01a, LJKL08, LJ04, LS05a, LJS05, MKT04, MM03, MM00, MW00, MGJAARC00, Pen06, PU09, Pu05, RK04, SSC04, SYC08, SWM04, SSMW09, SE08, SBH02, STC08, VMP+03, WS05a, WS02a, WPS02, XZZ04, YL06, YCS07, ZBS03, ZZ08, vLBBR12, WZW06].

Optimized [KM07, VB03, VK06, BSDM04, FKFG08, LJZ07, MV06, MY08b, MY08a, WTKM06, WN03].

Optimizer [KG02], optimizing [QSS01, SRC03]. Orbit [Duk01, CR08, CR09a, DXW08, KRM02, KTM02, LB08, LXS08]. Orbital [KIM09, Pen06, WM12, ALTB06, AB09, AS00, CFK08, FOK04, FKL06, FII07, FDU05, FM00, FRLN09, GHMP03, HHH00, HLTLP09, KKG09, KBA04, KHF09, KK01a, LJKL08, LJ04, LS05a, LJS05, MKT04, MM03, MM00, MW00, MGJAARC00, Pen06, PU09, Pu05, RK04, SSC04, SYC08, SWM04, SSMW09, SE08, SBH02, STC08, VMP+03, WS05a, WS02a, WPS02, XZZ04, YL06, YCS07, ZBS03, ZZ08, vLBBR12, WZW06].

orbital-based [CFK08]. Orbital-correlation [SRE08]. Orbital-orthogonality [Pen06].

organic [ATH03, BLY06, BT00, CCK01, DA01, EDJ04, EBD01, GO09, HELM09, HP04, JLF03, JVK09, JTR05, KLH04, LH02, LJZ07, LMRV09, PO03, PB04, SSJ04, SYY03, TAS07, Van07, WCK00, YGZ05].

organizing [BA08, ZA07]. Organocatalytic [WSM09]. Organocopper [YIN03]. Organocuprate [YIN03]. Organometallic [Gor01, SYY03, TD08, TTBM09]. Orientation [BL00, MLW08]. Oriented [CRH07, FL08, MVL05, RMHK03]. Origin [JS07b, GYM07, KMM07].

Orthogonal [BA07]. orthogonality [Pen06]. orthogonal [Lai07].

overdetermined [RI07]. overlap [LKW04, SGPS09]. Overview [Sch03, Mac04]. oxazolidones [OY01]. oxazoline [XKG05]. Oxidase [BS06, JKL08, WZY04]. Oxidases [PS03]. Oxidation.
Oxidative [DGD+05, LL00, PMM06]. oxide [BSJ01, CFS+08, CCCJ09, JDWS06, JT08, LPP06, PV07, RRS06, SBB02, ZCS04]. oxide/electrolyte [ZCS04]. oxidizes [ZSC05, ZLLS05]. oxidized [CNN07, CR02]. oxidoreductases [CFS+09]. oxidosqualene [SGS03]. o xo [CN05, WJX+08]. o xo-porphyrins [CN05]. oxocarbonium [LSWB00]. oxoguanine [FPN+05, JM07a, Pin03]. oxohydrocarbons [Wil01a]. oxoimidazoles [JKM08]. oxonols [BG00]. oxygen [GTC06, GWM+00, MML+06, SO09, WSC09, XPW09]. oxygen-adsorbed [XPW09]. oxyl [AZM03]. oxyl- [AZM03]. oxynitrides [WD08]. ozone [YLZ08].

P [BAL+01, Gog08, KZY09, LS08a, Lip00, OS08, QB05, WZZ+09, ZY01, MK02, CCP04, Mit01, RPNJ07, RFSS06, Tot04, KZY09]. P450 [Ast06, HBM06, LCC09, ZAT07]. P450-catalyzed [Ast06]. P450nor [LPP06]. P450s [OYH05]. p8 [BRDC02]. PAnhar [GBDP05]. package [AGSFA+05, BACJCT01, CSV+07, GSDT09, IM06, KSY+08, Kli01, KWK+00, MABB09, OTL08, PVdB00, RMHK03]. package-independent [OTL08]. packed [AT02]. Packing [MM03, CM09, CA07b]. Packmol [MABB09]. PAH [Don08]. Pair [FK07a, FS04, GR07, HZX04, KSTC01, LBT07, MLL06, MGCA07, Ni09, PC05, RC04, SC01, SYC03, Sim07, PC07]. pairing [DP04, HWTL03, PC05, PC07]. pairlist [HH04].

pairlist-construction [HH04]. pairs [BM08, CJDK09, FZL07, KKMM05, PABK03, ZZW09]. pairwise [Ano05b, CLZ+09, MTE04, Sha05, VP02, VZM+08]. Palermo [Van08]. palladium [WCW08, WCH09]. palladium-catalyzed [WCW08, WCH09]. pancreatic [MBC08]. paper [JW12, WM12]. para [ASDP+06, KCO1a, ZK09]. para-didehydropyridine [KCO1a]. para-didehydropyridinium [KCO1a]. para-hydrogen [ZK09]. paradox [CDGS09]. Parallel [BWP07, DOSG06, MBWP03, TGGP+00, UIHN09, ASWG07, Ano05b, AGSFA+05, BP02, BW+09, CRG01, GBPD05, GS04, GKTS04, GPK05, HHJ03, HHHS01, IS07, IPN06, IPN07, KKC05, KOFF09, KVF+07, MVL+05, MGJAARC00, NK02, NG04, Sha05, SPT07, SY+02, TFZG01]. Parallelization [GJK+06, PVdB00, PV03, SZV+05, UKNS01, CCWH02, FOK+04, FCK+08, UKN04, VSK+04, VGGB00]. parallelized [TP01a, VK06]. parallelizing [SO07]. parameter [BLMS08, CRG01, CHMI05, HXL09, MO09, OVM04, SHK+05, FM00]. Parameterization [KB02, PNG08, SMM+08, TCT03, BGJ01b, FH01, JKL08, JGH00, LSWB00, MTE04, PB04, RKH03, TGLL07, VSW+03, WK01, JJB02, JVVK09]. parameterized [GB04]. parameters [AAP00, AMR04, Ano06c, ATBL04, BBG+04, BSDM04, BZL05, CYM02, DB06, DDDV09, FAR02, FSFK05, FRS05, HPL03, KFNH08, KOML08].

[AGSFA+05, BACJCT01, CSV+07, GSDT09, IM06, KSY+08, Kli01, KWK+00, MABB09, OTL08, PVdB00, RMHK03].
KVL+04, KC01b, MMMY07, MSR04, MRC03, MLL+08b, MC06, OYH05, OMN08, OBT09, PRKP05, RRCA08, SO09, SEKS09, SRCD03, SHD+08, SCF+09, TT05, TTB01a, VCM01, VIP+06, WZV+06, ZSK07.

Parametrization [PDS01, COL01, SBH02, WS05b]. parametrized [RSP03, TAS07], paraoxon [ZWS+09], parent [MD04, YLW+08]. Pareto [STCJ08]. Paris [HP04]. Parr [Kri09a]. Parrinello [JP09, Sch04]. part [AG1+07, CDS09, ESP04, GDPP08, LL01d, vDSSvA04, AGI+00, Rud05c, vEMK01, vE01]. Partial [Ike04, BSC, Gol09, KC01b]. partially [SVT09]. particle [Ano05b, CZB07, GY08, KM00, KSY+00, LJZ+07, Sha05, SJJ+04, SHH07, SZW+05]. particles [BCIB05, WWL+09]. particularly [BS06]. partition [CCK01, CSB+03, DP03, GLD08, Go09, RM07, TS05].

partitioning [ACD+03, DVP+02, DVRP+03, HSM06, RP07a, VC04, WHN03]. path [ABB01a, ABB01b, Bbo4, Bo01, CY09, GF08, GM08, JP09, Kli01, Qua01, UCT+03, VGB08, WHG+07, CY13]. paths [FG03].

pathway [LGB+09, WLL01]. pathways [AJ03, JW06, LK+04, MAF+07, Qua04, RAGL09a, RAGL09b]. Pattern [DGHR02, EK02a, EK02b, KEB04, AGMP+08, HD03, EK02a]. patterns [CGG06, Gor01]. Pauli [Ish03]. PB [GC04, WHF08].

PBCAID [QSS01]. **PBSA** [PB06]. PtTiO [ZXYF09]. PC [An01b, BMB01, HSMT04, OSH03]. PC-GA-ANN [HSMT04]. PCM [FKL+06, CR03]. PCs [HS07b]. Pd [DGD+05, GBBH09]. PDDG [RCJ02b, TBGR04]. PDDG/MNDO [RCJ02b, TBGR04]. PDDG/PM3 [RCJ02b, TBGR04]. PDE7 [DD08]. pea [PS03].

PF06, WD04, MM05, OO08, SS+09. 6-31G* [FSFK05, FKJ+01, NL08]. 6-31G** [WD04]. adsorbate [BW+02]. AM1 [FRS05]. AMBER [FSFK05]. As [KS05a]. carbazole [YFR05]. CASPT2 [WLZ+07]. CBS [Lu09]. cc-pVTZ [WD04]. CCl [ZL09]. C [YLF08]. closure [SW06]. continuum [LRI+02]. Cs [GLR02]. decomposition [ML00]. DFT [BRLS12, BRLS08]. dissimilarity [hYD+08]. DQ7 [KV+06]. electrolyte [ZCS04]. empirical [CYM02]. FE [AGK03].

four-centers [GYM07]. fractal [Fan07]. free [BG00]. Ge [LLX02]. GeH [LLX02]. heavy [SL09]. HLA-DQ8 [KVS+06]. implicit [LS04]. Kohn [RRS07]. L [KOML08]. metal [MSBS01]. MM [CGP05, MP00, AST06, CR09b, CG05, FRA02, FMSA06, FSFK05, GM08, GW+00, HBB00, HBM06, HR08, HRR05, HTN03, IV04, IvS06, ITS05, ITS06, KHF+09, KPR04, Kri08, Kri09b, MBM+00, MSH+06a, MG00, ML03, NGB03, RGO2, SBB+09a, SN06, SMM+08, SVV+08, TII01, TDMSD+08, VMF+03, WC08, WHG+07, WC08, YZ06, ZWZ09].

MM4 [AD00]. Mn [BL01]. MNDO [RCJ02b, TBGR04]. molecular [CGP05, FÁ01a, MP00, TCR+02, VR07a, VR07b, XLZ08, ZAT07].

MP2 [WD04, GKT04]. **MRCl** [KT02]. nonstable [GDPCP07]. NP [GZL02]. one-step [Oos09]. order [MO09]. particle [BYQ03]. PM3 [RCJ02b, TBGR04]. polarization [YL09]. poly [BS01]. QM
[AB09, HT03, SURG06]. QSAR [ZNLL07]. QSPR [TCSM03]. SA [GWS+02]. SAC [DHM+03]. SCI [TY03]. solvent [PMB04]. SSB [KVS+06]. statistical [ML00]. volume [Lab08]. water [CCK01, CSB+03, FBDG06, Tot04]. penicillin [MK02]. penicillin-binding [MK02]. penicillins [DSS03]. pentacarbonylmanganese [PYS05]. pentanes [BPC01]. PEPCAT [OML+00]. Peptide [Adc04, DHW+07, HJCP01, JPF+00, ONHN00, PFJ+03, BTP09, BWE05, BSP06a, CLWL09, CSJ01, CJW+09, CLA+00, CP09, DvG00, DWN01, GSB09, IGNH03, LHJ+06, LL01, MS03, MHT01, MST+08, OGH05, OKH+02, PHFC04, SDL07, Tot04, WFC04, Will1b, YZ06, YÇBM00, ZALMG03, ZCZ03, WHP02, KVS+06]. peptide/HLA [KVS+06]. Peptides [CPML08b, Van08, Ano06c, BBHD04, BCP04, BAH+02, CP08, DJ04, EA08, HHP04, IKYM09, LKJ+04, LLW02, LXL07, MM00, MC06, OML+00, OYK+09, OM04, PCO+07b, PRKP05, PFC03, SJW09, WZW+06, YAÇ+02, ZW09, ZLD09, ZOJ+06, PCO+07a]. peptidomimetics [BAH+02]. percolation [Mei02]. perfluoro [FO04]. perfluorosulfonate [YSJ09]. perform [ME06, WCK00, WHG+07]. Performance [BM00, CUL04, CA04, DNN03, FOL+04, JM07b, KPKZ06, LLS03, RLD109, VBS09, ZM03, AM06a, BL05, BRV+07, BLMS08, CCWH02, DF04, DB06, DGI+08, FMPS08, KWK+00, KEM08, KS05c, LWH06, MA09, NYTH09, SF07, SCF+09, Sto05, SBH02, UKN04, WMK07, WL04, WSM+09, WM01, BP07]. Performances [CLP+05]. Periodic [PMC+08, AMI00, BVW04, DRMD03, FROD08, HH04, Kau07, KSS08, KAK+09, QSS01, SRB06, WM06, ZLD09]. peripheral [BGC+09]. periplasmic [CGB+09]. permeability [CRG+07]. permittivity [GPN01, PZS04]. permutation [SN00]. perovskite [WD08]. perovskite-type [WD08]. peroxa [BLO+02]. peroxidase [HBM06]. peroxidative [MR09]. peroxides [LLZ09]. peroxy [Dib05]. peroxyxynitrite [JM07a]. personal [May07]. perspective [KLQ+09, LMGO+09, PBH09]. perspectives [Fie02]. perturbation [CWY09, CPML08a, CG05, DRMD03, JSR+07, FII+07, Gri03, IN08, LK04, MRS+07, NUH02, Oos09, PMGL03, Pog06, QT+dG+08, RSE07, SWZS04, UTH+03, UKNS01, UKN04, Var09, WCFH02, WHN03, YH09]. perturbations [OV03]. perturbed [DOSG06, ZZW09]. pesticides [KEH+02]. PH [RD00, DR09, WDS06, MCM04]. pharmaceutical [KV00]. pharmacophore [BA08, JFG04, LFKL00, HHG+09]. pharmacophore-constrained [LFKL00]. phase [BAL+01, CPJ00, CPJ01, DR09, DGI+08, DWC+03, FBGD06, FM00, GLMV09, JJK+00, JHZ09, KSB+02, KT08, KFN08, KKH+07, LRI+02, Lee09, LB05, LLL03, MBF04, Mas01a, Mas01b, MM02, Mor02, POJ01, PV07, wQZsLyZ02, QNF09, RRS06, ROG00, SMGE08, SDcG01, SMK00, TK08, TDH06, UCT+03, UNM+01, WD04, XKKL03, XKG+05, YQQH09, ZALMG03, ZSK07]. phase-space [QNF09]. phases [ALC08, CLP09, LXS08, SK05, XBO8]. PhAST [HHG+09]. Phe [VKP+08]. Phe-Gly-Phe [VKP+08]. Phen [ZWS+02].
phenol [LL01]. phenols [HM08]. phenomena [KK08c, RSS09].
phenoxycarboxylic [XKKL03]. phenyl [WZY04]. phenylalaninamide [HJCP01]. phenylalanine [SMV+09]. phenylene [ASDP+06]. Philippe [Bi09]. phillipsites [LST08]. phonon [EL09]. phosphatase
[AG00, FCP+04a, FCP+05]. phosphate
[LDY+08, MBL+00, PMM05, PHRR08]. phosphates [WOC+03].
phosphatidylcholine [CEP07]. phosphine [HT05, LL00, MGLD00].
phosphinine [FLOD07]. phosphinine-containing [FLOD07].
phosphininium [LTF+07]. phospho [RGP+07]. phosphodiesterase
[XLZ08]. phosphodiesterase-5 [XLZ08]. phosphohistidine [KVL+04].
phosphoimidazole [KVL+04]. phosphole [LFR07]. phospho-containing
[LFR07]. phospholipid [MCR08, RG08]. phosphomannose [RGP+07].
phosphonic [CJ+02]. phosphorus [LYK+04, LTF+07, Mit01].
phosphoryl [ZJM+07]. phosphorylation [HLT+05]. phosphotriesterase
[KZRO03, ZWS+09]. phosphotyrosyl [OO08]. photoabsorption
[CHRL09]. photoadsorption [ZMH+09]. photocatalysts [HZ90].
photochemical [Ama02b]. Photochemistry [GD06, SRE08].
photodetachment [LMCD09]. photodissociation
[JHPRSM+05, LXS08, WXX03]. photoelectron [VDM06]. photoemission
[RD+08]. photoexcited [SRE08]. photographic [Shn02].
photoionization [MY08b]. photoisomerization [GRO+03].
photosynthesis [An006b, CPM03]. photosynthetic [IN01, OON01].
photovoltaic [LMRFH+09]. phthalocyanine [CM09]. phthalocyanines
[LS02]. phycobilisomes [MAF+07]. phycocyanin [MAF+07]. phylogeny
[LXZ06, ZLY07]. physical [BR07, DHW+07, OFB08, OS08, SRE03].
physically [AE06]. physico [AGMPRG+08, Mat03, SB01].
physico-chemical [AGMPRG+08, Mat03]. physico-chemically [SB01].
physicochemical [CP08, CP09, FTLV01, KLM+04, KEM08]. physics
[DB12, SPL+02, WS07]. physics-based [DB12, SPL+02, WS07]. physico
[CDD+02]. physico-chemical [CDD+02]. piano [FKS+09]. piano-stool
[FKS+09]. picture [VBGL+00]. Piero [An006b]. pinacol [TTY07]. Piotr
[An006c]. pivot [ZYW+09]. pK [KKS04, ZCS04]. pKa [CFR06, OS06].
planar [CSB08, MMRV07, SRS07, SBG09b, Wam09]. Planck [DAK08].
plane [PSS+04, PSMB05, RLD109, VSK+04, XLT07]. plane-wave
[PSS+04, VSK+04]. plane-wave-based [RLD109]. planewave [YK08].
plaster [HP04]. Plastocyanin [SN06]. platform [Gan09]. platinum
[CSB08, SMM+08, Wam01]. plausible [CBS+03, SB01]. play [YJF06].
Playstation [LEV+09]. pleated [PGC05]. Plessset
[CPML08a, JRR+07, FRI+07, Gri03, IN08, JSHG07, Var09, WCFH02, YH09].
plot [KMH02]. plots [CLZ+09, SDL+09, SRE08]. PLP [PMM05]. plus
[AGMPRG+08, CG05, IN08]. PM3
[BM00, BSDM04, DC02, GM01, MSH+06b, TGLL07, TCT03].
PM3-compatible [BSDM04]. PM3/d [TGLL07]. PM5 [LKT04]. PMF
[Mue01]. pocket [BS08, MDA08, OYH09]. pocket-specific [BS08]. Point
point-charge [DWC+03, CRC+00, GGLR00, KGL07, KK08a, KFZ03, MGCA07, SRB02, TBSM09, WMS06, ZMH+09].

point [BMLV04, BAÂ,07, DLD+02, GMA04, HQ02, MP03b]. Poisson

points [BMLV04, BAÂ,07, DLD+02, GMA04, HQ02, MP03b].

Poisson [WB04a, WB05, ABWT09, BHW00, BH03, BF04, BF07, DLG00, DA08, FOL+04, GPN01, GCD+08, GGT08, Hê05, HBW00, HBW01, KWHH07, LDG02, NYTH09, PZS04, SAT04, Vas02, VZ+08, WB04b, ZGF01].

Polanyi [Nye07]. polar

polar [BAÂ,07, CYM02, CPML08a, EB04, FA01a, HLLN06, HSF08, PFC03, ZXYF09].

polar-neutral [CYM02].

polarizabilities [ZPL07]. polarizability [BP01, HK08a, HK08b, Mar03, Mor02, QCK01, QCK02, vGGB00].

Polarizable [CFK08, LLM09, Nak07, Ano06c, AGO+02, APG05, BCIB05, COL+06, DGI+08, FKL+06, GMW+00, GS04, GKT04, GPK05, HHP04, JZD+09, KSB+02, Kol04, LJ04, MPPK01, MBC08, OR05, PWHF+03, PWHF+04, Pom04, RGP+07, TFZRG01, WZW+06, YGLvG06, FCP+04b].

polarization [CGB03, CBH+03, EDW07, GGLR00, HK08a, HK08b, KFZ03, MR04, Maz08, RP02, SL09, WL09a]. Polarized [EdlVR+03, BSOB05, OBBS05].

poly [ASDP+06, CHA+07, CFD04, MGMM07b, Qau07, SBB02, ZALMG03].

poly-isothianaphthene [CFD04]. poly-para-phenylene [ASDP+06].

polyacenes [BPCD07]. polyacetylene [PM02]. polyacrylates [LZA02].

polyalcohols [KBLP09]. polyatomic [GGB07a, GGB07b, RLR94a].

polyatomic [GGB07a, GGB07b, RLR94a].

polyatomics [TP01b]. polyazidocubanes [JWB05].

polycoordinate [TGGP+00]. polycyclic [Bor03, CA07b, FVB08, MGMM07a, VS08].

polyenes [MW09]. Polystyrene [BCF+09]. polyketides [KB02].

Polymer [Mei02, BB+04, CZA03, DJT08, MM07, RRZ08, YJS09].

polymeric [Fau01, JCA+02]. polymerization [BG07, YCC+07]. polymers [CFD04, CA04, CA07a, DC02, Der09, Din00, DDBP09, HM01, LAEL01, OKE+02, SHH07, VIP+06, YYW07].

pseudopolymer [VVBV02].

polynomial [HDBD04]. polynuclear [HYR06, RRFC+03].

polyoxoanions [LFR+04]. polypeptide [Cri04].

polypeptides [CFM08a, IB04, KF02a, KF03, Nak02, VP09].

polyphosphate [MRC03].

polythiophene [CA07b]. POPC [JM07b].

Pople [Ano04a, EA08].

population [BLT03, BPCD07, Pul05]. population-based [Pul05].

populations [KBN02, porph, SBL05, SBL05]. porphyrins [NyHN06].

porphyrin-fullerene [CHRL09]. porphyrins [CN05, LS02, LWH06]. portable [SH07].

potassium [MCR08, HHS05]. potential [AMR04, AE06, ABC01a, ABC01b, BCNs07, BL05, Bo01, BB+09].
potential-derived [TBSM09]. potentials [ATM+07, CLC09, CPUGD09, CKW09, DBI02, FAB+00, FNP+06, GK09, GBJ03, HZX04, HHHS01, HZ06a, IKY09, KLM+04, KCK+08, KK01b, LI07, LHI09, LK03, LK04, LLW09, MCF05, MWE02, OR05, PML03, RLER04b, SMD2001, SPT07, VGDSU08, dSR08]. Powder [HWDB03, HHJ03, dGWH01]. powerful [PSDM00]. pp [Bic09, Lip00, Sta00]. PQS [BWM+09]. PR [AVS09, VVS07]. Practical [BMRDB01, PHR+05, Woo01, You11, Blo04, Sch03, SHSF05, SWZS04, WW03]. precalculated [ZMZ09]. preceding [CSD05]. Precise [Ami00, Ara04]. precision [CN03, GAdGM08]. precursors [CFD03, CFD04, DJT08]. predict [HL08, HZ06a, HZ06b, LL07, PB06, PJPdPRMI07, XSHC06, XLC08, YMT04]. Predicted [PDP02, IGL07, JARM02, KCL06, WS02b, ZCL09, ZGXX06]. Predicting [DR09, Der00, LKA01, ZLS03, AG03, CLXC02, CRG07, I008, KSM02, XWC09]. Prediction [AVS09, CLC03, CRK08, CJD09, DA01, ELK+09, FCW06, Go09, JIK09, KLH+04, KCK+08, KEH+02, KF03, KKS04, LCC09, NINAT+07, OFB08, Sch00, YCW+09, YYW07, ABÅ04, BED02, CLF+09, CLA+00, DB06, EK06, GP06, GAS04, HEP+02, HSM06, HG08, KZ09, KP05, KFN08, KE04, KK08b, KS08, KOFF09, KF02a, LEK07, LXW+09, LHP01, LLZL09, LW+09, MSF+08, MS04, NCO+05, NLL+09, PBJ+07, QHL09, RGG08, TKS+01, TLKT00, Tot04, VGDSU08, WFHP01, WHP02, WHF08, WX09, ZHH09, AGI+07, GCD+08, KVS+06, ZCS04]. predictions [BS01, BLB09, CP08, Ruv07, Van02a, ZLD09, vEM01, vE01]. predictor [Kol04]. preface [FA01b]. preferences [GSB09, KK09, LKJ+04]. preferred [DV02]. preliminary [KHM02, PMC+08]. Preprocessing [SHM04]. prerequisite [WHF08]. presence [LZA02, RAGL09b]. present [GR07]. Presentation [Rud05a]. preserving [QNF09]. pressure [Car02, MTB09]. pressures [TK08]. primary [HB09, JIK09, KBN02]. primitive [MV06]. principle [GJL+08, PRS04, ZDS+05]. principles [CS01, EBL+08, GD09, HZ04, Hua09b, KK08c, MLJ03, TK08, VP08, WLX+05, WZZ+09, WD08, ZXY09, ZHMW09]. prior [IK09]. priori [SPDS01]. prismatic [WL09b]. probabilistic [PJB+07]. probabilities [DP04]. probability [CFS03, DLW06, GCDL+05, Kni00, SK09, SCS07]. probe [CVR08, DMLI05, TH02, VSW+03]. Probing [PAT+09, WMKG07]. problem [ABB01a, ABB01b, Ano06a, Bof01, CCL06, HLTLP09, Qua01, ST06, TKH07, XOW+00]. problem-size [HLTLP09]. Problems [You11, ABWT09, Mat03, Vis02, Woo01]. Procacci [Ano06b]. procedure [AM09, BR03, CA07a, DLSVY00, GP06, KBT03, RS08, SSL02, SMM+08, YÇBM00, Zho06]. procedures [GT03, HSMT04]. process
[BZL05, LGB+09, ML00, Pac06]. processes
[Che01, GG09, KEM08, LDTS07]. processing [AGI+00, AGI+07, FEV+09].
processor [LEV+09, Yas08]. processors [SPF+07]. Producing [KBN02].
product [SFR07, YLW+08, YLWL09]. production [YQQH09]. products
[KYFW07, LZ05b]. PROFASI [IM06]. profile
[Ber03, CCB04, CCP04, GB02, ONHN00, Zho06]. profiles
[AHK02, CMBC08, OD09, YXC+07]. program
[AJ03, BBM+09, DRMD03, GCRD01, Gly06, GM04, IS07, Kli01,
KWK+00, MP03b, ME06, PFX01, PRJ02, QSS01, RMHK03, SFRS01,
SMZW05, TRS02, UHNN09, VB07, VKCK09, Zer08, BBC+05, BKS02].
programmable [Gan09]. programming [SPT07]. programs
[CBD+05, KSS08, MBP09, SH07]. projection
[FS00b, GKH05, GY06, Qua04, TKN+08]. projector
[BCC05, KS08, MBP09, SH07]. projector-augmented
[MOP+07]. prokaryotes [WHH+06]. prolapse
[HdMdS05, Hds06, HD06, TW03]. proline [BISB02, KK09]. promising
[JR01]. promolecular [Leh06]. promolecule [MS00]. promoted
[SBG09b]. promotion [KMM07]. propagator [SVM09]. propanal [RR05].
propanone [RR05]. propargyl [LMK01]. propellanes [PAS07]. propenal
[BS03]. properties
[AB00, AEE+03, ÁCD+03, Ara04, AZS+04, BG03, BZP09, BT00, BSOB05,
BACJCT01, CMM08, CDGS09, CDS09, CPDH08, CLC09, CRV08, CZFH07,
CDD+02, CHA+07, CRSB03, CTF08, CMA+08, DD08, DXW08, DWN01,
DVRP+03, DD00, DPM09, DS03, DHW+07, EM03a, EM03b, Fau01,
FTL01, GKR08, Hua09a, HJCP01, JPF+00, JWB05, JT08, KHY00,
KLH+04, KIP+07, KCL00, Kri09a, Kri09b, KG06, KPZK06, KQ01b,
LTQ+07, LWLS07, LC06, LPR07, LLLZ09, LMRFV+09, MV06, MM02,
MA09, NA06, HNN+07, NTO07, OBB005, OS08, PM04, PK04, PBF07,
PT01, PSS+04, POJ01, RAK+09, SB08, SKR+00, TZX01b, TZX01a,
Tor02, TDK07, UM03, VB09, VKCK09, VP08, WLX+05, WM06, WCL05,
YFR05, YZ01, XYYF09, ZWP08, ZQ08, ZSK07, ZMH+09].
properties-based [VB09]. property [BAÅ+07, JLF03, NLL+09, PSD+09].
propylene [QZL+04, RR05]. propynyl [Lee09]. prosthetic [ATBLS04].
protease
[BWE05, CLX02, DLG00, LZ05b, NLL+09, SPT+03, SVV+08, WHF08].
protease-inhibitor [SVV+08]. Protein
[LEK07, NCO+05, PB+07, ADM+06, AG00, AHGK09, BED02, BRDC02,
BMLV04, BS01, BSP06b, BS05, BSH07, BLMS08, CCC03, CLX02, CLC03,
CLWL09, CSL+09, CIB05, CLH+07, CRK08, CLF+09, CJK09, yCK08Y08,
CRH+07, CPUG09, CSRST04, DHH+03, DPPR05, DB06, DBI02, EBAN07,
FOL+04, FC06, FKM+06, FKM+07, GLD08, GH07, GLQ+04, GC04,
GDPC07, GdSM+07, GHMP03, GKK07, GZM09, GB04, HEP+02,
HFS+07, HP01, H01, HM06, HLTLP09, HLM05, HLT+05, HZ06a, HZ06b,
HZ08, HW09, HP05, ILK09, IM06, I03, JS07a, JMD+02, J09,
KFB05, KFNH08, KLS02, KCL06, KHF+09, KK01a, KIFK07, KH05, KF08,
protein [PSHP08, PMM05, PB02, PF06, PNG08, QLHL09, R108, RSR09, RL08, RS08, RK05, Ruw07, SM04, SLC+09, SW04, SW+05, SN06, SR09, SM09, STC+08, SL06, TLKT00, TGD05, VW00, VW04, VGO+07, VGDSU08, VGGMM05, VZM+08, WS05a, WS07, XZZ04, XSHC06, XLC08, XCW09, Yan04, YL06, YFS07, YPNE09, Yos02, ZP03, ZGFL01, ZS04, ZZ08, ZTS09, ZM06, dSR08, HLC09, PMB04, ZZTS09]. protein-DNA [PSHP08].
protein-environment [HFS+07].
protein-ligand [LXW+09, RK05].
protein-tyrosine [AG00].
Protein/solvent [PMB04].
proteinogenic [IKYM09].
Proteins [LMH+09, AG03, Ano06c, BBHD04, BCP03, BHH+09, CR02, DWNBO1, DNN03, DR07, DV02, DJ04, DJB02, DWC+03, ES00, ENM+04, FNP+06, GAS04, HB09, HH05, HHW+03, HL08, HJCP01, Ike04, IDMC09, IN01, KSB+02, KT02, KKS04, LR03a, LJJ06, LKA01, MK02, MSH+06a, MZL08, NAT07, OS06, OSHS03, OM04, PB04, PM04, PRJ02, RGZM09, RON02, SL09, SPL+02, SHBD05, SHSF05, SMV+09, VBS09, WZW+06, WM06, WS05b, WHH+06, XZ05].
Protocol [AGI+00].
Proton [SRB06, AGK03, BA03, BA04a, CXZ+09, FDSA00, FO08, GWM08, HFHL06, LL08, LMGO+09, LB05, MA05, PGG06, PCS04, SM06, WFHP01, WHP02, XKG+05, ZCS04, dSGCG00].
proton-coupled [CXZ+09].
protonated [CPDZH08, ZDS+05].
protonation [Bac05, CG05, DMM+03, HP05, KYFW07, WHF08, XZ05].
prototoporphyrinogen [WZY04].
prototype [Ang09, CS01, ASDP+06].
prototypes [SSS+09].
proximity [Agr03].
pruning [TCSM03].
pseudo [LL07, VDM06, XSHC06, XLC08].
pseudo-Jahn [VDM06].
pseudofolding [VGDSU08].
pseudoknots [DP03, DP04].
Pseudomonas [NYK+09].
Pseudopericyclic [LFS+07].
pseudopotential [FMAMVK06, MK03, VW03, vW06].
pseudopotentials [PSS+04, PSMB05, SMD02].
PSi3 [CSV+07].
psoraleen [NBTN04a, NBTN04b].
Pt [DM05, LWK08, LF02, RD00].
PtCl [LF02].
PtF [LF02].
PtH [LF02].
Pu [Han01].
Publisher [Ano04a, Ano04b].
pump [CVR08].
pump-probe [CVR08].
PUPIL [TdMSD+08].
Pure [WG02, Rud05a, SDCG02, SCP08].
purpose [DGI+08, JGVF05, KAK+09].
Putting [MD10].
pVDZ [Wib04].
pVTZ//MP2/6 [WD04].
PW [EBL+08].
PyFrag [VGB08].
pyrazine [LWX07].
pyrazole [DMM05].
pyrazoline [LLKC06].
pyrazolyl [HT05].
pyrene [HIA03].
pyridine [CHA+07, HT05].
pyridines [WRP+06].
pyridoxal [LDY+08, PMM05].
pyrimidine [LWX07, WXW08].
pyrimidinyl [WJX+08].
pyrolysis [KKH+07, KKKL03].
pyrope [ZWTP+08].
Pyruvate [ČJPZS08].
pyVib [Zer08].
Q [BS08, KWK+00, WHG+07].
Q-Chem [WHG+07, KWK+00].
Q-Dock [BS08].
QCISD [ZK+07].
QCT [DPM09].
QM
[CGBF05, MPF00, AGK03, AST06, AB09, CR09b, CG05, FAR02, FMSA06, FSFK05, GWMO8, GWM+00, HHBH00, HBM06, HNR08, HRR05, HT03, HTN03, IV04, IvSV06, ITS05, ITS06, KHFe09, KBLP09, KPR04, Kri08, Kri09b, LLL03, MMB+00, MK02, MSH+06a, MG00, MLJ03, NGTB03, RG02, SURG06, SBG+09a, SN06, SMM+08, SVV+08, THHN01, ThMsd+08, VFM+03, WCC08, WHG+07, WC08, ZWZ09]. QM/FE [AGK03]. QM/MM [CGBF05, MPF00, AST06, CR09b, CG05, FAR02, FMSA06, FSFK05, GWMO8, GWM+00, HHBH00, HBM06, HNR08, HRR05, HT03, IV04, IvSV06, ITS05, ITS06, KHFe09, KPR04, Kri08, Kri09b, LLL03, MMB+00, MK02, MSH+06a, MG00, MLJ03, NGTB03, RG02, SURG06, SBG+09a, SN06, SMM+08, SVV+08, THHN01, ThMsd+08, VFM+03, WCC08, WHG+07, WC08, ZWZ09]. QM/QM [AB09, HT03, SURG06]. QMCF [PHRR08]. Qmd [KMH02]. Qmd-plot [KMH02]. QMPFF3 [DGI+08]. QMQSAR [DMLI05]. QSAR [DHW+08, DHW+09, SGPS09, CGMPT+08, CMBC08, CRG07, DMLI05, DM05, GDPP08, HSMT04, HMMS09, LLL+08, LIZ+07, LSY02, MRS09, PS09a, SJ+04, TCSM03, VB07, VB09, VGDSU08, XYN+06]. QSAR-analysis [VB07]. Qsar/QSPR [TCSM03]. QSPR [CDGS09, CDS09, CDGS09, GS08, HM08, TTBM09, ZNLL07]. QSPR/ QSAR [ZNLL07]. QTAIM [GMIM07b, RKA+09]. quadratic [ABBC01a, ABBC01b, Bo01, HG08, Qua01, ZH09]. quadrature [CG06, DBS08, GC03]. quadrilaterals [GKK07]. quadrupolar [CMA+08]. quadrupole [HLLN06, HK08a, HK08b]. quality [BG03, CMJ08, EM03b, FKZ09, JBJ00, JJB02, SSS+09, TSSGS07]. quantifying [GT03]. Quantitative [Mit01, WZY04, YNZ+08, BAA07, CDGS09, CDS09, DHW+08, DHW+09, Gra07]. quantization [GLMV09]. Quantum [AVB00, BWM+09, BS06, DMN05, ECA06, ESM06, EDAJ04, FHR07, LB07, MBL+00, MA05, NKR+02, PM02, RM07, RON02, SC01, SS05, TLOG00, VHR07a, ZMH+09, AGM08+08, AGO+02, APG05, ATH+03, AGSF05, AGSF+05, BSJ01, BPC07, CL09, CDGS09, CZF07, Con02, CKW09, COL+06, DBS07, DBM03, DA01, DWM+03, EBD+01, FCK+08, FÁ01a, FAB+00, FKF08, FR06, FKO+05, GAIMVB01, GVATG03, Gog08, GBB07, GGLR00, GS04, HM08, HHP04, JJH01, JCH07, KSB+02, KFN08, KJVV08, KHY00, KZRO03, KLM+09, LHP01, MFBO4, MP03a, MGCA07, MKT04, MR09, MPB09, Mat03, MC06, MPF00, OYH05, OKH+02, PG04, PK07, PDS01, PV07, RP07b, RSE07, RGP+07, SF07, SH07, SS00, SA04, Sch00, SFRS01, SBB02, TCR+02, TT02, VHR+07b, Vis02, VKCK09, WS05a]. Quantum [WOC+03, XYN+06, XZZ04, XLZ08, ZCZ03, ZAT07, ZSK07, SB08, CGBF05, DS03, KBL08, PFB05, SCS07]. quantum-chemical [DA01, SFRS01, VKCK09, XYN+06]. Quantum-connectivity [EDAJ04]. Quantum-regions [SB08]. quartet [MSBS01]. quartet/metal [MSBS01]. quartets [MSBS01]. quartic [SAS05]. quartz [ZWPR+04]. Quasi [AGI+07, NUH02, AGI+00, ITN+05, VMA03, YH07]. quasi-canonical [ITN+05]. Quasi-degenerate [NUH02]. quasi-flexible [AGI+00].
quasi-relativistic [VMA03, YH07]. Quasirelativistic [HWFN01].
quaternary [CW02, SO07]. quaternions [CSD04, CSD05, Kne05]. Quick [LMV07]. QUILD [SB08]. quinolines [KS05c]. quinoprotein [JJH01].
quintet [GWL07].

R [Bo01, CPJ00, LZZC09, Lip00, Qua01, ZY01, LZZC09, ZPL07]. rack [OCP02]. Radical [GC03, ESP04, Kau07, Kni00]. Radial [XDS06a, AVB00, BL06, CUS00, CU01, CUS03, CXZ+09, GSB09, HIA03, JDWS06, KOML08, KKMM04, LC07, LMK01, NSB08, O004, gThDjL+01, WDWS06, WDS06, WDS07, WyLG+09, WLZ+07, WLL+03, XDS06b, YLWL09, ZLLS04a, ZLLS05, ZLLS06a, ZLZ+09, CXZ+09, QZZZ03].

radical-molecule [ZLLS06a]. radicals [BE07, Dib05, Lee09, WLLS04, WDZS07, WSC09, YLW+08, YLWL09, ZM03].
radii [OCB02, PML03]. radon [HD06]. Raf [GC04].

Ras [GC04]. reaction-diffusion [Bie04a]. reactions [AM07, BS03, CUS00, CFD03, Fie02, GAIMVB01, GMA04, GLH+08, GGB07a, GGB07b, HFHL06, HSWW00, JMI07a, mJlzLy07, mJlzLy+08, JH09, KYFW07, KIM+09, L00, LDC+07, MBL+00, NTH00, OY01, OY03, RNG03, Rao00a, RC04, RO01, Rud05b, Rud05c, Sch03, Sie01, SS07, TT08, TCR+02, UNM+01, VBGL+00, WLLS04, WLLS05, WDS06, WLL07a, WyLG+09, WDX+02, WLL+03].

Quasi-relativistic [VMA03, YH07]. Quasirelativistic [HWFN01].
quaternary [CW02, SO07]. quaternions [CSD04, CSD05, Kne05]. Quick [LMV07]. QUILD [SB08]. quinolines [KS05c]. quinoprotein [JJH01].
quintet [GWL07].

R [Bo01, CPJ00, LZZC09, Lip00, Qua01, ZY01, LZZC09, ZPL07]. rack [OCP02]. Radical [GC03, ESP04, Kau07, Kni00]. Radial [XDS06a, AVB00, BL06, CUS00, CU01, CUS03, CXZ+09, GSB09, HIA03, JDWS06, KOML08, KKMM04, LC07, LMK01, NSB08, O004, gThDjL+01, WDWS06, WDS06, WDS07, WyLG+09, WLZ+07, WLL+03, XDS06b, YLWL09, ZLLS04a, ZLLS05, ZLLS06a, ZLZ+09, CXZ+09, QZZZ03].

radical-molecule [ZLLS06a]. radicals [BE07, Dib05, Lee09, WLLS04, WDZS07, WSC09, YLW+08, YLWL09, ZM03].
radii [OCB02, PML03]. radon [HD06]. Raf [GC04].

Ras [GC04]. reaction-diffusion [Bie04a]. reactions [AM07, BS03, CUS00, CFD03, Fie02, GAIMVB01, GMA04, GLH+08, GGB07a, GGB07b, HFHL06, HSWW00, JMI07a, mJlzLy07, mJlzLy+08, JH09, KYFW07, KIM+09, L00, LDC+07, MBL+00, NTH00, OY01, OY03, RNG03, Rao00a, RC04, RO01, Rud05b, Rud05c, Sch03, Sie01, SS07, TT08, TCR+02, UNM+01, VBGL+00, WLLS04, WLLS05, WDS06, WLL07a, WyLG+09, WDX+02, WLL+03].
XLL^+02, XDS06b, YT04, YLW^+08, YLWL09, ZLLS04b, ZKZ^+07. Reactive [LLM08, Hir08, MMY07]. reactivities [HTSR04, YIN03]. reactivity [Ano06a, BM08, Bor03, BL00, CN05, FZL07, GTC06, MTB09, ST06, Tie09, TSSSG08]. reagent [DHW^+07]. Real [Woo01, You11, PBF07, PBF09, Sch04, THHN01]. Real-World [You11]. rearrangement [NSB08, PA05, ZGZX07]. rearrangements [LLKC06, YTY07]. Reassociation [DWNB01]. recently [RG08]. RECEPT [KC01b]. receptor [DLRZ09, FKV^+05, FKM^+06, FKM^+07, GCD^+08, HMK02, KBK^+01, MHL^+09, SBG^+09a, TFN04, TJE03, WS02b, XWC09]. receptors [CW02, FTLV01, NHH05, YKK09]. ReCO [HT05]. Recognition [UNHYT06, AGI^+00, AGI^+07, AGMPRG^+08, BR07, CW02, DGHR02, EKBO2a, EKBO2b, GdSuM^+07, KEB04, MSF^+08, PSHP08]. Reconstructing [BBP09]. reconstruction [Adc04, GKK07, KLS02, RS08, TGD05, WG02]. recoverin [LGB^+09]. red [McD08, SRK^+00]. red- [McD08]. redesign [GLD08]. redistribution [ZY01]. RedMD [GSDT09]. redox [GA^+09]. Reduced [BR04, BSOB05, OBBS05, ABBC01a, ABBC01b, BMLV04, Bo01, CNN07, CP08, DL^+02, EI07, GSDT09, HP01, Qua01, RS08, WEE01]. Reduced-size [BSOB05, OBBS05]. Reducing [PRSM02, SSL02, SY09]. reductase [CFER04, CGB^+09, CBC^+08, DBS07, GGLR00, HLTLP09, LRWG03, MCK07b]. reduction [CCCJ09, DBS07, DMN05, HLTLP09, LRWG03, Mck07b]. reductive [PS03]. reevaluation [Kle03]. Reference [ZZ08, CF04, CFC^+08, LZ05a, NUH02, OV03]. Refinement [HB09, Ruv07, BHW00, MM05]. refinements [GPK05]. Refining [CLWL09, SB01]. refractive [YYW07]. regarding [KZY09]. region [ABWT09, Ana02a, HHHB00, WEE01]. Regional [TKH03, NTH09]. regions [HYT05, SB08]. regioselectivity [AVB00]. Registering [GBL^+05]. regression [DLWV07, Go09, GS08, LCC09, SY09]. Rehybridization [AM07]. related [ALC08, ACLK03, CFD04, KC01a, LXY^+09, LW06, LCDA03, LCGA03, LCA03, ML00]. Relation [SM08a, DVRP^+03]. relationship [DHW^+08, DHW^+09, JPCA08, KKW^+01, WLX^+05, KKW^+02]. relationships [BAA07, CDGS09, CDS09, CPUGD09, JLHF03, PSCD^+09, WZY04]. Relative [SWV^+05, LBL09, CG05, MML^+06, MRS^+07, RSE07, ZOJ^+06]. Relativistic [FFH^+01, NYH02, NSO^+07, SNM^+06, SMD02, WTKM06, YH09, ASS^+02, BHI^+09, Dy02, GHLK^+02, GPSP06, HdmS05, Hds06, HD06, LF02, SH02, Van02b, VMA03, WL02, YH07]. relax [GFS05]. relaxation [BRDC02, HSO1]. relaxed [AEE^+03, CA07a]. relevance [Ano06a, MGCA07, ST06]. reliability [IB04, LKW04]. reliable [BE06, WHF08]. remove [LZ05a]. removing [PCS04]. reordering [TVL^+03]. reorganization [FZL^+06, KMM07]. repair [Pin03].
reparameterization [RFSS06]. repeat [NK01, NL08]. Repeated [KH01].
Repeated-annealing [KH01]. replica [FSM09, FGR07, GLP08, NCO+05].
replica-exchange [FGR07, NCO+05]. Reply
[Bof01, CPML08b, WM12, CSD05]. Representation [GPK05, BB08,
CKR08, CF06, JIK09, LW04b, LZX06, LW06, RLR+04, WEE01, hYDN+08].
representations [BMI04, LAR+03, LR06, RS08, SN00, YNW05].
representative [YLL+09, YXL+09]. reproduce [VBS09, WS05b].
reproducing [MFB04]. repulsion [COL+06, Kri09a]. repulsions
[HGMB04, PBF09]. replication [BDW00, CFC+08]. requirements [AM06b].
research [JLHF03, PGH+04]. residual [RI08]. residue
[MH09, NBTN04b, PMM06, NBTN04a]. residues
[CFS+09, DHW+07, HJCP01, JPF+00, OS06, UNHYT06, XLT07].
resolution [BS05, BS08, CDGS09, JSR+07, GL04a, HXLS09, Nee03, WMRW+01, WS02b].
resolution-of-the-identity [JSR+07]. resonance
[BM07, FLGW00, MAF+07, WZXY07]. resonances [LMB08, PF06]. RESP
[WCK00]. respect [QCK01, QCK02]. response [HG08, OFIK09, vGGB00].
Restrained [SRB02, WCK00]. restraint [LJ07, LHI09]. restraints
[BS08, HWTL03]. restricted [BdPRMA100]. restrictions [KSB09]. results
[CSD05, LKT04, PFJ+03]. Retardation [HP04]. retention [RC04].
reticularum [HLB09]. retinal [BL05, LFEdL06, MSH+06a]. Retrieval
[CVR08]. reuptake [FPG+06]. reveal [DLRZ09]. revealed [HW09]. reveals
[Pin01]. reverse [AJNG01, ML00]. Reversible [DvG00, Kol04, NHN06].
Review [Bic09, CvG08, Lip00, Sta00, Woo01]. Reviews [LB99, Sta00].
Revised [ATM+07, SBB02]. revisited [ASY01, CVVB04, PCS04].
Revisiting [GPS06, JPCA08, LN01]. Rg [ZXY03, ZXY03]. RGF [HQ02].
rhenium [SBH02]. RHF [EA08, JPF+00]. rhodamine [VSW+03].
rhodium [GLH+08, LL00]. rhodium-catalyzed [GLH+08].
Rhodopseudomonas [IN01, OON01]. rhodopsin [CEP07, YKK09].
rhodopsin- [YKK09]. ribonuclease [KSK00, WOC+03]. Ribonucleotide
[CFER04, HLLN06, PCS04, PFR04a, PFR04b, TMBM02]. ribose [SA07].
ribosomal [SB01]. ribozymes [MMMY07]. rich [CZ05, LKW08]. Rigid
[SM03, DPRRR05, Din00, ECA06, FS98, FS00a, Ike04, Lهر06, LV08, KP05].
Rigid-body [SM03, Ike04]. Ring
[ZSE08, BE09, CDPL09, DC02, DLSVY00, FJ08, RPNJ07, SRE08, ZW09].
ring-structured [DC02]. RISM [MH08b]. rival [DDVD09]. RM1
[FBLO08, RFSS06]. RMSD [Kne05, CSD04]. Ru [Wei08]. RNA
[AM06b, DW08, GdAcV+07, LhWX07, LCSZ09, LOL+08, MB00, Mak08,
RTG00, SB01, YNW05, ZTST09]. RNA-ligand [AM06b]. RNACluster
[LOL+08]. RNase [RWBH09]. ro [LN01]. ro-vibrational [LN01]. robust
[GS08, HEP+02, YK00]. ROCR [CPJ00]. rod [BCIB05]. rod-like [BCIB05].
Role
[BCF+09, CPJ01, CFS+09, CPFL02, Ruv07, SVV+08, ZSC05, BY06, CDS09,
CFER04, Kau07, TFZRG01, VBGL+00, YT04, YTY07, YJF06, PMM06].
Roles [ALC08, IN01, NYK+09]. roll [FS98, FS00a]. room [TD08].
Roothaan [TW03]. roots [BdPRMA00, Nil09]. Rotamer [HLTLP09, GHMP03, KBLP09, LFBSK07, SMG09]. Rotamers [LMH+09, SHM04]. rotation [CMLS05, COMR+04, DHF+05, DBM03, HFS03, HK08c, LHI09, LZO05a, MGLL03, OMNH08, PBF09]. Rotational [CSD05, BVW04, KBN02, TS05]. rotations [IR03].
rough [Fan07]. rough/fractal [Fan07]. roughness [PHJ+08]. routes [GGGLL05]. routine [Kli01]. routines [AT02]. row [AD00, BP03, BGJ01b, JGH00, LK03, LK04, RRP+01, YTH01]. Royal [LWW+06]. RS [LAR+03, EK06, ELK+09, KEH+02, LRWG03]. RS-HDMR [LRWG03].
S [BSB05, Bic09, Gog08, HKHN08, JJK+00, KYFW07, MGLL03, Mck07a, Mck07b, WWS07, ZJM+07, ZY01, XZ04, ZALMG03, DLD+02, HTN03, MVLG06, MG00, RC04, RFSS06, SN00, WDS06, YT04]. S-network [MVLG06]. s-tetrazine [XZ04]. SA [GC04, WHF08]. SAAP [IT03, IT03, IKYM09]. SAC [DHM+03, HFS+07, HKHN08]. SAC/SAC [DHM+03]. saddle [DLD+02, GMA04, HQ02]. SAFE [AVS09, VVS07]. Sakurai [TKN+08]. Sakurai-Sugiura [TKN+08]. salts [JHMB+09, KWK+01, KWK+02, JHMB+11]. Salvetti [IKN08]. Salvetti-type [IKN08]. SAM [WC08]. SAM-dependent [WC08].
Sammon [FKZ09]. sampled [IZA06]. Sampling [IZK04, BHG03, CN03, CIB05, CY09, CY13, CV09, CvG08, CEP07, DDVD09, FKZ09, GT03, HKMS01, IS03, JW06, KH01, KM07, LKW04, Mak08, MH08b, MST+08, Nak02, NA06, RNG03, Rap06, SD09, SMG09, TS05, YL06, ZA07]. sandwich [JD09, RPNN07]. sandwich-like [JD09]. sandwiched [MHS05]. sarcoplasmic [HLS09]. SARS [LZ05b]. SARS-CoV [LZ05b]. SASMIC [EA06]. Sason [Bi09]. Sb [LS08a, XB08, XK08]. Scalable [PBW+05, VSK+04, Ano05b, KKK05, Sha05, VGO+07]. scalar [GPSP06, KBLP09, MP03b]. scale [DMN03, JO02, KK01a, MH09, MHW04, MFP00, ME06, Nak02, NA06, RRS07, SSL02, TY02+04, WCF04, WS07]. scale-transformed [Nak02, NA06]. scaled [CN03, JSHG07]. scaling [AL01, AR01, Con02, FR06, GGLR00, GY06, KLM+09, LJM02, OS06, RS05, SSB+03, SFS05, SKDO08, SP05, TCR+02, ZW09, vGVB00, vDVGJ00]. scanning [HMK02, MFR07, SMGE08, ZM06]. scattering [BACJCT01, Est07, HSW01, RMI03, WKU01]. SCC [ECM+03].
SCC-DFTB [ECM+03]. SCF [JHPRSM+05, PFJ+03, PVdB00, SAM06, VZVG06]. SCH [ZZW+07]. scheme [Bac04, FOK+04, IS03, JCA+02, JVV09, LVM07, Maz08, MSH+06b, RKA+09, SN00, SHH07, WS05b]. schemes [Bac04, Bac05, Bac07, PRS04, SPDS01]. Schleyer [Lip00]. SCMP [FÁ01a]. SCMP-NDDO [FÁ01a]. ScO [LMCD09]. Scope [LFE06]. scoring
screened [DHW00, FZL06, KV00, KSM05, LFKL00, LZ05b, PRDS08, SHSF05, YOB+08].

screening [DHW+00, FZL+06, KV00, KSM05, LFKL00, LZ05b, PRDS08, SHSF05, YOB+08]. SCRF [CCT+03]. SCUD [LZ05a]. ScX [WWS07]. SD [WLLS05]. SDCI [BM07, PRSM02, PRSM03]. Se [HKHN08, JJK+00, WWS07]. search [AM90, BR90, BMTSC91, CSJ91, CA94, GLD94, HHG+99, HXLS99, HM90, IZA94, KK94a, LFKL00, MGJAARC00, NL98, OGH95, OM04, Pul05, RHL99, Sau98, SE98, WK98, ZZ98]. searches [CZB07, YXL+09]. Searching [SPT07, STC+08, CvG08, Nak02, OYH99, SCC04, SYC08, YCS07].

Second [BC06, FS04, MO01, AKG93, JSR+07, DOSG06, FO08, IN98, JSHG07, LK04, QTdG+08, QCK01, QCK02, Rud05a, Rud05b, Rud05c, YTH01, YH09]. second- [LK04, Rud05a, Rud05b, Rud05c, YTH01]. Second-order [FS04, JSR+07, IN98, JSHG07, QTdG+08, Rud05c, YH09]. secondary [CLC03, CLA+00, DW98, DP93, GdAcV+07, IGNH93, LhWX97, LCSZ99, LW96, LOL+08, LLL97, MHT01, WPH+07, YNW05]. Section [Ano01c, Ano04b]. sections [MY08a]. seedling [PS03]. segment [YS00]. segmented [CGSdST06]. segments [BTLP03, GAS94, KF92a, YMT04]. segregation [Sza08].
set-up [GGT08]. sets
[BY06, BSOB05, CRS05, Cu04, EA08, EdlVR+03, GKH05, HdS06, HD06, IO08, KK08a, LST08, LTV08, MV06, NS0+07, OBBS05, OVMV04, RLA01, RLER01, RLER07, SNM+06, VB03, WTKM06, Wei08]. setting [HP04].

setup [ZAT07]. several [KS05b, XLT07]. sevoflurane [TZX01a, TZX01b].

setup [GGT08]. set-up [GGT08].

set [ZAT07]. several [KS05b, XLT07]. sevoflurane [TZX01a, TZX01b].

set-up [GGT08]. sets
[BY06, BSOB05, CRS05, Cu04, EA08, EdlVR+03, GKH05, HdS06, HD06, IO08, KK08a, LST08, LTV08, MV06, NS0+07, OBBS05, OVMV04, RLA01, RLER01, RLER07, SNM+06, VB03, WTKM06, Wei08]. setting [HP04].

setup [ZAT07]. several [KS05b, XLT07]. sevoflurane [TZX01a, TZX01b].

set-up [GGT08]. sets
[BY06, BSOB05, CRS05, Cu04, EA08, EdlVR+03, GKH05, HdS06, HD06, IO08, KK08a, LST08, LTV08, MV06, NS0+07, OBBS05, OVMV04, RLA01, RLER01, RLER07, SNM+06, VB03, WTKM06, Wei08]. setting [HP04].

setup [ZAT07]. several [KS05b, XLT07]. sevoflurane [TZX01a, TZX01b].

set-up [GGT08]. sets
[BY06, BSOB05, CRS05, Cu04, EA08, EdlVR+03, GKH05, HdS06, HD06, IO08, KK08a, LST08, LTV08, MV06, NS0+07, OBBS05, OVMV04, RLA01, RLER01, RLER07, SNM+06, VB03, WTKM06, Wei08]. setting [HP04].

setup [ZAT07]. several [KS05b, XLT07]. sevoflurane [TZX01a, TZX01b].

set-up [GGT08]. sets
[BY06, BSOB05, CRS05, Cu04, EA08, EdlVR+03, GKH05, HdS06, HD06, IO08, KK08a, LST08, LTV08, MV06, NS0+07, OBBS05, OVMV04, RLA01, RLER01, RLER07, SNM+06, VB03, WTKM06, Wei08]. setting [HP04].

setup [ZAT07]. several [KS05b, XLT07]. sevoflurane [TZX01a, TZX01b].

set-up [GGT08]. sets
[BY06, BSOB05, CRS05, Cu04, EA08, EdlVR+03, GKH05, HdS06, HD06, IO08, KK08a, LST08, LTV08, MV06, NS0+07, OBBS05, OVMV04, RLA01, RLER01, RLER07, SNM+06, VB03, WTKM06, Wei08]. setting [HP04].

setup [ZAT07]. several [KS05b, XLT07]. sevoflurane [TZX01a, TZX01b].

set-up [GGT08]. sets
[BY06, BSOB05, CRS05, Cu04, EA08, EdlVR+03, GKH05, HdS06, HD06, IO08, KK08a, LST08, LTV08, MV06, NS0+07, OBBS05, OVMV04, RLA01, RLER01, RLER07, SNM+06, VB03, WTKM06, Wei08]. setting [HP04].

setup [ZAT07]. several [KS05b, XLT07]. sevoflurane [TZX01a, TZX01b].

set-up [GGT08]. sets
[BY06, BSOB05, CRS05, Cu04, EA08, EdlVR+03, GKH05, HdS06, HD06, IO08, KK08a, LST08, LTV08, MV06, NS0+07, OBBS05, OVMV04, RLA01, RLER01, RLER07, SNM+06, VB03, WTKM06, Wei08]. setting [HP04].

setup [ZAT07]. several [KS05b, XLT07]. sevoflurane [TZX01a, TZX01b].

set-up [GGT08]. sets
[BY06, BSOB05, CRS05, Cu04, EA08, EdlVR+03, GKH05, HdS06, HD06, IO08, KK08a, LST08, LTV08, MV06, NS0+07, OBBS05, OVMV04, RLA01, RLER01, RLER07, SNM+06, VB03, WTKM06, Wei08]. setting [HP04].

setup [ZAT07]. several [KS05b, XLT07]. sevoflurane [TZX01a, TZX01b].

set-up [GGT08]. sets
[BY06, BSOB05, CRS05, Cu04, EA08, EdlVR+03, GKH05, HdS06, HD06, IO08, KK08a, LST08, LTV08, MV06, NS0+07, OBBS05, OVMV04, RLA01, RLER01, RLER07, SNM+06, VB03, WTKM06, Wei08]. setting [HP04].

setup [ZAT07]. several [KS05b, XLT07]. sevoflurane [TZX01a, TZX01b].

set-up [GGT08]. sets
[BY06, BSOB05, CRS05, Cu04, EA08, EdlVR+03, GKH05, HdS06, HD06, IO08, KK08a, LST08, LTV08, MV06, NS0+07, OBBS05, OVMV04, RLA01, RLER01, RLER07, SNM+06, VB03, WTKM06, Wei08]. setting [HP04].

setup [ZAT07]. several [KS05b, XLT07]. sevoflurane [TZX01a, TZX01b].

set-up [GGT08]. sets
[BY06, BSOB05, CRS05, Cu04, EA08, EdlVR+03, GKH05, HdS06, HD06, IO08, KK08a, LST08, LTV08, MV06, NS0+07, OBBS05, OVMV04, RLA01, RLER01, RLER07, SNM+06, VB03, WTKM06, Wei08]. setting [HP04].

setup [ZAT07]. several [KS05b, XLT07]. sevoflurane [TZX01a, TZX01b].
Simulations [VHRR07a, VP09, WL09a, WCF04, WZW06, XLZ08, YNZ08, YGLvG06, ZCS04, ZSC05, ZGFI01, ZWS09, ZWZ09, ZSK07]. simulator [JGVF05, KIM09, MS04, SO07]. simultaneous [DDV09]. Singh [JVVK09]. Single [OV03, BG07, CV09, HSF08, IT03, IKYM09, LFZS04, WTK06, XWL09, ZzvRSC08, Mak08]. single-family [WTK06]. Single-nucleotide [Mak08]. single-sphere [LFZS04]. Single-step [OV03]. single-walled [XWL09, ZzvRSC08]. singles [IN08, WKYU01, dSVa09]. singlet [BLO02, CZ05, CG08, FG03, LS08a, OSA06]. singlet-dioxygen [BLO02]. singly [HHWG08]. Singular [FPG06, TBSM09]. Sir [Ano04a]. Site [CJW09, LLL07, AG00, CFR06, CF04, CFC08, CF04, GC06, FM00, IME02, IO08, JARM02, KVGH01, Leh06, LZA02, Oo09, PO03, PBZ00, PDS01, RR09, RZWS07, SHH07, TY09, Van02a, WS02b, ZP03, ZOJ06, ZX09]. six [GJK00, NL07]. six-site [GJK00, NL07]. sixth [CGBP09]. sizable [CA07]. size [BSOB05, EL09, HLTLP09, KS02a, KH06, KS02b, OBBS05, OV03, YAÇ02]. sized [SHH07]. Slater [CVVB04, EdlVR03, GC02, KG09, RLER04a, VB03]. Slater-type [CVVB04, EdlVR03, GC02, KG09, VB03]. slave [FR06]. small [CN03, Che01, CG06, FM00, IME02, IO08, JARM02, KVGH01, Leh06, LZA02, Oo09, PO03, PBZ00, PDS01, RR09, RZWS07, SHH07, TY09, Van02a, WS02b, ZP03, ZOJ06, ZX09]. small- [SHH07]. smallest [SRS07]. SMART
SMART-based [TTBM09]. smooth [GP01, KSY+00, PZS04]. smooth-particle [KSY+00]. smooth-permittivity [PZS04]. smoothed [LV08]. smoothing [HHPO0, ILB03, WS02a]. snapshot [YNZ+08]. SnCl [RD00]. sodium [FL07, MHS05, YSJ09]. SODOCK [CLH+07]. Soft [CckHmY08, ASDP+06, TLKT00, TJE03, TGGP+00]. smooth-particle [KSY+00]. smooth-permittivity [PZS04]. smoothed [LV08]. smoothing [HPP00, ILB03, WS02a]. snapshot [YNZ+08]. SnCl [RD00]. sodium [FL07, MHS05, YSJ09]. SODOCK [CLH+07]. Soft [CckHmY08, ASDP+06, TLKT00, TJE03, TGGP+00].

software [Ano04b, BACJCT01, DvL01, Gly06, JVK09, KB+00, PZS04]. Solid [CFS+08, CCCJ09, CMA+08, EGSG00, Ish02, KCK+08, SK05]. Software [Ano04b, BACJCT01, DvL01, Gly06, JVK09, CHB+05, GBDP05, KBA+04, MMP+07, NSU+02, BLMS08]. Solar [Kso5c]. solid [CFS+08, CCCJ09, CMA+08, EGSG00, Ish02, KCK+08, SK05]. Solids [vDSSvA04, JB04]. Solvations [VDR00, TLKT00, TJE03, TGGP+00]. solute [BBG+04, EDAJ04, KEH+02, LLW+09]. solutes [BBG+04, EDAJ04, KEH+02, LLW+09]. solubilities [SHH07]. solubility [BBG+04, EDAJ04, KEH+02, LLW+09]. solute [BBG+04, EDAJ04, KEH+02, LLW+09]. solution [ADWM07, BACJCT01, DvL01, Gly06, JVK09, KB+00, PZS04]. solution-phase [TDH06]. solutions [Blo04, CPJ01, Loe03, PK04, VP09, XZ04, XZ05, ZWP08, LR03b]. solvated [HTSR04, HRR05, KHY00, QSS01, RSP03, BSC+01]. Solvation [COL01, HHP04, WB04a, WB04b, WB05, WD04, BCl05, CR03]. solution [ABWT09, BHWO0, BP07, BISB02, CPJ00, CCK01, CRSB03, DA01, ELK+09, FHR07, FG02, GAMA04, HHJ03, HMWC03, HSWN01, HRR05, HBWO0, HBWO1, HDO+02, KPR04, Kri08, Kri09b, KBNO2, LRI+02, LXFS08, LMIF06, MB00, MH08b, PD02, PTC01, PHRR08, RNG03, RRZA08, SH09, SATO04, SBB02, TDH06, VHS02, VBS09, YH06]. solution-phase [TDH06]. solutions [Blo04, CPJ01, Loe03, PK04, VP09, XZ04, XZ05, ZWP08, LR03b]. solvated [HTSR04, HRR05, KHY00, QSS01, RSP03, BSC+01]. Solvation [COL01, HHP04, WB04a, WB04b, WB05, WD04, BCl05, CR03]. solution [ABWT09, BHWO0, BP07, BISB02, CPJ00, CCK01, CRSB03, DA01, ELK+09, FHR07, FG02, GAMA04, HHJ03, HMWC03, HSWN01, HRR05, HBWO0, HBWO1, HDO+02, KPR04, Kri08, Kri09b, KBNO2, LRI+02, LXFS08, LMIF06, MB00, MH08b, PD02, PTC01, PHRR08, RNG03, RRZA08, SH09, SATO04, SBB02, TDH06, VHS02, VBS09, YH06].
special [AKA09, Bie04a, RP07b]. specialized [Kofo05]. species [CFC+08, DR09, GLH+02, HBM06, KZY09, WG02, YIN03, LMGR05].

Specific [FAR02, LR03a, BS08, HL+05, Pin01, PRJ02, SFRS01, TGLL07, TST+08, UHN09, WCF04]. specificities [PB06]. specificity [CJW+09, DLRZ09, LLL07].

specify [Fau01]. spectra [Bac09, BACJCT01, CNN07, CG08, Gor01, HKHN08, JARM02, KˇSB09, KFD06, LDL+09, MLCD01, NRKH02, OBB05, OKE+02, ŠBL05, SN06, TDL06, WM01, YZX+04, ZGXX06, ZWTP+08, dGWH01]. Spectral [II02, CVR08, GdSuM+07, LFZS04, NINAT+07, NAT07, SMKM00, WG02, ZSK07].

spectrometric [KZW+05]. spectroscopic [Ano06a, FCW06, KCL00, ST06]. spectroscopy [ACM+06, RDM+08, VDM06, WMRW+01, ZPL07]. spectrum [EL09, LMCD09, MWL+08, MGLDS00, PRSMM03].

speeding [KVF+07]. speedup [BYQS03]. sphere [HdMdS05, Hs06, HD06, LFZS04, SFR07]. spherical [BCIB05, ZFL+05]. spheriphane [CS01]. SPICKER [ZS04]. Spin [Duk01, HYR06, KTM02, LXXF08, Van02b, ACM+06, BB08, BACJCT01, CR08, CR09a, DXW08, DPT03, DF04, JSHG07, KRM+02, KRLD09, KˇSB09, LB08, Mck07a, Mck07b, VCM01]. spin-crossover [KRLD09].

spin-label [VCM01]. Spin-orbit [TDH06, WM01, YXZ+04, ZGXX06, ZWTP+08, dGWH01]. Spins [JD09]. Spino [HELM09]. spiroquinoxalines [DD08]. splines [ALK04]. splitting [EA08]. split-valence [EA08]. splittings [HLLN06, SFRS01]. Spontaneous [Sz08]. square [CS08, LLZL09, Nil09]. square-planar [CSB08]. squares [CSD05, GoI09]. Sr [WD08, SCP08, XB08]. Sr-doped [SCP08]. Src [O08]. SrFeO [Hua09b]. SrZrO [SM06]. st2nmr [PRJ02]. stabilities [ACM+06, CTFC08, GYCZ04, STC+08, WDXS06]. Stability [JD09, Owe05, PHFC04, WSC09, CJS+03, CF06, DB07, HXD08, JS07b, JBGK08, OCP02, PGC05, QB05, XFF06, ZXYF09, ZOJ+06, ZM06].

Stabilization [EBDPM00, HYA02]. stabilized [HSF08]. stabilizing [GZ07]. Stable [HD0+02, GDPCPU07, KYYW07, KZY09, KAS+07, Ko04, LMO09, PP08a, PZS04, STC+08]. stable/nonstable [GDPCPU07]. stacked [RRCA08, SJ08]. stacking [CM09, DDBP09, HWT03, KKY01, WRP+06].

standard [ASDP+06, CG06, FBDG06, KOFF09, LFSB03a, LFSB03b, SSS+09, SL04]. standing [KDG+09]. staphyloloccal [JS07a]. Starting [VZVG06, BWT+02]. state [Ang09, BBI+09, CWY09, CFS+08, CHA+07, Chu07, CAG07, CMA+08, HM01, HNF07, HNF12, Hir08, HP05, IME02, JH09, KTO2, Kri09a, LMK01, LZ05a, LDL+09, NTH09, PO03, PSS+04, POJ01, Qua07, SPGS08, Sen06, SRE08, TH02, TST+08, TY03, TKN+08, WCF02, WHF08, ZHO8, ZOJ+06]. state-correlation [SRE08]. state-specific [TST+08]. states [Ang09, ABBC01b, Bo01, Bov01, CWY09, CNN07, DYM+03, DF04, EL07, FCW06, FDSA00, HFS+07, HYR06, HZ09, IR03, KUB07, LS08a, LWX07, LB08, MW09, MLCD01, NBTN04a, [Bie04a, Bie04b, RP07b].
NBTN04b, OSA06, OV03, PRSMV08, Qua01, SB108, SMKM00, VW00,
WLZ+07, XZ05, ZL05, ZL07, ZL09b, ZM03, dSVA+09, ABBC01a]. static
[FROD08, LDG02, Mar03, XWL+09]. stationary [SK09]. Statistical
[HFS03, PYEA03, DW08, EC06, Kob03, RK05, SJ08].
statistical-thermodynamic [RK05]. step [BYQS03, BCP03, DLW06,
KM00, KH06, MK02, Mck07b, OV03, Oos09, ZWZ09]. step/particle
[BYQS03]. stepwise [LLKC06, LFS+07, NSB08].
stepwise [BYQS03]. Stereodynamics [CMLS05]. Stereoelectronic
[SK09]. Statistical [HFSD03, PYEA03, DW08, EC06, Kob03, RK05, SBJ08].
statistical-thermodynamic [RK05].
surrogate [Mck07a]. Surrouding [KGL07, Yos02]. Survey [HS07a]. SuSi [CA04]. SVD [CSD05, Wg02]. SVM RM [YMT04]. Swarm [CZB07, LJZ +07, SJJ +04, CLH +07]. Switch [SF07]. Switching [GG09]. Symmetric [AT02]. Symmetrically [Lai07]. Symmetry [PDC +08, PCA +08, BB08, CAGR08, FCP +04b, LWX07, SZW +05, WLPF05, Ell07, PV03, PTC01]. Symmetry-adapted [FCP +04b]. Symmetry-driven [PV03]. Symmetry-generation [Ell07]. Symmetry-adapted [FCP +04b]. Symmetry-driven [PV03]. Symmetry-generation [Ell07]. Synergistic [GS08]. Synthesis [CAG08, PHR +05, WLL01]. Synthetic [NHH05, WG02]. Systematic [AST06, CS03, KWHH07, Kob03, LSAS01, MV06, PK04, PG04, RS05, WM04, WZXY07, ZXY08, Dya02, PWFS01, PV07, SY +03, WK01, EA06, LMH +09]. Systems [AS00, BHW00, BP01, BME05, BGJ01a, BWI +02, CN03, CG06, CvG08, CCK01, CMGDAC +07, DXW08, DRMD03, Don08, DK01, EGSG00, Ell07, FZL07, Fau01, GLMV09, HT03, JCA +02, JTR05, JG03, KSS08, KKC05, KAK +09, KBL08, Kle02, Kle03, Kri09a, LMJ02, LC09, LLL03, LDG02, MMLC05, MKGA06, MTB09, MM07, MS01, Oos09, RLD09, RS05, Rud05b, Rud05c, SRS07, SS00, SY +03, SVW +05, ST01, TH02, TT08, WWL +09, WN03, YCY03, YZ04, vdVGDJ00].
CF04, FMPS08, KTM02, SBI08, SM03]. Testing [CMaGL+04, BG03, PZS04, WWC+04, WWC+05]. tests [KSB+02, NGTB03]. tetraammonium [CW02]. tetraazanaphthalenes [CdML+08]. tetrachloride [DMN05]. tetracoordinate [MMRVH07, SRS07, Wan09]. tetracyanoethylene [LH02]. tetraazanaphthalenes-contained [KSB+02, NGTB03]. tetraammonium [CW02]. tetraazanaphthalenes [CdML+08]. tetrachloride [DMN05]. tetracoordinate [MMRVH07, SRS07, Wan09]. tetracyanoethylene [LH02]. tetracyanoethylene-contained [LH02]. tetrahydroxouranylate [IvSV06]. tetracycline [AS06, AS09]. tetrads [MHS05]. tetrahydroimidazo [SPGS08]. tetrahydroimidazo- [SPGS08]. tetrahydroxouranylate [IvSV06]. tetramer [RRCA08]. Tetraoxide [JW12, SLHW09]. Tetrazine [JW12, SLHW09, XZ04]. Tetrazino [JW12, SLHW09]. Tetrazine-Tetrazine-Tetraoxide [JW12, SLHW09]. tetrazole [dSVA+09]. TGSA [GRCD01, GCD04]. TGSA-Flex [GCD04]. Th [NSO+07]. their [Bac04, Bac05, Bac07, BWZ08, BHH+09, DVRP+03, FL08, GCD+08, JHMB+09, JHMB+11, Lee09, Owe05, PCMG09, SWM04, SRK+00, WWT08, YLWL09, ZXL+04, ZWY+09]. them [YNW05]. theorem [Kar01, RLER07]. theoretic [SWZS04]. Theoretical [Ano06a, AZM03, BY06, BMS03, CNN07, CFD03, CFD04, CG08, COMR+04, FJ08, FL07, FDSA00, GYCZ04, GLH+08, HLLS05, HSL+00, IGL07, IIK09, mJlZyL+08, JW12, KYFW07, KZY09, KSB+01, KS05c, LS08a, LH02, LWX07, LDY+08, LLW02, LDT+02a, LDT+02b, LYZ+08, LMRFH+09, MMLC05, MCK05, MBM+00, NBTN04b, OCP02, OKE+02, PFR04b, wQZsLyZ02, RTG00, RZWS07, SLL+04b, SFR07, ST06, TKS+01, TJM+03, gThDij+01, VS08, WLL01, WLLS05, WDS06, WDXS06, WDZS07, WLL+07b, WCL05, WXJ+08, XFX06, XKKL03, YTY07, YIN03, YFR05, YLW+08, YQQH09, YLWL09, YHD+06, ZLLS04b, ZLLS04a, ZLLS05, ZLLS06a, ZLLS06b, ZZW+07, ZZL+08, ZZL+09, ZZW09, ZXY03, ZL07, BGC+09, CN05, DLR+08, GXX09, Ham07, HRBKB03, HLMR06, Kan07, KKIMS04, LC07, LD05a, Lee09, LL01, LLKC06, LB08, MM02, MDI04, NTH00, NSB08, Nye07, OON01, PGRRRN03, PC00, PAS07]. theorems [RAGLL09a, RAGLL09b, RRS06, RP04, RLLR06, SLHW09, SMV+09, UNHYT06, WLZ+07, WSM+08, Wou00, XWX08, XYZ+04, ZL05, dRLMS00, Li01, NBST04a, RD00, UNM+01, ZPL07, ZLD09]. theoretically [WS02b]. theories [JHZ09]. Theory [BBC+05, SH08, WM12, ALT06, ASDP+06, ASY01, BC06, CWY09, CFD08, CR08, Cui07, CWK09, CPM08a, Cui08, CGSDST06, DPM09, JSR+07, EL07, EKB02a, FCW06, FZL07, FG02, FII+07, FLGW00, FS04, FLK+07, FZL+06, GM01, GRL03, GRI04, Ha08, HSM04, HSL07a, Hold05, ION07, IKN08, IN08, JCHS07, KSS08, KWK+01, KWK+02, KKL06a, KZW+05, Kut07, LMB08, LF04, LHZS04, LMGR05, LF02, LLZL09, LDL+09, Lu09, MGMM07a, Mat03, MW09, MA09, MH08b, ML00, NYH02, NUH02, NTH09, OFIK09, OKE+02, PFJ+03, PSF+08, PU09, PA05, QTgD+08, RB01, RDM+08, RZWS07, SH07, SH02, SZT08, SSM09, SSB07, SW06, TST+08, Tru07, TKN+08, TJK03, WR0+06, WB07, WZY04, WMRW+01, WW03,
toolbox [Hin00]. tools [MRS09, Nye07]. topo
[GRCD01, GCD04]. topo-geometrical [GRCD01, GCD04]. topological
[CAGR08, DRAS04, DRAS05, FSS00, GDPCPU07, HM08, JHFL03, MP03a,
RP07c, RP07b, SFC04, YWZH03, ZE08, ZNLL07]. Topology
[RSER09, FCP05, GdAcV07, Kle03, KF03, KBL08]. Topology-based
[RSER09]. Tork [CG03]. torsion [Ano06c, CIB05, FWH07, FKZ09,
MGLDS00, OMN08, PHR05, TNS00, WZW06]. Torsional
[PSF08, DHR05, FP06]. torsions [SP05]. total [RP07a]. toxicity
[CMC08]. Topo [HT05]. TopMXO [HT05]. tracing [KL01].
tracking [HNR08]. training [AG03, LJZ07, SJJ04]. trajectories
[Ham07, MST08]. trajectory [Qua07]. trans
[BZL05, CSB08, HKHN08, KMM07]. trans- [BZL05]. transamination
[LDY08]. transcriptase [AJNG01]. transfer
[AGK03, BA03, BL00, CXZ07, CHRL09, FDSA00, FZL06, GWM08,
GVATG03, GGLR00, HFHL06, IN01, JJH01, LLM08, LMGO09, Li01, LL01,
LH02, LB05, LS03, MT03, MAF07, Mck07b, OON01, PGG06, PMPGP05,
QZZZ03, Rao00a, SL09, TBG00, WL00, WC08, YS00, ZY01, ZH08, BA04a].
Transferability
[CSB03, TT05, FDM00, KS01a, OSHS03, RSP03, TFZR01]. Transferable
[WSBR03, HXL09]. transferase [SFR07]. transferred [GFS05]. transfers
[XK05]. Transform [BWP07, HLM05, ON07, QLHL09, TYN05].
transform-based [HLM05]. transformation [PVdJB00].
transformational [CN03]. transformations [WSM09]. transformed
[Nak02, NA06, vDSS04]. Transition
[FKRE08, LMG06, TH02, ABY08, ABBC01a, ABBC01b, Ano06a, Bac05,
BP03, BS06, Bo01, BR07, BM00, BG01b, CWWS07, Chu07, DLW06,
Dib05, EL07, GHH07, GM01, Hol05, JH09, KR02, LW07, LD05a, LH02,
LGB09, LW09, LK03, LK04, NR04, PYCD03, Qua01, Qua07, RRFC03,
SK09, SHT08, ST06, TKS01, WB07, WL09b, YTH01, ZALM03].
transition-metal [Ano06a, ST06]. transitions
[CZ05, FC06, JW06, OYK07, SMK00]. Translation [RLER05].
transmembrane [GAS04, YMT04]. transport
[Ara04, CM09, FCP04a, FCP05, KK08c]. treating [MA09]. treatment
[BCF09, BZL05, CLA00, CBH03, HC08, HHH00, IB04, JB04, KS05b,
KCL00, LS08c, MFB04, MR02, MGLL03, R07, RP02, XL02]. treatments
[CEP07, DWNB01]. tree [GY08]. treecode [DK01]. Trends [SRB06].
triangulation [BHH09]. triazines [ZX04]. triazolinones [WZY04].
tribenzo [GLRL02]. chloroacetaldehyde [CU01]. tricoordinated
[LTF07]. trigonal [JHMB09, JHMB11]. trimer [LZJ03, RRCA08].
trimers [ABY08, VS02]. trimethylamine [CPDZH08]. trimethylsilyl
[LLK06]. triosephosphate [AGK03]. tripeptide [VZ08].
triphosphate [GS04]. triple [PP08a, RPNJ07]. triple-decker [RPNJ07].
triplet [CZ05, CG08, FDSA00, LS08a, OSA06]. tripodal [HA04].
trisaccharide [GBB07], tRNA [GGT08], truncated [KK08a]. Truncation [RRS09, MN02]. Trypan [SRK+[00]. Trypsin [JZD+[09, CWV+[05, MBC08]. Trypsin-ligand [JZD+[09]. tryptophan [HLC09, Li01, LL01, MM05]. Tsi [XF06]. TTTO [JW12, SLHW09]. tubular [FL07]. Tuczek [Ano06a]. tumor [WCF04]. tumor-specific [WCF04]. Tuning [JHMB+[09, JHMB+[11]. tunneling [Christ07, MKT04, RWBH09, SFRS01]. TURBOMOLE [LLL03]. turns [HL08]. Two [PFB05, Yas08, AMR04, AHK02, BRS07, BE09, CVR08, CCK01, DHF+[05, FBDG06, FR06, GGP09, GYMN07, GGA00, HK08c, JJK+[00, KAS+[07, KT02, Lai07, LDC+[07, LW-[06, Sen06, St05, Van02a, Van02b, YFR05, dSR08]. two- [Lai07]. two-body [FBDG06]. two-center [BRS07, GGA00]. two-component [Van02b]. two-dimensional [CVR08]. Two-electron [PFB05, Yas08, FR06, GYM07, GGA00, Lai07]. two-electron/ four-centers [GYMN07]. two-state [KT02, Sen06]. type [Bie04a, CZX+[09, CJK09, CVVB04, EdlVR+[03, GC02, Gri06, HLC09, IKN08, KDG+[09, Leh06, MY08a, OON01, SDL+[09, TLOG00, VB03, WD08, YXC+[07]. types [BY06, GGP09, KS05b, MLL+[08b]. Typical [SMV+[09, MLL+[08b]. tyrosine [AG00, CLS+[09, LRI+[02, Li01, LL01, OO08]. U [Han01, CCCJ09, GHLK+[02, RLDI09]. ubiquinone [IN01]. ubiquitin [KIFK07]. UCSF [GH+[04]. UF [Han01]. UK [Lip00]. ulcerogenic [CMBC08]. ultra [ZHMW09]. ultra-incompressible [ZHWMW09]. Ultrafast [BR07]. ultrasoft [PSS+[04, PSMB05]. umbrella [RNG03]. unbiased [Pul05, SYC08]. uncertainty [SY09]. unconstrained [DMN03]. uncorrected [PSC+[01]. understand [DSB+[02]. Understanding [CAGR08, CDPL09, BRS07, ZZW09, CFER04, HP04]. Unicorns [FK07b]. Unified [GDPP08, CMGDAC+[07]. uniform [HdMD05, HSD06, HD06, Rap06]. Unimolecular [ML00, FS00b, KZY09, ZL04]. unique [KT02]. unit [VM07, Yas08]. unitary [KBT03]. units [CXZ+[09, FEV+[09, HP05, NK01, NL08, PC00, PFC03]. Universal [DHW+[00, HDM05]. Unorthodox [KBB09]. unphysical [OV03]. UNRES [HXL09, NCO+[05]. unrestricted [YH07]. unsaturated [BS03, KFD06, MTB09, Wan09, ZKZ+[07]. Unusual [XX08]. UO [IV04, IV506, RDM+[08]. Update [BKS02]. updated [Chun07]. Updates [An04b, BACJCT01, DL01, Gly06, JVVK09]. upon [OFIK09]. uracil [LMG0+[09, MSBS01, MHS05]. uracil-base [MHS05]. uronyl [IV04]. Urea [SK05, AS00, VVS07]. ureases [ESM06]. Use [BWI+02, DW08, Wou00, ALB09, JNV08, KLI01, MRC03, OCP02, PRK05, PRS04, RCJ02a, RSN+[02, Ru07, SH07, SV09, VGGMM05, YTH01, YZ04]. used [DV00, ESP04, HDMD05, HDSD06, HD06]. user [DPD05, JKI08]. uses [KBB09]. Using [CSD04, FSM09, HL08, Kne05, LL07, MO01, OSH03, QLHL09, SW06, XSS06, XLC08, XOW+[00, Ad04, AJ03, ABWT09, AM06b, AS00, BW07].

BMLV04, BVW04, BME05, BGC+09, Bud07, CLWL09, CN03, CSJ01, CLC09, CKR08, CLA+00, Chu07, CP08, CP09, CCP04, CPML08a, CGSDST06, DLD+02, DWNB01, DR09, DVP+02, DB06, DBI02, DMJV05, EKO+01, EKB02a, EM03b, FCW06, FMPS08, FBDG06, FAB+00, FEVM01, FR06, FSFK05, GMA04, GL04b, GDSuM+07, GSP06, GGLR00, Haf08, HWDB03, Han01, HSMT04, HMM06, HMM09, HG08, HHP04, I02, ISO7, IS03, IT03, IK00, JBGK08, JIK09, JVVK09, JTR05, JFG04, JSHG07, KRM+02, KKG+09, KM00, KLH+04, KK+08c, KOFF09, Kle02, Kle03, KBT03, KKS04, Lab08, LCKL05, LCC09, LZ05a, LLL+08, L2ZC09, LS05a, LZ05b, LSY02, LKW04, ML+08, MT03, MMLC05, MKT04. using [MV06, MBP09, MOP+07, MTE04, MRS09, MRS+07, NCO+05, NINAT+07, OFB08, OKE+02, PBM04, PS+09a, PAT+09, PPS+04, RIO7, RI08, RPM01, RG08, RON02, SDL+09, SPS08, SS+03, Sch00, SRC+03, SBG+09, SY09, SPT+07, SMV+09, TP01a, Tie09, TCS+03, UBD+04, VSW+03, Van02a, WL+07, WL00, WEE01, WG02, WOC+03, WCS09, XLT+07, YKO0, YYYY07, ZCS04, ZBS03, ZWP08, ZHH09, vdVGD+00, PRSMM02]. utility [KMH02]. utilization [GS08, DMLI05]. utilizing [NYTH09, Wan09].

v [Lip00, ZZW09, GBJ03, Kri09b, PFC03, TD08]. vacancy [ZMH+09].

vacuum [BISB02]. Valence
[LW07, SH08, Tra07, WM12, Bic09, BLT03, Cuf08, EA08, HEL09, HS07a, May07, MG00, PRSMV08, SWZS04, SMZW05, SSMW09, SSW+07, VBGL+00, WMRW+01, WJO0, dSVA+09, vLBBR12]. valent [AZM03, CN05, GLO+07]. Validation [BA07, VCM01, AGI+00, DGD+05, JJB02, JCL05, JVVK09, MSR04, MTE04, SRB06, APG05, HZ06b, NGTB03].

valinamide [HJCP01]. value [FP+06, BS+09]. values [OS06, PMPGP05]. vanadium [PV07, Tie09]. vapor [PH+08, UN+01]. variable [CSF+09, GS08, WHRG08]. variables [SR06]. variance [BLo04, LRWG03]. variate [LR06]. Variation
[AAP00, NAT07, PGG06, RAO00a, Vya01]. Variational
[MR02, AB09, Chu07, GY06, HdmS05, Hds06, HD06, RS07a, RS07b]. Variations [TG+00]. various [BL05].

v [LIP00, ZZW09, GBJ03, Kri09b, PFC03, TD08].

vacuum [BISB02]. Valence
[LW07, SH08, Tra07, WM12, Bic09, BLT03, Cuf08, EA08, HEL09, HS07a, May07, MG00, PRSMV08, SWZS04, SMZW05, SSMW09, SSW+07, VBGL+00, WMRW+01, WJO0, dSVA+09, vLBBR12]. valent [AZM03, CN05, GLO+07]. Validation [BA07, VCM01, AGI+00, DGD+05, JJB02, JCL05, JVVK09, MSR04, MTE04, SRB06, APG05, HZ06b, NGTB03].

valinamide [HJCP01]. value [FP+06, BS+09]. values [OS06, PMPGP05]. vanadium [PV07, Tie09]. vapor [PH+08, UN+01]. variable [CSF+09, GS08, WHRG08]. variables [SR06]. variance [BLo04, LRWG03]. variate [LR06]. Variation
[AAP00, NAT07, PGG06, RAO00a, Vya01]. Variational
[MR02, AB09, Chu07, GY06, HdmS05, Hds06, HD06, RS07a, RS07b]. Variations [TG+00]. various [BL05].

v [LIP00, ZZW09, GBJ03, Kri09b, PFC03, TD08].

vacuum [BISB02]. Valence
[LW07, SH08, Tra07, WM12, Bic09, BLT03, Cuf08, EA08, HEL09, HS07a, May07, MG00, PRSMV08, SWZS04, SMZW05, SSMW09, SSW+07, VBGL+00, WMRW+01, WJO0, dSVA+09, vLBBR12]. valent [AZM03, CN05, GLO+07]. Validation [BA07, VCM01, AGI+00, DGD+05, JJB02, JCL05, JVVK09, MSR04, MTE04, SRB06, APG05, HZ06b, NGTB03].

valinamide [HJCP01]. value [FP+06, BS+09]. values [OS06, PMPGP05]. vanadium [PV07, Tie09]. vapor [PH+08, UN+01]. variable [CSF+09, GS08, WHRG08]. variables [SR06]. variance [BLo04, LRWG03]. variate [LR06]. Variation
[AAP00, NAT07, PGG06, RAO00a, Vya01]. Variational
[MR02, AB09, Chu07, GY06, HdmS05, Hds06, HD06, RS07a, RS07b]. Variations [TG+00]. various [BL05].
vibration [CCL06, LSY02, ZWPR+04]. Vibrational [BP07, CLP+05, LC09, NR04, WB07, BRV+07, DB07, GBDP05, Gra07, Han01, HNR08, JARM02, LMB08, LN01, MR02, NRKH02, NAT07, PZWG+04, Tor02, WM04, WM01]. vibrations [CPDZH08, DR09, KCL00, vE01]. vibronic [BP07, CLP+05, LC09, NRKH02, NAT07, PZWG+04, Tor02, WM04, WM01].

vibrations [CPDZH08, DR09, KCL00, vE01]. vibronic [BP07, CLP+05, LC09, NRKH02, NAT07, PZWG+04, Tor02, WM04, WM01]. virtual [GFS05, KSM05, LZ05b, PRDS08, YOB+08]. virus [AJNG01, DLRZ09, KCL06]. viscosity [ZP03]. Visualization [MMP+07, RP07b, ARL01, KLY03, PGH+07]. VMD [Fraz01]. VMFCI [CCL06]. VO [PV07]. voltammetry [KJP+07]. Volume [Sta00, BVW04, LFSB03a, LFSB03b, Mue01, QNF09]. volume-preserving [QNF09]. volumes [BHH+09, Rao00b, SBLK01]. Voronoi [GHBB04, MVLG06, SBLK01]. VP1 [KCL06]. VPP700 [KSY+00]. Vpu [KF08]. vs [CXZ+09, LLKC06, MA05, SCG04, Wib04].

W [UM03, WWCC+05, MH09]. W2 [dOMSL01]. Waals [AD00, CPUGD09, GdSuM+07, Grl04, KLH+04, LS08c, VS02]. walk [CY09, CY13]. walking [BHG03]. wall [BG07]. walled [XWL+09, ZzvRSC08]. Wang [Ano06c, GHH07, JW12]. warping [JO02]. Water [LMIF06, Mor02, NK01, BLL+06, BUMCMRL00, BRLS08, BRLS12, BSH07, DLR+08, DSB+02, ES00, FG03, FKS+09, GMW08, GDV03, Go09, HM02, HRBKB03, HPL03, HFFH06, HN02, HTN03, HLMR06, ITS06, IDMC09, KFNH08, Kle02, Kla03, LPB03, MT03, MN02, MZ05, MG00, OCP02, PHJ+08, PPYS08, RR05, SO07, SSM08, SJW09, SVV+08, THHN01, UM03, VHRR07a, VHRR07b, VL00, WL09a, WD04, WDS06, KKG+05, YT03, YSJ09, Yos02, YGLvG06, ZZ04, ZCZ03, ZZ07, ZZ08, ZWP08, BA04b, WJX+08]. water-addition [RR05]. Water-assisted [BA04b, WJX+08]. water-phase [KFNH08]. WATGEN [BSH07]. Wave [BGB03, Bac04, Bac07, Bou00, GFS05, LLK06, PFB05, PSS+04, PSMB05, RLDI09, TT05, VSK+04, YH06, YLL+09]. wavefunction [IS07]. wavefunctions [BBW+08, KTM02, PJFJPRMI07]. Wavelet [CF04, ON07, QLHL09]. waves [MOP+07]. way [GZ07, HS05b, PRSMM02, VBGL+00]. weak [QTdG+08]. weakly [CPML08a, JRJ01]. web [KKG+09, GKR08, Gra07, JKI08]. Web-based [Gra07, JKI08]. web-interface [KKG+09]. WebMTA [KKG+09]. WebProp [GKR08]. Wei [Ano06c]. weight [AG00]. weighted [FS00b, HDW03]. weights [Bac04, Bac05, Bac07, Kar01]. Weinhold [GHBB04]. well [BBP09, WCK00]. well-tempered [BBP09]. where [HYA02]. which [SBH02]. Wiener [YH04]. Wiley [Bi09, Lie00, Sta00]. Wiley-VCH [Sta00]. Will [LLW+09]. Windock [HS07b]. Wind [HS07b]. Windows-based [HS07b]. wise [Nil09]. within [Der09, DFM00, GS09, KC01b, MY08b, NYTH09, NAT07, SHBD05, SPT+03]. without [AL01, Hdm05, Hs06, HD06, HZ09, Nil09, PK05, Qua07, RKA+09, TW03].
REFERENCES

WNO [HT05]. worker [FCK+08]. worker-based [FCK+08]. Working [Nye07]. World [Woo01, You11, FK07b]. worlds [Sim07]. Wu [Ano06c].

X [BAL+01, BPC01, CRC+08, Dib05, HZ09, Hua09a, KBL08, LS08a, Mck07a, Mck07b, OS08, RB01, STC+08, WLLS04, WZZ+09, WWS07, ZJM+07, ZY01, ZL09b, HYA02, HSWN01, HN02, Lip00, Mar03, Sta00, WK01, X-ray [HSWN01, HN02, WK01]. xenobiotics [PCMG09]. xenon [HdS06]. XES [EKO+01]. Xiang [Ano06c]. Xinli [JW12]. XMVB [SMZW05]. XPS [EKO+01]. X [CRC+08]. XX [CRC+08]. XXIII [JPF+00]. XXXI [HJCP01]. XXXIII [PFJ+03]. XY [ZY01]. xylose [GVATG03].

yield [CSD05]. YL [NYK+09]. ylide [LS08b]. ylides [Mit01]. Ylidic [XDS06b]. yloxy [BE07]. Yong [Ano06c]. young [SN00, Woo01]. ytterbium [FRS05].

Z [CRC+08, PWFS01]. zeolites [LTV08, SDCG02, TLOG00]. zeolitic [Tie09]. Zerner [Ano00]. zero [RKA+09]. zero-flux [RKA+09]. zeta [CMJ08]. Zhang [Ano06c]. Zhi [Ano06c]. Zhi-Xiang [Ano06c]. Zinc [CFS+08, BSDM04, ECM+03, JT06, JT08, KZRO03, RGP+07, SFR07, SCF+09, SDM02]. zinc- [SDM02]. Zintl [BTP09, GPSP06, BRI+09, ESM06, FO00, PK05, ROG00, TGGP+00, TFZRG01]. Zn-biomimetic [FO08]. ZnO [HSF08]. ZnX [WWS07]. Zori [AGSFA+05]. ZPE [MGLDS00]. ZPVA [QCK01, QCK02]. zwitterionic [ROG00]. zwitterions [KL03]. zymogen [PDP02]. ZZ [CRC+08].

References

References

Andrushchenko:2008:CDE

Anisimov:2009:QQD

Almlöf:2004:BAP

Anglada:2001:EQR

Anglada:2001:QRP
Josep Maria Anglada, Emili Besalú, Josep Maria Bofill, and Ramon Crehuet. On the quadratic reaction path evaluated in a reduced potential energy surface model and the problem to locate transition states. *Journal of Computational Chemistry*, 22(4):387–406, March 2001. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See comment [Qua01], reply [ABBC01b], and erratum [ABBC01a].

Anikin:2003:LBO
N. A. Anikin, V. L. Bugaenko, M. V. Frash, L. Gorb, and J. Leszczyński. Localized basis orbitals: Minimization of 2-electron integrals array and orthonormality of basis set. *Jour-
 REFERENCES

REFERENCES

Cristobal Alhambra and Jiali Gao. Hydrogen-bonding interactions in the active site of a low molecular weight protein-
REFERENCES

Ahmad:2003:DTN

Alcaro:2000:QFA

Alcaro:2007:QFA

Alagona:2003:IMS

Alvarez-Ginarte:2008:APR

Yoanna María Alvarez-Ginarte, Yovani Marrero-Ponce, José Alberto Ruiz-García, Luis Alberto Montero-Cabrera, Jose Manuel García De La Vega, Pedro Noheda Marin, Rachel Crespo-Otero, Francisco Torrens Zaragoza, and Ramón García-Domenech. Applying pattern recognition methods plus

Antony:2002:BDC

Agrafiotis:2003:SPE

Aspuru-Guzik:2005:ZPQ

Aspuru-Guzik:2005:SAE

Apgar:2009:CEM

REFERENCES

REFERENCES

ISSN 0192-8651 (print), 1096-987X (electronic).

[ALC08] Pere Alemany, Miquel Llunell, and Enric Canadell. Roles of
cations, electronegativity difference, and anionic interlayer in-
teractions in the metallic versus nonmetallic character of Zintl
phases related to arsenic. Journal of Computational Chem-
ISSN 0192-8651 (print), 1096-987X (electronic).

[ALKH04] A. N. Artemyev, E. V. Ludeña, V. V. Karasiev, and A. J.
Hernández. A finite B-spline basis set for accurate diatomic
molecule calculations. Journal of Computational Chemistry,
25(3):368–374, February 2004. CODEN JCCHDD. ISSN 0192-
8651 (print), 1096-987X (electronic).

[ALTB06] Diego R. Alcoba, Luis Lain, Alicia Torre, and Roberto C.
Bochicchio. An orbital localization criterion based on the the-
ory of “fuzzy” atoms. Journal of Computational Chemistry,
27(5):596–608, April 15, 2006. CODEN JCCHDD. ISSN 0192-
8651 (print), 1096-987X (electronic).

[AM06a] Benjamin D. Allen and Stephen L. Mayo. Dramatic perfor-
ance enhancements for the FASTER optimization algorithm.
30, 2006. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-
987X (electronic).

[AM06b] Peter C. Anderson and Sandro Mecozzi. Minimum sequence
requirements for selective RNA-ligand binding: a molecu-
lar mechanics algorithm using molecular dynamics and free-
ergy techniques. Journal of Computational Chemistry, 27
(14):1631–1640, November 15, 2006. CODEN JCCHDD. ISSN
0192-8651 (print), 1096-987X (electronic).

[AM07] Igor V. Alabugin and Mariappan Manoharan. Rehybridiza-
tion as a general mechanism for maximizing chemical and
supramolecular bonding and a driving force for chemical re-
actions. *Journal of Computational Chemistry*, 28(1):373–390,
January 15, 2007. CODEN JCCHDD. ISSN 0192-8651 (print),
1096-987X (electronic).

Addicoat:2009:KCS

[AM09] Matthew A. Addicoat and Gregory F. Metha. Kick: Con-
straining a stochastic search procedure with molecular frag-
ments. *Journal of Computational Chemistry*, 30(1):57–64,
January 15, 2009. CODEN JCCHDD. ISSN 0192-8651 (print),
1096-987X (electronic).

Amatatsu:2002:ISE

[Ama02a] Yoshiaki Amatatsu. Ab initio study on the electronic struc-
tures of styrene in the Franck–Condon region. *Journal of Com-
JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Amatatsu:2002:ISP

[Ama02b] Yoshiaki Amatatsu. Ab initio study on the photochemical
behavior of styrene. *Journal of Computational Chemistry*, 23
(10):950–956, July 30, 2002. CODEN JCCHDD. ISSN 0192-
8651 (print), 1096-987X (electronic).

Amisaki:2000:PEE

[Ami00] Takashi Amisaki. Precise and efficient Ewald summation for
periodic fast multipole method. *Journal of Computational
Chemistry*, 21(12):1075–1087, September 2000. CODEN JCC-
CHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Al-Matar:2004:GEM

equation for mixing rules and two new mixing rules for
interatomic potential energy parameters. *Journal of Compu-
JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Angeli:2009:NIE

[Ang09] Celestino Angeli. On the nature of the $\pi \rightarrow \pi^*$ ionic excited
states: the V state of ethene as a prototype. *Journal of Com-
putational Chemistry*, 30(8):1319–1333, June 2009. CODEN
JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).
Anonymous:2000:MMC

Anonymous:2001:A

Anonymous:2001:CBC

Anonymous:2001:NSJ

Anonymous:2004:PNSa

Anonymous:2004:PNSb

Anonymous:2005:A

Jens Antony, Jean-Philip Piquemal, and Nohad Gresh. Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo-β-lactamase by polarizable molecular mechanics. Validation on model binding sites by quantum

REFERENCES

verse HIV-1 PR inhibitors by the modified SAFE_p approach.

Arnaud:2003:TSI

Aschi:2004:CFE

Balata:2003:SEG

Balata:2004:ESE

Balata:2004:SEG

Bandyopadhyay:2008:SOA

Buttingsrud:2007:VCP

Bachler:2004:SCS

Bachler:2005:BTM

Bachler:2007:ONA

Bachler:2009:TDD

Bonomi:2009:REB

Borowski:2006:EDC

Brown:2006:SDG

Barone:2009:RET

Benzi:2005:BCF

REFERENCES

Bohm:2007:IER

Bohm:2009:ITF

Ball:2002:ENA

Beran:2003:ICE

Boschitsch:2004:HBE

Boschitsch:2007:NOB

REFERENCES

Brooks:2007:LE

Baker:2000:HIS

Babu:2003:IQO

Braga:2007:MDS

Brookes:2009:IPL

Bredow:2001:DCC

REFERENCES

REFERENCES

REFERENCES

September 2000. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[BL08] Sophie Barbe and Marc Le Bret. Ab initio determination of the flexibility of 2'-aminoribonucleosides and 2'-aminoarabinonucleosides inserted in duplexes. *Journal of
REFERENCES

Bailey:2009:MSE

Butler:2009:TAR

Bruni:2002:CAN

Basilevsky:2006:CHF

Busch:2008:CPD

114

REFERENCES

Blomgren:2001:ETB

Bobrowski:2002:ISM

Blondel:2004:EVF

Bochicchio:2003:DAV

Bosque:2000:PSP

Beck:2007:HRA

Bessac:2008:DMR

Bories:2007:SEC

Borini:2005:CFC

Becue:2004:EPS

Bewe-Mery:2001:PAC

Bringmann:2001:MBC

Gerhard Bringmann, Jörg Mühlbacher, Charlotte Repges, and Jörg Fleischhauer. MD-based CD calculations for the assign-
References

1. Bras:2008:MSF

5. Bour:2000:CHF
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Brylinski:2008:QDL

Bento:2005:IDB

[BSB05] A. Patrícia Bento, Miquel Solà, and F. Matthias Bickelhaupt. Ab initio and DFT benchmark study for nucleophilic substitution at carbon ($S_N2@C$) and silicon ($S_N2@Si$). *Journal of Computational Chemistry*, 26(14):1497–1504, November 15, 2005. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Basma:2001:SEA

Brothers:2004:PCZ

Bickelhaupt:2007:CVI

Bui:2007:WAM

REFERENCES

REFERENCES

Curutchet:2003:EDM

Chong:2003:DHA

Capar:2007:OEE

Cai:2009:NIL

Chavez:2004:ICE

Cahill:2003:KPF

REFERENCES

[CDL06] Inmaculada García Cuesta, Alfredo M. J. Sánchez De Merás, and Paolo Lazzeretti. Structure, magnetizability, and nuclear

REFERENCES

[CFK08] Mahito Chiba, Dmitri G. Fedorov, and Kazuo Kitaura. Polarizable continuum model with the fragment molecular orbital-

[CFR06] Carvalho:2006:DBA

[CFS+08] Catlow:2008:ZOC

[CFR06] Carvalho:2009:RVA

[CG03] Chang:2003:TCA
REFERENCES

Cummins:2005:CMS

Chien:2006:SSS

Corral:2008:TIA

Chong:2003:SGF

Cerqueira:2009:ESS

Cho:2005:IAC

REFERENCES

July 15, 2005. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Cervellino:2006:EEF

Castillo-Garit:2008:BBC

Custodio:2006:ASC

Chidthong:2007:ESP

Christen:2005:GSB

REFERENCES

[Jianhan Chen, Woonil Im, and Charles L. Brooks III. Application of torsion angle molecular dynamics for efficient sampling...]

REFERENCES

[CLA+00] Laurie A. Christianson, Melissa J. Lucero, Daniel H. Appella, Daniel A. Klein, and Samuel H. Gellman. Improved treatment of cyclic β-amino acids and successful prediction of β-peptide secondary structure using a modified force field: AMBER*C. *Journal of Computational Chemistry*, 21(9):763–773, July 15,
REFERENCES

2000. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Chen:2009:MSA

Chen:2009:CTS

Cuny:2008:DCQ

Casadesus:2004:TES

Cruz-Monteagudo:2008:DBM
REFERENCES

[CMLS05] Pablo Campomanes, M. Isabel Menéndez, Ramón López, and Tomás L. Sordo. Stereodynamics of bond rotation in tertiary 1-naphthoic acid amides: a computational study. *Journal of
REFERENCES

Crespo-Otero:2004:TMI

Constans:2002:LSA

Chae:2001:FMS

Clarke:2008:TAP

Clarke:2009:IAP

Chun:2000:MDM

REFERENCES

REFERENCES

Csontos:2008:CWP

Csontos:2008:RCA

Concu:2009:CCS

Chesnut:2004:NBS

Comba:2002:NMM

Chiodo:2008:DSO

REFERENCES

April 30, 2008. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Chiodo:2009:OES

Cho:2009:EQM

Castillo:2008:BLE

Choi:2001:NPO

Cuadrado:2007:QMB

Chowdry:2007:OOL

REFERENCES

REFERENCES

Curutchet:2003:TFC

Chval:2008:TES

Coutsias:2004:UQC

Coutsias:2005:RSL

Chandrasekhar:2001:EEC

Coutsias:2004:KVL

[CSJD04] Evangelos A. Coutsias, Chaok Seok, Matthew P. Jacobson, and Ken A. Dill. A kinematic view of loop closure. *Jour-
REFERENCES

Cortes:2004:GAC

Cournia:2005:MMF

Crawford:2007:POS

Cui:2008:SSE

Yan-Hong Cui, Wei Quan Tian, Ji-Kang Feng, and De-Li Chen. Structures, stabilities, electronic, and optical properties of C64 fullerene isomers, anions (C and C64\(^+\)), metallofullerene Sc\(_2\)@C64, and Sc\(_2\)C\(_2\)@C64. *Journal of Computational Chemistry*, 29(16):2623–2630, December 2008. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Chandra:2001:ROR

Cullen:2004:PHF

[150]

Cullen:2008:ADM

[385]

Chandra:2000:KHA

[135]

Chandra:2003:ISS

[349]

Christ:2009:CTE

[280]

Christen:2008:SSD

[248]

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

[Chen:2009:EMI] Xiaohua Chen, Dianxiang Xing, Liang Zhang, Robert I. Cukier, and Yuxiang Bu. Effect of metal ions on radical type and proton-coupled electron transfer channel: σ-Radical vs π-radical and σ-channel vs π-channel in the imide units. *Journal of Computational Chemistry*, 30(16):2694–2705, December 2009. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Djurdjevic:2006:IPF

Danecek:2007:CNS

Duca:2007:IID

Dominy:2002:INL

DelRio:2003:RMR

DeMarothy:2007:EMR

REFERENCES

REFERENCES

REFERENCES

Delalande:2009:CMA

Deeth:2005:DIL

DeJong:2005:OAE

Davies:2002:PRM

Donchev:2008:APG

deGelder:2001:GES

[dGWH01] R. de Gelder, R. Wehrens, and J. A. Hageman. A generalized expression for the similarity of spectra: application to powder

REFERENCES

REFERENCES

Das:2009:FES

DiBenedetto:2000:NPE

Dai:2006:NCD

Dai:2007:LRM

Du:2005:HML

Donnini:2005:IEI

REFERENCES

Dixon:2005:QUS

Das:2003:PHM

Dobrogorskaia-Mereau:2005:QCM

Ding:2008:EBF

deOliveira:2001:DHF
REFERENCES

[DPM09] Michael Devereux, Paul L. A. Popelier, and Iain M. McLay. Toward an ab initio fragment database for bioisosterism: Dependence of QCT properties on level of theory, conformation, and chemical environment. *Journal of Computational Chem-
REFERENCES

[DRAS04] Maria Del Carmen Michelini, Nino Russo, Mohammad Esmaïl Alikhani, and Bernard Silvi. Energetic and topological analysis of the reaction of Mo and Mo$_2$ with NH$_3$, C$_2$H$_2$, and

DelCarmenMichelini:2005:ETA

[DRAS05] Maria Del Carmen Michelini, Nino Russo, Mohammad Esmail Alikhani, and Bernard Silvi. Energetic and topological analyses of the oxidation reaction between Mo$_n$ ($n = 1, 2$) and N$_2$O. *Journal of Computational Chemistry*, 26(12):1284–1293, September 2005. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

delRio:2000:TSR

Darrigan:2003:IFF

Derepas:2002:CWU

deSouza:2000:CPA

REFERENCES

DEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[DWC+03] Yong Duan, Chun Wu, Shibasish Chowdhury, Mathew C. Lee, Guoming Xiong, Wei Zhang, Rong Yang, Piotr Cieplak, Ray Luo, Taisung Lee, James Caldwell, Junmei Wang, and Peter

REFERENCES

REFERENCES

Elking:2007:GID

Escudero:2009:IBA

Ebel:2000:GEM

Eckert:2006:APB

Exner:2002:PRSa

Exner:2002:PRSb

M. L. Ellzey Jr. Finite group theory for large systems. 3. Symmetry-generation of reduced matrix elements for icosahedral C_{20} and C_{60} molecules. *Journal of Computational Chemistry*.
REFERENCES

El-Sherbiny:2004:ERP

Estrada:2007:PSN

Ferenczy:2001:III

Frenking:2001:EP

Field:2000:DLM

Ferre:2002:SFF

Nicolas Ferré, Xavier Assfeld, and Jean-Louis Rivail. Specific force field parameters determination for the hybrid ab initio

REFERENCES

[FD03] Fillmore Freeman and Elika Derek. A computational study of conformational interconversions in 1,4-dithiacyclohexane (1,4-dithiane). *Journal of Computational Chemistry*, 24(8):909–
REFERENCES

Shuhei Fukawa, Masahiko Hada, Ryoichi Fukuda, Shinji Tanaka, and Hiroshi Nakatsuji. Relativistic effects and the halogen dependencies in the 13C chemical shifts of CH$_{4-n}$In$_n$, CH$_{4-n}$Br$_n$, CCl$_{4-n}$I$_n$, and CBr$_{4-n}$I$_n$ ($n = 0–4$). *Journal of Computational Chemistry*, 22(5):528–536, April 15, 2001. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Field:2002:SER

Fedorov:2007:ATB

Frenking:2002:F

Fan:2008:TSF

Ford:2007:AFC

Fedorov:2007:PIE

REFERENCES

Frenking:2007:EUW

Fisher:2008:OIA

French:2001:HES

Fedorov:2006:PCM

Fukuzawa:2006:III

Fukuzawa:2007:III

[FKM+07] Kaori Fukuzawa, Yuto Komeiji, Yuji Mochizuki, Akifumi Kato, Tatsuya Nakano, and Shigenori Tanaka. Intra- and intermolecular interactions between cyclic-AMP receptor pro-

Fritsch:2008:TMD

Futera:2009:IPS

Fukuzawa:2005:IQM

Frickenhaus:2009:EES

Ferrante:2007:TSI

[FL07] Francesco Ferrante and Gianfranco La Manna. Theoretical study of the interaction between sodium ion and a cyclopeptidic tubular structure. *Journal of Computational Chemistry*,
REFERENCES

Flocke:2008:EEI

Feldgus:2000:NRT

Frenking:2007:ESC

Ferro:2007:MES

Foloppe:2000:AAE

Flores-Moreno:2006:HNE

Roberto Flores-Moreno, Rodrigo J. Alvarez-Mendez, Alberto Vela, and Andreas M. Köster. Half-numerical evaluation of
REFERENCES

REFERENCES

REFERENCES

Frankcombe:2000:SUM

Fradera:2002:ELD

Fradera:2004:SOA

Frenking:2007:F

Freindorf:2005:LJP

Fajer:2009:UMF

REFERENCES

REFERENCES

REFERENCES

Gromiha:2004:NNB

Greene:2002:ICE

Guvench:2004:EAA

Gould:2007:CIQ

Grybos:2009:INM

Gohaud:2005:NPS

REFERENCES

García-Cruz:2000:DMM

Gironés:2004:TFE

Grazioso:2008:ANA

Gallegos:2005:MPD

González:2006:PCM

Gillesen:2009:CSF

Gonzalez-diaz:2007:RCN

Gonzalez-Diaz:2007:CCC

Gonzalez-Diaz:2008:UQN

Gonzalez-diaz:2007:CCA

Glattli:2003:NAD

Alice Glättli, Xavier Daura, and Wilfred F. Van Gunsteren. A novel approach for designing simple point charge models for
REFERENCES

[GGB07b] Javier González, Xavier Giménez, and Josep Maria Bofill. Algorithm to evaluate rate constants for polyatomic chemical

Gonzalez-Garcia:2005:ESS

Guvench:2008:AEF

Greatbanks:2000:CEP

Galvez:2009:CTT

Gruziel:2008:PBM

[GJK+06] Gerald Geudtner, Florian Janetzko, Andreas M. Köster, Alberto Vela, and Patrizia Calaminici. Parallelization of the

[Galstyan:2009:ARP]

[Gotz:2005:OAB]

[Gront:2007:BBQ]

[Ganesh:2008:WWI]

REFERENCES

[197]

Gresh:2004:IIE

Gallicchio:2004:AAI

Gillilan:2004:ODP

Georgiev:2008:MDE

Geng:2008:TER

REFERENCES

Galva:2004:NML

Gogtas:2008:TDQ

Golmohammadi:2009:POW

Gonnet:2007:SAA

Goraczko:2001:MMF

Gianese:2006:CPI

Giulio Gianese and Stefano Pascarella. A consensus procedure improving solvent accessibility prediction. *Journal of Compu-
REFERENCES

Gresh:2005:RZI

Grant:2001:SPF

Gourlaouen:2006:RGM

Christophe Gourlaouen, Jean-Philip Piquemal, Trond Saue, and Olivier Parise. Revisiting the geometry of $nd^{10}(n+1)s^0$ [M(H$_2$O)$_p$]$^{p+}$ complexes using four-component relativistic DFT calculations and scalar relativistic correlated CSOV energy decompositions ($Mp^+ = Cu^+, Zn^{2+}, Ag^+, Cd^{2+}, Au^+, Hg^{2+}$). *Journal of Computational Chemistry*, 27(2):142–156, January 30, 2006. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Gillespie:2007:EGL

Grafton:2007:VFW

Adrià Gil, Mariona Sodupe, and Juan Bertran. Influence of ionization on the conformational preferences of peptide models. Ramachandran surfaces of N-formyl-glycine amide and

REFERENCES

[HD06] Roberto L. A. Haiduke and Albérico B. F. Da Silva. Accurate relativistic adapted Gaussian basis sets for cesium through radon without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models. *Journal of Computational Chemistry*, 27(16):1970–1979, December 2006. CO-
DEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

REFERENCES

Habershon:2003:DMP

Hudaky:2004:SMI

Hayryan:2005:NAM

Horng:2003:CMC

Haranczyk:2008:SSO

REFERENCES

[He:2005:TSR] Hong-Qing He, Jing-Yao Liu, Ze-Sheng Li, and Chia-Chung Sun. Theoretical study for the reaction of CH$_3$OCl with Cl
Huang:2005:AFF

Hugosson:2006:CTS

Henn:2007:CIM

Horenko:2005:AAN

Huang:2005:IHM

REFERENCES

REFERENCES

Huo:2002:CAS

Hemmateenejad:2009:AMA

Huey:2007:SFE

Hemmateenejad:2006:APB

Haberthur:2003:EEE

Higo:2002:HSH

Junichi Higo and Masayoshi Nakasako. Hydration structure of human lysozyme investigated by molecular dynamics simu-

REFERENCES

Holthausen:2005:BAD

Hassinen:2001:NET

Hill:2004:RSP

Hudaky:2005:TDD

Hernandes:2003:CSL

Hart:2000:ESB

Allan D. Headley and Stephen D. Starnes. Theoretical analysis of fluoroglycine conformers. *Journal of Computational Chem-
REFERENCES

REFERENCES

Hori:2003:HQM

Hofer:2004:CDR

Huang:2009:ESO

Huang:2009:FPC

Horenko:2003:AIM

Huang:2009:CSP

Hageman:2003:PPI

Hada:2001:QSN

Hrovat:2001:BCB

Harvey:2003:MNA

He:2008:SSL

[HXD08] Ning He, Hong-Bin Xie, and Yi-Hong Ding. Structures and stability of lithium monosilicide clusters SiLi$_n$ ($n = 4$–16): What is the maximum number, magic number, and core number for lithium coordination to silicon? *Journal of Computational Chemistry*, 29(11):1850–1858, August 2008. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

He:2009:EPS

REFERENCES

Helal:2002:ICS

Yao:2008:ASD

Herrmann:2006:SSP

Hatano:2005:CMO

Huang:2006:IKBa

REFERENCES

REFERENCES

[IK00] Roberto Izzo and Martin Klessinger. Optimization of conical intersections using the semiempirical MNDOC–CI method with analytic gradients. Journal of Computational Chemistry,
Ikeguchi:2004:PRB

Imamura:2008:CST

Iwaoka:2009:SFF

Im:2003:GBM

Im:2009:NFE

REFERENCES

[ION07] Yutaka Imamura, Takao Otsuka, and Hiromi Nakai. Description of core excitations by time-dependent density functional theory with local density approximation, generalized gradient approximation, meta-generalized gradient approximation, and

[Ish02] Kazuhiro Ishida. Accompanying coordinate expansion formulas derived with the solid harmonic gradient. *Journal of Com-
REFERENCES

Ishida:2003:MIG

Ishida:2004:AFA

Iwaoka:2003:SFF

Inaba:2005:AED

Intharathep:2005:SDH

Intharathep:2006:IQM

[ITS06] Pathumwadee Intharathep, Anan Tongraar, and Kritsana Sagarik. Ab initio QM/MM dynamics of H_3O^+ in water. Jour-
REFERENCES

REFERENCES

Janetzko:2008:BDD

Jakalian:2000:FEG

Jacquemin:2002:IAD

Jurecka:2007:DFT

Jha:2005:FFV

Jimenez-Halla:2009:TAT

Jimenez-Halla:2011:ETA

Ju:2009:GDT

Jiang:2009:PPF

REFERENCES

98–107, January 15, 2008. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Jiang:2003:NTI

Jena:2007:FNO

Jojart:2007:PGA

Jayaram:2002:FEC

Jacob:2008:FIF

Jaqaman:2002:NSW

Jezierska:2009:IOH

Jacquemin:2008:RRB

Jakli:2000:PMX

Jemmis:2001:CCC

Jagielska:2007:ITF

REFERENCES

Jirouskova:2009:SNU

Jug:2000:MSL

Jang:2006:MPC

Jorgensen:2012:LEC

Ju:2005:SEH

Veronika Kasalová, Wesley D. Allen, Henry F. Schaefer III, Eszter Czinki, and Attila G. Császár. Molecular structures of the two most stable conformers of free glycine. *Journal of Com-

[KBK+01] Paul D. Kirchhoff, Rob Brown, Scott Kahn, Marvin Waldman, and C. M. Venkatachalam. Application of structure-

Kisowska:2008:SCB

[KBL08] Karolina Kisowska, Slawomir Berski, and Zdzislaw Latajka. The structure and chemical bonding in the N_2CuX and $\text{N}_2\cdot\cdot\cdot\text{XCu}$ ($X = \text{F, Cl, Br}$) systems studied by means of the molecular orbital and Quantum Chemical Topology methods. *Journal of Computational Chemistry*, 29(16):2677–2692, December 2008. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Kover:2009:CNT

Kuttel:2002:CSS

Koslowski:2003:IGM

Kraka:2001:PDP

REFERENCES

2001. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

REFERENCES

REFERENCES

February 2003. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[KH05] Florian Koskowski and Bernd Hartke. Towards protein folding with evolutionary techniques. *Journal of Computational
Krautler:2006:MTS

Kiyota:2009:MQM

Khandogin:2000:ESP

Komeiji:2007:CPE

Komeiji:2009:FMO

Kim:2007:CVM

Kyoung Hoon Kim, Jaehoon Jung, Bo Keun Park, Young-Kyu Han, and Joon T. Park. Cyclic voltammetry modeling, geometries, and electronic properties for metallofullerene complexes with $\mu_3-\eta^2$: η^2-η^2-C$_{60}$ bonding mode. *Journal of Computational Chemistry*, 28(6):1100–1106, April 30, 2007. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Kenny:2008:CIE

Kolossvary:2001:HFL

Kuznetsova:2001:VAP

Kahn:2008:IEF

Kieseritzky:2008:IPC

Gernot Kieseritzky and E. W. Knapp. Improved pK_a prediction: Combining empirical and semimicroscopic meth-

Kim:2008:RMD

Kumar:2004:TSS

Kuhn:2004:PPS

Kamishima:2001:CSG

Kirschner:2003:MMF

Klein:2002:ICS

[Kle02] Roger A. Klein. Ab initio conformational studies on diols and binary diol-water systems using DFT methods. Intramolecu-

[KLS02] Rajmund Kaźmierkiewicz, Adam Liwo, and Harold A. Scheraga. Energy-based reconstruction of a protein backbone from

REFERENCES

Kritayakornupong:2009:SDP

Kepenekian:2009:EFN

Kaupp:2002:CET

Krol:2003:CVI

Kedzierski:2001:ATA

REFERENCES

2001. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Kong:2000:QCH

Kim:2001:DFT

Kim:2002:EDF

Chang Kon Kim, Hongok Won, Hoon Sik Kim, Yong Soo Kang, Hong Guang Li, and Chan Kyung Kim. Erratum: Density functional theory studies on the dissociation energies of metallic salts: Relationship between lattice and dissociation energies. Journal of Computational Chemistry, 23(5):584, April 15, 2002. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic). See [KWK+01].

Kan:2007:TIP

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Page Range</th>
<th>Date</th>
<th>ISSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liang:2008:PDD</td>
<td>Guoming Liang, Xiaoguang Bao, and Jiande Gu</td>
<td>The possibility of the decomposition of 2'-deoxyribose moiety of thymidine induced by the low energy electron attachment</td>
<td>Journal of Computational Chemistry</td>
<td>29(16)</td>
<td>2648–2655</td>
<td>December 2008</td>
<td>0192-8651 (print), 1096-987X (electronic)</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

REFERENCES

[LF04] Xiang-Yuan Li and Ke-Xiang Fu. Continuous medium theory for nonequilibrium solvation: I. How to correctly evaluate
REFERENCES

[Leaver-Fay:2007:MSA]

[Lopez:2006:CVE]

[Labello:2005:AEC]

[LaValle:2000:RKB]

[Lopez:2004:SEC]

REFERENCES

Li:2009:CTP

Li:2002:TIE

Lins:2005:NGF

Lee:2009:BHR

Lee:2006:ABS

Linnolahti:2001:GPB

[LHP01] Mikko Linnolahti, Pipsa Hirva, and Tapani A. Pakkanen. Geometry prediction of bridged zirconocene dichlorides by quan-

Jinwoo Lee, Keehyoung Joo, Seung-Yeon Kim, and Jooyoung Lee. Re-examination of structure optimization of off-lattice

Lloyd:2005:SIE

Lin:2007:SVM

Lovallo:2003:DNP

Lovallo:2004:IMC

Luman:2001:PAC

REFERENCES

CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Lin:2007:UPA

Langley:2001:MMCa

Langley:2001:MMCb

Langley:2001:MMCc

Langley:2001:MMM

Langley:2003:MMM
Lim:2006:TST

Loferer:2003:QMI

Lu:2007:SSH

Li:2008:QSM

Lammers:2008:RFF

Lopes:2009:PEF

Lorenzo:2003:BCB

Levi:2008:FVF

Lee:2009:CIF

Lamsabhi:2009:MDP

Li:2005:CBS

[Liddell:2004:ASS]

[Luo:2009:AES]

[Larin:2007:QSE]

[Liu:2001:RGC]

References

REFERENCES

REFERENCES

Li:2004:MHA

Lee:2004:EHE

Larin:2008:CEF

Loeffler:2001:CSD

Liang:2000:MMM

Lu:2002:GTN

Li:2007:EPT

Larin:2008:EFC

Lu:2009:GEA

Leherte:2008:CMR

Li:2004:DDS

[LW04a] Qian-Shu Li and Chao Yang Wang. Direct dynamic study on the hydrogen abstraction reaction CH$_3$CN + OH \rightarrow CH$_3$CN

[LWLS07] Ying Li, Di Wu, Zhi-Ru Li, and Chia-Chung Sun. Structural and electronic properties of boron-doped lithium clusters: ab

REFERENCES

[LYS08] Qingxu Li, Yuanping Yi, and Zhigang Shuai. Local approach to coupled cluster evaluation of polarizabilities for long conjugated molecules. *Journal of Computational Chemistry*, 29(10):

Liu:2008:TSS

[LYZ+08] Xiao-Jing Liu, Chuan-Lu Yang, Xiang Zhang, Ke-Li Han, and Zi-Chao Tang. Theoretical study on the structure and formation mechanism of \([\text{C}_6\text{H}_5\text{M}_m]^–\) (\(\text{M} = \text{Ag, Au}; m = 1–3\)). *Journal of Computational Chemistry*, 29(10):1667–1674, July 30, 2008. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Li:2005:SFS

Liu:2005:SCP

Leon:2002:IPS

Lu:2009:ICH

Li:2003:ISI

[LZJ03] Jinshan Li, Feng Zhao, and Fuqian Jing. An ab initio study of intermolecular interactions of nitromethane dimer and ni-
REFERENCES

291

REFERENCES

Masamura:2004:EBS

Matta:2003:AQT

Mayer:2007:BOV

Mazur:2001:MDM

Mazur:2008:ISS

MacKerell:2000:AAE

REFERENCES

Masella:2008:CPF

Munoz:2002:HSB

Mercero:2000:QMC

Marechal:2000:TMH

Martin:2009:CMG

Mitin:2003:PSI

Moon:2006:CQC

McDowell:2003:CSL

McDowell:2008:CSS

Marun:2005:FCP

Marabotti:2007:NCS

REFERENCES

Manojkumar:2005:TIM

Mckee:2007:MHE

Mckee:2007:MNF

Mongan:2004:CPM

Masetti:2008:MHP

Matsubara:2008:IEE

Toshiaki Matsubara, Michel Dupuis, and Misako Aida. An insight into the environmental effects of the pocket of the active site of the enzyme. Ab initio ONIOM-molecular dynamics

REFERENCES

October 2000. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Masgrau:2003:DRC

[MGLL03] Laura Masgrau, Àngels González-Lafont, and José M. Lluch. Dependence of the rate constants on the treatment of internal rotation modes: the reaction $\text{OH} + \text{CH}_3\text{SH} \rightarrow \text{CH}_3\text{S} + \text{H}_2\text{O}$ as an example. *Journal of Computational Chemistry*, 24(6): 701–706, April 30, 2003. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Morreale:2003:CDC

Mandado:2007:CGT

Mandado:2007:QCD

Mirzaei:2008:CNS

REFERENCES

Merlitz:2004:FAA

Mitrasinovic:2001:QCP

Ji:2007:KMH

Ji:2008:TDS

[Yue meng Ji, Xiao lei Zhao, Jing yao Liu, Ying Wang, and Ze sheng Li. Theoretical dynamic studies on the reactions of CH$_3$C(O)CH$_3$–nCl$_n$ (n = 0–3) with the chlorine atom. *Journal of Computational Chemistry*, 29(5):809–819, April 15, 2008. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).]

Massova:2002:PKM

Makowski:2006:EAE

[Marcin Makowski, Jacek Korchowiec, Feng Long Gu, and Yuriko Aoki. Efficiency and accuracy of the elongation method

Martinez:2003:POA

Macias:2005:CH1

Milani:2007:GAD

Mallik:2002:DED

Marechal:2006:DSR

Makowska:2005:TCH

Joanna Makowska, Mariusz Makowski, Adam Liwo, and Lech Chmurzyński. Theoretical calculations of homoconjugation

Mayaan:2007:CFF

Moad:2007:NVD

Mannfors:2001:PEM

Merino:2007:RAP

Mark:2002:SDL

REFERENCES

REFERENCES

[MS04] Takao Motoki and Akinobu Shiga. New reaction simulator “LUMMOX” and its application for prediction of catalytic

Meyer:2001:DFS

Marabotti:2008:EBP

Matsuura:2006:AEA

McNamara:2006:CSP

McQuaid:2004:DVC

Monticelli:2008:MSM

MacCallum:2003:CWC

Mediavilla:2009:MHP

Michel:2004:PVG

Muegge:2001:ELV

Muiño:2005:OCR

Pedro L. Muño. The OH$^+$ + CH$_3$SH reaction: Support for an addition-elimination mechanism from ab initio calculations. *Journal of Computational Chemistry*, 26(6):612–618, April 30,
REFERENCES

2005. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Ma:2008:SOA

Morita:2008:PCSb

Morita:2008:PCSa

Martin:2005:CDW

Mor:2008:SPI

Nakamura:2006:TPA

[NA06] Hideaki Nakamura and Masaru Aniya. Thermodynamic properties of Ag₂OB₂O₃ glasses by a modified scale-transformed

[NBTN04b] A. Nakata, T. Baba, H. Takahashi, and H. Nakai. Theoretical study on the excited states of psoralen compounds bonded to a

REFERENCES

REFERENCES

Nikitin:2007:NSS

Neihsial:2008:NHB

Niu:2009:HPC

Nobeli:2001:EKB

Editorship:2004:A

Neugebauer:2004:VCL
Neugebauer:2002:QCC

Norberg:2008:MRR

Noro:2007:RCB

Novoselov:2002:CST

Nakagawa:2000:TSC

REFERENCES

[NYK+09] Takashi Nakamura, Azusa Yamaguchi, Hirotaka Kondo, Hirofumi Watanabe, Tatsuo Kurihara, Nobuyoshi Esaki, Shuichi Hirono, and Shigenori Tanaka. Roles of K151 and D180 in L-2-haloacid dehalogenase from Pseudomonas sp. YL: Analysis by molecular dynamics and ab initio fragment molecular

Oberhofer:2009:EEF

Olson:2008:PPL

Omori:2009:LRT

Oakley:2005:LMP

Otsuka:2002:TAE

Ono:2002:CFF

Satoshi Ono, Masataka Kuroda, Junichi Higo, Nobuyuki Nakajima, and Haruki Nakamura. Calibration of force-field dependency in free energy landscapes of peptide conformations

[OV03] Chris Oostenbrink and Wilfred F. Van Gunsteren. Single-step perturbations to calculate free energy differences from unphysical reference states: Limits on size, flexibility, and

References

- [OYH09] Akifumi Oda, Noriyuki Yamaotsu, and Shuichi Hirono. Evaluation of the searching abilities of HBOP and HBSITE for...

REFERENCES

Pristovsek:2006:SAP

Pendas:2005:TEI

Perczel:2003:TDD

Pereira:2004:MRR

Pereira:2004:TSR

Pacios:2001:III

Piacenza:2004:SQC

Perczel:2005:SSP

Pacios:2006:VAC

Pettersen:2004:UCV

REFERENCES

Parsons:2005:PCT

Pribil:2008:SDP

Pinak:2001:MDS

Pinak:2003:OLB

Porwal:2007:PSP

Sandeep Patel, Alexander D. Mackerell Jr., and Charles L. Brooks III. CHARMM fluctuating charge force field for pro-teins: II. Protein/solvent properties from molecular dynamics

Pisani:2008:PLM

Pappalardo:2003:FEP

Politzer:2003:EPC

Prabhakar:2005:CSV

Prabhakar:2006:DSM

Petridis:2009:MMF

Paizs:2001:IBL

Poater:2009:MSP

Pierce:2000:CSM

Piacenza:2008:TEE

Poulain:2008:IPD

P. Poulain, A. Saladin, B. Hartmann, and C. Prévost. Insights on protein-DNA recognition by coarse grain modelling. *Jour-
REFERENCES

Pulay:2005:AEA

Preuss:2004:GES

Pomelli:2001:SAT

Piris:2009:IDO

Pullan:2005:UPB

REFERENCES

Pernpointner:2003:PFC

Pykavy:2007:SQC

Pernpointner:2000:PFC

Prall:2001:SEB

Piquemal:2003:ILF

REFERENCES

[QNF09] Séverine Queyroy, Haruki Nakamura, and Ikuo Fukuda. Numerical examination of the extended phase-space volume-preserving integrator by the Nosé–Hoover molecular dynamics

Qian:2001:NPO

Queralt:2008:AMS

Quapp:2001:CQR

Quapp:2004:RPP

Quapp:2007:FTS

Nenad Raos. Iterative method for finding the low-energy conformations based on the concept of molecular volumes. *Journal...*

Rocha:2000:CIR

Rabone:2006:IPM

Roy:2008:DMI

Rocha:2006:RRA

Rajamani:2002:CQM

Rosso:2008:SDP

[RG08] Lula Rosso and Ian R. Gould. Structure and dynamics of phospholipid bilayers using recently developed general all-atom

REFERENCES

REFERENCES

Robertson:2008:ELR

Rico:2004:AMR

Rico:2001:CBG

Rousseau:2000:AEC

Raub:2007:QCI

Rog:2003:MPP

Robertazzi:2004:HBS

Rafat:2007:AAP

Rafat:2007:VIQ

Rafat:2007:LRB

Rychkov:2007:JNA

Remmert:2009:EAC

Reith:2003:DEM

Rani:2007:ESB

Rungnim:2005:DFS

Rodriguez-Ropero:2008:ICS

Ruiz:2003:ACE

REFERENCES

Ruedenberg:2007:EWD

Ruedenberg:2007:WDE

Rotkiewicz:2008:FPR

Reddy:2007:IQM

Rey-Stolle:2009:TBM

Rocchia:2002:RGB

[RSN+02] Walter Rocchia, Sundaram Sridharan, Anthony Nicholls, Emil Alexov, Alessandro Chiabrera, and Barry Honig. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects.
REFERENCES

REFERENCES

Sayyed-Ahmad:2004:EST

Saunders:2004:SSI

Sommer:2001:MRI

Swart:2008:QQR

Smith:2002:RQC

Sgrignani:2009:IDS

REFERENCES

REFERENCES

Sun:2007:CSE

Salisbury:2009:RTP

Suarez:2002:MDS

Schuler:2001:IGF

Stepanenko:2007:GTS

REFERENCES

Sousa:2007:TSF

Smedarchina:2001:DPC

Steiger:2001:LSC

Schreiber:2007:SBA

Slipchenko:2007:EEE

Solomon:2006:MTB

Thomas Sandberg and Matti Hotokka. Conformational analysis of hydroxymatairesinol in aqueous solution with molecular

Shalabi:2002:FAF

Shaw:2005:FSM

Shaik:2007:ELL

Schreiber:2005:EEL

Song:2008:MMP

Siegert:2007:GDP

Martin R. Siegert, Matthias Heuchel, and Dieter Hofmann. A generalized direct-particle-deletion scheme for the calculation
REFERENCES

Soares:2005:INA

Shah:2004:PRP

Schwarzl:2005:NCS

Siegbahn:2001:MAM

Simoes:2007:EBW

Shen:2004:HPS

Sun:2009:APE

Sun:2005:UIF

Seo:2008:NSC

Sakuraba:2009:MMT

Schweizer:2008:LSC

REFERENCES

Shinoda:2003:RBD

Shi:2006:DEP

Samolyuk:2008:RBC

Shi:2008:IME

Sanchez:2000:SEM

Stoll:2002:REC

REFERENCES

Song:2005:XPI

Sarma:2000:LSY

Sinnecker:2006:QMC

Sekiya:2006:RCB

Saito:2007:NMD

Saito:2009:FFP

Minoru Saito and Isao Okazaki. Force-field parameters of the Ψ and Φ around glycosidic bonds to oxygen and sulfur atoms. *Journal of Computational Chemistry*, 30(16):2656–2665, De-

REFERENCES

1486–1493, October 2006. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Seok:2003:MMO

Shi:2008:PSI

Skowronek:2000:WDC

Sateesh:2007:TDS

Sauer:2000:CQM

Siegbahn:2005:QCM

Per E. M. Siegbahn and Alexander F. Shestakov. Quantum chemical modeling of CO oxidation by the active site of molyb-

Shinoda:2008:EFE

Song:2009:EAE

Sherrill:2009:ASF

Su:2007:VBS

Stanger:2001:SIB

Szabelski:2004:KEM

[ST04] Pawel Szabelski and Julian Talbot. Kinetics and equilibrium of multicomponent adsorption on chirally templated sur-

Studt:2006:TSM

Stanton:2000:BRB

Sun:2008:SSH

Stern:2004:SAI

Skeel:2002:MGM

Stortz:2005:CPM

Schwarzl:2002:CCL

Santos:2006:QQS

Swart:2001:CAD

Storchi:2009:IUD

[SVT09] Loriano Storchi, Giuseppe Vitillaro, and Francesco Tantelli. Implementation and use of a direct, partially integral-driven non-Dyson propagator method for molecular ioniza-
REFERENCES

Sims:2005:RCD

Song:2004:PVB

Shyu:2009:RBU

Sherer:2003:FAM

Shao:2008:DLS

Shi:2003:ESF

[SYY+03] Shenghua Shi, Lisa Yan, Yang Yang, Jodi Fisher-Shaulsky, and Tom Thacher. An extensible and systematic force field, ESFF, for molecular modeling of organic, inorganic, and

[TBGRJ04] Ivan Tubert-Brohman, Cristiano Ruch Werneck Guimarães, Matthew P. Repasky, and William L. Jorgensen. Extension
REFERENCES

Tan:2009:AER

Titmuss:2002:CLS

Turner:2003:SDP

Thompson:2003:PCM

Tokmachev:2006:EGF

REFERENCES

[Tchougreeff:2008:CSC]

[Tye:2006:CBC]

[Tsipis:2007:GFE]

[Toras:2008:VAG]

[Tatsumi:2004:HMM]
REFERENCES

CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

Atsushi Togo and Peter Kroll. First-principles lattice dynamics calculations of the phase boundary between β-Si$_3$N$_4$ and γ-Si$_3$N$_4$ at elevated temperatures and pressures. *Journal of Computational Chemistry*, 29(13):2255–2259, October 2008. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).
REFERENCES

Tsuneda:2003:RSI

Tew:2007:ECM

Tsuchimochi:2008:ASS

Takahashi:2001:TPV

Tappura:2000:NSC

Tielens:2000:QCC

Torrent:2002:CSR

Tuzun:2000:CIC

Torii:2002:ICM

Totrov:2004:AEG

Thormann:2001:MDF

REFERENCES

Toniolo:2001:ECF

Tsodikov:2002:NCP

Truhlar:2007:EVB

Tafipolsky:2005:CRP

Torrens:2001:NDI

Torrent-Sucarrat:2007:QHK

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume, Issue, Pages</th>
<th>Year</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
</table>
Tran:2001:CATa

Tran:2001:CATb

Toropov:2009:QME

teVelde:2001:CA

Tautermann:2003:EMA

Tatewaki:2003:GTF
Hiroshi Tatewaki and Yoshihiro Watanabe. Gaussian-type function set without prolapse for the Dirac–Fock–Roothaan

REFERENCEs

Udier-Blagovic:2004:AFE

Uchimaru:2003:IIR

Umeda:2009:PFM

Umeda:2004:IPP

Umeda:2001:PMP

Upadhyay:2003:ISM

[UM03] D. M. Upadhyay and P. C. Mishra. An ab initio study of microsolvation of LiF in water: Structures and properties of LiF–

[Ueno-Noto:2006:RTS]

[Umanskii:2001:TKI]

[Ujaque:2003:CCT]

[Urata:2002:AII]

[Urata:2004:AII]
Shingo Urata, Seiji Tsuzuki, Akira Takada, Masuhiro Mikami, Tadaumi Uchimaru, and Akira Sekiya. Analysis of the intermolecular interactions between CH_3OCH_3, CF_3OCH_3,
REFERENCES

VanEijck:2002:CSP

VanWullen:2002:SDT

VanMourik:2008:CAB

Varandas:2009:MPP

Vasilyev:2002:DED

VanLenthe:2003:OST

VanDamme:2007:NCP

VanDamme:2009:CDP

Villa:2000:EWM

Vila:2009:PDF

Volkov:2004:CEI
REFERENCES

REFERENCES

1737–1747, August 2009. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Verma:2007:AAN

Vchirawongkwin:2007:QMM

Vchirawongkwin:2007:TSS

Vemparala:2006:ICI

Visscher:2002:DEQ

Varekova:2006:OP1

R. Svobodová Vařeková and J. Koča. Optimized and parallelized implementation of the electronegativity equalization method and the atom-bond electronegativity equalization

REFERENCES

REFERENCES

Voloshina:2008:CPC

Vitalis:2009:ANC

Schleyer:1998:ECC

Schleyer:2001:A

Valdes:2002:IDS

Vijayalakshmi:2008:TSC

Vadali:2004:SFG

Ramkumar V. Vadali, Yan Shi, Sameer Kumar, Laxmikant V. Kale, Mark E. Tuckerman, and Glenn J. Martyna. Scal-

2000. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
</tr>
</thead>
</table>
REFERENCES

[WCW08] M. Y. Wang, L. Cheng, and Z. J. Wu. Density functional study on the reaction mechanism of palladium-catalyzed addition of cyanoboranes to alkynes. *Journal of Computational Chemi-
Wang:2004:SEA

Wolff:2008:FPM

Wang:2006:TMS

Wang:2006:GRM

Wu:2002:DID

REFERENCES

Wang:2006:TSS

Wang:2007:TSM
Jian Wang, Yi-Hong Ding, Shao-Wen Zhang, and Chia-Chung Sun. Theoretical study on the methyl radical with chlorinated methyl radicals CH$_{3-n}$Cl$_n$ ($n = 1, 2, 3$) and CCl$_2$. *Journal of Computational Chemistry*, 28(5):865–876, April 15, 2007. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Whitehead:2001:MDS

Weigend:2008:HFE

Wang:2001:APP

Wong:2008:TCM
Widjaja:2002:PCS

Wheatley:2008:TDC

Wittayanarakul:2008:APP

Woodcock:2007:IQC

Wu:2006:DDS

REFERENCES

REFERENCES

[Wang:2007:TSR] Ying Wang, Jing-Yao Liu, Ze-Sheng Li, Li Wang, and Chia-Chung Sun. Theoretical study and rate constant calculation...

Wysokinski:2001:PDD

Witek:2004:SSV

Wassenaar:2006:EBS

Wu:2012:LER

Walker:2007:CBS

Wang:2001:HRE

Whitten:2006:EFD

Wang:2003:CLD

Wang:2004:ECL

Witek:2003:MPT

Wladkowski:2003:HCP

Brian D. Wladkowski, Paul Ostazeski, Sarah Chenoweth, Steven J. Broadwater, and Morris Krauss. Hydrolysis of cyclic phosphates by ribonuclease A: a computational study using a

REFERENCES

 REFERENCES

Wennmohs:2005:DMM

Wroblewska:2007:CPB

Wright:2009:SCC

Wei:2008:ATM

Wei:2009:PCT

Wang:2009:SDE

Wu:2007:ESC

Wang:2008:DSC

Wu:2009:APH

Wu:2008:CSD

Wu:2003:ISP

Yong Wu, Daiqian Xie, and Ying Xue. Ab initio studies for the photodissociation mechanism of hydroxyacetone. *Journal of
Wang:2009:DLD

Wang:2009:FPS

Wang:2006:SBO

Wu:2007:SSC

Wan:2004:QSA

Wang:2009:FPS

Lu Wang, Jijun Zhao, Zhen Zhou, S. B. Zhang, and Zhongf...
[XB08] Sheng-Qing Xia and Svilen Bobev. Are Ba\textsubscript{11}Cd\textsubscript{6}Sb\textsubscript{12} and Sr\textsubscript{11}Cd\textsubscript{6}Sb\textsubscript{12} zintl phases or not? A density-functional theory study. *Journal of Computational Chemistry*, 29(13):2125–2133, October 2008. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

[XFF06] Ju Xie, Dacheng Feng, and Shengyu Feng. Theoretical study on the isomeric structures and the stability of silylenoid (Tsi)Cl\textsubscript{2}SiLi (Tsi = C(SiMe\textsubscript{3})\textsubscript{3}). *Journal of Computational Chemistry*, 27(8):933–940, June 2006. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

REFERENCES

[XLZ08] Ying Xiong, Hai-Ting Lu, and Chang-Guo Zhan. Dynamic structures of phosphodiesterase-5 active site by combined

REFERENCES

Xie:2008:EEA

Xi:2006:DGQ

Xie:2004:HBS

Xie:2005:EEG

Xiang:2004:FQM

Yasar:2002:EMS

[Yang:2004:DEG]

[Yasuda:2008:TEI]

[Yasar:2000:MPC]

[Chiu:2008:SEF]

[Yang:2007:DLS]

[Yang:2009:PAC]

Xue-Gang Yang, Duan Chen, Min Wang, Ying Xue, and Yu-Zong Chen. Prediction of antibacterial compounds by machine...

Masahiro Yamanaka, Akiko Inagaki, and Eiichi Nakamura. Theoretical studies on structures and reactivities of organocuprate(I) and organocopper(III) species. Journal

Yu:2006:WRD

Yang:2000:FLD

Yim:2008:AMA

Yuzlenko:2009:MMA

Yang:2006:GAP

Yang:2009:SMN

Yu:2009:CSR

Yang:2008:TSR

Yang:2009:TSR

Yang:2008:DDS

Yuan:2004:SSV

Zheng Yuan, John S. Mattick, and Rohan D. Teasdale. SVMM: Support vector machines to predict transmembrane

Yao:2005:CGR

Yang:2008:QCS

Yakovenko:2008:KAC

Yoshioki:2002:DPW

Young:2011:CCP

Yoon:2009:MMM

Gwonchan Yoon, Hyeong-Jin Park, Sungsoo Na, and Kilho Eom. Mesoscopic model for mechanical characterization of

REFERENCES

Yang:2007:FEP

Yu:2009:ECS

Yan:2004:TSS

Yu:2007:PRI

Ytreberg:2004:EUN

Yang:2006:SPC

Zhu:2007:SOS

Zanuy:2003:TIP

Zheng:2007:CSS

Zubarev:2007:CAC

Zhang:2003:CIS

[ZBS03] Qing Zhang, Daniel A. Beard, and Tamar Schlick. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm. *Journal of Computational Chem-
Zhan:2009:CPN

Zhan:2009:CPN

Zarzycki:2004:SPA

Zhang:2003:MCF

Zhan:2005:FPS

Zerara:2008:PCP

Zhu:2005:CMT

[ZFL+05] Quan Zhu, Ke-Xiang Fu, Xiang-Yuan Li, Zhen Gong, and Jian-Yi Ma. Continuous medium theory for nonequilibrium

Zhou:2008:HAB

Zhang:2001:SMP

Zhu:2006:IPE

Zhu:2007:CIS

Zhao:2008:TDD

REFERENCES

Zhang:2004:TSR

Zhang:2004:TSM

Zhang:2005:TSR

Zhang:2006:TMS

Zhang:2006:TSM

Zhang:2007:NID

Zyubin:2003:PTD

Zoete:2006:IIS

Zyubin:2009:QCM

Zhang:2009:AFE

Zhou:2007:NSE

Zhou:2006:CSG

[ZOJ+06] Yu Zhou, Chris Oostenbrink, Aldo Jongejan, Wilfred F. Van Gunsteren, Wilfred R. Hagen, Simon W. De Leeuw, and

Zagrovic:2003:SVD

Zanasi:2007:CDN

Zhang:2004:SCA

Zarzycki:2005:RSH

Zamora:2008:RIC

Zhang:2005:DLD

Zhong:2008:TSP

Zicovich-Wilson:2004:CVF

Zheng:2002:SSE

Zhang:2009:MDS

Zicovich-Wilson:2008:ISI

C. M. Zicovich-Wilson, F. J. Torres, F. Pascale, L. Valenzano, R. Orlando, and R. Dovesi. Ab initio simulation of the IR spec-
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeng:2004:HBS</td>
<td>Jun Zeng and Daiqian Xie</td>
<td>Hydrogen bonding and solvent effects on the lowest (1(n, \pi^*)) excitations of triazines in water</td>
<td>Journal of Computational Chemistry</td>
<td>25(6)</td>
<td>813–822</td>
<td>April 30, 2004</td>
<td>JCCHDD</td>
<td>ISSN 0192-8651 (print), 1096-987X (electronic)</td>
</tr>
</tbody>
</table>
| Zhao:2004:ACT | Yi Zhao, Wenguo Xu, Qianshu Li, Yaoming Xie, and Henry F. Schaefer III | The arsenic clusters \(As_n\) \((n = 1–5)\) and their
anions: Structures, thermochemistry, and electron affinities.

Zhang:2004:DLI

[ZZL04] Yue Zhang, Shaowen Zhang, and Qian Shu Li. A dual-level ab initio and hybrid density functional theory dynamics study on the unimolecular decomposition reaction $\text{C}_2\text{H}_5\text{O} \rightarrow \text{CH}_2\text{O} + \text{CH}_3$. *Journal of Computational Chemistry*, 25(2):218–226, January 30, 2004. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Zhang:2008:TSO

Zhang:2009:TSR

Zhang:2007:SEG

Zhou:2009:GSB

Zhou:2008:ICS

[ZZvRSC08] Zhen Zhou, Jijun Zhao, Paul von Ragué Schleyer, and Zhong-fang Chen. Insertion of C$_{50}$ into single-walled carbon nanotubes: Selectivity in interwall spacing and C$_{50}$ isomers. *Journal of Computational Chemistry*, 29(5):781–787, April 15,
REFERENCES

